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Preface 

Memetic algorithms are evolutionary algorithms that apply a local search pro- 
cess to refine solutions to hard problems. As such, Memetic algorithms are a 
particular class of global-local search hybrids. In these algorithms the global 
character of the search is given by the evolutionary nature of the approach 
while the local search aspect is usually performed by means of construc- 
tive methods, intelligent local search heuristics or other search techniques. 
Memetic algorithms have been successfully applied to hundreds of real-world 
problems and are the subject of intense scientific research both in academia 
and industry. The implementation of ever more sophisticated MAS has been 
made possible thanks to advances in computing capabilities, moreover, their 
use has spread to domains that range from the construction of optimal uni- 
versity exam timetables, to  the prediction of protein structures and the op- 
timal design of space-craft trajectories. The importance of Memetic Algo- 
rithms in both real-world applications and academic research has lead to the 
establishment of the series of international workshops on Memetic algorithms 
(WOMA)'. WOMA has served as a forum for the exchange of ideas and knowl- 
edge on Memetic Algorithms and by the time of the writing of this preface 
the fifth workshop on that series will take place in Birmingham, UK. As the 
co-founders of the WOMA series we felt that it was necessary to fill the gap 
that was present in the literature on metaheuristic optimisation in general and 
evolutionary optimisation in particular given by the lack of a book dedicated 
exclusively to Memetic Algorithms. The book that is in your hands represents 
our first attempt to fill that gap. 

Recent Advances in Memetic Evolutionary Algorithms is the first book 
where Memetic Algorithms are the central topical matter. This book presents 
the reader with a rich gallery of works where the state of the art on Memetic 
Algorithms is presented. Each chapter was written by world experts on the 
subject. Readers will have the unique opportunity to have a coherent, inte- 

See www.cs.nott.ac.uk/-nxk 



VI Preface 

grated view on both good practice examples and new trends in optimisation 
technology based on these algorithms. 

Researchers and postgraduate students in academia and research centers 
who are interested in search and optimisation technologies, metaheuristics, 
artificial intelligence, soft computing, combinatorial optimization, continuous 
optimization, global and local search , planning and decision making problems 
and strategies, operations research will find this book of enormous value. Simi- 
larly, undergraduate students who want to complement existing textbooks on 
artificial intelligence and modern heuristics will find a rich source of infor- 
mation on this powerful technique. More generally speaking, this book could 
be used to complement modules on evolutionary algorithms and metaheuris- 
tic optimisation. Practitioners in industry, engineering and science who need 
to know the state of the art on optimization techniques and managers and 
decision-makers who need powerful tools and techniques to make informed 
decisions within a variety of domains like scheduling, timetabling, VLSI de- 
sign, fleet and vehicle routing, personnel rostering, drugs and molecular design 
and optimization, bioinformatics, telecommunication networks optimization, 
logistics, operations research, etc. will find this book a rich source of examples 
and good practices. 

The book is structured in four parts. The first part, Introduction to 
Memetic Algorithms, contains an introductory chapter where MAS are briefly 
introduced and the most important algorithmic desing issues that are specific 
to these algorithms discussed. The chapter also sets the scene for the rest of the 
book by defining the terminology that is to be encountered in later chapters. 
This chapter also contains a discussion section where different hybridisation 
schemes are discussed. 

The second part of the book, Applications, contains seven application ori- 
ented chapters. The first chapter in this section, by Katayama and Narihisa, 
applies a MA to the maximum diversity problem. The authors' MA is a com- 
bination of an evolutionary algorithm with both crossover and mutation , a 
repair mechanism and local search. In this paper the solutions to very large 
instances for this problem are reported for the first time. The chapter by 
Pelta and Krasnogor, presents the results of using an innovative fuzzy logic 
based local search framework (called FANS) in conjunction with Multimeme 
algorithms with the aim of predicting the structure of proteins in a simpli- 
fied lattice model. This application chapter introduces two innovations to the 
Memetic Algorithm: the use of FANS as memes and the use of multiple memes 
(hence the name Multimeme) to make the search more robust. The following 
chapter by Prins and Bouchenoua extends the vehicle routing problem and 
the capacitated arc routing problem by a generalization called "Node, Edge 
and Arc Routing Problem". The authors present state of the art Memetic 
algorithm for this more general routing problem. The fourth chapter in the 
section explores a real world problem faced at  a car manufacturing industry 
(BMW). Knodler et.al. employ MAS for the solution of the optimal calibration 
of automotive internal combustion engines. Next, Smith demonstrate how the 
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co-evolution of MAS can be successfully applied to a molecular design prob- 
lem. He shows how the scalability of MAS is improved by the co-evolution of 
the rules with which to perform local search. In the following chapter Yao and 
coworkers employ sophisticated hybrid evolutionary algorithm to solve a hard 
problem in Telecommunications. The Terminal Assignment Problem in com- 
munication networks has very many practical applications. New algorithms 
are proposed and benchmarked. In the last chapter of the applications section 
Areibi describes a family of MAS that can be used to optimise the design of 
VLSI circuits. Taken together, all these chapters represent a wide range of 
applications and showcase the impact that Memetic algorithms have had in a 
variety of engineering domains. 

The third part of the book, Methodological Aspects of Memetic Algo- 
rithms, includes six chapters that explore the principles behind Memetic Algo- 
rithms (in some cases for specific applications). Krasnogor, in the first chapter 
of the third section, explores two techniques that can be use to improve the 
robustness of MAS, namely, the use of multiple local searchers and the avail- 
ability of operators which (under certain circumstances) may accept moves 
that deteriorates the current solution with the aim of escaping deceptive local 
optima. The next chapter by Merz explores in detail the interplay between 
MAS, greedy operators, K-opt type of local searchers and fitness landscapes. In 
"Self-Assembling of Local Searchers in Memetic Algorithms" Krasnogor and 
Gustafson argue the case of the simultaneous search for solutions and solvers 
within MAS. They introduce the concept of Self-Assembling of local searchers 
an exemplify their use in two hard problems. The chapter by Sinha et.al. in- 
troduces a theoretical system-level framework for efficiently combining global 
searchers such as genetic and evolutionary algorithms with domain specific 
local searchers. In Burke and Landa Silva chapter the design principles that 
must be considered when engineering MAS for scheduling and timetabling are 
discussed in detail and an important review of literature is presented. The 
last chapter of the methodological part of the book by Knowles and Corne 
present an in-deep study of the role of Memetic Algorithms in Multi-objective 
optimisation and the way in which MAS must be design in order to produce 
good quality solutions for hard multi-objective problems. The chapter also 
points to an extensive literature. 

The fourth and last part of the book, Related Search Technologies, contains 
two chapter. The first chapter by Wyatt and Bull employs an MA within 
a Learning Classifier System framework use to learn the characteristics of 
continuous-valued problem spaces. In the last chapter of the book, Comellas 
and Gallegos introduce a new metaheuristic called "Angels & Mortals" and 
exemplify its use on the K-coloring graph problem. 

Albuquerque - United States , June 2004, 
Nottingham - United Kingdom, June 2004, 
Bristol - United Kingdom, June 2004, 

Bill Hart 
Nut Krasnogor 

Jim Smith 
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1 Summary 

Memetic Evolutionary Algorithms (MAS) are a class of stochastic heuristics 
for global optimization which combine the parallel global search nature of 
Evolutionary Algorithms with Local Search to improve individual solutions. 
These techniques are being applied to an increasing range of application do- 
mains with successful results, and the aim of this book is both to highlight 
some of these applications, and to shed light on some of the design issues and 
considerations necessary to a successful implementation. In this chapter we 
provide a background for the rest of the volume by introducing Evolutionary 
Algorithms (EAs) and Local Search. We then move on to describe the syn- 
ergy that arises when these two are combined in Memetic Algorithms, and to 
discuss some of the most salient design issues for a successful implementation. 
We conclude by describing various other ways in which EAs and MAS can be 
hybridized with domain-specific knowledge and other search techniques. 

2 Introduction 

Memetic Algorithms (MAS) are a class of stochastic global search heuristics 
in which Evolutionary Algorithms-based approaches are combined with local 
search techniques to improve the quality of the solutions created by evolution. 
MAS have proven very successful across a wide range of problem domains such 
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as combinatorial optimization [27], optimization of non-stationary functions 
[42], and multi-objective optimization 1201 (see [29] for an extensive bibliog- 
raphy). 

Methods for hybridizing EAs with local search have been given various 
names in research papers such as: hybrid GAS, Baldwinian EAs, Lamarckian 
EAs, genetic local search algorithms, and others. Moscato [3] coined the name 
memetic algorithm to  cover a wide range of techniques where evolutionary- 
based search is augmented by the addition of one or more phases of local 
search. 

The natural analogies between human evolution and learning, and EAs 
and artificial neural networks (ANNs) prompted a great deal of research into 
the use of MAS to evolve the structure of ANNs. ANNs were trained using 
back-propagation or similar means during the 1980s and early 1990s. However, 
research applying MAS to ANNs gave a great deal of insight into the role 
of learning, Lamarckianism, and the Baldwin effect to guide evolution (e.g. 
[8, 7, 8, 9, 10, 11, 121 amongst many others). This research reinforced the 
experience of "real-world" practitioners as to the usefulness of incorporating 
local search and domain-based heuristics within an EA framework. 

Since then a number of PhD theses 114, 25, 15, 27, 161 have developed 
algorithmic analyses of MAS. These analyses and related empirical results 
demonstrate the potential impact of MAS, and in practice, many state-of-the- 
art EAs employ some element of hybridization using local search. Research 
in MAS is now sufficiently mature and distinct to have its own annual inter- 
national workshop, and an extensive on-line bibliography of MA research is 
maintained at  [29]. 

In this chapter we set the scene for the rest of this book by providing brief 
introductions to Evolutionary Algorithms (EAs) and Local Search (LS). We 
also discuss some of the issues which arise when hybridizing the two to create 
MAS. As our aim is to provide an overview, we cannot hope to give a detailed 
description of either EAs or the many LS methods available. There are wide 
variety of books discussing these methods that the user can read for further 
detail (e.g., see 117, 181). The rest of this chapter is organized as follows: 

In Section 3 we provide a brief overview and historical background to 
the field of Evolutionary Algorithms, focusing particularly on their use as 
search and optimization techniques. 
In Section 4 we provide a brief introduction to local search and some 
related techniques. 
In Section 5 we discuss some of the motives and rationale underpinning 
the hybridization of EAs with other search technologies and motivate this 
book's focus on Memetic Algorithms. Our focus is on EA hybrids in which 
LS acts on the output of evolutionary operators, that is to say in which 
some form of "lifetime learning" or "plasticity" is incorporated into the 
"standard" evolutionary cycle.. 
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In Section 6 we discuss some of the design issues that must be considered 
when implementing an MA. 
Finally, in Section 7 we discuss the structure of evolutionary and memetic 
algorithms, and consider various places within the evolutionary cycle that 
other heuristics and or domain specific knowledge may be incorporated. 

3 A Brief Introduction to Evolutionary Algorithms 

The idea of applying Darwinian principles to automated problem solving dates 
back to the forties, long before the breakthrough of computers [19]. As early 
as 1948, Turing proposed "genetical or evolutionary search", and by 1962 
Bremermann had actually executed computer experiments on "optimization 
through evolution and recombination". During the 1960s three different im- 
plementations of the basic idea were developed in different places. In the USA, 
Fogel, Owens, and Walsh introduced evolutionary programming [20, 211, 
while Holland called his method a genetic algori thm [22, 23, 241. Mean- 
while, in Germany, Rechenberg and Schwefel invented evolution strategies 
[25, 261. For about 15 years these areas developed separately; but since the 
early 1990s they have been viewed as different representatives of a common 
technology that has come to be known as evolutionary comput ing  (EC) 
[27, 28, 29, 30, 311. In the early 1990s a fourth methodology following the 
same general ideas emerged, genetic programming,  championed by Koza 
[32, 33, 341. The contemporary terminology denotes the whole field by evo- 
lutionary computing, and the algorithms involved are termed evolutionary 
algorithms; evolutionary programming, evolution strategies, genetic algo- 
rithms, and genetic programming are subareas belonging to the corresponding 
algorithmic variants. 

3.1 T h e  Principal  Metaphor  

The common underlying idea behind different evolutionary algorithms is the 
same: given a population of individuals, mechanisms adapted from natural 
selection and genetic variation are used to evolve individuals with high fit- 
ness. Given a quality function to be maximized, we can randomly create a set 
of candidate solutions, i.e., elements of the function's domain, and apply the 
quality function as an abstract fitness measure - the higher the better. Based 
on this fitness, some of the better candidates are chosen to seed the next gen- 
eration by applying recombination and/or mutation to them. Recombination 
is an operator applied to two or more selected candidates (the so-called par- 
ents) and results in one or more new candidates (the children). Mutation is 
applied to one candidate and results in one new candidate. Executing recom- 
bination and mutation leads to a set of new candidates (the offspring) that 
compete - based on their fitness (and possibly age)- with the old ones for a 
place in the next generation. This process can be iterated until a candidate 
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with sufficient quality (a solution) is found or a previously set computational 
limit is reached. 

In this process there are two fundamental forces that form the basis of 
evolutionary systems: 

Variation operators (recombination and mutation) create the necessary di- 
versity and thereby facilitate novelty. 

0 Selection filters, and induces constraints on, candidate solutions. 

The combined application of variation and selection generally leads to im- 
proving fitness values in consecutive populations. It is easy to view such an 
evolutionary process as optimizing by iteratively generating solutions with in- 
creasingly better values. Alternatively, evolution it is often seen as a process 
of adaptation. From this perspective, the fitness is not seen as an objective 
function to be optimized, but as an expression of environmental requirements. 
Matching these requirements more closely implies an increased viability, re- 
flected in a higher number of offspring. The evolutionary process makes the 
population increasingly better at  being adapted to the environment. 

The general scheme of an evolutionary algorithm is shown in Figure 1 in 
a pseudocode fashion. It is important to note that many components of evo- 
lutionary algorithms are stochastic. During selection, fitter individuals have 
a higher chance to be selected than less fit ones, but typically even the weak 
individuals have a chance to become a parent or to survive. For recombina- 
tion of individuals the choice of which pieces will be recombined is random. 
Similarly for mutation, the pieces that will be mutated within a candidate 
solution, and the new pieces replacing them, are chosen randomly. 

Begin 
INITIALIZE population with random candidate solutions; 
EVALUATE each candidate; 
Repeat Until ( TERMINATION CONDITION is satisfied ) Do 

1 SELECT parents; 
2 RECOMBINE pairs of parents ; 
3 MUTATE the resulting offspring; 
4 EVALUATE new candidates; 
5 SELECT individuals for the next generation; 

endDo 
End. 

Fig. 1. The general scheme of an evolutionary algorithm in pseudocode. 
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3.2 Components of an EA 

Representation 

Solutions to the problem being solved are usually referred to as phenotypes. 
Phenotypes are indirectly manipulated by the EA variation and selection op- 
erators by virtue of being encoded in genotypes. Genotypes within the EA 
population are the objects upon which the operators act. 

The representation employed by an EA can thus be represented by a 
ternary relation R = ( P ,  6 ,  M) that specifies the relationship between the 
space of phenotypes,P, and the space of genotypes 6. The mapping M is a 
function with domain in 6 and range in P that provides the "interpretation" 
of the representation. For example, a phenotypic space of real values, P = $2, 
can be easily encoded by a binary genotypic search space, 6 = (0 ,  I)+, using 
as a mapping M a gray coding. That is, the gray coding defines how binary 
strings are to be mapped to, or interpreted into, real values. 

It is important to understand that the phenotype space can be very differ- 
ent from the genotype space, and thus the EA designer must ensure that the 
(optimal) solution to the problem at hand - a phenotype - can be represented 
in the given genotype space. 

The common EC terminology uses many synonyms for naming the ele- 
ments of these two spaces. On the side of the original problem context, can- 
didate solution, phenotype, and individual are used to denote points of 
the space of possible solutions. This space itself is commonly called the phe- 
notype space. On the side of the EA, genotype, chromosome, and again 
individual can be used for points in the space where the evolutionary search 
actually takes place. This space is often termed the genotype space. There 
are also many synonymous terms for the elements of individuals. A place- 
holder is commonly called a variable, a locus (plural: loci), a position, or - 
in a biology-oriented terminology - a gene. An object on such a place can be 
called a value or an allele. 

Evaluation Function 

The evaluation function represents the quality of an individual. It  forms the 
basis for selection, and thereby it facilitates improvements. More accurately, 
it defines what improvement means. From the problem-solving perspective, it 
provides the measure with which alternative solutions can be compared. The 
evaluation function is commonly called the fitness function in EC. Problems 
typically solved by EAs are optimization problems, which are specified with 
an objective function. For minimization problems, an evaluation function 
is commonly formed by negating the objective function. 
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Population 

A population is a set of possible solutions. Specifically, a population is a 
multiset of genotypes.4 In some sophisticated EAs, a population has an addi- 
tional spatial structure, with a distance measure or a neighborhood relation. 
In such cases the additional structure has also to be defined to fully specify a 
population. Initialization is kept simple in most EA applications: The first 
population is seeded by (uniformly) randomly generated individuals. However 
as we shall see in the next section, and succeeding chapters, there may be 
practical advantages to non-random initialization. 

The diversity of a population is a measure of the number of different 
solutions present. Common diversity measures are the number of different 
fitness values present, the number of different phenotypes present, the number 
of different genotypes, and statistical measures such as entropy. Note that only 
one fitness value does not necessarily imply only one phenotype is present, and 
in turn only one phenotype does not necessarily imply only one genotype. The 
reverse is, however, not true: one genotype implies only one phenotype and 
fitness value. 

As opposed to variation operators that act on the one or two parent indi- 
viduals, the selection operators (parent selection and survivor selection) work 
at  population level. In general, they take the whole current population into 
account. For instance, the best individual of the given population is chosen to 
seed the next generation, or the worst individual of the given population is cho- 
sen to be replaced by a new one. In almost all EA applications the population 
size is constant and does not change during the evolutionary search. 

Parent Selection Mechanism 

The role of parent selection or mating selection is to distinguish among 
individuals based on their quality to allow the better individuals to become 
parents of the next generation. An individual is a parent if it has been se- 
lected to undergo variation in order to create offspring. Together with the sur- 
vivor selection mechanism, parent selection is responsible for pushing quality 
improvements. In EC, parent selection is typically probabilistic. Thus, high- 
quality individuals get a higher chance to become parents than those with 
low quality. Nevertheless, low-quality individuals are often given a small posi- 
tive chance, which helps the evolutionary search avoid getting stuck in a local 
optimum. 

Survivor Selection Mechanism 

The role of survivor selection or environmental selection is to distin- 
guish among individuals, based on their quality, to identify those that will 

* A multiset is a set where multiple copies of an element are possible. 
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be used in the next generation. The survivor selection mechanism is called 
after the offspring of the selected parents are created. As mentioned above, 
in EC the population size is almost always constant, thus a choice has to be 
made on which individuals will be allowed in the next generation. For this 
reason survivor selection is also often called replacement or replacement 
strategy. This selection is usually based on their fitness values, favoring those 
with higher quality, although the concept of age is also frequently used. As 
opposed to parent selection, which is typically stochastic, survivor selection is 
often deterministic, for instance, ranking the unified multiset of parents and 
offspring and selecting the top segment (fitness biased), or selecting only from 
the offspring (age biased). 

Variation Opera tors  - Mutat ion  

The role of variation opera tors  is to create new individuals from old ones. In 
the corresponding phenotype space this amounts to generating new candidate 
solutions. Variation operators in EC are divided into two types based on the 
number of objects that they take as inputs. 

Muta t ion ,  a unary  variation operator, is applied to one genotype and 
delivers a (slightly) modified mutant: a child or offspring genotype. A mu- 
tation operator is always stochastic: its output - the child - depends on the 
outcomes of a series of random choices. It  should be noted that an arbitrary 
unary operator is not necessarily seen as mutation. A problem-specific heuris- 
tic operator acting on one individual could be termed as mutation for being 
unary. However, in general mutation denotes a random, unbiased change. Thus 
heuristic unary operators can be distinguished from mutation in most cases. 

It  is important to note that variation operators are representation depen- 
dent. That is, for different representations different variation operators have 
to be defined. For example, if genotypes are bit-strings, then inverting a 0 
to a 1 (1 to a 0) can be used as a mutation operator. However, if we rep- 
resent possible solutions by tree-like structures another mutation operator is 
required. 

Variation Opera tors  - Recombination 

Recombination (or crossover) is (usually) a binary variation operator. 
As the names indicate, such an operator merges information from two parent 
genotypes into one or two offspring genotypes. Like mutation, recombination 
is a stochastic operator: the choice of what parts of each parent are combined, 
and the way these parts are combined, depend on random events. Recom- 
bination operators with a higher arity (using more than two parents) are 
sometimes possible and easy to implement, but have no biological equivalent. 
Perhaps this is why they are not commonly used, although several studies 
indicate that they have positive effects on the evolution [35]. 
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The principle behind recombination is simple - by mating two individ- 
uals with different but desirable features, it may be possible to produce an 
offspring that combines both of those features. This principle has a strong 
supporting case: it is one which has been successfully applied for millennia 
by breeders of plants and livestock to produce species that give higher yields 
or have other desirable features. Evolutionary algorithms create a number of 
offspring by random recombination, and accept that some will have undesir- 
able combinations of traits, most may be no better, or even worse, than their 
parents, and hope that some will have improved characteristics. As with muta- 
tion, recombination operators in EAs are representation dependant. Whether 
to apply crossover (mutation) or not is a stochastic decision with a non-zero 
probability of the operator(s) not being applied. 

4 A Brief Introduction to Local Search 

Local search is a search method that iteratively examines the set of points in 
a neighborhood of the current solution and replace the current solution with 
a better neighbor if one exists. In this section we give a brief introduction to 
local search in the context of memetic algorithms. For more information there 
are a number of books on optimization that cover local search in more detail, 
such as [18]. A local search algorithm can be illustrated by the pseudocode 
given in Figure 2. 

There are three principal components that affect the workings of this local 
search algorithm. 

The pivot rule defines the criteria for accepting an improving point. A 
steepest ascent pivot rule terminates the inner loop only after the entire 
neighborhood n(i) has been searched, (i.e., count = In(i)l). A greedy 
ascent (or first ascent) pivot rule terminates the inner loop as soon as an 
improvement is found (i.e., ((count = In(i)l) or (best # i))). In practice it 
is sometimes necessary to only consider a randomly drawn sample of size 
N <( In(i)l if the neighborhood is too large to search. 
The depth of the local search defines the termination condition for the 
outer loop. This lies in the continuum between only one improving step 
being applied (iterations = 1) to the search continuing to local optimality 
where all the neighboors of a solution i have been explored but no one of 
them found to be better: ((count = In(i)l) and (best = i)). Considerable 
attention has been paid to studying the effect of changing this parameter 
within MAS [14, 251, and it can be shown to have an effect on the perfor- 
mance of the local search algorithm, both in terms of time taken, and in 
the quality of solution found. Furthermore, the impact on computational 
complexity of various pivot rules have been studied both in the context of 
local search [36, 371 and within MAS [25]. 
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Begin 
/* given a starting solution i and a neighborhood function n */ 
set best = i ;  
set iterations = 0; 
Repeat Until ( depth condition is satisfied ) Do 

set count = 0; 
Repeat Until ( pivot rule is satisfied ) Do 
generate the next neighbor j E n ( i ) ;  
set count = count + 1 ; 
If ( f ( j )  is better than f (best))  Then 

set best = j ;  
endIf 

endDo 
set i = best; 
set iterations = iterations + 1 ; 

endDo 
End. 

Fig. 2. Pseudocode of a local search algorithm. 

The neighborhood generat ing function, n(i),  defines a set of points 
that can be reached by the application of some move operator to the 
point i. The application of a neighborhood generating function can be 
represented as a graph G = (v,e), where the set of vertices v are the 
points in the search space, and the edges relate to applications of the move 
operator; eij E G j E n(i). The provision of a scalar fitness value 
f defined over the search space means that we can consider the graphs 
defined by different move operators as fitness landscapes [14, 17, 151. Merz 
and Freisleben [28] present a number of statistical measures that can be 
used to characterize fitness landscapes, and that have been proposed by 
various authors as potential measures of problem difficulty. They show that 
the choice of move operator can have a dramatic effect on the efficiency 
and effectiveness of the local search, and hence of the resultant MA. 

In some cases, domain-specific information may be used to guide the choice 
of neighborhood structure within local search algorithms. However, it has 
recently been shown that the optimal choice of operators can be not only 
instance specific within a class of problems [28, pp. 254-2581, but when in- 
corporated in an MA, it can be dependent on the state of the evolutionary 
search [26]. Changing the neighborhood operator during search (eg. [30]) may 
provide a means of progression in cases where points were locally optimal for 
a given neighborhood operator because a point that is locally optimal with 
respect to one neighborhood structure may not be with respect to another 
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(unless they are globally optimal). This observation has also been the guiding 
principle behind variable neighborhood search algorithm [49]. 

The local search method presented in Figure 2 is fairly simplistic, but local 
search is a central idea in most successful global search methods. The simplest 
of these is the so-called "multi-start local search", in which the algorithm is 
run repeatedly from randomly generated solutions. An elaboration on this 
is Iterated Local search [45], where a new search is begun from a perturbed 
version of the end-point of the previous one. Iterated local search attempts to 
traverse a succession of "nearby" local optima, which is often quite effective 
in practice. 

Perhaps more relevant to this book are two well known heuristics based on 
local search, namely Tabu Search [46] and Simulated Annealing [47]. Giving 
a full description of these techniques is beyond the scope of this book, but in 
essence both modify the pivot rule. Tabu Search does so such that points in the 
neighborhood of the current solution which have been previously considered 
are not (generally) eligible to be accepted, whereas in Simulated Annealing a 
move to an inferior neighbor is permitted with some probability dependent on 
the fitness difference. Both of these have been used with noticeable success, 
both as heuristics in their own right, and as improvement methods within 
Memetic algorithms. 

5 Hybridizing EAs 

As suggested above, there are a number of benefits that can be achieved by 
combining the global search of EAs with local search or other methods for im- 
proving or refining an individual solution. In this section we give an overview 
of some of the theoretical and practical motivations for such hybridizations, 
before presenting one possible framework for Memetic Algorithms. 

5.1 Motives 

There are a number of factors that motivate the hybridization of evolutionary 
algorithms with other techniques. 

Many complex problems can be decomposed into a number of parts, for 
some of which exact methods (or very good heuristics) may already be 
available. In these cases it makes sense to use a combination of the most 
appropriate methods for different subproblems. In some cases this may take 
the form of using the EA either as a post or pre-processor for other algo- 
rithms, or incorporating instance specific knowledge into "greedy" varia- 
tion operators as will be discussed in Section 7. However it is also frequently 
possibly to use this knowledge to define local search operators (or existing 
solution improvement techniques) within an evolutionary algorithm. 
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Successful and efficient all-purpose "black-box" problem solvers do not ex- 
ist. The rapidly growing body of empirical evidence and some theoretical 
results, such as the No Free Lunch (NFL) theorem [10915 strongly support 
this view. From an Evolutionary Computing perspective, this implies that 
EAs are not the holy grail for global search. Experience suggests that in 
fact the competence of an EA in any given domain depends on the amount 
of problem-specific knowledge incorporated within it. In practice we fre- 
quently apply an evolutionary algorithm to a problem where there is a 
considerable amount of hard-won user experience and knowledge available. 
In such cases performance benefits can often arise from utilizing this infor- 
mation in the form of specialist operators (eg. variation and local search) 
and/or good solution initializations. In these cases it is commonly experi- 
enced that the combination of an evolutionary and a heuristic method - 
a hybrid EA - that somehow encapsulates domain specific information 
performs better than either of its "parent" algorithms alone. 

Although EAs are very good at  rapidly identifying good areas of the search 
space (exploration), they are often less good at  refining near-optimal so- 
lutions (exploitation). For example, when a GA is applied to the "One- 
Max" problem, near-optimal solutions are quickly found but convergence 
to the optimal solution is slow because the choice of which genes are mu- 
tated is r a n d ~ r n . ~  Thus EA hybrids can search more efficiently by incor- 
porating a more systematic search in the vicinity of "good" solutions. For 
example, a bit-flipping hill-climber could be quickly applied within each 
generation for One-Max to ensure fast convergence. 

In practice, many problems have a set of constraints associated with them, 
and local search or other heuristics can be used as a means of "repairing" 
infeasible solutions generated by standard variation operators. This is of- 
ten far simpler and more effective than attempting to find a specialized 
representation and set of variation operators which ensure the feasibility 
of all offspring. 

0 Dawkin's idea of "memes" [ll] is often used as a motivation for hybridiza- 
tion. Memes can be viewed as units of "cultural transmission" in the same 
way that genes are the units of biological transmission. They are selected 
for replication according to their perceived utility or popularity, and then 
copied and transmitted via inter-agent communication. 

The NFL and its implications are still a matter of current debate, for the present 
we interpret it as stating that all stochastic algorithms have the same performance 
when averaged over all discrete problems. 
The One-Max problem is a binary maximization problem, where the fitness is 
simply the count of the number of genes set to "1". 
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Examples of memes are tunes, ideas, catch-phrases, clothes fashions, 
ways of making pots or of building arches. Just as genes propagate 
themselves in the gene pool by leaping from body to body via sperm 
or eggs, so memes propagate themselves in the meme pool by leap- 
ing from brain to brain via a process which, in the broad sense, can 
be called imitation [ l l ,  p. 1921. 

Since the idea of memes was first proposed by Dawkins, it has been ex- 
tended by other authors (eg., [6, 13, 15, 21). From the point of view of 
the study of adaptive systems as optimization techniques, memetic the- 
ory (see for example papers in [54]) provides with a rich set of tools and 
metaphors to work with. In the context of memetic theory an EA keeps 
a population of agents composed by both genotypes and memes. As in 
standard EA, genotypes represent solutions to a particular problem while 
memes represent "strategies" on how to improve those solutions. It  is the 
memes abilities to transform a candidate solution into (hopefully) a bet- 
ter one that is of direct interest in the context of optimisation. The idea 
of memes as representing alternative improvement strategies agents can 
harness (implemented, for example, as distinct local searchers) is what 
motivated us to propose in [22] the co-evolution of memes and genes and 
to develop later in [25] the concept of multimeme, self-generating memetic 
algorithms[56] ,[57] and co-evolving memetic algorithms [58]. 

5.2 Memetic Algorithms 

The most common use of hybridization within EAs, and that which fits best 
with Dawkin's concept of the meme, is via the application of one or more 
phases of improvement to individual members of the population within each 
generation of an EA. In the simplest design, local search is applied to indi- 
viduals created by mutation or recombination. A more general form can be 
described by the pseudocode given in Figure 3 ( see also Figure 4), although 
practitioners typically choose to only apply local search once to the offspring, 
and sometimes to avoid the use of mutation entirely when using local search. 

6 Design Issues for Memetic Algorithms 

So far we have discussed the rationale for the use of problem-specific knowledge 
or heuristics within EAs, and some possible ways in which this can be done. 
However, as ever we must accept the caveat that like any other technique, 
MAS are not some "magic solution" to optimization problems, and care must 
be taken in their implementation. In the sections below we briefly discuss 
some of the issues that have arisen from experience and theoretical reasoning. 
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Begin 
INITIALIZE population; 
EVALUATE each candidate; 
Repeat Until ( TERMINATION CONDITION is satisfied ) Do 

SELECT parents; 
RECOMBINE to produce offspring; 
EVALUATE offspring; 
IMPROVE offspring via Local Search; 
MUTATE offspring; 
EVALUATE offspring; 
IMPROVE offspring via Local Search; 
SELECT individuals for next generation; 

endDo 
End. 

Fig. 3. Pseudocode for a simple memetic algorithm 

6.1 Lamarckianism and the Baldwin Effect 

The local search methods described above assume that the current incum- 
bent solution is always replaced by the fitter neighbor when found. Within a 
memetic algorithm, we can consider the local search stage to occur as an im- 
provement, or developmental learning phase within each generation. As such, 
we can consider whether the changes (acquired traits) made to an individual 
should be kept, or whether the resulting improved fitness should be awarded 
to the original (pre-local search) member of the population. 

The issue of whether acquired traits could be inherited by an individual's 
offspring was a major issue in nineteenth century, and Lamarck was a strong 
proponent of this inheritance mechanism. However, the Baldwin effect [59] 
suggests a mechanism whereby evolutionary progress can be guided towards 
favorable adaptation without this type of inheritance. Although modern the- 
ories of genetics strongly favor the latter viewpoint, the design of MAS can 
employ either Lamarckian or Baldwinian inheritance schemes. MAS are re- 
ferred to as Lamarckian if the result of the local search stage replaces the 
individual in the population, and Baldwinian if the original member is kept, 
but has as its fitness the value belonging to the outcome of the local search 
process. In a classic early study, Hinton and Nowlan [8] showed that the Bald- 
win effect could be used to improve the evolution of artificial neural networks, 
and a number of researchers have studied the relative benefits of Baldwinian 
versus Lamarckian algorithms [8, 9, 10, 11, 121. In practice, most recent work 
has tended to use either a pure Lamarckian approach, or a probabilistic com- 
bination of the two approaches, such that the improved fitness is always used, 
and the improved individual replaces the original with a given probability. 
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6.2 Preservation of Diversity 

The problem of premature convergence, whereby the population converges 
around some suboptimal point, can be particularly problematic for MAS. If 
the local search is applied until each point has been moved to a local optimum, 
then this can lead to a loss of diversity within the population unless new 
local minima are constantly identified. Alternatively, even if local search is 
terminated before local optimality, an induced search space with wide basins 
of attractions could also result in premature convergence to the suboptimal 
solution at  the center of a wide basin of attraction. A number of approaches 
have been developed to combat this problem: 

when initializing the population with known good individuals, only using 
a relatively small proportion of them, 
applying local search to a small fraction of the population (which helps 
ensure that the rest of the population is diverse), 
using recombination operators that are designed to preserve diversity, 
using multiple local searchers, where each one induces a different search 
space with distinct local optima (eg. [26, 121); 
modifying the selection operator to prevent duplicates (e.g. as in CHC 
WI), and 
using a fuzzy criteria, that explicitly controls diversity, as the pivot rule 
in the local search stage (eg. [12], 5). 
modifying the selection operator, or local search acceptance criteria, to use 
a Boltzmann method so as to preserve diversity (eg. 111). 

This last method bears natural analogies to simulated annealing [62, 471, 
where worsening moves can be accepted with nonzero probability to aid es- 
cape from local optima. A promising method that tackles the diversity issue 
explicitly is proposed in [24], where during the local search phase a less-fit 
neighbor may be accepted with a probability that increases exponentially as 
the range of fitness values in the population decreases: 

1 if A E  > 0, 
P(accept) = 

ek* F m ~ = - F a v g  , otherwise, 

where k is a normalization constant and we assume a maximization problem, 
= Fneighbour - Foriginal. 

6.3 Choice of Operators 

Probably the most important factor in the design of a MA is the choice of 
improving heuristic or local search move operator, that is to say, the way that 
the set of neighboring points to be examined when looking for an improved 
solution is generated. 
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There has been a large body of theoretical and empirical analysis of the 
utility of various statistical measures of landscapes for predicting problem 
difficulty. The interested reader can find a good summary in [64]. Merz and 
Freisleben [28] consider a number of these measures in the context of memetic 
algorithms, and show that the choice of move operator can have a dramatic 
effect on the efficiency and effectiveness of the local search, and hence of the 
resultant MA. 

One recent result of particular interest to the practitioner is Krasnogor's 
formal proof that, in order to reduce the worst-case run times, it is necessary 
to choose a local search method whose move operator is not the same as 
those of the recombination and mutation operators [25]. This formalizes the 
intuitive point that within a MA recombination, and particularly mutation, 
have valuable roles in generating points that lie in different basins of attraction 
with respect to the local search operator. This diversification is best done 
either by an aggressive mutation rate, or preferably by the use of a variation 
operators that have different neighborhood structures. 

In general then, it is worth giving careful consideration to the choice of 
move operators used when designing a MA: for example, using 2-opt for a TSP 
problem might yield better improvement if not used in conjunction with the 
"inversion" mutation operator which picks a subtour at  random and reverses 
it. The reason for that is that a genotypic inversion induces (a subspace of) 
the phenotypic effect of the 2-exchange move operator which is at  the heart 
of 2-opt local searcher. 

In some cases, domain-specific information may be used to guide the choice 
of neighborhood structure within the local search algorithms. However, as we 
noted earlier, the optimal choice of operators can be not only instance specific 
within a class of problems but also dependant on the state of the evolutionary 
search. 

One simple way to surmount these problems is the use of multzple local 
search operators in tandem. An example of this can be seen in [30], where 
a range of problem specific move operators, such as local stretches, rotations 
and reflections, each tailored to different stages of the protein folding process, 
are used for a protein structure prediction problem within the context of what 
is called a multimemetic algorithm [26]. 

The use of a set of possible local search strategies is analogous to Dawkin's 
memes. The extension of this approach to allow the adaptation of the local 
search "memes" in the form of a coevolving population, and the implications 
for search is currently under way in different research groups [22, 65, 22, 37, 
68, 58, 69, 56, 571. 

6.4 Use of Knowledge 

A final point that might be taken into consideration when designing a MA 
concerns the use and reuse of knowledge gained during the optimization pro- 
cess. One possible hybridization that explicitly uses knowledge about points 
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already searched to guide optimization is with tabu search [46]. In this al- 
gorithm a "tabu" list of visited points is maintained, which the algorithm is 
forbidden to return to. Such methods appear to offer promise for maintaining 
diversity. Similarly, it is easy to imagine extensions to the Boltzmann accep- 
tance/selection schemes that utilize information about the spread of genotypes 
in the current population, or even past populations, when deciding whether 
to accept new solutions. 

6.5 Specific Considerations for Continuous Domains 

The design of MAS for continuous domains is complicated by several factors. 
Effective search requires the use of different search scales for global and local 
search. It  is not always possible to determine whether a solution is locally 
optimal. Relatively long local searches may be needed to ensure convergence 
to local optima (especially if gradient information is unavailable). Although 
many different local search methods have been developed, they are general 
methods and thus it is not clear whether any given local search method is 
effective for a particular application. 

Because of these considerations, the design of effective MAS for continuous 
domains can be quite different than for combinatorial problems. For example, 
in combinatorial domains it is not unusual to apply local search until a locally 
optimal solution is found. However, it is often unrealistic to assume that local 
search methods can quickly identify local minima within a continuous domain. 
This is often the case when applying derivative-free methods (e.g. the Nelder- 
Mead simplex method), but it may also be true when derivative information 
is available. Thus it is generally the case that local search is truncated based 
on a target balance between global and local search. Specifically, two main 
strategies have been used to achieve such a balance: (1) truncate local searches 
after a given number of iterations (or fitness evaluations) and (2) apply local 
search infrequently (e.g. with a fixed probability). 

Although these hybridization strategies are quite effective in practice, they 
can make it difficult to  ensure convergence for these MAS. Although general 
conditions on the mutation and recombination operators can be enforced to 
ensure global convergence [70], these convergence results provide little insight 
into the efficacy of local search. Gradient-based methods can be applied to 
generate stationary-points (using first-order information) or locally-optimal 
points (using second-order information), assuming that local search is not 
truncated after a given number of iterations. However, in many applications 
derivative-free methods are applied for which the search is truncated. To our 
knowledge, MAS based on evolutionary pattern search is the only class of MAS 
for which the convergence of tandem derivative-free local searches within the 
MA can be ensured [71]. 
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7 Other Hybridization Possibilities 

Although our working definition of MAS has been restricted to those methods 
that incorporate some form of improvement mechanism acting on the output 
of the evolutionary variation operators, there are a number of other ways in 
which an EA or MA can be used in conjunction with other operators and/or 
domain-specific knowledge. This is illustrated in Figure 4. 

Known solutions, 
Constructive heuristics, 
Local search 
Overselection 

Modified Selection 
operators 

Use of problem-specific 
info, in operator 

Local Search 

Use of problem-specific 
info. in operator 

Local Search 

Fig. 4. Possible places to incorporate knowledge or other operators within a single 
generation. 

7.1 Intelligent Initialization 

The most obvious way in which existing knowledge about the structure of 
a problem or potential solutions can be incorporated into an EA is in the 
initialization phase. In many cases the EA will make rapid initial progress, 
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which raises questions about the value of expending effort creating a good 
initial population, however starting the EA by using existing solutions can 
offer interesting benefits: 

1. It is possible to avoid "reinventing the wheel" by using existing solutions. 
Preventing waste of computational efforts can yield increased efficiency 
(speed). 

2. A nonrandom initial population can direct the search into particular re- 
gions of the search space that contain good solutions. Biasing the search 
can result in increased effectiveness (quality of end solution). 

3. All in all, a given total amount of computational effort divided over heuris- 
tic initialization and evolutionary search might deliver better results than 
spending it all on "pure" evolutionary search, or an equivalent multistart 
heuristic. 

There are a number of possible ways in which the initialization function 
can be changed from simple random creation, such as: 

Seeding the population with one or more previously known good solutions 
arising from other techniques. 
In selective initialization a large number of random solutions are cre- 
ated and then the initial population is selected from these. Bramlette [72] 
suggests that this should be done as a series of N k-way tournaments rather 
than by selecting the best N from k - N solutions. Other alternatives in- 
clude selecting a set based not only on fitness but also on diversity so as 
to maximize the coverage of the search space. 
Performing a local search starting from each member of initial population, 
so that the initial population consists of a set of points that are locally 
optimal with respect to some move operator. 
Using one or more of the above methods to identify one (or possibly more) 
good solutions, and then cloning them and applying mutation at  a high 
rate (mass mutation) to produce a number of individuals in the vicinity 
of the start point. 

These methods have been tried and have exhibited performance gains for 
certain problems. However, the important issue of providing the EA with suf- 
ficient diversity for evolution to occur must also be considered. In [73] Surry 
and Radcliffe examined the effect of varying the proportion of the initial popu- 
lation of a GA that was derived from known good solutions. Their conclusions 
were: 

The use of a small proportion of derived solutions in the initial population 
aided genetic search. 
As the proportion was increased, the average performance improved. 
The best performance came about from a more random initial population. 

In other words, as the proportion of solutions derived from heuristics used 
increased, so did the mean performance, but the variance in performance 
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decreased. This meant that there were not the occasional really good runs re- 
sulting from the EA searching completely new regions of space and coming up 
with novel solutions. For a certain type of problems, such as design problems, 
this is an undesirable property. 

7.2 Hybridization During Genotype to Phenotype Mapping 

A widely used hybridization of memetic algorithms with other heuristics is 
during the genotype-phenotype mapping M prior to evaluation. This ap- 
proach, where the EA is used to provide the inputs controlling the application 
of another heuristic, is frequently used and similar approaches have been used 
to great effect for timetabling and scheduling problems [74], and in the "sector 
first-order second" approach to the vehicle routing problem [75]. 

There is a common thread to all of these approaches, which is to make use 
of existing heuristics and domain information wherever possible. The role of 
the EA is often that of enabling a less biased application of the heuristics, or 
of problem decomposition, so as to permit the use of sophisticated, but badly 
scaling heuristics when the overall problem size would preclude their use. 

7.3 Hybridization Within Variation Operators: Intelligent 
Crossover and Mutation 

A number of authors have proposed so-called "intelligent" variation operators, 
which incorporate problem- or instance-specific knowledge. To give a simple 
example, if a binary-coded GA is used to select features for use in another 
classification algorithm, one might attempt to bias the search towards more 
compact features sets via the use of a greater probability for mutating from 
the allele value "use" to "don't use" rather than vice versa. A related approach 
can be seen in [76], where genes encode for microprocessor instructions, which 
group naturally into sets with similar effects. The mutation operator was then 
biased to incorporate this expert knowledge, so that mutations were more 
likely to occur between instructions in the same set than between sets. 

A slightly different example of the use of problem-specific (rather than 
instance-specific) knowledge can be seen in the modified one-point crossover 
operator used for protein structure prediction in [77]. Here the authors realized 
that the heritable features being combined by recombination were folds, or 
fragments of three-dimensional structure. A property of the problem is that 
during folding protein structures can be free to rotate about peptide bonds. 
The modified operator made good use of this knowledge by explicitly testing 
all the possible different orientations of the two fragments, (accomplished by 
trying all the possible allele values in the gene at the crossover point) in order 
to find the most energetically favorable. If no feasible conformation was found, 
then a different crossover point was selected and the process repeated. This 
could be seen as a simple example of the incorporation of a local search phase 
into the recombination operator, but in practice the nature of the models 
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used is such that generally these approaches only need to consider partial 
solutions when deciding whether an offspring is feasible. Note that this should 
be distinguished from the simpler "crossover hill-climber" proposed in [15], in 
which all of the 1-1 possible offspring arising from one-point crossover are 
constructed and the best chosen. 

Operators can be modified in a complex manner to incorporate highly 
specific heuristics, which makes use of instance-specific knowledge. A good 
example of this is Merz and Friesleben's distance-preserving crossover (DPX) 
operator for the TSP [78]. This operator has two motivating principles: mak- 
ing use of instance specific knowledge, whilst at the same time preserving 
diversity within the population to prevent premature convergence. Diversity 
is maintained by ensuring that the offspring inherits all of the edges common 
to both parents, but none of the edges that are present in only one parent. The 
"intelligent" part of the operator comes from the use of a nearest-neighbor 
heuristic to join together the subtours inherited from the parents, thus ex- 
plicitly exploiting instance-specific edge length information. It is easy to see 
how this type of scheme could be adapted to other problems, via the use of 
suitable heuristics for completing the partial solutions after inheritance of the 
common factors from both parents. 

It  should be noted that under our working definition of MAS, the use of 
such "intelligent" operator within an EA does not generally on its own consti- 
tute a MA, since they use instance-specific knowledge to guide the construc- 
tion of partial solutions. This can be contrasted with the use of local search 
acting on offspring, where a neighborhood of complete solutions is examined 
and an improved solution accepted. 

8 Conclusions 

In this chapter we gave a gentle introduction to Memetic Evolutionary Algo- 
rithms and role they play as complements to pure Evolutionary Algorithms 
and pure Local Search. We briefly discussed the historical context of MAS, and 
we gave the motivation behind the use and research on this important brand 
of global-local search hybrids. We also mentioned some of the design princi- 
ples a practitioner needs to take into consideration when designing Memetic 
Algorithms for new domains. 
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Summary. The objective of the maximum diversity problem (MDP) is to select 
a set of m-elements from larger set of n-elements such that the selected elements 
maximize a given diversity measure. The paper presents an evolutionary algorithm 
incorporating local search - memetic algorithm (MA) - for the MDP which con- 
sists of a greedy method, simple evolutionary operators, a repair method, and a k-flip 
local search based on variable depth search. In the MA, the k-flip local search starts 
with a feasible solution and obtains a local optimum in the feasible search space. 
Since infeasible solutions may be created by the simple crossover and mutation op- 
erators even if they start with feasible ones found by the local search, the repair 
method is applied to such infeasible solutions after the crossover and the mutation 
in order to guarantee feasibility of solutions to the problem. To show the effective- 
ness of the MA with the k-flip local search, we compare with a MA with 2-flip local 
search for large-scale problem instances (of up to n = 2500) which are larger than 
those investigated by other researchers. The results show that the k-flip local search 
based MA is effective particularly for larger instances. We report the best solution 
found by the MA as this is the first time such large instances are tackled. 

1 Introduction 

We consider the following maximum diversity problem (MDP). Given a sym- 
metric n x n matrix dij (di j  = dji  and dii = 0) and a predetermined number 
of size m (n  > m > I), the objective of the MDP is t o  select a subset of 
m-elements from n-elements such that the selected elements maximize a di- 
versity measure. The MDP is represented as the following quadratic zero-one 
integer program: 



32 Kengo Katayama and Hiroyuki Narihisa 

maximize f (x) = C C dijxixj, 

n 

subject to C x i  = m ,  

The first model of the MDP has been formulated by Kuo, Glover, and 
Dhir [15] in which the concept of diversity is quantifiable and measurable. 
The concept of diversity is described as follows: consider a set of elements 
S = {si : i E N )  with the index set N = {1,2,. . . , n )  and their common r 
attributes that each element possesses, denoted by s i k ,  k E R = {1,2,. . . , r). 
To measure the diversity of a selected set of elements, a specified distance dij 
between each pair of elements si and sj is required. One of the most commonly 
used distances may be the Euclidean distance, dij = [ z ; = l ( ~ i k  - sjk)"1/2. In 
the MDP, it is assumed that the matrix d can be given by such a distance. 

Kuo et al. proved the problem to be NP-hard, both with and without 
restricting the dij coefficients to non-negative values. Moreover, they trans- 
formed the maximum diversity model into two equivalent linear integer pro- 
gramming models and maximin diversity model in order to solve the problem 
by integer programming approaches. The MDP shown above is a general di- 
versity maximization model that arises in data mining [14] and is substantially 
equivalent to the model of Kuo et al. 

The MDP has a large number of applications. For example, such applica- 
tions are immigration and admissions policies, committee formation, curricu- 
lum design, market planning and portfolio selection [5, 151. Moreover, there 
are VLSI design and exam timetabling problems [23]. Others are environ- 
mental balance, medical treatment, genetic engineering, molecular structure 
design, agricultural breeding stocks, right sizing the firm, and composing jury 
panels [14]. 

The form of the MDP is quite similar to that of the unconstrained bi- 
nary quadratic programming problem (BQP) in that they are both problems 
of maximizing a quadratic objective by suitable choice of binary (zero-one) 
variables. The BQP can be expressed as follows: 

Thus, the MDP can be interpreted as a constrained version of the BQP. 
Applications of the BQP are known to be abundant as well as the MDP. 

They appear in machine scheduling, traffic message management, CAD, cap- 
ital budgeting and financial analysis, and molecular conformation [3]. Fur- 
thermore, it has been known that several classical combinatorial optimization 
problems can be formulated as a BQP, such as maximum cut problem, max- 
imum clique problem, maximum vertex packing problem, minimum vertex 
cover problem, and maximum (weight) independent set problem [21, 221. 



An Evolutionary Approach for the Maximum Diversity Problem 33 

Since the problems MDP and BQP are NP-hard, exact methods would 
become prohibitively expensive to apply for large scale problem instances, 
whereas the heuristic or metaheuristic approaches may find high quality solu- 
tions of near-optimum with reasonable times. For the BQP, several heuristic 
and metaheuristic approaches have been developed; for example, greedy meth- 
ods [7, 191, local searches [ll, 191, and the metaheuristics, tabu search [3, 61, 
simulated annealing [3, 91, iterated local search [12], and evolutionary meth- 
ods such as scatter search [I] and genetic algorithms incorporating local 
search [lo, 17, 18, 201. 

On the other hand, studies on such approaches for the MDP seem much 
more limited. Ghosh [8] showed a greedy randomized adaptive search proce- 
dure (GRASP) for the MDP. The GRASP metaheuristic was tested on small 
problem instances with n 5 40. Glover et al. [5] proposed two constructive 
heuristics and two destructive heuristics for the MDP. They tested them for 
several instances of up to n = 30. Kochenberger et al. [14] dealt with large 
instances of the general MDP from n = 100 to n = 1000, which are randomly 
generated, and tested a tabu search metaheuristic taken into account search- 
ing infeasible space. Their tabu search to the MDP is based on the algorithm 
that has been developed for the BQP. The tabu search includes the strate- 
gic oscillation with constructive and destructive heuristics. The details of the 
tabu search can be found in [6]. 

This paper presents an evolutionary approach to the MDP. To the best 
of our knowledge, such an evolutionary approach is the first attempt to the 
MDP. Our approach consists of a greedy method to create initial solutions, 
simple evolutionary operators such as uniform crossover and bit-flip mutation, 
a repair method to turn an infeasible solution created by crossover or mutation 
into a feasible one, and a sophisticated k-flip local search based on variable 
depth search [13, 161, to be an effective memetic algorithm (MA) for the 
MDP. To show the effectiveness of the MA, computational experiments are 
conducted on large problem instances of up to n = 2,500 compared to the 
previous studies for the MDP. The results demonstrate that the k-flip local 
search based MA is more effective than a MA based on 2-flip local search in 
terms of final solutions, particularly for large-scale problem instances. 

The paper is organized as follows. In the next section, we show the k-flip 
local search incorporated in the memetic algorithm for the MDP. In section 3, 
a flow of the memetic algorithm is given, and each operation in the algorithm 
is described. In section 4, we report experimental results for the memetic al- 
gorithms tested on our new problem instances and on several benchmarks 
derived from well-known BQP7s ones in which the di j  coefficients are not re- 
stricted to non-negative values. The final section contains concluding remarks. 
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2 Local Search for MDP 

Local Search (LS) is a generally applicable approach that can be used to 
find approximate solutions to hard optimization problems. Many powerful 
heuristics are so-called metaheuristics such as memetic algorithm are based 
on LS. 

The basic idea of LS is to start with a feasible solution x (e.g., randomly 
generated solution) and to repeatedly replace x with a better solution XI 

selected from the set of neighboring solutions that can be reached by a slight 
modification of the current solution. If no better solutions can be found in the 
set of neighbors, LS immediately stops and finally returns the best solution 
found during the search. Thus, a resulting solution cannot be improved by the 
slight modification. This modification is achieved by a predefined structure 
often referred to as neighborhood N B .  The resulting solution is called locally 
optimal with respect to the neighborhood. LS is an integral process in the 
memetic framework. The remainder of this section describes a LS, k-flip local 
search, for the MDP. We begin by describing the fitness (objective) function 
and the solution representation on which the local search and the evolutionary 
operators in the memetic algorithm are based. 

2.1 Fitness Function and Solution Representation 

In our memetic algorithm incorporating the local search for the MDP, the 
fitness, i.e., a solution cost, is evaluated by equation (1). 

A solution to the MDP can be represented in a binary string x of length 
n = INI, where N denotes an index set of elements N = {1,2,. . . , n). In this 
representation, a value of 0 or 1 a t  the i-th bit (element) implies that xi = 0 
or 1 in the solution, respectively. 

Let S1 be an index set of elements with xi = 1 for all i E N and So be 
an index set of elements with xi = 0 for all i E N .  In the MDP, we thus note 
that S1 U So = N and Sl n So = 8. To be a feasible solution, it is restricted 
that a sum of Xi  = 1 for all i E N is equal to m (= lSll = IN1 - ISo[) due 
to the constraint in the formulation (1). Note that in this paper the solution 
representation x always corresponds to a representation S1 and So. 

2.2 Neighborhoods 

Although we use a k-flip local search heuristic in the LS process of the memetic 
framework for the MDP, Zflip based neighborhood is mainly used in the k-flip 
local search as a basic move structure. In the crossover and mutation operators 
in the memetic algorithm, 1-flip based neighborhood is used. Thus, we here 
describe the two neighborhoods for the MDP. 

Given a solution x, the 1-flip neighborhood NB1 is defined by the set 
of solutions that can be obtained by flipping a single bit xi in the current 
solution. Thus, a hamming distance da(x,xl) between the current solution 
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x and the neighboring solution x' is 1. The number of all possible solutions 
that can be created from a current solution by the 1-flip neighborhood NBl 
at a time is equal to n. Even if a given solution is feasible, a feasibility of 
the neighboring solutions that can be reached by the neighborhood is not 
preserved since the number of '0' and that of '1' in the neighboring solutions 
are changed from the feasible condition of Cy=l xi = m. In order to guarantee 
feasibility of solutions, several considerations should be taken into account. 

The 2-flip neighborhood NB2 is defined by the set of all solutions that can 
be reached by simultaneously flipping two bits xi (i E S1) and x j  ( j  E So) in 
the current solution x. The hamming distance between the current solution 
x and its neighboring solution x' can be d ~ ( x ,  x') = 2. Note in this neigh- 
borhood that it is not allowed to flip two bits i and j in the same set (e.g., 
i ,  j E S o )  Given a feasible solution, therefore, the feasibility of neighboring so- 
lutions by the neighborhood can be always preserved. The number of possible 
neighboring solutions at a time is equal to IS1 I ISo 1. 

2.3 Gain Calculation for Neighbors 

In order to perform an efficient search for a problem, it is crucial to calculate 
the difference A = f (x') - f (x), where f is an objective function of the 
problem, and x' denotes a neighboring solution obtained from a current one x 
by reference of a neighborhood, instead of naively calculating the cost of x' by 
f (x') from scratch. In this paper, we refer the difference A to the term gain 
for a given neighboring solution x'. For the MDP, the gain can be computed 
much faster than the naive calculation f (x'). 

Fast Gain Calculation for 1-flip Neighborhood 

To achieve a fast calculation for the gain in the local search or memetic al- 
gorithm to the MDP, we refer to the paper of Merz and Freisleben [19] (see 
also [6, 201 as other related references). They showed that a calculation of all 
gains for the 1-flip (or 1-opt) neighbors to the BQP can be computed in linear 
time. The gain calculation for the BQP can be used for the MDP without 
modification. 

Naively, the gain value gj of flipping a single j-th bit in a current solution 
x can be computed by the difference between the objective function values of 
f (x') and f (x), i.e., gj = f (x') - f (x), where x' = 1 - xj. However, the gain 
gj can be calculated by the following formula: 

n 

9 .  j - - d . .  3 3 ( ~ j  - -x j )  + 2  C dij xi (Zj -x j ) ,  (3) 
k l  ,i#j 

with Zj = 1 - xj. In this case, the gain gj of flipping j-th bit in the current 
solution can be calculated in O(n). However, the calculation of the all gains 
for the n candidates takes O(n2) time by using this formula. 
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Using the information of the all gains that have been already computed, all 
of new gains can be calculated efficiently, instead of recalculating them by (3). 
To achieve such a calculation, we take into account the update of the gains 
that is based on calculating the difference of gains Agi (Vi 'i N). Assuming 
that all gi have been calculated and the bit j  is flipped, the new gains gi can 
be computed efficiently by 

-gi if i = j  g! = ' {gi + dgi ( j )  otherwise with A g i ( j ) = 2 d i j ( Z i - x i ) ( x j - Z j ) .  

(4) 
The update of the gains for the n candidates of the 1-flip neighboring solutions 
can be performed in linear time. Furthermore, only the gains gi for dij  # 0 
have to be updated [19]. 

This update technique [19] for the 1-flip neighbors is basically embedded 
with our local search and memetic algorithms for the MDP. If we consider a 
k-flip (1 < k < n) based neighborhood as used in the k-flip local search for 
the MDP, the following can be useful. 

Generalized Gain Calculation 

We now show a generalized gain calculation for a k-flip neighbor (1 < k < n) 
in the current solution in order to efficiently perform k-flip neighborhood 
search. The information of the matrix of a given problem instance and the 
gains for the 1-flip neighbors in a solution is fully used in the generalized gain 
calculation. Assuming that all gains g for the 1-flip neighbors are calculated 
and several k bits are flipped for a current solution x, a gain G of flipping 
the k bits (we assume in the following that the bits are stored in flip[ ] for 
convenience and all the bits are different) can be computed by 

For example, assuming that two bits of a- th and ,8-th are flipped (i.e., 
2-flip neighborhood) in the current solution, the gain G for the two bits can 
be given by a sum of g,, go, and 2daB(1 - 2x,) (1 - 2xp) if the gains g for 
the 1-flip neighbors in the current solution is provided in advance. As shown 
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above, this calculation for the 2-flip neighbor can be extended to several k 
bits for the generalized k-flip neighborhood. The update of the gains have to 
be performed after each flip of k bits. The update can be done by (4). 

This generalized gain calculation is valid for the MDP and the BQP. 

2.4 k-flip Local Search 

The larger sized neighborhoods such as k-flip neighborhood (1 <( k < n)  for 
the MDP may yield better local optima but the effort needed to search the 
neighborhood is too computationally expensive. An idea of the variable depth 
search (VDS) [13, 161 is based on efficiently searching a small fraction of the 
large neighborhood. 

A basic idea of VDS based local search for the MDP is described as follows. 
Given a feasible solution x as an initial solution, in each iteration a sequence of 
m (or n-m, see below) solutions is produced by 2-flip based sub-moves leading 
from one solution to another, and the best solution xbest in the sequence is 
adopted as a new initial solution x for the next iteration. Such a process is 
repeated until no better solution is found. 

To produce the sequence, the 2-flip based moves are sequentially performed 
so that each bit of x is flipped no more than once. All m solutions in the 
sequence are different and each solution x' differs two to k bits from the 
initial solution x. Thus, the hamming distance dH between the initial solution 
x and each solution x' is d ~ ( x ,  x') = k, where k = {2,4,. . . ,2m - 2,2m). 
Since the solution xbest with the highest cost is selected from the resulting 
sequence, the hamming distance d ~ ( x , x ~ , , ~ )  is variable in each iteration of 
the algorithm, i.e., dH(x, xbest) = k. 

This specialized neighborhood may be called k-flip neighborhood. The k-flip 
neighborhood, denoted by N B k ,  for the MDP can be defined as follows: 

NDk(x) := {x' I x' is obtained from a sequence of m solutions that can 
be obtained from x by exchanging an index i in one set S1 with an index j in 
the other set So under the following prohibition: all of the exchanged i and j 
are not re-exchanged). 

Note in this neighborhood that the number m of the solutions in the 
sequence described above depends on the problem constraint. Throughout 
the paper, we assume that a given number m in the problem constraint is 
greater than one and fewer than a half of n variables 3 .  If the given number 
m is greater than n/2, the elements of each So and S1 are all swapped before 
the search and the number of solutions produced in each iteration should be 
n - m .  

If the given number m is just n/2  in the problem constraint, we should produce 
m - 1 solutions for the sequence in each iteration of the algorithm, because both 
a given current solution and a resulting m-th solution in the sequence become 
the same, that is, all elements in each set SI and So in an initial state are only 
exchanged each other, if the 2-flip move is embedded with the k-flip neighborhood 
search. 
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procedure k-Flip-Local-Search-QuasiBstImp2-FlipMove(x, g) 
begin 

1 repeat 
2 x,,,, := x, Gmax := 0, G := 0, C1 := SI, CO := S o ;  
3 repeat 
4 find j with gj = maxj~c l  gj; 
5 find k with gain = maxk~co (gk + gj + 2djk(l - 2xk)(l - 2xj)); 
6 G := G + gain; 
7 xj := 1 - xj, xk := 1 - xk, and update gains g for each flipping; 
8 C l  := Cl\{j}, CO := CO\{k}; 
9 if G > GmaX then Gmax := G, Xbest := 2; 

10 until new xbest is not found for several repeats or C1 = 0; 
11 if Gma+ > 0 then x := xbest else x := x,,,,; 
12 until Gmax 5 0; 
13 return x; 

end; 

Fig. 1. k-flip Local Search with Quasi-Best Improvement 2-flip Move 

Quasi-Best Improvement k-flip Local Search 

Our k-flip local search used in our memetic algorithm is based on the above 
basic idea. To produce a sequence of different m solutions in each iteration, we 
perform the 2-flip based sub-move with quasi-best improvement. We thus call 
it the quasi-best improvement k-flip local search. The meaning of the quasi-best 
is mentioned later. 

Figure 1 shows the pseudo-code of the quasi-best improvement k-flip local 
search heuristic for the MDP. In the figure, we assume that 1) a feasible 
solution x and an associated gain vector g are provided in advance. 2) the gain 
vector is maintained and updated using (4) after each flip, and the generalized 
gain calculation (5) is used for solutions by 2-flip moves. 3)  the solution x 
always corresponds to the representation of the sets S1 and So as mentioned 
in the section 2.1. 

The local search consists of two loops: an inner loop in which a sequence of 
solutions is produced and the best solution is selected from the sequence and 
an outer loop in which the best solution found in the inner loop is evaluated. 

To produce a sequence of different solutions in the inner loop, two can- 
didate sets of C1  and CO are used to ensure that each bit of a given initial 
solution x is flipped no more than once. Therefore, a basic stopping crite- 
rion of the search in the inner loop is expressed as C1  = 0. To choose the 
best solution in the sequence, the inner loop involves a judgment process (line 
9) whether a current solution x' is better than the incumbently stored best- 
solution %best. Such a judgment plays a key role in a reduction of running time 
for the local search. In the k-flip local search, we change the stopping criterion 
of the search in the inner loop as follows: the inner loop (line 10) is terminated 
if new xbest is not found for more than t repeats or if C1 = 0. A parameter 
t for the MDP is set to a range 1 < t < m in advance and is fixed during 



An Evolutionary Approach for the Maximum Diversity Problem 39 

procedure MA 
begin 

1 initialize a population P E {II, . . . , Ips);  
2 foreach individual I E P do I := Local-Search(1); 
3 repeat 
4 for i := 1 to #crossovers do 
5 choose two parents I,, Ib E P randomly; 
6 I,  := Crossover(I,, Ib); 
7 I, := Repair(1,); 
8 I, := Local-Search(1,); 
9 add an individual I, to PC; 

10 endfor 
11 P := Selection(P, PC); 
12 if diversification=true then 
13 foreach individual I E P\{best individual ) do 
14 I := Mutation(1); 
15 I := Repair(1); 
16 I := Local-Search(1); 
17 endif 
18 until terminate=true; 
19 return best individual E P ;  

end; 

Fig. 2. An outline of our evolutionary approach to the MDP 

the local search. When choosing a suitable value of the parameter, it is quite 
expected that the running time of the local search is considerably reduced in 
comparison with only the basic criterion, but a sacrifice may be made in the 
guarantee of choosing the true best solution in the sequence which might be 
produced with the criterion C1 = 8. Such a parameter setting is derived from 
the k-opt local search for the BQP [19]. In our k-flip local search for the MDP, 
we adopt a parameter value t = m/5 for larger MDP instances (n 1 500), for 
smaller instances (n < 500) t is set to m. These setting show good behavior 
in our initial experiments. 

In the outer loop, the solution xbe,t selected is evaluated whether xbeSt 
is better than the initial solution given at  beginning of the inner loop. This 
can be done by a check G,,, > 0. If satisfied, the k-flip neighborhood search 
is performed after x,,,,t is set to x, otherwise, the local search is terminated 
after the return of the best solution found during the search. 

The quasi-best improvement k-flip local search is a faster variant of the 
best improvement k-flip local search. In the best improvement version, each 
solution in the sequence is produced by selecting the best pair with the highest 
gain in the sets C1 and CO. This local search takes O(mlSIIISol) t' ime per 
iteration. However, in the quasi-best improvement version, a first bit with the 
highest gain is selected from C1 and then a second bit with the highest gain 
in the Zflip move is determined from CO. Thus, the time complexity of each 
iteration in the quasi-best improvement version is O(mlS1 1 + mlSol) time. 
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3 Memetic Algorithm for MDP 

Memetic framework for the MDP shown in this paper is similar to one for other 
difficult optimization problems, which consists of a local search procedure and 
evolutionary operators. However, each operation in the framework has to be 
devised so as to work well for the MDP. 

An outline of our memetic algorithm is shown in Figure 2. After the initial- 
ization of the population, new offspring are created by application of crossover 
and local search a predefined number of times. A new population is produced 
by selecting individuals from the old population and the set of generated off- 
spring (PC). Unless the search has converged, this process is repeated until a 
predefined time limit is exceeded. 

In the following, the evolutionary operators are described in detail. 

3.1 Creating the Initial Population 

In our approach, the initial solutions (individuals) ( I l , .  . . , IPS)  of a popula- 
tion P are created by a randomized greedy method, where PS is a predeter- 
mined number of the individuals. The method is a variant of the randomized 
greedy heuristic for the BQP described in [19]. The greedy method for the 
MDP is devised so that m bits with '1' are appeared in a solution of length n 
in order to create a feasible solution. Afterwards, each of these feasible indi- 
viduals is locally optimized by a local search, i.e., the quasi-best improvement 
k-flip local search, to create an initial population of locally optimum solutions. 

3.2 Crossover 

In the MDP, classical crossover operators, such as one-point, two-point, or 
uniform crossover can be applied, but it is not preserved in many cases that a 
new solution created by such a crossover is feasible even if starting with two 
feasible parents. 

In our approach, we use the uniform crossover in which a single offspring 
is created from two parents, as shown in Figure 3. In the crossover process, 
two parents are chosen randomly from a current population such that all 
individuals are used with a restriction that no individual in the population is 
used twice in each generation. Therefore, the number of crossover processes 
depends on the size of population, i.e., PS/2. 

After each crossover process, a repair method is applied to turn an infeasi- 
ble offspring into a feasible one, and each feasible solution is locally improved 
by the k-flip local search. The repair method is described in 3.4. 

3.3 Selection and Diversification/Restart Strategy 

In each generation, a new population has to be formed after offspring have 
been generated. In our approach, the PS individuals with the highest fitness 
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Comment : For the offspring, a value of 0 or 1 at each position '*' is chosen with 
probability 0.5. 

Fig. 3. An example of uniform crossover 

procedure Repair(x, g) 
begin 

1 calculate a violation v := m - IS1 1 ;  
2 if v = 0 then return x; 
3 else if v < 0 then 
4 repeat 
5 find j with gj = maxj~s,  gj; 
6 xj := 1 - xj, S1 := Sl\{j), and update gains g; 
7 until Cy=l xi = m; 
8 return x; 
9 else 

10 repeat 
11 find j with gj = maxj~s? gj; 
12 xj := 1 - xj, S o  := SO\{J), and update gains g; 
13 until C;=l xi = m; 
14 return x; 
15 endif 

end; 

Fig. 4. Repair Method 

of the old population P and the set of offspring PC are selected. However, the 
duplicates from the temporary set containing P and PC are removed to ensure 
that no MDP solution is contained in the new population more than once. 

A general drawback in evolutionary approach may be a premature conver- 
gence of the algorithm, especially in the absence of mutation. We thus perform 
a diversification/restart strategy, which is borrowed from [4], in order to move 
to other points of the search space if no new best individual in the population 
was found for more than 30 generations. In response to this requirement, the 
individuals except for the best one in the population are mutated by flipping 
randomly chosen n/2 bits for each individual of length n. After that, each of 
the mutated individuals is applied to the repair method. Then each individual 
after the repair method is locally improved by the k-flip local search to obtain 
a renewal set of local optima and the search is started again with the new, 
diverse population. 
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3.4 Repair Method 

A repair method should be applied to an infeasible solution after the crossover 
and the mutation in the diversification strategy, since the feasibility of the 
solution by such an operator is not preserved for the MDP. 

Analogous to the k-flip local search procedure shown above, the gains g 
corresponding to a given solution x is managed and updated in the repair 
procedure. When a solution x given for the repair method is infeasible, it is 
repeated that a violated bit with the highest gain is flipped in each repair 
iteration even if the highest one is negative. Such a repair process is executed 
until x becomes feasible. By using this repair algorithm, the given infeasible 
solution is turned to be feasible one that is as better cost as possible. 

Our repair algorithm for the MDP is given in pseudo-code in Figure 4. 
At first, the violation number of the given solution x is calculated. If no 
violation, the solution is immediately returned as a feasible one at  line 2, 
otherwise, the repair process is performed to obtain a feasible solution from 
the given infeasible one by flipping v bits in the set of S1 or So according to a 
judgment of line 3. The number of the repair iterations therefore depends on 
the number v. The each iteration consists of selecting a bit with the highest 
gain and flipping the bit with the update of the gains. The time complexities 
of each repair iteration in the algorithm are O(IS1)) or O(ISol) time for the 
line 5 or 11 and O(n) time for updating gains g after each flip. 

4 Computational Experiments 

4.1 Test Instances 

For the experiments, we newly provide six problem sets for the MDP. Each 
problem set is characterized by the following problem sizes: n = 100, 250, 
500, 750, 1,000, and 2,500 variables. We name them mdp00100, mdp00250, 
mdp00500, mdp00750, mdp01000, and mdp02500, respectively. The each set, 
i.e., the matrix d, is generated in the following way: each of dij (i < j )  values 
is given randomly between 1 and 50. Therefore, each matrix is 100% dense 
problem but the diagonal is off, dii = 0. Each problem set consists of four 
instances, and each of the four instances in the set is characterized by a 
different value of m. The four values of m are set to lo%, 20%, 30%, 40% 
of the variable size n ,  respectively. 

In addition, we also use three test problem sets, which we modified bench- 
mark instances of the BQP contained in ORLIB [2]. (This is the first attempt 
in research for the MDP.) Their variable sizes are n = 500, 1,000, and 2,500, 
and their names are beas500-1, beas1000-1, and beas2500-1, respectively, 
which are first used as test instances for BQP's heuristic algorithms in [3]. 
Note in each problem set that the di j  coefficients in the original matrix are 
not restricted to non-negative values. In the three sets a density of each matrix 
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is 10%. However, we modified the matrix as follows: the diagonal is off, i.e., 
dii = 0, due to the definition in the MDP. Each set consists of four instances 
that are characterized by the four values of m as well as the new test problem 
instances we provided above. 

The variable sizes of the first five sets in our new test problems and the 
first two sets in ORLIB are competitive with [14] that reported results for 
randomly generated instances of up to 1,000 variables, but the remainders are 
much larger than any reported in the literature for the MDP. 

The test instances we newly provided are available from the following web 
page:http://k2x.ice.ous.ac.jp/-katayama/bench/. 

4.2 Results and Discussions 

We imposed a time limit for the memetic algorithm. The time limit was chosen 
for each variable size of the problem sets: 10 seconds for 100 variable instances, 
30 (sec) for 250 variable instances, 100 (sec) for 500 variable instances, 300 
(sec) for 750 variable instances, 1000 (sec) for 1,000 variable instances, and 
3000 (sec) for 2,500 variable instances, on a Sun Ultra 5/10 (UltraSPARC- 
IIi 440MHz). The algorithm was run 30 times for each instance. Each run 
of the algorithm is performed with a different seed. The value of the best 
solution found by the algorithm in each run was saved with their corresponding 
generation number, running time, etc. The algorithm was implemented in C. 
The program code was compiled with the gcc compiler using the optimization 
flag - 0 2  on Solaris 8. 

The parameters contained in the memetic algorithm have already de- 
scribed in the previous sections except for the population size. The popu- 
lation size PS was set to 40, which is a commonly used population size for 
evolutionary algorithms incorporating local search. 

Table 1 shows the results for the memetic algorithm with the kflip local 
search obtained for the test problem instances. In the first three columns of 
the table, the name of the problem sets, the variable size n, and the number 
of the problem constraint m are given. In the following columns, we provide 
the best solution value (quality % of the best solution), the average solution 
value (quality % of the average solution) of 30 runs, the number of times 
in which the best solution could be found by the algorithm "b/run", the 
average running time "tl" in seconds in case the algorithm could find the 
best solution, and the time-limit "t2" in seconds (exclusive of the case the 
algorithm could find the best solution). In addition, "tl" and "t2" are provided 
with their corresponding average generation numbers "(gens)". In the table, 
the number of 30130 shown in the column of "b/runn indicates that the best- 
known solution could be found by the algorithm within the predefined time 
limit in all 30 trials. As an additional result, the final line in this table shows 
the result of the MA with longer time limit of 30000 seconds for mdp02500 with 
m = 750. In the result, the MA found a better solution of f (x) = 14988436 
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Table 1. Results for the quasi-best improvement Ic-flip local search based MA 

instance (off diag.) Memetic Algorithm with k-flip Local Search 

name best (%I I avg. (%) lb/runl t l  (gens) t2 (gens) 
mdpOOlOO 1001 10 3606 (0.000000) 1 3606.0 (0.000000) 130/301 0.1 (4) - (-) 

than the case of 3000 seconds. Thus, it indicates that the MA is capable of 
finding better solutions if longer running times are allowed. 

Since the optimal solution for each instance is unknown yet, we reported 
the value of the best solution found by the algorithm for each instance as a 
result. It  is expected that each of these best-known solutions is likely to be 
the very near-optimal or the optimal solution for each of the instances. 

To show the effectiveness of the k-flip local search based memetic algorithm 
(MA-k-flip) for the MDP, we test a 2-flip local search based variant algorithm 
(MA-2-flip). The difference between them is only the local search process. In 
the variant, the same parameters and time limits set in the memetic algorithm 
with k-flip local search are adopted to be fair. This 2-flip local search performs 
the quasi-best improvement strategy as moves in each iteration. 
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Table 2. Results for the quasi-best improvement 2-flip local search based MA 

Table 2 shows the results obtained by MA-Zflip, the memetic algorithm 
with the 2-flip local search, only for the 100,500 and 1000 variables instances 
among the nine problem sets. In the table, we give the same column entries 
as in Table 1. 

From the results of Tables 1 and 2, the performance of MA-k-flip may 
be comparable with that of MA-2-flip for the instances of n 5 500 since 
the best solution found by MA-k-flip can be obtained by MA-2-flip with a 
high frequency (see the column of "b/run7'). However, MA-k-flip has a better 
advantage for the larger instances of n > 500: the numbers of "b/runn in MA- 
k-flip are greater and the running times for reaching the best-known solutions 
are less than those of MA-2-flip in many cases, although it seems that MA-k- 
flip spends more running times per generation in the predefined time limit for 
the computation. Thus, the effectiveness of the k-flip local search based MA 
is superior to MA-2-flip. 

Since the difference between MA-k-flip and MA-2-flip is only the process 
of local search, the results of Tables 1 and 2 make it clear that a design in 
the local search process is quite important to obtain good solutions for the 
problem. Moreover, better results are expected if the optimal value of the 
parameters is determined and if we devise evolutionary operators instead of 
simple ones used in our algorithms. 

Unfortunately, a comparison wit,h the previously proposed approaches to 
the MDP is difficult because in most cases their algorithms were tested on 
smaller instances generated by them and without using of publicly available 
instances such as BQP contained in ORLIB as tried in this paper. 

instance (off diag.) 

name 
mdp00100 

Memetic Algorithm with 2-flip Local Search 

best (%I 
3606 (0.000000) 

12956 (0.000000) 
27036 (0.000000) 

n 
100 
100 
100 

avg. (%) 
3606.0 (0.000000) 

12956.0 (0.000000) 
27036.0 (0.000000) 

m 
10 
20 
30 

b/run 
30/30 
30130 
30/30 

t l  (gens) t2 (gens) 
0.1 (14) - (-1 
0.1 (4) - (-1 
0.1 (3) - (-) 
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Finally, we give our experience on the setting value of mutation in the 
diversification/restart strategy. Although our strategy with the default setting 
of n/2 in the mutation is considerably disruptive, we believe that this setting 
value is a better choice than that of a smaller value in this memetic framework 
for the MDP. In our additional experiments, we have attempted to flip smaller 
bits of n/3 chosen randomly in the mutation for each individual except for the 
best one of the current population, instead of the default setting. The results 
showed that the default setting gave better solutions, particularly with MA- 
k-flip and MA-2-flip for large instances. 

5 Conclusion 

In this paper, we have presented a memetic algorithm for solving the maximum 
diversity problem. Although most of the components of our algorithm were 
comparable in a standard memetic framework, newly developed methods, i.e., 
the powerful k-flip local search, the repair method, etc. were incorporated to 
obtain good solutions and to preserve the feasibility of solutions for the MDP. 
The results showed that the lc-flip local search based memetic algorithm out- 
performed the 2-flip local search based variant particularly for larger instances 
we newly provided and contained as the BQP instances in ORLIB. Due to 
the first report for such instances, the values of the best solution found by the 
algorithm were also reported for the problem instances investigated. 

One of the most important issues for future research is to compare the 
MA with other (meta-)heuristics for the same problem instances in order to 
assert the effectiveness of memetic approach to the MDP. 
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Summary. In this chapter we extend our previous studies on the self-adaptation of 
local searchers within a Memetic Algorithm.Self-adaptation allows the MA to learn 
which local searcher to use during search. In particular, we extend our results in [12], 
where memes were instantiated as Fuzzy-Logic based local searchers, and we show 
that our Multimeme algorithms are capable of producing new optimum solutions to 
instances of the Protein Structure Prediction Problem in the HP-model. 

1 Introduction 

Fuzzy Adaptive Neighborhood Search (FANS) was introduced in [4,23]. Build- 
ing upon local search, a classical method often used in optimization and op- 
erational research, and some basic elements of Fuzzy Sets theory, FANS was 
shown to  be a robust optimization tool. This was noted for a variety of do- 
mains like knapsack problems [4], continuous function minimization [23] and 
more recently [23, 24, 261 in the protein structure prediction problem. 

In our previous work [4], FANS was compared against a genetic algorithm. 
It was verified that both algorithms have similar performance for the range of 
problems studied. However, one of the advantages of using FANS is the easier 
implementation and parameter tuning. On the other hand, FANSperforms its 
search by sampling one solution a t  a time which in some cases compromises 
its global search capabilities; as the Genetic Algorithm keeps a population of 
solutions it (more) consistently avoid local optima and performs a more global 
search. 

In [12] we hybridized a Multimeme Algorithm [23, 281 with a simplified 
version of FANSin order to implement the pool of local searchers that the Mul- 
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timeme algorithm used. We demonstrated how FANS, and in turn fuzzy sets 
and systems ideas, could be successfully used to design a wide range of memes' 
behaviors. Moreover, we showed some benefits of using a Fuzzy-Evolutionary 
hybrid to tackle the Protein Structure Prediction problem (PSP). 

The problem of predicting the three-dimensional structure of a protein 
is, perhaps, the single most important problem that biochemistry and bioin- 
formatics face today. Even after almost five decades of intensive research it 
has not been "cracked". All-atom models of the folding process are extremely 
expensive. Moreover, there is no unique and ideal model for folding simula- 
tions, therefore, researchers use simplified descriptions of the phenomenon and 
tackle the slightly simpler (yet still intractable) problem of predicting the final 
structure of the folding process rather than the process itself. In this research 
we use such model, known as the HP-model [8]. The later has been widely 
used to benchmark folding and structure prediction algorithms and it was the 
source of important theoretical insights on the Protein Folding process [lo]. 

This paper is organized as follows: in section 2 the protein structure predic- 
tion problem is introduced. Then in section 3 a brief descriptions of Memetic 
and Multimeme algorithms are presented. The hybrid approach we propose, 
i.e. a Multimeme Algorithm that includes FANS as local searchers, is de- 
scribed in Section 4. In order to assess the usefulness of the approach, several 
computational experiments were performed. These are described in Section 6 
and the results discussed there. A section with conclusions ends the chapter. 

2 The Protein Structure Prediction Problem 

A protein is a chain of amino acid residues that folds into a specific na- 
tive tertiary structure under certain physiological conditions. Proteins unfold 
when folding conditions provided by the environment are disrupted, and many 
proteins spontaneously re-fold to their native structures when physiological 
conditions are restored. This observation is the basis for the belief that pre- 
diction of the native structure of a protein can be done computationally from 
the information contained in the amino acid sequence alone. 

In practice, solving the structure prediction problem means finding an 
adequate energy formulation (that correctly identifies native states) and be- 
ing able to (by means of an adequate algorithm) search for candidate native 
states under that energy formulation. Exhaustive search of a protein's con- 
formational space is clearly not a feasible algorithmic strategy for PSP. The 
number of possible conformations is exponential in the length of the protein 
sequence, and even powerful computational hardware is not capable of enu- 
merating this space for even moderately large proteins. As an example consider 
the case where a protein structure is confined to a three dimensional cubic 
lattice. In this case, for a protein of length n there are potentially 4.7n acces- 
sible conformations. Furthermore, recent computational analysis of PSP have 
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Fig. 1. HP sequence embedded in the square lattice and triangular lattice. 

shown that this problem is intractable even on simple lattice models 11, 2, 71 
such as the three dimensional case mentioned above. 

A way of partially overcoming both the problem of the energy formulation 
and the enormous amount of candidate structures to analyze, is to use reduced 
protein models and knowledge-based potentials. Such simplified protein mod- 
els are continuously playing an important role in improving our understanding 
of the fundamental physical properties of real-life proteins while paving the 
way for the development of algorithms to predict their native conformations 
using just the information of the amino acid sequence. 

HP models abstract the hydrophobic interaction process in protein folding 
by reducing a protein to a heteropolymer that represents a predetermined 
pattern of hydrophobicity in the protein; non-polar amino acids are classified 
as hydrophobics and polar amino acids are classified as hydrophilics. A se- 
quence is s E {H, PI+, where H represents a hydrophobic amino acid and P 
represents a hydrophilic amino acid. 

The HP model restricts the space of conformations to self-avoiding paths 
on a lattice in which vertices are labelled by the amino acids. The energy 
potential in the HP model reflects the fact that hydrophobic amino acids have 
a propensity to form a hydrophobic core. To capture this feature of protein 
structures, the HP model adds a value E for every pair of hydrophobes that 
form a topological contact; a topological contact is formed by a pair of amino 
acids -that are adjacent on the lattice and not consecutive in the sequence. 
The value of E is typically taken to be -1. 

Figure 1 shows a sequence embedded in the square and the triangular lat- 
tice, with hydrophobic-hydrophobic contacts (HH contacts) highlighted with 
dotted lines. The conformation in Fig. l (a )  embedded in a square lattice, has 
an energy of -4, while the embedding in the triangular lattice (b) has an energy 
of -6 (there are 4 and 6 dotted lines, i.e. contacts, in the figure). 

The particular version of the problem that we are going to tackle in this 
chapter is given by: 
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Maximum Protein Structure Prediction 
Instance: A protein, i.e. a string over the alphabet {H, P) (s E {H, P I* ) .  
Solution: A self avoiding embedding of s into a 2D square lattice. 
Measure: The number of H s  that are topological neighbors in the embed- 
ding (neighbors in the lattice but not consecutive in s) 

Protein structure prediction has been shown to be NP-complete for a va- 
riety of simple lattice models (see Atkins and Hart [l] for a recent review), 
including the HP-model version on the square [7] and cubic lattices 121. A 
wide variety of global optimization techniques have been applied to various 
models of the PSP problem, e.g. see the papers in Biegler et al. [3], Parda- 
los, Shalloway and Xue 1211 and Pelta et al. 1261. Evolutionary algorithms 
(in their various forms) were shown to be particularly robust and effective 
global optimization techniques for molecular conformation problems. In par- 
ticular, evolutionary methods have been used by several researchers engaged 
in proteomics related activities [9, 10, 11, 23, 15, 16, 22, 23, 27, 28, 29, 30, 311. 

3 Memetic Algorithms 

Memetic Algorithms are metaheuristics designed to find solutions to complex 
and difficult optimization problems. They are evolutionary algorithms that 
include a stage of individual optimization or learning as part of their search 
strategy. Memetic Algorithms are also called hybrid genetic algorithms, ge- 
netic local search, etc. A simple Memetic Algorithm scheme is shown in Fig. 2. 

The inclusion of a local search stage into the traditional evolutionary cy- 
cle of crossover-mutation-selection is not a minor change of the evolutionary 
algorithm architecture. On the contrary, it is a crucial deviation that affects 
how local and global search is performed. The reader should also note that 
the pseudocode shown in Fig. 2 is just one possible way to hybridize a genetic 
algorithm with local search. In fact, a great number of distinct memetic algo- 
rithms' architectures have been presented in the literature and even integrated 
into formal models [23, 131. 

An interesting variant of memetic algorithms are the Multimeme Algo- 
rithms (MMA in what follows) as introduced in 123, 281. M M A  are memetic 
algorithms where several types of local searchers, called memes, are available 
to the evolutive process during the local optimization phase. An individual in 
a M M A  is composed of a genetic part, representing the solution to the prob- 
lem being solved, and a memetic part, encoding a meme or local searcher, 
that is employed during the individual optimization stage. 

The set of memes available to the algorithm is called the memepool and its 
design is a critical aspect for the success of the metaheuristic. Several design 
criteria for the memepool are described in 1231. Multimeme algorithms for 
the Protein Structure Prediction problem and Protein Structure Comparison 
Problem are reported in [ l l ]  and [5] respectively. 
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Memetic-Algorithm(): 
Begin 

t  = 0; 
/* We put the evolutionary clock (generations), to null */ 
Randomly generate an initial population P ( t ) ;  
Repeat Until ( Termination Criterion Fulfilled ) Do 

Compute the fitness f (p) Vp E P ( t )  ; 
Accordingly to f (p) choose a subset of P ( T ) ,  store them in M ( t ) ;  
Recombine and variate individuals in M ( t ) ,  store result in M 1 ( t ) ;  
Improve-by-local-search( M 1 ( t ) )  ; 
Compute the fitness f (p )  Vp E M 1 ( t )  ; 
Generate P ( t  + 1) selecting some individuals from P ( t )  and M 1 ( t ) ;  
t = t + l ;  

endDo 
Return best p  E P ( t  - 1 ) ;  

End. 

Fig. 2. A basic version of a memetic algorithm. 

4 Fuzzy Memes for Multimeme Algorithms 

The Fuzzy Adaptive Neighborhood Search Method (FANS) [4, 251 is a local 
search procedure which differs from other local searchers in two aspects. The 
first aspect is how the solutions are evaluated. Within FANS a fuzzy valua- 
tion representing some (maybe fuzzy) property P is used together with the 
objective function to obtain a "semantic evaluation" of the solution. In this 
way, we may talk about solutions satisfying P to a certain degree. Thus, the 
neighborhood of a solution effectively becomes a fuzzy set with the neighbor 
solutions as elements and the fuzzy valuation as the membership function. 

The fuzzy valuation enables the algorithm to achieve the qualitative behav- 
ior of other classical local search schemes [4]. FANS moves between solutions 
satisfying P with at least certain degree, until it became trapped in a local 
optimum. In this situation, the second novel aspect arises: the operator used 
to construct solutions is changed, so solutions coming from different neigh- 
borhoods are explored next. This process is repeated once for each of a set of 
available operators until some finalization criterion for the local search is met. 

The simplified scheme of FANS used here is shown in Fig. 3. The execution 
of the algorithm finishes when some external condition holds. In this research 
this happens when the number of cost function evaluations reached a pre- 
specified limit. Each iteration begins with a call to the neighborhood scheduler 
NS, which is responsible for the generation and selection of the next solution 
in the optimization path. The call is done with parameters S,,, (the current 
solution), p( )  (the fuzzy valuation), and O v a  parameterized operator which 
is used to construct solutions). The neighborhood scheduler can return two 
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Procedure FANS: 
Begin 

Initvariables 0 ; 
k:=maxK; ; 
While ( not-end ) Do 

/* The neighborhood scheduler NS is called */ 
Snew = Ns(uk, p, ~cu,) ; 
If (SneW is good enough in terms of p()) Then 

Scur := Snew ; 
adapt~uzzy~aluation(p(), Scu,) ; 
Else 
/* NS could not obtain a good enough solution */ 
/* The operator will be changed modifying the parameter k */  
If ((k=l)) Then 
k:= maxK;; 
Else 
k := k-1;; 

endIf 
end1 f 

endDo 
End. 

Fig. 3. Scheme of FANS 

alternative results; either a good enough (in terms of p()) solution (S,,,) was 
found or not. 

In the first case S,,, is taken as the current solution and p() parameters 
are adapted. In this way, the fuzzy valuation is changed as a function of 
the state of the search. This mechanism allows the local search stages to 
adapt during the search, hence accordingly to [23] the FANS based memes are 
adaptive helpers. If N S  failed to return an acceptable solution (no solution was 
good enough in the neighborhood induced by the operator), the parameters 
of the operator are changed. In the full version of FANS, the strategy for this 
adaptation is encapsulated in the so called operator scheduler 0s. Here we 
simply decrease the value of the parameter 5 of the operator 0. Effectively this 
induces, for each fixed operator, a variable radius search. At the beginning, 
the radius of the search is wide and it will be reduced as the search progresses. 
The next time N S  is executed, it will have a modified operator (i.e., a different 
radius) to search for solutions. 

The reader should note that what varies at each iteration are the param- 
eters used in the NS call. The algorithm starts with NS (so, 00, po). If NS 
could retrieve an acceptable neighborhood solution, the next iteration the call 
will be NS (sl, Oto, p l ) ,  the current solution is changed and the fuzzy valua- 
tion is adapted. If NS failed to retrieve an acceptable neighborhood solution 
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(at certain iteration I), the operator scheduler will be executed returning a 
modified version of the operator, so the call will be NS (sl, Otl ,  pL). 

5 Description of the Memepool 

Multimeme algorithms (the overall strategy guiding the search behind our 
approach) have been described in detail elsewhere [5, 11, 23, 281, so we only 
describe here the memepool our MMA employs. 

The memes of our MMA are implemented as simplified versions of FANS 
as a way to obtain a wide range of behaviors in a simple and unified fashion 
[12]. For the neighborhood scheduler, a First strategy was implemented: given 
the current solution s, the scheduler samples the search space with the oper- 
ator O and returns the first solution satisfying p(f (s), f (O(s))) > X using at  
most certain number of trials (length of the local search), defined here as n/2 
where n is the size of the instance. The value X represents the minimum level 
of acceptability required for a solution to be considered as a "good enough" 
solution. 

Each meme is identified by a 3-tuple: 

(< basic operator > < fuzzy valuation > < value of X >) (1) 

where each element will be described below. 

The < basic operator > can be instantiated to anyone of the following 
basic moves: 

0. Ref lex(i, k): This operator reflects the protein structure across one of its 
symmetry axes. The change takes place between residues i and i + k. 

1. Shuf fle(i, k): This operator performs a random re-positioning of the 
residues ith to (i + k)th. 

2. Stretch(i,k): The stretch operator unfolds a substructure of length k 
starting from residue i.  

3. Pivot(k): The pivot operator represents a rigid rotation. In this case, k 
random residues are selected and rigid rotations are performed sequen- 
tially on each one of them. 

The operator has a parameter k indicating the number of positions to change. 
This value of k will be modified when the neighborhood scheduler fails to 
return an acceptable solution. In this case, the value of k is decremented by 
1. When the failure occurs with k = 1, the value is set again to k = maxK. 
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Fig. 4. Fuzzy Valuations ,UI (left) and p2 (right). 

There are two options available for the item < fuzzy valuation >: 

1. The first fuzzy valuation proposed, 1-11, has the following definition: 

where /3 is a threshold specifying what is, and what is not, considered 
an acceptable deterioration in solution quality. Given that the energy 
of a structure can take negative values (e.g. when the structure is not 
self-avoiding), the parameter ,B has two definitions3: when f > 0 then 
,B = f * 0.5 (a deterioration in cost of 50% is allowed); when f < 0 then 
p = f * 1.2 (a deterioration in cost of 20% is allowed). This fuzzy valua- 
tion promotes acceptability to solutions improving the current cost. When 
used with X = 1, it induces in FANS a hillclimber like behavior, allowing 
transitions only to improving solutions. The graphical representation of 
1-11 is shown in Fig. 4 (left). 

2. The second fuzzy valuation proposed, 1-12, has the following definition: 

here, the parameters L and R are defined as follows: when f (s) > 0 then 
L = f (s )  * 0.5 and R = f(s) * 1.5; when f (s)  > 0 then L = f (s )  * 1.5 
and R = f (s) * 0.5. This fuzzy valuation promotes diversity, in the sense 
of cost. Solutions similar in cost to the current one, get very low degrees 
of acceptability and those differing in more than 50% with respect to the 
cost of the current solution gets the highest degree of acceptability. The 
graphical representation of 1-12 is shown in Fig. 4 (right). 

Although in Protein Structure Prediction one tries to minimize the energy of the 
conformation, in this chapter we recast the problem to a maximization problem 
by simply multiplying the energies by -1. 



Multimeme Algorithms with Fuzzy Logic Based Memes 57 

Table 1. HP model test Instances for the 2D Square Lattice. 

Instance Sequence Opt Size 
I 1 PPHPPHHPPHHPPPPPHHHHHHHH -22 48 

HHPPPPPPHHPPHHPPHPPHHHHH 
I 2 HHPHPHPHPHHHHPHPPPHPPPHPP -21 50 

PPHPPPHPPPHPHHHHPHPHPHPHH 
I 3 PPHHHPHHHHHHHHPPPHHHHHHHH -34 60 

HHPHPPPHHHHHHHHHHHHPPPPHH 
HHHHPHHPHP 

I 4  HHHHHHHHHHHHPHPHPPHHPPHHP -42 64 
PHPPHHPPHHPPHPPHHPPHHPPHP 
HPHHHHHHHHHHHH 

The last element to define a meme is the < value of X >. This parameter 
defines the minimum level of acceptability that a solution needs to be consid- 
ered as the next solution in the search. Each pair (p(), A) defines a particular 
behavior for the meme. For example, with the fuzzy valuation p l  and X = 1, 
the meme will only accept transitions to improving solutions. As X -+ 0 the 
chance to move to cost deteriorating solutions is increased. We can say that as 
X increases, the use of p1 leads to exploitative memes. In turn, the use of the 
fuzzy valuation p2 leads to explorative memes. The higher values of accept- 
ability are assigned to those solution with quite different cost with respect to 
that of the current solution. The lower values correspond to solutions similar 
in cost. In this work we consider three values for A, where X E {0.4,0.8,1.0). 

Here, we want to stress the overall intended dynamics of our metaheuristic: 

At the local level (i.e. the process of individual local search) FANS memes 
perform a fuzzy-based variable-operator and variable-radius local search. 
At the global level (i.e the process of population evolutionary search) the 
Multimeme Algorithm is co-adapting solutions to the Protein Structure 
Prediction and the best local searcher (i.e. meme) to use in each individual 
at  different stages of the search. 

The metaheuristic searches concurrently on both solution and searcher spaces. 

6 Description of Experiments and Results 

The experiments were done with the four instances of the HP model in the 
square lattice shown in Table 1. For each one, the length of the sequence and 
the optimum value of the corresponding structure are described. 

We perform two experiments which differ in the size of the mating pool. In 
the first one, the memepool has 12 memes which arise from the combination of 
the four basic moves, the fuzzy valuation pl  and the three values of A. In the 
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second experiment, the memepool size is 24 after adding 12 more memes which 
arise from the use of the fuzzy valuation pz. In this way, we are incorporating 
memes promoting diversification. We use also the following parameters that 
were used in previous experiments by the authors [12]: 

1. Replacement Strategy: (p  = 350, X = 350) 
2. Depth of the local search, i.e. number of iterations performed by each 

meme application: 3 
3. Length of the local search, i.e. max. number of trials allocated in the 

neighborhood scheduler of FANS: n/2, with n the length of the sequence. 

For each memepool size and instance we performed 30 runs of the MMA. 
Each run was allocated 200 generations. The initial population was generated 
randomly and consisted of 350 individuals. Two(consecutive)-point muta- 
tions and two-point crossover were employed with probabilities 0.2 and 0.8, 
respectively. In the case of mutation, the probability was per individual. The 
innovation rate was set to I R  = 0.2. Tournament selection was used to select 
the mating parents and a tournament size of 2 individuals was used. 

Three values were recorded at  the end of every run: bestF, the fitness of 
the best solution found; e2b, the number of fitness evaluations used to reach 
the best solution; and eDone, the total amount of evaluations done in the 
whole run. 

Tables 2, 3, 4 show the average, standard deviation, minimum and max- 
imum values obtained for each variable over 30 runs. Each row is named 
I < x > m < y > where x E {1,2,3,4} stands for the instance used and 
y E (12,241 represents the memepool size used within the MMA. The re- 
sults obtained using the implementation of FANS presented in [12] are also 
included. FANS was executed 30 times, where each instance ended after 26 
evaluations. 

The first thing to notice is that for instances 1 and 3, structures with 
higher bonds than the known optima were obtained. For instance 1, a struc- 
ture with 23 bonds was found while for instance 3, one with 35 bonds was 
obtained. Fig. 5 shows both structures. To the best of our knowledge, such 
optimal values were only achieved before in [20]. However, in that paper the 
authors do not measure the cost of their algorithm in number of total en- 
ergy evaluations so it is impossible to provide comparisons. Moreover, they 
enforce a strong bias in the search to regions of the search space that contain 
secondary structure information derived from the native structure they are 
searching for. In other words, they used specific domain knowledge that is 
not present in our algorithm. Having this in mind, we deem our algorithms 
as the first blind search method (to the best of the authors knowledge) able 
to obtain these novel native structures. 

The results in terms of bestF were quite similar using 12 or 24 memes. 
The algorithms using 24 memes had a slightly higher standard deviation and 
lower minimum values. The 12 memes version, achieved a higher maximum 
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Fig. 5. New best structures obtained for instances 1, in (a), and instance 3, in (b). 

Table 2. Statistics for bestF 

Algorithm Mean SD Min Max 
ilm12 20.55 0.97 19.02 23.02 
ilm24 20.02 1.23 18.01 23.02 
fans-il 19.35 0.76 18.02 21.02 
i2m12 19.98 1.00 18.01 21.01 
i2m24 19.98 0.98 17.01 21.01 
fans-i2 18.94 0.74 18.01 20.01 
i3m12 32.82 0.96 31.02 35.02 
i3m24 32.15 1.20 29.02 34.02 
fans-i3 30.82 0.81 29.02 32.02 
i4m12 33.45 1.65 30.02 38.02 
i4m24 33.47 2.38 28.02 38.02 
fans44 28.75 1.08 27.02 32.02 

value on instance 3. FANS achieved the lowest values of standard deviation, 
but the higher ones in terms of the mean. 

In terms of e2b, it is clear that the use of 24 memes allowed it to reach 
good results with less effort. This situation is reasonable if we consider in 
the number of trials that each meme has to perform to obtain an acceptable 
solution. Those memes using p2 can obtain acceptable solutions quite easily. 
For example, given a value X = 1, the memes using p1 need to find solutions 
improving the cost, which may result in the use of a high number of trials. On 
the contrary, memes using p2 will accept any transition leading to a decrease in 
cost of more than 50%, and this is easy to achieve using a low number of trials. 
This aspect is confirmed looking at the statistics for eDone. Considering the 
mean, the MMA with 12 memes used approximately 2.35 million evaluations 
while the MMA with 24 never used more than 2 millions. 

To finish the analysis, two additional aspects are considered. First, Fig. 
6 shows the evolution of the average cost of the best individual through the 
generations. It can be seen that the use of 12 or 24 memes leads to very similar 
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Table 3. Statistics for e2b 
Algorithm Mean SD Min Max 

ilm12 1356104 481405 549691 2269640 
ilm24 894661 331121 367357 1510390 
fans-il 933126 526296 160522 1960500 
i2m12 1109461 545856 362400 2565580 
i2m24 675173 198261 447300 1509880 
fans42 1202764 589958 243614 2000050 
i3m12 1358837 563218 605457 2790530 
i3m24 990789 343991 356614 1599350 
fans43 1066657 590136 65746 1940400 
i4m12 1852648 399233 991046 2356310 
i4m24 1520624 376036 469575 2005740 
fans44 1074369 562966 76854 1965090 

Table 4. Statistics for eDone 

Algorithm Mean SD Min Max 
ilm12 2310653 218389 1864000 2579590 

patterns of evolution. Looking at  the graph for instance 4, we can conclude 
that the MMA has not converged when the run finished. This fact may be 
considered an explanation about the quite low values of bestF obtained. 

Second, Fig. 7 shows the evolution of the average cost of the average fitness 
of the whole population through the generations. It is clear that the use of 
diversification memes kept the overall fitness lower (i.e. better solutions) 

7 Conclusions 

A hybridization strategy between a fuzzy sets-based heuristic, and a Multi- 
meme algorithm was proposed and tested. 

The construction of the memepool using simplified versions of FANS en- 
abled us to obtain a wide range of fuzzy memes, each one with its particular 
behavior. The advantage of using FANS as the memes for a MMA over using 
adaptive helpers as in [23,27] is that it is much easier to tune the search of the 
memes. Moreover, human knowledge or instance specific knowledge (e.g. sec- 
ondary structure information as that used in [20]) can be readily incorporated 
into FANS based memes. 
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Fig. 6. Evolution of the cost of the best individual vs Generations for test instances 
1 (a), 2 (b), 3 (c) and 4 (d) using a MMA with 12 and 24 memes. 

The scheduling of memes by the simple inheritance mechanism was proven 
successful in the detection of the most suitable fuzzy meme for different stages 
of the search. This has been verified in other domains [23, 281, which deems 
Multimeme Algorithms a very robust metaheuristic. 

The coupled effect of both elements lead to a robust and general purpose 
metaheuristic. In the test cases shown in this chapter it was able to improve 
previous results in the protein structure prediction problem. We suggest that 
this approach can be a powerful1 metaheuristic for other combinatorial prob- 
lems. 
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Summary. The VRP (Vehicle Routing Problem) and the CARP (Capacitated Arc 
Routing Problem) involve the routing of vehicles in an undirected network to ser- 
vice respectively a set of nodes or a set of arcs. Motivated by applications in waste 
collection, we define a more general model called NEARP (Node, Edge and Arc 
Routing Problem) for tackling mixed graphs with required nodes, edges and arcs. 
A memetic algorithm (MA) is developed for the NEARP. An evaluation on stan- 
dard VRP and CARP benchmarks shows that the MA is competitive with most 
metaheuristics for these particular cases of the NEARP. We finally propose a set 
of NEARP instances, together with the solutions costs achieved by the MA, as a 
challenge for other researchers in vehicle routing. 

Key words: memetic algorithm, vehicle routing, general routing problem. 

1 Introduction 

Traditionally, the literature devoted t o  multi-vehicle routing problems consid- 
ers an undirected network and studies two distinct families of problems: node 
routing problems and arc routing problems, depending on the entities t o  be 
serviced in the network. 

The VRP or Vehicle Routing Problem is a typical representative of node 
routing problems. I t  is usually defined on an undirected network in which 
some nodes correspond to  customers. Each customer has a weight or demand 
for a commodity and a service cost. Each network edge has a travel cost. A 
fleet of identical vehicles of limited capacity is based at a depot node. A trip 
for a vehicle starts a t  the depot, visits a sequence of customers, and returns 
to  the depot. The cost of a trip includes the service costs of its customers and 
the costs of each traversed edge. 

The VRP consists of designing a set of trips of least total cost, such that 
each customer is visited exactly once and the total demand serviced by any 
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trip does not exceed vehicle capacity. The VRP has important applications in 
logistics, for instance in distribution networks. It  is unfortunately NP-hard and 
exact methods [I] have a limited interest, since some instances with 75 nodes 
(and even 50 nodes for the distance-constrained VRP) are not yet solved to 
optimality. This is why heuristics are required in practice for tackling real-life 
VRP instances. They comprise simple algorithms [2], like the merge heuristic 
from Clarke and Wright, and more recent and powerful metaheuristics like 
tabu search [3, 4, 51. 

Comparatively, arc routing problems have been neglected for a long time 
by researchers, but they have raised a growing interest in the two last decades, 
mainly because of their applications like urban waste collection or winter 
gritting (see the good survey from Assad and Golden [6]). The problem corre- 
sponding to the VRP in arc routing is the CARP or Capacitated Arc Routing 
Problem. Its definition is similar but this time the tasks to be performed by 
the vehicles consist of servicing some edges, for instance spreading salt or 
collecting municipal refuse along a street. 

The CARP is also NP-hard. Theoretically, it can be converted into an 
equivalent node routing problem as shown by Pearn et al. [7]. This transfor- 
mation converts a CARP with k required arcs into a VRP with 3k + 1 nodes. 
Since the VRP itself is very hard, this increase in size is of course not accept- 
able and most researchers prefer to attack the CARP directly. The CARP 
seems more difficult than the VRP in practice: the exact solution methods 
published are still limited to small instances with at most 20 edges [8]. On 
the other hand, Belenguer and Benavent [9] have exploited the rich underly- 
ing structure of this problem to design an excellent lower bound, allowing an 
accurate evaluation of heuristics. 

As for the VRP, the simplest heuristics published for the CARP are con- 
structive methods, e.g. Path-Scanning from Golden et al. [lo], Augment-Merge 
from Golden and Wong [ l l ]  and Ulusoy's tour splitting heuristic [12]. Meta- 
heuristics have been designed more recently, like the powerful tabu search 
algorithm CARPET from Hertz, Laporte and Mittaz [13] and the genetic al- 
gorithms (GAS) from Lacomme, Prins and Ramdane-ChQrif [14, 151. The best 
of these GAS is the only algorithm able to reach the lower bound of Belenguer 
and Benavent [9] on 21 out of 23 standard instances proposed by DeArmon 
[16], containing up to 55 required edges. 

Despite the success of metaheuristics for the VRP and the CARP, it is clear 
that these two problems cannot formalize the requirements of many real-world 
scenarios. Consider for instance urban waste collection. Although most tasks 
consist of servicing streets, the problem cannot be modeled as a pure CARP 
because of punctual accumulations of waste that must be modeled as required 
nodes (hospitals, schools, supermarkets, etc.). Moreover, an undirected graph 
can only model 2-way streets whose both sides are collected in parallel and in 
any direction (zigzag or bilateral collection, a practice reserved to low-traffic 
residential areas). In reality, a street can be a 2-way street with bilateral 
collection (giving an edge in the modeled network), a 2-way street with two 



A Memetic Algorithm Solving Geseral Routing Problems 67 

sides collected independently (giving two opposite arcs), or even a 1-way street 
(giving one arc). 

Our research is a step towards more generic models and algorithms able to 
handle such complications in vehicle routing. Section 2 presents our extended 
model, the NEARP or Node, Edge and Arc Routing Problem. It  is defined on 
a mixed graph with required nodes, edges and arcs and contains the VRP and 
the CARP as particular cases. Section 3 describes three simple heuristics for 
the NEARP that are used to initialize the memetic algorithm (MA). The third 
one, a tour splitting method, plays also a key-role in chromosome evaluation. 
The MA itself is developed in section 4. It  undergoes in section 5 a preliminary 
testing on standard VRP and CARP instances to check its competitiveness 
with respect to existing algorithms. A generator of instances for the new 
problem is described in section 6. We finally propose in section 7 a set of 
NEARP instances with the solution costs computed by the MA, as a challenge 
for OR researchers of the vehicle routing community. An appendix provides 
the reader with detailed tables of results and a list of formal definitions for 
all problems discussed. 

2 The Node, Edge and Arc Routing Problem (NEARP) 

This section formally defines the NEARP as a new problem generalizing both 
the VRP and the CARP and describes data structures for the algorithms of 
sections 3 and 4. The NEARP allows a mixed network with required nodes, 
edges and arcs. Contrary to the CARP, two distinct costs are handled for each 
link: one deadheading cost, i.e., the cost for a traversal without service (called 
deadhead by transporters) and one service cost, when the link is traversed to 
be treated. The entities to be serviced are directly tackled, i.e. the model does 
not rely on a conversion into a CARP or a VRP. 

2.1 Problem statement 

The NEARP is defined on a strongly connected and loopless mixed network 
G = (N, E, A) with three sets of entities: a set N of n nodes, a set of edges 
E, and a set of arcs A. We call links the m entities in E U A. N includes a 
depot node s with a fleet of K identical vehicles of capacity W. The number 
of vehicles K is a decision variable. Each entity u has a non-negative traversal 
cost c,. This cost is null for a node. For a link, it corresponds to a deadheading 
traversal (i.e., without service). 

Some entities, the tasks, are required, i.e., they need to be processed by 
a vehicle. NR, ER and AR respectively denote the subset of required nodes 
or node-tasks, the subset of required edges or edge-tasks, and the subset of 
required arcs or arc-tasb. Their cardinalities are respectively denoted by v, 6 

and a. T = v + ~ + a  denotes the total number of tasks. Each task u = 1,2, .  . . , r 
has a non-negative demand q, and a non-negative processing cost p,. To 
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ensure feasibility, we assume that no demand exceeds W. Theoretically, all 
costs and demands should be integers, but our implementation accepts real 
numbers to handle some Euclidean instances from literature in section 5. 

Any feasible vehicle trip must start from the depot, process a sequence 
of tasks whose total demand does not exceed W, and return to the depot. 
Its cost includes the processing costs of its tasks (required nodes, edges and 
arcs) and the traversal costs of the links used to travel from the depot to the 
first task, from each task to the subsequent one, and from the last task to the 
depot. The next subsection introduces data structures allowing to specify the 
cost of a trip by a concise formula. 

Any feasible solution is a set of feasible trips covering all tasks. Tasks 
cannot be preempted, i.e., each task must appear in exactly one trip and only 
once in the sequence of tasks of that trip. Recall that the number of trips 
actually used, K, is not imposed but is part of the solution. The cost of a 
solution is the sum of its trip costs. 

The NEARP consists of determining a least-cost solution. Clearly, this 
is a new problem that generalizes the VRP and the CARP: the VRP is the 
particular case with A = 0 and ER = 0, while the CARP corresponds to A = 0 
and NR = 0. The General Routing Problem (GRP) is another special case of 
the NEARP, introduced by Orloff in 1974 [17]. In this generalization of the 
well-known Traveling Salesman Problem ( TSP), one single vehicle must visit 
a subset of nodes and a subset of edges in an undirected graph to minimize 
the total mileage. Hence, the NEARP could also be called Mixed Capacitated 
GRP or MCGRP. 

2.2 Internal network representation 

Our algorithms rely on an internal network in which all entities (nodes and 
links) are encoded with the same attributes and stored in a common list L, 
indexed from 1 to n + IAl+ 21EI. The attributes for entity u are a begin node 
b,, an end node e,, a traversal cost c,, a demand q,, a processing cost p, and 
a pointer inv(u) explained below. 

By convention, we set b, = e, and c, = 0 if entity u is a node: no confusion 
with a link is possible, since G is loopless. The required entities (tasks) are the 
ones with non-zero demands. Each required edge is encoded as two opposite 
arcs u and z linked thanks to their pointers inv, i.e., e, = b,, e, = b,, 
inv(u) = z and inv(z) = u. These two arcs inherit their demands and their 
costs from the edge. Any arc or non-required edge u is such that inv(u) = 0. 
If u is a node, then inv(u) = u by convention. Therefore, the three sets of 
tasks can be concisely defined by equations 1-3. 
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The costs of the shortest paths between any two entities can be pre- 
computed between their two end-nodes using Dijkstra's algorithm [18], result- 
ing in a distance matrix D, n x n. A trip 0 is defined as a list (&, & ? , .  . . , Bt) 
of task indexes, with a total demand load(0) < W and a total cost cost(@ 
defined by equations 4 and 5. Implicitly, 0 starts and ends at  the depot and 
shortest paths are assumed to connect the successive steps. A solution T is a 
list (TI, T2, . . . , TK) of K vehicle trips (recall that K is a decision variable). 
Its cost is the sum of its trip costs. Each task appears exactly once in T and 
each edge-task occurs as one of its two opposite arcs. 

3 Three simple heuristics for the NEARP 

These heuristics are briefly described before the MA, because they are used to 
provide the initial population of the MA with good solutions. Moreover, the 
splitting technique of the third heuristic is also used in the MA for chromosome 
evaluation. 

3.1 Nearest neighbor heuristic 

Our Nearest Neighbor Heuristic or NNH adapts to the NEARP the Path- 
Scanning heuristic proposed by Golden and Wong for the CARP [lo]. NNH is a 
sequential heuristic building the trips one by one until all tasks are processed. 
In building each trip, the sequence of tasks is extended at  each iteration 
by joining the nearest free task z ,  until vehicle capacity W is exhausted. In 
NEARP instances with a majority of required links, the distance between the 
last task of the trip and the nearest free tasks is often zero, for instance when 
the tasks correspond to adjacent streets. 

So, five rules are used to break ties among nearest tasks: 1) maximize the 
distance d,, to  the depot, 2) minimize this distance, 3) maximize a kind of 
yield q,/p,, 4) minimize this yield, 5) use rule 1 if the vehicle is less than half- 
full, else use rule 2. NNH computes one complete NEARP solution for each 
rule and returns the best one. A small example is given for rule 1 in Figure 
1. Each black square represents a required node and each thick segment a 
required link. Thin lines correspond to shortest paths. The last task of the 
trip in construction is link u. The two nearest free tasks are node a and edge 
b, since dua = dub = 3. NNH will select edge b because dbs > d,,. 
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rn depot 

Fig. 1. Basic step of heuristic NNH with rule 1. 

3.2 Merge heuristic 

Our Merge heuristic or MH corresponds to the Clarke and Wright method 
for the VRP [2] and to the Augment-Merge heuristic for the CARP [l l ] .  It 
starts with a trivial solution with T trips reduced to one task. Then, each 
iteration evaluates the merger (concatenation) of any two trips, subject to W. 
For instance, in Figure 2, merging Ti and Tj yields a saving of 8 + 6 - 10 = 4. 
MH merges the two trips with the largest positive savings. This process is 
repeated until no such merger is possible. 

Trip Ti Trip Tj 

. 
depot 

Fig. 2. Concatenation of two trips in the Merge Heuristic (MH). 

Note that there exist up to 8 possible mergers for two trips Ti and Tj: 
one can put Ti before or after Tj and each trip may be inverted or not. In 
fact, the direction of each edge-task is changed in an inverted trip: e.g., if a 
trip contains a subsequence of two edge-tasks (u, z ) ,  then the inverted trip 
will contain the subsequence (inv(z), inv(u)). This also holds for a node u 
with inv(u) = u. Finally, the only case where a trip cannot be inverted is the 
presence of at  least one arc-task u, since inv(u) = 0. In a real network, this 
occurs when a trip goes thru one-way streets. 

3.3 Tour splitting heuristic 

The Tour Splitting Heuristic or TSH extends a CARP algorithm from Ulusoy 
[12]. First, TSH relaxes vehicle capacity to build a giant tour S servicing 



A Memetic Algorithm Solving General Routing Problems 71 

all tasks. This can be done by any heuristic, for instance NNH called with 
W = m. Figure 3 shows such a giant tour S = (a, b, c, d, e), with two node- 
tasks b and d and three required links a,  c and e. The demand and processing 
cost of each task are given in brackets. An optimal procedure Split is then 
called to cut S into capacity-feasible trips. 

C ( 5 s )  cost  40 ,  load 5 
b ( 3 3 )  20 - 20 d (1,5)  

- 
rn 2 0  15 w w Trip 2 rn 

l o  I 1 c o s ~ ~ ~ ~ ~ o a d  7 
Trip 3 

a (4.5) e (4,7) cost  5 1 ,  load 5 
rn rn 

2 0 depot 16 depot 
I 

a) one  giant tour S = (a,b,c,d,e) with 5 tasks c )  Resulting trips 
(demand and service cost  in brackets) 

b) Auxiliary graph and shortest path for W=9 (labels in each node) 

Fig. 3. Principle of the Tour Splitting Heuristic (TSH). 

Split builds an auxiliary graph H with r + 1 nodes indexed from 0 to T. 
Each subsequence (Si, Si+l, . . . , Sj) of S that could give a capacity-feasible 
trip gives in H as one arc (i - 1, j ) ,  weighted by the cost of the trip. This 
auxiliary graph is given in figure 3 for W = 9. Since H is acyclic by definition 
and contains 0 ( r 2 )  arcs, a shortest path from node 0 to node r can be com- 
puted in 0 ( r 2 )  using Bellman's algorithm [18]. The resulting shortest path 
(boldface) indicates where to split the giant trip. It  corresponds to a solution 
with 3 trips and a total cost equal to 142. Our implementation of TSH splits 5 
giant trips, obtained by calling NNH with an infinite capacity and one priority 
rule at  a time (see subsection 3.1). The best solution obtained is returned. 

4 A memetic algorithm for the NEARP 

4.1 Chromosomes and evaluation 

A chromosome is simply defined as a sequence S of T task indexes, without 
trip delimiters. It is almost a permutation chromosome because each task 
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appears exactly once in S. However, each edge-task may appear as one of 
its two opposite arcs. Clearly, S does not directly represent a valid NEARP 
solution but it can be considered as a giant tour for a vehicle of infinite 
capacity. The Split procedure described in 3.3 for the TSH heuristic is used 
to extract from S the best possible NEARP solution. The guiding function 
F (S)  is nothing more than the cost of this solution. The following claim 
shows that the validity property stressed by Moscato in [19] holds. Hence, 
a memetic algorithm combining such chromosomes is expected to find an 
optimal NEARP solution. 

Claim. The proposed chromosome structure is a valid representation. 

Proof. By definition, Split converts any chromosome into an optimal NEARP 
solution (subject to the sequence order). Moreover, there exists at least one 
optimal chromosome: consider any optimal NEARP solution and concatenate 
its trips in any order. 

4.2 Extended OX crossover 

Thanks to chromosomes without trip delimiters, classical crossovers for per- 
mutation chromosomes can be used for the NEARP. We quickly obtained good 
results by adapting the classical Order Crossover or OX, developed by Oliver 
et al. for the TSP [20]. This chromosome works well for cyclic permutations. 
Although a NEARP solution is not (strictly speaking) a permutation, it can 
be viewed as a cyclic list of trips because there is no reason to give a special 
role to a "first" or "last" trip. 

Given two parents Pl and P2 of length T, OX randomly draws two posi- 
tions i and j with 1 5 i 5 j 5 T. To build the first child Cl, the substring 
PI (i) . . . PI ( j )  is first copied into Cl (i) . . . Cl (j).  The tasks P2(j + 1) . . . P2(7) 
and P2 (1) . . . P2 (i - 1) are then examined in that order. The tasks which are 
not yet present in Cl are used to fill the empty slots of C1, in the order 
Cl ( j  + 1) . . . CI (T), Cl(1) . . . Cl (i - 1). 

Fig. 4. Example of OX crossover 

This process is illustrated by Figure 4. The other child C2 is obtained in a 
similar way, by inverting the roles of PI and P2. For the NEARP, the classical 
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crossover must be adapted to take edge directions into account, i.e. a task u 
may be copied from PI to C1 only if both u and inv(u) are not already in the 
child. The extended crossover can be implemented in O(T). 

4.3 Local search procedure 

To get a memetic algorithm, a local search procedure (LSP) replaces the muta- 
tion operator traditionally applied to new solutions created by recombination 
(children) after a crossover. Since LSP cannot work on chromosomes (with- 
out trip delimiters), the input chromosome S must be converted first into a 
NEARP solution, using the Split procedure of 3.3 LSP performs successive 
phases that scan in O ( T ~ )  the following types of moves, depicted in figures 5 
and 6. 

Flip one task a,  i.e., replace a by inv(a) in its trip, 
Move one task a after another task or after the depot, 
Move two consecutive tasks a and b after another task or after the depot, 
Swap two tasks a and b, 
Sopt  moves depicted in figure 6. 

Ini t ia l  trip F l ip  a M o v e  g be fo re  a 

depot 

M o v e  e a n d  f a f t e r  c S w a p  c a n d  g 

Fig. 5. Simple moves in the Local Search Procedure. 

All these moves can be applied to one or two trips. Moreover, each task a 
moved to another location or swapped with another task may be inserted as 
a or inv(a). For instance, the third move (move two tasks a and b) comprises 
in fact four distinct sub-cases: insert a and b, inv(a) and b, a and inv(b), or 
inv(a) and inv(b). 
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Initial trip Cross paths u - x  and v-y 

/ \ b  / \ T2 ( i n v ( b \  i n v ( y  
r depot / / / 

r 

Initial trips Cross a-b and c-d: case 1 Cross a-b and c-d: case  2 

Fig. 6. 2-OPT moves on one trip and on two trips. 

Each phase ends by performing the first improving move detected or when 
all moves have been examined. The loop on phases stops when a phase re- 
ports no improvement. The resulting NEARP solution is converted back into 
a chromosome by concatenating the tasks of its trips. In all cases, LSP termi- 
nates by applying Split to the result, because this sometimes decreases a bit 
the total cost. 

On big instances, the neighborhood cardinality O(r2) leads to  very time- 
consuming local searches, that typically absorb 95% of the total MA running 
time. To remedy this drawback, a classical neighbourhood reduction technique 
is used. We define for each task a list neib(a) that contains the T tasks sorted 
in increasing order of distance to a and a threshold thresh between 1 and T. 
Then, each iteration of the local search is restricted to all pairs (a, b), such 
that b belongs to the thresh first tasks in neib(a). 

4.4 Population structure and initialization 

The population is stored in an array II of nc chromosomes, kept sorted in in- 
creasing order of costs (computed by Split). So, the best solution corresponds 
to II1. Identical solutions (clones) are forbidden to prevent a premature con- 
vergence of the MA (amplified by the local search) and to favour a better 
dispersal of solutions. Instead of an exact clone detection (e.g., using hashing 
methods), we adopt a simpler system in which the costs of any two solutions 
S1, Sz must be spaced at  least by a constant A > 0, i.e., IF(S1) -F(S2)1 5 A. 
This condition is called the A-property. Its simplest form for integer costs is 
A = 1, ensuring solutions with distinct costs. 
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At the beginning, the heuristics NNH, MH and TSH described in section 3 
are executed. The local search procedure LSP of 4.3 is applied to the solutions 
computed by NNH and TSH, and after each merger for the Merge Heuristic 
MH. The resulting solutions are converted into chromosomes by concatenating 
their trips and stored in IT. The population is then completed by random 
chromosomes. On very small problems, it may be difficult to satisfy the A- 
property, especially if nc is large. In practice, we try up to mnt times to draw 
a random IIk such that the A-property holds for IIl . . . IIlz In case of failure, 
the number of chromosomes nc is truncated to k - 1. 

Large populations raise another problem. During the MA, some crossovers 
are unproductive because their children violate the A-property and cannot be 
kept. The percentage of unproductive crossovers quickly increases with nc and 
with the local search rate. It  is tolerable (less than 5%) if the population is 
relatively small (30-40 chromosomes) and if less than 20% of children undergo 
the local search. 

Compared to the MA template proposed by Moscato [19], note that the 
local search is applied to the three initial heuristic solutions, but not to the 
random ones: because of the small population size, we are obliged to do so to 
have a sufficient dispersal of initial solutions and a better exploration of the 
solution space. 

4.5 Basic iteration and stopping criteria 

Each iteration of the MA starts by selecting two parents PI and f i  by bi- 
nary tournament: two chromosomes are randomly selected and the best one 
becomes PI,  this process is repeated to get P2. The extended OX crossover 
(4.2) is applied to generate two children Cl and C2.  One child C is selected at  
random, evaluated by Split, and improved by local search (4.3) with a fixed 
probability pls. An existing chromosome TIk is drawn above the median cost 
(k 2 nc/2) to be replaced by C. The replacement is performed only iff the 
A-property holds for (TI \ {IIk)) U {C). 

The MA stops after a maximum number of iterations mni, after a maxi- 
mum number of crossovers without improving the best solution (II1) mniwi, 
or when a lower bound LB known for some instances is achieved. 

4.6 Overall MA structure 

The overall MA structure is given by Algorithm 1. The parameters are the 
population size nc, the minimal cost spacing A between any two solutions, 
the maximum number of tries mnt to get each initial random chromosome, 
the local search rate pls, the maximum number of iterations (crossovers) mni, 
the maximum number of iterations without improving the best solution mnwi 
and the lower bound LB. 
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Memetic Algorithm: 
Begin 
run heuristics NNH, MH, TSH and improve solutions with LSP; 
discard solutions violating the A-property; 
convert the remaining solutions into chromosomes, by concatenating their trips; 
II t {resulting chromosomes) ; 
complete II with random chromosomes satisfying the A-property; 
sort II in increasing cost order; 
ni, niwi t 0; 
Repeat Until ( (ni = mni) or (niwi = mniwi) or (F(II1) = L B )  ) Do 
ni t ni + 1; 
select two parents PI and Pz by binary tournament; 
apply OX to PI, P2 and choose one child C at random; 
evaluate C with Split ; 
If (random < pls) Then 
improve C with the local search procedure LSP; 

endIf 
draw k at random between Lncl'LJ and nc included; 
If (I3 \ {rIk) U {C) satisfies the A-property) Then 

rIk t C; 
If (F(C) < F(rI1)) Then 
niwi t 0; 
Else 
niwi t niwi + 1; 

end1 f 
shift IIk to keep II sorted; 

endIf 
endDo 

End. 

Fig. 7. Overall MA structure 

5 Preliminary testing on VRP and CARP instances 

5.1 Implementat ion a n d  instances 

The heuristics and the memetic algorithm have been programmed in the 
Pascal-like language Delphi version 5 and tested on a 1 GHz Pentium I11 PC 
with Windows 98. Before running the MA on NEARP instances, for which 
no published algorithm is available for comparison, we decided to test it on 
standard VRP and CARP instances. 

The selected set of CARP instances (gdb files) contains 25 undirected 
problems built by DeArmon [16] and used by almost all algorithms published 
for the CARP. They can be downloaded on the Internet [21]. Instances 8 and 
9 are discarded by all authors because they contain inconsistencies. The other 
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files contain 7 to 27 nodes and 11 to 55 edges. All data are integers and all 
edges are required. 

An excellent lower bound [9] is available for all these instances. The opti- 
mum is known for 21 instances out of 23, thanks to the tabu search CARPET 
of Hertz et al. [13] and the genetic algorithm of Lacomme et al. 1151. The only 
two remaining open instances are gdblO and gdbl4. In spite of their relatively 
small size, the gdb instances are not so easy: for example, no constructive 
heuristic is able to solve more than two problems to optimality. 

The set of VRP instances contains 14 Euclidean problems proposed by 
Christofides et al. [22]. They can be downloaded for instance from the OR 
Library [23]. They have 50 to 199 nodes. The network is complete and the costs 
are real numbers corresponding to the Euclidean distances between nodes. 
Files 6 to 10, 13 and 14 contain a route-length restriction. This constraint 
is easily handled by the MA, by ignoring the too long trips in the auxiliary 
graph built by the chromosome evaluation procedure Split (see 3.3). 

The best-known solution costs to Christofides instances have been com- 
puted by various tabu search algorithms (TS) and simulated annealing proce- 
dures. They can be found for example in Gendreau et al. [3] and in Golden et 
al. [4]. As underlined by these authors, double-precision computations must 
be used to avoid cumulating rounding errors and to guarantee meaningful 
comparisons between final solution costs. No tight lower bound is available, 
but the best exact methods have proved that the solution values found for 
files 1 and 12 are in fact optimal. 

5.2 Results for CARP instances 

The MA parameters used for the gdb instances are nc = 30, A = 1, mnt = 60, 
pls = 0.1, mni = 20000 and mniwi = 6000. Since these instances are not too 
large, the local search is set to a full aperture, i.e., thresh = T (see 4.3). 

Table 1 gathers the results for the CARP. The columns show, from left to 
right, the file name, the number of nodes n, the number of links m (equal to T, 
since all edges are required), the best known solution value (BKS), the results 
obtained by the heuristics NNH, MH and TSH (followed by one call to the 
local search) and by the MA. The same setting of parameters is applied to all 
instances, except in the last column Best MA that reports the best solutions 
found with various settings during our experiments. The CPU time is given 
in seconds for all algorithms. The two last rows give the average deviation to 
the lower bound in % and the number of best solutions retrieved. 

The MA solves 17 out of 23 instances to optimality, within reasonable 
CPU times (42 seconds on average, max. 4 minutes). The average deviation 
to the bound is quite small: 0.43%. To compare with, the best tabu search 
published [13] finds 18 optima, but with a slightly greater deviation of 0.48%. 
Using various settings, only two instances are improved (gdbll and gdb24). 
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5.3 Results for VRP instances 

Table 2 reports the results found for the VRP in nearly the same format as 
table 1. However, the numbers of edges are here omitted because the networks 
are complete and, due to the lack of good lower bounds, the Average row now 
gives the average deviation to best-known solutions. 

The MA parameters used this time are nc = 30, A = 0.5, mnt = 60, pls = 
0.5, mni = 20000 and mniwi = 6000. Neighborhood aperture is reduced to 
thresh = 2 x max(l0,  TO.^). After the first phase with up to 20000 crossovers, 
the MA performs four short restarts of 2500 crossovers, in which the 7 worst 
chromosomes are replaced by random ones. 

The MA finds 3 best-known solutions and the average deviation to best 
solutions is very small: 0.39%. The CPU time (10 minutes on average) exceeds 
30 min only for one of the two largest instances with 199 nodes (vrpnclo, 42 
min). In [4], Golden et al. list the results obtained by the 10 best TS methods 
for the VRP, which find 3 to 12 best-known solutions. Using several settings of 
parameters (Best MA column), the MA would be at  rank 3 in this comparison, 
after three TS methods that respectively retrieve 12, 10 and 8 best-known 
solutions. 

In a preliminary version of the MA, there was no neighborhood reduction 
technique in the local search and no restart. The average solution cost was 
only a bit larger, but the CPU time was excessive, exceeding 1 hour for four 
instances and reaching 2 hours and 53 minutes on vrpncl0. 

The possibility of using a tabu search step for diversification has not been 
used for three reasons. Firstly, tabu search competitors are already available 
for the CARP and the VRP, so we wanted to develop in contrast a "pure" 
evolutionary algorithm. Secondly, a sufficient diversification seems to be pro- 
vided by the restarts. Thirdly, we do not strictly follow Moscato's template 
and two features favour a good dispersal of solutions in the search space: a) 
the local search is not systematic and b) the population contains at  any step 
distinct solutions. 

6 Random generator of NEARP instances 

A random generator has been designed to build NEARP instances. These 
networks are mixed, planar, strongly connected and imitate the shape of real 
street networks. The generation starts with a rectangle of basic squares. At 
the beginning, only the nodes a t  the corners of the basic squares exist, see a) 
in figure 8. 

Four modifications can be applied to each square (see b) in figure 8): split 
vertically (V), horizontally (H), along the 1st diagonal (Dl) and along the 2nd 
one (D2). Note that V and H create two new nodes and that a square may 
undergo up to four modifications. As from two, a central node is created to 
preserve planarity. We obtain in that way a planar undirected graph (see c) 
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in figure 8). Since this graph is too regular, each node is randomly moved in a 
small circle. At this stage, provisional lengths in meters can be computed from 
node coordinates. To simulate streets that are a bit curved (without drawing 
them), a second perturbation consists of applying a random growth factor to 
each length (between 0 and 10% for instance). 

Each edge is then converted into a one-way street with a given probability, 
by suppressing at  random one of the two internal arcs that code the edge. Of 
course, strong connectivity is preserved. Traversal costs are computed from 
the length of each link, assuming an average deadheading speed of vehicles. 
Then, we decide for each link if its is required. If yes, we draw a non-zero 
demand a t  random. 

a) Initial grid with basic squares 

b b b b 

Vertical  Horizontal 
b b b b 

b )  Random modifications of squares 

c) Planar result with node slumbers c )  Random distortions 

Fig. 8. Principles of random generation. 

Finally, we decide for each 2-way street if it must be considered as one 
edge. If yes, the two arcs are linked with the inv pointer (see subsection 2.2) 
and the edge demand is the sum of quantities of the two sides. The processing 
cost of each task is computed as a function of its length, its demand, and 
a given vehicle processing speed. The instance generation ends by drawing 
vehicle capacity and depot location. 

7 Selected set of NEARP instances with MA solutions 

The generator has been used to build 23 large scale NEARP instances listed 
in table 3, with n = 11 - 150 nodes, m = IAl + 21EI = 29 - 311 internal arcs 
and T = 20 - 212 tasks. The tasks comprise u = 3 - 93 node-tasks, E = 0 - 94 
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edge-tasks, and a = 0 - 149 arc-tasks. All these files can be requested by an 
e-mail sent to the authors. 

These networks are comparable in size to the ones observed in waste col- 
lection applications. Of course, the whole network of a big town can be much 
larger, but the collecting process is divided into sectors in practice. This de- 
fines an independent NEARP in each sector, with typically 100-200 street 
segments. 

The MA parameters already applied to the VRP (including the restarts) 
are used, except A = 1 instead of A = 0.5, because all costs are integers in our 
NEARP instances. The results of the MA are listed in table 3. The average 
running time is 8 minutes of CPU time (max. 23 minutes). No published algo- 
rithm can be used for comparison and no good lower bound is available. This 
is why the table reports average deviations to the best MA solutions obtained 
by using various sets of parameters. However, by extrapolating the very good 
results achieved on the CARP and on the VRP, we think that the solutions 
values computed for the NEARP are quite good and other researchers are 
invited to try to obtain better results. 

8 Conclusion 

This paper presents a new problem, the NEARP, that generalizes the VRP 
and the CARP, and a memetic algorithm to solve it. Computational testing on 
standard VRP and CARP instances show that the MA can compete with the 
best metaheuristics published for these particular cases of the NEARP. Using 
a dedicated random network generator, we have built a set of 23 NEARP in- 
stances to evaluate the MA in the general case. The results are promising but 
the time spent in the local search procedure seems affected by the number of 
required nodes and should be improved by using more efficient neighborhoods 
for the instances with a majority of node-tasks. Beyond these interesting re- 
sults, the main interest of this research is to solve several classical routing 
problems with one single algorithm. 
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Appendix 

The problems studied in this paper can be described in the style used by 
Crescenzi and Kann [24] for their compendium of NP optimisation problems. 
The most general problem is the NEARP. Its highest-level particular cases 
are the CARP and the VRP. These three problems are not listed in the com- 
pendium. 

Node, Edge and Arc routing problem (NEARP) 

INSTANCE: Mixed graph G = (V, E,A),  initial vertex s E V, vehicle 
capacity W E IN, subset VR c V, subset ER c El subset AR c A, 
traversal cost C(U) 6 IN  for each "entity" u E VUEUA, demand q(u) E IN  
and processing cost p(u) E I N  for each required entity (task) u E VR U 
ER U AR. 
SOLUTION: A set of cycles (trips), each containing the initial vertex s ,  
that may traverse each entity any number of times but process each task 
exactly once. The total demand processed by any trip cannot exceed W. 
MEASURE: The total cost of the trips, to be minimized. The cost of a 
trip comprises the processing costs of its serviced tasks and the traversal 
costs of the entities used for connecting these tasks. 

Vehicle Routing Problem (VRP) 

0 INSTANCE: Complete undirected graph G = (V, E ) ,  initial vertex s E V, 
vehicle capacity W E IN,length c(e) E I N  for each e E E ,  demand q(i) E 
IN  for each i E V. 

0 SOLUTION: A set of cycles (trips), each containing the initial vertex s, 
that collectively traverses every node at  least once. A node must be ser- 
viced by one single trip and the total demand processed by any trip cannot 
exceed W. 

0 MEASURE: The total cost of the trips, to be minimized. The cost of a 
trip is the sum of its traversed edges. 

Capacitated Arc Routing Problem (CARP) 

0 INSTANCE: Undirected graph G = (V, E ) ,  initial vertex s E V, vehicle 
capacity W E IN,  subset ER El length c(e) E IN and demand q(e) 6 I N  
for each edge e E R. 
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SOLUTION: A set of cycles (trips), each containing the initial vertex s ,  
that collectively traverse each edge of ER at  least once. Each edge of ER 
must be serviced by one single trip and the total demand processed by any 
trip cannot exceed W. 
MEASURE: The total cost of the trips, to be minimized. The cost of a 
trip comprises the costs of its traversed edges, serviced or not. 

However, the following special cases can be found in the compendium: 

the minimum travelling salesperson, an uncapacitated version of the VRP, 
the minimum Chinese postman for mixed graphs (an uncapacitated version 
of the CARP, but with a mixed network instead of an undirected one, 
the minimum general routing problem, which is an uncapacitated and undi- 
rected particular case of the NEARP. 

Table 1. Computational results for CARP instances (see 5.2) 

F i l e  n m LB BKS NNH+LS MHtLS TSH+LS MA Time BestMA 

Average 0.13% 4.01% 5.47% 5.71% 0.43% 41.88s 0.36% 

BKS retrieved 5 1 3 18 18 

Times in seconds on a 1 CHz PC. Average deviations to LB in 1. 
Asterisks denote proven optima, '=' best-known solutions retrieved 
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Table 2. Computational results for VRP instances (see comments in 5.3) 

File n BKS NNH+LS MH+LS TSH+LS MA Time BestMA 

Average 7.13% 5.62% 5.20% 0.39% 629.86s 0.25% 

BKS retrieved 0 0 0 3 8 

Times in s on a 1 GBz PC. Average deviations to BKS in X .  
Asterisks denote proven optima, '=' best-known solution retrieved. 
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Table 3. Computational results for the new NEARP instances (see section 7) 

File n m r v E aNNH+LS MH+LS TSH+LS MA Time BestMA 

Average 10.07% 8.87% 10.49% 1.26% 452.92s 0% 

Solns of Best MA retrieved 0 1 0 5 23 

Times in seconds on a 1 GHz PC. Average deviations to best MA taken as reference, in X. 
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Summary. Many combinatorial optimization problems occur in the calibration of 
modern automotive combustion engines . In this contribution, simple hill-climbing 
algorithms (HCs) for three special problems are incorporated in Memetic Algorithms 
(MAS) using specific crossover and mutation operators. First, the k-exchange algo- 
rithm as a well known technique of D-optimal design of experiments (DOE) is 
improved. Second, a (near-)optimum test bed measurement scheduling (TBS) as a 
variant of the traveling salesman problem (TSP) is calculated, and third, the final 
design of look-up tables (LTD) for electronic control units is optimized. It is shown 
that in all cases MAS that work on locally optimal solutions calculated by the corre- 
sponding HCs significantly improve former results using Genetic Algorithms (GAS). 
The algorithms have been successfully applied at BMW Group Munich. 

1 Introduction 

Nowadays, a vastly increasing number of technical functions satisfy the cus- 
tomer demands for optimal performance of automotive combustion engines. 
Moreover, they provide the only way to  fulfill the legal rules for fuel consump- 
tion and exhaust emissions. On the other side, the calibration of the corre- 
sponding control functions running within the micro controller of an electronic 
control unit becomes more and more sophisticated. Many tasks that have 
been tackled manually for former generations of combustion engines need to 
be solved in a new way to guarantee optimality of control strategies. For clar- 
ity reasons, the engine's parameter space is considered to be spanned by five 
main parameters, the engine speed, the air mass flow, the inlet valve spread 
and the exhaust valve spread, and the ignition timing angle. Here, the engine 
speed and the air mass flow define the operating point of an engine. Most 
other parameters, particularly the named parameters, correspond to special 
engine functions that are controlled depending on the current operating point. 
For every control function there is a look-up table stored within the electronic 
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Fig. 1. A lookup table approximates a continuous control function depending on 
the operating points, i.e. the engine speed and the air mass flow. For the current 
operating point, the micro controller within the electronic control unit calculates 
the optimal value of the control function by bi-linear interpolation. 

control unit. The micro controller uses the current operating point of the en- 
gine to calculate the new settings for the valve spreads and the ignition timing 
angle by bi-linear interpolation. Figure 1 shows an example look-up table for 
a general control function. At every operating point there is a unique value 
for the control function. 

Here, three combinatorial optimization problems are considered. To see 
where these problems are located within the calibration process for automotive 
combustion engines, figure 2 shows the main steps in the workflow. The three 
blocks with gray background label the three combinatorial problems. 

At the beginning there is the design of experiments (DOE). Consider here 
the example of a full factorial grid in the above mentioned parameter space 
with 10 units in each dimension. This would lead to a total number of 105 
measurement points. To record all engine characteristics at  one specific mea- 
surement point up to three minutes are necessary, which is very expensive. 
The idea of DOE is therefore, to  generate a reduced list of measuring points, 
that contains only those measurement candidates that lead to the best re- 
gression model of predefined order. Section 3 will give further details on this 
topic. 

Although DOE can reduce the number of measurements significantly, the 
measuring process a t  test beds is still a significant factor in the calibration 
process. It  is important to note that the change of parameter settings at  
test beds can lead to strong oscillations of the engine system and hence to 
a long relaxation time after which the recording of measuring channels can 
start. Especially the variations of the engine speed and of the air mass flow 
can cost a lot. Therefore an optimal test bed schedule (TBS), i.e. an optimal 
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Fig. 2. A workflow for the calibration of modern automotive combustion engines. 
The combinatorial problems D-optimal design of experiments, optimal test bed 
schedules, and final design of look-up tables are tackled by Memetic Algorithms. 

measuring order is calculated to reduce these oscillations. This problem is a 
higher dimensional variant of the traveling salesman problem (TSP) consid- 
ering Hamiltonian paths instead of cycles and using a non-standard metric. 
It will be discussed in section 4. 

The next three steps are discussed together. First, the results of the mea- 
surement process at  test beds are primarily the fuel consumption and exhaust 
emissions at the different points within the parameter space. Second, by means 
of these results computer engine models for the global functions for the fuel 
consumption and for the exhaust emissions are calculated. Here, artificial neu- 
ral networks and polynomial regression models are used. Third, the generated 
models are used to determine the parameter combinations at  every operating 
point that lead to the optimum fuel consumption and exhaust emissions. As 
optimization algorithms, both classical optimization and Evolutionary Algo- 
rithms are used. In order to decide whether the models are accurate enough 
to represent the real engine behavior, verification measurements need to be 
performed at the test bed. The previous steps might be repeated until the 
results are satisfying. 

Another combinatorial optimization problem occurs in the final step of the 
workflow, i.e. a final look-up table design (LTD). After the modeling and the 
optimization process, there might be more than one parameter combination 
available at  each operating point. One reason for this situation is the use of 
different model types with most probably different landscapes and therefore 
different optimum points. Second, one model usually provides multiple local 
optima. All the candidates lead to acceptably good values for both the fuel 
consumption and the exhaust emissions. Hence, it is not clear a priori, which 
candidate should be chosen at each operating point in order to define the 
unique look-up tables for the electronic control unit. First, consider only one 
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look-up table, e.g. the one in figure 1. At each grid point there would be a 
set of candidates with quite different function values. Now, a criterion for the 
usefulness of one candidate is needed. In order to provide optimal behavior 
of the engine, the global smoothness of the map defined by the look-up table 
is considered. Especially mechanically adjusted actuators need smooth maps 
to guarantee easy transitions between parameter settings. In this case, it is 
"only" necessary to select those candidates simultaneously, which define the 
smoothest map. For this case it could be shown in [I], that the corresponding 
selection problem is NP-hard. Within the application process normally sev- 
eral look-up tables need to be considered simultaneously, which constitutes 
a multi-objective combinatorial NP-hard optimization problem: Consider the 
situation, that one candidate has already been selected at  every operating 
point. To perform a new candidate choice at  a specific operating point within 
the next iteration, you are forced to select all components of an optimum pa- 
rameter vector. I.e., the new choice might improve the smoothness of the inlet 
valve spread look-up table, but on the other side it worsens the smoothness 
of the exhaust valve spread and of the ignition timing angle look-up tables. 

In section 2.1, the general framework of the Memetic Algorithms (MAS, 
see e.g. [2] or [3]) and the hill-climbing algorithms (HCs) employed in the 
studies is presented. In the following sections 3,4,  and 5 the three combinato- 
rial optimization problems introduced above are described in more technical 
detail. Every section includes results of the MAS for several test instances. 
For comparison, results of the heuristics and of the pure or hybrid Genetic 
Algorithms (GAS, see e.g. [4]) are given, too. Here, hybrid GAS use the well- 
known problem specific heuristics to mutate individuals with typically small 
mutation rates. 

2 Hill-Climbing and Memetic Algorithms 

MAS are characterized by the strict application of local search algorithms 
after the initial generation of individuals, and after each evolutionary opera- 
tion, i.e. after each crossover and mutation (see [2] for an introduction). The 
pseudo code for the MAS presented in this paper in figure 3 is taken from [3]. 
The framework is rather simple, since it does not utilize spatially structured 
or tree-structured populations. The same framework has been used in the. 
studies of several other combinatorial optimization problems, including the 
graph-bipartitioning problem ([26]), the quadratic assignment problem ([27]), 
the Euclidean traveling salesman problem ([28]), and binary quadratic pro- 
gramming ([29]), with great success. 

In contrast to other hybrid Evolutionary Algorithms, local search is applied 
to all newly created individuals after recombination or mutation. The standard 
MA performs crossover and mutation operation strictly separated from each 
other (MAl), which is unlike the GAS. Here, also a second non-standard MA 
following the sequential use of crossover and mutation in GAS is used (MA2). 
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procedure Memetic Algorithm; 
begin 

for j := 1 t o p  do 
I := generatesolution(); 
I := Local-Search(1); 
add individual I to P ;  

endfor; 
repeat 

for i := 1 to pc,,,, . p do 
select two parents I,, Ib E P randomly; 
Ic := Recombine(I,, Ib); 
Ic := Local-Search(1,); 
add individual I, to P'; 

endfor; 
for i := 1 to p,,t . p do 

select an individual I E P randomly; 
I, := Mutate(1); 
I, := Local-Search(1,); 
add individual I, to P'; 

endfor; 
P := select(P U P'); 
if converged(P) then P := Local-Search(Mutate(P)); 

until terminate=true; 
end; 

Fig. 3. The Standard Memetic Algorithm: All individuals in the populations rep- 
resent local optima. Crossover and mutation are applied independently from each 
other. 

The number of individuals that are chosen from a population of size p to 
apply crossover and mutation operations are given by p,,,,, . p and p,,t . p, 
respectively. 

If the algorithm has converged, e.g. if there was no change in the fitness 
value for a specific number of generations, every individual but the best one 
is mutated. Afterwards, local search is applied to produce a population of 
local optima. This diversification is a high level mutation operation, working 
on the whole population, not on single individuals. Therefore, this kind of 
mutation is called meta mutation ([3]) or cataclysmic mutation (191). Here, 
the convergence is tested by controlling the number of generations without 
changes in optimal fitness, and by comparing the individuals in the current 
population. 

D-optimal design of experiments, for the optimal test bed scheduling as 
TSP variant, and for the optimal final lookup table design are given. Since in 
all three combinatorial optimization problems considered in this contribution 
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procedure Hill-Climber; 
repeat N times 

Generate neighboring solution s' from s; 
if fitness(sl) > fitness(s) then s := s'; 

end repeat; 
return s; 

Fig. 4. A Hill-Climbing Algorithm as example for a possible local search operation 
in the Memetic Algorithm given in figure 3. 

hill-climbing algorithms (HCs) are used as local search, the pseudo code is 
given in figure 4. These HCs are characterized by the repetition of specific 
mutations to search in the neighborhood of the current solution for a certain 
number of times. A new solution of the corresponding problem is accepted, if 
its fitness is better than the fitness of the former solution. Here, the neighbor- 
hood of the current solution is searched in random order and the number of 
iterations is limited to N. A local optimum with respect to the neighborhood 
may not be reached after N iterations. Therefore, additional applications of 
the hill-climber may result in improved solutions. More systematic and there- 
fore more sophisticated local search heuristics might bring further benefit. 

In the following sections after the description of each problem, results of 
the MAS compared to the conventional and hybrid GAS are presented. Hybrid 
GA means the use of local search algorithms for mutation with (typical for 
GAS) small mutation probability. Hybrid GAS are used for the two problems, 
D-optimal design of experiment and for the optimal test bed scheduling. All 
the figures for result presentation use mean fitness values from 20 runs of the 
algorithms. Since minimization problems are considered here, smaller values 
within the plot mean better results. The error bars display the range between 
the minimum and the maximum result achieved by the corresponding algo- 
rithm. 

3 D-optimal Design of Experiments 

Given are n candidates XI, .  . . , x n  defined by n points u l , .  . . , u n  in the en- 
gine's parameter space and a regression type, e.g. a polynomial model for 
the fuel consumption or the exhaust emission. For the 2-dimensional case the 
j = 1 . . . p  candidates X j  = (1, ul j ,  ~ 2 j ,  u&, uij, ulju2j)T define a 2-nd order 
model for the points (ulj ,  By the choice of p < n candidates indicated 
by [ = (jl ,  . . . , jp)  E (1.. .p)p, the design matrix is defined by 
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i.e. XE is the matrix formed by the chosen candidates. Consider a model 

which is linear in the coefficients. The random vector 6 is normally distributed 
with N(0, u2 .Id), i.e. a normal distribution with mean value zero and variance 
u2 . Id. The observation vector y has size p. A least square estimate, 

is optimized by its minimal covariance matrix (XT, XE)-'a2 using appropriate 
candidates j l ,  . . . , j,. Of course, there are alternative minimum criteria for a 
matrix. Here, the D-optimality criterion is considered, that is characterized 
by a minimized d e t ( ( ~ T ~ ~ ) - ' )  or equivalently maximized d e t ( ~ T ~ ~ ) .  

Designs with size Ipl > po may dominate the evolution since they might 
have larger determinants. To avoid this development, a dynamic fitness func- 
tion (see e.g. [lo] for this topic) should be used. An initial estimate do of the 
optimum obtained by a single run of the heuristic algorithm helps to define a 
non-stationary fitness function: 

Larger designs are punished depending on the size difference IJI - po and the 
actual generation t. An increasing sigmoid function C(t) is used, that ensures 
in each generation, that the design 5 minimizing the fitness function will have 
a size of 151 = PO. 

For the use of GAS and MAS, an efficient representation of a design individ- 
ual is a list coding, consisting of the numerically ordered indices of all points 
contained in a design ([Ill). If the desired size of the design po is not too small, 
the optimal design may contain repetitions, i.e. candidates that occur two or 
more times. This fact seems not to be very intuitive at  a first glance, but it can 
be illustrated by a simple example. Consider a linear model in one dimension 
with n = 10 equidistant candidate points. Then the best way to choose po = 4 
candidates is to take the minimum point and the maximum point each twice. 
This kind of encoding allows the use of standard mutation. For a GA all the 
lists should have a fixed length, but on the other hand during the process of 
optimization it is desirable to try and combine designs of different size. There- 
fore, the lists have the fixed length of 2 -PO, and the unused entries are filled 
with 0. Note that the alphabet used for this representation has size n + 1. The 
use of binary coded individuals, where bit position j is set to  1 if candidate 
j is included in the design, performed worse and does not allow repetitions. 
In contrast to binary representation, of course the list representation requires 
a different crossover operator (see figure 5 for an illustration of a crossover 
operation on designs). More explicitly, the uniform crossover operator on two 
lists cl and c2 producing c3 and c4 reads as follows: Take the smaller of the 
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Fig. 5. Illustration of a suitable crossover operation on designs in 2 dimensions. 
Filled circles indicate points that are included within the design. The upper offspring 
design inherits the good properties of both parent designs. 

first elements of q or cz and remove it. With probability 112, add it to c3 or 
c4, respectively. If the first elements of cl and cz are equal, remove them from 
both cl and ca and add them to both c3 and c4. Repeat these steps until both 
q and c2 are empty. 

3.1 The k-exchange Algorithm for DOE 

The DETMAX and the k-exchange algorithms are common hill-climbing algo- 
rithms for the construction of D-optimal DOE. These algorithms are heuristics 
based on sequentially exchanging bad candidates for better ones (see [12] for a 
comparison). Here, only the k-exchange algorithm is used. Depending on the 
actual size p and the desired final size po of the design 5, the algorithm adds 
or removes a candidate xj ,  if this leads to a larger or smaller determinant. 
The new determinant can be expressed in terms of the old one, e.g. for the 
addition process: 

det ((xT xj)  (XEX?))  = d e t ( ~ T x ~ ) .  (1 + X ~ T ( X ? X ~ ) - ~ X ~ )  . 

The candidate which maximizes the term (1 + X?(X:X~)-~X~) is added. For 
the removal process, the candidate x j  that minimizes 1 - X ~ T ( X ~ X ~ ) - ~ X ~  is 
chosen. The k-exchange algorithm takes into account, that it might not be op- 
timal to add the candidate for which ~ + X ~ T ( X ~ X ~ ) - ~ X ~  attains its maximum, 
if afterwards the formula 1 - xjT(XTXE)-'xj forces the removal of the wrong 
candidate. The addition and the removal form one step, which requires N . p 
instead of p examinations. To keep this number lower, one can consider only 
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Fig. 6. Comparison of the D-optimal construction of designs for two data sets. k- 
exchange labels the pure local search algorithm, the hybrid GA uses local search as 
mutation operation with p,,t = 0.08. The standard and the non-standard Memetic 
Algorithms MA1 and MA2 perform comparably well. 

the best k candidates for addition and the worst k candidates for removal. 
Thus, there are k2 terms of which the maximum is to be found. Since the 
addition or removal of candidates can be evaluated with the above mentioned 
efficient update formulas for the determinant, the resulting heuristic does not 
need to evaluate the whole fitness function and thus becomes very efficient, 
too. 

3.2 Results for the D-optimal Design of Experiment 

For the construction of D-optimal DOES two different data sets are tested. 
The larger one consists of 6561 points in four dimensions. By means of a third 
order polynomial model, a design of size 100 candidates is calculated. The left 
part of figure 6 shows the results of 20 runs. To compare the results of the 
Memetic Algorithms a hybrid GA is used. It  performs local search as mutation 
operation with typically small mutation rate pm,t = 0.08. Both Memetic 
Algorithms find better solutions than the hybrid GA and significantly better 
than the k-exchange heuristic algorithm. The standard MA (MA1) performs 
slightly better than the non-standard MA (MA2). The second data set is given 
by real world application. It  consists of 1280 points in four dimensions. The 
final design size is 64 and a third order polynomial model is used, too. The 
results are shown in the right part of figure 6. 

The parameters for the GAS are: Population size ,u = 40, number of off- 
spring X = 40, maximum number of generations t,,, = 100, mutation prob- 
ability pm,t = 0.08, crossover probability p,,,,, = 0.6, tournament selection 
with 7 individuals, a niching technique with v = 4 and a niche factor of 
0.1. The additional parameters of the MA are the number of individuals for 
crossover and mutation which are calculated by p,,,,, - p  with p,,,,, = 0.5 and 
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Fig. 7. Visualization of a small data set for optimal test bed scheduling in 3 dimen- 
sions. On the path through the parameter space first all x3 and 2 2  variations are 
measured before the XI value is changed. 

by p,,,t . p with p,,t = 0.5 respectively, and a number N = 1000 iterations 
for the hill-climbing. 

4 Test Bed Scheduling as TSP Variant 

Although DOE improves the situation, concerning the total time requirement 
of the calibration process, the measuring process at  test beds is still a signifi- 
cant factor. Certain changes in the parameter setting during the measurements 
result in stronger undesired system oscillations than others, and therefore slow 
down the data recording. The idea is to calculate an optimized measuring or- 
der before starting the measuring process ([13]). Less oscillations also yield 
more robustness and better reproducibility. 

Assume a parameter space of dimension D with N measuring points x. 
Concerning the engine behavior, changing the operating points, i.e. the engine 
speed (al)  and the air mass flow (x2), is more critical than changing the 
other engine parameters like the valve spreads (x3,. . . , xd). Therefore, in the 
calculation of an ordered list of measuring points, more weight lies on the 
range spanned by XI and x2, i.e. the operating range. Figure 7 shows a way 
in a 3-dimensional parameter space, that takes this knowledge into account. 

The described problem is a TSP variant. The ordering of the measuring 
points differs in two respects from the original TSP: First, Hamiltonian paths 
instead of cycles are of interest, where the x-point with minimal parameter 
value for each dimension is used as a starting point. Second, the path must 
be driven in certain directions in order to achieve sufficiently short relaxation 
times. Hence, instead of the standard Euclidean distance a non-standard met- 
ric is used to determine the length of a path. For the use of GAS and MAS, 
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Fig. 8. Visualization of two TSP heuristics: the left arrow represents the 2-opt 
algorithm, the right arrow represents the random node insertion algorithm. 

it was shown earlier, that adjacency coding for list representations of TSP 
paths, i.e. a locus-based coding, works much better than time-based coding. 
This was originally suggested in [14]. Again, this kind of coding does not di- 
rectly allow standard crossover and standard mutation techniques, because 
this would lead to infeasible offspring. Therefore, repairing algorithms need to 
be performed after each genetic operation. They are described in detail in [15] 
and [16]. Roughly speaking, they replace or insert multiple or missing points 
according to the order within the parent individuals. 

To introduce an objective function for this problem, the distance between 
two points x and E is defined by their Euclidean distance plus the sum of 
weighted xi distances: 

d 

d(x,E) = 112 - 2112 + C.wi . lxi - Eil. 
i= 1 

Now an appropriate fitness function for an individual p is defined by 

where p is a permutation of (1,. . . , N) representing a path. Note that the 
first entry in p is fixed since the starting point is fixed. The weights wi help 
to prefer paths that run mainly parallel to the coordinate axis xi and change 
the critical parameter less frequently. 

4.1 A Hill-Climber for the TSP 

For the problem of calculating test bed schedules (TBSs), an algorithm sim- 
ilar to the Zopt TSP heuristic ([17],[18]) is used to calculate local optimal 
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Fig. 9. Comparison of the mean values of the results for the TBS for two data sets. 
The error bars show the minimum and the maximum values. GA1/2: Hybrid GA 
with p,,t = 0.110.5. The non-standard Memetic Algorithm MA2 performs better 
than the standard Memetic Algorithm MA1. 

paths through the system's parameter space. This algorithm changes 2 edges 
between randomly chosen points (see left arrow in figure 8). Here, a combi- 
nation of this algorithm with a node insertion is used as hill-climbing algo- 
rithm. Node insertion takes a randomly selected point and positions it to a 
randomly chosen other position in the path ([19]). The right arrow in figure 8 
visualizes this mechanism. Of course, the more sophisticated systematic Lin- 
Kernighan local search algorithm ([2O]) can be used as well (see e.g. [3] for 
this topic). Nevertheless, the 2-opt variant is sufficient for the scope of this 
paper to demonstrate the improvement of a MA. Also the 2-opt variant needs 
no complete fitness evaluation and is hence very efficient. 

4.2 Results for the Test Bed Scheduling 

For the TBS problem, instead of mutation, the hill-climbing algorithm is per- 
formed. Here, additional mutation operations like the non-sequential4-change 
for the TSP ([20]) may lead to further improvement, because of more efficient 
diversification. Here, 2 data sets with 319 points in 5 and in 6 dimensions are 
used. The algorithm parameters are: p = 100, X = 100, t,,, = 1000, heuristic 
mutation with p,,t = {0.1,0.5), p,,,,, = 0.6, tournament selection with 4 
individuals, v = 10, niche factor 0.4. The MA use 319 . 1000 hill-climbing 
iterations, p,,,,, = 0.5, and p,,t = 0.5. Again the hybrid Genetic Algorithms 
GA1 and GA2 perform local search as mutation operation with pmUt = 0.1 
and p,,t = 0.5 respectively. Figure 9 shows the results of 20 runs. The non- 
standard Memetic Algorithm MA2 performs best. This is probably due to the 
higher number of hill-climbing iterations. 
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Fig. 10. Result of modeling and optimization: The look-up tables for two control 
functions are shown. Taking a candidate that is labeled with a diamond at one grid 
position of the first look-up table, automatically forces to take the diamond at the 
same grid position of the second look-up table. 

5 Final Look-up Table Design 

After the optimization of the engine by means of different engine models and 
optimization methods, normally several optimum parameter candidates result 
a t  each grid position of a look-up table. These candidates vary only slightly 
in their quality, i.e. the resulting fuel consumption and exhaust emission, but 
may differ significantly in their parameter combinations. Since the final look- 
up table that is stored within the electronic control unit has to be well-defined, 
a final selection task has to be performed. Figure 10 shows two example look- 
up tables, where the actual choice might be sub-optimal. At the same grid 
point of the set of look-up tables it is the only way to choose equally la- 
beled candidates, because the resulting parameter vector of one modeling and 
optimization branch can't be split. This would surely lead to a worse engine 
behavior, i.e. an increased fuel consumption and worse exhaust emissions. But 
at  different grid points, squares, diamonds, triangles or circles could be bet- 
ter. Before the final optimum candidates are selected at  each operating point, 
a distinction is necessary: There are mechanically adjusted parameters like 
the valve spreads that are set by the camshaft, and there are electrically or 
electronically adjusted parameters like the ignition timing angle. Mechanical 
adjustment means a waiting time, until the desired value is reached. There- 
fore it is important that the maps defined by look-up tables are sufficiently 
smooth to ensure fast transitions. Other actuators or parameters are adjusted 
electrically or electronically, e.g. the ignition timing angle. In this case there 
is less need for smooth transitions. 

At each operating point the candidate has to be selected, which together 
with the chosen candidates at  the other grid points leads to the smoothest 
map. In [I] the problem of composing the smoothest map from such a set of 
candidates was shown to be NP-hard for an abstract smoothness criterion. 
For the use of GAS, an appropriate representation of the possible solutions 



100 Kosmas Knodler, Jan Poland, Peter Merz, and Andreas Zell 

has to be defined. Here, the direct encoding of the chosen candidates, which 
results in a variable alphabet is used. Each grid point j corresponds to one 
position of a chromosome to take nj different values, one for each candidate 
available. A chromosome v has the form: 

N 

v = ( v j ) E 1  E @{I. .  .nj). 

j=1 

Here, N is the number of grid points defining the look-up tables, and nj is the 
number of available candidates at  ( x i ,  x i ) .  Consider the look-up tables for the 
inlet valve spread and for the exhaust valve spread displayed in figure 10. At 20 
grid points there are (nj)gl = {1 ,1 ,2 ,4 ,3 ,3 ,3 ,2 ,1 ,4 ,3 ,2 ,3 ,2 ,4 ,3 ,3 ,3 ,1 ,3)  
candidates available. Candidates labeled by the same symbol result from the 
modeling step using the same model. E.g. candidates labeled by squares and 
diamonds result from two kinds of artificial neural networks. Candidates la- 
beled by triangles and circles result from two polynomial models of different 
order respectively. The individual that defines the meshes in figure 10 is 

Note that variable alphabet coding allows the application of standard mu- 
tation, and standard crossover operations, like uniform crossover or n-point 
crossover. 

We use an objective function similar to the one introduced in [21] to get 
a suitable smoothness criterion for a map Mi defined by the corresponding 
look-up table, 

where the term neigh(& j )  is 1 for neighboring grid points, otherwise 0. For the 
multi-objective problem of smoothing i = 1, .  . . , n maps Mi simultaneously, 
e.g. the look-up tables for the valve spreads, an aggregation with weighting 
factors wi is used: 

Using more sophisticated Pareto techniques for multi-objective optimization 
turned out to give no further improvements but needs significantly more func- 
tion evaluations. 

5.1 A Neighborhood Algorithm for the LTD 

In a certain number of iterations, a random grid point is chosen. At this 
grid point those candidates, which define the most similar optimal param- 
eter vector to the vectors defined by the presently chosen candidates at  its 
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randomly chosen grid point 
neighboring grid points 
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Fig. 11. One step of the neighborhood algorithm for the final look-up table design. 

4 neighboring grid points is selected. The similarity between the vectors is 
given by the Euclidean distance between the vector at  the chosen grid point 
and the mean of the vectors defined by the already selected candidates at  the 
surrounding grid points over all look-up tables (see figure 11). Since the neigh- 
borhood heuristic works locally, it is not necessary to evaluate the complete 
fitness function for each iteration. 

5.2 Results for the Final Look-up Table Design 

Figure 12 shows the results of the final look-up table design for two data sets. 
For every data set a number of 20 runs was performed. A grid of size (25 x 25) 
with 6 to 10 candidates per grid point is used. The number of simultaneously 
composed look-up tables is 2 for the first data set, and 4 for the second. For 
the solution of the second problem with 4 look-up tables the described hill- 
climbing algorithm turned out to reach its limits. For the second data set, the 
GA with heuristic initialization performs better than the MAS. 

The algorithm parameters are: p = 40, X = 40, t,,, = 10000, pmUt = 
0.0016, %point crossover on 2-dimensional encoded individuals, p,,,,, = 0.6, 
tournament selection with 4 individuals, v = 2, niche factor 0.1. The MA uses 
hill-climbing with 5000 iterations, p, ,,,, = 0.5, p,,t = 0.5. 

6 Conclusions 

In this contribution, three combinatorial optimization problems occurring in 
the optimal calibration of automotive combustion engines have been discussed. 
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Fig. 12. Results for the final design of look-up tables (LTD). GA1: Standard Genetic 
Algorithm, GA2: Standard Genetic Algorithm with an initial population calculated 
by the heuristic. For the case of two look-up tables the best results were achieved by 
the standard and the non-standard Memetic Algorithm MA1 and MA2. The best 
results for four look-up tables are given by the GA2. This shows that the power of 
the heuristic decreases with increasing numbers of look-up tables. 

Since the D-optimal design of experiments (DOE), test bed scheduling (TBS), 
and final look-up table design (LTD) are NP-hard problems, effective heuris- 
tics are required to arrive at  (near-)optimum solutions. New Memetic Algo- 
r i t h k  (MAS) using simple hill-climbers as local search have been proposed 
for the three problems and several experiments have been conducted to assess 
their effectiveness. The results demonstrate that MAS give further improve- 
ments to the solution of these three problems compared to previously devel- 
oped algorithms. In particular, the MAS have been shown to be superior to 
GAS. In most cases, not only traditional GAS but also the hybrid GAS are 
inferior to the consequent application of local search algorithms after each 
evolutionary operation. To compensate the high number of fitness evaluations 
of MAS, the number of generations was increased for the use of GAS. Thereby, 
approximately the same number of fitness evaluations were achieved. This did 
not result in any further improvements of the results. Moreover, another pos- 
sibility was considered: The increase of population size. Here, population sizes 
up to p = 200 individuals turned out to give no benefit, also. 

The results of the experiments can be summarized as follows: For LTD, 
the new results for the first data set with 2 look-up tables obtained by the 
MAS were up to 4% better than those obtained by the GAS. For the second 
data set, the GA with a near-optimum initial population performed best. For 
the other two problems the differences are even more severe: For the TBS, 
improvements of 17% compared to the hill-climbing and of 6% compared to 
the hybrid GAS were achieved. For the DOE improvements of up to 26% 
compared to the hill-climbing and of 4% compared to the hybrid GAS were 
achieved. 
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Future work will cover further crossover and mutation operators, and sys- 
tematic local search algorithms for all three problems. Especially for the TBS 
problem, systematic local search algorithms like the Lin-Kernighan algorithm 
with the non-sequential Cchange mutation ([20]) will be considered. 
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Summary. This paper describes a co-evolutionary learning-optimisation approach 
to Protein Structure Prediction which uses a Memetic Algorithm as its underlying 
search method. Instance-specific knowledge can be learned, stored and applied by 
the system in the form of a population of rules. These rules determine the neigh- 
bourhoods used by the local search process, which is applied to each member of the 
co-evolving population of candidate solutions. 

A generic co-evolutionary framework is proposed for this approach, and the 
implementation of a simple Self-Adaptive instantiation is described. A rule defining 
the local search's move operator is encoded as a {condition : action) pair and 
added to the genotype of each individual. I t  is demonstrated that the action of 
mutation and crossover on the patterns encoded in these rules, coupled with the 
action of selection on the resultant phenotypes is sufficient to permit the discovery 
and propagation of knowledge about the instance being optimised. 

The algorithm is benchmarked against a simple Genetic Algorithm, a Memetic 
Algorithm using a fixed neighbourhood function, and a similar Memetic Algorithm 
which uses random (rather than evolved) rules and shows significant improvements 
in terms of the ability to locate optimum configurations using Dill's HP model. It is 
shown that this "meta-learning" of problem features provides a means of creating 
highly scalable algorithms. 

1 Introduction 

The performance benefits which can be achieved by hybridising evolutionary 
algorithms (EAs) with local search operators, so-called Memetic Algorithms 
(MAS), have now been well documented across a wide range of problem do- 
mains such as combinatorial optimisation [27], optimisation of non-stationary 
functions [42], and multi-objective optimisation [20] (see [29] for a comprehen- 
sive bibliography). Commonly in these algorithms, a local search improvement 
step is performed on each of the products of the generating (recombination 
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and mutation) operators, prior to selection for the next population There are 
of course many variants on this theme, for example one or more of the gener- 
ating operators may be absent, or the order in which the operators are applied 
may vary. The local search step can be illustrated by the pseudo-code below: 

LocaLSearch(z) : 
Begin 

/* given a starting solution i and a neighbourhood function n */ 
set best = i ;  
set i te ra t ions = 0; 
Repeat Until ( iteration condition is satisfied ) Do 

set counter = 0; 
Repeat Until ( termination condition is satisfied ) Do 
generate the next neighbour j E n ( i )  ; 
set counter = counter + 1 ;  
If (f ( j )  is better than f (best ) )  Then 

set best = j ;  
end1 f 

endDo 
set i = best; 
set i te ra t ions = i te ra t ions + 1 ;  

endDo 
End. 

There are three principal components which affect the workings of this 
local search. The first is the choice of pivot rule, which can be Steepest Ascent 
or Greedy Ascent. In the former the termination condition is that the entire 
neighbourhood n(i) has been searched, i.e. counter = I  n(i) 1, whereas the lat- 
ter stops as soon as an improvement is found; i.e. the termination condition 
is (counter = I  n(i) 1) V (best # i). Note that some authors resort to  only con- 
sidering a randomly drawn sample of size N <<[  n(i) I if the neighbourhood 
is too large to search. 

The second component is the depth of the local search, i.e. the itera- 
tion condition which lies in the continuum between only one improving step 
being applied (iterations = 1) to the search continuing to local optimality 
((counter = I  n(i) I) A (best = i)). Considerable attention has been paid to 
studying the effect of changing this parameter within MAS e.g. [14]. Along 
with the choice of pivot rule, it can be shown to have an effect on the perfor- 
mance of the Local Search algorithm, both in terms of time taken, and in the 
quality of solution found. 

The third, and primary factor that affects the behaviour of the local search 
is the choice of neighbourhood generating function. This can be thought of 
as defining a set of points n(i) that can be reached by the application of 
some move operator to the point i .  An equivalent representation is as a graph 
G = (v, e) where the set of vertices v are the points in the search space, and 
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the edges relate to applications of the move operator i.e eij E G e j 6 
n( i) .  The provision of a scalar fitness value, f, defined over the search space 
means that we can consider the graphs defined by different move operators 
as "fitness landscapes" [15]. Merz and Freisleben [28] present a number of 
statistical measures which can be used to characterise fitness landscapes, and 
have been proposed as potential measures of problem difficulty. They show 
that the choice of move operator can have a dramatic effect on the efficiency 
and effectiveness of the Local Search, and hence of the resultant MA. 

In some cases, domain specific information may be used to guide the choice 
of neighbourhood structure within the local search algorithms. However, it 
has recently been shown that the optimal choice of operators can be not 
only instance specific within a class of problems [28, pp254-2581, but also 
dependent on the state of the evolutionary search [26]. This result is not 
surprising when we consider that points which are locally optimal with respect 
to one neighbourhood structure may not be with respect to another (unless of 
course they are globally optimal). Thus if a set of points has converged to the 
state where all are locally optimal with respect to the current neighbourhood 
operator, then changing the neighbourhood operator may provide a means 
of progression, in addition to recombination and mutation. This observation 
forms the heart of the Variable Neighbourhood Search algorithm [49]. 

This paper describes one mechanism whereby the definitions of local search 
operators applied within the MA may be changed during the course of op- 
timisation, and in particular how this system may usefully be applied to a 
simplified model of the Protein Structure Prediction Problem. This system 
is called Co-evolving Memetic Algorithms (COMA). The rest of this paper 
proceeds as follows: 

Section 2 discusses some previous work in this area, describes the pro- 
posed approach, and the development of a simplified model within that 
framework. It  also summarises the results of initial investigations published 
elsewhere. 
Section 3 draws some parallels between this work and related work in 
different fields, in order to place this work within the context of more 
general studies into adaptation, development and learning. 
Section 4 details the particular application under concern, namely Protein 
Structure Prediction using Dill's HP model [8]. 
Section 5 presents the results and analysis of a set of preliminary experi- 
ments designed to investigate whether the use of adaptive rules is able to 
benefit the optimisation process. 
Section 6 goes on to investigate the benefits of restricting the search to 
feasible solutions, rather than using a penalty function approach. 
Section 7 presents some analyses of the behaviour of the evolving rule- 
bases, and then Section 6 discusses the implications of these results, before 
drawing conclusions and suggesting future work. 
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2 A Rule-Based Model for the Adaptation of Move 
Operators 

2.1 The Model 

The aim of this work is to provide a means whereby the definition of the local 
search operator (LSO) used within a MA can be varied over time, and then to 
examine whether evolutionary processes can be used to control that variation, 
so that a beneficial adaptation takes place. Accomplishing this aim requires 
the provision of five major components, namely: 

0 A means of representing a LSO in a form that can be processed by an 
evolutionary algorithm 
Intimately related to this, a set of variation operators, such as recombina- 
tion and mutation that can be applied to the LSO representation, and a 
means for initialising a population of LSO operators. 

0 A means of assigning fitness to the LSO population members 
A choice of population structures and sizes, along with selection and re- 
placement methods for managing the LSO population 
A set of experiments, problems and measurements designed to permit eval- 
uation and analysis of the behaviour of the system. 

The representation chosen for the LSOs is a tuple <Pivot-Rule, Depth, 
Pairing, Move, Fitness>. 

The first two elements in the tuple have been described above and can 
be easily mapped onto an integer or cardinal representation as desired, and 
manipulated by standard genetic operators. 

The element Pairing effectively co-ordinates the evolution of the two pop- 
ulations. When a candidate solution is to be evaluated, a member of the LSO 
population is chosen to operate on it, hopefully yielding improvements. The 
fitness of the candidate solution is thus affected by the choice of LSO to op- 
erate on it, and the fitness assigned to the LSO is in turn affected by the 
candidate solution to which it is applied. 

Values for Pairing are taken from the set {linked, fitness-based, random}. 
The purpose of this element is to allow the system to be varied between the 
extremes of a fully unlinked system, in which although still interacting the 
two populations evolve separately, and a fully linked system in which the LS 
operators can be considered to be self-adapted. The different values have the 
following effects: 

For a linked pairing strategy, the LSOs can be considered to be extra 
genetic material which is inherited and varied along with the problem 
representation. Thus if the kth candidate solution is created from parents i 
and j ,  then a LSO is created by the actions of recombination and mutation 
on members i and j of the current LSO population. This new LSO is used 
to evaluate the new candidate solution and becomes the kth member of 
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the next LSO population. Note that this assumes the two population are 
the same size. The fitness is assigned to the new LSO is immaterial since 
selection to act as parents happens via association with good members of 
the solution population. 
For a fitness-based pairing strategy, when a candidate solution requires 
evaluation, a LSO is created and put into the next LSO population as 
above. However the two LSOs which acts as parents for recombination are 
now chosen using a standard selection mechanism acting on those members 
of the current LSO population which do not have Pai r ing  = l inked .  A 
number of methods can be used to define the fitness of an LSO. 
For a random pairing strategy, the same process occurs as for the fitness- 
based method, except that parents are selected randomly from the un- 
linked members of the LSO population, without regard to their fitness. 

Although the long-term goal is to examine a LLmixed-economy" of par- 
ing strategies, for the purposes of this paper the system is restricted to 
the situation where the whole population uses the same value, initially 
Pai r ing  = l inked .  

The representation chosen for the move operators was as condition:action 
pairs, which specify a pattern to be looked for in the problem representation, 
and a different pattern it should be changed to. Although this representation 
at  first appears very simple, it has the potential to represent highly complex 
moves via the use of symbols to denote not only single/multiple wildcard 
characters (in a manner similar to that used for regular expressions in Unix) 
but also the specifications of repetitions and iterations. Further, permitting 
the use of different length patterns in the condition and action parts of the rule 
gives scope for cut and splice operators working on variable length solutions. 

In themselves, the degrees of freedom afforded by the five components 
listed above provide basis for a major body of research, and the framework 
described above is intended to permit a full exploration of these issues which 
is currently underway [37, 361. 

This paper presents results from a simplified instantiation of this frame- 
work, focusing on the benefits of knowledge discovery and re-use. In order to 
achieve this focus, some of the adaptive capabilities are restricted, i.e., the 
LSOs always use one of greedy or steepest ascent, a single improvement step, 
and full linkage. These choices are coded into the LSO chromosomes at ini- 
tialisation, and variation operator are not used on them. This restriction to 
what are effectively self-adaptive systems provides a means of dealing with 
the credit assignment and population management issues noted above 

The COMA system is also restricted to considering only rules where the 
condition and action patterns are of equal length and are composed of values 
taken from the set of permissible allele values of the problem representation, 
augmented by a "don't care" symbol # which is allowed to appear in the 
condition part of the rule but not the action, although this could be interpreted 
as "leave alone". The neighbourhood of a point i then consists of all those 
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points where the substring denoted by condition appears in the representation 
of i and is replaced by the action. The neighbourhood of i therefore potentially 
includes i itself, for example by means of a rule with identical condition and 
action parts. 

To give an example, if a solution is represented by the binary string 
1100111000 and a rule by 1#0:111, then this rule matches the first, second, 
sixth and seventh positions, and the neighbourhood is the set (1110111000, 
11111111000,1100111100,1100111110). In practice a random permutation is 
used to specify the order in which the neighbours are evaluated, so as not 
to introduce positional bias into the local search when greedy ascent is used. 
Note that in this work the string is not considered as toroidal (although this 
will be considered in later work). 

In practice, each rule was implemented as two 16 bit strings, and was 
augmented by a value rule-length which detailed the number of positions in 
the pattern string to consider. This permits not only the examination of the 
effects of different fixed rule sizes, but also the ability to adapt via the action of 
mutation operators on this value. This representation for the rules means that 
"standard" genetic operators (uniform11 point crossover, point mutation) can 
be used to vary this part of the LSO chromosome. 

2.2 Initial Results 

The results of initial investigations using this system were reported in [37]. 
The test suite was problems made out of a number of sub-functions either 
interleaved or concatenated. Two different classes of sub-function were used 
which posed either entropic (Royal Road) or fitness (Deceptive) barriers to 
the discovery of the global optimum. Greedy versions of the COMA (GComa) 
algorithm were tested against the GA,MA, GRand algorithms described be- 
low, and it was shown that a version of the system with adaptive rule lengths 
was able to perform better than these three, and comparably with variants of 
GComa with optimal fixed rule-lengths for the different problems. Analysis 
showed that these algorithms discovered and used problem specific informa- 
tion (such as optimal patterns for different sub-problems). 

Subsequent work [36] has shown them to be highly scalable with respect to 
problem length on problems where there are repeated patterns in the regions 
of the search space corresponding to high quality solutions. This behaviour 
arises from the discovery and re-use of knowledge about these patterns. It 
was also shown that in the absence of such patterns, the systems still displays 
better performance (both in terms of mean best fitness and the reliability of 
locating the global optimum). In this case the improved performance arose 
from the maintenance of a diverse set of move operators, and hence from the 
examination of multiple search landscapes, which provides a better means of 
escaping local optima. 
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3 Related Work 

The COMA system can be related to a number of different branches of re- 
search, all of which offer different perspectives and means of analysing it's be- 
haviour. These range from MultiMemetic Algorithms and the Self-Adaptation 
of search strategies, through co-evolutionary, learning and developmental sys- 
tems, to the evolutionary search for generalised rules as per Learning Classifier 
Systems. Space precludes a full discussion of each of these, so the more im- 
portant are briefly outlined below. 

Although the authors are not aware of other algorithms in which the LSOs 
used by an MA are adapted in this fashion, there are other examples of the use 
of multiple LS operators within evolutionary systems. Krasnogor and Smith 
[26] describe a "MultiMemetic Algorithm", in which a gene is added to the 
end of each chromosome indicating which of a fixed set of static LS operators 
("memes") should be applied to the individual solution. Variation is provided 
during the mutation process, by randomly resetting this value with a low 
probability. They report that their systems are able to adapt to use the best 
meme available for different instances of TSP. 

Krasnogor and Gustafson have extended this and proposed a grammar for 
"Self-Generating MAS" which specifies, for instance, where in the evolutionary 
cycle local search takes place [22]. Noting that each meme potentially defines 
a different neighbourhood function for the local search part of the MA, we can 
also see an obvious analogy to the Variable Neighbourhood Search algorithm 
[49], where a heuristic is used to control the order of application of a set of 
local searchers (using different, fixed, neighbourhood structures) to a single 
improving solution. The difference here lies in the population based nature of 
COMA, so that not only do we have multiple candidate solutions, but also 
multiple adaptive neighbourhood functions in the memes. 

As noted above, if the populations are of the same size, and are con- 
sidered to be linked, then this instantiation of the COMA framework can 
be considered as a type of Self Adaptation. The use of the intrinsic evolu- 
tionary processes to adapt step sizes governing the mutation of real-valued 
variables has long been used in Evolution Strategies [35], and Evolutionary 
Programming [ll]. Similar approaches have been used to self-adapt mutation 
probabilities [2, 391 and recombination operators [34] in genetic algorithms 
as well as complex generating operators which combined both mutation and 
recombination [38]. This body of work contains many useful results concern- 
ing the conditions necessary for strategy adaptation, which could be used to 
guide implementations of COMA. 

If the two populations are not linked, then COMA is a co-operative coevo- 
lutionary system, where the fitness of the members of the LSO population is 
assigned as some function of the relative improvement they cause in the "so- 
lution" population. Paredis has examined the co-evolution of solutions and 
their representations [31], and Potter and DeJong have also used co-operative 
co-evolution of partial solutions in situations where an obvious problem de- 
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composition was available [33], both with good reported results. Bull [5] con- 
ducted a series of more general studies on co-operative co-evolution using 
Kauffmann's static NKC model [17]. In [7] he examined the evolution of link- 
age flags in co-evolving "symbiotic" systems and showed that the strategies 
which emerge depend heavily on the extent to which the two populations 
affect each others fitness landscape, with linkage preferred in highly interde- 
pendent situations. He also examined the effect of different pairing strategies 
[6], with mixed results, although the NKC systems he investigated used fixed 
interaction patterns, whereas in the systems used here are more dynamic in 
nature. 

There has also been a large body of research into competitive-coevolution, 
(an overview can be seen in [32]) whereby the fitnesses assigned to the two 
populations are directly related to how well individuals perform "against" the 
other population, what has been termed "predator-prey" interactions. 

In both the co-operative and competitive co-evolutionary work cited above, 
the different populations only affect each other's perceived fitness, unlike the 
COMA framework where the LSO population can directly affect the geno- 
types within the solution population. A major source of debate and research 
within the community has focused around the perception that this phase of 
improvement by LS can be viewed as a kind of lifetime learning. This has 
lead naturally to speculation and research into whether the modified pheno- 
type which is the outcome of the improvement process should be written back 
into the genotype (Lamarkian Learning) or not (Baldwinian Learning). Note 
that although the pseudo code of the local search, and the discussion above 
assumes Lamarkian learning, this is not a prerequisite of the framework. How- 
ever, even if a Baldwinian approach was used, the principal difference between 
the COMA approach and the co-evolutionary systems above lies in the fact 
that there is a selection phase within the local search, that is to say that if 
all of the neighbours of a point defined by the LSO rule are of inferior fitness, 
then the point is retained unchanged within the population. 

If one was to discard this criterion and simply apply the rule (possibly 
iteratively), the system could be viewed as a type of "developmental learning" 
akin to the studies in Genetic Code e.g. [16] and the "Developmental Genetic 
Programming" of Keller and Banzhaf [18, 191 

Finally, and perhaps most importantly, it should be considered that if a 
rule has an improving effect on different parts of a solution chromosome over 
as number of generations, then the evolution of rules can be seen as learning 
generalisations about patterns within the problem representation, and hence 
the solution space. This point of view is akin to that of Learning Classifier Sys- 
tems. For the case of unlinked fitness-based selection of LS operators, insight 
from this field can be used to guide the credit assignment process. 

It  is tempting to draw a further generalisation which would see the con- 
ditions as representing schema and the actions as representing higher fitness 
(and possibly higher order) alternatives, but this is a more dubious analogy 
as the conditions are allowed to match anywhere within the string, i.e. even a 
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fully specified rule of length 1 matches L - 1 schema within a string of length 

4 Dill's HP model of Protein Structure Prediction 

The problem of Protein Structure Prediction (PSP), i.e. the prediction of the 
"native" three-dimensional form of a protein from knowledge of the sequence 
of its constituent amino-acid residues is one of the foremost challenges facing 
computational biology. Current approaches to PSP can be divided into three 
classes; comparative modelling, fold recognition, and ab initio methods. The 
first two explicitly search the ever-growing databases of known structures 
for similar sequences (homologues) and sub-sequences. In contrast, the third 
approach represents the "last chance" scenario of trying to predict the tertiary 
structure by minimising a free energy model of the structure. Approaches that 
make use of existing knowledge currently represent the state of the art (and 
are likely to remain so), however ab initio approaches are important for two 
main reasons. The first of these relates to the situation where a sequence does 
not correspond to any known fold. The second, and more fundamental reason 
is that the development of true ab initio methods can give greater insight into 
the relationship between different fold families, and to the dynamical process 
of folding. 

Current approaches to ab initio PSP can be divided according to two 
criteria, namely the nature of the choice of energy function, and the number 
of degrees of freedom in the conformation, as exemplified by the granularity 
(all atom models vs. virtual atom) and locational constraints (e.g. lattice 
based models vs. off-lattice models). Although most lattice based models are 
physically unrealistic, they have proved a useful tool for exploring issues within 
the field. Some of the more complex models, e.g. SICHO [21] have been shown 
to be capable of accurate predictions of the conformations of simple proteins, 
especially when used in conjunction with techniques for subsequent refinement 
to an all-atom model [lo]. 

The HP model for PSP [8] provides an estimate of the free energy of a fold 
of a given instance, based on the summation of pair-wise interactions between 
the amino acid residues. It  is a "virtual residue" model, that is to say that 
each amino acid residue is modelled by a single atom, whose properties are 
reduced to a quality of being hydrophobic or hydrophilic, thus simplifying the 
energy calculations still further. Hydrophobic residues avoid interacting with 
the water molecules of the solvent, whereas hydrophilic (or polar) residues are 
able to form hydrogen bonds with the water molecules. Thus, polar residues 
are often found at  the surface of the protein and hydrophobic residues are 
normally found buried in the inner part, or core, of the protein. The HP 
model captures this behaviour, despite its extreme simplicity. In the model, 
a sequence of 1 amino acid residues is represented by s E {H, P ) ~ ,  where H 
represents a hydrophobic amino acid and P represents a hydrophilic one. The 
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space of valid conformations is restricted to self-avoiding paths on a selected 
lattice, with each amino acid located on a vertex. The torsion angles of the 
peptide bonds between residues are thus restricted by a finite set determined 
by the shape of the lattice. The first amino acid of the sequence is located on 
a randomly selected vertex, and an orientation is assumed for it. From there, 
according to the orientation, the chain grows, placing every subsequent amino 
acid either ahead of the previous one, a t  90 degrees to the left or at  90 degrees 
to the right (assuming a square lattice). Hydrophobic units that are adjacent 
in the lattice but non-adjacent in the sequence add a constant negative factor 
to the energy level. All other interactions are ignored. In some cases, to make 
feasible conformations more attractive, the infeasible folds suffer penalisation 
in the form of adding a substantial positive factor to their energy levels. In 
this way, the model reflects the tendency of hydrophobic amino acids to form 
a hydrophobic core. Despite the apparent simplicity of this model, the search 
for the global energy minimum in the space of possible conformations of a 
given sequence has been shown to be NP complete on various lattices [4]. 

Evolutionary algorithms (in particular Genetic Algorithms) have been ap- 
plied, with some success, to the PSP using the HP and all-atom off-lattice 
models, by a number of authors since [41, 401. In [23] the effect of differ- 
ent encoding schemes and constraint management techniques were examined, 
and a modified fitness function was developed which extends the basic HP 
model to permit the allocation of reward for non-adjacent pairs of Hydrophilic 
residues. More recent work has demonstrated the use of self-adaptation within 
a memetic algorithm to permit the selection from amongst a fixed set of 
predetermined local search strategies, using different move operators such as 
local "stretches", reflections etc [25, 301. The work described here extends 
this by not relying on a fixed set of move operators encoding domain-specific 
knowledge, but rather evolving a set of move operators, thus learning that 
domain-specific knowledge. 

5 Experimental Results 

5.1 The Test Suite and Experimental set-up 

In order to investigate the value of this approach, 20 instances and parameter 
settings from [24], were used, which use a two-dimensional triangular lattice. 
These instances are detailed in Table 1. 

The representation used is a relative encoding. In this, where the alleles 
come from the set {leftback, leftforward, front, rightforward, rightback) and 
represent the direction of the next move on the lattice from the point of view of 
the head of the growing chain. This is an alternative to the absolute encoding 
used by Unger and Moult [41], where alleles specify directions to move relative 
to an external frame of reference. Results presented in [23] have suggested that 
this relative encoding is preferable, not least because the absence of a "back" 
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Table 1. HP instances used in these experiments 

Sequence 1 Length 
HHPHPHPHPHPH 112 
HHPPHPHPHPHPHP 
HHPPHPPHPHPHPH 
HHPHPPHPPHPPHPPH 
HHPPHPPHPHPHPPHP 
HHPPHPPHPPHPPHPPH 
HHPHPHPHPHPHPHPHH 
HHPPHPPHPHPHPPHPHPHH 
HHPHPHPHPHPPHPPHPPHH 
HHPPHPPHPHPPHPHPPHPHH 
HHPHPPHPPHPHPHPPHPPHH 
HHPPHPHPHPPHPHPPHPPHH 
HHPPHPPHPHPHPPHPPHPPHH 
HHHPHPHPHPHPHPHPHPHPHHH 
HHPPHPPHPPHPPHPPHPPHPPHH 
HHHPHPHPPHPHPHPHPHPHPHHH 
HHHPHPHPHPPHPHPHPHPHPHHH 
HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 
HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 

Optimum 
11 
11 
11 
11 
11 
11 
17 
17 
17 
17 
17 
17 
17 
25 
17 
25 
25 
25 
25 
29 

move means that all conformations that can be represented are one-step self- 
avoiding. 

The generational genetic algorithm used (500+500) selection. One Point 
Crossover was applied with probability 0.8 and a Double Mutation was made 
with probability 0.3. Viewed from an external frame of reference the mutation 
operator has the effect of causing the mutation point to act as a pivot, about 
which one half of the structure is rotated through some multiple of 7r/6 (for 
a triangular lattice). Mutation was applied to the rules with a probability of 
0.0625 of selecting a new allele value in each locus (the inverse of the maximum 
rule length). 

For each combination of algorithm and instance, 25 runs were made, each 
run continued until the global optimum was reached, subject to  a maximum 
of 1 million evaluations. Note that since one iteration of a local search may 
involve several evaluations, this allows more generations to the GA, i.e. al- 
gorithms are compared strictly on the basis of the number of calls to the 
evaluation function. The algorithms used (and the abbreviations which will 
be used to  refer to  them hereafter) are as follows: 

A GA i.e. with no use of Local Search (GA). 
A simple MA using a bit-flipping neighbourhood, with one iteration of 
greedy ascent (SMA) . 
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0 Versions of COMA using a randomly created rule in each application, i.e. 
with the learning disabled. One iteration of steepest (SRand) or greedy 
(GRand) ascent local search was applied. 
Adaptive versions of COMA with the two pivot rules (SComa and GComa). 
In these the rule lengths are randomly initialised in the range [1,16]. During 
mutation, a value of +/ - 1 is randomly chosen and added with probability 
0.0625. 

These results are analysed according to three different performance crite- 
ria: firstly the Success Rate (the number of runs in which the global optimum 
was found), secondly in terms of efficiency, as measured by the average num- 
ber of evaluations to solution (AES) in those successful runs, and thirdly in 
terms of the mean performance measured in terms of the best value found in 
the maximum time do ted ,  averaged over 25 runs. 

5.2 Success Rate 

Table 2 shows the Success Rate for each algorithm itemised by instance and 
in total. Using a non-parametric Friedman's test for k-related variables shows 
that the differences in success rate between algorithms is significant, and a 
series of paired t-tests confirms that the results for the SComa algorithm are 
significantly better than any of the others with over 95% confidence. This 
difference is particularly noticeable on the longer instances. Of the other re- 
sults, the simple MA (SMA) performs well on the shorter instances, and the 
GComa and GRand results are surprisingly similar. This may well be due 
to the noise inherent in the greedy ascent mechanism making it hard for the 
credit assignment mechanism to function properly as was previously noted in 
[36]. Significantly, whatever the form of the local search phase, all but one of 
the Memetic Algorithms perform much better than the simple GA. The least 
reliable algorithm was SRand, and possible reasons for this will be discussed 
further in the following section. 

5.3 Efficiency 

Figure 1 shows the Average Evaluations to Solution (i.e., the globally optimal 
conformation) for the runs in which algorithms were successful. Immediately 
we can see that even when it is successful, the SRand algorithm is far slower 
than all of the other algorithms. Like the more successful GRand algorithm, it 
is using a randomly created rule to define the neighbourhood for each solution 
in each generation. However, unlike the GRand algorithm it is searching the 
whole of each neighbourhood, and the increase in the AES values suggests 
that the neighbourhoods are generally quite large. This suggests the frequent 
use of short, low rules of low specificity, i.e. with lots of #'s. It  is possible that 
left to  run for longer, the Success Rate of the SRand algorithm would have 
been improved. 
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Table 2. Number of runs (out of 25) in which the minimum energy conformation 
was identified 

nstancf 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Total 

algorithm 

Of the others, the GA is always fastest, followed by the SMA. The rest 
of the picture is less clear, although the greedy versions are usually faster 
than their steepest ascent counterparts. A two way Analysis of Variance, with 
instance and algorithm as factors, shows that both are significant, and post- 
hoc analysis using the Least-Significant Difference test shows that the ordering 
GA < SMA < {GRand,GComa) < SComa < SRand is significant with 95% 
confidence. If we do not assume equal variance, Tamhane's T2 test shows that 
the GA is significantly faster, but under these more cautious assumptions the 
SMA is only significantly faster than GRand with 93% confidence and is not 
significantly faster than GComa. Similarly GRand and SComa are no longer 
significantly different in speed of finding solutions. 

5.4 Mean Best Fitness 

As was evidenced in Table 2 it is not hard to find solutions for the shorter 
instances. Therefore when comparing performance on the basis of the quality 
of the best solutions found, i.e., mean best fitness (MBF), only results for 
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5 10 
Instance 

Fig. 1. Average Evaluations to Solution (when found) by algorithm. 

the longer and harder instances 14-20 have been considered. Figure 2 shows 
these results graphically for each algorithm, sorted by instance. From these it 
is clear that the SComa reaches consistently higher values and with a smaller 
variance in performance than the others, and that the SRand algorithm is 
correspondingly worse. 

In order to investigate the statistical significance of these results, a two- 
way ANOVA test was performed on the values for the best solution found in 
each run, with instance number and algorithm as the factors. This confirmed 
the significance of the algorithm in determining the performance, and so two 
sets of post-hoc tests were performed to analyse the differences between pairs 
of algorithms. These were Least-Significant Difference, and Tamhane's T2 test 
(the latter is more conservative as it does not make any assumptions about 
the samples having equal variances). The results of these tests are summarised 
in Table 3. An entry r or R indicates that the algorithm indicated by the row 
index was significantly better than the one indicated by the column index, 
with 95% confidence according to the LSD or T2 test respectively. Similarly 
an entry of c or C indicates that the column algorithm is better than the row 
algorithm with 95% confidence according to the LSD or T2 test respectively. 
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17 
Instance 

Fig. 2. Mean and std deviation of best values found for instances 14-20, analysed 
by algorithm 

Table 3. Statistical significance of pairwise comparisons between algorithms on 
basis of best values found. - indicates no significant difference. r[c] denotes algorithm 
indicated by row[column] is better with 95% confidence. Lower triangle (lower case) 
is for LSD test, upper quarter (upper case) is for Tamhane's T2 test. 

GComa 
SRand C C 
GRand c r 
SMA c r r r - R 

I - 

AlgorithmlSCOMX GComa SRand GRand SMA GA 

6 Restricting the Search to Feasible Solutions 

In [9] results are reported from a detailed study of the fitness landscape of HP 
model proteins which suggests that the feasible regions of the search space 
are more highly connected than has previously been thought, and that corre- 
spondingly there may be performance advantages arising from a restriction of 
the search process to only considering feasible solutions. 
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In order to investigate this, the crossover and mutation operators were 
modified so that they only produced feasible offspring. This process is less 
lengthy than it would first appear since in practice infeasible offspring can 
almost always be quickly identified during the path growth process and the 
evaluation stopped. However no attempt was made to restrict the initial pop- 
ulation to feasible solutions, as the infeasible ones are quickly weeded out by 
selection, and preliminary experimentation revealed that creating a feasible 
initial population by random generation of values takes an extremely long 
time. 

The mutation operator still applied one double mutation - a random per- 
mutation of the loci was .generated, and for each of these a random permuta- 
tion of the possible changes was created. Offspring were produced and tested 
in this order until a feasible one was created. The crossover operator was 
modified similarly: if the offspring produced using a given crossover point was 
infeasible the operator next tested all of the different possible orientation of 
the two substrings by varying the allele value in the locus corresponding to 
that crossover point, before moving on to trying the next. 

6.1 Success Rate 

Table 4 shows the results from running the GA, SMA and SComa algorithms 
with the modified crossover and mutation operators, alongside those for the 
unmodified versions. As can be seen (and statistical testing confirms) there 
is far better reliability for the GA-F and SMA-F algorithms than their unre- 
stricted counterparts. The results for the SComa are less clear - if anything 
the performance is better for short instances and worse for long ones, but the 
difference is not statistically significant. 

6.2 Efficiency 

Figure 3 shows the efficiency (AES) comparisons for the same set of algo- 
rithms, again restricted to successful runs. As when comparing Success Rates, 
there is little difference between the SComa and SComa-F algorithms, but 
under this metric the performance of the GA and GA-F algorithms are not 
significantly different, i.e., the GA is still very efficient on those runs when it 
does find the optimum, and with the restricted operators it does so far more 
often. In contrast to this, the SMA algorithm exhibits much greater AES 
values when restricted to feasible solutions, despite being more successful. 

6.3 Mean Best Fitness 

As evidenced in Table 4, restricting the search to feasible solutions makes it 
even easier to find solutions for the shorter instances. Therefore when com- 
paring performance on the basis of the quality of the best solutions found, 
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Table 4. Effect on Success Rate of restricting search to feasible solutions. Results for 
GA, SMA and SComa algorithms are shown alongside those using modified crossover 
and mutation (indicated by -F) 

nstanct 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

total 

algorit 

i.e., mean best fitness (MBF), only results for the longer and harder instances 
14-20 have been considered again. Figure 4 shows these results graphically for 
each algorithm, sorted by instance. 

In order to investigate the statistical significance of these results, a two- 
way ANOVA test was performed on the values for the best solution found in 
each run, with instance number and algorithm as the factors. This confirmed 
the significance of the algorithm in determining the performance, and so two 
sets of post-hoc tests were performed to analyse the differences between pairs 
of algorithms. These were Least-Significant Difference, and Tamhane's T2 test 
(the latter is more conservative as it does not make any assumptions about 
the samples having equal variances). The results of these tests are summarised 
in Table 5. An entry r or R indicates that the algorithm indicated by the row 
index was significantly better than the one indicated by the column index, 
with 95% confidence according to the LSD or T2 test respectively. Similarly 
an entry of c or C indicates that the column algorithm is better than the row 
algorithm with 95% confidence according to the LSD or T2 test respectively. 

In general it is plain that the rank order is GA < GA-F < SMA< SMA-F 
< SComa-F < SComa. These differences are generally statistically significant 
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5 10 
Instance 

Fig. 3. Effect on efficiency of restricting search to feasible solutions. Plot shows 
Average Evaluations to Solution for successful runs of GA, SMA, SComa and their 
restricted counterparts (indicated by -F). 

according to both tests, although it should be noted that this depends to some 
extent on the choice of instances considered. If we include all instances, then 
the general success on the shorter ones makes the differences less significant, 
whereas if we restrict ourselves to only considering a few harder instances, the 
significance increases. 

Table 5. Statistical significance of pairwise comparisons between algorithms on 
basis of best values found. - indicates no significant difference. r[c] denotes algorithm 
indicated by row[column] is better with 95% confidence. Lower triangle (lower case) 
is for LSD test, upper quarter (upper case) is for Tamhane's T2 test. 

GA 
GA-F 
SMA 
SMA-F 
SComa 
SComa-F 
Algorithm 

C C  C C C 
r - - C C C 
r - - C C C 
r r r C 
r r r r 
r r r 

GA GA-F SMA SMA-F SComa SComa-F 
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Fig. 4. Mean and std deviation of best values found for instances 14-20, analysed 
by algorithm 

7 Analysis of LSO Evolution 

In order to gain a greater understanding of the behaviour of the SComa al- 
gorithm, a number of test runs were made in which the contents of the LSO 
population were output to file at  regular intervals. 

Examination of the form of the evolving LSOs showed that there was a 
strong tendency towards short rules of the form ## + l r  or ## + 1L. 
Here 1 = leftback, r = rightback, and L = leftforward relative to the previous 
direction of growth. Both of these rules act to bring residues i and i + 2 into 
contact, via causing a torsion angle of 1716 at  residue i + 1. 

Given that the system is evolving conformations in a two-dimensional 
plane, these patterns these could possibly be thought of as the two-dimensional 
equivalent of representing a single turn of an alpha helix. Experimentation on a 
square two-dimensional lattice showed that the rules which evolved on a num- 
ber of instances tended to have length three and be of the form ### + 111 
or ### + rrr which is the shortest path that can be made bringing two 
residues into contact. 
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The use of the word "tended" should be noted here: in most cases the rule- 
set continued to contain a number of different rules of varying lengths. It has 
been argued elsewhere [36] that in addition to the extra scalability attained 
by identifying and re-applying regular structural motifs, the presence of a 
diverse, evolving rule-set means that the neighbourhood structure defining 
which points around the current population are examined, is continuously 
changing. Thus, even if the population is converged to a single point, which 
is locally optimal according to most neighbourhood structures, eventually a 
rule may evolve for which the neighbourhood of that point contains a fitter 
solution. This can be thought of as continually testing new search landscapes 
to look for "escape routes" from local optima. 

Looking back to the results for the GRand algorithm, in which the rules 
defining neighbourhoods are created at  random, this "changing landscape" 
effect is noticeable in the superior success rates to the SMA. The fact that the 
SComa algorithm is the best performer according to both Success Rate and 
MBF metrics points to both modes of operation having a positive effect. 

8 Discussion and Conclusions 

As can be seen from the results section above, the S-Coma algorithm provides 
better performance according to Success Rate and Mean Best Fitness met- 
r i c ~  than the GA, MA or a comparable system with the rule-learning turned 
off (SRand, GRand). These results are especially noticeable for the longer 
instances where the COMA system is able to learn and then exploit regulari- 
ties within energetically favourable conformations, corresponding to secondary 
structural motifs. This happens at  some expense of speed - the AES results 
show that the addition of any local search to a GA slows down the rate of 
discovery of globally optimal solutions, and that searching the whole neigh- 
bourhood (steepest ascent) rather than stopping once a better neighbour is 
found (greedy ascent) also imposes a cost. Nevertheless it must be emphasised 
that the results for the GA and the greedy algorithms come from many fewer 
successful runs. In other words, when the genetic search is able to find the 
optimum, it does so quickly, but it is prone to premature convergence. 

Restricting the crossover and mutation operators to producing feasible so- 
lutions has mixed results. The Success Rate and Mean Best Fitness are much 
improved for the GA and SMA, and for the SComa on the shorter problems 
but if anything is slightly worse for SComa on the long instances. It  was sug- 
gested in the previous section that the SComa had two modes of operation, 
re-use of secondary structural motifs, and continuously changing neighbour- 
hoods. These results suggests that possibly the former mode is enhanced by 
the restriction to feasible solutions, but that the latter, which permits escape 
from local optima on the longer instances, is inhibited. Clearly this warrants 
further attention. Considering the efficiency with which solutions are found, 
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this is not significantly changed for the GA or SComa, but is much worse for 
the SMA algorithm. 

There is a clear place for the use of expert knowledge in the design of 
search algorithms, and its encapsulation in the form of carefully designed 
move operators. Nevertheless the approach outlined in this paper represents 
a highly promising prospect given its ability to discover and explicitly repre- 
sent structural motifs. As an example, the reliability results reported above 
are better, especially for the longer instances, than those reported elsewhere 
using a self-adaptive multi-memetic algorithm, with the meme set especially 
designed after a comprehensive study of the literature and extensive experi- 
mentation [24]. This suggests that there is a clear role for adaptation of some 
kind within the specification of memes, rather than using a fixed set. The 
results presented here and elsewhere suggest that evolution may well be a 
suitable way of achieving that adaptation. 

One obvious path for future work would be to examine the effects of seed- 
ing the rule population with expert-designed rules. Another, perhaps more 
pressing path is to examine the behaviour on more complex lattices and for 
different energy functions. As indicated above, these results are only the begin- 
ning of a process of investigation, clearly more analysis of the evolving rule-sets 
is needed, as well as a thorough investigation of the other algorithmic possi- 
bilities. It seems likely however that this represents a promising direction for 
the future development of scalable optimisation techniques which may yield 
new insights into the energy landscapes of the HP and other lattice models of 
proteins. 
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Summary 

Terminal assignment is an NP-hard problem in communications networks. It 
involves assigning a set of terminals to a set of concentrators with a cost for 
each assignment. The objective is to minimize the total cost of the assignment 
and the number of concentrators used. A number of heuristic algorithms, in- 
cluding genetic algorithms, have been proposed for solving this problem. This 
chapter studies several evolutionary and hybrid approaches to terminal as- 
signment. Firstly, a novel chromosome representation scheme based on con- 
centrators is proposed. This representation compares favourably against the 
existing terminal-based representation, which scales poorly for large problems. 
Extensive experiments have been carried out. The results show that our evo- 
lutionary algorithms using the concentrator-based representation outperform 
significantly existing genetic algorithms using the terminal-based representa- 
tion. Secondly, a number of new search operators used in our algorithms are 
also investigated empirically in order to evaluate their effectiveness for the 
terminal assignment problem. Finally, different combinations of evolutionary 
algorithms and local search are studied in this chapter. Both Lamarckian evo- 
lution and Baldwin effect have been examined in combining an evolutionary 
algorithm and local search. Our results show that hybrid algorithms perform 
better than either evolutionary algorithms or local search. However, there is 
no significant difference between Lamarckian-evolution-style combination and 
Baldwin-effect-style combination. 
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1 Introduction 

Evolutionary algorithms (EAs) and their hybridisation with local search have 
been widely studied and applied to solve many real world problems. Com- 
munications network design is a typical combinatorial optimization problem 
for which no efficient algorithm exists unless P=NP. A good design of com- 
munications networks requires certain constraints to be met and at  the same 
time, one or more objectives to be optimized. The algorithms for designing 
communications networks must have good scalability and be able to deal with 
large-scale applications with a large number of network nodes. 

The optimal design of communications networks considering both cost and 
capacity has been investigated in the literature using different heuristic algo- 
rithms, such as tabu search, simulated annealing and greedy search. Recently, 
EAs have been shown to perform well in communications network design, es- 
pecially for the terminal assignment problem, which has been shown to be 
N P  hard [ l l ] .  However, the performance of such EAs is still unsatisfactory for 
large problems. 

This chapter studies novel hybrid EAs. Unlike previous EAs which used 
a terminal-based chromosome representation, a concentrator-based evolution- 
ary approach for solving the terminal assignment problem is proposed in this 
chapter. This evolutionary approach uses a novel concentrator-based repre- 
sentation and associated search operators. It is hybridised with local search 
methods to form hybrid EAs. The concentrator-based representation is pro- 
posed to overcome the difficulties encountered by the terminal-based repre- 
sentation previously used by other evolutionary approaches. Attempts are 
also made to design appropriate search operators that work well with the 
concentrator-based representation. In addition to minimising costs, we also 
consider reducing the number of concentrators used. The objective of min- 
imising the total cost is explicitly dealt with by the fitness function during 
the evolution. Minimising the total number of concentrators used is considered 
as an implicit constraint for the cost objective, or a second objective encoded 
in the fitness function. Hence, there are two problem formulations for the 
terminal assignment problem, i.e., single-objective and multi-objective opti- 
misation. In this chapter, both formulations will be studied using the hybrid 
EAs and the concentrator-based representation. 

In our hybrid EAs, two methods are considered for hybridization with local 
search, i.e., Lamarckian evolution and Baldwin effect. Lamarckian evolution 
forces the genotype to reflect the result of local improvement. The improved 
individual is placed back into the population and allowed to compete for repro- 
ductive opportunities [lo]. The Baldwin Effect allows an individual's fitness 
(phenotype) to be determined after local search. Similar to natural evolution 
(Darwinian evolution), the result of the improvement is not reflected in the 
genetic structure (genotype) of the individual. It only changes the individual's 
chance of survival [lo]. Baldwin effect as used in EAs may introduce unde- 
sirable offspring after crossover. When crossing two individuals, which after 
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local search converge to the same local basin, it is likely that the offspring 
may be similar to the parents and will converge to the same basin. To avoid 
this problem, the use of memory is considered for both Lamarckian evolution 
and Baldwin effect in the work presented here. 

The concentrator-based evolutionary approach and its hybrid evolution are 
fully tested and examined by a series of computational experiments designed 
for the terminal assignment problem. The results have shown that the EA's 
performance was better with concentrator-based representation than with the 
terminal-based representation. The generation of a feasible initial population 
is simpler and more scalable in the concentrator-based representation even 
for a large number of terminals. The concentrator-based hybrid EAs outper- 
formed EAs without local search. However, there is no significant difference 
between two different approaches to hybridise EAs with local search, i.e., 
Lamarckian evolution and Baldwin effect. 

The remainder of this chapter is organised as follows. The next section 
introduces the terminal assignment problem and the previous work in solving 
this problem. Section 3 presents our concentrator-based representation and 
the search operators designed for it. A set of experiments are carried out to 
test the performance of the representation and operators and to compare them 
with the traditional terminal-based EAs. Concentrator-based hybrid EAs that 
integrate Lamarckian evolution or Baldwin effect are studied in Section 4. 
Lamarckian-style and Baldwin-style evolution with and without memory are 
investigated using the terminal assignment problems with single-objective or 
multi-objectives. Section 5 concludes this chapter with a brief summary of our 
work and some future work. 

2 The Terminal Assignment Problem 

2.1 Problem Representation 

In this chapter, we will focus on the two-terminal network (also called source- 
link network) design. The work, however, can also contribute to the design of 
other kinds of networks, i.e., all-terminal networks. In the two-terminal net- 
work, a set of pre-specified source nodes communicate with the pre-specified 
sink nodes through non-specified paths. This can be simplified as a terminal 
assignment problem that concerns the assignment of certain terminals to some 
concentrators. This assignment should keep the total cost minimum. The cost 
may include material cost of cabling, installation cost and connection or com- 
munication cost between the concentrators and terminals. The cost may be 
fixed or varied per connection depending on the real situation. In general, it 
can be summarized as a weight that is used as the complete cost for each 
connection [2], [3], and [14]. 

In addition to minimizing the total cost, the terminal assignment problem 
should take the concentrators' capacity limit into account by satisfying two 
constraints: 
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1. Every terminal is assigned to one and only one concentrator. 
2. The sum of weights of connections between terminals and a concentrator 

should not exceed the capacity of that concentrator. 

Single-objective Optimisation Formulation 

Given 

K :  number of concentrators, 
T: number of terminals, 
Ci: Capacity of concentrator i = 1,2, .  . . , K ,  
dij: weight of the connection between concentrator i and terminal j ,  where 

i =  l , 2  ,..., K ,  j = 1 , 2  ,... T,  

the single objective optimisation problem of terminal assignment is to min- 
imise the total cost, 

subject to 

where j E Ji is the terminal j assigned to concentrator i, and is the set of all 
terminals connected to concentrator i. 

Multi-objective Optimisation Formulation 

The most common objective of the terminal assignment problem is to min- 
imise the total cost of the network. However, in many situations, it makes 
sense to also minimise the number of concentrators used so that the whole 
network can work with a less cost. The minimisation of the number of concen- 
trators can be treated as an implicit constraint to be considered in the above 
single objective optimisation, or as another objective to optimise. In the latter 
case, the problem becomes a true multi-objective optimisation problem that 
minimises both the cost and the number of concentrators used at  the same 
time. A weighted sum approach for this problem is described below. 

Given 

fi: objective i ,  i = 1,2,.  . . ,n, and 

wi: weight of objective, 

then the purpose of the multi-objective optimisation is to minimise 
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In the problem presented here, n is 2 (for two objectives), fi is the total 
cost of all the connections between concentrators and terminals, which is F 
as described in the single objective optimisation; and fi is the total number 
of concentrators used. 

2.2 Previous Work on Terminal Assignment in Communications 
Networks 

Various approaches have been applied to the optimisation of communications 
networks. Previous work in [3] utilised simulated annealing to find the optimal 
design of small-scale networks (less than five nodes). Simulated annealing 
was also adopted in [15] to find solutions for packet switched networks with 
considerations of delay and capacity. Tabu search was used in [7] and in [13] 
to find an appropriate design of communications networks by considering cost 
and capacity together. 

Using greedy algorithms and genetic algorithms (GAS) to assign terminal 
nodes to concentrators was investigated by [I]. The greedy algorithm assigns 
terminals to nearby (but maybe not the nearest) concentrators, if this assign- 
ment can help other terminals to be assigned to nearby concentrators. This 
kind of assignment can lead to infeasible solutions even if a feasible solution 
exists. This means that sometimes there are unassigned terminals that cannot 
be allocated to any concentrator. 

The GA used in [I] had two possible chromosome representations for the 
terminal assignment problem, LC1 and LC2. Both representations are com- 
posed of an integer string. Each integer indicates the concentrator to which a 
terminal is assigned. The integers are arranged in the sequence of terminals, 
so the length of the string is the same as the number of terminals. In LC1, 
the first n l  terminals are assigned to n2 different concentrators, one terminal 
per concentrator. The remaining terminals are assigned in a greedy fashion 
considering the different costs of the concentrators. [I], used a seeding strat- 
egy to initialise the population in order to reduce the number of infeasible 
individuals in the initial population. Unfortunately, this kind of representa- 
tion sometimes may cause inappropriate assignments with a great waste of 
concentrator capacities after the first n l  terminals are allocated to n2 concen- 
trators. In case of large-scale problems with large numbers of terminals and 
concentrators, the computation time may increase considerably due to the 
continuous evaluation of the lowest costs for the assignment of the remaining 
terminals. 

The second representation LC2 do not adopt the strategy of assigning 
the first n l  terminals to n2 concentrators. All the terminals are assigned in a 
greedy fashion. Therefore, unlike LC1, the infeasibility in the initial population 
of LC2 is likely to be high. In case of large-scale problems, the computation 
of the cost can be very high as well. The results in [I] showed that GAS 
outperformed the greedy algorithm. 
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[12] compared greedy algorithms, GAS and grouping GAS (GGAs) for solv- 
ing the terminal assignment problem. A terminal is assigned to the nearest 
concentrator which has sufficient capacity to take this terminal, and if not, 
the next closest concentrator is chosen for assignment. In this algorithm, there 
are many chances that some terminals may not be allocated and hence make 
the solutions infeasible. If the number of terminals or concentrators is large, 
it may take a long time to search for concentrators with the least cost for 
assigning all terminals. 

The GAS in [12] used both binary and non-binary representations indicat- 
ing the concentrators with which the terminals are connected. If the terminal 
size is large, e.g., 1000, the chromosome length will also be large, e.g., 1000. 
Therefore, generating a feasible initial population and evolving such long chro- 
mosomes can be a challenge to GAS. [12] have incorporated a penalty term 
in the fitness function to deal with infeasibility. Infeasible solutions are not 
discarded but included in the population with the penalty incorporated in it. 
The penalty term clearly distinguishes infeasible solutions from feasible ones. 
A higher penalty imposes more selective pressure on infeasible solutions. 

[12] used a GGA as a third approach to solve the terminal assignment 
problem. The representation in GGAs consists of two parts. The first part 
is the same as the representation used in GAS, but there is an additional 
part which groups the terminals and their connected concentrators together. 
The first part of the representation is only used for selection and fitness eval- 
uation. A special crossover operator is designed for the group part in the 
group representation, which selects an entire group from one parent and in- 
serts it into the other parent a t  the crossover point. After crossover there is a 
high possibility that the individuals may become infeasible. So the infeasible 
chromosomes have to be repaired. The repair process needs to  remove the 
duplicate concentrators and re-assign the associated terminals to other con- 
centrators. [12] demonstrated that GAS with the non-binary representation 
outperformed greedy algorithms in most cases, but GGAs did not perform 
very well comparatively. 

It  can be seen from previous work that using evolutionary approaches 
(especially GAS) in communications network design has potentials. These ap- 
proaches showed better performance than other search algorithms such as 
greedy algorithms. However, there is a crucial limitation in the previous evo- 
lutionary approaches concerning their encoding methods, which is usually a 
list of all possible connections to concentrators, arranged in the sequence of 
terminals. Such encoding methods usually cannot work well with large-scale 
problems, and in particular, they have extreme difficulties in generating a 
feasible initial population within a reasonable time. Because those encoding 
schemes are all based on terminals and cannot reflect well the relationship 
between terminals and concentrators, good couplings between terminals and 
concentrators discovered in evolution may not be maintained after search op- 
erations such as crossover and mutation. This makes the evolution more dif- 
ficult to find and keep optimal solutions. Though [12] introduced the concept 



Hybrid Evolutionary Approaches to Terminal Assignment 135 

of group based representation, it was used together with the terminal based 
representation and only for crossover. The performance of GGAs was not sat- 
isfactory. In order to overcome the difficulties presented in the previous work, 
a new chromosome representation is proposed for the terminal assignment 
problem in the next section. 

3 Concentrator-based Evolutionary Approach 

In this chapter, a novel concentrator-based evolutionary approach is proposed 
to make use of the group structure in the terminal assignment problem. This 
approach is especially used to overcome the incapability of previous evolu- 
tionary approaches in handling large-scale networks. The concentrator-based 
evolutionary approach differs from classic EAs in two aspects. First, a spe- 
cial encoding scheme is designed to introduce the structure of groups into 
the genes of chromosomes. Second, given the distinctive encoding, special ge- 
netic operators are designed to evolve the concentrator-based chromosomes 
for solving the terminal assignment problem. 

In the remaining of this section, we will introduce the encoding method 
and the corresponding search operators. The concentrator-based EA is then 
examined and compared with other EAs by a series of experiments with dif- 
ferent experimental settings. 

3.1 Concentrator-based Representation 

The concentrator-based representation is composed of a set of trees in one 
level, in each of which the concentrator is the root node and the terminals 
associated with the concentrator are the leaves. Each tree therefore indicates 
a concentrator together with its terminals. An example of the representation 
is shown in Figure 1, 

Fig. 1. An example of the concentrator-based representation. 
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In this example, there are 4 concentrators (cl to c4) and 5 terminals ( t l  
to  t5). Terminal t l  is assigned to concentrator c l ,  terminal t 3  to concentrator 
c2, and so forth. The representation of this example can be written as: 

When composing the concentrator-based representation, both constraints 
of the terminal assignment problem must be met. Any infeasible representa- 
tions should be either repaired or eliminated in evolution. 

The initial population of the concentrator-based EAs is generated in a way 
similar to that of the terminal-based EA (e.g., the non-binary representation 
used in [12]). Every concentrator has equal probability to serve terminals. A 
terminal is first assigned to a randomly selected concentrator. If the concentra- 
tor has not enough capacity to serve the terminal, then another concentrator 
is randomly chosen. An individual is included in the population only if it is 
feasible. 

The concentrator-based representation, i.e. the tree-based representation, 
allows for variable length genotypes, so the chromosomes are not restrained 
by terminal or concentrator numbers. It is both efficient and flexible. Because 
there is no need to search and evaluate the least cost concentrators when 
generating individuals, the concentrator-based representation works well even 
with a large number of terminals or concentrators. The generation of the initial 
population is simpler than the terminal-based representation. The terminals 
that are to be assigned to a concentrator are taken from a pool where terminals 
are stored, eliminating any duplicates. By generating populations in this way 
the constraints of assigning a terminal to only one concentrator is implicitly 
satisfied. 

3.2 Search operators 

A series of search operators including selection, crossover, and mutation have 
been designed to work with the new concentrator-based representation, as nei- 
ther the standard nor the ordering genetic operators are suitable for grouping 
problems [4]. These operators are introduced below. 

Selection 

Selection is the operation by which individuals are selected from a popula- 
tion for mating. There are many different models of selection such as ranking, 
roulette wheel selection and tournament selection. Because these models se- 
lect chromosomes according to their ranks or fitness values, they can be easily 
applied to the concentrator-based evolution without major changes. In the fol- 
lowing experiments, tournament selection is used due to its good performance 
in selecting optimum or nearly optimum solutions. 
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Crossover 

The purpose of crossover is to pass on the genetic material from the current 
generation to the next one. A typical crossover recombines two individual 
parents to produce two offspring. Several crossover operators can be used on 
the concentrator-based representation. 

One Point Crossover 

This is one of the most common crossover methods used in EAs. A 
crossover point is randomly chosen and children are obtained by swapping the 
tails of the parents' chromosomes. Figure 2 is an example of how one point 
crossover works on the concentrator-based representation. If the crossover 
point divides the parent in equal halves then equal information is inherited. 
Sometimes repair has to be done to make the children feasible. The process of 
repair is explained later. In this type of crossover, the order of concentrators 
in a chromosome is not very important. 

parent 1- cl(tl,t3) / c2(t2.t4,t6) c3(t7,t8,t5) 

parent 2- cl(t2,t3,t4) I c2(tl,t7,t8) c3(t7,t6,t5) 

child 1- cl(tl,t3)c2(tl,t7,t8) c3(t7,t6,t5) 

child 2- cl(t2,t3,t4) c2(t2,t4,t6) c3(t7,t8,t5) 

I 

Fig. 2. One point crossover. 

Two Point Crossover 

In two point crossover, two crossover points are randomly chosen and the 
chromosome parts in between are exchanged between the parents, as shown in 
Figure 3. The information that is inherited depends on the crossover points. If 
the crossover points are far apart, more information is then inherited. Similar 
to one point crossover, this type of crossover is also commonly used in EAs. 

Modzjied Unzform Crossover 

A typical example of the uniform crossover is shown in Figure 4. The 
order of concentrators remains the same in all the chromosomes before and 
after crossover, but only some the terminals associated with each concentrator 
are inherited. 



138 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz 

parent 1- cl(tl,t3) / c2(t2,t4,t6) I c3(t7,t8,t5) 

parent 2- cl(t2,t3,t4) I c2(tl,t7,t8) I c3(t6,t5) 

child 1- cl(tl,t3) c2(tl,t7,t8) c3(t7,t8,t5) 

child 2- cl(t2,t3,t4) c2(t2,t4,t6) c3(t6,t5) 

Fig. 3. Two point crossover. 

parent 1- cl(tl,t3) c2(t2,t4,t6) c3(t7,t8,t5) 

parent 2- cl(t2,t3,t4) c2(tl,t7,t8) c3(t6,t5) 

child 1- cl(tl,t3) c2(tl ,t7,t8) c3(t7,t8,t5) 

child 2- cl(t2,t3,t4) c2(t2,t4,t6) c3(t6,t5) 

Fig. 4. Uniform crossover. 

In Figure 4, for childl, the terminal set of c l  is inherited from parentl, for 
c2 it is inherited from parent2 and for c3 it is again inherited from parentl. 
In this example, the probability of inheriting a gene from a parent is set 
as 0.5. In the following experiments, the probability is calculated based on 
the available capacities of the concentrators. For example, if the available 
capacity of c l  is 60% in parentl and is 30% in parent2, then the probability 
of selecting c l  from parentl will be greater than from parent2. Such a uniform 
crossover is different from the classical one, and thus called modified uniform 
crossover. In this type of crossover it is possible that both terminal assignment 
constraints may be violated. The crossover may result in infeasible solutions. 
For example, terminals may be assigned to more than one concentrator, such 
as terminal t4 of child2 shown in Figure 4, which is assigned to both c l  and c2. 
Also, there may be some terminals that are not assigned to any concentrator, 
such as terminals t l ,  t7  and t8  in child2. In order to resolve the violation of 
constraints, repair should be done. 
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One node Crossover 

The crossover operators introduced above are similar to classical crossover 
methods on the terminal-based representation. To exploit our representation 
better, two specific crossover methods based on concentrators are also de- 
signed. Figure 5 illustrates one of the methods, which is called one node 
crossover. Each concentrator is deemed as a node in this method. A ran- 
dom node point is chosen (such as c2 in the example shown in Figure 5) and 
the nodes together with their associated terminals in two parents are swapped 
to produce offspring. Repair is used to make the offspring feasible whenever 
necessary. 

parent 1- cl(t1 ,t4) c2(t5,t3,t2) c3(t6,t7) 

parent 2- c 1 (t2,t3) c2(t6,t5) c3(tl ,t4,t7) 

child 1- cl(tl,t4) c2(t6,t5) c3(t6,t7) 

child 2- cl(t2,t3) c2(t5,t3,t2) c3(tl,t4,t7) 

I 

Fig. 5. One node crossover. 

Best Node Crossover 

In addition to one node crossover, another node-based crossover is pro- 
posed to exploit the best concentrator in the chromosomes. The best concen- 
trator is chosen from each parent and then passed to the offspring. In Figure 
6, concentrator c3 from parent1 and concentrator c l  from parent2 are trans- 
ferred to both children. The offspring replace their parents only if the cost 
is less than or equivalent to that of the parents. This type of crossover can 
reduce the number of concentrators used. 

One Group Crossover 

This operator is inspired by the crossover used in GGAs as described 
in Section 2.2. Two random crossover points are generated separately and 
independently for two parents as shown in Figure 7. The crossover points 
may be different for two parents. Repair will be needed for infeasible children. 
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parent 1- c l  (tl ,t2) c3(t6,t7) c2(t4,t5,t3) 

parent 2- c 1 (t3,t5) c2(tl ,t2) c3(t4,t6) 

child 1- c l  (t3,tfi) c2(t6,t5) c3(t4,t5,t3) 

child 2- c l  (t3,t5) c2(tl ,t2) c3(t4,t5,t3) 

Fig. 6. Best node crossover. 

parent 1- cl(t2) I c2(t3) I c3(tl,t4) c4(t5) 

parent 2- cl(t1) c2(t4) I c3(t2,t3) I c4(t5) 

child 1- cl(t2) c2(t4) c3(tl,t4) c4(t5) 

child 2- cl(t1) c2(t4) c3(tl,t4) c4(t5) 

Fig. 7. One group crossover. 

Best Group Crossover 

This crossover is similar to the above one group crossover, but the best 
concentrator in the group will be retained in the offspring instead of being 
replaced and lost through crossover. Figure 8 illustrates this crossover. The 
concentrator c2 in parentl is best utilized and hence is retained in childl. 
The concentrator c3 in parentl is the best and hence is inserted into the 
chromosome of child2. 

Repair 

After crossover some terminals may be either presented in duplicates or 
completely missing and hence cause infeasible individuals. Stochastic repair 
is then used to make the individuals feasible. The repair process can be de- 
scribed by two steps: 
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parent 1- c 1 (t2) ( c2(t3) I c3(t 1 $4) c4(t5) 

parent 2- cl(t1) c2(t4) I c3(t2,t3) 1 c4(t5) 

child 1- cl(t2) c2(t3) c3(tl,t4) c4(t5) 

child 2- cl(t1) c2(t4) c3(tl ,t4) c4(t5) 

Fig. 8. Best group crossover. 

1. Deletion of duplicate terminals - Each terminal is examined for duplicates 
and if there is any, a duplicate terminal in a less loaded concentrator is 
deleted; 

2. Stochastic assignment of missing terminals - Missing terminals are as- 
signed to less loaded concentrators which are randomly chosen. 

Mutation 

Mutation makes (usually small) alterations to one or more genes in a chro- 
mosome. It  is considered as a method to recover lost genetic material during 
evolution. Here several mutation methods are used for the concentrator-based 
evolution. 

Point Concentrator Swap 

Two concentrators c l  and c2 are chosen stochastically and all the termi- 
nals associated are swapped between them. Because concentrators may have 
different capacities, swapping their terminals may reduce the cost but not the 
number of concentrators. This is shown in Figure 9. 

Before mutation - cl(t1 ,t3) c2(t2,t4) c3(t5,t6) 

After mutation - cl(t2,t4) c2(tl,t3) c3(t5,t6) 

Fig. 9. Two point concentrator swap. 
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Two Point Terminal Swap 

Here two concentrators are chosen at random and then two terminals are 
randomly chosen from the two concentrators, respectively. The selected ter- 
minals are then interchanged. An example of this mutation is shown in Figure 

Before mutation - cl(tl,t4) c2(t3,t6) c3(t5,t2) 

After mutation - c l  (tl,t3) c2(t4,t6) c3(t5,t2) 

Fig. 10. Two point terminal swap. 

In Figure 10, concentrators c l  and c2 are selected and in them terminals t3 
and t4 are selected and then interchanged. The mutated individual is included 
in the population only if it is feasible and fitter than its parent. 

Delete-Insert One Mutation 

This mutation is designed to alter the concentrator of a terminal. A con- 
centrator c l  is first chosen at  random. Then a random terminal t l  is deleted 
from it and then inserted into the terminal set of another randomly chosen 
concentrator, c3 in this case. The mutated individual joins the population only 
if it is fitter than its parent and is feasible. This type of mutation is designed 
to reduce the number of concentrators used. For example, c l  in Figure 11 is 
no longer needed. 

Before mutation - cl(t1) c2(t2,t4,t3) c3(t6,t5) 

After mutation - cl() c2(t2,t4,t3) c3(t6,t5) 

Fig. 11. Delete-insert one mutation. 

In this mutation, a concentrator c l  is chosen at  random and all the ter- 
minals in c l  are removed and inserted into another concentrator c2, which is 
also chosen at  random, as shown in Figure 12. This type of mutation is de- 
signed to reduce the number of concentrators by shifting all of the terminals 
of a concentrator to other concentrators. In Figure 12, all the terminals of c l  
are shifted to concentrator c2, however they may be reassigned to more than 
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one concentrator if the currently selected concentrator does not have sufficient 
capacity. After this mutation the individual joins the population only if it is 
fitter than its parent and is feasible. 

Before mutation - cl(tl,t3) c2(t2,t4) c3(t7,t6,t5) 

After mutation - cl() c2(tl,t3,t2,t4) c3(t7,t6,t5) 

Fig. 12. Delete-insert all mutation. 

Self Crossover Mutation 

Two concentrators c l  and c2 are chosen at  random. The terminal set of 
each concentrator is regarded as a small "individual" and the 
crossed using one point crossover. 

two sets are 

Before mutation - cl(tl,t4 1 t3,t8) c2(t5, t7 I t6) 

After mutation - c l  (tl,t4,t6) c2(t5,t7,t3,t8) 

Fig. 13. Self crossover mutation. 

One Group Mutation 

A less loaded concentrator is chosen at  random from a parent and all the 
terminals associated with the concentrator are deleted. The deleted terminals 
are then reassigned to other concentrators chosen randomly. In Figure 14 
concentrator c2 is chosen at  random and terminal t3 is deleted. The missing 
terminal t3 is added to the terminal list of concentrator c l .  This type of 
mutation may result in fewer concentrators. 

Multi-Group Mutation 

This mutation is similar to the one group mutation except that more than 
one concentrator is involved. Several less loaded concentrators are chosen at 
random. In Figure 15 concentrators c2 and c4 are randomly chosen and termi- 
nals t4 and t2 are removed from their terminal lists. The removed terminals 
t4 and t2 are reassigned to a random concentrator c3. This type of mutation 
operator can also reduce the number of concentrators used. 
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I Before mutation - cl(tl,t4) c2(t3) c3(t2,t5,t6) I I After mutation - cl(tl,t4,t3) c2() c3(t2,t5,t6) 1 
Fig. 14. One group mutation. 

Before mutation - cl(tl,t3) c2(t4) c3(t5) c4(t2) 

After mutation - cl(tl,t3) c2() c3(t4,t5,t2) c4() 

Fig. 15. Two group mutation. 

3.3 Experimental Studies 

In the previous sections, we introduced the concentrator-based representation 
and a number of search operators that can be used on the representation. 
In order to evaluate the proposed concentrator-based EA, a number of ex- 
periments were run with different experimental settings. In this section, both 
the concentrator-based representation and the corresponding operators will 
be tested for their performance. 

Performance Test of the Concentrator-based Representation 

The first experiment is used to examine the performance of the proposed 
concentrator-based representation. For the purpose of comparison, the terminal- 
based representation was also tested in the experiments. The initial popula- 
tions in the experiments were generated in the way as described in Section 
3.1. Tournament selection with uniform crossover and two-point interchange 
mutation was used for both representations in this comparison test. The EAs 
are terminated after the fitness value remains unchanged for 25 generations. 
Both concentrator-based and terminal-based representations are tested on dif- 
ferent problems in which the number of terminals ranges from 100 to 1000. 
However, problems with more than 500 terminals were not considered in the 
terminal-based representation because the generation of their initial popula- 
tions took too long. Table 1 gives a list of the experimental parameters used 
in the experiment. The experiment was run for 30 times and the results are 
shown in Table 2. 

The results in Table 2 show that the concentrator-based representation 
generally found solutions better and much faster (with fewer generations) than 
the terminal-based representation, especially when the problem was large. 
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Table 1. Experimental setting 

Population size: 100 
Chromosome: terminal basedlconcentrator 

based representation 
Selection: tournament selection 
Crossover: uniform crossover 
Mutation: two-point interchange 
Termination Criterion: the fitness value presents no 

change for 25 generations 
Elitism: Yes 
Number of runs: 30 
Ratio of number of terminals to 
terminal number of concentrators: 2:l 
Number of terminals: 100 to 500/100 to 1000 
Number of concentrators: 50 to 250150 to 500 
Weight of terminals to: 1 to 6 
concentrators 
Capacity of concentrators: 15 to 25 

Table 2. Comparison between concentrator-based and terminal-based representa- 
tions, where Size indicates the number of terminals, s.d. indicates standard devia- 
tions and N indicates the number of generations. 

I Concentrator-based I Terminal-based 
Size 1 cost 

best mean s.d. worst + 

During the experiments, we found that the difference in cost between two rep- 
resentations was higher in the first generation as compared with the final gen- 
eration. Though the concentrator-based representation produced a relatively 
uncompetitive population at  the beginning, it obtained superior final results 
through evolution, except when the problem is very small, e.g., for terminal 
sizes 100 and 200. The concentrator-based representation achieved the results 
in fewer generations for all terminal sizes. The genetic operators worked more 
effectively on the concentrator-based representation than its counterpart. 

N 

250 
587 
1008 
1306 
1709 
2160 
2306 
2761 
3224 
3624 

cost 
best mean s.d. worst 
932 1062 72 1212 
1565 1782 122 2051 
2038 2305 171 2756 
2676 3119 241 3843 
3194 3753 320 4665 
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The concentrator-based representation also showed good scalability. It  eas- 
ily generated and evolved populations for terminals up to 1000. This is in con- 
trast to  the terminal-based representation which became incapable of solving 
the problem when the number of terminals involved was more than 500. This 
incapability inevitably restricts the application of the terminal-based repre- 
sentation in real world communications networks, which usually involve a 
great number of network nodes. The number of generations required by the 
concentrator-based representation was approximately linearly increased with 
the increased number of terminals, as shown in Figure 16. The well-presented 
scalability of the concentrator-based representation shows that it is suitable 
for large-scale network applications. 

Fig. 16. Scalability of the concentrator-based representation. The generations re- 
quired by the concentrator-based EA was linearly increased with the problem size. 
On the contrary, the terminal-based EA became incapable of solving the problem 
when terminals were more than 500. 

Performance Tests of Search Operators 

Various crossover and mutation operators designed for the concentrator-based 
representation were tested for their performance here. The EA guided by the 
operators should achieve the objective of minimizing the total cost between 
terminals and concentrators, and at  the same time, the operators should keep 
the number of concentrators used at  a minimum. In our experiments, the 
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number of terminals was set as 100 and the number of concentrators was 
50. The other settings of the experiments were the same as those used in 
the previous tests (see Table 1). The experimental results over 30 runs are 
presented in Table 3. 

Table 3. Performance tests of various search operators, where s.d. indicates stan- 
dard deviation and N indicates the number of generations. 

Search operators Number of Cost N 
conc. best mean worst s.d. 

1 One point crossover 20 4160 4567 4797 25622 50 
2 Two point crossover 
3 Uniform crossover 
4 One node crossover 
5 Best node crossover 
6 One group crossover 
7 Best group crossover 
8 Delete-insert one mutation 
9 Delete-insert all mutation 
10 Two point concentrator swap 
11 Two point terminal swap 
12 Self crossover mutation 
13 One group mutation 
14 Multi-group mutation 

 from Table 3 we can see that, when the cost alone is considered, delete- 
insert one mutation was the best among all search operators. Two point ter- 
minal swap mutation, self crossover mutation, two point concentrator swap 
mutation and delete-insert all mutation followed delete-insert one mutation, 
but all of them required more generations. All the other operators performed 
similarly. When the number of concentrators used alone is considered, uni- 
form crossover is the best, followed by one point crossover, one node crossover, 
delete-insert all mutation and delete-insert one mutation. The remaining op- 
erators had similar performance. 

Generally speaking, crossover operators showed better performance in re- 
ducing the number of concentrators because most crossover operators are de- 
signed for this purpose. Moreover, the stochastic repair mechanism is also very 
effective in reducing the number of concentrators used. While the exchange 
of genes is more frequent (and hence more repair is required) in one point 
crossover and uniform crossover, only 40% of the total concentrators were fi- 
nally utilized in the solutions found by these two crossover methods. Unlike 
one point crossover, two point crossover may not have frequent gene exchange 
and the repair mechanism only works on limited numbers of concentrators. 
The reduction of the concentrators used is therefore not so significant in two 
point crossover. Best node crossover is similar to one node crossover except 
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that the best utilized concentrator is chosen for crossover in both parents. 
Although repair may help reducing the concentrators used in both cases, it is 
unclear why the former is ineffective in the concentrator usage while the later 
is relatively more effective. This issue will be our future work. Compared with 
other crossover operators, the performance of group based crossover methods 
(e.g., one group crossover and best group crossover) was unsatisfactory. In 
most cases, group based crossover involves less exchange of genes than others. 
This may be the main reason why more concentrator used in group based 
crossover. Group based crossover also required much longer time to meet the 
termination criterion. All crossover operators showed insufficient effect on re- 
ducing the total cost. 

In contrast to crossover, most mutation operators effectively reduced the 
total cost because the assignment of terminals to concentrators was continu- 
ously altered and only fitter individuals after mutation were allowed to join 
the population. Among these operators, delete-insert one and delete-insert 
all mutation performed best by maintaining better utilized concentrators and 
mutating less loaded concentrators. Two point concentrator swap, two point 
terminal swap and self crossover mutation were also good at  reducing cost, 
but less effective than delete-insert one and delete-insert all mutation. This is 
because these operators do not take the concentrator load into account when 
swapping genes. Similar to group based crossover, one group mutation and 
multi-group mutation demonstrated unsatisfactory performance in both cost 
minimization and reduction of the number of concentrators used. 

It  is worth emphasizing that our study of genetic operators was carried 
out for each operator independently. We did not run EAs with two or more 
operators in the above experiments (Table 3). We expect EA's performance 
will improve further if we use two or more appropriate operators together. 

4 Concentrator-based Hybrid Evolutionary Approaches 

Hybrid EAs have been shown to be quite effective in solving a wide range of 
real world problems. How EAs and local search are combined is an extremely 
important issue that influences the final solution quality and the computa- 
tional efficiency of the algorithm [lo]. Hybridization of EA with local search 
gives rise to the concepts of Lamarckian evolution and Baldwin effect [lo], 
which are the most often studied techniques in hybrid EAs. 

In this section, both Lamarckian evolution and Baldwin effect are incor- 
porated with the concentrator-based EA to form hybrid EAs for communi- 
cations network design. Lamarckian evolution or Baldwin effect is applied to 
all the individuals in every generation. The two different forms of hybrid EAs 
are fully investigated on the terminal assignment problem, for both single- 
objective and multi-objective optimisation as introduced in Section 2.1. A 
series of experiments are designed to examine the performance of the hybrid 
EAs. 
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4.1 Lamarckian Evolution and Baldwin Effect 

In Lamarckian evolution individuals improve during their lifetime through 
local search and the improvement is passed to the next generation. The indi- 
viduals are selected based on improved fitness and are transferred to the next 
generation with the improvement incorporated in the genotype. 

The Baldwin effect utilized in EAs was first investigated by Hinton and 
Nolan in [8]. Unlike Lamarckian evolution, the improvement does not change 
the genetic structure (genotype) of the individual that is transferred to the 
next generation. The individual is kept the same as before local search, but 
the selection is based on the improved fitness after local search. Baldwin effect 
follows natural evolution (Darwinian), i.e., learning improves the fitness and 
selection is based on fitness. The improvement is passed indirectly to the next 
generation through fitness in Baldwin effect. 

While Lamarckian learning may disrupt the schema processing of a GA, 
Baldwin learning certainly aggravates the mapping problem of multiple geno- 
types to one phenotype. In a comparison of Baldwin and Lamarckian learning, 
[16] showed that utilizing either form of learning would be more effective than 
the classical GA without any local improvement procedure. They argued that, 
while Lamarckian learning is faster, it may be susceptible to premature con- 
vergence to a local optimum as compared to Baldwin learning [lo]. 

4.2 Use of Memory 

In Baldwin effect, if two individuals are different but map to the same local 
basin, the evolutionary approach will try to exploit both individuals. If these 
two individuals are crossed over and produce offspring in the same basin, 
computational effort will then be wasted on applying the local search to search 
the same basin again [lo]. 

In Lamarckian evolution, these individuals are possibly identical and will 
reproduce clones of themselves if crossed over. The local improvement is there- 
fore unnecessary as the children are the same as the parents. Slight mutation 
change may be useless since it may leave the individual in the same basin 
or in a later generation the EA may generate an individual that falls in a 
basin already explored. Therefore, the local improvement procedure may be 
reapplied to search the same basin while valuable computational cycles could 
be used to explore other regions in the search space. To solve this problem, 
random linkage, a search algorithm taken from global optimization, was de- 
signed [lo] to prevent repeated searches by using an acceptlreject function 
that determines whether a local search is appropriate. 

In the work presented in this chapter, it is assumed that the offspring will 
converge to the same local basin after local search (though in practice it may 
not be the case), so these individuals are forbidden from crossing over with 
themselves. Consequently, the computational effort can be used to explore 
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other basins. Because this technique will check the fitness values of the off- 
spring before crossover, it is similar to  the use of memory. The memory is used 
with both Lamarckian evolution and Baldwin effect, and their performances 
are compared with those without memory in the following experiments. Ta- 
bles 4 and 5 list the algorithmic descriptions of Lamarckian evolution and 
Baldwin effect with and without memory, respectively. 

Table 4. Algorithmic descriptions of Lamarckian evolution with and without mem- 
ory 

Lamarckian evolution without memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P(i)  based on their fitness in P(i);  
Apply crossover to the parents and repair if necessary to make it feasible. 
Replace the parents only if the offspring is better; 
Apply mutation to the individuals and replace the population 

if the mutated individual is better and feasible; 
For each solution so from the population: 

REPEAT 
Perform local search to get a new solution s; 
If (f (s) < f (so)) replace so by s; 

UNTIL terminal size 
UNTIL the population converges 

END 

Lamarckian evolution with memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P(i)  based on their fitness in P(i);  
Apply crossover to the parents only if their fitness are different and repair 

if necessary to make it feasible 
and replace the parents only if the offspring is better; 

For each solution so from the population; 
REPEAT 

Perform local search to get new a solution s 
If (f (s) < f (so)) replace so by s; 

UNTIL terminal size 
UNTIL the population converges 

END 
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Table 5. Algorithmic descriptions of Baldwin effect with and without memory 

Baldwin effect without memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P( i )  based on their fitness(Ba1dwin) in P(i) ;  
Apply crossover to the parents and repair if necessary to make it feasible. 
Replace the parents only if the offspring is better; 
Apply mutation to the individuals and replace the population 

if the mutated individual is better and feasible; 
For each solution so from the population: 

REPEAT 
Perform local search to get a new solution s; 
Replace so by s; 

UNTIL terminal size 
UNTIL the population converges; 

END 

Baldwin effect with memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P( i )  based on their fitness(Ba1dwin) in P(i) ;  
Apply crossover to the parents only if their fitness are different and repair 

if necessary to make it feasible and 
replace the parents only if the offspring is better; 

For each solution so from the population; 
REPEAT 

Perform local search to get new a solution s 
Replace so by s; 

UNTIL terminal size 
UNTIL the population converges; 

END 

4.3 Experimental Studies 

Concentrator-based hybrid EAs using Lamarckian evolution or Baldwin effect 
are evaluated and compared. Lamarckian evolution and Baldwin Effect are 
first combined with the various search operators introduced in Section 3.2 
to solve the terminal assignment problem with a single-objective, then that 
with multi-objectives. The experimental setup is the same as the one used 
previously, as introduced by Table 1 in Section 3.3. Delete-insert one mutation 
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is used in the local search due to its effectiveness in reducing the cost as well 
as the number of concentrators. 

Single Objective Optimization 

Lamarckian evolution and Baldwin effect with and without memory are tested 
on the single-objective terminal assignment problem. Table 6 shows the total 
cost obtained by Lamarckian evolution and Baldwin Effect without mem- 
ory and Table 7 shows the cost obtained with memory. All tests eventually 
used the same number of concentrators, which is 40, regardless of the use of 
memory. Because the use of memory influences only crossover, no mutation 
operators were used in the tests of Lamarckian and Baldwin learning with 
memory. 

The experimental results listed in Tables 6 and 7 show that there is no 
significant difference in performance between Lamarckian and Baldwin evolu- 
tion. When the local search is used without memory, the best results obtained 
are all around 680 for different combinations of search operators. The two-tail 
t-test on the mean cost also indicates that for a=0.5, none of the local search 
is significantly different from others. The hybrid EAs found the same basin 
for different combinations of search operators. 

In the case of memory, the two tail t-test on the mean cost again shows no 
significant difference between Lamarckian and Baldwin evolution. However, 
the best cost obtained with memory can be lower than 680 when one point 
crossover, uniform crossover, one node crossover or best node crossover is used 
(the lowest is 461). This suggests that the use of memory aids the crossover 
operators to explore other basins and hence the computational effort can be 
saved from repeated exploration of the same basin. However, the standard 
deviation is quite high for those operators. It is worth noting that the perfor- 
mance of all the hybrid EAs outperformed the concentrator-based EA without 
local search as introduced in Section 3. 

Multi-objective Optimisation 

In real world communications networks, minimising cost and number of con- 
centrators are both important and should be considered at  the same time. It 
is therefore more sensible to deal with them as two independent objectives like 
in a multi-objective optimisation problem. To enable this, concentrator-based 
hybrid EAs with multiple objectives are studied. 

In multi-objective optimisation, more than one objective should be opti- 
mised and these objectives are often in conflict with each other. Obtaining 
a global optimal solution for all the objectives is therefore not easy. Usually 
only a set of solutions that are non-dominated (known as Pareto optimal so- 
lutions) can be obtained. There are three main approaches to evolutionary 
multi-objective optimisation: the weighted sum approach, population-based 
non-Pareto approach and Pareto-based approach [6]. 
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Table 6 .  Cost comparison between Lamarckian and Baldwin effect without memory 
in single-objective optimisation 

Crossover 

1 
One point 

2 
Two point 

3 
Uniform 

4 
One node 

5 
Best node 

6 
One group 

7 
Best grour 

Mutation 

Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 

Lamarckian 
aest mean s.d. 
680 685 8 
680 685 8 
680 685 18 
680 684 11 

Baldwin 
best mean s.d 
680 685 11 
680 685 15 
680 684 9 
680 684 6 
680 684 5 
680 684 16 
680 683 8 
680 684 12 
680 683 8 
680 683 10 
680 684 7 
680 685 11 
680 683 10 
680 683 6 
680 685 11 
680 685 5 
680 685 7 
680 685 6 
680 685 10 
680 685 7 
680 684 9 
680 683 4 
680 684 6 
680 683 4 
680 684 9 
680 682 5 
680 684 8 
680 684 8 
680 683 4 
680 683 4 
680 683 6 
680 683 4 
680 683 6 
680 684 9 
680 684 8 

When hybrid EAs are used for the multi-objective terminal assignment 
problem, the weighted sum approach is used. It is similar to the single- 
objective optimisation except that the fitness function explicitly deals with 
two objectives: one is to minimise the total cost and the other is to min- 
imise the number of concentrators used. The mathematical formulation for 
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Table 7. Comparison between Lamarckian evolution and Baldwin effect with mem- 
ory in single-objective optimisation 

1 Type 
a) One point crossover 
b) Two point crossover 
c) Uniform crossover 
d) One node crossover 
e) Best node crossover 
f )  One group crossover 
g) Best group crossover 

Lamarckian 
best mean s.d. 
542 741 19021 
680 684 11 
583 705 4643 
661 687 284 
668 684 35 
680 685 17 
680 686 17 

Baldwin 
best mean s.d. 
461 715 1541f 
461 683 6 
551 726 6577 
662 683 101 
665 685 38 
680 683 4 
680 684 7 

- 
t-test 

- 
0.01 
0.43 
-0.02 
0.07 
-0.10 
0.62 
0.59 

this problem was shown in Section 2.1. However, there are some weaknesses 
in the weighted sum approach [9]: 

1. It can provide only one Pareto solution from one run; 
2. It has been shown that the weighted sum approach is unable to deal with 

a multi-objective optimisation problem with a concave Pareto front [5]. 

If the weights for different objectives are changing during optimisation, 
the optimiser may go through all points on the Pareto front. If the searched 
non-dominated solutions are archived, the whole Pareto front can be achieved. 
This has been shown to be working well for both convex and concave Pareto 
fronts. Whether the weighted sum approach is able to converge to a Pareto- 
optimal solution depends on the stability of the Pareto solution corresponding 
to the given weight combination. Without considering the time consumption, 
the whole Pareto front can be obtained by running the optimiser as long as 
possible [9]. 

Investigation of Varied Weights 

To examine the weight effect on optimisation, varying weights between 0.1 
and 0.9 are set for both objectives of the terminal assignment problem. In the 
experiments, EAs with one point crossover and delete-insert one mutation are 
used, and all the other experimental settings are the same as those used for 
the performance tests of various search operators, as introduced by Table 1 
in Section 3.3. Table 8 summarises the experimental results, including the 
number of concentrators used, the total cost obtained and the number of 
generations required by each EA. Figure 17 shows the relationship between the 
values obtained for both objectives, i.e., cost vs the number of concentrators. 

In Table 8, Weight One indicates the weight assigned to the first objective 
(cost) and Weight Two is that assigned to the number of concentrators. As 
Weight One increases, the cost decreases as expected. The decrease in cost 
became less obvious while weight one is higher than 0.4. The EA reaches a 
relatively reasonable performance for both objectives when their weights are 
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around 0.5. In the following experiments of hybrid EAs for multi-objective 
optimisation, we choose 0.5 as the weights for both objectives. 

Table 8. Results obtained by varied weights in the weighted sum approach to multi- 
objective optimisation 

Weight one Weight two Number of Cost Generations 
concentrators best mean worst s.d. 

0.90 20 1623 2101 2528 50012 62 
0.80 2 1 1029 1256 1466 10207 50 
0.70 23 888 1008 1126 3538 52 
0.60 24 795 846 918 1110 53 
0.50 27 740 770 813 236 59 
0.40 29 713 733 760 170 50 
0.30 30 697 714 745 144 5 1 
0.20 33 689 696 712 27 52 
0.10 35 684 690 697 10 50 

Concentrators 

Fig. 17. Relationship between obtained cost and number of concentrators. 
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Comparison Between Lamarckian and Baldwin Effect in 
Multi-objective Optimization 

In multi-objective optimization, both Lamarckian evolution and Baldwin ef- 
fect are tested with various combinations of search operators. For simplicity, 
the use of memory is not considered in these tests. The weights for the two 
objectives are set as 0.5. Table 9 shows the comparison results. 

In the Lamarckian-style hybrid EA, the best cost obtained was 719 when 
one point crossover was used with delete-insert all mutation and two point 
crossover was used with two point concentrator swap. The corresponding num- 
ber of concentrators used was 26 in both cases. In Baldwin effect, the best 
cost obtain was 720 and the corresponding number of concentrators used was 
also 26, when two point crossover and two point concentrator swap mutation 
are used together. The experimental results again demonstrate that there is 
no significant difference between these two local search methods. 

When comparing the results obtained for single-objective and multi- 
objective optimization, hybrid EA in single-objective optimization sometimes 
obtained a lower cost than in multi-objective optimization, such as the Lamar- 
ckian evolution with one point crossover plus two point terminal swap muta- 
tion, and Baldwin effect with uniform crossover plus self crossover mutation 
and with best node crossover plus delete-insert all mutation. The cost achieved 
for the single objective case is around 685, compared with the cost around 760 
achieved for the multi-objective case. The number of concentrators used, how- 
ever, is much lower in the multi-objective case, which is around 26, compared 
with 40 obtained in the single-objective case. If taking both objectives into 
consideration, the multi-objective optimization performed better in satisfy- 
ing two objectives simultaneously than the single objective optimization. It is 
worth noting that in either case, hybrid EAs with local search outperformed 
EAs without local search as given in Section 3. 

5 Conclusions and Future Work 

Communications network design is essential to the development and imple- 
mentation of widely used packet switch networks and fiber optical networks. 
Optimal communications network design is challenging since it needs to sat- 
isfy multiple constraints and to minimize one or more objectives a t  the same 
time. EAs have been shown to perform well for the terminal assignment prob- 
lem. Their performance can be further enhanced by a new concentrator-based 
chromosome representation and by hybridization with local search. 

This chapter proposes a novel concentrator-based representation that uti- 
lizes the group character of terminals and concentrators to overcome the limi- 
tations of the traditional terminal-based representation. A series of new search 
operators including crossover and mutation are designed for the concentrator- 
based representation. The concentrator-based EAs have been shown to outper- 
form other terminal-based EAs. Our computational study also demonstrates 
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Table 9. Comparison between Lamarckian evolution and Baldwin effect in multi- 
objective optimisation 

Two point conc. 
l ~ w o  point term. 
Self crossover 

point I~el - ins  all mut. 

- 
Unif. 

- 
One 
node 

Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins. all mut. 
Two point conc. 

l ~ w o  point term. 

node I~el - ins  all mut. 

One 
group 

Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

- 
t-test 

- 
0.06 
0.01 
0.01 
0.04 
-0.08 - 
0.07 
0.10 
-0.03 
0.05 
0.00 - 
-0.04 
-0.04 
0.12 
-0.02 
0.04 - 
0.08 
0.04 
0.10 
0.05 
-0.07 - 
0.11 
0.16 
0.07 
0.14 
-0.03 - 
0.06 
0.00 
0.03 
0.10 
0.02 - 
0.15 
0.11 
-0.01 
0.00 
0.25 

the good scalability of the concentrator-based EAs, which can still work well 
with the number of terminals up to 1000. 

Hybrid EAs integrating Lamarckian evolution or Baldwin effect with or 
without memory have been designed to tackle both the single-objective and 
multi-objective formulations of the terminal assignment problem. Our experi- 
mental results reveal that Lamarckian evolution and Baldwin effect performed 
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similarly in most cases for the terminal assignment problem. However, the hy- 
brid EAs obviously outperformed the EAs without local search. 

It  is worth noting that the proposed concentrator-based hybrid EAs are 
not limited to the terminal assignment problem. They can also be applied 
to other real world applications, such as bin packing and cutting stock prob- 
lems. Further study of the concentrator-based hybrid EAs in these applica- 
tions will be carried out. Although the work presented here includes a com- 
prehensive investigation of the performance of various search operators for 
the concentrator-based representation, the most proper combination of these 
operators for the concentrator-based hybrid EA still needs further study. In 
particular, we are interested in analysing those group based crossover and mu- 
tation, which showed unsatisfactory performance in the experiments. Another 
work we want to investigate is the use of memory in hybrid EAs. Our experi- 
ments show that there is no significant difference between the EAs with and 
without memory. This is somewhat anti-intuitive and needs to be investigated 
further. 
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Solution Space via Memetic Algorithms for the 
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1 Introduction 

Genetic Algorithms (GA's) are a class of evolutionary techniques that seek 
improved performance by sampling areas of the parameter space that have a 
high probability for leading to good solutions [Ill. The evolution program is a 
probabilistic algorithm which maintains a population of individuals (chromo- 
somes). Each chromosome represents a potential solution within the landscape 
of the problem at  hand. These individuals undergo transformations based on 
operators to create new populations (solutions). Many evolution programs 
can be formulated to solve different problems. These programs may differ in 
the data structures, parameter tuning, specific genetic operators but share 
some common principles (i) population of individuals (ii) genetic operators to 
transform individuals into new (possibly better) solutions. The power of GA's 
comes from the fact that the technique is robust, and can deal successfully 
with a wide range of problem areas, including those which are difficult for 
other methods to solve. GA's are not guaranteed to find the global optimum 
solution to a problem, but they are generally good at finding "acceptably 
good" solutions to problems. In other words, GA's are considered to be com- 
petitive if: the solution space to be searched is large (exploration) and the 
fitness function is noisy (landscape is not smooth nor unimodal). 

Genetic Algorithms are not well suited for fine-tuning structures and incor- 
poration of local improvement has become essential for Genetic Algorithms to 
compete with other meta-heuristic techniques. Memetic Algorithms [l] apply 
a separate local search process to refine individuals by hill climbing. 

1.1 Motivation and Contributions 

Efficient optimization algorithms used to solve hard problems usually employ a 
hybrid of at  least two techniques to find a near optimal solution to the problem 
being solved. The main motivation for hybridization in optimization practice 
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is the achievement of increased efficiency (i.e adequate solution quality in 
minimum time or maximum quality in specified time). From an optimization 
point of view, Memetic Algorithms combine global and local search by using 
Evolutionary Algorithms (EA) to perform exploration while the local search 
method performs exploitation. 

The main contributions of this book chapter are (i) investigation of pa- 
rameter tuning of Genetic Algorithms to solve the circuit partitioning problem 
effectively, (ii) investigating the balance between exploration and exploitation 
of the solution space. 

1.2 Chapter Organization 

The book chapter is organized as follows: Section 2 introduces very briefly the 
VLSI circuit partitioning problem and terminology used throughout the chap- 
ter. The concept of evolutionary computation and Genetic Algorithms will be 
introduced in Section 3. Section 4 introduces the need behind Memetic Algo- 
rithms to further explore the solution space effectively. Results are introduced 
in Section 5. The chapter concludes with some comments on the issue of ef- 
fective space exploration and exploitation and possible future work. 

2 Background 

The last decade has brought explosive growth in the technology for manufac- 
turing integrated circuits. Integrated circuits with several million transistors 
are now commonplace. This manufacturing capability, combined with the eco- 
nomic benefits of large electronic systems, is forcing a revolution in the design 
of these systems and providing a challenge to those people interested in inte- 
grated system design. Since modern circuits are too complex for an individual 
designer or a group of designers to comprehend completely, managing this 
tremendous complexity and automating the design process have become cru- 
cial issues. 

A large subset of problems in VLSI CAD is computationally intensive, 
and future CAD tools will require even more accuracy and computational 
capabilities from these tools. In the combinatorial sense, the layout prob- 
lem is a constrained optimization problem. We are given a circuit (usually a 
module-wire connection-list called a netlist) which is a description of switch- 
ing elements and their connecting wires. We seek an assignment of geometric 
coordinates of the circuit components (in the plane or in one of a few planar 
layers) that satisfies the requirements of the fabrication technology (sufficient 
spacing between wires, restricted number of wiring layers, and so on) and 
that minimizes certain cost criteria. The most common way of breaking up 
the layout problem into subproblems is first to do logic partitioning where a 
large circuit is divided into a collection of smaller modules according to some 
criteria, then to perform component placement, and then to determine the 



approximate course of the wires in a global routing phase. This phase may be 
followed by a topological-compaction phase that reduces the area requirement 
of the layout, after which a detailed-routing phase determines the exact course 
of the wires without changing the layout area. 

2.1 Circuit Partitioning 

Circuit partitioning is the task of dividing a circuit into smaller parts. It is 
an important aspect of layout for several reasons. Partitioning can be used 
directly to divide a circuit into portions that are implemented on separate 
physical components, such as printed circuit boards or chips. Here, the ob- 
jective is to partition the circuit into parts such that the sizes of the compo- 
nents are within prescribed ranges and the complexity of connections (nets 
cut) between the components is minimized. Figure 1 presents a circuit that 
is partitioned into two blocks (partitions) with a single cut introduced. The 
inputs/outputs of the circuit represent the terminals (110 pads) of the circuit. 
All gates/cells are interconnected by using nets (hyperedges). 

Fig. 1. Circuit Partitioning & Terminology 

2.2 Benchmarks 

The quality of solutions obtained for the circuit partitioning problem are based 
on a set of hypergraphs that are part of widely used ACM/SIGDA [12] circuit 
partitioning benchmarks suite. The characteristics of these hypergraphs are 
shown in Table 1. The second column of the table shows the number of cells 
within the circuit. The third column presents the number of nets connecting 
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the cells within the benchmarks. The total number of pins (i.e connections) 
within the circuit is summarized in column four. The last two columns sum- 
marize the statistics of the circuit (i.e connectivity). 

Table 1. Benchmarks Used as Test Cases 

Circuit Cells Nets Pins Cell Degree Net Size 
MAX f a MAX f a 

462 7 3.1 1.6 17 3.1 2.2 
2908 9 3.4 1.2 18 3.2 2.5 

2.3 Heuristic Techniques for Circuit Partitioning 

Heuristic algorithms for combinatorial optimization problems in general and 
circuit partitioning in particular can be classified as being constructive or 
iterative. Constructive algorithms determine a partitioning from the graph 
describing the circuit or system, whereas iterative methods aim at  improv- 
ing the quality of an existing partitioning solution. Constructive partition- 
ing approaches are mainly based on clustering[3, 61, spectral or eigenvector 
methods[5], mathematical programming or network flow computations. To 
date, iterative improvement techniques that make local changes to an initial 
partition are still the most successful partitioning algorithms in practice. The 
advantage of these heuristics is that they are quite robust. In fact, they can 
deal with netlists as well as arbitrary vertex weights, edge costs, and balance 
criteria. 

Constructive Based Techniques (GRASP) 

GRASP is a greedy randomized adaptive search procedure that has been 
successful in solving many combinatorial optimization problems efficiently [8, 



41. Each iteration consists of a construction phase and a local optimization 
phase. The construction phase intelligently constructs an initial solution via 
an adaptive randomized greedy function. Further improvement in the solution 
produced by the construction phase may be possible by using either a simple 
local improvement phase or a more sophisticated procedure in the form of 
Tabu Search or Simulated Annealing. The construction phase is iterative, 
greedy and adaptive in nature. It  is iterative because the initial solution is 
built by considering one element at  a time. The choice of the next element to 
be added is determined by ordering all elements in a list. The list of the best 
candidates is called the restricted candidate list (RCL). It is greedy because 
the addition of each element is guided by a greedy function. The construction 
phase is randomized by allowing the selection of the next element added to 
the solution to be any element in the RCL. Finally, it is adaptive because 
the element chosen at  any iteration in a construction is a function of those 
previously chosen. 

Iterative Improvement 

Kernighan and Lin (KL) [lo] described a successful iterative heuristic pro- 
cedure for graph partitioning which became the basis for most module 
interchange-based improvement partitioning heuristics used in general. Their 
approach starts with an initial bisection and then involves the exchange of 
pairs of vertices across the cut of the bisection to improve the cut-size. The 
algorithm determines the vertex pair whose exchange results in the largest 
decrease of the cut-size or in the smallest increase, if no decrease is possible. 
A pass in the Kernighan and Lin algorithm attempts to exchange all vertices 
on both sides of the bisection. At the end of a pass the vertices that yield the 
best cut-size are the only vertices to be exchanged. Fiduccia and Mattheyses 
(FM) [7] modified the Kernighan and Lin algorithm by suggesting to move 
one cell a t  a time instead of exchanging pairs of vertices, and also introduced 
the concept of preserving balance in the size of blocks. The FM method re- 
duces the time per pass to linear in the size of the netlist (i.e O(p), where p is 
the total number of pins) by adapting a single-cell move structure, and a gain 
bucket data structure that allows constant-time selection of the highest-gain 
cell and fast gain updates after each move. 

Figure 2(a) shows the swap/move of modules between blocks that may 
lead to a reduction of nets cut. Each module is initially labeled to be free "F" 
to move, but once moved during a pass it is relabeled to be locked "L". The 
gain of moving a specific module from one partition to another is maintained 
by using the bucket gain data structure (shown in Figure 2(b)). At the end of 
a pass only those modules that contribute to the highest gain (i.e reduction 
in cut size) are allowed to move to their new destination (as illustrated in 
Figure 2 (c)) . 

Figure 3 shows the basic Fiduccia-Mattheyses (FM) algorithm used for 
circuit partitioning[7]. 
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(a) SwappinglMoving of modules 

ib )  The Bucket Gain Caneepl 

Gain array 

Fig. 2. Basic techniques for Interchange Methods 

currentsolution t initialsolution 
current-cost t evaluate(currentsolution) 
Repeat 

initialize partition 
While (canmove(modu1es)) 

choose cell with highest gain 
update gains of all cells 
if (current-gain > previous-gain) 

bestgain = current-gain 
end while 
move nodes pointed to by bestgain-ptr 
if (no improvement) 

++noimp-counter 
Until((pass > MaxPass) OR 

(noimp > MaxNoImp)) 

Fig. 3. Fiduccia Mattheyses Algorithm 



Sanchis [13] uses the above technique for multiple way network partition- 
ing. Under such a scheme, we should consider all possible moves of each free 
cell from its home block to any of the other blocks, a t  each iteration during 
a pass the best move should be chosen. As usual, passes should be performed 
until no improvement in cutset size is obtained. This strategy seems to offer 
some hope of improving the partition in a homogeneous way, by adapting the 
level gain concept to multiple blocks. 

Table 2 presents the results obtained using Sanchis local search technique 
for two-way and multi-way partitioning. The results are the average of fifty 
runs. The CPU time increases dramatically as the number of partitions in- 
crease in size from 2-way to Cway and ultimately to 8-way partitioning. In 
general, node interchange methods are greedy or local in nature and get easily 
trapped in local minima. More important, it has been shown that interchange 
methods fail to converge to "optimal" or "near optimal" partitions unless 
they initially begin from "good" partitions. Sechen [14] shows that over 100 
trials or different runs (each run beginning with a randomly generated initial 
partition) are required to guarantee that the best solution would be within 
twenty percent of the optimum solution. In order for interchange methods to 
converge to "near optimal" solutions they have to initially begin from "good" 
starting points [2]. 

Table 2. Multi-Way Partitions Based on Local Search 

Circuit 

F'ract 
Prim1 
Struct 

Indl 
Prim2 

Bio 
Ind2 
Ind3 

Avqs 
Avq.1 
Ibm05 

ibm07 
ibml0 
ibml3 

2 Blocks 
Cuts 

11 
58 
46 

30 
230 
91 
507 
396 

453 
460 
2451 

1350 
1972 
1560 

CPU 

0.3 
2.3 
5.8 

7.2 
12.4 
28.4 
70.4 
63.5 

126.2 
178.1 
329.4 

518.3 
1068 
1365 

4 Blocks 
Cuts 

28 
148 
195 

245 
636 
532 
1759 
1675 

2151 
2594 
8922 

13527 
22331 
26710 

CPU 

0.3 
2.7 
6.4 

8.3 
13.3 
45.8 
143.1 
118.4 

309.9 
321.8 
1618 

4437 
12855 
16456 

6 Blocks 
Cuts 

48 
171 
264 

364 
773 
726 
2162 
2636 

2436 
2728 
9629 

15922 
26544 
31949 

8 Blocks 
CPU 

0.4 
3.3 
8.4 

12.5 
19.1 
71.9 
272.2 
190.2 

499.5 
594.5 
3719 

11820 
40252 
53715 

Cuts 

56 
189 
312 

374 
804 
806 
2141 
2862 

2641 
3027 
9894 

17011 
27835 
34171 

CPU 

0.5 
4.0 
10.5 

16.6 
28.0 
105.9 
394.4 
280.7 

674.7 
857.1 
6059 

23185 
79470 
105000 
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3 Genetic Algorithms 

As an optimization technique, Genetic Algorithms simultaneously examine 
and manipulate a set of possible solutions. Figure 4 illustrates a Genetic Al- 
gorithm implementation for circuit partitioning. 

A PURE GENETIC ALGORITHM 
1. Represent Problem Using Group Number Encoding 
2.(a) set popsize, max-gen, gen=O; 

(b) set crossrate, mutaterate; 
3. Initialize Population. 
4. While max-gen 1 gen 

Evaluate Fitness (Cuts) 
For (i=l to popsize) 

Select (matel,mate2) 
if (rnd(0,l) < crossrate) 

child = Crossover(matel,mate2); 
if (rnd(0,l) 5 mutaterate) 

child = Mutation(); 
Repair child if necessary 

End For 
Add offsprings to New Generation. 
gen = gen + 1 

End While 
5. Return best chromosomes (Partitions). 

Fig. 4. A Genetic Algorithm for Circuit Partitioning 

The GA starts with several alternative solutions to the optimization prob- 
lem, which are considered as individuals in a population. These solutions are 
coded as binary strings, called chromosomes. Figure 5 shows a group number 
encoding scheme to represent the partitioning problem where the j th  integer 
ij E ( 1 , .  . . , I c )  indicates the group number assigned to object j. 

The initial population is constructed randomly. These individuals are eval- 
uated, using the partitioning-specific fitness function. The GA then uses these 
individuals to produce a new generation of hopefully better solutions. In each 
generation, two of the individuals are selected probabilistically as parents, with 
the selection probability proportional to their fitness. Crossover is performed 
on these individuals to generate two new individuals, called oflspring, by ex- 
changing parts of their structure. Thus each offspring inherits a combination 
of features from both parents. The next step is mutation where an incremental 
change is made to each member of the population, with a small probability. 
This ensures that the GA can explore new features that may not be in the 
population yet. It  makes the entire search space reachable, despite the finite 
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Nets Cut 

Block l 

Group Number Encoding 

Fig. 5. Chromosome Representation for Circuit Partitioning 

population size. However an offspring may contain less than k groups; more- 
over, an offspring of two parents, both representing feasible solutions may be 
infeasible, since the constraint of having equal number of modules in each 
partition is not met. In this case either special repair heuristics are used to 
modify chromosomes to become feasible, or penalty functions that penalize 
infeasible solutions, are used to eliminate the problem. 

3.1 Crossover & Mutation 

Figure 6 shows the crossover/mutation operators used for the circuit parti- 
tioning problem. Operators in the reproduction module, mimic the biological 
evolution process, by using unary (mutation type) and higher order (crossover 
type) transformation to create new individuals. Mutation as shown in Fig- 
ure 6(a) is simply the introduction of a random element, that creates new 
individuals by a small change in a single individual. When mutation is applied 
to a bit string, it sweeps down the list of bits, replacing each by a randomly 
selected bit, if a probability test is passed. On the other hand, crossover recom- 
bines the genetic material in two parent chromosomes to make two children. 
It is the structured yet random way that information from a pair of strings is 
combined to form an offspring. Crossover begins by randomly choosing a cut 
point K where 1 5 K 5 L, and L is the string length. The parent strings are 
both bisected so that the left-most partition contains K string elements, and 
the rightmost partition contains L - K elements. The child string is formed 
by copying the rightmost partition from parent PI and then the left-most 
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partition from parent P2. Figure 6(b) shows an example of applying the stan- 
dard crossover operator (sometimes called one-point crossover) to the group 
number encoding scheme. Increasing the number of crossover points is known 
to be multi-point crossover as seen in Figure 6(c). 

Fig. 6. Mutation & Crossover Operators 

Figure 7 and Figure 8 show the affect of mutation rate on the quality of 
solutions obtained. Figure 9 and Figure 10 highlight the importance of tuning 

Mutation Rate vs Cutsize 
1200 , 9 ! 9 8 8 1 , 

fract - 
struct 

*. ..~ ~. .~. ~.. .~ ..... . ~. .... ~.. - - -  - - - - - - -  - 

0 5 10 15 20 25 30 35 40 45 50 
% Mutation Applied 

Fig. 7. Mutation Rate (Small Circuits) 

the crossover rate and its affect on the solution quality. Figures 11, 12, 13 
show the affect of crossover points. It  is clear from the figures that multi-point 
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Fig. 8. Mutation Rate (Very Large Circuits) 

Crossover Rate vs Cutsize 
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Fig. 9. Crossover Rate (Small Circuits) 
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Fig. 10. Crossover Rate (Large Circuits) 
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crossover performs much better than one-point crossover technique. A 3-point 
and $-point crossover works best for our circuit partitioning problem. 

Crossover Points vs Cutsize 
300 1 I 

I 
1-point %point 3-point 4-point 

Crossover Points 

Fig. 11. Crossover Points (Small Circuits) 

Crossover Points vs Cutsize 
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Fig. 12. Crossover Points (Medium Circuits) 

3.2 Population/Generation Size 

The size of the population is one of the most important choices in imple- 
menting any Genetic Algorithm and is considered to be critical for several 
applications. If the population size is too small then this may lead to early 
convergence and if it is too large this may lead to huge computation time (i.e 
waste of computational resources). Figure 14 shows the affect of the popula- 
tion size on the quality of solutions obtained for large circuits. The population 
in any Genetic Algorithm implementation evolves for a prespecified total num- 
ber of generations under the application of evolutionary rules. The generation 
size is crucial in any Genetic Algorithm implementation. As the number of 
generations increase the quality of solutions improve, but the computation 
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Fig. 13. Crossover Points (Very Large Circuits) 

Population Size vs Cutsize 
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Fig. 14. Population Size (Large Benchmarks) 

Population Size vs Cutsize 

45000 , , , , , 9 40000 )-- ---... 
j*--.-.-.-._._.._._.. % ....... ~ .... ~ .-.... x ~ ~ . . - ~ ~ ~ .  ~~~ ...... x~~~~ ~ ..-.. ~ ... 

35000 
30000 
25000 
20000 

0 100 200 300 400 500 600 700 800 900 1000 
Chroms in the Population 

Fig. 15. Population Size (Very Large Benchmarks) 
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time involved increases dramatically. Figure 16 and Figure 17 show the affect 
of generation size on the solution quality obtained based on large circuits and 
very large circuits respectively. 

Generation Size vs Cutsize 
18000 
16000 
14000 

0 50 100 150 200 250 300 350 400 450 500 

Generation 

Fig. 16. Affect of Generation Size for Large Benchmarks 

Generation Size vs Cutsize 
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Fig. 17. Affect of Generation Size for Very Large Benchmarks 

3.3 Selection Techniques 

Strings are selected for mating based on their fitness, those with greater fitness 
are awarded more offspring than those with lesser fitness. Parent selection 
techniques that are used, vary from stochastic to deterministic methods. The 
probability that a string i is selected for mating is pi, "the ratio of the fitness 

itnessi of string i to the sum of all string fitness values", pi = E! :ItitnPsr. The ratio 
3 

of individual fitness to the fitness sum denotes a ranking of that string in 
the population. The Roulette Wheel Selection method (Gsml) is one of the 
stochastic selection techniques that is widely used. The ratio pi is used to 
construct a weighted roulette wheel, with each string occupying an area on 



the wheel in proportions to this ratio. The wheel is then employed to determine 
the string that participates in the reproduction. A random number generator 
is invoked to determine the location of the spin on the roulette wheel. In 
Deterministic Selection methods, reproduction trials (selection) are allocated 
according to the rank of the individual strings in the population rather than by 
individual fitness relative to the population average. Several selection methods 
have been implemented as seen in Figure 18 and 19. The technique referred 
to as GsmO is a deterministic technique where parents are picked uniformly 
one after the other from the population. Gsml is the stochastic roullette 
wheel technique. In Gsm2 the population is sorted according to their fitness 
each trial the best two in the list are chosen for mating. Gsm3 is similar to 
Gsm2 except that the first half of the sorted list would take higher chances 
for mating than the rest of the population at  the end of the list. Gsm4 and 
Gsm5 are based on a ranking technique. The last two approaches Gsm6 and 
Gsm7 are based on Tournament with replacement and without replacement 
respectivley. It  is clear from Figures 18 and 19 that Tournament Selection 
with replacement gives the best solution quality compared to other selection 
techniques. 

Selection Technique vs Cutsize 
1400 1 I 

Gsm0 Gsml Gsm2 Gsm3 Gsm4 Gsm5 Gsm6 Gsm7 
Selection Technique 

Fig. 18. Selection vs Cutsize (Medium Circuits) 

3.4 Replacement Strategy 

Generation replacement techniques are used to select a member of the old 
population and replace it with the new offspring. The quality of solutions 
obtained depends on the replacement scheme used. Some of the replacement 
schemes used are based on: (i) deleting the old population and replacing it 
with new offsprings (R-ap), (ii) both old and new populations are sorted and 
the newly created population is constructed from the top half of each (R- 
hp), (iii) replacing parent with the child if newly created member is more fit 
(R-pc) (iv) replacing the most inferior members (R-mi) in a population by 
new offsprings. Figure 20 and 21 show the performance of each replacement 
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Selection Technique vs Cutsize 
18000 1 I 

Selection Technique 

Fig. 19. Selection vs Cutsize (Large Circuits) 

a 

16000 

technique for large circuits and very large circuits respectivley. It  is evident 
from the Figures that (R-ap) and (R-pc) perform poorly with respect to (R- 
hp) and (R-mi). Variations to (R-hp) scheme use an incremental replacement 
approach, where at  each step the new chromosome replaces one randomly se- 
lected from those which currently have a below-average fitness. The quality 
of solutions improve using (R-hp) and (R-mi) replacement schemes due to 
the fact that they maintain a large diversity in the population. Our genera- 
tion replacement technique utilized in both the pure Genetic Algorithm and 
Memetic Algorithm for circuit partitioning are based on replacing the most 
inferior member (R-mi) in a population by new offsprings. 

2000 
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- 

Fig. 20. Replacement Strategy vs Cutsize (Large Circuits) 
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3.5 Computational Results for GA 
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Table 3 shows the solution quality for multi-way partitioning and CPU time 
involved. It is interesting to note that the Genetic Algorithm solution quality 
compared to Local Search is better for small, medium and large circuits for 
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Fig. 21. Replacement Strategy vs Cutsize (Very Large Circuits) 

2-way and multi-way partitions. As the size of the circuit increases, the perfor- 
mance of GA deteriorates (as can be seen for benchmarks ibm07, ibmlO and 
ibml3). On the other hand the complexity of Genetic Algorithm in terms of 
CPU time is linear as the number of blocks increases. For example, comparing 
Table 2 and Table 3 for benchmark ibml3, the GA technique cuts the CPU 
time by almost 50%. 

Table 3. Genetic Algorithm Solution Quality for Multi-Way Partitioning 

Circuit 
Cuts 
39 
145 
161 

111 
325 
266 
1010 
1337 

986 
1002 
11890 

18183 
29108 
38186 

2 Blocks 
Cuts I CPU 1 1  

4 Blocks 
Cuts 
52 
159 
255 

159 
557 
367 
1590 
2341 

1425 
1426 
13704 

20499 
32983 
43139 

6 Blocks 
CPU 1 

24 1 
Prim1 
Struct 277 

Bio 
Ind2 272 2103 
Ind3 491 3106 

Comparing results obtained by the Genetic Algorithm with those based 
on Local Search we can conclude the following. (i) GA's are not guaranteed 
to  find the global optimum solution to a problem, but they are generally good 

8 Blocks 
Cuts I CPU 
49 1 28 

Avq.s 
Avq.1 

464 
465 

3911 
3999 
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at finding "acceptably good" solutions to problems, (ii) Where specialized 
techniques exist for solving particular problems, they are likely to out-perform 
GA's in both speed and accuracy of the final result. Another drawback of 
Genetic Algorithms is that they are not well suited to perform finely tuned 
search, but on the other hand they are good at  exploring the solution space 
since they search from a set of designs and not from a single design. Genetic 
Algorithms are not well suited for fine-tuning structures which are close to 
optimal solutions [9]. Incorporation of local improvement operators into the 
recombination step of a Genetic Algorithm is essential if a competitive Genetic 
Algorithm is desired. 

4 Memetic Algorithms 

Memetic algorithms (MAS) are evolutionary algorithms (EAs) that apply a 
separate local search process to refine individuals (i.e improve their fitness by 
hill-climbing). Under different contexts and situations, MAS are also known 
as hybrid EAs, genetic local searchers. Combining global and local search is 
a strategy used by many successful global optimization approaches, and MAS 
have in fact been recognized as a powerful algorithmic paradigm for evolution- 
ary computing. In particular, the relative advantage of MAS over GA is quite 
consistent on complex search spaces. Figure 22 shows one possible implemen- 
tation of a Memetic algorithm based on the Genetic Algorithm introduced 
earlier in Section 3. We use a simple variation of the Fiduccia and Mattheyses 
(FM) heuristic [13]. The original FM heuristic has several passes after which 
the heuristic terminates as presented in Section 2. In the local optimization 
phase, a single pass is allowed, furthermore a restriction on the number of 
modules to be moved is set to a certain value. It  is to  be noted that if local 
optimization is not strong enough to overcome the inherent disruption of the 
crossover, more strong local optimization is needed. 

4.1 Computational Results for MA 

Table 4 shows the results obtained from the Memetic Algorithm. The first 
column in the table MA-ii is the direct application of local search on each 
chromosome in the population at  only the initial stage. The secon column 
MA-gi is the direct application of local search on each chromosome in the 
population in every generation. It  is clear that MA-gi performs better fine 
tuning and exploitation than MA-ii which only attempts to fine tune the 
search at  an early stage. MA-hi is in affect the combination of MA-ii with 
MA-gi such that after an early exploitation of the landscape the system at- 
tempts to explore and exploit the solution space simultaneously. The results 
in the table indicate that the combination does not have a drastic affect on 
the final solution quality even though an improvement of 2-3% is achieved. 
The fourth column in the table MA-ci is the direct application of GRASP 



MEMETIC ALGORITHM 
1. Encode Solution Space 
2.(a) set popsize, maxgen, gen=O; 

(b) set crossrate, mutaterate; 
3. Initialize Population Randomly. 
** Utilize GRASP to  Construct Initial Population (MA-ci) 
** Apply Local Search to  Initial Population (MA-ii) 
4. While(Gen < Gensize) 

Apply Generic GA 
** Apply F M  Local Search to  Population (MA-gi) 
EndWhile /* end of a run */ 
** Apply Final Local Search to  Best Chromosome (MA-fi) 

Fig. 22. The Memetic Algorithm 

to effectively construct good intial solutions for the Genetic Algorithm. The 
system achieves an improvement of 65% over MA-ii and 51% over MA-gi for 
the largest benchmark (ibml3). Experimental results indicate that less than 
25% of the population should be injected with good initial solutions for MA-ci 
to perform well. The last column in the table MA-ci-gi is a combined M A 4  
and MA-gi approach where good intial solutions are injected into the initial 
population followed by a balanced exploration (via crossover, mutation) and 
exploitation (via a single pass of local search) stage. It is quite evident that 
this Memetic Algorithm approach achieves the best overall results compared 
to the previously mentioned methods (i.e MA-ii, MA-gi and MA-hi). The 
overall improvement obtained (over MA-hi) for the largest circuits are: 61% 
for ibm07, 50% for ibmlO and over 66% for the largest benchmark ibml3. 

5 Results & Analysis 

In this section we will summarize the results obtained using (i) Local Search 
(ii) Genetic Algorithms (iii) Memetic Algorithm. Table 5 presents the results 
obtained by the three techniques mentioned above for four way partitioning. 
As can be seen in Table 5 the Memetic Algorithm obtains on average better 
solutions (cuts) than the Local Search technique. As the benchmarks increase 
in size the quality of solutions obtained using the local search technique dete- 
rioates. A comparison between the pure Genetic Algorithm and the Memetic 
Algorithm reveals the importance of embeding local search within GA to im- 
prove its performance. The affect of exploitation shows very clearly for the 
large benchmarks (ibmO7, ibmlO and ibml3). 
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Table 4. Comparison of Several Memetic Algorithm Implementations 

Circuit MA-ii MA-gi M 
Cuts I CPU II Cuts I CPU I1 Cuts 

Fract 47 24 37 
Prim1 131 157 145 
Struct 1 1  165 1 
Indl 1 1  100 1 

-ci MA-c 
CPU II Cuts I 

. . 
1-gl 

CPU 

351 

34322 

Table 5. Comparison between LS, GA and MA 

Circuit 

Fract 
Prim1 
Struct 

I n d l  
Prim2 

Bio 
Ind2 
Ind3 

Avq.s 
Avq.1 
Ibm05 

ibm07 
ibmlO 
ibml3  

Local Search 
Cuts  

28 
148 
195 

245 
636 
532 
1759 
1675 

2151 
2594 
8922 

13527 
22331 
26710 

CPU 

0.3 
2.7 
6.4 

8.3 
13.3 
45.8 
143 
118 

309 
321 
1618 

4437 
12855 
16456 

Genetic Algorithms 
Cuts 

39 
145 
161 

111 
325 
266 
1010 
1337 

986 
1002 

11890 

18183 
29108 
38186 

CPU 

24 
156 
344 

408 
581 
1122 
2778 
4645 

4831 
6336 
8158 

16901 
30507 
41371 

Memetic Algorithms Improvement 
Cuts  

35 
103 
127 

90 
265 
233 
587 
1185 

882 
965 

5158 

6485 
10119 
8152 

LS 

-20% 
+30% 
+34% 

+63% 
+58% 
+56% 
+66% 
+29% 

+59% 
+62% 
+42% 

+52% 
+54% 
+69% 

CPU 

24 
159 
351 

416 
621 
1147 
2832 
4837 

5019 
6319 
8948 

18096 
34322 
45438 

GA 

+lo% 
+29% 
+21% 

+18% 
+18% 
+12% 
+41% 
+ l l %  

+lo% 
+4% 

+56% 

+64% 
+65% 
+78% 



6 Conclusions 

Memetic Algorithms (MAS) are Evolutionary Algorithms (EAs) that apply 
some sort of local search to further improve the fitness of individuals in the 
population. This paper provides a forum for identifying and exploring the key 
issues that affect the design and application of Memetic Algorithms. Several 
approaches of integrating Evolutionary Computation models with local search 
techniques (i.e Memetic Algorithms) for efficiently solving underlying VLSI 
circuit partitioning problem were presented. A Constructive heuristic tech- 
nique in the form of GRASP was utilized to inject the initial population with 
good initial solutions to diversify the search and exploit the solution space. 
Furthermore, the local search technique was able to enhance the convergence 
rate of the Evolutionary Algorithm by finely tuning the search on the imme- 
diate area of the landscape being considered. Future work involves adaptive 
techniques to fine-tune parameter of the Genetic Algorithm and Local Search 
when combined to form a Memetic Algorithm. Balancing exploration and ex- 
ploitation is yet another issue that needs to be addressed more carefully. 
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Summary. This chapter reports the results of Multimeme algorithms that employ 
adaptive helpers. A Multimeme Algorithm resorts to a variety of local search neigh- 
borhoods for its local search stage allowing for a more robust global search. Each 
neighborhood is explored by an adaptive helper that allows no;-improving moves 
that render the Memetic algorithm even more robust to deceptive local optima. We 
will report results on the use of a single adaptive helper Memetic algorithm for the 
Traveling Salesman Problem (TSP) and on adaptive helpers within a Multimeme 
algorithm for the TSP and Protein Structure Prediction Problem (PSP). 

1 Introduction 

Memetic algorithms are evolutionary algorithms that include, as part of the 
"standard" evolutionary cycle of crossover-mutation-selection, a local search 
stage. They have been extensively studied and used on a wide range of 
problems. Multimeme evolutionary algorithms were introduced by Krasno- 
gor and Smith [28] and applied to OneMqNK-Landscapes, TSP and two 
bioinformatic problems, Protein Structure Prediction and Protein Structure 
Alignment [23], [5] and 1111 ,[MI. The distinction between Memetic and Mul- 
timeme Algorithms is that the former uses only one (usually complex) local 
search while the later employs a set of (usually simple) local searchers. Multi- 
meme algorithms self-adaptively select from this set which heuristic to use for 
different stages of the search process. This kind of algorithm exploits features 
from Evolutionary Algorithms and Variable Neighborhood Search (by virtue 
of its multi-operator local search). In [23] we proposed two alternative ways 
an MA can achieve a more robust search: 

the MA can use several local searchers that explore the search space from 
complementary perspectives (i.e., the MA is a Multimeme algorithm) or 
the MA can somehow reduce its "greediness" by either not using elitist 
replacement strategies or by exploiting operators that can lead to deteri- 
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orated points from which progress can be achieved at  a later stage of the 
search. 

The rationale for these two criteria are studied in detail in [23]. 
In this paper we will show one possible realization of these two points 

for the implementation of Multimeme algorithms[28]. The paper is divided 
in 3 parts. In the first part we will introduce a formalism that will help us 
motivate the design of our algorithms. In the second part we describe a Monte 
Carlo helper that by adapting the temperature at  which it performs its search 
strategically oscillates between periods of exploitation of solutions and phases 
of exploration. The adaptive helper effectively reduces the greediness of the 
MA and in turn helps to sustain population diversity for longer periods of 
time. Part 3 will see the integration of the two design issues mentioned above 
by employing several local searchers, where each one of them is realized as an 
adaptive helper. 

2 Search in a Multidimensional Landscape 

This section describes the concept of local optima and basins of attractions for 
a multidimensional fitness landscape. This is done to motivate the particular 
choices we made to address the integration of several local searchers and the 
reduction of the "greediness" of our MAS (while preserving the benefits of 
local search and maintaining population diversity). 

2.1 Local Optima, Basins of Attraction and the Dynamics of 
Search 

In [2] a formalism is introduced to describe the topology of multidimensional 
fitness landscapes in the context of molecular dynamics. We will briefly de- 
scribe the main ideas of this approach, adapted to memetic search on discrete 
spaces. Later we will use this formalism to illustrate the utility of the adaptive 
helpers that are going to be introduced in this paper. 

Suppose that a memetic algorithm is trying to optimize a multidimensional 
function @ that takes as argument objects from a discrete space S and maps 
them into a scalar field, i.e. 8. We can assume that I will have several local 
optima. These local optima can be described as a discrete set, M ,  indexed 
by a. This set can be obtained if we fix an operator o by direct minimization 
from a point s E S to a point a E S which is a local optimum for I is found. 
Let's call this mapping MO(s)lS {a) .  Each a has an associated basin of 
attraction R(a) .  The basin of attraction for a is composed of all those points 
in S for which a is its nearest local optimum (by means of the operator 0). 
That is, S = U R(a)  for every a a local optimum. 

Having the set of local optima for I is not very informative, because we lack 
the information on how those basins are interconnected, which is the internal 
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constitution of each basin, the size of the basins, which fitness barriers separate 
them, etc. One way around this is to extend the mapping M0 by redefining 
R as R'(al) = U R(a). That is, R'(al) is the union of all the R(a)  basins 
that are connected by fitness barriers lower than E. In this sense RE(a') is a 
super basin that groups together all those basins R(a)  such that a path from 
v E R(al )  to u E R(a2) never crosses a barrier higher than 6 ( this is for any 
R(a l ) ,  R(a2) C RE(a') ). 

In turn a' is defined as the lowest local minimum in RE(a'),  that is, 
a' = min{ala E R(a),  R(a)  C R'(al)). By considering different values of 
6 (i.e. fitness barriers of different heights) we can obtain a more detailed de- 
scription of the multidimensional landscape (under the view of operator 0). 
A hypothetical multidimensional fitness landscape represented by the itera- 
tive mapping M: for various e's is depicted in figure 1. This graph was called 
"Disconnectivity Graph", DG for short, in [2]. In the figure, five iterations of 
the map can be seen for five different e values . Each value corresponds to 
a horizontal level (marked as -2,-1,0,1 or 2 in the picture) with the root of 
the tree, node A, the largest basin calculated with the highest 6 for a fitness 
barrier. Basin A represents all the basins of attractions of local optima that 
are connected by walks in the landscape that never cross barriers higher then 
€2 (the 6 corresponding to level 2). The higher the value for Q (for some level 
i in the graph) the broader the features the graph associated with the map 
will be able to show. To gain higher details of the multidimensional fitness 
landscape associated with @, the map can be iterated with smaller and smaller 
E'S. In one extreme, the highest possible barrier between any two optima is 
the difference between the global optimum and the worst local optimum. In 
this case, the graph will have a unique vertex representing all the possible 
basins. On the other hand, when E takes the smallest possible value, i.e. the 
difference between the two closest local optima value, the graph will display 
information about every single barrier. This, in turn, makes the concept of 
super basins and long range topological features associated with @ disappear. 
For the disconnectivity graph to be of use it needs to include a range of E 

values within the extreme cases described above. 

2.2 Dynamics of Search 

In general, a memetic algorithm will start searching with a population rep- 
resenting several of the vertices of the DG. The population will eventually 
collapse to a certain basin of attraction represented by a particular a in agree- 
ment with theoretical analysis like those done in [23]. For example, our MA 
can start in vertex A, move down to B and C and after a number of genera- 
tions down to D. If the MA were to explore the unnamed basin connected to 
D by C, it will need to bypass a fitness barrier given by c0( associated to level 
0 to the right of the graph). Equivalently, if the memetic search were trapped 
in basin B, and we hope that it will reach the global optima in H, then we 
need to provide the MA with a mechanism to jump across the fitness barrier 
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with an €2. That is, move from vertex A move down to E and eventually move 
to F,G and then H. 

Fig. 1. Schematic representation of  a landscape's attraction basins. 

As we can see from this example it will be desirable to provide the MA with 
a mechanism that can detect when the MA is trapped in a certain vertex of DG 
and jump over fitness barriers. We will introduce next one possible mechanism 
to accomplish this. While our approach is simple and proved effective we are 
not claiming here that this is the only, or the best, way to enforce a dynamic 
that is able to cross barriers in the landscape explored. Other studies relating 
operators, problems and instances to the barriers to be jumped can be worth 
doing in order to further specialize the method we are proposing. 

3 An Adaptive Helper for TSP and PSP 

In this paper we review the hybridization scheme for a Memetic Algorithm 
(MA) based on an adaptive helper that uses statistics from the GA's popu- 
lation. This adaptive helpers were introduced in [27] and [23]. We extend the 
results of those studies with new experiments and in a later section we will 
integrate those helpers within a Multimeme algorithm. 

The MA is composed of two optimization processes, a Genetic Algorithm 
and a helper which is a Monte Carlo method (MC). In contrast with other 
GA-Monte Carlo hybridized memetic algorithms, in this work the MC stage 
serves two purposes. First, when the population is diverse, it acts like a local 
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search procedure and second, when the population converges, its goal is to di- 
versify the search. To achieve this, the MC is adaptive based on observations 
from the underlying GA behavior; the GA controls the long-term optimization 
process. We present results on the application of this approach to the TSP 
problem. These results are going to be extended in subsequent sections for 
Protein Structure Prediction Problem. Moreover, we will integrate the adap- 
tive helpers with Multimeme Algorithms and present results. The adaptive 
helper we introduce here, by accepting moves in the search space that deteri- 
orate the value of the objective function, reduces the overall greediness of the 
MA. Additionally, it helps keeping the diversity of the population at higher 
values and prevents premature convergence. 

3.1 Introduction and Previous Related Works 

In [27] and [23] we reviewed several applications of evolutionary algorithms 
(in particular MAS) for the TSP. We refer the interested reader to [I91 and 
[21] for a large collection of papers and instances. 

The helper used later employs a Metropolis criterion to accept the can- 
didate solution. Thus, we will briefly discuss related papers that came from 
the Simulated Annealing (SA) literature. Those papers are related to our ap- 
proach in the sense that they are not standard annealing schemes but rather 
"multi-agent" annealing heuristics. We say multi-agent because they keep a 
population of solutions that cooperate through information exchange during 
the optimization process. In [I] Aarts et al. propose an architecture where the 
optimizing individuals are arranged in a hierarchical structure of increasing 
temperature. Every so often, individuals receive solutions from their topolog- 
ical neighbor that uses the highest temperature. They evaluate the solution 
received with the Boltzmann criteria and decide to keep their own or to jump 
to the neighbors' solution. The authors also propose an alternative archi- 
tecture where every agent works with the same starting solution across the 
hierarchy of temperatures. As soon as an agent accepts a new solution, every 
other agent update its own with the newly created point. Another multi-agent 
simulated annealing is that of Lee and Lee [17] where the individuals compare 
their solutions and all jump to the one with the better cost. Two memetic 
algorithms for the TSP that used simulated annealing as an aid to the search 
are those presented in [18] and [4]. In the first paper the authors introduce 
an MA that uses a single step of simulated annealing as its mutation stage 
and selection was itself implemented as a Boltzmann criterion. The anneal- 
ing schedule was the same for all the individuals. Boseniuk et al. presented 
a simple implementation of an MA with D = 4 (as per [23]) where the local 
search phase is SA. In K.D. Boese's Ph.D. thesis [3], extensive theoretical and 
experimental analyses of optimal infinite and finite time adaptive annealing 
schedules were done for a model of iterative global search by means of multi- 
agents. The instances used were small (i.e. 6 to 8 cities for the TSP) but the 
results were conclusive: The optimal annealing schedules he arrives at were 
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those which oscillate between temperature values of 0 and infinity or where 
the temperature was allowed to rise. Those results hold true for a number of 
combinatorial optimization problems. In that work we can read: 

Our analysis of small instances ... suggests that the preocupation with 
optimality of SM in the literature has incorrectly led to the assumption 
that cooling strategies are best. 

and in a subsequent chapter the author continues: 

... we have computed the optimal annealing temperature schedules 
for small combinatorial problems; these schedules can resemble multi- 
start, with alternating periods of greedy descent and randomization 
(corresponding to annealing at  zero and infinite temperatures) ... 

We can learn two lessons from the literature on Multi-Agent annealing 
schemes and MAS for TSP: 

In the memetic algorithm literature, keeping population diversity while 
using local search together with a GA is always an issue to be addressed, 
either implicitly or explicitly. Usually this takes the form of complex op- 
erators or sophisticated book-keeping and/or guiding strategies. 

0 In the multi-agent literature, different annealing schemes were proposed 
together with different ways of sharing either solutions, annealing sched- 
ules or temperatures. Several inter individual coupling mechanisms were 
investigated. 

3.2 The Adaptive Memetic Algorithm 

Our purpose here is to show the potential for both search and diversity in 
our approach. In this MA, the temperature reflects the state of the global 
search. As explained before, when fitnesses across the population converge we 
will assume that the MA is trapped in a certain vertex of the disconnectivity 
graph. The temperature is going to rise ( by design ) leading to a more ex- 
plorative global search that will allow the MA to jump over fitness barriers 
and eventually move to a different vertex of DG. Once the fitnesses in the 
population spread, the temperature will anneal, exploiting the solutions held 
by each individual. In a given generation, all members of the population use 
the same temperature. 

The reader should note that it is not the goal of this paper to develop a 
specialized TSP solver. We have used very naive and generic genetic opera- 
tors (i.e. crossover or mutation). The local search move that was employed is 
depicted below: 
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MA: 
Begin 
Initialize population Parents; 
Repeat Until ( Finalization-criteriamet ) Do 

For indip := first in Parents To last in Parents Do 
Local-Search(indip1 ; 

endDo 
matingpool := Select-mating (Parents) ; 
off springs := Cross(mating-pool) ; 
Mutate(of f springs) ; 
Parents := Select(Parents + off springs) ; 

endDo 
End. 

Local-Search(zndzp): 
Begin 

/* This is a Maximizing process */ 
prevFitness = fitness (indip) ; 
Modify (indip) ; 
nFitness = fitness(indip1; 
If (prevFitness < nFitness) Then 
Accept configuration; 

endIf 
Else 
deltaE = prevFitness - nFitness; 

d e l t a E  threshold = e-k* temperature - 
If (random(0,l) < threshold) Then 
Accept configuration; 
/* even if worse than the previous one */ 

endIf 
Else 
Reject changes; 

End. 

We describe next a general Adaptive Memetic Algorithm where the goal 
is to maximize the fitness1. In the basic algorithm used (shown above to the 
left), the Select (. . . ) procedure is a ( p  + A) or a (p ,  A) selection strategy, 
representing two extremes of selection pressure, with the plus-strategy hav- 
ing the highest pressure and the comma-strategy the lowest. We tried these 
two scenarios because we want to explore not only final tour length but also 
population diversity. We wanted to compare how well our adaptive memetic 
algorithm performs under these two extremes. 

For the TSP the length of a tour was multiplied by -1. 
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The local search/diversification procedure in the pseudo-code above sets 
1 the temperature to ImarFitness-avgFitnessl. It then applies to each member of 

the population the ApplyMove(. . .) operator (see pseudo-code above). Note 
that Modify (. . . ) can be any local search move (e.g. a 2swap, city insertion,k- 
exchange, etc.). The adaptation of the local search to either an exploitation 
or exploration behavior is governed by the temperature parameter. As it was 
mentioned before, the entire population shares the same temperature. This 
temperature determines the extent to which decreasing fitness moves will be 
allowed. As the spread of fitnesses within the population converges the tem- 
perature rises. As a consequence, each individual in the population will be 
more likely to be changed, exploring the search space. The extent by which a 
worsening move will be accepted is a function of both the individual fitness 
(i.e. its location in the search space) and the global state of the population (i.e. 
measured by the temperature). Eventually, the fitnesses will spread, lowering 
the population temperature. We prevent the modification by local-search of 
the best individual, hence the overall best fitness in each generation is always 
maintained. 

3.3 Experimental Method and Results 

For our experiments we used a population of 50 individuals. Crossover, muta- 
tion and local search were applied with probability 0.8, 0.05 and 1.0 respec- 
tively. We have chosen two instances from TSPLIB[21] to test our approach, 
eil76.tsp and lin318.tsp. These instances are of no particular difficulty and 
of relatively small size. We run 30 simulations under two different selection 
strategies, a (50,50) and a (50 + 50) strategy. We test our algorithms against 
four other algorithms, all of them sharing either of the selection strategies: 

(1) A standard Genetic algorithm (GA) with no local search of any kind, 
which constitutes the basis for constructing all the other algorithms tested (see 
section 3.3 for details). (2) A Hill Climber Memetic Algorithm (HC) which 
uses as local search the two-exchange(. . .) move but only accepts improve- 
ments. (3) A Boltzmann Hill Climber memetic algorithm (BHC) which uses 
the same decision procedures as the adaptive memetic algorithm but with a 
fixed temperature. The temperature was set to be the average (a  posteriori 
temperature employed by the our proposed adaptive MA in one of its runs. 
(4) A Linear annealing memetic algorithm (LMA) which uses the Boltzmann 
criteria to acceptlreject moves. In this case the temperature was set at  the 
beginning of the run to a value that was linearly annealed during the run. 

Each algorithm was run for 2000 generations, except the GA which was 
given 6000 generations to compensate for the use of extra fitness evaluations 
by the local searcher2. To compare the quality of our MA against the other 
four alternatives we look at  two measures, the quality of the best individual 

In fact, the GA employed more fitness evaluations than all the other MAS. 
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a t  the end of the run and the diversity of the population at  that time. The 
quality was equivalent to the tour length and the diversity the number of 
different fitnesses found in the population divided by the population size. We 
performed an ANOVA test on the averages of these measurements over the 30 
runs for the 5 algorithms. A total of 300 runs were analyzed 3.  More details 
for replicating the experiments can be found in [23]. 

Tables 1 and 2 summarize the results obtained. 
From table 1 (left) we can see that the proposed MA achieves better final 

tour length than the standard GA, the GA with a Hill climber (HC), the GA 
with a Boltzmann Hill Climber(BHC) and the linear annealed MA (LMA). 
These anova results are of statistical significance with a p-value of 0.01. The 
diversity results in table 2 show that the adaptive approach is capable of 
maintaining the diversity of the population on higher values than the other 
four algorithms. The differences are of statistical significance. 

As mentioned in the introduction, the use of local search within a GA usu- 
ally causes a premature convergence in the search space, hence maintaining a 
diverse population is crucial4. It  can be seen from the lower/upper diagonal of 
tables 1 and 2 that in most cases, when an algorithm beats another algorithm 
in one table, it beats (or is at  least equivalent to) the same one in the other 
table as well. 

We performed similar tests on a different mating and selection strategy. 
While the previous experiments used a tournament size of 2 and a (50,50) or 
(50 + 50) strategy, this new experiment employed a (50,200) and a (50 + 200) 
strategy with a tournament size of 4, effectively producing a very high selection 
pressure during both reproduction and survival phases. Tables 3 and 4 present 
the results obtained for instance eil76.tsp and lin318.tsp respectively. The only 
notable difference with the previous experiments is the instance lin318 results 
for the (50 + 200) case. The selection pressure was probably too high and 
hence no difference (with statistical significance) was found among the 4 MAS 
and the GA. 

In order to examine further the conduct of our approach under different 
operators and representations we changed the encoding from the one described 
above to a permutation encoding. We also used a PMX crossover keeping 
all the other parts of the 5 algorithms unmodified. Again, 30 runs of each 
algorithm under the two selection schemes were executed for 2000 (6000 in the 
GA case) generations.The results obtained were consistent with those shown 
above. The adaptive MA is better in both final tour length and diversity of 
the final population with a statistical significant difference (not shown here). 

30 runs per each one of the 5 algorithms per each one of the two selection strate- 
gies. 
This is of particular importance on MA applied to dynamic optimization and 
multi-objective optimization. 
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Table 1. Summary of  anova analysis for tour length under the (50,50)-strategy 
(left) and the (50 + 50)-strategy (right): + denotes that the algorithm that names 
the row achieves a longer tour than the one that names the column, - denotes that 
the algorithm that names the row achieves a shorter tour than the one that names 
the column, - or + with * denotes statistical significance up to at least a p-value o f  
0.05 

Table 2. Summary of anova analysis for population diversity under the 
(50,50)-strategy (left) and (50 + 50)-strategy (right) 

Table 3. Summary of  anova analysis for tour length under the (50,200)-strategy 
(left) and the (50 + 200)-strategy (right) with tournament size o f  4. (Instance 
Eil76. tsp) 

Table 4. Summary of  anova analysis for tour length under the (50,200)-strategy 
(left) and the (50 + 200)-strategy (right) with tournament size of 4. (Instance 
ling1 8. tsp) 

3.4 Adaptive MA Behavior 

Figure 2(a) we show a plot of the evolution of the fitness (tour length) of 
the best individual in the population and the population temperature as a 
function of time (generations) for a randomly selected run. Only the time 
window between generations 40 to 110 is shown. It  is easy to visually inspect 
the graph to note that all of the major fitness transitions are preceded by a 
peak in temperature and a subsequent fall in its value. Once a new best fitness 
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is established in the population the temperature starts to rise. At a certain 
point in time a new "discovery" is made by the MA and the temperature 
cools down. The behavior of our MA closely follows that of Boese's optimal 
schedules[3]; this is done in an adaptive fashion and for TSP instances that 
are one and two order of magnitude bigger than the ones he used. 

Fig. 2. Eil76.tsp: Tour length and Temperature (a), Tour Length and Diversity (b) 
as a function of generations. 

In figure 2(b) we plot the average fitness of the population and diversity 
for both the Adaptive and Hill Climber (T=O) MA. The diversity achieved a 
much higher level in the adaptive searcher while it was rapidly lost in the hill 
climber. Furthermore, the final tour length was much better with the adaptive 
approach. 

We suspect that the oscillations in the temperature approximately follow 
a power law, which (in the words of Coveney and Highfield[8]) represents 

"The fingerprint of self-organized criticality" 

We calculated the Fourier transformation of the temperature time series and 
we plot in figure 3 a log - log plot of amplitudes versus frequencies. Even 
though the time series is noisy it is possible to see that big amplitudes cor- 
respond with low frequencies following a linear trend in the graph. In terms 
of the search process this means that we can expect to have, for example, 
a change in temperature of magnitude 10, 10 times more frequently than a 
change of magnitude 100. 

4 Multimeme Algorithms with Adaptive Helpers 

In a Multimeme Algorithm an individual is composed of its genetic material 
(that represents the solution to the problem being solved, e.g. a candidate 
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10 100 
Frequencies 

Fig. 3. Fourier Analysis o f  the temperature time series. 

protein structure or a TSP tour in this paper) and its memetic material (that 
defines the kind of local searcher to use, e.g. alternative operators to improve 
a protein structure or a TSP tour). The mechanisms of genetic exchange 
and variation are the usual crossover and mutation operators but tailored 
to the specific problem one wants to solve. Memetic transmission is effected 
using the so called Simple Inheritance Mechanism (SIM)[28] where a meme 
(local searcher) L, at  time t - 1 that is carried by parent j (or k), will be 
transmitted to the offspring i if that meme is shared by all the parents. If 
they have different memes, L is associated to the fittest parent. Otherwise, 
when fitnesses(F(.)) are comparable and memes different, a random selection 
is made. The rationale is to propagate local searchers (i.e. memes) that are 
associated with fit individuals, as those individuals were probably improved 
by their respective memes. During mutation, the meme of an individual can 
also be overridden and a local searcher assigned a t  random (uniformly from 
the set of all available local searchers) based on the value of the innovation 
rate parameter. This is done to introduce novelty in the local search phase of 
the MMA. 
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In previous sections we showed how evolutionary search can be made more 
robust by the use of adaptive helpers that are capable of selecting (for short 
periods of time) worst points of the search space. Furthermore, these adaptive 
helpers are able to maintain population diversity and allow the search process 
to jump over deep minima and navigate wide neutral plateaus. 

In this part of the work we apply SIM to learn which is the best adaptive 
meme to employ during different stages of the search, effectively integrating 
the adaptive Monte Carlo helpers with the Multimeme algorithm. The case 
studies are the TSP and the PSP. By combining both approaches, a more 
competent[22] memetic algorithm is achieved. 

As was explained before, adaptive helpers were allowed to jump over fitness 
barriers as those depicted in Figure 1. The inclusion by a multimeme algorithm 
of several helpers can further aid that process. If the multimeme algorithm is 
trapped, let us say, in vertex E of Figure 1, then it can follow either F,G and 
finally H, or (by virtue of its several neighborhoods search) jump straight to 
vertex C, without using the higher basins A and B, and from C going down 
towards H (shown in the picture with dotted lines). 

While a multimeme algorithm based on SIM enables one to view the search 
space through the looking glass of several local searchers, it does not facilitate 
jumping over basins that are common to all of these searchers. On the other 
hand, an adaptive helper can jump over basins (effectively backtracking in 
the fitness landscape) but, as the theoretical analysis of [23] exemplified for 
the case of MAS for the TSP, sometimes even achieving a local optimum can 
take exponential time. Experimental evidence of a very long convergence to a 
local optimum was also found for the PSP[20]. 

By extending the capabilities of a multimeme algorithm (which searches 
through various neighborhoods) with adaptive helpers (that are capable of 
jumping over basins of attraction or navigate through wide neutral plateaus) 
we produce a more robust metaheuristic that benefits from the characteristics 
of both approaches. 

4.1 TSP, Experiment Description 

As in our previous investigation[l3] (where only static helpers were studied) 
we used 24 different memes; each meme defines the acceptance strategy, the 
underlying basic move and the number of iterations to use during the local 
search stage. There were two acceptance strategies, namely first-improvement 
and best-improvement. For static helpers as those used in [13] where only 
neighbor solutions with improved fitness are considered, the standard seman- 
tic is assumed for a first-improvement or a best-improvement strategy. How- 
ever, these need to be changed in our present case to reflect the fact that under 
the adaptive scenario chosen, deteriorating moves are allowed. In both cases, 
where no first-improvement or best-improvement was found (no better tour or 
better protein structure was reached from the starting solution), a lower qual- 
ity tour/protein structure was constructed and accepted (or rejected) based 
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on the Boltzmann criterion. The temperature was set to reflect the state of 
the population fitnesses spread as explained previously and also reported in 
[27] and [23]. 

Lets consider first the TSP case. Three basic moves were employed, namely 
2 - exchange, 3 - exchange and 4 - exchange. The final property of a meme 
was the number of times the acceptance strategy was going to be iterated 
employing the basic move, in our experiment the options where 1,3,6 or 9 
iterations. For all the experiments run, the probability of mutation was 0.4, the 
probability of crossover was 0.6 and the innovation rate was set to 0.125. The 
crossover used was DPX, and the mutation operator was the double-bridge 
move. The underlying GA was a generational GA with a (50,200) strategy 
using a tournament size of 4. The architecture of the MA was accordingly to 
[23] D = 4. That is, local search was executed independently of mutation and 
crossover in a separate stage. The probability of local search (expressing the 
meme) was 1. The encoding used was a permutation encoding. 

We first ran a set of experiments (one for each of the 24 memes), each 
consisting of 30 trials, where the whole population used the same meme. That 
is, each individual was statically linked to a unique helper. The goal of this 
experiment was to obtain a ranking of memes for the different instances. 

Tour Length Vs #Generations (30 runs averaged) 
Singk-A6rprc-M~nnrmnpd llin31Llrp> 

="s , I ' I ' I ' I  

Innovation Rates Compared (adaptive memes) 
Tour length V\ XOenerninnv (ov~ovcr 30ru8nrl 

I , 1 

Fig. 4. In (a) relative performance of  a memetic algorithm using adaptive memes 
can be seen as a function of  the generation number for instance lin318.tsp. The 
curve for the associated multimeme algorithm is also shown and i t  converges toward 
the best meme. In (b) comparison of  different innovation rates for the multimeme 
adaptive approach. 

A t-test and an ANOVA analysis of the average over 30 runs for the best 
tour in each experiment shows that the final values of best fitness are (with 
95% confidence level) different. 

In the table 5 and 7 we show the rankings obtained for a memetic algorithm 
that uses one of the adaptive memes on instances linl05.tsp and lin318.tsp. 
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Table 7 demonstrates that the adaptive versions of the single meme algo- 
rithms are better than the static counterparts. 

In Figure 4(a) the performance of the multimeme adaptive algorithm is 
plotted against the performance of the single meme MAS. As was reported 
in an earlier work [13] where the best static meme was correctly learned, the 
Multimeme Algorithm can also successfully track the best adaptive meme for 
this instance. In table 7 we can see that the Multimeme Algorithm is supe- 
rior to all the single meme algorithms, except for the one that uses only the 
best meme for this instance (in this case A - M2FB119). However the dif- 
ference between the best possible single meme algorithm and the Multimeme 
algorithm is not of statistical significance5. 

To further investigate our algorithms behaviour we conducted experiments 
for each of the possible innovation rates in the range [0.1,1.0]. The results of 
plotting the tour length obtained for every generation is given in Figure 4(b). 

As it is evident from figure 4(b), low innovation rates produce better per- 
formance than higher ones. In particular, the innovation rate value of 1.0 
produces the worst performance. As an innovation rate of that value indicates 
a random selection of the local search neighborhood a t  each generation, we can 
conclude that it is indeed profitable to exploit SIM and learn to use only the 
right neighborhoods. More extensive analysis of this and other experiments 
can be found in [23],[13]. 

The evolutionary activity of the memetic system (as defined in [13]) is 
depicted in figure 5. 

Evolutionary Activity Vs #Generations (30 runs averaged) 

Fig. 5. Evolutionary Activity of the memetic algorithm for instance lin318.tsp using 
adaptive memes. Zoom on the initial 200 generations. 

And obviously it is very hard to predict prior to running experiment$ which is 
the best single meme for a given instance. 
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The most conspicuous curves are those associated with memes A - 
M2FB119, A - M2FBlI6 ,  A - M 3 F B l I 9  and A - M4FBlI9 .  These memes 
are amongst the most highly ranked in table 7. 

4.2 Adaptive Multimeme Algorithm For The Protein Structure 
Prediction Problem 

The construction of highly effective algorithms for solving structure prediction 
on simplified models, e.g. the HP model, is essential if we hope to target the 
structure prediction of real life proteins that cannot be solved by homology 
or threading methods. Several of the most successful methodologies employed 
during the last two Critical Assessments of Structure Prediction, CASP3 and 
CASP4, employed one or more simplified models for sampling and optimizing 
structures embedded in different lattices and measuring them with simplified 
energy potentials [23],[7]. It is evident then that any improvement on the 
optimization of lattice-based structures will be welcomed by the scientific 
community. 

In the next section we will integrate the adaptive version of the protein 
structure memes into a multimeme algorithm for predicting protein structure. 
For a more extensive investigation on the use of the algorithms proposed here 
the reader can refer to [ll] and [23]. 

4.3 The Experiments 

As we did for the TSP, we want to elucidate the behavior of SIM under 
the presence of adaptive helpers, this time for the PFP. In these experi- 
ments we executed 10 runs for each innovation rate value (IR). The under- 
lying GA is implemented as in 1231, where the replacement strategy was a 
(500,1000) strategy with tournament selection of size 2. Crossover proba- 
bility was 0.8 and that of mutation 0.3. Crossover was standard two-point 
crossover and mutation was one point mutation. Each run was executed for 
200 generations which assured convergence. Solutions were encoded using in- 
ternal coordinates in the relative encoding. We conducted experiments for 
each of the possible innovation rates in the set (0.0,l.OE- 5,l.OE - 4,l.OE - 
3,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. 

In table 9 we can see the number of times the optimum was reached for 
instance 115 of length 24 and with a maximum number of bonds of 17 (mini- 
mum energy of -17), together with the average time needed to achieve those 
values. 

Table 8 presents the number of optima reached with the different innova- 
tion rates together with the mean first hitting time of those optima. 

In table 11 the mean first hitting times and number of optima reached with 
each adaptive meme is tabulated. Comparing with table 9 a marked increase 
in robustness is observed with the multimeme reaching optimal values much 
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Table 8. Different innovation rates and the relation between the number o f  times 
the multimeme algorithm reached optima relative to  the number o f  runs executed. 
Also, in the third column, the mean first hitting time is computed. Memes are static 
helpers. Instance 15 in [8] 

Innovation Rate I #Optima / #Runs I Mean First Hitting Time 
0.0 I 4/10 1 20.25 

Table 9. Memes are adaptive helpers in this table. 
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Table 10. Relation between the number o f  times the single meme algorithm reached 
optima relative to the number o f  runs executed for different memes. Also, in the 
third column, the mean first hitting time is computed. The last row presents the 
associated values for the multimeme algorithm. Memes axe static helpers. Instance 
15 in [8] 

Table 11. Memes are adaptive helpers in this table. 

more frequently than the single meme algorithm. Furthermore, the hitting 
times are also improved. 

There are two main differences between Tables 10 (static memes) and 11 
(adaptive memes). One of them is that for six of the memes the number of 
optima hits remains the same, while there are two improvements and two 
deteriorations. However, if we concentrate on the mean first hitting times the 
adaptive memes need roughly half the time needed by the static memes to 
achieve their respective optima. 

Comparing Table 9 with the equivalent Table 8 for a multimeme static 
algorithm, we find the one employing adaptive memes is a better option than 
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a multimeme algorithm with static memes. Moreover, both versions of the 
multimeme are, in turn, better than single meme algorithms, even ignoring 
the fact that it is difficult to know a priori which will be the best meme to 
use for a given instance. Similar results were found with other instances (in 
particular instance 18). 

We perform an ANOVA analysis to find out whether the differences on 
mean hitting times were different with statistic significance. We found that the 
ANOVA identifies as statistically different, and indeed worse (longer average 
hitting times), the IR of {0.3,0.8,1.0). While the others were ranked as well 
the associated confidence level was below 90%. 

To understand which memes the multimeme algorithm selects during the 
search and at  what times, Figure 6(a) shows the concentration of memes as a 
function of time. In this case concentration is plotted for an I R  = 0.5, with an 
associated hitting ratio of & and average hitting time of 26.44 generations. 

In this case, the prevailing meme is the pivot move(e.g. a rigid rotation), 
followed very closely by the reflect with r = 4 during the whole run. We can 
see that when the concentration of the reflect meme peaks, the concentration 
of the pivot decreases. At the beginning of the run and for the considerably 
long period of 25 generations the macromutation with r = 4 is prominent. 
Important concentration peaks for reflect r = 16 are also found. Figure 6(b) 
shows the concentration graph for this instance and an innovation rate of 0.01 

Concentration Plot for 115 
IK;O.S. Multirncm AduptireI lr l~.n 

.WI . , . , . , . , , , . , . , . I 

Concentrition Plot for 118 
IK=lYI. M u l l i l n l r  Addmire I k l w n  

.w--, ., , , , . , . , . , . , . I 

Fig. 6. In (a) meme concentration as a function of  time for I15 and IR=0.5. Memes 
are adaptive. In (b) (Instance I18 in [8l):Adaptive Memes Concentration Graph for 
Instance I18 and an innovation rate o f  0.01. 

Before generation 47, where the first important average fitness deteriora- 
tion by the dominant adaptive helper (pivot meme) occurs, both reflect with 
r = 4 and macro mutation with r = 16 start to  increase their presence in the 
population. Reflect helpers with r = 4 and r = 8 and the pivot meme are 
going to be the subsequent dominant memes. 
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5 Conclusion 

In this paper we motivated the used of adaptive helpers and the inclusion 
of several local search neighborhoods in the set of available operators for a 
Memetic algorithm. Using two small instances of the TSP we showed how 
an adaptive local search phase is more beneficial to  an MA than a static 
local search phase. We integrated the adaptive helpers with a Multimeme 
algorithm and we showed the resulting adaptive Multimeme algorithm to be 
more robust for both TSP and PSP Problem instances. In this paper we 
showed that the use and scheduling of several local search operators, realized 
by the various memes, can aid to perform a better exploration and exploitation 
of the search space. Moreover, the inclusion of adaptive helpers that can jump 
"backwards" in the optimization space further increases the search capabilities 
of the multimeme algorithm. That is, the multimeme algorithm with adaptive 
helpers produces more robust results than both the multimeme algorithm 
with static helpers and the memetic (single meme) algorithm with adaptive 
or static helpers. 

An avenue of research not explored here but certainly worth pursuing 
is that of studying the appropriate scaling of the temperature parameter of 
the adaptive helpers according to the specific neighborhood that each one 
explores. That is, in general, we can expect that different move operators will 
need different temperatures to perform the adaptation and the cross barrier 
jumps. In the experiments presented here the temperature is the same for all 
the memes. It should be clear that different memes might be better suited to 
different scaling of the temperature as each one of them sees a different fitness 
landscape. 

Experiments where the SIM schedules a mix of static and adaptive in the 
same run will be the object of future research where its ability to select the 
best meme from this enlarged set will be tested. Another extension of this work 
is the utilization of memes based on fuzzy sets concepts like those described 
in [12]. As suggested in [22] and [23], investigations where the memes are fully 
co-evolved alongside the problem's solutions are under way. 

The two design principles advanced in this paper are: 

The use of several local searchers that explore the search space from com- 
plementary perspectivesm and, 
The reduction of the MA "greediness" by either not using elitist replace- 
ment strategies or by exploiting operators that can lead to worsening points 
from which progress can be achieved at  a later stage of the search. 

These two design issues (that are supported also by theoretical considerations[23]) 
should be taken into account for any new problem if no clear "winner" heuris- 
tic is known for that problem and robustness is paramount. In this case, 
Memetic algorithms, in particular Multimeme memetic algorithms, can pro- 
vide both solution quality and robustness. 
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Summary. Memetic algorithms (MAS) with greedy initialization and recombina- 
tion operators have been successfully applied to several combinatorial optimization 
problems, including the traveling salesman problem and the graph bipartitioning 
problem. In this contribution, a k-opt local search heuristic and a greedy heuris- 
tic for NK-landscapes are proposed for use in memetic algorithms. The latter is 
used for the initialization of the population and in a greedy recombination operator. 
Memetic algorithms with k-opt local search and three different variation operators, 
including the newly proposed greedy recombination operator, are compared on three 
types of NK-landscapes. In accordance with the landscape analysis, the MAS with 
recombination perform better than the MAS with mutation for landscapes with low 
epistasis. Moreover, the MAS are shown to be superior to previously proposed MAS 
using 1-opt local search. 

1 Introduction 

The NK-model of fitness landscapes has been introduced by Kauffman [1, 21 
to study gene interaction in biological evolution. In the NK-model, the fitness 
is the average value of the fitness contributions of the loci in the genome. 
For each locus, the fitness contribution is a function of the gene value (allele) 
at the locus and the values of K other interacting genes. Although this is a 
very simplified model, it allows to produce families of fitness landscapes with 
interesting properties. 

Besides its biological implications, the model is interesting for researchers 
in the field of evolutionary computation, since the NK-landscape model pro- 
vides combinatorial optimization problems with tunable difficulty. 

In this paper, effective memetic algorithms [3, 4, 51 for NK-landscapes are 
presented. New greedy and k-opt local search heuristics for NK-landscapes are 
proposed which can be easily embedded into memetic algorithms. The proper- 
ties of NK-landscapes are discussed and a fitness distance correlation analysis 
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is performed for the newly introduced heuristic algorithms. It is shown that 
based on the results of the analysis, the performance algorithms can be pre- 
dicted: For low epistasis - low values of K in the model - recombination 
based algorithms are able to exploit the structure of the search space effec- 
tively. With increasing epistasis, the landscapes become quickly unstructured, 
limiting the usefulness of recombination. For high epistasis, mutation based al- 
gorithms become favorable over recombination based evolutionary algorithms. 

In computer experiments, the effectiveness of sophisticated MAS based 
on the proposed greedy and kopt  local search heuristics is demonstrated. 
These algorithms offer (near) optimum solutions in short time even for high 
dimensional landscapes. 

The paper is organized as follows. In section 2, greedy and local search 
heuristics for the NK-model are introduced. The fitness landscape of three 
types of NK-models is discussed in section 3. In section 4, results from exper- 
iments with memetic algorithms using k-opt local search and three different 
variation mechanisms are presented. Section 5 concludes the paper and out- 
lines areas of future research. 

2 Heuristics for the NK-Model 

Since NK-Landscapes have been studied mainly in the context of simulated 
biological evolution, little attention has been payed to the development of 
simple non-evolutionary heuristics. However, besides hill climbing/local search 
techniques, constructive heuristics such as greedy algorithms can be applied 
to problems of the NK-model. 

In the following, a solution vector x is assumed to be a binary vector of 
length N,  i.e. x = (XI,. . . ,XN)  with the fitness function 

where the fitness contribution fi of locus i depends on the value of gene xi 
and the values of K other genes Xi,, . . . , XiK. The function fi : (0, 1IK+' + R 
assigns a uniformly distributed random number between 0 and 1 to each of 
its 2K+1 inputs. Other random search landscapes have been proposed in [6, 71 
which are highly tunable, but will not be investigated in this work. 

The NK-model is similar to the unconstrained binary programming prob- 
lem (BQP) [8]. In fact, the BQP can be regarded as a special case of NK- 
fitness landscapes with 

f(x) = fi(x) with 

where Q = (qij) is a n x n matrix. 
is constant for all i, in the BQP k(i) 

While for NK-landscapes k(i) = K 
is defined as the number of non-zero 
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entries in the i-th column of matrix Q. The mean of the k(i) is given by - 
k = n. dens(Q). Due to the strong resemblance of the two problems, heuristics 
developed for one problem can be applied after small modifications to the 
other. The heuristics described in the following are similar to the greedy and 
local search heuristics for the BQP in [9]. 

2.1 Greedy Algorithms 

A point in a NK-landscape can be constructed in N steps by assigning in 
each step a gene value to a gene at  a given locus. If the choice of a gene value 
follows a greedy rule, such an approach can be classified as a greedy heuristic 
for NK-landscapes. 

The greedy heuristic proposed in this paper works as follows. A solution 
is built in N steps by choosing a gene which is still not assigned a value, 
and a gene value to assign to the gene. The choice is made by maximizing a 
gain function g(i, v) : (1, . . . , N )  x {O,1) + R with g(i, v) denoting the gain 
attained by setting the value of the i-th gene to v. The gain function g(i, v) 
is defined as the difference between the fitness of a partial solution y with 
gene i set to v and the fitness of a partial solution x with gene i unspecified: 
g(i, v) = fp(y) - fP(x) with 

The fitness f p  of a partial solution is defined as the average fitness of all solu- 
tions matching the template defined by the partial solution: Assume the par- 
tial solution x is x = (1,0, *, 0, *, 1) with * denoting the don't care symbol (the 
gene has no value). Then, the fitness f p  of x is the average fitness of the four 
solutions (1,0,0,0,0,1), (1,0,0,O,I;,l), (1,0,1,0,0,1),and (1,0,1,0,1,1). 

Assuming the fitness contribution of site i denoted fi (xi, X i l ,  . . . , XiK ), 
depends on the site i itself and K neighbors i l ,  . . . , iK,  then the neighborhood 
Ni = {i, i l ,  . . . , iK) defines the set of geneslloci which contribute to the fitness 
a t  site i. The set of locilgenes which depend on the value of gene k is thus 
defined as Dk = {i I k E Ni). Hence, the gain function becomes 

Initially, the partial fitness contribution of locus i is the average over all 2K+1 
possible values of fi. Hence, the greedy heuristic based on partial fitness calcu- 
lations requires more than n . 2K+1 additions and is therefore only practically 
useful for landscapes with small values of K. On the other hand, with increas- 
ing K, the solutions produced by the greedy heuristic approach the average 
fitness of the points in the landscape since for high epistasis the values of f,P 
differ significantly from the values of fi in the final solution. 
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The greedy heuristic is randomized by (1) choosing a small fraction (N/20) 
of the genes randomly, and (2) by selecting randomly with a probability pro- 
portional to the gains from {arg maxi g(i, 0), arg maxi g(i, 1)). 

2.2 Local Search 

The application of local search techniques to NK-landscapes is straightfor- 
ward: Neighboring solutions can be reached by flipping one or more bits simul- 
taneously in the genome. However, instead of calculating the fitness for each 
neighboring solution anew, it is more efficient to calculate the gain achieved 
by moving to the new solution. In this context the gain is referred to as the 
fitness difference between the new and the old solution. 

The gain associated with the flipping of a single gene k in the genome x 
leading to a solution y with 

is the fitness difference of the new solution y and the old solution x: 

A local search for the NK-model can be implemented by maintaining a gain 
vector g = (gl . . . , g ~ )  instead of calculating all gains anew in each iteration. 
After flipping gene k, generally not all of the gains have to be updated. A 
gain gi only changes if there is a j E Di with k E Nj  or in words the gain of 
flipping gene i changes if there is a fitness distribution function that depends 
on the value of gene k and i. 

1-opt Local Search 

A simple local search based on a 1-opt neighborhood can be realized straight- 
forwardly. The neighborhood is searched by flipping a single bit in the current 
solution. The gain vector can now be used to find an improving flip in reduced 
computation time. However, after flipping the gene value, some elements of 
the gain vector have to be updated accordingly. 

Variable kopt Local Search 

The basic scheme described above can be extended to derive more powerful 
local search algorithms. For example, a 2-opt local search can be realized by 
flipping two genes to reach a solution in the neighborhood of the current 
solution. More generally, a k-opt local search can be realized by flipping k 
genes simultaneously. Since the neighborhood size of a k-opt local search grows 
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exponentially with 5, mechanisms are required to perform a k-opt local search 
in reasonable time. This can be achieved be considering a small fraction of 
the kop t  neighborhood similarly to the heuristics by Lin and Kernighan for 
the TSP [lo] and the GBP [ll]. The k-opt local search for NK-landscapes 
proposed here is based on the ideas of Lin and Kernighan: in each iteration, 
a variable number of genes is flipped, depending on a gain criterion. To find 
the most profitable k-opt move, a sequence of up to n solutions is generated 
by stepwise flipping genes with the highest associated gain. Every gene is 
flipped no more than once to guarantee that all solutions in the sequence are 
different. The solution in the sequence with the highest gain is accepted as the 
new current solution. This solution may differ in 1 up to n genes depending 
on the position in the sequence. The pseudo code for the approach is provided 
in Figure 1. To reduce the running time of the algorithm, the value for the 

procedure Local-Search-k-opt(% E X): X; 
begin 

calculate gains gi for all i in (1,. . . , N}; 
repeat 

xprev := x, Gmax := 0, G := 0, steps = 0, C := (1,. . . , N } ;  
repeat 

find j with gj = rnaxi~c gi; 
G := G+gj ;  
xj := 1 - xj; 
if G > Gmaz then 

Gmax := G; 
Xbest := x; 

endif 
update gains gi for all i; 
c := C\{j}; 
steps := steps + 1; 

until steps > maxsteps or C = 0; 
if Gmax > 0 then 

x := xbest; 
else 

x := xpre",; 
endif 

until Gmax 5 0; 
return x; 

end; 

Fig. 1. k-opt Local Search for NK Landscapes 

maximum k can be bound to a value smaller than N. Furthermore, the inner 
repeat loop may be terminated if there was no new xb,,t for more than m 
solutions. 
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3 The Fitness Landscape of the NK-Model 

The NK-model of Kauffman [2,12] defines a family of fitness landscapes which 
can be tuned by two parameters: N and K. While N determines the dimension 
of the search space, K specifies the degree of epistatic interactions of the genes 
constituting a genome. Each point in the fitness landscape is represented by 
a bit string of length N and can be viewed as a vertex in the N-dimensional 
hypercube. 

With this model, the "ruggedness" of a fitness landscape can be tuned by 
changing the value of K and thus the number of interacting genes per locus. 
Low values of K indicate low epistasis and high values of K represent high 
epistasis. The two extremes are considered in more detail in the following. 

Properties of K = 0 Landscapes 

The K = 0 landscapes have the following properties [2]: 

There is only one 1-opt local/global optimum 
The landscape is smooth; neighboring points (I-opt neighbors) in the 
search space are highly correlated. The fitness of 1-opt neighbors can differ 
by no more than *. 
The number of fitter neighbors decreases by one in each iteration of a 1-opt 
local search. 
The average number of iterations to reach the optimum is and thus in 
0 ( N ) .  

For the highest value of K ,  the properties of the fitness landscapes become 
quite different. 

Properties of K = N - 1 Landscapes 

If K = N - 1, the fitness contribution of a gene depends on the values of all 
other genes, which results in a highly uncorrelated, rugged fitness landscape. 
These landscapes have the following properties [2]: 

The expected number of 1-opt local optima is & 
0 The expected fraction of fitter 1-opt neighbors dwindles by $ after each 

iteration of a 1-opt local search 
The expected number of improvement steps to reach a 1-opt local optimum 
is in O(1og N)  
The expected number of solutions to examine for reaching a 1-opt local 
optimum is proportional to N 
The ratio of accepted to tried moves scales as log N/N 

0 Starting from an arbitrary solution, only a small fraction of local optima 
< N ' o ~ Q ( ~ - ~ ) / ~ )  can be reached by a 1-opt local search. L 
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Only from a small fraction of starting solutions (2(I0g2 N ) 2 / 2 ) ,  the global 
optimum can be reached by a 1-opt local search. 

Furthermore, Kauffman [2] has shown that for increasing N ,  the fitness values 
of the local optima decrease towards i. He calls this phenomenon a complexity 
catastrophe. 

R a n d o m  vs. Adjacent Neighbor Model  

Besides the values for the parameters N and K ,  the choice of the neighbor 
model is important for NK-landscapes, too. Kauffman [2] distinguishes two 
variants, the random neighbor model and the adjacent neighbor model. In the 
former, the genes which contribute to the fitness at  locus i are chosen at  
random. In other words, the neighbors il through iK are randomly selected 
among the N. In the latter, the il through ik are the nearest loci to the gene 
at  locus i. 

The landscape properties described above are independent of the neighbor 
model. However, Weinberger [13] has shown that the computational complex- 
ity of both models differs. He was able to show that the NK decision problem 
with adjacent neighbors is solvable in 0(2K N) steps and is thus in P and that 
the NK decision problem with random neighbors is NF-complete for K 2 3. 

3.1 Autocorrelation Analysis 

To measure of the ruggedness of a fitness landscape, Weinberger [14] sug- 
gests the use of (auto)correlation functions. The autocorrelation function p(d) 
[15, 141 reflects the fitness correlation of points a t  distance d in the search 
space. Weinberger [16] derived formulas for the autocorrelation function of 
NK-landscapes. He found that the autocorrelation function p(d) depends on 
the neighbor model of the landscape. In the random neighbor model, the 
autocorrelation function becomes 

and for the adjacent neighbor model, p becomes 

with d denoting the hamming distance between bit vectors. 
Alternatively, Weinberger suggested to perform random walks to investi- 

gate the correlation structure of a landscape. The random walk correlation 
function r(s) [14, 17, 181 of a time series {f (xt)) defines the correlation of 
two points s steps away along a random walk through the fitness landscape. 
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The random walk correlation function for the NK-model has been calculated 

for the adjacent and random neighbor model. 
If the time series is isotropic, Gaussian and Markovian [14], then the cor- 

responding landscape is called AR(1) landscape, and the random walk corre- 
lation function is of the form r(s) = r(1)" = e-s /e  with e being the correlation 
length of the landscape. Hence, the correlation length e [18] of the landscape 
is defined as 

for r ( l ) ,  p(1) # 0. The correlation length directly reflects the ruggedness of a 
landscape: the lower the value for C, the more rugged the landscape. In the 
NK-model, the correlation length is for adjacent and random neighbors 

It  is not surprising that the correlation length decreases with increasing K. 
The formula show that the NK-model allows to produce landscapes with 

arbitrary ruggedness. The correlation length can be set to 1 by choosing K = 
N - 1 leading to a totally random landscape with uncorrelated neighboring 
points. Choosing the other extreme K = 0, the correlation length grows to its 
maximum value: N ,  resulting in a smooth, single peaked landscape. 

3.2 Fitness Distance Correlation Analysis 

The fitness distance correlation (FDC) coefficient is known to be an important 
measure in the context of fitness landscapes, proposed in [20] as a measure for 
problem difficulty for genetic algorithms. The FDC coefficient Q is defined as 

given a set of points XI, x2,. . . , xrn with fi = f (xi) denoting the objective 
value, di = dTt(xi) denoting the shortest distance to a global optimum solu- 
tion, and a ( f )  and a(d) denoting the standard deviation of f and d, respec- 
tively. 

In his studies of NK-landscapes, Kauffman [2] investigated the correlation 
of fitness and distance to the optimum of local optimum solutions with respect 
to 1-opt local search. In this work, the analysis is extended by investigating 
fitness distance correlation with respect to the greedy heuristic and k-opt local 
search. Experiments were conducted for three selected instances with N fixed 
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to  1024, K in {2,4,11) and a random neighbor model. Since the optimum 
solutions for these instances are not known, the best solutions found with the 
MAS described below in long runs (14400 s on a Pentium I1 300 MHz PC) 
are used instead. These solutions are likely to be the global optima or at  least 
close to the global optima with respect to fitness and distance. 

In the first experiment, the distribution of greedy solutions in the search 
space is investigated. The results of the analysis are summarized in Table 1. 
In the first column, the name of the instance is displayed, and in the second 

Table 1. Results of the Fitness Distance Analysis of Greedy Solutions. 
- - 

Instance N K mindopt dopt dgr Ngr e 
C2-1024 1024 2 130 220.62 (0.22) 195.03 2500 -0.62 

D4-1024 1024 4 264 372.29 (0.36) 377.38 2500 -0.24 

Bll-1024 1024 11 458 515.74 (0.50) 469.35 2500 -0.01 

and third column the parameters N and K are given. In columns four through 
eight, the minimum distance of the greedy solutions to the expected global 
optimum (mindopt), the average distance of greedy solutions to the global 
optimum (&), the average distance between the greedy solutions (ag,), the 
number of distinct greedy solutions (N,,) out of 2500, and the fitness dis- 
tance correlation coefficient (Q) are provided, respectively. Additionally, the 
normalized average distance, i.e. the average distance of the local optima to 
the global optimum divided by the maximum distance in the search space N 
is shown in column five in parentheses. 

For small K ,  the greedy solutions are close to each other and close to the 
best known solution. There is a correlation between fitness and distance to 
the best known solution as the value p indicates. About three quarters of the 
gene values are equal in all greedy solutions for K = 2 and thus the solutions 
are contained in a small fraction of the search space. With increasing K ,  
average distance between the greedy solutions quickly converges to the average 
distance (N/2) of the solutions in the search space. Surprisingly, already at  
K = 11 there is no correlation between greedy solutions and they have random 
distribution in the search space as expected for large values of K .  

In the second experiment, the correlation of fitness and distance to the best 
known solution of kop t  solutions was investigated. The results are shown in 
Table 2. Again, in the first column, the name of the instance is displayed, 
and in the second and third column the parameters N and K are given. In 
columns four through eight, the minimum distance of the locally optimal so- 
lutions to the expected global optimum (min do,t), the average distance of the 
local optima to the global optimum (&,,t), the average distance between the 
local optima (a,,), the number of distinct local optima (Nk-,,t) out of 2500, 
and the fitness distance correlation coefficient (Q) are provided, respectively. 
Additionally, the normalized average distance, i.e. the average distance of the 
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Table 2. Fitness Distance Correlation Analysis of k-opt Solutions. 
- - 

Instance N K mindopt dopt dloc e 
C2-1024 1024 2 191 301.47 (0.29) 346.16 2500 -0.65 

local optima to the global optimum divided by the maximum distance in the 
search space N is shown in column five in parentheses. Similarly as for the 
greedy heuristic, the average distance between the local optima and the av- 
erage distance to the best known solution increases quickly with increasing 
K.  At K = 11 there is no correlation between fitness and distance, and the 
distribution is similar to a uniform distribution of random points in the search 
space. There is slightly higher correlation in case of k-opt in comparison to 
1-opt in case of the K = 2,4 landscapes. However, greedy solutions have even 
a shorter minimum and average distance to the best known solution than 
k-opt solutions. In addition to Tables 1 and 2, fitness distance plots for the 
three instances are shown in Figure 2. On the left, the scatter plots for 2500 
greedy solutions are provided, and on the right the scatter plots for 2500 k-opt 
solutions are displayed. For K = 2, the orientation of the points towards the 
origin is obvious. The cloud of points "moves" with increasing K quickly to 
the middle of the plane losing the orientation to the origin and thus to the 
optimum. These results correspond to the findings of Kauffman [2] for 1-opt 
local search. He further observed that for instances of the adjacent neighbor 
model the correlation of fitness and distances decreases not as rapidly as for 
the random neighbor model with increasing K.  

From the perspective of performance prediction of MAS, the analysis pro- 
vides some useful information. For small K (< 5) , recombination-based 
memetic algorithms are expected to have a good performance since with 
recombination the fitness distance correlation of the local optima can be ex- 
ploited: With increasing fitness, the local optima are closer together, and their 
distance to the optimum becomes smaller. Furthermore, the locally optimal 
solutions are found in a small region of the search space in which the global 
optimum has a more or less central position. The greedy heuristic is very well 
suited for these instances with low epistasis and it is therefore promising to 
include the heuristic in the initialization phase of the population as well as 
in the recombination step. For larger K ,  the effectiveness of recombination 
decreases and eventually mutation based MAS are better suited. 

3.3 Alternative Distance Measures 

The fitness distance correlation analysis requires a feasible distance measure 
for the search space. In case of bit-strings, the hamming distance appears to 
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Fig. 2. Fitness-Distance Plots of Greedy Solutions (left) and k-opt Solutions (right) 

be a natural choice. However, the hamming distance does not reflect exactly 
how a k-opt local search "sees" the landscape. Alternatively, an edit distance 
may be considered which counts the changes required for a k-opt local search 
to convert one solution to the other. However, a problem arises with such 
an approach, since the k-opt local search is not capable of converting all 
solutions into all other solutions. Besides the fact that only better solutions 
are produced by a k-opt, per definition not all better solutions are found by 
the local search. The hamming distance is a lower bound of the number of 
steps (flips) required for a k-opt local search to convert a solution to another 
assuming that it can. Essentially, a 1-opt local search and a k-opt local search 
are based on single flips, only the acceptance criterion is different in k-opt. 
Note, that the k-opt local search discussed in this paper considers only a 
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sequence of order one flips, not, for example, all pairs of order two flips (as 
would be in a true 2-opt local search). Finally, the FDC analysis may provide 
hints how the evolutionary part of a MA "sees" the landscape. Here, the 
hamming distance appears still to  be a suitable choice, since properties like 
respectfulness and assortedness [21, 221 can be described with this distance 
measure. 

4 Memetic Algorithms for NK Landscapes 

Memetic algorithms have been applied with great success to several combi- 
natorial optimization problems. In this paper, we focus on a class of memetic 
algorithms that uses a simple evolutionary framework with a single panmictic 
population instead of spatially structured populations [23], or tree-structured 
populations [24]. Furthermore, we concentrate on using a single local search 
strategy in contrast to the self-adaptation of the local search strategy [25]. 
The framework is thus rather simple and derived from other evolutionary 
algorithms, with the only difference that after initialization and after recom- 
bination or mutation, a local search procedure is applied to assure that all 
individuals in the population are local optima. This simple framework has 
been successfully used in studies for several combinatorial problems, including 
the graph bipartitioning problem [26], the quadratic assignment problem [27], 
the traveling salesman problem [28], and the binary quadratic programming 
problem [29]. 

The application of MAS to NK-landscapes is straightforward. Since prob- 
lems of the NK-model are binary-coded, all GA variation operators such as 
k-point crossover and bit-flip mutation for bit strings can be used in a MA. As 
shown in [30], genetic algorithms do not scale well with problem size N. They 
perform much worse than memetic algorithms for a problem size N 2 512. 
Therefore, we concentrate in the following on the hardest landscapes from the 
studies in [30] with N = 1024 and varying K. 

4.1 Population Initialization and Local Search 

The population can be initialized by randomly generating bit strings and by 
subsequently applying local search. For low values of K ,  the use of the random- 
ized greedy heuristic described above can be used alternatively in combination 
with local search. Suitable local search algorithms are 1-opt local search and 
k-opt local search as described above. 

4.2 Evolutionary Variation Operators 

Due to the binary coding of the problem, all operators on binary strings can be 
applied in an evolutionary algorithm and therefore in a memetic algorithm, 
such as single point or two-point crossover, uniform crossover and bit flip 
mutation operators. 
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Recombination 

A variant of uniform crossover (UX) that is used in the CHC algorithm of 
Eshelman [31] is an alternative to the crossover operators noted above. The 
operator creates (with high probability) offspring that have a maximum Ham- 
ming distance to the parents which is half of the distance between the parents 
themselves. The operator is called denoted HUX in the following. 

Alternatively, the greedy construction scheme can be used in recombina- 
tion to produce offspring. A greedy recombination operator denoted GX is 
therefore devised that works by first inheriting all the gene values that are 
common to the two parents to retain respectful recombination [22]. Then 
the remaining loci are set making greedy choices as in the greedy heuristic 
described above. This operator is especially effective for problems with low 
epistasis. 

Mutation 

Simple bit flip mutation is not useful in a memetic algorithm, since the flipping 
of a single bit will be reversed by a subsequently performed local search with 
a high probability. Hence more than one bit must be flipped simultaneously 
in the parent solution. If p bits are flipped by the mutation operator, the 
Hamming distance of the resulting offspring and the original parent solution 
becomes p. The value of p should be chosen to minimize the probability that 
the subsequent local search rediscovers the unmutated solution. 

4.3 Selection and Restarts 

Selection for reproduction is performed on a purely random basis without bias 
to fitter individuals, while selection for survival is achieved by choosing the 
best individuals from the pool of parents and children. Thus, replacement in 
our algorithm is similar to the selection in the ( p  + A)-ES [32]. Additionally, 
duplicates will be replaced by other solutions, so that each phenotype exists 
only once in the new population. 

In order to circumvent the problem of premature convergence, cataclysmic 
mutations [31] are performed when the population has converged. The muta- 
tion operator is applied to all but the best individual in the population, where 
p is determined by a third of the average Hamming distance between the indi- 
viduals in the initial population. This value for p exhibited good performance 
in several experiments. 

5 Performance Evaluation 

We studied the performance of the memetic algorithms described above in 
several experiments. The results are discussed in the following starting with 
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an evaluation of the components, namely the greedy and local search heuris- 
tics. All experiments were performed on a Pentium I1 PC (300 MHz). The 
algorithms were implemented in C++. 

5.1 Variable k-opt Local Search Variants 

Running time and solution quality of the k-opt local search highly depend 
on the termination criterion of the inner loop, in other words, the maximum 
number of steps (search depth) considered in each iteration. 

In order to investigate the influence of the search depth termination cri- 
terion we tested three variants of the local search procedure in Fig. 1. The 
full k-opt variant is exactly as shown in the figure, with maxsteps set to N .  
In the fast variant, the inner loop is terminated if there was no new xbest for 
more than m = 40 steps and the number of maxsteps was set to N/2. Finally, 
a simple tabu search variant was considered. In this variant the inner loop is 
terminated as soon as a better solution has been found. It is essentially a 
tabu search with a memory of N solutions and no aspiration criterion. The 
results of the comparison is displayed in Table 3. In the table, the percentage 

Table 3. Comparison of k-opt Local Search Variants 

Instance Fast k-opt Full k-opt Tabu k-opt 

C2-1024 3.322% 1.0 3.263% 3.1 3.708% 20.4 

D4-1024 4.918% 1.0 4.810% 2.7 5.614% 10.3 

deviation from the best known solution as well as the relative performance 
in respect to the fast variant are provided (larger values denote higher run 
times). As the figures suggest, the full variant is approximately 3 up to 5 times 
slower than the fast variant with only slightly better average objective values. 
Hence, the extra running time for the full variant appears not to be justified. 
The tabu search variant is much slower (up to 20 times) than the fast variant 
and also clearly inferior in average solution quality. Therefore, the fast variant 
is used in all remaining experiments. 

An interesting issue is how the dynamics of a k-opt local search change if 
the landscapes become more rugged: The number of K and the search depth of 
the k-opt local search may be related. To investigate this issue the local search 
variants were compared in respect to the average number of steps per iteration 
and the number of iterations required to find a local optimum. The findings 
are summarized in Fig. 3 and Fig. 4. In the left plot of Fig. 3, the average 
number of flips performed in each iteration of the fast variant are displayed. 
As can be seen, the number of flips is initially very high and slightly less 
than N / 2  for K = 2. Not surprisingly, the number is much lower for K = 11 
due to the rapidly decreasing (auto-)correlation function of the landscape. As 
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iteration iteration 

Fig. 3. k-opt Local Search Statistics for the Fast k-opt Variant 

shown in the right of the figure, the number of iterations to reach a local 
optimum is very low (below 14 iterations), and increases with K. In the tabu 
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Fig. 4. k-opt Local Search Statistics for the Tabu k-opt Variant 

search variant the expected number of iterations is much higher since flips 
are performed immediately, when an improving flip is found. The probability 
of termination is provided in the right plot of Fig. 4. Up to 800 iterations 
are required for N = 1024. The plot in the left hand side of the figure shows 
the frequency of k-flips depending on k on a logarithmic scale. Again, the 
frequencies of the K = 11 landscape are lower than those of the other two 
landscapes with K = 2 and K = 4, and the frequencies decrease exponentially. 
These results indicate that the optimum number of k (the search depth) in 
a k-opt local search should be dynamically chosen and not to be fixed in 
advance. In MAS where this parameter is adapted, it should be ensured that 
the parameter can be adjusted fast enough to meet the requirements at  the 
current state of the search. 

5.2 Greedy and Local Search 

To investigate the relative performance of the greedy heuristic and the k-opt 
local search, experiments were conducted in which the two together with the 
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1-opt local search were applied to the three landscapes with N = 1024 used in 
the analysis above. The results are shown in Table 4. In the table, the average 

Table 4. Performance of the Greedy Heuristic, 1-opt and k-opt Local Search. 

Greedy 1-opt LS k-opt LS 

Instance fitness t/ms fitness t/ms fitness t /ms 

performance (fitness and average percentage excess in parentheses) and the 
average running time (t/ms) in milliseconds of a single run, is shown for the 
greedy heuristic and 1-opt and k-opt local search applied to randomly gener- 
ated solutions. The values are averaged over 10000 runs except for the greedy 
heuristic and the problem instance Bll-1024: Due to the long running time, 
1000 runs were performed instead of 10000. The values given in parentheses 
denote the deviation from the best known solution in percent. 

For K = 2 and K = 4, the greedy heuristic outperforms the local searches 
but requires more CPU time. For K = 11, the k-opt local search dominates 
over the two others. The CPU time required for a run of the greedy algorithm 
exceeds 22 seconds and is thus more than 32 times higher than for k-opt local 
search rendering the greedy heuristic impractical for such relative large K. For 
K = 2, the greedy heuristic is furthermore capable of producing comparable 
results to a GA in a single run and thus in 173 milliseconds, where the GA 
requires 1200 seconds [30]. Also for K = 4 and K = 11, the GAS in [30] are 
outperformed by the greedy heuristic and the k-opt local search in a single run, 
demonstrating even more drastically the inferior performance of traditional 
GAS on relatively large instances. 

5.3 Memetic Algorithms with k-opt Local Search 

To assess the performance of memetic algorithms with k-opt, additional ex- 
periments have been conducted. With the same time limit (1200 seconds) as 
chosen for the comparison of genetic algorithms with MAS in [30], the MAS 
with k-opt local search were applied to the three instances of size 1024. With 
a population size of 40, the production of 20 new offspring per generation, and 
restarts enabled as in [30], the MA were run with three different variation op- 
erators. The first MA uses the greedy heuristic in the initialization phase and 
the greedy recombination operator (GX). The second MA uses HUX as the 
recombination operator and the third MA uses the mutation operator (MUT) 
described above with p = 3. The results of the experiments are summarized 
in Table 5. For each algorithm, the average number of generations (gen) pro- 
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Table 5. Performance of f-opt Local Search MAS with three types of variation. 

OP gen fitness, quality gen fitness, quality gen fitness, quality 
GX 12505 0.750002, 0.01% 5750 0.787570, 0.39% 
HUX 11954 0.750009, 0.01% 5730 0.786874, 0.48% 216 0.753565, 1.99% 
MUT 6402 0.744757, 0.71% 4306 0.772776, 2.26% 704 0.755747, 1.71% 
HUXl 12615 0.748230, 0.25% 4540 0.783665, 0.89% 105 0.732874, 4.91% 
Best 0.750065, 0.00% 0.790640, 0.00% 0.768882, 0.00% 

duced is provided as well as the average fitness (fitness) of the final solution 
along with the percentage excess over the best known solution (quality). The 
results of the MA with 1-opt local search and HUX recombination (denoted 
HUX1) from [30] are included for easy comparison. Due to the long running 
times for the greedy heuristic on Bll-1024, the MA with GX was not tested 
on this landscape. 

For K = 2, the MA with greedy recombination and HUX recombination 
perform equally well. Both find the best known solution in one out of 20 
runs and have the same worst result. For K = 4 and K = 11, the greedy 
recombination MA outperforms the others. The mutation based MA is as 
expected the worst out of the three for K = 2 and K = 4. For K = 11, 
the mutation based MA achieves a better average result than the MA with 
HUX. The same tendency appeared in the results of the MAS with 1-opt 
local search [30]: for the unstructured landscape with K = 11, recombination 
has no benefit compared to mutation. The recombination based MAS with 
k-opt local search perform clearly better than the algorithms with 1-opt local 
search in [30]. In particular new best solutions have been found for the three 
landscapes. Summarizing, the k-opt MAS have a higher potential and perform 
better if longer running times are chosen. 

6 Conclusions 

NK-landscapes have been introduced as a formal model of gene interaction in 
biological evolution, and since they are random, several statistical properties 
of the landscapes are known. To derive highly effective memetic algorithms 
for the NK-model, two new heuristics have been proposed, a greedy algo- 
rithm and a k-opt local search. The distribution of the solutions produced by 
these heuristics has been analyzed by performing a fitness distance correla- 
tion analysis on selected instances. The results allow to predict when greedy 
choices based on the greedy heuristic are favorable in a memetic framework 
and when not. Additionally, investigating the distribution of local optima in 
the landscapes allows to determine whether or not recombination is effective. 
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The greedy heuristic incorporated in the initialization phase as well as 
in the recombination operator of a MA with k-opt local search is shown to 
be highly effective for landscapes with low epistasis. The landscape analysis 
has shown that with increasing epistasis, the landscape becomes rapidly un- 
structured. Thus, for these instances, a k-opt local search MA with mutation 
instead of recombination has been shown to  be favorable. 

Moreover, the memetic algorithms with k-opt local search are shown to 
outperform previously proposed memetic algorithms with 1-opt local search: 
new best solutions have been found with the former for three landscapes. 

There are several issues for future research. Firstly, the algorithms and 
landscape studies should be extended t o  cover other random search landscapes 
[6, 71. Secondly, random walk correlation analysis may be applied on paths 
between local optima in the spirit of path relinking [33] t o  gain more insight in 
the effectiveness of recombination in memetic algorithm frameworks. Finally, 
the potentials of the algorithms described in the paper have to  be investigated 
in other application domains of practical interest. 
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Summary. In this chapter we concentrate on one particular class of Global-Local 
Search Hybrids, Memetic Algorithms (MAS), and we describe the implementation 
of "self-assembling" mechanisms to produce the local searches the MA uses. To un- 
derstand the context in which self-assembling is applied we discuss some important 
aspects of Memetic theory and how these concepts could be harnessed to implement 
more competitive MAS. Our implementation is tested in two problems, Maximum 
Contact Map Overlap Problem (MAX-CMO) and the NK-Landscape Problems. 

Three lessons can be drawn from this paper: 
Memetic theory provides a rich set of metaphors and insights that can be har- 
nessed within optimisation algorithms as to provide better search methods. 
The optimization of solutions can be done simultaneously with the self- 
assembling of local search strategies which can then be exploited by the Memetic 
Algorithm (or other metaheuristic) 
Local search strategies that are evolved to supply building blocks can greatly 
improve the quality of the search obtained by the Memetic Algorithm and do not 
seem to suffer from premature convergence (an ubiquitous problem for global- 
local hybrids). 

1 Introduction 

A vast number of very successful applications of Memetic algorithms (MAS) 
have been reported in the literature in the last years for a wide range of 
problem domains. The majority of the papers dealing with MAS are the result 
of the combination of highly specialized pre-existing local searchers and 
usually purpose-specific genetic operators. Moreover, those algorithms require 
a considerable effort devoted to  the tuning of the local search and evolutionary 
parts of the algorithm. 

In [23] and [25] we propose the so called "Self-Generating Metaheuris- 
tics". Self-Generating Metaheuristics can create on-the-fly the type of opera- 
tors needed to successfully perform certain task. The self-generation concept 
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can be applied to any existing metaheuristic like simulated annealing, tabu 
search, etc. In the case of Memetic Algorithms, self-Generation implies that 
the MAS are able to self-assemble their own local searchers and to co-evolve 
the behaviors it needs to successfully solve a given problem. In Self-Generating 
Memetic Algorithms two evolutionary processes occur. On one hand evolution 
takes place at  the chromosome level as in any other Evolutionary Algorithm; 
chromosomes and genes represent solutions and features of the problem one 
is trying to solve. On the other hand, evolution also happens at  the memetic 
level. That is, the behaviors and strategies that individuals (also called agents) 
use to alter the survival value of their chromosomes are self-assembled from a 
set of components by means of, for example, an evolutionary process. As the 
self-assembeld memes (i.e. local search strategies) are propagated, mutated 
and are selected in a Darwinian sense, the Self-Generating MAS we propose 
are closer to Dawkins concept of memes than the previous works on memetic 
algorithms (e.g. [14],[33],[34],[4]). Additionally, they seem to be more robust 
and scalable than their single local searchers counterpart. 

In this chapter we will review some important ideas arising from Memetic 
theory and we will describe the implementation we have choosen for the pro- 
posed algorithms. Results on the use of the Self-Assembling of local searchers 
for MAS are reported and future lines of research discussed. 

2 The Memetic Metaphor 

Memetic algorithms are not the first kind of algorithms to draw inspiration 
from natural phenomena. In this case the inspiration came from memetic 
theory. However, unlike Simulate annealing, Ant Colony optimization, GAS, 
etc., scholars working on MAS, as will be argued later, departed considerably 
from the metaphor and ignored its main features. 

The common use of the term "memetic algorithm" refers to an evolution- 
ary algorithm that employs as a distinctive part of its main evolutionary cycle 
(mutation, crossover and selection), a local search stage. 

The name "memetic algorithm" is a very contested label that stirs crit- 
ics and controversies among researchers and practitioners who usually adopt 
names such as lamarckian GAS, genetic local search, hybrid GAS, etc. Al- 
though very justificable in the large mayority of cases, these names obscure 
the fact that there is a large body of literature on memetic theory that is 
being neglected. We would like to argue in this section that if we were to put 
back the "memetic" into memetic algorithms then progress could be made 
with a new breed of algorithms that are more atune to the name "memetic 
algorithms" . 

Memetic theory started as such with the definition given by R. Dawkins 
of a meme in [l 11 : 

The definition was later refined in [12] 
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I think that a new kind of replicator has recently emerged on this 
very planet. It  is staring us in the face. It is still in its infancy, still 
drifting clumsily about in its primeval soup, but already it is achieving 
evolutionary change at  a rate that leaves the old gene panting far 
behind. The new soup is the soup of human culture. We need a name 
for the new replicator, a noun that conveys the idea of a unit of cultural 
transmission, or a unit of imitation. "Mimeme" comes from a suitable 
Greek root, but I want a monosyllable that sounds a bit like "gene". 
I hope my classicist friends will forgive me if I abbreviate mimeme 
to meme.(2) If it is any consolation, it could alternatively be thought 
of as being related to "memory", or to the French word "meme". It 
should be pronounced to rhyme with "cream". Examples of memes 
are tunes, ideas, catch-phrases, clothes fashions, ways of making pots 
or of building arches. Just as genes propagate themselves in the gene 
pool by leaping from body to body via sperms or eggs, so memes 
propagate themselves in the meme pool by leaping from brain to brain 
via a process which, in the broad sense, can be called imitation. 

Many other researchers and philosophers "flirted" with the idea that cul- 
tural phenomena can somehow be explained in evolutionary terms even before 
Dawkins' introduction of a meme. Other symbols were introduced to refer to 
the elementary unit of cultural change and/or transmission ( e g ,  m-culture 
and i-culture [7], culture-type [42], etc.). See [13] for a comprehensive analy- 
sis. The merit of Dawkins contribution can be attributed to his insight into 
correctly assigning a new signifier, i.e., a label or symbol, to  the thing being 
signified, i.e., the unit of cultural transmission. The term meme was a new 
word hence it was not loaded with preconceptions and misconceptions. From 
the computer sciences perspective it was appealing because it defined that 
concept as a discrete structure which can be easily harnessed in a computer 
program. 

The fundamental innovation of memetic theory is the recognition that a 
dual system of inheritance, by means of the existence of two distinct repli- 
cators, mould human culture. Moreover, these two replicators interact and 
co-evolve shaping each other's environment. As a consequence evolutionary 
changes at  the gene level are expected to influence the second replicator, the 
memes. Symmetrically, evolutionary changes in the meme pool can have con- 
sequences for the genes. 

2.1 Memetic Theory in Evolutionary Computation 

In any of the major evolutionary computation paradigms, e.g., GAS, Evolution 
Programs, Evolutionary Strategies, GPs, etc, the computation cycle shown in 
graph 1 takes place. 
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Fig. 1. Evolutionary genetic cycle. 

In graph 1 a hypothetical population of individuals is represented at  two 
different points in time, generation 1 (GI) and at  a later generation (G2). In 
the lower line, Gi for i = 1,2  represents the distribution of genotypes in the 
population. In the upper line, Pi represents the distribution of phenotypes at  
the given time. Transformations TA account for epigenetic phenomena, e.g., 
interactions with the environment, in-migration and out-migrations, individ- 
ual development, etc., all of them affecting the distribution of phenotypes and 
producing a change in the distribution of genotypes during this generation. 
On the other hand transformations TB account for the Mendelian principles 
that govern genetic inheritance and transforms a distribution of genotypes G', 
into another one Gq. Evolutionary computation endeavors concentrate on the 
study and assessment of many different ways the cycle depicted in 1 can be 
implemented. This evolutionary cycle implicitly assumes the existence of only 
one replicator: genes. 

On the other hand what memetic algorithmicists should somehow inves- 
tigate, if they were more faithful to the natural phenomena that inspired 
the methodology, is the implementation of a more general and complex dual 
evolutionary cycle where two replicators co-exist. This is shown in 23. 

In the context of memetic algorithms, memes represent instructions to self- 
improve. That is, memes specify sets of rules, programs, heuristics, strategies, 
behaviors, etc, individuals can use in order to improve their own fitnesses 
under certain metric. 

As we mentioned earlier, the fundamental difference between the later 
graph and the former resides in the fact that graph 2 reflects a coevolu- 
tionary system where two replicators of a different nature interact. Moreover 
the interactions between genes and memes are indirect and mediated by the 
common carrier of both: individuals. A truly memetic system should not be 
confused with other coevolutionary approaches where different "species", sub- 
populations or just different individuals interact by ways of a combination of 
cooperation, competition, parasitism, symbiosis, etc. In coevolutionary ap- 
proaches like those described by [19] ,[36] ,[37] ,[38] ,[39] ,[40] and others, only 

This graph is adapted from [13] page 114. 
This graph is adapted from [13] page 186. 
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Fig. 2. Coevolutionary memetic-genetic cycle. 

Mendelian transformations are allowed and sometimes in-migration and out- 
migration operators are also included. In a memetic system, memes can poten- 
tially change and evolve using rules and time scales other than the traditional 
genetic ones. In the words of Feldman and Cavalli-Sforza[6] memetic evolution 
is driven by: 

... the balance of several evolutionary forces: (1) mutation, which 
is both purposive (innovation) and random (copy error); (2) transmi- 
sion, which is not as inert as in biology [i.e., conveyance may also be 
horizontal and oblique]; (3) cultural drift (sampling fluctuations); (4) 
cultural selection) (decisions by individuals); and (5) natural selection 
(the consequences at  the level of Darwinian fitness) ... 

In graph 2 we have the same set of transformations as before between genes 
and phenotypes, but also meme-phenotypes and memes-memes relations are 
shown. There are mainly two transformations for memes that are depicted, 
Tc and To. Transformations Tc represents the various ways in which "cul- 
tural" instructions can re-shape phenotypes distributions, e.g., individuals 
learn, adopt or imitate certain memes or modify other memes. To, on the 
other hand, reflects the changes in memetic distribution that can be expected 
from changes in phenotypic distributions, e.g., those attributed to teaching, 
preaching, etc. 

Memetic Algorithms as they were used so far failed completely, or almost 
completely, to  implement this dual inheritance system to any degree, except 
for the works initiated with 1221, [23] and continued with [25],[45], [24], [26]. 
Consequently, it is not surprising that researchers hesitate to call a GA (or 
other evolutionary approach) that uses local search a memetic algorithm. 
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2.2 Memes Self-Assembling 

In [23],[25],[45],[24] it was proposed and demonstrated that the concept of 
Self-Generating Memetic algorithms can be implemented and, a t  least for the 
domains considered in those papers, beneficial. In the context of SGMAs, 
memes specify sets of rules, programs, heuristics, strategies, behaviors, or 
move operators the individuals in the population can use in order to improve 
their own fitnesses (under a given metric). Moreover the interactions between 
genes and memes are indirect and mediated by the common carrier of both: 
individuals (sometimes also called agents). 

Gabora[l5] mentions three phenomena that are unique to cultural (i.e. 
memetic) evolution. Those phenomena are Knowledge-based, imitation and 
mental simulation. 

It is these three phenomena that our Self-Generating Memetic Algorithm 
implements and use to self-assemble its own local search strategies. The rep- 
resentation of the low level operators (in this chapter the local searchers) 
includes features such as the acceptance strategy (eg. next ascent, steepest 
ascent, random walk, etc), the maximum number of neighborhood members 
to be sampled, the number of iterations for which the heuristic should be run, 
a decision function that will tell the heuristic whether it is beneficial for a 
particular solution or a particular region of a solution and, more importantly, 
the move operator itself in which the low level heuristic will be based[23]. 

Previous technologies for Evolutionary Algorithms, GRASP, Simulated 
Annealing, Tabu Search, etc have concentrated so far in, for example, self- 
adapting the probabilities with which different move operators[46] are used 
during the search for a problem's solution, the size of the tabu lists[49] or 
the size of populations[48], the adaptation of the aspiration criteria [I], the 
crossover points[43], mutations frequencies and intensities[47], the weights in 
the choice functions of Hyperheuristics [9], the appropriate local searcher that 
must be used by a Memetic Algorithms [28], the intensity of search[30], the 
degree of exploitation and exploration of local search [27], etc. However, only 
recentely some exploration on the on-line self-assembling of local searchers 
has been developed. 

The role played by local search in both Memetic and Multimeme algo- 
rithms has traditionally been associated to that of a "fine tuner". The evolu- 
tionary aspect of the algorithm is expected to provide for a global exploration 
of space while the local searchers are assumed to exploit current solutions and 
to fine tune the search in the vicinity of those solutions (i.e. exploitation) 

We will show next that local search strategies can be self-assembled in the 
realm of NK-Landscape problems and a graph theory combinatorial problem. 
Equally important, we will suggest a new role for local search in evolution- 
ary computation in general and memetic algorithms in particular: the local 
searcher not as a fine-tuner but rather as a supplier of building-blocks4. Ini- 

For an overview of selectorecombinative evolutionary algorithms from a building- 
blocks perspective please refer to [17] 
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tial explorations of the many concepts described here appeared before in [25], 
[26] and [24] and we invite the reader to also consult those papers for further 
details. 

3 The NK-Landscapes Experiments 

The NK model of rugged fitness landscapes are particularly useful to un- 
derstand the dynamics of evolutionary search[20] as they can be tunned to 
represent low or high epistasis regimes. The amount of epistasis is related 
to the level of interdependency of genes within a genome. That is, the fit- 
ness contribution of a particular gene's allele depends not only on the iden- 
tity of that allele by also on which are the specific alleles in the remaining 
genes. To model this situation an NK-landscape instance consists of two in- 
teger n and k representing the total number of genes n and the number of 
other genes a gene i is epistatically realted to. The values k can take are 
0 5 k 5 n - 1. Besides n and k, a n x 2k+1 matrix E with elements sampled 
randomly from the (usually) uniform distribution U(0,l) is also required to 
completely define an instans. A solution to an NK-landscape problem instance 
is represented as a binary string S with length n. The fitness of S is given by 
f itness(S) = * fi (Si, Si, , . . . , Si, ) where fi (.) is an entry in E, Si the 
value of string S a t  position i and Sij is the value of string S at  the j - th 
neighbour of bit i. The neighbours, not necessarily adjacent, j of bit i are part 
of the input as well. 

In figure 3 we show a (10,3) NK-landscape. The genome is formed by 10 
genes (N = 10) and each of the genes is epistatically linked to 3 other genes 
(K = 3). In the example this is depicted by the curved arrows going out from 
gene i towards adyacent genes. 

Fig. 3. An example of NK-Landscapes 

Low values for k represent low epistatic problems while large k value make 
up highly epistatic landscapes. The extreme case of an uncorrelated random 
fitness landscape is when k = n - 1. The optimization version of this problem 
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can be solved in polynomial time by dynamic programming if the neighbor- 
hood structure used is that of adjacent neighbours. The problem becomes 
NP-Hard if the structure used is that of random neighbours[50]. 

NK-Landscapes have been the subject of intensive and varied studies. 
Kaufmann et al. [31] explore a phase change in search when a parameter r of a 
local search algorithm reaches a certain critical value on some NK-Landscape 
problems . 

In their paper the authors show experimentally that the quality of the 
search follows an s-shape curve when plotted against r making evident a 
change in phase. M. Oates et al. [35] showed performance profiles for evo- 
lutionary search based algorithms where phase changes were also present. 
Krasnogor and Smith [28] and Krasnogor [23] showed the existence of the 
"solvability" phase transition for GAS (instead than LS) and demonstrated 
that a self-adapting MA can learn the adequate set of parameters to use. Merz 
[32] devotes at least one whole chapter of his Ph.D. dissertation to the devel- 
opment of efficient Memetic Algorithms for this problem (we will return to 
his MAS later on). With a different target as the object of research 0.Sharpe 
in [44] performs some analysis on the parameter space of evolutionary search 
strategies for NK landscapes. 

The NK-Landscapes represent a rich problem and they are an ideal test 
case for our purposes. We will describe the behavior of our Self-Generating 
Memetic Algorithms in 4 different regimes: low epistasis and poly-time solv- 
able, high epistasis and poly-time solvable, low epistasis and NP-hard and 
high epistasis and NP-hard. 

In [23] and in previous sections we argued briefly about the need to cre- 
atively adapt every aspect of the local searchers, that is, the acceptance strat- 
egy, the maximum number of neighborhood members to be sampled, the num- 
ber of iterations for which the meme should be run, a decision function that 
will tell the meme whether it is worth or not to be applied on a particular 
individual and, more importantly, the move operator itself. In this part of the 
chapter we will focus only on the self-generation of the move operator itself 
as a proof of concept5. 

The MA will be composed of two simultaneous processes. Individuals in 
the MA population will be composed of genetic and memetic material. The 
genetic material will represent a solution to NK-Landscapes problems (i.e. 
a bit string) while the memetic part will represent "mental constructs" to 
optimize the NK-Landscape string. As such we will be evolving individuals 
whose goal is to self-optimize by genetic evolution (first process) and memetic 
evolution (second process) as sugested by figure 2. 

3.1 The Self-Generating Memetic Algorithm 

The pseudocode in Figure 2 depicts the algorithm used to solve the NK- 
Landscape Problem. 

The other aspects are actively being investigated. 
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Memetic-Algorithm(): 
Begin 

t = O ;  
/* Initialize the evolutionary clock(generations) to 0 */ 
Randomly generate an initial population P ( t ) ;  
/* The individuals in the population */ 
/* are composed by genes & memes */ 
/* both randomly initialized */ 
Repeat Until ( Termination Criterion Fulfilled ) Do 
Variate individuals in M ( t ) ;  
/* The variation of an individual includes */ 
/* both genetic and memetic variation */ 
Improve~by~local~search( M ( t ) )  ; 
/* The local search is performed accordingly */ 
/* to the individual's meme */ 
Compute the fitness f (p )  Vp € M ( t )  ; 
Generate P ( t  + 1) by selecting from P ( t )  and M ( t ) ;  
t = t + l ;  

endDo 
Return best p E P ( t  - 1 ) ;  

End. 

Fig. 4. The memetic algorithm employed. 

The initial population in P is created at  random. Each individual is com- 
posed of genetic material in the form of a bit string (B). The bit string rep- 
resent the solution to the NK landscape instance being solved. The memetic 
material is of the form * + S where the * symbol matches any bit in the 
solution string and S is another bit string. The only variation mechanism is 
bitwise mutation (applied with probability 0.05) to the chromosomes. The 
replacement strategy is a (20,50). There is no genetic crossover but the SIM 
mechanism, as described in [28], is used to transfer memes between individ- 
uals. Memetic mutation occurs with an innovation rate[23] of 0.2. A meme 
can be mutated (with equal probability) in three ways: either a random bit 
is inserted in a random position, a bit is deleted from a random position, or 
a bit is flipped at  a random position. The length of memes cannot decrease 
below 0 nor increase beyond 3 * k for an (n, k)-problem. 

The Local Search Procedure: Memes description for 
NK-Landscapes 

A meme is represented as a rule of the form * + S. During the local search 
stage this meme is interpreted as follows: 
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Every bit in the chromosome B has the opportunity to be improved by 
steepest hill-climbing. In general NK-Landscapes are epistatic problems so 
flipping only one bit a t  a time cannot produce reasonable improvements except 
of course in problems with very low k. To accommodate for this fact, for each 
bit, one wants to optimize the value of that bit and that of IS1 other bits. A 
sample of size n is taken from all the (IS1 + l)! possible binary strings. Based 
on the content of S ,  these sample strings serve as bits template with which 
the original chromosome B will be modified. If IS1 = 0 then only Bi (the ith 
bit of B)  will be subjected to hill-climbing. On the other hand, if IS1 > 0 then 
the local searchers scans the bits of S one after the other. If the first bit of S 
is a 0, then the bit B(i+l) will be set accordingly to what one of the n samples 
template mandates. On the other hand, if Bi is a 1 then bit B(i+,)nn will be set 
as what one of the n samples template mandates. Here r is a random number 
between 0 and n - 1. By distinguishing in S between ones and zeroes memes 
can reflect the adjacent neighbour or the random neighbour version of the NK- 
landscapes. The larger the size of S the more bits will be affected by the local 
search process. As an example consider the case where the rule is * + 0000. 
This rules implies S = 0000. In this case, for every bit i in B we will produce a 
sample of size n out of the possible 25 binary strings. Each one of these samples 
will be used as a template to modify B. As S is built out of all O's, a fully- 
adjacent neighbourhood is considered. Suppose B = 1010101010101111 10 and 
the bit to be optimized is the fourth bit. Bq equals 0 in the example and its 
four adjacent neighbours are B5 = l ,Bs = 0,B7 = l,Bs = 0. If one of the n 
samples is 11111 then B will be set to B' = 101111111010111110 provided B' 
has better fitness than B. The process is repeated in every bit of B once for 
every sample in the sample set. 

Several complex local search strategies have been applied to the NK- 
landscapes domain. For example Merz in [32] uses various optimisation fea- 
tures with the aim of acelerating his MAS. Furthermore, in chapter 6 in this 
book he describes varios K - opt, Lin - Kernighan and other sophisticated 
heuristics for NK problems. In the following case studies, initially explored in 
1251 and [57], we use simpler local searchers to serve only as a proof of concept. 
The evolved memes induce a variable-sampled k - opt local search strategy. 
We say variable as k varies with the size of S and it can be as small as 0 or 
as large as 3 * k. It  is sampled as we do not exhaustively explore all the 2"' 
possible ways of settings the bits in a chromosome but rather take a reduced 
sample of size n. 

3.2 Results 

In previous sections we described our self-generating MAS. What sort of be- 
haviors can we expect to see emerging? Four different scenarios needs to be 
analysed: low epistasis-poly-time solvable, high epistasis-poly-time solvable, 
low epistasis-NP-hard and high epistasis-NP-hard landscapes. The level of 
epistasis is controlled by the n and k .  The closer k is to 0 the more negli- 



3 The NK-Landscapes Experiments 239 

gible the epistatic interactions among loci. If k grows up to n - 1 then the 
induced problems is a random field. The transition between polynomial time 
solvability to NP-hardness depends on the type of neighborhood used as it 
was explained before. We should expect the emergence of short strings (i.e. 
IS1 not too big) for the low epistasis regimes while longer strings will be fa- 
vored in high epistasis cases. We should be able to compare the length of the 
evolved local searcher with the k of the problem that is being solved. That is, 
we expect to see memes emerging with lengths close to k .  We should probably 
also see distinct patterns of activity for the different problem regimes. The 
range of problems we experimented with are: 

low epistasis, poly-time solvable: (50, l ) ,  (50,4) with adjacent neighbours. 
0 high epistasis, poly-time solvable: (50,8), (50, lo),  (50,12), (50,14) with ad- 

jacent neighbours 
0 low epistasis, NP-hard: (50, I),  (50,4) with random neighbours. 
0 high epistasis, NP-hard: (50,8), (50, lo), (50,12), (50,14) with random neigh- 

bours. 

3.3 Discussion 

In the following figures we plot the evolution of the length of the meme as- 
sociated with the fittest individual as a function of time and the evolution of 
fitness. For clarity, just 5 runs are depicted. 

Low epistasis, poly-time solvable: 

In Figures 5(a) and 5(b) we can observe the behaviour of the system. For 
the case n = 50, k = 1 the main activity occurs at  the early generations 
(before generation 4). After that point the system becomes trapped in a local 
(possible global) optimum. The length of the memes evolved oscillates between 
1 and 2. As the allowed length are restricted to be in the range [O, 3 * k], the 
expected length of memes is 1.5. It  is evident that the problem is solved 
before any creative learning can take place. When the Self-Generating MA is 
confronted with problem n = 50, k = 4 (a value of k just before the phase 
transitions mentioned in previous sections) the length of the meme in the 
best run oscillates between a minimum value of 3 (after generation 1) and a 
maximum of 10 for the run marked with a thick line (the best run). In this 
case the expected length (if a purely random rule was chosen) for a meme is 
6 which is the most frequently visited value. For these simple NK-Landscape 
regimes, it does not seem to be of benefit to learn any specific meme, but 
rather, a random rule seems to suffice. 

High epistasis, poly-time solvable: 

In Figure 5(c) we can see the system's behaviour for a value of k after the phase 
transition mentioned in [31] and [23]. In this case there is effective evolutionary 
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Fig. 5. NK(50,l) in (a), NK(50,4) in (b) and NK(50,8) in (c). Adjacent neighbours. 
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activity during the whole period depicted. Also, we can see clearly that the 
length of the meme employed by the most successful individual converges 
towards the value of k( in this case 8). If a purely random rule was used 
the expected length would have been 12. The case shown in Figure 6(a) is 
even clearer. All but one of the runs converge towards a meme length almost 
identical to k = 10, except for one that is very close to the expected length of 
15. 

The same trends can be seen in Figures 6(b) and 6(c) where meme lengths 
converge to values around to k = 12 and k = 14 respectively. It is interesting 
to note that although the values are very close to our predictions they do not 
remain at  a fixed value but rather oscillates. This is a very intriguing behaviour 
as it resembles the variable-neighborhood nature of Lin-Kernighan, the most 
successful local search strategy for NK-Landscapes and other combinatorial 
problems. It will be interesting to investigate on the range of values that the 
Memetic Algorithms presented in [32] (which uses K -opt and Lin-Kernighan) 
effectively employs; we speculate that the range of changes, i.e. the number of 
bits modified in each iteration of LS, will be close to the epistatic parameter 
of the problem instance. 

Low epistasis, NP-hard: 

In Figure 7(a) we start to  investigate the behaviour of the Self-Generating MA 
on the NP-Hard regime (i.e. the random neighborhood model). Figure 7(a) 
is similar to the adjacent neighborhoods version shown in Figure 5(a) except 
that oscillations are more frequent in the former. Comparisons between 7(b) 
and 5(b) reveal very similar trends. 

High epistasis, NP-hard: 

The experiments with (n = 50, k = 8) under the random neighbours model 
reveal marked differences with the consecutive neighbour model (see Figures 
7(c) and 5(c) respectively). While in the later all the runs converged toward 
a meme length very close to k, the random model shows a richer dynamics. 
Meme length were divided into 3 groups. In one group, the emerged meme 
length were very close to the value of k, 8 in this case. The other two groups 
either continually increase the size of the memes or decreased it. Two of the 
most successful runs are identified with a cross or circle and each belong 
to a different group. Interestingly, the run that converges first to the local 
optimum is the one that uses very short memes. In contrast, the run that uses 
memes with length equivalent to a value of k show a continued improvement. 
It is important to note that none of the evolved memes converged towards 
the expected length of 12. Figure 8(a) seems to reveal a similar 3-grouped 
pattern. 

The runs that correspond to instances of (n = 50, k = 12) differ notably 
from previous ones. The meme length seems to be converging towards a value 
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Fig. 6 .  NK(50,lO) in (a), 1&!(50,12) in (b)  and NK(50,11) in (c).  Adjacent neigh- 
bours. 
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Fig. 7. NK(50,l) in (a),  NK(50,4) in (b) and NK(50,8) in (c). Random neighbours. 
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Fig. 8. NK(50,lO) in (a), NK(50,12) in (b) and NK(50,14) in (c). Random neigh. 
bours. 
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well below the expected length of 18 and even the epistatic value k = 12 for 
these problems. However, between generation 34 and 68 the meme lengths 
oscillates very close to k = 12 values. The next figure, 8(c), presents similar 
features as that of 8(b). However, now two clusters appear, one that suggest 
length around the value of k and another with length values of 6. 

From the analysis of the previous figures we can see that our expectation 
that memes of length proportional to k will arise confirmed. However, other 
interesting features are evident. There are clear differences between memes 
that are evolved to solve the poly-time solvable cases and the NP-hard cases. 
In the first case, all the memes length for k > 4 converged toward values in the 
proximity of k. However, for the random neighborhood model and for high 
epistasis (k > 4) problems, the runs were clustered mainly around memes 
lengths close to k or close to around 6 (regardless the value of k). This is 
indeed a very interesting behaviour that deserves further studies as values of 
5 in the range [4,5,6] are on the edge of the phase transitions described in 
[31],[23] and [28]. That is, between 4,5 or 6 bits were the optimum number of 
bits that need to be considered to boost the efficiency of the search. Moreover, 
in the case of the NP-hard random neighbourhood with k = 8 three clusters 
are noted; we speculate that problems in this range are on the so called "edge 
of chaos" where emergent behaviours are more likely to occur[8],[20]. 

4 The Maximum Contact Map Overlap Experiments 

We explore next the evolved local searcher as  a supplier of building block in 
the context of a problem drawn from computational biology. A contact map 
is represented as an undirected graph that gives a concise representation of a 
protein's 3D fold. In this graph, each residue6 is a node and there exists an edge 
between two nodes if they are neighbors. Two residues are deemed neighboors 
if their 3D location places them closer than certain threshold. Figures 9 & 
10 show two contact maps. An alignment between two contact maps is an 
assignment of residues in the first contact map to residues on the second 
contact map. Residues that are thus aligned are considered equivalents. The 
value of an alignment between two contact maps is the number of contacts 
in the first map whose end-points are aligned with residues in the second 
map that, in turn, are in contact (i.e. the number of size 4 undirected cycles 
that are made between the two contact maps and the alignment edges). This 
number is called the overlap of the contact maps and the goal is to maximize 
this value. The complexity of Max CMO problem was studied in [18] and later 
in [23]. 

A residue is a constitutent element of a protein. 
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4.1 Self-Generating Memetic Algorithms for MAX-CMO 

The overall architecture of the Memetic Algorithm is similar to that described 
by the pseudocode in Figure 4. The backbone of the MA is a genetic algorithm 
in which chromosomes are represented by a vector c E [0, . . . , mIn. Here m is 
the size of the longer protein and n the size of the shorter. A position j in c, 
c[j], specifies that the j th residue in the longer protein is aligned to the c[jlth 
residue in the shorter. A value of -1 in that position will signify that residue 
j is not aligned to any of the residues in the other protein (i.e., a structural 
alignment gap). Unfeasible configurations are not allowed, that is, if i < j 
and v[i] > v[j] or i > j and v[i] < v[j] (e.g., a crossing a1ignment)then the 
chromosome is discarded. It  is simple to define genetic operators that preserve 
feasibilities based on this representation. Two-point crossover with boundary 
checks was used in [29] to mate individuals and create one offspring. Although 
both parents were feasible valid alignments the newly created offspring can 
result in invalid (crossed) alignments. After constructing the offspring, feasi- 
bility is restored by deleting any alignment that crosses other alignments. The 
mutation move employed in the experiments is called a sliding mutation. It  
selects a consecutive region of the chromosome vector and adds, slides right, 
or subtracts, slides left, a small number. The phenotypic effect produced is 
the tilting of the alignments. In [29] a few variations on the sliding mutation 
were described and used. Further implementation details can be found also in 
[23] and [5]. We describe next the make-up of memes. 

The Local Search Procedure: Memes description for MAX-CMO 

As mentioned in previous sections, we seek to produce a metaheuristic that 
creates from scratch the appropriate local searcher to use under different 
circumstances. A meme represents one particular way of doing local search. 
Memes can adapt through changes in their parameter set or through changes 
in the actions they perform. The local search involved can be very complex 
and composed of several phases and processes. In the most general case we 
want to be able to explore the space of all possible memes. One can achieve 
this by using a formal grammar that describes memes and by letting a genetic 
programming[21] based system to evolve sentences in the language gener- 
ated by that grammar[23]. The sentences in the language generated by this 
grammar represent syntactically valid complex local searchers and they are 
the instructions used to implement specific search behaviors and strategies. 
To describe the particular representation employed to self-assemble the move 
operator used by a local search strategy we resort to  a few examples. 

In Figure 9 we can see two contact maps ready to be aligned by our 
algorithm. To simplify the exposition, both contact maps are identical (i.e. 
we are aligning a contact map with itself) and have a very specific pattern of 
contacts among their residues. In the present example a residue is connected 
to either its nearest neighbor residue, to a residue that is 4 residues away in 
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Fig. 9. A contact map snapshot. The two randomly generated proteins have 10 
residues. 

the protein sequence, or to both (with a given probability). In Figure 9 the 
contact map is 10 residues long, while in 10 it is 50 residues long (but with the 
same connectivity patterns). This contact pattern can be represented by the 
string 1 - 4, meaning that the residue which occupies the ith position in the 
protein sequence is in contact in the native state with residues (i + 1)th and 
(i + 4)th. That is, the pattern 1 - 4 is a succint representation of a possible 
building block which, if matched by the local searcher, could be propagated 
later on by crossover into other solutions. 

An appropriate move operator for a local searcher acting in any of the 
contact maps on Figures 9 & 10 would be one that iterates through every 
residue in one of the contact maps, checking which residues on the lower 
contact map fulfills the pattern of connectivity and making a list of them. 
The same procedure would be applied to the top contact map producing a 
second list of residues. The local searcher then would pair residues of one list 
with residues of the second list thus producing a new and correct alignment 
which includes that building blocks. 

The number of residues that verifies the pattern in each list puts an upper 
bound on how expensive the local search move operator can be. If the size 
of the first list is L1 and the size of the second list is La, and without loss 
of generality we assume that L1 5 L2 then there are at most ~ i ~ f '  (Lt!C)!. 
Clearly this number is too big to be searched exhaustively, this is why the 
previous grammar allows for the adaptation of the sample size. Moreover, 
although it is well known that real proteins present these contact patterns[lO] 
it is impossible to know a priori which of these patterns will provide the best 
fitness improvement for a particular pair of protein structures. Hence, the 
Self-Generating MA needs to discover this itself. 
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Fig. 10. A contact map snapshot. The two randomly generated proteins have 50 
residues and the patterns of contacts are similar to  those in Fig. 9. 

If the graphs to be aligned were different (in the previous cases a graph 
was aligned with itself for the sake of clarity), then a move operator able to 
account for that variation in patterns must be evolved. 

The defined move operator induces a neighborhood for every feasible align- 
ment. If an alignment s is represented as explained above and L1, L2 are the 
list of vertices that matches the move operator, then every feasible solution 
that can be obtained by adding to s one or more alignments of vertices in L1 
with vertices on L2 is a neighbor of s. The other components of a meme will 
then decide how to sample this neighborhood and which solutions to accept 
as the next one. As this paper is an account of the initial investigations we 
performed on the use of SGMA, we fixed several aspects of the memes that 
could otherwise be evolved. In this paper all memes employ first improve- 
ment ascent strategy and they are applied after crossover. The sample size 
was either 50 or 500 and the local search was iterated 2 times. 

As described in the introduction, there were three memetic processes: imi- 
tation, innovation and mental simulation. Upon reproduction, a newly created 
offsprings inherits the meme of one of its parents accordingly to the simple 
inheritance mechanism described in [28]. In addition to this mechanism, and 
with a certain probability (called "imitation probability"), an agent could 
choose to override its parental meme by copying the meme of some successful 
agent in the population to which it was not (necessarily) genetically related. 
In order to select from which agent to imitate a search behavior, a tournament 
selection of size 4 was used among individuals in the population and the win- 
ner of the tournament was used as role model and its meme copied. Innovation 
was a random process of mutating a meme's specification by either extending, 
modifying or shortening the pattern in a meme (either before or after the -+). 
If during 10 consecutive generations no improvement was produced by either 
the local search or the evolutionary algorithm a stage of mental simulation was 
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started. During mental simulation, each individual (with certain probability) 
will intensively mutate its current meme, try it in the solution it currently 
holds, and if the mutant meme produces an improvement, both the newly 
created solution and the meme will be accepted as the next state for that 
agent. That is, mental simulation can be considered as a guided hill-climbing 
on memetic space. If ten mental simulation cycles finished without improve- 
ments, then metal simulation was terminated and the standard memetic cycle 
resumed. 

4.2 Results 

We designed a random instance generator with the purpose of parameterizing 
the complexity of the contact map overlap problems to be solved. The input 
to the random instance generator is a list of the form: 

r d n p, prl p2 pr2 . . . p, pr, where r is the number of residues in the 
randomly generated contact map, d is the density of random edges (i.e. noise) 
and n is the number of patterns in the contact map. For each of the n patterns 
two numbers are available, pi and pri, where pi specifies that a residue j is 
connected to residue j +pi with probability pri for all i E [I, n]. That is, every 
pattern occurs with certain probability in each residue, thus an upper bound 
on the expected number of contacts is given by r*d+r*C%zypri 5 r*(n+d). In 
our experiments r E {10,50,100,150,200,250), d = 0.01 and n E {1,2,3,4), 
that is, contact maps as short as 10 residues and as long as 250 residues were 
considered. For each contact map length, every possible number of patterns 
was used, this gives rise to 24 pairs of (r, n) values. For each pair, 5 random 
instances were generated spanning from low density contact maps to high 
density contact maps7. A total of 120 instances were generated. From all the 
possible parings of contact maps we randomly choose a total of 96 pairs to be 
aligned by means of 10 runs each. 

We present next comparisons of the performance of a Genetic Algorithm 
versus that of the SGMA. In this experiment we would like to elucidate 
whether the overhead of learning suitable local searchers is amortized along the 
run and whether our proposed approach is ultimately useful. In order to run 
the experiments we implemented a GA as described previously. We were able 
to reproduce the results of [29] and [5] hence we considered our implementa- 
tions as equivalent to the earlier ones. The difference between the GA and the 
SGMA are described below. In graphs 11,12,13 and 14 we compare the overlap 
values8 against the first hitting times. First hitting time (FHT) is the time (in 
number of fitness evaluations) a t  which the best value of a run was encoun- 
tered. Each graphs presents the results for 1,2,3 and 4 patterns respectively 
and for a range of contact maps sizes. The particular parameters used in the 

' The program to generate random contact maps was written in java 1.1.8 as is 
available by request from the author. 
A higher overlap value means a better structural alignment. 
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GA are 0.15, 0.75 for mutation and crossover probabilities, and a (50,75) re- 
placement strategy. The Self-Generating MA uses 0.15,0.75,1.0,1.0,1.0,1.0 for 
the probabilities of mutation, crossover,local search, imitation, mental simu- 
lation and innovation respectively. The algorithms uses the same replacement 
strategy and for both local search and mental simulation a cpu budget of 50 
samples is allocated. 

4.3 Discussion 

The graphs in 11,12,13 and 14 are good representatives of the results obtained 
with the two types of algorithms. That is, under a variety of changes to the pa- 
rameter values mentioned above the results remain equivalent to those shown 
here. 

1 Pattern Contact Map Overlaps 
10.50.IW, 150,ZW & 250 residue instances 

Fig. 11. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty increases as a function of residues number. Contact maps present one pattern. 

From Figures 11,12,13 and 14 we can see that the Self-Generating Memetic 
Algorithm produces a much better amortized overlap value than the simple 
GA. That is, if enough time is given to the SGMA, it will sooner or later 
discover an appropriate local searcher move that will supply new building 
blocks. In turn, this will deliver an order of magnitude better overlaps than 
the Genetic Algorithm. Also, it seems that the GA is oblivious to the size 
(i.e. residues number) of the contact maps as it seems to produce mediocre 
local optima solutions even when given the maximum cpu time allocation (in 
these experiments 2 * lo5 fitness evaluations) for the whole range of 10 to 250 
residues. The GA converges very quickly into local optima. This is seen in the 
graphs by bands parallel to  the x-axis over the range of energy evaluations for 
low overlap values. However, as the SGMA continuously improves its solutions, 
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2 Pattern Contact Map Overlaps 
10.50,100,150,200 & 250 midue inrlilnccs 

#Fitness Evaluations (first hiting time) 

Fig. 12. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty  increases as a function of  residues number.Contact maps present two patterns. 

3 Pattern Contact Map Overlaps 
10.50.100.150.200& 250residue instances 

M C " " " I '  ' ' " " " I '  ' ' " " " I '  .;i 

Fig. 13. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty  increases as a function of  residues number.Contact maps present three patterns. 

it is not until very late in the execution (i.e. to the right of the x - axis) that 
the best solutions are found. 

In contrast to the GA, the SGMA (as expected) is sensitive to the number 
of residues in the contact maps involved, that is, longer contact maps require 
larger cpu time to come up with the best value of the run (which is seen in the 
graph in the clustering patterns for the different residues number). Another 
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4 Pattern Contact Map Overlaps 
10.50.1 00. 150,200 & 250 rcqidue instunccs 

6 4 C " " I '  ' ' ' " " I '  ' ' ' " " ' I '  ' ' ' a ' " ' I '  ' 4 

$8 1x10- 1 x 1 0 ~  1x10' 

IRtnes- Evaluations (first hiting lime) 

14. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for-GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty  increases as a function of  residues number.Contact maps present four patterns. 

important aspect to note is that both the x - axis and the y - axis are 
represented in logarithmic scales. Taking this into consideration it is evident 
that the quality of the overlaps produced by the SGMA are much better than 
those produce by the GA. As it is evident from the graphs, for sufficiently 
small instances (e.g all the 10 residues long and some of the 50 residues long) 
it is not worth using the SGMA as it requires more cpu effort to produce same 
quality of overlaps as the GA. 

On the other hand, as the number of residues increases beyond 50, then 
instances are sufficiently complex to allow for the emergence of suitable local 
searchers in time to overtake and improve on the GA results. Also, as the 
number of patterns that are present in the instances increases both algorithms, 
as expected, require larger amounts of CPU to come up with the best solution 
of a run. However, it is still seen that the GA is insensitive to the number of 
residues, while the SGMA is clustered in the upper right corner (of Figure 14). 
This indicates that during all its execution the algorithm is making progress 
toward better and better solutions, the best of which is to be found near 
the end of the run. Moreover, this behavior indicates that the SGMA is not 
prematurely trapped in poor local optima as is the GA. 

The ability of the SGMA to overcome local optima comes from the fact 
that the evolved local searchers will introduce good building-blocks that match 
the particular instance. This supply of building-blocks is essential for a syn- 
ergistic operation of both the local searcher and the genetic operators. That 
is, using Goldberg's notation [17], we have that for the SGMA the take over 
time t* is greater than the innovation time ti, which allows the algorithms to 
continuously improve. In Figure 15 10 runs of the GA are compared agaisnt 
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GA vs SGMA 
250 residues long, 4 patterns contact map nlignrnent 

Generation # 

Fig. 15. Representative example o f  G A  and SGMA runs for a 250 residues and 4 
patterns instance. 

10 runs of the SGMA. It can be seen that the GA runs get trapped very early 
(around the 20th generation) in poor local optima while the SGMA keeps im- 
proving durin all the run. All the runs in Figure 15 use the same total number 
of fitness evaluations. 

5 Conclusions 

In this chapter we discussed concepts arising from Memetic theory that could 
be use to produce a new breed of optimisation algorith,~ We tied some of these 
memetic ideas with the concept of "Self-Generating Metaheuristics" and we 
exemplified the use of the resulting algorithms in two hard combinatorial 
problems. 

The Memetic algorithms described in this paper do not resort to  human- 
designed local searchers but rather they assemble on-the-fly the local search 
strategies that best suits each particular situation. 

In this paper we argued that from an optimization point of view there are 
obvious advantages in self-assembling the local search behaviours for memetic 
algorithms. MAS that can self-generate the local searchers will be able to adapt 
to each problem, to every instance within a class of problem and to every 
stage of the search. A similar strategy could be use in other metaheuristics 
(e.g. Simulated Annealing, Tabu Search, Ant Colonies, GRASP, etc) where 
more sophisticated GP implementations might be needed to co-evolve the 
used operators. 

One of the reasons for the success of the SGMA is that the evolved local 
searchers act as  a (low and medium order) building block supplier. These 
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continuous supply of building blocks aids the  evolutionary process to improve 
solutions continuously by producing a more synergistic operation of the local 
and gloabl operators. 

It is our hope that  researchers confronted with new problems for which 
there are not %ilver bullet" local search heuristics (like is the case for TSP 
and Graph Partitioning where K-opt and Lin-Kernighan are known t o  be 
extremely efficient) with which t o  hybridize a Memetic Algorithm will try 
the obvious: the Dawkins method of self-assembling of local search behaviors. 
That  is, use memes to  evolutionary self-assemble appropriate local search 
strategies. 
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Summary. Genetic and evolutionary algorithms (GEAs) are being employed to 
solve a wide range of problems in search and optimization. Most real-world appli- 
cations use GEAs in combination with domain specific methods to achieve superior 
performance. Such combinations, often referred to as hybrids, stand to gain much 
from a system-level framework for efficiently combining global searchers such as 
GEAs with domain-specific and local searchers. This chapter presents the founda- 
tions for such a framework. The theory herein attempts to attain the optimal division 
of labor between global and local search so that the desired solution quality can be 
obtained in the minimum time, or given a fixed time budget, the best solution qual- 
ity can be obtained. It relies on a two-fold decomposition: the hybrid is composed 
of a global searcher and a local searcher, and the search space is divided into basins 
of attraction from where the local search can lead to the desired solution quality. 
The framework allows us to choose between different schedules so as to maximize 
chances of success. The framework utilizes knowledge of run duration theory and 
uses the quality of solution at each generation to compute the parameters needed 
by the theory. The study also looks at characteristics of a class of functions (known 
as traps) that determine the speedups that can be obtained from using local search. 

1 Introduction 

Genetic and evolutionary algorithms (GEAs) have enjoyed considerable suc- 
cess as search and optimization techniques. They have been successfully ap- 
plied to  a wide range of problems across disparate domains. Oftentimes, GEA 
success is gauged by its efficiency in finding the solution. Although certain 
state-of-the-art GEAs, such as the hierarchical Bayesian optimization algo- 
rithm (hBOA) [18, 191, can solve difficult problems in subquadratic time, 
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better efficiency is still required for GEAs to tackle large scale real-world ap- 
plications. Based on the methodology of design decomposition and with the 
help of existing facetwise models of GEAs, four principled efficiency enhance- 
ment techniques were proposed [8] to  make GEAs capable of handling hard 
problems in practice: parallelization, time utilization, evaluation relaxation, 
and hybridization. These principled efficiency enhancement methods can be 
used in conjunction with one another so that modest gains from each method 
are compounded to result in substantial speedups. 

This chapter focuses on one of the principled efficiency enhancement 
techniques-hybridization. GEAs are good at  exploring the search space to 
find promising regions but have limited capability of fine-grained search. On 
the other hand, local and problem-specific search methods are adept at  fine- 
grained search. Hence, intuitively, a combination of a GEA with a local 
searcher, often referred to as a hybrid, should yield significant performance 
improvements. Past work has indicated that GEAs alone can seldom outper- 
form a hybrid in real-world applications. The primary goals of optimization 
[lo] can be stated as (a) achieving a specified solution quality in minimum 
time or (b) achieving the best possible solution quality in a given time. Hy- 
brids have been known to be successful at  both tasks. One of the key issues in 
designing hybrids is the division of labor between global and local searchers. 
Therefore, the present work aims to find the optimal switch-over point be- 
tween global and local searchers to make the most out of a fixed budget of 
fitness evaluations. 

1.1 Rationale behind the Framework 

The framework presented in this chapter is based on a number of assumptions 
which may require information unavailable in practice. However, the goal of 
this study is to provide a system-level framework to tackle what is, otherwise, 
an intractable problem. Another significant merit of the proposed hybrid the- 
ory is its reliance on few parameters. The assumptions for the theory in this 
study is described as follows. First, we assume knowledge of the search space: 
the sizes and number of the basins and the best solution. For many problems 
this information may not be available. Second, we assume knowledge of the 
time-to-criterion (TTC) for each basin. The calculation or estimation of this 
value may be feasible for many functions and local searchers but may not be 
possible for others. Also, it is assumed that the parameters are stationary. But 
for many global searchers (such as genetic algorithms), the probabilities, PG 
and PAa, will not be constant across iterations. Later, the theory is modified 
appropriately to handle such global searchers. 

1.2 Organization 

This chapter is organized as follows. Section 2 presents a taxonomy to cate- 
gorize GEA hybrids according to the purpose of hybridization and the archi- 
tecture of the hybrid. Section 3 introduces the theory for optimizing hybrids. 
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The hybrid theory utilizes a two-fold decomposition-the hybrid consists of 
global and local searchers and the search space is divided into targets and 
basins of attraction from which local search can lead to a target. The the- 
ory is then verified with the global method as random search and the local 
method as a quasi-Newton method with a simple multimodal test function. 
The utility of local search for a class of trap functions is demonstrated in 
Sect. 4. Population-sizing requirements for such hybrids are touched upon. 
The relation between speedups from local search and the problem size is also 
explored. Section 5 starts with a comparison of a GA with random search 
vis a vis the global-local hybrid theory. The theory is extended to GEAs to 
see how it helps to decide among different schedules for hybrids. The run du- 
ration theory enables us to estimate the theory parameters and extend the 
global-local hybrid theory to GEAs. Finally, Sect. 6 summarizes the study, 
describes the significance of the study for researchers and practitioners, and 
makes suggestions for future work. 

2 Hybrid Taxonomy 

GEA hybrids are being increasingly used in real-world applications. Numerous 
studies have used local searchers to achieve varying objectives. These stud- 
ies brought forward the critical issues of hybrid design. It would be useful 
to view these developments in perspective before proceeding toward better 
design of hybrids. This section explores the state-of-the-art in GEA hybrids 
and ties together past developments through a taxonomy of GEA hybrids. A 
taxonomy of GEA hybrids will view past developments in perspective, help to 
gain insight into their shortcomings, and enable them to be improved. GEA 
hybrids can be classified along the following lines: purpose of hybridization 
and hybrid architecture. These classifications are not mutually exclusive. The 
aim here is to highlight the motivations for hybridization and get a high-level 
view of what has been studied in the GEA community. 

2.1 Purpose of Hybridization 

Motivations for incorporating local search have been numerous, and it is useful 
to look at  hybrids from this perspective. This classification divides various 
hybrids according to the objectives of hybridization, including 

Exploitation: This class consists of hybrids using a local search technique 
for fast convergence to the optimum once the GEA has led the search to 
promising regions. The present study focuses on this class of hybrids. 
Repair: These hybrids use local search to generate legal solutions from 
parents and to repair infeasible solutions. 
Parameter optimization: In this class, the GEA technique is used to 
optimize the parameters of a secondary method. 
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0 G E A  functionality substitution/enhancement: In this class, sec- 
ondary methods are used to perform some function of the GEA or enhance 
the performance of the GEA through better control. 

The above classes cover the motivations for using GEA hybrids. The book 
edited by Davis [5] also provides strong motivations and guidelines for hy- 
bridization. Other categorizations based on the interaction between GEAs 
and local search are also possible and are discussed next. 

2.2 Hybr id  Architecture 

GEA hybrids can also be classified according to the nature of the coupling 
between the GEA and the secondary method (or how and when the secondary 
method is utilized). The following is a modified version of the classification 
proposed by Yen et al. [27]. Most hybrids fit into one of the categories: 

Pipel ined hybrids: These are characterized by two distinct sequential 
stages one of which is a GEA. This category can be further divided into: 
preprocessor, primary or postprocessor, and staged. 
Asynchronous hybrids: This paradigm involves the asynchronous co- 
operation of two methods such that intermediate values of each method 
might be utilized later in the run. 
Hierarchical hybrids: This class includes procedures with multiple levels 
of optimization utilizing different techniques, at  least one of which being 
a GEA. 
Embedded hybrids: This class is characterized by a secondary method 
embedded inside some GEA module and can be further subdivided accord- 
ing to the stage of embedding into the following sub-classes: initialization, 
fitness evaluation, crossover, mutation, and special operators. 

This classification of hybrids is also not mutually exclusive. There may be 
several schemes which fit into more than one category. Furthermore, GEA hy- 
brids can also be classified based on other criteria, such as the other methods 
utilized in a GEA hybrid. Interested readers are referred to more comprehen- 
sive surveys [12, 221 on this topic. 

3 Hybrid Theory and Verification 

In last section, the need for a high-level theory for hybrid design was discussed, 
and the theory proposed by Goldberg and Voessner [lo] was mentioned in this 
context. In this section, first, the basic approach of decomposing the hybrid 
and the search space as well as the parameters for the theory are described. 
Two formulations-one for minimizing the time to find the solution and one 
for maximizing the reliability-are then presented that enable the user to 
decide the proper mix between local and global search. Finally, the reviewed 
hybrid theory is empirically verified with random search as the global searcher 
and a quasi-Newton method as the local searcher. 
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3.1 Global-Local Hybrid Theory 

This part is mainly drawn from other works [lo, 71, and the interested reader 
is urged to refer to these papers for further details. A typical hybrid, H, 
consists of a global method G and a local method L. The theory looks at  a 
continuum of choices. G alone and L alone lie at  the opposite ends of this 
continuum. An iteration of H consists of one iteration of the G to generate a 
candidate solution which serves as the starting point for L which is invoked 
multiple times each consuming no more than an allowable time A, : 0 2 A, < 
A,,,. This process continues until we exceed an allowable time T, or the 
desired solution quality is obtained. Choosing a suitable value for A, is key 
to optimizing the hybrid. The solution quality is the solution accuracy target 
q5 5 &. In Fig. 1, Pi (depicted as tessellated polygons) are the basins of 
attraction within which L can lead to the target solution which are depicted 
as islands ri. Figure 2 illustrates the notion of solution quality. Here is 
said to be of a higher quality than $2 (for a maximization problem). Setting 
the desired solution quality to a lower value may bring more basins into the 
picture thereby increasing the chances of G hitting a basin. Also note that not 
all basins are useful. For example, getting into the rightmost basin in Fig. 2 
is pointless since we will never reach a solution of desired quality from there. 

The sought solution is better than some target value 4, (= 4* + &, where 
q5* is the globally optimal solution and Aq5 is the amount by which the sought 
solution quality differs from v) .  Aq5 would be positive (negative) for a mini- 
mization (maximization) problem. Now we consider the possible ways in which 
we can get to the target islands, ri. The union of the targets, the global re- 
gion, RG = Ui ri. The probability of hitting RG in a single invocation of the 
global searcher is denoted as PG. For random search with uniform distribu- 
tion, PG may be calculated by summing the areas of the targets and dividing 
by the total area of the search space. For more complex global searchers, this 
calculation will be more complicated. 

The local time-to-criterion (TTC) values, Xi, are defined as the average 
number of time units required to get to the target starting from within the 
basin of attraction pi. Although the time taken to reach the local optimum 
would depend on the exact point in the basin where we start from, here we 
consider a single Xi over the whole basin for simplicity. The probability of 
hitting basin Pi (exclusive of the target ri) with an invocation of G is denoted 
by Pi. Suppose G lands in a basin from where L does not reach a solution of 
desired quality or in a basin where L fails to converge in X 5 A,,, time units. 
Such regions are called dead zones. The probability of hitting a dead zone is 
denoted by PD and can be calculated as 

For simplicity, we assume that PG and Pi are constant over all iterations of 
the global searcher. This assumption is relaxed later and can be handled with 
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Fig. 1. This 2-D sketch of the search 
space shows the target islands, ~ i ,  basin 
of attraction under local method L to 
those targets, pi, and dead zones 

Fig. 2. Notion of solution quality. For 
maximization, 41 is a higher solution 
quality level than 4 2 .  The x axis repre- 
sents the phenotype space 

slight modifications to the theory. The global search is assumed to take one 
unit time, and the local search time is calculated relative to that value. Calling 
the allowable local time constant A,, and the average local time constant 1, 
the solution time T consumed in n global-local iterations is 

Some of the basins may have a local TTC higher than the allowable time for 
local search, A,. Hence, the probability of hitting the global zone can be found 
by summing the probability of hitting the global region initially (by the global 
searcher) and the probability of hitting the basins with a TTC less than A,: 

where PA, is the probability of hitting the global region when A = A,. While 
seeking a solution of certain quality, we either seek to maximize the probability 
(or reliability) of reaching the solution in a given time budget, or we seek the 
desired solution in the minimum time with given reliability. 
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Minimum Time Formulation 

The reliability is measured in terms of the probabilistic error, a ,  that is defined 
as the probability of not reaching the desired solution. Therefore, the lower 
the value of a the higher the reliability. For a specified allowable error a,, the 
reliability condition can be written as 

where n is the number of global-local iterations. By eliminating n with (2) 
and minimizing, we get 

This gives us the minimum time required to reach a solution with a specified 
allowable error a,. The minimization of the above expression yields an optimal 
choice of Xi. 

Maximum Reliability Formulation 

Based on (2), we have n = &. The maximum allowable time A,,, 5 T, - 1. 
We need to minimize the probabilistic error in order to maximize reliability. 
Minimizing the error and substituting for n gives 

These two formulations-minimum time to achieve the desired solution 
quality and maximum reliability of reaching the desired solution quality- 
cover the most sought after objectives in optimization. The problem is reduced 
to finding the A, which minimizes the above expression. Although it assumes 
knowledge of the search space, the theory promises a systems-level design 
capability for global-local hybrids. 

3.2 Verification for Random Search 

In this section, the hybrid theory is verified using random search as the global 
searcher [lo, 211. We consider three cases-uniform Xi across all basins, vari- 
ation in Xi across basins, and variation in X within a basin-and see how the 
theory can be used to handle each case. The theory helps us decide the opti- 
mal combination of global and local search. Also, the effect of desired solution 
quality on the optimal hybrid is explored. 
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Experiments 

This theory has been verified previously using random search as G and a 
quasi-Newton method, the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
method [20] as L for uniform X across several basins [lo]. The test function 
used in that work was 

fo r? '< r :  
f (x, Y) = , 

otherwise 

where V = x - mi,  5 = y - cyi, F' = ?E2 + y2, and ci = ((2.0, 8.0), (3.0, 4.0), 
(5.0, 7.0), (7.0, 8.5), (7.0, 4.0)), ri = (1.5, 2.0, 0.5, 1.0, 2.5), di = (2.0, 3.0, 
2.0, 4.0, 2.0). The global minima is -4.0 at  (7.0,8.5). This function has been 
used for all of the following experiments except where mentioned otherwise. 

The termination criterion for all simulations was a maximum error of 
0.01%. For random search, PG is calculated by summing the areas of the 
targets and dividing by the total area of the space. A Baldwinian approach is 
used to handle the results from the local searcher. In the Baldwinian approach, 
only the fitness of an individual is replaced with that obtained from the local 
searcher, while in the Lamarckian approach, both the fitness and the genotype 
of an individual are replaced [13, 26, 31. Since in many real-world applications, 
function evaluations tend to be the bottleneck, appropriate weights are as- 
signed to function evaluations, and this computation is considered a measure 
of execution time. In this work, each function evaluation and each derivative 
evaluation has a unit cost associated with it. 

Case I: Uniform Xi Across Basins 

The simplest case is when all the basins in the search space have the same 
TTC values, Xi. We have two possible situations: (a) the probability of the 
global searcher hitting a solution by itself is negligible, and (b) the probability 
of global searcher hitting a solution on its own is considerable. We illustrate 
these cases, and the theory is able to predict beforehand whether we should 
go with G alone or G + L in combination. 

First, the TTC value was estimated for all the basins by averaging the time 
taken to reach a solution of desired quality from within the basin over 1000 
trials. Since the function is quadratic and the local searcher is a quasi-Newton 
method, we get a small value, Xi z 3.0, for each basin. Hence, the allowable 
time for local search, A,, was set to 3.0 for this case. 

This is illustrated by the following two cases. In the first case, we set 
4, = -3.99. This yields PD = 0.9686 and PG = 0.0001. Because 4, is so close 
to its global value, G alone has a negligible chance of finding the target. In 
this case, G + L has a better chance of succeeding. Figure 3(a) shows that 
the experimental results are a good match with the theory. In the second 
case, 4, = -1.0. Now, PD = 0.5760 and PG = 0.1490. G has a high chance 
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- G+L Theory 
0 G+L Experiment 

(a) 4, = -3.99, PG = 0.0001, X i  % 3.0, Xa = 
3.0. In this case, G + L yields lower error 

c * - s * I . n , -  
. . . . . . . . . . G Theory 

G+L Theory 
0 G Experiment 
A G+L Experiment 

(b) 4, = -1.0, PG = 0.1490, X i  z 3.0, Xa = 
3.0. In this case, G yields lower error 

Fig. 3. The probabilistic error cr is shown as a function of the allowable time Ta for 
the case of uniform X i  across basins when G = Random Search and L = BFGS 

of succeeding on its own. Going with G + L is costlier in terms of function 
evaluations. Figure 3(b) shows that the experiment matches the theory closely. 
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Case 11: Variation in A; Across Basins 

With different Xi for different basins, choosing an appropriate value for A, 
becomes critical. The possible choices for A, are the different Xi. A higher A, 
is appropriate if the cumulative probability of success increases sufficiently. 
The following procedure is adopted for choosing an optimal value of A,. First, 
the basins are arranged in ascending order of A. Locally optimal choices are 
obtained by comparing the X values of the ith basin and the (i + 1)th basin 
on the basis of the probabilistic error. The error is given by (4) with n = 
Ta/(Xa + 1): 

= (1 - pAa)Ta/(Aa+l) = PTa/('a+l) 
D (8) 

The locally optimal choice with the least error gives the globally optimal 
choice of A,. This procedure yields A, = 8.0 as the optimum value for the 
aforementioned function. 

Although the BFGS method is still the local searcher, we simulate the 
varying Xi as follows. In particular, we simply assume that different basins 
have different Xi values. The assignment was Xi = {6.0,12.0,4.0,10.0,8.0). 
Whenever the global searcher lands in a basin, it is assumed that the local 
searcher takes the assigned amount of time to reach a target. The desired 
solution quality was 4, = -1.0. Figure 4(a) shows the results for this case. 
The least error is with A, = 8, which was predicted by the theory. For clarity, 
only three of the five possible choices of A, were plotted. Experimental results 
for A, = 8 and A, = 12 are shown separately in Fig. 4(b). The other choices 
of A, (which are not shown) led to inferior performance. 

Case 111: Variation of X Within a Basin 

For many real-world functions and local search methods, the TTC values 
depend on the starting point of the local searcher. It can be illustrated by the 
Griewank function [25] (for the two-dimensional case): 

where 51, 5 2  E [-512,5111. This is a differentiable, multimodal function with 
the global minima as 0.0 located at  xl = 0.0 and 5 2  = 0.0. 

For a solution quality of 4, = 1.5 X varied from 3.0 to 23 for each basin. All 
values (except 4) in this range were observed. For convenience, only a portion 
of the space was considered. The area of each basin was approximated by a 

Table 1. The probabilistic error for each choice of A, 

Choice of A, 4.0 6.0 8.0 10.0 12.0 

Error = (1 - PA,)* 0.998 0.967 0.956 0.960 0.957 
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(a) The lowest error is obtained for A, = 8.0, 
as suggested by the theory 

(b) This shows the similar behavior between 
A, = 8,12. But A, = 8 has better performance 

Fig. 4. The probabilistic error a is shown as a function of the allowable time 
T, for the case of uniform Xi  across basins when G = Random Search and 
L = BFGS. Different basins were assumed to have the following TTC values 
Xi = {6.0,12.0,4.0,10.0,8.0) 

circle. To calculate Pi, X was chosen so that 90% of the observed X were below 
this value. The above procedure reduced the effective area of the basin by 10%. 
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(a) Here 4 ,  = 0.02, PG = 0.002 and Xa = 17.0. 
In this case, G + L yields lower error 

- -. . . . - - G Theory 
G + L Theory (ha = 3) 

0.8 

(b) Here 4,  = 1.5, PG = 0.356 and A, = 3.0. 
In this case, G alone performs better 

Fig. 5. The probabilistic error a is shown as a function of the allowable time Ta 
when G = Random Search and L = BFGS,  with variation in Xi within basins 

This was factored into the calculation of Pi. Since the behavior was similar 
across basins, Xi  were taken to be uniform. Figure 5(a) shows the results for 
a desired solution quality 4, = 0.02. The results match the theory. Here, 
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PG = 0.002, Po = 0.6237,Xa = 17.0. The global searcher cannot succeed 
without the help of L. Figure 5(b) shows the results for a desired solution 
quality 4, = 1.5. Here, PG = 0.356, Po = 0.55, A, = 3.0. With a higher PG, 
we see that G alone performs better than G + L. According to the theory one 
should proceed with G only if Po > (1 - pG)" which is the case here. The 
theory holds in this test condition. 

4 Problem Characterization and Population Sizing 

Characterization of problems where local search can improve the efficiency of 
genetic search is a crucial aspect of hybrid design. In many problems, hybrids 
may slow down the search for the optimum, if applied without careful consid- 
eration. Therefore, identification and characterization of features which can 
aid the local searcher becomes very important. This section delves into this 
and another relevant issue: population sizing for hybrids. Efficient population 
sizing is critical for getting the most out of a fixed budget of function evalua- 
tions. The section starts by describing existing models for population sizing. 
A class of trap functions is studied, and features which aid the local searcher 
are identified. Then, the effect of these features on speedups is also studied. 
Finally, empirical results for population sizing are presented. 

The rest of this work assumes the following with regard to the GA and the 
test problems. The building blocks (BBs) are assumed to be tightly linked. Se- 
lectorecombinative GAS (mutation probability set to 0) and only fixed length, 
binary encodings are used. Also, non-overlapping populations are used. Tour- 
nament selection with a tournament size of two is used throughout. All fitness 
functions are assumed to be stationary, and uniform BB crossover has been 
used to avoid BB disruption. 

4.1 Population-Sizing Models 

Decision models play an integral role in the population sizing models reviewed 
in this section. Such models attempt to determine the chances of choosing the 
individual with the best BB at a locus in the presence of noise coming from 
other loci in the individual. Goldberg et al. [9] considered m partitions in 
an individual. Partition refers to the locus of one complete BB. The fitness 
signal difference between the best and the second best BBs is denoted by d. 
They used statistical decision making to derive the required population size 
in terms of the number of partitions and the signal difference. The interested 
reader is urged to refer to that study for further details. 

The gambler's ruin model [ll] for population sizing improves upon the 
decision model. A random walk in a single dimension with two absorbing 
states-either the gambler ends up with all of his opponent's cash or he loses 
all his capital-was utilized to model convergence in GAS. Each partition can 
be assumed to converge independently. The run starts with a few of the BBs 
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in the partition correct. We assume that as the run proceeds, the probabil- 
ity of one more BB converging correctly remains constant. At the end of the 
run, all BBs in a partition are converged to the correct BB. An important 
(although conservative) assumption in this model is that the competition is 
always between individuals with the best and the second best BB. The result- 
ing expression [ll] for population size is given by 

n = -2"' 1n (a)  cbbdrm' 
d ' 

where a b b  is the BB variance, m' = m - 1 is the number of partitions con- 
tributing to the noise, and d is the signal difference. 

4.2 Test Functions 

This section describes the test functions used in this study. All of them are 
functions of unitation (the number of ones in the BB). We also look at  the 
characteristics of these functions to see why they are suitable for this study. 

OneMax Domain 

OneMax is probably the most common test function for GAS. The fitness is 
given by the unitation of the string. The contribution of each allele is equal 
and independent. A BB consists of a single allele. OneMax does not pose any 
problems for a GA but serves as a baseline for designing better GAS. 

A useful extension to OneMax is the problem where a number of BBs 
are concatenated. This is referred to as the OneMax BB function 1141. The 
contribution of each BB is scaled down to one so that the fitness of the optimal 
individual is m, the number of BBs. The minimum fitness of each BB and the 
whole string is 0. For a BB of size lc, the fitness is xlk,  where x is the unitation 
of the BB. Such BBs may be concatenated to increase the problem size. 

MaxTrap 

Another useful class of test function in GA design has been deceptive functions 
[6,23]. These function were designed to deceive GAS toward converging to sub- 
optimal solutions. The basic assumption that short optimal BBs combine to 
form longer optimal BBs is violated. At the first few levels, this holds true, 
but at  higher levels, the BBs do not lead to the global optimum. The maximal 
deceptive function, or MaxTrap, for a BB of size lc is where BBs till size k - 1 
lead to a sub-optimal solution. The function can be written as: 

i f x = l c  
f (x) = k-1-x 

1 - d) otherwise ' 

where d is the signal difference between the best and the second best BBs. 
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Fig. 6. The spectrum of unitation functions with OneMax at one end and MaxTrap 
at the other for an 8-bit BB 

4.3 Utility of Local Search for a Class of Trap Functions 

For fixed length BBs, a whole spectrum of trap functions similar to the Max- 
Trap function can be defined. Figure 6 shows this range where we get a dif- 
ferent function for each choice of the inflection point, in. At one end, the 
function is OneMax; a t  the other end, the function is the MaxTrap. The ex- 
pectation is that the contribution from local search should decrease as we 
move in from left to right. This is because of the decrease in the extent of 
the "slope" afforded by the function for a hillclimber. An important point is 
that for OneMax, local search alone is the best algorithm since the function is 
unimodal and thereby, "hillclimbing easy". But beyond that (for in = 1 - 7), 
we encounter false peaks in all the functions. Hence, local search alone will not 
do the job, and it becomes necessary to  use an algorithm which can preserve 
diversity so that the search does not get stuck on any of the false peaks. 

Table 2. Population size requirements with different amounts of Lamarckian local 
search on different functions for k = 8 and 1 = 80 using bisection method. LS 
denotes the number of function evaluations spent on local search per individual per 
generation. The sought solution quality was 0.98 (proportion of correct BBs) 

Inflection LS = 0 LS = 1 LS = 10 LS = 20 

0 1900 1 1 1 
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These intuitions were corroborated by empirical evidence which show that 
as we move in from left to  right, the gain from adding local search to the 
GA diminishes. The problem was constructed by concatenating m = 10 BBs 
of length k = 8. The minimum population size requirements for different 
functions and different amounts of local search are shown in Table 2. These 
empirical results were obtained by averaging over 100 runs. The solution qual- 
ity sought was 0.98 (proportion of correct BBs). The architecture was a staged 
hybrid wherein a fixed amount of local search is applied to each individual 
during each generation. 

The local searcher used is a Lamarckian next-ascent hillclimber (NAHC), 
which works in the following manner. First, a randomly selected bit is in- 
verted. If this improves the fitness, the change is accepted; otherwise, it is 
not. This incurs the cost of a single function evaluation. The number of func- 
tion evaluations per individual per generation is a parameter of the hybrid. A 
selectorecombinative GA is used with uniform BB crossover with a probability 
of 1.0. The performance metric for measuring performance was the proportion 
of correct BBs a t  the end of the run. 

For each function, the following algorithms were tested: the GA alone 
and hybrids with 1, 10, and 20 evaluations of local search per individual 
per generation. The results are shown in Fig. 7. The fastest convergence is 
observed with 1 evaluation spent on local search for all cases except for in = 7. 
The decline in speedup from local search is marked beyond in = 3. "Too 
much" local search may lead to sub-optimal solutions. This is seen for in = 6 
when LS = 10 and higher results in failure to converge to the correct BBs. 

An important observation here is the decrease in population sizing require- 
ments when using local search. Table 2 shows that the required population 
size initially decreases as the amount of local search is increased, but after a 
point, larger population sizes are required. A high amount of local search on 
a small population can quickly lead to loss of diversity and premature con- 
vergence. The decrease in population sizing requirements can be explained 
as follows. Since local search constantly leads toward basin optima, it results 
in a decrease in the fitness variance. Because the population size is directly 
dependent on variance, we see a decrease in the population size requirements. 

Another interesting point is the variation in speedup from local search 
with increase in problem size. Intuitively, from the gambler's ruin model we 
expect the required population to grow as the square root of the problem size 
(1). With a small amount of local search, the overall convergence behavior is 
not affected drastically. As a result, we expect the speedups to be inversely 
proportional to the square root of the problem size. Empirical results confirm 
this intuition. Figure 8 compares the experimental results with the theory for 
different trap functions. Problem sizes used were 80, 160 and 320. One unit 
of 95% Baldwinian local search was used per individual per generation. The 
solution quality sought was 0.98 (proportion of correct BBs) and k = 8. The 
speedup was computed as the ratio of function evaluations needed by a GA 
alone to that required by the hybrid to achieve the sought solution quality. 
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Fig. 7. The utility of different amounts of local search is depicted for various trap 
functions. LS gives the amount of Lamarckian local search per individual per gen- 
eration. LS = 0 corresponds to a GA alone. For in = 7, adding local search only 
degrades the performance, so the corresponding results for LS > 1 are not shown 
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Baldwinian local search was used per individual per generation. The solution quality 
sought was 0.98 and 1 = 80,160,320 and k = 8. The speedup was computed as the 
ratio of function evaluations needed by a GA alone to that required by the hybrid 

5 Incorporating GAS as Global Searchers 

In previous sections, the hybrid theory was verified with random search as the 
global search. Our next goal is to extend the theory to GAS. The main problem 
here is the estimation of the theory parameters that also happen to be non- 
stationary. We start with a discussion of how a GA affects the search compared 
to random search in the context of the hybrid theory. Run duration theory is 
then reviewed and used to estimate the theory parameters. The probabilistic 
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error is estimated for GA hybrids. Using this error as the performance metric, 
the theory allows us to choose from different hybrid schedules. 

5.1 Genetic  Algori thm Versus R a n d o m  Search 

With uniform random search as the global searcher, the probabilities of hitting 
the global region, PG, and that of hitting a basin of attraction, PB, remain 
constant during the process. However, with a GA as the global searcher, these 
probabilities increase in successive generations. For the following experiments, 
the probabilities were computed by observing the number of times an optimal 
individual was found in the population over 1000 runs. A generation-wise ran- 
dom search was used wherein a population of individuals was random created 
at  each generation. This ensured that equal number of function evaluations 
were spent on the GA and random search. The population sizes (for different 
functions) for the GA were set to those found in the previous section. Strings 
of length 80 with BB size k = 8 were used. Figures 9 and 10 show the results. 
For different trap functions, the probability of getting a t  least one optimal in- 
dividual in the population and the proportion of individuals within the basin 
indicate that the GA easily outperforms random search. 

5.2 R u n  Dura t ion  Theory  

Run duration theory is an important aspect of GA design. It  has been studied 
in terms of takeover time models and convergence time models. Takeover time 
models estimate the time for the best individual to proliferate in the popula- 
tion. Convergence time models consider the time taken for the average fitness 
of the population to converge. This section briefly describes the convergence 
time model for the OneMax domain [17, 24, 1, 15, 161. 

The basic equation [4, 171 governing GA dynamics is given as 

where pt and at denote the population fitness mean and variance at  generation 
t ,  and I is the selection intensity. This enables us to predict the average 
fitness in successive generations. For the OneMax domain, the population 
fitness mean and variance can be expressed in terms of pt as pt = lpt and 
at = d w  , where 1 is the problem size. This result [17, 241 comes 
from the assumption that the probability of "1" at  any locus is given by a 
binomial distribution with probability pt .  Substituting this in (12), we get 

This equation can be solved for the proportion of correct alleles as 

pt = 1 2 (I + sin 5) 
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Fig. 9. The probability of getting a t  least one optimal individual in the population 
a t  a given generation is measured over 1000 runs for trap functions of 1 = 80, k = 8 

For randomly initialized GAS, we can assume po = 0.5. The time to conver- 
gence (pt = 1.0) is therefore 

t = -  
2 I 

In this derivation [17], I has been assumed to be independent of pt. The 
selection intensity for tournament selection is given by the maximal order 
statistic p,:, [2, 161. Order statistic pi:j denotes the expected value of the ith 
biggest sample out of a sample of size j drawn from a unit normal distribution 
N(0 , l ) .  For binary tournament selection I = p2:2 = 0.5423. 

Until now, we have been working a t  the allele level. The next step is 
to extend the theory from alleles to BBs. Miller [14] proposed two ways to 
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Fig. 10. The probability of getting at least one individual in a basin at a given 
generation is measured over 1000 runs for trap functions of I = 80, k = 8 

go about this task. Either, we can adapt the theory to the BB level, get 
fitness mean and variance in terms of the proportion of the optimal BB, and 
proceed. Or, we can stick to allele-wise modeling and plug in an appropriate 
termination criterion. For the OneMax BB domain, the BB distribution is 
binomially distributed, and the proportion of correct BBs increases as the 
distribution converges to the optimal BB. We use the allele-wise model to 
estimate the convergence time for the OneMax BB domain. The proportion 
of correct BBs is denoted by pbb,t. The main idea is to use pbb,t = pt SO that 
pt = m. Hence, if the desired quality is pbb,t, we can use pt = m. In 
other words, the time to convergence to proportion pt at the allele level is 
equal to the time taken to converge to pbb,t a t  the BB level. 
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For many functions, such as MaxTrap, it is difficult to  express fitness mean 
and variance in terms of pt. In such cases, we can use the results from the 
OneMax to approximate convergence time if the BB distribution is roughly 
normal, and the proportion of correct BBs increases as the BB distribution 
converges to the optimal BB. The procedure followed is similar to the OneMax 
BB domain except that domain-specific BB variance values are used. 

5.3 Estimation of Theory Parameters for G = GA 

First, we consider the notion of a basin of attraction for unitation functions. 
Once we have a point to the right of the inflection point, there is no way we 
can reach any optimum other than the global one with local search. Thus, all 
points to the right of the point of inflection, in, are in the basin of attraction 
of the global optimum. Ideally, our aim is to use a global searcher which max- 
imizes the chance of landing in the basin of attraction of the global optimum 
and then use a local searcher from that point. 

Knowing how to predict the probability of "1" at  a locus (pt) for the 
OneMax BB domain, we can calculate the proportion of correct BBs in the 
population which are in the basin of attraction as follows: first, a t  the BB 
level, the probability of getting a right BB is given by 

Figure 11 shows the proportion of correct BBs a t  each generation. These 
results, averaged over 100 runs for k = 8 and I = 80, show good agreement 
with the above theoretical prediction. 

Then, considering the location of the BB, the probability of getting a BB 
in the basin of attraction (inclusive of the optimum) is given by 

k 

Pas = C ( 5 )  p t j  (1 - pt).-j 
j=in+l 

Figure 12 compares the theoretical and experimental results for the proportion 
of BBs which are in the basin of attraction. We expect the proportion of BBs 
within the basin to rise initially and then drop off as more and more BBs 
converge to the optimum. For i n  = 1 - 4, the experimental results shows good 
agreement with the theory. Beyond that, the theory starts overestimating the 
proportion at  each generation. 

Moving on to the individual level, if we want at  least q out of m BBs to 
be correct, we can write the probability of an individual being optimal as 

If we use the same criteria (q out of m should be in the basin of attraction), 
the probability of getting an individual in the basin of attraction is therefore 



5 Incorporating GAS as Global Searchers 281 

Generation Number 

Generanon Number Generat~an Number 

Generetion Number Generalton Number 

Generation Number 

Fig. 11. The theoretical and experimental curves for the proportion of correct BBs 
are shown for k = 8, 2 = 80 for a range of trap functions with in = 1 - 7. The 
experiments traced the proportion of a correct BBs at a fixed location in the string 
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Fig. 12. The theoretical and experimental curves for the proportion of BBs within 
a basin for a single BB are shown for k = 8, 1 = 80 for a range of trap functions 
with in = 1 - 6. The experiments traced the proportion of BBs within a basin at  a 
fixed location. Since there is no "basin" for in = 7, it is not shown in the figure 

This includes the case where some (but not all) of the q BBs may be correct 
with the rest being in the basin of attraction. 

Now, we introduce a new parameter, PLS, the fraction of the population 
on which local search is performed at each generation. These individuals are 
selected randomly from the population. There are three possibilities: (a) the 
solution is in the target region; (b) it is in a basin of attraction; (c) it is in 
the dead zone. The probability of a solution being in each of these zones is 
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Fig. 13. Three different schedules based on variation of PLS 

already known. The hybrid can fail only when we do not have a solution of 
desired quality, and none of the nPLs individuals chosen for local search is in 
a basin of attraction. Thus, we have the probabilistic error as 

n - n P ~ s  

a = c (f) P;,,~,(I - PG - P ~ ~ ~ ~ ~ ) ~ - ~  . 
i=O 

Equation (20) allows us to choose among different hybrid schedules. 

5.4 Experiments 

The theory developed in previous sections for adopting an appropriate sched- 
ule to apply global and local searchers over time in a GEA hybrid was verified 
through experiments. A GA with I = 80, k = 8 with Baldwinian local search 
(next ascent) was used. The coupling between GA and local search has lesser 
effect on the GA when Baldwinian local search is employed. The duration of 
local search at  each generation was kept constant at  80 evaluations. This was 
to ensure that if we are in a basin of attraction, local search always leads to 
the optimal solution. The fraction of population which undergoes local search, 
PLS, varies from generation to generation. Our aim is to choose a schedule, 
from a host of schedules, that results in the lowest probabilistic error or the 
lowest faiIure probability. 
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(a) Theoretical prediction (b) Experimental results 

Fig. 14. Comparison of probabilistic error for different hybrid schedules 

The test functions are trap functions with different points of inflection. 
For these functions, doing a full local search proves too expensive, and the 
GA alone performs better. To circumvent this, we scale down the cost as- 
sociated with local search. The idea is that if we had a local searcher that 
had these scaled down costs, we could apply the theory to choose a schedule. 
More importantly, since optimal population sizing for hybrids will decrease 
the required population size, this analysis can still hold. Three schedules are 
considered: S1, S2, and S3. These schedules differ in how the fraction of the 
population that undergoes local search at  each generation (which is PLS) is 
varied over the evolutionary process. In S1 and S2, PLs is increased gradually. 
In S3, P L ~  is the maximum a t  the start of the run and gradually decreases 
over the run. Figure 13 shows the three schedules. 

The theory suggests that S1 should yield the lowest error, and the ex- 
periments corroborate this finding. Figure 14 compares the probabilistic error 
estimates of the theory (averaged over 1000 runs) to the experimental re- 
sults. The population size was 8000. The results are for the trap function with 
in = 4, d = 0.55, k = 8, and I = 80. Since we are doing a complete Baldwinian 
local search (NAHC without replacement) on selected individuals every gen- 
eration, we expend 80 function evaluations on each selected individual. The 
theory correctly predicts the relative performance of different schedules. By 
providing us qualitative insights into the relative performance of different 
schedules, it enables us to choose the best schedule. Ideally, we would like 
to generate an optimal schedule that results in the lowest probabilistic error 
among all possible schedules. This theory is a positive step in this direction. 

The theory is unable to predict strictly accurate behavior. The difference 
between theoretical and empirical results can be explained as follows. First, 
the theory assumes that the behavior for these functions is similar to MaxTrap. 
Second, the theory ignores the improvement in probability of hitting the basin 
as a result of local search. It  causes the theory to overestimate the failure 
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probability at each generation. Nonetheless, the theory still gives us a fair 
idea about the relative performance of different schedules and can be used for 
guidance when choosing a schedule for hybridization. 

6 Summary and Conclusions 

This chapter started with presenting state-of-the-art GEA hybrids. A taxon- 
omy for hybrids and outstanding issues pertinent to hybrid design was then 
described. A principled approach to design of GEA hybrids, based on past 
work, was introduced and verified by considering three cases-uniform time- 
to-criterion (TTC) across basins, different TTC across basins, and different 
TTC within basins-with random search as the global searcher and a quasi- 
Newton method as the local searcher. Following this, the utility of local search 
for a class of trap functions was illustrated. A decrease in population sizing re- 
quirements for GAS was demonstrated after combining it with a local searcher. 
Also, the speedup from local search turns out to be inversely proportional to 
the square root of the problem size. 

The hybrid theory was then extended to incorporate GAS as the global 
searcher. The parameters required by the theory were estimated with the run 
duration theory in the literature. The probabilistic error was derived as a 
function of the fraction of the population undergoing local search at a given 
generation. Although the theory does not generate optimal schedules, it gives 
a fair estimate of the relative performance of different schedules and enables 
the user of GEA hybrids to decide among different schedules. 

This study presented a high level framework for designing GEA hybrids. 
A number of extensions are possible: 

Test on a rigorous test suite: Although the theory has been extended 
to handle GAS as global searchers, it needs to be tested more extensively. 
Test problems involving sources of problem difficulty other than deception 
are needed to demonstrate the applicability of the theory to a broader 
range of problems. 
Methods for offline and online estimation of theory parameters: 
The theory parameters: probabilities of hitting the global zone and the 
basins of attraction and the TTC values for different basins may not be 
directly available in many cases. We need efficient techniques (offline or 
online) for estimating these parameters. 
More accurate models: The current theory does not account for the 
improvement in probabilities for global search due to local search. This 
causes the theory to overestimate the time required to reach the desired 
solution quality. A more exact model that incorporates this effect to predict 
the proportion of individuals within the basins of attraction in a given 
generation is needed. 
Methods to generate optimal schedules: The utility of the theory has 
been demonstrated. However, as problems become more complex, efficient 
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methods to generate schedules for local and global search will be required 
to achieve an optimal division of labor. 
Combinations of more  t h a n  two methods:  Currently, the theory is 
designed to handle combinations of two methods, but many practical hy- 
brids adopt more than two methods. Hence, suitable extensions to handle 
hybrids that use several search procedures are needed. 
Populat ion sizing for hybrids: This study showed decrease in popula- 
tion size requirements for GEA hybrids. This was attributed to a decrease 
in variance thanks to local search. A systematic exploration of the popu- 
lation sizing requirements is required. 

These extensions can provide answers to some important questions: When is 
the theory expected to be good? What are the dimensions of hybrid difficulty? 
How should one estimate the theory parameters in the absence of complete 
knowledge of the fitness landscape? As practitioners seek answers to these 
questions, researchers will soon direct their efforts to explore these avenues. 

GEA hybrids have come a long way, but until recently, the focus had been 
on empirical approaches toward hybrid design. Practitioners have felt the 
need for of a systems-level framework for designing and understanding hy- 
brids. This study has presented a more principled approach for hybrid design 
with a systems-level framework. Compared to the ad hoc nature of previous 
approaches, it helps the practitioner in making key decisions during design 
and promotes a greater understanding of the underlying issues. This study 
focuses on achieving an optimal division of labor between the global and local 
searchers in order to get the best performance out of the hybrid as a whole. 

The hybrid theory enables practitioners to choose among different sched- 
ules of hybrids based on the chances of success. Practitioners should also take 
into account the lower population size requirements for GEA hybrids. The 
speedups from local search should be expected to be inversely proportional 
to the square root of the problem size. For GEA researchers, this hybrid the- 
ory holds promise of a systems-level framework for hybrid design. This work, 
through a more principled approach, provides a good start to an otherwise 
daunting problem of GEA hybrid design. 
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Summary. There are several characteristics that make scheduling and timetabling 
problems particularly difficult to solve: they have huge search spaces, they are of- 
ten highly constrained, they require sophisticated solution representation schemes, 
and they usually require very time-consuming fitness evaluation routines. There is 
a considerable number of memetic algorithms that have been proposed in the liter- 
ature to solve scheduling and timetabling problems. In this chapter, we concentrate 
on identifying and discussing those strategies that appear to be particularly use- 
ful when designing memetic algorithms for this type of problems. For example, the 
many different ways in which knowledge of the problem domain can be incorporated 
into memetic algorithms is very helpful to design effective strategies to deal with 
infeasibility of solutions. Memetic algorithms employ local search, which serves as 
an effective intensification mechanism that is very useful when using sophisticated 
representation schemes and time-consuming fitness evaluation functions. These al- 
gorithms also incorporate a population, which gives them an effective explorative 
ability to sample huge search spaces. Another important aspect that has been investi- 
gated when designing memetic algorithms for scheduling and timetabling problems, 
is how to establish the right balance between the work performed by the genetic 
search and the work performed by the local search. Recently, researchers have put 
considerable attention in the design of self-adaptive memetic algorithms. That is, to 
incorporate memes that adapt themselves according to the problem domain being 
solved and also to the particular conditions of the search process. This chapter also 
discusses some recent ideas proposed by researchers that might be useful when de- 
signing self-adaptive memetic algorithms. Finally, we give a summary of the issues 
discussed throughout the chapter and propose some future research directions in the 
design of memetic algorithms for scheduling and timetabling problems. 

1 Introduction 

It is possible to think of a memetic algorithm as an evolutionary algorithm that 
incorporates knowledge about the  problem domain being solved (see [29, 331). 
This knowledge can be in the  form of specialised operators, heuristics and 
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other helpers that contribute towards a self-improvement ability in the indi- 
viduals of the population. Most memetic algorithms described in the literature 
are a combination of genetic algorithms with local search heuristics and these 
approaches are also known as genetic local search, hybrid genetic algorithms, 
hybrid evolutionary algorithms and other names (e.g. [13,22, 25, 38,441). This 
type of hybrid approach has been applied to a vast number of optimisation 
problems with considerable success (see [34] for a list of example references). 

In this paper we concentrate on the application of memetic algorithms to 
scheduling and timetabling problems such as machine scheduling, educational 
timetabling and personnel rostering [47]. One goal here is to identify and dis- 
cuss those strategies that appear to be applied more frequently by researchers 
and practitioners, when designing memetic algorithms for the type of prob- 
lems mentioned above. Another goal is to discuss some recent ideas proposed 
by researchers in this area that might help to design more robust memetic 
algorithms for scheduling and timetabling problems. We do not attempt to 
provide an exhaustive survey of memetic approaches to such problems. First, 
in Sect. 2 we briefly describe the paradigm behind memetic search followed by 
a short discussion of scheduling and timetabling problems in Sect. 3. Then, 
in Sect. 4 we concentrate on those strategies that are frequently employed 
when implementing memetic algorithms for scheduling and timetabling (and 
perhaps related problems). Scheduling and timetabling problems are usually 
highly constrained and one of the difficulties when solving these problems is 
how to deal with infeasibility. Section 4.1 discusses the strategies employed 
for this purpose within the context of memetic algorithms. For most schedul- 
ing and timetabling problems, a complete evaluation of the solution fitness 
is computationally costly. Therefore, the use of approximate evaluation rou- 
tines can help to implement more efficient memetic algorithms. This topic 
is discussed in Sect. 4.2. Selecting an appropriate solution encoding is es- 
sential when designing memetic algorithms because both genetic and local 
search should operate on this encoding in an efficient way. This is discussed in 
Sect. 4.1. The importance of obtaining knowledge of the fitness landscape to 
aid the design of better memetic algorithms is discussed in Sect. 4.4. Another 
very important aspect when designing memetic algorithms is to establish a 
good balance between the genetic search and the local search parts of the al- 
gorithm and this is the subject of Sect. 4.5. Most implementations of memetic 
algorithms incorporate memes designed a priori and these remain unchanged 
during the search. However, one of the original ideas that motivated the con- 
ception of memetic algorithms is the evolut ion of memes and this is discussed 
in Sect. 4.6. Section 5 describes some local search strategies that have been 
proposed recently by researchers and that might also be useful if they are in- 
corporated within memetic algorithms. Finally, this paper presents some final 
remarks and suggests some future research directions in Sect. 6. 
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2 Memetic Algorithms 

It is generally believed that memetic algorithms are successful because they 
combine the explorative search ability of recombinative evolutionary algo- 
rithms and the exploitive search ability of local search methods. An analogy 
is that the evolutionary part of a memetic algorithm attempts to simulate the 
genetic evolution of individuals through generations, while the local search 
part attempts to simulate the individual learning within a lifetime. The ma- 
jority of memetic algorithms proposed in the literature are a result of incor- 
porating some form of local search to a genetic algorithm. This is illustrated 
in Fig. 1. 

This local search can be for example, constructive heuristics, repair meth- 
ods, specialised self-improvement operators, etc. The local search phase can 
be applied before, after or in between the genetic operations. However, as 
discussed in [29], the interaction between the memes and the genes can be 
even more sophisticated than that and most implementations of memetic al- 
gorithms fail to  reflect the complex interactions of the memetic paradigm. 
Krasnogor [29] argues that in a truly memetic system: 

1. Memes also evolve representing the way in which "individuals learn, adopt 
or imitate certain memes or modify other memes" and, 

2. the distribution of memes changes dynamically within the population rep- 
resenting the effects of "teaching, preaching, etc." within the population 
of individuals. 

Krasnogor also proposed a formulation of memetic algorithms that at- 
tempts to better represent the memetic paradigm including adaptive and self- 
adaptive memes, for more details see [29]. For a more detailed discussion of 
memetic algorithms see [29, 33, 341 and the references therein. 

3 Scheduling and Timetabling Problems 

Broadly speaking, the task in scheduling and timetabling problems is to ac- 
commodate a set of entities (for example, events, activities, people, vehicles, 
etc.) into a pattern of time-space so that the available resources are utilised in 
the best possible way and the existing constraints are satisfied. This paper is 
mainly concerned with three types of scheduling problems: machine schedul- 
ing, educational timetabling and personnel scheduling (also called rostering). 
However, we will also allude to papers which consider other scheduling prob- 
lems. A brief description of machine scheduling, educational timetabling and 
personnel scheduling follows. For more details please see the given references. 
In machine scheduling, the problem is to schedule a set of jobs for processing 
on one or more machines [37]. Educational timetabling refers to the allocation 
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Fig. 1. Most memetic algorithms are a combination of genetic algorithms and local 
search strategies. 

of events (teaching sessions, exams, lab sessions, etc.) to time slots and possi- 
bly to rooms 1421. In personnel scheduling, employees must be accommodated 
into shift patterns [19]. 

Scheduling and timetabling problems arise in many situations and hence, 
there is a need for developing effective and efficient automated solution meth- 
ods. But as with many other combinatorial optimisation problems, scheduling 
and timetabling are difficult problems to tackle with computer algorithms. 
The following characteristics are those that make scheduling and timetabling 
problems very difficult: 

Huge search space. The combinatorial nature of scheduling and timetabling 
problems implies that the size of the search space increases dramatically with 
the size of the problem making it practically impossible to explore all solu- 
tions but for very small problems. 

Highly constrained. It  is commonly the case that a considerable number 
of constraints exist in these problems. Constraints limit the possible ways in 
which a schedule can be constructed. Some constraints must be satisfied for 
the solutions to be feasible (hard constraints) while other constraints are de- 
sirable but not absolutely essential (soft constraints). Examples of constraints 
are: job A must be processed before job C but after job D (machine schedul- 
ing); lecturers cannot teach more than two consecutive sessions (educational 
timetabling); a minimum number of nurses must be scheduled during busy 
times (personnel scheduling). 
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Difficult to represent. It  is often difficult to find a representation with 
associated data structures that capture all details of the problem including 
the complete set of constraints. Most of the times the problem is simplified, 
otherwise very elaborate representations are required to model it (see the sec- 
tions below). 

Time-consuming fitness evaluation. Computing the fitness of solutions 
in scheduling and timetabling problems is usually time consuming. The main 
reason for this is the existence of many constraints. When a solution is modi- 
fied even slightly during the search, a number of constraints might be affected 
and therefore, a complete computation of the whole solution is required. 

There is a significant school of thought which says that for most schedul- 
ing and timetabling problems, the improvement of solutions can be achieved 
more effectively with local search heuristics than with recombinative oper- 
ators. These local search heuristics are usually tailored to the application 
problem by incorporating knowledge of the problem domain in order to deal 
with the constraints in a more effective way. It is also generally believed that, 
because memetic algorithms operate on a population of solutions, they are less 
dependant on the quality of the initial solutions than local search methods 
which operate on a single solution. Then, the appeal of applying memetic algo- 
rithms for scheduling and timetabling problems is that the powerful improving 
mechanism of local search is maintained and at the same time, enriched by 
the addition of a population of individuals. 

4 Designing Memetic Algorithms 

There is a considerable number of applications of memetic algorithms to 
scheduling problems reported in the literature including: machine schedul- 
ing (eg. [22, 24]), educational timetabling (e.g. [2, 5, 6, 16, 36]), personnel 
scheduling (e.g. [I,  9, 26]), maintenance scheduling (e.g. [12, 131) among many 
others. 

As mentioned above, the addition of local search helpers into genetic algo- 
rithms is the most common approach reported in the literature. The variety of 
helpers that have been proposed range from the use of tailored chromosome 
representations and operators (e.g. [17, 261) and simple repairing methods 
based on constraint-based reasoning (e.g. [16]) to very sophisticated combina- 
tions of algorithm components in which a memetic algorithm is embedded into 
a genetic algorithm (e.g. [3]). In this Sect., we discuss the strategies that have 
been used more frequently by researchers and practitioners when designing 
memetic algorithms for scheduling and timetabling problems. 
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4.1 Dealing with Infeasibility 

A major issue of concern in scheduling and timetabling is how to deal with 
the infeasibility of solutions. Due to the large number of hard constraints that 
typically exist in these problems, generating feasible solutions and keeping 
them feasible during the search is a difficult task. In general, the first decision 
that has to be made is whether to consider or not infeasible solutions as part 
of the searching process. In both cases, the design of adequate solution repre- 
sentations and search operators is an essential ingredient for an effective and 
efficient operation of the search algorithm. The incorporation of knowledge of 
the problem domain in the form of choosing the representation and operators 
according to the existing constraints in the problem, can be considered to be 
a memetic approach in itself if we accept the broad description of memetic 
algorithms [33]. 

Elaborate Encodings and Operators 

One way to deal with infeasible solutions is to forbid them completely. That 
is, only feasible solutions are generated in the initialisation phase and then, 
the genetic and local search operators are restricted to work only in the fea- 
sible region. This approach was used by Burke et al. in the nurse scheduling 
problem [9] and by Erben and Keppler in the course timetabling problem [18]. 
Very elaborate solution encodings can also be used to avoid the generation of 
infeasible solutions altogether. For example, Erben applied grouping genetic 
algorithms to examination timetabling problems in [17]. In a grouping genetic 
algorithm, the chromosome representation is made of groups of genes (a group 
can be, for example, the events scheduled in the same time slot). Then, while 
in a direct representation of a timetable each gene represents one event, in a 
grouping representation each gene represents a group of events. In this way, 
it is easier to design genetic operators that recombine timetables without de- 
stroying the feasibility of solutions (i.e. in this case keeping events in the same 
time slot). Similarly, Kawanaka et al. employed a very elaborate encoding that 
guaranteed the feasibility of solutions for the nurse scheduling problem [26]. 
Also, Aickelin and Dowsland [I] implemented two levels of crossover operators 
for the nurse scheduling problem, one operating at  the individual nurse sched- 
ule level and another operating at  a higher level for the complete schedule. In 
the first operator, the genes are the time slots while in the second operator 
the genes are the whole individual schedules of the nurses. 

Elaborate encodings and operators help to maintain good sub-solutions 
(parts of schedules) and aim to generate better complete schedules by mixing 
good building blocks. However, this can generate more design issues which 
need to be solved. For example, how do we measure fitness in each type of 
operator? This might then lead on to investigating various selection schemes 
within the same algorithm while it is necessary to somehow preserve the good 
parts of solutions that are already created in order to obtain sensible results, 
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we should keep in mind that restricting the search to only the feasible regions 
of the solution space could considerably limit the explorative ability of the 
memetic algorithm. 

Repair Methods and Penalty Schemes 

Another approach to deal with infeasibility is to penalise and/or repair infeasi- 
ble solutions. That is, if the solution encoding and associated search operators 
permit the generation of infeasible solutions, then repairing heuristics that re- 
cover the feasibility of solutions can be implemented. The reparing method 
should be easy to implement so that no excessive overhead is added to the 
search process. Also, if the reparing method is too elaborate, it may happen 
that most of the changes made by the search operators to obtain the new 
solution from the previous one are reversed by the repairing method resulting 
in a very inefficient process. For example, repairing heuristics were used by 
Colorni et al. in the application of genetic and memetic algorithms to high 
school timetabling problems [14]. 

An alternative strategy when infeasible solutions are allowed, it is to heav- 
ily penalise them in order to discourage their survival. The selection of the 
penalties must be carefully made. The recommendation is that the penalties 
should discourage the inclusion of infeasible solutions but without completely 
eliminating them because infeasible solutions may be required for the algo- 
rithm to have a better explorative ability. In our experience, if local search 
is used, relatively low penalties for infeasibility should be set in many cases 
because if these penalties are too high, then the local search attempts to re- 
cover feasibility first and this could increase substantially the violation of soft 
constraints [7, 91. Penalties can be fixed or they can be adapted during the 
search. Aickelin and Dowsland implemented an adaptive scheme where the 
infeasibility penalty depends on the number of violated hard constraints [I]: if 
q > 0 then gdemand = a x  q where q is the number of violated hard constraints, 
a is a severity parameter and gdemand is the infeasibility penalty weight used 
in the fitness function. 

Multi-Phased Strategies 

Some researchers have employed multi-phased approaches to deal with hard 
constraints and hence, infeasibility of solutions by dividing the solution pro- 
cess in multiple stages. In the first phase the goal is to generate semi-complete 
feasible solutions. For example, in the nurse scheduling problem, the emphasis 
can be on the generation of a semi-complete schedule in which it is guaranteed 
that there are enough nurses available to meet the requirements in each shift, 
without assigning actual working time slots to each nurse [I]. Then, in the sub- 
sequent phases the schedule is incrementally completed by assigning working 
time slots to individual nurses and forbidding the violation of hard constraints. 
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Burke and Newall also used a multi-phased approach in their memetic algo- 
rithm for the examination timetabling problem [5] (this is an improved version 
of their previous algorithm presented in [6]). Their memetic approach, how- 
ever, did not use recombination operators, only mutation operators followed 
by a hill-climbing algorithm. They constructed a partial timetable and then 
iteratively applied a memetic algorithm with the aim of scheduling a subset of 
events in each iteration, i.e. the memetic approach is applied to a subproblem 
in each iteration. This can be represented in diagrammatic form as shown in 
Fig. 2. 

Initialisation 
Heuristic 

I Partial Schedule 1 

Memetic Algorithm 
(Mutations followed by 

hill-climbing) 

complete? 

+ 
YES then STOP 

Fig. 2. The multi-phase memetic algorithm implemented by Burke and Newall [5] 
acts as a peckish (not too greedy) constructive heuristic. 

4.2 Approximate Fitness Evaluation 

It has been shown that using approximate evaluation (also known as delta 
evaluation) to measure the quality of solutions helps to improve the efficiency 
of the search algorithm in problems for which the fitness evaluation function 
is very time consuming (e.g. [5, 6, 20, 31, 461). With approximate evaluation, 
instead of a complete and accurate evaluation of each newly generated so- 
lution, only the difference between the previous solution and the new one is 
computed. Approximate evaluation can be applied as follows to reduce the 
computation time spent by the memetic algorithm. Two fitness evaluation 
routines are implemented. One routine completely evaluates the fitness of the 
new solution (complete evaluator). The second one only makes an estimation 
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of the new fitness based on the previous solution and the changes made (ap- 
proximate evaluator). Suppose that a population of new solutions is created 
in each generation. Instead of computing the fitness of these solutions with 
the complete evaluator, their fitness is measured with the approximate evalu- 
ator. Then, only a fraction of the population of new solutions is re-assessed 
with the complete evaluator. These solutions can be for example, the best 
ones, those that have a minimum quality level, or only those that represent 
an improvement with respect to the previous solutions. This simple strategy 
can save a considerable amount of computation time because it is very likely 
that few solutions would need to be re-evaluated with the complete evaluator 
in the first stages of the evolutionary process. As the search progresses and 
the overall quality of the population improves, more solutions will have high 
fitness and perhaps, only the accurate evaluator will be used. For more details 
on how this kind of strategy was implemented for the warehouse scheduling 
problem see [46], for the examination timetabling problem see [5, 61 and for 
the space allocation problem see [31]. 

Of course, for this strategy to be effective it is required that the structure 
of the combinatorial optimisation problem is such that the quality of the new 
solutions can be updated by evaluating only the changes made to the previous 
solution. Approximate evaluation can be applied in any of the stages of a 
memetic algorithm, i.e. during the local search phase or during the genetic 
search phase. As mentioned above, a common characteristic of many real 
world scheduling and timetabling problems is that a considerable number of 
constraints exist in these situations. Hence, it is very likely that many of 
the constraints in a particular problem instance are affected by even simple 
changes to the previous solution. This means that the degree of inaccuracy 
when using the approximate evaluator can be higher than in less constrained 
combinatorial problems and the implementation of the approximate routine 
must be carried out carefully. 

4.3 Encodings Based on Linked Lists 

Another aspect that must be considered when using approximate evaluation is 
that the solution encoding selected and associated data structures should allow 
an efficient implementation of the approximate evaluation routine (i.e. much 
more efficiently that the complete evaluation). In this respect, for scheduling 
and timetabling problems (and combinatorial problems in general) solution 
encodings and data structures based on linked lists have been shown to be very 
helpful for implementing moves and fitness evaluation routines more efficiently 
(e.g. [5, 31, 391). This type of representation is advantageous in combinatorial 
optimisation for several reasons: 

0 Linked lists can dynamically shrinklgrow easily by deletingladding ele- 
ments, 
they can also be modified efficiently by only changing pointers, 
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linked lists can be used to represent virtually any structure (array, matrix, 
set, etc.), and 
local search operators such as move, swap, invert, add, delete, change, etc. 
can be performed directly and very easily with linked lists. 

An example of this type of encoding is shown in Fig. 3 for the space allo- 
cation problem. In this problem, a set of entities (staff, lecture rooms, labs, 
etc.) must be allocated to a set of available rooms in such a way that all hard 
constraints are satisfied, the space misuse is minimised, and the violation of 
soft constraints is minimised (see [31] for more details). In the encoding of 
Fig. 3, the lists Entities, Rooms and Constraints hold details of the problem 
being solved, then these lists remain unchanged throughout the search. That 
is, these lists hold, for example, the required space for each entity, the ca- 
pacity of rooms, the type and nominal penalty of constraints, etc. The lists 
EntityGene, RoomGene and ConstraintGene, hold details of a solution or al- 
location, i.e. fitness statistics, pointers to the problem data, and pointer that 
define the structure of the solution. In the solution represented in Fig. 3, en- 
tity E l  is allocated to room R5, room R2 is empty, entity E3 is not allocated, 
constraints C3 and C4 apply to entity E5, etc. With this data structure, it is 
easy to implement local search moves by only changing the appropriate point- 
ers. Similarly, fitness evaluation routines can be performed efficiently because 
it is easy to identify which constraints have been affected (by walking along 
the corresponding linked lists) after a change to the solution structure. 

4.4 The Fitness Landscape 

Another aspect that makes scheduling and timetabling problems difficult to  
tackle is that, as in most combinatorial optimisation problems, the shape of the 
fitness landscape usually depends on each particular problem instance. More- 
over, the penalties associated to the various soft constraints in the problem 
can have an effect on the distribution of local optima. For example, consider 
two soft constraints SCl and SC2 with associated penalties and r 2  respec- 
tively. Let SC1 be 'more important' than SC2 but 'less difficult' to satisfy 
than SC2. That is, more solutions are expected to violate the 'less important' 
SC2 than SCl. If TI >> r2 it is likely that the search will be biased towards 
finding many very attractive solutions that satisfy SCl (the more important 
one), but improvements in SC2 are likely to be overlooked. One the other 
hand, if r1 << r2 improvements in SC2 will be preferred over improvements 
in SC1 and it is likely that the number of attractive solutions satisfying SCl 
will be less than in the previous case. Further, for the same problem instance, 
different search operators (local search, crossover, mutation, etc.) explore the 
solution landscape in very different ways. An ideal situation would be that 
some knowledge of the fitness landscape for a given problem could be available 
before the search, but this is rarely the case. Even when preliminary exami- 
nations are carried out, it turns out that the solution landscape presents very 
different characteristics for each problem instance [I]. 
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Fig. 3. Solution encoding based on linked lists used for the space allocation problem. 
The global lists Entities, Rooms and Constraints hold data corresponding to the 
problem instance being solved. The linked lists of genes EntityGene, RoomGene 
and ConstraintGene, hold details of a particular allocation or solution. 

In this respect, Merz and Freisleben proposed the idea of fitness landscape 
analysis as a means to obtain, a priori, some knowledge of the fitness landscape 
which could help to design better memetic approaches [32]. They suggest that 
the first step to perform fitness landscape analysis is to  define the fitness 
landscape for the problem instance. For this it is necessary to assign a fitness 
value to each solution in the search space, i.e. define the fitness function. Then, 
the spatial structure of the landscape should be defined by defining a metric 
that measures the distance (in the genotypical space) between two solutions. 
As Merz and Freisleben note, a simple metric to define the distance between 
two solutions s and t could be the minimum number of applications of an 
operator w required to obtain t from s.  Then, they suggest to carry out some 
preliminary experiments on the problem instance and perform calculations to 
estimate the properties of the fitness landscape that are known to have an 
effect on the performance of heuristic methods (see [32] for full details): 

The difference in fitness value between neighbouring solutions. 
The number of local optima. 
An estimation of the distribution of the local optima. 
The topology of the basins of attraction of the local optima. 



300 E.K. Burke and J.D. Landa Silva 

Knowles and Corne have also carried out some studies on the analysis 
of the fitness landscape in combinatorial optimisation problems [28] (their 
approach is discussed below). 

4.5 Balance Between Genetics and Memetics 

An issue that has received considerable attention when designing memetic 
algorithms is how to establish the right balance between the work performed 
by the genetic search and the work performed by the local search. Ideally, in 
a memetic algorithm, genetic and local search, i.e. the two broadly defined 
groups of operators, should be able to work together in cooperation instead 
of against each other [29]. This balance can be tuned from three perspectives 
among others: 

1. The balance between the sophistication of the genetic operators and the 
local search operators. 

2. The decision as to which solutions each group of operators is applied. 
3. The balance between the computing time allocated to each type of search. 

Some Recommendations 

Tuning Genetic and Local Search 

For example, with respect the sophistication of the operators, Burke et al. 
noted that recombining large parts of schedules to form a child solution was 
very ineffective because the local search heuristics in their memetic algorithm 
were not powerful enough to improve on these solutions [9]. They observed 
that instead, it was more beneficial to combine small parts from the parents 
so that more diversity could be obtained and the local search part could 
be performed more effectively. But if the local search part of the memetic 
approach is too powerful, it dominates the search as observed by Burke and 
Smith when a well tuned tabu search procedure was incorporated as the local 
search phase in a memetic algorithm for the maintenance scheduling problem 
[13]. One might feel tempted to use the powerful local search operators and 
heuristics already known for scheduling and timetabling problems, but the 
difficulties mentioned above can be encountered. 

In the case of which solutions should be applied to each group of oper- 
ators, an approach that has been used is to improve by local search only a 
number of the best solutions in the population (e.g. [I]). In [22] Ishibuchi 
et al. implemented a first version of a memetic algorithm for the flow-shop 
scheduling problem (named genetic local search in that paper) where they 
proposed not to examine the whole neighbourhood but only a fraction of it 
(i.e. best of k instead of best of all) and stop the search when no better neigh- 
bour is found after a small number of iterations. Later, they also proposed 
to apply local search to only good offspring to improve the search ability of 
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their genetic local search approach [23]. Although in that paper Ishibuchi et 
al. consider multi-objective flow-shop scheduling problems, this idea can be 
transferred from the multi-objective domain to the single-objective domain 
by noting that good solutions are not those that offer a good coverage of the 
front but solutions that represent a good subset of the population because 
of fitness and diversity. In a more recent study, Ishibuchi et al. proposed the 
following strategies [24]: 

To apply local search to a subset of the population selected based upon a 
given probability p and on the fitness of the solutions according to preset 
criteria. 

0 To apply the local search procedure not after each generation but every 
T > 1 generations. 
To carry out preliminary experiments for tuning the values of the above 
mentioned parameters (k, p and T). 
To carry out preliminary experiments to establish the adequate values 
for the crossover and mutation probabilities for tuning the genetic search 
(provided the parameters of k, p and T have been fixed). 

With respect to the genetic operators, it has been proposed to apply them 
only to parent solutions that have a certain distance between them in the 
genotypical space (this is called a mating restriction) [35]. It has been observed 
that applying the local search for a limited number of iterations enables better 
results in the long run as reported by Burke and Smith for the maintenance 
scheduling problem [12]. 

Archives of Solutions 

The use of archives of solutions (a form of elitism) as in [27] can also be 
employed to enhance the balance of genetic and local search. Such an archive 
can be used to store elite solutions from which to chose the appropriate ones 
before carrying out the genetic operations. 

Reacting to the Shape of the Fitness Landscape 

Measuring the characteristics of the fitness landscape as the search progresses 
can help in the design of a dynamic method to balance the genetic and the 
local search. This has been investigated by Knowles and Corne in the context 
of the multi-objective quadratic assignment problem [28]. Fitness landscape 
analysis techniques can help to identify the structure of a given problem, not 
only before the search but perhaps also dynamically during the search [32]. 
The study of the fitness landscape is a very promising avenue of research 
that can be of considerable benefit to enhance the performance of memetic 
algorithms, particularly on problems such as scheduling and timetabling. This 
is because adequate operators could then be designed and the search tuned 
according to the landscape. 
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Common Annealing Schedules 

Krasnogor and Smith have investigated a form of adapting the algorithm 
performance according to the search, so that the emphasis can be adapted: 
1) to improve the fitness of the population, or 2) to diversify the population 
[30]. They used a common temperature for the whole population to control 
the acceptance of solutions during the local search phase. The temperature is 
inversely proportional to the spread of fitness in the population. Therefore, 
as the population converges (spread of fitness is reduced) the temperature 
increases and more non-improving solutions are accepted in order to induce 
more exploration. Once the spread of fitness is recovered, the temperature 
falls so that only improving solutions are accepted and the search acts as a 
local search procedure. Burke et al. implemented a population-based anneal- 
ing algorithm in which a common annealing schedule is used to control the 
acceptance probability of solutions generated by each of the individuals in 
the population [7]. In their approach, there is no recombination of solutions 
and the balance between exploration and intensification is managed only by 
the evolution of the population by self-improvement. They applied the algo- 
rithm to the space allocation problem which shares various features with the 
class of timetabling problems and was briefly described above (see [31]). The 
idea behind their common annealing schedule was to allow a certain degree of 
flexibility in an attempt to use the mechanism as a diversification strategy. 

4.6 Towards Adaptive Memes 

Most of the research related to memetic algorithms for scheduling and 
timetabling problems has concentrated on: 1) the design of specialised op- 
erators that enable constraints to be dealt with more efficiently, and/or 2) the 
comparison between the performance of different operators. For example, 
Alkan and Ozcan recently carried out a comparison of various mutation oper- 
ators that are directed towards the satisfaction of specific constraints (these 
can be considered as local search heuristic more than mutation operators, 
see our discussion in the final Sect.) [2]. Another aspect that Alkan and Oz- 
can investigated was the comparison of various hill-climbers. They designed 
a specific hill-climber for each type of constraint and all hill-climbers were 
combined under a single hill-climber controlling the whole local search phase. 

This idea of designing specialised local search heuristics to target a par- 
ticular constraint or group of constraints has also been investigated by Viana 
et al. in what they call constraint oriented neighbourhoods [45]. Their idea 
is to use, for a given problem, neighbourhood structures that explicitly take 
into account the particular characteristics of the problem constraints. Then, 
during the local search the neighbourhood moves are chosen according to the 
constraints that are not satisfied in that moment. The adaptation of neigh- 
bourhood search heuristics has also been explored by Burke et al. in the 
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context of multi-objective optimisation where different heuristics are targeted 
to different objectives (for more details see [Ill). 

The progress or success rate of different operators can be assessed during 
the search. Then, their application can be adapted accordingly to the condi- 
tions of the search process. For example, Basseur et al. used a scheme to mea- 
sure the progress of various mutation operators when tackling multi-objective 
flow-shop scheduling problems [3]. They implemented various mutation op- 
erators which are applied with the same probability at  the beginning of the 
search. As the search progresses, the decision as to which mutation operator 
to use is made dynamically. The generated solutions are evaluated before and 
after the application of each mutation operator. Depending on the success of 
the operator, they calculate an average growth value which is used to dynam- 
ically adjust the probability of each mutation operator. More specifically: 

1. When a mutation operator M is applied, a solution M(z) is generated 
from a solution x. 

2. The progress of the mutation operator M when applied to solution x is 1 
if x is dominated by M(x), 0 if x dominates M(z)  and 0.5 otherwise. A 
solution x dominates a solution y if x is as good as y in all objectives and 
better in at  least one of them (see [43]). 

3. The average Progress(M(i)) of each mutation operator M is calculated 
by summing all the progresses of M and dividing it by the number of 
solutions to which M was applied. 

4. Then, the probability of each mutation operator is adjusted using (1) 
where 7 is the number of mutation operators and 6 indicates the minimal 
ratio value permitted for each operator. That is, 6 is a parameter that 
permits to keep each operator even if the progress of the operator is too 
poor. 

As discussed here, although some research has been carried out on how 
to adapt the application of different genetic and local search operators and 
heuristics (memes) throughout the search, in most cases the memes have 
been designed before the search and remain unchanged during the process. 
The notion of evolution of memes instead of evolution of genes in the context 
of timetabling was first suggested by Ross et al. who said: "we suggest that a 
GA might be better employed in searching for a good algorithm rather than 
searching for a specific solution to a specific problem" [40]. As also argued by 
Krasnogor, the evolution of memes is an aspect that deserves more attention 
in order to design more advanced and improved memetic systems 1291. 
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5 Other Ideas for Memetics 

5.1 Cooperative Local Search 

As discussed in Sect. 2, most memetic algorithms result from the hybridis- 
ation of evolutionary algorithms and the incorporation of a variety of spe- 
cialised helpers such as elaborate encodings, local search heuristics, etc., from 
the knowledge of the problem domain. Another form of hybridising evolu- 
tionary methods and local search is by adding some elements of evolutionary 
algorithms (such as genetic operators, populations of solutions, a common 
annealing schedule, etc.) into a cooperative local search scheme. This form of 
hybridisation is illustrated in Fig. 4. To describe the difference between most 
memetic approaches and cooperative local search, we also refer to Fig. 3. 

'cycle of  each individual 
in the population' 

the search 
cyclc or 
cach 

self-improvement individual 
by local search bcgins 

'cooperation mechanisms' i 
moves, 
sharing parts 
of  good and 
bad solutions, 
centralised 
control, etc. 

finds 
something 
to do, gets 

stuck unstuck 

\ asks for c00pcraL10n 
from othcr mcmbcrs 
,f the populat~on 

Fig. 4. In a cooperative local search scheme, each individual carries out its own local 
search. When an individual gets stuck it asks for the cooperation of the population 
in order to find something to do to get unstuck and continue the search from an- 
other position in the solution space. The results achieved by each individual may be 
different at different times and this encourages diversity within the population. 

While in most memetic algorithms as depicted in Fig. 3, the structure of 
the evolutionary algorithm based on generations is maintained, in the cooper- 
ative local search approach, the self-improving individual cycle is the driving 
mechanism and the helpers come from evolutionary methods. This form of 
hybridisation was proposed in [31] as an alternative strategy to combine the 
explorative capability of genetic search with the intensification ability of local 
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searchers. This type of hybrid, can be beneficial in those problems in which 
the recombination of solutions requires the design of specialised encodings, 
repairing methods or recombinative operators. This is the case in most of the 
scheduling and timetabling problems as discussed above. With the cooperative 
local search approach, a population of local searchers evolve mainly by self- 
improvement. But the individuals also share information during the search 
process with the rest of the population and hence, a form of recombination 
can be achieved. In [31] this concept was applied to the space allocation prob- 
lem and it proved to be very effective. The cooperation between individuals 
was accomplished by maintaining a pool of good and bad parts of solutions. 
Then, the cooperation (possible recombination) between individuals in the 
population is asynchronous as opposed to most memetic algorithms. In a syn- 
chronous mechanism (as in memetic algorithms) the cooperation is regulated 
by generations. In an asynchronous mechanism (as proposed in cooperative 
local search) the individuals cooperate between them at  any required time. 
When an individual gets stuck, it asks for the help of the population and 
this is implemented by accessing the pool of genes. There are several variants 
of this approach that can be explored following the terminology of hybrid 
metaheuristics proposed by Talbi in [44](see also [38]). For example, the co- 
operation can be synchronous or asynchronous, the explorers can employ the 
same (homogeneous) or different (heterogeneous) local search procedures and 
also can search the same or different areas of the solution space (global, partial 
or functional). 

5.2 Teams of Heuristics 

Some researchers have investigated the design of search algorithms based upon 
a collection of simple local search heuristics. The idea is that a set of simple 
local search heuristics can be applied in a systematic or adaptive way to tackle 
difficult combinatorial optimization problems. Examples of these approaches 
are: 

Variable neighbourhood search [21]. In variable neighbourhood search 
a number of different neighbourhood structures are used in a systematic fash- 
ion to attempt improvements in the current solution while attempting to avoid 
getting stuck in poor local optima. 

A-teams of heuristics [41]. An A-team of heuristics consists of a set of con- 
structors (to generate solutions), a set of improvers (to perform local search 
and improve solutions) and a set of destructors (to eliminate poor quality 
solutions). All these heuristics operate on a population of solutions and all of 
them behave like independent agents cooperating in an asynchronous fashion. 

Hyper-heuristics [lo]. A hyper-heuristic can be described as a heuristic that 
manages the application of a set of heuristics (which can be simple neighbour- 
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hood heuristics or elaborate meta-heuristics) during the search. For example, 
a hyper-heuristic might, a t  each moment during the search, make the decision 
as to which heuristic to use according to the historical performance of each 
heuristic. The central idea is that the hyper-heuristic learns and adapts itself 
dynamically during the search process. 

The ideas behind the above approaches can be used to inspire more 
strategies for designing more advanced memetic algorithms for scheduling, 
timetabling problems and other combinatorial optimisation problems. Specif- 
ically, the self-adaptation of local search heuristics would help to further de- 
velop the idea of meme evolution [29]. 

6 Final Remarks and Future Research 

6.1 Scheduling and Timetabling: Interesting Domain for Memetic 
Algorithms 

Scheduling and timetabling problems represent an interesting domain for the 
application of memetic algorithms. There are already a number of applications 
reported in the literature (e.g. [I, 2, 3, 5, 6, 9, 12, 13, 16, 19, 22, 26, 361) but 
certainly there are still several promising research directions to be explored. 
We can summarise some of the reasons for which memetic algorithms are a 
good approach to solve scheduling and timetabling problems as follows: 

The size of the search space in scheduling and timetabling problems is 
huge for most real-world problems, and a good explorative ability, which 
memetic approaches have, is required. 
These problems are highly constrained and therefore, most of the times it 
is easier to self-improve solutions that to recombine them. This highly con- 
strained nature also leads to the design of specialised solution encodings. 
Memetic algorithms also incorporate specialised encodings and operators 
for self-improvement of solutions, which are based on the knowledge of the 
problem domain. 
A complete fitness evaluation function is time consuming in many real- 
world scheduling and timetabling problems. Using approximate evaluation 
in memetic algorithms is more robust than in single-solution methods. This 
is because having a population of new solutions instead of only one new 
solution, helps to reduce the the effect of the error in the fitness estimation. 

6.2 Ideas That Have Been Investigated 

In the literature and from the previous sections in this paper, we can sum- 
marise some of the ideas that have been investigated with respect to the 
application of memetic algorithms for scheduling and timetabling problems: 
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The design of specialised encodings (e.g. linked lists), local search strate- 
gies, genetic operators, and multi-phased methods, all assist the algorithm 
in dealing with infeasible solutions and have received considerable atten- 
tion. 
Approximate fitness evaluation has been used in memetic algorithms but 
to a lesser extent than the above. 
Some work has been carried out on analysing the fitness landscape to 
inform the design of the memetic algorithm. That is, to select more ap- 
propriate operators and to tune the genetic and local search phases. How- 
ever, this analysis is usually performed prior to the implementation of the 
memetic approach. 
The balance between the genetic and the local search parts of memetic al- 
gorithms has received considerable attention particularly in recent years. 
The aspects studied here include: the sophistication of operators, the selec- 
tion of solutions to which apply the operators (including elitist strategies 
such as archives of solutions), the computing time allocated to the genetic 
and the local search, the tuning and balance of the parameters (previous 
to the search), use of population control mechanisms (such as common 
annealing schedule), etc. 

6.3 A Few Thoughts 

Designing a memetic algorithm is frequently associated with the incorpora- 
tion of knowledge from the problem domain in the form of helpers to evo- 
lutionary algorithms. We should be careful because almost every new piece 
of specific knowledge that is added to a memetic algorithm can potentially 
produce improved results. Then, we can many times keep designing a 'new' or 
an 'improved' version of the memetic algorithm, i.e. an incremental design of 
algorithms. We should concentrate on the main ideas and strategies without 
getting lost in the details of the different implementations. 

Krasnogor proposes in [29] a grammar to formulate a wide range of 
memetic algorithms. He also expresses that the grammar can help to envisage 
many more different implementations of memetic algorithms that have not 
been investigated. It  would be interesting to investigate such variants. But we 
should also be careful and focus on the main strategies for designing memetic 
algorithms and not necessarily on the many ways in which they are combined. 

6.4 Suggested Future Research 

We argue here that by studying in detail the problem domain, there is always 
room to create a 'new' memetic approach. If memetic algorithms simulate the 
evolution of ideas, should we not take for granted that many different ideas 
would exist so we should concentrate more on the mechanism to evolve these 
ideas instead of manufacturing these ideas by hand before the search process? 
The research carried out by researchers on the design of memetic algorithms 
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for scheduling and timetabling has contributed enormously to  our understand- 
ing of specialised encodings, operators, heuristics, evaluation routines, etc. and 
their inter-relationships. But as suggested in [29, 331, to  learn more about the 
memetic paradigm, we should concentrate now on using this knowledge for 
designing approaches t o  evolve genes and memes during the search and also 
automatically select memes given the problem domain and also the particu- 
lar instance characteristics. This was also proposed by Ishibuchi et  al. in 1241 
where they suggested t o  investigate the dynamic adaptation of the balance 
between local and genetic search. We also believe that  an important challenge 
in this area is t o  investigate the design of self-adaptive memetic systems, i.e. 
the evolution of genes and memes. 
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Summary. The concept of optimization-finding the extrema of a function that 
maps candidate 'solutions' to scalar values of 'quality'-is an extremely general and 
useful idea that can be, and is, applied to innumerable problems in science, industry, 
and commerce. However, the vast majority of 'real' optimization problems, whatever 
their origins, comprise more than one objective; that is to say, 'quality' is actually 
a vector, which may be composed of such distinct attributes as cost, performance, 
profit, environmental impact, and so forth, which are often in mutual conflict. Until 
relatively recently this uncomfortable truth has been (wilfully?) overlooked in the 
sciences dealing with optimization, but now, increasingly, the idea of multiobjectiue 
optimization is taking over the centre ground. Multiobjective optimization takes se- 
riously the fact that in most problems the different components that describe the 
quality of a candidate solution cannot be lumped together into one representative, 
overall measure, a t  least not easily, and not before some understanding of the pos- 
sible 'tradeoffs' available has been established. Hence a multiobjective optimization 
algorithm is one which deals directly with a vector objective function and seeks to 
find multiple solutions offering different, optimal tradeoffs of the multiple objectives. 
This approach raises several unique issues in optimization algorithm design, which 
we consider in this article, with a particular focus on memetic algorithms (MAS). We 
summarize much of the relevant literature, attempting to be inclusive of relatively 
unexplored ideas, highlight the most important considerations for the design of mul- 
tiobjective MAS, and finally outline our visions for future research in this exciting 
area. 

1 Introduction 

Many important problems arising in science, industry and commerce fall very 
neatly into the ready-made category of optimization problems; that is to say, 
these problems are solved if we can simply find a 'solution' that maximizes 
or minimizes some important and measurable property or attribute, such as 
cost or profit. For example, we might want to find the set of routes that 
minimizes the distance travelled by a fleet of delivery lorries; or to find the 
tertiary structure of a trans-membrane protein that minimizes its free energy; 
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or to find the portfolio of stocks that maximizes the expected profit over the 
forthcoming year. Of course, solving these problems exactly might be very dif- 
ficult or impossible in practice, but by applying one of numerous optimization 
algorithms-memetic algorithms (MAS) being one very flexible and successful 
possibility-very good solutions can often be found. 

However, there is a caveat: maximizing or minimizing a single, lone at- 
tribute can, in many cases, be a very bad thing to do. Consider designing 
a car with the single objective of minimizing its weight: other desirable at- 
tributes like safety, comfort, and capacity would be severely compromised as 
a result. And so it is in many other generic problems: maximizing profit often 
leads to compromises in environmental impact or customer satisfaction; min- 
imizing production costs often leads to decreased reliability; and minimizing 
planned time to completion of a project often leads to soaring costs for over- 
running. Thus, it is easy to appreciate that most 'real' optimization problems 
involve optimizing, simultaneously, more than one single attribute. 

Now, given that most problems are as we've described-'multiobjective' in 
nature-, what are the options for tackling them? There are basically three: 
(1) ignore some of the attributes entirely and just optimize one that looks 
most important; (2) lump all the objectives together by just adding them 
up or multiplying them together and then optimize the resulting function; 
or (3) apply a multiobjective algorithm that seeks to find all the solutions 
that are nondominated (we define this later but, roughly speaking, nondom- 
inated solutions are those that are optimal under some/any reasonable way 
of combining the different objective functions into a single one). The first and 
second options are very common and the third less so. However, (3) is rapidly 
gaining popularity as it is more and more understood that (1) and (2) can 
be very damaging in practice-solving the problem might be very satisfying 
to the algorithm or MA practitioner, but the resulting solution may be far 
from optimal when it is applied back in the real world. Thus, in this chapter, 
we will argue that option (3)-seeking multiple, distinct solutions to a prob- 
lem, conferring different tradeoffs of the objectives,-is the essence of true 
multiobjective optimization (MOO). 

Doing true multiobjective optimization with memetic algorithms requires 
a few salient adaptations to the normal design principles. Clearly, since we 
need to find multiple, distinct solutions, the design of multiobjective MAS will 
be heavily affected by the need to encourage and preserve diversity. Indeed, 
much of the research in evolutionary algorithms (EAs) for MOO has concerned 
itself primarily with this issue, but with MAS the use of local search introduces 
further complications for achieving diversity that must be resolved. 

The goal of finding multiple solutions also dictates that the MA incor- 
porate some means of storing the best solutions discovered. While MAS are 
already endowed with a population, some research in EAs for MOO has found 
that methods that exploit secondary populations, or archives, seem to per- 
form better than single-population approaches, and elitism based on archives 
appears to be particularly effective in improving search capability. Thus, ques- 



2 A Brief Introduction to MOO 315 

tions about how to control and use multiple populations (or non-fixed size 
populations) are somewhat more relevant and pressing in MOO than they are 
in 'normal' optimization. 

A second key distinction of MOO, closely related to the need for multiple 
solutions, is the inherent partial ordering of solutions in terms of their overall 
quality, which characterises MOO. This impacts on many aspects of search 
and how it should be conducted. In particular, the simple comparison of two 
solutions is fraught with difficulties. Local search, which relies upon such com- 
parisons being made, must be re-defined in some way, and there are several 
competing possibilities. 

There are also innumerable possibilities concerning the overall organization 
of the search-how the set of tradeoff solutions (the nondominated set) is to be 
built up, over time. Very coarsely, should we try to sweep across the objective 
space from one 'edge' t o  the other, i.e. improving one combination of objectives 
at  a time, or should we more try to push the entire 'surface' down in parallel, 
improving the whole currently nondominated set at  once? In either case, what 
is the best way to exploit the population(s) and the different local searchers 
at  our disposal? 

In the remainder of this article, we will try to fill the reader in on the core 
issues we have but sketched here, mapping out the little that is known and 
has been tried so far, and speculating about where further research may be 
most fruitful. In section 2, some MOO applications are outlined to give some 
idea of their range and differing characteristics. The mathematical definition 
of the MOO problem is then given, and Pareto optimization is described. 
Section 3 visits a large number of metaheuristics for MOO and identifies 
concepts and strategies that, we suggest, may be useful as components in 
a memetic algorithm. In section 4, we elaborate on other issues in MOO 
research that may impact on the design and application of multiobjective 
MAS, including how to measure performance, how multiple populations can 
be used, and available test functions. Section 5 provides a focused review of 
existing MAS for MOO, while section 6 proposes some principles for designing 
more advanced MAS. The last section considers future research directions and 
gives some recommendations for immediate investigation. 

2 A Brief Introduction to MOO 

2.1 MAS and MOO: a good combination 

The impressive record of memetic algorithms in producing high quality so- 
lutions in combinatorial optimization and in real-world applications (e.g. see 
page 220 [18]) is sometimes cited as a testament to their inherent effective- 
ness or robustness as black-box searchers. However, since the advent of the No 
Free Lunch theorems [log, 19, 211, we know that MAS, like any other search 
algorithm, are only really good to the extent to which they can be 'aligned' 
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to the specific features of an optimization problem. Nonetheless, MAS, like 
their forebears, EAs, do have one unassailable advantage over other more tra- 
ditional search techniques: that is their flexibility. EAs and MAS impose no 
requirement for a problem to be formulated in a particular constraint lan- 
guage, and do not ask for the function to be differentiable, continuous, linear, 
separable, or of any particular data-type. Rather, they can be applied to any 
problem for which the following are available: (1) some (almost) any way to 
encode a candidate solution to the problem, and (2) some means of computing 
the quality of any such encoded solution-the so-called objective function. 

This flexibility has important advantages. As has been observed in [83], 
there are basically two ways to solve optimization problems: one is to choose 
some traditional technique and then simplify or otherwise alter the problem 
formulation to allow the problem to be tackled using the chosen technique; 
the other is to leave the problem formulation in its original form and use an 
EA, MA, or other metaheuristic. Clearly, the latter is preferable because the 
answer one arrives at  is (at least) to  the right question, not to a question 
which may have been distorted (perhaps so much so as to be irrelevant to 
the real question), simply to fit in with the requirements of a chosen search 
method. 

In [19], the advantages of 'leaving the problem alone' (and applying a 
flexible search technique) was reiterated and used to make a further, com- 
pelling point. How often are optimization problems in the real world (or from 
real-world origins) squeezed and stretched into the strait-jacket of a single- 
objective formulation, when their natural formulation is to have multiple ob- 
jectives? Doesn't the same observation of [83] apply in this case, too? What 
is the effect of throwing away objectives or of combining them together as a 
weighted, linear sum, as is so often done? If we are to believe the EA/MA 
mantra about tackling problems in their original formulation, shouldn't we be 
tackling multiobjective problems in the same way? 

Of course, the answer is that we should. And there are two reasons: (1) 
simplifying a problem does change it irrevocably and make it irrelevant in 
many cases, and (2) with EAs, including MAS, we have the capability to 
tackle multiobjective problems in their native form and indeed the cost of 
doing so is demonstrably not high. 

2.2 Some example MOO problems 

One could argue that engineering is the art of finding the good compromise; 
and indeed many problems encountered in engineering do have multiple and 
distinct objectives. Fortunately, we are now gradually seeing that the op- 
timization problems being formulated in various engineering sub-disciplines 
are respecting the multiobjective nature of the underlying problem. For ex- 
ample, civil engineering tasks such as designing water networks are being 
seen as multiobjective optimization problems [48, 13, 14, 151, as is power 
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distribution [3, 4, 6, 791, and various telecommunications network optimiza- 
tion tasks [73, 721. And, at  the other end of the engineering spectrum, 
the design of various types of controllers has been aided by such an ap- 
proach [2, 8, 104, 24, 38, 411 for some years now. 

Scheduling and timetabling are two huge classes of planning problem that 
can involve a multitude of different objectives. In scheduling, problems tackled 
in the academic literature often consider only one objective: minimizing the 
makespan-the total time needed to complete all jobs. However, the reality of 
scheduling in factories, space programmes, engineering projects and so forth 
is far more complex. Reducing the makespan is undoubtedly one objective 
but other important ones are mean and total tardiness, mean flow time, mean 
waiting time, and the mean and total completion time. In addition to these 
objectives there are often a number of constraints. If all these constraints are 
modelled as 'hard', the resulting schedules can be brittle and sub-optimal. 
By softening some of these constraints (those which are not really inviolable) 
and treating them as further objectives, great gains can sometimes be made 
for minute sacrifices elsewhere. Frequently, the robustness of a schedule to 
unforeseen changes, such as late arrival times of materials, machine failures 
and so forth, should also be modelled. Making robustness an objective enables 
planners to consider fully the tradeoffs between allowing some slack, versus 
'risking it' and going for the absolutely optimal schedule. 

Much the same can be said for timetabling, particularly with regard to 
constraints. More often than not, timetabling problems are tackled as con- 
straint satisfaction problems in which hard constraints must be satisfied and 
soft constraint violations should be minimized. However, the latter are usu- 
ally just added together, leading to absurd situations, where, for example, the 
optimization algorithm 'chooses' that nineteen students having consecutive 
exams is better than 14 having to get up early one morning, together with 
6 invigilators working through their lunch break! Fortunately, the recogni- 
tion that these problems are multiobjective, and need to be tackled as such, 
is leading to more research in this vein: e.g. [46, 51, 59, 621 in scheduling, 
and [91, 121 in timetabling. 

There are a whole host of other varied MOO applications emerging on a 
more and more frequent basis: from the training of neural networks [I, 11, 11 1, 
931, to various design applications [92, 95, 51, to dealing with the challenges of 
dynamic optimization [110,35]. The short survey presented here scratches but 
the surface, and the reader is directed to [32] and [16] for more comprehensive 
reviews. 

Basic MOO definitions 

An unconstrained multiobjective optimization problem can be formulated as 
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Minimize 

. 
Minimize z1 

Fig. 1. An illustration of a multiobjective optimization problem with a search space 
X ,  a vector fitness function f that maps solutions in X to objective vectors made up 
of two component 'costs' zl and z2 to be minimized. The solid objective vectors are 
nondominated and comprise the Pareto front. The solutions corresponding to these 
points are Pareto optimal. The relation between the three objective vectors A, B,  
a n d C i s A < B < C  

involving k 2 2 different objective functions fi : Rn H R to be minimized 
simultaneously. Note that if fi is to  be maximized, it is equivalent to minimize 
- f i .  

The term "minimize" appears in quotes in (1) to emphasise that the exact 
meaning of the vector minimization must be specified before optimization can 
be performed. That is, we need to specify a binary relation on objective vectors 
in order to form a (partial) ordering of them. Although different possibilities 
exist, in this chapter we will be concerned only with the component-wise order 
relation, which forms the basis for Pareto optimization as defined below (also 
see figure 1). 

Definition 1 The component-wise order relation < is defined as zT < zs H 
zf 5 zf,i = l..k A zr # zS. 

Definition 2 A solution x* E X is called Pare to  opt imal  if there is no 
x E X such that f(x)  < f(x*). If x* is Pareto optimal, z* = f(x*) is called 
(globally) nondominated.  The set of all Pareto optima is called the Pare to  
opt imal  se t ,  and the set of all nondominated objective vectors is called the 
Pare to  front ( P F ) .  Finding an approximation to either the Pareto optimal 
set or the Pareto front is called Pare to  optimization. 
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More generally, Miettinen [84] defines solving a multiobjective problem as 
finding a Pareto optimal solution to (1) that also satisfies a decision maker 
(DM), who knows or understands something more about the problem. Such 
a definition brings into play the science of multi-criteria decision making 
(MCDM), where methods are used to model the preferences of decision mak- 
ers in order to aid them in comparing and choosing solutions. Thus, according 
to this definition, solving a multiobjective problem, involves both search and 
decision making, and to accomplish this, one of three general approaches is 
normally taken: 

1. A priori optimization 
2. A posteriori optimization 
3. Interactive optimization 

In a priori optimization, the decision maker is consulted before search 
and a mathematical model of her preferences is constructed (following one of 
several regimes for this), and used in the search to evaluate all solutions. The 
best solution found, according to the model, is returned and represents the 
outcome of the optimization process with no further input from the DM. The 
drawback with such methods is obvious: decision makers find it very hard 
to give adequate models determining which solutions they prefer, without 
knowing or having any idea what it is possible to attain, and how much one 
objective may have to be sacrificed with respect to others. Furthermore, notice 
that this method, in a sense, places all the additional work associated with 
MOO, firmly with the DM, and leaves the search problem as seen by a search 
algorithm, in much the same form as for normal optimization, i.e. one solution 
must be found and all solutions are comparable (using the DM'S a priori pref- 
erence model). For this reason, we do not consider a priom' optimization any 
further in this article, as standard MAS could be used (or trivially adapted) 
to this case. 

A posteriori optimization approaches the multiobjective problem from the 
reverse angle. First, search is conducted to find the Pareto optimal set (or an 
approximation/representation thereof) and the DM will then choose between 
these alternatives by inspection (with or without using some mathematical 
decision-making aid). The disadvantage (according to 1841) of this approach 
is the difficulty DMs may have in visualizing the different alternatives and 
choosing between them, particularly if a large number have been generated. 
Nonetheless, the problem of decision-making is in our opinion definitely aided 
by knowing something about what solutions are possible. Thus, a posteriori 
methods move at  least some of the work from the DM to the search algorithm, 
which now is given the task of searching for multiple different solutions. Ex- 
actly what solutions the search algorithm finds will depend upon how, inter- 
nally, it evaluates solutions, but it should be oriented towards finding Pareto 
optima. And in order to give the DM what she needs-real alternatives-the 
Pareto optima should not be all in one region of the objective space, but 
should be spread as far and wide as possible. (Being more precise than this is 
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Minimize Minimize 

Fig. 2. Illustration of the drawbacks of scalarizing objectives using the weighted sum 
approach. The figures show a Pareto front and lines of equal cost under a weighted 
sum. In the left figure, A is the optimal solution. A slight change to the weights, 
slightly altering the angle of the isocost lines, as shown in the figure on the right, 
makes C the optimal solution. The nondominated solution B is 'non-supported' - 
not on the convex hull of the Pareto front. Therefore it is not optimal under any 
linear combination of the objectives 

problematic as seen in section 4.1 where we will discuss how to evaluate differ- 
ent approximations to Pareto fronts). In any case, a posteriori optimization is 
the method we advocate in this article, in preference to a priori methods, and 
we assume in the remainder of the article that finding a 'good' approximation 
to the whole Pareto front is the goal of multiobjective optimization, leaving 
decision-making as a separate issue. 

The interactive methods of search combine a priori and a posteriori meth- 
ods in an iterative funnelling of goals, preferences and solutions discovered. 
These methods are probably preferable to a posteriori methods, since they 
limit the choices shown to a DM at  any instant, and focus the search on a 
smaller area. However, we do not make more than a passing reference to them 
in what follows, for two reasons. First, because, so far, relatively little research 
in the EA community has been directed to this general approach, so it is diffi- 
cult to  make judgments or recommendations. And more importantly, because 
effectively, from a search point of view, the problem is still one of finding a 
set of alternatives, albeit reduced in size, and so we can regard it as a special 
case of a posteriori optimization. 

2.3 An overview of methods for generating a Pareto front 

What methods can we use to build up an approximation to the true Pareto 
front (our goal as outlined above)? Leaving aside, for the moment, the finer 
details of the overall algorithm design, the initial question is simply: how 
can any solution be evaluated so that some form of heuristic search can be 
effected? 
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Minimize Minimize 

Minimize z, 

Fig. 3. The figure on the left shows a Pareto front where even a large change in the 
weights of a weighted sum scalarization would result in finding the same solution. 
On the right, the weighted Tchebycheff problem (equation 3) can find non-supported 
Pareto optima, as shown. Here, the reference point is taken as the origin 

There are a great variety of answers possible. One large family of meth- 
ods is to replace (1) with some parameterized single scalarizing function to 
minimize, such as a weighted sum of the objectives: 

where we usually specify Ck wi = 1 and wi 2 0, for i E 1 .h .  Then, by 
varying the weighting parameters wi in some systematic way, a representation 
of the P F  can be built up. The weighted sum is only one possible method 
in this family of scalarizing methods and has some serious drawbacks. Only 
supported solutions-those on the convex hull of the PF-will be generated by 
minimizing the weighted sum. Furthermore, a small change in the weights can 
cause big changes in the objective vectors (see figure 2); while, on the other 
hand, very big changes in the weights may lead to the same or very similar 
vectors (figure 3, left). Other methods in this family that can generate the 
non-supported solutions are possible, e.g. the weighted Tchebycheff problem: 

minimize maxiel..r, [ wil fi(x) - z t  I ] (3) 

where z* is a reference point beyond the ideal point, i.e. each of its compo- 
nents is less than the minimum value possible on the corresponding objective. 
With such a reference point correctly specified, every Pareto optimal solution 
minimizes the function for some particular value of the weights. However, as 
with the weighted sum, in order to achieve an 'even sampling' of the Pareto 
front, care must be taken with how the weights are adjusted. 

Other parameterized scalarizing methods include the epsilon-constraint 
method and achievement scalarizing functions: see [84] for further details. 
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Notice that these methods are suitable for exact algorithms, local searchers 
and so forth, since they effectively transform the problem back into a single- 
objective problem temporarily. So, for MAS, they may well be used as part of 
the overall algorithm. 

With many metaheuristics, particularly traditional EAs, however, it is not 
necessary to have an explicit function to minimize, but only some means 
of estimating relative fitness (as in EA populations) or accepting/rejecting 
neighbour solutions (as in e.g., simulated annealing and tabu search). This 
opens the door to at least two other distinct approaches. One is to consider 
alternately one objective function then another; and there are various ways 
this could be organized (see section 3.5). The other approach is to use some 
form of relative ranking of solutions in terms of Pareto dominance (section 3.1 
and 3.2). The latter is the most favoured approach in the EA community be- 
cause it naturally suits population-based algorithms and avoids the necessity 
of specifying weights, normalizing objectives, and setting reference points. 

In the last section, we discussed the reasons why we will restrict our work- 
ing definition of MOO to be the problem of generating an approximation to 
the entire PF, ignoring methods that seek only a single solution. Following 
this, we went on to outline three general ways in which solutions could be 
evaluated in a search algorithm in order to effect optimization. In this sec- 
tion, we will expand greatly on this outline as we tour a host of metaheuristics 
for MOO. In addition, we will begin to appreciate two other related issues: 
how to build up the Pareto front during search (i.e. how to ensure a spread of 
solutions across it); and how memory of these solutions is organized to exploit 
them during search and/or to store them for presentation at the termination 
of the search process. 

In the following we attempt a fairly broad survey of MOO algorithms 
in order to furnish the reader with a library of 'components' from which 
MAS could be constructed. We cluster different algorithms together in ad-hoc 
categories, as we review them. 

2.4 Non-elitist EAs using dominance ranking 

Goldberg in a short discussion in [44] suggested that multiple objectives could 
be handled in an EA using a ranking procedure to assign relative fitness to 
the individuals in a population, based on their relative Pareto dominance. The 
procedure, known as nondominated sorting, has become one of the bedrocks 
of the whole E M 0 0  field. It is described and depicted in Figure 4. Although 
Goldberg did not implement it himself, it was not long before it gave rise 
to the popular NSGA [loo]. The contemporaneous MOGA, of Fonseca and 
Fleming, [39] uses a slightly different ranking procedure based on counting 
the number of individuals that dominate each member of the population but 
otherwise the idea is very much the same. 

Both NSGA and MOGA also employ fitness sharing [45], a procedure that 
reduces the effective fitness of an individual in relation to the number of other 
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Nondominated sorting Nondominated ranking 

Fig. 4. On the left, individuals in a population are assigned dummy fitness values 
using Goldberg's nondominated sorting scheme. In this, successive iterations of the 
sorting procedure identify, and remove from further consideration, the nondominated 
set of solutions. A dummy fitness of 1 is assigned to the first set of solutions removed, 
and then fitness 2, and so on, 'peeling off' layers of mutually nondominated solutions. 
On the right, individuals in the same population are assigned fitness values using 
MOGA-style ranking, where fitness is 1+ the number of dominating solutions. Note, 
in both schemes, lower values are associated with greater fitness in the sense of 
reproductive opportunity or survival chances 

individuals that occupy the same 'niche'. In MOO, the niche is often defined 
by the 'distance' of solutions to one another in the objective space, though 
parameter space niching may also be used. Sharing and other methods of 
niching have to be used in dominance-ranking MOEAs in order to encourage 
a spread of solutions in the objective space. Some objective-space niching 
methods are depicted schematically in Figure 5. Both NSGA and MOGA use 
similar methods to convert the shared fitness value to actual reproductive 
opportunity: a ranking-based selection. 

The niched Pareto GA (NPGA) of Horn and Nafpliotis [53] uses, instead, 
tournament selection. In addition to the two individuals competing in each 
tournament, a sample of other individuals is used to estimate the dominance 
rank of the two individuals. In the case of a tie, again, fitness sharing was 
applied. 

These EAs, NSGA, MOGA and NPGA, represent a trio that were tested 
and applied to more problems than any preceding algorithms for MOO, and 
pushed forward immensely the popularity and development of the evolution- 
ary multiobjective optimization (EMOO) field. Most MOEAs today still use 
some form of dominance ranking of solutions, albeit often combined with 
elitism, and some form of niching to encourage diversity. 
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(a) fitness sharing 

- 
z1 

(b) NSGA-I1 crowding 

(c) grid-based niching (d) E-dominance 

Fig. 5. Schematics depicting the different forms of niching used in various MOEAs 
to encourage diversity in the objective space; nondominated solutions are shown 
solid, and dominated ones are in outline. (a) fitness sharing (as used in NSGA and 
MOGA) reduces the fitness of an individual falling within another's niche (dashed 
circles), the radius being defined explicitly by a parameter. (b) NSGA-I1 crowding 
ranks solutions by measuring the distance of it's nearest nondominated neighbours, 
in each objective. (c) a grid is used in PAES, PESA and PESA-11, to estimate 
crowding: individuals in crowded grid regions have reduced chances of selection. (d) 
in e-dominance archiving, a solution dominates a region just beyond itself, specified 
by the E parameter so that the shaded region is forbidden - thus new nondominated 
solutions very nearby to those shown would not enter the archive 

2.5 Elitist EAs using dominance ranking 

Elitism in the EA terminology means the retention of good parents in the 
population from one generation to the next, to allow them to take part in 
selection and reproduction more than once and across generations. 
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The first multiobjective evolutionary algorithms employing elitism seem 
to have appeared a t  approximately the same time as MOGA, NSGA, and 
NPGA were put forward, around 1993-4 as reviewed in detail in [52]. In some 
elitist MOEAs, the strategy of elitism is combined with the maintenance of 
an 'external population' of solutions that are nondominated among all those 
found so far. Several early schemes are discussed in I1121 but the first elitist 
MOEA paper to be published in the mainstream evolutionary computation 
literature was [94]. In this work, Parks and Miller describe a MOEA that 
maintains an 'archive' of nondominated solutions, similar to a store of all 
nondominated solutions evaluated, but limited in size: members of the main 
population only enter the archive if they are sufficiently dissimilar from any 
already stored. Reproductive selection takes parents from both the main pop- 
ulation and the archive. The authors investigate the effects of different degrees 
of selection from each, and also different strategies for selecting from amongst 
the archive, including how long individuals have remained there. 

At around the same time Zitzler and Thiele proposed what is to date one 
of the most popular of all MOEAs: the strength Pareto EA (SPEA) [113]. 
It uses two populations: an internal population, and an external population 
consisting of a limited number of nondominated solutions. In each generation, 
the external population is updated by two processes: addition of new nondom- 
inated individuals coming from the internal population (with removal of any 
solutions that consequently become dominated); and removal of solutions by 
objective-space clustering, to maintain a bound on the population's size. The 
new internal population is then generated by selection from the union of the 
two populations, and then by applying variation operators. The novelty, and 
perhaps the efficacy, of SPEA derives from the way the internal and exter- 
nal population interact in the fitness assignment step. In this, each external 
population member is first awarded a strength, proportional to the number 
of internal population members it dominates. Then each internal population 
member is assigned a dummy fitness based on the sum of the strengths of 
the external population members that dominate it. Binary tournament selec- 
tion with replacement is used based on the dummy fitness/strengths of the 
combined populations. This fitness assignment strategy is a co-evolutionary 
approach between two distinct populations and its purpose is to bias selection 
towards individuals with a lower dominance rank and that inhabit relatively 
unpopulated 'niches'. The niches in SPEA are governed by the position of the 
nondominated individuals, and these are clustered so should themselves be 
well-distributed. 

Numerous other elitist MOEAs exist in the literature, offering slightly 
differing ways of assigning fitness, choosing from a main population and an 
archive, and encouraging or preserving diversity. Regarding the latter, a trend 
towards self-adaptive niching (see Figure 5) has established itself with SPEA, 
PAES [73], NSGA-I1 [26], and PESA [20], amongst others, to  avoid the ne- 
cessity of setting niche sizes in the objective space, a problem with early 
algorithms such as MOGA and NSGA. Control of the degree of elitism has 
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Fig. 6. Schematics depicting the different strategies employed by different local 
search metaheuristics, as described in section 3.3 

also been investigated, e.g. in [27], and there has also been a trend towards 
lower computationally complexity, as evidenced by PAES, NSGA-I1 and the 
micro-GA 1171. More efficient data structures for ranking and niching avail- 
able now [64] should make the current breed of elitist MOEAs a good starting 
point for designing good MAS for MOO. 

2.6 Local search algorithms using scalarizing functions 

One of the earliest papers on local-search metaheuristics for MOO is [99], 
which proposes and investigates modifications to simulated annealing in order 
to tackle the multiobjective case. A number of alternative acceptance criteria 
are considered, including those based on Pareto dominance, but the preferred 
strategy combines two weight-based scalarizing functions. In order to sam- 
ple different Pareto optima during one run of the algorithm, the weights for 
each objective are slowly modified, at  each fixed temperature, using a purely 
random (non-adaptive) scheme. 

The MOSA method [107] follows Serafini regarding the modification of 
the SA acceptance function, but uses a different approach to building up the 
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approximation to the Pareto set. Where Serafini's approach varied the weights 
of the scalarizing function as the cooling occurred, MOSA method works by 
executing (effectively) separate runs of SA, each run using its own unique 
weight vector, and archiving all of the nondominated solutions found. 

A population-based version of Serafini's SA is proposed and tested in [23]. 
The Pareto simulated annealing algorithm, PSA, performs each step of the 
SA algorithm 'in parallel' on each independent member of a population (N.B. 
the members are not in competition: there is no selection step), and each 
member carries with it its own weighting vector. Of particular note is the fact 
that the members of the population co-operate through an innovative adaptive 
scheme for setting their individual objective weights, in order to achieve a good 
distribution of solutions in the objective space. In this scheme, each member 
of the population continually adjusts its own weight vector to encourage it to 
move away from the nearest neighbour solution in the objective space. 

These three SA algorithms, Serafini's SA, MOSA method, and PSA, il- 
lustrate three different ways to organize the building up of a Pareto front, 
respectively: (1) use a single solution and improve it, letting it drift up and 
down the P F  via the use of randomly changing scalarizing weights; (2) use 
separate, independent runs and improve a single solution towards the PF, 
each run using a unique direction; (3) use a population of solutions and try 
to improve them all in parallel, at the same time encouraging them to spread 
out in the objective space. These alternatives are illustrated respectively in 
Figure 6 (a), (b) , (c) . 

The idea of adaptively setting the weight vectors of individuals in a popu- 
lation, as used in PSA, is also used and extended in a tabu search algorithm, 
called MOTS [49]. In this, an initial population of points is improved in par- 
allel, much as in PSA, but using a tabu search acceptance criterion. MOTS 
has another notable feature of particular relevance to MA design: it uses an 
adaptive population size based on the current nondominance rank of each 
member of the population. When the average of this rank is very low, it indi- 
cates that the members of the population are already well-spread (since few 
dominate each other), so the population size is increased in order to be able 
to cover more of the Pareto front. If the rank becomes too high this indicates 
that solutions are overlapping each other in objective space, and hence the 
population size is decreased-see figure 6(d). 

Most recently, [go] describes a generic local search-based procedure for bi- 
objective problems, the two-phase local search (2PLS). In this approach the 
so-called 'first phase' applies local search to the problem, considering only 
one objective in isolation. When a good local optimum has been found, the 
'second phase' begins. It uses the previous good solution as a starting solution 
for a new local search based on a scalarizing of the two objectives. Once a 
good solution has been found, the weights of scalarization are adjusted and 
the LS is again applied, again using the previous solution as a starting solu- 
tion. Thus, a 'chain' of LS runs is applied, until a specified number of weights 
has been completed and the algorithm terminates (figure 6(e)). Depending 
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on the problem, the weights may be adjusted gradually or randomly. For the 
multiobjective TSP it is shown that gradual changes in the weights leads to 
good performance. In a slight variation to the algorithm, called the Pareto 
double two phase local search (PD2PLS), two first phases are used, one for 
each objective, and subsequently the best solution returned by each LS run 
is augmented using a search for nondominated solutions in its neighbourhood 
(figure 6(f)). This increases the number of nondominated solutions found by 
the algorithm with little overhead in time. Overall, the 2PLS and PD2PLS 
algorithms exhibit high performance on benchmark multiobjective combinato- 
rial optimization problems, and are thus worthy contenders as subroutines for 
use within an MA for MOO, although versions for more than two objectives 
are needed. 

2.7 Model-based searchers using dominance ranking 

Model-based search is a name for a class of algorithms that employ some 
kind of statistical model of the distribution of remembered good solutions in 
order to generate new solutions. They can be seen as a development of EAs, 
in which recombination is replaced by a more statistically unbiased way of 
sampling from the components of known good solutions. Examples of model- 
based search algorithms are population-based incremental learning (PBIL), 
univariate distribution algorithms (UDAs), ant-colony optimization (ACO), 
Bayesian optimization algorithms (BOAs), and linkage-learning EAs. Recently 
a number of attempts at  extending model-based search to the multiobjective 
case have been made, and like most MOEAs, they use the dominance ranking 
(see figure 4) to evaluate solution quality. 

Straddling the middle-ground between a standard EA and a model-based 
search, the messy genetic algorithm, which attempts to learn explicit 'building 
blocks' for crossover to operate with, has been extended to the MOO case with 
the MOMGA and MOMGA-I1 algorithms [108, 1151. 

A step further away from standard, recognisable EAs, are algorithms 
that replace recombination altogether by using instead an explicit proba- 
bility distribution over solution components, in order to generate new so- 
lutions. Several different attempts have been made at  adapting Bayesian 
optimization algorithms (BOAs) and similar variants, to the multiobjective 
case [65, 80, 98, 1061. In the models proposed in [106], it is found that a fac- 
torization based on clusters in the objective space is necessary to obtain a 
good spread across the Pareto front. This results in an algorithm that is quite 
similar to the population-based ACO [47], described below, except that here 
the model is based only on the current population and not on a selection from 
a store of all nondominated solutions. The approach of [80] is a little different: 
instead of a mixture of clustered univariate distributions, a binary decision 
tree is used to model the conditional probabilities of good solution compo- 
nents. In order to encourage this model to generate sufficient diversity in the 
objective space, the selection step is based on +dominance [82] (see figure 5), 
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whereby solutions that are very similar tend to €-dominate each other and 
will not be selected. 

Ant colony optimization [30], is an agent-based search paradigm, partic- 
ularly suited for constrained combinatorial optimization. Briefly, in this ap- 
proach, candidate solutions are constructed 'component by component' by the 
choices made by 'ants' as they walk over a solution construction graph. At 
each step of a solution construction, the components available for the ants 
to select have associated with them a particular desirability, which biases the 
selection. This bias is mediated through the concentration of pheromone on 
the nodes or edges of the construction graph. In the usual implementations 
of ACO, the initially random pheromone levels change gradually via two pro- 
cesses: depositing of pheromone on the components making up a very good 
solution whenever one is found, and evaporation of pheromone, as a forget- 
ting mechanism to remove the influence of older solutions. In population-based 
ACO, no evaporation is used, and instead a population of good solutions is 
always stored. Whenever a solution in the population is replaced by a new 
one, the pheromone trails associated with the old one are entirely removed 
from the construction graph, and the new member of the population deposits 
its pheromone instead. In [47], population-based ACO is adapted to the mul- 
tiobjective case. This is achieved by making use of a store of all nondominated 
solutions found, and periodically choosing a subset of this to act as a tem- 
porary population. Promotion of diversity in the objective space is achieved 
in two ways: (1) the members of a temporary population are selected from 
the nondominated set based on their proximity to one another in the objec- 
tive space (so there is a kind of restricted-mating or island-model effect); and 
(2) each objective has its own pheromone and the selection of components is 
governed by a weighted sum over the different pheromone levels-the weights 
being determined by the location, in objective space, of the current temporary 
population, relative to the entire nondominated set. 

2.8 Algorithms using alternating objective functions 

Schaffer is widely regarded as having started the field of evolutionary mul- 
tiobjective optimization with his seminal paper on the vector evaluated ge- 
netic algorithm (VEGA) [97]. This was a true attempt at the evolution of 
multiple nondominated solutions concurrently in a single EA run, and the 
strategy was aimed at treating possibly non-commensurable objectives. Thus, 
aggregation of objectives was ruled out in favour of a selection procedure that 
treated each objective separately and alternately. As explained in [40], the ap- 
proach is, however, effectively assigning reproduction opportunities (fitness) 
as a weighted linear function of the objective functions, albeit it implicitly 
adapts the weighting to favour the objective which is 'lagging' behind. This 
behaviour means that on problems with concave Pareto fronts, 'speciation' oc- 
curs, meaning that only solutions which do well on a single objective are found, 
while compromise or middling solutions do not tend to survive. Another early 
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approach, this time using evolution strategies (ESs) as the basis, was proposed 
by Kursawe [78]. The paper included some interesting early ideas about how 
to deal with non-commensurable objectives but the algorithm proposed has 
not been tested thoroughly to date. 

Nearly ten years younger than the latter, [102], describes one of the first 
distributed EAs for MOO. It employs three separate but interacting popula- 
tions: a main population and two islands, with the main population accepting 
immigrants from the islands. The performance of three strategies were com- 
pared. One strategy is to use homogeneous populations, each evolving indi- 
viduals using the dominance ranking for fitness assignment. The second is to 
use heterogeneous islands, each evolving individuals to optimize a different 
objective, while the main population is still evolved using dominance ranking. 
The third is the same as the second but restarts are additionally used in the 
island populations. Testing on a number of scheduling problems revealed the 
latter to be consistently and significantly the most effective and efficient of 
the three strategies. 

Gambardellaet al. use a similar kind of heterogeneous, co-operative ap- 
proach in their ant-colony optimization algorithm for a vehicle routing prob- 
lem [42]. The problem tackled has two objectives: to minimize the number of 
vehicles needed to visit a set of customers with particular time window con- 
straints; and to minimize the total time to complete the visits. To achieve this, 
two separate ant colonies work pseudo-independently and in parallel. Starting 
from a heuristically generated feasible solution, one colony attempts to mini- 
mize the number of constraint violations when one fewer vehicle is used than 
in the current best solution, while the other colony attempts to reduce the 
total time, given the current best number of vehicles. Feasible improvements 
made by either colony are used to update the current best solution (which is 
used by both colonies to direct construction of candidate solutions). In the 
case that the colony using one fewer vehicles finds a feasible solution, both 
ant colonies are restarted from scratch, with the reduced number of vehicles. 

2.9 Other approaches 

One MOO approach which stands very much on its own is a method proposed 
in [37]. The originality of the approach lies in the way the whole multiobjec- 
tive optimization problem is viewed. In every other approach outlined above, 
whether it be population-based, model-based, or a local search, it is individ- 
ual solutions that are evaluated, and the fitter ones somehow utilised. By 
contrast, [37] proposes evaluating the whole current population of solutions 
in toto and using this scalar quantity in an acceptance function. For example, 
simulated annealing in this scheme would work by applying some measure 
(and Fleischer proposes the Lebesgue integral of the dominated region - see 
figure 7 )  over a population of current solutions. When a neighbour solution 
of one of the population is generated, it is accepted modulo the change in the 
Lebesgue measure of the whole population. Fleischer points out that since the 
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Fig. 7. The Lebesgue measure (or S metric) of a nondominated approximation set 
is a measure of the hypervolume dominated by it (shaded region), with respect to 
some bounding point (here shown by an X). The maximum of the Lebesgue measure 
corresponds to the Pareto front 

maximum of the Lebesgue integral is the Pareto optimal set (provided the 
number of solutions is large enough), a simulated annealing (for example) op- 
timizing this measure provably converges in probability to the Pareto optimal 
set. 

3 Going Further: Issues and Methods 

We have seen in the last section a variety of metaheuristic approaches to 
MOO, illustrating some of the basic principles of how to assign fitness and 
maintain diverse 'populations' of solutions. These are the basic pre-requisites 
for MAS for MOO, however a number of further issues present themselves. 
In this section we briefly discuss the current thinking on some of these other 
issues. 

3.1 Performance measures in MOO 

If one is developing or using an algorithm for optimization it almost goes 
without saying that there should be some way to measure its performance. 
Indeed, if we are to compare algorithms and improve them we really must 
first be able to define some means of assessing them. In single-objective op- 
timization it is a relatively simple case of measuring the quality of solution 
obtained in fixed time, or alternatively the time taken to obtain fixed quality 
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Minimize Minimize 

Fig. 8. On the left, two sets A and B, where A outperforms B, since every vector in 
B is dominated by at least one in A. On the right, two sets that are incomparable- 
neither is better under the minimal assumptions of Pareto optimization 

- and quality and time can themselves be defined unequivocally in some con- 
venient way. In MOO the situation is the same regarding the time aspect of 
performance assessment but the quality aspect is clearly more difficult. Recall 
that the standard goal of MOO (as far as we are concerned) is to approximate 
the true Pareto optimal set, and hence the outcome of the search is not one 
best solution, but a set of solutions, each of which has not one, but multiple 
dimensions of quality. We call these approximation sets, and it is clear that 
approximation sets cannot be totally ordered by quality, (see figure 8), if we 
remain loyal to the minimal assumptions of Pareto optimization. Nonetheless, 
a partial order of all approximation sets does exist, so it is possible to say that 
one set is better than another for some pairs, while others are incomparable. 

The partial ordering of approximation sets is sometimes unsatisfying be- 
cause it, of itself, does not enable an approximation set to be evaluated in 
isolation. For this reason, practitioners sometimes (often implicitly) adopt an 
ad hoc definition of a 'good approximation set' as one exhibiting one or more 
of: proximity to the true PF; extent in the objective space; and a good or even 
distribution-and use measures for evaluating these properties. The problem 
with such an approach (if not done with great care and thought) is that these 
measures can conflict utterly with the stated goal of approximating the PF. 
This problem is illustrated in Figure 9. 

If one wants to really do Pareto optimization, and needs a unary measure 
of approximation set quality, the fact that there is a true partial ordering 
of all approximation sets (under Pareto optimization assumptions) demands 
that good or reliable measures of quality respect this ordering in some way. 
Using this fact, it is possible to assess how useful and reliable are different 
potential measures of approximation set quality. If a measure can judge an 
approximation set A to be better than B, when the converse is true, for 
some pair of sets A and B, then the measure is, in a sense, unreliable and 
fairly useless. On the other hand if a measure never states that A is better 
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Fig. 9. A Pareto front and three approximation sets, A, B, and C. Depending on 
the measure used A, B, or C might be considered the best, and even better than 
the PF! If a measure of 'well-distributednes' is used B is best, better even than the 
PF. If a measure of proximity to the PF is used, C is best, even though B is just as 
close in parts, and if extent in objective space is measured, A is best 

than B when the reverse is true, then it may be of some use, even if it does 
not detect all positive cases. More useful still, is if it always detects positive 
cases correctly but sometimes judges one set better when they are, in fact, 
incomparable. The ideal situation is when a measure always detects A better 
than B when it is the case, and never gives a false positive, when it is not. 

A plethora of different measures for overall or specific aspects of MOO 
performance are described in the E M 0 0  literature but it is not until rela- 
tively recently that some researchers have begun to critically assess them. 
Most notably, Zitzler et al. [I141 give an extensive treatment of performance 
measures in MOO, using a framework that formalizes the notion of respecting 
the true partial ordering of approximation sets, as described above. A key 
result of [114] is that no unary measure (i.e. one taking just one approxima- 
tion set as input, and returning a number or vector of numbers) whatever, 
including any finite combination of unary measures, can detect reliably when 
one approximation set is better than another, without giving false positives. 
Such results underline the necessity of thinking very hard before selecting 
measures to evaluate performance. For earlier work on the same issue, see 
also [50, 68, 721. 



334 Joshua Knowles and David Come 

3.2 Archiving, multi-populations, and convergence 

In the tour of metaheuristics of section 3 we saw some examples of algorithms 
using secondary populations, archives, and/or populations of non-fixed size. 
The use of such mechanisms seems to be a necessary element of more advanced 
methods for MOO, which aim to build up and store a good approximation to 
the PF. Some of the options for incorporating these elements within existing 
algorithms are summarised below: 

0 Use a main population only: the population is the store (NPGA [53], 
NSGA [loo], NSGA-I1 [26]) 
Use a single-point local search, but keep separately a bounded-sized archive 
of nondominated points found (PAES [73]) 
Use a main and a secondary population - both of fixed size (SPEA [113], 
PESA [20]) 
Use a main population of fixed size and an archive of unbounded size [36] 
(RD-MOGLS [60]) 
Use multiple populations as in an island model [66] 
Have a dynamic main population size [I051 (MOTS [50]) 

With the use of an (unbounded) archive of solutions, an algorithm can 
potentially converge to the (entire) Pareto front. Thus, convergence proofs 
for MOEAs now exist in the literature: Rudolph [96] proved convergence to 
the Pareto front (that is at  least one Pareto optimal solution) for some simple 
multiobjective EAs, and it is possible to prove that the entire Pareto front can 
be enumerated provided an unbounded archive is available. More realistically, 
archives should be bounded in some way. A number of more recent papers have 
been written regarding what can be proved with respect to the convergence 
properties of such bounded archives [71,70,74,82,81]. Research in this area is 
still needed and the issue of which solutions to store during the search in order 
to converge towards a 'good approximation set' remains an open question. 

3.3 Test functions, problems, and landscapes 

Early test functions in the E M 0 0  literature comprised a number of ad hoc, 
low-dimensional functions, enabling a proof-of-concept for early MOEAs, but 
nothing more. A large step toward a more scientific approach was taken with 
the introduction, by Deb [25], of a framework for constructing functions with 
identifiable features such as concave, discontinuous, and non-uniform PFs, lo- 
cal optima, and deception. A suite of six 2-objective functions derived from 
these became popular for some time, despite some drawbacks. Deb later ex- 
tended the framework in [29] to allow scalable functions of any number of 
objectives to be generated and this is becoming more popular for testing now. 

There is still a lack of understanding of the relationships between the 
properties of problems, their 'landscapes', and strategies for search. A couple 
of studies that have begun investigating this with respect to combinatorial 
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problems are [9] and [69]. [9] investigates 'global convexity' in multiobjective 
TSP problems and finds that optima nearby to each other on the PI? are quite 
similar, a finding that suggests restricted mating in MOEAs and strategies for 
chaining local searches along the PF, like the 2PLS [go], would be effective 
on this problem. [69] introduces a tunable multiobjective version of the QAP 
problem and proposes some techniques for characterising the landscapes of 
instances of this problem. The latter is ongoing work. 

3.4 Not quite Pareto 

In much of the above discussion we have explicitly stated that finding a good 
approximation to the entire Pareto front is the goal of MOO, as far as we 
are concerned. Nonetheless, several situations arise when finding the whole 
Pareto front may not be desirable, and yet finding a single solution, as would 
be obtained by transforming the problem into a single objective, would not be 
adequate either. In particular, when the number of objectives is much above 
two or three, the size of the Pareto optimal set may be very large, necessitat- 
ing a more restrictive notion of optimal. In these cases, some kind of 'middle 
ground' may be the best option, in which some Pareto optima may be treated 
as more desirable than others. One of the seminal papers on non-Pareto ap- 
proaches is [7], which proposes a number of alternative ranking policies for 
use in EA selection. Other more recent policies are described in [lo, 341, and 
in [31] where the concept of the order relation, 'favour', is introduced. Where 
more explicit preferences of a decision maker are available more advanced 
methods may be used, as in, for example, [22]. 

4 MAS for MOO: the fossil record 

The extensive array of existing metaheuristics, issues and methods reviewed 
in the sections above gives a richer basis from which to design new MAS than 
do the existing MAS for MOO themselves. Nonetheless, before outlining some 
principles and ideas for new MAS, it is worth reviewing the few multiobjective 
MAS described in the current literature. 

Arguably, it is just three separate groups of authors that are responsible 
for much of the small multiobjective MA literature, each group having writ- 
ten several papers. A small number of others have published more isolated 
works and these tend to be application-based rather than aiming at  devel- 
oping general algorithms. The three main groups are: Ishibuchi and Murata, 
who proposed a 'multiobjective genetic local search' (MOGLS) [54] algorithm 
in 1996; Jaszkiewicz, who proposed an algorithm initially called RD-MOGLS 
for 'random directions' MOGLS [60], and a slight variant called the Pareto 
memetic algorithm (PMA) [61]; and Knowles and Corne, who developed an 
algorithm called M-PAES [67]. In all of these algorithms, the basic idea is sim- 
ple: a local search is applied to every new offspring generated (by crossover 
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or mutation), and the improved offspring then competes with the population 
for survival to the next generation (Lamarckianism). In all cases, only one 
local search operator is available and there has been no work on mechanisms 
for deciding whether or not to apply a local search to an offspring. The al- 
gorithms of Ishibuchi and Murata and Jaszkiewicz are quite similar in other 
respects too: both use randomly-drawn scalarizing functions to assign fitness 
for parent selection and in the local search. The algorithm of Jaszkiewicz uses 
an unbounded 'current set' of solutions, CS, and from this selects a small 
'temporary population', TP that comprises the best solutions on the incum- 
bent scalarizing function. It is then TP that is used to generate offspring 
by crossover. Some results put forward by Jaszkiewicz suggest that scalariz- 
ing functions are particularly better at encouraging diversity than dominance 
ranking methods used in most EAs. Ishibuchi and Murata have also made a 
number of interesting studies on their algorithm over the years, investigating 
restricted mating and other innovations, and have tested it on several prob- 
lems [55, 86, 87, 88, 58, 57, 56, 891. Knowles and Corne's M-PAES algorithm 
is quite different in at least one respect from the other two: it does not use 
scalarizing functions at all, either in the local search or the parental selection, 
employing instead a form of Pareto ranking based on comparing solutions 
to an archive of nondominated solutions. This may perhaps make it slower 
when very fast local search heuristics are available because the comparison of 
solutions takes longer to operate than applying a scalar acceptance function. 
On the other hand, whereas the MOGLS algorithms will discard newly gen- 
erated nondominated solutions if they are poor on the incumbent scalarizing 
function, this will not happen in M-PAES, making it potentially more parsi- 
monious of function evaluations-an advantage when these are more costly. 

Of the more isolated papers, a few stand out for their interesting ideas or 
applications. In [43] the idea of using supported solutions (figure 9) to seed 
an EA is proposed. That is, on problems where some exact algorithm for 
computing supported Pareto optima is available, [43] proposes a two-phase 
hybrid approach where the exact algorithm is applied first, then an EA is 
used to search for the non-supported Pareto optima, which cannot be found 
using the exact heuristic. 

Another kind of two-phase approach is described in [103]. The proposed 
procedure is as follows: run an MOEA for a fixed number of generations; then 
for each Pareto optimal solution, compute the neighbourhood and store any 
nondominated solutions found; update the list of PO solutions and again re- 
compute all the neighbourhoods; iterate the procedure until no improvement 
occurs. 

Similarly to [103], [27] proposes to run an EA (NSGA-11) and then apply 
local search afterwards to improve the Pareto optimal set. To do this, the 
authors apply a local search using a weighted sum of objectives. The weights 
used are computed for each solution based on its location in the Pareto front 
such that the direction of improvement is roughly in the direction perpendic- 
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ular to the PF. Nondominated solutions are then identified and clustering is 
finally applied to reduce the number of solutions returned. 

Finally, worth mentioning because the results on a well-known application 
problem are apparently good, is [I]. This paper introduces a hybrid of differen- 
tial evolution [loll and backpropagation learning in order to evolve both the 
architecture and weights of an artificial neural network. Two objectives are 
minimized, the summed squared error in training, and the number of neural 
units in the network. Abbass reports good reports on the Australian Credit 
Card and Diabetes Data sets. 

5 Recommendations for MA design and practice 

In the previous sections we have reviewed current MOO practices: we revisited 
a swathe of metaheuristics, considered some of the most salient issues and 
results, and looked briefly at  some existing MAS. We now consider how we 
should draw on this background to build a more 'memetic' MA for MOO. 

In recent years, Moscato and Krasnogor have provided a guiding manifesto 
for putting the 'memetic' back in memetic algorithms 177, 851 advocating, in 
particular, the use of multiple memes: memeplexes. These are collections of 
ways of learning or adapting which can be transmitted at  different levels and 
through different processes. For example, multiple local searches, multiple 
recombination operators, and so on could co-exist in a single algorithm, that 
then learns, at  both the individual and the population level, which operators 
to use, and when, depending on the monitoring of internal processes at  the 
level of the individual or population. The MAS that we have seen in the MOO 
literature to date are relatively poor images of these 'fully-fledged' MAS. 

In Algorithm 1, we put forward a simple framework that could serve as a 
guide for making a more memetic MA for MOO. In line 1, a population P of 
solutions is initialized. As usual, this procedure may be simply random or it 
may employ some heuristic(s). Line 2 sets the archive A to the nondominated 
solutions from P. Thereafter, the main loop of the MA begins. Line 4 sets up 
an inner loop in which a stagnation criterion is checked. This should be based 
on some memeplex which monitors progress in diversity, proximity, and/or 
some other criteria. Lines 5-9 give a very high level description of the update of 
the population and archive. Five different 'schedulers' are employed, basically 
corresponding to mating selection, reproduction, lifetime learning, survival 
selection, and update of the archive, respectively. Each scheduler chooses from 
a memeplex of operators, based on estimates of the current success of those 
operators. E.g., in line 5, SelectFrom is the operation of mating selection, the 
domain of which is the union of the population and archive, and co-domain 
is a child population C; the selection is controlled by the scheduler, selsched, 
which uses a success measure, succ, to choose one operator from the set, 
SEL, of currently available operators for selection. Notice that P and A are 
potentially of variable size, in this scheme. In line 11, the population P is 
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Multi- Objective MA(): 
Begin 

P := Initialize(P) ; 
A := Nondom(P); 
While ( stop-criterion not  satisfied ) Do 

While ( stagnation-criterion not  satisfied ) Do 
C := SelectFrom(P U A, selsched(succ(SEL))) ; 
C' := Vary(C, varsched(succ( VAR))) ; 
C" := LocalSearch(C', Issched(succ(LS))) ; 
P := Replace(P U C", repsched(succ(REP))) ; 
A := Reduce(Nondom(A U P), red-sched(succ(RED))) ; 

endDo 
P := Randomlrnmigrants(P, imm-sched(succ(IMM))); 

endDo 
return (A); 

End. 

Fig. 10. Candidate MA framework for MOO 

updated using some immigration policy to release it from stagnation. The 
archive of nondominated solutions is returned in line 13. 

The framework proposed is rather broad and actually instantiating it re- 
quires us to consider how we should resolve many choices, including those 
considered in the following sections, at  the very least. Table 1 summarises 
some of the MA elements/configuration choices to consider. 

5.1 Desired outcomes and prevailing conditions 

As in any other optimization scenario, we should know at the outset what is 
a desirable outcome, how this can be measured, and what are the prevailing 
conditions under which the search is going to take place. 

One important factor in MOO is knowing how many solutions are desired. 
The answer could be as many as possible, an exact number, or could be 
expressed in terms of some resolution at which the PF is sampled. These 
considerations might affect different options for storing the nondominated 
solutions (see Table 1, question 1). 

The dimensionality of the objective space is another important factor and 
how this is going to be dealt with. If there are only two or three objectives 
then there is some evidence that dominance-ranking-based selection methods 
may be the most appropriate, assuming a good approximation to the Pareto 
front is desired, with no particular preference for either diversity or proxim- 
ity. On the other hand, if the number of objectives is high, Pareto selection 
may be problematic, because many solutions will be incomparable. There 
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Table 1. Some suggcstions for configuring an MA dcsign 

Question Answer Choiccs 

1. How many solutions 
are desired? 

precisely N: Usc Lcbcsguc archiving [75] or adaptivc 
grid archiving [70] 

as many as possiblc: Usc an unboundcd archive [36] 

require eapprox sct: Usc 6-Parcto archiving [82] 

2. Is diversity more 
or less important than 
proximity? 

Morc: Usc scalarizing functions; optimize di- 
vcrsity only 

Less: Usc strong clitist sclcction; dominancc 
ranking approach; 

No prefcrcncc: Combinc Parcto approach with scalar- 
izing mcthods; monitor progress using 
an ovcrall unary mcasurc likc the S 
mctric 

3. What is the dimen- 
sionality of the objective 
space? 

1-d: Considcr 'multi-objcctivizing' [76, 631 

2-d or 3-d: Usc Parcto-ranking approachcs 

4-d+: Usc the ordcr rclation favour [31], or 
prefcrcnce mcthods [22], to reduce the 
number of cffectivc optima; consider 
aggregating corrclatcd objectivcs 

4. How long does func- 
tion evaluation take? 

Minutcs-to-days: Usc Baycsian approach [80] , or othcr 
computationally intcnsivc model-based 
mcthods 

Scconds: Usc self-adaptation, other medium- 
ovcrhcad methods 

Microsccouds: Rcly on fast LS stratcgics [go] 

5. Is the true Pareto 
front known? 

Ycs: Usc epsilon-mcasure to compute 
progrcss/mcasure overall perfor- 
mancc [I141 

N o  Use S measure to computc 
progrcss/mcasurc ovcrall pcrformancc 

6. Are supported solu- 
tions available? 

Yes: Sced thc M A  with them and try to find 
thc non-supported solutions [43] 



340 Joshua Knowles and David Come 

are various alternatives to consider: using the relation favour [31], instead 
of component-wise order; using some other aggregating methods as proposed 
in [7]; or, actually aggregating some of the objectives together following a 
correlation/mutual information analysis. 

5.2 Methods for monitoring progress 

The MA framework proposed above requires that operators and procedures be 
selected based on their current success rates. These, in turn, must be estimated 
by some notion of progress. How should this progress be measured? Deb has 
proposed a number of running time metrics in [28] and Zitzler has advocated 
using the S metric [I121 (see figure 7) to  detect convergence. We have not 
seen much in the way of statistics for detecting or measuring the success of 
particular operators so far but these could be adapted from similar measures 
used in EAs. 

5.3 System- and self-adaptation 

Adaptation of mutation rates, crossover probabilities, and so forth is a topic 
that has received significant attention in the EAs literature over the years 
(see [33] for an extensive review). By comparison, the topic of self-adaptation 
in MOO, is surprisingly under-developed. Where it has been used, as we saw 
earlier, is in the control of the search 'direction' in the objective space: i.e. to  
direct the search towards sparsely populated areas of the Pareto front. Thus, 
it is usually some kind of weighting vector adaptation. The potential in MOO 
for self-adaptation is large, however, and should be part of any 'real' memetic 
approach. The adaptation of selection pressure/elitism maybe of particular 
importance, since we would expect that the different stages of building up 
a Pareto front might demand more or less aggressive searches. Getting to a 
local Pareto front quickly may demand aggression, whereas stagnation there 
might suggest decreasing the selection pressure in order to spread out along 
it, or hopefully find a route to a better front. 

Some attempts have been made at  adapting population size to the size of 
the Pareto front - whether that be the archive population or the main one. 
Eg. ,  as we saw in MOTS, the mutual dominance of the population was used 
to adapt the size of the population. In the work of Laumanns, it is by setting 
a desired level of approximation that the archive's size is controlled, so that 
an appropriate number of solutions is maintained. These methods seem to be 
going in the right direction, as the use of a fixed population size, when trying 
to search efficiently a multi-dimensional objective space would seem to be too 
restrictive. 

5.4 Controlling the overall search 

Let us assume that we are interested in maximizing the rate at  which the S 
measure increases - that is our gold standard of progress. Then, we could have 
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a number of overall search strategies competing with each other in some form 
of bidding mechanism, where they each have wealth in proportion to a record 
of the prior rates of progress they achieved when in control of the search. We 
could have, for example, the following two search strategies: 

1. A PLS-like strategy that applies a local search repeatedly in one direction, 
using an aggregation function, until some convergence criterion is fulfilled. 
After this, a nearby weight is chosen and the same solution is once again 
improved. All nondominated solutions are stored in an archive. 

2. A PESA-like strategy in which a whole front of nondominated solutions 
is used to generate new solutions, generation by generation, via recombi- 
nation and variation, with selection based on crowding. 

One strategy could be chosen a t  random to start with. After each 'generation' 
the strategy of choice could be reviewed. However, changing a strategy could 
be tabu for some time immediately after a change, in order to give it a chance 
and for decent statistics on it to  be collected. Noticeable drops in progress 
rate could invoke a change in the current strategy in use. 

Much work is needed to investigate if advanced 'multi-meme' approaches 
like this illustrative example really could provide robustness over different 
types of landscapes arising from different problems, or indeed within a single 
problem. It  is not clear, even from the existing single objective literature, that 
this kind of high-level adaptation is really beneficial, but the time is perhaps 
overdue for us to try and find out. 

6 Future Prospects 

What does the future of multiobjective MAS hold and what are the most 
promising avenues to investigate now? In this article we have tried to dis- 
til a rich soup of ideas from the ever-growing literature on multiobjective 
metaheuristics, and a little on MAS, in order to provide some basis for the 
generation of new, more advanced algorithms. Many of the basics will proba- 
bly remain the same: solutions will be evaluated by a combination of Pareto 
ranking-type methods and scalarizing methods; diversity will be encouraged 
using niching and crowding in parameter and objective space, and by the 
controlled use of different weights in the scalarizing functions. However, there 
is great scope for building more advanced and more memetic algorithms. In 
particular, it seems that the need, unique to MOO, to obtain and maintain a 
diverse pool of different solutions, suggests that such things as adaptive pop- 
ulation sizes, multi-populations, and combinations of local and global search 
are especially relevant. 

Expanding on this, and looking into the near future, we see that there is 
potential for more investigation as to the effects of restricted mating schemes, 
and how the success of these relates to features of the underlying problem 
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and/or multiobjective landscapes. For problems with a large number of objec- 
tives, new non-Pareto methods for ranking solutions need more investigation, 
as do methods for analysing correlations between objectives, perhaps to com- 
bine some objectives together; and conversely, we have seen some evidence 
in the recent literature [76, 631 that even single-objective problems may be 
tackled more effectively using multiobjective methods - work which merits 
further attention. 

We have also provided in this article a glimpse of the different possible 
routes to building up a Pareto front employed by different multiobjective 
algorithms and have hinted at  ways that these different overall strategies 
could be combined together in self-adaptive strategies that are sensitive to the 
progress being made in the search. This area, we think, is most promising. 

New, advanced data structures for the storage and retrieval of Pareto 
optima [64] may offer increased speed of MAS and EAs which will, if developed 
further, enable exact solutions to be found even in relatively large solution 
spaces, provided fast local searches and evaluation functions are available. 

And at  the other end of the spectrum, where the evaluation of a solution 
takes a relatively long time, the recent advanced methods in model-based 
search promise a more principled way of sampling the search space. We have 
yet to see how these could be combined with local searches and other heuristics 
to build advanced MAS for these tough problems but the future is certainly 
exciting. 
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Summary. Learning Classifier Systems have previously been shown to have some 
application in deducing the characteristics of complex multi-modal test environments 
to a suitable level of accuracy. In this study, an accuracy-based Learning Classifier 
System, XCS, is used. The system has the capability of inducing a set of general 
rules from a sample of data points using a combination of Reinforcement Learning 
and a Genetic Algorithm. The investigation presented here builds on earlier work 
in this area by considering the application of a memetic approach during learning. 
The motivation for this investigation is identify if any increases in learning speed 
and classification performance can be made. The type of memetic learning used is 
based on Lamarckian Evolution but has several subtle differences from the standard 
approach. In particular, the Learning Classifier System is based on a Reinforcement 
Learning paradigm that has a dynamic effect on the fitness landscape. And, the form 
of lifetime learning used is based on a Widrow-Hoff delta rule update procedure in 
which changes to an individual's genotypic description are based upon some distance 
measure between the individual and a "focal rule"' (analogous to a local optima in a 
standard MA). In addition, no distinction is made between genotype and phenotype. 
Initial investigations focus on the effects on performance for three different learning 
rates and three different "focal rule" identification options for two different test envi- 
ronments - a two-dimensional and a decomposable six-dimensional test environment. 
Results show that improvements can be made over a non-memetic approach. The 
study also considers the use of a self-adaptive learning mechanism. Self-adaptation 
has been suggested as beneficial for Genetic Algorithms where the technique is usu- 
ally used for adapting the mutation rate in a time-dependant and decentralised way. 
However, the investigation of a self-adaptive learning mechanism presented here fo- 
cuses on the benefits of adjusting the Widrow-Hoff learning rate used within the 
memetic-learning component of the system. The mechanism was applied to both 
test environments. Results show that the mechanism can provide a more robust 
learning system both in terms of reduction in the number of system parameters 
and increased generalisation and solution convergence. Further detailed analysis of 
experimental results for the decomposable six-dimensional test function is also per- 
formed. This would otherwise be non-trivial for a non-decomposable six-dimensional 
function. The classification accuracy of several different versions of the system in- 
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cluding those systems with and without memetic or self-adaptive memetic learning 
are analysed region by region showing the effects of the new learning approach at a 
much greater level of detail. Analysis shows that the self-adaptive memetic version 
of the classifier system outperforms the non-adaptive and non-memetic versions in 
some of the regions. 

1 Introduction 

There have been several published studies demonstrating the capabilities of 
XCS [30] for data-mining through rule-induction. XCS is a Learning Classi- 
fier System (LCS) [ll] that is capable of inducing a set of general rules from 
a sample of data points using a combination of Reinforcement Learning [14] 
and a Genetic Algorithm [lo]. In [4], Bernado et al. describe an experimen- 
tal comparison of XCS with seven other learning schemes, including C4.5, 
Naive Bayes and Support Vector Machines. Fifteen UCI repository data-sets 
[5] were used in that study each having a mixture of attribute types and dif- 
fering numbers of classes and data-set sizes. The XCS system was shown to be 
highly competitive when compared with the other learning schemes. Wilson 
[32][33] has also demonstrated the capabilities of an interval based encoding 
when used to induce rules describing the Wisconsin Breast Cancer data-set. 
In fact, XCS was shown to improve on the best known performance for that 
data-set. That is, the XCS classifier system can be cast as an induction en- 
gine that is trained using a reinforcement learning approach, i.e., an external 
agent provides a reward for each classified data instance. Once the system 
has completed its training, new unseen data are presented and a measure of 
classification accuracy made. 

Initial investigations in [8] show that the XCSR system [31] (an extension 
of the binary-input XCS to real-inputs) is able to identify high performance 
regions from a continuous multi-variable search space using a sample of train- 
ing data points. Parmee [25] introduced the concept of the identification of 
high performance regions of complex preliminary design spaces rather than 
the identification of single optimal design solutions. A region of high per- 
formance is any contiguous set of points in a given design space which are 
considered to be exceptional solutions to a particular set of possibly conflict- 
ing design criteria. The solution provided by XCSR is a complete set of simple 
classification rules that define orthogonal regions of the solution space with 
attached classification labels. Investigations continued using a new Simplified 
Learning Scheme with the aim of improving XCSR performance with respect 
to learning speed and ability to respond to changes in the underlying test 
environment (such as class relabelling). When using the Simplified Learning 
Scheme newly created rules have their expected payoff value set to that of 
the first training instance they experience. This value remains constant. The 
new system was termed sXCSR and results showed that improvements can 
be made under the new learning scheme. The work presented clearly demon- 
strated the capability of XCSR to evolve real-valued pairs to describe interval 
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bounds for each variable in the multi-variable problem and thereby define a 
set of simple classification rules for the high performance regions. 

The investigation was extended in [34] by applying XCSR and sXCSR to 
progressively more complex multi-modal test environments each with typical 
search space characteristics, convex/non-convex regions of high performance 
and complex interplay between variables. In particular, two test environments 
were used to investigate the effects of different degrees of feature sampling, 
parameter sensitivity, training set size and rule subsumption. Both test envi- 
ronments are constructed using a combination of functions allowing for the 
simple generation of training and test points. Each sample point can be repre- 
sented by a vector of continuous values and a continuous performance measure 
which may be discretised as appropriate. Both test environments are also used 
in this study. Fixed size training data-sets were used in an effort to provide 
some consistency in experimentation with those design problems for which the 
cost of an on-line evaluation per sample point is high or for which data-sets 
are constructed from other off-line data sources. 

The study is arranged as follows: Sect. 2 presents a basic overview of 
memetic algorithms, and in particular, how this relates to the approach pre- 
sented here; Sect. 3 describes the XCSR system used throughout; Sect. 4 de- 
scribes the experimental details for this study; Sect. 5 describes and presents 
results for a two-dimensional test environment; Sect. 6 describes and presents 
results for a six-dimensional test environment; Sect. 7 presents the results from 
using a self-adaptive approach to tuning the memetic learning rate for both 
the two and six-dimensional test environments; Sect. 8 shows a more detailed 
analysis of a selection of six-dimensional test environment results by decom- 
posing the test data-set into eighteen distinct regions of high performance 
and finally, all findings are discussed in Sect. 9. Section 10 defines several re- 
lated equations that can be used to define the two and six dimensional test 
environments used in this study. 

2 Memetic Algorithms 

In [23], Moscato termed a Memetic Algorithm (MA) as "a marriage between 
a population-based global search and the heuristic local search made by each 
of the individuals" and made it clear that the global search need not be 
constrained to a genetic representation. However, for the purposes of this in- 
vestigation, a more constrained definition provided by Krasnogor and Smith 
[18] is used, that is, "MAS are extensions of Evolutionary Algorithms (EAs) 
that apply separate local search processes to refine individuals". It should 
also be made clear that the local search processes used to refine individuals 
may include constructive and exact methods as well as iterative improvement 
techniques. The key feature of the memetic approach to learning is that in- 
dividuals are permitted to learn during their lifetime. This type of learning 
is applied using the phenotypic description of an individual rather than the 
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genotypic description. However, for the evolutionary process to take advan- 
tage of this lifetime learning, the effects of any improvements need to be felt 
in succeeding generations of the genetic search. There are two basic models 
of evolution that can be used for this purpose. These are the Baldwin Effect 
[2] [22] [24] and Lamarckian Evolution [29]. 

The Baldwin Effect was discovered independently by Baldwin [2], Morgan 
[22] and Osborn [24] in 1896 and has since become known as the Baldwin 
Effect due to Baldwin's dedicated research efforts. The Baldwin Effect allows 
an individual's fitness to be determined as a result of the local search processes 
but without any resulting changes in phenotypic description being reflected in 
the individual's genotypic description. According to Whitley et al. [29], this 
technique has the effect of changing, or smoothing out, the fitness landscape 
while retaining the advantages of the evolutionary process. Here, it is not 
characteristics acquired during an individual's lifetime that are inherited, but 
its ability to acquire those characteristics. 

Larmarckian Evolution, introduced by Jean Baptiste Larmarck in 1809, is 
based on an assumption that characteristics acquired during an individual's 
lifetime are inherited, that is, any changes to the phenotypic description will 
be reflected in the individual's genotypic description. One of the drawbacks 
of using this technique for real-world problem solving is the requirement for 
an inverse mapping from phenotype and environment to genotype. There is 
no such requirement when using the Baldwin Effect. 

Despite the issues raised above, the Larmarckian approach is used as the 
basis for memetic learning in this investigation. However, there are several 
subtle differences between the standard approach to Larmarckian Evolution 
and that employed here. Firstly, the underlying Evolutionary Algorithm used 
is based on a Reinforcement Learning paradigm that has a dynamic effect on 
the fitness landscape. Secondly, the form of lifetime learning used is based on a 
Widrow-Hoff update procedure in which changes to an individual's genotypic 
description are based upon some distance measure between the individual 
and a "focal rule". Here, the "focal rule" is analogous to a local optima in a 
standard MA. It  should be noted that no distinction is made between genotype 
and phenotype in this study. 

In particular, this involves identifying a "focal rule" together with any 
members of the current Action Set that qualify for update. In order to qualify 
for update, a rule must have been a member of a sufficient number of previous 
Action Sets, that is, the rule is expected to have been updated enough times 
to show its true potential. This threshold is termed as the update qualification 
threshold and is denoted by the symbol c. The "focal rule" is a single rule 
used in a Widrow-Hoff update procedure applied to all qualifying Action Set 
members. In this investigation, three different approaches are used to identify 
the "focal rule": Best Fitness, Most Numerate and Accurate. Each approach 
involves sorting the Action Set members in descending order with the first 
member in the sorted list being defined as the "focal rule". It  is possible 
in each of these approaches, and likely in the case of Accurate, for several 
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members of a given Action Set to be competing for the title of "focal rule", 
in which case, one of them is selected at  random. Once the "focal rule" and 
members qualifying for update have been identified, the following update rule 
is applied, xi = xi + rl Fi - xi , V i ,  j, where represents gene i of qualifying [ I 
member j, Fi represents gene i of the "focal rule" F, and rl is a learning rate 
between 0 and 1 applied to the update. The new system is termed mXCSR. 
Initial investigations focused on the effects on performance for three different 
learning rates and three different "focal rule" identification options over those 
for the standard non-memetic approach. 

3 XCSR 

In [31], Wilson presents a version of XCS [30] for problems which can be de- 
fined by a vector of bounded continuous real-coded variables - XCSR. In that 
system, each rule in the classifier system population consists of the following 
parameters: < condition > : < action > : prediction (p) : prediction error 
(E) : fitness (F) : experience (exp) : time-stamp (ts) : action set size (as) : 
numerosity (n). Given that XCSR is an accuracy-based classifier system, the 
three parameters p, E and F are used to assess the accuracy of the rule's pre- 
diction in relation to its experiences over time, that is, how accurately the rule 
predicts the actual reward or payoff from its use for a given environment in- 
put. The other parameters, exp, ts, as  and n, are used by the classifier system 
to maintain the internal dynamics of the system, such as balancing resources 
across environmental niches, genetic algorithm invocation and computational 
issues. 

Figure 1 shows a schematic illustration of the architecture of a single-step 
version of the XCSR system with a particular emphasis on the data-mining 
capabilities of the system. The following description of the process actions of 
the XCSR system can be found in algorithmic form in [9]. A sample point 
is selected at random from the database and is presented to the system as 
an input vector. The system defines a subset of the Population, called the 
Match Set, from those rules whose < condition > matches the input vector, 
where each rule predicts one of n actions (n = 2 for this study). If there are no 
matching rules, the system generates, or covers, a rule for each possible action 
using the input vector as a template. The Prediction Array is calculated as 
a sum of the fitness-weighted prediction of each rule in the Match Set, that 
is, T represents the sum of fitness-weighted prediction for all rules advocating 
action 1 and 4 for those advocating action 2. The action with the highest sum 
represents the systems "best guess" at the classification for the given input 
vector. There are two action selection regimes, explore and exploit. Assuming 
the system exploits its knowledge, the system defines a subset of the Match 
Set, called the Action Set, from those rules advocating the selected action. The 
predicted class is compared with the actual class for the given input vector and 
a reward is received, 1000 for correct and 0 for incorrect. The system reinforces 
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those rules in the Action Set using the reward. If the average number of time- 
steps since the last invocation of the Genetic Algorithm component is greater 
than some pre-defined threshold, the Genetic Algorithm is permitted to act 
upon the members of the Action Set. 

(U 
(D actual class 

reward 
redicted class 

select action 

Fig. 1. The XCSR Classifier System Schematic Illustration for Single Step Data- 
mining Tasks 

Another operator that acts upon the Action Set is the subsumption op- 
erator. One rule may subsume another if every interval predicate in the sub- 
sumee's < condition > can be subsumed by the corresponding predicate in the 
subsumer, that is, for real-coded <condition >'s the subsumee's lower bound 
must be greater and its upper bound must be lesser than the corresponding 
subsuming predicate. In fact, XCSR implements two different forms of sub- 
sumption, Action Set Subsumption and Genetic Algorithm Subsumption. In 
the first form, a single rule is defined as the most general in a given Action Set 
and is permitted to subsume any other rule in the Action Set providing it is 
sufficiently experienced and accurate enough. In the second form of subsump- 
tion, a newly generated offspring rule may be subsumed if either of its parents 
are more general than it, sufficiently experienced and accurate enough. 

In [31], Wilson defines a <condition > as consisting of interval predicates 
of the form {{q, sl),  . . . , {c,, s,)), where c is the interval's range "centre" 
and s is the "spread" from that centre - termed here as the Centre-Spread 
encoding. Each interval predicate's upper and lower bounds are calculated as 
follows : [c, - s,, c, + s,]. If an interval predicate goes outside the variable's 
defined bounds, it is truncated. In order for a rule to match the environmental 
stimulus, each input vector value must sit within the interval predicate defined 
for that variable. 

In [32], Wilson describes another version of XCS which could also be used 
for such multi-variable problems in which a vector of integer-coded interval 
predicates is used in the form {[11, ul], . . . , [l,, u,]}, where 1 and u are the 
intervals' lower and upper bounds, respectively - termed here as the Interval 
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encoding. It is clear that a real-coded version of the integer bounded interval 
predicates would be trivial to implement. For both the Centre-Spread and 
Interval encoded versions, mutation is implemented via a random step (range 
-0.1 5 x 5 0.1) and cover produces rules centred on the input value with a 
"spread" of so. 

It is important to note in the case of the Interval encoding, a potential 
problem may arise through the action of the mutation operator such that 
it is possible for a variable predicate's upper bound to become smaller than 
its lower bound. There are two ways to deal with this problem, termed here 
as Ordered Interval and Unordered Interval [26]. The first way uses a repair 
operator to enforce an ordering restriction on the predicates by swapping the 
offending values to ensure that all interval predicates in the < condition > 
remain feasible, i.e., in the form { [ l ~ ,  ul], . . . , [l,, u,]). The second way lifts 
the ordering restriction such that an interval [l,, u,] is equivalent to [u,, l,]. 
The reader is referred to [26] for a discussion of the issues related to the 
differences between Interval encodings. 

4 Experimental Details 

The investigation presented in [34] compared the three different real-coded 
interval encodings described in Sect. 3 and showed that there was little or 
no difference between the encodings for the two and six-dimensional test en- 
vironments used. Given that these same test environments are used in this 
study, the choice of encoding becomes an arbitrary one. In fact, the Unordered 
Interval encoding is used throughout. 

The investigation also showed results for different sized training data-sets, 
that is, 500 and 2000 sample points for the two-dimensional environment and 
6000 and 12000 sample points for the six-dimensional environment. In both 
cases, the larger training data-set led to better performance. For this reason, 
the 2000 and 12000 sample point data-sets are used in this study. Results 
presented in [34] for different population sizes show that a population of 8000 
rules for the two-dimensional test environment and a population of 2000 rules 
for the six-dimensional test environment led to the best performance. 

To clarify, all experiments in this study use a system based on the Un- 
ordered Interval encoding. Experiments using the two-dimensional environ- 
ment run for a total of 200000 trials with a population size of N = 8000 
while those using the six-dimensional test environment run for 250000 tri- 
als with a population size of N = 2000. XCSR's other parameters are de- 
fined as: ,B = 0.2, a = 0.1, EO = 10, v = 5, OGA = 12, x = 0.8, p = 
0.04, Od,l = 20, 6=0 .1 ,  p~ = 10, EI  = 0, FI =0.01, Om,, = 2, BSub = 20, 
plus m = f 10% and so = 2% for the two-dimensional environment while 
m = f 10% and so = 25% for the six-dimensional environment. 

An approach is required to enable comparisons of performance to be made 
between different parameter sets. One common way to define the performance 
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of a classification system is to use a confusion matrix [16] of size L x L, where 
L is the number of different classifications. The matrix contains information 
about the actual and predicted classifications resulting from the classification 
task and provides a simple format to record and analyse system performance. 
Fimire 2 gives an examnle of a 2 x 2 confusion matrix with the two nossible 

Predicted 
Class 

Fig. 2. An Example 2 x 2 Confusion Matrix with High and Low Classifications 

Several measures of classification accuracy based on confusion matrices 
were developed to overcome problems associated with analysis where the num- 
ber of examples in each classification is significantly different. These include 
Lewis and Gale's F-measure [20], the geometric mean as defined by Kubat 
et al. in [19], using ROC graphs to examine classifier performance [27] and 
Kononenko and Bratko's information-based evaluation criterion 1171. 

Given that all the test data-sets used in this study have been manipulated 
such that the number of examples per classification are nearly equal, a simple 
accuracy measure will suffice for basic analysis. For a two-class classification 
problem, the accuracy measure is defined as the number of examples correctly 
classified as High plus the number correctly classified as Low divided by the 
total number of examples classified, that is, (a + d) / (a + b + c + d) according 
to Fig. 2. Unclassified test examples are not included in this measure, that is, 
the denominator may not always equal the number of sample points in the 
test data-set. The percentage of High and Low points correctly classified are 
traditionally known as sensitivity and specificity, respectively. These terms 
frequently appear in the medical literature and are mainly used to describe 
the result of medical trials for disease prevention, but have come to be used 
in many non-medical classification tasks including information retrieval. A 
similar set of performance metrics were introduced for the EpiCS [12] system. 

An important aspect of the experimental method identified in [34] was 
the class imbalance problem [13][28] which can be defined as a problem en- 
countered by any inductive learning system in domains for which one class 
is under-represented and which assume a balanced class distribution in the 
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training data. For a two-class problem, the class defined by the smaller set 
of examples is referred to as the minority class while the other class is re- 
ferred to as the majority class. Initial experiments for the six-dimensional 
test environment used in [34], and here, showed that without applying some 
form of rebalancing of the class distribution, the six-dimensional test problem 
could not be described to an acceptable level of accuracy. The solution used 
in [34] for the six-dimensional test environment was an approach suggested by 
Ling and Li [21] that makes use of both minority over-sampling and majority 
under-sampling. In particular, the minority class is re-sampled with replace- 
ment until some pre-defined multiple, n, of the original sample size is achieved. 
The majority class is re-sampled without replacement until a number of ex- 
amples equal to those sampled from the minority class have been defined. 
The Ling and Li re-sampling solution is restricted to the six-dimensional test 
environment as was the case in [34]. 

For all experiments presented in this study, the new mXCSR system is 
trained using a single training data-set and tested using a different test data- 
set generated from a uniform random distribution. The test data-sets have 
been manipulated in such a way as to provide an equal number of test points 
per classification. In particular, n points are sampled from a uniform random 
distribution and evaluated according to the given environment. The sample 
points are sorted in descending order of performance and the top 2m points 
are used to define the test data-set, where m equals the total number of 
High points generated. All data-sets used have two defined classes, High and 
Low. The training data-sets are generated from a Halton Sequence Leaped 
(HSL) sequence [15], where the HSL is a quasi-random sequence that provides 
a set of real numbers whose degree of uniformity is high. By manipulating 
the test data-sets to include sample points from both classifications near to 
the classification decision boundaries, it is hoped that clear evidence of the 
classifier system's capability to evolve rules that define those boundaries will 
be gathered. 

The results for each parameter setting of the mXCSR system are averaged 
over ten independent runs and presented together with a standard deviation 
for that sample. Any conclusions made are based on the application of Mann- 
Whitney Rank Sum Test which makes no assumptions about the distribution 
of population from which the runs where sampled. 

5 A Two-dimensional Test Environment 

The two-dimensional test environment used in this paper is the multi-modal 
modified Himmelblau function [3]. The equation for the modified Himmelblau 
function, which is used to evaluate each sample point, is given in Sect. 10.1. 
There are four optima of approximately equal magnitude. This function is 
used to define a two-class classification task to investigate the effects of 
using a memetic approach to learning within the XCSR classifier system, 
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that is, mXCSR. In particular, an exact threshold value of + = 184, where 
+ E [-1986,2001, is used to  define HighlLow class decision boundaries. Fig- 
ure 3 shows a contour plot of the function, clearly indicating the four regions 
of high performance as defined by the threshold value given above. 

Fig. 3. The Modified Himmelblau Function Contour with Four High Performance 
Regions 

The new mXCSR system was trained using a single training data-set, 
Fig. 4, generated from a HSL sequence with 2000 sample points and was tested 
using a different data-set generated from a uniform random distribution. This 
test data-set has 2116 sample points of which 1073 points are defined as High 
- shown as faint dots in Fig. 5 .  

Table 1 shows a single performance measure (ten run average with stan- 
dard deviation) for each parameter combination using the Uniform Random 
test data-set. The parameter combinations used include running the new 
mXCSR system both with and without Action Set Subsumption and Simplified 
Learning Scheme using three different approaches to "focal rule" identification 
together with three different learning rates for each approach. 

It is clear from Table 1 that the system performed well on the two- 
dimensional Himmelblau test problem in terms of correct classification of un- 
seen data, between 72.8% and 90.1% depending on "focal rule" identification 
approach, learning rate, subsumption type and whether or not the Simplified 
Learning Scheme was used. The performance gain for mXCSR when Action 
Set Subsumption is turned off is remarkably clear in Table 1. In fact, the 
difference between mXCSR with and without Action Set Subsumption is sta- 
tistically significant (> 99.9%) for all parameter settings shown. Although, a 
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Fig. 4. Training Data-set with 2000 HSL-generated Sample Points 

Fig. 5. Test Data-set with 2116 Sample Points Generated from a Uniform Random 
Distribution 
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Table 1. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Two-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

difference has been identified in previous work [34], it is clear from the results 
shown here that the difference is significantly smaller, that is, the memetic 
learning approach has help to mitigate some of the problems associated with 
using Action Set Subsumption in the two-dimensional test domains. Figures 6 
and 7 show the performance gain for the mXCSR system using the Accu- 
r ~ t e ( , = ~ . ~ )  "focal rule" identification approach when Action Set Subsumption 
is turned off. 

Regarding different "focal rule" identification approaches, Table 1 shows 
a clear difference in performance between Acc~rate(,,~.~) and the other two 
approaches, Most N~merate(,,~,~) and Best Fitnes~(,,~.~), when Action Set 
Subsumption is turned on. This effect is a statistically significant (> 99%) 
improvement in performance. In fact, a learning rate of 0.1 can also be shown 
to be statistically significant (> 95%) when compared with the other two 
settings for the Accurate "focal rule" identification approach. 

Figures 6 and 8 show a comparison of performance based on the Simplified 
Learning Scheme, that is, Fig. 6 does not use it and Fig. 8 does. Both sys- 
tems are based on the Acc~rate(,,~.~) approach with Action Set Subsumption 
turned on. Results suggest that there may be a slight degradation in perfor- 
mance when the Simplified Learning Scheme is used. In fact, this result is 
statistically significant (> 97.5%). Figures 9 and 10 show the learning speed 
and system error for the same two systems. These figures show that despite 
final performance being significantly different, there is no increase in learning 
speed as demonstrated in [8]. 

Overall, results suggest that when Action Set Subsumption is turned on, 
the memetic learning helps to improve system performance significantly above 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and with AS-Subsumption 

ExploitTnals 

-Accuracy - - - -Sensitivity -Specificity 

Fig. 6. Classification Accuracy for mXCSR with Action Set Subsumption using the 
A~curate(,,~,~) "focal rule" identification approach 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and without AS-Subsumption 

0 50000 I00000 150000 20000[ 

ExploitTnals 

- Accuracy - - - Sensitivity -Specificity 

Fig. 7. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Accur~te(,=~.~) "focal rule" identification approach 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 with AS-Sub and Simplified Learning 
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Fig. 8. Classification Accuracy for mXCSR with Action Set Subsumption and Sim- 
plified Learning Scheme using the Acc~rate(,=~.~) "focal rule" identification ap- 
proach 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and No Simplified Learning Scheme 
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Fig. 9. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and without Simplified Learning Scheme using the Acc~rate(,=~.~) "focal rule" 
identification approach 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Simplified Learning Scheme 
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Fig. 10. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and with Simplified Learning Scheme using the Acc~rate(, ,~,~) "focal rule" 
identification approach 

that of a non-memetic system except for the Most Numer~te( ,=~.~)  approach. 
In fact, this improvement is statistically significant at  a level of > 95%. How- 
ever, it also clear that the memetic learning degrades performance for those 
systems that do not use Action Set Subsumption. Although this degradation 
is very small (around 2%), it is statistically significant (> 95%). 

6 A Six-dimensional Test Environment 

The six-dimensional test environment used in this paper is a multi-modal 
function developed by Bonham and Parmee, [6] and [7], and is described in 
Sect. 10.2. It  is defined by the additive effect of three different two-dimensional 
planes, as shown in contour plot form in Figs. 11-13 . Each plane has an associ- 
ated "local" fitness value and the "global" fitness value of the six-dimensional 
function is defined by adding each of these "local" fitness values together, that 
is, f itnessglObal = f itnessplanel + f itnessplane2 + f i t n e ~ s ~ ~ ~ , ~ ~ .  Each sample 
point is defined by a six-dimensional vector of the form {a, b, c, d, e,  f ), where 
a . .  . f E [O,l]. 

In this two-class classification problem, a sample point is classified as either 
High or Low. It is classified as High only when each "local" fitness value is 
greater than the exact threshold value II, = 0.35, where II, E [O, 0.51, and the 
"global" fitness value is greater than exact threshold value II,G = 1.20, where 
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Fig. 11. Plane 1 of Bonham and Parmee's Six-dimensional Function showing Three 
Local Regions of High Performance 

Fig. 12. Plane 2 of Bonham and Parmee's Six-dimensional Function showing Two 
Local Regions of High Performance 



6 A Six-dimensional Test Environment 371 

Fig. 13. Plane 3 of Bonham and Parmee's Six-dimensional Function showing Three 
Local Regions of High Performance 

$G E [O, 1.51, otherwise the point is classified as Low. By combining local 
regions of high performance, as shown in Table 2, an environment of eighteen 
unique regions of globally high performance are defined, that is, three local 
high performance regions in Plane 1, two in Plane 2 and three in Plane 3. In 
fact, Sect. 8 presents an analysis of a selection of results for this environment 
emphasising its decomposable nature. 

The XCSR system was trained using a single 12000 sample point training 
data-set (not shown) generated from a HSL sequence which is re-balanced 
using the approach suggested by Ling and Li [21] with a predefined multiple 
of n = 32. The new data-set consists of 11968 sample points, that is, within 
3% of the original size. The system was tested using a data-set generated from 
a uniform random distribution with 1693 sample points of which 813 points 
are defined as High. The test data-set is manipulated to include sample points 
from both classifications near to the classification decision boundaries as was 
the case in the two-dimensional test environment. 

In general, Table 3 shows no significant difference in performance between 
"focal rule" identification approaches except where the standard deviation fig- 
ure is high. However, there is a statistically significant difference (> 97.5%) 
between Acc~rate(,,~.~) and the other approaches as well as between Ac- 
c~ra te ( ,=~ .~)  and Most Numerate. The memetic learning appears to provide 
little or no advantage in performance over the non-memetic system except for 
a slight degradation when Action Set Subsumption is turned off. This degrada- 
tion is statistically significant (> 95%). Figures 14 and 15 show a comparison 
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Table 2. Eighteen Unique Regions of Globally High Performance (HPR,,,i,,) based 
on the Six-dimensional Test Function 

Plane 1 Plane 2 Plane 3 

6) 
(i) 
6) 
(9 
(9 
(9 
(ii) 
(ii) 
(ii) 
(ii) 
(ii) 
(ii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 

(9 
(ii) 
(iii) 

(i) 
(ii) 
(iii) 

6) 
(ii) 
(iii) 

(9 
(ii) 
(iii) 

6) 
(ii) 
(iii) 

(i) 
(ii) 
(iii) 

of performance between a memetic learning and non-memetic system where 
both system have Action Set Subsumption turned off. It is clear from the figure 
that there is little difference between these systems for the given parameters 
settings. 

Results also show that there is no clear difference in performance between 
using and not using the Simplified Learning Scheme. However, there seems to 
be the potential for further increases in learning speed when using the Sim- 
plified Learning Scheme as shown in Figs. 16 and 17, where Action Set Sub- 
sumption was also used. It  is clear from the figure that the Simplified Learning 
Scheme does provide the same level of performance some 25000-30000 exploit 
trials quicker than the standard scheme. Given that the speed-up was not ap- 
parent in the simpler two-dimensional test environment, this provides some 
strength to an argument put forth in [8] in which it was hypothesized that 
the Simplified Learning Scheme may have a greater effect on performance as 
the complexity of the test environment increases. 

In order to qualify for update, a rule must have been a member of a suf- 
ficient number of previous Action Sets, that is, the rule is expected to have 
been updated enough times to show its true potential. Given the similarities 
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Table 3. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Six-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 with No AS-Subsumption 

1 1  I 

- Accuracy - - - -Sensitivity -Specificity 

Fig. 14. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Acc~rate(,=~.~) Yocal rule" identification approach 
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No Memetic Learning 
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Fig. 15. Classification Accuracy for XCSR without Action Set Subsumption 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and No Simplified Learning Scheme 

1 ,  I 

I -Learning Speed - System Error - % Macro-Rules I 

Fig. 16. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and without Simplified Learning Scheme using the Acc~rate(,,~.~) "focal rule" 
identification approach 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Simplified Learning Scheme 

1 ,  I 

[ -Learning Speed -System Error - % Macro-Rules 1 

Fig. 17. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and with Simplified Learning Scheme using the A c c ~ r a t e ( , , ~ , ~ )  "focal rule" 
identification approach 

in nature between the subsumption operator and the memetic learning sug- 
gested in this study, the update qualification value, J, has been fixed at  20 to 
this point. However, there was some evidence in [8] and [34] that permitting 
initially weaker rules enough time to show their true potential by reducing 
the early domination of more numerate rules in a given Action Set can lead 
to improvements. Based on this insight, another set of experiments was per- 
formed using the Ac~urate(,,~.~) "focal rule" identification approach where 
the threshold for update qualification varies between 20 and 200. The choice 
of identification approach was somewhat arbitrary given the results in Table 3 
above. 

It  is clear from the result of these experiments, shown in Table 4, that 
a small improvement can be made in performance when J = 50 or J = 100, 
except for any highly variant results. In fact, this effect is statistically signifi- 
cant a t  the level of > 95% for differences between J = 20 and J = 50. There 
is also significant difference (> 95%) in performance between those systems 
using the Simplified Learning Scheme with and without Action Set Subsump- 
tion. It should be noted that those settings of J greater than 100 lead to a 
performance that is not statistically different from the original settings of J 
= 20. 

On closer examination, the differences in performance for those systems 
using the memetic learning but with Action Set Subsumption turned off, as 
shown in Table 3, are mitigated by the alteration of the threshold J, as shown 
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Table 4. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Six-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

in Table 4. That is to  say that when the qualification threshold is between 
50 and 100 for systems with Action Set Subsumption turned off, performance 
is comparable with a standard non-memetic system. Figures 18-21 illustrate 
this effect and also show that the number of rules required to  achieve this level 
of performance is some 20% larger in the case of the memetic learning version 
of the system. This is likely to  be one side effect of performing a Widrow-Hoff 
update on the qualifying members of a given Action Set, that is, there may 
be several rules in the rule-base with almost identical <condition > parts but 
which cannot be subsumed in the normal manner. 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Qualification Threshold of 50 

1 1  

0 50000 100000 150000 200000 25000C 

ExploitTrials 

- Accuracy - - - -Sensitivity -Specificity 

Fig. 18. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Accurate(,~o.l,+50) "focal rule" identification approach 
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Fig. 19. Classification Accuracy for XCSR without Action Set Subsumption 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate ofO.1 and Qualification Threshold of50 
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Fig. 20. Learning Speed and System Error for mXCSR without Action Set Sub- 
sumption using the Acc~rate(,,~.~,~,~o) "focal rule" identification approach 
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Fig. 21. Learning Speed and System Error for XCSR without Action Set Subsump- 
tion 

7 Self-Adaptive Memetic Learning 

Self-adaptation was suggested as beneficial for Genetic Algorithms in [I] where 
the author investigated the use of a technique for adapting the GA's mutation 
rate in a time-dependant and decentralised way. One advantage of using this 
technique is that the external global rate becomes an internal time-dependant 
rate, that is, there is a reduction in the number of parameters that require 
careful, possibly problem-dependant, setting by the user. Given this study, the 
investigation of a self-adaptive learning mechanism presented here focuses on 
the benefits of using this technique to adjust the Widrow-Hoff learning rate 
used within the memetic learning component of the new system. It is hoped 
that providing the classifier system with this capability will allow positive 
selective pressure toward a learning rate that is in proportion to the degree 
of solution convergence aiding both learning speed and solution quality in the 
process. 

The self-adaptation is implemented by adding an extra real-coded gene to 
each rule in the population of the classifier system representing that partic- 
ular rule's Widrow-Hoff learning rate. The approach used is similar to that 
presented in [I] except that the gene is affected by the mutation operator 
in the same way as the other genes, plus it is not included in the Widrow- 
Hoff update. Learning rates are initially assigned a random value in the range 
[O.O, 1.01. 
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This section has been divided into two subsections, that is, results for the 
two-dimensional and six-dimensional test environments, respectively. 

7.1 Two-dimensional Test Environment 

The results shown in Sect. 5 suggest that, under certain circumstances, the 
Acc~rate(,,~,~) "focal rule7' identification approach provides the best level of 
performance and as such it has been used for the following set of experiments. 
In particular, four self-adaptive versions of the system (with and without 
Action Set Subsumption and Simplified Learning Scheme) are compared with 
the same non-adaptive versions (77 fixed a t  0.1). 

Table 5. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Two-dimensional Test Environment 

With AS-Sub Without AS-Sub 

Table 5 shows a clear degradation in performance, of around 16%, for 
the self-adaptive versions when Action Set Subsumption is turned on. In fact, 
this difference is statistically significant at  the level of greater than 99.9%. 
However, the table also shows that when Action Set Subsumption is turned 
off there is an improvement of between 0.7% and 2.8% for the self-adaptive 
versions of the system. This difference is statistically significant at  the level 
of greater than 95%. Figures 22 and 23 shows a comparison of performance 
between self-adaptive and non-adaptive versions of the system where Action 
Set Subsumption is turned off and the Simplified Learning Scheme is not used. 
This comparison provides some evidence of the degree of convergence shown 
by both versions of the system and, in particular, how that level is greater 
in the self-adaptive version. Another apparent advantage of using the self- 
adaptive technique is an increase in generalisation as indicated by fall in % 
Macro-Rules during the experiment as seen in Figs. 24 and 25. 

Finally, Fig. 26 shows the average learning rate for all four self-adaptive 
versions of the system, that is, with and without both Action Set Subsumption 
and Simplified Learning Scheme. This figure clearly shows that average learn- 
ing rates are very noisy when Action Set Subsumption is turned on, but that 
the average learning rates for the other two systems have much in common 
with both the falling % Macro-Rules and rising degree of convergence, that 
is, positive selective pressure toward lower learning rates for systems without 
Action Set Subsumption exists. 
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Using Accurate "Focal Rule" Identification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 
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Fig. 22. Classification Accuracy for mXCSR without Action Set Subsumption us- 
ing the Accurate "focal rule" identification approach with Self-Adaptive Memetic 
Learning 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Qualification Threshold of 20 
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Fig. 23. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Acc~rate(,,~.~) "focal rule" identification approach 
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Using Accurate "Focal Rule" ldentification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 
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Fig. 24. Learning Speed and System Error for mXCSR without Action Set Sub- 
sumption using the Accurate "focal rule" identification approach with Self-Adaptive 
Memetic Learning 

Using Accurate "Focal Rule" ldentification Approach, 
Learning Rate ofO.1 and Qualification Threshold of20 

I -Learning Speed -System Error - '10 Macro-Rules 1 

Fig. 25. Learning Speed and System Error for mXCSR without Action Set Sub- 
sumption using the Acc~ra te ( , ,~ .~~  "focal rule" identification approach 
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Using Accurate "Focal Rule" Identification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 

Fig. 26. Self-Adaptive Learning Rates for mXCSR with and without Action Set 
Subsumption and Simplified Learning Scheme using the Accurate "focal rule" iden- 
tification approach 

7.2 Six-dimensional Test Environment 

Although results from using the Acc~rate(,,~.~) "focal rule" identification ap- 
proach in the six-dimensional test environment were less clear than was the 
case in the two-dimensional environment, this identification approach is used 
throughout this subsection. It  is hoped that using this approach together with 
the use of two different update qualification values, J = 20 and J = 50, will 
provide a consistent picture of the effectiveness of the self-adaptive approach. 
In this subsection, eight self-adaptive versions of the system (with and with- 
out Action Set Subsumption and Simplified Learning Scheme for two different 
update qualification values) are compared with the same non-adaptive ver- 
sions. 

Table 6 presents results for both update qualification values. It  is clear 
from the results that improvements in performance have been made for all 
but two of the self-adaptive versions of the system. In fact, the improvements 
shown for three of the four systems using J = 20 are statistically significant 
at  the level of greater than 95% and, in particular, a t  a level greater than 
97.5% for the two systems using the Simplified Learning Scheme. Although 
the other four systems using J = 50 do not show significant improvements, 
they do provide evidence of the robustness of the self-adaptive technique, that 
is, there is no significant degradation in performance even when changes to 
other sensitive parameters (such as J) are made. 
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Table 6. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Six-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

Figures 27 and 28 show a comparison of performance between self-adaptive 
and non-adaptive versions of the system ([ = 20) where Action Set Subsump- 
tion is turned on and the Simplified Learning Scheme is not used. The in- 
crease in generalisation as well as in the degree of convergence seen in the 
two-dimensional test environment is also evident here - although the mag- 
nitudes of both are reduced. It is also clear from Figs. 29 and 30 that there 
is some evidence of a speed-up in learning when using the self-adaptive ver- 
sion of the system, where the adaptive system reaches an accuracy of 0.8 
at  around 20000 exploit trials earlier than the non-adaptive version of the 
system. Results for the self-adaptive version of the system using an update 
qualification value of 50 (not shown) do not indicate any learning speed-up 
nor do they show an increase in generalisation, although there is evidence of 
a greater degree of convergence during the last 20000-30000 exploit trials of 
the experimental run. 

Figure 31 shows the average learning rate for four self-adaptive ([ = 20) 
versions of the system, that is, with and without both Action Set Subsumption 
and Simplified Learning Scheme. This figure clearly shows a positive selective 
pressure for lower average learning rates after an initial period of around 50000 
exploit trials. The initial period of static average learning rate is linked to the 
effects of the covering operator and the way it initialises the learning rates of 
newly generated rules uniformly in the interval [0.0,1.0] leading to an average 
learning rate of 0.5. 

Figure 32 shows the average learning rate for four self-adaptive ([ = 50) 
versions of the system. This figure shows that there is little positive selective 
pressure for lower average learning rates. The reason for this lack of selective 
pressure may be a result of the increasing the delay before the memetic learn- 
ing is applied thereby providing evolution with less opportunity to test a rule's 
learning rate. A simple experiment was performed to see if there was selective 
pressure toward a higher average learning rate, that is, initial learning rates 
were restricted to the interval [0.0,0.2]. Results (not shown) indicate that 
there is little selective pressure even when the interval is restricted providing 
some evidence to support the hypothesis given above. 
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Using Accurate "Focal Rule" ldentification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of20 
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Fig. 27. Classification Accuracy for mXCSR with Action Set Subsumption and with- 
out Simplified Learning Scheme using the Accurate(~,zn~ "focal rule" identification ,, --, 
approach with self-~daptive ~ e m e t c  Learning 
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Fig. 28. Classification Accuracy for mXCSR with Action Set Subsumption and 
without Simplified Learning Scheme using the A c c u ~ t e ( ~ , ~ , ~ , ~ , ~ ~ )  "focal rule" iden- 
tification approach 
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Using Accurate "Focal Rule" ldentification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 
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Fig. 29. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and without Simplified Learning Scheme using the Accu~-ate(~,~~) LLfocal rule'' 
identification approach with Self-Adaptive Memetic Learning 

Using Accurate "Focal Rule" ldentification Approach, 
Learning Rate ofO.1 and Qualification Threshold of20 
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Fig. 30. Learning Speed and System Error for mXCSR with Action Set Subsumption 
and without Simplified Learning Scheme using the A c c ~ r a t e ( ~ = ~ . ~ , ~ = 2 ~ )  "focal rule" 
identification approach 
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Using Accurate "Focal Rulen Identification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 
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Fig. 31. Self-Adaptive Learning Rates for mXCSR with and without Action Set 
Subsumption and Simplified Learning Scheme using the A c c ~ r a t e ( ~ = ~ ~ )  "focal rule" 
identification approach 
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8 Decomposing the Six-dimensional Test Environment 

The six-dimensional test environment used in this study is defined by the 
additive effect of three different two-dimensional planes, shown in Figs. 11- 
13, allowing detailed analysis of experimental results that would otherwise be 
non-trivial for a non-decomposable six-dimensional function. By combining 
local regions of high performance, as shown in Table 2, an environment of 
eighteen unique regions of globally high performance is defined. 

Table 7 shows the classification accuracy of twelve different versions of the 
system (J = 20) that include those systems with and without memetic or self- 
adaptive memetic learning, termed Memetic, Non-Memetic and Self-Adaptive 
Memetic (or SA-Memetic) accordingly. Comparisons between these systems 
show that for all parameter settings the SA-Memetic version is statistically 
equivalent to the strongest of the Non-Memetic and Memetic versions of the 
system and is significantly (> 95%) better in 1 or 2 regions. 

It is clear from the results that the performance of the system in each of the 
eighteen regions is at  least 60% (except for 5 regions in Table 7) and for many 
regions performance is greater than 70%. Figure 33 represents an overview of 
Table 7 with respect to the number of regions falling into the performance 
intervals [0%, 70%] and [70%, loo%] for the Memetic, Non-Memetic and SA- 
Memetic versions of the system. It is clear from Fig. 33 that in terms of 
performance across the regions that the SA-Memetic version outperforms the 
other two versions and it is also clear that the number of regions above 70% 
performance rises from Non-Memetic through Memetic to SA-Memetic. 

9 Conclusion 

The motivation for this work was to investigate the effects of applying a 
memetic learning paradigm to the normal operations of the XCSR classifier 
system. Previous work showed how the classifier system is able to describe 
high performance regions in a design-oriented environment. It was hoped that 
the new memetic learning method would provide results that were at least 
comparable with the original system. In fact, the new method showed clear 
improvements for some parameter combinations in the two test environments 
studied here. 

Results for the two-dimensional test environment show a clear improve- 
ment in performance for those parameter combinations that have Action Set 
Subsumption turned on and the system is still performing at a significantly 
higher level when Action Set Subsumption is turned off. Results for this en- 
vironment highlighted a clear statistically significant improvement (> 99%) 
in performance for Ac~urate(,,~.~) over the other two approaches when Ac- 
tion Set Subsumption is turned on and only slightly weaker performance when 
turned off. The Ac~urate(,=~.~) "focal rule" identification approach appears 
to be the best one for this test environment. However, the Simplified Learning 
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Performance Interval Counts for 
Different Versions of the System 

below 70% above 70% 

Performance 

Fig. 33. Performance Interval Counts for Memetic, Non-Memetic and SA-Memetic 
Systems ( E  = 20) 

Scheme appeared to degrade performance when Action Set Subsumption was 
used as well as failing to provide any increases in learning speed. 

For the more complex six-dimensional test environment, the memetic 
learning appears to provide little or no advantage to performance over the 
non-memetic system except for a slight degradation when Action Set Sub- 
sumption is turned off. However, the memetic learning approach does provide 
a clear learning speed-up of some 25000-30000 exploit trials over non-memetic 
learning when the Simplified Learning Scheme is used. It  is clear that any po- 
tential increase in learning speed must be balanced with a potential decrease 
in performance for a given problem. 

Another important result was seen when the update qualification value, J, 
was allowed to vary between 20 and 200 in experiments on the six-dimensional 
test environment. Results showed that a small, but statistically significant 
(> 95%) improvement can be made in performance when J = 50. In fact, 
differences in performance for those systems with Action Set Subsumption 
turned off, discussed above, are mitigated by the alteration of the threshold 
6 to 50. 

The study also considered the use of a self-adaptive learning mechanism 
for adjusting the Widrow-Hoff learning rate used in the memetic learning. 
The mechanism was applied to both test environments. Results for the two- 
dimensional test environment showed that although performance varies (de- 
pending on Action Set Subsumption) there is clear evidence of increased gen- 
eralisation as well as solution convergence when the self-adaptive technique is 
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used. Results for the six-dimensional test environment also showed evidence 
of increased generalisation and solution convergence in addition to a learning 
speed-up of some 20000 exploit trials. One disadvantage of using the memetic 
learning approach is an increase in rule-set size. This is clearly at  odds with 
the requirement for a compact rule-set. However, using the self-adaptive mech- 
anism seems to reverse the bloating effects of the standard memetic learning 
approach on rule-set size for both test environments. 

Finally, experimental results for the decomposable six-dimensional test 
function were analysed region by region. Three different versions of the 
classifier system, Non-Memetic, Memetic and Self-Adaptive Memetic, were 
compared clearly showing that for all parameter settings the Self-Adaptive 
Memetic version is statistically equivalent to the strongest of the Non-Memetic 
and Memetic versions and is significantly (> 95%) better in 1 or 2 regions. 
It  was also shown that the Self-Adaptive Memetic version outperformed the 
other two by simply counting the number of regions for which each version 
achieved 70% or greater performance. 

10 Mathematical Description of Test Environments 

This section defines several related equations that can be used to define the 
two and six dimensional test environments used in this study. In order to es- 
timate the fitness of a given sample point, a vector of real values is needed, 
where each value is within some pre-defined interval. For the two dimensional 
test environment, XI,  x2 E [--6.0,6.0], and for the six dimensional test envi- 
ronment, a .  . . f E [O.O, 1.01. 

10.1 Two-dimensional Test Environment 

The two-dimensional test environment is the multi-modal modified Himmel- 
blau function defined by the equation: 

10.2 Six-dimensional Test Environment 

The six-dimensional test environment is defined by the additive effect of three 
different two-dimensional planes. Each plane has an associated "local" fitness 
value and the "global" fitness value of the six-dimensional function is defined 
by adding each of these "local" fitness values together: 
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Plane 1 

Plane 2 

~6 = max 
{Z4 -0: 

if (C < 0.5) AND (d > 0.5) 

otherwise 

if ( C  > 0.5) AND (d < 0.5) 

otherwise 

0.0 if (C < 0.5) AND (d < 0.5) { 0.35 
(0.75-c)' + (0.75-d)' + 

otherwise 
0.09 0.09 
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0.0 if ( C  > 0.5) AND (d  > 0.5) 
210 = 0.35 

( 0 . 2 5 - ~ ) ~  (0 25-d)2  
otherwise 

0.09 +*+' 

Plane 3 

21 = min 0.5 

1.8e2 + 3 f 2  

0.0 if ( e  > 0.6) O R  (f > 0.5) 

zl otherwise 

0.625 f if ( f  < 0.8) 

0.5 if ( f  2 0.8) AND ( f  < 0.85) 

if ( f  2 0.85) 

z3 if ( e  > 0.6) 

0.0 otherwise 

25 = min 
{o: 

26 = min 
0.5 

1.5(0.6 - e )  x 2.5(f  - 0.5) 

z7 = { 26 if ( e  5 0.6) AND ( f  > 0.5) 

0.0 otherwise 
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Summary. In this paper we present a new optimization algorithm based on the 
collective behavior of a set of agents which encode the problem to be solved. We 
compare its performance with a standard genetic algorithm on a classical difficult 
problem, the k-coloring of a graph. The results show that this new algorithm is faster 
and outperforms a standard genetic algorithm for a range of random graphs with 
different sizes and densities. Moreover, it might be easily adapted to solve other NP- 
complete problems providing a new efficient tool to deal with difficult combinatorial 
problems. 

1 Introduction 

An adaptive complex system consists of a large number of interacting units 
where different processes of learning, change and selection take place; these 
processes are often driven by information obtained from the environment. 
In some way, and by mechanisms which we are just starting to understand, 
these systems discriminate relevant details from random noise and use this 
information in a collective way. Thus, in an adaptive complex system the 
global behavior does not depend only on the individual features of its parts, 
but also on its structure and on the different sort of relations which can be 
established between them and the environment 

A swarm of bees, an ant colony, companies which supply a big city (wa- 
ter, electricity, telephone, etc.), are all complex systems where global pat- 
terns emerge from the interaction of a large number of similar elements. Fur- 
thermore, this global behavior allows the different systems to attain certain 
achievements without the presence of an administrative hierarchy or a central 
control mechanism. 

Research supported by the Ministry of Science and Technology, Spain, and the 
European Regional Development Fund (ERDF) under projects TIC2001-2171 and 
TIC2002-00155. 
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Very often the macroscopic behavior of these adaptive complex systems 
is studied by introducing equations to describe collectively the microscopic 
components according to continuous density distributions. However, it has 
turned out that the opposite is true, the consideration of the individual parts of 
the system in a discrete way leads to the right explanation of the macroscopic 
features. This is precisely the approach that Shnerb, Louzon, Bettelheim and 
Solomon used in a simple model to prove that while the continuum equations 
would predict extinction of a certain population, the microscopic approach 
explains the existence of localized subpopulations with collective adaptive 
properties that allow their survival and further development. Moreover, they 
show this happens when the relations among the parts occur essentially in 
two dimensions. 

Although we believe that some of these concepts are implicit in certain 
optimization algorithms, we decided to translate it explicitly into a combina- 
torial optimization algorithm and test if the "prevalence of life" found by the 
authors of [ll] helps to drive the algorithm towards a quasi-optimal solution 
of the problem to solve. We call the new method angels & mortals, like the 
game or computer simulation that they use to test the results in their paper. 
We give a detailed description in Section 3. 

The problem which we have considered to test our implementation is the 
of a graph. This is known to be an NP-complete optimization problem [9] and 
finding an optimal solution is a computationally hard task, but there exist 
efficient algorithms to find quasi-optimal solutions as, for example, simulated 
annealing, genetic algorithms or ant colony based systems. All these general 
combinatorial optimization methods are used to obtain an acceptable answer 
in a reasonable time, see [I, 2, 6, 81. 

In Section 2 we give a short introduction to the terminology used and 
a description of the genetic algorithm approach to the problem considered. 
In Section 3 we describe the motivation and general aspects of our imple- 
mentation of the angels & mortals algorithm. In Section 4 , we present the 
details of the implementations and the results obtained and in Section 5 we 
discuss briefly the interest of this new combinatorial optimization method and 
a possible extension of the algorithm to other problems. 

2 Graph coloring and combinatorial optimization 
methods 

A proper coloring of a graph G = (V, E) is a function from the vertices of the 
graph to a set C of colors such that any two adjacent vertices have different 
colors. If ICI = k, we say that G is k-colored. The minimum possible number 
of colors for which a proper coloring of G exists is called the chromatic number 
x(G) of G. The problem of finding the chromatic number and a proper coloring 
of a graph is of great interest for its widespread applications in areas such as 
scheduling and timetabling and particularly in frequency assignment in radio 
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networks [2, 3, 121. As many other problems in graph theory, it is an NP- 
complete problem [9]. Efficient algorithms for this problem are known only 
for particular graphs, e.g. triangle-free graphs with maximum degree three 
PI. 

When exact methods are not possible, sometimes it is sufficient to obtain 
an approximate solution with a fast and easy to implement method. This 
is the case of simulated annealing, genetic algorithms, neural networks, ant 
colony based systems, etc. 

To implement any of these optimization methods we need a way to encode 
the problem which has to be solved, and a system to quantify the "goodness" 
of a solution. In the case of k-coloring, a possible solution may be encoded 
using a list such that each position is associated to a vertex of the graph and 
its value to a color. The cost function simply counts the number of times that 
an edge joins vertices with the same color. 

We will compare our technique, angels & mortals, with a genetic algorithm 
because the latter is the method that, although different in concept, has more 
aspects in common. Both algorithms, for example, consider a set of individuals 
or population which evolves over time. However in our method the physical 
distance between individuals, and their relation with the environment plays 
a role which does not exist in a standard genetic algorithm. We would like to 
emphasize that, for graph coloring problems, other methods, like simulated 
annealing or ant colony systems, are more efficient than this genetic algorithm 
or the angels & mortals algorithm introduced here. The aim of our paper is to 
fully describe this new optimization technique and compare it with equivalent 
methods. Further tests with standard benchmarks will be needed to assess 
if angels & mortals performs better than other algorithms for some specific 
combinatorial optimization problems. 

In a standard genetic algorithm, see [7, 101, the starting point is a col- 
lection of possible solutions generated at  random, known as population. A 
suitable encoding of each solution in the population is used to compute its 
fitness through a cost function. At each iteration a new population, or gener- 
ation, is obtained by mating the best of the old solutions with one another. 
To create the next generation, new solutions are formed through selection, 
crossover and mutation. In our implementation we rank the individuals ac- 
cording to their fitness and select the best to form a parent pool used to 
obtain a new generation. The solutions that will be considered for crossover 
are probabilistically selected according to the fitness values from this parent 
pool. Crossover creates two new child solutions from two solutions sampled 
from this pool. In this way, fitter parents have a better chance of producing 
children. The process is repeated until a new population with the same size 
as the original is generated. Children solutions are obtained by interchang- 
ing random parts of their parents (i.e. fragments of the corresponding lists). 
Some randomness is also introduced through the mechanism called mutation 
to ensure that the algorithms avoid getting stuck at  local minima. Mutation 
changes selected parts of a solution (for example a value in the list is replaced 
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by a new one). The crossover and mutation operations are done with fixed 
probabilities, thus ensuring that some solutions from the current generation 
will be kept in the new generation. 

Once a new generation is created, the fitness of all solutions is evaluated 
and the best solution is recorded. The process is repeated until either the 
results stabilize or the optimal solution, when it can be identified, is reached. 

Therefore the main aspects to decide in the genetic algorithm are the rep- 
resentation of the solutions, the cost function and the crossover and mutation 
operators. Important parameters are the population size, the size of the parent 
pool, and the probabilities of crossover and mutation. 

3 The angels & mortals algorithm 

The aim of the algorithm is to associate possible solutions for a given problem 
to the individuals of an artificial world that evolves according to certain rules. 
Like in other algorithms a fitness is associated to the quality of the solution 
but in this algorithm the fitness is also tied to the lifespan of the evolving 
individual. 

We have chosen the angels t3 mortals model of Shnerb, Louzon, Bettel- 
heim and Solomon [ll] as their research shows that it is a very simple that 
explains the behavior of complex ecological systems. They distribute randomly 
a certain number of mortals over a torus grid. These individual have a given 
lifespan and at  each clock tick it is reduced by one unit. On the other hand, 
there are also a few eternal agents, or angels, scattered over the same board. 
The mortals and angels move randomly from cell to cell of the grid. There 
is one simple rule: when a mortal meets an angel the mortal is cloned to 
a near place. They wondered what will be the evolution of this world, and 
the interesting result is that this depends on the way of looking at  it. Given 
average population densities of angels and mortals, it is easy to write an equa- 
tion that predicts the average death and birth rates. Under some conditions 
this continuum approach predicts the extinction of the mortals. However a 
computer exact simulation at  the individual level leads to a totally different 
outcome. Although there is an initial reduction of the mortals population, 
later this recovers. This contradiction between the continuum and discrete 
approaches is explained by the adaptive behavior of the mortals. When some 
of them meet an angel new births take place in its neighborhood and the over- 
all mortal population increases a t  these sites. The result is clouds of mortals 
moving around following their angels. Clouds are unstable as they grow, split 
up and join again, but because of this apparently adaptive behavior, the pop- 
ulation of mortals survive. However the individual mortals have no explicit 
rules other than they duplicate in front of an angel. In that aspect they differ 
from standard adaptive agents with complex rules embedded in them. Here a 
nonadaptive individual produces an adaptive global world. 
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Fig. 1. A representation of the world with angels and mortals. After some genera- 
tions, mortals form clouds that follow the angels. 

In our implementation we construct first a toroidal world of n x m cells 
where each cell may be empty or contain an angel or a mortal. A certain 
number of angels and a larger number of mortals are assigned at random to 
different cells of this world. We then read the adjacencies of the graph to be 
colored and the number of colors that the algorithm will consider. The next 
step consists of generating as many random solutions (lists of colors, such that 
each list position is associated to a vertex of the graph) as mortals are in the 
world. The fitness of each solution is calculated (number of edges which join 
vertices with different colors) and, according to this fitness a is assigned to 
the corresponding mortal. A better fitness translates into a longer lifespan. 
A generation consists of moving, if possible, to one of eight near cells each 
of the angels and mortals, clone a mortal if it happens to be near an angel, 
decrease one unit the life counter of all mortals and eliminate those mortals 
that reach zero life and finally mutate all mortals. The reaper also eliminates 
those mortals that have 40 percent or more of the associated edges joining 
vertices with the same color. The process is repeated until a solution to the 
problem is found or a predefined maximum number of generations has elapsed. 
We discuss now briefly the main operators of this algorithm. 

Mutation. It is exactly the same operator as in a GA, but while the prob- 
ability of mutation for a GA is small, in the angels & mortals algorithm there 
is always mutation. Mutation considers a list position at random and replaces 
the current color by the best possible color, it this exists. If that is not pos- 
sible, then no change is performed. It would seem that this sort of mutation, 
the only source of change in the system, would drive the fitness to a local min- 
imum, but the presence of angels and the cloning process produces enough 
diversity to avoid minima as different clones of the same mortal can evolve 
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Angels &Mortals Algorithm(): 
Begin 
Set MazGenerations ; 
Initialize an n x m  world with A angels and M mortals.; 
Associate a random solution to each mortal; 
Assign the lifespan of each mortal accordingly to their solution fitness; 
Repeat Until ( currentGeneration < MaxGenerations ) Do 
Look for the best mortal; 
If (this mortal solution is the global optimum) Then 
Report solution and exit algorithm; 

endIf 
Decrease life counters; 
Reap mortals; 
Move randomly all angesl and mortals to a neighbor cell; 
Clone mortals near angels ; 
Mutate mortals; 
Recalculate fitnesses and assign new lifespans; 
Increment currentGeneration; 

endDo 
End. 

Fig. 2. A basic version of the Angles & Mortals Algorithm. 

very differently and explore other paths of the state space. In the last section 
we will discuss other variations of the mutation operator. 

Cloning. When a mortal encounters an angel, the cloning process produces 
a new mortal and puts it in the first available cell starting by the cell just up 
and checking clockwise the eight cells around it. This simple rule helps to the 
survival of the best individuals. Because good individuals have a longer life 
they have also more chances to meet an angel. We have also tested a variation 
in which the encounter of a mortal with an angel does produces a clone but 
increases its lifespan. 

Reaper. After moving a mortal, cloning it -if he is near an angel- and 
mutating it, its life is decreased by one unit. When it reaches 0, the individual 
is removed from the world. We see that the association of fitness to lifespan is 
crucial for the right convergence of the algorithm and is also directly related 
with the world size. If life is too long the world could become overcrowded. Set 
too short a life and the mortal population will disappear. We have introduced 
also a reaper mechanism that kills an individual which have more than 40 
percent of its edges joining vertices with the same color. The reaper helps 
to improve the performance of the algorithm as there are less individuals to 
compute and it creates empty cells for clones. 

In the next section we will give the values considered for our implementa- 
tion 
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4 Results 

For our study, a large number of instances of the problem to be solved have 
been generated to test and compare the performances of a standard genetic 
algorithm and the new angels & mortals algorithm. We use random graphs 
of orders ranging from 30 to 200 vertices and densities of 5%, 15% and 20% 
(the density of a graph is the ratio between the number of edges that actually 
has the graph and the maximum number that may contain). For each case 20 
simulation runs were performed. 

All simulations were programmed in C (less than 500 lines) and executed 
on a PC (AMD K7 Athlon at  1411 MHz) under Windows Me. 

Possible solutions have been coded as lists where each position represents 
a vertex of the graph and has values 0 to k - 1 according to the color assigned 
to it. The cost function calculates the number of edges that do not allow in 
the associated graph a proper coloring and substracts this number from the 
size (total number of edges) of the graph. 

The main parameters of the genetic algorithms are: Population= 200, par- 
ent  pool size= 150, crossing probability= 0.9 and mutation probability= 0.001. 

We have tested two different versions of the angels & mortals algorithm. 
A&Ml is a implementation of the Shnerb, Louzon, Bettelheim and Solomon 

concept, see [ll]. It starts with a toroidal 20 x 20 world with 25 angels and 
5 mortals. The maximum number of mortals allowed is 200. When this value 
is reached, the cloning process does not act. The lifespan of a mortal is 

loo [total n S z S % f  edges 1. After a mutation the life is modified according 

to the change in the fitness. 
A&M2 is a simple variation of the algorithm such that initially the popula- 

tion of mortals is set to  200 and there is no cloning. When a mortal encounters 
an angel, its lifespan is extended by a fixed amount (6 units). 

Table 1 shows the results corresponding to graphs of orders 30,50,70 100 
and 200 with edge densities of 5%, 15% and 25. 

We have performed a wide range of experiments testing different world 
sizes, mutation operators, parameter values etc. In most cases the algorithm 
converges similarly or better than the genetic algorithm. In that sense, Table 1 
does not represent runs corresponding to the best possible performance of the 
algorithms but just a complete set of experiments. Furthermore, and as it has 
been reported in Section 2, there are other methods more suitable for graph 
coloring problems. We have implemented, for example, a simple version of a 
algorithm (around 100 lines of code in C language) which finds solutions of 
a similar quality four to five times faster. In this paper, however, we decided 
to compare angels & mortals with a technique computationally equivalent. 
More tests considering other combinatorial optimization problems will help 
to determine the exact role that our new algorithm can play. 



404 Francesc Comellas and Ruben Gallegos 

Colors Time # SUC. 

Table 1. k-coloring problem for graphs of orders 30,50,70 100 and 200 with edge 
densities of 5%, 15% and 25 %. Comparative values between angels & mortals algo- 
rithms and a standard genetic algorithm. (A&Ml: angels & mortals with cloning; 
A&M2: angels & mortals with life extension; GA: genetic algorithm, see text for 
details). 

Colors Time # SUC. 

Vert 

30 

50 

70 

100 

200 

5 Discussion. 

The model presented here opens a new range of optimization algorithms based 
on artificial life and other adaptive systems. The main idea is to associate 
possible solutions of a problem to individuals of a complex system and let it 
evolve. 

The algorithm designed is very robust. We have tested worlds with sizes 
from 15 x 15 to 40 x 40, number of angels from 5 to 30, maximum number 
generations from 10.000 to 40.000, and a mutation mechanism accepting a 
decrease in the fitness (similarly to simulated annealing). In all cases the 
algorithm finds a solution of quality similar to a standard genetic algorithm. 

Edges 

22 

61 

120 

247 

995 

Colors 

A&Ml A&M2 GA 
2 2 3 

3 3 3 

3 3 4 

4 4 4 

9 7 8 

Time 

A&Ml A&M2 GA 
0.01 0.06 0.01 

0.09 0.03 0.08 

0.19 0.13 0.14 

1.35 0.25 1.14 

2.95 0.80 2.15 

# SUC. 

A&Ml A&M2 GA 

18 19 20 

20 14 11 

3 10 16 

2 13 1 

3 5 1 
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We have restricted ourselves to  a very simple model for these first tests and 
the results presented in the former section are encouraging. 

Finally, the angels and mortals might be very easily adapted to  solve other 
problems by considering the corresponding cost function and mutation mech- 
anism. As a general conclusion, the results show that the algorithm performs 
better than a standard genetic algorithm even without fine tuning it. It  is 
simple and easy to implement and can suggest other algorithms based on ar- 
tificial life systems for which a problem is coded into an individual and the 
fitness of the corresponding solution is associated to  a relevant characteristic 
of this individual, e.g. the lifespan. Moreover, the angels and mortals algo- 
rithm presented here, besides finding better solutions, runs much faster than 
a standard genetic algorithm and it might be also implemented on a parallel 
computer, thus improving further its performance. 
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