
9 Expectations and the Multiplier-Accelerator 
Model 

Marji Lines and Frank Westerhoff 

9.1 Introduction 

In this paper we investigate how a simple expectations mechanism modi
fies the basic dynamical structure of the multiplier-accelerator model due to 
Samuelson (1939). Consumption depends on the expected value of present 
income rather than lagged income. National income is determined as a non
linear mix of extrapolative and reverting expectations formation rules (pro
totypical predictors used in recent literature on financial markets). The total 
level of economic activity depends endogenously on the proportion of agents 
using the predictors. 

The very simplicity of Samuelson's descriptive macroeconomic model 
makes it an excellent candidate for studying the effects of introducing expec
tations without changing the emphasis of the formalization. That is, agents' 
expectations are not part of an optimization problem and the resulting frame
work remains in the class of descriptive models. (For bibliographical refer
ences of past and recent extensions to Samuelson's model see Westerhoff 
(2005) and the bibliographies in other chapters of this volume.) 

The expectations hypotheses follow in the style of Kaldor. Some desta
bilizing force exists for values near the equilibrium but the economy neither 
explodes nor contracts indefinitely due to a global stabilizing mechanism 
that is activated when the economy deviates too much from its equilibrium. 
These interacting forces permit a greater variety of attracting sets including 
point equilibria above and below the (unique) Samuelsonian equilibrium and 
closed curves on which lie both quasiperiodic and periodic cycles. More
over, under realistic values for the multiplier and coefficient of acceleration, 
a larger area of the parameter space is characterized by stable limit sets and 
much of that is dominated by solutions with persistent fluctuations. 



256 Marji Lines and Frank Westerhoff 

The remainder of the paper is organized as follows. Section 2 reconsiders 
Samuelson's business cycle model. In section 3, we discuss the hypothe
ses introduced to describe expectations formation and aggregation rules. In 
section 4 we study the properties of the model using the local linear approx
imation. In section 5 we use analysis and numerical simulations to study the 
global properties of the model. In section 6 conclusions are offered. 

9.2 The Multiplier and the Accelerator 

Samuelson's seminal model incorporates the Keynesian multiplier, a multi
plicative factor that relates expenditures to national income and the accel
erator principle whereby induced investment is proportional to increases in 
consumption. An increase in investment therefore leads to an increase in 
national income and consumption (via the multiplier effect) which in turn 
raises investment (via the accelerator process). This feedback mechanism 
repeats itself and may generate an oscillatory behavior of output. It may also 
lead to explosive oscillation, monotonic convergence to an equilibrium point 
or monotonic divergence, depending on the values of the marginal propen
sity to consume and the acceleration coefficient (See Gandolfo 1996 for a 
complete treatment of the dynamics over parameter space). 

The assumptions are well-known. Consumption in period t depends on 
national income in period t — 1 

Ct = bYt-i 0 < 6 < 1 (1) 

where b is the propensity to consume out of previous period income. Invest
ment is partly autonomous and independent of the business cycle, denoted 
la, and partly induced, proportional to changes in consumption with accel
eration coefficient, k: 

It = Ia + k{Ct - Ct-i) fc > 0. (2) 

The equilibrium condition for a closed economy is 

Yt = Ct + It^ (3) 

Combining (1), (2) and (3), we obtain a second-order linear difference 
equation, in the income variable: 

y, = 4 + 6(1 + k)Yt-i - bkYt-2- (4) 
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That is, current national income depends on autonomous investment and on 
the output of the previous two periods. The fixed point of (4), the long-run 
equilibrium output, is determined as 

with 1/(1 — b) the multiplier. It follows from (1) and (2) that the other 
equilibrium values are C — bY and I = Ia.\X can be shown that stability of 
the fixed point requires 

6 < i . (6) 

It can also be shown that no improper oscillations occur and that the flutter 
boundary, between monotonic and oscillatory solutions, is 6 = 4fc/(l -h 
fc)^. With only two parameters the dynamics over parameter space are easily 
determined. Damped oscillations occur only in the area with b < 1/k and 
b < 4fc/(l H- fc)^. In that case temporary business cycles arise due to the 
interplay of the multiplier and the accelerator, increased investment increases 
output which, in turn, induces increased investment. 

A major criticism of linear business cycle theory is that changes in eco
nomic activity either die out or explode (persistent cycles only occur for a 
nongeneric boundary case). In reaction to this deficiency the nonlinear the
ory of business cycle has developed. In particular, in the seminal work of 
Hicks (1950) the evolution of an otherwise explosive output path was lim
ited by proposing upper and lower bounds for investment, so-called ceilings 
and floors. These simple frameworks of Samuelson and Hicks are still used 
as workhorses to study new additional elements that may stimulate business 
cycles (see, besides the current monograph, Hommes 1995 and Puu, et al. 
2004). 

9.3 Expectations 

As argued by Simon (1955), economic agents are boundedly rational in the 
sense that they lack knowledge and computational power to derive fully opti
mal actions. Instead, they tend to use simple heuristics which have proven to 
be useful in the past (Kahneman, Slovic and Tversky 1986). Survey studies 
reveal that agents typically use a mix of extrapolative and reverting expecta
tion formation rules to forecast economic variables (Ito 1990, Takagi 1991). 
Similar results are observed in asset pricing experiments. For instance. Smith 
(1991) and Sonnemans et al. (2004) report that financial market participants 



258 Marji Lines and Frank Westerhoff 

typically extrapolate past price trends or expect a reversion of the price to
wards its long-run equilibrium value. Indeed, the dynamics of group expec
tations have successfully been modeled for financial markets. Contributions 
by Day and Huang (1990), Kirman (1993), de Grauwe et al. (1993), Brock 
and Hommes (1998) or Lux and Marchesi (2000) demonstrate that interac
tions between heterogeneous agents who rely on heuristic forecasting rules 
may cause complex financial market dynamics, as observed in actual mar
kets. 

Our goal is to investigate the importance of expectations for the variabil
ity of output. Our main modification of Samuleson's model is that the agents' 
consumption depends on their expected current income (and not on their 
past realized income). Note that Flieth and Foster (2002) and Hohnisch et 
al. (2005) model socioeconomic interactions between heterogeneous agents 
to explain the evolution of business confidence indicators. Both papers are 
able to replicate typical patterns in the German business-climate index (the 
so-called Ifo index), yet refrain from establishing a link between expecta
tions and economic activity. We believe, however, that mass psychology, 
expressed via expectations and visible in business confidence indicators, is a 
major factor that may cause swings in national income. For example, new era 
thinking may lead to optimistic self-fulfilling prophecies (e.g. the New Econ
omy hype) while general pessimism may cause economic slumps (Shiller 
2000). 

Then, with respect to Samuelson's hypothesis that consumption depends 
on last period's income (1), we assume that consumption depends on the 
expected value of current income, which is based on information available 
last period: 

Ct = bEt-i[Yt] (7) 

The aggregate expectation Et-i[Yt] is formed as a weighted average of ex-
trapolative (denoted 1) and reverting (denoted 2) expectations: 

Et-i[Yt] = wtEl,[Yt] + (1 - wt)El,[Yt] 0<w<l. (8) 

Expectations are formed with reference to a "long-run" equilibrium which 
is taken to be the fixed point of Samuelson's linear model, denoted in what 
follows ?is y = la/{1 — b). In the extrapolative expectation, or trend, for
mation rule, agents either optimistically believe in a boom or pessimistically 
expect a downturn. Such expectations are formalized as 

El,[Yt] = Yt-i + Mi(yt-i -y) /̂ i > 0. (9) 
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If output is above (below) its long-run equilibrium value, y, people think 
that the economy is in a prosperous (depressed) state and thus predict that 
national income will remain high (low) (a similar assumption has been ap
plied by Day and Huang 1990). 

Equilibrium-reverting expectations are formed as 

EliiYt] = Yt-i + ii2{y - Yt-i) 0 < /X2 < 1 (10) 

where /i2 captures the agents' expected adjustment speed of the output to
wards its long-run equilibrium value. 

The more the economy deviates from y, the less weight the agents put 
on extrapolative expectations. Agents believe that extreme economic condi
tions are not sustainable. Formally, the relative impact of the extrapolative 
rule depends on the deviation of income from equilibrium at the time that 
expectations are formed: 

Wt = ; -^ 7 > 0 (11) 

with 7 as a scale factor. The percentage gap is typically less than one which, 
when squared, results in a small number. Setting 7 > 1 increases the weight 
factor, resulting in a more realistic distribution between extrapolative and 
equilibrium-reverting expectations. (For example, if 7 = 10 and the per
centage gap is 10%, the proportion of agents using E^ is 50%; the propor
tion is 99% for 7 = 1.) Extrapolative and reverting expectations are linear 
functions of the previous level of national income, but the expectation oper
ator, combining the heterogeneous expectations through a nonlinear weight
ing function, is not. In Figure 1 wt and 1 — wt, the weights given to each 
type of expectation are plotted against national income (7 = 10, 6 = 0.8, 
y = 5000). Close to equilibrium the trend-following expectation dominates 
(and dXYt = y, Wt = 1), acting as a destabilizing force for any small de
viation from the long-run equilibrium. Expectations are equally distributed 
(with 7 = 10) at a 10% gap between actual and long-run values of income. 
At further distances from y the reverting expectation dominates, acting as a 
global stabilizing force. 

Other weighting functions and other basic types of expectation forma
tion rules can be found in, e.g.. Brock and Hommes (1997, 1998). The for
mer paper explores the expectation formation of heterogeneous producers 
in cobweb markets while the latter paper investigates the selection of fore
casting rules among financial market participants. However, the essential 
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idea is the same. For similar states of the current economy (market) agents 
have differing expectations about the future state, these expectations feed
back through the economy (market), but the aggregate expected value is not 
necessarily equal to the (deterministic) value of that future state. It is also 
typically assumed that extremes will be considered unsustainable, providing 
a global mechanism for stability. This new approach to modeling how agents 
incorporate future uncertainty in their decision-making process breaks with 
both the rational expectations hypothesis and with earlier homogeneous, ag
gregate expectation hypotheses that R.E. criticized. Of course, assumptions 
about agent's expectations must be coherent with the particular context, but 
we argue that for business cycle theory our approach may provide a reason
able alternative. 
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Figure 1: Weights against national income: w extrapolative, 1 — w reverting. 

Substituting (2) and (7) into (3) we derive the expectations version of (4) 

as 
Yt = Ia + b{l + k)Et-i[Yt] - bkEt-2[Yt-i] (12) 

Then using (8)-(l 1) we arrive at a second-order nonlinear difference equation 
Yt = f{Yt-i,Yt-2)' For the analysis we introduce an auxiliary variable 
Zt = Yt-i, deriving a first-order system in {Yt, Zt) (see the Appendix for 
full system and Jacobian) 

Yt =Ia + b{l + k)Et-i[Yt]-bkEt-2[Zt] 
Zt =Yt-i 

(13) 
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with Jacobian matrix 

/ UC\ I uxdEt-ilYt] ^j dEt-2lZt] \ 

9.4 Local Dynamics 

In this section we consider fixed points and the conditions for which local 
stability is lost. It can be shown that the equilibrium value for Samuelson's 
multiplier-accelerator model is also an equilibrium for the modified model. 
At 3̂  the trend followers are predicting perfectly, wi = I and the Jacobian, 
calculated at that value, simplifies to: 

j^y^^^Kl + m^,,) -bkil + ,,)^ ^^^^ 

with trace trJ = 6(1 + fc)(l + /x̂ ) and determinant detj = 6fc(l + ^i) . 
We can use the stability conditions for a two-dimensional system to help 
understand how the equilibrium might lose its local stability: 

1 + tr J{y) + det J{y) > 0 (z) 
1 - tr J{y) + det J{y) > 0 {ii) 

1 - det J{y) > 0. (m) 

The first condition holds always and we should not expect to see flip 
bifurcations. The second condition and third conditions, which reduce to, 
respectively: 

b<-^— and b<—-^ (15) 

are not necessarily satisfied, leaving open the possibility of both fold and 
Neimark-Sacker bifurcations. The parameter assumptions are simply that 
fjii, k > 0 and the binding inequality is condition {ii) if k < 1, condition 
{Hi) if fc > 1. 

In Samuelson's linear model the stability conditions are satisfied always, 
except for the third which requires b < 1/k. In the linear case, of course, 
there is only one equilibrium set and it is a fixed point, so that when stability 
is lost the system itself is unstable. In the nonlinear case a fixed point may 
lose stability at the parameter value for which some other limit set becomes 
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an attractor or there may be co-existing attractors which are Hmit sets for 
different collections of initial conditions. In the case of the Neimark-Sacker 
bifurcation, when the third condition is broken, global stability may continue 
in the form of an attractor which is a sequence of points lying on a closed 
curve. If attracting (and we see below that they are), these sequences rep
resent endogenous fluctuations which are a generic feature of the dynamics 
(rather than the particular case of constant amplitude oscillations in Samuel-
son's model). 

If the accelerator coefficient is less than unity, the breaking of the second 
condition leads to a pitchfork bifurcation, that is, as y loses stability 2 new 
(stable) fixed points appear. These are determined by returning to the second 
order difference equation (12) which, setting Yt-i — Zt — Y becomes 

y = 3̂  + ^ ( y - 3 ^ ) ( « ) ( / x i + M2)-M2) (16) 

with equilibrium weight 

w = y2^^2^Y-yy' 

Expanding and simplifying (16) gives 

72(6(/i2-l) + l) 

These two fixed points are complex-valued for 6 < 1/(1 + /^i) and become 
real and equal in value to y at the critical value b •= 1/(1 + /i^) . For 
b > 1/(1 + fXi) there are two positive, real equilibria determined by (17), 
one larger and one smaller than y, respectively Yi,Y2, each attracting over 
a given basin, a situation of bi-stability. With these basics in mind we now 
turn to a study of the global dynamics using a combination of analysis and 
numerical simulations. 

9.5 Global Dynamics 

Consider first a comparison of the dynamics over the parameter space (fc, 6). 
In Figure 2, left, Samuelson's linear model is characterized by a single fixed 
point, stable to the left of the stability frontier b = 1/fc, unstable to the 
right. At the boundary crossing the fixed point is a focus, adjacent to the left 
are damped oscillations (in gray), adjacent to the right explosive fluctuations 
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(in black). The existence of any kind of persistent fluctuations is guaran
teed only for those combinations of parameter values that are on the stability 
frontier itself, that is for bk = 1. 

In Figure 2, right, we have the same parameter space for the expecta
tions version of the multiplier-accelerator with standard constellation fi^ = 
^^ = 0.5, la = 1000, 7 = 10, {Yo,Zo) = (4000,4000) and infinity set 
at 10^ ,̂ transients at 5000 with maximal period 24 and precision epsilon set 
at 0.01. This and all following plots were produced with the open-source 
software iDMC - Copyright Marji Lines and Alfredo Medio, available at 
www.dss.uniud.it/nonlinear. 

5 0 1 2 3 ^ k 

Figure 2: Parameter space (fc, h): left, linear model; right, with expectations. 

The black area again represents the lack of any attracting finite limit set, 
and the gray area on the left again represents stable fixed points. The lighter 
area in the middle section is characterized by quasi-periodic or high-order 
periodic fluctuations, in white, and cycles of the given periods in grays. For 
both the original and the expectation models higher values of the multiplier 
and the accelerator lead to instability. An economy with high demand result
ing from spending most of its income on consumption encourages entrepre
neurs to invest in order to keep up the supply of these goods and services. 
As a consequence the economy heats up. The acceleration coefficient is a re
action parameter, how strongly investment responds to changes in demand. 
It can also be interpreted as the capital-output ratio, how much new capital 
will be necessary to produce the increased output. When Samuelson was 
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modeling the interaction between the multipher analysis and the principle of 
acceleration in the late thirties the propensity to consume was much lower 
(and not only due to the Great Depression but also to spending habits), as was 
the capital-output ratio. Consumption out of income in the United States to
day has almost reached the upper bound of 6 = 1, creating growth not only 
in the US but in the economies that supply it with goods and services such 
as China and India. Of course there are other issues involved, but if these 
interactions are fundamental and their dynamics are well-approximated by 
the models, the sustainability of the current situation in the U.S. is doubtful. 

A noticeable difference in the model dynamics is that the area of attrac-
tors is much larger for the expectations version and that there is a significant 
area of attractors characterized by fluctuations (a pertinent issue for business 
cycle models). On the other hand, the area for which y is stable (below the 
second condition, the line b = 0.66, and to the left of the third condition, 
b = 0.66/kns) is smaller than that of Samuelson's model. In both models 
there is some trade-off between the accelerator coefficient and the propen
sity to consume out of income for maintaining stability, and high values are 
de-stabilizing for both. The extreme simplicity of the dynamics in the linear 
version (3^ is stable or unstable) is replaced by more challenging dynamics, 
but y (through its stable and unstable manifolds) remains crucial to their 
explanation. 

For b < 0.66 stability of 3̂  is lost through a Neimark-Sacker bifurcation. 
Fixing b a constant and increasing k so as to cross through the curve of 
the stability frontier at bns = 0,66/k, we have y changing from a stable 
focus to an unstable focus as, simultaneously, an invariant closed curve is 
created (denoted, generically, as T). As k is further increased the periodic or 
quasiperiodic limit sets on T continue to be attracting over a large interval 
until the stability frontier for F is reached, after which no attractors exist. 

For b e (0.66,1), stability of 3̂  is lost through a pitchfork bifurcation 
at the critical value bp = 0.66 which has been traced in Figure 2, right to 
separate the subspace characterized by stable fixed point 3̂  from that charac
terized by stable fixed points Yi, ̂ 2- The bifurcation scenario moving right 
from the upper sub-space is more relevant for economics as a typical range 
for the propensity to consume out of expected income is 6 G (0.75,1). For 
small k there are the two co-existing fixed points which are attractors, each 
with its own basin of attraction, B{Yi), B{Y2) (that is, initial conditions de
termine on which point the trajectory comes to rest). These lose stability 
as k is increased and a region of periodic or quasiperiodic attractors gives 
way to no attractors at all for larger values of the acceleration coefficient. 
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Using the standard constellation the (fc, b) combination at which Yi and 
Y2 lose stability due to a Neimark- Sacker bifurcation can be calculated as 
fc(1.5?> — 3 + f ) = 1. These critical values are represented in Figure 2, right, 
by the curve extending from (1,0.667) to (2,1). 

Let 6 = 0.8. Given the standard parameter values, local properties of the 
fixed points can be calculated. First, 3̂  is a saddle point and remains so for at 
least up to fc = 5, let Ai > 1 and A2 < 1. The two equilibria of the pitchfork 
bifurcation also exist and we have, increasing from k = 0: Yi,Y2 are stable 
nodes, then (near k = 0.3) they become stable foci. These fixed points lose 
stability through a Neimark-Sacker bifurcation at fc = 1/6, $ ^ 1.43. 
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Figure 3: Above, bifurcation diagram; below, Lyapunov exponents. 

Numerical simulations of the dynamics of the economy, with these pa
rameter values, are provided in Figure 3; the single parameter bifurcation 
diagram for k G (1,2.6), above; the Lyapunov exponents over the same 
interval, below. Both figures suggest that there are three basic types of long-
run dynamics and that for trajectories beginning at (4000, 4000) the changes 
occur at around fc = 1.26 and fc = 2.13. For small values of the acceleration 
coefficient the economy experiences bi-stability. The weight in the economy-
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wide expectation operator is not a function of k and, for the given parameter 
values, 75% expect the trend to continue while 25% expect reversion. The 
economy moves toward one of the two fixed points, far from the Samuel-
sonian equilibria, and switching between high and low equilibrium values 
increases with k. Over the next interval, approximately k e (1.26,2.13) the 
economy is characterized by persistent fluctuations over a range of values 
symmetrical around y. For some values the recurrent behavior seems cycli
cal (cycles of 10 are evident), but for most the motion is quasiperiodic or 
periodic of order greater than 24. The last type of behavior is found in the 
tentacles of the octopus, period-8 cycles that cover a wider span of national 
income than the invariant cycle that preceded it. The periodic cycle loses 
stability at around fc = 2.55 after which no attractor exists. 

There are 3 puzzles to explain in this bifurcation scenario: the increased 
switching between Yi and Y2; the attracting curve appearing before the criti
cal value; the period-8 cycle which does not seem to derive from frequency-
locking. 

The switching behavior of the economy occurs because of the pitchfork 
bifurcation and bi-stability that exists for k small. The switching between 
long-run behavior increases because as k changes the separatrix, the bound
ary separating basins of attraction, becomes increasingly entwined. This 
phenomena can be seen in Figure 4 which presents the basins of attraction 
for the fixed points in the state space Y e (4000,6000) under the standard 
constellation. 

Moving clockwise from upper-left k increases through 0.2 (Yi.Yz stable 
nodes), 0.9,1.1, 1.255 (Yi, Y2 stable foci). Recall that initial conditions used 
in Figure 2 are (4000, 4000), the lower-left hand comer of the basin plots. 
The other dynamical puzzles are not so clear. In fact, on the basis of local 
evidence and the single and double parameter bifurcation diagrams alone, 
we cannot explain the large curve F appearing at a value of k less than the 
critical value of the Neimark-Sacker bifurcation of Yi, Y2 and the origin of 
the period-8 cycle, lying as it does outside the bounds of the invariant circle. 
The global bifurcation scenarios that answer these questions are described 
by Agliari, Bischi and Gardini in Chapter 1, to which we refer the reader 
(see, also, the business cycle application by Agliari and Dieci in Chapter 8). 
We consider each of these puzzles in turn. 

From foci to invariant curve. An important point to note is that, although 
over the interval of interest the Samuelsonian fixed point has already lost 
local stability through a pitchfork bifurcation, the saddle point y is still a 
significant factor in the global dynamics through its stable and unstable man-
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ifolds. In fact, it is the stable manifold w^{y) (associated with A2) that plays 
the role of separatrix for the basins of attraction of the stable foci Yi^Yz. 
The unstable manifold w'^{y) (associated with Ai) has two branches, each 
exiting y and connecting to either Yi or Y2 until the basins become disjoint. 

Figure 4: Basins of attraction in state space as k increases. 

Another point is that when there are co-existing attractors and global 
changes in the dynamics, bifurcation diagrams calculated on the basis of 
a single initial condition cannot tell the whole story. In Figure 5 we use 
a series of simulations of the state space to help describe what is happen
ing over the interval k e (1.25,1.43), moving clockwise as k increases, 
k = 1.25,1.27,1.35,1.42. Again both axes are Y e (4000,6000), symmet
ric around y — 5000, and the initial conditions used in Figure 3 simulations 
are in the lower axes' intersection. In the upper-left figure the separatrix 
w^{y) separates the state space into basins of attraction for Yi^Yz. The 
convolutions of the stable manifold form a ring of entwined basins around 
the fixed points where, increasing fc, an attracting invariant closed curve ap-
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pears. At the creation of the attracting curve, call it T ,̂ a second curve, Tu, 
also appears which is repelling. Tu belongs to the area bounded by Fg. The 
latter forms the separatrix between collections of initial conditions with tra-
jectories tending to one or other of the stable foci and initial conditions with 
trajectories tending to the attracting F. As k is further increased the radius 
of Fs increases while that of F̂ ^ decreases and the basins ofYi,Y2 contract. 
Between upper and lower right the basins become disjoint through a homo-
clinic bifurcation. Finally, the subcritical Neimark-Sacker bifurcation for Yi, 
Y2 occurs for a value of k just beyond that in Figure 5, lower left, and the 
basins disappear altogether. 

Figure 5: Basins from upper-left, clockwise: k = 1.244,1.27,1.35,1.42. 

There are a number of global bifurcations involved in this interval. First, 
and most mysterious, is the creation of the attractor F5, which comes to 
co-exist with the stable foci, and the separatrix F^ defining its basin of at
traction. The likely sequence leading to the formation of F5 is that proposed 
in Chapter 1, Section 7 which we summarize as follows. In the vicinity of 
the tightly woven basins, where the stable manifold is coiled like yam on 
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a spindle, at a certain parameter value (in this case around k = 1.259) a 
saddle-node bifurcation leads to a saddle cycle of high period along with a 
node cycle of the same period. The periodic points of the node immediately 
become repelling foci. In quick succession, over a narrow interval of fc, we 
have the following changes. The periodic points are joined through a saddle 
connection of the outwards branches of stable manifolds of point i and un
stable manifolds of point j forming an unstable saddle-focus connection Tu 
surrounded by an attracting invariant curve Tg. Tu is destroyed as a second 
heteroclinic loop forms from the connection of the inward stable branches of 
point j and the inward unstable branches of point i and this unstable saddle-
focus connection becomes Tu, the separatrix in Figure 5. 

All initial conditions outside of Tu are attracted to the invariant curve and 
any economy beginning from these values (or after being disturbed to them) 
is destined to a recurrent fluctuation, even though there are three equilibria 
within the closed curve, two of which are stable. Only trajectories with initial 
conditions on the inside of T^, a small area of the state space, tend to Yi or 
Y2 with damped oscillations. Looking back at Figure 3 it can be observed 
that at this bifurcation the Lyapunov exponents separate, the largest at 0, 
representing motion on the invariant curve, the other negative, representing 
the attracting property of the curve. 
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Figure 6: Lyapunov exponents: left, k G (1.258,1.2595); right, k G 
(2.15,2.156). 

In Figure 6, left k G (1.258,1.2595), the exponents are calculated over 
500 iterations. There seems to be some evidence of chaotic transients, as we 
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would expect for the saddle connection, but these disappear before reaching 
5000 iterations (the time range used in Figure 2). 

The next change occurs between upper right and lower right, in which 
a homoclinic bifurcation of y gives rise to a double homoclinic loop and 
Tu breaks into two repelling curves forming the disjoint basin boundaries 
B{Yi), B{Y2)- In this bifurcation, over a narrow interval of parameter values 
a homoclinic tangency (in which w'^{y) comes to touch w^{y)) is followed 
by a transversal crossing of the manifolds and a second homoclinic tangency 
iw'^{y) is tangent on the opposite side of w^{y)). Recall that the stable 
manifold is the separatrix for the basins ofYi and Y2. The unstable mani
fold branches of w'^{y) are provided in Figure 7 for the standard parameter 
constellation and k = 1.289, left; k = 1.29, right. Between these values 
w'^{y) becomes tangent, then crosses, and becomes tangent again to w^{y). 
After the homoclinic bifurcation, trajectories with initial conditions close to 
y converge to Tg rather than Yi or Y2. That is, economies starting close to 
the Samuelsonian equilibrium move away and fluctuate around it. 

Figure 7: Unstable manifold of Y: left, k = 1.289; right, k = 1.29. 

Finally, the two loops of F̂ ^ shrink around Yi and Y2 as k is increased 
until, at fc = 1.429 (just beyond the value used in Figure 5, lower left), the 
fixed points lose stability through subcritical Neimark-Sacker bifiircations as 
the modulus of the complex, conjugate eigenvalues reaches one. From this 
value until just before fc = 2.13 all attractors lie on the increasing amplitude 
invariant curve, F^, to which all initial conditions are attracted. 

From invariant curve to period-8 cycle. The last type of periodic behavior 
becomes visible at around k = 2.13. We describe the scenario with reference 
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to Figure 8, where the basins of attraction are simulated as k increases, start
ing upper-left and moving clockwise: k = 2.128,2.13,2.15,2.17. The state 
space has been enlarged with respect to previous figures to y G (0,10000), 
as the invariant curve has blown up considerably. The initial conditions for 
Figure 2 are slightly southwest of center. A saddle-node bifurcation takes 
place between k = 2.128 and k = 2.13. In the upper-left there is still 
the single attracting invariant curve on which all trajectories eventually lie. 
After the bifurcation, upper-right, Tg is still attracting for all initial condi
tions within in it, but most others are attracted to a period-8 cycle which has 
appeared around the invariant circle. The basin pieces for the cycle B{C) 
expand, the basin B{Ts) shrinks until, by fc = 2.17, the invariant curve has 
disappeared and all further attractors are periodic. For the propensity to con
sume out of expected income at 6 = 0.8 the last attractor, a period-8 cycle, 
becomes unstable around k = 2.53. 

The invariant curve F^ is destroyed and the aperiodic fluctuations disap
pear through the heteroclinic loop sequence described earlier. Starting from 
coexistence in upper-right, the periodic points and associated saddle points 
are very near to each other and lie on the boundaries of the basin of attrac
tion for the focus cycle B{C). The branches of the stable manifolds of the 
saddle cycle serve as separatrix between B{C) and B{Ts). The outer branch 
of the unstable manifold of the saddle leads to the focus cycle, the inner 
branch leads to the invariant curve. As k is increased, the inner unstable 
branch of the saddle point i becomes tangential to the inner stable branch 
of nearby saddle point j , and this happens all around the cycle. This hete
roclinic tangency starts a tangle, followed by a transversal crossing of these 
branches and another heteroclinic tangency. Transversal crossings are usu
ally associated with chaotic repellers and long chaotic transients. A hint of 
this can be seen in Figure 3 as there is a slight rise in the Lyapunov charac
teristic exponent near the bifurcation interval. There are clearly chaotic tran
sients evident in Figure 6, right, which are calculated over 5000 iterations 
and k e (2.15,2.156). At the end of the tangle the branches are switched 
in position. The unstable branches of the saddle point i tend to the nearby 
stable foci (to the right and left, h and j) forming a heteroclinic saddle-focus 
connection that leaves no initial condition leading to F^. 

For 6 = 0.8 this is the end of the story. Had we fixed the propensity 
to consume at some other level, slightly above or below for example (refer 
again, to Figure 2, right), the sequence would have continued with another 
heteroclinic saddle-focus connection forming from the outer branches of the 
saddle points. This connection would be an invariant closed curve, envelop-
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ing and destroying the stable focus cycle. Still higher values of 6 would have 
avoided the period-8 cycle altogether and ended with the first invariant curve 
becoming unstable. 

k=2.17 k=2.15 

Figure 8: Basins from upper-left, clockwise: k = 2.128,2.13,2.15,2.17. 

9.6 Conclusions 

Samuelson's linear multiplier-accelerator model is a classic example of a 
business cycle model based on the combined effects of the multiplier and 
accelerator principles. The equations are simple and the linear dynamics are 
completely understood. It is interesting to see how these dynamics change 
under a simple alteration to the consumption hypothesis: expenditures are a 
function of expected income rather than realized last period income and there 
are two types of expectations (each a linear function of last period income). 
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The aggregate expected income is a nonlinear combination of extrapolative 
and reverting expectation rules. The equilibrium of Samuelson's model is 
also a fixed point of the extended model, but other limit sets exist. A com
parison of the dynamics of the linear multiplier-accelerator model and the 
nonlinear expectations-multiplier-accelerator model brings to light essential 
differences. 

As regards the equilibrium of Samuelson's model, the stability condi
tions on y are more restrictive in the nonlinear model. However, with non
linear expectations, local stability of a fixed point may be lost while global 
stability continues in the form of: convergence to either of 2, co-existing 
stable fixed points; a periodic or quasiperiodic sequence of points lying on a 
closed curve. 

In fact, over the parameter space {k,b) the nonlinear model has a much 
larger area characterized by attractors, under reasonable values for the extra 
parameters and persistent oscillations are a generic possibility in the non
linear model. This characteristic is of special importance given that the phe
nomenon under study is the business cycle. Moreover this was accomplished 
by allowing consumption to depend on expectations and expectations to be 
heterogeneous, that is, by creating a more realistic economic context. 

Appendix 

Substituting the expectations formation hypotheses (9) and (10), the expec
tations weight hypothesis (11) into the aggregate expectations operator (8) 
the complete system (13) is 

Yt - / a + 6(l + fc) 
l-^7^(^H^) 

(y,_i + /xi(y,_i-3^))+ 

+ 1 -

-bk 

+ 1 -
1+72 ( 

Zt =Yt-t-i 
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The Jacobian matrix calculated in either of the fixed points Ŷ , i = 1,2, is 

6(l + fc)$ -6fc$ 

(3;2 + ^2(f._3;)2)2 -^3;2+^2(y._y)2+ /^2 
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