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4.1 Introduction 

In his original contribution Samuelson (1939) for the first time presented 
one of the major structural reasons of possible cyclical behavior in macroe-
conomic models: the interaction of the multiplier and the accelerator princi­
ples which induces a second order delay equation of real aggregate output. 
While he realized that his model could not generate permanent cycles, it was 
Hicks (1950) in a subsequent extension introducing ceilings and floors show­
ing that permanent "harmonic" fluctuations arise in a natural way under the 
Multiplier-Accelerator principle. These models have received wide interest 
within dynamical systems theory, since they supply a wide range of expla­
nations of truly complex business cycle phenomena originating from a linear 
model with restrictions implying a minimal degree of non-linearity. 

As an alternative to such restrictions, the introduction of random pertur­
bations to linear delay systems has also served as an explanation of busi­
ness cycle phenomena which has mainly been studied within linear time se­
ries analysis. The recent development of new techniques from the theory of 
stochastic dynamical systems allows an extension of results within the dy­
namic frame work for the Multiplier-Accelerator model. Most importantly, 
however, these techniques combined with the availability of efficient and 
fast numerical techniques allow a significantly more detailed insight into the 
range of qualitative features of the random Multiplier-Accelerator model. 

* Acknowledgement: I am indebted to Thorsten Pampel, George Vachadze, and Jan Wen-
zelburger for useful discussions and criticism. This research was part of the project "Endo-
gene stochastische Konjunkturtheorie" supported in part by the Deutsche Forschungsgemein-
schaft under grant BO 635/9-3. 
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This chapter takes this new view of random dynamical systems theory to 
examine the classical Multiplier-Accelerator model when random perturba­
tions are introduced to model parameters. The emphasis of the chapter is on 
the revelation of the dynamical richness of business cycle scenarios which 
may occur in such simple economic models. 

4.2 Random Dynamical Systems 

The traditional description of the dynamic evolution of stochastic economic 
models is carried out using the mathematical formalization of stochastic pro­
cesses, i. e. as a family of random variables given a specified exogenous 
structure of stochastic properties. When the standard tools of stochastic 
processes are used, the actual evolution of the stochastic data, (the sam­
ple paths), is often suppressed in favor of results and characterizations of 
the evolution of the probabilistic features or the statistical properties of the 
model. In this case the experimental perspective of the characteristics of a 
specific sample path, i. e. the empirical observation becomes of secondary 
importance. In many economic applications, however, as well as from a dy­
namical systems point of view, it is often natural and desirable to analyze the 
generation of stochastic orbits directly. This can be done in many situations 
by modelling the stochastic environment of a dynamical economic system in 
an explicit fashion. 

Consider for example a parameterized dynamical system F : W^ x 
W^ -^W^, given by a family of mappings 

F ( - , 0 : ^ C E " - ^ A ' , (1) 

where ^ G M^ is a vector of parameters which is subjected to random pertur­
bations and X is the vector of endogenous variables. The evolution of x (the 
orbit) for a given value of the parameter ^ G W^ is described in the usual 
way by 

xt = Fl{xo) F^ = Fi;0, (2) 

i. e. the dynamics follow the rules and the description of a deterministic dy­
namical system once the value of a particular ^ is given. Now let ^ follow a 
given random path described by a; : = ( . . . , ^s-2^^s-i^Cs, ^5+1, • • •)• Then, 
the generation of the random path 

xt+i = F^,{xt) = F{xt,^t) forall t (3) 

means that the change of (̂  implies choosing at each t a different mapping. If 
F(-, ^), ^ € [̂ , ^] is a family of contraction mappings with upper and lower 
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bounds [̂ , <̂ ], then for any random path a; the associated evolution of x will 
eventually be trapped in some compact interval [x, x]. For a one dimensional 
system, for example, the dynamic evolution of {xt} can be visualized as in 
Figure 1 for any initial value XQ and a given cj — ( . . . , (̂ , ^, ^, ^, ^, (^,...). 

Figure 1: A random orbit ofxforuj. 

Formally a random dynamical system in the sense of Arnold (1998)^ has 
two building blocks: 

- a model describing a dynamical system perturbed by noise 

- and a model of the noise. 

1) The exogenous noise process is modelled as a so called metric dynamical 
system known from ergodic theory. 

Let ^ : f̂  -^ fi be a measurable invertible mapping on a probability 
space (f2,J^, P) which is measure preserving with respect to P and 
whose inverse d~^ is again measurable. Assume that P is ergodic 
with respect to i? and let '&^ denote the ^-th iterate of the map d. The 
collection ( 0 , ^ , P , {'̂ ^j^^^) is called an ergodic metric dynamical 
system (for details see Arnold (1998)). 

Â synthesis of this view of dynamical systems with noise has been developed by many 
researchers among them Kesten (1973), Brandt (1986), Borovkov (1998), Lasota & Mackey 
(1994). 
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Any stationary ergodic process {6}tGN ? 6 • ̂  —^ ^^ ^^^ be repre­
sented by an ergodic dynamical system. This implies that there exists 
a measurable map ^ : ft -^ R ^ such that for each fixed a; G fi, a 
sample path of the noise process is given by ^t(^) = ^{'^^^), t e Z. 
Such a process is often referred to as a real noise process . 

2) The second ingredient is a parameterized family of invertible time-one 
maps of topological dynamical systems F : XxM.^ —> X,X C R ^ 
inducing the random difference equation F : X x Q. —^ X, 

xt+i = Fixt,${^'Lo)) = F{'d'Lo)xt. (4) 

For any XQ, the iteration of the map F under the perturbation w induces 
a measvirable map 0 : Z x Jl x X —> X defined by 

r (F(i?*-^a;) o . . . o F(w))xo if i > 0 
(j){t,ui,XQ) :— I XQ if t = 0 

\ ( F ( ^ * a ; ) - l o . . . o F ( i ? - l w ) - l ) x o if t < 0 
(5) 

such that xt = (t>{t, CJ^ XQ) is the state of the system at time t. 

~ For any XQ ^ X and any u e Q, the sequence 7(^0) := {^tjtez ^^^^ 
Xt = (j)(t^ OO)XQ is called an orbit of the random dynamical system (j). 

- For any t and s one has: 

0(t4-5,a;,xo) = F(^*+^a;) o . . . o F(cj)xo (6) 

= (j){t,d^uj,(l){s,uj,xo)) (7) 

Many stochastic processes can be described as metric dynamical sys­
tems. As an example, consider the representation for a standard i. i. d. pro­
cess. Let {^t} denote a family of independent and identically distributed 
random variables with values mW C R^ , which have the common distri­
bution (measure) A. Then one has: 

• fi — VT^ = W xW xW X'" 

• T = B{Vl) Borel cr-algebra 

• a ; = ( . . . , ^ 3 - i , 6 , 6 + i , - - 0 witha;(5) = ^5 
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0 : fi —> f2 is the so called shift map with uo ^^ 6u and 6IJJ{S) 

u{s + 1) ^ 6+1 

• (̂  : Q —> W^ is the evaluation map with ^(cj) = uj(Q) 

4.3 Random Fixed Points 

The long run behavior of a random dynamical system is described by random 
attractors, the random analogue of an attractor of a deterministic dynamical 
system, the random fixed point being a special case^. 

Definition 4.1 
Consider a random dynamical system (p induced by the continuous mapping 
F : X xW —> X with real noise process ^t = ^odK ^ \Q. — > W 
measurable, over the ergodic dynamical system (il, ^ , P, {'d^)). 

A random fixed point of<p is a random variable x* : fi —> X on (fi, ^ , P) 
such that almost surely 

x^(dijo) = (j){l,u,x^{uj)) = F{x^{uj),^{u)) for all u e n\ (8) 

where f2' C Jl is a d-invariant set of full measure, P(f2') = 1. 

Thus, a random fixed point is a stationary solution of the stochastic differ­
ence equation generated by the metric dynamical system. Some implications 
of the definition can be observed directly. If F is independent of the pertur­
bation Lxj, then the Definition 4.1 coincides with the one of a deterministic 
fixed point. Definition 4.1 implies that x*('i?*"^^a;) = F{x^{'d^uj),^(;d^uj)) 
for all times t. Therefore, the orbit {x^(d^LS)}t&^ a; G Q generated by x* 
solves the random difference equation 

Stationarity and ergodicity of ?9 implies that the stochastic process {x* (d^)}t^^ 
is stationary and ergodic. 

ŜchmalfuB (1996, 1998), also Arnold (1998). 
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The random fixed point x* induces an invariant distribution x*P on M^ de­
fined by 

x^F{B) := ¥{ujen\x^{uj)eB}. (9) 

The invariance of the measure P under the shift; i? implies the invariance of 
x*P, i. e. (x*i?)P(S) = x*P(5). If, in addition, E||x*|| < oo, then 

1 
lim - Y^ lB(x*(i?^a;)) - x^F{B) T^ooT 

(10) 

t=o 

for every B G >B(X). In other words, the empirical law of an orbit is well 
defined and it is equal to the distribution x*P of x*. Finally, if the perturba­
tion corresponds to an i. i. d. process the orbit of the fixed point a;* will be 
an ergodic Markov equilibrium in the usual sense (cf Duffie, Geanakoplos, 
Mas-Colell & McLennan 1994). The following definition of a stable random 

Figure 2: Asymptotic convergence to a random fixed point. 

fixed point (due to SchmalfuB (1996, 1998)) includes the notion of stability 
given by Definition 7.4.6 in Arnold (1998). 
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Definition 4.2 
A random fixed point x* is called asymptotically stable with respect to a 
norm \\ - \\, if there exists a random neighborhood U{u) C X, uo G f2 such 
that P- a.s. 

lim \\(j)(t,uj,xo) -x*('i?*a;)|| = 0 for all XQ{U) G U{UJ). 

Figure 2 portrays the convergence property of a random fixed point for the 
one dimensional growth model for three random orbits associated with dif­
ferent initial conditions and the same noise path. 

The following theorem, which is due to Arnold (1998)^, will be the cen­
tral result applied to the random Multiplier-Accelerator model supporting the 
numerical analysis and implying the dynamic and statistical properties to be 
exhibited. Consider invertible affine transformations on W^ defined by pairs 
{A^b) where A is an invertible n x n matrix and b E MJ^. Let A denote 
the space of non singular n x n matrices and assume A, A~^, and b to be 
bounded. 

Theorem 4.1 
Let F^ : R^ —> R^ be an invertible affine random dynamical system with 
stationary noise process {^t} on the probability space ( Q , ^ , P). Assume 
^ : Q ^^ {A^MP') with ^{u) = {A{uj),b{uj)), which implies the random 
difference equation 

xt+i=A{^^uj)xt-^b{d^uj) (11) 

and the random dynamical system"^ 

(t){t,x,uj) := Ix t = 0 (12) 

[$(i,a;) (x - ZJ^, $(i + l,'^)-' K^M) t < 0 

where 

^{t,Lo):={l t = 0 (13) 
'yi(i?*-M-
/ 

^A-\-d^Lj)-

•A{u>), t>0 

t = 0 

••A-^i'd-'^u) t<Q 

^Theorem 5.6.5 and Corollary 5.6.6. 
"̂ See Chapter 5 in Arnold (1998). 



120 VolkerBohm 

1. There exists a unique random fixed point x* : Q —̂  R"̂  such that 

x*(^*+ia;) = A{d^uo)x^{d^uj) - 6(#a;) P - a.s. (14) 

2. X* induces an invariant distribution x*P ^ /i* 

5. with unique support supp{p.^) = A* 

4. ifA{oj) are contracting maps, x* is globally attracting, i. e.for any XQ 

lim |(/)(t,cc;,xo)-x*('i?*a;)| = 0 P - a . 5 . (15) 

a«rf has the explicit form 

- 1 

x, (a ; ) := J ] $ ( t + 1,0;)-^ 6(7?̂ Cc;) (16) 
t=—oo 

4.4 Random Multiplier Accelerator Models 

Consider the standard Multiplier-Accelerator model (in the version of Hicks 
(1950)) defined by the three equations 

C = m^ + my_i 0 < m < l m o , i ; o > 0 (17) 

/ = ^0 + i;(y_i - y_2) ^ > o (18) 

y = c + / (19) 

implying the determination of aggregate real income in each period as 

Y = (mo + ^o) + (m + ^ ) Y ' - i - ^ y - 2 , (20) 

which is a linear delay equation of order two. Using the form 

/(yi ,y2) '= {rno + ^o) + (m + v)y2 - vyi (21) 

for the delay map / implies the associated two dimensional afifine dynamical 
system F : E^ ^ M^ defined by 

F{yi^y2) := (2/2,/(yi,2/2)) (22) 

= {y2:{rno-^vo)-i-{m-{-v)y2-vyi) (23) 

-V m + v I \ y2 I \ mo-\-vo 
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The function F has the unique fixed point (stationary state) 

y = 
m 1 — m 

(25) 

The accelerator v has no influence on the steady state y while aggregate 
demand mo + vo does not influence the stability of the steady state, y » 0 
requires m < 1. y is asymptotically stable if and only if 0 < m < 1 and 
0 < t' < 1. From the characteristic equation 

X(A) — Â  - (m + v)X + V 

one finds that the eigenvalues Aî 2 are complex if and only if m < 2y/v — 
V. Thus, for stability considerations (the projection into M? of) the space 
of parameters can be partitioned into a complex and into a real region as 
depicted in Figure 3. Therefore, for {m,v) G [0,1)^ the mapping F is a 
linear contraction with a unique steady state which is either a stable node or 
a stable focus. The above description shows that the Multiplier-Accelerator 

0 . 5 

Figure 3: Regions of eigenvalues in Multiplier-Accelerator Model. 

model consists of a family of aflfine parameterized maps Ff^ : B? -^ B? 
with parameters /i G M^. Without restricting economic generality, one may 
assume V{) ~ 0 capturing all effects of aggregate demand in the parameter 
0 < mo and thus restrict the analysis to situations of nonnegative parameter 
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values /i := (mo,m,f) E M^, i. e. aggregate demand, the multiplier, and 
the accelerator. In most applications, economic reasoning suggests further 
that the multiplier m takes values only between zero and one and that the 
accelerator v is restricted to values between 0 and 4. Therefore, for the rest 
of the analysis define the set of possible parameter values as 

M := {{mo,m,v) G M^ | 0 < mo < mo,0 < m < 1,0 < ^ < 4} . (26) 

As a consequence, the Random Multiplier Accelerator Model consists of the 
random family of affine maps F^ : R^ —> R^ with an associated (vector 
valued) stochastic process of parameters {//t}So defined on the probability 
space (O, j r ,P) which takes values in M, i. e. /xt : Jl —̂  M. More specifi­
cally, let //(a;) = (mo(a;), m{u)^ '^(^))> ^^^ define 

^ ^ \—v[uj) m[uj)^v{u)J ^ ^ \mQ\u) 

which implies the random difference equation 

xt+i = A{^^uj)xt + bi^^uj) 

(as in equation (11)) and the random dynamical system as in equation (12). 
This formulation fits precisely into the mathematical framework presented in 
Section 4.2. As a consequence, one has the following result for the class of 
random multiplier accelerator models. 

Proposition 4.1 
Let the random multiplier accelerator model F^ be given as in equation 
(24) and (26) and assume that the random perturbation is described by a 
stationary and ergodic process {pt} defined on a probability space (fi, ^ , P) 
with values in a compact set M := {{mo^m^v) E M\m < 1,?; < l } C M. 

(i) There exists a unique random fixed point y* : fi —> R^, given by 

- 1 

y*M:= Y. $(f + l,a>)-i6(t?*a;), (27) 
i=—oo 

with 

$(i,w) := { 
[A{§^-^uj)---A{u), t>0 

I i = 0 (28) 

[A-^'d*uj)---A-\^-^uj) t<0. 
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(ii) y* is asymptotically stable and induces a unique (stationary) invariant 
distribution 2/*P on R^ defined by 

(2/*P)(^) := ¥{uj^^\y\uj)eB} (29) 

for every B G ^(E^). 

(Hi) Moreover, 

1 ^ 
lim - Y, lB(y*(^M) - y*IP(S) = P{a; G fi|y*H G B} (30) 

for every B ^B{B?). 

Equation (30) states that the empirical law of an orbit is well defined and it 
is asymptotically equal to the distribution y*P of y*. 

The result follows as a direct application of Theorem 4.1. The given 
noise process can be represented as a real noise process in the sense of 
Arnold (1998). The assumption that the multiplier m as well as the ac­
celerator V are assumed to be strictly less than one imply that the family 
of mappings F^ are contractions. Therefore, existence, uniqueness, and 
asymptotic stability of the random fixed point i/* follows from Theorem 
4.1. While the result here is formulated for the simple two dimensional 
Multiplier-Accelerator model, the mathematical framework is much more 
general. It covers the whole class of aflfine random contraction mappings 
of finite dimension and not only delay systems. Such random models have 
unique globally attracting random fix points (stationary solutions). Most 
importantly, however, these properties hold for very general stationary and 
ergodic perturbations whether smooth or discrete, including in particular 
Markov processes and so called Markov switching models. Thus, from a 
time series perspective, Arnold's result sets a bench mark for the description 
of the invariance of aflfine economic models. Therefore, a large spectrum of 
qualitatively different sample profiles can be shown to appear, all consistent 
with a unique stationary and asymptotically stable solution. Observe that this 
was primarily obtained by the dynamic features of the construction chosen 
by the approach given in Arnold (1998). 

The major purpose of the remainder of this section is to examine the dy­
namic qualitative properties of some specific random examples using numer­
ical simulations. This will reveal insights into the nature of the recurrence of 
the stochastic multiplier accelerator model and into the role of the different 
parameters determining the invariant behavior. This can be done safely (with 
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proper care of the numerical analysis) due to the ergodicity property given in 
condition (30). In this case, a statistical examination of the long run behav­
ior of one generic sample path suffices to characterize the invariant statistical 
properties of the model. 

^From an economic point of view the three perturbations correspond to 
structurally different situations: 

1. a perturbation of the additive parameter mo corresponding to random 
exogenous demand in consumption or investment; 

2. a perturbation of the multiplicative parameters, 0 < m^v < 1, corre­
sponding to random propensities to consume or a random accelerator. 

The numerical experiments will use i. i. d. processes only, in spite of the fact 
that general Markov processes fall under the assumptions of Proposition 4.1 
as well. First, the analysis investigates the additive noise situation separately 
from each of the multiplicative effects. The additive noise will be chosen 
to be smooth, while the multiplicative and accelerator will be chosen from 
discrete sets. Mixing these two types reveal some specific and interesting 
features. 

4.5 The Dynamics with Smooth Additive i. i. d. Noise 

Consider the random equation (21) with an aggregate demand shock ^ > 0 

f\{yi:y2,0 '= mo + ^ + {m-{-v)y2 - vyi (31) 

which is distributed uniformly on some compact interval 

e ^ [ 0 , 2 A ] , A > 0 , (32) 

implying a mean E(̂  = A and a variance V^ = A^/3. In time series anal­
ysis such systems are referred to as a second order autoregressive process, 
denoted AR(2). Equation (31) induces a parameterized two dimensional ran­
dom dynamical system Fx :R^ -^ E^ given by 

^A(yi, 2/2,0 := (y2,/A(2/l,y2,0) 

0 1 

—V m-}- V 
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with additive noise, a so called Vector Autoregressive System of order 1, 
denoted VAR(l) in time series analysis. The characteristics of the stationary 
distribution are known from the standard time series approach and can be 
calculated explicitly in this particular case. 

Under the hypotheses of Proposition 4.1 the unique stationary solution 
can be characterized numerically by the limiting statistical behavior of any 
single sample path to be calculated from data. On the other hand, the true 
moments of the random fixed point y* can also be calculated given the noise 
distribution <̂  ~ [0,2A] for any A > 0. 

The stationarity of y* implies that the first moment Ey* must satisfy 

^ \-v m + vj ^ \mQ + E^ 

Hence, y\ and y^ have the same mean given by 

Vl) \ \-v m + vj) V^o + E ^ ; 1 - m VV 

The covariance matrix Cov(?/j, y | ) satisfies 

As the solution one obtains 

with 

3(1 — V) (1 + v)"^ — (m + v)"^ 

and 

m-\-v Â  m-i-v ^̂ _̂  
'̂ 1̂2 = ^21 = -j——'^^22 =- 77:; r 7 7 - — 7 2 7 :—To • (38) 

1 -\-v 3(1 — ?;) (1 + vy — (m + i;)^ 

Therefore, 

0 < t'12 = "̂ 2̂1 < vu = '̂ 22, for all A > 0, 0 < m < 1. 
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Observe, that the first moment is independent of the accelerator and it de­
pends on (m, A) only. The multiplier and accelerator together induce a pos­
itive cross correlation on the time series. Both correlation coefficients in­
crease as the accelerator increases. Notice in particular, that with a higher 
accelerator the attractor increases in size, including values of the state vari­
able less than mo/( l — m) and larger than (mo 4- 2A)/(1 — m). For small 
values of v, the attractor lies inside the cube defined by these two values. 
Since <̂  has a uniform distribution, the attractor as well as the distribution 
must be symmetric but not uniform. Table 1 shows the list of theoretical and 
computed values. 

To examine the qualitative properties of the (dynamic) invariant behav­
ior, two different cases will be discussed first to examine the role of the 
accelerator. Choose m = 0.75 for the multiplier and consider two values 
t? = 0.1 and V = 0.8 for the accelerator, f = 0.1 implies real eigenvalues 
such that the associated deterministic fixed point is a stable node implying 
monotonic convergence without rotation. In contrast, v = 0.8 implies com­
plex eigenvalues and a corresponding stable focus in the deterministic case. 
Most importantly, however, for each pair 0 < < {m,v) « 1, the set valued 
mapping associating the support of the invariant distribution with each pa­
rameter pair (m, v) will have compact images which depend on A alone and 
not on the particular noise chosen on [0,2A]. This implies that the attractor 
i. e. the support of the measure of the random fixed point will be a compact 
set which depends on the interval [0, A], the support of ^, but is independent 
of the particular form of the distribution. In this case, one would expect that 
under additive noise the complex case exhibits a much stronger rotation of 
the random orbits in the state space than in the case with real eigenvalues. 

Figure 4 provides time series characteristics for the case i; = 0.1 (left 
column) and f = 0.8 (right column). All calculations are carried out for 
the same noise path. Panel (a) and (b) show the convergence to the random 
fixed point for five different initial values of i/i, while (e) and (f) show typ­
ical time windows of the corresponding long run development of the (one 
dimensional projection of the) random fixed point. Panel (c) and (d) show 
the first 50 iterates with connecting lines. Observe that, in spite of the fact 
that for i; = 0.1 the deterministic fixed points are stable foci, the orbits show 
a low rotation phenomenon, caused by the stochastic displacement of the 
mappings. For v = 0.8, however, a strong rotation property appears induced 
by the complex eigenvalues of the matrix. 
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(e) r - : 1 0 ^ ^ ; = : 0 . 1 (f) T = 10^, i; =- 0.{ 

Figure 4: Transients and the role of the accelerator v ; m — 0.75, A = 0.1. 

The difference in the cyclical behavior becomes even more apparent 
when the long run of the random fixed point is examined. Panels (a) -(d) 
of Figure 5 show the two attractors with corresponding relative frequencies 
(densities). The grey shading of the profile of the invariant distribution indi­
cate equidistant levels of frequencies. 

The attractor under low rotation is almost a parallelogram while un­
der high rotation it has an elliptical form. Observe that both are perfectly 
symmetric with respect to the diagonal which implies that their respective 
marginal distributions must be identical. Since the noise is strictly additive, 
the mean is the same while the variance is higher in the case with v = 0.8 
(see panels (e) and (f)). Table 1 provides numerical results of some of the 
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(c) i; = 0.1 
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5.2 3.6 

(d) V = 0.8 

(e) i; = 0.1 (f) v = 0.8 

Figure 5: T/ze role of the accelerator v ;T — 10^, m = 0.75, A = 0.1. 

standard statistics for the two cases, confirming the symmetry (low skew-
ness), and the high variance for the situation with v = 0.8. 

To complete the description of the statistical features, Figure 6 provides 
data on autocorrelation for a large sample, which confirms the typical char­
acteristics of the autocorrelation fimctions of an AR(2) for both the high 
rotation and the low rotation case (see for example Hamilton 1994). 

The bifurcation diagram Figure 7 shows the change to the elliptic shape 
of the support of the invariant distribution and the increasing variance as the 
accelerator increases. 
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statistic 

mean 
variance 
stand, dev. 
skewness 

V — 

1 theoretical 
4.4 
0.008357 
0.09141662 

[o 

0.1 
estimate 
4.39986 
0.00837783 
0.0915305 
0.00297042 

V = 

theoretical 
4.4 
0.0358 
0.189208879 
0 

0.8 
estimate 
4.39985 
0.0360081 
0.189758 
-0.00375951 

Table 1: Statistics: mo = 1, m = 0.75; A = 0.1. 
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Figure 6: The role ofv on correlation; ?n = 0.75, A = 0.1. 

Lag 

-r^ Lag 

4.6 The Samuelson Model with Mixed Additive Noise 

Consider now the situation with mixed discrete/continuous additive noise 

/(2/1,2/2) ~ {mo + vo) +^ + {m + v)y2 - vyi 

^ - [0,2A], uniformly A > 0 (39) 

^ 0 ^ {O71}? discrete with equal probability 
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(a) A = 0.1, m = 0.75 (b) A = 0.1, m = 0.75 

Figure 7: Bifurcation of the accelerator v G [0,1]; m = 0.75, A = 0.1. 

describing a discrete switch of aggregate demand plus a small continuous 
noise, both of which follow an i. i. d. process. According to Proposition 
4.1, there exists a unique random fixed point (stationary solution) which is 
asymptotically stable. 

With finite discrete noise only (A = 0) the system becomes a so called 
Iterated Function System^(IVS) which often possesses complex or 'fractal' 
attractors made up of uncountably many disjoint compact sets of Lebesgue 
measure zero (Cantor sets). Such attractors are caused by gaps of the im­
ages of the finite list of mappings on invariant sets of the state space, i. e. 
subsets which are left with probability one in finite time. As a consequence 
the corresponding invariant measures will typically be 'fractal' and without 
densities. The experiment here is designed to reveal the effect of discrete 
noise on the attractor and examine the role of additional small smooth noise, 
to determine to what extent "smoothing by noise" appears. 

For the situation described by the system (39), the numerical analysis 
reveals the following property: there exists 0 << {m^v) « 1, a pair of 
values {ml < mg), and a small level of noise A > 0 such that the attrac­
tor consists of 2^ self similar disconnected subsets of R^, for some A: > 1 
(see Figure 8). The invariant measure has 2^ modes and has the same shape 
on each subset. Thus, the associated random fixed point (stationary solu­
tion) moves in a random fashion between the disjoint subsets and not in any 
specific harmonic or periodic way. The autocorrelation functions are not dis­
tinguishable from those of the smooth noise only (Figure 6). For example, 
panel (c) and (d) of Figure 8 show a 16 piece attractor and the associated 
histogram with 16 modes for A = 0.025. As the continuous noise increases 
the attractor as well as the measure becomes more smooth with only four 

^See Bamsley (1988) or Lasota & Mackey (1994). 
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modes. Figures 8 and 9 display the change of the attractor and the invariant 
measure as the continuous noise increases from A = 0toA = 0.5. 

The sensitivity of these features with respect to the multiplier and the 
accelerator is quite different. It is a remarkable fact, that the appearance of 
the 'gaps' is more frequent for low values of the accelerator. As in the case 
with smooth additive noise alone, it appears again that the increase in the 
rotation caused by complex eigenvalues is the reason for this phenomenon. 
Therefore, a high value of the accelerator may create sufficient rotation by 
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Figure 9: Low accelerator: v — 0.25; mo ~ {0,1}; ^ ~ [0,2A]; m = .5. 

itself, so that even for A = 0, no gaps appear. As a consequence, for all 
small positive values of A, the long run behavior induces essentially the same 
invariant distribution as for A = 0, as can be seen in Figure 10. 

Figures 11 displays the results of bifurcations of the accelerator under 
different levels of noise for aggregate demand. The t;-bifurcation shows quite 
clearly the disconnected attractor for low values of the accelerator while its 
mean remains at the same level. In contrast, any m-bifurcation displays the 
joint effect of the multiplier on rotation and on the position of the attractor. 
In both cases, the invariant measure will have multiple modes of different 
order. 

Summarizing the results of the experiments with additive demand shocks, 
one finds that the attractor may consist of a symmetric collection of discon­
nected subsets of the state space provided the perturbation is discrete (with 
small smooth noise) and the accelerator is low. In such a situation, the unique 
stationary solution fluctuates in a random fashion between the disconnected 
subsets inducing multi modal invariant distributions on the symmetric dis­
connected subsets of the attractor without regularity or periodicity. If the 
smooth additive noise becomes larger or the accelerator becomes large, the 
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Figure 10: High accelerator: v = 0.75; mo ~ {0,1}; ^ ~ [0,2A]; m = 0.5. 

attractor is always a connected compact set. The multi modality disappears 
as the noise and/or the accelerator increase. Then, the stationary distribu­
tion exhibits the typical features of a VAR(l) model with an AR(2) delay 
structure with high rotation, an invariant distribution with support similar to 
an ellipsoid and with positive cross correlation, as presented in section 4.5. 
Thus, the statistical properties of smooth additive noise with high accelera­
tors may not be distinguishable from those of a mixed perturbation scenario 
with low accelerators. However, from a time series perspective, much of the 
regularity of the smooth case is lost. Sample paths will reveal clustering, 
moment reversion, and slow convergence of moments. From the perspective 
of time series analysis or estimating procedures, little seems to be known 
about the theoretical properties of the invariant distributions or methods to 
estimate parameters of an afifine system under discrete noise^. 

^For some preliminary results see Bohm & Jungeilges (2004). 
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4.7 Random Multiplier and Random Accelerator 

Finally, consider a discrete perturbation of the multiplier or the accelerator 
combined with small additive noise ^ ~ [0,2A] on aggregate demand. In 
such a case, the system becomes a Markov switching model and is no longer 
a VAR(l), since the noise acts in a multiplicative way on the delay equation. 
Due to Proposition 4.1, there exists a unique asymptotically stable random 
fixed point (stationary solution) whose statistical properties can be derived 
firom the empirical statistics of a single sample path. The multiplicative ran­
dom effects change the local stability property of the mappings implying a 
random change of the type of rotation. As a consequence, the attractor will 
not be symmetric any longer implying also that the stationary solution may 
show reversion of moments, volatility clustering or alike. However, while 
the random accelerator leaves the steady state unchanged (for A = 0), the 
random multiplier has both an effect on the rotation and on steady states. 
Therefore, in the latter case, one would expect larger attractors (higher vari­
ance) than with a random accelerator alone, a feature which is confirmed by 
the numerical experiments. 

In general, one finds qualitatively that multiplicative discrete noise re­
duces the occurrence of "gaps" but it often induces non symmetric attractors. 
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Discrete random multipliers generate less smooth invariant distributions than 
discrete random accelerators (compare Figures 13 and 14). Random accel­
erators increase the rotation inducing more symmetry of the attractor. In the 
latter case, the data may be indistinguishable from the situation with contin­
uous additive noise (VARl). In particular, autocorrelations will be indistin­
guishable. 

4.8 Two Special Cases with Discrete Noise 

Consider a model with simultaneous discrete switching of the accelerator 
and aggregate demand as characterized by Table 2 while keeping the multi­
plier constant. Four mappings which involve one real root and three complex 
roots are chosen with equal probability. The table lists the set of parameters 
but also the four associated fixed points and their eigenvalues Aj. 

The resulting dynamics, however, leads to an overall low rotation with 
an asymmetric attractor (see Figure 15). The time series indicates effects of 
mean reversion and of volatility clustering, while there does not appear any 
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Figure 12: Random Multiplier: m ~ {0.4,0.6}; mo+6" ^ ^ [0,2A]; v = .5. 
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Figure 13: Random multiplier: m ~ {0.4,0.6}; v = .5; mo+^ ; ^ ~ [0,2A]. 
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Figure 14: Random Accelerator: v ~ {0.25,0.75}; m = 0.5; mo + ^; 
^ ^ [ 0 , 2 A]. 

substantial correlation of higher order. The fixed points of the four determin­
istic mappings are contained in the asymmetric attractor which is stretched 
out along the diagonal. The invariant distribution is highly skewed with high 
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Table 2: Parameters of Model SAMS. 

statistic 

mean 
variance 
standard deviation 
skewness 
kurtosis 
quantile (0.55) 

[ time series SAM5 

8.12587 
6.88639 
2.62419 
1.41137 
2.80578 
7.72191 

Table 3: Statistics of Model SAMS. 

frequency occurring near the two lower fixed points and a high kurtosis. 
Table 3 provides empirical estimates of the basic statistics only. Theoreti­
cal values of the true moments seem to be unaccessible and not known for 
Markov switching models. 

Finally, consider the model SAM4 describing a situation with simulta­
neous discrete switching of the multiplier, the accelerator, and of aggregate 
demand as given by Table 4. 

This corresponds to a pure Markov switching model. The two mappings 
which are chosen with equal probability have fixed points with complex 
eigenvalues. The time series also shows the typical moment reversion and 
clustering as the previous model. 
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Table 4: Parameters of Model SAM4. 

In contrast to the previous situation SAMS, however, the resulting dy­
namics shows a high degree of rotation with a less connected attractor than 
in Model SAMS, which points to a 'fractal' structure. Observe that the two 
stationary points are (1.7,1.7) and (5,5) most likely are not in the attractor. 
The invariant measure is much less smooth and less skewed. However, the 
autocorrelation is not distinctly different than in Model SAMS. 
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Figure 16: Characteristics of Model SAM4 (T = 10^;. 

4.9 Summary and Conclusions 

The random multiplier accelerator model can be described as a parameter­
ized family of random affine mappings, induced by a random family of sec­
ond order delay equations. If the multiplier and the accelerator are restricted 
to be strictly between zero and one, i. e. the stable case, every Multiplier-
Accelerator map is a contraction. Applying a result on existence, uniqueness, 
and asymptotic stability of a random fixed point for invertible affine random 
maps due to Arnold (1998), it was shown that for stationary and ergodic 
compact valued noise processes, the dynamics of the random Multiplier-
Accelerator model has a well defined unique, stationary and stable long run 
random behavior, satisfying the following properties: 

1. (almost all) random orbits/sample paths converge to a unique station­
ary solution which induces a unique invariant distribution on a unique 
attractor; 

2. time averages converge to the invariant distribution according to the 
Mean Ergodic Theorem; 
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statistic 
mean 
variance 
standard deviation 
skewness 
kurtosis 
quantile (0.55) 

time series SAM4 

3.00249 
2.0681 
1.43809 
1.10593 
0.578912 
2.8285 

Table 5: Statistics of Model SAM4. 

3. when perturbations are discrete (finite) and i. i. d., the random multiplier-
accelerator map corresponds to a Hyperbolic Iterated Function System 
(IFS). 

4. In this case, the unique attractor (the support of the invariant measure) 
may be a complex ('fractal') set or a Cantor set, and 

5. the invariant measure (distribution) may be very complex (with dis­
continuous distribution functions). 

With i. i. d. perturbations, the random multiplier accelerator model belongs to 
the class of generalized two dimensional Vector Autoregressive Systems of 
Order 1 (VARl) including so called Markov switching models. A numerical 
analysis with different i. i. d. perturbations showed that 

1. additive uniform i. i. d. perturbations alone lead to symmetric attrac-
tors and distributions 

2. on ellipsoidal attractors for high accelerators and on rectangular at-
tractors for low attractors; 

3. fractal attractors and distributions under discrete additive noise are 
more frequent for low than for high accelerators; 

4. adding small/continuous additive noise reduces/eliminates the 'fractal' 
structure of the attractor implying a multi modal invariant distribution 
on a finite collection of disjoint compact sets which make up the sup-
port/attractor; 

5. random accelerators as well as random multipliers typically lead to 
stationary solutions which can show a variety of complex time series 
phenomena, like moment reversion and clustering; 
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6. while the attractors and invariant distributions are typically non sym­
metric; 

7. these features seem less prevalent under a discrete random accelerator 
than under random multipliers or random aggregate demand. 

Since the mathematical result is applicable to general invertible affine 
random dynamical systems, the above features would be expected to appear 
as properties of unique stationary stable solutions also in random affine delay 
equations of any finite order as well as in more general affine economic mod­
els. Therefore, even with i. i. d. perturbations alone, these models represent 
a rich structure for interesting complex business cycle features. 
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