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8.1 Introduction 

Coexistence of attractors is often a characteristic feature of economic models 
represented by nonlinear dynamic systems [see, among others, Agliari et al 
(2002), Bischi & Kopel (2001), Dieci et al (2001), Agliari et al (2000)]. 
Generally speaking, when multiple attractors coexist in the phase-space for a 
particular choice of the parameters of the model, a crucial question is about 
the role played by the initial conditions in determining the asymptotic behav­
ior of the system. Moreover, in order to perform a proper bifurcation analysis 
with respect to some specific parameters it is necessary to take into account 
that parameter variations determine in general both qualitative changes (in­
cluding appearance/disappearance) of the attractors, and structural changes 
of the basins of attraction of the coexisting attractors. The latter point has 
been less emphasized in the economic literature. In general, typical fea­
tures of such qualitative changes of the basins are the following: (a) they 
are due to global bifurcations (not associated with the eigenvalues of the lin­
earized system around a particular steady state) and (b) they may bring about 
a kind of "complexity" which is different from the one usually reported in 
the literature (associated with "strange attractors", and "sensitivity to initial 
conditions"): Namely, simple attractors (steady states, cycles of low period, 
attracting closed curves) may have basins with complex structures. 

In recent years, several studies have pointed out particular mechanisms 
of basin bifurcations, which are associated with contacts between basin boun­
daries and "critical sets", in the case of dynamical systems represented by 
the iteration of noninvertible maps [Mira et al (1996), Agliari et al (2002), 
Agliari (2001)]. Other possible mechanisms, which may occur in the case 
of invertible maps as well, are associated with homoclinic tangencies of the 
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stable and unstable manifolds of saddles. The present Chapter illustrates 
the latter type of phenomena, in situations of coexisting attractors that arise 
from a particular version of Kaldor's business cycle model in discrete time, 
described by a nonlinear two-dimensional dynamical system. 

The particular Kaldor-like model at hand, where consumption is mod­
elled as an S'-shaped function of income, and investment is a linear increas­
ing function of output (and a linear decreasing function of capital), has been 
developed in Herrmann (1985), and studied also in Lorenz (1992, 1993), 
Dohtani et al (1996), mainly in order to prove the emergence of chaotic dy­
namics in Kaldor-like models under extreme values of the output adjustment 
parameter. However, the particular parameter constellation which is assumed 
within the present Chapter (under which multiple equilibria exist) has been 
excluded from the analysis carried out in earlier work, though it corresponds 
to economically meaningful situations. We will show that for this choice 
of parameters, business fluctuations along a stable closed curve (which typ­
ically arise in Kaldor model), coexist with alternative dynamic outcomes 
(stable steady states, or stable periodic orbits of low period), which the sys­
tem may reach in the long-run depending on the initial state. Furthermore, 
we will explain the bifurcation mechanisms which determine such situations 
of coexistence, the appearance or disappearance of attractors and the qual­
itative changes of the basins of attraction. The global dynamic phenomena 
which are detected in this Chapter are described in Chapter 1 and have also 
been detected in a different version of the Kaldor model in discrete-time [see 
Bischi et al (2001) and Agliari et al (2005b)], where investment is an 
increasing ^-shaped function of output (and depends negatively on capital 
stock) and savings depend linearly on income. Therefore such dynamic phe­
nomena seem to be very persistent ones, and their occurrence seems to be 
ultimately related to the following basic assumptions: (i) investment or con­
sumption have sigmoid shaped graphs, in a way that the marginal propensity 
to invest is larger (smaller) than the marginal propensity to save for normal 
(extreme) levels of income, and (ii) the investment schedule shifts down­
wards (upwards) as output increases (decreases) as a result of a negative 
dependence on accumulated stock of capital. Both these assumptions are 
essential qualitative features of Kaldor's original model. On the other hand, 
very similar dynamic phenomena have been detected also in Agliari et al 
(2005a), where a two-dimensional map with a "minimal" structure qualita­
tively similar to that in Agliari et al (2005b), and to the one being studied 
here, has been analyzed in details. Further examples are shown in this book. 
Chapters 9 and 11. 
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The Chapter is organized as follows. In Section 8.2 we present the business 
cycle model, perform useful changes of coordinates, and reduce it to a two-
dimensional map. Section 8.3 presents some general properties of the map, 
namely the symmetry, the steady states and local asymptotic stability condi­
tions, and the conditions for invertibility. Section 8.4 focuses on particular 
global bifurcations, involving qualitative changes of the basins of attraction, 
occurring in a particular regime of parameters where three equilibria exist, 
and relates these phenomena to the behavior of the stable and unstable man­
ifolds of saddles. 

8.2 The Model 

Let us consider the following discrete-time version of the Kaldor (1940) non­
linear model of the business cycle 

Yt+i=Yt + a{It-{Yt-Ct)) 
Kt+i=It + {l-5)Kt ^^ 

where the dynamic variables Yt and Kt represent the income (or output) level 
and the capital stock in period t, respectively, and both the investment It and 
the consumption Ct (or equivalently the savings St = Yt — Ct) are assumed 
to depend in general on Yt and Kt. 

The first equation in (1) views the output level as reacting over time 
to the excess demand or, put differently, to the difference between ex-ante 
investment {It) and saving {St = Yt — Ct). The speed of adjustment is 
measured by the parameter a (a > 0), where a value of a smaller than 1 
means a prudent reaction by firms, while a value of a greater than 1 denotes 
rash reactions and coordination failure. 

The second equation in (1) models the capital stock as being increased 
by realized investment (here assumed to coincide with ex-ante investment) 
It = It {Yt^ Kt), and decreased by depreciation 5Kt, where 5 {Q < 5 < 1) 
represents the capital stock depreciation rate. 

The discrete dynamical equations (1) (or, alternatively, their continuous-
time counterparts) provide the common structure of several versions of the 
Kaldor model, which have been proposed in the literature up to now [see 
Dana & Malgrange (1984), Herrmann (1985), Grasman & Wentzel (1994), 
Bischi et al. (2001), among others]. Such models are able to produce both 
periodic or quasi-periodic trajectories and further dynamic scenarios, rang­
ing from chaotic fluctuations to coexistence of different attractors, once the 
investment and the savings function It and St are specified in a way consis­
tent with Kaldor's original qualitative assumptions, namely (a): dIjdY > 
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dS/dY (i.e. propensity to invest higher than the propensity to save) for 
"normal" levels of income, but dl/dY < dS/dY for extreme income lev­
els, below and above the "normal" range; (b) dl/dK < 0, i.e. a negative 
relationship between investment and capital stock, or dS/dK > 0, i.e. a 
positive relationship between savings and capital stock. In particular, as­
sumption (a) has been illustrated by Kaldor using an 5-shaped investment 
function, or equivalently a savings function characterized by an inverted 5-
shape. The present Chapter is a dynamical exercise on the particular version 
of the Kaldor model introduced in Herrmann (1985), which has been stud­
ied also in Lorenz (1992, 1993), and in Dohtani et al (1996). While in the 
aforementioned papers the focus was on chaotic dynamics, in our analysis 
we will explore different regimes of parameters, where the dynamical be­
havior is characterized by coexistence of attractors. 

Our assumptions about consumption {Ct) and investment {It), which are 
the same as in Herrmann (1985), are stated and discussed below. 

• Consumption 

At each time t, the consumption is a sigmoid shaped function of in­
come: 

Ct = CO + ^ c i arctan (^ {Yt - F*)") (2) 

where Y* denotes the exogenously assumed equilibrium (or normal) 
level of income and CQ, ci, C2 are positive parameters. A qualitative 
plot of the consumption function (2) is given in Fig.l. The consump­
tion is therefore an increasing function of income (ranging between 
Co — ci and co -h ci):However, while for extreme values of income 

Figure 1: Qualitative consumption function. 
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consumption remains nearly constant, there exists a region around the 
normal level Y* where consumption increases rapidly at a rate close 
to C2, which represents the consumption propensity at Y* (we assume 
0 < C2 < 1).̂  The consumption function (2), or equivalently the in­
verted S'-shaped savings function St = Yt — Ct, reflects the view that 
the proportion of income which is saved is higher in non-ordinary pe­
riods, when Yt is far from F*, because in such periods people perceive 
a larger portion of their income as being transitory^. 

• Investment 

At each time t, the investment is a linear function of income and capital 
stock. Precisely it is assumed that (gross) investment responds to a 
gradual adjustment of the actual capital stock to the desired capital 
stock, i.e., 

/, = b [xf - Kt) + 5Kt 

where K^ is the desired stock of capital at time t, assumed linear in 
current output, that is Kf = kYt, with k representing the desired 
capital-output ratio (which here will be considered as an exogenous 
parameter) and 6, 0 < 6 < 1, is the capital stock adjustment para­
meter. Therefore the investment function can be rewritten as a linear 
function of income and capital, as follows 

It - bkYt -{b- 5)Kt (3) 

where the Kaldorian negative relationship between investment and cap­
ital stock is fulfilled provided that b > 6. 

Substituting the consumption and investment functions (2)-(3) in model 
(1) we get 

' Yt+i = (1 - a + abk) Yt + (aco + | c i arctan ( f f {Yt - F*)) -

-{b-5)Kt) 
[ Kt+i = b{kYt-Kt)-\-Kt 

(4) 

^ Given that Y* is the turning point of the function (2), C2 is the maximum propensity to 

consume. 
2 See Gallegati & Stiglitz (1993) for a model of business fluctuations where a similar 

consumption function is involved. 
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from which the coordinates of the exogenous steady state can be easily ob­
tained 

y * CQ 
1-kS 

kCQ 
1-kS 

In order to simpHfy the analysis of the model (4), we normalize the 
steady state to (0,0), by reformulating the model in terms of deviations 

\ yt = Yt-Y^ ^̂ ^ 

With the new coordinates (5), the dynamical system (4) is represented by 
the following map 

f x' = (1 -b)x + bky 

• I y' = a{S -b)x -{• {1- a-\- ahk) y -f | a c i arctan i f^2/) 

where the symbol' denotes the unit time advancement operator. Note first 
that the map T is independent on CQ, that is CQ is only a "location" parameter 
and does not affect the asymptotic behavior of the system. Second, though 
the map T depends on 6 parameters, in our analysis we will assume 6, fc, 5, 
ci as fixed parameters, and we will perform stability and bifurcation analysis 
in the parameter space 

Q. = {{a, C2) : a > 0 and 0 < C2 < 1} 

8.3 General Properties of the Map 

In this section we analyze some general properties of the map T in (6), which 
will play a role in the analysis of the global dynamics. Precisely we will 
discuss a symmetry property, the steady states and their local asymptotic sta­
bility, and the conditions of invertibility or noninvertibility of the map. 

8.3.1 Symmetry Property 

It can be easily checked that the map T is symmetric with respect to the ori­
gin (0,0). This means that two points which are symmetric (with respect to 
the origin) are mapped into points which are also symmetric. This has impor­
tant implications for attractors and basins of attraction of T. An immediate 
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consequence is that any invariant set of T either is symmetric with respect 
to the origin, or it admits a symmetric invariant set. In particular this holds 
for the fixed points and cycles of T. Thus, whenever further fixed points 
exist besides (0,0), they must be in symmetric positions, and any cycle of 
T of odd period necessarily coexists with a symmetric one having the same 
characteristics. Moreover, the basins of attraction of the attracting sets of T 
either are symmetric or symmetric basins also exist. 

8.3.2 Fixed Points and Local Stability Analysis 

The equilibrium points of the model (6) are the fixed points of T, solutions 
of the system 

{ X — ky 

a{6 -b)x-\-a{bk-l)y + ^aci arctan (fff y) = 0 

Besides the trivial solution £'* = (0,0), the map T may have further fixed 
points, whose ^/-coordinates satisfy 

(1 — k5) y = —ci arctan { -—-y 

Since the straight line of equation z — {1 — k6) y and the sigmoid-shaped 

graph of the function z = | c i arctan (ff^y) intersect in three points if the 

slope of the straight line is positive and lower than that of the curve evaluated 

at the origin, we obtain the following 

Proposition 1 The map T in (6) has 

• the unique fixed point £"* = (0,0), z/ (1 — k5) < 0 or C2 < (1 — k5) 

• three fixed points, E* = (0,0) and two fidrther points, P* and Q*, 
symmetric with respect to E*, if C2> (1 — kS) > 0. 

The condition for the existence of further equilibria, stated in Proposition 1, 
has a straightforward interpretation, in that it can be rewritten as 

(1 - C2)y* < (5fcy* = SK* 

where the quantity {1 — C2)Y* represents the savings at the exogenously as­
sumed normal equilibrium, while 6K* is the amount of depreciation at the 
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same equilibrium. Therefore further equihbria exist if the equilibrium sav­
ings are insufficient to replace capital depreciation at the "normal" stationary 
state. 

Let us now consider the local stability of the fixed point E* — (0,0). As 
usual, the analysis of local stability of a fixed point is obtained through the 
localization, in the complex plane, of the eigenvalues of the Jacobian matrix 
evaluated at the fixed point, and their dependence on the parameters of the 
model. 

The Jacobian matrix of the map T in (6) is 

J{x,y) = 
1 -

a{5 
b 
b) l + a{bk 

bk 

1) + 
H^y) 

(7) 

and at E* it specializes to 

r = 1-b bk 
a{S -b) H - a ( 6 f c - I + C2) 

Observe that J* does not depend on the parameter ci: Then only five 
parameters are relevant in this context. To localize the eigenvalue of J*, 
denoting by Tr its trace and by Det its determinant, we use the following 
well known necessary and sufficient condition [see e.g. Gumoswki & Mira 
(1980), Medio & Lines (2001)]: 

i) 1 - T r + Det = ba{l-C2- k5) > 0 

ii) l+Tr-\-Det = 2{2-b)-a{2-b){l- 02) + abk {2 - 5) > 0 

iii) 1 - Det = 6 + a (1 - 6) (1 - C2) - abk (1 - 5) > 0 

For fixed values of 5, fc, b we can determine the region of local asymp­
totic stability of the steady state E*, in the plane (a,C2), as stated in the 
following 

Proposition 2 Assume Sk < 1, b < 1. 

• Ifb> 5 and (2 - bf > 6fc (4 - 45 + 5b) the fixed point E* = (0,0) 
is locally asymptotically stable if the parameters a and 02 belong to 
the region OABCD of the plane (a,C2), with vertices O = (0,0), 
A _ f 2(2-6) n\ u - fStl^ (2-b)^-bk{6b-4S-^4)\ ^ _ 
^ - [2-b-bk{2-S)^^)^ ^ - \bk(b=^' M W A ~ 
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( M ^ ' 1 - Sk\ D = {0,1- 6k), where the sides AB, BC and CD 

belong to the hyperbola of equation 

, , a-2 bk(2-6) 

to the hyperbola of equation 

, ^ , b-abk{l-5) 
ci = C2N a = 1 + . / . . ' (9) 

a[l — b) 
and to the line C2 = 1 — 5k, respectively; 

• ifb> 6 and (2 - bf <bk{4-46-{- 6b) the fixed point J5* = (0,0) 
is locally asymptotically stable if the parameters a and C2 belong to 
the region OBCD of the plane (a, C2), with vertices O = (0,0), B = 

( , , ( i 4 _ ( i _ , ) , 0 ) , C = ( ^ , 1 -5fc ) , D ^ {0,1-Sk). where 

the sides BC and CD belong to the hyperbola of equation 

, ^ , b-ahkil-5) 

and to the line C2 — I — 6k, respectively; 

• ifb<6 the fixed point E* = (0,0) is locally asymptotically sta­
ble if the parameters a and C2 belong to the region OABD of the 

plane (Q;,C2), with vertices O = (0,0), A = (2-h-hk{2-S)^^}' ^ ~ 

{ kfi-b)' ^ ~ ^^)' ^ = (0,1 — 6k), where the sides AB and BD be­
long to the hyperbola of equation 

, , a-2 bk(2-6) 
C2 = C2f{a) = — ^ - ^ 

and to the line C2 = 1 — 6k, respectively 
If b = 6 the vertex B is missing, because the hyperbola of equation 
^2 = ^2/ (a) approaches asymptotically the straight line of equation 
02 = 1 — 6k for a ^^ 00, 

Moreover if the point (a, C2) exits the stability region by crossing the 
side AB, then a supercritical flip bifurcation occurs at which E* be­
comes a saddle point and a period 2 attracting cycle appears; if the 
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point (a, C2) exits the stability region by crossing the side BC, then a 
Neimark bifurcation occurs at which E^ is transformed into an unsta­
ble focus; if the point (a, C2) exits the stability region by crossing the 
side CD, then a supercritical pitchfork bifurcation occurs at which two 
stable fixed points are created close to £"*, which becomes a saddle. 

Proposition 2 confirms analytically that the non-Kaldorian case h <5 (where 
the condition of inverse dependence of investment on capital stock is not 
fulfilled) cannot produce a Neimark bifurcation followed by self-sustained 
fluctuations of output and capital stock along a stable closed curve. On the 
other hand, in the opposite case 8 < h, self-sustained oscillatory behavior 
around the unstable steady state £•* occurs for sufficiently small values of 
C2 ,̂ i.e. when the propensity to save 1 — C2 is large enough, whereas for 
high values of C2 the typical situation is that of two stable steady states P* 
and Q* and an unstable steady state E*, located in the middle, i.e. a situ­
ation of bi-stability (without oscillations). For sufficiently small values of 
C2, if condition (2 - hf > 6fc (4 - 45 + 6b) is fulfilled, also cycles of low 
period are possible, as a consequence of a flip bifurcation. This is what can 
be immediately deduced from the local analysis carried out in Proposition 2. 
However, global analysis will point out that long-run oscillatory behavior is 
possible even for high values of C2 (beyond the pitchfork boundary), in pa­
rameter ranges where two further equilibria P* and Q* exist and are stable, 
or where they exist unstable but further stable periodic orbits exist. This will 
reveal phenomena of coexistence of the Kaldorian business cycle with other 
possible long-run dynamic outcomes, where the role played by the initial 
condition will be crucial. 

8.3.3 Invertibility of the Map 

Under particular parameters constellations, the map T in (6) is a noninvert-
ible map of the plane. This means that while starting from an initial con­
dition (xo,yo) the forward iteration of (6) uniquely defines the trajectory 
{xt.yt) = T^ {xQ.yo), t = 1,2,..., the backward iteration of (6) may not 
exist, or whenever it exists, may not be unique. Recent economic literature 
dealing with cases of multiple attractors in two-dimensional discrete-time 
dynamical systems represented by noninvertible maps [see e.g. Bischi & 
Kopel (2001), Dieci et al (2001), Agliari et al (2000)], has pointed out the 

^ Based on numerical evidence, we claim the supercritical nature of the Neimark bifurca­
tion in this case. 



8 Homoclinic Loops in a Kaldor-Like Business Cycle Model 233 

role played by noninvertibility in bringing about bifurcations and complex 
structures of the basins of attraction. Complexity of the basins of attraction 
is also detected within the present model, though we must stress that in our 
case this is not due to the noninvertibility of the map. The goal of the present 
subsection is therefore to determine the regions of the space of parameters 
where the map is invertible (and noninvertible), in order to prove that the 
particular parameter constellation which will be adopted for our numerical 
simulation is one belonging to the invertibility region. Considering again 
the (a, C2)-plane (for fixed values of the remaining parameters) so that the 
ranges of invertibility or noninvertibility of the map T can be compared with 
the local bifurcation curves, we can state the following proposition 

Proposition 3 The map T is invertible for any parameter combination (a, C2) 
ifl — h<hk{l — 5). In the opposite case 1 — 6 — 6fc (1 — (5) > 0, the non­
invertibility region is an unbounded set defined by 

a> '-' l-b-bk(l-S) 
(10) 

(a-l)(l-6)-abfc(l-(5) 

Such a region has a vertex on the a-axis, given by Z = (•^_^_^^"^^_^x, 01. 

Proof. The rank-1 preimages of a point {u, v) are the solutions of the system 

{ u = {1 — b)x + bky 

v = a{6 — b)x+{l — a-^ abk) y + |Q;CI arctan ( ^y) 

in the unknown variables x and y. Rearranging the two equations of such a 
system we obtain 

{
^ _ u-bky 

Then the ^/-coordinates of the rank-1 preimages of the points (li, v) must 
satisfy the equation 

q {u, v) + my = —aci arctan ( y I (11) 
TT V2ci y 
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whQVQq{u,v) =v-a{5-b)j^^mdm= (c^-m-b)_-c.bkii-S) ^ 

It is simple to verify that if m < 0 or m > ac2, equation (11) has a unique 
solution for any given (u^v). Therefore if 

r {a-l)il-b)-abkil-S) ^ Q 

{ ia-l)il-b)-abkil-S) ^ ^^^ 

holds, the map T is invertible, i.e. has a unique inverse. If m = 0, then 
a unique solution of (11) exists if —aci < q{u,v) < ac i , otherwise no 
solution exists. 

In the case 0 < m < ac2, one, two or three solutions of the equation 
(11) may exist depending on the value ofq = q {u, v). In particular, for a 
given m, two solutions exists if the straight line at the left side of (11) is 

tangent to the S-shaped curve / (y) = |Q;CI arctan f ̂ y), that is if 

ac2 
m = 

1 + {my} 
We obtain that the equation (11) admits two solutions if g {u, v) becomes 

equal to qi or g2, where 

2ci 
qi = 

7rC2 
2ci 

q2 = 
7rC2 

\/m (ac2 — m) — ac2 arctan I — ̂ Jm (ac2 — m) 1 

\m J 
ac2 arctan I — \ / m (ac2 — m) ) — yjm (ac2 — m) 

L V ^ / J 

Moreover, \iq {u, v) < qiovq (zz, v) > q2 the equation (11) has a unique 
solution, while if gi < g (n, v) < q2 three solutions exist.O 

From Proposition 3 we deduce that, if 

r {a-l)il-b)-abkil-5) ^ Q 

I (a-l)(l-|>7-^6/c(l-.) ^ ^̂ ^ (12) 

the map T is noninvertible and, following the notation used in Mira et al 
(1996), it is a Zi — Z3 — Zi map, which means that the phase plane is 
subdivided in different region Zi and Z3, whose points have one and three 
different rank-1 preimages, respectively. Such regions, or zones, are sepa­
rated by the critical line LC, i.e. the locus of points having two merging 
rank-1 preimages. 
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Thanks to the above computation, it is easy to obtain that the critical line is 
given by two distinct branches, that is LC = L^ U L^ with 

L^ : y - ^ ^ x + , , (13) 

1 — 0 

The locus of the merging preimages of the points belonging to the set LC, is 
the rank-0 critical line LC-i and it is given by L^^ U L^^, where 

2ci 
I/^i : y = ^/m {ac2 - m) 

m7rc2 
2ci Lti : y= y/m {ac2 - m) 

m7rc2 

i.e. the points which satisfy the tangency condition. 
Such critical lines can be also obtained from the Jacobian matrix of the 

map T, indeed LC-i is the locus of point at which the determinant of the 
Jacobian matrix (7) vanishes, and LC = T (LC_i). 

In particular, we are interested in the intersection of the noninvertibility 
region with the region of local stability of E*. We restrict our analysis on 
the case b > S, which is the one of interest from the point of view of the 
dynamic analysis. Proposition 2 suggests that two different cases need to be 
considered. 

• Case 1: (2 — 6) > 6fc (4 — 45 + 5b). In such a case it is simple to 
show that the noninvertibility region (10) intersects the stability region 
of E*, since the vertex B belongs to that region. In fact, the a- and 
C2-coordinates of the vertex B satisfy the first and second inequality 
in (10), respectively. 

• Case 2: (2 — b)^ < 6fc (4 — 45 + 6b). In such a case the map is in-
vertible. In fact the condition (2 — 6)^ < 6fc (4 — 45 + 6b) implies 
l - 6 - 6 A : ( l - 5 ) < 0 . 4 

"̂ This result is derived by observing that in this case the intersection point between flip 
and Neimark bifurcation curves belongs to the half-plane C2 < 0, and therefore the horizontal 
asymptote of the Hopf bifurcation curve must be negative, i.e. l — bk{l — S) / {1 — b) < 0. 
Given that 6 < 1, the latter condition implies 1 — b— bk{l — S) < 0. 
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In our analysis we shall consider constellations of parameters belonging to 
Case 2, under which the map T is invertible: The corresponding stability 
region of £** is shown in Fig.2. 

8.4 Global Dynamics Under Coexistence of Equilibria 

As we have seen in Section 8.3, the local bifurcation curves of the "normal" 
steady state ^* suggest the existence of at least two different qualitative dy­
namic scenarios, outside the region of local asymptotic stability (see Fig.2). 
The first scenario, where a is small enough and C2 is located just beyond its 

Figure 2: Stability region of E*. 

pitchfork bifurcation value C2 = 1 — 6k, is one where E* is a saddle point 
and two further attracting steady states exist in the phase-space xy, on the 
line y = x/k, in symmetric positions with respect to E* (bi-stability). The 
second scenario, where C2 < ?2 and a is just larger than its Neimark bifurca­
tion value, is one where the unique steady state E*is an unstable focus and 
an attracting invariant closed curve exists around it in the phase space. As 
it is well known, however, the above results have only a local validity. In 
particular, nothing can be said in general about the survival of the attracting 
curve far from the Neimark bifurcation curve in the space of parameters: In 
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principle, it is possible that the attracting curve born via Neimark bifurca­
tion is still surviving even for parameters far from the local stability region 
where in particular C2 > C2, i.e. where two further equilibria exist. This is 
precisely what happens in the case of the present model. Of course in similar 
cases [see also Agliari et al (2005a,b)] a number of interesting questions are 
about the mechanisms which lead to the coexistence of an attracting closed 
curve with two further equilibria, the quahtative changes and the fate of the 
coexisting attractors (in particular the attracting curve) when the parameters 
are moved away from the region of stability, and the effects of changes of the 
parameters on the basins of attraction. These questions are the main topic of 
the present Section. 

As we have also remarked in Section 8.3, other general properties of 
the map T in (6) may play a crucial role in the asymptotic behaviour of the 
system. One of this properties is the noninvertibility, which holds in the 
region (10) of the space of parameters: This may be in general at the origin 
of complex structures of the attractors and the basins of attraction (see the 
textbook Mira et al (1996) and Chapter 1, Section 1.4). We rule out this 
possibility here, by choosing a regime of parameters under which the map T 
is invertible, in order to simplify as much as possible our understanding of 
the dynamic phenomena that we are going to analyze. Precisely, our analysis 
will be restricted to the region of invertibility of the map, and will follow 
a path in the parameter space through the region of existence of three fixed 
points, characterized by increasing values of a for a fixed value of C2 > C2 = 
1 — 5k, We will drive our attention to two different situations of coexistence 
of attractors, and to the associated bifurcations of attractors and basins: In the 
first one the two (locally) stable steady states bom at the pitchfork bifurcation 
coexist with endogenous self-sustained oscillatory motion on an attracting 
closed curve; in the second one, where all the three steady states are unstable, 
the attracting curve coexists with periodic orbits of low period. A remarkable 
fact about the following examples is that they represent phenomena which 
occur when the selected parameters are far from the local bifurcation curves 
and therefore are due to global mechanisms. A second fact is that, though the 
two situations to be analyzed are apparently quite different from each other, 
they are ultimately determined by very similar mechanisms, associated with 
saddle connections and homoclinic tangles of some saddle cycle as described 
in Chapter 1 (to which we refer for technical details and symbolisms). 

In the following we shall consider fixed values for the parameters fc, 6, 5, 
and ci, given by fc = 1, 6 = 0.8, 5 = 0.25, ci = 2. With these parameters, 
the pitchfork bifurcation occurs at 62 = I — 6k = 0.75. Therefore we 
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consider c^ > 0.75, so that three fixed points exist, and increase a starting 
11 fi-om S = YY = 1.4545, which is the a-coordinate of the vertex C in Fig.2. 

8.4.1 Three Coexisting Attractors and Homoclinic Bifurcation of E* 

Immediately after the pitchfork bifurcation of the exogenous steady state 
E*, two attracting fixed points, the nodes P* and Q*, appear, located at 
symmetric positions with respect to the saddle E*. Their basins of attraction 
are separated by the stable manifold W^ {E*). The unstable set W^ (E*) 
reaches the two fixed points: More precisely, a branch, say ai , tends to P* 
whereas the other one, say 0̂ 2, goes to Q*. 
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Figure 3: (a) a = 1.5; C2 = 0.98: Basins of attraction of P* and Q*. (b) 
a = 1.55; C2 = 0.98: More and more convolutions of W^ (E*) appear. 

The phase portrait of Fig.3a shows an example of this situation: It has 
been obtained at a = 1.5 and C2 = 0.98, then quite far from the bifurcation. 
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Indeed at this parameter values the two nodes have turned into stable foci and 
the stable set of the saddle exhibits some convolutions separating the basins 
of attraction of P* and Q*, B (P*) and B (Q*) respectively (represented in 
Fig.3 with different gray tonalities). 

As the speed of adjustment a increases, the set W^ (J5*) involves more 
and more winging around the fixed points P* and Q*, as shown in Fig.Sb. 
Consequently, the basin boundary appear to be more complicated and a tra­
jectory starting from the region where the convolutions become thicker is 
subject to greater uncertainty about its long run behavior. In fact, a slight 
perturbation of an initial condition taken in such a region (see enlargement 
of Fig.Sb) may cause a crossing of the basin boundary and consequently the 
convergence to a different equilibrium. 

Moreover this basin structure suggests that some global bifurcation is 
about to occur. Indeed, when a is slightly increased, as in Fig.4a, an attract­
ing closed curve F appears in the area where there was many convolutions 
of W^ (E*). This means that long-run quasi-periodic self-sustaining fluc­
tuations are now a possible outcome, as well as dampened oscillations con­
verging to the fixed points: Three typical trajectories, starting from initial 
condition taken in the three different basins, are represented versus time in 
Fig.4b. 

The basins of attraction of P* and Q* are still separated by the stable 
manifold of the saddle E*, but, differently from the case illustrated in Fig.3, 
now the preimages of the points of W^ {E*) accumulate on a repelling 
closed curve F, appeared with F and very close to it (see enlargement in 
Fig.4a). The appearance of F and F could be due in principle to a "saddle-
node" bifurcation for closed curves, given that the two curves are very close 
to each other, but we know that such a bifurcation is very quite rare in dis­
crete maps. Then a mechanism similar to that described in Section 1.7 may 
be conjectured in this case: A saddle cycle appears via saddle-node bifurca­
tion together with a repelling (or attracting) node cycle of the same period, 
then a saddle connection made up by the merging of two branches of the 
stable and unstable manifolds of the saddle gives rise to an attracting (or re­
pelling) closed curve and to a heteroclinic connection between the periodic 
points of the two cycles made up by the stable (or unstable) set. These two 
invariant closed curves appear very close to each other and if the period of 
the cycle is very high they look like those of Fig.4a. 

Whichever is the underlying mechanism, the appearance of the two in­
variant closed curves, one attracting and one repelling, has a noticeable ef­
fect on the asymptotic behaviour of the model, since three attractors now 
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coexist (the two equilibria, P*and Q*, and the closed curve F), the basins 
B (P*) and B (Q*) are strongly reduced and the majority of the trajectories 
are quasi-periodic (or periodic of very high period), since the curve T is now 
the basin boundary of F. 
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Figure 4: a == 1.552; C2 = 0.98: Three coexisting attractors. {di) Phase 
space, (b) Three typical trajectories versus time. 

Moreover the repelling closed curve F is involved in other important 
qualitative changes in the structure of the basins of attraction as the adjust­
ment speed is increased further. Indeed, as we can see in Fig.5a, it progres­
sively reduces in size and shrinks in proximity of the saddle £"*. Up to now, 
initial conditions taken close to the exogenous equilibrium have produced 
trajectories converging to P* or Q*, but this is no longer true in the para-
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meter constellation of Fig.5b, where trajectories starting close to E* exhibit 
self-sustaining oscillations. 
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Figure 5: (a) a = 1.568; C2 = 0.98: The repelling curve T shrinks in the 
proximity of E*. (h) a — 1.57; C2 = 0.98: T is splitted into two repelling 
closed curves. 

This means that the points of the unstable manifold of £** no longer 
reach the two equilibria but converge to F. This change in the asymptotic 
behaviour ofW^ {E*) proves that a global bifurcation has occurred, involv­
ing both the unstable branches of the saddle E*. Indeed in the phase portrait 
of Fig.5b we can observe the splitting of F into two repelling closed curves, 
Fp and Fg, each one bounding the basin of the corresponding fixed point. 
These two repelling closed curves are the a-limit sets of the points of the 
two branches uji and 002 of the stable set W^ (E*), which have modified 
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their behavior as well. Then we deduce that when the parameter a ranges 
from 1.568 to 1.57, a homoclinic bifurcation of E"* occurs, whose effect is 
the transition from one "large" repelling closed curve, basin boundary of the 
attracting set {P*, Q*}, to two "small" repelling closed curves, basin bound­
aries of JB (P*) and B (Q*) respectively. This situation has been classified 
as double homoclinic loop in Chapter 1, since it involves both the branches 
of the stable and unstable sets of E*\ Its evolution, qualitatively described 
in Section 1.9 of that Chapter, is represented in Fig.6, where some enlarge­
ments of the phase space as well as of the stable and unstable sets of £"* are 
shown. 

Figure 6: (a) a = 1.56855; C2 = 0.98: Enlargement of the basins of 
attraction in the proximity of E*. (b) a = 1.56855; C2 = 0.98: Sta­
ble (black) and unstable (gray) manifolds of E* at the first tangency. (c) 
a = 1.56855051; C2 = 0.98: Enlargement of the basins of attraction in 
the proximity of E*. (d) a = 1.56855051; C2 = 0.98: Stable (black) and 
unstable (gray) manifolds of E* at the second tangency. 
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The first homoclinic tangency is shown in Fig.6a,b, obtained at a = 1.56855: 
The branch ai ofW^ (-B*) converges to P* and it is completely contained 
in its basin of attraction; the same is true for a2 with respect to the fixed 
point Q*. The stable branches have a complex structure: The repelling 
closed curve F is replaced by a strange repellor, generated at the tangency 
and separating the basins of {P*, Q*} and F. After the transversal crossing 
of W^ (£•*) and W^ (E"*), at which more and more homoclinic points of 
E* are created, the second homoclinic tangency occurs at a = 1.5685501, 
as shown in Fig.6c,d, and closes the tangle. The homoclinic points of E* 
disappear as well as the chaotic repellor, leaving the two disjoint curves Tp 
and TQ as boundaries of the basins of attraction of P* and Q*, respectively. 
After the homoclinic tangle both the branches of W^ (£"*) converge to the 
attracting closed curve F and those of the stable set W^ {E*) come from the 
repelling closed curves Fp and TQ. 

A different illustration of this homoclinic tangle, occurring in a very nar­
row range of the parameter a, is proposed in Fig.7, where we show the as-
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Figure 7: The asymptotic behaviour of the unstable manifold of E* at 
(a) a = 1.56855; C2 = 0.98. (b) a = 1.5685503; C2 = 0.98. (c) 
Q; = 1.5685501;C2 = 0.98. 
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ymptotic behavior of the whole unstable set of the saddle E*. In Fig.7a, 
obtained at the same parameter value as Fig.6a corresponding to the first ho-
moclinic tangency, the points of W^ (E*) converge to the two equilibria, 
forming an eight-shaped structure; then, in fig.Vb the unstable set W^ {E*) 
enters the basin of attraction of the attracting closed curve T as well as that 
of the attracting set {P*, Q*}: The separator of the three basins of attraction 
is a chaotic repellor, associated with the infinitely many periodic points ex­
isting close to the homoclinic trajectories. As a is further increased, more 
and more points of W^ (£*) converge to T until at the second homoclinic 
tangency, shown in Fig.7c, no points of the unstable set converge to the two 
stable foci. 

As the parameter a further increases, the two repelling closed curves 
Tp and TQ become smaller and smaller, until a new bifurcation value a = 
OLN is reached at which a Neimark subcritical bifurcation occurs: The two 
repelling closed curves collapse in P* and Q* respectively and at a > â v 
the attracting closed curve T is the unique surviving attractor, since the two 
fixed points become unstable foci. 

8.4.2 Coexistence of Cyclical and Quasi-Cyclical Trajectories and 
Homoclinic Loop of a Saddle Cycle 

After the subcritical Neimark bifurcation of P* and Q*, the saddle £̂ * coex­
ists with two repelling foci, from which the stable set W^ (£"*) comes. The 
points of the unstable manifold W^ (E*) converges to the attracting closed 
curve F surrounding the three unstable fixed points. 

This situation persists until at a certain value of a, say asn, a saddle-
node bifurcation occurs, causing the appearance of two cycles of period 8, a 
saddle, S, and a stable node, C, which turns into a stable focus cycle imme­
diately after. The two cycles are located outside the attracting closed curve 
and, as a increases from asn^ a larger and larger portion of trajectories ex­
hibits period-8 oscillations, as shown in Fig. 8a, where the basins of attraction 
of the two attractors are represented in different gray tones. The points close 
to the exogenous equilibrium £̂ * still give rise to quasi-periodic fluctuations. 

The phase portrait shown in Fig. 8b is completely different: Quasi-
periodic and period-8 trajectories still coexist, but now the attracting closed 
curve r surrounds the stable focus cycle C and the majority of the trajec­
tories exhibit quasi-periodic motion. Moreover the long run behaviour of 
trajectories starting in the area close to E* is no longer predictable, since 
a small shock on them may have strong consequences given the many and 
many convolution of the separatrix of the two basins in this area. 
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Figure 8: (a) a = 1.7; C2 = 0.98: The attracting curve T coexists with a 
stable cycle C of period 8 and a saddle cycle S of the same period, (b) 
a — 1.745; C2 = 0.98: A new curve T surrounds the attracting period 8 
cycle. 
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The aim of this subsection is to explain the global mechanisms which cause 
this important modification in the basin structures, transforming an attract­
ing closed curve, coexisting with a stable cycle external to it, into a larger 
one, surrounding the stable cycle. As we shall see, the global bifurcation in­
volved in this transition is of the same type of those described in Section 1.8, 
involving the invariant manifolds of the saddle cycle 8. Moreover, despite 
the different dynamic situation described here, the bifurcation mechanisms 
are similar to the ones analyzed in the previous section. 

Let us start from Fig.8a, obtained at a = 1.7 > agn'- Two attrac-
tors exist, the closed curve F and a focus cycle C, surrounding the curve, 
while the two basins, B (C) and B (F), are separated by the stable mani­
fold W^ {S) = uji U UJ2 of the saddle cycle S. The branches of the un­
stable one W^ {S) reach the attracting closed curve (ai) and the stable fo­
cus cycle (a2)- As the parameter a is increased, the two branches cji and 
Qi start to oscillate until a homoclinic tangency occurs. More precisely, at 
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Figure 9: Heteroclinic tangle involving the inner branches of stable and un­
stable manifolds of the cycle S. (a) a = 1.7102384; C2 = 0.98: First homo-
clinic tangency. (b) a = 1.7102386; C2 = 0.98: Transversal crossing, (c) 
a = 1.7102387; C2 = 0.98: Second homoclinic tangency 
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a — 1.7102384 the stable branch a\^i of the periodic point Si has a tan­
gential contact with the unstable branch cji j of a different periodic point 
Sj (see Fig.9a) and this occurs cyclically for all the periodic points of the 
saddle S. This contact is the starting point of a heteroclinic tangle, which 
develops into a transversal crossing of the involved inner branches (Fig.9b) 
and closes at a = 1.7102387, when a second cyclical homoclinic tangency 
occurs (Fig.9c). Observe that at the end of the heteroclinic tangle, the two 
branches ai and cji have inverted they reciprocal position with respect to 
thatofFig.9a. 

Approaching the heteroclinic tangle, the curve F exhibits more and more 
oscillations, as in Fig. 10a obtained at the same parameter values of Fig.9a, 
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Figure 10: a = 1.7102384; C2 = 0.98. (a) Oscillations of the attracting 
closed curve T. (b-c) a = 1.7102386; C2 == 0.98: Two different trajectories 
with initial conditions (13.7,-0.7) and (13.5,-0.6) respectively. 
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before coming into resonance with the cycle, forming an attracting set with 
the saddle S and the focus cycle C, with C the attractor within it. Moreover 
during the tangle a chaotic repellor TZ is created in the area occupied by the 
transversal crossing of the two manifolds: The existence of TZ has important 
effects on the long run behaviour of the trajectories, as we can observe in 
Figs.lOb,c, obtained at the same value of Fig.9b. 

In such figures, two trajectories of the variable x are represented versus 
time and both converge to the cycle of period 8: In Fig. 10b only a few itera­
tions are needed to reach the period 8 oscillations whereas in Fig. 1 Oc a longer 
transient part exists (note that the first 320 iterations have been dropped in 
Fig. 10c). This difference in the transient part is due to the initial conditions: 
The one of Fig. 10c is taken in the area occupied by the chaotic repellor, 
and the existence of the infinitely many unstable cycle causes its particular 
behavior. 

The effects of the observed heteroclinic tangle are illustrated in Fig.l 1: 
The attracting closed curve F has disappeared, leaving the focus cycle C 
as unique attractor (Fig.l lb). More precisely, F has been replaced by the 
heteroclinic connection of the periodic points of the cycles, made up by the 
unstable manifold of the saddle S which reach the periodic points of the fo­
cus cycle (Fig.l la).With a similar mechanism the final situation of Fig.8b is 
obtained. Indeed, increasing a the two outer branches a2 and 002 approach 
each other, oscillating. This is the prelude to a new heteroclinic tangle, again 
occurring in a very small range of the parameter a\ The first tangential con­
tact between the unstable branch a2,i of the periodic point Si and the stable 
branch uj2j of a different periodic point Sj is followed by their transversal 
crossing and then by the homoclinic tangency occurring at the opposite side 
with respect to the previous one (as illustrated in Fig.l2a,b,c). A chaotic re­
pellor appears at the first homoclinic tangency, persists during the transversal 
crossing phase and disappears at the closure of the tangle: Consequently, the 
trajectories starting close to it have a longer transient part before converging 
to the period 8 cycle. But the main effect of this global bifurcation is the 
appearance of an attracting closed curve F, which replaces the heteroclinic 
connection between the periodic points of the cycles S and C. As soon as 
it has appeared, it exhibits many oscillations, as shown in Fig. 13 obtained 
at the same parameter value as in Fig. 12c, and surrounds the periodic points 
of the attracting cycle. As a increases, F becomes smoother and smoother 
reaching the shape of Fig.8b. 

In order to discuss the results of our numerical analysis carried out in the 
last two sections, let us first remark that the original Kaldor's (1940) busi-
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Figure 11: a = 1.72; C2 = 0.98: (a) Heteroclinic connection made up by the 
unstable manifold of the saddle cycle S. (b) The period 8 focus cycle C is 
the unique attractor. 
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ness cycle model - in spite of its simplicity and though it has been criticized 
on a number of grounds - is still present in modem treatments of business 
cycle theory and continues to stimulate pedagogical and methodological re­
search (see e.g. Gabisch & Lorenz (1989)); such research is mainly oriented 
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Figure 12: Heteroclinic tangle involving the outer branches of stable and 
unstable manifolds of the cycle S. (a) a = 1.74265991; C2 = 0.98: First 
homoclinic tangency. (b) a — 1.74266; C2 = 0.98: Transversal crossing, (c) 
a = 1.742660085; C2 = 0.98: Second homoclinic tangency 

to achieve a deeper understanding of the full range of dynamic outcomes 
compatible with the key qualitative assumptions of the model. Our contribu-
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tion belongs to this stream of research, and focuses on particular phase-space 
transitions that determine two characteristic dynamic scenarios: 

(i) the coexistence of two stable steady states and a stable closed curve, 
and the qualitative changes of their basins of attraction, in a regime of pa­
rameters where the exogenous, "normal" equilibrium is unstable (a saddle 
point); 

(ii) the change of size and location of an attracting invariant curve with 
respect to a coexisting stable periodic orbit, in a parameter range where the 
map admits three unstable equilibria. 
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Figure 13: a = 1.742660085; C2 
its appearance. 

0.98: The oscillations of the curve t at 

The main insight gained from our numerical and graphical investigation 
of such scenarios is that - though these phenomena look very different from 
each other at first sight - they are ultimately determined by the same kind of 
behavior of the stable and unstable set of the saddle point (in the first case), 
or of a saddle cycle (in the second case). Following the qualitative changes 
of stable and unstable manifolds closely, we have been able to detect numer-
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ically particular ranges of the parameter where transversal intersections and 
homoclinic tangles exist, which proves the existence of chaotic behavior, and 
explains the complex structures of the basins of attraction in those particular 
situations. We remark once again that very similar dynamic phenomena have 
been detected also in a quite different version of the Kaldor model [Agliari 
et al (2005b)], for plausible values of the parameters: This leads us to con­
jecture that such kinds of dynamic behavior might be ultimately related to 
the essential qualitative features of the original Kaldor model. 

References 

Agliari, A., 2001, "Global bifurcations in the basins of attraction in nonin-
vertible maps and economic applications". Nonlinear Analysis Al, pp. 
5241-5252. 

Agliari, A., Bischi, G.I., Dieci, R., and Gardini, L., 2005a, "Global bifurca­
tions of closed invariant curves in two-dimensional maps: A computer 
assisted study". International Journal of Bifurcation and Chaos 15, 
pp. 1285-1328. 

Agliari, A., Bischi, G.I., and Gardini, L., 2002, "Some methods for the 
Global Analysis of Dynamic Games represented by Noninvertible 
Maps", Chapter 3 in Oligopoly and Complex Dynamics: Tools & Mod­
els, T. Puu and I. Sushko (eds.). Springer Verlag 

Agliari, A., Dieci, R., and Gardini, L., 2005b, "Homoclinic tangles in a 
Kaldor-like business cycle model", Journal of Economic Behavior & 
Organization, to appear. 

Agliari, A., Gardini, L., Delli Gatti, D., and Gallegati, M., 2000, "Global 
dynamics in a nonlinear model for the equity ratio". Chaos, Solitons 
and Fractals 11, pp. 961-985, 

Bischi, G.I., Dieci, R., Rodano, G., and Saltari, E., 2001, "Multiple attrac-
tors and global bifurcations in a Kaldor-type business cycle model". 
Journal of Evolutionary Economics 11, pp. 527-554. 

Bischi, G.I., and Kopel, M., 2001, "Equilibrium Selection in a Nonlinear 
Duopoly Game with Adaptive Expectations", Journal of Economic 
Behavior and Organization 46/1, pp. 73-100. 



8 HomocHnic Loops in a Kaldor-Like Business Cycle Model 253 

Dana, R.A., and Malgrange, P., 1984, "The dynamics of a discrete version 
of a growth cycle model", in Analyzing the structure of economic mod­
els, J.P. Ancot (Ed.), The Hague: Martinus Nijhofif, pp. 205-222. 

Dieci R., Bischi, G.I., and Gardini, L., 2001, "Multistability and role of 
noninvertibility in a discrete-time business cycle model", Central Eu­
ropean Journal of Operation Research 9, pp. 71-96. 

Dohtani, A., Misawa, T., Inaba, T., Yokoo, M., arid Owase, T, 1996, "Chaos, 
complex transients and noise: Illustration with a Kaldor model". Chaos 
Solitons & Fractals 7, pp. 2157-2174. 

Gabisch, G., and Lorenz, H.W., 1989, Business Cycle Theory, 2nd edition. 
Springer-Verlag, New York. 

Gallegati, M., and Stiglitz, J.E., 1993, "Stochastic and deterministic fluc­
tuations in a nonlinear model with equity rationing", Giornale degli 
Economisti e Annali di Economia Anno LI (Nuova Serie) - Fasc. 1/4, 
pp. 97-108. 

Grasman, J., and Wentzel, J. J., 1994, "Coexistence of a limit cycle and an 
equilibrium in a Kaldor's business cycle model and its consequences". 
Journal of Economic Behavior and Organization 24, pp. 369-377. 

Gumowski, I., and Mira, C , 1980, Dynamique Chaotique, Cepadues Ed., 
Toulouse. 

Herrmann, R., 1985, "Stability and chaos in a Kaldor-type model", DP22, 
Department of Economics, University of Gottingen. 

Kaldor, N., 1940, "A model of the Trade Cycle", Economic Journal 50, 
pp.78-92, reprinted in Essays on Economic Stability and Growth, Lon­
don, Duckworth, 1964, pp. 177-192. 

Lorenz, H.W., 1992, "Multiple attractors. Complex Basin Boundaries, and 
Transient Motion in Deterministic Economic Systems", in Dynamic 
Economic Models and Optimal Control, G. Feichtinger (Ed.), North-
Holland, Amsterdam, pp. 411-430 

Lorenz, H. W., 1993, Nonlinear Dynamical Economics and Chaotic Motion, 
Second Edition, Springer-Verlag, New York. 



254 Anna Agliari and Roberto Dieci 

Medio, A., and Lines, M., 2001, Nonlinear Dynamics, Cambridge Univer­
sity Press, Cambridge (UK). 

Mira, C, Gardini, L., Barugola, A., and Cathala, J.C., 1996, Chaotic Dy­
namics in Two-dimensional Noninvertible Map, World Scientific, Sin­
gapore. 




