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Preface

The problem of efficient or optimal allocation of resources is a fundamental
concern of economic analysis. The theory of optimal economic growth can be
viewed as an aspect of this central theme, which emphasizes in general the issues
arising in the allocation of resources over an infinite time horizon, and in par-
ticular the consumption-investment decision process in models in which there
is no natural ”terminal date”. This broad scope of ”optimal growth theory” is
one which has evolved over time, as economists have discovered new interpre-
tations of its central results, as well as new applications of its basic methods.
The purpose of this handbook is to provide surveys of some significant results
of the theory of optimal growth, as well as the techniques of dynamic optimiza-
tion theory on which they are based. Armed with the results and methods of
this theory, a researcher should be in an advantageous position to apply these
versatile methods of analysis to new issues in the area of dynamic economics,
as well as to contribute to the further development of the mathematical tech-
niques of optimization over time. The survey included in this volume all have
as a common starting point the seminal contribution of Frank Ramsey (1928).
This paper was concerned with the problem of how much a nation should save,
which in modern terminology would be called the social planner’s problem of
optimal savings. The impact of the contribution has, however, been well be-
yond the scope of this specific problem. It has influenced the modern theories
of planning, economic development, international economics, public finance,
macroeconomics, monetary theory, economics of finance and natural resource
economics. We elaborate a bit on one aspect of optimal growth theory which has
ensured the ever-growing importance of Ramsey’s paper. As indicated above,
the paper was explicitly concerned with an omniscient central planner’s opti-
mal savings problem. This issue continued to be the concern of optimal growth
theorists in the 1950s and especially in the 1960s when there was really a boom
in research in this area. However, difficulties with the planning process were
voiced theoretically, and realized in the actual experience of many socialist cen-
trally planned economies. Thus, studying the social planner’s problem appeared
to lead to less insights about the performance of actual economies than had
been previously supposed. One implication of this was that there was a need to
carefully re-examine the fundamental theorems of classical welfare economics,
which provide conditions for a competitive equilibrium to be an optimal alloca-
tion and conversely. Specifically, it was important to identify the circumstances
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under which such an equivalence theorem failed to be valid. Central to this
investigation is the concept of an equilibrium over time, based exclusively on
the microeconomic foundations of rational decision making agents, and entirely
without the assistance of any central planner. This concept, and its applications
in various sub-disciplines of economics, has been the object of systematic study
over the last thirty years. A basic ingredient in developing this concept is the
recognition of the fact that in making current investment decisions, which yield
returns in the future, agents are necessarily ”forward looking” in the sense that
their actions will be influenced by their beliefs regarding these future returns.
These investment decisions could be regarding a variety of variables such as
physical capital accumulation, the amount of education one acquires through
schooling, the rate of extraction of mineral deposits or the development of en-
vironmental resources for industrial purposes. The beliefs of agents regarding
future returns on their investments can, of course, turn out to be incorrect.
But, it is plausible to proceed with the notion that beliefs that are at odds
with the actual development of events cannot persist; any collection of agents
actions that we wish to call an ”equilibrium” must validate (or at least not
contradict) the beliefs on which they are based. Thus, one focuses on a notion
of equilibrium over time, in which (i) given their beliefs, agents choose optimal
actions according to their preferences, subject to the constraints they face; (ii)
markets clear at each date; and (iii) the beliefs of the agents turn out to be
correct. When this notion of equilibrium is studied in the context of the in-
finitely lived agent model, where agents are modeled as dynasties, having no
natural termination date to their ”lifetimes”, the techniques that Ramsey used
to analyse the social planner’s optimal savings problem become directly rele-
vant. In fact, his paper provides precisely the tools to examine the equilibrium
dynamics of infinite-horizon economies, as well as the benchmark of the social
planners’s optimum as an ideal to which such an equilibrium can be compared,
whenever the two solutions differ. The starting point of the analysis of optimal
growth theory is, of course, the existence of an optimum; that is, the existence
of a solution to the social planner’s or representative agent’s infinite horizon
optimization problem.

Dynamic programming with undiscounted return is reviewed in Chapter
1. The topic goes back to Ramsey who felt that from a planner’s point of
view, discounting future utilities was ethically indefensible. Two versions of
the overtaking criterion are considered. Convergence of a class of fesible paths
(the good programmes) to the stationary optimal path assumed to be unique
and existence of optimal policies are first established. Optimal policies are then
described in terms of a Bellman’s equation and of Euler’s equation.

Chapter 2 is devoted to dynamic programming with discounted return. The
two main methods of analysis of solutions are recalled under convex and non
convex hypotheses. The first uses Bellman’s equation: the value function is
shown to verify a Bellman’s equation and the optimal path from any initial
condition to be a dynamical system, generated by the optimal policy associated
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with Bellman’s equation. The second is based on Euler’s equation. Numerous
examples are given.

Chapter 3 provides an exposition of duality theory in infinite horizon dy-
namic optimization models. The basic results on price characterization of opti-
mality, when future utilities are discounted, are discussed in the framework of
a general reduced-form intertemporal allocation model. The theory is applied
(i) to the existence of a stationary optimal stock, (ii) to a study of optimal be-
havior in a model in which utility is derived from consumption alone, and (iii)
to analyze a rule, proposed by Weitzman, which relates the net national prod-
uct of an economy to its dynamic social welfare. The role of the transversality
condition in these characterization results is investigated, and the possibility
of replacing it by a condition, verifiable in finite time, is discussed.

The rationazibility literature is surveyed in Chapter 4. Boldrin and Mon-
trucchio (1986) took a significant step in showing that any twice continuously
differentiable function could be obtained as policy function of an appropriate
dynamic optimization model. Since policy functions are known to be continu-
ous, the question arose whether their result could be extended to the class of all
continuous functions. This is known as ” the rationazibility problem”. While
Neuman (1988) demonstrated that this was not possible in general, Mitra and
Sorger (1998) showed that Boldrin and Montrucchio’s result could be extended
to the class of Lipschitz continuous functions.

The concept of a stationary optimal stock is central to optimal growth
theory. Chapter 5 surveys the main results on existence and uniqueness of sta-
tionary optimal stocks. The existence issue is analyzed via the concept of a
discounted golden-rule stock, and following the primal approach used in Khan
and Mitra (1986). Two quite distinct approaches are illustrated in the discus-
sion of uniqueness. The first uses the methods of duality theory and emphasizes
the role of non-joint production and normality in consumption behavior. The
second uses the method of differential topology and establishes a link between
uniqueness in the discounted case, and the (known) uniqueness when future
utilities are not discounted.

Optimal growth models have not only been used to study capital accu-
mulation and long-run growth but also to demonstrate that cyclical or chaotic
equilibria can emerge even in the absence of any market imperfections. Chapter
6 surveys that part of this literature which deals with the standard neoclassical
optimal growth model with a single state variable. It starts by emphasizing
the different roles played by submodularity and concavity of the reduced form
utility function. The former provides an incentive for the decision maker to
switch between low and high capital stocks whereas the latter creates a desire
for consumption smoothing. Which of the two incentives dominates is mostly
determined by the time-preference of the decision maker. The chapter therefore
discusses in detail how the existence and structure of optimal cycles depends on
the discount factor. The chapter then identifies three sources of optimal chaos:
submodularity, strong time-preference, and some form of inertia. Inertia, which
is necessary to prevent the model from generating periodic cycles, can either be
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created by limited production possibilities at small capital stocks or by partial
(rather than full) depreciation of capital. It is finally shown that strong time-
preference facilitates but it is not strictly necessary for the existence of optimal
chaos.

Optimal growth models with non-concave production functions are consid-
ered in Chapter 7. A one sector closed economy is studied as a benchmark.
The production function displays increasing returns for small outputs and de-
creasing returns for large outputs. Existence and properties of optimal paths
are discussed both in the no discounting and in the discounting cases. Optimal
paths are compared with those of the Ramsey model. Extensions are given to
multi-sectors models and to open economies.

Chapter 8 uses isotone recursive methods, first introduced in operations
research by Veinott and Topkis, to analyze economies with homogeneous
agents. These methods have provided a unified catalog of results on existence,
characterization and computation of Markov Equilibrium Decision Processes
(MEDPs) in infinite horizon economies where the second welfare theorem
fails. Examples include models with production nonconvexities, taxes, valued
fiat money, monopolistic competition, behavioral heterogeneity and incomplete
markets. These methods emphasizes the role of order and provide monotone
comparison theorems on the space of economies and foundations for a theory
of numerical solutions for MEDPs and stationary Markov equilibrium.

Chapter 9 is devoted to recursive utilities. Given a preference order on
the space of sequences of intertemporal consumptions, a utility representation
of the preference is a recursive utility function if it depends only on present
consumptions and future utility. Such utilities give rise to an aggregator. Con-
versely, given an aggregator which satisfies appropriated properties, one can
construct a recursive utility function. Existence of optimal paths, of equilib-
ria in infinite horizon with recursive preferences, dynamics of optimal paths
are reviewed. Optimal paths are characterized in the one-sector model and a
turnpike theorem is derived.

Chapter 10 studies indeterminacy of equilibrium in discrete-time models of
economic growth. The main concern of the chapter is to explore the conditions
under which representative-agent models of capital accumulation with mar-
ket distortions may hold infinite number of converging trajectories around the
steady state equilibrium. Conditions for the occurrence of indeterminacy are
examined in one-sector and two-sector models of exogenous growth and in the
prototype model of endogenous growth. While the discussion mainly focuses
on local indeterminacy conditions, global indeterminacy is also considered.

Chapter 11 provides an overview of key results in the theory of discounted
stochastic optimal growth in discrete time. It begins with an analysis of the
classical stochastic growth model of Brock and Mirman (1972) for a one-sector
economy with convex technology and utility of consumption. The theory is
then extended to problems with irreversible investment, increasing returns,
non-convex technologies and more general utilities. Equivalence between op-
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timal and competitive outcomes is established by using the competitive price
characterization of optimal policies.

Chapter 12 deals with deterministic and stochastic versions of the Von-
Neumann-Gale model. Von-Neumann’s original concern was to determine a
balanced path growing at a maximal rate for a linear and stationary deter-
ministic technology and prices supporting that path. Such a pair was called
a Von-Neumann’s equilibrium. The chapter first provides non linear and non
stationary deterministic generalizations of the model, a topic initiated by Gale.
Stochastic generalizations of a von Neumann equilibrium and of efficient paths
are then considered. Existence, uniqueness and turnpike results are proven.
Lastly the chapter outlines new applications of the von Neumann-Gale model
to finance related to asset pricing and hedging in securities markets.

Chapter 13 surveys one interpretation of Ramsey’s multi-agent model,
solves for the steady state distribution and examines the models’ dynamics
within well-specified theories of intertemporal equilibrium. The resulting analy-
sis shows that there are fundamental differences between the dynamics of the
representative agent model and one with heterogenous households. Not only
do the long-run distribution of income and wealth differ from the representa-
tive agent outcome, but so does the dynamics. Indeed, the convergence of the
economy to the long-run steady state from arbitrary initial conditions charac-
teristic of Ramsey’s optimal accumulation – representative agent equilibrium
model only holds for some specifications of preferences and technology in the
multi-agent setup. Complicated dynamics at the aggregate level can arise even
with very unequal income and wealth distributions evolving over time.

Chapter 14 provides an extensive account of research in economics based
on dynamic games. It is organized along methodological as well as field-related
criteria. For methodologically defined frameworks, a somewhat detailed cov-
erage of the general set-ups and their main results is provided, including for
the open-loop concept, the linear-quadratic model, myopic equilibrium, gen-
eral existence theory, games of perfect information, and stochastic games with
a continuum of players. As to area-by-area coverage, it is mostly in the form
of an overview, and includes applications in capital theory/resource economics,
industrial organization, and experimental economics.

January 2006 Rose-Anne Dana
Cuong Le Van

Tapan Mitra
Kazuo Nishimura
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1. Optimal Growth Without Discounting

Rose-Anne Dana
University Paris-Dauphine, France

Cuong Le Van
Cuong Le Van, CERMSEM, CNRS, University Paris 1, France

1.1 Introduction

As it is well known, the standard approach to infinite time horizon optimal
growth problem is to discount future consumptions utilities by some factor
and to maximize the resulting infinite series. Another approach pionnered by
Ramsey [12] and reworked by Samuelson and Solow [13], Koopmans [9] and
von Weizsäcker [14] uses a discount factor equal to one. The criterion is then
sensitive to all increases in consumptions and treats generations equally. As was
shown by Koopmans [27] and Diamond [5], no continuous preference ordering
can be, at the same time, sensitive and treat generations equally but they do
exist partial orderings which satisfy these axioms. The overtaking criterion is
such an example. Gale [7] showed that, although it was not possible to compare
all programs under that criterion, a partition of programs could be made into
good or bad programs and that one could restrict himself to good programs.
The concept of ”optimal program” was first discussed. Various concepts of
optimality were considered by Gale [7] and Brock [2] and ”optimal programs”
were shown to exist under various sets of assumptions about the technology and
preferences. Then, on one hand, in order to relate the ”undiscounted” case to
the ”discounted” case, Dana and Le Van [3],[4] introduced value functions for
the overtaking criterion and showed that, under further hypotheses, an optimal
program could be described as in the discounted case, by an optimal policy. On
the other hand, non stationary versions of the overtaking criterion were used by
Mckenzie [10] and more particularly by Michel[11] who characterized optimality
by transversality conditions. We emphasize the fact that the literature on the
overtaking criterion makes extensive use of price theory and turnpike results.

The chapter is organized as follows: In section 1.2, we set the model and
show existence of a stationary optimal program and prices supporting it. In
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section 1.3, we define good programmes and show that a partition of programs
can be made into bad or good programs. Assuming strict concavity of the
utility fonction at the stationary optimal program (respectively uniqueness of
a stationary optimal program), we then show convergence (respectively average
convergence) of good programs to the stationary optimal program. In section
1.4, we reconsider the two concepts of optimality (”optimality” and ”weak
optimality”) introduced by Gale [7] and Brock [2] and show existence of optimal
solutions for both concepts. We further characterize optimal solutions in terms
of an Euler equation. In section 1.5, we introduce as in the discounted case,
a value function and a Bellman’s equation and on further assumptions on the
technology and the criterion, show that an optimal program is unique and can
be described by an optimal policy.

1.2 The Model

We consider an intertemporal economy where the instantaneous utility of the
representative consumer depends on kt, the capital stock on hand at date t and
on kt+1, the capital stock for date t + 1. Given kt, the set of feasible capital
stocks for the next period t+ 1 is Γ (kt). We assume that at any period t, the
feasible capital stock on hand belongs to X , a subset of Rn

+. More explicitly,
we make the following assumptions:

H1: X is a compact, convex set of Rn
+ with non-empty interior and X contains

0.
H2: Γ is a continuous correspondence from X into X with non-empty convex
images. Its graph, graph Γ = {(x, y) ∈ X ×X : y ∈ Γ (x)}, is convex.
H3: (Free disposal) If y ∈ Γ (x), x′ ≥ x and y′ ≤ y, then y′ ∈ Γ (x′).
H4: (Existence of expansible capital stocks) There exist (x, y) ∈ graph Γ , with
y >> x, i.e. yi > xi, for all i = 1, ..., n.
H5: The instantaneous utility function F : graph Γ → R is concave, continu-
ous, increasing in first variable and decreasing in the second variable.

Remark 1.2.1. Assumption H3 implies that 0 ∈ Γ (0). Assumptions H3 and
H4 imply that the interior of graph Γ , denoted by int (graph Γ ) is non-empty.

Definition 1.2.1. A sequence x is feasible from x0 ∈ X if xt+1 ∈ Γ (xt) for
all t ≥ 0. A programme from x0 is a feasible sequence from x0. We denote by
Π(x0) the set of feasible sequences from x0. The set of programmes is denoted
by Π, i.e. Π = ∪x∈XΠ(x).

We next define optimal stationary programmes and prove the existence of an
optimal stationary programme and supporting prices.

Definition 1.2.2. An optimal stationary programme is a solution x̄ to the
problem

max
x∈X

{F (x, x) : (x, x) ∈ graph Γ}
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Let F̄ be the value function of the above problem. It follows from H4 that

F̄ = max{F (x, y) : (x, y) ∈ graph Γ, y ≥ x}

Proposition 1.2.1. Assume H1-H5. Then:
(i) there exists an optimal stationary programme x̄ ,
(ii) there exists p ∈ Rn

+ such that:

F (x, y) + p · y − p · x ≤ F (x̄, x̄), for all (x, y) ∈ graph Γ

Proof. (i) From H4 and H5, the set {(x, y) ∈ graph Γ | y = x} is non-empty
and compact. As F is continuous on graph Γ , a maximal pair (x̄, x̄) exists
proving the existence of an optimal stationary programme.
(ii) Let F0(x, y) = F (x, y) if (x, y) ∈ graph Γ , and F0(x, y) = −∞ if
(x, y) /∈graph Γ . We have

max{F0(x, y) : y ≥ x} = max{F (x, y) : (x, y) ∈ graph Γ, y ≥ x}

Assertion (ii) follows from the Kuhn-Tucker condition (see Corollary 7.2.1 in
Florenzano, Le Van and Gourdel [6]).

For further use, let δ : graph Γ → R be defined by

δ(x, y) = F (x̄, x̄) − F (x, y) + p · (x− y), for all (x, y) ∈ graph Γ (1.1)

From Proposition 1.2.1, δ(x, y) ≥ 0, for all (x, y) ∈ graph Γ .

1.3 Good Programmes

1.3.1 Good Programmes

The next lemma shows that the utility of a programme is always bounded
above.

Lemma 1.3.1. Assume H1-H5. For any programme x, there exists M > 0
such that

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] ≤ M, for all T

Proof. From Proposition 1.2.1,

F (xt, xt+1) − F (x̄, x̄) ≤ p · xt+1 − p · xt

Since X is compact

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] ≤ p · xt+1 − p.x0 ≤ p · xt+1 ≤ M

proving the desired assertion.
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Lemma 1.3.2. Assume H1-H5. For any programme x,
+∞∑
t=0

δ(xt, xt+1) exists

in R ∪ {+∞}.

Proof. By Proposition 1.2.1, δ(xt, xt+1) ≥ 0. The assertion follows.

For further use, we have

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] = −
T∑

t=0

δ(xt, xt+1) + p · (x0 − xT+1) (1.2)

Lemma 1.3.3. Assume H1-H5. For any programme x, then either
(i) lim infT

∑T
t=0[F (xt, xt+1) − F (x̄, x̄)] > −∞ or

(ii) limT→+∞
∑T

t=0[F (xt, xt+1) − F (x̄, x̄)] = −∞.

Proof. From Lemma 1.3.2,
+∞∑
t=0

δ(xt, xt+1) exists in R ∪ {+∞}. Hence

– If
+∞∑
t=0

δ(xt, xt+1) <∞, then, from (1.2) and since X is compact,

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] ≥ [−
∞∑

t=0

δ(xt, xt+1) − sup
x∈X

p · x] = A,

for all T , hence assertion (i).

– If
+∞∑
t=0

δ(xt, xt+1) is infinite

lim sup
T

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] ≤ −
+∞∑
t=0

δ(xt, xt+1) + p · x0 = −∞,

hence assertion (ii).

From lemma 1.3.3, we may now introduce the definition of a good programme.

Definition 1.3.1. Assume H1-H5. A programme x is good if it fulfills one
of the following equivalent condition:

1)
+∞∑
t=0

δ(xt, xt+1) <∞,

2) There exists A ∈ R such that
T∑

t=0

[F (xt, xt+1) − F (x̄, x̄)] ≥ A, for all T.
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3) lim infT

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] > −∞

4) For any programme x′, lim infT

T∑
t=0

[F (xt, xt+1) − F (x′t, x
′
t+1] > −∞

Proof. Let us show that the four assertions are equivalent.
1) is equivalent to 2) follows from lemma 1.3.3 and (1.2).
2) is equivalent to 3) follows from the fact that liminfTuT is the smallest cluster
point of the sequence (uT ).
2) implies 4): Assume 2). Let x be good and let x′ be any programme. From
2) and lemma 5, we have that for all T ,

T∑
t=0

[F (xt, xt+1)−F (x′t, x
′
t+1] =

T∑
t=0

[F (xt, xt+1)−F̄ ]−
T∑

t=0

[F (x′t, x
′
t+1)−F̄ ] ≥ B,

with B = A−M , hence assertion 4.
4) implies 3) by taking for x′, the optimal stationary sequence x̄.

1.3.2 Convergence Properties of Good Programmes

We next assume:

H6: The stationary point (x̄, x̄) is unique.

The following stronger assumption insures the uniqueness of the stationary
point:

H6G: The utility function F is strictly concave at (x̄, x̄), i.e. for every (x, y) �=
(x̄, x̄) and λ ∈]0, 1[,

F (λx + (1 − λ)x̄, λy + (1 − λ)x̄) > λF (x, y) + (1 − λ)F (x̄, x̄)

Lemma 1.3.4. Assume H1-H2. Then H6G implies H6

Proof. Assume H6G and that there exists another stationary point x̄′. Let
λ ∈]0, 1[. Since graph Γ is convex, (λx̄+ (1− λ)x̄′, λx̄+ (1− λ)x̄′) ∈graph Γ .
Since F is strictly concave at (x̄, x̄), we have:

F (λx̄ + (1 − λ)x̄′, λx̄+ (1 − λ)x̄′) > λF (x̄, x̄) + (1 − λ)F (x̄′, x̄′) = F̄

hence a contradiction.

We know prove a turnpike or average turnpike property for good programmes.
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Proposition 1.3.1.
1) Assume H1- H6G. If x is good, then xn → x̄.

2) Assume H1- H6. If x is good, then x̄n = 1
n

n∑
t=0

xt → x̄.

Proof. To prove the first assertion, if x is good, then from definition 1.3.1,

assertion 1,
+∞∑
t=0

δ(xt, xt+1) < ∞, hence δ(xt, xt+1) → 0 when t → +∞. Let

φ :graph Γ → R be defined by:

φ(x, y) = F (x, y) − p · x+ p · y = −δ(x, y) + F (x̄, x̄) (1.3)

Since δ(x, y) ≥ 0, for all (x, y) ∈ graph Γ ,

φ(x, y) ≤ F (x̄, x̄) = φ(x̄, x̄), for all (x, y) ∈ graph Γ

Since φ is strictly concave at (x̄, x̄), (x̄, x̄) is a unique maximizer of φ. Since
δ(xt, xt+1) → 0, φ(xt, xt+1) → F (x̄, x̄) = φ(x̄, x̄). Let (x, x′) be a cluster point
of the sequence {(xt, xt+1)}. Since φ is continuous, φ(x, x′) = φ(x̄, x̄). The
maximizer being unique, (x, x′) = (x̄, x̄). The sequence {(xt, xt+1)} having
(x̄, x̄) as a unique cluster point, it converges to (x̄, x̄). Equivalently, xt → x̄
which proves the first assertion.
To prove the second assertion, let us first remark that, as graph Γ is convex,
(x̄T , x̄T+1) ∈ graph Γ , for all T . As F is concave and x is good, it follows from
definition 1.3.1 (ii) that, for some G, we have, for all T ,

F (x̄T , x̄T+1) − F (x̄, x̄) ≥ 1
T

T∑
t=0

[F (xt, xt+1) − F (x, x)] ≥ G

T

Let (x, x′) be a cluster point of the sequence (x̄T , x̄T+1). Then (x, x′) ∈graph Γ
and F (x, x′) − F (x̄, x̄) ≥ 0, hence F (x, x′) = F (x̄, x̄). The function F having
a unique maximizer on graph Γ , (x, x′) = (x̄, x̄) and the sequence (x̄T , x̄T+1)
converges to (x̄, x̄) proving the second assertion.

Corollary 1.3.1. Assume H1- H6 and let x and x′ be two good programmes.
Then

lim inf
T

(pxT − px
′
T ) ≤ 0

Proof. From Cesaro Lemma, for a sequence {at} such that limT
1
T

∑T
t=0 at

exists, we have:

lim inf
t

at ≤ lim
T

1
T

T∑
t=0

at ≤ lim sup
t

at

From proposition 10, 1
T

T∑
t=0

xt → x̄ and 1
T

T∑
t=0

x′t → x̄, hence
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lim inf
t

(p · xt − p · x′
t) ≤ lim

T

1
T
p ·

T∑
0

(xt − x
′
t) = 0

proving the desire result.

Corollary 1.3.2. Assume H1- H6G, then lim
T→+∞

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)]

exists in R ∪ {−∞}.

A programme x ∈ Π is good iff limT

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] exists in R.

A programme x ∈ Π is not good iff limT

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] = −∞.

Proof. From (1.2), definition 1.3.1 (i) and proposition 1.3.1, x ∈ Π is good iff

∞∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] = −
∞∑

t=0

δ(xt, xt+1) + p̄ · x0 − p̄ · x̄

When x is not good, from definition 1.3.1 and lemma 1.3.3,

+∞∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] = −∞.

1.3.3 Existence of Good Programmes from x0

We now give sufficient conditions for non emptiness of the set of good pro-
grammes from x0.

Proposition 1.3.2. Assume H1-H5 and that there exists a neighborhood U
of (x̄, x̄) in graph Γ , and σ > 0 such that

|F (x, y) − F (x̄, x̄)| ≤ σ[‖x− x̄‖ + ‖y − x̄‖].

Then ΠG(x0) is non-empty for any x0 such that Γ (x0) contains a strictly pos-
itive y0 (i.e., all the components in Rn of y0 are strictly positive.)

Proof. By H4, there exists (xp, yp) in graph Γ such that xp << yp. Since
0 ∈ Γ (0), we have λyp ∈ Γ (λxp), for λ ∈]0, 1[. If λ is sufficiently small, we have
λyp << y0 and λyp >> λxp. So, we can assume yp << y0 and yp >> xp.
Let λ ∈]0, 1[. For any integer n, we remark that

(1 − λn+1)x̄+ λn+1xp ≤ (1 − λn)x̄ + λnyp iff (1 − λ)x̄ + λxp ≤ yp.

Choose λ sufficiently close to 1 so that (1 − λ)x̄+ λxp ≤ yp << y0.
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Define, for t ≥ 1, xt = (1−λt)x̄+λtxp. By the choice of λ and by H3, we have
x1 ∈ Γ (x0). For t ≥ 1,

xt+1 ≤ (1 − λt)x̄ + λtyp ∈ Γ ((1 − λt)x̄+ λtxp) = Γ (xt).

By H3, xt+1 ∈ Γ (xt).
Since xt → x̄, there exists T0 such that for any t ≥ T0, (xt, xt+1) ∈ U and hence

|F (xt, xt+1) − F (x̄, x̄)| ≤ 2σλt‖x̄− xp‖.

Thus,
+∞∑
t=T0

|F (xt, xt+1) − F (x̄, x̄)| ≤ 2σ
λT0

1 − λ
‖x̄− xp‖,

and x is good from x0.

Let ΠG(x0) denote the set of good programmes starting from x0 ∈ X .

1.4 Optimal and Weakly Optimal Programmes

1.4.1 Definition and First Properties

We will now define an optimal programme for optimal growth models without
discounting. The first definition we next give is due to Gale [7], the second to
Brock [2].

1.4.2 Definition and Characterisation

Definition 1.4.1. Assume H1-H5. A programme x∗ ∈ Π(x0) is optimal if,
for any programme x ∈ Π(x0), we have

lim sup
T→+∞

T∑
t=0

[F (xt, xt+1) − F (x∗t , x
∗
t+1)] ≤ 0.

A programme x∗ ∈ Π(x0) is weakly optimal if, for any programme x ∈ Π(x0),
we have

lim inf
T

T∑
t=0

[F (xt, xt+1) − F (x∗t , x
∗
t+1)] ≤ 0

Clearly an optimal programme is weakly optimal.

Proposition 1.4.1. Assume that ΠG(x0) �= ∅. Then any weakly optimal pro-
gramme is good. Hence any optimal programme is good.
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Proof. Let x∗ ∈ Π(x0) be weakly optimal. Since X is compact, we have, for
some m > 0,
T∑

t=0

[F (xt, xt+1) − F (x∗t , x
∗
t+1)] =

−
T∑

t=0

δ(xt, xt+1) +
T∑

t=0

δ(x∗t , x
∗
t+1) − p · xt+1 + p · x∗t+1

≥ −
T∑

t=0

δ(xt, xt+1) +
T∑

t=0

δ(x∗t , x
∗
t+1) −m.

Since ΠG(x0) �= ∅, let x ∈ Π(x0) be good. We have

∞∑
t=0

δ(x∗t , x
∗
t+1) ≤

∞∑
t=0

δ(xt, xt+1) + lim inf
T→+∞

T∑
t=0

[F (xt, xt+1) − F (x∗t , x
∗
t+1)] +m

≤
∞∑

t=0

δ(xt, xt+1) +m <∞

From definition 1.3.1, assertion (i), x∗ is good.

1.4.3 Existence of Optimal Programmes

Let γ : Π → [−∞, 0] be defined by

γ(x) = −
∞∑

t=0

δ(xt, xt+1) (1.4)

Proposition 1.4.2. Assume H1-H5. Then γ is concave, upper semi continu-
ous in the product topology. If ΠG(x0) �= ∅, then γ has a maximizer on Π(x0)
which is a good programme. If ΠG(x0) = ∅, then γ(x) = −∞, for all x ∈ Π(x0).

Proof. Let γT (x) = −
T∑

t=0

δ(xt, xt+1). For every T , γT is concave and continuous

in the product topology and γT ≥ γT+1. Hence γ is the decreasing limit of
continuous concave functions, it is therefore concave, upper semi-continuous. If
ΠG(x0) = ∅, then γ(x) = −∞, for all x ∈ Π(x0). If ΠG(x0) �= ∅, then γ has a
maximizer x∗ on Π(x0) which is compact, non-empty in the product topology.
Since γ(x∗) �= ∞, any maximizer is good.

We recall that under H1-H6G, from corollary 1.3.2,

Φ(x) = lim
T→+∞

T∑
t=0

[F (xt, xt+1) − F (x̄, x̄)] (1.5)

is well defined (Φ(x) = −∞ if x �∈ ΠG(x0)) and

Φ(x) = γ(x) + p̄ · x̄− p̄ · x0, x ∈ ΠG(x0) (1.6)
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Theorem 1.4.1. Assume H1-H6G and that ΠG(x0) �= ∅. A programme x∗ ∈
Π(x0) is optimal iff it is a maximizer of γ or of Φ.

Proof. Since ΠG(x0) �= ∅, from Proposition 1.4.2, γ (hence Φ) has a maximizer
x∗ which is good. Let us show that it is optimal. Let x ∈ ΠG(x0). We have

lim
T

T∑
t=0

[F (xt, xt+1) − F (x∗t , x
∗
t+1)] = Φ(x) − Φ(x∗) ≤ 0

since x∗ is a maximizer of Φ. If x �∈ ΠG(x0), then

lim
T

T∑
t=0

[F (xt, xt+1) − F (x′t, x
′
t+1)] = −∞

Hence x∗ is optimal.
Conversely if x∗ is optimal, then from Proposition1.4.1, it is good. If x ∈
ΠG(x0). We have

lim
T

T∑
t=0

[F (xt, xt+1) − F (x∗t , x
∗
t+1)] = Φ(x) − Φ(x∗) ≤ 0

since x∗ is optimal. Hence Φ(x∗) ≥ Φ(x). If x �∈ ΠG(x0), then Φ(x) = −∞.
Hence x∗ is a maximizer of Φ.

Under weaker assumptions, we obtain a sufficient condition for existence of
a weakly maximal programme.

Theorem 1.4.2. Assume H1-H6 and ΠG(x0) �= ∅. If a programme x∗ ∈
Π(x0) is a maximizer of γ, then it is weakly optimal.

Proof. Let x∗ be a maximizer of γ. Since ΠG(x0) �= ∅, from proposition 1.4.1,
x∗ is good. Let x ∈ ΠG(x0). From corollary 1.3.1, we have

lim inf
T∑

t=0

[F (xt, xt+1) − F (x∗t , x
∗
t+1)]

≤
∞∑

t=0

(δ(x∗t , x
∗
t+1) − δ(xt, xt+1)) + lim inf

(
p · x∗t+1 − p · xt+1

)
≤ γ(x) − γ(x∗) ≤ 0.
Hence x∗ is weakly optimal.

Corollary 1.4.1. Assume H1-H6, then x̄ = (x̄, x̄, ..., x̄, ...) is a weakly maxi-
mal programme from x̄. Assume further H6G, then x̄ is an optimal programme
from x̄.

Proof. We have γ(x) ≤ 0 for all x ∈ Π(x̄) and γ(x̄) = 0. The assertion follows
from Theorems 1.4.1 and 1.4.2.
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1.4.4 Euler Equation

We now assume that F is C1 in the interior of graph Γ .

Proposition 1.4.3. Assume H1-H6 and that F is C1 in the interior of
graph Γ and ΠG(x0) �= ∅ . Then

1. If x∗ maximises γ in Π(x0) and ∀t, (x∗t , x∗t+1) ∈ int(graph Γ ), then

F2(x∗t , x
∗
t+1) + F1(x∗t+1, x

∗
t+2) = 0, for all t (1.7)

2. Conversely, let us assume that any maximizer of Φ on graph Γ is in
int(graph Γ ). Then if x∗ ∈ ΠG(x0) fulfills (1.7), then x∗ maximises γ.

Proof. Let x∗ maximises γ. Assume that, for all t, (x∗t , x
∗
t+1) ∈ int(graph Γ ).

We then have:

δ2(x∗t , x
∗
t+1) + δ1(x∗t+1, x

∗
t+2) = 0, for all t

As
δ2(x∗t , x

∗
t+1) = −F2(x∗t , x

∗
t+1) − p

and
δ1(x∗t+1, x

∗
t+2) = −F1(x∗t+1, x

∗
t+2) + p,

we obtain (1.7).

Conversely, let x∗ be good and satisfy (1.7). Then δ(x∗t , x
∗
t+1) → 0, hence

Φ(x∗t , x
∗
t+1) → F (x̄, x̄) = Φ(x̄, x̄). Let (x, x

′
) be a cluster point of the sequence

(x∗t , x
∗
t+1). We then have Φ(x, x

′
) = Φ(x̄, x̄), hence (x, x

′
) is a maximizer of Φ.

Since (x, x
′
) ∈ int(graph Γ ) by assumption, we have Φ1(x, x

′
) = Φ2(x, x

′
) = 0,

hence
F1(x, x

′
) = p and F2(x, x

′
) = −p (1.8)

Let x ∈ ΠG(x0) and let ∆T =
∑T

t=0 −[δ(x∗t , x
∗
t+1)−δ(xt, xt+1)]. As δ is concave

and x∗ fulfills (1.7), we have

∆T ≥
T∑

t=0

[F1(x∗t , x
∗
t+1)(x

∗
t − xt) + F2(x∗t , x

∗
t+1)(x

∗
t+1 − xt+1)]

+
T∑

t=0

p.(x∗t+1 − xt+1) −
T∑

t=0

p.(x∗t − xt)

= F2(x∗T , x
∗
T+1)(x

∗
T+1 − xT+1)] + p.(x∗T+1 − xT+1)

Passing to the limit on the left hand side, we obtain that for any cluster point
(x, x

′
) of the sequence (x∗t , x∗t+1) and any cluster point y of the sequence (xt),

γ(x∗) − γ(x) ≥ (F2(x, x
′
) + p) · (x′ − y) = 0

since (x, x
′
) fulfills (1.8). If x �∈ ΠG(x0), then γ(x∗) − γ(x) = ∞. Hence x∗ is

a maximizer of γ on Π(x0).
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Corollary 1.4.2. Assume H1- H6G and that F is C1 in the interior of
graph Γ and ΠG(x0) �= ∅. Let x∗ be a good programme from x0 such that
(x∗t , x∗t+1) ∈ int(graph Γ ) for all t. Then x∗ is optimal iff it fulfills (1.7).

1.5 Bellman’s Equation, Optimal Policy

1.5.1 Bellman’s Equation

Let
V (x) = sup

x∈Π(x)

γ(x)

Proposition 1.5.1. Assume H1-H6. Then

1. V (x̄) = 0 and V (x) = −∞ iff ΠG(x) = ∅. V is concave, nondecreasing,
negative and upper semi-continuous and satisfies Bellman’s equation:

V (x) = sup
y∈Γ (x)

{−δ(x, y) + V (y)} (1.9)

2. If x ∈ Π(x) fulfills V (x) = γ(x), then x is weakly maximal. Moreover if
x ∈ ΠG(x), then limt→∞V (xt) = 0. Assume furthermore H6G. Then x is
optimal iff V (x) = γ(x).

3. V is the greatest negative solution to (1.9). It is the unique solution to (1.9)
such that either V (x) = −∞ or limt→∞V (xt) = 0 for every x ∈ ΠG(x)

Proof. It follows from Proposition 1.4.2 that

V (x) > −∞ iff ΠG(x) �= ∅

The upper semicontinuity of V follows from Berge’s theorem [1], page 122 and
the fact that the correspondence x→ Π(x) has a closed graph and is compact
valued and is therefore upper semicontinuous.

If V (x) > −∞, then from Proposition 1.4.2, γ has a maximizer. From
Theorem 1.4.2, any maximizer x∗ of γ is weakly optimal. By the usual argument

V (x) = max
y∈D(x)

{−δ(x, y) + V (y)}

If V (x) = −∞, then V (y) = −∞ for every y ∈ D(x) (if not, there would exists
a good programme from x). Hence the Bellman’s equation holds also in that
case.

Let us prove that limt→∞V (xt) = 0 for every x ∈ ΠG(x). Indeed

∞∑
t=T

−δ(xt, xt+1) ≤ V (xT ) ≤ 0
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Since x ∈ ΠG(x), limT

∞∑
t=T

−δ(xt, xt+1) = 0, hence the sequence {V (xT )} has

a limit and limT→∞V (xT ) = 0 proving the desired result.
Let W be another negative solution to (1.9). Let ε be given. There exists

x1, x2, . . . , xT such that x1 ∈ Γ (x), xt ∈ Γ (xt−1) for t = 1, . . . , T and

−δ(x, x1) +W (x1) > W (x) − ε

−δ(x1, x2) +W (x2) > W (x1) −
ε

2

−δ(xT−1, xT ) +W (xT ) > W (xT−1) −
ε

2T−1

Summing up the preceeding inequalities, we obtain with x0 = x, since W is
negative

T−1∑
0

−δ(xt−1, xt) ≥
T−1∑

0

−δ(xt−1, xt) +W (xT )

> W (x) − ε(1 + 1
2 + . . .+ 1

2T−1 )

Thus V (x) > W (x) − ε
2 and therefore V (x) ≥ W (x). Hence, if V (x) = −∞,

then W (x) = −∞.
Assume now that V (x) > −∞ and let x∗ be such that V (x) = γ(x∗). Then

x∗ ∈ ΠG(x). Since W is a solution to (1.9),

W (x) ≥
T∑
0

−δ(x∗t−1, x
∗
t ) +W (x∗T+1)

Since limT→∞W (x∗T+1) = 0, we obtain that W (x) ≥ V (x), hence W (x) =
V (x).

Remark 1.5.1. Assume H1-H6G and let

V̂ (x) = sup
x∈Π(x)

∞∑
t=0

[F (xt, xt+1) − F (x̄, x̄)]

Then V̂ satisfies the following Bellman’s equation:

V̂ (x) = sup
y∈Γ (x)

{F (x, y) − F (x̄, x̄) + V̂ (y)} (1.10)

and x is optimal iff V̂ (x) =
∞∑

t=0

[F (xt, xt+1) − F (x̄, x̄)]. One easily verifies that

V̂ (x) = V (x) + p.x− p.x̄ (1.11)
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1.5.2 Optimal Policy

Let us now introduce some more hypotheses.

H7: For x ≥ 0, Γ (x) is strictly convex in Rn
+.

H8: F (x, ·) is strictly concave.

Assuming H8, we may define for every x ∈domV ,

τ(x) = argmaxy∈Γ (x){−δ(x, y) + V (y)} (1.12)

It follows from (1.10) and (1.11) that if H6G is also assumed, then τ is also
defined by

τ(x) = argmaxy∈Γ (x){F (x, y) − F (x̄, x̄) + V̂ (y)} (1.13)

From the previous section, we thus have

Corollary 1.5.1. 1. Assume H1-H6-H8. Then the sequence
(x, τ(x), τ2(x), . . . , τn(x), . . .) is weakly maximal from x.

2. Assume H1-H6G-H8. Then there is a unique optimal programme from x
and x is optimal from x iff x = (x, τ(x), τ2(x), . . . , τn(x), . . .).

We further have

Proposition 1.5.2. Assume H1-H6-H7-H8. Then V and τ are continuous
at any x ∈domV such that Γ (x) has a non-empty interior.

Proof. Let x ∈domV be such that Γ (x) has a non-empty interior. Let xn → x.
Assume that V (xn) → V ∗. Let y ∈ intΓ (x). Then from Lemma 4.1 in [3], y ∈
intΓ (xn) for n large enough. Therefore

V (xn) ≥ −δ(xn, y) + V (y)

which implies that
V ∗ ≥ −δ(x, y) + V (y)

Since V is upper semicontinuous, V (x) ≥ V ∗. Let us assume that V (x) > V ∗.
Let y ∈ Γ (x), y �= τ(x). Let yλ = λy + (1 − λ)τ(x). From H7, yλ ∈ intΓ (x),
therefore,

V ∗ ≥ −δ(x, yλ) + V (yλ) (1.14)

Since V (x) > V ∗, for λ small enough,

λ(−δ(x, y) + V (y)) + (1 − λ)V (x) > V ∗ (1.15)

From (1.12), V (x) = −δ(x, τ(x)) + V (τ(x)). Using (1.14) and (1.15) and the
strict concavity of −δ(x, ·) that follows from H8, we obtain

V ∗ ≥ −δ(x, yλ)+V (yλ) > −λ(δ(x, y)+V (y))+ (1−λ)(−δ(x, τ(x))+V (τ(x)))
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= −λ(δ(x, y) + V (y)) + (1 − λ)V (x) > V ∗

hence a contradiction. Therefore V (x) = V ∗ proving the desired result.
To prove that τ is continuous, let xn → x̄ and τ(xn) → ȳ. Let y ∈ intΓ (x̄).

Then y ∈ intΓ (xn) for n large enough, therefore

−δ(xn, τ(xn)) + V (τ(xn)) ≥ −δ(xn, y) + V (y)

As V is upper semicontinuous,

−δ(x, ȳ) + V (ȳ) ≥ −δ(x, ȳ) + limsupV (τ(xn)) ≥ −δ(x, y) + V (y) (1.16)

Assume that for some y ∈ Γ (x),

−δ(x, y) + V (y) > −δ(x, ȳ) + V (ȳ)

Let yλ = λy + (1 − λ)ȳ. Then since −δ(x, ·) is strictly concave,

−δ(x, yλ) + V (yλ) > −δ(x, ȳ) + V (ȳ) (1.17)

From H7, yλ ∈ intΓ (x), therefore (1.17) contradicts (1.16).

1.5.3 Examples

Example 1
Let X = [0, 1] and f : [0, 1] → [0, 1] be a continuously differentiable, strictly
concave increasing function fulfilling f ′(0) > 1. For x ∈ X , let Γ (x) = [0, f(x)],
and for (x, y) ∈ graph Γ , let F (x, y) = v(f(x)−y), where v is a strictly concave
increasing function, fulfilling v(0) = 0. The optimal stationary point x̄ is unique
(f ′(x̄) = 1). Observe that x̄ corresponds to the golden rule, i.e., f(x̄)− x̄ is the
maximal stationary consumption.

Assumptions H1-H6G-H7-H8 are satisfied. For any x0 > 0, there exists
a unique optimal programme. The Value function V and the optimal policy g
are continuous on ]0, 1].

Example 2 Let us consider a Von Neumann economy. Let K be a convex,
compact, non-empty set of Rk

+ constraining the activity levels v. Let A be an
(n × k)− goods input matrix and B be an (n × k)− goods output matrix.
The matrices A, B are non-negative. Let X be a convex, compact set of Rn

+

containing A(K) ∪B(K) where

A(K) = {z ∈ Rn : z = Ax, x ∈ Rk},

and
B(K) = {z ∈ Rn : z = Bx, x ∈ Rk}.

The technology correspondence is:

for x ∈ X, Γ (x) = {y ∈ X : ∃v ∈ K,x ≥ Av and y ≤ Bv}.
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We assume that, for every i, there exists j such that bij > 0, i.e., all goods are
producible.

For (x, y) ∈ graphΓ, define

F (x, y) = max{ũ(v) : Av ≤ x,Bv ≥ y},

where ũ is a strictly concave function from Rk
+ into R. Assume also there exists

v ∈ K such that Bv >> Av. We let to reader check that H1-H6G-H7-H8
are satisfied. Moreover, if x >> 0, then there exists v >> 0 such that Av ≤ x
and Bv >> 0. Assume that the stationary point (x̄, x̄) is in the interior of
graphΓ . Then the utility function F is subdifferentiable at (x̄, x̄) and ΠG(x) �=
∅, ∀x >> 0. Therefore, there exists an optimal solution for any x >> 0. The
Value function and the optimal policy V are continuous on x >> 0.
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2. Optimal Growth Models with Discounted

Return

Cuong Le Van
CERMSEM, CNRS, University Paris 1, France1

In this chapter, we provide a unified treatment of a class of optimal growth
models by using dynamic programming methods. In the economies we consider
in this chapter, a social planner maximizes a discounted sum of utilities which
depend on the current and past period states subject to a feasibility constraint.
We show that this problem can be brought down to a sequence of static prob-
lems by using the value function of the problem and the associated Bellman
equation. The Bellman equation allows us to state that
(i)the value function is continuous with respect to the initial data and to the
discount factor,
(ii) the optimal trajectory of state variables can be described as a dynamical
system (which may be multi-valued)
We first give two examples of optimal growth models.
Example 1
Consider a two-sector economy. At date t, sector 1 produces consumption good
ct by using a capital stock k1

t which is produced in sector 2. At date t, sector
2 produces capital stock kt+1 which will be used in period t + 1 by the two
sectors. To produce kt+1, sector 2 needs a quantity k2

t of capital good. The
social planner solves at date 0 the following problem:

max
+∞∑
t=0

βtu(ct), β ∈]0, 1[,

under the constraints:
∀t, 0 ≤ ct ≤ f c(k1

t ),

0 ≤ kt+1 ≤ fk(k2
t ),

1 The author is deeply indebted to Rose-Anne Dana for numerous helpful remarks
and observations. All mistakes remain his own.
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k1
t + k2

t ≤ kt

k1
t ≥ 0, k2

t ≥ 0,

and k0 ≥ 0 is given. The functions f c and fk are respectively the production
functions of the consumption good sector and of the capital good sector.
The reader can check that, if the utility function u and the production functions
f c and fk are strictly increasing, the initial problem becomes:

max
+∞∑
t=0

βtV (kt, kt+1), 0 < β < 1,

under the constraints:
∀t ≥ 0, kt+1 ∈ Γ (kt),

and k0 ≥ 0 is given. The correspondence Γ is defined by ∀k ≥ 0, Γ (k) =
[0, fk(k)], and the return function V by V (kt, kt+1) = u(f c(kt−(fk)−1(kt+1))),
the function (fk)−1 being the inverse function of fk.
Example 2 (Human capital; Lucas [10]).
We have an one-sector growth model. But the output is a function of physical
capital k and of effective labor Ne. Effective labor is the sum of skill-weighted
manhours devoted to current production. More explicitly, assume there are
N identical workers. Each worker has h ∈ [0,+∞[ as skill level and devotes a
fraction θ of his non-leisure time to current production and the remaining (1−θ)
to human capital accumulation. We thus have Ne = Nhθ. Given k, h, θ,N , the
level of output is AhγF (k,Nhθ). The total productivity now is Ahγ . The term
hγ captures the external effects of human capital while the technology level A
is assumed to be constant.
We assume that the rate of growth of human capital depends, through a func-
tion G, on the non-leisure time devoted to its accumulation.
The model is as follows:

max
+∞∑
t=0

βtu(ct), 0 < β < 1,

under the constraints:

∀t ≥ 0, ct + kt+1 − (1 − δ)kt ≤ Ahγ
t F (kt, Nhtθt),

ht+1 ≤ ht(1 +G(1 − θt))

ht ≥ 0, kt ≥ 0,

and k0 ≥ 0, h0 ≥ 0 are given.
Let x = (k0, h0) ∈ R2

+, y = (k1, h1) ∈ R2
+. Define the indirect utility V :

V (x, y) = max
c,θ

{u(c)}

under the constraints:
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c+ k1 ≤ Ahγ
0f(k0, Nh0θ) + (1 − δ)k0,

h1 ≤ h0(1 +G(1 − θ)).

Define
Φ(h0, k0, θ) = Ahγ

0f(k0, Nh0θ) + (1 − δ)k0,

Ψ(h0, θ) = h0(1 +G(1 − θ)).

Define also for x ∈ R2
+:

Γ (x) = {y ∈ R2
+ : ∃θ ∈ [0, 1], s.t. k1 ≤ Φ(h0, k0, θ), h1 ≤ Ψ(h0, θ)}.

The reader can check that the initial problem is equivalent to:

max
+∞∑
t=0

βtV (xt, xt+1)

under the constraint:

∀t ≥ 0, xt+1 ∈ Γ (xt), xt ∈ R2
+

and x0 is given in R2
+.

2.1 Bounded from Below Utility

We consider a model where the technology can exhibit a non zero maximal rate
of growth. In the first section we assume that the absolute value of the utility
is bounded by an affine function. This excludes Cobb-Douglas utility functions
with negative elasticities or logarithm. We devote the next section to the case
where the utility function can take the value −∞.

The plan of this section is as follows. In subsection 1, we study the general
case, i.e., when the utility function may be non-concave, and the technology
may have increasing returns. In subsection 2, we assume that the utility func-
tion is concave and the technology is convex. Subsection 3 will be devoted to
examples.

2.1.1 The General Case

We consider the problem:

max
+∞∑
t=0

βtF (xt, xt+1)

under the constraints:
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∀t ≥ 0, xt+1 ∈ Γ (xt),

xt ∈ X,

and x0 is given in X , closed subset of Rn that contains 0.
The assumptions are the following.

H1 The correspondence Γ : X → X is continuous, with non-empty, compact
values. Moreover 0 ∈ Γ (0).
H2 There exist γ ≥ 0, γ′ ≥ 0, γ + γ′ > 0 such that if y ∈ Γ (x) then ‖y‖ ≤
γ‖x‖ + γ′.
H3 The function F : graph(Γ ) → R is continuous. Moreover, there exist
A ≥ 0, B ≥ 0 such that A + B > 0 and ∀(x, y) ∈ graph(Γ ), |F (x, y)| ≤
A+B(‖x‖ + ‖y‖).
H4 We have β ∈]0, 1[ and if the constant B in assumption H3 is strictly
positive, we assume βγ < 1.

Remark 2.1.1. 1. The assumption 0 ∈ Γ (0) in H1 is less restrictive than Γ (0) =
{0}.
2. Assumption H2 means that the maximal rate of growth is γ. H2 is satisfied
when Γ (x) = [0, f(x)] where f is a positive, concave function defined on R+.
3. Assumption H3 is fulfilled if the function F is concave and non-negative.
4. When the constant B in H3 is strictly positive, condition βγ < 1 in H4
ensures, as we will see below, that the sum

∑+∞
t=0 β

tF (xt, xt+1) exists in R for
any sequence (x0, x1, ..., xt, ...) which satisfies ∀t ≥ 0, xt+1 ∈ Γ (xt).

Existence of an Optimal Solution

Let us recall that an infinite sequence (x0, x1, ..., xt, ...) of elements in Rn will
be denoted by x.
A sequence x is feasible from x0 ∈ X , if it satisfies: ∀t ≥ 0, xt+1 ∈ Γ (xt). The
set of feasible sequences from x0 is denoted by Π(x0).
In order to prove the existence of solutions to the optimal growth problem, we
use the product topology.We show that the function u(x) =

∑+∞
t=0 β

tF (xt, xt+1)
is continuous on Π(x0) which is compact.One concludes that an optimal solu-
tion exists.

Lemma 2.1.1. (i) Assume H2. Then one has ∀x0 ∈ X, ∀x ∈ Π(x0):

∀t ≥ 1, ‖xt‖ ≤ γt‖x0‖ + γ′
t−1∑
j=0

γj . (2.1)

(ii) Assume H2, H3. Then there exists numbers c1 > 0, c2 ≥ 0 such that:
∀x0 ∈ X, ∀x ∈ Π(x0), one has:

∀t, |F (xt, xt+1)| ≤ Bc1(γt‖x0‖ + γ′(1 + γ + γ2 + ...+ γt−1)) + c2, (2.2)

where B is the constant in Assumption H3.
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(iii) Assume H2, H3, H4. Then for every x0 ∈ X, for every x ∈ Π(x0),
the sum

∑+∞
t=0 β

tF (xt, xt+1) exists and is finite-valued. Moreover, there exist
D > 0 such that:

+∞∑
t=0

βt|F (xt, xt+1)| ≤ Bc1
‖x0‖

(1 − βγ)
+D, ∀x ∈ Π(x0). (2.3)

Proof. (i) For t = 0, the claim is obviously true. Proceed by induction to obtain
the result for t > 0.
(ii) Using H3 and (2.1), we have for t ≥ 0

|F (xt, xt+1)| ≤ A+Bγ′ +B(1 + γ)γ′(1 + γ + ...+ γt−1) +B(1 + γ)γt‖x0‖.

Let c1 = max{(1 + γ)γ′, (1 + γ)} and c2 = A+Bγ′, then c1 > 0 and :

|F (xt, xt+1)| ≤ Bc1(γt‖x0‖ + γ′(1 + γ + γ2 + ...+ γt−1)) + c2.

(iii) Assume first γ = 1. Then

+∞∑
t=0

βt|F (xt, xt+1)| ≤ Bc1
‖x0‖

(1 − β)
+Bc1γ

′
+∞∑
t=0

tβt + c2 < +∞,

and (2.3) is true. If γ �= 1, then

|F (xt, xt+1)| ≤ Bc1(γt‖x0‖ + γ′(
1 − γt

1 − γ
)) + c2,

and (2.3) is also true.

Lemma 2.1.2. Assume H1-H4. Then: (i) The set Π(x0) is compact for the
product topology.
(ii) Let u(x) =

∑+∞
t=0 β

tF (xt, xt+1) for x ∈ Π(x0). Then u is continuous.

Proof. (i) From Lemma (2.1), ifΠ(x0) is a bounded set of the product topology.
Let us prove that it is closed for this topology.
Indeed, let {xn} be a sequence in Π(x0) which converges in the product
topology to x. Since X is closed, xt ∈ X, ∀t. Since Γ is continuous, we have
xt+1 ∈ Γ (xt), ∀t. Hence, x ∈ Π(x0).
(ii) Let {xn} be a sequence of Π(x0) which converges for the product topology
to x ∈ Π(x0). From (2.2), if γ = 1, then, ∀x ∈ Π(x0), we have

∀t, |F (xt, xt+1)| ≤ Bc1(‖x0‖ + tγ′) + c2,

and if γ �= 1, then

∀t, |F (xt, xt+1)| ≤ Bc1(γt‖x0‖ +
1 − γt

1 − γ
γ′) + c2.
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Hence, for any ε > 0, it follows from Assumption H4 that there exists T such
that for any x ∈ Π(x0), for any T ′ ≥ T , we have

∑+∞
t=T ′ βt|F (xt, xt+1)| ≤ ε.

Fix such a T ′. Then |u(xn)− u(x)| ≤∑T ′

t=0 β
t|F (xn

t , x
n
t+1)−F (xt, xt+1)|+ 2ε.

Let n converge to +∞. We get limn→+∞ |u(xn) − u(x)| ≤ 2ε. Since ε is arbi-
trary, we have limn→+∞ u(xn) = u(x), which proves the continuity of u.

Proposition 2.1.1. Assume H1-H4. Then there exists an optimal solution.

Proof. The problem is equivalent to max{u(x) : x ∈ Π(x0)}. Let Π(x0) be
endowed with the product topology. Then it is compact. Since, in the product
topology, u is continuous, there exists a solution.

Value Function and Optimal Correspondence

Let V (x0) = max{u(x) : x ∈ Π(x0)} be the Value Function of the optimal
growth problem.

Proposition 2.1.2. Assume H1-H4. Then
(i) The function V satisfies

sup
x0∈X

{ |V (x0)|
1 +B‖x0‖

}
< +∞,

where B is the constant in H3.
(ii) The Value function V satisfies the Bellman equation:

∀x0 ∈ X,V (x0) = sup
y∈Γ (x0)

{F (x0, y) + βV (y)}.

Proof. (i) From (2.3), there exist A1 > 0, A2 ≥ 0 such that, for any x0 ∈ X ,
for any x ∈ Π(x0), we have

+∞∑
t=0

βt|F (xt, xt+1)| ≤ BA1‖x0‖ +A2.

Hence,
|V (x0)| ≤ BA1‖x0‖ +A2 (2.4)

and supx0∈X

{
|V (x0)|

1+B‖x0‖
}
< +∞.

(ii) Let x ∈ Π(x0) satisfy V (x0) =
∑+∞

t=0 β
tF (xt, xt+1). Since (x2, x3, ...) ∈

Π(x1), by the definition of V , we have V (x0) ≤ F (x0, x1) + βV (x1), and
consequently,

V (x0) ≤ sup
y∈Γ (x0)

{F (x0, y) + βV (y)}.

Now, let x1 ∈ Γ (x0). There exists (x2, x3, ...) ∈ Π(x1) such that V (x1) =∑+∞
t=1 β

t−1F (xt, xt+1). This implies:
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F (x0, x1) + βV (x1) =
+∞∑
t=0

βtF (xt, xt+1) ≤ V (x0),

since (x0, x1, x2, ...) ∈ Π(x0). Therefore

sup
y∈Γ (x0)

{F (x0, y) + βV (y)} ≤ V (x0).

Let us now prove that V satisfies the Bellman equation with the sup replaced
by max, i.e.

V (x0) = max
y∈Γ (x0)

{F (x0, y) + βV (y)}.

Let E be the Banach space of functions h from Rn
+ into R which satisfy

supx∈X

{
|h(x)|

1+B‖x‖
}
< +∞ endowed with the norm ‖h‖ = supx∈X

{
|h(x)|

1+B‖x‖
}
.

We prove that V is the unique solution to the Bellman equation in E.
We introduce the following operator T :

∀h ∈ E, ∀x ∈ X,Tf(x) = sup
y∈Γ (x)

{F (x, y) + βh(y)}.

Let us check that T maps E into E.
Let h ∈ E. We have ∀y ∈ Γ (x0), ‖y‖ ≤ γ‖x0‖ + γ′, hence:

|F (x0, y) + βh(y)|
1 +B‖x0‖

≤ (A+Bγ′) +B(1 + γ)‖x0‖
1 +B‖x0‖

+
β|h(y)|

1 +B‖y‖
1 +B(γ‖x0‖ + γ′)

1 +B‖x0‖
.

Since |h(y)|
1+B‖y‖ ≤ ‖h‖, the second member is uniformly bounded above. Therefore

supx∈X

{
|Th(x)|
1+B‖x‖

}
< +∞. We have proved that Th ∈ E.

We first show a general result in topology that if T k (the k-iterated of T ) is a
contraction mapping of E for some integer k, then T has a unique fixed point.

Lemma 2.1.3. Assume there exist an integer k and a number λ ∈]0, 1[ such
that T k is a λ-contraction of E, i.e.

∀h ∈ E, ∀g ∈ E, ‖T kh− T kg‖ ≤ λ‖h− g‖.

Then T has a unique fixed point in E. Moreover, if v is a fixed point, then
v = limn→+∞{T nh} for any h in E.

Proof. Since T k is a contraction, it admits a unique fixed point v ∈ E, i.e.
T kv = v. We claim that v is a fixed point of T .
Indeed, we have

‖Tv − v‖ = ‖T (T kv) − T kv‖ = ‖T k(Tv) − T kv‖ ≤ λ‖Tv − v‖.

Thus, Tv = v. Since a fixed point of T is a fixed point of T k, T has a unique
fixed point.
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Since T k is a contraction, v is the limit of the sequence {(T k)nh} for any h in
E. But we want to prove that, actually, v is the limit of the sequence {T nh}
for any h in E.
Define successively h1 = Th, h2 = T 2h, ..., hk−1 = T k−1h. The functions hi

belong to E. Let ε > 0 be given. We have:

∃Ni, for i = 0, 1, .., k − 1, such that ∀i, ∀n ≥ Ni, ‖(T k)nhi − v‖ ≤ ε.

Let N̂ = max{N0, N1, ..., Nk−1}. Let n ≥ N̂k+k−1. Then there exists N such
that n ∈ {Nk,Nk + 1, ..., Nk + k − 1}. Write n = Nk + j, with j ≤ k − 1.
Obviously, N ≥ N̂ . Therefore:

‖T nh− v‖ = ‖(T k)Nhj − v‖ ≤ ε.

We have proved the statement :
∀ε > 0, ∃Ñ such that, if n ≥ Ñ , then ‖T nh− v‖ ≤ ε.

In other words, we have proved that v is the limit of the sequence {T nh}.

In the following proposition, we prove (a) that the Value function V is the
unique solution in E to the Bellman equation, and, (b) it is also the unique
solution in the set of continuous functions (not necessarily in E) which satisfy
a transversality condition.

Proposition 2.1.3. Assume H1-H4. then
(i) The Value function V is the unique continuous solution in E to the Bellman
equation:

∀x0 ∈ X,V (x0) = max
y∈Γ (x0)

{F (x0, y) + βV (y)}.

(ii) We have V = limn→+∞ T nh, for any h ∈ E.
(iii) The Value function V is the unique continuous solution to the Bellman
equation, which satisfies:

∀x0 ∈ X, ∀x ∈ Π(x0), lim βtV (xt) = 0.

(iv) We have V = limn→+∞ T nh, for any continuous function h which satisfies
the condition:

∀x0 ∈ X, ∀x ∈ Π(x0), limβth(xt) = 0.

Proof. (i) It is obvious that V is a fixed point of T .
In a first step, we prove that T k is a λ-contraction where k is an integer and λ ∈
]0, 1[. Second, we prove that V is continuous and hence is the unique continuous
fixed point of T .
We will show that there exist an integer k and a real number λ ∈]0, 1[ such
that T k is a λ-contraction.
Let ϕ(x) = 1 +B‖x‖, for x ∈ X . Take g ∈ E, h ∈ E. Since

∀y ∈ X, g(y) ≤ h(y) + ‖g − h‖ϕ(y),
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we have
Tg(x0) ≤ Th(x0) + β‖g − h‖ sup

x1∈Γ (x0)

ϕ(x1)

which implies, from Assumption H2, that:

Tg(x0) ≤ Th(x0) + β‖g − h‖(Bγ‖x0‖ + 1 +Bγ′).

By induction, and using again Assumption H2, we get:

T kg(x0) ≤ T kh(x0) + βk‖g − h‖(Bγk‖x0‖ + 1 +Bγ′
k−1∑
j=0

γj).

Reversing the role of h and g, one obtains:

|T kg(x0) − T kh(x0)|
ϕ(x0)

≤ ‖g − h‖βk
Bγk‖x0‖ + 1 +Bγ′

∑k−1
j=0 γ

j

ϕ(x0)
.

If B = 0, then
‖T kg − T kh‖ ≤ βk‖g − h‖.

In that case we can take k = 1 since 0 < β < 1. In other words T is a β-
contraction. If B > 0, we have

Bγk‖x0‖ + 1 +Bγ′
∑k−1

j=0 γ
j

ϕ(x0)
≤ γk + 1 +Bγ′

k−1∑
j=0

γj.

Hence,
‖T kg − T kh‖ ≤ λ‖g − h‖,

with λ = βkγk + βk(1 + γ′B
∑m=k−1

m=0 γm). For k large enough, we have 0 <
λ < 1.
We have proved that there exists an integer k and a number λ ∈]0, 1[ such that
T k is a λ-contraction. Apply Lemma 2.1.3 to conclude that V is the unique
fixed point in E of T .
Since T k is a contraction, we have V = limn→+∞(T k)n0. By the Maximum
Theorem, T 0 is continuous, and hence,(T k)n0 is continuous for any n. Obvi-
ously, V is the uniform limit of (T k)n0 on any compact set of X . One concludes
that V is continuous. We therefore have

∀x0 ∈ X,V (x0) = max
y∈Γ (x0)

{F (x0, y) + βV (y)}.

(ii) From Lemma 2.1.3, V = limn T
nh for any h in E.

(iii) We first check that

∀x0 ∈ X, ∀x ∈ Π(x0), lim βtV (xt) = 0.
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Indeed, from (2.4), there exist A1 > 0, A2 ≥ 0 such that ∀x0 ∈ X, |V (x0)| ≤
BA1‖x0‖ +A2. Let x ∈ Π(x0). From (2.1), we have

∀t, |V (xt)| ≤ BA1(γt‖x0‖ + γ′(1 + γ + ...+ γt−1)) +A2.

If B = 0, then ∀t, |V (xt)| ≤ A2 and the claim is true. If B > 0, since β ∈
]0, 1[, βγ < 1, the claim is also true.
Now, let V̂ be another solution to the Bellman equation which is continuous
and satisfies the condition

∀x0 ∈ X, ∀x ∈ Π(x0), lim βtV̂ (xt) = 0.

Let x be an optimal solution from x0. Then, V (x0) =
∑+∞

t=0 β
tF (xt, xt+1).

Since V̂ satisfies the Bellman equation, we have:

V̂ (x0) ≥
T−1∑
t=0

βtF (xt, xt+1) + βT V̂ (xT ).

Let T converge to infinity. We get V̂ (x0) ≥ V (x0).
We now prove the converse. Since the functions F, V̂ are continuous and the
correspondence Γ is compact-valued, there exists a sequence x ∈ Π(x0) such
that:

V̂ (x0) = F (x0, x1) + βV̂ (x1), V̂ (x1) = F (x1, x2) + βV̂ (x2),

and by induction:

∀T, V̂ (x0) =
T−1∑
t=0

βtF (xt, xt+1) + βT V̂ (xT ).

Take the limit when T → +∞. We obtain V̂ (x0) = u(x) and hence V̂ (x0) ≤
V (x0).
(iv) Let h be a continuous function which satisfies the condition

∀x0 ∈ X, ∀x ∈ Π(x0), lim
t→+∞βth(xt) = 0.

First observe that, by the Maximum Theorem, T nh is continuous for all n.
Since h, F are continuous, there exists x1 ∈ Γ (x0) such that Th(x0) =
F (x0, x1) + βh(x1). By induction, we find a sequence x ∈ Π(x0) such that

∀N, TNh(x0) =
t=N−1∑

t=0

βtF (xt, xt+1) + βNh(xN ).

From (2.3) and since limN→+∞ βNh(xN ) = 0, the righthand side has a limit.
Thus limTNh(x0) exists. We obtain

lim
N
TNh(x0) = u(x) + lim

N
βNh(xN ) = u(x)
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and hence, limN TNh(x0) ≤ V (x0).
We now prove that lim TNh(x0) ≥ V (x0). Let x ∈ Π(x0). By the very definition
of T , we have

∀N, TNh(x0) ≥
t=N−1∑

t=0

βtF (xt, xt+1) + βNh(xN ).

Take the limits when N → +∞. We have limN TNh(x0) ≥ u(x). Since this
inequality holds for any x ∈ Π(x0), we actually have limN TNh(x0) ≥ V (x0).
Thus, limN TNh(x0) = V (x0).

Remark 2.1.2. Observe that to prove that the Value function V is the unique
solution to the Bellman equation, we use (i) a weighted-norm, and (ii) the fact
that the mapping T is a T k-contraction for some integer k. This ”trick” has
been used by Duran [6] for recursive utility.

We now introduce the optimal correspondence. It is the correspondence G
defined by

∀x ∈ X,G(x) = argmaxy∈Γ (x){F (x, y) + βV (y)}
or equivalently:

∀x ∈ X,G(x) = {y ∈ Γ (x) : V (x) = F (x, y) + βV (y)}.

If G is single-valued, then we define a mapping g by G(x) = {g(x)}. The
mapping g will be called optimal policy.
In the following proposition, we first show that the optimal correspondence is
an upper semi-continuous correspondence. Second, we can use an algorithm
which gives an approximate value of an optimal point. Hence, one can compute
an approximate value of the Value function.

Proposition 2.1.4. Assume H1-H4. Then:
(i) G is an upper semi-continuous correspondence. If G is single-valued, then
it is a continuous mapping.
(ii) Let h ∈ E. Define the correspondences Gh and Gk

h for k = 1, 2, ... by:

∀x ∈ X,Gh(x) = argmaxy∈Γ (x){F (x, y) + βh(y)}

Gk
h(x) = argmaxy∈Γ (x){F (x, y) + βT kh(y)}.

Consider a sequence {yk}k=1,2,.. with yk ∈ Gk
h(x), ∀k. Then there exists a

subsequence {ykν} which converges to an element y ∈ G(x) when ν converges
to infinity.

Proof. (i) The statement is a consequence of the Maximum Theorem [4].
(ii) Take z ∈ Γ (x). For every k, we have:

F (x, yk) + βT kh(yk) ≥ F (x, z) + βT kh(z).
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From Proposition 2.1.3(ii), the function V is the limit of the sequence {T kh}
when k → +∞. Observe also that, since yk ∈ Γ (x), ∀k, there exists a subse-
quence {ykν} which converges to some y ∈ Γ (x).
Take the limits when ν → +∞. We get:

F (x, y) + βV (y) ≥ F (x, z) + βV (z).

Since z is arbitrarily chosen in Γ (x), we conclude that y ∈ G(x).

Properties of Optimal Paths

We can sum up these properties in the following Proposition.

Proposition 2.1.5. Assume H1-H4. Let x ∈ Π(x0). Then
(i) The sequence x is optimal if, and only if:

∀t ≥ 0, V (xt) = F (xt, xt+1) + βV (xt+1).

(ii)The sequence x is optimal if, and only if:

∀t ≥ 0, xt+1 ∈ G(xt).

If G is single-valued and if g is the associated optimal policy, we then have:

∀t ≥ 0, xt+1 = g(xt). (2.5)

(iii) Assume that the function F is differentiable on int(graph(Γ )) (the interior
of graph(Γ )).
If x is optimal and satisfies ∀t, (xt, xt+1) ∈ int(graph(Γ )), then x satisfies
Euler equation:

∀t ≥ 0, F2(xt, xt+1) + βF1(xt+1, xt+2) = 0

where F1, F2 denote the derivatives of F with respect to the first and the second
variables.

Proof. (i) Let x be optimal. From the very definition of V , we have

V (xt) ≤ F (xt, xt+1) + βV (xt+1), ∀t ≥ 0.

Now, since xt+1 ∈ Γ (xt) and since V satisfies the Bellman equation, we have
V (xt) ≥ F (xt, xt+1) + βV (xt+1), ∀t ≥ 0.
Now, let x ∈ Π(x0) satisfy

∀t ≥ 0, V (xt) = F (xt, xt+1) + βV (xt+1).

Then, by induction, we get:

∀T, V (x0) =
T∑

t=0

βtF (xt, xt+1) + βT+1V (xT+1).
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From Proposition 2.1.3(iii), limT→+∞ βT+1V (xT+1) = 0. Hence, V (x0) =∑+∞
t=0 β

tF (xt, xt+1), i.e., the sequence x is optimal. We have proved statement
(i).
(ii) If x is optimal, then by statement (i) we have V (xt) = F (xt, xt+1) +
βV (xt+1). That means that xt+1 ∈ G(xt).
Conversely, if xt+1 ∈ G(xt), then V (xt) = F (xt, xt+1) + βV (xt+1). If this
relation holds for every t, then by statement (i), the sequence x is optimal.
(iii) Since (xt, xt+1) ∈ int(graph(Γ )), (xt+1, xt+2) ∈ int(graph(Γ )), we have
(xt, y) ∈ int(graph(Γ )), (y, xt+2) ∈ int(graph(Γ )) for any y in a neighborhood
of xt+1. The sequence z defined by zτ = xτ for τ �= t+ 1, and zt+1 = y belongs
to Π(x0). Hence, u(x) ≥ u(z). This implies:

F (xt, xt+1) + βF (xt+1, xt+2) ≥ F (xt, y) + βF (y, xt+2).

This inequality holds for every y in a neighborhood of xt+1. That means that
xt+1 maximizes in this neighborhood the function y → F (xt, y) + βF (y, xt+2).
The result then follows.

On the Continuity of the Value Function and of the Optimal
Correspondence with Respect to (β, x0)

We will write respectively V (β, x0), G(β, x0) instead of V (x0), G(x0) for the
Value function and for the optimal correspondence. We want to prove that V
is continuous and G is upper semi-continuous with respect to the pair (β, x0).
For simplicity, let us assume that the growth parameter γ of assumption H2
equals 0. We let to the reader check that it is also true when γ > 0.
Let us go back to the proofs of Propositions 2.1.2 and 2.1.3. Consider the space
E and the operator T defined in these proofs. Since γ = 0, the operator T is
a β-contraction of E. Let 0 denote the function equal to zero everywhere. Let
n > m and r = n−m. Then we have:

‖T n0 − Tm0‖ ≤ βm‖T r0‖.

But ‖T r0‖ ≤ ‖0 − T 0‖ + ‖T 0 − T 20‖ + ... + ‖T r−10 − T r0‖ ≤ (1 + β + ... +
βr−1)‖0 − T 0‖. Hence

‖T n0 − Tm0‖ ≤ βm

1 − β
‖T 0‖.

Fix m and let n go to infinity. Since T n converges to V (β, .), we have

‖V (β, .) − Tm0‖ ≤ βm

1 − β
‖T 0‖.

Use the definition of ‖‖ given in the proofs of the mentioned propositions. We
have

sup
x∈X

|V (β, x) − Tm0(x)|
1 +B‖x‖ ≤ βm

1 − β
sup
x∈X

|T 0(x)|
1 +B‖x‖ .
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The function T 0 is independent of β while Tm0 is a continuous function of (β, x)
by the Maximum Theorem. Let ε1 ≥ 0, ε2 > 0 satisfy 0 ≤ β − ε1, β + ε2 < 1.
Define β1 = β − ε1, β2 = β + ε2 and I = [β1, β2]. Then, we have

sup
x∈X

sup
β′∈I

|V (β′, x) − Tm0(x)|
1 +B‖x‖ ≤ βm

2

1 − β1
sup
x∈X

|T 0(x)|
1 +B‖x‖ .

This shows that V (β′,x)
1+B‖x‖ is the uniform limit with respect to (β′, x) ∈ I ×X of

the sequence of continuous functions { T m0(x)
1+B‖x‖}. Hence V (β′, x) is continuous

in I ×X .
Since

G(β, x0) = argmaxy∈Γ (x0){F (x0, y) + βV (β, y)},
G is an upper semi-continuous correspondence by the Maximum Theorem. We
summarize these results in

Proposition 2.1.6. The Value function V is continuous with respect to (β, x)
in [0, 1[×X. The optimal correspondence G is upper semi-continuous with re-
spect to (β, x) ∈ I ×X.

2.1.2 The Case of a Concave Return Function and a Convex
Technology

We assume that X �= {0} and Γ (X) �= {0} (if not, the optimal solution is
immediate: it is the null sequence (0, 0, ...0, ...). We replace H2 by H’2:
H’2: graph(Γ ) is convex (i.e., if y1 ∈ Γ (x1), y2 ∈ Γ (x2), λ ∈ [0, 1], then λy1 +
(1 − λ)y2 ∈ Γ (λx1 + (1 − λ)x2)).
The following Lemma shows that H1 and H’2 imply H2.

Lemma 2.1.4. Assume H1 and H’ 2. Then there exist γ′ > 0 and γ ≥ 0 such
that: y ∈ Γ (x) =⇒ ‖y‖ ≤ γ′ + γ‖x‖.

Proof. Let a ∈ X , a �= 0 and Γ (a) �= {0}. Let y ∈ Γ (x) with ‖x‖ ≥ ‖a‖. Since
(0, 0) ∈ graph(Γ ), by H’2 we have ‖a‖

‖x‖y ∈ Γ (‖a‖x
‖x‖ ). By H1 one can define

γ̂ = max
z∈Γ (X∩Sa)

{‖z‖}

where Sa = {x ∈ Rn : ‖x‖ = ‖a‖}. Then y ∈ Γ (x) then ‖y‖ ≤ γ‖x‖, with
γ = γ̂

‖a‖ . Let γ′ = max{‖z‖ : z ∈ Γ (x), ‖x‖ ≤ ‖a‖}. By H1, such a γ′ exists
and γ′ ≥ max{‖z‖ : z ∈ Γ (a)} > 0.
Summing up, if y ∈ Γ (x), then ‖y‖ ≤ γ′ + γ‖x‖.

We now replace H3 by H’3.
H’3: F is a concave, non negative function from graph(Γ ) into R.
The following Lemma shows that H’3 implies H3.

Lemma 2.1.5. If H’3 holds, then H3 also holds.
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Proof. For sake of simplicity, we assume that int(graph(Γ )) is non-empty. Since
F is concave, it has subdifferentials everywhere in int(graph(Γ )). Let (x̂, ŷ) ∈
int(graph(Γ )) and (p, q) be in the subdifferential of F at (x̂, ŷ). We then have:

∀(x, y) ∈ graph(Γ ), F (x̂, ŷ) − F (x, y) ≥ p · (x̂− x) + q · (ŷ − y),

and hence,

0 ≤ F (x, y) ≤ F (x̂, ŷ) − p · x̂− q · ŷ + p · x+ q · y

≤ |F (x̂, ŷ)| + ‖p‖‖x̂‖ + ‖q‖‖ŷ‖ +B(‖x‖ + ‖y‖),
where B = max{‖p‖, ‖q‖}. Take A = |F (x̂, ŷ)| + ‖p‖‖x̂‖ + ‖q‖‖ŷ‖ to end the
proof.

All the results of the previous subsection hold for this subsection. But we have
more.

Proposition 2.1.7. Assume H1, H’2, H’3, and H4. Then
(i) The Value function V is concave and non-negative.
(ii) It is the unique solution to the Bellman equation which is concave and
non-negative.

Proof. (i) Let x ∈ Π(x0) and x′ ∈ Π(x′0) with x0 �= x′0. Let λ ∈ [0, 1]. By H’2,

∀t, λxt+1 + (1 − λ)x′t+1 ∈ Γ (λxt + (1 − λ)x′t).

Hence

V (λx0 + (1 − λ)x′0) ≥
+∞∑
t=0

βtF (λxt + (1 − λ)x′t, λxt+1 + (1 − λ)x′t+1)

=
+∞∑
t=0

βtF (λ(xt, xt+1) + (1 − λ)(x′t, x
′
t+1))

≥
+∞∑
t=0

βt[λF (xt, xt+1) + (1 − λ)F (x′t, x
′
t+1)] (by H’3)

= λ

+∞∑
t=0

βtF (xt, xt+1) + (1 − λ)
+∞∑
t=0

βtF (x′t, x
′
t+1)

= λu(x) + (1 − λ)u(x′).

Since the above inequality holds for all the feasible paths starting from x0 and
x′0, it holds also for the optimal paths. Thus

V (λx0 + (1 − λ)x′0) ≥ λV (x0) + (1 − λ)V (x′0).

Since F is non-negative, V is also non-negative.
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(ii) Consider the operator T associated with the Bellman equation. We have
shown that there exists an integer k such that T k is a contraction mapping of
the space E of functions h from X into R which satisfy supx∈X

|h(x)|
1+B‖x‖ < +∞.

Moreover, V is a fixed point of T in E. Any concave, non-negative function h on
X belongs to E because it satisfies supx∈X

|h(x)|
1+B‖x‖ < +∞. We then conclude

that V is the unique solution to the Bellman equation which is concave, non-
negative on X .

Proposition 2.1.8. Assume H1, H’2, H’3, H4, and F is strictly concave
with respect to the second variable. Then the optimal correspondence G is single-
valued. The associated optimal policy g satisfies

∀x ∈ X, g(x) = Argmaxy∈Γ (x){F (x, y) + βV (y)}.

The optimal sequence from x0 ∈ X is {gn(x0)}n=1,...,+∞.

Proof. When F is strictly concave in the second variable, it is obvious that the
optimal correspondence is single valued. Use (2.5) to end the proof.

The following proposition gives sufficient conditions for a feasible path from
x0 to be optimal. Observe that one of the conditions is that X is a subset of
the positive orthant Rn

+.

Proposition 2.1.9 (Mangasarian Lemma).
Assume H1, H’2, H’3, H4, X ⊂ Rn

+, X contains 0, F is differentiable in
int(graph(Γ )) and F2 ≤ 0.
If x is a feasible path from x0 which satisfies ∀t, (xt, xt+1) ∈ int(graph(Γ )) and

(i) Euler equation: ∀t, F2(xt, xt+1) + βF1(xt+1, xt+2) = 0

and
(ii) Transversality Condition: lim

t→∞βtF1(xt, xt+1) · xt = 0

then x is optimal.

Proof. Let x ∈ Π(x0) satisfy ∀t, (xt, xt+1) ∈ int(graph(Γ )). Let x′ ∈ Π(x0).
By the concavity of F , we have:

∆T =
t=T∑
t=0

βtF (xt, xt+1) −
t=T∑
t=0

βtF (x′t, x
′
t+1)

≥
t=T∑
t=0

βt[F1(xt, xt+1) · (xt − x′t) + F2(xt, xt+1) · (xt+1 − x′t+1)]

=
t=T−1∑

t=0

βt(F2(xt, xt+1) + βF1(xt+1, xt+2)) · (xt+1 − x′t+1)

+ βTF2(xT , xT+1) · (xT+1 − x′T+1).
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Since the Euler equation holds and x′T+1 ∈ Rn
+ and F2(xT , xT+1) ≤ 0, we have

∆T ≥ βTF2(xT , xT+1) · xT+1 = −βT+1F1(xT+1, xT+2) · xT+1.

Hence limT→+∞∆T ≥ 0 and x is optimal.

Let us now give sufficient conditions for the Value function to be differen-
tiable.

Proposition 2.1.10 (Benveniste-Scheinkman). [3]
Assume H1, H’2, H’3, H4 and that F is differentiable on the interior of
graph(Γ ). Let (x, y) satisfy y ∈ G(x) and (x, y) ∈ int(graph(Γ )). Then V ′(x),
the derivative of V at x exists and equals F1(x, y).

Proof. First, we have V (x) = F (x, y) + βV (y). Second, since (x, y) is in the
interior of (graph(Γ )), there exists a neighborhood U(x) of x such that y ∈
Γ (x′), ∀x′ ∈ U(x).
Define for x′ ∈ U(x), φ(x′) = F (x′, y) + βV (y). We have:

∀x′ ∈ U(x), V (x′) ≥ φ(x′).

Since x belongs to the interior of X , the subdifferential of V at x is non-empty.
Let p be in this subdifferential. Since V (x) = φ(x), we have:

∀x′ ∈ U(x), φ(x) − φ(x′) ≥ V (x) − V (x′) ≥ p · (x− x′). (2.6)

Inequality (2.6) implies

F (x, y) + βV (y) − (F (x′, y) + βV (y)) ≥ p · (x− x′),

or equivalently,
F (x, y) − F (x′, y) ≥ p · (x− x′).

This inequality holds for any x′ ∈ U(x). Hence p = F1(x, y). This shows that
the subdifferential of V at x is a singleton. Therefore, V is differentiable at x
and V ′(x) = F1(x, y).

Remark 2.1.3. One can remark that the proof of the differentiability of V is
fairly simple. The proof that the optimal policy is differentiable and the Value
function V is twice differentiable turns out to be much harder and requires
more assumptions on the utility function F (see e.g. Araujo and Scheinkman
[2], Araujo [1], Santos [13], Montrucchio [11], Blot and Crettez [5]).

The One Dimension Case
In the one-sector models, the optimal paths always converge to a steady state.
In the introduction, we have given an example of a two-sector model that can
be transformed into a one dimensional optimal growth model. However the
optimal path may be non-monotonic.
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Proposition 2.1.11. Assume X = R+ and H1, H’2, H’3, H4. Assume also
that the function F is strictly concave with respect to the second variable. We
then have:
(i) The optimal policy is a continuous function g.
(ii) Assume furthermore: F is twice continuously differentiable in int(graph(Γ ))
and ∀x ∈ R+, (x, g(x)) ∈ int(graph(Γ )). Then
(a) If the cross derivative F12 is positive (respectively negative) in int(graph(Γ )),
then g is increasing (respectively decreasing).
(b) If moreover, γ < 1 in assumption H2 then, if F12 > 0, any optimal path
converges to a steady state x∗ (i.e. x∗ = g(x∗)), and if F12 < 0, (x, g(x)) ∈
int(graphΓ ), ∀x, any optimal sequence converges either to a steady state or to
a two-period cycle.

Proof. (i) We have g(x) = argmax{F (x, y)+βV (y) : y ∈ Γ (x)}. Since F (x, .) is
strictly concave, the optimal solution is unique. The optimal policy is a function
g which is continuous by the Maximum Theorem.
(ii) Since ∀x, (x, g(x)) ∈ int(graphΓ ), from Proposition 2.1.10, we obtain that
V is differentiable and V ′(x) = F1(x, g(x)). Since g(x) is an interior solution,
we have F2(x, g(x)) + βV ′(g(x)) = 0, ∀x ∈ R+. Assume F12 > 0 and that there
exist x < x′, with g(x) ≥ g(x′). Then:

0 = F2(x′, g(x′)) + βV ′(g(x′)) > F2(x, g(x′)) + βV ′(g(x′))
≥ F2(x, g(x)) + βV ′(g(x)) = 0

(the second inequality follows from the concavity of F and V ): a contradiction.
Hence x < x′ ⇒ g(x) < g(x′).
The same argument applies when F12 < 0 to claim that x < x′ ⇒ g(x) > g(x′).
Now assume that γ < 1 in assumption H2. From (2.1), we get that:

∀x ∈ Π(x0), ∀t, 0 ≤ xt ≤ γtx0 +
γ′

1 − γ
≤ x0 +

γ′

1 − γ
.

Hence, any optimal path satisfies

∀t, xt ∈ [0, Â] with Â = x0 +
γ′

1 − γ
.

When F12 > 0, the optimal sequence x is monotonic (either decreasing, or
increasing), bounded. It converges to a steady state, since g is continuous and
since xt+1 = g(xt), ∀t.
Consider the case where F12 < 0. Let x be an optimal sequence from x0.
If x0 = x1, then xt = x0, ∀t, and the claim is obviously true.
Assume, without loss of generality, that x0 < x1. Then x2 = g(x1) < x1 = g(x0)
(g is decreasing).
First, assume x2 ≤ x0. Then x3 = g(x2) ≥ g(x0) = x1. By induction, we have:

x2n ≤ x2(n−1) ≤ ... ≤ x0 < x1 ≤ x3 ≤ ... ≤ x2n+1.
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Since xt ∈ [0, Â], ∀t, the sequence {x2n} converges to x and {x2n+1} converges
to x, with x > x. Since x2n+1 = g(x2n), x2n = g(x2n−1), ∀n, we therefore
have x = g(x) and x = g(x). This implies g2(x) = x, g2(x) = x. The optimal
sequence converges to a two-periods cycle.
Now assume x0 < x2. Then x3 = g(x2) < g(x0) = x1. But, since x2 < x1, we
have x3 = g(x2) > g(x1) = x2. By induction:

x0 < x2 < x4 < ...x2n < x2n+1 < x2n−1 < ... < x1.

The increasing sequence {x2n}n=0,1,... converges to x and the decreasing se-
quence {x2n+1}n=0,1,... converges to x. If x = x, then the optimal sequence
converges to a steady state. If x < x, then the optimal sequence converges to
a two-periods cycle, because g2(x) = x and g2(x) = x.

Remark 2.1.4. We let the reader prove the following:
Assume that F is strictly concave with respect to the second variable, twice
continuously differentiable on int(graph(Γ )).
If F12 ≥ 0 (respectively ≤ 0), then g is non decreasing (respectively non in-
creasing), i.e. x > x′ (respectively x < x′) ⇒ g(x) ≥ g(x′) (respectively g(x) ≤
g(x′)).

2.1.3 Examples

Example 1 (The Ramsey Model)

Consider the Ramsey Model:

max
+∞∑
t=0

βtu(ct), with 0 < β < 1,

under the constraints
∀t, ct + kt+1 ≤ f(kt),

ct ≥ 0, kt ≥ 0, k0 > 0 is given.

We assume that the function u is strictly concave, strictly increasing, differ-
entiable, u(0) = 0, that the function f is concave, strictly increasing, differen-
tiable, and satisfies f(0) = 0, f ′(+∞) < 1.
We know that the problem is equivalent to

max
+∞∑
t=0

βtF (kt, kt+1),

with 0 < β < 1, F (k, y) = u(f(k) − y),

under the constraints

∀t, 0 ≤ kt+1 ≤ f(kt), k0 > 0 is given.
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Under the assumptions on f , there exists a unique point k̄ such that k̄ =
f(k̄), k > k̄ ⇒ f(k) < k, k < k̄ ⇒ f(k) > k. Let Â > max{k̄, k0}. Then, if
k ∈ Π(k0), we have ∀t, kt ≤ Â.
This model satisfies the assumptions H1, H2, H3, H4.
First, we can set X = [0, Â].
In H1, the correspondence Γ is defined by Γ (k) = [0, f(k)]. Obviously, Γ maps
X into X and is continuous.
In H2, we can take γ = 0, γ′ = Â.
Since F is concave, non negative, it satisfies H3.
Obviously, H4 is satisfied.
Hence there exists an optimal solution. The value function is the unique con-
tinuous, concave solution to the Bellman equation, by Proposition 2.1.7. From
Proposition 2.1.11, the optimal path is monotonic and converges to a steady
state. Recall that if u′(0) = +∞, then the optimal consumptions are strictly
positive at each period.

Example 2

We now consider a Ramsey model with a linear utility function. It does not
satisfy the Inada condition. We will show that, when the initial capital stock
is low, the optimal consumptions will be equal to zero up to some date T0 and
equal the steady state consumption after T0. In other words, it is optimal to
consume nothing during the first T0 periods.

Consider the problem:

max
+∞∑
t=0

βtct, with 0 < β < 1,

under the constraints
∀t, ct + kt+1 ≤ f(kt),

ct ≥ 0, kt ≥ 0, k0 > 0 is given.

We assume that the function f is strictly concave, strictly increasing, and
satisfies f(0) = 0, f ′(0) > 1

β , f
′(+∞) < 1.

This model is equivalent to

max
+∞∑
t=0

βtF (kt, kt+1),

with 0 < β < 1, F (k, y) = f(k) − y,

under the constraints

∀t, 0 ≤ kt+1 ≤ f(kt), k0 > 0 is given.

This model satisfies the assumptions of Proposition 2.1.7 and the remark
which follows Proposition 2.1.9. Hence there exists an optimal path which is
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monotonic and which converges to a steady state. More precisely, let ks satisfies
f ′(ks) = 1

β . We claim that if f(k0) ≥ ks, then the sequence k ∈ Π(k0) defined
by kt = ks, ∀t ≥ 1 is optimal.
Proof of the claim First assume that f(k0) > ks. The sequence k defined above
(i) is feasible, (ii) interior, (iii) satisfies Euler equation which is −1+βf ′(kt+1) =
0, and (iv) satisfies the transversality condition. From Proposition 2.1.9, this
sequence is optimal.
Now assume f(k0) = ks. Let g denote the optimal policy. For any k′0 > k0, from
the proof given above, we have g(k′0) = ks. Since g is continuous (Proposition
2.1.4), by letting k′0 converge to k0, we obtain ks = g(k0). Hence, the sequence
k defined by kt = ks, ∀t ≥ 1 is optimal from k0.
We now claim that if f(k0) < ks, then the sequence k ∈ Π(k0) defined by
kt = f t(k0) for t = 0, ..., T , and kt = ks, for t > T , where T is the first period
such that fT+1(k0) ≥ ks, is optimal from k0.
Proof of the claim Take another feasible path k′ ∈ Π(k0). Take some integer
N > T . Let

∆N =
N∑

t=0

βtF (kt, kt+1) −
N∑

t=0

βtF (k′t, k
′
t+1).

By concavity of F , we get

∆N ≥ (βf ′(k1) − 1)(k1 − k′1) + ...+ βT−1(βf ′(kT ) − 1)(kT − k′T )
+ βT (βf ′(ks) − 1)(ks − k′T+1) + ...

+ βN−1(βf ′(ks) − 1)(ks − kN ) − βN (ks − kN+1).

Since, by the definition of T , we have kt = f t(k0) < ks, ∀t ≤ T and hence,
f ′(kt) > f ′(ks) = 1

β , ∀t ≤ T . We also have ∀t ≤ T, k′t ≤ f t(k0) = kt. Thus:

∆N ≥ −βNks.

Therefore limN→+∞∆N ≥ 0. This ends the proof of the claim. Observe that
the optimal consumptions is equal to zero up to T .

Example 3: A Two-Sector Model

We now present a two-sector optimal growth model which can be transformed
in an one-dimensional growth model with an optimal policy which is not
monotonic.

In our economy, there are two goods: (i) a consumption good c produced in
sector 1 through a production function f c(k1, l1) using a capital stock k1 and
a quantity of labor l1, and (ii) a capital good k produced in sector 2 through
a production function fk using k2 capital and l2 labor. We assume that the
supply of labor is constant over time and equal to 1. The functions f c and
fk are concave, strictly increasing and satisfy f c(0, l) = f c(k, 0) = fk(0, l) =
fk(k, 0) = 0, ∀k ≥ 0, ∀l ≥ 0.

The consumer solves the problem:
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max
+∞∑
t=0

βtu(ct), with 0 < β < 1,

under the constraints:

∀t ≥ 0, 0 ≤ ct ≤ f c(k1
t , l

1
t ),

0 ≤ kt+1 ≤ fk(k2
t , l

2
t ),

k1
t + k2

t ≤ kt,

l1t + l2t ≤ 1,

l1t ≥ 0, l2t ≥ 0, k1
t ≥ 0, k2

t ≥ 0,

and k0 > 0 is given.
Introduce the indirect utility F defined as follows

F (k, y) = max
k1,l1,k2,l2

f c(k1, l1),

under the constraints
0 ≤ k1 + k2 ≤ k,

0 ≤ l1 + l2 ≤ 1,

0 ≤ y ≤ fk(k2, l2),

k1 ≥ 0, k2 ≥ 0, l1 ≥ 0, l2 ≥ 0.

We assume that the utility function is u(c) = c. We let to the reader to prove
that the initial problem is equivalent to the following one:

max
+∞∑
t=0

βtF (kt, kt+1),

under the constraints

0 ≤ kt+1 ≤ fk(kt, 1), ∀t ≥ 0,

and k0 is given.
We suppose that f c(k, l) = k1−αlα, with 1 > α > 0, and that fk(k, l) =
min{l, k

λ}, with 1 > λ > 0.
One can check that

F (k, y) = (k − λy)1−α(1 − y)α.

The problem becomes

max
+∞∑
t=0

βt(kt − λkt+1)1−α(1 − kt+1)α, such that
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∀t ≥ 0, 0 ≤ kt+1 ≤ min{1, kt

λ
},

and k0 > 0 is given. Let X = R+.
In H1, the correspondence Γ is defined by Γ (x) = [0,min{1, x

λ}]. Obviously
0 ∈ Γ (0).
In H2, we take γ = 0 and γ′ = 1, since y ∈ Γ (x) ⇒ 0 ≤ y ≤ 1.
The function F being concave, nonnegative, assumption H3 is satisfied.
H4 is satisfied since 0 < β < 1 and γ = 0.
Apply Propositions (2.1.7) and (2.1.11). In particular, the Value function is the
unique solution to the Bellman Equation, which is concave, continuous, and the
optimal policy is continuous.
But the cross derivative of F is

F12(k, y) = α(1 − α)(1 − y)α−1(k − λ)−α−1(λ − k).

Then F12 > 0 if k < λ and F12 < 0 if k > λ. The optimal policy is increasing
if k < λ and decreasing if k > λ.

Example 4: A Human Capital Model

We present a simplified version of the Lucas human capital model without
physical capital and externality (see Stokey and Lucas [14], p.111).
Assume that at date t, the growth rate of capital is given by the formula

θt = φ(
ht+1

ht
),

where ht is the human capital at date t and θt is the number of working hours.
We assume that 0 ≤ θt ≤ 1.
We assume that φ is continuous, decreasing and satisfies φ(1+λ) = 0, φ(1−δ) =
1, where λ > 0, 0 ≤ δ < 1. In other words, we assume that without training
(θt = 1) the human capital depreciates with rate δ and if the worker devotes
his whole time for training, his human capital will grow at rate λ. Hence, λ is
the maximal rate of growth of human capital.

The consumption good is produced through a production function using
only effective labor. At date t, effective labor is θthtNt with Nt denoting the
number of workers at date t. We assume that Nt = 1, ∀t.

The model is

max
+∞∑
t=0

βtu(ct),

such that ∀t, 0 ≤ ct ≤ f(θtht),

θt = φ(
ht+1

ht
), 0 ≤ θt ≤ 1,

and h0 > 0 is given.
We make the following assumptions:
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(i) u(c) = cµ, 0 < µ < 1,
(ii) β > 0,
(iii) f(L) = Lα, 0 < α < 1,
(iv) β(1 + λ) < 1.
It is easy to check that this model is equivalent to:

max
+∞∑
t=0

βt[htφ(
ht+1

ht
)]αµ,

under the constraints

∀t ≥ 0, (1 − δ)ht ≤ ht+1 ≤ (1 + λ)ht,

and h0 > 0 is given.
Let X = R+ and Γ be defined by Γ (x) = [(1 − δ)x, (1 + λ)x]. For

(x, y) ∈ graph(Γ ), define the function F by F (x, y) = [xφ( y
x )]αµ, if x > 0,

and F (0, y) = 0 for y ≥ 0. Since 0 ≤ φ(x
y ) ≤ 1, 0 ≤ F (x, y) ≤ xαµ. Thus F is

continuous on graph(Γ ).
The model is obviously of the form:

max
+∞∑
t=0

βtF (ht, ht+1)

such that ∀t ≥ 0, ht+1 ∈ Γ (ht),

and h0 > 0 is given.
Assumptions H1-H4 are satisfied. Hence there exists an optimal solution.
The Value function V satisfies the Bellman Equation :

∀h ≥ 0, V (h) = max
y∈[(1−δ)h, (1+λ)h]

{F (h, y) + βV (y)}.

We claim that (i) V (h) = Ahαµ for some constant A, and (ii) there exists
u∗ ∈ [1−δ, 1+λ] such that the optimal path h from h0 is ht = (u∗)th0, ∀t ≥ 0.
Proof of the claim Let T denote the operator which associates with any contin-
uous function f on R+ the function Tf(h) = maxy∈[(1−δ)h, (1+λ)h]{F (h, y) +
βf(y)}. From Proposition 2.1.3, we know that V = limn→+∞ T n0. Take h > 0.
We have successively:

T 0(h) = max
y∈[(1−δ)h, (1+λ)h]

{(hφ(
y

h
))αµ} = hαµ max

u∈[1−δ, 1+λ]
{φ(u)αµ} = A1h

αµ,

T 20(h) = max
y∈[(1−δ)h, (1+λ)h]

{(hφ(
y

h
))αµ + βA1y

αµ}

= hαµ max
u∈[1−δ, 1+λ]

{φ(u)αµ + βA1u
αµ} = A2h

αµ.
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By induction, we have T n0(h) = Anh
αµ. Hence An → A when n → +∞. In

other words, V (h) = Ahαµ. We have proved the first part of the claim.
The Value function satisfies the Bellman Equation:

∀h > 0, V (h) = max
y∈[(1−δ)h, (1+λ)h]

{F (h, y) + βAyαµ)}

= hαµ max
u∈[1−δ, 1+λ]

{φ(u)αµ + βAuαµ}

= hαµ{φ(u∗)αµ + βA(u∗)αµ},

where u∗ ∈ [1−δ, 1+λ]. Therefore, the optimal policy g is defined by g(h) = u∗h
and h is optimal if, and only if,ht = (u∗)th0, ∀t ≥ 0. We have proved the sec-
ond part of the claim.

Example 5: Learning by Doing Model

This example is given in Stokey and Lucas [14] p. 108. Consider a monopolist
producing a new product; his production function displays learning by doing.
We suppose that the cost function C depends on the production at date t, qt,
and on the cumulative productionQt, i.e., Qt = Qt−1+qt−1. More precisely, the
production cost Ct is Ct = C(qt, Qt). We assume that C is convex, continuously
differentiable and satisfies ∀Q ≥ 0, C(0, Q) = 0, 0 < c ≤ ∂C

∂q (0, Q) < c. We

also assume that given q, the unit-cost function C(q,Q)
q is a decreasing function

with respect to Q.
The price is given by an inverse demand function ψ : R+ → R+ which is con-
tinuously differentiable, strictly decreasing, and such that the income function
qψ(q) is strictly concave. We assume that ψ(0) > c and ψ(+∞) < c.
The monopolist maximises his intertemporal profit

max
+∞∑
t=0

βt[(Qt+1 −Qt)ψ(Qt+1 −Qt) − C(Qt+1 −Qt, Qt)],

with 0 < β < 1,

under the constraints
∀t ≥ 0, Qt+1 ≥ Qt,

and Q0 ≥ 0 is given.
Define the return function F :

F (x, y) = (y − x)ψ(y − x) − C(y − x, x), for y ≥ x.

The model becomes

max
+∞∑
t=0

βtF (xt, xt+1),

such that
xt+1 ≥ xt ≥ 0, ∀t ≥ 0,



44 Cuong Le Van

and x0 is given.
A priori, this problem does not fall in the category of problems we study in this
chapter since the technology correspondence Γ is not compact valued (Γ (x) =
[x, +∞[). We will show that actually we can restrict Γ (x) to a compact set.

Let V denote the Value function. First, observe that for any x0 ≥ 0, the
stationary sequence (x0, x0, ..., x0, ...) is feasible. Thus V (x0) ≥ 0. Second, ob-
serve that F (x, y) ≤ (y−x)ψ(y−x)− c(y−x) since, by convexity of C and the
fact that C(0, y) = 0, we have C(x, y) = C(x, y) − C(0, y) ≥ ∂C

∂q (0, y)x ≥ cx.
Consider the function f defined by f(x) = xψ(x)− cx. This function is strictly
concave, satisfies f(0) = 0. Moreover f(x)

x converges to ψ(0) − c > c − c > 0
when x converges to zero, which implies f ′(0) > 0. We also have that f(x)

x
converges to ψ(+∞) − c < 0 when x converges to +∞. This shows that f(x)
converges to −∞ when x converges to +∞. Since, by concavity, f ′(x) ≤ f(x)

x ,
we have f ′(+∞) < 0. Thus, there exists a unique maximum point x̄ of f . Let
M = f(x̄). Since F (x, y) ≤ f(y − x), we have

∀x0 ≥ 0, 0 ≤ V (x0) ≤
M

1 − β
.

We also have

+∞∑
t=0

βtF (xt, xt+1) =
+∞∑
t=0

βt[(xt+1 − xt)ψ(xt+1 − xt) − C(xt+1 − xt, xt)]

≤ (x1 − x0)ψ(x1 − x0) − C(x1 − x0, x0) +
βM

1 − β

≤ (x1 − x0)ψ(x1 − x0) − c(x1 − x0) +
βM

1 − β

= f(x1 − x0) +
βM

1 − β
.

The function g(x) = f(x) + βM
1−β is strictly concave, satisfies g(0) = βM

1−β >

0, g′(0) > 0, g(+∞) = −∞. Therefore, there exists a unique point x̂ such that
g(x) ≥ 0 ⇔ x ≤ x̂. Since V (x0) ≥ 0, we must choose x1 such that x1 − x0 ≤ x̂.
The problem now becomes

max
+∞∑
t=0

βtF (xt, xt+1)

under the constraints

∀t ≥ 0, 0 ≤ xt ≤ xt+1 ≤ xt + x̂,

and x0 ≥ 0 is given.
We first check that the function F satisfies H3. Indeed, we here have Γ (x) =

[x , x+ x̂]. Let (x, y) ∈ graph(Γ ). Since, by assumption, the function qψ(q) is
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concave, we have F (x, y) ≤ (y−x)ψ(y−x)− c(y−x) ≤ B(y−x)+A for some
constants A and B. Thus, F (x, y) ≤ |B|(|x| + |y|) + |A|.
Now, we have F (x, y) ≥ −C(y − x, y). Since C(y − x, y) ≤ C(x̂, y) ≤ C(x̂, 0),
one gets F (x, y) ≥ −C(x̂, 0).
Summing up,

|F (x, y)| ≤ |B|(|x| + |y|) + |A| + C(x̂, 0).

We let the reader check that this model satisfies the remaining assumptions
H1, H2, H4.

2.2 Unbounded from Below Utility

We again consider the problem:

max
+∞∑
t=0

βtF (xt, xt+1)

under the constraints:
∀t ≥ 0, xt+1 ∈ Γ (xt),

xt ∈ X,

and x0 is given in X , where X is a closed subset of Rn
+ and contains 0.

As in Section 2.1, an infinite sequence (x0, x1, ..., xt, ...) of elements in Rn

will be denoted by x.
A sequence x is feasible from x0 ∈ X , if it satisfies: ∀t ≥ 0, xt+1 ∈ Γ (xt). The
set of feasible sequences from x0 is denoted by Π(x0).
We assume that the utility function F equals −∞ on some subset of graph(Γ ).

The assumptions are the following.
H1 The correspondence Γ : X → X is continuous, with non-empty, compact
values. Moreover 0 ∈ Γ (0).
H2 There exist γ ≥ 0, γ′ ≥ 0, such that if y ∈ Γ (x) then ‖y‖ ≤ γ‖x‖ + γ′.
H3bis The function F : graph(Γ ) → R ∪ {−∞} is continuous at any (x, y) ∈
graph(Γ ) such that F (x, y) > −∞. If F (x, y) = −∞ and if limn(xn, yn) =
(x, y), then limn F (xn, yn) = −∞. Moreover, there exist A ≥ 0, B ≥ 0 such
that ∀(x, y) ∈ graph(Γ ), F (x, y) ≤ A+B(‖x‖ + ‖y‖).
H4 We have β ∈]0, 1[ and if the constant B in assumption H3 is strictly
positive, we assume βγ < 1.

Remark 2.2.1. (i) Statement (i) of Lemma 2.1.1 still holds. (ii) The sum∑+∞
t=0 β

tF (xt, xt+1) where the sequence x belongs to the feasible set Π(x0)
is meaningful. Indeed, one has

T∑
0

βtF (xt, xt+1) =
T∑
0

βtF+(xt, xt+1) −
T∑
0

βtF−(xt, xt+1),
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where F+, F− respectively denote the positive and the negative parts of F .
From statement (i) of Lemma 2.1.1, H3bis, and H4,

∑+∞
t=0 β

tF+(xt, xt+1)
exists in R. The sum

∑+∞
0 βtF−(xt, xt+1) exists in R+ ∪ {+∞}. Hence,∑+∞

0 βtF (xt, xt+1) exists in R ∪ {−∞}.
Lemma 2.2.1. Assume H1-H2-H3bis-H4. Then, (i) the set Π(x0) is com-
pact for the product topology and (ii) the function u defined for every x ∈ Π(x0)
by u(x) =

∑+∞
0 βtF (xt, xt+1) is upper semi-continuous for the product topol-

ogy.

Proof. (i) See the proof in Lemma 2.1.2.
(ii) From H3bis, we have, for x ∈ Π(x0):

+∞∑
0

βtF (xt, xt+1) ≤
+∞∑
t=0

βt(A+B(‖xt‖ + ‖xt+1)‖))

Using statement (i) of Lemma 2.1.1, we obtain that, for any ε > 0, there exists
T0 such that ∀T ≥ T0, ∀x ∈ Π(x0), we have

∑+∞
T βtF (xt, xt+1) ≤ ε.

Now, let {xn} ⊂ Π(x0) converge to x ∈ Π(x0) for the product topology. For
T ≥ T0, we have

∀n, u(xn) ≤
T−1∑

0

βtF (xn
t , x

n
t+1) + ε.

Let n → +∞. Then lim supn u(xn) ≤ ∑T−1
0 βtF (xt, xt+1) + ε. Let T → +∞.

We obtain: lim supn u(xn) ≤ u(x)+ε. Since ε > 0 is arbitrary, we actually have
lim supn u(xn) ≤ u(x). The proof is complete.

Let Π ′(x0) denote the set of feasible sequences x such that u(x) > −∞.

Proposition 2.2.1. Assume H1-H2-H3bis-H4. Then there exists an opti-
mal solution.

Proof. The proof is obvious since the problem is {maxu(x) : x ∈ Π(x0)} with
u upper semi-continuous and Π(x0) compact.

We say that a function ϕ from X into R∪ {−∞} which satisfies ϕ(x) > −∞ if
x �= 0, ϕ(0) = −∞, is continuous in the generalized sense if
(i) it is continuous at any point x �= 0 and
(ii) if a sequence {xn} of points in X\{0} converges to 0 then ϕ(xn) → −∞.

Proposition 2.2.2. Assume H1-H2-H3bis-H4. (i) The Value function V is
upper semi-continuous.
(ii) ∀x0 ∈ X ∀x ∈ Π(x0), lim supT β

tV (xt) ≤ 0.
(iii) For every x0 ∈ X, and for every x ∈ Π ′(x0), we have limt→+∞ βtV (xt) =
0.
(iv) Assume moreover Γ (0) = {0}, F (0, 0) = −∞, ∀x0 �= 0, Π ′(x0) �= ∅ and
there exists a continuous (in the generalized sense) function ϕ which satisfies
∀x0 ∈ X,ϕ(x0) ≤ V (x0), ∀x ∈ Π ′(x0), limt→+∞ βtϕ(xt) = 0. Then V is
continuous in the generalized sense.
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Proof. (i) Let xn
0 ∈ X → x0 ∈ X . For every n, let xn ∈ Π(xn

0 ) satisfy
V (xn

0 ) = u(xn). As before, given ε > 0, there exists T0 such that, ∀T ≥ T0, ∀n,
V (xn

0 ) ≤
∑T

t=0 β
tF (xn

t , x
n
t+1) + ε. We can assume that {xn} → x ∈ Π(x0).

Then, lim supn V (xn
0 ) ≤ ∑T

t=0 β
tF (xt, xt+1) + ε. Now, let T → +∞. We get

lim supn V (xn
0 ) ≤ u(x) + ε ≤ V (x0) + ε. We have proved that V is upper

semi-continuous.
(ii) Let x ∈ Π(x0). For every T , for every yT ∈ Π(xT ), the sequence
(x1, . . . , xT , y

T
1 , y

T
2 , . . . , ) belongs to Π(x0). Given ε > 0, for every T large

enough, we have βTF (xT , y
T
1 )+βT+1F (yT

1 , y
T
2 )+ . . . ≤ ε. Hence, βTV (xT ) ≤ ε

for every T large enough. This implies lim supt β
tV (xt) ≤ 0.

(iii) For every x ∈ Π ′(x0), we have

−∞ < u(x) ≤
T∑

t=0

βtF (xt, xt+1) + βT+1V (xT+1).

Then

0 = lim
T
{u(x) −

T∑
t=0

βtF (xt, xt+1)} ≤ lim inf
T

βT+1V (xT+1).

Hence limT β
TV (xT ) = 0.

(iv) Let xn
0 ∈ X converge to x0 when n converges to +∞. If V (x0) = −∞, then

limV (xn
0 ) = −∞ since V is upper semi-continuous. Assume V (x0) > −∞.

Let x ∈ Π(x0) satisfy V (x0) =
∑+∞

t=0 β
tF (xt, xt+1). Let xn

0 ∈ X converge to
x0 when n converges to +∞. Since Π is lower semi-continuous, there exists
xn ∈ Π(xn

0 ), ∀n which converges to x. Let N be fixed. We have

V (xn
0 ) ≥

N∑
t=0

βtF (xn
t , x

n
t+1) + βN+1V (xn

N+1).

We have, for any t, Π ′(xt) �= ∅. Since Γ (0) = {0}, F (0, 0) = −∞, ∀x0 �=
0, Π ′(x0) �= ∅, we have xt �= 0, ∀t. Hence for n large enough, xn

N+1 �= 0 and
Π ′(xn

N+1) �= ∅. Therefore

V (xn
0 ) ≥

N∑
t=0

βtF (xn
t , x

n
t+1) + βN+1ϕ(xn

N+1).

and

lim inf
n

V (xn
0 ) ≥

N∑
t=0

βtF (xt, xt+1) + βN+1ϕ(xN+1).

Let N → +∞:

lim inf
n

V (xn
0 ) ≥ V (x0) + lim

N
βN+1ϕ(xN+1) = V (x0).

Since V is upper semi-continuous, we have lim supn V (xn
0 ) ≤ V (x0) and hence,

limn V (xn
0 ) = V (x0).
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Let S be the set of upper semi-continuous functions from X into R∪{−∞}
which satisfy
(i) For all x0 ∈ X, all x ∈ Π(x0), lim supt β

tf(xt) ≤ 0.
(ii) For all x0 ∈ X, all x ∈ Π ′(x0), limt β

tf(xt) = 0.

Proposition 2.2.3 (Bellman Equation). Assume H1-H2-H3bis-H4. Then
(i) The Value function V satisfies the Bellman equation:

∀x0 ∈ X,V (x0) = max{F (x0, y) + βV (y) : y ∈ Γ (x0).}

(ii) The function V is the unique solution in S to the Bellman equation.

Proof. (i) is standard.
(ii) Let W in S be another solution. There exists x ∈ Π(x0) such that

∀T,W (x0) = F (x0, x1) + βF (x1, x2) + . . .+ βT−1F (xT−1, xT ) + βTW (xT ).

Let T → +∞. Since lim supt β
tW (xt) ≤ 0, we have W (x0) ≤ u(x) ≤ V (x0) .

If Π ′(x0) = ∅, then V (x0) = −∞ and consequently, W (x0) = −∞.
If Π ′(x0) �= ∅, take x ∈ Π ′(x0). We have, by induction,

W (x0) ≥
T∑

t=0

βtF (xt, xt+1) + βT+1W (xT+1).

Let T → +∞. Since limT β
TW (xT ) = 0 for any x ∈ Π ′(x0), we have W (x0) ≥

u(x). This inequality holds for any x ∈ Π ′(x0). Thus, W (x0) ≥ V (x0).

Proposition 2.2.4 (Optimal policy). Assume H1-H2-H3bis-H4, Γ (0) =
{0}, F (0, 0) = −∞, ∀x0 �= 0, Π ′(x0) �= ∅ and there exists a continuous (in the
generalized sense) function ϕ which satisfies ∀x0 ∈ X,ϕ(x0) ≤ V (x0), ∀x ∈
Π ′(x0), limt→+∞ βtϕ(xt) = 0. Let G = Argmax{F (x, y) + βV (y) : y ∈ Γ (x)}.
Then G is an upper semi-continuous correspondence.

Proof. It is easy and left to the reader.

The proof of the following proposition is also left to the reader.

Proposition 2.2.5. Assume H1-H2-H3bis-H4.Let x ∈ Π(x0). Then
(i) The sequence x is optimal if, and only if:

∀t ≥ 0, V (xt) = F (xt, xt+1) + βV (xt+1).

(ii)The sequence x is optimal if, and only if:

∀t ≥ 0, xt+1 ∈ G(xt).

(iii) Assume that the function F is differentiable on int(graph(Γ )) (the interior
of graph(Γ )).
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If x is optimal and satisfies ∀t, (xt, xt+1) ∈ int(graph(Γ )), then x satisfies
Euler equation:

∀t ≥ 0, F2(xt, xt+1) + βF1(xt+1, xt+2) = 0

where F1, F2 denote the derivatives of F with respect to the first and the second
variables.

Let T denote the operator defined on the set of functions f which are upper
semi-continuous from X into R ∪ {−∞}:

∀x0 ∈ X,T (f)(x0) = max{F (x0, y) + βf(y) : y ∈ Γ (x0)}.

Proposition 2.2.6 (Algorithms to compute the Value function). As-
sume H1-H2-H3bis-H4. We have
(i) ∀x0 ∈ X,V (x0) = limn→+∞ T n(a)(x0), where a is a constant number.
(ii) ∀x0 ∈ X,V (x0) = limn→+∞ T n(h)(x0), where h belongs to S and satisfies
Th ≤ h.

Proof. (i) For any x ∈ Π(x0), we have

∀n, T n(a)(x0) ≥ F (x0, x1) + βF (x1, x2) + ...+ βnF (xn, xn+1) + βn+1a,

hence lim infn T
n(a)(x0) ≥ u(x). This implies lim infn T

n(a)(x0) ≥ V (x0).
For every n, there exists xn ∈ Π(x0) such that

T n(a)(x0) = F (x0, x
n
1 ) + βF (xn

1 , x
n
2 ) + ...+ βn−1F (xn

n−1, x
n
n) + βna.

Without loss of generality we can assume that xn → x ∈ Π(x0). From H3bis-
H4, given ε > 0, there exists T0 such that

∀N ≥ T0, ∀n ≥ N,

t=n∑
t=N

βtF (xt, xt+1) < ε.

Fix some N > T0. We then have for n > N :

T n(a)(x0) ≤ F (x0, x
n
1 ) + βF (xn

1 , x
n
2 ) + ...+ βN−1F (xn

N−1, x
n
N ) + ε+ βna.

Let n converge to +∞. We get

lim sup
n

T n(a)(x0) ≤ F (x0, x1) + βF (x1, x2) + ...+ βN−1F (xN−1, xN ) + ε.

Let N → +∞. Then

lim sup
n

T n(a)(x0) ≤ u(x) + ε ≤ V (x0) + ε.

This inequality holds for any ε > 0. Hence lim supn T
n(a)(x0) ≤ V (x0).
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(ii) Observe that for any x0, limT n(h)(x0) exists in R ∪ {−∞}, since T
is nondecreasing. By the same argument as above, we obtain a sequence x ∈
Π(x0) such that, for every N large enough:

lim
n
T n(h)(x0) ≤ F (x0, x1)+βF (x1, x2)+...+βN−1F (xN−1, xN )+lim sup

N
h(xN ),

and hence limn T
n(h)(x0) ≤ V (x0) since lim supN h(xN ) ≤ 0.

If V (x0) = −∞, then limn T
n(h)(x0) = −∞ = V (x0) from the previous

inequality. If V (x0) > −∞, then write V (x0) =
∑+∞

t=0 β
tF (xt, xt+1), where

x ∈ Π ′(x0). By induction, we obtain:

∀n, T n(h)(x0) ≥
n−1∑
t=0

βtF (xt, xt+1) + βnh(xn).

Since h ∈ S, we have, by taking the limits, limn T
n(h)(x0) ≥ V (x0).

Summing up, we have proved that limn T
n(h)(x0) = V (x0).

We let to the reader to check that, in addition to H1-H2-H3bis-H4, if
we assume that graph(Γ ) is convex and F is concave then Proposition 2.1.9,
Proposition 2.1.10 and Proposition 2.1.11 still hold.

Remark 2.2.2. We use in this section the approaches, for unbounded from be-
low utilities, of Stokey and Lucas [14], Le Van and Morhaim [8] when the
intertemporal utility is separable and Le Van and Vailakis [9] with recursive
utilities. Rincon-Zapatero and Rodriguez-Palmero [12] impose more conditions
to obtain that the operator T is a local contraction for some distance on the
set of continuous functions C(X∗) where X∗ = X\{0}.

Example 6

Consider the model

max
+∞∑
t=0

βtLog(ct), 0 < β < 1

∀t, ct + kt+1 ≤ kα
t , 0 < α < 1

ct ≥ 0, kt ≥ 0

k0 ≥ 0 is given.

This model is equivalent to

max
+∞∑
t=0

βtLog(kα
t − kt+1), 0 < β ≤ 1, 0 ≤ α < 1

∀t, 0 ≤ kt+1 ≤ kα
t , and k0 ≥ 0 is given.
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It is easy to check that H1, H2, H3bis and H4 are satisfied. Moreover, for
any k0 > 0, the set Π ′(k0) is non-empty. Indeed, if k0 > 0, then there exists k̂
such that k̂ < 1, k̂ < f(k0) and k̂ < f(k̂). Hence for any k0 > 0, the sequence
k = (k0, k̂, k̂, ....) is feasible. Obviously,

+∞∑
t=0

βtu(f(kt) − kt+1) = u(f(k0) − k̂) +
β

1 − β
u(f(k̂) − k̂) > −∞.

Since the utility function (which is logarithmic) is strictly concave, and the
production function f is convex and increasing, there exists a unique optimal
solution k.
We now prove that the Value function V is continuous. We use Proposition
2.2.2 (iv). For that, we show that there exists a continuous function φ such
that V (k0) ≥ φ(k0), ∀k0 and if k ∈ Π

′
(k0),then limt β

tφ(kt) = 0.
Take some k̂ ∈]0, 1[. Define

φ(k0) =
Log(kα

0 − k0)
1 − β

if 0 < k0 < k̂

φ(k0) = Log(kα
0 − k̂) +

β

1 − β
Log(k̂α − k̂), if k0 ≥ k̂.

Obviously φ is continuous. Assume k0 ≥ k̂. If k0 ≥ 1, then k̂ < 1 = f(1) ≤
f(k0). Since k̂ < f(k̂), the sequence k = (k0, k̂, k̂, ....) is feasible. If k̂ ≤ k0 < 1
then k̂ ≤ k0 ≤ f(k0) and again the sequence k = (k0, k̂, k̂, ....) is feasible. We
have: V (k0) ≥ φ(k0) =

∑
βtLog(f(kt) − kt+1).

We now prove that, for any k ∈ Π
′
(k0), limt β

tφ(kt) = 0. Since kt ≤ kαt

0 for
any t, we have

−∞ <
∑

βtLog(kα
t − kt+1) ≤

∑
βtLog(kα

t )

≤
∑

(αβ)tLog(k0) < +∞

and hence limt β
tLog(kt) = 0.

We have two cases: either there exists 0 < k̃ < k̂ such that kt ≥ k̃ > 0 for every
t, or there exists a subsequence kν → 0. In the first case, we have either

min
k̃≤k≤k̂

φ(k) ≤ φ(kt) ≤
αLogkt

1 − β
if kt ≤ k̂

or
φ(k̂) ≤ φ(kt) ≤ αLogkt +

β

1 − β
Log(k̂α − k̂), if kt > k̂,

and thus limt β
tφ(kt) = 0.

In the second case, we have:
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βνφ(kν ) = βν Log(k
α
ν − kν)

1 − β
=

βν

1 − β
(Logkα

ν − Log(1 − k1−α
ν )).

Since kν → 0, we have limν β
νφ(kν ) = 0.

We have proved that V is continuous.
We now want to compute V and the optimal policy. For that, we will apply
Proposition 2.2.6 (ii). Define h(k) = α

1−αβLog(k). Since for any k ∈ Π(k0) we

have kt ≤ kαt

0 , ∀t, then V (k0) ≤ h(k0) for any k0 ≥ 0. We can find by direct
calculation that

Th(k0) = h(k0) + Log(1 − αβ) +
αβ

1 − αβ
Log(αβ) < h(k0).

Since for any k ∈ Π(k0), we have kt ≤ kαt

0 , then:

lim sup
t

βth(kt) ≤ lim
t

βtαt+1

1 − αβ
Log(k0) = 0.

Hence, V = limn T
nh. Tedious computations yield

T nh(k0) = h(k0) +
1 − βn

1 − β
[Log(1 − αβ) +

αβ

1 − αβ
Log(αβ)]

and then

V (k0) = h(k0) +
1

1 − β
[Log(1 − αβ) +

αβ

1 − αβ
Log(αβ)].

To compute the optimal policy we use the Bellman equation

V (k0) = max
0≤y≤f(k0)

{Log(kα
0 − y) + βV (y)}.

We can easily find the optimal value k1 = αβkα
0 .

Example 7: The AK Model

We consider the model

max
∑

βt c
θ
t

θ
, θ < 0

∀t, ct + It ≤ Akt, 0 < A

It = kt+1 − (1 − δ)kt

ct ≥ 0, kt ≥ 0, It ≥ 0

k0 ≥ 0 is given.

We suppose (1 − δ) < β(A + 1 − δ) < 1 and A + 1 − δ > 1. This model is
equivalent to

max
∑

βt ((A+ 1 − δ)kt − kt+1)θ

θ
, θ < 0
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(1 − δ)kt ≤ kt+1 ≤ (A+ 1 − δ)kt

k0 ≥ 0 is given.

The reader can check that the assumptions H1, H2, H3bis and H4 are
satisfied. To prove that the Value function V is continuous we observe that for
any k0 ≥ 0 we have V (k0) ≥ φ(k0) = (A−δ)θ

θ
1

1−βk
θ
0 . We will show that for any

k > 0 for any k ∈ Π
′
(k0), limt β

tφ(kt) = 0, or equivalently limt β
tkθ

t = 0. But,
for k ∈ Π

′
(k0) we have

−∞ <
∑

βt ((A+ 1 − δ)kt − kt+1)θ

θ
≤
∑

βtA
θkt

θ

θ
< 0.

Hence limt β
tkθ

t = 0. Apply Proposition 2.2.2 (iv) to conclude that V is con-
tinuous.
The reader can check that the sequence k∗ defined by k∗t = λtk0 for every t

and where λ = ( 1
β(A+1−δ))

1
θ−1 is optimal (see Proposition 2.1.9).
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3. Duality Theory in Infinite Horizon

Optimization Models

Tapan Mitra
Department of Economics, Cornell University, Ithaca, NY, USA1

3.1 Introduction

In intertemporal resource allocation problems with no terminal date, price sys-
tems which characterize efficient or optimal allocations have figured promi-
nently since the pioneering contribution by Malinvaud (1953). The method of
duality theory that has been developed to study such problems relies on convex
analysis and may be viewed as an extension of the corresponding theory for
static or finite horizon allocation problems. The purpose of this survey is to
introduce the reader to this method by showing how it has been applied in the
literature dealing with optimal intertemporal allocation, when future utilities
are discounted, which constitutes only a part (although a significant one) of
the class of problems referred to above.

A major accomplishment of this literature is the result that, in a very gen-
eral framework of capital accumulation (often referred to in the literature as
a reduced-form model), optimal programs may be characterized by the ex-
istence of dual variables, interpreted as “shadow prices”, such that at these
prices the given program satisfies the so-called “competitive conditions” and the
“transversality condition”. The competitive conditions are analogous to those
in static or finite horizon optimality problems, and involve myopic (generalized)
intertemporal profit maximization. The fundamental difference stems from the
infinite-horizon nature of the problem, and is captured by the transversality
condition.

The usefulness of this central result may be described as follows. Sufficient
conditions (in terms of shadow prices) for a program to be optimal can be used
to check whether a candidate program is optimal, if one has a good idea of
1 Discussion over the years with many persons has influenced my understanding of

the subject matter covered in this essay. They include David Cass, Swapan Das-
gupta, Ali Khan, Mukul Majumdar, Lionel McKenzie, Kazuo Nishimura, Bezalel
Peleg, Debraj Ray and Itzhak Zilcha.
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shadow prices that support such a program. This makes duality theory a prin-
cipal alternative to dynamic programming methods in solving for an optimal
program. Necessary conditions (in terms of shadow prices) for a program to
be optimal can be used to obtain qualitative properties of an optimal program
without necessarily solving for an optimal program.

Even though the theory of optimal growth dates back to the seminal contri-
bution of Ramsey (1928), versions of the “price chracterization result”, referred
to above, were developed almost forty years later, in the papers of Gale (1967),
McFadden (1967) and McKenzie (1968). Following Ramsey’s lead, the princi-
pal concern of these papers was the theory of undiscounted optimal growth
in general capital accumulation models. Subsequently, methods of duality the-
ory were applied to the discounted case by Peleg (1970) and Peleg and Ryder
(1972). However, it is only with the contribution of Weitzman (1973) that we
have a completely satisfactory price characterization result for the discounted
case. The setting for his result is a very general and flexible framework of capi-
tal accumulation (described here in Section 3.2), and his approach (combining
elements of duality theory and dynamic programming) makes the logic of the
result (and the assumptions needed for its validity) entirely transparent. We
present the basic characterization result, following his approach, in Section 3.3.

Dual variables have been used very effectively in the literature on optimal in-
tertemporal allocation in obtaining another major result, namely the existence
of a non-trivial stationary optimal program, supported by “quasi-stationary”
shadow prices. Versions of this result appear in Sutherland (1970) and Peleg
and Ryder (1974). But, for the general framework described in Section 3.2,
the result was developed later by Flynn (1980) and McKenzie (1982). The ap-
proach used in these two papers is to establish the existence of a discounted
golden-rule (analogous to a golden-rule in the undiscounted case) by a fixed
point argument, and then support this discounted golden-rule by appropriate
dual variables. We present this theory in Section 3.4.

The fact that there exists a stationary optimal program with quasi-stationary
price support allows one to revisit the basic price characterization result (of
Section 3.3), and develop an alternative version of it which helps to identify
non-optimal competitive programs in a finite number of periods. The transver-
sality condition is an asymptotic condition, and can never be verified in finite
time. It turns out that a convenient period-by-period condition can replace the
transversality condition in the price characterization theorems, and so a viola-
tion of this condition in any period immediately signals non-optimality. Such
a period-by-period condition was first proposed and established by Brock and
Majumdar (1988) in the undiscounted case, and the theory for the discounted
case was developed subsequently in Dasgupta and Mitra (1988). We present
this theory in Section 3.5.

Although the transversality condition is both necessary and sufficient for
optimality of competitive programs, there is a fairly wide and interesting class
of models in which the competitive conditions alone are sufficient to ensure
optimality, and the transversality condition is superfluous. That is, programs
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which are competitive necessarily satisfy the transversality condition and are
therefore optimal. These are models which satisfy a “reachability” property, in-
troduced by Dasgupta and Mitra (1999a). Thus, the competitive and transver-
sality conditions are independent restrictions only in models where the reach-
ability property is violated. This finding is presented in Section 3.6.

A framework of optimal growth that has received considerable attention in
the literature is one in which utility is derived from consumption alone (referred
to as the “consumption model”). It is useful to view this model as a special
case of the general framework described in Section 3.2, and apply the results
developed for that framework to this particular case. This displays the flexibility
of the reduced-form model, and provides an alternative approach to some of
the duality results obtained exclusively for the consumption model by Peleg
and Ryder (1972, 1974). We present this material in Section 3.7. Of particular
interest is the result that, in the consumption model, the competitive condition
can be split up into two conditions, one involving purely consumption decisions
and the other involving purely production decisions.

Weitzman (1976) showed (in a continuous time optimal growth model) that
along an optimal program, the net national product at each instant of time
represents the annuity equivalent of its dynamic social welfare from that time
onwards. In Section 3.8, as an application of the results on price characterization
of optimality in the consumption model, we revisit his interesting economic
interpretation of the Bellman equation of dynamic programing. We provide
a discrete time analog of his result, displaying the elementary nature of the
argument needed to obtain it.

As already indicated in the opening paragraph of this section, the scope of
our survey is deliberately limited. To help the reader see some of the connections
with the literature that we do not cover, Section 3.9 contains some bibliographic
comments on the various sections.

3.2 A General Intertemporal Allocation Model

The framework is described by a triplet (Ω, u, δ), where Ω, a subset of Rn
+×Rn

+,
is a transition possibility set, u : Ω → R is a utility function defined on this
set, and δ is the discount factor satisfying 0 < δ < 1. A typical element of Ω
is written as an ordered pair (x, y); this means that if the current state is x,
then it is possible to be in the state y in one period.

We will be using the following assumptions:
(A.1) (i) (0, 0) ∈ Ω; (ii) (0, y) ∈ Ω implies y = 0.
(A.2) Ω is (i) closed, and (ii) convex.
(A.3) There is ξ such that “(x, y) ∈ Ω and ‖x‖ > ξ” implies “ ‖y‖ <

‖x‖”.
(A.4) If (x, y) ∈ Ω and x′ ≥ x, 0 ≤ y′ ≤ y, then (i) (x′, y′) ∈ Ω and

(ii) u(x′, y′) ≥ u(x, y).
(A.5) u is (i) upper semicontinuous and (ii) concave on Ω.
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(A.6) There is ζ ∈ R, such that (x, y) ∈ Ω implies u(x, y) ≥ ζ.
A program from y ∈ Rn

+ is a sequence {y(t)}∞0 such that y(0) = y, and
(y(t), y(t+ 1)) ∈ Ω for t ≥ 0.

A program {y(t)}∞0 from y ∈ Rn
+ is an optimal program if

∞∑
t=0

δtu(y′(t), y′(t+ 1)) ≤
∞∑

t=0

δtu(y(t), y(t+ 1))

for every program {y′(t)}∞0 from y.
The following “boundedness properties” of our model are well-known.
(R.1) Under assumptions (A.3) and (A.4) (i),

(i) If (x, y) ∈ Ω, then ‖y‖ ≤ max [ξ, ‖x‖].
(ii) If {y(t)}∞0 is a program from y ∈ Rn

+, then ‖y(t)‖ ≤
max [ξ, ‖y‖] for t ≥ 0.

The existence of an optimal program in this framework is also a standard
result.

(R.2) Under assumptions (A.1), (A.2), (A.3), (A.4) (i), (A.5) (i) and
(A.6), if y ∈ Rn

+, there exists an optimal program from y.
Given (R.2), there is an optimal program {y∗(t)}∞0 from each y ∈ Rn

+. We
define

V (y) =
∞∑

t=0

δtu(y∗(t), y∗(t+ 1))

V is known as the value function. By (A.4), V is non-decreasing, and by (A.2)
and (A.5), V is concave.

3.3 Characterization of Optimal Programs in Terms of
Dual Variables

The principal results on duality theory in infinite horizon optimization models
relate optimal programs with programs which are “supported” by dual variables
known as shadow prices. At the given shadow prices, the “supported” program
maximizes the generalized profit at each date among all feasible activities (pairs
(x, y) in the transition possibility set) and is called a competitive program.
These results are analogous to the first and second fundamental theorems of
welfare economics in general equilibrium theory.

The infinite horizon entails that an additional condition, known as the
transversality condition, is involved in relating competitive to optimal pro-
grams.

Results which provide sufficient conditions (in terms of shadow prices) for
a program to be optimal are often useful in checking that a candidate pro-
gram is optimal, if one has a good idea of shadow prices that support such a
program. Such “price characterization” results make duality theory a principal
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alternative to dynamic programming methods in solving for an optimal pro-
gram. Results which provide necessary conditions (in terms of shadow prices)
for a program to be optimal are useful in inferring qualitative properties of an
optimal program without necessarily solving for an optimal program. Together,
these results can be a powerful tool in the hands of an optimal growth theorist
to address a variety of problems.

This section provides these “price characterization” results in the context
of the general intertemporal allocation model described in the previous section.

A sequence {y(t), p(t)}∞0 is a competitive program from y ∈ Rn
+ if {y(t)}∞0

is a program from y, p(t) ∈ Rn
+ for t ≥ 0, and for all t ≥ 0 we have

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.1)

A competitive program {y(t), p(t)}∞0 from y ∈ Rn
+ is said to satisfy the

transversality condition if
lim

t→∞ p(t) y(t) = 0 (3.2)

3.3.1 When Are Competitive Programs Optimal?

Theorem 3.3.1. If {y(t), p(t)}∞0 is a competitive program from y ∈ Rn
+ which

satisfies the transversality condition, then {y(t)}∞0 is an optimal program from
y.

Proof. Let {y′(t)}∞0 be any program from y. Using (3.1), we have for t ≥ 0 :

δt[u(y′(t), y′(t+ 1)) − u(y(t), y(t+ 1))]
≤ [p(t+ 1)y(t+ 1) − p(t)y(t)] − [p(t+ 1)y′(t+ 1) − p(t)y′(t)] (3.3)

Summing (3.3) from t = 0 to t = T :

T∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(y(t), y(t+ 1))]

≤ [p(T + 1)y(T + 1) − p(0)y(0)] − [p(T + 1)y′(T + 1) − p(0)y′(0)]
= p(T + 1)y(T + 1) − p(T + 1)y′(T + 1)
≤ p(T + 1)y(T + 1) (3.4)

Since the quantity
∑T

t=0 δ
tu(y′(t), y′(t + 1)) converges as T → ∞, and so

does
∑T

t=0 δ
tu(y(t), y(t+1)), we can take limits on both sides of (3.4), by using

(3.2), and we have:

∞∑
t=0

δtu(y′(t), y′(t+ 1)) −
∞∑

t=0

δtu(y(t), y(t+ 1)) ≤ 0

which proves that {y(t)}∞0 is an optimal program from y.
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Remarks:
(i) It is worth noting that the above result does not depend on the convexity

of the transition possibility set or the concavity of the utility function.
(ii) In Theorem 3.3.1, the transversality condition (3.2) can be replaced by

lim inf
t→∞ p(t)y(t) = 0. (3.5)

(iii) The significance of the transversality condition (3.2) was first noted
by Malinvaud (1953) in his study of intertemporal efficiency. Since then, it
has been extensively used in the study of intertemporal optimality (as well as
efficiency). The extremely simple method of proof is a variant of Malinvaud’s
proof in the study of efficiency; it was effectively introduced in the multisectoral
optimality literature most notably by Gale (1967).

(iv) Notice that the convergence of the discounted utility sum is not essential
to the method. Thus, in general, we can define a program {y(t)}∞0 from y to
be optimal (in Brock’s (1970) terminology “weakly-maximal”) if

lim inf
T→∞

T∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(y(t), y(t+ 1))] ≤ 0

for every program {y′(t)}∞0 from y. Then (3.1) and (3.5) lead to the optimality
of {y(t)}∞0 by the same method. The point to be noted is that, in this general
form, no assumptions are needed on Ω, u, δ.

3.3.2 When Are Optimal Programs Competitive?

The converse to Theorem 3.3.1 relies heavily on the “convex structure” of the
model. The proof we report here follows closely the approach of Weitzman
(1973): the interesting features of his technique of proof are (a) the use of an
induction argument to obtain the “dual variables”, and (b) the combination
of the dynamic programming approach exploiting the value function, with the
duality approach exploiting the separation theorem. These ideas are formalized
in Lemmas 1 and 2 below, which are then used to obtain Theorem 3.3.2, the
basic result of this subsection.

Lemma 3.3.1. Suppose {ȳ(t)}∞0 is an optimal program from ȳ >> 0. Then
there is p(0) ∈ Rn

+ such that:

V (ȳ(0)) − p(0)ȳ(0) ≥ V (y) − p(0)y for all y ∈ Rn
+. (3.6)

Proof. Define the sets A and B as follows.
A = {(α, β) ∈ Rn+1 : V (y) − V (ȳ(0)) ≥ α, (ȳ(0) − y) ≥ β for some

y ∈ Rn
+}

B = {(α, β) ∈ Rn+1 : (α, β) >> 0}
Clearly, A and B are non-empty and convex. Also A ∩ B = φ. For if

there is (α, β) ∈ A ∩ B, then there is y ∈ Rn
+, such that V (y) > V (ȳ(0))
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and ȳ(0) >> y. By the “free-disposal” assumption (A.4), ȳ(0) >> y implies
V (ȳ(0)) ≥ V (y), which contradicts V (y) > V (ȳ(0)).

By a standard separation theorem (see, for example, Theorem 3.5, p. 35 in
Nikaido (1968)) there is (µ, ν) ∈ Rn+1

+ , with (µ, ν) �= 0, such that:

µα+ νβ ≤ 0 for all (α, β) ∈ A (3.7)

Thus, using the definition of A, we have:

µ(V (y) − V (ȳ(0)) + ν(ȳ(0) − y) ≤ 0 for all y ∈ Rn
+ (3.8)

We claim that µ �= 0. For if µ = 0, then ν > 0 and using (3.8),

ν(ȳ(0) − y) ≤ 0 for all y ∈ Rn
+ (3.9)

But since ȳ(0) = y >> 0, we can pick y = ȳ(0)/2 to contradict (3.9). This
establishes our claim, so that µ > 0.

Define p(0) = (ν/µ), and use (3.8) to get

[V (y) − V (ȳ(0))] + p(0)(ȳ(0) − y) ≤ 0 for all y ∈ Rn
+

which, after transposition of terms, is (3.6).

We call x̂ ∈ Rn
+ sufficient if there is ŷ ∈ Rn

++, such that (x̂, ŷ) ∈ Ω.

Lemma 3.3.2. Suppose {ȳ(t)}∞0 is an optimal program from ȳ. Suppose, also,
that there is some sufficient vector x̂ in Rn

+. If there is some t ≥ 0, and
p(t) ∈ Rn

+ such that:

δtV (ȳ(t)) − p(t)ȳ(t) ≥ δtV (y) − p(t)y for all y ∈ Rn
+ (3.10)

then there is p(t+ 1) ∈ Rn
+ such that:

δt+1V (ȳ(t+1))−p(t+1)ȳ(t+1) ≥ δt+1V (y)−p(t+1)y for all y ∈ Rn
+ (3.11)

and:
δtu(ȳ(t), ȳ(t+ 1)) + p(t+ 1)ȳ(t+ 1) − p(t)ȳ(t)

≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.12)

Proof. Since {ȳ(t)}∞0 is an optimal program, we have V (ȳ(t)) = u(ȳ(t), ȳ(t +
1)) + δV (ȳ(t + 1)). Also, for all (x, y) ∈ Ω, we have V (x) ≥ u(x, y) + δV (y).
Using these facts in (3.10), we have

θ(t+ 1) ≡ δtu(ȳ(t), ȳ(t+ 1)) + δt+1V (ȳ(t+ 1)) − p(t)ȳ(t)
≥ δtu(x, y) + δt+1V (y) − p(t)x for all (x, y) ∈ Ω

Thus,

θ(t+ 1) − δtu(x, y) + p(t)x ≥ δt+1V (y) for all (x, y) ∈ Ω (3.13)
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Define two sets A and B as follows:
A = {(α, β) ∈ Rn+1 : α ≤ δt+1V (y′) − [θt+1 − δtu(x, y) + p(t)x] and β ≤

(y − y′), for some (x, y) ∈ Ω, and for some y′ ∈ Rn
+}

B = {(α, β) ∈ Rn+1 : (α, β) >> 0}
Clearly, A and B are non-empty and convex (since u is concave on Ω and V

is concave on Rn
+). Also, since V is non-decreasing, we can use (3.13) to infer

that A ∩ B = φ. Hence, by a standard separation theorem (see, for example,
p. 35 in Nikaido (1968)), there is (µ, ν) ∈ Rn+1

+ , with (µ, ν) �= 0, such that:

µα+ νβ ≤ 0 for all (α, β) ∈ A (3.14)

Using the definition of A and (3.14), we have

µ[θt+1 − δtu(x, y) + p(t)x] − νy ≥ µδt+1V (y′) − νy′

for all (x, y) ∈ Ω and all y′ ∈ Rn
+. (3.15)

Put x = ȳ(t) and y = ȳ(t+ 1) in (3.15) to get:

µ[δt+1V (ȳ(t+ 1))] − νȳ(t+ 1) ≥ µ[δt+1V (y′)] − νy′ for all y′ ∈ Rn
+ (3.16)

Put y′ = ȳ(t+ 1) in (3.15) to get:

µ[δtu(ȳ(t), ȳ(t+ 1)) − p(t)ȳ(t)] + νȳ(t+ 1)
≥ µ[δtu(x, y) − p(t)x] + νy for all (x, y) ∈ Ω (3.17)

We claim now that µ �= 0. For if µ = 0, then by (3.16), νȳ(t+ 1) ≤ νy for
all y′ ∈ Rn

+, and by (3.17), νȳ(t + 1) ≥ νy for all y, such that (x, y) ∈ Ω for
some x. Thus,

νȳ(t+ 1) = νy for all y such that (x, y) ∈ Ω for some x (3.18)

Since there is a sufficient vector x̂, there is ŷ >> 0, such that (x̂, ŷ) ∈ Ω.
Also, (x̂, 0) ∈ Ω by “free-disposal” in Ω. Using these facts in (3.18), we have
0 = ν0 = νȳ(t+1) = νŷ, so that ν = 0. Thus, we get (µ, ν) = 0, a contradiction.
This establishes our claim, and we have µ > 0.

Defining p(t+ 1) = (ν/µ), we can use (3.16) to get (3.11), and (3.17) to get
(3.12), establishing the Lemma.

Theorem 3.3.2. Suppose {ȳ(t)}∞0 is an optimal program from ȳ >> 0. Sup-
pose, also, that there is some sufficient vector x̂ in Rn

+. Then, there is a
sequence {p(t)}∞0 with p(t) ∈ Rn

+ for t ≥ 0, such that:

δtV (ȳ(t)) − p(t)ȳ(t) ≥ δtV (y) − p(t)y for all y ∈ Rn
+ (3.19)

and:

δtu(ȳ(t), ȳ(t+ 1)) + p(t+ 1)ȳ(t+ 1) − p(t)ȳ(t)

≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.20)

and:
lim

t→∞ p(t)ȳ(t) = 0 (3.21)
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Proof. Using Lemmas 1 and 2, there is a sequence {p(t)}∞0 with p(t) ∈ Rn
+ for

t ≥ 0,such that (3.19) and (3.20) hold. Putting y = 0 in (3.19), we have

δt[V (ȳ(t)) − V (0)] ≥ p(t)ȳ(t) for t ≥ 0 (3.22)

Denoting max[ξ, ‖ȳ‖] by B(ȳ) and defining z = B(ȳ)e, where e = (1, ..., 1)
in Rn

+, we have ȳ(t) ≤ z for t ≥ 0, and so V (ȳ(t)) ≤ V (z) for t ≥ 0. Using this
in (3.22),

δt[V (z) − V (0)] ≥ p(t)ȳ(t) ≥ 0 for t ≥ 0.

Now, since δt → 0 as t→ ∞, we have p(t)ȳ(t) → 0 as t→ ∞, which establishes
(3.21).

Remarks:
(i) Peleg (1970) establishes a version of Theorem 3.3.2 by applying the

separation theorem in the space of all bounded infinite sequences (of vectors in
Rn), known as �n∞. This method is also followed in Peleg and Ryder (1972).

(ii) In the statement of Theorem 3.3.2, the initial stock, ȳ, is assumed to
be strictly positive, and it is also assumed that there is some sufficient vector,
x̂ in Rn

+. Under these assumptions, we note that we can find 0 < λ < 1, such
that λx̂ ≤ ȳ. Now, since there is ŷ >> 0, such that (x̂, ŷ) ∈ Ω, we have
(λx̂, λŷ) ∈ Ω, and by free-disposal, (ȳ, λŷ) ∈ Ω. Since λŷ >> 0, we see that ȳ
itself is a sufficient vector. Thus, under the assumptions of Theorem 3.3.2, we
have (a) ȳ >> 0 and (b) ȳ is a sufficient vector. On the other hand, if ȳ >> 0
and ȳ is a sufficient vector, then the assumptions used in Theorem 3.3.2 are
obvously satisfied.

(iii) Conditions (3.19) and (3.21) in the above result are not “independent”.
For a competitive program it can be shown that (3.19) is equivalent to (3.21).
That (3.19) implies (3.21) is clear from the proof of Theorem 3.3.2. The converse
implication can be derived by following the proof of Theorem 3.3.1.

3.3.3 An Example

Theorem 3.3.1 shows that a competitive program satisfying a transversality
condition is optimal, and Theorem 3.3.2 shows that an optimal program is
competitive and satisfies a transversality condition. This still does not settle
the question of whether the transversality condition is needed in the statement
of Theorem 3.3.1 to make it valid. It is logically possible, for example, that a
competitive program automatically satisfies the transversality condition and is
therefore optimal. (For more on this line of thought, see Section 3.6 below).
In this subsection, to settle this issue, we give an example of a framework
(which is a special case of the one described in Section 3.2) and a competitive
program in that framework (with a uniquely defined associated price sequence)
which violates the transversality condition and is not optimal. Thus, in general,
Theorem 3.3.1 would be invalid if the transversality condition is dropped from
its statement.
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The framework is the standard aggregative neoclassical growth model,
which is described by (f, w, δ), where f is the production function, satisfying:

f(x) = 4x1/2 for all x ≥ 0

w is the welfare function satisfying:

w(c) = 2c1/2 for all c ≥ 0

and δ is the discount factor, satisfying δ = 1/2. To convert this model to
the framework analyzed in Section 3.2, we can define the transition possibility
set by Ω = {(x, y) ∈ R2

+ : y ≤ f(x)}, and the utility function by u(x, y) =
w(x − f−1(y)) for all (x, y) ∈ Ω. [For more on this kind of conversion, see
Section 3.7 below].

Define a sequence {k(t)} as follows: k(0) = 2, k(1) = 4
√

2−1, and for t ≥ 0,

k(t+ 2) = f(k(t+ 1)) − [f(k(t)) − k(t+ 1)]
k(t+ 1)

(3.23)

We first verify that (3.23) does, in fact, uniquely define a sequence. To this end,
we claim that, if for some t ≥ 0, we have (k(t), k(t+1)) satisfying k(t) > 1 and
f(k(t)) > k(t+ 1) > k(t), then k(t+ 2), defined uniquely by (3.23) satisfies:

k(t+ 1) > 1 and f(k(t+ 1)) > k(t+ 2) > k(t+ 1) (3.24)

First, we have k(t + 1) > k(t) > 1 by hypothesis, so k(t + 1) > 1. Second, we
have:

0 <
[f(k(t)) − k(t+ 1)]

k(t+ 1)
< [f(k(t)) − k(t+ 1)]

so that (3.23) implies that (i) k(t+2) > f(k(t+1))−[f(k(t))−k(t+1)] > k(t+1),
since k(t + 1) > k(t) and f is increasing; and (ii) k(t + 2) < f(k(t+ 1)). This
establishes our claim.

Since (k(0), k(1)) = (2, 4
√

2 − 1) satisfies k(0) > 1 and f(k(0)) = 4
√

2 >
4
√

2 − 1 = k(1) > 2 = k(0), we can use (3.24) repeatedly to uniquely define
{k(t)} by (3.23). Further, for all t ≥ 0, we must have (3.24) holding along such
a sequence.

Note that {k(t} is monotonically increasing and bounded above by ξ = 16,
so it must converge to some k > 1. Then, using (3.23) and (3.24), we must
have k = f(k) − {[f(k) − k]/k} and f(k) ≥ k respectively, so that f(k) − k =
{[f(k) − k]/k}, and consequently f(k) = k (since k �= 1). Thus k = ξ = 16.

Define {x(t), y(t), c(t)} as follows: x(0) = k(0) = 2, y(0) = 4, c(0) = 2, and
for t ≥ 1,

x(t) = k(t), y(t) = f(x(t− 1)), c(t) = y(t) − x(t) (3.25)

Note that, by (3.24), we have c(t) > 0 for t ≥ 0, and by (3.23), we have:

w′(c(t)) = δf ′(x(t))w′(c(t+ 1)) for all t ≥ 0 (3.26)
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the Ramsey-Euler equations for this framework. It is easy to check now that
{y(t)} is a program from y(0) = 4, and that (using the concavity of f and w,
and (3.26)), {y(t), p(t)} is a competitive program at the uniquely defined price
sequence {p(t)} given by:

p(t) = δtw′(c(t)) for t ≥ 0 (3.27)

By (3.23) and k(t) > 1 for t ≥ 0, we have c(t+ 1) < c(t) for t ≥ 1, and clearly
c(1) = 1 < c(0) = 2. Thus, c(t) ≤ 2 for t ≥ 0, so that u(y(t), y(t+1)) ≤ w(2) =
2
√

2 for all t ≥ 0. However, the sequence {y′(t)} defined by y′(t) = 4 for all
t ≥ 0 is clearly a program from y′(0) = 4, with u(y′(t), y′(t+1)) = w(3) = 2

√
3

for all t ≥ 0. Thus, {y(t)} is not an optimal program from y(0) = 4.
Since x(t) = k(t) → 16 as t → ∞, there is T such that k(t) ≥ 3, and so

f ′(x(t)) ≤ (2/3) for all t ≥ T. Using (3.26) and (3.27), we see that:

p(t+ 1) = p(0)/
t∏

s=0

f ′(x(s))

and so p(t) → ∞ as t → ∞. Since y(t) = f(x(t − 1)) → 16 as t → ∞, we have
p(t)y(t) → ∞ as t→ ∞, a violation of the transversality condition.

3.4 Duality Theory for Stationary Optimal Programs

3.4.1 Existence of a Stationary Optimal Stock via Duality Theory

The question of existence of a non-trivial stationary optimal stock has been
discussed extensively in the literature. Two treatments of the subject can be
found in Sutherland (1970) and Khan and Mitra (1986), who use a purely
primal approach, and Flynn (1980) and McKenzie (1982), who use the dual
variable approach. As an illustration of the power of duality methods, we will
provide an exposition of the topic using the latter approach.

An optimal program {y(t)}∞0 from y ∈ Rn
+ is a stationary optimal program

if y(t) = y(t+ 1) for t ≥ 0. A stationary optimal stock is an element y ∈ Rn
+,

such that {y}∞0 is a stationary optimal program. It is non-trivial if u(y, y) >
u(0, 0).

A discounted golden-rule stock is a stock ŷ with (ŷ, ŷ) ∈ Ω, such that:

u(ŷ, ŷ) ≥ u(x, y) for all (x, y) ∈ φ(ŷ)

where φ(ŷ) = {(x, y) ∈ Ω : δy − x ≥ δŷ − ŷ}.
A modified golden-rule is a pair (ŷ, p̂) with (ŷ, ŷ) ∈ Ω, p̂ ∈ Rn

+ such that
for all (x, y) ∈ Ω,

u(ŷ, ŷ) + δp̂ŷ − p̂ŷ ≥ u(x, y) + δp̂y − p̂x
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An economy is δ− productive if there exists (a, b) ∈ Ω such that δb >> a.
It is δu−productive if there exists (a, b) ∈ Ω such that δb >> a and u(δb, b) >
u(0, 0).

It can be shown, by using the Kakutani fixed point theorem, that there
exists a discounted golden rule stock (see Theorem 3.4.1 below). Further, when
the economy is δ − productive, any discounted golden rule stock, ŷ, can be
supported by a price vector, p̂, so that the pair (ŷ, p̂) is a modified golden-rule,
and {ŷ} is a stationary optimal program from ŷ (Theorem 3.4.2). Finally, when
the economy is δu − productive, then a simple consequence of Theorem 3.4.2
is that there exists a non-trivial stationary optimal stock (Corollary 3.4.1).

Theorem 3.4.1. There exists a discounted golden-rule stock.

The proof of Theorem 3.4.1 can be obtained from Khan and Mitra (1986),
and with some modifications, from McKenzie (1982).

Theorem 3.4.2. (i) If the economy is δ−productive, and if ŷ is a discounted
golden-rule stock, then there is p̂ ∈ Rn

+ such that (ŷ, p̂) is a modified golden-rule.
(ii) if (ŷ, p̂) is a modified golden-rule, then {ŷ} is a stationary optimal pro-

gram from ŷ.

Proof. (i) Define the sets A and B as follows:

A = {(α, β) ∈ Rn+1 : α ≤ u(x, y) − u(ŷ, ŷ), and
β ≤ (δy − x) − (δŷ − ŷ) for some (x, y) ∈ Ω}

B = {(α, β) ∈ Rn+1 : (α, β) >> 0}
Note that A and B are non-empty, convex sets in Rn+1, and they are dis-
joint, since ŷ is a discounted golden-rule stock. Thus, by a standard separation
theorem, there is (µ, ν) ∈ Rn+1

+ with (µ, ν) �= 0, such that:

µα+ νβ ≤ 0 for all (α, β) ∈ A

This implies that for all (x, y) ∈ Ω,

µu(x, y) + ν(δy − x) ≤ µu(ŷ, ŷ) + ν(δŷ − ŷ) (3.28)

We claim that µ �= 0. For if µ = 0, then ν �= 0, and (3.28) implies that:

ν(δy − x) ≤ ν(δŷ − ŷ) for all (x, y) ∈ Ω (3.29)

Since the economy is δ − productive, there is (a, b) ∈ Ω satisfying δb >> a.
Using this in (3.29), we get 0 < ν(δb − a) ≤ ν(δŷ − ŷ) ≤ 0, a contradiction.
Thus, µ > 0, and defining p̂ = (ν/µ), we see from (3.28) that (ŷ, p̂) is a modified
golden-rule.

(ii) Define a sequence {p(t)} by:
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p(t) = δtp̂ for t ≥ 0

Then, using the definition of a modified golden-rule it is easy to check that for
all t ≥ 0, we have:

δtu(x, y) + p(t+ 1)y − p(t)x
≤ δtu(ŷ, ŷ) + p(t+ 1)ŷ − p(t)ŷ for all (x, y) ∈ Ω (3.30)

Further, since δ ∈ (0, 1), we have:

lim
t→∞ p(t)ŷ = 0 (3.31)

Thus, by Theorem 3.3.1, {ŷ} is a stationary optimal program from ŷ.

We now note the basic result on the existence of a non-trivial stationary
optimal stock as a simple consequence of the above results.

Corollary 3.4.1. If the economy is δu − productive, then there exists a non-
trivial stationary optimal stock.

Proof. Using Theorem 3.4.1, there is a discounted golden-rule stock, ŷ. Since
the economy is δ − productive, Theorem 3.4.2 can be applied to infer that ŷ
is a stationary optimal stock. Finally, since the economy is δu − productive,
we can infer that ŷ is a non-trivial stationary optimal stock, by definition of a
discounted golden rule.

3.4.2 Quasi-Stationary Price Support for Stationary Optimal
Programs

Using Theorems 3.4.1 and 3.4.2, we see that there always exists a stationary
optimal program {ŷ}, which is supported (in the sense of (3.30)) by a quasi-
stationary price sequence; that is, by a price sequence of the form p(t) = δtp̂ for
t ≥ 0. It turns out that any stationary optimal program {ŷ} can be supported
by a quasi-stationary price sequence, provided (ŷ, ŷ) is in the interior of Ω. That
is, compared to Theorem 3.3.2, one can choose the supporting price sequence
from a more restricted set when the optimal program happens to be stationary.
Our exposition of this result follows Sutherland (1967) and McKenzie (1986).

Theorem 3.4.3. Suppose {ŷ} is a stationary optimal program from ŷ, and
(ŷ, ŷ) ∈ intΩ. Then, there is p̂ such that:

(i) (ŷ, p̂) is a modified golden-rule, and
(ii) defining p̂(t) = δtp̂ for t ≥ 0, {ŷ, p̂(t)} is a competitive program from ŷ,

which satisfies the transversality condition.

Proof. Using Theorem 3.3.2, we know that there is a sequence {p(t)}, with
p(t) ∈ Rn

+ such that {ŷ, p(t)} is a competitive program from ŷ. Then, for each
t ≥ 0, we have:
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δtu(x, y) + p(t+ 1)y − p(t)x
≤ δtu(ŷ, ŷ) + p(t+ 1)ŷ − p(t)ŷ for all (x, y) ∈ Ω (3.32)

Denoting p(t)/δt by q(t) for each t ≥ 0, we have:

u(x, y) + δq(t+ 1)y − q(t)x
≤ u(ŷ, ŷ) + δq(t+ 1)ŷ − q(t)ŷ for all (x, y) ∈ Ω (3.33)

Since (ŷ, ŷ) ∈ intΩ, we have B > 0, such that ||q(t)|| ≤ B for all t ≥ 0.
Averaging the first (T + 1) inequalities in (3.33) gives:

u(x, y) − u(ŷ, ŷ) � δQ(T )(ŷ − y) − P (T )(ŷ − x) for all (x, y) ∈ Ω (3.34)

where
P (T ) =

1
T + 1

(q(0) + q(1) + ...+ q(T ))

and

Q(T ) =
1

T + 1
(q(1) + ...+ q(T + 1))

= P (T ) +
1

T + 1
(q(T + 1) − q(0))

Clearly, ||P (T )|| ≤ B for all T ≥ 0; so, there is a subsequence {Ti}, i = 1, 2, ...,
such that P (Ti) → p̂ � 0. Then Q(Ti) also converges to p̂, and (3.34) yields:

u(x, y) − u(ŷ, ŷ) � δp̂(ŷ − y) − p̂(ŷ − x) for all (x, y) ∈ Ω (3.35)

Thus (ŷ, p̂) is a modified golden-rule, establishing (i). The result in (ii) follows
by using the proof of (ii) in Theorem 3.4.2.

Remarks:
(i) Suppose (ŷ, ŷ) ∈ intΩ; then, {ŷ} is a stationary optimal program if and

only if there is p̂ ∈ Rn
+ such that (ŷ, p̂) is a modified golden-rule. This follows

from Theorem 3.4.2 (ii) and Theorem 3.4.3 (i).
(ii) Suppose (ŷ, ŷ) ∈ intΩ, and {ŷ} is a stationary optimal program. Then,

from Theorem 3.4.3 (i), it follows that ŷ is also a discounted golden-rule stock.

3.5 Replacing the Transversality Condition by a
Period-by-Period Condition

The transversality condition used in the price characterization results of opti-
mality (Theorems 3.3.1 and 3.3.2 of Section 3.3) is an asymptotic condition.
It cannot be verified in a finite number of periods, however large the number
of periods might be. It is, therefore, of some interest to investigate whether
the transversality condition can be replaced in such characterization results
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by a condition which might convey some information about optimality in a
finite number of periods (where the finite number of periods can be arbitrarily
“large”). It turns out that, for the class of stationary models we are consid-
ering, there is a convenient period-by-period condition which can replace the
transversality condition in the price characterization theorems. Our exposition
of this result follows Dasgupta and Mitra (1988).

To describe the results of this section, it is convenient to adopt the following
convention. If {y(t), p(t)} is a competitive program, then we denote the current
value price sequence associated with it by {q(t)}, where q(t) = p(t)/δt for
t ≥ 0. If {ŷ, q̂} is a modified golden-rule, then the present value price sequence
associated with it is denoted by {p̂(t)}, where p̂(t) = δtq̂ for t ≥ 0.

If {y(t)} is an optimal program, and (ŷ, q̂) is a modified golden-rule, then
Theorem 3.3.2 can be used to show the existence of a price sequence {p(t)}
such that {y(t), p(t)} is a competitive program, and the following inequality
holds:

(q(t) − q̂)(y(t) − ŷ) ≤ 0 for all t ≥ 0 (3.36)

(see Theorem 3.5.1 below). This raises the following question: if (ŷ, q̂) is a
modified golden-rule, and {y(t), p(t)} is a competitive program, such that the
period-by-period condition (3.36) is satisfied, then is {y(t)} an optimal pro-
gram ? If the stock ŷ is “proportionately expansible”, then the answer is in
the affirmative (see Theorem 3.5.2 below). The results are useful in identify-
ing non-optimal competitive programs. That is, if {y(t), p(t)} is a competitive
program, which is not optimal, then it must violate (3.36) for some period.
Further, if {y(t), p(t)} is a competitive program, for which {p(t)} is the unique
associated price sequence, and it violates (3.36) for some period t, then it can
be pronounced to be non-optimal. Note that this would not be possible by
using Theorem 3.3.2.

Theorem 3.5.1. Suppose there exists a sufficient vector. Let {y(t)} be an op-
timal program from ȳ >> 0, and let (ŷ, q̂) be a modified golden-rule. Then,
there is a price sequence {p(t)}, with p(t) ∈ Rn

+ for t ≥ 0, such that {y(t), p(t)}
is a competitive program, and:

(q(t) − q̂)(y(t) − ŷ) ≤ 0 for all t ≥ 0

Proof. By Theorem 3.3.2, there is a price sequence {p(t)}, with p(t) ∈ Rn
+ for

t ≥ 0, such that {y(t), p(t)} is a competitive program, and:

V (y(t)) − q(t)y(t) ≥ V (ŷ) − q(t)ŷ for all t ≥ 0 (3.37)

Since {ŷ, q̂} is a modified golden-rule, {ŷ, p̂(t)} is a competitive program, and
p̂(t)ŷ = δtq̂ŷ → 0 as t→ ∞. Thus, using remark (iii) following Theorem 3.3.2,
we have:

V (ŷ) − q̂ŷ ≥ V (y(t)) − q̂y(t) for all t ≥ 0 (3.38)

Adding (3.37) and (3.38) and transposing terms yields the desired result.
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For the converse result, we first establish some properties that hold for
competitive programs (Lemma 3.5.1), and then derive Theorem 3.5.2 from it.

Lemma 3.5.1. Suppose {y(t), p(t)} is a competitive program, and (ŷ, q̂) is a
modified golden-rule. Then :

(p(t+ 1)− p̂(t+ 1))(y(t+ 1)− ŷ) ≥ (p(t)− p̂(t))(y(t)− ŷ) for all t ≥ 0 (3.39)

Further, if (3.36) holds, then:

[(p(t+1)− p̂(t+1))(y(t+1)− ŷ)−(p(t)− p̂(t))(y(t)− ŷ)] → 0 as t→ ∞ (3.40)

Proof. Since {y(t), p(t)} is competitive, we have:

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(ŷ, ŷ) + p(t+ 1)ŷ − p(t)ŷ for all t ≥ 0 (3.41)

Since {ŷ, p̂(t)} is competitive, we have:

δtu(ŷ, ŷ) + p̂(t+ 1)ŷ − p̂(t)ŷ
≥ δtu(y(t), y(t+ 1)) + p̂(t+ 1)y(t+ 1) − p̂(t)y(t) for all t ≥ 0(3.42)

Adding (3.41) and (3.42) and transposing terms yields (3.39).
Denoting (p(t) − p̂(t))(y(t) − ŷ) by µ(t) for t ≥ 0, we see (from (3.39))

that {µ(t)} is a monotonically non-decreasing sequence. If (3.36) holds, this
sequence is bounded above by 0. So, µ(t) converges as t → ∞. Clearly, this
implies that (3.40) must hold.

A stock y ∈ Rn
+ is called expansible if there is y′ >> y, such that (y, y′) ∈ Ω.

It is called proportionately expansible if there is λ > 1 such that (y, λy) ∈ Ω.
Clearly, if y is expansible, it is proportionately expansible. Also, note that if
(y, y) ∈ intΩ, then y is expansible.

Theorem 3.5.2. Suppose (ŷ, q̂) is a modified golden-rule and ŷ is proportion-
ately expansible. If {y(t), p(t)} is a competitive program from ȳ, which satisfies
(3.36), then:

(i) p(t)ŷ → 0 as t→ ∞, and
(ii) {y(t)} is an optimal program from ȳ.

Proof. Since {y(t), p(t)} is competitive, we have:

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(ŷ, λŷ) + p(t+ 1)λŷ − p(t)ŷ for all t ≥ 0 (3.43)

Transposing terms, one gets:

δt[u(y(t), y(t+ 1)) − u(ŷ, λŷ)] + p(t+ 1)(y(t+ 1) − ŷ) − p(t)(y(t) − ŷ)
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≥ p(t+ 1)(λ− 1)ŷ (3.44)

Denoting (p(t) − p̂(t))(y(t) − ŷ) by µ(t) for t ≥ 0, we can write:

p(t)(y(t) − ŷ) = p̂(t)(y(t) − ŷ) + µ(t) for all t ≥ 0 (3.45)

Using (3.45) in (3.44), we obtain:

δt[u(y(t), y(t+ 1)) − u(ŷ, λŷ)] + p̂(t+ 1)(y(t+ 1) − ŷ) − p̂(t)(y(t) − ŷ)

+µ(t+ 1) − µ(t) ≥ p(t+ 1)(λ− 1)ŷ (3.46)

Denoting max{ξ, ||ȳ||} by B, we have y(t) ≤ Be, where e = (1, 1, ..., 1) in Rn.
Thus, u(y(t), y(t + 1)) ≤ u(Be, 0) for all t ≥ 0. Then, using Lemma 3.5.1, we
note that all the terms on the left hand side of (3.46) converge to zero as t→ ∞.
This establishes (i), since λ > 1.

By definition of µ(t) and (3.36), we have:

p(t)(y(t) − ŷ) = p̂(t)(y(t) − ŷ) + µ(t)
≤ p̂(t)(y(t) − ŷ)
≤ p̂(t)y(t)

Thus, we get:
p(t)y(t) ≤ p(t)ŷ + p̂(t)y(t) (3.47)

Since ‖y(t)‖ ≤ max [ξ, ‖ȳ‖] for t ≥ 0, and δ ∈ (0, 1), we have p̂(t)y(t) → 0
as t → ∞. Also, p(t)ŷ → 0 as t → ∞ by (i). Thus, by (3.47), we must have
p(t)y(t) → 0 as t→ ∞. By Theorem 3.3.1, {y(t), p(t)} is optimal from ȳ.

3.6 Are Competitive Programs Optimal?

We have seen that in general an infinite horizon competitive program is not
optimal (see the example in Section 3.3), and so Theorem 3.3.1 would be in-
valid if the transversality condition is dropped from its statement. However,
this still leaves open the possibility that for some classes of models, the phe-
nomenon observed in the example does not occur, and all competitive programs
are optimal. The approach to identify such models has been to specify a class of
transition possibility sets and utility functions such that the (myopic) compet-
itive condition itself restricts the rate at which accumulation of stocks can take
place; such a class can be conveniently described by some form of a “reachabil-
ity” condition. This topic has been investigated by Kurz and Starrett (1970),
and Dasgupta and Mitra (1999a,b), among others. We base our discussion here
on Dasgupta and Mitra (1999a).
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Reachability Condition:
There is an expansible stock ỹ such that, given any competitive program

{y(t), p(t)}, there is a program {y0(t)} from ỹ and a positive integer R such
that y0

R ≥ yR.
This condition says that, given a competitive program (from an arbitrary

initial stock) it is possible, through pure accumulation if need be, to reach the
stocks along the given competitive program at some far enough future date,
starting from the expansible stock ỹ.

Theorem 3.6.1. Suppose the Reachability Condition is satisfied. If {y(t), p(t)}
is a competitive program from ȳ ∈ Rn

+, then {y(t)} is an optimal program from
ȳ.

Proof. Since ỹ is expansible, there is z̃ >> ỹ such that (ỹ, z̃) ∈ Ω. Denote
(z̃ − ỹ) by k; then k >> 0. Using the competitive condition, we get, for all
t ≥ 0,

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(ỹ, z̃) + p(t+ 1)z̃ − p(t)ỹ
= δtu(ỹ, z̃) + p(t+ 1)ỹ − p(t)ỹ + p(t+ 1)k (3.48)

Now consider any T ≥ 2. From (3.48), we have:

T−1∑
t=0

δtu(y(t), y(t+ 1)) + p(T )y(T )− p(0)y(0)

≥
T−1∑
t=0

δtu(ỹ, z̃) +
T−1∑

0

p(t+ 1)k + p(T )ỹ − p(0)ỹ (3.49)

The sequence {y′′(t), p′′(t)} defined by (y′′(t), p′′(t)) = (y(T + t), p(T + t))
for t ≥ 0 is clearly a competitive program from y(T ). By the reachability
condition, there is a program {y0(t)} from ỹ, and a positive integer R, such
that y0(R) ≥ y′′(R) = y(T + R). Defining {y′(t)} by y′(t) = ỹ for t = 0, ..., T,
and y′(t) = y0(t− T ) for t > T, we see that {y′(t)} is a program from ỹ, and:

y′(T ) = ỹ and y′(T +R) = y0(R) ≥ y′′(R) = y(T +R) (3.50)

Applying the competitive condition to (y′(t), y′(t+ 1)) ∈ Ω for each t ≥ T,
we have:

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(y′(t), y′(t+ 1)) + p(t+ 1)y′(t+ 1) − p(t)y′(t) (3.51)

From (3.51), we have:
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T+R−1∑
t=T

δtu(y(t), y(t+ 1)) + p(T +R)y(T +R) − p(T )y(T )

≥
T+R−1∑

t=T

δtu(y′(t), y′(t+ 1)) + p(T +R)y′(T +R) − p(T )y′(T )(3.52)

From (3.49) and (3.52), we have:

T+R−1∑
t=0

δtu(y(t), x(t+ 1)) + p(T +R)y(T +R) − p(0)y(0)

≥
T−1∑
t=0

δtu(ỹ, z̃) +
T+R−1∑

t=T

δtu(y′(t), y′(t+ 1)) +
T−1∑
t=0

p(t+ 1)k

+p(T +R)y′(T +R) − p(T )y′(T ) + p(T )ỹ − p(0)ỹ (3.53)

Since p(t) ≥ 0, from (3.50) and (3.53), we have:

T+R−1∑
t=0

δtu(y(t), y(t+ 1)) −
T−1∑
t=0

δtu(ỹ, z̃)

−
T+R−1∑

t=T

δtu(y′(t), y′(t+ 1)) + p(0)(ỹ − y(0))

≥
T−1∑

0

p(t+ 1)k (3.54)

Denoting max{ξ, ||ȳ||} by B, we have y(t) ≤ Be, where e = (1, 1, ..., 1) in
Rn. Denoting max{ξ, ||ỹ||} by B′, we have y′(t) ≤ B′e, where e = (1, 1, ..., 1)
in Rn. Thus, u(y(t), y(t+ 1)) ≤ u(Be, 0), and u(y′(t), y′(t+ 1)) ≤ u(B′e, 0)for
all t ≥ 0. Then, using (A.6) and δ ∈ (0, 1), we see that the left hand side of
(3.54) is uniformly bounded above regardless of the value of T. Since k >> 0
and p(t) ≥ 0 for all t, it follows that

∑∞
0 p(t) < ∞, and so p(t) → 0 as t→ ∞.

Since ‖y(t)‖ ≤ max [ξ, ‖ȳ‖] for t ≥ 0, we have lim
t→∞p(t)y(t) = 0 and so, by

Theorem 3.3.1, the program {y(t)} is optimal from ȳ.

Given the abstract nature of the reachability condition, a simple multi-
sectoral model in which it can be directly verified would be helpful. We de-
scribe the production side of such a model by an n × n non-negative matrix
A = (aij), where i = 1, ..., n and j = 1, ..., n, and a strictly positive vector
b = (b1, ..., bn) >> 0. Here, aij and bj are respectively the amounts of the i−th
good and labor which are required per unit output of the j−th good. The total
amount of labor available for production is stationary and is normalized to 1.
For each j = 1, ..., n, it is assumed that there is some i = 1, ..., n such that
aij > 0. Thus, each production process requires a positive amount of labor as
well as a positive amount of some produced factor. Further, it is assumed that
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A is productive; that is, there is some ỹ >> 0 such that ỹ >> Aỹ and bỹ ≤ 1.
This essentially excludes the economically uninteresting case of a production
system which is unable to sustain some positive consumption levels for all of
the desired goods. The transition possibility set for this economy is:

Ω = {(x, y) ∈ R2n
+ : Ay ≤ x and by ≤ 1}

Welfare is derived from consumption, as given by a function w : Rn
+ → R,

which is continuous, concave and monotone on Rn
+. The (reduced form) utility

function is then defined by:

u(x, y) = w(x −Ay) for all (x, y) ∈ Ω

Consider any program {y(t)} from ȳ ∈ Rn
+. Denoting (1/minj bj) by B, we

have y(t) ≤ Be for all t ≥ 1, where e = (1, ..., 1) ∈ Rn. Since A is productive,
we have At → 0 as t→ ∞, so we can find a positive integer R ≥ 2, such that:

ARBe << ỹ

Now, define the sequence {y′(t)} as follows:

y′(0) = ỹ
y′(t) = AR−ty(R) for 1 ≤ t ≤ R− 1
y′(t) = y(t) for t ≥ R

⎫⎬⎭
It can be checked (see Dasgupta and Mitra (1999a) for the details) that {y′(t)}
is a program from ỹ. Since y′(R) = y(R), the reachability condition is satisfied.

3.7 Duality Theory in the Consumption Model

A model of optimal growth that has received considerable attention in the lit-
erature is one in which utility is derived from consumption alone (referred to
as the “consumption model”). In this section we describe the multisectoral ver-
sion of this model, show how it can be viewed as a special case of the general
framework described in Section 3.2, and apply the results developed for that
framework to this particular case. In terms of duality theory, the principal dif-
ference is that the competitive condition can be split up into two conditions,
one involving consumption decisions and the other involving production deci-
sions (see (3.56) and (3.57) below). Our exposition follows Dasgupta and Mitra
(1990).

3.7.1 The Model

Consider a framework described by a triplet (Ω,w, δ), where Ω, a subset of
Rn

+ ×Rn
+, is the technology set, w : Rn

+ → R is the period welfare function, and
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δ is the discount factor satisfying 0 < δ < 1. A typical element of Ω is written
as an ordered pair (x, y), where x represents the inputs of the n goods, and y
the outputs producible with inputs x.

We will need the following assumptions:
(B.1) (i) (0, 0) ∈ Ω; (ii) (0, y) ∈ Ω implies y = 0.
(B.2) Ω is (i) closed, and (ii) convex.
(B.3) There is ξ such that “(x, y) ∈ Ω and ‖x‖ > ξ” implies “‖y‖ <

‖x‖”.
(B.4) If (x, y) ∈ Ω and x′ ≥ x, 0 ≤ y′ ≤ y, then (x′, y′) ∈ Ω.
(B.5) w is (i) continuous, and (ii) concave.
(B.6) If c, c′ are in Rn

+, then (i) c′ ≥ c implies w(c′) ≥ w(c), and (ii)
c′ >> c implies w(c′) > w(c).

A plan from y ∈ Rn
+ is a sequence {x(t), y(t)}∞0 such that

y(0) = y; 0 ≤ x(t) ≤ y(t) and (x(t), y(t + 1)) ∈ Ω for t ≥ 0

Associated with a plan {x(t), y(t)}∞0 from y is a consumption sequence {c(t)}∞0
defined by

c(t) = y(t) − x(t) for t ≥ 0

A plan {x̄(t), ȳ(t)}∞0 from y is an optimal plan if

∞∑
0

δtw(c̄(t)) ≥
∞∑
0

δtw(c(t)) (3.55)

for every plan {x(t), y(t)}∞0 from y.
An optimal plan {x(t), y(t)}∞0 from y is a stationary optimal plan if

(x(t), y(t)) = (x(t+ 1), y(t+ 1)) for t ≥ 0. In this case we refer to a stationary
optimal plan as {x, y}∞0 with obvious interpretation, and to its associated sta-
tionary consumption sequence as {c}∞0 , where c = y−x. A stationary optimal
output is an element y ∈ Rn

+ such that there is a stationary optimal plan from
y. It is non-trivial if w(c) > w(0).

A sequence {x(t), y(t), p(t)}∞0 is a competitive plan from y if {x(t), y(t)}∞0
is a plan from y, p(t) ∈ Rn

+ for t ≥ 0, and for t ≥ 0,

δtw(c(t)) − p(t)c(t) ≥ δtw(c) − p(t)c for all c ∈ Rn
+ (3.56)

and

p(t+ 1)y(t+ 1) − p(t)x(t) ≥ p(t+ 1)y − p(t)x for all (x, y) ∈ Ω (3.57)

A modified golden-rule equilibrium is a triple (x̂, ŷ, p̂) with (x̂, ŷ) ∈ Ω,
p̂ ∈ Rn

+, such that denoting (ŷ − x̂) by ĉ, we have
(i) ĉ ≥ 0
(ii) w(ĉ) − p̂ĉ ≥ w(c) − p̂c for all c in Rn

+

(iii) p̂(δŷ − x̂) ≥ p̂(δy − x) for all (x, y) ∈ Ω



76 Tapan Mitra

3.7.2 Conversion to the Format of the General Model

Our objective, in this subsection, is to show that the consumption model can
be viewed as a particular case of the general framework of Section 3.2.

To this end, we define a feasible input correspondence, g : Ω → Rn
+ by

g(a, b) = {x : (x, b) ∈ Ω and x ≤ a}
Note that for each (a, b) ∈ Ω, a ∈ g(a, b) so g is non-empty valued. Also, for
each (a, b) ∈ Ω, g(a, b) is a bounded set (by definition) and a closed set, by
(B.2).

Next, we define a utility function, u : Ω → R by

u(a, b) = Max {w(a− x) : x ∈ g(a, b)}
Note that for each (a, b) ∈ Ω, g(a, b) is non-empty, compact, and w is contin-
uous. Thus, defining h(a, b) = {x̄ : x̄ ∈ g(a, b), and w(a − x̄) ≥ w(a − x) for
all x ∈ g(a, b)}, we note that h is a non-empty valued correspondence on Ω,
and u(a, b)[≡ w(a − x̄) for x̄ ∈ h(a, b)] is well-defined on Ω. It can now be
shown that, given (B.1) - (B.6), (Ω, u) satisfies (A.1) - (A.6) of Section 3.2 [see
Dasgupta and Mitra (1990) for the details].

Next, we want to consider plans in terms of the general framework of Section
3.2. Note that {x(t), y(t)}∞0 is a plan from y if and ony if {y(t)}∞0 is a program
from y, and x(t) ∈ g(y(t), y(t + 1)) for t ≥ 0. Furthermore, if {x̄(t), ȳ(t)}∞0
is an optimal plan from y, then clearly x̄(t) ∈ h(ȳ(t), ȳ(t + 1)) and so u(ȳ(t),
ȳ(t + 1)) = w(c̄(t)) for t ≥ 0. Also, if {x(t), y(t)}∞0 is a plan from y, then
w(c(t)) = w(y(t) − x(t)) ≤ u(y(t), y(t+ 1)). Using these facts, the inequality
in (3.55) can be rewritten as:

∞∑
0

δtu(ȳ(t), ỹ(t+ 1)) ≥
∞∑
0

δtu(y(t), y(t+ 1))

for every plan {x(t), y(t)}∞0 from y. In other words, {ȳ(t)}∞0 is an optimal
program from y. Conversely, if {ȳ(t)}∞0 is an optimal program from y, then
defining x̄(t) ∈ h(ȳ(t), ȳ(t + 1)) for t ≥ 0, {x̄(t), ȳ(t)}∞0 is clearly an optimal
plan from y.

3.7.3 Characterization of Optimal Plans in Terms of Dual Variables

An optimal plan can be characterized as a competitive plan satisfying a
transversality condition. The standard references for this result are Peleg
(1970) and Peleg and Ryder (1972). The (common) technique of proof of
these two papers consists in applying a separation theorem in the space of all
bounded infinite sequences (of vectors in Rn). Our main objective in presenting
this result is to draw attention to the fact that it can be derived as a special
case of Theorems 3.3.1 and 3.3.2, which we have noted for the general model.

We now formally state and prove our characterization results, by using the
corresponding results for the general model.
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Proposition 3.7.1. If {x(t), y(t), p(t)}∞0 is a competitive plan from y, and

lim
t→∞p(t) y(t) = 0 (3.58)

then {x(t), y(t)}∞0 is an optimal plan from y.

Proof. If {x(t), y(t), p(t)}∞0 is a competitive plan from y, then using (3.56),
(3.57), and x(t) = y(t) − c(t), one gets:

δtw(c(t)) + p(t+ 1) y(t+ 1) − p(t)y(t)

≥ δtw(c) + p(t+ 1)y − p(t)(c+ x) for all (x, y) ∈, Ω and c ∈ Rn
+ (3.59)

Note that x(t) ∈ g(y(t), y(t+ 1)), since (x(t), y(t+ 1)) ∈ Ω, and x(t) ≤ y(t).
For any x ∈ g(y(t), y(t+ 1)), since (x(t), y(t+ 1)) ∈ Ω and x ≤ y(t), defining
c = y(t)−x ≥ 0, and using (3.5), w(c(t)) ≥ w(c). Thus, x(t) ∈ h(y(t), y(t+1)),
and w(c(t)) = u(y(t), y(t+ 1).

Let (a, b) ∈ Ω. Then defining x ∈ h(a, b), and c = a− x, we have (x, b) ∈
Ω and c ≥ 0, so by (3.59),

δtu(y(t), y(t+ 1)) + p(t+ 1)y(t+ 1) − p(t)y(t)
≥ δtu(a, b) + p(t+ 1)b− p(t)a for all (a, b) ∈ Ω

Thus, {y(t), p(t)}∞0 is a competitive program from y, satisfying the transver-
sality condition. Hence, by Theorem 3.3.1, {y(t)}∞0 is an optimal program
from y. Since we have already checked that x(t) ∈ h(y(t), y(t + 1)), we can
conclude that {x(t), y(t)}∞0 is an optimal plan from y.

Proposition 3.7.2. Suppose {x(t), y(t)}∞0 is an optimal plan from y ∈ Rn
++.

Suppose, also, that there is some sufficient vector in Rn
+. Then, there is a

sequence {p(t)}∞0 with p(t) ∈ Rn
+ for t ≥ 0, such that

(i) {x(t), y(t), p(t)}∞0 is a competitive plan;
(ii) For all y ∈ Rn

+, and t ≥ 0,

δtV (y(t)) − p(t)y(t) ≥ δtV (y) − p(t)y (3.60)

and
lim

t→∞p(t) y(t) = 0. (3.61)

Proof. Since {x(t), y(t)}∞0 is an optimal plan from y, we have x(t) ∈ h(y(t),
y(t+1)), and {y(t)}∞0 is an optimal program from y. Hence, by Theorem 3.3.2,
there is a sequence {p(t)}∞0 such that p(t) ∈ Rn

+ for t ≥ 0, {y(t), p(t)}∞0 is
a competitive program from y, and (3.60), (3.61) hold. It remains to verify
(i). This is accomplished by showing that for each t ≥ 0, the price vector p(t)
provides the appropriate price support for both the consumption decision and
the production decision.

Given any t, define θt(c) = δtw(c) − p(t)c for all c ∈ Rn
+, and πt(x, y) =

p(t+ 1)y − p(t)x for all (x, y) ∈ Ω.
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Next, given t, we define the following two sets:
A(t) = {α : there exists c ≥ 0, satisfying θt(c) − θt(c(t)) > α}
B(t) = {α : there exists (x, y) ∈ Ω satisfying πt(x, y)− πt(x(t), y(t+ 1)) >

−α}
We claim that (for each t),

A(t) and B(t) are disjoint (3.62)

If (3.62) does not hold (for some t), there is some α which belongs to both A(t)
and B(t). Then, there is (x, y) ∈ Ω and c ≥ 0, such that θt(c) − θt(c(t)) > α,
and πt(x, y) − πt(x(t), y(t+ 1)) > −α. Thus, we get:

δtw(c) + p(t+ 1)y − p(t)(x+ c) > δtw(c(t)) + p(t+ 1)y(t+ 1) − p(t)y(t)

Defining a = (x + c), we have (a, y) ∈ Ω, and u(a, y) ≥ w(a − x) = w(c).
Thus, δtu(a, y)+p(t+1)y−p(t)a ≥ δtw(c)+p(t+1)y−p(t)(x+c). Also, since
x(t) ∈ h(y(t), y(t+ 1)), we have w(c(t)) = w(y(t) − x(t)) = u(y(t), y(t+ 1)).
Hence,

δtu(a, y) + p(t+ 1)y − p(t)a > δtu(y(t), y(t+ 1))
+p(t+ 1)y(t+ 1) − p(t)y(t)

which contradicts the fact that {y(t), p(t)}∞0 is a competitive program from y.
This establishes our claim (3.62).

Next, we note that, by definition of the sets A(t) and B(t),

(a) If α < 0, then α ∈ A(t), (b) If α > 0, then α ∈ B(t) (3.63)

Now suppose there is some c ∈ Rn
+, such that θt(c) > θt(c(t)). Then by

defining α = 1
2 [θt(c) − θt(c(t))], we have α > 0, and α ∈ A(t). By (3.63),

α ∈ B(t), which contradicts (3.62). Hence θt(c) ≤ θt(c(t)) for all c ∈ Rn
+,

which is (3.56).
Suppose there is some (x, y) ∈ Ω such that πt(x, y) > πt(x(t), y(t + 1)).

Then by defining α = − 1
2 [πt(x, y) − πt(x(t), y(t + 1))], we note that (−α) =

1
2 [πt(x, y) − πt(x(t), y(t + 1))], so α ∈ B(t), and α < 0. By (3.63), α ∈ A(t),
which contradicts (3.62). Thus πt(x, y) ≤ πt(x(t), y(t+ 1)) for all (x, y) ∈ Ω,
which is (3.57).

We have now shown that {x(t), y(t), p(t)}∞0 is a competitive plan from y
so that (i) holds. This completes the proof of the proposition.

3.7.4 Existence of a Stationary Optimal Output

The existence of a modified golden-rule equilibrium and a non-trivial stationary
optimal stock have been obtained in the literature by Peleg and Ryder (1974) by
using duality theory. This result can be obtained as a special case of Theorem
3.4.2 and Corrollary 3.4.1, which we have established for the general framework
of Section 3.2.
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Call the technology set δ − productive if there exists (x̄, ȳ) in Ω such that
δȳ >> x̄. Note that if Ω is δ-productive, then with the definition of u given in
Section 3.7.1, and assumptions (B.4) and (B.6), (Ω, u, δ) is δu−productive. For
(δȳ, ȳ) is clearly in Ω by (B.4), and x̄ is in g(δȳ, ȳ). So u(δȳ, ȳ) ≥ w(δȳ− x̄) >
w(0) = u(0, 0).

Proposition 3.7.3. If Ω is δ-productive, there is a triple (x̂, ŷ, p̂) such that
(x̂, ŷ, p̂) is a modified golden-rule equilibrium. Furthermore, ŷ is a non-trivial
stationary optimal output.

Proof. Since Ω is δ-productive, it is also δu-productive. So, using Theorem
3.4.2, there is a pair (ŷ, p̂) such that (ŷ, p̂) is a modified golden-rule and ŷ is a
non-trivial stationary optimal stock. That is, (ŷ, ŷ) ∈ Ω, p̂ ∈ Rn

+, and for all
(a, b) ∈ Ω,

u(ŷ, ŷ) + δp̂ŷ − p̂ŷ ≥ u(a, b) + δ p̂b̂− p a (3.64)

Let x̂ be an element of h(ŷ, ŷ). Then, (x̂, ŷ) ∈ Ω, and denoting (ŷ − x̂) by ĉ,
we have ĉ ≥ 0 and w(ĉ) = u(ŷ, ŷ).

Define θ(c) ≡ w(c) − p̂c for all c ∈ Rn
+, and π(x, y) ≡ δp̂y − p̂x for all

(x, y) ∈ Ω. Now, following the method of proof in Proposition 3.7.2, one
can establish that θ(c) ≤ θ(ĉ) for all c ∈ Rn

+, and π(x, y) ≤ π(x̂, ŷ) for all
(x, y) ∈ Ω. Hence, (x̂, ŷ, p̂) is a modified golden-rule equilibrium.

Using Proposition 3.7.1, {ŷ}∞0 is a stationary optimal program from ŷ. Since
ŷ is a non-trivial stationary optimal stock, it is also a non-trivial stationary
optimal output.

3.8 Weitzman’s Theorem on the NNP

Weitzman (1976) showed, in a continuous time optimal growth model, that at
each instant of time, the present value of the net national product at that in-
stant of time (evaluated at the current supporting prices) equals the maximum
discounted sum of utilities the economy is capable of achieving from that time
onwards. This is an interesting economic interpretation of the Bellman equa-
tion of dynamic programming (in continuous time). We provide here a discrete
time analog of Weitzman’s observation which, although it does not have the
force of his result (discrete-time does not allow us to conclude equality between
the two relevant magnitudes), might be of interest. Our approach to this result
is an application of the methods of duality theory, discussed in Sections 3.3 and
3.7 above.

Our framework of analysis is the “consumption model” described in Sec-
tion 3.7. If {x(t), y(t), p(t)} is a competitive plan, then the current value price
sequence {q(t)}, associated with the plan, is defined by: q(t) = p(t)/δt for t ≥ 0.

Theorem 3.8.1. If {x(t), y(t)}∞0 is an optimal plan from a sufficient vector
y ∈ Rn

++, and {p(t)}∞0 is a sequence with p(t) ∈ Rn
+ for t ≥ 0 such that



80 Tapan Mitra

{x(t), y(t), p(t)} is a competitive plan satisfying (3.60) and (3.61). Then, for
each s ≥ 1

V (y(s)) ≥ w(c(s)) + q(s)(x(s) − x(s − 1))
(1 − δ)

(3.65)

and

V (y(s)) ≤ w(c(s)) + q(s− 1)(x(s) − x(s− 1))
(1 − δ)

(3.66)

Proof. Pick any s ≥ 1, and use t = s+ 1 and y = y(s) in (3.60) to get

V (y(s+ 1)) − V (y(s)) ≥ q(s+ 1)(y(s+ 1) − y(s)) (3.67)

Use t = s and (x(s − 1), y(s)) ∈ Ω in (3.57) to get

q(s+ 1)(y(s+ 1) − y(s)) ≥ (q(s)/δ)(x(s) − x(s− 1)) (3.68)

Using (3.67) and (3.68),

V (y(s+ 1)) ≥ V (y(s)) + (q(s)/δ)(x(s) − x(s − 1)) (3.69)

By the principle of optimality, we also have

V (y(s)) = w(c(s)) + δV (y(s+ 1)) (3.70)

So, using (3.69) in (3.70), we get

V (y(s)) ≥ w(c(s)) + δV (y(s)) + q(s)(x(s) − x(s − 1))

Transposing terms,

(1 − δ)V (y(s)) ≥ w(c(s)) + q(s)(x(s) − x(s− 1))

which yields (3.65).
Following an entirely analogous method, we can use t = s and y = y(s+ 1)

in (3.60) to get

V (y(s)) − V (y(s+ 1)) ≥ q(s)(y(s) − y(s+ 1)) (3.71)

Use t = s− 1 and (x(s), y(s+ 1)) ∈ Ω in (3.57) to get

q(s)(y(s) − y(s+ 1)) ≥ (q(s− 1)/δ)(x(s− 1) − x(s)) (3.72)

Using (3.71) and (3.72),

V (y(s)) − V (y(s+ 1)) ≥ (q(s− 1)/δ)(x(s− 1) − x(s)) (3.73)

Transposing terms,

V (y(s+ 1)) ≤ V (y(s)) + (q(s− 1)/δ)(x(s) − x(s− 1)) (3.74)
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Using the principle of optimality (3.70), we have:

V (y(s)) ≤ w(c(s)) + δV (y(s)) + q(s− 1)(x(s) − x(s− 1))

Transposing terms,

(1 − δ)V (y(s)) ≤ w(c(s)) + q(s− 1)(x(s) − x(s− 1))

which yields (3.66).

Remark:
(i) Note that the hypothesis of the Theorem can be seen to be non-vacuous

by an appeal to Proposition 3.7.2 in Section 3.7. That is, given an optimal plan
{x(t), y(t)}∞0 from a sufficient vector y ∈ Rn

++, there exists a price sequence
{p(t)}∞0 with p(t) ∈ Rn

+ for t ≥ 0, such that {x(t), y(t), p(t)} is a competitive
plan satisfying (3.60) and (3.61).

(ii) Our theorem indicates that the maximum discounted sum of utilities
achievable from time s onwards [that is, V (y(s))] is trapped between two mag-
nitudes, each of which has some claim to be interpreted as the present-value
of the net national product in time period s. The difference between the two
magnitudes is the “current” price (q(s) or q(s−1)) used to evaluate investment
(x(s) − x(s− 1)) during the time period s.

3.9 Bibliographic Notes

Section 3.2:
The general framework described in this section was introduced into the liter-
ature by Gale (1967) and McKenzie (1968) in their contributions on optimal
growth when future utilities are undiscounted. The framework has great flexi-
bility, and a variety of intertemporal allocation problems can be reduced to this
framework. The well-known model, in which utility is derived from consump-
tion alone, is discussed in Section 3.7 as an illustration of this observation. For
other intertemporal allocation problems, see the exposition in Mitra (2000).
Section 3.3:
The section describes the basic price characterization results in the discounted
case, following the approach of Weitzman (1970). The approach can be adapted
to the undiscounted case as well; for this, see Peleg and Zilcha (1977) and
McKenzie (1986).

Theorem 3.3.1 does not require convex structures, but under non-convexities
it turns out to be not a useful tool for showing that a candidate program is
optimal, since in general one will not be able to obtain a price sequence at
which the program will satisfy the competitive conditions. When an optimal
program is interior, and the utility function is differentiable in the interior of
the transition possibility set, a necessary condition of optimality is the Ramsey-
Euler equation. In this case, it can also be shown that the optimal program
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satisfies a suitable transversality condition. However, the Ramsey-Euler condi-
tions together with this transversality condition is not sufficient for optimality
in non-convex models.

The results of this section can be generalized to a setting involving chang-
ing technology and tastes. For the general theory, see McKenzie (1974); for
applications to an aggregative model, see Mitra and Zilcha (1981).
Section 3.4:
The approach, consisting of establishing the existence of a discounted golden-
rule, as a step to establishing the existence of a non-trivial stationary optimal
stock, is due to Flynn (1980) and McKenzie (1982). Khan and Mitra (1986)
showed that this could be accomplished when continuity of the utility function
is replaced by upper semicontinuity, thereby making the result more widely ap-
plicable. They also showed that duality methods could be completely dispensed
with in establishing that the discounted golden-rule stock is a non-trivial sta-
tionary optimal stock. The approach of Peleg and Ryder (1974) is somewhat
similar, but their method applies only to the “consumption model”. The dy-
namic programming approach of Sutherland (1970) runs into the problem that
the stationary optimal stock obtained by the fixed point argument can be triv-
ial, and there is no obvious way to ensure non-triviality of the fixed point, even
when the economy is δu− productive.

Analogous results for the undiscounted case (involving the notion of a
golden-rule) are contained in Gale (1967), McKenzie (1968), Brock (1970) and
Peleg (1973). However, a major difference is that the existence of a golden-rule
can be shown without any use of fixed point methods.
Section 3.5:
The idea of replacing the transversality condition by a period-by-period con-
dition was first proposed by Brock and Majumdar (1988), who established the
appropriate result in the undiscounted case, for the “consumption model”. For
application of the same principle in other settings, see the collection of papers,
edited by Majumdar (1992).
Section 3.6:
The reachability condition proposed here is weak. Other related conditions,
such as local expandability and local contractability, proposed by Kurz and
Starrett (1970), are more restrictive. The example of the simple Leontief model
(as described by Gale (1960)) is an instance where the reachability condition
can be checked quite easily, but both local expandability and local contractabil-
ity fail.
Section 3.7:
Viewing the “consumption model” as a special case of the general framework
of Section 3.2 has the advantage that many duality results, developed for the
consumption model (see, especially, Peleg and Ryder (1972, 1974)), can be
obtained by an alternative and simpler route, and the assumptions needed
for either approach to work can thereby be compared. For a more complete
discussion, see Dasgupta and Mitra (1990).
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Section 3.8:
Weitzman’s Rule is almost exclusively discussed in the literature in the context
of continuous models. The discrete-time analog presented here indicates that
the argument involved is quite elementary, and is a good illustration of the
essential simplicity of duality methods.
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4. Rationalizability in Optimal Growth Theory

Gerhard Sorger
Department of Economics, University of Vienna, Austria

4.1 Introduction

Before I address rationalizability in optimal growth theory, let me discuss the
issue of rationalizability in more general terms. Suppose there exists a class of
models, M, such that every modelM ∈ M describes the economic phenomenon
under consideration. Suppose furthermore that, for every M ∈ M, there exists
a (possibly empty) set of ‘solutions’ or ‘equilibria’ H(M) ⊆ H, where H is a
fixed set of possible solutions. One has to distinguish between four different
problems related to M ∈ M and h ∈ H, respectively.

– The solution problem for the model M consists in finding or characterizing
one or all elements of H(M).

– The existence problem for the model M consists in determining whether
H(M) is empty or not.

– The inverse problem for the solution h consists in finding or characterizing
one or all models M ∈ M such that h ∈ H(M).

– The rationalizability problem for the solution h consists in determining
whether there exists a model M ∈ M such that h ∈ H(M).

From the above descriptions one can see that the problem of rationalizing a
given solution h is related to the inverse problem for h in the same way as
the existence problem for the model M is related to the problem of solving
M . It is furthermore obvious that every solution h that can be rationalized
by the class M can also be rationalized by any class of models that includes
M. Rationalizability of a given solution h by a restricted class of models is
therefore a stronger property than rationalizability by a wider class of mod-
els. Questions regarding rationalizability have been discussed in a number of
different branches of economic theory.1 An early discussion of the inverse prob-
lem in optimal growth theory is the paper by Kurz [7]; see also Chang [3]
1 A prominent example is the Sonnenschein-Mantel-Debreu theorem. It says that

every continuous function, which is homogeneous of degree 0 and satisfies Walras’
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and references therein. The issue of rationalizability in optimal growth the-
ory received a strong impetus in the early to mid 1980s, when it was first
shown that dynamic macroeconomic models satisfying standard assumptions
can generate complicated deterministic dynamics. In other words, this line of re-
search demonstrated the rationalizability of chaotic dynamical systems by cer-
tain classes of intertemporal macroeconomic models. For example, in an often
cited paper, Boldrin and Montrucchio [1] proved that every twice continuously
differentiable function can be the optimal policy function of an infinitely-lived
agent model in reduced form, which has the smoothness and convexity prop-
erties that are typically assumed by growth theorists. A consequence of this
result is that even the most complicated dynamic behavior cannot be ruled
out by the standard assumptions of optimal growth theory. It was furthermore
argued that the aperiodic fluctuations generated by chaotic dynamical systems
can resemble realistic business cycles and that standard optimal growth mod-
els are therefore not only consistent with, but can actually explain important
stylized facts of the business cycle.2 However, it soon became clear that the
constructive approach used by Boldrin and Montrucchio [1] depends on the
choice of unrealistically high rates of time-preference. Sorger [27] provided the
first rigorous proof that high time-preference is indeed necessary for the ra-
tionalizability of complicated dynamics by optimal growth models or, in other
words, that there exist non-trivial discount factor restrictions for the optimality
of complicated dynamics. In the present chapter, I survey the literature that
has emerged from Boldrin and Montrucchio’s and from Sorger’s contributions
and that addresses the questions of rationalizability and discount factor restric-
tions in optimal growth models. The rest of this chapter is organized as follows.
In section 4.2, I specify three different classes of optimal growth models and I
state a few important results about the solutions of such models. This allows me
to give a precise definition of the rationalizability problem in optimal growth
theory. Section 4.3 summarizes necessary and sufficient conditions for the ra-
tionalizability of given functions as optimal policy functions of infinitely-lived
agent models. Typically, these conditions are formulated in terms of smooth-
ness properties of the optimal policy functions. For the most comprehensive of
the three classes of optimal growth models, I show that every rationalizable
function is necessarily continuous and that every Lipschitz-continuous function
can be rationalized. Moreover, I illustrate by means of examples that closing
the gap between these two conditions is likely to be very difficult. Section 4.4
reviews the literature on discount factor restrictions for the rationalizability of
complicated dynamics. The first main result is a simple relation between the
discount factor of an optimal growth model and the topological entropy of the

law, is the excess demand function of a static competitive economy with standard
properties; see Sonnenschein [24, 25], Mantel [10], and Debreu [4]. In this setting,
a model M is described by the number of households, their preferences, and their
endowments, and the solution of M is the excess demand function generated by
M .

2 See, e.g., Boldrin and Woodford [2] for a critical discussion of these arguments.
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corresponding optimal policy function.3 This result holds for optimal growth
models defined on state spaces of arbitrary high (but finite) dimension. How-
ever, it does not provide an exact discount factor restriction, i.e., it does not
give the least upper bound on the set of discount factors that can be used to
rationalize a dynamical system with a given topological entropy. For models
defined on one-dimensional state spaces, more precise discount factor restric-
tions are available. I illustrate this by stating exact discount factor restrictions
for the occurrence of period-three cycles and for the optimality of the logistic
map and the tent-map, respectively. Finally, section 4.5 discusses possible ex-
tensions to alternative classes of optimal growth models. Two technical proofs
have been relegated to an appendix.

4.2 Problem Formulation

My first step is to define the class of optimal growth models and to explain what
I mean by a solution of such a model. Time is a discrete variable taking values
in the domain {0, 1, 2, . . .}. The state of the economy at the start of period t is
denoted by xt. The set of all possible states (i.e., the state space of the economy)
is an arbitrary non-empty set denoted by X . The state of the system can change
once in every period. A transition from state x to state y is feasible if and only
if (x, y) ∈ T, where T ⊆ X ×X is the transition possibility set. The following
assumption says that, from every state x ∈ X , there exists at least one feasible
state transition. A1: The set Tx = {y ∈ X | (x, y) ∈ T} is non-empty for all
x ∈ X . A sequence (xt)+∞

t=0 is called a feasible path (from x0) if (xt, xt+1) ∈ T
holds for all t. For every x ∈ X , let me denote by F (x) the set of all feasible
paths from x. Assumption A1 is a necessary and sufficient condition for F (x)
to be non-empty for all x ∈ X . A state transition from x to y generates the
instantaneous utility u(x, y), where u : T �→ R is a given function. The time-
preference rate is assumed to be constant and the corresponding discount factor
will be denoted by δ. This implies that the total utility generated by a feasible
path (xt)+∞

t=0 is given by

J
[
(xt)+∞

t=0

]
=

+∞∑
t=0

δtu(xt, xt+1).

I make the following assumption about the preferences. A2: (i) The function
u : T �→ R is bounded. (ii) The discount factor δ satisfies δ ∈ (0, 1). Assumption
A2 is a sufficient but by no means a necessary condition for J

[
(xt)+∞

t=0

]
to be

a well-defined and finite number for all feasible paths (xt)+∞
t=0 . The literature

often deals with less restrictive assumptions on the utility function u; see, e.g.,
Stokey and Lucas [32]. However, as I have already mentioned in the introduc-
tion, making more restrictive assumptions on the class of models only leads to
3 See section 4.4 for a precise definition of the topological entropy of a dynamical

system.
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stronger rationalizability results. A feasible path (xt)+∞
t=0 ∈ F (x) satisfying the

inequality
J
[
(xt)+∞

t=0

]
≥ J
[
(yt)+∞

t=0

]
for all feasible paths (yt)+∞

t=0 ∈ F (x) is called an optimal path (from x). The
optimal value function V : X �→ R is defined by

V (x) = sup
{
J
[
(xt)+∞

t=0

] ∣∣∣ (xt)+∞
t=0 ∈ F (x)

}
for all x ∈ X . Under assumptions A1 and A2, this function is well-defined
and finite. If (xt)+∞

t=0 ∈ F (x) is an optimal path from x, then it follows that
J
[
(xt)+∞

t=0

]
= V (x). This concludes the discussion of the basic structure of the

class of models that I consider in the present chapter. Formally, a model M is a
triple (T, u, δ) consisting of a transition possibility set, an instantaneous utility
function, and a discount factor. Models of this type are called optimal growth
models in reduced form and they have numerous applications in economics,
notably in optimal growth theory; see, e.g., McKenzie [11] and Stokey and
Lucas [32]. Assumptions A1 and A2, however, do not impose any non-trivial
restrictions on the set of solutions of optimal growth models. For example, if
u is a constant function, then every feasible path is also optimal. Thus, every
path (xt)+∞

t=0 satisfying xt ∈ X for all t can be rationalized by the class of
models satisfying A1 and A2. In order to obtain non-trivial rationalizability
results, one has to impose more restrictive, structural assumptions on the class
of optimal growth models. In the remainder of this section, I therefore discuss
a number of such assumptions and I state a few important results about the
solutions of optimal growth models satisfying these assumptions. So far, the
state space X has been assumed to be an arbitrary non-empty set without any
particular structure. In order to be able to impose structural assumptions on
the class of optimal growth models, I assume from now on that X is a non-
empty, convex, and compact subset of the n-dimensional Euclidean space Rn.
Typically, in optimal growth models, the state space represents the set of all
feasible vectors of capital stocks, where n is the number of different capital
goods. These may include various forms of physical capital as well as human
capital. Convexity of X means that convex combinations of two feasible cap-
ital vectors are also feasible, and it forms therefore a necessary condition for
the convexity of production technologies. The compactness assumption is often
justified by the argument that capital stocks must be non-negative and that
there exist maximal sustainable levels of all capital stocks. Having put both a
linear and a metric structure on the state space X , I can now impose linear
and metric properties on the transition possibility set T and the utility func-
tion u. The following assumption is tantamount to saying that the production
technologies for capital goods are convex and continuous. A3: The transition
possibility set T is a convex and closed set. The utility gain u(x, y) in the
reduced form optimal growth model is derived as the maximal utility of con-
sumption that can be derived within one period subject to the constraints that
the capital stock at the start of the period is x and the capital stock at the end
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of the period is y. Thus, the reduced utility function u combines properties of
the production technology of consumption goods with properties of the prefer-
ences of households or a central planner. I make the following assumption. A4:
The utility function u : T �→ R is strictly concave and continuous. Note that
compactness of X together with assumptions A3 and A4 implies that assump-
tion A2(i) holds. Strict concavity of u is a strong assumption but, as I have
mentioned before, this is no drawback when one is interested in questions of
rationalizability. For the purpose of this survey, assumptions A1-A4 summarize
the most important structural properties of optimal growth models. To sim-
plify the exposition, I denote by M(X) the set of all optimal growth models
with state space X which satisfy assumptions A1-A4. At some points during
the ensuing discussion it will be necessary to impose further assumptions. The
following one, for example, deals with monotonicity properties of T and u and
has a natural interpretation in terms of free disposal and monotonicity of pref-
erences. A5: (i) If x ∈ X , x′ ∈ X , and x ≤ x′, then it follows that Tx ⊆ Tx′ .
(ii) The function u(x, y) is non-decreasing with respect to x and non-increasing
with respect to y. I denote by M+(X) the set of all optimal growth models
defined on the state space X which satisfy assumptions A1-A5. The final as-
sumption deals with curvature properties of the utility function u. In order to
formulate it, I need to review some basic terminology. A real-valued function
f defined on a convex subset of real Euclidean space is called α-concave, if the
function g(x) = f(x) + (α/2)‖x‖2 is concave. Here, α is an arbitrary real num-
ber. If f is α-concave for some positive number α, then f is said to be strongly
concave. The function f is called (−α)-convex, if the function g defined above
is convex. Intuitively, α-concavity implies that f is “at least as concave” as
the quadratic form −(α/2)‖x‖2, whereas (−α)-convexity implies that it is “at
most as concave” as this quadratic form. It is easily seen that every strongly
concave function is strictly concave but not vice versa. A6: The utility function
u : T �→ R is strongly concave. The curvature property captured by assump-
tion A6 is quite strong and hard to interpret. I denote by M∗(X) the set of all
optimal growth models defined on the state space X which satisfy assumptions
A1-A4 and A6. The following two results are well-known; see, e.g., Stokey and
Lucas [32].4

Proposition 4.2.1. Let X ⊆ Rn be a non-empty, compact, and convex set
and let M be an optimal growth model in M(X). Furthermore, let V : X �→ R
be the optimal value function of M .
(i) The function V is bounded, continuous, and strictly concave.
(ii) For all x ∈ X it holds that

V (x) = max {u(x, y) + δV (y) | y ∈ Tx} . (4.1)

The function V is the only real-valued and continuous function defined on X
which satisfies equation (4.1) for all x ∈ X.

4 Part (iv) of proposition 4.2.1 follows from a result proved in Montrucchio [16].
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(iii) If M ∈ M+(X), then it follows that V is strictly increasing.
(iv) If M ∈ M∗(X), then it follows that V is strongly concave. More precisely,
if the utility function u is α-concave for some positive number α, then it follows
that V is α-concave as well.

The above proposition shows that the optimal value function of an optimal
growth model is the unique continuous function satisfying the Bellman equation
(4.1). Moreover, this function inherits the properties of boundedness, strict and
strong concavity, and monotonicity from the utility function u.

Proposition 4.2.2. Let X ⊆ Rn be a non-empty, compact, and convex set
and let M be an optimal growth model in M(X). Furthermore, let V : X �→ R
be the optimal value function of M .
(i) There exists a unique optimal growth path from every x ∈ X.
(ii) There exists a unique function h : X �→ X such that the following is true. A
feasible path (xt)+∞

t=0 is optimal if and only if it satisfies the difference equation

xt+1 = h(xt) (4.2)

for all t = 0, 1, 2, . . ..
(iii) The function h from part (ii) is continuous and satisfies the equation

V (x) = u(x, h(x)) + δV (h(x)) (4.3)

for all x ∈ X.

Proposition 4.2.2 establishes the existence and uniqueness of optimal growth
paths and shows that these paths can be characterized as the trajectories of the
dynamical system (4.2). The function h is called the optimal policy function
of M . Part (iii) proves that the optimal policy function is continuous and
that y = h(x) is the unique maximizer on the right-hand side of the Bellman
equation (4.1). The fact that optimal paths are characterized as the trajectories
of a dynamical system defined by the optimal policy function h allows me to
regard h as the solution of the model M . The rationalizability problem in
optimal growth theory can therefore be formulated in the following way: given
a function h : X �→ X , is there an optimal growth model M in M(X), M+(X),
or M∗(X) such that h is the optimal policy function of M?

4.3 Optimal Policy Functions

Suppose a function h : X �→ X is given, where X is a non-empty, compact,
and convex subset of real Euclidean space. In the present section I discuss the
rationalizability of h as a policy function of an optimal growth model in reduced
form. I start by showing that optimal policy functions are necessarily smooth.
More precisely, the following theorem shows how different assumptions about
the curvature of the utility function u lead to different smoothness properties of
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the optimal policy function h. Before I formulate the theorem, let me recall the
concepts of Hölder-continuity and Lipschitz-continuity. A function f : X �→ R

is called Hölder-continuous of degree ρ ∈ (0, 1] at point x ∈ X , if there exist
positive numbers ε and K such that the inequality

‖f(x) − f(y)‖ ≤ K‖x− y‖ρ

holds for all y ∈ X satisfying ‖y− x‖ ≤ ε. The function f is said to be Hölder-
continuous of degree ρ on a subset of X , if it is Hölder-continuous of degree ρ at
every point of this subset. Finally, if f satisfies the above inequality for ρ = 1
and all (x, y) ∈ X ×X , then we say that f is (uniformly) Lipschitz-continuous
and we call K a Lipschitz-constant for f .

Theorem 4.3.1. Let X ⊆ Rn be a non-empty, compact, and convex set and
let h : X �→ X be a given function.
(i) If h is the optimal policy function of a model M ∈ M(X), then h is con-
tinuous.
(ii) If h is the optimal policy function of a model M ∈ M∗(X), then h is
Hölder-continuous of degree 1/2 on the interior of the state space.
(iii) Assume that h is the optimal policy function of a model M ∈ M∗(X) and
that there exists a positive number β such that the optimal value function of M
is (−β)-convex. Then it follows that h is uniformly Lipschitz-continuous on X.

Part (i) of the above theorem iterates a result from proposition 4.2.2(iii). Part
(ii) says that models with strongly concave utility functions have optimal policy
functions that are not only continuous but even Hölder-continuous of degree
1/2 at every point in the interior of the state space X . This result was first
proved by Montrucchio [18]; see also Sorger [29]. Part (iii) of theorem 4.3.1
shows that the optimal policy function is Lipschitz-continuous, if the utility
function u is strongly concave and the optimal value function V is (−β)-convex
for some positive number β.5 This result has been derived in Montrucchio [18]
and Sorger [29], whereby the latter paper derives an explicit expression for
a Lipschitz-constant of the optimal policy function.6 Let me point out that
the interiority condition in theorem 4.3.1(ii) cannot be omitted, that is, policy
functions of optimal growth models in M∗(X) need not be Hölder-continuous
of degree 1/2 at boundary points of the state space. To demonstrate this I
consider the following example.

Example 4.3.1. Let α ∈ (0, 1/2), δ ∈ (0, 1), and µ ≥ (1+δ)/δ be given numbers
and define X = [0, 1], T = {(x, y) | 0 ≤ x ≤ 1 , 0 ≤ y ≤ xα}, and u(x, y) =
5 Note that proposition 4.2.1(iv) implies that α-concavity of the utility function u

implies α-concavity of the optimal value function V . Thus, the assumptions in
theorem 4.3.1(iii) imply that there exist positive numbers α and β such that the
optimal value function V is both α-concave and (−β)-convex. Montrucchio [18]
calls optimal growth models satisfying this property ‘regular’ models.

6 Montrucchio [16] presents an alternative structural assumption on the class of op-
timal growth models which ensures that the optimal policy functions are Lipschitz-
continuous.
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µx−(1/2)(x2 +y2). It is easy to see that the model M = (T, u, δ) is an element
of M+(X) ∩M∗(X). Now note that

J
[
(xt)+∞

t=0

]
=

+∞∑
t=0

δtu(xt, xt+1) = µx0−(1/2)x2
0+

+∞∑
t=1

δt−1
[
µδxt − (1 + δ)x2

t /2
]
.

Because µ > (1+ δ)/δ, it is straightforward to verify that J
[
(xt)+∞

t=0

]
is strictly

increasing with respect to xt for every t ≥ 1. This implies that an optimal path
from x0 must have the property that it increases as fast as possible. Using the
specification of T it follows that the optimal policy function of M is given by
h(x) = xα. However, because α < 1/2, this function is not Hölder-continuous
of degree 1/2 at the boundary point x = 0.

Theorem 4.3.1 demonstrates that making stronger assumptions about the cur-
vature of the utility function u reduces the set of functions that can be ratio-
nalized as optimal policy functions. This is what one would expect. Adding the
monotonicity assumption A5(ii), however, hardly changes the set of functions
that can be rationalized as optimal policy functions. This is formally stated in
the following lemma.

Lemma 4.3.1. Let X ⊆ Rn be a non-empty, compact, and convex set and let
h : X �→ X be the optimal policy function of a model M = (T, u, δ) ∈ M(X). If
T satisfies assumption A5(i) and if the utility function u is Lipschitz-continuous
on T, then it follows that h can be rationalized by M+(X) as well.

The proof of this lemma is very simple. Suppose that u is Lipschitz-continuous
with Lipschitz-constant K. I define a new utility function ū : T �→ R by

ū(x, y) = u(x, y) + px− δpy,

where p = (p1, p2, . . . , pn) ∈ Rn is a vector satisfying pi ≥ K/δ. It is easy to see
that ū satisfies the monotonicity assumption A5(ii). Finally, I define the new
optimal growth model M̄ = (T, ū, δ). Since M and M̄ have the same transition
possibility sets, it follows that F (x) = F̄ (x) holds for all x ∈ X , where F (x) and
F̄ (x) denote the sets of feasible paths from x in model M and M̄ , respectively.
Furthermore, one has

+∞∑
t=0

δtū(xt, xt+1) = px0 +
+∞∑
t=0

δtu(xt, xt+1)

for all feasible paths (xt)+∞
t=0 ∈ F (x0) = F̄ (x0). Since px0 is a given constant,

the unique optimal path from x0 in model M is also the unique optimal path
from x0 in model M̄ . This shows that the optimal policy function h of model
M must coincide with the optimal policy function of M̄ and, hence, that h
can be rationalized by M+(X). According to lemma 4.3.1, the monotonic-
ity assumption on the utility function , A5(ii), has hardly any effect on the



4. Rationalizability 93

rationalizability problem. It is obvious that one cannot expect a similar re-
sult to hold for the monotonicity assumption on the transition possibility set,
A5(i). Let me now turn to sufficient conditions for the rationalizability problem.
It will be convenient to reformulate some of the optimality conditions stated
in propositions 4.2.1 and 4.2.2 in a slightly different form. Consider a model
M = (T, u, δ) ∈ M(X) and let V : X �→ R and h : X �→ X be the opti-
mal value function of M and the optimal policy function of M , respectively.
Furthermore, define the function G : T �→ R by

G(x, y) = u(x, y) − V (x) + δV (y). (4.4)

From propositions 4.2.1 and 4.2.2 it follows that

G(x, y) ≤ G(x, h(x)) = 0 (4.5)

holds for all (x, y) ∈ T. In other words, if h is the optimal policy function
of M and if V is the optimal value function of M , then it is necessarily true
that conditions (4.4) and (4.5) hold simultaneously. Conversely, let V and h be
arbitrary continuous functions such that (4.4) and (4.5) hold and such that V
is strictly concave. Then it is easily seen that equations (4.1) and (4.3) hold
as well and that y = h(x) is the unique maximizer on the right-hand side of
(4.1). Consequently, h must be the optimal policy function of M and V must
be the corresponding optimal value function. I summarize these results in the
following lemma.

Lemma 4.3.2. Let X ⊆ Rn be a non-empty, compact, and convex set and
let M = (T, u, δ) be an optimal growth model in M(X). Furthermore, let h :
X �→ X be a continuous function satisfying (x, h(x)) ∈ T for all x ∈ X. The
function h is the optimal policy function of M if and only if there exists a
strictly concave function V : X �→ R such that conditions (4.4) and (4.5) hold
for all (x, y) ∈ T.

Lemma 4.3.2 says that the existence of a strictly concave function V satisfying
equations (4.4) and (4.5) is a necessary and sufficient condition for h to be the
optimal policy function of M .7 This result suggests the following constructive
approach to finding an optimal growth model M ∈ M(X) that rationalizes a
given function h : X �→ X :

(i) find a convex and closed set T ⊆ X ×X such that (x, h(x)) ∈ T holds for
all x ∈ X ;

(ii) find a function G : T �→ R satisfying (4.5);
(iii) choose a continuous and strictly concave function V : X �→ R and compute

the corresponding function u : T �→ R from equation (4.4);
(iv) check whether u is strictly concave.

7 Note that only (4.5) is a non-trivial condition because (4.4) simply defines the
function G.
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Sorger [28, Theorem 3.3] uses this construction to prove the often cited result
from Boldrin and Montrucchio [1]. More specifically, he chooses

T = X ×X,

G(x, y) = −(1/2)‖y− h(x)‖2, (4.6)
V (x) = −(α/2)‖x‖2.

Obviously, these specifications satisfy the conditions in steps (i)-(iii) of the
method described above. According to step (iii), the utility function is given
by

u(x, y) = −(1/2)‖y − h(x)‖2 − (α/2)‖x‖2 + (αδ/2)‖y‖2.

Now assume that h is a twice continuously differentiable function and denote
the Hessian matrix of u evaluated at (x, y) by S(x, y). It follows that

S(x, y) =
(
A(x, y) − αIn B(x, y)
B(x, y)T (αδ − 1)In

)
,

where In denotes the n× n unit matrix and where(
A(x, y) B(x, y)
B(x, y)T −In

)
is the Hessian matrix of the mapping (x, y) �→ −(1/2)‖y − h(x)‖2. Note that
the latter Hessian matrix is independent of both α and δ. Fix any number
γ ∈ (0, 1). It is straightforward to see that, by choosing α sufficiently large
and δ = γ/α, one can ensure that all eigenvalues of S(x, y) are negative and
uniformly bounded away from 0. Thus, the utility function u is strongly concave
and, hence, strictly concave on X×X . This proves the following theorem from
Boldrin and Montrucchio [1].

Theorem 4.3.2. Let X ⊆ Rn be a non-empty, compact, and convex set and
let h : X �→ X be a twice continuously differentiable function. Then it follows
that h is rationalizable by M(X), M+(X), and M∗(X).8

Twice continuous differentiability of h is in fact more than is required for
the construction based on the specification in (4.6). As has been shown by
Neumann et al. [20], it is sufficient to assume that h is differentiable with a
Lipschitz-continuous gradient; see also Montrucchio [18]. I skip the discussion
of this technical detail because, as will be seen in a moment, there is a much
more powerful theorem available according to which every Lipschitz-continuous
function is rationalizable. Before I turn to this result, however, let me say a
few more words about theorem 4.3.2 and the constructive algorithm that was
used in its proof. First, as is apparent from the proof, the discount factor δ
8 The statement about rationalizability by M+(X) follows from lemma 4.3.1 and

from the observation that the utility function u constructed above is twice contin-
uously differentiable and, hence, Lipschitz-continuous.
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has to be chosen sufficiently small. This means that the construction uses a
sufficiently impatient decision maker. In section 4.4 below, I will explore this
issue in much greater detail by showing that there exists a negative relation
between the complexity of the dynamics generated by h and the discount fac-
tors of optimal growth models that can rationalize h. Second, it is clear that
the choice of a quadratic function for V and the squared Euclidean distance
between y and h(x) for G is not the only choice that makes sense in (4.6). De-
pending on the characteristics of the function h that one wants to rationalize,
other specifications may be more useful. To illustrate this, let me consider the
following example.

Example 4.3.2. Let X = [0, 1] and h(x) = 1 − |2x − 1|. The function h is
the so-called tent map, which plays a prominent role in the field of chaotic
dynamics. The function is not differentiable and cannot be rationalized using
the specification (4.6). However, as shown in Sorger [28, Lemma 3.12], the tent
map can be rationalized using the same 4-step procedure outlined above with
specifications of T, G, and V that are different from (4.6).9 More specifically,
Sorger [28] chooses

T = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x, 0 ≤ y ≤ 2(1 − x)},
G(x, y) = (2x− y)(2x− 2 + y),
V (x) = −[2 + 1/(2δ)]x2.

This construction results in a model M ∈ M∗(X) as long as the discount factor
δ is smaller than 1/4.

Let me now show that every Lipschitz-continuous function can be rationalized
by M(X), M+(X), and M∗(X). In principle, this could be done using the
constructive approach outlined above. It is more transparent, however, to apply
the following two-step procedure. I first state a result that gives a sufficient
condition for a pair of functions (h, V ) to be the optimal policy function and
the optimal value function of some model M = (T, u, δ) ∈ M+(X) ∩M∗(X).
I will then show that this sufficient rationalizability condition is satisfied if h is
Lipschitz-continuous, V is a quadratic polynomial, and δ is sufficiently small.
In order to be able to state the general rationalizability condition for pairs
(h, V ), let me recall the definition of the subdifferential of a real-valued, convex
function f defined on a convex set X∗ ⊆ Rn. The subdifferential at point
x ∈ X∗ is the set ∂f(x) = {p ∈ Rn | f(y) ≤ f(x) + p(y − x) for all y ∈ X∗}.
Elements of ∂f(x) are called subgradients of f at x. It is known that ∂f(x) �= ∅
holds necessarily for all x in the interior of the domain X∗ but may not hold
at the boundary of X∗.

Theorem 4.3.3. Let X ⊆ Rn be a non-empty, compact, and convex set, let
h : X �→ X be a continuous function, and let δ ∈ (0, 1) be a given number.

9 Nishimura et al. [21] use essentially the same specification of T, G, and V as [28,
Lemma 3.12] to rationalize a whole family of tent-shaped functions.
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(i) Assume that there exist an open set X∗ ⊆ Rn containing X and a strictly
concave function V : X∗ �→ R such that

⋃
x∈X ∂V (x) is compact. If there

exist a number α > 0 and, for every x ∈ X, subgradients px ∈ ∂V (x) and
qx ∈ ∂V (h(x)) such that the inequality

δ
{
V (h(x)) + qx[h(y) − h(x)] − V (h(y)) + (α/2)‖h(y) − h(x)‖2

}
< V (x) + px(y − x) − V (y) − (α/2)‖y − x‖2

(4.7)

holds for all y ∈ X satisfying y �= x, then it follows that h is the optimal policy
function of a model M ∈ M∗(X). Furthermore, the restriction of V to X is
the optimal value function of M .
(ii) In addition to the conditions in part (i) assume that, for all y ∈ X, the
functions x �→ pyx − (α/2)‖x − y‖2 and x �→ qyx + (α/2)‖x − h(y)‖2 are
non-decreasing. Then M can be chosen such that M ∈ M+(X).

Theorem 4.3.3 is a variant of Mitra and Sorger [14, theorem 2]. The most im-
portant difference between the present theorem and [14, theorem 2] is that the
former requires inequality (4.7) to hold for some α > 0, while the latter as-
sumes (4.7) with α = 0. This makes the assumptions of the present theorem
stronger than those of [14, theorem 2]. Because of the stronger assumption,
I can prove rationalizability by M∗(X), whereas Mitra and Sorger [14] prove
rationalizability by the class of optimal growth models which satisfy assump-
tions A1-A3 and which have a strictly concave optimal value function.10 It has
been shown by Mitra and Sorger [14] that inequality (4.7) with α = 0 is not
only sufficient but also necessary for the property that h is an optimal policy
function and V the corresponding optimal value function; see theorem 4.4.1
in section 4.4 below. The proof of theorem 4.3.3 is based on the fact that
knowing the optimal policy function and the optimal value function of a model
M provides complete information about the value and the slope of the utility
function u at every point along the graph of h. Provided that condition (4.7)
is satisfied, one can construct a feasible utility function that is consistent with
this information and that can be used to rationalize the pair (h, V ). Let me
go through this argument in more detail. From (4.3) it follows that h and V
together completely determine the value of the utility function u along the
graph of h, that is, u(x, h(x)) = V (x) − δV (h(x)) for all x ∈ X . Knowledge of
V together with the fact that y = h(x) maximizes the right-hand side of the
Bellman equation (4.1) gives me information about the slope of the function
y �→ u(x, y) at y = h(x). Finally, knowledge of V together with equation (4.1)
and the envelope theorem gives me information about the slope of the function
x �→ u(x, y) at y = h(x). To summarize, if I know h and V , then I know the
value and the slope of u along the graph of h. This allows me to construct,
for every z ∈ X , a strongly concave function Fz : X × X �→ R that has the
same value and slope as u at the point (z, h(z)). The function u that is used to

10 Because of the slightly different assumptions and conclusions of theorem 4.3.3 and
[14, theorem 2], I provide a proof of theorem 4.3.3 in the appendix.
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rationalize h is then defined as the lower envelope of the family {Fz | z ∈ X}.
For this construction to work, one has to make sure that the graphs of all
functions Fz are located above the curve u = u(x, h(x)) = V (x) − δV (h(x)) in
(x, y, u)-space. In other words, it must hold that Fz(x, h(x)) ≥ V (x)−δV (h(x))
for all (x, z) ∈ X × X . This is exactly what condition (4.7) guarantees. The-
orem 4.3.3 implies that every Lipschitz-continuous function h : X �→ X can
be rationalized by M∗(X). This can be seen as follows. Suppose that h is
Lipschitz-continuous with Lipschitz-constant K and define V : Rn �→ R by
V (x) = µenx − (β/2)‖x‖2, where en = (1, 1, . . . , 1) ∈ Rn, and where β and µ
are positive constants to be determined later. Obviously, V is strictly concave
and continuously differentiable. The latter property along with compactness
of X proves that

⋃
x∈X ∂V (x) is compact. More specifically, it holds for all

x ∈ X that ∂V (x) = {px} and ∂V (h(x)) = {qx} where px = µen − βx and
qx = µen − βh(x). It is straightforward to see that this implies

V (x) + px(y − x) − V (y) − (α/2)‖y − x‖2 = (β − α)‖y − x‖2/2.

Analogously, one can derive

V (h(x)) + qx[h(y) − h(x)] − V (h(y)) + (α/2)‖h(y) − h(x)‖2 =

(β + α)‖h(y) − h(x)‖2/2.

Condition (4.7) can therefore be written as

δ(β + α)‖h(y) − h(x)‖2 ≤ (β − α)‖y − x‖2.

Obviously, this condition holds whenever β > α and δ ≤ (β − α)/[(β +
α)K2]. Because α can be any strictly positive number, the conditions of the-
orem 4.3.3(i) can be satisfied for any δ < 1/K2. Finally, if one chooses the
parameter µ sufficiently large, one can always ensure that the monotonicity
conditions stated in theorem 4.3.3(ii) are satisfied. Thus, I have proved the
following variant of a result by Mitra and Sorger [14].

Theorem 4.3.4. Let X ⊆ Rn be a non-empty, compact, and convex set and
let h : X �→ X be a uniformly Lipschitz-continuous function with Lipschitz-
constant K. For every δ < 1/K2 there exists a model M = (T, u, δ) ∈ M+(X)∩
M∗(X) such that h is the optimal policy function of M .

Mitra and Sorger [14] prove rationalizability of Lipschitz-continuous functions
by models satisfying A1-A3 which have a strictly concave optimal value func-
tion. This allows them to choose discount factors smaller than or equal to 1/K2.
In contrast, theorem 4.3.4 requires the discount factor δ to be strictly smaller
than 1/K2 but ensures rationalizability by strongly concave optimal growth
models. In any case one can see that, whenever the Lipschitz-constant K is
high, the discount factor δ has to be chosen small. This is in line with the
remark made after theorem 4.3.2, namely that rationalizing a given function
h typically requires a very small discount factor. I will return to this issue in
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section 4.4 below. I would like to point out that the construction used in the
proof of theorem 4.3.4 uses a quadratic polynomial as optimal value function.
This polynomial is (−β)-convex, where β is a positive number. Combining the-
orem 4.3.4 with theorem 4.3.1(iii), I obtain the following corollary. It provides
a complete characterization of the class of functions that can be rationalized
by strongly concave optimal growth models with optimal value functions that
are (−β)-convex for some β > 0.

Corollary 4.3.1. Let X ⊆ Rn be a non-empty, compact, and convex set and
let h : X �→ X be a continuous function. The following two statements are
equivalent.
(i) The function h is uniformly Lipschitz-continuous on X.
(ii) There exists an optimal growth model M ∈ M∗(X) such that h is the
optimal policy function of M and such that the optimal value function of M is
(−β)-convex for some β > 0.

For the more comprehensive and more interesting class M(X), a complete
characterization of the set of corresponding optimal policy functions is not
yet available. In the remainder of this section I will illustrate that closing the
gap between the necessary condition of continuity (theorem 4.3.1(i)) and the
sufficient condition of Lipschitz-continuity (theorem 4.3.4) is likely to be a
tricky problem. Throughout this discussion I restrict myself to one-dimensional
state spaces. Hewage and Neumann [5] where the first to point out that there
exist continuous functions that cannot be rationalized by M(X). The following
version of their result is taken from Mitra and Sorger [15].

Theorem 4.3.5. Let X ⊆ R be a non-empty and compact interval and let
h : X �→ X be a continuous function which has the fixed point x = h(x) ∈ X.
Assume that there exists z ∈ intX such that x = h(z). If lim supy→x[h(y) −
h(x)]/(y−x) = +∞, then h cannot be the optimal policy function of an optimal
growth model in M(X).

Theorem 4.3.5 rules out any function as an optimal policy function which has
the slope +∞ at a fixed point x which is either in the interior of the state space
(this is the case if z = x in theorem 4.3.5) or which can be reached along a
trajectory of h emanating from the interior of X . For example, the continuous
function

h1(x) =
{

0 if x ≤ 0√
x if x > 0

defined on the state space X = [−1, 1] cannot be an optimal policy function
of any optimal growth model in M(X). On the other hand, the continuous
function

h2(x) =
{

0 if x ≤ 0
−√

x if x > 0,

which is also defined on X = [−1, 1], can be rationalized by M(X), as has
been shown by Mitra and Sorger [14]. Since this function has the slope −∞
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at an interior fixed point, it follows that optimal policy functions need not
be Lipschitz-continuous at interior points and that they can have (negative)
infinite steepness at interior fixed points. Example 4.3.1 discussed above shows
that one cannot omit the interiority requirement from theorem 4.3.5. As a
matter of fact, in that example, the optimal policy function has slope +∞ at
the fixed point x = 0, which cannot be reached along any optimal path starting
in the interior of the state space X = [0, 1]. Finally, Mitra and Sorger [15] show
that the function

h3(x) =
{

−1 if x ≤ 0
−1 +

√
x if x > 0

defined on the state space X = [−1, 1] can be rationalized by M(X). This
example demonstrates that optimal policy functions can have the slope +∞ at
an interior point that is not a fixed point, here x = 0. Because of the above
examples, it can be conjectured that there does not exist a simple characteri-
zation of the class of functions that can be rationalized by M(X). As a matter
of fact, these examples seem to suggest that it is not only the smoothness of
the function h itself that is crucial but also the smoothness of its iterates. To
explain this point further, let me introduce the notation h(t)(x) for the t-th it-
erate of a function h : X �→ X evaluated at x ∈ X . In other words, h(0)(x) = x
and h(t+1)(x) = h(t)(h(x)) for all t and for all x ∈ X . Now note that all iterates
of h1 are infinitely steep at the fixed point x = 0 and that the limit function
limt→+∞ h

(t)
1 is even discontinuous at x = 0. On the other hand, the functions

h2 and h3, which have been shown to be rationalizable by M(X), have the
property that their t-th iterate is not only continuous but even constant for
all t ≥ 2. It is tempting to conjecture that the striking difference between the
smoothness properties of the iterates of these functions is part of the reason
why h2 and h3 are rationalizable by M(X), whereas h1 is not.

4.4 Discount Factor Restrictions

In the previous section I have already mentioned that constructing an optimal
growth model that rationalizes a given function h requires typically the choice
of a sufficiently small discount factor. In principle, this could be due to the
specific details of the constructions that I have described. However, as I will
demonstrate now, there exists a relation between certain properties of the dy-
namics generated by optimal policy functions and the size of the discount factor
of any model that can rationalize these functions. In other words, the focus of
the present section is on the question of what one can say about the discount
factors of optimal growth models that rationalize a given function h. To get
started, suppose that a continuous function h : X �→ X is the optimal policy
function of the model M = (T, u, δ) ∈ M(X). According to lemma 4.3.2, this
is the case if and only if there exist functions V : X �→ R and G : T �→ R
such that V is strictly concave and such that conditions (4.4) and (4.5) hold.
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Now let δ̄ be any real number satisfying δ̄ ∈ (0, δ). Defining ū : T �→ R by
ū(x, y) = u(x, y) + (δ − δ̄)V (y) it is easy to see that condition (4.4) can be
written as

G(x, y) = ū(x, y) − V (x) + δ̄V (y).

Strict concavity of V together with δ̄ < δ implies that ū is strictly concave.
Applying lemma 4.3.2 again, it follows that h is the optimal policy function of
the model M̄ = (T, ū, δ̄) ∈ M(X). Furthermore, if M is an element of M+(X)
or M∗(X), then proposition 4.2.1 implies that the same is true for M̄ . This
proves the following lemma; see also Sorger [30].

Lemma 4.4.1. Let X ⊆ Rn be a non-empty, compact, and convex set and
let h : X �→ X be the optimal policy function of an optimal growth model
M = (T, u, δ) ∈ M(X). For every δ̄ ∈ (0, δ), there exists a utility function
ū : T �→ R such that M̄ = (T, ū, δ̄) ∈ M(X) and such that h is the optimal
policy function of M̄ . Furthermore, if M ∈ M∗(X) or M ∈ M+(X), then ū
can be chosen in such a way that M̄ ∈ M∗(X) or M̄ ∈ M+(X), respectively.

The above lemma shows that the set of discount factors that can be used to
rationalize a given function h is always an interval with left endpoint 0. To get
information about the right endpoint, let me state the following theorem from
Mitra and Sorger [14]; see also Mitra and Sorger [15, remark 1]. This theorem
can be regarded as the converse of theorem 4.3.3 for the case α = 0.

Theorem 4.4.1. Let X ⊆ Rn be a non-empty, compact, and convex set and let
h : X �→ X be the optimal policy function of a model M = (T, u, δ) ∈ M(X).
If V : X �→ R is the optimal value function of M , then the following is true.
For every x ∈ X such that ∂V (x) �= ∅ and for every px ∈ ∂V (x) there exists
qx ∈ ∂V (h(x)) such that the inequality

δ
{
V (h(x)) + qx[h(y) − h(x)] − V (h(y))

}
< V (x) + px(y − x) − V (y) (4.8)

holds for all y ∈ X satisfying y �= x.

In the rest of this section, I will discuss various implications of theorem 4.4.1.11

More specifically, I will use theorem 4.4.1 to demonstrate that complicated dy-
namics can only be optimal for small discount factors. To do this, I first have to
define what I mean by complicated dynamics. There exist a number of differ-
ent definitions of complicated dynamics or chaos in the literature on dynamical
systems. One of the most important definitions is formulated in terms of the
topological entropy of a dynamical system. To explain this concept, suppose
that an observer cannot distinguish between two states x and y if ‖x− y‖ ≤ ε.
This means that state observations are possible only with finite precision, as
measured by ε. Even if two initial states are indistinguishable in this sense, it
can be the case that, by observing the dynamical system xt+1 = h(xt) over

11 Theorem 4.3.5 from the previous section can also be derived from theorem 4.4.1;
see Mitra and Sorger [15].
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a finite number of periods, say T periods, the trajectories starting in the two
initial states can be distinguished. This will be the case if there exists an integer
t ∈ {0, 1, 2, . . . , T − 1} such that ‖h(t)(x) − h(t)(y)‖ > ε.12 The topological en-
tropy measures the rate at which different trajectories become distinguishable
as the number of observations, T , increases. In other words, the topological
entropy measures the rate at which information is generated by iterating h.
The popular definition of complicated dynamics mentioned above requires the
dynamical system under consideration to have positive topological entropy. In
this case, one often says that the dynamical system exhibits topological chaos.
Let me now state this definition in a more formal way. A subset B ⊆ X is
called (T, ε)-separated if, for any two different points x and y in B, there exists
t ∈ {0, 1, 2, . . . , T − 1} such that ‖h(t)(x)− h(t)(y)‖ > ε. Now assume that A is
a compact and invariant subset of X .13 In that case the number

sT,ε(h,A) = max{#B |B ⊆ A and B is (T, ε)-separated}

is well-defined and finite. Here, #B denotes the cardinality of B. The number

c(A) = lim sup
ε→0

ln s1,ε(h,A)
− ln ε

is called the upper capacity of the set A. It measures the growth rate of the
number of ε-balls which are required to cover A as ε approaches zero. The upper
capacity of A obviously does not depend on the function h. Furthermore, it is
clear that c(A) ≤ n must hold for every compact set A ⊆ Rn. For any compact
set A ⊆ X which is invariant under h, the topological entropy of h on the set
A is defined as

κ(h,A) = lim
ε→0

[
lim sup
T→∞

ln sT,ε(h,A)
T

]
.

I am now ready to state the first important implication of theorem 4.4.1. It is a
result due to Montrucchio and Sorger [19] that relates the topological entropy
of the dynamical system xt+1 = h(xt) to the discount factor of any model
M ∈ M(X) that can rationalize h.14

Theorem 4.4.2. Let X ⊆ Rn be a non-empty, compact, and convex set and
let h : X �→ X be the optimal policy function of a model (T, u, δ) ∈ M(X). Let
A be a compact subset of the interior of the state space X and assume that A
is invariant under h. Then it holds that δ ≤ e−κ(h,A)/c(A).

Although theorem 4.4.2 establishes a negative relation between the topological
entropy of a function h and the discount factor of any model that can rationalize
12 Recall that h(t) denotes the t-th iterate of h.
13 A subset A of the state space X is called invariant (under h), if for every x ∈ A it

holds that h(x) ∈ A.
14 A similar result appeared already in Montrucchio [18]. The difference between

the two results is that Montrucchio and Sorger [19] deal with rationalizability by
M(X), whereas Montrucchio [18] deals with rationalizability by M∗(X).
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h, I have to emphasize that this does not imply that positive topological entropy
can only be optimal under strong discounting. This is indeed not the case.
Mitra and Sorger [15], for example, demonstrate that, for every δ ∈ (0, 1),
it is possible to construct an optimal growth model M ∈ M+(X) ∩ M∗(X)
such that the optimal policy function of M has positive topological entropy on
X . Montrucchio [18, remark 2.2] outlines an alternative construction to prove
a similar result. What one can conclude from theorem 4.4.2 is therefore only
that the topological entropy of the optimal policy function must converge to
0 as the discount factor converges to 1. One drawback of theorem 4.4.2 is the
requirement that the set A must be a subset of the interior of the state space.
In particular, it is not possible to choose A = X . The underlying reason for
the awkward requirement of interiority is that the subdifferential of V may
become empty or unbounded at boundary points of X . Restricting himself
to one-dimensional state spaces (i.e., n = 1), Mitra [13] derives a version of
theorem 4.4.2 which states δ ≤ e−κ(h,X) for all optimal policy functions of
models in a certain subset of M+(X). The crucial assumption which he has to
make is that the slope of the utility function with respect to its first argument
is bounded at the left endpoint of the state space. In the appendix, I show
how theorem 4.4.2 can be derived from theorem 4.4.1. Although the general
idea of the proof is the same as in Montrucchio and Sorger [19] and Mitra [13],
the specific details of the three proofs differ from each other. In particular,
Mitra [13] does not use theorem 4.4.1 directly but a result very similar to the
following theorem.

Theorem 4.4.3. Let X ⊆ Rn be a non-empty, compact, and convex set, let
h : X �→ X be the optimal policy function of a model M = (T, u, δ) ∈ M(X),
and let V : X �→ R be the optimal value function of M . Furthermore, let x and y
be two different elements of the state space X and suppose that px ∈ ∂V (x) and
py ∈ ∂V (y). Then there exist subgradients qx ∈ ∂V (h(x)) and qy ∈ ∂V (h(y))
such that inequality

δ(qx − qy)[h(y) − h(x)] < (px − py)(y − x). (4.9)

holds.

This result is actually a simple corollary of theorem 4.4.1. Suppose that V has
a non-empty subdifferential at two different points x ∈ X and y ∈ X . I can
then interchange the roles of x and y in (4.8) to get

δ
{
V (h(y)) + qy[h(x) − h(y)] − V (h(x))

}
< V (y) + py(x− y) − V (x).

Adding this inequality to (4.8), one obtains (4.9). Mitra [13] also combines
his version of theorem 4.4.2 with results relating the topological entropy to
the existence of periodic paths. This allows him to obtain non-trivial discount
factor restrictions for optimal growth models that admit periodic optimal paths
with a period that is not a power of 2. Instead of discussing these results here,
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I restrict myself to the case of optimal paths of period 3, for which very sharp
results are available. Let me start by explaining the importance of periodic
paths of period 3. Li and Yorke [8] provided one of the earliest definitions of
chaos. Essentially, this definition requires a chaotic dynamical system to admit
periodic paths of any period as well as an uncountable scrambled set. Here, a
scrambled set is a set of points such that paths starting in those points are not
even asymptotically periodic and such that paths starting from two different
points in the scrambled set move apart and return close to each other infinitely
often. Li and Yorke [8] showed that, in the case where X is an interval on
the real line and h : X �→ X is a continuous function, the dynamical system
xt+1 = h(xt) exhibits chaos in the sense just described if and only if h admits
a periodic path of period 3, i.e., a period-three cycle. The latter is a triple
(a, b, c) ∈ X3 such that a, b, and c are mutually different states and such that
h(a) = b, h(b) = c, and h(c) = a. The following theorem shows that a one-
dimensional map that possesses a period-three cycle can only be rationalized
by an optimal growth model with discount factor δ < (3 −

√
5)/2. This result

was proved independently by Mitra [12] and Nishimura and Yano [23]. These
authors also proved that the number (3−

√
5)/2 is the least upper bound on the

set of discount factors that can be used to rationalize a one-dimensional map
with a period-three cycle. Thus, the theorem provides an exact discount factor
restriction for the rationalizability of chaos in the sense of Li and Yorke [8].

Theorem 4.4.4. Let X ⊆ R be a non-empty and compact interval.
(i) Suppose there exists a continuous function h : X �→ X that admits a period-
three cycle and a model M = (T, u, δ) ∈ M(X) such that h is the optimal
policy function of M . Then it follows that δ < (3 −

√
5)/2.

(ii) Conversely, for every δ < (3 −
√

5)/2, there exists a transition possibility
set T ∈ X × X and a utility function u : T �→ R such that M = (T, u, δ) ∈
M+(X) ∩ M∗(X) and such that the optimal policy function of M admits a
period-three cycle.

Part (ii) of theorem 4.4.4 can be proved by using the construction from
Nishimura et al. [21]; see also example 4.3.2 above. To explain one possible
proof of part (i), suppose that (a, b, c) is a period-three cycle of h.15 I may
assume without loss of generality that a is the smallest of the three num-
bers. Then there are two possibilities: b < c or b > c. Here, I consider only
the first case since the second one can be dealt with analogously. Leaving out
some of the technical details, it follows from theorem 4.4.3 that there exist
subgradients pa = qc ∈ ∂V (a), pb = qa ∈ ∂V (b), and pc = qb ∈ ∂V (c)
such that (4.9) holds for (x, y) = (a, b), (x, y) = (a, c), and (x, y) = (b, c),
respectively. From a < b < c and the strict concavity of V it follows that
pa = qc > pb = qa > pc = qb. Applying (4.9) to (x, y) = (a, b), one obtains

δ < [(pa − pb)/(pb − pc)][(b − a)/(c− b)]. (4.10)
15 The following discussion uses arguments similar to those in Mitra [12]. A completely

different proof can be found in Nishimura and Yano [23].
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Analogously, applying (4.9) to (x, y) = (a, c) and (x, y) = (b, c), one gets

δ < [(pa − pc)/(pa − pb)][(c− a)/(b− a)], (4.11)
δ < [(pb − pc)/(pa − pc)][(c− b)/(c− a)]. (4.12)

It is obvious that both factors in brackets on the right-hand side of (4.11) are
greater than 1 such that (4.11) does not restrict δ in a non-trivial way. Defining
z = (c − b)/(c − a) and q = (pb − pc)/(pa − pc), I can rewrite the non-trivial
constraints (4.10) and (4.12) as δ < (1/q − 1)(1/z − 1) and δ < qz. Note
that both z ∈ (0, 1) and q ∈ (0, 1) holds. To summarize, if the optimal policy
function of (T, u, δ) ∈ M(X) admits a period-three cycle (a, b, c) satisfying
a < b < c and (c− b)/(c− a) = z, then it follows that

δ < max {min{(1/q − 1)(1/z − 1), qz} | q ∈ (0, 1)} .

It is straightforward to verify that the right-hand side of this inequality is equal
to

δ̄(z) =
2z

√
1 − z√

1 − z + 4z2 +
√

1 − z
.

Since z can take any value between 0 and 1, a discount factor restriction that
holds uniformly for all period-three cycles (a, b, c) with a < b < c can be derived
by maximizing δ̄(z) over z ∈ (0, 1). Using simple calculus, I obtain

max{δ̄(z) | z ∈ (0, 1)} = δ̄
(
(
√

5 − 1)/2
)

= (3 −
√

5)/2. (4.13)

As I have already mentioned before, period-three cycles (a, b, c) with a < c < b
can be dealt with in exactly the same way and yield the same discount fac-
tor restriction. This completes the proof of theorem 4.4.4(i). Theorem 4.4.4 is
remarkable in a number of ways. Not only is it an exact discount factor restric-
tion for the optimality of period-three cycles, but it also relates the existence
of optimal period-three cycles to the so-called golden section or golden ratio, a
number that Euclid has already mentioned in the second book of his Elements
about 300 years before Christ. As a matter of fact, the golden section is given by
γ = (

√
5− 1)/2, which is exactly the square root of the number stated in theo-

rem 4.4.4. Note also that the value of z for which the discount factor restriction
for period-three cycles is actually attained is z = γ; see equation (4.13). This
means that all period-three cycles that can be rationalized using the highest
possible discount factor have the property that z = (c−b)/(c−a) = γ. In other
words, these cycles have the property that the point b divides the interval (a, c)
according to the golden section. In principle, one could try to derive discount
factor restrictions for the rationalizability of period-p cycles with p �= 3 using
the same strategy as in the proof of theorem 4.4.4(i). I expect that this would
lead to non-trivial discount factor restrictions whenever p is not a power of 2,
that is, whenever the optimal policy function has positive topological entropy.
However, the number of cases to be considered and the analytical complexity
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of such a proof is daunting and I am not aware of any attempt at carrying
out this project. Let me conclude this section by giving exact discount factor
restrictions for two important examples. The first example is the tent map
h : [0, 1] �→ [0, 1] defined by h(x) = 1 − |2x − 1|. I have already discussed
this map in example 4.3.2, where I have shown that it can be rationalized by
models in M∗([0, 1]) with discount factors smaller than 1/4. Rationalizability
of the tent map by strongly concave optimal growth models with discount fac-
tors smaller than 1/4 follows also from theorem 4.3.4, because the tent map
is uniformly Lipschitz-continuous with Lipschitz-constant K = 2. Mitra and
Sorger [15] show that 1/4 is indeed the least upper bound on the set of dis-
count factors that can be used to rationalize the tent map. To summarize, the
following theorem holds.

Theorem 4.4.5. Let X = [0, 1] and define h : X �→ X by h(x) = 1 − |2x− 1|
for all x ∈ X.
(i) If there exists a model M = (T, u, δ) ∈ M(X) such that h is the optimal
policy function of M , then it follows that δ ≤ 1/4.
(ii) For every δ < 1/4 there exists a transition possibility set T and a utility
function u : T �→ R such that (T, u, δ) ∈ M∗(X) and such that h is the optimal
policy function of M .

The second example that I want to mention is the logistic map h(x) = 4x(1−x),
which is also defined on the state space X = [0, 1]. Along with the tent map,
the logistic map is one of the most prominent examples of chaotic dynamics.
Since h is Lipschitz-continuous with Lipschitz-constant K = 4, it follows from
theorem 4.3.4 that the logistic map can be rationalized by strongly concave
optimal growth models with discount factors smaller than 1/16. Also in this
case, Mitra and Sorger [15] prove that 1/16 provides the least upper bound on
the set of discount factors that can be used to rationalize h.

Theorem 4.4.6. Let X = [0, 1] and define h : X �→ X by h(x) = 4x(1 − x)
for all x ∈ X.
(i) If there exists a model M = (T, u, δ) ∈ M(X) such that h is the optimal
policy function of M , then it follows that δ ≤ 1/16.
(ii) For every δ < 1/16 there exists a transition possibility set T and a utility
function u : T �→ R such that (T, u, δ) ∈ M∗(X) and such that h is the optimal
policy function of M .

Montrucchio [18] has already shown that rationalizability of the tent map by
a regular model, that is, by a model in M∗(X) that has an optimal value
function which is (−β)-convex for some positive number β, requires a discount
factor smaller than 1/4. Analogously, he has shown that rationalizability of the
logistic map by the same class of models requires δ < 1/16. The results stated in
part (i) of theorem 4.4.5 and theorem 4.4.6, respectively, are stronger, because
they are necessary conditions for rationalizability by the larger class M(X).
To summarize the results of the present section, there exists a mathematically
rigorous interpretation of the frequently expressed statement that complicated
dynamics can be optimal only under heavy discounting.
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4.5 Extensions

In the last section of this chapter I want to discuss if and how the results
presented above can be generalized to other classes of optimal growth mod-
els. First of all, I would like to mention that part of the literature covered by
the present survey studies rationalizability by classes of optimal growth mod-
els that are defined slightly differently from M(X), M+(X), or M∗(X). For
example, as I have already mentioned before, the class of models satisfying
assumptions A1-A3 as well as strict concavity of the optimal value function is
often considered. Using that definition, however, is problematic because strict
concavity of the optimal value function is a derived property which cannot be
checked easily from the primitives T, u, and δ of the model. For this reason, I
have focussed on the classes M(X), M+(X), and M∗(X), which are defined
by properties of T, u, and δ only. In any case, it seems that rationalizabil-
ity results for M(X) do not differ significantly from corresponding results for
optimal growth models satisfying A1-A3 with strictly concave optimal value
functions. A more significant departure from the setting of the present study
consists in adding more structural properties. Some of the work by Mitra (e.g.,
[12] and [13]) uses a framework in which the state space is one-dimensional and
the structural properties of the model go beyond those postulated in A1-A5.
Similarly, Mitra and Sorger [14, section 4] consider optimal growth models with
n-dimensional state spaces that satisfy slightly more restrictive properties than
A1-A5. In this framework they derive very strong versions of theorems 4.3.3
and 4.4.1. However, all of these papers still use the reduced form of optimal
growth models. Only very little work has been done on questions of rational-
izability for classes of primitive models, i.e., models with explicit descriptions
of the production technologies for consumption goods and capital goods. A
possibly incomplete list of papers that study models in primitive form (at least
by means of examples) and address questions related to those discussed in
the present survey are Boldrin and Montrucchio [1], Majumdar and Mitra [9],
Nishimura et al. [21], and Nishimura and Yano [22]. Throughout the present
chapter I have assumed that time evolves in discrete periods. Alternatively,
one could use a continuous-time formulation. Some of the results stated in ear-
lier sections have continuous-time counterparts, others do not. For example,
theorem 4.3.2 about the rationalizability of twice continuously differentiable
functions as optimal policy functions has also been proved for continuous-time
models; see Montrucchio [17] or Sorger [26]. As for the stronger rationalizabil-
ity theorems 4.3.3 and 4.3.4, I am not aware of any published version for the
continuous-time case, but I conjecture that such results can be proved using es-
sentially the same arguments as in the discrete-time case. The technical details,
however, are likely to be more complicated. In a continuous-time framework,
the Bellman equation is a partial differential equation and a continuous-time
version of the rationalizability condition (4.7) would probably involve second-
order partial derivatives of the optimal value function V . Thus, in addition to
strict concavity of V , a continuous-time version of theorem 4.3.3 would have
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to contain sufficient smoothness assumptions for V . This would not pose any
problem for the proof of the continuous-time version of theorem 4.3.4, because
in that proof one chooses a smooth quadratic polynomial for V anyway. From
these arguments it is also clear that a reformulation of the necessary ratio-
nalizability theorem 4.4.1 would probably require an additional smoothness
condition for the optimal value function V . I do not know whether this would
still allow one to derive a continuous-time version of theorem 4.4.2 following the
arguments outlined in the appendix, but I guess that the result itself remains
valid in continuous time. Theorems 4.4.4-4.4.6 and their proofs, on the other
hand, are deeply rooted in the particular properties of one-dimensional maps
(i.e., discrete-time dynamical systems on one-dimensional state spaces) which
is why there cannot exist analogous results in a continuous-time framework.
The reduced-form optimal growth model as defined in section 4.2 above uses
the standard model of time-preference, i.e., an objective functional which is
additively separable across time and which involves a constant discount fac-
tor (geometric discounting). This model of time-preference has been general-
ized in at least two ways. The first one replaces additive separability by a
weaker separability condition but maintains stationarity of preferences (recur-
sive or stationary utility functionals; see Koopmans [6]), whereas the second
one maintains additive separability but gets rid of stationarity (non-geometric
discounting; see Strotz [33]). Let me briefly discuss the implications of these
two generalizations for the results stated in the present survey. First of all,
since the standard model of time-preference is a special case of both the class
of models with recursive utility functionals and the class of models with general
discounting functions, it follows that every function h that can be rationalized
by a model in M(X) can also be rationalized by these more general optimal
growth models. Thus, the non-trivial questions regarding these generalizations
are (i) whether the more general classes of optimal growth models can be used
to rationalize more functions and (ii) whether the discount factor restrictions
do still apply in the more general settings. I am not aware of any attempts to
answer the first of these questions. As for the second question, however, some
work has been done. Sorger [28] discusses issues related to discount factor re-
strictions in models with general recursive utility functionals. He assumes that
the aggregator function, which aggregates instantaneous utility and total future
utility, is uniformly Lipschitz-continuous with respect to future utility and he
takes the corresponding Lipschitz-constant as a measure of impatience. He is
then able to show that rationalizability of a given function h implies, in general,
that there are non-trivial restrictions on this measure of impatience. Although
he does not deal with the particular discount factor restrictions discussed in
section 4.4 of the present survey, I conjecture that all of them have straight-
forward generalizations to the framework considered in [28]. If this conjecture
is true, it means that the additive separability of preferences is not an impor-
tant assumption for the discount factor restrictions from section 4.4 as long
as stationarity of preferences is maintained. The situation is quite different for
the second generalization that I mentioned above, namely the assumption of
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non-geometric discounting. There is overwhelming experimental evidence that
discount factors applied by actual decision makers in the immediate future are
smaller than those applied by the same individuals in the distant future. As
Strotz [33] has pointed out, this may lead to dynamic inconsistency of optimal
plans. The most popular solution to the inconsistency problem is to assume
that the decision maker plays an intra-personal game between the different
selves of which he or she consists and that the implemented solution is a sta-
tionary Markov-perfect equilibrium of that game. Sorger [31] shows that one
cannot expect any discount factor restrictions to remain valid in this setting.
In particular, he derives a version of theorem 4.3.2 in which any discount factor
smaller than 1 can be fixed in advance. More specifically, for every given set of
short-term and long-term discount factors (different from each other), it holds
that any twice continuously differentiable function h that satisfies a certain
curvature assumption can be the equilibrium strategy in the aforementioned
intra-personal game. Sorger [31] also shows that this curvature assumption does
not rule out functions like the logistic map. Thus, one can conclude that the
stationarity of preferences does form an important assumption for the discount
factor restrictions of section 4.4. In other words, the strategic interaction of dif-
ferent selves (introduced by the requirement of dynamically consistent behavior
under non-stationary preferences) allows for a significantly different behavior
of the optimal solutions, even if the discount factors for the immediate and the
distant future differ from each other only slightly. My final remark deals with
stochastic optimal growth models. Such models are described by a transition
possibility set, a utility function, a discount factor, and a description of the
stochastic process of shocks; see, e.g., Stokey and Lucas [32]. Under appropri-
ate assumptions, solutions of such models can again be characterized as the
trajectories of a (stochastic) dynamical system. In discrete time, the optimal
policy function maps pairs (x, z), where x is the state of the economy and
z is the current shock, into the state space. As far as I know, there do not
exist any results for stochastic optimal growth models in discrete time which
are similar to those discussed in the present survey. The continuous-time case
seems to be more tractable because, in this case, the policy function maps the
state space into the control space, i.e., the policy function does not depend on
the shock variable. Chang [3] studies the inverse problem in a continuous-time,
stochastic framework with a single state variable. His main result is that every
twice continuously differentiable and increasing function can be rationalized by
a stochastic optimal growth model.
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Appendix

Proof of theorem 4.3.3: In order to prove part (i) of the theorem, I will
construct a model M = (T, u, δ) ∈ M∗(X) which rationalizes h and which
possesses V as its optimal value function. As transition possibility set I choose
T = X×X . The discount factor δ is assumed to be given. It remains to specify
the utility function u : T �→ R. To this end, I first define for every z ∈ X a
function Fz : T �→ R by

Fz(x, y) = V (z) + pz(x− z) − (α/2)‖x− z‖2−

δ
{
V (h(z)) + qz[y − h(z)] + (α/2)‖y − h(z)‖2

}
.

Note that Fz(x, y) is a αδ-concave, quadratic polynomial with respect to
(x, y). Furthermore, because h and V are continuous and because X and⋃

x∈X ∂V (x) are compact, it follows that inf {Fz(x, y) | z ∈ X} is finite for
all (x, y) ∈ T. Let me therefore define the utility function u : T �→ R by
u(x, y) = inf {Fz(x, y) | z ∈ X}. Because u is the infimum of a family of αδ-
concave functions, it is itself αδ-concave and, hence, strongly concave. Thus,
the model M = (T, u, δ) is a member of the family M∗(X). I claim that M
rationalizes h and I am going to prove this claim by applying lemma 4.3.2.
Using condition (4.4) as the definition of the function G : T �→ R, all I need to
do is verify (4.5). To this end, first note that

G(x, y) = u(x, y) − V (x) + δV (y)
≤ Fx(x, y) − V (x) + δV (y)
= −δ {V (h(x)) + qx[y − h(x)] − V (y)} − (αδ/2)‖y − h(x)‖2

≤ 0.

The first line is the definition of G from (4.4), the second line follows from the
definition of u, the third line follows from the definition of Fz(x, y) for z = x,
and the fourth line follows from the strict concavity of V . Thus, I have proved
that G(x, y) ≤ 0 holds for all (x, y) ∈ T. Now consider the equality in (4.5). It
is easy to see that

Fx(x, h(x)) − V (x) + δV (h(x)) = 0.

Condition (4.7) implies that Fx(y, h(y)) ≥ Fy(y, h(y)). Interchanging the roles
of x and y, I obtain

Fy(x, h(x)) ≥ Fx(x, h(x))

for all (x, y) ∈ X ×X . Combining the last two formulas it follows that

G(x, h(x)) = u(x, h(x)) − V (x) + δV (h(x))
= inf {Fy(x, h(x)) | y ∈ X} − V (x) + δV (h(x))
= Fx(x, h(x)) − V (x) + δV (h(x))
= 0.
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Thus, conditions (4.4) and (4.5) hold and lemma 4.3.2 implies that h and V are
the optimal policy function and the optimal value function, respectively, of M .
This concludes the proof of part (i). Now assume that the additional condition
in part (ii) is satisfied. This condition implies immediately that, for all z ∈ X ,
the function Fz(x, y) is non-decreasing with respect to x and non-increasing
with respect to y. Obviously, these monotonicity properties are inherited by u
such that assumption A5(ii) holds. Since T = X×X trivially satisfies assump-
tion A5(i), it follows that M ∈ M+(X). This proves part (ii) of theorem 4.3.3.
Proof of theorem 4.4.2: I need a few preliminary results. Since A is a
compact set in the interior of X , it follows that V must be uniformly Lipschitz-
continuous on A. Denoting the Lipschitz-constant by K, I obtain

V (x) + px(y− x)− V (y) ≤ |V (x)− V (y)|+ ‖px‖‖y− x‖ ≤ 2K‖y− x‖. (4.14)

Now let ε > 0 be given and consider the function f : X × X × Rn �→ R
defined by f(x, y, p) = V (x) + p(y− x)− V (y). Strict concavity and continuity
of V implies that f is continuous and that f(x, y, p) > 0 holds for all triples
(x, y, p) ∈ X ×X × Rn with x �= y and p ∈ ∂V (x). Furthermore, I define the
set S(ε) = {(x, y, p) |x ∈ A, y ∈ A, ‖y− x‖ ≥ ε, p ∈ ∂V (x)}. Compactness of A
together with the fact that the correspondence x �→ ∂V (x) is compact-valued
and upper semicontinuous implies compactness of S(ε). It follows from these
properties that f attains its minimum on S(ε) and that this minimum is strictly
positive. Thus, there exists a number L(ε) > 0 such that

V (x) + px(y − x) − V (y) > L(ε) (4.15)

holds whenever x ∈ A, y ∈ A, ‖y − x‖ ≥ ε, and px ∈ ∂V (x). Let B be a
(T, ε)-separated subset of A. Then there exists for every pair (x, y) ∈ B × B
with x �= y a number t ∈ {0, 1, 2, . . . , T − 1} such that ‖xt − yt‖ > ε, where
xt = h(t)(x) and yt = h(t)(y). From (4.8) and (4.14)-(4.15) it follows that

2K‖y − x‖ ≥ V (x) + px(y − x) − V (y) >

δt
[
V (xt) + qxt−1(yt − xt) − V (yt)

]
> δtL(ε).

Because of t < T , this implies that ‖y − x‖ > δTL(ε)/(2K) which shows
that the set B must be (1, µ(T, ε))-separated where µ(T, ε) = δTL(ε)/(2K).
Consequently, we must have #B ≤ s1,µ(T,ε)(h,A). This, in turn, implies that
sT,ε(h,A) ≤ s1,µ(T,ε)(h,A). Defining

κε(h,A) = lim sup
T→∞

ln sT,ε(h,A)
T

,

I therefore obtain
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κε(h,A) ≤ lim sup
T→∞

ln s1,µ(T,ε)(h,A)
T

= lim sup
T→∞

[(
ln s1,µ(T,ε)(h,A)

− lnµ(T, ε)

)(− lnµ(T, ε)
T

)]
= lim sup

µ→0

ln s1,µ(h,A)
− lnµ

lim
T→∞

− lnµ(T, ε)
T

= −(ln δ)c(A).

This implies κ(h,A) = limε→0 κε(h,A) ≤ −(ln δ)c(A) which completes the
proof of the theorem.
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5.1 Introduction

The concept of a non-trivial stationary optimal stock (SOS) plays a central
role in the theory of optimal intertemporal allocation over an infinite horizon.
While the optimal policy correspondence describes fully optimal behavior in
such models, it is quite difficult to compute it accurately, and it can be solved
in explicit form in only a very few highly specialized examples.

However, if non-stationary optimal programs, after a period of transition,
are close to a certain stationary program (and the transition period is not very
long), then their behavior can be approximately described by the stationary
optimal program. Thus, even though it is only by accident that an economy has
exactly a stationary optimal stock as its initial stock, a study of the existence,
uniqueness and (local and global) stability of stationary optimal programs is
of considerable significance.

Furthermore, if one is interested in comparative dynamics in this framework,
one observes that it might be very difficult to get definitive results for policy
purposes by varying a parameter and seeing the effect of it on the entire optimal
policy correspondence. On the other hand, if the stationary optimal program is
at least locally stable, then one can often predict the change in the stationary
optimal program following a “small” change in a parameter, and this can enable
one to conduct local comparative dynamics exercises in this framework.

In this essay, we present the basic results on the existence and uniqueness
of (non-trivial) stationary optimal programs. A comprehensive account of the
1 Our intellectual debt to William Brock and Lionel McKenzie, for our understanding

of the subject matter of this survey, should be quite obvious. In writing this survey,
we have relied heavily on our collaborative research with Jess Benhabib, Swapan
Dasgupta, and Ali Khan.
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stability (or turnpike) property of stationary optimal programs is already avail-
able in McKenzie (1986), and we refer the reader to his definitive study of this
topic.

The existence of a stationary optimal stock (briefly, SOS) in multi-sector op-
timal growth models has been shown by Sutherland (1970) Hansen and Koop-
mans (1972), Peleg and Ryder (1974), Cass and Shell (1976), Flynn (1980),
McKenzie (1982, 1986) and Khan and Mitra (1986), among others. We follow
very closely the approach in Khan and Mitra (1986).

The demonstration of existence typically consists of three separate steps.
First, a fixed point argument is used to show the existence of what we call in the
sequel, a discounted golden-rule stock. Second, a separation argument in the
form of the Kuhn-Tucker theorem is used to provide a “price-support” to the
discounted golden-rule stock. Finally, a computation based on the price support
property is used to show that the discounted golden-rule stock is optimal among
all programs starting from that stock.

This approach, relying on duality theory (in the second and third steps),
is followed by Peleg and Ryder (1974), Cass and Shell (1976), Flynn (1980),
McKenzie (1982, 1986). An exception to this is Sutherland (1970) who relies
on methods of dynamic programming and is able to avoid supporting prices
and the Kuhn-Tucker theorem. However, Sutherland does not establish the
existence of a non-trivial SOS, and as noted by Peleg and Ryder (1974), the
null stock is always a SOS in a set-up which allows for the possibility of inaction,
and does not allow production of positive outputs from zero inputs.

Khan and Mitra (1986) use a purely primal approach to the existence of
a non-trivial SOS, and by a simple computation based on Jensen’s inequal-
ity, establish that a discounted golden-rule stock is always a SOS. Thus, once
the fixed point argument (the first step in the three-step argument indicated
above) ensures the existence of a discounted golden-rule stock, the existence of
a stationary optimal stock is also assured. This primal approach does not suf-
fer from the shortcoming noted in the dynamic programming method, for it is
simple to identify a condition on the economy (known as δ−normality) which
ensures that the discounted golden-rule stock (and therefore the corresponding
stationary optimal program) is non-trivial.

The existence of a discounted golden-rule stock therefore emerges as a key
concept of this subject. The idea is to approach an infinite-horizon optimization
problem by solving an appropriate two-period optimization problem.

A direct payoff of the primal approach of Khan and Mitra (1986) is that
an assumption frequently used in this literature (known as δ − productivity)
can be dispensed with, since its role is simply to ensure that Slater’s condition
holds when one invokes the Kuhn-Tucker theorem (in the second step of the
three-step argument).

Following Khan and Mitra (1986), we also use a purely primal approach to
show that a SOS, k, is always a discounted golden-rule stock, provided (k, k) is
in the interior of the technology set. This result is proved by McKenzie (1986),
relying on duality methods. Again, the proof involves three steps. First, a
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sequence of prices is found to support the stationary optimal program, following
the approach of Weitzman (1970). Second, by an argument due to Sutherland
(1967), a “quasi-stationary” price support is obtained from the above sequence
of supporting prices. Third, this (quasi-stationary) price support property is
used to show that the SOS is a discounted golden-rule stock. In dispensing
with support prices, we provide a direct and short proof. We also present an
example to show that the result fails when (k, k) is not in the interior of the
technology set.

In general, when future utilities are discounted (as we are assuming in our
framework throughout), there can be multiple (non-trivial) stationary optimal
stocks (even when the utility function of the economy is strictly concave, un-
like in the undiscounted case). Examples of economies with more than one
non-trivial stationary optimal stock were given by Kurz (1968), Liviatan and
Samuelson (1969) and Sutherland (1970). However, for some classes of mod-
els, one can provide sufficient conditions under which there can be only one
non-trivial SOS.

We present two distinct approaches to the uniqueness issue. First, in an
economy in which production is described by a simple linear model involving
no joint production, and the utility (derived from consumption alone) satisfies
a normality assumption, we show that there is exactly one non-trivial station-
ary optimal stock, using the methods of convex analysis (and, in particular,
duality theory). We also provide an example where the normality assumption
is violated and there are multiple non-trivial stationary optimal stocks. These
results illustrate the somewhat more general investigations along these lines
presented in Brock (1973) and Brock and Burmeister (1976).

Second, using the methods of differential topology, and relying on assump-
tions on the Jacobian obtained from the Ramsey-Euler equations (which hold
for an interior stationary optimal stock in a model in which the utility func-
tion is twice continuously differentiable in the interior of the technology set),
one can view the uniqueness result for interior stationary optimal stocks in the
discounted case as following from the uniqueness result in the undiscounted
case. Our approach follows Benhabib and Nishimura (1979), which generalizes
a result along these lines by Brock (1973).

5.2 Preliminaries

5.2.1 Notation

Let N be the set of non-negative integers {0, 1, 2, ...}, and let n-dimensional
Euclidean space be denoted by Rn, where ‖x‖ denotes the Euclidean norm of
any element x in Rn. For any x, y in Rn, we shall write x � y(x ≥ y) to denote
xi > yi(xi ≥ yi) for all coordinates i = 1, ..., n; and x > y to denote x ≥ y and
x �= y. For any set, S, the set of all subsets of S will be denoted by B(S) and
hence we shall write φ : X → B(Y ) for any correspondence (set-valued map) φ
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with domain X and range B(Y ). Finally, let e denote an element of Rn
+, all of

whose coordinates are unity.

5.2.2 The Model

The framework is described by a triplet (Ω, u, δ), where Ω, a subset of Rn
+×Rn

+,
is a transition possibility set, u : Ω → R is a utility function defined on this
set, and δ is the discount factor satisfying 0 < δ < 1. A typical element of Ω
is written as an ordered pair (x, y); this means that if the current state is x,
then it is possible to be in the state y in one period.

We will be using the following assumptions:
(A.1) (i) (0, 0) ∈ Ω; (ii) (0, y) ∈ Ω implies y = 0.
(A.2) Ω is (i) closed, and (ii) convex.
(A.3) There is ξ such that “(x, y) ∈ Ω and ‖x‖ ≥ ξ” implies “ ‖y‖ <

‖x‖”.
(A.4) If (x, y) ∈ Ω and x′ ≥ x, 0 ≤ y′ ≤ y, then (i) (x′, y′) ∈ Ω and

(ii) u(x′, y′) ≥ u(x, y).
(A.5) u is (i) upper semicontinuous and (ii) concave on Ω.
(A.6) There is ζ such that (x, y) ∈ Ω implies u(x, y) ≥ ζ.
A program from y ∈ Rn

+ is a sequence {y(t)}∞0 such that y(0) = y, and
(y(t), y(t+ 1)) ∈ Ω for t ≥ 0.

A program {y(t)}∞0 from y ∈ Rn
+ is an optimal program if

∞∑
t=0

δtu(y′(t), y′(t+ 1)) ≤
∞∑

t=0

δtu(y(t), y(t+ 1))

for every program {y′(t)}∞0 from y.
An optimal program {y(t)}∞0 from y ∈ Rn

+ is a stationary optimal program
if y(t) = y(t+ 1) for t ≥ 0. A stationary optimal stock is an element y ∈ Rn

+,
such that {y}∞0 is a stationary optimal program. It is non-trivial if u(y, y) >
u(0, 0).

A discounted golden-rule stock k is an element of Rn
+ such that

(i) (k, k) ∈ Ω
(ii) u(k, k) ≥ u(x, y) for all (x, y) ∈ Ω such that δy− x ≥ (δ− 1)k.

It is non-trivial if u(k, k) > u(0, 0).

5.2.3 Existence of Optimal Programs and the Principle of
Optimality

The following “boundedness properties” of our model are well-known.
(R.1) Under assumptions (A.3) and (A.4)(i) ,

(i) If (x, y) ∈ Ω, then ‖y‖ ≤ max [ξ, ‖x‖].
(ii) If {y(t)}∞0 is a program from y ∈ Rn

+, then ‖y(t)‖ ≤
max [ξ, ‖y‖] for t ≥ 0.
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The existence of an optimal program in this framework is also a standard
result.

(R.2) Under assumptions (A.1), (A.2), (A.3), (A.4) (i), (A.5) (i) and
(A.6), if y ∈ Rn

+, there exists an optimal program from y.
Given (R.2), there is an optimal program {y∗(t)}∞0 from each y ∈ Rn

+. We
define

V (y) =
∞∑

t=0

δtu(y∗(t), y∗(t+ 1))

V is known as the value function.
The following result is standard and is known as the “principle of optimal-

ity”.
(R.3) If {y(t)}∞0 is an optimal program from y, then

V (y) =
N∑

t=0

δtu(y(t), y(t+ 1)) + δN+1V (y(N + 1)) for N ≥ 0.

5.3 Equivalence of Discounted Golden-Rule and
Stationary Optimal Stocks

A stationary optimal stock constitutes a solution to an infinite horizon prob-
lem. It is a stock such that, if one starts from it, then among all programs
starting from it (whether stationary or not), the program which remains sta-
tionary at the initial stock is optimal. Yet the stationary nature of the solution
makes it plausible to conjecture that one might be able to find it by solving a
finite-horizon problem. The equivalence of a discounted golden-rule stock and
a stationary optimal stock shows that this is indeed the case, as the discounted
golden-rule might be seen as the solution to a problem involving two periods.

Our approach to this equivalence result follows Khan and Mitra (1986). It
is “primal” in that it makes no use of supporting prices, unlike most treatments
of it in the literature, which rely on duality theory.

Theorem 5.3.1. Every discounted golden-rule stock k is a stationary optimal
stock.

Proof. Let {y(t)}∞0 be any program from k. We shall show that it does not
give a higher discounted utility sum than the stationary program {k}∞0 .

Let x(T ) =
∑T−1

t=0 (1 − δ)δty(t)/(1 − δT ) and z(T ) =
∑T−1

t=0 (1 − δ)δty(t +
1)/(1 − δT ). Given convexity of Ω, certainly (x(T ), y(T )) ∈ Ω for all
T ≥ 1. We know that y(t) is bounded independently of t. Hence (x̄, z̄) =
limT→∞(x(T ), z(T )) is well-defined and is an element of Ω.

Now, by the fact that 0 < δ < 1, Jensen’s inequality yields u(x̄, z̄) ≥∑∞
t=0(1 − δ)δtu(y(t), y(t + 1)). But (x̄ − δz̄) = (1 − δ)[

∑∞
t=0 δ

ty(t) −∑∞
t=0 δ

t+1y(t + 1)] = (1 − δ)k. Since (k, k) is a discounted golden-rule stock,
certainly u(k, k) ≥ u(x̄, z̄), which implies:
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∞∑
t=0

δtu(k, k) ≥
∞∑

t=0

δtu(x̄, z̄) = u(x̄, z̄)/(1 − δ) ≥
∞∑

t=0

δtu(y(t), y(t+ 1))

We can now state a converse to Theorem 5.3.1.

Theorem 5.3.2. Every stationary optimal stock k such that (k, k) ∈ interior
Ω, is a discounted golden-rule stock.

Proof. Suppose not; then there exists (x, y) ∈ Ω such that δy − x ≥ δk − k
and u(x, y) > u(k, k). Since u is non-decreasing in the first component, we
can assume without any loss of generality that x = (1 − δ)k + δy. Let γ ≡
u(x, y) − u(k, k) > 0.

Using (x, y), we shall now construct a program {y′(t)}∞0 starting from k
that gives more discounted sum of utilities than the stationary optimal program
{k}∞0 . This furnishes us the required contradiction. Towards this end, for a
value of N to be determined later, let:

z(q) = (1 − δq)k + δqx for all q = 0, ..., N

Then, we have for all q = 1, ..., N,

z(q − 1)) = (1 − δq−1)k + δq−1x

= (1 − δq)k + δqy

using the fact that x = (1 − δ)k + δy. Thus, we have:

(z(q), z(q − 1)) = (1 − δq)(k, k) + δq(x, y) for all q = 1, ..., N. (5.1)

By convexity of Ω, we have (z(q), z(q − 1)) ∈ Ω for all q = 1, ..., N . Now
let {y′(t)}∞0 be defined by y′(0) = k, y′(t) = z(N − t + 1), for t = 1, ..., N ;
y′(N + 1) = z(0) = x; y′(t) = 0 for t ≥ N + 2.

We now show that for large enough N, {y′(t)}∞0 is a program. For this, it
only remains to show that (k, y′(1)) = (k, z(N)) ∈ Ω. But (k, k) ∈ interior Ω,
and so there exists α > 0 such that (k, y) ∈ Ω for all y ∈ S2 ≡ {y : k−2αe <<
y << k + 2αe}. Let S1 = {y : k − αe ≤ y ≤ k + αe}. From the definition of
z(q), it is clear that z(q) − δz(q − 1) = (1 − δ)k for q = 1, ..., N, which implies
(z(q)−k) = δ(z(q−1)−k). Since δ is less than 1, certainly z(q) → k as q → ∞
and hence there exists N1 such that z(N) ∈ S1 for all N ≥ N1.

Next, we can assert, using the concavity of u, that for all q = 1, ..., N ,

u(z(q), z(q − 1)) ≥ (1 − δq)u(k, k) + δqu(x, y) ≥ u(k, k) + δqγ.

By Mangasarian (7, p. 63), it is also true that

‖u(k, z(N)) − u(k, k)‖ ≤ A ‖z(N) − k‖ = AδN+1 ‖y − k‖ ,

where A ≡ (u(k, k) + β̂)/α, β̂ = −Miny ∈Wu(k, y) and W is the set of 2n
vertices of S1. Hence we have
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N+1∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(k, k)] ≥ −AδN+1 ‖y − k‖ + (N + 1)δN+1γ.

On adding terms after the time period (N + 1), we obtain:

∞∑
t=0

δt[u(y′(t), y′(t+ 1)) − u(k, k)]

≥ δN+1((N + 1)γ −A ‖y − k‖ + {δu(0, 0)/(1− δ)} − δV (k)). (5.2)

Let N2 be a value of N such that the right-hand side of (5.2) is positive,
and let N

′
= Max(N1, N2). Now any {y′(t)}∞0 with N ≥ N

′
furnishes us with

a contradiction to the fact that {k}∞0 is a stationary optimal program.

A natural question arises as to whether the interiority hypothesis in Theo-
rem 5.3.2 can be dispensed with. The following example shows this not to be
the case.

Example 1:
Let Ω = {(x, y) ∈ R2

+ × R2
+ : Ay ≤ x, ey ≤ 3}, where:

A =
[

1 0
0 0.5

]
and e = (1, 1). Let δ = 1/2 and u(x, y) = ex. It is clear that this economy
satisfies all the assumptions made in Section 5.2. We shall show that k = (1, 0)
is a stationary optimal stock. To this end, observe that (k, k) ∈ Ω and consider
any program {y(t)}∞0 starting from k. Since (y(t), y(t + 1)) ∈ Ω, we have
y(t) ≤ (1, 0) for all t. Hence,

∞∑
t=0

δtu(y(t), y(t+ 1)) =
∞∑

t=0

δt(ey(t)) ≤
∞∑

t=0

δt

=
∞∑

t=0

δt(ek) =
∞∑

t=0

δtu(k, k).

Now let x′ = (1, 1), y′ = (1, 2). Certainly (x′, y′) ∈ Ω and δy′−x′ = δk−k.
But u(x′, y′) = ex′ = 2 > ek = u(k, k) and thus k is not a discounted golden-
rule stock.

5.4 Existence of Discounted Golden-Rule and Stationary
Optimal Stocks

Given the equivalence result of Section 5.3, the existence of a stationary optimal
stock can be established by showing that there exists a discounted golden-rule
stock. Since one can easily impose conditions on the economy to ensure that
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the discounted golden-rule stock obtained is non-trivial, this approach has the
advantage of identifying conditions on the economy sufficient for the existence
of a non-trivial stationary optimal stock. This advantage is not shared by the
dynamic programming approach followed by Sutherland (1967), a shortcoming
that was pointed out by Peleg and Ryder (1974).

Lemma 5.4.1. Let S = {x ∈ Rn
+ : ‖x‖ ≤ β} and φ and ψ be mappings from

S into B(Rn
+ ×Rn

+) such that for z ∈ S, φ(z) = {(x, y) ∈ Ω : δy−x ≥ δz− z}
and ψ(z) = {(x, y) ∈ φ(z) : u(x, y) ≥ u(x′, y′) for all (x′, y′) ∈ φ(z)}. Then,
ψ is a non-empty, convex-valued, and upper semicontinuous correspondence.

Proof. Clearly, S is a non-empty, convex, and compact set. Next, we claim that
φ is a non-empty, compact-valued correspondence. For any z ∈ S, we have
(0, 0) ∈ φ(z), and, since Ω is convex and closed, φ(z) is convex and closed.
Furthermore, if (x, y) ∈ φ(z), then ‖x‖ ≤ β. This implies, in turn, that if
(x, y) ∈ φ(z), then ‖y‖ ≤ β. Thus on defining S′ = {(x, y) ∈ Rn

+ × Rn
+ :

‖y‖ ≤ β}, we note that S′ is a non-empty, compact set, and for any z ∈ S,
φ(z) is a subset of S′. Since φ(z) is closed for each z ∈ S, φ(z) is compact for
each z ∈ S.

Since u is an upper semicontinuous function on Ω, and φ(z) is a non-empty,
compact subset of Ω, ψ(z) is non-empty for each z ∈ S. It is also convex by
concavity of u and convexity of φ(z).

Next, we show the upper semicontinuity of ψ. Let z∗ be an arbitrary
point of S. Consider a sequence {zn},with zn ∈ S, for n = 1, 2, 3, ..., with
zn → z∗ as n → ∞. Let (xn, yn) ∈ ψ(zn), and (xn, yn) → (x̂, ŷ). We want
to show that (x̂, ŷ) ∈ ψ(z∗). Since Ω is closed, (x̂, ŷ) ∈ φ(z∗). Suppose
(x̂, ŷ) /∈ ψ(z∗). Then there is some (x∗, y∗) ∈ ψ(z∗) and an ε > 0 such that
u(x∗, y∗) ≥ u(x̂, ŷ) + ε.

Now, since u is an upper semicontinuous function, lim
n→∞ sup u(xn, yn) ≤

u(x̂, ŷ). Thus, there is N1 such that for n ≥ N1, u(xn, yn) ≤ u(x̂, ŷ) + ε/3.
Consequently, for n ≥ N1,

u(x∗, y∗) ≥ u(xn, yn) + 2ε/3. (5.3)

Choose 0 < λ < 1 such that (1 − λ)[u(0, 0) − u(x∗, y∗)] ≥ −ε/3. We claim
that there is an N2 such that for n ≥ N2, (λx∗, λy∗) ∈ φ(zn). To see this,
observe that (0, 0) ∈ Ω and convexity of Ω imply that (λx∗, λy∗) ∈ φ(λz∗).
Since zn → z∗, there is N2 such that for n > N2, zn ≥ λz∗. Thus δλy∗−λx∗ ≥
(δ − 1)λz∗ ≥ (δ − 1)zn, establishing our claim.

Since (xn, yn) ∈ ψ(zn), for n ≥ N2,

u(xn, yn) ≥ u(λx∗, λy∗) ≥ λu(x∗, y∗) + (1 − λ)u(0, 0)
= u(x∗, y∗) + (1 − λ)[u(0, 0) − u(x∗, y∗)]
≥ u(x∗, y∗) − ε/3.

Using this in (5.3) for n ≥ Max(N1, N2),
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u(x∗, y∗) ≥ u(xn, yn) + 2ε/3 ≥ u(x∗, y∗) + ε/3,

a contradiction, which completes the proof.

Theorem 5.4.1. There exists a discounted golden-rule stock.

Proof. Define Q : S → B(Rn
+), where for z ∈ S, Q(z) = {x ∈ Rn

+ : (x, y) ∈
ψ(z)}. We will show that this correspondence Q satisfies all the requirements
of Kakutani’s fixed-point theorem.

Lemma 5.4.1 implies that Q is a non-empty, convex-valued correspondence.
It also implies that Q is upper semicontinuous. To see this, take an arbitrary
z∗ ∈ X . Let zn ∈ S, with zn → z∗ as n→ ∞. Let xn ∈ Q(zn), and xn → x̂
as n → ∞. We have to show that x̂ ∈ Q(z∗). Since xn ∈ Q(zn), there is yn

such that (xn, yn) ∈ ψ(zn). This means (xn, yn) ∈ φ(zn), and by compactness
of φ(zn), we can pick a subsequence (xn′

, yn′
) tending to (x̂, ŷ) ∈ φ(z∗). By

the lemma, (x̂, ŷ) ∈ ψ(z∗) and the claim is proved.
Thus, all the conditions of Kakutani’s fixed point theorem are fulfilled, and

there exists x0 ∈ Q(x0). This means there is some y0 such that (x0, y0) ∈
ψ(x0); that is,

u(x0, y0) ≥ u(x, y) for all (x, y) ∈ φ(x0).

But (x0, y0) ∈ φ(x0) implies x0 ≤ y0, and we obtain that (x0, x0) ∈ Ω, and
u(x0, x0) ≥ u(x0, y0) ≥ u(x, y) for all (x, y) ∈ Ω, with δy − x ≥ δx0 − x0.
Thus, by definition, x0 is a discounted golden-rule stock.

An economy (Ω, u, δ) is called δ − normal if there exists (x̄, ȳ) ∈ Ω such
that x̄ ≤ δȳ and u(x̄, ȳ) > u(0, 0).

Theorem 5.4.2. If the economy (Ω, u, δ) is δ-normal, there exists (i) a non-
trivial discounted golden-rule stock, and (ii) a non-trivial stationary optimal
stock.

Proof. By Theorem 5.4.1, there is a discounted golden-rule stock, x0. Given
δ-normality, there is (x̄, ȳ) ∈ Ω such that δȳ− x̄ ≥ 0 ≥ δx0 −x0, and u(x̄, ȳ) >
u(0, 0). Thus, by definition of a discounted golden-rule stock, u(x0, x0) ≥
u(x̄, ȳ) > u(0, 0), and hence x0 is a non-trivial discounted golden-rule stock.

By Theorem 5.3.1, x0 is a stationary optimal stock, and since we have
already checked that u(x0, x0) > u(0, 0), it is a non-trivial stationary optimal
stock.

Remark:
An economy (Ω, u, δ) is called δ−productive if there exists (x̄, ȳ) ∈ Ω such

that δȳ >> x̄. Flynn (1980) establishes a version of Theorem 5.4.2 under the
additional assumption of δ-productivity. This is because, after establishing the
existence of a discounted golden-rule, he uses the dual approach to show that
the discounted golden-rule stock is a stationary optimal stock, by providing an
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appropriate price-support. Then δ−productivity ensures that Slater’s condition
is satisfied in the application of the Kuhn-Tucker theorem.

We show now that there exist economies satisfying the hypotheses of The-
orem 5.4.2, whose technologies are not δ-productive, and for which there exists
a non-trivial SOS.

Example 2:
Let f(x) = 2x for 0 ≤ x ≤ 1 and f(x) = 2 + (x − 1)/2 for x ≥ 1. Let

Ω = {(x, y) ∈ Rn
+ : 0 ≤ y ≤ f(x)}, u(x, y) = 2f(x) − y and δ = 1/2.

Now (x̄, ȳ) ≡ (1, 2) ∈ Ω. Certainly δȳ−x̄ = 0 and u(x̄, ȳ) = 2 > 0 = u(0, 0).
Hence the economy is δ-normal. Also, for any (x, y) ∈ Ω, δy−x ≤ (1/2)f(x)−
x ≤ 0, since for x ≥ 1, f(x) ≤ 2x. Thus, there cannot exist any (x, y) ∈ Ω
such that x << δy and so the economy is not δ-productive.

Next, we claim that x∗ = 1 is a discounted golden-rule stock. Pick any
(x, y) ∈ Ω such that δy − x ≥ (δ − 1)x∗. Then y ≥ 2x − 1 and u(x, y) ≤
2f(x) − 2x+ 1. Now

u(x, y) ≤ 2(2x) − 2x+ 1 ≤ 3 for 0 ≤ x ≤ 1

and
u(x, y) ≤ 2(2 + (1/2)(x− 1)) − 2x+ 1 ≤ 3 for x ≥ 1.

In either case, u(x, y) ≤ 3 = u(1, 1) = u(x∗, x∗), and our claim is proved.
It should be noted that x∗ = 1 is an SOS by Theorem 5.3.1, which is

non-trivial, since u(1, 1) = 3 > 0 = u(0, 0).
We now present an example of an economy which satisfies all the assump-

tions of Section 5.2, and which is δ − productive, but which has only a trivial
SOS. This economy violates the δ − normality assumption, showing thereby
that Theorem 5.4.2 would not be valid if the δ − normality hypothesis is
dropped from its statement.

Example 3:
Let Ω = {(x, y) ∈ R2

+ : 0 ≤ y ≤ 2x1/2}, δ = 1/2, and u(x, y) = x− 2y. For
(x̂, ŷ) = (1/4, 1) ∈ Ω, we have δŷ >> x̂ and so the economy is δ − productive.
For any program {k}∞0 with 0 < k ≤ 4, we have

∑∞
t=0 δ

tu(k, k) < 0, and so it is
dominated by the program {y(t)}∞0 with y(0) = k and y(t) = 0 for t = 1, 2, ...
Since there is no stationary program {k}∞0 with k > 4, {0}∞0 is the unique
stationary optimal program.

5.5 Uniqueness of Non-trivial SOS

In this section we establish the uniqueness of non-trivial stationary optimal
stocks in a framework in which the technology is described by a simple linear
model (see Gale(1960)) involving no joint production, and the welfare function,
describing the utility derived from consumption (alone), satisfies a normality
condition2. We follow closely the approach, pioneered by Brock (1973), and
2 Optimal programs in a similar framework, but without the normality condition,

have been studied in detail by Dasgupta and Mitra (1999).
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developed further in Brock and Burmeister (1976). However, we rely entirely
on the methods of convex analysis, and do not make any differentiability as-
sumptions.

5.5.1 Description of the Framework

We describe the production side by an n × n non-negative matrix A = (aij),
where i = 1, ..., n and j = 1, ..., n, and a strictly positive vector b =
(b1, ..., bn) >> 0. Here, aij and bj are respectively the amounts of the i−th
good and labor which are required per unit output of the j−th good. The total
amount of labor available for production is stationary and is normalized to 1.
For each j = 1, ..., n, it is assumed that there is some i = 1, ..., n such that
aij > 0. Thus, each production process requires a positive amount of labor as
well as a positive amount of some produced factor. Further, it is assumed that
A is productive; that is, there is some ỹ >> 0 such that ỹ >> Aỹ and bỹ ≤ 1.
This essentially excludes the economically uninteresting case of a production
system which is unable to sustain some positive consumption levels for all of
the desired goods. The fact that A is productive ensures that (I − A) is non-
singular, and (I −A)−1 ≥ 0. The transition possibility set for this economy is
given by:

Ω = {(x, y) ∈ R2n
+ : Ay ≤ x and by ≤ 1}

We will assume in addition to the requirements stated above that A is
indecomposable; that is, there is no non-empty proper subset J of {1, 2, ..., n}
such that aij = 0 for i /∈ J, j ∈ J . In this case, we have the stronger result that
(I −A)−1 >> 0. It is also known that A has a unique Frobenius root, θ, which
is positive, and a real Frobenius vector, x∗, which is strictly positive (and taken
henceforth to be normalized so that bx∗ = 1). Since A is productive, we know
that θ ∈ (0, 1). We make the stronger assumption that:

0 < θ < δ (DF)

where δ ∈ (0, 1) is the discount factor. Since θ ∈ (0, 1), assumption (DF) will
always be satisfied for all discount factors close to 1. But, (DF) gives an explicit
lower bound for the discount factor under which the uniqueness theory, to be
described below, is valid. Thus, (DF) links the level of impatience, an aspect
of intertemporal preferences (δ), with a measure of the productivity of the
economy (θ). Under (DF), we have the important result3 that (δI −A) is also
non-singular, and:

(δI −A)−1 >> 0 (5.4)

Welfare is derived from consumption, as given by a function w : Rn
+ →

R, which is continuous, concave and monotone on Rn
+. In what follows, we

normalize w(0) = 0, and assume that w(c) > 0 if and only if c >> 0. We make

3 All the results relating to the Frobenius theorem that are stated in this paragraph
can be found in Nikaido (1968, p.102-108).
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stronger assumptions on w when consumption is strictly positive. Specifically,
we assume that w is strongly monotone and strictly concave on Rn

++.
We now describe the crucial normality assumption on w. Suppose p ∈ Rn

++

and M ∈ R++; consider the optimization problem described by:

Maximize w(c)
subject to pc ≤ M

and c ≥ 0

⎫⎬⎭ (P )

Clearly, under our assumptions, there is a unique solution c(p,M) to the prob-
lem (P ).

We assume that this solution is strongly monotone in M. That is, if p ∈
Rn

++, M ∈ R++ and M ′ > M, then:

c(p,M ′) >> c(p,M) (N)

This is known as the normality assumption on w, since it is satisfied when
all goods are normal goods (in the sense used in standard consumer behavior
theory).

Given w, the (reduced form) utility function for our framework is defined
by:

u(x, y) = w(x −Ay) for all (x, y) ∈ Ω

It can be checked that the economy (Ω, u, δ) as defined above satisfies all the
assumptions that were stated in Section 5.2.

If {y(t)} is a program from y, we will associate with it a consumption
sequence {c(t)} given by:

c(t) = y(t) −Ay(t+ 1) for all t ∈ N

5.5.2 A Uniqueness Result Under Normality

We now proceed to investigate the nature of stationary optimal stocks in the
framework described in the above subsection. To this end, we first summarize
in a couple of Lemmas some basic properties of any non-trivial SOS. Then, we
establish the uniqueness of non-trivial SOS under the normality assumption
(N).

Lemma 5.5.1. If y is a non-trivial SOS, then (i) c >> 0, and (ii) y >> 0.

Proof. Since y is a non-trivial SOS, we have u(y, y) > u(0, 0) = 0. Thus, we
obtain w(c) = w(y −Ay) = u(y, y) > 0, and by our assumption on w, we must
have c >> 0.

Since c = y−Ay = (I−A)y, and (I−A) is non-singular, with (I−A)−1 >>
0, we have y = (I −A)−1c >> 0.

The above lemma allows us to invoke a standard result on duality theory,
to provide a price support, q, to a non-trivial SOS, y; the quantity-price pair
(y, p) is usually referred to as a modified golden-rule.
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Lemma 5.5.2. If ȳ is a non-trivial SOS, then there is q̄ ∈ Rn
+, such that:

w(c̄) − q̄c̄ ≥ w(c) − q̄c for all c ≥ 0 (5.5)

and:
q̄(δȳ −Aȳ) ≥ q̄(δy − x) for all (x, y) ∈ Ω (5.6)

Furthermore, any q̄ satisfying (5.5) and (5.6) and v̄ ≡ q̄(δȳ−Aȳ) must satisfy:

q̄(δI −A) = v̄b (5.7)

and:
(i) q̄(δȳ −Aȳ) > 0, (ii) q̄ >> 0 (5.8)

And, ȳ must satisfy bȳ = 1.

Proof. The fact that there exists q̄ ∈ Rn
+ such that (5.5) and (5.6) holds, follows

from a standard application of duality theory. We proceed to verify (5.7).
Clearly, we have v̄ ≥ 0, since (0, 0) ∈ Ω. Define Y = { y ∈ Rn

+ : by = 1}.
Then, we have, using (5.6), for all y ∈ Y,

0 = q̄(δȳ −Aȳ) − v̄ ≥ q̄(δy −Ay) − v̄ = q̄(δy −Ay) − v̄by (5.9)

Thus, for all y ∈ Y, we have:

q̄(δy −Ay) − v̄by ≤ 0 (5.10)

Now, let y be an arbitrary vector in Rn
+, y �= 0. Then, there is λ > 0, such

that y′ ≡ λy is in Y. Applying (5.10) to y′, we have:

q̄(δy′ −Ay′) − v̄by′ ≤ 0

and so q̄(δy −Ay) − v̄by ≤ 0 must hold. This inequality also clearly holds for
y = 0. So, to summarize, we have now verified that:

q̄(δy −Ay) − v̄by ≤ 0 for all y ≥ 0 (5.11)

Clearly, we have bȳ ≤ 1, and so:

q̄(δȳ −Aȳ) − v̄bȳ ≥ q̄(δȳ −Aȳ) − v̄ = 0 (5.12)

Combining (5.11) and (5.12), we obtain:

q̄(δȳ −Aȳ) − v̄bȳ = 0 (5.13)

Using (5.11) and (5.13), we conclude that:

q̄(δȳ −Aȳ) − v̄bȳ ≥ q̄(δy −Ay) − v̄by for all y ≥ 0 (5.14)

Since ȳ >> 0 by Lemma 5.5.1, (5.14) yields (5.7).
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We now proceed to verify (5.8). To this end, first note that q̄ �= 0. For if
q̄ = 0, then by using (5.5), we must have w(c̄) ≥ w(c) for all c ≥ 0; but since
c̄ >> 0, this inequality would be violated for c = 2c̄.

We now claim that (5.8)(i) must hold. For, if it did not hold, then v = 0,
and (5.7) would yield q̄(δI − A) = 0. But, since (δI − A) is non-singular, we
must then have q̄ = 0, a contradiction.

Using (5.7) and (5.8)(i), we have q̄ = v̄b(δI − A)−1 >> 0, since (δI −
A)−1 >> 0, thereby establishing (5.8)(ii).

By the definition of v̄ and (5.13), we have v̄bȳ = v̄, so that bȳ = 1, since
v̄ > 0.

Remark:
We note that if ȳ is a non-trivial SOS, then by Lemma 5.5.2, bȳ = 1, and so

non-trivial stationary optimal stocks can never be in the interior of Ω in this
framework.

We now turn to the uniqueness result, illustrating the role of the normality
assumption on w.

Theorem 5.5.1. There is only one non-trivial SOS.

Proof. We know that there exists a non-trivial SOS in this framework, by using
Theorem 5.4.2; one can check, using (DF), that (δx∗, x∗) ∈ Ω satisfies δ −
normality, where x∗ is the Frobenius vector of A.

To establish uniqueness, suppose on the contrary that there are two non-
trivial stationary optimal stocks, y′, y′′, with y′ �= y′′. Then, since (I − A) is
non-singular, we must have c′ �= c′′. We now demonstrate that, as a result,
q′ and q′′ must be distinct, where q′ and q′′ are price supports of y′ and y′′

respectively, satisfying conditions (5.5), (5.6) of Lemma 5.5.2.
Suppose q′ = q′′. Then, by using (5.5), we have:

w(c′) − q′c′ ≥ w((1/2)(c′ + c′′)) − q′((1/2)(c′ + c′′))
> (1/2)[w(c′) − q′c′] + (1/2)[w(c′′) − q′c′′]

the strict inequality following from the fact that w is strictly concave on Rn
++

and c′ >> 0 and c′′ >> 0 by Lemma 5.5.1. Thus, we must have:

w(c′) − q′c′ > w(c′′) − q′c′′ (5.15)

Similarly, we get from (5.5),

w(c′′) − q′′c′′ > w(c′) − q′′c′ (5.16)

Clearly, if q′ = q′′, (5.15) and (5.16) cannot both hold. Thus, q′ �= q′′. Now, it
follows from (5.7) of Lemma 5.5.2 that v′ �= v′′, since (δI −A) is non-singular.

Without loss of generality, suppose that v′′ > v′. Define µ = (v′′/v′); then
µ > 1, and by (5.7), we must have q′′ = µq′.

Denoting q′c′ by M ′, we note that c′ is the unique solution to:
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Max w(c)
subject to q′c ≤ M ′

and c ≥ 0

⎫⎬⎭ (P ′)

Similarly, denoting q′′c′′ by M ′′, we note that c′′ is the unique solution to:

Max w(c)
subject to q′′c ≤M ′′

and c ≥ 0

⎫⎬⎭ (P ′′)

Since q′′ = µq′, it follows that c′′ is the unique solution to:

Max w(c)
subject to q′c ≤ q′c′′

and c ≥ 0

⎫⎬⎭ (P ′′′)

We can now split up our analysis into three cases (i) q′c′′ = M ′, (ii) q′c′′ > M ′,
(iii) q′c′′ < M ′.

In case (i), problems (P ′) and (P ′′′) are the same and so c′ and c′′ must
both solve (P ′), implying c′ = c′′, a contradiction.

In case (ii), we must have c′′ > c′ by normality of w. Thus, we obtain
(I−A)y′′ >> (I−A)y′, which implies that y′′ >> y′, since (I−A)−1 >> 0. But,
then, we get a contradiction by noting from Lemma 5.5.2, 1 = by′′ > by′ = 1.

The analysis of case (iii) is analogous to that of case (ii).
Thus, the hypothesis that there are two non-trivial stationary optimal stocks

must be false, and the theorem is proved.

5.5.3 An Example of Non-uniqueness of SOS

To emphasize the crucial role of normality of the welfare function in the above
result, we now present an example, where normality is violated, and there exist
two non-trivial stationary optimal stocks. The idea of the example follows the
discussion of this issue in Brock (1973) and Brock and Burmeister (1976); how-
ever, we are more explicit in our construction, and we ensure that the example
of non-uniqueness can be generated by a strictly concave welfare function on
consumption vectors.

The technology is described by a 2 × 2 matrix A and a two-dimensional
vector, b, which are specified as follows:

A =
[

0.5 0
0 0.4

]
; b =

[
1 1

]
We define the welfare function, w, only on the set C = {(c1, c2) : c1 ∈ [0, 1], c2 ∈
[0, 1]}, since the technology does not allow for consumption outside this set on
any program after the initial time period. A suitable extension of w from the
domain C to R2

+ can be constructed, preserving the key properties of w on
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C, but this is somewhat tedious, and is not included here. The function, w, is
defined on C as follows:

w(c1, c2) = qc1 − (1/2)rc21 − c1c2 +Qc2 − (1/2)Rc22

where r = 9.8/8 = 1.225, R = 9.8/12 = (2/3)r, q = 3 and Q = 2.41. A few of
the important relations between the parameters may be noted. We have r < 1.3,
R < 1, and rR = (9.8)2/96 = 96.04/96 > 1. Also, 4r + 6R = 9.8 = (49/5).

Note that for all (c1, c2) ∈ C,

w1(c1, c2) = q − rc1 − c2 > 0; w2(c1, c2) = Q−Rc2 − c1 > 0

so that w is increasing in each component of the consumption vector and:

w11(c1, c2) = −r, w22(c1, c2) = −R
w12(c1, c2) = w21(c1, c2) = −1

so that, using rR > 1, w is strictly concave on C.
The discount factor is specified to be δ = 0.9.
We will show that y′ = (0.5, 0.5) and y′′ = (0.6, 0.4) are both stationary

optimal stocks. These are stationary stocks with corresponding consumption
vectors c′ = (0.25, 0.3) and c′′ = (0.3, 0.24) = (c′1 + ε, c′2 − (6/5)ε), where
ε = 0.05. They are clearly non-trivial. Further, the corresponding input levels
are given by x′ = Ay′ = (0.25, 0.2) and x′′ = Ay′′ = (0.3, 0.16). There is
full-employment of labor for both stocks, since by′ = by′′ = 1.

To verify that y′ is a SOS, we use the dual approach, and define:

p′ = (q − rc′1 − c′2, Q−Rc′2 − c′1) = (w1(c′1, c
′
2), w2(c′1, c

′
2))

Then, p′ >> 0, and by concavity of w on C, we have:

w(c′) − p′c′ ≥ w(c) − p′c for all c ∈ C (5.17)

Given the definition of p′, we see that the relative price (p′1/p
′
2) = (5/4).

Since this is a crucial fact in our construction, we provide the necessary calcu-
lations as follows. We have:

(5 − 4r)c′1 + (5R− 4)c′2 = 0.1c′1 + (1/12)c′2 = 0.05

and:
(5Q− 4q) = 0.05

so that:
(5 − 4r)c′1 + (5R− 4)c′2 = (5Q− 4q)

and by transposing terms:

4(q − rc′1 − c′2) = 5(Q−Rc′2 − c′1)
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Using the fact that (p′1/p
′
2) = (5/4), we have:

p′(δI −A) = [0.4p′1, 0.5p
′
2] = p′2[0.5, 0.5]

= (1/2)p′2b

Thus, for all (x, y) ∈ Ω, we have:

p′(δy − x) ≤ p′(δI −A)y = (1/2)p′2by ≤ (1/2)p′2 = p′(δI −A)y′ (5.18)

Using (5.17) and (5.18), it is straightforward to check that {y′} is optimal4

from y′.
To verify that y′′ is a SOS, we define:

p′′ = (q − rc′′1 − c′′2 , Q−Rc′′2 − c′′1) = (w1(c′′1 , c
′′
2), w2(c′′1 , c

′′
2))

Then, p′′ >> 0, and by concavity of w on C, we have:

w(c′′) − p′′c′′ ≥ w(c) − p′′c for all c ∈ C (5.19)

Given the definition of p′′, we see that the relative price (p′′1/p
′′
2) = (5/4),

so that both stationary stocks have price supports, such that the relative price
is the same. This is important enough to justify providing the necessary calcu-
lations. We have:

(5 − 4r)c′′1 + (5R− 4)c′′2 = (5 − 4r)c′1 + (5R− 4)c′2
+(5 − 4r)ε− (5R− 4)(6/5)ε

Now, (5 − 4r) − (5R− 4)(6/5) = −(4r + 6R) + (5 + (24/5)) = 0 and so:

(5 − 4r)c′′1 + (5R− 4)c′′2 = (5 − 4r)c′1 + (5R− 4)c′2 = 0.05

Also, as noted above:
(5Q− 4q) = 0.05

so that:
(5 − 4r)c′′1 + (5R− 4)c′′2 = (5Q− 4q)

and by transposing terms:

4(q − rc′′1 − c′′2 ) = 5(Q−Rc′′2 − c′′1 )

Using the fact that (p′′1/p
′′
2) = (5/4), we have:

p′′(δI −A) = [0.4p′′1 , 0.5p
′′
2 ] = p′′2 [0.5, 0.5]

= (1/2)p′′2b
4 Strictly speaking, the pair (y′, p′) has not been shown to constitute a modified

golden-rule since (5.18) is only shown to hold on C. However, all programs starting
from y′ must have consumption vectors in all periods which belong to C, and so
the standard argument (which is used to show that the stock associated with a
modified golden-rule pair is an SOS) still applies.
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Thus, for all (x, y) ∈ Ω, we have:

p′′(δy − x) ≤ p′′(δI −A)y = (1/2)p′′2by ≤ (1/2)p′′2 = p′′(δI −A)y′′ (5.20)

Using (5.19) and (5.20), it is straightforward to check that {y′′} is optimal from
y′′.

We can check that normality is violated by w. Denote p′c′ by M ′ and p′′c′′

by M ′′. Then, using (5.17), and the strict concavity of w on C, we know that
the unique solution c(p′,M ′) to the problem:

Max w(c)
subject to p′c ≤M ′

and c ∈ C

⎫⎬⎭ (P )

is given by c′. Consequently, c(p′/µ,M ′/µ) is also given by c′, where µ =
(p′2/p

′′
2). But, since p′ = µp′′, we have c(p′′,M ′/µ) = c′; also, of course,

c(p′′,M ′′) = c′′. Now,

p′′c′′ = p′′2 [(5/4)c′′1 + c′′2 ]
= (p′′2/p

′
2)p

′
2[(5/4)c′1 + c′2 + (5/4)ε− (6/5)ε]

> (p′′2/p
′
2)p

′
2[(5/4)c′1 + c′2]

= p′c′/µ

Thus, we have M ′′ > M ′/µ, but c′′2 < c′2, so that normality of w is violated.

5.6 Uniqueness of Interior SOS for Smooth Economies

When the economy is smooth (the reduced form utility function is twice contin-
uously differentiable in the interior of the transition possibility set), the meth-
ods of differential topology can be used to demonstrate uniqueness of interior
stationary optimal stocks. This is done by establishing a connection (mathe-
matically, a homotopy) between the set of SOS in the discounted case with the
set of SOS in the undiscounted case.

When future utilities are undiscounted, the notion of optimality (defined
in terms of some version of the overtaking criterion) is somewhat different
from the one described in Section 5.2. However, we can avoid getting into a
full discussion of the undiscounted case by first stating a purely mathematical
result (Lemma 5.6.1), which helps us to effectively make the same connection
as is mentioned in the preceding paragraph.5

Lemma 5.6.1 is used in two ways. First, it helps us to provide a link between
the analysis of SOS (in the discounted case) in Sections 5.3 and 5.4 of this paper
with that offered in this section, which is in terms of stationary solutions to
5 For some discussion of optimality in the undiscounted case, see the bibliographic

remarks in Section 5.7 below.



5. Existence and Uniqueness of the Steady State 133

Ramsey-Euler equations (Proposition 5.6.1). Second, it allows us to examine
(see Lemma 5.6.2) the set of stationary solutions to Ramsey-Euler equations
in the undiscounted case. [Note that this can be done without discussing the
relation between these solutions in the undiscounted case and any notion of
optimal programs in the undiscounted case].

Lemma 5.6.2 provides the appropriate result to establish the uniqueness
theorem (Theorem 5.6.1) for interior SOS in the discounted case, by using
the homotopy invariance theorem and the degree theorem from differential
topology.

Since we will be dealing now with “smooth economies”, we strengthen as-
sumption (A.5) of Section 5.2 as follows:

(A.5+) u is (i) upper semicontinuous and (ii) concave on Ω. Further, u is
twice continuously differentiable in the interior of Ω.

Let us define Ω0 = {(x, y) ∈ int Ω : ||x|| < ξ}, where ξ is given by (A.3).
Then Ω0 is an open and bounded subset of int Ω. Further, if (x, x) ∈ intΩ,
then (x, x) ∈ Ω0 by (A.3). We denote the set {x : (x, x) ∈ Ω0} by Λ.

We define a function G from Λ× [0, 1] to Rn by:

G(x, ρ) = u2(x, x) + ρu1(x, x) (5.21)

In view of (A.5+), the function G is well-defined6 by (5.21). We denote the
Jacobian matrix of G, evaluated at (x, ρ) ∈ Λ × [0, 1], by J(x, ρ), and the
determinant of this matrix by detJ(x, ρ). Given ρ ∈ [0, 1], the set of solutions
in Λ to the equation G(x, ρ) = 0 is denoted by M(ρ).

Lemma 5.6.1. Suppose (k, ρ) ∈ Λ× [0, 1] satisfies:

u2(k, k) + ρu1(k, k) = 0 (5.22)

then there is p ∈ Rn
+ such that:

u(k, k) + p(ρk − k) ≥ u(x, y) + p(ρy − x) for all (x, y) ∈ Ω (5.23)

and (k, k) solves the maximization problem:

Max u(x, y)
subject to ρy − x ≥ ρk − k
and (x, y) ∈ Ω

⎫⎬⎭ (5.24)

Proof. Define p = u1(k, k); then p ∈ Rn
+. Concavity of u implies that for every

(x, y) ∈ Ω,

u(x, y) − u(k, k) ≤ u1(k, k)(x − k) + u2(k, k)(y − k)
= p(x− k) − ρp(y − k)

6 The use of ρ rather than δ here is deliberate. The discount factor, δ, has been
restricted to be less than 1 in our description of the basic model in Section 5.2. In
contrast, we definitely want ρ to take on the value 1, as well as values less than 1.
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the last line following from (5.22). Transposing terms yields (5.23). Clearly,
(5.24) follows directly from (5.23).

Using Lemma 5.6.1, we see that interior SOS are equivalent to stationary
solutions of Ramsey-Euler equations (in the discounted case).

Proposition 5.6.1. If (k, δ) ∈ Λ × (0, 1), then the following statements are
equivalent:

(i) u2(k, k) + ρu1(k, k) = 0.
(ii) k is a stationary optimal stock.

Proof. If (i) holds, then we can use Lemma 5.6.1 to obtain p ∈ Rn
+ such that:

u(k, k) + p(δk − k) ≥ u(x, y) + p(δy − x) for all (x, y) ∈ Ω (5.25)

Defining p(t) = δtp for t ≥ 0, we have for all t ≥ 0 :

δtu(k, k) + p(t+ 1)k − p(t)k ≥ δtu(x, y) + p(t+ 1)y − p(t)x for all (x, y) ∈ Ω
(5.26)

and:
lim

t→∞ p(t)k = 0 (5.27)

since δ ∈ (0, 1).Thus by the standard sufficiency result on price characterization
of optimality, {k} is optimal from k, which establishes (ii).

If (ii) holds, then using the fact that k ∈ Λ, we know that k solves the
maximization problem:

Max u(k, x) + δu(x, k)
subject to (k, x) ∈ int Ω
and (x, k) ∈ int Ω

⎫⎬⎭ (5.28)

Then, we obtain (i) as the necessary first-order condition of the problem (5.28).

To proceed with our analysis, we now impose the condition:

(B.1) There is (x̂, x̂) ∈ Ω0, such that G(x̂, 1) = 0 and detJ(x̂, 1) �= 0.

Lemma 5.6.2. Under condition (B.1), the equation G(x, 1) = 0 has exactly
one solution for x ∈ Λ.

Proof. By condition (B.1), x̂ ∈ Λ is a solution of the equation G(x, 1) = 0.
Suppose x′ ∈ Λ is also a solution to G(x, 1) = 0, with x′ �= x̂.

Using Lemma 5.6.1 for ρ = 1, we know that (x̂, x̂) and (x′, x′) are both
solutions to:

Max u(x, y)
subject to y − x ≥ 0
and (x, y) ∈ Ω

⎫⎬⎭ (5.29)

By convexity of Ω and concavity of u, we know that (x(λ), x(λ)) = λ(x̂, x̂) +
(1 − λ)(x′, x′) must also solve (5.29) for all λ ∈ (0, 1), and for every λ ∈ (0, 1),
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we have (x(λ), x(λ)) �= (x̂, x̂). But since detJ(x̂, 1) �= 0, the solution x̂ is locally
unique, and therefore for λ sufficiently close to 1, we get a contradiction. This
proves the lemma.

We now impose an additional condition on the set of solutions to G(x, ρ) =
0 :

(B.2) There is δ ∈ (0, 1), and an open set C, such that C̄ ⊂ Λ, andM(ρ) ⊂ C
for all ρ ∈ [δ, 1].

Here C̄ is the closure of C. The condition implies that for every ρ ∈ [δ, 1],
the boundary of C contains no solution to G(x, ρ) = 0.

In order to keep our exposition self-contained, we state the two results from
differential topology that we will need for the main result of this section. These
results, and their complete proofs, can be found in Ortega and Rheinboldt
(1970, Chapter 6), who follow the approach of Erhard Heinz (1959) in providing
an elementary analytic theory of the degree of a mapping7.

Homotopy Invariance Theorem:[Ortega and Rheinboldt (1970, Result
6.2.2, p.156)]

Let C be open and bounded and H : C̄ × [0, 1] ⊂ Rn+1 → Rn a continuous
map from C̄ × [0, 1] into Rn. Suppose, further, that H(x, ρ) �= 0 for all (x, ρ) ∈
∂C × [0, 1]. Then, deg(H(·, ρ), C) is constant for all ρ ∈ [0, 1].

Degree Theorem: [Ortega and Rheinboldt (1970, Result 6.2.9, p. 159)]
Let g : D ⊂ Rn → Rn be continuously differentiable on the open set D,

and C an open, bounded set such that C̄ ⊂ D. For x ∈ D, denote the Jacobian
matrix of g at x by Jg(x). If 0 /∈ g(∂C) ∪ g(S(C̄)), where S(C̄) = {x ∈ C̄ :
Jg(x) is singular }, either {x ∈ C : g(x) = 0} is empty and deg(g, C) = 0, or
{x ∈ C : g(x) = 0} consists of finitely many points x1, ..., xm, and:

deg(g, C) =
m∑

j=1

sgn det Jg(xj)

where sgn denotes the sign function8.
We now state and prove the main result of this section. The approach to the

uniqueness result may be indicated as follows. Using the Degree theorem, it is
possible to evaluate the degree of G(·, ρ) in a simple case, which is when ρ = 1
in our context, since there is a unique solution to G(x, 1) = 0 on Λ. To evaluate
the degree of G(·, ρ) in the case we are really interested in, namely when ρ = δ,
we create a homotopy between the two functions, G(·, 1) and G(·, δ), and apply
the Homotopy Invariance theorem; this is where condition (B.2) is used. This
procedure yields one evaluation of the degree of G(·, δ). However, applying the

7 That is, in their presentation of degree theory, the results do not involve any
concept, not familiar from standard real analysis in Euclidean spaces; nor do their
proofs.

8 That is, sgn is a function from R to {−1, 0, +1}, satisfying sgn(r) = +1 if r > 0,
sgn(r) = −1 if r < 0, and sgn(r) = 0 if r = 0.
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Degree theorem to G(·, δ), we get another evaluation of the degree of G(·, δ) in
terms of the behavior of the Jacobian of G(·, δ) at the zeroes of the function.
The idea then is to impose a hypothesis restricting this behavior in a way that
in turn yields an appropriate restriction on the number of zeroes of the function.

Theorem 5.6.1. Suppose detJ(x, δ) �= 0 for all x ∈ M(δ), and further the
sign of detJ(x, δ) is the same for all x ∈ M(δ). Then there is only one interior
SOS when the discount factor is δ.

Proof. Under the hypothesis, we need to show that M(δ) is a singleton. Define
f : Λ → R by f(x) = G(x, 1). The Degree theorem then gives us a formula for
computing the degree of f on C, where C is given in condition (B.2). Applying
the theorem to f on C, we get (in view of Lemma 5.6.2):

deg(f, C) = sgn detJf (x̂) ≡ sgn detJ(x̂, 1) (5.30)

where x̂ is given by condition (B.1). Thus, the deg(f, C), the degree of f on C,
is either +1 or −1.

Define F : Λ → R by F (x) = G(x, δ). We now show that deg(F,C) =
deg(f, C), by establishing a homotopy between f and F. To this end, define
H : C̄ × [δ, 1] → Rn by:

H(x, ρ) = G(x, ρ)

and note that C is open and bounded, and H a continuous map from C̄× [δ, 1]
to Rn. Further, by condition (B.2), H(x, ρ) �= 0 for all (x, ρ) ∈ ∂C × [δ, 1],
where ∂C denotes the boundary of C. Thus, by the Homotopy Invariance the-
orem, deg(H(·, ρ), C) is constant for ρ ∈ [δ, 1]. In particular, then, deg(F,C) =
deg(f, C), and so deg(F,C) is either +1 or −1.

Now, applying the Degree theorem to F on C, we know that M(δ) consists
of finitely many points x1, ..., xm, and:

deg(F,C) =
m∑

j=1

sgn detJF (xj) ≡
m∑

j=1

sgn detJ(xj , δ) (5.31)

The hypothesis of the Theorem ensures that detJ(xj , δ) �= 0 for all xj , and
further the sign of detJ(xj , δ) is the same for all j = 1, ...,m. Since we know
that deg(F,C) is either +1 or −1, (5.31) implies that we must have m = 1.
Thus, M(δ) is a singleton, and there is only one interior SOS for the discount
factor, δ.

Remark:
Brock (1973) showed that if J(x, ρ) is non-singular over M(ρ) for each ρ ∈

(ρ1, 1), then M(ρ) is a singleton for each ρ ∈ (ρ1, 1). Benhabib and Nishimura
(1979) provided conditions, which appear in the above Theorem, under which
J(x, ρ) might be singular for some ρ ∈ (δ, 1), but M(δ) is a singleton.
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5.7 Bibliographic Remarks

Sections 5.3 and 5.4:
The approach to existence of stationary optimal stocks that we have followed
is a primal one, because it is the most direct one, and it economizes on the as-
sumptions used. However, the dual approach provides, in addition, a supporting
price vector, and the quantity-price pair is then referred to as a modified golden-
rule. The price support is useful in looking at issues related to uniqueness and
global asymptotic stability of stationary optimal stocks. This dual approach is
surveyed in Mitra (2005).

We have confined our analysis to the case in which future utilities are dis-
counted. In the undiscounted case, programs are compared by using some ver-
sion of the overtaking criterion. The approach to the existence of stationary
optimal stocks in this context is somewhat different. It does not involve the fixed
point argument, which is replaced by arguments based on standard constrained
optimization theory. The subsequent step of showing that the golden-rule stock,
found as a solution to the constrained optimization problem, is indeed opti-
mal among all programs starting from that stock, is more complicated, and
makes essential use of duality theory and the price support to the golden-rule
stock. The complication arises from the fact that the convenient transversality
condition (in the discounted case) is not available in the undiscounted case.
The reader is referred especially to the contributions by Brock (1970) and Pe-
leg (1973), which are based on the earlier contributions by Gale (1967) and
McKenzie (1968).

The price-supported golden-rule is particularly useful in studying long-run
dynamic behavior of optimal programs in the undiscounted case. This has been
effectively demonstrated in applications of the theory to study the Faustmann
solution in the forest management problem (see Mitra and Wan (1986)) and to
analyze the choice of technique in development planning (see Khan and Mitra
(2005)).

There is no primal approach to the existence problem in the undiscounted
case, corresponding to the one presented here for the discounted case. It is of
interest to note that it is the dual approach which is employed by Mitra (1991)
in establishing existence of stationary optimal stocks in the undiscounted case
in models with a non-convex transition possibility set, which satisfies a star-
shaped property.

Section 5.5:
The approach of this section is based on Brock (1973) and Brock and Burmeis-
ter (1976), emphasizing the normality property of the welfare function, based
on consumption alone. However, unlike these papers, we emphasize the meth-
ods of convex analysis, and refrain from making differentiability assumptions
on the welfare function. Stationary optimal stocks turn out to be not in the
interior of the transition possibility set, making the framework of this section
distinctly different from that used in Section 5.6.
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Instead of a fixed coefficients Leontief type of technology with no-joint pro-
duction used in this section, Brock (1973) and Brock and Burmeister (1976)
use a non-linear activity analysis model, and appeal to the non-substitution
theorem. We have presented the results in the more restrictive framework, be-
cause the arguments involved are very transparent in this case. Some of this
theory can even be generalized to settings with joint production, provided an
approppriate version of the non-substitution theorem holds in that framework;
for this theory, see Benhabib and Nishimura (1979).

Section 5.6:
The methods of differential topology were used to address uniqueness problems
in general equilibrium theory by Dierker (1972). They were then used in optimal
growth models by Brock (1973) and Benhabib and Nishimura (1979).

We have presented this theory so that a reader, familiar only with standard
concepts in real analysis, should be able to follow the results without any
difficulty. Specifically, concepts and terminology used in differential topology
have been avoided.

For smooth economies, it is possible to develop a connection between the
normality assumption in Section 5.5, and the hypothesis on the behavior of
the Jacobian at the zeroes of the relevant function used in Section 5.6. This is
explored in detail in Benhabib and Nishimura (1979).
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6.1 Introduction

Optimal growth models have originally been developed in order to analyze the
long-run implications of capital accumulation and technological progress. Later
on, however, it has been noticed that essentially the same model structure can
also be used to shed light on short-run phenomena like the business cycle. The
most prominent outcome of this line of research are real-business-cycle (RBC)
theories, which assume that business cycles are triggered by exogenous stochas-
tic shocks and which analyze the mechanisms by which these shocks propagate
through the economy. The literature surveyed in the present chapter, on the
other hand, shows that optimal growth models can generate business cycles
even in the absence of exogenous shocks. It is therefore appropriate to refer
to these results as endogenous-business-cycle (EBC) theories. An important
property common to both RBC and EBC theories is that the business cycles
qualify as optimal programs. In other words, the solutions of both RBC and
EBC models are Pareto-efficient. As far as the deterministic EBC models are
concerned, the most important implication of this fact is that the standard
assumptions of optimal growth theory do not rule out intrinsic instability of
the economy, an instability that allows for periodic or even chaotic optimal
programs.

Following Ramsey (1928), much of the earlier literature in optimal growth
theory focused on equal treatment of generations over time, and therefore on
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the undiscounted case. The analysis of this class of models was brought to ma-
turity in the papers of Gale (1967), McKenzie (1968), and Brock (1970). The
treatment of the case in which future utilities were discounted was typically
done in the one-sector neoclassical model, where the significant difference be-
tween the two cases was not revealed because of the one-to-one conversion of
capital to consumption good implicit in its formulation. It was with the ex-
amples of Kurz (1968) and Sutherland (1970), in models which did not have
this feature, that one recognized that discounting the future in general pro-
vided more limited intertemporal arbitrage opportunities; thus, the standard
argument for smoothing out cyclical behavior was not valid in such frameworks.

Samuelson (1973) can be considered to provide definitive directions for re-
search towards an understanding of such a phenomenon. On the one hand, he
reported an example, due to Weitzman, which showed that cyclical optimal
behavior was consistent with interior solutions to Ramsey-Euler equations and
therefore would not disappear with assumptions which ruled out boundary so-
lutions to optimal growth problems. On the other hand, he conjectured that,
if the utility function was strictly concave, then cyclical optimal behavior of
the Weitzman type would not arise, if the planner was sufficiently patient. The
second idea was formalized in terms of turnpike theorems for low discount rates
in a Journal of Economic Theory symposium of 1976, and led to a literature
which is comprehensively surveyed in McKenzie (1986). The first idea led Ben-
habib and Nishimura (1985) to initiate a systematic investigation of the sources
of optimal cycles and this, in turn, led to the literature that is surveyed in this
chapter.

Section 6.2 sets the stage for our survey by presenting background mate-
rial on dynamical systems and optimal growth models. Sections 6.3 and 6.4
form the main part of the chapter. In section 6.3 we study the optimality of
periodic cycles. Although periodic optimal growth paths cannot be interpreted
as realistic business cycles, the characterization of the conditions under which
periodic cycles are optimal allows important insights into the mechanisms that
can generate non-monotonic optimal growth paths. Section 6.4 then turns to
chaotic optimal growth paths. These solutions resemble actual business cycles
more closely than periodic ones, but it is somewhat harder to characterize the
mechanisms by which they are generated.

6.2 Basic Definitions and Results

This section presents some background material that is necessary to state the
main results on optimal cycles and chaos. First we discuss a number of concepts
and results that are related to cyclical and chaotic behavior of dynamical sys-
tems. Then we formulate the reduced form optimal growth model and show that
it encompasses, among other models, a discrete-time version of the two-sector
model of Uzawa (1964).
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6.2.1 Dynamical Systems

Let X be a non-empty set and let h be a map from X to X . The pair (X,h) is
called a dynamical system. We refer to X as the state space and to h as the law
of motion of the dynamical system. Thus, if xt ∈ X is the state of the system
in time period t (where t = 0, 1, 2, . . .), then xt+1 = h(xt) ∈ X is the state
of the system in time period t + 1. We write h(0)(x) = x and, for any integer
t ≥ 1, h(t)(x) = h(h(t−1)(x)). If x ∈ X , the sequence τ(x) = (h(t)(x))∞t=0 is
called the trajectory from (the initial condition) x. The orbit from x is the set
ω(x) = {y | y = h(t)(x) for some t ≥ 0}.

A point x ∈ X is a fixed point of the dynamical system (X,h), if h(x) = x.
A point x ∈ X is called a periodic point of (X,h), if there is p ≥ 1 such that
h(p)(x) = x. The smallest such p is called the period of x. In particular, if x ∈ X
is a fixed point of (X,h), then it is periodic with period 1.

Throughout this chapter we assume that X is a non-empty and compact
interval on the real line R. In this case, it makes sense to describe the asymptotic
behavior of a trajectory from x by its limit set , which is defined as the set of
all limit points of τ(x). The limit set of x is denoted by ω+(x). Note that, if
x̂ ∈ X is a periodic point, then ω+(h(t)(x̂)) = ω(x̂) for every t = 0, 1, 2, . . .. A
periodic point x̂ is said to be locally stable, if there is an open interval I ⊆ X
containing x̂ such that ω+(x) = ω(x̂) for all x ∈ I. In this case we also say that
the periodic orbit ω(x̂) is locally stable. If h is continuously differentiable on
X and x̂ is a periodic point of period p, then a sufficient condition for x̂ to be
locally stable is that

∣∣Dh(p)(x̂)
∣∣ < 1. If

∣∣Dh(p)(x̂)
∣∣ > 1, then x̂ is not locally

stable. A periodic point x̂ is said to be globally stable (almost globally stable),
if ω+(x) = ω(x̂) holds for all (almost all) initial points x ∈ X .

Suppose that the law of motion h is a non-decreasing function. Obviously,
this implies that the trajectory τ(x) is a monotonic sequence for every x ∈ X .
Because X is compact, this sequence must have a unique limit point. It follows
therefore for every x ∈ X that the limit set ω+(x) is a singleton. Any form of
non-monotonic behavior such as periodic orbits with a period p ≥ 2 is therefore
ruled out when h is non-decreasing. Now suppose that h is non-increasing.
This implies that the second iterate h(2) is non-decreasing. Consequently, every
limit set of the dynamical system (X,h(2)) is a singleton and it follows that
every limit set of the original system (X,h) consists of at most two points.
A dynamical system (X,h) with a non-increasing law of motion can therefore
have periodic points of period 2 but it cannot have periodic points of any period
p > 2.

Consider the following complete order on the positive integers:

3 ≺ 5 ≺ 7 ≺ . . . ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ . . . ≺ 22 · 3 ≺ 22 · 5 ≺ 22 · 7 ≺
. . . ≺ 2n · 3 ≺ 2n · 5 ≺ 2n · 7 ≺ . . . ≺ 2n ≺ . . . ≺ 22 ≺ 2 ≺ 1.

This order is called the Sarkovskii order . Sarkovskii (1964) has proved that a
dynamical system (X,h), where h is a continuous function, has the following
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property: if there exists a periodic point of period p and if p ≺ q, then there
exists also a periodic point of period q.

When we say that a dynamical system is history independent, we wish
to convey the observation that the long-run (asymptotic) behavior of a typical
trajectory is independent of the initial state. Formally, let (X,h) be a dynamical
system and let λ be the Lebesgue measure on X . The dynamical system (X,h)
is history independent , if there exists a subset E of X such that, for λ-almost
every x ∈ X , the limit set of x satisfies ω+(x) = E. The dynamical system
(X,h) is history dependent , if it is not history independent.

We will often be concerned with a family of dynamical systems, where the
members of the family are indexed by a parameter. Formally, let us denote the
parameter by δ ∈ D, where D is taken to be a non-empty interval in R. A
family of dynamical systems will then be denoted by (X,hδ), where hδ maps
X to X for each δ ∈ D. Suppose the dynamical system (X,hδ) is history
independent for every δ ∈ D. Then, for each δ ∈ D, we can find a set E(δ)
such that the following is true for Lebesgue almost every x in X : the limit set
of the trajectory from x generated by the dynamical system (X,hδ) is equal
to E(δ). A bifurcation map is the correspondence which associates to each
δ ∈ D its history independent limit set E(δ) ⊆ X . A bifurcation diagram is a
diagrammatic representation of the graph of the bifurcation map.

We now turn to chaotic behavior. There are several aspects of complicated
dynamics that need to be taken into account. One of the most important ones
is the so-called sensitivity with respect to initial conditions. A simple way
to describe this property is as follows. The dynamical system (X,h) exhibits
geometric sensitivity, if there exists a number γ > 1 such that the following is
true: for every integer τ ≥ 0 there exists ε > 0 such that, for all (x, y) ∈ X×X
with ‖x− y‖ < ε and for all t ∈ {0, 1, 2, . . . , τ}, it holds that

‖h(t)(x) − h(t)(y)‖ ≥ γt‖x− y‖.

Sensitivity with respect to initial conditions is also captured by the concept of a
scrambled set. Let us denote by P the set of all periodic points of the dynamical
system (X,h). A subset S of the state space X is called a scrambled set for the
dynamical system (X,h), if the following two conditions are satisfied. (i) For
all pairs (x, y) satisfying x ∈ S and y ∈ S it holds that

lim inf
t→∞ |h(t)(x) − h(t)(y)| = 0.

(ii) For all pairs (x, y) satisfying x ∈ S and either x �= y ∈ S or y ∈ P it holds
that

lim sup
t→∞

|h(t)(x) − h(t)(y)| > 0.

The dynamical system (X,h) is said to exhibit topological chaos, if there exists
an uncountable scrambled set and a periodic point of a period that is not a
power of 2. Note that due to Sarkovskii’s theorem mentioned above, a dynami-
cal system which has a continuous law of motion and which exhibits topological
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chaos must have infinitely many periodic points of different periods. A famous
theorem by Li and Yorke (1975) states that the dynamical system (X,h) ex-
hibits topological chaos, if h is continuous and if there exists a periodic point
of period p = 3.

One problem with the definition of topological chaos is that the scrambled
set can have Lebesgue measure 0. If this is the case, then the chaotic behavior
may not be observable. A chaos definition that circumvents this problem is
that of ergodic chaos. The dynamical system (X,h) exhibits ergodic chaos,
if there exists an absolutely continuous (with respect to Lebesgue measure)
probability measure µ on X which is invariant and ergodic under h. Invariance
is the property that µ({x ∈ X |h(x) ∈ B}) = µ(B) holds for all measurable
sets B ⊆ X . The invariant measure µ is ergodic, if, for every measurable set
B ⊆ X satisfying {x ∈ X |h(x) ∈ B} = B, it holds that µ(B) ∈ {0, 1}.

Results by Lasota and Yorke (1973) and Li and Yorke (1978) show that the
dynamical system (X,h) has geometric sensitivity and ergodic chaos, if there
exists γ > 1 and a point x̃ ∈ X splitting X into two subintervals (recall that we
assume X to be a compact interval on R) such that (i) h is twice continuously
differentiable on both subintervals, (ii) h is strictly increasing for x < x̃ and
strictly decreasing for x > x̃, and (iii) |h′(x)| ≥ γ for all x ∈ X \ {x̃}.

6.2.2 Optimal Growth Models

We maintain the assumption that the state space X is a non-empty and com-
pact interval on the real line R. A reduced form optimal growth model on X
is described by a triple (Ω,U, δ), where Ω is the transition possibility set , U is
the (reduced form) utility function, and δ is the discount factor . The following
assumptions on (Ω,U, δ) will be maintained throughout this chapter.

A.1: Ω ⊆ X ×X is non-empty, closed, and convex.
A.2: U : Ω �→ R is a continuous and concave function.
A.3: 0 < δ < 1.
A program from x ∈ X is a sequence (xt)∞t=0 satisfying x0 = x and

(xt, xt+1) ∈ Ω for all t ≥ 0. Let (xt)∞t=0 be a program from x ∈ X . It is
called an optimal program from x, if

∞∑
t=0

δtU(xt, xt+1) ≥
∞∑

t=0

δtU(yt, yt+1)

holds for every program (yt)∞t=0 from x.
The issues of existence and uniqueness of optimal programs have been well

studied; see, e.g., Stokey and Lucas (1989) or Mitra (2000). Under assumptions
A.1-A.3 there exists an optimal program from every x ∈ X . Thus, one can
define the value function V : X �→ R by

V (x) =
∞∑

t=0

δtU(xt, xt+1),
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where (xt)∞t=0 is an optimal program from x. The value function V is concave
and continuous on X . Moreover, for all x ∈ X , the Bellman equation

V (x) = max {U(x, z) + δV (z) | (x, z) ∈ Ω}

holds.
For each x ∈ X , we denote by h(x) the set of all z ∈ X which maximize

U(x, z) + δV (z) over all z ∈ X satisfying (x, z) ∈ Ω. That is, for each x ∈ X ,

h(x) = argmax{U(x, z) + δV (z) | (x, z) ∈ Ω} .

A program from x ∈ X is an optimal program, if and only if V (xt) =
U(xt, xt+1) + δV (xt+1) for t ≥ 0, that is, if and only if xt+1 ∈ h(xt) holds
for all t ≥ 0. We call h the optimal policy correspondence.

Given an initial state x ∈ X , there may be more than one optimal program
from x. If, for every x ∈ X , there is a unique optimal program from x, then it
follows that the optimal policy correspondence h is a (single-valued) function.
It can also be shown that this function is continuous on X . A simple condition
that ensures the uniqueness of optimal programs is the strict concavity of the
utility function U with respect to its second argument. Whenever the optimal
policy correspondence is a single-valued function, we shall refer to it as the
optimal policy function.

Reduced form optimal growth models arise in many different contexts. For
the purpose of the present chapter, the two-sector optimal growth model intro-
duced by Uzawa (1964) is the most relevant one. The state variable xt of this
model describes the aggregate capital stock available in the economy at the
beginning of period t. There are two production sectors, one producing a con-
sumption good and the other a capital good. Each sector uses the capital good
and labor as inputs. The capital good cannot be consumed and depreciates at
the rate d, where d ∈ [0, 1]. The labor supply is assumed to be constant and
equal to 1. Denoting the production functions in the consumption good sector
and the capital good sector by c = Fc(xc, �c) and y = Fx(xx, �x), respectively,
and the utility function by u(c), the two-sector model can be formulated as
follows.

Maximize
∞∑

t=0

δtu(ct)

subject to ct ≤ Fc(xc,t, �c,t)
(1 − d)xt ≤ xt+1 ≤ Fx(xx,t, �x,t) + (1 − d)xt

xc,t + xx,t ≤ xt

�c,t + �x,t ≤ 1.

In order to convert the two-sector optimal growth model into its reduced form,
we first determine the transition possibility set Ω. To this end note that the set
of all capital stocks that can be reached from the state x within one period is
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given by {z | (1− d)x ≤ z ≤ Fx(x, 1)+ (1− d)x}. If d > 0 and if the production
function Fx is increasing and concave and satisfies the Inada conditions, then
Fx(x, 1)+ (1−d)x is an increasing and concave function of x. The slope of this
function is strictly greater than 1 for small x and strictly smaller than 1 for
large x. These properties imply that there exists a unique value x̄ > 0 satisfying
x̄ = Fx(x̄, 1)+(1−d)x̄. The following properties hold for any pair (x, z), where
z is a capital stock that can be reached within one period from x: if x ≤ x̄ then
z ≤ x̄, and if x > x̄ then z < x. In other words, x̄ is the maximal sustainable
capital stock. For this reason, it is justified to restrict attention to the compact
state space X = [0, x̄]. The transition possibility set Ω is therefore given by

Ω = {(x, z) | 0 ≤ x ≤ x̄ , (1 − d)x ≤ z ≤ Fx(x, 1) + (1 − d)x}

and the reduced form utility function is given by U(x, z) = u(T (x, z)), where

T (x, z) = maxFc(xc, �c)
subject to z ≤ Fx(xx, �x) + (1 − d)x

xc + xx ≤ x

�c + �x ≤ 1.

The function T describes, for any given x ∈ X , the trade-off between consump-
tion and capital production.

6.3 Optimal Cycles

Consider a reduced form optimal growth model (Ω,U, δ) on the state space X .
Turnpike theory, as developed for example by Scheinkman (1976) or McKen-
zie (1983, 1986), shows that an optimal program for this model must be conver-
gent provided that certain regularity assumptions are satisfied and the discount
factor δ is sufficiently close to 1. In other words, given X , Ω, and U , a suffi-
ciently large time-preference factor δ rules out cyclical or more complicated
optimal programs. Whether complicated dynamic patterns can be optimal for
small values of the discount factor, however, is left open by turnpike theory and
has been the focus of intensive research in the 1980s and 1990s. The present
section surveys some important contributions to this literature.

We start by summarizing a few results regarding the monotonicity proper-
ties of the optimal policy function. These results provide simple conditions for
the non-existence of optimal cycles. The main part of this section, however, is
concerned with the question of how long-run optimal behavior is affected by
changes in the rate at which the future is discounted. In particular we will ob-
serve period-2 cycles being born and changing their amplitude as the discount
factor δ falls.

The class of examples that we study in detail allow for period-2 cycles
but no more complicated behavior than that, and they indicate an interest-
ing feature about the transition from global asymptotic stability of a (unique)
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fixed point at high discount factors to global asymptotic stability of cycles
at lower discount factors. The family of examples in subsection 6.3.3 consti-
tute variations of the example of Weitzman, as discussed in Samuelson (1973).
Weitzman’s example has been widely discussed in the literature; see, for ex-
ample, Scheinkman (1976), McKenzie (1983), Benhabib and Nishimura (1985),
and Mitra and Nishimura (2001). For this family of examples there is a critical
discount factor, δ̂, such that the following is true. For δ > δ̂, all optimal pro-
grams converge to the unique fixed point x̂δ and, for δ < δ̂, almost all optimal
programs converge to a period-2 cycle. The bifurcation diagram also indicates
that the amplitude of the period-2 cycle is monotonic in the discount factor.

The class of examples in subsection 6.3.4 constitute variations of the
example presented by Sutherland (1970). This example has been discussed
in Cass and Shell (1976), Benhabib and Nishimura (1985), and Mitra and
Nishimura (2001). For this family of examples, too, there is a critical discount
factor, δ̂, such that all optimal programs converge to the unique fixed point, if
δ > δ̂, and that almost all optimal programs converge to a period-2 cycle for
δ < δ̂. The range of discount factors can be further subdivided according to
whether the period-2 cycle hits one boundary of the state-space or the other
(or both). The global bifurcation diagram reveals that the amplitude of the
period-2 cycle is not monotonic in the discount factor.

6.3.1 Monotonic Policy Functions

We have seen in subsection 6.2.1 that a dynamical system with a non-decreasing
law of motion cannot generate cycles, and that a dynamical system with a non-
increasing law of motion can generate cycles of period 2 but no cycles of any
period p > 2. A first step towards the analysis of optimal cycles is therefore
the investigation of the conditions that generate a non-decreasing or a non-
increasing optimal policy function, respectively. Very general results in this
respect can be derived by the use of the lattice theoretic concepts of super- and
submodularity; see, e.g., Topkis (1978) or Ross (1983). The function U : Ω �→ R
is said to be supermodular if, for any two pairs (x, z) ∈ Ω and (x′, z′) ∈ Ω, the
following is true: if x < x′, z < z′, (x, z′) ∈ Ω, and (x′, z) ∈ Ω, then it holds that
U(x, z) + U(x′, z′) ≥ U(x, z′) + U(x′, z). The function U is submodular if the
inequality holds in reverse, that is, if U(x, z) + U(x′, z′) ≤ U(x, z′) + U(x′, z).
The following theorem is a variant of a result stated in Amir (1996); see also
Mitra (2000).

Theorem 6.3.1. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1-A.3 and assume that its optimal programs are described by the optimal
policy function h. If U is supermodular (submodular), then h is non-decreasing
(non-increasing) locally around every point x satisfying (x, h(x)) ∈ intΩ.

Proof. We present the proof for the case where U is submodular; the case of
a supermodular utility function can be dealt with analogously. Let x ∈ X
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be a state such that (x, h(x)) ∈ intΩ. Since the optimal policy function is
continuous, it follows that for every x′ sufficiently close to x, the pairs (x, h(x′)),
(x′, h(x)), and (x′, h(x′)) are also contained in Ω. Let us define z = h(x) and
z′ = h(x′). Without loss of generality we may assume x < x′. We need to show
that z ≥ z′. Suppose to the contrary that z < z′. Because optimal programs
are described by an optimal policy function, the maximizer of the right-hand
side of the Bellman equation must be unique. Since z �= z′ it follows therefore
that U(x, z) + δV (z) > U(x, z′) + δV (z′) and U(x′, z′) + δV (z′) > U(x′, z) +
δV (z), where V is the value function. Adding these inequalities it follows that
U(x, z)+U(x′, z′) > U(x, z′)+U(x′, z). This is a contradiction to the assumed
submodularity of U , which completes the proof.

Theorem 6.3.1 shows that any interior section of the graph of the optimal
policy function of a model with a supermodular (submodular) utility func-
tion is a non-decreasing (non-increasing) curve. If we have additional informa-
tion about the transition possibility set, then it is possible to establish global
monotonicity properties of the optimal policy function. This is shown in the
following corollary which uses the definitions ψ(x) = min{z | (x, z) ∈ Ω} and
φ(x) = max{z | (x, z) ∈ Ω}. Note that assumption A.1 implies that ψ and φ
are continuous functions on X .

Corollary 6.3.1. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1-A.3 and assume that its optimal programs are described by the optimal
policy function h.
(i) If ψ and φ are non-decreasing functions and if U is supermodular, then it
follows that h is non-decreasing on X.
(ii) If ψ and φ are non-increasing functions and if U is submodular, then it
follows that h is non-increasing on X.

An important case in which the functions ψ and φ are non-decreasing is the
two-sector model discussed in subsection 6.2.2. A simple example in which the
functions ψ and φ are non-increasing is given by Ω = X ×X .

If U is a twice continuously differentiable function, then supermodular-
ity (submodularity) follows from U12(x, z) > 0 (U12(x, z) < 0); see, e.g.,
Ross (1983). This observation can be used to prove the following result due
to Benhabib and Nishimura (1985). In order to formulate it, one needs to im-
pose a smoothness condition on the utility function.

A.4: The utility function U is twice continuously differentiable on the inte-
rior of Ω with second-order partial derivatives U11, U12, and U22. Moreover, it
holds that U11(x, z) < 0, U22(x, z) < 0, and U11(x, z)U22(x, z)−U12(x, z)2 ≥ 0
for all (x, z) in the interior of Ω.

Note that assumption A.4 implies strict concavity of the utility function
with respect to its second argument which, in turn, implies that an optimal
program from any initial state x ∈ X is unique. In other words, optimal pro-
grams can be described by an optimal policy function.
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Theorem 6.3.2. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1-A.4 and let h be its optimal policy function.
(i) If (x, h(x)) ∈ intΩ and U12(x, h(x)) > 0 (U12(x, h(x)) < 0), then it follows
that h is non-decreasing (non-increasing) locally at x.
(ii) If (x, h(x)) ∈ intΩ, (h(x), h(2)(x)) ∈ intΩ, and U12(x, h(x)) > 0
(U12(x, h(x)) < 0), then it follows that h is strictly increasing (strictly decreas-
ing) locally at x.

Proof. Part (i) follows by the same argument that has been used in the proof
of theorem 6.3.1 because U12(x, h(x)) > 0 (U12(x, h(x)) < 0) implies su-
permodularity (submodularity) of U locally around (x, h(x)). To prove part
(ii), we simply have to show that x �= x′ implies h(x) �= h(x′). Suppose to
the contrary that h(x) = h(x′), where x′ is sufficiently close to x such that
(x′, h(x)) is in the interior of Ω. It follows that both (x, h(x), h(2)(x), . . .) and
(x′, h(x), h(2)(x), . . .) are optimal paths and, since the three points (x, h(x)),
(x′, h(x)), and (h(x), h(2)(x)) are in the interior of Ω, the Euler equation
U2(y, h(x)) + δU1(h(x), h(2)(x)) = 0 must hold for y ∈ {x, x′}. Obviously, this
is not possible if x′ �= x, x′ is sufficiently close to x, and U12(x, h(x)) �= 0.

6.3.2 The Role of Discounting

We now turn to the question of how the existence or non-existence of a period-2
cycle depends on the size of the discount factor δ. This question has been thor-
oughly investigated by Mitra and Nishimura (2001), and the rest of this section
draws heavily from their paper. In order to be able to develop a precise char-
acterization, Mitra and Nishimura (2001) restrict the class of optimal growth
models by a number of assumptions. These assumptions ensure that the dy-
namical system (X,h) is history independent, that optimal programs converge
either to fixed points or to period-2 cycles, and that the asymptotic behavior
of optimal programs depends in a simple way on the discount factor. We sum-
marize their arguments in the present subsection. Subsections 6.3.3 and 6.3.4
will then illustrate the application of these ideas by means of two important
classes of examples.

Mitra and Nishimura (2001) postulate the following strengthened version
of assumption A.1.

A.1+: It holds that X = [0, 1] and Ω = X ×X .
In addition to A.1+ and A.2-A.4, they impose strict monotonicity and sub-

modularity of the utility function.
A.5: For all (x, z) in the interior of Ω it holds that U1(x, z) > 0, U2(x, z) <

0, and U12(x, z) < 0.
The monotonicity part of assumption A.5 is standard, submodularity is as-

sumed to ensure that optimal programs can exhibit period-2 cycles but no more
complicated behavior. The following result is a straightforward consequence of
the results stated in the previous subsection.
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Lemma 6.3.1. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1+ and A.2-A.5. There exists an optimal policy function h. The optimal
policy function is continuous and non-increasing on X. There exists a unique
fixed point of the dynamical system (X,h). All optimal programs converge either
to the fixed point or to a period-2 cycle.

At this point it is important to emphasize the fact that the optimal policy
function h and, therefore, its fixed point depend on the discount factor. Hence-
forth, we consider (Ω,U) as fixed and treat δ as a parameter varying between
0 and 1. In order to ensure that the fixed point of (X,h) is in the interior of the
state space, Mitra and Nishimura (2001) postulate the following assumption.

A.6: Let the function π : (0, 1) �→ R be defined by π(x) = −U2(x, x)/U1(x, x).
It holds that limx→0 π(x) = 0 and limx→1 π(x) > 1.

It is now possible to prove the following result.

Lemma 6.3.2. Let Ω and U be given such that assumptions A.1+, A.2, and
A.4-A.6 are satisfied. For all δ ∈ (0, 1) let hδ : X �→ X be the optimal policy
function of (Ω,U, δ) and let x̂δ be the unique fixed point of (X,hδ).
(i) The inequality 0 < x̂δ < 1 holds for all δ ∈ (0, 1).
(ii) The fixed point x̂δ is continuously differentiable and strictly increasing with
respect to δ and it holds that limδ→0 x̂δ = 0 and x̂1 := limδ→1 x̂δ ∈ (0, 1).

The general strategy of Mitra and Nishimura (2001) proceeds now as fol-
lows. First, an auxiliary problem is formulated which involves optimization over
two periods only and in which the terminal state is restricted to be the same
as the initial state. The unique optimal policy function of that problem is de-
noted by fδ. Due to the construction of the auxiliary problem, it follows that
the fixed point of (X,hδ) coincides with the fixed point of (X, fδ) and that
interior period-2 cycles of (X,hδ) coincide with those generated by (X, fδ).
Furthermore, the value of the derivative of fδ at the fixed point x̂δ gives in-
formation about the eigenvalues of the Euler equation of (Ω,U, δ) at x̂δ which,
in turn, determine the local stability (or instability) of x̂δ as a fixed point of
(X,hδ). A condition is then imposed on fδ which ensures that local stability of
x̂δ implies almost global asymptotic stability of x̂δ, and that instability of x̂δ

implies almost global stability of a period-2 cycle of (X,hδ). Finally, Mitra and
Nishimura (2001) impose another condition which ensures that there is only a
single switching from local stability of x̂δ to instability (and no switch back to
local stability) as the discount factor changes from 1 to 0. We shall now briefly
explain the most important details of this strategy.

For any given x ∈ X , consider the following auxiliary optimization problem:

Maximize U(x, z) + δU(z, x)
subject to z ∈ X.

Given our assumptions, this problem has a unique optimal solution which we
denote by fδ(x). If (x, fδ(x)) ∈ intΩ, then we have the first-order condition
U2(x, fδ(x)) + δU1(fδ(x), x) = 0. Since U22(x, fδ(x)) + δU11(fδ(x), x) < 0, one
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can apply the implicit function theorem to conclude that fδ is differentiable at
x and that

f ′
δ(x) = −U12(x, fδ(x)) + δU12(fδ(x), x)

U22(x, fδ(x)) + δU11(fδ(x), x)
. (6.1)

Let us denote the second iterate of fδ by Fδ, that is Fδ = f
(2)
δ . The follow-

ing so-called history independence condition plays a crucial role in Mitra and
Nishimura (2001).

A.7: If a, b, and c are fixed points of (X,Fδ) satisfying a < b < c, then it
follows that F ′

δ(b) > 1.
From (6.1) one can easily see that f ′

δ(x) < 0 holds whenever (x, fδ(x)) ∈
intΩ. The absolute value of f ′

δ(x̂δ) contains information about the local sta-
bility or instability of the fixed point x̂δ with respect to the dynamical system
(X,hδ). Assumption A.7 (history independence) allows one to link the local
behavior of (X,hδ) around x̂δ to global properties. The details are summarized
in the following theorem.

Theorem 6.3.3. Let (Ω,U, δ) be an optimal growth model satisfying A.1+ and
A.2-A.7.
(i) If −1 < f ′

δ(x̂δ) < 0, then x̂δ is a locally stable fixed point of (X,hδ). For all
x ∈ (0, 1) it holds that the optimal program from x converges to x̂δ.
(ii) If f ′

δ(x̂δ) < −1, then x̂δ is an unstable fixed point of (X,hδ). There exists
a period-2 cycle of (X,hδ) with orbit {x∗δ , z∗δ} such that the following is true:
for all x ∈ (0, x̂δ) ∪ (x̂δ, 1) it holds that the optimal program from x converges
to this period-2 cycle, that is, ω+(x) = {x∗δ , z∗δ}.

The above theorem implies that, under the stated assumptions, the set

{(X,hδ) | δ ∈ (0, 1), f ′
δ(x̂δ) �= −1}

is a family of history independent dynamical systems. It makes therefore
sense to consider the bifurcation diagram of this family with δ as the bi-
furcation parameter. In order to construct this diagram, one needs to find
out for which δ it holds that −1 < f ′

δ(x̂δ) < 0 and for which δ it holds
that f ′

δ(x̂δ) < −1. To this end, first note that assumption A.4 implies
that max {|U11(x̂1, x̂1)|, |U22(x̂1, x̂1)|} ≥ |U12(x̂1, x̂1)|, where as before x̂1 =
limδ→1 x̂δ. Consider the following slight strengthening of this condition.

A.8: It holds that max {|U11(x̂1, x̂1)|, |U22(x̂1, x̂1)|} > |U12(x̂1, x̂1)|.
Under A.4, A.5, and A.8 one has U11(x̂1, x̂1) + U22(x̂1, x̂1) < 2U12(x̂1, x̂1).

Since x̂δ is continuous with respect to δ, it must therefore hold for all δ suffi-
ciently close to 1 that

U11(x̂δ , x̂δ) + U22(x̂δ, x̂δ) < (1 + δ)U12(x̂δ, x̂δ). (6.2)

Because of (6.1) this implies −1 < f ′
δ(x̂δ) < 0. Thus, according to theorem 6.3.3,

for δ sufficiently large, the unique fixed point x̂δ is almost globally stable. If
the inequality in (6.2) is reversed, however, the fixed point loses its stability
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and a period-2 cycle becomes almost globally stable. A sufficient condition for
there to be exactly one switch from stability of the fixed point to its instability
as δ decreases from 1 to 0 is the following so-called unique switching condition
from Mitra and Nishimura (2001).

A.9: The function R : (0, 1) �→ (0,∞) defined by

R(x) =
U2(x, x)U11(x, x) − U1(x, x)U22(x, x)

[U2(x, x) − U1(x, x)]U12(x, x)

is strictly increasing and satisfies 0 < limx→0R(x) < 1.
Indeed Mitra and Nishimura (2001) prove the following result.

Theorem 6.3.4. For each δ ∈ (0, 1) let (Ω,U, δ) be an optimal growth model
satisfying A.1+, A.2, and A.4-A.7. Furthermore, assume that A.8 and A.9 are
satisfied. Then there exists a unique critical discount factor δ̂ ∈ (0, 1) satisfying
R(x̂δ̂) = 1. The following properties are true:
(i) If δ̂ < δ < 1, then the unique fixed point x̂δ is almost globally stable.
(ii) If 0 < δ < δ̂, then there exists a period-2 cycle which is almost globally
stable.

6.3.3 Variations on Weitzman’s Example

In this section we discuss the case in which the utility function U is given by

U(x, z) = xα(1 − z)β,

where α and β are positive parameters satisfying α + β ≤ 1. Using the Euler
equation, it is easy to verify that the unique fixed point of (X,hδ) is given by
x̂δ = αδ/(αδ + β). Furthermore, the function R from assumption A.9 is given
by

R(x) = [1 − α+ (α− β)x]/[α − (α− β)x]. (6.3)

The special case in which α = β = 1/2 is Weitzman’s example (as reported
in Samuelson (1973)). For this special case it is known that, for every δ ∈ (0, 1),
the optimal policy function is given by

hδ(x) = δ2(1 − x)/[x+ δ2(1 − x)],

and that every x �= x̂δ is a periodic point of period 2 of the dynamical system
(X,hδ). This implies in particular that the limit sets ω+(x) and ω+(z) of any
two points x ∈ X and z �= hδ(x) are different from each other. The dynamical
system (X,hδ) is therefore history dependent. It is also worth pointing out
that, in Weitzman’s example, the function R from (6.3) is constant and equal
to 1, which shows that A.9 fails to be satisfied and underlines the degenerate
nature of this example. Slight modifications of Weitzman’s example, however,
lead to history independent optimal policy functions and can be dealt with by
the methods from the previous subsection.
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First of all, it is easy to see that the function R from (6.3) satisfies 0 <
limx→0R(x) < 1, if and only if α > 1/2. Because of α+β ≤ 1, this implies that
α > β and it follows that R is strictly increasing. Thus, in order for assumption
A.9 to be satisfied, it is necessary and sufficient to have α > 1/2. It can be
shown that assumptions A.1+ and A.2-A.8 hold also under this assumption.
The function R attains the critical value 1 at the value x̂δ̂ = (2α−1)/[2(α−β)].
The corresponding critical value of the discount factor is δ̂ = (2α− 1)β/[α(1−
2β)]. Let us now distinguish between the two cases α+ β = 1 and α+ β < 1.

Fig. 6.1. The modified Weitzman example with 1/2 < α = 1 − β < 1.

If α = 1−β > 1/2, then we have δ̂ = (1−α)/α and x̂δ̂ = 1/2. For δ ∈ (δ̂, 1),
the fixed point x̂δ is globally stable. For δ ∈ (0, δ̂), optimal programs from all
initial stocks other than x̂δ converge to the period-2 boundary cycle with orbit
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{0, 1}. At the bifurcation point δ = δ̂ = (1 − α)/α one has neutral cycles, that
is, starting from any initial stock x ∈ X , the period-2 cycle with orbit {x, 1−x}
is optimal; see figure 6.1.

Fig. 6.2. The modified Weitzman example with 1/2 < α < 1 − β < 1.

Now consider the case where α + β < 1. For δ ∈ (δ̂, 1), the fixed point x̂δ

is globally stable. For δ ∈ (0, δ̂), optimal programs from all initial states other
than x̂δ converge to a unique period-2 interior cycle. This interior cycle has
small amplitude for δ close to δ̂. The amplitude increases as δ falls and, as δ
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converges to zero, the orbit of this period-2 cycle approaches {0, 1}. Thus, we
obtain the standard bifurcation diagram of a flip bifurcation; see figure 6.2.

6.3.4 Variations on Sutherland’s Example

We now consider the case in which the utility function U is given by

U(x, z) = −ax2 − bxz − cz2 + dx.

It is assumed that a, b, c, and d are positive real numbers satisfying 4ac > b2,
b > 2c, and 2(a + b + c) > d > 2b(a − c)/(b − 2c). Note that these parameter
restrictions imply that U is strictly concave and that a > c, d > 2a > b, and
a + c > b. From the Euler equation one can see that the unique fixed point
of (X,hδ) is given by x̂δ = dδ/[b + 2c + δ(2a + b)] and that x̂δ ∈ (0, 1). The
function R from assumption A.9 is given by

R(x) = [2cd+ 2b(a− c)x]/[bd− 2b(a− c)x].

Given the above mentioned parameter restrictions, assumptions A.1+ and A.2-
A.9 are satisfied. The function R attains the critical value 1 at the value x̂δ̂ =
d(b− 2c)/[4b(a− c)]. The corresponding critical value of the discount factor is
δ̂ = (b−2c)/(2a− b). Defining δ1 = 2c/(d−2a) and δ2 = b/(d− b) it holds that
0 < δ1 < δ2 < δ̂ < 1. Mitra and Nishimura (2001) show that the bifurcation
diagram of the family (X,hδ) is given by figure 6.3.

For δ ∈ (δ̂, 1), the fixed point x̂δ is globally stable and, consequently, there
do not exist any periodic points of period p ≥ 2. For δ ∈ (δ2, δ̂), the fixed point
x̂δ is unstable and there exists x∗δ ∈ (0, x̂δ) such that {x∗δ , 1} is the orbit of
a period-2 cycle. All optimal programs starting from x �= x̂δ converge to this
period-2 cycle. It holds that limδ→δ2 x

∗
δ = 0. For δ ∈ (δ1, δ2), the fixed point

x̂δ is unstable and all optimal programs starting from x �= x̂δ converge to a
period-2 cycle with orbit {0, 1}. Finally, for δ ∈ (0, δ1), the fixed point x̂δ is
unstable and there exists z∗δ ∈ (x̂δ , 1) such that {0, z∗δ} is the orbit of a period-
2 cycle. All optimal programs starting from x �= x̂δ converge to this period-2
cycle. It holds that limδ→0 z

∗
δ = 0 and limδ→δ1 z

∗
δ = 1.

6.4 Optimal Chaos

In the early 1980s, the economics profession became aware of the fact that
simple economic mechanisms may generate chaotic dynamics; see, e.g., Ben-
habib and Day (1982) and Day (1982, 1983). It did not take long until it was
shown that the occurrence of deterministic chaos does not necessarily rely on
market imperfections or on non-standard assumptions. As a matter of fact, the
papers by Deneckere and Pelikan (1986) and Boldrin and Montrucchio (1986)
demonstrated that chaotic behavior can be optimal in the reduced-form opti-
mal growth model discussed in subsection 6.2.2 above. These results confirmed
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Fig. 6.3. Sutherland’s example.

that the standard assumptions of optimal growth theory are logically consistent
with endogenously generated business cycles. This insight was very important
but it raised also a number of new questions, especially regarding the parameter
values for which erratic non-periodic behavior can be optimal.

The only explicit parameter in the reduced form optimal growth model is
the discount factor. The research surveyed in chapter 4 of this handbook re-
fined the approach initiated by Boldrin and Montrucchio (1986) and developed
discount factor restrictions implied by optimal chaos. Parallel to this devel-
opment, a number of researchers studied optimal growth models under more
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detailed structural assumptions on the preferences and the technologies and
derived characterizations of the parameter constellations which are consistent
with chaos in that framework. By far the most popular framework consid-
ered in this literature is the two-sector optimal growth model discussed in
subsection 6.2.2 above, but the variations of the Weitzman example already
encountered in our discussion of optimal cycles in section 6.3 have also been
studied. In the present section we survey the most important contributions to
this literature.

6.4.1 Sources of Optimal Chaos

Consider a reduced-form optimal growth model with state space X = [0, x̄]
and assume that the transition possibility set takes the form Ω = {(x, z) |x ∈
X , 0 ≤ z ≤ φ(x)}, where φ : X �→ X is a continuous, non-decreasing, and
concave function satisfying φ(0) = 0, φ(x̄) = x̄, and φ(x) > x for all x ∈ (0, x̄).
Furthermore, assume that φ is continuously differentiable on (0, x̄) with deriv-
ative φ′. It is easy to see that such a transition possibility set can result from
a two-sector model with full capital depreciation (d = 1) and a production
function for the capital good which satisfies Fx(x, 1) = φ(x) for all x ∈ X . It is
also clear that assumption A.1 holds. Furthermore, suppose that assumptions
A.2 and A.4 are satisfied. If U12(x, z) is strictly positive for all (x, z) in the in-
terior of Ω, then it follows from corollary 6.3.1(i) that the graph of the optimal
policy function h is non-decreasing on X . From the results stated in subsec-
tion 6.2.1 we know that all optimal programs must converge to fixed points of
(X,h). Thus, chaotic optimal programs are ruled out. A necessary condition
for the occurrence of chaotic dynamics in the present situation is therefore that
U12(x, z) is negative for some (x, z) in the interior of Ω.

If U12(x, z) < 0 holds for all (x, z) in the interior of Ω, then it follows
from theorem 6.3.2 that the graph of h is non-increasing whenever it is in the
interior of Ω. Nishimura and Yano (1994) elaborate on this observation and
describe a method by which one can construct optimal growth models that
display topological chaos. The main idea is as follows. First of all, it is assumed
that there exists an optimal steady state in the interior of the state space X .
Because of the Euler equation, this is tantamount to assuming a solution of
the equation U2(x̂, x̂) + δU1(x̂, x̂) = 0 satisfying 0 < x̂ < x̄. Together with
the assumption φ(x) > x for all x ∈ (0, x̄) this implies that the point (x̂, x̂) is
located on the graph of the optimal policy function and in the interior of Ω.
Because the graph of h must be a non-increasing curve whenever it is in the
interior of Ω, it follows that there must be x̃ < x̂ such that (i) h(x) = φ(x)
for all x ∈ [0, x̃] (hence, h is non-decreasing on [0, x̃]), (ii) h(x) < φ(x) for all
x ∈ (x̃, x̄], and (iii) h is non-increasing on [x̃, x̄]. The optimal policy function
has therefore a tent shape. In a second step one has to make sure that the tent
is steep enough in order to generate chaotic dynamics. A sufficient condition for
this to be the case is the existence of a period-3 cycle; see Li and Yorke (1975).
Nishimura and Yano (1994) construct the period-3 cycle in such a way that two
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elements of its orbit are in the interval (0, x̃) (that is, they correspond to points
on the upper boundary of Ω) while the remaining element is in the interval
(x̃, x̄) corresponding to an interior point. Figure 6.4 illustrates the general idea
of this construction. The precise conditions under which it is possible are stated
in the following theorem in which

Γ (x, y, z) = U2(x, y) + δU1(y, z),
Γ(1)(x) = Γ (φ(x), φ(2)(x), x),

Γ(2)(x) = Γ (x, φ(x), φ(2)(x)) + δΓ(1)(x)φ′(φ(x)),

Γ(3)(x) = Γ (φ(2)(x), x, φ(x)) + δΓ(2)(x)φ′(x).

Theorem 6.4.1. Consider the optimal growth problem (Ω,U, δ) on X = [0, x̄],
where the transition possibility set is Ω = {(x, z) |x ∈ X , 0 ≤ z ≤ φ(x)}
and φ is continuous, non-decreasing, and concave on [0, x̄] and continuously
differentiable on (0, x̄). Suppose that φ(0) = 0, φ(x̄) = x̄, and φ(x) > x for
all x ∈ (0, x̄). Let assumptions A.2-A.4 be satisfied and let h be the optimal
policy function. If there exists x ∈ (0, x̄) and x′ ∈ (0, x̄) such that Γ(1)(x) ≥ 0,
Γ(2)(x) ≥ 0, Γ(3)(x) ≤ 0, and Γ(3)(x′) > 0, then it follows that the dynamical
system (X,h) exhibits topological chaos.

Nishimura and Yano (1994) show that the conditions of theorem 6.4.1 can
be satisfied in an example, in which the state space isX = [0, 1] and the reduced
form utility function is given as in the generalized Weitzman example, that is,
U(x, z) = xα(1 − z)β . As we have seen in subsection 6.3.3 above, this utility
function allows for period-2 cycles but it does not allow for more complicated
dynamics, if Ω = X ×X . For this reason, Nishimura and Yano (1994) have to
choose a non-trivial transition possibility set, that is, they have to specify the
function φ in such a way that φ(x) < 1 holds for all sufficiently small x.

Theorem 6.4.1 traces the occurrence of optimal chaos to the tent shaped
optimal policy function. The tent shape arises because the transition possibility
set Ω has a non-trivial and strictly increasing upper boundary and because the
optimal policy function is steeply decreasing on the interior of Ω. None of
these two properties alone is sufficient to generate optimal chaos, but their
combination is. The non-trivial upper boundary of Ω (i.e., the fact that φ(x) <
1 holds for all sufficiently small x) corresponds to the assumption that the
economic system cannot move instantaneously from very small states to very
large states. This, in turn, can be interpreted as a form of ‘upward inertia’ of the
economic system. The steeply decreasing shape of the optimal policy function in
the interior of Ω has two sources: submodularity of U and strong discounting.
Submodularity of U means that the maximizer of U(x, z) with respect to z
is a decreasing function of x. In other words, if the degree of submodularity
is sufficiently strong and the decision maker were myopic (δ = 0), he or she
would want to permanently oscillate between small and large states. As the
discount factor increases, however, this incentive is increasingly dominated by
the decision maker’s desire to smooth consumption which follows from the
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Fig. 6.4. The construction from Nishimura and Yano (1994).

concavity of the utility function. To summarize, Nishimura and Yano (1994)
have identified three sources of optimal chaos: upward inertia, submodularity,
and strong discounting.

Nishimura and Yano (1995a) replace the assumption of upward inertia of
the economic system by ‘downward inertia’ and show that this can also lead
to chaotic optimal programs. They create downward inertia by partial capital
depreciation (note that the approach taken by Nishimura and Yano (1994) can
be interpreted in the context of the two-sector model provided that capital
depreciates fully, i.e., d = 1). In the case of partial depreciation the economy
cannot move instantaneously from very large states to very small states. For-
mally, this follows from the fact that the transition possibility set is given by
Ω = {(x, z) |x ∈ X , (1 − d)x ≤ z ≤ φ(x)}. Except for the assumption d < 1,
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the approach taken in Nishimura and Yano (1995a) is the same as in Nishimura
and Yano (1994). As before it is assumed that the utility function satisfies A.2
and A.4 as well as U12(x, z) < 0 for all (x, z) in the interior of Ω. However,
in the present case with less than full depreciation, it follows that there must
exist two states x̃ and x̃′ in (0, x̄) such that the graph of the optimal policy
function h coincides with the upper boundary of Ω for x ∈ [0, x̃] and with its
lower boundary for x ∈ [x̃′, x̄]. In between the two values x̃ and x̃′, the graph of
h is in the interior of Ω and is strictly decreasing. The optimal policy function
is therefore not tent-shaped but has an interior maximum x̃ and an interior
minimum x̃′. The authors then go on and make the graph of h on the interval
(x̃, x̃′) sufficiently steep such that a period-3 cycle exists, which touches the
lower boundary of Ω twice whereas the third element of the orbit of the cycle
corresponds to a point on the interior section of the optimal policy function.
The construction is illustrated in figure 6.5. Conditions very similar to those
stated in theorem 6.4.1 are shown to be sufficient for the construction to lead
to the desired result. As before, the conditions are shown to be satisfied by
a model in which the utility function is given as in the generalized Weitzman
example, i.e., U(x, z) = xα(1 − z)β. This time, the upper boundary of Ω can
be chosen as φ(x) = 1, because the possibility of chaotic dynamics relies on the
assumption of downward inertia (partial depreciation ψ(x) > 0) rather than on
upward inertia (φ(x) < 1).

The paper by Khan and Mitra (2005) also points to downward inertia cre-
ated by partial depreciation of capital as a possible source of optimal chaos.
Kahn and Mitra (2005) consider a discrete-time version of the Robinson-Solow-
Srinivasan model with two production sectors. In the notation introduced in
subsection 6.2.2, the model is specified by the discount factor δ ∈ (0, 1), the
capital depreciation rate d ∈ (0, 1), and by the functions

Fc(xc, �c) = min{xc, �c},
Fx(xx, �x) = �x/µ,

u(c) = c.

In other words, the utility function is linear, the production of one unit of the
consumption good requires one unit of capital and one unit of labor, and the
production of one unit of capital requires µ units of labor (and no capital). The
maximal sustainable capital stock is given by x̄ = 1/(dµ) and the transition
possibility set is given by Ω = {(x, z) | 0 ≤ x ≤ 1/(dµ), (1 − d)x ≤ z ≤ φ(x)},
where φ(x) = (1−d)x+(1/µ). Khan and Mitra (2005) first show that, whenever
δ < µ, all optimal programs are described by a continuous optimal policy
function h. If in addition to δ < µ, the parameters µ and d are related in a
certain way, then the dynamical system (X,h) is shown to exhibit topological
chaos. Finally, Khan and Mitra (2005) prove that, for any value d ∈ (0, 1),
there is some µ such that the aforementioned relation between d and µ is indeed
satisfied. That is, whenever the rate of depreciation is positive and smaller than
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Fig. 6.5. The construction from Nishimura and Yano (1995a).

1, one can find parameters δ and µ such that the model generates topological
chaos.

Boldrin and Deneckere (1990) use a combination of analytical and numerical
methods to derive interesting insights into the sources of optimal chaos. Their
model is a two-sector model with a Cobb-Douglas production function for the
consumption good, a Leontief production function for the capital good, and a
linear utility function. In the notation of subsection 6.2.2 these assumptions
can be written as follows:
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Fc(xc, �c) = xα
c �

1−α
c ,

Fx(xx, �x) = µmin{xx, �x/µ},
u(c) = c.

This specification gives rise to the transition possibility set Ω = {(x, z) | 0 ≤
x ≤ 1, (1 − d)x ≤ z ≤ φ(x)}, where φ(x) = min{µx, 1}. The reduced form
utility function is

U(x, z) = µ−α[1 + (1 − d)x − z]1−α[(1 − d+ µ)x − z]α.

As for the parameter values, it is assumed that α ∈ (0, 1) and µ > 1/δ. The
inequality µ > 1/δ implies that the marginal product of capital in the invest-
ment good sector covers principal and interest in the steady state (recall that
the real interest rate in a steady state is 1/δ− 1). This assumption guarantees
the existence of an interior steady state. The efficient capital-labor ratio in the
investment good sector is fixed at 1/µ. The factor substitutability in the con-
sumption good sector implies that both factors will be fully employed. Thus,
if the economy-wide capital-labor ratio x exceeds 1/µ, then it follows that the
consumption good sector must be more capital intensive than the investment
good sector. Conversely, if x < 1/µ, then consumption goods are produced
with lower capital intensity than investment goods. Thus, this model allows for
capital intensity reversal.

Boldrin and Deneckere (1990) derive conditions for the existence of cycles of
period 2 and 4. Fixing the values of α, µ, and d and treating δ as a bifurcation
parameter, they show by means of numerical simulations that successive bifur-
cations can lead to topological chaos (period-doubling scenario). For example,
when α = 97/100, µ = 100/9, and d = 1, topological chaos is encountered
for discount factors between 0.099 and 0.112. They also show that chaos typ-
ically disappears rapidly, if one reduces the depreciation rate d from 100% to
smaller values, but reappears, if d takes values of 10% or smaller. This suggests
that, for almost full depreciation, chaos is generated by the same mechanism
as in Nishimura and Yano (1994) (upward inertia and short-run incentives for
oscillations), whereas for small values of d it is generated by the mechanism
described by Nishimura and Yano (1995a) (downward inertia and short-run
incentives for oscillations).

6.4.2 Optimal Chaos Under Weak Impatience

The parametric examples with chaotic optimal policy functions discussed in the
papers by Nishimura and Yano (1994, 1995a) and Boldrin and Deneckere (1990)
involve the discount factors δ = 0.01, δ = 0.05, and δ ≈ 0.1, respectively. These
are unrealistically small numbers if the chaotic fluctuations are interpreted
as business cycles. The study by Nishimura et al. (1994) shows that chaotic
dynamics can occur for all values of the discount factor. In addition, Nishimura
et al. (1994) construct optimal policy functions which are not only chaotic
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in the sense of topological chaos but also in the sense of ergodic chaos and
geometric sensitivity. This is accomplished by proving that, for every δ ∈ (0, 1)
and every γ satisfying 1 < γ < min{2, δ−2}, there exists an optimal growth
model (Ω,U, δ) on the state space X = [0, 1] with the optimal policy function

h(x) =
{

γx if x ∈ [0, 1/γ],
2 − γx if x ∈ [1/γ, 1].

Since γ > 1, it follows from the results by Lasota and Yorke (1973) and Li and
Yorke (1978) mentioned in subsection 6.2.1 that this optimal policy function
exhibits ergodic chaos and geometric sensitivity. The transition possibility set
is chosen to be Ω = {(x, z) | 0 ≤ x ≤ 1, 0 ≤ z ≤ φ(x)} with φ(x) = min{γx, 1}.
This shows that the increasing part of the optimal policy function coincides
with the boundary of Ω. The decreasing part, however, lies in the interior
of Ω. The specification of the utility function U , which is the key step in
the construction, is based on ideas developed in Sorger (1992). It leads to an
optimal value function which is a simple quadratic polynomial. Thus, Nishimura
et al. (1994) have proved the following result.

Theorem 6.4.2. For every δ ∈ (0, 1) there exists a reduced form optimal
growth model which satisfies assumptions A.1 and A.2, has a strictly concave
utility function, and has an optimal policy function exhibiting ergodic chaos and
geometric sensitivity.

Nishimura et al. (1994) also demonstrate that the reduced form optimal growth
models in theorem 6.4.2 can be thought of as arising from two-sector models
in which both production functions are of the Leontief type and in which the
utility function reflects a wealth effect.

Nishimura and Yano (1995b) consider the two-sector growth model with
Leontief production functions in both sectors and a linear utility function with-
out any wealth effect. They also demonstrate that ergodic chaos and geometric
sensitivity can occur for arbitrary small values of the discount rate. The lin-
ear structure imposed by the utility function and the production technologies
makes it possible to consider the model as a dynamic linear programming prob-
lem; see Nishimura and Yano (1996).

In the notation of subsection 6.2.2, Nishimura and Yano (1995b) assume
d = 1 and

Fc(xc, �c) = min{xc, �c/α},
Fx(xx, �x) = µmin{xx, �x/β},
u(c) = c.

This specification implies that the maximal capital stock that can be reached
from x within a single period is given by φ(x) = µmin{x, 1/β}. Therefore, the
maximal sustainable capital stock is µ/β and it suffices to restrict attention
to the state space X = [0, µ/β]. The transition possibility set is given by



6. Optimal Cycles and Chaos 165

Ω = {(x, z) | 0 ≤ x ≤ µ/β , 0 ≤ z ≤ φ(x)}. This two-sector model is fully
determined by the technological parameters α, β, and µ and the discount factor
δ. We shall refer to the model by M(α, β, µ, δ). The main result from Nishimura
and Yano (1995b) can now be stated as follows.

Theorem 6.4.3. For every δ′ ∈ (0, 1) there exist parameters α, β, and µ as
as well as an open interval I ⊆ (δ′, 1) such that for all δ ∈ I, the two-sector
model M(α, β, µ, δ) has the optimal policy function h specified by

h(x) =
{

µx if x ≤ 1/β,
µ(1 − αx)/(β − α) if x ≥ 1/β, (6.4)

and the dynamical system (X,h) exhibits ergodic chaos and geometric sensitiv-
ity.

The proof of this result is very technical and will not be presented here.
Instead, we will restrict ourselves to a discussion of the main steps of the
proof. To begin with, Nishimura and Yano (1995b) assume that the following
parameter restrictions are satisfied:

µ > 1/δ,
β > α > 0, (6.5)
(β/α) − 1 < µ < β/α.

The condition µ > 1/δ ensures the existence of an interior steady state. The
inequality β > α > 0 says that the consumption good sector is more capital
intensive than the investment good sector. To explain the meaning of the last
parameter restriction in (6.5), it is useful to compute the reduced form utility
function

U(x, z) = max{Fc(xc, �c) |xc + xx ≤ x, �c + �x ≤ 1, Fx(xx, �x) ≥ z}.

In the optimal solution to this program, the constraint �c+�x ≤ 1 is not binding,
if z < f(x), and the constraint xc + xx ≤ x is not binding, if z > f(x). Here
the function f : X �→ R is defined by f(x) = µ(1−αx)/(β−α). Because of the
assumption β > α > 0, it follows that f is a strictly decreasing and continuous
function. Consequently, its inverse f−1 exists and the condition z < f(x) can
also be written as x < f−1(z). In other words, in the optimal solution, labor is
not fully employed, if the available capital stock is so small that capital input
forms a bottleneck. If the available capital stock exceeds f−1(z), on the other
hand, then capital is not fully employed. Full employment of both input factors
occurs, if and only if z = f(x).

Note that f(1/β) = φ(1/β) = µ/β. This shows that the graph of f intersects
the upper boundary of the transition possibility set in its kink at x = 1/β.
Nishimura and Yano (1995b) want to ensure that the graph of f does not
intersect the lower boundary of Ω and that its slope is smaller than −1. This
is exactly what the last line of (6.5) achieves.
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Simple calculations show that the reduced form utility function is given by

U(x, z) =
{

x− z/µ if x ≤ f(z),
(µ− βz)/(αµ) if x ≥ f(z).

It is easy to see from this expression that the indifference curves of U are
obtained by translating the curve z = φ(x) parallel in the direction of the line
z = f(x). Nishimura and Yano (1995b) argue that, as long as x < 1/β, it
is not possible to employ the entire labor supply because z < f(x) holds for
all (x, z) ∈ Ω satisfying x < 1/β (capital is the bottleneck). In this case it
will therefore be optimal to produce as much capital as possible in order to
clear the bottleneck. Once the capital stock x has become larger than 1/β, it is
possible to fully employ both factors. The optimal activity in this case will be
characterized by full employment of both factors, that is, it will be described
by a point on the graph of f . This suggests that the optimal policy function
is given by (6.4). From the first and the third line in (6.5) it follows that h
is a piecewise linear map with a slope (wherever it is defined) that is larger
than 1 in absolute value. As we have seen in subsection 6.2.1, these properties
ensure that the dynamical system (X,h) exhibits ergodic chaos and geometric
sensitivity.

The crux of the proof in Nishimura and Yano (1995b) consists in showing
that h is actually the optimal policy function of M(α, β, µ, δ). This is a non-
trivial issue because the reduced form utility function is not strictly concave
in any of its arguments. Nishimura and Yano (1995b) address this problem in
two steps. First, they prove that a sufficient condition for h to be the optimal
policy function is that (i) the critical point of h, that is x = 1/β, is a periodic
point of (X,h) with period p > 1 and (ii) the periodic trajectory from x = 1/β
is the unique optimal program from 1/β. Second, they show that this sufficient
condition can be satisfied for an open interval of discount factors arbitrarily
close to 1 provided one lets the period p approach +∞ in an appropriate way.

A somewhat undesirable feature of the result in theorem 6.4.3 is that the
optimal policy is non-interior. As a matter of fact, the increasing section of the
optimal policy function coincides with the upper boundary of the transition
possibility set which implies that, whenever x ≤ 1/β, optimal consumption is
equal to 0. Note that the same property holds also for the models constructed in
the proof of theorem 6.4.2 (as well as for the models discussed in Nishimura and
Yano (1994, 1995a)). One may therefore wonder whether chaos can be optimal
under weak discounting also in models for which the graph of the optimal
policy function is in the interior of the transition possibility set (except at the
boundary of the state space X). Nishimura et al. (1998) prove that this is
indeed the case. However, whereas Nishimura and Yano (1995b) were able to
determine the optimal policy function analytically, in Nishimura et al. (1998)
an analytical expression of the optimal policy function is not available and the
proof of the existence of optimal chaos is based on a continuity argument.

They consider the model Mλ(α, β, µ, δ) defined by d = 1 (full depreciation)
and
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Fc(xc, �c) =
[
(1/2)x−1/λ

c + (1/2)(�c/α)−1/λ
]−λ

,

Fx(xx, �x) = µλ

[
(1/2)x−1/λ

x + (1/2)(�x/β)−1/λ
]−λ

,

u(c) = c1−λ/(1 − λ).

Here λ ∈ (0, 1) and µλ = 2−λ(1 + µ1/λ). It is straightforward to see that, as
λ approaches 0, the functions Fc, Fx, and u converge to the corresponding
functions used to define M(α, β, µ, δ). It is also quite obvious that, for λ > 0,
the marginal utility at c = 0 is infinitely large and, hence, that consumption
along any optimal program starting in x > 0 must be strictly positive. Finally,
because the production functions are concave and the utility function is strictly
concave, the reduced form utility function must be strictly concave with respect
to its second argument. This implies that all optimal programs of Mλ(α, β, µ, δ)
are described by an optimal policy function. Let us denote this function by hλ.

Nishimura et al. (1998) now show that, as λ approaches 0, the optimal policy
function hλ converges uniformly to the optimal policy function of M(α, β, µ, δ),
that is, to the function h defined in (6.4). Furthermore, they appeal to a result
by Butler and Pianigiani (1978), which implies that a small perturbation of h
preserves the existence of topological chaos. Thus, the final conclusion derived
by Nishimura et al. (1998) is the following theorem.

Theorem 6.4.4. Consider the two-sector optimal growth model Mλ(α, β, µ, δ)
defined above. For every δ′ ∈ (0, 1) there exist parameter values (α, β, µ, δ, λ)
such that δ ∈ (δ′, 1) and such that the optimal policy function of Mλ(α, β, µ, δ)
exhibits topological chaos.
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7. Intertemporal Allocation with a Non-convex

Technology

Mukul Majumdar
Department of Economics, Cornell University, Ithaca, NY, USA

7.1 Introduction

In his famous article on increasing returns and economic progress, Young (1928)
concluded with the following summary:

“In recapitulation of these variations of a theme from Adam Smith there
are three points to be stressed. First, the mechanism of increasing returns is
not to be discerned adequately by observing the effects of variations in the size
of an individual firm or a particular industry, for the progressive division and
specialization of industries is an essential part of the process by which increasing
returns are related. What is required is that the industrial operations be seen
as an integrated whole. Second, the securing of increasing returns depends
upon...the economies which are to be had by using labor in roundabout or
indirect ways. Third, the division of labor depends upon the extent of the
market, but the extent of the market also depends upon the division of labor.
In this circumstance lies the possibility of economic progress, apart from the
progress which comes as a result of the new knowledge which men are able to
gain whether in the pursuit of their economic or the non-economic interests.”

Elsewhere, Young (1929) maintained the emphasis on the importance of
roundabout methods, and the link between division of labor and the extent of
the market but went further in describing a dynamic process with some other
elements:

“The use of capital on a large scale in industry came later than its use in
commerce, for the reason that not until there were markets which were able
to absorb large outputs of standard types of goods was it profitable to make
any extensive use of roundabout methods of production. Once established,
however, industrial capitalism showed that it had within itself the seeds of its
own growth. Cheaper goods, improved means of transport, and the increased
advantages of specialization led to larger markets, so that the economies of
industrial capitalism grew in a cumulative way. The increasing division of
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labor...not only invited a larger use of instruments, but also prompted the
invention of new types of instrument.”

Newman’s excellent entry on Young in New Palgrave (1998, vol. 4, pp.
937-9) has the second quote, and the thoughtful remarks:

“Apart from an interesting discussion by Marx, Young’s article was the first
serious advance beyond Adam Smith on the relation between increasing returns
and economic growth. However, the problems of formalizing that persuasive
vision into a tractable model have proved formidable indeed, the chief technical
problems being those of nonconvex technologies and the introduction of new
intermediate commodities. So, old as it is, his paper remains important for us
precisely because there is not much else.”

This survey looks at “something else”: it provides a selective and biased re-
view of a relatively recent literature on intertemporal allocation theory which
faced up to the “technical problems” of nonconvex technologies that Newman
alluded to. As we shall see, substantial analytical progress has been made -
within the confines of these models - in developing a “primal” approach to
identifying the characteristics of “efficient” or “optimal” programs of alloca-
tion. The models sketched below capture an optimization problem faced by
a “social planner” or a Central Planning Board of a Lange-Lerner economy.
A nonconvex set of feasible plans (programs) precludes a routine application
of the “classical” tools of optimization (e.g., separation theorems). One may
analyze the complications at several levels. As noted by Dobb (1960), “invest-
ment in a planned economy is presumably determined as a policy-decision of
the government, and not as the resultant of market forces which the govern-
ment may seek to influence..but does not control directly”. Dobb provided a
convenient classification of three types of decisions distinguished by alternative
levels of aggregation: (i) determination of the total volume of investment (the
choice or trade-off between immediate and future consumption), (ii) its distri-
bution among sectors (and among the industries) and (iii) the technical forms
(projects) in which the investment is embodied.1 Sections 7.2 through 7.6
present results that attempt to resolve the first issue.in an aggregative frame-
work with a S-Shaped production function that made an early appearance in
Frank Knight’s Ph.D. thesis at Cornell.2 In Section 7.3, I briefly touch upon
the question of efficient intertemporal choice, studied first by Malinvaud (and
subsequently by Phelps, Radner, Koopmans, Starrett, Majumdar, McFadden,
Peleg, Mitra, Benveniste, Gale, Cass, Yaari, Kurz, Alkan, and others). Next,
in Sections 7.4 through 7.6, I move on to optimality criteria involving maxi-
mization of one period “returns” or “utilities generated by consumptions” and
review both the Ramsey-Weizsacker (“overtaking”) approach to the “undis-
counted” case and the “discounted” case. A reinterpretation of the model
enables one to study problems of renewable resource management and the
possible conflict between conservation and profit maximization (see Section
1 The documents on planning in the Soviet Union, India or Pakistan give us concrete

examples of such a broad classification that practical policy makers found useful.
2 It should be mentioned the thesis was supervised by Young.
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7.6.1). Section 7.7 takes up the multi-sector model of Mitra (1992) which ex-
plicitly treats the second type of decisions in Dobb’s scheme, but only deals
with the overtaking criterion. The tenor and language of discourse in Sections
7.4 through 7.7 has been profoundly influenced by David Gale’s work (1967)
on multi-sector models [with convex technology] in which he identified three
subjects “central to the literature”: (1) optimal stationary programs (golden
rules); (2) asymptotic properties of good programs (turnpike theorems); (3)
dynamic competitive prices (duality theory). Postponing for the moment, my
comments on the last subject, I would like to stress that Sections 7.4 through
7.7 develop the first two subjects along with the question of existence of an
optimal program. Unfortunately, there is not much to report on the evalu-
ation of investment projects (the third issue in Dobb’s scheme) that involve
decreasing marginal costs or indivisible goods.3 In contrast with the “closed”
models, Section 7.8 reviews an open model of a “small” economy and explores
the pattern and gains from trade. It also indicated how the expansion of the
market may determine specialization and welfare gains..

Going back to Young, the need to look at a group of industries was also a
clear implication of some other prominent contributions to development eco-
nomics. The enduring themes in these writings were “externalities”, “comple-
mentarities” and “intersectoral linkages”, and the need for a proper “coordi-
nation” of activities to initiate and sustain a development program [for useful
assessments see Ray (1998, Chapter 4), Basu (2003, Chapter 2)]. But the
models to be reviewed do not offer any insights into the role of knowledge or
its diffusion, learning-by-doing, externalities, or indivisibilities (although these
may be particularly relevant for understanding the roots of increasing returns).
However, – for this review – of particular significance are some observations
of Scitovsky (1954) that I would like to recall. Stressing the inadequacy of
static equilibrium theory to deal with problems of investments – “which have
a delayed effect and - looking ahead to a long future period - should be gov-
erned not by what the present economic situation is but by what the future
economic situation is expected to be. The proper coordination of investment
decisions, therefore, would require a signalling device to transmit information
about present plans and future conditions as they are determined by present
plans; and the price system fails to provide this. Hence the belief that there
is need either for centralized investment planning or some additional commu-
nication system to supplement the pricing system as a signalling device”.

The experiments involving centralized or large scale national planning sug-
gest the importance of designing an appropriate mechanism (hopefully a de-
centralized mechanism) that can supplement the price system and help attain
desirable allocations when economic agents are making independent decisions
with incomplete information about the future. Perhaps this has been the most
difficult formal problem for infinite economies. For the “classical” convex mod-
3 Uncertainty and decreasing marginal costs are at the core of the choice of technol-

ogy problem studied in Majumdar and Radner (1993) by using a Bayesian dynamic
programming method.
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els, this was attacked through the duality theory [that was stressed in Gale’s
comments quoted above] of dynamic efficiency prices and the search for an
appropriate transversality condition.4 The problem seems to be quite elusive
when nonconvexity is admitted.

7.2 Optimal Allocation in a Closed Economy

7.2.1 Production

To begin with an aggregative model, consider a technology described by a
production function f from R+ to itself when the input x in any period gives
rise to output f(x) in the subsequent period. The following assumptions on f
are introduced:

(A.1) f(0) = 0; (A.2) f(x) is strictly increasing for x ≥ 0; (A.3) f(x)
is twice continuously differentiable for x ≥ 0; (A.4) f satisfies the following
end-point conditions: f ′(∞) < 1 < f ′(0) < ∞; (A.5) There is a (finite) b1 > 0,
such that (i) f ′′(b1) = 0; (ii) f ′′(x) > 0 for 0 ≤ x < b1; (iii) f ′′(x) < 0 for
x > b1.

In contrast to the present [“non-classical”] model, the traditional aggrega-
tive [or, “classical”] framework would replace (A.5) by

(A.5′) f is strictly concave for x ≥ 0 (f ′′(x) < 0 for x > 0)
while preserving (A.1) - (A.4). [In some versions, (A.3) and (A.4) would

also be modified to allow f ′(0) = ∞.] In discussions to follow, we will find it
convenient to refer to a model with assumptions (A.1) - (A.4) and (A.5′) as
“classical”, and to a model with (A.1) - (A.5) as “non-classical.”

We define a function, h [representing the average product function], as fol-
lows:

h(x) = [f(x)/x] for x > 0; h(0) = lim
x→0

[f(x)/x]. (7.1)

Under (A.1) - (A.5), it is easily checked that h(0) = f ′(0); furthermore, there
exist positive numbers k∗, k̄, b2 satisfying:

(i) 0 < b1 < b2 < k∗ < k̄ < ∞; (ii) f ′(k∗) = 1; (iii) f(k̄) = k̄; (iv) f ′(b2) =
h(b2). Also, for 0 ≤ x < k∗, f ′(x) > 1; and for x > k∗, f ′(x) < 1; for 0 < x < k̄,
x < f(x) < k̄, and for x > k̄, k̄ < f(x) < x; for 0 < x < b2, f ′(x) > h(x), and
for x > b2, f ′(x) < h(x). Also note that for 0 ≤ x < b2, h(x) is increasing,
and for x > b2, h(x) is decreasing; for 0 ≤ x < b1, f ′(x) is increasing, and for
x > b1, f ′(x) is decreasing.

4 This was the main theme of the Journal of Economic Theory Symposium (1988,
volume 45, no. 2) [see also the Foreword by Malinvaud in Majumdar (1992)].
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7.2.2 Programs

A feasible production program from x > 0 is a sequence < x, y > = (xt, yt+1)
satisfying

x0 = x; 0 ≤ xt ≤ yt and yt = f(xt−1) for t ≥ 1. (7.2)

The sequence < x > = (xt)t≥0 is the input program, while the corresponding
< y > = (yt+1)t≥0 satisfying (7.2) is the output program. The consumption
program < c >= (ct) generated by < x, y > is defined by:

ct ≡ yt − xt for t ≥ 1. (7.3)

We will refer to < x, y, c > briefly as a program from x, it being understood
that < x, y > is a feasible production program, and < c > the corresponding
consumption program.

A program < x, y, c > from x is called positive if (xt, yt+1, ct+1) >> 0 for
t ≥ 0. It is called interior if inft>0 xt > 0. It is a standard exercise to check
that for any program < x, y, c > from x, we have (xt, yt+1, ct+1) ≤ (k̂, k̂, k̂) for
t ≥ 0, where k̂ = max(x, k̄).

A slight abuse of notation: I shall often specify only the input program
< x >= (xt)t≥0 from x > 0 to describe a program < x, y, c >. It will be
understood that x0 = x and 0 ≤ xt ≤ f(xt−1) for all t ≥ 1, and (7.2) and (7.3)
hold. Indeed I shall also refer to < x, y, c > as a program from y1 > 0 to mean
that it is really a program from the unique x > 0 such that y1 = f(x). Note
that decisions on “consumption today versus consumption tomorrow” begin in
period 1.

7.2.3 Evaluation Criteria

A social planner (Lange’s Central Planning Board) evaluates alternative pro-
grams according to some welfare criterion. The criteria we focus on deal ex-
clusively with the sequences of consumptions generated by programs. This
admittedly limits the scope of our analysis, and its appeal to policy makers.

A program < x′, y′, c′ > from x dominates a program < x, y, c > from x,
if c

′
t ≥ ct for all t ≥ 1, and c

′
t > ct for some t. A program < x, y, c > from x

is said to be inefficient if some program from x dominates it. It is said to be
efficient if it is not inefficient.

An alternative criterion involves a utility function, u, from R+ to R, and a
discount factor, δ, where 0 < δ ≤ 1, which reflects the planner’s time preference.
A program < x∗, y∗, c∗ > from x is called optimal if

lim sup
T→∞

T∑
t=1

δt−1[u(ct) − u(c∗t )] ≤ 0 (7.4)
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for every program < x, y, c > from x.
A program < x, y, c > from x is intertemporal profit maximizing (IPM) if

there is a non-zero sequence < p∗ > = (p∗t ) of non-negative prices, such that,
for t ≥ 0.

p∗t+1yt+1 − p∗txt ≥ p∗t+1y − p∗tx for x ≥ 0, y = f(x). (7.5)

A price sequence < p∗ > = (p∗t ) associated with an IPM program, for which
(7.5) holds, is called a sequence of support or Malinvaud prices. A program
< x, y, c > from x is competitive if there is a non-zero sequence < p∗ > = (p∗t )
of non-negative prices such that (7.5) holds for t ≥ 0; and, for t ≥ 1.

δt−1u(ct) − p∗t ct ≥ δt−1u(c) − p∗t c, c ≥ 0. (7.6)

A price sequence < p∗ >= (p∗t ) associated with a competitive program <
x, y, c >, for which (7.5), (7.6) hold, is called a sequence of competitive or Gale
prices ; (7.5), (7.6) are called the competitive conditions. I shall often write
< x, y, c; p > to denote an IPM program or competitive program depending on
the context.

The following assumptions on u will be maintained in Sections 7.4 and 7.5.
(A.6) u(c) is continuous for c ≥ 0, and twice continuously differentiable

at c > 0, with u′(c) > 0, u′′(c) < 0 at c > 0.
(A.7) u′(c) → ∞ as c→ 0.
We normalize u(0) = 0.
A positive program < x̄, ȳ, c̄ > from x is called an Euler program if

u′(c̄t) = δf ′(x̄t)u′(c̄t+1) for t ≥ 1. (7.7)

A program < x, y, c > from x is stationary if xt = xt+1 for t ≥ 0. An Euler
Stationary Program (ESP) from x is a stationary program, which is also an
Euler program. An Optimal Stationary Program (OSP) from x is a stationary
program, which is also an optimal program.

Lemma 7.2.1. (i) If < x∗, y∗, c∗ > is an optimal program from x > 0, then it
is an Euler program. (ii) If < x, y, c; p > is a competitive program from x > 0,
then it is an Euler program, and [f(xt)/xt] ≥ f ′(xt) for t ≥ 0.

Proof. To prove (i), note that by (A.7), c∗t > 0 for t ≥ 1, so (x∗t , y
∗
t+1) >> 0

for t ≥ 0. For each t ≥ 1, the expression u[f(x∗t−1) − x] + δu[f(x) − x∗t+1 is
maximized at x = x∗t among all x ≥ 0 satisfying f(x∗t−1) ≥ x, and f(x) ≥ x∗t+1.
Since the maximum is at the interior point, so u′(c∗t ) = δu′(c∗t+1)f

′(x∗t ) for
t ≥ 1.

To prove (ii), note that by (7.6), pt > 0 for t ≥ 1, and by (7.5), p0 > 0.
Hence by (7.6) ct > 0 for t ≥ 1, and (xt, yt+1) >> 0 for t ≥ 0. Then, using
(7.5), pt+1f

′(xt) = pt for t ≥ 0; while, by (7.6), δt−1u′(ct) = pt for t ≥ 1.
Hence, for t ≥ 1, u′(ct) = δu′(ct+1)f ′(xt). So < x, y, c > is an Euler program.
Also, using (7.5), pt+1f(xt)− pt+1f

′(xt)xt ≥ pt+1f(x)− pt+1f
′(xt)x for t ≥ 0.

So using x = 0 in the above inequality, [f(xt)/xt] ≥ f ′(xt) for t ≥ 0.
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7.3 Characterization of Inefficiency

This section is devoted to finding suitable conditions characterizing the set of
efficient programs. To this end, it is useful to look at the function g(x) defined
by

g(x) = min[h(x), f ′(x)] for x ≥ 0. (7.8)

We associate, with any program < x, y, c > from x > 0, a sequence (qt) given
by

q0 = 1, qt+1 = qt/g(xt) for t ≥ 0. (7.9)

and a sequence (rt) given by

r0 = 1, rt+1 = |rt/f ′(xt)| for t ≥ 0. (7.10)

Theorem 7.3.1. If a program < x, y, c > from x ε (0, k̄) is inefficient, then

∞∑
t=0

(1/qt) <∞. (7.11)

Proof. See Majumdar and Mitra (1982)

Theorem 7.3.2. An interior program < x, y, c > from x ε (0, k̄) is inefficient
if

∞∑
t=0

(1/rt) < ∞ (7.12)

Proof. Follow exactly the method of Cass (1972, pp. 218-220), noting that
concavity of f is nowhere required

Remark 7.3.1. (1) Suppose a program < x, y, c > from x satisfies

lim inf
t→∞ xt > k∗,

then it is inefficient by Theorem 7.3.2. (See Phelps [1965])
(2) If x ≥ k̄, then for a program < x, y, c > from x, either (a) xt < k̄ after

a finite number of periods; or (b) xt ≥ k̄ for all t ≥ 0. Clearly, in case (b),
< x, y, c > is inefficient. Thus, there is no loss of generality in restricting x to
be in (0, k̄), as we have done in Theorems 7.3.1 and 7.3.2.

(3) Cass (1972) established that, in a “classical” model, if an interior pro-
gram < x, y, c > from x ε (0, k̄) is inefficient, then

∞∑
t=0

(1/rt) < ∞. (7.13)
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Note that the method of proof used by Majumdar and Mitra (1982) for
Theorem 7.3.1, can be used in the “classical” model to show that if a program
< x, y, c > from x ε (0, k̄) is inefficient, then (7.13) holds. Thus the method of
proof used in Theorem 7.3.1 is a refinement of the proof used in Cass (1972).

(4) The outstanding contribution to the literature on intertemporal effi-
ciency in the “classical” [convex] environment is that of Malinvaud [1953]. See
Cass and Majumdar (1979) for a review and an extended list of references.

Given Theorems 7.3.1 and 7.3.2, a natural question is whether we can
strengthen either of the theorems to obtain a complete characterization of in-
efficiency. The answer is in the negative, i.e., one can construct an interior
program < x, y, c > from x ε (0, k̄), which is inefficient, and violates (7.12).
Hence the converse of Theorem 7.3.2 is not true. Also one can construct an
interior program < x, y, c > from x ε (0, k̄), which satisfies (7.11) and is effi-
cient. Hence, the converse of Theorem 7.3.1 is not true either (see Majumdar
and Mitra (1982), pp. 112-116 for the examples).

We also note, with an example, that efficient programs are not necessarily
intertemporal profit maximizing, so that the celebrated theorem of Malinvaud
prices in the “classical” model breaks down. Furthermore, it is not known
in this “non-classical” framework, whether efficiency implies some concept of
“value-maximization” relative to an appropriate “price system”.

Example 7.3.1. This example shows that an efficient program need not be
intertemporal profit maximizing. Let x = b1, and consider the sequence
< x, y, c > given by xt = b1 for t ≥ 0. Clearly, < x, y, c > is a program
from x, and by Theorem 7.3.1 it is efficient. We claim it is not IPM. If it were,
then there is a non-null sequence (pt) of non-negative prices, such that (7.5)
holds. Let n be the first period for which pn > 0. Since xn > 0, so pn+1 > 0
[using x = 0, y = f(0) = 0 in (7.5)]. Then (7.5) implies, pn+1f

′(b1) = pn, and
pn+1[f(b1) − f ′(b1)b1] ≥ 0, so f(b1)/b1 ≥ f ′(b1), a contradiction.

7.4 The Ramsey Problem: Undiscounted Utilities

If one wishes to capture the preferences of a Central Planning Board which has
serious commitments to the long run prospects of the economy or has genuine
concerns for the welfare of distant generations, one naturally considers δ to be
1 or very close to 1 in (7.4).

In this section, we study the questions of existence and turnpike properties
of optimal programs, when future utilities are undiscounted; in other words, in
the tradition of Ramsey (1928) we take δ = 1 in (7.4). I rely primarily on the
exposition of Majumdar and Mitra (1982).

Many of the results of the “classical” model continue to hold: (a) there is a
unique ESP, and this is also the (unique) OSP; this program is competitive at a
stationary price sequence; (b) optimal programs exist from every positive initial
input level; they converge monotonically to the optimal stationary program.



7. Non-convex Technology 179

Some results of the “classical” model fail to hold: (a′) in general, it is not
known whether an optimal program from every initial stock is unique; (b′)
optimal programs are not necessarily competitive, and an example is given to
confirm this fact.

I begin with the existence and qualitative properties of Euler and Optimal
Stationary Programs in the first sub-section; non-stationary optimal programs
are examined in the second sub-section.

7.4.1 Stationary Programs: The Golden Rule Equilibrium

Consider the set C = {c : c = f(x) − x, 0 ≤ x ≤ k̄}. Clearly C is compact.
Hence, there is c∗ in C, such that c ≤ c∗ for all c in C. Since 0 < x < k̄ implies
f(x) − x > 0, so c∗ > 0. Associated with c∗ is x∗ such that 0 < x∗ < k̄, and
f(x∗) − x∗ = c∗. Since x∗ maximizes [f(x) − x] over the set {x : 0 ≤ x ≤ k̄},
and the maximum is attained at an interior point,

f ′(x∗) = 1.

Since k∗ is the unique non-negative solution to f ′(x) = 1, so x∗ = k∗, and k∗

is the unique input level, which maximizes c over the set C.
Consider the program from k∗ given by x∗t = k∗, y∗t+1 = f(k∗), c∗t+1 = c∗ =

f(k∗) − k∗, for t ≥ 0. Then < k∗, f(k∗), c∗ > is the unique ESP.
We show, next, that < k∗, f(k∗), c∗ > is an Optimal Stationary Program

from k∗. For this, we need two preliminary results. The first derives a price
p∗ supporting the golden rule triplet [k∗, f(k∗), c∗] in R3

++.

Lemma 7.4.1. There is p∗ > 0, such that

u(c∗) − p∗c∗ ≥ u(c) − p∗c for c ≥ 0; (7.14)

p∗f(k∗) − p∗k∗ ≥ p∗f(x) − p∗x for x ≥ 0. (7.15)

Proof. Denote u′(c∗) by p∗; then p∗ > 0. By concavity of u, we have for c ≥ 0,
u(c) − u(c∗) ≤ u′(c∗)(c − c∗) = p∗(c − c∗). By transposing terms, (7.14) is
verified.

By definition of k∗, f(k∗) − k∗ ≥ f(x) − x for 0 ≤ x ≤ k̄, f(k∗) − k∗ > 0 >
f(x) − x for x > k̄. So for all x ≥ 0, f(k∗) − k∗ ≥ f(x) − x. Multiplying this
inequality by p∗ > 0, yields (7.15).

The golden rule triplet and its supporting price [k∗, f(k∗), c∗, p∗] constitute
the golden rule equilibrium. At any c ≥ 0, define the consumption value loss
at p∗ as

α(c) ≡ [u(c∗) − p∗c∗] − [u(c) − p∗c]

Similarly, at any x ≥ 0 define the loss of intertemporal profit at p∗ as:

β(x) = [p∗f(k∗) − k∗] − [p∗f(x) − p∗x]
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using (7.14) and (7.15) we see that α(c) ≥ 0 for all c ≥ 0 and β(x) ≥ 0 for all
x ≥ 0. Of particular interest in the sequel is the following value loss lemma
[that has appeared in many contexts in intertemporal economics]:

Lemma 7.4.2. Given any θ > 0, there is η > 0, such that if 0 ≤ x ≤ k̄, and
|k∗ − x| ≥ θ then β(x) ≥ η.

Proof. Suppose, on the contrary, there is a sequence (xn) such that 0 ≤ xn ≤ k̄
and |k∗ − xn| ≥ θ, for n = 1, 2, 3, ..., but [p∗f(k∗)−p∗k∗]−[p∗f(xn)−p∗xn] → 0
as n → ∞. Consider a subsequence of (xn) (retain notation) converging to x̂.
Then x̂ is in [0, k̄], and by continuity of f , [p∗f(k∗) − p∗k∗] = [p∗f(x̂) − p∗x̂].
Hence f(x̂) − x̂ = f(k∗) − k∗. Since |k∗ − xn| ≥ θ for each n, |k∗ − x̂| ≥ θ.
But this contradicts the uniqueness property of k∗.

Theorem 7.4.1. The program < k∗, f(k∗), c∗ > is an optimal program from
k∗.

Proof. Suppose on the contrary that there is a program < x, y, c > from k∗, a
scaler α > 0, and a sequence of periods Tn(n = 1, 2, 3, ...), such that

Tn∑
t=1

[u(ct) − u(c∗)] ≥ α for all n. (7.16)

Using Lemma 7.4.1, we have for t ≥ 1, u(ct) − u(c∗) ≤ p∗(ct − c∗) =
p∗ [f(xt−1) − xt] − p∗ [f(k∗) − k∗]

= [p∗f(xt−1)−p∗xt−1]+ [p∗xt−1−p∗xt]−p∗[f(k∗)−k∗] ≤ [p∗xt−1−p∗xt].
Hence, for T ≥ 1, we have:

T∑
t=1

[u(ct) − u(c∗)] ≤
T∑

t=1

[p∗xt−1 − p∗xt] = p∗k∗ − p∗xT . (7.17)

Hence for all n, we have, using (7.16), (7.17),

p∗(k∗ − xTn) ≥ α. (7.18)

This means that (k∗ − xTn) ≥ (α/p∗) for all n, so by Lemma 7.4.2, there is
ε > 0, such that

[p∗f(k∗) − p∗k∗] ≥ [p∗f(xTn) − p∗xTn ] + ε for all n. (7.19)

Using Lemma 7.4.1 again, and (7.19), we have for t = Tn + 1,

u(ct) − u(c∗) ≤ p∗(ct − c∗) = p∗[f(xt−1) − xt] − p∗[f(k∗) − k∗]
= [p∗f(xt−1) − p∗xt−1] − [p∗f(k∗) − p∗k∗]
+ [p∗xt−1 − p∗xt]
≤ [p∗xt−1 − p∗xt] − ε.
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And for t �= Tn + 1, we have by our previous calculations, u(ct) − u(c∗) ≤
[p∗xt−1 − p∗xt]. Hence, for all n,

α ≤
Tn∑
t=1

[u(ct) − u(c∗)] ≤ p∗(k∗ − xTn) − (n− 1)ε

≤ p∗k∗ − (n− 1)ε.

For n large, this is a contradiction. Hence, < k∗, f(k∗), c∗ > is an OSP.

Remark 7.4.1. The program < k∗, f(k∗), c∗ > is the only OSP in this model,
from a positive initial input. For if there were another, say < x, y, c > from
x > 0, then it would be a positive program, and an Euler program. But
< k∗, f(k∗), c∗ > is the only ESP, so < x, y, c > could not be an OSP. In view
of Theorem 7.4.1 one can refer to k∗ as an optimal stationary input.

7.4.2 Non-stationary Programs

We deal with the question of the existence of an optimal program; on the way,
a turnpike theorem is proved.

Estimates of the sums of all value losses along a program can be obtained
from the following lemma with a routine calculation.

Lemma 7.4.3. If < x, y, c > is a program from x > 0 then for any finite
T ≥ 1

T∑
t=1

[u(ct) − u(c∗)] =
T∑

t=1

p∗(ct − c∗) −
T∑

t=1

α(ct)

=
T∑

t=1

[p∗(f(xt−1) − xt−1) − p∗(f(k∗) − k∗)] + p∗x0 − p∗xT (7.20)

= −
[

T∑
t=1

α(ct) +
T−1∑
t=0

β(xt)

]
+ p∗x0 − p∗xT

We call a program < x, y, c > from x, good if there exists M > −∞, such
that

T∑
t=1

[u(ct) − u(c∗)] ≥ M for all T ≥ 1.

It is bad if
T∑

t=1

[u(ct) − u(c∗)] → −∞ as T → ∞.
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Lemma 7.4.4. There exists a good program from every x ε (0, k̄). If a feasible
program from x > 0 is not good, it is bad.

Proof. Consider the pure accumulation program < x1, y1, c1 > from x defined
by: x1

0 = x, x1
t+1 = y1

t+1 = f(x1
t ) for t ≥ 0, so that c1t = 0 for t ≥ 1. It is not

difficult to see that x1
t converges to k̄ as t→ ∞. Since k̄ > k∗, x1

t > k∗ for all
sufficiently large t. Let T be the first period such that x1

T ≥ k∗. Consider the
program < x, y, c > defined by x0 = x. xt = min (x1

t , k
∗), yt+1 = f(xt) and

ct = yt−xt for t ≥ 1. Since ct = c∗ for all t > T , < x, y, c > is a good program
from x. Suppose that < x, y, c > is a program from x > 0 which is not good.
Then given any real number B, there is some T such that

T∑
t=0

[u(ct) − u(c∗)] < B

Using the fact that xt ≤ k̄ for all t ≥ 0 and Lemma 7.4.3, we have for all τ > T

τ∑
t=T+1

[u(ct) − u(c∗)] ≤ p∗k̄

Hence given any real number B, there is some T such that for all τ > T

τ∑
t=1

[u(ct) − u(c∗)] < B + p∗k̄

which shows that it is bad.

Now we are led to the celebrated consumption turnpike theorem:

Theorem 7.4.2. If a feasible program < x, y, c > from x ∈ (0, k̄) is good, then

(xt, yt+1, ct+1) → (k∗, f(k∗), c∗) as t→ ∞.

Proof. Suppose xt does not converge to k∗. Then there is some θ > 0 and a
subsequence of periods for which |xt − k∗| ≥ θ. Using Lemma 7.4.2 there is
some β > 0 such that β(xt) ≥ β for this subsequence of periods. Now using
Lemma 7.4.3, it follows that < x, y, c > is not good. Thus, xt → k∗ as t→ ∞;
consequently, continuity of f gives us yt = f(xt−1) → f (k∗), and finally, as
t→ ∞,

ct = f(xt−1) − xt → f(k∗) − k∗ = c∗.

We now establish a convergence property of an appropriately normalized
sum of utilities generated by good programs.

Lemma 7.4.5. If < x, y, c > is a good program from x ∈ (0, k̄), then

lim
T→∞

T∑
t=1

[u(ct) − u(c∗)] exists.
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Proof. Since < x, y, c > from x is good, there is a real number B such that for
all T ≥ 0

T∑
t=1

[u(ct) − u(c∗)] ≥ B

Using Lemma 7.4.3 we get

−
[

T∑
t=1

α(ct) +
T−1∑
t=0

β(xt)

]
+ p∗(x0 − xT ) ≥ B

or,
T∑

t=1

α(ct) +
T−1∑
t=0

β(xt) ≤ p∗xT − p∗x0 −B

Since xT ≤ k̄, we have

T∑
t=1

α(ct) +
T−1∑
t=0

β(xt) ≤ p∗(k̄ − x0) −B

Since α(ct) ≥ 0 for all t ≥ 1 and β(xt) ≥ 0 for all t ≥ 0, we see that

L(x, y, c) = lim
T→∞

[
T∑

t=1

α(ct) +
T−1∑
t=0

β(xt)

]

exists. Now, going back to (7.20), we see that as T → ∞, xT → k∗, and the
right side has a limit. Hence,

lim
T→∞

∑T
t=0[u(ct) − u(c∗)] = p∗(x0 − k∗) − L(x, y, c)

Finally, we settle the question of existence of optimal programs by proving:

Theorem 7.4.3. There exists an optimal program from every x ε (0, k̄).

Proof. Write L(x) = inf[L < x, y, c >: < x, y, c > is a good program from x].
Take a sequence < xn, yn, cn > of good programs from x such that

L < xn, yn, cn > ≤ L(x) +
1
n
.

Recall that k̂ = max(x, k̄) and for any program < x, y, c > from x one has
sup
t
xt ≤ k̂, sup

t
yt ≤ k̂ and sup

t
ct ≤ k̂. Hence, using the continuity of f , and

a diagonalization argument there is a program < x∗, y∗, c∗ > from x and a
subsequence (retain notation) such that for each t ≥ 0, as n→ ∞

(xn
t , y

n
t+1, c

n
t+1) → (x∗t , y

∗
t+1, c

∗
t+1).

Using Lemma 7.4.3 one can show that < x∗, y∗, c∗ > is a good program. We
claim that:
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L < x∗, y∗, c∗ >= L(x)

If this claim is false, then we can find a positive integer T and some ε > 0 such
that

T∑
t=1

α(c∗t ) +
T−1∑
t=0

β(x∗t ) ≥ L(x) + ε

But continuity of f and u imply that there is some n̄ > 0 such that for all
n ≥ n̄

T∑
t=1

α(cn̄t ) +
T−1∑
t=0

β(xn̄
t ) ≥ L(x) +

ε

2

But this implies that for all n ≥ n̄

L < xn, yn, cn >≥ L(x) +
ε

2

and we have a contradiction for n > max (n̄, 2/ε). This establishes the claim.
The optimality of < x∗, y∗, c∗ > is obvious.

Since there exists a good program, any optimal program is necessarily
good. Consequently, by Lemma 7.4.5, every optimal program < x, y, c > from
x ε (0, k̄) has the property that (xt, yt+1, ct+1) → (k∗, f(k∗), c∗) as t → ∞.
Furthermore, if x = k∗, then < k∗, f(k∗), c∗ > itself is an optimal program by
Theorem 7.4.1. If x < k∗, then an optimal program < x, y, c > from x has
(xt, yt+1, ct+1) monotonically increasing for all t ≥ 0, and (xt, yt+1, ct+1) ≤
(k∗, f(k∗), c∗) for all t ≥ 0. [This assertion, and the next, follow directly from
the argument used in Theorem 7.5.5 of the next section, so we omit the proof
here]. Similarly, if x > k∗, then an optimal program < x, y, c > from x has
(xt, yt+1, ct+1) monotonically decreasing for all t ≥ 0, and (xt, yt+1, ct+1) ≥
(k∗, f(k∗), c∗) for all t ≥ 0.

We now briefly discuss the differences between the “classical” and “non-
classical” models, in the analysis of the problem of undiscounted optimality. It
is fairly easy to check that for x ≥ b2, every optimal program is unique. But
for x < b2, it is not known whether the result is true; we believe it is not, and
a concrete example would be helpful. Certainly, the standard argument, used
in the “classical” model does not go through.

Optimal programs from x ≥ b2 can be shown to be competitive; but those
from x < b2 are, in general, not. Consider, for example, x > 0, such that x <
f−1(b1). Consider an optimal program < x, y, c > from x. If it is competitive
there is a sequence (p∗t ) of non-negative prices such that (7.5), (7.6) hold. Now,
by (7.6), p∗t > 0 for t ≥ 1, and by (7.5), p∗0 > 0 also. Also, by (7.5), since
u′(0) = ∞, ct > 0 for t ≥ 1, so (xt, yt+1) >> 0 for t ≥ 0. Using (7.5), then
p∗t+1f

′(xt) = p∗t , so that we have

p∗t+1f(xt) − p∗t+1f
′(xt)xt ≥ p∗t+1f(x) − p∗t+1f

′(xt)x for x ≥ 0

or
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f(xt) − f ′(xt)xt ≥ f(x) − f ′(xt)x for x ≥ 0.

Using x = 0 in the above inequality, [f(xt)/xt] ≥ f ′(xt). Since x < f−1(b1),
so x1 ≤ f(x) < b1, and [f(x1)/x1] < f ′(x1), a contradiction.

7.5 Mild Discounting: Comparative Dynamics and
Stability

We turn to discounting. The reader interested in models with discounting
has to turn to Skiba (1978), Majumdar and Nermuth (1982), Dechert and
Nishimura (1983), Mitra and Ray (1984) and Majumdar, Mitra and Nyarko
(1989). Note, first, that if the discount factor δ is “small”, the results on ESP
and OSP that we reviewed above no longer hold. To be precise, suppose δ is
such that δf ′(b1) < 1. Hence, for all x ≥ 0, δf ′(x) ≤ δf ′(b1) < 1. Consequently
if < x, y, c > is any Euler program

u′(ct) = δf ′(xt)u′(ct+1)

which means that “u′(ct) < u′(ct+1)” leading to ct > ct+1. Hence that is no
ESP, and by Lemma 7.2.1 no OSP and no stationary program that is compet-
itive. Indeed, any optimal < x∗, y∗, c∗ > from any x ε (0, k̄) has the property
that the sequence (x∗t ), (y∗t+1) (c∗t ) are all monotone decreasing, and

lim
t→∞x

∗
t = 0, lim

t→∞y
∗
t+1 = 0, lim

t→∞c
∗
t+1 = 0

Leaving the ‘intermediate’ range of discounting for the next section, we shall
review some results on optimal allocation when the discount factor δ < 1 is
‘not too small’. More precisely, in this subsection we assume

(A.8) 1 > δ > [1/f ′(0)]
We first deal with the question of the existence of an OSP. Next we turn

to non-stationary programs and their stability properties. On the way we note
an important result on comparative dynamics of optimal programs.

7.5.1 The Modified Golden Rule

In this case there is a unique positive solution to the equation δf ′(x) = 1. Call
this K∗

δ . Surely, k∗ > K∗
δ > k2. Hence there is a unique ESP defined by

xt = K∗
δ , yt+1 = f(K∗

δ ) ct+1 = f(K∗
δ ) −K∗

δ for t ≥ 0 (7.21)

We shall first show that this program is competitive. To this end, define pt =
δt−1u′(ct) for t ≥ 1, and p0 = p1f

′(K∗
δ ). Then, by concavity of u, we have

δt−1u(c)−δt−1u(ct) ≤ δt−1u′(ct)(c−ct) = pt(c−ct), which yields (7.6). Define
φ(x) = [f(b2)/b2]x for 0 ≤ x ≤ b2, and φ(x) = f(x) for x ≥ b2. Then φ(0) = 0;
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φ is an increasing concave differentiable function for x ≥ 0. Also φ(x) ≥ f(x)
for x ≥ 0. Hence, for x ≥ 0, we have

pt+1[f(x) − f(xt)] ≤ pt+1[φ(x) − φ(xt)]
≤ pt+1φ

′(xt)[x− xt] = pt+1f
′(xt)[x− xt],

since

φ′(xt) = φ′(K∗
δ ) = f ′(K∗

δ ) = f ′(xt) for t ≥ 0.

Hence,

pt+1f(x) − pt+1f
′(xt)x ≤ pt+1f(xt) − pt+1f

′(xt)xt.

Using the fact that

pt+1f
′(xt) = δtu′(ct+1)f ′(xt) = δt−1u′(ct+1)[δf ′(xt)]

= δt−1u′(ct)δf ′(K∗
δ )] = δt−1u′(ct) = pt, for t ≥ 1,

and

p1f
′(x0) = p1f

′(K∗
δ ) = p0

we have

pt+1f(x) − ptx ≤ pt+1f(xt) − p1xt for t ≥ 0,

which is (7.5).
Note that < x, y, c > is competitive at the above defined price sequence (pt);

also, ptxt = δt−1u′(ct)xt = δt−1u′[f(K∗
δ ) − K∗

δ ]K∗
δ , so that limt→∞ptxt = 0.

Hence, by a completely standard argument, < x, y, c > is an optimal program
from K∗

δ . So < x, y, c > is an OSP. By Lemma 7.2.1, it is the unique compet-
itive program and the unique OSP. To summarize: the modified golden rule
triplet (K∗

δ , f(K∗
δ ), f(K∗

δ )−K∗
δ ) defines a competitive program at the support

prices pt = δt−1u′[f(K∗
δ ) −K∗

δ ]. Moreover we have the following:

Theorem 7.5.1. The stationary program from K∗
δ defined by (7.21) is the

unique OSP.

7.5.2 Non-stationary Programs

The existence of an optimal program can be settled by a direct compactness ar-
gument [Majumdar (1975)]. But it is useful to set up the optimization problem
in the framework of dynamic programming. With k̄ = f(k̄), think of S = [0, k̄]
as the state space and A = [0, 1] as the action space. At the beginning of each
period t ≥ 1, the planner observes the state: total stock y ε S, and chooses an
action: a fraction a ε [0, 1]. This determines the input x in period t as x = ay,
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and the consumption c = (1 − a)y. The immediate return is then u(c), and
the system moves to the state f = f(ay) which is observed in the next period
[′′f ′′ is the law of motion], and the story is repeated.

A policy is a sequence π
˜

= (πt)∞t=1 of functions where πt specifies the

action in the t-th period as a function of the entire previous history ηt =
(y1.....at−1, yt) of the system by associating with each ηt an element at of A.
Hence, a policy defines a program < x, y, c > from y1 [or, from the unique
x = x0 such that f(x) = y1]. Any function g : S → A defines a policy: when-
ever observe y, choose a = g(y), independently of the evolution of the states
and actions leading to y. The corresponding π

˜
= (g(∞)) is a stationary pol-

icy. Each policy π
˜
determines the total value Vπ

˜
(y) ≡ ∑∞

t=1 δ
t−1u(ct) where

ct is the consumption generated by the action that πt specifies. A policy π
˜

∗ is

optimal if Vπ
˜
∗(y) ≥ Vπ

˜
(y) for all y ε S.

The following is the basic result from the dynamic programming literature.

Theorem 7.5.2. There is an optimal stationary policy π
˜

∗ = (ĥ(∞)) where

ĥ : S → A. The value function Vπ∗
˜

defined by π
˜

∗ is continuous and satisfies

the functional equation

Vπ∗
˜

(y) ≡ max
aεA

[u[(1 − a)y] + δV f(a y)]

≡ u(y − ĥ(y) · y) + δV f(ĥ(y) · y)

Call h(y) ≡ ĥ(y) · y an optimal investment function and the corresponding
c(y) ≡ [1 − ĥ(y)]y an optimal consumption policy function. The optimal pro-
gram (x∗, y∗, c∗) from y∗1 > 0 (strictly, from x ≡ f−1(y∗1)) that π∗

˜
generates is

a positive Euler program.
Suppose y′ > y′′ and (x

′
t)t≥1 and (x′′t )t≥1 are two optimal input programs

from y′ and y′′ respectively, i.e.,

x
′
1 < y

′
, 0 < x

′
t < f(x

′
t−1) ≡ y

′
t for t � 2

x
′′
1 < y′′, 0 < x

′′
t < f(x

′′
t−1) ≡ y

′′
t for t � 2

The corresponding optimal consumption programs are respectively deter-
mined by: c

′
t = y

′
t − x

′
t for t ≥ 1, and c

′′
t = y

′′
t − x

′′
t for t ≥ 1.

We shall repeatedly use the following property: if (xt, yt, ct)t≥1 is optimal
from y1 > 0 so is (xt, yt, ct)t≥T from yT > 0 for any T ≥ 2.

Theorem 7.5.3. Let y′ > y′′. Suppose that (x
′
t)t≥1 and (x

′′
t )t≥1 are optimal

input programs from y′ and y′′ respectively. Then x
′
1 ≥ x

′′
1 .
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Proof. Suppose that x
′
1 < x

′′
1 . Consider two sequences (x̄

′
t)t≥1 and (x̄

′′
t )t≥1

defined as follows: x̄
′
t = x

′′
t for t ≥ 1; x̄

′′
t = x

′
t for t ≥ 1. Note

that (x̄
′
t) is an input program from y′: x̄

′
1 = x

′′
1 < y′′ < y′. Also, x̄

′
t = x

′′
t <

f(x
′′
t−1) = f(x̄

′
t−1) for t ≥ 2. Similarly, (x̄

′′
t ) is an input program from y′′:

x̄
′′
1 = x

′
1 < x

′′
1 < y′′. Also x̄

′′
t = x

′
t < f(x

′
t−1) = f(x̄

′′
t−1) for t ≥ 2. Write

c̄
′
1 = y′ − x̄

′
1, c̄

′′
1 = y′′ − x̄

′′
1 . From the optimality of (x

′
t)t≥1 and (x

′′
t )t≥1 we

get:
u(c

′
1) + δV [f(x

′
1)] ≥ u(c̄

′
1) + δV [f(x

′′
1 )] (7.22)

u(c
′′
1 ) + δV [f(x

′′
1 )] ≥ u(c̄

′′
1 ) + δV [f(x

′
1)] (7.23)

Adding up (7.22) and (7.23)

u(c
′
t) + u(c

′′
1 ) ≥ u(c̄

′
1) + u(c̄

′′
1 ) (7.24)

Now,
c̄
′
1 = y′ − x̄

′
1 > y′′ − x

′′
1 = c

′′
1

c̄
′
1 = y′ − x̄

′
1 = y′ − x

′′
1 < y′ − x

′
1 = c

′
1

Hence, there is some θ, 0 < θ < 1, such that

c̄
′
1 = θc

′′
1 + (1 − θ)c

′
1

Note that c̄
′
1 + c̄

′′
1 = c

′
1 + c

′′
1 . Hence, c̄

′
1 = c

′
1 + c1 − c̄

′
1 = (1 − θ)c

′′
1 + θc

′
1. By

the strict concavity of u, we get

u(c̄
′
1) > θu(c1) + (1 − θ)u(c

′
t) (7.25)

u(c̄1) > (1 − θ)u(c1) + θu(c
′
1) (7.26)

Adding up (7.25) and (7.26)

u(c̄
′
1) + u(c̄

′′
1 ) > u(c

′
1) + u(c

′′
1 ) (7.27)

From (7.24) and (7.27) we have a contradiction.

Recall that h(y) is an optimal investment policy function, and c(y) ≡
y − h(y) is the corresponding optimal consumption policy function.

Theorem 7.5.4. h is strictly increasing, i.e. “y′ > y′′” implies “h(y′) >
h(y′′)”.

Proof. Suppose h(y′) = h(y′′). From Theorem 7.5.3, for all y ε [y′, y′′], h(y) =
h(y′) = h(y′′) = h∗, say, the Euler condition can be stated as:

u′(c(y)) = δf ′(h(y))h′(c(f(h(y)))) (7.28)

For all y ε [y′, y′′], the right side of (7.28) is clearly some constant, say, m∗

where m∗ = δf ′(h∗)u′(c(f(h∗))). But u being strictly concave, from (7.28) we
conclude that for all y ε [y′, y′′], c(y) = c∗, where u′(c∗) = m∗. But this means
that for all y ε [y′, y′′], c∗ +m∗ = y a contradiction.
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With these two theorems, it is easy to derive some decisive results on com-
parative dynamics and global stability. First, we have a ‘non-crossing’ lemma:

Lemma 7.5.1. Let x > x′, and π
˜

= (ĥ(∞)) be a stationary optimal policy.

Consider the optimal input programs x∗t (x) and x∗t (x
′) generated by the optimal

investment policy function h(y) ≡ ĥ(y) · y. Then for all t � 1,

x∗t (x) > x∗t (x
′) (7.29)

It follows that:
y∗t (x) > y∗t (x′) for t ≥ 1 (7.30)

Proof. Verify (7.29) for t = 1:

x > x′ implies f(x) > f(x′).

Hence, h[f(x)] > h[f(x′)] or, x∗1(x) > x∗1(x
′) and use an induction argument.

Now we get the monotonicity property displayed by an optimal program.
Again, let h be an optimal policy function. Take any x > 0 and consider the
three possibilities: [where y1 = f(x)]: (i) h(y1) > x; (ii) h(y1) = x; (iii) h(y1) <
x. Only case (1) needs to be discussed in any detail: y2 = f [h(y1)] > f(x) = y1.
Hence h(y2) > h(y1) leading to y3 = f [h(y2)] > f [h(y1)] = y2. Repeating this
argument we get:

yt+1 > yt for all t � 1.

Similar arguments establish that in case (ii), yt+1 = yt for all t ≥ 1; and, in
case (iii) yt+1 < yt for all t ≥ 1.

The steps towards the result on global stability are relatively simple. Con-
sider the modified golden rule program < K∗

δ , f(K∗
δ ), f(K∗

δ ) −K∗
δ > : it is the

optimal program from K∗
δ . Let h be an optimal investment policy function.

Then for any x < K∗
δ , the optimal input program (x∗t )t≥1 generated by h is

monotone and satisfies (a) x∗t < Kδ for all t ≥ 1 (b) (x∗t ) is increasing (with
x∗0 = x).

To show (b) suppose (x∗t ) satisfies x∗t+1 < x∗t . It must converge to some
x̂ ≥ 0. If x̂ > 0, then 0 < x̂ < x0 < K∗

δ < k̄ and in the limit ĉ = f(x̂) − x̂ > 0
and using the Euler condition (7.7) and taking the limit, we set

δf ′(x̂) = 1

This contradicts the uniqueness property of K∗
δ > 0. On the other hand, if

x̂ = 0, since δf ′(0) > 1, let T be the first period such that δf ′(x∗t ) ≥ 1 for all
t ≥ T . Then using (7.7) for t ≥ T we get:

u′(c∗t ) = δf ′(x∗t )u
′(c∗t+1) for all t ≥ T.

This readily leads to c∗t < c∗t+1 for t ≥ T . Hence, if xt → 0 (so that f(xt) → 0)
we arrive at a contradiction for a sufficiently large t.
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Clearly for any x < K∗
δ , the optimal input program (x∗t )t≥1 being monotone

increasing must converge to some x < x̂ ≤ K∗
δ . Again, by using the Euler

condition (7.7) and taking limits, we have x̂ = K∗
δ , by uniqueness of K∗

δ . To
summarize complete the proof of x > K∗

δ :

Theorem 7.5.5. If y′′ > y′, x∗t (y
′′) > x∗t (y

′) for all t ≥ 1. Hence, if x < K∗
δ ,

an optimal input program (x∗t )t≥1 from x satisfies x∗t+1 > x∗t for t ≥ 1 and
limt→∞ x∗t = K∗

δ . If x > K∗
δ , an optimal input program (x∗t )t≥1 from x

satisfies x∗t+1 ≤ x∗t for t ≥ 1 and limt→∞ x∗t = K∗
δ .

7.6 Discounting: The Linear Utility Function

We now touch upon the “intermediate” case of discounting, in the context of a
linear utility function, i.e., u(c) = c, and refer to Majumdar and Mitra (1980,
1983) for complete proofs. A program< x∗, y∗, c∗ > from x > 0 is then optimal
if ∞∑

t=1

δt−1c∗t ≥
∞∑

t=1

δt−1ct (7.31)

for all programs< x, y, c > from x > 0. Recall that for any program< x, y, c >
from x > 0, we have for all t ≥ 0, ct+1 ≤ k̂ where k̂ = max(x, k̄). Hence, by
using Majumdar (1975, Theorem 1), one asserts that there exists an optimal
program from any initial x > 0. However, when the utility function is linear,
an optimal program need not be positive; hence a ‘routine’ application of many
of the arguments in Sections 7.4,7.5 is not admissible.

The program < x, y, c > from x > 0 defined as x0 = x, xt = 0 for t � 1 is
the extinction program from x > 0. Here, the entire output f(x) is consumed
in period one, i.e., c1 = f(x).

7.6.1 An Alternative Interpretation: A Competitive Fishery

An alternative interpretation of the model is that of a competitive fishery (see
Clark (1976) Chapter 7). According to this interpretation, xt is the stock of
fish in period t; the function f is the biological reproduction relationship or
the “stock recruitment” function. The sequence < c >= (ct) is the sequence
of “harvests”. Let the profit per unit of harvesting, denoted by q > 0 and the
rate of interest γ > 0 remain constant over time. Consider a firm which has
an objective of maximizing the discounted sum of profits from harvesting. A
program < x∗ > = (x∗t ) of stocks from x > 0 is optimal if

∞∑
t=1

[
q

(1 + γ)t−1

]
c∗t ≥

∞∑
t=1

[
q

(1 + γ)(t−1

]
ct

for every program < x > from x. This is exactly the problem posed above if
we set δ = 1/(1+γ). Models of this type have been used to discuss the possible
conflict between profit-maximization and conservation of natural resources (see,
e.g. Clark (1971), Spence (1975) and Dasgupta-Heal (1979, Chapter V)).
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7.6.2 Characterization of Optimal Programs

In the qualitative analysis of optimal programs, the roots of the equation
δf ′(x) = 1 play an important role. This equation might not have a non-
negative real root at all; if it has a unique non-negative real root, denote it by
Z; if it has two non-negative real roots, the smaller one is denoted by z the
larger by Z.

The qualitative behavior of optimal programs depends on the value of δ, the
discount factor. Three cases need to be distinguished. The first two were ana-
lyzed (and, interpreted in the context of a model of profit maximizing fishery)
by Clark (1971).

Strong Discounting: δf ′(b2) ≤ 1. This is the case when δ is “sufficiently
small” (δ ≤ 1/[f ′(b2)] - in the fishery example, 1 + γ ≥ f(x)/x for all x > 0).

Theorem 7.6.1. The extinction program is optimal from any x > 0, and is
the unique optimal program if δf ′(b̂2) < 1.

Remark 7.6.1. First, if δf ′(b2) = 1, there are many optimal programs [see
Majumdar and Mitra (1983 p. 146)]. Secondly, if we consider the “classical”
model [satisfying (A.1) - (A.4) and (A.5′)], it is still true that δf ′(0) ≤ 1, the
extinction program is the unique optimal program from any x > 0.

Mild Discounting δf ′(0) ≥ 1. This is the case where δ is “sufficiently close
to 1” (δ ≥ 1/f ′(0)), and Z > b2 exists (if z exists z = 0).

Now, given x < Z, let M be the smallest positive integer such that x1
M ≥ Z

in other words, M is the first period in which the pure accumulation program
from x (defined in the proof of Lemma 7.4.4) attains Z.

Theorem 7.6.2. If x ≥ Z, then the program < x∗, y∗, c∗ > from x generated
by x∗0 = x, x∗t = Z for t ≥ 1 is the unique optimal program from x.

Theorem 7.6.3. If x < Z, the program < x∗, y∗, c∗ > generated by x∗0 = x,
x∗t = x1

t for t = 1, ...,M − 1, x∗t = Z for t ≥ M is the unique optimal program.

In the corresponding “classical” model of δf ′(0) > 1, there is a unique
positive K∗

δ solving δf ′(x) = 1. Theorems 7.6.2 and 7.6.3 continue to hold
with Z replaced by K∗

δ (also in the definition of M).

Two Turnpikes and the Critical Point of Departure [(δf ′(0) < 1 <
δf ′(b2)]. In case (a) the program < x, y, c > generated by xt = 0 for all t ≥ 0
(b) the Optimal Stationary Program generated by xt = Z for all t ≥ 0 serve as
the “turnpike” approached by the optimal programs. Both the classical and
non-classical models share the feature that the long run behavior of optimal
programs is independent of the positive initial stock. The “intermediate” case
of discounting, namely when

1/f ′(b2) < δ < 1/f ′(0)
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turned out to be difficult and to offer a sharp contrast between the classical
and non-classical models. In this case

0 < z < b1 < b2 < Z < k∗

The qualitative properties of optimal programs, are summarized in two steps.

Theorem 7.6.4. If x ≥Z, the program < x∗, y∗, c∗ > generated by x∗0 = x,
x∗t = Z for t ≥ 1 is optimal.

A program < x, y, c > from x < Z is a regeneration program if there is
some positive integer N ≥ 1 such that xt > xt−1 for 1 ≤ t ≤ N , and xt = Z
for t ≥ N . It should be stresses that a regeneration program may allow for
positive consumption in all period, and need not specify “pure accumulation”
in the initial periods. For an interesting example of a regeneration program
that allows for positive-consumption and is optimal, the reader is referred to
Clark (1971, p. 259).

Theorem 7.6.5. Let x < Z. There is a critical stock Kc > 0 such that if 0 < x
< Kc, the extinction program from x is an optimal program. If Kc < x < Z,
then any optimal program is a regeneration program.

In the literature on renewable resources, Kc is naturally called the “mini-
mum safe standard of conservation” (Clark (1971)). It has been argued that
a policy that prohibits harvesting of a fishery the till stock exceeds Kc will
ensure that the fisery will not become extinct, even under pure “economic ex-
ploitation”.

Some conditions on x can be identified under which there is a unique optimal
program. But if x = Kc, then the extinction program and a regeneration
program are both optimal.

7.7 A Multi-sector Non-convex Economy:
The Undiscounted Case

In this section I turn to a model of an economy with many (n) goods, and
sketch the principal results due to Mitra (1992) on the problem of optimal
accumulation in the undiscounted case. Here the technology set Ω is a subset
of Rn

+ ×Rn
+. A pair (x, y) is in Ω if the output vector y is producible in period

t + 1 from the input vector x in period t(≥ 0). A production program from
x εRn

+ is a sequence (xt, yt+1) such that x0 = x, (xt, yt+1) εΩ for t ≥ 0, yt ≥ xt

for t ≥ 1. It generates a consumption program (ct) defined by ct = yt − xt

for t ≥ 1. Let w : Rn
+ → R be the utility function. As before, a program

(x∗t , y∗t+1, c
∗
t+1) from x is optimal if

lim sup
T→∞

T∑
t=0

[w(ct) − w(c∗t )] ≤ 0



7. Non-convex Technology 193

for all programs (xt, yt+1, ct+1) from x.
Some of standard assumptions on the technology Ω are:
(T.1) (0, 0) εΩ; “(0, y) εΩ” implies “y = 0”.
(T.2) (x, y) εΩ, “x′ ≥ x, 0 ≤ y′ ≤ y” implies “(x′, y′) εΩ”.
(T.3) Ω is closed.
(T.4) There is C > 0 such that “(x, y) εΩ, ‖x‖ > C” implies “‖y‖ <

‖x‖”.
(T.5) There is (x̄, ȳ) εΩ with ȳ >> x̄.
These enable us to establish a useful boundedness property: if < x, y, c >

is a program from x, then for all t ≥ 0, ‖yt‖ ≤ max[‖x‖ , C].
To begin with, assume that the one period return function w satisfies:
(W.1) w is continuous and concave on Rn

+.
(W.2) If c′ ≥ c ≥ 0, then w(c′) ≥ w(c); if c′ >> c, then w(c′) > w(c).
The principal objective and accomplishment of Mitra’s paper is to identify

a particular property of Ω that admits non-convexity and still allows one to
extend the basic result on the existence of an optimal program (Theorem 7.4.3)
and the turnpike theorem (Theorem 7.4.2). Interestingly enough the overall
strategy of proof remains the same as the one I outlined in Section 7.4 [see the
comments in Majumdar and Peleg (1992) on Mitra’s paper]. Hence, I shall
only indicate in some detail the point of departure of this chain of reasoning: a
set of assumptions that guarantees the existence of a golden rule equilibrium.

A pair (x̂, ŷ) in Ω is a golden rule if ŷ ≥ x̂ and w(ŷ − x̂) ≥ w(y − x) for
all (x, y) in Ω satisfying y ≥ x. If (x̂, ŷ) is a golden rule and if there is p̂ ε Rn

+

such that
w(ŷ − x̂) − p̂(ŷ − x̂) ≥ w(c) − p̂c for all c εRn

+

p̂(ŷ − x̂) ≥ p̂(y − x) for all (x, y) εΩ

then p̂ is a price support of (x̂, ŷ), and the triplet (x̂, ŷ, p̂) is a golden rule
equilibrium.

Consider the set A = {(x, y) εΩ : y ≥ x}. Then A is (non-empty) compact.
Hence B = {c : c = y − x, (x, y) εA}, is also (non-empty) compact. It follows
that there is some (x̂, ŷ) which is a golden rule and w(ŷ− x̂) ≥ w(ȳ− x̄) > w(0).
To prove the existence of a golden rule equilibrium, additional assumptions on
Ω and w are introduced. The technology set Ω is quasi-star shaped with respect
to some golden rule (x̂, ŷ) if “(x, y) εΩ” implies that there is some λ(x, y) ε(0, 1]
such that for 0 < λ < λ(x, y), (λx + (1 − λ)x̂, λy + (1 − λ)ŷ) is in Ω. Make
two additional assumptions:

(T.6) [condition QS on Ω] The technology set Ω is quasi star-shaped
with respect to some golden rule (x̂, ŷ), and ŷ >> x̂.

and
(W.3) [condition S on w] The utility function w is twice continuously

differentiable on Rn
++.

We can then show:

Lemma 7.7.1. Under assumptions (T.1) - (T.6), (W.1) - (W.3) there is
p̂ ε Rn

+ such that (x̂, ŷ, p̂) is a golden rule equilibrium.
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A slight strengthening of (T.6) has some strong implications. We say that
the technology set Ω is strictly quasi-star shaped with respect to some golden
rule (x̂, ŷ) if “(x, y) εΩ, (x, y) �= (x̂, ŷ)” implies that there is 0 < λ(x, y) ≤
1 such that for 0 < λ < λ(x, y), we have (λx(1 − λ)x̂, y′) εΩ with y′ >>
λy + (1 − λ)ŷ. Two remarks are in order. If Ω is strictly quasi-star shaped
with respect to some golden rule (x̂, ŷ), then (x̂, ŷ) is the only golden rule.
Secondly, the technology set Ω defined through the production function of
Section 7.4 is strictly quasi-star shaped at the unique golden rule input-output
pair (k∗, f(k∗)) in Section 7.4.1.

Define the stationary program (xt, yt+1) = (x̂, ŷ) for all t ≥ 0. It generates
a stationary consumption program (ct = ĉ = ŷ − x̂). Clearly, w(ĉ) > w(0).

As in Section 7.4, one introduces the notion of good programs: a program
(xt, yt+1)t≥0 from x is good if there is some finite M such that

T∑
t=1

[w(ct) − w(ĉ)] ≥ M for all T ≥ 1

One can prove the ‘turnpike property’ of good programs.

Lemma 7.7.2. If (xt, yt+1)t≥0 is a good program from x, then

(xt, yt+1) → (x̂, ŷ) as t→ ∞

The proof rests on a multi-sector version of the value-loss lemma of Section
7.4 (Lemma 7.4.2). See Mitra (1992, Proposition 8.1 and Lemma 8.2) for
details.

Next, the existence of a good program is addressed to:

Lemma 7.7.3. Assume that the golden rule pair (x̂, ŷ) has the following prop-
erty: for every 0 < λ < 1, there exists yλ >> x̂ such that the line-segment
[(λx̂, λyλ), (x̂, yλ)] is contained in Ω.

Then there is a good program from every x >> 0.

For a proof see Majumdar and Peleg (1992).
The final two results on the existence of an optimal program and the “turn-

pike” property are now stated (under the assumptions that guarantee Lemma
7.7.1-7.7.3).

Theorem 7.7.1. The stationary program

xt = x̂, yt+1 = ŷ, ct+1 = ĉ for t ≥ 0

is the optimal stationary program from x̂.

Theorem 7.7.2. For any x >> 0, there is an optimal program (x∗t , y∗t+1) from
x. Since the optimal program is good,

(x∗t , y
∗
t+1) → (x̂, ŷ) as t→ ∞.
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7.8 Optimal Allocation in a Small Open Economy

7.8.1 A Small Open Economy with Non-convexity

A few papers have dealt with the optimal allocation problem for a small open
economy, in which a particular sector has an S-shaped technology. The pat-
terns of trade and the process of capital accumulation can be worked out, and
contrasted with “classical” models. In this section I briefly recall somewhat
informally the main conclusions of Majumdar and Mitra (1995) after outlining
the formal model.

The optimization problem is described by (f,G, δ, u,k, p) where f and g are
functions from R+ → R+, 0 < δ < 1, u(c) = c1−ν [where 0 < ν < 1], k > 0
and p > 0. The technology of the “capital” or “investment” good sector of our
economy is described by the production function f : R+ → R+ satisfying
(T.1) f(0) = 0, f is twice continuously differentiable on R+, with f ′(x) > 0 for
x ≥ 0.
(T.2) f satisfies the end-point conditions: limx→∞ f ′(x) = 0, limx→0 f

′(x) > 1.
(T.3) There is a (finite) b1 > 0 such that f ′′(x) < 0 for x > b1.

The technology of the “consumptions good” sector is described by G, and
assume simply that
(T.4) G(x) = αx for some α > 0.

The economy is “small”: it faces a fixed “world” or international prices for
the two goods, and p > 0 denotes the relative (international or world) price
of the investment good (in terms of the consumption good) assumed constant
over time.

A program from k > 0 is a non-negative sequence (kt, xt, ct+1)t≥0 such that

k0 = k, 0 ≤ xt ≤ kt for t ≥ 0
ct+1 ≥ 0

p kt+1 + ct+1 = pf(xt) +G(kt − xt) for t ≥ 0

Define an autarkic program from k as a program from k which satisfies

ct+1 = G(kt − xt) for t ≥ 0

A program (k∗t , x
∗
t+1, c

∗
t+1) from k > 0 is optimal if

∞∑
t=1

δt−1u(c∗t ) ≥
∞∑

t=1

δt−1u(ct)

for all programs (kt, xt, ct+1) from k > 0. Similarly an autarkic program
(k̃t, x̃t, c̃t+1) from k > 0 is an optimal autarkic program if

∞∑
t=1

δt−1u(c̃t) ≥
∞∑

t=1

δt−1u(ct)

for every autarkic program (kt, xt, ct+1)t≥0 from k.
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7.8.2 Interpretation

The economy has an initial capital stock k. For simplicity of analysis, it is
assumed that the capital good depreciates fully within one period. So k is
allocated [as an input] between the two sectors: x0 ≥ 0 being the capital good
used in the investment good sector, and (k0 − x0) ≥ 0 the capital good used in
the consumption good sector. As a result, the pair (f(x0), α(k0−x0)) describes
the stocks of two goods in period 1. At the international prices, the income i1
in period 1 is defined by:

i1 ≡ p f(x0) + α(k0 − x0) (7.32)

This income is spent on acquiring any non-negative quantities (k1, c1) of the
two goods satisfying the constraint

p k1 + c1 = i1 (7.33)

Of course, if k1 > f(x0), the country is a net importer of the capital good
whereas if k1 < f(x0) is a net exporter of that good. Similarly the choice of
c1 determines whether the consumption good is exported or imported. And
writing (7.32) and (7.33) as:

p[k1 − f(x0)] + [c1 − α(k0 − x0)] = 0 (7.34)

one notes the balance of trade condition: the value of exports must equal the
value of imports in every period.

The consumption good generates a utility u(c1) ≡ c1−ν
1 , and the capital

good k1 must be allocated between the two sectors: this allocation in period 1
determines the domestic productions of the two goods, as well as the income
i2 in the subsequent period 2, and the story is repeated.

Thus, a program is a complete specification of the sequence of decisions
on the allocation (xt, kt − xt) of the available capital kt between two sectors
as well as the decisions on spending the available income to acquire the two
goods (kt+1, ct+1). As a result of these decisions [and the condition (7.34) on
the balance of trade], the pattern of trade in each period is also completely
specified.

If a country is not allowed to trade, it must meet its consumption from
domestic production, so that ct+1 = α(kt−xt) for all t ≥ 0; and this also means
that kt+1 = f(xt), the quantity that is domestically produced as a result of
using xt in the capital good industry. This is the description corresponding
to our formal definition of an autarkic program. As usual given the discount
factor δ(0 < δ < 1), the objective is to maximize the discounted sum of one
period utilities derived from consumption.

As in the previous section, f(k̄) = k̄, and now, in this section, let b2 >
0 (b1 < b2 < k̄) is defined by f ′(b2) = h(b2) [where h(x) ≡ f(x)/x, x > 0].
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7.8.3 Escape from the Poverty Trap

Consider first the situation in which all intertemporal choices are restricted to
autarkic programs (the economy is closed). It should come as no surprise that
- depending on the value of δ - the closed economy may face a ‘poverty trip’.

Theorem 7.8.1. Let δf ′(0) < 1; there is a critical stock kc > 0 such that if
0 < k < kc then for any optimal autarkic program (k̃t, x̃t, ĉt+1)t≥0 from k one
has:

lim
t→∞ k̃t = 0, lim

t→∞ x̂t = 0, lim
t→∞ c̃t+1 = 0 (7.35)

Let us turn to the open economy, and write

β ≡ α/p

To see the contrast between the closed and the open economy, assume
(E.1) f ′(0) < 1/δ, δ/β > 1
When β > h(b), to guarantee the existence of an optimal program it is

assumed that
(E.2) δβ1−ν < 1
A complete analysis of the optimization problem requires some detailed

calculations and subtle steps. Two important cases need to be considered
separately. First, let β > h(b). In this case, one can summarize the main
results informally: When β > h(b), the optimal policy for the open economy is
not to use the domestic investment good industry at all (x∗t = 0 for all t) no
matter what k ε (0, k̄) is. The optimal capital stock and consumption grow (to
infinity) exponentially:

[k∗t+1/k
∗
t ] = (δβ)1/ν for t ≥ 0

c∗t+1 = p[β − (δβ)1/ν ]k∗t for t ≥ 0

thus, in all periods, the country exports the consumption good and imports the
investment good.

Next, let β < h(b). In this case, from any initial k > 0, the optimal
sequences (k∗t ) and (c∗t ) of capitals and consumptions increase to infinity. One
can identify three stages through which a capital-poor economy will develop. In
the first stage, when the initial capital belongs to an interval (0, A), it does not
use the capital good industry at all, but produces and exports the consumption
good only. Next, the optimal program displays a reversal of trade pattern as
the initial stock moves beyond A. Now the consumption good sector is not
used at all, and all the input is allocated to the production of the capital good
which is exported. At a higher level of initial stock B(> A), it becomes optimal
to produce both goods, although for a while the capital good continues to be
exported. Finally, there is a threshold where both industries are used, but
the capital good industry reaches a maximum size. The consumption good
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industry continues to grow (given our assumptions of constant returns) and it
becomes the export good for “financing” the growing needs for capital inputs.

The admittedly special structure enables us to ‘draw’ a clear picture of
the export-import patterns and optimal specialization at different stages of
development. It also provides a sharp contrast between small ‘autarkic’ and
‘open’ economies.5

7.9 Some Concluding Comments

I have no reason to believe that the results reviewed in this chapter will satisfy
a reader looking for a formal account that capture’s Young’s vision of economic
progress. Capturing varied experiences of societies at different stages of tran-
sition or suggesting optimal long run development strategies through tractable
models are unenviable tasks. The widely circulated report (1993) on one of
the most fascinating stories of successful growth tells us that “there is no single
East Asian model.” Recognizing and incorporating one important feature (non-
convexity) makes the inadequacies of other postulates starker. The limits of
deterministic models of an “isolated” [no trade] economy with a time-invariant
technology to come to the aid of a policy maker dealing with contemporary
problems are perhaps too obvious to harp on.

While writing the review, I revisited parts of the literature that influenced
the tone of discussion on major issues of growth and development economics in
the sixties. A large part was “pre Newtonian” in analytical approach and often
failed to go beyond comparisons of possible equilibria. I am invariably reminded
of Koopmans (1957) who noted that very often “the wealth of suggestive terms”
appears perceptive and insightful partly because “words are cheap” [p.179], and
find myself in substantial agreement with his observations (p. 142):

“The theories that have become dear to us can very well stand by themselves
as an impressive and highly valuable system of deductive thought, erected on a
few premises that seem to be well-chosen first approximations to complicated
reality. In many cases the knowledge these deductions yield is the best we
have, either because better approximations have not been secured at the level
of the premises, or because comparable reasoning recognized as more realistic
has not been completed or has not yet been found possible. Is any stronger
defense needed, or even desirable?”

5 Dasgupta (1998) and Ossella-Durbal (2002) have explored possible extensions of
the model in several directions.
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8.1 Introduction

A foundation of modern macroeconomics is the stochastic growth model origi-
nally introduced in the seminal work of Brock and Mirman[16]. Their original
model is an infinite horizon economy with a continuum of identical households,
each with access to a complete set of financial markets that insure them against
all sources of idiosyncratic risk. There is single sector production that employs
capital and labor whose returns are summarized by a stochastic neoclassical
production function representing an aggregate convex production set with iden-
tical private and social returns to inputs. There is also aggregate risk taking the
form of a collection of identically and independently distributed (i.i.d.) random
variables, the agents in the economy face no frictions in information acquisition
(i.e., there is no learning), labor supply is inelastic, and there are no equilib-
rium distortions. The authors characterize the unique Markovian Equilibrium
Decision Process (MEDP) and its associated unique (non-trivial) long-run equi-
librium dynamics, in particular, the Stationary Markovian Equilibrium (SME).
Their methodological approach was pioneering, and relied heavily on recursive
methods. Implicitly, it exploits the validity of a second welfare theorem and one
can interpret the economic outcomes of the fictional social planner’s problem
1 We are deeply indebted to Len Mirman and Olivier Morand for numerous lengthy

discussions concerning many issues discussed in this survey. Many of the results
presented in this paper were developed originally in some form during our joint
work with Len and Olivier over the last five years. We dedicate this paper to Len
Mirman on the occasion of his sixty-fifth birthday. Indeed, this paper would not
have been written without Len’s ongoing pioneering work on equilibrium growth
under uncertainty. We also thank Elena Antoniadou, Hector Chade, John Cole-
man, Jeremy Greenwood, Seppo Heikkilä, Ken Judd, Tom Krebs, Cuong Le Van,
Robert Lucas, Jr., Jianjun Miao, Chris Shannon, John Stachurski, Yiannis Vailakis,
Charles Van Marrewijk, Jean-Marie Viaene, Itzhak Zilcha, and especially Robert
Becker and Manuel Santos for many helpful conversations over the past years. All
mistakes remain our own.
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from the perspective of a decentralized economic system. A fully decentral-
ized recursive formulation of the Brock-Mirman framework is put forward by
Prescott and Mehra[66] (see also, Stokey, Lucas, with Prescott[76]).

Over the last three decades, extensions of this model have become the foun-
dation for the systematic study of many diverse issues in quantitative dynamic
macroeconomic theory. Applications include models of economic fluctuations
and business cycles, production-based asset pricing, the positive and norma-
tive implications of incomplete financial markets and public goods, the wealth
inequality, the dynamic structure of altruistic economies, stochastic life-cycle
models, models with physical and human capital, and the role of activist fiscal
and/or monetary policy etc. However, many recent applications emphasize eco-
nomic environments where the second welfare theorem is not available. These
modifications create serious complications for a systematic study of the un-
derlying structure of the MEDPs and the SME. A prevalent approach is to
develop extensive applications of numerical methods to characterize MEDPs
and the SME. From a mathematical perspective, many of these approaches
have been ad hoc as they cannot be developed rigorously without providing
characterizations of qualitative structure of the MEDPs and/or the SME.

An important question naturally emerges from this apparent disconnect
between mathematical principle and macroeconomic practice: can one provide
sharp and constructive characterizations of the MEDPs or the SME for gen-
eralized Brock-Mirman environments where the second welfare theorem fails?
The most significant advance in providing an affirmative answer to this ques-
tion has been the recent literature on “monotone methods” (also known as
“monotone map” methods or “isotone recursive methods”). The pioneering
work of Coleman [18][19][20][21], Greenwood and Huffman[34], Datta, Mir-
man, and Reffett[22] and Morand and Reffett[62] provide the genesis of the
study of isotone recursive methods over the last fifteen years (they refer to
them, as the “monotone-map” method). These papers present the first set
of conditions under which constructive methods can be applied for studying
the structure of a decentralized Markovian equilibrium in economies with or
without non-classical production technologies.2 An important generalization of
this monotone-map approach is found in Mirman, Morand, and Reffett[59].
Here, a new and more general isotone map approach is presented (with the
Coleman-Greenwood-Huffman approach as a special case) and can be applied
to a larger collection of dynamic economies with production nonconvexities (in
the reduced-form production function). In this setting, sets of sufficient condi-
tions for the existence of semicontinuous, continuous, Lipschitz continuous, and
2 The literature on monotone map methods is vast, and also includes the papers of

Lucas and Stokey [55], Bizer and Judd [14] etc. An interesting alternative monotone
method is developed in Becker and Foias [9].

For non-existence of a continuous MEDP, see Santos [73] and Krebs [50]. Mir-
man, Morand, and Reffett [59] show that although the Santos [73] example is
robust to a large class of economies, in many case MEDPs are semi-continuous and
isotone.
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once-differentiable MEDPs are given. Since sufficient conditions for MEDPs to
be differentiable are presented, therefore the error bounds constructed in San-
tos and Vigo[74] and Santos[72] apply. Finally a theory of ordered MEDPs is
developed applying the seminal work in operations research on lattice program-
ming and the qualitative study of equilibrium introduced in Veinott[82][83] and
Topkis[79][80][81].

The chapter is organized as follows: in the next section, we introduce some
useful terminology. Section 8.3 provides a survey of the existing literature on
fixed point theory in order spaces. This fixed point theory is critical in the
development of isotone recursive methods. In Section 8.4, we consider homoge-
neous agent economies with classical production technology and infinite hori-
zon. In this section, we develop an “Euler equation” approach to isotone re-
cursive methods. We discuss the case studied in Coleman[19] for nonoptimal
homogeneous agent economies. In Section 8.5, we discuss the generalizations
found in Mirman, Morand and Reffett[59]. Section 8.6 considers the case of
elastic labor supply as in Coleman[20] and Datta, Mirman and Reffett[22]. In
section 8.7, we conclude with a brief discussion of new frontiers in monotone
recursive methods, to models with heterogeneous agents including the over-
lapping generations models with stochastic production (e.g., Erikson, Morand
and Reffett[31]), models with unbounded stochastic nonoptimal growth (e.g.,
Morand and Reffett[62]), Ramsey-type models with heterogeneous agents (e.g.,
Datta, Mirman, Morand and Reffett[23], and the mixed monotone recursive
methods discussed in Reffett[68] and Mirman, Reffett and Stachurski[60].

8.2 Preliminaries

8.2.1 Ordered Spaces

We begin with some useful terminology. For a more complete accounting of the
ideas in this section, see Birkhoff[13], Veinott[83], and Davey and Priestley[25].
Posets. In our subsequent discussion, we shall respect two notational con-
ventions: (i) we write “≥” in place of “≥X” when the order relation ≥X :
X × X → X is clearly implied; and (ii) for two elements of X , say a and
b, the order relation “a ≥ b” can also be written as “b ≤ a”. Let X be a set.
We say X is partially ordered set (or Poset) if X is equipped with an order
relation ≥X : X × X → X that is reflexive, antisymmetric and transitive. If
every element of a poset X is comparable, then we say X is a totally ordered
set or chain. Every chain has an inherent lattice structure.
Lattices. Let X be a poset equipped with a partial order ≥ . An upper
( respectively, lower) bound for a set B ⊂ X is an element xu(respectively,
xl) ∈ B such that for any other element x ∈ B, x ≤ xu (respectively, xl ≤ x)
for all x ∈ B. If there is a point xu (respectively, xl) such that xu is the least
element in the subset of upper bounds of B ⊂ X (respectively, the greatest
element in the subset of lower bounds of B ⊂ X), we say xu (respectively,
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x;) is the supremum (respectively, infimum) of B. Clearly if they exist, both
the supremum (or, sup) and infimum (or, inf) must be unique. We say X is a
lattice if for any two elements x and x′ in X, X is closed under the operation of
infimum in X , denoted x∧x′, and supremum in X , denoted x∨x′.The former
is referred to as “the meet”, while the latter is referred to as “the join” of the
two points, x, x′ ∈ X. A subset B of X is a sublattice of X if it contains the sup
and the inf (with respect to X) of any pair of points in B. A lattice is complete
if any subset B of X has a least upper bound ∨B and a greatest lower bound
∧B in B. If this completeness property only holds for countable subsets Xc,
the lattice is σ−complete. If every chain C ⊂ X is complete, then X is referred
to as a chain complete poset (or equivalent, a complete partially ordered set
or CPO). A set C is countable if it is either finite or there is a bijection from
the natural numbers onto C. If every chain C ⊂ X is countable and complete,
then X is referred to as a countably chain complete poset. Finally, a subset A
of a set C ⊂ P is cofinal if for each x ∈ C, there is a y ∈ A such that x ≤ y.

Ordered Vector Spaces and Cones. A partially ordered vector space or
linear semi-ordered space is a poset X that is real vector space equipped with
a partial order ≥ that is compatible with the following algebraic structure: (i)
if x ≥ x′, then x+ z ≥ x′ + z, for all z ∈ X ; (ii) if x ≥ x′, then αx ≥ αx′ for all
α ≥ 0 . Any partially ordered vector space that is also a lattice is called a vector
lattice. If the space has a norm ‖ x ‖X which satisfies whenever | x |≥| x′ |
in X, ‖ x ‖≥‖ x′ ‖, we say X has a lattice norm. A complete normed vector
space is a Banach space. A normed vector lattice is a vector lattice equipped
with a lattice norm. A normed vector lattice X that is complete in the Cauchy
sense, and is endowed with a lattice norm is referred to as a Banach lattice.

Let X be a topological space. The set X+ = {x ∈ X , x ≥ 0} is the
order cone of X if X is nonempty convex closed set that has the following two
properties: (i) x ∈ X+ =⇒ αx ∈ X+ for α ≥ 0; (ii) if x and -x in X+, x = 0
where 0 denote the zero of the cone. The partial order induced by the cone
structure of X+ has x1 ≥ x2 if x1 − x2 ∈ X+. Now, assume X is a real
Banach space. A cone X+ of X is normal if there exists a constant m such
that for any x1, x2 ∈ X+, ‖ x1 +x2 ‖≥ m, ‖ xi ‖= 1 for i = 1, 2. Intuitively, the
restriction of normality of the cone geometrically bounds the angle between any
two unit vectors away from π, so a normal cone cannot become “too large”. An
increasing sequence in the cone {xt}t=∞

t=1 , xt ∈ X+ is a sequence that satisfies
x1 ≤ x2 ≤ ... ≤ xn ≤ ... We say a cone X+ is regular if if every increasing
and bounded order sequence in X+ has a limit in X+. We say X+ is fully
regular if every increasing and norm bounded sequence in X+ has a limit in
X+. A fully regular cone is also regular. A regular cone is normal. (See Guo
and Lakshmikantham[35], Theorem 1.2.1). A cone X+ is solid if its interior
X̊+ is nonempty.

Let [a) = {x|x ∈ X,x ≥ a} be the upperset of a, (b] = {x|x ∈ X,x ≤ b} the
lowerset of b. X is an ordered topological space if X is equipped with a partial
order and topology that implies [a) and (b] are closed in the topology on X. An
order interval is defined to be [a, b] = [a) ∩ (b], a ≤ b. Therefore, in an ordered
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topological space, all [a, b] ⊂ X (e.g., order intervals) are closed in the topology
of X . In our work, we often study fixed point problems where the domain/range
is a compact, order interval in a normal and solid cone of positive continuous
functions X+ = C+(S) endowed with the C0 uniform norm topology (where
each function itself is defined on compactum S). Such a space is not a regular
cone. We will often work on a transformation space that is a compact suborder
interval in C+(S) (where compactness will be used to compensate for the loss
of regularity in the cone C+(S)).

8.2.2 Mappings

We now define some important properties of mappings, especially those defined
on lattices and posets:
Isotone (or Order Preserving) Mappings on a Poset: Let (X,≥X) and
(Y,≥Y ) be Posets. A mapping is a relational statement between two spaces,
say X and Y. We consider both “point-to-point” and “point-to-set” mappings.
In the case of a “point-to-point” mapping, we refer to the mapping as a function
( or equivalently as an operator). A function m : X → Y is said to be isotone on
X if it is “order-preserving”, i.e., m(x′) ≥Y m(x), when x′ ≥X x, for x, x′ ∈ X.
If m(x′) >Y m(x) when x′ >X x for x, x′ ∈ X , we say the function m is
increasing. If m(x′) >Y m(x) when x′ ≥X x, x′ �= x, we say the function m is
strictly increasing. We say m(x) is antitone (or, order-reversing) if m(x) ≥Y

m(x′) if x′ ≥x x. A function that is either isotone or antitone is monotone.
When the mapping m(x) is a self-mapping on X , we also refer to m(x) as a
transformation of X , and the set X as a transformation set. If our concern is
the fixed points of a transformation m(x) on X, we refer to the transformation
set X as the fixed point space.

Notions of monotonicity are also available for multifunctions or correspon-
dences. By a correspondence or multifunction, we always refer to a nonempty-
valued mapping M : X → 2Y , e.g., a nonempty-valued “point-to-set” mapping.
We say a correspondence or multifunction is ascending in the set relation S (de-
noted by ≥S) if M(x′) ≥S M(x), when x′ ≥X x where (X,≥X) is a partially
ordered space. If this set relation ≥S induces a partial order on the powerset 2Y

(or, perhaps, 2Y \∅), we refer the ascending correspondence also as an isotone
correspondence.

To make concrete the notion of an isotone versus ascending correspondence,
we discuss some particular set relations; some that induce partial orders on
2Y (or, 2Y \∅), others that do not.3 The set relations we consider are each
compatible with pointwise set comparisons, and, therefore, closely related to
the sufficient conditions under which correspondences admit isotone selections.
We focus primarily on four such set relations. Let Y be a set, and A,B ∈ 2Y .
We define : (i) the Veinott-Weak Set relation ≥won 2Y \∅ : A ≥w B, if for any

3 For a more detailed discussion, we refer to the classic references of Smithson [75]
and Veinott [83].
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a ∈ A, b ∈ B, either a ∧ b ∈ B, or, a ∨ b ∈ A; (ii) the Veinott -Strong Set Order
≥s on 2Y \∅ : A ≥a B, if for any a ∈ A, b ∈ B, a ∧ b ∈ B and a ∨ b ∈ A; (iii)
the Smithson−Weak Set relation ≥ason 2Y : A ≥as B if we have either (C1)
for any b ∈ B, there exists an a ∈ A such that a ≥ b; or, (C2) for any a ∈ A,
there exists an b ∈ B such that a ≥ b; (iv) the Pointwise Strong Set Order
≥sson 2Y \∅ : A ≥ss B if and only if a ∈ A, b ∈ B, then a ≥ b in the partial
order structure on A, for all a, b.A final classic partial order on the powerset
2Y is commonly referred to as set inclusion. We say a subset A ≥SI B under
set inclusion ≥SI if B ⊂ A.

Fixed points. Let µ : X → 2X be a non-empty valued correspondence
for each x ∈ X. The correspondence µ is said to have a fixed point if there
exists an x such that x ∈ µ(x). Therefore, if µ is a function, then a fixed
point is an x∗ such that x∗ = µ(x∗). A fixed point x∗ is minimal ( respectively,
maximal) if there does not exist another fixed point, say y∗, such that y∗ ≤ x∗

(respectively, x∗ ≤ y∗). If a fixed point is either minimal or maximal, we say it
is extremal.

8.3 Fixed Point Theory in Ordered Spaces

In this section, we provide an account of fixed point theory in ordered spaces.
For a more extensive discussion, see excellent surveys in Amann[4], Guo
and Lakshmikantham[35], Veinott [83], Heikkilä and Lakshmikantham[39] and
Jachymski[44].

8.3.1 Existence

First, we discuss the existence and characterization of solutions for two proto-
typical classes of parameterized fixed point (or, transformation) problems often
encountered in economic applications. Consider X is a poset, T is an ordered
topological space. The two problems are stated as Problem 1 and Problem 2.

Problem 1: To characterize the fixed points of the mapping,

f(x, t) : X × T → X and f is isotone on X for all t ∈ T.

Problem 2: To characterize the fixed points of the mapping,

F (x, t) : X×T → 2X , F is ascending (≥as) in (C1) or (C2) on X for all t ∈ T,

Recall that ≥as denotes Smithson’s weak set relation on the powerset 2X . We
denote the fixed point correspondence, in either Problem 1 or Problem 2, as
G(t).
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Lattice Theoretic Fixed Point Theorems. A classical case of Problem 1
occurs when X is a nonempty, complete lattice. This is the case studied in the
seminal work of Tarski[77][78] in the early 1940s, see also Kantorovich[47].4

We say a space Y has a fixed point property for isotone functions (or, more
compactly, fpp) if and only if each isotone transformation of Y, say f : Y → Y ,
has a fixed point. We state Tarski’s theorem adapted to Problem 1:

Proposition 8.3.1. (Tarski[78], Theorem 1): Fix t ∈ T, and let the mapping
f(x, t) : X × T → X be isotone in x for each t, where X is a complete lattice.
Then the fixed point correspondence G(t) is a nonempty, complete lattice for
each t ∈ T .

We make a few remarks on this result. First, the theorem does not say G(t)
is subcomplete in X . In general, it is not. Second, the operator f is assumed
to have no continuity properties on X (e.g., we assume no order or topological
continuity properties for f(x, t)).

Often in economic applications, because of the absence of sufficient concav-
ity in the agent’s decision problem along equilibrium trajectories, equilibrium
fixed point problems cannot be posed in terms of a single valued operator such
as in Problem 1; rather, they must be posed in a more abstract setting of the
fixed point of multifunctions, as in Problem 2. For the general case, a key gener-
alization of Tarski was obtained by Veinott[82] in the 1970s, see also Veinott[83]
(Chapter 4, Theorem 14).5

Proposition 8.3.2. (Veinott[83]):Let F (x, t) : X × T → 2X\∅, X be a com-
plete lattice, T be a set. For any fixed t ∈ T, assume that F (x, t) is a nonempty,
isotone in Veinott’s strong set order, closed, and sublattice-valued correspon-
dence on X. If G(t) is the fixed point correspondence for F (x, t) at t ∈ T, then
G(t) is a nonempty complete lattice for each t ∈ T .

Propositions 8.3.1 and 8.3.2 provide sufficient conditions for the existence of
a complete lattice of fixed points for an isotone and/or ascending transforma-
tions of a complete lattice X . An interesting question is necessity: i.e., can one
obtain a complete characterization of a complete lattice using the fixed point
property? Davis[26] (Theorem 1) provides the converse to Tarski’s theorem: a
lattice X is complete if and only if every isotone transformation f : X → X has
a fixed point. In the context of Problem 2, the Davis characterization of a
complete lattice X is also provided. Smithson[75] (corollary 1.8) proves the
following: if X is a lattice and F (x) is a multifunction then X is complete if
and only if the correspondence F (x) is (a) ascending in the Smithson-weak set
relation (C1) (respectively, ascending in the Smithson-weak set relation (C2)),
4 Tarski’s original result dates from around 1942 and is available in Tarski [77].

It is a generalization of a result he developed with Knaster in 1921 (for isotone
correspondences under set inclusion). A related result for semi-ordered linear spaces
is in Kantorovich [47].

5 Zhou [85] proves it independently in Theorem 1.
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and (b) the least upper bound (F (x, t)) ∈ F (x, t) (the greatest lower bound
(F (x, t)) ∈ F (x, t)) for all x ∈ X, t ∈ T, and G(t) is nonempty for each t ∈ T.

Other useful characterizations of complete lattices are available, and we use
them in the sequel, as needed. For example, one can characterize a complete
lattice X in terms of its interval topology (Frink[32]). Recall, the interval topol-
ogy for a set X takes all the closed intervals [a, b] as a subbasis for the closed
sets of X . Frink[32] provides the following characterization of a complete lattice
X : X is a complete lattice if and only if X is compact in its interval topology
(see also Birkhoff [13], Chapter 10, Theorem 20). Another very useful char-
acterization of a complete lattice is in Davey and Priestly[25] (Theorem 2.31).
Their result provides the following characterization of a complete lattice X :
let X be a nonempty ordered set; then the following statements are equivalent
(i) X is a complete lattice; (ii) for any subset S ⊂ X, inf(S) ∈ X ; and X
has a top element and inf(S) ∈ X for every nonempty subset of X. These two
characterizations of a complete lattice X are used repeatedly in this chapter.

Fixed Point Theory in Complete Partially Ordered Sets. Next, we
now consider Problems 1 and 2 when the fixed point space X is not a complete
lattice. A natural set of regularity conditions for an ordered set X to have the
fixed point property turns out to be chain-completeness. Recall a set X is chain
complete if for any chain C, inf(C) and sup(C) are in X. A set X has a bottom
element a (respectively, top element b) if for every x ∈ X, a ≤ x (respectively,
x ≤ b). A set X is a complete partially ordered set (or, CPO) if and only if (i)
X has a bottom element, and (ii) for each directed net D ⊂ X, we have a sup
D ∈ X. A set X is a CPO if and only if every chain C in X has a least upper
bound, sup(C) ∈ X . (Davey and Priestley[25], Theorem 8.11). Therefore, the
notion of a set X being “chain-complete” is equivalent to the space X being a
CP0. We often use this terminology when discussing chain-completeness.

Chain completeness is a natural condition to check in applications. For
example, every relatively compact chain C in an ordered topological space
has an infimum and a supremum, inf(C) and sup(C). See Amann[4], Lemma
3.1. Therefore, every compact, ordered topological space is chain complete
(Amann[4], Corollary 3.2). One of the earliest results on the existence of a
fixed point for a self map on a poset is obtained in Bourbaki[15]. As a con-
sequence of Zorn’s lemma, it is shown that if X is an ordered set such that
every chain has an upper bound (respectively, a lower bound), and f(x) on
X is increasing in the following sense: for all x ∈ X , x ≤ f(x) (respectively,
f(x) ≤ x), then f has at least one fixed point. An improvement on this result
is given in Abian and Brown[1] (Theorems 2,3,4) and Pelczar[65].The version
of the theorem that we state is due to Amann[4] (see also Zeidler [86], Section
11.9 for a proof):

Proposition 8.3.3. (Amann[4], Theorem 1.4): Let X be a CPO, f(x, t) : X×
T → X be isotone in X for each t ∈ T. Suppose that for each t ∈ T, there exists
a pair (xL(t), xU (t)) ∈ X × X, xL(t) ≤ xU (t) such that xL(t) ≤ f(xL(t), t)
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and f(xU (t), t) ≤ xU (t). Then f has a minimal and a maximal fixed point in
[xL(t), xU (t)].

We next consider a converse to this theorem.6 That is, as in the case of
a complete lattice, we ask if one can obtain a characterization of a CPO X
using the fixed point property relative to isotone transformations. Clearly, an
arbitrary ordered set X does not have a fixed point property; but it turns out
that if X is an ordered set, and for each isotone operator f(x) on X, f(x) has a
least fixed point, then X is a CPO. Alternatively, if G is the set of fixed points
of an isotone self-map f(x), and X is a CPO, then G is a CPO. A collection of
remarkable necessity results are found in Markowsky ([56], Theorems 9-11); we
present the following result of Markowsky’s that is summarized in Davey and
Priestley [25]:

Proposition 8.3.4. (Davey and Priestley[25], Propositions 8.25, 8.26). Let
X and fix t ∈ T . Then we have the following: (i) if every isotone map in
X, f(x, t) : X × T → X, has a least fixed point x∗(t), then X is a CPO; (ii) if
f(x, t) : X → X is isotone on X for each t ∈ T, and G(t) denotes the set of
fixed points of f(x, t)at t; then if X is a CPO, G(t) is a CPO.

Next, we discuss generalizations of Proposition 8.3.3 to the case of mul-
tifunctions. Smithson[75] and Muenzenberger and Smithson[64] are seminal
references. Let X and Y be CPOs, F (x) : X → 2Y\∅ be a nonempty cor-
respondence, and X ⊂ X a subchain. If for any isotone function f(x) : X → Y
such that f(x) ∈ F (x), for x0 = supX, we have f(x0) ≤ y(x0) ∈ F (x0), we
say the mapping F (x) has the property of Majorizing Chain Subcompleteness
(MCSC). For correspondences that are ascending in Smithson’s weak set rela-
tion (C1) or (C2), and that satisfy MCSC, we have the following generalization
of Amann[4]:

Proposition 8.3.5. (Smithson[75], Theorem 1.1): Let X be a CPO, and sup-
pose F (x, t) is isotone in the Smithson-weak set relation, (C1) and/or (C2),
and satisfies Condition MCSC. If for each t ∈ T there is a point xL(t) ∈ X
and a point y ∈ F (xL, t) such that xL(t) ≤ y, then F (x, t) has a fixed point for
each t.

Note that Smithson[75] (Proposition 1.6) obtains a generalization of Abian
and Brown’s[1] fixed point theorem for the case the X is a CPO. In recent work,
Heikkilä and Hu [38] and Heikkilä and Reffett[40] have generalized it further.

6 An important converse to the Bourbaki fixed point principle (due to Zermelo)
related to the fixed point result in the Abian-Brown-Pelczar theorem is in
Jachymski[45].
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8.3.2 Computational Fixed Point Theory

Recall that an operator f(x) : X → Y is order-continuous if for any countable
chain {xn} having a supremum, we have sup f(xn) = f(supxn). If operators
are order-continuous in Problem 1, we can weaken the conditions on the trans-
formation space X , and also obtain stronger results on computing extremal
fixed points by successive approximation on an operator from lower solutions
xL (e.g., a point xL that has xL ≤ f(xL)) and upper solutions xU (e.g., a
point xU that has f(xU ) ≤ xU ). The successive approximations indexed on
the natural numbers can be shown to converge to extremal fixed points. If the
underlying space is an ordered metric space, numerical implementations of our
methods via Krasnosel’skii et al[48] (Chapter 4) can be shown to provide a pos-
teriori error bounds in the underlying metric on X . This is particularly useful
in our work, as many of the fixed point spaces we use (the economies studied
in Sections 8.4-8.6) have uniform metric topologies.

We next discuss a result due to Kantorovich[47]. This result is available in
a number of places in the literature (e.g., Dugundji and Granas[30] Theorem
4.2, Vulikh[84] Theorem XII.2.1, and Davey and Priestley[25] Theorem 8.15).
We have the following result for a special case of Problem 1:

Proposition 8.3.6. (Kantorovich[47]): Let X be a poset, D = [a, b] ⊂ X
countably chain complete. Assume for each t ∈ T, f(x, t) : X×T → X is order
continuous in x, such that a(t) ≤ f(a(t), t) and f(b(t), t) ≤ b(t). Let G(t) be
the fixed point correspondence of f(x, t) for t ∈ T.Then (i) G(t) is nonempty,
and (ii) limn f

n(a(t); t) → inf G(t) (respectively, limn f
n(b(t); t) → supG(t)).

An alternative setting that is common in economic applications of Problem
1 has the following structure: (i) the domain D ⊂ X is a compact, order interval
in a normal cone of positive continuous functions C(X), where X ⊂ Rn is also
compact, and (ii) the operator f(x, t) continuous and compact (e.g., completely
continuous) in x for each t ∈ T . This is true in case of Coleman[19] and Datta
et al[22] for the fixed point problem that constructs MEDPs. In this case, one
can apply an important theorem due to Amann[3]:

Proposition 8.3.7. (Amann[3], Theorem 6.1; corollary 6.2): Let X be an or-
dered Banach space, [xL(t), xU (t)] an order interval with xL(t), xU (t) ∈ X,
xL(t) ≤ xU (t), f(x, t) : X × T → X is isotone on [xL(t), xU (t)], compact
and continuous in x, such that for each t ∈ T , xL(t) ≤ f(xL(t), t) and
f(xU (t), t)) ≤ xU (t). Let G(t) be the set of fixed points of f(x, t) at t ∈ T.Then
for each t ∈ T, (i) G(t) is nonempty; (ii) limn→∞ fn(xL(t); t) = inf G(t)
and limn→∞ fn(xU (t), t) = supG(t) and the sequences {fn(xL(t), t)}∞n=0 and
{fn(xU (t), t)}∞n=0 are increasing and decreasing, respectively.

For Proposition 8.3.6 and Proposition 8.3.7, it is important that we obtain
sufficient conditions that allow one to tie directly the computation of extremal
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fixed points to well-known numerical approximation algorithms in the exist-
ing literature (e.g., Krasnosel’skii et al[48] and Judd[46]). In some cases, such
indexation on the natural number are not sufficient to show that successive
approximation from lower or upper solutions for a particular set of fixed points
actually computes an extremal fixed point. See the example in Davey and
Priestley[25], section 8.16 or Heikkilä and Lakshmikantham[39], example 1.1.1.
In these cases, one can define iterations on well-defined index sets that are
subsets of chains. Heikkilä and Lakshmikantham [39] address this issue and
deliver a generalized iterative method on a chain. A critical advantage of their
approach is that it does not require either the axiom schema of replacement or
the axiom of choice.

Proposition 8.3.8. (Heikkilä and Lakshmikantham[39], lemma 1.1.1): Let D
be the set of subsets of P , P a poset with ∅ ∈ D and f : D → P, there is a
unique well-ordered chain C so that x ∈ C if and only if x = f{y ∈ C|y < x}.
If f(C) exists, it is not a strict upper bound of C.

We discuss the elements in the chain C.Standard transfinite iterations
are contained: let x0 = f(∅), xn+1 = f({x0, x1, ..., xn}) for xn < xn+1,
xw = f({xn}n=∞

n=0 ) with xw a strict upper bound of {xn}n=∞
n=0 , then xw is a next

successor element of C, and so forth. When establishing conditions in applica-
tions under which the generalized iterations of the mapping f can be indexed on
countable sets, it is useful to recall that by Zorn’s lemma, if each well-ordered
chain C in P has an upper bound in P, then P has a maximal element. From
Heikkilä and Lakshmikantham[39], Lemma 1.1.2, we know that each chain of
any poset contains a well-ordered cofinal chain. Further, by another lemma in
Heikkilä and Lakshmikantham[39] Lemma 1.1.4, a well-ordered chain C in a
poset P is countable if its subchains possess countable cofinal chains. Finally,
a monotone sequence in an ordered topological space X converges if each of its
subsequences has a cluster point. A natural question concerns sufficient condi-
tions under which iterations on f from some lower solution xL converge to fixed
points on a countable indexation of iterations. One set of sufficient conditions
are as follows:

Proposition 8.3.9. Heikkilä and Lakshmikantham[39], Lemma 1.1.7; Propo-
sition 1.1.5; Proposition 1.1.6: (i) If a chain C in an ordered topological space
X has a separable cofinal subset A, and if each nondecreasing sequence of A has
a cluster point in X, then C contains a nondecreasing sequence that converges
to supC; (ii) a well ordered chain of X is countable if the following occurs: (a)
X is first countable, and each subchain of C is relatively compact; (b) each sub-
set of C is separable and each nondecreasing sequence of C has a cluster point;
(iii) If C is a chain in an ordered metric space X, and if each nondecreasing
sequence of C has a cluster point, then C contains a nondecreasing sequence
which converges to supC, and C is countable if each nondecreasing sequence
of C has a cluster point.
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8.3.3 Monotone Selections and the Equilibrium Correspondence

In Problem 1 and Problem 2, a natural question to analyze is the exis-
tence of monotone comparison theorems on the space of parameters T .7 Let
G(t) : T → 2X\∅ denote the fixed point correspondence. We say the fixed
point Problem 1 or 2 exhibits a strong comparative structure (SCS) if the fixed
point correspondence G(t) is an isotone correspondence from T → 2X\∅. We
say Problem 1 or 2 exhibits a weak comparative structure (WCS) if its fixed
point correspondence G(t) admits an isotone selection. First, consider the SCS.
Known sufficient conditions for G(t) to be consistent with SCS involve the fixed
point space X be a complete lattice, ordering the range of G(t) using Veinott’s
strong set order on 2X\∅, and proving that G(t) has a sublattice structure
in 2X\∅. For example, if G(t) is isotone from T to 2X\∅ in Veinott’s strong
set order, one immediately has the extremal selections supG(t) and inf G(t)
as isotone operators on T . The most general version of the result we dis-
cuss is due to Veinott[83] (Chapter 4, Theorem 14) and Topkis[81] (Theorem
2.5.2). The Veinott-Topkis Monotone Selection Theorem is stated as follows
(see Topkis[81], Theorem 2.5.2 for a proof):

Proposition 8.3.10. (Veinott[83]; Topkis[81]): Suppose X is a nonempty
complete lattice, T a poset, F (x, t) : X × T → 2X\∅ for each (x, t) ∈ X × T,
and assume that the correspondence F (x, t) is isotone in Veinott’s strong in-
duced set order on X ×T. Let G(t) be the fixed point correspondence of F (x, t)
at t ∈ T ; then (a) for each t ∈ T, supG(t) and inf G(t) exist; (b) supG(t) and
inf G(t) are isotone in t ∈ T ; (c) If, in addition, supG(t) < inf G(t′) for t < t′,
then supG(t) and inf G(t) are strictly increasing in t on T .

Second, consider the case of WCS. There are many alternative sufficient
conditions under which fixed point problems exhibit WCS. Different forms of
sufficient conditions are provided in Veinott[83] and Smithson[75]. We consider
some additional isotone selection theorems that prove useful in the study of
WCS in economic applications. These theorems apply in cases where the range
of the fixed point correspondence does not necessarily possess the sublattice
structure required to apply the Veinott-Topkis monotone selection theorem. For
the first proposition, instead of assuming that the correspondence is isotone in
Veinott’s strong set order jointly in (x, t), we assume that F (x, t) is ascending
in Veinott’s weak set relation in x for each t ∈ T. We also assume that the
fixed point correspondence has the following structure: (i) G(t):T → 2Y \∅ is a
nonempty and chain subcomplete, and (ii) G(t) is ascending in Veinott’s weak
set order. We now state Veinott’s weak monotone selection theorem:

7 A well-known reference for monotone comparative statics in economics is Milgrom
and Shannon [58]. However, their results built on prior results in operations re-
search and reported in Veinott [82] and Topkis [79]. See Veinott’s [83] lecture notes
and Topkis [81].
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Proposition 8.3.11. (Veinott[83], Theorem 5) Let X be a lattice, T be a par-
tially ordered set. Assume that G(t) : T → 2X\∅ is a chain subcomplete
correspondence that is ascending in the Veinott’s weak set relation. Then, (a)
G(t) admits an isotone selection. If, in addition, we assume G(t) is meet- (re-
spectively, join-) sublattice-valued for each t ∈ T , then (b) the isotone selection
is ∧G(t) (respectively, ∨G(t)).

Veinott proves more versions of the above isotone selection theorem assum-
ing stronger hypotheses than (a), e.g., G(t) quasi-sublatticed valued for each
t ∈ T , but with weaker hypotheses than assumed for result (b). We present two
different set of sufficient conditions for the existence of WCS from Smithson[75].

Proposition 8.3.12. (Smithson[75], Theorem 1.7 ): Let X be a partially or-
dered set, T a set, and let G(t) : T → 2X be a nonempty correspondence
that is ascending in Smithson’s weak set relation (C1) (respectively, (C2)) in
(x, t). If, in addition, supG(t) ∈ G(t) (respectively, infG(t) ∈ G(t)) for all
t ∈ T, the there is an isotone selection, namely g(t) = supG(t) (respectively,
g(t) = inf G(t)).

We make a final remark on Proposition 8.3.12. The proof rely heavily on an
application of the Axiom of Choice (namely, the Zorn’s lemma). In principle,
this can be a serious problem for developing constructive methods that ad-
dress the question of approximating monotone selections. Recently, alternative
methods are developed for the results in Smithson [75] that do not rely upon
the Axiom of Choice (see, Jachymski[44], Theorem 2.21). Also, Heikkilä and
Reffett[40] develop chain methods for computing particular selections that are
not based on either the Axiom Schema Replacement or the Axiom of Choice. In
addition, they provide new WCS theorems on the fixed point correspondence
in Problem 2. These extensions are important if one wants to avoid the non-
constructive nature of the monotone selection results based on applications of
the Axiom of Choice.

8.4 An Economy with Classical Technology

We generalize Brock and Mirman[16] to allow for more general “distorted clas-
sical” stochastic technologies. In these economies, time is discrete and indexed
by t ∈ T = {0, 1, 2, ...}. There is a continuum of ex ante and ex post identi-
cal infinitely-lived households. The only form of uninsured risk is an aggregate
production function shock. Aggregate production in each state is assumed to
be constant returns to scale in private returns. Therefore, the value of all firms
is zero in equilibrium. Each period households are endowed with a unit of time
which is supplied inelastically in competitive markets. For simplicity, we as-
sume uncertainty comes in the form of a finite state, first-order Markov process
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denoted by θt ∈ Θ, with stationary transition probabilities χ(θ, θ′).8 Let the set
K⊂R+ contain all feasible values for the aggregate endogenous state variable
K, i.e., the capital to labor ratio, and define the product space S : K×Θ. Since
the household also enters each period with an individual level of the endoge-
nous state variable k, the individual capital to labor ratio, we denote the state
of a household by the vector s = (k, S) ∈ K×S.

The preferences are represented by a period utility index u(c), where c ∈
K ⊂ R+ is period consumption. Letting θi = (θ1, ..., θi) denote the history
of the shocks until period i, a household’s lifetime preference is defined over
infinite sequences indexed by date and history c = (cθi) and is,

U(c) = E0

{ ∞∑
i=0

βiu(ci)

}
,

where E0 is the mathematical expectation with respect to the probability struc-
ture of the shocks over the infinite horizon. We impose the following assumption
on preferences:

Assumption - P1 :The utility function u : K �→ R is bounded, twice
continuously differentiable, strictly increasing, strictly concave. In addition,
marginal utility, u′(c) satisfies the standard Inada conditions:

lim
c→o

u′(c) = ∞ and lim
c→∞u′(c) = 0.

We assume that the output available to the household in the current period
can be represented by the function F (k, 1,K, 1, θ, t) = f(k,K, θ; t), where t is
a parameter that is possibly infinite dimensional (e.g., a continuous mapping
that represents distortions and influences technology). We assume that this
production function is evaluated at equilibrium employment levels with n =
N = 1 and make the following assumptions on technology:

Assumption - T1 The production function F (k, n,K,N, θ, t) is such that:
(i) F (k, n,K,N, θ; t) is constant returns to scale in (k, n) for each (K,N, θ, t)

such that F (0, 1,K, 1, θ, t) = f(0,K, θ; t) = 0 for all K ∈ K, θ ∈ Θ and t ∈ T.
(ii) f (k,K, θ, t) is twice continuously differentiable, strictly increasing in

(k,K) and strictly concave in its first argument.
(iii) f1(K,K, θ; t) is weakly decreasing (i.e., non-increasing) in K; there ex-

ists a k0 > 0 such that f(k0, k0, θ; t)−k0 > 0, and β
∫
f1(k0, k0, θ

′; t)χ(θ, dθ′) ≤
1 for all (θ, t).

(iv) There exist k̂(θ) > 0 such that f(k̂(θ), k(θ), θ; t) = k̂(θ) and f(k, k, θ; t) <
k for all k > k̂(θ) and for all θ ∈ Θ.
8 The reader should keep two things in mind while reading the results reported in

this paper: (i) the results are valid for the case of deterministic nonoptimal growth
by setting the shocks to a constant in all states; and, (ii) stochastic optimal growth
is obtained as a special case by setting all equilibrium distortions to zero.
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The restrictions on the primitives in Assumptions P1 and T1 are standard.
(See, e.g., Coleman [19] for discussion). As we consider some baseline compar-
ative statics issues, we consider the economy studied in Coleman [19]. In this
setting, there is a state contingent capital income tax; in addition, we allow
for nonconvexities in production in social returns. The distorted reduced-form
technology f can be written as follows:

f(k,K, θ; t) = (1 − t1(K, θ))g(k,K, θ) + t2(K, θ),

where g is also a reduced-from distorted classical production function, the pa-
rameters t1(K, θ) : S → [0, 1] and t2(K, θ) can be interpreted as the state-
contingent tax and a lump sum transfer, respectively. If we define the stan-
dard lexicographic order relation on the set of parameter vectors t ∈ T as
t′(K, θ) � t(K, θ) if either t

′
1(K, θ) > t1(K, θ) for all S ∈ (K, θ) ∈ K×Θ=S, or

t
′
1(K, θ) = t1(K, θ) and t

′
2(K, θ) ≥ t2(K, θ), then f(k,K, θ; t) is increasing in t.

We make the following assumption on the nature of distortion:

Assumption - D1: The functions t1(K, θ) and t2(K, θ) are Lipschitz con-
tinuous on K×Θ=S.

In developing our existence arguments, we fix t ∈ T.(and, for the moment
suppress notation). For any given t ∈ T, define the household’s feasible corre-
spondence to be Γ (k,K, θ) where Γ defines the set of actions (c, k′) that satisfy
the standard budget constraint:

c+ k′ = f(k,K, θ); and c, k′ ≥ 0.

Under Assumption T1, Γ (k,K, θ) is a “well-behaved” nonempty correspon-
dence for each s = (k,K, θ) ∈ K×S. In particular, as f is continuous and
isotone, we conclude that Γ is a non-empty, compact and convex-valued, con-
tinuous correspondence for each state s that is ascending in (k,K, θ) for each
t in the set inclusion order on 2KxK along an equilibrium restriction where
k = K and a balanced budget for the government.

Let C(S) denote the space of continuous functions h(S):S→K equipped
with the standard uniform norm topology (i.e., ‖ h ‖= supS∈S

|h(S)|) and
pointwise Euclidean partial order where S is a compactum, and let C+(S) be
its cone. To construct the household’s decision problem, consider that aggregate
capital-labor ratio evolves according to:

K ′ = h(K, θ) ∈ C+(S), 0 ≤ h ≤ f,

where for any given t, h(S) : S→K is continuous in both its arguments, in-
creasing in K for each θ. The household solves the following dynamic program:

J(s) = sup
(c,k′)∈Γ (s;t)

{u(c) + β

∫
Θ

J(s′)χ(θ, dθ′)}. (8.1)

Standard arguments prove the existence of a J ∈ V that satisfies this functional
equation, where V is a space of bounded, continuous, real valued functions with
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the sup norm (see, for instance, Stokey, Lucas and Prescott[76]). In addition,
under assumptions P1-T1, following the argument in Mirman and Zilcha[61]
(lemma 1) J is differentiable in k.

We define an recursive equilibrium as follows:

Definition: A (recursive) competitive equilibrium for this economy consists
of a parameter vector (t1, t2), a value function for the household J(s), and
the associated individual decisions c and k′ such that: (i) J(s) satisfies the
household’s Bellman equation (8.1), and c, k′ solve the optimization problem in
the Bellman’s equation given t; (ii) all markets clear: i.e., k′ = h(S) = K ′and
(iii) the government budget balances.

8.4.1 The Existence of MEDPs

The second welfare theorem does not apply in this economy. Therefore, the
social planning approaches to characterizing MEDPs do not suffice. We adopt
an alternative strategy, the so-called “Euler equation approach”. To facilitate
our construction, we consider a stronger version of Amann’s theorem in Propo-
sition 8.3.7, Section 8.3. This result is proved in Morand and Reffett [62] and
considers Amann’s theorem for isotone transformations of equicontinuous fixed
point spaces.9

Proposition 8.4.1. Let E be an equicontinuous fixed point space of continuous
functions, each defined on a compact set X, equipped with the sup continuous
uniform topology and the pointwise partial Euclidean order. Let [y, ŷ] be a closed
order interval in E. Suppose that A : [y, ŷ] → [y, ŷ] is an isotone, continuous
map. Then A has a maximal fixed point x̂ and x̂ = limn→∞Anŷ, and the
sequence {Anŷ}∞n=0 is decreasing.

Proof : See Morand and Reffett[62], Proposition 2.�
To construct existence of recursive equilibrium, we define a candidate non-

linear operatorA whose fixed points coincide with a MEDP. The Euler equation
associated with the optimal policy function in Bellman’s equation (8.1) along an
equilibrium trajectory where k = K (appealing to the Mirman-Zilcha envelope
condition) generates the following necessary and sufficient condition for a recur-
sive competitive equilibrium: the existence of a function c∗(K,K, θ) = c∗(K, θ)
such that,

9 Let B(X) be a bounded subset of the space of continuous functions C(X) and E ⊂
B(X). We say that E is equicontinuous at a point x0 ∈ X if, for any ε > 0, there
is a δ > 0 such that any x in the δ-neighborhood of x0 we have ‖ h(x)−h(x0) ‖≤ ε
for every h ∈ E (it is important that δ is independent of h). We say that E is
equicontinuous if it is equicontinuous at every point of E.
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u′(c∗(K, θ)) = β

∫
Θ

u′[c∗(F (K, θ)−c∗(K, θ), θ′)]r(F (K, θ)−c∗(K, θ), θ′)χ(θ, dθ′).

(8.2)
Here, F (K, θ) = f(K,K, θ; t) and r(K, θ) = f1(K,K, θ; t) for notational sim-
plicity.

Definition: H0 is the set of consumption functions h such that:(i) h :
S→K;(ii) 0 ≤ h(K, θ) ≤ F (K, θ) for all (K, θ) ∈ S;(iii) 0 ≤ h(K ′, θ) −
h(K, θ) ≤ F (K ′, θ) − F (K, θ) for all K ′ ≥ K, (K,K ′) ∈ K× K and all θ.

Equip H0 with the standard sup uniform metric topology; and adopt the
Euclidean partial order ≥ induced by the cone structure of C+(S). That is,
h′ ≥ h if and only if h′(K, θ) ≥ h(K, θ) for all (K, θ) ∈ S. The following
lemma summarizes some important properties of the space H0.

Lemma 8.4.1. Under assumption T1, (i) H0 is a closed, convex, equicon-
tinuous order interval of continuous function (e.g., a convex, compact, order
interval); (ii) H0 is a complete lattice.

Proof : (i) See Coleman[19] Proposition 3. (ii) See Morand and Reffett[62],
Lemma 1.�

To construct a recursive equilibrium, we define a nonlinear operator Ah
based on an equilibrium version of the Euler equation. Consider any h ∈
H0, h > 0, and any (K, θ),

Definition: The operator Ah(K, θ) = {y|y : for h > 0, u′(y) = β
∫

Θ
u′(h(F−

y, θ′), θ′)r(F − y, θ′)χ(θ, dθ′); if h = 0 in any (K, θ), we set Ah(K, θ) = 0}.
The following lemma lists a few key properties of the operator A:

Lemma 8.4.2. Under Assumptions P1 ,T1, and D1:(i) For any h ∈ H0, and
any (k, θ), there exists a unique Ah(k, θ);(ii) A maps H0 into itself (e.g., is a
transformation of H0);(iii) A is continuous on H0; (iv) there exists a maximal
fixed point h∗ ∈ H0 and the sequence {AnF} converges uniformly to h∗; and,
(v) the maximal fixed point is strictly positive.

Proof : The proofs of (i)-(iii) are in Coleman[19] (Proposition 4). Claim
(iv) follows directly from Proposition 8.4.1. Claim (v) follows from a stan-
dard dynamic programming argument that is presented in the main theorem
in Greenwood and Huffman[34] p 615.�

It is important to note that neither (i), (ii), nor (iii), rely on compactness
of the state-space, and are therefore valid under Assumptions P1 and T1 only.
We can now state our existence result for MEDPs.

Proposition 8.4.2. Under Assumptions P1, T1 and D1, there exists a recur-
sive equilibrium.

Proof : Follows from Lemma 8.4.1 and 8.4.2.�
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8.4.2 The Uniqueness of MEDPs

We next consider the uniqueness of MEDPs. Let C+ be the cone of a real
Banach space C, and consider a transformation A : C+ → C+. We say an
operator A : C+ → C+ is e−concave if there exists non-zero e ∈ C+, such
that (i) for an arbitrary non-zero c ∈ C+ the inequalities αe ≤ Ac ≤ βe,
where α and β are positive, are valid and (ii) for every c ∈ C+ such that
α1(c)e ≤ c ≤ β1(c)e with (α1(c), β1(c)) � 0, and there is a number η(c, t) > 0
such that A(tc) ≥ (1 + η)tAc for any t ∈ (0, 1). An operator is said to be
pseudo-concave on C+ if for all t ∈ (0, 1), c ∈ C+, c > 0, Atc >> tAc. Let C+

be a solid cone, the operator A : C+ → C+ is strongly sublinear if Atc >> tAc
for all non-zero c ∈ C+ and 0 < t < 1. (See Guo and Lakshmikantham[35],
Definition 2.2.2). If A is isotone and strongly sublinear, it is well-known A is e-
concave. If an operator that is strongly sublinear on the interior of a solid cone,
then it is pseudo-concave. Notice that pseudo-concavity is a weaker condition
than e−concavity; uniqueness of strictly positive fixed point therefore typically
requires stronger conditions on the operator and/or cone. Let P be a solid cone.
Two such related conditions for the operator A to have unique strictly positive
fixed points are that of cone compression and k0−monotonicity. The former
is used to guarantee existence of positive fixed points. The latter is used for
uniqueness relative to the cone.

An operator Ah : P → P is a cone compression on the normal cone P if
their exists a pair of numbers R, r > 0 such that

Ah � h, for h ∈ P,‖h‖ < r, h �= 0;

Ah � h, for h ∈ P, ‖h‖ > R.

Let H ⊂ C+(S) be an compact, order interval where C+(S) is the space of
positive continuous functions on the compact set S = K×Θ.We say an operator
A is k0−monotone on H if it is (i) isotone on H , and (ii) if for any strictly
positive fixed point h1, there exists a k0 > 0, 0 ≤ k1 ≤ k0 and h2 ∈ H such
that h2 ≤ h1, for all k ≥ k1, and h1(k, θ) ≥ Ah2(k, θ) all k ≥ k1, for all θ.
Notice if A is k0−monotone, A is a cone compression.

In our argument, we construct new sufficient conditions for existence of a
uniquely strictly interior fixed point. We first construct the operator Â as in
Coleman[21], but we prove additional properties of this operator that are useful
for our argument that are not in Coleman. We then show that the operator
is strongly sublinear on its interior and a cone compression (which implies
the existence of a strictly positive fixed point. We then show the operator is
additionally k0−monotone, which implies he has a unique strictly positive fixed
point.

We first define the set of functions M as follows
Definition: M = { m : R+ × Θ → R|(i) m is continuous, (ii) for

all (K, θ) ∈ R+ × Θ, 0 ≤ m(K, θ) ≤ F (K, θ) and (iii) for any K = 0,
m(K, θ) = 0}
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Endow M with the standard partial pointwise order and the C0uniform
topology. We note that H0 and M can be directly related to each other by
a simple mapping. For m ∈ M, consider the function Ψ(m(K, θ)) implicitly
defined by,

u′[Ψ(m(K, θ))] =
1

m(K, θ)
, for m > 0, 0 elsewhere.

Clearly, Ψ is continuous, increasing, limm→0 Ψ(m) = 0, and limm→F (K,θ) Ψ(m) =
F (K, θ).Using the function Ψ , for any m > 0, we denote the solution (for y) to
the following equation by Âm(K, θ),

Ẑ(m, y,K, θ) =
1
y
− βEθ[

H(F (K, θ) − Ψ(y), θ′)
m(F (K, θ) − Ψ(y), θ′)

] = 0,

and set Âm = 0 when m = 0. Since Ẑ(m, y,K, θ) is strictly decreasing and
continuous in y and limy→0 Ẑ(m, y,K, θ) = ∞ and limy→F (K,θ) Ẑ(m, y,K, θ) =
−∞, for each m(K, θ) > 0,with K > 0, and θ ∈ Θ, there exists a unique
Âm(K, θ).

It is easy to show that to each fixed point of the operator A corresponds a
fixed point of the operator Â. Indeed, consider x such that Ax = x and define
y = 1

u′(x) (or, equivalently Ψ(y) = x). It is also easy to verify that Am ⊂ M
and is monotone on M. By definition, for all (K, θ), x satisfies,

u′(x(K, θ)) = βEθ{H(F (K, θ) − x(K, θ), θ′) × u′(x(F (K, θ) − x(K, θ), θ′))}.

Substituting the definition of y into this expression yields

1
y

= βEθ{
H(F (K, θ) − Ψ(y(K, θ)), θ′)
y(F (K, θ) − Ψ(y(K, θ), θ′))

},

which shows that y is a fixed point of Â.
We are now prepared to prove our uniqueness result:

Proposition 8.4.3. Under Assumptions P1, T1, D1, (i) The operator Â is
strongly sublinear; (ii) Â has at most one strictly positive fixed point; and, (iii)
there exists a unique recursive equilibrium in H0.

Proof : (i) First note both H0 and M are order intervals in solid cones of
continuous functions defined on a compact set. Therefore since Ẑ is strictly
decreasing in its second argument, a sufficient condition for strong sublinearity
of Âm on the interior of M is:

Ẑ(tm, tÂm,K, θ) > Ẑ(tm, Âtm,K, θ) = 0. (8.3)
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By definition,

Ẑ(tm, tÂm,K, θ) =
1

tÂm
− βEθ{

H(F (K, θ) − Ψ(tÂm(K, θ)), θ′)

tm(F (K, θ) − Ψ(tÂm(K, θ)), θ′)
},

so that,

tẐ(tm, tÂm,K, θ) =
1

Âm
− βEθ{

H(F (K, θ) − Ψ(tÂm(K, θ)), θ′)

m(F (K, θ) − Ψ(tÂm(K, θ)), θ′)
}.

Since Ψ is increasing and H(K ′, θ′)/m(K ′, θ′) is decreasing in K ′,

1

Âm
− βEθ{

H(F (K, θ) − Ψ(tÂm(K, θ)), θ′)

m(F (K, θ) − Ψ(tÂm(K, θ)), θ′)
}

>
1

Âm
− βEθ{

H(F (K, θ) − Ψ(Âm(K, θ)), θ′)

m(F (K, θ) − Ψ(Âm(K, θ)), θ′)
} = 0,

and Ẑ(tm, tÂm,K, θ) > 0 so it must be the case that Âtm > t Âm.Therefore,
Âm is strongly sublinear on the interior of its domain.
(ii) As Âm is strongly sublinear on the interior of its domain, we conclude Âm
is pseudo concave. Given the presence of the Inada condition on technology, a
standard argument in Coleman [21] shows Âm is Ko−monotone. Further by
the main theorem in Coleman [21], we conclude that Âm has at most a single
strictly positive fixed point. The last question pertains to existence then of
strictly positive fixed points. Not that given the definition of Âm, whenever
m > 0, necessarily Âm > 0; further Âm < m. We therefore have Â a cone
compression on the interior of its domain. Then Krasnosel’skii and Zabreiko
([49], Theorem 46.4), Âm has a strictly positive fixed point. Therefore by the
proposition immediately above, Âm actually has a unique strictly positive fixed
point. Finally, (noting the relationship between the orbits of Â and A discussed
earlier in this section) as we have a unique strictly positive fixed point for Â,
namely m∗ > 0, we must have a unique fixed point for A , say h∗ > 0.Since
h∗ > 0 implies strictly positive consumption, it is a MEDP.
(iii) As the Âm has a unique strictly positive fixed point in M, by the definition
of Âm and the fact that Â[M ] is isomorphic to A[H0], we conclude there is a
strictly positive fixed point h∗ ∈ H0 with consumption positive in all states
K > 0, each θ. By a standard argument (e.g., see Le Van and Vailakis[52],
Section 5) , interiority of consumption and investment (along with the fact
h∗ ∈ H0) is sufficient in this case to support prices in l1+\{0}.�

8.4.3 Monotone Comparison Theorems Using Euler Equation
Methods

In this section, we construct monotone comparison theorems using Euler equa-
tion methods. The monotonicity of the mapping A in lemma 8.4.2 can be ex-
ploited to derive strong comparative statics (SCS) results on the space of deep
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parameters t ∈ T using the selection theorems in Section 8.3. The set of equi-
librium is a non-empty complete lattice, so, in the absence of the uniqueness
result, comparative statics analysis requires defining orders on both the set of
parameters and on the set of equilibrium. We show that the set of equilibrium
is ascending in the strong set order of Veinott in t, consequently, we conclude
that the minimal and maximal fixed points are also monotonic in t.

Proposition 8.4.4. Suppose that the assumptions of lemma 8.4.2 and Propo-
sition 8.4.2 are satisfied for each mapping At belonging to the set {At : H0 →
H0, t ∈ T }, where (T,≥T ) is a poset, and G(t) is the fixed point correspon-
dence of At. If At is isotone in t, that is if t′ ≥T t implies that, for all x in
X, At′x ≥ Atx, then G(t) is ascending in Veinott’s strong set order ≥s on 2H0

and the minimal and maximal fixed points (respectively, ∧G(t) and ∨G(t)) of
At are isotone mappings into H0on T .

Proof: The claims follow from the proof in Morand and Reffett[62], Theorem
2, noting that G(t) is isotone in Veinott’s strong set order, a direct implication
of Proposition 8.3.10.�

For an application of this result, consider a perturbation in the discount
rate β. Since the right side of the Euler equation in (8.2) is increasing in β,
as a consequence, the root y∗(K, θ, h, t) = At=β(c) that defined the operator,
is increasing in β ∈ (0, 1) = T , where T is endowed with the dual order ≥T on
the real line (i.e., β

′ ≥T β if β
′ ≤ β). By Proposition 8.4.4, the maximal and

minimal fixed points increase with t (i.e., decrease with β). By Proposition
8.4.3, the set of MEDPs increase in the pointwise strong set order ≥ss and
there is a unique isotone selection.

For another application, consider the tax rate t ∈ T , where T is the set of
continuous functions t(K, z) ∈ [0, 1] that are monotone in K. Endow T with
the standard pointwise Euclidean order for a space of functions, i.e., t′ ≥T t
if t′(K, z) ≥ t(K, z) for all (K, z). Then At′c ≥ Atc in the order defined on E
and the equilibrium set (the set of fixed points of the operator At) is isotone
in t the strong set order. Again, by Proposition 8.4.3, we can obtain a unique
isotone selection on T from the set of MEDPs.

8.5 An Economy with Nonclassical Technology

We now allow for more general versions of bounded nonconvex production tech-
nologies, linear preferences, Markov technology shocks and a role for public pol-
icy. By “distorted nonclassical” production technologies, we mean two cases:
the reduced-form production function f(k,K, θ) is such that (i) f1(k,K, θ)
is not decreasing in k when k = K, and/or (ii) f is not necessarily constant
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returns to scale in private inputs. In (ii), that there is an issue with interpret-
ing exit and entry conditions in the industry within the equilibrium model but
we ignore the industry dynamics. Uncertainty (and much of the model) is as
before. Preferences and technologies are denoted as before, except we now have
weaker assumptions:

Assumption - P2: The utility index u(c) ∈ U where U consists of all
u(c) : K �→ R that are bounded, continuous, strictly increasing, and either
strictly concave on K or linear on K.

Assumption - T2: The aggregate production functions f ∈ F , where F
consists of isotone functions f(k,K, θ) :K × K×Θ, each space ordered with
pointwise Euclidean order, f is continuous in k and there exists k̂(θ) > 0 such
that f(k̂(θ), θ) + (1 − β)k̂(θ) = k̂(θ) and f(k, θ) < k for all k > k̂(θ) for all
θ ∈ Θ; and f is twice differentiable its arguments.10

We impose a joint restriction on the curvature of u(c) relative to the com-
plementarity of the equilibrium distortion in f(k,K, θ). This restriction is used
only for our methods when f ∈ F such that f(K,K, θ) is not concave in K.(See
section 8.6.2 for further discussion of this point, and how this restriction can
be eliminated in the case f(K,K, θ) is concave.)

Assumption - PT1:The utility index u ∈ U and the aggregate production
technology f ∈ F are such that u′(γ(K))f1(k,K, θ) is isotone in K for each
function γ(K) where γ(K) satisfies 0 ≤ γ(K ′)−γ(K) ≤ f(k,K ′, θ)−f(k,K, θ)
for K ′ ≥ K.11

We need a regularity property on the stochastic process of shocks.

Assumption - M1: The transition matrix χ ∈ Ξ is an irreducible Markov
process that satisfies the standard Feller property.

When discussing the long-run properties of a Markovian equilibrium (and
equilibrium comparative statics on limiting distributions), it is useful to restrict
attention to a subset of economies where we can prove Markovian dynamics
are jointly monotone in (K, θ). Therefore, we note the following additional
assumptions:

Assumption - PT2: The class U and F have u′(γ(θ))f1(k,K, θ) are iso-
tone in θ for each γ(θ) such that 0 ≤ γ(θ′) − γ(θ) ≤ f(k,K, θ′) − f(k,K, θ).12

10 We also refer to an isotone function as a monotone function.
11 If one is willing to adopt the slightly stronger complementarity condition related to

the one mentioned in Hopenhayn and Prescott [43] (i.e., u′′(c)f1f2 +u′(c)f12 ≥ 0),
we can allow u(c) in assumption P2 to be concave (but not necessarily linear).

12 This assumption includes the case for Markov shocks mentioned (but not studied)
in Hopenhayn and Prescott [43] for the optimal growth model.
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Assumption - M2: The measure χ ∈ Ξ is stochastically increasing (or
equivalently, totally positive of order 2).13

The case of optimal growth under uncertainty is embedded in above as-
sumptions. Our results are more general than those obtained for the optimal
growth model with Markov shocks in Hopenhayn and Prescott[43]. Although
they claim a more general result, a careful reading of their proofs reveals that
Hopenhayn and Prescott can only claim sufficient conditions for monotone
controls in the optimal growth model with Markov shocks when production
functions are the fixed-coefficient, Leontief-type.14 Note that, we can dispense
with assumption M1 or M2 for the optimal growth case. Also, if the class of
shocks χ ∈ Ξ consists of a collection of independent and identically distrib-
uted random variables, then we obtain joint monotonicity for decentralized
Markovian equilibrium under weaker conditions. We can completely dispense
with Assumption PT2, and we still obtain joint monotonicity of the decentral-
ized MEDPs. For the optimal growth case, we only require u ∈ U concave, and
f(K, θ) monotone in (K, θ).

8.5.1 The Parameter Space and Household Decision Problems

Consider the existence of MEDPs under the assumptions P2, T2, PT1 and M1.
We begin by defining the fixed point space we use to compute MEDPs.

Definition: C1 = {h| 0 ≤ h(K, θ) ≤ f(K,K, θ) ∀ (K, θ); h(K ′, θ) −
h(K, θ) ≥ 0 if K

′ ≥ K}.
Here h ∈ C1 ⊂ B(S), S is a compact partially ordered topological space

with the pointwise Euclidean order (and the usual topology on Rn). B(S) is the
set of bounded functions SK endowed with the standard pointwise Euclidean
order and C0 uniform topology, and C1 consists of all positive functions that
are isotone in K, and socially feasible, monotone in K.

Assume that households take as given the recursion h on per-capita aggre-
gate capital stock K, which is used to compute future returns on capital (and,
therefore, factor prices),

K ′ = h(K, θ) ∈ C1, 0 ≤ h ≤ f.

13 See Topkis [81] for a definition of stochastically increasing.
14 The problem with application of a key theorem in Topkis [81] (Theorem 2.7.6) also

arises in Amir [5]. In this paper, if one follows the proofs, one realizes that the au-
thor can only claim the existence of monotone controls in the nonclassical optimal
multisector growth model when production functions are either (i) Leontief or (ii)
defined on domains where the inputs are chained. Our approach using generalized
envelopes can be applied in the multisector growth model to obtain more general
sufficient conditions for monotone controls in multisector models than found in
Amir’s work.
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If we make additionally assume PT2 and M2, we obtain stronger character-
izations of Markovian equilibrium. For that situation, consider the space,

Definition: C2 = { h|h(K, θ) ∈ C1 that are jointly isotone in (K, θ)}.
Clearly C2(S) is a closed sublattice of C1 ⊂ B(S). The spaces C1 and

C2 are used to find Markovian equilibrium for economies without and with
assumptions PT2 and M2, respectively. We next prove a lemma that is useful
in constructing a Markovian equilibrium.

Lemma 8.5.1. Both C1 and C2 are convex and subcomplete in B(S).

Proof: See Mirman, Morand and Reffett[59], lemma 1. �
Therefore, C1 (respectively, C2) is a natural place to pose the existence of

MEDP question.
We now characterize the best response mapping of households facing an ag-

gregate environment h ∈ C1, under the assumptions P2, T2, PT1 and M1. Con-
sider a household entering the period in state p = (pc, θ) ∈ P = K× K×Θ,
pc = (k,K) ∈ K× K, facing an aggregate economy with aggregate dynamics
(and prices) summarized by the function h ∈ C1. Let consumption and invest-
ment be given as a = (c, y) ∈ A ⊂ K× K. The value function for the household
is a function v∗(p, h) that is a solution of the functional equation:

v∗(p;h) = sup
a∈Γ (p)

{u(c) + β

∫
Θ

v∗(y, h(K, θ), θ′;h)χ(θ, dθ′)}, (8.4)

where the feasible correspondence Γ (p) = {a|c+y ≤ f(p), c, y ≥ 0}. In order to
study the existence of a v∗ that satisfies the above functional equation, consider
the operator BC :

BCv(p;h) = sup
a∈Γ (p)

{u(c) +

β

∫
Θ

v(y, h(K, θ), θ′;h)χ(θ, dθ′)}.

Here the operator BC is defined on the space Vc = {v(p;h) : P × C1→R,
v bounded in (k,K, θ, h), isotone in p for each h, continuous in k for each
(K, θ, h)}. Equip Vc with the standard C0 topology (and the associated uni-
form metric) and the pointwise Euclidean partial order. Vc is a complete metric
space. Lemma 8.5.2 provides a set of results characterizing the unique function
v∗ that satisfies (8.4):

Lemma 8.5.2. Under assumptions P2, T2, PT1 and M1, (i) BCv ⊂ Vc;(ii)
there exists a unique v∗ ∈ Vc that satisfies the Bellman equation (8.4); and,
(iii) the fixed point v∗ is strictly increasing in p for each h ∈ C1.
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Proof: A standard argument. See Stokey, Lucas, and Prescott[76].�
We now use lattice programming to further characterize the value func-

tion.15 Define the optimal solution associated with v∗(p;h) by a∗(p, h),

a∗(p;h) = {arg sup
c,y∈Γ (p)

{u(c) +

β

∫
Θ

v(y, h(K, θ), θ′;h)χ(θ, dθ′)}}. (8.5)

To characterize the optimal solution a∗(p, h) ⊂ 2A, we define a set of partial
orders over choices of consumption c and investment y. The class of partial
orders is referred to as “direct value” orders and was pioneered in the work
of Antoniadou[7]. To fix ideas, consider the simple two good version of the
consumer decision problem. Assume that the relative price is one. Define a
collection of direct value orders for unit price for a = (c, y) ∈ A ⊂ K × K
(denoted by ≥vi, where i ∈ I, an index set) as follows: a, a′ ∈ A, we say a′ ≥vi a
if and only if c′

′
+ y′ ≥e c+ y and a′ ≥Li a . Here ≥e is referred to as the value

quasi-order on A, and ≥Li is the standard lexicographic order defined using
the index set I = {c, y}on A ⊆ R2

+. We use this collection of valuation lattices
(A,≥vi) to model the action space for the stochastic growth model A ⊆ R2

+.
When indexing the lexicographic order in the valuation order by c, we refer to
the resulting lattice, on the commodity space (A,≥vc), as the consumption value
lattice. We also make reference to the investment value lattice when indexing the
lexicographic order in the valuation order by investment (A,≥vy). Antoniadou
[7] shows that the space (A,≥vi) is (i) a partially ordered set for each i ∈
I = {c, y}, and (ii) ≥vi induces a lattice structure on A for each i = c, y.
Define, Γ (p) = {a| c + y ≤ m, c, y ≥ 0,m = f(p)} ⊆ A when (A,≥vi) i =
1, 2.Under assumptions P2, T2, PT1 and M1, and each index i = c, y, the
feasible correspondence Γ (p) is (i) an isotone mapping P → 2A in the strong
set order ≥a endowed with either of the partial orders i = c, y; and (ii) it is
a nonempty, continuous, compact, convex, and complete sublattice for each
p ∈ P .

We turn next to a characterization of supermodular functions on the collec-
tion (A,≥vi). In the next lemma, we characterize additively separable super-
modular objectives on the direct value lattices (A,≥vi). Let U(x, y): A → R
on the lattice (A,≥vi).

Lemma 8.5.3. Assume U(x, y) = u1(x) + u2(y), where each ui(.) is isotone
for i = 1, 2. Then (i) U(x, y) is supermodular (strictly supermodular) on the
x valuation lattice (A,≥vx) if and only if u2(y) concave (strictly concave), (ii)
U(x, y) is supermodular (strictly supermodular) on the collection (A,≥vI) for
I = x, y if and only if both u1(x) and u2(y) are concave (strictly concave).
15 We assume familiarity in this section with the basic terminology of lattice pro-

gramming (supermodular functions etc.). Important references are Li Calzi and
Veinott [53], Veinott [83], and Topkis [81].
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Proof: See Mirman, Morand and Reffett[59], Lemma 4. �
Now, we consider sufficient conditions for monotone controls a∗(p, h) from

(8.5) to be isotone in the Euclidean order on A. The parameters of interest are
pc = (k,K) and h ∈ C1. A major obstacle to studying the dynamic comple-
mentaries in (8.5) is characterizing sufficient conditions for preserving super-
modularity under maximization. One set of sufficient conditions for preserving
supermodularity under maximization on arbitrary projections to the parameter
space is found in Topkis[81] (Theorem 2.7.6). This set of sufficient conditions
cannot be applied in growth models with multidimensional parameter spaces
as they require the graph of the feasible correspondence to be sublattice valued
in the powersets of A × P ; a condition not available in growth models unless
the production function is Leontief. We, therefore, do not follow this line of
argument. We develop results on generalized envelope conditions found in the
literature on nonsmooth analysis. See Clarke[17] (chapter 2) and Rockafellar
and Wets[71]. This approach is used in Askri and Le Van[8] who study envelope
theorems in the multisector optimal growth model with nonclassical technolo-
gies. Unfortunately, however, their results only apply to economies for which
the optimal solutions are strictly interior. In our framework, their methods can-
not be directly applied. We extend Askri and Le Van[8] results to economies
without boundary restrictions, such as Inada conditions. Our method is based
on Gauvin and Dubeau[33].

Let p ∈ P. Note that P is a convex sublattice. Consider the subspace of
value functions V (p) ⊂ Vc consisting of the v(k,K, θ, h) ∈ Vc with the following
additional restrictions:

(i) v(p) is supermodular in pc = (k,K) ∈ Pc for each θ;
(ii) v(k,K, θ, h) Lipschitz in k with the Lipschitz constant,

L = sup
c,k,K,θ,h

|{u′(c)f1(k,K, θ), u′(0)f1(k,K, θ) + ε|,

where ε = β
∫
u′(f(k, h(K, θ), θ′))f1(k, h(K, θ), θ′)χ(θ, dθ′)− u′(0). The subset

V is a closed subset of the complete metric space of functions Vc.Also, recall
that supermodularity is closed under pointwise limits (see Topkis[81], lemma
2.6.1). We have the following monotonicity result,

Proposition 8.5.1. Let us assume P2, T2, PT1 and M1 and let v ∈ V (p).
Then (i) the optimal solution a∗(h; p): C1 → 2A is ascending in h in the
strong set order ≥aon the investment valuation lattice (A,≥vy); and, (ii) the
maximal and minimal selections for investment au

y(h; p) = maxy a∗(h; p) and
al

y = miny a
∗(h; p) are isotone functions from C1 → A.

Proof: See Mirman, Morand and Reffett[59], Theorem 5. �
Notice that monotonicity on the investment lattice (A. ≥vy) implies that

investment monotonicity on the Euclidean lattice (A,≥E). Proposition 8.5.1
implies that the extremal selections of the best response map are monotone



8. Isotone Recursive Methods 229

on the space C1 for each (k,K, θ).Corollary 8.5.1 shows that the extremal
selections form self maps to the space C1:

Corollary 8.5.1. Assume P2, T2, PT1 and M1, let v∗ ∈ V in equation 8.4
and for each θ ∈ Θ; then for h ∈ C1 (i) the optimal solution a∗(pc, θ;h) is
ascending from Pc → 2A in the strong set order ≥aon the investment valuation
lattice (A,≥vy); and, (ii) the minimal and maximal selections for investment
au

y(pc, θ;h) = maxy a
∗(pc, θ;h) and al

y = miny a
∗(pc, θ;h) are isotone functions

from Pc → A.Under additional assumptions PT2 and M2, and for h ∈ C2 ,(iii)
the optimal solution a∗(p;h) is ascending from P to 2A in the strong set order
≥a on the investment valuation lattice (A,≥vy); and, (iv) the minimal and
maximal functions for investment au

y(p) = maxy a∗(p) and al
y = miny a

∗(p)
are isotone functions from P → A.

In the proof of Proposition 8.5.1 and Corollary 8.5.1 in Mirman, Morand
and Reffett[59], they also prove a new envelope theorem that generalizes the
result in Mirman and Zilcha [61], Amir, Mirman and Perkins[6], and Askri and
Le Van[8]. With this envelope, it is straightforward to check that the right
side of (8.4) at a solution v∗ has all the requisite complementary structure
to obtain isotone increasing controls in Veinott’s strong set order ≥s (namely,
the requisite increasing differences between the controls and the parameters).
Given that this new generalized envelope is of independent interest, we present
the argument for its existence.

We need to define some terms. A correspondence Γ (p) is said to uniformly
compact near p if there is a neighborhood N(p) of p such that the closure of
∪p′∈N(p)Γ (p′) is compact. Given the continuity of f in p for economies ∆ ∈ E,
one can prove that the feasible correspondence on (8.4), Γ (p), is uniformly
compact near p. Rewrite the constraints in (8.4), more generally, as Γ (p) = {a|
g(a, p) ≤ 0} where g(a, p) is the set of implicit constraints defined in (8.4).
We say a pair (a, p) ∈ grΓ (p) satisfies the Mangasarian-Fromowitz regularity
conditions ( or, are MF-regular) if there exists a direction r ∈ R2 such that the
Jacobian ∇ag(a, p)r < 0, g(a, p) = 0.16 Here grΓ (p) is the graph of Γ (p). In
our problem, the constraints are additively separable with constant gradients
in the controls, for any pair (a, p) ∈ A× P ; therefore each point (a, p) is MF
regular. Therefore, any optimal solution (a∗(p, h), p) ∈ grΓ (p) is a MF-regular
point. Further, because these coefficients do not change as a function of a,
we also note that we have a stronger constraint qualification present, namely
that the basis elements ∇ag(a∗(p, h), p) are linearly independent. Therefore,
our problem also satisfies the so-called “linear independence” (LI) constraint
qualification discussed in Gauvin and Dubeau[33].

16 As all constraints are inequalities, we are writing that MF regularity constraint
qualifications for a problem with only inequality constraints, i.e, we do not re-
quire for all binding constrants, say h(a, p) = 0, to satisfy that the direction r is
othrogonal to ∇ah(a, p) where h is the collection of all the equality constraints.
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Next, note a few properties of Bellman operator Bc. Let v ∈ V. We know
that the feasible correspondence Γ (p) : P → 2A is a continuous, strong set
order ascending correspondence in p = (k,K, z) for each h ∈ C1. Further,
for each p, Γ (p) is nonempty, compact, convex and subcomplete in (A,≥vi)
for i = c, y. As u(c) is Lipschitz (as its C1 with bounded gradient on any
neighborhood of K that is strictly interior), and the sum of two Lipschitz
functions is Lipschitz, we conclude that the objective is Lipschitz in (c, y) for
each (p, h). By a standard application of Berge’s maximum theorem[11] p.116),
the value function BCv is continuous in k, and the optimal solutions a∗(p, h)
form a nonempty, compact-valued correspondence for each (p, h). Noting the
continuity of the objective, a∗ is also upper hemi-continuous correspondence in
k. As the order on P pointwise Euclidean, when P is endowed with the standard
metric/topology, P is a Banach lattice with a continuous lattice structure. Also
note that (A,≥vi) i = c, y, A has a continuous lattice structure, and A = K×K
is Hausdorff. Therefore, by Debreu[27], the optimal solutions a∗(p) : P → 2A

is are upper-measurable. (See also Hopenhayn and Prescott[43] for discussion
of upper-measurability).

We next prove that the value function is locally Lipschitz under our as-
sumptions in this section. This result is used to prove under our assumptions,
Bcv ∈ V.

Proposition 8.5.2. The Bellman operator, Bc : P × C1 → R, is locally Lip-
schitz near k > 0, for each (K, z, h) and v∗(k,K, θ, h) is Clarke differentiable
in its first argument for each (K, θ, h).

Proof: We have two cases.
Case 1: The optimal solutions a∗(p, h) are strictly interior in A = K × K;

i.e., for all a(p, h) ∈ a∗(p, h), a(p, h) ∈ int(R2
+)

By a result in Amir, Mirman, and Perkins[6] (lemma 3.3) left and right Dini
derivatives exist in k for each (K, z, h) and are bounded. By Rockafellar[70]
(Proposition 5), Bcv is therefore locally Lipschitz with a upper estimate of the
Lipschitz modulus of Lv(p, h) = supp,k>0{Bc+v,Bc−v} ≤ L where for example
Bc+ is the right Dini at (p, h), k > 0.

Case 2: The optimal solutions a∗(p, h) is such that there is an a(p, h) ∈
a∗(p, h) not interior.

Using a standard Lagrangian approach, the operator Bcv is given as follows:
for h ∈ C1,

Bcv = sup
a,λ,ϕc,ϕy

L(a, p, h)

= sup
a,λ,ϕc,ϕy

u(c) + β

∫
v(y, h(K, θ), θ′)χ(θ, dθ′)

+λ(f − c− y) + ϕcc+ ϕyy (8.6)

where λ, ϕc, ϕy are the multipliers associated with the respective constraints
that define Γ (p) = {a|c + y ≤ f(k,K, z), c ≥ 0, y ≥ 0}. As (i) each el-
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ement of (a∗(p, h), p) is MF-regular such that it also satisfies the condi-
tion (LI) and (ii) the primitive data of the problem is Lipschitz, by corol-
lary 4.4 in Gauvin and Dubeau[33], Bcv has bounded right and left Dini
derivatives in k with Bc+vk(k,K, z, h) = maxa∈a∗(p) ∇+

k L(a, p, h) ≤ L, and
Bc−vk(k,K, z, h) = maxa∈a∗(p) ∇−

k L(a, p, h) ≤ L for k > 0, p ∈ P . Then by
Gauvin and Dubeau[33] (Theorem 5.1), Bcv is locally Lipschitz in k > 0,
p ∈ P, h ∈ C1 (see also Rockafellar[70], Proposition 5).�

This generalized Clarke envelope is a critical step: the economies that sat-
isfy assumptions P2, T2, PT1 and M1, the value function v∗(k,K, θ, h) has
increasing differences in (k;K,h) for each θ. If, in addition, we assume PT2
and M2, then we obtain v∗ also having increasing differences in (k; θ).

8.5.2 The Existence of MEDPs

We prove the existence of a complete lattice of Markovian equilibrium. Not-
ing the dependence of best responses on the environment (in the next section
we conduct monotone comparative statics on the space of environments), we
denote a correspondence,

Th(K, θ) =
{a(K,K, θ;h)|a any monotone selection for investment in a∗y in (8.5)}

We state some useful properties of the correspondence Th. In particular,
we focus on the sublattice structure of its range:

Lemma 8.5.4. Under assumptions P2, T2, PT1 and M1, Th ⊂ C1, Th is
ascending on C1 in the strong set order ≥a to 2C1 and is complete-latticed
valued; with additional assumptions PT2 and M2, Th : C2 → 2C2 is ascending
in the strong set order ≥aand T is complete lattice valued.

Recalling the Veinott[82][83] or Zhou[85] version of Tarski’s theorem in
Proposition 8.3.2, we obtain our first result (the proof follows directly from
Lemma 8.5.4 and Proposition 8.3.2),

Proposition 8.5.3. Under the assumptions P2, T2, PT1 and M1, the set of
fixed points ϕ∗

T is a nonempty complete lattice in C1; with additional conditions
PT2 and M2, the set of fixed points ϕ∗

T is a nonempty complete lattice in C2.

8.5.3 Monotone Comparison Theorems via Lattice Programming
Methods

We first point out straightforward monotone comparison results with respect
to changes in the discount rate and shock process. Consider ordered perturba-
tions of the discount rate β and/or uncertainty χ ∈ Ξ (where the ordered
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perturbation of measure χ take place in a setting of first order stochastic
dominance). Using variations of existing arguments (e.g., Amir, Mirman and
Perkins[6] (Theorem 5.1) and Hopenhayn and Prescott[43] (corollary 7) for
perturbations in β and χ, respectively), we obtain a Veinott strong set order
monotone comparative statics result in the pointwise Euclidean order from the
extremal selections of agent investment decisions for investment a∗y(p, h;β, χ),
under assumptions P2, T2, PT1 and M1. Then by the Veinott-Topkis SCS
theorem, we obtain Veinott strong-set order fixed point correspondence com-
parison with the operator Th by ϕ∗

T (β, χ) and have the SCS via Proposition
8.3.10, Section 8.3. We conclude that the fixed point correspondence ϕ∗

T (β, χ)
exhibits strong set order comparative statics, i.e., ϕ∗

T : (0, 1) × Ξ → 2C1 is a
strong set order increasing correspondence.

To study monotone comparative statics with respect to the space of reduced-
form distorted production functions, our argument requires the development
of a set of partial orders that is suitable for ordering the envelope conditions
for agents’ decisions. This partial order involves “gradient monotonicity” con-
ditions. Infinite dimensional single crossing properties relative to a space of
payoff functions for a collection of parameterized dynamic programs have been
studied by Lovejoy[54]. Consider the order on the space of technologies F :
f ′ ≥F f when u(f ′(k,K, z)) − u(f(k,K, z)) is increasing in k, for each (K, z)
with f ′ − f = 0, when k = 0, (k,K, z) ∈ P, and P is compact.17 Observe the
following: (a) (F,≥F ) is a partially ordered space (antisymmetry follows given
f vanishes at zero), (b) f ′ ≥F f implies f ′(p) ≥ f(p) for all p in the pointwise
Euclidean order, and, (c) f ′ ≥F f implies that the gradients, ∂kf

′(p) ≥ ∂kf
(p), are pointwise ordered in the Euclidean order.

Proposition 8.5.4 provides some monotone comparison results for MEDPs
(and stationary Markovian equilibrium). We have examples of SCS and WCS;
namely SCS on the set of MEDPs, and WCS on the set of invariant distribu-
tions. We note that so far, the existence of measurable MEDPs has not been
addressed. We need to address this question prior to discussing the structure
of Markov operators used to study invariant distributions. Let (K× Z,K×Z)
be a Borel measurable space where K× Z is the set of Borel subsets of K× Z.
Let C1 (respectively, C2) be the the space of h ∈ C1 (respectively, h ∈ C2)
such that h(K, z) is jointly measurable. By a standard result (e.g., Halmos
[36], Section 20, Theorem A), if Xc is any countable subset of C1 (respec-
tively, C2), then ∨Xc and ∧Xc are in C1 (respectively, C2). Therefore, we
conclude that C1 (respectively C2) are σ−complete lattices. Using the opti-
mal solutions in (8.5) that solve the agents dynamic programs in (8.4), de-
fine operators based upon the extremal selectors; namely, Auh = suph a

∗(p;h)
(respectively Alh = infh a

∗(p, h)). We remark these are both well-defined iso-

17 Note that the partial order defined with respect this difference is increasing in each
component of p. We fix (K, z), and emphasize the role of k in our discussion below.

Also, similar orders can be developed to obtain monotone controls in consump-
tion, relative to the space of production function by developing the obvious dual
argument using the dual order relative to capital.
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tone and measurable operators on C1 (respectively C2) where isotonicity follows
from Proposition 8.5.1 and measurability follows from Hopenhayn and Prescott
([43], Proposition 2) (when restricting the domain of each extremal operator to
h ∈ C1 and h ∈ C2, respectively). We also note that by an argument in Mirman,
Morand and Reffett [59], Auh and Alh are both order continuous operators on
sequences in C1 (respectively, C2). Then by Proposition 8.3.6, successive ap-
proximations on Au(f) (respectively, Al(0) converges in order to the maximal
(respectively, minimal) fixed point of Th in (8.6) (when Th is restricted to
C1 and C2 respectively). We can use these extremal fixed points (which are
appropriately measurable) to conduct monotone comparative dynamics.

As a prerequisite to stating our comparison results, we define a few terms
that are useful in characterizing the order theoretic properties of the random
dynamical systems. Let M(K×Z) be the space of finite measures on K×Z, en-
dow M with the stochastic dominance partial order, that is λ′ ≥M λ if for every
monotone, measurable, nonnegative, and bounded function f : K× Z → R+

,
∫
fλ′(dk × dγ) ≥

∫
fλ(dk × dγ). Hopenhayn and Prescott[43] (Proposition

3) show that when this order is restricted to the space of monotone, measur-
able, bounded, and nonnegative functions, (M, ≥M ) is a partially order set
under the stochastic dominance order ≥M . When viewed from a topological
perspective, Dudley[29] (Proposition 11.3.2) provides a metric under which M
is a compact metric space. Let (K × Z,B(K) × B(Z)) be measurable spaces
where B(.) denotes the Borel measurable subsets. Consider the adjoint opera-
tor J(λ;h) : M(K× Z)×C2 → M(K× Z) defined as,

J(λ;h)(A ×B) =
∫
IA(h(k, z))χ(z,B)λ(dk × dz), (8.7)

where IA is the indicator function for a measurable set A ∈ B(K), B ∈ B(Z).
For each h ∈ C2, define the fixed point correspondence for the operator J
(λ;h) to be Ψ∗

J (h) = {λ ∈ M,λ = J(λ, h)}. Define λm(h) = minΨ∗
J (h), and let

ϕ∗
J (f) be the set of invariant distributions associated with the set of Markovian

equilibrium ϕ∗
T (f), for any production function f ∈ F.We have,

Proposition 8.5.4. Assume P2, T2, PT1 and M1, let f ∈ (F,≥F ). Then (i)
the correspondence of Markovian equilibrium, ϕ∗

T (f) : F → 2C1 is ascending in
the strong set order ≥a .Further, with additional assumptions PT2 and M2, (ii)
the set of equilibrium invariant distributions ϕ∗

J (f) : F → 2M is ascending in
both (C1) and (C2) of Smithson’s-weak set relation ≥asand therefore admits a
monotone selection on F ; and (iii) the dynamics exhibit monotone comparative
dynamics in the Smithson-weak set relations (C1) and (C2).

Note that standard arguments can be used to prove the existence of an
invariant distribution for a Markovian equilibrium in ϕ∗

T (f). The main contri-
bution of Proposition 8.5.4 concerns comparative dynamics results on the space
of equilibrium correspondence. The problem of ruling out limiting distributions
that do not have ergodic sets on a strictly positive support is nontrivial. We
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leave further characterization of a stationary Markovian equilibrium for future
work. Note that, isotone selections in ϕ∗

J (f) exist as one can easily check the
conditions of Smithson’s weak isotone selection theorem discussed in Section
8.3, Proposition 8.3.12.

8.6 An Economy with Elastic Labor Supply

We revisit the model with classical technology (Section 8.4) and allow for elastic
labor supply. This model is formulated as in Datta, Mirman and Reffett[22]. As
in the previous sections, we consider a continuum of household/firms populating
the economy. Uncertainty and market structure are also similar to that in
Sections 8.4 and 8.5 but the household cares about leisure. For each period and
state, preferences are represented by a period utility index u(ci, li), (ci, li) ∈
R+×[0, 1]. Letting θi = (θ1, ..., θi) denote the history of the shocks until period
i, the households lifetime preferences are additively separable and defined over
infinite sequences indexed by dates and histories,

U(c, l) = E0

{ ∞∑
i=0

βiu(ci, li)

}
.

Here E0 is the expectation with respect to the probability structure of future
histories of the shocks θi given the transition matrix χ. The period utility
function u : R × [0, 1] �→ R, satisfies,

Assumption - P3: The period utility index u(c, l) is such that:
(i) u(c, l) is continuously differentiable, strictly increasing, and strictly con-

cave in (c, l).
(ii) The partial derivatives uc(c, l) and ul(c, l) satisfy the Inada conditions:

limc→0 uc(c, l) = ∞, limc→∞uc(c, l) = 0, liml→0ul(c, l) = ∞.

(iii) The second partials satisfy,

ucc

uc
≤ ulc

ul
,
ull

ul
≤ ucl

uc
.

The assumptions on period utility are standard. (See Datta et al[22] and
Le Van and Vailakis[52] for discussion of this assumption). Note that condition
P3(iii) can be thought of as “normality”. It also means that the marginal rate
of substitution ul

uc
is non-decreasing in c and ul

uc
is non-increasing in l. And

this is slightly stronger than quasi-concavity of the period utility function (we
assume it to be strictly concave) because it implies,

u2
cull + u2

l ucc ≤ 2uculucl,

which is a necessary condition for quasi-concavity. This condition is automati-
cally satisfied if ucc(c, l) < 0, ull(c, l) < 0 and ucl(c, l) ≥ 0. If the cross-partial
is negative, the condition restricts its magnitude.
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Each household is endowed with a unit of time, and enters into a period
with an individual stock of capital k. We assume a decentralization where
firms do not face dynamic decision problems. Households own the firms as well
as both the factors of production, and they rent these factors of production in
competitive markets. In addition, to allow for externalities in the production
process, as in previous sections, we assume that the production technologies of
the firms to depend on per capita aggregates. Assume that technology satisfies,

Assumption - T3: The production function f : K×[0, 1]×K×[0, 1]×Θ →
R satisfies,

(i) f(0, 0,K,N, θ) = 0 for all (K,N, θ) ∈ K× [0, 1]×Θ,
(ii) f(k, n,K,N, θ) is continuous, increasing, differentiable; in addition, it

is concave and homogeneous of degree one in (k, n).
(iii) f(k, n,K,N, θ) also satisfies the standard Inada conditions in (k, n)

for all (K,N, θ) ∈ K× [0, 1] ×Θ; i.e.,

lim
k→0

fk(k, n,K,N, θ) = ∞,

lim
n→0

fn(k, n,K,N, θ) = ∞,

lim
k→∞

fk(k, n,K,N, θ) = 0.

(iv) There exists a k̂(θ) > 0, such that f(k̂(θ), 1, k̂(θ), 1, θ)+(1−β)k̂(θ) = k̂(θ)
and f(k, 1, k, 1, θ) < k for all k > k̂(θ), for all θ ∈ Θ.

Assumption T3 is standard in the stochastic growth literature (see Brock
and Mirman[16]). With the initial stock k0, we can define k̄ = max{k0, supθ k̂(θ)}
and the state space for the capital stock and output can be defined on the com-
pact set K⊆ [0, k̄]. Let K+ denote the set of strictly positive values for k.

8.6.1 The Household Decision and Equilibrium

Imagine a consumer faced with a choice problem of a single good and leisure
in the first stage. The objective is to maximize the difference between the level
of utility and the expenditure to obtain that level of utility (see Topkis[81]).
Normalizing on the price of consumption goods, consumers take the price of
leisure w(K, θ), the level of per capita consumption C, and the per capita leisure
level L(C,K, θ), as given. Here C ∈ K, w : K →R++ , L : K×S → [0, 1], and
L is a continuously once-differentiable function, and as in previous sections,
S := K×Θ.Given w, the household solves,

υ(C,K,L, θ)) = sup
l∈[0,1]

u(C, l)
uc(C,L)

− wl,

for each (C,K,L, θ) ∈ K2× [0, 1]×Θ. Given the assumption P3, standard argu-
ments using the Theorem of the Maximum, establish that the value function υ
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is well-defined and continuous (e.g., see Berge[11], p.115). Further, by the strict
concavity of period utility in P3, the optimal policy correspondence associated
with υ is a singleton. The necessary condition for this first-stage maximization
problem is,

ul(C, l∗(C,K, θ))
uc(C,L)

= w(K, θ).

To finish our description of the first stage, we need to determine equilibrium
factor prices as functions of the aggregate state variable. We do this from the
representative firm’s static production problem. Assume that firms maximize
profits under perfect competition, i.e., the firms maximize profits subject to
given factor prices, say r̄(K, θ) and w̄(K, θ), the rental rate for capital and
the wage rate, respectively. The factor prices are continuous functions of the
aggregate state variable. The representative firm’s maximum profit is,

Π(r̄, w̄,K,N, θ) = supk,nf(k, n,K,N, θ) − r̄k − w̄n

where anticipating the standard definition of competitive equilibrium, we set
k = K and n = N(S), for S ∈ S.

In the second-stage, the household solves a dynamic capital accumulation
problem. To describe this problem, we parameterize the aggregate economy
facing a typical decision maker. Define to be the space of bounded, continuous
functions with domain S and range R+. To parameterize the household’s
decision problem, we first describe the aggregate economy.

If the aggregate per capita capital stock is K, then households assume a
continuous function for per capita labor supply 0 ≤ N(S) ≤ 1, and a recursion
of the capital stock K ′ is given by,

K ′ = h(S); h ∈ C+(S),0 ≤ h ≤ f(K, 1 −N(S), θ)

where C+(S) is as before the space of positive continuous functions on S with
the uniform topology. Using the solution to the household’s first stage decision
problem (and, imposing equilibrium on the labor market), define the per capita
aggregate labor supply N(S) = 1 − l∗(C,K, θ). Then the aggregate economy
consists of functions Ω = (w, r, h, C,N) from a space of functions with suitable
restrictions needed to parameterize the household’s decision problem in the
second-stage. Assume that the policy-induced equilibrium distortions have the
following standard form,

r = [1 − πk(S)]r̄, w = [1 − πn(S)]w̄,

where π = [πk, πn] is a continuous mapping S→[0, 1) × [0, 1). We assume reg-
ularity conditions on the distorted prices,

Assumption - D2 :The vector of distortions π = [πk, πn] is such that
the distorted wage w = (1 − πn(K, θ))w̄ and the distorted rental rate r =
(1 − πn(K, θ))r̄ satisfy,
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(i) w : K×Θ → R+ is continuous, at least once-differentiable and (weakly)
increasing in K,

(ii) r : K+ ×Θ → R+ is continuous and decreasing in K such that,

lim
K→0

r(K, θ) → ∞.

In other words, we assume that the distorted wage and rental rates behave
as the non-distorted rates w̄, r̄ or the marginal products of labor and capital,
respectively. Assumptions D2(i) and P3(iii) imply that leisure increases with
higher consumption and decreases with larger capital accumulation.

Next define the lump-sum transfer to each agent, d(S) = πkK+πnN(K, θ).
Then household’s total income is y(s) = rk + wN + Π + d(s) where s is the
individual household’s state, s = (k, S) = (k,K, θ) and Π is profit. Note that
under assumptions P3, T3 and D2, y(s) is a continuous function. We next
define the household’s feasible correspondence, Ψ(s), which consists of the set
(c, k′) ∈ R2

+ that satisfy,

c+ wl∗(C,K, θ) + k′ = y,

given (k,K, θ) � 0. Notice that Ψ(s) is well behaved. In particular since Π is
continuous, Ψ is a non-empty, compact and convex-valued, continuous corre-
spondence.

Next, we state the second stage decision problem for the household. At the
beginning of any period the aggregate state for the economy is given by S ∈ S.
Each household enters the period with their individual capital stock k ∈ K ,
so their individual state is s ∈ K×S. Then the households dynamic decision
problem is summarized by the Bellman equation,

v(s) = sup(c,k′)∈Ψ(s)u(c, l∗(C,K, θ)) + β

∫
Θ

v(s′)χ(θ, dθ′) (8.8)

Standard arguments show the existence a v ∈ V that satisfies this functional
equation, where V is again the space of bounded, continuous functions with the
uniform norm. In addition, since u is strictly concave in c, standard arguments
also establish that v is strictly concave in its first argument, k. Once again,
from Mirman and Zilcha[61], the strict concavity of v also implies that the
envelope theorem applies and the solution v to the Bellman equation is once
differentiable in k.

We are now prepared to define equilibrium.
Definition: A (recursive) competitive equilibrium for this economy consists

of sequences functions r, w, d, and κ; a value function for the household v(s) ∈
V and the associated individual decisions c∗(s) and n∗(s) such that (i) given
r, w, d and κ , v(s) satisfies the household’s Bellman equation (8.8); (ii) c∗(s)
solves the right-hand side optimization in the Bellman’s equation, l∗(s) = 1 −
n∗ (s) solves the first-stage utility maximization; (iii) all markets clear: i.e.,
k′ = h(S) = K ′, n∗(s) = N(S), c∗(s) = C(S) and the government budget
constraint holds, i.e., d = πkk + πnn

∗
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8.6.2 The Existence of Equilibrium

Before we state the existence problem, we define a number of functions. In
equilibrium, c(s) = C(S), k = K, n = N(S),then y(s) = F (K, θ) = f(K, 1 −
l∗(C(S),K, θ), θ) + (1 − β)K. The next period capital stock, in equilibrium, is
given as K ′ = y − C. Also, for later reference, define l̂(S) as the solution to,

ul(f(K, 1 − l̂(S), θ), l̂(S))
uc(f(K, 1 − l̂(S), θ), l̂(S))

= (1 − πn(S))fn(K, 1 − l̂(S), θ).

Notice that l̂ is the amount of leisure that is compatible with no household
investment in the first-stage utility maximization. At any (aggregate) state
S,the maximum possible amount of consumption occurs if c = f and, i.e., if
there is no investment. In general, the amount of consumption is less than f and
leisure, which is positively related to consumption, is therefore less than l̂(S).
That is, for a given state S, 1− l̂(S) is the lower bound for the amount of labor
supplied. In addition, l̂(S) is differentiable with respect to K, by the implicit
function theorem, since the marginal utilities, technology and the distorted
wage is differentiable in K. Moreover, for the special case, ucl ≥ 0, l̂(S) is
increasing in K. l̂(S) is also increasing in K, for the case ucl < 0, if

ull − fnucl < 0, ucl − fnucc > 0.

The Euler equation, associated with the right side of the Bellman equation
(8.7) above, can be rewritten as,

uc(c, l∗(c,K, θ)) = β

∫
Θ

uc(c(K ′, θ′), l∗(c′,K ′, θ′))r(K ′, θ′)χ(θ, dθ′). (8.9)

Here the ′ notation refers to next period value of the particular variable. Given
a candidate function c(S), we rewrite the Euler equation (8.9) in equilibrium
as,

uc(c, l∗(c,K, θ)) = β

∫
Θ

uc(c(Fc − c, θ′), l∗(c(Fc − c, θ′),K ′, θ′)) ·

r(Fc − c, θ′)χ(θ, dθ′), (8.10)

where Fc = f(K, 1 − l∗(c(K, θ),K, θ), θ) + (1 − β)K. We can use equation
(8.10) to define a nonlinear operator that yields a strictly positive fixed point
in the space of consumption functions. This fixed point is an equilibrium for
the economy.

Define Fu(S) = Fu(K, θ) = f(K, 1 − l̂(K, θ), θ) + (1 − β)K and consider
the following space of functions,

Definition: Hl = {h : S→ K , h continuous, h(S) ∈ [0, Fu(S)] and h such
that uc(h(S), l∗(h(S), S)) is decreasing in h, uc(h(S), l∗(h(S), S)) is decreasing
in K.}
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Equip Hl with the sup norm. Note that the assumption the marginal utility
of consumption is decreasing in hmeans that the space Hl differs from the space
of consumption functions studied in Coleman[20]. It is easily verified that for
the preferences considered in that paper, the restriction uc decreasing in h is
implied. However, since the class of preferences studied in this paper is larger
than that studied in Coleman, additional restriction is necessary on the space
of consumption functions.

Define the extended real valued mapping Z : Hl × Y × K× Z → R̄ where
Y ⊂ R+, as

Z(h, ζ,K, θ) = Ψ1(ζ,K, θ) − Ψ2(h, ζ,K, θ), (8.11)
Ψ1 = uc(ζ, l∗(ζ,K, θ)), (8.12)

Ψ2 = β

∫
Θ

uc(h(Fζ − ζ, θ′), l∗(h(Fζ − ζ, θ′), Fζ − ζ, θ′))r(Fζ − ζ, θ′)χ(θ, dθ′).

(8.13)
Here Fζ = f(K, 1− l∗(ζ,K, θ) + (1− β)K. Then define the nonlinear operator
A : Hl→H′ as follows:

Ah(K, θ) = {ζ such that Z(h, ζ,K, θ) = 0, h > 0;Ah(K, θ) = 0 elsewhere}
(8.14)

where H′ at this point is an appropriate Banach space.
We discuss some properties of the operator A as defined by equations (8.11)

- (8.14).

Proposition 8.6.1. Under Assumptions P3, T3 and D2, for any h ∈ Hl, there
exists a unique Ah = h̃ such that Z(h, h̃,K, θ) = 0, for any (K, θ).

Proof: Datta, Mirman and Reffett[22], Proposition 1. �

Proposition 8.6.1 implies that for all states, the operator Ah is well defined
and under the continuity assumptions on preferences, technologies, and dis-
torted prices, continuity of Ah is obvious. To study the fixed points of A, we
first establish that A is a transformation of Hl: i.e., A : Hl→Hl. It will be
convenient to assume

Assumption - P4: The cross-partial of the utility function is non-negative,
that is, ucl ≥ 0.

Greenwood and Huffman [34] only consider the case where ucl = 0. Coleman
[20] allows for ucl ≥ 0 and also some cases where ucl < 0. However, he considers
a restricted homothetic class of preferences and, in addition, imposes more
restrictions (jointly on utility, production functions and distortions) to study
the case of negative cross partials of u. The same case of negative cross-partials
of u can be handled in our setting also. At this stage, we are unable to capture
more general cases of negative cross partials of u than Coleman [20], therefore,
we focus only on the ucl ≥ 0 case. And, we have the following:
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Proposition 8.6.2. Under assumptions P3, P4, T3 and D2, Ah ⊂ Hl.

Proof: Datta, Mirman and Reffett[22], Theorem 1.�

Notice that Hl is a non-empty, convex subset of a space of continuous,
bounded real-valued functions but it not equicontinuous, and is therefore not
relatively compact.18 Since the space of all continuous functions on a com-
pactum X, denoted by C(S), with the sup-norm metric is a Banach lattice,
Hl is a sublattice in C(S). Now, a closed subset of continuous, bounded real-
valued functions (on a compact domain) equipped with sup-norm metric is
compact if and only if it is equicontinuous. The theorem of Arzela and Ascoli
(see Dieudonne [28], p.136-137) says that a set of equicontinuous, pointwise
compact subset of the continuous functions is relatively compact.

Define the following subset of Hl, Definition: H̄ = {h ∈ Hl such that 0 ≤ |
h(K2, θ)−h(K1, θ) |≤ | F (K2, l

∗(h(K2, θ),K2, θ) − F (K1, l
∗(h(K1, θ),K1, θ) |

, for all K2 ≥ K1.}

A standard argument shows that the space of consumption functions
H̄ ⊂ Hl is a closed, pointwise compact, and equicontinuous set of functions.
Then by a standard application of Arzela-Ascoli, H̄ is a compact, convex, or-
der interval in Hl. Notice that the restriction on consumption in the space H̄
that distinguishes it from Hl implies that the investment function K ′ = Fh −h
is an increasing functions of the current capital stock K which follows because
Fh is increasing in K (since l∗ is decreasing in K, the marginal products of
capital and labor are positive).

We note some important properties of the operator A and the space H̄,

Proposition 8.6.3. Under assumptions P3, P4, T3 and D2, H̄ is a complete
lattice and A is a transformation on H̄, i.e., Ah ⊂ H̄.

Proof: See Datta, Mirman, and Reffett[22], Lemma 1 and Theorem 2.�
To apply a lattice-theoretic fixed point theorem, we need to verify isotonic-

ity,

Proposition 8.6.4. Under assumption P3, P4, T3 and D2, A is isotone on
Hl.

Proof: Datta et al[22] ,Theorem 3.�
We now restrict the mapping A to the subspace H̄ (which is well-defined

since A is continuous, H̄ is compact, order subinterval in Hl and apply a version
of Amann’s theorem,

18 A set is relatively compact if its closure is compact.
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Proposition 8.6.5. Under assumptions P3, P4, T3 and D2 , the set of
fixed points of A : H̄ → H̄ has a maximal fixed point Ah∗ ∈ H̄ such that
limn→∞AnF → Ah∗ = h∗, uniformly..

Proof: Apply Proposition 8.4.1; see also Datta et al[22], Proposition 2.�

8.6.3 The Uniqueness of Equilibrium

As in the case of classical production with inelastic labor supply, we apply our
new approach to existence of strictly positive fixed points once again. First, de-
fine a function fu(K, θ) = f(K, 1− l̂(K, θ), θ) and consider the set of functions
M for the inverse of marginal utility in equilibrium,

Definition: Ml= {m(K, θ) | m : K×Θ → K is continuous ; 0 ≤ m(K, θ) ≤
1

uc(fu(K,θ),l̂(K,θ))
for K > 0 ; m(K, θ) = 0 for K = 0; and r(K′,θ)

m(K′,θ) ≤ r(K,θ)
m(K,θ)

for K ′ ≥ K}
By assumption D2, r(K, θ) is continuous and K is a compact set, therefore,

r is uniformly continuous. As in Section 8.4, one can verify that Ml is a closed,
equicontinuous, pointwise compact subset of the space of continuous functions
on a compact topological space, namely C+(S). Ml is, therefore, compact.

We now define a suitable operator on the space Ml and find a unique
strictly positive fixed point of this operator (to prove the uniqueness of recursive
equilibrium in H̄). As before, define the function H(m,K, θ) for each m ∈ Ml

implicitly as follows (the following lemma makes sure that this definition is
meaningful),

uc(H(m(K, θ),K, θ), l(H(m(K, θ),K, θ),K, θ)) =
1

m(K, θ)
,m > 0;

and H(m,K, θ) = 0, m = 0.

Note that, H(m(K, θ),K, θ) = h(K, θ), pointwise. The proof of uniqueness
takes place in three lemmata.

Lemma 8.6.1. Assume P3, P4, T3 and D2. Then the mapping H(m,K, θ) is
well-defined for each m,K and θ.

Proof: Datta, Mirman and Reffett[22], Lemma 2.�
To characterize H(m,K, θ), take m′ ≥ m in the pointwise partial order on

Ml. Define h2 = H(m′,K, θ) and h1 = H(m,K, θ). Notice when m′ ≥ m, we
have h2 ≥ h1. We can now show that f(k, 1− l(H(m,K, θ),K, θ))−H(m,K, θ)
is decreasing in m by the definition of H(m,K, θ). Define
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∆(h, fh − h, θ) =

β

∫
uc(h(fh − h, θ′), l(h(fh − h, θ′), fh − h, θ′))r(fh − h, θ′)χ(θ, dθ′))

Then for m′ ≥ m, we have the following inequality

uc(Ah1, l(Ah1,K, θ) = ∆(h1, fAh1 −Ah1, θ)
≥ ∆(h2, fAh1 −Ah1, θ)

Therefore, for such a perturbation of h, the mapping Z used in the definition
of Ah is now nonnegative. Therefore, the first term in the definition of Z must
decrease and the second term must increase in a solution Ah2. The latter im-
plies fAh2 −Ah2 ≤ fAh1 −Ah1. Consequently, by the definition of H(m,K, θ),
f(K, 1− l(H(m,K, θ),K, θ))−H(m,K, θ) = fH(m)−H(m) must be decreasing
in m.

Now, define the mapping

Ẑ(m, m̃,K, θ) =
1
m̃

− β

∫
Θ

r(fm̃ −H(m̃,K, θ), θ′)
m(fm̃ −H(m̃,K, θ), θ′)

χ(θ, dθ′),

where fm −H(m,K, θ) = f(K, 1− l(H(m,K, θ),K, θ), θ)−H(m,K, θ) and we
are ready to define the operator,

Â(m) = {m̃ ∈ Ml | Ẑ(m, m̃,K, θ) = 0, for m > 0; and, 0 elsewhere}.

Defining the standard partial order on Ml, that is, m′ ≥ m, m′,m ∈ Ml if and
only if m′(K, θ) ≥ m(K, θ) for all (K, θ).
Finally, if m′(K, θ) > m(K, θ), m,m′ ∈ Ml, the mapping H must be such that
uc(H(m,K, θ), l(H(m,K, θ),K, θ)) is decreasing in m for each (K, θ). Since
h ∈ H̄ , uc(c, l(c,K, θ) is decreasing in c, and there exists h, h′ ∈ H̄ such that
h′ = H( 1

uc(h′,l(h′,K,θ)) ,K, θ) = H(m′,K, θ) and h = H( 1
uc(h,l(h,K,θ)) ,K, θ) =

H(m,K, θ).
If the operator Âm is well defined, we are able to relate orbits of the operator
Ânm0 ∈ Ml to those of the operator Anh0 ∈ H̄ by the following construction.
Consider some h0 ∈ H̄. For such an h0, there exists an m0 = 1

uc(h0,l(h0,K,θ)) ∈
Ml such that H( 1

uc(h0,l(h0,K,θ))) = h0. By definition,

Ẑ(m0, Âm0,K, θ) = Ẑ(H(
1

uc(h0, l(h0,K, θ))
,K, θ),

ÂH(
1

uc(Ah0, l(Ah0,K, θ))
),K, θ) = Z(h0, Ah0,K, θ).

Therefore, h1 = Ah0 = H( 1
uc(Ah0,l(Ah0,K,θ))) = H(Âm0). A similar argument

establishes Anh0 = H(Ânm0), n = 1, 2, ... We next show that the operator Âm
is well defined.
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Lemma 8.6.2. Under assumptions P3, P4, T3 and D2, the operator Â is a
well-defined transformation on Ml.

Proof: Datta et al[22], Lemma 3.�

We now provide the last step of our argument.

Lemma 8.6.3. Under assumptions P3, P4, T3 and D2, if Â has a strictly
positive fixed point then it is unique.

Proof: Since Ẑ is increasing in m, and decreasing in m̃ = Âm, Âm1 ≥ Âm2

for m1 ≥ m2. A sufficient condition for strong sublinearity is,

Ẑ(tm, tÂm,K, θ) > Ẑ(tm, Âtm,K, θ).

This inequality follows since m ∈ Ml, and r decreasing in K. Thus,

Ẑ(tm, tÂm,K, θ) =
1
m̃

− β

∫
Θ

r(fm̃ −H(tm̃), θ′)
m(fm̃ −H(tm̃), θ′)

χ(θ, dθ′) > 0,

and Ẑ(tm, Âtm,K, θ) = 0. Notice also that by examining the definition of
Âm, given the Inada condition, Âm is K0−monotone. Therefore, by the same
argument in the classical production with inelastic labor supply case, via the
extension of a uniqueness theorem in Krasnosel’skii and Zabreiko [49] found in
Coleman [19], if Â has a strictly positive fixed point, it is unique in Ml (and,
therefore, in H̄). �

Finally, we prove the existence a strictly positive fixed point.

Proposition 8.6.6. Under assumptions P3, P4, T3 and D2, there is a unique
strictly positive MEDP.

Proof: Note that, as Ml is an order interval in a solid cone of continuous
functions, and Âm is strongly sublinear on its interior. Also, given the definition
of Âm, whenever m > 0, necessarily Âm > 0; further Âm < m. In particular,
k0−monotonicity implies there is a point m0 >> 0 that maps up. Therefore
again, we have Â a cone compression on the order interval Ml. By Krasnosel’skii
and Zabreiko ([49], Theorem 46.4), we conclude Âm has a strictly positive fixed
point. Further as Âm is additionally K0−monotone, therefore actually has a
unique strictly positive fixed point. Finally, again exploiting the relationship
between the orbits of Â and A discussed earlier in this section before the be-
ginning of this proof, as we have a unique strictly positive fixed point for Â in
Ml, namely m∗ > 0, we have a unique fixed point for A , say h∗ > 0 in H̄.Since
h∗ > 0 implies strictly positive consumption, it is a MEDP. �
Again, we note that h∗ > 0 is crucial for characterizing prices in l1+\{0} ( e.g.,
see Le Van and Vailakis[52])
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8.7 Concluding Remarks

In this chapter, we survey a new and emerging approach to recursive com-
petitive equilibrium theory that is commonly referred to as isotone recursive
methods and we focus on economies with homogenous agents. These methods
allow one to unify results on the existence, characterization and computation
of MEDPs and the SME for a large class of economies commonly encountered
in applied dynamic macroeconomics. Datta, Mirman, Morand and Reffett[23]
develop isotone recursive methods to study MEDPs in the stochastic Ram-
sey models of Becker and Zilcha [10] with heterogeneous agents. They find
sufficient conditions for MEDPs to be isotone and Lipschitz continuous and
for MEDPs that are just Lipschitz continuous. Another application of isotone
recursive methods to the case of heterogeneous agent models is in overlap-
ping generation models. These models form the basis of much work in lifecycle
theory on social security. Erikson, Morand and Reffett[31] and Morand and
Reffett[63] apply the isotone recursive approach to a class of two period sto-
chastic lifecycle-overlapping generations models with social security, production
nonconvexities and public policy (fiscal or monetary). Primarily, they consider
the case of i. i. d. shocks but provide some preliminary results with Markov
shock. This paper (along with others mentioned below) indicate an important
direction for isotone recursive methods in future research; namely, the study
of Stationary Markovian equilibrium (SME). In this survey, this question is
not addressed. In the existing literature, an SME is often considered to be
an invariant distribution (e.g., Hopenhayn and Prescott [43]).19 In many cases
the existence of SME can be established with applications of the fixed point
theory for complete partially ordered sets as discussed in section 8.3 though
the applications might not be as simple as in the case of continuous MEDPs.
For example, consider the existence of a stationary Markov equilibrium for the
case of nonconvex production technologies (in addition to Erikson, Morand
and Reffett [31], see Hopenhayn and Prescott[43] and Mirman, Morand and
Reffett[59]). In general, the extremal MEDPs are only semicontinuous;20 often,
Propositions 8.3.6 and 8.3.7 cannot be applied (as operators are not necessarily
order-continuous on and/or appropriately topologically continuous on their re-
spective domains). However, the existence of an extremal limiting distribution
can be guaranteed by applying Proposition 8.3.3 or 8.3.5 (along with Propo-
sition 8.3.4). The computational issues for numerical solutions to approximate
an SME can be addressed using Propositions 8.3.8 and 8.3.9. Proposition 8.3.8
provides a collection of generalized iterative procedures (that are not necessar-
ily successive approximations). Proposition 8.3.9 provides sufficient conditions
for the existence of an underlying set for iterations that is cofinal (because

19 In other work, an SME is considered to be an ergodic distribution with a nongener-
ate support. Our remarks apply to this case also.

20 Erikson, Morand, and Reffett[31] and Mirman, Morand, and Reffett[59] provide suf-
ficient conditions that distinguish the cases of the existence of continuous MEDPs
and the existence of semicontinuous MEDPs.
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the underlying space of probability measures on a compact Polish space is a
compact metric space). Therefore, the existence of monotone iterative methods
on a countable indexation is obtained via Heikkilä and Lakshmikantham’s[39]
generalized iterative procedures. Heikkilä and Salonen[41][42] and Heikkilä[37]
provide extensive discussions on implementation of such theoretical construc-
tion. As for comparative statics of an SME for economies with semicontinous
MEDPs: the space of probability measures defined on a compact Polish space is
not necessarily a lattice (e.g., consider probability measures defined over a sup-
port that S ⊂ RN

+ for N > 1), therefore, the SCS and WCS monotone selection
theorems of Veinott in Propositions 8.3.10 and 8.3.11 do not apply. The space
of probability measures on a compact subset of a Polish space is a CPO (as it
is a compact metric space). One can apply the WCS conditions in Proposition
8.3.12 to obtain an isotone selection between the space of economies and the
set of SME (see Mirman, Morand and Reffett[59] section 3 for a discussion).
We feel that similar new and interesting applications of recent work in order
theoretic fixed point theory will become paramount in future work that seeks
to study MEDPs and SME.

Potentially the most important extension of isotone recursive methods is the
so-called “mixed-monotone” recursive methods first presented systematically
in Reffett[69], and subsequently applied in Mirman, Reffett and Stachurski[60]
to Bewley[12] models with a single asset. The mixed-monotone method build
upon the mixed-monotone fixed point theory (also known as “coupled” fixed
point theory) that has been developed in the literature on discontinuous dif-
ferential equations. These methods appear powerful, and deliver MEDPs on
the natural state space of current states even in situations where MEDPs are
not unique. Discussions of mixed monotone fixed point theory are found in
Amann[4], Heikkilä and Lakshmikantham[39] and Reffett[68], to name a few.
The discovery of mixed-monotone recursive methods appears to be a giant step
forward in developing methods based on constructive fixed point theory that
can be applied in a wide-array of economic situations. One no longer needs to
have isotone operators (nor fixed point spaces) where underlying constructions
are based on isotonicity. One problem with this method is that one requires
sufficient topological structure relative to the fixed point space for antitone
transformations to possess the fixed point property. Preliminary work in a se-
ries of recent papers by Reffett[67][68][69], Datta and Reffett [24], and Mirman,
Reffett and Stachurski [60] indicate that for many interesting economies, such
“mixed monotone” fixed point methods are available. For example, these meth-
ods provide successive approximation algorithms for computing Bewley models
of the sort studied in Aiyagari[2], Krusell and Smith[51], and Miao[57]. In addi-
tion, isotone recursive methods are a special case of mixed monotone recursive
methods and can be studied in a “single” step using an isotone operators in-
stead of multi-steps for mixed-monotone operators. Mixed monotone recursive
methods unify the existing approaches to characterize MEDPs and the SME by
allowing researchers to obtain more general results that relate monotone itera-
tive computational procedures to actual fixed point constructions. As numerical
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methods described in standard monographs (e.g., Krasnosel’skii et al[48]) can
build on explicit operators to obtain error estimates of Santos and Vigo[74] and
Santos[72]. In principle, one might be able to obtain a complete set of itera-
tive methods for studying numerically, the quantitative properties of the SME
in a large class of macroeconomic models to a specified degree of accuracy,
which seems to be the goal of quantitative macroeconomics (e.g., real busi-
ness cycle studies). Indeed, qualitative methods can provide an essential, first
step in obtaining a useful (and, mathematically credible) quantitative theory
of macroeconomic fluctuations and long-run growth.
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9. Discrete-Time Recursive Utility

John H. Boyd III
Department of Economics, Florida International University, Miami, FL, USA

This chapter focuses on the fundamentals of discrete-time models using re-
cursive utility. We examine the relation between preferences, utility, and ag-
gregator, the existence of optimal paths, and several notions of impatience.
In the one-sector model, we characterize optimal paths and derive a turnpike
theorem.1

Topics beyond the scope of this paper include continuous time recursive util-
ity, models involving uncertainty, the turnpike property in multisector models,
and properties of Pareto optima and equilibrium in multisector models.2

Section 9.1 discusses the limitations of time additive preferences and some
of the benefits of using a more general recursive utility specification. Section
9.2 examines the relation between recursive preferences and the associated ag-
gregator function. A general result on existence of optimal paths is shown in
Section 9.3. Sections 9.4 and 9.5 focus on the one-sector model. Existence of
optimal paths and dynamic programming is considered in Section 9.4. Section
9.5 characterizes optimal paths via the Euler equations and then goes on to
prove a one-sector turnpike theorem. Finally, Section 9.6 takes a brief look at
the case where preferences are both homothetic and recursive.

9.1 Why Recursive Utility?

Since Ramsey [37], optimal growth models have primarily focused on the case
of time additive separable (TAS) utility. Reasons for its popularity are easy to
find. It is intuitively simple: We discount each period’s utility at a constant
1 For a more comprehensive treatment of the discrete-time case, see the book by

Becker and Boyd [5].
2 Epstein [19] examines when a recursive utility function is also a von Neumann-

Morgenstern utility function. Existence and characterization of optimal paths is
studied in [6] and [4]. Pareto optima and turnpikes in multisectoral models have
been investigated by Epstein ([20], [21]) and Dana and Le Van ([13], [14], [15]).
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rate before summing over time. It is often possible to obtain clear-cut analytic
results. If a problem is not quite standard, a large amount of theory devel-
oped by mathematicians is readily applicable. It allows the use of dynamic
programming.

In spite of these advantages, TAS utility also has some shortcomings. In
particular, it builds in some assumptions about the marginal rate of substitu-
tion between consumption in different periods that may not be desirable. This
is most obvious when considering consumption paths that are stationary. In
that case, the marginal rate of substitution between consumption today and
consumption in the following period is the inverse of the discount factor. It
is unaffected by the level of consumption. If there are multiple consumption
goods, this stationary marginal rate of substitution is also unaffected by the
level of consumption of those other goods.3

This constant marginal rate of substitution severely constrains the long-run
behavior of economic models. For example, a consumer facing a fixed interest
rate will try either to save without limit, or to borrow without limit, except in
the knife-edge case where the discount rate equals the interest rate.

This problem is especially severe when there are heterogeneous households.
Unless all of the households have the same discount rate, the most patient
household ends up with all the capital in the long run, while all other households
consume nothing, using their labor income to service their debt (Becker, [3]).
Recursive utility allows for upward (or downward!) sloping long-run capital
supply curves and non-degenerate long-run wealth distributions.

The constant discount rate hypothesis also creates problems for the calcula-
tion of welfare losses arising from capital income taxation. In TAS models, the
long-run supply of capital by households will be perfectly elastic at the discount
rate. We are entitled to be a bit skeptical of the resulting welfare analysis.

When analyzing growing economies, the special behavior of TAS utility
on paths that grow at a constant rate facilitates the construction of tractable
models. Interestingly, there are non-TAS utility functions that exhibit the same
behavior (Dolmas, [17]; Farmer and Lahiri[24]).

9.2 Recursive Utility and Aggregators

Alternative methods of aggregating a sequence of period utilities have long been
proposed. Irving Fisher [25] suggested combining today’s utility and tomorrow’s
utility as if they were two different consumption goods. The result could then
be analyzed using indifference curves over present and future utility. Fisher’s
approach was formalized and axiomatized by Koopmans and his collaborators
3 The use of TAS utility also requires that the intertemporal elasticity of substitution

be equal to the coefficient of relative risk aversion. Epstein and Zin [23] used tech-
niques borrowed from the recursive utility literature to construct Kreps-Porteus
preferences that relax that restriction.
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in the 1960’s and early 1970’s (Koopmans,[27] 1960; Koopmans, Diamond, and
Williamson, [30] 1964; Koopmans, [28] 1972a; Koopmans, [29] 1972b).

Recursive utility is defined in an infinite horizon context. Time is indexed
by t = 1, 2, . . . . Let c = (c1, c2, . . . ) be a sequence of consumption bundles
ct ∈ Rn in each time period t. We let S denote the shift operator defined
by S(c1, c2, . . . ) = (c2, c3, . . . ) and π the projection onto the first co-ordinate,
πc = c1 ∈ Rn. Let S denote the space of sequences in Rn and X be a subset
of S such that SX ⊂ X. We give S the product topology. Thus cn → c if and
only if cnt → ct for every t.

Suppose we have continuous preferences � defined on X. We say these pref-
erences have a recursive utility representation if there is a function W (called
the aggregator) and a subutility function u : S → R obeying

U(c) = W (u(c1), U(Sc))

for every c ∈ X. A simple example of recursive preferences is the TAS form
U(c) =

∑∞
t=1 u(ct) which has aggregator W (x, y) = x + δy and subutil-

ity function u. A non-TAS example of a recursive utility function is given
by −

∑∞
t=1 exp−[

∑t
s=1 v(cs)].

4 This function has subutility v and aggregator
W (x, y) = (−1 + y) exp(−v(x)). We refer to it as the EH aggregator.
Koopmans’s Axioms
Koopmans’s axioms are:
(K1) � is a stationary relation: (z,x) � (z,x′) for all z ∈ πX if and only if
x � x′.
(K2) � exhibits limited independence: for all z, z′ ∈ πX and x,x′ ∈ X, (z,x) �
(z′,x) if and only if (z,x′) � (z′,x′).
(K3) � is a sensitive relation: there is an x ∈ X and a z, z′ ∈ πX with
(z′,x) � (z,x).

It is easy to show that any preference order with a recursive representation
obeys Koopmans’s Axioms. Koopmans [27] showed that if a preference order
obeys (K1)–(K3) and has a utility representation U , then the utility represen-
tation is recursive. Koopmans also showed that there was a unique aggregator
and subutility associated with U .

Potentially, the aggregator gives the possibility of representing preferences
in a compact form. However, not any function can be an aggregator. This leads
to a new question. Given a would-be aggregator W and subutility u, is there a
corresponding recursive utility function? If so, what domain is it defined over?

9.2.1 Construction of Recursive Utility from an Aggregator

Lucas and Stokey [33] provided the first major result concerning construction of
the utility function. They used the contraction mapping theorem to construct
4 This is a discrete-time version of the modified Uzawa [43] utility used by Epstein

and Hynes [22]
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a utility function defined on all non-negative sequences under some restric-
tive conditions on W . Define the Koopmans operator TW on the continuous
functions on S+ by

TW (f)(c) = W (c1, f(Sc)).

Under Lucas and Stokey’s assumptions, the contraction mapping theorem
shows that the Koopmans operator has a unique fixed point which is the desired
recursive utility function.

The most important restriction was that W be bounded. This ruled out
many commonly used TAS utility functions. For example, the aggregator
W (x, y) = (1− σ)−1x1−σ + δy, which leads to the commonly used utility func-
tion U(c) = (1 − σ)−1

∑∞
t=1 δ

t−1c1−σ
t does not fit into Lucas and Stokey’s

framework, even when 0 < σ < 1.
Many authors have proposed solutions to this problem. The most notable

are the weighted contraction method (Boyd, [10]), the “partial sum” method
used by Boyd to handle unbounded aggregators and used for all aggregators
by Le Van and Vailakis [32], Streufert’s ([41], [42]) biconvergence condition,
and the k-local contraction recently used by Rincón-Zapatero and Rodŕıguez-
Palmero ([38], [39]).

We will examine the construction of the utility function from an aggregator
in detail. For convenience, we will absorb the subutility into the aggregator for
the remainder of the paper. Thus we write W (x, y) rather than W (u(x), y).
Nonetheless, to maintain compatibility with Koopmans’s Axioms, we will pre-
sume our aggregators can be written using a subutility. We will first follow
Boyd’s approach and then comment on biconvergence. Rincón-Zapatero and
Rodŕıguez-Palmero’s method is akin to Boyd’s, but is able to cope with weaker
bounds than given by (W2) below.
Aggregator
A function W : X × Y → Y is an aggregator if:
(W1) W is continuous on X × Y and increasing in both c and y.
(W2) W obeys a Lipschitz condition of order one: there exists δ > 0 such that
|W (x, y) −W (x, y′)| ≤ δ|y − y′| for all x in X and y, y′ in Y.
(W3) (TN

W y)(c) is concave in c for all N and all constants y ∈ Y.

When W is differentiable the Lipschitz bound in (W2) is given by δ =
supW2(c, y). In the TAS case, it coincides with the discount factor. This bound
is a strong form of Koopmans, Diamond, and Williamson’s [30] concept of time
perspective. As viewed from the present, future utilities appear closer and closer
together as they are further out in time, just as railroad tracks appear to con-
verge in the distance. The Lipschitz bound δ gives us our first measure of
impatience, which we refer to as the time perspective factor with corresponding
rate δ−1 − 1.

The sole purpose of condition (W3) is to ensure concavity of the util-
ity function. It is not required for the existence results. Joint concavity of
W is not required for the associated utility function to be concave. Al-
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though the EH aggregator is not concave, the corresponding utility function
U(c) = −∑∞

t=1 exp[−∑t
τ=1 v(cτ )] is concave whenever v′′ < 0. More generally,

when the utility function is the limit of the functions (TN
W (0))(c), (W3) ensures

concavity is inherited by U .
Let C be the space of continuous functions on S. Let ϕ ∈ C with ϕ > 0.

Define the ϕ-weighted norm by ||f ||ϕ = sup |f(x)/ϕ(x)|. The space Cϕ = {f ∈
C : ||f ||ϕ < ∞} is then a Banach space under the ϕ-norm || · ||ϕ.

Theorem 9.2.1. Weighted Contraction Mapping Theorem
Suppose T : Cϕ → C such that:

1. T is non-decreasing (f ≤ g implies Tf ≤ Tg).
2. T (0) ∈ Cϕ.
3. T (ξ +Aϕ) ≤ Tξ +Aθϕ for some constant θ < 1 and all A > 0.

Then T has a unique fixed point.

Proof. The proof is inspired by Blackwell (1965). Let f, g ∈ Cϕ and consider
||f − g||ϕ. Then −||f − g||ϕϕ ≤ f − g ≤ ||f − g||ϕϕ. Rearranging, we find
f ≤ g + ||f − g||ϕϕ and g ≤ f + ||f − g||ϕϕ. Using properties (1) and (3), we
obtain Tf ≤ Tf + θ||f − g||ϕϕ and Tg ≤ Tg + θ||f − g||ϕϕ. Together, these
yield ||Tf − Tg||ϕ ≤ θ||f − g||ϕ. This shows T is a strict contraction from Cϕ

to C.
To show T maps into Cϕ, set g = 0 to obtain ||Tf − T (0)||ϕ ≤ θ||f ||ϕ. By

(2) T (0) ∈ Cϕ which means Tf ∈ Cϕ with ||Tf ||ϕ ≤ ||T (0)||ϕ + θ||f ||ϕ.
As T is a strict contraction on Cϕ, it has a unique fixed point. ��
Before attempting to construct the utility function, we must decide what

domain is appropriate. Obviously, the utility function will live on a subset of
S+. The domain ultimately chosen may depend on the problem at hand. One
of the motivations for studying recursive utility is to admit non-degenerate
equilibria. This demands we use a subset that is appropriate for equilibrium
problems, a linear space. If we are focusing on capital accumulation problems
we may further restrict the domain. Streufert [41] exploits that fact to sharpen
the utility existence theorem.

For β ≥ 1, define the β-norm by |c|β = supt ||ct||/βt} where || · || is the
Euclidean norm on Rn. Then define the β-weighted �∞ space by �∞(β) = {c ∈
S : |c|β < ∞}. The space �∞(β) is a Banach space under the norm |·|β. We refer
to the associated topology as the β-topology. Since a sequence that converges
in β-norm must converge in each coordinate, the β-topology is stronger than
the product topology on �∞(β).

Theorem 9.2.2. Continuous Existence Theorem
Suppose W : X × Y → Y obeys (W1) and (W2), ϕ is continuous on some
A ⊂ S with πA ⊂ X and SA ⊂ A. Suppose further W (πc, 0) is ϕ-bounded and
δ||ϕ◦S||ϕ < 1. Then there exists a unique U ∈ Cϕ(A) such that W (πc, U(Sc)) =
U(c). Moreover, (TN

W 0)(c) → U(c) in Cϕ.
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Proof. The conditions on A insure everything makes sense. Since W is
increasing in y, the Koopmans operator TW is increasing. Now

|TW (0)|
ϕ(c)

=
|W (c1, 0)|
ϕ(c)

< ∞

because W (πc, 0) is ϕ-bounded. Moreover,

TW (ξ +Aϕ) = W (c1, ξ(Sc) +Aϕ(Sc))
≤W (c1, ξ(Sc)) +Aδϕ(Sc)
≤ TW ξ +Aδ||ϕ ◦ S||ϕϕ(c)

by the Lipschitz condition (W2). Applying the Weighted Contraction Mapping
Theorem with θ = δ||ϕ ◦ S||ϕ < 1 shows that TW has a unique fixed point U .

Now consider ||U(c)− (TN
W 0)(c)||ϕ ≤ δN ||U(SNc)||ϕ ≤ ||U ||ϕ(δ||ϕ◦S||ϕ)N .

As the right-hand side converges to zero, (TN
W 0)(c) → U(c). ��

A couple of applications will help clarify how the theorem may be used.
The general strategy is to pick either W (x, 0) or a function bounding it for the
weighting function ϕ. Consider the TAS aggregator W (x, y) = x1−σ + δy for
0 < σ < 1. Choose β with δβ1−σ < 1 and set A = �∞(β)+. Here W (x, 0) =
x1−σ. This is not positive, so we add one and compose with the β-norm to get
a weighting function. That is, ϕ(c) = 1 + |c|1−σ

β . Then

W (c1, 0) = c1−σ
1 ≤ |c|1−σ

β < ϕc,

so W (πc, 0) is ϕ-bounded. Also,

ϕ(Sc) = 1 + |Sc|1−σ
β ≤ 1 + (β|c|β)1−σ ≤ β1−σ|c|β ,

which implies δ||ϕ ◦ S||ϕ < 1.
The EH aggregator W (x, y) = (−1 + y)e−v(x) provides a second example.

Here X = R+ and Y = R−. Suppose v is increasing with v(0) > 0. Then
W is increasing and obeys a Lipschitz condition with δ = e−v(0) < 1. Since
|W (x, 0)| = e−v(x) ≤ 1, we set ϕ = 1. The existence theorem then shows that
the corresponding utility function is continuous and bounded on A = S+.

This approach has several limitations. When W (x, 0) is not bounded be-
low it becomes impossible to construct an appropriate ϕ. This difficulty can
be handled by first constructing the utility function on a restricted space of
sequences that are bounded away from zero (so utility can be bounded below),
and then using a limiting argument to remove the lower bound.

For 0 < γ ≤ β < ∞, define γ |c| = inf ||ct||/γt−1 and �∞(β, γ) = {c ∈ S :
0 < γ |c| and |c|β < ∞}. This is the set of paths with growth factors of at least
γ and at most β.

To see how utility can be defined on such a space, consider the partial sums
of U(c) =

∑∞
t=1 log ct. If c ∈ �∞(β, γ), γ |c|γt−1 ≤ ct ≤ |c|ββt−1. Then
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T∑
t=1

[(t− 1) log γ + log γ |c|] ≤
T∑

t=1

δt−1 log ct

≤
T∑

t=1

δt−1[(t− 1) logβ + log |c|β ].

Here the utility partial sums converge because they are squeezed between the
partial sums of convergent series. The limit is not uniform, so we cannot con-
clude it is continuous. A slightly different approach gives us upper semiconti-
nuity. Consider the set

X = {c ∈ �∞(β)+ : |c|β < A}.

On this set,
∑T

t=1 δ
t−1(log ct − (t− 1) log β− logA) has non-positive terms. As

the infimum of upper semicontinuous functions, the limit is upper semicontin-
uous. It differs from the utility function by a constant, so utility is also upper
semicontinuous X. Boyd’s “partial summation” method adapts this approach
to recursive utility.

Before proceeding, we have to consider the consequences of admitting −∞
as a possible value for utility. The obvious solution to Koopmans’s equation
may not be the only one. In fact, U(c) = −∞ may satisfy the recursion, as it
does in the logarithmic case. However, it does not match up with the solution
we derived on �∞(β, γ)+. We will rule out such solutions as unreasonable.

The general strategy is to first derive utility on some well-behaved sequences
in �∞(β, γ)+, and then use recursive substitution to extend utility to �∞(β)+.

Assumption
(W1′) W : X × Y → Y is increasing in both arguments, upper semicontinu-
ous on X × Y continuous for x > 0 and y > −∞, and obeys W (x,−∞) =
W (0, y) = −∞ for all x ∈ X and y ∈ Y.

Theorem 9.2.3. Upper Semicontinuous Existence Theorem
Suppose W obeys (W1′) and satisfies the Lipschitz condition (W2) whenever it
is finite. Suppose further there are increasing functions g and h with g(||x||) ≤
W (x, 0) ≤ h(||x||). Set ϕ(c) = max{h(|c|β),−g(γ |c|)}. If ϕ > 0 with δ||ϕ ◦
S||ϕ < 1 for some β > γ > 0 with 1 ≤ β, then there exists a unique U that
is ϕ-bounded on �∞(β, γ)+, obeys Koopmans’s equation W (πc, U(Sc)) = U(c),
and is β-upper semicontinuous on �∞(β)+.

Proof. We first construct the function on �∞(β, γ)+. Temporarily give
A = �∞(β, γ)+ the discrete topology. All functions are continuous there. Since
W (c, 0) is clearly ϕ-bounded, the Continuous Existence Theorem applies and
yields a unique ϕ-bounded recursive utility function Ψ defined on �∞(β, γ)+.

Next let z be an arbitrary element of �∞(β, γ)+ and define the “partial
sums” on all of �∞(β)+ by replacing the utility of the tail of c with the utility
of the tail of z. Formally,
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ΨN (c; z) = [(TN
WΨ)(SNz)](c) = W (c1,W (c2, . . . ,W (cn, Ψ(SNz)) · · · )).

Now for z, z′ ∈ �∞(β, γ)+,

|ΨN(c; z) − ΨN (c; z′)| ≤ δN |Ψ(SNz) − Ψ(SNz′)|
≤ δNM [ϕ(SNz) + ϕ(SNz′)]
≤ M ′(δ||ϕ ◦ S||ϕ)N

for some M,M ′. The first step uses the Lipschitz bound (W2), the second
uses the ϕ-boundedness of Ψ on �∞(β, γ)+, and the third uses the fact that
ϕ(SNz) ≤ (||ϕ ◦ S||ϕ)Nϕ(z). It follows that if limN ΨN (c; z) exists, it must be
independent of the choice of z. Note that if c ∈ �∞(β, γ)+, ΨN (c; c) = Ψ(c), so
limN ΨN (c; z) exists and is equal to Ψ(c) for c ∈ �∞(β, γ)+.

We next show U(c) = limN ΨN(c; z) exists and is β-upper semicontinuous
on all of �∞(β)+. Consider the ball B about zero of radius κ. Set zt = κβt−1.
For c ∈ B, ct ≤ zt. It follows that ΨN(c; z) is a decreasing sequence. Its limit
U(c) not only exists, but is upper semicontinuous on B as the infimum of a
sequence of upper semicontinuous (in c) functions. Since B was any ball, U is
upper semicontinuous on all of �∞(β)+.

The function U is also recursive. If πc = 0 or if U(c) = −∞, our hypotheses
imply W (πc, U(Sc)) = −∞ = U(c). Otherwise, we may write:

W (πc, U(Sc)) = W (πc, lim
N

(Sc);Sz))

= lim
N
W (πc, ΨN (Sc;Sz))

= lim
N
ΨN+1(c; z)

= U(c)

which demonstrates Koopmans’s equation for c ∈ �∞(β)+.
This leaves uniqueness. Let Φ be a β-upper semicontinuous recursive utility

function that is ϕ-bounded on �∞(β, γ)+. Since Ψ is the unique such function
on �∞(β, γ)+, Φ is an extension of Ψ . Let zt = |c|ββt−1 so that c ≤ z. Thus
Φ(c) ≤ ΨN (c; z). Taking the limit shows Φ(c) ≤ U(c).

Now if ct = 0 for some t, U(c) = −∞ = Φ(c) and we are done. So suppose
ct > 0 for all t. Now set zt = γt−1 and consider cn = (c1, . . . , cn, zn+1, zn+2, . . . ).
By construction, Φ(cn) = Ψn(c; z). Since γ < β, |cn − c|β → 0. As Φ is upper
semicontinuous, Φ(c) ≥ limn Ψn(c; z) = U(c). Thus U = Φ, proving unique-
ness. ��

The sort of situation this applies to is W (x, y) = (1 − σ)−1x1−σ + δy when
σ > 1. Then g(x) = −x1−σ and h = 0 is a good choice. Choose γ large enough
that γ1−σδ < 1 (note that δ > 1 is ok here) and β > γ arbitrary. Then set
h = 1 and use the fact that g(γ |Sc| ≥ γγ |c| to show δ||ϕ ◦ S||ϕ < 1.

Rincón-Zapatero and Rodŕıguez-Palmero [39] also use a two-stage approach
to derive the recursive utility function. The biggest difference is that they use
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a different type of contraction mapping theorem that allows them to handle a
wider variety of aggregators.

Le Van and Vailakis [32] modify the partial sum method to provide a unified
approach to existence that works under weaker assumptions.

Streufert [41] followed a different path to existence of recursive utility. He fo-
cused on the case where consumption sequences of interest are bounded above.
Let ωt > 0 for every t and consider [0, ω] = {c ∈ S : 0 ≤ ct ≤ ωt for every t}.
A utility function U is upper convergent over [0, ω] if for every c ∈ [0, ω]:

lim
T→∞

U(c1, . . . , cT , STω) = U(c)

while a utility function is lower convergent if

lim
T→∞

U(c1, . . . , cT ,0) = U(c).

A utility function is biconvergent over [0, ω] if it is both upper and lower con-
vergent over [0, ω]. A function U1 : [0, ω] → [0,∞) equivalent to U is a general
solution to Koopmans’s equation if there is a sequence of subutility functions
such that

Ut(St−1c) = W (ct, Ut+1(Stc)).

Such a solution is admissible if for all c ∈ [0, ω], U(0) ≤ U1(c) ≤ U(ω).
Streufert showed that if U is biconvergent, it is the only admissible solution
to Koopmans’s equation. He was also able to prove a converse under a mild
additional hypothesis on the connectedness of the image of U .

9.3 Existence of Optimal Paths

The basic method of showing optimal paths exist is to apply the Weierstrass
Theorem, which states that an upper semicontinuous function has a maximum
on any compact set. The existence theorems for recursive utility establish upper
semicontinuity. We need only show that the feasible set is compact.

As usual in normed spaces, β-bounded sets in �∞(β) are not compact. How-
ever, if α < β, any α-bounded set is pre-compact in �∞(β). If it is product-
closed, it is compact.5 Thus the key to showing existence of optimal paths will
be to show that all feasible paths grow at most by a growth factor that is below
β.

Lemma 9.3.1. Suppose 0 < α < β and there is an A > 0 such that ||ct|| ≤ Aαt

whenever c ∈ X. Then if X is closed in the product topology, X is also compact.
5 Since all of the β-topologies are stronger than the product topology, β-closed im-

plies product closed. The converse does not hold, but on α-bounded sets we only
need the weaker condition.



260 John H. Boyd III

Proof. Let cn be a sequence in X. Since X is α-bounded, we can extract
a subsequence that converges in the product topology. We also denote the
subsequence by cn and its product-limit by c.

Let ε > 0. Choose T so that Aαt/βt < ε/2 for all t > T . Now choose N so
that ||cnt − cmt || < ε for all n,m > N and t = 1, . . . , T . Then |cn − cm|β < ε for
n,m > N . As {cn} is a Cauchy sequence in the β-topology, it has a limit in
�∞(β). Since β-convergence implies product convergence, this limit coincides
with the product-topology limit c. As X is β-closed, c ∈ X. ��

Proposition 9.3.1. Suppose U is β-upper semicontinuous on a product-closed
and α-bounded set X with α < β. Then the problem of maximizing U(c) for
c ∈ X has a solution.

Proof. By the preceding lemma, X is β-compact. The Weierstrass Theorem
then applies to yield a maximum. ��

9.4 One-Sector Model with Recursive Utility

The traditional one-sector growth model (Ramsey model) has one all-purpose
good available at each point in time. This good is used both for consumption
and as an input to production in the next period. Production proceeds under
conditions of diminishing returns to scale, and is described by a production
function. The planner starts with an initial capital stock, and maximizes utility
over all feasible consumption paths.

Let ct denote consumption in time period t and let kt denote the capital
stock accumulated during period t, used for production in period t + 1. The
initial capital stock is k0. Consider the sequences of consumption levels, c =
{ct}∞t=1, and capital stocks, k = {kt}∞t=1. Both c and k are elements of S.

Let f be a non-decreasing continuous production function such that f(0) ≥
0. In each time period, income yt = f(kt−1) is freely divided between con-
sumption ct and capital kt. Any income that is not accumulated as capital may
be consumed.6 A pair of sequences (c,k) is feasible from k if ct, kt ≥ 0 and
0 ≤ kt +ct ≤ f(kt−1) for t = 1, 2, . . . . The feasible set is Y(k0) = {(c,k) : (c,k)
is feasible from k}. The sets of feasible capital and consumption programs are
F(k0) = {k : (c,k) ∈ Y(k0) for some c} and B(k0) = {c : (c,k) ∈ Y(k0) for
some k}, respectively. Feasible consumption paths obey 0 ≤ ct ≤ f(kt−1)− kt,
and B(k0) is referred to as the budget set .

Proposition 9.4.1. Both B(k0) and F(k0) are compact in the product topol-
ogy.
6 We can interpret this as 100 percent depreciation. An alternative interpretation is

that f denotes output net of depreciation and investment is reversible.
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Proof. Define the t-th iterate of f , f t, inductively by f1(x) = f(x), f t(x) =
f(f t−1(x)). As f is increasing, ct, kt ≤ f t(k0), and so both B(k0) and F(k0)
are contained in

∏∞
t=1[0, f

t(k0)]. This set is compact by Tychonoff’s Theorem.
Take feasible kν with kν → k. Then 0 ≤ kν

t ≤ f(kν
t−1). Taking the limit

shows 0 ≤ kt ≤ f(kt−1). Thus F(k0) is closed. As a closed subset of a compact
set, F(k0) is compact.

Now suppose cν ∈ B(k0) with cν → c. Consider the associated kν ∈ F(k0).
Take a convergent subsequence with limit k. Retaining notation, we denote it
kν . Then 0 ≤ kν

t + cνt ≤ f(kν
t−1). Taking the limit in the feasibility constraints,

we find c ∈ B(k0). As a closed subset of a compact set, B(k0) is also compact.
��

Theorem 9.4.1. Ramsey Model Existence Theorem
Suppose U is β-upper semicontinuous and f(k) ≤ a+bk with b ≥ 1 and b, a ≥ 0.
If b < β then an optimal path exists.

Proof. All that is really left is to show B(k0) is α-bounded for some α < β.
Choose α with b < α < β. Now ct ≤ f t(k0) and f t(k0) ≤ a+aα+ · · ·+aαt−1 +
αtk0 = a(αt−1)/(α−1)+αtk0 by induction. Since α > 1, ct ≤ [k0+a/(α−1)]αt,
which shows B(k0) is α-bounded. ��

9.4.1 Dynamic Programming

We again consider the Ramsey problem, the problem of maximizing utility
given an initial capital stock k and production function f . This time, instead
of the direct method, we approach the optimal growth problem via dynamic
programming, using the value function J(k) = sup{U(c) : c ∈ B(k)}. The
value function always exists, although it may be either +∞ or −∞. If it is a
continuous function, we will be able to use it to find optimal paths. We establish
Bellman’s equation using the Principle of Optimality. The classic statement of
the Principle of Optimality is:7

The Principle of Optimality
An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

The Optimality Principle says once on the optimal path, it is optimal to stay
there. Optimal choices are time consistent. Koopmans’s Stationarity and Lim-
ited Independence Axioms are the key to establishing the Principle of Opti-
mality in the context of the recursive one-sector model.

The idea of time consistency underlies the following proof, although it is a
bit obscured due to the use of the supremum rather than a maximum. If the
7 Bellman ([7], p. 83).
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maximum does exist, the epsilons can be dispensed with, making clear how
the Principle of Optimality is employed. Bellman’s equation is the analytical
implementation of the Principle of Optimality. The basic methodology of dy-
namic programming is to solve the optimization problem by finding the solution
to Bellman’s equation. The value function stores all the relevant information
necessary to solve the original problem.8

Theorem 9.4.2. Bellman’s Equation
In the one-sector model,

J(k) = sup {W (c, J(f(k) − c)) : 0 ≤ c ≤ f(k)} .

Proof. Let ε > 0, and take a feasible path c with U(c) > J(k) − ε. The
path c′ = {ct+1}∞t=1 is feasible from f(k) − c1, and so U(c′) ≤ J(f(k) − c1).
Thus

J(k) − ε < U(c) = W (c1, U(c′)) ≤W (c1, J(f(k) − c1)).

It follows that J(k) − ε ≤ sup {W (c, J(f(k) − c))}. Because ε was arbitrary,
J(k) ≤ sup{W (c, J(f(k) − c))}.

For step two, fix ε > 0. Take any c ∈ [0, f(k)] and choose c feasible from
f(k)− c with U(c) ≥ J(f(k)− c)− ε/δ. Letting c∗ = (c, c), we obtain U(c∗) =
W (c, U(c)) ≥ W (c, J(f(k) − c)) − ε by (W2). As c∗ is feasible from initial
stocks k, ε+J(k) ≥ sup{W (c, J(f(k)− c))}. Since ε was also arbitrary, J(k) ≥
sup{W (c, J(f(k) − c))}. Combining this with the previous paragraph yields
Bellman’s equation. ��

Similar results hold in multisector models. When the optimal path is in-
terior, we can use the Envelope Theorem to show the value function is differ-
entiable and that its derivative is the derivative of U with respect to time 1
consumption evaluated at the optimal path. Let Ut denote ∂U/∂ct.
Regular Paths
An optimal path of capital accumulation k is regular if 0 < kt < f(kt−1) for
all t = 1, 2, . . . .

Theorem 9.4.3. Differentiability of the Value Function
The value function J is non-decreasing and concave. If U is differentiable with
respect to consumption in period 1, and optimal paths are regular, then J is
differentiable and obeys J ′(k) = U1(c) where c is any optimal path from k.

8 There are many treatments of dynamic programming. We recommend Stokey and
Lucas [40] for an exhaustive treatment of dynamic programming in deterministic
and stochastic economic models. Streufert’s [42] chapter surveys deterministic and
stochastic dynamic programming using his biconvergence technique. More recent
literature on dynamic programming in the context of recursive utility includes
Durán [18] and Rincón-Zapatero and Rodŕıguez-Palmero [39]. Alvarez and Stokey
[1] and Le Van and Morhaim [31] consider the problem of unbounded returns in a
TAS context.
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Proof. The value function is increasing because the feasible set grows
when the initial stock increases. Concavity follows since U is concave and the
production function is concave.

Differentiability is established as follows.9 Let h > 0, h = (h, 0, . . . ) and let
c be an optimal path with initial endowment k so that J(k) = U(c). Clearly,
J(k+ h) ≥ U(c+ h) and thus J(k+ h)− J(k) ≥ U(c+ h)−U(c). Dividing by
h and taking the limit shows that the right-hand derivative D+J(k) satisfies
D + J(k) ≥ U1(c).10 Since c is regular, c1 = f(k) − k1 is non-zero. We may
then repeat this with −c1 < h < 0, to show D−J(k) ≤ U1(c) ≤ D+J(k). As J
is concave, D+J(k) ≤ D−J(k), thus J ′(k) = U1(c). ��

Corollary 9.4.1. Under the above conditions,

J ′(k) = W1(c1, U(Sc))

where c is any optimal path from k.

For regular paths, the Euler equations are easy to derive.11

Theorem 9.4.4. Euler Equations
Suppose k is a regular optimal path from initial stock k and that Ut exists at
every time period. Then Ut(c) = f ′(kt)Ut+1(c).

Proof. Consider the path kt(ε) = kt for t �= s, ks(ε) = ks + ε. The
associated consumption path is ct(ε) = ct for t �= s, s + 1, cs(ε) = cs − ε,
cs+1(ε) = f(ks + ε) − f(ks) + cs. For |ε| small, this will be feasible and we can
define g(ε) = U(c(ε)). This attains a maximum when ε = 0, so g′(0) = 0. Now
g′(0) = Us(c) − f ′(ks)Us+1(c), which establishes the result. ��

The Euler equations can also be written Ut/Ut+1 = f ′(kt). In the regular
case, we can simplify the Euler equations by using the aggregator. The chain
rule tells us that

Ut(c) = W2(c1, U(Sc))W2(c2, U(S2c)) × ...W2(ct−1, U(St−1c))W1(ct, U(Stc))

Plugging this into the marginal rate of substitution Ut/Ut+1, we find that
most of the W2 terms cancel, leaving us with

Ut(c)
Ut+1(c)

=
W1(ct, U(Stc))

W2(ct, U(Stc))W1(ct+1, U(St+1c)
.

This motivates the definition of the marginal rate of impatience by

1 +R(x, y, u) =
W1(x,W (y, u))

W2(x,W (y, u))W1(y, u)
,

9 This method is adapted from Mirman and Zilcha [35], which is simpler in this
context than adapting Benveniste and Scheinkman [8].

10 We use D+ and D− to denote the right- and left-hand derivatives.
11 The case of non-regular paths is more complex, see Boyd [10] for details.
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so that
Ut(c)
Ut+1(c)

= R(ct, ct+1, U(St+2c)).

In the TAS case, R reduces to δ−1u′(x)/u′(y)− 1 and is independent of future
utility.
Along stationary paths, we define the rate of impatience by ρ(c) = R(c, c, Φ(c))
where Φ(c) = U(c, c, . . . ). Thus ρ(c) = −1 + 1/W2(c, Φ(c)). In the TAS case, it
coincides with the discount rate as ρ(c) = −1 + δ−1, so δ = 1/(1 + ρ(c)).

The Euler equations for the TAS case, W (x, y) = u(x) + δy have the usual
form u′(ct) = δf ′(kt)u′(ct+1). The Epstein-Hynes aggregator W (x, y) = (−1 +
y) exp(−v(x)) yields W1 = −v′(x)(−1 + y) exp(−v(x)) and W2 = exp(−v(x)).
After some simplification,

v′(ct)
v′(ct+1)

−1 + U(Stc)
U(Stc)

= f ′(kt)

The difference is particularly noticeable on stationary paths. Suppose ct = c
and kt = k. Then the TAS case yields δf ′(k) = 1 while the EH case gives
1 − 1/U(c) = f ′(k). Overall utility (or wealth) has no effect in the TAS case,
but plays a key role in the EH case.

If we specialize further to the case of a constant interest rate r, so f(k) =
1 + r, stationarity for TAS utility requires δ(1 + r) = 1. In the EH case,
1 − 1/U = 1 + r or r = −1/U (recall that utility is negative here). Different
interest rates lead to different steady state consumption levels for EH utility. For
TAS utility, interest rates other than δ−1 − 1 do not have stationary solutions.
Either the optimal path shrinks toward zero (if r is small) or grows without
bound (if r is large).

We can go a bit further. We can find Φ(c) by solving Koopmans’s equation
W (c, Φ(c)) = Φ(c). Using the expression for W , we find (−1+Φ) exp(−v(c)) =
Φ, so Φ(c) = [1 − ev(c)]−1. Thus exp v(c) = r along stationary paths. Only if r
is outside the range of exp v(c) do we get optimal paths converging to zero or
growing without bound.

9.5 Optimal Paths in the One-Sector Model

In this section, we focus on one-sector capital accumulation models with dif-
ferentiable concave production function and differentiable strictly concave re-
cursive utility U . We will require that the aggregator W obey either (W1) or
(W1′). It will also obey (W2) with Lipschitz bound δ < 1. We require Ut(c) > 0
exist whenever U(c) is finite and that f ′ > 0 on R++. Further, assume that
the feasible set F(k) is α-bounded and that U is β-upper semicontinuous for
some β > α.12 These conditions ensure that optimal paths exist. The concavity
12 If W has the time additive form W (x, y) = u(x) + δy, this implies 0 < δ < 1 and

that u′ > 0 on R++.
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of the production function implies that the feasible set is convex. The strict
concavity of U then yields a unique optimal path.

9.5.1 The Inada Conditions

The Euler equations are one of our main tools for investigating the properties of
optimal paths. We would like to use them to characterize optimal paths. How-
ever, we have only derived the standard Euler equations as necessary conditions
when optimal paths are regular. There are two ways to work around this. One
is to allow for boundary points by using a Kuhn-Tucker inequality when kt = 0
or ct = 0. Modified Euler equations of this sort are presented in Boyd [10].
The other, and simpler, method is to guarantee interiority by imposing the
Inada conditions. The Inada conditions come in two parts: the Inada utility
condition is U+

t (c) = +∞ when ct = 0; the Inada production conditions are
f ′(0+) = +∞ and f ′(∞) supW2 < 1. When U is time additive separable, the
Inada utility condition becomes u′(0+) = +∞, and the production condition
is δf ′(∞) < 1. We have:

Lemma 9.5.1. Suppose the Inada condition for utility is satisfied and f(0) = 0
and f ′(k) > 0 for k ≥ 0. Whenever k > 0 and J(k) > −∞, any optimal path
is regular, it obeys ct, kt > 0 for all t.

Proof. Let c be optimal and suppose cs = 0. If cs+1 > 0, then f(ks) −
ks+1 = cs+1 > 0, so f(ks) > ks+1 and hence ks > 0. Take ∆ > 0 small
enough that ks > ∆ and f(ks − ∆) > ks+1. We try an arbitrage between
times s and s + 1 that accelerates consumption. Increase consumption by ∆
at time s by taking the path c′ defined by c′t = ct for t �= s, s + 1, c′s =
cs + ∆, and c′s+1 = f(ks − ∆) − ks+1 = cs+1 + f(ks − ∆) − f(ks), which is
feasible. Now 0 ≥ U(c′) − U(c). Dividing by ∆, and letting ∆ → 0+, we find
0 ≥ Us(c) − Us+1(c)f ′(ks). But the right-hand side is +∞. This contradiction
shows that cs+1 = 0 also. Once consumption reaches 0, it must stay there.

Now let s be the earliest time with cs = 0. If s = 1, ct = 0 for all t.
Thus J(k) = U(0). Of course, this is impossible if U(0) = −∞, so we may
assume U(0) is finite. But then, the path c∗ = (f(k), 0, 0, . . . ) is feasible, and
yields utility W (k, U(0)) > W (0, U(0)) = U(0). This is also impossible as c is
optimal. Thus s > 1.

Note that all of the capital must be used up at s. No more consumption will
take place, and we would be made better off by consuming any leftover capital.
Try an arbitrage between s and s− 1 that delays consumption. Let ∆ > 0 and
define c′ by c′t = ct for t �= s − 1, s, c′s−1 = cs−1 −∆, and c′s = f(∆). This is
feasible for small ∆. Again, 0 ≥ U(c′) − U(c). We again divide by ∆, and let
∆ → 0+. This yields 0 ≥ −Us−1(c) + Us(c)f ′(0). The right-hand side is +∞
by the Inada condition on U . This contradiction shows that there is no s with
cs = 0. ��
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9.5.2 Monotonicity

The basic monotonicity and turnpike results for the recursive one-sector model
were established by Beals and Koopmans [2], and under slightly weaker condi-
tions by Magill and Nishimura [34].13 We prove optimal paths are monotonic
and that they cannot cross. Convergence to a steady state (or infinity) then
follows.

First let c(k) and k(k) denote the optimal paths of consumption and capital
stocks, respectively.

Theorem 9.5.1. Monotonicity Theorem
Suppose ∂R/∂c1 �= 0. For any initial stock k, kt(k) is a strictly increasing
function of k and the optimal path k(k) is strictly monotonic.

Proof. The strict concavity means k(k) is single-valued, hence continuous.
Let k < k′, and let k = k(k), k′ = k(k′) be optimal. Suppose k1 = k′1. By the
Principle of Optimality, kt = k′t for t = 2, 3, . . . . Further, c1 = f(k) − k1 <
f(k′) − k′1 = c′1 and c2 = f(k1) − k2 = c′2. Thus c′t = ct for t = 2, 3, . . . . The
Euler equations yield R(c1, c2, . . . ) = f ′(k1) = f ′(k′1) = 1+R(c′1, c

′
2, . . . ). Since

c′t = ct for t = 2, 3, . . . , R(c1, c2, . . . ) = R(c′1, c2, . . . ). But this is impossible
since R is decreasing in c1 and c1 < c′1. Thus k1 �= k′1.

Now suppose k1 > k′1. Since k1(0) = 0 < k′1 < k1(k), and k1(k) is continu-
ous, there is a k′′ with 0 < k′′ < k and k1(k′′) = k′1. This is impossible by the
preceding argument. Therefore k1 is strictly increasing. Since kt(k) is the t-th
iterate of k1, it too is strictly increasing. Further, k(k) is strictly monotonic by
the usual argument. ��

Since ∂R/∂c1 is continuous, it must be either always positive or always
negative. Many people consider the requirement that ∂R/∂c1 < 0 as most
natural. R is the marginal rate of substitution between consumption today
and consumption tomorrow. As we increase today’s consumption, we ex-
pect the rate of substitution to fall. In the additive case, it must fall as
∂R/∂c1 = u′′(c1)/δu′(c2). In the more general recursive case it is equivalent
to requiring ∂[W1(c1, u)/W2(c1, u)]/∂c1 < 0. This says that the indifference
curves in (c1, u)-space are convex to the origin.

Monotonicity immediately implies that optimal paths converge either to 0,
or to a steady state, or to +∞.

Initial stocks can be divided into three disjoint sets. Let I0 = {k : k = 0 or
f ′(k) = 1 + ρ(f(k) − k)}, I+ = {k : f ′(k) > 1 + ρ(f(k) − k)}, and I− = {k :
f ′(k) < 1 + ρ(f(k) − k)}. For k ∈ I0, the Euler equations and transversality
condition are clearly satisfied by the stationary path kt = k. Thus every element
of I0 is a steady state. The Euler equations also show that all steady states are
in I0. Accumulation is definitely possible in I+ since f ′(k) > 1+ρ(f(k)−k) > 1.
Define Ψ(k) = Φ(f(k)−k) where Φ(c) is the utility of the constant path ct = c.
13 Boyer [12] and Iwai [26] examined recursive utility models with one sector. They uti-

lized dynamic programming ideas and conjectured the presence of multiple steady
states in some cases.



9. Discrete-Time Recursive Utility 267

Theorem 9.5.2. Recursive Non-Optimality Theorem
Suppose k ∈ I+ (k ∈ I−) and kt ≤ k (kt ≥ k) for t < n with kt = k for t ≥ n.
Then U(c) ≤ Ψ(k), and k is not optimal.

Proof. First suppose k ∈ I+. That U(c) ≤ Ψ(k) is trivial for n = 1. We
proceed by induction. Suppose U(c) ≤ Ψ(k) when n = m ≥ 1 and consider a
path k with kt ≤ k and kt = k for t ≥ m + 1. If km = k, U(c) ≤ Ψ(k) by the
induction hypothesis, so we may suppose km < k.

First consider the path k′ defined by k′t = k for t �= m and k′m = k + ∆.
Obviously f ′(k) > 1, so this path will be feasible from k for ∆ > 0 small
enough. Taking a Taylor expansion shows

U(c′) − U(c) = −Um(c)∆ + Um+1(c)∆f ′ + o(∆)∆
= (W2)m−1[−W1 +W2W1f

′]∆+ o(∆)∆
= W1(W2)m−1[W2f

′ − 1]∆+ o(∆)∆

where all derivatives are evaluated at k. Now

1 + ρ(f(k) − k) = 1/W2(k, Ψ(k)) < f ′(k)

as k ∈ I+. So W2f
′ > 1 and ∆ may be chosen small enough that U(c′) > Ψ(k).

Note that remaining at k cannot be optimal.
Now take λ, 0 < λ < 1 with λ(k + ∆) + (1 − λ)km = k. (Here λ =

(k − km)/(k − km +∆).) Then k′′ = λk′ + (1 − λ)k satisfies the hypotheses of
the lemma for n = m, so U(c′′) ≤ Ψ(k) by the induction hypothesis. Now

Ψ(k) ≥ U(c′′) ≥ λU(c′) + (1 − λ)U(c) > λΨ(k) + (1 − λ)U(c).

Thus Ψ(k) > U(c). The inequality holds for all n by induction. Further, since
the stationary path kt = k is feasible and not optimal, k cannot be optimal.

The case of k ∈ I− is similar. ��
Using the Recursive Non-Optimality Lemma, we can prove a turnpike result.

Since both I+ and I− are open, they are the countable union of open intervals.
The endpoints of these intervals must be in I0.14 Now label the endpoints
k̄i such that k̄i < k̄i+1. We allow +∞ as the largest k̄i. If k /∈ (k̄i, k̄i+1), the
optimal path cannot cross the steady states at the endpoints, so kt ∈ (k̄i, k̄i+1).
Further, since kt is monotonic, it must converge to some k̄. Taking the limit in
the Euler equations shows f ′(k̄) = 1+ρ(f(k̄)− k̄). The optimal path converges
to one of the endpoints. Similarly, if k is greater than all of the steady states it
converges either to the largest steady state, or to ∞. The next theorem shows
that kt → k̄i+1 when k ∈ (k̄i, k̄i+1) ⊂ I+ and kt → k̄i when k ∈ (k̄i, k̄i+1) ⊂ I−.

Theorem 9.5.3. Turnpike Theorem
Suppose ∂R/∂c1 < 0. If k ∈ (k̄i, k̄i+1) ⊂ I+, the optimal path obeys kt ↑ k̄i+1;
if k ∈ (k̄i, k̄i+1) ⊂ I−, it obeys kt ↓ k̄i+1; and if k ∈ I0, kt = k is the optimal
path.
14 Note that I0 may contain points other than these endpoints.
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Proof. When k ∈ I0, the path kt = k satisfies the Euler equations and
transversality condition. Thus it is optimal.

Consider the case where k ∈ I+. We know that kt is strictly monotonic.
Suppose kt is decreasing. Take a sequence of feasible paths kν such that kν → k
in the product topology with kν

t ≤ k for all t and kν
t = k for large t. (This

is possible since f ′ > 1 and f(k) > k on [kν
t , k].) Then U(kν) ≤ Ψ(k) by

the Recursive Non-Optimality Lemma. Since U is product continuous on the
feasible set, U(k) ≤ Ψ(k), contradicting the fact that k is optimal. Thus kt is
increasing. By the Monotonicty Theorem, kt < k̄i+1. Taking the limit in the
Euler equations shows the limit point is in I0. It must be k̄i+1.

The case k ∈ I− is similar, except that the optimal path may simply be
truncated to obtain the desired kν . ��

9.6 Homogeneous Recursive Utility and Sustained
Growth

Many applications of TAS utility use a homogeneous or logarithmic period
utility function. This yields a utility function that is homothetic. Rader ([36],
1981) showed that these are the only homothetic TAS utility functions. Such
functions are of interest because they can yield balanced growth paths (given
appropriate technology). As a result, they are widely used in macroeconomic
models of economic growth.

Interestingly, these are not the only homothetic recursive utility functions.
Dolmas [16], [17] was able to characterize homothetic recursive utility both ax-
iomatically and via the aggregator. As usual, if a utility function is homothetic,
it is equivalent to a utility function that is homogeneous of degree 1.

Proposition 9.6.1. Let U be a recursive utility function that is homogeneous
of degree γ. Its aggregator obeys W (u(λc), λγy) = λγW (u(c), y).

Proof. This follows from the fact that

λγW (u(c1), U(Sc)) = λγU(c)
= U(λc) = W (u(λc1), U(λSc))
= W (u(λc1), λγU(Sc)).

��
A converse can be derived whenever the existence theorems apply. E.g., if

the Continuous Existence Theorem applies, U(c) is the limit of TN
W (0)(c), which

is easily seen to be homogeneous of degree γ. It follows that U is homogeneous
of degree γ.

Dolmas [17] gave the following example of a class of non-additive homoge-
neous recursive utility functions. Let u be homogeneous of degree γ and set
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W (x, y) = u(x)w(y/u(x)). It is easy to see that W (λx, λγy) = λγW (x, y), so
the resulting utility function is homogeneous of degree γ, provided it exists.

Now specialize to the one-good case with w(y) = [1 + δy]ρ/ρ where 0 <
δ, ρ < 1 and u(x) = xγ . Then W2 = δ[1 + δy]ρ−1 ≤ δ and W (x, 0) = xγ , so
the Continuous Existence Theorem applies on �∞(β)+ whenever βγδ < 1. It is
easy to see this is not equivalent to an additive representation by examining
the marginal rates of substitution, which depend on future utility as well as
the consumption levels ct and ct+1.

Now consider a path that grows at a constant rate, so ct+1 = βct. Since
W (λc, λγu), W1(λc, λγu) = λγ−1W1(c, u) and W2(λc, λγu) = W2(c, u). Then
the marginal rate of substitution between consumption in adjacent periods is

W1(ct, U(Stc))
W2(ct, U(Stc))W1(ct+1, U(St+1, c))

=
W1(ct, U(Stc))

W2(ct, U(Stc))W1(λct, λγU(Stc))

=
1

λγ−1W2(ct, U(Stc))

Now W2(ct, U(Stc)) = W2(c1, U(Sc)), which implies that R is constant along
such paths, as noted by Farmer and Lahiri [24]. This constancy allows the
possibility of balanced growth paths.

Farmer and Lahiri also note that W2(c1, U(Stc)) is independent of the start-
ing level of consumption since replacing ct by χct (so U(Sc) is replaced by
χγU(c) leaves W2 unchanged due to the homogeneity property established
above.

In models with a maximum sustainable stock, recursive preferences allow
for heterogeneity in discounting while permitting a non-degenerate long-run
capital distribution.15 Farmer and Lahiri conclude that recursive preferences
add little flexibility in the case of balanced growth. Either the existing wealth
distribution is maintained, or it becomes degenerate in the long run. They
propose a generalization of recursive utility that allows for more heterogeneity
in discounting while maintaining balanced growth.

It should be noted that TAS utility already allows more flexibility in long-
run behavior under sustained growth. Boyd [11] noted that the growth rate
could affect whether it was possible for agents with differing discount factors
to both hold capital in the long run, and that the growth rate could also affect
which one ended up with all of the capital in the degenerate case. These results
suggest that the advantages of recursive utility occur primarily in models with
a maximum sustainable stock.
15 Becker [3] finds that the TAS case does lead to a degenerate capital distribution,

where only the most patient household owns any capital stock in the steady state.
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10.1 Introduction

Recently there has been an increasing interest in sunspot equilibria as a possible
explanation of business cycle fluctuations. In a macroeconomic context, sunspot
fluctuations is a topic that dates back to the early work of Shell [25], Azariadis
[1] and Cass and Shell [10]. This renewed interest is explained by the fact that
during the last decade a variety of economic models that incorporate some
degree of market imperfections have been shown to exhibit multiple equilibria
and local indeterminacy.1 As shown by Woodford [29], the existence of sunspot
equilibria is closely related to the indeterminacy of perfect foresight equilibrium.

Indeterminacy, or multiple equilibria, is known to occur in dynamic models
with small market distortions and generates some coordination problems. Ba-
sically, the occurrence of indeterminacy needs a mechanism such that, starting
from an equilibrium, if all agents were simultaneously to increase their invest-
ment in, say, the capital good, the rate of return on this good would tend to
increase, and in turn set off relative price changes that would drive the economy
back towards the steady state. In one-sector models, such a mechanism may
be associated with external effects in production and increasing returns. How-
ever, in a two sector model, the rate of return and marginal product of capital
depend not only on factor inputs, but also on the composition of output and
thus on the relative factor intensities. An increase of the production and the
stock of capital following an increase in its price may well increase its rate of
return. Therefore constant aggregate returns at the social level are compatible
with indeterminacy if there are minor external effects in some of the sectors.
1 See Benhabib and Farmer [5] for an extensive bibliography.
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In this chapter we will present the main conditions for the occurrence of
indeterminacy in one and two-sector optimal growth models extended to in-
clude market imperfections based on technological external effects. We will
focus almost exclusively on discrete-time models. We will distinguish between
different formulations for externalities which will be in general associated with
different assumptions concerning the returns to scale at the social level. Fol-
lowing Romer [24], one-sector models are characterized by global external ef-
fects coupled with increasing social returns. We will show that indeterminacy
of equilibria is fundamentally based on the consideration of endogenous labor
demand and externalities coming both from capital and labor. In two-sector
models, Benhabib and Farmer [4] have introduced sector-specific external ef-
fects. While their initial formulation assumed increasing social returns, most
of the papers that followed the contribution of Benhabib and Nishimura [7]
are based on constant returns to scale at the social level. We will show that
some simple conditions on capital intensity differences across sectors generate
some amplification mechanisms that produce the existence of indeterminate
equilibria.

The chapter is organized as follows. Section 2 presents one-sector models.
Two-sector models with Cobb-Douglas technologies, complete depreciation of
capital and sector-specific externalities are analyzed in Section 3. Section 4 is
devoted to the presentation of similar two-sector models but with CES pro-
duction functions. The cases with symmetric and asymmetric elasticities of
capital-labor substitution are consecutively considered. In Section 5 we discuss
extensions of the two-sector Cobb-Douglas formulation. Firstly, we present how
the conditions for local indeterminacy are modified when partial depreciation
of capital is assumed. Secondly, we introduce a formulation for intersectoral ex-
ternalities that is compatible with both sector-specific and global externalities
specifications. We will then show how additional intersectoral mechanisms pro-
vide new room for local indeterminacy. Finally, in Section 6, other formulations
of infinite-horizon models are explored. We first deal with the consideration of
aggregate models with capacity utilization in which the speed of capital depre-
ciation is endogenously determined. Then we present two-sector models derived
from general technologies.

10.2 One-Sector Models

One-sector discrete-time models with Romer-type [24] global externality and
increasing returns at the social level have been considered initally by Kehoe [14]
and Boldrin and Rustichini [9]. The aggregate production function is augmented
to include a new factor which represents the effect of knowledge on production
and productivity:

Yt = F (Kt, Lt, At)

with At the externality at time t which will be equal at the equilibrium to
Kt/Lt. For any given A, F (., ., A) is increasing, concave and homogeneous of
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degree 1, and labor is inelastic. Under constant population, the intensive for-
mulation for the capital accumulation equation is:

kt+1 = f(kt, At) − ct

with f(k,A) = F (k, 1, A) + (1 − µ)kt and µ ∈ [0, 1] the rate of depreciation of
capital.

Assumption 1 f(k,A) is C2 and such that for any k,A > 0, f1(k,A) > 0,
f11(k,A) < 0 while for any A > 0, f(0, A) = 0.

From a standard utility function u(c) which satisfies:

Assumption 2 u(c) is C2 and such that for any c > 0, u′(c) > 0, u′′(c) < 0,
u(0) = 0, u′(0) = +∞ and u′(+∞) = 0.

we define the parameterized maximization program of a representative con-
sumer as

max
{ct,kt+1}∞

t=0

+∞∑
t=0

δtu(ct)

s.t. kt+1 = f(kt, At) − ct

k0, {At}+∞
t=0 given

with δ ∈ (0, 1] the discount factor. Along an equilibrium path, At = kt and the
Euler equation easily writes as

δu′(ct+1)f1(kt+1, kt+1) − u′(ct) = 0

A steady state k∗ is obtained considering kt+1 = kt and ct+1 = ct in the Euler
equation, i.e. k∗ is a solution of

f1(k, k) = 1/δ

It follows that c∗ = f(k∗, k∗). Contrary to the optimal growth framework,
existence and uniqueness are no longer ensured under Assumption 1. We will
however assume that there exists one locally unique steady state k∗. Linearizing
the Euler equation around this steady state easily shows that the sum and
product of the characteristic roots satisfy:

T = 1 + δ−1 + f2(k∗, k∗) +
u′(c∗)
u′′(c∗)

[f11(k∗, k∗) + f12(k∗, k∗)]

D = δ−1 + f2(k∗, k∗)

Definition 10.2.1. A steady state k∗ is called locally indeterminate if there
exists ε > 0 such that from any k0 belonging to (k∗ − ε, k∗ + ε) there are
infinitely many equilibrium paths converging to the steady state.
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If both characteristic roots have modulus less than one then the steady state
is locally indeterminate. If a steady state is not locally indeterminate, then we
call it locally determinate.

As shown by Kehoe [14], it follows easily from the above expressions that
necessary conditions for local indeterminacy are:

f2(k∗, k∗) < 0 and f12(k∗, k∗) > 0 such that f11(k∗, k∗) + f12(k∗, k∗) > 0.

Such conditions imply very strong negative externalities which improves enough
the private marginal productivity of capital to destroy concavity at the social
level. Obviously they cannot be met by usual Cobb-Douglas or CES technolo-
gies. When standard positive externalities are considered, Boldrin and Rus-
tichini [9] then show that the steady state is either saddle-point stable (if
f11(k∗, k∗) + f12(k∗, k∗) < 0) or totally unstable (if f11(k∗, k∗) + f12(k∗, k∗) >
0).2

Under standard formulations for the fundamentals, Benhabib and Farmer
[3] have shown that local indeterminacy in one-sector models requires the con-
sideration of elastic labor supply and aggregate externalities on capital and
labor. They consider a CES separable utility function and a Cobb-Douglas
technology such that

U(C,L) = logC − L1−χ

1 − χ
, F (K,L, K̄, L̄) = KαL1−αK̄αηL̄(1−α)η

with χ ≤ 0, η > 0 and K̄, L̄ the economy-wide averages of capital and labor.
Denoting θ = δ(1−µ) ∈ [0, 1] the discounted value of capital carried over to the
next period per unit of capital used in the current period, standard linearization
of the first order conditions around the steady state allows to show that the
product and sum of the characteristic roots satisfy3

D = 1
δ

[
1 − η(1−θ)(1−χ)

θ(1−α)(1+η)−(1−χ)

]
T = 1 + D − (1−θ)[1−α(1−η)](1−χ)( 1−θ

δα −µ)
θ(1−α)(1+η)−(1−χ)

where steady-state conditions imply (1 − θ)/δα − µ > 0. In a discrete-time
framework, local indeterminacy requires |D| < 1 and |T | < 1 + D. Assuming
that the aggregate share of capital satisfies α(1+η) < 1, the main conclusion of
Benhabib and Farmer is the following: in order to generate multiple equilibria,
externalities and thus the degree of increasing returns to scale must be large
2 In a continuous-time framework, Spear [26] assumes that a positive externality At

is given by tomorrow’s aggregate capital stock kt+1 and gives sufficient conditions
for the existence of sunspot equilibria in a neighborhood of the steady state.

3 Benhabib and Farmer deal with a continuous-time model. We consider here the
corresponding discrete-time formulation (see also Farmer and Guo [12]) in order
to provide in Section 6.1 comparisons with the Wen’s [28] extension to variable
capacity utilization.
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enough to imply that the aggregate labor demand curve should be upward-
sloping and steeper than the aggregate labor supply curve, i.e. (1 − α)(1 +
η) − 1 > −χ > 0. This is obviously a non-standard configuration for the labor
market. More recently, Pintus [23], by considering a general separable utility
function U(C,L) = u(C) − v(L) and a general technology F (K,L)A(K̄, L̄)
with constant returns to scale at the private level, show that the conditions
of Benhabib and Farmer are not necessary. Local indeterminacy may indeed
arise with a standard decreasing equilibrium labor demand function and small
externalities provided the elasticity of capital-labor substitution is significantly
greater than one.

10.3 Two-Sector Models with Cobb-Douglas Technologies

In order to weaken their conditions for local indeterminacy, Benhabib and
Farmer [4] consider a two-sector continuous-time model with Cobb-Douglas
technologies and sector-specific rather than aggregate externalities. They pro-
vide conditions which are compatible with mild externalities and downward
sloping labor demand curves. However they assume that each sector is char-
acterised by the same private technology. Benhabib and Nishimura [7] have
extended their results to distinct private Cobb-Douglas technologies and pro-
vide some nice conditions in terms of capital intensity differences. Even if they
still consider an elastic labor supply in order to provide a version of a standard
real business cycles model, similar conditions for local indeterminacy may be
obtained with inelastic labor.

We then extend to a framework with externalities the contribution of
Nishimura and Yano [22] which study an optimal growth model.4 We con-
sider a discrete-time two-sector economy having an infinitely-lived representa-
tive agent with single period linear utility function, i.e. u(c) = c. We assume
that the labor supply is inelastic. There are two goods: the pure consumption
good, c, and the pure capital good, k. Each good is assumed to be produced
with a Cobb-Douglas technology which contains some positive sector specific
externalities. We denote by c and y the outputs of sectors c and k, and by ec

and ey the corresponding external effects:

c = Kα1
c Lα2

c ec(K̄c, L̄c), y = Kβ1
y Lβ2

y ey(K̄y, L̄y)

The externalities ec(K̄c, L̄c) and ey(K̄y, L̄y) depend on K̄i, L̄i which denote
the average use of capital and labor in sector i = c, y and will be equal to

ec(K̄c, L̄c) = K̄a1
c L̄a2

c , ey(K̄y, L̄y) = K̄b1
y L̄b2

y (10.1)

with ai, bi ≥ 0, i = 1, 2. We assume that these economy-wide averages are taken
as given by individual firms. At the equilibrium, all firms of sector i = c, y being
4 The proof of the results presented in this section can be found in Benhabib,

Nishimura and Venditti [8].
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identical, we have K̄i = Ki and K̄i = Ki. Denoting α̂i = αi + ai, β̂i = βi + bi,
the social production functions are defined as

c = K α̂1
c Lα̂2

c , y = K β̂1
y Lβ̂2

y

We assume α̂1+α̂2 = β̂1+β̂2 = 1. The returns to scale are therefore constant at
the social level, and decreasing at the private level.5 Factor intensities may be
determined by the coefficients of the Cobb-Douglas functions. The investment
(consumption) good sector is capital intensive from the private perspective if
and only if α1β2 − α2β1 < (>)0. The investment (consumption) good sector is
capital intensive from the social perspective if and only if α̂1β̂2− α̂2β̂1 < (>)0.6

Labor is normalized to one, Lc + Ly = 1, and the total stock of capital
is given by Kc + Ky = k. We assume complete depreciation of capital in one
period so that the capital accumulation equation is yt = kt+1. The consumer’s
optimization program will be given by:

max
{Kct,Lct,Kyt,Lyt,kt+1}∞

t=0

∞∑
t=0

δtKα1
ct L

α2
ct ect

s.t. yt = Kβ1
yt L

β2
yt eyt

1 = Lct + Lyt

kt = Kct +Kyt

yt = kt+1

k0, {ec(K̄ct, L̄ct)}+∞
t=0 , {ey(K̄ct, L̄ct)}+∞

t=0 given

Denote by pt, w0t and wt respectively the price of the capital good, the wage
rate of labor and the rental rate of the capital good at time t ≥ 0, all in terms
of the price of the consumption good. Let eit = ei(K̄it, L̄it), i = c, y. For any
given sequences {ect}∞t=0 and {eyt}∞t=0 of external effects, the Lagrangian at
time t ≥ 0 is:

Lt = Kα1
ct L

α2
ct ect + w0t

(
1 − Lct − Lyt

)
+ wt

(
kt −Kct −Kyt

)
+ pt

[
Kβ1

yt L
β2
yt eyt − kt+1

] (10.2)

Given (kt, yt), using yt = kt+1 and solving the first order conditions with respect
to (Kct, Lct,Kyt, Lyt) gives input demand functions such that

K̃c = Kc(kt, kt+1, ect, eyt), L̃c = Lc(kt, kt+1, ect, eyt),

K̃y = Ky(kt, kt+1, ect, eyt), L̃y = Ly(kt, kt+1, ect, eyt).

5 Our formulation is however compatible with constant returns at the private level if
we assume that there exists a factor in fixed supply such as land in the technologies.
In this case, the income of the representative consumer will be increased by the
rental of land.

6 Notice that under constant social returns α̂1β̂2 − α̂2β̂1 = α̂1 − β̂1 = β̂2 − α̂2.
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We then define the production frontier as

T (kt, kt+1, ect, eyt) = K̃α1
ct L̃

α2
ct ect

Using the envelope theorem we derive:

pt = −T2(kt, kt+1, ect, eyt), wt = T1(kt, kt+1, ect, eyt) (10.3)

where T1 = ∂T
∂kt

and T2 = ∂T
∂kt+1

. The first order conditions w.r.t. kt give the
Euler equation

−pt + δwt+1 = 0

From the optimal demand functions defined above together with the exter-
nal effects (10.1) considered at the equilibrium we may define the equilib-
rium factors demand fonctions K̂i = K̂i(kt, kt+1), L̂i = L̂i(kt, kt+1) so that
êc = êc(kt, kt+1) = K̂a1

c L̂a2
c and êy = êy(kt, kt+1) = K̂b1

y L̂b2
y .7 From (10.3)

prices now satisfy

pt(kt, kt+1) = −T2(kt, kt+1, êc(kt, kt+1), êy(kt, kt+1))

wt(kt, kt+1) = T1(kt, kt+1, êc(kt, kt+1), êy(kt, kt+1))

and we get the Euler equation evaluated at êc and êy:

−p(kt, kt+1) + δw(kt+1, kt+2) = 0 (10.4)

Any solution {kt}+∞
t=0 of (10.4) which also satisfies the transversality condition

lim
t→+∞ δtktT1(kt, kt+1, êct(kt, kt+1), êyt(kt, kt+1)) = 0

is called an equilibrium path. A steady state is defined by kt = k∗, yt =
y∗ = k∗ and is given by the solving of δω(k∗, k∗) − p(k∗, k∗) = 0. The
methodology consists first in approximating the Euler equation (10.4), i.e.
the first partial derivatives of T (kt, kt+1, ect, eyt) for any given (ect, eyt), us-
ing the first order conditions derived from the maximization of the La-
grangian (10.2). Then considering the externalities evaluated at the equilibrium
(êc(kt, kt+1), êy(kt, kt+1)), we compute the steady state and then the partial
derivatives of Ti(kt, kt+1, êc(kt, kt+1), êy(kt, kt+1)), i = 1, 2, in order to get the
characteristic polynomial.8 The first step gives

Proposition 10.3.1. There exists a unique stationary capital stock k∗ such
that:

k∗ = α1β2
α2β1+(α1β2−α2β1)δβ1

(δβ1)
1/β̂2

7 Since we deal with an example we can show the existence of an equilibrium path
together with the local indeterminacy. However if utility and production functions
are not specified, then the existence of equilibrium paths is not obvious. For ex-
istence proofs in some general cases, see Le Van, Morhaim and Dimaria [15] and
Mitra [16].

8 See Benhabib, Nishimura and Venditti [8] for details.
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In the second step, the characteristic polynomial gives the following character-
istic roots

Theorem 10.3.1. The characteristic roots are given by

x1 =
α2

δ(α2β1 − α1β2)
, x2 =

α̂2β̂1 − α̂1β̂2

α̂2

Remark : Note that x1 does not depend on external effects while x2 does. More-
over the sign of x1 is determined by factor intensity differences at the private
level, while the sign of x2 is determined by factor intensity differences at the
social level.

As this was shown in a continuous-time framework by Benhabib and
Nishimura [7], a necessary condition for the steady to be locally indetermi-
nate is a capital intensive consumption good from the private perspective. This
result also holds in a discrete-time framework.9 We thus introduce the following
restriction

Assumption 3 The consumption good is capital intensive at the private level.

Under this assumption notice that x1 is negative. Local indeterminacy of the
steady state may be obtained under slightly stronger conditions.

Theorem 10.3.2. . Under Assumption 3, let α1β2 − α2β1 > α2/δ. Then the
steady state is locally indeterminate if and only if one of the following sets of
conditions is satisfied;
i) the consumption good is labor intensive from the social perspective;
ii) the consumption good is capital intensive from the social perspective and
β̂1 − α̂1 > −α̂2.

Benhabib and Nishimura [7] have conducted a similar analysis with a two-
sector Cobb-Douglas economy in continuous time. They prove that local inde-
terminacy occurs when there is a capital intensity reversal between the private
and social levels: the consumption good needs to be capital intensive from the
private perspective, but labor intensive from the social perspective. This corre-
sponds to condition i) of Theorem 10.3.2 above. In a discrete-time framework
however, such a reversal is not necessary. Even in the case the consumption
good is capital intensive from both private and social perspectives, indetermi-
nacy can take place as in ii) of Theorem 10.3.2. These results are based on the
fact that the characteristic root x2 may be either less than 1 when positive or
greater than −1 when negative for any sign of the capital intensity difference
at the social level.10

9 If the investment good is capital intensive at the private level, it is easy to show
that x1 > 1 and the steady state is locally determinate.

10 When the discount factor δ crosses from above the critical value δ∗ = α2/(α1β2 −
α2β1) < 1, the steady state becomes saddle-point stable, a flip bifurcation occurs
and there exist equilibrium period-two cycles either in a right or in a left neigh-
borhood of ρ∗.
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10.4 Two-Sector Models with CES Technologies

Until now we have assumed Cobb-Douglas technologies and thus unitary elas-
ticities of capital-labor substitution. In order to question the robustness of
indeterminacy with respect to that parameter, we now extend the previous
formulation to technologies with constant but non-unitary elasticities of sub-
stitution.11 Consider indeed that each good is produced with a CES technology
such that

c =
(
α1K

−ρc
c + α2L

−ρc
c + ec(K̄c, L̄c)

)−1/ρc

y =
(
β1K

−ρy
y + β2L

−ρy
y + ey(K̄y, a¯

rLy)
)−1/ρy

with ρc, ρy > −1 and σc = 1/(1 + ρc) ≥ 0, σy = 1/(1 + ρy) ≥ 0 the elasticities
of capital/labor substitution in each sector. As previously, the externalities,
ec(K̄c, L̄c) and ey(K̄y, L̄y) depend on K̄i, L̄i which denote the average use of
capital and labor in sector i = c, y and will now be equal to

ec(K̄c, L̄c) = a1K̄
−ρc
c + a2L̄

−ρc
c , ey(K̄c, L̄c) = b1K̄

−ρy
y + b2L̄

−ρy
y

with ai, bi ≥ 0, i = 1, 2. At the equilibrium, all firms of sector i = c, y being
identical, we have K̄i = Ki and K̄i = Ki. Denoting α̂i = αi + ai, β̂i = βi + bi,
the social production functions are defined as

c =
(
α̂1K

−ρc
c + α̂2L

−ρc
c

)−1/ρc and y =
(
β̂1K

−ρy
y + β̂2L

−ρy
y

)−1/ρy

The returns to scale are again constant at the social level, and decreasing at
the private level. We will assume in the following that α̂1 + α̂2 = β̂1 + β̂2 = 1 so
that the production functions collapse to Cobb-Douglas in the particular case
ρc = ρy = 0.
We follow the same methodology as in the previous section with Cobb-Douglas
technologies. We need however to assume the following restriction:

Assumption 4 β̂1 < (δβ1)ρy/(1+ρy)

For some given β1, β̂1 and δ, Assumption 4 provides an upper bound ρ̂y > 0
for ρy. We have indeed

ρy <
lnβ̂1

ln(δβ1)−lnβ̂1
≡ ρ̂y (10.5)

Such a restriction is quite standard when CES technologies are considered. It
is well-known indeed that when the elasticity of capital/labor substitution is
less than 1, Inada conditions are not satisfied and corner solutions cannot be
a priori ruled out. Assumption 4 precisely ensures positiveness and interiority
11 The proof of the results presented in this section can be found in Nishimura and

Venditti [21].



282 Kazuo Nishimura and Alain Venditti

of all the steady state values for input demand functions Kc, Ky, Lc and Ly.
Throughout the paper we will therefore consider that ρy ∈ (−1, ρ̂y).

Remark : In the Cobb-Douglas case with ρy = 0, the Inada conditions are
satisfed and Assumption 4 becomes β̂1 < 1 which always holds.

Under this restriction we then obtain existence and uniqueness of the steady
state k∗:

Proposition 10.4.1. Under Assumption 4, there exists a unique stationary
capital stock k∗ > 0, such that:

k∗ =

�
α1β2
α2β1

� 1
1+ρc

�
� (δβ1)

ρy
1+ρy −β̂1
β̂2

�
�

1+ρy
ρy(1+ρc)

1−(δβ1)
1

1+ρy

�
���1−

�
α1β2
α2β1

� 1
1+ρc

�
� (δβ1)

ρy
1+ρy −β̂1
β̂2

�
�

ρy−ρc
ρy(1+ρc)

	


�

10.4.1 Symmetric Elasticities of Substitution

In order to start with the simplest case, we will assume that both sectors are
characterized by the same elasticity of substitution:12

Assumption 5 ρc = ρy = ρ

We may now provide expressions of the characteristic roots.

Theorem 10.4.1. Under Assumption 4-5, the characteristic roots are given
by

x1 =
{

(δβ1)
1

1+ρ

[
1 −
(

α1β2
α2β1

) 1
1+ρ

]}−1

x2 = (δβ1)
−ρ
1+ρ β̂1

[
1 − α̂1β̂2

α̂2β̂1

(
α2β1
α1β2

) ρ
1+ρ

]
Remark : If both technologies are Cobb-Douglas with ρ = 0, the roots given in
Theorem 10.3.1 are recovered.

Theorem 10.4.1 shows that the stability properties of the steady state will
depend, among all the parameters, on the sign of the following differences
α1β2 − α2β1 and α̂1β̂2 − α̂2β̂1. As in the Cobb-Douglas case, it can be easily
shown around the steady state that if the elasticities of capital/labor substitu-
tion are identical across sectors, the consumption good is capital intensive at
the private level if and only if α1β2 − α2β1 > 0 while it is capital intensive at
the social level if and only if α̂1β̂2 − α̂2β̂1 = α̂1 − β̂1 > 0.
12 A continuous-time version of this model extended to n sector is studied in

Nishimura and Venditti [20].
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As in the Cobb-Douglas framework, local indeterminacy will require the
consumption good to be capital intensive at the private level.13 The following
theorem extends Theorem 10.3.2 to technologies with non unitary elasticities
of capital-labor substitution. It shows that under symmetric substitutability,
local indeterminacy may still occur for elasticities significantly different from
unity. The only consequence of such a restriction is that extreme values for ρ
are excluded:

Theorem 10.4.2. Under Assumptions 3-5, consider ρ̂y as defined by equation
(10.5) and let α1β2 − α2β1 > α2/δ. There exist ρ ∈ (−1, 0) and ρ̄ ∈ (0, ρ̂y)
such that the steady state is locally indeterminate for any ρ ∈ (ρ, ρ̄) if one of
the two following conditions is satisfied:

i) the investment good is capital intensive at the social level;
ii) the investment good is labor intensive at the social level and β̂1 − α̂1 >

−α̂2.

10.4.2 Asymmetric Elasticities of Substitution

We may consider now the general formulation with asymmetric elasticities of
capital-labor substitution.

Theorem 10.4.3. Under Assumption 4, the characteristic roots are given by

x1 =

⎧⎪⎨⎪⎩(δβ1)
1

1+ρy

⎡⎢⎣1 −
(

α1β2
α2β1

) 1
1+ρc

(
(δβ1)

ρy
1+ρy −β̂1

β̂2

) ρy−ρc
ρy(1+ρc)

⎤⎥⎦
⎫⎪⎬⎪⎭

−1

x2 = (δβ1)
−ρy
1+ρy β̂1

⎡⎢⎣1 − α̂1β̂2

α̂2β̂1

(
α2β1
α1β2

) ρc
1+ρc

(
(δβ1)

ρy
1+ρy −β̂1

β̂2

) ρy−ρc
ρy(1+ρc)

⎤⎥⎦
Remark : If both technologies have the same elasticity of substitution, i.e.

ρc = ρy = ρ, the roots given in Theorem 10.4.1 are recovered.

Contrary to the case with symmetric elasticities of substitution, the capital
intensity differences at the private and social levels are not easily captured by
the differences α1β2−α2β1 and α̂1β̂2−α̂2β̂1. They also depend on prices and the
parameters ρc and ρy. We may however obtain the following characterization
at the steady state:

Proposition 10.4.2. Under Assumption 4, at the steady state:
i) the consumption (investment) good sector is capital intensive from the

private perspective if and only if
13 If the investment good is capital intensive at the private level, it is easy to show

that x1 > 1 and the steady state is locally determinate.
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(
(δβ1)

ρy
1+ρy −β̂1

β̂2

) ρc−ρy
ρy(1+ρc)

< (>)
(

α1β2
α2β1

) 1
1+ρc (10.6)

ii) the consumption (investment) good sector is capital intensive from the
social perspective if and only if(

(δβ1)

ρy
1+ρy −β̂1

β̂2

) ρc−ρy
ρy(1+ρc)

< (>)
(

α̂1β̂2

α̂2β̂1

) 1
1+ρc

(
β̂2β1

β̂1β2

) ρc−ρy
(1+ρy)(1+ρc) (10.7)

Remark : If ρc = ρy = ρ, condition (10.6) becomes α1β2 −α2β1 > (<)0 and
condition (10.7) becomes α̂1 − β̂1 > (<)0. Notice also from Theorem 10.3.1
and (10.6) that as in the Cobb-Douglas formulation, the root x1 is positive if
and only if the investment good is capital intensive at the private level. On the
contrary, when ρc �= ρy �= 0, the sign of the second root x2 does not directly
depend on the sign of the capital intensity difference across sectors at the social
level.

In order to simplify the exposition, we will discuss the local stability prop-
erties of the steady state depending on the sign of the differences α1β2 − α2β1

and α̂1β̂2 − α̂2β̂1, and the values of the elasticities of substitution in both sec-
tors. We will only refer to capital intensities when the results are economically
interpreted.

We have now to give conditions for local indeterminacy when the consump-
tion good is capital intensive at the private level. We first consider the case
α1β2 − α2β1 < 0 which, as we have shown previously, is known in the Cobb-
Douglas framework to imply local determinacy of the steady state.14 The fol-
lowing theorem shows on the contrary that with asymmetric elasticities of
substitution, there is room for local indeterminacy.

Theorem 10.4.4. Under Assumptions 3-4, let α1β2 < α2β1 and (α̂1/α̂2)/
(α1/α2) < δβ2. Then there exist ρ

c
> 0 and ρ̄y ∈ (−1, 0) such that the steady

state is locally indeterminate if ρc > ρ
c

and ρy ∈ (−1, ρ̄y).

Theorem 10.4.4 proves that even in the unusual situation with α1β2 < α2β1,
local indeterminacy may occur provided the consumption good sector has a
technology close to a Leontief function while the investment good sector has a
technology close to a linear function. A direct inspection of inequality (10.6)
from Proposition 10.4.2 shows that when ρc is high enough while ρy is close to
−1, the consumption good is capital intensive at the private level.

We will consider now the converse configuration with α1β2 > α2β1. As
this was already the case in a Cobb-Douglas framework, local indeterminacy
requires a slightly stronger restriction concerning these parameters:
14 When ρy = ρc = 0, such a restriction implies indeed that the investment good

is capital intensive at the private level. Local indeterminacy is thus ruled out. As
shown in section 10.4.1, the same result actually holds when ρy = ρc = ρ �= 0.
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Assumption 6
(

α1β2
α2β1

) 1
1+ρc

> 1 + (δβ1)−1

If technologies are either Cobb-Douglas or with identical elasticities of substi-
tution, Assumption 6 implies Assumption 3. Notice also that if ρc = 0, we get
the condition α1β2 − α2β1 > α2/δ in Theorem 10.3.2. Assumption 6 actually
ensures that x1 ∈ (−1, 0) when ρy = 0.

Let us start with some conditions that cover the case in which the invest-
ment good sector has a Cobb-Douglas technology with ρy = 0. Under Assump-
tion 6 we will introduce additional restrictions to get x2 ∈ (−1, 1)

Theorem 10.4.5. Under Assumptions 3-4 and 6, consider ρ̂y as defined by
equation (10.5). If the following condition holds for some given ρc > −1

β̂1

1 + β̂1

(
α̂1β̂2

α̂2β̂1

)
<

(
α1β2

α2β1

) ρc
1+ρc

(10.8)

then there exist ρ
y
∈ (−1, 0) and ρ̄y ∈ (0, ρ̂y) such that the steady state is locally

indeterminate for any ρy ∈ (ρ
y
, ρ̄y). Moreover the lower bound ρ

y
is equal to

−1 if the following additional restrictions hold:

1 ≤ β̂1+ρc

2

β2
< δ

α1

α2
and

(
α2β1

α1β2

) ρc
1+ρc

< (δβ1)
ρc

1+ρc
α̂2

α̂1
(10.9)

When the additional conditions (10.9) hold, Theorem 10.4.5 shows that for
some given ρc > −1, local indeterminacy is compatible with arbitrarily large
elasticities of capital/labor substitution in the investment good sector. Notice
that this cannot be the case with symmetric elasticities of substitution.

We may discuss Theorem 10.4.5 depending on the sign of the difference
α̂1β̂2 − α̂2β̂1. As in the Cobb-Douglas case, local indeterminacy with CES
technologies does not require a capital intensity reversal. We derive indeed
from Theorem 10.3.1 and Proposition 10.4.2 that the characteristic root x2

may be either less than 1 when positive or greater than −1 when negative for
any sign of the capital intensity difference at the social level.

Consider first the case α̂1β̂2− α̂2β̂1 < 0. It is then easy to see that condition
(10.8) holds for any ρc ≥ 0, i.e. for any consumption good technology having
an elasticity of capital/labor substitution less than unity. It follows from As-
sumption 6 that if α1β2 − α2β1 > α2/δ local indeterminacy will hold for any
ρc ≥ 0. It is worth noticing that this covers the case ρc = +∞ of a Leontief
technology for the consumption good. As already mentioned previously, local
indeterminacy also occurs for ρc < 0 but far enough from −1. The robustness
of this result will indeed depend on the CES coefficients at the social level.
Consider now the converse case α̂1β̂2 − α̂2β̂1 > 0. Condition ( 10.8) may still
hold but no clear restriction on the parameter ρc can be derived. If the difference
α̂1β̂2 − α̂2β̂1 is significantly greater than zero, i.e. for instance if
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β̂1

1+β̂1

(
α̂1β̂2

α̂2β̂1

)
> 1, (10.10)

then local indeterminacy cannot hold when ρc is close to zero and will require
much lower elasticities of capital/labor substitution in the consumption good
sector.

Notice also that since α1β2 − α2β1 > 0 and limρc→−1 ρc/(1 + ρc) = −∞,
condition (10.8) cannot hold when ρc is close enough to −1. It follows that
under the Assumptions of Theorem 10.4.5 there exists ρ

c
∈ (−1, 0) such that

local indeterminacy occurs when ρc > ρ
c
.

We may finally give conditions which cannot be satisfied when the tech-
nology of the investment good is Cobb-Douglas. When condition (10.8) does
not hold, local indeterminacy appears while the elasticity of substitution in the
investment good sector is less than unity.

Theorem 10.4.6. Under Assumptions 3-4 and 6, consider ρ̂y as defined by
equation (10.5). If the following condition holds for some given ρc ∈ (−1, ρ̂y]

β̂1

1 + β̂1

(
α̂1β̂2

α̂2β̂1

)
>

(
α1β2

α2β1

) ρc
1+ρc

(10.11)

then there exist ρ
y
∈ (0, ρ̂y) and ρ̄y ∈ (0, ρ̂y) with ρ

y
< ρ̄y such that the steady

state is locally indeterminate for any ρy ∈ (ρ
y
, ρ̄y).

Notice that contrary to condition (10.8) in Theorem 10.4.5, condition (10.11)
is now compatible with ρc close to −1, i.e. with an arbitrarily large elasticity
of capital/labor substitution in the consumption good sector.

We may again discuss Theorem 10.4.6 depending on the sign of the differ-
ence α̂1β̂2 − α̂2β̂1. Consider first the case α̂1β̂2 − α̂2β̂1 < 0. Condition (10.11)
shows that local indeterminacy cannot occur for any ρc ≥ 0. The same conclu-
sion holds also for ρc < 0 but close to 0. Local indeterminacy indeed requires a
strong enough elasticity of capital/labor substitution in the consumption good
sector while that elasticity in the investment good sector is restricted to be less
than unity.

Consider finally the case α̂1β̂2−α̂2β̂1 > 0. Local indeterminacy now becomes
compatible with positive values for ρc provided the difference α̂1β̂2 − α̂2β̂1 is
significantly greater than zero, i.e. if equation (10.10) holds.

10.5 Extensions with Cobb-Douglas Technologies

10.5.1 Partial Depreciation

Until now we have assumed that capital fully depreciates every period. This
much criticized assumption has been proved to be quite particular by Baierl,
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Nishimura and Yano [2] in two-sector optimal growth models. Unlike continuous-
time models, introducing depreciation of capital indeed creates additional dif-
ficulty in studying dynamical properties of equilibrium paths in discrete time
models.15

We now extend Baierl, Nishimura and Yano [2] to the case with exter-
nalities.16 We thus assume partial depreciation of capital so that the capital
accumulation equation becomes yt = kt+1 − (1 − µ)kt, with µ ∈ [0, 1]. In this
case, the envelope theorem provides the following equilibrium prices:

pt = −T2 (kt, kt+1, ect, eyt)
ωt = T1 (kt, kt+1, ect, eyt) + (1 − µ)T2 (kt, kt+1, ect, eyt)

and the Euler equation becomes

−pt + δ[ωt+1 + (1 − µ)pt+1] = 0

Existence and uniqueness of the steady state still hold but now depend on the
parameter µ. As in Section 2, let θ = δ(1 − µ) ∈ [0, 1]:

Corollary 10.5.1. There exists a unique stationary capital stock k∗ satisfying:

k∗ = α1β2(1−θ)
β1[α2(1−θ)+(α1β2−α2β1)δµ]

(
δβ1
1−θ

) 1
β̂2

The characteristic roots depend also on the rate of capital depreciation:

Theorem 10.5.1. The characteristic roots are given by:

x1 =
α2 (1 − θ) + θ(α2β1 − α1β2)

δ(α2β1 − α1β2)

x2 =
α̂2β̂1 − α̂1β̂2

α̂2(1 − θ) + θ(α̂2β̂1 − α̂1β̂2)

When capital depreciates slowly, local indeterminacy still requires a capital
intensive consumption good at the private level.17 Moreover, as in the case with
full depreciation, a capital intensity reversal is not necessary. Assume first that
the investment good is capital intensive at the social level.

Theorem 10.5.2. Under Assumption 3, let β̂1 > α̂1 and θ̄ = α2/[α2(1−β1)+
α1β2] < 1. Then the following cases hold:

i) if α1β2 − α2β1 > α2/δ, there exists θ̂ ∈]θ̄, 1[ such that the steady state is
15 Baierl, Nishimura and Yano [2] show indeed that around the steady-state, optimal

paths become less likely to oscillate in the case of partial depreciation than in that
of full depreciation.

16 The proof of the results presented in this subsection can be found in Nishimura
and Venditti [17].

17 If the investment good is capital intensive at the private level, we easily show that
x1 > 1 and the steady state is locally determinate.
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locally indeterminate for any θ ∈ [0, θ̂[\{θ̄};
ii) if α1β2 − α2β1 < α2/δ, there exist θ̃, θ̂ ∈]0, 1[, with θ̃ < θ̄ < θ̂, such that

the steady state is locally indeterminate for any θ ∈]θ̃, θ̂[\{θ̄}.

Case i) provides an extension to partial depreciation of Theorem 10.3.2i)
which has been established under θ = 0. Moreover we show that given produc-
tion functions and a discount factor close to 1, equilibrium paths become less
likely to be locally indeterminate in the case of partial depreciation (θ close
enough to 1) than in that of full depreciation (θ = 0). Baierl, Nishimura and
Yano [2] have obtained a similar result concerning the occurrence of period-two
cycles in an optimal growth model.

In case ii), a similar result is obtained. We provide however some new
conditions for local indeterminacy that cannot arise under full depreciation.
For intermediary values of the depreciation rate, local indeterminacy arises
under mild conditions on the capital intensity difference at the private level:
the consumption good needs to be only slightly more capital intensive than the
investment good.18

Assume now that the consumption good is also capital intensive at the
social level.

Theorem 10.5.3. Under Assumption3, let α̂1 > β̂1 > α̂1− α̂2, θ∗ = 2α̂2/β̂2−
1 ∈ (0, 1) and θ̄ = α2/[α2(1 − β1) + α1β2] < 1. Then the following cases hold:

i) if α1β2 − α2β1 > α2/δ, the steady state is locally indeterminate for any
θ ∈ [0, θ∗[\{θ̄};

ii) Let θ̃ = [α2(1+ δβ1)− δα1β2]/[α2(1−β1)+α1β2] < 1. If α1β2 −α2β1 <
α2/δ and θ̃ < θ∗, the steady state is locally indeterminate for any θ ∈]θ̃, θ∗[\{θ̄}.

Case i) provides an extension to partial depreciation of Theorem 10.3.2ii)
which has been derived under θ = 0. As in the previous case, we show that
given production functions and a discount factor close to 1, equilibrium paths
become less likely to be locally indeterminate in the case of partial depreciation
(θ close enough to 1) than in that of full depreciation (θ = 0).19

In case ii), local indeterminacy is more difficult to obtain than under a cap-
ital intensity reversal between the private and the social level. The condition on
the capital intensity difference at the private level is less demanding than in case

18 When θ crosses θ̃ from above the steady state becomes saddle-point stable, a flip
bifurcation occurs and there exist equilibrium period-two cycles either in a left or
in a right neighborhood of θ̃.

19 Notice that a flip bifurcation occurs when θ crosses θ̂ from below and the steady
state then becomes sadle-point stable while there exist equilibrium period-two cy-

cles either in a right or in a left neighborhood of θ̂.
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i), but the restriction θ̃ < θ∗ does not have a precise economic interpretation.20

Remark : Nishimura and Venditti [19] have also extended to partial deprecia-
tion the CES formulation with symmetric elasticities of substitution considered
in Section 10.4.1. Depending on the value of the elasticity of capital-labor sub-
stitution, local indeterminacy may arise for any value µ ∈ [0, 1] of the rate of
depreciation, for low depreciation with µ close to zero, or for high depreciation
with µ close to one. The conclusion that local indeterminacy is less likely in the
case of partial depreciation than in that of full depreciation is therefore specific
to the Cobb-Douglas formulation.

10.5.2 Intersectoral Externalities

Up to now we have considered sector-specific external effects. Although equi-
libria become sub-optimal, such a formulation remains quite close to standard
optimal growth models since no direct additional intersectoral mechanisms are
introduced. This is not the case if we consider the initial formulation of Romer
[24] in which the aggregate capital stock is used as global technological exter-
nalities.

In order to introduce these additional mechanisms in a simple Cobb-Douglas
framework, we assume now that the consumption good production function
contains positive intersectoral externalities given by a convex combination of
the capital stocks of the two sectors.21 The production functions are thus:

y = Kβ1
y Lβ2

y , c = Kα1
c Lα2

c e(K̄c, K̄y) with e =
[
φK̄c + (1 − φ)K̄y

]a
where φ ∈ [0, 1], a ≥ 0 and K̄i denotes the average use of capital in sector
i = c, y. Depending on the value of φ, our formulation therefore encompasses the
usual assumptions of sector specific externalities (φ = 1), and global external
effects (φ = 1/2). We will also consider the case with purely intersectoral
externalities (φ = 0). We assume that these economy-wide averages are taken
as given by individual firms. At the equilibrium, all firms of sector i = c, y
being identical, we have K̄i = Ki and K̄i = Ki. The social production function
for the consumption good is therefore

c = Kα1
c Lα2

c [φKc + (1 − φ)Ky]a

We will assume non-increasing returns to scale at the social level in the con-
sumption good sector, i.e. α1 + a+ α2 ≡ α̂1 + α2 ≤ 1, and constant returns to
scale in the investment good sector, i.e. β1 + β2 = 1.
20 If these conditions hold, endogenous fluctuations again appear through a flip bi-

furcation: when θ crosses θ̃ (θ∗) from above (below) the steady state becomes
saddle-point stable, and there exist equilibrium period-two cycles either in a left
or in a right neighborhood of θ̃ (θ∗).

21 The proof of the results presented in this subsection can be found in Nishimura
and Venditti [18].
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It can be easily shown that if α1β2 − α2β1 < (>)0 the investment (con-
sumption) good sector is capital intensive from the private perspective. Note
that this definition is still valid with intersectoral external effects (φ < 1). If
the externalities are sector specific (φ = 1), the condition β1 > (<)α̂1 implies
that the investment (consumption) good sector is capital intensive from the
social perspective.

We follow the same procedure as in the previous sections. Full depreciation
of capital is again assumed for simplicity. The steady state is given by Propo-
sition 10.3.1 with β̂2 = β2. We start by assuming that there are only sector
specific externalities in the consumption good sector. We show in this case that
the steady state is always locally determinate.

Proposition 10.5.1. If the externalities are sector specific (φ = 1), the steady
state k∗ is locally determinate.

Theorem 10.3.2 establishes that if the consumption good is capital intensive
from the private perspective, locally indeterminate equilibria may occur when
the consumption good is either capital or labor intensive at the social level.
However, they assume that there are external effects on capital and labor in
both sectors. Proposition 10.5.1 shows however that when only the consump-
tion good technology is affected by external effects, indeterminacy necessarily
requires externalities coming from labor. Note that this result does not hold
and indeterminacy is still possible if we assume that the investment good sec-
tor contains external effects on capital. Our formulation therefore will strongly
enlighten the role of intersectoral external effects.

Consider indeed the case in which the externality in the consumption good
technology comes only from the capital stock of the investment good sector
(φ = 0).

Assumption 7 min

{
β1α2

α̂1
, 1,

aα2(1 − α1)
α1 + α2

}
> β2.

Given arbitrary a > 0, Assumption 12.77 may be satisfied if β2 is chosen to
be sufficiently small. Assumption 12.77 also implies that the investment good is
capital intensive at the private level since β1α2/α̂1 > β2 implies β1 > α̂1 > α1.

Proposition 10.5.2. Let φ = 0. Under Assumption 12.77, there exists δ1 < 1
such that the steady state is locally indeterminate for any δ ∈]δ1, 1].

Contrary to the sector-specific formulation in which local indeterminacy
requires the consumption good to be capital intensive at the private level, we
show that when pure intersectoral external effects are considered, a continuum
of equilibria may arise under a capital intensive investment good at the private
level.

From Proposition 10.5.2 it is straightforward to extend the indeterminacy
result to intermediary cases with positive values of θ as in the following Theo-
rem:
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Theorem 10.5.4. . Under Assumption 12.77, there exist 0 < δ1 < 1 and a
function φ∗ :]δ1, 1] →]0, 1[ such that the steady state is locally indeterminate
for each δ ∈]δ1, 1] and φ ∈ [0, φ∗(δ)[.

Remark : It can be shown that if externalities coming from capital are also
introduced in the investment good sector, Proposition 10.5.2 and Theorem
10.5.4 still hold with some more complicated sufficient conditions which will
depend on the external effect parameters of the capital good. Indeterminacy
under a capital intensive investment good at the private level is thus a robust
property as soon as externalities are intersectoral.22

10.6 Other Formulations

10.6.1 Variable Capital Utilization

In Section 10.5.1, we have introduced partial depreciation of capital and we have
shown how the occurrence of local indeterminacy is affected by this parameter.
Building on the fact that capacity utilization is potentially a powerful driving
force behind business cycles, Wen [28] considers a discrete-time extension of
the Benhabib and Farmer [3] model in which the speed of capital depreciation
is endogenously determined. A representative consumer solves indeed

max
{ct,lt,ut,kt+1}+∞

t=0

+∞∑
t=0

δt

(
log ct −

l1−χ
t

1 − χ

)
s.t. ct + kt+1 − (1 − µt)kt = (utkt)αl1−α

t et(ūtk̄t, l̄t)

µt = τuγ
t

k0, {et}+∞
t=0 given

with χ ≤ 0, α ∈ (0, 1), τ ∈ (0, 1), ut ∈ (0, 1) the rate of capacity utilization,
µt ∈ (0, 1) the rate of capital depreciation defined as an increasing function of
capacity utilization, i.e. γ > 0, and et(ūt, k̄t, l̄t) the externality expressed as a
function of the average economy-wide levels of productive capacity and labor,
i.e.

et(ūtk̄t, l̄t) = (ūtk̄t)αη l̄
(1−α)η
t

where η ≥ 0. Variable capital utilization is ensured under γ > 1 while constant
partial depreciation as in Benhabib and Farmer [3] follows from γ ≤ 1. Standard

22 Under slight additional restrictions, it can also be proved that for any given φ
close enough to zero, there exists a bound δ∗(φ) ∈ (0, 1) such that when δ crosses
δ∗(φ) from above the steady state becomes saddle-point stable and quasi-periodic
cycles appear through a Hopf bifurcation. Notice that endogenous fluctuations are
obtained under a capital intensive investment good while Benhabib and Nishimura
[6] show in an optimal growth model that a capital intensive consumption good is
necessary.
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linearization of the first order conditions around the steady state allows Wen
to show that the product and sum of the characteristic roots satisfy

D = 1
δ

(
1 − η(1−χ)(1−δ)τl

δ(1−α)(1+η)τl−(1−χ)

)
T = 1 + D − (1−χ)(1−δ)(γ−α)(1−α(1−χ)τk)µ/α

δ(1−α)(1+η)τl−(1−χ)

where
τk =

γ − 1
γ − α(1 + η)

, τl =
γ

γ − α(1 + η)
In a discrete-time framework, local indeterminacy requires |D| < 1 and |T | <
1 + D. When compared with the corresponding expressions under constant
partial depreciation given in Section 2, we easily derive that multiple equilibria
become compatible with much lower increasing returns to scale and a downward
sloping aggregate labor demand curve, i.e. (1 − α)(1 + η) − 1 < 0.

More recently, Guo and Harrison [13] provide an extension of the Wen’s
capacity utilization model to a discrete-time adaptation of the Benhabib and
Farmer’s [4] two-sector model with sector-specific externalities. Both sectors
have the same Cobb-Douglas technology at the private level with constant
returns to scale. Variable capital utilization is introduced into technologies as
follows

c = (uKc)L1−α
c ec(ūK̄c, L̄c), y = (uKy)αL1−α

y ey(ūK̄y, L̄y)

The externalities ec(ūK̄c, L̄c) and ey(ūK̄y, L̄y) depend on the average use of
capital and labor services and are equal to

ec(ūK̄c, L̄c) = [(ūK̄c)αL̄1−α
c ]η, ey(ūK̄y, L̄y) = [(ūK̄y)αL̄1−α

y ]η (10.12)

with η > 0. Returns to scale are therefore increasing at the social level. Guo
and Harrison show that local indeterminacy occurs under smaller externalities
and thus lower increasing returns to scale than in the Benhabib and Farmer’s
[4] and Wen’s [28] models.

10.6.2 Two-Sector Models with General Technologies

In Section 10.5.2, we have considered a model with intersectoral externalities
which is compatible with both sector-specific and global external effects. In or-
der to provide simple conditions, we have assumed Cobb-Douglas technologies.
Boldrin and Rustichini [9] also introduce Romer-type [24] global externalities
in a two-sector discrete-time model but they consider general technologies.

The labor supply is inelastic with total labor normalised to 1, and the
population is constant. The pure consumption good c and the capital good
y are produced with constant private returns to scale technologies which also
depend on an intersectoral externality A:

c = f0(k0, l0, A), y = f1(k1, l1, A)
with k0 + k1 ≤ k, k being the total stock of capital, and l0 + l1 ≤ 1. At the
equilibrium, the externality A will equal the aggregate capital stock k.
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Assumption 8 Each production function f i(ki, li, A), i = 0, 1, is C2, increas-
ing in each argument and, for any A > 0, concave, homogeneous of degree one
and such that for any li > 0, f i

11(., li, A) < 0.

Externalities are therefore positive and returns to scale are increasing at the
social level. For any given (k, y, A), the production frontier T (k, y, A) is defined
as

T (k, y, A) = max
k0,k1,l0,l1

f0(k0, l0, A)

s.t. y ≤ f1(k1, l1, A)
k0 + k1 ≤ k
l0 + l1 ≤ 1
k0, k1, l0, l1 ≥ 0

Under Assumption 8, for any given A > 0, T (k, y, A) is concave. Assuming a
linear utility function and full depreciation of capital within one period of time,
the maximization program of the representative agent is

max
{kt+1}+∞

t=0

+∞∑
t=0

δtT (kt, kt+1, At)

s.t. (kt, kt+1) ∈ D(At)

k0, {At}+∞
t=0 given

with
D(At) =

{
(kt, kt+1) ∈ R2

+/0 ≤ kt+1 ≤ f1(kt, 1, At)
}

the set of admissible paths for any given At. Along an equilibrium path with
At = kt, the Euler equation is

T2(kt, kt+1, kt) + δT1(kt+1, kt+2, kt+1) = 0

An equilibrium path also satisfies the transversality condition

lim
t→+∞ δtktT1(kt, kt+1, kt) = 0

A steady state kt+1 = kt = k∗ is a solution of

f1
1 (k1(k, k, ), l1(k, k, k), k) = δ−1

Assuming the existence of a locally unique steady state k∗ and linearizing
the Euler equation around k∗ easily shows that the sum and product of the
characteristic roots satisfy

T = −[δ(T ∗
11 + T ∗

13) + T ∗
22]/δT

∗
12

D = δ−1 + T ∗
23/δT

∗
12

with T ∗
ij = Tij(k∗, k∗, k∗) and T ∗

12 �= 0. It follows easily that T ∗
23/T

∗
12 < 0 is

a necessary condition for the occurrence of local indeterminacy. As in two-
sector optimal growth models, the sign of T ∗

12 is ruled by the capital intensity
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difference at the private level. However, the sign of T ∗
23 is difficult to establish.

Since −T ∗
2 is equal to the price p of the capital good in terms of the price of

the consumption good, we only know that

T ∗
23 = −∂p/∂A

Boldrin and Rustichini [9] provide formal conditions for local indeterminacy
but it remains difficult to interpret these conditions in terms of the fundamen-
tals.23 In particular, although one may conjecture that local indeterminacy is
compatible with a capital intensive investment good at the private level, there is
no clear picture concerning the requirements on the capital intensity difference.

More recently, Drugeon [11] considers a discrete-time two-sector model with
general technologies containing sector-specific and intersectoral external effects.
Contrary to Boldrin and Rustichini he assumes constant returns at the private
and social levels by using production functions which are linear homogeneous
with respect to private factors and homogeneous of degree zero with respect to
public factors. Moreover, developing a methodology based on the equilibrium
production frontier,24 he provides an expression for the characteristic polyno-
mial in terms of elasticities of factor substitution in each sectors and shares of
consumption, investment, wage and profits into national income. While local
indeterminacy still requires a capital intensive consumption good at the pri-
vate level, his main results are the following: with strong sector-specific external
effects, local indeterminacy requires strong substitutability in the investment
good sector and weak substitutability in the consumption good sector.25 When
strong intersectoral externalities are considered, a continuum of equilibria oc-
curs if substitutability is high in the consumption good sector and low in the
investment good sector.

23 See also Venditti [27] for more detailled conditions on local indeterminacy and local
bifurcation of periodic cycles.

24 This corresponds to the function T (kt, kt+1, At) evaluated along an equilibrium
path.

25 This result is in some sense close to Theorem 10.4.4 in Section 10.4.2.
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11.1 Introduction

Stochastic optimal growth involves the study of optimal intertemporal alloca-
tion of capital and consumption in an economy where production is subject to
random disturbances. The theory traces its roots to the seminal work on de-
terministic optimal growth by Ramsey [108], Cass [21] and Koopmans [56]. Its
influence has been enhanced by research that shows how the convex stochastic
growth model can be decentralized to represent the behavior of consumers and
firms in a dynamic competitive equilibrium of a productive economy ([104],
[117], [15]). This makes the stochastic optimal growth model useful both as
a normative exercise and in the development of positive theories of how the
economy works. As a consequence, the theory has emerged as one of the cen-
tral paradigms of dynamic economics. It is based on a simple, yet powerful
model that encompasses fundamental questions that are basic to any theory
of dynamic economic behavior: What are the characteristics and determinants
of optimal policies? What are the economic incentives that govern the optimal
intertemporal allocation of resources? What is the transient and long run be-
havior of variables in the model? Under different assumptions the model admits
a rich set of answers to these questions.

Historically, the main focal point of the theory has been issues of aggregate
economic growth. At the same time its primary variable, capital, has a flexible
interpretation that allows the model and its extensions to represent a wide va-
riety of economic problems ranging from the study of business cycles ([60], [64])
and asset pricing ([14], [15]) to the allocation of renewable natural resources
([78], [83], [84]). Equally important, the model provides a strong theoretical
foundation for applied analysis of these problems. The model can be solved
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numerically and has proved a testing ground for many numerical techniques
used today in the analysis of dynamic economic problems.

This chapter provides an overview of key results in the theory of discounted
stochastic optimal growth in discrete time.1 The paper begins with an analy-
sis of the classical stochastic growth model of Brock and Mirman [18] for a
one-sector economy with a convex technology and utility that depends only
on consumption.2 We then consider extensions of the theory to problems with
irreversible investment, increasing returns or a non-convex technology, exper-
imentation and learning, and problems where utility depends on more than
consumption alone. We develop the competitive price characterization of opti-
mal policies that can be used to establish the equivalence between optimal and
competitive outcomes; our focus, however, is on optimal solutions and their
properties. The large literature on dynamic competitive equilibria is, therefore,
left to the reader to explore. Likewise, we do not survey the many applications
of the stochastic growth model. Instead, we focus on how the theory can be ex-
tended in different directions that have proved useful in application. Finally, we
provide a glimpse of practical methods for solving the model, but the literature
on numerical methods is too large for us to review here.

11.2 The Classical Framework

11.2.1 The One Sector Classical Model: Basic Properties

The stochastic growth model has three essential elements: an exogenous sto-
chastic environment corresponding to random productivity disturbances, the
production possibilities that determine the set of feasible allocations for con-
sumption, investment and output, and an instantaneous welfare or utility func-
tion that represents the preferences of the agent or economic decision-maker.
Productivity shocks at dates t = 1, 2, ..., are denoted by {rt}, a sequence of
i.i.d. real-valued random variables, with common distribution ν on B(Φ), the
Borel σ-field of Φ ⊂ ". In particular, Φ is the support of ν and is assumed to
be compact. Associated with this stochastic environment is a measure space
(Ω,F , µ), where Ω is the set of all real sequences, F is the σ-field generated
by cylinder sets of the form

∏∞
t=0At, where At belongs to B(Φ) for all t, and µ

is the product distribution induced by ν. The statements: for a.e. ω and µ-a.s.
mean “except for a subset of Ω of µ-measure zero”. The random variable rt is
simply the tth coordinate function on Ω. In the economy, output of a homoge-
neous consumption/capital good is produced via a production function that is
homogeneous of degree one in capital and labor. This allows the economy to be
1 There is a large literature on stochastic growth in continuous time that builds on

Merton’s [79] early work (see also, [16]).
2 Previous surveys of stochastic growth such as [82] and [6] focus primarily on this

case.
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represented in per capita terms where ct, kt and yt denote per capita consump-
tion, capital and output at time t. Given a capital stock at time t− 1 and the
productivity disturbance at the beginning of period t, yt = f(kt−1, rt), where
f : "+ ×Φ→ "+ is the production function. The feasible set for consumption
and investment is: Γ (yt) = {(ct, kt)|0 ≤ ct, 0 ≤ kt, and ct + kt ≤ yt}.

Each period the economic agent receives utility u(ct), where u : "+ → ".
The discount factor for future utility is δ, where 0 ≤ δ < 1. At the beginning of
period t the agent observes yt and chooses ct and kt. The productivity distur-
bance, rt+1, occurs and a new output, yt+1, is produced. The objective of the
agent is to maximize the expected discounted sum of utility over time subject
to the feasibility constraints on consumption and capital, and the transition
equation that maps capital to output in the following period. Given an initial
output, y0, the objective is to:

Max E

[ ∞∑
t=0

δtu(ct)

]
subject to: 0 ≤ ct, 0 ≤ kt, ct + kt ≤ yt, yt+1 = f(kt, rt+1), t ≥ 0.(11.1)

This problem can be formulated as a stochastic dynamic programming prob-
lem ([11], [127] and [66]). At date t, the partial history is ht = {y0, c0, k0, y1,
..., ct−1, kt−1, yt}. A policy, π, is a sequence {π0, π1, ...}, where πt is a conditional
probability on B("+), given ht, such that πt(Γ (yt) | ht) = 1. Let � be the set
of all measurable functions φ such that φ(y) ∈ Γ (y) for all y ∈ "+. A policy is
Markovian if πt ∈ � for all t. A Markov policy is stationary if there exists a
Borel measurable function, π̂(y), such that πt(y) = π̂(y) for all t. A policy, π,
and an initial state, y, induce a feasible program, (y,c,k)=(yt, ct, kt)∞t=0, a sto-
chastic process for output, consumption and capital such that (ct, kt) ∈ Γ (yt)
and yt+1 = f(kt, rt+1) a.s. for all t. Associated with each policy is an expected
discounted sum of utility Vπ(y) = E

∑∞
t=0 δ

tu(ct), where (y,c,k) is the feasible
program generated by π and f in the obvious manner. A policy, π∗, is optimal if
Vπ∗(y) ≥ Vπ(y) for all π and y, and the associated program is called an optimal
program. The value function V (y) is defined on "+ by V (y) = sup{Vπ(y) | π is
a policy}. It follows that π∗ is an optimal policy if, and only if, Vπ∗(y) = V (y)
for all y ≥ 0 .

Throughout the paper, derivatives are denoted using subscripts, so that uc

represents marginal utility of consumption and so on. The production technol-
ogy and preferences are assumed to satisfy the following assumptions:

A.1. f(0, r) = 0, f(k, r) > 0 for all r ∈ Φ and all k > 0.
A.2. f is continuous on "+ × Φ and for each r ∈ Φ, f(·, r) is continuously

differentiable on "++.
A.3. fk(k, r) > 0 and infr∈Φ fk(0, r) > 1.
A.4. f(., r) is strictly concave on "+ for all r ∈ Φ.
A.5. There exists a k > 0 such that f(k, r) < k for all k > k and all r ∈ Φ.
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A.6. u is continuous on "+ and continuously differentiable on "++.
A.7. uc(c) > 0 on "++.
A.8. u is strictly concave on "+.

Under these assumptions the dynamic optimization problem is well defined,
the value is finite from any initial state and it satisfies the functional equation:

V (y) = max
c∈Γ (y)

[u(c) + δ

∫
V (f(y − c, r))dν(r)]. (11.2)

Further, there exist stationary optimal policy functions for consumption,
C(y) = arg maxc∈Γ (y)[u(c) + δ

∫
V (f(y − c, r))dν(r)], and capital, K(y) =

y − C(y).3

To characterize economic behavior in the model it is important to under-
stand the basic properties of the optimal value and policy functions. Further,
such knowledge is necessary to examine how departures from the classical model
affect economic outcomes. In the classical model, the feasible set correspon-
dence Γ (y) is expanding and has a convex graph,4. Using the assumption that
the production and utility functions are strictly increasing and strictly concave
and the fact that the functional equation (11.2) maps the set of continuous,
increasing and strictly concave functions into itself this implies (e.g., [126]):

Lemma 11.2.1. Under A.1-A.8, V (y) is continuous, strictly increasing and
strictly concave.

The value function is a measure of lifetime economic welfare and to a first order
approximation is proportional to traditional measures of GDP. The economic
implication of Lemma 11.2.1 is that small increases in output have small effects
on welfare, and that welfare increases at a diminishing rate as output increases.

Strict concavity of u, f and V implies that the maximization problem on
the right hand side of (11.2), has a unique solution for every y ≥ 0. Using
the Maximum Theorem, one can then show that the optimal policy functions
C(y) and K(y) are continuous. Monotonicity properties of C(y) and K(y) are
determined by the complementarity5 between k and y, and c and y, respectively.

3 Note that existence and all other results in this section continue to hold for logarith-
mic or CES utility functions that are unbounded below, though V (0) = u(0) = −∞
(e.g., [118]).

4 The feasible set is expanding if y ≤ y′ implies Γ (y) ⊆ Γ (y′) and has a convex
graph if {(c, k, y) | (c, k) ∈ Γ (y)} is a convex set.

5 Formally this is represented by the concept of supermodularity. Let y ∧ y′ =
min[y, y′] and y ∨ y′ = max[y, y′]. A function F (k, y) is supermodular in (k, y)
if F (k ∧ k′, y ∧ y′) + F (k ∨ k′, y ∨ y′) ≥ F (k, y) + F (k′, y′). For C2 functions this
is equivalent to Fky ≥ 0 so that an increase in one argument raises the marginal
value or marginal productivity of the other.
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Lemma 11.2.2. Under A.1-A.8, C(y) and K(y) are single-valued, continuous
and increasing functions.6

Proof. The fact that C(y) and K(y) are single-valued and continuous follows
from the maximum theorem and the strict concavity of u and f. Let k ∈ K(y)
and k′ ∈ K(y′) for y < y′. Suppose that k′ < k. Then k′ ∈ Γ (y) and k ∈
Γ (y′). Further, 0 < u(y − k) + δEV (f(k, r)) − [u(y − k′) + δEV (f(k′, r))] <
u(y′ − k) + δEV (f(k, r)) − [u(y′ − k′) + δEV (f(k′, r))] < 0, where the first
and last inequalities follow from the principle of optimality and the middle
inequality follow from the fact that A.8 implies u is strictly supermodular
in (y, k). Hence, it must be that k′ > k. Next suppose that c′ ≤ c. Then,
0 ≤ u(c) + δEV (f(y − c, r)) − [u(c) + δEV (f(y − c′, r))] + u(c′) + δEV (f(y′ −
c′, r))− [u(c′)+ δEV (f(y′− c))] < 0, where the first inequality follows from the
principle of optimality and the last inequality is due to the strict concavity of
f and V . Hence, c′ > c.

When the stochastic growth model is representative of aggregate economic
behavior, it is natural that consumption and investment should always be in the
interior of the feasible set. In disaggregate or microeconomic settings, this may
not always be true. Since the interiority of optimal policies facilitates the use
of differentiable optimization methods it is common to impose an assumption
that guarantees interiority.

A.9. limc↓0 uc = ∞.

Lemma 11.2.3. Under A.1-A.9, C(y) > 0 and K(y) > 0.

The condition limc↓0 uc = ∞ is known as the Inada [44] condition at zero.
In the classical model, the intuition for its use is as follows. To invest y yields
finite discounted expected marginal value of investment but an infinite marginal
utility from consumption. Hence, one can do better by reallocating some output
from investment to consumption. Analogous arguments can be used to rule out
investment of zero.

When optimal policies are interior, the value function in the classical model
is differentiable.

Lemma 11.2.4. (Mirman-Zilcha [81], Lemma 1). Under A.1-A.9, V (y) is dif-
ferentiable for all y > 0 and Vy(y) = Uc(C(y)).

Proof. As a concave function, V has left and right-hand derivatives, V−(y) ≥
V+(y). Let k and c be optimal from y. As c > 0, k is feasible from y + ε and
y − ε for sufficiently small ε > 0. By optimality, V (y + ε) − V (y) ≥ u(c+ ε) +

6 Lemma 11.2.2 was first established by Brock and Mirman [18]. The monotonicity
of K(y) does not depend on the concavity of u or f and can be generalized to
the case where K(y) is a correspondence using the methods of Topkis [129] (see
also,[121]).
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δEV (f(k, r))− [u(c)+δEV (f(k, r))], which implies V+(y) ≥ uc(c). By a similar
argument V−(y) ≤ uc(c).7

When V is differentiable, output has a unique shadow price given by Vy(y).
This shadow price is useful in examining the intertemporal tradeoff between
consumption and investment, and in showing that the optimization problem
can be decentralized.

Proposition 11.2.1. Let (c,k) be an optimal program induced by C(y),K(y).
Under A.1-A.9, necessary and sufficient conditions for C(y),K(y) to be optimal
are:

uc(ct) = δ

∫
uc(ct+1(r)))fk(kt, r)dν(r). (11.3)

lim
t→∞ δtE[uc(ct)kt] = 0. (11.4)

Proof. The necessary condition (11.3) is typically proved in one of two ways.
The first method is a variational approach that assumes period t output and
the period t+1 capital stock are optimal. It then examines how a change in
period t consumption affects discounted expected utility across the two pe-
riods. The second method proceeds as follows. If V is differentiable (Lemma
11.2.4) then maximizing the right hand side of equation (11.2) implies: uc(ct) =
δ
∫
Vy(f(kt, r)fk(kt, r)dυ(r). Further, Vy(yt) = uc(ct) by the envelope theorem.

Combining these yields (11.3). As commonly used, this approach requires both
interior solutions and a differentiable value function; but a more general state-
ment using inequalities is possible in other cases.

A proof of (11.4) is given in [87].8

Equation (11.3) is known as the stochastic Ramsey-Euler equation. It is a
dynamic optimality condition that equates the marginal utility from consump-
tion to the discounted expected marginal value of investment. The latter can be
decomposed into the marginal productivity of investment times the marginal
utility from consuming the additional output next period.

Equation (11.4) is the transversality condition. It implies that marginal
utility is bounded in expectation.9 It is also important to note that there may
7 An alternative approach in [12] assumes that the disturbance distribution has a

Cn density. This smooths out possible points of discontinuity in the derivative
of V . The approach has the advantage that it can be used to obtain higher or-
der differentiability of both V and the optimal policy function, the latter via the
implicit function theorem. Santos and Vigo-Aguiar[116] contains sufficient condi-
tions for the value and policy functions to be C2 and C1, respectively. They use
their results to place analytical bounds on the approximation error of a numerical
solution.

8 Kamihigashi [54] establishes the necessity of the transversality condition for opti-
mality in a class of multisector stochastic growth models with single consumption
good and bounded or constant relative risk aversion utility.

9 Mirman and Zilcha [86] show that marginal utilities themselves may be unbounded.
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be many non-optimal programs that satisfy the Ramsey-Euler equation. The
transversality condition selects an optimal program from among those satisfying
(11.3).

One of the most important results in the stochastic growth literature relates
to the validity of the fundamental theorems of welfare economics in infinite
horizon, stochastic economies. The two basic issues are the existence of prices
that support an optimal program and the optimality of a dynamic, competitive
equilibrium. In their seminal work Malinvaud [72] and Koopmans [55] make
clear that the fundamental welfare theorems do not extend to infinite horizon
settings without some additional conditions. The importance of these issues is
apparent in [18], [81], [86] and [87] even though prices are often implicit in the
necessary and/or sufficient conditions for optimality. Zilcha ([135], [136], [137])
examines the fundamental welfare theorems in a setting in which competitive
prices are explicit throughout.

A feasible program (y,c,k) is competitive if there exists a sequence p =
(pt)∞t=0 of discounted prices such that pt > 0 a.s. for all t and:

δtu(ct) − ptct ≥ δtu(c) − ptc a.s.,∀ c ≥ 0. (11.5)

Ept+1f(kt, rt+1) − ptkt ≥ Ept+1f(k, rt+1) − ptk a.s.,∀k ≥ 0 (11.6)

Proposition 11.2.2. A feasible program is optimal if and only if it is compet-
itive and satisfies:

lim
t→∞ Eptkt = 0. (11.7)

Proof. See [135].

As in Proposition 11.2.1, the existence of competitive prices alone is not
sufficient to guarantee optimality. For that, the transversality condition (11.7)
is also required.

The supporting price pt is the discounted shadow price of the consumption-
capital good. Equation (11.5) requires that consumption maximize utility less
expenditure for almost every realized path and every time period. Equation
(11.6) captures intertemporal (expected) profit maximization. When a compet-
itive program is interior it implies pt = Ept+1fk(kt, rt+1). A primary difference
between the deterministic and stochastic models is that in the former prices re-
flect temporal values, while in the latter prices also reflect values across different
random states of nature. As a consequence, prices and the marginal willingness
to substitute consumption are an important determinant of economic behavior
even in the long run.
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11.2.2 Stochastic Steady States and Convergence Properties in the
One Sector Classical Model

A central concern of optimal growth theory is the study of the long run dynam-
ics of an economy. The deterministic literature focusses on the existence and
stability of non-trivial (strictly positive) optimal steady states and on turnpike
properties of optimal capital accumulation paths. An optimal steady state or
stationary program is a limit point of an optimal program. If optimal paths
from all initial states converge to a steady state then this unique optimal steady
state is globally stable and the long run behavior of the economy is independent
of initial conditions.

When the evolution of capital stocks is stochastic, an optimal program
of capital stocks is a sequence of random variables. The optimal policy, the
production function, and the random shock map the probability distribution of
current capital stocks to the probability distribution of the next period’s capital
stock. A stochastic steady state is a fixed point of this mapping or a distribution
of capital that is invariant under the optimal policy. The stochastic analogue
of a globally stable steady state is a unique invariant distribution to which the
stochastic process of capital stocks converges from every initial state. In such
a steady state the capital stock is not constant over time. Instead, it exhibits
endogenous fluctuations in response to random productivity disturbances.10

Turnpike theorems study the conditions under which differences in initial
conditions have negligible effects on the process of economic growth over long
time horizons.11 In the deterministic case, this involves analyzing when opti-
mal paths from different initial states approach each other asymptotically. The
stochastic analogue is convergence to zero in probability (or sometimes, almost
surely) of an appropriately defined distance between the optimal capital stocks
in each period.

In the classical one sector stochastic optimal growth model the unique op-
timal stationary policy generates a Markov process of capital stocks kt. Recall
that the optimal investment function K(y) is a continuous and strictly increas-
ing function on "+. Define H(k, r) ≡ K(f(k, r)) to be the realized capital stock
for the next period under the optimal policy. Then,H is continuous in (k, r) and
increasing in k. Let S denote the interval [0, k]. Given y0 ∈ S, k0 = K(y0) ∈ S,
the evolution of optimal capital stocks over time is given by:

kt = H(kt−1, rt) (11.8)

Recall that ν is the common probability distribution of the i.i.d random
shocks rt, with support Φ, a compact subset of ". Let νt be the joint dis-
tribution of rt ≡ (r1, ...rt) on the product space Φt and define kn(k0, r

n) ≡
H(H(....(H(k0, r1), r2)..., rn). In other words, kn(k0, r

n) is the nth-period cap-
ital stock kn, given k0 and realization rn = (r1, ...rn) of random shocks in the

10 The literature also examines stronger concepts of an optimal steady state [133].
11 See, [77], [75], [76].



11. Stochastic Optimal Economic Growth 305

first n periods. For any probability measure µ defined on S (and the Borel
σ−field generated by S), define the probability measure νnµ on S by the rela-
tion

νnµ(B) =
∫
S

νn({rn ∈ Φn | kn(k0, r
n) ∈ B})µ(dk0)

where B is any Borel-subset of S. Thus, νtµ gives us the probability distribution
of kt, when k0 is distributed according to the probability measure µ. Let S′ be a
closed interval in S. Then, S′ is said to be ν−invariant if ν{r ∈ Φ | H(k, r) ∈ S′

for all k ∈ S′} = 1. A probability measure µ on S is said to be an invariant
probability measure on S′ if the support of µ is a subset of S′and for any Borel
set B in S,

νµ(B) = µ(B) (11.9)

In other words, if k0 is distributed according to an invariant probability µ, then
the distribution of optimal capital stocks in every subsequent period follows
the same distribution. The distribution function corresponding to an invariant
probability measure is an invariant distribution.

There is a large body of work in the mathematical theory of Markov
processes and random dynamical systems that provides sufficient conditions
for the existence and stability of invariant distributions for a given stochastic
process12. Let

Hm(k) = min
r∈Φ

H(k, r) and HM (k) = max
r∈Φ

H(k, r)

denote the lower and upper envelopes, respectively, of the transition function
H(k, r) defining the Markov process (11.8). Note that the continuity of H and
the fact that Φ is compact imply that Hm(k) and HM (k) are well defined
and continuous. Further, since H is increasing in k, Hm(k) and HM (k) are
increasing functions.

In addition to the assumptions made in the previous section, the standard
proof of existence and global stability of the invariant distribution requires that
the production function f(k, r) and the optimal transition function H(k, r)
satisfy two additional conditions:

A.10. There does not exist any k > 0 and ỹ ∈ S such that ν{r | f(k, r) =
ỹ} = 1.

A.11. There exists an ε > 0 such that Hm(k) > k for all k ∈ (0, ε).

12 See, among many others, [35], [41], [42], [2], [8], [9]. Models of descriptive sto-
chastic growth (such as the stochastic Solow model) where the consumption and
investment rules are exogenously specified have also applied these conditions ([81],
[13] and [109]).
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A.10 requires that every investment level is associated with some non-trivial
uncertainty over output. A.11 is a restriction on the optimal policy. It implies
that even if the lowest possible output is realized every period, the optimal
program from every initial stock is bounded away from zero. In a deterministic
model, the optimal policy satisfies this condition as long as marginal produc-
tivity at zero is large enough. This is no longer true in the stochastic model.
Mirman and Zilcha [86] develop an example where the production function has
infinite slope at zero, yet the optimal program from any initial stock comes
arbitrarily close to zero with probability one.13 One can impose restrictions
on the production function and distribution of random shocks to ensure that
A.11 is satisfied. For example, if there is a strictly positive probability mass
on the ”worst” production function in the sense that there exists some # > 0
such that ν{r | f(k, r) = minr∈Φ f(k, r)} > #, ∀k > 0, then infinite marginal
productivity at zero is sufficient for A.11. For conditions that are applicable to
atomless distributions, see [93].

Define the maximal fixed point of Hm by km = max{k > 0 | Hm(k) = k}
and the minimal fixed point of HM by kM = min{k > 0 | HM (k) = k}.
Assumption A.11 implies that km, kM > 0.

Lemma 11.2.5. km < kM .

Proof. Since H(k, r) is continuous in r, there exists rm, rM ∈ Φ such that
km = Hm(km) = H(km, rm) and kM = HM (kM ) = H(kM , rM ). Further,
f(km, rm) ≤ f(km, r) for all r ∈ Φ. From the stochastic Ramsey-Euler equation:

u′(C(f(km, rm)) = δ

∫
Φ

u′(C(f(H(km, rm), r)))f ′(H(km, rm), r)ν(dr)

= δ

∫
Φ

u′(C(f(km, r)))f ′(km, r)ν(dr).

Since u is strictly concave and C is increasing u′(C(f(km, r))) ≥ u′(C(f(km, rm))
for all r ∈ Φ. Hence, the inequality above yields 1 ≤ δ

∫
Φ f

′(km, r)ν(dr). Sim-
ilarly, one can show that 1 ≥ δ

∫
Φ f

′(kM , r)ν(dr) so that
∫

Φ f
′(kM , r)ν(dr) ≤∫

Φ
f ′(km, r)ν(dr). The fact that km ≤ kM follows from the strict concavity of

f. Finally, if km = kM then f(k, r) is constant in r which violates A.10.

Lemma 11.2.5 implies that the highest fixed point of Hm lies below the
smallest positive fixed point HM . We now state the main result regarding the
existence and global stability of the optimal stochastic steady state. For the
stochastic process of optimal capital stocks kt defined by (11.8), let Ft(k) be
the distribution function of kt i.e., Ft(k) =νt{rt ∈ Φt | kt ≤ k}.
13 Mitra and Roy [93] develop general conditions under which Prob{lim inft→∞ kt =

0} is 0 and 1.
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Proposition 11.2.3. Assume A.1 - A.11. There exists a unique non-zero in-
variant distribution F (k) on S and its support is the interval [km, kM ]. For any
initial capital stock k0 > 0, as t → ∞, Ft(k) converges uniformly in k (on S)
to F (k).

Proof. (Sketch).Instead of giving a full proof, we sketch the main arguments
for the simple case of multiplicative shock, f(k, r) = rf(k), which assumes
just two possible values a and b, 0 < a < b < ∞. Then, Hm(k) = K(af(k))
and HM (k) = K(bf(k)). The proof consists of the following key arguments.
First, for the Markov process (11.8), the set of states (0, km) and (kM ,∞) are
transient. With probability one, capital stocks move out of these sets in finite
time, never to return. Second, once the process enters the set [km, kM ] it remains
there with probability one. Further, [km, kM ] is the smallest ν− invariant set.
Let ym = min{k : Hm(k) = k} and yM = max{k : HM (k) = k}. Then,
0 < ym ≤ km < kM ≤ yM . From any stock k ∈ (0, ym) the optimal capital
stocks increase almost surely and reach the set [ym, kM ] in finite time with
probability one. Similarly, from any stock k ∈ [yM ,∞) the optimal capital
stocks decrease almost surely and reach the set [km, yM ] in finite time with
probability one. Further, for k ∈ [ym, km) one can show that the probability
that the optimal path from such a stock does not enter [km, kM ] in finite time
is zero. To move the capital stock ym to the interval [km, kM ] only takes a
sufficiently long, but finite run rt = b, such that the realized transition occurs
along the function HM (k). Any such run must occur ω−almost surely as shocks
are independent. In fact, no strict subset of [km, kM ] is invariant. The next
step is to show that a well-known ”splitting” condition due to Dubins and
Freedman [35] (or some variation/extension) holds on the interval [km, kM ].
For any n = 1, 2..., the probability νn is said to split on a ν−invariant subset
S′ of S if there exists z ∈ S′ and η > 0 such that:

νn{rn ∈ Φn | kn(k, rn) ≤ z for all k ∈ S′} > η

νn{rn ∈ Φn | kn(k, rn) ≥ z for all k ∈ S′} > η.

To verify that the splitting condition holds fix any z ∈ (km, kM ). There
exists some N ≥ 1, such that: (i) if rt = a, t = 1, ...N, then kN (kM , rN ) ≤
z, and (ii) if rt = b, t = 1, ...N, then kN(km, r

N ) ≥ z. For 0 < η <
min{(ν(a))N , (ν(b))N}, n = N, it is easy to see that the splitting condition
is satisfied on S′ = [km,Km]. Dubins and Freedman [35] then show that this
implies there exists a unique invariant distribution F on S′ and that Ft(k)
converges uniformly in k to F (k).14 Finally, since the set S − S′ is transient

14 Recent extensions of the result that are applicable to situations where H(k, r) is
monotonic but not necessarily continuous and situations where the capital process
is multidimensional can be found in [8],[9].
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and S′ is the smallest ν−invariant set on S, it must be that F is the unique
invariant distribution on S and Ft(k) converges uniformly in k to F (k) on S.15

The basic results on the existence and global stability of an invariant distri-
bution for the classical one sector stochastic model were originally developed
in the pioneering work by Brock and Mirman [18] and subsequently refined by
Mirman and Zilcha [81]. Majumdar, Mitra and Nyarko [69] were the first to ex-
plicitly use the Dubins-Freedman splitting condition. Versions of this problem
have also been analyzed by [126] and [42]. [19] [25] contain similar results for
the undiscounted model (δ = 1) where optimality is based on the ”overtaking
criterion”.16 Donaldson and Mehra [34] extend these results to the case of cor-
related shocks that enter the production function multiplicatively and follow a
stationary process.

When shocks are unbounded, Stachurski [124] shows that there is always
a unique globally stable steady state for the special case of a multiplicative
shock where r has a density function that is strictly positive everywhere on
"++. With an interior optimal policy, the structure imposed on the random
shock ensures that the system moves with positive probability from any positive
stock to any interval on "++ in one step.

¿From an empirical point of view one may be interested in the asymptotic
statistical properties of the stochastic processes for capital and consumption.
For example, if the law of large numbers holds so that sample averages from time
series converge to the mean of the limiting steady state distribution, then one
can test a model by comparing the sample average over a sufficiently long period
with the theoretical prediction. Alternatively, one can forecast the mean of the
long run distribution by using the sample average. The central limit theorem or
asymptotic normality of the partial sums can be used for inference of likelihood
of values in a parameter space. Many of the conditions that guarantee global
stability of an invariant distribution also ensure that both the law of large
numbers and the central limit theorem hold. In addition, they imply a minimum
bound on the rate of convergence.17

An important implication of global stability is that the long run behavior
of the economy is independent of the initial state. This is also brought out in
15 A more traditional approach in theory of Markov processes is to directly verify

that the process is irreducible on [km, kM ], that intervals disjoint from [km, kM ] are
transient and an equicontinuity condition on the sequence of probability measures
for the capital stock (defined through the stochastic kernel of the Markov process).
See, [78]. Another approach is to show that the iterated random functions satisfy a
Lipschitz condition and are ”contracting on the average” (see, [33]). In a framework
with multiplicative shocks that are not necessarily i.i.d. and have a positive valued
density on R+, Nishimura and Stachurski [96] use a new approach by defining
Foster-Lyapunov functions to characterize stability.

16 For convergence in a stochastic open economy, see for example, [28].
17 See, [9]. [125] contains similar results for the case of multiplicative unbounded

shocks.
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turnpike results that directly examine the conditions under which differences in
initial conditions have negligible effects on the process of economic growth over
long time horizons. Majumdar and Zilcha [71] establish a ”late” turnpike the-
orem in a model that is far more general than the classical model of Section 2.
Their model allows for unbounded expansion of capital and consumption, time
varying utility and random shocks that may follow a non-stationary stochastic
process. Under a condition that requires the elasticity of marginal product to
be bounded away from zero (implying a lower bound on the degree of con-
cavity of the production function), they show that the number of periods for
which the relative distance between the optimal capital stocks (from any two
initial stocks) exceeds any positive threshold is bounded almost surely, where
the bound depends on how far apart the initial states are. In other words, op-
timal paths from different initial states eventually approach each other with
probability one. Note that this result is quite independent of whether there
is a globally stable invariant distribution. The condition on the elasticity of
marginal product ensures a that a uniform ”value-loss” argument (originally
due to Radner [105]) holds.18 Joshi [49] provides similar turnpike results in a
one-sector model with recursive preferences and time varying technology.

Apart from convergence, the other important question in economic growth
relates to characterization of the properties of the limiting steady state; in
particular, the relationship between the preferences and technology underlying
the economy and the nature of the invariant distribution to which it converges.
In the one sector convex deterministic model of optimal growth, there is fairly
rich characterization of the steady state. For example, with a strictly concave
production function f , the unique steady state or modified golden rule is a
capital stock k̂ that is the unique maximizer of [δf(k)−k], where the latter can
be interpreted as the net gain from investment. For the no-discounting case,
the steady state is the well-known golden rule capital stock that maximizes the
level of sustainable consumption [f(k) − k]. There are also other decentralized
or support price-based characterizations of the optimal steady state. In general,
in the deterministic one sector model, it is possible to look at the steady state
as a solution to an independent static optimization problem that has desirable
economic properties. In the multisector deterministic model, it is a solution to
a static optimization and a fixed point problem.

Surprisingly, there is very little by way of general qualitative characteriza-
tion of the limit invariant distribution in the stochastic growth literature. One
of the reasons behind this is the fact that, unlike the deterministic model, the
18 The value loss argument uses support prices of optimal paths to look at the accu-

mulation of shortfalls in values (shadow profits and losses) of input-output combi-
nations along one optimal path relative to another at the other’s support prices.
Loosely speaking, for two optimal paths that do not approach each other asymp-
totically, if the value loss is uniformly bounded away from zero over all states and
time periods, then the accumulated loss is infinite and that contradicts optimality.
[51] contains a turnpike result without requiring uniformity of value-loss across
time and states.
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steady state is not determined solely by the production function and the dis-
count factor. Both the utility function (and its curvature) and the distribution
of the random shocks play important roles. Specific examples show that for
the same technology, discount factor and distribution of random shocks, the
steady state distribution can change dramatically with variations in the utility
function [26].

Further, even for very standard utility and production functions, the lim-
iting distribution can be very sensitive to parameter values when the shock
does not have a continuous distribution.19 For the case with logarithmic util-
ity, Cobb-Douglas production, and a binary multiplicative shock, Mirman and
Zilcha [81] show that the invariant distribution can be degenerate for some
parameter values and uniform for others. Montrucchio and Privileggi [94] show
that the invariant distribution can also be a Cantor function. Mitra, Montruc-
chio and Privileggi [92] expand on this example to establish precise bounds on
the parameters under which Cantor and more general singular invariant distri-
butions can arise as well as bounds under which the distribution is absolutely
continuous. Recently, Mitra and Privileggi [91] extend the example to the class
of all iso-elastic utility functions and establish sufficient conditions for a Cantor
type invariant distribution.

11.2.3 Stochastic Steady States and Convergence Properties in the
Multisector Classical Model

In the literature on deterministic models of optimal economic growth, the multi-
sector case has been extensively studied. In particular, the literature has focused
on two key issues - the existence of an optimal steady state and turnpike results
or the convergence properties of optimal paths.20 In comparison, the stochastic
multisector literature is relatively thin and there is only a small literature on
the existence and stability of steady states in the stochastic, multisector case.

In the deterministic literature, it is well recognized that with discounting,
the existence of a globally stable optimal steady state and other turnpike re-
sults may not hold in the multisector case (even though it always holds under
very mild restrictions in the one-sector model).21 With significant discount-
ing, optimal paths in the multisector model may not be convergent. They may
exhibit cyclical and even chaotic dynamics.

A general stochastic multisector optimal growth model with i.i.d. shocks
has been analyzed by Brock and Majumdar [17]. The model is a natural exten-
sion of the classical one-sector model to the case of m capital goods. For each
vector of current capital stocks and realization of the random shock there is a
correspondence that defines the set of attainable utilities and capital stocks for
19 For the case of multiplicative shock with continuous density, Danthine and Don-

aldson [27] show that the limiting invariant distribution has a continuous density
function.

20 For an excellent review of the basic results see McKenzie [76].
21 See, [128].
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the next period, which in turn can be used to define the set of feasible programs
from any given initial vector of capital stocks. The objective is to maximize the
discounted expected sum of utilities, or for the undiscounted case, a stochastic
version of the overtaking criterion. The paper imposes four conditions:

(i) there is a compact set S′ ⊂ "m
+/{0} such that for any initial vector

of capital stocks lying in S′, there exists an optimal program such that the
stochastic process for capital lies almost surely in S′.

(ii) there exist continuous stationary optimal investment and consumption
policies.

(iii) an optimal program is ”competitive” relative to a non-trivial price
process in a similar sense as in the previous section and satisfies a transversal-
ity condition that the expected values of the capital stocks (at the competitive
prices) go to zero, for the case of discounting, and are bounded, in the undis-
counted case.

(iv) the Hamiltonian system corresponding to the optimal process has ”suit-
able curvature” so that a stochastic value-loss condition is satisfied.

Under conditions (i) - (iv), Brock and Majumdar show that the distance be-
tween the probability distributions of tth−period optimal capital vectors from
two distinct initial capital vectors in S′ converges to zero as t → ∞. Further,
the difference between the two optimal paths converges to zero in probability.
Thus, conditions (i) - (iv) are sufficient to ensure that the optimal paths from
alternative capital stocks come close to one another asymptotically and that
the long run behavior of optimal paths does not depend on initial conditions.
The existence of a unique and globally stable invariant distribution for the sto-
chastic process of optimal capital stocks can also be established under these
conditions. Unlike the conditions for global stability of an invariant distribution
and other turnpike results in the one-sector stochastic growth model, (i) - (iv)
are fairly strong restriction imposed directly on the optimal policy rather than
the primitives of the model. Conditions (i) - (iii) are readily satisfied in the
one sector stochastic growth model. In the multisector case there are plausible
conditions on preferences and technology for (i) and (ii) to hold. For example,
Majumdar and Radner [70] consider a stochastic nonlinear activity analysis
model in which neoclassical conditions on the technology and preferences are
sufficient for (i) and (ii).22 Condition (iii) is motivated by the equivalence be-
tween optimal programs and competitive programs that satisfy a transversality
condition (see, [135], [136], [137]). Condition (iv) is a stochastic extension of
conditions for asymptotic stability in the deterministic multisector model due
to Cass and Shell [22] and Rockafellar [110] that are, in turn, based on the
well known ”value loss” argument alluded to in the previous subsection (see
also, McKenzie [75]). In particular, condition (iv) requires that the Cass-Shell-
Rockafeller version of the value-loss restriction holds uniformly for all states of
the environment.
22 See also the discussion in [88].
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Chang [24] shows that a weaker version of condition (iv) based on expected
value loss is actually sufficient and further, that the difference between any two
optimal paths converges not only in probability, but almost surely. It is worth
noting that in a multisector model condition (iv) involves a strong restriction
on the extent of discounting in the model, and unlike the one-sector case, it
does not follow directly from a restriction on the curvature of the production
function.

Föllmer and Majumdar [39] follow a somewhat different approach using the
theory of martingales to show that even if one does not impose a condition
such as (iv), a weaker result is possible. That is, for any two optimal paths, the
number of periods for which the value loss exceeds any given positive threshold
is finite with probability one. Under uniformity of value loss and a specific dis-
tance metric, optimal paths approach each other asymptotically almost surely.

For the case of no discounting with the ”overtaking” criterion of optimality,
global stability of the stochastic steady state and other turnpike results can be
established under much less restrictive conditions (see, among others, [46], [25],
[136]).23,24

11.3 Extensions of the Classical Framework

11.3.1 Sustained (Long Run) Growth

The past two decades have seen a renewed interest in the economics of long
run growth where unbounded expansion of output, capital and consumption
is possible. In the deterministic convex one-sector model, sustained growth is
optimal if the marginal productivity of capital at infinity exceeds the discount
rate [47]. Much of the literature on stochastic optimal growth theory focusses
primarily on models where the technology exhibits bounded growth that rules
out indefinite expansion of consumption and capital and sustained long run
growth. An exception is the class of models on optimal intertemporal house-
hold savings under uncertainty. A portion of this literature considers a linear
production function with a multiplicative shock, f(k, r) = rk, so that optimal
paths may diverge to infinity (see, Phelps [103], Levhari and Srinivasan [63]
and subsequent contributions). A closely related literature on the permanent
income hypothesis has examined optimal savings where the wealth next period
23 Dutta [37] provides sufficient conditions under which as δ → 1, the optimal policies

(and value functions) in the discounted stochastic model converge to the optimal
policy using two alternative optimality criteria - the undiscounted overtaking cri-
terion and the long run average reward criterion.

24 In a stochastic multisector model with a double infinity of time periods and discount
factors close to 1, Yano [133] establishes the existence and continuity in the discount
factor of a stronger concept of an optimal stationary program (where a stationary
program is one where the vector of current capital stocks associated with any
infinite realized sequence of past history is time invariant with probability one).
See also, [74].
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is composed of a deterministic return on current savings (interest income) plus
an additive income shock (non-interest income).25

De Hek and Roy [31] examine the possibility of sustained long run growth
in optimal consumption and capital stocks in a one sector model with i.i.d.
shocks and a concave production function that is not necessarily linear. Con-
sider the model in Section 2 without assumption A.5. In particular, suppose
that f(k, r) = rf(k) and let θ = limk→∞

f(k)
k . They show that under the fol-

lowing two conditions, optimal capital and consumption diverge to infinity with
probability one from every positive initial stock:

(i) E[ln(θr)] > 0
(ii) infy>0 δE[uc(rf(sy))rfk(sy)

uc((1−s)y) ] > 1, where s = exp[−E[ln(θr)]].

Note that these conditions involve the utility function and its curvature.
The possibility of long run growth depend on more that a simple comparison
of the discount rate and average marginal product at infinity. Once again, this
reflects the general fact that in a stochastic growth model, the utility function
and distribution of shocks play important roles in determining the nature of
long run behavior of the economy. To illustrate this further we consider a
specific example of iso-elastic utility and linear production function for which
we can derive the optimal policy explicitly and thus provide an almost exact
characterization of the condition for sustained long run growth.

Example 11.3.1. u(c) = c1−σ

1−σ , σ > 0, σ �= 1, f(k, r) = rk. One can show that
the optimal policy function K(y) is linear and given by K(y) = [δE(r1−σ)]

1
σ y

so that
kt+1 = αrt+1kt where α = [δE(r1−σ)]

1
σ (11.10)

which implies ln kt+1 = ln k0 + (t + 1)[ 1
t+1

∑t
j=0 lnαrj+1]. Using the law of

large numbers, it is easy to show that an ”almost” exact condition for ln kt+1

to diverge to infinity with probability one is that E[ln(αr)] > 0 which can be
rewritten as σE(ln r) + ln δ + lnE(r1−σ) > 0. This indicates that the risk
aversion/intertemporal elasticity of substitution parameter of utility, σ, plays
an important role in determining whether sustained growth occurs.

11.3.2 Stochastic Growth with Irreversible Investment

In the classical framework analyzed in the previous section, investment is either
reversible or the existing capital stock depreciates completely at the end of a
period. In reality, it is costly to transform capital into consumption and there
are limits to how fast the aggregate capital stock depreciates. The stochastic
growth model with irreversible investment was first examined by Sargent [117].
In his setting output can either be consumed or invested, but once invested,
25 See [132] and [119] for the undiscounted case, [120] and [122] for the discounted

case and also [23].
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capital cannot be converted for consumption. Individual agents transact in a
competitive market for existing capital. This allows individual investment de-
cisions to be reversed while maintaining the irreversibility of investment in the
aggregate. As Sargent shows, irreversibility in the aggregate provides the nec-
essary friction for Tobin’s q, the relative price of used to new capital, to diverge
from unity. This enables aggregate investment to be positively correlated with
q. However, this same friction implies that agents’ investment decisions are
necessarily a function of their expectations about the future which cannot be
summarized by q. The implication is that q-theory of investment functions are
of little use for econometric policy evaluation.

The analysis in Sargent is based on the properties of the value function.
Olson [100] develops an alternative approach that characterizes optimal policies
using stochastic Kuhn-Tucker conditions. Let f(k, r) = F (k, r)+(1−d)k where
k is the depreciation rate of capital. If λt is the Lagrange multiplier on the
period t irreversibility constraint, kt+1 ≥ (1−d)kt, the Ramsey-Euler equation
can be written as:

uc(ct) − λt = δE [uc(ct+1(r)))fk(kt, r) − (1 − d)λt+1(r)] . (11.11)

Solving for λt and substituting forward this can be expressed as:

uc(ct) = δ

T∑
i=1

(δ(1 − d))i−1
E [uc(ct+i)Fk(kt+i−1, rt+i)]+δT (1−d)TE[uc(ct+T )].

(11.12)
This derivation uses the fact that eventual depreciation of the entire capi-

tal stock is not optimal so there is a uniform upper bound, T , on the number
of time periods for which the irreversibility constraint binds. Sargent’s point
that agent’s decisions are a function of expectations about the future is clearly
evident from (11.12). Evaluating (11.12) at the minimal and maximal optimal
transition functions for capital it can be shown that the support of the limit-
ing distribution under irreversible investment is a subset of the support when
investment is reversible.

11.3.3 Stochastic Growth with Experimentation and Learning

The stochastic growth model has been extended to environments where there
is learning about productivity or the capital stock itself. This requires expand-
ing the state space to represent the agent’s beliefs. The transition equation for
beliefs follows Bayes’ rule. In this setting, the possibility of learning affects the
optimization problem in two important ways. First, even if information signals
are exogenous so that learning is passive and not affected by the current action,
the mere prospect of learning may alter current period decisions. Second, when
the current action affects how much learning occurs, there is an incentive to
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experiment to obtain better information. Friexas [40] was the first to examine
this problem. Assume output is produced by a technology f(k, θ, r), where θ is
an unknown parameter. The distribution of r is known. Given an initial value
for y and current beliefs about θ, the agent chooses consumption and invest-
ment. Output in the following period is observed and provides information that
can be used to update beliefs about θ. Friexas examines how learning and ex-
perimentation affect the initial consumption/investment decision. The learning
effect depends on whether learning increases or decreases the marginal value of
investment. Friexas then uses Blackwell’s [10] theorem to assert that if larger
investment yields more information then the experimentation effect leads to
an increase in investment. Subsequently, it was shown in [5] and [29] that this
need not always be true. The reason is that investment affects both state vari-
ables in the value function so that Blackwell’s theorem does not apply. While
higher investment may be more informative, the value of information at higher
levels of output may be lower. When the second effect dominates, an expected
utility maximizer may prefer to invest less even if it is more informative. These
tradeoffs have made it difficult to obtain a general set of verifiable conditions to
characterize how information affects consumption and investment in the infi-
nite horizon model. Precise results are limited largely to problems where there
are only two relevant decision periods.

Nyarko and Olson [99] examine experimentation and learning in a stochas-
tic growth model where there is imperfect information about the capital stock
itself. Consumption is observable, but output and investment are not. Beliefs
about the state are summarized by a probability distribution over y. After
choosing consumption, an information signal is observed that can be used to
update beliefs about y. The mapping from beliefs in period t to beliefs in pe-
riod t+1 is determined jointly by consumption, the information signal and the
stochastic production function. Here there is learning about a moving target,
in contrast to the case above where the unknown parameter is fixed. Nyarko
and Olson show that if u(0) = −∞26 then the optimal policy is to assume
the worst and optimize against that. That is, the initial state is assumed to
be the lower bound of the support of the agent’s beliefs about output and the
transition equation is infr f(k, r). When information alters the lower bound
of the support of the agent’s beliefs there is an endogenous capital discovery
process. When it does not, the problem with learning has an equivalent, deter-
ministic representation. In that case, output and investment are more volatile
than consumption and there is excess saving compared to the case where the
capital stock is observable. In cases where u(0) > −∞, the solution either cor-
responds to that above, or the capital stock becomes zero with strictly positive
probability.
26 This assumption holds for the class of all constant relative risk averse utility func-

tions with coefficient at least one.
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11.4 Non-classical Models of Optimal Stochastic Growth

The models of optimal economic growth under uncertainty reviewed in the pre-
vious section are based on the classical assumptions of convex technology and
utility that depends only on consumption. This section reviews some extensions
of the theory that allow for non-classical features such as non-convexities and
state-dependent utility. These non-classical features imply that even in a one-
sector model, continuity and monotonicity properties of optimal policies need
not hold and optimal paths need not converge to a unique stochastic steady
state. The long run behavior of the economy may depend critically on the initial
state.

11.4.1 Stochastic Growth with Non-convex Technology

Non-convexities enter the production technology of an economy through nu-
merous sources, such as fixed costs, threshold effects, increasing returns to
scale, economies of scope, and depensation in the reproduction of natural re-
sources. In applications of optimal growth models to areas such as environmen-
tal management there is also the need to study the implications of a non-convex
technology. A separate chapter of this handbook focuses on optimal growth in
non-convex economies. In this subsection, we concentrate on explaining how
a non-concave production function (non-convex technology) alters the basic
results of the classical stochastic growth literature reviewed in the previous
subsections.

Majumdar, Mitra and Nyarko [69] were the first to comprehensively analyze
the problem of optimal stochastic growth in a one sector model where the pro-
duction function, f(k, r), is not necessarily concave, though it exhibits bounded
growth.27 In this framework, the set of feasible programs is not necessarily con-
vex and therefore, the value function for the dynamic optimization problem is
not necessarily concave even though the utility function satisfies classical con-
cavity restrictions. This non-convexity means that the maximization problem
on the right hand side of the functional equation may have multiple solutions so
that instead of a unique optimal policy function, the solution is characterized
by a measurable selection from an upper semi-continuous optimal policy cor-
respondence. Further, there need not exist any continuous selection and every
policy function may exhibit jump discontinuities on a set that is at most count-
able. Also, non-convexity in the economy implies that the optimal path is not
necessarily decentralizable - in particular, support prices may not exist.

As the value function is not necessarily concave, the expected future mar-
ginal value of capital may be increasing in current investment.28 This, in turn,
27 Some notable contributions to deterministic optimal growth with a non-convex

technology include [68],[32].
28 The term ”marginal” is used loosely here as the value function is not necesarily

differentiable no matter how smooth the utility and production functions are.
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implies that optimal consumption may actually decline with an increase in out-
put.29 Indeed, in the deterministic model it has been shown that there may not
exist an optimal consumption function that is globally monotonic. The optimal
investment policy correspondence is, however, an ascending correspondence.
Further, if the utility function is strictly concave, then it can be shown that
every measurable selection from this correspondence is non-decreasing and an
optimal investment policy function K(y) is always non-decreasing in output.30

A central question is whether there exists a globally stable invariant distrib-
ution. In the deterministic literature with non-concave production functions, it
has been shown that there may be a multiplicity of steady states and the limit
of the optimal path of capital stocks may depend on the initial state. For ex-
ample, with an S-shaped production function, it is quite possible that optimal
paths from small stocks converge to zero (extinction), while for initial stocks
above a critical level,31 optimal paths converge to a strictly positive optimal
steady state. This initial state dependence can be expected to be true in the
stochastic model too.

Consider the model of Section 2 without assumption A.4. For any measur-
able selection from the optimal policy correspondence, the transition function
H(k, r) for the Markov process of optimal capital stocks (11.8) is non-decreasing
in k, but not necessarily continuous.32 Recall that km, kM are the largest posi-
tive fixed point of the lowest transition function Hm(k) and the smallest posi-
tive fixed point of the highest transition function HM (k), respectively. A critical
step in the proof of global stability in Proposition 11.2.3 is Lemma 11.2.5 that
showed km < kM . Indeed, if A.10 and A.11 hold and km < kM , there exists
a globally stable invariant distribution even if assumption A.4 does not hold.
However, in the non-convex model it is quite possible that km > kM so that
Lemma 11.2.5 does not hold. To see what happens in that case, suppose that
29 Unlike both the classical stochastic model and the deterministic model with non-

concave production function, it is difficult to guarantee that optimal consumption
is strictly positive in the stochastic model with non-concave production, even if
Inada conditions are imposed on the utility and production functions. An interior
optimal policy is ensured in [69] by assuming that u(0) = −∞, which is a very
strong restriction on the class of admissible utility functions. More recently, [95]
establishes interiority by assuming the Inada condition on utility, sufficiently high
marginal productivity at zero, and that the random shock is multiplicative and has
a density function so that the maximand on the right hand side of the functional
equation of dynamic programming is smooth.

30 If the utility function is concave but not strictly concave, then there may be an
optimal investment function that is non-monotonic though, even in that case, there
is at least one optimal investment function that is non-decreasing.

31 This critical level is referred to as a safe standard of conservation in the literature
on renewable resource economics.

32 An innovative approach to the non-convex model can be found in Amir [1]. It
takes advantage of the averaging associated with the random disturbances to derive
conditions for the monotonicity of optimal policies and higher order differentiability
of the value function. As in [12], differentiability of the optimal policy functions
follows from the implicit function theorem.
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A.10 and A.11 hold and optimal policy is interior (0 < K(y) < y for all y > 0).
As in the sketch of the proof of Proposition 11.2.3, confine attention to the
case where f(k, r) = rf(k) where r assumes one of two possible values a, b.
As before, let ym > 0 be the smallest positive fixed point of the lowest tran-
sition function Hm(k). Then, for all k ∈ (0, ym), HM (k) > Hm(k) > k and
HM (ym) > Hm(ym) = ym so that ym < kM . Similarly, it is easy to show that
km < yM , where yM is the largest fixed point for the highest transition function
HM (k). Thus, km > kM implies ym < kM < km < yM . It is easy to check that
the two disjoint intervals [ym, kM ] and [km, yM ] are both ν−invariant; from any
initial state in either interval, the optimal capital process remains in that inter-
val almost surely. For k0 ∈ (0, kM ], all optimal paths eventually enter and stay
in the interval [ym, kM ] while for k0 ∈ [km,∞), all optimal paths eventually
enter and stay in the interval [km, yM ]. There is no globally stable invariant
distribution. Using arguments based on the splitting condition referred to ear-
lier, Majumdar, Mitra and Nyarko [69] show that if km > kM , then for all
k0 ∈ (0, kM ], the distribution of capital stocks converges to the same invariant
distribution whose support is [ym, kM ], while for all k0 ∈ [km,∞), the distribu-
tion of capital stocks converges to another invariant distribution whose support
is [km, yM ]. For any fixed initial stock in the intermediate range (kM , km), the
optimal path may enter either of the two invariant sets and remain there, de-
pending on the realization of random shocks. This last possibility illustrates an
aspect of path dependence that has no parallel in the deterministic literature.

In general, non-convexities in production may lead to multiple invariant
distributions. However, if production is ”sufficiently stochastic”, then there
exists a globally stable invariant distribution despite the non-convexity [69].
Here, the precise condition that ensures global stability is:

A.12. There exists some ϑ > 0 in S such that ν({r ∈ Φ | f(k, r) ≤ ϑ for
each k ∈ S}) > 0 and ν({r ∈ Φ | f(k, r) ≥ ϑ for each k ∈ S}) > 0.

Observe that assumption A.12 a condition on the production function, not
the transition function for the optimal capital process. It captures the idea
that the random output that results from any given investment is sufficiently
spread out, i.e., the technology exhibits sufficient variability. Under this condi-
tion, if we let z = K(ϑ),then one can easily verify that the splitting condition
described in the proof of Proposition 11.2.3 is immediately satisfied. This en-
sures global stability. Thus, the possibility of multiple stochastic steady states
depends on the stochasticity of the model. This is another instance where the
stochastic growth model (with sufficient uncertainty) is qualitatively different
from the deterministic analogue. We summarize the above discussion in the
next proposition:

Proposition 11.4.1. Assume A.1−A.7, A.10, A.11 and that optimal policy is
interior. Then, (i) if km < kM or if A.12 holds, there is a unique invariant
distribution on S whose support is [km, kM ] and from every k0 > 0,the optimal
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capital stocks converge in distribution (uniformly) to this invariant distribution;
(ii) if km ≥ kM , then for all k0 ∈ (0, kM ], the distribution of optimal capital
stocks converges to an invariant distribution whose support is [ym, kM ], while
for all k0 ∈ [km,∞), the distribution of capital stocks converges to another
invariant distribution whose support is [km, yM ].

As in Section 3.1, A.11 implicitly imposes restrictions on the technology.
For example, in [69] it is obtained from the model primitives by assuming
(in addition to a condition for interiority of optimal policy) that the random
shock has finite support and that the marginal productivity at zero is infinite.
The latter is a rather serious restriction on the class of admissible non-concave
production functions. It rules out the S-shaped production function that is a
widely used canonical form to capture increasing returns to scale and other
threshold effects.33

Nishimura, Rudnicki and Stachurski [95] analyze a non-convex model with
multiplicative i.i.d. random shock that has a density function that is strictly
positive on "++. Under restrictions on the expectation of the random shock,
they show that the Markov process of optimal capital stocks either converges
to zero from every initial state or there is a globally stable non-zero steady
state (and identify conditions for these events). To place their results in con-
text, their assumption on the density function automatically satisfies the ”very
stochastic” assumption in [69] discussed above. Their result does not require
Inada conditions on the production function and, in fact, allows the marginal
product at zero to be less than one with positive probability. In a similar frame-
work, Nishimura and Stachurski [96] use the Euler equation to analyze stability
of the stochastic optimal capital process; in particular, they use the marginal
utilities as Foster-Lyapunov functions in order to obtain stability.

The literature on non-convex stochastic growth also develops turnpike con-
ditions under which optimal paths approach each other asymptotically. In
a model with non-convex and non-stationary technology Joshi [50] uses the
monotonicity properties of the optimal policy and a supermartingale process
generated by the stochastic Ramsey-Euler equation to show that, under a
strong ”value loss” condition that is uniform with respect to time and state,
the asymptotic distance between optimal paths from two distinct initial states
converges to zero with probability one. However, as in the case of turnpike
theorems in the stochastic multisector convex models, the uniform value loss
condition is not very transparent in terms of its implications for the model
primitives.

One of the interesting questions in stochastic growth models with non-
convexity is the possibility of extinction where optimal paths converge to zero.
This is particularly important in applications of the optimal growth model
to problems of renewable resource management where utility reflects the net
33 Mitra and Roy [93] provide weaker conditions that ensure A.11 even when the

marginal productivity at zero is finite and the distribution of the random shock is
absolutely continuous.
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benefit from harvesting and the production function reflects natural biological
growth. Assuming a bounded growth production function and i.i.d. shocks that
have compact support, Mitra and Roy [93] show that there are only three
possibilities: (i) optimal paths from all initial states get arbitrarily close to zero
infinitely often with probability one (this includes extinction in finite time),
(ii) optimal paths from all initial states are bounded away from zero with
probability one, and (iii) there exists a critical capital stock or safe standard
above which all optimal paths are bounded away from zero with probability
one. They develop sufficient conditions on the preferences and technology that
lead to each of these outcomes. In contrast to the deterministic literature, these
conditions involve not just the discount factor and marginal productivity, but
also marginal utility - one compares the discount rate to expected ”welfare-
modified” return on investment (marginal productivity) as in the condition in
Proposition 11.4.2. Another result on optimal extinction is due to Kamihigashi
[53] who shows that if the marginal productivity at zero is finite, then sufficient
variability in the random shock implies that all feasible programs (including
therefore, the optimal program) converge to zero almost surely.

11.4.2 Stochastic Growth with Stock-Dependent Utility

For some important capital theoretic allocation problems welfare depends on
both consumption and the beginning of period output, as represented by
u(c, y).34 Utility is assumed to be nondecreasing in y, jointly concave in (c, y)
and A.7 is no longer imposed.35 In the deterministic case stock-dependent util-
ity has two important consequences. The first consequence arises if investment
and output are substitutes in utility in the sense that u(y − k, y) is submod-
ular in k and y. In that case, an interior optimal investment policy may be
decreasing in output. At the same time, there may be intervals of the state
space on which corner solutions are optimal and the optimal transition func-
tion coincides with the production function. Combining these two possibilities
opens the door for the optimal transition function to be like a tent map, or even
more complex. When this happens an optimal program may exhibit nonlinear
dynamics including cycles or chaos [3]. The second important consequence is
that multiple optimal steady states are possible, even if the utility function is
supermodular in k and y and the optimal investment policy is monotone (Kurz
[59]). In such cases, the asymptotic behavior of an optimal program depends
on the initial state.

The first analysis of stochastic models with stock-dependent utility can
be traced to the literature on renewable resource allocation. In that litera-
ture, the production function represents biological growth of the renewable
34 Such models include the allocation of natural capital or renewable resources and

the effects of wealth on consumption-savings behavior.
35 In renewable resource allocation problems welfare declines if consumption exceeds

the quantity that equates demand and supply.
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resource and the random shock represents the effect of environmental distur-
bances on resource growth. The state variable is the resource stock (output) at
the beginning of the period. Stock-dependent utility arises when the harvest
costs depend on the resource stock or when the resource stock has amenity or
other social value. Early papers ([45], [107], [123]) focused on the case where
ucc(c, y) + ucy(c, y) = 0. In this case the direct and indirect utility effects of an
increase in output offset exactly and investment and output are neither strict
complements nor strict substitutes in utility. As a result, the optimal policy is a
constant investment policy, which in the presence of fixed costs becomes an (s,S)
inventory rule. Mendelssohn and Sobel [78] prove monotonicity of the optimal
investment policy under the supermodularity condition ucc(c, y)+ucy(c, y) ≤ 0.
Nyarko and Olson [97] show that the optimal consumption policy is nondecreas-
ing when ucy(c, y) ≥ 0 and u and f are concave. They also use the Dubins and
Freedman splitting condition to characterize the convergence of optimal pro-
grams to a limiting distribution. Without additional restrictions the invariant
distribution may not be unique and the long run behavior of an optimal pro-
gram may depend on initial conditions. Subsequently, Nyarko and Olson [98]
show that additional sufficient conditions for the existence of a unique invariant
distribution are: (i) uc(c, y) = 0 implies uy > 0 for sufficiently large y, and (ii)
for all y > 0, c ∈ Γ (y) and α > 1, if uc(c, y) > 0 and uc(αc, αy) > 0 then
uy(c,y)
uc(c,y) ≥ uy(αc,αy)

uc(αc,αy) . The last assumption is a complementarity condition that
implies that the slope of indifference curves for u decrease as output and con-
sumption increase along a ray through the origin in (c, y) space. Nyarko and
Olson provide examples to show that multiple invariant distributions can be
optimal when either (i) or (ii) are violated. The existence of a unique invariant
distribution is also ensured when there is sufficient divergence between produc-
tion in the best and worst states. [69] and [98] show that there is more than
one way to define sufficient variation in production. The underlying intuition
is the same. A model with multiple limiting distributions can be transformed
into one with a unique invariant distribution by the mixing that results from
increasing the variance in production. On the other hand, if the variability in
production is small enough and if u(y − k, y) is submodular in (k, y), then an
optimal program may oscillate between cyclic sets [3].

The economic possibilities associated with the stochastic growth model ex-
pand considerably when a non-convex production technology is combined with
stock-dependent utility. To date this combination has primarily been used to
examine the conditions under which capital stocks remain strictly bounded
away from zero, issues related to conservation and extinction. In the determin-
istic model with both non-convex production and stock-dependent utility it
is possible for there to be disjoint intervals in the state space from which an
optimal program converges to zero. That is, an optimal program starting from
intermediate states may remain bounded away from zero, while optimal pro-
grams starting from lower or higher states converge to zero [101]. The addition
of random productivity disturbances leads to the somewhat surprising possi-
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bility that a first-order improvement in the distribution of disturbances can
reduce the set of initial states from which optimal output and capital stocks
have a positive lower bound.

One useful technique to analyze some questions in the non-convex model is
to examine behavior under the convex-hull of the technology. If capital stocks
under an optimal program always remain in an interval where the convex-hull
coincides with the non-convex technology then the two optimization problems
coincide on that interval. This can be used, for example, to provide conditions
for the existence of a safe standard of conservation.

Proposition 11.4.2. Assume u(y − k, y) is supermodular in (k, y), u is in-
creasing in c, and f is concave in k for all r. Let f(k) = infr f(k, r). If

inf
z∈[0,k]

δE[
uc(f(k, r) − z, f(k, r)) + uy(f(k, r) − z, f(k, r))

uc(f(k) − z, f(k))
] > 1 (11.13)

then lim inf yt ≥ k for all y0 ≥ k.

A general version of this result in the model with non-convex technology and
stock-dependent utility can be found in Olson and Roy [102], along with other
results dealing with conservation or extinction. The conclusions depend on the
joint properties of the technology, utility, and the distribution of disturbances.
As can be seen above, f(k) or productivity under the worst disturbance is an
important determinant of conservation or extinction.

11.5 Comparative Dynamics

An important question in stochastic growth theory is the sensitivity of optimal
decision rules and paths with respect to preference and technology parame-
ters that describe the underlying economy. In a one sector model, continuity
of optimal investment and consumption decisions with respect to various para-
meters of the model generally holds under far weaker assumptions than those
described in Section 2.36

The theory of monotone comparative statics using supermodular functions
and complementarity developed in Topkis [129] has been extended to stochastic
dynamic models (see, for example, [121], [42]). One can apply results from this
literature to derive the comparative dynamics of the optimal policy function
with respect to various preference and technology parameters by looking at
the maximization problem on the right hand side of the functional equation of
dynamic programming [43]. Most of these results have been derived in a one
sector framework.
36 See for example, [38]. Conditions for parametric continuity of stationary distrib-

utions of Markov processes are discussed, among others, by [126] and [61]. These
properties are important for numerical simulations.
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Danthine and Donaldson [26] show that an increase in the discount fac-
tor increases optimal investment and shifts the distribution of optimal capital
stocks to the right and hence, the invariant distribution to which the stocks
converge.37 Moreover, they show that an increase in the curvature of the util-
ity function (loosely speaking, an increase in risk aversion), leads to higher
consumption (i.e., lower investment) at low levels of output, and lower con-
sumption (i.e., higher investment) at high levels of output; further, the range
of the limiting distribution expands as risk aversion increases.38

Another important issue in comparative dynamics is the effect of a change
in the degree of riskiness or volatility of the random shocks. This relates to a
central concern in macroeconomics about the relationship between riskiness of
productive assets and the optimal intertemporal precautionary saving decisions
of individuals as well as more aggregative analysis of the relationship between
growth and economic fluctuations (see for example, [48]). Unfortunately, there
is no general characterization of the effect of a second order stochastic change
in the distribution of shocks on the optimal policy.39

In the specific case of optimal savings under uncertainty 40 discussed in
Example 11.3.1, one can characterize the comparative dynamics of riskiness
fairly tightly. ¿From (11.10), we have

K(y) = αy,E[
kt+1

kt
] = αE(rt+1), where α = [δE(r1−σ)]

1
σ

so that the propensity to invest/save and the expected growth rate of capital
are both proportional to α and the latter is increasing (decreasing) in riskiness
of the random shock if σ > (<)1 because r1−σ is a convex (concave) function
of r in that case. Thus, depending on the curvature of the utility function,
an increase riskiness may increase or decrease optimal investment and cause
a first order increase or decrease in the distribution of optimal capital stocks.
Roughly speaking, if utility is more concave than the logarithmic function, an
increase in riskiness of the random shock increases the optimal savings rate
and the expected rate of growth. The reverse holds if utility is less concave
than the logarithmic function. In the case of log utility, the optimal policy
depends only on the average realization of the random shock and not on its
higher moments.41

37 Dutta [36] shows that lengthening the time horizon for a fixed discount factor
and increasing the discount factor for a fixed time horizon are, in a precise sense,
equivalent.

38 In the case of logarithmic utility, Cobb-Douglas production with multiplicative
shock, an increase in the discount factor increases the variance of capital stock
and output. Danthine and Donaldson [27] provide sufficient conditions for this to
occur. They also characterize conditions under which an increase in the curvature
of the utility function has a similar effect.

39 An exception is the model of optimal dynamic consumption with deterministic
linear interest and additive labor income shock. See, for example, [80].

40 See, among others, [103], [63], [111], [62].
41 For an extension of this kind of result to a model of endogenous growth see [30].
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A less ambitious question relates to a comparison of the moments of the
limiting distribution to the steady state in the deterministic model.

Example 11.5.1. u(c) = ln c and f(k, r) = rkβ , 0 < β < 1. For this example
Mirman and Zilcha [81] show that the optimal investment policy is given by
K(y) = βδy. Danthine and Donaldson [27] use this to analyze the properties
of the optimal program for capital:

kt = (βδ)1+β+...+βt−1
kβt

0 rβt

0 rβt−1

1 ...rβ
t−1rt.

This implies:

Ekt = (βδ)
t−1�

s=0
βs

kβt

0

t−1∏
s=0

E(rβs
t−s−1).

Assume E(rt) = 1 and a non-degenerate distribution for rt. Then taking
limits as t → ∞, the first moment of the limiting invariant distribution of

capital satisfies: Ek = (βδ)
1

1−βL, where, L = limt→∞
t−1∏
s=0

E(rβs
t−s−1). Jensen’s

inequality implies L < 1. Expected consumption and output in the limiting
invariant distribution are given by: Ec = (1 − βδ)(βδ)

β
1−βL, Ey = (βδ)

β
1−βL.

In the deterministic version of the model (where rt = 1 almost surely), steady
state capital, consumption and output are given by: k = (βδ)

1
1−β , c = (1 −

βδ)(βδ)
β

1−β , y = (βδ)
β

1−β . This shows that in the stochastic model, the steady
state distribution has smaller average capital stock, output and consumption
than in the certainty equivalent version of the model.

In Example 11.5.1, uncertainty only affects the evolution of an optimal
program and not the optimal policy function itself. This simplifies the task of
characterizing the effect of uncertainty on the limiting distribution. In general,
uncertainty will also affect the optimal policy function. As we have seen earlier,
in the case of iso-elastic utility and linear production, uncertainty may increase
or reduce optimal investment depending on the nature of the utility function.
This makes it difficult to compare the moments of the limiting distribution of
capital for the stochastic model with its certainty equivalent.

11.6 Solving the Stochastic Growth Model

The stochastic growth model is inherently nonlinear. There is no known gen-
eral, closed form solution. Instead, analysis of the model with general functional
forms aims to qualitatively characterize optimal policies and the resulting im-
plications for economic behavior. There are two main approaches to achieving
more specific solutions, all of which require assumptions regarding functional
forms for production and utility. The only cases with known closed form ana-
lytical solutions are those discussed in Examples 11.3.1 and 11.5.1.
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Approximation and numerical methods are the alternative when an an-
alytical solution is not available.42 By far the most common approximation
technique is to linearize the Euler equations around the steady state of the
model, an idea pioneered by Magill [65] in continuous time and Kydland and
Prescott [60] in discrete time. This approach was subsequently extended by
[57], [58], [20] and many others. In a model with Cobb-Douglas technology and
CES/CRRA utility, [131] develops central limit and large deviation principles
that characterize the manner in which capital trajectories in the stochastic
model converge to those in the deterministic case as the standard deviation of
the random shock goes to zero. In practice, most approximation methods are
not entirely analytical and the approximate solution is analyzed using simu-
lations where the underlying parameters are calibrated to data. Solutions are
accurate in the neighborhood of a stochastic steady state with support on a
small interior interval. Approximation methods are less useful in situations
where the disturbance term has support on a large interval, where the solution
is not interior, where second order effects are important, and in the study of
transition dynamics.

Numerical dynamic programming can be used to solve parametric speci-
fications of the stochastic growth model. The two most common approaches
involve iteration of discrete or parametric approximations to the value or pol-
icy functions. Recent surveys of numerical methods can be found in [112], [60],
[74], and [113]. Once the model is solved, the policy functions can be used
to compute moments for the limiting distributions of the economic variables of
interest. The main advantage of numerical dynamic programming is that atten-
tion need not be restricted to a neighborhood of the steady state. This allows
one to investigate almost any question of interest within the context of a given
parametric specification, including a study of global dynamics. The primary
disadvantage has to do with robustness to model specification, calibration and
choice of numerical method.43 In general, different numerical procedures can
yield substantially different results so care must be exercised in their imple-
mentation.

11.7 Conclusion

The literature on optimal stochastic growth theory is over three decades old
now and there are many important ways in which the theory has contributed
42 An early survey and comparison of different methods can be found in [130].
43 For algorithms generated by a contraction mapping of modulus δ , the approxima-

tion error is bounded by ‖ Vn − Vn+1 ‖< ε/(1 − β), where ε is the tolerance level
under the given metric and Vn is the nth iterate of the algorithm. Santos [114]
shows how the Euler equation residuals can be used to bound the approximation
error for other types of algorithms. Santos and Peralta-Alva [115] examine when
the simulated moments from a numerical solution converge to their exact values
as the approximation errors converge to zero.
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to our understanding of capital accumulation, growth and more generally, op-
timal intertemporal resource allocation. In this section, we summarize some
of the contributions of the stochastic growth literature and we point out where
the introduction of uncertainty has done little to alter the conclusions of the
deterministic model.

First, stochastic growth theory has provided a different explanation of eco-
nomic volatility. In contrast to the deterministic case, an optimal program in
the stochastic model is a sequence of random variables generated jointly by op-
timal decisions and random productivity disturbances. Realized capital paths
fluctuate even when the optimal policy is time stationary and well-behaved.
This way of looking at economic volatility has been successfully utilized by
the business cycle literature as a way to capture various stylized facts about
economic fluctuations.

Second, in the stochastic growth model the utility function plays a promi-
nent role in determining the long run behavior of the economy. Even in a
one-sector model and for the same production technology, discount factor and
distribution of random shock, the limiting steady state distribution typically
differs with the specification of the utility function. The role of the utility func-
tion is also seen in conditions for long run growth and avoidance of extinction.
This role is absent in deterministic models.

It is possible to examine how optimal paths and the limiting distribution
are affected by changes in the riskiness of productive assets, risk aversion,
or the willingness to substitute consumption across time. Unfortunately, not
much general analytical characterization is available outside a few examples in
the log-linear family. These examples nonetheless serve to illustrate how the
qualitative nature of comparative dynamics can depend on the parameters of
the utility function.

Third, key qualitative features of optimal policies such as continuity and
monotonicity are not significantly altered by the presence of uncertainty in the
production technology.

Fourth, extending results on the existence and global stability of an optimal
steady state to the stochastic model requires verifying that the transition law
for the optimal process satisfies certain conditions, which have been discussed
in previous sections. This has necessitated strong technical assumptions that
have no counterpart in the deterministic literature. In the multisector case, this
difficulty has been more pronounced and the conditions for global stability of a
stochastic steady state are only specified in terms of the transition law for the
optimal process, making it difficult to evaluate their economic implications.

Fifth, in non-classical one-sector models that generate multiple invariant
distributions that act as local attractors, it has been shown that if the volatility
of technological disturbances is increased sufficiently, one can establish global
convergence of optimal processes to a unique stochastic steady state. Loosely
speaking, higher stochasticity in the production technology makes it more likely
that realized optimal paths exhibit a high degree of economic fluctuations over
time, but it also increases the likelihood that the distribution of optimal capital
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stocks converges globally to a unique invariant distribution independent of the
initial state. In other words, greater production uncertainty may be associated
with higher economic volatility and at the same time, may ensure long run
”convergence” in probability distribution of economies that differ in their initial
states. This is a fundamental insight into the process of growth and fluctuations
in an economy.

Finally, the stochastic growth literature has followed the deterministic lit-
erature very closely in establishing a set of turnpike results that show how
optimal paths approach each other almost surely in the long run.

As for the important theoretical questions that remain unanswered, our
survey indicates that a general characterization of the stochastic steady state or
invariant distribution, is lacking. Steps toward such a characterization would
improve our understanding of the forces that determine long run economic
behavior in a convergent stochastic economy. We not only need to understand
how complex the limiting distribution can be, but also have some idea of the
relationship between the fundamentals of the model and the properties of the
limiting distribution. That is, what do technology and preferences imply about
the nature of the limiting distribution? Much work remains to be done there.

Other important open questions in the one sector model are: a complete
characterization of conditions under which optimal paths converge to zero al-
most surely, to a non-trivial invariant distribution and diverge to infinity al-
most surely (the existing literature only provides strong sufficient conditions
for each of these events); relaxing the conditions for convergence and stabil-
ity in the non-convex model; and the question of asymptotic convergence in
versions of the model with non-monotone optimal investment policy (such as
the stock-dependent model). Developing more transparent conditions for con-
vergence and stability in the multisector stochastic model and conditions for
sustained long run growth in such models are also problems that remain open
to the current generation of growth theorists.

Finally, the methodology of stochastic optimal growth is increasingly ap-
plied to other problems of dynamic resource allocation ranging from models of
financial markets and macroeconomic fluctuations to the management of nat-
ural and environmental assets. These applications often require extensions and
modifications to the basic framework in order to suit the stylized facts that
characterize these problems. This, in turn, poses new questions for the growth
theorist. The development of new applications and extensions of existing ones
may well continue to be the most fruitful source of new ideas related to the
stochastic growth model.
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12.1 Introduction

Von Neumann’s [60] model of an expanding economy, generalized by Gale [30],
was one of the first models in Mathematical Economics that served as the
basis for a rich and interesting theory. This theory was developed for the most
part in the 1950s and 1960s. Substantial contributions to it were made by such
outstanding economists and mathematicians as McKenzie, Radner, Rockafellar,
Nikaido, Morishima and others (see, e.g., the monograph by Nikaido [47] and
references therein).

The theory of the von Neumann–Gale model, in its classical form, is purely
deterministic. It does not reflect the influence of random factors on economic
growth. The importance of taking these factors into account was realized early
on. First attempts aimed at the construction of stochastic analogues of the
von Neumann–Gale model were undertaken in the 1970s by Radner [51, 52].
However, the initial attack on the problem left many questions unanswered.
Studies in this direction faced serious mathematical difficulties. To overcome
these difficulties, new mathematical techniques were required, that were devel-
oped only during the last decade. The main purpose of the present paper is to
provide an account of recent achievements in the field.

Along with probabilistic generalizations of the classical results, new appli-
cations of the stochastic version of the von Neumann–Gale model will be high-
lighted: the applications to the analysis of the dynamics of financial markets.
1 “Financial Valuation and Risk Management” is gratefully acknowledged. The na-

tional centers in research are managed by the Swiss National Science Foundation
on behalf of the federal authorities
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This marks an unexpected change in focus, as well as a revival of the model
because the framework—that originally aimed at the modeling of economic
growth—turned out to be very natural in connection with financial issues. The
financial aspects pose a number of interesting new questions, which are cur-
rently only partially answered and which indicate directions for further work.

The basic mathematical framework of the von Neumann–Gale model is that
of set-valued dynamical systems, e.g. Akin [2]. Dynamics of such systems are
described by multivalued operators specifying for every state of the system
“today” a set of possible states “tomorrow.” The characteristic features of the
operators associated with the von Neumann–Gale model are certain properties
of convexity and homogeneity. A profound mathematical study of such dynami-
cal systems has been carried out by Rockafellar [54], Makarov and Rubinov [41]
and others. In the stochastic case, one has to deal with random set-valued dy-
namical systems possessing analogous properties of convexity and homogeneity.
For an introduction to the theory of random dynamical systems see Arnold [8].

In the theory of economic growth, the von Neumann–Gale model occupies
quite a special position. By and large, models of economic growth prevailing
in the current literature belong to one of the following two types. They either
assume that the growth rates of economic factors (e.g. labor) are given exoge-
nously, or consider the phenomenon of economic growth from the point of view
of endogenous changes in the technology or production functions. Examples of
models of the former kind are those proposed by Solow [56] and Ramsey [53].
The analysis of process of growth in such models consists essentially in the
study of optimal proportions of growth (e.g. expressed in terms of per capita
quantities). In this context, paths of the system can exogenously be normalized,
after which the work basically reduces to the analysis of optimization problems
with bounded state variables. The stochastic theory of such models is well de-
veloped. Foundations for it were laid in the 1970s and 1980s in the work of
Dynkin, Radner, Brock, Mirman, Bewley, Dana, Majumdar, Mitra, Zilcha and
others. Results obtained in this field have been reflected in a number of surveys
and monographs, e.g. Mirman [44], Dynkin and Yushkevich [19], Arkin and
Evstigneev [7], Stokey, Lucas and Prescott [59], Brock and Dechert [13], Olson
and Roy [49], containing references to the original papers. For more recent work,
see Amir [4], Amir and Evstigneev [5], Mitra, Montrucchio and Privileggi [45]
and Stachurski [58].

Models of the second kind—in which endogenous changes in the production
function or technology are analyzed—are systematically reviewed, for exam-
ple, in Aghion and Howitt [1] and Barro and Sala-i-Martin [11]. The theory
of stochastic endogenous growth models is still in its infancy. Results in this
direction have been obtained by de Hek [14] and de Hek and Roy [15].

The von Neumann–Gale model does not fit into either of the above two
classes of models. The “technology” in it is given exogenously, and in the sta-
tionary deterministic case, it does not change in time. However, the growth
rates are endogenous: they are derived from the model itself. The maximum
growth rate (the von Neumann rate) is a solution to an optimization problem



12. Von Neumann–Gale Model 339

whose constraints are determined by the technological restrictions given in the
model.

A very important feature of the von Neumann–Gale model is that it
focuses—primarily—on the analysis of growth rates. Growth rates are mea-
sured in terms of price systems (or objective functions) satisfying some very
general assumptions. This is in contrast with many other models presuming the
existence of a social planner whose objective, being expressed as the maximiza-
tion of the sum of discounted utilities, represents the objective of the whole
economic system. The von Neumann–Gale model can fit situations where the
assumption of the existence of such a social planner seems to be restrictive
and does not reflect the content of the economic problem under study. Further,
it should be noted that the von Neumann–Gale model admits any number of
sectors, while most of the growth models prevailing in the current literature
confine to the cases of one, two or at most three sectors. Typically, studies in
this field deal with most general situations, rather than analyzing growth in
specialized settings. All the above features, combined with the richness of the
relevant theory, make the von Neumann–Gale model and its stochastic gen-
eralization interesting objects of study. We hope that this survey will attract
attention and effort to this fruitful and fascinating area of research.

The paper consists of two parts, dealing with the deterministic and the sto-
chastic versions of the von Neumann–Gale model respectively. Our presentation
of the deterministic version of the theory differs in a number of respects from
the conventional ones; it is aimed primarily at stochastic generalizations. We
first describe the main concepts and results in Part I and then consider their
probabilistic analogues in Part II. We set out the deterministic theory by using
only elementary means. To make the presentation self-contained, we provide
in the Appendix formulations of some fundamental results related to convexity
and optimization. Part II, dealing with stochastic models, is more advanced;
it assumes that the reader is familiar with basic concepts of Probability and
Functional Analysis.

I. THE VON NEUMANN–GALE MODEL: THE
DETERMINISTIC CASE

12.2 The Model and the Main Concepts

12.2.1 Basic Definitions

In its classic, deterministic form, the von Neumann–Gale model is specified by
a family of cones2 Zt ⊆ Rn

+ ×Rn
+, t = 1, 2, ..., consisting of pairs of nonnegative

2 A set in a linear space is called a cone if it contains with each vectors x and y the
vector αx + βy, where α and β are any nonnegative numbers.
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n-dimensional vectors z = (x, y). A sequence {xt}N
t=0 (N ≤ ∞) is called a path

(trajectory) in the model if
(xt−1, xt) ∈ Zt (12.1)

for all t. Such sequences describe possible time evolutions of the state xt of the
system under consideration. Those paths are of primary interest which grow in
a sense faster than others. The following definition plays a central role. A path
{xt}N

t=0 is called rapid if there exists a sequence {pt}N
t=0 of vectors in Rn

+ such
that

ptxt > 0, (12.2)

and
pty

pt−1x
≤ ptxt

pt−1xt−1
(12.3)

for all (x, y) ∈ Zt with pt−1x �= 0. (If p = (p1, ..., pn) and x = (x1, ..., xn)
are two vectors, then px stands for the scalar product px =

∑
pixi.) Condition

(12.3) implies that the path {xt}N
t=0 maximizes, for each time period t = 1, 2, ...,

the growth rate
ptyt − pt−1yt−1

pt−1yt−1
(12.4)

among all paths {yt}N
t=0 with pt−1yt−1 �= 0. The growth rate is computed by

using the sequence of linear functions ptx that assign an “aggregate value” to
any state x ∈ Rn

+ of the system at each time t (various interpretations are
discussed below). Condition (12.2) is a non-degeneracy assumption requiring
a strictly positive valuation ptxt of each state xt of the path {xt}. It is easily
seen that, if (12.2) holds, we can replace pt by pt/ptxt and obtain additionally
that

ptxt = 1 (12.5)

for all t. Thus rapid paths {xt}N
t=0 can be defined as those for which there exists

a sequence {pt}N
t=0 of vectors in Rn

+ for which conditions (12.3) and (12.5) hold.
Instead of describing the von Neumann–Gale model in terms of a sequence

of cones Zt, we can equivalently specify it in terms of multivalued (set-valued)
operators x �→ At(x), where

At(x) = {y : (x, y) ∈ Zt}. (12.6)

It will be assumed that At(x) �= ∅ for each x ∈ Rn
+ which means that the

projection of the cone Zt on the first factor in the product Rn
+ × Rn

+ coincides
with Rn

+. Paths (trajectories) of the multivalued dynamical system generated
by the sequence of set-valued operators x �→ At(x) are defined as sequences
{xt} satisfying

xt ∈ At(xt−1). (12.7)

Clearly, relation (12.1) is equivalent to (12.7), and so the class of such sequences
coincides with the class of paths in the von Neumann–Gale model.

Since the graph Zt = {(x, y) ∈ Rn
+ ×Rn

+ : y ∈ At(x)} of At(·) is a cone, the
mapping At(·) possesses the following properties:
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λAt (x) ⊆ At (λx) , λ ∈ [0,∞), x ∈ Rn
+; (12.8)

θAt (x) + (1 − θ)At (x′) ⊆ At (θx + (1 − θ)x′) , x, x′ ∈ Rn
+, θ ∈ [0, 1] . (12.9)

A linear combination of two sets in a vector space is defined as the set of pairwise
linear combinations of their elements: A + A′ = {a + a′ : a ∈ A, a′ ∈ A′} and
λA = {λa : a ∈ A}. Conversely, if conditions (12.8) and (12.9) hold, then the
graph of At(·) is a cone.

There are important cases of multivalued dynamical systems of the above
type that are defined in terms of single-valued operators. Suppose that

At (x) = {y ∈ Rn
+ : y ≤ Dt(x)}, x ∈ Rn

+, (12.10)

where Dt : Rn
+ → Rn

+ is an operator satisfying

Dt(λx) = λDt(x), λ ∈ [0,∞), (12.11)

Dt(x + y) ≥ Dt(x) +Dt(y) (12.12)
(all inequalities between vectors, non-strict and strict, are understood coordi-
natewise). In mathematical economics contexts, dynamical systems of this kind
have been studied, in particular, by Solow and Samuelson [57] and Nikaido [47].
The analysis of paths of such systems reduces essentially to the analysis of prod-
ucts Dt ◦Dt−1 ◦ ... ◦D1 of the operators Dt (t = 1, 2, ...).

The case where Dt = D is a nonnegative linear operator (independent of t)
is perhaps the simplest, but at the same time, a quite important one. The study
of such systems reduces to the analysis of the iterates Dt, t = 1, 2, ..., of the
nonnegative matrix D. In the deterministic case, these questions are studied
by using results related to the Perron–Frobenius theorem (see the Appendix,
Theorems C.1 and C.2). Non-linear generalizations of the Perron–Frobenius
theorem applicable to the analysis of dynamical systems (12.10) are reviewed
in the monograph by Nussbaum and Verduyn Lunel [48].

Consider the sets Z∗
t in R2n

+ (t = 1, 2, ...) consisting of pairs of nonnegative
vectors (p, q) satisfying

qy − px ≤ 0 for all (x, y) ∈ Zt. (12.13)

Clearly Z∗
t are closed cones, and the sets

A∗
t (p) = {q : (p, q) ∈ Z∗

t } (12.14)

are non-empty for each p ∈ Rn
+ (since 0 ∈ A∗

t (p)). The cones Z∗
t define the

von Neumann–Gale model which is called the dual to the original one. The
multivalued operators (12.14) define the multivalued dynamical system dual to
the one specified by (12.6). Paths of the latter, i.e. sequences {pt}N

t=0 satisfying

pty − pt−1x ≤ 0 for all (x, y) ∈ Zt, (12.15)

are called dual paths.
It is easily seen that if ptxt = 1 for all t, then (12.15) is equivalent to (12.3).

Consequently, a trajectory {xt}N
t=0 is rapid if and only if there exists a dual

path {pt}N
t=0 satisfying the condition ptxt = 1 for all t. If this condition is

satisfied, we say that the dual path {pt}N
t=0 supports the trajectory {xt}N

t=0.
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12.2.2 Nonlinear von Neumann Models

In the applications of the von Neumann–Gale model, the coordinates xi
t of

vectors xt = (x1
t , ..., x

n
t ), describing states of the system under consideration,

may represent various economic or financial variables. In this paper, we consider
two basic fields of applications of the von Neumann–Gale model—the theory
of economic growth and the analysis of dynamics of financial markets. We will
begin with a description of a framework aimed at the analysis of economic
growth; in the next subsection, we will consider examples related to finance.

Suppose that the economic system under consideration consists of n com-
ponents or “economic units,” for example, sectors of an economy, regions in a
country, or countries—in a model of international trade and/or cooperation.
Suppose that the state of the system at time t = 0, 1, ... is characterized by a
vector xt = (x1

t , ..., x
n
t ), whose coordinates xi

t are construed as intensities of
operating the ith unit. The numbers xi

t may represent, in particular, the levels
of use of an exogenous production factor (e.g. labor or energy) in unit i, or
the level of investment in unit i, or its total income, etc. The set of feasible
intensity vectors xt is denoted by Xt. The set Xt is supposed to be a cone;
typically, Xt = Rn

+.
There are m commodities in the economy that are produced and consumed

in each of the units i = 1, 2, ..., n. (Usually the number of such commodities
is supposed to be small and they are understood as aggregates—food, fuel,
vehicles, etc.) Two nonnegative vector functions of x ∈ Xt are given:

Φt+1(x) = (Φ1
t+1(x), ..., Φ

m
t+1(x)) and Ψt(x) = (Ψ1

t (x), ..., Ψm
t (x)).

If the units i = 1, 2, ..., n are run at intensities xi
t, i = 1, ..., n, the total input (at

time t) is described by the vector of commodities Ψt(xt) = (Ψ1
t (xt), ..., Ψm

t (xt))
and the total output (at time t + 1) is represented by the commodity vector
Φt+1(xt) = (Φ1

t+1(xt), ..., Φm
t+1(xt)), where xt = (x1

t , ..., x
n
t ). Outputs obtained

at the end of each time period are used as inputs in the next time period, free
disposal being allowed, so that

Ψt+1(xt+1) ≤ Φt+1(xt), t = 0, 1, ... (12.16)

We can include the dynamical system at hand into the framework of the
von Neumann–Gale model by setting

Zt = {(x, y) : Ψt(y) ≤ Φt(x)}, t = 1, 2, ... (12.17)

If Φt and −Ψt are homogeneous of degree one and concave in each coordinate,
then Zt is a cone. Paths {xt} of the von Neumann–Gale model specified by
the cones Zt, t = 1, 2, ..., defined by (12.17) are those and only those sequences
{xt} that satisfy (12.16). The properties of homogeneity of Φt and Ψt express
the hypothesis of constant returns to scale. The concavity of Φt and convexity
of Ψt reflect the “advantages of cooperation:” by combining (mixing) activities
of different units i = 1, 2, ..., n, one can gain in output and reduce input.
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In models of this kind, the process of economic growth is treated as the
process of time evolution of the intensity vectors xt, the constraints on possi-
ble ways of evolution being given by (12.16) or, equivalently, by (12.17). We
are interested primarily in those paths of the system which maximize growth
rates (12.4) defined in terms of some vectors pt ∈ Rn

+. If the intensities xi
t are

measured in terms of an exogenous factor, then the coordinates pi
t of the vec-

tors pt involved in the definition of rapid paths may be construed as (“local,”
prevailing at unit i) prices of this factor. If the output mapping Φt(x) = Φtx is
linear, we can use for comparing growth rates of paths linear functions ptx of
the form ptx = qtΦtx, expressing the value of the total output in the system for
the intensity vector x and the commodity price vector qt = (q1t , ..., qm

t ) ∈ Rm
+ .

One can include consumption into the model as follows. The mapping Φt

can represent the net-of-consumption output. Alternatively, Ψt may be viewed
as a “consumption plus production input” vector.

In his seminal paper, von Neumann [60] considered a version of the above
model with linear mappings Φt(x) = Φtx and Ψt(x) = Ψtx. In the von Neumann
model, the cones Zt are given by

Zt = {(x, y) ∈ R2n
+ : Ψty ≤ Φtx}, (12.18)

where Φt : Rn → Rm and Ψt : Rn → Rm are nonnegative linear operators.
According to the classical von Neumann interpretation, there are i = 1, 2, ..., n
technological processes. Any such technological process i can be operated at
any intensity level xi

t ≥ 0. The technology matrices Φt+1 and Ψt specify the
total output Φt+1xt and the total input Ψtxt of the system given the vector
of intensities xt = (x1

t , ..., x
n
t ). In the von Neumann model, the cones Zt are

polyhedral3. Gale [30] initiated the study of models with general, not necessarily
polyhedral, cones.

Given technology matrices Φt and Ψt, or their nonlinear counterparts Φt(·)
and Ψt(·), we can study economic growth by analyzing paths {ut} in the com-
modity space Rm

+ , rather than paths {xt} in the space Rn
+ of intensity vectors.

To this end we can define the cones (technology sets):

Wt = {(u, v) ∈ R2m
+ : u ≥ Ψt−1(x), v ≤ Φt(x) for some x ∈ Rn

+} (12.19)

(t = 1, 2, ...). If {ut} is a path in the model specified by the cones Wt, i.e., a
sequence satisfying (ut−1, ut) ∈ Wt, then there exists a sequence {xt} for which
ut−1 ≥ Ψt−1(xt−1) and ut ≤ Φt(xt−1). These inequalities imply Φt(xt−1) ≥
Ψt(xt), and so {xt} is a path in the model defined by (12.17). Conversely, if
a sequence {xt} satisfies Φt(xt−1) ≥ Ψt(xt), i.e., it is a path in the model
(12.17), we can set ut = Ψt(xt), which will give us a path {ut} in the model
(12.19). The approaches based on the considerations of the cones Zt and Wt

are in a number of respects equivalent, but they also have some distinctions—
advantages and disadvantages. We will follow, basically, the former because
3 A set in a linear space is called polyhedral if it is an intersection of a finite family

of closed half-spaces.
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some of the assumptions we are going to impose are more plausible for the
cones Zt than for Wt.

The dynamical systems defined by (12.17) and (12.19) generalize the classi-
cal von Neumann setting in that the mappings Φt(·) and Ψt(·) are not supposed
to be linear. In this connection, we will call (12.17) and (12.19) nonlinear von
Neumann models. To distinguish between them, we will refer to (12.17) and
(12.19) as the first and the second nonlinear von Neumann model, respectively.

12.2.3 Modeling Financial Markets

It has recently been observed (Evstigneev and Taksar [28]) that the von
Neumann–Gale model can serve as a convenient vehicle for the modeling of fi-
nancial markets with “frictions,” i.e. transaction costs and trading constraints.
We will outline a framework covering a number of examples of this kind. In the
financial applications, the most interesting questions make sense only in sto-
chastic models, where uncertainty is involved in a non-trivial manner. Therefore
we will quite briefly touch the deterministic case in this introductory section,
leaving a more comprehensive discussion of financial models for later.

Consider a financial market in which n assets are traded. For each t = 0, 1, ...
the vector St = (S1

t , ..., S
n
t ) > 0 of asset prices is given. The number Si

t stands
for the price of one unit of asset i at time t. Let us assume that vectors
ht = (h1

t , ..., h
n
t ) ∈ Rn represent portfolios of assets: hi

t is the ith position
of portfolio ht specifying the number of (“physical”) units of asset i in the
portfolio. Generally, portfolio positions might be both positive and negative.
The latter case means a possibility of short sales of some of the assets—this
is allowed in the theory of frictionless markets. There are various restrictions
on short sales in real markets, and therefore it is important to consider those
models where these restrictions are taken into account. By contrast with the
conventional theory, we will assume in this paper that short sales are not al-
lowed, and so ht ∈ Rn

+ for all feasible portfolios ht. Such models fit quite well
the von Neumann–Gale framework.

A trading (investment) strategy is a sequence of feasible portfolios {ht}N
t=0,

where ht is the portfolio held by the investor at time t. It is supposed that
the investor might change his/her portfolio reacting on the changes in the
asset prices (which are supposed to be random in the stochastic case). A key
role in many aspects of mathematical finance is played by the notion of a
self-financing trading strategy.4 This is an investment strategy that can be
implemented without outside funding. In each time period, the investor can
rebalance his/her portfolio, i.e. transform it by buying assets only at the expense
of selling some other assets. The analysis of self-financing trading strategies is
based on the consideration, for each time period t, of the set

Kt = {(h, g) ∈ R2n
+ : portfolio h can be rebalanced into portfolio g}. (12.20)

4 This notion lies in the basis of fundamental pricing principles for derivative secu-
rities such as the Black–Scholes formula (see, e.g., Föllmer and Schied [29]).
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If there are no transaction costs (and portfolio positions are measured in terms
of physical units of assets), then the set Kt is as follows:

Kt = {(h, g) ∈ R2n
+ : Stg ≤ Sth}. (12.21)

According to (12.21), one can rebalance a portfolio h into a portfolio g at time
t if the value Stg of g (measured in terms of the price vector St) is not greater
than the value Sth of h. Thus self-financing trading strategies are sequences
h0, h1, h2, ...satisfying

Stht ≤ Stht−1, t = 1, 2, .... (12.22)

These inequalities are equivalent to the inclusions (ht−1, ht) ∈ Kt (t = 1, 2...).
Clearly the sets Kt defined by (12.21) are cones in R2n

+ , and so they specify
a von Neumann–Gale model. Self-financing trading strategies are nothing but
paths in this model.

It is often more convenient to measure portfolio positions in terms of their
market values, rather than in terms of physical units of assets. We can associate
with a vector ht = (h1

t , ..., h
n
t ) (describing a portfolio in terms of units of assets

the vector xt = (x1
t , ..., x

n
t ), where xi

t = Si
th

i
t, describing the portfolio in terms

of the market values of its positions at time t in the current prices Si
t . Then

the self-financing condition (12.22) takes on the following form: a portfolio
xt−1 = (x1

t−1, ..., x
n
t−1) can be rebalanced into yt = (y1

t , ..., y
n
t ) if and only if

∑n
i=1y

i
t ≤
∑n

i=1

Si
t

Si
t−1

xi
t−1. (12.23)

We can write (12.22) as
|y| ≤ Rtx, (12.24)

where |y| stands for the sum of absolute values of the coordinates of vector y
and Rt = (R1

t , ..., R
n
t ), where Ri

t = Si
t/S

i
t−1. The coordinates Ri

t of the vector
Rt are (gross) returns on assets i = 1, ..., n over the time period between t− 1
and t.

If the portfolio positions are measured in terms of their current values, then
self-financing strategies are sequences x0, x1, ... of portfolios satisfying |xt| ≤
Rtxt−1, t = 1, 2.... These inequalities can be written as (xt−1, xt) ∈ Zt, t =
1, 2..., where

Zt = {(x, y) ∈ R2n
+ , |y| ≤ Rtx}. (12.25)

We can consider the von Neumann–Gale model defined by the cones (12.25),
and then analyze self-financing strategies as paths in this model.

If transaction costs are present, portfolio rebalancing leads to a loss in
wealth, and, in general, one cannot transform a portfolio into another port-
folio with the same value. As an illustration, we will briefly describe a way of
introducing transaction costs into the model in which portfolio positions are
measured in physical units of assets. We will confine the analysis to the case
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of proportional transaction costs. This means that the set Kt (see (12.20)) de-
scribing the rebalancing constraints is supposed to contain with each pair (h, g)
of vectors all pairs of vectors of the form (λh, λg), where λ ≥ 0. Furthermore,
we will assume that if there are two portfolio pairs (h, g) and (h′, g′) such that
h and h′ can be transformed into g and g′, respectively, then h + h′ can be
transformed into g + g′. This means that the set (12.20) is a cone, and so we
are in the von Neumann–Gale framework. The assumptions imposed are ful-
filled in most of the transaction cost models considered in the literature. A
typical example of Kt is as follows: a pair of portfolios h, g ≥ 0 belongs to Kt

if and only if

n∑
i=1

(1 + λ+
i )Si

t (gi − hi)+ ≤
n∑

i=1

(1 − λ−i )Si
t (hi − gi)+, (12.26)

where, for a real number a, we denote a+ = max{a, 0}. Inequality (12.26) ex-
presses the fact that, when rebalancing a portfolio h into a portfolio g, purchases
of assets are made only at the expense of sales of other assets, the transaction
costs being taken into account. The transaction cost rates for buying and sell-
ing are given by the numbers λ+

i ≥ 0 and 1 > λ−i ≥ 0, respectively. It is easily
verified that the set Kt defined by (12.26) is a cone.

12.2.4 Stationary Models

Let us return to the general von Neumann–Gale framework (see 12.2.1). In the
study of various aspects of the von Neumann–Gale model, the primary focus
is on the stationary case—where the cones Zt do not change in time: Zt = Z.
The seminal papers of von Neumann [60] and Gale [30] focused on this case.
In the stationary setting, the following notion plays an important role. A path
{xt} is called balanced if xt is of the form xt = λtx, t = 0, 1, ..., where λ is
a strictly positive number and x ≥ 0 is a vector with |x| = 1. This notion
expresses the idea of growth at a constant rate (determined by the factor λ)
and with constant proportions (determined by the coordinates of the vector x).
Clearly, those and only those pairs λ, x define balanced paths for which

λ > 0, |x| = 1 and (x, λx) ∈ Z. (12.27)

A balanced path xt = λtx for which the growth factor λ is a maximum is called
a von Neumann ray. To find those x and λ which determine a von Neumann
ray, we have to maximize λ over all pairs λ, x satisfying (12.27).

Those balanced paths are of primary interest which are rapid. Recall that
rapid trajectories are those for which there exists a supporting dual path—a
sequence of vectors {pt} satisfying (12.3) and (12.5), or equivalently (12.15)
and (12.5). A dual path {pt} is called balanced if pt = λ−tp for some nonzero
vector p ≥ 0 and some number λ > 0 (λ−1 being the discount factor).

A triplet (x̄, p, λ), where x̄, p are vectors in Rn
+ and λ > 0 is a number, is

called a von Neumann equilibrium if {λtx̄} is a balanced path and {λ−tp} is
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a balanced dual path supporting it. One can easily verify that (x̄, p, λ) is an
equilibrium if and only if the requirements

λ−1py ≤ px for all (x, y) ∈ Z, px̄ = 1 (12.28)

are satisfied and the conditions listed in (12.27) hold for x = x̄. According
to the definition of a balanced dual path, the valuation ptx of any state x of
the system is λ−tpx, where the number λ−1 is the discount factor. In a von
Neumann equilibrium, this number coincides with the inverse of the growth
factor λ of the balanced path {λtx̄}.

Note that if (x̄, p, λ) is a von Neumann equilibrium and the vector p is
strictly positive, then λ is the maximum growth factor among all balanced
paths, and so {λtx̄} is a von Neumann ray. Indeed, suppose (x′, λx′) ∈ Z,
|x| = 1. Then, by setting x = x′ and y = λ′x′, we obtain from (12.24) that
pλ′x′/λ ≤ px′, which implies λ′ ≤ λ because px′ > 0.

One more comment is in order. Consider the stationary versions of two
nonlinear von Neumann models (12.17) and (12.19) in which the mappings
Φt = Φ and Ψt = Ψ do not depend on t. The former is defined in terms
of the cone Z = {(x, y) ∈ R2n

+ : Ψ(y) ≤ Φ(x)}. The latter is given by the
cone W = {(u, v) ∈ R2m

+ : u ≥ Ψ(x), v ≤ Φ(x) for some x ∈ Rn
+}. Paths

{xt} of the former are sequences of intensity vectors, while paths {ut} of the
latter are sequences of commodity vectors. It can be shown under quite general
assumptions that the existence of a von Neumann equilibrium (x̄, p, λ) in the
former model implies the existence of a von Neumann equilibrium (ū, q, λ) in
the latter and vice versa.

A proof of the existence of an equilibrium in a stationary version of the von
Neumann model (of the second kind, in our classification) with linear Φ and
Ψ was the main result of the von Neumann’s paper [60]. To comment on the
meaning of this result, consider an equilibrium (ū, q, λ) in the model at hand
and assume, additionally, that q > 0. Then λ may be regarded as the expansion
factor of the economy—the maximum of those numbers α for which there is
a feasible balanced path {αtu} in the commodity space Rm

+ . A fundamental
implication of the existence of such an equilibrium is the conclusion that the
expansion factor λ is equal to µ, where µ−1 is the greatest admissible discount
factor. This is the greatest number for which there exists a commodity price
vector q′ > 0 satisfying

µ−1q′v ≤ q′u for all (u, v) ∈ W . (12.29)

Observe that if inequality (12.29) does not hold for some price vector q′ and
some input-output pair (u, v) ∈ W , then the maximum of the net discounted
profit µ−1q′v′−q′u′ over all (u′, v′) ∈W is infinite. This is so because (θu, θv) ∈
W for all θ > 0. To avoid possibilities of getting infinite profits (arbitrage),
admissible discount factors must satisfy condition (12.29). Clearly, if (ū, q, λ)
is a von Neumann equilibrium with q > 0, then (12.29) holds with µ = λ
and q′ = q. On the other hand, if (12.29) holds for some µ′ > 0 and q′ > 0,
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we obtain, by setting u = ū and v = λv̄ in (12.29), that λ(µ′)−1q′ū ≤ q′ū.
Consequently, λ ≤ µ′, which proves that µ−1 = λ−1 is the greatest admissible
discount factor.

Further aspects of the concept of von Neumann equilibrium and related
deterministic notions are discussed in Gale [30, 31], Rockafellar [54], Nikaido
[47], and Makarov and Rubinov [41].

12.3 Assumptions and Results

12.3.1 Assumptions

The standard assumptions on the cones Zt, defining a von Neumann–Gale
model are as follows:

(Z.1) The cone Zt is closed.
(Z.2) There is a constant M such that |y| ≤M |x| for any (x, y) ∈ Zt.
(Z.3) If (x, y) ∈ Zt, x′ ≥ x and 0 ≤ y′ ≤ y, then (x′, y′) ∈ Zt.
(Z.4) For some (x̌t−1, y̌t) ∈ Zt, we have y̌t ≥ γe, where e = (1, 1, ..., 1).
These assumptions are imposed for every t for which Zt is given. Condition

(Z.2) says that the ratio |y|/|x| of the norms of the output vector y and the input
vector x is uniformly bounded for all (x, y) ∈ Zt and t = 1, 2, .... Assumption
(Z.3) is a “free disposal” hypothesis. Condition (Z.4) is a non-degeneracy as-
sumption guaranteeing, in particular, the existence of paths {xt} with strictly
positive xt. Assumptions (Z.1)–(Z.4) will be supposed to hold throughout the
paper.

If the model is stationary, i.e. Zt = Z does not depend on t, then hypothesis
(Z.2) holds if the cone Z is closed and satisfies the following condition.

(Z.2′) If (0, y) ∈ Z, then y = 0.
Condition (Z.2′) expresses impossibility of “getting something from noth-

ing.”
Clearly, in the stationary case, condition (Z.4) is equivalent to (Z.4′) below.
(Z.4′) There exist x̂ and γ > 0 such that (x̂, γe) ∈ Z.
For the model to work smoothly, assumptions (Z.1)–(Z.4) are usually not

sufficient. These assumptions should be complemented by the following condi-
tion, which often turns out to be very substantial.5

(Z.5) There exists an integer m ≥ 1 such that, for any i ∈ {1, ..., n} and
any t ∈ {0, 1, 2, ...}, one can find vectors yt ∈ Rn

+, ..., yt+m ∈ Rn
+ satisfying

yt = ei, (yt, yt+1) ∈ Zt+1, ..., (yt+m−1, yt+m) ∈ Zt+m, yt+m ≥ γe. (12.30)

5 In the paper by Hulsmann and Steinmetz [34], a delicate counterexample was con-
structed showing that the conditions (Z.1)–(Z.4) do not guarantee the existence of
an equilibrium in a general von Neumann–Gale model. They are sufficient, however,
for the existence of an equilibrium in the classical (linear) von Neumann model.
An elegant proof of this is given in a paper by Gale [32].
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We denote by ei the vector with the ith coordinate being equal to one and all
others being equal to zero.

In the context of the nonlinear von Neumann model (12.17), condition (Z.5)
means that if any of the economic units i = 1, 2, ..., n functions at time t
with unit intensity, then in m time periods, all the units can be operated
with intensities not less than γ > 0. In the two versions of the nonlinear von
Neumann model, (12.17) and (12.19), condition (Z.5) looks much more plausible
in the former (dealing with intensity vectors) than in the latter (dealing with
commodity vectors). For the system (12.10) defined by a positive matrix Dt =
D, assumption (Z.5) holds if and only if the mth power Dm of the matrix D
is strictly positive. It should be noted that, in the financial applications (see
12.2.3) requirement (Z.5) appears absolutely non-restrictive, and it typically
holds with m = 1: one can, by selling asset i today, buy some—perhaps small—
positive amounts of all the assets tomorrow.

The most complete theory can be developed (especially in the stochastic
case) if the cones Zt possess certain properties of strict convexity. Two con-
ditions will be employed, in particular, for establishing results regarding the
asymptotic behavior of rapid paths. The first expresses a property of strict
convexity of Zt with respect to x and the second with respect to y (these
properties hold uniformly in t).

(SC1) For all ε > 0, there exists a number ρ(ε) > 0 having the following
property. For each (x, y) ∈ Zt, (x′, y′) ∈ Zt satisfying |x| = |x′| = 1 and
|x− x′| ≥ ε, there is a vector w ∈ Rn

+ such that

(x+ x′, y + y′ + w) ∈ Zt and |w| ≥ ρ(ε).

(SC2) For all ε > 0, there is a number τ(ε) > 0 with the following property.
If (x, y) ∈ Zt, (x′, y′) ∈ Zt satisfy |x| = |x′| = 1 and |y− y′| ≥ ε, one can find a
vector w ∈ Rn

+ for which

(x + x′, y + y′ + w) ∈ Zt and |w| ≥ τ(ε).

In Section 12.5, we formulate conditions on the mappings Φt and Ψt of in
the nonlinear von Neumann model (12.17) that guarantee the validity of all
the assumptions imposed (these conditions are formulated in the more general,
stochastic setting).

12.3.2 Finite Rapid Paths

We point to several groups of results that constitute the core of the theory
of the von Neumann–Gale model. These results are concerned mainly with
properties of rapid paths over finite and infinite time horizons. The emphasis
is on growth properties of such paths. Some of the results are obtained in the
general, non-stationary framework. However, the stationary case is regarded
as a central one, in particular, because a number of notions introduced above
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(such as the von Neumann equilibrium) pertain only to the stationary version
of the theory.

Let us first discuss results concerned with rapid paths defined over finite
time intervals. Theorem 12.3.1 below states that such paths can be constructed
by maximizing concave strictly monotone utility functions. A function ψ(x),
x ∈ Rn

+, is called strictly monotone if ψ(x′) > ψ(x) when x′ ≥ x and x′ �= x.
Fix some natural number N and a strictly positive vector x0 ∈ Rn

+.

Theorem 12.3.1. Let ψ(x), x ∈ Rn
+, be a concave strictly monotone function.

Let ξ = {x0, x1, ..., xN} be a path with initial state x0 maximizing ψ(xN ) over
all such paths. Then ξ is rapid.

Proof of Theorem 12.3.1. Consider the following maximization problem:

Maximize F (θ) = ψ(aN ) (12.31)

over all sequences θ = {(at, bt)}N
t=0 satisfying

b0 ∈ Rn
+, (at−1, bt) ∈ Zt (t = 1, ..., N), aN ∈ Rn

+, (12.32)

bt ≥ at (t = 0, ..., N), (12.33)

and b0 = x0. Observe that the sequence θ̄ =
{(
āt, b̄t

)}N

t=0
defined by āt =

b̄t = xt is a solution to the above maximization problem. Indeed, θ̄ satisfies
constraints (12.32) and (12.33) because ξ is a path with initial state x0, and
we have F (θ̄) = ψ(xN ). Further, for any θ = {(at, bt)}N

t=0 satisfying (12.32)
and (12.33), the sequence {x0, a1, a2, ..., aN} is a path with initial state x0 (by
virtue of hypothesis (Z.3)), and F (θ) = ψ(aN ). Consequently, F (θ) = ψ(aN ) ≤
ψ(xN ) = F (θ̄), which proves the optimality of θ̄.

We are going to apply the Kuhn–Tucker theorem (see the Appendix, The-
orem A.1) to the concave optimization problem (12.31)–(12.33). From (Z.3)
and (Z.4), it follows that (e, κe) ∈ Zt (t = 1, 2, ..., N) for some κ > 0. Define
θ̌ = {(ǎt, b̌t)}N

t=0, where

b̌0 = x0, (ǎt−1, b̌t) = µt(e, κe) (t = 1, ..., N), ǎN = µN+1e

and µ > 0 is some number satisfying µe < x0 and µ < κ. Then we have
b̌t > ǎt for all t = 0, ..., N , and so the Slater condition holds. By virtue of the
Kuhn–Tucker theorem, there exist vectors p0, ..., pN ∈ Rn

+ such that

ψ (aN ) +
N∑

t=0

pt(bt − at) ≤ ψ (xN ) (12.34)

for all {(at, bt)}N
t=0 satisfying (12.32) and b0 = x0. From (12.34), we get

ptbt − pt−1at−1 ≤ ptxt − pt−1xt−1 (t = 1, 2, ..., N) , (12.35)
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ψ (aN ) − pNaN ≤ ψ(xN ) − pNxN (12.36)

for all (at−1, bt) ∈ Zt (t = 1, ..., N) and aN ∈ Rn
+. Inequalities (12.35) imply

ptxt − pt−1xt−1 = 0 (12.37)

and pty − pt−1x ≤ 0, (x, y) ∈ Zt, because Zt is a cone. Thus {pt} is a dual
path.

By setting aN = xN + ei in (12.36) and using the strict monotonicity of ψ,
we find

pNei = pN (aN − xN ) ≥ ψ(aN ) − ψ (xN ) = ψ (xN + ei) − ψ (xN ) > 0.

Consequently, pN > 0, and so pNxN > 0, since xN �= 0 (indeed, ψ (xN ) ≥
F (θ̌) = ψ(ǎN ) > ψ (0)). Therefore, by virtue of (12.37), we have p0x0 = p1x1 =
... = pNxN > 0. Replacing pt by pt/ptxt we obtain that ptxt = 1, and so
the dual path {pt} supports {xt}. Hence the path {x0, ..., xN} is rapid, which
completes the proof. �

Remark 12.3.1. In Theorem 12.3.1, we considered paths ξ = {x0, ..., xN} with
given x0 maximizing the function ψ (xN ). Such paths exist if the function
ψ (x), x ∈ Rn

+, is continuous. This is so because the set of all trajectories
{x0, x

′
1, ..., x

′
N} with given x0 is closed and bounded. The former follows from

(Z.1), and the latter from hypothesis (Z.2), implying

|x′t| ≤ M t |x0| . (12.38)

12.3.3 Infinite Rapid Paths: Existence and Quasi-Optimality

Infinite rapid paths can be constructed by passing to the limit from finite paths
of length N , as N tends to infinity.

Theorem 12.3.2. There exists an infinite rapid path {x0, x1, ...} with initial
state x0, for each x0 > 0.

Proof. For each N = 1, 2, ..., consider a path ξN =
{
xN

0 , x
N
1 , ..., x

N
N

}
with xN

0 = x0 maximizing |xN | among all paths {x0, x1, ...xN}. By virtue
of Theorem 12.3.2, ξN is rapid, and so it possesses a supporting dual path{
pN
0 , p

N
1 , ..., p

N
N

}
. It follows from (12.38) that for each t = 1, 2, ..., the sequence{

xN
t

}
(N = t, t+ 1, ...) is bounded. In view of (Z.4) and (Z.3), (e, κte) ∈ Zt

for some κt > 0. Therefore {e, µ1e, µ2e, ...}, where µt = κ1...κt, is a path, and
so pN

t µte ≤ pN
0 x0 = 1, which implies the boundedness of the sequence

{
pN

t

}
(N = t, t+ 1, ...). By using considerations of compactness, we find a sequence
N1 < N2 < ... such that xNk

t → xt, pNk
t → pt for all t, were xt, pt ∈ Rn

+. Since
Zt is closed, we have (xt−1, xt) ∈ Zt, and so {x0, x1, ...} is a path. By passing
to the limit in the relations pNk

t xNk
t = 1 and pNk

t y − pNk
t−1x ≤ 0, (x, y) ∈ Zt, we

obtain that {p0, p1, ...} is a supporting dual path for {x0, x1...}. �

Every infinite rapid path {xt}∞t=0 possesses the important property of (as-
ymptotic) quasi-optimality stated in Theorem 12.3.3 below.
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Theorem 12.3.3. Let assumption (Z.5) hold. Then for every path {x′t}+∞
t=0 ,

we have
sup

t
(|x′t| / |xt|) < ∞. (12.39)

Property (12.39) means that no path can grow “infinitely faster” than {xt}
in the long run. Clearly, |·| can be replaced in (12.39) by any other norm in Rn.

The proof of Theorem 12.3.3 is based on the following lemma holding under
assumptions (Z.1)–(Z.5).

Lemma 12.3.1. If {xt} is an infinite rapid path and {pt} is a dual path sup-
porting {xt}, then

pt ≥ γM−m |xt|−1
e, (12.40)

where M is the constant described in (Z.2) and γ, m are the numbers appearing
in (Z.5).

In view of (12.40), the coordinates of the vectors pt |xt| are bounded away
from 0 by a constant independent of t.

Proof of Lemma 12.3.1. Observe that

|pt||xt| ≥ ptxt = 1 and |xt+m| ≤Mm|xt|,

the latter holds by virtue of (Z.2). In view of (Z.5) and (12.15), we have
pt+myt+m ≤ ptei, where yt, ..., yt+m is the sequence specified in (12.30). Con-
sequently,

ptei ≥ γ|pt+m| ≥ γ|xt+m|−1 ≥ γM−m|xt|−1,

which yields (12.40). �

Proof of Theorem 12.3.3. By virtue of (12.40), e ≤ ptγ
−1Mm |xt|. Therefore

|x′t|
|xt|

=
x′te
|xt|

≤ ptx
′
t · γ−1Mm ≤ p0x0 · γ−1Mm,

which proves (12.39). �

Remarkably, if the strict convexity assumption (SC1) holds, only one infinite
rapid path emanates from each initial state x0 > 0. Of course, this is not the
case for finite paths. Given N < ∞, by maximizing different functions ψ(xN )
of the terminal state xN (for some fixed x0), we can generally obtain different
rapid paths. The uniqueness of infinite rapid paths follows from the turnpike
theorems we discuss below.

12.3.4 Turnpike Theorems

These theorems express the idea that all rapid paths have an inclination for
leaning to essentially the same route (the “turnpike”). In the stationary case,
this route is the von Neumann ray. In order to formulate the results regarding
the turnpike properties of rapid paths we have to specify how we measure
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deviations of such paths from each other. To this end we introduce the following
definitions. For any x, x′ ∈ Rn

+ such that |x| > 0 and |x′| > 0, we define

d(x, x′) = | x|x| −
x′

|x′| |. (12.41)

For (x, y), (x′, y′) ∈ Zt with |x| > 0, |x′| > 0, we set

D(x, y, x′, y′) = | (x, y)|x| − (x′, y′)
|x′| |. (12.42)

The number d(x, x′) is the “angular distance” between the vectors x and x′.
For two paths {xt} and {x′t}, the number d(xt, x

′
t) shows to what extent the

directions of the vectors xt and x′t at time t differ from each other. In some
applications, it is important to compare not only the directions of trajecto-
ries {xt} and {x′t}, but also their growth rates measured, for example, by
|xt−1|−1(|xt| − |xt−1|) and |x′t−1|−1(|x′t| − |x′t−1|). With this view, the func-
tion D(x, y, x′, y′) is introduced. The relation

| |xt| − |xt−1|
|xt−1|

− |x′t| − |x′t−1|
|x′t−1|

| ≤ D(xt−1, xt, x
′
t−1, x

′
t) (12.43)

shows that the growth rates are close to each other if the value of D is small. As
is easily seen, the functions d and D are pseudometrics (they are nonnegative,
symmetric, and satisfy the triangle inequality). Furthermore, we have d(x, x′) ≤
D(x, y, x′, y′).

The main turnpike results are collected in the following theorem.

Theorem 12.3.4. (a) Let condition (SC1) hold. For each ε > 0, there exists
a number L = L(ε) such that, for any two rapid paths

ξ = {xt}N
t=0 and ξ′ = {x′t}N ′

t=0 with 2L < N ≤ N ′ ≤ ∞, (12.44)

we have d(xt, x
′
t) ≤ ε for all t within the interval L ≤ t ≤ N − L.

(b) If, additionally, condition (SC2) holds, then for any two rapid paths
(12.44), the inequalities

D(xt−1, xt, x
′
t−1, x

′
t) ≤ ε

are valid for all t satisfying L ≤ t < N − L.
(c) Fix some constant θ > 0. Suppose the initial vectors x0 and x′0 of the

rapid paths (12.44) satisfy

x0 = x′0 ≥ θ |x0| e. (12.45)

Then, in assertions (a) and (b), the time interval L ≤ t < N−L can be replaced
by 0 ≤ t < N − L.
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The theorem formulated can be applied to situations when both trajectories
{xt} and {x′t} are finite (N ′ < ∞), {xt} is finite and {x′t} is infinite (N <
∞, N ′ = ∞), and both {xt} and {x′t} are infinite (N = ∞). If N < ∞,
then by virtue of assertion (a) of Theorem 12.3.4, the paths {xt} and {x′t} are
close to each other for those moments t which are far enough from the ends
of time interval {0, 1, ..., N}. Note that the number L depends only on ε but
not on {xt}, {x′t}, N and N ′. If N = ∞, i.e. both {xt} and {x′t} are infinite,
then the trajectories {xt} and {x′t} converge to each other in the sense that
D(xt−1, xt, x

′
t−1, x

′
t) → 0 as t → ∞ (we have N − L = ∞ if N = ∞). This

convergence is uniform over the class of all pairs of infinite rapid trajectories.
Assertion (b) of Theorem 12.3.4 contains additional information pertaining to
the case where the initial vectors x0 and x′0 of the paths {xt} and {x′t} coincide
and the coordinates of x0 |x0|−1(= x′0 |x′0|−1) are bounded away from zero by
the given constant θ. If N < ∞, then, according to (b), significant deviations
between {xt} and {x′t} may occur only within the interval {N −L, ..., N}. The
number L = L(ε) is the same for all pairs of paths {xt}, {x′t} satisfying (12.45).

Versions of the results contained in Theorem 12.3.4 can be found, e.g., in
the monographs by Nikaido [47] and by Makarov and Rubinov [41]. Excellent
surveys of turnpike results are the papers [42] and [43] by McKenzie, one of
the founders of the turnpike theory. First turnpike theorems for the stochastic
von Neumann–Gale model were obtained by Evstigneev and Kuznetsov [24].
For a proof of Theorem 12.3.4 and its stochastic generalization see Anoulova,
Evstigneev and Gundlach [6].

12.3.5 The Stationary Case: von Neumann Ray and von Neumann
Equilibrium

This group of results includes the following key facts.
(a) The existence of a von Neumann ray. This fact is proved in the deter-

ministic case quite easily. For a proof, it is sufficient to observe that the set
of those (x, λ) ∈ Rn

+ × R1
+ satisfying |x| = 1 and (x, λx) ∈ Z is compact (by

virtue of (Z.1) and (Z.2)) and contains a pair (x, λ) with λ > 0 (by virtue of
(Z.3) and (Z.4)).

(b) The existence of a von Neumann equilibrium can be established based
on the following assertion.

Theorem 12.3.5. Let condition (Z.5) hold. Let {λtx} be a von Neumann ray.
Then there exists a vector p > 0 such that (x̄, p, λ) is a von Neumann equilib-
rium.

Proof. Consider the sets

B = {y − λx : (x, y) ∈ Z}, C = {x ∈ Rn : x > 0}.

Observe that B ∩ C = ∅. Suppose the contrary. Then y − λx > 0 for some
(x, y) ∈ Z. The last inequality will remain valid if we replace λ by λ′ > λ which



12. Von Neumann–Gale Model 355

is sufficiently close to λ. Then λ′x < y and, by virtue of (Z.3), (x, λ′x) ∈ Z.
Observe that x �= 0: otherwise y = 0 by virtue of (Z.2), and so the inequality
y − λx > 0 cannot hold. By setting y = x/ |x|, we get (y, λ′y) ∈ Z, |y| = 1,
λ′ > λ, which contradicts the definition of the von Neumann growth factor λ.

The sets B and C are convex and disjoint, and by virtue of a separation
theorem (see the Appendix, Theorem B.1), there exists q ∈ Rn, q �= 0, such
that qc ≥ qb for all c ∈ C, b ∈ B. Since 0 ∈ B, we obtain that qc ≥ 0 for all
c ∈ C, and so q ≥ 0. Since qb ≤ 0 for all b ∈ B, we have

λ−1qy ≤ qx for all (x, y) ∈ Z. (12.46)

Let us show that q > 0. By virtue of (Z.5), for each i = 1, 2, ...n, there is a
path {y0, y1, ..., ym} such that y0 = ei, ym ≥ γe. In view of (12.46) and because
q �= 0, we have

qei = qy0 ≥ λ−1qy1 ≥ λ−2qy2 ≥ ... ≥ λ−mqym ≥ λ−mγ |q| > 0

and so q > 0.
Define p = q/qx̄ (> 0). Then px̄ = 1 and py/λ ≤ px for all (x, y) ∈ Z.

Consequently (x̄, p, λ) is a von Neumann equilibrium. �

(c) Quasi-optimality of the von Neumann ray. Since a von Neumann ray is a
rapid path, it is quasi-optimal (see Theorem 12.3.3). As it was mentioned above,
this property is valid for all rapid paths. However, in the stationary context,
this property acquires an important additional content. The von Neumann ray
is a path of a special structure: it is balanced. Thus we obtain that there is a
balanced path that is quasi-optimal among all, not necessarily balanced, ones.

(d) The positive matrix case. Consider a stationary model defined by

Z = {(x, y) ∈ R2n
+ : y ≤ Dx}, (12.47)

where D is a nonnegative matrix. For this model, conditions (Z.1)–(Z.3) hold.
Hypothesis (Z.4) holds if Dx̂ > 0 for some x̂ ∈ Rn

+ (which is true if and only
if every row of D has a nonzero entry). As we have already noticed in 12.3.1,
(Z.5) holds if Dm > 0 for some m ≥ 1.

By virtue of Theorem 12.3.4, in this model there is a von Neumann equi-
librium (x̄, p, λ) with p > 0. We have

λ−1pDx ≤ px for all x ∈ Rn
+ (12.48)

and λx̄ ≤ Dx̄. Since p > 0, the last two inequalities imply λx̄ = Dx̄. Conse-
quently, λ and x̄ are the Perron–Frobenius eigenvalue and eigenvector of the
matrix D, respectively (see the Appendix, Theorem C.1). This implies in par-
ticular that x̄ > 0.

From (12.48), it follows that pD/λ ≤ p. On the other hand pDx̄/λ = px̄,
and since x̄ > 0, we obtain pD = λp. Thus p is an eigenvector of the matrix D′

(the conjugate of D) with eigenvalue λ. The matrix (D′)m = (Dm)′ is strictly
positive, and so p is the Perron–Frobenius eigenvector of D′.

Thus we have proved the following theorem.
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Theorem 12.3.6. There is a unique von Neumann equilibrium (x̄, p, λ) in the
model (12.47). The vectors x̄ and p are the Perron–Frobenius eigenvectors of
the matrices D and D′ respectively, and λ is their common Perron–Frobenius
eigenvalue.

12.3.6 Duality and Reachability

All the results we reviewed were aimed first of all at the analysis of growth
properties of paths in the von Neumann–Gale model. The topic we will con-
sider now has a somewhat different focus. Fix some finite time horizon N <∞
and consider two states x ∈ Rn

+ and y ∈ Rn
+ of the von Neumann–Gale dy-

namical system (12.1). Let us say that y can be reached from x and write
(x, y) ∈ Z if there exists a path x0, ..., xN such that x0 = x and xN = y. Of
interest is the reachability problem dealing with a characterization of the set
Z. This characterization is typically given in terms of dual paths, as described
in Theorem 12.3.7 below.

Let us say that a dual path {p0, ..., pN} is strict if pN > 0. Assume that
conditions (Z.1)–(Z.5) hold.

Theorem 12.3.7. A state y ∈ Rn
+ can be reached from a state x ∈ Rn

+ if and
only if p0x ≥ pNy for all strict dual paths {p0, ..., pN}.

The main applications of this result are in the area of financial modeling—
see 12.2.3 and 12.8.1.

Proof of Theorem 12.3.7. The “only if” statement follows directly from
the definition of a dual path. To prove the converse statement assume that
(x, y) /∈ Z. Let us show that p0x < pNy for some strict dual path {p0, ..., pN}.

Define K = {(a, b) : a ≤ 0, b ≥ 0}. It follows from (Z.2) that K∩Z = {0} and
from (Z.1) and (Z.2) that Z is closed. Since (x, y) ≥ 0 and (x, y) /∈ Z, we have
(x, y) /∈ W := Z−K by virtue of (Z.3). The cone W = Z−K is closed because Z
and K are closed and K∩Z = {0} (see the Appendix, Theorem B.1). The cone
K is proper, and since the point v := (x, y) does not belong to −K, the cone
Kv spanned on K and {v} is closed and proper (Theorem B.1). Furthermore,
Kv ∩ W = {0}, and so there exists a linear function l(a, b) = qb − pa whose
values on Kv\{0} are strictly positive and whose values on W = Z − K are
non-positive (Theorem B.2). The former implies p > 0, q > 0 and qy − px > 0,
while the latter yields qb− pa ≤ 0 for all (a, b) ∈ Z.

Consider the problem of maximization of f(θ) = qaN − pb0 over all se-
quences θ = {(at, bt)}N

t=0 satisfying (12.32) and (12.33). Since qb − pa ≤ 0
for all (a, b) ∈ Z, the maximum value of f(θ) in the above problem is zero.
By applying the Kuhn–Tucker theorem along the same lines as it was done in
Theorem 12.3.1 (relaxing the constraints (12.33)), we construct a dual path
{p0, ..., pN} satisfying p0 ≤ p and q ≤ pN . These inequalities imply p0x < pNy
and pN > 0, so the dual path constructed is strict. �
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Remark 12.3.2. In the course of the proof of the above theorem, we established
(under the assumptions imposed) that the set of strict dual paths is non-empty.
Indeed, we considered any (x, y) /∈ Z and constructed a strict dual path sat-
isfying p0x < pNy. We can consider, for example, (x, y) := (0, e); this pair of
vectors does not belong to Z by virtue of (Z.2).

Remark 12.3.3. We have assumed up to now that the cones Zt (t = 1, ..., N)
defining the von Neumann–Gale model under consideration are contained in
Rn

+ × Rn
+, where n does not depend on t. All the assumptions and results in

this subsection—dealing with the case of a finite time horizon N—can eas-
ily be extended to the setting where Zt ⊆ Rnt−1

+ × Rnt
+ , where n0, ..., nN is

any sequence of natural numbers. All the arguments go through with obvious
changes.

We have discussed several groups of results that play central roles in the
theory of the von Neumann–Gale model. They will serve as reference points in
our presentation of its stochastic analogue. Our general objective is to develop
a stochastic version of the model in which these key results admit natural
generalizations. To this end, we first have to define natural stochastic analogues
of the main concepts: rapid paths, von Neumann ray, von Neumann equilibrium,
etc. Definitions of these concepts will be given in the beginning of Part II of
the paper.

II. STOCHASTIC ANALOGUE OF THE VON
NEUMANN–GALE MODEL

12.4 Model Description

12.4.1 General (Non-stationary) Model

Let Ω be a non-empty set, F a σ-algebra of subsets of Ω, and P a probability
measure on F . Let F0 ⊆ F1 ⊆ ... ⊆ F be a non-decreasing sequence of σ-
algebras. Sets in Ft are interpreted as events observable prior to time t. Vector
functions of ω ∈ Ω measurable with respect to Ft are construed as random
vectors whose realizations become known by time t. For each t = 0, 1, 2, ..., we
denote by Ln

1 (t) the space L1(Ω,Ft, P,Rn) consisting of (equivalence classes of)
n-dimensional Ft-measurable vector functions x(ω) with E|x| = E

∑
i |xi| <

∞. The letter E stands for the expectation with respect to the given probability
measure P . We denote by Ln

∞(t) = L∞(Ω,Ft, P,Rn) the space of essentially
bounded functions in Ln

1 (t) and by Xt the cone of nonnegative elements in
Ln∞(t).

The stochastic analogue of the von Neumann–Gale model is specified by
the family of cones Zt ⊆ Xt−1 × Xt (t = 1, 2, ...). A sequence of ran-
dom vectors {xt}N

t=0, xt ∈ Xt (N ≤ ∞), is called a path (trajectory) in
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the model if (xt−1, xt) ∈ Zt for all t. Equivalently, the model can be de-
scribed by a family of multivalued operators x �→ At(x) (t = 1, 2, ...), where
At(x) = {y : (x, y) ∈ Zt}. It will be assumed that At(x) �= ∅ for each x ∈ Xt−1,
which means that the projection of the cone Zt on the first factor in the prod-
uct Xt−1×Xt coincides with Xt−1. As in the deterministic case, it is easily seen
that the graph Zt of the operator x �→ At(x) is a cone if and only if homogene-
ity and convexity conditions fully analogous to (12.8) and (12.9) are satisfied.
Paths in the multivalued dynamical system under consideration are defined as
sequences {xt}N

t=0, xt ∈ Xt (N ≤ ∞) satisfying xt ∈ At(xt−1) for all t. Clearly
this condition is equivalent to (xt−1, xt) ∈ Zt.

One can have in mind the following fundamental example of the prob-
abilistic structure underlying the model. Suppose ..., s−1, s0, s1, ... is a ran-
dom process with values in some measurable space (st is the “state of the
world” at time t). Let Ω be the space whose elements are sequences ω =
(..., s−1, s0, s1, ...). Denote by F the σ-algebra defining the product measur-
able structure on Ω and by P the probability measure on F induced by
the given stochastic process. Then Ft (t = 0, 1, ...) is defined as the σ-
algebra generated by the “history” st(ω) = (..., st−1(ω), st(ω)) of the process
..., s−1, s0, s1, ... up to time t. (We write st(ω) for the tth element of the se-
quence ω = (..., s−1, s0, s1, ...).)

In addition to the assumption that the sets Zt are cones, we will always
suppose that these sets satisfy the following condition: if (x, y), (x′, y′) ∈ Zt

and Γ ∈ Ft−1, then 1Γ (x, y) + (1 − 1Γ )(x′, y′) ∈ Zt, where 1Γ is the indicator
function equal to 1 on Γ and 0 outside Γ . If this condition holds, the cone
Zt is called Ft−1-decomposable. This property expresses a possibility of choice
between (x, y) and (x′, y′) depending on information contained in Ft−1. A broad
class of examples of Ft−1-decomposable cones is given by

Zt = {(x, y) ∈ Xt−1 ×Xt : (x (ω) , y (ω)) ∈ Gt (ω) almost surely} (12.49)

where Gt(ω) (ω ∈ Ω) is an Ft−1-measurable random closed cone6 in R2n
+ .

Models of the form (12.49) are said to admit a normal representation if the
cone Gt (ω) ⊆ R2n

+ satisfies for each ω ∈ Ω the following conditions:
(i) for each a ∈ Rn

+, the set {b : (a, b) ∈ Gt (ω)} is non-empty;
(ii) the set Gt (ω) contains with every (a, b) all (a′, b′) such that a ≥ a′ and

0 ≤ b′ ≤ b;
(iii) the set Gt (ω) is contained in {(a, b) : |b| ≤ M |a|} where M does not

depend on t and ω.

12.4.2 Stationary Model

The stationary version of the stochastic von Neumann–Gale model is defined as
follows. Suppose that, in addition to the above data, we are given a one-to-one
6 We say that G(ω) is a G-measurable random closed set in Rk if the distance from

any x ∈ Rk to G(ω) is a G-measurable function of ω.
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mapping T : Ω → Ω (the time shift). The model is called stationary if the
following invariance conditions hold:

(Inv.1) The mappings T and T−1 are F -measurable and preserve the mea-
sure P , i.e., P (Γ ) = P (T−1Γ ) = P (TΓ ) for each Γ ∈ F . (If these conditions
hold, the transformation T is called an automorphism of the probability space
(Ω,F , P ).)

(Inv.2) We have

Ft+1 = T−1Ft (= {T−1Γ : Γ ∈ Ft}) (t = 0, 1, 2, ...). (12.50)

(Inv.3) A pair of vector functions (x, y) ∈ Xt−1 ×Xt belongs to the set Zt

if and only if the pair (Tx, T y) ∈ Xt ×Xt+1 belongs to the set Zt+1.
Here and in what follows, the letter T is used to denote both the trans-

formation of Ω and the induced transformation (Tx)(ω) = x(Tω) acting on
functions of ω ∈ Ω. The transformation T may be thought of as a shift of the
time scale one unit of time forward. By virtue of (12.50), a random variable
ξ is Ft-measurable if and only if Tξ is Ft+1-measurable. Condition (Inv.3),
stated in terms of the cones Zt, can equivalently be formulated in terms of the
operators At(·) as follows:

At+1(Tx) = TAt(x), x ∈ Xt−1. (12.51)

An infinite path {xt}∞t=0 is called balanced if there exists a random vector
x ∈ X0 and a random scalar 0 < α ∈ L1

∞(1) such that almost surely7

xt = α1α2...αtx̄t for all t ≥ 1, x0 = x, and |x0| = 1, (12.52)

where
αt = T t−1α, and x̄t = T tx. (12.53)

Each component xi
t (i = 1, 2, ..., n) of a balanced path grows at the same sta-

tionary random rate determined by the growth factor xi
t(ω)/xi

t−1(ω) = α(T tω)
and with stationary proportions xi

t(ω)/xj
t (ω) = xi(T tω)/xj(T tω). Clearly, a

pair (x, α) generates a balanced path if and only if

x ∈ X0, |x| = 1, 0 < α ∈ L1
∞(1), and (x, αTx) ∈ Z1. (12.54)

A balanced path (12.52) maximizing the expected logarithmic growth rate
E lnαt (independent of t in view of stationarity) is called a von Neumann
path. This trajectory is a natural stochastic analogue of a von Neumann ray.
Conditions under which it exists will be discussed in Section 12.6. In the deter-
ministic case (when Ω consists of just one element), the above notions coincide
with those introduced in Part I of the paper.
7 All equalities and inequalities between scalar- and vector-valued functions of ω are

supposed to hold almost surely (a.s.) and coordinatewise. We will usually omit
“a.s.” where this does not lead to ambiguity.
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Radner in his pioneering paper [51] considered a similar probabilistic notion
of a von Neumann path in a stationary Markovian setting. An outline of related
notions and results in a non-Markov model was given in Radner’s paper [52,
pp. 108-110]. The Markovian approach was further developed by Presman and
Slastnikov [50], see also Belenky [12].

Suppose the model is described in terms of a process ..., s−1, s0, s1, ... of
“states of the world” (see 12.4.1) and the shift operator T is defined by
st(Tω) = st+1(ω). Then conditions (Inv.1) and (Inv.2) are fulfilled if the
process {st} is stationary. Condition (Inv.3) holds, for example, if the cones
Zt admit a stationary normal representation

Zt = {(x, y) ∈ Xt−1 ×Xt : (x, y) ∈ G
(
st
)

a.s.}, (12.55)

where G(st) is a closed cone in R2n
+ given for every st and satisfying conditions

(i)–(iii) in 12.4.1. It is supposed here that G(st) depends measurably on st

and does not explicitly depend on t.

12.4.3 Rapid Paths

A path {xt}N
t=0 (N ≤ ∞) is said to be rapid if there exists a sequence of

nonnegative random vectors {pt}N
t=0 such that pt ∈ Ln

1 (t),

ptxt = 1 (a.s.) (12.56)

for all t ≥ 0, and
E (pty/pt−1x) ≤ 1 (12.57)

for all t ≥ 1 and all (x, y) ∈ Zt with pt−1x > 0. A rapid path maximizes in
each period the expected value of the growth rate (ptyt − pt−1yt−1)/pt−1yt−1

among all paths {yt}N
t=0 for which pt−1yt−1 �= 0. Clearly the above definition

generalizes its deterministic version given in 12.2.1.
The typical interpretation of {pt} in economic contexts is that of prices

depending on the (random) state of the economic environment. A rapid path
achieves the highest expected growth rate of the aggregate value ptxt. The fact
that ptxt is supposed to be equal to 1 is just a matter of convenience; instead
of the constant 1 we could take any constant, independent of time and of ω.

There are several equivalent ways to define a rapid path. It can be shown
(see Evstigneev and Fl̊am [22, Proposition 2.2]) that if (12.56) holds, then
condition (12.57), involved in the definition of a rapid path, can be replaced by
any of the following requirements:

E ln
(

pty

pt−1x

)
≤ 0; (12.58)

Epty ≤ Ept−1x; (12.59)

E (pty | Ft−1) ≤ pt−1x, (12.60)
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where t ≥ 1, (x, y) ∈ Zt and, additionally, pt−1x �= 0 in (12.58). A rapid path
therefore maximizes the expected logarithmic growth rate, and it maximizes the
one-period expected gain in aggregate value (both in the sense of conditional
and in the sense of unconditional expectation). It follows from (12.60) that, for
any dual path {pt}N

t=0 and any trajectory {yt}N
t=0, the sequence {ptyt}N

t=0 is a
supermartingale with respect to the filtration {Ft}N

t=0.
A sequence {pt}N

t=0 of nonnegative random vectors is called a dual path if
pt ∈ Ln

1 (t) and any of the equivalent conditions (12.59) and (12.60) holds. (The
equivalence of these conditions follows from the Ft−1-decomposability of Zt.)
We say that a dual path {pt}N

t=0 supports the trajectory {xt}N
t=0 if ptxt = 1 for

all t. Thus, a trajectory {xt}N
t=0 is rapid if and only if there exists a dual path

{pt}N
t=0 supporting it.

12.5 Key Assumptions and Results in the Non-stationary
Case

12.5.1 Assumptions

We introduce the assumptions on the cones Zt (or, equivalently, on the op-
erators At(x) = {y ∈ Xt : (x, y) ∈ Zt}) that will be used in the analysis of
the stochastic version of the von Neumann–Gale model. When formulating re-
sults, we will specify what set of these assumptions is needed for one result or
another. In hypotheses (Z.0)–(Z.4), the subscript t ranges over {1, 2, ...}. In
(Z.4) and (Z.5), γ stands for some fixed strictly positive number.

(Z.0) If (x, y) ∈ Zt and λ is a Ft−1-measurable random variable with non-
negative real values, then (λx, λy) ∈ Zt, provided λx and λy are essentially
bounded.

(Z.1) The set Zt is closed in Xt−1 ×Xt with respect to a.s. convergence of
sequences uniformly bounded in the norm || · ||∞ = ess sup | · |.

(Z.2) There is a constant M such that |y| ≤ M |x| for any (x, y) ∈ Zt.
(Z.3) If (x, y) ∈ Zt, x′ ∈ Xt−1, y′ ∈ Xt, x′ ≥ x and y′ ≤ y, then (x, y′) ∈ Zt.
(Z.4) For some (x̌t−1, y̌t) ∈ Zt, we have y̌t ≥ γe, where e = (1, 1, ..., 1).
(Z.5) There exists an integer m ≥ 1 such that, for every i ∈ {1, ..., n} and

every t ∈ {0, 1, 2, ...}, one can find random vectors yt ∈ Xt, ..., yt+m ∈ Xt+m

satisfying

yt = ei, (yt, yt+1) ∈ Zt+1, ..., (yt+m−1, yt+m) ∈ Zt+m, yt+m ≥ γe. (12.61)

Assumptions (Z.1)–(Z.5) are fully analogous to those we discussed in the
deterministic case in 12.3.1. Condition (Z.0) is a version of the hypothesis of
Ft−1-decomposability of the cone Zt (note that the random variable λ involved
in this condition is not necessarily bounded). Assumptions (Z.0) and (Z.1)
hold if Zt admits a normal representation (12.49).

As in the deterministic case, we will use additional requirements ensuring
uniform strict convexity of the cones Zt.
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(SC1) For each ε > 0, there exists a number ρ(ε) > 0 having the following
property. For any (x, y) ∈ Zt, (x′, y′) ∈ Zt and Γ ∈ Ft−1 satisfying |x| =
|x′| = 1 and |x − x′| ≥ ε (a.s. Γ ), and there is a vector w ∈ Xt such that
(x+ x′, y + y′ + w) ∈ Zt and |w| ≥ ρ(ε) (a.s. Γ ).

We write “a.s. Γ” if the property indicated holds almost surely on the set
Γ .

(SC2) For any ε > 0, there is a number τ(ε) > 0 with the following property.
If (x, y) ∈ Zt, (x′, y′) ∈ Zt and Γ ∈ Ft satisfy |x| = |x′| = 1 and |y−y′| ≥ ε (a.s.
Γ ), then one can find a vector w ∈ Xt for which (x + x′, y + y′ + w) ∈ Zt and
|w| ≥ τ(ε) (a.s. Γ ).

It is assumed that the numbers ρ(ε) and τ(ε) involved in (SC1) and (SC2)
do not depend on t and ω.

Consider the stochastic version of the nonlinear von Neumann model (see
12.2.2) given by

Zt = {(x, y) ∈ Xt−1 ×Xt : Ψt(ω, y) ≤ Φt(ω, x)}, t = 1, 2, ..., (12.62)

where the vector functions

Φt(ω, a) = (Φ1
t (ω, a), ..., Φ

m
t (ω, a)) and Ψt(ω, b) = (Ψ1

t (ω, a), ..., Ψm
t (ω, a)),

defined for a ∈ Rn
+ and taking values in Rm

+ , are measurable with respect to
Ft × B(Rn

+) (B(·) stands for the Borel σ-algebra). We suppose that, for each
t, j, ω, the vector functions Ψ j

t (ω, ·) and Φj
t (ω, ·) satisfy requirements (N.1)–

(N.4) stated below. To formulate these requirements, we fix ω ∈ Ω, j = 1, ...,m
and t = 1, 2, ... and put, for shortness, Ψ(b) = Ψ j

t (ω, b) and Φ(a) = Φj
t (ω, a).

We define
∑

= {x ∈ Rn
+ : |x| = 1}.

Hypotheses (N.1)–(N.4) are supposed to hold for all ω, j and t. The func-
tions κ(r, ε), δ(ε) and the constants c and C involved in these hypotheses do
not depend on ω, j and t.

(N.1) The functions Φ(a) and −Ψ(a) (a ∈ Rn
+) are positively homogeneous

of degree 1, concave and continuous; Φ(a) and Ψ(a) are monotone (coordinate-
wise).

(N.2) There exists a function κ(r, ε) > 0 of r ∈ (0, 1/2] and ε ∈ (0,∞) such
that

Φ(θa + (1 − θ)a′) − θΦ(a) − (1 − θ)Φ(a′) ≥ κ(r, ε) (12.63)

for all θ ∈ [r, 1/2] and a, a′ ∈∑ satisfying |a−a′| ≥ ε (uniform strict concavity
of Φ on Σ). The analogous condition holds for the function −Ψ (uniform strict
convexity of Ψ on Σ).

(N.3) There are constants 0 < c < C < ∞ for which c|a| ≤ Φ(a) ≤ C|a|,
c|a| ≤ Ψ(a) ≤ C|a| (a ∈ Rn

+).
(N.4) There exists a function δ(ε) > 0 of ε > 0 such that |Φ(a)−Φ(a′)| < ε

and |Ψ(a) − Ψ(a′)| < ε when |a− a′| < δ(ε), a, a′ ∈ Σ.

Proposition 12.5.1. Under assumptions (N.1)–(N.4), the model defined by
(12.62) satisfies hypotheses (Z.0)–(Z.5), (SC1) and (SC2).

For a proof see Evstigneev and Taksar [27, Proposition A.1].
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12.5.2 Finite Rapid Paths

This section shows that finite rapid paths can be constructed by maximizing
appropriately defined logarithmic functionals of their terminal states. Consider
the class Ut of real-valued functions ψ (ω, a) ≥ 0 of ω ∈ Ω and a ∈ Rn

+ meeting
the following requirements:

(ψ.1) For each a ∈ Rn
+, the function ψ (·, a) is Ft-measurable, and for each

ω ∈ Ω, the function ψ (ω, ·) is continuous.
(ψ.2) For all a, a′ ∈ Rn

+, we have ψ (ω, a+ a′) ≥ ψ (ω, a) + ψ (ω, a′).
(ψ.3) If λ ∈ [0,∞) and a ∈ Rn

+, then ψ (ω, λa) = λψ (ω, a).
(ψ.4) There exists a random variable H (ω) > 0 such that E |lnH (ω)| <∞

and
ψ (ω, a) ≤ H (ω) |a| , a ∈ Rn

+. (12.64)

(ψ.5) There is a random vector x∗t ∈ Xt for which E lnψ (x∗t ) > −∞.
It is convenient to write ψ (x∗t ) in place of ψ (ω, x∗t (ω)).
Conditions (ψ.2), (ψ.3) and inequality (12.64) are supposed to hold for every

ω ∈ Ω. From the nonnegativity of ψ and requirements (ψ.2), (ψ.3), it follows
that the function ψ (ω, a), a ∈ Rn

+, is concave and monotone:

ψ (ω, a) ≤ ψ (ω, a′) if a ≤ a′. (12.65)

Since ψ (ω, a) is continuous in a and Ft-measurable in ω, this function is jointly
measurable in (ω, a). By virtue of (ψ.4), the expectation E lnψ (x) is well-
defined and takes values in [−∞,∞) for any x ∈ Xt. Furthermore, (ψ.3), (ψ.5)
and (12.65) imply

E lnψ (x) > −∞ for any x ∈ Xt, x >> 0. (12.66)

Here, “x >> 0” means that every coordinate of the random vector x is greater
than some strictly positive non-random constant.

Examples of functions in Ut can be constructed as follows. Let q (ω) and
κ (ω) be nonnegative Ft-measurable random variables with values in Rn and
R respectively, q (ω) being absolutely integrable. Let ν (a) be any norm in Rn.
Define ψ (ω, a) = q (ω) a− κ (ω) ν (a). Denote by ψ∗ (ω) the maximum value of
ψ (ω, a) on

{
a ∈ Rn

+ : |a| = 1
}
. If ψ (ω, a) ≥ 0 for all ω, a and E lnψ∗ (ω) > −∞,

then, as is easily seen, ψ ∈ UN . In particular, the function ψ (ω, a) = |a| belongs
to Ut.

Fix some natural number N and a random vector x0 ∈ X0, x0 >> 0. Denote
by ΠN

0 (x0) the set of paths {yt}N
t=0 with y0 = x0.

Theorem 12.5.1. Assume (Z.0) and (Z.4). Let {xt}N
t=0 be a path in ΠN

0 (x0)
and ψ a function in UN . Then the following assertions (a) and (b) are equiva-
lent.

(a) The path {xt}N
t=0 maximizes the functional

E lnψ (yN ) (12.67)
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over the set of paths {yt}N
t=0 in ΠN

0 (x0).
(b) There exist random vectors p0, ..., pN such that {pt}N

t=0 is a supporting
dual path for {xt}N

t=0 (and so the path {xt}N
t=0 is rapid). Furthermore, ψ (xN ) >

0 and
E (ψ (y) /ψ (xN ) | FN−1) ≤ pN−1x (12.68)

for all (x, y) ∈ ZN .

By virtue of this result, one finds that if a path {xt}N
t=0 maximizes the

functional (12.67), then {xt}N
t=0 is rapid. Theorem 12.5.1 does not address

the question of existence of such paths. Sufficient conditions for existence are
provided in the following result.

Theorem 12.5.2. Assume (Z.0)–(Z.2) and (Z.4). For any ψ ∈ UN , the class
ΠN

0 (x0) contains a path maximizing functional (12.67). This path is rapid.

Theorem 12.5.1 is proved in [22, Theorem 3.1]; for a proof of Theorem 12.5.2
see [22, Theorem 3.2] and [27, Theorem 3.1].

12.5.3 Quasi-Optimality of Infinite Rapid Paths

Infinite rapid paths possess properties of asymptotic quasi-optimality general-
izing the corresponding deterministic property (no path can grow “infinitely
faster” in the long run).

Theorem 12.5.3. Let {xt}∞t=0 be an infinite rapid path and {x′t}∞t=0 any infi-
nite path. Under conditions (Z.2) and (Z.5), there exists a sequence of non-
negative integrable random variables κt (depending on the paths), such that κt

is a supermartingale with respect to the filtration F0 ⊆ F1 ⊆ ... and

|x′t| / |xt| ≤ κt, t = 0, 1, ... (12.69)

This result is a consequence of [22, Proposition 2.5]. It implies the following
quasi-optimality properties of infinite rapid paths:

sup
t

(|x′t| / |xt|) < ∞ (a.s.); (12.70)

sup
t
E(|x′t| / |xt|) < ∞; (12.71)

sup
t
E ln(|x′t| / |xt|) <∞. (12.72)

These properties follow from (12.69) and general results on supermartingales—
see [46]. Clearly, |·| can be replaced in (12.69)–(12.72) by any other norm in
Rn, or by any measurable function ψ(ω, a) (ω ∈ Ω, a ∈ Rn) such that c|a| ≤
ψ(ω, a) ≤ C|a|, where c > 0 and C > 0 are non-random constants.

In [22, section 5], an example was provided showing that (12.70) fails to
hold if we replace in the definition of a rapid path the requirement ptxt = 1 by
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the assumption that {ptxt} is a martingale with Eptxt = 1 and ptxt > 0. Such
trajectories are not necessarily quasi-optimal in the sense of (12.70), although
they maximize the expected growth rate in every period. Paths {yt} might exist
that are “infinitely better” than {xt}, i.e., such that limt→∞(|yt|/|xt|) = ∞
(a.s.).

12.5.4 Turnpike Theorems and Infinite Rapid Paths

This section examines the qualitative behavior of rapid paths. It also establishes
an existence theorem for infinite rapid paths in the general, non-stationary,
case. The key results, the stochastic turnpike theorems, are analogous to their
deterministic counterparts discussed in 12.3.3.

The formulation of turnpike results requires a specification of how to mea-
sure deviations between paths. With this view, for any x, x′ ∈ Xt such that
|x| > 0 and |x′| > 0, we put

d(x, x′) = Ed(x, x′), D(x, y, x′, y′) = ED(x, y, x′, y′), (12.73)

where d and D are the pseudometrics defined by (12.41) and (12.42). The
following result holds under conditions (Z.0)–(Z.5), see [6].

Theorem 12.5.4. All the assertions of Theorem 12.3.4 remain valid in the
stochastic case (with pseudometrics d and D in place of d and D).

In the statement of this result references to hypotheses (SC1) and (SC2)
should be replaced by references to their stochastic counterparts (SC1) and
(SC2).

The main existence result for infinite rapid paths regarding the general,
non-stationary, setting is as follows (see [27, Theorem 2.1]).

Theorem 12.5.5. Let hypotheses (Z.0)–(Z.5), (SC1) and (SC2) hold. Let
x0 be a vector function in X0 such that x0 ≥ σe for some non-random strictly
positive number σ. Then there exists a unique infinite rapid path with initial
state x0.

The existence proof relies on Theorem 12.5.1, which ensures the existence
of finite rapid paths, and on the turnpike result, Theorem 12.5.4, which is
used to construct an infinite rapid path by passing to the limit from finite
ones. The question whether the existence part of Theorem 12.5.5 remains valid
without assumptions (SC1) and (SC2) remains open. Another interesting open
problem is to obtain “almost sure” versions of turnpike theorems in the spirit
of [7, Theorem V.3.2].
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12.6 Stationary Models: von Neumann Equilibrium

12.6.1 Von Neumann Equilibrium

Consider the stationary stochastic analogue of the von Neumann–Gale model
introduced in 12.4.2. A central definition is as follows. A triple of nonnegative
functions

(x, α, p), 0 ≤ x ∈ Ln
∞(0), 0 < α ∈ L1

∞(1), 0 ≤ p ∈ Ln
1 (0), (12.74)

is said to form a von Neumann equilibrium if the following conditions hold:
(a) the sequence xt = α1...αtx̄t, x0 = x̄0 (where αt = T t−1α and x̄t = T tx)

is a balanced path; and
(b) the sequence pt = (α1...αt)−1p̄t, p0 = p̄0 (where p̄t = T tp) is a dual

path supporting {xt}.
If the above requirements are met, {xt} is called an equilibrium path and

{pt} an equilibrium dual path. The stationary process α1, ..., αt, ... is the se-
quence of random equilibrium growth factors. Dual paths of the form described
in (b) are called balanced.

Under the assumptions we impose on the cones Zt, it can be shown [9, Sec-
tion 3] that a triple (x, α, p) of the form (12.74) is a von Neumann equilibrium
if and only if

(x, αTx) ∈ Z1, |x| = 1, px = 1,

and
E
(
α−1(Tp)y | F0

)
≤ px for all (x, y) ∈ Z1.

According to the above definition, a von Neumann equilibrium defines a
balanced path growing at a stationary rate and a balanced dual path supporting
it and decreasing at the same rate.

12.6.2 The Existence Problem for a von Neumann Equilibrium

This problem is central to the theory under consideration. At present, two main
results are obtained in this area. The first one assumes that a von Neumann
path exists and establishes, based on this, the existence of a von Neumann
equilibrium. To state the result denote by B the class of those pairs (x, α)
which generate balanced paths, i.e. satisfy (12.54). Consider the variational
problem:

(P) Maximize E lnα over all (x, α) ∈ B.

Clearly the maximum in this problem is attained if and only if a von Neu-
mann path exists. The following assertion is proved in [9, Theorem 1] under
assumptions (Z.0)–(Z.5).

Theorem 12.6.1. The following properties of (x, α) ∈ B are equivalent.
(a) (x, α) is a solution to problem (P).
(b) There exists a p ∈ Ln

1 (0), p ≥ 0, such that (x, α, p) is a von Neumann
equilibrium.
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Thus, under assumptions (Z.0)–(Z.5), the existence of a von Neumann
path implies the existence of a von Neumann equilibrium. This result may be
regarded as a stochastic analogue of Theorem 12.3.5. While the latter is proved
quite easily, the proof of the former is based on advanced techniques of convex
analysis in spaces of measurable functions.

What can be said about the existence of a von Neumann path (implying the
existence of a von Neumann equilibrium)? Currently, the following is known.

Theorem 12.6.2. Let conditions (Z.0)–(Z.5), (SC1) and (SC2) hold. Then
the following assertions are valid.

(a) There exists a unique von Neumann path.
(b) A von Neumann equilibrium exists. If (x, α, p) and (x′, α′, p′) are two

equilibria, then x = x′ and α = α′.
(c) There exists a unique rapid balanced path. It coincides with the von

Neumann path.

We note that all the uniqueness assertions in the above theorem (and
throughout the paper) are understood up to stochastic equivalence—random
variables are supposed to be equivalent if they coincide a.s. The results con-
tained in the above theorem are established in [27, Theorems 2.2, 2.3 and 3.3].
A version of Theorem 12.6.2 was obtained under more stringent assumptions
in [21] (see also [23]). It is clear that some assumptions like (SC1) and (SC2)
are needed for the uniqueness of a von Neumann path. The question whether
they are essential for its existence remains open.

Theorem 12.6.2 has the following important consequence. Let {xt} be a von
Neumann path. By its definition, it is optimal—in terms of the maximization
of the expected logarithmic growth rate—in the class of all balanced paths.
By virtue of Theorem 12.6.2, {xt} is rapid. Consequently, the quasi-optimality
properties (12.70)–(12.72), and in particular the property supt(|x′t| / |xt|) <∞
(a.s.), hold for any path {x′t}. This means that {xt} is quasi-optimal almost
surely in the class of all, not necessarily balanced, paths.

12.6.3 Randomization

We have seen that if a von Neumann path exists, then an equilibrium can be
constructed under sufficiently general assumptions—see Theorem 12.6.1. The
existence of a von Neumann ray is trivial in the deterministic case (see 12.3.5),
but in the stochastic case it is currently established only under rather strong
conditions (SC1) and (SC2) (Theorem 12.6.2) or in specialized models such
as those we will consider in 12.6.4 and 12.7.2. A well-known way of dealing
with existence problems of this kind is to introduce randomization. A classical
example is the concept of a Nash equilibrium in mixed strategies. A whole range
of similar notions and related results are known in control, optimization and
games. We will show that by an appropriate extension of the model at hand—
by introducing an auxiliary “sunspot” process—one can establish the existence
of a randomized von Neumann equilibrium under general assumptions.
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Consider the stationary version of the von Neumann–Gale model described
in terms of a process ..., s−1, s0, s1, ... of “states of the world.” Assume that this
model admits a stationary normal representation (12.55) in terms of a random
closed cone G(st). Suppose that, for some non-random γ > 0, the cone G(st)
contains (e, γe) for all st.

Let us say that a stochastic process ..., ζ−1, ζ0, ζ1, ... with values in some
measurable space is non-anticipative (with respect to the given process ..., s−1,
s0, s1, ...) if, for each bounded measurable function g(ζt, st), we have

E[g(ζt, st)|..., s−1, s0, s1, ...] = E[g(ζt, st)|st], t = 0,±1, ..., (12.75)

where st = (..., st−1, st) and ζt = (..., ζt−1, ζt). Equality (12.75) means that
if we wish to predict ζt based on information about ..., s−1, s0, s1, ..., then
what matters is only st—the past and the present of the process {st}, the
probabilistic prediction being independent of the future st+1, st+2, ... of the
process {st}. We will need a similar definition of non-anticipativity for processes
ζ0, ζ1, ... indexed by nonnegative integers t, rather than by all integers t. This
definition is fully analogous to the previous one, with the only difference that
the “history” ζt is defined as (ζ0, ..., ζt−1, ζt).

Denote the given von Neumann–Gale model by M. Let us say that a random
process ξ0, ξ1, ... with values in Rn

+ is a randomized path (or a randomized
trajectory) in M if ξ0, ξ1, ... is non-anticipative, (ξt−1, ξt) ∈ G(st) a.s. and
ess sup |ξt| < ∞. Suppose ..., ζ−1, ζ0, ζ1, ... is a non-anticipative process with
values in some measurable space. Define σt = (ζt, st) and put Ḡ(σt) = G(st).
Assume that the process ..., σ−1, σ0, σ1, ... is stationary and denote by M̄ the
von Neumann–Gale model admitting a stationary normal representation in
terms of the process {σt} and the cones Ḡ(σt) (t = 0, 1, ...). We will call M̄ the
extension of the model M constructed by using the process {σt}—a stationary
non-anticipative extension of the process {st}.

Theorem 12.6.3. There exists an extension M̄ of the model M possessing a
von Neumann path.

According to this theorem, we can find a stationary non-anticipative ex-
tension {σt} (σt = (ζt, st)) of the process {st} such that, in the corresponding
extension M̄ of the model M, there exists a von Neumann path. It follows
from the assumptions imposed on G(st) that both models M and M̄ satisfy
conditions (Z.0)–(Z.4). If hypothesis (Z.5) holds for M, then it also holds for
M̄. Thus, under these conditions, we obtain the following result.

Theorem 12.6.4. There exists an extension M̄ of the model M having a von
Neumann equilibrium.

This implies, in particular, that the von Neumann path {ξ̂0, ξ̂1, ...} in the
model M̄ is quasi-optimal (in terms of any of the properties (12.70)–(12.72))
among all paths in the model M̄. It is easily seen that any trajectory in M̄, in
particular {ξ̂0, ξ̂1, ...}, is a randomized trajectory in M. This fact combined with
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(12.72) leads to the following conclusion: for each randomized path {ξ0, ξ1, ...}
in the model M, we have sup(E ln |ξt|−E ln |ξ̂t|) <∞. In this sense, {ξ̂0, ξ̂1, ...}
is quasi-optimal in the class of all randomized paths in M.

For a proof of Theorems 12.6.3, 12.6.4 and related results see [26].

12.6.4 Von Neumann Path, Log-Optimal Investments and the
Numeraire Portfolio

We outline an example that shows links between the theory of the von
Neumann–Gale model and some fundamental concepts in Finance. In this
subsection, we deal with a stationary (non-randomized) setting described in
12.4.2. As in 12.4.2, we are given a probability space (Ω,F , P ), a filtration
F0 ⊆ F1 ⊆ ... ⊆ F on Ω and a transformation T : Ω → Ω satisfying (Inv.1)
and (Inv.2).

Consider a financial market where n assets are traded without transaction
costs. Short sales are not allowed (see 12.2.3). Let St(ω) = (S1

t (ω), ..., Sn
t (ω)) >

0 be the vector of asset prices at time t = 0, 1, .... Denote by Rt(ω) =
(R1

t (ω), ..., Rn
t (ω)) the vector of asset (gross) returns: Ri

t = Si
t/S

i
t−1. We

will suppose that the sequence Rt is stationary, i.e. Rt+1 = TRt. To sim-
plify presentation, we will assume that all Ri

t are bounded away from 0
and +∞. A self-financing trading strategy is a sequence of contingent port-
folios x0 ∈ X0, x1 ∈ X1, ... satisfying |xt| ≤ Rtxt−1. In the present context,
portfolio positions are measured in terms of their market values (see (12.23)
and (12.24)). Self-financing strategies are trajectories in the stationary von
Neumann–Gale model given by Zt = {(x, y) ∈ Xt−1 ×Xt : |y| ≤ Rtx}. We are
interested in balanced paths and, in particular, in the von Neumann path. By
virtue of (12.54), a pair (x, α) generates a balanced trajectory if and only if
x ∈ X0, |x| = 1, 0 < α ∈ L1

∞(1) and α ≤ R1x. The von Neumann path is de-
termined by that (x, α) for which α = R1x, where E lnR1x ≥ E lnR1x

′ for all
x′ ∈ X0 with |x′| = 1. Thus x is a log-optimal portfolio (Kelly, Breiman, Cover
and others)—see Algoet and Cover [3], Hakansson and Ziemba [33], Iyengar
and Cover [35] and references therein.

The existence of a log-optimal portfolio follows from the fact that the func-
tional F (y) = E lnR1y is concave and continuous with respect to a.s. conver-
gence on the set {y ∈ X0 : |y| = 1} (e.g. [7, Appendix III, Theorem 5]).

By setting p = p0 = e, αt = T t−1α = T t−1(R1x) (t ≥ 1) and pt =
(αt...α1)−1e, we obtain that {pt} is a balanced dual path supporting the von
Neumann trajectory {xt} defined by x0 = x, xt = α1α2...αtx̄t (t ≥ 1), where
x̄t = T tx and x is the log-optimal portfolio. Indeed, ptxt = ex̄t = 1, and we
have

E ln
pty

′

pt−1x′
= E ln

|y′|
αt|x′|

≤ E ln
Rtx

′

αt|x′|
≤ E ln

Rtx

αt
= 0 (12.76)
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for all (x′, y′) ∈ Zt with |x′| > 0. The fact that {pt} is a dual path supporting
{xt} follows from (12.76) and from the equivalence of (12.57) and (12.58).
Consequently, (x, α, e) is a von Neumann equilibrium.

Finally, by applying property (12.60) to (ei, R
i
1ei) ∈ Z1, we obtain that

E(Ri
1(R1x)−1|F0) ≤ 1. If x > 0, the last inequality implies E(Ri

1(R1x)−1|F0) =
1. This means that x is a numeraire portfolio in the sense of Long [39].

12.7 Stochastic Version of the Perron–Frobenius
Theorem and Its Applications

12.7.1 Stochastic Perron–Frobenius Theorem

This section introduces a stochastic analogue of the Perron–Frobenius theorem
for positive matrices (see Theorem C.1). The theorem provides natural stochas-
tic analogues of an eigenvector and an eigenvalue for positive matrix cocycles
(see the definition below). The results are used for the analysis of stochastic
von Neumann–Gale dynamical systems of the form (12.10). Also, we consider
some applications to the modeling of financial growth.

Let (Ω,F , P ) be a probability space, and T : Ω → Ω its automorphism,
i.e., a one-to-one mapping such that T and T−1 are measurable and preserve
the measure P . Let D(ω) be a measurable function taking values in the set of
nonnegative n× n matrices. Define

C(t, ω) = D(T t−1ω)D(T t−2ω)...D(ω), t = 1, 2, ... , (12.77)

and C(0, ω) = Id (the identity matrix). Then we have

C(t, T sω)C(s, ω) = C(t+ s, ω), t, s ≥ 0, (12.78)

i.e., the matrix function C(t, ω) is a cocycle over the dynamical system
(Ω,F , P, T ) (see, e.g., Arnold [8]).

For a matrix D > 0, denote by κ(D) the ratio of the smallest element of
the matrix to its greatest element. Let the following condition hold.

(*) There is a (non-random) integer m > 0 for which C(m,ω) > 0 and
E| lnκ(C(m,ω))| <∞.

Theorem 12.7.1. There exists a measurable vector function x(ω) > 0 and a
measurable scalar function α(ω) > 0 such that

α(ω)x(Tω) = D(ω)x(ω), |x(ω)| = 1 (a.s.). (12.79)

The pair of functions (α(·), x(·)) > 0 satisfying (12.79) is determined uniquely
up to the equivalence with respect to the measure P . If t→ ∞, then

C(t, T−tω)a
|C(t, T−tω)a| → x(ω) (a.s.), (12.80)

where convergence is uniform in a ≥ 0, a �= 0.
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The above result may be regarded as a generalization of the Perron–
Frobenius theorem on eigenvalues and eigenvectors of positive matrices: x(·)
and α(·) play the roles of an “eigenvector” and an “eigenvalue” of the cocycle
C(t, ω). Theorem 12.7.1 is a special case of a result in Evstigneev [20, Theorem
1]; see also Arnold, Gundlach and Demetrius [10, Theorem 3.1].

Remark 12.7.1. Let F0 and F1 be sub-σ-algebras of F such that the random
matrices D(T−1ω), D(T−2ω), ... are F0-measurable and the random matrices
D(ω), D(T−1ω), ... are F1-measurable. By virtue of (12.77) and (12.80), the
functions x(·) and α(·) are measurable with respect to the σ-algebras F0 and
F1 completed by all sets of measure zero. From this it follows that we can select
versions of x(·) and α(·) satisfying (12.79) which are F0- resp. F1-measurable.

12.7.2 Von Neumann–Gale Systems Defined by Positive Random
Matrices

Let (Ω,F , P ) be a probability space, F0 ⊆ F1 ⊆ ... ⊆ F an increasing sequence
of σ-algebras and T : Ω → Ω a one-to-one mapping satisfying (Inv.1) and
(Inv 2). For each t = 0, 1, ..., let Dt(ω) be a nonnegative random n×n matrix
measurable with respect to Ft. Define

Zt = {(x, y) ∈ Xt−1 ×Xt : y ≤ Dt(ω)x}, (12.81)

and assume that Dt(Tω) = Dt+1(ω) for all t ≥ 0. Then (Inv.3) holds, and we
are in the framework of a stationary von Neumann–Gale model described in
12.4.2. The model at hand does not satisfy the strict convexity assumptions
discussed in 12.5.1, and so Theorem 12.6.2 is not applicable. Therefore the
question of existence of a von Neumann equilibrium is examined by different
means—by using Theorem 12.7.1.

Put D(ω) = D1(ω) and suppose that D(ω) is uniformly bounded and there
exists a constant γ > 0 such that for some x̌0 ∈ X0, we have Dx̌0 ≥ γe. Assume
that for some m ≥ 1, the smallest element of the matrix C(m,ω) (see (12.77))
is greater than γ. Then conditions (Z.0)–(Z.5) are satisfied and the following
theorem is valid.

Theorem 12.7.2. The model (12.81) possesses a unique von Neumann equi-
librium (x, α, p), where 0 < x ∈ Ln∞(0) and 0 < α ∈ L1∞(1) are the solutions to
(12.79) and 0 < p ∈ Ln

1 (0) is the (unique) solution to

E(α−1(Tp)D|F0) = p, px = 1. (12.82)

This result is a consequence of Theorem 12.7.1; for details of the proof see
[26].
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12.7.3 Volatility-Induced Financial Growth

We present an application of the stochastic Perron–Frobenius theorem to the
analysis of the long-run performance of fixed-mix investment strategies in an
asset market where prices (after a proper detrending if necessary) fluctuate as
stationary stochastic processes. Let β = (βkj) be a matrix with strictly positive
non-random elements satisfying

∑n
k=1 βkj = 1 for each j. A fixed-mix trading

strategy {ht}∞t=0 determined by the matrix β (or, for shortness, β-strategy) in
a financial market with n assets is defined by

Sk
t h

k
t =

n∑
j=1

βkjS
j
t h

j
t−1, (12.83)

where Sj
t = Sj

t (ω) > 0 is the price of asset j at time t = 0, 1, 2, ... and hk
t is

the amount of asset k in the portfolio ht. The number βkj > 0 is the share
of wealth transferred from the jth position of the portfolio to the kth position
(k, j = 1, ..., n). If the assets are currencies, the matrix (βkj) specifies the
strategy of currency exchange—see [16].

We analyze a stationary market assuming that Sj
t+1(ω) = Sj

t (Tω), where
the operator T is an ergodic8 automorphism of the underlying probability
space (Ω,F , P ). The price process {St} is adapted to the given filtration
F0 ⊆ F1 ⊆ ... ⊆ F satisfying (Inv.2). Further, we assume that the prices Sj

t (ω)
are uniformly bounded away from zero and infinity. The evolution of a port-
folio that is dynamically rebalanced according to a β-strategy {ht} can be de-
scribed by products of positive random matrices. Define D = D(ω) = (dkj(ω)),
where dkj(ω) = βkjS

j
1(ω)/Sk

1 (ω). Then

ht(ω) = D(T t−1ω)D(T t−2ω)...D(ω)h0(ω), t = 1, 2, ...

To analyze the asymptotic performance of fixed-mix strategies we use the
concept of a balanced strategy. An investment strategy {ht} is called balanced,
if ht(ω) = α(T t−1ω)...α(ω)h(T tω) (a.s.), t = 1, 2, ..., where h ∈ X0, |h| =
1, 0 < α ∈ L1

∞(1). Functions h ∈ X0, 0 < α ∈ L1
∞(1) generate a balanced

β-strategy if and only if

α(ω)h(Tω) = D(ω)h(ω), |h(ω)| = 1 (a.s.). (12.84)

The existence and uniqueness of a solution (h, α) to (12.84) follows from The-
orem 12.7.1. The corresponding balanced β-strategy is the von Neumann path
in the model (12.81), where Dt = T t−1D.
We impose the following mild non-degeneracy condition on the price processes
{Sj

t }.
(ND) With positive probability, the ratios Sj

t (ω)/Sj
t−1(ω) are not constant

with respect to j.
8 Ergodicity means that the averages [ξ(ω) + ... + ξ(T tω)]/t converge a.s. to Eξ for

each random variable ξ with E|ξ| < ∞.
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Theorem 12.7.3. For any β-strategy with initial portfolio h0 ∈ X0 such that
|h0(ω)| > 0, we have

lim
t→∞ t−1 lnhk

t = lim
t→∞ t−1 lnStht = E lnα(ω) > 0 (a.s.), (12.85)

for each k = 1, 2, ..., n.

In (12.85), α(ω) is the stochastic eigenvalue of D(·), whose existence fol-
lows from Theorem 12.7.1. Under the assumptions imposed, we show that
E lnα(ω) > 0. Thus (12.85) implies that the portfolio process {ht} grows in the
long run almost surely in every coordinate at an exponential rate! This result
might seem counterintuitive at first glance because a fixed mix-strategy is self-
financing and the asset prices Sj

t form stationary processes. For establishing
the above fact, we use the assumption of non-degeneracy (ND) requiring some
randomness, or volatility, of the price process. If this assumption is violated,
then the market is essentially deterministic and the result ceases to hold. Thus,
in the present context, the price volatility may be viewed as an endogenous
source of financial growth. For an analysis of this phenomenon and proofs of
Theorem 12.7.3 and related results see [16], [17] and [25]. In the papers cited,
more general models than the one considered here are examined. In particu-
lar the following generalizations are discussed: (a) asset returns, rather than
asset prices, are stationary; (b) the price processes can be decomposed into a
stationary component and a trend; (c) small transaction costs are present.

12.8 Asset Pricing and Hedging

12.8.1 Model Description

We describe a model of a financial market aimed at asset pricing and hedging
under transaction costs and trading constraints. Let (Ω,F , P ) be a probability
space and let F0 ⊆ F1 ⊆ ... ⊆ FN = F (1 ≤ N < ∞) be a sequence of algebras
of subsets of Ω. It is supposed that Ft contains events observable prior to time
t. To simplify presentation we will assume in this section that the set Ω is
finite (therefore we speak of algebras rather than σ-algebras) and P ({ω}) > 0
for each ω ∈ Ω. We will also suppose that F0 is trivial, i.e. F0 = {∅, Ω}, and
that F contains all subsets of Ω.

One may think that there is a finite set of “states of the world,” and at
each time t = 1, 2, ..., N , any of these states can be realized. The state of the
world which is realized at time t is denoted by st. A sequence ω = (s1, ..., sN )
is called a history (scenario) of the market over the time period 1, 2, ..., N . For
each t = 1, 2, ..., N − 1, a sequence st = (s1, ..., st) is called a partial history or
partial scenario (up to time t). We denote by Ft the algebra of subsets of Ω
generated by st. This algebra contains information observable prior to time t;
functions measurable with respect to it depend on st. The algebra F0 is defined
as the trivial one (F0-measurable functions are constants).
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Trading on the market is possible at any of the dates t = 0, 1, ..., N . At time
t, nt assets (securities) i = 1, 2, ..., nt are traded. A portfolio of assets at time
0 is a vector h0 ∈ Rn0 . A (contingent) portfolio of assets at time t = 1, 2, ..., N
is a vector function

ht(ω) = (h1
t (ω), ..., hnt

t (ω)) (12.86)

of dimension nt measurable with respect to Ft (i.e., depending on st in terms of
the interpretation involving states of the world). The coordinate hi

t of the vector
ht stands for the number of units of asset i in the portfolio ht. We will assume
in this context that admissible portfolios are nonnegative vectors, which means
that short sales are prohibited. For a more general model, allowing short sales,
see [28]. The set of all contingent portfolios (12.86), i.e., the cone of nonnegative
Ft-measurable vector functions of ω with values in Rnt , will be denoted by Xt

(t = 1, 2, ..., N). For t = 0, we will write X0 = Rn0
+ .

Let m0 and mN be two natural numbers. Put V0 = Rm0
+ and denote by VN

the cone of all nonnegative mN -dimensional vector functions of ω. Elements of
V0 (m0-dimensional non-random vectors) are interpreted as initial endowments
and elements of VN (vector functions depending on the market history ω)
are construed as contingent claims. Generally, both initial endowments and
contingent claims can be vectors, rather than scalars, which is the case, for
example, when there are several currencies in the market under consideration.
An important special case is m0 = mN = 1; in this case, initial endowments
and contingent claims are measured in terms of a single currency (cash).

In the model, a sequence of cones

Kt ⊆ Xt−1 ×Xt, t = 1, 2, ..., N, (12.87)

describing portfolio rebalancing constraints is given. Elements of Kt are pairs
(ht−1, ht) of contingent portfolios such that ht can be obtained at time t by
rebalancing ht−1 without requiring external funds. When rebalancing, one can
buy new assets for the portfolio ht only at the expense of selling some as-
sets contained in ht−1. All transactions, such as buying and selling assets,
involve transaction costs. The model at hand allows to take into account pro-
portional transaction costs, which is expressed by the assumption that the sets
Kt are cones. Sequences {h0, ..., hN} such that (ht−1, ht) ∈ Kt are feasible
(self-financing) trading strategies.

Further, in the model we are given two cones

W0 ⊆ V0 ×X0 and WN ⊆ XN × VN .

The cone W0 describes possibilities of constructing an initial portfolio h0 start-
ing from some initial endowment v0 ∈ V0. It is supposed that an investor
with initial endowment v0 can construct a portfolio h0 at time 0 if and only
if (v0, h0) ∈ W0. The cone WN describes possibilities of portfolio liquidation
and hedging contingent claims. Given a contingent claim vN , an investor with
contingent portfolio hN at time N can hedge vN by liquidating the portfolio
hN if and only if (vN , hN) ∈WN .
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Let S0 be a (non-random) vector in X0 and let S1(·) ∈ X1, ..., SN (·) ∈ XN be
a sequence of vectors St = St(ω) specifying asset prices at times t = 0, 1, ..., N .
In the case of a frictionless market with m0 = 1, we have W0 = {(v0, h0) ∈ V0×
X0 : S0h0 ≤ v0}. This means that an investor can construct those and only those
portfolios of assets at time 0 whose values, expressed in terms of the price vector
S0, do not exceed the initial endowment v0. As long as the market is frictionless
and mN = 1, then WN = {(vN , hN) : SNhN ≥ vN}. (Recall that we write ≥ or
≤ between two vector functions of ω if the corresponding inequality holds for
each ω and coordinatewise.) Finally, if there are no transaction costs (and short
sales are not allowed) then Kt = {(ht−1, ht) ∈ Xt−1 × Xt : Stht ≤ Stht−1},
i.e., the cone Kt is defined by the condition of self-financing. An example of
rebalancing constraints under proportional transaction costs is given by (12.26).
Further examples will be considered later in this section.

12.8.2 Hedging Problem and Duality

The general question we are going to consider is as follows. Suppose a con-
tingent claim vN ∈ VN is given. How can we characterize the set of initial
endowments v0 ∈ V0 which enable an investor, by trading in the financial
market, to obtain vN at time N? If this is possible, we say that the initial
endowment v0 is sufficient for hedging the contingent claim vN . Specifically,
hedging is performed as follows. At time 0, the investor possessing the initial
endowment v0 constructs a portfolio h0 satisfying (v0, h0) ∈ W0. Then he/she
follows some self-financing trading strategy {h0, h1, ..., hN} over the course of
time. At time N , the portfolio hN is liquidated, allowing to hedge the contin-
gent claim. The latter operation is possible when (hN , vN ) ∈ WN . The above
procedure is specified by a sequence {v0, h0, ..., hN , vN} (where vt ∈ Vt, t = 0, N
and ht ∈ Xt, t = 0, ..., N) satisfying (v0, h0) ∈W0, (ht−1, ht) ∈ Kt (t = 1, ..., N)
and (hN , vN ) ∈ WN . Such sequences will be called (feasible) hedging programs.
Thus the problem we are interested in can equivalently be stated as follows:
how can we characterize the set Z of those pairs (v0, vN ) ∈ V0 ×VN for which
there exists a hedging program of the form {v0, h0, ..., hN , vN}?

If initial endowments v0 ∈ V0 are scalars and if the set {v0 : (v0, vN ) ∈ Z}
contains the smallest element, this element—the minimum initial endowment
needed to hedge the contingent claim vN—is called the hedging price of the
contingent claim vN .

To examine the hedging problem we use the framework of a stochastic von
Neumann–Gale model. We observe that hedging programs may be regarded as
paths (of length N + 2) in the stochastic von Neumann–Gale model defined
by the sequence of cones W0,K1, ...,KN ,WN . We will give an answer to the
question about the characterization of the set Z in terms of dual paths in
this model. In the current context, dual paths correspond to consistent price
systems (cf., e.g., [55]). A consistent price system is defined as a sequence

q0 ∈ V0, p0 ∈ X0, ..., pN ∈ XN , qN ∈ VN
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such that q0v0 ≥ p0h0 for all (v0, h0) ∈ W0, Ept−1ht−1 ≥ Eptht for all
(ht−1, ht) ∈ Kt and EqNhN ≥ EqNvN for all (hN , vN ) ∈ WN . We say that
{q0, p0, ..., pN , qN} is a strictly consistent price system if qN > 0. Under general
assumptions, the last inequality implies the strict positivity of all the compo-
nents qt (t = 0, N) and pt (t = 0, ..., N)—see Remark 12.8.1 below.

Suppose that all the cones Kt,Wt satisfy conditions (Z.0)–(Z.4). Note that
convergence a.s. mentioned in (Z.1) is equivalent to convergence for each ω
because P ({ω}) > 0 for all ω. A central result of this section, providing a
solution to the hedging problem in terms of strictly consistent price systems,
is as follows.

Theorem 12.8.1. An initial endowment v0 is sufficient for hedging a contin-
gent claim vN if and only if q0v0 ≥ EqNvN for all strictly consistent price
systems {q0, p0, ..., pN , qN}.

Proof. Elements of the cones Kt and Wt are pairs of vector functions of ω,
and since Ω is finite, these functions can be identified with finite-dimensional
vectors. Thus the model can be reduced to a deterministic one (with portfolio
dimensions depending on t—see Remark 12.3.3). In view of this, Theorem 12.8.1
follows directly from its deterministic counterpart, Theorem 12.3.7. �

Remark 12.8.1. In the financial context, it is quite natural to assume that
(ei, γe) ∈ Kt for some γ > 0 (one unit of any asset can be exchanged to some
positive amounts of all the assets). Suppose this condition holds and assume
that the analogous condition holds for Wt. By using these assumptions and
(Z.0), it can easily be shown that all the components q0, p0, ..., pN , qN in a
strictly consistent price system are strictly positive.

Remark 12.8.2. The existence of consistent price systems is a consequence of
the no-arbitrage hypothesis, which holds in the present context by virtue of
condition (Z.2). For general no-arbitrage criteria in terms of consistent price
systems and related notions see [28], [37] and [55].

12.8.3 An Example: A Currency Market Without Short Sales

Consider a financial market in which n currencies i = 1, 2, ..., n are traded. For
each t = 1, 2, ..., N , we are given an Ft-measurable n× n matrix (µij

t (ω)) with
µij

t > 0 and µii
t = 1. The numbers µij

t represent the exchange rates of the
currencies (including proportional transaction costs). For one unit of currency
j, at time t, one can obtain µij

t units of currency i. Admissible portfolios ht at
time t = 0, ..., N are Ft-measurable vector functions ht(ω) with values in Rn

+.
A portfolio of currencies ht−1 = (h1

t−1, ..., h
n
t−1) can be exchanged to a portfolio

ht = (h1
t , ..., h

n
t ) at time t in a random situation ω if and only if there exists

a nonnegative Ft-measurable n×n matrix (dji
t (ω)) (an exchange matrix ) such

that
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hi
t−1(ω) ≥

n∑
j=1

dji
t (ω), 0 ≤ hi

t(ω) ≤
n∑

j=1

µij
t (ω)dij

t (ω). (12.88)

The set of all such portfolio pairs (ht−1, ht) will be denoted by Kt. Here,
dji

t (i �= j) stands for the amount of currency i converted into currency j. The
amount dii

t of currency i is left unexchanged. The first inequality in (12.88) is a
balance constraint for the currency i: one cannot exchange more of it than one
has at time t − 1 (no borrowing is allowed). The second inequality in (12.88)
says that, at time t, the ith position of the portfolio cannot be greater than the
sum

∑l
j=1 µ

ij
t d

ij
t obtained as a result of the exchange.

We define m0 = mN = n, Vt = Xt (t = 0, N), W0 = {(v0, h0) ∈ X0 × X0 :
v0 ≥ h0} and WN = {(hN , vN ) ∈ XN ×XN : hN ≥ vN}.

The following theorem contains results regarding the currency market
model.

Theorem 12.8.2. In the model under consideration, strictly consistent price
systems are sequences {q0, p0, ..., pN , qN} such that qN > 0, q0 ≥ p0, pN ≥ qN
and p0, ..., pN (pt ∈ Xt) is a strictly positive supermartingale satisfying the
following condition:

(π) For every t = 1, 2, ..., n, there exists a strictly positive Ft-measurable
vector function πt(ω) such that

µij
t p

i
t ≤ πj

t , t = 1, 2, ..., N, i, j = 1, ..., n,

and E(πt | Ft−1) ≤ pt−1.
A contingent claim vN ∈ VN can be hedged starting from an initial endow-

ment v0 ∈ V0 if and only if Ep0v ≥ EpNw for any strictly positive super-
martingale p0, ..., pN satisfying condition (π).

The model considered in this section is a version of the one proposed by
Kabanov and Stricker [36], [37] and [38] (in the Kabanov–Stricker setting, short
sales and borrowing are allowed). The model we deal with and its versions
are examined in detail in [28], where a proof of Theorem 12.8.2 is given. The
paper [28] deals with a more general framework, where portfolio positions are
not supposed to be necessarily positive (short sales are not ruled out). The
paper analyzes various examples that can be included into that setting, in
particular, examples where transaction costs are specified by (12.26). Although
the framework in [28] is more general, the approach and the structure of the
results are similar to those in the present survey, a key role being played by
the von Neumann–Gale model.
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Appendix

A The Kuhn–Tucker Theorem

Let X be a convex set in Rm, F (x) a real-valued concave function on X , and
G (x) a mapping of X into Rk such that each coordinate Gi (x) (i = 1, ..., k) of
the vector G (x) is a concave function. Consider the maximization problem:

(M) Maximize F (x) on the set X subject to G (x) ≥ 0.

Assume that the following condition holds (Slater’s constraint qualification):

(S) There is x̌ ∈ X such that G(x̌) > 0.

Theorem A.1. Let x̄ be a vector in X satisfying G (x̄) ≥ 0. Then the following
assertions are equivalent. (i) The vector x̄ is a solution to problem (M). (ii)
There is a vector p ∈ Rk

+ such that

F (x) + pG (x) ≤ F (x̄)

for all x ∈ X.

For a proof of the above theorem under assumption (S), see, e.g., [40, The-
orem 8.3.1]. Condition (S) is not needed if the functions F (x) and Gi (x)
(i = 1, ..., k) are affine and the set X is polyhedral. This follows from the
duality theory for linear programming (e.g., [47, Section II.9]).

B Cones and Separation Theorems

A cone X in Rn is called proper if X ∩ (−X) = {0}.

Theorem B.1. Let X and Y be closed cones in Rn such that X∩(−Y ) = {0}.
Then X+Y is a closed cone. If, additionally, X and Y are proper, then X+Y
is proper.

This theorem is a consequence of [54, Corollary 9.1.3]. The next result can
be deduced from [54, Corollary 11.4.2].

Theorem B.2. Let X and Y be closed cones in Rn such that X ∩ Y = {0}.
Let Y be proper. Then there exists l ∈ Rn such that lx ≤ 0 for all x ∈ X and
ly > 0 for all nonzero y ∈ Y .
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C Positive Matrices

Let D be an n× n matrix with nonnegative elements.

Theorem C.1. Let the matrix Dm be strictly positive for some m ≥ 1. Then
there exists a unique vector x̄ ∈ Rn

+ such that

λx̄ = Dx̄, |x̄| = 1,

for some λ > 0.

The vector x̄ (resp. the number λ) is called the Perron–Frobenius eigenvector
(resp. eigenvalue) of the matrix D. This result constitutes the key content of
the Perron–Frobenius theorem. For its proof and a proof of the following fact
see, e.g., [47, Sections II.7 and II.8].

Theorem C.2. Let x̄ be the vector described in Theorem C.1. Then x̄ > 0 and
for any x ∈ Rn

+, x �= 0, we have

lim
k→∞

Dkx

|Dkx| = x̄.
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13. Equilibrium Dynamics with Many Agents

Robert A. Becker
Department of Economics, Indiana University, Bloomington, IN, USA

13.1 Introduction: Ramsey’s Steady State Conjecture

Frank Ramsey’s seminal article [90] on optimal capital accumulation is now
widely regarded as the foundation of macroeconomic dynamics.1 The original
model is cast as an optimal saving problem to be solved by an omniscient
central planner acting over an infinite horizon to maximize discounted utility
subject to the economy’s resource constraints and given initial endowment of
capital goods. Ramsey’s planner operates in a deterministic world. Modern
researchers have reinterpreted this model as one of intertemporal equilibrium.2

An infinitely-lived representative consumer takes the place of Ramsey’s central
planner. This household is assumed to maximize lifetime discounted utility
over the infinite horizon with perfect foresight regarding the time paths of all
relevant prices. Equilibrium profiles satisfy a materials balance constraint at
each time so that demand for goods equals their supply at each instant and in
addition, the production sector’s profits are maximized.3

Ramsey did not focus on an equilibrium interpretation of his optimal saving-
accumulation framework. However, in the latter part of his paper he did formu-
1 Ramsey begins his paper with a detailed analysis of an optimal saving-accumulation

problem when the planner does not discount future utilities. He criticizes the
idea of the planner discounting future utilities as one of a failure of imagination.
However, he also articulates a fully developed optimal saving-accumulation model
for the discounted case and it is this version of the theory that has proven so
useful in modern macroeconomics. Modern advanced macro texts emphasizing the
Ramsey model include Azariadis [3], Farmer [45], and Ljungqvist and Sargent [69].

Ramsey’s contributions to mathematics and philosophy are found in [91]. A
presentation and assessment of his work in those areas as well as economics can be
read in [94]. Both references include biographies of Ramsey’s short life.

2 The connections between Ramsey’s theory and alternative representations of in-
tertemporal equilibrium for representative agent models are detailed in [8].

3 It turns out in the specifications studied in this chapter that present value profits
are maximized if and only if current value profits are maximized at each time.
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late a model of stationary equilibrium — one with all variables constant over
time. That model involved several types of infinitely lived households differen-
tiated by their fixed rates of time preference. He conjectured that the model’s
solution would take the form of having the most patient consumer enjoying
the largest sustainable consumption and in possession of the economy’s capital
stock while the remaining households consumed only at the minimum level nec-
essary to sustain their lives.4 This two-class solution suggested a very uneven
distribution of consumption and wealth in a stationary state — a distribution
entirely driven by the economy’s fundamental taste and technology parameters.

Ramsey did not spell out the details of the equilibrium model or exactly
what is meant by an equilibrium in his two-class theory. The purpose of this
chapter will be to survey one interpretation of Ramsey’s multi-agent model,
solve for the steady state distribution and examine the models’ dynamics within
well-specified theories of intertemporal equilibrium.5 The resulting analysis will
show that there are fundamental differences between the dynamics of the repre-
sentative agent model and one with heterogenous households. Not only will the
long-run distribution of income and wealth differ from the representative agent
outcome, but so will the dynamics. Indeed, the convergence of the economy
to the long-run steady state from arbitrary initial conditions characteristic of
Ramsey’s optimal accumulation – representative agent equilibrium model will
only hold for some specifications of preferences and technology in the multi-
agent setup. Complicated dynamics at the aggregate level can arise even with
very unequal income and wealth distributions evolving over time. The dynamic
properties of the heterogenous agent story are thus richer than those of the
representative agent model even when the aggregate economic variables tend
over time to their long-run steady state values.

13.2 Impatience and the Distribution of Wealth

Ramsey’s conjecture that with households having different rates of impatience,
the steady state equilibrium would have very unequal income and wealth dis-
tributions was not a particularly new idea at the time his paper was published.
The notion that time preference differences operating in a market economy
might promote long-run differences in income and wealth can be found in the
writings of such eminent economists as John Rae in 1834 [89] and in several
books by Irving Fisher beginning with his great work on the rate of interest
first published in 1907 [46]. This literature is reviewed next along with Stiglitz’s
[101] “descriptive” model of wealth distribution. His framework does not specify
explicit maximizing behavior for the consumption-saving decisions undertaken
4 Ramsey’s savers could achieve a state of bliss either by holding the maximum

possible capital stock — capital saturation, or by consuming at a level giving rise
to utility saturation.

5 This chapter reviews only discrete time models. It also omits extensions to inter-
national trade as found in [4], [104], and [107].
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by the economy’s actors. However, it is useful to review his basic results and
comment on how they change when optimizing behavior is imposed on the
model.

13.2.1 Rae’s and Fisher’s Time Preference Theories

Formalization of the idea of a consumer’s rate of time preference or rate of
impatience begins to take shape in John Rae’s New Principles of Political
Economy [89] published in 1834.6 He was interested in understanding the ac-
cumulation of wealth in a society and what drove some individuals to save and
others to dissave. He argued that there were differences in the strength of the
desire to accumulate among the members of a society. He states that members
of a society whose desire to accumulate is smaller than the society’s average
are gradually reduced to poverty.7 People with an above average desire to ac-
cumulate gradually acquire property. Funds are redistributed from the more
impatient consumers to the less impatient ones.

Rae’s ideas about the strength or desire to accumulate are formalized in Irv-
ing Fisher’s monumental writings on the theory of interest. There, more precise
notions of time preference are developed and the nature of market interactions
between consumers are spelled out in detail. It is clear that Fisher intended his
work to apply to the question of distribution of capital and income possessed by
the different members in a society.8 He argues that individuals with relatively
high rates of impatience will transfer their wealth to less impatient consumers
through capital market transactions. The relatively impatient people borrow
for current consumption and draw down their capital while the more patient
ones defer some of their consumption and accumulate capital. For Fisher, this
process, once started, is both gradual and irreversible. The spendthrift reduces
his capital to that which is only represented by his own person (i.e. his labor).
It cannot be stressed enough that in Fisher’s theory it is access to markets
for loans that drives the redistribution process in a population differentiated
by their underlying rates of impatience. This point is reenforced in his later
6 A detailed summary of the classical writings on time preference by Rae and Fisher

(among others) can be found in [49]. That article also offers a broader assessment
and critique of discounting in intertemporal models.

7 See [89], Chapter 9 (in particular, page 199).
8 This goal is clearly stated in his 1907 book, The Rate of Interest [46]. Chapter 12 is

devoted to the role of interest in economic theory. Fisher argues that the functional
distribution of income separated into the categories interest, rent, wages, and prof-
its as understood in his time lead to important misunderstandings regarding the
meaning of interest. Throughout Fisher’s writings on interest and capital there is
the theme that a society’s income stream is the fundamental object which leads,
through the rate of interest, to its capitalization. Hence, interest is not a part, but
the whole of income in his view. It includes wages, profits, and rentals. Rejecting
the traditional view of interest held in his time, Fisher refocuses on questions of
personal income distribution. This leads him to his time preference based ideas
surveyed in this chapter.
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revision published as The Theory of Interest [48] in 1930.9 It is important
to note that Fisher also thought there would be factors working against the
redistribution of income and wealth (e.g. habit formation). However, Fisher
clearly argues that differences in rates of time preference are the driving force
in redistribution over time even in the presence of dampening factors.

Fisher clearly thought the instability of an equal distribution of income
and wealth owing to time preference differences across individuals was a fun-
damental theoretical result. He even included it in his Elementary Principles
of Economics [47], published in 1912.10 Differences in individuals’ thriftiness
would undo any attempt to establish an equal distribution of income and wealth
so long as consumers had access to capital markets where tomorrow’s income
can be exchanged for today’s income and vice versa. The hypothesis that time
preference differences promote unequal distributions of income and wealth is
a recurring and basic theme in the classical writings on interest, income, and
capital theory.

Whether Ramsey was aware of these precursors or not, is in the end, irrel-
evant. His classic paper proposed a model of savings and accumulation for a
representative agent and hinted strongly at what form it might take when it is
extended to an economy of many agents. As already noted, I will offer a mod-
ern formulation of Ramsey’s model where differences in rates of impatience
drive the long-run unequal distribution of income and wealth. The analysis
also shows us why an equal distribution of income is unsustainable in such
economies. Thus, the model developed in this chapter lays out a consistent
framework in which to address the classical questions about distribution first
raised by Rae, Fisher, and Ramsey.

13.2.2 The Solow-Stiglitz Convergence Hypothesis

Robert Solow’s influential model of economic growth [96] described an economy
whose technology permitted smooth substitutability of capital and labor along
with diminishing marginal returns to each factor. Accumulation was driven by
having households consume a fixed proportion of their annual incomes and save
the remainder. A form of exogenous technical change was also imposed on the
model so that a balanced growth path was possible where all the economy’s
consumption and capital stocks grew at the same rate. Solow showed that from
arbitrary initial conditions that the fixed saving propensity assumption led the
economy to evolve towards the balanced growth path.11 This implied that over
9 See [48], pages 338-340.

10 Modern macroeconomics principles text with one exception do not address the
role of different rates of time preference in a population as a factor in determining
an economy’s income and wealth distribution. The lone exception is the text by
Klotz [67], which is a dedicated macro text where all the models are built on the
principles derived from Ramsey’s theory of optimal accumulation.

11 Put more precisely, the economy’s capital stock and flow of consumption evolve so
that they converge to the balanced growth path of capital and consumption as the
time variable tends to infinity.
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the very long-run, two economies differing only in their initial capital stock
sizes, would converge to the same balanced growth path. This result has since
been dubbed the convergence hypothesis. The aggregate capital stock is even-
tually arbitrarily close to the balanced growth path of capital. Similarly for the
economy’s consumption flow. It is important to stress that Solow’s model did
not posit explicit maximizing behavior for finding private agents’ consumption
and saving decisions. By way of contrast, Ramsey’s model of optimal accumu-
lation, suitably modified to share the same technological setup as in Solow’s
paper, also results in convergence to the balanced growth path (or steady state
in case exogenous technical change is not assumed within the model’s struc-
ture) provided all households are identical, implying there is a representative
agent. This convergence is a direct consequence of the representative consumer
– central planner’s optimizing consumption-savings behavior. It does not hold
for some specifications of the heterogeneous agent theory.

The Solow model implicitly assumed all agents were identical. In an impor-
tant and often overlooked paper, Stiglitz [101] took Solow’s model to another
level by analyzing how different saver’s wealth and income evolved. Stiglitz fol-
lowed Solow by not assuming private agents solved optimal savings problems
to determine their consumption-savings paths. Stiglitz developed a variety of
models in which the multiplicity of agents, each of whom follows his or her own
private decision rule, leads to the economy’s approach to a balanced growth
solution. The resulting distribution of income and wealth was equal in the
limit as those variables approached their stationary levels. Stiglitz’s simplest
model considers two private agents who differ only in their initial endowment
of capital stocks. Both agents are assumed to have the same constant marginal
propensity to consume (or equivalently, save). That is, each household saved the
same proportion of his or her income as the other household.12 Stiglitz’s savers
received income from supplying labor (assumed homogeneous and perfectly in-
elastic) and renting capital at the going competitively determined rental rate.
If all savers have identical constant marginal propensities to save and all mar-
kets clear, then Stiglitz shows the model can be aggregated in such a way that
the aggregate capital stocks follow the dynamics of the analogous Solow model.
Under these conditions, the aggregate capital stocks converge to a stationary
state, just as in Solow’s model. This also implies that the households’ incomes
and wealth are identical in the steady state.13 Stiglitz showed this basic result
was robust to many other exogenous savings specifications. He also examined
the evolution of individual wealth and income over time as the economy ap-
proached its stationary state.14

12 Stiglitz assumed savings functions were affine functions of income. In the main text
I refer to the linear case (Stiglitz’s b = 0). This leads immediately to Solow’s model
upon aggregation across agents.

13 Bliss [26] develops the links between Solow’s, Stiglitz’s and Ramsey’s theories of
the long-run interest rate’s determination.

14 Tsuji [103] extends Stiglitz’s work by examining the evolution of various income
inequality measures along a dynamic equilibrium path.
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The Solow-Stiglitz convergence result yielding an equal distribution of
steady state income and wealth turns out to not be realized when explicit
optimizing agents are admitted. This is a fundamental difference between his
theory and ones based on Ramsey’s optimal growth model with many optimiz-
ing, forward-looking, agents.15.

13.2.3 General vs. Temporary Equilibrium

Ramsey’s steady state conjecture was studied by Rader [85], [86], and [87]. He
examined exchange economy versions of this theory in [85] and [87]. In those
cases, he assumed that an agent could purchase any consumption sequence
whose present value did not exceed the agent’s initial wealth level. Time-dated
consumption goods were purchased in this market forward and all market trades
took place at time zero. He showed the consumers with the lowest fixed (and
exogenous) rates of time preference emerged as the dominant consumers in
the long-run. Each more impatient consumer’s consumption approached zero
asymptotically as time tended to infinity. Their consumption levels were negli-
gible. The least impatient individuals enjoyed (in the limit) all the economy’s
available consumption goods. In [86] this result was reenforced in an intertem-
poral general equilibrium model with production.16 Again, the most patient
consumers dominated in the long-run while the more impatient ones saw their
consumption streams approach zero.

Bewley [23] proposed an integration of Walrasian equilibrium analysis and
modern turnpike theory. He assumed strictly concave production processes and
showed a type of dominant consumer emerged in the limit as time tended to
infinity whenever households had differing fixed and exogenous discount rates.
Coles elaborated on this result in [35] and [36]. His contributions included
extending Bewley’s model to constant returns to scale and also proving a new
variant of the turnpike theorem based on Yano’s paper [106]. Once again, the
dominance of the lowest impatience consumers is shown in a fully articulated
general equilibrium model. The Rader, Bewley, and Coles models have a crucial
common structure. The budget constraint facing each consumer is stated as
a single constraint limiting time dated consumption streams to have present
value not larger than the consumer’s initial wealth (which itself is endogenously
determined in an equilibrium path). Thus, these authors have solved Ramsey’s
problem provided one essentially allows consumers to borrow and lend subject
to the constraint that their consumption’s present value does not exceed their
wealth. The impatient folks are borrowing against their wealth and repaying
their loans later while driving their future consumption towards zero.17 The
15 This observation is due to Bliss [27]
16 See Rader’s Chapter 6 for details.
17 Bewley actually proves a sharper result. The consumption of the nondominant

consumers is eventually zero. That is, their consumption vanishes after some finite
time. Bewley’s proof is based on the assumption that a consumer’s marginal utility
of consumption (at any date) is uniformly bounded. This rules out the standard iso-
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long-term consumption distribution of these equilibrium models is also a feature
of their parallel optimal growth models with many consumers.18

Duran and Le Van [43] and Le Van and Vailakis [68] sharpened the results
found by Bewley and Coles by focusing on the properties of a one-sector model.
Duran and Le Van [43] prove an equilibrium existence theorem for a heteroge-
neous agent one-sector model.19 Le Van and Vailakis [68] demonstrate existence
of an equilibrium as well as derive some qualitative properties of the aggregate
capital stock. They show it converges to a limit, but that limiting stock is not a
steady state. The consumption levels of the more impatient consumers in their
model converge to zero, just as in Rader, Bewley, and Coles’ stories.

The general equilibrium interpretation of Ramsey’s model given above cap-
tures one view of his notion that the relatively impatient people are driven
towards the minimum consumption to sustain life. However, that minimum is
zero in these models. Hence, each of the more impatient household’s steady
state consumption is zero.20 Those agents basically disappear from the econ-
omy’s demand side, but continue supplying their labor services. In effect, they
are so indepted that they must use all of their labor income to support their
debt and can never consume at all.21

The emergence of a dominant consumer result in these general equilibrium
models is certainly consistent with the underlying logic and market structure.
It is also unsatisfying.22 Why wouldn’t the relatively impatient agents threaten

elastic utility functions favored in the optimal growth literature. Coles makes the
same assumption in his work. One implication of this condition is that a steady
state where the relatively impatient receive nothing corresponds to a weighted
welfare maximization problem (for locating a Pareto optimal allocation) in which
their welfare weights are zero..

18 More recently, Hadji and Le Van [57] explored the existence of equilibrium based
on Negishi’s weighted welfare optimization idea as well as the asymptotic stability
of the model’s modified golden-rule. This work, as in the earlier paper by Dana and
Le Van [37] analyzes the ways in which the initial capital stocks and changes in
the initial distribution of those stocks affect the welfare weights. Lucas and Stokey
[70] discuss the weighted welfare approach with recursive utility in an exchange
economy setup, while Dana and Le Van ([37], [38], and [39]) work out the properties
of Pareto optimal growth in a welfare weighted model. Finally, specialized results
for two-sector models have been derived by Ghiglino and Olzak-Duquenne [55] and
Ghiglino [54].

19 Their proof is built to simplify one for the representative agent case given by
Aliprantis, Border, and Burkinshaw [2]. Existence proofs for one-sector models
(and exchange economies) with common discount factors are also given by Kehoe
([61], [62]), Kehoe and Levine ([63], and Kehoe, Levine and Romer ([64], [65], and
[66]). The works by Kehoe, et al also study on the determinacy of equilibrium.

20 This turns on the assumed property of bounded marginal utility of consumption
in Bewley and Coles’ papers.

21 Coles ([35],[36]) does a nice job of formally elaborating this idea in the general
equilibrium context.

22 Zero is a special number. Zero consumption literally means no consumption. It
is a fundamental assumption in these general equilibrium models that zero is a
possible consumption stream in the consumer’s consumption set. Of course, real
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to withhold their labor unless their debts were renegotiated? The equilibrium
need not be time consistent. This critique led me to formulate an alternative
equilibrium concept for these general equilibrium models based on the theory
of the core for cooperative games.23 The Ramsey equilibrium model based on
Becker [5] imagines a different solution to this problem. The market structure
in the general equilibrium case is one of complete forward markets. If this
structure is broken so that agents cannot borrow against their future labor
income, then it might be possible to generate a different steady state solution
— one where agents without capital received payment for their labor services
and could consume at that level indefinitely in the economy’s steady state. This
leads to a model with an incomplete market structure that is represented by a
sequence of budget constraints, one for each time. A nonnegativity constraint
on individual capital stock holdings represents this limitation on borrowing.24

Agents are otherwise allowed to trade in a sequence of spot markets where
they increase or decrease their capital holdings subject to this nonnegativity
constraint. Bewley [23] termed this a temporary equilibrium framework. I will
show this model exhibits the basic feature of Ramsey’s stationary state with
the proviso that consumers without capital still consume their wage income.
This Ramsey equilibrium model is presented in Sections 3-5.

13.2.4 Mankiw’s Savers-Spenders Model

The Ramsey equilibrium model turns out to have an interesting application. It
can supply a microeconomic foundation for Mankiw’s [72] savers-spenders the-
ory of fiscal policy. He argues that the standard optimal growth model, suitably
reinterpreted as a representative agent competitive equilibrium model, cannot
serve as an adequate theory for the analysis of fiscal policy. Likewise, he argues
that the standard overlapping generations model fails to provide a suitable
foundation for fiscal policy analysis.25 These models fail to supply theoretical
explanations of three stylized facts. First, he notes that consumption smoothing

people cannot live on nothing at all albeit they might survive for some time on
extremely low or subsistance rations.

23 This recursive core concept is developed in [6] and [10].
24 This formulation of the constraint is called by some writers an ad hoc borrowing

constraint. The natural debt limit is the weaker requirement that an individ-
ual’s capital holdings are never smaller at any time than the present discounted
value of the wages to be received from that time on. The ad hoc constraint pre-
vents households from ever borrowing against their discounted future stream of
wage payments. See Ljungqvist and Sargent [69] for a detailed discussion of alter-
native forms of borrowing constraints. They also emphasize the distinction between
a binding constraint and one that does not bind. The former situation arises only
when the constraint’s Lagrange multiplier or shadow price is positive along a house-
hold’s optimal program. They show by examples that there are cases where the ad
hoc constraint binds and others when it does not, yet the household’s capital is
zero.

25 See [41] for a complete treatment of the overlapping generations model and its
public finance applications.
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is far from perfect. Aggregate consumption spending tracks current income far
more than if households borrowed or lent capital to smooth their consumption
streams. One of his interpretations for this observed behavior is that a sub-
stantial portion of the population faces binding borrowing constraints. These
people just hold enough capital to buffer their consumption against bad income
shocks. He notes that these individuals possess high discount rates and often
face borrowing constraints26 Second, a review of empirical income and wealth
distributions in the U.S. implies, according to Mankiw, that wealth is more
concentrated than income. Indeed, he argues that the lowest two quintiles of
the U.S. income distribution account for 15 percent of the economy’s income
and hold 0.2 percent of the country’s wealth. He infers from this observation
that many households lack the financial resources to smooth their consumption
streams over time, as assumed in the standard models of fiscal policy. Third,
he observes that based on U.S. data, only a small proportion of the population
has sufficient wealth to provide their descendants with an inheritance. These
individuals save beyond the levels necessary to smooth their consumption pro-
files. The vast majority of the population leaves minimal or no bequests. Their
saving lacks an altruistic motive.

Mankiw concludes that the standard infinitely-lived representative agent
theory and the overlapping generations model are inadequate to address fiscal
policy in dynamic macroeconomic theory. His proposed alternative microeco-
nomic foundation for fiscal policy analysis is based on a “particular sort of
heterogeneity.”27 He argues that an appropriate model should include both
low-wealth households who fail to smooth their consumption over time and
high-wealth families who smooth consumption not only from year-to-year, but
also from generation to generation. Thus, the model should include consumers
who plan ahead for themselves and their descendants (via bequests), while
others live paycheck-to-paycheck.

Mankiw’s theory divides the household sector into two populations. The
first, the savers, who have an operational bequest motive and infinite horizons,
and second, the spenders, who consume their entire after-tax labor income in
every period. Mankiw thinks of the savers as individual households solving
infinite horizon Ramsey styled optimization problems and spenders as ones
following simple rules-of-thumb consumption decisions that result in no savings.

The Ramsey equilibrium model surveyed here provides one possible mi-
croeconomic foundation for Mankiw’s theory. The major difference is that the
spenders in my model also solve infinite horizon optimization problems, but
choose to run their assets down to zero in the steady state and along at least
some important realizations of the model’s transition dynamics. An example
of the spenders-savers theory is given in Section 5.28

26 See ([72], p. 121).
27 The basic arguments against the standard theories and Mankiw’s alternative story

are found in ([72], p. 121).
28 I do not use the model to address fiscal policy analsysis as my focus lies on the

underlying properties of the economy’s dynamics without an explicit government
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13.3 The Ramsey Equilibrium Model

The Ramsey equilibrium model is described below. The basic model is devel-
oped for the case of agents with time additively separable utility functions with
fixed discount factors. The technology is specified by a one-sector model with
a single all purpose consumption–capital good.

The general complete market competitive one-sector model treats budget
constraints as restricting the present value of an agent’s consumption to be
smaller than or equal to the agent’s initial wealth defined as the capitalized
wage income plus the present value of that person’s initial capital. This allows
us to interpret the choice of a consumption stream as if the agent is allowed to
borrow and lend at market determined present value prices subject to repay-
ing all loans. Markets are complete — any intertemporal trade satisfying the
present value budget constraint is admissible at the individual level. The Ram-
sey equilibrium model changes the budget constraint from a single one reckoned
as a present value to a sequence, one for each period. Agents are forbidden to
borrow against their future labor income, so they cannot capitalize the future
wage stream into a present value. Markets are incomplete. It becomes crucial
to track the evolution of each person’s capital stock. This is unnecessary in
the complete market models when all values entering the budget constraint are
present values.

The heterogeneous discount factor, incomplete market economy, will differ
in another important respect — the operation of a borrowing constraint in the
individual household problems also breaks the possibility of an equilibrium al-
location arising as the economy’s optimal allocation. The welfare maximization
approach favored in the complete market theory is inapplicable.

13.3.1 The Basic Model and Blanket Assumptions

Time is taken in discrete intervals, t = 1, 2, . . ..29 Upper case letters denote
real(vector)-valued sequences; the corresponding terms of the sequence are ex-
pressed as lower case letters, e.g. X = {xt}∞t=1. The real-valued sequence X is
nonnegative if each component is nonnegative, that is, xt ≥ 0 for each t.

There are H ≥ 1 households indexed by h = 1, . . . , H. There is a single
commodity available for consumption or investment at each time. At time zero,
households are endowed with capital stocks kh ≥ 0. Put k =

∑
h k

h and assume
k > 0. Let cht , x

h
t denote the consumption and capital stock of household h at

time t. Household h has felicity function uh (also known as the temporal utility

sector. Obviously, a full analysis of public policy within my version of the spenders-
savers theory would be of some interest. Boyd [29] illustrates the possibilities for
the Ramey version of Mankiw’s model in a capital tax incidence problem.

29 Ramsey [90] formulated his model in continuous time. The model presented here is
cast in discrete time. This turns out to have some technical advantages over con-
tinuous time modeling when developing general existence of equilibrium theorems
and analyzing the dynamics of particular equilibrium paths.
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function or single-period return function); cht is the argument of uh. Household
h discounts future utilities by the factor δh with 0 < δh < 1. Hence, the
household’s lifetime utility function is specified by Uh(Ch) =

∑∞
t=1 δ

t−1
h uh(cht ).

I assume (put R+ = [0,∞) and R++ = (0,∞)):
Assumption I: For each h, uh : R+ → R is C(2) on R++ with u′h >

0, u′′h < 0, and limc→0 u
′(c) = ∞.

The model has common discount factors when all agents’ discount factors
are equal, and heterogeneous discount factors otherwise. The major focus in
this chapter is on the heterogeneous case, so it is formalized in the next as-
sumption. The major results only require two types — one household is the
most patient and the others are less patient. This is expressed by assuming
the first household’s discount factor is larger than all the other households’
discount factors. The first household is the most patient agent and the others
are said to be less patient than the first one. Assumption II orders households
from the most patient to the least patient.

Assumption II: 1 > δ1 > δ2 ≥ · · · ≥ δH > 0.

Production takes place using a single capital good. The productive tech-
nology turns labor and capital goods into a composite good that can be ei-
ther consumed or saved as next period’s capital input. The amount of labor is
fixed in this economy (there will be one unit of labor services per household
and all labor services are assumed to be identical). The technology is sum-
marized by a production function. The production function is denoted by f ;
let y = f(k) denote the compositive good y produced from a fixed amount
of labor, together with capital input k. Capital is assumed to depreciate com-
pletely within the period.30 Hence, the model is formally one with circulating
capital that is consumed within the production period. The production func-
tion is derived from a neoclassical production function, F (k, l), where l is the
labor input. This function is positively homogeneous of degree one, is con-
tinuous and concave on its domain, increasing in each variable separately, at
least twice continuously differentiable on the interior of its domain, and satisfies
F (0, l) = F (k, 0) = F (0, 0) = 0 for all positive l and k. The production function
f is derived from F according to the formula: f(k) = F (k,H) where l = H is
the fixed labor input. The formal properties of f are recorded as Assumption
III.

Assumption III: f : R+ → R++, f(0) = 0, f is C(2) on R++, f
′ >

0, limx→0 f
′(x) = ∞, limx→∞ f ′(x) = 0, and f ′′ < 0.

The conditions f ′(0+) = +∞ and f ′(∞) = 0 are the production function’s
Inada conditions. This assumption implies there is a maximum sustainable
30 This assumption simplifies the presentation. Depreciated at a fixed rate is easily

incorporated into the productive technology.
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capital stock, denoted bm, satisfying bm = f(bm) > 0. If the initial aggregate
capital stock k is smaller than bm, then all nonnegative sequences of consump-
tion and capital satisfying the balance condition, ct +kt = f(kt−1) for all t with
k0 = k, are bounded from above by bm.

Assumptions I-III are blanket assumptions assumed for the remainder of
this survey and sometimes referred to as (AI)-(AIII).

If H = 1, then the Ramsey equilibrium model coincides with the standard
optimal growth problem. For that reason, the single household version of the
Ramsey equilibrium model is sometimes called the representative household
model. The fundamental welfare theorems tell us that an allocation maximizes
the representative agent’s utility function if and only if it is a competitive equi-
librium allocation. This will not hold in the multi-agent Ramsey equilibrium
model due to the borrowing constraint.

The classical view of capital accumulation was that a growing economy
would exhibit an increasing wage bill and a declining interest rate (which is the
rental rate for capital goods in one sector models). The one household version
of the Ramsey equilibrium model turns out to be the major example of this
portrait of capital accumulation that Bliss [25] called the Orthodox Vision of
Capital Theory. Some specifications of the Ramsey equilibrium model will also
exhibit this property, but others will not.

The Ramsey Equilibrium model is formally described by the households’
optimization problems, the production sector’s profit maximization problem,
and the relationships between consumers and the production process.

13.3.2 The Households’ Problems

Each infinitely-lived household is supposed to perfectly anticipate the future
course of rental and wage rates. Competitive markets operate at each date,
so households’ consumption-savings decisions do not, by themselves, influence
prices. However, prices will be set in equilibrium to clear all markets.

Let {1 + rt, wt} be a sequence of one period rental factors and wage rates,
respectively. The sequences {1+rt, wt} are always taken to be nonnegative and
nonzero. Households are competitive agents and perfectly anticipate the profile
of factor returns {1 + rt, wt}. Given {1 + rt, wt}, h solves

P (h) : sup
∞∑

t=1

δt−1
h uh(cht )

by choice of nonnegative sequences {cht , xh
t } satisfying xh

0 = kh and

cht + xh
t = wt + (1 + rt)xh

t−1, (t = 1, 2, . . .). (13.1)

The market structure of this model requires capital assets to be nonnegative
eat each moment of time and that agents without capital cannot borrow against
the discounted value of their future wage income. This borrowing constraint
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binds for the nondominant consumers in a stationary equilibrium. These indi-
viduals might be tempted to borrow against their future labor income if they
were allowed to do so. If this occurred, their consumption would approach zero
as time converges to infinity. Indeed, this is the type of outcome for equilibria
in the exchange economy modeled by Rader [87],[85], and [86], and the gen-
eral equilibrium capital theoretic models appearing in Bewley [23], Coles [35],
Duran and Le Van [43], and Le Van and Vailakis [68] as noted in Section 2.

The no arbitrage necessary conditions for {cht , xh
t } to solve P (h) are cht > 0

and
δh(1 + rt+1)u′h(cht+1) ≤ u′h(cht ) (13.2)

with equality whenever xh
t > 0. This condition tells us the household cannot

improve its utility by a one-period unreversed arbitrage. Suppose that the given
consumption and capital sequences are optimal for the expected rental and
wage profiles. Then, this household cannot increase utility by undertaking the
following activity: at time tmarginally increase the capital stock to be carried to
time t+1. This costs the household u

′
h(cht ) utils on the margin. Now invest this

extra capital to earn the total rental income 1+ rt from the production sector.
Convert this additional income into consumption at t+ 1 worth u

′
h(cht+1) utils

on the margin. This implies the marginal benefit of this incremental investment
measured at t+1 is (1 + rt)u

′
h(cht+1). Now discount this by the utility discount

factor δh to place the marginal benefit at time t + 1 and marginal cost at
time t in comparable utility units. The marginal benefit cannot exceed the
marginal cost along an optimal solution to the household’s problem. This is
formally expressed by the inequality (13.2).31 If the capital stock owned by
this household at time t happens to be positive, then this arbitrage calculation
can be repeated for an increase in consumption at time t paid for by lower
consumption at time t+ 1. In this case, the inequality in (13.2) is reversed and
the Euler equation holds:

δh(1 + rt+1)u′h(cht+1) = u′h(cht ). (13.3)

The corresponding transversality condition is

lim
t→∞ δt−1

h u
′
h(cht )xh

t−1 = 0. (13.4)

This condition expresses the unprofitability of open-ended or unreversed arbi-
trage opportunities. That is, the household acquires an extra unit of capital at
time t and never reverses that position — the marginal unit of capital is held
forever. This cannot increase utility if a program is optimal.32

31 The fact that the no arbitrage condition takes the form of an inequality is another
manifestation of the borrowing constraint.

32 See Becker and Boyd [8] Chapter 4 for a detailed development of this interpretation
of the transversality condition.
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13.3.3 The Production Sector’s Objective

Production takes place with a one period lag — capital inputs from t− 1 com-
bined with labor supplied at time t produce goods available for consumption or
additional capital accumulation during time t. This type of production process
is called a point input–point output production activity.

The production sector is characterized by the one sector neoclassical pro-
duction function f ; inputs precede outputs by one period. Capital is the only
variable factor. The technology’s properties are described by Assumption III.

All the intertemporal decisions are taken in the household sector. The as-
sumption of a point-input point-output production function and a competitive
rental market implies the maximization of discounted profits is equivalent to
solving the static or myopic problem defined below for each time period.

Producers are supposed to take the rental rate as given and solve the fol-
lowing myopic profit maximization problem P (F ) at each t:

P (F ) : sup[f(xt−1) − (1 + rt)xt−1]

by choice of xt−1 ≥ 0. The residual profit is treated as the wage bill. It is shared
equally by the identical households as wages — production is worker owned.

If 0 < 1+rt < ∞, then (AIII) implies there is a unique positive stock Kt−1

which solves P(F) at each t; clearly

f ′(Kt−1) = 1 + rt; (13.5)

furthermore, the corresponding {wt} defined by

Hwt = f(Kt−1) − (1 + rt)Kt−1 (13.6)

is positive. I am using the lower case w as the current value of the agent’s wages,
whereas it represented a present value before. This should cause no confusion
as the context is clear.

The expression for the wage bill can also be viewed as a function of the
rental rate — invert (13.5) to solve for the capital stock in terms of the rental
rate and substitute this into (13.6). The result can be summarized with the
function φ(1 + rt), which expresses the per-capital wage as a function of the
prevailing rental factor, 1+ rt. This function also defines the economy’s factor-
price frontier — the combination of wages and rentals reflecting the economy’s
maximum profit opportunities.

13.3.4 The Ramsey Economy

A collection E = (f, {uh, δh, k
h}, h = 1, 2, . . . , H) satisfying Assumptions I,

II-III, and for which kh ≥ 0 for each h with k =
∑H

h=1 k
h > 0, k ≤ bm, is

said to be a Ramsey economy, or simply, an economy. A given economy is
thus a collection of primitives on tastes and technology that meets the basic
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assumptions for households and the production sector. The economy is always
assumed to have a positive aggregate capital stock that is also no larger than
the maximum sustainable stock. Individual endowments of capital may or may
not be positive. However, at least one agent will always possess some capital
at time zero.

13.3.5 The Equilibrium Concept

The equilibrium concept is perfect foresight. Households perfectly anticipate the
sequences of rental and wage rates. They solve their optimization problems for
their planned consumption demand and capital supply sequences. The produc-
tion sector calculates the capital demand at each time and the corresponding
total output supply. Rentals are paid to the households for capital supplied
and the residual profits are paid out as the total wage bill. An equilibrium oc-
curs when the households capital supply equals the productions sector’s capital
demand at every point of time. A form of Walras’ Law implies that the total
consumption demand and supply of capital for the next period equals current
output. Thus, in equilibrium, every agent is maximizing its objective function
and planned supplies equal planned demands in every market.

Definition 13.3.1. Sequences {1+rt, wt,Kt−1, c
h
t , x

h
t−1} constitute a Ramsey

Equilibrium for a given economy E provided:

E1. For each h, {cht , xh
t−1}solves P(h) given {1 + rt, wt}.

E2. For each t, Kt−1 solves P(F) given 1 + rt.
E3. Hwt = f(Kt−1) − (1 + rt)Kt−1 (t = 1, 2, . . .).
E4.

∑H
h=1 x

h
t−1 = Kt−1 (t = 1, 2, . . .), 0 < k = K0 ≤ bm.

Thus, consumers maximize utility (E1) and producers maximize profits
(E3). The labor market clearing condition is expressed in (E3). The capital
market clearing condition is (E4). The output market balance follows by com-
bining (E1)– (E4). This is a form of Walras’ Law that holds at each time.
Hence

H∑
h=1

(cht + xh
t ) = f(Kt−1). (13.7)

Note that equilibrium consumption and capital sequences are bounded from
above by the maximum sustainable stock.

The Orthodox Vision portrays an economy as evolving towards a steady
state. When the economy’s capital stock is initially smaller than its stationary
level there is growth and the rate of return on capital falls over time. This
portrait of capital accumulation is consistent with the dynamics of the one
sector Ramsey optimal growth — perfect foresight equilibrium model provided
there is a representative household whose preferences are taken as the planner’s
objective.
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The Orthodox Vision was attacked by Bliss [25] on grounds that when there
are many distinct capital goods a single rate of interest could not be defined and
therefore the idea that growth accompanied a declining rate of interest made
no sense. Subsequent research has shown that in aggregate capital Ramsey op-
timal growth models with a well-defined interest rate, the economy might not
follow the Orthodox Vision provided there were at least two sectors producing
a consumption good distinct from the capital good. The problem was optimal
cycles or even chaotic trajectories could emerge with a sufficiently impatient
planner.33 Heterogeneous discount factor models turn out to differ fundamen-
tally from the representative agent and common discount factor models, even
in the classical one-sector case. The Orthodox Vision will only apply to some
economies when there are heterogeneous discount factors.

13.4 Stationary Ramsey Equilibrium Models

A stationary Ramsey equilibrium is one in which all prices and quantities re-
main constant over time. This is the simplest form of equilibrium and it is in-
terpreted as the model’s long-run solution. The case where all agents discount
their future utilities at a constant rate is explored first. This is the case that
Ramsey [90] considered in his classic paper. The economy satisfies assumptions
(AI), (AII), and (AIII), so there is a single most patient household. The steady
state income distribution is shown to be determined by the largest discount
factor, or equivalently, the lowest discount rate. The household with the lowest
discount rate owns all the capital and earns a wage income; all other households
receive a wage income. If discount rates are equal between households, then the
steady state distribution of income is indeterminate.

The dominant consumer in the stationary Ramsey equilibrium has two
sources of income — rental income from capital and wage income from its
supply of labor to the production sector. In Ramsey’s original conjecture the
dominant consumer’s consumption equaled “bliss” and the nondominant house-
holds consumed at a level just sufficient to sustain their lives. In the version
of the model presented here the nondominant consumers have a wage income
which is entirely consumed within the period and there is no presumption that
it is at the minimal level that just supports their lives.

13.4.1 Heterogeneous Households and Differing Rates
of Impatience

A Ramsey equilibrium program is stationary for the economy E provided the
equilibrium wage rate, rental rate, the aggregate capital stock, and the allo-
cations of capital and consumption are constant over time. Becker [5] proves
the basic theorem of Ramsey equilibrium theory. It proclaims the existence
33 See [8] for a detailed review of the relevant literature.
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of a unique stationary equilibrium in which only the most patient household
has capital — all other households have none and live off their wage incomes.
Of course, this most patient consumer also has a wage income, so that person
achieves a higher consumption level than the others. Hence, there is an unequal
distribution of income and wealth in this steady state solution. The model is
telling us that this inequality in stationary equilibrium consumption levels and
capital holdings is the direct consequence of a single household being the most
patient one. This result is also built on the inflexibility of individual rates of
time preference, an issue that is reexamined in Section 4.4.

Let kδ1 be the unique solution to the equation f ′(k) = δ1.34 This capital
stock will be the first household’s capital and therefore the aggregate capital
stock in the equilibrium solution presented in the following theorem. Let 1 +
#h = δ−1

h define agent h’s pure rate of time preference (or, discount rate), #h.
Notice that the assumed ordering of household’s discount factors in (AII) is
equivalent to

0 < #1 < #2 ≤ · · · ≤ #H .

Recall that w = φ(1 + r) gives the per capita wage as a function of the rental
factor via the factor-price frontier.

Theorem 13.4.1. (Ramsey’s Theorem)
Let E = (f, {uh, δh, k

h}, h = 1, 2, . . . , H) be a given economy. Then there is a
unique stationary Ramsey equilibrium given by

(S1) (1 + r̄) = δ−1
1 or equivalently r̄ = #1;

(S2) w̄ = φ(δ−1
1 );

(S3) k̄1
0 = kδ1 is the first household’s initial allocation of capital;

(S4) k̄h
0 = 0 is the initial allocation of capital for h = 2, . . . , H;

(S5) c̄1 = φ(δ−1
1 ) + #1k

δ1 ;
(S6) c̄h = φ(δ−1

1 ) for h = 2, . . . , H.

The proof follows from several lemmas. The basic idea is to conjecture (S1)-
(S6) identify an equilibrium and verify that for the given wage rate, rental rate,
and assignment of initial capital stocks, the resulting optimal solutions for the
households’ optimization problems are the constant consumption and capital
profiles specified while the production sector profit maximization problem’s
solution is kδ1 . Moreover, the household’s capital supplies sum to the aggre-
gate stocks demanded by the production sector, kδ1 . The sufficiency conditions
for the solution of each agents’ optimization problems given the values of the
prices and initial conditions show the conjectured solutions solve the agents’
problems given the wage rate, rental rate, and capital endowments. The first
household’s sufficient condition holds as the conjectured solution satisfies that
agent’s no arbitrage and transversality conditions. The other households are
handled separately in the lemmas. Recall that P (h) refers to a household h’s

34 Othewise, overbars are used to indicate values for endogenously determined vari-
ables which are stationary in a Ramsey equilibrium.
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individual maximization problem given the wage and rental sequences and the
initial capital stock assignment. I will use this shorthand to refer to the house-
hold’s problems in the following lemmas on the maintained assumption that
wt = w̄, 1 + r̄ = δ−1

1 , k̄1 = kδ1 , and k̄h = 0 for h = 2, . . . , H.

Lemma 13.4.1. P (1) has the unique solution c̄1t = c̄1 = φ(δ−1
1 ) + #1k

δ1 and
x̄1

t−1 = kδ1 for t = 1, 2, . . ..

Lemma 13.4.2. For h ≥ 2, P (h) has the unique solution cht = φ(δ−1
1 ) and

xh
t−1 = 0 for t = 1, 2, . . ..

Proof. Superscripts labelling agent h ≥ 2 are suppressed in this proof in order
to simplify the notation. I will work with a household satisfying 0 < δ < δ1.

Let {ct, xt−1}∞t=1 denote a feasible solution for this person’s optimization
problem. That is, it satisfies

ct + xt = φ(δ−1
1 ) + δ−1

1 xt−1 for all t and x0 = 0.

Further, assume that this feasible solution is good in the sense that

∞∑
t=1

δt−1u(ct) > −∞.

Feasible programs which are not good are bad ; there is no reason to consider bad
paths since they cannot provide the consumer with a larger discounted utility
stream. Hence, for the construction of a comparison path in this sufficiency
argument only good paths need be considered.

Let c̄ = w̄ = φ(δ−1
1 ). The following inequality must be verified in order to

show that this is the household’s optimum given the constant wage and rental
paths and zero initial capital condition:

∞∑
t=1

δt−1[u(w̄) − u(ct)] > 0, (13.8)

where {ct, xt−1}∞t=1 denotes a feasible good path and ct �= w̄ for some t.
By strict concavity of u,

u(w̄) − u′(w̄)w̄ ≥ u(ct) − u′(w̄)ct (13.9)

for all ct ≥ 0, t = 1, 2, . . .. Moreover, strict inequality holds in (13.9) whenever
ct �= w̄. So rearranging (13.9) for ct �= w̄ implies that

u(w̄) − u(ct) > u′(w̄)(w̄ − ct). (13.10)

Therefore, if ct �= w̄ for some t, then

∞∑
t=1

δt−1[u(w̄) − u(ct)] >
∞∑

t=1

δt−1u′(w̄) (w̄ − ct) . (13.11)



13. Equilibrium Dynamics with Many Agents 403

Feasibility of this comparison path requires that

ct = w̄ + δ−1
1 xt−1 − xt and x0 = 0. (13.12)

Therefore, the right-hand side of (13.11) becomes

∞∑
t=1

δt−1u′(w̄)
[
xt − δ−1

1 xt−1

]
, with x0 = 0. (13.13)

Use the first household’s pure rate of time preference, #1, to the rewrite the
summation in (13.13) as

u′(w̄)
∞∑

t=1

δt−1 [∆xt−1 − xt] , with ∆xt−1 ≡ xt − xt−1.

The indices in (13.13) can be changed to run from t = 0, 1, 2, . . .. Next use the
formula for summation by parts (see [58], page 51) to write (13.13) as

u′(w̄) lim
T→∞

{
T−1∑
t=1

(δt − δt+1)
t∑

s=0

∆xs + δT
T∑

t=0

∆xs −
T∑

t=0

δt#1xt

}
, (13.14)

where

∆xs = xs+1 − xs, x0 = 0 and
t∑

s=0

∆xs = xt+1 − x0 = xt+1.

Since δ = (1 + #)−1, (13.14) can be rewritten as

u′(w̄) lim
T→∞

{
T−1∑
t=0

δt+1#xt+1 −
T∑

t=0

δt#1xt + δTxT+1

}
=

u′(w̄) lim
T→∞

{
(#− #1)

T∑
t=1

δtxt − δ0#1x0 + δTxT+1

}
≥ 0, (13.15)

because

(#− #1) > 0 if and only if 0 < δ < δ1,

x0 = 0, xt ≥ 0 all t, and

lim
T→∞

δTxT+1 = 0.

Therefore (13.8) obtains.
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Lemma 13.4.3. There is a unique kδ1 , 0 < kδ1 < +∞, such that f ′(kδ1) =
δ−1
1 , hence kδ1 solves

max
x≥0

δ1f(x) − x. (13.16)

Proof. Existence of kδ1 follows from the Inada conditions imposed in (AIII) and
the Intermediate Value Theorem; uniqueness stems from the strict concavity of
the production function. That kδ1 solves the maximization problem (13.16) also
follows from the strict concavity of the production function as δ1f ′(kδ1) = 1 is
the first-order condition for (13.16).

Remark 13.4.1. Gale [50] showed that (13.16) holds for the optimal growth
model. This corresponds to the case H = 1.35 He shows that (13.16) gives a
complete characterization of the stationary state in that situation. Thus, for
heterogeneous households, (13.16) holds as in ([50]) but for the most patient
household’s discount factor.

Remark 13.4.2. Lemmas 3-5 prove that w̄ = φ(δ−1
1 ), 1+ r̄ = δ−1

1 , k1 = kδ1 , and
kh = 0 for h = 2, 3, . . . , H is a stationary Ramsey equilibrium.

The theorem follows once this equilibrium is shown to be the only station-
ary solution to the model. The argument proving this is rather technical; a
“heuristic” argument is given in the “proof.”

Proposition 13.4.1. The stationary Ramsey equilibrium of Remark 8 is the
only stationary Ramsey equilibrium.

Proof. In any other candidate stationary Ramsey equilibrium, either (1 + r̄) >
δ−1
1 or (1 + r̄) < δ−1

1 must hold.
If (1 + r̄) > δ−1

1 , then household one has a feasible policy of ever increas-
ing capital accumulation and consumption yielding arbitrarily large stocks; by
diminishing returns this cannot be an equilibrium.

If (1 + r̄) < δ−1
1 < δ−1

h for h = 2, 3, . . . , H, then for any initial distribution
of capital, it is shown (in the appendix) that it is optimal for every household
to decumulate their capital stocks to zero in finite time starting from their
initial stocks. Thus,

∑H
h=1 x

h
t−1, the total capital stock found by each person’s

solutions to their problems P (h), is eventually zero. Hence, f ′(
∑H

h=1 x
h
t−1) be-

comes arbitrarily large in finite time (by the Inada condition). This violates
the maintained assumption that the equilibrium is stationary.

Remark 13.4.3. Lemmas 3-5 and the Proposition prove Ramsey’s Theorem.
35 In the single household case one should reinterpret the production function as the

intensive form for F (x, 1). Notice the production function in (13.16) can be rewrit-
ten as F (x,H) to show its parametric dependence on the number of households in
the economy.
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This version of Ramsey’s model utilizes a perfect foresight expectations
hypothesis to close the model. One can think of the long-run as the steady
state solution and regard the short-run as the time periods during which the
economy evolves from its given initial data.36 The “short-run” represents the
transitional period from the start of the model at time zero until it converges to
the steady state. Of course, this presumes the economy actually converges to the
steady state — a presumption that will turn out to be true only with additional
qualifications as will be shown in section 5.3. Even so, it is useful to maintain
the distinction between long-run solutions and short-run dynamics. This is so
since the model will generate other types of periodic solutions besides the trivial
periodic motion embodied in the stationary state.37 These non-trivial periodic
solutions also have legitimate claims to be considered long-run solutions.

An interesting property of long-run equilibrium is that the economy’s steady
state wage rate and interest rate depends only on the first household’s discount
factor. In particular, Hφ(δ−1

1 ) is the maximized present value of wages valued
at the present value prices (δ1, 1) as displayed in (13.16). As noted there and
the following Remark, this is similar to the case of optimal growth where the
planner discounts future utilities by the factor δ1. In the present model, the per
capita wage rate, φ(δ−1

1 ), is determined by a decentralized economy in long-
run competitive equilibrium. This decentralization works to select a particular
household’s discount factor and corresponding wage bill from the factor-price
frontier. Given that δ−1

1 < δ−1
h for all h ≥ 2, then φ(δ−1

1 ) is the largest per capita
wage rate that could be attained if the present value prices are restricted to be
chosen from the list {(δ1, 1) , (δ2, 1) , . . . , (δH , 1)} and applied to (13.16). Thus,

δ1f(kδ1
) − kδ1

= max
δh

max
x≥0

δhf(x) − x. (13.17)

Equation (13.17) represents a variational principle governing the solution
of the steady state Ramsey equilibrium problem. According to David Gale,
“variational methods show the existence to a problem,” such as the existence
of a stationary Ramsey equilibrium, “by picking an object that maximizes or
minimizes some function. The resulting object is then shown to have the desired
property by showing that if it did not, one could ‘vary’ the object so that the
given function would further increase or decrease.”38 The double max function
on the right-hand side of (13.17) is a new example of a variational principle
in economics. Here, the “variational” argument is based on allowing discount
factors above or below δ1 and showing they are inconsistent with stationary
equilibrium — indeed, this is one way to interpret the heuristic argument given
to support Proposition 8 since any discount factor different from δ1 leads to a
situation counter to stationarity equilibrium.
36 Magill [71] discusses this distinction between long and short-run dynamics.
37 Two period cycles are examples of non-trivial periodic solutions. An example ap-

pears in section 6.2.
38 See Gale ([51], pp. 46-47) for this description of a variational principle.
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The last point to note about (13.17) is that it does not depend any agents’
felicity function. This is reminiscent of the Dynamic Non-Substitution Theorem
which characterizes steady states in no-joint production multisectoral produc-
tion models — given the long-run interest rate there is a unique choice of
technology consistent with the economy being in a stationary state.39 Indeed,
(13.16) is a simple version of the Dynamic Non-Substitution Theorem since
there is only one capital stock consistent with the maximization problem ex-
pressed in that equation.40 Since the steady-state interest rate is the same as
the steady state rental rate in a one-sector model without joint production, if
follows that for each possible steady state interest rate r there is a unique choice
of the capital stock which solves maxx≥0 f(x)− (1 + r)x. Since δ−1

1 − 1 = #1 is
the steady state interest rate for this economy, the capital stock kδ1 is uniquely
determined by solving (13.16). The variational principle embodied in (13.17) is
a joint statement about the determination of the long-run interest rate and the
choice of technique in this economy.41 Becker and Tsyganov [17] show the same
result obtains when there are two sectors and no joint production. Once again,
the Dynamic Nonsubstitution Theorem plays a decisive role in determining the
economy’s capital intensities in each sector given the long-run interest rate is
determined by the most patient household. As in the one-sector case, the dis-
tribution of capital is the extreme one where only the most patient individual
holds capital.

13.4.2 Stationary Strategic Ramsey Equilibria

The competitive steady state described in Ramsey’s Theorem has an incentive
problem. Why doesn’t the most patient agent behave like a monopsonist in the
capital market? After all, that agent is the only one willing and able to supply
capital in the steady state. There are basically two ways to look at this question.
In one, the economy is assumed to have a continuum of agents of each type.
This means that there are uncountably many agents with the same preferences
and endowments. Assuming that the equilibrium treats equal types equally, one
can select a representative agent of each type since almost all agents of the same
type receive the same allocation in equilibrium.42 Ramsey’s Theorem can then
39 Burmeister and Dobell [34], Burmeister [33], and McKenzie [79] are good sum-

maries of dynamic non-substitution theorems.
40 Brock [31] noted this feature of the solution already arises in the representative

agent one-sector Ramsey problem. The long-run interest rate is the planner’s pure
rate of time preference and it determines the long-run capital stock independently
of the planner’s one-period felicity (or reward) function.

41 Of course (13.16) and (13.17) are equivalent in the case of a single representative
household. The presence of multiple households with differing rates of impatience
opens the possibility that the economy will arrive at a steady state depending on
only one of the potential long-run rates on interest from the list of households’
pure rates of time preference.

42 Let the set of agents belonging to a particular type be indexed by the closed unit
interval [0, 1] endowed with Lebesgue measure. It is possible that an equilibrium
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be reinterpreted as applying to the representative agent of each consumer type
present in the economy. The second solution is to simply recognize the strategic
possibilities that are available to any monopsonistic household, or even to any
oligopsonistic group of agents. The model becomes a dynamic game.

Sorger [99] was the first to argue for the second, game theoretic alternative
in a deterministic setting.43 He proposed two possible strategic form games.
The games’ differences are traced to whether or not the players recognize their
influence in the labor market or merely treat their labor decisions as taken in a
competitive marketplace. He focuses on steady states and it is natural to ask if
the stark distribution of income and wealth found in Ramsey’s Theorem carries
over to these strategic environments. Sorger constructed numerical examples
where both households in a two person economy hold capital in a steady state
equilibrium. He also gave a general proof that the most patient agent’s capital
stock would be larger than the second, or more impatient, agent’s stock in any
steady state configuration. Becker [7] completely characterizes the steady state
equilibrium for the two-player model with Cobb-Douglas technology. He gives a
criterion for determining whether or not both agents hold capital in the steady
state, or just the most patient agent holds capital. Indeed, compared to the
competitive case, the rate of return in a steady state is larger in the interior
case as both agents hold capital, while the aggregate stocks are smaller than in
the competitive case. This shows Sorger’s example is robust, at least for this
technology.

13.4.3 Heterogeneous Households and Identical Rates of Impatience

The case where households felicity functions may differ and their rates of im-
patience are identical merits comment. Suppose that # > 0 is the common pure
rate of time preference and let δ denote the common discount factor.

Let f ′(kδ) = δ−1, and define an (H − 1) dimensional kδ– simplex by

S =

{
(k1, k2, . . . , kH) :

H∑
h=1

kh = kδ and kh ≥ 0, for all h

}
.

Let S0 be the subset of S with kh > 0 for all households; S0 represents the
possible distributions of capital stocks with everyone holding some capital in
a stationary Ramsey equilibrium under the assumption of a common discount
factor across households. In particular, for this case, the distribution of capital
in a stationary Ramsey equilibrium is indeterminate — long-run equilibrium is

might treat a set of measure zero agents of a given type unequally, but their
allocations would not matter for the overall economy-wide supply and demand
balances.

43 Sorger [99] also notes, following Sarte [95], that a competitive model with income
taxation can also overturn Ramsey’s conjectured long-run solution. The tax wedge
on capital income is sufficient in some cases to raise the rate of capital’s return so
that both agents hold capital in a steady state.
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consistent with any distribution of capital in S0. Under the common discount
factor assumption, each household may hold positive stocks in a long-run equi-
librium, but there may be an unequal distribution of capital and hence income,
with income identified by consumption. Moreover, any distribution of initial
stocks in S is consistent with long-run equilibrium. Apply the proof of Lemma
4 to agents without capital. This argument shows that setting consumption
equal to the constant wage rate for those households without capital implies no
alternative consumption sequence satisfying the budget constraint has a higher
lifetime utility (the term #− #1 = 0 in the proof as all rates of impatience are
equal).

Indeterminacy in this context refers to the existence of a continuum of
steady state capital distributions consistent with the condition for long-run
equilibrium given (13.16) by when every agent’s discount factor is identical.
The common discount factor determines the aggregate capital stock according
to the variational principle (13.16). That is, the production sector’s demand
side for capital determines the economy’s total capital given the only viable
candidate for a long-run interest rate, the common pure rate of time preference.
Each household is happy to supply any amount of capital at the prevailing rate
of interest. Hence, the economy’s supply side for capital is perfectly elastic at
the going interest rate.

13.4.4 Stationary Ramsey Equilibria with Flexible Time Preference

One expects the extreme distribution of capital in Ramsey’s Theorem changes
if agents have flexible rates of impatience that depend on the underlying con-
sumption stream. It is also reasonable to think that the indeterminacy problems
discussed above would also be ameliorated in a more flexible time preference
framework.

It seems reasonable to focus on models with flexible time preference — the
agents discount factor in a steady state depends on the underlying consump-
tion stream. Recursive utility functions are one family of utilities that allow the
steady state consumption stream to influence the corresponding discount fac-
tor. Recursive utility functions also generalize many properties of the constant
discount factor additive models. Hence, it is possible to include the additive
case as a special one in the broader recursive class. This means that the ex-
treme distributions of capital and wealth found for the additive model can still
arise in the recursive case, but there are also new cases where several agents
hold capital.44

The basic idea is readily illustrated by an example of a two person economy
— one agent has the conventional fixed discount factor and the other has a
utility function with flexible time preference and a recursive structure. Assume
this second person’s utility function takes the form
44 See Becker and Boyd [8] for a detailed account of recursive utility theory.
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−
∞∑

t=1

exp

(
−

t∑
s=1

v(c2s)

)
, (13.18)

where v : R+ → R+ is strictly concave, increasing, and satisfies v(0) > 0.
Equation (13.18) is known as the Epstein-Hynes (EH) utility function after the
continuous time analogue introduced in [44]. They introduced this function to
explore the role of flexible time preference on steady state results such as those
reported in [5]. The EH utility from

(
c2T+1, c

2
T+2, . . .

)
appears in the last term of

the following expression breaking down the utility over the entire consumption
path into segments for the first T periods and the subsequent periods:

−
∞∑

t=1

exp

(
−

t∑
s=1

v(c2s)

)
= −

T∑
t=1

exp

(
−

t∑
s=1

v(c2s)

)

+ exp

(
−

T∑
τ=1

v(c2s)

)

×
[
−

∞∑
t=T+1

exp

(
−

t∑
τ=T+1

v(c2s)

)]

hence, the utility of the tail of the program is just a time-shifted form of the
utility of the original program — the identifying characteristic of a recursive
utility function based on stationary preferences.

The steady state conditions for this economy are

δ−1
1 = f ′(x̄) = 1/ exp(v(c̄2)), (13.19)

where δ1 is the first agent’s utility discount factor and x̄ is the aggregate steady
state capital stock.45 The allocations of consumption and capital satisfy

c̄1 + c̄2 = f(x̄) − x̄, and (13.20)
k̄1 + k̄2 = x̄, (13.21)

where k̄h is household h’s stationary capital stock. Since exp(v(0)) > 1, one can
solve δ1 = exp(v(c̄2)) for the second household’s consumption level and likewise
find x̄ by solving the familiar equation δ1f

′(x̄) = 1 as a long-run equilibrium
where both agents own capital is sought. These calculations determine the
aggregate capital stock and the second household’s stationary consumption
level. The allocation equations (13.20) can be used to find the consumption
of the first household and its capital stock.46 This long-run solution is found
assuming agents’ have equalized their marginal rates of substitution and since
45 See [8] for calculations of the necessary conditions leading to this equation. The

basic idea is to compute the marginal rate of substitution between adjacent periods’
consumption and evaluate it at a steady state. This marginal rate of substitution
turns out to be equal to 1/ exp(v(c̄2)).

46 This is possible when f(x̄) > c̄2 and k̄2 = w̄ + r̄k̄2 − c̄2 < x̄.
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both possess capital. Hence, the addition of flexible rates of time preference can
overturn the extreme distribution of capital found in the fixed discount factor
model.

Ben-Gad [19] investigated the indeterminacy problem for agents with iden-
tical time preference rates, but in a recursive utility framework. He considered
balanced-growth solutions, so he employed the homogeneity restrictions found
by Dolmas [42] in the representative agent case. Ben-Gad found that the inde-
terminacy problem arises in that setup whenever agents’ preferences are repre-
sented by the same recursive utility function and in some other cases as well.
His results limit the prospects for recursive utility to supply a foundation for
determinate balanced growth paths and raise corresponding questions for the
case of stationary paths.

The preceding discussion has shown that the basic model can be altered
in ways that might change the steady state distribution of wealth and income.
However, there are other ways to change the steady state distribution result by
alteration of the basic model. In the next subsection uncertainty is shown to
produce a different steady state allocation even when rates of impatience are
constant. This example is presented in some depth since the major part of this
chapter is devoted to the fixed rate of impatience theory when (AII) holds. This
focus is central since the equilibrium dynamics are mostly developed for that
case and it is the differences introduced by household heterogeneity compared
to the representative case that forms the crux of my story.

13.4.5 Uncertainty and Stationary Equilibrium

The introduction of uncertainty allows agents to save for precautionary pur-
poses. This new feature of the model allows the stark distribution of capital
found in Ramsey’s Theorem to be overturned. Suppose that agents face tech-
nological shocks on the production side of the economy. When the economy
receives a productivity shock limiting output agents earn a correspondingly
low wage income. However, agents holding capital stocks get a return on their
investment decision and enjoy a higher wage and capital income than agents
without capital. Hence, these agents with capital can use their capital holdings
as a buffer shock to self-insure against adverse production–wage shocks.

The economy described in this section originated in Becker and Zilcha’s
paper [16] based on the aggregate production shock model pioneered by Brock
and Mirman [32] and elaborated on by Mirman and Zilcha [80].47 Markets
are incomplete and agents are heterogeneous in the sense that they have (at
least) distinct utility discount factors. Households are infinitely lived and face
borrowing constraints — just as in the deterministic models presented earlier.
Households can accumulate capital in order to smooth consumption in the face
of uncertain capital and wage income. Technological shocks of the kind in [32]

47 Marimon [74] developed the stochastic analogue of Bewley’s [23] model when there
are stochastic technology shocks.
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are responsible for the uncertainty in agents’ income streams. A stationary
stochastic rational expectations equilibrium in which the interest rate, wage
rate, aggregate capital stock, and the distribution of wealth are all jointly de-
termined in the presence of individual borrowing constraints is defined and
theorems guaranteeing the existence of these equilibria are noted below.48

The following discussion, based on [16], is substantially compressed to focus
attention on their two agent example in which both parties hold capital with
positive probability. The presentation is informal as the technical developments
in their paper lie outside this chapter’s scope. The interested reader is referred
to their paper for those important details.

The Stochastic Framework

The time-dated sequences of wages, rentals, consumption, capital, and output
are taken to be random variables defined on a common basic probability space
(Ω,F , µ), which represents the environment.49 Each element of Ω is a sequence
{ωt}, where ωt represents the environment’s state at time t. Here F is the
collection of events and µ is the given probability measure. The stationarity of
the environment is expressed in terms of a shift operator T : Ω → Ω defined
componentwise by

(Tω)t = ωt+1.

This operator, and its inverse, T−1, are assumed to be measure preserving. That
is, for any event E, the probability of TE equals the probability of E.50 This
implies that for any integers t, t′, and r, the joint distribution of (ωt, . . . ωt+r)
is the same as the joint distribution of (ωt′ , . . . ωt′+r). This shift operator is
also taken to be ergodic, which means that if E is any invariant event, i.e.
TE = E, then E has a probability of either 0 or 1. Examples of measure
preserving ergodic environments are given by independently and identically
distributed random variables or, a Markov chain with a transition probability
matrix which is irreducible.

As attention here is focused on stationary economies, it is technically conve-
nient to imagine the environment’s history extends infinitely far back into the
past when viewed from the starting date t = 0 and thereafter. So, the economy
is modeled as having functioned for a very long time before the agents take up
their equilibrium problems. The formal setup takes Ω to be the set of doubly-
infinite sequences {ωt}∞t=−∞ with ωt ∈ [a, b], 0 < a < b < ∞, corresponding
to the possible magnitudes of the total factor productivity shocks introduced
below. Let Ω be endowed with the product topology, so F is Ω’s Borel σ–
48 The material in this section is based on Becker and Zilcha [16]. Formal proofs of

the existence theorems stated below can be found in their paper.
49 The model’s underlying stochastic structure is derived from Radner [88] as pre-

sented for this many-agent Ramsey problem by Becker and Zilcha [16].
50 See Neveu [82] for the background on the probability theory machinery used in

this model. See Davidson [40] for an excellent overview of stationary processes.
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field. Let Ft denote the σ–field generated by all the cylinder sets of the form∏∞
m=−∞ Bm,where Bm = [a, b] for all m > t.
Suppose that ξ is a real-valued function on Ω that depends at most on the

states (. . . , ω−2, ω−1, ω0) giving the environment’s history up through time 0.
Assume that ξ is F0–measurable. This function induces a sequence of functions
Zt = ξ(T tω) that defines a stationary process. It is further assumed that the Zt

functions are Ft–measurable. The usual interpretation of Ft as an information
set applies.

The Stochastic Economy

Consider the following one-sector growth model with heterogeneous consumers
and random technology. Denote by s the random shock to the production func-
tion and let s assume values in [a, b]. The aggregate production function is
random. Given input x in period t and some realization of the shock s the
resulting output is f(x, s). For example, let f(x, s) = sβxα for some β > 0 and
0 < α < 1 and the total factor productivity shock s ∈ [a, b]. The production
function is increasing and strictly concave in its capital input argument and
increasing in the productivity shock variable. It is twice continuously differen-
tiable and has the property f(0, s) = 0 for each s. It also satisfies the Inada
condition at the origin — f1(0, s) = ∞ where f1 = ∂f/∂x. It is also assumed
that there is some constant k <∞ such that for all x > k and all s, f(x, s) < x.

There are H infinitely lived consumers in this economy. Consumer h has a
one-period utility function uh(·) defined on consumption within a period. Each
agent seeks to maximize the expected discounted stream of future utilities.
Assume for each h, uh is an increasing, twice continuously differentiable and
strictly concave function satisfying u′h(0) = ∞. As before, consumer h discounts
future utilities by a factor δh, 0 < δh < 1. Make Assumption II, so the first
household has the lowest rate of time preference.

Denote by Lt∞ ≡ L∞(Ω,Ft, µ) the set of all essentially bounded real-
valued functions on Ω which depend only on the history up to date t; Lt,+

∞
stands for the nonnegative functions in Lt∞ with L∞(Ω,F0, µ) ≡ L∞ and
L+
∞ the corresponding nonnegative functions. Recall that ξ ∈ L∞ is an essen-

tially bounded function on Ω, i.e., ξ ∈ L∞ then its norm ‖ ξ ‖∞= ess-sup
| ξ(ω) |= infD supΩ\D | ξ(ω) |< ∞, where D ranges over sets of µ−measure
zero. Obviously the same definitions apply to functions in Lt∞. There is no loss
of generality by restricting all the following random variables to be elements
of an appropriate L∞ space since there is a uniform bound on the production
sector’s capital and output.

Capital stocks and consumption are random variables since production is
random as are the wage and rental rate processes. Moreover, at date t the
aggregate capital stock Xt(ω) depends on the history up to date t; hence
Xt(ω) ∈ Lt,+

∞ . The consumption and savings at date t of each household h
will depend on the interest rates and wages from date t on. Each household
is endowed with one unit of labor that is supplied inelastically in each period.
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Moreover, the households labor services are identical. Let Xh
−1(ω) be the initial

capital owned by h at t = 0 with Xh
−1 ∈ L+

∞(Ω,F−1, µ). As all processes are
taken to be stationary, there are nonnegative real-valued essentially bounded
functions on Ω expressing each household’s capital and consumption as well
as the economy’s wage rate and rental rate as functions of the environment’s
state. More formally, agent h’s consumption process is cht (ω) = ch(T tω); its
capital process is Xh

t (ω) = Xh(T tω) and the aggregate capital process is writ-
ten as Xt(ω) = X(T tω), where it is noted that in equilibrium it must be the
case that X(T tω) =

∑H
h=1X

h(T tω) holds almost surely (abbreviated a.s.) for
each time t. The associated rental process is defined for each time utilizing the
production sector’s profit maximization condition for t = −1, 0, 1, 2, . . .:

1 + rt+1(ω) = 1 + r(T t+1ω) (13.22)
= f ′(Xt(ω), ωt+1) (13.23)
= f ′(X(T tω), T t+1ω) a.s.; (13.24)

the corresponding wage process is defined for t = −1, 0, 1, 2, . . . according to:

HWt+1(ω) = f(Xt(ω), ωt+1) − f ′(Xt(ω), ωt+1)Xt(ω) (13.25)
= f(X(T tω), T t+1ω) − f ′(X(T tω), T t+1ω)X(T tω) a.s.(13.26)

These processes lie in Lt+1,+∞ . The stationarity condition implies (13.22) and
(13.25) can be rewritten for each t as the equations

1 + r(Tω) = f ′(X(ω), ω1) a.s. (13.27)

and
W (Tω) = f(X(ω), ω1) − f ′(X(ω), ω1)X(Tω) a.s. (13.28)

Given stationary rental and wage processes, the corresponding aggregate
capital process, and the household’s initial capital process, a household is as-
sumed to solve the following expected utility maximization problem:

sup E0

∑∞
t=0 δ

t
huh

(
ch(T tω)

)
subject to ch(T tω) and Xh(T tω) in Lt,+

∞ for for t = 0, 1, 2, . . . , and
ch(T tω) +Xh(T tω) = W (T tω) + (1 + r(T tω))Xh(T t−1ω) a.s.

(13.29)
where E0 is the conditional expectation given the state of the environment at
t = 0. Assume an optimum in (13.29) exists and denote it by the processes ch∗

and Xh∗. Note that the budget constraint implies for any feasible process that

ch(Tω) +Xh(Tω) = W (Tω) + (1 + r(Tω))Xh(ω) a.s. (13.30)

Given an initial capital process Xh
−1 for h = 1, 2, . . . , H, a stationary sto-

chastic Ramsey equilibrium (abbreviated SSRE) is a collection of stochastic
processes (ch∗, Xh∗,W, 1 + r) satisfying
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SSRE (1) (ch∗, Xh∗) solve the household h’s expected utility maximization
problem given (W, 1 + r) and Xh

−1;
SSRE (2) (13.27) and (13.28) hold for X∗ and for t = −1, 0, 1, 2, . . .

X∗(ω) =
H∑

h=1

Xh∗(ω) a.s. (13.31)

Condition (13.31) is the stock equilibrium condition. As with the deter-
ministic case, a form of Walras’ Law implies the markets for new goods clears
almost surely at each date. The profit maximization conditions for the produc-
tion sector are expressed through equations (13.27) and (13.28).

Becker and Zilcha [16] proved the existence of a stationary stochastic Ram-
sey equilibrium under a supplementary concavity assumption governing each
agent’s income process (wages plus capital income). They required that both
the wage and capital income processes to be a concave functions of the econ-
omy’s aggregate capital stock. Their conditions are met whenever production
is Cobb-Douglas. The details of their proof lie beyond this chapter’s scope.
However, their example showing Ramsey’s Theorem does not carry over to the
stochastic case is worth developing in some detail. Toward that end, the stan-
dard Euler or no-arbitrage inequalities for each household are recorded below.
They are easily derived from a reversed no-arbitrage argument.

In a stationary stochastic Ramsey equilibrium, a necessary condition for
each household’s expected utility problem is:

u
′
h(ch(ω)) ≥ δhEt[(1 + r(Tω))u

′
h(ch(Tω))|Ft] a.s. (13.32)

with equality whenever Xh(Tω) > 0 with positive probability.

Example 13.4.1. Certainty vs. Uncertainty

As was shown earlier for the certainty case and in [5], in a steady state
Ramsey equilibrium we must have:

X1 = K̄ and Xh = 0 for h = 2, ..., H

where K̄ solves maxK [f(K) −K(1 + r)] where 1 + r = 1/δ1.51 This result
breaks down in the stochastic model.

Consider the following example with H = 2. The stochastic production
function is given by:

f(X, θ̃) = θ̃Xα, where 0 < α < 1.

The utility functions of individuals 1 and 2 are:

u1(c) = ln c and
51 I am using notation that is consistent with the stochastic model’s presentation

here. Thus, K̄ ≡ kδ1 , and so on.
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u2(c) =
c1−γ

1 − γ
, γ > 0, γ �= 1.

Also let 1 > δ1 > δ2 >
1
2 , and α < 1/(2δ1 − 1).

Let < X∗
1 (ω), X∗

2 (ω), c∗1(ω), c∗2(ω);W (ω), 1+r(ω) > be a SSRE in this econ-
omy. Assume now that Becker’s [5] result for deterministic stationary Ramsey
equilibrium holds in the stochastic case as well. Since δ1 > δ2 this implies that
X∗

2 (ω) = 0 a.s.; therefore the following expressions for W and r are obtained:

W (Tω) =
1
2

[f(X∗
1 (ω), ω1) −X∗

1 (ω)f ′(X∗
1 (ω), ω1)] =

1 − α

2
ω1 [X∗

1 (ω)]α a.s.

(13.33)

1 + r(Tw) = αω1 [X∗
1 (ω)]α−1 a.s. (13.34)

The budget equation for individual 1 can be written in this example as:

X∗
1 (ω) + c∗1(ω) =

1 + α

2
ω0

[
X∗

1 (T−1ω)
]α

a.s. (13.35)

Following the examples in Mirman and Zilcha [81], when the utility function
is logarithmic and the production function is Cobb-Douglas, since X(ω) =
X∗

1 (ω) a.s., the optimal consumption policy function of individual 1, g1(y), is
linear in his beginning of period income y. Set g1(y) = λy and observe the
following functional equation must hold for all y (note that this equation is,
basically derived from equation (13.32) and X∗

1 (ω) > 0 a.s. in this case),

1
λ1+α

2 ω0 [X∗
1 (T−1ω)]α

= δ1E0

[
(αω1

(
(1 − λ)1+α

2 ω0X
∗
1 (T−1ω)α

)α−1)

λ1+α
2 ω1

[
(1 − λ)ω0

1+α
2 X∗

1 (T−1ω)α
]α
]
.

Hence,

ω−1
0 X∗

1 (T−1ω)−α = δ1αE0

[
(1 − λ)ω0

1 + α

2
X∗

1 (T−1ω)α

]−1

a.s.

which implies that:

λ = 1 − 2δ1α
1 + α

.

Since 1 > δ1 >
1
2 and 0 < α < [2δ1 − 1]−1 we find that 0 < λ < 1, hence

g1(y) = λy is a consumption policy function.
Consider now the optimization process of individual 2. Since, by our as-

sumption, X∗
2 (ω) = 0 a.s. we have

c∗2(ω) = W (ω) a.s.
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Namely,

c∗2(ω) =
1 − α

2
ω0

[
X∗

1 (T−1ω)
]α

a.s.

Using the Euler conditions (13.32), when X∗
2 (ω) = 0 a.s. i.e., the inequality

case,
u′2(c

∗
2(ω)) � δ2E0 [(1 + r(Tω))u′2 (c∗2(Tω))] a.s.

We find for our case that{
1 − α

2
ω0X

∗
1 (T−1ω)α

}−γ

�

δ2E0

{
αω1

[
(1 − λ)1+α

2 ω0X
∗
1 (T−1ω)α

]α−1

×
[
1−α

2 ω1

(
(1 − λ)1+α

2 ω0X
∗
1 (T−1ω)α

)α]−γ

}
Simplifying this inequality we reach:[
X∗

1 (T−1ω)
]−αγ+α−α2(1−γ) � δ2δ

α−1−αγ
1 [α]α−αγ [ω0]α+γ−1−αγ ·E0

[
ω1−γ

1

]
a.s.

(13.36)
Let ε > 0 be arbitrarily small. Let us choose 0 < a < ε/2, b = 1, α <

1/2, 0 < γ < 1 and the distribution of ωt on [a, b] such that:
(i) E

[
ω1−γ

1

]
> 1/4.

(ii) Λ = −αγ + α− α2(1 − γ) ≥ α/2.
(iii) δ2δ

α−1−αγ
1 [α]α−αγ > 4εΛ.

Since α + γ − 1 − αγ = (α − 1)(1 − γ) < 0 under the above choice of
parameters condition (13.36) implies that:

X∗
1 (T−1ω) ≥ ε a.s.

However, it is known in the stochastic growth literature (see, for example Brock
and Mirman [32]) that when the probability that ωt ∈ [a, ε] is positive, then:

Prob{X∗
1 <∈} > 0.

Thus condition (13.36) cannot hold with probability 1. This contradiction
demonstrates that our assumption that:in this equilibrium X∗

2 = 0 a.s. can-
not be true. Hence it proves the claim that the deterministic result does not
carry over to the stochastic model.

The example shows that in contrast to the stark distribution of steady state
capital obtained in the deterministic model, the introduction of uncertainty can
lead to positive saving for the relatively impatient agent 2 for a set of states
with positive measure. The presence of technological shocks means that the
impatient agent has a buffer stock motive for holding capital that is absent from
the deterministic story. Thus, the conclusion that one consumer will always
have all the economy’s capital is false in the stochastic setup. This implies
that the stationary state is not determined by a variational principle based on
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a single agent’s dynamic optimization problem as in the deterministic model.
Indeed, the Dynamic Nonsubstitution Theorem fails to hold in the uncertainty
version of a one-sector model.52 Each household’s single period return function
matters as do their interactions with their respective discount factors along with
the marginal conditions for profit maximization. Therefore the establishment
of a stochastic stationary equilibrium for this economy must take into account
the interactions of all the agents optimization problems (including the profit
conditions). This naturally leads to a fixed point argument to demonstrate
the existence of a stationary equilibrium. The detailed existence proof for a
SSRE given in [16] works out the fixed point argument suggested in this last
observation.

This example shows that risk aversion matters in determining the properties
of a SSRE in a model with heterogeneous agents. However, their example did
not yield the existence of a SSRE in which both households hold capital almost
surely. However, it does seem reasonable to conjecture that for the case of two
agents, the simultaneous solutions of their Euler equations from (13.32) where
both hold capital almost surely is possible.

Becker and Zilcha also generalized their basic existence result for a SSRE.
They proved a stationary equilibrium existence theorem allowing strategic de-
cisions by households who recognize their saving-consumption choices influence
the aggregate wage rate and capital returns. The full analysis of their result
lies beyond this chapter’s scope, which is focused on deterministic systems. The
interested reader is referred to their paper for details.

13.4.6 Comments on Ramsey’s Conjecture

Ramsey’s conjecture has been demonstrated for a perfect foresight competitive
model with heterogeneous infinitely-lived agents subjected to a borrowing con-
straint. The most patient household owns all the economy’s capital in the long
run. Yet, this result can be overturned with structural changes in the basic
model. Flexible time preference, the introduction of uncertainty, and even a
change in capital market structure to an imperfectly competitive one, have all
been shown to modify Ramsey’s stark conclusion in some instances. However,
the various alterations to Ramsey’s story do not exclude the possibility of an
unequal long-run income or wealth distribution.

Irving Fisher noted that with unequal rates of impatience, a market econ-
omy starting from an equal distribution of wealth would evolve towards one that
is unequal. Ramsey’s steady state offers the most extreme interpretation of this
long-run outcome. Along a dynamic equilibrium path at least some households
would live, for a while, off their capital. For others, such as John Galsworthy’s
character, Old Jolyon, one simply does not live on one’s capital.53 The economy
52 This observation was made by Brock [31] for the representative agent, one-sector

discounted Ramsey optimal growth model.
53 See Galsworthy ([52], p. 332) for a description of Old Jolyon and his attachment

to his capital.
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is populated by savers and spenders. The problem is to work out the model’s
explicit equilibrium dynamics. Will the long-run solution conjectured by Ram-
sey emerge from the self-interested consumption-saving decisions taken in the
household sector, or will equilibrium paths have other characteristics?

Answers to these basic questions are developed in the next section. The
dynamic analysis is confined to the case of heterogeneous agents with fixed rates
of impatience. This basic model provides us with a benchmark case to glimpse
the rich dynamic possibilities in more complex specifications of heterogeneous
agent models.

13.5 Ramsey Equilibrium Dynamics

The stationary Ramsey equilibrium assigns all the economy’s capital to the
most patient household. Does this allocation of capital stocks represent the
economy’s long-run equilibrium? Put differently, is it a stable equilibrium? For
example, if society’s initial capital stock is equally distributed, will it evolve
towards the unequal distribution found in the steady state equilibrium? More
generally, will any equilibrium program starting from arbitrary initial alloca-
tions of capital converge to the steady state? The Ramsey equilibrium model
must be thourougly analyzed to solve this stability problem. The analysis of the
model includes proving a Ramsey equilibrium exists for an arbitrary initial dis-
tribution of capital. Ideally, the uniqueness of the equilibrium path should also
be established. Necessary and sufficient conditions characterizing an equilib-
rium are also required in order to develop an equilibrium’s dynamic properties.
The stability question is addressable once the economy’s equations of motion
are firmly established.

The stability problem is the central question in Ramsey equilibrium theory.
For the case of a representative agent, the Equivalence Principle implies that
an equilibrium program has a monotonic aggregate capital sequence and it con-
verges asymptotically to the economy’s long-run steady state — the modified
golden-rule capital stock. Does the introduction of additional agents, each a dis-
tinct individual with different tastes and endowments, sustain this result? Or,
does the introduction of heterogeneous agents complexify the model’s dynam-
ics? Do the increased number of agents and their interrelationships generate
equilibrium fluctuations — either regular cycles or chaos, or do their joint ac-
tions dampen oscillations and promote convergence to the stationary Ramsey
equilibrium?54

54 It is interesting to note by way of contrast that in dynamic biological models of
competing and/or cooperating populations, increasing the variety and numbers of
species may produce more stable ecosystems that dampen potential oscillations.
This idea is motivated by empirical and laboratory observations. See May ([77],
Chapter 3) for a detailed account of this problem in biological models of ecosys-
tem dynamics. He also notes that there are predator-prey systems which are more
stable than more complex ecosystems. Thus, the question of whether or not addi-
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If Ramsey’s steady state equilibrium is stable, and all households initially
hold capital, then it must be the case that all but the most patient consumer run
their capital to zero. This could, in principle, happen either asymptotically or
eventually (that is, in finite time). In either event, the more impatient house-
holds’s capital holdings are impermanent. However, a household always earns
its wage payment at each time. Even if that household completely runs its capi-
tal to zero, it always has the option of saving and reacquiring capital. This point
cannot be overemphasized since it lies at the heart of all the major difficulties
in analyzing the model’s dynamics.55 Indeed, if the model’s dynamics imply
that individual capital holdings display permanence — starting from posi-
tive initial stocks the individual’s capital remains positive and bounded away
from zero for all time, then it must be the case that the stationary Ramsey
equilibrium is unstable! A perturbation of the steady state that gives some cap-
ital to each household would never return to that steady state solution. Thus,
it is critical to investigate whether or not individual capital holdings exhibit
this permanence property (or some weaker, but closely related property).

The purpose of this section is to survey the model’s dynamics. The existence
of a Ramsey equilibrium is briefly noted. Sufficient conditions for a Ramsey
equilibrium program are given that are particularly useful for constructing
examples with particular dynamic features.

Once the sufficient conditions are fully articulated, I will turn to the investi-
gation of the impermanence of individual capital holdings. The main result on
that score is the Recurrence Theorem. Sufficient conditions for impermanence
are also developed in the study of the so-called turnpike property. An example
shows the subtle issues involved in untangling the impermanence of equilibrium
paths from the general recurrence property. I show that, in general, the steady
state is unstable. This result is presented as an example. The economy can
generate a path with undamped oscillations in the form of a two-period cycle.
Sufficient conditions are then developed for convergence of an equilibrium to
the steady state. In the end, the stability of Ramsey equilibrium paths is only
shown for a class of economies. The potential for more complex equilibrium
dynamics than convergence is subsequently reviewed.

tional species promotes stability or complexity does not have a single answer. The
outcome turns on properties of the underlying dynamical system and may even be
sensitive to values of key parameters. The Ramsey equilibrium model has similar
characteristics.

55 It is instructive to compare this situation to one found in biological models of
ecosystems with many species. Once a species vanishes, it is permanently extinct
and cannot be brought back to life (except in some notorious science fiction books
and movies). The model’s state space is the positive orthant of a Euclidean space
of dimension equal to the number of species initially present. Each coordinate rep-
resents a particular species’s density or biomass. The coordinate axes are invariant
manifolds — once the dynamical system places a state variable on an axis, the
system will remain confined to it for all later times. This need not be the case in
the Ramsey model.
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13.5.1 Existence of Ramsey Equilibrium and Sufficient Conditions
for a Ramsey Equilibrium Path

Becker, Boyd, and Foias [9] gave general sufficient conditions for the existence of
a Ramsey equilibrium. Their theorem included recursive, as well as some non-
recursive utility specifications within a one-sector technology framework. Their
general result applies to the time additive discounted utility case presented here.
Their theorem, specialized to that framework, is stated below for reference.

Theorem 13.5.1. Let E = (f, {uh, δh, k
h}, h = 1, 2, . . . , H) be a given econ-

omy. Then a Ramsey equilibrium exists.

Becker, Boyd, and Foias [9] prove this result by setting up a mapping
from a non-empty compact convex subset of the space of all real-valued se-
quences to itself. This set is [0, bm]∞, the Cartesian product of infinitely many
copies of the interval [0, bm]. It is compact in an appropriate weak topol-
ogy by Tychonoff’s compactness theorem.56 Their mapping is motivated by
a tâtonnement procedure. They map capital sequences to their corresponding
sequence of rental rates by inverting the condition for profit maximization at
each time, 1 + rt = f ′(Kt−1). This determines the wage rate, and consumer
budget constraints. Consumers then solve their maximization problems. The
aggregate of their capital holdings is formed. It is then adjusted to a new aggre-
gate capital stock in [0, bm]∞ that raises the returns in periods where demand
exceeds supply, and lowers returns when supply exceeds demand. An equilib-
rium is a fixed point of this mapping. Of course, there are many technical
details that must be carefully worked out for this map to be rigorously defined
and its fixed points proven to be equilibria.

Necessary and sufficient conditions for a Ramsey equilibrium are useful
for identifying suspected solutions and demonstrating the conjectured solution
are, in fact, equilibria. The necessary conditions for a Ramsey equilibrium were
stated in sections 3.1-3.2. They are the no arbitrage inequality, (13.2), the
transversality condition, (13.4), the profit condition, (13.5), the distribution
of wages, (13.6), and market clearing (E4).57 The necessary conditions for a
steady state suggested an allocation and pricing structure that would be a good
candidate for an equilibrium. I used sufficient conditions for each agent’s op-
timum (given the prices and allocations) to verify the conjectured equilibrium
was in fact the equilibrium. This approach is adapted to many other examples
of Ramsey equilibria. Following the statement of general sufficient conditions,
I focus on a result formalized by Sorger [97] that applies to a two household
economy in which the more impatient household never owns capital. His result
56 Functional analytic concepts follow the terminology in Aliprantis and Border [1].
57 Strictly speaking, the transversality condition may or may not be a necessary

condition. Its interpretation as a type of no arbitrage condition can be found in
([8], Chapter 4).



13. Equilibrium Dynamics with Many Agents 421

provides a ready way to manufacture examples.58 This is illustrated by con-
structing an example of Mankiw’s [72] savers-spenders theory.

General Sufficient Conditions for Ramsey Equilibrium The necessary
conditions for equilibrium turn out to be sufficient as well. This result turns on
the assumed concavity of f and the uh functions, as well as the satisfaction of
the no arbitrage inequalities for each agent and their respective transversality
conditions in combination with a market clearing equation.

Theorem 13.5.2. (Sorger [97]). Let E = (f, {uh, δh, kh}, h = 1, 2, . . . , H) be a
given economy. Assume that there exists a sequence {Kt−1, c

h
t , x

h
t−1} such that

the following conditions are satisfied for all h = 1, 2, . . . , H and all t ≥ 1:

1. cht > 0, xh
t−1 ≥ 0,Kt−1 > 0;

2. xh
0 = kh;

3. δhf ′(Kt)u′h(cht+1) ≤ u′h(cht ) with equality whenever xh
t > 0;

4. cht + xh
t = 1

H [f(Kt−1) − f ′(Kt−1)Kt−1] + f ′(Kt−1)xh
t−1;

5.
∑H

h=1 x
h
t−1 = Kt−1;

6. limt→∞ δt−1
h u′h(cht )xh

t = 0.
Then it follows that {1+ rt, wt,Kt−1, c

h
t , x

h
t−1} is a Ramsey equilibrium for

the economy E where the sequence of factor prices {1 + rt, wt} is given by

1 + rt = f ′(Kt−1) and Hwt = f(Kt−1) − f ′(Kt−1)Kt−1.

This Theorem’s proof is a straightforward adaptation of standard arguments
for sufficiency of the Euler equation and transversality condition in the one-
sector Ramsey optimal growth problem.

Sufficient Conditions for a Class of Two-Agent Economies. The con-
struction of Ramsey equilibrium examples is greatly facilitated by the next
result which gives sufficient conditions in a two person economy for sequences
of aggregate capital, factor prices, consumption allocations, and individual cap-
ital allocations to be an equilibrium where only the most patient consumer holds
capital. This is a special type of equilibrium and it is typically a dynamic one
where the sequences changes over time. Of course, if the initial conditions are
set just right, the equilibrium will be the stationary one. The importance of the
lemma is that it asserts that given the most patient agent’s function satisfying
Assumption I, u1, and discount factor, δ1, and for any function u2 satisfying
Assumption I, there is a discount factor, δ2, such that Assumption II holds.
Moreover, the given sequences of aggregate capital, factor prices, consumption
and individual capital form a Ramsey equilibrium. In this equilibrium, the first
household owns the entire capital stock for all time and the second household’s
initial capital stock is zero.
58 This lemma is already implicit in Becker and Foias’s [12] construction of a periodic

Ramsey equilibrium path.
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Lemma 13.5.1. (Sorger [97]). Let u and f be functions satisfying Assump-
tions I and III, respectively, and let δ, ε1, and ε2 be positive real numbers with
δ ∈ (0, 1). Assume there exists a sequence {Kt−1, ct} such that the following
conditions hold true for all t ≥ 1:

1. ε1 < ct, ε1 < Kt−1 < ε2;
2. δf ′(Kt)u′(ct+1) = u′(ct);
3. ct = 1

2 [f(Kt−1) + f ′(Kt−1)Kt−1] −Kt.
For any function u2 satisfying Assumption 1, and for any sufficiently small
discount factor δ2 > 0 with δ2 < δ, it holds that for the economy E =
(f, {uh, δh, k

h}, h = 1, 2) defined by u1 = u, δ1 = δ, k1 = K0, and k2 = 0
has a Ramsey equilibrium {1 + rt, wt,Kt−1, c

h
t , x

h
t−1} given by

1 + rt = f ′(Kt−1), c1t = ct (13.37)

c2t = wt =
1
2
[f(Kt−1) − f ′(Kt−1)Kt−1], x1

t−1 = Kt−1, and x2
t−1 = 0.

Proof. Choose f, u1, δ1, k
1, and k2 as stated in the lemma’s hypotheses. Let

u2 be any function satisfying Assumption I. It will be shown that for a suit-
able choice of δ2 that the sufficient conditions of Theorem 12 are met for the
economy E . Conditions 2), 4), and 5) of Theorem 12 follow immediately from
the assumptions of the present lemma and from the definitions of xh

t−1 and
cht . From assumption 1) of the present lemma, from Assumption III, and from
(13.37) it follows that condition 1) of Theorem 12 is satisfied. Condition 3) of
Theorem 12 for h = 1 follows from the assumption 2) in the present lemma.
To verify condition 3) of Theorem 12 for h = 2 first observe that the definition
of c2t in (13.37) implies that there are positive constants ε3 and ε4 such that
ε3 ≤ c2t ≤ ε4 for all t ≥ 1. From this observation it follows that condition 2)
of Theorem 12 holds for h = 2 for any function u2 satisfying Assumption I
provided δ2 is chosen smaller than the supremum of the function

g(K, c, c̃) =
u

′
2(c)

f ′(K)u′
2(c̃)

over the set (K, c, c̃) ∈ [ε1, ε2] × [ε3, ε4]× [ε3, ε4]. Since this set is compact and
g is continuous and positive, δ2 can be chosen positive. Finally, condition 5) of
Theorem 12 follows from Assumptions I and II and from Assumption 1) in the
present lemma.

Savers and Spenders Redux: An Example

Mankiw’s [72] savers-spenders model can be formulated as a Ramsey equilib-
rium for a two person economy. Agent one is the most patient consumer, acts
as the bequest motivated individual, and saves. Agent two is the more impa-
tient person and acts as the economy’s spender. Agent two never saves and sets
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consumption equal to wage income in every period. This outcome represents a
choice by agent 2 since the option to save is always present so long as the wage
rate is positive. The choice of saving or spending for the more impatient house-
hold 2 is the only departure of the model from Mankiw’s framework, although it
is certainly consistent with a close reading of his interpretation of the spending
agent’s behavior. The model’s specification is completed by assuming special
functional forms for the production function and the first agent’s u1 function.
The preceding lemma takes care of the second agent’s preferences. This exam-
ple draws on an example in Boyd’s thesis (pp. 34-37, [28]), reinterpreted for
Mankiw’s model.

Let production be Cobb-Douglas with f(K) = AKα, where 0 < α < 1
and A = 21−α. The total factor productivity index, A, reflects the inelastic
supply of two units of labor from the household sector. The first household’s
function u1(c1t ) = ln c1t . Its discount factor is any δ1, with δ1 ∈ (0, 1). Along an
equilibrium profile, agent one solves

sup
{c1

t ,x1
t−1}

∞∑
t=1

δt−1
1 ln c1t

subject to:

c1t + x1
t =

1
2
[f(Kt−1) − f ′(Kt−1)Kt−1] + f ′(Kt−1)x1

t−1,

with k1 = k = K0 given and the usual nonnegativity constraints on consump-
tion and individual capital holdings. The equilibrium is constructed so that
x1

t = Kt and x2
t = 0 for all t. Thus, the constraint facing the first agent takes

the form:

c1t +Kt =
1
2
[f(Kt−1) − f ′(Kt−1)Kt−1] + f ′(Kt−1)Kt−1.

Given the Cobb-Douglas technology specification, this constraint can be rewrit-
ten as

c1t +Kt = BKα
t−1,

where B = [12 (1− α) +α]A and A = 21−α.59 Notice that the first agent’s opti-
mization problem (given the second agent never holds capital) is just like the
well-known canonical logarithmic economy – Cobb-Douglas example of Ram-
sey’s optimum growth problem. The difference is that the constant B appears
and it differs from the technology’s total factor productivity index, A, to reflect
the fact that the second agent is consuming fifty percent of the total wage bill
at each time while never saving. The optimal policy functions for this model
can be found using Boyd’s symmetry technique [30] and are expressed by:

c1t = (1 − δ1α)BKα
t−1;

Kt = δ1αBK
α
t−1.

59 Notice that B < A holds. For example, let α = 0.5. Then B = 3
√

2/4 and A =
√

2.
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The aggregate capital sequence is found by iteration of the capital policy func-
tion with initial seed K0. The stationary Ramsey equilibrium capital stocks are
easily seen to be K̄ = [1/(δ1αB)]1/(1−α). If K0 < K̄, then the equilibrium cap-
ital stock sequence Kt ↑ K̄ and if K0 > K̄, then Kt ↓ K̄. The first household’s
consumption shares the same monotonicity property. The second household’s
consumption is given by

c2t = wt =
(1 − α)

2
AKα

t−1.

Hence, its consumption is also monotonic in the same manner as the aggre-
gate stock’s monotonicity pattern. The transversality condition holds for each
household as their consumption levels converge to the stationary equilibrium
levels and the aggregate stocks converge as well. Therefore, Lemma 13 implies
for any u2 satisfying Assumption I, there is a δ2 > 0, with δ2 < δ1, such that the
sequences so defined form a Ramsey equilibrium when the economy’s endow-
ments are distributed as k1 = K0 and k2 = 0.60 The basic convergence story
for the Solow, Stiglitz, and Ramsey one-sector models apply to this realiza-
tion of the savers-spenders theory. In particular, the Orthodox Vision applies
to this specification of Mankiw’s theory. Thus, there are economies for which
the Ramsey equilibria are stable and converge to the stationary equilibrium
allocation.

It is interesting to note that this result obtains for any choice of the first
agent’s discount factor. It can be very very small and there is still a smaller
discount factor for the second household that will make this allocation and
implicit factor prices into an equilibrium. Mankiw’s savers-spenders model only
depends on the relative levels of discounting between the agents. Both can have
very high discount rates. It is the magnitude of the smallest discount rate (or,
equivalently, the largest discount factor) which determines which agent is the
saver and which is the spender.

The monotonicity of the aggregate capital sequence and its convergence
to the stationary Ramsey equilibrium are interesting results in this context.
How general are these properties? Is it true for arbitrary economies that the
aggregate capital sequence is monotonic and convergent to the steady state?
Does a household with no capital initially remain in the zero capital state
forever?

13.5.2 The Recurrence and Turnpike Properties

The relatively impatient households have no physical assets in the stationary
equilibrium. So, if that equilibrium is stable, it must be the case that those
60 This allocation is feasible. It is easy to verify that the sum of individual consump-

tion levels at each time plus the capital stock at each time equals the total output
available from fully employing the previous period’s capital stock. The market for
consumption and new capital goods clears at each date.
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households capital holdings converge to zero. This is not always true in a Ram-
sey equilibrium. It is of fundamental importance to understand why this is
so and if there are conditions under which the relatively impatient consumers
drive their capital holdings towards zero.

Recurrence Property

There are a number of properties that an individual’s capital sequence might
satisfy. To keep our ideas general, just consider an arbitrary nonnegative se-
quence of capital stocks, {xt−1}. A capital stock x > 0 is a threshold stock
if xt−1 ≥ x for all t. That is, if this consumer starts with positive stocks at
least as great as x, then those stocks remain above that level for all time. If a
household has a threshold stock, then its capital holdings can be zero in equi-
librium (or arbitrarily close to zero) only if that individual starts with initial
capital smaller than the threshold stock. An important theme developed below
is that except for the most patient individual, Ramsey equilibria do not have
threshold stocks at the individual level.

The nonnegative sequence {xt−1} is said to have a positive capital state
at time t provided xt > 0. Likewise, the zero capital state occurs at time t
whenever xt = 0. A positive capital state is said to be permanent if there exists
a x > 0 such that lim inft→∞ xt−1 ≥ x. It is said to be impermanent whenever
lim inft→∞ xt−1 = 0. Clearly an impermanent path with lim supt→∞ xt−1 = 0
actually converges to zero, that is, limt→∞ xt−1 = 0. The path is persistent if
lim supt→∞ xt−1 > 0 and it is strongly persistent if lim inft→∞ xt−1 > 0. The
following definition is singled out for its importance in the following analysis.

Definition 13.5.1. The capital stock x is a recurrent state for the sequence
{xt−1} if there exists {tn}∞n=1, tn < tn+1, and x = xtn(n = 1, 2, . . .).

The most general property of Ramsey equilibrium paths turns out to be the
recurrence property — the zero capital state is recurrent for each h ≥ 2. That
is, the relatively impatient individual’s achieve a zero capital state infinitely
often. Moreover, an example will show that it is possible for an individual to
have a positive capital state infinitely often along an equilibrium path as well
as realize the zero capital state infinitely often in the same sequence. Thus, it
is possible for a path to be impermanent, yet persistent.

Fix the economy E meeting Assumptions I-III unless otherwise noted. Fol-
lowing Becker and Foias [12], I begin the development of the recurrence property
with

Lemma 13.5.2. If {1 + rt, wt,Kt−1, c
h
t , x

h
t−1} is a Ramsey equilibrium for E,

then
lim inf

t→∞ δ1(1 + rt+1) ≤ 1. (13.38)

Proof. Applying (13.2) to h = 1 yields after iterating, and noting c1t < bm that
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T∏
t=1

δ1(1 + rt+1) ≤
u

′
1(c

1
1)

u
′
1(c

1
T+1)

≤ u
′
1(c

1
1)

u
′
1(a)

.

Therefore,

lim sup
T→∞

T∏
t=1

δ1δ1(1 + rt+1) < ∞, (13.39)

which easily implies (13.38).

The previous lemma shows that lim supt→∞Kt−1 ≥ K̄ ≡ kδ1 . Moreover
lim inft→∞Kt−1 ≥ K, where K is defined as the solution to δHf

′(K) = 1.
This last fact follows from the next result (see ([12], pp. 177-78):

Proposition 13.5.1. The assumptions of the previous Lemma imply Kt ≥ K
holds eventually; this is equivalent to rt ≤ f ′(K) − 1 ≡ r.

Since K > 0, this Proposition immediately implies the sequence {wt} must
eventually be bounded from below by w(K) = w, where Hw(K) = f(K) −
f ′(K)K. This easily implies

Corollary 13.5.1. Under the hypotheses of Lemma 15,

lim sup
t→∞

cht > 0 (h = 1, 2, . . . , H). (13.40)

The main recurrence result is given by the next theorem:

Theorem 13.5.3. (Recurrence Theorem). If {1 + rt, wt,Kt−1, c
h
t , x

h
t−1} is

a Ramsey equilibrium for E, then the no capital state is recurrent for each
h ≥ 2.

Proof. Suppose the no capital state is not recurrent for some h ≥ 2. Then there
is a t0 such that xt > 0 for all t > t0 (where I drop the h superscript for this
h ≥ 2). Iterating (13.2) for t0, . . . , T , gives

T∏
t=t0

δ(1 + rt+1) =
u′(ct0)
u′(cT+1)

or (
δ

δ1

)T−t0 T∏
t=t0

δ1(1 + rt+1) =
u′(ct0)
u′(cT+1)

with 0 < δ < δ1 < 1.
But (δ/δ1)T−t0 → 0 as T → ∞ implies that ct → 0 by Assumption I and

by (13.39). This contradicts (13.40).
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It is important to note that the Recurrence Theorem holds for many dif-
ferent choices of technology, including the Cobb-Douglas production function.
The stability theorem given below restricts the technology to one where the ag-
gregate capital income is an increasing function of the aggregate capital stock.
Thus, the Recurrence Theorem is the most general result in the lit-
erature on the properties enjoyed in a dynamic Ramsey equilibrium.

An interesting consequence of the Recurrence Theorem is

Corollary 13.5.2. If {1 + rt, wt,Kt−1, c
h
t , x

h
t−1} is a Ramsey equilibrium for

E, then
lim inf

t→∞ cht > 0 (h = 1, 2, . . . , H).

This Corollary’s proof is quite technical; the details are in Becker and Foias
[12]. The Corollary says that each agents’s consumption is strongly persistent
— nobody consumes zero or even approaches zero asymptotically. This result
distinguishes the Ramsey model with borrowing constraints from its complete
market general equilibrium counterparts as found in Bewley [23], Coles ([35],
[36]), Duran and Le Van [43], Le Van and Vailakis [68], and Rader ([85], [86],and
[87]).

The Recurrence Theorem tells us households h ≥ 2 achieve the zero capital
state infinitely often. Their capital holdings are impermanent (so there is no
threshold level). At any time in which such an agent’s capital is zero, the agent
can always consume less than its current wage income and thereby achieve a
positive capital state one period later. It would be nice from an analytical view
if once a household achieved a zero capital state, it maintained that state for
all remaining times. Unfortunately, that is not the case in general. This fact is
illustrated by the following example due to Michael Stern [100]. His example is
constructed using the ideas in Becker and Foias’s [12] example of an economy
with an equilibrium whose aggregate capital stock repeated every other period
in a two-cycle. The Becker-Foias example was constructed so that only the first
household owned capital. Stern’s example shows more. It describes a periodic
equilibrium where the most patient household holds capital all the time, and
the more impatient has capital infinitely often.

Example 13.5.1. (Stern [100]). There is a two household economy E and a cor-
responding Ramsey equilibrium in which the first household’s capital stock al-
ternates between two positive levels, xH and xL with 0 < xL < xH < bm, and
the second household’s capital stock alternates between zero capital and a posi-
tive capital stock, x. Moreover, the aggregate stock KH = xH and KL = x+xL

with KL < KH . This implies that the relatively impatient households can hold
positive capital stocks in infinitely many periods and these positive stocks are
bounded away from zero. The second agent’s stocks can be impermanent, and
persistent, while exhibiting the recurrence property.

There are two households. The first, is called the dominant household as
its discount factor is the larger of the two agents’ factors. The second, is the
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non-dominant household. The example shows the dominant consumer cycles
between a “low” and a ‘high” level of capital and the non-dominant consumer
cycles between zero capital and positive capital. Thus, the recurrence property
cannot be improved without additional assumptions as the more impatient
household can, in some circumstances, oscillate between holding capital and
not. The example is constructed so that the non-dominant household will hold
zero stocks when the dominant consumer’s stocks are high, and hold positive
capital when the dominant consumer’s stocks are low. So, the sequence of ag-
gregate capital stocks will be {KH ,KL,KH ,KL, . . .}; the dominant consumer’s
stocks are {xH , xL, xH , xL, . . .} and the non-dominant consumer’s stocks are de-
noted {0, x, 0, x, . . .}. The initial aggregate stock is KH = xH . The correspond-
ing consumption streams are denoted {cL, cH , cL, cH , . . .} and {c, c0, c, c0, . . .}
for the dominant, and non-dominant consumers, respectively. The no-arbitrage
conditions that must be satisfied are:

δ1f
′(KL)u′1(cH) = u′1(cL) (13.41)

δ1f
′(KH)u′1(cL) = u′1(cH); (13.42)

δ2f
′(KH)u′2(c) ≤ u′2(c0) (13.43)

δ2f
′(KL)u′2(c0) = u′2(c). (13.44)

The budget balance conditions for each household are:

cL + xL = wL + f ′(KH)xH (13.45)
cH + xH = wH + f ′(KL)xL; (13.46)

c0 = wH + f ′(KL)x (13.47)
c+ x = wL, (13.48)

where

wL =
1
2

[f(KH) − f ′(KH)KH ] (13.49)

wH =
1
2

[f(KL) − f ′(KL)KL] ; (13.50)

KH = xH and KL = xL + x. (13.51)

Now, take the piecewise linear production function defined by:

f(K) =
{

10 + 5K, 0 ≤ K ≤ 10;
52 + 0.8K, 10 ≤ K.

(13.52)

Here, the maximum sustainable stock is bm = 260.
Let KL = 8, KH = 12, xL = 7.8, and x = 0.2. Then (13.49) and (13.52)

imply wL = 26 and wH = 5. The budget balance conditions (13.45) imply for
these values that cL = 27.8, cH = 32, c0 = 6, and c = 25.8. In order to satisfy
(13.41), it is only necessary that
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(δ1)2f ′(KL)f ′(KH) = 1,

which implies that δ1 = 0.5. So, any u′1(cL) > 0 will do and u′1(cH) = 0.4u′1(cL).
Also,

(δ2)2f ′(KL)f ′(KH) = 1

implies that δ2 ≤ 0.5. But it must also be the case that u′2(c) < u′2(c0) implies
δ2 < 0.5. So, let δ2 = 0.1 and take

u
′
1(27.8) = 1, u′1(32) = 0.4;
u

′
2(6) = 2.4, u′1(25.8) = 1.2.

Any felicity functions that obey the above restrictions and the usual smoothness
assumptions meeting Assumption I will work for this example. Also note that
the transversality conditions are trivially satisfied. The production function
(13.52) can be smoothed without a problem in order to satisfy Assumption III
so long as f ′(8), f(8), f ′(12), and f(12) stay the same. The economy’s stationary
Ramsey equilibrium stock will fall in the interval [8, 12] with f ′(kδ1) = 2.
The felicity functions, production functions, capital endowments, and paths
of consumption and capital clearly pass Sorger’s sufficiency test for a Ramsey
equilibrium.

This example shows something more. A Ramsey equilibrium’s aggregate
capital stock need not converge to the stationary equilibrium capital stock.
In particular, an equilibrium path of aggregate capital can oscillate in a two-
period cycle, also called a 2-cycle. Moroever, every choice of KH and KL in
a neighborhood of 8 and 12, respectively, gives rise to an equilibrium with a
two-cycle for a suitable choice of felicity functions and discount factors. On the
other hand, the example of a two-person Savers-Spenders model, has monotonic
paths of aggregate capital accumulation and clearly converges to the long-run
steady state solution in the limit. Moreover, in that case, the more impatient
individual, starting from the zero capital state, remains there for all time. What
economic condition within the model is the source of fluctuations in one case,
but absent in the other, stable case?

The Turnpike Property

The turnpike property obtains if every h ≥ 2 eventually reaches a no capital
position and maintains that state thereafter. This property expresses the steady
state capital position of the relatively impatient households. Stern’s example
shows that without additional assumptions on technology and/or preferences,
the turnpike property does not obtain. Yet, the Savers-Spenders example shows
it does hold for some economies. Therefore, it is of some interest to work out
sufficient conditions for it. Two types of results are available. In the first, it
is shown that the turnpike property holds whenever each household h ≥ 2
is sufficiently myopic in comparison to the first household’s discount factor.
The second type of result is based on showing the turnpike property obtains
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whenever the equilibrium aggregate capital stock sequence is convergent and
that limit must be the steady state stock. Thus, if the steady state stock is
stable (in the sense that it is the limit of the economy’s equilibrium capital
stock sequence), then it must be true that each household h ≥ 2 necessarily
achieves a zero capital state in finite time and maintains it thereafter. The
option to return to a positive capital state is never exercised by those agents.

The first type of result is found in Becker and Tsyganov’s paper (Lemma
4.4),[17]).61

Proposition 13.5.2. Make Assumptions I-III. Let {1+ rt, wt,Kt−1, c
h
t , x

h
t−1}

be a Ramsey equilibrium for an economy E . If δh << δ1, then eventually kh
t = 0

for each h ≥ 2.

The second type of result, detailed in Becker and Foias (Propositions 4 and
5, [12]), is given below.

Proposition 13.5.3. Make Assumptions I- III. Let {1+rt, wt,Kt−1, c
h
t , x

h
t−1}

be a Ramsey equilibrium for an economy E . If limt→∞Kt = K∞ exists, then
K∞ = kδ1 and xh

t = 0 for each h ≥ 2 and all t large enough. Alternatively, if
Kt ≤ kδ1 for all t large enough, then limt→∞Kt = K∞ exists and the turnpike
property obtains.

The Savers-Spenders example satisfies the conditions of the latter proposi-
tion. Hence, it illustrates how convergence of the aggregate stocks to the steady
state stock is linked with the turnpike property. Stern’s example of a two-cycle
fails this sufficient condition for the turnpike property. This takes us closer to
answering when the economy converges and when convergence might fail.

On the Source of Periodic Equilibria

Stern’s example shows equilibrium paths of capital accumulation need not con-
verge to the steady state solution. As previously noted, his example is a vari-
ation on one developed by Becker and Foias [12] with the express purpose of
showing equilibrium can exhibit a two-cycle.62 Stern’s example, and the one
found in Becker and Foias [12], can be used to show how cycles can emerge as
equilibria without further restrictions on the production function. Becker and
61 Their result is derived for a two-sector model, but applies to one-sector models

upon assuming both sectors have indentical technologies.
62 The idea that borrowing constraints may be the source of cycles in dynamic com-

petitive models arises in Bewley [24]. His model treats labor supply differently
than the Ramsey model. Agents provide labor every other period. This provides
consumers with a motive for smoothing consumption. He constructs an example
with a periodic cycle in the one-period interest rate (or, rental rate on capital) as
agents adapt to their fluctuating labor incomes. His model applies to an economy
where all agents have the same discount factor. The agents save in periods when
they have labor income, but do not save otherwise. The borrowing constraint can
bind in the latter situation and a periodic solution is then shown to be possible.
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Foias’s example shows that the aggregate stock can fluctuate in a two-cycle
while the second household consumes its wage and never saves. The turnpike
property holds in their example. The first household owns the aggregate cap-
ital stock. Yet, the equilibrium fails to converge to the steady state solution.
Their example’s details are worked out in a similar way to the details of Stern’s
example, so those calculations are not included here. It is important to note
that in both examples, the cyclic equilibrium stocks oscillate around the steady
state stocks. In the case where capital increases from one period to the next,
the marginal product of capital falls, capital income declines, the wage rate
rises, and the total income received by the first household declines. The case
where capital falls from one period to the next has a similar interpretation.

In the familiar representative household Ramsey optimal growth model, to-
tal income, f(K), is monotonically increasing in capital; this income is the sum
of the wage bill, f(K) − f ′(K)K, and capital income, f ′(K)K. In contrast,
with many households and the situation of the Becker-Foias example, the to-
tal income of the first household differs from the economy wide income by an
amount equal to the wage payments made to the noncapital holding agents.
In this case, total income of household one need not be increasing in capital.
Indeed, as the first household increases its capital, the total income received by
it fell: capital income declined by more than the increase in the wage received
by the household. The wage increased with capital accumulation due to the
negative slope of the factor-price frontier. In the next period, this household
naturally saves less than before thereby inducing a subsequent increase in its
income. The fluctuations in income are perfectly foreseen together with the
fluctuations in factor prices. The decline in capital income as capital increases
is the key to their example. This decline is technologically based; it depends
on f exhibiting a (variable) elasticity of substitution less than one. The first
household is also sufficiently impatient so that incentives to smooth the fluctu-
ations in consumption by arbitrage across periods do not exist. Thus, a decline
in capital income as capital increases combines with the relative impatience of
the first household to provide a cyclic equilibrium capital sequence.63

13.5.3 Equilibrium Dynamics with Capital Income Monotonicity

A sufficient condition for capital income monotonicity is that the production
function’s elasticity of substitution is greater than or equal to one. This condi-
63 Woodford [105] considers a two class borrowing constrained model consisting of

capitalists and workers. The former optimize their consumption-saving decision
over an infinite horizon. They save, but do not work. The latter just consume their
wages. The representative capitalist’s income is the economy’s capital income. It
need not be a monotonic function of the aggregate capital stock. Woodford shows
periodic and even chaotic trajectories are possible equilibria. Also, see the presen-
tation in Guesnerie and Woodford ([56], pp. 301-311). The Ramsey equilibrium
model has one fundamental difference with Woodford’s model. The households all
work and even the most impatient can always choose to become a capitalist by
saving in the Ramsey equilibrium model.
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tion is satisfied by the Cobb-Douglas production function. It turns out that this
technological property combines with the other assumptions on the tastes and
technology to yield a convergence theorem. The formal assumption is stated
as:

Assumption IV: For all K > 0, (d/dK)(f ′(K)K) > 0.
Becker and Foias’s [12] convergence theorem is formally stated below. Its

proof rests on showing that either the aggregate capital sequence is nonincreas-
ing, or it is eventually smaller than the steady state stocks. In either case, it is
then possible to show convergence as a consequence of Proposition 22. Formal
details are found in their paper.

Theorem 13.5.4. (Convergence Theorem). Make Assumptions I-IV. For
an economy E let {1 + rt, wt,Kt−1, c

h
t , x

h
t−1} be a Ramsey equilibrium. Then

the sequence of aggregate capital stocks, {Kt−1}∞t=1, converges (eventually
monotonically) to the stationary Ramsey equilibrium aggregate stocks and the
turnpike property obtains.

This theorem applies to the Savers-Spenders theory example. More gener-
ally, for any economy with a Cobb-Douglas production function, every Ramsey
equilibrium converges to the steady state. Note that the theorem does not tell
us equilibrium paths are unique, or even determinate. Moreover, the conver-
gence is eventually monotonic.64 Hence, the Orthodox Vision eventually holds.
The theorem gives reasonable conditions for Ramsey’s long-run conjecture to
hold as the economy’s short-run dynamics take it towards that stationary equi-
librium, even when all agents start off with positive capital. In particular, just
as Irving Fisher thought, an economy starting with an equal distribution of
capital would eventually diverge from equal wealth as more impatient agents
seek ever more current consumption at the expense of future consumption.

It is interesting to note that Becker and Foias’ theorem also extends to some
classes of two-sector models. Becker and Tsyganov [17] show this provided cap-
ital income monotonicity holds. However, the proof depends on which sector is
more capital intensive than the other. In the case where the consumption goods
sector is more capital intensive than the capital goods sector, then there are
limitations on just how far the two-sectors’ capital intensity can differ and a
convergence theorem demonstrated, even with Cobb-Douglas production func-
tions. Indeed, they show two-cycles can exist for a Cobb-Douglas economy
provided the agents discount factors are sufficiently small. This result has par-
allels in the representative agent theory (see Nishimura and Yano [83] for the
single agent theory). It is important to note that a cyclic equilibrium arises in
the case where capital income monotonicity holds. This is one way in which
the two-sector story differs from the one-sector model’s properties. When the
capital goods sector is more capital intensive than the consumption goods sec-
tor, Becker and Tsyganov [17] prove a convergence theorem as the two-sector

64 Of course, the theorem includes other production functions so long as (AIV) holds.
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analogue of the Becker and Foias [12] result provided capital income monotonic-
ity holds (which is shown to hold in any two-sector model with Cobb-Douglas
production functions).

Ramsey equilibria have also been studied in the case where all agents have
a common discount factor. Hernandez [59] proves a version of the Becker-Foias
convergence theorem under a capital income monotonicity condition. His result
does use a different proof technique than Becker and Foias employed.

13.5.4 Special Ramsey Equilibria

The Recurrence and Convergence Theorems form the main general results avail-
able in the Ramsey equilibrium model. However, other dynamic possibilities
have been exhibited by considering special solutions in which the turnpike
property is assumed to hold from the model’s start. That is, agents h ≥ 2 have
no capital endowment and the equilibrium path is constructed in such a way
that only the most patient household holds capital. The resulting properties of
the model are deduced by examining this special case where the aggregate cap-
ital stock and the first household’s stocks are one and the same. The resulting
path of aggregate stocks and consumption for the first household, together with
the assignment of the per capita wage to the more impatient households always
expresses an equilibrium for some economy. That is, the felicity functions of
the other households and their discount factors can always be chosen to sup-
port the specially constructed path as an equilibrium. The results summarized
below are based on this idea.

Special Monotonic Capital Sequences

The convergence theorem for economies satisfying the capital income monotonic-
ity hypothesis applies to every equilibrium path. However, it is possible there
can be more than one equilibrium, or that equilibrium might even be indeter-
minate. Examination of special equilibrium configurations sheds light on this
problem. Becker and Foias ([13], [15]) consider an economy in which the turn-
pike property holds in the manner described above. If the capital monotonicity
assumption holds, then they show that there is a dynamical system derived
from the first agent’s no arbitrage condition and the budget balance condition
(where all other agents consume the wage rate at each time). This dynamical
system is given by a second-order nonlinear difference equation. They consider
the equation’s linear approximation system at the stationary Ramsey equilib-
rium and show that it is a saddle point in the phase space consisting of current
capital stocks and next period’s capital stocks. In [15], they apply a stable
manifold theorem to show there is a local stable manifold. Moreover, it can be
extended to a global invariant manifold. That is, there is a continuous function
defined on (0, bm) whose graph is the invariant manifold. Therefore, given a
value of the initial capital stock, there is a unique value of the endogenously
determined next period’s stock such that this pair of stocks is a member of



434 Robert A. Becker

the graph. This process can be continued by iteration. The invariant manifold
property says that the resulting capital sequence is in this set for all time.
Becker and Foias [15] also show that this sequence converges monotonically
to the stationary Ramsey equilibrium.65 In this special case, the equilibrium is
deteminate — given the initial aggregate stocks held entirely by the first house-
hold, there is one equilibrium path satisfying the turnpike property for all time.
This result does not exclude other equilibria from existing, but suggests that
it is reasonable to conjecture equilibrium is determinate when capital income
monotonicity obtains.

Special Periodic Equilibria and Chaos

Special equilibria have already been noted to exist where the aggregate capital
stock sequences exhibit two-cycles. Capital monotonicity fails in these situa-
tions. Becker and Foias [14] considered a dynamical system governing the first
player’s capital stock evolution under the assumption that all other agents
began without capital and maintained that position thereafter. They showed
without the capital monotonicity property, the stationary equilibrium could fail
to be a saddle point. Indeed, they found a flip bifurcation. As the production
function’s elasticity of substitution falls below one, the stationary state’s saddle
point property is lost. A locally stable two-cycle is created.

Sorger [97] constructs examples of two person economies where there are
equilibria with periodic solutions of every odd period. He also shows there is a
two person economy in which there are multiple equilibria. His example shows
that without capital income monotonicity, the steady state is not unique in
the class of all Ramsey equilibria starting from that initial state. In his ex-
ample, there is another equilibrium sequence of capital stocks from the same
initial distribution of capital as in the stationary equilibrium. This alternative
equilibrium is necessarily periodic. This nonstationary equilibrium has an odd
period at least as great as three. His proof basically follows the type of con-
structions used in Becker and Foias’s [12] cycle proof (and as illustrated in
Stern’s example).

Equilibria are locally unique if there are no other equilibria in any suffi-
ciently close neighborhood of any given equilibrium. Local uniqueness repre-
sents determinacy. Given the predetermined value of the aggregate capital stock
(when the turnpike property holds from the beginning), there is a locally unique
choice of the endogenously determined value of next period’s stock which gives
rise to an equilibrium aggregate capital sequence. Otherwise, equilibrium is said
to be indeterminate. Sorger [97] shows there is an economy which has an in-

65 Becker and Foias [15] actually prove more. They give a theoretical iterative pro-
cedure by which the invariant manifold could, in principle, be constructed. They
solve a functional equation for the function whose graph is the invariant manifold.
Becker and Chen [11] implement this procedure numerically as well as employ pro-
jection methods based on Judd [60] to find the invariant manifold’s equation, at
least approximately.
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determinate Ramsey equilibrium. This economy fails to satisfy capital income
monotonicity and the turnpike property applies to agents h ≥ 2. His proof is
based on constructing a locally asymptotically stable two-cycle. That is, there
is an economy with a two-cycle Ramsey equilibrium such that for any initial
nearby aggregate capital stock assigned to the first household, there is an open
set of choices for the next period’s stock such that the resulting equilibrium
aggregate stocks converge asymptotically to this two-cycle Ramsey equilibrium.

The indeterminacy of equilibrium opens the possibility that sunspot equi-
libria might also emerge in a Ramsey equilibrium for an economy without the
capital income monotonicity property. Sorger [97] constructs an example of a
rational expectations equilibrium which is a non-trivial stochastic process. That
is, the deterministic Ramsey equilibrium model can have, in some economies,
stochastic equilibria based on agents’ expectations that the forecast wage and
rental sequences form a stochastic process. These expectations are based on
something other than the model’s deep taste and technology parameters. Hence,
the term sunspots — uncertainty that lies outside the economy’s fundamen-
tals. As in all sunspot models, agents merely have to believe there are random
influences, from whatever source, and there can be an equilibrium where those
beliefs are self-justifying. He argues that this feature makes the Ramsey equi-
librium model similar to overlapping generations models that exhibit sunspots.

A chaotic Ramsey equilibrium has also been constructed by Sorger [98]. His
example is based on an example of the second-order difference equation in the
aggregate capital stocks derived from the first agent’s no arbitrage and budget
equations when the other agents satisfy the turnpike property for all time. The
example verifies Marotto’s [75] snap-back repeller condition for a self-mapping
of Rn. Intuitively speaking, a snap-back repeller is a fixed point of the trans-
formation with the property that its Jacobian matrix at that point has all its
characteristic roots on or outside the unit circle (the fixed point is said to be
an expanding repeller). This implies any trajectory starting sufficiently nearby
will eventually leave this neighborhood. The map must also have at least
one trajectory starting close to the fixed point, which after leaving the small
neighborhood in finite time, “snaps back” onto the fixed point exactly. Marotto
[75] showed that a differentiable self map on Rn with a snap-back repeller also
had periodic solutions for all sufficiently large periods, there would be an un-
countable invariant set contained in Rn containing no periodic points such that
trajectories initiated in that set showed sensitive dependence on initial condi-
tions (adapted to the n-dimensional setting).66 Thus, by giving an example
of an economy with a snap-back repeller, Sorger [98] shows there are chaotic
Ramsey equilibria. This result is troubling. A perfect foresight chaotic equilib-
rium’s sensitive dependence on initial conditions implies that real households,
restricted to making approximate calculations and forecasts, would be taken
by the famous unseen hand to a time path of capital holdings, consumption,
66 See Marotto [75] for details and connections with the literature on chaos in one-

dimensional maps. His paper is basically an attempt to adapt the one-dimensional
case to Rn.
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wage rates, and rental rates, that none had foreseen. Ultimately, whether the
given Ramsey economy exhibits a stable solution (the Convergence Theorem
holds), or one of the cyclic, or even chaotic equilibria emerges, turns on the
economy’s elasticity of substitution in production. This is, at least, a techno-
logical parameter. However, there is at least some empirical evidence that it is
smaller than one. So, it is possible that the complicated dynamics found in the
Ramsey equilibrium literature may yet prove to be the more interesting feature
of the model than the convergence theory.67

13.6 Conclusion

Time preference influences intertemporal allocations. Ramsey’s many agent
model provides us with a framework for seeing how individual tastes can in-
fluence an economy’s development and the distribution of its produce. The
ways in which it differs from the representative agent theory may, with further
research, provide us with a foundation for macrodynamic models with many
agents where there interactions influence the level of macroeconomic activity
and the conduct of macroeconomic policy.
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14. Dynamic Games in Economics

Rabah Amir
Department of Economics, University of Arizona, Tucson, AZ, USA 1

14.1 Introduction

This section provides a general idea of the contents and organization of this
survey of a large body of research in economics and related fields loosely defined
by the adoption of the common methodology of dynamic games. We note at
the outset that this class of games has also been referred to in various contexts
as stochastic games2, state-space games, sequential games, Markov games and
difference (or differential) games. Given the breadth of this task and the long
time span of the relevant strands of literature, some omission is inevitable.

The paradigm of dynamic games has long appeared natural and appealing
in economic modeling, and has been adopted in many different subfields of
the discipline. Various factors have prevented an even more widespread use of
this theory, including in particular the complexity of this class of games, the
difficulty of proving existence of usable and plausible equilibrium points, and
the fact that closed-form solutions are possible only under very few specific
functional forms.

We begin by describing the intended goals and limitations of this survey, the
confines and special features of stochastic games in economics, and the general
organization of this survey.
1 I would like to thank Jim Bergin, Manjira Datta, Igor Evstigneev, Wolfgang

Leininger, Leonard Mirman, Jean-Francois Mertens, Abraham Neyman, Kevin Ref-
fett, Matthew Sobel, Martin Shubik, and Sylvain Sorin for helpful exchanges con-
cerning the subject of this paper.

2 Shapley coined the term ”stochastic games” by analogy to ”stochastic processes”,
thus implicitly capturing the presence of dynamics. Since most applications ac-
tually involve models with deterministic transitions, this may appear somewhat
misleading here, and ”dynamic game” seems more appropriate. This is particu-
larly true of studies considering open-loop equilibria, an essentially meaningless
concept for games with chance moves.
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14.1.1 Purpose and Scope of the Survey

This chapter provides a general survey of applications of stochastic games
in economics and related fields. We identify clusters of studies according to
methodological considerations (such as reliance on open-loop equilibrium, or
perfect information, or computational simplicity), or to disciplinary catagories
(such as industrial organization or capital theory). The primary concern was to
come up with convenient and natural categories that would be consistent with
the general purpose of this volume while appealing to a diverse readership.

Coverage may be somewhat detailed and self-contained, or in the form of a
brief summary with a listing of references, depending on how broadly used the
particular framework under consideration has been, and on space considera-
tions. In particular, for literature strands defined by a common methodological
framework, a summary of the main results is provided. As the survey is orga-
nized both along methodological and subject lines, it is inevitable that some
overlap will appear across different sections. Such occurences are mentioned
where appropriate so as to establish links between otherwise separate sections.

This survey will not encompass the continuous-time case, or differential
games3, except in some cases where the results have direct qualitative analogs
in discrete-time, or are otherwise of relevance to issues raised here. Likewise,
although some links exist with the repeated games literature and with the
standard two-stage game framework, these will not be dealt with here.

The survey is targeted more at potential users of the theory of dynamic
games and young researchers in economics, rather than to game theorists or
expert users. As a result, it seemed appropriate to review in some detail some
important definitions, game-theoretic notions and frequently invoked facts from
the theory of dynamic games. In particular, the presentation highlights the fact
that these useful facts follow in a straightforward way from standard results in
dynamic programming theory, which by now are familiar to most economists
(see e.g. Stokey, Lucas and prescott, 1989). On the other hand, for the sake of
brevity, the reader is referred to other more self-contained or original sources
for more detailed treatments and discussions, as well as for most proofs.

14.1.2 Special Features of Economic Applications of Dynamic
Games

In relating the present survey to the rest of this volume, one must keep in mind
that a number of motivations and widely held beliefs among economists have
in large part shaped the nature and the focus of the studies invoking the theory
of dynamic games in economics4. A brief account of these beliefs is now given.
3 Basar and Olsder (1999) and Dockner et. al. (2000) are authoritative monographs

on this related paradigm.
4 Having said that, it is also true that different subfields of economics have been

influenced by different disciplines (such as systems theory, or operations research,
or mathematical game theory), and thus may reflect somewhat divergent practices
and beliefs.
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1. Discounted payoffs. As situations where anything that takes place in finite-
time is irrelevant are unnatural in economics, only models with discounted
payoffs have been considered. The presence of a positive rate of interest is
ubiquitous in economic life. Thus, for economic models, dynamic games with
undiscounted payoffs can be relevant only as a robustness check on a model
with discounting.

2. Pure strategies. Due to a lack of compelling universal interpretation and to
their inherent ex-post regret property, mixed strategies have enjoyed limited
acceptance in economics in general, and this area is no exception. Mixed strate-
gies have been considered only in a limited number of cases, such as situations
where pure-strategy equilibria fail to exist. Another reason for the avoidance
of mixes strategies is the computational difficulties associated with numerical
procedures when the action space is uncountable.

3. Uncountable state and action sets. Owing mostly to the prevalence of
calculus-based methods, there is a continuing tradition in economics of working
with uncountable spaces, although the theory of stochastic games is much more
complete for the case of finite state and action spaces, and reality is sometimes
also more conform to the latter case (e.g. discrete units for prices). On the
other hand, probably due to the latter two features, there is a recent trend of
model-building utilizing finite state spaces in the area of industry dynamics.

4. Simplicity. To avoid fixed-point arguments in function spaces and complex
systems of functional equations, several studies rely on specific functional forms
that allow closed-form equilibrium strategies, such as the linear-quadratic and
the myopic models. A key advantage of this approach, in addition to the ob-
vious computational appeal, is that it allows for clear-cut comparative statics
conclusions, otherwise a rare luxury in dynamic games. Another simplicity-
inspired choice is the nature of the strategies allowed, with many models being
limited to open-loop behavior often without compelling contextual economic
justification.

5. Predictive power of models. Since applications are typically motivated by the
search for clear-cut conclusions, only highly structured and relatively aggre-
gated models of stochastic games (typically with scalar state and action sets)
have been studied. This is also due to the relative complex nature of this class of
games. Also history-dependent behavior and folk-theorem type outcomes have
generally been avoided in applications, with some exceptions.

14.1.3 Organization of the Survey

The presentation is divided into nine sections, some of which are defined along
methodological lines while others are devoted to particular subfields. The sur-
vey proceeds as follows. Section 14.2 provides a summary of the properties
of open-loop and Markovian equilibria, and a list of references using the for-
mer concept. Section 14.3 considers special classes of dynamic games, such as
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linear-quadratic games, ubiquitous in economics and systems theory, and games
with myopic equilibria. Section 14.4 deals with dynamic games of capital the-
ory/resource extraction. Section 14.5 presents general results on the existence
of subgame-perfect equilibrium in dynamic games, both in pure and behavioral
strategies. Section 14.6 is devoted to applications in industrial organization, in-
cluding in particular models of industry dynamics with entry and exit. Section
14.7 considers the class of dynamic games of perfect inofrmation. Section 14.8
gives a brief account of dynamic games with a continuum of players and some
applications. Section 14.9 lists some work in experimental economics. Section
14.10 covers some work from the computational literature on dynamic games,
some field-specific aspects of which are integrated in the appropriately related
sections. Finally, Section 14.11 provides a summary of the basic notions and
results from supermodularity analysis used in Sections 14.4, 14.5, and 14.7.

14.2 Open-Loop vs Markovian Equilibrium

Most of the literature on dynamic games in economics considers either open-
loop or Markovian strategies. This section wil review the basic definitions and
properties of the Nash equilibria resulting from players adopting these two
types of strategies. A few studies though do consider more complex, partly
history-dependent, behavior, as will be described in later sections.

14.2.1 Open-Loop Strategies in Deterministic Dynamic Games

Open-loop strategies were widely used in deterministic dynamic games (i.e.
those with no chance moves) early on. This subsection provides an overview
of the main properties of open-loop equilibrium, and refers throughout to a
Markov dynamic game with deterministic transitions, i.e. one for which the
reward and transitions functions depend on calendar time and current state
and actions, but not on past values of states and actions.

An open-loop strategy is defined as a sequence of actions depending only
on the initial state and on the date (or period). An open-loop strategy is thus a
sequence of length T +1, where T is the last period in the horizon, possibly in-
finite. Open-loop behavior rests on the premise that the players simultaneously
commit at the beginning of the game to a completely specified list of actions
to be played without any possibility of revision during the entire course of the
game. Hence, no contingency planning of any sort is possible.

Several important properties of open-loop equilibria are discussed next. To
begin with, for deterministic Markov one-person dynamic programs, there al-
ways exists an optimal open-loop strategy under minor regularity conditions,
so restricting oneself to open-loop policies results in no loss of value compared
to using more sophisticated behavior. This fact is certainly intuitive, as is its
failure in the presence of chance moves or stochastic transitions.
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The game-theoretic analog of the above fact is perhaps less intuitive: In
deterministic dynamic games, an open-loop equilibrium remains an equilib-
rium when the strategy spaces are expanded to include Markovian or history-
dependent strategies. The reason is that if all of a given player’s rivals are using
open-loop strategies, the player cannot achieve a higher payoff by using more
sophisticated strategies than open-loop. This follows directly by invoking the
aforementioned fact for the player’s best-response problem which, given the
open-loop strategies of the rivals, is a deterministic Markov dynamic program.

Open-loop equilibria are generally not subgame-perfect.5 By contrast, open-
loop optima in one-player deterministic problems clearly satisfy the principle
of optimality, since the optimal Markovian and open-loop policies lead to the
same actions and states at every period.

Open-loop equilibria are typically much simpler to analyze than Markov-
ian equilibria. In particular, the usually difficult question of existence of pure-
strategy equilibrium is most often straightforward in the open-loop case, where
it amounts to using Brouwer’s fixed-point theorem with the action set viewed
as a subset of R∞ (with the product topology), under standard regularity
conditions on the primitives. This relative simplicity is at the heart of the
widespread use of open-loop strategies in the early stages of the adoption of
dynamic games, despite the broad consensus that the commitment to a com-
pletely specified course of action over the indefinite future is not a realistic
behavioral postulate in most cases of interest. The simultaneous presence of
explicit long-term dynamics and of restricted static-like behavior seems con-
tradictory. Furthermore, subgame perfection is broadly viewed as a desirable
property of equilibrium behavior. Consequently, focus has markedly shifted
towards Markovian strategies.

14.2.2 Open-Loop Equilibrium in Economic Models

This subsection provides a list of some of the studies in economics relying on
open-loop behavior. Open-loop equilibrium originated and has been extensively
analyzed in systems theory: See Basar and Olsder (1999) for a detailed account.
For problems with a linear-quadratic structure (covered in Section 14.4), open-
loop equilibria are easily computed and characterized.

A class of applications that is of interest both from an economic and from
a methodological point of view deals with continuous-time patent races. This
class includes Loury (1979), Lee and Wilde (1980), and Reinganum (1981)
among others. These papers a priori postulate differential games with stochas-
tic duration corresponding to the occurence of a success in an R&D project (i.e.
a patent). The probability of a success for a firm follows an exponential distri-
bution with parameter depending on the R&D expenditure of the firm. Due to
the special structure of the model, in particular to the memoryless property of
5 A generally overlooked fact is that for subgame perfection to be well-defined, it is

clear that one needs to assume that the action sets are essentially independent of
the state.
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the exponential distribution, using Markovian strategies leads to an open-loop
equilibrium, so that these games actually boil down to simple static games.

In the economics of natural resource exploitation and sustainability, studies
that rely on the open-loop information structure tend to be older. They in-
clude, among many others, Salant (1976), Lewis and Schmalensee (1980), and
Dasgupta and Heal (1979).

Various intrinsically dynamic problems in industrial organization were con-
sidered with open-loop strategies early on. Spence (1979) deals with investment
in a new market, Spence (1981) and Fudenberg and Tirole (1983) propose mod-
els of the learning curve, Flaherty (1980a) studies dynamic limit pricing. Fla-
herty (1980b) and Spence (1984) are early attempts to model the effects of long
run strategic process-R&D. A recent study is Athey and Schmutzler (2001).

The above list is far from complete, but can provide the reader with a flavor
of the various approaches to, and results in, dynamic strategic competition
relying on open-loop interaction.

14.2.3 Markovian Equilibrium

Throughout this subsection, we consider Markov and Markov-stationary dy-
namic games with deterministic or stochastic transitions. While the former
class of games was defined in Section 14.2.1, the latter is characterized by the
property that the reward function and transition law depend only on current
state and actions, but not on calendar time or past values of states and ac-
tions. In the systems theory (Basar and Olsder, 1999), Markovian strategies
are usually referred to as as feedback strategies, and sometimes as closed-loop
(no-memory) strategies. The early macroeconomics literature relying on dy-
namic games has often adopted the terminology from systems theory as well.

A Markov strategy is defined as a sequence of functions, {σ0, σ1, ..., σT },
each mapping the state space into the action space, where T is the last period
in the horizon, possibly infinite. Thus players are allowed to condition their
current actions on calendar time as well as the current state, but not on past
values of the state or actions. In other words, players condition their actions
only on payoff-relevant variables. A Markov-stationary strategy is a Markov
strategy {σ0, σ1, ..., σT } for which σi = σj , for all i, j. Thus under such a
strategy, players base their actions only on the value of current state.

Several important properties of Markov and Markov-stationary equilibria
are discussed next. Recall that under minor regularity conditions, every Markov
dynamic program has a Markov optimal policy and every Markov-stationary
infinite-horizon dynamic program has a Markov-stationary optimal policy.

The following widely used fact is a simple consequence of the above ar-
gument. A Markovian (resp. Markov-stationary) equilibrium of a Markov
(resp. Markov-stationary infinite-horizon) dynamic game remains an equilib-
rium when a broader class of strategies (e.g. depending on part of the history
of the game) is allowed. Indeed, with all of a player’s rivals playing Markov-
ian (resp. Markov-stationary) strategies, the player’s best-response problem is
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a Markov (resp. Markov-stationary) dynamic program, for which there exists
a Markov (resp. Markov-stationary) optimal policy. This argument is equally
valid in the presence of chance moves (i.e., stochastic transitions). These impor-
tant justifying arguments, as well as the so-called one-shot deviation principle
often invoked in the theory of repeated games, thus follow directly from the
theory of dynamic programming in elementary ways.

An important property of Markov and Markov-stationary equilibria is that
they are always subgame-perfect in a strong sense: Uniformly in the starting
state. This is highly desirable from the point of view of applications.

The remainder of this survey is dedicated almost entirely to a presentation
of economic studies employing the Markov equilibrium approach along with a
summary of some general methodological results.

14.2.4 On Open-Loop Versus Markovian Equilibria

Here, a non-exhaustive list of remarks are noted on the comparative use of the
two different types of strategies at hand for use in economic models. A consensus
has formed quite some time ago around the fact that Markovian strategies are
much more appropriate than open-loop strategies to approximate economic
behavior, on various grounds and for most economic applications. Yet, given
the relative simplicity of using open-loop equilibrium, some authors continue
to adopt this notion. Historically, the notion of open-loop strategy originated
in the systems theory literature, and gained prominence due to its equivalence
with Markovian strategies in the context of one-player deterministic dynamic
optimization problems.6

Another frequently adopted option in various applications, both in eco-
nomics and systems theory, is to elect Markovian strategies, but adopt specific
combinations of functional forms for the reward and state transitions that are
known to give rise to convenient closed-form solutions (see Section 14.3). For
further discussion of various aspects of the appropriateness of the different
types of strategies and of their theoretical foundations, the reader is referred to
Basar and Olsder (1999), Fudenberg and Tirole (1986, 1991), Reinganum and
Stokey (1985) and Maskin and Tirole (2001).

An alternative way of thinking about open-loop strategies is as Markovian
strategies where at each stage players use only constant functions of the current
state. With open-loop strategies, a game may thus be viewed as a static game
with sequences of length T + 1 as strategy spaces.

A ubiquitous framework of analysis in industrial economics consists of mod-
elling competing firms as making two decisions each, e.g. R&D levels and then
prices or outputs. This can be done in a one-shot framework (with two decisions
per firm), or in a two-stage game where R&D levels are chosen in the first stage,
and outputs or prices are then chosen in the second stage, conditional on the
6 When using Pontryagin’s Maximum Principle to solve such problems, in continuous

or discrete-time, one naturally considers open-loop policies.
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observed R&D decisions. These two different timing structures can be viewed as
relying on open-loop7 and Markovian (or closed-loop strategies), respectively.
For instance, Brander and Spencer (1983) provide a comparison of the two cases
in a study of oligopolistic R&D. They find that, for their symmetric model, the
open-loop equilibrium yields higher payoffs than the Markovian equilibrium.
Apart from such contextual comparisons, no general results are known about
the comparison of equilibrium payoffs under open-loop and Markovian behav-
ior.

14.3 Special Classes of Dynamic Games

This section reviews two well-known classes of dynamic games characterized
by very specific structures that give rise to simple equilibrium solutions. The
first of these is the so-called linear-quadratic formulation, where linear refers to
the state equation and quadratic to the one-period reward function. This class
is characterized by linear equilibrium strategies and quadratic value functions.
The second is the simple class of games characterized by separability assump-
tions that give rise to a myopic equilibrium, i.e. one for which equilibrium play
consists of taking a constant action throughout the game.

14.3.1 Linear-Quadratic Dynamic Games

In a general linear-quadratic game, player i’s objective functional is given by,

max
T∑

t=1

1
2

⎧⎨⎩s′
t+1Q

i
t+1st+1 +

∑
j∈N

aj′
t R

ij
t a

j
t
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and the state equation is

st+1 = Atst +
∑
j∈N

Bj
t a

j
t , for t = 1, 2, ..., T,

where8 st and aj
t denote respectively the state vector (an element of "n) and

Player j’s action vector (an element of "lj ), at time t; At, B
j
t , Qi

t+1, and Rij
t

are matrices with appropriate dimensions, Rij
t is negative definite, and Qi

t+1 is
symmetric and negative semi-definite.

A Markov equilibrium can be given in closed-form as follows. Let P i
t be

matrices satisfying, for i = 1, 2, ..., N ; t = 1, 2, ..., T,
7 In such models, the use of open-loop strategies is much easier to justify as approx-

imating real behavior, as it simply amounts to assuming a firm does not get to
observe its rivals’ new technology before choosing its output level.

8 Matrices are denoted by capital letters, vectors by lower-case letters and the trans-
pose operation by a ‘prime’ sign. Further details may be found in Basar and Olsder
(1999).
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where the Zi
t are defined recursively by
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There is a unique Markov equilibrium if and only if (14.1) and (14.2) have
a unique solution set

{
P j∗

t

}
, with equilibrium strategies (specifying player i’s

action vector at time t in a T-period horizon problem) and value function for
Player i from stage t onwards given by, for i = 1, 2, ..., n; t = 1, 2, ..., T,

γi∗
t = −P i∗

t st, and V i
t (st) =

1
2
s
′
t(Z

i
t −Qi

t)st,

Some extensions of this class of games are now noted: (i) the state equation
or the payoff functions may include additional linear terms. (affine-quadratic
games.) The resulting equilibrium strategies are then affine functions of the
state, (ii) exact conditions for P j∗

t to exist and be unique can be given in terms
of invertibility of a composite matrix formed from the primitives of the problem,
(iii) uncertainty in the form of an additive Gaussian vector (i.i.d. across time)
in the state equation is easily incorporated, resulting in no qualitative changes
in the solution, and (iv) the open-loop equilibrium is also easily computed.

Next, consider the infinite-horizon undiscounted stationary version of the
game, obtained by letting T = ∞ and A, Bi, Q, Rij be time-invariant. Sufficient
conditions on the primitives that guarantee existence are not known at this
point9. Nonetheless, the following partial answer (involving assumptions on
derived objects) is known. Consider the following matrix equations, which are
clearly limits of (14.1) and (14.2):

[Rii +Bi′Z
i
Bi]P

i
+Bi′Z

i∑
j �=i

BjP
j

= Bi′Z
i
A, i = 1, 2, ..., N, (14.3)

where Zi is defined by

Z
i
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′
Z

i
F +

∑
j∈N

P
j′
RijP

j
+Qi, and F � A−

∑
i∈N

BiP
i
. (14.4)

9 By contrast, nice sufficient conditions are available in the one-player case (e.g.
Bertsekas, 1976, pp. 73-80) and in the zero-sum case (Basar and Bernhardt, 1995).
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Proposition 14.3.1. Suppose there exist two N-tuples of matrices {Zi
, P

i}
satisfying (14.3), (14.4). Let F i � A−

∑
j �=i

BjP
j

and Qi � Qi +
∑
j �=i

P
j′
RijP

j
.

If the pair (F i, B
i) is stabilizable 10 and the pair (F i, Qi) is detectable11, then:

(i) there is a Markov-stationary equilibrium where player i’s strategy is γi∗(s) =
−P i

s and his (finite) payoff is 1
2s

′
1Z

i
s1, and

(ii) the equilibrium system dynamics st+1 = Fst is stable (i.e. limt→∞ Dt = 0).

While (14.3) and (14.4) can be viewed as the limit of (14.1) and (14.2) as
T → ∞, (14.3) and (14.4) can have other solutions that are not related to
the finite-horizon solution. Under the above assumptions of stabilizability and
detectability, the latter would also constitute equilibria of the infinite-horizon
game.

There is an extensive literature in various areas of economics analysing
models that constitute either a special case or a variant of the above framework
(some in continuous-time). Furthermore, all infinite-horizon models used in
economic models have discounted rewards.

A very partial list of references follows. Fershtman and Kamien (1987),
Reynolds (1987, 1991), and Beggs and Klemperer (1992) develop various mod-
els of dynamic oligopolistic competition. Lindsey (1989) deals with natural
resources. Pindyck (1977), Kydland and Prescott (1977), Barro and Gordon
(1983), Cohen and Michel (1988) and Jensen and Lockwood (1998) are contri-
butions to the literature on macroeconomic policy games. Some more examples
are given in Section 14.6.

14.3.2 Dynamic Games with Myopic Equilibrium

A stochastic game is said to have a myopic equilibrium if a static game, which
is usually not the one-period game, can be constructed from the primitives of
the stochastic game with the property that the infinite repetition of an equilib-
rium of the static game constitutes an equilibrium for the stochastic game. We
provide sufficient conditions on the reward and transition functions ensuring
the existence of a myopic equilibrium for a discounted stochastic game, and
then list some applications of this approach. Our presentation follows Heyman
and Sobel (1984).

Proposition 14.3.2. Assume that a stochastic game is such that:
(i) the reward function is additively separable: ri(s, a) = Ki(a) +Li(s), ∀s, a, i.
(ii) the transition law is state-independent:

10 This is defined as follows: The matrix [Bi, F iB
i, F

2
i B

i, ..., F
n−1
i Bi] has full rank.

Intuitively, this ensures there is a pair of strategies that will drive the state to 0 in
finite time.

11 This is defined by (F
′
i, Q

′
i) being stabilizable.
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Pr ob(st+1 = s
′
/st = s, at = a) = p(s

′
/a) or st+1 ∼ ξ(at).

(iii) the one-shot game where player i’s action set is Ai and his payoff is

γi(a) = Ki(a) + βiE{Li[ξ(a)]}

has a pure-strategy equilibrium a∗.
(iv)P (ξ(a∗) ∈ {s : a∗ ∈ As}) = 1 (a∗ is feasible next stage for any current state.
Then the strategy where, at every stage t and state s, player i plays a∗i if a∗i is
feasible and any feasible action otherwise is a Markov-stationary equilibrium of
the infinite-horizon game.

While this set of sufficient conditions is obviously very restrictive, there are
quite a few economic settings where this sort of myopic behavior constitutes a
reasonable approximation of economic behavior. Furthermore, in some settings,
this class of games may be appropriately viewed as providing a bridge between
static and dynamic analysis.

There are several applications in economics and management science for
which this class of games provides a natural framework of analysis. For an early
attempt at bringing quantity and price competition together in an oligopoly
model with inventory and uncertain demand, see Kirman and Sobel (1974).
Different one-player inventory control models have myopic optimal policies: see
[Heyman and Sobel (1984), Chapter 3] for references. In the context of fisheries,
see Sobel (1982). Noncooperative advertising models with this special structure
have also been analyzed by Monahan and Sobel (1994). A simple model of
dynamic R&D competition with myopic equilibrium investment strategies is
developed by Blonski (1999).

14.4 Common-Property Productive Assets

This is one of the areas of economics that has witnessed a high level of research
activity involving dynamic games as the key methodological approach. The
main model considered is a strategic version of the well-known discrete-time
one-sector optimal growth model. In view of the central role played by the latter
model in economic dynamics, in particular in macroeconomics and in resource
economics, it should come as no surprise that the strand of literature reported
in this section has enjoyed some prominence relative to other areas relying on
the dynamic games paradigm.

Consider two agents who jointly own a productive asset (or natural resource)
and who consume some amount of the available stock at each stage in order to
maximize their (individual) discounted sum of utilities. The payoff and feasible
set of (say) Agent 1 is

T∑
t=0

(1 − λ1)λt
1u1(at)
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and the state transition law is given by

st+1 = f(st − at − bt), , t = 0, 1...

where st is the asset stock level; at and bt are the consumption levels of Agents
1 and 2 at time t; ui : [0,∞) → [0,∞) is Agent i’s one-period utility function,
with λi being his discount factor; and f is a natural growth law (or production
function) mapping ”savings” into the next stock. Without extraction capaci-
ties, this is a generalized game in that the two actions are time t are jointly
constrained in a natural way by

at + bt ≤ st, at ≥ 0 and bt ≥ 0.

14.4.1 The Beginnings of this Literature

The seminal paper of Levhari and Mirman (1980) considers a specific version of
the above model obtained by letting u1(at) = log at and f(st) = sα

t , 0 < α < 1.
Using standard induction, Levhari and Mirman show for this ”Great Fish

War” that (i) for finite horizon, there is a unique Markovian equilibrium with
linear consumption strategies and logarithmic value functions12, (ii) the limits
of these strategies as the horizon tends to infinity, which for Agent 1 (say) is

αλ2(1−αλ1)s
1−(1−αλ1)(1−αλ2)

, form a Markov-stationary equilibrium of the infinite-horizon
game13, (iii) a tragedy of the commons prevails in both cases, in that the given
equilibria are not Pareto-optimal and lead to over-consumption of the resource
(relative to a Pareto-optimal path), and (iv) the equilibrium resource stock
converges to a unique globally stable steady-state level s = { 1

αλ1
+ 1

αλ2
−1} α

α−1 .
Cave (1987) termed the ”Cold Fish War” the situation where the two agents,

observing the entire history of play, employ trigger (history-dependent) strate-
gies. Specifically, agents coordinate on cooperative extraction paths secured by
the threat of reversion to the Markov-stationary strategies in case of defection.
Assuming equal discount rates, Cave characterizes the resulting open set of
equilibria, which are clearly subgame-perfect. A simple necessary and sufficient
condition is given for this set to include a Pareto-optimal extraction path.

The Levhari-Mirman analysis has been extended to more complex resource
dynamics, including interactive fish species by Fisher and Mirman (1994, 1997),
as well as to market interactions by Datta and Mirman (1999).

12 Interestingly, the complementary choices of functional forms for the utility and
biological growth functions in this model produce the same convenient qualitative
results as in the linear-quadratic case. Here, due to the linearity of the equilibrium
strategies, the value functions inherit the log nature of the utility function.

13 Uniqueness of equilibrium in the infinite-horizon game remains an open question
to date. There may exist infinite-horizon equilibria that are not necessarily limits
of the finite-horizon equilibrium strategies.
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14.4.2 General Functional Forms

The above model, with general utility and growth functions, is easily formu-
lated in its stochastic version wherein the transition law becomes (here p is a
transition probability mapping savings into distributions on the next stock)

st+1 ∼ p(·/st − at − bt)

and each player’s payoff is the expectation of the present value of utility over
an infinite horizon. The model is a familiar one in economic dynamics, as the
one-player version of this game is the standard optimal growth model under
uncertainty (Brock and Mirman, 1972).

The Symmetric Case. The above problem is considered with identical agents
and the following assumptions (here, F is the distribution function associated
with p):

(A1) Agent symmetry: u1 = u2 and λ1 = λ2.

(A2) ui is strictly increasing and strictly concave.

(A3) (i) F (s′/·) is weakly continuous, with F (0/0) = 1.
(ii) F (s′/·) is strictly decreasing for every s′.

The meaning of (A1) is clear. (A2) is standard. (A3) states that the
distribution of the next state first-order stochastically increases in the savings.

Under these assumptions (plus some minor regularity conditions), Dutta
and Sundaram (1991) establish existence of a symmetric Markov-perfect equi-
librium with consumption strategies and value functions respectively in:

Σ̃ �
{
σ : [0,∞) → [0,∞) : σ(0) = 0 and

σ(s′) − σ(s)
s′ − s

≤ 1, ∀s, s′
}
.

and
Λ̃ = {v : [0,∞) → [0,∞) : v is bounded and nondecreasing}

Their approach relies crucially on symmetry and cannot be extended to asym-
metric settings. The properties of this equilibrium have been investigated in
detail in Dutta and Sundaram (1992, 1993).

Finally, numerical methods with rigorous lattice-theoretical grounding were
developed by Datta et. al. (2004, 2002) for strategic settings including the sym-
metric common-property game as well as dynamic general equilibrium settings.

The Asymmetric Case. Amir (1996a) considers the above problem without
symmetry (i.e. (A.1)) but with the following additional assumptions ((A5) is
stated say for agent 1):

(A4) F (s′/·) is strictly convex for every s′.

(A5) at ≤ K1(st), withK1(·) continuous and uniformly bounded, withK1(0) =
0, 0 ≤ K1(s′) −K1(s) ≤ s′ − s for all s′ > s, and K1(s) +K2(s) < s, for all s.
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(A4) is a a strong stochastic convexity assumption on the growth process,
which together with (A3) (ii) has a natural economic interpretation: The prob-
ability that the next state exceeds a given level s′, i.e. 1−F (s′/·), is increasing
at a decreasing rate in the savings. Nevertheless, it is fairly restrictive in that
it rules out the deterministic case and requires the effective state space to be
all of [0,∞) : see Amir (1996a-b) for details. As to (A5), it is natural in many
contexts and serves to rule out trivial equilibria with stock exhaustion.

The effective spaces of value functions and consumption strategies are

Λ � {v : [0,∞) → [0, B] : v is continuous and nondecreasing}

and

Σ �
{
σ : [0,∞) → [0,∞) : σ(0) = 0 and 0 ≤ σ(s′) − σ(s)

s′ − s
≤ 1, ∀s′, s

}
The main result in Amir (1996a) is now given.

Theorem 14.4.1. Under Assumptions (A2)-(A3), we have:
(a) The infinite-horizon discounted stochastic game has a Markov-stationary
equilibrium, with strategies in Σ and corresponding value functions in Λ.
(b) For every finite-horizon T (t = 0, 1, ..., T −1), there exists a unique Markov
equilibrium in ΣT and corresponding value functions in ΛT .

Exploiting supermodularity and diagonal dominance arguments in ways
similar to the proof of Theorem 14.5.1 in Section 14.5, one can show that
the best-response to a strategy in Σ is unique and lies in Σ, so that the best
response mapping, from Σ ×Σ (with the topology of uniform convergence) to
itself, has a fixed-point. The details are not presented here.

14.5 General Existence Results

This section summarizes the literature dealing with the abstract existence
question for subgame-perfect equilibrium in dynamic games with simultane-
ous moves. Existence for dynamic games with perfect information is reviewed
in Section 14.7.

While the literature on existence of mixed (or actually behavioral) strategy
equilibrium is extensive, spanning over half a century starting with the seminal
paper by Shapley14 (1953), the literature dealing with existence of pure-strategy
14 In order to fully appreciate the contribution of this seminal paper, it is worthwhile

to point out that many of the basic results behind the theory of Markov-stationary
dynamic programming (such as the contraction property in value function space
and the optimality of Markov-stationary policies) were already unequivocally laid
out in Shapley’s (1953) seminal paper, albeit in the framework of finite states
and actions, over a decade before being rediscovered again (Blackwell, 1965 and
Denardo, 1967).
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equilibrium is much more recent and quite a bit more sparse. While the former
literature involved mostly mathematical game theorists, the latter was largely
the work of economists.

14.5.1 Existence of Mixed-Strategy Markov Equilibrium

The theory of stochastic games has been an active field of research in pure
game theory. The state of the art of this field is covered in a recent compre-
hensive volume edited by Neyman and Sorin (2003). The main issue that the
purely mathematical literature has dealt with is the existence of equilibrium in
behavioral strategies for various classes of games distinguished by the following
features: zero or nonzero sum, finite or uncountable state and/or action spaces,
etc15... To summarize the main results in this literature, we will not formally
extend the previous definitions of Markov, Markov-stationary pure strategies
and expected discounted payoffs, as these are easily adapted to the case of
mixed strategies considered here.

Shapley (1953) showed that every two-player zero-sum stochastic games
with finite state and action spaces admits a value as well as Markov stationary
optimal strategies. After many extensions of the work of Shapley, the list of
which we skip here for the same of brevity (see Mertens, 2002 or Neyman and
Sorin, 2003 for a review), Mertens and Parthasarathy (2003) establish exis-
tence of a subgame-perfect equilibrium in strategies that are (partly) history-
dependent, assuming the transition law is norm-continuous in the actions16,
in addition to other standard regularity conditions. Shifting focus away from
Nash equilibrium, Nowak and Raghavan (1992) and Harris, Reny and Robson
(1995) show existence of a type of correlated equilibrium using the strong norm-
continuity assumption described above (see also Duffie et.al., 1988). Recently,
Nowak (2003) established the existence of Markov-stationary equilibrium for a
class of games characterized by a transition law formed as the linear combina-
tion of finitely many fixed measures on the state space.

It is fair to say that the important results derived in this literature have not
been directly invoked in the economics literature making use of the dynamic
games paradigm. As noted earlier, the main reasons for this is that the results
discussed in this subsection deal with mixed-strategy equilibrium, which in
addition is generally not Markov-stationary.

14.5.2 Existence of Pure-Strategy Markov Equilibrium

The difficulties encountered in establishing existence of pure-strategy equilib-
rium are markedly different from those associated with behavioral-strategy
15 There is also an extensive literature dealing with the existence of Nash equilibrium

in behavioral strategies for stochastic games with finitely many states and actions
and undiscounted payoffs. This literature is not covered in the present survey, and
the interested reader is referred to Neyman and Sorin (2003).

16 Continuity in the variation norm is a strong assumption that rules out many po-
tential economic applications of interest.
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equilibrium. As pure strategies are broadly viewed as more appropriate in most
settings in economics, we cover the associated literature in more detail, based
on the work of Curtat (1996), which we now summarize.

With p denoting the transition probability from S × A to S, let F be its
associated cumulative distribution function. The following assumptions are in
effect throughout this section (see Appendix for definitions of new concepts).

(A1) The distribution function F (·/s, a) and the reward functions ri(s, a) are
all twice continuously differentiable in (s, a), for all i = 1, ..., n.

(A2) F and ri are supermodular in ai and have increasing differences in
(ai; a−i, s).

(A3) F satisfies a dominant diagonal condition in (ai; a−i), and ri satisfies a
strong dominant diagonal condition in (ai; a−i), for all i.

(A4) F is increasing in (s, a) in the sense of first-order stochastic dominance,
and ri is increasing in (s, a−i), for all i.

Amir (2002) provides a detailed analysis of the scope and limitations of
these assumptions. As in Amir (1996a), they rule out the case of deterministic
transitions and, though atoms are allowed, their location is severely restricted.
Let C(S,R) be the Banach space of continuous functions from S to R with the
sup norm, to be denoted ‖·‖. By Assumption (A1) and the compactness of S
and Ai, there exists K > 0 such that ri(s, a) ≤ K, ∀ i, s, a. Hence, all feasible
payoffs in this game are also ≤ K. Denote by CMK(S,R) the subset of the ball
of radius K in C(S,R) consisting of nondecreasing functions. The main results
in this section are in

Theorem 14.5.1. Under Assumptions (A1)-(A4), we have:
(a) The infinite-horizon discounted stochastic game has a pure-strategy Markov-
stationary equilibrium, with strategies and corresponding value functions that
are nondecreasing and Lipschitz-continuous in the state vector.
(b) For any finite-horizon T , there exists a unique pure-strategy Markov equi-
librium, with strategy components and corresponding value functions that are
nondecreasing and Liptschitz-continuous in z. Moreover this is also the unique
Markov equilibrium in behavioral and correlated strategies, and the game is
dominance-solvable.

Curtat (1996) developed the above framework and established Part (a). The
elaboration given in Part (b) is due to Amir (2002). Curtat also proved a com-
parative dynamics result: The first-period equilibrium actions in the infinite-
horizon problem are higher than the equilibrium actions of the one-stage game.
He then concludes with several applications to economic models.

Due to space constraints, we provide a self-contained outline of the proof of
Theorem 14.5.1 but omit some lengthy details of a technical nature. The argu-
ment proceeds in several steps, via the analysis of auxiliary games defined here
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as follows. Let v = (v1, ..., vn) ∈ CMK(S,R)n be an n-vector of continuation
values, and consider an n-person one-shot game Gv parametrized by the state
variable, where Player i has action set Ai and payoff function

Πi(v, s, ai, a−i) � (1 − λi)ri(s, ai, a−i) + λi

∫
vi(s′)dF (s′/s, ai, a−i) (14.5)

With z fixed, let the above game be denoted by Gz
v.

Lemma 14.5.1. For any v = (v1, ..., vn) ∈ CMK(S,R)n, the game Gv has a
unique Nash equilibrium av(s) = (av

1(s), ..., a
v
n(s)). Furthermore, each av

i (s) is
nondecreasing, and Lipschitz-continuous in s uniformly in v.

Proof. By Theorem 14.11.1 and Assumptions (A.2), since v is nondecreasing,∫
vi(z′)dF (s′/s, ai, a−i) is supermodular in ai and has nondecreasing differ-

ences in (ai, a−i). From Assumption (A.3), it also satisfies a dominant di-
agonal condition in (ai, a−i). Since supermodularity, increasing differences and
dominant diagonals are preserved under addition, it follows from Assumptions
(A2)-(A3) that Πi is supermodular in ai and has increasing differences and
dominant diagonals in (ai; a−i). Then, since the Ai’s are compact, it follows
in particular that Gz

v is a supermodular game for each z. Existence of a pure-
strategy equilibrium av(s) = (av

1(s), ..., av
n(s)) is a consequence of Theorem

14.11.4. Uniqueness of the Nash equilibrium av(s) then follows in a standard
way from Πi satisfying the dominant diagonal condition (see Rosen, 1965).

Πi also has increasing differences in (s, ai). Hence, by Theorem 14.11.5,
each av

i (s) is nondecreasing in z (due to uniqueness, the maximal and minimal
equilibria clearly coincide.) The fact that each av

i (s) is Lipschitz-continuous in
z uniformly in v (i.e. the Liptschitz constant D can be chosen independently
of v) follows from the compactness of S and Ai, Assumptions (A1) and (A3),
Theorem 14.11.3 (some omitted lengthy details can be found in Curtat, 1996
p. 188.)

Lemma 14.5.2. Given v = (v1, ..., vn) ∈ CMK(S,R)n, the (unique) equilib-
rium payoff for Player i, Π∗

i (v, s) � Πi(v, s, av) is in CMK(S,R) and is
Lipschitz continuous in z uniformly in v.

Proof. Continuity of Π∗
i (v, s) in z follows directly from Lemma 14.5.1 and the

structure of the payoffs in (14.5). Monotonicity of Π∗
i (v, s) in s follows from

Assumption (A4). To show the uniform Lipschitz continuity, consider

Π∗
i (v, s) = (1 − λi)ri(s, av(z)) + λi

∫
vi(s′)dF (s′/s, av(s))
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Hence, by Taylor’s theorem, for any s1, s2 in S, there are constants C1, C2, C3,
C4 such that

|Π∗
i (v, s1) −Π∗

i (v, s2)| ≤ (1 − λi)(C1 +D.C2) ‖s1 − s2‖+

λi(C3 +D.C4)
{∫

S

|vi(t)dt|
}
‖s1 − s2‖

where use is made of Assumptions (A1), the compactness of S and Ai, the
Liptschitz continuity of av(s) from Lemma 14.5.1, and standard facts about
composition of functions, and integrals. With

M � (1 − λi)(C1 + kC2) + λi(C3 +D.C4)K
∫

S

dt (14.6)

being independent of v, it follows that

‖Π∗
i (v, s1) −Π∗

i (v, s2)‖ ≤ M ‖s1 − s2‖ ,

which concludes the proof.

Let Π∗(v, s) � (Π∗
1 (v, s), ..., Π∗

n(v, s)). We now define a single-valued oper-
ator mapping continuation values to equilibrium payoffs as follows.

T : CMK(S,R)n → CMK(S,R)n

v(·) → Π∗(v, ·)

The rest of the proof consists of showing that the operator T has a fixed-point
v = Tv, in which case the associated equilibrium strategies (av

1(s), ..., a
v
n(s))

clearly constitute a Markov-stationary equilibrium of the infinite horizon dis-
counted stochastic game.

Lemma 14.5.3. T is continuous in the topology of uniform convergence.

Proof. Let ⇒ denote uniform convergence. We have to show that if vk
i (·) ⇒ vi(·)

for all i, then Π∗
i (vk, ·) ⇒ Π∗

i (v, ·) for all i. With vk
i (·) ⇒ vi(·), it follows from

the well-known property of upper hemi-continuity of the equilibrium correspon-
dence in the game Gs

v that, for each fixed s and each i, avk

i (s) → av
i (s) in R. In

other words, we have pointwise convergence of the functions avk

i (s) to the limit
av

i (s). Since these functions are all Liptschitz-continuous (Lemma 14.5.1), the
convergence is actually uniform. The pointwise, and thus uniform convergence
of Π∗(vk, ·) to Π∗(v, ·) in view of Lemma 14.5.2, follows from standard results
on the composition of continuous functions.

We are now ready to conclude the overall proof.
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Proof of Theorem 14.5.1.
(a) In order to invoke Shauder’s fixed-point theorem for T, we need to show

that there exists a convex and norm-compact subset Φ of CMK(S,R)n such
that T (Φ) ⊂ Φ. To this end, define the following subset of CMK(S,R)n :

Φ � {v ∈ CMK(S,R)n : ‖vi(s1) − vi(s2)‖ ≤ M ‖s1 − s2‖ for all i, s1, s2}

where M is as defined in (14.6). It follows from that Lemma 14.5.2 that Tv ∈ Φ
whenever v ∈ Φ. Since all the functions in Φ are uniformly Lipschitz-continuous,
Φ is an equi-continuous set of functions, so that its compactness in the sup-norm
follows from the Arzela-Ascoli theorem. Hence, by Shauder’s fixed-point theo-
rem, T has a fixed-point v = Tv in Φ. Then, from standard results in discounted
dynamic programming, the associated equilibrium strategies (av

1(s), ..., a
v
n(s))

in the game Gv clearly constitute a Markov-stationary equilibrium.
(b) Uniqueness of a pure-strategy Markov equilibrium for every finite hori-

zon T follows simply by iterating vn = T (vn−1) starting from v0 ≡ 0, for
n = 1, 2, ..., T , and invoking Lemma 14.5.1 at every iteration. The rest then
follows directly from Theorem 14.11.5, applied to the games Gs

v for each s.

Although this set-up cannot be formally viewed as encompassing the frame-
work of Amir (1996a), it has essentially the same mathematical structure –
characterized the conjunction of strategic complementarity and diagonal dom-
inance – and can thus be analysed along a very similar line of reasoning17.

The proof makes it clear that at each iteration of the finite-horizon algo-
rithm, the right hand side of the Bellman equation reflects the payoffs to a
supermodular game parametrized by the state. Yet, the infinite-horizon payoffs
are not supermodular in any way in the stationary strategies of the players.
Similar remarks apply to the model analyzed by Amir (1996a). For more on
this point, see Echenique (2001b).

Curtat (1996) also illustrates the applicability of this set-up with strategic
dynamic models of search with learning, price competition with durable goods,
and quantity competition with learning by doing.

14.6 Dynamic Games in Industrial Organization

In addition to the previously mentioned studies of dynamic oligopolistic com-
petition using dynamic games, this section describes other papers in industrial
organization18, including in particular the extensive literature on industry dy-
namics and some structural empirical literature with explicit dynamics.
17 Note also that the scope for strategic complementarities may be much broader here

than known so far: See Echenique (2001b) for more on this point.
18 There is a very large body of literature in industrial economics dealing with two-

stage games where firms typically make simultaneous long-term decisions in the
firms stage (such as R&D level, capacity, entry, or advertizing, etc...), and, upon
observing the outcome of the first stage, the firms make short-term decisions in the
product market (price or output levels) in the second stage. While such games can



462 Rabah Amir

14.6.1 Dynamic Competition with a Fixed Number of Firms

Among the models with truly dynamic strategic competition, there is one class
characterized by price competition and some form of inertia on the part of
consumers. Rosenthal (1982) pioneered this literature with Bertrand duopoly
competition under complete consumer loyalty, with one firm’s market share
as the natural state variable. He characterized a Markov-stationary equilib-
rium where prices remained above marginal costs indefinitely. By contrast,
under less-than-complete consumer loyalty, Rosenthal (1986) produces an ε-
equilibrium in Markov-stationary strategies where prices converge with prob-
ability one to marginal costs. A distinctive feature of these papers, as well as
of the follow-up piece by Chen and Rosenthal (1996), is that they considered
mixed-strategy equilibrium, and actually exhibited one in closed-form.

A closely related strand of literature deals with long-run price competition
when consumers face costs for switching between different sellers: see Farrell
and Shapiro (1988), Beggs and Klemperer (1992), and Padilla (1995). The latter
also considers mixed-strategy equilibrium.

Inter-firm racing models, which may be viewed to some extent as discrete-
time extensions or analogs of the patent race models discussed in Section 14.2.2,
have been investigated by Harris and Vickers (1985, 1987) and Athey and
Schmutzler (2001), among others.

Learning-by-doing in Arrow’s sense, whereby firms’ production costs fall
with production experience, also naturally gives rise to interesting phenomena
of a dynamic character. Cabral and Riordan (1994) characterize the long-term
consequences of this feature in a Markov-stationary framework with firms’ cu-
mulative sales as the natural state variables.

Finally, dynamic games of capacity expansion between ex ante identical
firms, aimed at explaining the emergence and persistence of inter-firm hetero-
geity, have received renewed attention by Doraszelski and Besanko (2004).

14.6.2 Dynamic Competition with Entry and Exit

One of the most prominent strands of literature using dynamic games is the
theory of industry dynamics. This class of models is distinguished at the outset
by the rather peculiar feature, from a game theory standpoint, that the number
of players is endogenously determined. The main features that are common to
all the models in this class may be inclusively summarized as follows. Time is
discrete and firms are ex ante identical. Each firm’s objective is to maximize its
discounted profits over an infinite horizon. At any time period, there is a set of
incumbent firms in the industry and a set of potential entrants waiting to enter.
Each incumbent must decide whether to remain active in the industry, in which

generally be translated into the framework of (finite-horizon) stochastic games, we
do not cover here the numerous examples available (see e.g. Amir, Evstigneev and
Wooders, 2003 for one such example and some related discussion).
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case it may decide on an investment level (such as process R&D, quality or ca-
pacity), or to exit upon receiving its fixed scrap value. Each potential entrant
must decide at each period whether to pay a fixed set-up cost and enter the
industry. At each period, all active firms in the industry perceive a one-period
reduced form profit that may correspond to a specified form of competition,
such as Cournot, Bertrand, or perfect competition. The state transition law is
typically quite complex in that it contains both idiosyncratic and industry-wide
elements. Specifically, each incumbent has its own firm-specific state reflecting
the firm’s technological characteristic, which evolves as a function of the firm’s
investment and some idiosyncratic shock. The industry-wide state includes an
aggregation of the firms’ idiosyncratic states and a list of which firms are cur-
rent incumbents, and evolves in a way governed by aggregate shocks, such as
demand-side fluctuations.

One can classify this literature into two main categories. The first of these
deals with perfectly competitive (nonstrategic) models, with price-taking firms
typically represented by the unit interval. Jovanovic (1982), Hopenhayn (1992),
Lambson (1992), among others, are well-known contributions along these lines.
For more on this, see Section 14.8 dealing with games with a continuum of
players.

The second category considers long run strategic interaction between a vari-
able but finite number of firms. This strand was pioneered by Ericson and
Pakes (1995) whose model incorporates investment decisions and endogenous
state variables exactly as described above. As their existence proof for Markov
perfect equilibrium was found to be incomplete, Dorazselski and Satterthwaite
(2003) reconsider a variant of their model wherein each firm’s entry cost and
scrap value are private information and independant draws from the same pair
of distributions. This modification is essentially sufficient to restore existence
of a Markov perfect equilibrium. Gowrisankaran (1999) uses another variant of
the Ericson-Pakes model allowing for endogenous patterns of mergers in addi-
tion to entry and exit to provide a dynamic perspective on the incentives for,
and the market performance of, horizontal mergers.

Another strategic model of industry dynamics that fits the above general
description but has no idiosyncratic shocks or firm investment, hence without
idiosyncratic states, is studied in Amir and Lambson (2003). With only ag-
gregate shocks and ex post identical firms, this paper provides a constructive
argument for the existence of a simple (s, S)-type Markovian equilibrium of
entry and exit. In addition, it establishes a tendency for excessive entry and
insufficient exit, and shows via counterexamples that some key implications of
the competitive version of the model (in Lambson, 1992) do not carry over to
the strategic model with an explicit integer constraint on the number of firms.

14.6.3 Empirical and Computational Work on Industry Dynamics

In recent years, the structural estimation of dynamic economic models has been
a very active field of research, coupled with the development of computational
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algorithms for solving for approximate solutions (see e.g. Rust, 1994). Given
that this survey is primarily concerned with theoretical work, and that empir-
ical research in this field is currently in flux, no attempt will be made here to
be exhaustive.

In industrial organization, the model by Ericson and Pakes (1995) has pro-
vided the initial basic framework for much of the empirical literature on in-
dustry dynamics. On the computational side, Pakes and Ericson (1998) and
Pakes and McGuire (1994, 2001) develop numerical procedures for solving such
game-theoretical models, along the lines of policy improvement routines. Do-
raszelski and Satterthwaite (2003) adapt the approximation scheme devised by
Whitt (1980) to compute Markov-perfect equilibria in their modification of the
Ericson-Pakes model.

There is also some literature dealing with structural estimation of explicitly
dynamic models with a fixed number of firms (i.e. no entry and exit), with or
without fully-fledged strategic interaction. For instance, Slade (1998) estimates
firms’ price adjustment costs in dynamic monopolistic competition while Slade
(1999) consider similar issues in a strategic dynamic game.

14.7 Dynamic Games of Perfect Information

In some subfields of economics, another class of dynamic games that has been
used with some frequency is characterized by perfect information: Players move
sequentially, with each player knowing the history of play including the previous
move. Perfect information results in many simplifying features, an important
one being the possibility of much more general existence results.

This section summarizes three separate though closely related strands of
economic literature dealing with dynamic games of perfect information. The
first is a well-known problem in the framework of overlapping generations.

14.7.1 Games of Strategic Bequests

Introduced by Phelps and Pollack (1968), the main version of the model posits
an infinite sequence of identical generations in a one-good economy, each of
whom decides on a consumption level c out of the capital stock x inherited
from the previous generation, with the residual x − c forming the bequest to
the next generation. With stochastic production, the next stock is determined
according to the c.d.f. F (·/x− c), and the payoff to a generation is then∫

U [c, h(t)]dF (t/x− c) , c ∈ [0, x] ,

where U is the (common) utility function, and h is next generation’s consump-
tion strategy. Here, the Markov assumption takes the form that each generation
is interested only in the welfare of their immediate offspring (in addition to their
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own). The next result deals with the existence of a stationary equilibrium (the
notation and assumptions are from Section 14.4):
Proposition 7.1. Let U(c1, c2) be strictly increasing and supermodular in
(c1, c2) and stricly concave in c1. Then a Markov-stationary equilibrium exists,
with strategies and value functions respectively in
(a) Σ̃ and Λ̃ if F satisfies Assumption (A3),
and in
(b) Σ and Λ if F satisfies Assumptions (A3)-(A4).

Leininger (1986) and Bernheim and Ray (1983) independently proved Part
(a) in the deterministic production case, while Amir (1996b) proved Part (b).
The argument for going from (a) to (b) is similar to that of Section 14.4.

Lane and Leininger (1984) and Bernheim and Ray (1987) study the proper-
ties of Markov equilibria. In addition, Amir (1996b) shows that if U and F are
twice continuously differentiable, the equilibrium consumption strategy will be
continuously differentiable.

Despite some apparent similarities between these dynamic games and those
analyzed in Section 14.4.2, such as the fact that they share the same space of
consumption strategies, it is important to observe that the presence of perfect
information is a key distinctive feature, which in particular makes the existence
question fundamentally different and much easier for the class of bequest games.
Indeed, for the finite-horizon version of the problem, the existence of a Markov
equilibrium is essentially trivial, as it simply follows from a backward induction
argument. Furthermore, the limit of such an equilibrium is shown to be a
Markov (but not necessarily Markov-stationary) equilibrium of the infinite-
horizon game (Leininger, 1987). In other words, the difficulty with existence
for the infinite-horizon problem lies only in the stationarity restriction on the
Markov strategies. By contrast, for the dynamic games of Section 14.4, the
simultaneous-move nature of the game leads to similar difficulties being faced
whether one deals with the finite or the infinite horizon version of the game.

14.7.2 A Class of Games with Alternating Moves

An early application to duopoly is by Cyert and DeGroot (1970), who model
long-term competition with firms moving alternately, each being committed to
its choice in the off-period. This work has inspired the following well-known
alternating-move dynamic game from Maskin and Tirole (1988a-b). Firm 1
(firm 2) chooses an action in odd-numbered (even-numbered) periods, each
firm remaining committed to its action for 2 periods (so for all k, a1

2k+2 =
a1
2k+1 for firm 1, and a2

2k+1 = a2
2k for firm 2). Firm i’s payoff is

∞∑
t=0

(1 − λ)λtΠi(a1
t , a

2
t ), a

1
t , a

2
t ∈ A,

where Πi is a reduced-form for a per-period (static equilibrium) payoff in price,
quantity or other type of competition. A pair of ”reaction” functions (R1, R2)
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forms a Markov-stationary equilibrium if a2
2k = R2(a1

2k−1) maximizes firm 2’s
payoff at any time 2k given a1

2k−1 and assuming that, henceforth, firm i will
follow Ri, i = 1, 2, with an anologous condition for firm 2. Thus, an equilibrium
can be described by a triplet (Ri, V i,W i) for firm i, such that (say) for firm 1:

V 1(a2) = max
{
(1 − λ)Π1(a1, a2) + λW 1(a1) : a1 ∈ A

}
= (1 − λ)Π1(R1(a2), a2) + λW 1(R1(a2))

and
W 1(a1) = Π1(a1, R2(a1)) + λV 1(R2(a1)).

Maskin and Tirole (1988a-b) prove that in a Markov equilibrium, each of the
Ris is nonincreasing (nondecreasing) if the Πi’s have decreasing (increasing)
differences. (This can be obtained as an application of Topkis’s monotonicity
theorem to the above functional equations.) Then they use this framework
to provide a new look at various well-known key issues in quantity and price
competition, including natural monopoly, kinked demand curve, and strategic
excess capacity. They conclude that this new framework is more suitable than
the traditional approaches for the analysis of some of these issues.

Asychronous repeated games may also be viewed as part of this class of
games: See e.g. Lagunoff and Matsui (1997) and references therein.

14.7.3 General Existence Results

A general framework for dynamic games with perfect information, with un-
countable action sets, has been developed and existence of pure-strategy
subgame-perfect equilibrium proved in Harris (1986), Hellwig and Leininger
(1987), generalizing the classical result erroneously attributed to Zermelo (see
Schwalbe and Walker, 2001).

It is important to stress that the existence question, with regard to pure-
strategy subgame-perfect equilibrium, is fundamentally different and much sim-
pler under perfect information than under simultaneous moves. Indeed, in the
former case, the problem essentially amounts to satisfying Weirstrass’s Theo-
rem on the existence of a maximum, while in the latter case, the issue typically
boils down to satisfying the conditions of a fixed-point theorem.

14.8 Dynamic Games with a Continuum of Players

Our presentation here follows Bergin and Bernhardt (1992, 1995). With a con-
tinuum of players, each player is identified by a characteristic, α ∈ Λ, with α
evolving stochastically over time. In addition, there is aggregate uncertainty,
modeled as a Markov sequence of shocks over time {θt}∞t=1 , θt ∈ Θ : at each
period in time, an aggregate shock θt is realized in the per period state space
Θ. The full process is modeled as a joint distribution, ν , on the sequences of
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aggregate shocks, Θ∞. At time t, given a history of states θt = (θ1, ..., θt) ∈ Θt,
the conditional distribution on Θ∞ given θt is ν(·/θt).

Each player α ∈ Λ chooses an action, a, from a common action space A.
In the stage game, a distributional strategy for the population is a joint dis-
tribution over players and actions — τ ∈ M(Λ × A), the set of probability
measures on Λ×A. Preferences of a player at time t are given by a (uniformly
bounded) function r(α, a, τt, θt). The characteristic of a player α evolves sto-
chastically over time according to a transition kernel P (dα/α, a, τt, θt). For the
distribution on characteristics, a current distribution τt implies that the next
distribution on characteristics is given by µt+1(X) =

∫
P (X/α, a, τt, θt)dτt, so

that τt+1 must have marginal distribution µt+1. Players seek to maximize the
present discounted value of payoffs.

Under continuity assumptions on the payoff functions and transition kernels
(the latter in the weak* topology), a Markov equilibrium is shown to exist with
the state variable being the triplet (µ, θ, v) where v : Λ → R is a continuous
function19. In equilibrium, at any state (µ, θ, v), the value of the distributional
strategy depends only on these variables, where v(α) gives the expected payoff
of α in the remainder of the game, and in equilibrium this is the actual payoff.
(The role of v is similar to the role of sunspots as an alternative coordinating
device in the state space, used to achieve existence of Markov equilibrium.)

The above discussion is in the context of an environment where the ag-
gregate distribution evolves deterministically, conditional on the value of θt.
The second result uses a reformulation of aggregate uncertainty and focuses
on the case where the aggregate distribution evolves stochastically, but where
aggregate uncertainty is not explicitly separated.

This class of games constitutes a natural fully-fledged game-theoretical
framework for analysing dynamic perfect competition. There are two strands
of economic literature that consider models related in one form or another
to this framework. The first deals with dynamic market games: see Karatzas,
Shubik and Sudderth (1994, 1998) and Shubik and Whitt (1971). The second
deals with perfectly competitive industry dynamics (relying on a price-taking
assumption in partial equilibrium), with entry and exit over time: See Section
14.6.2.

14.9 Computational Methods

As the theory of dynamic games relies heavily on the theory of dynamic pro-
gramming, it is natural to expect the well-known computational algorithms
developed for the latter to have counterparts for the former. Indeed, there are
many different strands of literature dealing with various computational aspects
of dynamic games. Numerical procedures were typically derived for dynamic
19 When the data of the game is history-dependent, existence of a (nonMarkov) equi-

librium is also shown.
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games with finite state and actions spaces, or else proceed via discretization of
those spaces, as performed e.g. in Whitt (1980).

There are many other studies dealing with the computation of equilibrium
in dynamic games in operations research: See e.g. von Stengel, van den Elzen
and Talman (2002) and some of the references in Raghavan et. al. (1991).

There is an early literature in behavioral strategies in operations research
aimed at the computation of Markov-stationary equilibrium in stochastic
games: See Raghavan et. al. (1991) and references therein. A more recent con-
tribution is von Stengel, van den Elzen and Talman (2002). Another compu-
tational approach for stationary behavioral-strategy equilibrium, based on a
homotopy approach, is developed by Herings and Peeters (2004). Related work
by Haller and Lagunoff (2000) proves that, generically (in a measure-theoretic
sense), discounted stochastic games with finite state and action spaces possess
a finite set of Markov-perfect equilibria in behavioral strategies.

There is also a more field-specific literature on computational methods.
Studies dealing with industry dynamics are listed in Section 14.6 while those
related to games of capital accumulation are listed in Section 14.4.

14.10 Experimental Research on Dynamic Games

Last but not least, some experimental studies based on stochastic games have
been conducted in recent times. There are also experimental studies testing the
ability of laboratory subjects to play in dynamic games. In a simple oligopoly
market game, Keser (1994) finds little support for theoretical predictions based
on a unique finite horizon Markov equilibrium. On the other hand, Herr, Gard-
ner and Walker (1997) find the theoretical solutions quite well confirmed by
laboratory behavior in a common-property resource game. Keser and Gardner
(1999) report a good fit for subgame perfect equilibrium predictions at the
aggregate, but not at the individual, level.

Another strand of experimental/empirical work uses field data for the pur-
pose of testing theories. Using data from Wimbledon tennis matches, Walker
and Wooders (2001) test the minmax hypothesis in a zero-sum binary Markov
game model of tennis serves. Justifying an equilibrium over a stream of serves
as the repetition of single-serve equilibria, they report better support for the
minmax hypothesis than earlier work based on laboratory data. In this con-
text, this means that the server and the receiver in professional tennis matches
randomize their binary choices of going left or going right according to to the
indifference principle governing mixed-strategy equilibria. Nonetheless, they
also find excessive serial correlation relative to the theoretical predictions. This
work has started a trend of research testing game theory in sports.
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14.11 Appendix

A brief summary of the lattice-theoretic notions and results, used in Sections
14.4 and 14.5, is presented here. Throughout, S will denote a partially ordered
set and A a lattice, and all cartesian products are endowed with the product
order.

A function F: A → R is (strictly) supermodular if

F (a ∨ a′) + F (a ∧ a′) ≥ (>)F (a) + F (a′), ∀a, a′ ∈ A.

If A ⊂ Rm and F is twice continuously differentiable, F is supermodular if and
only if ∂2F

∂ai∂aj
≥ 0, ∀i �= j. A function G : A × S → R has (strictly) increasing

differences in s and a if for a1(>) ≥ a2, G(a1, s)−G(a2, s) is (strictly) increasing
in s . If A ⊂ Rm, S ⊂ Rn and G is smooth, this is equivalent to ∂2G

∂ai∂sj
≥ 0, for

all i = 1, ...,m and j = 1, ..., n.
A set I in Rn is increasing if x ∈ I and x ≤ y ⇒ y ∈ I. With S ⊂ Rn

and A ⊂ Rm, a transition probability F from S × A to S is supermodular in
a (has increasing differences in s and a) if for every increasing set I ⊂ Rn,∫

1I(t)dF (t/s, a) is supermodular in a (has increasing differences in s and a)
where 1I is the indicator function of I. A characterization of these proper-
ties, using first-order stochastic dominance, follows (see Athey, 2001-2002 for
extensive related work):

Theorem 14.11.1. (Topkis, 1968, 1998) A transition probability F from S×
A to S ⊂ Rn is supermodular in s (has increasing differences in s and a) if
and only if for every integrable increasing function v : S → R,

∫
v(t)dF (t/s, a)

is supermodular in s (has increasing differences in s and a).

Let L(A) denote the set of all sublattices of A. A set-valued function H :
S → L(A) is ascending if for all s ≤ s′ in S, a ∈ As, a

′ ∈ As′ , a ∨ a′ ∈ As′

and a ∧ a′ ∈ As. Topkis’s main result follows (also see Milgrom and Shannon,
1994):

Theorem 14.11.2. (Topkis, 1978) Let F : S × A → R be upper semi-
continuous and supermodular in a for fixed s, and have (strictly) increasing
differences in s and a, and H : S → L(A) be ascending. Then the maximal
and minimal (all the) selections of arg max {F (s, a) : a ∈ H(s)} are increasing
functions of s.

With S ⊂ Rn and A ⊂ Rm, a function F: A→ R satisfies (strong) diagonal

dominance if
m∑

j=1

∂2F
∂ai∂aj

(<) ≤ 0 for each i ∈ {1, 2, ...,m} . A transition probabil-

ity F from A to S satisfies strong diagonal dominance in a if
∫

1I(t)dF (t/a) has
the same property, for every increasing set I ⊂ Rn, or equivalently, if for every
increasing function v : S → R,

∫
v(t)dG(t/a) satisfies that same property.
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Theorem 14.11.3. (Curtat, 1996) Assume that F : S×A→ R is upper semi-
continuous and supermodular in a for fixed s, has increasing differences in s
and a, and satisfies SDD in a. Then arg max {F (s, a) : a ∈ A} is an increasing
and Lipschitz-continuous (single-valued) function of s.

A game with action sets that are compact Euclidean lattices and payoff
functions that are u.s.c. and supermodular in own action, and have increasing
differences in (own action, rivals’ actions) is a supermodular game. By The-
orem 14.11.2, such games have minimal and maximal best-responses that are
monotone functions, so that a pure-strategy equilibrium exists by (see also
Vives, 1990):

Theorem 14.11.4. (Tarski, 1955) An increasing function from a complete
lattice to itself has a set of fixed points that is itself a nonempty complete
lattice.

The last result deals with comparing equilibria.

Theorem 14.11.5. (Milgrom and Roberts, 1990)
Consider a parametrized supermodular game where each payoff has in-

creasing differences in the parameter (assumed real) and own action. Then the
maximal and minimal equilibria are increasing functions of the parameter.
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