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11.1 Introduction

Stochastic optimal growth involves the study of optimal intertemporal alloca-
tion of capital and consumption in an economy where production is subject to
random disturbances. The theory traces its roots to the seminal work on de-
terministic optimal growth by Ramsey [108], Cass [21] and Koopmans [56]. Its
influence has been enhanced by research that shows how the convex stochastic
growth model can be decentralized to represent the behavior of consumers and
firms in a dynamic competitive equilibrium of a productive economy ([104],
[117], [15]). This makes the stochastic optimal growth model useful both as
a normative exercise and in the development of positive theories of how the
economy works. As a consequence, the theory has emerged as one of the cen-
tral paradigms of dynamic economics. It is based on a simple, yet powerful
model that encompasses fundamental questions that are basic to any theory
of dynamic economic behavior: What are the characteristics and determinants
of optimal policies? What are the economic incentives that govern the optimal
intertemporal allocation of resources? What is the transient and long run be-
havior of variables in the model? Under different assumptions the model admits
a rich set of answers to these questions.

Historically, the main focal point of the theory has been issues of aggregate
economic growth. At the same time its primary variable, capital, has a flexible
interpretation that allows the model and its extensions to represent a wide va-
riety of economic problems ranging from the study of business cycles ([60], [64])
and asset pricing ([14], [15]) to the allocation of renewable natural resources
([78], [83], [84]). Equally important, the model provides a strong theoretical
foundation for applied analysis of these problems. The model can be solved
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numerically and has proved a testing ground for many numerical techniques
used today in the analysis of dynamic economic problems.

This chapter provides an overview of key results in the theory of discounted
stochastic optimal growth in discrete time.1 The paper begins with an analy-
sis of the classical stochastic growth model of Brock and Mirman [18] for a
one-sector economy with a convex technology and utility that depends only
on consumption.2 We then consider extensions of the theory to problems with
irreversible investment, increasing returns or a non-convex technology, exper-
imentation and learning, and problems where utility depends on more than
consumption alone. We develop the competitive price characterization of opti-
mal policies that can be used to establish the equivalence between optimal and
competitive outcomes; our focus, however, is on optimal solutions and their
properties. The large literature on dynamic competitive equilibria is, therefore,
left to the reader to explore. Likewise, we do not survey the many applications
of the stochastic growth model. Instead, we focus on how the theory can be ex-
tended in different directions that have proved useful in application. Finally, we
provide a glimpse of practical methods for solving the model, but the literature
on numerical methods is too large for us to review here.

11.2 The Classical Framework

11.2.1 The One Sector Classical Model: Basic Properties

The stochastic growth model has three essential elements: an exogenous sto-
chastic environment corresponding to random productivity disturbances, the
production possibilities that determine the set of feasible allocations for con-
sumption, investment and output, and an instantaneous welfare or utility func-
tion that represents the preferences of the agent or economic decision-maker.
Productivity shocks at dates t = 1, 2, ..., are denoted by {rt}, a sequence of
i.i.d. real-valued random variables, with common distribution ν on B(Φ), the
Borel σ-field of Φ ⊂ ". In particular, Φ is the support of ν and is assumed to
be compact. Associated with this stochastic environment is a measure space
(Ω,F , µ), where Ω is the set of all real sequences, F is the σ-field generated
by cylinder sets of the form

∏∞
t=0At, where At belongs to B(Φ) for all t, and µ

is the product distribution induced by ν. The statements: for a.e. ω and µ-a.s.
mean “except for a subset of Ω of µ-measure zero”. The random variable rt is
simply the tth coordinate function on Ω. In the economy, output of a homoge-
neous consumption/capital good is produced via a production function that is
homogeneous of degree one in capital and labor. This allows the economy to be
1 There is a large literature on stochastic growth in continuous time that builds on

Merton’s [79] early work (see also, [16]).
2 Previous surveys of stochastic growth such as [82] and [6] focus primarily on this

case.
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represented in per capita terms where ct, kt and yt denote per capita consump-
tion, capital and output at time t. Given a capital stock at time t− 1 and the
productivity disturbance at the beginning of period t, yt = f(kt−1, rt), where
f : "+ ×Φ→ "+ is the production function. The feasible set for consumption
and investment is: Γ (yt) = {(ct, kt)|0 ≤ ct, 0 ≤ kt, and ct + kt ≤ yt}.

Each period the economic agent receives utility u(ct), where u : "+ → ".
The discount factor for future utility is δ, where 0 ≤ δ < 1. At the beginning of
period t the agent observes yt and chooses ct and kt. The productivity distur-
bance, rt+1, occurs and a new output, yt+1, is produced. The objective of the
agent is to maximize the expected discounted sum of utility over time subject
to the feasibility constraints on consumption and capital, and the transition
equation that maps capital to output in the following period. Given an initial
output, y0, the objective is to:

Max E

[ ∞∑
t=0

δtu(ct)

]
subject to: 0 ≤ ct, 0 ≤ kt, ct + kt ≤ yt, yt+1 = f(kt, rt+1), t ≥ 0.(11.1)

This problem can be formulated as a stochastic dynamic programming prob-
lem ([11], [127] and [66]). At date t, the partial history is ht = {y0, c0, k0, y1,
..., ct−1, kt−1, yt}. A policy, π, is a sequence {π0, π1, ...}, where πt is a conditional
probability on B("+), given ht, such that πt(Γ (yt) | ht) = 1. Let � be the set
of all measurable functions φ such that φ(y) ∈ Γ (y) for all y ∈ "+. A policy is
Markovian if πt ∈ � for all t. A Markov policy is stationary if there exists a
Borel measurable function, π̂(y), such that πt(y) = π̂(y) for all t. A policy, π,
and an initial state, y, induce a feasible program, (y,c,k)=(yt, ct, kt)∞t=0, a sto-
chastic process for output, consumption and capital such that (ct, kt) ∈ Γ (yt)
and yt+1 = f(kt, rt+1) a.s. for all t. Associated with each policy is an expected
discounted sum of utility Vπ(y) = E

∑∞
t=0 δ

tu(ct), where (y,c,k) is the feasible
program generated by π and f in the obvious manner. A policy, π∗, is optimal if
Vπ∗(y) ≥ Vπ(y) for all π and y, and the associated program is called an optimal
program. The value function V (y) is defined on "+ by V (y) = sup{Vπ(y) | π is
a policy}. It follows that π∗ is an optimal policy if, and only if, Vπ∗(y) = V (y)
for all y ≥ 0 .

Throughout the paper, derivatives are denoted using subscripts, so that uc

represents marginal utility of consumption and so on. The production technol-
ogy and preferences are assumed to satisfy the following assumptions:

A.1. f(0, r) = 0, f(k, r) > 0 for all r ∈ Φ and all k > 0.
A.2. f is continuous on "+ × Φ and for each r ∈ Φ, f(·, r) is continuously

differentiable on "++.
A.3. fk(k, r) > 0 and infr∈Φ fk(0, r) > 1.
A.4. f(., r) is strictly concave on "+ for all r ∈ Φ.
A.5. There exists a k > 0 such that f(k, r) < k for all k > k and all r ∈ Φ.
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A.6. u is continuous on "+ and continuously differentiable on "++.
A.7. uc(c) > 0 on "++.
A.8. u is strictly concave on "+.

Under these assumptions the dynamic optimization problem is well defined,
the value is finite from any initial state and it satisfies the functional equation:

V (y) = max
c∈Γ (y)

[u(c) + δ

∫
V (f(y − c, r))dν(r)]. (11.2)

Further, there exist stationary optimal policy functions for consumption,
C(y) = arg maxc∈Γ (y)[u(c) + δ

∫
V (f(y − c, r))dν(r)], and capital, K(y) =

y − C(y).3

To characterize economic behavior in the model it is important to under-
stand the basic properties of the optimal value and policy functions. Further,
such knowledge is necessary to examine how departures from the classical model
affect economic outcomes. In the classical model, the feasible set correspon-
dence Γ (y) is expanding and has a convex graph,4. Using the assumption that
the production and utility functions are strictly increasing and strictly concave
and the fact that the functional equation (11.2) maps the set of continuous,
increasing and strictly concave functions into itself this implies (e.g., [126]):

Lemma 11.2.1. Under A.1-A.8, V (y) is continuous, strictly increasing and
strictly concave.

The value function is a measure of lifetime economic welfare and to a first order
approximation is proportional to traditional measures of GDP. The economic
implication of Lemma 11.2.1 is that small increases in output have small effects
on welfare, and that welfare increases at a diminishing rate as output increases.

Strict concavity of u, f and V implies that the maximization problem on
the right hand side of (11.2), has a unique solution for every y ≥ 0. Using
the Maximum Theorem, one can then show that the optimal policy functions
C(y) and K(y) are continuous. Monotonicity properties of C(y) and K(y) are
determined by the complementarity5 between k and y, and c and y, respectively.

3 Note that existence and all other results in this section continue to hold for logarith-
mic or CES utility functions that are unbounded below, though V (0) = u(0) = −∞
(e.g., [118]).

4 The feasible set is expanding if y ≤ y′ implies Γ (y) ⊆ Γ (y′) and has a convex
graph if {(c, k, y) | (c, k) ∈ Γ (y)} is a convex set.

5 Formally this is represented by the concept of supermodularity. Let y ∧ y′ =
min[y, y′] and y ∨ y′ = max[y, y′]. A function F (k, y) is supermodular in (k, y)
if F (k ∧ k′, y ∧ y′) + F (k ∨ k′, y ∨ y′) ≥ F (k, y) + F (k′, y′). For C2 functions this
is equivalent to Fky ≥ 0 so that an increase in one argument raises the marginal
value or marginal productivity of the other.
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Lemma 11.2.2. Under A.1-A.8, C(y) and K(y) are single-valued, continuous
and increasing functions.6

Proof. The fact that C(y) and K(y) are single-valued and continuous follows
from the maximum theorem and the strict concavity of u and f. Let k ∈ K(y)
and k′ ∈ K(y′) for y < y′. Suppose that k′ < k. Then k′ ∈ Γ (y) and k ∈
Γ (y′). Further, 0 < u(y − k) + δEV (f(k, r)) − [u(y − k′) + δEV (f(k′, r))] <
u(y′ − k) + δEV (f(k, r)) − [u(y′ − k′) + δEV (f(k′, r))] < 0, where the first
and last inequalities follow from the principle of optimality and the middle
inequality follow from the fact that A.8 implies u is strictly supermodular
in (y, k). Hence, it must be that k′ > k. Next suppose that c′ ≤ c. Then,
0 ≤ u(c) + δEV (f(y − c, r)) − [u(c) + δEV (f(y − c′, r))] + u(c′) + δEV (f(y′ −
c′, r))− [u(c′)+ δEV (f(y′− c))] < 0, where the first inequality follows from the
principle of optimality and the last inequality is due to the strict concavity of
f and V . Hence, c′ > c.

When the stochastic growth model is representative of aggregate economic
behavior, it is natural that consumption and investment should always be in the
interior of the feasible set. In disaggregate or microeconomic settings, this may
not always be true. Since the interiority of optimal policies facilitates the use
of differentiable optimization methods it is common to impose an assumption
that guarantees interiority.

A.9. limc↓0 uc = ∞.

Lemma 11.2.3. Under A.1-A.9, C(y) > 0 and K(y) > 0.

The condition limc↓0 uc = ∞ is known as the Inada [44] condition at zero.
In the classical model, the intuition for its use is as follows. To invest y yields
finite discounted expected marginal value of investment but an infinite marginal
utility from consumption. Hence, one can do better by reallocating some output
from investment to consumption. Analogous arguments can be used to rule out
investment of zero.

When optimal policies are interior, the value function in the classical model
is differentiable.

Lemma 11.2.4. (Mirman-Zilcha [81], Lemma 1). Under A.1-A.9, V (y) is dif-
ferentiable for all y > 0 and Vy(y) = Uc(C(y)).

Proof. As a concave function, V has left and right-hand derivatives, V−(y) ≥
V+(y). Let k and c be optimal from y. As c > 0, k is feasible from y + ε and
y − ε for sufficiently small ε > 0. By optimality, V (y + ε) − V (y) ≥ u(c+ ε) +

6 Lemma 11.2.2 was first established by Brock and Mirman [18]. The monotonicity
of K(y) does not depend on the concavity of u or f and can be generalized to
the case where K(y) is a correspondence using the methods of Topkis [129] (see
also,[121]).
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δEV (f(k, r))− [u(c)+δEV (f(k, r))], which implies V+(y) ≥ uc(c). By a similar
argument V−(y) ≤ uc(c).7

When V is differentiable, output has a unique shadow price given by Vy(y).
This shadow price is useful in examining the intertemporal tradeoff between
consumption and investment, and in showing that the optimization problem
can be decentralized.

Proposition 11.2.1. Let (c,k) be an optimal program induced by C(y),K(y).
Under A.1-A.9, necessary and sufficient conditions for C(y),K(y) to be optimal
are:

uc(ct) = δ

∫
uc(ct+1(r)))fk(kt, r)dν(r). (11.3)

lim
t→∞ δtE[uc(ct)kt] = 0. (11.4)

Proof. The necessary condition (11.3) is typically proved in one of two ways.
The first method is a variational approach that assumes period t output and
the period t+1 capital stock are optimal. It then examines how a change in
period t consumption affects discounted expected utility across the two pe-
riods. The second method proceeds as follows. If V is differentiable (Lemma
11.2.4) then maximizing the right hand side of equation (11.2) implies: uc(ct) =
δ
∫
Vy(f(kt, r)fk(kt, r)dυ(r). Further, Vy(yt) = uc(ct) by the envelope theorem.

Combining these yields (11.3). As commonly used, this approach requires both
interior solutions and a differentiable value function; but a more general state-
ment using inequalities is possible in other cases.

A proof of (11.4) is given in [87].8

Equation (11.3) is known as the stochastic Ramsey-Euler equation. It is a
dynamic optimality condition that equates the marginal utility from consump-
tion to the discounted expected marginal value of investment. The latter can be
decomposed into the marginal productivity of investment times the marginal
utility from consuming the additional output next period.

Equation (11.4) is the transversality condition. It implies that marginal
utility is bounded in expectation.9 It is also important to note that there may
7 An alternative approach in [12] assumes that the disturbance distribution has a

Cn density. This smooths out possible points of discontinuity in the derivative
of V . The approach has the advantage that it can be used to obtain higher or-
der differentiability of both V and the optimal policy function, the latter via the
implicit function theorem. Santos and Vigo-Aguiar[116] contains sufficient condi-
tions for the value and policy functions to be C2 and C1, respectively. They use
their results to place analytical bounds on the approximation error of a numerical
solution.

8 Kamihigashi [54] establishes the necessity of the transversality condition for opti-
mality in a class of multisector stochastic growth models with single consumption
good and bounded or constant relative risk aversion utility.

9 Mirman and Zilcha [86] show that marginal utilities themselves may be unbounded.
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be many non-optimal programs that satisfy the Ramsey-Euler equation. The
transversality condition selects an optimal program from among those satisfying
(11.3).

One of the most important results in the stochastic growth literature relates
to the validity of the fundamental theorems of welfare economics in infinite
horizon, stochastic economies. The two basic issues are the existence of prices
that support an optimal program and the optimality of a dynamic, competitive
equilibrium. In their seminal work Malinvaud [72] and Koopmans [55] make
clear that the fundamental welfare theorems do not extend to infinite horizon
settings without some additional conditions. The importance of these issues is
apparent in [18], [81], [86] and [87] even though prices are often implicit in the
necessary and/or sufficient conditions for optimality. Zilcha ([135], [136], [137])
examines the fundamental welfare theorems in a setting in which competitive
prices are explicit throughout.

A feasible program (y,c,k) is competitive if there exists a sequence p =
(pt)∞t=0 of discounted prices such that pt > 0 a.s. for all t and:

δtu(ct) − ptct ≥ δtu(c) − ptc a.s.,∀ c ≥ 0. (11.5)

Ept+1f(kt, rt+1) − ptkt ≥ Ept+1f(k, rt+1) − ptk a.s.,∀k ≥ 0 (11.6)

Proposition 11.2.2. A feasible program is optimal if and only if it is compet-
itive and satisfies:

lim
t→∞ Eptkt = 0. (11.7)

Proof. See [135].

As in Proposition 11.2.1, the existence of competitive prices alone is not
sufficient to guarantee optimality. For that, the transversality condition (11.7)
is also required.

The supporting price pt is the discounted shadow price of the consumption-
capital good. Equation (11.5) requires that consumption maximize utility less
expenditure for almost every realized path and every time period. Equation
(11.6) captures intertemporal (expected) profit maximization. When a compet-
itive program is interior it implies pt = Ept+1fk(kt, rt+1). A primary difference
between the deterministic and stochastic models is that in the former prices re-
flect temporal values, while in the latter prices also reflect values across different
random states of nature. As a consequence, prices and the marginal willingness
to substitute consumption are an important determinant of economic behavior
even in the long run.
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11.2.2 Stochastic Steady States and Convergence Properties in the
One Sector Classical Model

A central concern of optimal growth theory is the study of the long run dynam-
ics of an economy. The deterministic literature focusses on the existence and
stability of non-trivial (strictly positive) optimal steady states and on turnpike
properties of optimal capital accumulation paths. An optimal steady state or
stationary program is a limit point of an optimal program. If optimal paths
from all initial states converge to a steady state then this unique optimal steady
state is globally stable and the long run behavior of the economy is independent
of initial conditions.

When the evolution of capital stocks is stochastic, an optimal program
of capital stocks is a sequence of random variables. The optimal policy, the
production function, and the random shock map the probability distribution of
current capital stocks to the probability distribution of the next period’s capital
stock. A stochastic steady state is a fixed point of this mapping or a distribution
of capital that is invariant under the optimal policy. The stochastic analogue
of a globally stable steady state is a unique invariant distribution to which the
stochastic process of capital stocks converges from every initial state. In such
a steady state the capital stock is not constant over time. Instead, it exhibits
endogenous fluctuations in response to random productivity disturbances.10

Turnpike theorems study the conditions under which differences in initial
conditions have negligible effects on the process of economic growth over long
time horizons.11 In the deterministic case, this involves analyzing when opti-
mal paths from different initial states approach each other asymptotically. The
stochastic analogue is convergence to zero in probability (or sometimes, almost
surely) of an appropriately defined distance between the optimal capital stocks
in each period.

In the classical one sector stochastic optimal growth model the unique op-
timal stationary policy generates a Markov process of capital stocks kt. Recall
that the optimal investment function K(y) is a continuous and strictly increas-
ing function on "+. Define H(k, r) ≡ K(f(k, r)) to be the realized capital stock
for the next period under the optimal policy. Then,H is continuous in (k, r) and
increasing in k. Let S denote the interval [0, k]. Given y0 ∈ S, k0 = K(y0) ∈ S,
the evolution of optimal capital stocks over time is given by:

kt = H(kt−1, rt) (11.8)

Recall that ν is the common probability distribution of the i.i.d random
shocks rt, with support Φ, a compact subset of ". Let νt be the joint dis-
tribution of rt ≡ (r1, ...rt) on the product space Φt and define kn(k0, r

n) ≡
H(H(....(H(k0, r1), r2)..., rn). In other words, kn(k0, r

n) is the nth-period cap-
ital stock kn, given k0 and realization rn = (r1, ...rn) of random shocks in the

10 The literature also examines stronger concepts of an optimal steady state [133].
11 See, [77], [75], [76].
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first n periods. For any probability measure µ defined on S (and the Borel
σ−field generated by S), define the probability measure νnµ on S by the rela-
tion

νnµ(B) =
∫
S

νn({rn ∈ Φn | kn(k0, r
n) ∈ B})µ(dk0)

where B is any Borel-subset of S. Thus, νtµ gives us the probability distribution
of kt, when k0 is distributed according to the probability measure µ. Let S′ be a
closed interval in S. Then, S′ is said to be ν−invariant if ν{r ∈ Φ | H(k, r) ∈ S′

for all k ∈ S′} = 1. A probability measure µ on S is said to be an invariant
probability measure on S′ if the support of µ is a subset of S′and for any Borel
set B in S,

νµ(B) = µ(B) (11.9)

In other words, if k0 is distributed according to an invariant probability µ, then
the distribution of optimal capital stocks in every subsequent period follows
the same distribution. The distribution function corresponding to an invariant
probability measure is an invariant distribution.

There is a large body of work in the mathematical theory of Markov
processes and random dynamical systems that provides sufficient conditions
for the existence and stability of invariant distributions for a given stochastic
process12. Let

Hm(k) = min
r∈Φ

H(k, r) and HM (k) = max
r∈Φ

H(k, r)

denote the lower and upper envelopes, respectively, of the transition function
H(k, r) defining the Markov process (11.8). Note that the continuity of H and
the fact that Φ is compact imply that Hm(k) and HM (k) are well defined
and continuous. Further, since H is increasing in k, Hm(k) and HM (k) are
increasing functions.

In addition to the assumptions made in the previous section, the standard
proof of existence and global stability of the invariant distribution requires that
the production function f(k, r) and the optimal transition function H(k, r)
satisfy two additional conditions:

A.10. There does not exist any k > 0 and ỹ ∈ S such that ν{r | f(k, r) =
ỹ} = 1.

A.11. There exists an ε > 0 such that Hm(k) > k for all k ∈ (0, ε).

12 See, among many others, [35], [41], [42], [2], [8], [9]. Models of descriptive sto-
chastic growth (such as the stochastic Solow model) where the consumption and
investment rules are exogenously specified have also applied these conditions ([81],
[13] and [109]).
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A.10 requires that every investment level is associated with some non-trivial
uncertainty over output. A.11 is a restriction on the optimal policy. It implies
that even if the lowest possible output is realized every period, the optimal
program from every initial stock is bounded away from zero. In a deterministic
model, the optimal policy satisfies this condition as long as marginal produc-
tivity at zero is large enough. This is no longer true in the stochastic model.
Mirman and Zilcha [86] develop an example where the production function has
infinite slope at zero, yet the optimal program from any initial stock comes
arbitrarily close to zero with probability one.13 One can impose restrictions
on the production function and distribution of random shocks to ensure that
A.11 is satisfied. For example, if there is a strictly positive probability mass
on the ”worst” production function in the sense that there exists some # > 0
such that ν{r | f(k, r) = minr∈Φ f(k, r)} > #, ∀k > 0, then infinite marginal
productivity at zero is sufficient for A.11. For conditions that are applicable to
atomless distributions, see [93].

Define the maximal fixed point of Hm by km = max{k > 0 | Hm(k) = k}
and the minimal fixed point of HM by kM = min{k > 0 | HM (k) = k}.
Assumption A.11 implies that km, kM > 0.

Lemma 11.2.5. km < kM .

Proof. Since H(k, r) is continuous in r, there exists rm, rM ∈ Φ such that
km = Hm(km) = H(km, rm) and kM = HM (kM ) = H(kM , rM ). Further,
f(km, rm) ≤ f(km, r) for all r ∈ Φ. From the stochastic Ramsey-Euler equation:

u′(C(f(km, rm)) = δ

∫
Φ

u′(C(f(H(km, rm), r)))f ′(H(km, rm), r)ν(dr)

= δ

∫
Φ

u′(C(f(km, r)))f ′(km, r)ν(dr).

Since u is strictly concave and C is increasing u′(C(f(km, r))) ≥ u′(C(f(km, rm))
for all r ∈ Φ. Hence, the inequality above yields 1 ≤ δ

∫
Φ f

′(km, r)ν(dr). Sim-
ilarly, one can show that 1 ≥ δ

∫
Φ f

′(kM , r)ν(dr) so that
∫

Φ f
′(kM , r)ν(dr) ≤∫

Φ
f ′(km, r)ν(dr). The fact that km ≤ kM follows from the strict concavity of

f. Finally, if km = kM then f(k, r) is constant in r which violates A.10.

Lemma 11.2.5 implies that the highest fixed point of Hm lies below the
smallest positive fixed point HM . We now state the main result regarding the
existence and global stability of the optimal stochastic steady state. For the
stochastic process of optimal capital stocks kt defined by (11.8), let Ft(k) be
the distribution function of kt i.e., Ft(k) =νt{rt ∈ Φt | kt ≤ k}.
13 Mitra and Roy [93] develop general conditions under which Prob{lim inft→∞ kt =

0} is 0 and 1.
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Proposition 11.2.3. Assume A.1 - A.11. There exists a unique non-zero in-
variant distribution F (k) on S and its support is the interval [km, kM ]. For any
initial capital stock k0 > 0, as t → ∞, Ft(k) converges uniformly in k (on S)
to F (k).

Proof. (Sketch).Instead of giving a full proof, we sketch the main arguments
for the simple case of multiplicative shock, f(k, r) = rf(k), which assumes
just two possible values a and b, 0 < a < b < ∞. Then, Hm(k) = K(af(k))
and HM (k) = K(bf(k)). The proof consists of the following key arguments.
First, for the Markov process (11.8), the set of states (0, km) and (kM ,∞) are
transient. With probability one, capital stocks move out of these sets in finite
time, never to return. Second, once the process enters the set [km, kM ] it remains
there with probability one. Further, [km, kM ] is the smallest ν− invariant set.
Let ym = min{k : Hm(k) = k} and yM = max{k : HM (k) = k}. Then,
0 < ym ≤ km < kM ≤ yM . From any stock k ∈ (0, ym) the optimal capital
stocks increase almost surely and reach the set [ym, kM ] in finite time with
probability one. Similarly, from any stock k ∈ [yM ,∞) the optimal capital
stocks decrease almost surely and reach the set [km, yM ] in finite time with
probability one. Further, for k ∈ [ym, km) one can show that the probability
that the optimal path from such a stock does not enter [km, kM ] in finite time
is zero. To move the capital stock ym to the interval [km, kM ] only takes a
sufficiently long, but finite run rt = b, such that the realized transition occurs
along the function HM (k). Any such run must occur ω−almost surely as shocks
are independent. In fact, no strict subset of [km, kM ] is invariant. The next
step is to show that a well-known ”splitting” condition due to Dubins and
Freedman [35] (or some variation/extension) holds on the interval [km, kM ].
For any n = 1, 2..., the probability νn is said to split on a ν−invariant subset
S′ of S if there exists z ∈ S′ and η > 0 such that:

νn{rn ∈ Φn | kn(k, rn) ≤ z for all k ∈ S′} > η

νn{rn ∈ Φn | kn(k, rn) ≥ z for all k ∈ S′} > η.

To verify that the splitting condition holds fix any z ∈ (km, kM ). There
exists some N ≥ 1, such that: (i) if rt = a, t = 1, ...N, then kN (kM , rN ) ≤
z, and (ii) if rt = b, t = 1, ...N, then kN(km, r

N ) ≥ z. For 0 < η <
min{(ν(a))N , (ν(b))N}, n = N, it is easy to see that the splitting condition
is satisfied on S′ = [km,Km]. Dubins and Freedman [35] then show that this
implies there exists a unique invariant distribution F on S′ and that Ft(k)
converges uniformly in k to F (k).14 Finally, since the set S − S′ is transient

14 Recent extensions of the result that are applicable to situations where H(k, r) is
monotonic but not necessarily continuous and situations where the capital process
is multidimensional can be found in [8],[9].
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and S′ is the smallest ν−invariant set on S, it must be that F is the unique
invariant distribution on S and Ft(k) converges uniformly in k to F (k) on S.15

The basic results on the existence and global stability of an invariant distri-
bution for the classical one sector stochastic model were originally developed
in the pioneering work by Brock and Mirman [18] and subsequently refined by
Mirman and Zilcha [81]. Majumdar, Mitra and Nyarko [69] were the first to ex-
plicitly use the Dubins-Freedman splitting condition. Versions of this problem
have also been analyzed by [126] and [42]. [19] [25] contain similar results for
the undiscounted model (δ = 1) where optimality is based on the ”overtaking
criterion”.16 Donaldson and Mehra [34] extend these results to the case of cor-
related shocks that enter the production function multiplicatively and follow a
stationary process.

When shocks are unbounded, Stachurski [124] shows that there is always
a unique globally stable steady state for the special case of a multiplicative
shock where r has a density function that is strictly positive everywhere on
"++. With an interior optimal policy, the structure imposed on the random
shock ensures that the system moves with positive probability from any positive
stock to any interval on "++ in one step.

¿From an empirical point of view one may be interested in the asymptotic
statistical properties of the stochastic processes for capital and consumption.
For example, if the law of large numbers holds so that sample averages from time
series converge to the mean of the limiting steady state distribution, then one
can test a model by comparing the sample average over a sufficiently long period
with the theoretical prediction. Alternatively, one can forecast the mean of the
long run distribution by using the sample average. The central limit theorem or
asymptotic normality of the partial sums can be used for inference of likelihood
of values in a parameter space. Many of the conditions that guarantee global
stability of an invariant distribution also ensure that both the law of large
numbers and the central limit theorem hold. In addition, they imply a minimum
bound on the rate of convergence.17

An important implication of global stability is that the long run behavior
of the economy is independent of the initial state. This is also brought out in
15 A more traditional approach in theory of Markov processes is to directly verify

that the process is irreducible on [km, kM ], that intervals disjoint from [km, kM ] are
transient and an equicontinuity condition on the sequence of probability measures
for the capital stock (defined through the stochastic kernel of the Markov process).
See, [78]. Another approach is to show that the iterated random functions satisfy a
Lipschitz condition and are ”contracting on the average” (see, [33]). In a framework
with multiplicative shocks that are not necessarily i.i.d. and have a positive valued
density on R+, Nishimura and Stachurski [96] use a new approach by defining
Foster-Lyapunov functions to characterize stability.

16 For convergence in a stochastic open economy, see for example, [28].
17 See, [9]. [125] contains similar results for the case of multiplicative unbounded

shocks.
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turnpike results that directly examine the conditions under which differences in
initial conditions have negligible effects on the process of economic growth over
long time horizons. Majumdar and Zilcha [71] establish a ”late” turnpike the-
orem in a model that is far more general than the classical model of Section 2.
Their model allows for unbounded expansion of capital and consumption, time
varying utility and random shocks that may follow a non-stationary stochastic
process. Under a condition that requires the elasticity of marginal product to
be bounded away from zero (implying a lower bound on the degree of con-
cavity of the production function), they show that the number of periods for
which the relative distance between the optimal capital stocks (from any two
initial stocks) exceeds any positive threshold is bounded almost surely, where
the bound depends on how far apart the initial states are. In other words, op-
timal paths from different initial states eventually approach each other with
probability one. Note that this result is quite independent of whether there
is a globally stable invariant distribution. The condition on the elasticity of
marginal product ensures a that a uniform ”value-loss” argument (originally
due to Radner [105]) holds.18 Joshi [49] provides similar turnpike results in a
one-sector model with recursive preferences and time varying technology.

Apart from convergence, the other important question in economic growth
relates to characterization of the properties of the limiting steady state; in
particular, the relationship between the preferences and technology underlying
the economy and the nature of the invariant distribution to which it converges.
In the one sector convex deterministic model of optimal growth, there is fairly
rich characterization of the steady state. For example, with a strictly concave
production function f , the unique steady state or modified golden rule is a
capital stock k̂ that is the unique maximizer of [δf(k)−k], where the latter can
be interpreted as the net gain from investment. For the no-discounting case,
the steady state is the well-known golden rule capital stock that maximizes the
level of sustainable consumption [f(k) − k]. There are also other decentralized
or support price-based characterizations of the optimal steady state. In general,
in the deterministic one sector model, it is possible to look at the steady state
as a solution to an independent static optimization problem that has desirable
economic properties. In the multisector deterministic model, it is a solution to
a static optimization and a fixed point problem.

Surprisingly, there is very little by way of general qualitative characteriza-
tion of the limit invariant distribution in the stochastic growth literature. One
of the reasons behind this is the fact that, unlike the deterministic model, the
18 The value loss argument uses support prices of optimal paths to look at the accu-

mulation of shortfalls in values (shadow profits and losses) of input-output combi-
nations along one optimal path relative to another at the other’s support prices.
Loosely speaking, for two optimal paths that do not approach each other asymp-
totically, if the value loss is uniformly bounded away from zero over all states and
time periods, then the accumulated loss is infinite and that contradicts optimality.
[51] contains a turnpike result without requiring uniformity of value-loss across
time and states.
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steady state is not determined solely by the production function and the dis-
count factor. Both the utility function (and its curvature) and the distribution
of the random shocks play important roles. Specific examples show that for
the same technology, discount factor and distribution of random shocks, the
steady state distribution can change dramatically with variations in the utility
function [26].

Further, even for very standard utility and production functions, the lim-
iting distribution can be very sensitive to parameter values when the shock
does not have a continuous distribution.19 For the case with logarithmic util-
ity, Cobb-Douglas production, and a binary multiplicative shock, Mirman and
Zilcha [81] show that the invariant distribution can be degenerate for some
parameter values and uniform for others. Montrucchio and Privileggi [94] show
that the invariant distribution can also be a Cantor function. Mitra, Montruc-
chio and Privileggi [92] expand on this example to establish precise bounds on
the parameters under which Cantor and more general singular invariant distri-
butions can arise as well as bounds under which the distribution is absolutely
continuous. Recently, Mitra and Privileggi [91] extend the example to the class
of all iso-elastic utility functions and establish sufficient conditions for a Cantor
type invariant distribution.

11.2.3 Stochastic Steady States and Convergence Properties in the
Multisector Classical Model

In the literature on deterministic models of optimal economic growth, the multi-
sector case has been extensively studied. In particular, the literature has focused
on two key issues - the existence of an optimal steady state and turnpike results
or the convergence properties of optimal paths.20 In comparison, the stochastic
multisector literature is relatively thin and there is only a small literature on
the existence and stability of steady states in the stochastic, multisector case.

In the deterministic literature, it is well recognized that with discounting,
the existence of a globally stable optimal steady state and other turnpike re-
sults may not hold in the multisector case (even though it always holds under
very mild restrictions in the one-sector model).21 With significant discount-
ing, optimal paths in the multisector model may not be convergent. They may
exhibit cyclical and even chaotic dynamics.

A general stochastic multisector optimal growth model with i.i.d. shocks
has been analyzed by Brock and Majumdar [17]. The model is a natural exten-
sion of the classical one-sector model to the case of m capital goods. For each
vector of current capital stocks and realization of the random shock there is a
correspondence that defines the set of attainable utilities and capital stocks for
19 For the case of multiplicative shock with continuous density, Danthine and Don-

aldson [27] show that the limiting invariant distribution has a continuous density
function.

20 For an excellent review of the basic results see McKenzie [76].
21 See, [128].
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the next period, which in turn can be used to define the set of feasible programs
from any given initial vector of capital stocks. The objective is to maximize the
discounted expected sum of utilities, or for the undiscounted case, a stochastic
version of the overtaking criterion. The paper imposes four conditions:

(i) there is a compact set S′ ⊂ "m
+/{0} such that for any initial vector

of capital stocks lying in S′, there exists an optimal program such that the
stochastic process for capital lies almost surely in S′.

(ii) there exist continuous stationary optimal investment and consumption
policies.

(iii) an optimal program is ”competitive” relative to a non-trivial price
process in a similar sense as in the previous section and satisfies a transversal-
ity condition that the expected values of the capital stocks (at the competitive
prices) go to zero, for the case of discounting, and are bounded, in the undis-
counted case.

(iv) the Hamiltonian system corresponding to the optimal process has ”suit-
able curvature” so that a stochastic value-loss condition is satisfied.

Under conditions (i) - (iv), Brock and Majumdar show that the distance be-
tween the probability distributions of tth−period optimal capital vectors from
two distinct initial capital vectors in S′ converges to zero as t → ∞. Further,
the difference between the two optimal paths converges to zero in probability.
Thus, conditions (i) - (iv) are sufficient to ensure that the optimal paths from
alternative capital stocks come close to one another asymptotically and that
the long run behavior of optimal paths does not depend on initial conditions.
The existence of a unique and globally stable invariant distribution for the sto-
chastic process of optimal capital stocks can also be established under these
conditions. Unlike the conditions for global stability of an invariant distribution
and other turnpike results in the one-sector stochastic growth model, (i) - (iv)
are fairly strong restriction imposed directly on the optimal policy rather than
the primitives of the model. Conditions (i) - (iii) are readily satisfied in the
one sector stochastic growth model. In the multisector case there are plausible
conditions on preferences and technology for (i) and (ii) to hold. For example,
Majumdar and Radner [70] consider a stochastic nonlinear activity analysis
model in which neoclassical conditions on the technology and preferences are
sufficient for (i) and (ii).22 Condition (iii) is motivated by the equivalence be-
tween optimal programs and competitive programs that satisfy a transversality
condition (see, [135], [136], [137]). Condition (iv) is a stochastic extension of
conditions for asymptotic stability in the deterministic multisector model due
to Cass and Shell [22] and Rockafellar [110] that are, in turn, based on the
well known ”value loss” argument alluded to in the previous subsection (see
also, McKenzie [75]). In particular, condition (iv) requires that the Cass-Shell-
Rockafeller version of the value-loss restriction holds uniformly for all states of
the environment.
22 See also the discussion in [88].
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Chang [24] shows that a weaker version of condition (iv) based on expected
value loss is actually sufficient and further, that the difference between any two
optimal paths converges not only in probability, but almost surely. It is worth
noting that in a multisector model condition (iv) involves a strong restriction
on the extent of discounting in the model, and unlike the one-sector case, it
does not follow directly from a restriction on the curvature of the production
function.

Föllmer and Majumdar [39] follow a somewhat different approach using the
theory of martingales to show that even if one does not impose a condition
such as (iv), a weaker result is possible. That is, for any two optimal paths, the
number of periods for which the value loss exceeds any given positive threshold
is finite with probability one. Under uniformity of value loss and a specific dis-
tance metric, optimal paths approach each other asymptotically almost surely.

For the case of no discounting with the ”overtaking” criterion of optimality,
global stability of the stochastic steady state and other turnpike results can be
established under much less restrictive conditions (see, among others, [46], [25],
[136]).23,24

11.3 Extensions of the Classical Framework

11.3.1 Sustained (Long Run) Growth

The past two decades have seen a renewed interest in the economics of long
run growth where unbounded expansion of output, capital and consumption
is possible. In the deterministic convex one-sector model, sustained growth is
optimal if the marginal productivity of capital at infinity exceeds the discount
rate [47]. Much of the literature on stochastic optimal growth theory focusses
primarily on models where the technology exhibits bounded growth that rules
out indefinite expansion of consumption and capital and sustained long run
growth. An exception is the class of models on optimal intertemporal house-
hold savings under uncertainty. A portion of this literature considers a linear
production function with a multiplicative shock, f(k, r) = rk, so that optimal
paths may diverge to infinity (see, Phelps [103], Levhari and Srinivasan [63]
and subsequent contributions). A closely related literature on the permanent
income hypothesis has examined optimal savings where the wealth next period
23 Dutta [37] provides sufficient conditions under which as δ → 1, the optimal policies

(and value functions) in the discounted stochastic model converge to the optimal
policy using two alternative optimality criteria - the undiscounted overtaking cri-
terion and the long run average reward criterion.

24 In a stochastic multisector model with a double infinity of time periods and discount
factors close to 1, Yano [133] establishes the existence and continuity in the discount
factor of a stronger concept of an optimal stationary program (where a stationary
program is one where the vector of current capital stocks associated with any
infinite realized sequence of past history is time invariant with probability one).
See also, [74].
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is composed of a deterministic return on current savings (interest income) plus
an additive income shock (non-interest income).25

De Hek and Roy [31] examine the possibility of sustained long run growth
in optimal consumption and capital stocks in a one sector model with i.i.d.
shocks and a concave production function that is not necessarily linear. Con-
sider the model in Section 2 without assumption A.5. In particular, suppose
that f(k, r) = rf(k) and let θ = limk→∞

f(k)
k . They show that under the fol-

lowing two conditions, optimal capital and consumption diverge to infinity with
probability one from every positive initial stock:

(i) E[ln(θr)] > 0
(ii) infy>0 δE[uc(rf(sy))rfk(sy)

uc((1−s)y) ] > 1, where s = exp[−E[ln(θr)]].

Note that these conditions involve the utility function and its curvature.
The possibility of long run growth depend on more that a simple comparison
of the discount rate and average marginal product at infinity. Once again, this
reflects the general fact that in a stochastic growth model, the utility function
and distribution of shocks play important roles in determining the nature of
long run behavior of the economy. To illustrate this further we consider a
specific example of iso-elastic utility and linear production function for which
we can derive the optimal policy explicitly and thus provide an almost exact
characterization of the condition for sustained long run growth.

Example 11.3.1. u(c) = c1−σ

1−σ , σ > 0, σ �= 1, f(k, r) = rk. One can show that
the optimal policy function K(y) is linear and given by K(y) = [δE(r1−σ)]

1
σ y

so that
kt+1 = αrt+1kt where α = [δE(r1−σ)]

1
σ (11.10)

which implies ln kt+1 = ln k0 + (t + 1)[ 1
t+1

∑t
j=0 lnαrj+1]. Using the law of

large numbers, it is easy to show that an ”almost” exact condition for ln kt+1

to diverge to infinity with probability one is that E[ln(αr)] > 0 which can be
rewritten as σE(ln r) + ln δ + lnE(r1−σ) > 0. This indicates that the risk
aversion/intertemporal elasticity of substitution parameter of utility, σ, plays
an important role in determining whether sustained growth occurs.

11.3.2 Stochastic Growth with Irreversible Investment

In the classical framework analyzed in the previous section, investment is either
reversible or the existing capital stock depreciates completely at the end of a
period. In reality, it is costly to transform capital into consumption and there
are limits to how fast the aggregate capital stock depreciates. The stochastic
growth model with irreversible investment was first examined by Sargent [117].
In his setting output can either be consumed or invested, but once invested,
25 See [132] and [119] for the undiscounted case, [120] and [122] for the discounted

case and also [23].
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capital cannot be converted for consumption. Individual agents transact in a
competitive market for existing capital. This allows individual investment de-
cisions to be reversed while maintaining the irreversibility of investment in the
aggregate. As Sargent shows, irreversibility in the aggregate provides the nec-
essary friction for Tobin’s q, the relative price of used to new capital, to diverge
from unity. This enables aggregate investment to be positively correlated with
q. However, this same friction implies that agents’ investment decisions are
necessarily a function of their expectations about the future which cannot be
summarized by q. The implication is that q-theory of investment functions are
of little use for econometric policy evaluation.

The analysis in Sargent is based on the properties of the value function.
Olson [100] develops an alternative approach that characterizes optimal policies
using stochastic Kuhn-Tucker conditions. Let f(k, r) = F (k, r)+(1−d)k where
k is the depreciation rate of capital. If λt is the Lagrange multiplier on the
period t irreversibility constraint, kt+1 ≥ (1−d)kt, the Ramsey-Euler equation
can be written as:

uc(ct) − λt = δE [uc(ct+1(r)))fk(kt, r) − (1 − d)λt+1(r)] . (11.11)

Solving for λt and substituting forward this can be expressed as:

uc(ct) = δ

T∑
i=1

(δ(1 − d))i−1
E [uc(ct+i)Fk(kt+i−1, rt+i)]+δT (1−d)TE[uc(ct+T )].

(11.12)
This derivation uses the fact that eventual depreciation of the entire capi-

tal stock is not optimal so there is a uniform upper bound, T , on the number
of time periods for which the irreversibility constraint binds. Sargent’s point
that agent’s decisions are a function of expectations about the future is clearly
evident from (11.12). Evaluating (11.12) at the minimal and maximal optimal
transition functions for capital it can be shown that the support of the limit-
ing distribution under irreversible investment is a subset of the support when
investment is reversible.

11.3.3 Stochastic Growth with Experimentation and Learning

The stochastic growth model has been extended to environments where there
is learning about productivity or the capital stock itself. This requires expand-
ing the state space to represent the agent’s beliefs. The transition equation for
beliefs follows Bayes’ rule. In this setting, the possibility of learning affects the
optimization problem in two important ways. First, even if information signals
are exogenous so that learning is passive and not affected by the current action,
the mere prospect of learning may alter current period decisions. Second, when
the current action affects how much learning occurs, there is an incentive to
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experiment to obtain better information. Friexas [40] was the first to examine
this problem. Assume output is produced by a technology f(k, θ, r), where θ is
an unknown parameter. The distribution of r is known. Given an initial value
for y and current beliefs about θ, the agent chooses consumption and invest-
ment. Output in the following period is observed and provides information that
can be used to update beliefs about θ. Friexas examines how learning and ex-
perimentation affect the initial consumption/investment decision. The learning
effect depends on whether learning increases or decreases the marginal value of
investment. Friexas then uses Blackwell’s [10] theorem to assert that if larger
investment yields more information then the experimentation effect leads to
an increase in investment. Subsequently, it was shown in [5] and [29] that this
need not always be true. The reason is that investment affects both state vari-
ables in the value function so that Blackwell’s theorem does not apply. While
higher investment may be more informative, the value of information at higher
levels of output may be lower. When the second effect dominates, an expected
utility maximizer may prefer to invest less even if it is more informative. These
tradeoffs have made it difficult to obtain a general set of verifiable conditions to
characterize how information affects consumption and investment in the infi-
nite horizon model. Precise results are limited largely to problems where there
are only two relevant decision periods.

Nyarko and Olson [99] examine experimentation and learning in a stochas-
tic growth model where there is imperfect information about the capital stock
itself. Consumption is observable, but output and investment are not. Beliefs
about the state are summarized by a probability distribution over y. After
choosing consumption, an information signal is observed that can be used to
update beliefs about y. The mapping from beliefs in period t to beliefs in pe-
riod t+1 is determined jointly by consumption, the information signal and the
stochastic production function. Here there is learning about a moving target,
in contrast to the case above where the unknown parameter is fixed. Nyarko
and Olson show that if u(0) = −∞26 then the optimal policy is to assume
the worst and optimize against that. That is, the initial state is assumed to
be the lower bound of the support of the agent’s beliefs about output and the
transition equation is infr f(k, r). When information alters the lower bound
of the support of the agent’s beliefs there is an endogenous capital discovery
process. When it does not, the problem with learning has an equivalent, deter-
ministic representation. In that case, output and investment are more volatile
than consumption and there is excess saving compared to the case where the
capital stock is observable. In cases where u(0) > −∞, the solution either cor-
responds to that above, or the capital stock becomes zero with strictly positive
probability.
26 This assumption holds for the class of all constant relative risk averse utility func-

tions with coefficient at least one.
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11.4 Non-classical Models of Optimal Stochastic Growth

The models of optimal economic growth under uncertainty reviewed in the pre-
vious section are based on the classical assumptions of convex technology and
utility that depends only on consumption. This section reviews some extensions
of the theory that allow for non-classical features such as non-convexities and
state-dependent utility. These non-classical features imply that even in a one-
sector model, continuity and monotonicity properties of optimal policies need
not hold and optimal paths need not converge to a unique stochastic steady
state. The long run behavior of the economy may depend critically on the initial
state.

11.4.1 Stochastic Growth with Non-convex Technology

Non-convexities enter the production technology of an economy through nu-
merous sources, such as fixed costs, threshold effects, increasing returns to
scale, economies of scope, and depensation in the reproduction of natural re-
sources. In applications of optimal growth models to areas such as environmen-
tal management there is also the need to study the implications of a non-convex
technology. A separate chapter of this handbook focuses on optimal growth in
non-convex economies. In this subsection, we concentrate on explaining how
a non-concave production function (non-convex technology) alters the basic
results of the classical stochastic growth literature reviewed in the previous
subsections.

Majumdar, Mitra and Nyarko [69] were the first to comprehensively analyze
the problem of optimal stochastic growth in a one sector model where the pro-
duction function, f(k, r), is not necessarily concave, though it exhibits bounded
growth.27 In this framework, the set of feasible programs is not necessarily con-
vex and therefore, the value function for the dynamic optimization problem is
not necessarily concave even though the utility function satisfies classical con-
cavity restrictions. This non-convexity means that the maximization problem
on the right hand side of the functional equation may have multiple solutions so
that instead of a unique optimal policy function, the solution is characterized
by a measurable selection from an upper semi-continuous optimal policy cor-
respondence. Further, there need not exist any continuous selection and every
policy function may exhibit jump discontinuities on a set that is at most count-
able. Also, non-convexity in the economy implies that the optimal path is not
necessarily decentralizable - in particular, support prices may not exist.

As the value function is not necessarily concave, the expected future mar-
ginal value of capital may be increasing in current investment.28 This, in turn,
27 Some notable contributions to deterministic optimal growth with a non-convex

technology include [68],[32].
28 The term ”marginal” is used loosely here as the value function is not necesarily

differentiable no matter how smooth the utility and production functions are.
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implies that optimal consumption may actually decline with an increase in out-
put.29 Indeed, in the deterministic model it has been shown that there may not
exist an optimal consumption function that is globally monotonic. The optimal
investment policy correspondence is, however, an ascending correspondence.
Further, if the utility function is strictly concave, then it can be shown that
every measurable selection from this correspondence is non-decreasing and an
optimal investment policy function K(y) is always non-decreasing in output.30

A central question is whether there exists a globally stable invariant distrib-
ution. In the deterministic literature with non-concave production functions, it
has been shown that there may be a multiplicity of steady states and the limit
of the optimal path of capital stocks may depend on the initial state. For ex-
ample, with an S-shaped production function, it is quite possible that optimal
paths from small stocks converge to zero (extinction), while for initial stocks
above a critical level,31 optimal paths converge to a strictly positive optimal
steady state. This initial state dependence can be expected to be true in the
stochastic model too.

Consider the model of Section 2 without assumption A.4. For any measur-
able selection from the optimal policy correspondence, the transition function
H(k, r) for the Markov process of optimal capital stocks (11.8) is non-decreasing
in k, but not necessarily continuous.32 Recall that km, kM are the largest posi-
tive fixed point of the lowest transition function Hm(k) and the smallest posi-
tive fixed point of the highest transition function HM (k), respectively. A critical
step in the proof of global stability in Proposition 11.2.3 is Lemma 11.2.5 that
showed km < kM . Indeed, if A.10 and A.11 hold and km < kM , there exists
a globally stable invariant distribution even if assumption A.4 does not hold.
However, in the non-convex model it is quite possible that km > kM so that
Lemma 11.2.5 does not hold. To see what happens in that case, suppose that
29 Unlike both the classical stochastic model and the deterministic model with non-

concave production function, it is difficult to guarantee that optimal consumption
is strictly positive in the stochastic model with non-concave production, even if
Inada conditions are imposed on the utility and production functions. An interior
optimal policy is ensured in [69] by assuming that u(0) = −∞, which is a very
strong restriction on the class of admissible utility functions. More recently, [95]
establishes interiority by assuming the Inada condition on utility, sufficiently high
marginal productivity at zero, and that the random shock is multiplicative and has
a density function so that the maximand on the right hand side of the functional
equation of dynamic programming is smooth.

30 If the utility function is concave but not strictly concave, then there may be an
optimal investment function that is non-monotonic though, even in that case, there
is at least one optimal investment function that is non-decreasing.

31 This critical level is referred to as a safe standard of conservation in the literature
on renewable resource economics.

32 An innovative approach to the non-convex model can be found in Amir [1]. It
takes advantage of the averaging associated with the random disturbances to derive
conditions for the monotonicity of optimal policies and higher order differentiability
of the value function. As in [12], differentiability of the optimal policy functions
follows from the implicit function theorem.
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A.10 and A.11 hold and optimal policy is interior (0 < K(y) < y for all y > 0).
As in the sketch of the proof of Proposition 11.2.3, confine attention to the
case where f(k, r) = rf(k) where r assumes one of two possible values a, b.
As before, let ym > 0 be the smallest positive fixed point of the lowest tran-
sition function Hm(k). Then, for all k ∈ (0, ym), HM (k) > Hm(k) > k and
HM (ym) > Hm(ym) = ym so that ym < kM . Similarly, it is easy to show that
km < yM , where yM is the largest fixed point for the highest transition function
HM (k). Thus, km > kM implies ym < kM < km < yM . It is easy to check that
the two disjoint intervals [ym, kM ] and [km, yM ] are both ν−invariant; from any
initial state in either interval, the optimal capital process remains in that inter-
val almost surely. For k0 ∈ (0, kM ], all optimal paths eventually enter and stay
in the interval [ym, kM ] while for k0 ∈ [km,∞), all optimal paths eventually
enter and stay in the interval [km, yM ]. There is no globally stable invariant
distribution. Using arguments based on the splitting condition referred to ear-
lier, Majumdar, Mitra and Nyarko [69] show that if km > kM , then for all
k0 ∈ (0, kM ], the distribution of capital stocks converges to the same invariant
distribution whose support is [ym, kM ], while for all k0 ∈ [km,∞), the distribu-
tion of capital stocks converges to another invariant distribution whose support
is [km, yM ]. For any fixed initial stock in the intermediate range (kM , km), the
optimal path may enter either of the two invariant sets and remain there, de-
pending on the realization of random shocks. This last possibility illustrates an
aspect of path dependence that has no parallel in the deterministic literature.

In general, non-convexities in production may lead to multiple invariant
distributions. However, if production is ”sufficiently stochastic”, then there
exists a globally stable invariant distribution despite the non-convexity [69].
Here, the precise condition that ensures global stability is:

A.12. There exists some ϑ > 0 in S such that ν({r ∈ Φ | f(k, r) ≤ ϑ for
each k ∈ S}) > 0 and ν({r ∈ Φ | f(k, r) ≥ ϑ for each k ∈ S}) > 0.

Observe that assumption A.12 a condition on the production function, not
the transition function for the optimal capital process. It captures the idea
that the random output that results from any given investment is sufficiently
spread out, i.e., the technology exhibits sufficient variability. Under this condi-
tion, if we let z = K(ϑ),then one can easily verify that the splitting condition
described in the proof of Proposition 11.2.3 is immediately satisfied. This en-
sures global stability. Thus, the possibility of multiple stochastic steady states
depends on the stochasticity of the model. This is another instance where the
stochastic growth model (with sufficient uncertainty) is qualitatively different
from the deterministic analogue. We summarize the above discussion in the
next proposition:

Proposition 11.4.1. Assume A.1−A.7, A.10, A.11 and that optimal policy is
interior. Then, (i) if km < kM or if A.12 holds, there is a unique invariant
distribution on S whose support is [km, kM ] and from every k0 > 0,the optimal
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capital stocks converge in distribution (uniformly) to this invariant distribution;
(ii) if km ≥ kM , then for all k0 ∈ (0, kM ], the distribution of optimal capital
stocks converges to an invariant distribution whose support is [ym, kM ], while
for all k0 ∈ [km,∞), the distribution of capital stocks converges to another
invariant distribution whose support is [km, yM ].

As in Section 3.1, A.11 implicitly imposes restrictions on the technology.
For example, in [69] it is obtained from the model primitives by assuming
(in addition to a condition for interiority of optimal policy) that the random
shock has finite support and that the marginal productivity at zero is infinite.
The latter is a rather serious restriction on the class of admissible non-concave
production functions. It rules out the S-shaped production function that is a
widely used canonical form to capture increasing returns to scale and other
threshold effects.33

Nishimura, Rudnicki and Stachurski [95] analyze a non-convex model with
multiplicative i.i.d. random shock that has a density function that is strictly
positive on "++. Under restrictions on the expectation of the random shock,
they show that the Markov process of optimal capital stocks either converges
to zero from every initial state or there is a globally stable non-zero steady
state (and identify conditions for these events). To place their results in con-
text, their assumption on the density function automatically satisfies the ”very
stochastic” assumption in [69] discussed above. Their result does not require
Inada conditions on the production function and, in fact, allows the marginal
product at zero to be less than one with positive probability. In a similar frame-
work, Nishimura and Stachurski [96] use the Euler equation to analyze stability
of the stochastic optimal capital process; in particular, they use the marginal
utilities as Foster-Lyapunov functions in order to obtain stability.

The literature on non-convex stochastic growth also develops turnpike con-
ditions under which optimal paths approach each other asymptotically. In
a model with non-convex and non-stationary technology Joshi [50] uses the
monotonicity properties of the optimal policy and a supermartingale process
generated by the stochastic Ramsey-Euler equation to show that, under a
strong ”value loss” condition that is uniform with respect to time and state,
the asymptotic distance between optimal paths from two distinct initial states
converges to zero with probability one. However, as in the case of turnpike
theorems in the stochastic multisector convex models, the uniform value loss
condition is not very transparent in terms of its implications for the model
primitives.

One of the interesting questions in stochastic growth models with non-
convexity is the possibility of extinction where optimal paths converge to zero.
This is particularly important in applications of the optimal growth model
to problems of renewable resource management where utility reflects the net
33 Mitra and Roy [93] provide weaker conditions that ensure A.11 even when the

marginal productivity at zero is finite and the distribution of the random shock is
absolutely continuous.
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benefit from harvesting and the production function reflects natural biological
growth. Assuming a bounded growth production function and i.i.d. shocks that
have compact support, Mitra and Roy [93] show that there are only three
possibilities: (i) optimal paths from all initial states get arbitrarily close to zero
infinitely often with probability one (this includes extinction in finite time),
(ii) optimal paths from all initial states are bounded away from zero with
probability one, and (iii) there exists a critical capital stock or safe standard
above which all optimal paths are bounded away from zero with probability
one. They develop sufficient conditions on the preferences and technology that
lead to each of these outcomes. In contrast to the deterministic literature, these
conditions involve not just the discount factor and marginal productivity, but
also marginal utility - one compares the discount rate to expected ”welfare-
modified” return on investment (marginal productivity) as in the condition in
Proposition 11.4.2. Another result on optimal extinction is due to Kamihigashi
[53] who shows that if the marginal productivity at zero is finite, then sufficient
variability in the random shock implies that all feasible programs (including
therefore, the optimal program) converge to zero almost surely.

11.4.2 Stochastic Growth with Stock-Dependent Utility

For some important capital theoretic allocation problems welfare depends on
both consumption and the beginning of period output, as represented by
u(c, y).34 Utility is assumed to be nondecreasing in y, jointly concave in (c, y)
and A.7 is no longer imposed.35 In the deterministic case stock-dependent util-
ity has two important consequences. The first consequence arises if investment
and output are substitutes in utility in the sense that u(y − k, y) is submod-
ular in k and y. In that case, an interior optimal investment policy may be
decreasing in output. At the same time, there may be intervals of the state
space on which corner solutions are optimal and the optimal transition func-
tion coincides with the production function. Combining these two possibilities
opens the door for the optimal transition function to be like a tent map, or even
more complex. When this happens an optimal program may exhibit nonlinear
dynamics including cycles or chaos [3]. The second important consequence is
that multiple optimal steady states are possible, even if the utility function is
supermodular in k and y and the optimal investment policy is monotone (Kurz
[59]). In such cases, the asymptotic behavior of an optimal program depends
on the initial state.

The first analysis of stochastic models with stock-dependent utility can
be traced to the literature on renewable resource allocation. In that litera-
ture, the production function represents biological growth of the renewable
34 Such models include the allocation of natural capital or renewable resources and

the effects of wealth on consumption-savings behavior.
35 In renewable resource allocation problems welfare declines if consumption exceeds

the quantity that equates demand and supply.



11. Stochastic Optimal Economic Growth 321

resource and the random shock represents the effect of environmental distur-
bances on resource growth. The state variable is the resource stock (output) at
the beginning of the period. Stock-dependent utility arises when the harvest
costs depend on the resource stock or when the resource stock has amenity or
other social value. Early papers ([45], [107], [123]) focused on the case where
ucc(c, y) + ucy(c, y) = 0. In this case the direct and indirect utility effects of an
increase in output offset exactly and investment and output are neither strict
complements nor strict substitutes in utility. As a result, the optimal policy is a
constant investment policy, which in the presence of fixed costs becomes an (s,S)
inventory rule. Mendelssohn and Sobel [78] prove monotonicity of the optimal
investment policy under the supermodularity condition ucc(c, y)+ucy(c, y) ≤ 0.
Nyarko and Olson [97] show that the optimal consumption policy is nondecreas-
ing when ucy(c, y) ≥ 0 and u and f are concave. They also use the Dubins and
Freedman splitting condition to characterize the convergence of optimal pro-
grams to a limiting distribution. Without additional restrictions the invariant
distribution may not be unique and the long run behavior of an optimal pro-
gram may depend on initial conditions. Subsequently, Nyarko and Olson [98]
show that additional sufficient conditions for the existence of a unique invariant
distribution are: (i) uc(c, y) = 0 implies uy > 0 for sufficiently large y, and (ii)
for all y > 0, c ∈ Γ (y) and α > 1, if uc(c, y) > 0 and uc(αc, αy) > 0 then
uy(c,y)
uc(c,y) ≥ uy(αc,αy)

uc(αc,αy) . The last assumption is a complementarity condition that
implies that the slope of indifference curves for u decrease as output and con-
sumption increase along a ray through the origin in (c, y) space. Nyarko and
Olson provide examples to show that multiple invariant distributions can be
optimal when either (i) or (ii) are violated. The existence of a unique invariant
distribution is also ensured when there is sufficient divergence between produc-
tion in the best and worst states. [69] and [98] show that there is more than
one way to define sufficient variation in production. The underlying intuition
is the same. A model with multiple limiting distributions can be transformed
into one with a unique invariant distribution by the mixing that results from
increasing the variance in production. On the other hand, if the variability in
production is small enough and if u(y − k, y) is submodular in (k, y), then an
optimal program may oscillate between cyclic sets [3].

The economic possibilities associated with the stochastic growth model ex-
pand considerably when a non-convex production technology is combined with
stock-dependent utility. To date this combination has primarily been used to
examine the conditions under which capital stocks remain strictly bounded
away from zero, issues related to conservation and extinction. In the determin-
istic model with both non-convex production and stock-dependent utility it
is possible for there to be disjoint intervals in the state space from which an
optimal program converges to zero. That is, an optimal program starting from
intermediate states may remain bounded away from zero, while optimal pro-
grams starting from lower or higher states converge to zero [101]. The addition
of random productivity disturbances leads to the somewhat surprising possi-
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bility that a first-order improvement in the distribution of disturbances can
reduce the set of initial states from which optimal output and capital stocks
have a positive lower bound.

One useful technique to analyze some questions in the non-convex model is
to examine behavior under the convex-hull of the technology. If capital stocks
under an optimal program always remain in an interval where the convex-hull
coincides with the non-convex technology then the two optimization problems
coincide on that interval. This can be used, for example, to provide conditions
for the existence of a safe standard of conservation.

Proposition 11.4.2. Assume u(y − k, y) is supermodular in (k, y), u is in-
creasing in c, and f is concave in k for all r. Let f(k) = infr f(k, r). If

inf
z∈[0,k]

δE[
uc(f(k, r) − z, f(k, r)) + uy(f(k, r) − z, f(k, r))

uc(f(k) − z, f(k))
] > 1 (11.13)

then lim inf yt ≥ k for all y0 ≥ k.

A general version of this result in the model with non-convex technology and
stock-dependent utility can be found in Olson and Roy [102], along with other
results dealing with conservation or extinction. The conclusions depend on the
joint properties of the technology, utility, and the distribution of disturbances.
As can be seen above, f(k) or productivity under the worst disturbance is an
important determinant of conservation or extinction.

11.5 Comparative Dynamics

An important question in stochastic growth theory is the sensitivity of optimal
decision rules and paths with respect to preference and technology parame-
ters that describe the underlying economy. In a one sector model, continuity
of optimal investment and consumption decisions with respect to various para-
meters of the model generally holds under far weaker assumptions than those
described in Section 2.36

The theory of monotone comparative statics using supermodular functions
and complementarity developed in Topkis [129] has been extended to stochastic
dynamic models (see, for example, [121], [42]). One can apply results from this
literature to derive the comparative dynamics of the optimal policy function
with respect to various preference and technology parameters by looking at
the maximization problem on the right hand side of the functional equation of
dynamic programming [43]. Most of these results have been derived in a one
sector framework.
36 See for example, [38]. Conditions for parametric continuity of stationary distrib-

utions of Markov processes are discussed, among others, by [126] and [61]. These
properties are important for numerical simulations.
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Danthine and Donaldson [26] show that an increase in the discount fac-
tor increases optimal investment and shifts the distribution of optimal capital
stocks to the right and hence, the invariant distribution to which the stocks
converge.37 Moreover, they show that an increase in the curvature of the util-
ity function (loosely speaking, an increase in risk aversion), leads to higher
consumption (i.e., lower investment) at low levels of output, and lower con-
sumption (i.e., higher investment) at high levels of output; further, the range
of the limiting distribution expands as risk aversion increases.38

Another important issue in comparative dynamics is the effect of a change
in the degree of riskiness or volatility of the random shocks. This relates to a
central concern in macroeconomics about the relationship between riskiness of
productive assets and the optimal intertemporal precautionary saving decisions
of individuals as well as more aggregative analysis of the relationship between
growth and economic fluctuations (see for example, [48]). Unfortunately, there
is no general characterization of the effect of a second order stochastic change
in the distribution of shocks on the optimal policy.39

In the specific case of optimal savings under uncertainty 40 discussed in
Example 11.3.1, one can characterize the comparative dynamics of riskiness
fairly tightly. ¿From (11.10), we have

K(y) = αy,E[
kt+1

kt
] = αE(rt+1), where α = [δE(r1−σ)]

1
σ

so that the propensity to invest/save and the expected growth rate of capital
are both proportional to α and the latter is increasing (decreasing) in riskiness
of the random shock if σ > (<)1 because r1−σ is a convex (concave) function
of r in that case. Thus, depending on the curvature of the utility function,
an increase riskiness may increase or decrease optimal investment and cause
a first order increase or decrease in the distribution of optimal capital stocks.
Roughly speaking, if utility is more concave than the logarithmic function, an
increase in riskiness of the random shock increases the optimal savings rate
and the expected rate of growth. The reverse holds if utility is less concave
than the logarithmic function. In the case of log utility, the optimal policy
depends only on the average realization of the random shock and not on its
higher moments.41

37 Dutta [36] shows that lengthening the time horizon for a fixed discount factor
and increasing the discount factor for a fixed time horizon are, in a precise sense,
equivalent.

38 In the case of logarithmic utility, Cobb-Douglas production with multiplicative
shock, an increase in the discount factor increases the variance of capital stock
and output. Danthine and Donaldson [27] provide sufficient conditions for this to
occur. They also characterize conditions under which an increase in the curvature
of the utility function has a similar effect.

39 An exception is the model of optimal dynamic consumption with deterministic
linear interest and additive labor income shock. See, for example, [80].

40 See, among others, [103], [63], [111], [62].
41 For an extension of this kind of result to a model of endogenous growth see [30].
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A less ambitious question relates to a comparison of the moments of the
limiting distribution to the steady state in the deterministic model.

Example 11.5.1. u(c) = ln c and f(k, r) = rkβ , 0 < β < 1. For this example
Mirman and Zilcha [81] show that the optimal investment policy is given by
K(y) = βδy. Danthine and Donaldson [27] use this to analyze the properties
of the optimal program for capital:

kt = (βδ)1+β+...+βt−1
kβt

0 rβt

0 rβt−1

1 ...rβ
t−1rt.

This implies:

Ekt = (βδ)
t−1�

s=0
βs

kβt

0

t−1∏
s=0

E(rβs
t−s−1).

Assume E(rt) = 1 and a non-degenerate distribution for rt. Then taking
limits as t → ∞, the first moment of the limiting invariant distribution of

capital satisfies: Ek = (βδ)
1

1−βL, where, L = limt→∞
t−1∏
s=0

E(rβs
t−s−1). Jensen’s

inequality implies L < 1. Expected consumption and output in the limiting
invariant distribution are given by: Ec = (1 − βδ)(βδ)

β
1−βL, Ey = (βδ)

β
1−βL.

In the deterministic version of the model (where rt = 1 almost surely), steady
state capital, consumption and output are given by: k = (βδ)

1
1−β , c = (1 −

βδ)(βδ)
β

1−β , y = (βδ)
β

1−β . This shows that in the stochastic model, the steady
state distribution has smaller average capital stock, output and consumption
than in the certainty equivalent version of the model.

In Example 11.5.1, uncertainty only affects the evolution of an optimal
program and not the optimal policy function itself. This simplifies the task of
characterizing the effect of uncertainty on the limiting distribution. In general,
uncertainty will also affect the optimal policy function. As we have seen earlier,
in the case of iso-elastic utility and linear production, uncertainty may increase
or reduce optimal investment depending on the nature of the utility function.
This makes it difficult to compare the moments of the limiting distribution of
capital for the stochastic model with its certainty equivalent.

11.6 Solving the Stochastic Growth Model

The stochastic growth model is inherently nonlinear. There is no known gen-
eral, closed form solution. Instead, analysis of the model with general functional
forms aims to qualitatively characterize optimal policies and the resulting im-
plications for economic behavior. There are two main approaches to achieving
more specific solutions, all of which require assumptions regarding functional
forms for production and utility. The only cases with known closed form ana-
lytical solutions are those discussed in Examples 11.3.1 and 11.5.1.
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Approximation and numerical methods are the alternative when an an-
alytical solution is not available.42 By far the most common approximation
technique is to linearize the Euler equations around the steady state of the
model, an idea pioneered by Magill [65] in continuous time and Kydland and
Prescott [60] in discrete time. This approach was subsequently extended by
[57], [58], [20] and many others. In a model with Cobb-Douglas technology and
CES/CRRA utility, [131] develops central limit and large deviation principles
that characterize the manner in which capital trajectories in the stochastic
model converge to those in the deterministic case as the standard deviation of
the random shock goes to zero. In practice, most approximation methods are
not entirely analytical and the approximate solution is analyzed using simu-
lations where the underlying parameters are calibrated to data. Solutions are
accurate in the neighborhood of a stochastic steady state with support on a
small interior interval. Approximation methods are less useful in situations
where the disturbance term has support on a large interval, where the solution
is not interior, where second order effects are important, and in the study of
transition dynamics.

Numerical dynamic programming can be used to solve parametric speci-
fications of the stochastic growth model. The two most common approaches
involve iteration of discrete or parametric approximations to the value or pol-
icy functions. Recent surveys of numerical methods can be found in [112], [60],
[74], and [113]. Once the model is solved, the policy functions can be used
to compute moments for the limiting distributions of the economic variables of
interest. The main advantage of numerical dynamic programming is that atten-
tion need not be restricted to a neighborhood of the steady state. This allows
one to investigate almost any question of interest within the context of a given
parametric specification, including a study of global dynamics. The primary
disadvantage has to do with robustness to model specification, calibration and
choice of numerical method.43 In general, different numerical procedures can
yield substantially different results so care must be exercised in their imple-
mentation.

11.7 Conclusion

The literature on optimal stochastic growth theory is over three decades old
now and there are many important ways in which the theory has contributed
42 An early survey and comparison of different methods can be found in [130].
43 For algorithms generated by a contraction mapping of modulus δ , the approxima-

tion error is bounded by ‖ Vn − Vn+1 ‖< ε/(1 − β), where ε is the tolerance level
under the given metric and Vn is the nth iterate of the algorithm. Santos [114]
shows how the Euler equation residuals can be used to bound the approximation
error for other types of algorithms. Santos and Peralta-Alva [115] examine when
the simulated moments from a numerical solution converge to their exact values
as the approximation errors converge to zero.
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to our understanding of capital accumulation, growth and more generally, op-
timal intertemporal resource allocation. In this section, we summarize some
of the contributions of the stochastic growth literature and we point out where
the introduction of uncertainty has done little to alter the conclusions of the
deterministic model.

First, stochastic growth theory has provided a different explanation of eco-
nomic volatility. In contrast to the deterministic case, an optimal program in
the stochastic model is a sequence of random variables generated jointly by op-
timal decisions and random productivity disturbances. Realized capital paths
fluctuate even when the optimal policy is time stationary and well-behaved.
This way of looking at economic volatility has been successfully utilized by
the business cycle literature as a way to capture various stylized facts about
economic fluctuations.

Second, in the stochastic growth model the utility function plays a promi-
nent role in determining the long run behavior of the economy. Even in a
one-sector model and for the same production technology, discount factor and
distribution of random shock, the limiting steady state distribution typically
differs with the specification of the utility function. The role of the utility func-
tion is also seen in conditions for long run growth and avoidance of extinction.
This role is absent in deterministic models.

It is possible to examine how optimal paths and the limiting distribution
are affected by changes in the riskiness of productive assets, risk aversion,
or the willingness to substitute consumption across time. Unfortunately, not
much general analytical characterization is available outside a few examples in
the log-linear family. These examples nonetheless serve to illustrate how the
qualitative nature of comparative dynamics can depend on the parameters of
the utility function.

Third, key qualitative features of optimal policies such as continuity and
monotonicity are not significantly altered by the presence of uncertainty in the
production technology.

Fourth, extending results on the existence and global stability of an optimal
steady state to the stochastic model requires verifying that the transition law
for the optimal process satisfies certain conditions, which have been discussed
in previous sections. This has necessitated strong technical assumptions that
have no counterpart in the deterministic literature. In the multisector case, this
difficulty has been more pronounced and the conditions for global stability of a
stochastic steady state are only specified in terms of the transition law for the
optimal process, making it difficult to evaluate their economic implications.

Fifth, in non-classical one-sector models that generate multiple invariant
distributions that act as local attractors, it has been shown that if the volatility
of technological disturbances is increased sufficiently, one can establish global
convergence of optimal processes to a unique stochastic steady state. Loosely
speaking, higher stochasticity in the production technology makes it more likely
that realized optimal paths exhibit a high degree of economic fluctuations over
time, but it also increases the likelihood that the distribution of optimal capital
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stocks converges globally to a unique invariant distribution independent of the
initial state. In other words, greater production uncertainty may be associated
with higher economic volatility and at the same time, may ensure long run
”convergence” in probability distribution of economies that differ in their initial
states. This is a fundamental insight into the process of growth and fluctuations
in an economy.

Finally, the stochastic growth literature has followed the deterministic lit-
erature very closely in establishing a set of turnpike results that show how
optimal paths approach each other almost surely in the long run.

As for the important theoretical questions that remain unanswered, our
survey indicates that a general characterization of the stochastic steady state or
invariant distribution, is lacking. Steps toward such a characterization would
improve our understanding of the forces that determine long run economic
behavior in a convergent stochastic economy. We not only need to understand
how complex the limiting distribution can be, but also have some idea of the
relationship between the fundamentals of the model and the properties of the
limiting distribution. That is, what do technology and preferences imply about
the nature of the limiting distribution? Much work remains to be done there.

Other important open questions in the one sector model are: a complete
characterization of conditions under which optimal paths converge to zero al-
most surely, to a non-trivial invariant distribution and diverge to infinity al-
most surely (the existing literature only provides strong sufficient conditions
for each of these events); relaxing the conditions for convergence and stabil-
ity in the non-convex model; and the question of asymptotic convergence in
versions of the model with non-monotone optimal investment policy (such as
the stock-dependent model). Developing more transparent conditions for con-
vergence and stability in the multisector stochastic model and conditions for
sustained long run growth in such models are also problems that remain open
to the current generation of growth theorists.

Finally, the methodology of stochastic optimal growth is increasingly ap-
plied to other problems of dynamic resource allocation ranging from models of
financial markets and macroeconomic fluctuations to the management of nat-
ural and environmental assets. These applications often require extensions and
modifications to the basic framework in order to suit the stylized facts that
characterize these problems. This, in turn, poses new questions for the growth
theorist. The development of new applications and extensions of existing ones
may well continue to be the most fruitful source of new ideas related to the
stochastic growth model.
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