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1.1 Introduction 

It is well known that models of nonlinear oscillators applied to the study 
of the business cycle can be formulated both as continuous or discrete time 
dynamic models (see e.g. [23], [33], [34]). However, economic time is of­
ten discontinuous (discrete) because decisions in economics cannot be con­
tinuously revised. For this reason discrete-time dynamical systems, repre­
sented by difference equations or, more properly, by the iterated application 
of maps, are often a more suitable tool for modelling dynamic economic 
processes. So, it is useful to study the peculiarities of discrete dynamical 
systems and their possible applications to the study of self sustained oscilla­
tions. This is the main goal of this chapter, where we describe, on the light of 
some recent results about local and global properties of iterated maps of the 
plane, some particular routes to the creation/destruction of closed invariant 
curves, along which self sustained oscillations occur. 

In fact, even if in the fifties and sixties the methods for the study of 
iterated maps were less developed than those for ordinary differential equa­
tions, the situation is now rapidly changing because many results have been 
obtained about discrete dynamical systems (see e.g. [25], [26], [24], [16], 
[42],[28], [29]). Indeed, the dynamic properties and bifurcations of one di­
mensional iterated maps are now quite well known, as well as their implica­
tions about periodic and chaotic behaviors of their trajectories (see e.g.[15], 
[40],[41]). Even for two-dimensional maps more and more results can be 
found in the literature, starting from the pioneering works [25] and [26], (see 



Anna Agliari, Gian-Italo Bischi and Laura Gardini 

also [32], [35], [36], [1]). The qualitative methods for the study of discrete 
dynamical systems are in many aspects similar to those employed in con­
tinuous time systems, but important differences are worth to be emphasized. 
For example, a version of the Andronov-Hopf bifurcation theorem also ex­
ists for discrete dynamical systems, known as Neimark-Sacker bifurcation 
theorem, and it is quite similar to the one in continuous time, with the ex­
pected difference that while in the continuous-time case an equilibrium point 
undergoes an Hopf bifurcation when a pair of eigenvalues cross the line of 
vanishing real part, in the discrete-time case the Neimark-Sacker bifurcation 
occurs when a pair of eigenvalues cross the unitary circle of the complex 
plane. However, remarkable differences can be evidenced, both concerning 
the kind of motion along the closed invariant curve created at the bifurcation 
(it is no longer a unique trajectory but the closure of infinitely many distinct 
trajectories, either periodic or quasiperiodic) and the fate of such invariant 
curve as the parameters move far from their bifurcation values. 

In this chapter, some global bifurcations that cause the creation and de­
struction of invariant closed curves via global bifurcations are also consid­
ered, related with the occurrence of saddle-node or saddle-focus heteroclinic 
or homoclinic connections and tangles. Some exemplary global bifurcations 
are shown through numerical explorations and qualitative geometrical expla­
nations. 

Indeed, several aspects in the study of the global dynamical properties 
of two-dimensional discrete dynamical systems are still obscure, and their 
study often require an interplay between analytical, geometric, numerical 
and graphical methods. Moreover, the differences between continuous and 
discrete dynamical systems become particularly evident when the latter are 
obtained by the iteration of noninvertible maps. A map is invertible if it maps 
distinct points into distinct points, whereas whenever distinct points which 
are mapped into the same point exist, then we say it is a noninvertible map. 
Hence, the geometric action of a noninvertible map can be expressed by say­
ing that it "folds and pleats" the phase space, so that distinct points can be 
mapped into the same point (see e.g. [36], [3] for recent studies of the prop­
erties of noninvertible maps, [13], [12] and the monograph [39] for recent 
applications in economics). This introduces some peculiar dynamic prop­
erties when a business cycle model is represented by a discrete dynamical 
system obtained by the iteration of a noninvertible map. 
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1.2 Basic Definitions and Properties of Two-Dimensional Discrete 
Dynamical Systems 

In this section we give some basic definitions and properties concerning two-
dimensional discrete dynamical systems ̂  represented by the iterated appli­
cation of a map of the plane 

x' = T{x), T:S-^S, SCR^ (1) 

At any iteration it transforms a point x e S into a unique point x^ e S called 
rank-1 (forward) image of x. A point x such that T (x) = x' is a rank-1 
preimage of x^ 

\ix ^y implies T[x) ^ T {y) for each x, y in *?, then T is an invertible 
map in S, because the inverse mapping x — T~^ {x') is uniquely defined; 
otherwise T is said to be a noninvertible map, because points x exist that 
have several rank-1 preimages, i.e. the inverse relation x = T~^ {x') is 
multivalued. So, noninvertible means "many-to-one", that is distinct points 
X ^y may have the same image, T(x) =T {y) = x', 

Geometrically, the action of a noninvertible map can be expressed by 
saying that it "folds and pleats" the space 5, so that distinct points are 
mapped into the same point. This is equivalently stated by saying that several 
inverses are defined in some points of 5, and these inverses "unfold" 5. 

For a noninvertible map, S can be subdivided into regions Z/̂ , A: > 0, 
whose points have k distinct rank-1 preimages. Generally, for a continuous 
map, as the point x' varies in R^, pairs of preimages appear or disappear as 
it crosses the boundaries separating different regions. Hence, such bound­
aries are characterized by the presence of at least two coincident (merging) 
preimages. This leads us to the definition of the critical curves, one of the 
distinguishing features of noninvertible maps (see [25] and [36]): 

Definition. The critical curve LC of a continuous map T is defined as 
the locus of points having at least two coincident rank-1 preimages, located 
on a set LC-i, called set of merging preimages. 

Portions of LC separate regions Zk of the phase space characterized by 
a different number of rank — 1 preimages, for example Zk and Zk-^2 (this 
is the standard occurrence for continuous maps). The critical set LC is the 
generalization of the notion of local extrema (minimum or maximum value) 

^The reader is addressed to [24], [32], [37], [36] for a more complete treatment. 
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of a one-dimensional map^ and the set LC-i is the generaUzation of local 
extremum point of a one-dimensional map (i.e. T{LC-i) = LC)). 

Starting from an initial condition XQ G S, the (forward) iteration by T 
uniquely defines a trajectory 

T (xo) - {xn = T^ (xo), n = 0,1,2,...} 

where T^ is the identity function and T^ = T o T^~^. The set of points that 
form a trajectory is also called orbit, however many authors consider these 
two terms as equivalent. 

The simplest orbits ?iXQ fixed points, that is a singleton {p*} such that 
T (p*) = p*, so that T"^ (p*) = p* for all n, and cycles of period k, that is a 
set of k (k > 1) distinct periodic points {PI^PI:-"^PI} ^^^h that T {p*) = 
p*_^^ for i = 1,2,..., A: — 1 and T {p\) =p\. Observe that the periodic points 
of a cycle of period k are fixed points of the map T^, and a fixed point is a 
fc—cycle with k = 1. 

We recall that a set £̂  C W' is invariant for the map T if it is mapped onto 
itself, T{E) = E. This means that if x e £̂  then T(x) G E, i.e. E is 
trapping, and each point of E is the forward image of at least one point of 
E. The simplest examples of invariant sets are the fixed points and the cycles 
of the map. More generally, the attracting (repelling) sets and the attractors 
(repellors) of a map are invariant sets. 

An attracting set A is a closed invariant set such that a neighborhood U 
of A exists which is strictly mapped into itself and whose trajectories (i.e. 
the trajectories starting from any point of U) converge to A. A closed in­
variant set which is not attracting is called a repelling set if however close to 
A there are points whose trajectories goes away from A. An attractor {re-
pellor) is an attracting (repelling) set containing a dense orbit. An attracting 
set may contain one or several attractors, coexisting with sets of repelling 
points, whereas an attractor is an undecomposable set. In the case of a cycle 
attractor (repellor) is synonymous of asymptotically stable (unstable). In 
particular unstable nodes and foci are also called expanding. 

As the definition suggests, there exist points which converge to an attract­
ing set (or to an attractor) A: The trapping set made up by all such points 
constitutes the basin of attraction of A and it can be obtained considering the 
union of the preimages of any rank of the neighborhood U (defined above): 

CX) 

B{A)= U T - " (U) (2) 
n=0 

^This terminology, and notation, originates from the notion of critical point as it is used 
in the classical works of Julia and Fatou. 
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where T~^ (x) represents the set of all the rank-1 preimages of x and T~'^ (x) 
represents the set of all the rank-n preimages of x (i.e., the points mapped 
into X after n applications of T). 

In other words, the basin of an attracting set A is the set of all the points 
that generate trajectories ultimately belonging to A or to the neighborhood 
U defined above. 

As we are interested in the asymptotic behavior of the trajectories, we 
also introduce the cu—limit set of a point x: A point q G uj{x) if there exists 
an increasing sequence ni < n2 < ••• < n^ .̂.. such that the points T'^^ (x) 
tend to g as fc goes to infinity (clearly such a point q belongs to the limit set 
of the trajectory r (x)). The set u;(x) is invariant and gives an idea of the 
long run behavior of the trajectory from x. 

The same definition can be associated with the backward iterations of 
T, so obtaining the a—limit set of x: A point q G a(x) if there exists an 
increasing sequence ni < n2 < ... < rik... such that the points T~J^'' (x), 
for a suitable sequences of inverses jk in case of a noninvertible map, tend 
to g as fc goes to infinity (clearly such a point q belongs to the limit set of 
ur-"(x)). 

n>0 

In the particular case of a fixed point p* of T we define the stable and 
unstable sets of p* as 

W'^ (p*) = \x: lim T^(x) = p*\ 
[̂  n-̂ +oo J 

l^«"(p*)= x : lim T--{x)^l 

respectively, where T~J^ means for a suitable sequence of inverses. This 
means that the stable set of p* is the set of points x having p* as cj-limit set 
and the unstable set of p* is given by the points having p* in their a-limit set. 

If p* is an asymptotically stable fixed point, then its stable set coincides 
with its basin of attraction, S (p*), and its unstable set is not empty if the 
map is noninvertible in p*. If p* is an expanding fixed point, then its unstable 
set is a whole area and its stable set is not empty if the map is noninvertible 
inp*. 

Other important sets in the study of the global properties of a map T are 
the stable and unstable sets of an hyperbolic^ saddle fixed point p*. Indeed, 

^A fixed point p* is said hyperbolic if the jacobian matrix evaluated at p* has no eigen­
values of unit modulus. 
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if the map T admits several disjoint attracting sets, the stable sets of some 
saddles (fixed points or cycles) often play the role of separatrices between 
basins of attraction. 

If p* is a hyperbolic saddle and T is smooth in a neighborhood U of p* 
in which T has a local inverse denoted as Tf ,̂ the Stable Manifold Theorem 
states the existence of the local stable and unstable sets (defined in such a 
neighborhood [/ of p*) as 

Wil^ (p*) = {x e [/ : x^ = T^ (x) -> p* and x^ G U} 

WFoc (P*) = {xeU:x.n= T^"" {x) -^ p* and x_, e U} . 

The set Wi^^ (p*) (resp. Ŵ ^̂  (p*)) is a one-dimensional curve as smooth 
as T, passing through p* and tangent at p* to the stable (resp. unstable) 
eigenspace. Then the global stable and unstable sets are made up, respec­
tively, by all the preimages of any rank and the (forward) images of the 
points of the local sets, that is: 

W^ip*)= UT-"(W,i (p*)) (3) 
n>U 

W^{p*)= U T « , ( p * ) ) . (4) 
n>0 

where T~'^ denotes all the existing preimages of rank-n. 
If the map is invertible, the stable and unstable sets of a saddle p* are 

invariant manifolds of T. If the map is noninvertible, the stable set of p* 
is backward invariant, but it may be strictly mapped into itself (since some 
of its points may have no preimages), and it may be not connected. The 
unstable set of p* is an invariant set, but it may be not backward invariant and 
(contrarily to what occurs in invertible maps) self intersections are allowed 
(several examples will be shown in this book). 

It is worth to observe that analogous concepts are also given for contin­
uous flows, but the main difference here is that the stable and unstable sets 
are not trajectories, but union of different trajectories (indeed infinitely many 
distinct trajectories). A qualitative representation of the local stable and un­
stable sets, Wi^^ and W}^^, of a saddle fixed point p* is given in Fig.l, where 
E^ and E^ are the eigenspaces. 

In the following, we shall consider the stable (resp. unstable) set of a 
saddle as given by the union of two branches merging in p* denoted by coi 
and UJ2 (resp ai and a2) because all the points in these branches have p* as 
Lj—limit set (resp. in their a—limit set). 

W^ (p*) =ujiUuj2 , W^ (p*) = ai U ^2 
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The concepts of stable and unstable sets can be easily extended to a cycle 
of period fc, say C = {pl^P2^ ...,p^} , simply considering the union of the 
stable (unstable) sets of the points of the cycle considered as k fixed points 
of the map T^. For example 

W^\C)^()W^'{p*) , W^'(p*)^\x: lim T^"(x)=ft*l 
^ ^ n—>+oo 
1=1 ^ ^ 

and analogously for the unstable set. In particular, for a fc—cycle saddle we 

Figure 1: The local stable and unstable sets of the saddle p*. 

obtain the stable and unstable sets from (3) and (4) with the map T^ instead 
ofT,thatis 

2 = 1 2 = 1 

k k 

W" (C) = [JW'' {pl) = U (̂ 1,̂  U ^2,i) 
2 = 1 2 = 1 
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The importance of the stable and unstable sets is related to the fact that they 
are global concepts, that is, they are not defined only in a neighborhood of 
the fixed point (or cycle). Thus, being interested in the global properties of 
the map T, we may study its invariant sets, through a continuous dialogue 
between analytic, geometric and numerical methods, and focus our attention 
on the basins of attraction of its attractors and on the stable and unstable sets 
of some of its saddle points or cycles. 

If the map is nonlinear, the stable and unstable sets may intersect, i.e. it 
may exist a point q such that q e W^^ (p*) 0 W^^ {p*), or 

qew^{p*)nw^ {p^). 

Such a point g is a homoclinic point and it can be proved that if a homoclinic 
point exists then infinitely many homoclinic points must also exist, accumu­
lating in a neighborhood of p*. Intuitively, this can be understood observing 
that the forward orbit of g and a suitable backward sequence is also made up 
of homoclinic points, and converge to p*. The union of the forward orbit and 
a suitable backward orbit of a homoclinic point q is called a homoclinic orbit 
of p*, or orbit homoclinic to p*: 

r{q) = {... ,g_n,... ,g-2,g-i,g,gi,g2,-..,gn,...} 

where g^ = T^ (g) and T " (g) -^ p* while g_n = T r ^ (g) and T"^ (g) -^ 
p* is a suitable backward orbit. More generally, an orbit homoclinic to a 
cycle approaches the cycle asymptotically both through forward and back­
ward iterations, so that it always belong to the intersection of the stable and 
unstable sets of the cycle. 

The appearance of homoclinic orbits of a saddle point p* corresponds to 
a homoclinic bifurcation and implies a very complex configuration of W^ 
and W^, called homoclinic tangle, due to their winding in proximity of p*. 
The existence of an homoclinic tangle is often related to a sequence of bi­
furcations occurring in a suitable parameter range, and qualitatively shown 
in Fig.2: First, a homoclinic tangency between one branch, say cji, of the 
stable set of the saddle and one branch of the unstable one, say a i , followed 
by a transversal crossing between ui and a i , that gives rise to a homoclinic 
tangle, and by a second homoclinic tangency of the same stable and unstable 
branches, occurring at opposite side with respect to the previous one, which 
closes the sequence. It is worth to recall that in the parameter range in which 
the manifolds intersect transversely, an invariant set exists such that the re­
striction of the map to this invariant set is chaotic, that is, the restriction is 
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topologically conjugated with the shift map, as stated in the Smale-Birkhoff 
Theorem (see for example in [24], [35], [42], [9], [32]). Thus we say that 
the map possesses a chaotic repellor, made up of infinitely many (countable) 
repelling cycles and uncountable aperiodic trajectories. In the case shown in 
Fig.2 such a chaotic repellor certainly exists after the first homoclinic tan-
gency and disappears after the second one. 

(a) I (b) 

(c)J 

Figure 2: Homoclinic tangle involving the branches ai of the unstable set 

and uji of the stable one. 

Before and after the homoclinic tangle (i.e. before the first and after 
the last homoclinic tangencies), the dynamic behavior of the two branches 
involved in the bifurcation must diflFer: The invariant set towards which ai 
tends to (or equivalently the cj-limit set of the points of a i ) and the invariant 
set from which cji comes from (or equivalently the a-limit set of the points of 
ui) before and after the two tangencies are different. Also at the bifurcation 
value, as in Fig.2a, are different from those of Fig.2c. Thus we can detect 
the occurrence of such a sequence of bifurcations looking at the asymptotic 
behavior of Ŵ *̂  and W^. 

We observe that if the saddle is a cycle C = {pl,P2i •••)P^}> we may have 
homoclinic orbits of p | , z == 1, . . . , fc, belonging to the stable and unstable sets 
of the periodic point p* (considered as fixed points of the map T^) : In such 
a case we say that there exists points homoclinic to C. But it may also occur 
that the unstable set W^{p*) transversely intersects W^{p*_^i), i = 1, . . . , fc 
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and p%^i = Pi'- In such a case we have heteroclinicpoints and heteroclinic 
tangle denotes the corresponding configuration of W^ and W^ sets. An 
example of heteroclinic tangle associated with a saddle cycle of period 4 is 
qualitatively shown in Fig.3: It involves the internal branches ai^i and uji^i 
which, after a first tangency, transversely intersect each other and then have 
a second tangency. 

Figure 3: Heteroclinic tangle associated with a saddle cycle of period 4 (or 
4 saddle points of the map T^). 

Let us also remark that, as in the case of a homoclinic tangle, also in a 
heteroclinic tangle the asymptotic behavior of the involved branches, before 
and after the two tangencies, changes. Dynamically, heteroclinic tangles 
are as important as homoclinic ones since it is possible to prove that also 
in such cases an invariant set exists on which the restriction of the map is 
chaotic. This homoclinic bifurcation is also called a cyclical heteroclinic 
connection in the sense of Birkhoff (see [ 10]), who first showed that the same 
properties occur when the stable and unstable manifolds of a saddle fixed 
point intersect transversely, or when there are two saddle fixed points, say s* 

and 5*, such that W^ (5*) fi W^ (s*) 7̂  0, thus giving cyclical heteroclinic 
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points that form an heteroclinic connection (see also [19]). In such a case, 
the transverse intersections ofW^ (C) and W^ (C) for the saddle cycle C = 
{Pi)P2'•••5^fc}' called homoclinic points ofnon simple type in [10] gives 
the same properties as the homoclinic points of a saddle fixed point (called 
homoclinic points of simple type in [10]). Thus the occurrence of atransverse 
homoclinic orbit of a saddle cycle is enough to prove the existence of chaotic 
dynamics, because it is possible to prove that in the neighborhood of any 
homoclinic orbit there are infinitely many repelling cycles and an invariant 
"scrambled set" on which the restriction of the map is chaotic in the sense of 
Li and Yorke (see for example in [20], [21], [42]). 

It is worth to notice that if the map T is noninvertible and p* is an ex­
panding fixed point of T (i.e., a fixed point such that the Jacobian matrix 
evaluated at p* has all the eigenvalues greater than 1 in modulus) then the 
stable set of p^ is given by the preimages of any rank of p*, if they exist (as 
defined at the beginning of this section). The existence of a stable set for 
repelling points is a distinguishing feature of noninvertible maps, because 
such a set is empty in invertible maps. In fact, for a noninvertible map the 
only preimage of a fixed point p* is p*, as T (p*) = p*, whereas preimages 
p l i 7̂  p* may exist if T is noninvertible, i.e. several rank-1 preimages exist. 
This implies that for noninvertible maps homoclinic bifurcations may also 
occur for expanding fixed points (repelling nodes and foci), whereas for in­
vertible maps they can only occur for saddles. Another difference between 
invertible and noninvertible maps is associated with non connected basins of 
attraction, which are only possible for noninvertible maps, whereas they are 
always simply connected in invertible maps. 

1.3 Closed Invariant Curves 

The main interest in this chapter is to show some local and global bifurca­
tions related to closed invariant curves in two-dimensional maps, as the dy­
namics related to such curves is what can be interpreted (in applied models) 
as cyclical behavior. As we shall see (in later sections and in several exam­
ples in later chapters), the appearance/disappearance of closed curves may 
be related to some global bifurcation. However, the most known mechanism 
leading to such curves is the Neimark-Sacker bifurcation. 

Let us simply recall the properties of a focus fixed point p* = (x*, ?/*) 
of a smooth map T, for which the Jacobian matrix DT in p* has complex-
conjugate eigenvalues, assuming that the stability of the fixed point is in­
vestigated as a function of one parameter p. As long as the eigenvalues are 
in modulus less than one, say for p < fi^, the focus is stable and locally 
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(in a small neighborhood of p*) the trajectories belong to spirals and tend 
to the fixed point. When the eigenvalues are in modulus greater than one 
say for M > Mo, the focus is unstable (repelling) and locally the trajectories 
still belong to spirals, however they have a different asymptotic behavior 
The crossing of the complex eigenvalue trough the unitary circle, at M = Mo 
corresponds to & Neimark-Sacker bifurcation. The analytical conditions at 
which It occurs, and the so called "resonant cases", now belong to standard 
dynamical results, which can be found in many textbooks, see for example 
[28], [29], [24], [32], [42]. Let us here briefly recall the main features which 
are useful in the study of applied models. A Neimark-Sacker bifurcation is 
related with closed invariant curves, existing in a small neighborhood of the 
stable fixed point when the bifiircation is subcritical, or of the unstable fixed 
point when it is supercritical. The critical case occurs when locally the map 
behaves as a linear map, that is, the dynamic behavior at the bifurcation value 
IS that of a center, and locally infinitely many closed invariant curves exist 
(instead of only one, as it occurs before or after the bifiircation value in the 
subcritical or supercritical case, respectively). Fig.4a qualitatively shows a 
bifurcation diagram in the subcritical case: A repelling closed invariant curve 

~vn 

A 

(a) . /; 
\jy 

A 
u=. 
! U -" 

/ 
r 
1 r^ 

"TT \ / 

(b) 

/' 
/ / ' 
Li 

\ 

1 

^^ 
' >A 
>̂  
•' L" 

T~ 
ys 
-X-

' • b 

• 7'"^' 
' 

' 1 ~r 
•^ 

Figure 4: Qualitative diagram of the Neimark-Sacker bifurcation: (a) sub-
critical case, (b) supercritical case. 
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r exists surrounding the stable fixed point, for /j, < fiQ. As fi increases the 
repelling closed curve decreases in size and shrinks merging with the fixed 
point at /x == //Q, leaving a repelling focus. It is worth noting that in such 
a case the closed repelling curve is generally the boundary of the basin of 
attraction of the stable fixed point. After the bifurcation the fixed point is 
unstable and the cj-limit set of a point close to it depends on the nonlinearity 
of the map (it may converge to another attracting set or diverge). 

Fig.4b qualitatively shows a bifurcation diagram in the supercritical case: 
At /J, = fiQ the fixed point becomes an unstable focus and for // > /XQ an at­
tracting closed invariant curve F exists, surrounding the unstable fixed point. 
Thus the cj-limit set of points close to it is such closed invariant curve. 

For fi in 3. neighborhood of /ig the closed invariant curve F (stable or 
unstable) is homeomorphic to a circle, and the restriction of the map to F 
is conjugated with a rotation on the circle. Thus the dynamics on F are 
either periodic or quasiperiodic, depending on the rotation number. Roughly 
speaking, the rotation number represents the average number of turns of a 
trajectory around the fixed point. When the rotation number is rational, say 
m/n, it means that a pair of periodic orbits of period n exists on F, and 
to get the whole periodic orbit a trajectory makes m turns around the fixed 
point. The dynamics occurring in such a case on F are qualitatively shown 
in Fig.Sa in case of a supercritical bifurcation (F is attracting): The closed 
curve is made up by the unstable set of the saddle cycle, and F is also called 
a saddle-(stable) node connection. Instead, Fig.5b shows the subcritical case 
(F is repelling): The closed curve is made up by the stable set of the saddle 
cycle, and F is also called a saddle-(unstable) node connection. When the 
rotation number is irrational, the trajectories of T on the closed curve F are 
all quasiperiodic. That is, each point on F gives rise to a trajectory on the 
invariant curve which never comes on the same point, and the closure of the 
trajectory is exactly F. 

Investigating the bifurcation of a fixed point of T as a function of two 
parameters, it is quite common to derive the so called stability triangle, 
whose boundaries represent the stability loss due to different properties of 
the eigenvalues. That is, one side represents a flip-bifurcation (one eigen­
value equal to -1), another side a fold or pitchfork-bifurcation (one eigen­
value equal to +1), and a third side the Neimark-Sacker bifurcation (com­
plex eigenvalues in modulus equal to +1). In the supercritical case, such 
a portion of bifurcation curves is the starting point of so called "period­
icity tongues", or ArnoVd tongues, associated with different rational rota­
tion numbers min. A peculiar property of such tongues is associated with 
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the summation rule [27]: Between any two tongues with rotation numbers 
rui/ni and 7722/712 there is also a tongue associated with the rotation number 
m! In' = {mi + 7x12)/{ui + 712). 

Figure 5: Dynamics on a closed invariant curve F: (a) saddle-(stable) node 
connection, (h) saddle-(unstable) node connection, (c) saddle-(stable) focus 
connection, (d) saddle-(unstable) focus connection. 

It is clear that properties and bifurcations similar to those described above 
for a fixed point can occur also for a fc—cycle of any period fc > 1, simply 
considering the k periodic points as fixed points of the map T^. In such a 
case the closed invariant curves F̂ ^ of the map T^ belong to a fc—cyclical 
set for the map T. Several examples of bifurcation diagrams and invariant 
closed curves F (cyclical or not), with rational rotation numbers and saddle-
connections or with quasiperiodic trajectories, will be shown in later chap­
ters, associated with several business cycles models. 

The dynamic evolution of F clearly depends on the nonlinearity of the 
map. Several examples will be given, both in piecewise linear maps (see 
the next chapter and Chapter 12) and in smooth maps (Chapters 8, 9, 11), 
together with a survey of possible mechanisms leading to the destruction 
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of a closed curve. We only note here that the destruction may occur in 
two different ways: Either because the invariant closed curve T becomes 
no longer homeomorphic to a circle, or because the restriction of the map 
on r becomes no longer conjugate with a rigid rotation or an invertible map 
of the circle. The first case naturally occurs when the cycle node (stable or 
unstable) on F becomes a focus: Fig.5c-d qualitatively represent this case, 
together with a saddle-focus connection, which may be stable (Fig.5c) or 
unstable (Fig.5d). 

We finally remark that when a pair of parameters are let to vary in a 
parameter plane outside the stability triangle, from the region close to a 
supercritical pitchfork (or flip) bifurcation curve towards the region where 
a supercritical Neimark-Sacker bifurcation occurs, then global bifurcations 
associated with (attracting and repelling) closed invariant curves must nec­
essarily occur. Some of the mechanisms explaining such global bifurcations 
are described in the next sections. 

1.4 Effects of Critical Curves on Invariant Closed Curves 

In this section we consider the transformations of an invariant closed curve, 
bom from a focus fixed point of a noninvertible map of the plane via a super­
critical Neimark-Sacker bifurcation, as some parameter is gradually moved 
away from its bifurcation value. As stated in the previous section, just af­
ter the bifurcation an attracting invariant closed curve, say F, exists around 
the unstable focus. It is smooth and homeomorphic to a circle, with radius 
proportional to the square root of the distance from the bifurcation set in the 
parameter space (see e.g. [24], p.305). 

The dynamics of the iterated map restricted to F is conjugate to a map 
of the circle, and may be characterized by an irrational or a rational rotation 
number. In the former case, the motion along F is non periodic (also called 
quasiperiodic) and the iterated points are densely distributed along the whole 
invariant curve, whereas in the latter case, if the rational rotation number has 
the form m/n, the motion is n-periodic, i.e., an attracting cycle of period n 
exists embedded into F, and the n periodic points are cyclically visited every 
m turnings around the unstable focus. The latter situation is observed when 
the parameters are chosen inside a m/n Arnold tongue. The whole curve F is 
covered by the iterated points only in the case of irrational rotation number, 
otherwise only the periodic points are visited by the asymptotic dynamics, 
so that it is difficult to see F numerically, when the period n is small, even if 
the closed invariant curve exists (given by the saddle-node connection). 
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However, the Neimark-Sacker bifurcation theorem only gives local results 
in the parameter space, in the sense that it says nothing about the changes 
in the shape, or even the existence, of the invariant curve, as the parameters 
move away from the bifurcation values. Indeed, the closed invariant curve 
may suddenly disappear, or drastically change its shape, or evolve into an 
annular chaotic attractor (a chaotic ring). In the case of a noninvertible map 
of the plane, important modifications of the shape and global properties of F 
occur due to the folding action of the critical curves. 

In order to illustrate this point, let us consider an exemplary case, ob­
tained by using the quadratic map T : (x, y) -^ (x', y') defined by 

where A is a real parameter (see [36] for a more detailed study of this map). 
Given x^ and y\ if we solve the algebraic system with respect to the un­
knowns X and y we obtain 

\ /T+^' -^ ' . i f x = | + ^/^T7 
[ y = x^ [ y = x^ 

(6) 
So, a point (x',?/') has two distinct rank-1 preimages if y' > (x' — A^/4), 
and no preimages if the reverse inequality holds. This means that the map 
(5) is a Zo — Z2 noninvertible map, where ZQ (region whose points have 
no preimages) is the half plane ZQ = {{x,y)\y < x - A^/4} and Z2 (re­
gion whose points have two distinct rank-1 preimages) is the half plane 
Z2 = {{x,y)\y > ^ — '^^/4}. The line y — x — A^/4, which separates 
these two regions, is the critical curve LC, i.e. the locus of points having 
two merging rank-1 preimages, located on the line xi = A/2, that repre­
sents LC-i. Any point {x,y) G Z2 has the two rank-1 preimages sym­
metrically located at opposite sides with respect to LC-i: Tf^ {x^y) e 
Ri and Tg"̂  (^,y) ^ R2, where Ri is the region defined by x < A/2 
and i?2 is defined by x > A/2. We notice that, being (5) a continuously 
diflferentiable map, the line LC-i belongs to the set of points at which 
the Jacobian determinant vanishes, i.e. LC-i C JQ, where 
Jo = {(x,7/) I det DT{x,y) = 2x — A = 0}, and the critical curve LC is 
the image by T of LC_i, i.e. LC = T{LC-i) = T {{x = A/2}) = 
{{x,y)\y = x-XyA}. 

The folding action related to the presence of the critical lines can be 
expressed by saying that the image of any region U separated by LC-i into 
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two portions, say Ui G i?i and U2 ̂  R2, is folded along LC, in the sense 
that T(C7i) n T(?72) is a nonempty set included in Z2. This means that two 
points p G C/i and q G U2, located at opposite sides with respect to I/C_i, 
are mapped in the same side with respect to LC, in the region Z2, This 
can be equivalently expressed by stressing the "unfolding" action of T~^, 
obtained by the application of the two distinct inverses in Z2 which merge 
along LC. Indeed, if we consider a region V C Z2, then the set of its rank-1 
preimages T^^{V) and T^^{V) is made up of two regions T^^{V) G Ri 
and T^^{V) G R2, that are disjoint if y fi LC = 0 whereas they merge 
along L C _ i i f V n L C 7^0. 

The map (5) has two fixed points, O = (0,0) and P = (A, A). It is easy 
to see that O is stable for 0 < A < 1, and as A is increased through the 
bifurcation value A = 1 a supercritical Neimark-Sacker bifurcation occurs at 
which a stable invariant closed curve arises around the unstable focus O, as 
shown in Fig.6a, obtained for A = 1.02. In the situation shown in Fig.6a the 
other fixed point, P, is a saddle, whose stable set constitutes the boundary 
that separates the basin of attraction of the closed invariant curve F (the white 
region) from the basin of diverging trajectories, also called basin of infinity 
(the grey region). Notice that in Fig.6a the invariant curve F appears to 
be smooth and of approximately circular shape, so that the quasi-periodic 
motion along it is very similar to purely trigonometric oscillations. It can 
also be noticed that F is entirely included in the region i?i, i.e. it has no 
intersections with LC_i. It is important to remark that just after its creation 
F cannot be too close to LC-i, because at the Neimark-Sacker bifurcation 
the eigenvalues are complex conjugate and belong to the unit circle of the 
complex plane, whereas along LC-i one eigenvalue must necessarily be 
zero being det {DT) = 0 along LC-i. Therefore, intersections between F 
and LC-i are only possible when the parameters are sufficiently far from 
the Neimark-Sacker bifurcation values. 

We now describe the changes of the stable invariant closed curve F as 
the parameter A is increased. Indeed, as far as the attracting invariant closed 
curve F does not intersect LC_i it can be thought of as entirely contained in 
one sheet of the Riemann foliation. This means that a neighborhood U (F) 
of F exists such that not only T{U) C U (since F is attracting) but a unique 
inverse exists, say T^^, such that Tf ^ : T{U) -^ U. This implies that the 
curve F, as well as the area of the phase plane enclosed by F, say a (F), is 
both forward invariant (under T) and backward invariant (under Tf ^). 

The situation changes when F grows up until it has a contact with the 
set of merging preimages LC_i, and then intersects it, as shown in Fig.6b, 
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obtained for A = 1.3. We now describe the consequences of the contact 
between T and LC-i. 
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Figure 6: (a) Jw^̂  a/?er /̂ẑ  supercritical Neimark-Sacker bifurcation of the 
fixed point O a smooth attracting closed curve V appears, (b) Far away from 
the bifurcation value, the area inside T is no longer invariant. 

Let AQ and BQ be the two points of intersection between F and LC-i, 
and let Ri and R2 the two regions, separated by LC_i , giving the ranges of 
the two inverses T f ^ and T^^, respectively. Then the points Ai = T {AQ) 
and Bi = T {BQ), which must belong both to F and to LC = T (LC_i), 
are points of tangential contact between F and LC. In fact, the arc AQBQ = 
Fni?2 niust be mapped by T in the arc AiBi = T (AQBO), entirely included 
in the region Z2, on one side of LC (i.e. on the side of region Z2). If we look 
at the area a (F), bounded by the invariant curve, it is easy to see that such an 
area is no longer invariant under application of T. In fact, T^^ (^1^1) gives 
an arc inside a (F) but not belonging to the invariant curve, while AQBQ = 
Fni?2 is given by T^^ (AiBi). It means that the region hi, located between 
the arc AiBi of F and LC, is "unfolded" by the action of the two inverses 
T^^ and T^^ in two distinct preimages, located in the regions Ri and R2 
respectively, represented in Fig.6b by the two portions HQ — T^^ {hi) and 
/IQ = ^2"^ {hi) of a (F) bounded by the two arcs AQBO inside and along F 
respectively. In other words, the two portions h\ and h^ of a (F) are both 
"folded" by T along LC outside the area a (F) (as both cover the area hi 
which is outside F). This implies that the area a (F), bounded by F, is no 
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longer forward invariant (since some points inside T are mapped outside it, 
and are exactly the points belonging to h^ and hi). 

This phenomenon of forward invariance of a closed curve, together with 
noninvariance of the area inside it, is specific to noninvertible discrete maps, 
that is, it cannot be observed neither in two-dimensional invertible maps nor 
in two-dimensional continuous dynamical systems. The property of nonin­
variance of a (F) and the creation of convolutions of F are two aspects of the 
same mechanism, related to the fact that curves crossing LC-i are folded 
along LC and are confined into the region with an higher number of preim-
ages. 

Another consequence of the intersection between F and LC-i is that for 
a periodic cycle not belonging to F, it may happen that some of the periodic 
points are inside and the others are outside the invariant curve F. In the case 
of the map (5) this may be observed for example when A = 1.4014, because 
a stable cycle of period 7 coexists with the stable invariant curve F (see Fig.7, 
where the seven periodic points of the stable cycle are labelled as Ci,..., C7). 
As it can be seen in the figure, the periodic point Ci, inside F in the region 
/IQ, is mapped in the point C2 E hi, i.e. outside a (F). 
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Figure 7: The periodic point C\, inside F in the region h^, is mapped in the 
point C2 E hi, i.e. outside a (F). 
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As the parameter A is further increased, the convolutions become more and 
more pronounced and another phenomenon pecuHar of noninvertible maps 
can be seen, that is the appearance of knots, or loops, or self intersections 
of the unstable set of the saddle belonging to the closed invariant curve, and 
such a dynamic situation is soon followed by homoclinic situations (intersec­
tions between the stable and unstable sets of the saddle) leading to a chaotic 
attractor, also called "weakly chaotic ring" in [36] for their particular shape. 
An example is given in Fig.Sa obtained with A = 1.505. As emphasized in 
the enlargement shown in Fig.Sb, the attractor is no longer a closed invariant 
curve, as it includes loops and self-intersections. The mechanisms through 
which such loops and chaotic rings are created, and the related loss of invari-
ance o f f have been recently studied by many authors (see e.g. [36], [17] or 
[18] and references therein), and still have some open problems. 

Figure 8: (a) v4 "weakly chaotic ring" caused by some homoclinic bifurca­
tion, (b) The enlargement shows the loops and the self-intersections of the 
attractors. 

As the parameter A is further increased, so that it is more and more far 
from the Neimark-Sacker bifurcation value, a fully developed chaotic ring is 
created, like the one shown in Fig.9, obtained for A = 1.54, on which the 
dynamics are characterized by chaotic time series that exhibit some particu­
lar time patterns, as shown in Fig.9b. It is worth to notice that in Fig.9a the 
attractor is very close to the boundary of the basin of diverging trajectories 
(gray points in the figure). This suggests that a further increase of A will 
lead to a contact between the attractor and the boundary of its basin, and 
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this represents a global bifurcation that marks the destruction of the attractor 
(more properly, it becomes a chaotic repellor after the contact). Such bifur­
cation is known as final bifurcation, or boundary crisis, and here corresponds 
to the first homoclinic bifurcation of the saddle fixed point P on the basin 
boundary. Indeed, its unstable set tends to the attractor while its stable set be­
longs to the frontier of the basin, thus a contact of the attracting set with the 
basin boundary also implies a contact between the stable and unstable sets 
of P. Of course, this contact between an invariant attracting set and its basin 
boundary may occur at the beginning of the story, i.e. soon after the creation 
of the closed invariant curve F. In other words, even if the Neimark-Sacker 
bifurcation theorem marks the appearance of F, it gives no indications about 
its survival as the parameters are moved away from their bifurcation values. 

A = 1.54 

Figure 9: (a) The fully developed chaotic ring, (b) The corresponding chaotic 
time series. 

To sum up, just after a supercritical Neimark-Sacker bifurcation, the long 
run dynamics of a discrete dynamical system is characterized by endoge­
nous oscillations that may be quasiperiodic or periodic, converging towards 
a smooth and attracting closed curve F. Then, when the parameters move 
along a path away from the Neimark-Sacker bifurcation value, the closed in­
variant curve grows up, i.e. oscillations of increasing amplitude characterize 
the asymptotic dynamics. Such enlargement of F may lead to its disappear­
ance or to some changes of its shape, due to the nonlinearities of the map. 
If the map is noninvertible, the intersections between F and LC-i gives rise 
to convoluted shapes of the invariant curve, until it is replaced by an annular 
chaotic attractor. 
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As usual, sets of parameters are met at which stable cycles are created via a 
saddle-node bifurcation. The periodic points of these stable cycles may be­
long to r , or may be inside a (r), or outside a (F) or, if F intersects LC_i, 
some of the periodic points may be inside and other outside a (F). Further­
more, several coexisting attractors may be simultaneously present, such as 
coexisting attracting cycles or quasiperiodic or chaotic attractors together 
with attracting cycles. 

An important property of noninvertible maps is that in any case, seg­
ments of the critical curves LC, together with a suitable number of their 
images Ld = T'^{LC), may be used to bound a trapping region where all 
the attracting sets are included. Such trapping sets, also called absorbing ar­
eas in [36], act like a bounded vessel inside which the asymptotic dynamics 
of the bounded trajectories are ultimately confined (see also [3], [12], [39]). 

1.5 Invariant Closed Curves and Saddle Connections 

In this section we present some global bifurcations involving invariant closed 
curves, which may be related to the appearance/disappearance of endoge­
nous fluctuations, to qualitative changes in their amplitude and to complex 
structure in their basins of attraction. These bifurcations are related to the 
dynamic behavior of the stable and unstable sets of same saddle cycle, so 
they can be observed both with invertible and noninvertible maps. In the 
following we restrict our attention to (at least locally) invertible maps. 

Before proceeding, it is worth to recall that the bifurcations related to 
invariant curves are well known in continuous dynamical systems, but in 
discrete models are still an open problem (see [32]): Here we give some 
qualitative results obtained by computer assisted proofs, with the awareness 
that further investigations need for a more complete understanding. 

As already stated above, from a local point of view, in a nonlinear dis­
crete map endogenous fluctuations naturally appear when a fixed point is 
destabilized through a supercritical Neimark-Sacker bifurcation: A stable 
focus becomes unstable and an attracting closed curve appears around it, be­
coming wider and wider when the parameters move away from the bifurca­
tion value. Generally this local bifiarcation has no global effect, in the sense 
that after the bifurcation the trajectories of points close to the unstable focus 
reach the attracting closed curve. However, some recent papers (see, among 
others, the endogenous business cycle models studied in [38] and in [31] or 
the cobweb model with predictor selection proposed in [14]) have stressed 
the importance of homoclinic tangencies and homoclinic tangles of saddles 
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in the transition from local regular to global irregular fluctuations, due to in­
creasing complexity of the attractors. Moreover, if the map T exhibits some 
multistability phenomena, then the invariant closed curve may interact with 
other attractors and interesting dynamic phenomena may occur, often asso­
ciated with homoclinic or heteroclinic tangles. 

Different, but still interesting, problems arise when the Neimark-Sacker 
bifurcation is of subcritical type, that is, when a repelling closed curve co­
exists with a stable focus, and generally such a repelling closed curve gives 
the boundary of the basin of attraction of the stable focus. Indeed, a subcrit­
ical bifurcation may be seen as a catastrophe phenomenon, in the sense that 
after its occurrence no attractors exist in the phase space or, if an attractor 
exists, it is quite far from the bifurcating fixed point. Instead, in the case of 
a supercritical Neimark-Sacker bifurcation, the phase portrait is completely 
different: The attracting closed curve which appears after the bifurcation is 
very small and close to the fixed point. 

The dynamical behavior of a subcritical Neimark-Sacker bifurcation is 
very importand in the economic literature (as well as in other applied mod­
els). In fact, the existence of a repelling closed curve which bounds the basin 
of attraction of the stable fixed point implies that small shocks of the system 
have no effects on its dynamical behavior, while large enough shocks may 
lead to another attractor. This requires the coexistence of the fixed point with 
a different attracting set, and may cause hysteresis phenomena. Indeed, in 
such a case, if a parameter is varied so that a stable focus becomes unstable 
via a subcritical Neimark-Sacker bifurcation, i.e. a repelling curve shrinks 
and at the bifurcation merges with the fixed point, leaving a repelling focus, 
then the trajectories that start close to the fixed point reach the second attrac­
tor. In this case, a simple restoration of the previous value of the bifurcation 
parameter does not permit to move again the state of the system to the stable 
equilibrium, since the phase point is out of its basin. An example of this sit­
uation is the so called "crater bifurcation'' scenario (see [30]): Two invariant 
closed curves, one repelling and one attracting, appear surrounding the fixed 
point when it is still stable. As the parameters move, the attracting closed 
curve moves away from the fixed point whereas the repelling one, which 
play the role of separatrix between the basins of attraction, shrinks merging 
with the fixed point in a subcritical Neimark-Sacker bifurcation. After such 
a bifurcation, the trajectories, previously converging to the fixed point, are 
converging to the attracting closed curve (which is quite far from the fixed 
point). The phase portrait so obtained (unstable focus and attracting closed 
curve) may suggest that a supercritical Neimark-Sacker bifurcation has oc-
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curred, but looking at the amplitude of the fluctuations we obtain the correct 
understanding of the bifurcation sequence giving rise to it. 

When a Neimark-Sacker bifurcation of subcritical type occurs, it is also 
interesting to study the mechanism which gives rise to the appearance of the 
repelling closed curve, or to the two closed curves in the case of a crater 
bifurcation. Such occurrence may be related to the appearance of a pair of 
cycles (a saddle cycle and a repelling one) on the boundary of the basin of 
attraction of the fixed point. The heteroclinic connection of these cycles, 
formed by the stable set of the saddle cycle which comes from the peri­
odic repelling points, constitutes a repelling closed curve. An example of 
this situation is given in [8]. Sometimes, for example when a crater bifur­
cation occurs, more complex situations are possible: We shall see that, as 
in the supercritical case, homoclinic tangencies and homoclinic tangles of 
saddles play an important role in the mechanism associated with the appear­
ance/disappearance of closed invariant curves. 

In continuous dynamical systems one of the mechanism associated with 
the appearance and disappearance of closed invariant curves involves a sad­
dle connection: A branch of the stable set of a saddle point (or cycle) merges 
with a branch of the unstable one (of the same saddle or a different one), 
giving rise to an invariant closed curve. 

When the involved saddle is a fixed point, the saddle connection can be 
due to the merging of one branch of the stable set and one of the unstable 
set, as in Fig. 10a: We shall call such a situation homoclinic loop. Otherwise, 
if both the branches of the stable and unstable sets are involved in the sad­
dle connection we obtain an eight-shaped structure that we shall call double 
homoclinic loop (see Fig. 10b). 

Homoclinic loops and double homoclinic loops can also involve a saddle 
cycle of period k, being related to the map T^, but in this case we can also 
obtain an heteroclinic loop: Indeed, the map T^ exhibits k saddles points 
and a branch of the stable set of a saddle may merge with a branch of another 
periodic point of the saddle cycle. Stated in other words, if 5^, i = I,..., k, 
are the periodic points of the saddle cycle and ai^i U a2,i (^i,iU 0J2,i) are the 
unstable (stable) sets of Si, then a heteroclinic loop is given by the merging, 
for example, of the unstable branch ai^i of Si with the stable branch cuij of 
a different periodic point Sj. Then each periodic point of the saddle cycle is 
connected with another one, and an invariant closed curve is so created that 
connects the periodic points of the saddle cycle. In Fig. 10c an heteroclinic 
loop is shown, related to a pair of saddles (or a saddle cycle of period 2). 
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All these loops correspond to structurally unstable situations and cause a 
qualitative change in the dynamic behavior of the dynamical system. Since 
they cannot be predicted by a local investigation, i.e., a study of the linear 
approximation of the map, we classify them as global bifurcations. Indeed, 
we study this kind of bifurcation looking at the asymptotic behavior of the 
stable and unstable sets of the saddle: If a bifurcation associated with a loop 
has occurred, before and after the bifurcation the involved branch of the un­
stable set converges to different attracting sets, and the points of the involved 
stable branch have a different a-limit set, as well. 

(c) 

(b) 

Figure 10: Saddle connections', (a) homoclinic loop, (b) double homoclinic 
loop, (c) heteroclinic loop. 

Although homoclinic and heteroclinic loops may also occur in discrete 
dynamical systems, in this case they are frequently replaced by homoclinic 
tangles, as described in Section 1.2. That is, a tangency between the unsta­
ble branch W^ {S) = Uaî ^ with the stable one Wf{S) = Ucjî ^ occurs, 
followed by transverse crossings of the two manifolds, followed by another 
tangency of the same manifolds, but on opposite sides. 

In the following we shall qualitatively describe some global bifurca­
tions that involve closed invariant curves and may occur in the business 
cycle models. We first consider global bifurcations causing the appear­
ance/disappearance of closed invariant curves, then the case in which at least 
a closed invariant curve coexists with some cycle and we shall see as these 
interact. All the global bifurcations here presented involve homoclinic con­
nections of the periodic points of a saddle cycle. 
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1.6 Appearance of an Invariant Closed Curve (Homoclinic Loop) 

In this section we show a mechanism which may cause the appearance of an 
invariant closed curve (or cycHcal closed invariant curves), already known in 
the literature, see e.g. [35], [32], [2]. 

In the simplest starting situation, an attracting set A coexists with a sad­
dle point 5* and a repelling fixed point P*: A qualitative draft of the global 
bifurcation is given in Fig.l 1, where we assume that the attracting set A is 
a focus fixed point as well as P*. Initially (see Fig.l la), the unstable set of 
the saddle converges to the attracting set A, and a branch of it, say ai , turns 
around the repelling focus P*. The a-limit set of the points of the branch ui 
of the stable set of the saddle is the fixed point P* and 002 comes from the 
boundary of the basin of attraction of A. After the bifurcation (Fig. 1 Ic), we 
have a bistability situation: The attracting set A coexists with an attracting 
closed curve Tg surrounding the repelling focus. The basins of attraction of 
A and Fg are separated by the stable set of the saddle point 5*. The attracting 
closed curve Fg is the cj-limit set of the points of the unstable branch ai and 
the stable branch a;i no longer exits from P*, coming from the boundary of 
the set of the feasible trajectories (or the basin boundary of a different attract­
ing set). The changes in the asymptotic behavior of the two branches suggest 
that the appearance of the curve Tg is due to a global bifurcation involving ui 
and ai . Indeed, we can conjecture that at the bifurcation the stable branch 
uji and the unstable branch ai merge, giving rise to a homoclinic loop, as 
shown in Fig.l lb, whose effect is to create a closed invariant curve. Obvi­
ously, this is a schematic representation of the mechanism involved, since 
we expect that, as usual with discrete maps, the single bifurcation value of 
the homoclinic loop is replaced by an interval of values associated with an 
homoclinic tangle between the two branches ai and cji, as shown in Fig.2: 
A tangency, followed by transverse crossing, that gives homoclinic points to 
the saddle 5*, followed by a second tangency between the same manifolds 
at which the transverse homoclinic points to S* disappear. 

The same mechanism may also give rise to a repelling closed curve F^, 
but in such a case we start from the coexistence of at least two attractors, 
say an attracting set A, an attracting fixed point P* and a saddle *?*, as in 
Fig. 12a, where the attracting set A is a fixed point. The stable set of the 
saddle separates the basins of attraction of A and P*. The branch a;i of 
W^ (5*) turns around P*. The branch ai of the unstable set W^ (5*) tends 
to P* whereas the cj-limit set of the points of the branch 0̂2 is the attracting 
set A. After the homoclinic loop, or homoclinic tangle, of the two branches 
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Figure 11: Qualitative representation of a mechanism leading to the appear­
ance of an attracting closed curve. 

(a) 

%.A 

(c) 

Figure 12: Qualitative representation of a mechanism leading to a repelling 
closed curve. 
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ai and cji, shown in Fig. 12b, a repelling closed curve Tu appears, bounding 
the basin of attraction of P* (see Fig. 12c). Such a curve is the a-limit set of 
the points of the branch ui of the set W^ (5*) and A is the cj-limit set of the 
points of the whole unstable set W^ (5*). 

It is worth to observe that in the two cases considered above, the appear­
ance of a closed invariant curve is due to a mechanism associated with a ho-
moclinic loop, or tangle, and if the fixed points surrounded by the homoclinic 
loop is repelling (resp. attracting) then the closed curve which appears is at­
tracting (resp. repelling). The case associated with the attracting fixed point 
P* is also interesting because it may explain the appearance of the repelling 
closed curve involved in the Neimark-Sacker bifurcation of subcritical type. 

Clearly the bifurcations described above may involve saddles and attract­
ing or repelling cycles of period k{k > 1) instead of fixed points: In such a 
case the mechanisms previously described occur for the map T^ and lead to 
k cyclical invariant closed curves, repelling or attracting, for the map T. 

1.7 Appearance of Two Invariant Closed Curves (Heteroclinic 
Loop) 

In this section we describe the mechanism that may be associated with the 
appearance/disappearance of two disjoint invariant closed curves, one at­
tracting and one repelling. This mechanism has been investigated also in 
[7] and [2], where it was associated with a Neimark-Sacker bifurcation of 
subcritical type. 

It is know that when the map T depends on two parameters, two in­
variant curves can coexist if a bifurcation of codimension 2 occurs, called 
Chenciner bifurcation or generalized Hopf bifurcations see [32] for math­
ematical details, and [22] for an application in economics. When such a 
bifurcation occurs, in the parameter space a curve exists crossing which an 
attracting closed curve, F^, and a repelling one, F̂ ,̂ appear very close one to 
each other. The way in which they appear suggests a "saddle-node" bifurca­
tion for closed invariant curves, but it is well known that such a bifurcation, 
although usual in continuous flows, is an exceptional case in discrete time. 
Here we shall present a sequence of global bifurcations which give rise to 
Ts and F^ and involves two cycles, one of which is a saddle. We shall qual­
itatively describe this sequence when a saddle cycle and a focus cycle exist, 
since this is the case effectively observed in our study, and we shall conclude 
with a conjecture about the situation in which the focus cycle is replaced by 
a node cycle. 
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As in the previous section, we start from a situation, shown in Fig. 13a, in 
which only an attracting set A exists (a stable focus in Fig. 13a). Moreover, 
we assume that a pair of cycles of period k, a saddle S and a repelling focus 
C, exist: The emergence of these two cycles can be due to a standard saddle-
node bifurcation, and then the node cycle turns into a focus. The stable 

Figure 13: Qualitative representation of a sequence of global bifurcations 
leading to the appearance of two closed invariant curves, one attracting and 
one repelling. 

set W^ (S) of the saddle cycle is such that the outer branch a;2 = IJ iU2,i 

comes from outside (the boundary of the set of feasible trajectories or from 
the basin boundary of coexisting attracting sets) whereas the a-limit set of 

k 
the points of the iimer one cui = [jooi,i is the repelling focus C. The 

i=l 
k 

unstable set W^ (5) = | J (ai,^ U a2^i) reaches the attracting set A: Stated 
2 = 1 
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in other words, A is the cj-Umit set of the points of the two branches ai^i and 
k 

a2^i ,i = 1,..., fc. As the parameters are moved, the branches cc;2 = U ^2,i 

k 

and a;2 = U 0:2,2 are closer and closer and at the bifurcation they merge 

giving rise to a heteroclinic loop (see Fig. 13b). More precisely, each stable 
branch uj2^i of a periodic point of the saddle merges with the unstable branch 
a2,i of a different periodic point of the same saddle cycle, giving rise to 
a closed connection among the periodic points of S. However, as already 
remarked, this transition may occur via a homoclinic tangle of W2 (̂S') and 
VF^(5), which includes a tangency between the two manifolds, followed 
by transverse crossings, and a tangency again of W2 {S) and VF^(S'), as 
qualitatively shown in Fig.3. 

After the bifurcation, originated by this structurally unstable situation, an 
attracting closed curve Ts exists as well as a saddle-focus connection made 
up by the stable set W^ (5), surrounded by Ts (see Fig. 13c). That a global 
bifurcation really occurred is proved by the changes in the asymptotic behav­
iors of the to branches involved in the heteroclinic loop, as it can be seen in 
the qualitative picture: After the bifurcation the stable set of the saddle con­
stitutes a closed invariant curve (a repelling saddle-focus connection), which 
did not exist before the bifurcation, while the involved unstable branch of the 
saddle tends to A before the bifurcations and tends to the attracting closed 
curve Ts after. Thus two invariant curves exists after the bifurcation: An 
attracting one Ts and an unstable saddle-focus connection, and a multistabil-
ity situation between the attracting set A and the closed curve Ts is created. 
Moreover, note that the unstable saddle-focus connection made up by the 
stable set of 5, and connecting the periodic points of S and C, bounds the 
basin of attraction of A, and separates the two basins of attraction of A and 

Such a bifurcation of the outer branches is often followed by a similar 
bifurcation of the inner ones. In fact, also the inner branches uoi of the stable 
set and ai of the unstable one approach each other (as some parameters 
are changed). At a new bifurcation, each stable branch ui^i of a periodic 
point of 5 merges with the unstable branch a i j of a different periodic point 
of the same saddle cycle, giving rise to a closed connection between the 
periodic points of S and the periodic points of the cycle C, shown in Fig. 13d. 
The effect of this second heteroclinic loop, or more often homoclinic tangle, 
are shown in Fig.l3e: A repelling closed curve Tu appears, replacing the 
saddle-focus connection (and replacing it in the role of separatrix between 
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the basins of attraction of A and Tg). Once more, the occurrence of this 
global bifurcation can be checked observing the behavior of the branches ai 
and oji involved in it. 

Summarizing, we have seen that the coexistence of two closed invariant 
curves, one attracting and one repelling, in discrete maps can be achieved 
by a double mechanism: Starting from a repelling cycle and a saddle cycle, 
a first saddle connection (or tangle) causes the appearance of the attracting 
one associated with an (unstable) heteroclinic connection saddle - repelling 
cycle that plays the role of separatrix of basins, which is then replaced by 
the second closed curve, repelling, whose appearance is associated with a 
second saddle connection (or tangle). 

The same mechanism can be observed starting with an attracting fc—cycle 
(bom together with a saddle), instead of a repelling one, i.e., a situation of 
bistability due to the coexistence of the attracting set A and a fc—cycle C. 
In such a case the sequence of bifurcations takes place in a "reversed" way: 
First the appearance of a repelling closed curve ^̂ ^ associated with a saddle-
attracting cycle connection and then the appearance of an attracting closed 
curve, replacing the heteroclinic connection. We use the qualitative figure 
14 to illustrate such a sequence. At the beginning, the attracting set A (a 
stable focus in Fig. 14a) coexists with an attracting focus cycle C of period 
k, born as node cycle via saddle-node bifurcation together with a saddle cy-

k 

cle S of the same period. The stable set W^ {S) = |J {cui^i U iU2,i) of the 
2 = 1 

saddle cycle separates the basins of attraction of the two attracting sets, A 
k 

and the cycle C. The unstable set W^ {S) = [j {ai^i U 0̂ 2,2) reaches the 
2 = 1 

attracting sets: More precisely, the outer branches 0:2,2 converge to the cycle 
C, whereas A is the cj-limit set of the points of the inner branches ai^i. Dif­
ferently from the case previously analyzed, as some parameters are changed 

k k 

first the inner branches a;i = IJ cui^i and ai = |J al,^ approach each other, 
2 = 1 ' 2 = 1 

merging at the bifurcation so giving rise to a heteroclinic loop, (see Fig. 14b), 
or heteroclinic tangle. This bifurcation gives rise to a repelling closed curve 
Tu (see Fig. 14c) which is the a-limit set of the points of the branches oji^i of 
the stable set of the saddle S. Also the asymptotic behavior of the branches 
ai^i is changed: Indeed with the branches ^2,̂  they give rise to a heteroclinic 
connection, reaching the periodic points of the attracting cycle C. The effect 
of this global bifurcation is a change in the basin of attraction of A: After the 
bifurcation it is bounded by the closed repelling curve Tu, so that it has been 
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significantly reduced. Moreover another invariant closed curve exists, made 
up by the unstable set of the saddle 5, which connects the points of the two 
fc—cycles. 

Figure 14: Qualitative representation of a sequence of global bifurcations 
leading to the appearance of two repelling closed curves, one repelling and 
one attracting. 

Stronger effects on the dynamics are obtained after a second heteroclinic 
loop, made up by the merging of the outer branches, shown in Fig.l4d. In­
deed, after such a global bifurcation we obtain the coexistence of three at­
tracting sets: The focus cycle C, the set A and an attracting closed curve 
Ts, whose appearance is associated with the heteroclinic loop, or tangle (see 
Fig.l4e). 

The repelling closed curve Tu bounds the basin of attraction of A; those 
of Ts and C are separated by the stable set of the saddle cycle S. The 
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branches of the unstable set have as cj-limit set the closed curve Tg on one 
side, and the attracting cycle C on the other side. 

We remark again that if the cycle involved in the global bifurcation to­
gether with the saddle is repelling (attracting) then the closed curve appear­
ing after the first step is attracting (repelling), together with a repelling (at­
tracting) saddle-connection. The second step involves the saddle-connection, 
after which two invariant closed curves still exist: We simply observe a 
change in their topological structure. 

The global bifurcations arising when cycles and invariant closed curves 
coexist will be the topic of the next sections. Before that, let us observe that 
if the repelling (or attracting) focus, considered in our examples, is replaced 
by a repelling (or attracting) node, then the same sequence of bifurcations 
can occur and the two curves appear more close to each other. In Fig. 15 a 

Figure 15: Qualitative representation of a mechanism leading to two invari­
ant closed curves associated either with a repelling node cycle (a,b,c) or an 
attracting node cycle (d,e,f). 
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qualitative draft is given: Fig.l5a-b-c refer to the repelling cycle whereas 
Fig.l5d-e-f to the attracting one. 

Moreover, if the node cycle is of very high period, then the saddle-node 
connection appearing at the first step looks like an invariant closed curve: In 
this case, the phase space recall in its shape that associated with a "saddle-
node" bifurcation of invariant closed curves. It is for this reason that we 
propose this mechanism as a generic sequence of global bifurcations giving 
rise to two coexisting closed curves. More theoretical studies need to con­
firm such a conjecture. 

1.8 Coexistence of Curves and Cycles and Their Interactions 
(Heteroclinic Loop) 

In this section we show a mechanism that causes the transition from an at­
tracting closed invariant curve, say Fa, with a pair of cycles of period k out­
side it, a saddle S and an attracting one, C, inside a wider attracting closed 
invariant curve, say F^. This transition takes place via the occurrence of 
two heteroclinic loops of the saddle S, first with the merging of the unstable 
branches Wf^(5) = Uai^i and the stable ones Wi{S) = Ucui^i and then via 
the merging of the unstable branches W2^{S) = Ua2,2 and the stable ones 
WiiS) = Uĉ 2,i. 

Similar bifurcation sequences have been observed in [4] and [5], asso­
ciated with a two-dimensional map having a fixed point which may lose 
stability via a supercritical Neimark-Sacker bifurcation and a supercritical 
pitchfork or flip bifurcation. Examples in economic dynamic modelling can 
be found, for instance, among Kaldorian discrete-time models (see [11], [6]). 
Further examples are given in several chapters of this book. 

Let us consider the situation described in Fig. 16. In Fig. 16a we have an 
attracting closed invariant curve Ta (which may also follow from the situa­
tion described in Fig. 11-13), and a pair of cycles that have been created via 
a saddle-node bifurcation outside Fa- Such external cycles do not form an 
heteroclinic connection, whereas the stable set of the saddle S bounds the 
basin of attraction of the related attracting fixed points Ci of the map T^. 
The unstable branches ai^i of Si tend to the attracting curve Fa, while the 
unstable branches a2,i of Si tend to the attracting cycle. 

At the bifurcation (Fig. 16b) we may have that the closed invariant curve 
Fa merges with the unstable branches W^ {S) = U^i^i and with the stable 
ones Wi{S) — Ua;î ^ as well, in a heteroclinic loop, or tangle, of the saddle 
5, causing the disappearance of the attracting closed invariant curve F^, and 
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leaving another closed invariant curve, see Fig. 16c, which is now the hetero-
clinic connection involving the saddle S and the related attracting cycle C. 
After the bifurcation of the heteroclinic loop a closed curve still exists, but 
differently from Ta it includes the two cycles on it (Fig. 16c). 

Figure 16: Qualitative representation of a mechanism causing the transition 
from an attracting closed invariant curve into a wider one. 

Starting from this situation, a second heteroclinic loop (or tangle) may 
be formed. The heteroclinic connection turns into a heteroclinic loop in 
which the unstable branches W2 {S) — Ua2,i merge with the stable ones 
^2^(5) = Ua;2,2 (see Fig.l6d). After the bifurcation a new closed attracting 
curve exists, say F^, and the two cycles are both inside F^ (Fig.l6e). The 
stable set of the saddle S separates the basins of attraction of the k attract­
ing fixed points d of the map T^. The unstable branches Uai^i tend to the 
attracting cycle while the unstable branches \Ja2^i tend to F5. 
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As mentioned before, in the case of discrete dynamical systems, the dy­
namic behaviors more frequently observed is such that the heteroclinic loop 
of Figs.l6b-d are replaced by homoclinic tangles. That is, a tangency occurs 
between the two manifolds involved in the bifurcation, followed by trans­
verse intersections and a tangency again on the opposite side, after which 
all the homoclinic points of the saddle 5, existing during the tangle, are de­
stroyed (several examples are shown in [4] and [5]). 

It is worth noticing that all the unstable periodic points associated with 
the first homoclinic tangle, due to Wf̂  (5) D Wf {S) i=- 0, are in the region 
interior to the set of periodic points of the saddle S, whereas in the strange 
repellor associated with the second homoclinic tangle, in which W2 [S) fl 
W2 [S) ^ 0, all the unstable cycles are "outside" the saddle cycle S. The 
existence of a strange repellor has noticeable consequences with regard to the 
trajectories starting on the area occupied by it, since they are characterized 
by a long chaotic transient. 

Notice also that before the first heteroclinic loop (tangle) of Fig. 16 we 
have two distinct attracting sets: Ta and the stable fc—cycle outside it; after 
the second one of Fig. 16, we have again two distinct attractors: F^, which is 
wider than FQ, and the fc—cycle inside it, while between the two heteroclinic 
loops only one attractor may survive, that is the fc-cycle. 

It is plain that this process may be repeated many times. In fact, by a 
saddle-node bifurcation a new pair of cycles may appear outside F ,̂, so that 
we are again in the situation of Fig. 16a, and the sequence of bifurcations 
described in Fig. 16 may repeat. 

We finally remark that the sequence of bifurcations here described, that 
cause the transition of a pair of cycles from outside to inside a closed invari­
ant curve, may occur through different mechanisms when the map is nonin-
vertible. In fact, in noninvertible maps the invariant curve may intersect the 
critical set LC_i, and when this occurs the periodic points of a cycle may be 
part inside and part outside the closed invariant curve (see [36], [17]). 

1.9 From an Invariant Closed Curve to Two Closed Curves 
(Double Homoclinic Loop) 

The last case we consider in this chapter is an example of double homoclinic 
loop that involves a repelling closed curve F̂ ^ and a saddle point S. Two at­
tracting sets, Ai,i = 1,2, are also coexisting, or cyclical ones. The repelling 
closed invariant curve F̂ ^ surrounds the two attracting sets Ai and the saddle 
S. The stable set of 5,1^*^(5'), formed by the union of the preimages of any 
rank of the local stable set, turns around infinitely many times approaching 
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the repelling curve Tu, as qualitatively shown in Fig. 17a. W^{S) consti­
tutes the boundary that separates the basins of Ai and A2. As the parameters 
are varied along the bifurcation path, the repelling closed invariant curve 
r ^ shrinks in the proximity of the saddle S, and consequently the stable 
and unstable sets of the saddle approach each other, until Tu disappears or, 
more precisely, becomes a chaotic repellor at the homoclinic tangency (see 
Fig. 17b) at which the unstable set of 5 , W^{S), has a contact with the sta-

Figure 17: Qualitative representation of a mechanism causing the transition 
from an invariant closed curve to two closed curves. 

ble one. This homoclinic tangency is followed by a transverse intersections 
of the two manifolds, W^ {S) and W^{S), and a dynamic scenario like the 
one shown in Fig. 17c is obtained, which is followed by another homoclinic 
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tangency (see Fig.lTd) leading to the disappearance of all the homoclinic 
orbits of S and of the chaotic repellor. After this second tangency, W^{S) 
is completely outside of the stable set, so that the stable and unstable sets 
are again disjoint, W^{S) n W^{S) = 0, and the preimages of the local 
stable manifolds reach two disjoint closed invariant curves which have been 
created around the two attracting sets Ai^ see Fig. 17e. 
If the map is symmetric with respect to the saddle S then the homoclinic 
tangencies of the manifolds occur at the same time (an example of business 
cycle model leading to such a bifurcation can be found in Chapter 8). In the 
case of a map without symmetry properties, we still may have a transition 
from the situation of Fig. 17(a) to that of Fig. 17(e), but the two homoclinic 
loops may occur separately, that is, first the manifolds W^^ (S) and Wf {S) 
are involved and then W^^ (5) and W^ (S), or vice-versa (an example of 
business cycle model leading to such a bifurcation can be seen in Chapter 
11). 
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