STUDIES IN FUZZINESS
AND SOFT COMPUTING

William E. Hart
N. Krasnogor - J. E. Smith
Editors

Recent Advances
in Memetic Algorithms

@ Springer



W. E. Hart, N. Krasnogor, J. E. Smith (Eds.)

Recent Advances in Memetic Algorithms



Studies in Fuzziness and Soft Computing, Volume 166

Editor-in-chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springeronline.com

Vol. 150. L. Bull (Ed.)

Applications of Learning Classifier Systems,
2004

ISBN 3-540-21109-8

Vol. 151. T. Kowalczyk, E. Pleszczyfiska,
F. Ruland (Eds.)

Grade Models and Methods for Data
Analysis, 2004

ISBN 3-540-21120-9

Vol. 152. J. Rajapakse, L. Wang (Eds.)
Neural Information Processing: Research
and Development, 2004

ISBN 3-540-21123-3

Vol. 153. J. Fulcher, L.C. Jain (Eds.)
Applied Intelligent Systems, 2004
ISBN 3-540-21153-5

Vol. 154. B. Liu
Uncertainty Theory, 2004
ISBN 3-540-21333-3

Vol. 155. G. Resconi, J.L. Jain
Intelligent Agents, 2004
ISBN 3-540-22003-8

Vol. 156. R. Tadeusiewicz, M.R. Ogiela
Medical Image Understanding Technology,
2004

ISBN 3-540-21985-4

Vol. 157. R.A. Aliev, F. Fazlollahi, R.R. Aliev
Soft Computing and its Applications in
Business and Economics, 2004

ISBN 3-540-22138-7

Vol. 158. K.K. Dompere

Cost-Benefit Analysis and the Theory
of Fuzzy Decisions - Identification and
Measurement Theory, 2004

ISBN 3-540-22154-9

Vol. 159, E. Damiani, L.C. Jain, M. Madravia
Soft Computing in Software Engineering,
2004

ISBN 3-540-22030-5

Vol. 160. K.K. Dompere

Cost-Benefit Analysis and the Theory

of Fuzzy Decisions — Fuzzy Value Theory,
2004

ISBN 3-540-22161-1

Vol. 161. N. Nedjah, L. de Macedo Mourelle
(Eds.)

Evolvable Machines, 2005

ISBN 3-540-22905-1

Vol. 162. N. Ichalkaranje, R. Khosla, L.C.
Jain

Design of Intelligent Multi-Agent Systems,
2005

ISBN 3-540-22913-2

Vol. 163. A. Ghosh, L.C. Jain (Eds.)
Evolutionary Computation in Data Mining,
2005

ISBN 3-540-22370-3

Vol. 164. M. Nikravesh, L.A. Zadeh,

J. Kacprzyk (Eds.)

Soft Computing for Information Prodessing
and Analysis, 2005

ISBN 3-540-22930-2

Vol. 165. A.F. Rocha, E. Massad,

A. Pereira Jr.

The Brain: From Fuzzy Arithmetic to
Quantum Computing, 2005

ISBN 3-540-21858-0



William E. Hart
N. Krasnogor
J. E. Smith (Eds.)

Recent Advances in
Memetic Algorithms

@_ Springer



William E. Hart

Sandia National Laboratories
Algorithms and

Discrete Mathematics Department
87185-1110 Albuquerque, NM
USA

E-mail: wehart@sandia.gov

N. Krasnogor

Automatic Scheduling, Optimisation
and Planning Group

School of Computer Science and IT
University of Nottingham

Jubilee Campus

Wollaton Road

NG8 1BB Nottingham

United Kingdom

E-mail: nxk@cs.nott.ac.uk

ISSN 1434-9922

Dr.]. E. Smith

Faculty of Computing, Engineering
and Mathematical Sciences
University of the West of England
Coldharbour Lane

BS16 1QY Bristol

United Kingdom

ISBN 3-540-22904-3 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2004111139

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable to prosecution under

the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005

Printed in Germany

The use of general descriptive names, registered names trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from

the relevant protective laws and regulations and therefore free for general use.

Typesetting: data delivered by editors

Cover design: E. Kirchner, Springer-Verlag, Heidelberg

Printed on acid free paper

62/3020/M-543210



Preface

Memetic algorithms are evolutionary algorithms that apply a local search pro-
cess to refine solutions to hard problems. As such, Memetic algorithms are a
particular class of global-local search hybrids. In these algorithms the global
character of the search is given by the evolutionary nature of the approach
while the local search aspect is usually performed by means of construc-
tive methods, intelligent local search heuristics or other search techniques.
Memetic algorithms have been successfully applied to hundreds of real-world
problems and are the subject of intense scientific research both in academia
and industry. The implementation of ever more sophisticated MAs has been
made possible thanks to advances in computing capabilities, moreover, their
use has spread to domains that range from the construction of optimal uni-
versity exam timetables, to the prediction of protein structures and the op-
timal design of space-craft trajectories. The importance of Memetic Algo-
rithms in both real-world applications and academic research has lead to the
establishment of the series of international workshops on Memetic algorithms
(WOMA)!. WOMA has served as a forum for the exchange of ideas and knowl-
edge on Memetic Algorithms and by the time of the writing of this preface
the fifth workshop on that series will take place in Birmingham, UK. As the
co-founders of the WOMA series we felt that it was necessary to fill the gap
that was present in the literature on metaheuristic optimisation in general and
evolutionary optimisation in particular given by the lack of a book dedicated
exclusively to Memetic Algorithms. The book that is in your hands represents
our first attempt to fill that gap.

Recent Advances in Memetic Evolutionary Algorithms is the first book
where Memetic Algorithms are the central topical matter. This book presents
the reader with a rich gallery of works where the state of the art on Memetic
Algorithms is presented. Each chapter was written by world experts on the
subject. Readers will have the unique opportunity to have a coherent, inte-

! See www.cs.nott.ac.uk/ nxk



VI Preface

grated view on both good practice examples and new trends in optimisation
technology based on these algorithms.

Researchers and postgraduate students in academia and research centers
who are interested in search and optimisation technologies, metaheuristics,
artificial intelligence, soft computing, combinatorial optimization, continuous
optimization, global and local search , planning and decision making problems
and strategies, operations research will find this book of enormous value. Simi-
larly, undergraduate students who want to complement existing textbooks on
artificial intelligence and modern heuristics will find a rich source of infor-
mation on this powerful technique. More generally speaking, this book could
be used to complement modules on evolutionary algorithms and metaheuris-
tic optimisation. Practitioners in industry, engineering and science who need
to know the state of the art on optimization techniques and managers and
decision-makers who need powerful tools and techniques to make informed
decisions within a variety of domains like scheduling, timetabling, VLSI de-
sign, fleet and vehicle routing, personnel rostering, drugs and molecular design
and optimization, bioinformatics, telecommunication networks optimization,
logistics, operations research, etc. will find this book a rich source of examples
and good practices.

The book is structured in four parts. The first part, Introduction to
Memetic Algorithms, contains an introductory chapter where MAs are briefly
introduced and the most important algorithmic desing issues that are specific
to these algorithms discussed. The chapter also sets the scene for the rest of the
book by defining the terminology that is to be encountered in later chapters.
This chapter also contains a discussion section where different hybridisation
schemes are discussed.

The second part of the book, Applications, contains seven application ori-
ented chapters. The first chapter in this section, by Katayama and Narihisa,
applies a MA to the maximum diversity problem. The authors’ MA is a com-
bination of an evolutionary algorithm with both crossover and mutation , a
repair mechanism and local search. In this paper the solutions to very large
instances for this problem are reported for the first time. The chapter by
Pelta and Krasnogor, presents the results of using an innovative fuzzy logic
based local search framework (called FANS) in conjunction with Multimeme
algorithms with the aim of predicting the structure of proteins in a simpli-
fied lattice model. This application chapter introduces two innovations to the
Memetic Algorithm: the use of FANS as memes and the use of multiple memes
{(hence the name Multimeme) to make the search more robust. The following
chapter by Prins and Bouchenoua extends the vehicle routing problem and
the capacitated arc routing problem by a generalization called “Node, Edge
and Arc Routing Problem”. The authors present state of the art Memetic
algorithm for this more general routing problem. The fourth chapter in the
section explores a real world problem faced at a car manufacturing industry
(BMW). Kiiodler et.al. employ MAs for the solution of the optimal calibration
of automotive internal combustion engines. Next, Smith demonstrate how the



Preface VII

co-evolution of MAs can be successfully applied to a molecular design prob-
lem. He shows how the scalability of MAs is improved by the co-evolution of
the rules with which to perform local search. In the following chapter Yao and
coworkers employ sophisticated hybrid evolutionary algorithm to solve a hard
problem in Telecommunications. The Terminal Assignment Problem in com-
munication networks has very many practical applications. New algorithms
are proposed and benchmarked. In the last chapter of the applications section
Areibi describes a family of MAs that can be used to optimise the design of
VLSI circuits. Taken together, all these chapters represent a wide range of
applications and showcase the impact that Memetic algorithms have had in a
variety of engineering domains.

The third part of the book, Methodological Aspects of Memetic Algo-
rithms, includes six chapters that explore the principles behind Memetic Algo-
rithms (in some cases for specific applications). Krasnogor, in the first chapter
of the third section, explores two techniques that can be use to improve the
robustness of MAs, namely, the use of multiple local searchers and the avail-
ability of operators which (under certain circumstances) may accept moves
that deteriorates the current solution with the aim of escaping deceptive local
optima. The next chapter by Merz explores in detail the interplay between
MAs, greedy operators, K-opt type of local searchers and fitness landscapes. In
“Self-Assembling of Local Searchers in Memetic Algorithms” Krasnogor and
Gustafson argue the case of the simultaneous search for solutions and solvers
within MAs. They introduce the concept of Self-Assembling of local searchers
an exemplify their use in two hard problems. The chapter by Sinha et.al. in-
troduces a theoretical system-level framework for efficiently combining global
searchers such as genetic and evolutionary algorithms with domain specific
local searchers. In Burke and Landa Silva chapter the design principles that
must be considered when engineering MAs for scheduling and timetabling are
discussed in detail and an important review of literature is presented. The
last chapter of the methodological part of the book by Knowles and Corne
present an in-deep study of the role of Memetic Algorithms in Multi-objective
optimisation and the way in which MAs must be design in order to produce
good quality solutions for hard multi-objective problems. The chapter also
points to an extensive literature.

The fourth and last part of the book, Related Search Technologies, contains
two chapter. The first chapter by Wyatt and Bull employs an MA within
a Learning Classifier System framework use to learn the characteristics of
continuous-valued problem spaces. In the last chapter of the book, Comellas
and Gallegos introduce a new metaheuristic called “Angels & Mortals” and
exemplify its use on the K —coloring graph problem.

Albuquerque - United States , June 2004, Bill Hart
Nottingham - United Kingdom, June 2004, Nat Krasnogor
Bristol - United Kingdom, June 2004, Jim Smith



Contents

Part I Introduction to Memetic Algorithms

Memetic Evolutionary Algorithms
W.E. Hart, N. Krasnogor, JE. Smith .......... ... ... .............

Part IT Applications of Memetic Algorithms

An Evolutionary Approach for the Maximum Diversity
Problem
Kengo Katayama, Hiroyuki Narthisa ........ ... . . ... . . 0.,

Multimeme Algorithms Using Fuzzy Logic Based Memes For
Protein Structure Prediction
David A. Pelta, Natalio Krasnogor .............cciiiiiineneenn.

A Memetic Algorithm Solving the VRP, the CARP and
General Routing Problems with Nodes, Edges and Arcs
Christian Prins, Samir Bouchenoua . ......... ... ... ... ... o,

Using Memetic Algorithms for Optimal Calibration of
Automotive Internal Combustion Engines
Kosmas Knodler, Jan Poland, Peter Merz, Andreas Zell ..............

The Co-Evolution of Memetic Algorithms for Protein
Structure Prediction
J.E. Smith (University of the West of England) .. ....................

Hybrid Evolutionary Approaches to Terminal Assignment in
Comimunications Networks
X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz..............



X Contents

Effective Exploration & Exploitation of the Solution Space
via Memetic Algorithms for the Circuit Partition Problem
Shawki ATeibi .. .. e s

Part III Methodological Aspects of Memetic Algorithms

Towards Robust Memetic Algorithms
Natalio KTasnogor .. ...ttt iiaa i

NK-Fitness Landscapes and Memetic Algorithms with
Greedy Operators and k-opt Local Search
Peter Merz. ..o e e e e e e e

Self-Assembling of Local Searchers in Memetic Algorithms
Natalio Krasnogor, Steven Gustafson ............. ... .cooviiii. ..

Designing Efficient Genetic and Evolutionary Algorithm
Hybrids
Abhishek Sinha, Ying-ping Chen, David E. Goldberg . .................

The Design of Memetic Algorithms for Scheduling and
Timetabling Problems
E.K. Burke, J.D. Landa Silva ......... ..o,

Memetic Algorithms for Multiobjective Optimization: Issues,
Methods and Prospects
Joshua Knowles' and David Corne? .. ... ireein i

Part IV Related Search Technologies

A Memetic Learning Classifier System for Describing
Continuous-Valued Problem Spaces
David Wyatt, Larry Bull . ... ... .. e

Angels & Mortals: A New Combinatorial Optimization
Algorithm
Francesc Comellas, Ruben Gallegos. ....... ... .. ... . ...



Part I

Introduction to Memetic Algorithms



Memetic Evolutionary Algorithms

W.E. Hart!, N. Krasnogor?, and J.E. Smith?

! Sandia National Laboratory

Albuquerque, New Mexico

USA

Automatic Scheduling, Optimisation and Planning Group
School of Computer Science and IT

University of Nottingham, U.K.
http:\\www.cs.nott.ac.uk\"nxk
natalio.krasnogor@nottingham.ac.uk

Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England,

Bristol BS16 12QY, U.K.

james.smithQuwe.ac.uk

http://www.cems.uwe.ac.uk/ jsmith

1 Summary

Memetic Evolutionary Algorithms (MAs) are a class of stochastic heuristics
for global optimization which combine the parallel global search nature of
Evolutionary Algorithms with Local Search to improve individual solutions.
These techniques are being applied to an increasing range of application do-
mains with successful results, and the aim of this book is both to highlight
some of these applications, and to shed light on some of the design issues and
considerations necessary to a successful implementation. In this chapter we
provide a background for the rest of the volume by introducing Evolutionary
Algorithms (EAs) and Local Search. We then move on to describe the syn-
ergy that arises when these two are combined in Memetic Algorithms, and to
discuss some of the most salient design issues for a successful implementation.
We conclude by describing various other ways in which EAs and MAs can be
hybridized with domain-specific knowledge and other search techniques.

2 Introduction

Memetic Algorithms (MAs) are a class of stochastic global search heuristics
in which Evolutionary Algorithms-based approaches are combined with local
search techniques to improve the quality of the solutions created by evolution.
MAs have proven very successful across a wide range of problem domains such



4 W.E. Hart, N. Krasnogor and J.E. Smith

as combinatorial optimization [27], optimization of non-stationary functions
[42], and multi-objective optimization [20] (see [29] for an extensive bibliog-
raphy).

Methods for hybridizing EAs with local search have been given various
names in research papers such as: hybrid GAs, Baldwinian EAs, Lamarckian
EAs, genetic local search algorithms, and others. Moscato [3] coined the name
memetic algorithm to cover a wide range of techniques where evolutionary-
based search is augmented by the addition of one or more phases of local
search.

The natural analogies between human evolution and learning, and EAs
and artificial neural networks (ANNs) prompted a great deal of research into
the use of MAs to evolve the structure of ANNs. ANNs were trained using
back-propagation or similar means during the 1980s and early 1990s. However,
research applying MAs to ANNs gave a great deal of insight into the role
of learning, Lamarckianism, and the Baldwin effect to guide evolution (e.g.
{8, 7, 8, 9, 10, 11, 12] amongst many others). This research reinforced the
experience of “real-world” practitioners as to the usefulness of incorporating
local search and domain-based heuristics within an EA framework.

Since then a number of PhD theses [14, 25, 15, 27, 16] have developed
algorithmic analyses of MAs. These analyses and related empirical results
demonstrate the potential impact of MAs, and in practice, many state-of-the-
art EAs employ some element of hybridization using local search. Research
in MAs is now sufficiently mature and distinct to have its own annual inter-
national workshop, and an extensive on-line bibliography of MA research is
maintained at [29].

In this chapter we set the scene for the rest of this book by providing brief
introductions to Evolutionary Algorithms (EAs) and Local Search (LS). We
also discuss some of the issues which arise when hybridizing the two to create
MAs. As our aim is to provide an overview, we cannot hope to give a detailed
description of either EAs or the many LS methods available. There are wide
variety of books discussing these methods that the user can read for further
detail (e.g., see [17, 18]). The rest of this chapter is organized as follows:

¢ In Section 3 we provide a brief overview and historical background to
the field of Evolutionary Algorithms, focusing particularly on their use as
search and optimization techniques.

e In Section 4 we provide a brief introduction to local search and some
related techniques.

e In Section 5 we discuss some of the motives and rationale underpinning
the hybridization of EAs with other search technologies and motivate this
book’s focus on Memetic Algorithms. Our focus is on EA hybrids in which
LS acts on the output of evolutionary operators, that is to say in which
some form of “lifetime learning” or “plasticity” is incorporated into the
“standard” evolutionary cycle..



Memetic Evolutionary Algorithms 5

e In Section 6 we discuss some of the design issues that must be considered
when implementing an MA.

e Finally, in Section 7 we discuss the structure of evolutionary and memetic
algorithms, and consider various places within the evolutionary cycle that
other heuristics and or domain specific knowledge may be incorporated.

3 A Brief Introduction to Evolutionary Algorithms

The idea of applying Darwinian principles to automated problem solving dates
back to the forties, long before the breakthrough of computers [19]. As early
as 1948, Turing proposed “genetical or evolutionary search”, and by 1962
Bremermann had actually executed computer experiments on “optimization
through evolution and recombination”. During the 1960s three different im-
plementations of the basic idea were developed in different places. In the USA,
Fogel, Owens, and Walsh introduced evolutionary programming [20, 21],
while Holland called his method a genetic algorithin [22, 23, 24]. Mean-
while, in Germany, Rechenberg and Schwefel invented evolution strategies
[25, 26]. For about 15 years these areas developed separately; but since the
early 1990s they have been viewed as different representatives of a common
technology that has come to be known as evolutionary computing (EC)
[27, 28, 29, 30, 31]. In the early 1990s a fourth methodology following the
same general ideas emerged, genetic programming, championed by Koza
[32, 33, 34]. The contemporary terminology denotes the whole field by evo-
lutionary computing, and the algorithms involved are termed evolutionary
algorithms; evolutionary programming, evolution strategies, genetic algo-
rithms, and genetic programming are subareas belonging to the corresponding
algorithmic variants.

3.1 The Principal Metaphor

The common underlying idea behind different evolutionary algorithms is the
same: given a population of individuals, mechanisms adapted from natural
selection and genetic variation are used to evolve individuals with high fit-
ness. Given a quality function to be maximized, we can randomly create a set
of candidate solutions, i.e., elements of the function’s domain, and apply the
quality function as an abstract fitness measure — the higher the better. Based
on this fitness, some of the better candidates are chosen to seed the next gen-
eration by applying recombination and/or mutation to them. Recombination
is an operator applied to two or more selected candidates (the so-called par-
ents) and results in one or more new candidates (the children). Mutation is
applied to one candidate and results in one new candidate. Executing recom-
bination and mutation leads to a set of new candidates (the offspring) that
compete — based on their fitness (and possibly age)— with the old ones for a
place in the next generation. This process can be iterated until a candidate



6 W.E. Hart, N. Krasnogor and J.E. Smith

with sufficient quality (a solution) is found or a previously set computational
limit is reached.

In this process there are two fundamental forces that form the basis of
evolutionary systems:

e Variation operators (recombination and mutation) create the necessary di-
versity and thereby facilitate novelty.

e Selection filters, and induces constraints on, candidate solutions.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy to view such an
evolutionary process as optimizing by iteratively generating solutions with in-
creasingly better values. Alternatively, evolution it is often seen as a process
of adaptation. From this perspective, the fitness is not seen as an objective
function to be optimized, but as an expression of environmental requirements.
Matching these requirements more closely implies an increased viability, re-
flected in a higher number of offspring. The evolutionary process makes the
population increasingly better at being adapted to the environment.

The general scheme of an evolutionary algorithm is shown in Figure 1 in
a pseudocode fashion. It is important to note that many components of evo-
lutionary algorithms are stochastic. During selection, fitter individuals have
a higher chance to be selected than less fit ones, but typically even the weak
individuals have a chance to become a parent or to survive. For recombina-
tion of individuals the choice of which pieces will be recombined is random.
Similarly for mutation, the pieces that will be mutated within a candidate
solution, and the new pieces replacing them, are chosen randomly.

Begin
INITIALIZE population with random candidate solutionms;
EVALUATE each candidate;
Repeat Until ( TERMINATION CONDITION is satisfied ) Do
1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 EVALUATE new candidates;
5 SELECT individuals for the next generation;
endDo
End.

Fig. 1. The general scheme of an evolutionary algorithm in pseudocode.



Memetic Evolutionary Algorithms 7
3.2 Components of an EA
Representation

Solutions to the problem being solved are usually referred to as phenotypes.
Phenotypes are indirectly manipulated by the EA variation and selection op-
erators by virtue of being encoded in genotypes. Genotypes within the EA
population are the objects upon which the operators act.

The representation employed by an EA can thus be represented by a
ternary relation R = (P,G, M) that specifies the relationship between the
space of phenotypes,P, and the space of genotypes G. The mapping M is a
function with domain in G and range in P that provides the “interpretation”
of the representation. For example, a phenotypic space of real values, P = R,
can be easily encoded by a binary genotypic search space, § = {0,1}*, using
as a mapping M a gray coding. That is, the gray coding defines how binary
strings are to be mapped to, or interpreted into, real values.

It is important to understand that the phenotype space can be very differ-
ent from the genotype space, and thus the EA designer must ensure that the
(optimal) solution to the problem at hand — a phenotype - can be represented
in the given genotype space.

The common EC terminology uses many synonyms for naming the ele-
ments of these two spaces. On the side of the original problem context, can-
didate solution, phenotype, and individual are used to denote points of
the space of possible solutions. This space itself is commonly called the phe-
notype space. On the side of the EA, genotype, chromosome, and again
individual can be used for points in the space where the evolutionary search
actually takes place. This space is often termed the genotype space. There
are also many synonymous terms for the elements of individuals. A place-
holder is commonly called a variable, a locus (plural: loci), a position, or -
in a biology-oriented terminology — a gene. An object on such a place can be
called a value or an allele.

Evaluation Function

The evaluation function represents the quality of an individual. It forms the
basis for selection, and thereby it facilitates improvements. More accurately,
it defines what improvement means. From the problem-solving perspective, it
provides the measure with which alternative solutions can be compared. The
evaluation function is commonly called the fitness function in EC. Problems
typically solved by EAs are optimization problems, which are specified with
an objective function. For minimization problems, an evaluation function
is commonly formed by negating the objective function.



8 W.E. Hart, N. Krasnogor and J.E. Smith
Population

A population is a set of possible solutions. Specifically, a population is a
multiset of genotypes.* In some sophisticated EAs, a population has an addi-
tional spatial structure, with a distance measure or a neighborhood relation.
In such cases the additional structure has also to be defined to fully specify a
population. Initialization is kept simple in most EA applications: The first
population is seeded by (uniformly) randomly generated individuals. However
as we shall see in the next section, and succeeding chapters, there may be
practical advantages to non-random initialization.

The diversity of a population is a measure of the number of different
solutions present. Common diversity measures are the number of different
fitness values present, the number of different phenotypes present, the number
of different genotypes, and statistical measures such as entropy. Note that only
one fitness value does not necessarily imply only one phenotype is present, and
in turn only one phenotype does not necessarily imply only one genotype. The
reverse is, however, not true: one genotype implies only one phenotype and
fitness value.

As opposed to variation operators that act on the one or two parent indi-
viduals, the selection operators (parent selection and survivor selection) work
at population level. In general, they take the whole current population into
account. For instance, the best individual of the given population is chosen to
seed the next generation, or the worst individual of the given population is cho-
sen to be replaced by a new one. In almost all EA applications the population
size is constant and does not change during the evolutionary search.

Parent Selection Mechanism

The role of parent selection or mating selection is to distinguish among
individuals based on their quality to allow the better individuals to become
parents of the next generation. An individual is a parent if it has been se-
lected to undergo variation in order to create offspring. Together with the sur-
vivor selection mechanism, parent selection is responsible for pushing quality
improvements. In EC, parent selection is typically probabilistic. Thus, high-
quality individuals get a higher chance to become parents than those with
low quality. Nevertheless, low-quality individuals are often given a small posi-
tive chance, which helps the evolutionary search avoid getting stuck in a local
optimum.

Survivor Selection Mechanism

The role of survivor selection or environmental selection is to distin-
guish among individuals, based on their quality, to identify those that will

4 A multiset is a set where multiple copies of an element are possible.



Memetic Evolutionary Algorithms 9

be used in the next generation. The survivor selection mechanism is called
after the offspring of the selected parents are created. As mentioned above,
in EC the population size is almost always constant, thus a choice has to be
made on which individuals will be allowed in the next generation. For this
reason survivor selection is also often called replacement or replacement
strategy. This selection is usually based on their fitness values, favoring those
with higher quality, although the concept of age is also frequently used. As
opposed to parent selection, which is typically stochastic, survivor selection is
often deterministic, for instance, ranking the unified multiset of parents and
offspring and selecting the top segment (fitness biased), or selecting only from
the offspring (age biased).

Variation Operators - Mutation

The role of variation operators is to create new individuals from old ones. In
the corresponding phenotype space this amounts to generating new candidate
solutions. Variation operators in EC are divided into two types based on the
number of objects that they take as inputs.

Mutation, a unary variation operator, is applied to one genotype and
delivers a (slightly) modified mutant: a child or offspring genotype. A mu-
tation operator is always stochastic: its output — the child — depends on the
outcomes of a series of random choices. It should be noted that an arbitrary
unary operator is not necessarily seen as mutation. A problem-specific heuris-
tic operator acting on one individual could be termed as mutation for being
unary. However, in general mutation denotes a random, unbiased change. Thus
heuristic unary operators can be distinguished from mutation in most cases.

It is important to note that variation operators are representation depen-
dent. That is, for different representations different variation operators have
to be defined. For example, if genotypes are bit-strings, then inverting a 0
toa 1 (1 to a 0) can be used as a mutation operator. However, if we rep-
resent possible solutions by tree-like structures another mutation operator is
required.

Variation Operators - Recombination

Recombination (or crossover) is (usually) a binary variation operator.
As the names indicate, such an operator merges information from two parent
genotypes into one or two offspring genotypes. Like mutation, recombination
is a stochastic operator: the choice of what parts of each parent are combined,
and the way these parts are combined, depend on random events. Recom-
bination operators with a higher arity (using more than two parents) are
sometimes possible and easy to implement, but have no biological equivalent.
Perhaps this is why they are not commonly used, although several studies
indicate that they have positive effects on the evolution [35].



10 W.E. Hart, N. Krasnogor and J.E. Smith

The principle behind recombination is simple — by mating two individ-
uals with different but desirable features, it may be possible to produce an
offspring that combines both of those features. This principle has a strong
supporting case: it is one which has been successfully applied for millennia
by breeders of plants and livestock to produce species that give higher yields
or have other desirable features. Evolutionary algorithms create a number of
offspring by random recombination, and accept that some will have undesir-
able combinations of traits, most may be no better, or even worse, than their
parents, and hope that some will have improved characteristics. As with muta-
tion, recombination operators in EAs are representation dependant. Whether
to apply crossover (mutation) or not is a stochastic decision with a non-zero
probability of the operator(s) not being applied.

4 A Brief Introduction to Local Search

Local search is a search method that iteratively examines the set of points in
a neighborhood of the current solution and replace the current solution with
a better neighbor if one exists. In this section we give a brief introduction to
local search in the context of memetic algorithms. For more information there
are a number of books on optimization that cover local search in more detail,
such as [18]. A local search algorithm can be illustrated by the pseudocode
given in Figure 2.

There are three principal components that affect the workings of this local
search algorithm.

o The pivot rule defines the criteria for accepting an improving point. A
steepest ascent pivot rule terminates the inner loop only after the entire
neighborhood n(#) has been searched, (i.e., count = |n(i)]). A greedy
ascent (or first ascent) pivot rule terminates the inner loop as soon as an
improvement is found (i.e., ((count = |n(3)]) or (best # i))). In practice it
is sometimes necessary to only consider a randomly drawn sample of size
N «|n(7)] if the neighborhood is too large to search.

e The depth of the local search defines the termination condition for the
outer loop. This lies in the continuum between only one improving step
being applied (iterations = 1) to the search continuing to local optimality
where all the neighboors of a solution ¢ have been explored but no one of
them found to be better: ((count = |n(:)|) and (best = i)). Considerable
attention has been paid to studying the effect of changing this parameter
within MAs [14, 25], and it can be shown to have an effect on the perfor-
mance of the local search algorithm, both in terms of time taken, and in
the quality of solution found. Furthermore, the impact on computational
complexity of various pivot rules have been studied both in the context of
local search [36, 37] and within MAs [25].



Memetic Evolutionary Algorithms 11

Begin
/* given a starting solution ¢ and a neighborhood function n */
set best =1;
set iterations = 0;
Repeat Until ( depth condition is satisfied ) Do
set count = 0;
Repeat Until ( pivot rule is satisfied ) Do
generate the next neighbor j € n(:);
set count = count + 1;
If (f(j) is better than f(best)) Then
set best = j;
endIf
endDo
set ¢ = best;
set iterations = iterations +1;
endDo
End.

Fig. 2. Pseudocode of a local search algorithm.

e The neighborhood generating function, n(7), defines a set of points
that can be reached by the application of some move operator to the
point ¢. The application of a neighborhood generating function can be
represented as a graph G = (v,e), where the set of vertices v are the
points in the search space, and the edges relate to applications of the move
operator; e;; € G <= j € n(i). The provision of a scalar fitness value
f defined over the search space means that we can consider the graphs
defined by different move operators as fitness landscapes [14, 17, 15]. Merz
and Freisleben [28] present a number of statistical measures that can be
used to characterize fitness landscapes, and that have been proposed by
various authors as potential measures of problem difficulty. They show that
the choice of move operator can have a dramatic effect on the efficiency
and effectiveness of the local search, and hence of the resultant MA.

In some cases, domain-specific information may be used to guide the choice
of neighborhood structure within local search algorithms. However, it has
recently been shown that the optimal choice of operators can be not only
instance specific within a class of problems [28, pp. 254-258], but when in-
corporated in an MA, it can be dependent on the state of the evolutionary
search [26]. Changing the neighborhood operator during search (eg. [30]) may
provide a means of progression in cases where points were locally optimal for
a given neighborhood operator because a point that is locally optimal with
respect to one neighborhood structure may not be with respect to another



12 W.E. Hart, N. Krasnogor and J.E. Smith

(unless they are globally optimal). This observation has also been the guiding
principle behind varieble neighborhood search algorithm [49].

The local search method presented in Figure 2 is fairly simplistic, but local
search is a central idea in most successful global search methods. The simplest
of these is the so-called “multi-start local search”, in which the algorithm is
run repeatedly from randomly generated solutions. An elaboration on this
is Iterated Local search [45], where a new search is begun from a perturbed
version of the end-point of the previous one. Iterated local search attempts to
traverse a succession of “nearby” local optima, which is often quite effective
in practice.

Perhaps more relevant to this book are two well known heuristics based on
local search, namely Tabu Search [46] and Simulated Annealing [47]. Giving
a full description of these techniques is beyond the scope of this book, but in
essence both modify the pivot rule. Tabu Search does so such that points in the
neighborhood of the current solution which have been previously considered
are not (generally) eligible to be accepted, whereas in Simulated Annealing a
move to an inferior neighbor is permitted with some probability dependent on
the fitness difference. Both of these have been used with noticeable success,
both as heuristics in their own right, and as improvement methods within
Memetic algorithms.

5 Hybridizing EAs

As suggested above, there are a number of benefits that can be achieved by
combining the global search of EAs with local search or other methods for im-
proving or refining an individual solution. In this section we give an overview
of some of the theoretical and practical motivations for such hybridizations,
before presenting one possible framework for Memetic Algorithms.

5.1 Motives

There are a number of factors that motivate the hybridization of evolutionary
algorithms with other techniques.

e Many complex problems can be decomposed into a number of parts, for
some of which exact methods (or very good heuristics) may already be
available. In these cases it makes sense to use a combination of the most
appropriate methods for different subproblems. In some cases this may take
the form of using the EA either as a post or pre-processor for other algo-
rithms, or incorporating instance specific knowledge into “greedy” varia-
tion operators as will be discussed in Section 7. However it is also frequently
possibly to use this knowledge to define local search operators (or existing
solution improvement techniques) within an evolutionary algorithm.



Memetic Evolutionary Algorithms 13

Successful and efficient all-purpose “black-box” problem solvers do not ex-
ist. The rapidly growing body of empirical evidence and some theoretical
results, such as the No Free Lunch (NFL) theorem [109]° strongly support
this view. From an Evolutionary Computing perspective, this implies that
EAs are not the holy grail for global search. Experience suggests that in
fact the competence of an EA in any given domain depends on the amount
of problem-specific knowledge incorporated within it. In practice we fre-
quently apply an evolutionary algorithm to a problem where there is a
considerable amount of hard-won user experience and knowledge available.
In such cases performance benefits can often arise from utilizing this infor-
mation in the form of specialist operators (eg. variation and local search)
and/or good solution initializations. In these cases it is commonly experi-
enced that the combination of an evolutionary and a heuristic method —
a hybrid EA - that somehow encapsulates domain specific information
performs better than either of its “parent” algorithms alone.

Although EAs are very good at rapidly identifying good areas of the search
space (exploration), they are often less good at refining near-optimal so-
lutions (exploitation). For example, when a GA is applied to the “One-
Max” problem, near-optimal solutions are quickly found but convergence
to the optimal solution is slow because the choice of which genes are mu-
tated is random.® Thus EA hybrids can search more efficiently by incor-
porating a more systematic search in the vicinity of “good” solutions. For
example, a bit-flipping hill-climber could be quickly applied within each
generation for One-Max to ensure fast convergence.

In practice, many problems have a set of constraints associated with them,
and local search or other heuristics can be used as a means of “repairing”
infeasible solutions generated by standard variation operators. This is of-
ten far simpler and more effective than attempting to find a specialized
representation and set of variation operators which ensure the feasibility
of all offspring.

Dawkin’s idea of “memes”[11] is often used as a motivation for hybridiza-
tion. Memes can be viewed as units of “cultural transmission” in the same
way that genes are the units of biological transmission. They are selected
for replication according to their perceived utility or popularity, and then
copied and transmitted via inter-agent communication.

’ The NFL and its implications are still a matter of current debate, for the present

we interpret it as stating that all stochastic algorithms have the same performance
when averaged over all discrete problems.

5 The One-Max problem is a binary maximization problem, where the fitness is

simply the count of the number of genes set to “1”.



14 W.E. Hart, N. Krasnogor and J.E. Smith

Examples of memes are tunes, ideas, catch-phrases, clothes fashions,

ways of making pots or of building arches. Just as genes propagate

themselves in the gene pool by leaping from body to body via sperm

or eggs, so memes propagate themselves in the meme pool by leap-

ing from brain to brain via a process which, in the broad sense, can

be called imitation [11, p. 192].
Since the idea of memes was first proposed by Dawkins, it has been ex-
tended by other authors (eg., [6, 13, 15, 2]). From the point of view of
the study of adaptive systems as optimization techniques, memetic the-
ory (see for example papers in [54]) provides with a rich set of tools and
metaphors to work with. In the context of memetic theory an EA keeps
a population of agents composed by both genotypes and memes. As in
standard EA, genotypes represent solutions to a particular problem while
memes represent “strategies” on how to improve those solutions. It is the
memes abilities to transform a candidate solution into (hopefully) a bet-
ter one that is of direct interest in the context of optimisation. The idea
of memes as representing alternative improvement strategies agents can
harness (implemented, for example, as distinct local searchers) is what
motivated us to propose in [22] the co-evolution of memes and genes and
to develop later in [25] the concept of multimeme, self-generating memetic
algorithms[56],[57] and co-evolving memetic algorithms [58].

5.2 Memetic Algorithms

The most common use of hybridization within EAs, and that which fits best
with Dawkin’s concept of the meme, is via the application of one or more
phases of improvement to individual members of the population within each
generation of an EA. In the simplest design, local search is applied to indi-
viduals created by mutation or recombination. A more general form can be
described by the pseudocode given in Figure 3 ( see also Figure 4), although
practitioners typically choose to only apply local search once to the offspring,
and sometimes to avoid the use of mutation entirely when using local search.

6 Design Issues for Memetic Algorithms

So far we have discussed the rationale for the use of problem-specific knowledge
or heuristics within EAs, and some possible ways in which this can be done.
However, as ever we must accept the caveat that like any other technique,
MAs are not some “magic solution” to optimization problems, and care must
be taken in their implementation. In the sections below we briefly discuss
some of the issues that have arisen from experience and theoretical reasoning.



Memetic Evolutionary Algorithms 15

Begin
INITIALIZE population;
EVALUATE each candidate;
Repeat Until ( TERMINATION CONDITION is satisfied ) Do
SELECT parents;
RECOMBINE to produce offspring;
EVALUATE offspring;
IMPROVE offspring via Local Search;
MUTATE offspring;
EVALUATE offspring;
IMPROVE offspring via Local Search;
SELECT individuals for next generation;
endDo
End.

Fig. 3. Pseudocode for a simple memetic algorithm

6.1 Lamarckianism and the Baldwin Effect

The local search methods described above assume that the current incum-
bent solution is always replaced by the fitter neighbor when found. Within a
memetic algorithm, we can consider the local search stage to occur as an im-
provement, or developmental learning phase within each generation. As such,
we can consider whether the changes (acquired traits) made to an individual
should be kept, or whether the resulting improved fitness should be awarded
to the original (pre-local search) member of the population.

The issue of whether acquired traits could be inherited by an individual’s
offspring was a major issue in nineteenth century, and Lamarck was a strong
proponent of this inheritance mechanism. However, the Baldwin effect [59]
suggests a mechanism whereby evolutionary progress can be guided towards
favorable adaptation without this type of inheritance. Although modern the-
ories of genetics strongly favor the latter viewpoint, the design of MAs can
employ either Lamarckian or Baldwinian inheritance schemes. MAs are re-
ferred to as Lamarckian if the result of the local search stage replaces the
individual in the population, and Baldwinian if the original member is kept,
but has as its fitness the value belonging to the outcome of the local search
process. In a classic early study, Hinton and Nowlan [8] showed that the Bald-
win effect could be used to improve the evolution of artificial neural networks,
and a number of researchers have studied the relative benefits of Baldwinian
versus Lamarckian algorithms (8, 9, 10, 11, 12]. In practice, most recent work
has tended to use either a pure Lamarckian approach, or a probabilistic com-
bination of the two approaches, such that the improved fitness is always used,
and the improved individual replaces the original with a given probability.



16 W.E. Hart, N. Krasnogor and J.E. Smith
6.2 Preservation of Diversity

The problem of premature convergence, whereby the population converges
around some suboptimal point, can be particularly problematic for MAs. If
the local search is applied until each point has been moved to a local optimum,
then this can lead to a loss of diversity within the population unless new
local minima are constantly identified. Alternatively, even if local search is
terminated before local optimality, an induced search space with wide basins
of attractions could also result in premature convergence to the suboptimal
solution at the center of a wide basin of attraction. A number of approaches
have been developed to combat this problem:

e when initializing the population with known good individuals, only using
a relatively small proportion of them,

e applying local search to a small fraction of the population (which helps
ensure that the rest of the population is diverse),
using recombination operators that are designed to preserve diversity,
using multiple local searchers, where each one induces a different search
space with distinct local optima (eg. [26, 12]);

e modifying the selection operator to prevent duplicates (e.g. as in CHC
[31]), and

e using a fuzzy criteria, that explicitly controls diversity, as the pivot rule
in the local search stage (eg. [12], 5).

e modifying the selection operator, or local search acceptance criteria, to use
a Boltzmann method so as to preserve diversity (eg. III).

This last method bears natural analogies to simulated annealing [62, 47],
where worsening moves can be accepted with nonzero probability to aid es-
cape from local optima. A promising method that tackles the diversity issue
explicitly is proposed in [24], where during the local search phase a less-fit
neighbor may be accepted with a probability that increases exponentially as
the range of fitness values in the population decreases:

1 if AE >0,

kv AE .
e Fmas—Favg = otherwise,

P(accept) = {

where k is a normalization constant and we assume a maximization problem,
AE = Fneighbour — Loriginal

6.3 Choice of Operators

Probably the most important factor in the design of a MA is the choice of
improving heuristic or local search move operator, that is to say, the way that
the set of neighboring points to be examined when looking for an improved
solution is generated.



Memetic Evolutionary Algorithms 17

There has been a large body of theoretical and empirical analysis of the
utility of various statistical measures of landscapes for predicting problem
difficulty. The interested reader can find a good summary in [64]. Merz and
Freisleben [28] consider a number of these measures in the context of memetic
algorithms, and show that the choice of move operator can have a dramatic
effect on the efficiency and effectiveness of the local search, and hence of the
resultant MA.

One recent result of particular interest to the practitioner is Krasnogor’s
formal proof that, in order to reduce the worst-case run times, it is necessary
to choose a local search method whose move operator is not the same as
those of the recombination and mutation operators [25]. This formalizes the
intuitive point that within a MA recombination, and particularly mutation,
have valuable roles in generating points that lie in different basins of attraction
with respect to the local search operator. This diversification is best done
either by an aggressive mutation rate, or preferably by the use of a variation
operators that have different neighborhood structures.

In general then, it is worth giving careful consideration to the choice of
move operators used when designing a MA: for example, using 2-opt for a TSP
problem might yield better improvement if not used in conjunction with the
“inversion” mutation operator which picks a subtour at random and reverses
it. The reason for that is that a genotypic inversion induces (a subspace of)
the phenotypic effect of the 2-exchange move operator which is at the heart
of 2-opt local searcher.

In some cases, domain-specific information may be used to guide the choice
of neighborhood structure within the local search algorithms. However, as we
noted earlier, the optimal choice of operators can be not only instance specific
within a class of problems but also dependant on the state of the evolutionary
search.

One simple way to surmount these problems is the use of multiple local
search operators in tandem. An example of this can be seen in [30], where
a range of problem specific move operators, such as local stretches, rotations
and reflections, each tailored to different stages of the protein folding process,
are used for a protein structure prediction problem within the context of what
is called a multimemetic algorithm [26].

The use of a set of possible local search strategies is analogous to Dawkin’s
memes. The extension of this approach to allow the adaptation of the local
search “memes” in the form of a coevolving population, and the implications
for search is currently under way in different research groups [22, 65, 22, 37,
68, 58, 69, 56, 57].

6.4 Use of Knowledge

A final point that might be taken into consideration when designing a MA
concerns the use and reuse of knowledge gained during the optimization pro-
cess. One possible hybridization that explicitly uses knowledge about points



18 W.E. Hart, N. Krasnogor and J.E. Smith

already searched to guide optimization is with tabu search [46]. In this al-
gorithm a “tabu” list of visited points is maintained, which the algorithm is
forbidden to return to. Such methods appear to offer promise for maintaining
diversity. Similarly, it is easy to imagine extensions to the Boltzmann accep-
tance/selection schemes that utilize information about, the spread of genotypes
in the current population, or even past populations, when deciding whether
to accept new solutions.

6.5 Specific Considerations for Continuous Domains

The design of MAs for continuous domains is complicated by several factors.
Effective search requires the use of different search scales for global and local
search. It is not always possible to determine whether a solution is locally
optimal. Relatively long local searches may be needed to ensure convergence
to local optima (especially if gradient information is unavailable). Although
many different local search methods have been developed, they are general
methods and thus it is not clear whether any given local search method is
effective for a particular application.

Because of these considerations, the design of effective MAs for continuous
domains can be quite different than for combinatorial problems. For example,
in combinatorial domains it is not unusual to apply local search until a locally
optimal solution is found. However, it is often unrealistic to assume that local
search methods can quickly identify local minima within a continuous domain.
This is often the case when applying derivative-free methods (e.g. the Nelder-
Mead simplex method), but it may also be true when derivative information
is available. Thus it is generally the case that local search is truncated based
on a target balance between global and local search. Specifically, two main
strategies have been used to achieve such a balance: (1) truncate local searches
after a given number of iterations (or fitness evaluations) and (2) apply local
search infrequently (e.g. with a fixed probability).

Although these hybridization strategies are quite effective in practice, they
can make it difficult to ensure convergence for these MAs. Although general
conditions on the mutation and recombination operators can be enforced to
ensure global convergence [70], these convergence results provide little insight
into the efficacy of local search. Gradient-based methods can be applied to
generate stationary-points (using first-order information) or locally-optimal
points (using second-order information), assuming that local search is not
truncated after a given number of iterations. However, in many applications
derivative-free methods are applied for which the search is truncated. To our
knowledge, MAs based on evolutionary pattern search is the only class of MAs
for which the convergence of tandem derivative-free local searches within the
MA can be ensured [71].



Memetic Evolutionary Algorithms 19
7 Other Hybridization Possibilities

Although our working definition of MAs has been restricted to those methods
that incorporate some form of improvement mechanism acting on the output
of the evolutionary variation operators, there are a number of other ways in
which an EA or MA can be used in conjunction with other operators and/or
domain-specific knowledge. This is illustrated in Figure 4.

Known solutions,
Initial POp. fonsfrucﬁve heurisfics,
ocal search
Overselection
Population
Parent Modified Selection
Selection operators

& Use of problern-specific
Crossover info. in operator

Offspring €— iocal Search

Mutation 6___ Use of problem-specific

info. in operator
Offspring

6—— Local Search
Fig. 4. Possible places to incorporate knowledge or other operators within a single
generation.

UOLOSIOS JIOAIAING

7.1 Intelligent Initialization

The most obvious way in which existing knowledge about the structure of
a problem or potential solutions can be incorporated into an EA is in the
initialization phase. In many cases the EA will make rapid initial progress,



20 W.E. Hart, N. Krasnogor and J.E. Smith

which raises questions about the value of expending effort creating a good
initial population, however starting the EA by using existing solutions can
offer interesting benefits:

1. It is possible to avoid “reinventing the wheel” by using existing solutions.
Preventing waste of computational efforts can yield increased efficiency
(speed).

2. A nonrandom initial population can direct the search into particular re-
gions of the search space that contain good solutions. Biasing the search
can result in increased effectiveness (quality of end solution).

3. Allin all, a given total amount of computational effort divided over heuris-
tic initialization and evolutionary search might deliver better results than
spending it all on “pure” evolutionary search, or an equivalent multistart
heuristic.

There are a number of possible ways in which the initialization function
can be changed from simple random creation, such as:

e Seeding the population with one or more previously known good solutions
arising from other techniques.

e In selective initialization a large number of random solutions are cre-
ated and then the initial population is selected from these. Bramlette [72]
suggests that this should be done as a series of V k-way tournaments rather
than by selecting the best N from k- N solutions. Other alternatives in-
clude selecting a set based not only on fitness but also on diversity so as
to maximize the coverage of the search space.

e Performing a local search starting from each member of initial population,
so that the initial population consists of a set of points that are locally
optimal with respect to some move operator.

¢ Using one or more of the above methods to identify one (or possibly more)
good solutions, and then cloning them and applying mutation at a high
rate (mass mutation) to produce a number of individuals in the vicinity
of the start point.

These methods have been tried and have exhibited performance gains for
certain problems. However, the important issue of providing the EA with suf-
ficient diversity for evolution to occur must also be considered. In [73] Surry
and Radcliffe examined the effect of varying the proportion of the initial popu-
lation of a GA that was derived from known good solutions. Their conclusions
were:

e The use of a small proportion of derived solutions in the initial population
aided genetic search.

e As the proportion was increased, the average performance improved.
The best performance came about from a more random initial population.

In other words, as the proportion of solutions derived from heuristics used
increased, so did the mean performance, but the variance in performance



Memetic Evolutionary Algorithms 21

decreased. This meant that there were not the occasional really good runs re-
sulting from the EA searching completely new regions of space and coming up
with novel solutions. For a certain type of problems, such as design problems,
this is an undesirable property.

7.2 Hybridization During Genotype to Phenotype Mapping

A widely used hybridization of memetic algorithms with other heuristics is
during the genotype—phenotype mapping M prior to evaluation. This ap-
proach, where the EA is used to provide the inputs controlling the application
of another heuristic, is frequently used and similar approaches have been used
to great effect for timetabling and scheduling problems [74], and in the “sector
first—order second” approach to the vehicle routing problem [75].

There is a common thread to all of these approaches, which is to make use
of existing heuristics and domain information wherever possible. The role of
the EA is often that of enabling a less biased application of the heuristics, or
of problem decomposition, so as to permit the use of sophisticated, but badly
scaling heuristics when the overall problem size would preclude their use.

7.3 Hybridization Within Variation Operators: Intelligent
Crossover and Mutation

A number of authors have proposed so-called “intelligent” variation operators,
which incorporate problem- or instance-specific knowledge. To give a simple
example, if a binary-coded GA is used to select features for use in another
classification algorithm, one might attempt to bias the search towards more
compact features sets via the use of a greater probability for mutating from
the allele value “use” to “don’t use” rather than vice versa. A related approach
can be seen in [76], where genes encode for microprocessor instructions, which
group naturally into sets with similar effects. The mutation operator was then
biased to incorporate this expert knowledge, so that mutations were more
likely to occur between instructions in the same set than between sets.

A slightly different example of the use of problem-specific (rather than
instance-specific) knowledge can be seen in the modified one-point crossover
operator used for protein structure prediction in [77]. Here the authors realized
that the heritable features being combined by recombination were folds, or
fragments of three-dimensional structure. A property of the problem is that
during folding protein structures can be free to rotate about peptide bonds.
The modified operator made good use of this knowledge by explicitly testing
all the possible different orientations of the two fragments, (accomplished by
trying all the possible allele values in the gene at the crossover point) in order
to find the most energetically favorable. If no feasible conformation was found,
then a different crossover point was selected and the process repeated. This
could be seen as a simple example of the incorporation of a local search phase
into the recombination operator, but in practice the nature of the models



22 W.E. Hart, N. Krasnogor and J.E. Smith

used is such that generally these approaches only need to consider partial
solutions when deciding whether an offspring is feasible. Note that this should
be distinguished from the simpler “crossover hill-climber” proposed in [15], in
which all of the I-1 possible offspring arising from one-point crossover are
constructed and the best chosen.

Operators can be modified in a complex manner to incorporate highly
specific heuristics, which makes use of instance-specific knowledge. A good
example of this is Merz and Friesleben’s distance-preserving crossover (DPX)
operator for the TSP [78]. This operator has two motivating principles: mak-
ing use of instance specific knowledge, whilst at the same time preserving
diversity within the population to prevent premature convergence. Diversity
is maintained by ensuring that the offspring inherits all of the edges common
to both parents, but none of the edges that are present in only one parent. The
“intelligent” part of the operator comes from the use of a nearest-neighbor
heuristic to join together the subtours inherited from the parents, thus ex-
plicitly exploiting instance-specific edge length information. It is easy to see
how this type of scheme could be adapted to other problems, via the use of
suitable heuristics for completing the partial solutions after inheritance of the
common factors from both parents.

It should be noted that under our working definition of MAs, the use of
such “intelligent” operator within an EA does not generally on its own consti-
tute a MA, since they use instance-specific knowledge to guide the construc-
tion of partial solutions. This can be contrasted with the use of local search
acting on offspring, where a neighborhood of complete solutions is examined
and an improved solution accepted.

8 Conclusions

In this chapter we gave a gentle introduction to Memetic Evolutionary Algo-
rithms and role they play as complements to pure Evolutionary Algorithms
and pure Local Search. We briefly discussed the historical context of MAs, and
we gave the motivation behind the use and research on this important brand
of global-local search hybrids. We also mentioned some of the design princi-
ples a practitioner needs to take into consideration when designing Memetic
Algorithms for new domains.

References

1. Merz, P.: Memetic Algorithms for Combinatorial Optimization Problems: Fit-
ness Landscapes and Efective Search Strategies. PhD thesis, Department of
Electrical Engineering and Computer Science, University of Siegen, Germany
(2000)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Memetic Evolutionary Algorithms 23

. Vavak, F., Fogarty, T., Jukes, K.: A genetic algorithm with variable range

of local search for tracking changing environments. In Voigt, H.M., Ebeling,
W., Rechenberg, 1., Schwefel, H.P., eds.: Proceedings of the 4th Conference
on Parallel Problem Solving from Nature. Number 1141 in Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, New York (1996) 376-385
Knowles, J., Corne, D.: A comparative assessment of memetic, evolutionary and
constructive algorithms for the multi-objective d-msat problem. In: Gecco-2001
Workshop Program. (2001) 162-167

Moscato, P.: Memetic algorithms’ home page, visited july 2003:
http://www.densis.fee.unicamp.br/“moscato/memetic.home.html (2003)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report Caltech Concurrent Com-
putation Program Report 826, Caltech, Caltech, Pasadena, California (1989)
Hinton, G., Nowlan, S.: How learning can guide evolution. Complex Systems 1
(1987) 495-502

Bull, L., Fogarty, T.: An evolutionary strategy and genetic algorithm hybrid: An
initial implementation and first results. In Fogarty, T., ed.: Evolutionary Com-
putation: Proceedings of the 1994 AISB Workshop on Evolutionary Computing,
Springer, Berlin, Heidelberg, New York (1994) 95-102

Houck, C., Joines, J., Kay, M., Wilson, J.: Empirical investigation of the benefits
of partial Lamarckianism. Evolutionary Computation 5 (1997) 31-60

Mayley, G.: Landscapes, learning costs and genetic assimilation. Evolutionary
Computation 4 (1996) 213-234

Turney, P.: How to shift bias: lessons from the Baldwin effect. Evolutionary
Computation 4 (1996) 271-295

Whitley, L., Gordon, S., Mathias, K.: Lamarkian evolution, the Baldwin effect,
and function optimisation. In Davidor, Y., Schwefel, H.P., Méanner, R., eds.:
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature.
Number 866 in Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
New York (1994) 6-15

Whitley, L., Gruau, F.: Adding learning to the cellular development of neural
networks: evolution and the Baldwin effect. Evolutionary Computation 1 (1993)
213-233

Hart, W.: Adaptive Global Optimization with Local Search. PhD thesis, Uni-
versity of California, San Diego (1994)

Krasnogor, N.: Studies in the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England (2002)

Land, M.: Evolutionary Algorithms with Local Search for Combinatorial Opti-
mization. PhD thesis, University of California, San Diego (1998)

Moscato, P.: Problemas de Otimizacio NP, Aproximabilidade e Computacao
Evolutiva:Da Pradtica & Teoria. PhD thesis, Universidade Estadual de Camp-
inas,Brasil (2001)

Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin,
Heidelberg, New York (2003)

Aarts, E., Lenstra, J., eds.: Local Search in Combinatorial Optimization. Dis-
crete Mathematics and Optimization. Wiley, Chichester, UK (1997)

Fogel, D., ed.: Evolutionary Computation: the Fossil Record. IEEE Press,
Piscataway, NJ (1998)



24

20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.

39.

40.

41.

42.

W.E. Hart, N. Krasnogor and J.E. Smith

Fogel, L., Owens, A., Walsh, M.: Artificial intelligence through a simulation
of evolution. In Callahan, A., Maxfield, M., Fogel, L., eds.: Biophysics and
Cybernetic Systems. Spartan, Washington DC (1965) 131-156

Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence through Simulated Evo-
lution. Wiley, Chichester, UK (1966)

De Jong, K.: An Analysis of the Behaviour of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan (1975)

Holland, J.: Genetic algorithms and the optimal allocation of trials. SIAM J. of
Computing 2 (1973) 88-105

Holland, J.: Adaption in Natural and Artificial Systems. MIT Press, Cambridge,
MA (1992) 1st edition: 1975, The University of Michigan Press, Ann Arbor.
Rechenberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart
(1973)

Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)
Béck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, Oxford, UK (1996)

Bick, T., Fogel, D., Michalewicz, Z., eds.: Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)
Back, T., Fogel, D., Michalewicz, Z., eds.: Evolutionary Computation 2: Ad-
vanced Algorithms and Operators. Institute of Physics Publishing, Bristol
(2000)

Eiben, A., Michalewicz, Z., eds.: Evolutionary Computation. IOS Press (1998)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
3rd edn. Springer, Berlin, Heidelberg, New York (1996)

Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An
Introduction. Morgan Kaufmann, San Francisco (1998)

Koza, J.: Genetic Programming. MIT Press, Cambridge, MA (1992)

Koza, J.: Genetic Programming II. MIT Press, Cambridge, MA (1994)

Eiben, A.: Multiparent recombination. [28] chapter 33.7 289-307

Johnson, D., Papadimitriou, C., Yannakakis, M.: How easy is local search.
Journal of Computer And System Sciences 37 (1988) 79-100

Yannakakis, M.: Computational complexity. In Aarts, E., Lenstra, J., eds.:
Local Search in Combinatorial Optimization, John Wiley & Sons Ltd. (1997)
19-55

Weinberger, E.D.: Correlated and Uncorrelated Fitness Landscapes and How
to Tell the Difference. Biological Cybernetics 63 (1990) 325-336

Stadler, P.F.: Towards a Theory of Landscapes. In Lopéz-Peiia, R., Capovilla,
R., Garcia-Pelayo, R., Waelbroeck, H., Zertuche, F., eds.: Complex Systems and
Binary Networks. Volume 461 of Lecture Notes in Physics., Berlin, New York,
Springer Verlag (1995) 77-163 SFI preprint 95-03-030.

Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
The University of New Mexico, Albuquerque, NM (1995)

Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In
Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw
Hill, London (1999) 245-260

Krasnogor, N., Smith, J.: Emergence of profitable search strategies based on a
simple inheritance mechanism. In Spector, L., Goodman, E., Wu, A., Langdon,
W., Voigt, HM., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke,



43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.
54.

55.

56.

57.

58.

59.
60.

61.

62.

Memetic Evolutionary Algorithms 25

E., eds.: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), Morgan Kaufmann, San Francisco (2001) 432--439

Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for
protein structure prediction. [12] 769—-778

Hansen, P., Mladenovi¢, N.: An introduction to variable nelghborhood search. In
Vo8, S., Martello S., Osman, 1., Roucairol, C., eds.: Meta-Heuristics: Advances
and Trends in Local Sea,rch Paradigms for Optimiza,tion. Proceedings of MIC 97
Conference. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)
Lourenco, H.R., Martin, O., Stutzle, T.: Iterated local search. In Glover, F.,
Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Pub-
lishers, Norwell, MA (2002) 321-353

Glover, F.: Tabu search: 1. ORSA Journal on Computing 1 (1989) 190-206
Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated anealing.
Science 220 (1983) 671-680

Wolpert, D., Macready, W.: No Free Lunch theorems for optimisation. IEEE
Transactions on Evolutionary Computation 1 (1997) 67-82

Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford, UK (1976)
Cavalli-Sforza, L., Feldman, M.: Cultural Transmission and Evolution: A Quati-
tative Approach. Princeton University Press, Princeton, NJ. (1981)

Durham, W.: Coevolution: Genes, Culture and Human Diversity. Stanford
University Press (1991)

Gabora, L.: Meme and variations: A computational model of cultural evolution.
In L.Nadel, Stein, D., eds.: 1993 Lectures in Complex Systems. Addison Wesley
(1993) 471-494

Blackmore, S.: The Meme Machine. Oxford University Press, Oxford, UK (1999)
of Memetics. Advisory Board:S.Blackmore, J., G.Cziko, R.Dawkins, D.Dennett,
L.Gabora, D.Hull,, eds.: Journal of Memetics: Evolutionary Models of Informa-
tion Transmission. (http://jom-emit.cfpm.org/)

Krasnogor, N.: Co-evolution of genes and memes in memetic algorithms. In
Wu, A, ed.: Proceedings of the 1999 Genetic And Evolutionary Computation
Conference Workshop Program. (1999)

Krasnogor, N.: Self-generating metaheuristics in bioinformatics: The protein
structure comparison case. Genetic Programming and Evolvable Machines.
Kluwer academic Publishers 5 (2004) 181-201

Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic
algorithms. Natural Computing 3 (2004) 53-76

Smith, J.: Co-evolving memetic algorithms: A learning approach to robust
scalable optimisation. [1] 498-505

Baldwin, J.: A new factor in evolution. American Naturalist 30 (1896)
Krasnogor, N., Pelta, D.: Fuzzy memes in multimeme algorithms: a fuzzy-
evolutionary hybrid. In Verdegay, J., ed.: Fuzzy Sets based Heuristics for Opti-
mization, Springer (2002)

Eshelman, L.: The CHC adaptive search algorithm: how to have safe search
when engaging in non-traditional genetic recombination. In Rawlins, G., ed.:
Foundations of Genetic Algorithms, Morgan Kaufmann, San Francisco (1990)
263-283

Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley,
Chichester, UK (1989)



26

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

W.E. Hart, N. Krasnogor and J.E. Smith

Krasnogor, N., Smith, J.: A memetic algorithm with self-adaptive local search:
TSP as a case study. In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector,
L., Parmee, 1., Beyer, H.G., eds.: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), Morgan Kaufmann, San Francisco
(2000) 987-994

Kallel, L., Naudts, B., Reeves, C.: Properties of fitness functions and search
landscapes. In Kallel, L., Naudts, B., Rogers, A., eds.: Theoretical Aspects of
Evolutionary Computing. Springer, Berlin, Heidelberg, New York (2001) 175—
206

Bull, L., Holland, O., Blackmore, S.: On meme-gene coevolution. Artificial Life
6 (2000) 227-235

Krasnogor, N., Gustafson, S.: Toward truly “memetic” memetic algorithms:
discussion and proofs of concept. In Corne, D., Fogel, G., Hart, W., Knowles,
J., Krasnogor, N., Roy, R., Smith, J., Tiwari, A., eds.: Advances in Nature-
Inspired Computation: The PPSN VII Workshops, Reading, UK, PEDAL (Par-
allel, Emergent & Distributed Architectures Lab), University of Reading (2002)
9-10

Smith, J.: Co-evolution of memetic algorithms: Initial investigations. {12] 537-
548

Smith, J.: The co-evolution of memetic algorithms for protein structure pre-
diction. In Corne, D., Fogel, G., Hart, W., Knowles, J., Krasnogor, N., Roy,
., Smith, J., Tiwari, A., eds.: Advances in Nature-Inspired Computation: The
PPSN VII Workshops, Reading, UK, PEDAL (Parallel, Emergent & Distributed
Architectures Lab), University of Reading (2002) 14-15

Smith, J.: Protein structure prediction with co-evolving memetic algorithms.
[1] 2346-2353

Rudolph, G.: Convergence of evolutionary algorithms in general search spaces.
[82] 50-54

Hart, W., DeLaurentis, J., Ferguson, L.: On the convergence of an implicitly self-
adaptive evolutionary algorithm on one-dimensional unimodal problems. IEEE
Trans Evolutionary Computation (to appear) (2003)

Bramlette, M.: Initialization, mutation and selection methods in genetic algo-
rithms for function optimization. In Belew, R., Booker, L., eds.: Proceedings
of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann,
San Francisco (1991) 100-107

Surry, P., Radcliffe, N.: Innoculation to initialise evolutionary search. In
T.C.Fogarty, ed.: Evolutionary Computing: Proceedings of the 1996 AISB Work-
shop, Springer, Berlin, Heidelberg, New York (1996) 269-285

Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving
heuristically driven schedule builder. Evolutionary Computation 6 (1998) 61-81
Thangiah, S., Vinayagamoorty, R., Gubbi, A.: Vehicle routing and time dead-
lines using genetic and local algorithms. [81] 506-515

Smith, J., Bartley, M., Fogarty, T.: Microprocessor design verification by two-
phase evolution of variable length tests. In: Proceedings of the 1997 IEEE
Conference on Evolutionary Computation, IEEE Press, Piscataway, NJ (1997)
453-458

Unger, R., Moult, J.: A genetic algorithm for 3D protein folding simulations.
[81] 581-588

Friesleben, B., Merz, P.: A genetic local search algorithm for solving the sym-
metric and assymetric travelling salesman problem. [82] 616-621



79.

80.

81.

82.

Memetic Evolutionary Algorithms 27

Guervos, J.M., Adamidis, P., Beyer, H.G., Fernandez-Villacanas, J.L., Schwefel,
H.P., eds.: Proceedings of the 7th Conference on Parallel Problem Solving from
Nature. In Guervos, J.M., Adamidis, P., Beyer, H.G., Fernandez-Villacanas,
J.L., Schwefel, H.P., eds.: Proceedings of the 7th Conference on Parallel Prob-
lem Solving from Nature. Number 2439 in Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, New York (2002)

2003 Congress on Evolutionary Computation (CEC 2003). In: 2003 Congress
on Evolutionary Computation (CEC 2003), IEEE Press, Piscataway, NJ (2003)
Forrest, S., ed.: Proceedings of the 5th International Conference on Genetic
Algorithms. In Forrest, S., ed.: Proceedings of the 5th International Conference
on Genetic Algorithms, Morgan Kaufmann, San Francisco (1993)

Proceedings of the 1996 IEEE Conference on Evolutionary Computation. In:
Proceedings of the 1996 IEEE Conference on Evolutionary Computation, IEEE
Press, Piscataway, NJ (1996)



Part 11

Applications of Memetic Algorithms



An Evolutionary Approach for the Maximum
Diversity Problem

Kengo Katayama'! and Hiroyuki Narihisa?

! Okayama University of Science, 1 - 1 Ridai-cho, Okayama, 700-0005 Japan
katayama@Qice.ous.ac. jp

2 Okayama University of Science, 1 - 1 Ridai-cho, Okayama, 700-0005 Japan
narihisa@ice.ous.ac. jp

Summary. The objective of the maximum diversity problem (MDP) is to select
a set of m-elements from larger set of n-elements such that the selected elements
maximize a given diversity measure. The paper presents an evolutionary algorithm
incorporating local search — memetic algorithm (MA) — for the MDP which con-
sists of a greedy method, simple evolutionary operators, a repair method, and a k-flip
local search based on wariable depth search. In the MA, the k-flip local search starts
with a feasible solution and obtains a local optimum in the feasible search space.
Since infeasible solutions may be created by the simple crossover and mutation op-
erators even if they start with feasible ones found by the local search, the repair
method is applied to such infeasible solutions after the crossover and the mutation
in order to guarantee feasibility of solutions to the problem. To show the effective-
ness of the MA with the k-flip local search, we compare with a MA with 2-flip local
search for large-scale problem instances (of up to n = 2500) which are larger than
those investigated by other researchers. The results show that the k-flip local search
based MA is effective particularly for larger instances. We report the best solution
found by the MA as this is the first time such large instances are tackled.

1 Introduction

We consider the following maximum diversity problem (MDP). Given a sym-
metric n X n matrix d;; (d;; = dj; and d;; = 0) and a predetermined number
of size m (n > m > 1), the objective of the MDP is to select a subset of
m-elements from n-elements such that the selected elements maximize a di-
versity measure. The MDP is represented as the following quadratic zero-one
integer program:



32 Kengo Katayama and Hiroyuki Narihisa

n n
maximize f(z) = Z Zdijximj,
i=1 j=1

< (1)
subject to Z T; = m,

i=1
z; € {0,1}, Vi=1,...,n.

The first model of the MDP has been formulated by Kuo, Glover, and
Dhir [15] in which the concept of diversity is quantifiable and measurable.
The concept of diversity is described as follows: consider a set of elements
S = {s; : 1 € N} with the index set N = {1,2,...,n} and their common r
attributes that each element possesses, denoted by sz, k € R = {1,2,...,r}.
To measure the diversity of a selected set of elements, a specified distance d;;
between each pair of elements s; and s; is required. One of the most commonly
used distances may be the Euclidean distance, di; = {3} _; (sit — s;)%]*/2. In
the MDP, it is assumed that the matrix d can be given by such a distance.

Kuo et al. proved the problem to be NP-hard, both with and without
restricting the d;; coefficients to non-negative values. Moreover, they trans-
formed the maximum diversity model into two equivalent linear integer pro-
gramming models and maximin diversity model in order to solve the problem
by integer programming approaches. The MDP shown above is a general di-
versity maximization model that arises in data mining [14] and is substantially
equivalent to the model of Kuo et al.

The MDP has a large number of applications. For example, such applica-
tions are immigration and admissions policies, committee formation, curricu-
lum design, market planning and portfolio selection [5, 15]. Moreover, there
are VLSI design and exam timetabling problems [23]. Others are environ-
mental balance, medical treatment, genetic engineering, molecular structure
design, agricultural breeding stocks, right sizing the firm, and composing jury
panels [14].

The form of the MDP is quite similar to that of the unconstrained bi-
nary quadratic programming problem (BQP) in that they are both problems
of maximizing a quadratic objective by suitable choice of binary (zero-one)
variables. The BQP can be expressed as follows:

n n
ZZdijiI)i.’rj, T; € {0,1}, Vi=1,...,n. (2)
i=1 j=1
Thus, the MDP can be interpreted as a constrained version of the BQP.
Applications of the BQP are known to be abundant as well as the MDP.
They appear in machine scheduling, traffic message management, CAD, cap-
ital budgeting and financial analysis, and molecular conformation [3]. Fur-
thermore, it has been known that several classical combinatorial optimization
problems can be formulated as a BQP, such as maximum cut problem, max-
imum clique problem, maximum vertex packing problem, minimum vertex
cover problem, and maximum (weight) independent set problem [21, 22].



An Evolutionary Approach for the Maximum Diversity Problem 33

Since the problems MDP and BQP are NP-hard, exact methods would
become prohibitively expensive to apply for large scale problem instances,
whereas the heuristic or metaheuristic approaches may find high quality solu-
tions of near-optimum with reasonable times. For the BQP, several heuristic
and metaheuristic approaches have been developed; for example, greedy meth-
ods [7, 19], local searches [11, 19], and the metaheuristics, tabu search [3, 6],
simulated annealing [3, 9], iterated local search [12], and evolutionary meth-
ods such as scatter search [1] and genetic algorithms incorporating local
search [10, 17, 18, 20].

On the other hand, studies on such approaches for the MDP seem much
more limited. Ghosh [8] showed a greedy randomized adaptive search proce-
dure (GRASP) for the MDP. The GRASP metaheuristic was tested on small
problem instances with n < 40. Glover et al. [5] proposed two constructive
heuristics and two destructive heuristics for the MDP. They tested them for
several instances of up to n = 30. Kochenberger et al. [14] dealt with large
instances of the general MDP from n = 100 to n = 1000, which are randomly
generated, and tested a tabu search metaheuristic taken into account search-
ing infeasible space. Their tabu search to the MDP is based on the algorithm
that has been developed for the BQP. The tabu search includes the strate-
gic oscillation with constructive and destructive heuristics. The details of the
tabu search can be found in [6].

This paper presents an evolutionary approach to the MDP. To the best
of our knowledge, such an evolutionary approach is the first attempt to the
MDP. Our approach consists of a greedy method to create initial solutions,
simple evolutionary operators such as uniform crossover and bit-flip mutation,
a repair method to turn an infeasible solution created by crossover or mutation
into a feasible one, and a sophisticated k-flip local search based on variable
depth search [13, 16], to be an effective memetic algorithm (MA) for the
MDP. To show the effectiveness of the MA, computational experiments are
conducted on large problem instances of up to n = 2,500 compared to the
previous studies for the MDP. The results demonstrate that the k-flip local
search based MA is more effective than a MA based on 2-flip local search in
terms of final solutions, particularly for large-scale problem instances.

The paper is organized as follows. In the next section, we show the k-flip
local search incorporated in the memetic algorithm for the MDP. In section 3,
a flow of the memetic algorithm is given, and each operation in the algorithm
is described. In section 4, we report experimental results for the memetic al-
gorithms tested on our new problem instances and on several benchmarks
derived from well-known BQP’s ones in which the d;; coefficients are not re-
stricted to non-negative values. The final section contains concluding remarks.



34 Kengo Katayama and Hiroyuki Narihisa
2 Local Search for MDP

Local Search (LS) is a generally applicable approach that can be used to
find approximate solutions to hard optimization problems. Many powerful
heuristics are so-called metaheuristics such as memetic algorithm are based
on LS.

The basic idea of LS is to start with a feasible solution z (e.g., randomly
generated solution) and to repeatedly replace z with a better solution z'
selected from the set of neighboring solutions that can be reached by a slight
modification of the current solution. If no better solutions can be found in the
set of neighbors, LS immediately stops and finally returns the best solution
found during the search. Thus, a resulting solution cannot be improved by the
slight modification. This modification is achieved by a predefined structure
often referred to as neighborhood N B. The resulting solution is called locally
optimal with respect to the neighborhood. LS is an integral process in the
memetic framework. The remainder of this section describes a LS, k-flip local
search, for the MDP. We begin by describing the fitness (objective) function
and the solution representation on which the local search and the evolutionary
operators in the memetic algorithm are based.

2.1 Fitness Function and Solution Representation

In our memetic algorithm incorporating the local search for the MDP, the
fitness, i.e., a solution cost, is evaluated by equation (1).

A solution to the MDP can be represented in a binary string « of length
n = |N|, where N denotes an index set of elements N = {1,2,...,n}. In this
representation, a value of 0 or 1 at the i-th bit (element) implies that z; = 0
or 1 in the solution, respectively.

Let S; be an index set of elements with z; = 1 for all 1 € N and Sy be
an index set of elements with z; = 0 for all ¢ € N. In the MDP, we thus note
that S;1 U Sy = N and S; NSy = . To be a feasible solution, it is restricted
that a sum of x; = 1 for all ¢ € N is equal to m (= |S1| = |N| — |So|) due
to the constraint in the formulation (1). Note that in this paper the solution
representation x always corresponds to a representation S; and Sp.

2.2 Neighborhoods

Although we use a k-flip local search heuristic in the LS process of the memetic
framework for the MDP, 2-flip based neighborhood is mainly used in the k-flip
local search as a basic move structure. In the crossover and mutation operators
in the memetic algorithm, 1-flip based neighborhood is used. Thus, we here
describe the two neighborhoods for the MDP.

Given a solution z, the 1-flip neighborhood A B; is defined by the set
of solutions that can be obtained by flipping a single bit ; in the current
solution. Thus, a hamming distance dg(z,z’') between the current solution



An Evolutionary Approach for the Maximum Diversity Problem 35

z and the neighboring solution #’ is 1. The number of all possible solutions
that can be created from a current solution by the 1-flip neighborhood N B;
at a time is equal to n. Even if a given solution is feasible, a feasibility of
the neighboring solutions that can be reached by the neighborhood is not
preserved since the number of ‘0’ and that of ‘1’ in the neighboring solutions
are changed from the feasible condition of " ; z; = m. In order to guarantee
feasibility of solutions, several considerations should be taken into account.

The 2-flip neighborhood N Bs is defined by the set of all solutions that can
be reached by simultaneously flipping two bits z; (i € S1) and z; (j € Sp) in
the current solution z. The hamming distance between the current solution
z and its neighboring solution z’ can be dgy(z,z') = 2. Note in this neigh-
borhood that it is not allowed to flip two bits ¢ and j in the same set (e.g.,
i,7 € So). Given a feasible solution, therefore, the feasibility of neighboring so-
lutions by the neighborhood can be always preserved. The number of possible
neighboring solutions at a time is equal to |S1||So|.

2.3 Gain Calculation for Neighbors

In order to perform an efficient search for a problem, it is crucial to calculate
the difference A = f(z') — f(z), where f is an objective function of the
problem, and z' denotes a neighboring solution obtained from a current one z
by reference of a neighborhood, instead of naively calculating the cost of 2’ by
f(z') from scratch. In this paper, we refer the difference A to the term gain
for a given neighboring solution z’. For the MDP, the gain can be computed
much faster than the naive calculation f(z').

Fast Gain Calculation for 1-flip Neighborhood

To achieve a fast calculation for the gain in the local search or memetic al-
gorithm to the MDP, we refer to the paper of Merz and Freisleben [19] (see
also [6, 20] as other related references). They showed that a calculation of all
gains for the 1-flip (or 1-opt) neighbors to the BQP can be computed in linear
time. The gain calculation for the BQP can be used for the MDP without
modification.

Naively, the gain value g; of flipping a single j-th bit in a current solution
x can be computed by the difference between the objective function values of
f(z') and f(x), i.e., g; = f(z') — f(z), where 2’ = 1 — z;. However, the gain
g; can be calculated by the following formula:

n
9i=di;(@; —z;)+2 Y dijz: (T — ), 3
i=1,i#j
with T; = 1 — x;. In this case, the gain g; of flipping j-th bit in the current
solution can be calculated in O(n). However, the calculation of the all gains
for the n candidates takes O(n?) time by using this formula.



36 Kengo Katayama and Hiroyuki Narihisa

Using the information of the all gains that have been already computed, all
of new gains can be calculated efficiently, instead of recalculating them by (3).
To achieve such a calculation, we take into account the update of the gains
that is based on calculating the difference of gains Ag; (Vi € N). Assuming
that all g; have been calculated and the bit j is flipped, the new gains g, can
be computed efficiently by

—g  if i=j . . _ _
9= { gi + Aggi ”) otherwisje with  Agi(j) = 2di; (T — i) (25 - 7).
4)

The update of the gains for the n candidates of the 1-flip neighboring solutions
can be performed in linear time. Furthermore, only the gains g; for d;; # 0
have to be updated [19].

This update technique [19] for the 1-flip neighbors is basically embedded
with our local search and memetic algorithms for the MDP. If we consider a
k-flip (1 < k < n) based neighborhood as used in the k-flip local search for
the MDP, the following can be useful.

Generalized Gain Calculation

We now show a generalized gain calculation for a k-flip neighbor (1 < k < n)
in the current solution in order to efficiently perform k-flip neighborhood
search. The information of the matrix of a given problem instance and the
gains for the 1-flip neighbors in a solution is fully used in the generalized gain
calculation. Assuming that all gains g for the 1-flip neighbors are calculated
and several k bits are flipped for a current solution z, a gain G of flipping
the & bits (we assume in the following that the bits are stored in flip[ ] for
convenience and all the bits are different) can be computed by

G =ga (1-flip)
+ 98 + 2dap(l — 24 )(1 — 225) (2-flip)
+ gy +2ds, (1 — 228)(1 — 22) + 2d1a(1 — 224)(1 — 22,)  (3-flip)
+ g5 + 2dy5(1 = 22,)(1 ~ 225) + 2ds50 (1 — 225)(1 — 224)

+ 2dsp(1 — 2z5)(1 — 2zp) (4-flip) 5)
k k—1 k
= gaipl +2 Y, D daipfaaipli} (1 — 2aip(s)) (1 — 22gip(;)) (k-flip)
i=1 =1 j=i+1

(1 <k <, flip[] = {@,8,7,4,...}).

For example, assuming that two bits of a-th and S-th are flipped (i.e.,
2-flip neighborhood) in the current solution, the gain G for the two bits can
be given by a sum of g, 9, and 2das(1 — 224)(1 — 22p) if the gains g for
the 1-flip neighbors in the current solution is provided in advance. As shown



An Evolutionary Approach for the Maximum Diversity Problem 37

above, this calculation for the 2-flip neighbor can be extended to several k
bits for the generalized k-flip neighborhood. The update of the gains have to
be performed after each flip of £ bits. The update can be done by (4).

This generalized gain calculation is valid for the MDP and the BQP.

2.4 k-flip Local Search

The larger sized neighborhoods such as k-flip neighborhood (1 « k < n) for
the MDP may yield better local optima but the effort needed to search the
neighborhood is too computationally expensive. An idea of the variable depth
search (VDS) [13, 16] is based on efficiently searching a small fraction of the
large neighborhood.

A basic idea of VDS based local search for the MDP is described as follows.
Given a feasible solution x as an initial solution, in each iteration a sequence of
m (or n—m, see below) solutions is produced by 2-flip based sub-moves leading
from one solution to another, and the best solution s in the sequence is
adopted as a new initial solution z for the next iteration. Such a process is
repeated until no better solution is found.

To produce the sequence, the 2-flip based moves are sequentially performed
so that each bit of z is flipped no more than once. All m solutions in the
sequence are different and each solution z' differs two to k bits from the
initial solution z. Thus, the hamming distance dg between the initial solution
z and each solution 2’ is dy(z,z') = k, where k = {2,4,...,2m — 2,2m}.
Since the solution xpes; with the highest cost is selected from the resulting
sequence, the hamming distance dg(x, Tpest) is variable in each iteration of
the algorithm, i.e., dg (z, Tpest) = k-

This specialized neighborhood may be called k-flip neighborhood. The k-flip
neighborhood, denoted by N By, for the MDP can be defined as follows:

NBp(z) := {2’ | ' is obtained from a sequence of m solutions that can
be obtained from x by exchanging an index ¢ in one set S; with an index j in
the other set S¢ under the following prohibition: all of the exchanged ¢ and j
are not re-exchanged}.

Note in this neighborhood that the number m of the solutions in the
sequence described above depends on the problem constraint. Throughout
the paper, we assume that a given number m in the problem constraint is
greater than one and fewer than a half of n variables 3. If the given number
m is greater than n/2, the elements of each Sy and S; are all swapped before
the search and the number of solutions produced in each iteration should be
n—m.

% If the given number m is just n/2 in the problem constraint, we should produce
m — 1 solutions for the sequence in each iteration of the algorithm, because both
a given current solution and a resulting m-th solution in the sequence become
the same, that is, all elements in each set S1 and Sp in an initial state are only
exchanged each other, if the 2-flip move is embedded with the k-flip neighborhood
search.



38 Kengo Katayama and Hiroyuki Narihisa

procedure k-Flip-Local-Search-QuasiBstImp2-FlipMove(z, g)

begin
1 repeat
2 Tprev = &, Gmaz = 0, G := 0, C1 := 81, CO := Sp;
3 repeat
4 find j with g; = maxjec1 gj;
5 find k with gain = maxeeco (gr + g; + 2djx (1 — 2z4)(1 — 2z;));
6 G = G + gain;
7 zj :=1—zj, xx := 1 — x4, and update gains g for each flipping;
8 C1:= C1\{j}, C0:= CO\{k};
9 if G > Gmez then Gruz == G, Tpest 1= T
10 until new zpe,: is not found for several repeats or C1 = §;
11 if Gree > 0 then o 1= zpeq else z := zprey;
12 until Gmaz S 0;
13 return z;
end;

Fig. 1. k-flip Local Search with Quasi-Best Improvement 2-flip Move

Quasi-Best Improvement k-flip Local Search

Our k-flip local search used in our memetic algorithm is based on the above
basic idea. To produce a sequence of different m solutions in each iteration, we
perform the 2-flip based sub-move with quasi-best improvement. We thus call
it the quasi-best improvement k-flip local search. The meaning of the quasi-best
is mentioned later.

Figure 1 shows the pseudo-code of the quasi-best improvement k-flip local
search heuristic for the MDP. In the figure, we assume that 1) a feasible
solution x and an associated gain vector ¢ are provided in advance. 2) the gain
vector is maintained and updated using (4) after each flip, and the generalized
gain calculation (5) is used for solutions by 2-flip moves. 3) the solution z
always corresponds to the representation of the sets 57 and Sy as mentioned
in the section 2.1.

The local search consists of two loops: an inner loop in which a sequence of
solutions is produced and the best solution is selected from the sequence and
an outer loop in which the best solution found in the inner loop is evaluated.

To produce a sequence of different solutions in the inner loop, two can-
didate sets of C'1 and C0 are used to ensure that each bit of a given initial
solution z is flipped no more than once. Therefore, a basic stopping crite-
rion of the search in the inner loop is expressed as C1 = §. To choose the
best solution in the sequence, the inner loop involves a judgment process (line
9) whether a current solution z’ is better than the incumbently stored best-
solution xpes:- Such a judgment plays a key role in a reduction of running time
for the local search. In the k-flip local search, we change the stopping criterion
of the search in the inner loop as follows: the inner loop (line 10) is terminated
if new Tpeq is not found for more than ¢ repeats or if C1 = §. A parameter
t for the MDP is set to a range 1 < ¢ < m in advance and is fixed during



An Evolutionary Approach for the Maximum Diversity Problem 39

procedure MA
begin
1 initialize a population P € {I1,...,Ips};
2 foreach individual I € P do I := Local-Search(I);
3 repeat
4 for i := 1 to F#crossovers do
5 choose two parents I, I, € P randomly;
6 I, := Crossover(I,, I);
7 I := Repair(I.);
8 I. := Local-Search(Z.);
9 add an individual I, to P;
10 endfor
11 P := Selection(P, P.);
12 if diversification=true then
13 foreach individual I € P\{best individual } do
14 I := Mutation(I);
15 I := Repair(l);
16 I := Local-Search(7);
17 endif
18 until terminate=true;
19 return best individual € P;
end;

Fig. 2. An outline of our evolutionary approach to the MDP

the local search. When choosing a suitable value of the parameter, it is quite
expected that the running time of the local search is considerably reduced in
comparison with only the basic criterion, but a sacrifice may be made in the
guarantee of choosing the #rue best solution in the sequence which might be
produced with the criterion C1 = (). Such a parameter setting is derived from
the k-opt local search for the BQP {19]. In our &-flip local search for the MDP,
we adopt a parameter value ¢t = m/5 for larger MDP instances (n > 500), for
smaller instances (n < 500) ¢ is set to m. These setting show good behavior
in our initial experiments.

In the outer loop, the solution z.s selected is evaluated whether zpeq
is better than the initial solution given at beginning of the inner loop. This
can be done by a check Gpqr > 0. If satisfied, the k-flip neighborhood search
is performed after zjes: is set to z, otherwise, the local search is terminated
after the return of the best solution found during the search.

The quasi-best improvement k-flip local search is a faster variant of the
best improvement k-flip local search. In the best improvement version, each
solution in the sequence is produced by selecting the best pair with the highest
gain in the sets C'1 and CO0. This local search takes O(m|S;||So|) time per
iteration. However, in the quasi-best improvement version, a first bit with the
highest gain is selected from C1 and then a second bit with the highest gain
in the 2-flip move is determined from C0. Thus, the time complexity of each
iteration in the quasi-best improvement version is O(m|S1] + m|Sp|) time.



40 Kengo Katayama and Hiroyuki Narihisa
3 Memetic Algorithm for MDP

Memetic framework for the MDP shown in this paper is similar to one for other
difficult optimization problems, which consists of a local search procedure and
evolutionary operators. However, each operation in the framework has to be
devised so as to work well for the MDP.

An outline of our memetic algorithm is shown in Figure 2. After the initial-
ization of the population, new offspring are created by application of crossover
and local search a predefined number of times. A new population is produced
by selecting individuals from the old population and the set of generated off-
spring (P,). Unless the search has converged, this process is repeated until a
predefined time limit is exceeded.

In the following, the evolutionary operators are described in detail.

3.1 Creating the Initial Population

In our approach, the initial solutions (individuals) (I,..., Ips) of a popula-
tion P are created by a randomized greedy method, where PS is a predeter-
mined number of the individuals. The method is a variant of the randomized
greedy heuristic for the BQP described in [19]. The greedy method for the
MDP is devised so that m bits with ‘1’ are appeared in a solution of length n
in order to create a feasible solution. Afterwards, each of these feasible indi-
viduals is locally optimized by a local search, i.e., the quasi-best improvement
k-flip local search, to create an initial population of locally optimum solutions.

3.2 Crossover

In the MDP, classical crossover operators, such as one-point, two-point, or
uniform crossover can be applied, but it is not preserved in many cases that a
new solution created by such a crossover is feasible even if starting with two
feasible parents.

In our approach, we use the uniform crossover in which a single offspring
is created from two parents, as shown in Figure 3. In the crossover process,
two parents are chosen randomly from a current population such that all
individuals are used with a restriction that no individual in the population is
used twice in each generation. Therefore, the number of crossover processes
depends on the size of population, i.e., PS/2.

After each crossover process, a repair method is applied to turn an infeasi-
ble offspring into a feasible one, and each feasible solution is locally improved
by the k-flip local search. The repair method is described in 3.4.

3.3 Selection and Diversification/Restart Strategy

In each generation, a new population has to be formed after offspring have
been generated. In our approach, the PS individuals with the highest fitness



An Evolutionary Approach for the Maximum Diversity Problem 41

parentl (1) 0y 0j 1| 1) 0} 1{ 0
parent2 (0|0]1{1|0}1{1{0

#[0lx]1[*]|%x{1]0
offspring|0{0{1(1(1{0{1|0

Comment : For the offspring, a value of 0 or 1 at each position ‘*’ is chosen with
probability 0.5.

Fig. 3. An example of uniform crossover

procedure Repair(z, g)
begin

1 calculate a violation v := m — |S1|;

2 if v = 0 then return z;

3 else if v < 0 then

4 repeat

5 find j with g; = maxjes, 95;

6 zj :=1—g;, 51 = $1\{j}, and update gains g;
7 until 37z =my;

8 return z;

9 else
10 repeat
11 find j with g; = maxjes, g;;

12 zj :=1—xz;, So := So\{s}, and update gains g;
13 until Y}z = my

14 return z;

15 endif

end;

Fig. 4. Repair Method

of the old population P and the set of offspring P, are selected. However, the
duplicates from the temporary set containing P and P, are removed to ensure
that no MDP solution is contained in the new population more than once.

A general drawback in evolutionary approach may be a premature conver-
gence of the algorithm, especially in the absence of mutation. We thus perform
a diversification/restart strategy, which is borrowed from [4], in order to move
to other points of the search space if no new best individual in the population
was found for more than 30 generations. In response to this requirement, the
individuals except for the best one in the population are mutated by flipping
randomly chosen n/2 bits for each individual of length n. After that, each of
the mutated individuals is applied to the repair method. Then each individual
after the repair method is locally improved by the k-flip local search to obtain
a renewal set of local optima and the search is started again with the new,
diverse population.



42 Kengo Katayama and Hiroyuki Narihisa
3.4 Repair Method

A repair method should be applied to an infeasible solution after the crossover
and the mutation in the diversification strategy, since the feasibility of the
solution by such an operator is not preserved for the MDP.

Analogous to the k-flip local search procedure shown above, the gains g
corresponding to a given solution x is managed and updated in the repair
procedure. When a solution z given for the repair method is infeasible, it is
repeated that a violated bit with the highest gain is flipped in each repair
iteration even if the highest one is negative. Such a repair process is executed
until  becomes feasible. By using this repair algorithm, the given infeasible
solution is turned to be feasible one that is as better cost as possible.

Our repair algorithm for the MDP is given in pseudo-code in Figure 4.
At first, the violation number of the given solution z is calculated. If no
violation, the solution is immediately returned as a feasible one at line 2,
otherwise, the repair process is performed to obtain a feasible solution from
the given infeasible one by flipping v bits in the set of S5; or Sp according to a
judgment of line 3. The number of the repair iterations therefore depends on
the number v. The each iteration consists of selecting a bit with the highest
gain and flipping the bit with the update of the gains. The time complexities
of each repair iteration in the algorithm are O(|S1]) or O(]Ss|) time for the
line 5 or 11 and O(n) time for updating gains g after each flip.

4 Computational Experiments

4.1 Test Instances

For the experiments, we newly provide six problem sets for the MDP. Each
problem set is characterized by the following problem sizes: n = 100, 250,
500, 750, 1,000, and 2,500 variables. We name them mdp00100, mdp00250,
mdp00500, mdp00750, mdp01000, and mdp02500, respectively. The each set,
i.e., the matrix d, is generated in the following way: each of d;; (i < j) values
is given randomly between 1 and 50. Therefore, each matrix is 100% dense
problem but the diagonal is off, d;; = 0. Each problem set consists of four
instances, and each of the four instances in the set is characterized by a
different value of m. The four values of m are set to 10%, 20%, 30%, 40%
of the variable size n, respectively.

In addition, we also use three test problem sets, which we modified bench-
mark instances of the BQP contained in ORLIB [2]. (This is the first attempt
in research for the MDP.) Their variable sizes are n = 500, 1,000, and 2,500,
and their names are beas500-1, beas1000-1, and beas2500-1, respectively,
which are first used as test instances for BQP’s heuristic algorithms in [3].
Note in each problem set that the d;; coefficients in the original matrix are
not restricted to non-negative values. In the three sets a density of each matrix



An Evolutionary Approach for the Maximum Diversity Problem 43

is 10%. However, we modified the matrix as follows: the diagonal is off, i.e.,
d;; = 0, due to the definition in the MDP. Each set consists of four instances
that are characterized by the four values of m as well as the new test problem
instances we provided above.

The variable sizes of the first five sets in our new test problems and the
first two sets in ORLIB are competitive with [14] that reported results for
randomly generated instances of up to 1,000 variables, but the remainders are
much larger than any reported in the literature for the MDP.

The test instances we newly provided are available from the following web
page: http://k2x.ice.ous.ac.jp/ "katayama/bench/.

4.2 Results and Discussions

We imposed a time limit for the memetic algorithm. The time limit was chosen
for each variable size of the problem sets: 10 seconds for 100 variable instances,
30 (sec) for 250 variable instances, 100 (sec) for 500 variable instances, 300
(sec) for 750 variable instances, 1000 (sec) for 1,000 variable instances, and
3000 (sec) for 2,500 variable instances, on a Sun Ultra 5/10 (UltraSPARC-
Ili 440MHz). The algorithm was run 30 times for each instance. Each run
of the algorithm is performed with a different seed. The value of the best
solution found by the algorithm in each run was saved with their corresponding
generation number, running time, etc. The algorithm was implemented in C.
The program code was compiled with the gcc compiler using the optimization
flag -O2 on Solaris 8.

The parameters contained in the memetic algorithm have already de-
scribed in the previous sections except for the population size. The popu-
lation size P.S was set to 40, which is a commonly used population size for
evolutionary algorithms incorporating local search.

Table 1 shows the results for the memetic algorithm with the k-flip local
search obtained for the test problem instances. In the first three columns of
the table, the name of the problem sets, the variable size n, and the number
of the problem constraint m are given. In the following columns, we provide
the best solution value (quality % of the best solution), the average solution
value (quality % of the average solution) of 30 runs, the number of times
in which the best solution could be found by the algorithm “b/run”, the
average running time “t1” in seconds in case the algorithm could find the
best solution, and the time-limit “t2” in seconds (exclusive of the case the
algorithm could find the best solution). In addition, “t1” and “t2” are provided
with their corresponding average generation numbers “(gens)”. In the table,
the number of 30/30 shown in the column of “b/run” indicates that the best-
known solution could be found by the algorithm within the predefined time
limit in all 30 trials. As an additional result, the final line in this table shows
the result of the MA with longer time limit of 30000 seconds for mdp02500 with
m = 750. In the result, the MA found a better solution of f(x) = 14988436



44

Kengo Katayama and Hiroyuki Narihisa

Table 1. Results for the quasi-best improvement k-flip local search bascd MA

[ instance {off diag.) [}

Memetic Algorithm with &-flip Local Search

name nl m best (%) avg. {%) jb/run t1 {gens) t2 {gens}
wdp0010G | 100 10 3606 (0.000000) 3606.0 ({0.000000) | 30730 0.1 (31 — [(—}
100 20 12056 (0.000000) 12956.0 (0.000000}|30/30 0.1 (n (]

100| 30 27036 (0.000000) 27036.0 {0.000000) | 30/30 0.1 {1 — (=)

100] 40||4587discussion2 (0.000000) 45872.0 {0.000000)}30/30 0.2 () - {—}

ndp00250 | 250| 25 20834 (0.000000) 20834.0 {0.000000)|30/30 1.0 (6) — [}
250| 50 75816 (0.000000) 75816.0 {0.000000}|30/30 1.8 (5) ()

250 75 162252 (0.000000}| 162252.0 {0.000000)}30/30 14.4 {40 — (=}

250] 100 279470 (0.000000)| 279470.0 {0.000000)|30/30 25  (4) — (-}

udp00600 | HOO] 50 78898 (0.000000)|  78898.0 (0.000000)] 30730 BT {157 — 1=y
500 100 291916 (0.000000)| 291916.0 {0.000000}|30/30 45  (5) — (=)

500] 150 631898 (0.000000)| 631898.0 (0.000000);30/30 12.9  {24) — (=}

500 200 1096092 (0.000000)| 1096092.0 (0.060000}|30/30 1.7 (%) e ot

mdpOOTEC | 760] 75 171704 (0.000000)| 171704.0 (0.000000)]30/30] 74.5 (99) — {—)
750] 150 641140 (0.000000)| 641140.0 (0.000000}}30/30 12.6  (6) (—)

750] 225 1395672 (0.000000)| 1395672.0 (0.000000}{30/30| 106.3 (71) — (—)

7501 300 2430660 (0.000000)| 2430660.0 (0.000000}|30/30 344 (186) — (=)

ndp01000 {1G00! 10D 299730 (0.000000)| 299721.7 {0.002758)|38/30[ 466.7 (249) 1000 {624}
1000| 200 1125264 (0.000000)| 1125264.0 {0.000000)|30/30| 165.4 (57) — (1}

1000| 300 2458316 (0.000000)| 2458316.0 {0.000000}|30/30] 375.0 (102) — (=)

1000| 400 4292438 (0.000000}| 4292438.0 (0.000000}}30/30 81.3 ({16) (—}

ndp02600 [2500( 250 1776366 (0.000000}| 1774418.9 (0.053349)] 3/30{ 2313.4 (163) 3000 {203}
2500 500 6794586 (0.000000)| 6793782.4 (0.011827)} 2/30{ 930.3 (30) 3000 {123)

2500| 750 14988200 {0.001575) |14987346.8 (0.007267)| 0/30 - —) 3000 (88)
2500|1000 26332276 (0.000000)|26332274.3 (0.000007}|29/30{ 927.1 (18) 3000 (82)

beas500-1 [ 600| 50 21750 (0.000000) 21750.0 (0.000000)]30/30 1.7 (25) —
500| 100 48738 (0.000000)|  48738.0 (0.000000)]30/30 1.0 (8) — (—}

500| 150 73544 (0.000000} 73544.0 {0.000000)|30/30 9.6 {62) — (=)

500| 200 95516 (0.000000)|  95516.0 (0.000000)]30/30 05 (1) — (=}
beas1000-1[1000[ 100 62102 {0.000000) 62102.0 (0.000000)|30/30 22.1  {64) — (=)
1000| 200 141512 (0.000000)| 141512.0 (0.000000)|30/30] 41.6 (79) — (—)

1000| 300 218478 (0.000000)| 218478.0 (0.000000)|30/30| 177.8 (245) — (=}

1000| 400 284688 (0.000000)| 284688.0 (0.000000}[30/30] 57.0 (65) — (—)
beas2500-1[2500] 250 246678 (0.000000)| 246678.0 (0.000000)|30/30] 581.9 (248) — (=)
2500| 500 566928 (0.000000)| 566473.1 (0.080245)| 9/30| 1323.0 (318) 3000 (709)

2500 750 882276 (0.000000)| 882240.0 (0.004080)|28/30| 720.2 (118) 3000 {506)
2500|1000 1153068 (0.000000}! 1151871.1 (0.108798)| 1/30| 1245.2 (188) 3000 (397)

[ mdp02500 [2500] 750]] 14088436 (0.000000)[14988307.6 (0.000857)[20/30[15000.3 (432) 30000 (807)]

than the case of 3000 seconds. Thus, it indicates that the MA is capable of

finding better solutions if longer running times are allowed.
Since the optimal solution for each instance is unknown yet, we reported

the value of the best solution found by the algorithm for each instance as a
result. It is expected that each of these best-known solutions is likely to be
the very near-optimal or the optimal solution for each of the instances.

To show the effectiveness of the k-flip local search based memetic algorithm

{MA-kflip) for the MDP, we test a 2-flip local search based variant algorithm
(MA-2-flip). The difference between them is only the local search process. In
the variant, the same parameters and time limits set in the memetic algorithm
with k-flip local search are adopted to be fair. This 2-flip local search performs
the guasi-best improvement strategy as moves in each iteration.



An Evolutionary Approach for the Maximum Diversity Problem 45

Table 2. Results for the quasi-best improvement 2-flip local search based MA

[ instance {off diag.) ] Memetic Algorithm with 2-flip Local Search
name n| m best (%) avg. (%) b/run t1 (gens) (gens)
mdp00100 | 100] 10]| 3606 (0.000000)|  3606.0 (0.000000)[30/30| 0.1 (14) {

100| 20|| 12956 (0.000000)| 12956.0 (0.000000)|30/30| 0.1  (4)
100| 30{| 27036 (0.000000)| 27036.0 (0.000000)|30/30| 0.1  (3)
100| 40|| 45872 (0.000000)| 45872.0 (0.000000){30/30| 0.1 (7

mdp00500 | 500| 50|| 78898 (0.000000)| 78898.0 (0.000000)|30/30| 6.8  (78)
500(100{| 291916 (0.000000)| 291916.0 (0.000000)|30/30| 7.1  (84)
500|150{| 631898 (0.000000)| 631898.0 (0.000000)|30/30| 8.5 (100)
500|200{|1096092 (0.000000)[1096092.0 (0.000000)130/30| 7.6  (77)

FLTIE DTS

ndp01000 [1000[100]| 299730 (0.000000)| 299642.5 (0.029204)| 8/30|459.4 (717) 1000 (1610)
1000|200{[1125264 (0.000000)[1125180.9 (0.007382)[18/30|516.3 (832) 1000 (1518)

1000|400 [{4292438 (0.000000)[4292438.0 (0.000000)130/30| 49.4 (100)

beasb00-1 | 500] 50]| 21750 (0.000000)| 21750.0 (0.000000)]30/30] 2.1 (112)
500(100{| 48738 (0.000000)| 48738.0 (0.000000)|30/30| 0.9 (55)
500(150|| 73544 (0.000000)| 73544.0 (0.000000){30/30| 22.8 (955)

1000 (300((2458316 (0.000000)|2458290.6 (0.001033)}111/30(444.2 (756) 1000 (1557)
500(200 95516 (0.000000)| 95516.0 (0.000000){30/30| 0.7 (23) —

beas1000-1|1000|100|| 62102 (0.000000)| 62097.9 (0.006548)|29/30(188.1 (2013) 1000 (9906
1000|200|| 141512 (0.000000)| 141512.0 (0.000000)|30/30{161.9 (1601) —
1000(300|| 218478 (0.000000)| 218406.5 (0.032742){ 1/30| 46.0 (529) 1000 (9344)
1000)400|| 284688 (0.000000)| 284653.9 (0.011990){14/30|179.8 (1796) 1000 (9546)

Table 2 shows the results obtained by MA-2-flip, the memetic algorithm
with the 2-flip local search, only for the 100, 500 and 1000 variables instances
among the nine problem sets. In the table, we give the same column entries
as in Table 1.

From the results of Tables 1 and 2, the performance of MA-k-flip may
be comparable with that of MA-2-flip for the instances of n < 500 since
the best solution found by MA-k-flip can be obtained by MA-2-flip with a
high frequency (see the column of “b/run”). However, MA-k-flip has a better
advantage for the larger instances of n > 500: the numbers of “b/run” in MA-
k-flip are greater and the running times for reaching the best-known solutions
are less than those of MA-2-flip in many cases, although it seems that MA-k-
flip spends more running times per generation in the predefined time limit for
the computation. Thus, the effectiveness of the k-flip local search based MA
is superior to MA-2-flip.

Since the difference between MA-k-flip and MA-2-flip is only the process
of local search, the results of Tables 1 and 2 make it clear that a design in
the local search process is quite important to obtain good solutions for the
problem. Moreover, better results are expected if the optimal value of the
parameters is determined and if we devise evolutionary operators instead of
simple ones used in our algorithms.

Unfortunately, a comparison with the previously proposed approaches to
the MDP is difficult because in most cases their algorithms were tested on
smaller instances generated by them and without using of publicly available
instances such as BQP contained in ORLIB as tried in this paper.



46 Kengo Katayama and Hiroyuki Narihisa

Finally, we give our experience on the setting value of mutation in the
diversification/restart strategy. Although our strategy with the default setting
of n/2 in the mutation is considerably disruptive, we believe that this setting
value is a better choice than that of a smaller value in this memetic framework
for the MDP. In our additional experiments, we have attempted to flip smaller
bits of n/3 chosen randomly in the mutation for each individual except for the
best one of the current population, instead of the default setting. The results
showed that the default setting gave better solutions, particularly with MA-
k-flip and MA-2-flip for large instances.

5 Conclusion

In this paper, we have presented a memetic algorithm for solving the maximum
diversity problem. Although most of the components of our algorithm were
comparable in a standard memetic framework, newly developed methods, i.e.,
the powerful k-flip local search, the repair method, etc. were incorporated to
obtain good solutions and to preserve the feasibility of solutions for the MDP.
The results showed that the k-flip local search based memetic algorithm out-
performed the 2-flip local search based variant particularly for larger instances
we newly provided and contained as the BQP instances in ORLIB. Due to
the first report for such instances, the values of the best solution found by the
algorithm were also reported for the problem instances investigated.

One of the most important issues for future research is to compare the
MA with other (meta-)heuristics for the same problem instances in order to
assert the effectiveness of memetic approach to the MDP.

References

1. Amini, M.M., Alidaee, B., Kochenberger, G.A. (1999) A Scatter Search Ap-
proach to Unconstrained Quadratic Binary Programs. In Corne, D., Dorigo,
M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London 317-
329

2. Beasley, J.E. (1990) OR-Library: Distributing Test Problems by Electronic
Mail. Journal of the Operational Research Society 41 : 1069-1072

3. Beasley, J.E. (1998) Heuristic Algorithms for the Unconstrained Binary
Quadratic Programming Problem. Tech. Rep., Management School, Imperial
College, UK

4. Eshelman, L. (1991) The CHC Adaptive Search Algorithm: How to Have Safe
Search When Engaging in Nontraditional Genetic Recombination. In Rawlings,
G.J.E., ed. Foundations of Genetic Algorithms 265-283

5. Glover, F., Kuo, C.-C., Dhir, K.S. (1998) Heuristic Algorithms for the Maxi-
mum Diversity Problem. Journal of Information and Optimization Sciences 19
: 109-132



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

An Evolutionary Approach for the Maximum Diversity Problem 47

Glover, F., Kochenberger, G., Alidaee, B., Amini, M. (1999) Tabu Search with
Critical Event Memory: An Enhanced Application for Binary Quadratic Pro-
grams. In Voss, S., et al., eds.: Meta-Heuristics, Advances and Trends in Local
Search Paradigms for Optimization, Kluwer Academic Pub. 93-109

Glover, F., Alidaee, B., Rego, C., Kochenberger, G. (2002) One-Pass Heuristics
for Large-Scale Unconstrained Binary Quadratic Problems. European Journal
of Operational Research 137 : 272-287

Ghosh, J.B. (1996) Computational Aspects of the Maximum Diversity Problem.
Operations Research Letters 19 : 175-181

Katayama, K., Narihisa, H. (2001) Performance of Simulated Annealing-Based
Heuristic for the Unconstrained Binary Quadratic Programming Problem. Eu-
ropean Journal of Operational Research 134 : 103-119

Katayama, K., Tani, M., Narihisa, H. (2000) Solving Large Binary Quadratic
Programming Problems by Effective Genetic Local Search Algorithm. In: Pro-
ceedings of the 2000 Genetic and Evolutionary Computation Conference 643—
650

Katayama, K., Narihisa, H. (2001) A Variant k-opt Local Search Heuristic
for Binary Quadratic Programming. Trans. IEICE (A) J84-A : 430-435 (in
Japanese)

Katayama, K., Narihisa, H. (2001) On Fundamental Design of Parthenogenetic
Algorithm for the Binary Quadratic Programming Problem. In: Proceedings of
the 2001 Congress on Evolutionary Computation 356-363

Kernighan, B.W., Lin, S. (1970) An Efficient Heuristic Procedure for Partition-
ing Graphs. Bell System Technical Journal 49 : 291-307

Kochenberger, G., Glover, F. (1999) Diversity Data Mining. Tech. Rep. HCES-
03-99, Hearin Center for Enterprise Science College of Business Administration
Kuo, C.-C., Glover, F., Dhir, K.S. (1993) Analyzing and Modeling the Max-
imum Diversity Problem by Zero-One Programming. Decision Sciences 24 :
1171-1185

Lin, S., Kernighan, B.W. (1973) An Effective Heuristic Algorithm for the Trav-
eling Salesman Problem. Operations Research 21 : 498-516

Lodi, A., Allemand, K., Liebling, T.M. (1999) An Evolutionary Heuristic for
Quadratic 0-1 Programming. European Journal of Operational Research 119 :
662-670

Merz, P., Freisleben, B. (1999) Genetic Algorithms for Binary Quadratic Pro-
gramming. In: Proceedings of the 1999 Genetic and Evolutionary Computation
Conference 417-424

Merz, P., Freisleben, B. (2002) Greedy and Local Search Heuristics for Uncon-
strained Binary Quadratic Programming. Journal of Heuristics 8 : 197-213
Merz, P., Katayama, K. (2002) Memetic Algorithms for the Unconstrained Bi-
nary Quadratic Programming Problem. BioSystems (submitted for publication)
Pardalos, P.M., Rodgers, G.P. (1992) A Branch and Bound Algorithm for the
Maximum Clique Problem. Computers and Operations Research 19 : 363-375
Pardalos, P.M., Xue, J. (1994) The Maximum Clique Problem. Journal of
Global Optimization 4 : 301-328

Weitz, R.R., Lakshminarayanan, S. (1997) An Empirical Comparison of Heuris-
tic and Graph Theoretic Methods for Creating Maximally Diverse Groups,
VLSI Design, and Exam Scheduling. Omega 25 : 473-482



Multimeme Algorithms Using Fuzzy Logic
Based Memes For Protein Structure Prediction

David A. Pelta! and Natalio Krasnogor?

! Departamento de Ciencias de la Computacién e Inteligencia Artificial

Universidad de Granada, Spain
http:\\www.ugr.es\"dpelta

dpeltaQugr.es

Automatic Scheduling, Optimisation and Planning Group
School of Computer Science and IT

University of Nottingham, U.K.
http:\\www.cs.nott.ac.uk\"nxk
natalio.krasnogor@ottingham.ac.uk

Summary. In this chapter we extend our previous studies on the self-adaptation of
local searchers within a Memetic Algorithm.Self-adaptation allows the MA to learn
which local searcher to use during search. In particular, we extend our results in [12],
where memes were instantiated as Fuzzy-Logic based local searchers, and we show
that our Multimeme algorithms are capable of producing new optimum solutions to
instances of the Protein Structure Prediction Problem in the HP-model.

1 Introduction

Fuzzy Adaptive Neighborhood Search (FANS) was introduced in [4, 23]. Build-
ing upon local search, a classical method often used in optimization and op-
erational research, and some basic elements of Fuzzy Sets theory, FANS was
shown to be a robust optimization tool. This was noted for a variety of do-
mains like knapsack problems [4], continuous function minimization [23] and
more recently [23, 24, 26] in the protein structure prediction problem.

In our previous work [4], FANS was compared against a genetic algorithm.
It was verified that both algorithms have similar performance for the range of
problems studied. However, one of the advantages of using FANS is the easier
implementation and parameter tuning. On the other hand, FANS performs its
search by sampling one solution at a time which in some cases compromises
its global search capabilities; as the Genetic Algorithm keeps a population of
solutions it (more) consistently avoid local optima and performs a more global
search.

In [12] we hybridized a Multimeme Algorithm [23, 28] with a simplified
version of FANS in order to implement the pool of local searchers that the Mul-



50 D.Pelta and N.Krasnogor

timeme algorithm used. We demonstrated how FANS, and in turn fuzzy sets
and systems ideas, could be successfully used to design a wide range of memes’
behaviors. Moreover, we showed some benefits of using a Fuzzy-Evolutionary
hybrid to tackle the Protein Structure Prediction problem (PSP).

The problem of predicting the three-dimensional structure of a protein
is, perhaps, the single most important problem that biochemistry and bioin-
formatics face today. Even after almost five decades of intensive research it
has not been “cracked”. All-atom models of the folding process are extremely
expensive. Moreover, there is no unique and ideal model for folding simula-
tions, therefore, researchers use simplified descriptions of the phenomenon and
tackle the slightly simpler (yet still intractable) problem of predicting the final
structure of the folding process rather than the process itself. In this research
we use such model, known as the HP-model [8]. The later has been widely
used to benchmark folding and structure prediction algorithms and it was the
source of important theoretical insights on the Protein Folding process [10].

This paper is organized as follows: in section 2 the protein structure predic-
tion problem is introduced. Then in section 3 a brief descriptions of Memetic
and Multimeme algorithms are presented. The hybrid approach we propose,
i.e. a Multimeme Algorithm that includes FANS as local searchers, is de-
scribed in Section 4. In order to assess the usefulness of the approach, several
computational experiments were performed. These are described in Section 6
and the results discussed there. A section with conclusions ends the chapter.

2 The Protein Structure Prediction Problem

A protein is a chain of amino acid residues that folds into a specific na-
tive tertiary structure under certain physiological conditions. Proteins unfold
when folding conditions provided by the environment are disrupted, and many
proteins spontaneously re-fold to their native structures when physiological
conditions are restored. This observation is the basis for the belief that pre-
diction of the native structure of a protein can be done computationally from
the information contained in the amino acid sequence alone.

In practice, solving the structure prediction problem means finding an
adequate energy formulation (that correctly identifies native states) and be-
ing able to (by means of an adequate algorithm) search for candidate native
states under that energy formulation. Exhaustive search of a protein’s con-
formational space is clearly not a feasible algorithmic strategy for PSP. The
number of possible conformations is exponential in the length of the protein
sequence, and even powerful computational hardware is not capable of enu-
merating this space for even moderately large proteins. As an example consider
the case where a protein structure is confined to a three dimensional cubic
lattice. In this case, for a protein of length n there are potentially 4.7™ acces-
sible conformations. Furthermore, recent computational analysis of PSP have



Maultimeme Algorithms with Fuzzy Logic Based Memes 51

(2) (b)

Fig. 1. HP sequence embedded in the square lattice and triangular lattice.

shown that this problem is intractable even on simple lattice models {1, 2, 7]
such as the three dimensional case mentioned above.

A way of partially overcoming both the problem of the energy formulation
and the enormous amount of candidate structures to analyze, is to use reduced
protein models and knowledge-based potentials. Such simplified protein mod-
els are continuously playing an important role in improving our understanding
of the fundamental physical properties of real-life proteins while paving the
way for the development of algorithms to predict their native conformations
using just the information of the amino acid sequence.

HP models abstract the hydrophobic interaction process in protein folding
by reducing a protein to a heteropolymer that represents a predetermined
pattern of hydrophobicity in the protein; non-polar amino acids are classified
as hydrophobics and polar amino acids are classified as hydrophilics. A se-
quence is s € {H, P}*, where H represents a hydrophobic amino acid and P
represents a hydrophilic amino acid.

The HP model restricts the space of conformations to self-avoiding paths
on a lattice in which vertices are labelled by the amino acids. The energy
potential in the HP model reflects the fact that hydrophobic amino acids have
a propensity to form a hydrophobic core. To capture this feature of protein
structures, the HP model adds a value € for every pair of hydrophobes that
form a topological contact; a topological contact is formed by a pair of amino
acids that are adjacent on the lattice and not consecutive in the sequence.
The value of ¢ is typically taken to be —1.

Figure 1 shows a sequence embedded in the square and the triangular lat-
tice, with hydrophobic-hydrophobic contacts (HH contacts) highlighted with
dotted lines. The conformation in Fig. 1(a) embedded in a square lattice, has
an energy of -4, while the embedding in the triangular lattice (b) has an energy
of -6 (there are 4 and 6 dotted lines, i.e. contacts, in the figure).

The particular version of the problem that we are going to tackle in this
chapter is given by:



52 D.Pelta and N.Krasnogor

Maximum Protein Structure Prediction

Instance: A protein, i.e. a string over the alphabet {H, P} (s € {H, P}*).
Solution: A self avoiding embedding of s into a 2D square lattice.
Measure: The number of Hs that are topological neighbors in the embed-
ding (neighbors in the lattice but not consecutive in s)

Protein structure prediction has been shown to be NP-complete for a va-
riety of simple lattice models (see Atkins and Hart [1] for a recent review),
including the HP-model version on the square [7} and cubic lattices [2]. A
wide variety of global optimization techniques have been applied to various
models of the PSP problem, e.g. see the papers in Biegler et al. [3], Parda-
los, Shalloway and Xue [21] and Pelta et al. [26]. Evolutionary algorithms
(in their various forms) were shown to be particularly robust and effective
global optimization techniques for molecular conformation problems. In par-
ticular, evolutionary methods have been used by several researchers engaged
in proteomics related activities [9, 10, 11, 23, 15, 16, 22, 23, 27, 28, 29, 30, 31].

3 Memetic Algorithms

Memetic Algorithms are metaheuristics designed to find solutions to complex
and difficult optimization problems. They are evolutionary algorithms that
include a stage of individual optimization or learning as part of their search
strategy. Memetic Algorithms are also called hybrid genetic algorithms, ge-
netic local search, etc. A simple Memetic Algorithm scheme is shown in Fig. 2.

The inclusion of a local search stage into the traditional evolutionary cy-
cle of crossover-mutation-selection is not a minor change of the evolutionary
algorithm architecture. On the contrary, it is a crucial deviation that affects
how local and global search is performed. The reader should also note that
the pseudocode shown in Fig. 2 is just one possible way to hybridize a genetic
algorithm with local search. In fact, a great number of distinct memetic algo-
rithms’ architectures have been presented in the literature and even integrated
into formal models [23, 13].

An interesting variant of memetic algorithms are the Multimeme Algo-
rithms (MMA in what follows) as introduced in [23, 28]. MMA are memetic
algorithms where several types of local searchers, called memes, are available
to the evolutive process during the local optimization phase. An individual in
a MMA is composed of a genetic part, representing the solution to the prob-
lem being solved, and a memetic part, encoding a meme or local searcher,
that is employed during the individual optimization stage.

The set of memes available to the algorithm is called the memepool and its
design is a critical aspect for the success of the metaheuristic. Several design
criteria for the memepool are described in [23]. Multimeme algorithms for
the Protein Structure Prediction problem and Protein Structure Comparison
Problem are reported in [11] and [5] respectively.



Multimeme Algorithms with Fuzzy Logic Based Memes 53

Memetic_Algorithm():
Begin
t=0;
/* We put the evolutionary clock (generations), to null */
Randomly generate an initial population P(t);
Repeat Until ( Termination Criterion Fulfilled ) Do
Compute the fitmess f(p) Vp € P(t) ;
Accordingly to f(p) choose a subset of P(T), store them in M(t);
Recombine and variate individuals in M(f), store result in M'(t);
Improve.by.local_search( M'(¢));
Compute the fitness f(p) Vpe M'(t) ;
Generate P(t-+ 1) selecting some individuals from P(t) and M’(t);
t=t+1;
endDo
Return best p € P(t —1);
End.

Fig. 2. A basic version of a memetic algorithm.

4 Fuzzy Memes for Multimeme Algorithms

The Fuzzy Adaptive Neighborhood Search Method (FANS) [4, 25] is a local
search procedure which differs from other local searchers in two aspects. The
first aspect is how the solutions are evaluated. Within FANS a fuzzy valua-
tion representing some (maybe fuzzy) property P is used together with the
objective function to obtain a “semantic evaluation” of the solution. In this
way, we may talk about solutions satisfying P to a certain degree. Thus, the
neighborhood of a solution effectively becomes a fuzzy set with the neighbor
solutions as elements and the fuzzy valuation as the membership function.
The fuzzy valuation enables the algorithm to achieve the qualitative behav-
ior of other classical local search schemes [4]. FANS moves between solutions
satisfying P with at least certain degree, until it became trapped in a local
optimum. In this situation, the second novel aspect arises: the operator used
to construct solutions is changed, so solutions coming from different neigh-
borhoods are explored next. This process is repeated once for each of a set of
available operators until some finalization criterion for the local search is met.
The simplified scheme of FANS used here is shown in Fig. 3. The execution
of the algorithm finishes when some external condition holds. In this research
this happens when the number of cost function evaluations reached a pre-
specified limit. Each iteration begins with a call to the neighborhood scheduler
NS, which is responsible for the generation and selection of the next solution
in the optimization path. The call is done with parameters S, (the current
solution), u() (the fuzzy valuation), and O* (a parameterized operator which
is used to construct solutions). The neighborhood scheduler can return two



54 D.Pelta and N.Krasnogor

Procedure FANS:
Begin
InitVariables();
k:=maxK;;
While ( not-end ) Do
/* The neighborhood scheduler NS is called */
Snew = Ns(ok,llq Scur);
If (Spew is good enough in terms of u()) Then

Seur = Snew
adaptFuzzyValuation (u(), Scur);
Else

/* NS could not obtain a good enough solution */
/* The operator will be changed modifying the parameter k */
If ((k=1)) Then
k:= maxK;;
Else
k := k-1;;
endIf
endIf
endDo
End.

Fig. 3. Scheme of FANS

alternative results; either a good enough (in terms of () solution (Spew) was
found or not.

In the first case Spew is taken as the current solution and u() parameters
are adapted. In this way, the fuzzy valuation is changed as a function of
the state of the search. This mechanism allows the local search stages to
adapt during the search, hence accordingly to [23] the FANS based memes are
adaptive helpers. If N S failed to return an acceptable solution (no solution was
good enough in the neighborhood induced by the operator), the parameters
of the operator are changed. In the full version of FANS, the strategy for this
adaptation is encapsulated in the so called operator scheduler OS. Here we
simply decrease the value of the parameter k& of the operator 0. Effectively this
induces, for each fixed operator, a variable radius search. At the beginning,
the radius of the search is wide and it will be reduced as the search progresses.
The next time N S is executed, it will have a modified operator (i.e., a different
radius) to search for solutions.

The reader should note that what varies at each iteration are the param-
eters used in the A'S call. The algorithm starts with 'S (sq, O%, o). If NS
could retrieve an acceptable neighborhood solution, the next iteration the call
will be N'S (s1, 0%, ), the current solution is changed and the fuzzy valua-
tion is adapted. If NS failed to retrieve an acceptable neighborhood solution



Multimeme Algorithms with Fuzzy Logic Based Memes 55

(at certain iteration l), the operator scheduler will be executed returning a
modified version of the operator, so the call will be N'S (s;, 0%, ).

5 Description of the Memepool

Multimeme algorithms (the overall strategy guiding the search behind our
approach) have been described in detail elsewhere [5, 11, 23, 28], so we only
describe here the memepool our MMA employs.

The memes of our MMA are implemented as simplified versions of FANS
as a way to obtain a wide range of behaviors in a simple and unified fashion
[12]. For the neighborhood scheduler, a First strategy was implemented: given
the current solution s, the scheduler samples the search space with the oper-
ator O and returns the first solution satisfying u(f(s), f(O(s))) > A using at
most certain number of trials (length of the local search), defined here as n/2
where n is the size of the instance. The value X represents the minimum level
of acceptability required for a solution to be considered as a “good enough”
solution.

Each meme is identified by a 3-tuple:
(< basic operator >< fuzzyvaluation >< value of X >) (1)

where each element will be described below.

The < basic operator > can be instantiated to anyone of the following
basic moves:

0. Reflex(i, k): This operator reflects the protein structure across one of its
symmetry axes. The change takes place between residues i and ¢ + k.

1. Shuf fle(i, k): This operator performs a random re-positioning of the
residues i** to (i + k)t".

2. Stretch(i,k): The stretch operator unfolds a substructure of length k
starting from residue q.

3. Pivot(k): The pivot operator represents a rigid rotation. In this case, &
random residues are selected and rigid rotations are performed sequen-
tially on each one of them.

The operator has a parameter k£ indicating the number of positions to change.
This value of k& will be modified when the neighborhood scheduler fails to
return an acceptable solution. In this case, the value of k is decremented by
1. When the failure occurs with k& = 1, the value is set again to £ = mazK.



56

D.Pelta and N.Krasnogor

Y
Y

B f(s) L £(s) R
Fig. 4. Fuzzy Valuations p; (left) and ps (right).

There are two options available for the item < fuzzyvaluation >:

1

3

. The first fuzzy valuation proposed, p;, has the following definition:
0.0 if flg) < B
ps,q) = (Ff(@) = B/ (f(s) = B) if B< flag) < f(s) )
1.0 if f(q) > f(s)

where 3 is a threshold specifying what is, and what is not, considered
an acceptable deterioration in solution quality. Given that the energy
of a structure can take negative values (e.g. when the structure is not
self-avoiding), the parameter 8 has two definitions®: when f > 0 then
B = f%0.5 (a deterioration in cost of 50% is allowed); when f < 0 then
B = f* 1.2 (a deterioration in cost of 20% is allowed). This fuzzy valua-
tion promotes acceptability to solutions improving the current cost. When
used with A =1, it induces in FANS a hillclimber like behavior, allowing
transitions only to improving solutions. The graphical representation of
i1 is shown in Fig. 4 (left).

The second fuzzy valuation proposed, u2, has the following definition:

1.0 fR< flg) <L
pa(s,q) =< (f(s) = f(@)/(f(s) = L) i L<f(g)<fls) (3)
(f(@) = f(s)/(R—f(s)) iff(s)<flg) <R

here, the parameters L and R are defined as follows: when f(s) > 0 then
L = f(s)*0.5 and R = f(s) x1.5; when f(s) > 0 then L = f(s) x 1.5
and R = f(s) x0.5. This fuzzy valuation promotes diversity, in the sense
of cost. Solutions similar in cost to the current one, get very low degrees
of acceptability and those differing in more than 50% with respect to the
cost of the current solution gets the highest degree of acceptability. The
graphical representation of us is shown in Fig. 4 (right).

Although in Protein Structure Prediction one tries to minimize the energy of the

conformation, in this chapter we recast the problem to a maximization problem
by simply multiplying the energies by -1.



Multimeme Algorithms with Fuzzy Logic Based Memes 57

Table 1. HP model test Instances for the 2D Square Lattice.

Instance Sequence Opt Size

11 PPHPPHHPPHHPPPPPHHHHHHHH -22 48
HHPPPPPPHHPPHHPPHPPHHHHH

12 HHPHPHPHPHHHHPHPPPHPPPHPP -21 50
PPHPPPHPPPHPHHHHPHPHPHPHH

13 PPHHHPHHHHHHHHPPPHHHHHHHH -34 60
HHPHPPPHHHHHHHHHHHHPPPPHH
HHHHPHHPHP

14 HHHHHHHHHHHHPHPHPPHHPPHHP -42 64
PHPPHHPPHHPPHPPHHPPHHPPHP
HPHHHHHHHHHHHH

The last element to define a meme is the < value of A >. This parameter
defines the minimum level of acceptability that a solution needs to be consid-
ered as the next solution in the search. Each pair (u(), A) defines a particular
behavior for the meme. For example, with the fuzzy valuation y; and A =1,
the meme will only accept transitions to improving solutions. As A — 0 the
chance to move to cost deteriorating solutions is increased. We can say that as
A increases, the use of yy leads to exploitative memes. In turn, the use of the
fuzzy valuation o leads to explorative memes. The higher values of accept-
ability are assigned to those solution with quite different cost with respect to
that of the current solution. The lower values correspond to solutions similar
in cost. In this work we consider three values for A, where A € {0.4,0.8,1.0}.

Here, we want to stress the overall intended dynamics of our metaheuristic:

e At the local level (i.e. the process of individual local search) FANS memes
perform a fuzzy-based variable-operator and variable-radius local search.

e At the global level (i.e the process of population evolutionary search) the
Multimeme Algorithm is co-adapting solutions to the Protein Structure
Prediction and the best local searcher (i.e. meme) to use in each individual
at different stages of the search.

The metaheuristic searches concurrently on both solution and searcher spaces.

6 Description of Experiments and Results

The experiments were done with the four instances of the HP model in the
square lattice shown in Table 1. For each one, the length of the sequence and
the optimum value of the corresponding structure are described.

We perform two experiments which differ in the size of the mating pool. In
the first one, the memepool has 12 memes which arise from the combination of
the four basic moves, the fuzzy valuation p; and the three values of A. In the



58 D.Pelta and N.Krasnogor

second experiment, the memepool size is 24 after adding 12 more memes which
arise from the use of the fuzzy valuation uo. In this way, we are incorporating
memes promoting diversification. We use also the following parameters that
were used in previous experiments by the authors [12)]:

1. Replacement Strategy: (p = 350, A = 350)

2. Depth of the local search, i.e. number of iterations performed by each
meme application: 3

3. Length of the local search, i.e. max. number of trials allocated in the
neighborhood scheduler of FANS: n/2, with n the length of the sequence.

For each memepool size and instance we performed 30 runs of the MMA.
Each run was allocated 200 generations. The initial population was generated
randomly and consisted of 350 individuals. Two(consecutive)-point muta-
tions and two-point crossover were employed with probabilities 0.2 and 0.8,
respectively. In the case of mutation, the probability was per individual. The
innovation rate was set to /R = 0.2. Tournament selection was used to select
the mating parents and a tournament size of 2 individuals was used.

Three values were recorded at the end of every run: bestF', the fitness of
the best solution found; e2b, the number of fitness evaluations used to reach
the best solution; and eDone, the total amount of evaluations done in the
whole run.

Tables 2, 3, 4 show the average, standard deviation, minimum and max-
imum values obtained for each variable over 30 runs. Each row is named
I <z>m<y > where ¢ € {1,2,3,4} stands for the instance used and
y € {12,24} represents the memepool size used within the MMA. The re-
sults obtained using the implementation of FANS presented in [12] are also
included. FANS was executed 30 times, where each instance ended after 2°
evaluations.

The first thing to notice is that for instances 1 and 3, structures with
higher bonds than the known optima were obtained. For instance 1, a struc-
ture with 23 bonds was found while for instance 3, one with 35 bonds was
obtained. Fig. 5 shows both structures. To the best of our knowledge, such
optimal values were only achieved before in [20]. However, in that paper the
authors do not measure the cost of their algorithm in number of total en-
ergy evaluations so it is impossible to provide comparisons. Moreover, they
enforce a strong bias in the search to regions of the search space that contain
secondary structure information derived from the native structure they are
searching for. In other words, they used specific domain knowledge that is
not present in our algorithm. Having this in mind, we deem our algorithms
as the first blind search method (to the best of the authors knowledge) able
to obtain these novel native structures.

The results in terms of bestF' were quite similar using 12 or 24 memes.
The algorithms using 24 memes had a slightly higher standard deviation and
lower minimum values. The 12 memes version, achieved a higher maximum



Multimeme Algorithms with Fuzzy Logic Based Memes 59

(a) (b)

Fig. 5. New best structures obtained for instances 1, in (a), and instance 3, in (b).

Table 2. Statistics for bestF

Algorithm Mean SD Min Max
ilm12  20.55 097 19.02 23.02
ilm24  20.02 1.23 18.01 23.02
fans-i1  19.35 0.76 18.02 21.02
i2m12 19.98 1.00 18.01 21.01
i2m24 19.98 098 17.01 21.01
fans-i2 18.94 0.74 18.01 20.01
i3ml12 32.82 0.96 31.02 35.02
i3m24  32.15 1.20 29.02 34.02
fans-i3  30.82 0.81 29.02 32.02
i4ml12 3345 1.65 30.02 38.02
i4m24 3347 2.38 28.02 38.02
fans-i4  28.75 1.08 27.02 32.02

value on instance 3. FANS achieved the lowest values of standard deviation,
but the higher ones in terms of the mean.

In terms of e2b, it is clear that the use of 24 memes allowed it to reach
good results with less effort. This situation is reasonable if we consider in
the number of trials that each meme has to perform to obtain an acceptable
solution. Those memes using p2 can obtain acceptable solutions quite easily.
For example, given a value A = 1, the memes using u; need to find solutions
improving the cost, which may result in the use of a high number of trials. On
the contrary, memes using po will accept any transition leading to a decrease in
cost of more than 50%, and this is easy to achieve using a low number of trials.
This aspect is confirmed looking at the statistics for eDone. Considering the
mean, the MMA with 12 memes used approximately 2.35 million evaluations
while the MMA with 24 never used more than 2 millions.

To finish the analysis, two additional aspects are considered. First, Fig.
6 shows the evolution of the average cost of the best individual through the
generations. It can be seen that the use of 12 or 24 memes leads to very similar



60 D.Pelta and N.Krasnogor

Table 3. Statistics for e2b

Algorithm Mean SD Min Max
ilm12 1356104 481405 549691 2269640
ilm24 894661 331121 367357 1510390
fans-il 933126 526296 160522 1960500
i2m12 1109461 545856 362400 2565580
i2m24 675173 198261 447300 1509880
fans-i2 1202764 589958 243614 2000050
13m12 1358837 563218 605457 2790530
i3m24 990789 343991 356614 1599350
fans-i3 1066657 590136 65746 1940400
i4m12 1852648 399233 991046 2356310
i4m?24 1520624 376036 469575 2005740
fans-i4 1074369 562966 76854 1965090

Table 4. Statistics for eDone

Algorithm Mean SD Min Max
ilml12 2310653 218389 1864000 2579590
ilm24 1581614 90237 1396960 1758450
i2m12 2384182 166804 2005530 2739440
i2m24 1630939 79154 1507610 1859810
i3m12 2511524 214088 1997610 2873460
13m24 1678238 86323 1457230 1867790
i4ml12 2468762 213454 2168150 3258060
14m24 1964042 77697 1805970 2147600

patterns of evolution. Looking at the graph for instance 4, we can conclude
that the MMA has not converged when the run finished. This fact may be
considered an explanation about the quite low values of bestF' obtained.
Second, Fig. 7 shows the evolution of the average cost of the average fitness
of the whole population through the generations. It is clear that the use of
diversification memes kept the overall fitness lower (i.e. better solutions)

7 Conclusions

A hybridization strategy between a fuzzy sets-based heuristic, and a Multi-
meme algorithm was proposed and tested.

The construction of the memepool using simplified versions of FANS en-
abled us to obtain a wide range of fuzzy memes, each one with its particular
behavior. The advantage of using FANS as the memes for a MMA over using
adaptive helpers as in [23, 27] is that it is much easier to tune the search of the
memes. Moreover, human knowledge or instance specific knowledge (e.g. sec-
ondary structure information as that used in [20]) can be readily incorporated
into FANS based memes.



Multimeme Algorithms with Fuzzy Logic Based Memes 61

2mt2 -
Q2024 e

(c) (d)

Fig. 6. Evolution of the cost of the best individual vs Generations for test instances
1 (a), 2 (b), 3 (c) and 4 (d) using a MMA with 12 and 24 memes.

The scheduling of memes by the simple inheritance mechanism was proven
successful in the detection of the most suitable fuzzy meme for different stages
of the search. This has been verified in other domains [23, 28], which deems
Multimeme Algorithms a very robust metaheuristic.

The coupled effect of both elements lead to a robust and general purpose
metaheuristic. In the test cases shown in this chapter it was able to improve
previous results in the protein structure prediction problem. We suggest that
this approach can be a powerfull metaheuristic for other combinatorial prob-
lems.

8 Acknowledgments

This research was partially founded by Fundacion Antorchas, Republica Ar-
gentina and supported in part by Project TIC2002-04242-C03-02.

D.A. Pelta is a grant holder from Consejo Nacional de Investigaciones
Cientificas y Técnicas (CONICET), Republica Argentina.



62

D.Pelta and N.Krasnogor

Gy

Fig. 7. Evolution of the cost of the average fitness of the population vs Generations
for test instances 1 (a), 2 (b), 3 (c) and 4 (d) using a MMA with 12 and 24 memes.

References

1.

2.

J. Atkins and W. E. Hart. On the intractability of protein folding with a finite
alphabet. Algorithmica, pages 279-294, 1999.

B. Berger and T. Leight. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. In Proceedings of The Second Annual International Con-
ference on Computational Molecular Biology, RECOMB 98, pages 30-39. ACM
Press, 1998.

L. T. Biegler, T. F. Coleman, A. R. Conn, and F. N. Santosa, editors. Large-Scale
optimization with applications. Part III: Molecular structure and optimization,
volume 94 of The IMA Volumes in Mathematics and its Applications. Springer-
Verlag, New York, 1997.

A. Blanco, D. Pelta, and J. Verdegay. A fuzzy valuation-based local search
framework for combinatorial problems. Journal of Fuzzy Optimization and De-
cision Making, 1(2):177-193, 2002.

B. Carr, W.E. Hart, N. Krasnogor, E. Burke, J. Hirst, and J. Smith. Alignment
of protein structures with a memetic evolutionary algorithm. In GECCO-2002:
Proceedings of the Genetic and Bvolutionary Computation Conference. Morgan
Kaufman, 2002.

T. E. Creighton, editor. Protein Folding. W. H. Freeman and Company, 1993.
P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis.
On the complexity of protein folding. In Proceedings of The Second Annual
International Conference on Computational Molecular Biology, RECOMB 98,
pages 51-62. ACM Press, 1998.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Multimeme Algorithms with Fuzzy Logic Based Memes 63

. K. A. Dill. Theory for the folding and stability of globular proteins. Biochem-

istry, 24:1501, 1985.

. G. Greenwood, B. Lee, J. Shin, and G. Fogel. A survey of recent work on

evolutionary approaches to the protein folding problem. In Proceedings of the
Congress of Evolutionary Computation (CEC), pages 488-495. IEEE, 1999.

M. Khimasia and P. Coveney. Protein structure prediction as a hard opti-
mization problem: The genetic algorithm approach. In Molecular Simulation,
volume 19, pages 205-226, 1997.

N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms.
Ph.D. Thesis, University of the West of England, Bristol, United Kingdom.
(http://dirac.chem.nott.ac.uk/ natk/Public/papers.html), 2002.

N. Krasnogor, B. Blackburne, E. Burke, and J. Hirst. Multimeme algorithms
for protein structure prediction. In Proceedings of the Parallel Problem Solving
from Nature VII. Lecture notes in computer science, 2002.

N. Krasnogor, W.E. Hart, J. Smith, and D. Pelta. Protein structure prediction
with evolutionary algorithms. In W. Banzhaf, J. Daida, A. Eiben, M. Garzon,
V. Honavar, M. Jakaiela, and R. Smith, editors, GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference. Morgan Kaufman, 1999.
N. Krasnogor and D. Pelta. Fuzzy memes in multimeme algorithms: a fuzzy-
evolutionary hybrid. In J. Verdegay, editor, Fuzzy Sets based Heuristics for
Optimization, Studies in Fuzziness and Soft Computing, pages 49-66. Physica
Verlag, 2003.

N. Krasnogor, D. Pelta, P. M. Lopez, P. Mocciola, and E. de la Canal. Genetic
algorithms for the protein folding problem: A critical view. In C. F. E. Alpaydin,
editor, Proceedings of Engineering of Intelligent Systems. ICSC Academic Press,
1998.

N. Krasnogor, D. Pelta, D. H. Marcos, and W. A. Risi. Protein structure predic-
tion as a complex adaptive system. In Proceedings of Frontiers in Evolutionary
Algorithms 1998, 1998.

N. Krasnogor and J. Smith. A memetic algorithm with self-adaptive local search:
TSP as a case study. In Proceedings of the 2000 Genetic and Euvolutionary
Computation Conference. Morgan Kaufmann, 2000.

N. Krasnogor and J. Smith. Emergence of profitable search strategies based
on a simple inheritance mechanism. In Proceedings of the 2001 Genetic and
Evolutionary Computation Conference. Morgan Kaufmann, 2001.

N. Krasnogor and J. Smith. Memetic algorithms: Syntactic model and taxon-
omy. 2001. submitted to The Journal of Heuristics. Available from the authors.
F. Liang and W. Wong. Evolutionary monte carlo for protein folding simula-
tions. Journal of Chemical Physics, 115(7):3374-3380, 2001.

P. M. Pardalos, D. Shalloway, and G. L. Xue, editors. Global minimization of
nonconves energy functions: Molecular conformation and protein folding, vol-
ume 23 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, Providence, Rhode Island, 1996.

A. L. Patton. A standard ga approach to native protein conformation prediction.
In Proceedings of the Sizth International Conference on Genetic Algorithms,
pages 574-581. Morgan Kauffman, 1995.

D. Pelta, A. Blanco, and J. L. Verdegay. A fuzzy adaptive neighborhood search
for function optimization. In Fourth International Conference on Knowledge-
Based Intelligent Engineering Systems & Allied Technologies, KES 2000, vol-
ume 2, pages 594-597, 2000.



64

24.

25.

26.

27.

28.

29.

30.

31.

D.Pelta and N.Krasnogor

D. Pelta, A. Blanco, and J. L. Verdegay. Applying a fuzzy sets-based heuristic
for the protein structure prediction problem. Internation journal of Intelligent
Systems, 17(7):629-643, 2002.

D. Pelta, A. Blanco, and J. L. Verdegay. Fuzzy adaptive neighborhood search:
Examples of application. In J. L. Verdegay, editor, Fuzzy Sets based Heuristics
for Optimization, Studies in Fuzziness and Soft Computing, pages 1-20. Physica-
Verlag, 2003.

D. Pelta, N. Krasnogor, A. Blanco, and J. L. Verdegay. F.a.n.s. for the protein
folding problem: Comparing encodings and search modes. In Fourth Interna-
tional Metaheuristics Conference, MIC 2001, 2001.

A. Piccolboni and G. Mauri. Protein structure prediction as a hard optimiza-
tion problem: The genetic algorithm approach. In N. e. a. Kasabov, editor,
Proceedings of ICONIP ’97. Springer, 1998.

A. A. Rabow and H. A. Scheraga. Improved genetic algorithm for the protein
folding problem by use of a cartesian combination operator. Protein Science,
5:1800~-1815, 1996.

S.-K. S. Genetic algorithms for protein tertiary structure prediction. In Parallel
Problem Solving from Nature - PPSN II. North-Holland, 1992.

R. Unger and J. Moult. A genetic algorithm for three dimensional protein folding
simulations. In Proceedings of the 5th International Conference on Genetic
Algorithms (ICGA-938), pages 581-588. Morgan Kaufmann, 1993.

R. Unger and J. Moult. Genetic algorithms for protein folding simulations.
Journal of Molecular Biology, 231(1):75-81, 1993.



A Memetic Algorithm Solving the VRP,
the CARP and General Routing Problems
with Nodes, Edges and Arcs

Christian Prins and Samir Bouchenoua

LOSI, University of Technology of Troyes

BP 2060, 12 Rue Marie Curie

F-10010 Troyes Cedex, France
{Christian.Prins, Samir.Bouchenoua}Qutt.fr

Summary. The VRP (Vehicle Routing Problem) and the CARP (Capacitated Arc
Routing Problem) involve the routing of vehicles in an undirected network to ser-
vice respectively a set of nodes or a set of arcs. Motivated by applications in waste
collection, we define a more general model called NEARP (Node, Edge and Arc
Routing Problem) for tackling mixed graphs with required nodes, edges and arcs.
A memetic algorithm (MA) is developed for the NEARP. An evaluation on stan-
dard VRP and CARP benchmarks shows that the MA is competitive with most
metaheuristics for these particular cases of the NEARP. We finally propose a set
of NEARP instances, together with the solutions costs achieved by the MA, as a
challenge for other researchers in vehicle routing.

Key words: memetic algorithm, vehicle routing, general routing problem.

1 Introduction

Traditionally, the literature devoted to multi-vehicle routing problems consid-
ers an undirected network and studies two distinct families of problems: node
routing problems and arc routing problems, depending on the entities to be
serviced in the network.

The VRP or Vehicle Routing Problem is a typical representative of node
routing problems. It is usually defined on an undirected network in which
some nodes correspond to customers. Each customer has a weight or demand
for a commodity and a service cost. Each network edge has a travel cost. A
fleet of identical vehicles of limited capacity is based at a depot node. A trip
for a vehicle starts at the depot, visits a sequence of customers, and returns
to the depot. The cost of a trip includes the service costs of its customers and
the costs of each traversed edge.

The VRP consists of designing a set of trips of least total cost, such that
each customer is visited exactly once and the total demand serviced by any



66 C. Prins and S. Bouchenoua

trip does not exceed vehicle capacity. The VRP has important applications in
logistics, for instance in distribution networks. It is unfortunately NP-hard and
exact methods [1] have a limited interest, since some instances with 75 nodes
(and even 50 nodes for the distance-constrained VRP) are not yet solved to
optimality. This is why heuristics are required in practice for tackling real-life
VRP instances. They comprise simple algorithms [2], like the merge heuristic
from Clarke and Wright, and more recent and powerful metaheuristics like
tabu search [3, 4, 5].

Comparatively, arc routing problems have been neglected for a long time
by researchers, but they have raised a growing interest in the two last decades,
mainly because of their applications like urban waste collection or winter
gritting (see the good survey from Assad and Golden [6]). The problem corre-
sponding to the VRP in arc routing is the CARP or Capacitated Arc Routing
Problem. Its definition is similar but this time the tasks to be performed by
the vehicles consist of servicing some edges, for instance spreading salt or
collecting municipal refuse along a street.

The CARP is also NP-hard. Theoretically, it can be converted into an
equivalent node routing problem as shown by Pearn et al. [7]. This transfor-
mation converts a CARP with & required arcs into a VRP with 3k + 1 nodes.
Since the VRP itself is very hard, this increase in size is of course not accept-
able and most researchers prefer to attack the CARP directly. The CARP
seems more difficult than the VRP in practice: the exact solution methods
published are still limited to small instances with at most 20 edges [8]. On
the other hand, Belenguer and Benavent [9] have exploited the rich underly-
ing structure of this problem to design an excellent lower bound, allowing an
accurate evaluation of heuristics.

As for the VRP, the simplest heuristics published for the CARP are con-
structive methods, e.g. Path-Scanning from Golden et al. [10], Augment-Merge
from Golden and Wong [11] and Ulusoy’s tour splitting heuristic {12]. Meta-
heuristics have been designed more recently, like the powerful tabu search
algorithm CARPET from Hertz, Laporte and Mittaz [13] and the genetic al-
gorithms (GAs) from Lacomme, Prins and Ramdane-Chérif [14, 15]. The best
of these GAs is the only algorithm able to reach the lower bound of Belenguer
and Benavent [9] on 21 out of 23 standard instances proposed by DeArmon
[16], containing up to 55 required edges.

Despite the success of metaheuristics for the VRP and the CARP, it is clear
that these two problems cannot formalize the requirements of many real-world
scenarios. Consider for instance urban waste collection. Although most tasks
consist of servicing streets, the problem cannot be modeled as a pure CARP
because of punctual accumulations of waste that must be modeled as required
nodes (hospitals, schools, supermarkets, etc.). Moreover, an undirected graph
can only model 2-way streets whose both sides are collected in parallel and in
any direction (zigzag or bilateral collection, a practice reserved to low-traffic
residential areas). In reality, a street can be a 2-way street with bilateral
collection (giving an edge in the modeled network), a 2-way street with two



A Memetic Algorithm Solving General Routing Problems 67

sides collected independently (giving two opposite arcs), or even a 1-way street
(giving one arc).

Our research is a step towards more generic models and algorithms able to
handle such complications in vehicle routing. Section 2 presents our extended
model, the NEARP or Node, Edge and Arc Routing Problem. It is defined on
a mixed graph with required nodes, edges and arcs and contains the VRP and
the CARP as particular cases. Section 3 describes three simple heuristics for
the NEARP that are used to initialize the memetic algorithm (MA). The third
one, a tour splitting method, plays also a key-role in chromosome evaluation.
The MA itself is developed in section 4. It undergoes in section 5 a preliminary
testing on standard VRP and CARP instances to check its competitiveness
with respect to existing algorithms. A generator of instances for the new
problem is described in section 6. We finally propose in section 7 a set of
NEARP instances with the solution costs computed by the MA, as a challenge
for OR researchers of the vehicle routing community. An appendix provides
the reader with detailed tables of results and a list of formal definitions for
all problems discussed.

2 The Node, Edge and Arc Routing Problem (NEARP)

This section formally defines the NEARP as a new problem generalizing both
the VRP and the CARP and describes data structures for the algorithms of
sections 3 and 4. The NEARP allows a mixed network with required nodes,
edges and arcs. Contrary to the CARP, two distinct costs are handled for each
link: one deadheading cost, i.e., the cost for a traversal without service (called
deadhead by transporters) and one service cost, when the link is traversed to
be treated. The entities to be serviced are directly tackled, i.e. the model does
not rely on a conversion into a CARP or a VRP.

2.1 Problem statement

The NEARP is defined on a strongly connected and loopless mixed network
G = (N, E, A) with three sets of entities: a set N of n nodes, a set of edges
E, and a set of arcs A. We call links the m entities in £ U A. N includes a
depot node s with a fleet of K identical vehicles of capacity W. The number
of vehicles K is a decision variable. Each entity u has a non-negative traversal
cost ¢,,. This cost is null for a node. For a link, it corresponds to a deadheading
traversal (i.e., without service).

Some entities, the tasks, are required, i.e., they need to be processed by
a vehicle. Ng, Er and Apg respectively denote the subset of required nodes
or node-tasks, the subset of required edges or edge-tasks, and the subset of
required arcs or arc-tasks. Their cardinalities are respectively denoted by v, €
and a. T = v+e+a denotes the total number of tasks. Each tasku = 1,2,...,7
has a non-negative demand ¢, and a non-negative processing cost p,. To



68 C. Prins and S. Bouchenoua

ensure feasibility, we assume that no demand exceeds W. Theoretically, all
costs and demands should be integers, but our implementation accepts real
numbers to handle some Euclidean instances from literature in section 5.

Any feasible vehicle trip must start from the depot, process a sequence
of tasks whose total demand does not exceed W, and return to the depot.
Its cost includes the processing costs of its tasks (required nodes, edges and
arcs) and the traversal costs of the links used to travel from the depot to the
first task, from each task to the subsequent one, and from the last task to the
depot. The next subsection introduces data structures allowing to specify the
cost of a trip by a concise formula.

Any feasible solution is a set of feasible trips covering all tasks. Tasks
cannot be preempted, i.e., each task must appear in exactly one trip and only
once in the sequence of tasks of that trip. Recall that the number of trips
actually used, K, is not imposed but is part of the solution. The cost of a
solution is the sum of its trip costs.

The NEARP consists of determining a least-cost solution. Clearly, this
is a new problem that generalizes the VRP and the CARP: the VRP is the
particular case with A = @ and Er = 0, while the CARP correspondsto A =
and Ng = {. The General Routing Problem (GRP) is another special case of
the NEARP, introduced by Orloff in 1974 [17]. In this generalization of the
well-known Traveling Salesman Problem (TSP), one single vehicle must visit
a subset of nodes and a subset of edges in an undirected graph to minimize
the total mileage. Hence, the NEARP could also be called Mized Capacitated
GRP or MCGRP.

2.2 Internal network representation

QOur algorithms rely on an internal network in which all entities (nodes and
links) are encoded with the same attributes and stored in a common list L,
indexed from 1 to n+ |A| + 2| E|. The attributes for entity v are a begin node
by, an end node e, a traversal cost ¢, a demand g, a processing cost p,, and
a pointer inv(u) explained below.

By convention, we set b, = e, and ¢,, = 0 if entity u is a node: no confusion
with a link is possible, since G is loopless. The required entities (tasks) are the
ones with non-zero demands. Each required edge is encoded as two opposite
arcs v and z linked thanks to their pointers inv, i.e., e, = b,, e, = by,
inv(u) = z and inv(z) = u. These two arcs inherit their demands and their
costs from the edge. Any arc or non-required edge u is such that inv(u) = 0.
If u is a node, then inv(u) = u by convention. Therefore, the three sets of
tasks can be concisely defined by equations 1-3.

Nr={uv€L:b,=eyAgy>0Ainv(u) =u} (1)
Ep={ueL:b,#e,Nq,>0Ninv(u) #u} (2)
AR ={u € L:by # ey, A gy > 0N inv(u) =0} (3)



A Memetic Algorithm Solving General Routing Problems 69

The costs of the shortest paths between any two entities can be pre-
computed between their two end-nodes using Dijkstra’s algorithm [18], result-
ing in a distance matrix D, n x n. A trip 0 is defined as a list (61,605,...,6;)
of task indexes, with a total demand load(f#) < W and a total cost cost(d)
defined by equations 4 and 5. Implicitly, 8 starts and ends at the depot and
shortest paths are assumed to connect the successive steps. A solution 7T is a
list (T1,Ts,...,Tk) of K vehicle trips (recall that K is a decision variable).
Its cost is the sum of its trip costs. Each task appears exactly once in T' and
each edge-task occurs as one of its two opposite arcs.

t

load(9) = Z q(6;) (4)
=1
t—1
cost(8) = d(s,b(61)) + Y _ (p(6:) + d(e(6:),b(6:41))) + p(6y) + d(e(6r),s) (5)
=1

3 Three simple heuristics for the NEARP

These heuristics are briefly described before the MA, because they are used to
provide the initial population of the MA with good solutions. Moreover, the
splitting technique of the third heuristic is also used in the MA for chromosome
evaluation.

3.1 Nearest neighbor heuristic

Our Nearest Neighbor Heuristic or NNH adapts to the NEARP the Path-
Scanning heuristic proposed by Golden and Wong for the CARP [10]. NNH is a
sequential heuristic building the trips one by one until all tasks are processed.
In building each trip, the sequence of tasks is extended at each iteration
by joining the nearest free task z, until vehicle capacity W is exhausted. In
NEARP instances with a majority of required links, the distance between the
last task of the trip and the nearest free tasks is often zero, for instance when
the tasks correspond to adjacent streets.

So, five rules are used to break ties among nearest tasks: 1) maximize the
distance d,; to the depot, 2) minimize this distance, 3) maximize a kind of
yield ¢, /p., 4) minimize this yield, 5) use rule 1 if the vehicle is less than half-
full, else use rule 2. NNH computes one complete NEARP solution for each
rule and returns the best one. A small example is given for rule 1 in Figure
1. Each black square represents a required node and each thick segment a
required link. Thin lines correspond to shortest paths. The last task of the
trip in construction is link u. The two nearest free tasks are node a and edge
b, since dy, = dyp = 3. NNH will select edge b because dps > dgs.



70 C. Prins and S. Bouchenoua

= depot

Fig. 1. Basic step of heuristic NNH with rule 1.

3.2 Merge heuristic

Our Merge heuristic or MH corresponds to the Clarke and Wright method
for the VRP [2] and to the Augment-Merge heuristic for the CARP [11]. It
starts with a trivial solution with 7 trips reduced to one task. Then, each
iteration evaluates the merger (concatenation) of any two trips, subject to W.
For instance, in Figure 2, merging T; and T yields a saving of 8 +6 — 10 = 4.
MH merges the two trips with the largest positive savings. This process is
repeated until no such merger is possible.

Trip T; Trip T

VAVER 4
\

m depot

Fig. 2. Concatenation of two trips in the Merge Heuristic (MH).

Note that there exist up to 8 possible mergers for two trips 7; and Tj:
one can put T; before or after T; and each trip may be inverted or not. In
fact, the direction of each edge-task is changed in an inverted trip: e.g., if a
trip contains a subsequence of two edge-tasks (u, z), then the inverted trip
will contain the subsequence (inv(z),inv(u)). This also holds for a node u
with inv(u) = u. Finally, the only case where a trip cannot be inverted is the
presence of at least one arc-task u, since inv(u) = 0. In a real network, this
occurs when a trip goes thru one-way streets.

3.3 Tour splitting heuristic

The Tour Splitting Heuristic or TSH extends a CARP algorithm from Ulusoy
[12]. First, TSH relaxes vehicle capacity to build a giant tour S servicing



A Memetic Algorithm Solving General Routing Problems 71

all tasks. This can be done by any heuristic, for instance NNH called with
W = oo. Figure 3 shows such a giant tour S = (a,b,c,d, e), with two node-
tasks b and d and three required links a, ¢ and e. The demand and processing
cost of each task are given in brackets. An optimal procedure Split is then
called to cut S into capacity-feasible trips.

¢ (5,5) cost 40, load 5
R
b (3,5) d(1,5) .
] 20 15 n n Trip 2 -
10 1 14 9
12 10 Trip | Trip 3
a (4,5) e (4,7) cost 51, load 7 cost 51, load 5
[ | [ |
20 depot 16 depot
a) one giant tour S = (a,b,c,d,e) with 5 tasks c¢) Resulting trips

(demand and service cost in brackets)

bed (30)

be (56) m
A -
a(37)> b (27) ¢ (40) d(33))”5 e (33)
7

0

37 > 51 ——9( > 142

N A s

b) Auxiliary graph and shortest path for W=9 (labels in each node)

Fig. 3. Principle of the Tour Splitting Heuristic (T'SH).

Split builds an auxiliary graph H with 7 4+ 1 nodes indexed from 0 to 7.
Each subsequence (S;, Si4+1,...,9;) of S that could give a capacity-feasible
trip gives in H as one arc (i — 1,7), weighted by the cost of the trip. This
auxiliary graph is given in figure 3 for W = 9. Since H is acyclic by definition
and contains O(7?) arcs, a shortest path from node 0 to node 7 can be com-
puted in O(7?) using Bellman’s algorithm [18]. The resulting shortest path
(boldface) indicates where to split the giant trip. It corresponds to a solution
with 3 trips and a total cost equal to 142. Our implementation of TSH splits 5
giant trips, obtained by calling NNH with an infinite capacity and one priority
rule at a time (see subsection 3.1). The best solution obtained is returned.

4 A memetic algorithm for the NEARP

4.1 Chromosomes and evaluation

A chromosome is simply defined as a sequence S of 7 task indexes, without
trip delimiters. It is almost a permutation chromosome because each task



72 C. Prins and S. Bouchenoua

appears exactly once in S. However, each edge-task may appear as one of
its two opposite arcs. Clearly, S does not directly represent a valid NEARP
solution but it can be considered as a giant tour for a vehicle of infinite
capacity. The Split procedure described in 3.3 for the TSH heuristic is used
to extract from S the best possible NEARP solution. The guiding function
F(S) is nothing more than the cost of this solution. The following claim
shows that the validity property stressed by Moscato in [19] holds. Hence,
a memetic algorithm combining such chromosomes is expected to find an
optimal NEARP solution.

Claim. The proposed chromosome structure is a valid representation.

Proof. By definition, Split converts any chromosome into an optimal NEARP
solution (subject to the sequence order). Moreover, there ezists at least one
optimal chromosome: consider any optimal NEARP solution and concatenate
its trips in any order. [

4.2 Extended OX crossover

Thanks to chromosomes without trip delimiters, classical crossovers for per-
mutation chromosomes can be used for the NEARP. We quickly obtained good
results by adapting the classical Order Crossover or OX, developed by Oliver
et al. for the TSP [20]. This chromosome works well for cyclic permutations.
Although a NEARP solution is not (strictly speaking) a permutation, it can
be viewed as a cyclic list of trips because there is no reason to give a special
role to a “first” or “last” trip.

Given two parents P; and P, of length 7, OX randomly draws two posi-
tions 7 and j with 1 <4 < j < 7. To build the first child Cj, the substring
Py(3)... Py(j) is first copied into C;(¢)...C1(j). The tasks P2(j +1)... P2(7)
and P(1)...Py(i — 1) are then examined in that order. The tasks which are
not yet present in C; are used to fill the empty slots of (i, in the order
Ci1(j+1)...Ci(1),C1(1)...C1(i — 1).

Rank: 1 2 3 4 5 6 7 8 9
i=4 j=6
4 4
PL : 1 3 216 4 519 7 8
P2 : 3 7 811 4 912 5 6
ct : 8 1 9 6 4 5 2 3 7
c2 : 2 6 5 1 4 9 7 8 3

Fig. 4. Example of OX crossover

This process is illustrated by Figure 4. The other child C; is obtained in a
similar way, by inverting the roles of P, and P». For the NEARP, the classical



A Memetic Algorithm Solving General Routing Problems 73

crossover must be adapted to take edge directions into account, i.e. a task «
may be copied from P; to C; only if both w and inv(u) are not already in the
child. The extended crossover can be implemented in O(r).

4.3 Local search procedure

To get a memetic algorithm, a local search procedure (LSP) replaces the muta-
tion operator traditionally applied to new solutions created by recombination
(children) after a crossover. Since LSP cannot work on chromosomes (with-
out trip delimiters), the input chromosome S must be converted first into a
NEARP solution, using the Split procedure of 3.3 LSP performs successive
phases that scan in O(7?) the following types of moves, depicted in figures 5
and 6.

Flip one task a, i.e., replace a by inv(a) in its trip,

Move one task a after another task or after the depot,

Move two consecutive tasks a and b after another task or after the depot,
Swap two tasks a and b,

2-opt moves depicted in figure 6.

en — f en —— f en ma——— f
c ¢
- [ | -
| b € l d I b | d | b | d
a [ ] g [ ] a [ ]
| inv(a)I 8 I 8
& depot m depot u depot
Initial trip Flip a Move g before a
e — f em — f
- ¢ a
c
a | [ | g a | IL
n depot m depot
Move ¢ and fafter ¢ Swapcand g

Fig. 5. Simple moves in the Local Search Procedure.

All these moves can be applied to one or two trips. Moreover, each task a
moved to another location or swapped with another task may be inserted as
a or inv(a). For instance, the third move (move two tasks a and b) comprises
in fact four distinct sub-cases: insert o and b, inv(a) and b, a and inv(b), or
inv(a) and inv(b).



74 C. Prins and S. Bouchenoua

b/ \\c inv(by \\inv(c)
a/der \d a/ \d

[nitial trip Cross paths u-x and v-y

/Tl\\z dl /TI\V dl /TI\Y il T2

/ CT2 / LN /invb inv(c
rdeﬁm\” \,/ 4 _\ \,/ 4 _<>\ <\/

Initial trips Cross a-b and c-d: case | Cross a-b and ¢-d: case 2

Fig. 6. 2-OPT moves on one trip and on two trips.

Each phase ends by performing the first improving move detected or when
all moves have been examined. The loop on phases stops when a phase re-
ports no improvement. The resulting NEARP solution is converted back into
a chromosome by concatenating the tasks of its trips. In all cases, LSP termi-
nates by applying Split to the result, because this sometimes decreases a bit
the total cost.

On big instances, the neighborhood cardinality O(r?) leads to very time-
consuming local searches, that typically absorb 95% of the total MA running
time. To remedy this drawback, a classical neighbourhood reduction technique
is used. We define for each task a list neib(a) that contains the 7 tasks sorted
in increasing order of distance to a and a threshold thresh between 1 and 7.
Then, each iteration of the local search is restricted to all pairs (a,b), such
that b belongs to the thresh first tasks in neib(a).

4.4 Population structure and initialization

The population is stored in an array II of nc chromosomes, kept sorted in in-
creasing order of costs (computed by Split). So, the best solution corresponds
to I1;. Identical solutions (clones) are forbidden to prevent a premature con-
vergence of the MA (amplified by the local search) and to favour a better
dispersal of solutions. Instead of an exact clone detection (e.g., using hashing
methods), we adopt a simpler system in which the costs of any two solutions
S1, S» must be spaced at least by a constant A > 0, i.e., |F(S1)— F(S2)] < A.
This condition is called the A-property. Its simplest form for integer costs is
A =1, ensuring solutions with distinct costs.



A Memetic Algorithm Solving General Routing Problems 75

At the beginning, the heuristics NNH, MH and TSH described in section 3
are executed. The local search procedure LSP of 4.3 is applied to the solutions
computed by NNH and TSH, and after each merger for the Merge Heuristic
MH. The resulting solutions are converted into chromosomes by concatenating
their trips and stored in II. The population is then completed by random
chromosomes. On very small problems, it may be difficult to satisfy the A-
property, especially if nc is large. In practice, we try up to mnt times to draw
a random I, such that the A-property holds for I1; . ... In case of failure,
the number of chromosomes nc is truncated to k — 1.

Large populations raise another problem. During the MA, some crossovers
are unproductive because their children violate the A-property and cannot be
kept. The percentage of unproductive crossovers quickly increases with nc and
with the local search rate. It is tolerable (less than 5%) if the population is
relatively small (30-40 chromosomes) and if less than 20% of children undergo
the local search.

Compared to the MA template proposed by Moscato [19], note that the
local search is applied to the three initial heuristic solutions, but not to the
random ones: because of the small population size, we are obliged to do so to
have a sufficient dispersal of initial solutions and a better exploration of the
solution space.

4.5 Basic iteration and stopping criteria

Each iteration of the MA starts by selecting two parents P; and P by bi-
nary tournament: two chromosomes are randomly selected and the best one
becomes Py, this process is repeated to get Pa. The extended OX crossover
(4.2) is applied to generate two children C; and Cs. One child C is selected at
random, evaluated by Split, and improved by local search (4.3) with a fixed
probability pls. An existing chromosome Il is drawn above the median cost
(k > nc/2) to be replaced by C. The replacement is performed only iff the
A-property holds for (IT'\ {II;}) U {C}.

The MA stops after a maximum number of iterations mni, after a maxi-
mum number of crossovers without improving the best solution (II;) mniwi,
or when a lower bound LB known for some instances is achieved.

4.6 Overall MA structure

The overall MA structure is given by Algorithm 1. The parameters are the
population size ne, the minimal cost spacing A between any two solutions,
the maximum number of tries mnt to get each initial random chromosome,
the local search rate pls, the maximum number of iterations (crossovers) mni,
the maximum number of iterations without improving the best solution mnuwi
and the lower bound LB.



76 C. Prins and S. Bouchenoua

Memetic Algorithm:
Begin
run heuristics NNH, MH, TSH and improve solutions with LSP;
discard solutions violating the A-property;
convert the remaining solutions into chromosomes, by concatenating their trips;
II « {resulting chromosomes};
complete Il with random chromosomes satisfying the A-property;
sort II in increasing cost order;
ni, niwi < 0;
Repeat Until ( (ni = mni) or (niwi = mniwi) or (F(II;) = LB) ) Do
nt — ni + 1;
select two parents P; and P, by binary tournament;
apply 0X to Pi;, P» and choose one child C at random;
evaluate C with Split;
If (random < pls) Then
improve C with the local search procedure LSP;
endIf
draw k at random between |nc¢/2| and nc included;
If (IT\ {IIx} U {C} satisfies the A-property) Then

Hk L C;
If (F(C)< F(I1;)) Then
niwi + 0;
Else
niwi 4 niwi + 1;
endIf
shift II; to keep II sorted;
endIf
endDo

End.

Fig. 7. Overall MA structure

5 Preliminary testing on VRP and CARP instances

5.1 Implementation and instances

The heuristics and the memetic algorithm have been programmed in the
Pascal-like language Delphi version 5 and tested on a 1 GHz Pentium IIT PC
with Windows 98. Before running the MA on NEARP instances, for which
no published algorithm is available for comparison, we decided to test it on
standard VRP and CARP instances.

The selected set of CARP instances (gdb files) contains 25 undirected
problems built by DeArmon [16] and used by almost all algorithms published
for the CARP. They can be downloaded on the Internet [21]. Instances 8 and
9 are discarded by all authors because they contain inconsistencies. The other



A Memetic Algorithm Solving General Routing Problems 77

files contain 7 to 27 nodes and 11 to 55 edges. All data are integers and all
edges are required.

An excellent lower bound [9] is available for all these instances. The opti-
mum is known for 21 instances out of 23, thanks to the tabu search CARPET
of Hertz et al. [13] and the genetic algorithm of Lacomme et al. [15]. The only
two remaining open instances are gdb10 and gdb14. In spite of their relatively
small size, the gdb instances are not so easy: for example, no constructive
heuristic is able to solve more than two problems to optimality.

The set of VRP instances contains 14 Euclidean problems proposed by
Christofides et al. [22]. They can be downloaded for instance from the OR
Library [23]. They have 50 to 199 nodes. The network is complete and the costs
are real numbers corresponding to the Euclidean distances between nodes.
Files 6 to 10, 13 and 14 contain a route-length restriction. This constraint
is easily handled by the MA, by ignoring the too long trips in the auxiliary
graph built by the chromosome evaluation procedure Split (see 3.3).

The best-known solution costs to Christofides instances have been com-
puted by various tabu search algorithms (TS) and simulated annealing proce-
dures. They can be found for example in Gendreau et al. [3] and in Golden et
al. [4]. As underlined by these authors, double-precision computations must
be used to avoid cumulating rounding errors and to guarantee meaningful
comparisons between final solution costs. No tight lower bound is available,
but the best exact methods have proved that the solution values found for
files 1 and 12 are in fact optimal.

5.2 Results for CARP instances

The MA parameters used for the gdb instances are nc = 30, A = 1, mnt = 60,
pls = 0.1, mni = 20000 and mniwi = 6000. Since these instances are not too
large, the local search is set to a full aperture, i.e., thresh = 7 (see 4.3).

Table 1 gathers the results for the CARP. The columns show, from left to
right, the file name, the number of nodes n, the number of links m (equal to 7,
since all edges are required), the best known solution value (BK.S), the results
obtained by the heuristics NNH, MH and TSH (followed by one call to the
local search) and by the MA. The same setting of parameters is applied to all
instances, except in the last column Best MA that reports the best solutions
found with various settings during our experiments. The CPU time is given
in seconds for all algorithms. The two last rows give the average deviation to
the lower bound in % and the number of best solutions retrieved.

The MA solves 17 out of 23 instances to optimality, within reasonable
CPU times (42 seconds on average, max. 4 minutes). The average deviation
to the bound is quite small: 0.43%. To compare with, the best tabu search
published [13] finds 18 optima, but with a slightly greater deviation of 0.48%.
Using various settings, only two instances are improved (gdbl! and gdb24).



78 C. Prins and S. Bouchenoua
5.3 Results for VRP instances

Table 2 reports the results found for the VRP in nearly the same format as
table 1. However, the numbers of edges are here omitted because the networks
are complete and, due to the lack of good lower bounds, the Average row now
gives the average deviation to best-known solutions.

The MA parameters used this time are nc = 30, A = 0.5, mnt = 60, pls =
0.5, mni = 20000 and mniwi = 6000. Neighborhood aperture is reduced to
thresh = 2 x maz{10,7%%}. After the first phase with up to 20000 crossovers,
the MA performs four short restarts of 2500 crossovers, in which the 7 worst
chromosomes are replaced by random ones.

The MA finds 3 best-known solutions and the average deviation to best
solutions is very small: 0.39%. The CPU time (10 minutes on average) exceeds
30 min only for one of the two largest instances with 199 nodes (vrpnci10, 42
min). In [4], Golden et al. list the results obtained by the 10 best TS methods
for the VRP, which find 3 to 12 best-known solutions. Using several settings of
parameters (Best MA column), the MA would be at rank 3 in this comparison,
after three TS methods that respectively retrieve 12, 10 and 8 best-known
solutions.

In a preliminary version of the MA, there was no neighborhood reduction
technique in the local search and no restart. The average solution cost was
only a bit larger, but the CPU time was excessive, exceeding 1 hour for four
instances and reaching 2 hours and 53 minutes on vrpncl0.

The possibility of using a tabu search step for diversification has not been
used for three reasons. Firstly, tabu search competitors are already available
for the CARP and the VRP, so we wanted to develop in contrast a “pure”
evolutionary algorithm. Secondly, a sufficient diversification seems to be pro-
vided by the restarts. Thirdly, we do not strictly follow Moscato’s template
and two features favour a good dispersal of solutions in the search space: a)
the local search is not systematic and b) the population contains at any step
distinct solutions.

6 Random generator of NEARP instances

A random generator has been designed to build NEARP instances. These
networks are mixed, planar, strongly connected and imitate the shape of real
street networks. The generation starts with a rectangle of basic squares. At
the beginning, only the nodes at the corners of the basic squares exist, see a)
in figure 8.

Four modifications can be applied to each square (see b) in figure 8): split
vertically (V), horizontally (H), along the 1st diagonal (D1) and along the 2nd
one (D2). Note that V and H create two new nodes and that a square may
undergo up to four modifications. As from two, a central node is created to
preserve planarity. We obtain in that way a planar undirected graph (see c)



A Memetic Algorithm Solving General Routing Problems 79

in figure 8). Since this graph is too regular, each node is randomly moved in a
small circle. At this stage, provisional lengths in meters can be computed from
node coordinates. To simulate streets that are a bit curved (without drawing
them), a second perturbation consists of applying a random growth factor to
each length (between 0 and 10% for instance).

Each edge is then converted into a one-way street with a given probability,
by suppressing at random one of the two internal arcs that code the edge. Of
course, strong connectivity is preserved. Traversal costs are computed from
the length of each link, assuming an average deadheading speed of vehicles.
Then, we decide for each link if its is required. If yes, we draw a non-zero
demand at random.

L J & L » s = w . -
L] -
. L] .. L ] * . L 3
- L) ] . ) _ :’_err:caf. H'e.rx:o.m:{
. L ] . . . w. - -
st divgonal Ind diagonal
4} ]niﬁal prid with basic squares h} Randem modifications of squares
2 4
1 Ty 4 5 1 . A 5
» e & @ . . .
. ol o] $ & o o o7 B a9 e
o! RERNE IS ol e o 13 ., o
o o7 68 or
ol o '.'20 el se Y > .
¢} Planar result with node numbers : ¢j Random distoriions

Fig. 8. Principles of random generation.

Finally, we decide for each 2-way street if it must be considered as one
edge. If yes, the two arcs are linked with the inv pointer (see subsection 2.2)
and the edge demand is the sum of quantities of the two sides. The processing
cost of each task is computed as a function of its length, its demand, and
a given vehicle processing speed. The instance generation ends by drawing
vehicle capacity and depot location.

7 Selected set of NEARP instances with M A solutions

The generator has been used to build 23 large scale NEARP instances listed
in table 3, with n = 11 — 150 nodes, m = |A| + 2| E| = 29 — 311 internal arcs
and 7 = 20 — 212 tasks. The tasks comprise v = 3 — 93 node-tasks, ¢ = 0 — 94



80 C. Prins and S. Bouchenoua

edge-tasks, and @ = 0 — 149 arc-tasks. All these files can be requested by an
e-mail sent to the authors.

These networks are comparable in size to the ones observed in waste col-
lection applications. Of course, the whole network of a big town can be much
larger, but the collecting process is divided into sectors in practice. This de-
fines an independent NEARP in each sector, with typically 100-200 street
segments.

The MA parameters already applied to the VRP (including the restarts)
are used, except A = 1 instead of A = 0.5, because all costs are integers in our
NEARP instances. The results of the MA are listed in table 3. The average
running time is 8 minutes of CPU time (max. 23 minutes). No published algo-
rithm can be used for comparison and no good lower bound is available. This
is why the table reports average deviations to the best MA solutions obtained
by using various sets of parameters. However, by extrapolating the very good
results achieved on the CARP and on the VRP, we think that the solutions
values computed for the NEARP are quite good and other researchers are
invited to try to obtain better results.

8 Conclusion

This paper presents a new problem, the NEARP, that generalizes the VRP
and the CARP, and a memetic algorithm to solve it. Computational testing on
standard VRP and CARP instances show that the MA can compete with the
best metaheuristics published for these particular cases of the NEARP. Using
a dedicated random network generator, we have built a set of 23 NEARP in-
stances to evaluate the MA in the general case. The results are promising but
the time spent in the local search procedure seems affected by the number of
required nodes and should be improved by using more efficient neighborhoods
for the instances with a majority of node-tasks. Beyond these interesting re-
sults, the main interest of this research is to solve several classical routing
problems with one single algorithm.

References

1. Toth P, Vigo D (1998) Exact solution of the Vehicle Routing Problem. In:
Crainic TG, Laporte G (eds) Fleet management and logistics, 1-31. Kluwer,
Boston.

2. Laporte G, Gendreau M, Potvin JY, Semet F (2000) Classical and modern
heuristics for the Vehicle Routing Problem. International Transactions in Op-
erational Research 7:285-300.

3. Gendreau M, Laporte G, Potvin JY (1998) Metaheuristics for the Vehicle Rout-
ing problem. GERAD research report G-98-52, Montréal, Canada.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Memetic Algorithm Solving General Routing Problems 81

Golden BL, Wasil EA, Kelly JP, Chao IM (1998) The impact of metaheuris-
tics on solving the Vehicle Routing Problem: algorithms, problem sets, and
computational results. In: Crainic TG, Laporte G (eds) Fleet management and
logistics, 33-56. Kluwer, Boston.

Toth P, Vigo D. The granular tabu search and its application to the Vehicle
Routing Problem. To appear in INFORMS Journal on Computing.

Assad AA, Golden BL (1995) Arc routing methods and applications. In: Ball
MO et al. (eds) Handbooks in OR and MS, volume 8, 375-483. Elsevier.
Pearn WL, Assad A, Golden BL (1987) Transforming arc routing into node
routing problems. Computers and Operations Research 14:285-288.
Hirabayashi R, Saruwatari Y, Nishida N (1992) Tour construction algorithm
for the Capacitated Arc Routing Problem. Asia-Pacific Journal of Operational
Research 9:155-175.

Belenguer JM, Benavent E (2003) A cutting plane algorithm for the Capaci-
tated Arc Routing Problem. Computers and Operations Research 30(5):705—
728.

Golden BL, DeArmon JS, Baker EK (1983) Computational experiments with
algorithms for a class of routing problems. Computers and Operations Research
10:47-59.

Golden BL, Wong RT (1981) Capacitated arc routing problems, Networks
11:305-315.

Ulusoy G (1985) The fleet size and mix problem for capacitated arc routing.
European Journal of Operational Research 22:329-337.

Hertz A, Laporte G, Mittaz M (2000) A tabu search Heuristic for the Capaci-
tated Arc Routing Problem. Operations Research 48:129-135.

Lacomme P, Prins C, Ramdane-Chérif W (2001) A genetic algorithm for the
Capacitated Arc Routing Problem and its extensions. In: Boers EJW et al. (eds)
Applications of evolutionnary computing. Lecture Notes in Computer Science
2037, 473-483. Springer, Berlin.

Lacomme P, Prins C, Ramdane-Chérif W. Competitive memetic algorithms for
arc routing problems. To appear in Annals of Operations Research.

DeArmon JS (1981) A comparison of heuristics for the Capacitated Chinese
Postman Problem. Master’s thesis, The University of Maryland at College Park,
MD, USA.

Orloff CS (1974) A fundamental problem in vehicle routing. Networks 4:35-64.
Cormen TH, Leiserson CL, Rivest ML, Stein C (2001) Introduction to algo-
rithms, 2nd edition. The MIT Press, Cambridge, MA.

Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D,
Dorigo M and Glover F. (eds) New ideas in optimization, 219-234. McGraw-
Hill.

Oliver IM, Smith DJ, Holland JRC (1987) A study of permutation crossover
operators on the traveling salesman problem. In: Grefenstette JJ (ed) Proceed-
ings of the 2nd Int. Conf. on Genetic Algorithms, 224-230. Lawrence Erlbaum,
Hillsdale, NJ.

Belenguer JM, Benavent E. Directory with 3 sets of CARP instances. Web site:
http://www.uv.es/ belengue/carp.html.

Christofides N, Mingozzi A, Toth P (1979) The Vehicle Routing Problem. In:
Christofides N, Mingozzi A, Toth P, Sandi C (eds) Combinatorial optimization,
315-338. Wiley.



82 C. Prins and S. Bouchenoua

23. Beasley JE. Set of VRP instances from the OR library. Web site:
http://mscmga.ms.ic.ac.uk/jeb/orlib/vrpinfo.html.

24. Crescenzi P, Kann V. A compendium of NP optimization problem. Web site:
http://www.nada.kth.se/ viggo/wwwcompendium/node103.html.

Appendix

The problems studied in this paper can be described in the style used by
Crescenzi and Kann [24] for their compendium of NP optimisation problems.
The most general problem is the NEARP. Its highest-level particular cases
are the CARP and the VRP. These three problems are not listed in the com-
pendium.

Node, Edge and Arc routing problem (NEARP)

INSTANCE: Mixed graph G = (V, E, A), initial vertex s € V, vehicle
capacity W € IN, subset Vg C V, subset Eg C E, subset Ag C A,
traversal cost ¢{u) € IN for each “entity” v € VUEUA, demand ¢(u) € IN
and processing cost p(u) € IN for each required entity (task) v € Vg U
ErUARg.

SOLUTION: A set of cycles (trips), each containing the initial vertex s,
that may traverse each entity any number of times but process each task
exactly once. The total demand processed by any trip cannot exceed W.
MEASURE: The total cost of the trips, to be minimized. The cost of a
trip comprises the processing costs of its serviced tasks and the traversal
costs of the entities used for connecting these tasks.

Vehicle Routing Problem (VRP)

INSTANCE: Complete undirected graph G = (V, E), initial vertex s € V,
vehicle capacity W € IN Jlength c(e) € IN for each e € E, demand ¢(%) €
IN foreachi € V.

SOLUTION: A set of cycles (trips), each containing the initial vertex s,
that collectively traverses every node at least once. A node must be ser-
viced by one single trip and the total demand processed by any trip cannot
exceed W.

MEASURE: The total cost of the trips, to be minimized. The cost of a
trip is the sum of its traversed edges.

Capacitated Arc Routing Problem (CARP)

INSTANCE: Undirected graph G = (V, E), initial vertex s € V, vehicle
capacity W € IN, subset Er C E, length c(e) € IN and demand g(e) € IN
for each edge e € R.



A Memetic Algorithm Solving General Routing Problems 83

e SOLUTION: A set of cycles (trips), each containing the initial vertex s,
that collectively traverse each edge of Eg at least once. Each edge of Er
must be serviced by one single trip and the total demand processed by any
trip cannot exceed W.

e MEASURE: The total cost of the trips, to be minimized. The cost of a
trip comprises the costs of its traversed edges, serviced or not.

However, the following special cases can be found in the compendium:

the minimum travelling salesperson, an uncapacitated version of the VRP,
the minimum Chinese postman for mized graphs (an uncapacitated version
of the CARP, but with a mixed network instead of an undirected one,

o the minimum general routing problem, which is an uncapacitated and undi-
rected particular case of the NEARP.

Table 1. Computational results for CARP instances (see 5.2)

File n m LB BKS NNH+LS MH+LS TSH+LS MA Time BestMA

1 12 22 316 316%* 345 323 316* 316« < 0.01 316%
2 12 26 339 339% 345 359 352 339% 15.87 339*
3 12 22 275 275% 285 296 283  275% 1.10 275%
4 11 19 287 287+ 287+« 315 322 287 < 0.01 287%
5 13 26 377 377* 395 395 383 377% 16.47 377*
6 12 22 298 298% 313 319 316 298%* 1.81 298%
7 12 22 325 325% 346 326% 333 325% < 0.01 325*
10 27 46 344 348 387 372 389 350 198.77 350

11 27 51 303 303+* 339 329 346 311 115.12 309

12 12 25 275 275% 285 285 301 275% 1.21 275%
13 22 45 395 395* 430 427 412  395% 48.72 395*
14 13 23 450 458 498 474 520 458= 16.09 458=
15 10 28 536 536* 556 548 548 544 28.78 544

16 7 21 100 100x* 100% 106 106 100* < 0.01 100*
17 7 21 58 58+ 58+ 60 58 58+ < 0.01 58%
18 8 28 127 127%* 129 135 133 127% 8.24 127+
19 8 28 91 91 91% 93 91 91x < 0.01 91%
20 9 36 164 164x* 167 182 174 164+ 0.88 164+
21 8 11 55 55% 55% 61 63 55¢ < 0.01 55+

22 11 22 121 121 123 125 125 121=* 37.51 121%*
23 11 33 156 156% 158 162 160 156+% 7.36 156%
24 11 44 200 200% 205 205 207 202 235.96 201
25 11 55 233 233+* 235 239 239 235 229.31 235

Average 0.13% 4.01% 5.47% 5.71%0.43% 41.88s 0.36}

BKS retrieved 5 1 3 18 18

Times in seconds on a 1 GHz PC. Average deviations to LB in %.

Asterisks denote proven optima, ’=’ best-known solutions retrieved



84 C. Prins and S. Bouchenoua

Table 2. Computational results for VRP instances (see comments in 5.3)

File =n BKS NNH+LS MH+LS  TSH+LS MA Time BestMA
1 50 b524.61x b578.84 548.58 566.70 524.93 62.40 524.61=
2 75 835.26 910.74 896.30 906.01 836.81 149.45 835.26=
3 100 826.14 863.23 872.52 867.40 829.72 300.71 827.39
4 160 1028.42 1138.94 1127.93 1062.56 1032.82 788.89 1032.82
5 199 1291.45 13566.11 1377.05 1371.20 1303.09 1698.62 1303.09
6 50 555.43 611.79 618.39 567.98 555.43= 112.32 555.43=
7 75 909.68 942.82 967.52 998.77 912.89 171.756 909.68=
8 100 865.94 924.65 910.23 898.75 866.87 320.22 865.94=
9 150 1162.55 1256.80 1280.49 1263.57 1169.69 1121.47 1169.69
10 199 1395.85 1530.77 1512.90 1524.74 1417.57 2539.26 1409.76
11 120 1042.11 1112.95 1052.81 10659.67 1045.55 342.41 1042.11=
12 100 819.56*% 825.38 820.92 828.75 819.56% 1.70 819.56=
13 120 1541.14 1600.49 1573.23 1575.03 1548.58 924.61 1546.78
14 100 866.37 958.70 868.62 893.24 866.37= 284.18 866.37=
Average 7.13%  5.62%  5.20%  0.39% 629.86s  0.25}
BKS retrieved 0 0 0 3 8

Times in s on a 1 GHz PC. Average deviations to BKS in .

Asterisks denote proven optima, ’=’ best-known solution retrieved.



A Memetic Algorithm Solving General Routing Problems

85

Table 3. Computational results for the new NEARP instances (see section 7)

File n m T v € o« NNH+LS MH+LS TSH+LS MA Time BestMA
1 21 66 48 11 0 37 2853 2972 2878 2632 108.31 2589
2 68 246 185 36 0 149 13275 13195 13371 12336 1078.46 12241
3 31 96 79 16 8 55 4223 4164 4168 3702 157.04 3669
4 53 186 98 10 75 13 8121 8395 8436 7583 548.10 7583
5 32 656 65 23 4 38 5160 5048 5144 4562 100.02 4544
6 49 100 108 40 4 64 7760 7515 7826 7087 204.49 7087
7 75 166 168 54 8 106 10585 10536 10572 9974 662.62 9748
8 77 174 177 63 6 108 11685 11695 12112 10714 767.64 10658
9 29 8 50 6 39 5 4274 4274 4272 4041 140.83 4038
10 56 204 107 4 94 9 8190 8312 8248 7755 843.17 7582
11 69 241 82 65 6 11 5057 4716 4907 4503 414.68 4494
12 38 71 53 1 0 52 3429 3308 3532 3235 71.30 3235
13 150 294 141 79 2 60 10530 9756 10018 9339 550.57 9110
14 94 332 93 93 0 O 9296 8834 9106 8615 357.24 8566
15 52 182 91 0 91 O 9164 8785 9066 8359 390.19 8340
16 71 138 169 36 0 133 10205 9847 10498 9389 536.13 8933
17 42 134 63 16 16 31 4555 4775 4617 4165 116.12 4037
18 117 212 127 39 0 88 8001 8311 8087 7411 475.65 7254
19 126 311 212 61 9 142 17877 17605 18166 17036 1273.39 16554
20 43 133 73 38 2 33 5555 5127 5405 4918 164.56 4844
21 60 206 180 55 68 57 20023 19883 19702 18509 1370.61 18201
22 256 68 42 7 10 25 2187 2321 2222 1941 65.75 1941
23 11 29 20 3 2 15 784 780 820 780 20.38 780
Average 10.07% 8.87% 10.49% 1.26% 452.92s 0%
Solns of Best MA retrieved 0 1 0 5 23

Times in seconds on a 1 GHz PC. Average deviations to best MA taken as reference, in %.



Using Memetic Algorithms for Optimal
Calibration of Automotive Internal
Combustion Engines

Kosmas Knddler, Jan Poland, Peter Merz, and Andreas Zell

University of Tiibingen, Computer Science Department
Sand 1, D-72076 Tiibingen, Germany
knoedler@informatik.uni-tuebingen.de

Summary. Many combinatorial optimization problems occur in the calibration of
modern automotive combustion engines . In this contribution, simple hill-climbing
algorithms (HCs) for three special problems are incorporated in Memetic Algorithms
(MAs) using specific crossover and mutation operators. First, the k-exchange algo-
rithm as a well known technique of D-optimal design of experiments (DOE) is
improved. Second, a (near-)optimum test bed measurement scheduling (TBS) as a
variant of the traveling salesman problem (TSP) is calculated, and third, the final
design of look-up tables (LTD) for electronic control units is optimized. It is shown
that in all cases MAs that work on locally optimal solutions calculated by the corre-
sponding HCs significantly improve former results using Genetic Algorithms (GAs).
The algorithms have been successfully applied at BMW Group Munich.

1 Introduction

Nowadays, a vastly increasing number of technical functions satisfy the cus-
tomer demands for optimal performance of automotive combustion engines.
Moreover, they provide the only way to fulfill the legal rules for fuel consump-
tion and exhaust emissions. On the other side, the calibration of the corre-
sponding control functions running within the micro controller of an electronic
control unit becomes more and more sophisticated. Many tasks that have
been tackled manually for former generations of combustion engines need to
be solved in a new way to guarantee optimality of control strategies. For clar-
ity reasons, the engine’s parameter space is considered to be spanned by five
main parameters, the engine speed, the air mass flow, the inlet valve spread
and the ezhaust valve spread, and the ignition timing angle. Here, the engine
speed and the air mass flow define the operating point of an engine. Most
other parameters, particularly the named parameters, correspond to special
engine functions that are controlled depending on the current operating point.
For every control function there is a look-up table stored within the electronic



88 Kosmas Kndédler, Jan Poland, Peter Merz, and Andreas Zell

Control Function

Air Mass Flow Engine Speed

Fig. 1. A lookup table approximates a continuous control function depending on
the operating points, i.e. the engine speed and the air mass flow. For the current
operating point, the micro controller within the electronic control unit calculates
the optimal value of the control function by bi-linear interpolation.

control unit. The micro controller uses the current operating point of the en-
gine to calculate the new settings for the valve spreads and the ignition timing
angle by bi-linear interpolation. Figure 1 shows an example look-up table for
a general control function. At every operating point there is a unique value
for the control function.

Here, three combinatorial optimization problems are considered. To see
where these problems are located within the calibration process for automotive
combustion engines, figure 2 shows the main steps in the workflow. The three
blocks with gray background label the three combinatorial problems.

At the beginning there is the design of experiments (DOE). Consider here
the example of a full factorial grid in the above mentioned parameter space
with 10 units in each dimension. This would lead to a total number of 105
measurement points. To record all engine characteristics at one specific mea-
surement point up to three minutes are necessary, which is very expensive.
The idea of DOE is therefore, to generate a reduced list of measuring points,
that contains only those measurement candidates that lead to the best re-
gression model of predefined order. Section 3 will give further details on this
topic.

Although DOE can reduce the number of measurements significantly, the
measuring process at test beds is still a significant factor in the calibration
process. It is important to note that the change of parameter settings at
test beds can lead to strong oscillations of the engine system and hence to
a long relaxation time after which the recording of measuring channels can
start. Especially the variations of the engine speed and of the air mass flow
can cost a lot. Therefore an optimal test bed schedule (TBS), i.e. an optimal



Using MAs for Optimal Calibration of Automotive Combustion Engines 89

Parameter I
Optimization
‘ /hsorcllcally
Optimal Model
Measuring Parameters
Points
Ninienal Computer
of':;';'c.i', Engine Model

Validated
Optimal
Parameters

Measuring Measuring
Schedule Results

Test Bed
(Verification)
Measurement

Fig. 2. A workflow for the calibration of modern automotive combustion engines.
The combinatorial problems D-optimal design of experiments, optimal test bed
schedules, and final design of look-up tables are tackled by Memetic Algorithms.

measuring order is calculated to reduce these oscillations. This problem is a
higher dimensional variant of the traveling salesman problem (TSP) consid-
ering Hamiltonian paths instead of cycles and using a non-standard metric.
It will be discussed in section 4.

The next three steps are discussed together. First, the results of the mea-
surement process at test beds are primarily the fuel consumption and exhaust
emissions at the different points within the parameter space. Second, by means
of these results computer engine models for the global functions for the fuel
consumption and for the exhaust emissions are calculated. Here, artificial neu-
ral networks and polynomial regression models are used. Third, the generated
models are used to determine the parameter combinations at every operating
point that lead to the optimum fuel consumption and exhaust emissions. As
optimization algorithms, both classical optimization and Evolutionary Algo-
rithms are used. In order to decide whether the models are accurate enough
to represent the real engine behavior, verification measurements need to be
performed at the test bed. The previous steps might be repeated until the
results are satisfying.

Another combinatorial optimization problem occurs in the final step of the
workflow, i.e. a final look-up table design (LTD). After the modeling and the
optimization process, there might be more than one parameter combination
available at each operating point. One reason for this situation is the use of
different model types with most probably different landscapes and therefore
different optimum points. Second, one model usually provides multiple local
optima. All the candidates lead to acceptably good values for both the fuel
consumption and the exhaust emissions. Hence, it is not clear a priori, which
candidate should be chosen at each operating point in order to define the
unique look-up tables for the electronic control unit. First, consider only one



90 Kosmas Knddler, Jan Poland, Peter Merz, and Andreas Zell

look-up table, e.g. the one in figure 1. At each grid point there would be a
set of candidates with quite different function values. Now, a criterion for the
usefulness of one candidate is needed. In order to provide optimal behavior
of the engine, the global smoothness of the map defined by the look-up table
is considered. Especially mechanically adjusted actuators need smooth maps
to guarantee easy transitions between parameter settings. In this case, it is
”only” necessary to select those candidates simultaneously, which define the
smoothest map. For this case it could be shown in [1], that the corresponding
selection problem is NP-hard. Within the application process normally sev-
eral look-up tables need to be considered simultaneously, which constitutes
a multi-objective combinatorial NP-hard optimization problem: Consider the
situation, that one candidate has already been selected at every operating
point. To perform a new candidate choice at a specific operating point within
the next iteration, you are forced to select all components of an optimum pa-
rameter vector. L.e., the new choice might improve the smoothness of the inlet
valve spread look-up table, but on the other side it worsens the smoothness
of the exhaust valve spread and of the ignition timing angle look-up tables.

In section 2.1, the general framework of the Memetic Algorithms (MAs,
see e.g. [2] or [3]) and the hill-climbing algorithms (HCs) employed in the
studies is presented. In the following sections 3, 4, and 5 the three combinato-
rial optimization problems introduced above are described in more technical
detail. Every section includes results of the MAs for several test instances.
For comparison, results of the heuristics and of the pure or hybrid Genetic
Algorithms (GAs, see e.g. [4]) are given, too. Here, hybrid GAs use the well-
known problem specific heuristics to mutate individuals with typically small
mutation rates.

2 Hill-Climbing and Memetic Algorithms

MAs are characterized by the strict application of local search algorithms
after the initial generation of individuals, and after each evolutionary opera-
tion, i.e. after each crossover and mutation (see [2] for an introduction). The
pseudo code for the MAs presented in this paper in figure 3 is taken from [3].
The framework is rather simple, since it does not utilize spatially structured
or tree-structured populations. The same framework has been used in the
studies of several other combinatorial optimization problems, including the
graph-bipartitioning problem ([26]), the quadratic assignment problem ([27]),
the BEuclidean traveling salesman problem ([28]), and binary quadratic pro-
gramming ([29]), with great success.

In contrast to other hybrid Evolutionary Algorithms, local search is applied
to all newly created individuals after recombination or mutation. The standard
MA performs crossover and mutation operation strictly separated from each
other (MA1), which is unlike the GAs. Here, also a second non-standard MA
following the sequential use of crossover and mutation in GAs is used (MA2).



Using MAs for Optimal Calibration of Automotive Combustion Engines 91

procedure Memetic Algorithm;
begin
for j:=1to p do
I := generateSolution();
I := Local-Search(I);
add individual I to P;
endfor;
repeat
for ¢ :=1 to peross - 4 do
select two parents I,, Iy € P randomly;
I, := Recombine(I,, Ip);
I. := Local-Search(I.);
add individual I, to P';
endfor;
for ¢ :=1 to pmus - p do
select an individual I € P randomly;
I, := Mutate(I);
I, := Local-Search(Iy,);
add individual I, to P’;
endfor;
P := select(P U P');
if converged(P) then P := Local-Search(Mutate(P));
until terminate=true;
end;

Fig. 3. The Standard Memetic Algorithm: All individuals in the populations rep-
resent local optima. Crossover and mutation are applied independently from each
other.

The number of individuals that are chosen from a population of size u to
apply crossover and mutation operations are given by peross - ¢ and D - 1,
respectively.

If the algorithm has converged, e.g. if there was no change in the fitness
value for a specific number of generations, every individual but the best one
is mutated. Afterwards, local search is applied to produce a population of
local optima. This diversification is a high level mutation operation, working
on the whole population, not on single individuals. Therefore, this kind of
mutation is called meta mutation ([3]) or cataclysmic mutation ([9]). Here,
the convergence is tested by controlling the number of generations without
changes in optimal fitness, and by comparing the individuals in the current
population.

D-optimal design of experiments, for the optimal test bed scheduling as
TSP variant, and for the optimal final lookup table design are given. Since in
all three combinatorial optimization problems considered in this contribution



92 Kosmas Knddler, Jan Poland, Peter Merz, and Andreas Zell

procedure Hill-Climber;
repeat N times
Generate neighboring solution s’ from s;
if fitness(s') > fitness(s) then s := s';
end repeat;
return s;

Fig. 4. A Hill-Climbing Algorithm as example for a possible local search operation
in the Memetic Algorithm given in figure 3.

hill-climbing algorithms (HCs) are used as local search, the pseudo code is
given in figure 4. These HCs are characterized by the repetition of specific
mutations to search in the neighborhood of the current solution for a certain
number of times. A new solution of the corresponding problem is accepted, if
its fitness is better than the fitness of the former solution. Here, the neighbor-
hood of the current solution is searched in random order and the number of
iterations is limited to N. A local optimum with respect to the neighborhood
may not be reached after N iterations. Therefore, additional applications of
the hill-climber may result in improved solutions. More systematic and there-
fore more sophisticated local search heuristics might bring further benefit.

In the following sections after the description of each problem, results of
the MAs compared to the conventional and hybrid GAs are presented. Hybrid
GA means the use of local search algorithms for mutation with (typical for
GAs) small mutation probability. Hybrid GAs are used for the two problems,
D-optimal design of experiment and for the optimal test bed scheduling. All
the figures for result presentation use mean fitness values from 20 runs of the
algorithms. Since minimization problems are considered here, smaller values
within the plot mean better results. The error bars display the range between
the minimum and the maximum result achieved by the corresponding algo-
rithm.

3 D-optimal Design of Experiments

Given are n candidates z1,...,z, defined by n points uy,...,u, in the en-
gine’s parameter space and a regression type, e.g. a polynomial model for
the fuel consumption or the exhaust emission. For the 2-dimensional case the
j =1...p candidates x; = (1,u1;,uz;,u};, u3;, urjuz;)” define a 2-nd order
model for the points (u1,u2;)5_; - By the choice of p < n candidates indicated
by £ = (J1,...,7p) € {1...p}?, the design matrix is defined by

T
X§ = (:l}jl ....’IIJ'P) 3



Using MAs for Optimal Calibration of Automotive Combustion Engines 93

i.e. X¢ is the matrix formed by the chosen candidates. Consider a model

y:X€ﬁ+€7

which is linear in the coefficients. The random vector € is normally distributed
with N(0,02-1d), i.e. a normal distribution with mean value zero and variance
a? - Id. The observation vector y has size p. A least square estimate,

B=(XFXe) ' XTy,

is optimized by its minimal covariance matrix (X g , X¢)1o? using appropriate
candidates ji,...,Jp. Of course, there are alternative minimum criteria for a
matrix. Here, the D-optimality criterion is considered, that is characterized
by a minimized det((X] X¢)™") or equivalently maximized det(X7 X¢).

Designs with size |p| > po may dominate the evolution since they might
have larger determinants. To avoid this development, a dynamic fitness func-
tion (see e.g. [10] for this topic) should be used. An initial estimate do of the
optimum obtained by a single run of the heuristic algorithm helps to define a
non-stationary fitness function:

#(6) = det (XFXe)™) + C(1) - Lgispo - (I€] = 20) - do.

Larger designs are punished depending on the size difference || — po and the
actual generation ¢. An increasing sigmoid function C(t) is used, that ensures
in each generation, that the design £ minimizing the fitness function will have
a size of |¢| = po.

For the use of GAs and MAs, an efficient representation of a design individ-
ual is a list coding, consisting of the numerically ordered indices of all points
contained in a design ([11]). If the desired size of the design pp is not too small,
the optimal design may contain repetitions, i.e. candidates that occur two or
more times. This fact seems not to be very intuitive at a first glance, but it can
be illustrated by a simple example. Consider a linear model in one dimension
with n = 10 equidistant candidate points. Then the best way to choose py = 4
candidates is to take the minimum point and the maximum point each twice.
This kind of encoding allows the use of standard mutation. For a GA all the
lists should have a fixed length, but on the other hand during the process of
optimization it is desirable to try and combine designs of different size. There-
fore, the lists have the fixed length of 2 - py, and the unused entries are filled
with 0. Note that the alphabet used for this representation has size n+ 1. The
use of binary coded individuals, where bit position j is set to 1 if candidate
j is included in the design, performed worse and does not allow repetitions.
In contrast to binary representation, of course the list representation requires
a different crossover operator (see figure 5 for an illustration of a crossover
operation on designs). More explicitly, the uniform crossover operator on two
lists ¢; and ¢p producing ¢ and ¢4 reads as follows: Take the smaller of the



94 Kosmas Knddler, Jan Poland, Peter Merz, and Andreas Zell

.To e
-0 Fo0 0 "o,
[ o l, ™. o 4 ° ‘.,
HI - IO Q. o [ o™
; 0 0 o : °
b0 o . 60 o ° %o¢
! . & : . H
H 0 e 4 : .
botol © o bote *0od
D e ° s 050 o e ,° o © 0 :
2.9t 00 2.9 0.2.¢

EE oy

o} o o il o
o gl .., o iy °

°i" a8 0", 0:i9 0 g,

oio® ©o¢ coio © O %

G e O : e . o
od o : oa od o o 9’0
oé.'l o°g od,* . 00
o 2. greeeee @en S8 L R # %0

Fig. 5. Illustration of a suitable crossover operation on designs in 2 dimensions.
Filled circles indicate points that are included within the design. The upper offspring
design inherits the good properties of both parent designs.

first elements of ¢; or ¢; and remove it. With probability 1/2, add it to c3 or
¢4, respectively. If the first elements of ¢; and ¢g are equal, remove them from
both ¢; and ¢2 and add them to both ¢z and ¢4. Repeat these steps until both
c1 and ¢2 are empty.

3.1 The k-exchange Algorithm for DOE

The DETMAX and the k-exchange algorithms are common hill-climbing algo-
rithms for the construction of D-optimal DOE. These algorithms are heuristics
based on sequentially exchanging bad candidates for better ones (see [12] for a
comparison). Here, only the k-exchange algorithm is used. Depending on the
actual size p and the desired final size py of the design £, the algorithm adds
or removes a candidate z;, if this leads to a larger or smaller determinant.
The new determinant can be expressed in terms of the old one, e.g. for the
addition process:

det ((XF z;) (XexT ) = det(XIXe) - (1 + 2] (X{ Xe)'wy)

The candidate which maximizes the term (1 + 7 (X' X,)™'x;) is added. For
the removal process, the candidate z; that minimizes 1 — z] (X g Xe)la; is
chosen. The k-exchange algorithm takes into account, that it might not be op-
timal to add the candidate for which 1427 (X[ X¢)~'=; attains its maximum,
if afterwards the formula 1 — z] (X X¢)~'a; forces the removal of the wrong
candidate. The addition and the removal form one step, which requires N - p
instead of p examinations. To keep this number lower, one can consider only



Using MAs for Optimal Calibration of Automotive Combustion Engines 95

4~dim data set with 1260 points, p,=64, 3-rd order model

L

e 4-dim dala set with 6561 points, =100, 3-rd order mode!
1 T

mean fitness and erar bars
maan finess and errar bars

k-exchange Hybrid GA MA1 MA2 k-exchange Hybrid GA [y MAZ

Fig. 6. Comparison of the D-optimal construction of designs for two data sets. k-
exchange labels the pure local search algorithm, the hybrid GA uses local search as
mutation operation with pmy: = 0.08. The standard and the non-standard Memetic
Algorithms MA1 and MA2 perform comparably well.

the best & candidates for addition and the worst k& candidates for removal.
Thus, there are k? terms of which the maximum is to be found. Since the
addition or removal of candidates can be evaluated with the above mentioned
efficient update formulas for the determinant, the resulting heuristic does not
need to evaluate the whole fitness function and thus becomes very efficient,
too.

3.2 Results for the D-optimal Design of Experiment

For the construction of D-optimal DOEs two different data sets are tested.
The larger one consists of 6561 points in four dimensions. By means of a third
order polynomial model, a design of size 100 candidates is calculated. The left
part of figure 6 shows the results of 20 runs. To compare the results of the
Memetic Algorithms a hybrid GA is used. It performs local search as mutation
operation with typically small mutation rate p.; = 0.08. Both Memetic
Algorithms find better solutions than the hybrid GA and significantly better
than the k-exchange heuristic algorithm. The standard MA (MA1) performs
slightly better than the non-standard MA (MAZ2). The second data set is given
by real world application. It consists of 1280 points in four dimensions. The
final design size is 64 and a third order polynomial model is used, too. The
results are shown in the right part of figure 6.

The parameters for the GAs are: Population size u = 40, number of off-
spring A = 40, maximum number of generations ¢,,,, = 100, mutation prob-
ability pmnu: = 0.08, crossover probability per.ss = 0.6, tournament selection
with 7 individuals, a niching technique with v = 4 and a niche factor of
0.1. The additional parameters of the MA are the number of individuals for
crossover and mutation which are calculated by peress - 2 With peross = 0.5 and



96 Kosmas Knddler, Jan Poland, Peter Merz, and Andreas Zell

X2 X

Fig. 7. Visualization of a small data set for optimal test bed scheduling in 3 dimen-
sions. On the path through the parameter space first all 3 and z2 variations are
measured before the x; value is changed.

by Dt - b With pmye = 0.5 respectively, and a number N = 1000 iterations
for the hill-climbing.

4 Test Bed Scheduling as TSP Variant

Although DOE improves the situation, concerning the total time requirement
of the calibration process, the measuring process at test beds is still a signifi-
cant factor. Certain changes in the parameter setting during the measurements
result in stronger undesired system oscillations than others, and therefore slow
down the data recording. The idea is to calculate an optimized measuring or-
der before starting the measuring process ([13]). Less oscillations also yield
more robustness and better reproducibility.

Assume a parameter space of dimension D with N measuring points z.
Concerning the engine behavior, changing the operating points, i.e. the engine
speed (z1) and the air mass flow (z3), is more critical than changing the
other engine parameters like the valve spreads (z3, ..., z4). Therefore, in the
calculation of an ordered list of measuring points, more weight lies on the
range spanned by z; and x5, i.e. the operating range. Figure 7 shows a way
in a 3-dimensional parameter space, that takes this knowledge into account.

The described problem is a TSP variant. The ordering of the measuring
points differs in two respects from the original TSP: First, Hamiltonian paths
instead of cycles are of interest, where the z-point with minimal parameter
value for each dimension is used as a starting point. Second, the path must
be driven in certain directions in order to achieve sufficiently short relaxation
times. Hence, instead of the standard Euclidean distance a non-standard met-
ric is used to determine the length of a path. For the use of GAs and MAs,



Using MAs for Optimal Calibration of Automotive Combustion Engines 97

Fig. 8. Visualization of two TSP heuristics: the left arrow represents the 2-opt
algorithm, the right arrow represents the random node insertion algorithm.

it was shown earlier, that adjacency coding for list representations of TSP
paths, i.e. a locus-based coding, works much better than time-based coding.
This was originally suggested in [14]. Again, this kind of coding does not di-
rectly allow standard crossover and standard mutation techniques, because
this would lead to infeasible offspring. Therefore, repairing algorithms need to
be performed after each genetic operation. They are described in detail in [15]
and [16]. Roughly speaking, they replace or insert multiple or missing points
according to the order within the parent individuals.

To introduce an objective function for this problem, the distance between
two points x and Z is defined by their Euclidean distance plus the sum of
weighted z; distances:

d
d(:E,i’) = “lL‘ - 57”2 -+ Zwi . |1171; - i’i[.

=1

Now an appropriate fitness function for an individual p is defined by

sp) = N5 d(@r),zri 1),

where p is a permutation of {1,..., N} representing a path. Note that the
first entry in p is fixed since the starting point is fixed. The weights w; help
to prefer paths that run mainly parallel to the coordinate axis z; and change
the critical parameter less frequently.

4.1 A Hill-Climber for the TSP

For the problem of calculating test bed schedules (TBSs), an algorithm sim-
ilar to the 2-opt TSP heuristic ([17],[18]) is used to calculate local optimal



98 Kosmas Knddler, Jan Poland, Peter Merz, and Andreas Zell

x10* 5-cim data set with 319 points «16* G-chn data set with 319 poinis

relative finess and ewor bars
telative filnass and aor bars

i

Fig. 9. Comparison of the mean values of the results for the TBS for two data sets.
The error bars show the minimum and the maximum values. GA1/2: Hybrid GA
with pmu: = 0.1/0.5. The non-standard Memetic Algorithm MA2 performs better
than the standard Memetic Algorithm MA1.

paths through the system’s parameter space. This algorithm changes 2 edges
between randomly chosen points (see left arrow in figure 8). Here, a combi-
nation of this algorithm with a node insertion is used as hill-climbing algo-
rithm. Node insertion takes a randomly selected point and positions it to a
randomly chosen other position in the path ([19]). The right arrow in figure 8
visualizes this mechanism. Of course, the more sophisticated systematic Lin-
Kernighan local search algorithm ([20]) can be used as well (see e.g. [3] for
this topic). Nevertheless, the 2-opt variant is sufficient for the scope of this
paper to demonstrate the improvement of a MA. Also the 2-opt variant needs
no complete fitness evaluation and is hence very efficient.

4.2 Results for the Test Bed Scheduling

For the TBS problem, instead of mutation, the hill-climbing algorithm is per-
formed. Here, additional mutation operations like the non-sequential 4-change
for the TSP ([20]) may lead to further improvement, because of more efficient
diversification. Here, 2 data sets with 319 points in 5 and in 6 dimensions are
used. The algorithm parameters are: u = 100, A = 100, ¢,,,4, = 1000, heuristic
mutation with ppye = {0.1,0.5}, Peress = 0.6, tournament selection with 4
individuals, v = 10, niche factor 0.4. The MA use 319 - 1000 hill-climbing
iterations, peross = 0.5, and Py = 0.5. Again the hybrid Genetic Algorithms
GA1 and GA2 perform local search as mutation operation with pp, = 0.1
and pnue = 0.5 respectively. Figure 9 shows the results of 20 runs. The non-
standard Memetic Algorithm MA2 performs best. This is probably due to the
higher number of hill-climbing iterations.



Using MAs for Optimal Calibration of Automotive Combustion Engines 99

Inlet Valve Spread
Exhaust Valve Spread

2
AirMassFlow L D, Engine Speed Air Mass Flow 1P Engine Speed

Fig. 10. Result of modeling and optimization: The look-up tables for two control
functions are shown. Taking a candidate that is labeled with a diamond at one grid
position of the first look-up table, automatically forces to take the diamond at the
same grid position of the second look-up table.

5 Final Look-up Table Design

After the optimization of the engine by means of different engine models and
optimization methods, normally several optimum parameter candidates result
at each grid position of a look-up table. These candidates vary only slightly
in their quality, i.e. the resulting fuel consumption and exhaust emission, but
may differ significantly in their parameter combinations. Since the final look-
up table that is stored within the electronic control unit has to be well-defined,
a final selection task has to be performed. Figure 10 shows two example look-
up tables, where the actual choice might be sub-optimal. At the same grid
point of the set of look-up tables it is the only way to choose equally la-
beled candidates, because the resulting parameter vector of one modeling and
optimization branch can’t be split. This would surely lead to a worse engine
behavior, i.e. an increased fuel consumption and worse exhaust emissions. But
at, different grid points, squares, diamonds, triangles or circles could be bet-
ter. Before the final optimum candidates are selected at each operating point,
a distinction is necessary: There are mechanically adjusted parameters like
the valve spreads that are set by the camshaft, and there are electrically or
electronically adjusted parameters like the ignition timing angle. Mechanical
adjustment means a waiting time, until the desired value is reached. There-
fore it is important that the maps defined by look-up tables are sufficiently
smooth to ensure fast transitions. Other actuators or parameters are adjusted
electrically or electronically, e.g. the ignition timing angle. In this case there
is less need for smooth transitions.

At each operating point the candidate has to be selected, which together
with the chosen candidates at the other grid points leads to the smoothest
map. In [1] the problem of composing the smoothest map from such a set of
candidates was shown to be NP-hard for an abstract smoothness criterion.
For the use of GAs, an appropriate representation of the possible solutions



100 Kosmas Knédler, Jan Poland, Peter Merz, and Andreas Zell

has to be defined. Here, the direct encoding of the chosen candidates, which
results in a variable alphabet is used. Each grid point j corresponds to one
position of a chromosome to take n; different values, one for each candidate
available. A chromosome v has the form:

N
v = (), € Q{1...n;}.
j=1

Here, N is the number of grid points defining the look-up tables, and n; is the
number of available candidates at (z7,z3). Consider the look-up tables for the
inlet valve spread and for the exhaust valve spread displayed in figure 10. At 20
grid points there are (nj)ff__l ={1,1,2,4,3,3,3,2,1,4,3,2,3,2,4,3,3,3,1,3}
candidates available. Candidates labeled by the same symbol result from the
modeling step using the same model. E.g. candidates labeled by squares and
diamonds result from two kinds of artificial neural networks. Candidates la-
beled by triangles and circles result from two polynomial models of different
order respectively. The individual that defines the meshes in figure 10 is

v=(1,1,1,3,1,2,2,1,1,4,3,1,3,2,2,3,3,1,1,3)

Note that variable alphabet coding allows the application of standard mu-
tation, and standard crossover operations, like uniform crossover or n-point
Crossover.

We use an objective function similar to the one introduced in [21] to get
a suitable smoothness criterion for a map M; defined by the corresponding
look-up table,

where the term neigh(i, j) is 1 for neighboring grid points, otherwise 0. For the
multi-objective problem of smoothing ¢ = 1,...,n maps M; simultaneously,
e.g. the look-up tables for the valve spreads, an aggregation with weighting
factors w; is used:

S(Mu, ..., My) =) wi- (M),
i=1

Using more sophisticated Pareto techniques for multi-objective optimization
turned out to give no further improvements but needs significantly more func-
tion evaluations.

5.1 A Neighborhood Algorithm for the LTD

In a certain number of iterations, a random grid point is chosen. At this
grid point those candidates, which define the most similar optimal param-
eter vector to the vectors defined by the presently chosen candidates at its



Using MAs for Optimal Calibration of Automotive Combustion Engines 101

1 .

. grid points I
0.9r L ] [ [ ) randomly chosen grid point H
neighboring grid points
0.8y L] ® ® ) ® ® ° °
0.7} ) ) ) ) ) L] ® ) °
0.6 ® L] L] [ ] ° ° ° ®
0.5r ® ® ® ° ° ° ° ° ° 1
0.4 ° [ @ ° ® ® ° ° ) 4
03 e @ ® @ e o o o o
02t © o @® e o o o o o |
0.1 [ ® ® ® ® ] [ ® ® 4
0 i 1 1 i
0 0.2 0.4 0.6 0.8 1

Fig. 11. One step of the neighborhood algorithm for the final look-up table design.

4 neighboring grid points is selected. The similarity between the vectors is
given by the Euclidean distance between the vector at the chosen grid point
and the mean of the vectors defined by the already selected candidates at the
surrounding grid points over all look-up tables (see figure 11). Since the neigh-
borhood heuristic works locally, it is not necessary to evaluate the complete
fitness function for each iteration.

5.2 Results for the Final Look-up Table Design

Figure 12 shows the results of the final look-up table design for two data sets.
For every data set a number of 20 runs was performed. A grid of size (25 x 25)
with 6 to 10 candidates per grid point is used. The number of simultaneously
composed look-up tables is 2 for the first data set, and 4 for the second. For
the solution of the second problem with 4 look-up tables the described hill-
climbing algorithm turned out to reach its limits. For the second data set, the
GA with heuristic initialization performs better than the MAs.

The algorithm parameters are: p = 40, A = 40, t;0, = 10000, Py =
0.0016, 3-point crossover on 2-dimensional encoded individuals, p¢ress = 0.6,
tournament selection with 4 individuals, v = 2, niche factor 0.1. The MA uses
hill-climbing with 5000 iterations, peross = 0.5, P = 0.5.

6 Conclusions

In this contribution, three combinatorial optimization problems occurring in
the optimal calibration of automotive combustion engines have been discussed.



102 Kosmas Knédler, Jan Poland, Peter Merz, and Andreas Zell

2100k-up tablas at {25 x 25) grid, 6~10 candidates per grid point 4 look-up tables at (26 25) grid, 6-10 candidates per grid point

refative fitnass and arror bars

Fig. 12. Results for the final design of look-up tables (LTD). GA1: Standard Genetic
Algorithm, GA2: Standard Genetic Algorithm with an initial population calculated
by the heuristic. For the case of two look-up tables the best results were achieved by
the standard and the non-standard Memetic Algorithm MA1 and MA2. The best
results for four look-up tables are given by the GA2. This shows that the power of
the heuristic decreases with increasing numbers of look-up tables.

Since the D-optimal design of experiments (DOE), test bed scheduling (TBS),
and final look-up table design (LTD) are NP-hard problems, effective heuris-
tics are required to arrive at (near-)optimum solutions. New Memetic Algo-
rithms (MAs) using simple hill-climbers as local search have been proposed
for the three problems and several experiments have been conducted to assess
their effectiveness. The results demonstrate that MAs give further improve-
ments to the solution of these three problems compared to previously devel-
oped algorithms. In particular, the MAs have been shown to be superior to
GAs. In most cases, not only traditional GAs but also the hybrid GAs are
inferior to the consequent application of local search algorithms after each
evolutionary operation. To compensate the high number of fitness evaluations
of MAs, the number of generations was increased for the use of GAs. Thereby,
approximately the same number of fitness evaluations were achieved. This did
not result in any further improvements of the results. Moreover, another pos-
sibility was considered: The increase of population size. Here, population sizes
up to u = 200 individuals turned out to give no benefit, also.

The results of the experiments can be summarized as follows: For LTD,
the new results for the first data set with 2 look-up tables obtained by the
MAs were up to 4% better than those obtained by the GAs. For the second
data set, the GA with a near-optimum initial population performed best. For
the other two problems the differences are even more severe: For the TBS,
improvements of 17% compared to the hill-climbing and of 6% compared to
the hybrid GAs were achieved. For the DOE improvements of up to 26%
compared to the hill-climbing and of 4% compared to the hybrid GAs were
achieved.



Using MAs for Optimal Calibration of Automotive Combustion Engines 103

Future work will cover further crossover and mutation operators, and sys-
tematic local search algorithms for all three problems. Especially for the TBS
problem, systematic local search algorithms like the Lin-Kernighan algorithm
with the non-sequential 4-change mutation ([20]) will be considered.

Acknowledgments.

We would like to thank Thomas Fleischhauer, and Frank Zuber-Goos at BMW
Group Munich for helpful discussions. This research has been supported by
the BMBF (grant no. 01 IB 805 A/1).

References

1. Poland, J.: Finding smooth maps is NP-complete. Information Processing
Letters 85 (2003) 249-253

2. Moscato, P.: Memetic algorithms: A short introduction. In D. Corne, M.D.,
Glover, F., eds.: New Ideas in Optimization, London, McGrawHill (1999) 219-
234

3. Merz, P.: Memetic Algorithms for Combinatorial Optimization Problems. PhD
thesis, Universitdt-Gesamthochschule Siegen (2000)

4. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989)

5. Merz, P., Freisleben, B.: Fitness Landscapes, Memetic Algorithms and Greedy
Operators for Graph Bi-Partitioning. Evolutionary Computation 8 (2000) 61-91

6. Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms
for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary
Computation 4 (2000) 337-352

7. Merz, P., Freisleben, B.: Memetic Algorithms for the Traveling Salesman Prob-
lem. Complex Systems (2002) To appear.

8. Merz, P., Katayama, K.: A Hybrid Evolutionary Local Search Approach for the
Unconstrained Binary Quadratic Programming Problem. Bio Systems (2002)
To appear.

9. Eshelman, L.: The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination. In Rawlings, G.J.E.,
ed.: Foundations of Genetic Algorithms. Morgan Kaufmann (1991) 265-283

10. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary
computation methods. In J. R. McDonnell, R.G.R., Fogel, D.B., eds.: Fourth
Annual Conference on Evolutionary Programming, Cambridge, MA (1995)

11. Poland, J., Mitterer, A., Knddler, K., Zell, A.: Genetic algorithms can improve
the construction of d-optimal experimental designs. In: Advances In Fuzzy Sys-
tems and Evolutionary Computation, Proceedings of WSES Conference. (2001)

12. Cook, R.D., Nachtsheim, C.J.: A comparison of algorithms for constructing
exact d-optimal designs. Technometrics 22 (1980)

13. Knodler, K., Poland, J., Mitterer, A., Zell, A.: Optimizing data measurements
at test beds using multi-step genetic algorithms. In: Advances In Fuzzy Systems
and Evolutionary Computation, Proceedings of WSES Conference. (2001)



104

14.

15.

16.

17.

18.

19.

20.

21.

Kosmas Kndédler, Jan Poland, Peter Merz, and Andreas Zell

Grefenstette, J., Gopal, R., Rosmaita, B., Gucht, D.V.: Genetic algorithms for
the travelling salesman problem. Proceedings of the first International Confer-
ence on Genetic Algorithms and Application (1985)

Bui, T.N., Moon, B.R.: A new genetic approach for the traveling salesman
problem. International Conference on Evolutionary Computation (1994)
Homaifar, A., Guan, S., Liepins, G.E.: A new approach on the traveling sales-
man problem by genetic algorithms. 5th International Conference on Genetic
Algorithms (1993)

Croes, G.: A method for solving traveling salesman problems. Operations
Research 5 (1958) 791-812

Lin, S.: Computer solutions of the traveling salesman problem. Bell System
Technical Journal 44 (1965) 2245-2269

Reinelt, D.: The Traveling Salesman: Computational Solutions for TSP Appli-
cations. Volume 840. Springer-Verlag, Berlin, Germany (1994)

Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling sales-
man problem. Operations Research 21 (1973) 498-516

Poland, J., Knodler, K., Zell, A., Mitterer, A., Fleischhauer, T., Zuber-Goos,
F.: Evolutionary search for smooth maps in motor control unit calibration. In:
Stochastic Algorithms: Foundations and Applications (SAGA). (2001)



The Co-Evolution of Memetic Algorithms for
Protein Structure Prediction

J.E. Smith

Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England,

Bristol BS16 12QY, U.K.

james.smithQuwe.ac.uk

http://www.cems.uwe.ac.uk/”jsmith

Summary. This paper describes a co-evolutionary learning-optimisation approach
to Protein Structure Prediction which uses a Memetic Algorithm as its underlying
search method. Instance-specific knowledge can be learned, stored and applied by
the system in the form of a population of rules. These rules determine the neigh-
bourhoods used by the local search process, which is applied to each member of the
co-evolving population of candidate solutions.

A generic co-evolutionary framework is proposed for this approach, and the
implementation of a simple Self-Adaptive instantiation is described. A rule defining
the local search’s move operator is encoded as a {condition : action} pair and
added to the genotype of each individual. It is demonstrated that the action of
mutation and crossover on the patterns encoded in these rules, coupled with the
action of selection on the resultant phenotypes is sufficient to permit the discovery
and propagation of knowledge about the instance being optimised.

The algorithm is benchmarked against a simple Genetic Algorithm, a Memetic
Algorithm using a fixed neighbourhood function, and a similar Memetic Algorithm
which uses random (rather than evolved) rules and shows significant improvements
in terms of the ability to locate optimum configurations using Dill’s HP model. It is
shown that this “meta-learning” of problem features provides a means of creating
highly scalable algorithms.

1 Introduction

The performance benefits which can be achieved by hybridising evolutionary
algorithms (EAs) with local search operators, so-called Memetic Algorithms
(MAs), have now been well documented across a wide range of problem do-
mains such as combinatorial optimisation [27], optimisation of non-stationary
functions [42], and multi-objective optimisation [20] (see [29] for a comprehen-
sive bibliography). Commonly in these algorithms, a local search improvement,
step is performed on each of the products of the generating (recombination



106 J.E. Smith

and mutation) operators, prior to selection for the next population There are
of course many variants on this theme, for example one or more of the gener-
ating operators may be absent, or the order in which the operators are applied
may vary. The local search step can be illustrated by the pseudo-code below:

Local_Search(i) :
Begin
/* given a starting solution ¢ and a neighbourhood function n */
set best = i;
set iterations = 0;
Repeat Until ( iteration condition is satisfied ) Do
set counter = 0;
Repeat Until ( termination condition is satisfied ) Do
generate the next neighbour j € n(i);
set counter = counter +1;
If (f(j) is better than f(best)) Then
set best = j;
endIf
endDo
set ¢ = best;
set iterations = iterations + 1;
endDo
End.

There are three principal components which affect the workings of this
local search. The first is the choice of pivot rule, which can be Steepest Ascent
or Greedy Ascent. In the former the termination condition is that the entire
neighbourhood n(¢) has been searched, i.e. counter =|n(i)|, whereas the lat-
ter stops as soon as an improvement is found; i.e. the termination condition
is (counter =|n(i)]) V (best # i). Note that some authors resort to only con-
sidering a randomly drawn sample of size N <<| n(3) | if the neighbourhood
is too large to search.

The second component is the depth of the local search, i.e. the itera-
tion condition which lies in the continuum between only one improving step
being applied (iterations = 1) to the search continuing to local optimality
{(counter =| n(i) |) A (best = 1)). Considerable attention has been paid to
studying the effect of changing this parameter within MAs e.g. [14]. Along
with the choice of pivot rule, it can be shown to have an effect on the perfor-
mance of the Local Search algorithm, both in terms of time taken, and in the
quality of solution found.

The third, and primary factor that affects the behaviour of the local search
is the choice of neighbourhood generating function. This can be thought of
as defining a set of points n(é) that can be reached by the application of
some move operator to the point 7. An equivalent representation is as a graph
G = (v,e) where the set of vertices v are the points in the search space, and



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 107

the edges relate to applications of the move operator i.e e;; € G < j €
n(i). The provision of a scalar fitness value, f, defined over the search space
means that we can consider the graphs defined by different move operators
as “fitness landscapes” [15]. Merz and Freisleben [28] present a number of
statistical measures which can be used to characterise fitness landscapes, and
have been proposed as potential measures of problem difficulty. They show
that the choice of move operator can have a dramatic effect on the efficiency
and effectiveness of the Local Search, and hence of the resultant MA.

In some cases, domain specific information may be used to guide the choice
of neighbourhood structure within the local search algorithms. However, it
has recently been shown that the optimal choice of operators can be not
only instance specific within a class of problems [28, pp254-258], but also
dependent on the state of the evolutionary search [26]. This result is not
surprising when we consider that points which are locally optimal with respect
to one neighbourhood structure may not be with respect to another (unless of
course they are globally optimal). Thus if a set of points has converged to the
state where all are locally optimal with respect to the current neighbourhood
operator, then changing the neighbourhood operator may provide a means
of progression, in addition to recombination and mutation. This observation
forms the heart of the Variable Neighbourhood Search algorithm [49].

This paper describes one mechanism whereby the definitions of local search
operators applied within the MA may be changed during the course of op-
timisation, and in particular how this system may usefully be applied to a
simplified model of the Protein Structure Prediction Problem. This system
is called Co-evolving Memetic Algorithms (COMA). The rest of this paper
proceeds as follows:

e Section 2 discusses some previous work in this area, describes the pro-
posed approach, and the development of a simplified model within that
framework. It also summarises the results of initial investigations published
elsewhere.

e Section 3 draws some parallels between this work and related work in
different fields, in order to place this work within the context of more
general studies into adaptation, development and learning.

e Section 4 details the particular application under concern, namely Protein
Structure Prediction using Dill’s HP model [8].

e Section 5 presents the results and analysis of a set of preliminary experi-
ments designed to investigate whether the use of adaptive rules is able to
benefit the optimisation process.

e Section 6 goes on to investigate the benefits of restricting the search to
feasible solutions, rather than using a penalty function approach.

e Section 7 presents some analyses of the behaviour of the evolving rule-
bases, and then Section 6 discusses the implications of these results, before
drawing conclusions and suggesting future work.



108 J.E. Smith

2 A Rule-Based Model for the Adaptation of Move
Operators

2.1 The Model

The aim of this work is to provide a means whereby the definition of the local
search operator (LSO) used within a MA can be varied over time, and then to
examine whether evolutionary processes can be used to control that variation,
so that a beneficial adaptation takes place. Accomplishing this aim requires
the provision of five major components, namely:

¢ A means of representing a LSO in a form that can be processed by an
evolutionary algorithm

e Intimately related to this, a set of variation operators, such as recombina-
tion and mutation that can be applied to the LSO representation, and a
means for initialising a population of LSO operators.

e A means of assigning fitness to the LSO population members

e A choice of population structures and sizes, along with selection and re-
placement methods for managing the LSO population

e A set of experiments, problems and measurements designed to permit eval-
uation and analysis of the behaviour of the system.

The representation chosen for the LSOs is a tuple <Pivot.Rule, Depth,
Pairing, Move, Fitness>.

The first two elements in the tuple have been described above and can
be easily mapped onto an integer or cardinal representation as desired, and
manipulated by standard genetic operators.

The element Pairing effectively co-ordinates the evolution of the two pop-
ulations. When a candidate solution is to be evaluated, a member of the LSO
population is chosen to operate on it, hopefully yielding improvements. The
fitness of the candidate solution is thus affected by the choice of LSO to op-
erate on it, and the fitness assigned to the LSO is in turn affected by the
candidate solution to which it is applied.

Values for Pairing are taken from the set {linked, fitness_based, random}.
The purpose of this element is to allow the system to be varied between the
extremes of a fully unlinked system, in which although still interacting the
two populations evolve separately, and a fully linked system in which the LS
operators can be considered to be self-adapted. The different values have the
following effects:

e For a linked pairing strategy, the LSOs can be considered to be extra
genetic material which is inherited and varied along with the problem
representation. Thus if the k** candidate solution is created from parents %
and j, then a LSO is created by the actions of recombination and mutation
on members ¢ and 7 of the current LSO population. This new LSO is used
to evaluate the new candidate solution and becomes the k** member of



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 109

the next LSO population. Note that this assumes the two population are
the same size. The fitness is assigned to the new LSO is immaterial since
selection to act as parents happens via association with good members of
the solution population.

e TFor a fitness-based pairing strategy, when a candidate solution requires
evaluation, a LSO is created and put into the next LSO population as
above. However the two LSOs which acts as parents for recombination are
now chosen using a standard selection mechanism acting on those members
of the current LSO population which do not have Pairing = linked. A
number of methods can be used to define the fitness of an LSO.

e For a random pairing strategy, the same process occurs as for the fitness-
based method, except that parents are selected randomly from the un-
linked members of the LSO population, without regard to their fitness.

Although the long-term goal is to examine a “mixed-economy” of par-
ing strategies, for the purposes of this paper the system is restricted to
the situation where the whole population uses the same value, initially
Pairing = linked.

The representation chosen for the move operators was as condition:action
pairs, which specify a pattern to be looked for in the problem representation,
and a different pattern it should be changed to. Although this representation
at first appears very simple, it has the potential to represent highly complex
moves via the use of symbols to denote not only single/multiple wildcard
characters (in a manner similar to that used for regular expressions in Unix)
but also the specifications of repetitions and iterations. Further, permitting
the use of different length patterns in the condition and action parts of the rule
gives scope for cut and splice operators working on variable length solutions.

In themselves, the degrees of freedom afforded by the five components
listed above provide basis for a major body of research, and the framework
described above is intended to permit a full exploration of these issues which
is currently underway [37, 36).

This paper presents results from a simplified instantiation of this frame-
work, focusing on the benefits of knowledge discovery and re-use. In order to
achieve this focus, some of the adaptive capabilities are restricted, i.e., the
LSOs always use one of greedy or steepest ascent, a single improvement step,
and full linkage. These choices are coded into the LSO chromosomes at ini-
tialisation, and variation operator are not used on them. This restriction to
what are effectively self-adaptive systems provides a means of dealing with
the credit assignment and population management issues noted above

The COMA system is also restricted to considering only rules where the
condition and action patterns are of equal length and are composed of values
taken from the set of permissible allele values of the problem representation,
augmented by a “don’t care” symbol # which is allowed to appear in the
condition part of the rule but not the action, although this could be interpreted
as “leave alone”. The neighbourhood of a point ¢ then consists of all those



110 J.E. Smith

points where the substring denoted by condition appears in the representation
of i and is replaced by the action. The neighbourhood of 7 therefore potentially
includes 17 itself, for example by means of a rule with identical condition and
action parts.

To give an example, if a solution is represented by the binary string
1100111000 and a rule by 1#0:111, then this rule matches the first, second,
sixth and seventh positions, and the neighbourhood is the set {1110111600,
11111111000, 1100111100,1100111110}. In practice a random permutation is
used to specify the order in which the neighbours are evaluated, so as not
to introduce positional bias into the local search when greedy ascent is used.
Note that in this work the string is not considered as toroidal (although this
will be considered in later work).

In practice, each rule was implemented as two 16 bit strings, and was
augmented by a value rule.length which detailed the number of positions in
the pattern string to consider. This permits not only the examination of the
effects of different fixed rule sizes, but also the ability to adapt via the action of
mutation operators on this value. This representation for the rules means that
“standard” genetic operators (uniform/1 point crossover, point mutation) can
be used to vary this part of the LSO chromosome.

2.2 Initial Results

The results of initial investigations using this system were reported in [37].
The test suite was problems made out of a number of sub-functions either
interleaved or concatenated. Two different classes of sub-function were used
which posed either entropic (Royal Road) or fitness (Deceptive) barriers to
the discovery of the global optimum. Greedy versions of the COMA (GComa)
algorithm were tested against the GA,MA, GRand algorithms described be-
low, and it was shown that a version of the system with adaptive rule lengths
was able to perform better than these three, and comparably with variants of
GComa with optimal fixed rule-lengths for the different problems. Analysis
showed that these algorithms discovered and used problem specific informa-
tion (such as optimal patterns for different sub-problems).

Subsequent work [36] has shown them to be highly scalable with respect to
problem length on problems where there are repeated patterns in the regions
of the search space corresponding to high quality solutions. This behaviour
arises from the discovery and re-use of knowledge about these patterns. It
was also shown that in the absence of such patterns, the systems still displays
better performance (both in terms of mean best fitness and the reliability of
locating the global optimum). In this case the improved performance arose
from the maintenance of a diverse set of move operators, and hence from the
examination of multiple search landscapes, which provides a better means of
escaping local optima.



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 111

3 Related Work

The COMA system can be related to a number of different branches of re-
search, all of which offer different perspectives and means of analysing it’s be-
haviour. These range from MultiMemetic Algorithms and the Self-Adaptation
of search strategies, through co-evolutionary, learning and developmental sys-
tems, to the evolutionary search for generalised rules as per Learning Classifier
Systems. Space precludes a full discussion of each of these, so the more im-
portant are briefly outlined below.

Although the authors are not aware of other algorithms in which the LSOs
used by an MA are adapted in this fashion, there are other examples of the use
of multiple LS operators within evolutionary systems. Krasnogor and Smith
[26] describe a “MultiMemetic Algorithm”, in which a gene is added to the
end of each chromosome indicating which of a fixed set of static LS operators
(“memes”) should be applied to the individual solution. Variation is provided
during the mutation process, by randomly resetting this value with a low
probability. They report that their systems are able to adapt to use the best
meme available for different instances of TSP.

Krasnogor and Gustafson have extended this and proposed a grammar for
“Self-Generating MAs” which specifies, for instance, where in the evolutionary
cycle local search takes place [22]. Noting that each meme potentially defines
a different neighbourhood function for the local search part of the MA, we can
also see an obvious analogy to the Variable Neighbourhood Search algorithm
[49], where a heuristic is used to control the order of application of a set of
local searchers (using different, fixed, neighbourhood structures) to a single
improving solution. The difference here lies in the population based nature of
COMA, so that not only do we have multiple candidate solutions, but also
multiple adaptive neighbourhood functions in the memes.

As noted above, if the populations are of the same size, and are con-
sidered to be linked, then this instantiation of the COMA framework can
be considered as a type of Self Adaptation. The use of the intrinsic evolu-
tionary processes to adapt step sizes governing the mutation of real-valued
variables has long been used in Evolution Strategies [35], and Evolutionary
Programming [11]. Similar approaches have been used to self-adapt mutation
probabilities [2, 39] and recombination operators [34] in genetic algorithms
as well as complex generating operators which combined both mutation and
recombination [38]. This body of work contains many useful results concern-
ing the conditions necessary for strategy adaptation, which could be used to
guide implementations of COMA.

If the two populations are not linked, then COMA is a co-operative coevo-
lutionary system, where the fitness of the members of the LSO population is
assigned as some function of the relative improvement they cause in the “so-
lution” population. Paredis has examined the co-evolution of solutions and
their representations [31], and Potter and DeJong have also used co-operative
co-evolution of partial solutions in situations where an obvious problem de-



112 J.E. Smith

composition was available [33], both with good reported results. Bull [5] con-
ducted a series of more general studies on co-operative co-evolution using
Kauffmann’s static NKC model [17]. In [7] he examined the evolution of link-
age flags in co-evolving “symbiotic” systems and showed that the strategies
which emerge depend heavily on the extent to which the two populations
affect each others fitness landscape, with linkage preferred in highly interde-
pendent situations. He also examined the effect of different pairing strategies
[6], with mixed results, although the NKC systems he investigated used fixed
interaction patterns, whereas in the systems used here are more dynamic in
nature.

There has also been a large body of research into competitive-coevolution,
{(an overview can be seen in [32]) whereby the fitnesses assigned to the two
populations are directly related to how well individuals perform “against” the
other population, what has been termed “predator-prey” interactions.

In both the co-operative and competitive co-evolutionary work cited above,
the different populations only affect each other’s perceived fitness, unlike the
COMA framework where the LSO population can directly affect the geno-
types within the solution population. A major source of debate and research
within the community has focused around the perception that this phase of
improvement by LS can be viewed as a kind of lifetime learning. This has
lead naturally to speculation and research into whether the modified pheno-
type which is the outcome of the improvement process should be written back
into the genotype (Lamarkian Learning) or not (Baldwinian Learning). Note
that although the pseudo code of the local search, and the discussion above
assumes Lamarkian learning, this is not a prerequisite of the framework. How-
ever, even if a Baldwinian approach was used, the principal difference between
the COMA approach and the co-evolutionary systems above lies in the fact
that there is a selection phase within the local search, that is to say that if
all of the neighbours of a point defined by the LSO rule are of inferior fitness,
then the point is retained unchanged within the population.

If one was to discard this criterion and simply apply the rule (possibly
iteratively), the system could be viewed as a type of “developmental learning”
akin to the studies in Genetic Code e.g. [16] and the “Developmental Genetic
Programming” of Keller and Banzhaf [18, 19]

Finally, and perhaps most importantly, it should be considered that if a
rule has an improving effect on different parts of a solution chromosome over
as number of generations, then the evolution of rules can be seen as learning
generalisations about patterns within the problem representation, and hence
the solution space. This point of view is akin to that of Learning Classifier Sys-
tems. For the case of unlinked fitness-based selection of LS operators, insight
from this field can be used to guide the credit assignment process.

It is tempting to draw a further generalisation which would see the con-
ditions as representing schema and the actions as representing higher fitness
(and possibly higher order) alternatives, but this is a more dubious analogy
as the conditions are allowed to match anywhere within the string, i.e. even a



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 113

fully specified rule of length [ matches L — I schema within a string of length
L.

4 Dill’s HP model of Protein Structure Prediction

The problem of Protein Structure Prediction (PSP), i.e. the prediction of the
“native” three-dimensional form of a protein from knowledge of the sequence
of its constituent amino-acid residues is one of the foremost challenges facing
computational biology. Current approaches to PSP can be divided into three
classes; comparative modelling, fold recognition, and ab initio methods. The
first two explicitly search the ever-growing databases of known structures
for similar sequences (homologues) and sub-sequences. In contrast, the third
approach represents the “last chance” scenario of trying to predict the tertiary
structure by minimising a free energy model of the structure. Approaches that
make use of existing knowledge currently represent the state of the art (and
are likely to remain so), however ab initio approaches are important for two
main reasons. The first of these relates to the situation where a sequence does
not correspond to any known fold. The second, and more fundamental reason
is that the development of true ab initio methods can give greater insight into
the relationship between different fold families, and to the dynamical process
of folding.

Current approaches to ab initio PSP can be divided according to two
criteria, namely the nature of the choice of energy function, and the number
of degrees of freedom in the conformation, as exemplified by the granularity
(all atom models vs. virtual atom) and locational constraints (e.g. lattice
based models vs. off-lattice models). Although most lattice based models are
physically unrealistic, they have proved a useful tool for exploring issues within
the field. Some of the more complex models, e.g. SICHO [21] have been shown
to be capable of accurate predictions of the conformations of simple proteins,
especially when used in conjunction with techniques for subsequent refinement
to an all-atom model [10].

The HP model for PSP [8] provides an estimate of the free energy of a fold
of a given instance, based on the summation of pair-wise interactions between
the amino acid residues. It is a “virtual residue” model, that is to say that
each amino acid residue is modelled by a single atom, whose properties are
reduced to a quality of being hydrophobic or hydrophilic, thus simplifying the
energy calculations still further. Hydrophobic residues avoid interacting with
the water molecules of the solvent, whereas hydrophilic (or polar) residues are
able to form hydrogen bonds with the water molecules. Thus, polar residues
are often found at the surface of the protein and hydrophobic residues are
normally found buried in the inner part, or core, of the protein. The HP
model captures this behaviour, despite its extreme simplicity. In the model,
a sequence of [ amino acid residues is represented by s € {H, P}}, where H
represents a hydrophobic amino acid and P represents a hydrophilic one. The



114 J.E. Smith

space of valid conformations is restricted to self-avoiding paths on a selected
lattice, with each amino acid located on a vertex. The torsion angles of the
peptide bonds between residues are thus restricted by a finite set determined
by the shape of the lattice. The first amino acid of the sequence is located on
a randomly selected vertex, and an orientation is assumed for it. From there,
according to the orientation, the chain grows, placing every subsequent amino
acid either ahead of the previous one, at 90 degrees to the left or at 90 degrees
to the right (assuming a square lattice). Hydrophobic units that are adjacent
in the lattice but non-adjacent in the sequence add a constant negative factor
to the energy level. All other interactions are ignored. In some cases, to make
feasible conformations more attractive, the infeasible folds suffer penalisation
in the form of adding a substantial positive factor to their energy levels. In
this way, the model reflects the tendency of hydrophobic amino acids to form
a hydrophobic core. Despite the apparent simplicity of this model, the search
for the global energy minimum in the space of possible conformations of a
given sequence has been shown to be NP complete on various lattices [4].

Evolutionary algorithms (in particular Genetic Algorithms) have been ap-
plied, with some success, to the PSP using the HP and all-atom off-lattice
models, by a number of authors since [41, 40]. In [23] the effect of differ-
ent encoding schemes and constraint management techniques were examined,
and a modified fitness function was developed which extends the basic HP
model to permit the allocation of reward for non-adjacent pairs of Hydrophilic
residues. More recent work has demonstrated the use of self-adaptation within
a memetic algorithm to permit the selection from amongst a fixed set of
predetermined local search strategies, using different move operators such as
local “stretches”, reflections etc [25, 30]. The work described here extends
this by not relying on a fixed set of move operators encoding domain-specific
knowledge, but rather evolving a set of move operators, thus learning that
domain-specific knowledge.

5 Experimental Results

5.1 The Test Suite and Experimental set-up

In order to investigate the value of this approach, 20 instances and parameter
settings from [24], were used, which use a two-dimensional triangular lattice.
These instances are detailed in Table 1.

The representation used is a relative encoding. In this, where the alleles
come from the set {leftback, leftforward, front, rightforward, rightback} and
represent the direction of the next move on the lattice from the point of view of
the head of the growing chain. This is an alternative to the absolute encoding
used by Unger and Moult {41], where alleles specify directions to move relative
to an external frame of reference. Results presented in [23] have suggested that
this relative encoding is preferable, not least because the absence of a “back”



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 115

Table 1. HP instances used in these experiments

1d|Sequence Length |Optimum
1 {HHPHPHPHPHPH 12 11
2 |HHPPHPHPHPHPHP 14 11
3 |HHPPHPPHPHPHPH 14 11
4 |HHPHPPHPPHPPHPPH 16 11
5 |HHPPHPPHPHPHPPHP 16 11
6 |HHPPHPPHPPHPPHPPH 17 11
7 |HHPHPHPHPHPHPHPHH 17 17
8 |HHPPHPPHPHPHPPHPHPHH 20 17
9 |HHPHPHPHPHPPHPPHPPHH 20 17
10\ HHPPHPPHPHPPHPHPPHPHH 21 17
11{HHPHPPHPPHPHPHPPHPPHH 21 17
12(HHPPHPHPHPPHPHPPHPPHH 21 17
13|HHPPHPPHPHPHPPHPPHPPHH 22 17
14{HHHPHPHPHPHPHPHPHPHPHHH 23 25
15|HHPPHPPHPPHPPHPPHPPHPPHH 24 17
16| HHHPHPHPPHPHPHPHPHPHPHHH 24 25
17/ HHHPHPHPHPPHPHPHPHPHPHHH 24 25
18|HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 30 25
19|HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 30 25
20 HHHPPHPPHPPHPHPHPPHPPHPPHPPPPPHPHPHHH |37 29

move means that all conformations that can be represented are one-step self-
avoiding.

The generational genetic algorithm used (500+500) selection. One Point
Crossover was applied with probability 0.8 and a Double Mutation was made
with probability 0.3. Viewed from an external frame of reference the mutation
operator has the effect of causing the mutation point to act as a pivot, about
which one half of the structure is rotated through some multiple of 7/6 (for
a triangular lattice). Mutation was applied to the rules with a probability of
0.0625 of selecting a new allele value in each locus (the inverse of the maximum
rule length).

For each combination of algorithm and instance, 25 runs were made, each
run continued until the global optimum was reached, subject to a maximum
of 1 million evaluations. Note that since one iteration of a local search may
involve several evaluations, this allows more generations to the GA, i.e. al-
gorithms are compared strictly on the basis of the number of calls to the
evaluation function. The algorithms used (and the abbreviations which will
be used to refer to them hereafter) are as follows:

e A GA i.e. with no use of Local Search (GA).
e A simple MA using a bit-flipping neighbourhood, with one iteration of
greedy ascent (SMA).



116 J.E. Smith

¢ Versions of COMA using a randomly created rule in each application, i.e.
with the learning disabled. One iteration of steepest (SRand) or greedy
(GRand) ascent local search was applied.

e Adaptive versions of COMA with the two pivot rules (SComa and GComa).
In these the rule lengths are randomly initialised in the range [1,16]. During
mutation, a value of +/—1 is randomly chosen and added with probability
0.0625.

These results are analysed according to three different performance crite-
ria: firstly the Success Rate (the number of runs in which the global optimum
was found), secondly in terms of efficiency, as measured by the average num-
ber of evaluations to solution (AES) in those successful runs, and thirdly in
terms of the mean performance measured in terms of the best value found in
the maximum time alloted, averaged over 25 runs.

5.2 Success Rate

Table 2 shows the Success Rate for each algorithm itemised by instance and
in total. Using a non-parametric Friedman’s test for k-related variables shows
that the differences in success rate between algorithms is significant, and a
series of paired t-tests confirms that the results for the SComa algorithm are
significantly better than any of the others with over 95% confidence. This
difference is particularly noticeable on the longer instances. Of the other re-
sults, the simple MA (SMA) performs well on the shorter instances, and the
GComa and GRand results are surprisingly similar. This may well be due
to the noise inherent in the greedy ascent mechanism making it hard for the
credit assignment mechanism to function properly as was previously noted in
[36]. Significantly, whatever the form of the local search phase, all but one of
the Memetic Algorithms perform much better than the simple GA. The least
reliable algorithm was SRand, and possible reasons for this will be discussed
further in the following section.

5.3 Efficiency

Figure 1 shows the Average Evaluations to Solution (i.e., the globally optimal
conformation) for the runs in which algorithms were successful. Immediately
we can see that even when it is successful, the SRand algorithm is far slower
than all of the other algorithms. Like the more successful GRand algorithm, it
is using a randomly created rule to define the neighbourhood for each solution
in each generation. However, unlike the GRand algorithm it is searching the
whole of each neighbourhood, and the increase in the AES values suggests
that the neighbourhoods are generally quite large. This suggests the frequent
use of short, low rules of low specificity, i.e. with lots of #’s. It is possible that
left to run for longer, the Success Rate of the SRand algorithm would have
been improved.



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 117

Table 2. Number of runs (out of 25) in which the minimum energy conformation
was identified

algorithm
instance|GComa|SComa|GRand|SRand|SMA|GA
1 13 25 16 16 25 |13
2 14 25 15 7 23 113
3 15 24 10 11 22 7
4 19 25 17 2 24 (13
5 13 25 13 7 22 |9
6 10 24 11 0 20 | 9
7 9 24 5 1 14 | 3
8 7 25 6 0 11 2
9 4 22 5 0 4 2
10 4 21 4 0 10 | 2
11 5 21 7 0 7 2
12 7 22 7 0 12 | 4
13 6 21 3 0 7 2
14 0 7 0 0 0 0
15 0 9 1 0 0 |2
16 1 7 0 0 1 0
17 0 8 0 0 010
18 0 1 0 0 0 {0
19 0 1 0 0 0|0
Total 127 337 120 44 202 | 83

Of the others, the GA is always fastest, followed by the SMA. The rest
of the picture is less clear, although the greedy versions are usually faster
than their steepest ascent counterparts. A two way Analysis of Variance, with
instance and algorithm as factors, shows that both are significant, and post-
hoc analysis using the Least-Significant Difference test shows that the ordering
GA < SMA < {GRand,GComa} < SComa < SRand is significant with 95%
confidence. If we do not assume equal variance, Tamhane’s T2 test shows that
the GA is significantly faster, but under these more cautious assumptions the
SMA is only significantly faster than GRand with 93% confidence and is not
significantly faster than GComa. Similarly GRand and SComa are no longer
significantly different in speed of finding solutions.

5.4 Mean Best Fitness

As was evidenced in Table 2 it is not hard to find solutions for the shorter
instances. Therefore when comparing performance on the basis of the quality
of the best solutions found, i.e., mean best fitness (MBF'), only results for



118 J.E. Smith

Average Evaluations to Solution

Instance

Fig. 1. Average Evaluations to Solution (when found) by algorithm.

the longer and harder instances 14-20 have been considered. Figure 2 shows
these results graphically for each algorithm, sorted by instance. From these it
is clear that the SComa reaches consistently higher values and with a smaller
variance in performance than the others, and that the SRand algorithm is
correspondingly worse.

In order to investigate the statistical significance of these results, a two-
way ANOVA test was performed on the values for the best solution found in
each run, with instance number and algorithm as the factors. This confirmed
the significance of the algorithm in determining the performance, and so two
sets of post-hoc tests were performed to analyse the differences between pairs
of algorithms. These were Least-Significant Difference, and Tamhane’s T2 test
(the latter is more conservative as it does not make any assumptions about
the samples having equal variances). The results of these tests are summarised
in Table 3. An entry r or R indicates that the algorithm indicated by the row
index was significantly better than the one indicated by the column index,
with 5% confidence according to the LSD or T2 test respectively. Similarly
an entry of ¢ or C indicates that the column algorithm is better than the row
algorithm with 95% confidence according to the LSD or T2 test respectively.



The Co-Evolution of Memctic Algorithms for Protein Structure Prediction 119

30

G-Coma |
S-Coma {:
G-Rand |
S-Rand 1:
SMA

25 - GA

Ao pe

Mean of Best Value Found

10 : - : i : j : i : i : : :
14 15 16 17 18 19 20
Instance

Fig. 2. Mean and std deviation of hest values found for instances 14-20, analysed
by algorithm

Table 3. Statistical significance of pairwise comparisons between algorithms on
basis of best values found. — indicates ne significant difference. rfc] denotes algorithm
indicated by row[column] is better with 95% confidence. Lower triangle (lower case)
i for LSD test, upper quarter (upper case) is for Tamhane’s T2 test.

SComa, - R R It R R
GComa I - R - - R
SRand c c - C cC C
GRand C - r - - -

SMA c T T T - R
GA c C r c c -

Algorithm|SCOMA GComa SRand GRand SMA GA

6 Restricting the Search to Feasible Solutions

In [9] results are reported from a detailed study of the fitness landscape of HP
model proteins which suggests that the feasible regions of the search space
are more highly connected than has previously been thought, and that corre-
spondingly there may be performance advantages arising from a restriction of
the search process to only considering feasible solutions.



120 J.E. Smith

In order to investigate this, the crossover and mutation operators were
modified so that they only produced feasible offspring. This process is less
lengthy than it would first appear since in practice infeasible offspring can
almost always be quickly identified during the path growth process and the
evaluation stopped. However no attempt was made to restrict the initial pop-
ulation to feasible solutions, as the infeasible ones are quickly weeded out by
selection, and preliminary experimentation revealed that creating a feasible
initial population by random generation of values takes an extremely long
time.

The mutation operator still applied one double mutation - a random per-
mutation of the loci was generated, and for each of these a random permuta-
tion of the possible changes was created. Offspring were produced and tested
in this order until a feasible one was created. The crossover operator was
modified similarly: if the offspring produced using a given crossover point was
infeasible the operator next tested all of the different possible orientation of
the two substrings by varying the allele value in the locus corresponding to
that crossover point, before moving on to trying the next.

6.1 Success Rate

Table 4 shows the results from running the GA, SMA and SComa algorithms
with the modified crossover and mutation operators, alongside those for the
unmodified versions. As can be seen (and statistical testing confirms) there
is far better reliability for the GA-F and SMA-F algorithms than their unre-
stricted counterparts. The results for the SComa are less clear - if anything
the performance is better for short instances and worse for long ones, but the
difference is not statistically significant.

6.2 Efficiency

Figure 3 shows the efficiency (AES) comparisons for the same set of algo-
rithms, again restricted to successful runs. As when comparing Success Rates,
there is little difference between the SComa and SComa-F algorithms, but
under this metric the performance of the GA and GA-F algorithms are not
significantly different, i.e., the GA is still very efficient on those runs when it
does find the optimum, and with the restricted operators it does so far more
often. In contrast to this, the SMA algorithm exhibits much greater AES
values when restricted to feasible solutions, despite being more successful.

6.3 Mean Best Fitness

As evidenced in Table 4, restricting the search to feasible solutions makes it
even easier to find solutions for the shorter instances. Therefore when com-
paring performance on the basis of the quality of the best solutions found,



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 121

Table 4. Effect on Success Rate of restricting search to feasible solutions. Results for
GA, SMA and SComa algorithms are shown alongside those using modified crossover
and mutation (indicated by —F)

instance algorithm
GA|GA-F|SMA|[SMA-F|SCOMA |[SCOMA-F

1 137 23 | 25 25 25 25
2 13 20 | 23 25 25 25
3 70017 | 22 25 24 25
4 13| 20 | 24 25 25 25
5 9| 18 | 22 24 25 25
6 9| 18 | 20 24 24 25
7 3| 9 14 23 24 24
8 2 9 11 24 25 25
9 2| 8 4 21 22 23
10 2 8 10 22 21 23
11 2 5 7 24 21 21
12 4| 12 | 12 23 22 23
13 2| 4 7 24 21 23
14 0 0 0 5 7 9
15 2 1 0 8 9 6
16 0 1 1 2 7 5
17 0 0 0 4 8 0
18 0 0 0 0 1 0
19 0 0 0 0 1 0

total |83 | 173 | 202 | 328 337 332

i.e., mean best fitness (MBF), only results for the longer and harder instances
14-20 have been considered again. Figure 4 shows these results graphically for
each algorithm, sorted by instance.

In order to investigate the statistical significance of these results, a two-
way ANOVA test was performed on the values for the best solution found in
each run, with instance number and algorithm as the factors. This confirmed
the significance of the algorithm in determining the performance, and so two
sets of post-hoc tests were performed to analyse the differences between pairs
of algorithms. These were Least-Significant Difference, and Tamhane’s T2 test
(the latter is more conservative as it does not make any assumptions about
the samples having equal variances). The results of these tests are summarised
in Table 5. An entry r or R indicates that the algorithm indicated by the row
index was significantly better than the one indicated by the column index,
with 95% confidence according to the LSD or T2 test respectively. Similarly
an entry of ¢ or C indicates that the column algorithm is better than the row
algorithm with 95% confidence according to the LSD or T2 test respectively.

In general it is plain that the rank order is GA < GA-F < SMA< SMA-F
< SComa-F < SComa. These differences are generally statistically significant



122 J.E. Smith

%
%

()
@2
)
1

Average Evaluations to Solution

k!
[
1

\a,pﬁ i

T
. m-'w

o X & o

P
#
ik

5 10
Instance

Fig. 3. Effect on efficiency of restricting search to feasible solutions. Plot shows
Average Evaluations to Solution for successful runs of GA, SMA, SComa and their
restricted counterparts (indicated by -F).

according to both tests, although it should be noted that this depends to some
extent on the choice of instances considered. If we include all instances, then
the general success on the shorter ones makes the differences less significant,
whereas if we restrict ourselves to only considering a few harder instances, the
significance increases.

Table 5. Statistical significance of pairwise comparisons between algorithms on
basis of best values found. — indicates no significant difference. r[c] denotes algorithm
indicated by row[column] is better with 95% confidence. Lower triangle (lower case)
is for LSD test, upper quarter (upper case) is for Tamhane’s T2 test.

GA - C C C C C
GA-F r . - C C C
SMA r = - C C C
SMA-F r r T - C -
SComa r r T r - -
SComa-F | r r T = - N
Algorithm |GA GA-F SMA SMA-F SComa SComa-F




The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 123

30

it

A SComa

Mean +- 1 SD BEST

7 B GAF

. & SMAF

10 . . . . . € SComa-F

INSTANCE

Fig. 4. Mean and std deviation of best values found for instances 14-20, analysed
by algorithm

7 Analysis of LSO Evolution

In order to gain a greater understanding of the behaviour of the SComa al-
gorithm, a number of test runs were made in which the contents of the LSO
population were output to file at regular intervals.

Examination of the form of the evolving LSOs showed that there was a
strong tendency towards short rules of the form ## — Ir or ## — [L.
Here I = leftback, r = rightback, and L = leftforward relative to the previous
direction of growth. Both of these rules act to bring residues ¢ and ¢ + 2 into
contact, via causing a torsion angle of I1/6 at residue 7 + 1.

Given that the system is evolving conformations in a two-dimensional
plane, these patterns these could possibly be thought of as the two-dimensional
equivalent of representing a single turn of an alpha helix. Experimentation on a
square two-dimensional lattice showed that the rules which evolved on a num-
ber of instances tended to have length three and be of the form ### — Uil
or #d44# — rrr which is the shortest path that can be made bringing two
residues into contact.



124 J.E. Smith

The use of the word “tended” should be noted here: in most cases the rule-
set continued to contain a number of different rules of varying lengths. It has
been argued elsewhere [36] that in addition to the extra scalability attained
by identifying and re-applying regular structural motifs, the presence of a
diverse, evolving rule-set means that the neighbourhood structure defining
which points around the current population are examined, is continuously
changing. Thus, even if the population is converged to a single point, which
is locally optimal according to most neighbourhood structures, eventually a
rule may evolve for which the neighbourhood of that point contains a fitter
solution. This can be thought of as continually testing new search landscapes
to look for “escape routes” from local optima.

Looking back to the results for the GRand algorithm, in which the rules
defining neighbourhoods are created at random, this “changing landscape”
effect is noticeable in the superior success rates to the SMA. The fact that the
SComa algorithm is the best performer according to both Success Rate and
MBF metrics points to both modes of operation having a positive effect.

8 Discussion and Conclusions

As can be seen from the results section above, the S-Coma algorithm provides
better performance according to Success Rate and Mean Best Fitness met-
rics than the GA, MA or a comparable system with the rule-learning turned
off (SRand, GRand). These results are especially noticeable for the longer
instances where the COMA system is able to learn and then exploit regulari-
ties within energetically favourable conformations, corresponding to secondary
structural motifs. This happens at some expense of speed - the AES results
show that the addition of any local search to a GA slows down the rate of
discovery of globally optimal solutions, and that searching the whole neigh-
bourhood (steepest ascent) rather than stopping once a better neighbour is
found (greedy ascent) also imposes a cost. Nevertheless it must be emphasised
that the results for the GA and the greedy algorithms come from many fewer
successful runs. In other words, when the genetic search is able to find the
optimum, it does so quickly, but it is prone to premature convergence.
Restricting the crossover and mutation operators to producing feasible so-
lutions has mixed results. The Success Rate and Mean Best Fitness are much
improved for the GA and SMA, and for the SComa on the shorter problems
but if anything is slightly worse for SComa on the long instances. It was sug-
gested in the previous section that the SComa had two modes of operation,
re-use of secondary structural motifs, and continuously changing neighbour-
hoods. These results suggests that possibly the former mode is enhanced by
the restriction to feasible solutions, but that the latter, which permits escape
from local optima, on the longer instances, is inhibited. Clearly this warrants
further attention. Considering the efficiency with which solutions are found,



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 125

this is not significantly changed for the GA or SComa, but is much worse for
the SMA algorithm.

There is a clear place for the use of expert knowledge in the design of
search algorithms, and its encapsulation in the form of carefully designed
move operators. Nevertheless the approach outlined in this paper represents
a highly promising prospect given its ability to discover and ezplicitly repre-
sent structural motifs. As an example, the reliability results reported above
are better, especially for the longer instances, than those reported elsewhere
using a self-adaptive multi-memetic algorithm, with the meme set especially
designed after a comprehensive study of the literature and extensive experi-
mentation [24]. This suggests that there is a clear role for adaptation of some
kind within the specification of memes, rather than using a fixed set. The
results presented here and elsewhere suggest that evolution may well be a
suitable way of achieving that adaptation.

One obvious path for future work would be to examine the effects of seed-
ing the rule population with expert-designed rules. Another, perhaps more
pressing path is to examine the behaviour on more complex lattices and for
different energy functions. As indicated above, these results are only the begin-
ning of a process of investigation, clearly more analysis of the evolving rule-sets
is needed, as well as a thorough investigation of the other algorithmic possi-
bilities. It seems likely however that this represents a promising direction for
the future development of scalable optimisation techniques which may yield
new insights into the energy landscapes of the HP and other lattice models of
proteins. :

9 Acknowledgements

The author would like to thank Natalio Krasnogor for many fruitful discus-
sions during the initial stages of this work, and for introducing him to the
Protein Structure Prediction problem.

References

1. ., editor. 2008 Congress on Evolutionary Computation (CEC’2008). IEEE Press,
Piscataway, NJ, 2003.

2. Thomas Back. Self adaptation in genetic algorithms. In F.J. Varela and
P. Bourgine, editors, Toward a Practice of Autonomous Systems: Proceedings
of the 1st Buropean Conference on Artificial Life, pages 263-271. The MIT
Press, Cambridge, MA, 1992.

3. W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and
R.E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999). Morgan Kaufmann, 1999.

4. B. Berger and T. Leight. Protein folding in the hydrophobic-hydrophilic (hp)
model is NP-complete. In Proc. 2nd Annual Intnl. Conf. Computational Molec-
ular Biology RECOMBSY8, 1998.



126

5.

6.

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J.E. Smith

Larry Bull. Artificial Symbiology. PhD thesis, University of the West of England,
1995.

Larry Bull. Evolutionary computing in multi agent environments: Partners. In
Th. Béck, editor, Proceedings of the Tth International Conference on Genetic
Algorithms, pages 370-377. Morgan Kaufmann, San Francisco, 1997.

Lawrence Bull and Terence C. Fogarty. Horizontal gene transfer in endosymbio-
sis. In Christopher G. Langton and Katsunori Shimohara, editors, Proceedings
of the 5th International Workshop on Artificial Life : Synthesis and Simulation
of Living Systems (ALIFE-96), pages 77-84, Cambridge, May 16-18 1997. MIT
Press.

K. Dill. Biochemistry, 24:1501, 1985.

S. Duarte-Flores and J.E. Smith. Study of fitness landscapes for the HP model
of Protein Structure Prediction. In . [1], page to appear.

M. Feig, P. Rotkiewicz, A. Kolinski, J. Skolnick, and C. Brooks. Accurate
reconstruction of all-atom protein representations from side-chain-based low-
resolution models. Proteins:Structure Fucntion and Genetics, 41:86-97, 2000.
David B. Fogel. Evolving Artificial Intelligence. PhD thesis, University if Cali-
fornia, 1992.

J.J. Merelo Guervos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, and
H.-P. Schwefel, editors. Proceedings of the 7th Conference on Parallel Prob-
lem Solving from Nature, number 2439 in Lecture Notes in Computer Science.
Springer, Berlin, 2002.

P. Hansen and N. Mladenovi¢. An introduction to variable neighborhood search.
In S. Vof}, S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-Heuristics:
Advances and trends in local search paradigms for optimization. Proceedings of
MIC 97 Conference. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998.

W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis,
University of California, San Diego, 1994.

Terry Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD
thesis, The University of New Mexico, Albuquerque, NM, 1995.

Hillol Kargupta and Samiran Ghosh. Towards machine learning through ge-
netic code-like transformations. Technical Report TR~CS-01-10, Computer Sci-
ence and Electrical Engineering Department, University of Maryland Baltimore
County, 2001.

S.A. Kauffman. Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, New York, NY, 1993.

Robert E. Keller and Wolfgang Banzhaf. Genetic programming using genotype-
phenotype mapping from linear genomes into linear phenotypes. In J.R. Koza,
D.E. Goldberg, D.B. Fogel, and R.L. Riolo, editors, Proceedings of the 1st An-
nual Conference on Genetic Programming, pages 116-122. MIT Press, 1996.
Robert E. Keller and Wolfgang Banzhaf. The evolution of genetic code in genetic
programming. In Banzhaf et al. [3], pages 1077-1082.

Joshua Knowles and David Corne. A comparative assessment of memetic, evo-
lutionary and constructive algorithms for the multi-objective D-MSAT problem.
In Gecco-2001 Workshop Program, pages 162-167, 2001.

A. Kolinski and J. Skolnick. Assembly of protein structure from sparse exper-
imental data: An efficient Monte-Carlo method. Proteins: Structure Function
and Genetics, 32:475-494, 1998.



The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 127

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

N. Krasnogor and S. Gustafson. Toward truly “memetic” memetic algorithms:
discussion and proofs of concept. In David Corne, Gary Fogel, William Hart,
Joshua Knowles, Natalio Krasnogor, Rajkumar Roy, Jim Smith, and Ashutosh
Tiwari, editors, Advances in Nature-Inspired Computation: The PPSN VII
Workshops, pages 9-10, Reading, UK, 2002. PEDAL (Parallel, Emergent &
Distributed Architectures Lab), University of Reading.

N. Krasnogor, W. Hart, J.E. Smith, and D. Pelta. Protein structure prediction
with evolutionary algorithms. In Banzhaf et al. [3], pages 1596-1601.

N. Krasnogor and J. Smith. A memetic algorithm with self-adaptive local search:
TSP as a case study. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages 987-994. Morgan Kaufmann,
2000.

Natalio Krasnogor. Studies in the Theory and Design Space of Memetic Algo-
rithms. PhD thesis, University of the West of England, 2002.

Natalio Krasnogor and Jim Smith. Emergence of profitiable search strategies
based on a simple inheritance mechanism. In L. Spector, E. Goodman, A. Wu,
W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon,
and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 432-439. Morgan Kaufmann, 2001.

Peter Merz. Memetic Algorithms for Combinatorial Optimization Problems:
Fitness Landscapes and Efective Search Strategies. PhD thesis, Department of
Electrical Engineering and Computer Science, University of Siegen, Germany,
2000.

Peter Merz and Bernd Freisleben. Fitness landscapes and memetic algorithm
design. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimiza-
tion, pages 245-260. McGraw Hill, 1999.

Pablo Moscato. Memetic algorithms’ home page. Technical report,
http:/ /www.densis.fee.unicamp.br/ “moscato/memetic_home.html, 2002.

N. Krasnogor, B.P. Blackburne, E.K. Burke and J. D. Hirst. Multimeme algo-
rithms for protein structure prediction. In Guervos et al. [12], pages 769 —778.
Jan Paredis. The symbiotic evolution of solutions and their representations.
In L.J. Eshelman, editor, Proceedings of the 6th International Conference on
Genetic Algorithms, pages 359-365. Morgan Kaufmann, San Francisco, 1995.
Jan Paredis.  Coevolutionary algorithms. In T. Back, D. Fogel, and
Z. Michalewicz, editors, Handbook of Evolutionary Computation. Institute of
Physics Publishing, Bristol, and Oxford University Press, New York, 1998.

M. A. Potter and K.A. DeJong. A cooperative coevolutionary approach to
function optimisation. In Y. Davidor, H.-P. Schwefel, and R. Ménner, editors,
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature,
number 866 in Lecture Notes in Computer Science, pages 248-257. Springer,
Berlin, 1994.

J.David Schaffer and Amy Morishima. An adaptive crossover distribution mech-
anism for genetic algorithms. In J.J. Grefenstette, editor, Proceedings of the 2nd
International Conference on Genetic Algorithms and Their Applications, pages
36-40. Lawrence Erlbaum Associates, 1987.

H.-P. Schwefel. Numerical Optimisation of Computer Models. John Wiley and
Sons, New York, 1981.

J.E. Smith. Co-evolving memetic algorithms: A learning approach to robust
scalable optimisation. In . [1], page to appear.



128

37.

38.

39.

40.

41.

42.

43.

J.E. Smith

Jim Smith. Co-evolution of memetic algorithms : Initial investigations. In
Guervos et al. [12], pages 537-548.

Jim Smith and T.C. Fogarty. Adaptively parameterised evolutionary systems:
Self adaptive recombination and mutation in a genetic algorithm. In Voigt et al.
[43], pages 441-450.

Jim Smith and T.C. Fogarty. Self adaptation of mutation rates in a steady state
genetic algorithm. In Proceedings of the 1996 IEEE Conference on Evolutionary
Computation, pages 318-323. IEEE Press, Piscataway, NJ, 1996.

R. Unger and J. Moult. Genetic algorithms for protein folding simulations.
Journal of Theoretical Biology, 231(1):75-81, 1993.

Ron Unger and John Moult. A genetic algorithm for 3D Protein Folding Simu-
lations. In S. Forrest, editor, Proceedings of the 5th International Conference on
Genetic Algorithms, pages 581-588. Morgan Kaufmann, San Francisco, 1993.
F. Vavak, T.C Fogarty, and K. Jukes. A genetic algorithm with variable range
of local search for tracking changing environments. In Voigt et al. [43], pages
376-385.

H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors. Proceedings
of the 4th Conference on Parallel Problem Solving from Nature, number 1141 in
Lecture Notes in Computer Science. Springer, Berlin, 1996.



Hybrid Evolutionary Approaches to Terminal
Assignment in Communications Networks

X. Yao!, F. Wang?, K. Padmanabhan! and S. Salcedo-Sanz!

! The Centre of Excellence for Research in Computational Intelligence and
Applications (CERCIA), School of Computer Science, The University of
Birmingham Edgbaston, Birmingham B15 2TT, UK. Email:
x.yaoQcs.bham.ac.uk

% Intelligent Systems Lab, BTExact Orion 1/12, Adastral Park, Ipswich, IP5 3RE,
UK. Email: fang.wang@bt.com

Summary

Terminal assignment is an NP-hard problem in communications networks. It
involves assigning a set of terminals to a set of concentrators with a cost for
each assignment. The objective is to minimize the total cost of the assignment
and the number of concentrators used. A number of heuristic algorithms, in-
cluding genetic algorithms, have been proposed for solving this problem. This
chapter studies several evolutionary and hybrid approaches to terminal as-
signment. Firstly, a novel chromosome representation scheme based on con-
centrators is proposed. This representation compares favourably against the
existing terminal-based representation, which scales poorly for large problems.
Extensive experiments have been carried out. The results show that our evo-
lutionary algorithms using the concentrator-based representation outperform
significantly existing genetic algorithms using the terminal-based representa-
tion. Secondly, a number of new search operators used in our algorithms are
also investigated empirically in order to evaluate their effectiveness for the
terminal assignment problem. Finally, different combinations of evolutionary
algorithms and local search are studied in this chapter. Both Lamarckian evo-
lution and Baldwin effect have been examined in combining an evolutionary
algorithm and local search. Our results show that hybrid algorithms perform
better than either evolutionary algorithms or local search. However, there is
no significant difference between Lamarckian-evolution-style combination and
Baldwin-effect-style combination.



130 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

1 Introduction

Evolutionary algorithms (EAs) and their hybridisation with local search have
been widely studied and applied to solve many real world problems. Com-
munications network design is a typical combinatorial optimization problem
for which no efficient algorithm exists unless P=NP. A good design of com-
munications networks requires certain constraints to be met and at the same
time, one or more objectives to be optimized. The algorithms for designing
communications networks must have good scalability and be able to deal with
large-scale applications with a large number of network nodes.

The optimal design of communications networks considering both cost and
capacity has been investigated in the literature using different heuristic algo-
rithms, such as tabu search, simulated annealing and greedy search. Recently,
EAs have been shown to perform well in communications network design, es-
pecially for the terminal assignment problem, which has been shown to be
NP hard [11]. However, the performance of such EAs is still unsatisfactory for
large problems.

This chapter studies novel hybrid EAs. Unlike previous EAs which used
a terminal-based chromosome representation, a concentrator-based evolution-
ary approach for solving the terminal assignment problem is proposed in this
chapter. This evolutionary approach uses a novel concentrator-based repre-
sentation and associated search operators. It is hybridised with local search
methods to form hybrid EAs. The concentrator-based representation is pro-
posed to overcome the difficulties encountered by the terminal-based repre-
sentation previously used by other evolutionary approaches. Attempts are
also made to design appropriate search operators that work well with the
concentrator-based representation. In addition to minimising costs, we also
consider reducing the number of concentrators used. The objective of min-
imising the total cost is explicitly dealt with by the fitness function during
the evolution. Minimising the total number of concentrators used is considered
as an implicit constraint for the cost objective, or a second objective encoded
in the fitness function. Hence, there are two problem formulations for the
terminal assignment problem, i.e., single-objective and multi-objective opti-
misation. In this chapter, both formulations will be studied using the hybrid
EAs and the concentrator-based representation.

In our hybrid EAs, two methods are considered for hybridization with local
search, i.e., Lamarckian evolution and Baldwin effect. Lamarckian evolution
forces the genotype to reflect the result of local improvement. The improved
individual is placed back into the population and allowed to compete for repro-
ductive opportunities [10]. The Baldwin Effect allows an individual’s fitness
(phenotype) to be determined after local search. Similar to natural evolution
(Darwinian evolution), the result of the improvement is not reflected in the
genetic structure (genotype) of the individual. It only changes the individual’s
chance of survival [10]. Baldwin effect as used in EAs may introduce unde-
sirable offspring after crossover. When crossing two individuals, which after



Hybrid Evolutionary Approaches to Terminal Assignment 131

local search converge to the same local basin, it is likely that the offspring
may be similar to the parents and will converge to the same basin. To avoid
this problem, the use of memory is considered for both Lamarckian evolution
and Baldwin effect in the work presented here.

The concentrator-based evolutionary approach and its hybrid evolution are
fully tested and examined by a series of computational experiments designed
for the terminal assignment problem. The results have shown that the EA’s
performance was better with concentrator-based representation than with the
terminal-based representation. The generation of a feasible initial population
is simpler and more scalable in the concentrator-based representation even
for a large number of terminals. The concentrator-based hybrid EAs outper-
formed EAs without local search. However, there is no significant difference
between two different approaches to hybridise EAs with local search, i.e.,
Lamarckian evolution and Baldwin effect.

The remainder of this chapter is organised as follows. The next section
introduces the terminal assignment problem and the previous work in solving
this problem. Section 3 presents our concentrator-based representation and
the search operators designed for it. A set of experiments are carried out to
test the performance of the representation and operators and to compare them
with the traditional terminal-based EAs. Concentrator-based hybrid EAs that
integrate Lamarckian evolution or Baldwin effect are studied in Section 4.
Lamarckian-style and Baldwin-style evolution with and without memory are
investigated using the terminal assignment problems with single-objective or
multi-objectives. Section 5 concludes this chapter with a brief summary of our
work and some future work.

2 The Terminal Assignment Problem

2.1 Problem Representation

In this chapter, we will focus on the two-terminal network (also called source-
link network) design. The work, however, can also contribute to the design of
other kinds of networks, i.e., all-terminal networks. In the two-terminal net-
work, a set of pre-specified source nodes communicate with the pre-specified
sink nodes through non-specified paths. This can be simplified as a terminal
assignment problem that concerns the assignment of certain terminals to some
concentrators. This assignment should keep the total cost minimum. The cost
may include material cost of cabling, installation cost and connection or com-
munication cost between the concentrators and terminals. The cost may be
fixed or varied per connection depending on the real situation. In general, it
can be summarized as a weight that is used as the complete cost for each
connection [2}, (3], and [14].

In addition to minimizing the total cost, the terminal assignment problem
should take the concentrators’ capacity limit into account by satisfying two
constraints:



132 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

1. Every terminal is assigned to one and only one concentrator.
2. The sum of weights of connections between terminals and a concentrator
should not exceed the capacity of that concentrator.

Single-objective Optimisation Formulation

Given

K: number of concentrators,

T: number of terminals,

C;: Capacity of concentrator 1 = 1,2,..., K,

d;j: weight of the connection between concentrator 4 and terminal j, where
i=1,2,...,K,j=1,2,...T,

the single objective optimisation problem of terminal assignment is to min-

imise the total cost,
K
2D di
i=1 jeJ

Z di; < Cj,

J€J:

subject to

where 7 € J; is the terminal j assigned to concentrator 4, and is the set of all
terminals connected to concentrator 1.

Multi-objective Optimisation Formulation

The most common objective of the terminal assignment problem is to min-
imise the total cost of the network. However, in many situations, it makes
sense to also minimise the number of concentrators used so that the whole
network can work with a less cost. The minimisation of the number of concen-
trators can be treated as an implicit constraint to be considered in the above
single objective optimisation, or as another objective to optimise. In the latter
case, the problem becomes a true multi-objective optimisation problem that
minimises both the cost and the number of concentrators used at the same
time. A weighted sum approach for this problem is described below.
Given

fi: objective 4,4 =1,2,...,n, and

w;: weight of objective,

then the purpose of the multi-objective optimisation is to minimise

G = Z wzfz
i=1



Hybrid Evolutionary Approaches to Terminal Assignment 133

In the problem presented here, n is 2 (for two objectives), fi is the total
cost of all the connections between concentrators and terminals, which is F’
as described in the single objective optimisation; and f, is the total number
of concentrators used.

2.2 Previous Work on Terminal Assignment in Communications
Networks

Various approaches have been applied to the optimisation of communications
networks. Previous work in [3] utilised simulated annealing to find the optimal
design of small-scale networks (less than five nodes). Simulated annealing
was also adopted in [15] to find solutions for packet switched networks with
considerations of delay and capacity. Tabu search was used in [7] and in [13]
to find an appropriate design of communications networks by considering cost
and capacity together.

Using greedy algorithms and genetic algorithms (GAs) to assign terminal
nodes to concentrators was investigated by [1]. The greedy algorithm assigns
terminals to nearby (but maybe not the nearest) concentrators, if this assign-
ment can help other terminals to be assigned to nearby concentrators. This
kind of assignment can lead to infeasible solutions even if a feasible solution
exists. This means that sometimes there are unassigned terminals that cannot
be allocated to any concentrator.

The GA used in [1] had two possible chromosome representations for the
terminal assignment problem, LC1 and LC2. Both representations are com-
posed of an integer string. Each integer indicates the concentrator to which a
terminal is assigned. The integers are arranged in the sequence of terminals,
80 the length of the string is the same as the number of terminals. In LC1,
the first nl terminals are assigned to n2 different concentrators, one terminal
per concentrator. The remaining terminals are assigned in a greedy fashion
considering the different costs of the concentrators. [1], used a seeding strat-
egy to initialise the population in order to reduce the number of infeasible
individuals in the initial population. Unfortunately, this kind of representa-
tion sometimes may cause inappropriate assignments with a great waste of
concentrator capacities after the first nl terminals are allocated to n2 concen-
trators. In case of large-scale problems with large numbers of terminals and
concentrators, the computation time may increase considerably due to the
continuous evaluation of the lowest costs for the assignment of the remaining
terminals.

The second representation LC2 do not adopt the strategy of assigning
the first nl terminals to n2 concentrators. All the terminals are assigned in a
greedy fashion. Therefore, unlike LC1, the infeasibility in the initial population
of LC2 is likely to be high. In case of large-scale problems, the computation
of the cost can be very high as well. The results in [1] showed that GAs
outperformed the greedy algorithm.



134 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

[12] compared greedy algorithms, GAs and grouping GAs (GG As) for solv-
ing the terminal assignment problem. A terminal is assigned to the nearest
concentrator which has sufficient capacity to take this terminal, and if not,
the next closest concentrator is chosen for assignment. In this algorithm, there
are many chances that some terminals may not be allocated and hence make
the solutions infeasible. If the number of terminals or concentrators is large,
it may take a long time to search for concentrators with the least cost for
assigning all terminals.

The GAs in [12] used both binary and non-binary representations indicat-
ing the concentrators with which the terminals are connected. If the terminal
size is large, e.g., 1000, the chromosome length will also be large, e.g., 1000.
Therefore, generating a feasible initial population and evolving such long chro-
mosomes can be a challenge to GAs. [12] have incorporated a penalty term
in the fitness function to deal with infeasibility. Infeasible solutions are not
discarded but included in the population with the penalty incorporated in it.
The penalty term clearly distinguishes infeasible solutions from feasible ones.
A higher penalty imposes more selective pressure on infeasible solutions.

[12] used a GGA as a third approach to solve the terminal assignment
problem. The representation in GGAs consists of two parts. The first part
is the same as the representation used in GAs, but there is an additional
part which groups the terminals and their connected concentrators together.
The first part of the representation is only used for selection and fitness eval-
uation. A special crossover operator is designed for the group part in the
group representation, which selects an entire group from one parent and in-
serts it into the other parent at the crossover point. After crossover there is a
high possibility that the individuals may become infeasible. So the infeasible
chromosomes have to be repaired. The repair process needs to remove the
duplicate concentrators and re-assign the associated terminals to other con-
centrators. [12] demonstrated that GAs with the non-binary representation
outperformed greedy algorithms in most cases, but GGAs did not perform
very well comparatively.

It can be seen from previous work that using evolutionary approaches
(especially GAs) in communications network design has potentials. These ap-
proaches showed better performance than other search algorithms such as
greedy algorithms. However, there is a crucial limitation in the previous evo-
lutionary approaches concerning their encoding methods, which is usually a
list of all possible connections to concentrators, arranged in the sequence of
terminals. Such encoding methods usually cannot work well with large-scale
problems, and in particular, they have extreme difficulties in generating a
feasible initial population within a reasonable time. Because those encoding
schemes are all based on terminals and cannot reflect well the relationship
between terminals and concentrators, good couplings between terminals and
concentrators discovered in evolution may not be maintained after search op-
erations such as crossover and mutation. This makes the evolution more dif-
ficult to find and keep optimal solutions. Though [12] introduced the concept



Hybrid Evolutionary Approaches to Terminal Assignment 135

of group based representation, it was used together with the terminal based
representation and only for crossover. The performance of GGAs was not sat-
isfactory. In order to overcome the difficulties presented in the previous work,
a new chromosome representation is proposed for the terminal assignment
problem in the next section.

3 Concentrator-based Evolutionary Approach

In this chapter, a novel concentrator-based evolutionary approach is proposed
to make use of the group structure in the terminal assignment problem. This
approach is especially used to overcome the incapability of previous evolu-
tionary approaches in handling large-scale networks. The concentrator-based
evolutionary approach differs from classic EAs in two aspects. First, a spe-
cial encoding scheme is designed to introduce the structure of groups into
the genes of chromosomes. Second, given the distinctive encoding, special ge-
netic operators are designed to evolve the concentrator-based chromosomes
for solving the terminal assignment problem.

In the remaining of this section, we will introduce the encoding method
and the corresponding search operators. The concentrator-based EA is then
examined and compared with other EAs by a series of experiments with dif-
ferent experimental settings.

3.1 Concentrator-based Representation

The concentrator-based representation is composed of a set of trees in one
level, in each of which the concentrator is the root node and the terminals
associated with the concentrator are the leaves. Each tree therefore indicates
a concentrator together with its terminals. An example of the representation
is shown in Figure 1,

f f cf bg\@
tl 3 2 t5 t4

Fig. 1. An example of the concentrator-based representation.



136 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

In this example, there are 4 concentrators (cl to c¢4) and 5 terminals (t1
to t5). Terminal t1 is assigned to concentrator cl, terminal t3 to concentrator
¢2, and so forth. The representation of this example can be written as:

c1(1)c2(¢3)c3(£2, 5)cA(t4)

When composing the concentrator-based representation, both constraints
of the terminal assignment problem must be met. Any infeasible representa-
tions should be either repaired or eliminated in evolution.

The initial population of the concentrator-based EAs is generated in a way
similar to that of the terminal-based EA (e.g., the non-binary representation
used in {12]). Every concentrator has equal probability to serve terminals. A
terminal is first assigned to a randomly selected concentrator. If the concentra-
tor has not enough capacity to serve the terminal, then another concentrator
is randomly chosen. An individual is included in the population only if it is
feasible.

The concentrator-based representation, i.e. the tree-based representation,
allows for variable length genotypes, so the chromosomes are not restrained
by terminal or concentrator numbers. It is both efficient and flexible. Because
there is no need to search and evaluate the least cost concentrators when
generating individuals, the concentrator-based representation works well even
with a large number of terminals or concentrators. The generation of the initial
population is simpler than the terminal-based representation. The terminals
that are to be assigned to a concentrator are taken from a pool where terminals
are stored, eliminating any duplicates. By generating populations in this way
the constraints of assigning a terminal to only one concentrator is implicitly
satisfied.

3.2 Search operators

A series of search operators including selection, crossover, and mutation have
been designed to work with the new concentrator-based representation, as nei-
ther the standard nor the ordering genetic operators are suitable for grouping
problems [4]. These operators are introduced below.

Selection

Selection is the operation by which individuals are selected from a popula-
tion for mating. There are many different models of selection such as ranking,
roulette wheel selection and tournament selection. Because these models se-
lect chromosomes according to their ranks or fitness values, they can be easily
applied to the concentrator-based evolution without major changes. In the fol-
lowing experiments, tournament selection is used due to its good performance
in selecting optimum or nearly optimum solutions.



Hybrid Evolutionary Approaches to Terminal Assignment 137
Crossover

The purpose of crossover is to pass on the genetic material from the current
generation to the next one. A typical crossover recombines two individual
parents to produce two offspring. Several crossover operators can be used on
the concentrator-based representation.

One Point Crossover

This is one of the most common crossover methods used in EAs. A
crossover point is randomly chosen and children are obtained by swapping the
tails of the parents’ chromosomes. Figure 2 is an example of how one point
crossover works on the concentrator-based representation. If the crossover
point divides the parent in equal halves then equal information is inherited.
Sometimes repair has to be done to make the children feasible. The process of
repair is explained later. In this type of crossover, the order of concentrators
in a chromosome is not very important.

parent 1-c1(t1,t3) ‘ c2(12,t4,t6) c3(17,t8,t5)
parent 2— c1(t2,t3,t4) [ c2(t1,t7,t8) c3(t7,16,t5)

child 1- c1(t1,t3)c2(t1,t7,t8) c3(t7,t6,t5)
child 2—- c1(t2,t3,t4) c2(t2,t4,t6) c3(t7,t8,t5)

Fig. 2. One point crossover.

Two Point Crossover

In two point crossover, two crossover points are randomly chosen and the
chromosome parts in between are exchanged between the parents, as shown in
Figure 3. The information that is inherited depends on the crossover points. If
the crossover points are far apart, more information is then inherited. Similar
to one point crossover, this type of crossover is also commonly used in EAs.

Modified Uniform Crossover

A typical example of the uniform crossover is shown in Figure 4. The
order of concentrators remains the same in all the chromosomes before and
after crossover, but only some the terminals associated with each concentrator
are inherited.



138 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

parent 1— c1(t1,t3) l c2(12,t4,16) | c3(17,t8,15)
parent 2— c1(t2,t3,t4) } c2(t1,t7,t8) | c3(16,t5)

child 1- cI(t1,£3) c2(t1,17,68) c3(t7,t8,t5)
child 2— c1(t2,t3,t4) c2(t2,t4,t6) c3(t6,t5)

Fig. 3. Two point crossover.

parent 1—c1(t1,t3) c2(12,t4,t6)  c3(t7,t8,t5)
parent 2— c1(t2,t3,t4) c2(t1,t7,t8) c3(t6,t5)

child 1- c1(t1,t3) c2(t1,t7,t8) c3(t7,t8,t5)
child 2- c1(t2,t3,t4) c2(t2,t4,t6) c3(t6,t5)

Fig. 4. Uniform crossover.

In Figure 4, for child1, the terminal set of c1 is inherited from parentl, for
¢2 it is inherited from parent2 and for c3 it is again inherited from parentl.
In this example, the probability of inheriting a gene from a parent is set
as 0.5. In the following experiments, the probability is calculated based on
the available capacities of the concentrators. For example, if the available
capacity of cl is 60% in parentl and is 30% in parent2, then the probability
of selecting cl from parentl will be greater than from parent2. Such a uniform
crossover is different from the classical one, and thus called modified uniform
crossover. In this type of crossover it is possible that both terminal assignment
constraints may be violated. The crossover may result in infeasible solutions.
For example, terminals may be assigned to more than one concentrator, such
as terminal t4 of child2 shown in Figure 4, which is assigned to both c1 and c2.
Also, there may be some terminals that are not assigned to any concentrator,
such as terminals t1, t7 and t8 in child2. In order to resolve the violation of
constraints, repair should be done.



Hybrid Evolutionary Approaches to Terminal Assignment 139

One node Crossover

The crossover operators introduced above are similar to classical crossover
methods on the terminal-based representation. To exploit our representation
better, two specific crossover methods based on concentrators are also de-
signed. Figure 5 illustrates one of the methods, which is called one node
crossover. Each concentrator is deemed as a node in this method. A ran-
dom node point is chosen (such as c2 in the example shown in Figure 5) and
the nodes together with their associated terminals in two parents are swapped
to produce offspring. Repair is used to make the offspring feasible whenever
necessary.

parent 1— c1(tl,t4) c2(t5,t3,t2)  c3(16,t7)
parent 2— c1(t2,t3) c2(t6,t5) c3(t1,t4,t7)

child 1-cl(tl,t4) c2(t6,t5) c3(t6,t7)
child 2—- c1(t2,t3) c2(t5,t3,t2) c3(t1,t4,t7)

Fig. 5. One node crossover.

Best Node Crossover

In addition to one node crossover, another node-based crossover is pro-
posed to exploit the best concentrator in the chromosomes. The best concen-
trator is chosen from each parent and then passed to the offspring. In Figure
6, concentrator ¢3 from parentl and concentrator cl from parent2 are trans-
ferred to both children. The offspring replace their parents only if the cost
is less than or equivalent to that of the parents. This type of crossover can
reduce the number of concentrators used.

One Group Crossover

This operator is inspired by the crossover used in GGAs as described
in Section 2.2. Two random crossover points are generated separately and
independently for two parents as shown in Figure 7. The crossover points
may be different for two parents. Repair will be needed for infeasible children.



140 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

parent 1— c1(t1,t2) c3(t6,t7) c2(14,t5,t3)
parent 2— c1(t3,t5) c2(t1,t2) c3(t4,t6)

child 1- c1(t3,t5) c2(t6,t5) c3(t4,t5,t3)
child 2— c1(t3,t5) c2(t1,t2) c3(t4,t5,t3)

Fig. 6. Best node crossover.

parent 1— cl(t2)| c2(t3) | c3(tl,t4)  c4(t5)
parent 2— c1(tl) c2(t4) | c3(12,t3) | c4(t5)

child 1-c1(t2) c2(t4) c3(tl,t4) c4(t5)
child 2— c1(tl) c2(t4) c3(tl,t4) c4(t5)

Fig. 7. One group crossover.

Best Group Crossover

This crossover is similar to the above one group crossover, but the best
concentrator in the group will be retained in the offspring instead of being
replaced and lost through crossover. Figure 8 illustrates this crossover. The
concentrator ¢2 in parentl is best utilized and hence is retained in childl.
The concentrator c¢3 in parentl is the best and hence is inserted into the
chromosome of child2.

Repair

After crossover some terminals may be either presented in duplicates or
completely missing and hence cause infeasible individuals. Stochastic repair
is then used to make the individuals feasible. The repair process can be de-
scribed by two steps:



Hybrid Evolutionary Approaches to Terminal Assignment 141

parent 1- c1(t2)| c2(t3) | c3(t1,t4)  c4(t5)
parent 2— c1(tl) c2(t4) | c3(12,3) | c4(t5)

child 1-c1(t2) c2(t3) c3(tl,td) cA(tS)
child 2- c1(tl) c2(t4) c3(tl,t4) c4(15)

Fig. 8. Best group crossover.

1. Deletion of duplicate terminals - Each terminal is examined for duplicates
and if there is any, a duplicate terminal in a less loaded concentrator is
deleted;

2. Stochastic assignment of missing terminals - Missing terminals are as-
signed to less loaded concentrators which are randomly chosen.

Mutation

Mutation makes (usually small) alterations to one or more genes in a chro-
mosome. It is considered as a method to recover lost genetic material during
evolution. Here several mutation methods are used for the concentrator-based
evolution.

Point Concentrator Swap

Two concentrators ¢l and c2 are chosen stochastically and all the termi-
nals associated are swapped between them. Because concentrators may have
different capacities, swapping their terminals may reduce the cost but not the
number of concentrators. This is shown in Figure 9.

Before mutation — c1(t1,t3) c2(t2,t4) c3(t5,t6)
After mutation —  c1(t2,t4) c2(t1,t3) c3(t5,t6)

Fig. 9. Two point concentrator swap.



142 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

Two Point Terminal Swap

Here two concentrators are chosen at random and then two terminals are
randomly chosen from the two concentrators, respectively. The selected ter-
minals are then interchanged. An example of this mutation is shown in Figure
10.

Before mutation — c¢1(tl,t4) c2(t3,t6) ¢3(15,t2)
After mutation —  c¢1(t1,t3) c2(t4,16) c3(t5,t2)

Fig. 10. Two point terminal swap.

In Figure 10, concentrators c1 and c2 are selected and in them terminals t3
and t4 are selected and then interchanged. The mutated individual is included
in the population only if it is feasible and fitter than its parent.

Delete-Insert One Mutation

This mutation is designed to alter the concentrator of a terminal. A con-
centrator cl is first chosen at random. Then a random terminal t1 is deleted
from it and then inserted into the terminal set of another randomly chosen
concentrator, ¢3 in this case. The mutated individual joins the population only
if it is fitter than its parent and is feasible. This type of mutation is designed
to reduce the number of concentrators used. For example, cl in Figure 11 is
no longer needed.

Before mutation — c1(t1) c2(t2,t4,t3) ¢3(t6,t5)
After mutation — c¢1() ¢2(t2,t4,t3) ¢3(t6,t5)

Fig. 11. Delete-insert one mutation.

In this mutation, a concentrator cl is chosen at random and all the ter-
minals in ¢l are removed and inserted into another concentrator c2, which is
also chosen at random, as shown in Figure 12. This type of mutation is de-
signed to reduce the number of concentrators by shifting all of the terminals
of a concentrator to other concentrators. In Figure 12, all the terminals of c1
are shifted to concentrator ¢2, however they may be reassigned to more than



Hybrid Evolutionary Approaches to Terminal Assignment 143

one concentrator if the currently selected concentrator does not have sufficient
capacity. After this mutation the individual joins the population only if it is
fitter than its parent and is feasible.

Before mutation — ¢1(t1,t3) c2(t2,t4) ¢3(t7,t6,t5)
After mutation — c¢1() c2(t1,t3,t2,t4) c3(t7,16,t5)

Fig. 12. Delete-insert all mutation.

Self Crossover Mutation

Two concentrators ¢l and c2 are chosen at random. The terminal set of
each concentrator is regarded as a small ”individual” and the two sets are
crossed using one point crossover.

Before mutation — cl(tl,t4| t3,t8) c2(t5, t7 | o)
After mutation — c¢1(t1,t4,t6) c2(t5,t7,t3,t8)

Fig. 13. Self crossover mutation.

One Group Mutation

A less loaded concentrator is chosen at random from a parent and all the
terminals associated with the concentrator are deleted. The deleted terminals
are then reassigned to other concentrators chosen randomly. In Figure 14
concentrator ¢2 is chosen at random and terminal t3 is deleted. The missing
terminal t3 is added to the terminal list of concentrator cl. This type of
mutation may result in fewer concentrators.

Multi-Group Mutation

This mutation is similar to the one group mutation except that more than
one concentrator is involved. Several less loaded concentrators are chosen at
random. In Figure 15 concentrators c2 and c4 are randomly chosen and termi-
nals t4 and t2 are removed from their terminal lists. The removed terminals
t4 and t2 are reassigned to a random concentrator ¢3. This type of mutation
operator can also reduce the number of concentrators used.



144 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

Before mutation — c1(tl,t4) c2(t3) ¢3(t2,t5,t6)
After mutation — c¢1(t1,t4,t3) c2() ¢3(12,t5,t6)

Fig. 14. One group mutation.

Before mutation —c1(t1,t3) c2(t4) c3(t5) c4(t2)
After mutation — c1(t1,t3) ¢2() c3(14,t5,t2) c4()

Fig. 15. Two group mutation.

3.3 Experimental Studies

In the previous sections, we introduced the concentrator-based representation
and a number of search operators that can be used on the representation.
In order to evaluate the proposed concentrator-based EA, a number of ex-
periments were run with different experimental settings. In this section, both
the concentrator-based representation and the corresponding operators will
be tested for their performance.

Performance Test of the Concentrator-based Representation

The first experiment is used to examine the performance of the proposed
concentrator-based representation. For the purpose of comparison, the terminal-
based representation was also tested in the experiments. The initial popula-
tions in the experiments were generated in the way as described in Section
3.1. Tournament selection with uniform crossover and two-point interchange
mutation was used for both representations in this comparison test. The EAs
are terminated after the fitness value remains unchanged for 25 generations.
Both concentrator-based and terminal-based representations are tested on dif-
ferent problems in which the number of terminals ranges from 100 to 1000.
However, problems with more than 500 terminals were not considered in the
terminal-based representation because the generation of their initial popula-
tions took too long. Table 1 gives a list of the experimental parameters used
in the experiment. The experiment was run for 30 times and the results are
shown in Table 2.

The results in Table 2 show that the concentrator-based representation
generally found solutions better and much faster (with fewer generations) than
the terminal-based representation, especially when the problem was large.



Hybrid Evolutionary Approaches to Terminal Assignment 145

Table 1. Experimental setting

Population size: 100

Chromosome: terminal based/concentrator
based representation

Selection: tournament selection

Crossover: uniform crossover

Mutation: two-point interchange

Termination Criterion: the fitness value presents no
change for 25 generations

Elitism: yes

Number of runs: 30

Ratio of number of terminals to
terminal number of concentrators: 2:1

Number of terminals: 100 to 500/100 to 1000
Number of concentrators: 50 to 250/50 to 500
Weight of terminals to: 1to6

concentrators

Capacity of concentrators: 15 to 25

Table 2. Comparison between concentrator-based and terminal-based representa-
tions, where Size indicates the number of terminals, s.d. indicates standard devia-
tions and N indicates the number of generations.

Concentrator-based Terminal-based
Size cost N cost N
best mean s.d. worst best mean s.d. worst

100 |1254 1479 250 1720|250 | 932 1062 72 1212435
200 |1607 1806 116 2029 | 587 (1565 1782 122 2051 |1005
300 (2018 2259 150 2568 {1008(2038 2305 171 2756 {1618
400 |2375 2711 190 3152 1306|2676 3119 241 3843 {2004
500 (2962 3508 193 3843 |1709|3194 3753 320 4665 (2665
600 [3274 3618 213 3959 |2160
700 {3959 4399 246 4922|2306
800 |3920 4409 258 5029 |2761
900 |4337 5179 342 6055 |3224
100014395 5295 378 5936 |3624

During the experiments, we found that the difference in cost between two rep-
resentations was higher in the first generation as compared with the final gen-
eration. Though the concentrator-based representation produced a relatively
uncompetitive population at the beginning, it obtained superior final results
through evolution, except when the problem is very small, e.g., for terminal
sizes 100 and 200. The concentrator-based representation achieved the results
in fewer generations for all terminal sizes. The genetic operators worked more
effectively on the concentrator-based representation than its counterpart.



146 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

The concentrator-based representation also showed good scalability. It eas-
ily generated and evolved populations for terminals up to 1000. This is in con-
trast to the terminal-based representation which became incapable of solving
the problem when the number of terminals involved was more than 500. This
incapability inevitably restricts the application of the terminal-based repre-
sentation in real world communications networks, which usually involve a
great number of network nodes. The number of generations required by the
concentrator-based representation was approximately linearly increased with
the increased number of terminals, as shown in Figure 16. The well-presented
scalability of the concentrator-based representation shows that it is suitable
for large-scale network applications.

4000 T T T T T T T T T
: [F6= Concentrator-based
3500 -3 -« { 5 Terminal-based

3000+ TR I R A R e DR ey o

b

=3

=3
T
i

Number of Generations
n
o
(=3
=]
T

a
3
i
i

1000 - L, o o e A L RN R ]

500

100 200 300 400 500 800 700 800 900 1000

Number of Terminals
Fig. 16. Scalability of the concentrator-based representation. The generations re-
quired by the concentrator-based EA was linearly increased with the problem size.
On the contrary, the terminal-based EA became incapable of solving the problem
when terminals were more than 500. ‘

Performance Tests of Search Operators

Various crossover and mutation operators designed for the concentrator-based
representation were tested for their performance here. The EA guided by the
operators should achieve the objective of minimizing the total cost between
terminals and concentrators, and at the same time, the operators should keep
the number of concentrators used at a minimum. In our experiments, the



Hybrid Evolutionary Approaches to Terminal Assignment 147

number of terminals was set as 100 and the number of concentrators was
50. The other settings of the experiments were the same as those used in
the previous tests (see Table 1). The experimental results over 30 runs are
presented in Table 3.

Table 3. Performance tests of various search operators, where s.d. indicates stan-
dard deviation and N indicates the number of generations.

Search operators Number of Cost N
conc.  best mean worst s.d.

1 One point crossover 20 4160 4567 4797 25622 50
2 Two point crossover 44 4380 4553 4728 8855 28
3 Uniform crossover 19 4498 4751 5052 23093 50
4 One node crossover 23 4145 4485 4779 23481 50
5 Best node crossover 43 4222 4503 4726 13887 50
6 One group crossover 44 4361 4563 4737 9863 25
7 Best group crossover 44 4251 4549 4720 16256 25
8 Delete-insert one mutation 39 681 702 744 259 296
9 Delete-insert all mutation 23 2877 3120 3408 13759 115
10 Two point concentrator swap 45 2479 2711 2984 19294 110
11 Two point terminal swap 50 1172 1420 1737 20588 254
12 Self crossover mutation 44 1357 1653 2171 31268 258
13 One group mutation 44 4380 4553 4728 8855 28
14 Multi-group mutation 44 4380 4553 4728 8855 28

;From Table 3 we can see that, when the cost alone is considered, delete-
insert one mutation was the best among all search operators. Two point ter-
minal swap mutation, self crossover mutation, two point concentrator swap
mutation and delete-insert all mutation followed delete-insert one mutation,
but all of them required more generations. All the other operators performed
similarly. When the number of concentrators used alone is considered, uni-
form crossover is the best, followed by one point crossover, one node crossover,
delete-insert all mutation and delete-insert one mutation. The remaining op-
erators had similar performance.

Generally speaking, crossover operators showed better performance in re-
ducing the number of concentrators because most crossover operators are de-
signed for this purpose. Moreover, the stochastic repair mechanism is also very
effective in reducing the number of concentrators used. While the exchange
of genes is more frequent (and hence more repair is required) in one point
crossover and uniform crossover, only 40% of the total concentrators were fi-
nally utilized in the solutions found by these two crossover methods. Unlike
one point crossover, two point crossover may not have frequent gene exchange
and the repair mechanism only works on limited numbers of concentrators.
The reduction of the concentrators used is therefore not so significant in two
point crossover. Best node crossover is similar to one node crossover except



148 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

that the best utilized concentrator is chosen for crossover in both parents.
Although repair may help reducing the concentrators used in both cases, it is
unclear why the former is ineffective in the concentrator usage while the later
is relatively more effective. This issue will be our future work. Compared with
other crossover operators, the performance of group based crossover methods
(e.g., one group crossover and best group crossover) was unsatisfactory. In
most cases, group based crossover involves less exchange of genes than others.
This may be the main reason why more concentrator used in group based
crossover. Group based crossover also required much longer time to meet the
termination criterion. All crossover operators showed insufficient effect on re-
ducing the total cost.

In contrast to crossover, most mutation operators effectively reduced the
total cost because the assignment of terminals to concentrators was continu-
ously altered and only fitter individuals after mutation were allowed to join
the population. Among these operators, delete-insert one and delete-insert
all mutation performed best by maintaining better utilized concentrators and
mutating less loaded concentrators. Two point concentrator swap, two point
terminal swap and self crossover mutation were also good at reducing cost,
but less effective than delete-insert one and delete-insert all mutation. This is
because these operators do not take the concentrator load into account when
swapping genes. Similar to group based crossover, one group mutation and
multi-group mutation demonstrated unsatisfactory performance in both cost
minimization and reduction of the number of concentrators used.

It is worth emphasizing that our study of genetic operators was carried
out for each operator independently. We did not run EAs with two or more
operators in the above experiments (Table 3). We expect EA’s performance
will improve further if we use two or more appropriate operators together.

4 Concentrator-based Hybrid Evolutionary Approaches

Hybrid EAs have been shown to be quite effective in solving a wide range of
real world problems. How EAs and local search are combined is an extremely
important issue that influences the final solution quality and the computa-
tional efficiency of the algorithm [10]. Hybridization of EA with local search
gives rise to the concepts of Lamarckian evolution and Baldwin effect [10],
which are the most often studied techniques in hybrid EAs.

In this section, both Lamarckian evolution and Baldwin effect are incor-
porated with the concentrator-based EA to form hybrid EAs for communi-
cations network design. Lamarckian evolution or Baldwin effect is applied to
all the individuals in every generation. The two different forms of hybrid EAs
are fully investigated on the terminal assignment problem, for both single-
objective and multi-objective optimisation as introduced in Section 2.1. A
series of experiments are designed to examine the performance of the hybrid
EAs.



Hybrid Evolutionary Approaches to Terminal Assignment 149
4.1 Lamarckian Evolution and Baldwin Effect

In Lamarckian evolution individuals improve during their lifetime through
local search and the improvement is passed to the next generation. The indi-
viduals are selected based on improved fitness and are transferred to the next
generation with the improvement incorporated in the genotype.

The Baldwin effect utilized in EAs was first investigated by Hinton and
Nolan in [§]. Unlike Lamarckian evolution, the improvement does not change
the genetic structure (genotype) of the individual that is transferred to the
next generation. The individual is kept the same as before local search, but
the selection is based on the improved fitness after local search. Baldwin effect
follows natural evolution (Darwinian), i.e., learning improves the fitness and
selection is based on fitness. The improvement is passed indirectly to the next
generation through fitness in Baldwin effect.

While Lamarckian learning may disrupt the schema processing of a GA,
Baldwin learning certainly aggravates the mapping problem of multiple geno-
types to one phenotype. In a comparison of Baldwin and Lamarckian learning,
[16] showed that utilizing either form of learning would be more effective than
the classical GA without any local improvement procedure. They argued that,
while Lamarckian learning is faster, it may be susceptible to premature con-
vergence to a local optimum as compared to Baldwin learning [10].

4.2 Use of Memory

In Baldwin effect, if two individuals are different but map to the same local
basin, the evolutionary approach will try to exploit both individuals. If these
two individuals are crossed over and produce offspring in the same basin,
computational effort will then be wasted on applying the local search to search
the same basin again [10].

In Lamarckian evolution, these individuals are possibly identical and will
reproduce clones of themselves if crossed over. The local improvement is there-
fore unnecessary as the children are the same as the parents. Slight mutation
change may be useless since it may leave the individual in the same basin
or in a later generation the EA may generate an individual that falls in a
basin already explored. Therefore, the local improvement procedure may be
reapplied to search the same basin while valuable computational cycles could
be used to explore other regions in the search space. To solve this problem,
random linkage, a search algorithm taken from global optimization, was de-
signed [10] to prevent repeated searches by using an accept/reject function
that determines whether a local search is appropriate.

In the work presented in this chapter, it is assumed that the offspring will
converge to the same local basin after local search (though in practice it may
not be the case), so these individuals are forbidden from crossing over with
themselves. Consequently, the computational effort can be used to explore



150 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

other basins. Because this technique will check the fitness values of the off-
spring before crossover, it is similar to the use of memory. The memory is used
with both Lamarckian evolution and Baldwin effect, and their performances
are compared with those without memory in the following experiments. Ta-~
bles 4 and 5 list the algorithmic descriptions of Lamarckian evolution and
Baldwin effect with and without memory, respectively.

Table 4. Algorithmic descriptions of Lamarckian evolution with and without mem-
ory

Lamarckian evolution without memory

BEGIN
Generate initial population P(0) randomly,
i+ 0
REPEAT
Select the parents from P(i) based on their fitness in P(z);
Apply crossover to the parents and repair if necessary to make it feasible.
Replace the parents only if the offspring is better;
Apply mutation to the individuals and replace the population
if the mutated individual is better and feasible;
For each solution so¢ from the population:
REPEAT
Perform local search to get a new solution s;
If (f(s) < f(s0)) replace so by s;
UNTIL terminal size
UNTIL the population converges

END
Lamarckian evolution with memory
BEGIN
Generate initial population P(0) randomly,
i+ 0;
REPEAT

Select the parents from P(3) based on their fitness in P(¢);
Apply crossover to the parents only if their fitness are different and repair
if necessary to make it feasible
and replace the parents only if the offspring is better;
For each solution so from the population;
REPEAT
Perform local search to get new a solution s
If (f(s) < f(s0)) replace so by s;
UNTIL terminal size
UNTIL the population converges
END



Hybrid Evolutionary Approaches to Terminal Assignment 151

Table 5. Algorithmic descriptions of Baldwin effect with and without memory

Baldwin effect without memory

BEGIN
Generate initial population P(0) randomly,
i+ 0;
REPEAT
Select the parents from P(i) based on their fitness(Baldwin) in P(3);
Apply crossover to the parents and repair if necessary to make it feasible.
Replace the parents only if the offspring is better;
Apply mutation to the individuals and replace the population
if the mutated individual is better and feasible;
For each solution sg from the population:
REPEAT
Perform local search to get a new solution s;
Replace s¢ by s;
UNTIL terminal size
UNTIL the population converges;

END
Baldwin effect with memory
BEGIN
Generate initial population P(0) randomly,
i 05
REPEAT

Select the parents from P(i) based on their fitness(Baldwin) in P(%);
Apply crossover to the parents only if their fitness are different and repair
if necessary to make it feasible and
replace the parents only if the offspring is better;
For each solution sg from the population;
REPEAT
Perform local search to get new a solution s
Replace sp by s;
UNTIL terminal size
UNTIL the population converges;
END

4.3 Experimental Studies

Concentrator-based hybrid EAs using Lamarckian evolution or Baldwin effect
are evaluated and compared. Lamarckian evolution and Baldwin Effect are
first combined with the various search operators introduced in Section 3.2
to solve the terminal assignment problem with a single-objective, then that
with multi-objectives. The experimental setup is the same as the one used
previously, as introduced by Table 1 in Section 3.3. Delete-insert one mutation



152 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

is used in the local search due to its effectiveness in reducing the cost as well
as the number of concentrators.

Single Objective Optimization

Lamarckian evolution and Baldwin effect with and without memory are tested
on the single-objective terminal assignment problem. Table 6 shows the total
cost obtained by Lamarckian evolution and Baldwin Effect without mem-
ory and Table 7 shows the cost obtained with memory. All tests eventually
used the same number of concentrators, which is 40, regardless of the use of
memory. Because the use of memory influences only crossover, no mutation
operators were used in the tests of Lamarckian and Baldwin learning with
memory.

The experimental results listed in Tables 6 and 7 show that there is no
significant difference in performance between Lamarckian and Baldwin evolu-
tion. When the local search is used without memory, the best results obtained
are all around 680 for different combinations of search operators. The two-tail
t-test on the mean cost also indicates that for a=0.5, none of the local search
is significantly different from others. The hybrid EAs found the same basin
for different combinations of search operators.

In the case of memory, the two tail t-test on the mean cost again shows no
significant difference between Lamarckian and Baldwin evolution. However,
the best cost obtained with memory can be lower than 680 when one point
crossover, uniform crossover, one node crossover or best node crossover is used
(the lowest is 461). This suggests that the use of memory aids the crossover
operators to explore other basins and hence the computational effort can be
saved from repeated exploration of the same basin. However, the standard
deviation is quite high for those operators. It is worth noting that the perfor-
mance of all the hybrid EAs outperformed the concentrator-based EA without
local search as introduced in Section 3.

Multi-objective Optimisation

In real world communications networks, minimising cost and number of con-
centrators are both important and should be considered at the same time. It
is therefore more sensible to deal with them as two independent objectives like
in a multi-objective optimisation problem. To enable this, concentrator-based
hybrid EAs with multiple objectives are studied.

In multi-objective optimisation, more than one objective should be opti-
mised and these objectives are often in conflict with each other. Obtaining
a global optimal solution for all the objectives is therefore not easy. Usually
only a set of solutions that are non-dominated (known as Pareto optimal so-
lutions) can be obtained. There are three main approaches to evolutionary
multi-objective optimisation: the weighted sum approach, population-based
non-Pareto approach and Pareto-based approach [6].



Hybrid Evolutionary Approaches to Terminal Assignment

153

Table 6. Cost comparison between Lamarckian and Baldwin effect without memory
in single-objective optimisation

Crossover Mutation Lamarckian Baldwin t-test
best mean s.d. [best mean s.d.

1 Del-ins one mut.| 680 685 8 680 685 11 [0.00

One point | Del-ins all mut. {680 685 8§ (680 685 15 |0.00

Two point conc.|680 685 18 |680 684 9 |0.27

Two point term.|680 684 11 (680 684 6 | 0.00

Self crossover |680 684 10 [680 684 5 |0.00

2 Del-ins one mut.{ 680 686 18 (680 684 16 |0.45

Two point | Del-ins all mut. [680 685 17 (680 683 8 |0.58

Two point conc. | 680 684 9 680 684 12 | 0.00

Two point term.{ 680 684 14 |680 683 8 |0.34

Self crossover | 680 684 8 680 683 10 | 0.42

3 Del-ins one mut.{ 680 686 18 |680 684 7 |0.56

Uniform | Del-ins all mut. {680 685 17 680 685 11 |0.00

Two point conc.| 680 684 9 680 683 10 |-0.40

Two point term.{680 684 14 680 683 6 |0.36

Self crossover |680 684 8 |680 685 11 [-0.40

4 Del-ins one mut.{ 681 685 11 [680 685 5 |0.00

One node | Del-ins all mut. | 680 684 7 680 685 7 |-0.55

Two point conc.| 680 685 8 (680 685 6 |0.00

Two point term.} 680 685 7 |680 685 10 |0.00

Self crossover |680 685 9 |680 68 7 |0.00

5 Del-ins one mut.[680 686 15 |680 684 9 |0.62

Best node | Del-ins all mut. |680 686 20 (680 683 4 |0.80

Two point conc.|680 684 9 |[680 684 6 |0.00

Two point term.[ 680 685 16 |680 683 4 |0.66

Self crossover |[680 684 11 (680 684 9 {0.00

6 Del-ins one mut.| 680 684 7 |680 682 5 [1.26

One group | Del-ins all mut. |680 684 10 [680 684 8 |0.00

Two point conc.[680 684 11 {680 684 8 |0.00

Two point term.|680 684 10 [680 683 4 |0.50

Self crossover |[680 683 15 {1680 683 4 |1.04

7 Del-ins one mut.| 680 686 19 |680 683 6 |0.81

Best group| Del-ins all mut. (680 685 12 |680 683 4 |0.86

Two point conc. [ 680 685 15 |[680 683 6 |0.67

Two point term.|680 685 13 {680 684 9 |0.34

Self crossover {680 686 22 [680 684 8 |0.46

When hybrid EAs are used for the multi-objective terminal assignment
problem, the weighted sum approach is used. It is similar to the single-
objective optimisation except that the fitness function explicitly deals with
two objectives: one is to minimise the total cost and the other is to min-
imise the number of concentrators used. The mathematical formulation for



154 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

Table 7. Comparison between Lamarckian evolution and Baldwin effect with mem-
ory in single-objective optimisation

Lamarckian Baldwin t-test

Type best mean s.d. |best mean s.d.
a) One point crossover 542 741 190211461 715 15418 0.01
b) Two point crossover 680 684 11 [461 683 6 |0.43
c¢) Uniform crossover |583 705 4643|551 726 6577 |-0.02
d) One node crossover (661 687 284 |662 683 101 | 0.07
e) Best node crossover (668 684 35 |665 685 38 |-0.10
f) One group crossover | 680 685 17 |680 683 4 |0.62
g) Best group crossover|680 686 17 (680 684 7 |0.59

this problem was shown in Section 2.1. However, there are some weaknesses
in the weighted sum approach [9]:

1. It can provide only one Pareto solution from one run;
2. It has been shown that the weighted sum approach is unable to deal with
a multi-objective optimisation problem with a concave Pareto front [5].

If the weights for different objectives are changing during optimisation,
the optimiser may go through all points on the Pareto front. If the searched
non-dominated solutions are archived, the whole Pareto front can be achieved.
This has been shown to be working well for both convex and concave Pareto
fronts. Whether the weighted sum approach is able to converge to a Pareto-
optimal solution depends on the stability of the Pareto solution corresponding
to the given weight combination. Without considering the time consumption,
the whole Pareto front can be obtained by running the optimiser as long as
possible [9].

Investigation of Varied Weights

To examine the weight effect on optimisation, varying weights between 0.1
and 0.9 are set for both objectives of the terminal assignment problem. In the
experiments, EAs with one point crossover and delete-insert one mutation are
used, and all the other experimental settings are the same as those used for
the performance tests of various search operators, as introduced by Table 1
in Section 3.3. Table 8 summarises the experimental results, including the
number of concentrators used, the total cost obtained and the number of
generations required by each EA. Figure 17 shows the relationship between the
values obtained for both objectives, i.e., cost vs the number of concentrators.

In Table 8, Weight One indicates the weight assigned to the first objective
(cost) and Weight Two is that assigned to the number of concentrators. As
Weight One increases, the cost decreases as expected. The decrease in cost
became less obvious while weight one is higher than 0.4. The EA reaches a
relatively reasonable performance for both objectives when their weights are



Hybrid Evolutionary Approaches to Terminal Assignment

155

around 0.5. In the following experiments of hybrid EAs for multi-objective
optimisation, we choose 0.5 as the weights for both objectives.

Table 8. Results obtained by varied weights in the weighted sum approach to multi-
objective optimisation

200

Fig. 17. Relationship between obtained cost and number of concentrators.

25 30

Concentrators

35 40 45 50

Weight one Weight two Number of Cost Generations
concentrators best mean worst s.d.
1 0.10 0.90 20 1623 2101 2528 50012 62
2 0.20 0.80 21 1029 1256 1466 10207 50
3 0.30 0.70 23 888 1008 1126 3538 52
4 0.40 0.60 24 795 846 918 1110 53
5 0.50 0.50 27 740 770 813 236 59
6 0.60 0.40 29 713 733 760 170 50
7 0.70 0.30 30 697 714 745 144 51
8 0.80 0.20 33 689 696 712 27 52
9 0.90 0.10 35 684 690 697 10 50
1800 T T T T T T T T
1600
1400
1200
“1000
800 : : :



156 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

Comparison Between Lamarckian and Baldwin Effect in
Multi-objective Optimization

In multi-objective optimization, both Lamarckian evolution and Baldwin ef-
fect are tested with various combinations of search operators. For simplicity,
the use of memory is not considered in these tests. The weights for the two
objectives are set as 0.5. Table 9 shows the comparison results.

In the Lamarckian-style hybrid EA, the best cost obtained was 719 when
one point crossover was used with delete-insert all mutation and two point
crossover was used with two point concentrator swap. The corresponding num-
ber of concentrators used was 26 in both cases. In Baldwin effect, the best
cost obtain was 720 and the corresponding number of concentrators used was
also 26, when two point crossover and two point concentrator swap mutation
are used together. The experimental results again demonstrate that there is
no significant difference between these two local search methods.

When comparing the results obtained for single-objective and multi-
objective optimization, hybrid EA in single-objective optimization sometimes
obtained a lower cost than in multi-objective optimization, such as the Lamar-
ckian evolution with one point crossover plus two point terminal swap muta-
tion, and Baldwin effect with uniform crossover plus self crossover mutation
and with best node crossover plus delete-insert all mutation. The cost achieved
for the single objective case is around 685, compared with the cost around 760
achieved for the multi-objective case. The number of concentrators used, how-
ever, is much lower in the multi-objective case, which is around 26, compared
with 40 obtained in the single-objective case. If taking both objectives into
consideration, the multi-objective optimization performed better in satisfy-
ing two objectives simultaneously than the single objective optimization. It is
worth noting that in either case, hybrid EAs with local search outperformed
EAs without local search as given in Section 3.

5 Conclusions and Future Work

Communications network design is essential to the development and imple-
mentation of widely used packet switch networks and fiber optical networks.
Optimal communications network design is challenging since it needs to sat-
isfy multiple constraints and to minimize one or more objectives at the same
time. EAs have been shown to perform well for the terminal assignment prob-
lem. Their performance can be further enhanced by a new concentrator-based
chromosome representation and by hybridization with local search.

This chapter proposes a novel concentrator-based representation that uti-
lizes the group character of terminals and concentrators to overcome the limi-
tations of the traditional terminal-based representation. A series of new search
operators including crossover and mutation are designed for the concentrator-
based representation. The concentrator-based EAs have been shown to outper-
form other terminal-based EAs. Our computational study also demonstrates



Hybrid Evolutionary Approaches to Terminal Assignment

157

Table 9. Comparison between Lamarckian evolution and Baldwin effect in multi-
objective optimisation

Xover|Mutation Lamarckian Baldwin t-test
conc. best mean s.d.|conc. best mean s.d.
One |Del-ins one mut.| 27 740 770 236| 27 732 765 418|0.06
point (Del-ins all mut. | 26 719 757 431| 26 723 756 495]0.01
Two point conc. | 26 731 757 394} 26 721 756 323|0.01
Two point term.| 26 740 767 211 26 737 764 424|0.04
Self crossover 26 724 753 10| 26 725 759 325(-0.08
Two |Del-ins one mut.| 26 745 780 592 26 734 770 543} 0.07
point [Del-ins all mut. { 26 727 761 342 26 721 752 349 0.10
Two point conc. | 26 719 753 229 26 720 756 575]-0.03
Two point term.| 26 739 776 453| 26 729 768 824 |0.05
Self crossover 26 728 753 242| 26 727 753 788 0.00
Unif. |Del-ins one mut.| 27 733 768 513| 26 736 774 771(-0.04
Del-ins all mut. | 26 724 753 260| 26 726 757 461 /-0.04
Two point conc. | 26 733 760 312| 26 729 751 246 0.12
Two point term.| 26 731 764 473 | 26 736 766 281{-0.02
Self crossover 26 723 754 511| 26 725 750 162 0.04
One |Del-ins one mut.| 27 734 767 617| 26 728 761 374|0.08
node |Del-ins. all mut.| 26 723 754 517 26 723 750 232 0.04
Two point conc. | 26 730 756 429| 26 725 747 281{0.10
Two point term.| 27 732 761 353 27 727 257 261 0.05
Self crossover 26 724 750 262| 27 725 758 555|-0.07
Best |Del-ins one mut.| 27 738 767 617 27 724 754 22110.11
node |Del-ins all mut. | 26 724 763 399| 26 726 751 113|0.16
Two point conc.| 26 725 757 499 26 722 750 233|0.07
Two point term.| 26 739 770 413| 26 721 757 311(0.14
Self crossover 26 723 749 259 26 731 751 229(-0.03
One |Del-ins one mut.| 26 740 772 384 | 26 741 767 281 0.06
group |Del-ins all mut. | 26 726 762 308 25 731 762 267 0.00
Two point conc. | 26 725 755 251{ 26 727 753 282(0.03
Two point term.| 26 733 771 494 26 735 761 221|0.10
Self crossover 26 727 752 293| 26 722 751 274 0.02
Best |Del-ins one mut.| 26 744 776 381 | 26 740 764 204 0.15
group |Del-ins all mut. | 25 721 768 616 26 730 755 198]|0.11
Two point conc. | 26 729 754 436 26 732 755 264(-0.01
Two point term.| 26 766 685 236| 27 720 328 766 | 0.00
Self crossover 26 733 762 212} 26 727 750 146 0.25

the good scalability of the concentrator-based EAs, which can still work well
with the number of terminals up to 1000.

Hybrid EAs integrating Lamarckian evolution or Baldwin effect with or
without memory have been designed to tackle both the single-objective and
multi-objective formulations of the terminal assignment problem. Our experi-
mental results reveal that Lamarckian evolution and Baldwin effect performed



158 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz

similarly in most cases for the terminal assignment problem. However, the hy-
brid EAs obviously outperformed the EAs without local search.

It is worth noting that the proposed concentrator-based hybrid EAs are
not limited to the terminal assignment problem. They can also be applied
to other real world applications, such as bin packing and cutting stock prob-
lems. Further study of the concentrator-based hybrid EAs in these applica-
tions will be carried out. Although the work presented here includes a com-
prehensive investigation of the performance of various search operators for
the concentrator-based representation, the most proper combination of these
operators for the concentrator-based hybrid EA still needs further study. In
particular, we are interested in analysing those group based crossover and mu-
tation, which showed unsatisfactory performance in the experiments. Another
work we want to investigate is the use of memory in hybrid EAs. Our experi-
ments show that there is no significant difference between the EAs with and
without memory. This is somewhat anti-intuitive and needs to be investigated
further.



Hybrid Evolutionary Approaches to Terminal Assignment 159

References

10.

11.

12.

13.

14.

15.

16.

. Abuali, F., Schoenefeld, D. and Wainwright, R. (1994). Terminal assignment

in a Communications Network Using Genetic Algorithms. Proceedings of the
22nd Annual ACM Computer Science Conference, pages 74-81. ACM Press.

. Aggarwal, K.K., Chopra, Y.C. and Bajwa, J.S. (1982). Reliability evaluation

by network decomposition. IEEE Transactions on Reliability, R-31:355-358.

. Atiqullah, M.M. and Rao, S.S. (1993). Reliability optimization of communi-

cation networks using simulated annealing. Microelectronics and Reliability,
33:1303-1319.

. Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing.

Journal of Heuristics, 2(1):5-30.

. Fleming, P.J. (1985). Computer aided control systems using a multi-objective

optimization approach. Proceedings of IEE Control’85 Conference, pages 174-
179.

. Fonseca, C.M. and Flemming, P.J. (2000). Multiobjective optimisation. In

Back, T., Fogel, D.B. and Michalewicz, Z., editors, Evolutionary computation,
volume 2, pages 25-27. Institute of Physics Publishing, Bristol.

. Glover, F., Lee, M. and Ryan, J. (1991). Least-cost network topology design for

a new service: and application of a tabu search. Annals of Operations Research,
33:351-362.

. Hinton, G.E. and Nolan, S.J. (1987). How learning can guide evolution. Com-

plex Systems, 1:495-502.

. Jin, Y., Olhofer, M. and Sendhoff, B. (2001). Dynamic Weighted Aggrega-

tion for Evolutionary Multi-Objective Optimization: Why Does It Work and
How? Proceedings of the Genetic and Evolutionary Computation Conference
GECCQO, pages 1042-1049. Morgan Kaufmann.

Joines, A.J. and Kay, M.G. (2002). Utilizing Hybrid Genetic Algorithms. In
Sarker, R., Mohammadian, M and Yao, X., editors, Evolutionary Optimisation.
Kluwer Academic Publishers. pp.199-228.

Kershenbhaum, A. (1993). Telecommunications Network Design Algorithms.
McGraw-Hill.

Khuri, S. and Chiu, T. (1997). Heuristic Algorithms for the Terminal Assign-
ment Problem. Proceedings of the 1997 ACM Symposium on Applied Comput-
ing, pages 247-251. ACM Press.

Koh, S.J. and Lee, C.Y. (1995). A tabu search for the survivable fiber optic
communication network design. Computers and Industrial Engineering, 28:689-
700.

Kumar, A., Pathak, R.M., Gupta, Y.P. and Parsaei, H.R. (1995). A genetic
algorithm for distributed system topology design. Computers and Industrial
Engineering, 28:659-670.

Pierre, S., Hyppolite, M.A., Bourjolly, J.M. and Dioume, O. (1995). Topolog-
ical design of computer communication networks using simulated annealing.
Engineering Applications of Artificial Intelligence, 8:61-69.

Whitley, D., Gordon, V.S. and Mathias, K. (1994). Lamarckian evolution, the
Baldwin effect and function optimization. In Davidor, Y., Schwefel, H.-P. and
Mnner R., editors, Lecture Notes in Computer Science, 866:6-15, Springer-
Verlag.



Effective Exploration & Exploitation of the
Solution Space via Memetic Algorithms for the
Circuit Partition Problem

Shawki Areibil

School of Engineering, University of Guelph sareibi@uoguelph.ca

1 Introduction

Genetic Algorithms (GA’s) are a class of evolutionary techniques that seek
improved performance by sampling areas of the parameter space that have a
high probability for leading to good solutions [11]. The evolution program is a
probabilistic algorithm which maintains a population of individuals (chromo-
somes). Each chromosome represents a potential solution within the landscape
of the problem at hand. These individuals undergo transformations based on
operators to create new populations (solutions). Many evolution programs
can be formulated to solve different problems. These programs may differ in
the data structures, parameter tuning, specific genetic operators but share
some common principles (i) population of individuals (ii) genetic operators to
transform individuals into new (possibly better) solutions. The power of GA’s
comes from the fact that the technique is robust, and can deal successfully
with a wide range of problem areas, including those which are difficult for
other methods to solve. GA’s are not guaranteed to find the global optimum
solution to a problem, but they are generally good at finding “acceptably
good” solutions to problems. In other words, GA’s are considered to be com-
petitive if: the solution space to be searched is large (exploration) and the
fitness function is noisy (landscape is not smooth nor unimodal).

Genetic Algorithms are not well suited for fine-tuning structures and incor-
poration of local improvement has become essential for Genetic Algorithms to
compete with other meta-heuristic techniques. Memetic Algorithms [1] apply
a separate local search process to refine individuals by hill climbing.

1.1 Motivation and Contributions

Efficient optimization algorithms used to solve hard problems usually employ a
hybrid of at least two techniques to find a near optimal solution to the problem
being solved. The main motivation for hybridization in optimization practice



162 Shawki Areibi

is the achievement of increased efficiency (i.e adequate solution quality in
minimum time or maximum quality in specified time). From an optimization
point of view, Memetic Algorithms combine global and local search by using
Evolutionary Algorithms (EA) to perform exploration while the local search
method performs exploitation.

The main contributions of this book chapter are (i) investigation of pa-
rameter tuning of Genetic Algorithms to solve the circuit partitioning problem
effectively, (ii) investigating the balance between exploration and exploitation
of the solution space.

1.2 Chapter Organization

The book chapter is organized as follows: Section 2 introduces very briefly the
VLSI circuit partitioning problem and terminology used throughout the chap-
ter. The concept of evolutionary computation and Genetic Algorithms will be
introduced in Section 3. Section 4 introduces the need behind Memetic Algo-
rithms to further explore the solution space effectively. Results are introduced
in Section 5. The chapter concludes with some comments on the issue of ef-
fective space exploration and exploitation and possible future work.

2 Background

The last decade has brought explosive growth in the technology for manufac-
turing integrated circuits. Integrated circuits with several million transistors
are now commonplace. This manufacturing capability, combined with the eco-
nomic benefits of large electronic systems, is forcing a revolution in the design
of these systems and providing a challenge to those people interested in inte-
grated system design. Since modern circuits are too complex for an individual
designer or a group of designers to comprehend completely, managing this
tremendous complexity and automating the design process have become cru-
cial issues.

A large subset of problems in VLSI CAD is computationally intensive,
and future CAD tools will require even more accuracy and computational
capabilities from these tools. In the combinatorial sense, the layout prob-
lem is a constrained optimization problem. We are given a circuit (usually a
module-wire connection-list called a netlist) which is a description of switch-
ing elements and their connecting wires. We seek an assignment of geometric
coordinates of the circuit components (in the plane or in one of a few planar
layers) that satisfies the requirements of the fabrication technology (sufficient
spacing between wires, restricted number of wiring layers, and so on) and
that minimizes certain cost criteria. The most common way of breaking up
the layout problem into subproblems is first to do logic partitioning where a
large circuit is divided into a collection of smaller modules according to some
criteria, then to perform component placement, and then to determine the



Exploration+Exploitation=MA’s 163

approximate course of the wires in a global routing phase. This phase may be
followed by a topological-compaction phase that reduces the area requirement
of the layout, after which a detailed-routing phase determines the exact course
of the wires without changing the layout area.

2.1 Circuit Partitioning

Circuit partitioning is the task of dividing a circuit into smaller parts. It is
an important aspect of layout for several reasons. Partitioning can be used
directly to divide a circuit into portions that are implemented on separate
physical components, such as printed circuit boards or chips. Here, the ob-
jective is to partition the circuit into parts such that the sizes of the compo-
nents are within prescribed ranges and the complexity of connections (nets
cut) between the components is minimized. Figure 1 presents a circuit that
is partitioned into two blocks (partitions) with a single cut introduced. The
inputs/outputs of the circuit represent the terminals (I/O pads) of the circuit.
All gates/cells are interconnected by using nets (hyperedges).

s Cut Line Partition O
/
L Partition |

Output

\ Cells or Gates

Fig. 1. Circuit Partitioning & Terminology

2.2 Benchmarks

The quality of solutions obtained for the circuit partitioning problem are based
on a set of hypergraphs that are part of widely used ACM/SIGDA [12] circuit
partitioning benchmarks suite. The characteristics of these hypergraphs are
shown in Table 1. The second column of the table shows the number of cells
within the circuit. The third column presents the number of nets connecting



164 Shawki Areibi

the cells within the benchmarks. The total number of pins (i.e connections)
within the circuit is summarized in column four. The last two columns sum-
marize the statistics of the circuit (i.e connectivity).

Table 1. Benchmarks Used as Test Cases

Circuit Cells Nets Pins Cell Degree Net Size
MAX [ 7z [ o [MAX]T T | o

Fract 125 147 462 7 3.1 1.6 17 3.1 2.2
Prim1l 833 902 2908 9 34 | 1.2 18 3.2 2.5
Struct 1888 1920 5471 4 28 | 0.6 17 2.8 1.9
Indl 2271 2192 7743 10 34 | 1.1 318 3.5 9.0
Prim2 2907 3029 18407 9 3.7 | 15 37 3.7 3.8
Bio 6417 5742 21040 6 32 | 10 861 3.6 | 20.8
Ind2 12142 | 13419 48158 12 3.8 | 1.8 585 3.5 | 10.9
Ind3 15057 | 21808 65416 12 43 | 14 325 2.9 3.2
Avq.s 21854 | 22124 76231 7 34 | 14 4042 3.4 | 53.3
Avq.l 25144 | 25384 82751 7 3.2 | 1.2 4042 3.2 | 49.8
Ibm05 29347 | 28446 | 126308 9 4.3 | 23 17 4.4 4.2
ibm07 45926 | 48117 | 175639 98 3.8 | 24 25 3.6 3.0
ibm10 69429 | 75196 | 297567 137 4.2 | 3.2 41 3.9 3.5
ibm13 84199 | 99666 | 357075 180 42 | 3.3 24 3.5 3.0

2.3 Heuristic Techniques for Circuit Partitioning

Heuristic algorithms for combinatorial optimization problems in general and
circuit partitioning in particular can be classified as being constructive or
iterative. Constructive algorithms determine a partitioning from the graph
describing the circuit or system, whereas iterative methods aim at improv-
ing the quality of an existing partitioning solution. Constructive partition-
ing approaches are mainly based on clustering[3, 6], spectral or eigenvector
methods[5], mathematical programming or network flow computations. To
date, iterative improvement techniques that make local changes to an initial
partition are still the most successful partitioning algorithms in practice. The
advantage of these heuristics is that they are quite robust. In fact, they can
deal with netlists as well as arbitrary vertex weights, edge costs, and balance
criteria.

Constructive Based Techniques (GRASP)

GRASP is a greedy randomized adaptive search procedure that has been
successful in solving many combinatorial optimization problems efficiently [8,



Exploration+Exploitation=MA’s 165

4]. Each iteration consists of a construction phase and a local optimization
phase. The construction phase intelligently constructs an initial solution via
an adaptive randomized greedy function. Further improvement in the solution
produced by the construction phase may be possible by using either a simple
local improvement, phase or a more sophisticated procedure in the form of
Tabu Search or Simulated Annealing. The construction phase is iterative,
greedy and adaptive in nature. It is iterative because the initial solution is
built by considering one element at a time. The choice of the next element to
be added is determined by ordering all elements in a list. The list of the best
candidates is called the restricted candidate list (RCL). It is greedy because
the addition of each element is guided by a greedy function. The construction
phase is randomized by allowing the selection of the next element added to
the solution to be any element in the RCL. Finally, it is adaptive because
the element chosen at any iteration in a construction is a function of those
previously chosen.

Iterative Improvement

Kernighan and Lin (KL) {10] described a successful iterative heuristic pro-
cedure for graph partitioning which became the basis for most module
interchange-based improvement partitioning heuristics used in general. Their
approach starts with an initial bisection and then involves the exchange of
pairs of vertices across the cut of the bisection to improve the cut-size. The
algorithm determines the vertex pair whose exchange results in the largest
decrease of the cut-size or in the smallest increase, if no decrease is possible.
A pass in the Kernighan and Lin algorithm attempts to exchange all vertices
on both sides of the bisection. At the end of a pass the vertices that yield the
best cut-size are the only vertices to be exchanged. Fiduccia and Mattheyses
(FM) [7] modified the Kernighan and Lin algorithm by suggesting to move
one cell at a time instead of exchanging pairs of vertices, and also introduced
the concept of preserving balance in the size of blocks. The FM method re-
duces the time per pass to linear in the size of the netlist (i.e O(p), where p is
the total number of pins) by adapting a single-cell move structure, and a gain
bucket data structure that allows constant-time selection of the highest-gain
cell and fast gain updates after each move.

Figure 2(a) shows the swap/move of modules between blocks that may
lead to a reduction of nets cut. Each module is initially labeled to be free “F”
to move, but once moved during a pass it is relabeled to be locked “L”. The
gain of moving a specific module from one partition to another is maintained
by using the bucket gain data structure (shown in Figure 2(b)). At the end of
a pass only those modules that contribute to the highest gain (i.e reduction
in cut size) are allowed to move to their new destination (as illustrated in
Figure 2(c)).

Figure 3 shows the basic Fiduccia-Mattheyses (FM) algorithm used for
circuit partitioning[7].



166 Shawki Areibi

I P FEI ] -1 ‘ -P I
Module Madule
ToBlk Toblk
Link —] Link —1
Module -
(a) Swapping/Moving of modules ToBIk
N (b) The Bucket Gain Concept
Link -
Gain array
(¢} The Cummulative Gain
6 Commulative l 3 ‘ 2 5 1 6 2
5 Gain F.a
4 BestGainPtr
3
2 Move array
!
Module 1 2 3 4 s L
234567 From Blk o | 1l ol e 117
lieration To BIk L T S 0 L3

Fig. 2. Basic techniques for Interchange Methods

current_solution < initial_solution
current.cost < evaluate(current_solution)
Repeat
initialize partition
While (can.move(modules))
choose cell with highest gain
update gains of all cells
if (current_gain > previous_gain)
bestgain = current._gain
end while
move nodes pointed to by bestgain_ptr
if (no improvement)
+-+noimp_counter
Until({pass > MaxPass) OR
(noimp > MaxNolImp))

Fig. 3. Fiduccia Mattheyses Algorithm



Exploration+Exploitation=MA’s 167

Sanchis [13] uses the above technique for multiple way network partition-
ing. Under such a scheme, we should consider all possible moves of each free
cell from its home block to any of the other blocks, at each iteration during
a pass the best move should be chosen. As usual, passes should be performed
until no improvement in cutset size is obtained. This strategy seems to offer
some hope of improving the partition in a homogeneous way, by adapting the
level gain concept to multiple blocks.

Table 2 presents the results obtained using Sanchis local search technique
for two-way and multi-way partitioning. The results are the average of fifty
runs. The CPU time increases dramatically as the number of partitions in-
crease in size from 2-way to 4-way and ultimately to 8-way partitioning. In
general, node interchange methods are greedy or local in nature and get easily
trapped in local minima. More important, it has been shown that interchange
methods fail to converge to “optimal” or “near optimal” partitions unless
they initially begin from “good” partitions. Sechen [14] shows that over 100
trials or different runs (each run beginning with a randomly generated initial
partition) are required to guarantee that the best solution would be within
twenty percent of the optimum solution. In order for interchange methods to
converge to “near optimal” solutions they have to initially begin from “good”
starting points [2].

Table 2. Multi-Way Partitions Based on Local Search

Circuit 2 Blocks 4 Blocks 6 Blocks 8 Blocks
Cuts | CPU || Cuts | CPU || Cuts | CPU || Cuts | CPU
Fract 11 0.3 28 0.3 48 0.4 56 0.5
Prim1 58 2.3 148 2.7 171 3.3 189 4.0
Struct 46 5.8 195 6.4 264 8.4 312 10.5
Indl 30 7.2 245 8.3 364 12.5 374 16.6
Prim?2 230 12.4 636 13.3 773 19.1 804 28.0
Bio 91 28.4 532 45.8 726 71.9 806 105.9
Ind2 507 70.4 1759 143.1 2162 272.2 2141 394.4
Ind3 396 63.5 1675 118.4 2636 190.2 2862 280.7
Avq.s 453 126.2 2151 309.9 2436 499.5 2641 674.7
Avq.l 460 178.1 2594 321.8 2728 594.5 3027 857.1
Ibm05 2451 329.4 8922 1618 9629 3719 9894 6059
ibm07 1350 | 518.3 13527 4437 15922 | 11820 17011 23185
ibm10 1972 1068 22331 | 12855 26544 | 40252 27835 79470
ibm13 1560 1365 26710 | 16456 31949 | 53715 34171 | 105000




168 Shawki Areibi

3 Genetic Algorithms

As an optimization technique, Genetic Algorithms simultaneously examine
and manipulate a set of possible solutions. Figure 4 illustrates a Genetic Al-
gorithm implementation for circuit partitioning.

A PURE GENETIC ALGORITHM
1. Represent Problem Using Group Number Encoding
2.(a) set popsize, max_gen, gen=0;
(b) set cross_rate, mutate_rate;
3. Initialize Population.
4. While max._gen > gen
Evaluate Fitness (Cuts)
For (i=1 to pop_size)
Select (matel,mate2)
if (rnd(0,1) < cross_rate)
child = Crossover(matel,mate2);
if (rnd(0,1) < mutate_rate)
child = Mutation();
Repair child if necessary
End For
Add offsprings to New Generation.
gen = gen + 1
End While
5. Return best chromosomes (Partitions).

Fig. 4. A Genetic Algorithm for Circuit Partitioning

The GA starts with several alternative solutions to the optimization prob-
lem, which are considered as individuals in a population. These solutions are
coded as binary strings, called chromosomes. Figure 5 shows a group number
encoding scheme to represent the partitioning problem where the ;" integer
i; € {1,...,k} indicates the group number assigned to object j.

The initial population is constructed randomly. These individuals are eval-
uated, using the partitioning-specific fitness function. The GA then uses these
individuals to produce a new generation of hopefully better solutions. In each
generation, two of the individuals are selected probabilistically as parents, with
the selection probability proportional to their fitness. Crossover is performed
on these individuals to generate two new individuals, called offspring, by ex-
changing parts of their structure. Thus each offspring inherits a combination
of features from both parents. The next step is mutation where an incremental
change is made to each member of the population, with a small probability.
This ensures that the GA can explore new features that may not be in the
population yet. It makes the entire search space reachable, despite the finite



Exploration+Exploitation=MA’s 169

' Nels Cat
A
| .

M3 || MS| | M6|| M7
T\T__J‘I_J]\

M1 M M3 M4 M5 M6 M7 M8

D
p——

MLp (M2 || M4} | M8

Block 0 I Block |

Group Number Encoding

Fig. 5. Chromosome Representation for Circuit Partitioning

population size. However an offspring may contain less than k groups; more-
over, an offspring of two parents, both representing feasible solutions may be
infeasible, since the constraint of having equal number of modules in each
partition is not met. In this case either special repair heuristics are used to
modify chromosomes to become feasible, or penalty functions that penalize
infeasible solutions, are used to eliminate the problem.

3.1 Crossover & Mutation

Figure 6 shows the crossover/mutation operators used for the circuit parti-
tioning problem. Operators in the reproduction module, mimic the biological
evolution process, by using unary (mutation type) and higher order (crossover
type) transformation to create new individuals. Mutation as shown in Fig-
ure 6(a) is simply the introduction of a random element, that creates new
individuals by a small change in a single individual. When mutation is applied
to a bit string, it sweeps down the list of bits, replacing each by a randomly
selected bit, if a probability test is passed. On the other hand, crossover recom-
bines the genetic material in two parent chromosomes to make two children.
It is the structured yet random way that information from a pair of strings is
combined to form an offspring. Crossover begins by randomly choosing a cut
point K where 1 < K < L, and L is the string length. The parent strings are
both bisected so that the left-most partition contains K string elements, and
the rightmost partition contains L — K elements. The child string is formed
by copying the rightmost partition from parent P, and then the left-most



170 Shawki Areibi

partition from parent P». Figure 6(b) shows an example of applying the stan-
dard crossover operator (sometimes called one-point crossover) to the group
number encoding scheme. Increasing the number of crossover points is known
to be multi-point crossover as seen in Figure 6(c).

MI M2 M3 M4 M5 Ms Ml M2 M3 M4 M5 M6 M M2 M3 M4t M5 Ms
Cl 0 o 1o (0|0 010 1 1 1 0 0 [ 1 1 |o
P1 PI
1
) MI M2 M3 M4 M5 Mé M M2 ! M3 M4 ! M5 M6
1
Y tlt|t]e oo t|rfofoloedoe
P2 P2
MP M2 M3 M4 M5 Mé 1 | |
I ) )
c1 0 0l 1lodo Ml M2 MITM4 M5 M6 MI M2YM3 M4\ M5 Ms
L] 1100 (0 0|0 1 0 1|0
CI Cr
{a) Mutation Operator 1 1 '
MI M2 M3 M4 MS M6 MI M2 M3 M4 M5 Ms
1 1 1 1 1 0 i 1 1 i 0|0
C2 c2
' ) I
[} ) i
1 ] 1
{h) One Point Crossover fe) Two Point Crossover

Fig. 6. Mutation & Crossover Operators

Figure 7 and Figure 8 show the affect of mutation rate on the quality of
solutions obtained. Figure 9 and Figure 10 highlight the importance of tuning

Mutation Rate vs Cutsize

1200 T T T v T T T T v
1000 fract —— —
prim1 =
o 800 struct ]
N
@ 600 1
3
400 3
...... e
200 P> ™ ]
froc-=- %"
0 P i H H 1 N n 1 1

0 5 10 15 20 25 30 35 40 45 50
% Mutation Applied

Fig. 7. Mutation Rate (Small Circuits)

the crossover rate and its affect on the solution quality. Figures 11, 12, 13
show the affect of crossover points. It is clear from the figures that multi-point



CutSize

CutSize

CutSize

Exploration+Exploitation=MA’s

Mutation Rate vs Cutsize

65000 T T g T T T T T

40000 ¥ lbm07 ——
35000 |  fbm10 ---xer

45000 [ e

B p——

60000 e
55000 r,//(
50000 .

30000 |
28000 "

20000 . . . 2 . L . . .
0 5 10 15 20 25 30 35 40 45

% Mutation Applied

Fig. 8. Mutation Rate (Very Large Circuits)

Crossover Rate vs Cutsize

50

1000 T g T g T v g : v
900
800
700
600 |
500 |
400
300 |
200 - x

Fract ——
Prim1 -
Struct -

100 | o T — T

% Crossover Applied

Fig. 9. Crossover Rate (Small Circuits)

Crossover Rate vs Cutsize

18000

16000
14000 |,
12000
10000
8000
6000
4000

2000 — e
0 10 20 30 40 5 60 70 80 90

% Crossover Applied

Fig. 10. Crossover Rate (Large Circuits)

17



172 Shawki Areibi

crossover performs much better than one-point crossover technique. A 3-point
and 4-point crossover works best for our circuit partitioning problem.

Crossover Points vs Cutsize

300 T
250 §.. Fract-70% —+—— E
Fract-99% -—x—
o 200 Prim1-70% - - E
N Prim1-99% -
a 150 Struct-70% - B
3 Struct-99% o~
100 1
50 |
° . .
1-point 2-point 3-point 4-point
Crossover Points
Fig. 11. Crossover Points (Small Circuits)
Crossover Points vs Cutsize
900
800 ™
700 :ng1- 0% ——
- Nd1-99% ---x---- ]
g 500 Prim2-70% -
o 500 Prim2-99% - ]
5 400 Bio-70:A J
(& 300 Bio-99% --o--
200
100 3
0 . A
1-point 2-point . 3-point 4-point

Crossover Points

Fig. 12. Crossover Points (Medium Circuits)

3.2 Population/Generation Size

The size of the population is one of the most important choices in imple-
menting any Genetic Algorithm and is considered to be critical for several
applications. If the population size is too small then this may lead to early
convergence and if it is too large this may lead to huge computation time (i.e
waste of computational resources). Figure 14 shows the affect of the popula-
tion size on the quality of solutions obtained for large circuits. The population
in any Genetic Algorithm implementation evolves for a prespecified total num-
ber of generations under the application of evolutionary rules. The generation
size is crucial in any Genetic Algorithm implementation. As the number of
generations increase the quality of solutions improve, but the computation



CutSize

CutSize

CutSize

55000
50000
45000

Exploration+Exploitation=MA’s

Crossover Points vs Cutsize

1bm07-70% —— ]
1bm07-99% —x— ]
1bm10-70% -+

40000 1bm10-99% - 1
35000 ibm10-70% - 4
30000 | 1bm10-99% |
25000 .
20000 1
15000
10000 - .

1-point 2-point 3-point 4-point

Crossover Points

Fig. 13. Crossover Points (Very Large Circuits)

Population Size vs Cutsize

16000 .
14000 \\&. ]
12000 | T :
10000 " AV o ]
6000 | N\, ]
a000 I\ T o ]
2000 e i S i

0 100 200 300 400 500 600 700 800 900 1000
Chroms in the Population

Fig. 14. Population Size (Large Benchmarks)

Population Size vs Cutsize
65000 T v T v v v v v T
60000 '\\\ ;gm%  — ;
55000 | ibm10 - 1
50000 | ibm13 —x—
45000 [xx..
40000 | e 4
35000 1
30000 1

25000

20000 1 1 1 I N L I I i
0 100 200 300 400 500 600 700 800 900 1000

Chroms in the Population

Fig. 15. Population Size (Very Large Benchmarks)

173



174 Shawki Areibi

time involved increases dramatically. Figure 16 and Figure 17 show the affect
of generation size on the solution quality obtained based on large circuits and
very large circuits respectively.

Generation Size vs Cutsize

18000 T T T T T T " T T

16000 1

14000 1
o 12000 & 1
-3; 10000 -, I
g 8000 +\i Ava.s ——

6000 |\ Avci.l N

4000 ibm05 -—x—

2000 [

0

0 50 100 150 200 250 300 350 400 450 500
Generation

Fig. 16. Affect of Generation Size for Large Benchmarks

Generation Size vs Cutsize

60000 v T . - : . . . .
55000 K- :gm(n —
50000 mi0 -—-—x---
45000 x’\ lbm13

40000 | *, — ]
35000 .

30000 | -
25000 \\_4
20000 |

15000

CutSize

0 50 100 150 200 250 300 350 400 450 500
Generation

Fig. 17. Affect of Generation Size for Very Large Benchmarks

3.3 Selection Techniques

Strings are selected for mating based on their fitness, those with greater fitness
are awarded more offspring than those with lesser fitness. Parent selection
techniques that are used, vary from stochastic to deterministic methods. The
probability that a string i is selected for mating is p;, “the ratio of the fitness
of string 7 to the sum of all string fitness values”, p; = f% The ratio
of individual fitness to the fitness sum denotes a ranking of that string in
the population. The Roulette Wheel Selection method (Gsml) is one of the
stochastic selection techniques that is widely used. The ratio p; is used to
construct a weighted roulette wheel, with each string occupying an area on



Exploration+Exploitation=MA’s 175

the wheel in proportions to this ratio. The wheel is then employed to determine
the string that participates in the reproduction. A random number generator
is invoked to determine the location of the spin on the roulette wheel. In
Deterministic Selection methods, reproduction trials (selection) are allocated
according to the rank of the individual strings in the population rather than by
individual fitness relative to the population average. Several selection methods
have been implemented as seen in Figure 18 and 19. The technique referred
to as Gsmd is a deterministic technique where parents are picked uniformly
one after the other from the population. GsmI is the stochastic roullette
wheel technique. In Gsm2 the population is sorted according to their fitness
each trial the best two in the list are chosen for mating. Gsmd is similar to
Gsm2 except that the first half of the sorted list would take higher chances
for mating than the rest of the population at the end of the list. Gsm4 and
Gsmb are based on a ranking technique. The last two approaches Gsm6 and
Gsm7 are based on Tournament with replacement and without replacement
respectivley. It is clear from Figures 18 and 19 that Tournament Selection
with replacement gives the best solution quality compared to other selection
techniques.

Selection Technique vs Cutsize

1400
1200
1000 |
800
600 T
400
200

CutSize

0 . A . . ) !
Gsm0 Gsmi Gsm2 Gsm3 Gsm4 Gsm5 Gsmé Gsm7
Selection Technique

Fig. 18. Selection vs Cutsize (Medium Circuits)

3.4 Replacement Strategy

Generation replacement techniques are used to select a member of the old
population and replace it with the new offspring. The quality of solutions
obtained depends on the replacement scheme used. Some of the replacement
schemes used are based on: (i) deleting the old population and replacing it
with new offsprings (R-ap), (ii) both old and new populations are sorted and
the newly created population is constructed from the top half of each (R-
hp), (iii) replacing parent with the child if newly created member is more fit
(R-pc) (iv) replacing the most inferior members (R-mi) in a population by
new offsprings. Figure 20 and 21 show the performance of each replacement



176 Shawki Areibi

Selection Technique vs Cutsize

18000

16000 ——

14000 \\m Avqs B
12000 avel e ]
10000 . tomd5 -

8000 y— ™

6000 |
4000 |

2000 + + - . L
Gsmo0 Gsm1 Gsm2 Gsm3 Gsm4 Gsm5 Gsm6 Gsm7

Selection Technique

CutSize

Fig. 19. Selection vs Cutsize (Large Circuits)

technique for large circuits and very large circuits respectivley. It is evident
from the Figures that (R-ap) and (R-pc) perform poorly with respect to (R-
hp) and (R-mi). Variations to (R-hp) scheme use an incremental replacement
approach, where at each step the new chromosome replaces one randomly se-
lected from those which currently have a below-average fitness. The quality
of solutions improve using (R-hp) and (R-mi) replacement schemes due to
the fact that they maintain a large diversity in the population. Our genera-
tion replacement technique utilized in both the pure Genetic Algorithm and
Memetic Algorithm for circuit partitioning are based on replacing the most
inferior member (R-mi) in a population by new offsprings.

Replacement Technique vs Cutsize

CutSize

R-ap R-hp R-pc R-mi
Replacement Technique

Fig. 20. Replacement Strategy vs Cutsize (Large Circuits)

3.5 Computational Results for GA

Table 3 shows the solution quality for multi-way partitioning and CPU time
involved. It is interesting to note that the Genetic Algorithm solution quality
compared to Local Search is better for small, medium and large circuits for



Exploration+Exploitation=MA’s 177

Replacement Technique vs Cutsize

55000 L_.___*,//J\
50000 —
45000 | i
o T
340000 f oo e
S 35000 | 1bm07 -
© bm10 —-x-—
30000 | lbm13 —— 1
25000 L T T ]
20000 . .
R-ap R-hp R-pc R-mi

Replacement Technique

Fig. 21. Replacement Strategy vs Cutsize (Very Large Circuits)

2-way and multi-way partitions. As the size of the circuit increases, the perfor-
mance of GA deteriorates (as can be seen for benchmarks ibm07, ibm10 and
ibm13). On the other hand the complexity of Genetic Algorithm in terms of
CPU time is linear as the number of blocks increases. For example, comparing
Table 2 and Table 3 for benchmark ibm13, the GA technique cuts the CPU

time by almost 50%.

Table 3. Genetic Algorithm Solution Quality for Multi-Way Partitioning

Circuit 2 Blocks 4 Blocks 6 Blocks 8 Blocks
Cuts | CPU || Cuts [ CPU || Cuts | CPU || Cuts | CPU
Fract 18 19 39 24 49 28 52 38
Priml 80 126 145 156 136 182 159 234
Struct 52 277 161 344 231 402 255 532
Indl 70 326 111 408 154 493 159 640
Prim?2 186 460 325 581 409 690 557 892
Bio 176 881 266 1122 328 1340 367 1757
Ind2 272 2103 1010 2778 1038 3881 1590 4857
Ind3 491 3106 1337 4645 2130 5753 2341 7801
Avqg.s 464 3911 986 4831 1111 7110 1425 9821
Avq.l 465 3999 1002 6336 1093 8066 1426 11272
Ibm05 9248 5585 11890 8158 13026 | 10918 13704 | 14690
ibm07 12529 | 11414 18183 | 16901 20496 | 21357 20499 | 27626
ibm10 20624 | 22652 29108 | 30507 31900 | 37503 32983 | 47272
ibm13 25876 | 32610 38186 | 41371 41452 | 49693 43139 | 61771

Comparing results obtained by the Genetic Algorithm with those based
on Local Search we can conclude the following. (i) GA’s are not guaranteed
to find the global optimum solution to a problem, but they are generally good



178 Shawki Areibi

at finding “acceptably good” solutions to problems, (ii}) Where specialized
techniques exist for solving particular problems, they are likely to out-perform
GA’s in both speed and accuracy of the final result. Another drawback of
Genetic Algorithms is that they are not well suited to perform finely tuned
search, but on the other hand they are good at exploring the solution space
since they search from a set of designs and not from a single design. Genetic
Algorithms are not well suited for fine-tuning structures which are close to
optimal solutions [9]. Incorporation of local improvement operators into the
recombination step of a Genetic Algorithm is essential if a competitive Genetic
Algorithm is desired.

4 Memetic Algorithms

Memetic algorithms (MAs) are evolutionary algorithms (EAs) that apply a
separate local search process to refine individuals (i.e improve their fitness by
hill-climbing). Under different contexts and situations, MAs are also known
as hybrid EAs, genetic local searchers. Combining global and local search is
a strategy used by many successful global optimization approaches, and MAs
have in fact been recognized as a powerful algorithmic paradigm for evolution-~
ary computing. In particular, the relative advantage of MAs over GA is quite
consistent on complex search spaces. Figure 22 shows one possible implemen-
tation of a Memetic algorithm based on the Genetic Algorithm introduced
earlier in Section 3. We use a simple variation of the Fiduccia and Mattheyses
(FM) heuristic [13]. The original FM heuristic has several passes after which
the heuristic terminates as presented in Section 2. In the local optimization
phase, a single pass is allowed, furthermore a restriction on the number of
modules to be moved is set to a certain value. It is to be noted that if local
optimization is not strong enough to overcome the inherent disruption of the
crossover, more strong local optimization is needed.

4.1 Computational Results for MA

Table 4 shows the results obtained from the Memetic Algorithm. The first
column in the table MA-ii is the direct application of local search on each
chromosome in the population at only the initial stage. The secon column
MA-gi is the direct application of local search on each chromosome in the
population in every generation. It is clear that MA-gi performs better fine
tuning and exploitation than MA-iéi which only attempts to fine tune the
search at an early stage. MA-hi is in affect the combination of MA-i with
MA-gi such that after an early exploitation of the landscape the system at-
tempts to explore and exploit the solution space simultaneously. The results
in the table indicate that the combination does not have a drastic affect on
the final solution quality even though an improvement of 2-3% is achieved.
The fourth column in the table MA-ci is the direct application of GRASP



Exploration+Exploitation=MA’s 179

MEMETIC ALGORITHM
1. Encode Solution Space
2.(a) set pop._size, max.gen, gen=0;
(b) set cross_rate, mutate_rate;
3. Initialize Population Randomly.
** Utilize GRASP to Construct Initial Population (MA-ci)
** Apply Local Search to Initial Population (MA-ii)
4. While(Gen < Gensize)
Apply Generic GA
*x Apply FM Local Search to Population (MA-gi)
EndWhile /* end of a run */
** Apply Final Local Search to Best Chromosome (MA-fi)

Fig. 22. The Memetic Algorithm

to effectively construct good intial solutions for the Genetic Algorithm. The
system achieves an improvement of 65% over MA-#i and 51% over MA-g: for
the largest benchmark (ibm13). Experimental results indicate that less than
25% of the population should be injected with good initial solutions for MA-ci
to perform well. The last column in the table MA-ci-gi is a combined MA-c:
and MA-gi approach where good intial solutions are injected into the initial
population followed by a balanced exploration (via crossover, mutation) and
exploitation (via a single pass of local search) stage. It is quite evident that
this Memetic Algorithm approach achieves the best overall results compared
to the previously mentioned methods (i.e MA-ii, MA-gi and MA-hi). The
overall improvement obtained (over MA-hi) for the largest circuits are: 61%
for ibm07, 50% for ibm10 and over 66% for the largest benchmark ibm13.

5 Results & Analysis

In this section we will summarize the results obtained using (i) Local Search
(ii) Genetic Algorithms (iii) Memetic Algorithm. Table 5 presents the results
obtained by the three techniques mentioned above for four way partitioning.
As can be seen in Table 5 the Memetic Algorithm obtains on average better
solutions (cuts) than the Local Search technique. As the benchmarks increase
in size the quality of solutions obtained using the local search technique dete-
rioates. A comparison between the pure Genetic Algorithm and the Memetic
Algorithm reveals the importance of embeding local search within GA to im-
prove its performance. The affect of exploitation shows very clearly for the
large benchmarks (ibm07, ibm10 and ibm13).



180

Shawki Aveibi

Table 4. Comparison of Several Memetic Algorithm Implementations

Circuit MA-ii MA-gi MA-hi MA-ci MA-ci-gi |
Cauts | CPU || Cuts | CPU || Cuts | CPU || Cuts | CPU |} | 9.‘:1}.‘,_.].,.,91—)_[]..
Fract 47 24 37 b 41 24 5 24 35 24
I'rim1 131 157 145 157 123 159 l[}i l 158 103 159
i MS_tiur.t 165 344 160 345 165 348 128 ¢ 348 127 351
Indl 100 [ 409 [ 97 [ 42 [ o7 | 414 || e1 | 413 90 416
Prim2 303 585 317 588 204 588 265 617 265 621
Bio 267 1120 249 1139 266 1138 234 1155 233 1147
Ind2 1035 2757 710 1 2841 710 2821 589 2861 587 2832
Ind3 1320 4627 1286 | 4702 1272 4672 1217 4347 1185 4837
Avgs 1003 4777 936 | 4953 963 4804 885 | 5086 882 5019 |
Avgl 999 6351 986 | 6457 979 6366 968 6386 965 6319 !
Ibm05 12502 8137 8424 | 8377 8384 8173 6236 8969 5158 8048
ibmO7 18368 | 16939 12108 | 17138 12065 | 17218 ! 8190 17863 6485 18096
thm 10 28765 | 30569 20239 |L 30820 20206 | 31238 } 12307 | 33421 10119 | 34322
thm13 | 35502 41186 25180 | 42066 24345 42650 i 12237 44220 8152 45438
Table 5. Comparison between LS, GA and MA
" Circuit Local Search Genetic Algorithms | Memetic Algorithms TIprovernent
Cuts | CPU [ Cuts | CPU [ Cuts | CPU I LS GA
Fract 28 0.3 4| 39 24 35 24 -20% +10%
Friml 148 2.7 145 156 103 159 +30% | +29%
Struct 195 6.4 161 344 127 3al +34% +21%
Indl 245 8.3 111 408 9 416 +63% | +18%
Prim2 636 13.3 325 581 265 621 +58% | +18%
Bio 532 45.8 266 1122 233 1147 +56% +12%
Ind2 1759 143 1010 277 387 2832 +66% | +41%
Ind3 1675 118 1337 4645 1185 4837 +29% +11%
Avqs 2151 309 986 4831 882 5019 +59% | +10%
Avgl 2594 321 1002 6336 965 6319 +62% +4%
Ibm05 8922 1618 11880 8158 5158 8948 +42% | +56%
ibm07 13527 4437 18183 16901 6485 18096 +52% | -+64%
ibm10 22331 | 12855 29108 30507 10119 34322 +54% | +65%
ibm13 26710 | 16456 38186 41371 8152 45438 +69% | +78%




Exploration+Exploitation=MA’s 181
6 Conclusions

Memetic Algorithms (MAs) are Evolutionary Algorithms (EAs) that apply
some sort, of local search to further improve the fitness of individuals in the
population. This paper provides a forum for identifying and exploring the key
issues that affect the design and application of Memetic Algorithms. Several
approaches of integrating Evolutionary Computation models with local search
techniques (i.e Memetic Algorithms) for efficiently solving underlying VLSI
circuit partitioning problem were presented. A Constructive heuristic tech-
nique in the form of GRASP was utilized to inject the initial population with
good initial solutions to diversify the search and exploit the solution space.
Furthermore, the local search technique was able to enhance the convergence
rate of the Evolutionary Algorithm by finely tuning the search on the imme-
diate area of the landscape being considered. Future work involves adaptive
techniques to fine-tune parameter of the Genetic Algorithm and Local Search
when combined to form a Memetic Algorithm. Balancing exploration and ex-
ploitation is yet another issue that needs to be addressed more carefully.

References

1. S. Areibi, M. Moussa, and H. Abdullah. A Comparison of Genetic/Memetic
Algorithms and Other Heuristic Search Techniques. In International Conference
on Artificial Intelligence, pages 660-666, Las Vegas, Nevada, June 2001.

2. S. Areibi. An Integrated Genetic Algorithm With Dynamic Hill Climbing for
VLSI Circuit Partitioning. In GECCO 2000, pages 97-102, Las Vegas, Nevada,
July 2000. IEEE.

3. S. Areibi and A. Vannelli. An Efficient Clustering Technique for Circuit Parti-
tioning. In IEEE ISCAS, pages 671-674, San Diego, California, 1996.

4. S. Areibi and A. Vannelli. A GRASP Clustering Technique for Circuit Parti-
tioning. 35:711-724, 1997.

5. P.K. Chan, D.F. Schlag, and J.Y. Zien. Spectral K-way Ratio-Cut Partitioning
and Clustering. IEEE Transactions on Computer Aided Design, 13(9):1088-
1096, 1994.

6. S. Dutt and W. Deng. VLSI Circuit Partitioning by Cluster-Removal Using
Iterative Improvement Techniques. In IEEE International Conference on CAD,
pages 194-200. ACM/IEEE, 1996.

7. C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving
Network Partitions. In Proceedings of 19th DAC, pages 175-181, Las Vegas,
Nevada, June 1982. ACM/IEEE.

8. T. Feo, M. Resende, and S. Smith. A Greedy Randomized Adaptive Search
Procedure for The Maximum Ind ependent Set. Operations Research, 1994.
Journal of Operations Research.

9. D.E. Goldberg. Genetic Algorithms in Search, Opiimization, and Machine
Learning. Addison-Wesley Publishing Company, Inc, Reading, Massachusetts,
1989.

10. B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell System Technical Journal, 49(2):291-307, February 1970.



182

11.

12.

13.

14.

Shawki Areibi

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlog, Berlin, Heidelberg, 1992.

K. Roberts and B. Preas. Physical Design Workshop 1987. Technical report,
MCNC, Marriott’s Hilton Head Resort,South Carolina, April 1987.

L.A. Sanchis. Multiple-Way Network Partitioning. IEEE Transactions on Com-
puters, 38(1):62-81, January 1989.

C. Sechen and D. Chen. An improved Objective Function for Min-Cut Circuit
Partitioning. In Proceedings of ICCAD, pages 502-505, San Jose, California,
1988.



Part 111

Methodological Aspects of Memetic
Algorithms



Towards Robust Memetic Algorithms

Natalio Krasnogor!

Automated Scheduling, Optimization and Planning Group

School of Computer Science &IT

University of Nottingham

Nottingham, NG81BB, UK. Natalio.Krasnogor@Nottingham.ac.uk

Summary. This chapter reports the results of Multimeme algorithms that employ
adaptive helpers. A Multimeme Algorithm resorts to a variety of local search neigh-
borhoods for its local search stage allowing for a more robust global search. Each
neighborhood is explored by an adaptive helper that allows non-improving moves
that render the Memetic algorithm even more robust to deceptive local optima. We
will report results on the use of a single adaptive helper Memetic algorithm for the
Traveling Salesman Problem (TSP) and on adaptive helpers within a Multimeme
algorithm for the TSP and Protein Structure Prediction Problem (PSP).

1 Introduction

Memetic algorithms are evolutionary algorithms that include, as part of the
“standard” evolutionary cycle of crossover-mutation-selection, a local search
stage. They have been extensively studied and used on a wide range of
problems. Multimeme evolutionary algorithms were introduced by Krasno-
gor and Smith [28] and applied to OneMax,NK-Landscapes, TSP and two
bicinformatic problems, Protein Structure Prediction and Protein Structure
Alignment[23], [5] and [11],[24]. The distinction between Memetic and Mul-
timeme Algorithms is that the former uses only one (usually complex) local
search while the later employs a set of (usually simple) local searchers. Multi-
meme algorithms self-adaptively select from this set which heuristic to use for
different stages of the search process. This kind of algorithm exploits features
from Evolutionary Algorithms and Variable Neighborhood Search (by virtue
of its multi-operator local search). In [23] we proposed two alternative ways
an MA can achieve a more robust search:

e the MA can use several local searchers that explore the search space from
complementary perspectives (i.e., the MA is a Multimeme algorithm) or

e the MA can somehow reduce its “greediness” by either not using elitist
replacement strategies or by exploiting operators that can lead to deteri-



186 Natalio Krasnogor

orated points from which progress can be achieved at a later stage of the
search.

The rationale for these two criteria are studied in detail in [23].

In this paper we will show one possible realization of these two points
for the implementation of Multimeme algorithms[28]. The paper is divided
in 3 parts. In the first part we will introduce a formalism that will help us
motivate the design of our algorithms. In the second part we describe a Monte
Carlo helper that by adapting the temperature at which it performs its search
strategically oscillates between periods of exploitation of solutions and phases
of exploration. The adaptive helper effectively reduces the greediness of the
MA and in turn helps to sustain population diversity for longer periods of
time. Part 3 will see the integration of the two design issues mentioned above
by employing several local searchers, where each one of them is realized as an
adaptive helper.

2 Search in a Multidimensional Landscape

This section describes the concept of local optima and basins of attractions for
a multidimensional fitness landscape. This is done to motivate the particular
choices we made to address the integration of several local searchers and the
reduction of the “greediness” of our MAs (while preserving the benefits of
local search and maintaining population diversity).

2.1 Local Optima, Basins of Attraction and the Dynamics of
Search

In [2] a formalism is introduced to describe the topology of multidimensional
fitness landscapes in the context of molecular dynamics. We will briefly de-
scribe the main ideas of this approach, adapted to memetic search on discrete
spaces. Later we will use this formalism to illustrate the utility of the adaptive
helpers that are going to be introduced in this paper.

Suppose that a memetic algorithm is trying to optimize a multidimensional
function @ that takes as argument objects from a discrete space S and maps
them into a scalar field, i.e. . We can assume that & will have several local
optima. These local optima can be described as a discrete set, M, indexed
by «. This set can be obtained if we fix an operator o by direct minimization
from a point s € S to a point « € S which is a local optimum for & is found.
Let’s call this mapping M°(s)|S — {a}. Each « has an associated basin of
attraction R(a). The basin of attraction for « is composed of all those points
in S for which « is its nearest local optimum (by means of the operator o).
That is, S = |J R(a) for every a a local optimum.

Having the set of local optima for @ is not very informative, because we lack
the information on how those basins are interconnected, which is the internal



Towards Robust Memetic Algorithms 187

constitution of each basin, the size of the basins, which fitness barriers separate
them, etc. One way around this is to extend the mapping M?° by redefining
R as R°(a/) = |JR(a). That is, R¢(c) is the union of all the R(a) basins
that are connected by fitness barriers lower than e. In this sense R¢(a) is a
super basin that groups together all those basins R{«) such that a path from
v € R(a;) to u € R(a) never crosses a barrier higher than e ( this is for any
R(c), R(az) C Ré(a') ).

In turn o' is defined as the lowest local minimum in Rf(¢’), that is,
o = min{a|la € R(a),R(a) C R(«/)}. By considering different values of
e (i.e. fitness barriers of different heights) we can obtain a more detailed de-
scription of the multidimensional landscape (under the view of operator o).
A hypothetical multidimensional fitness landscape represented by the itera-
tive mapping M? for various €’s is depicted in figure 1. This graph was called
“Disconnectivity Graph”, DG for short, in {2]. In the figure, five iterations of
the map can be seen for five different ¢ values . Each value corresponds to
a horizontal level (marked as -2,-1,0,1 or 2 in the picture) with the root of
the tree, node A, the largest basin calculated with the highest ¢ for a fitness
barrier. Basin A represents all the basins of attractions of local optima that
are connected by walks in the landscape that never cross barriers higher then
€2 (the € corresponding to level 2). The higher the value for ¢; (for some level
¢ in the graph) the broader the features the graph associated with the map
will be able to show. To gain higher details of the multidimensional fitness
landscape associated with @, the map can be iterated with smaller and smaller
€’s. In one extreme, the highest possible barrier between any two optima is
the difference between the global optimum and the worst local optimum. In
this case, the graph will have a unique vertex representing all the possible
basins. On the other hand, when ¢ takes the smallest possible value, i.e. the
difference between the two closest local optima value, the graph will display
information about every single barrier. This, in turn, makes the concept of
super basins and long range topological features associated with ¢ disappear.
For the disconnectivity graph to be of use it needs to include a range of €
values within the extreme cases described above.

2.2 Dynamics of Search

In general, a memetic algorithm will start searching with a population rep-
resenting several of the vertices of the DG. The population will eventually
collapse to a certain basin of attraction represented by a particular a in agree-
ment with theoretical analysis like those done in [23]. For example, our MA
can start in vertex A, move down to B and C and after a number of genera-
tions down to D. If the MA were to explore the unnamed basin connected to
D by C, it will need to bypass a fitness barrier given by €o{ associated to level
0 to the right of the graph). Equivalently, if the memetic search were trapped
in basin B, and we hope that it will reach the global optima in H, then we
need to provide the MA with a mechanism to jump across the fitness barrier



188 Natalio Krasnogor

with an €. That is, move from vertex A move down to E and eventually move
to F,G and then H.

@
o

Fig. 1. Schematic representation of a landscape’s attraction basins.

As we can see from this example it will be desirable to provide the MA with
a mechanism that can detect when the MA is trapped in a certain vertex of DG
and jump over fitness barriers. We will introduce next one possible mechanism
to accomplish this. While our approach is simple and proved effective we are
not claiming here that this is the only, or the best, way to enforce a dynamic
that is able to cross barriers in the landscape explored. Other studies relating
operators, problems and instances to the barriers to be jumped can be worth
doing in order to further specialize the method we are proposing.

3 An Adaptive Helper for TSP and PSP

In this paper we review the hybridization scheme for a Memetic Algorithm
(MA) based on an adaptive helper that uses statistics from the GA’s popu-
lation. This adaptive helpers were introduced in [27] and [23]. We extend the
results of those studies with new experiments and in a later section we will
integrate those helpers within a Multimeme algorithm.

The MA is composed of two optimization processes, a Genetic Algorithm
and a helper which is a Monte Carlo method (MC). In contrast with other
GA-Monte Carlo hybridized memetic algorithms, in this work the MC stage
serves two purposes. First, when the population is diverse, it acts like a local



Towards Robust Memetic Algorithms 189

search procedure and second, when the population converges, its goal is to di-
versify the search. To achieve this, the MC is adaptive based on observations
from the underlying GA behavior; the GA controls the long-term optimization
process. We present results on the application of this approach to the TSP
problem. These results are going to be extended in subsequent sections for
Protein Structure Prediction Problem. Moreover, we will integrate the adap-
tive helpers with Multimeme Algorithms and present results. The adaptive
helper we introduce here, by accepting moves in the search space that deteri-
orate the value of the objective function, reduces the overall greediness of the
MA. Additionally, it helps keeping the diversity of the population at higher
values and prevents premature convergence.

3.1 Introduction and Previous Related Works

In [27] and [23] we reviewed several applications of evolutionary algorithms
(in particular MAs) for the TSP. We refer the interested reader to [19] and
[21] for a large collection of papers and instances.

The helper used later employs a Metropolis criterion to accept the can-
didate solution. Thus, we will briefly discuss related papers that came from
the Simulated Annealing (SA) literature. Those papers are related to our ap-
proach in the sense that they are not standard annealing schemes but, rather
“multi-agent” annealing heuristics. We say multi-agent because they keep a
population of solutions that cooperate through information exchange during
the optimization process. In [1] Aarts et al. propose an architecture where the
optimizing individuals are arranged in a hierarchical structure of increasing
temperature. Every so often, individuals receive solutions from their topolog-
ical neighbor that uses the highest temperature. They evaluate the solution
received with the Boltzmann criteria and decide to keep their own or to jump
to the neighbors’ solution. The authors also propose an alternative archi-
tecture where every agent works with the same starting solution across the
hierarchy of temperatures. As soon as an agent accepts a new solution, every
other agent update its own with the newly created point. Another multi-agent
simulated annealing is that of Lee and Lee [17] where the individuals compare
their solutions and all jump to the one with the better cost. Two memetic
algorithms for the TSP that used simulated annealing as an aid to the search
are those presented in [18] and [4]. In the first paper the authors introduce
an MA that uses a single step of simulated annealing as its mutation stage
and selection was itself implemented as a Boltzmann criterion. The anneal-
ing schedule was the same for all the individuals. Boseniuk et al. presented
a simple implementation of an MA with D = 4 (as per [23]) where the local
search phase is SA. In K.D. Boese’s Ph.D. thesis [3], extensive theoretical and
experimental analyses of optimal infinite and finite time adaptive annealing
schedules were done for a model of iterative global search by means of multi-
agents. The instances used were small (i.e. 6 to 8 cities for the TSP) but the
results were conclusive: The optimal annealing schedules he arrives at were



190 Natalio Krasnogor

those which oscillate between temperature values of 0 and infinity or where
the temperature was allowed to rise. Those results hold true for a number of
combinatorial optimization problems. In that work we can read:

Our analysis of small instances ... suggests that the preocupation with
optimality of sps in the literature has incorrectly led to the assumption
that cooling strategies are best.

and in a subsequent chapter the author continues:

. we have computed the optimal annealing temperature schedules
for small combinatorial problems; these schedules can resemble multi-
start, with alternating periods of greedy descent and randomization
(corresponding to annealing at zero and infinite temperatures)...

We can learn two lessons from the literature on Multi-Agent annealing
schemes and MAs for TSP:

e In the memetic algorithm literature, keeping population diversity while
using local search together with a GA is always an issue to be addressed,
either implicitly or explicitly. Usually this takes the form of complex op-
erators or sophisticated book-keeping and/or guiding strategies.

e In the multi-agent literature, different annealing schemes were proposed
together with different ways of sharing either solutions, annealing sched-
ules or temperatures. Several inter individual coupling mechanisms were
investigated.

3.2 The Adaptive Memetic Algorithm

Our purpose here is to show the potential for both search and diversity in
our approach. In this MA, the temperature reflects the state of the global
search. As explained before, when fitnesses across the population converge we
will assume that the MA is trapped in a certain vertex of the disconnectivity
graph. The temperature is going to rise ( by design ) leading to a more ex-
plorative global search that will allow the MA to jump over fitness barriers
and eventually move to a different vertex of DG. Once the fitnesses in the
population spread, the temperature will anneal, exploiting the solutions held
by each individual. In a given generation, all members of the population use
the same temperature.

The reader should note that it is not the goal of this paper to develop a
specialized TSP solver. We have used very naive and generic genetic opera-
tors (i.e. crossover or mutation). The local search move that was employed is
depicted below:



Towards Robust Memetic Algorithms 191

MA:
Begin
Initialize population Parents;
Repeat Until ( Finalization_criteriamet ) Do
For indip := first in Parents To last in Parents Do
Local_Search(indip) ;
endDo
mating_pool := Select_mating(Parents);
of fsprings := Cross(mating_pool);

Mutate(of fsprings);
Parents := Select(Parents + of fsprings);
endDo
End.

Local_Search(indip):
Begin
/* This is a Maximizing process */
prevFitness = fitness(indip);
Modify (indip) ;
nFitness = fitness(indip);
If (prevFitness < nFitness) Then
Accept configuration;
endIf
Else

deltaE = prevFitness — nFitness;
ey —deltaRE
threshold = Temperature ;

If (random(0,1) < threshold) Then
Accept configuration;
/* even if worse than the previous one */
endIf
Else
Reject changes;
End.

We describe next a general Adaptive Memetic Algorithm where the goal
is to maximize the fitness'. In the basic algorithm used (shown above to the
left), the Select(...) procedure is a (u + A) or a (i, A) selection strategy,
representing two extremes of selection pressure, with the plus-strategy hav-
ing the highest pressure and the comma-strategy the lowest. We tried these
two scenarios because we want to explore not only final tour length but also
population diversity. We wanted to compare how well our adaptive memetic
algorithm performs under these two extremes.

! For the TSP the length of a tour was multiplied by -1.



192 Natalio Krasnogor

The local search/diversification procedure in the pseudo-code above sets
the temperature to [mazFiness—avgFitness]" It then applies to each member of

the population the ApplyMove(...) operator (see pseudo-code above). Note
that Modify(...) can be any local search move (e.g. a 2swap, city insertion,k-
exchange, etc.). The adaptation of the local search to either an exploitation
or exploration behavior is governed by the temperature parameter. As it was
mentioned before, the entire population shares the same temperature. This
temperature determines the extent to which decreasing fitness moves will be
allowed. As the spread of fitnesses within the population converges the tem-
perature rises. As a consequence, each individual in the population will be
more likely to be changed, exploring the search space. The extent by which a
worsening move will be accepted is a function of both the individual fitness
(i.e. its location in the search space) and the global state of the population (i.e.
measured by the temperature). Eventually, the fitnesses will spread, lowering
the population temperature. We prevent the modification by local-search of
the best individual, hence the overall best fitness in each generation is always
maintained.

3.3 Experimental Method and Results

For our experiments we used a population of 50 individuals. Crossover, muta-
tion and local search were applied with probability 0.8, 0.05 and 1.0 respec-
tively. We have chosen two instances from TSPLIB[21] to test our approach,
€il76.tsp and 1in318.tsp. These instances are of no particular difficulty and
of relatively small size. We run 30 simulations under two different selection
strategies, a (50, 50) and a (50 + 50) strategy. We test our algorithms against
four other algorithms, all of them sharing either of the selection strategies:

(1) A standard Genetic algorithm (GA) with no local search of any kind,
which constitutes the basis for constructing all the other algorithms tested (see
section 3.3 for details). (2) A Hill Climber Memetic Algorithm (HC) which
uses as local search the two_exchange(...) move but only accepts improve-
ments. (3) A Boltzmann Hill Climber memetic algorithm (BHC) which uses
the same decision procedures as the adaptive memetic algorithm but with a
fixed temperature. The temperature was set to be the average (a posteriori
temperature employed by the our proposed adaptive MA in one of its runs.
(4) A Linear annealing memetic algorithm (LMA) which uses the Boltzmann
criteria to accept/reject moves. In this case the temperature was set at the
beginning of the run to a value that was linearly annealed during the run.

Each algorithm was run for 2000 generations, except the GA which was
given 6000 generations to compensate for the use of extra fitness evaluations
by the local searcher?. To compare the quality of our MA against the other
four alternatives we look at two measures, the quality of the best individual

2 In fact, the GA employed more fitness evaluations than all the other MAs.



Towards Robust Memetic Algorithms 193

at the end of the run and the diversity of the population at that time. The
quality was equivalent to the tour length and the diversity the number of
different fitnesses found in the population divided by the population size. We
performed an ANOVA test on the averages of these measurements over the 30
runs for the 5 algorithms. A total of 300 runs were analyzed 3. More details
for replicating the experiments can be found in [23].

Tables 1 and 2 summarize the results obtained.

From table 1 (left) we can see that the proposed MA achieves better final
tour length than the standard GA, the GA with a Hill climber (HC), the GA
with a Boltzmann Hill Climber(BHC) and the linear annealed MA (LMA).
These anova results are of statistical significance with a p-value of 0.01. The
diversity results in table 2 show that the adaptive approach is capable of
maintaining the diversity of the population on higher values than the other
four algorithms. The differences are of statistical significance.

As mentioned in the introduction, the use of local search within a GA usu-
ally causes a premature convergence in the search space, hence maintaining a
diverse population is crucial?. It can be seen from the lower/upper diagonal of
tables 1 and 2 that in most cases, when an algorithm beats another algorithm
in one table, it beats (or is at least equivalent to) the same one in the other
table as well.

We performed similar tests on a different mating and selection strategy.
While the previous experiments used a tournament size of 2 and a (50, 50) or
(50 + 50) strategy, this new experiment employed a (50, 200) and a (50 + 200)
strategy with a tournament size of 4, effectively producing a very high selection
pressure during both reproduction and survival phases. Tables 3 and 4 present
the results obtained for instance €il76.tsp and lin318.tsp respectively. The only
notable difference with the previous experiments is the instance 1in318 results
for the (50 + 200) case. The selection pressure was probably too high and
hence no difference (with statistical significance) was found among the 4 MAs
and the GA.

In order to examine further the conduct of our approach under different
operators and representations we changed the encoding from the one described
above to a permutation encoding. We also used a PMX crossover keeping
all the other parts of the 5 algorithms unmodified. Again, 30 runs of each
algorithm under the two selection schemes were executed for 2000 (6000 in the
GA case) generations.The results obtained were consistent with those shown
above. The adaptive MA is better in both final tour length and diversity of
the final population with a statistical significant difference (not shown here).

% 30 runs per each one of the 5 algorithms per each one of the two selection strate-
gies.

4 This is of particular importance on MA applied to dynamic optimization and
multi-objective optimization.



194 Natalio Krasnogor

Table 1. Summary of anova analysis for tour length under the (50,50)—strategy
(left) and the (50 + 50)—strategy (right): + denotes that the algorithm that names
the row achieves a longer tour than the one that names the column, - denotes that
the algorithm that names the row achieves a shorter tour than the one that names
the column, - or + with * denotes statistical significance up to at least a p-value of
0.05

[ (50,50)-Strategy I (50+50)-Strategy |
Algorithms GA HC BHC LMA MA GA HC BHC LMA MA
GA - + + T * _ +* g F*
HC + + + +* + +* +* +*
BEC - . - s = - = -
TA - - - o= — 3 IF IF
IR % % % — w3 — ¥ =

Table 2. Summary of anova analysis for population diversity under the
(50, 50)—strategy (left) and (50 + 50)—strategy (right)

[ (50,50)-Strategy 1] (50+50)-Strategy |
Algorithms GA HC BHC LMA MA GA HC BHC LMA MA
GA T % i " = = = =
HC ¥ * - = = F = 3
BHC +* +* +* - +* +* +* +*
LMA . B E _* = = = =
MA +* +* +* +* +* +* i +*

Table 3. Summary of anova analysis for tour length under the (50, 200)—strategy
(left) and the (50 + 200)—strategy (right) with tournament size of 4. (Instance
Eil76.tsp)

{(50,200)-Strategy 11 (501+200)-Strategy |
Algorithms GA HC BHC LMA MA GA HC BHC LMA MA
GA + +* +* +* - +* - +*
HC - + + +* + +* - +*
BHC o _ s 3 I3 I3 FE3 =
LMA -* - - +* + + +¥ +*
MA 3 3 o F —* I3 = oF

Table 4. Summary of anova analysis for tour length under the (50,200)—strategy
(left) and the (50 + 200)—strategy (right) with tournament size of 4. (Instance
1in318.tsp)

[ (50,200)-Strategy 1| (50+200)-Strategy |
Algorithms GA HC BHC LMA MA GA HC BHC LMA MA
GA + +* -+ +* - + + +
HC - +* +* +* + + + +
BHO = = - ¥ . "
LMA F F T ¥ B B T =
MA -* -* - -* - - + =

3.4 Adaptive MA Behavior

Figure 2(a) we show a plot of the evolution of the fitness (tour length) of
the best individual in the population and the population temperature as a
function of time (generations) for a randomly selected run. Only the time
window between generations 40 to 110 is shown. It is easy to visually inspect
the graph to note that all of the major fitness transitions are preceded by a
peak in temperature and a subsequent fall in its value. Once a new best fitness



Towards Robust Memetic Algorithms 195

is established in the population the temperature starts to rise. At a certain
point in time a new “discovery” is made by the MA and the temperature
cools down. The behavior of our MA closely follows that of Boese’s optimal
schedules[3]; this is done in an adaptive fashion and for TSP instances that
are one and two order of magnitude bigger than the ones he used.

610 [ 1 LA

' h i 6,
our |ength; 090
@@ Diveesity (hif] climber. T=0)

!

i

» Temperatare, 600 080
“n @ ®Vour Longth tadoptive T

- Diversity (wlaprive T

580 /

570 ; : - : immd 00 560 ’ I B
4 5 ) i 0 100 Tio Fo st B0 w130 10 1%

Generations ) Gencralions
(a) (b)

Fig. 2. Eil76.tsp: Tour length and Temperature (a), Tour Length and Diversity (b)
as a function of generations.

In figure 2(b) we plot the average fitness of the population and diversity
for both the Adaptive and Hill Climber (T=0) MA. The diversity achieved a
much higher level in the adaptive searcher while it was rapidly lost in the hill
climber. Furthermore, the final tour length was much better with the adaptive
approach.

We suspect that the oscillations in the temperature approximately follow
a power law, which (in the words of Coveney and Highfield[8]) represents

“The fingerprint of self-organized criticality”

We calculated the Fourier transformation of the temperature time series and
we plot in figure 3 a log — log plot of amplitudes versus frequencies. Even
though the time series is noisy it is possible to see that big amplitudes cor-
respond with low frequencies following a linear trend in the graph. In terms
of the search process this means that we can expect to have, for example,
a change in temperature of magnitude 10, 10 times more frequently than a
change of magnitude 100.

4 Multimeme Algorithms with Adaptive Helpers

In a Multimeme Algorithm an individual is composed of its genetic material
(that represents the solution to the problem being solved, e.g. a candidate



196 Natalio Krasnogor

1.00e+00

1.00e~01

1.00e-02

Amplitudes

1.00e—-03

1.00e-04

1.00e-05
1 10 100 1000

Frequencies

Fig. 3. Fourier Analysis of the temperature time series.

protein structure or a TSP tour in this paper) and its memetic material (that
defines the kind of local searcher to use, e.g. alternative operators to improve
a protein structure or a TSP tour). The mechanisms of genetic exchange
and variation are the usual crossover and mutation operators but tailored
to the specific problem one wants to solve. Memetic transmission is effected
using the so called Simple Inheritance Mechanism (SIM)[28] where a meme
(local searcher) L, at time ¢ — 1 that is carried by parent j (or k), will be
transmitted to the offspring ¢ if that meme is shared by all the parents. If
they have different memes, L is associated to the fittest parent. Otherwise,
when fitnesses(F(-)) are comparable and memes different, a random selection
is made. The rationale is to propagate local searchers (i.e. memes) that are
associated with fit individuals, as those individuals were probably improved
by their respective memes. During mutation, the meme of an individual can
also be overridden and a local searcher assigned at random (uniformly from
the set of all available local searchers) based on the value of the innovation
rate parameter. This is done to introduce novelty in the local search phase of
the MMA.



Towards Robust Memetic Algorithms 197

In previous sections we showed how evolutionary search can be made more
robust by the use of adaptive helpers that are capable of selecting (for short
periods of time) worst points of the search space. Furthermore, these adaptive
helpers are able to maintain population diversity and allow the search process
to jump over deep minima and navigate wide neutral plateaus.

In this part of the work we apply SIM to learn which is the best adaptive
meme to employ during different stages of the search, effectively integrating
the adaptive Monte Carlo helpers with the Multimeme algorithm. The case
studies are the TSP and the PSP. By combining both approaches, a more
competent[22] memetic algorithm is achieved.

As was explained before, adaptive helpers were allowed to jump over fitness
barriers as those depicted in Figure 1. The inclusion by a multimeme algorithm
of several helpers can further aid that process. If the multimeme algorithm is
trapped, let us say, in vertex E of Figure 1, then it can follow either F,G and
finally H, or (by virtue of its several neighborhoods search) jump straight to
vertex C, without using the higher basins A and B, and from C going down
towards H (shown in the picture with dotted lines).

While a multimeme algorithm based on SIM enables one to view the search
space through the looking glass of several local searchers, it does not facilitate
jumping over basins that are common to all of these searchers. On the other
hand, an adaptive helper can jump over basins (effectively backtracking in
the fitness landscape) but, as the theoretical analysis of [23] exemplified for
the case of MAs for the TSP, sometimes even achieving a local optimum can
take exponential time. Experimental evidence of a very long convergence to a
local optimum was also found for the PSP[20].

By extending the capabilities of a multimeme algorithm (which searches
through various neighborhoods) with adaptive helpers (that are capable of
jumping over basins of attraction or navigate through wide neutral plateaus)
we produce a more robust metaheuristic that benefits from the characteristics
of both approaches.

4.1 TSP, Experiment Description

As in our previous investigation[13] (where only static helpers were studied)
we used 24 different memes; each meme defines the acceptance strategy, the
underlying basic move and the number of iterations to use during the local
search stage. There were two acceptance strategies, namely first-improvement
and best-improvement. For static helpers as those used in [13] where only
neighbor solutions with improved fitness are considered, the standard seman-
tic is assumed for a first-improvement or a best-improvement strategy. How-
ever, these need to be changed in our present case to reflect the fact that under
the adaptive scenario chosen, deteriorating moves are allowed. In both cases,
where no first-improvement or best-improvement was found (no better tour or
better protein structure was reached from the starting solution), a lower qual-
ity tour/protein structure was constructed and accepted (or rejected) based



198 Natalio Krasnogor

on the Boltzmann criterion. The temperature was set to reflect the state of
the population fitnesses spread as explained previously and also reported in
[27] and [23].

Lets consider first the TSP case. Three basic moves were employed, namely
2 — exchange, 3 — exchange and 4 — exchange. The final property of a meme
was the number of times the acceptance strategy was going to be iterated
employing the basic move, in our experiment the options where 1,3,6 or 9
iterations. For all the experiments run, the probability of mutation was 0.4, the
probability of crossover was 0.6 and the innovation rate was set to 0.125. The
crossover used was DPX, and the mutation operator was the double-bridge
move. The underlying GA was a generational GA with a (50, 200) strategy
using a tournament size of 4. The architecture of the MA was accordingly to
[23] D = 4. That is, local search was executed independently of mutation and
crossover in a separate stage. The probability of local search (expressing the
meme) was 1. The encoding used was a permutation encoding.

We first ran a set of experiments (one for each of the 24 memes), each
consisting of 30 trials, where the whole population used the same meme. That
is, each individual was statically linked to a unique helper. The goal of this
experiment was to obtain a ranking of memes for the different instances.

Innovation Rates Compared (adaptive memes)

Tour Length Vs # Generations (30 runs averaged) y
Tour length Vs #Gencrations (avg over 30 runs)

Single-Adaptive-Memes compared (in318.4sp)

—e IR=0.1
@ IR=0.2

Tour Length

4 g o
Y By e by By By Sy e Sy

Tour Length

o 00 Ao o0

#Generatios #Generations

(2) (b)

Fig. 4. In (a) relative performance of a memetic algorithin using adaptive memes
can be seen as a function of the generation number for instance 1in318.tsp. The
curve for the associated multimeme algorithm is also shown and it converges toward
the best meme. In (b) comparison of different innovation rates for the multimeme
adaptive approach.

A t-test and an ANOVA analysis of the average over 30 runs for the best
tour in each experiment shows that the final values of best fitness are (with
95% confidence level) different.

In the table 5 and 7 we show the rankings obtained for a memetic algorithm
that uses one of the adaptive memes on instances lin105.tsp and 1in318.tsp.



199

Towards Robust Memetic Algorithms

(-)z000'0 -)0000°0 -}£000°0 (-)0000°0 -)8000°0 -)8000°0 -)0000°0 -)0000°0 -)0000°0 -}1000°0 O T=YUI-V
(-)£000°0 -)0000°0 -)8000°'0 (-)0000'0 -)€100°0 -)2100°0 -)0000°0 -)0000'0 -)0000°0 -)1000°0 6'0=d"I-V
(-)¥200°0 -)1000°0 -)€£00°0 (-)0000°0 -)8L00°0 -)g200°0 -)0000°0 -)0000°0 -)£000°0 -)8000°0 8 0=Y41-V¥
-)0000°0 -)0000°0 -)0000°0 (-)0000'0 -)0000:0 -}0000'0 -)0000°0 -)0000°0 -)0000°0 -)0000°0 L 0=HI-V.
-}¥000°0 -)0000°0 -)5000°0 (-)0000°0 -)8100°0 -}0100°0 -)0000°0 -)0000°0 -}0000°0 -)2000°0 9°0=YyI-¥
-}0000°0 -)0000°'0 -)0000°0 (-)0000°0 -)1000°0 -}1000°0 -)0000°0 -)0000°0 -}0000°0 -}0000°0 g 0=HI-V
-)1.00°0 -)£000°0 -)8800°0 -)1000°0 -)¥$z0°0 -)€CT0°0 -)0000°0 -)0000°0 -)¥100°0 -)8€00°0 ¥ 0=YI-V
-)0000°0 -)00060°0 -)0000°0 -)0000°0 {-)0000°0 -)0000°0 -)0000°0 -)0000°0 -)0000°0 -)0000°0 £ 0=HI-V
-)0000°0 -)0000°0 -)0000°0 -)0000°0 (-+)0000°0 -)0000°0 -)0000°0 -)0000°0 ~)0000°0 ~)0000°0 2 0="I-V
-)0000°0 -)0000°0 -)0000°0 -)0000°0 {-)0000°0 -)0000°0 -)0000°0 -)0000°0 -)0000°0 -)0000°0 T'0=¥I-V
0 I=¥I-S 6'0=YI-S 8 0=HI-§ 2'0=YI-§ 9°0=¥YI-S§ S 0=Y1-S ¥ 0=¥4I-S € 0=¥HI-S 2 0=YI-S 10=¥I-S By

"S[RWIIOEP | Jo uolsaid B yim umoys s anjea-d pajeidosse oy3 pue uwnjod 93 Surreu uyiLiode oYy wey) (95I10M4)19339q SI 401 9}
Furureu wiyyrrodre oy3 usyy [[90 ® ur sreadde (+) - © USY AL 'S9JeI UOIRAOUUI JUSIIYIP 10f paredurod atom (o1 doy)uryarroSye surswirynus
onge)s v pue (Uwnjos Ya[)wyrroS e sutewrynuI sapdepe ue jo y1Susf Ioj reuy oy, ‘UMOYS aIe SISA[eUe vAoue ue jo sonyea-d 2 a|qeq,

- a P P x X w” 5 + e ™ e TNIDINY
2t ot PE w ot «t - x at wt PR st SIPINY
=t . : * e *T Pl * *~ 2t Pl #t il IIYINVY
xt wt xt P wt «F % X =t wt «t P EIPNY
o+ ot ot ot : o W «F o F o+ ot T TP
«t P - % e . e e e et =t ot » 6IENV
at + e e w «t . x - ot xt wt - SIENV
oF T oF o - e e : e ot ot L ) SIENY
st st =+ st x wt st =+ »t xt =t st ISV
- e e x” - X e X - e P - SICINY
st - %" P X e . 5 X ot : x - IENY
st e x a s a s ». e «t ot - + SITINY
xt P +1 st % st st xt P at xt st i 112NV
WINNY 6PNV | 9PNV | EIviNy LYY SISNY JISNY | EIEWV LIZINY 6IgNY | OIGNV | eleilv LIgNV | 31V

s1adot sanpdepe are saurey ‘dsy'gTgull soueISUI Uo YISua] Inoy I0j sisAjeue eaoue jo Arewrmng ‘9 Iqel,
d L *2 +T * T hs *Z Eud + T Pl =T SIVINY
+ . % *7 T * T - *2 * * T il *F PNV
*+ *+ * *xT * T *+ - * T * T T T SIVINY
wt «t T T *T %t =+ * T E 2T *T IIPINY
7 *7 *" *" . - *” *” sl *T T + SIENV
e - X »" + o P «t ot «t + SIENY
-+ + e x wt xF X ot wt wt wt SIENY
»t st x xt at xt at wt xt st 1ISINY
e - % x" e e - - . E : P SITNY
P P = X e e X »- + - - e SIZINY
* * * P * *" *" * + + d *7 SIZNY
e e xs x - - e w wt ot »t - LIZNV

6IVINV SIPINY SIWINY | TPV | GIENV | oIeWV SISNY WV [ 615NV OITNY SITINY LIGAY By

‘s1edfey asrydepe are
sauIay "so[qes snoirsxd ul se st sjoquids jo Surmesur oy T, ‘dsy ¢TuIl 9ouRIsUl uo y3Fus[ IN0Y I0j SISAJeur vaouw Jo Areuruing °g S[qel,



200 Natalio Krasnogor

Table 7 demonstrates that the adaptive versions of the single meme algo-
rithms are better than the static counterparts.

In Figure 4(a) the performance of the multimeme adaptive algorithm is
plotted against the performance of the single meme MAs. As was reported
in an earlier work [13] where the best static meme was correctly learned, the
Multimeme Algorithm can also successfully track the best adaptive meme for
this instance. In table 7 we can see that the Multimeme Algorithm is supe-
rior to all the single meme algorithms, except for the one that uses only the
best meme for this instance (in this case A — M2FB1I9). However the dif-
ference between the best possible single meme algorithm and the Multimeme
algorithm is not of statistical significance®.

To further investigate our algorithms behaviour we conducted experiments
for each of the possible innovation rates in the range [0.1,1.0]. The results of
plotting the tour length obtained for every generation is given in Figure 4(b).

As it is evident from figure 4(b), low innovation rates produce better per-
formance than higher ones. In particular, the innovation rate value of 1.0
produces the worst performance. As an innovation rate of that value indicates
a random selection of the local search neighborhood at each generation, we can
conclude that it is indeed profitable to exploit SIM and learn to use only the
right neighborhoods. More extensive analysis of this and other experiments
can be found in [23],[13].

The evolutionary activity of the memetic system (as defined in [13]) is
depicted in figure 5.

Evolutionary Activity Vs #Generations (30 runs averaged)

T T T

*——& A-MABIN
W W AMABIR

(e

- @ AMNBIG |....
—A A-MABIY

~d A-MABIE
—¥ A-MIBI

* A-MAIBIN
~@ A-MABIG [-ooem =
~W A-MAIBIY

Evolutionary Activity
+

soel

1gstn

#Gencrations

Fig. 5. Evolutionary Activity of the memetic algorithm for instance lin318.tsp using
adaptive memes. Zoom on the initial 200 generations.

5 And obviously it is very hard to predict prior to running experiments which is
the best single meme for a given instance.



Towards Robust Memetic Algorithms 201

The most conspicuous curves are those associated with memes A —
M2FB119,A— M2FB116,A— M3FB1I9 and A— M4FB1I9. These memes
are amongst the most highly ranked in table 7.

4.2 Adaptive Multimeme Algorithm For The Protein Structure
Prediction Problem

The construction of highly effective algorithms for solving structure prediction
on simplified models, e.g. the HP model, is essential if we hope to target the
structure prediction of real life proteins that cannot be solved by homology
or threading methods. Several of the most successful methodologies employed
during the last two Critical Assessments of Structure Prediction, CASP3 and
CASP4, employed one or more simplified models for sampling and optimizing
structures embedded in different lattices and measuring them with simplified
energy potentials [23],[7]. It is evident then that any improvement on the
optimization of lattice-based structures will be welcomed by the scientific
community.

In the next section we will integrate the adaptive version of the protein
structure memes into a multimeme algorithm for predicting protein structure.
For a more extensive investigation on the use of the algorithms proposed here
the reader can refer to [11] and [23].

4.3 The Experiments

As we did for the TSP, we want to elucidate the behavior of SIM under
the presence of adaptive helpers, this time for the PFP. In these experi-
ments we executed 10 runs for each innovation rate value (IR). The under-
lying GA is implemented as in [23], where the replacement strategy was a
(500,1000) strategy with tournament selection of size 2. Crossover proba-
bility was 0.8 and that of mutation 0.3. Crossover was standard two-point
crossover and mutation was one point mutation. Each run was executed for
200 generations which assured convergence. Solutions were encoded using in-
ternal coordinates in the relative encoding. We conducted experiments for
each of the possible innovation rates in the set {0.0,1.0E-5,1.0E~4,1.0E—
3,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}.

In table 9 we can see the number of times the optimum was reached for
instance I15 of length 24 and with a maximum number of bonds of 17 (mini-
mum energy of -17), together with the average time needed to achieve those
values.

Table 8 presents the number of optima reached with the different innova-
tion rates together with the mean first hitting time of those optima.

In table 11 the mean first hitting times and number of optima reached with
each adaptive meme is tabulated. Comparing with table 9 a marked increase
in robustness is observed with the multimeme reaching optimal values much



202 Natalio Krasnogor

Table 8. Different innovation rates and the relation between the number of times
the multimeme algorithm reached optima relative to the number of runs executed.
Also, in the third column, the mean first hitting time is computed. Memes are static
helpers. Instance 15 in [8]

Innovation Rate | #Optima / #Runs | Mean First Hitting Time
0.0 4/10 20.25
0.00001 4/10 20.5
0.0001 5/10 20.0
0.001 6/10 21.16
0.01 3/10 17.66
0.1 6/10 28.83

0.2 7/10 23.71

0.3 4/10 18.0

0.4 3/10 20.0

0.5 4/10 22.5

0.6 4/10 24.5

0.7 5/10 33.8

0.8 4/10 55.0

0.9 3/10 20.33

1.0 3/10 109.0

Table 9. Memes are adaptive helpers in this table.

Innovation Rate | #Optima / #Runs | Mean First Hitting Time
0.0 8/10 19.5
0.00001 7/10 19.14
0.0001 8/10 19.12
0.001 6/10 16.16
0.01 8/10 16.87
0.1 6/10 18.83

0.2 6/10 22.66

0.3 8/10 45.5

0.4 7/10 43.71

0.5 9/10 26.44

0.6 6/10 24.33

0.7 4/10 31.25

0.8 8/10 32.12

0.9 4/10 33.75

1.0 6/10 36.5




Towards Robust Memetic Algorithms 203

Table 10. Relation between the number of times the single meme algorithm reached
optima relative to the number of runs executed for different memes. Also, in the
third column, the mean first hitting time is computed. The last row presents the
associated values for the multimeme algorithm. Memes are static helpers. Instance
15 in [8]

Static Memes | #Optima / #Runs | Mean First Hitting Time

GA (no memes) 0/10 -
Macro Mutation (r=4) 5/10 85.0
Macro Mutation (r==8) 2/10 100.0
Macro Mutation (r=16) 1/10 100.0
Reflect (r=4) 3/10 27.3

Reflect (r=8) 2/10 63.5

Reflect (r=16) , 1/10 100.0

Stretch (r=4) 0/10 -

Stretch (r=8) 0/10 -

Stretch (r=16) 0/10 -

Pivot 5/10 674
MultiMeme(IR=0.2) 7/10 23.71

Table 11. Memes are adaptive helpers in this table.

Static Memes | #Optima / #Runs | Mean First Hitting Time

GA (no memes) 0/10 -
Macro Mutation (r=4) 2/10 27.5
Macro Mutation (r=8) 3/10 53.3
Macro Mutation (r=16) 2/10 43.0
Reflect (r=4) 3/10 20.6

Reflect (r=8) 1/10 79.0

Reflect (r=16) 1/10 45.0

Stretch (r=4) 0/10 -

Stretch (r=8) 0/10 -

Stretch (r=16) 0/10 -

Bivot 5/10 27.0

MultiMeme (IR=0.01) 8/10 16.87

more frequently than the single meme algorithm. Furthermore, the hitting
times are also improved.

There are two main differences between Tables 10 (static memes) and 11
(adaptive memes). One of them is that for six of the memes the number of
optima hits remains the same, while there are two improvements and two
deteriorations. However, if we concentrate on the mean first hitting times the
adaptive memes need roughly half the time needed by the static memes to
achieve their respective optima.

Comparing Table 9 with the equivalent Table 8 for a multimeme static
algorithm, we find the one employing adaptive memes is a better option than



204 Natalio Krasnogor

a multimeme algorithm with static memes. Moreover, both versions of the
multimeme are, in turn, better than single meme algorithms, even ignoring
the fact that it is difficult to know a priori which will be the best meme to
use for a given instance. Similar results were found with other instances (in
particular instance 18).

We perform an ANOVA analysis to find out whether the differences on
mean hitting times were different with statistic significance. We found that the
ANOVA identifies as statistically different, and indeed worse (longer average
hitting times), the IR of {0.3,0.8,1.0}. While the others were ranked as well
the associated confidence level was below 90%.

To understand which memes the multimeme algorithm selects during the
search and at what times, Figure 6(a) shows the concentration of memes as a
function of time. In this case concentration is plotted for an IR = 0.5, with an
associated hitting ratio of —1% and average hitting time of 26.44 generations.

In this case, the prevailing meme is the pivot move(e.g. a rigid rotation),
followed very closely by the reflect with r = 4 during the whole run. We can
see that when the concentration of the reflect meme peaks, the concentration
of the pivot decreases. At the beginning of the run and for the considerably
long period of 25 generations the macromutation with r = 4 is prominent.
Important concentration peaks for reflect r = 16 are also found. Figure 6(b)
shows the concentration graph for this instance and an innovation rate of 0.01

Meme Concentration

Concentration Plot for 115
1R=A).5. Multimome Adaplive Hetpers

Concentration Plot for 118
IR=0.01, Mulimeme Adaptive Vetpers

T T T T T fF T T T T T

0——0 Marw Mutaiva (e=d)
v £3 Mot Mitation (e=8)
=+ 0 Macm Mutation (r=16)
& Sieotch (end)
- Siocich (r=8)

)

o7 St r=1
e
Relloct r=h
Reout (r216)

.
FYrvisee

v

" L 1 1 '
25 50 k2] 100 125 150 175 200

#Generations:

(a)

Meme Concentration
.

400

#icnerations

(b)

Fig. 6. In (a) meme concentration as a function of time for I15 and IR=0.5. Memes
are adaptive. In (b) (Instance 118 in [8]):Adaptive Memes Concentration Graph for
Instance I18 and an innovation rate of 0.01.

Before generation 47, where the first important average fitness deteriora-
tion by the dominant adaptive helper (pivot meme) occurs, both reflect with
r = 4 and macro mutation with » = 16 start to increase their presence in the
population. Reflect helpers with r = 4 and r = 8 and the pivot meme are
going to be the subsequent dominant memes.



Towards Robust Memetic Algorithms 205

5 Conclusion

In this paper we motivated the used of adaptive helpers and the inclusion
of several local search neighborhoods in the set of available operators for a
Memetic algorithm. Using two small instances of the TSP we showed how
an adaptive local search phase is more beneficial to an MA than a static
local search phase. We integrated the adaptive helpers with a Multimeme
algorithm and we showed the resulting adaptive Multimeme algorithm to be
more robust for both TSP and PSP Problem instances. In this paper we
showed that the use and scheduling of several local search operators, realized
by the various memes, can aid to perform a better exploration and exploitation
of the search space. Moreover, the inclusion of adaptive helpers that can jump
“backwards” in the optimization space further increases the search capabilities
of the multimeme algorithm. That is, the multimeme algorithm with adaptive
helpers produces more robust results than both the multimeme algorithm
with static helpers and the memetic (single meme) algorithm with adaptive
or static helpers.

An avenue of research not explored here but certainly worth pursuing
is that of studying the appropriate scaling of the temperature parameter of
the adaptive helpers according to the specific neighborhood that each one
explores. That is, in general, we can expect that different move operators will
need different temperatures to perform the adaptation and the cross barrier
jumps. In the experiments presented here the temperature is the same for all
the memes. It should be clear that different memes might be better suited to
different scaling of the temperature as each one of them sees a different fitness
landscape.

Experiments where the SIM schedules a mix of static and adaptive in the
same run will be the object of future research where its ability to select the
best meme from this enlarged set will be tested. Another extension of this work
is the utilization of memes based on fuzzy sets concepts like those described
in [12]. As suggested in [22] and [23}, investigations where the memes are fully
co-evolved alongside the problem’s solutions are under way.

The two design principles advanced in this paper are:

e The use of several local searchers that explore the search space from com-
plementary perspectivesm and,

e The reduction of the MA “greediness” by either not using elitist replace-
ment strategies or by exploiting operators that can lead to worsening points
from which progress can be achieved at a later stage of the search.

These two design issues {that are supported also by theoretical considerations[23])
should be taken into account for any new problem if no clear “winner” heuris-
tic is known for that problem and robustness is paramount. In this case,
Memetic algorithms, in particular Multimeme memetic algorithms, can pro-
vide both solution quality and robustness.



206 Natalio Krasnogor

6 Acknowledgments

Natalio Krasnogor thanks J.E. Smith, W.E.Hart, and S. Gustafson for many
insightful discussions.

References

1. E. Aarts, F. de Bont, E. Habers, and P. van Laarhoven. Parallel implementations
of the statistical cooling algorithm. Integration, the VLSI Journal, 4:209-238,
1986.

2. O. Becker and M. Karplus. The topology of multidimensional potential energy
surfaces: Theory and application to peptide structure and kinetics. J. Chemical
Physics, 106(4):1495-1517, 97.

3. K. Boese. Models For Iterative Global Optimization. Ph.D. Thesis, UCLA
Computer Science Department, 1996.

4. T. Boseniuk and W. Ebeling. Boltzmann, darwin and haeckel strategies in
optimization problems. In H. Schwefel and R. Manner, editors, Parallel Problem
Solving From Nature, pages 430-444. Springer-Verlag, 1991.

5. B. Carr, W. Hart, N. Krasnogor, E. Burke, J. Hirst, and: J. Smith. Alignment
of protein structures with a memetic evolutionary algorithm. In GECCO-2002:
Proceedings of the Genetic and Evolutionary Computation Conference. Morgan
Kaufman, 2002.

6. P. Coveney and R. Highfield. Frontiers of Complezity, the search for order in a
chaotic world. faber and faber (ff), 1995.

7. A. Kolinski, M. Betancourt, D. Kihara, P. Rotkiewicz, and J. Skolnick. General-
ized comparative modeling (genecomp): A combination of sequence comparison,
threading, and lattice modeling for protein structure prediction and refinement.
PROTEINS: Structure, Function, and Genetics, 44:133-149, 2001.

8. N. Krasnogor. Two dimensional triangular lattice instances for the hp model.
In http://dirac.chem.nott.ac.uk/ natk/Public/HP-PDB/2dtrihp.html.

9. N. Krasnogor. Co-evolution of genes and memes in memetic algorithms. In
A. Wu, editor, Proceedings of the 1999 Genetic And Evolutionary Computation
Conference Workshop Program, 1999.

10. N. Krasnogor. http://www.cs.nott.ac.uk/ "nxk/papers.html. In Studies on the
Theory and Design Space of Memetic Algorithms. Ph.D. Thesis, University of
the West of England, Bristol, United Kingdom., 2002.

11. N. Krasnogor, B. Blackburne, E. Burke, and J. Hirst. Multimeme algorithms
for protein structure prediction. In Proceedings of the Parallel Problem Solving
from Nature VII. Lecture notes in computer science, 2002.

12. N. Krasnogor and D. Pelta. Fuzzy memes in multimeme algorithms: a fuzzy-
evolutionary hybrid. In J. Verdegay, editor, Book chapter in “Fuzzy Sets based
Heuristics for Optimization”. Physica Verlag, 2002.

13. N. Krasnogor and J. Smith. Memetic algorithms: Syntactic model and taxon-
omy. submitted to The Journal of Heuristics. Available from the authors.

14. N. Krasnogor and J. Smith. A memetic algorithm with self-adaptive local search:
Tsp as a case study. In Proceedings of the 2000 Genetic and Evolutionary
Computation Conference. Morgan Kaufmann, 2000.



15

16.

17.

18.

19.

20.

21.

22.

23.

Towards Robust Memetic Algorithms 207

. N. Krasnogor and J. Smith. Emergence of profitable search strategies based
on a simple inheritance mechanism. In Proceedings of the 2001 Genetic and
Evolutionary Computation Conference. Morgan Kaufmann, 2001.

N. Krasnogor. Self-Generating Metaheuristics in Bioinformatics: The Proteins
Structure Comparison Case Journal of Genetic Programming and Evolvable
Machines (to appear, May 2004), 5:2, 2004

S. Lee and K. Lee. Asynchronus communrication of multiple markov chains
in parallel simulated annealing. Proceedings of International Conference on
Parallel Processing, 3:169-176, 1992.

S. Mahfoud and D. Goldberg. Parallel recombinative simulated annealing. Par-
allel Computing, 21:1-28, 1995.

P. Moscato. http://www.densis.fee.unicamp.br/ moscato/memetic_home.html.
H. Nakamura, T. Sasaki, and M. Sasai. Strange kinetics and complex energy
landscapes in a lattice model of protein folding. Chemical Physics Letters,
347:247-254, 2001.

G. Reinelt. Tsplib (http://www.iwr.uni-heidelberg.de/iwr/comopt/soft /tsplib95/
tsplib.html). In mirror site: gopher://softlib.rice.edu/11/softlib/tsplib.

F. Rothlauf, D. Goldberg, and A. Heinz. Bad codings and the utility of well-
designed genetic algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan-Kaufmann, 2000.

Y. Xia, E. Huang, M. Levitt, and R. Samudrala. Ab initio construction of
protein tertiary structures using a hierarchical approach. Journal of Molecular
Biology, 300:171-185, 2000.



N K-Fitness Landscapes and Memetic
Algorithms with Greedy Operators and k-opt
Local Search

Peter Merz

University of Kaiserslautern

Department of Computer Science

P.O. Box 3049, D-67653 Kaiserslautern, Germany
peter.merzQieee.org

Summary. Memetic algorithms (MAs) with greedy initialization and recombina-
tion operators have been successfully applied to several combinatorial optimization
problems, including the traveling salesman problem and the graph bipartitioning
problem. In this contribution, a k-opt local search heuristic and a greedy heuris-
tic for NK-landscapes are proposed for use in memetic algorithms. The latter is
used for the initialization of the population and in a greedy recombination operator.
Memetic algorithms with k-opt local search and three different variation operators,
including the newly proposed greedy recombination operator, are compared on three
types of NK-landscapes. In accordance with the landscape analysis, the MAs with
recombination perform better than the MAs with mutation for landscapes with low
epistasis. Moreover, the MAs are shown to be superior to previously proposed MAs
using 1-opt local search.

1 Introduction

The NK-model of fitness landscapes has been introduced by Kauffman {1, 2]
to study gene interaction in biological evolution. In the NK-model, the fitness
is the average value of the fitness contributions of the loci in the genome.
For each locus, the fitness contribution is a function of the gene value (allele)
at the locus and the values of K other interacting genes. Although this is a
very simplified model, it allows to produce families of fitness landscapes with
interesting properties.

Besides its biological implications, the model is interesting for researchers
in the field of evolutionary computation, since the NK-landscape model pro-
vides combinatorial optimization problems with tunable difficulty.

In this paper, effective memetic algorithms [3, 4, 5] for N K-landscapes are
presented. New greedy and k-opt local search heuristics for NK-landscapes are
proposed which can be easily embedded into memetic algorithms. The proper-
ties of NK-landscapes are discussed and a fitness distance correlation analysis



210 Peter Merz

is performed for the newly introduced heuristic algorithms. It is shown that
based on the results of the analysis, the performance algorithms can be pre-
dicted: For low epistasis — low values of K in the model — recombination
based algorithms are able to exploit the structure of the search space effec-
tively. With increasing epistasis, the landscapes become quickly unstructured,
limiting the usefulness of recombination. For high epistasis, mutation based al-
gorithms become favorable over recombination based evolutionary algorithms.

In computer experiments, the effectiveness of sophisticated MAs based
on the proposed greedy and k-opt local search heuristics is demonstrated.
These algorithms offer (near) optimum solutions in short time even for high
dimensional landscapes.

The paper is organized as follows. In section 2, greedy and local search
heuristics for the N K-model are introduced. The fitness landscape of three
types of N K-models is discussed in section 3. In section 4, results from exper-
iments with memetic algorithms using k-opt local search and three different
variation mechanisms are presented. Section 5 concludes the paper and out-
lines areas of future research.

2 Heuristics for the NK-Model

Since NK-Landscapes have been studied mainly in the context of simulated
biological evolution, little attention has been payed to the development of
simple non-evolutionary heuristics. However, besides hill climbing/local search
techniques, constructive heuristics such as greedy algorithms can be applied
to problems of the NK-model.

In the following, a solution vector z is assumed to be a binary vector of
length N, i.e. = (x1,...,2zN) with the fitness function

f(z) = Zfl(wlaxh’ Sy g ) (1)

where the fitness contribution f; of locus ¢ depends on the value of gene x;
and the values of K other genes z;,, ..., ;.. The function f; : {0,1}X+! -5 R
assigns a uniformly distributed random number between 0 and 1 to each of
its 25+ inputs. Other random search landscapes have been proposed in [6, 7]
which are highly tunable, but will not be investigated in this work.

The N K-model is similar to the unconstrained binary programming prob-
lem (BQP) [8]. In fact, the BQP can be regarded as a special case of NK-
fitness landscapes with

fx) = Zf,(;v with  fi(z) = qu z; x5, (2)

where @ = (gi;) is a n x n matrix. While for NK-landscapes k(i) = K
is constant for all 7, in the BQP k(7) is defined as the number of non-zero



2 Heuristics for the NK-Model 211

entries in the i-th column of matrix Q. The mean k of the k(i) is given by
k = n- dens(Q). Due to the strong resemblance of the two problems, heuristics
developed for one problem can be applied after small modifications to the
other. The heuristics described in the following are similar to the greedy and

local search heuristics for the BQP in [9].

2.1 Greedy Algorithms

A point in a NK-landscape can be constructed in N steps by assigning in
each step a gene value to a gene at a given locus. If the choice of a gene value
follows a greedy rule, such an approach can be classified as a greedy heuristic
for NK-landscapes.

The greedy heuristic proposed in this paper works as follows. A solution
is built in IV steps by choosing a gene which is still not assigned a value,
and a gene value to assign to the gene. The choice is made by maximizing a
gain function g(é,v) : {1,...,N} x {0,1} — R with g(%,v) denoting the gain
attained by setting the value of the i-th gene to v. The gain function g¢{i,v)
is defined as the difference between the fitness of a partial solution y with
gene 1 set to v and the fitness of a partial solution z with gene ¢ unspecified:

g(i,v) = fP(y) — fP(z) with

v ,if i=j
e i

z; ,otherwise.

The fitness fP of a partial solution is defined as the average fitness of all solu-
tions matching the template defined by the partial solution: Assume the par-
tial solution z is z = (1,0, *,0, *, 1) with * denoting the don’t care symbol (the
gene has no value). Then, the fitness f? of z is the average fitness of the four
solutions (1,0,0,0,0,1), (1,0,0,0,1,1), (1,0,1,0,0,1), and (1,0,1,0,1,1).

Assuming the fitness contribution of site ¢ denoted f;(z;, Zi;,--.,Tig),
depends on the site ¢ itself and K neighbors 1, ..., ik, then the neighborhood
N; = {i,41,...,1x} defines the set of genes/loci which contribute to the fitness
at site 4. The set of loci/genes which depend on the value of gene k is thus
defined as Dy = {i | k € N;}. Hence, the gain function becomes

g(i7v) = fp(y) _fp(x) = Z fip(wi""ava"') __fzp(wzaaxk,) (3)

€Dy,

Initially, the partial fitness contribution of locus i is the average over all 2%+1
possible values of f;. Hence, the greedy heuristic based on partial fitness calcu-
lations requires more than n - 2K+ additions and is therefore only practically
useful for landscapes with small values of K. On the other hand, with increas-
ing K, the solutions produced by the greedy heuristic approach the average
fitness of the points in the landscape since for high epistasis the values of ff
differ significantly from the values of f; in the final solution.



212 Peter Merz

The greedy heuristic is randomized by (1) choosing a small fraction (N/20)
of the genes randomly, and (2) by selecting randomly with a probability pro-
portional to the gains from {arg max; g(4,0), arg max; g(z,1)}.

2.2 Local Search

The application of local search techniques to NK-landscapes is straightfor-
ward: Neighboring solutions can be reached by flipping one or more bits simul-
taneously in the genome. However, instead of calculating the fitness for each
neighboring solution anew, it is more efficient to calculate the gain achieved
by moving to the new solution. In this context the gain is referred to as the
fitness difference between the new and the old solution.

The gain associated with the flipping of a single gene k in the genome x
leading to a solution y with

1- ZT; ,if i=k
Y = .
T; , otherwise

is the fitness difference of the new solution y and the old solution z:

gk(IE) =f(y)~f(w) = Z fi(xi)"'al_xka"')_fi(xia"')xkr--)- (4)

1€ Dy

A local search for the NK-model can be implemented by maintaining a gain
vector g = (g1 - ..,gn) instead of calculating all gains anew in each iteration.
After flipping gene k, generally not all of the gains have to be updated. A
gain g; only changes if there is a j € D; with k € IV; or in words the gain of
flipping gene 7 changes if there is a fitness distribution function that depends
on the value of gene k and <.

1-opt Local Search

A simple local search based on a 1-opt neighborhood can be realized straight-
forwardly. The neighborhood is searched by flipping a single bit in the current
solution. The gain vector can now be used to find an improving flip in reduced
computation time. However, after flipping the gene value, some elements of
the gain vector have to be updated accordingly.

Variable k-opt Local Search

The basic scheme described above can be extended to derive more powerful
local search algorithms. For example, a 2-opt local search can be realized by
flipping two genes to reach a solution in the neighborhood of the current
solution. More generally, a k-opt local search can be realized by flipping &
genes simultaneously. Since the neighborhood size of a k-opt local search grows



2 Heuristics for the NK-Model 213

exponentially with k, mechanisms are required to perform a k-opt local search
in reasonable time. This can be achieved be considering a small fraction of
the k-opt neighborhood similarly to the heuristics by Lin and Kernighan for
the TSP [10] and the GBP [11]. The k-opt local search for NK-landscapes
proposed here is based on the ideas of Lin and Kernighan: in each iteration,
a variable number of genes is flipped, depending on a gain criterion. To find
the most profitable k-opt move, a sequence of up to n solutions is generated
by stepwise flipping genes with the highest associated gain. Every gene is
flipped no more than once to guarantee that all solutions in the sequence are
different. The solution in the sequence with the highest gain is accepted as the
new current solution. This solution may differ in 1 up to n genes depending
on the position in the sequence. The pseudo code for the approach is provided
in Figure 1. To reduce the running time of the algorithm, the value for the

procedure Local-Search-k-opt(z € X): X;

begin
calculate gains g; for all ¢ in {1,...,N};
repeat
Tprev := &, Gmaz =0, G:=0,steps =0, C:={1,...,N};
repeat
find j with g; = maXiec gi;
G =G+ g;;

T =1 —xy;
if G > Gnoz then
Graz = G;
Tpest ‘= T;
endif
update gains g; for all ;
C:=C\{i};
steps == steps + 1;
until steps > mazsteps or C = {;
if Gma,:t > 0 then

T 1= Tpest)
else
T = Tprev;
endif
until G < 0;
return z;

end;

Fig. 1. k-opt Local Search for NK Landscapes

maximum k can be bound to a value smaller than N. Furthermore, the inner
repeat loop may be terminated if there was no new z.s; for more than m
solutions.



214 Peter Merz

3 The Fitness Landscape of the NK-Model

The NK-model of Kauffman [2, 12] defines a family of fitness landscapes which
can be tuned by two parameters: N and K. While V determines the dimension
of the search space, K specifies the degree of epistatic interactions of the genes
constituting a genome. Each point in the fitness landscape is represented by
a bit string of length N and can be viewed as a vertex in the N-dimensional
hypercube.

With this model, the “ruggedness” of a fitness landscape can be tuned by
changing the value of K and thus the number of interacting genes per locus.
Low values of K indicate low epistasis and high values of K represent high
epistasis. The two extremes are considered in more detail in the following.

Properties of K = 0 Landscapes

The K = 0 landscapes have the following properties [2]:

There is only one 1-opt local/global optimum
The landscape is smooth; neighboring points (I-opt neighbors) in the
search space are highly correlated. The fitness of 1-opt neighbors can differ
by no more than 4.

e The number of fitter neighbors decreases by one in each iteration of a 1-opt
local search.

e The average number of iterations to reach the optimum is %’— and thus in
O(N).

For the highest value of K, the properties of the fitness landscapes become
quite different.

Properties of K = N — 1 Landscapes

If K = N — 1, the fitness contribution of a gene depends on the values of all
other genes, which results in a highly uncorrelated, rugged fitness landscape.
These landscapes have the following properties {2]:

e The expected number of 1-opt local optima is 13—1:_1

e The expected fraction of fitter 1-opt neighbors dwindles by % after each
iteration of a 1-opt local search

e The expected number of improvement steps to reach a 1-opt local optimum
is in O(log N)

e The expected number of solutions to examine for reaching a 1-opt local
optimum is proportional to NV
The ratio of accepted to tried moves scales as log N/N
Starting from an arbitrary solution, only a small fraction of local optima
(< N'9&z(N—-1)/2) can be reached by a 1-opt local search.



3 The Fitness Landscape of the NK-Model 215

e Only from a small fraction of starting solutions (20082 ¥)*/2)  the global
optimum can be reached by a 1-opt local search.

Furthermore, Kauffman [2] has shown that for increasing N, the fitness values
of the local optima decrease towards % He calls this phenomenon a complezity
catastrophe.

Random vs. Adjacent Neighbor Model

Besides the values for the parameters N and K, the choice of the neighbor
model is important for NK-landscapes, too. Kauffman [2] distinguishes two
variants, the random neighbor model and the adjacent neighbor model. In the
former, the genes which contribute to the fitness at locus ¢ are chosen at
random. In other words, the neighbors ¢; through ix are randomly selected
among the N. In the latter, the i; through i; are the nearest loci to the gene
at locus i.

The landscape properties described above are independent of the neighbor
model. However, Weinberger [13] has shown that the computational complex-
ity of both models differs. He was able to show that the NK decision problem
with adjacent neighbors is solvable in O(2K N) steps and is thus in 7 and that
the NK decision problem with random neighbors is N'P-complete for K > 3.

3.1 Autocorrelation Analysis

To measure of the ruggedness of a fitness landscape, Weinberger [14] sug-
gests the use of (auto)correlation functions. The autocorrelation function p(d)
[15, 14] reflects the fitness correlation of points at distance d in the search
space. Weinberger [16] derived formulas for the autocorrelation function of
NK-landscapes. He found that the autocorrelation function p(d) depends on
the neighbor model of the landscape. In the random neighbor model, the
autocorrelation function becomes

o= (1-5) (1- YVKTl)d (5)

and for the adjacent neighbor model, p becomes

., _dK+1) d < L (N-1-1
p(d) =1 = +N(’J:11)§(K+1 l)( i3 ) (6)

with d denoting the hamming distance between bit vectors.

Alternatively, Weinberger suggested to perform random walks to investi-
gate the correlation structure of a landscape. The random walk correlation
function r(s) [14, 17, 18] of a time series {f(x;)} defines the correlation of
two points s steps away along a random walk through the fitness landscape.



216 Peter Merz

The random walk correlation function for the NK-model has been calculated

by Fontana et al. [19]:
L3
r(s) ~ (1 - %) (7)

for the adjacent and random neighbor model.

If the time series is isotropic, Gaussian and Markovian [14], then the cor-
responding landscape is called AR(1) landscape, and the random walk corre-
lation function is of the form r(s) = 7(1)* = e~*/¢ with £ being the correlation
length of the landscape. Hence, the correlation length £ [18] of the landscape
is defined as

1 1
= — = - 8
()~ n(e(DD ®
for r(1), p(1) # 0. The correlation length directly reflects the ruggedness of a

landscape: the lower the value for £, the more rugged the landscape. In the
N K-model, the correlation length is for adjacent and random neighbors

N
obaws ©)

14

It is not surprising that the correlation length decreases with increasing K.
The formula show that the NK-model allows to produce landscapes with
arbitrary ruggedness. The correlation length can be set to 1 by choosing K =
N — 1 leading to a totally random landscape with uncorrelated neighboring
points. Choosing the other extreme K = 0, the correlation length grows to its
maximum value: N, resulting in a smooth, single peaked landscape.

3.2 Fitness Distance Correlation Analysis

The fitness distance correlation (FDC) coefficient is known to be an important
measure in the context of fitness landscapes, proposed in [20] as a measure for
problem difficulty for genetic algorithms. The FDC coefficient ¢ is defined as

_Cov(fydopt) . 1 1N o
Q(fa dopt) - O'(f) U(dopt) ~ O'(f)O'(d) m Z(fz f)(dl d)7 (10)

g=1

given a set of points z1,%2,...,om With f; = f(x;) denoting the objective
value, d; = dopt(x;) denoting the shortest distance to a global optimum solu-
tion, and ¢(f) and o(d) denoting the standard deviation of f and d, respec-
tively.

In his studies of NK-landscapes, Kauffman [2] investigated the correlation
of fitness and distance to the optimum of local optimum solutions with respect
to 1-opt local search. In this work, the analysis is extended by investigating
fitness distance correlation with respect to the greedy heuristic and k-opt local
search. Experiments were conducted for three selected instances with N fixed



3 The Fitness Landscape of the NK-Model 217

to 1024, K in {2,4,11} and a random neighbor model. Since the optimum
solutions for these instances are not known, the best solutions found with the
MAs described below in long runs (14400 s on a Pentium II 300 MHz PC)
are used instead. These solutions are likely to be the global optima or at least
close to the global optima with respect to fitness and distance.

In the first experiment, the distribution of greedy solutions in the search
space is investigated. The results of the analysis are summarized in Table 1.
In the first column, the name of the instance is displayed, and in the second

Table 1. Results of the Fitness Distance Analysis of Greedy Solutions.

Instance N K mind,pt dopt dgr Ny, [/
C2-1024 1024 2 130 220.62 (0.22) 195.03 2500 -0.62
D4-1024 1024 4 264 372.29 (0.36) 377.38 2500 -0.24
B11-1024 1024 11 458 515.74 (0.50) 469.35 2500 -0.01

and third column the parameters NV and K are given. In columns four through
eight, the minimum distance of the greedy solutions to the expected global
optimum (mind,y), the average distance of greedy solutions to the global
optimum (dopt), the average distance between the greedy solutions (d,), the
number of distinct greedy solutions (N,,) out of 2500, and the fitness dis-
tance correlation coefficient (g) are provided, respectively. Additionally, the
normalized average distance, i.e. the average distance of the local optima to
the global optimum divided by the maximum distance in the search space IV
is shown in column five in parentheses.

For small K, the greedy solutions are close to each other and close to the
best known solution. There is a correlation between fitness and distance to
the best known solution as the value p indicates. About three quarters of the
gene values are equal in all greedy solutions for K = 2 and thus the solutions
are contained in a small fraction of the search space. With increasing K,
average distance between the greedy solutions quickly converges to the average
distance (N/2) of the solutions in the search space. Surprisingly, already at
K = 11 there is no correlation between greedy solutions and they have random
distribution in the search space as expected for large values of K.

In the second experiment, the correlation of fitness and distance to the best
known solution of k-opt solutions was investigated. The results are shown in
Table 2. Again, in the first column, the name of the instance is displayed,
and in the second and third column the parameters N and K are given. In
columns four through eight, the minimum distance of the locally optimal so-
lutions to the expected global optimum (min d,; ), the average distance of the
local optima to the global optimum (dopt), the average distance between the
local optima, (djo.), the number of distinct local optima (Ng—opt) out of 2500,
and the fitness distance correlation coefficient (g) are provided, respectively.
Additionally, the normalized average distance, i.e. the average distance of the



218 Peter Merz

Table 2. Fitness Distance Correlation Analysis of k-opt Solutions.

Instance N K mindep Eopt dioc Ni_opt 0
C2-1024 1024 2 191 301.47 (0.29) 346.16 2500 -0.65
D4-1024 1024 4 347 440.57 (0.43) 470.36 2500 -0.33
B11-1024 1024 11 459 511.88 (0.50) 511.72 2500 0.02

local optima to the global optimum divided by the maximum distance in the
search space N is shown in column five in parentheses. Similarly as for the
greedy heuristic, the average distance between the local optima and the av-
erage distance to the best known solution increases quickly with increasing
K. At K = 11 there is no correlation between fitness and distance, and the
distribution is similar to a uniform distribution of random points in the search
space. There is slightly higher correlation in case of k-opt in comparison to
1-opt in case of the K = 2,4 landscapes. However, greedy solutions have even
a shorter minimum and average distance to the best known solution than
k-opt solutions. In addition to Tables 1 and 2, fitness distance plots for the
three instances are shown in Figure 2. On the left, the scatter plots for 2500
greedy solutions are provided, and on the right the scatter plots for 2500 k-opt
solutions are displayed. For K = 2, the orientation of the points towards the
origin is obvious. The cloud of points “moves” with increasing K quickly to
the middle of the plane losing the orientation to the origin and thus to the
optimum. These results correspond to the findings of Kauffman [2] for 1-opt
local search. He further observed that for instances of the adjacent neighbor
model the correlation of fitness and distances decreases not as rapidly as for
the random neighbor model with increasing K.

From the perspective of performance prediction of MAs, the analysis pro-
vides some useful information. For small K (< 5) , recombination-based
memetic algorithms are expected to have a good performance since with
recombination the fitness distance correlation of the local optima can be ex-
ploited: With increasing fitness, the local optima are closer together, and their
distance to the optimum becomes smaller. Furthermore, the locally optimal
solutions are found in a small region of the search space in which the global
optimum has a more or less central position. The greedy heuristic is very well
suited for these instances with low epistasis and it is therefore promising to
include the heuristic in the initialization phase of the population as well as
in the recombination step. For larger K, the effectiveness of recombination
decreases and eventually mutation based MAs are better suited.

3.3 Alternative Distance Measures

The fitness distance correlation analysis requires a feasible distance measure
for the search space. In case of bit-strings, the hamming distance appears to



3 The Fitness Landscape of the NK-Model 219

C2-1024 C2-1024
0.025 0.04
5 5 0.035
] | 3
g 0.02 § 0.03
g 0.015 g 0.025
g £ 0.02
g 001 g 0015
@ [
£ 0005 g oo
ic L 0.005
0 - - 0 )
[ 200 400 600 800 1000 0 200 400 600 800 1000
Distance to optimum dgp, Distance to optimum dg,
D4-1024 D4-1024
0.05 - 0.07
~ 0.045 e - |
o 004 . 3 006
g 0035 b 4 g 005
g 003 - 5 0.04
£ 0025 TR £
@ 002 ) T 003
g 060(1) ? g 002
ic 0.605 ic 0.01
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Distance to optimum dg Distance to optimum dgg,
B11-1024 B11-1024
0.06 0.05
- o « 0.045 .
3 0.05 3 g 0.04 P ]
g 04 3 2 0035
2 ’ £ g 003
% 0.03 . % 0.025
0.02
g o002 8 o015
£ £ 0.01
= 001 it
'-'- % 0.005
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Distance to optimunt dyg, Distance to optimum d

Fig. 2. Fitness-Distance Plots of Greedy Solutions (left) and k-opt Solutions (right)

be a natural choice. However, the hamming distance does not reflect exactly
how a k-opt local search “sees” the landscape. Alternatively, an edit distance
may be considered which counts the changes required for a k-opt local search
to convert one solution to the other. However, a problem arises with such
an approach, since the k-opt local search is not capable of converting all
solutions into all other solutions. Besides the fact that only better solutions
are produced by a k-opt, per definition not all better solutions are found by
the local search. The hamming distance is a lower bound of the number of
steps (flips) required for a k-opt local search to convert a solution to another
assuming that it can. Essentially, a 1-opt local search and a k-opt local search
are based on single flips, only the acceptance criterion is different in k-opt.
Note, that the k-opt local search discussed in this paper considers only a



220 Peter Merz

sequence of order one flips, not, for example, all pairs of order two flips (as
would be in a true 2-opt local search). Finally, the FDC analysis may provide
hints how the evolutionary part of a MA “sees” the landscape. Here, the
hamming distance appears still to be a suitable choice, since properties like
respectfulness and assortedness [21, 22] can be described with this distance
measure.

4 Memetic Algorithms for NK Landscapes

Memetic algorithms have been applied with great success to several combi-
natorial optimization problems. In this paper, we focus on a class of memetic
algorithms that uses a simple evolutionary framework with a single panmictic
population instead of spatially structured populations [23], or tree-structured
populations [24]. Furthermore, we concentrate on using a single local search
strategy in contrast to the self-adaptation of the local search strategy [25].
The framework is thus rather simple and derived from other evolutionary
algorithms, with the only difference that after initialization and after recom-
bination or mutation, a local search procedure is applied to assure that all
individuals in the population are local optima. This simple framework has
been successfully used in studies for several combinatorial problems, including
the graph bipartitioning problem [26], the quadratic assignment problem [27],
the traveling salesman problem [28], and the binary quadratic programming
problem [29].

The application of MAs to NK-landscapes is straightforward. Since prob-
lems of the NK-model are binary-coded, all GA variation operators such as
k-point crossover and bit-flip mutation for bit strings can be used in a MA. As
shown in [30], genetic algorithms do not scale well with problem size N. They
perform much worse than memetic algorithms for a problem size N > 512.
Therefore, we concentrate in the following on the hardest landscapes from the
studies in [30] with N = 1024 and varying K.

4.1 Population Initialization and Local Search

The population can be initialized by randomly generating bit strings and by
subsequently applying local search. For low values of K, the use of the random-
ized greedy heuristic described above can be used alternatively in combination
with local search. Suitable local search algorithms are 1-opt local search and
k-opt local search as described above.

4.2 Evolutionary Variation Operators

Due to the binary coding of the problem, all operators on binary strings can be
applied in an evolutionary algorithm and therefore in a memetic algorithm,
such as single point or two-point crossover, uniform crossover and bit flip
mutation operators.



5 Performance Evaluation 221
Recombination

A variant of uniform crossover (UX) that is used in the CHC algorithm of
Eshelman [31] is an alternative to the crossover operators noted above. The
operator creates (with high probability) offspring that have a maximum Ham-
ming distance to the parents which is half of the distance between the parents
themselves. The operator is called denoted HUX in the following.

Alternatively, the greedy construction scheme can be used in recombina-
tion to produce offspring. A greedy recombination operator denoted GX is
therefore devised that works by first inheriting all the gene values that are
common to the two parents to retain respectful recombination [22]. Then
the remaining loci are set making greedy choices as in the greedy heuristic
described above. This operator is especially effective for problems with low
epistasis.

Mutation

Simple bit flip mutation is not useful in a memetic algorithm, since the flipping
of a single bit will be reversed by a subsequently performed local search with
a high probability. Hence more than one bit must be flipped simultaneously
in the parent solution. If p bits are flipped by the mutation operator, the
Hamming distance of the resulting offspring and the original parent solution
becomes p. The value of p should be chosen to minimize the probability that
the subsequent local search rediscovers the unmutated solution.

4.3 Selection and Restarts

Selection for reproduction is performed on a purely random basis without bias
to fitter individuals, while selection for survival is achieved by choosing the
best individuals from the pool of parents and children. Thus, replacement in
our algorithm is similar to the selection in the (x + A)-ES [32]. Additionally,
duplicates will be replaced by other solutions, so that each phenotype exists
only once in the new population.

In order to circumvent the problem of premature convergence, cataclysmic
mutations [31] are performed when the population has converged. The muta-
tion operator is applied to all but the best individual in the population, where
p is determined by a third of the average Hamming distance between the indi-
viduals in the initial population. This value for p exhibited good performance
in several experiments.

5 Performance Evaluation

We studied the performance of the memetic algorithms described above in
several experiments. The results are discussed in the following starting with



222 Peter Merz

an evaluation of the components, namely the greedy and local search heuris-
tics. All experiments were performed on a Pentium II PC (300 MHz). The
algorithms were implemented in C++.

5.1 Variable k-opt Local Search Variants

Running time and solution quality of the k-opt local search highly depend
on the termination criterion of the inner loop, in other words, the maximum
number of steps (search depth) considered in each iteration.

In order to investigate the influence of the search depth termination cri-
terion we tested three variants of the local search procedure in Fig. 1. The
full k-opt variant is exactly as shown in the figure, with mazsteps set to V.
In the fast variant, the inner loop is terminated if there was no new s for
more than m = 40 steps and the number of mazsteps was set to N/2. Finally,
a simple tabu search variant was considered. In this variant the inner loop is
terminated as soon as a better solution has been found. It is essentially a
tabu search with a memory of NV solutions and no aspiration criterion. The
results of the comparison is displayed in Table 3. In the table, the percentage

Table 3. Comparison of k-opt Local Search Variants

Instance Fast k-opt Full k-opt Tabu k-opt

C2-1024 3.322% 1.0 3.263% 3.1 3.708% 204
D4-1024 4918% 1.0 4.810% 2.7 5.614% 10.3
B11-1024 3.697% 1.0 3.571% 2.7 4.427% 2.5

deviation from the best known solution as well as the relative performance
in respect to the fast variant are provided (larger values denote higher run
times). As the figures suggest, the full variant is approximately 3 up to 5 times
slower than the fast variant with only slightly better average objective values.
Hence, the extra running time for the full variant appears not to be justified.
The tabu search variant is much slower (up to 20 times) than the fast variant
and also clearly inferior in average solution quality. Therefore, the fast variant
is used in all remaining experiments.

An interesting issue is how the dynamics of a k-opt local search change if
the landscapes become more rugged: The number of K and the search depth of
the k-opt local search may be related. To investigate this issue the local search
variants were compared in respect to the average number of steps per iteration
and the number of iterations required to find a local optimum. The findings
are summarized in Fig. 3 and Fig. 4. In the left plot of Fig. 3, the average
number of flips performed in each iteration of the fast variant are displayed.
As can be seen, the number of flips is initially very high and slightly less
than N/2 for K = 2. Not surprisingly, the number is much lower for K = 11
due to the rapidly decreasing (auto-)correlation function of the landscape. As



5 Performance Evaluation 223

K= 2 —— K='2 —
Ke 4 e K= 4 oo
165 | Etre— Kz revmermen
(=
S
g
£
2 €
= 2
a 5
)
[
[+
1) 7 8 0 12 14 18
iteration iteration

Fig. 3. k-opt Local Search Statistics for the Fast k-opt Variant

shown in the right of the figure, the number of iterations to reach a local
optimum is very low (below 14 iterations), and increases with K. In the tabu

7. 1
380 - o pp—
2718 \ [ 09
% 0.8
1.000 p c
S 07
©
z 0.368 E 0.6
% 0.135 & 05
2 B 04
0.050 8§ s
0.018 a =
. 0.2
0.007 o1
0.002 0 -
20 40 60 80 100 120 140 0 200 400 600 800 1000
flips iteration

Fig. 4. k-opt Local Search Statistics for the Tabu k-opt Variant

search variant the expected number of iterations is much higher since flips
are performed immediately, when an improving flip is found. The probability
of termination is provided in the right plot of Fig. 4. Up to 800 iterations
are required for N = 1024. The plot in the left hand side of the figure shows
the frequency of k-flips depending on k on a logarithmic scale. Again, the
frequencies of the K = 11 landscape are lower than those of the other two
landscapes with K = 2 and K = 4, and the frequencies decrease exponentially.
These results indicate that the optimum number of k£ (the search depth) in
a k-opt local search should be dynamically chosen and not to be fixed in
advance. In MAs where this parameter is adapted, it should be ensured that
the parameter can be adjusted fast enough to meet the requirements at the
current state of the search.

5.2 Greedy and Local Search

To investigate the relative performance of the greedy heuristic and the k-opt
local search, experiments were conducted in which the two together with the



224 Peter Merz

1-opt local search were applied to the three landscapes with N = 1024 used in
the analysis above. The results are shown in Table 4. In the table, the average

Table 4. Performance of the Greedy Heuristic, 1-opt and k-opt Local Search.

Greedy 1-opt LS k-opt LS

Instance fitness t/ms fitness t/ms fitness t/ms

C2-1024 0.7326 (2.33%)  76.9 0.7135 (4.88%) 19.7 0.7251 (3.32%) 52.3
D4-1024  0.7563 (4.34%) 173.2 0.7237 (8.47%) 28.4 0.7515 (4.94%) 114.8
B11-1024 0.7262 (5.56%) 22120 0.7094 (7.74%) 112.5 0.7403 (3.72%) 677.3

performance (fitness and average percentage excess in parentheses) and the
average running time (t/ms) in milliseconds of a single run, is shown for the
greedy heuristic and 1-opt and k-opt local search applied to randomly gener-
ated solutions. The values are averaged over 10000 runs except for the greedy
heuristic and the problem instance B11-1024: Due to the long running time,
1000 runs were performed instead of 10000. The values given in parentheses
denote the deviation from the best known solution in percent.

For K = 2 and K = 4, the greedy heuristic outperforms the local searches
but requires more CPU time. For K = 11, the k-opt local search dominates
over the two others. The CPU time required for a run of the greedy algorithm
exceeds 22 seconds and is thus more than 32 times higher than for k-opt local
search rendering the greedy heuristic impractical for such relative large K. For
K = 2, the greedy heuristic is furthermore capable of producing comparable
results to a GA in a single run and thus in 173 milliseconds, where the GA
requires 1200 seconds [30]. Also for K = 4 and K = 11, the GAs in [30] are
outperformed by the greedy heuristic and the k-opt local search in a single run,
demonstrating even more drastically the inferior performance of traditional
GAs on relatively large instances.

5.3 Memetic Algorithms with k-opt Local Search

To assess the performance of memetic algorithms with k-opt, additional ex-
periments have been conducted. With the same time limit (1200 seconds) as
chosen for the comparison of genetic algorithms with MAs in [30], the MAs
with k-opt local search were applied to the three instances of size 1024. With
a population size of 40, the production of 20 new offspring per generation, and
restarts enabled as in [30], the MA were run with three different variation op-
erators. The first MA uses the greedy heuristic in the initialization phase and
the greedy recombination operator (GX). The second MA uses HUX as the
recombination operator and the third MA uses the mutation operator (MUT)
described above with p = 3. The results of the experiments are summarized
in Table 5. For each algorithm, the average number of generations (gen) pro-



6 Conclusions 225

Table 5. Performance of k-opt Local Search MAs with three types of variation.

C2-1024 D4-1024 B11-1024
Op gen fitness, quality gen fitness, quality gen  fitness, quality
GX 12505 0.750002, 0.01% 5750 0.787570, 0.39%
HUX 11954 0.750009, 0.01% 5730 0.786874, 0.48% 216 0.753565, 1.99%
MUT 6402 0.744757, 0.71% 4306 0.772776, 2.26% 704 0.755747, 1.71%
HUX1 12615 0.748230, 0.25% 4540 0.783665, 0.89% 105 0.732874, 4.91%
Best 0.750065, 0.00% 0.790640, 0.00% 0.768882, 0.00%

duced is provided as well as the average fitness (fitness) of the final solution
along with the percentage excess over the best known solution (quality). The
results of the MA with 1-opt local search and HUX recombination (denoted
HUX1) from [30] are included for easy comparison. Due to the long running
times for the greedy heuristic on B11-1024, the MA with GX was not tested
on this landscape.

For K = 2, the MA with greedy recombination and HUX recombination
perform equally well. Both find the best known solution in one out of 20
runs and have the same worst result. For K = 4 and K = 11, the greedy
recombination MA outperforms the others. The mutation based MA is as
expected the worst out of the three for K = 2 and K = 4. For K = 11,
the mutation based MA achieves a better average result than the MA with
HUX. The same tendency appeared in the results of the MAs with 1-opt
local search [30]: for the unstructured landscape with K = 11, recombination
has no benefit compared to mutation. The recombination based MAs with
k-opt local search perform clearly better than the algorithms with 1-opt local
search in [30]. In particular new best solutions have been found for the three
landscapes. Summarizing, the k-opt MAs have a higher potential and perform
better if longer running times are chosen.

6 Conclusions

NK-landscapes have been introduced as a formal model of gene interaction in
biological evolution, and since they are random, several statistical properties
of the landscapes are known. To derive highly effective memetic algorithms
for the NK-model, two new heuristics have been proposed, a greedy algo-
rithm and a k-opt local search. The distribution of the solutions produced by
these heuristics has been analyzed by performing a fitness distance correla-
tion analysis on selected instances. The results allow to predict when greedy
choices based on the greedy heuristic are favorable in a memetic framework
and when not. Additionally, investigating the distribution of local optima in
the landscapes allows to determine whether or not recombination is effective.



226 Peter Merz

The greedy heuristic incorporated in the initialization phase as well as
in the recombination operator of a MA with k-opt local search is shown to
be highly effective for landscapes with low epistasis. The landscape analysis
has shown that with increasing epistasis, the landscape becomes rapidly un-
structured. Thus, for these instances, a k-opt local search MA with mutation
instead of recombination has been shown to be favorable.

Moreover, the memetic algorithms with k-opt local search are shown to
outperform previously proposed memetic algorithms with 1-opt local search:
new best solutions have been found with the former for three landscapes.

There are several issues for future research. Firstly, the algorithms and
landscape studies should be extended to cover other random search landscapes
[6, 7]. Secondly, random walk correlation analysis may be applied on paths
between local optima in the spirit of path relinking [33] to gain more insight in
the effectiveness of recombination in memetic algorithm frameworks. Finally,
the potentials of the algorithms described in the paper have to be investigated
in other application domains of practical interest.

References

1. Kauffman, S.A.: Emergent Properties in Random Complex Automata. Physica
D 10 (1984)

2. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evo-
lution. Oxford University Press (1993)

3. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Mar-
tial Arts: Towards Memetic Algorithms. Technical Report C3P Report 826,
Caltech Concurrent Computation Program, California Institue of Technology
(1989)

4. Moscato, P.: Memetic Algorithms: A Short Introduction. In Corne, D., Dorigo,
M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London (1999)
219-234

5. Merz, P.: Memetic Algorithms for Combinatorial Optimization Problems: Fit-
ness Landscapes and Effective Search Strategies. PhD thesis, Department of
Electrical Engineering and Computer Science, University of Siegen, Germany
(2000)

6. Smith, R.E., Smith, J.E.: An Examination of Tuneable, Random Search Land-
scapes. In Banzhaf, W., Reeves, C., eds.: Foundations of Genetic Algorithms 5.
Morgan Kaufmann, San Francisco, CA (1999) 165-181

7. Smith, R.E., Smith, J.E.: New Methods for Tunable, Random Landscapes.
In Martin, W.N., Spears, W.M., eds.: Foundations of Genetic Algorithms 6.
Morgan Kaufmann, San Francisco (2001) 47-67

8. Laughunn, D.J.: Quadratic Binary Programming. Operations Research 14
(1970) 454-461

9. Merz, P., Freisleben, B.: Greedy and Local Search Heuristics for Unconstrained
Binary Quadratic Programming. Journal of Heuristics 8 (2002) 197-213

10. Lin, S., Kernighan, B.: An Effective Heuristic Algorithm for the Traveling
Salesman Problem. Operations Research 21 (1973) 498-516



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

References 227

Kernighan, B., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs.
Bell Systems Journal 49 (1972) 291-307

Kauffman, S.A., Levin, S.: Towards a General Theory of Adaptive Walks on
Rugged Landscapes. Journal of Theoretical Biology 128 (1987) 11-45
Weinberger, E.D.: NP Completeness of Kauffman’s N-k Model, A Tuneable
Rugged Fitness Landscape. Technical Report 96-02-003, Santa Fe Institute,
Santa Fe, New Mexico (1996)

Weinberger, E.D.: Correlated and Uncorrelated Fitness Landscapes and How
to Tell the Difference. Biological Cybernetics 63 (1990) 325-336

Stadler, P.F.: Correlation in Landscapes of Combinatorial Optimization Prob-
lems. Europhysics Letters 20 (1992) 479-482

Weinberger, E.D.: Local Properties of Kauffman’s N-k model: A Tunably
Rugged Energy Landscape. Physical Review A 44 (1991) 6399-6413

Stadler, P.F.: Towards a Theory of Landscapes. In Lopéz-Peiia, R., Capovilla,
R., Garcia-Pelayo, R., Waelbroeck, H., Zertuche, F., eds.: Complex Systems and
Binary Networks. Volume 461 of Lecture Notes in Physics., Berlin, New York,
Springer Verlag (1995) 77-163

Stadler, P.F.: Landscapes and their Correlation Functions. Joural of Mathe-
matical Chemistry 20 (1996) 1-45

Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker,
I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.. RNA Folding
Landscapes and Combinatory Landscapes. Physcal Review E 47 (1993) 2083
2099

Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem
Difficulty for Genetic Algorithms. In Eshelman, L.J., ed.: Proceedings of the
6th International Conference on Genetic Algorithms, Morgan Kaufmann (1995)
184-192

Radcliffe, N., Surry, P.: Formal Memetic Algorithms. In Fogarty, T., ed.: Evolu-
tionary Computing: AISB Workshop. Volume 865 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (1994) 1-16

Radcliffe, N., Surry, P.: Fitness Variance of Formae and Performance Predic-
tion. In Whitley, L., Vose, M., eds.: Proceedings of the Third Workshop on
Foundations of Genetic Algorithms, San Francisco, Morgan Kaufmann (1994)
51-72

Gorges-Schleuter, M.: ASPARAGOS: An Asynchronous Parallel Genetic Opti-
mization Strategy. In Schaffer, J.D., ed.: Proceedings of the Third International
Conference on Genetic Algorithms, Morgan Kaufmann (1989) 422-427
Moscato, P., Tinetti, F.: Blending Heuristics with a Population-based Approach:
A Memetic Algorithm for the Traveling Salesman Problem. Technical Report
CeTAD, CeTAD, Universitad Nacional de La Plata (1994)

Krasnogor, N., Smith, J.: Emergence of profitable search strategies based on
a simple inheritance mechanism. In Lee Spector et al., ed.: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001), San
Francisco, California, USA, Morgan Kaufmann (2001) 432-439

Merz, P., Freisleben, B.: Fitness Landscapes, Memetic Algorithms and Greedy
Operators for Graph Bi-Partitioning. Evolutionary Computation 8 (2000) 61-91
Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms
for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary
Computation 4 (2000) 337-352



228 Peter Merz

28. Merz, P., Freisleben, B.: Memetic Algorithms for the Traveling Salesman Prob-
lem. Complex Systems 13 (2001) 297-345

29. Merz, P., Katayama, K.: Memetic Algorithms for the Unconstrained Binary
Quadratic Programming Problem. Bio Systems (2002) To appear.

30. Merz, P., Freisleben, B.: On the Effectiveness of Evolutionary Search in High-
Dimensional NK-Landscapes. In Fogel, D., ed.: Proceedings of the 1998 IEEE
International Conference on Evolutionary Computation, Piscataway, NJ, IEEE
Press (1998) 741-745

31. Eshelman, L.: The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination. In Rawlings, G.J.E.,
ed.: Foundations of Genetic Algorithms. Morgan Kaufmann (1991) 265-283

32. Schwefel, H.P.: Numerische Optimierung von Computer—-Modellen mittels
der Evolutionsstrategie. Volume 26 of Interdisciplinary Systems Research.
Birkhauser Verlag, Basel (1977)

33. Glover, F.: Scatter Search and Path Relinking. In Corne, D., Dorigo, M., Glover,
F., eds.: New Ideas in Optimization. McGraw-Hill, London (1999) 297-316



Self-Assembling of Local Searchers in Memetic
Algorithms

Natalio Krasnogor and Steven Gustafson

Automatic Scheduling, Optimisation and Planning Group
School of Computer Science and IT

University of Nottingham, U.K.
http:\\www.cs.nott.ac.uk/"{nxk, smg}
{Natalio.Krasnogor,Steven.Gustafson}@nottingham.ac.uk

Summary. In this chapter we concentrate on one particular class of Global-Local
Search Hybrids, Memetic Algorithms (MAs), and we describe the implementation
of “self-assembling” mechanisms to produce the local searches the MA uses. To un-
derstand the context in which self-assembling is applied we discuss some important
aspects of Memetic theory and how these concepts could be harnessed to implement
more competitive MAs. Our implementation is tested in two problems, Maximum
Contact Map Overlap Problem (MAX-CMO) and the NK-Landscape Problems.
Three lessons can be drawn from this paper:

e Memetic theory provides a rich set of metaphors and insights that can be har-
nessed within optimisation algorithms as to provide better search methods.

e The optimization of solutions can be done simultaneously with the self-
assembling of local search strategies which can then be exploited by the Memetic
Algorithm (or other metaheuristic)

e Local search strategies that are evolved to supply building blocks can greatly
improve the quality of the search obtained by the Memetic Algorithm and do not
seem to suffer from premature convergence {an ubiquitous problem for global-
local hybrids).

1 Introduction

A vast number of very successful applications of Memetic algorithms (MAs)
have been reported in the literature in the last years for a wide range of
problem domains. The majority of the papers dealing with MAs are the result
of the combination of highly specialized pre-existing local searchers and
usually purpose-specific genetic operators. Moreover, those algorithms require
a considerable effort devoted to the tuning of the local search and evolutionary
parts of the algorithm.

In [23] and [25] we propose the so called “Self-Generating Metaheuris-
tics”. Self-Generating Metaheuristics can create on-the-fly the type of opera-
tors needed to successfully perform certain task. The self-generation concept



230 Krasnogor and Gustafson

can be applied to any existing metaheuristic like simulated annealing, tabu
search, etc. In the case of Memetic Algorithms, self-Generation implies that
the MAs are able to self-assemble their own local searchers and to co-evolve
the behaviors it needs to successfully solve a given problem. In Self-Generating
Memetic Algorithms two evolutionary processes occur. On one hand evolution
takes place at the chromosome level as in any other Evolutionary Algorithm;
chromosomes and genes represent solutions and features of the problem one
is trying to solve. On the other hand, evolution also happens at the memetic
level. That is, the behaviors and strategies that individuals (also called agents)
use to alter the survival value of their chromosomes are self-assembled from a,
set of components by means of, for example, an evolutionary process. As the
self-assembeld memes (i.e. local search strategies) are propagated, mutated
and are selected in a Darwinian sense, the Self-Generating MAs we propose
are closer to Dawkins concept of memes than the previous works on memetic
algorithms (e.g. [14],[33],[34],[4]). Additionally, they seem to be more robust
and scalable than their single local searchers counterpart.

In this chapter we will review some important ideas arising from Memetic
theory and we will describe the implementation we have choosen for the pro-
posed algorithms. Results on the use of the Self-Assembling of local searchers
for MAs are reported and future lines of research discussed.

2 The Memetic Metaphor

Memetic algorithms are not the first kind of algorithms to draw inspiration
from natural phenomena. In this case the inspiration came from memetic
theory. However, unlike Simulate annealing, Ant Colony optimization, GAs,
etc., scholars working on MAs, as will be argued later, departed considerably
from the metaphor and ignored its main features.

The common use of the term “memetic algorithm” refers to an evolution-
ary algorithm that employs as a distinctive part of its main evolutionary cycle
(mutation, crossover and selection), a local search stage.

The name “memetic algorithm” is a very contested label that stirs crit-
ics and controversies among researchers and practitioners who usually adopt
names such as lamarckian GAs, genetic local search, hybrid GAs, etc. Al-
though very justificable in the large mayority of cases, these names obscure
the fact that there is a large body of literature on memetic theory that is
being neglected. We would like to argue in this section that if we were to put
back the “memetic” into memetic algorithms then progress could be made
with a new breed of algorithms that are more atune to the name “memetic
algorithms”.

Memetic theory started as such with the definition given by R. Dawkins
of a meme in [11]!:

! The definition was later refined in [12]



2 The Memetic Metaphor 231

I think that a new kind of replicator has recently emerged on this
very planet. It is staring us in the face. It is still in its infancy, still
drifting clumsily about in its primeval soup, but already it is achieving
evolutionary change at a rate that leaves the old gene panting far
behind. The new soup is the soup of human culture. We need a name
for the new replicator, a noun that conveys the idea of a unit of cultural
transmission, or a unit of imitation. “Mimeme” comes from a suitable
Greek root, but I want a monosyllable that sounds a bit like “gene”.
I hope my classicist friends will forgive me if I abbreviate mimeme
to meme.(2) If it is any consolation, it could alternatively be thought
of as being related to “memory”, or to the French word “méme”. It
should be pronounced to rhyme with “cream”. Examples of memes
are tunes, ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches. Just as genes propagate themselves in the gene
pool by leaping from body to body via sperms or eggs, so memes
propagate themselves in the meme pool by leaping from brain to brain
via a process which, in the broad sense, can be called imitation.

Many other researchers and philosophers “flirted” with the idea that cul-
tural phenomena can somehow be explained in evolutionary terms even before
Dawkins’ introduction of a meme. Other symbols were introduced to refer to
the elementary unit of cultural change and/or transmission (e.g., m-culture
and i-culture [7], culture-type [42], etc.). See [13] for a comprehensive analy-
sis. The merit of Dawkins contribution can be attributed to his insight into
correctly assigning a new signifier, i.e., a label or symbol, to the thing being
signified, i.e., the unit of cultural transmission. The term meme was a new
word hence it was not loaded with preconceptions and misconceptions. From
the computer sciences perspective it was appealing because it defined that
concept as a discrete structure which can be easily harnessed in a computer
program.

The fundamental innovation of memetic theory is the recognition that a
dual system of inheritance, by means of the existence of two distinct repli-
cators, mould human culture. Moreover, these two replicators interact and
co-evolve shaping each other’s environment. As a consequence evolutionary
changes at the gene level are expected to influence the second replicator, the
memes. Symmetrically, evolutionary changes in the meme pool can have con-
sequences for the genes.

2.1 Memetic Theory in Evolutionary Computation

In any of the major evolutionary computation paradigms, e.g., GAs, Evolution
Programs, Evolutionary Strategies, GPs, etc, the computation cycle shown in
graph 1 takes place.



232 Krasnogor and Gustafson

Ta Ta
= P1® P2

Y

P2

Ta Ta

YA Tb NG
¢ [~ C > Gr G2

Y

G2

Fig. 1. Evolutionary genetic cycle.

In graph ? 1 a hypothetical population of individuals is represented at two
different points in time, generation 1 (G1) and at a later generation (G2). In
the lower line, G; for ¢ = 1,2 represents the distribution of genotypes in the
population. In the upper line, P; represents the distribution of phenotypes at
the given time. Transformations T4 account for epigenetic phenomena, e.g.,
interactions with the environment, in-migration and out-migrations, individ-
ual development, etc., all of them affecting the distribution of phenotypes and
producing a change in the distribution of genotypes during this generation.
On the other hand transformations Ts account for the Mendelian principles
that govern genetic inheritance and transforms a distribution of genotypes G}
into another one G2. Evolutionary computation endeavors concentrate on the
study and assessment of many different ways the cycle depicted in 1 can be
implemented. This evolutionary cycle implicitly assumes the existence of only
one replicator: genes.

On the other hand what memetic algorithmicists should somehow inves-
tigate, if they were more faithful to the natural phenomena that inspired
the methodology, is the implementation of a more general and complex dual
evolutionary cycle where two replicators co-exist. This is shown in 23.

In the context of memetic algorithms, memes represent instructions to self-
improve. That is, memes specify sets of rules, programs, heuristics, strategies,
behaviors, etc, individuals can use in order to improve their own fitnesses
under certain metric.

As we mentioned earlier, the fundamental difference between the later
graph and the former resides in the fact that graph 2 reflects a coevolu-
tionary system where two replicators of a different nature interact. Moreover
the interactions between genes and memes are indirect and mediated by the
common carrier of both: individuals. A truly memetic system should not be
confused with other coevolutionary approaches where different “species”, sub-
populations or just different individuals interact by ways of a combination of
cooperation, competition, parasitism, symbiosis, etc. In coevolutionary ap-
proaches like those described by [19],[36],{37],38],[39],[40] and others, only

% This graph is adapted from [13] page 114.
3 This graph is adapted from [13] page 186.



2 The Memetic Metaphor 233

pany| M
Mi M2 > M3
T Td Te Td
PI = by 173 A L
Ta Ta
A A
Ta Ta
Ta Ta

Y \i

Y

NG Tb NG
——————— , o2 .
Gt > G G2 Gr

Fig. 2. Coevolutionary memetic-genetic cycle.

Mendelian transformations are allowed and sometimes in-migration and out-
migration operators are also included. In a memetic system, memes can poten-
tially change and evolve using rules and time scales other than the traditional
genetic ones. In the words of Feldman and Cavalli-Sforza[6] memetic evolution
is driven by:

...the balance of several evolutionary forces: (1) mutation, which
is both purposive (innovation) and random (copy error); (2) transmi-
sion, which is not as inert as in biology [i.e., conveyance may also be
horizontal and oblique]; (3) cultural drift (sampling fluctuations); (4)
cultural selection) (decisions by individuals); and (5) natural selection
(the consequences at the level of Darwinian fitness) ...

In graph 2 we have the same set of transformations as before between genes
and phenotypes, but also meme-phenotypes and memes-memes relations are
shown. There are mainly two transformations for memes that are depicted,
Te and Tp. Transformations T¢ represents the various ways in which “cul-
tural” instructions can re-shape phenotypes distributions, e.g., individuals
learn, adopt or imitate certain memes or modify other memes. Tp, on the
other hand, reflects the changes in memetic distribution that can be expected
from changes in phenotypic distributions, e.g., those attributed to teaching,
preaching, etc.

Memetic Algorithms as they were used so far failed completely, or almost
completely, to implement this dual inheritance system to any degree, except
for the works initiated with [22],[23] and continued with [25],[45],[24],[26].
Consequently, it is not surprising that researchers hesitate to call a GA (or
other evolutionary approach) that uses local search a memetic algorithm.



234 Krasnogor and Gustafson
2.2 Memes Self-Assembling

In [23],[25],[45],[24] it was proposed and demonstrated that the concept of
Self-Generating Memetic algorithms can be implemented and, at least for the
domains considered in those papers, beneficial. In the context of SGMAs,
memes specify sets of rules, programs, heuristics, strategies, behaviors, or
move operators the individuals in the population can use in order to improve
their own fitnesses (under a given metric). Moreover the interactions between
genes and memes are indirect and mediated by the common car