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Preface 

The present volume can be seen as a rejoinder to the present editors' ''Oligo­
poly Dynamics - Tools and Models'', Springer-Verlag 2002. There is no doubt 
that, besides dynamic ohgopoly theory, business cycle theory has been the 
fastest growing field within modem nonlinear economic dynamics. 

The contributions are centred around the models of multiplier-accelerator 
type, emerging from Paul Samuelson's seminal work of 1939, as later devel­
oped into nonlinear formats by Hicks and Goodwin around 1950. 

These nonlinear models left many open ends, because the tools then 
available (or at least then known to economists) did not permit any more 
systematic analysis. The situation is now very different due to the huge ac­
cumulation of new methods in nonlinear dynamics. The present focus on 
these causal or recursive models also implies a deviation from current main 
stream real business cycle theory, based on "rational expectations", i.e., self 
fulfilling forecasts held by the economic agents. In view of modem dynam­
ics, in particular the possibility of mathematical chaos, the latter paradigm 
simply becomes untenable. 

Again this volume, like the aforementioned volume, is collaborative work, 
bringing together some of the environments where nonlinear economic stud­
ies are carried out, i.e., the Universities of Bielefeld (Germany), Cartagena 
(Spain), Siena (Italy), Udine (Italy), Urbino (Italy), and the Institute of Math­
ematics, National Academy of Sciences of Ukraine, and the authors are a 
mixture of economists and mathematicians in approximately equal propor­
tions. 

Also, again, the collaboration took place within the precincts of CERUM, 
the Centre for Regional Science at Umea University (Sweden), where a con­
ference was held 10-11 June 2005. The book is produced according to a 
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pre-organized plan fixed by the editors, and the authors were all particularly 
selected and invited. The final organisation of the book and the contents of 
the chapters were discussed during the conference. 

The editors are indebted to several individuals and organisations for help 
and support. Thanks first go to CERUM, and its director, Prof. Lars Westin, 
who, besides taking the financial responsibility for the conference, acted as 
moderator during the entire conference, and to the conference secretary, Ms. 
Susanne Sjoberg, who organised everything practical in the best imaginable 
way. 

The conference became financially possible due to generous grants from 
The Bank of Sweden Tercentenary Foundation, the Gosta Skoglund Founda­
tion, and joint support from the Umed City Council and Umed University 
Board. In addition thanks are due to the University of Bielefeld and the 
University ofUrbino, where some preparatory work was done. Further sev­
eral of the authors are gratefial for support of their own work from different 
sponsors, but acknowledgement of such will be given in the individual con­
tributions. 

Umea and Kiev, 30 November 2005 

Tonu Puu Iryna Sushko 
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Aims and Scope 
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1 Introduction 

The aim of the present volume is very simple: It is just to revive the type of 
business cycle modelling once current in economics in the wake of the semi­
nal work by Samuelson (1939), Hicks (1950), Goodwin (1949) and others. 
Their common feature was that they all resulted in causal dynamical models, 
with sometimes surprisingly complex outcomes in view of the simplicity of 
the stmcture of most of the models, whether cast as differential equations in 
continuous time, or as discrete time difference equations (maps as we would 
nowadays say), using a fixed delay structure. 

Nonlinearity was part of most of the models, and was, of course, responsi­
ble for the resulting complexity. It goes without saying that the mathematical 
tools available to economists those days did not allow for any systematic 
interpretation of the more complex results, so the analysis stayed at the level 
of numerical calculation of a few exemplifying orbits. Further, the computa­
tional means (slide rules and mechanical calculators for which even division 
was a true challenge) those days were far from our laptops today, so it would 
have been impossible to distinguish between transients and asymptotic or­
bits. 

Some systematic methods were in fact developing under the heading of 
perturbation methods, in electrical and mechanical engineering for very similar 
models, cf Duffmg (1918) and van der Pol (1927). See Stoker (1950) and 
Hayashi (1964) for contemporary state of the art accounts. But, these seem 
not to have been known to economists, at least they were never used. 

Today the prospects for dealing with these types of models are radically 
changed, but economists at large seem no longer to be interested in them. 
The focus has shifted to business cycle models based on the "rational expec­
tations" paradigm. 
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2 Rational Expectations and Intertemporal Equilibrium 

This seems to have first been introduced by Muth (1960), and later elabo­
rated by Lucas (1976), Sargent (1984), and others. The work is strongly con­
nected to econometric modelling of more or less sophistication, but, stripped 
to its bare bones, the message is simple: The agents in the models are as good 
as the economists constructing then, and hence know the models and their 
outcomes. As a result they are able to make, on average, correct, self-fulfill­
ing forecasts of the future. 

It would be impossible to understand this paradigm without its reference to 
general equilibrium economics, because a dynamical process with this self-
fulfilling characteristic is the same as an equilibrium state in a static 
intertemporal equilibrium model. 

Throughout the history of economics the equilibrium and the dynamic ap­
proaches were competitors. Most of the time the equilibrium outlook was 
the dominant. One could either explain the facts in terms of a causally recur­
sive model or in terms of an equilibrium balance of forces, where there was 
no internal tendency to move the system out of equilibrium. Obviously the 
latter outlook is the less demanding, because one does not need to discuss 
what happens when the system is out of equilibrium. 

This difference of outlooks obviously has a relation to the epistemological 
distinction between causal and teleological (or functional) explanation. In 
the first, things occur for certain reasons, in the latter to certain ends. As a 
matter of fact the MarshalHan theory for partial market equilibrium was once 
criticised on the grounds that price could not be determined at once by sup­
ply and demand. See Schumpeter (1954). Economics is not alone among the 
sciences to have used teleological explanations. In physics conservative 
mechanical systems, such as the Lagrangean or the Hamiltonian, can be rep­
resented as minimization of "action", and in biology it is very common to 
explain the function of organs in terms of the service they perform for the 
organism. 

The most grandiose equilibrium theory in economics ever conceived was 
of course the Walrasian general equilibrium theory for an arbitrary number 
of interdependent markets. See Walras (1874-1877). The original work con­
siders not only the existence, in terms of equal numbers of equations and 
variables, but also the stability of such an equilibrium (in terms of "taton-
nement" processes). 

However, both lines of thought needed further elaboration. A system of 
independent equations containing the same number of independent variables 
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does not necessarily have a solution, as the equations can be incompatible. 
The first rigorous attempt was made by Wald (1936), later further elaborated 
by Arrow and Debreu (1954) and Debreu (1959). Not only the existence, but 
also the uniqueness of the solution was considered, and such constraints on 
production technology and consumer preferences were specified as to guar­
antee existence and uniqueness. Though the achievement is intellectually 
most impressive, it must be said that it is also totally void of information 
content in this general form. 

The stability issue was meanwhile dealt with by Hicks (1939), who reached 
halfway, but gave a partly erroneous result, and finally solved by Samuelson 
(1947), who specified such conditions for the system that would guarantee 
local linear stability of the equilibrium. 

All this is relevant for us because general equilibrium theorists were not 
content with the temporary existence and uniqueness of general equilibrium 
for an arbitrary system of markets. They also introduced "future" markets 
and prices for goods traded in the future. In this way the evolution existed 
already in the intertemporal equilibrium point - provided, of course, that 
every agent had perfect foresight of the future. In this way the rational ex­
pectations hypothesis is a natural outgrowth of general equilibrium theory. 

So, given its dominance in contemporary mainstream economics, com­
bined with the fact that Keynesian macroeconomics has been completely 
dismantled, it is natural that business cycle theory is put in the framework of 
rational expectations under the special heading of real business cycle theory. 

3 Determinism and Predictability 

However, it is a pity that the beautiful causal business cycle models, with 
their simple logical stmcture and complex way of working, have been 
scrapped. This is particularly true because today's knowledge of complex 
dynamical systems allows for numerical and analytical treatment of most 
issues left as open ends in the days the models of, loosely speaking, multi­
plier-accelerator type were proposed. 

There is an additional reason why a revival of these classical recursive 
models is important: There is an inherent contradiction in the very idea of 
rational expectations. Suppose we accept the proposition that the average 
agents are no less knowledgeable than the economists who model their be­
haviour. This is probably something the general public, who constantly sees 
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the multiplicity of professional forecasts, that only seem to share the feature 
that they all go wrong, would agree to. 

Assuming there exists a unique true model for the economy, and that it is 
known to all the agents, is still a heroic assumption to make. Everyone, ex­
cept addicted fans of rational expectations modelling, would agree to this, so 
there is no need to elaborate further. Supposing, however, that the assump­
tions are true, the agents would still need to mskQ forecasts in order to choose 
a proper action. 

But, the main message of modem systems theory is that determinism in 
principle and the possibility of forecasting are very different issues. Math­
ematical chaos makes prediction impossible. So, even if the all the agents 
know the tme model, they will still all make different forecasts - none of 
which becomes true - and there is no reason to believe that any kind of aver­
age of these different expectations equals the actual realization of the proc­
ess resulting from the actions chosen - it may itself be chaotic, and hence 
unpredictable. 

This objection, however, does not affect the causal models, which hence 
not only provide an until now underexplored wealth of economic theory, but 
represent a type of models that do not become self-contradictory once we 
recognize the fact that determinism does not guarantee predictability. 

Outline of the Book 

The outline of the book is as follows. Given we need some relevant math­
ematical tools for the global analysis of such dynamical systems that result 
from models of the business cycle, a field in fast development, the exposi­
tion starts with two purely mathematical-methodological chapters The fo­
cus is on maps, not differential equations. Most of the contributions are 
phrased in a discrete time setting, quite like the case of most classical mod­
els, there is only one exception to this (Chapter 10), and there no use is made 
of other than classical methods. Chapter 1 deals with smooth maps, Chapter 
2 with piecewise linear maps. 

After these, Chapter 3 recalls the basics of Keyenesian macroeconomics, 
and stresses its importance for Samuelson's multiplier-accelerator model, in 
view of its stress on non-monetary issues and on the demand side of the 
economy. It also gives a historical background to the multiplier and the prin­
ciple of acceleration. 
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Chapters 4 and 5 then develop the Samuelson model to a nonautonomous 
format where the coefficients in the recurrence equations are not constant 
but may change during the process. 

The multiplier-accelerator model, of which the Hicksian version is the best 
known, came in two different variations. Both stress the fact that a linear 
accelerator, or termed otherwise, investment function, is unlikely to hold, 
both due to substantial considerations, and to the fact that it leads to oscilla­
tions that either explode, or that are completely damped out with time. 

Hence some nonlinearity is needed that limits its action upwards and down­
wards, what Hicks called the floor (when income decreases so fast that more 
capital could be dispensed with than what disappears through natural depre­
ciation), and what he called the ceiling (when income grows so fast that 
available resources put a limit to further expansion). 

The Goodwin tradition, which arose independently of the Hicksian, incor­
porates both limits in the investment function. The pure Hicksian tradition 
only incorporates the floor in the investment function, and puts the ceiling as 
a constraint on total expenditures, by the way the only non-Keynesian ele­
ment through which the supply side has some influence on the process. 

Chapters 6 and 7 are in the Hicksian tradition, the first giving a full analy­
sis of the original floor-ceiling model as Hicks left it, the second dealing 
with a slight variation where the floor is tied to the stock of capital. 

The rest of the book deals with the Goodwin tradition, introducing various 
nonlinear investment functions, such as polynomial (Chapter 11), or piecewise 
linear (Chapter 12). Chapter 8 illustrates some of the important issues from 
Chapter 1, such as coexistent attractors and their bifurcations, and Chapter 9 
is a variation where the formation of expectations is introduced as a basic 
element. Chapter 10, gives a fresh historical account of the emergence of 
Goodwin's original model, and is consequently formulated in terms of dif­
ferential equations. 

References 

Arrow, K.J. and Debreu, G., 1954, "Existence of an equilibrium for a 
competitive economy.", Econometrica 22:265-290. 

Debreu, G., 1959, The Theory of Value, Wiley, New York. 
Duffing, G., 1918, Erzwungene Schwingungen hei verdnderlicher 

Eigenfrequenz, Wieweg, Braunschweig. 



6 Tonu Pim 

Duesenberry, J., 1950, "Hicks on the trade cycle". The Quarterly Journal of 
Economics 64:464-76 

Frisch, R., 1933, "Propagation problems and impulse problems in dynamic 
economics". Economic Essays in Honour of Gustav Cassel. Allen & 
Unwin, London. 

Goodwin, R.M., 1949, "The business cycle as a self-sustaining oscillation" 
Econometrica 17:184-185. 

Goodwin, R.M., 1950, "The nonlinear accelerator and the persistence of 
business cycles". Econometrica 19:1-17 

von Haberler, G., 1937, Prosperity? and Depression. Harvard University Press, 
Cambridge Mass. 

Hansen, A.H., 1951, Business Cycles and National Income, Norton, New 
York. 

Hayashi, C , 1964, Nonlinear Oscillations in Physical Systems (Princeton 
University Press, Princeton, N.J.) 

Hicks, J.R., 1939, Value and Capital Clarendon Press, Oxford. 
Hicks, J.R., 1950, A Contribution to the Theory of the Trade Cycle. Oxford 

University Press, Oxford. 
Lucas, R.E., 1976, Econometric policy evaluation: a critique". Brunner, K. 

and Melzer (Eds.), The Phillips Curve and the Labor Market, North-
Holland, Amsterdam. 

Muth, J.F., 1960), "Optimal properties of exponentially weighted forecasts", 
Journal of the American Statistical Association 55:200-306. 

Phillips, A.W., 1954, "Stabilisation policy in a closed economy", The 
Economic Journal 64:290-323 

van der Pol, 1926, "On relaxation oscillations", Philosophical Magazine 
2:978-992. 

Samuelson, PA., 1939, "Interactions between the multiplier analysis and the 
principle of acceleration", Review of Economics and Statistics 21:75-8. 

Samuelson, P. A., 1947, Foundations of Economic Analysis, Harvard 
University Press, Cambridge, Mass. 

Schumpeter, J. A., 1954, History of Economic Analysis. Macmillan, London. 
Sargent, T.J., 1984, Autoregressions, expectations, and advice, American 

Economic Review 74:408-415. 
Stoker, J. J., 1950, Nonlinear Vibrations in Mechanical and Electrical Systems 

(Wiley, New York) 
Wald, A., 1936, "LFber einige Gleichungssysteme der mathematishen 

Okonomie", Zeitschriftfur Nationadkonomie 7:637-670. 
Walras, L., 1874-1877, Elements d'economie politique pure. Corbaz, 

Lausamie. 



1 Some Methods for the Global Analysis of 
Closed Invariant Curves in Two-Dimensional 
Maps 

Anna Agliari, Gian-Italo Bischi and Laura Gardini 

1.1 Introduction 

It is well known that models of nonlinear oscillators applied to the study 
of the business cycle can be formulated both as continuous or discrete time 
dynamic models (see e.g. [23], [33], [34]). However, economic time is of­
ten discontinuous (discrete) because decisions in economics cannot be con­
tinuously revised. For this reason discrete-time dynamical systems, repre­
sented by difference equations or, more properly, by the iterated application 
of maps, are often a more suitable tool for modelling dynamic economic 
processes. So, it is useful to study the peculiarities of discrete dynamical 
systems and their possible applications to the study of self sustained oscilla­
tions. This is the main goal of this chapter, where we describe, on the light of 
some recent results about local and global properties of iterated maps of the 
plane, some particular routes to the creation/destruction of closed invariant 
curves, along which self sustained oscillations occur. 

In fact, even if in the fifties and sixties the methods for the study of 
iterated maps were less developed than those for ordinary differential equa­
tions, the situation is now rapidly changing because many results have been 
obtained about discrete dynamical systems (see e.g. [25], [26], [24], [16], 
[42],[28], [29]). Indeed, the dynamic properties and bifurcations of one di­
mensional iterated maps are now quite well known, as well as their implica­
tions about periodic and chaotic behaviors of their trajectories (see e.g.[15], 
[40],[41]). Even for two-dimensional maps more and more results can be 
found in the literature, starting from the pioneering works [25] and [26], (see 



Anna Agliari, Gian-Italo Bischi and Laura Gardini 

also [32], [35], [36], [1]). The qualitative methods for the study of discrete 
dynamical systems are in many aspects similar to those employed in con­
tinuous time systems, but important differences are worth to be emphasized. 
For example, a version of the Andronov-Hopf bifurcation theorem also ex­
ists for discrete dynamical systems, known as Neimark-Sacker bifurcation 
theorem, and it is quite similar to the one in continuous time, with the ex­
pected difference that while in the continuous-time case an equilibrium point 
undergoes an Hopf bifurcation when a pair of eigenvalues cross the line of 
vanishing real part, in the discrete-time case the Neimark-Sacker bifurcation 
occurs when a pair of eigenvalues cross the unitary circle of the complex 
plane. However, remarkable differences can be evidenced, both concerning 
the kind of motion along the closed invariant curve created at the bifurcation 
(it is no longer a unique trajectory but the closure of infinitely many distinct 
trajectories, either periodic or quasiperiodic) and the fate of such invariant 
curve as the parameters move far from their bifurcation values. 

In this chapter, some global bifurcations that cause the creation and de­
struction of invariant closed curves via global bifurcations are also consid­
ered, related with the occurrence of saddle-node or saddle-focus heteroclinic 
or homoclinic connections and tangles. Some exemplary global bifurcations 
are shown through numerical explorations and qualitative geometrical expla­
nations. 

Indeed, several aspects in the study of the global dynamical properties 
of two-dimensional discrete dynamical systems are still obscure, and their 
study often require an interplay between analytical, geometric, numerical 
and graphical methods. Moreover, the differences between continuous and 
discrete dynamical systems become particularly evident when the latter are 
obtained by the iteration of noninvertible maps. A map is invertible if it maps 
distinct points into distinct points, whereas whenever distinct points which 
are mapped into the same point exist, then we say it is a noninvertible map. 
Hence, the geometric action of a noninvertible map can be expressed by say­
ing that it "folds and pleats" the phase space, so that distinct points can be 
mapped into the same point (see e.g. [36], [3] for recent studies of the prop­
erties of noninvertible maps, [13], [12] and the monograph [39] for recent 
applications in economics). This introduces some peculiar dynamic prop­
erties when a business cycle model is represented by a discrete dynamical 
system obtained by the iteration of a noninvertible map. 
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1.2 Basic Definitions and Properties of Two-Dimensional Discrete 
Dynamical Systems 

In this section we give some basic definitions and properties concerning two-
dimensional discrete dynamical systems ̂  represented by the iterated appli­
cation of a map of the plane 

x' = T{x), T:S-^S, SCR^ (1) 

At any iteration it transforms a point x e S into a unique point x^ e S called 
rank-1 (forward) image of x. A point x such that T (x) = x' is a rank-1 
preimage of x^ 

\ix ^y implies T[x) ^ T {y) for each x, y in *?, then T is an invertible 
map in S, because the inverse mapping x — T~^ {x') is uniquely defined; 
otherwise T is said to be a noninvertible map, because points x exist that 
have several rank-1 preimages, i.e. the inverse relation x = T~^ {x') is 
multivalued. So, noninvertible means "many-to-one", that is distinct points 
X ^y may have the same image, T(x) =T {y) = x', 

Geometrically, the action of a noninvertible map can be expressed by 
saying that it "folds and pleats" the space 5, so that distinct points are 
mapped into the same point. This is equivalently stated by saying that several 
inverses are defined in some points of 5, and these inverses "unfold" 5. 

For a noninvertible map, S can be subdivided into regions Z/̂ , A: > 0, 
whose points have k distinct rank-1 preimages. Generally, for a continuous 
map, as the point x' varies in R^, pairs of preimages appear or disappear as 
it crosses the boundaries separating different regions. Hence, such bound­
aries are characterized by the presence of at least two coincident (merging) 
preimages. This leads us to the definition of the critical curves, one of the 
distinguishing features of noninvertible maps (see [25] and [36]): 

Definition. The critical curve LC of a continuous map T is defined as 
the locus of points having at least two coincident rank-1 preimages, located 
on a set LC-i, called set of merging preimages. 

Portions of LC separate regions Zk of the phase space characterized by 
a different number of rank — 1 preimages, for example Zk and Zk-^2 (this 
is the standard occurrence for continuous maps). The critical set LC is the 
generalization of the notion of local extrema (minimum or maximum value) 

^The reader is addressed to [24], [32], [37], [36] for a more complete treatment. 
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of a one-dimensional map^ and the set LC-i is the generaUzation of local 
extremum point of a one-dimensional map (i.e. T{LC-i) = LC)). 

Starting from an initial condition XQ G S, the (forward) iteration by T 
uniquely defines a trajectory 

T (xo) - {xn = T^ (xo), n = 0,1,2,...} 

where T^ is the identity function and T^ = T o T^~^. The set of points that 
form a trajectory is also called orbit, however many authors consider these 
two terms as equivalent. 

The simplest orbits ?iXQ fixed points, that is a singleton {p*} such that 
T (p*) = p*, so that T"^ (p*) = p* for all n, and cycles of period k, that is a 
set of k (k > 1) distinct periodic points {PI^PI:-"^PI} ^^^h that T {p*) = 
p*_^^ for i = 1,2,..., A: — 1 and T {p\) =p\. Observe that the periodic points 
of a cycle of period k are fixed points of the map T^, and a fixed point is a 
fc—cycle with k = 1. 

We recall that a set £̂  C W' is invariant for the map T if it is mapped onto 
itself, T{E) = E. This means that if x e £̂  then T(x) G E, i.e. E is 
trapping, and each point of E is the forward image of at least one point of 
E. The simplest examples of invariant sets are the fixed points and the cycles 
of the map. More generally, the attracting (repelling) sets and the attractors 
(repellors) of a map are invariant sets. 

An attracting set A is a closed invariant set such that a neighborhood U 
of A exists which is strictly mapped into itself and whose trajectories (i.e. 
the trajectories starting from any point of U) converge to A. A closed in­
variant set which is not attracting is called a repelling set if however close to 
A there are points whose trajectories goes away from A. An attractor {re-
pellor) is an attracting (repelling) set containing a dense orbit. An attracting 
set may contain one or several attractors, coexisting with sets of repelling 
points, whereas an attractor is an undecomposable set. In the case of a cycle 
attractor (repellor) is synonymous of asymptotically stable (unstable). In 
particular unstable nodes and foci are also called expanding. 

As the definition suggests, there exist points which converge to an attract­
ing set (or to an attractor) A: The trapping set made up by all such points 
constitutes the basin of attraction of A and it can be obtained considering the 
union of the preimages of any rank of the neighborhood U (defined above): 

CX) 

B{A)= U T - " (U) (2) 
n=0 

^This terminology, and notation, originates from the notion of critical point as it is used 
in the classical works of Julia and Fatou. 
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where T~^ (x) represents the set of all the rank-1 preimages of x and T~'^ (x) 
represents the set of all the rank-n preimages of x (i.e., the points mapped 
into X after n applications of T). 

In other words, the basin of an attracting set A is the set of all the points 
that generate trajectories ultimately belonging to A or to the neighborhood 
U defined above. 

As we are interested in the asymptotic behavior of the trajectories, we 
also introduce the cu—limit set of a point x: A point q G uj{x) if there exists 
an increasing sequence ni < n2 < ••• < n^ .̂.. such that the points T'^^ (x) 
tend to g as fc goes to infinity (clearly such a point q belongs to the limit set 
of the trajectory r (x)). The set u;(x) is invariant and gives an idea of the 
long run behavior of the trajectory from x. 

The same definition can be associated with the backward iterations of 
T, so obtaining the a—limit set of x: A point q G a(x) if there exists an 
increasing sequence ni < n2 < ... < rik... such that the points T~J^'' (x), 
for a suitable sequences of inverses jk in case of a noninvertible map, tend 
to g as fc goes to infinity (clearly such a point q belongs to the limit set of 
ur-"(x)). 

n>0 

In the particular case of a fixed point p* of T we define the stable and 
unstable sets of p* as 

W'^ (p*) = \x: lim T^(x) = p*\ 
[̂  n-̂ +oo J 

l^«"(p*)= x : lim T--{x)^l 

respectively, where T~J^ means for a suitable sequence of inverses. This 
means that the stable set of p* is the set of points x having p* as cj-limit set 
and the unstable set of p* is given by the points having p* in their a-limit set. 

If p* is an asymptotically stable fixed point, then its stable set coincides 
with its basin of attraction, S (p*), and its unstable set is not empty if the 
map is noninvertible in p*. If p* is an expanding fixed point, then its unstable 
set is a whole area and its stable set is not empty if the map is noninvertible 
inp*. 

Other important sets in the study of the global properties of a map T are 
the stable and unstable sets of an hyperbolic^ saddle fixed point p*. Indeed, 

^A fixed point p* is said hyperbolic if the jacobian matrix evaluated at p* has no eigen­
values of unit modulus. 



12 Anna Agliari, Gian-Italo Bischi and Laura Gardini 

if the map T admits several disjoint attracting sets, the stable sets of some 
saddles (fixed points or cycles) often play the role of separatrices between 
basins of attraction. 

If p* is a hyperbolic saddle and T is smooth in a neighborhood U of p* 
in which T has a local inverse denoted as Tf ,̂ the Stable Manifold Theorem 
states the existence of the local stable and unstable sets (defined in such a 
neighborhood [/ of p*) as 

Wil^ (p*) = {x e [/ : x^ = T^ (x) -> p* and x^ G U} 

WFoc (P*) = {xeU:x.n= T^"" {x) -^ p* and x_, e U} . 

The set Wi^^ (p*) (resp. Ŵ ^̂  (p*)) is a one-dimensional curve as smooth 
as T, passing through p* and tangent at p* to the stable (resp. unstable) 
eigenspace. Then the global stable and unstable sets are made up, respec­
tively, by all the preimages of any rank and the (forward) images of the 
points of the local sets, that is: 

W^ip*)= UT-"(W,i (p*)) (3) 
n>U 

W^{p*)= U T « , ( p * ) ) . (4) 
n>0 

where T~'^ denotes all the existing preimages of rank-n. 
If the map is invertible, the stable and unstable sets of a saddle p* are 

invariant manifolds of T. If the map is noninvertible, the stable set of p* 
is backward invariant, but it may be strictly mapped into itself (since some 
of its points may have no preimages), and it may be not connected. The 
unstable set of p* is an invariant set, but it may be not backward invariant and 
(contrarily to what occurs in invertible maps) self intersections are allowed 
(several examples will be shown in this book). 

It is worth to observe that analogous concepts are also given for contin­
uous flows, but the main difference here is that the stable and unstable sets 
are not trajectories, but union of different trajectories (indeed infinitely many 
distinct trajectories). A qualitative representation of the local stable and un­
stable sets, Wi^^ and W}^^, of a saddle fixed point p* is given in Fig.l, where 
E^ and E^ are the eigenspaces. 

In the following, we shall consider the stable (resp. unstable) set of a 
saddle as given by the union of two branches merging in p* denoted by coi 
and UJ2 (resp ai and a2) because all the points in these branches have p* as 
Lj—limit set (resp. in their a—limit set). 

W^ (p*) =ujiUuj2 , W^ (p*) = ai U ^2 
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The concepts of stable and unstable sets can be easily extended to a cycle 
of period fc, say C = {pl^P2^ ...,p^} , simply considering the union of the 
stable (unstable) sets of the points of the cycle considered as k fixed points 
of the map T^. For example 

W^\C)^()W^'{p*) , W^'(p*)^\x: lim T^"(x)=ft*l 
^ ^ n—>+oo 
1=1 ^ ^ 

and analogously for the unstable set. In particular, for a fc—cycle saddle we 

Figure 1: The local stable and unstable sets of the saddle p*. 

obtain the stable and unstable sets from (3) and (4) with the map T^ instead 
ofT,thatis 

2 = 1 2 = 1 

k k 

W" (C) = [JW'' {pl) = U (̂ 1,̂  U ^2,i) 
2 = 1 2 = 1 
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The importance of the stable and unstable sets is related to the fact that they 
are global concepts, that is, they are not defined only in a neighborhood of 
the fixed point (or cycle). Thus, being interested in the global properties of 
the map T, we may study its invariant sets, through a continuous dialogue 
between analytic, geometric and numerical methods, and focus our attention 
on the basins of attraction of its attractors and on the stable and unstable sets 
of some of its saddle points or cycles. 

If the map is nonlinear, the stable and unstable sets may intersect, i.e. it 
may exist a point q such that q e W^^ (p*) 0 W^^ {p*), or 

qew^{p*)nw^ {p^). 

Such a point g is a homoclinic point and it can be proved that if a homoclinic 
point exists then infinitely many homoclinic points must also exist, accumu­
lating in a neighborhood of p*. Intuitively, this can be understood observing 
that the forward orbit of g and a suitable backward sequence is also made up 
of homoclinic points, and converge to p*. The union of the forward orbit and 
a suitable backward orbit of a homoclinic point q is called a homoclinic orbit 
of p*, or orbit homoclinic to p*: 

r{q) = {... ,g_n,... ,g-2,g-i,g,gi,g2,-..,gn,...} 

where g^ = T^ (g) and T " (g) -^ p* while g_n = T r ^ (g) and T"^ (g) -^ 
p* is a suitable backward orbit. More generally, an orbit homoclinic to a 
cycle approaches the cycle asymptotically both through forward and back­
ward iterations, so that it always belong to the intersection of the stable and 
unstable sets of the cycle. 

The appearance of homoclinic orbits of a saddle point p* corresponds to 
a homoclinic bifurcation and implies a very complex configuration of W^ 
and W^, called homoclinic tangle, due to their winding in proximity of p*. 
The existence of an homoclinic tangle is often related to a sequence of bi­
furcations occurring in a suitable parameter range, and qualitatively shown 
in Fig.2: First, a homoclinic tangency between one branch, say cji, of the 
stable set of the saddle and one branch of the unstable one, say a i , followed 
by a transversal crossing between ui and a i , that gives rise to a homoclinic 
tangle, and by a second homoclinic tangency of the same stable and unstable 
branches, occurring at opposite side with respect to the previous one, which 
closes the sequence. It is worth to recall that in the parameter range in which 
the manifolds intersect transversely, an invariant set exists such that the re­
striction of the map to this invariant set is chaotic, that is, the restriction is 
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topologically conjugated with the shift map, as stated in the Smale-Birkhoff 
Theorem (see for example in [24], [35], [42], [9], [32]). Thus we say that 
the map possesses a chaotic repellor, made up of infinitely many (countable) 
repelling cycles and uncountable aperiodic trajectories. In the case shown in 
Fig.2 such a chaotic repellor certainly exists after the first homoclinic tan-
gency and disappears after the second one. 

(a) I (b) 

(c)J 

Figure 2: Homoclinic tangle involving the branches ai of the unstable set 

and uji of the stable one. 

Before and after the homoclinic tangle (i.e. before the first and after 
the last homoclinic tangencies), the dynamic behavior of the two branches 
involved in the bifurcation must diflFer: The invariant set towards which ai 
tends to (or equivalently the cj-limit set of the points of a i ) and the invariant 
set from which cji comes from (or equivalently the a-limit set of the points of 
ui) before and after the two tangencies are different. Also at the bifurcation 
value, as in Fig.2a, are different from those of Fig.2c. Thus we can detect 
the occurrence of such a sequence of bifurcations looking at the asymptotic 
behavior of Ŵ *̂  and W^. 

We observe that if the saddle is a cycle C = {pl,P2i •••)P^}> we may have 
homoclinic orbits of p | , z == 1, . . . , fc, belonging to the stable and unstable sets 
of the periodic point p* (considered as fixed points of the map T^) : In such 
a case we say that there exists points homoclinic to C. But it may also occur 
that the unstable set W^{p*) transversely intersects W^{p*_^i), i = 1, . . . , fc 
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and p%^i = Pi'- In such a case we have heteroclinicpoints and heteroclinic 
tangle denotes the corresponding configuration of W^ and W^ sets. An 
example of heteroclinic tangle associated with a saddle cycle of period 4 is 
qualitatively shown in Fig.3: It involves the internal branches ai^i and uji^i 
which, after a first tangency, transversely intersect each other and then have 
a second tangency. 

Figure 3: Heteroclinic tangle associated with a saddle cycle of period 4 (or 
4 saddle points of the map T^). 

Let us also remark that, as in the case of a homoclinic tangle, also in a 
heteroclinic tangle the asymptotic behavior of the involved branches, before 
and after the two tangencies, changes. Dynamically, heteroclinic tangles 
are as important as homoclinic ones since it is possible to prove that also 
in such cases an invariant set exists on which the restriction of the map is 
chaotic. This homoclinic bifurcation is also called a cyclical heteroclinic 
connection in the sense of Birkhoff (see [ 10]), who first showed that the same 
properties occur when the stable and unstable manifolds of a saddle fixed 
point intersect transversely, or when there are two saddle fixed points, say s* 

and 5*, such that W^ (5*) fi W^ (s*) 7̂  0, thus giving cyclical heteroclinic 
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points that form an heteroclinic connection (see also [19]). In such a case, 
the transverse intersections ofW^ (C) and W^ (C) for the saddle cycle C = 
{Pi)P2'•••5^fc}' called homoclinic points ofnon simple type in [10] gives 
the same properties as the homoclinic points of a saddle fixed point (called 
homoclinic points of simple type in [10]). Thus the occurrence of atransverse 
homoclinic orbit of a saddle cycle is enough to prove the existence of chaotic 
dynamics, because it is possible to prove that in the neighborhood of any 
homoclinic orbit there are infinitely many repelling cycles and an invariant 
"scrambled set" on which the restriction of the map is chaotic in the sense of 
Li and Yorke (see for example in [20], [21], [42]). 

It is worth to notice that if the map T is noninvertible and p* is an ex­
panding fixed point of T (i.e., a fixed point such that the Jacobian matrix 
evaluated at p* has all the eigenvalues greater than 1 in modulus) then the 
stable set of p^ is given by the preimages of any rank of p*, if they exist (as 
defined at the beginning of this section). The existence of a stable set for 
repelling points is a distinguishing feature of noninvertible maps, because 
such a set is empty in invertible maps. In fact, for a noninvertible map the 
only preimage of a fixed point p* is p*, as T (p*) = p*, whereas preimages 
p l i 7̂  p* may exist if T is noninvertible, i.e. several rank-1 preimages exist. 
This implies that for noninvertible maps homoclinic bifurcations may also 
occur for expanding fixed points (repelling nodes and foci), whereas for in­
vertible maps they can only occur for saddles. Another difference between 
invertible and noninvertible maps is associated with non connected basins of 
attraction, which are only possible for noninvertible maps, whereas they are 
always simply connected in invertible maps. 

1.3 Closed Invariant Curves 

The main interest in this chapter is to show some local and global bifurca­
tions related to closed invariant curves in two-dimensional maps, as the dy­
namics related to such curves is what can be interpreted (in applied models) 
as cyclical behavior. As we shall see (in later sections and in several exam­
ples in later chapters), the appearance/disappearance of closed curves may 
be related to some global bifurcation. However, the most known mechanism 
leading to such curves is the Neimark-Sacker bifurcation. 

Let us simply recall the properties of a focus fixed point p* = (x*, ?/*) 
of a smooth map T, for which the Jacobian matrix DT in p* has complex-
conjugate eigenvalues, assuming that the stability of the fixed point is in­
vestigated as a function of one parameter p. As long as the eigenvalues are 
in modulus less than one, say for p < fi^, the focus is stable and locally 



18 Anna Agliari, Gian-Italo Bischi and Laura Gardini 

(in a small neighborhood of p*) the trajectories belong to spirals and tend 
to the fixed point. When the eigenvalues are in modulus greater than one 
say for M > Mo, the focus is unstable (repelling) and locally the trajectories 
still belong to spirals, however they have a different asymptotic behavior 
The crossing of the complex eigenvalue trough the unitary circle, at M = Mo 
corresponds to & Neimark-Sacker bifurcation. The analytical conditions at 
which It occurs, and the so called "resonant cases", now belong to standard 
dynamical results, which can be found in many textbooks, see for example 
[28], [29], [24], [32], [42]. Let us here briefly recall the main features which 
are useful in the study of applied models. A Neimark-Sacker bifurcation is 
related with closed invariant curves, existing in a small neighborhood of the 
stable fixed point when the bifiircation is subcritical, or of the unstable fixed 
point when it is supercritical. The critical case occurs when locally the map 
behaves as a linear map, that is, the dynamic behavior at the bifurcation value 
IS that of a center, and locally infinitely many closed invariant curves exist 
(instead of only one, as it occurs before or after the bifiircation value in the 
subcritical or supercritical case, respectively). Fig.4a qualitatively shows a 
bifurcation diagram in the subcritical case: A repelling closed invariant curve 
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Figure 4: Qualitative diagram of the Neimark-Sacker bifurcation: (a) sub-
critical case, (b) supercritical case. 
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r exists surrounding the stable fixed point, for /j, < fiQ. As fi increases the 
repelling closed curve decreases in size and shrinks merging with the fixed 
point at /x == //Q, leaving a repelling focus. It is worth noting that in such 
a case the closed repelling curve is generally the boundary of the basin of 
attraction of the stable fixed point. After the bifurcation the fixed point is 
unstable and the cj-limit set of a point close to it depends on the nonlinearity 
of the map (it may converge to another attracting set or diverge). 

Fig.4b qualitatively shows a bifurcation diagram in the supercritical case: 
At /J, = fiQ the fixed point becomes an unstable focus and for // > /XQ an at­
tracting closed invariant curve F exists, surrounding the unstable fixed point. 
Thus the cj-limit set of points close to it is such closed invariant curve. 

For fi in 3. neighborhood of /ig the closed invariant curve F (stable or 
unstable) is homeomorphic to a circle, and the restriction of the map to F 
is conjugated with a rotation on the circle. Thus the dynamics on F are 
either periodic or quasiperiodic, depending on the rotation number. Roughly 
speaking, the rotation number represents the average number of turns of a 
trajectory around the fixed point. When the rotation number is rational, say 
m/n, it means that a pair of periodic orbits of period n exists on F, and 
to get the whole periodic orbit a trajectory makes m turns around the fixed 
point. The dynamics occurring in such a case on F are qualitatively shown 
in Fig.Sa in case of a supercritical bifurcation (F is attracting): The closed 
curve is made up by the unstable set of the saddle cycle, and F is also called 
a saddle-(stable) node connection. Instead, Fig.5b shows the subcritical case 
(F is repelling): The closed curve is made up by the stable set of the saddle 
cycle, and F is also called a saddle-(unstable) node connection. When the 
rotation number is irrational, the trajectories of T on the closed curve F are 
all quasiperiodic. That is, each point on F gives rise to a trajectory on the 
invariant curve which never comes on the same point, and the closure of the 
trajectory is exactly F. 

Investigating the bifurcation of a fixed point of T as a function of two 
parameters, it is quite common to derive the so called stability triangle, 
whose boundaries represent the stability loss due to different properties of 
the eigenvalues. That is, one side represents a flip-bifurcation (one eigen­
value equal to -1), another side a fold or pitchfork-bifurcation (one eigen­
value equal to +1), and a third side the Neimark-Sacker bifurcation (com­
plex eigenvalues in modulus equal to +1). In the supercritical case, such 
a portion of bifurcation curves is the starting point of so called "period­
icity tongues", or ArnoVd tongues, associated with different rational rota­
tion numbers min. A peculiar property of such tongues is associated with 
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the summation rule [27]: Between any two tongues with rotation numbers 
rui/ni and 7722/712 there is also a tongue associated with the rotation number 
m! In' = {mi + 7x12)/{ui + 712). 

Figure 5: Dynamics on a closed invariant curve F: (a) saddle-(stable) node 
connection, (h) saddle-(unstable) node connection, (c) saddle-(stable) focus 
connection, (d) saddle-(unstable) focus connection. 

It is clear that properties and bifurcations similar to those described above 
for a fixed point can occur also for a fc—cycle of any period fc > 1, simply 
considering the k periodic points as fixed points of the map T^. In such a 
case the closed invariant curves F̂ ^ of the map T^ belong to a fc—cyclical 
set for the map T. Several examples of bifurcation diagrams and invariant 
closed curves F (cyclical or not), with rational rotation numbers and saddle-
connections or with quasiperiodic trajectories, will be shown in later chap­
ters, associated with several business cycles models. 

The dynamic evolution of F clearly depends on the nonlinearity of the 
map. Several examples will be given, both in piecewise linear maps (see 
the next chapter and Chapter 12) and in smooth maps (Chapters 8, 9, 11), 
together with a survey of possible mechanisms leading to the destruction 
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of a closed curve. We only note here that the destruction may occur in 
two different ways: Either because the invariant closed curve T becomes 
no longer homeomorphic to a circle, or because the restriction of the map 
on r becomes no longer conjugate with a rigid rotation or an invertible map 
of the circle. The first case naturally occurs when the cycle node (stable or 
unstable) on F becomes a focus: Fig.5c-d qualitatively represent this case, 
together with a saddle-focus connection, which may be stable (Fig.5c) or 
unstable (Fig.5d). 

We finally remark that when a pair of parameters are let to vary in a 
parameter plane outside the stability triangle, from the region close to a 
supercritical pitchfork (or flip) bifurcation curve towards the region where 
a supercritical Neimark-Sacker bifurcation occurs, then global bifurcations 
associated with (attracting and repelling) closed invariant curves must nec­
essarily occur. Some of the mechanisms explaining such global bifurcations 
are described in the next sections. 

1.4 Effects of Critical Curves on Invariant Closed Curves 

In this section we consider the transformations of an invariant closed curve, 
bom from a focus fixed point of a noninvertible map of the plane via a super­
critical Neimark-Sacker bifurcation, as some parameter is gradually moved 
away from its bifurcation value. As stated in the previous section, just af­
ter the bifurcation an attracting invariant closed curve, say F, exists around 
the unstable focus. It is smooth and homeomorphic to a circle, with radius 
proportional to the square root of the distance from the bifurcation set in the 
parameter space (see e.g. [24], p.305). 

The dynamics of the iterated map restricted to F is conjugate to a map 
of the circle, and may be characterized by an irrational or a rational rotation 
number. In the former case, the motion along F is non periodic (also called 
quasiperiodic) and the iterated points are densely distributed along the whole 
invariant curve, whereas in the latter case, if the rational rotation number has 
the form m/n, the motion is n-periodic, i.e., an attracting cycle of period n 
exists embedded into F, and the n periodic points are cyclically visited every 
m turnings around the unstable focus. The latter situation is observed when 
the parameters are chosen inside a m/n Arnold tongue. The whole curve F is 
covered by the iterated points only in the case of irrational rotation number, 
otherwise only the periodic points are visited by the asymptotic dynamics, 
so that it is difficult to see F numerically, when the period n is small, even if 
the closed invariant curve exists (given by the saddle-node connection). 



22 Anna Agliari, Gian-Italo Bischi and Laura Gardini 

However, the Neimark-Sacker bifurcation theorem only gives local results 
in the parameter space, in the sense that it says nothing about the changes 
in the shape, or even the existence, of the invariant curve, as the parameters 
move away from the bifurcation values. Indeed, the closed invariant curve 
may suddenly disappear, or drastically change its shape, or evolve into an 
annular chaotic attractor (a chaotic ring). In the case of a noninvertible map 
of the plane, important modifications of the shape and global properties of F 
occur due to the folding action of the critical curves. 

In order to illustrate this point, let us consider an exemplary case, ob­
tained by using the quadratic map T : (x, y) -^ (x', y') defined by 

where A is a real parameter (see [36] for a more detailed study of this map). 
Given x^ and y\ if we solve the algebraic system with respect to the un­
knowns X and y we obtain 

\ /T+^' -^ ' . i f x = | + ^/^T7 
[ y = x^ [ y = x^ 

(6) 
So, a point (x',?/') has two distinct rank-1 preimages if y' > (x' — A^/4), 
and no preimages if the reverse inequality holds. This means that the map 
(5) is a Zo — Z2 noninvertible map, where ZQ (region whose points have 
no preimages) is the half plane ZQ = {{x,y)\y < x - A^/4} and Z2 (re­
gion whose points have two distinct rank-1 preimages) is the half plane 
Z2 = {{x,y)\y > ^ — '^^/4}. The line y — x — A^/4, which separates 
these two regions, is the critical curve LC, i.e. the locus of points having 
two merging rank-1 preimages, located on the line xi = A/2, that repre­
sents LC-i. Any point {x,y) G Z2 has the two rank-1 preimages sym­
metrically located at opposite sides with respect to LC-i: Tf^ {x^y) e 
Ri and Tg"̂  (^,y) ^ R2, where Ri is the region defined by x < A/2 
and i?2 is defined by x > A/2. We notice that, being (5) a continuously 
diflferentiable map, the line LC-i belongs to the set of points at which 
the Jacobian determinant vanishes, i.e. LC-i C JQ, where 
Jo = {(x,7/) I det DT{x,y) = 2x — A = 0}, and the critical curve LC is 
the image by T of LC_i, i.e. LC = T{LC-i) = T {{x = A/2}) = 
{{x,y)\y = x-XyA}. 

The folding action related to the presence of the critical lines can be 
expressed by saying that the image of any region U separated by LC-i into 
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two portions, say Ui G i?i and U2 ̂  R2, is folded along LC, in the sense 
that T(C7i) n T(?72) is a nonempty set included in Z2. This means that two 
points p G C/i and q G U2, located at opposite sides with respect to I/C_i, 
are mapped in the same side with respect to LC, in the region Z2, This 
can be equivalently expressed by stressing the "unfolding" action of T~^, 
obtained by the application of the two distinct inverses in Z2 which merge 
along LC. Indeed, if we consider a region V C Z2, then the set of its rank-1 
preimages T^^{V) and T^^{V) is made up of two regions T^^{V) G Ri 
and T^^{V) G R2, that are disjoint if y fi LC = 0 whereas they merge 
along L C _ i i f V n L C 7^0. 

The map (5) has two fixed points, O = (0,0) and P = (A, A). It is easy 
to see that O is stable for 0 < A < 1, and as A is increased through the 
bifurcation value A = 1 a supercritical Neimark-Sacker bifurcation occurs at 
which a stable invariant closed curve arises around the unstable focus O, as 
shown in Fig.6a, obtained for A = 1.02. In the situation shown in Fig.6a the 
other fixed point, P, is a saddle, whose stable set constitutes the boundary 
that separates the basin of attraction of the closed invariant curve F (the white 
region) from the basin of diverging trajectories, also called basin of infinity 
(the grey region). Notice that in Fig.6a the invariant curve F appears to 
be smooth and of approximately circular shape, so that the quasi-periodic 
motion along it is very similar to purely trigonometric oscillations. It can 
also be noticed that F is entirely included in the region i?i, i.e. it has no 
intersections with LC_i. It is important to remark that just after its creation 
F cannot be too close to LC-i, because at the Neimark-Sacker bifurcation 
the eigenvalues are complex conjugate and belong to the unit circle of the 
complex plane, whereas along LC-i one eigenvalue must necessarily be 
zero being det {DT) = 0 along LC-i. Therefore, intersections between F 
and LC-i are only possible when the parameters are sufficiently far from 
the Neimark-Sacker bifurcation values. 

We now describe the changes of the stable invariant closed curve F as 
the parameter A is increased. Indeed, as far as the attracting invariant closed 
curve F does not intersect LC_i it can be thought of as entirely contained in 
one sheet of the Riemann foliation. This means that a neighborhood U (F) 
of F exists such that not only T{U) C U (since F is attracting) but a unique 
inverse exists, say T^^, such that Tf ^ : T{U) -^ U. This implies that the 
curve F, as well as the area of the phase plane enclosed by F, say a (F), is 
both forward invariant (under T) and backward invariant (under Tf ^). 

The situation changes when F grows up until it has a contact with the 
set of merging preimages LC_i, and then intersects it, as shown in Fig.6b, 
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obtained for A = 1.3. We now describe the consequences of the contact 
between T and LC-i. 
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Figure 6: (a) Jw^̂  a/?er /̂ẑ  supercritical Neimark-Sacker bifurcation of the 
fixed point O a smooth attracting closed curve V appears, (b) Far away from 
the bifurcation value, the area inside T is no longer invariant. 

Let AQ and BQ be the two points of intersection between F and LC-i, 
and let Ri and R2 the two regions, separated by LC_i , giving the ranges of 
the two inverses T f ^ and T^^, respectively. Then the points Ai = T {AQ) 
and Bi = T {BQ), which must belong both to F and to LC = T (LC_i), 
are points of tangential contact between F and LC. In fact, the arc AQBQ = 
Fni?2 niust be mapped by T in the arc AiBi = T (AQBO), entirely included 
in the region Z2, on one side of LC (i.e. on the side of region Z2). If we look 
at the area a (F), bounded by the invariant curve, it is easy to see that such an 
area is no longer invariant under application of T. In fact, T^^ (^1^1) gives 
an arc inside a (F) but not belonging to the invariant curve, while AQBQ = 
Fni?2 is given by T^^ (AiBi). It means that the region hi, located between 
the arc AiBi of F and LC, is "unfolded" by the action of the two inverses 
T^^ and T^^ in two distinct preimages, located in the regions Ri and R2 
respectively, represented in Fig.6b by the two portions HQ — T^^ {hi) and 
/IQ = ^2"^ {hi) of a (F) bounded by the two arcs AQBO inside and along F 
respectively. In other words, the two portions h\ and h^ of a (F) are both 
"folded" by T along LC outside the area a (F) (as both cover the area hi 
which is outside F). This implies that the area a (F), bounded by F, is no 
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longer forward invariant (since some points inside T are mapped outside it, 
and are exactly the points belonging to h^ and hi). 

This phenomenon of forward invariance of a closed curve, together with 
noninvariance of the area inside it, is specific to noninvertible discrete maps, 
that is, it cannot be observed neither in two-dimensional invertible maps nor 
in two-dimensional continuous dynamical systems. The property of nonin­
variance of a (F) and the creation of convolutions of F are two aspects of the 
same mechanism, related to the fact that curves crossing LC-i are folded 
along LC and are confined into the region with an higher number of preim-
ages. 

Another consequence of the intersection between F and LC-i is that for 
a periodic cycle not belonging to F, it may happen that some of the periodic 
points are inside and the others are outside the invariant curve F. In the case 
of the map (5) this may be observed for example when A = 1.4014, because 
a stable cycle of period 7 coexists with the stable invariant curve F (see Fig.7, 
where the seven periodic points of the stable cycle are labelled as Ci,..., C7). 
As it can be seen in the figure, the periodic point Ci, inside F in the region 
/IQ, is mapped in the point C2 E hi, i.e. outside a (F). 

1.2 
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Figure 7: The periodic point C\, inside F in the region h^, is mapped in the 
point C2 E hi, i.e. outside a (F). 
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As the parameter A is further increased, the convolutions become more and 
more pronounced and another phenomenon pecuHar of noninvertible maps 
can be seen, that is the appearance of knots, or loops, or self intersections 
of the unstable set of the saddle belonging to the closed invariant curve, and 
such a dynamic situation is soon followed by homoclinic situations (intersec­
tions between the stable and unstable sets of the saddle) leading to a chaotic 
attractor, also called "weakly chaotic ring" in [36] for their particular shape. 
An example is given in Fig.Sa obtained with A = 1.505. As emphasized in 
the enlargement shown in Fig.Sb, the attractor is no longer a closed invariant 
curve, as it includes loops and self-intersections. The mechanisms through 
which such loops and chaotic rings are created, and the related loss of invari-
ance o f f have been recently studied by many authors (see e.g. [36], [17] or 
[18] and references therein), and still have some open problems. 

Figure 8: (a) v4 "weakly chaotic ring" caused by some homoclinic bifurca­
tion, (b) The enlargement shows the loops and the self-intersections of the 
attractors. 

As the parameter A is further increased, so that it is more and more far 
from the Neimark-Sacker bifurcation value, a fully developed chaotic ring is 
created, like the one shown in Fig.9, obtained for A = 1.54, on which the 
dynamics are characterized by chaotic time series that exhibit some particu­
lar time patterns, as shown in Fig.9b. It is worth to notice that in Fig.9a the 
attractor is very close to the boundary of the basin of diverging trajectories 
(gray points in the figure). This suggests that a further increase of A will 
lead to a contact between the attractor and the boundary of its basin, and 
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this represents a global bifurcation that marks the destruction of the attractor 
(more properly, it becomes a chaotic repellor after the contact). Such bifur­
cation is known as final bifurcation, or boundary crisis, and here corresponds 
to the first homoclinic bifurcation of the saddle fixed point P on the basin 
boundary. Indeed, its unstable set tends to the attractor while its stable set be­
longs to the frontier of the basin, thus a contact of the attracting set with the 
basin boundary also implies a contact between the stable and unstable sets 
of P. Of course, this contact between an invariant attracting set and its basin 
boundary may occur at the beginning of the story, i.e. soon after the creation 
of the closed invariant curve F. In other words, even if the Neimark-Sacker 
bifurcation theorem marks the appearance of F, it gives no indications about 
its survival as the parameters are moved away from their bifurcation values. 

A = 1.54 

Figure 9: (a) The fully developed chaotic ring, (b) The corresponding chaotic 
time series. 

To sum up, just after a supercritical Neimark-Sacker bifurcation, the long 
run dynamics of a discrete dynamical system is characterized by endoge­
nous oscillations that may be quasiperiodic or periodic, converging towards 
a smooth and attracting closed curve F. Then, when the parameters move 
along a path away from the Neimark-Sacker bifurcation value, the closed in­
variant curve grows up, i.e. oscillations of increasing amplitude characterize 
the asymptotic dynamics. Such enlargement of F may lead to its disappear­
ance or to some changes of its shape, due to the nonlinearities of the map. 
If the map is noninvertible, the intersections between F and LC-i gives rise 
to convoluted shapes of the invariant curve, until it is replaced by an annular 
chaotic attractor. 
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As usual, sets of parameters are met at which stable cycles are created via a 
saddle-node bifurcation. The periodic points of these stable cycles may be­
long to r , or may be inside a (r), or outside a (F) or, if F intersects LC_i, 
some of the periodic points may be inside and other outside a (F). Further­
more, several coexisting attractors may be simultaneously present, such as 
coexisting attracting cycles or quasiperiodic or chaotic attractors together 
with attracting cycles. 

An important property of noninvertible maps is that in any case, seg­
ments of the critical curves LC, together with a suitable number of their 
images Ld = T'^{LC), may be used to bound a trapping region where all 
the attracting sets are included. Such trapping sets, also called absorbing ar­
eas in [36], act like a bounded vessel inside which the asymptotic dynamics 
of the bounded trajectories are ultimately confined (see also [3], [12], [39]). 

1.5 Invariant Closed Curves and Saddle Connections 

In this section we present some global bifurcations involving invariant closed 
curves, which may be related to the appearance/disappearance of endoge­
nous fluctuations, to qualitative changes in their amplitude and to complex 
structure in their basins of attraction. These bifurcations are related to the 
dynamic behavior of the stable and unstable sets of same saddle cycle, so 
they can be observed both with invertible and noninvertible maps. In the 
following we restrict our attention to (at least locally) invertible maps. 

Before proceeding, it is worth to recall that the bifurcations related to 
invariant curves are well known in continuous dynamical systems, but in 
discrete models are still an open problem (see [32]): Here we give some 
qualitative results obtained by computer assisted proofs, with the awareness 
that further investigations need for a more complete understanding. 

As already stated above, from a local point of view, in a nonlinear dis­
crete map endogenous fluctuations naturally appear when a fixed point is 
destabilized through a supercritical Neimark-Sacker bifurcation: A stable 
focus becomes unstable and an attracting closed curve appears around it, be­
coming wider and wider when the parameters move away from the bifurca­
tion value. Generally this local bifiarcation has no global effect, in the sense 
that after the bifurcation the trajectories of points close to the unstable focus 
reach the attracting closed curve. However, some recent papers (see, among 
others, the endogenous business cycle models studied in [38] and in [31] or 
the cobweb model with predictor selection proposed in [14]) have stressed 
the importance of homoclinic tangencies and homoclinic tangles of saddles 
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in the transition from local regular to global irregular fluctuations, due to in­
creasing complexity of the attractors. Moreover, if the map T exhibits some 
multistability phenomena, then the invariant closed curve may interact with 
other attractors and interesting dynamic phenomena may occur, often asso­
ciated with homoclinic or heteroclinic tangles. 

Different, but still interesting, problems arise when the Neimark-Sacker 
bifurcation is of subcritical type, that is, when a repelling closed curve co­
exists with a stable focus, and generally such a repelling closed curve gives 
the boundary of the basin of attraction of the stable focus. Indeed, a subcrit­
ical bifurcation may be seen as a catastrophe phenomenon, in the sense that 
after its occurrence no attractors exist in the phase space or, if an attractor 
exists, it is quite far from the bifurcating fixed point. Instead, in the case of 
a supercritical Neimark-Sacker bifurcation, the phase portrait is completely 
different: The attracting closed curve which appears after the bifurcation is 
very small and close to the fixed point. 

The dynamical behavior of a subcritical Neimark-Sacker bifurcation is 
very importand in the economic literature (as well as in other applied mod­
els). In fact, the existence of a repelling closed curve which bounds the basin 
of attraction of the stable fixed point implies that small shocks of the system 
have no effects on its dynamical behavior, while large enough shocks may 
lead to another attractor. This requires the coexistence of the fixed point with 
a different attracting set, and may cause hysteresis phenomena. Indeed, in 
such a case, if a parameter is varied so that a stable focus becomes unstable 
via a subcritical Neimark-Sacker bifurcation, i.e. a repelling curve shrinks 
and at the bifurcation merges with the fixed point, leaving a repelling focus, 
then the trajectories that start close to the fixed point reach the second attrac­
tor. In this case, a simple restoration of the previous value of the bifurcation 
parameter does not permit to move again the state of the system to the stable 
equilibrium, since the phase point is out of its basin. An example of this sit­
uation is the so called "crater bifurcation'' scenario (see [30]): Two invariant 
closed curves, one repelling and one attracting, appear surrounding the fixed 
point when it is still stable. As the parameters move, the attracting closed 
curve moves away from the fixed point whereas the repelling one, which 
play the role of separatrix between the basins of attraction, shrinks merging 
with the fixed point in a subcritical Neimark-Sacker bifurcation. After such 
a bifurcation, the trajectories, previously converging to the fixed point, are 
converging to the attracting closed curve (which is quite far from the fixed 
point). The phase portrait so obtained (unstable focus and attracting closed 
curve) may suggest that a supercritical Neimark-Sacker bifurcation has oc-
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curred, but looking at the amplitude of the fluctuations we obtain the correct 
understanding of the bifurcation sequence giving rise to it. 

When a Neimark-Sacker bifurcation of subcritical type occurs, it is also 
interesting to study the mechanism which gives rise to the appearance of the 
repelling closed curve, or to the two closed curves in the case of a crater 
bifurcation. Such occurrence may be related to the appearance of a pair of 
cycles (a saddle cycle and a repelling one) on the boundary of the basin of 
attraction of the fixed point. The heteroclinic connection of these cycles, 
formed by the stable set of the saddle cycle which comes from the peri­
odic repelling points, constitutes a repelling closed curve. An example of 
this situation is given in [8]. Sometimes, for example when a crater bifur­
cation occurs, more complex situations are possible: We shall see that, as 
in the supercritical case, homoclinic tangencies and homoclinic tangles of 
saddles play an important role in the mechanism associated with the appear­
ance/disappearance of closed invariant curves. 

In continuous dynamical systems one of the mechanism associated with 
the appearance and disappearance of closed invariant curves involves a sad­
dle connection: A branch of the stable set of a saddle point (or cycle) merges 
with a branch of the unstable one (of the same saddle or a different one), 
giving rise to an invariant closed curve. 

When the involved saddle is a fixed point, the saddle connection can be 
due to the merging of one branch of the stable set and one of the unstable 
set, as in Fig. 10a: We shall call such a situation homoclinic loop. Otherwise, 
if both the branches of the stable and unstable sets are involved in the sad­
dle connection we obtain an eight-shaped structure that we shall call double 
homoclinic loop (see Fig. 10b). 

Homoclinic loops and double homoclinic loops can also involve a saddle 
cycle of period k, being related to the map T^, but in this case we can also 
obtain an heteroclinic loop: Indeed, the map T^ exhibits k saddles points 
and a branch of the stable set of a saddle may merge with a branch of another 
periodic point of the saddle cycle. Stated in other words, if 5^, i = I,..., k, 
are the periodic points of the saddle cycle and ai^i U a2,i (^i,iU 0J2,i) are the 
unstable (stable) sets of Si, then a heteroclinic loop is given by the merging, 
for example, of the unstable branch ai^i of Si with the stable branch cuij of 
a different periodic point Sj. Then each periodic point of the saddle cycle is 
connected with another one, and an invariant closed curve is so created that 
connects the periodic points of the saddle cycle. In Fig. 10c an heteroclinic 
loop is shown, related to a pair of saddles (or a saddle cycle of period 2). 
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All these loops correspond to structurally unstable situations and cause a 
qualitative change in the dynamic behavior of the dynamical system. Since 
they cannot be predicted by a local investigation, i.e., a study of the linear 
approximation of the map, we classify them as global bifurcations. Indeed, 
we study this kind of bifurcation looking at the asymptotic behavior of the 
stable and unstable sets of the saddle: If a bifurcation associated with a loop 
has occurred, before and after the bifurcation the involved branch of the un­
stable set converges to different attracting sets, and the points of the involved 
stable branch have a different a-limit set, as well. 

(c) 

(b) 

Figure 10: Saddle connections', (a) homoclinic loop, (b) double homoclinic 
loop, (c) heteroclinic loop. 

Although homoclinic and heteroclinic loops may also occur in discrete 
dynamical systems, in this case they are frequently replaced by homoclinic 
tangles, as described in Section 1.2. That is, a tangency between the unsta­
ble branch W^ {S) = Uaî ^ with the stable one Wf{S) = Ucjî ^ occurs, 
followed by transverse crossings of the two manifolds, followed by another 
tangency of the same manifolds, but on opposite sides. 

In the following we shall qualitatively describe some global bifurca­
tions that involve closed invariant curves and may occur in the business 
cycle models. We first consider global bifurcations causing the appear­
ance/disappearance of closed invariant curves, then the case in which at least 
a closed invariant curve coexists with some cycle and we shall see as these 
interact. All the global bifurcations here presented involve homoclinic con­
nections of the periodic points of a saddle cycle. 
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1.6 Appearance of an Invariant Closed Curve (Homoclinic Loop) 

In this section we show a mechanism which may cause the appearance of an 
invariant closed curve (or cycHcal closed invariant curves), already known in 
the literature, see e.g. [35], [32], [2]. 

In the simplest starting situation, an attracting set A coexists with a sad­
dle point 5* and a repelling fixed point P*: A qualitative draft of the global 
bifurcation is given in Fig.l 1, where we assume that the attracting set A is 
a focus fixed point as well as P*. Initially (see Fig.l la), the unstable set of 
the saddle converges to the attracting set A, and a branch of it, say ai , turns 
around the repelling focus P*. The a-limit set of the points of the branch ui 
of the stable set of the saddle is the fixed point P* and 002 comes from the 
boundary of the basin of attraction of A. After the bifurcation (Fig. 1 Ic), we 
have a bistability situation: The attracting set A coexists with an attracting 
closed curve Tg surrounding the repelling focus. The basins of attraction of 
A and Fg are separated by the stable set of the saddle point 5*. The attracting 
closed curve Fg is the cj-limit set of the points of the unstable branch ai and 
the stable branch a;i no longer exits from P*, coming from the boundary of 
the set of the feasible trajectories (or the basin boundary of a different attract­
ing set). The changes in the asymptotic behavior of the two branches suggest 
that the appearance of the curve Tg is due to a global bifurcation involving ui 
and ai . Indeed, we can conjecture that at the bifurcation the stable branch 
uji and the unstable branch ai merge, giving rise to a homoclinic loop, as 
shown in Fig.l lb, whose effect is to create a closed invariant curve. Obvi­
ously, this is a schematic representation of the mechanism involved, since 
we expect that, as usual with discrete maps, the single bifurcation value of 
the homoclinic loop is replaced by an interval of values associated with an 
homoclinic tangle between the two branches ai and cji, as shown in Fig.2: 
A tangency, followed by transverse crossing, that gives homoclinic points to 
the saddle 5*, followed by a second tangency between the same manifolds 
at which the transverse homoclinic points to S* disappear. 

The same mechanism may also give rise to a repelling closed curve F^, 
but in such a case we start from the coexistence of at least two attractors, 
say an attracting set A, an attracting fixed point P* and a saddle *?*, as in 
Fig. 12a, where the attracting set A is a fixed point. The stable set of the 
saddle separates the basins of attraction of A and P*. The branch a;i of 
W^ (5*) turns around P*. The branch ai of the unstable set W^ (5*) tends 
to P* whereas the cj-limit set of the points of the branch 0̂2 is the attracting 
set A. After the homoclinic loop, or homoclinic tangle, of the two branches 
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Figure 11: Qualitative representation of a mechanism leading to the appear­
ance of an attracting closed curve. 

(a) 

%.A 

(c) 

Figure 12: Qualitative representation of a mechanism leading to a repelling 
closed curve. 
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ai and cji, shown in Fig. 12b, a repelling closed curve Tu appears, bounding 
the basin of attraction of P* (see Fig. 12c). Such a curve is the a-limit set of 
the points of the branch ui of the set W^ (5*) and A is the cj-limit set of the 
points of the whole unstable set W^ (5*). 

It is worth to observe that in the two cases considered above, the appear­
ance of a closed invariant curve is due to a mechanism associated with a ho-
moclinic loop, or tangle, and if the fixed points surrounded by the homoclinic 
loop is repelling (resp. attracting) then the closed curve which appears is at­
tracting (resp. repelling). The case associated with the attracting fixed point 
P* is also interesting because it may explain the appearance of the repelling 
closed curve involved in the Neimark-Sacker bifurcation of subcritical type. 

Clearly the bifurcations described above may involve saddles and attract­
ing or repelling cycles of period k{k > 1) instead of fixed points: In such a 
case the mechanisms previously described occur for the map T^ and lead to 
k cyclical invariant closed curves, repelling or attracting, for the map T. 

1.7 Appearance of Two Invariant Closed Curves (Heteroclinic 
Loop) 

In this section we describe the mechanism that may be associated with the 
appearance/disappearance of two disjoint invariant closed curves, one at­
tracting and one repelling. This mechanism has been investigated also in 
[7] and [2], where it was associated with a Neimark-Sacker bifurcation of 
subcritical type. 

It is know that when the map T depends on two parameters, two in­
variant curves can coexist if a bifurcation of codimension 2 occurs, called 
Chenciner bifurcation or generalized Hopf bifurcations see [32] for math­
ematical details, and [22] for an application in economics. When such a 
bifurcation occurs, in the parameter space a curve exists crossing which an 
attracting closed curve, F^, and a repelling one, F̂ ,̂ appear very close one to 
each other. The way in which they appear suggests a "saddle-node" bifurca­
tion for closed invariant curves, but it is well known that such a bifurcation, 
although usual in continuous flows, is an exceptional case in discrete time. 
Here we shall present a sequence of global bifurcations which give rise to 
Ts and F^ and involves two cycles, one of which is a saddle. We shall qual­
itatively describe this sequence when a saddle cycle and a focus cycle exist, 
since this is the case effectively observed in our study, and we shall conclude 
with a conjecture about the situation in which the focus cycle is replaced by 
a node cycle. 
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As in the previous section, we start from a situation, shown in Fig. 13a, in 
which only an attracting set A exists (a stable focus in Fig. 13a). Moreover, 
we assume that a pair of cycles of period k, a saddle S and a repelling focus 
C, exist: The emergence of these two cycles can be due to a standard saddle-
node bifurcation, and then the node cycle turns into a focus. The stable 

Figure 13: Qualitative representation of a sequence of global bifurcations 
leading to the appearance of two closed invariant curves, one attracting and 
one repelling. 

set W^ (S) of the saddle cycle is such that the outer branch a;2 = IJ iU2,i 

comes from outside (the boundary of the set of feasible trajectories or from 
the basin boundary of coexisting attracting sets) whereas the a-limit set of 

k 
the points of the iimer one cui = [jooi,i is the repelling focus C. The 

i=l 
k 

unstable set W^ (5) = | J (ai,^ U a2^i) reaches the attracting set A: Stated 
2 = 1 
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in other words, A is the cj-Umit set of the points of the two branches ai^i and 
k 

a2^i ,i = 1,..., fc. As the parameters are moved, the branches cc;2 = U ^2,i 

k 

and a;2 = U 0:2,2 are closer and closer and at the bifurcation they merge 

giving rise to a heteroclinic loop (see Fig. 13b). More precisely, each stable 
branch uj2^i of a periodic point of the saddle merges with the unstable branch 
a2,i of a different periodic point of the same saddle cycle, giving rise to 
a closed connection among the periodic points of S. However, as already 
remarked, this transition may occur via a homoclinic tangle of W2 (̂S') and 
VF^(5), which includes a tangency between the two manifolds, followed 
by transverse crossings, and a tangency again of W2 {S) and VF^(S'), as 
qualitatively shown in Fig.3. 

After the bifurcation, originated by this structurally unstable situation, an 
attracting closed curve Ts exists as well as a saddle-focus connection made 
up by the stable set W^ (5), surrounded by Ts (see Fig. 13c). That a global 
bifurcation really occurred is proved by the changes in the asymptotic behav­
iors of the to branches involved in the heteroclinic loop, as it can be seen in 
the qualitative picture: After the bifurcation the stable set of the saddle con­
stitutes a closed invariant curve (a repelling saddle-focus connection), which 
did not exist before the bifurcation, while the involved unstable branch of the 
saddle tends to A before the bifurcations and tends to the attracting closed 
curve Ts after. Thus two invariant curves exists after the bifurcation: An 
attracting one Ts and an unstable saddle-focus connection, and a multistabil-
ity situation between the attracting set A and the closed curve Ts is created. 
Moreover, note that the unstable saddle-focus connection made up by the 
stable set of 5, and connecting the periodic points of S and C, bounds the 
basin of attraction of A, and separates the two basins of attraction of A and 

Such a bifurcation of the outer branches is often followed by a similar 
bifurcation of the inner ones. In fact, also the inner branches uoi of the stable 
set and ai of the unstable one approach each other (as some parameters 
are changed). At a new bifurcation, each stable branch ui^i of a periodic 
point of 5 merges with the unstable branch a i j of a different periodic point 
of the same saddle cycle, giving rise to a closed connection between the 
periodic points of S and the periodic points of the cycle C, shown in Fig. 13d. 
The effect of this second heteroclinic loop, or more often homoclinic tangle, 
are shown in Fig.l3e: A repelling closed curve Tu appears, replacing the 
saddle-focus connection (and replacing it in the role of separatrix between 
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the basins of attraction of A and Tg). Once more, the occurrence of this 
global bifurcation can be checked observing the behavior of the branches ai 
and oji involved in it. 

Summarizing, we have seen that the coexistence of two closed invariant 
curves, one attracting and one repelling, in discrete maps can be achieved 
by a double mechanism: Starting from a repelling cycle and a saddle cycle, 
a first saddle connection (or tangle) causes the appearance of the attracting 
one associated with an (unstable) heteroclinic connection saddle - repelling 
cycle that plays the role of separatrix of basins, which is then replaced by 
the second closed curve, repelling, whose appearance is associated with a 
second saddle connection (or tangle). 

The same mechanism can be observed starting with an attracting fc—cycle 
(bom together with a saddle), instead of a repelling one, i.e., a situation of 
bistability due to the coexistence of the attracting set A and a fc—cycle C. 
In such a case the sequence of bifurcations takes place in a "reversed" way: 
First the appearance of a repelling closed curve ^̂ ^ associated with a saddle-
attracting cycle connection and then the appearance of an attracting closed 
curve, replacing the heteroclinic connection. We use the qualitative figure 
14 to illustrate such a sequence. At the beginning, the attracting set A (a 
stable focus in Fig. 14a) coexists with an attracting focus cycle C of period 
k, born as node cycle via saddle-node bifurcation together with a saddle cy-

k 

cle S of the same period. The stable set W^ {S) = |J {cui^i U iU2,i) of the 
2 = 1 

saddle cycle separates the basins of attraction of the two attracting sets, A 
k 

and the cycle C. The unstable set W^ {S) = [j {ai^i U 0̂ 2,2) reaches the 
2 = 1 

attracting sets: More precisely, the outer branches 0:2,2 converge to the cycle 
C, whereas A is the cj-limit set of the points of the inner branches ai^i. Dif­
ferently from the case previously analyzed, as some parameters are changed 

k k 

first the inner branches a;i = IJ cui^i and ai = |J al,^ approach each other, 
2 = 1 ' 2 = 1 

merging at the bifurcation so giving rise to a heteroclinic loop, (see Fig. 14b), 
or heteroclinic tangle. This bifurcation gives rise to a repelling closed curve 
Tu (see Fig. 14c) which is the a-limit set of the points of the branches oji^i of 
the stable set of the saddle S. Also the asymptotic behavior of the branches 
ai^i is changed: Indeed with the branches ^2,̂  they give rise to a heteroclinic 
connection, reaching the periodic points of the attracting cycle C. The effect 
of this global bifurcation is a change in the basin of attraction of A: After the 
bifurcation it is bounded by the closed repelling curve Tu, so that it has been 
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significantly reduced. Moreover another invariant closed curve exists, made 
up by the unstable set of the saddle 5, which connects the points of the two 
fc—cycles. 

Figure 14: Qualitative representation of a sequence of global bifurcations 
leading to the appearance of two repelling closed curves, one repelling and 
one attracting. 

Stronger effects on the dynamics are obtained after a second heteroclinic 
loop, made up by the merging of the outer branches, shown in Fig.l4d. In­
deed, after such a global bifurcation we obtain the coexistence of three at­
tracting sets: The focus cycle C, the set A and an attracting closed curve 
Ts, whose appearance is associated with the heteroclinic loop, or tangle (see 
Fig.l4e). 

The repelling closed curve Tu bounds the basin of attraction of A; those 
of Ts and C are separated by the stable set of the saddle cycle S. The 
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branches of the unstable set have as cj-limit set the closed curve Tg on one 
side, and the attracting cycle C on the other side. 

We remark again that if the cycle involved in the global bifurcation to­
gether with the saddle is repelling (attracting) then the closed curve appear­
ing after the first step is attracting (repelling), together with a repelling (at­
tracting) saddle-connection. The second step involves the saddle-connection, 
after which two invariant closed curves still exist: We simply observe a 
change in their topological structure. 

The global bifurcations arising when cycles and invariant closed curves 
coexist will be the topic of the next sections. Before that, let us observe that 
if the repelling (or attracting) focus, considered in our examples, is replaced 
by a repelling (or attracting) node, then the same sequence of bifurcations 
can occur and the two curves appear more close to each other. In Fig. 15 a 

Figure 15: Qualitative representation of a mechanism leading to two invari­
ant closed curves associated either with a repelling node cycle (a,b,c) or an 
attracting node cycle (d,e,f). 
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qualitative draft is given: Fig.l5a-b-c refer to the repelling cycle whereas 
Fig.l5d-e-f to the attracting one. 

Moreover, if the node cycle is of very high period, then the saddle-node 
connection appearing at the first step looks like an invariant closed curve: In 
this case, the phase space recall in its shape that associated with a "saddle-
node" bifurcation of invariant closed curves. It is for this reason that we 
propose this mechanism as a generic sequence of global bifurcations giving 
rise to two coexisting closed curves. More theoretical studies need to con­
firm such a conjecture. 

1.8 Coexistence of Curves and Cycles and Their Interactions 
(Heteroclinic Loop) 

In this section we show a mechanism that causes the transition from an at­
tracting closed invariant curve, say Fa, with a pair of cycles of period k out­
side it, a saddle S and an attracting one, C, inside a wider attracting closed 
invariant curve, say F^. This transition takes place via the occurrence of 
two heteroclinic loops of the saddle S, first with the merging of the unstable 
branches Wf^(5) = Uai^i and the stable ones Wi{S) = Ucui^i and then via 
the merging of the unstable branches W2^{S) = Ua2,2 and the stable ones 
WiiS) = Uĉ 2,i. 

Similar bifurcation sequences have been observed in [4] and [5], asso­
ciated with a two-dimensional map having a fixed point which may lose 
stability via a supercritical Neimark-Sacker bifurcation and a supercritical 
pitchfork or flip bifurcation. Examples in economic dynamic modelling can 
be found, for instance, among Kaldorian discrete-time models (see [11], [6]). 
Further examples are given in several chapters of this book. 

Let us consider the situation described in Fig. 16. In Fig. 16a we have an 
attracting closed invariant curve Ta (which may also follow from the situa­
tion described in Fig. 11-13), and a pair of cycles that have been created via 
a saddle-node bifurcation outside Fa- Such external cycles do not form an 
heteroclinic connection, whereas the stable set of the saddle S bounds the 
basin of attraction of the related attracting fixed points Ci of the map T^. 
The unstable branches ai^i of Si tend to the attracting curve Fa, while the 
unstable branches a2,i of Si tend to the attracting cycle. 

At the bifurcation (Fig. 16b) we may have that the closed invariant curve 
Fa merges with the unstable branches W^ {S) = U^i^i and with the stable 
ones Wi{S) — Ua;î ^ as well, in a heteroclinic loop, or tangle, of the saddle 
5, causing the disappearance of the attracting closed invariant curve F^, and 
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leaving another closed invariant curve, see Fig. 16c, which is now the hetero-
clinic connection involving the saddle S and the related attracting cycle C. 
After the bifurcation of the heteroclinic loop a closed curve still exists, but 
differently from Ta it includes the two cycles on it (Fig. 16c). 

Figure 16: Qualitative representation of a mechanism causing the transition 
from an attracting closed invariant curve into a wider one. 

Starting from this situation, a second heteroclinic loop (or tangle) may 
be formed. The heteroclinic connection turns into a heteroclinic loop in 
which the unstable branches W2 {S) — Ua2,i merge with the stable ones 
^2^(5) = Ua;2,2 (see Fig.l6d). After the bifurcation a new closed attracting 
curve exists, say F^, and the two cycles are both inside F^ (Fig.l6e). The 
stable set of the saddle S separates the basins of attraction of the k attract­
ing fixed points d of the map T^. The unstable branches Uai^i tend to the 
attracting cycle while the unstable branches \Ja2^i tend to F5. 
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As mentioned before, in the case of discrete dynamical systems, the dy­
namic behaviors more frequently observed is such that the heteroclinic loop 
of Figs.l6b-d are replaced by homoclinic tangles. That is, a tangency occurs 
between the two manifolds involved in the bifurcation, followed by trans­
verse intersections and a tangency again on the opposite side, after which 
all the homoclinic points of the saddle 5, existing during the tangle, are de­
stroyed (several examples are shown in [4] and [5]). 

It is worth noticing that all the unstable periodic points associated with 
the first homoclinic tangle, due to Wf̂  (5) D Wf {S) i=- 0, are in the region 
interior to the set of periodic points of the saddle S, whereas in the strange 
repellor associated with the second homoclinic tangle, in which W2 [S) fl 
W2 [S) ^ 0, all the unstable cycles are "outside" the saddle cycle S. The 
existence of a strange repellor has noticeable consequences with regard to the 
trajectories starting on the area occupied by it, since they are characterized 
by a long chaotic transient. 

Notice also that before the first heteroclinic loop (tangle) of Fig. 16 we 
have two distinct attracting sets: Ta and the stable fc—cycle outside it; after 
the second one of Fig. 16, we have again two distinct attractors: F^, which is 
wider than FQ, and the fc—cycle inside it, while between the two heteroclinic 
loops only one attractor may survive, that is the fc-cycle. 

It is plain that this process may be repeated many times. In fact, by a 
saddle-node bifurcation a new pair of cycles may appear outside F ,̂, so that 
we are again in the situation of Fig. 16a, and the sequence of bifurcations 
described in Fig. 16 may repeat. 

We finally remark that the sequence of bifurcations here described, that 
cause the transition of a pair of cycles from outside to inside a closed invari­
ant curve, may occur through different mechanisms when the map is nonin-
vertible. In fact, in noninvertible maps the invariant curve may intersect the 
critical set LC_i, and when this occurs the periodic points of a cycle may be 
part inside and part outside the closed invariant curve (see [36], [17]). 

1.9 From an Invariant Closed Curve to Two Closed Curves 
(Double Homoclinic Loop) 

The last case we consider in this chapter is an example of double homoclinic 
loop that involves a repelling closed curve F̂ ^ and a saddle point S. Two at­
tracting sets, Ai,i = 1,2, are also coexisting, or cyclical ones. The repelling 
closed invariant curve F̂ ^ surrounds the two attracting sets Ai and the saddle 
S. The stable set of 5,1^*^(5'), formed by the union of the preimages of any 
rank of the local stable set, turns around infinitely many times approaching 
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the repelling curve Tu, as qualitatively shown in Fig. 17a. W^{S) consti­
tutes the boundary that separates the basins of Ai and A2. As the parameters 
are varied along the bifurcation path, the repelling closed invariant curve 
r ^ shrinks in the proximity of the saddle S, and consequently the stable 
and unstable sets of the saddle approach each other, until Tu disappears or, 
more precisely, becomes a chaotic repellor at the homoclinic tangency (see 
Fig. 17b) at which the unstable set of 5 , W^{S), has a contact with the sta-

Figure 17: Qualitative representation of a mechanism causing the transition 
from an invariant closed curve to two closed curves. 

ble one. This homoclinic tangency is followed by a transverse intersections 
of the two manifolds, W^ {S) and W^{S), and a dynamic scenario like the 
one shown in Fig. 17c is obtained, which is followed by another homoclinic 
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tangency (see Fig.lTd) leading to the disappearance of all the homoclinic 
orbits of S and of the chaotic repellor. After this second tangency, W^{S) 
is completely outside of the stable set, so that the stable and unstable sets 
are again disjoint, W^{S) n W^{S) = 0, and the preimages of the local 
stable manifolds reach two disjoint closed invariant curves which have been 
created around the two attracting sets Ai^ see Fig. 17e. 
If the map is symmetric with respect to the saddle S then the homoclinic 
tangencies of the manifolds occur at the same time (an example of business 
cycle model leading to such a bifurcation can be found in Chapter 8). In the 
case of a map without symmetry properties, we still may have a transition 
from the situation of Fig. 17(a) to that of Fig. 17(e), but the two homoclinic 
loops may occur separately, that is, first the manifolds W^^ (S) and Wf {S) 
are involved and then W^^ (5) and W^ (S), or vice-versa (an example of 
business cycle model leading to such a bifurcation can be seen in Chapter 
11). 
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2 Center Bifurcation for a Two-Dimensional 
Piecewise Linear Map 

Iryna Sushko and Laura Gardini 

2.1 Introduction 

It is already well known that the main bifurcation scenario which can be re­
alized considering a business cycle model in dynamic context, is related to 
a fixed point losing stability with a pair of complex-conjugate eigenvalues. 
In the case in which such a model is discrete and defined by some smooth 
nonlinear fianctions, the Neimark-Sacker bifiarcation theorem can be used, 
described in the previous chapter. While for piecewise linear, or piecewise 
smooth, functions which are also quite often used for business cycle mod­
eling, the bifurcation theory is much less developed. The purpose of this 
chapter is to describe a so-called center bifurcation occurring in a family 
of two-dimensional piecewise linear maps whose dynamic properties are, to 
our knowledge, not well known. Namely, we shall see that in some similarity 
to the Neimark-Sacker bifurcation occurring for smooth maps, for piecewise 
linear maps the bifurcation of stability loss of a fixed point with a pair of 
complex-conjugate eigenvalues on the unit circle can also result in the ap­
pearance of a closed invariant attracting curve homeomorphic to a circle. 
However, differently from what occurs in the smooth case, the closed in­
variant curve is not a smooth, but a piecewise linear set, appearing not in a 
neighborhood of the fixed point, as it may be very far from it. In fact, we 
shall see that the position of the closed invariant curve depends on the dis­
tance of the fixed point from the boundary of the region in which the linear 
map is defined (i.e., from what we shall call critical line LC-i), 

We shall describe the global dynamics of a piecewise linear map at the 
moment of the center bifurcation and after it, comparing the cases in which 
the map is invertible and noninvertible. For this study we consider a family 
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of two-dimensional piecewise linear maps F : M^ —> M^ given by 

Fi{x,y), {x,y) e i?i; 
F2{x,y), {x,y) e R2] F:(x,^)K.{ ^^S!'::M!'!jf^^: (1) 

where 

p - ( X \ f {c + a)x-ay 

Ri = {{x,y) :y <x + d/a}; 

X \ f ex — d-\- b{x + d/a — y) 
y J "^ \ ^ 

R2 = {{x,y) :y> x + d/a}. 

F2 

For convenience, as it will be explained below, we shall assume that the real 
parameters a,b, c and d satisfy the following conditions: 

a > 0, - ( c + l ) / 2 < 6 < 1, 0 < c < 1, d > 0. (2) 

Our choice of the map F is due to the fact that for 6 = 0 it is a piecewise 
linear Hicksian multiplier-accelerator model with a lower constraint d, called 
'floor', introduced in Chapter 3 and described also in Chapter 6 (the case in 
which an upper constraint, called 'ceiling', is not involved in asymptotic 
dynamics). As we shall see, in such a case we have a particular kind of 
noninvertibility in which a whole half-plane R2 is mapped into one straight 
line, so that the map is of so-called {ZQ — Z^ — Z\) type. While for 6 7̂  0 
the map F can be either invertible (for h > 0), or noninvertible (for 6 < 0) of 
{Zo — Z2) type, so that we can compare the results of the center bifurcation 
in these cases. 

The map F is given by two linear maps Fi and F2 defined, respectively, 
below and above the straight line 

LC-i = {{x,y) :y = x-\- d/a] . 

The image of this line by F is called critical line LC or LCQ'. 

LCo - F (LC_i ) - {(x, y):y={x + d)/c} , 

and its image Ld = F'^{LCo), i = 1,..., which is a curve made up by a 
finite number of linear segments, is also called critical line fbf higher rank). 
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Although this notation is more properly used when the map is noninvertible, 
we keep it in any case. As stated above, invertibility is controlled by the 
parameter b. For 6 > 0 a point on the right of LC has a unique rank-1 
preimage by F^^ (giving a point in i?i), while a point on the left of LC has 
a unique rank-1 preimage by F^^ (giving a point in R2). Instead, for 6 < 0 
a point on the left of LC has no rank-1 preimage, while a point on the right 
of LC has two distinct rank-1 preimages: One preimage by F^^ (giving a 
point in i?i), and the other by F^^ (giving a point in i?2)-

The map F has a unique fixed point (x*, ?/*) = (0,0) which is the fixed 
point of the map Fi , while the fixed point of the map F2 belongs to the main 
diagonal of the phase plane, which is in i?i, so that it is not a fixed point of 
F. Using eigenvalues Ai,2 of the Jacobian matrix of the map Fi , given by 

Ai,2 = {a + c± v/(a + c ) 2 - 4 a ) / 2 , (3) 

we get that for the parameter range given in (2) the fixed point (x*, y*) is 
attracting for a < 1 and repelling for a > 1, being a node for (c + a)^ > 4a 
and a focus for (c 4- a)^ < 4a. 

Thus, in the range (2) the fixed point loses stability at a = 1 with a pair 
of complex-conjugate eigenvalues crossing the unit circle, so that a center bi­
furcation occurs, which is the main interest of the present chapter. It is clear 
that in a piecewise linear map the local bifurcation of a fixed point depends 
only on a corresponding linear map (here Fi), while the global behavior in 
the phase space depends on the interaction between the other linear maps 
(which may give rise to any kind of dynamics). In our case, in the region R2 
the map F2 is defined, so that although the map F has no fixed points in that 
region, the eigenvalues of F2, say /i^ 2̂  ^^^ important in the global behavior 
of F . We have 

/ii,2 = {b + c± v/(& + c ) 2 - 4 6 ) / 2 , 

so that for 0 < c < 1 the fixed point of the linear map F2 is: 

• a repelling node for (c + 6)^ > 46 and 6 > 1; 

• an attracting node for (c + 6)^ > 46 and - ( c + l ) / 2 < 6 < 1; 

• a flip saddle forb < - ( c + l ) /2 ; 

• a focus for (c + 6)^ < 46, attracting for 0 < 6 < 1 and repelling for 
6 > 1. 
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Here we are interested in the study of the dynamics after the center bifiirca-
tion of (x*, y*), when the fixed point is an unstable focus and the dynamics 
are bounded. To this purpose we restrict our analysis to the range of b for 
which the fixed point of the map F2 is stable, that i s — ( c + l ) / 2 < 6 < l . 
Indeed, when the fixed point of the map F2 is unstable we may have diver­
gent trajectories: If, for example, 6 > 1, then for a > 1 (when the fixed point 
of F is unstable), we have only divergent dynamics, because the two linear 
maps are both expanding, so that any combination of the two maps is also 
expanding and no stable cycle can exist. Also for 6 < —(c 4-1)/2, when the 
fixed point of the map F2 is a flip saddle (i.e., with one negative eigenvalue), 
we may have both bounded and unbounded trajectories. This explains our 
choice of the parameter range given in (2). 

It is clear that when the fixed point (x*,?/*) of F is stable then it is 
globally stable (because for the range (2) the two linear maps are both con­
tracting, so that any combination of the two maps is also contracting and a 
repelling cycle cannot exist). While when the fixed point (x*,y*) of F is 
unstable (a > 1) we can have bounded dynamics only as long as it is a fo­
cus, i.e. for (c + a)^ < 4a (because when it is a repelling node then all the 
trajectories are divergent, except for the fixed point). 

As remarked above, at a = 1 the fixed point (x*, 7/*) undergoes the cen­
ter bifurcaiton, and the dynamic behavior occurring at this particular bifur­
cation value is described in the next section. We shall see that independently 
on the sign of b (invertible or non invertible map) and independently on the 
type of eigenvalues of the linear map F2, the map F admits an invariant re­
gion, whose size depends on the distance of the fixed point from the critical 
lines. We shall also comment the global behavior of F (i.e. the dynamics 
of points outside the invariant region). Then, in the next sections, we shall 
describe the global behavior of F after the center bifurcation, showing that 
only the boundary of the region remains invariant, being an attracting closed 
curve C, and the dynamics of F on C are either periodic, or quasiperiodic, 
depending on parameters. 

2.2 Dynamics at the Bifurcation Value {a = l) 

In this section we first describe the phase portrait of the map F exactly at 
the bifurcation value a = 1. In such a case the fixed point (x*, y*) is locally 
a center: The map Fi is defined by a rotation matrix (whose determinant 
equals 1), and it is characterized by a rotation number which may be rational, 
say m/n, or irrational, say p. It is clear that locally, in some neighborhood 
the fixed point, the behavior of F is that of the linear map Fi, thus we have 
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a region filled with invariant ellipses, each point of which is either periodic 
of period n (in case of a rational rotation number m/n) or quasiperiodic (in 
case of an irrational rotation number p). Now the problem we are faced on 
is to answer the following questions: How big is this region? What is its 
boundary? What occurs to points outside it? We answer distinguishing the 
two different cases on the kind of rotation number (rational or irrational). 

The invariant region we are looking for clearly is completely included in 
the region i?i (i.e., the region of definition for Fi), and it is given by the set of 
points of i?i whose trajectories entirely belong to i?i. Thus it must include 
all the ellipses (invariant for Fi) which are completely included in i?i, so 
that such a region must necessarily include a region bounded by an invariant 
ellipse which is tangent to the straight line LC-i. So we can immediately 
answer to some of the previous questions in the case of an irrational rotation 
number. 

If Fi is defined by a rotation matrix with an irrational rotation number p, 
which holds for a = 1, and 

c = c/= 2COS{2TTP)-1, (4) 

then any point from some neighborhood of the fixed point is quasiperiodic, 
and all the points of the same quasiperiodic orbit are dense on the invariant 
ellipse to which they belong. (Note that for c > 0 we have p < 1/6). In 
such a case an invariant region Q exists in the phase space, bounded by an 
invariant ellipse £ of the map Fi , tangent to I/C_i, and, thus, also tangent 
to LCi, 2 = 0 ,1 , . . . . We can state the following 

Proposition 1. Let a = 1^ c = Cp given in (4). Then in the phase space 
of the map F there exists an invariant region Q, bounded by an invariant 
ellipse £ of the map Fi tangent to LC-i. Any initial point (xo,2/o) € Q 
belongs to a quasiperiodic orbit dense in the corresponding invariant ellipse 
ofFi. 

Fig.l shows the invariant region Q of the map F at a = 1, c = 0.4, 
d = 10. (Indeed, because of numerical precision, we cannot show a true 
quasiperiodic case, but only its approximation by a periodic case of some 
high period). 

It is clear that such a region also exists (i.e., the region Q defined above) 
and is invariant, when the map Fi is defined by a rotation matrix with a 
rational rotation number, but in such a case Q is not the largest invariant 
area. In fact, there are also other points outside the tangent ellipse £ which 
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are periodic with an orbit completely included in the region Ri. For the sake 
of clarity we shall show this via an example. 
So let Fi be defined by a rotation matrix with a rational rotation number, 
which holds for a = 1, and 

c = a 
def ;^/^ = 2cos(27rm/n) - 1, (5) 

obtained from Re Ai,2 = cos(27rm/n), then any point in some neighborhood 
of the fixed point is periodic with rotation number m/n and all the points of 
the same periodic orbit are located on an invariant ellipse ^ 

Figure 1: The invariant region Q of the map F at a = 1, c = 0.4, d = 10. 
Fi is associated with an irrational rotation number 

For short we call m/n-cycle a periodic orbit of period n with the rota­
tion number min. We can construct the invariant region, say P, existing for 
a = 1 in the phase space by using as an example the case m/n — 2/13 
(see Fig.2). As noticed above, the region P must include all the invariant 
ellipses of the map Fi which are entirely located in the region R\. That is, P 
includes a region bounded by an invariant ellipse, say Z\, tangent to LC-i. 
However there are other periodic orbits belonging to i?i : Note that there 
exists a segment Si C LC-i, which we call generating segment, such that 
its end points belong to the same m/n-cycle p = {pi, ...,Pn} located on 
an invariant ellipse of Fi which crosses LC-i, denoted £2 (note that £2 is 

^Note that for c > 0 we have m/n < 1/6. 
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not invariant for the map F). In our example Si = [pi,P7] C LC-i, and 
P = {Pij -"^Pis} is the corresponding 2/13-cycle. Obviously, the generat­
ing segment ^ i and its images by Fi , that is the segments 5^+1 = Fi{Si), 
Si-^i C LCi-i = Fi{LCi-2), ^ = 1, •.., 12, form an invariant polygon P 
with 13 edges completely included in the region i?i, inscribed in E2 and 
whose boundary is tangent to £1. 

10 X 

Figure 2: The invariant polygon P of the map F at a = 1, c = 
2cos(27rm/n) — 1, d = 10 and m/n = 2/13, so that Fi is defined by a 
rotation matrix with the rotation number 2/13. 

Such a polygon P can be constructed for any rotation number m/n. 
Summarizing we can state the following 

Proposition 2. Let a = 1, c = Cr^jn given in (5). Then in the phase 
space of the map F there exists an invariant polygon P with n edges whose 
boundary is made up by a 'generating segment' Si C LC-i and its n — 
1 images SiJ^i = Fi{Si) C LCi-i, ^ — l , . . . ,n— 1. Any initial point 
(^0? yo) ^ P is periodic with rotation number m/n. 

To end our description of the dynamics at the bifurcation value a = 1, 
we have to clarify the behavior of a trajectory with an initial point (XQ, yo) 
which does not belong to the invariant region (either P or Q). It is easy to 
see that there are the following possibilities: 

• lfb = 0 then the eigenvalues of the Jacobian matrix of F2 are //j = c, 
jji2 = 0, so that any initial point (XQ, yo) ^ R2 is mapped by F2 in one 
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step into a point of the straight line LCQ- Then in the case of a rational 
rotation number it is mapped in a finite number of steps exactly to the 
boundary of the invariant region P , and ultimately it will be periodic, 
while in case of an irrational rotation number the generic trajectory 
tends to the boundary of the invariant region Q. 

• For 0 < 6 < 1 the fixed point of the map F2 is an attracting node, the 
map F is invertible and, thus, the trajectory of any point (XQ, yo) ^ ^2 
is attracted to the boundary of the invariant region. 

• If—(c+l)/2 < 6 < 0 then F2 is a noninvertible map with an attracting 
fixed point in Ri. It can be shown that (XQ, yo) ^ R2 is mapped in a 
finite number of steps to the interior of the invariant region. 

We already remarked that in the case & > 1 the fixed point of the map 
F2 is either a repelling focus (for (c + 6)^ < 46), or a repelling node (for 
(c + 6)^ > 46), and a trajectory of the map F with initial point (XQ, t/o) not 
belonging to the invariant region is divergent. While for 6 < — (c + l ) /2 , 
the fixed point of F2 is a flip saddle, and in such a case there may be initial 
points having divergent trajectories as well as points mapped to the interior 
of the invariant region. However, as already noticed above, the following 
consideration is restricted to the range —(c -1-1)/2 < 6 < 1, so that the fixed 
point of F2 is attracting. 

The dynamics of the map F at the bifurcation value considered in this 
section give the name to the center bifurcation, and we notice again that the 
magnitude of the invariant area ( P or Q) depends on the distance of the fixed 
point from the critical line. But we are mainly interested in the description 
of what occurs 'after', for a > 1 : We shall see that an invariant region 
survives after the bifurcation, that is for a = 1 + e for some sufficiently small 
e > 0. However, among all the infinitely many invariant curves existing at 
the bifurcation only one survives, modified, after the bifurcation: The one 
which is farthest from the fixed point and gives the boundary of the invariant 
region. That is, the boundary of the 'old' invariant region is transformed into 
an attracting closed invariant curve on which the dynamics of F is reduced 
to a rotation with rational or irrational rotation number. 

2.3 Noninvertibility of (ZQ -ZOO- Zi) Type (a > 1,6 = 0) 

In order to investigate what occurs after the center bifurcation, for a > 1, 
we consider first the map F given in (1) at 6 = 0. It was already mentioned 
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that in such a case any initial point {xo.yo) e R2 is mapped by F2 in one 
step into a point of the critical line LCQ- All consequent iterations by F2 
give points on this straight line approaching the attracting fixed point of F2 
(which belongs to i?i), until the trajectory enters Ri where the map Fi is 
applied. Then the trajectory begins to rotate in the couterclockwise direction, 
moving away from the unstable focus (a:*,y*), and in a finite number of 
iterations it enters the region R2 where the map F2 is applied again. Thus, 
for an orbit the map F2 plays the role of a return mechanism to the region 
i?i, and the dynamics are bounded, as longs as the fixed point of F is a 
focuŝ  Moreover, due to the zero eigenvalue of the map F2, the dynamics 
of F are reduced to a one-dimensional subset C of the phase space which is 
obtained iterating a suitable segment of LC-i. It is easy to see that after a 
finite number of iterations of LC_i we necessarily get a closed area whose 
boundary is a closed invariant curve. An example is shown in Fig.3: The 
closed invariant curve C is obtained by 7 iterations of the segment [ao, bo] of 
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Figure 3: The attracting closed invariant curve C of the map F at a = 1.5, 
6 = 0,0 = 0.15,^=10. Points of the attracting and saddle cycles of period 
7 are shown by black and white circles, respectively 

It is clear that any point with initial condition in i?i, except for the fixed 
point, has a trajectory which spirals away from the fixed point and enters the 
region R2 in a finite number of steps, then application of F2 gives a point 
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of LCo, which in a finite number of iterations is mapped into a point of 
the segment [ai, 61] of LCQ- This proves that the closed curve C is globally 
attracting for F, except for the fixed point. 

We are now interested in the dynamics of F on C. First note that the 
map F is orientation preserving on C: It can be easily shown that for any 
three ordered points u,v^w € C, their images by F are ordered in the same 
way on C It follows that we cannot have any folding which means that the 
restriction of F on C is invertible and, thus, chaotic dynamics are impossible 
(indeed, it becomes possible in the case c < 0 when there are segments of 
C which are folded, but we don't consider this case here). Therefore, we 
conclude that the dynamics of F on C are either periodic, or quasiperiodic. 
If F has an attracting cycle of period n, it has also a saddle cycle of the same 
period. Fig.3 shows an attracting cycle (node) and a saddle cycle of period 
7, and we remark the double meaning of the closed invariant curve: It is the 
saddle-connection made up of the closure of the unstable set of the saddle 
(approaching the points of the node), and also the union of a finite number 
of critical segments. However, in a certain sense the phase portrait of the 
map F at a > 1 is similar to that of a smooth map after the Neimark-Sacker 
bifurcation: Namely, there exists a closed invariant attracting curve C on 
which the map F is reduced to a rotation with rational or irrational rotation 
number. In contrast to the smooth case, for the map F such a curve is not 
smooth, but piecewise linear, and it appears not in the neighborhood of the 
fixed point, but far enough from it: Its location depends on the position of 
the critical line LCQ. 

The considerations given above can be summarized as follows: 

Proposition 3. Let a > 1,6 = 0, {c-\-a)'^ < 4a. Then in the phase space 
of the map F there exists a globally attracting invariant closed curve C which 
is a broken line made up by a finite number of images of a segment belonging 
to LC-i. The dynamics of F onC are either periodic, or quasiperiodic. 

Fig.4 shows a two-dimensional bifurcation diagram in the (a, c) - para­
meter plane in which the regions corresponding to different attracting cycles 
of period n < 32 are shown by different gray tonalities. If the {a^c) - pa­
rameter point belongs to an n-periodicity region, then the map F has an 
attracting and saddle cycles of period n, located on an attracting closed in­
variant curve, as stated in proposition 3. 

Let us give some comments on the structure of the bifurcation diagram 
shown in Fig.4. Similar bifurcation diagrams for piecewise linear and piece-
wise smooth dynamical systems were described in Gallegati et al, 2003, 
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Hao Bai-Lin, 1998, Sushko et aL, 2003, Zhusubaliyev and Mosekilde, 2003. 
We can note that locally, near the bifurcation line a = 1, the periodicity 
regions look like the Amol'd tongues described for smooth maps when the 
Neimark-Sacker bifurcation occurs (although the dynamics are different in 
the phase space). 

c=2Va'- a 

divergence 

Figure 4: Two-dimensional bifurcation diagram of the map F in the (a, c)-
parameter plane at h = {)^ d = IQ. Regions corresponding to attracting 
cycles of different periods n < 32 are shown by various gray tonalities. 

It is worth to note that the summation rule which holds for the rotation 
numbers in the general case with smooth maps, also holds in the piecewise 
linear case. That is, if m i / n i and m^jn^ are two rotation numbers asso­
ciated with the parameter c\ and C2, respectively, at a = 1, then also the 
rotation number (mi + rn2)/{ni + 712) exists in between. The white region 
in Fig.4 is related either to attracting cycles of higher period n > 32, or to 
quasiperiodic trajectories. Indeed, similar to the smooth case, the parameter 
values corresponding to quasiperiodic trajectories form curves located be­
tween the two nearest periodicity regions and issuing from the bifurcation 
line a = 1 at points corresponding to irrational rotation numbers. The so-
called 'sausage' structure of the periodicity regions with several subregions 
is typical for piecewise smooth and piecewise linear systems (see, e.g., Hao 
Bai-Lin, 1998, Sushko et aL, 2003, Zhusubaliyev and Mosekilde, 2003). In 
fact, different subregions of the same periodicity region of the map F are 
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related to different compositions of the maps Fi and F2 which are appHed to 
get the corresponding cycle (attracting or saddle). 

The difference between two-dimensional bifurcation diagrams for a piece-
wise linear and a smooth map in the case of a center bifurcation or Neimark-
Sacker bifurcation, respectively, consists not only in the qualitative shape of 
the periodicity regions (the 'sausage' structure mentioned above), but also 
in the kind of bifurcations associated with the boundaries of these regions. 
It is known that in the smooth case the Arnol'd tongues are bounded by 
curves corresponding to saddle-node bifurcation and either period-doubling, 
or Neimark-Sacker bifurcation occurring for the related cycle. While for 
piecewise linear maps such boundaries are related to border-collision bifur­
cations (see Nusse and Yorke, 1992). In the next section we describe the spe­
cial case associated with the bifurcation value a = 1, while here we describe 
those associated with the boundaries of the regions for a > 1. The border-
collision bifurcation, related to the boundary of a periodicity region, involves 
the merging of the corresponding attracting and saddle cycles, similar to the 
smooth saddle-node bifurcation, but it is not related to one eigenvalue which 
become in modulus equal to 1. Instead, it is related to a collision of points 
of these cycles with the critical line LC_i , i.e. the border separating the re­
gions of different definitions of the map. The waist points of the 'sausage' 
structure correspond to particular border-collision bifurcations. 

The effects of a border-collision bifurcation can be better seen from the 
dynamics occurring in the phase space (and some times they cannot be un­
derstood from a bifurcation diagram). For example, let us add some obser­
vations related to the number of the segments of critical lines which form an 
attracting invariant closed curve C at a > 1, which also may change when 
a periodic point crosses though LC-i. If we take the (a, c)-parameter point 
inside the leftmost subregion of a periodicity region shown in Fig.4, related 
to an attracting m/n-cycle, then the invariant attracting closed curve C is 
made up by exactly n segments of the critical lines LCi, i = 0, l , . . . ,n — 1. 
It can be shown that in such a case 2 points of the corresponding attracting 
cycle belong to the region R2 and n — 2 points are in i?i. Fig.5 presents 
an example in the case m/n = 2/13, when the curve C is made up by 13 
segments of critical lines. While if the (a, c)-parameter point moves to the 
next subregions, the number of periodic points in R2 first increases, and the 
number of segments of C decreases (see Fig.6 which shows an example of C 
made up by 7 segments in case m/n = 5/36), but then, if the (a,c)-point 
continues to move to the right inside the periodicity region, some periodic 
points enter Ri again, so that the numbers of segments of C increases again. 



2 Center Bifurcation for a Piecewise Linear Map 61 

Figure 5: The attracting closed invariant curve C of the map F made up 
by 13 segments, in the case m/n = 2/13, at a = 1.015, c = 0.13613, 
d = 10,6 = 0. Points of the attracting and saddle cycles are shown by black 
and white circles, respectively 

30 X 

Figure 6: The attracting closed invariant curve C made up by 7 segments, in 
the case m/n — 5/36, at a — 1.68, c = 0.15, d = 10, 6 = 0. 
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2.4 Border GoUision Bifurcations 

In the previous section we have presented the bifurcation diagram in the case 
6 = 0 (Fig.4) and in the next two sections we shall consider those related with 
6 ^ 0 . We shall see that when the parameter a belongs to a neighborhood of 
a = 1, i.e., for a = 1 + e for some sufficiently small e > 0, the structure 
of the periodicity regions is similar for all the range —{c-\- l)/2 < 6 < 1, 
and we have a qualitatively similar behavior. That is, the effect of a center 
bifurcation is the appearance of an attracting closed invariant curve C which 
is a broken line made up by a finite number of segments when 6 = 0, or 
by infinitely many segments when 6 7̂  0. Here we describe the effect of the 
special kind of border collision bifurcation related to a center bifurcation. In 
Section 2.2 we have described the dynamics at the bifurcation value a = 1, 
which holds for any value of 6. Starting from a = 1 let us increase a little bit 
the value of a, entering a periodicity tongue. 

a=l 

Figure 7: Qualitative figure of the border-collision bifurcations with few 
points of the saddles and the attracting nodes shown by white and black 
circles, respectively. 

To fix the ideas let us consider the case m/n = 2/13 used also in Section 
2.3. Then the position of the periodic points of the node and the saddle of 
period 13 at a point A = (a, c) of the tongue shown in Fig.7 is qualitatively 
the same as the one shown in Fig.5 (also the qualitative shape of the closed 
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curve C is similar, even if the segments constituting C become infinitely many 
when 6 7̂  0). Thus, among the infinitely many periodic points existing 
at the bifurcation value on a segment of LC_i, only two cycles survive, 
a saddle and a node, having points which are not close to each other. As 
already remarked in the previous section, only 2 points of the corresponding 
attracting cycle belong to the region i?2 and n — 2 points are in Ri, and only 
1 point of the corresponding saddle cycle belongs to the region i?2, as it is 
qualitatively shown in Fig.7 for the parameter point A. Then the effects of 
the border collisions occurring at the boundaries of the tongue can be easily 
shown moving the parameter point from Ato B and from A to C. As the 
point A moves towards B, then the points of the saddle cycle moves toward 
those of the node giving the merging of only one pair of points, as shown 
in the qualitative picture, which is exactly what occurs in a standard border-
collision bifurcation. Thus, periodic points merge and disappear (even if 
no eigenvalue is equal to 1) when two of them merge on LC-i. A similar 
behavior, but with the merging of a different pair of periodic points on I/C_i, 
occurs when we move the parameter point from A to C. 

2.5 Center Bifurcation for 6 > 0: Invertible Case 

In this section we describe the center bifurcation which occurs for the fixed 
point of the map F given in (1) when the map is invertible, that is for 6 > 0. 
As already mentioned in the previous sections we assume a > l , 0 < c < l 
and (c + a)^ < 4a, so that the fixed point of F is an unstable focus. The 
fixed point of the map F2, belonging to i?i, is unstable for 6 > 1 (focus for 
(c+6)^ < 46 or node for (c+6)^ > 46) and in these cases all the trajectories 
of the map F (except for the fixed point) are diverging. Thus, we consider 
the range 0 < 6 < 1. 

Let a = l + £,s > 0. The dynamics of F in such a case can be described 
as follows: A trajectory with an initial point in some neighborhood of the 
unstable focus (x*, ?/*) rotates under the map Fi in the couterclockwise di­
rection, moving away from (x*,y*), and in a finite number of iterations it 
necessarily enters the region R2 where the map F2 is applied. Then the tra­
jectory under the map F2 moves back to the region i?i (given that F2 has the 
attracting fixed point in jRi). 

For some sufficiently small £: > 0 the dynamics of F are bounded. To 
see this first note that for b close to 0 the above statement is obvious. For the 
values of b close to 1, note that at a = 1, 6 = 1 we have ^1 = ^2, so that 
if 6 -^ 1_ and a -^ 1^ then the distance between the fixed points of Fi and 
F2 tends to 0, so that choosing e small enough we get a bounded invariant 
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region. In other words, we can say that the invariant region {Q or P , as 
described in propositions 1 and 2), existing in the phase space for a = 1, 
exists also after the center bifijrcation, but now an inner point of this region, 
being no longer periodic or quasiperiodic, is attracted from the boundary, 
as well as an initial point outside the invariant region. Note that due to the 
invertibility of F a trajectory cannot jump from inside the invariant region to 
outside and vice versa. For a sufficiently small e the boundary is an attracting 
closed invariant curve C, to which the dynamics of F are reduced. It can be 
shown that for the parameter range considered, the restriction of F to C is 
invertible, so, as in the previous case (6 = 0), the trajectory on C is regular. 
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Figure 8: The attracting closed invariant curve C at a = 1.1^ h = Q.l^ 
c = 0.25, d — 10. Points of the attracting and saddle cycles of period 7 are 
shown by black and white circles, respectively 

Fig. 8 presents an example of attracting closed invariant curve C on which 
the map F is reduced to a rotation with the rotation number 1/7. That is, 
there exist an attracting and a saddle cycle of period 7, so that the curve C is 
formed by the closure of the unstable set of the saddle 7-cycle, approaching 
the points of the attracting 7-cycle (i.e. a saddle-connection). Differently 
from the case 6 = 0 in which the curve is made up by a finite number of 
segments (belonging to the images of LC_i), now it can be shown that there 
are infinitely many comer points on C, so that it consists of infinitely many 
linear segments approaching the periodic points of the attracting node. 
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A typical two-dimensional bifurcation diagram of the map F in the (a, c)-
parameter plane for a fixed values of 6 is shown in Fig.9 where 6 = 0.1. We 
notice that as long as the fixed point of the map F2 is an attracting node, that 
is for c > c* = 2Vb — 6, which at 6 = 0.1 becomes c > c* ^ 0.5325, 
the (a, c)-bifurcation diagram looks similar to that of the case 6 = 0 (see 
Fig.4), and we conjecture that complex dynamics can not occur. While for 
c < c* the periodicity regions are stopped on the right by the gray region 
denoting divergence to infinity, and, as we shall see below, chaotic dynamics 
may occur, as well as multistability. 

Figure 9: Two-dimensional bifurcation diagram of the map F in the {a,c)-
parameter plane at h — 0.1, d = 10. Regions corresponding to attracting 
cycles of different periods n < 32 are shown by various gray tonalities. 

It is worth to notice that the periodicity tongues shown in the two - di­
mensional bifurcation diagram correspond to attracting cycles, but they are 
not necessarily related to closed invariant curves, made up by the saddle-
connection. Indeed, we know that for values of a close to 1 the closed in­
variant curve C exists but increasing a it may be destroyed. Thus let us first 
give here the possible mechanisms leading to the destruction of a closed in­
variant curve C which, in a certain sense, are similar to those occurring in the 
smooth case (to compare, see Aronson et al., 1982): 

• A border-collision bifurcation occurring when a point of the attracting 
cycle and a point of the saddle cycle collide and merge on LC-i and, 
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as a result, these cycles disappear (Nusse, Yorke, 1992, Banerjee et al, 
2000). This bifurcation often occurs on the boundary of a periodicity 
tongue, as already described in the previous section. 

• The attracting n-cycle existing on C may lose stability via flip bifurca­
tion. The result of the flip bifurcation in the piecewise linear case (see 
Maistrenko et al, 1998) in general is the appearance of a 2n-cycle of 
chaotic attractors (i.e., cyclic chaotic attractors made up of 2n disjoint 
pieces), which becomes a one-piece chaotic attractor via a sequence 
of pairwise merging of the pieces. 

• The attracting n-cycle (node) existing on C may become a focus. In­
deed, in such a case we can say that a closed invariant curve still exists 
but is no longer homeomorphic to a circle. Thus this bifurcation de­
notes a qualitative change of the structure of the invariant curve, but 
not its disappearance. However, we list it here, as some other authors 
do, denoting the change of saddle-node connection into saddle-focus 
one. The saddle-focus connection may be destroyed by a center bifur­
cation of the n-focus, giving rise to n cyclical closed invariant curves. 
That is, the closed curve may be destroyed by a center bifurcation oc­
curring in the map F'^. 

• The saddle n-cycle may undergo a homoclinic bifurcation. That is, 
the closed invariant curve is destroyed and replaced by a homoclinic 
tangle with infinitely many points homoclinic to the saddle (so that 
also a chaotic repellor exists, made up of infinitely many repelling 
cycles). As we shall see in the example given below, such a homoclinic 
tangle may occur inside a periodicity tongue. 

In the bifurcation diagram shown in Fig.9 it can also be seen that near 
the line a = 1 the bifurcation structure is similar to the case 6 = 0, but for 
larger values of a the dynamics become more complicated: As the numerical 
simulation shows, the periodicity regions can be overlapped, so that the map 
F can have two coexisting attracting cycles, as well as an attracting cycle 
coexisting with a chaotic attractor. To give an example, let us enlarge a part 
of the bifurcation diagram where we have bistability (see Fig. 10 with an 
enlargement of the window indicated in Fig.9, where one of the bistability 
regions is dashed). 

To see which kind of bifurcation occurs when the (a, c)-parameter point 
crosses the bistability region, let us fix a = 2.07, 6 = 0.1 and increase the 
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value of c (the corresponding parameter path is indicated by the straight Hne 
with an arrow in Fig. 10). The phase portrait of the map F at c = 0.07, and its 
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Figure 10: The enlarged window of Fig. 9; A dashed region corresponds to 
an attracting 1-cycle coexisting with another attractor (regular or chaotic). 

Figure W: An attracting closed invariant curve C at a = 2.07, b = 0.1, 
c — 0.07, d = 10. Points of the attracting and saddle cycles of period 7 are 
shown by black and white circles, respectively. 

enlarged part are shown in Figs. 11 and 12(a): An attracting closed invariant 
curve is formed by the unstable set of the saddle 7-cycle, approaching the 
points of the attracting 7-cycle, which is the only attractor of the map F. 
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Fig. 12(a) shows also some branches of the unstable set of the saddle, so that 
it can be seen that stable and unstable sets have no intersection. 

Figure 12: The enlarged window of the phase portrait of F shown in Fig. 11 
at a = 2.07, b = 0.1, d — 10 and (a) c = 0.07 (before the intersection 
of the stable and unstable sets of the T-saddle) (b) c = 0.074 in (after the 
homoclinic bifurcation of the saddle). 

Increasing the value of c, at c ?̂  0.0715 the first homoclinic bifurcation 
(or homoclinic contact, the analogue of a homoclinic tangency in smooth 
maps) occurs for the saddle cycle. After the tangency, the attractor of the 
map F is still the 7-cycle node, but the closed invariant curve no longer 
exists: It has been destroyed by the homoclinic tangency and it has been re­
placed by the homoclinic tangle, with a chaotic repellor. Fig. 12(b) presents 
the enlarged part of the phase space of the map F at c = 0.074 during the 
homoclinic tangle. In order to remark the role of the chaotic repellor and 
the complex structure of the stable set of the saddle, we show the basins 
of attraction of the 7 fixed points for the map F^. For the parameter val­
ues used in Fig. 12(a), when the unstable set of the saddle gives rise to the 
closed invariant curve, the stable set of the saddle has a simple structure, and 
separates the basins (the 7 invariant regions) in a simple way, as shown in 
Fig. 13(a). While for the parameter values used in Fig. 12(b), when the unsta­
ble set of the saddle intersects the stable one and the closed invariant curve 
no longer exists, the stable set of the saddle has a complex structure, and sep­
arates the basin in a complex way, as shown in Fig. 13(b). It is worth to note 
that the map here is invertible, so that the 7 basins, although with complex 
structure, must be simply connected (in the next section we shall see instead 
discoimected basins in the noninvertible case). 
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On further increasing of the parameter, atc^ 0.0777 the last homocHnic bi­
furcation (or homocHnic tangency) occurs for the saddle 7-cycle (the related 
phase portrait is shown in Fig. 14(a)). This value of c approximately corre-

Figure 13: Baisns of attraction of the 1 fixed points of the map F^ (i.e. the 
7-cycle of F) at a = 2.07, b = 0.1, d = 10 and c = 0.07 in (a); c = 0.074 
in (b). 

sponds to the crossing of the lower boundary of the bistability region, so that 
after this bifurcation the map F has the attracting 7-cycle coexisting with a 
chaotic attractor: Fig. 14(b) presents an enlarged part of the phase portrait of 
F at c = 0.0778, where the basins of two attractors are shown by different 
gray tonalities. The whole phase portrait is shown in Fig. 15(a). Note that 
after the last homocHnic tangency the unstable set of the saddle is not related 
to a closed invariant curve: One branch tends to the 7-cycle and the other 
branch tends to the chaotic attractor. While the stable set of the 7-saddle 
gives the boundary of the two basins of attraction.If we continue to increase 
the value of c then at c ?̂  0.082595 a 'saddle-node' border-collision bifurca­
tion occurs when the attracting cycle and the saddle merge and disappear (see 
Fig. 15(b)). This value of c is related to the crossing the upper boundary of 
the bistability region, so that after the bifurcation the chaotic attractor is the 
unique attractor of F . We can get the same attractor as a result of a sequence 
of other bifurcations if the (a, c)-parameter point moves starting from a point 
inside the 29-periodicity region, for example, a = 2.025, c = 0.0925. These 
values corresponds to the attracting and saddle 29-cycles of the map F. If, 
for example, the parameters change as shown by the thick line with an arrow 
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Figure 14: The enlarged part of the phase portrait of the map F at a = 2.07, 
b = 0.1, d = 10, and (a) c = 0.0777 (near the last homoclinic bifurcation 
of the saddle 7-cycle); (b) c = 0.0778 (after the homoclinic bifurcation; The 
basins of the coexisting attracting 7-cycle and chaotic attractor are shown 
in different gray tonalities). 
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Figure \S\ In (a) phase portrait of the map F at a = 2.07, b = O.l, c = 
0.0778, d = 10 with basins of attraction of coexisting attracting 7-cycle and 
chaotic attractor In (b) two attractors of the map F at a = 2.07, b = 0.1, 
c = 0.082595, d = 10, near the 'saddle-node' border-collision bifurcation 
when the attracting and saddle 7-cycles merge and disappear due to the 
collision with LC-i. 
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in Fig. 10, then at a ?̂  2.05, c ^ 0.0872, the attracting 29-cycle undergoes a 
flip bifurcation (i.e. the invariant closed curve is destroyed via a flip bifurca­
tion) resulting in a 2 x 29-cyclic chaotic attractor. Then, after the pairwise 
merging of the cyclical pieces of the chaotic attractor, the map F has a 29-
cyclic chaotic attractor (for example, at a = 2.056, c = 0.0859), which after 
further merging of pieces becomes a one-piece chaotic attractor, an example 
is shown in Fig. 15(b). 

2.6 Center Bifurcation for b <0: Noninvertible Case 

In this last section we describe the center bifurcation occurring in the map F 
given in (1) when it is noninvertible, for — (c + l ) / 2 < 6 < 0. We recall that 
we assume a > l , 0 < c < l and (c + a)^ < 4a, so that the fixed point of F 
is an unstable focus, while in the given range for b the fixed point of the map 
F2, belonging to i?i, is a stable node (with one positive and one negative 
eigenvalue). 

For values of the parameter a in a right neighborhood of 1 the dynamics 
are qualitatively similar to those occurring in the invertible case, as already 
remarked in section 2.2 of this chapter. Let us only emphasize the main dif­
ference, due to the fact that no point of the phase plane can be mapped in the 
so called region ZQ, above the critical line LC (as those points are without 
preimages). For the parameter values taken inside a periodicity tongue the 
map F still has a pair of cycles, a saddle and a node, and the unstable set of 
the saddle gives rise to a saddle-node connection, which is a closed invariant 
curve C made up by infinitely many linear pieces (with comer points). But 
the area bounded by such a closed curve is not invariant. This is due to the 
fact that arcs which cross the critical curve LC-i axQ folded on the criti­
cal line LC creating comer points, whose forward images give again comer 
points. An example is shown in Fig. 16, for parameter values inside a peri­
odicity tongue with rotation number 1/7. In that figure, the arrows indicate 
the points of intersection between the invariant curve C and LC-i and two 
more arrows indicate their images on LC. The non invariance of the area 
bounded by C is immediately clear from that figure: All the points between 
the line LC-i and the invariant curve C are mapped outside the area bounded 
by the curve, between the curve and the critical line LC. That points from 
outside can be mapped inside the area bounded by C is immediately evident: 
All the points on the right of LC, belonging to Z2, have two distinct rank-1 
preimages, one on the right and one on the left of LC_i . 

Another important difference between the invertible and noninvertible 
case is related with the unstable set of the saddle cycles: Self intersection 
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may occur, while it is impossible in invertible maps. This is one more mech­
anism which causes the destruction of the closed invariant curve C which for 
noninvertible maps is to be added to the list already given in the previous 
section. Summarizing in short we can list such mechanisms as follows: 

• border-collision bifurcation (which may occur at the boundary of a 
periodicity tongue); 

• flip bifurcation of the attracting cycle on C; 

• transition of the node existing on C into a focus (followed by a center 
bifurcation); 

• the saddle may undergo a homoclinic bifurcation (transverse intersec­
tions between stable and unstable sets of the saddle); 

• the unstable set of the saddle may develop selfintersections, giving 
infinitely many loops on the invariant curve. 
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Figure 16: The attracting closed invariant curve C at a = 1.1, h = —0.05, 
c = 0.25, d = 1 0 . 

Let us illustrate the last kinds of bifurcations by an example, taking the 
parameter values in the periodicity tongue associated with the rotation num­
ber 1/6, shown in the bottom-left of the (a, c) parameter plane of Fig. 17. 
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Let us fix a = 1.1, b = —0.4 and increase the value of c (the corresponding 
parameter path is indicated by the straight line with an arrow in Fig. 17). 

1.8 a 2.2 

Figure 17: Bifurcation diagram in the {a^c) parameter plane at b 
and d = 10. 

= -0.4 

The phase portrait of the map F at c = 0.05 has a unique attractor: a 
stable node of period 6, and in Fig. 18 (a) we present the basins of attraction 
of the 6 fixed points for the map F^ (black points in the figure). The stable 
set of the saddle cycle (white points in the figure) gives the basin boundary. 
While the unstable set of the saddle is an invariant set which is no longer 
homeomorphic to a circle, as self intersections already exist. This is shown 
by an enlarged part of the phase space in Fig. 18 (b). 

In Fig. 18 (a) one more peculiarity of noninvertible maps can be seen: 
The basins are not simply connected. However the disjoint portion of the 
basin shown there is entirely included in the region ZQ SO that it has no other 
preimages. While increasing the value of c, at c = 0.06 that portion of the 
basin intersects the critical curve LC thus giving a portion in the region Z2 
and this small portion has infinitely many preimages, clearly visible in Fig. 19 
(a). The related unstable set of the saddle is still with self intersections, as 
shown in the enlargement of the phase space in Fig. 19 (b), but is it also 
possible to see that it is now close to the stable set of the same saddle (basin 
boundary in Fig. 19 (a)), and this denotes that a homoclinic bifurcation is 
going to occur. 
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(a) 

Figure 18: (a) Basins of attraction of the Q fixed points of the map F^ at 
a = 1.1, b = —0.4, c = 0.05; (b) The enlarged part of (a) with some 
branches of the stable and unstable sets of the saddle G-cycle. 

y 

/ . 

(a) 

Figure 19: (a) Basins of attraction of the Q fixed points of the map F^ at 
a = 1.1, b = —0.4, c = 0.06; (b) The enlarged part of (a) with some 
branches of the stable and unstable sets of the saddle 6-cycle, near a homo-
clinic bifurcation. 
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In fact, Fig.20 (a) (c = 0.0615) shows the homocHnic tangency and Fig.20 
(b) (c = 0.064) shows the homocHnic transverse intersections between the 
stable and unstable sets. It is clear that a strange repellor also exists in such a 
regime, with the homocHnic tangle of the saddle cycle, and this can be seen 
in the complex structure of the basins, with many disconnected component 
in a fractal structure, as shown in Fig.21. 

Figure 20: The enlarged part of the phase space with some branches of the 
stable and unstable sets of the saddle 6-cycle at a = 1.1, b = —0.4, c = 
0.0615 (a) and c = 0.064 (b). 

It is worth noticing one more property of the noninvertible maps, which 
is the existence of absorbing areas inside which all the asymptotic dynam­
ics occur. Consider for example the case shown at c = 0.064, for which 
a strange repellor exists: We can say that all the unstable cycles constitut­
ing the strange repellor must belong to the armular absorbing area shown in 
Fig.22 (a). This area can easily be constructed by taking the images of the 
critical curves. In fact, an invariant area has necessarily the boundary given 
by the images of the segment of LC-i belonging to the area itself, which 
is called generating segmenfi (see, e.g., Mira et. al., 1996). In our case, by 
taking 6 images of that segment we get the external boundary of a simply 

^Given a noninvertible map F and an invariant area A (i.e., such that ^(^4) 
generating arc is defined by An LC-i. 

A), the 
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connected invariant area, which includes also the unstable fixed point. But 
as it is an unstable focus, we can also construct an annular absorbing area by 
taking more images of the same segment. In fact, with 6 more iterations we 
get the inner boundary of an area of annular shape shown in Fig.22 (a). It is 
clear that any point of the phase space belonging the hole around the unsta­
ble focus is such that its trajectory enters the annular area and never escapes. 
This means that all the limit set of the trajectories belongs to that annular 
area, in particular all the cycles of F, except for the focus fixed point. 

Figure 21: Basins of attraction of the Q fixed points of the map F^ at a = 1.1, 
b = -0.4, c = 0.064. 

As it can be seen from Fig.21, the points of the stable node (black points) 
and those of the saddle (white points) are very close to each other, and on 
further increase of c the parameter point reaches the boundary of the peri­
odicity tongue, where a saddle-node merging occurs via a border-collision 
bifurcation. After such bifurcation the pair of 6-cycles disappear and the 
map F is left with a chaotic attractor: That is, the chaotic repellor existing in 
the annular area shown in Fig.22 (b), is transformed into a chaotic attractor 
with knots and self intersection. 
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Figure 22: The annular absorbing area of the map F at a = 1.1, b = —0.4, 
c = 0.064 (a) and c = 0.071 (b). 
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3 Short History of the Multiplier-Accelerator 
Model 

Tonu Puu 

3.1 Introduction 

Business cycle theory is as old as business cycles themselves. To find this 
out the reader may consult for instance Schumpeter (1954), the great source 
for all history of economic analysis, or the standard reference on business 
cycles, Haberler (1937). The variety of explanations is overwhelming, from 
the influence of sun spot activity, to mere accumulation of random variables. 

Most theories used different explanations for upswing and downturn. The 
scenery changed thoroughly once Samuelson (1939) suggested one single 
model, analogous to the simple harmonic mechanical oscillator, though based 
on two substantial economic hypotheses: multiplier analysis, and the princi­
ple of acceleration. According to the first, consumers spend a fixed fraction 
of their incomes, so that any initial income change leads to a convergent 
geometric series of subsequent spending, which multiplies up the initial 
change by a factor reciprocal to the fraction saved. According to the second, 
capital is assumed to be needed in a fixed proportion to the output to be 
produced, so investments, by definition the change in capital stock, are pro­
portionate to the change of output. 

Keynesian macroeconomics provided an essential background to this model. 
Though Keynes (1936) produced no dynamical theory, just a theory for sus­
tained unemployment, it was he who focused the dependence of consump­
tion and savings on income. The classics had focused the rate of interest as 
equilibrating force for investments and savings. The main concern of Keynes 
was to minimize the role of interest: For one thing, interest rates would be 
inert downwards, due to speculation resulting in infinitely elastic liquidity 
preference, i.e. demand for cash reserves. For another, investments would be 
inelastic with respect to interest rates even if the latter had been less inert. 
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In this sense Samuelson drew the full consequences of Keynesian 
macroeconomics, as he skipped the monetary repercussions altogether. 

Samuelson's model is Keynesian also in the sense that it only rests on facts 
of the demand side. Just recall that the Keynesian system as stated, for in­
stance, by Hicks (1937), produces an overdetemiined system of equations 
where the supply function for labour literally becomes redundant. Every­
thing is thus determined through demand. 

Further, according to the acceleration principle, investments just follow 
the expected increase of demand. It is to this end that capital accumulates so 
as to keep the right proportion to production. 

Of course, Samuelson also made the theory dynamic. As mentioned, the 
combination of multiplier and accelerator produces a linear model, a simple 
harmonic oscillator, which can be explosive or damped (disregarding a struc­
turally unstable boundary case). So, in order to have bounded, and yet sus­
tained oscillations, two solutions were proposed: (i) Frisch (1933) suggested 
that damped linear oscillatory systems be kept going through exogenous 
shocks, just as the violin string through the rosin on the bow according to 
Lord Rayleigh's classical model of 1894. (ii) Hicks (1950) suggested bounds, 
floor and ceiling, to limit the motion of an otherwise explosive linear model. 

Hicks further offered substantial explanations for these bounds: If inves­
tors follow the linear principle of acceleration, then, in periods of sharp in­
come decrease, investments may become, not only negative, i.e. dis­
investments, but may even exceed the disinvestment which occurs when no 
worn out capital is replaced at all. As this means active destruction of capi­
tal, which is not a feature of reality, it must be prevented through imposing a 
"floor" at the depreciation level. 

Likewise, if income grows very fast, then other inputs than capital, labour 
or raw materials, may become Hmiting, and a "ceiling" must be imposed. It 
can be incorporated in the investment function along with the floor, which 
means that it is the investors who abstain from further expenditures once 
they realize that output cannot be increased due to limitations in the avail­
ability of other inputs, or it can be imposed as a limit to total expenditures, 
investment, plus consumption, plus anything else. This, by the way, is one 
and the only element in the Hicksian reformulation of Samuelson's model 
through which the supply side becomes active. 
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3.2 Keynesian Macroeconomics and the Business Cycle 

To understand the background to business cycle modelling of multiplier-
accelerator type, it is important to recognize the significance of Keynesian 
macroeconomics, emergent with the ''General Theory of Employment, Inter­
est, and Money in 1936. Not only is it the first complete statement of a 
model of the economy in terms of macroeconomic variables, such as in­
come, consumption, savings, and investment, but its main message is to ne­
gate the importance of the monetary factors: the rate of interest, the nominal 
wage rate, and the quantity of money. 

We must however not forget that the Keynesian theory was completely 
static, and that, as we will see, it would be very difficult to interpret its rela­
tions in any dynamic sense. Nevertheless, it set the stage for Samuelson's 
business cycle machine of 1939, which actually drew the full consequences 
of Keynesian macroeconomics and ignored the monetary phenomena alto­
gether, through just keeping the multiplier, and adding a different principle, 
the acceleration principle, for the determination of investment. 

As a background to multiplier-accelerator modelling we will therefore re­
capitulate the Keynesian system, which tends to become forgotten by the 
economics profession of today. Despite his unusually high sophistication in 
mathematics, Keynes did not believe in the usefulness of mathematical mod­
elling in economics, so he never wrote down a complete model, and, still 
worse, what he described verbally remained a bit ambiguous. However, most 
interpreters of the Keynesian system, such as Hicks in ''Mr Keynes and the 
Classics'' 1937, or Klein in "The Keynesian Revolution" 1947, interpreted 
the model and its relations in the same way. The main difference lies in the 
measurement units for the variables. It is easiest to interpret savings, invest­
ment, and income as monetary variables. However, Keynes was very insist­
ent on the proper interpretation of the variables to be in real terms, deflating 
them by the price level or even by the wage level. For this reason it would be 
wrong to just stick to the popular monetary model, as some of the main 
Keynesian results, in particular the failure of lowering wages as a means to 
attain full employment, do not show up in the monetary model. To this end 
we present both variants 

The Hicksian interpretation of 1937 with its IS and LM curves has become 
the main frame whenever the Keynesian model is discussed. For a change, 
we will base the following exposition on a another graphical construction, 
due to Palander (1942), which is even more pedagogical, and more useful for 
detecting features of the Keynesian system that the IS-LM analysis does not 
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show. Unfortunately, this most detailed and elegant exposition, has never 
been available for a wider readership because it was only published in Swed­
ish. 

3 3 The Model in Monetary Variables 

Let S denote savings and 7 denote income. The Keynesian savings function 
then reads: 

S = S{Y) (1) 

This is an important deviation from classical economics where savings were 
assumed to depend primarily on the rate of interest, thus together with the 
investment function providing an equilibrium mechanism for the determina­
tion of the rate of interest. Keynes retains the classical form of the invest­
ment function: 

I = l{r) (2) 

where / denotes investment and r denotes the rate of interest. The idea is that 
if all investments are ranked after their internal rate of yield, the "marginal 
efficiency of capital", and the cumulative sum of investment costs /for those 
that yield more than the current rate r of interest is computed, then one ob­
tains / as a decreasing function of r. 

Keynes stressed in particular that at low rates of interest, this sum of in­
vestments carried through becomes highly inelastic with respect to the rate 
of interest, as we see in the NW quadrant of Fig. 1. Keynes also stressed that 
other factors, in particular speculative behaviour, make the investment func­
tion shift drastically and erratically. In business cycle modelling the growth 
rate of income was made a mechanical determinant for investment, and the 
rate of interest was trashed altogether. 

As for the savings function, it was assumed to start at zero income with 
zero slope, all income being used for consumption. With increasing income 
the slope was assumed to approach unity asymptotically, all further incre­
ments of income being saved once consumption was saturated. We can see 
this shape of the savings function in the NE quadrant of Fig. 1. 
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Fig. 1. Palander's first diagram of the Keynes monetary^ system. 

It is interesting to note that Keynes gave evidence for the global shapes of 
the behavioural functions, and that they were all assumed to be nonlinear. 

To the saving and investment functions we now add the equilibrium condi­
tion: 

I = S (3) 

For this reason we are able to place the diagrams back to back in Fig. 1. Note 
that substituting (l)-(2) in (3) gives the implicit function I{r) = S{Y) whose 
graph is the Hicksian IS-curve. As both (1) and (2) are monotonic, we could 
construct this curve through starting at any value of Y on the right, go up 
vertically to the savings function, then draw a horizontal line to the invest­
ment function on the left, and finally drop a vertical line to the r axis, quite as 
in the upper half of the rectangle in Fig. 1. 

Likewise, we could expect the lower half of the diagram to represent the 
Hicksian LM-curve. This indeed is so. In the SE quadrant we see a family of 
grayshaded straight lines showing the partitions of given total quantities of 

money A/in transactions money M^ and asset money M^, also called specu-
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lation cash. The black Hne represents an actual, or given, fixed quantity of 
money: 

M,+M^=M (4) 

The rest of the gray parallel lines represent options for monetary policy 
through the banking system. 

How can we depict transactions money M^ and income Y on the same 
axis? The clue is in terms of an old equation from the quantity theory of 
money: 

M,=kY (5) 

which Keynes retained. Money was simply assumed to circulate with a con­
stant velocity, usually denoted V, to generate the expenditures creating in­
come Y. In the quantity theory of money its total quantity created income in 
this mechanical way, as it also did later in the monetarism revival. What was 
new in the Keynesian theory was that only a part of total money, net of asset 
holding for cash, was used for transactions. The constant k in (5) is just the 
reciprocal of the circulation velocity, i.e., equal to \IV. Given the constant 
proportionality, we can hence use different scales above and below the axis, 
and display Y and M^ on the same. 

Note that it is (5) that is the hardest piece to interpret in a causal sense. Is it 
income, generated by investment and consumption, that just absorbs part of 
the money supply for transactions, or is it the other way around? Does trans­
action money in some sense create income? It seems safest to see (5) as a 
pure equilibrium condition without any causal interpretation. Hicks in '^Mr, 
Keynes and the Classics" implied a causality from income to transactions 
demand, which Allen (1956) used for putting up a dynamical system around 
the IS-LM diagram in terms of a cobweb, whereas the quantity theorists, 
classical and modem, no doubt saw causality the other way. Let us however 
again recall that the Keynesian theory is an equilibrium theory for unem­
ployment with no obvious dynamisation possibilities at all. 

The remaining piece on display in Fig. 1 is the demand for "speculation" 
cash or asset money, the liquidity preference function, which no doubt is one 
of the most ingenious pieces in the Keynesian model. According to Keynes, 
wealth owners share their total wealth between assets, represented by bonds 
and hoarded cash, waiting to be invested in bonds, once the circumstances 
for security price rises become more favourable. 
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Wealth owners have (differing) expectations about the normal level of the 
interest rate. The lower it actually is, the fewer of course expect it to de­
crease further and the more expect it to rise. Financial asset prices and inter­
est rates tend to be related through reciprocity. The case is simplest for a 
perpetual bond yielding £1 each period. With the interest rate r, its current 
market value is simply the infinite geometric series of discounted yields, i.e. 

^ _ l / ( l - r ) ^ = l / r . The relation between bond price and interest is thus 

represented by the positive branch of a hyperbola. It means that the lower the 
interest rate, the higher are bond prices. Hence, if most wealth owners con­
sider interest rates to be unusually low and hence bound to rise, they also 
expect bond prices to fall. To avoid losses, they keep more cash, waiting 
until the expected rise has actually taken place. 

But this is not all! The lower interest rates are, the larger are the price 
changes, i.e., the expected losses, that go with a given rise in the rate of 
interest. Suppose the rate of interest rises from 1 percent to 10 percent in 
steps of 1 percent. The security price then decreases correspondingly from 
£100 to £10, but in decrements of £50, £16.67, £8.33, £5, £3.33, £2.38, £1.79, 
£1.39, and £1.11 respectively. No doubt, the losses are most dramatic when 
the rate of interest is low - in the first step the asset owner loses half his 
fortune, whereas the latest steps are rather negligible. Of course, the gains, 
should the direction of change be reversed, are equally immense, but, as we 
recall, nobody believes in further decrease when the interest rate is low al­
ready. 

For these reasons, when the interest rate approaches a critically low value, 
all wealth owners prefer to hold cash in stead of bonds, and the demand for 
asset money becomes virtually infinite. As a consequence, asset money de­
mand swallows all the available supply, without influencing the rate of inter­
est notably. This splitting of cash effectively undoes the quantity theory of 
money, even though Keynes kept it in his system as an element, though ap­
plied to the transactions demand only. 

The liquidity preference function: 

M, = L{r) (6) 

hence has a lower asymptote, indicated by the vertical line in the left part of 
Fig. 1. It is impossible in the Keynesian system to push the rate of interest 
below this critical value, and hence the investments above the corresponding 
value. Investments are limited from above due to this lower bound to the 
interest rate. Not enough, Keynes also said that investments become insensi-
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tive to the rate of interest when it is low. Hence, investments are limited for 
two different reasons, and the operation of the multiplier accordingly also 
limits the possible incomes that can be generated in the system. This is shown 
by the two shaded inaccessible regions on the right of the diagram. 

The equilibrium point in Palander's diagram is obtained through letting a 
rectangle rest with each of its comers on the graphs of the savings function, 
the investment function, the line representing a fixed quantity of money, and 
the liquidity preference function. To find this rectangle, Palander used the 
strategy of a construction curve in the SE comer of the diagram. Draw just 
any number of rectangles with only three of the corners resting on the sav­
ings, investment, and liquidity preference curves, and let the fourth trace the 
dashed curve showing possible divisions between M^ and M^. Then, fixing 
total money supply, one of the policy instruments available, we select one of 
the straight lines, and find the remaining comer of the equilibrium rectangle 
at the intersection of the corresponding line and the constmcted dashed curve. 

The advantage of this way of graphical display is that we easily see how 
the asymptote to the rate of interest translates to a corresponding asymptote 
to transactions cash, i.e., to income on the right hand side of the diagram. If 
we try increasing the supply of money fiirther, we find that nothing but the 
quantity of asset money increases, and can hence verify the Keynesian dic­
tum that monetary policy becomes inefficient when interest rates are low. 
Not so fiscal policy, because taxation could be analysed through translating 
the savings function horizontally, government expenditures through trans­
lating it vertically, but we do not want to enter the Keynesian model in that 
much detail. 

Palander's four quadrant exposition is superior to the IS-LM, because it so 
clearly lets us see these facts about monetary policy. However, this is not all. 
Hicks stopped at the IS-LM diagram, but Palander supplied another four 
quadrant diagram, which we display in Fig. 2, and which lets us find out the 
facts of the labour market, which was Keynes's main interest. 

As we established an equilibrium (monetary) income Fin Fig. 1, we can 
now realize that this monetary income is the product of the price level JP, and 
the real income Q, deflated through price level, i.e.: 

PQ = Y (7) 

If we now display this hyperbola in Q,p- space in the NE quadrant of Fig. 2, 
we can interpret (7) as a kind of aggregate demand function. 

Having Q on the horizontal axis to the right, we can now also draw a graph 
of the aggregate production ftmction: 
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Fig. 2. Palander's second diagram of the monetray Keynes system. 

Q = <t>{N) (8) 

in the SE quadrant, where TV denotes labour force This is the traditional shape 
of a production function with first increasing and then decreasing returns. 

To the left we display its derivative, i.e. the marginal productivity curve 

•^ = (l)'{N) y which first increases, and then decreases, quite as it should in 
the classical increasing/decreasing returns case. Along with the marginal pro­
ductivity curve we also display the average productivity curve %• = (l){N)/ N. 
It is shaded gray, as is the part of the marginal productivity curve that has not 
yet intersected the maximum of the average productivity curve. We want to 

interpret -^ = ̂ '{N) as a demand function for labour, because at profit maxi­

mum marginal productivity should equal the real wage rate y . As we know 
from elementary production theory, only the portion of the marginal produc­
tivity curve, where marginal productivity does not exceed average produc­
tivity, results is positive profits, so only the section of the decreasing part 
coloured black is our labour demand curve. Along this curve: 
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7 = 0'(^) (9) 

holds. 
As we display the labour force axis pointing down, the marginal produc­

tivity pointing left, we can also put the real wage rate on the same axis point­
ing left. 

There is now only the NW quadrant left empty. On the axes we have real 

wages J horizontally, and price p vertically. Suppose we fix the money 

wage rate w. Then we have the identity: 

f-p^w (10) 

which is a hyperbola in the NW quadrant. Observe that we are not going to 
count it among the equations of the Keynesian system, as it is just an iden­
tity. We could count it, but then we would have to add the real wage rate as a 
new variable. 

We drew a whole family of hyperbolas, shaded gray, because the money 
wage rate is again a means of economic policy, now one controlled by trade 
unions and other labour market agents. 

We can again use the strategy of fitting a rectangle with its corners resting 
on the four curves, but as an aid we can again leave the point in the NW 
quadrant out, let only three points rest on the other curves, and use the fourth 
comer to construct the dashed curve in Fig. 2. It shows possible relations 
between price level and the real wage rate. By choosing a hyperbola in the 
NW quadrant, i.e., selecting a money wage rate, we can find its intersection 
with the constructed curve, and so complete the equilibrium rectangle. 

At this stage it is appropriate to note that, though we have a demand curve 
for labour, we have no supply curve! In the Keynesian system it is just re­
dundant. We have 9 equations, (1 )-(9), and 9 variables, 7,5, /, M^, M^, r, Q, 
N, and p. The wage rate w and the quantity of money M are fixed policy 
variables, and k= 1/Kis a constant determined by transaction practice. 

Let us now check out an important argument due to Keynes. Lowering 
money wages are of no help for obtaining full employment. As a matter of 
fact this cannot be seen in the diagram. Given the dashed construction curve, 
we can lower real wages even down to zero by lowering money wages, and 
hence increase employment to any extent we wish. This has been the cause 
of some misunderstanding, as some authors claim that Keynesian theory still 
needs sticky wages. However, we should recall that we dealt with the model 
in monetary terms. With the variables defined in real terms we can indeed 



3 Short History of the Multiplier-Accelerator Model 89 

verify Keynes's dictum that even if money wages were not sticky, lowering 
them in unemployment might not result in sufficiently low real wage rates. 

3.4 The Model in Real Variables 

To see this, we have to change Palander's diagrammatic method just a little. 
Fig. 3 is very similar to Fig. 1, with the savings function, the investment 
function, the liquidity preference function, and the construction curve for 
the distribution of the stock of money between transactions cash and asset 
money. There is, however, one big difference: All variables are now in real 
terms. Real savings 5 == S/;? are a function of real income, YI p = Q,so: 

s = s{Q) (H) 

Likewise, it is now real investment, i.e., i = 11p, which is a function of the 
rate of interest r: 

i = i{r) (12) 

Again we have the equilibrium equahty between savings and investmei(tfe3) 

s = i 

Transaction money, in real terms, m^ = M^ / p, is proportional to real in­
come: 

m^=kQ (14) 

and the demand for asset money, again in real terms, is: 

m,=/(r) (15) 

Equations (11), (12), and (15) just rephrase (1), (2), and (6) in real terms, 
whereas (13) and (14) can be obtained from (3) and (5) through division by 
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Fig. 3. Palander inspired first diagram for the real Keynes model 

Corresponding to the total nominal amount of money, we now also have a 
real amount of money m = M / p, which is the sum of (real) transactions 
demand and asset demand, i.e., 

(16) 

This is again obtained from (4) through dividing hyp. The big difference is 
that, unlike M, m is 7jot a parameter for monetary policy, as it depends on the 
price level which must be determined endogenously in the model 

Now suppose we erase everything in Fig. 3, except the constructed distri­
bution curve for the different components of (real) money demand, and leave 
just it for Fig. 4. Further, suppose we take a point such as the black dot on 
this construction curve. This time we do not move horizontally from the dot 
to the axis, but follow the constant (real) money line diagonally to the verti­
cal axis. The axis intercept obviously gives us the sum m^-\-m^ =m of trans­
actions and asset demand for money in real terms, corresponding to the point 
chosen. So, reading off the intercept, we can indeed write m on the left side 
of the vertical axis. 
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Fig. 4. Demand function in the real Keynes model 

What else do we have? From definition, m=M/ p, so: 

M = mp (17) 

Putting p on the left horizontal axis, we can display (17) as a hyperbola 
whenever M is fixed by the monetary authorities. For the rest we just put/? 
on the remaining axes, and use a diagonal in the NW quadrant to shift verti­
cal coordinates to horizontal and vice versa. 

We can again use the rectangle construction, this time with one corner cut 
off, and, starting from any point on the curve in the SE quadrant, construct 
the dashed curve in the NE quadrant of Fig. 4. The axes there are Q and/? 
respectively, so we again arrived at an aggregate demand curve. This time it 
is not a hyperbola as in Fig. 1. The shape is distinctly different, as it goes 
down to the Q axis at a certain value. Ultimately this is due to the shape of 
the liquidity preference function, which hence limits possible total output in 
the real version of the Keynesian model, but, as we saw, not so in the mon­
etary version of it. 
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Fig. 5. Wage rate and unemployment in the real Keynes model. 

In Fig. 5 we reproduce all the curves from Fig. 2, as most of the variables 
there are in real terms already. We just replace the hyperbola shaped demand 
function with the just derived demand function that goes down to the hori­
zontal axis. As we will see this alters the conclusions about the effects of 
lowering money wages drastically, and fully justifies all Keynes's original 
assertions. 

Again, we can use the method of rectangles with corners resting on the 
demand function, the production function, the labour demand function, and 
the given money wage hyperbola. However, as before, we use the three first 
to construct a dashed possibility curve in the NW quadrant, relating possible 
real wage rates to prices. The equilibrium is where this dashed curve inter­
sects a hyperbola representing the given money wage. 

What is new is that the shape of the demand function in the NE quadrant 
also results in a minimum obtainable real wage rate, shown by the vertical 
line in the left part of Fig. 5. No matter how much we lower the nominal 
wage, can we undercut this minimal real wage rate. As a result, the possible 
employment becomes limited, quite like production. This is shown by the 
shaded strips which represent the inaccessible areas. 
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3.5 Demounting Keynesianism 

It did not last long before an active demounting of Keynesian macroeconomics 
started. The process could be attributed to different causes. First, the Korean 
War inflation in 1953 drastically changed the scenario from the Wall Street 
Crash of 1929 and the Great Depression which inspired Keynes. Second, 
Keynesian macroeconomics favoured active fiscal policy as means to achieve 
political goals, so those who did not want that much of political intervention 
preferred some different scientific paradigm. Third, there was a seemingly 
irresistible urge among economists to unify macroeconomics and Walrasian 
general equilibrium theory, which means deriving macroeconomics from 
microeconomics. See for instance Barro and Grossman (1976). 

The last urge remained a great mystery for the present author, as econom­
ics always took physics as an example. Once statistical mechanics and ther­
modynamics arouse as a theory relating volumes, temperatures, and pres­
sures, nobody tried to actually derive the relations from Newtonian princi­
ples of energy conservation in a closed container where billions of molecules 
collided. 

But, this was exactly what all those economists who for decades were con­
cerned with the "microfoundations of macroeconomics" tried. However, they 
did not retrieve the Keynesian macoreconomics, but something entirely dif­
ferent, a model where unemployment was again due to sticky wages, chosen 
unemployment for job search, and the like, quite as before Keynes. 

There is nothing wrong in science to take a new start with new categories, 
such as income, investment, and the rest, as Keynes did, quite like the cited 
case of statistical mechanics. It is a destructive idea in science to try to find 
"the unified theory of everything". 

The political issue is easier to understand, clearly the Chicago school with 
Milton Friedman as figurehead, which just revived the quantity theory of 
money, had a political mission. 

Finally, there is the interesting case of Don Patinkin, who formulated a 
huge micro based theory in macroeconomic terms. See Patinkin (1956). The 
difference to Keynes was that he introduced a new variable, "real balances", 
i.e., the quotient of money supply to price level, as an argument in the behav­
ioural equations. The argument goes as follows: Idle money balances are 
owned by somebody, so suppose that the price level is decreasing more and 
more. The owners of such balances then find themselves more and more 
wealthy, and, eventually, they start consuming their wealth. This obviously 
is in contradiction to Keynes's idea that, once consumption was saturated. 
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people would even save all their income. Wealth was not even included as a 
determinant for consumption. 

If one includes the argument Mlp, along with others, in any consistent 
model, with any number of relations, and any number of variables, then a 
fixed value of this MJp is determined along with the other arguments, and 
hence the price level p becomes proportional to the quantity of money M, 
quite as in Friedman's world. One does not need such an elaborate model to 
arrive at this simple conclusion. 

Fortunately, the dismounting of Keynesianism never affected the dynami­
cal theories inspired by Keynes, because none of the new protagonists had 
anything in terms of dynamics to offer. 

3.6 Statics and Dynamics of the Multiplier 

Above we emphasized that the Keyenesian model is essentially static, a con­
clusion about which all contemporary commentators agree. The primary 
mission of the model was to show how sustained involuntary unemploy­
ment, such as experienced in real life, not due just to sticky prices or market 
imperfections, could be explained. 

The truly original contribution was to construct a model in terms of new 
macroeconomic variables, which only gradually, under the influence of the 
Keynesian general theory itself, became operationalized through national 
accounting. 

Another important feature was that most relations of the model were as­
sumed nonlinear. These nonlinearities did not produce multiple equilibria, 
but, provided a supply function for labour was included, the system con­
tained one equation too many, so it became overdetermined. However, the 
supply function for labour was treated as redundant, and equilibrium was 
determined through the remaining equations at unemployment. 

Substantially, the influence of monetary issues was denied. As we have 
seen, (i) lowering nominal wages could not help to achieve full employment, 
(ii) the rate of interest tended to stick to a lower limit, any additional wealth 
created by monetary policy being caught in the "liquidity trap", and (iii) 
investments were but negligibly influenced by the rate of interest, even in 
case it had been more flexible. Keynes regarded investments as highly vari­
able, though influenced by other factors than the rate of interest, so some 
different mechanism to explain changes of investment would be needed in a 
dynamical perspective. As we will see, this was provided by the principle of 
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acceleration. For Keynes, investments were just a capricious and varying 
element, which triggered with it repercussions through subsequent spending 
by the consumers. 

These repercussions are, already in Keynes's original theory, something 
that can also be interpreted dynamically. Not only was, for once, the direc­
tion of causality from income to consumption obviously nonambiguous, but 
it also had a distinctive dynamical interpretation. 

Suppose we can approximate the savings function (1), i.e., S - S{Y) by a 
straight line over some interval. The same then holds also for the consump­
tion function C=C(7)=7-.S'(7). Due to linearity, as assumed, the slope 

-^ = c is locally a constant, quite as the slope -^ = ^ • From Y=C+S ob­

viously c-\- s = \. 

Now, assume we have an initial increase in investment A/ . This results in 
an initial income change A7 = A/. However, this initial income change re­
sults in additional subsequent consumption spending, first c-A/, then fur­
ther ĉ  • A/, and so forth, in an infinite but convergent geometric series, so 
the total increase of income amounts to: 

A7 = y c ' A / = -^^ 
A/ A/ (18) 

-c s 

This idea is discussed already by Keynes. Convergence of the series is due to 

the fact that c and s are in the unit interval. Of course (18) can also be ob­

tained directly through differentiating (1) and equating A/ to AS, i.e., putting 

A/ = ^ • A 7 , whence, given -§ = 5, AY = AI / s • The name multiplier is 

due to the fact that .v < 1, and so l/s > 1, hence multiplying up the initial 
increase in investments through subsequent spending by consumers. 

We have thus seen that the multiplier idea is there in Keynesian economics 
both in a dynamical and in an equilibrium sense right from the outset. Once 
we have a generation mechanism for investments we only need to add an 
explicit period structure to land at the idea of the dynamic multiplier. 

It is not so easy to say who has first priority to the idea of the multiplier, 
neither who first formalized it in its static and dynamic form. Obviously, 
Keynes described it very clearly in 1936, though to some extent it seems to 
be a collective achievement, in which particular credit is due to Richard 
Kahn. See Kahn (1931), which, however does not give a complete account 
of his achievement. It should also be recalled that other multiplier mecha-
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nisms were explored, in particular the credit multiplier, which explained how 
the banking system could expand total credit when only a fraction of depos­
its were kept as bank reserve, an idea having roots back in the 19th Century. 

3.7 The Principle of Acceleration 

Quite as it is difficult to say where the idea of the multiplier originated, so is 
it difficult to trace the origin of the principle of acceleration. At least Aftalion 
(1909) seems to have had a clear idea of it, though he only described things 
in verbal terms. The idea is twofold: First, capital equipment is built up or 
decays in anticipation of changes in consumer demand, so investment has a 
lead in time as compared to consumption. Second, as investments are related 
to expected changes of consumption, they tend to amplify or "accelerate" 
the process, hence bringing in a feature of instability. When multiplier and 
accelerator are linked together in one single feed back process, it is, of course, 
no longer possible to say whether investment has a lead over consumption or 
rather lags behind. The accelerator idea arose in the "overproduction" school 
of business cycles. See von Haberler (1937). 

As formalized by Samuelson (1939), the principle says that investment is 
proportional to the rate of change of consumption, i.e., I = a KC, where 
the proportionality factor a is the "accelerator" coefficient. Hence it is the 
natural companion to the multiplier, which relates consumption to invest­
ment, whereas the accelerator does the reverse. It also supplies the missing 
determinant for investment once the monetary factors in truly Keynesian 
spirit are scrapped. 

There are several ways to motivate the principle of acceleration. The sim­

plest is maybe to assume a fixed proportion production technology as repre­

sented by a production function Q - min(-f , f ) , w ĥere K denotes capital, L 

denotes labour, and a, b are fixed coefficients. Given this type of production 

function, producers will need neither more nor less capital than K = aQ. 

Given the definition of net investment as change of capital stock, I:= AK, 
and focusing the aggregate production of consumers' goods, we have C = Q 
in equilibrium. Hence / = a • AQ = a • AC, quite as stated above. 

Later Hicks (1950) realized that there is no need to restrict the action of the 
accelerator to changes in consumption expenditures alone, it should act in 
equal measure on all components of income, consumption, public spending. 
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and investment itself. Hence I = a- A7 , which we will use in the following, 
even though it yields a slightly inaccurate representation of Samuelson's origi­
nal model. The difference in terms of model performance it marginal. As we 
will see below, Hicks also introduced other changes to the model, which, 
however, changed it radically. 

3.8 Modelling in Continuous or in Discrete Time 

Given the components, multiplier and accelerator, it remains to decide how 
to model the dynamical process, in discrete time, or in continuous time, i.e., 
to use difference equations or differential equations. Samuelson (1939) chose 
the latter, though the pieces could also be combined in continuous time, as 
Harrod (1950) preferred. 

This set a tradition for some time. Growth theory was modelled through 
first order dif^Qrential equations, business cycle theory through second or­
der difference equations. It is noteworthy that both models were linear. The 
combination of growth with continuous time, and cycles with discrete time 
must have been a pure coincidence. 

Harrod interpreted the rate of change of income as a time derivative, i.e. 

AY=Y = -^Y. Hence, investments became I = aY Anthe linear format the 

savings function reads S^sY, so, using the equilibrium condition 7 = 5 , 
one gets the simple first order differential equation: 

Y = ^Y (1^) 

with its obvious closed form solution: 

y = 7oexp(fO (20) 

To do Harrod justice it must be emphasized that he explicitly stated that the 
equilibrium growth path had to be considered unstable. There are several 
verbal discussions in the book demonstrating this. These also show that Harrod 
was groping for a higher order process which would model what happens if 
the actual route deviated from this unstable equilibrium path, though he failed 
to formulate it mathematically. That a second order process in continuous 
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time is fully viable as a model was demonstrated a few years later by Good­
win (1951) and Phillips (1954). 

Harrod cannot be blamed for interpreting all this as a growth theory, the 
flaw is due to his followers. As a growth theory it contains the absurdity that 
growth is favoured through a high rate of saving and a low accelerator, though 
second order models show the reverse. It was further known from Samuelson 
(1947), that no unstable equilibrium is ever of any interest. 

3.9 Cycles in Continuous Time 

To show how the Harrod model can be made second order, let us consider 
Phillips (1954), where an adaptive process was assumed, such that income 
just increased in proportion to the difference of investments and savings, 

i.e., Yoc(^l -S). A similar adaptive delay was assumed also in the adjust­

ment of investments, i.e., / oc (vY-I). We follow the very clear account of 

the model as given by Allen (1956). 
In Phillips's equations adjustment speeds appeared, and, for generality, 

Phillips assumed different speeds for the two adaptive processes, as did Allen. 
The precedence of Samuelson and Hicks, who assumed identical unit lags in 
the discrete format for all kinds of adjustments, makes it a licit simplifica­
tion to assume also equal adjustment speeds in continuous time. Then we 
only need to assume a suitable measurement unit for time to make the speeds 
unitary, and so dispense with the adjustment symbols altogether. We then 

have: 7 = 7 - ^ 7 a n d / = v 7 - / . 
Next, just differentiate the first equation once more, and use the original 

equations to eliminate investment and its time derivative, thus obtaining the 
reduced form equation: 

Y-{v-l-s)Y+sY=0 (21) 

This linear second order differential equation is capable of producing damped 
or explosive oscillations, depending on the sign of (v -1 - s), quite as in the 
corresponding discrete time process as formulated by Samuleson, which we 
will discuss below. 

We can immediately write the general solution in the oscillatory case: 
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Y=e''{Acoscot + Bsmcot) (22) 

where 

a = i{v-l-s) (23) 

(0 = ±^4s-{v-l-sy (24) 

and A,B siQ two arbitrary constants to accommodate the initial conditions. 

Provided {v-\-sf >4s holds, the second order model can also generate 

pure growth, at the rates | [ (v -1 - 5) ± J(v -1 - 5)̂  - 4^ 1. Hence we see that, 

in contrast to the first order Harrod case, the growth rate is indeed lowered 
by the rate of saving, and increased by the accelerator. 

We also see from (23) that the oscillatory process is either explosive or 

damped, depending on the sign of a = j{v-\-s). There is just one unlikely 
boundary case, the case of a centre, with v=l +s, where there is a bounded 
simple harmonic oscillation that goes on for ever. As for stability, it is neu­
trally stable, but different initial conditions can lead to an infinity of differ­
ent oscillations with different phase and amplitude. 

Goodwin (1951) used a similar model, but with a nonlinear investment 
function, and then just one attractive limit cycle replaced this family of or­
bits, at the same time as it, unlike this exceptional boundary case, was robust 
for wide ranges of parameter changes. There is no need to enter these mat­
ters in more detail, as we will meet them again in the context of second order 
models in discrete time, which became main frame, perhaps because many 
of the variables naturally are periodized concepts. 

3.10 Samuelson's Business Cycle Model 

As mentioned, Samuelson chose to model in discrete time, and he chose a 
second order process. There is a basic time period unit, and all variables are 
dated, either yjow -̂, such as income, investment, and savings, attributed to 
periods, or stocks, such as capital, attributed to moments of time. In this 
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language S^=s-Y^_^, or, which is the same, C, = (l-5)• 1̂ _, = c• }^_,. We en­
countered this idea aheady in the context of the dynamic multipher. There is 
a time lag, incomes earned during a given time period are spent during the 
following. The need for capital is proportional to the volume of production 
(i.e., to real income), but it takes time to build up capital, so proportionality 
is to expectedincomQ, which, in terms of the simplest forecasting rule of all, 

just projects past income. Hence, capital stock needed is K^=a-Y^_^, and, 

investment accordingly becomes I^ = K^- K^_^ = a • (l^.j -1^.2) • In addition, 

we only need the income formation equation Y^ =0^+1^. Finally, substitut­

ing for Cf and /^, we readily obtain the reduced form recurrence equation in 

the income variable alone: 

Y,={a+c)Y,^,-aY,_, (25) 

It is second order, as we see, and hence capable of generating growth or 
cycles. However, like Phillips's model, it is linear. 

It is easily solved in closed form. There exists just one fixed point 

}̂  = l̂ _i = 1̂_2 = 0 , which is stable if, and only if, a < 1. Provided 

(fl + c) >4a , the general solution is: 

Y, = AX,-^BX, (^^) 

where ̂ , 5 are arbitrary coefficients so chosen as to accommodate the initial 
conditions, and where 

A „ = ^ ± 1 V M ^ ^ (27) 

As long as [a-\-c) > 4a holds, Aj 2 are real numbers. With «, c > 0, they are 

both positive, and obviously we always have /I2 < A,. Hence, the first solu­

tion tenn in (26) is bound to dominate with time. Asymptotically, Y^ -> AX^, 

with income growing at the constant rate A, when a> I. 

When (a + c) <4a , then A, ^ become complex conjugates. If so, it is more 

convenient to write the general solution as: 
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Y^ = p^ {A cos cot + B sin cot) (28) 

where 

p = ^ (29) 

and 

CO = arccos—F=-
(30) 

The arbitrary coefficients, A and B, are again chosen so as to fit given initial 
conditions. 

We see that with complex conjugate roots, the solution is the product of a 
power function and a stationary trigonometric oscillation. This is the case of 
primary interest in connection with business cycle theory. Depending on 
whether p<l or p>l , i.e., whether a<l or a>l, the power function leads to 
damping or to explosion. Only in the unlikely boundary case when p=a=l 
does the solution produce standing oscillations representing bounded per­
sistent motion. 

This, of course, is due to the linearity of the model, and it presents a prob­
lem and a challenge. If p<l , then the model is hardly dynamical at all, be­
cause it can only show how any initial motion is damped out and the system 
without exogenous shocks goes to eternal equilibrium. If, on the other 
hand, p >1, then the model explodes, and the amplitude of the swings goes to 
infinity, which means that income eventually oscillates between plus and 
minus infinity. Such exponential growth, which was the basis for economic 
growth theory for decades, is not a feature of reality, at least not globally, an 
interpretation which the "limits-to-growth" movement and the "Club of Rome" 
took as motive for a broad attack launched at the whole of linear dynamical 
economics. See Forrester (1961). 

Of course, negative income makes things even more absurd. To make things 
straight, we have to insert a digression here about the negativity of income in 
the depression phases. The full Samuelson model also contains "autonomous 
expenditures", for consumption, investment, or government spending, what­
ever, qualified by the property that they do not depend on anything in the 
cycle. 
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Replace the income formation equation by }̂  = ^ + C, + /, , where v4 denotes 
these autonomous expenditures. Equation (25) then becomes 

If we substitute Y^ = Y^_y = Y^_2 = A / {l- c) = A / s, we easily fmd that it is 
reduced to an identity. There is hence a constant solution, A/s. It represents 
an equilibrium income level, obtained through applying the multiplier l/s to 
the autonomous expenditures A, which replaces the zero equilibrium for (25) 
as stated above. In mathematical terms this is a particular solution. If we now 

replace Y^ by A/s + Y^, Y^_^ by A/s-{-Y^_^, and Y,_2 by A/s-^Y^_2 in 

Y^ = A-\-{a+c)-Y^_^-a-Y^_2y then we fmd that all the terms containing the 
autonomous expenditures cancel, and that (25) is regained. 

However, the variable is now, not income, but its deviation from equilib­
rium, and so negative values are no longer absurd perse. Of course, increas­
ing amplitude oscillations eventually produce downward deviations from 
equilibrium so large that even income becomes negative, which, of course is 
absurd. 

As a conclusion, neither p< l , nor p>l is any good. There remains the 
case p =1, which results in constant amplitude simple harmonic oscillations, 
but apart from the fact that the motion produced is much too regular to mimic 
any real business cycle, modem mathematics discards such specific cases, 
which at the slightest change transform the outcome of the model to some­
thing qualitatively different, as being structurally unstable or nongeneric, 
and they are forbidden in good scientific practice. See AmoFd, who even 
advises to take friction in account in mathematical models of the pendulum, 
no matter what we know about its empirical existence, just because the 
frictionless pendulum produces a structurally unstable model. 

For the case p<l we could use an argument on "impulse" and "propaga­
tion" supplied by Frisch in 1933, even before the Samuelson model. Accord­
ing to it a dynamical process with an inherent capability of producing regu­
lar damped oscillations, could be kept going through exogenous random 
shocks that put it in motion whenever it tends to come to rest. This idea was 
formally modelled by Lord Rayleigh in the context of the violin string, the 
tensioned string supplying the tendency to oscillation, and the rosin of the 
bow supplying the exogenous shocks. 

Even more interesting was the treatment of the model by Hicks, who as­
sumed p >1, i.e., the explosive case, but made the model nonlinear through 
addition of his famous "floor" and "ceiling". This, however, is one of our 
main topics, so we deal with it below in a section of its own. 
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3.11 Quasiperiodicity in Samuelson's Model 

First we have to finish up the discussion of Samuelson's model through em­
phasizing features which are seldom discussed at all. 

The solution (28) is a product an exponential growth factor, increasing 
whenever a > 1, and a simple harmonic oscillation. Note that the frequency 
of oscillation, despite its regular look, as a rule is an irrational multiple of 
2K , so the oscillatory motion is quasiperiodic, i.e., not periodic in terms of 
the basic predefined unit time period. Hence, the time series produced by the 
oscillatory factor never repeat. Only when it happens that 

a-\-c liun .^-.. 
—pr = cos (31) 
2-yJa n 

where m and n are integers, does the oscillatory part of the solution become 
periodic. 

In Fig. 6 we see that this happens on the set of parabola shaped curves. We 
drew the curves for the basic resonances (with m = f), and n = 5, ... 10. 
Lower basic resonances do not fall within the admissible parameter range. 

As « -> oo, lim^^^ cos2;rf = 1, so the periodic oscillation curves accumu­

late towards the curve: 

a-\-c 

U7 = ' (32) 

which is the same as [a+c) =4a, representing the borderline between real 

and complex roots. 

Fig. 6 displays the box {a,c)e [0,4] x[0,l] , further a vertical line at a = 1, 
and the parabola (32), which touches the top of this box, and towards which 
the periodicity curves accumulate. As mentioned, they are shown for m = 1 
and n from 5 up to 10, and are labelled accordingly. All features, except the 
periodicity curves, are well known from Samuelson's original article, though 
the picture looks slightly different due to the fact that, as we know, he ap­
plied the accelerator to consumption expenditures only. 

Above the parabola (32), the zero fixed point for (25) is a node, below it a 
focus. To the left of the line a == 1 the fixed point is stable, to the right it is 
unstable. 
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Fig. 6. Periodic orbits in the oscillatory factor of the Samuelson model 

New features are the set of periodicity parabolas (31). The meaning of the 
parabolas is that they are obtained for parameter combinations such that the 
oscillatory part of the solution (25) becomes periodic. 

The significant fact is that they are all thin cw^es, with zero area measure. 
Once we, in the spirit of Hicks, make the model nonlinear, the curves swell 
to thick tongues (so called Amol'd tongues), so periodicity becomes main 
frame and no longer a rare phenomenon. 

We stopped the display at « = 10, because for higher n the stack of reso­
nance curves accumulates and ultimately seems to fill the entire area, so that 
we can no longer see any distinct curves. This is, of course, deceptive, due to 
the finite resolution of the computer screen, which cannot display true 1-
dimensional objects. 
The same in fact happens over the entire area if we consider other resonances 
than the basic, i.e., those with m> 1. It is easiest to see this by studying the 
intersection points of the periodicity parabolas with the vertical line at a = 1, 
marked by black dots in Fig. 6. 

Substituting a = 1 into (31), we obtain cos[27tm /«) = (l + c) / 2 , so, for any 

m and n, we can solve for the value of c = 2 • cos[27an/n)-l. 
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As we know, the picture displays the fundamental resonances, with m = 1 
and ?2 = 5,... 10 in (31). But 1:6 is the same as 2:12, and 1:7 the same as 2:14, 
so we can find a 2:13, i.e., a 13-period resonance curve (not shown) between 
those labelled 6 and 7 in the picture. 

Indeed we have 2 cos(27r / 6) - 1 = 0, and 2 cos(2;r / 7) - 1 ^ 0.25. Further 

2cos(4;r/13)-1 ~ 0.14, so the 13-period resonance indeed fits between the 
6-period and the 7-period ones according to (31). And so it continues: As 1:6 
is the same as 4:24, and 2:13 the same as 4:26, we could again find a 4:25, 

i.e., a 25-period curve, with 2 cos(8;r / 25) - 1 ~ 0.07 between those for peri­

ods 6 and 13, and so on, ad infinitum. 
Considering all rational numbers ni/n in (31), we need not choose any par­

ticularly high numbers m and n to see the entire screen area completely filled. 
(In reality both numerator and denominator range to infinity.) Again this is 
deceptive, due to the finite resolution of the screen. In reality, though the 
rational numbers are an infinite set, as are therefore the periodicity curves, 
they are still by far outnumbered by the irrationals. If we pick parameter 
values at random we never hit a rational point, i.e. any of the infinitely many 
periodic curves of Fig. 6. As mentioned, this turns out completely different 
for the nonlinear models to be introduced. 

Fig. 6 also contains one additional feature, the grey vertical lines, which 
represent constant growth rates, spaced at 10% intervals, left of the line a = 
1, decrease rates, ranging from -90% to -10%, right of the line a = 1, in­
crease rates, ranging from +10% to +90%. Note that they represent growth 
rates per period, so in the right part of the diagram growth is enormous. Just 
consider the intersection point between the periodicity curve labelled 10 and 
the fifth gray line to the right of a = 1, where a = 2.25. For this parameter 
value we get p =1.5 from (29). The growth over just one cycle is accordingly 

1.5̂ ^ which approximates to 5666%, so, no matter how we define the period, 
the growth rates in the Samuelson model are always unrealistically huge. 

By conclusion, we wanted to emphasize two features that have hardly ever 
been mentioned in connection with the Samuelson model: The total absence 
of periodicity' in the oscillations, and the absurdly huge growth rates. 
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3.12 Hicksian Floor and Ceiling 

As we already indicated, Hicks (1950) introduced nonlinearities in the model, 
thus at once removing some factual absurdities in the assumptions, and mak­
ing the Samuelson model capable of producing persistent but still bounded 
oscillations. 

According to the original principle of acceleration, investments are pro­
portional to past change of income, so if income decreases, investments be­
come negative, i.e., {^/^investments. This is not absurd in itself as long as we 
talk of net investment, as it just means that capital stock decreases. However, 
capital stock cannot decrease more than the maximal depreciation on capital 
in the absence of any renewal of worn out equipment. This provides a lower 
bound on disinvestment. If the principle of acceleration results in dis­
investment that exceeds maximum depreciation, then it can only be realised 
through an active destruction of capital. As no such thing happens in reality, 
it is obvious that the bound must be effective. Limiting net investment to 
maximum depreciation is just the same as requiring gross investment to be 
nonnegative. 

This is the Hicksian "floor", which requires replacing the principle of ac­

celeration I^=a-(I^_i -1^_2) ? as stated above, by: 

{a{Y,_,-Y,_,),-lf} (33) : max 

where /^ denotes the absolute value of the floor disinvestment. It is clear 
that this makes the model nonlinear, and, in case of oscillatory motion, it is, 
as Duesenberry (1950) pointed out, sufficient to produce bounded motion on 
its own. 

Hicks also introduced an upper bound. Given some fixed proportions pro­

duction function, such as 7 = min(-f, j ) , it is obvious that it can never be 

useful to increase capital stock above the value j-L. Hence available la­
bour force (or other limiting factors included in the production function) 
impose an upper bound, the "ceiHng". As Hicks never wrote down the com­
plete formal model with floor and ceiling, it remains a little ambiguous how 
the ceiling should be interpreted. The question is whether it is the investors 
who abstain from further investment when the ceiling is reached, something 
like: 



3 Short History of the Multiplier-Accelerator Model 107 

/ • ' 

^-''^ <lX*fti5 

>1 

EmM 

&F 

7^ 

^"^^ cwfeif "' '\,^ 

Mikw^misfi 

Fig. 7. Various possible nonlinear investment functions under the principle of 
acceleration. 

•• mm[l\max{a{X_, - Y^_^), - 7^}} (34) 

so that the ceiling as well is incorporated in the investment function, or whether 
one prefers not to specify who abstains from intended expenditures. 

Though Hicks himself seems to have been in favour of the latter, many 
contributions interpreted it the other way, in particular the pioneering work 
by Goodwin (1951), though he preferred a smooth nonlinear investment func­
tion, such as a hyperbolic tangent or an arctangent, rather than a straight line 
cut off by lower and upper bounds. See Fig. 7 (top), where the investment 
fimction with vertical bounds, and a smooth alternative are shown. 

As mentioned, Goodwin also preferred to model in continuous time. He 
was able to show the existence of a limit cycle in the model. However, more 
spectacular phenomena, such as chaos, could not occur, because they never 
do in second order differential equations. 

Further, even in discrete time, a smooth shape with horizontal asymptotes 
is too mild for chaos, though its Taylor series with linear-cubic terms includ­
ing backbending sections works, as shown by the present author in Puu (1989), 
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further analysed in Puu and Sushko (2004). See Fig. 7 (bottom). The same 
holds true for a function with slanting bounds shown in the same picture. 

There are good factual reasons for the backbending sections of the cubic 
and the corresponding piecewise linear function. As a rule, once a boom 
becomes overheated, or a slump too pronounced, the public sector usually 
enters the stage with contracyclical measures. This can be because of a de­
liberate wish to actively fight too violent swings in the cycle, but we get the 
same result if some responsible agencies just have long run budgets for in­
frastructure investments, and prefer to concentrate activities to periods when 
labour and materials are cheap and idle. Of course, the backbending pieces 
should never be allowed to get down to the horizontal axis, but small 
backbending segments are sufficient for chaotic outcomes. 

As we said. Hicks never wrote down the complete formal model with floor 
and ceiling, though, from his verbal comments, one may conclude that he did 
not want to incorporate the ceiling along with the floor in the investment 
function, but rather to put it as a constraint on total spending, thus constrain­
ing income to: 

);=min{Q+/„r} (35) 

where Y^ denotes maximum capacity production. Hicks did not quite make 
up his mind about what actually happens at the ceiling. He suggested infla­
tion as the most likely event, which in the end fits expenditures in real terms 
to available resources, but at the same time he did not want to include prices 
or any other monetary variables. 

A model, which, according to (33), incorporates the floor only in the in­

vestment function: I^ = max|«(l^_j -X. j ) , ~^^}? ^^^ uses the income for­

mation equation (35): Y^ = min{C, + /̂  ,7^}, with consumption, as usual de­

fined by C, = c • l̂ _i, was first fully analysed by Hommes (1991), though the 

formalization seems to have been due to Rau (1974). Quite as Hicks in­

tended, such a model shows sustained oscillations of limited amplitude, and 

it actually makes periodicity main frame, as shown in Gallegati et ai (2003). 
But, Hicks wanted more than this, he also wanted to incorporate growth 

along with cycles in the process, to be more precise, not in ternis of growing 
amplitude of the swings, as in Samuelson's original model, but a growth 
trend around which bounded cyclic oscillations took place. However, he did 
not obtain this trend within the model, so he inserted it as an exogenous 
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growth of the autonomous expenditures, assuming something like 

A, = A,{l + g)'. 

Of course, then (35) transforms to Z = min { Q +I,+ A^X] . In his draw­
ings Hicks, moreover, indicated that, in order to have a tractable model, both 
bounds as well must be growing at the same rate as the autonomous expendi­
tures. Gandolfo (1985) used this combination of assumptions in an exercise, 
where the reader was challenged to prove a proposition, which, by the way, 
is not true. Given the three exogenously given and equal growth rates, the 
model can easily be transformed into the stationary case analysed by Hommes. 
It is this case which is analysed in Gallegati et al 

As we already stressed, Gandolfo's case is what best seems to conform to 
Hicks's drawings (in semilogarithmic scale, where exponential curves are 
transformed into straight lines). 

There is a big problem with this setup. Of course, it is arbitrary to assume 
equal growth rates for autonomous expenditures, floor, and ceiling, but this 
is not the real problem. As Hicks related the floor to maximum depreciation 
on capital, it is obvious that, with accumulating capital, the floor level should 
be receding, rather than growing. 

In some recent publications, Puu et al (2005) and Sushko et al (2004), a 
model was analysed where the floor was actually tied to the stock of capital, 
by putting (33) in the form: 

I,=m2o,{a{Y,_,-Y,_,\-rK,_,] (36) 

Obviously, one has to include capital in the model, but this is no problem, 
because there already exists a capital formation theory inherent in the Hicksian 
model. Investments are defined I^= K^- K^_^, so one can just put it the other 
way and write: 

K=K^_,+L (37) 

As there is a theory for investments (36), there is also one for capital forma­
tion in terms of the cumulative sum of past investments. One feature of this 
model is that, due to the growing capital stock, a growth trend in income is 
actually generated endogenously, without introducing any exogenous growth 
terms at all. Another is that limited amplitude growth rate cycles take place 
around this trend, and that the average growth rates over cycles are reduced 
by orders of magnitude from those of the original multiplier-accelerator model. 
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We could not leave Hicks's contributions without emphasizing that he also 
introduced distributed lag systems for multiplier and accelerator, thus rais­
ing the order of the recurrence equation. Numerical simulations at that time 
sometimes produced just irregularity, as nobody could yet put the tag "chaos" 
on it, but Hommes (1991) showed that just raising the order of the difference 
equation by one results in chaotic motion. The order can, of course, also be 
raised through coupling different open economies together through interre­
gional trade, each modelled by a second order process. See Sushko et al 
(2003). 

3.13 The Hicksian Revolution 

It is obvious that Hicks's book of 1950 had a tremendous influence on busi­
ness cycle modelling. The same year saw Duesenberry's penetrating review, 
and the following year Goodwin's model as well as Baumol's and Hansen's 
books. Allen (1956) cannot be too highly recommended as a concise com­
pendium of the state of the art after the "Hicksian revolution". 

In 1950 an important conference on business cycles was held at Oxford. A 
delightful memorial of that is the following poem composed during the con­
ference by Sir Dennis Robertson. It reflects both the non-mathematician's 
frustration at the mathematical language, which even Keynes avoided, but 
which was creeping into economics. Its main importance is that it accurately 
focused the main topic of the conference, as well as showing a full under­
standing of the fact that it was nonlinearity that was brought into dynamic 
economics. The poem was originally published in the proceedings of that 
conference, but republished in Robertson (1956): 

As soon as I could safely toddle 
My parents handed me a model 
My brisk and energetic pater 
Provided the accelerator, 
My mother, with her kindly gumption, 
The function guiding my consumption; 
And every week I had from her 
A lovely new parameter, 
With lots of little leads and lags 
In pretty parabolic bags. 

With optimistic expectations 
I started on my explorations, 
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And swore to move without a swer\>e 
Along my sinusoidal curve. 
Alas! I knew how this would end; 
I've mixed the cycle and the trend, 
And fear that, growing daily skinnier, 
I have at length become non-linear. 
I Meander glumly roimd the house 
As though I were exogenous, 
And hardly capable of feeling 
The difference 'tween floor and ceiling. 
I scarcely now, a pallid ghost, 
Can tell ex ante from ex post; 
My thoughts are sadly inelastic, 
My acts incurably stochastic. 
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4 Multiplier-Accelerator Models 
with Random Perturbations 

Volker Bohm * 

4.1 Introduction 

In his original contribution Samuelson (1939) for the first time presented 
one of the major structural reasons of possible cyclical behavior in macroe-
conomic models: the interaction of the multiplier and the accelerator princi­
ples which induces a second order delay equation of real aggregate output. 
While he realized that his model could not generate permanent cycles, it was 
Hicks (1950) in a subsequent extension introducing ceilings and floors show­
ing that permanent "harmonic" fluctuations arise in a natural way under the 
Multiplier-Accelerator principle. These models have received wide interest 
within dynamical systems theory, since they supply a wide range of expla­
nations of truly complex business cycle phenomena originating from a linear 
model with restrictions implying a minimal degree of non-linearity. 

As an alternative to such restrictions, the introduction of random pertur­
bations to linear delay systems has also served as an explanation of busi­
ness cycle phenomena which has mainly been studied within linear time se­
ries analysis. The recent development of new techniques from the theory of 
stochastic dynamical systems allows an extension of results within the dy­
namic frame work for the Multiplier-Accelerator model. Most importantly, 
however, these techniques combined with the availability of efficient and 
fast numerical techniques allow a significantly more detailed insight into the 
range of qualitative features of the random Multiplier-Accelerator model. 

* Acknowledgement: I am indebted to Thorsten Pampel, George Vachadze, and Jan Wen-
zelburger for useful discussions and criticism. This research was part of the project "Endo-
gene stochastische Konjunkturtheorie" supported in part by the Deutsche Forschungsgemein-
schaft under grant BO 635/9-3. 
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This chapter takes this new view of random dynamical systems theory to 
examine the classical Multiplier-Accelerator model when random perturba­
tions are introduced to model parameters. The emphasis of the chapter is on 
the revelation of the dynamical richness of business cycle scenarios which 
may occur in such simple economic models. 

4.2 Random Dynamical Systems 

The traditional description of the dynamic evolution of stochastic economic 
models is carried out using the mathematical formalization of stochastic pro­
cesses, i. e. as a family of random variables given a specified exogenous 
structure of stochastic properties. When the standard tools of stochastic 
processes are used, the actual evolution of the stochastic data, (the sam­
ple paths), is often suppressed in favor of results and characterizations of 
the evolution of the probabilistic features or the statistical properties of the 
model. In this case the experimental perspective of the characteristics of a 
specific sample path, i. e. the empirical observation becomes of secondary 
importance. In many economic applications, however, as well as from a dy­
namical systems point of view, it is often natural and desirable to analyze the 
generation of stochastic orbits directly. This can be done in many situations 
by modelling the stochastic environment of a dynamical economic system in 
an explicit fashion. 

Consider for example a parameterized dynamical system F : W^ x 
W^ -^W^, given by a family of mappings 

F ( - , 0 : ^ C E " - ^ A ' , (1) 

where ^ G M^ is a vector of parameters which is subjected to random pertur­
bations and X is the vector of endogenous variables. The evolution of x (the 
orbit) for a given value of the parameter ^ G W^ is described in the usual 
way by 

xt = Fl{xo) F^ = Fi;0, (2) 

i. e. the dynamics follow the rules and the description of a deterministic dy­
namical system once the value of a particular ^ is given. Now let ^ follow a 
given random path described by a; : = ( . . . , ^s-2^^s-i^Cs, ^5+1, • • •)• Then, 
the generation of the random path 

xt+i = F^,{xt) = F{xt,^t) forall t (3) 

means that the change of (̂  implies choosing at each t a different mapping. If 
F(-, ^), ^ € [̂ , ^] is a family of contraction mappings with upper and lower 
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bounds [̂ , <̂ ], then for any random path a; the associated evolution of x will 
eventually be trapped in some compact interval [x, x]. For a one dimensional 
system, for example, the dynamic evolution of {xt} can be visualized as in 
Figure 1 for any initial value XQ and a given cj — ( . . . , (̂ , ^, ^, ^, ^, (^,...). 

Figure 1: A random orbit ofxforuj. 

Formally a random dynamical system in the sense of Arnold (1998)^ has 
two building blocks: 

- a model describing a dynamical system perturbed by noise 

- and a model of the noise. 

1) The exogenous noise process is modelled as a so called metric dynamical 
system known from ergodic theory. 

Let ^ : f̂  -^ fi be a measurable invertible mapping on a probability 
space (f2,J^, P) which is measure preserving with respect to P and 
whose inverse d~^ is again measurable. Assume that P is ergodic 
with respect to i? and let '&^ denote the ^-th iterate of the map d. The 
collection ( 0 , ^ , P , {'̂ ^j^^^) is called an ergodic metric dynamical 
system (for details see Arnold (1998)). 

Â synthesis of this view of dynamical systems with noise has been developed by many 
researchers among them Kesten (1973), Brandt (1986), Borovkov (1998), Lasota & Mackey 
(1994). 
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Any stationary ergodic process {6}tGN ? 6 • ̂  —^ ^^ ^^^ be repre­
sented by an ergodic dynamical system. This implies that there exists 
a measurable map ^ : ft -^ R ^ such that for each fixed a; G fi, a 
sample path of the noise process is given by ^t(^) = ^{'^^^), t e Z. 
Such a process is often referred to as a real noise process . 

2) The second ingredient is a parameterized family of invertible time-one 
maps of topological dynamical systems F : XxM.^ —> X,X C R ^ 
inducing the random difference equation F : X x Q. —^ X, 

xt+i = Fixt,${^'Lo)) = F{'d'Lo)xt. (4) 

For any XQ, the iteration of the map F under the perturbation w induces 
a measvirable map 0 : Z x Jl x X —> X defined by 

r (F(i?*-^a;) o . . . o F(w))xo if i > 0 
(j){t,ui,XQ) :— I XQ if t = 0 

\ ( F ( ^ * a ; ) - l o . . . o F ( i ? - l w ) - l ) x o if t < 0 
(5) 

such that xt = (t>{t, CJ^ XQ) is the state of the system at time t. 

~ For any XQ ^ X and any u e Q, the sequence 7(^0) := {^tjtez ^^^^ 
Xt = (j)(t^ OO)XQ is called an orbit of the random dynamical system (j). 

- For any t and s one has: 

0(t4-5,a;,xo) = F(^*+^a;) o . . . o F(cj)xo (6) 

= (j){t,d^uj,(l){s,uj,xo)) (7) 

Many stochastic processes can be described as metric dynamical sys­
tems. As an example, consider the representation for a standard i. i. d. pro­
cess. Let {^t} denote a family of independent and identically distributed 
random variables with values mW C R^ , which have the common distri­
bution (measure) A. Then one has: 

• fi — VT^ = W xW xW X'" 

• T = B{Vl) Borel cr-algebra 

• a ; = ( . . . , ^ 3 - i , 6 , 6 + i , - - 0 witha;(5) = ^5 
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0 : fi —> f2 is the so called shift map with uo ^^ 6u and 6IJJ{S) 

u{s + 1) ^ 6+1 

• (̂  : Q —> W^ is the evaluation map with ^(cj) = uj(Q) 

4.3 Random Fixed Points 

The long run behavior of a random dynamical system is described by random 
attractors, the random analogue of an attractor of a deterministic dynamical 
system, the random fixed point being a special case^. 

Definition 4.1 
Consider a random dynamical system (p induced by the continuous mapping 
F : X xW —> X with real noise process ^t = ^odK ^ \Q. — > W 
measurable, over the ergodic dynamical system (il, ^ , P, {'d^)). 

A random fixed point of<p is a random variable x* : fi —> X on (fi, ^ , P) 
such that almost surely 

x^(dijo) = (j){l,u,x^{uj)) = F{x^{uj),^{u)) for all u e n\ (8) 

where f2' C Jl is a d-invariant set of full measure, P(f2') = 1. 

Thus, a random fixed point is a stationary solution of the stochastic differ­
ence equation generated by the metric dynamical system. Some implications 
of the definition can be observed directly. If F is independent of the pertur­
bation Lxj, then the Definition 4.1 coincides with the one of a deterministic 
fixed point. Definition 4.1 implies that x*('i?*"^^a;) = F{x^{'d^uj),^(;d^uj)) 
for all times t. Therefore, the orbit {x^(d^LS)}t&^ a; G Q generated by x* 
solves the random difference equation 

Stationarity and ergodicity of ?9 implies that the stochastic process {x* (d^)}t^^ 
is stationary and ergodic. 

ŜchmalfuB (1996, 1998), also Arnold (1998). 
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The random fixed point x* induces an invariant distribution x*P on M^ de­
fined by 

x^F{B) := ¥{ujen\x^{uj)eB}. (9) 

The invariance of the measure P under the shift; i? implies the invariance of 
x*P, i. e. (x*i?)P(S) = x*P(5). If, in addition, E||x*|| < oo, then 

1 
lim - Y^ lB(x*(i?^a;)) - x^F{B) T^ooT 

(10) 

t=o 

for every B G >B(X). In other words, the empirical law of an orbit is well 
defined and it is equal to the distribution x*P of x*. Finally, if the perturba­
tion corresponds to an i. i. d. process the orbit of the fixed point a;* will be 
an ergodic Markov equilibrium in the usual sense (cf Duffie, Geanakoplos, 
Mas-Colell & McLennan 1994). The following definition of a stable random 

Figure 2: Asymptotic convergence to a random fixed point. 

fixed point (due to SchmalfuB (1996, 1998)) includes the notion of stability 
given by Definition 7.4.6 in Arnold (1998). 
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Definition 4.2 
A random fixed point x* is called asymptotically stable with respect to a 
norm \\ - \\, if there exists a random neighborhood U{u) C X, uo G f2 such 
that P- a.s. 

lim \\(j)(t,uj,xo) -x*('i?*a;)|| = 0 for all XQ{U) G U{UJ). 

Figure 2 portrays the convergence property of a random fixed point for the 
one dimensional growth model for three random orbits associated with dif­
ferent initial conditions and the same noise path. 

The following theorem, which is due to Arnold (1998)^, will be the cen­
tral result applied to the random Multiplier-Accelerator model supporting the 
numerical analysis and implying the dynamic and statistical properties to be 
exhibited. Consider invertible affine transformations on W^ defined by pairs 
{A^b) where A is an invertible n x n matrix and b E MJ^. Let A denote 
the space of non singular n x n matrices and assume A, A~^, and b to be 
bounded. 

Theorem 4.1 
Let F^ : R^ —> R^ be an invertible affine random dynamical system with 
stationary noise process {^t} on the probability space ( Q , ^ , P). Assume 
^ : Q ^^ {A^MP') with ^{u) = {A{uj),b{uj)), which implies the random 
difference equation 

xt+i=A{^^uj)xt-^b{d^uj) (11) 

and the random dynamical system"^ 

(t){t,x,uj) := Ix t = 0 (12) 

[$(i,a;) (x - ZJ^, $(i + l,'^)-' K^M) t < 0 

where 

^{t,Lo):={l t = 0 (13) 
'yi(i?*-M-
/ 

^A-\-d^Lj)-

•A{u>), t>0 

t = 0 

••A-^i'd-'^u) t<Q 

^Theorem 5.6.5 and Corollary 5.6.6. 
"̂ See Chapter 5 in Arnold (1998). 
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1. There exists a unique random fixed point x* : Q —̂  R"̂  such that 

x*(^*+ia;) = A{d^uo)x^{d^uj) - 6(#a;) P - a.s. (14) 

2. X* induces an invariant distribution x*P ^ /i* 

5. with unique support supp{p.^) = A* 

4. ifA{oj) are contracting maps, x* is globally attracting, i. e.for any XQ 

lim |(/)(t,cc;,xo)-x*('i?*a;)| = 0 P - a . 5 . (15) 

a«rf has the explicit form 

- 1 

x, (a ; ) := J ] $ ( t + 1,0;)-^ 6(7?̂ Cc;) (16) 
t=—oo 

4.4 Random Multiplier Accelerator Models 

Consider the standard Multiplier-Accelerator model (in the version of Hicks 
(1950)) defined by the three equations 

C = m^ + my_i 0 < m < l m o , i ; o > 0 (17) 

/ = ^0 + i;(y_i - y_2) ^ > o (18) 

y = c + / (19) 

implying the determination of aggregate real income in each period as 

Y = (mo + ^o) + (m + ^ ) Y ' - i - ^ y - 2 , (20) 

which is a linear delay equation of order two. Using the form 

/(yi ,y2) '= {rno + ^o) + (m + v)y2 - vyi (21) 

for the delay map / implies the associated two dimensional afifine dynamical 
system F : E^ ^ M^ defined by 

F{yi^y2) := (2/2,/(yi,2/2)) (22) 

= {y2:{rno-^vo)-i-{m-{-v)y2-vyi) (23) 

-V m + v I \ y2 I \ mo-\-vo 
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The function F has the unique fixed point (stationary state) 

y = 
m 1 — m 

(25) 

The accelerator v has no influence on the steady state y while aggregate 
demand mo + vo does not influence the stability of the steady state, y » 0 
requires m < 1. y is asymptotically stable if and only if 0 < m < 1 and 
0 < t' < 1. From the characteristic equation 

X(A) — Â  - (m + v)X + V 

one finds that the eigenvalues Aî 2 are complex if and only if m < 2y/v — 
V. Thus, for stability considerations (the projection into M? of) the space 
of parameters can be partitioned into a complex and into a real region as 
depicted in Figure 3. Therefore, for {m,v) G [0,1)^ the mapping F is a 
linear contraction with a unique steady state which is either a stable node or 
a stable focus. The above description shows that the Multiplier-Accelerator 

0 . 5 

Figure 3: Regions of eigenvalues in Multiplier-Accelerator Model. 

model consists of a family of aflfine parameterized maps Ff^ : B? -^ B? 
with parameters /i G M^. Without restricting economic generality, one may 
assume V{) ~ 0 capturing all effects of aggregate demand in the parameter 
0 < mo and thus restrict the analysis to situations of nonnegative parameter 
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values /i := (mo,m,f) E M^, i. e. aggregate demand, the multiplier, and 
the accelerator. In most applications, economic reasoning suggests further 
that the multiplier m takes values only between zero and one and that the 
accelerator v is restricted to values between 0 and 4. Therefore, for the rest 
of the analysis define the set of possible parameter values as 

M := {{mo,m,v) G M^ | 0 < mo < mo,0 < m < 1,0 < ^ < 4} . (26) 

As a consequence, the Random Multiplier Accelerator Model consists of the 
random family of affine maps F^ : R^ —> R^ with an associated (vector 
valued) stochastic process of parameters {//t}So defined on the probability 
space (O, j r ,P) which takes values in M, i. e. /xt : Jl —̂  M. More specifi­
cally, let //(a;) = (mo(a;), m{u)^ '^(^))> ^^^ define 

^ ^ \—v[uj) m[uj)^v{u)J ^ ^ \mQ\u) 

which implies the random difference equation 

xt+i = A{^^uj)xt + bi^^uj) 

(as in equation (11)) and the random dynamical system as in equation (12). 
This formulation fits precisely into the mathematical framework presented in 
Section 4.2. As a consequence, one has the following result for the class of 
random multiplier accelerator models. 

Proposition 4.1 
Let the random multiplier accelerator model F^ be given as in equation 
(24) and (26) and assume that the random perturbation is described by a 
stationary and ergodic process {pt} defined on a probability space (fi, ^ , P) 
with values in a compact set M := {{mo^m^v) E M\m < 1,?; < l } C M. 

(i) There exists a unique random fixed point y* : fi —> R^, given by 

- 1 

y*M:= Y. $(f + l,a>)-i6(t?*a;), (27) 
i=—oo 

with 

$(i,w) := { 
[A{§^-^uj)---A{u), t>0 

I i = 0 (28) 

[A-^'d*uj)---A-\^-^uj) t<0. 
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(ii) y* is asymptotically stable and induces a unique (stationary) invariant 
distribution 2/*P on R^ defined by 

(2/*P)(^) := ¥{uj^^\y\uj)eB} (29) 

for every B G ^(E^). 

(Hi) Moreover, 

1 ^ 
lim - Y, lB(y*(^M) - y*IP(S) = P{a; G fi|y*H G B} (30) 

for every B ^B{B?). 

Equation (30) states that the empirical law of an orbit is well defined and it 
is asymptotically equal to the distribution y*P of y*. 

The result follows as a direct application of Theorem 4.1. The given 
noise process can be represented as a real noise process in the sense of 
Arnold (1998). The assumption that the multiplier m as well as the ac­
celerator V are assumed to be strictly less than one imply that the family 
of mappings F^ are contractions. Therefore, existence, uniqueness, and 
asymptotic stability of the random fixed point i/* follows from Theorem 
4.1. While the result here is formulated for the simple two dimensional 
Multiplier-Accelerator model, the mathematical framework is much more 
general. It covers the whole class of aflfine random contraction mappings 
of finite dimension and not only delay systems. Such random models have 
unique globally attracting random fix points (stationary solutions). Most 
importantly, however, these properties hold for very general stationary and 
ergodic perturbations whether smooth or discrete, including in particular 
Markov processes and so called Markov switching models. Thus, from a 
time series perspective, Arnold's result sets a bench mark for the description 
of the invariance of aflfine economic models. Therefore, a large spectrum of 
qualitatively different sample profiles can be shown to appear, all consistent 
with a unique stationary and asymptotically stable solution. Observe that this 
was primarily obtained by the dynamic features of the construction chosen 
by the approach given in Arnold (1998). 

The major purpose of the remainder of this section is to examine the dy­
namic qualitative properties of some specific random examples using numer­
ical simulations. This will reveal insights into the nature of the recurrence of 
the stochastic multiplier accelerator model and into the role of the different 
parameters determining the invariant behavior. This can be done safely (with 
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proper care of the numerical analysis) due to the ergodicity property given in 
condition (30). In this case, a statistical examination of the long run behav­
ior of one generic sample path suffices to characterize the invariant statistical 
properties of the model. 

^From an economic point of view the three perturbations correspond to 
structurally different situations: 

1. a perturbation of the additive parameter mo corresponding to random 
exogenous demand in consumption or investment; 

2. a perturbation of the multiplicative parameters, 0 < m^v < 1, corre­
sponding to random propensities to consume or a random accelerator. 

The numerical experiments will use i. i. d. processes only, in spite of the fact 
that general Markov processes fall under the assumptions of Proposition 4.1 
as well. First, the analysis investigates the additive noise situation separately 
from each of the multiplicative effects. The additive noise will be chosen 
to be smooth, while the multiplicative and accelerator will be chosen from 
discrete sets. Mixing these two types reveal some specific and interesting 
features. 

4.5 The Dynamics with Smooth Additive i. i. d. Noise 

Consider the random equation (21) with an aggregate demand shock ^ > 0 

f\{yi:y2,0 '= mo + ^ + {m-{-v)y2 - vyi (31) 

which is distributed uniformly on some compact interval 

e ^ [ 0 , 2 A ] , A > 0 , (32) 

implying a mean E(̂  = A and a variance V^ = A^/3. In time series anal­
ysis such systems are referred to as a second order autoregressive process, 
denoted AR(2). Equation (31) induces a parameterized two dimensional ran­
dom dynamical system Fx :R^ -^ E^ given by 

^A(yi, 2/2,0 := (y2,/A(2/l,y2,0) 

0 1 

—V m-}- V 
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with additive noise, a so called Vector Autoregressive System of order 1, 
denoted VAR(l) in time series analysis. The characteristics of the stationary 
distribution are known from the standard time series approach and can be 
calculated explicitly in this particular case. 

Under the hypotheses of Proposition 4.1 the unique stationary solution 
can be characterized numerically by the limiting statistical behavior of any 
single sample path to be calculated from data. On the other hand, the true 
moments of the random fixed point y* can also be calculated given the noise 
distribution <̂  ~ [0,2A] for any A > 0. 

The stationarity of y* implies that the first moment Ey* must satisfy 

^ \-v m + vj ^ \mQ + E^ 

Hence, y\ and y^ have the same mean given by 

Vl) \ \-v m + vj) V^o + E ^ ; 1 - m VV 

The covariance matrix Cov(?/j, y | ) satisfies 

As the solution one obtains 

with 

3(1 — V) (1 + v)"^ — (m + v)"^ 

and 

m-\-v Â  m-i-v ^̂ _̂  
'̂ 1̂2 = ^21 = -j——'^^22 =- 77:; r 7 7 - — 7 2 7 :—To • (38) 

1 -\-v 3(1 — ?;) (1 + vy — (m + i;)^ 

Therefore, 

0 < t'12 = "̂ 2̂1 < vu = '̂ 22, for all A > 0, 0 < m < 1. 
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Observe, that the first moment is independent of the accelerator and it de­
pends on (m, A) only. The multiplier and accelerator together induce a pos­
itive cross correlation on the time series. Both correlation coefficients in­
crease as the accelerator increases. Notice in particular, that with a higher 
accelerator the attractor increases in size, including values of the state vari­
able less than mo/( l — m) and larger than (mo 4- 2A)/(1 — m). For small 
values of v, the attractor lies inside the cube defined by these two values. 
Since <̂  has a uniform distribution, the attractor as well as the distribution 
must be symmetric but not uniform. Table 1 shows the list of theoretical and 
computed values. 

To examine the qualitative properties of the (dynamic) invariant behav­
ior, two different cases will be discussed first to examine the role of the 
accelerator. Choose m = 0.75 for the multiplier and consider two values 
t? = 0.1 and V = 0.8 for the accelerator, f = 0.1 implies real eigenvalues 
such that the associated deterministic fixed point is a stable node implying 
monotonic convergence without rotation. In contrast, v = 0.8 implies com­
plex eigenvalues and a corresponding stable focus in the deterministic case. 
Most importantly, however, for each pair 0 < < {m,v) « 1, the set valued 
mapping associating the support of the invariant distribution with each pa­
rameter pair (m, v) will have compact images which depend on A alone and 
not on the particular noise chosen on [0,2A]. This implies that the attractor 
i. e. the support of the measure of the random fixed point will be a compact 
set which depends on the interval [0, A], the support of ^, but is independent 
of the particular form of the distribution. In this case, one would expect that 
under additive noise the complex case exhibits a much stronger rotation of 
the random orbits in the state space than in the case with real eigenvalues. 

Figure 4 provides time series characteristics for the case i; = 0.1 (left 
column) and f = 0.8 (right column). All calculations are carried out for 
the same noise path. Panel (a) and (b) show the convergence to the random 
fixed point for five different initial values of i/i, while (e) and (f) show typ­
ical time windows of the corresponding long run development of the (one 
dimensional projection of the) random fixed point. Panel (c) and (d) show 
the first 50 iterates with connecting lines. Observe that, in spite of the fact 
that for i; = 0.1 the deterministic fixed points are stable foci, the orbits show 
a low rotation phenomenon, caused by the stochastic displacement of the 
mappings. For v = 0.8, however, a strong rotation property appears induced 
by the complex eigenvalues of the matrix. 
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Figure 4: Transients and the role of the accelerator v ; m — 0.75, A = 0.1. 

The difference in the cyclical behavior becomes even more apparent 
when the long run of the random fixed point is examined. Panels (a) -(d) 
of Figure 5 show the two attractors with corresponding relative frequencies 
(densities). The grey shading of the profile of the invariant distribution indi­
cate equidistant levels of frequencies. 

The attractor under low rotation is almost a parallelogram while un­
der high rotation it has an elliptical form. Observe that both are perfectly 
symmetric with respect to the diagonal which implies that their respective 
marginal distributions must be identical. Since the noise is strictly additive, 
the mean is the same while the variance is higher in the case with v = 0.8 
(see panels (e) and (f)). Table 1 provides numerical results of some of the 
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Figure 5: T/ze role of the accelerator v ;T — 10^, m = 0.75, A = 0.1. 

standard statistics for the two cases, confirming the symmetry (low skew-
ness), and the high variance for the situation with v = 0.8. 

To complete the description of the statistical features, Figure 6 provides 
data on autocorrelation for a large sample, which confirms the typical char­
acteristics of the autocorrelation fimctions of an AR(2) for both the high 
rotation and the low rotation case (see for example Hamilton 1994). 

The bifurcation diagram Figure 7 shows the change to the elliptic shape 
of the support of the invariant distribution and the increasing variance as the 
accelerator increases. 
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statistic 

mean 
variance 
stand, dev. 
skewness 

V — 

1 theoretical 
4.4 
0.008357 
0.09141662 

[o 

0.1 
estimate 
4.39986 
0.00837783 
0.0915305 
0.00297042 

V = 

theoretical 
4.4 
0.0358 
0.189208879 
0 

0.8 
estimate 
4.39985 
0.0360081 
0.189758 
-0.00375951 

Table 1: Statistics: mo = 1, m = 0.75; A = 0.1. 
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Figure 6: The role ofv on correlation; ?n = 0.75, A = 0.1. 
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4.6 The Samuelson Model with Mixed Additive Noise 

Consider now the situation with mixed discrete/continuous additive noise 

/(2/1,2/2) ~ {mo + vo) +^ + {m + v)y2 - vyi 

^ - [0,2A], uniformly A > 0 (39) 

^ 0 ^ {O71}? discrete with equal probability 
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(a) A = 0.1, m = 0.75 (b) A = 0.1, m = 0.75 

Figure 7: Bifurcation of the accelerator v G [0,1]; m = 0.75, A = 0.1. 

describing a discrete switch of aggregate demand plus a small continuous 
noise, both of which follow an i. i. d. process. According to Proposition 
4.1, there exists a unique random fixed point (stationary solution) which is 
asymptotically stable. 

With finite discrete noise only (A = 0) the system becomes a so called 
Iterated Function System^(IVS) which often possesses complex or 'fractal' 
attractors made up of uncountably many disjoint compact sets of Lebesgue 
measure zero (Cantor sets). Such attractors are caused by gaps of the im­
ages of the finite list of mappings on invariant sets of the state space, i. e. 
subsets which are left with probability one in finite time. As a consequence 
the corresponding invariant measures will typically be 'fractal' and without 
densities. The experiment here is designed to reveal the effect of discrete 
noise on the attractor and examine the role of additional small smooth noise, 
to determine to what extent "smoothing by noise" appears. 

For the situation described by the system (39), the numerical analysis 
reveals the following property: there exists 0 << {m^v) « 1, a pair of 
values {ml < mg), and a small level of noise A > 0 such that the attrac­
tor consists of 2^ self similar disconnected subsets of R^, for some A: > 1 
(see Figure 8). The invariant measure has 2^ modes and has the same shape 
on each subset. Thus, the associated random fixed point (stationary solu­
tion) moves in a random fashion between the disjoint subsets and not in any 
specific harmonic or periodic way. The autocorrelation functions are not dis­
tinguishable from those of the smooth noise only (Figure 6). For example, 
panel (c) and (d) of Figure 8 show a 16 piece attractor and the associated 
histogram with 16 modes for A = 0.025. As the continuous noise increases 
the attractor as well as the measure becomes more smooth with only four 

^See Bamsley (1988) or Lasota & Mackey (1994). 
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8: Low accelerator: v = 0.25; rriQ ^ {0,1}; ^ ~ [0,2A]; m = .5. 

modes. Figures 8 and 9 display the change of the attractor and the invariant 
measure as the continuous noise increases from A = 0toA = 0.5. 

The sensitivity of these features with respect to the multiplier and the 
accelerator is quite different. It is a remarkable fact, that the appearance of 
the 'gaps' is more frequent for low values of the accelerator. As in the case 
with smooth additive noise alone, it appears again that the increase in the 
rotation caused by complex eigenvalues is the reason for this phenomenon. 
Therefore, a high value of the accelerator may create sufficient rotation by 
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Figure 9: Low accelerator: v — 0.25; mo ~ {0,1}; ^ ~ [0,2A]; m = .5. 

itself, so that even for A = 0, no gaps appear. As a consequence, for all 
small positive values of A, the long run behavior induces essentially the same 
invariant distribution as for A = 0, as can be seen in Figure 10. 

Figures 11 displays the results of bifurcations of the accelerator under 
different levels of noise for aggregate demand. The t;-bifurcation shows quite 
clearly the disconnected attractor for low values of the accelerator while its 
mean remains at the same level. In contrast, any m-bifurcation displays the 
joint effect of the multiplier on rotation and on the position of the attractor. 
In both cases, the invariant measure will have multiple modes of different 
order. 

Summarizing the results of the experiments with additive demand shocks, 
one finds that the attractor may consist of a symmetric collection of discon­
nected subsets of the state space provided the perturbation is discrete (with 
small smooth noise) and the accelerator is low. In such a situation, the unique 
stationary solution fluctuates in a random fashion between the disconnected 
subsets inducing multi modal invariant distributions on the symmetric dis­
connected subsets of the attractor without regularity or periodicity. If the 
smooth additive noise becomes larger or the accelerator becomes large, the 
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Figure 10: High accelerator: v = 0.75; mo ~ {0,1}; ^ ~ [0,2A]; m = 0.5. 

attractor is always a connected compact set. The multi modality disappears 
as the noise and/or the accelerator increase. Then, the stationary distribu­
tion exhibits the typical features of a VAR(l) model with an AR(2) delay 
structure with high rotation, an invariant distribution with support similar to 
an ellipsoid and with positive cross correlation, as presented in section 4.5. 
Thus, the statistical properties of smooth additive noise with high accelera­
tors may not be distinguishable from those of a mixed perturbation scenario 
with low accelerators. However, from a time series perspective, much of the 
regularity of the smooth case is lost. Sample paths will reveal clustering, 
moment reversion, and slow convergence of moments. From the perspective 
of time series analysis or estimating procedures, little seems to be known 
about the theoretical properties of the invariant distributions or methods to 
estimate parameters of an afifine system under discrete noise^. 

^For some preliminary results see Bohm & Jungeilges (2004). 
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Figure 11: v - Bifurcations; mo ~ {0,1}; ^ '^ [0,2A]; m = 0.5. 

4.7 Random Multiplier and Random Accelerator 

Finally, consider a discrete perturbation of the multiplier or the accelerator 
combined with small additive noise ^ ~ [0,2A] on aggregate demand. In 
such a case, the system becomes a Markov switching model and is no longer 
a VAR(l), since the noise acts in a multiplicative way on the delay equation. 
Due to Proposition 4.1, there exists a unique asymptotically stable random 
fixed point (stationary solution) whose statistical properties can be derived 
firom the empirical statistics of a single sample path. The multiplicative ran­
dom effects change the local stability property of the mappings implying a 
random change of the type of rotation. As a consequence, the attractor will 
not be symmetric any longer implying also that the stationary solution may 
show reversion of moments, volatility clustering or alike. However, while 
the random accelerator leaves the steady state unchanged (for A = 0), the 
random multiplier has both an effect on the rotation and on steady states. 
Therefore, in the latter case, one would expect larger attractors (higher vari­
ance) than with a random accelerator alone, a feature which is confirmed by 
the numerical experiments. 

In general, one finds qualitatively that multiplicative discrete noise re­
duces the occurrence of "gaps" but it often induces non symmetric attractors. 
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Discrete random multipliers generate less smooth invariant distributions than 
discrete random accelerators (compare Figures 13 and 14). Random accel­
erators increase the rotation inducing more symmetry of the attractor. In the 
latter case, the data may be indistinguishable from the situation with contin­
uous additive noise (VARl). In particular, autocorrelations will be indistin­
guishable. 

4.8 Two Special Cases with Discrete Noise 

Consider a model with simultaneous discrete switching of the accelerator 
and aggregate demand as characterized by Table 2 while keeping the multi­
plier constant. Four mappings which involve one real root and three complex 
roots are chosen with equal probability. The table lists the set of parameters 
but also the four associated fixed points and their eigenvalues Aj. 

The resulting dynamics, however, leads to an overall low rotation with 
an asymmetric attractor (see Figure 15). The time series indicates effects of 
mean reversion and of volatility clustering, while there does not appear any 
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Figure 12: Random Multiplier: m ~ {0.4,0.6}; mo+6" ^ ^ [0,2A]; v = .5. 
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Figure 13: Random multiplier: m ~ {0.4,0.6}; v = .5; mo+^ ; ^ ~ [0,2A]. 
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Figure 14: Random Accelerator: v ~ {0.25,0.75}; m = 0.5; mo + ^; 
^ ^ [ 0 , 2 A]. 

substantial correlation of higher order. The fixed points of the four determin­
istic mappings are contained in the asymmetric attractor which is stretched 
out along the diagonal. The invariant distribution is highly skewed with high 
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Table 2: Parameters of Model SAMS. 

statistic 

mean 
variance 
standard deviation 
skewness 
kurtosis 
quantile (0.55) 

[ time series SAM5 

8.12587 
6.88639 
2.62419 
1.41137 
2.80578 
7.72191 

Table 3: Statistics of Model SAMS. 

frequency occurring near the two lower fixed points and a high kurtosis. 
Table 3 provides empirical estimates of the basic statistics only. Theoreti­
cal values of the true moments seem to be unaccessible and not known for 
Markov switching models. 

Finally, consider the model SAM4 describing a situation with simulta­
neous discrete switching of the multiplier, the accelerator, and of aggregate 
demand as given by Table 4. 

This corresponds to a pure Markov switching model. The two mappings 
which are chosen with equal probability have fixed points with complex 
eigenvalues. The time series also shows the typical moment reversion and 
clustering as the previous model. 
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Figure 15: Characteristics of Model SAMS (T = 10^;. 
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Table 4: Parameters of Model SAM4. 

In contrast to the previous situation SAMS, however, the resulting dy­
namics shows a high degree of rotation with a less connected attractor than 
in Model SAMS, which points to a 'fractal' structure. Observe that the two 
stationary points are (1.7,1.7) and (5,5) most likely are not in the attractor. 
The invariant measure is much less smooth and less skewed. However, the 
autocorrelation is not distinctly different than in Model SAMS. 
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Figure 16: Characteristics of Model SAM4 (T = 10^;. 

4.9 Summary and Conclusions 

The random multiplier accelerator model can be described as a parameter­
ized family of random affine mappings, induced by a random family of sec­
ond order delay equations. If the multiplier and the accelerator are restricted 
to be strictly between zero and one, i. e. the stable case, every Multiplier-
Accelerator map is a contraction. Applying a result on existence, uniqueness, 
and asymptotic stability of a random fixed point for invertible affine random 
maps due to Arnold (1998), it was shown that for stationary and ergodic 
compact valued noise processes, the dynamics of the random Multiplier-
Accelerator model has a well defined unique, stationary and stable long run 
random behavior, satisfying the following properties: 

1. (almost all) random orbits/sample paths converge to a unique station­
ary solution which induces a unique invariant distribution on a unique 
attractor; 

2. time averages converge to the invariant distribution according to the 
Mean Ergodic Theorem; 
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statistic 
mean 
variance 
standard deviation 
skewness 
kurtosis 
quantile (0.55) 

time series SAM4 

3.00249 
2.0681 
1.43809 
1.10593 
0.578912 
2.8285 

Table 5: Statistics of Model SAM4. 

3. when perturbations are discrete (finite) and i. i. d., the random multiplier-
accelerator map corresponds to a Hyperbolic Iterated Function System 
(IFS). 

4. In this case, the unique attractor (the support of the invariant measure) 
may be a complex ('fractal') set or a Cantor set, and 

5. the invariant measure (distribution) may be very complex (with dis­
continuous distribution functions). 

With i. i. d. perturbations, the random multiplier accelerator model belongs to 
the class of generalized two dimensional Vector Autoregressive Systems of 
Order 1 (VARl) including so called Markov switching models. A numerical 
analysis with different i. i. d. perturbations showed that 

1. additive uniform i. i. d. perturbations alone lead to symmetric attrac-
tors and distributions 

2. on ellipsoidal attractors for high accelerators and on rectangular at-
tractors for low attractors; 

3. fractal attractors and distributions under discrete additive noise are 
more frequent for low than for high accelerators; 

4. adding small/continuous additive noise reduces/eliminates the 'fractal' 
structure of the attractor implying a multi modal invariant distribution 
on a finite collection of disjoint compact sets which make up the sup-
port/attractor; 

5. random accelerators as well as random multipliers typically lead to 
stationary solutions which can show a variety of complex time series 
phenomena, like moment reversion and clustering; 
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6. while the attractors and invariant distributions are typically non sym­
metric; 

7. these features seem less prevalent under a discrete random accelerator 
than under random multipliers or random aggregate demand. 

Since the mathematical result is applicable to general invertible affine 
random dynamical systems, the above features would be expected to appear 
as properties of unique stationary stable solutions also in random affine delay 
equations of any finite order as well as in more general affine economic mod­
els. Therefore, even with i. i. d. perturbations alone, these models represent 
a rich structure for interesting complex business cycle features. 
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5 Non-Autonomous Business Cycle Model 

Jose S. Cdnovas Pena and Manuel Ruiz Marin 

5.1 Introduction 

In previous chapters we have considered different versions of the Hicksian 
business cycle model. This model, as well as the original linear Samuelson 
model, was stated on the base that savings (5), consumption (C) and cap­
ital stock {K) at t are proportional to the income (Y) at t — 1, and these 
proportions do not depend on time, that is 

St - sYt-r, Ct = Yt-i-St = {l-s)Yt-i = cYt-i; Kt = aYt-i (1) 

and therefore the income formation equation remains 

Yt = Ct^It = Ct + [Kt - Kt-i) = (a + c)Yt-i - aYt-2. (2) 

where It denote the investments at the instant t. 
In this chapter we propose to modify this assumption by introducing non 

constant coefficients in the difference equation (2). More concretely we pro­
pose a model rewriting equations (1) as follows: 

St = stYt-v, Ct = CtYt-r, Kt = atYt-u (3) 

that is, the savings, consumption and capital stock in the period of time t 
are proportional to the income at t — 1 and these proportions depend on t. 
This new assumption makes sense because these proportions could depend 
on many factors, even on random factors. 

Hence equation (2) remains as 

Yt = {at + ct)Yt-i-atYt-2. (4) 
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and if we also consider autonomous expenditures A (as stated in Chapter 3), 
one obtain the following difference equation: 

Yt - (at + ct)Yt^i + atYt-2 = A. (5) 

Notice that there is no a general solution in closed form for (5). In order 
to study it, we introduce a new variable Xt •= Yt-\. Then we can write 

Xt = Yt-u 
Yt = -atXt-i + [ct + at)Yt-i + A, 

or in term of matrices 

x , \ ^ / 0 1 U ^ t - i V f o 
Yt \ -at ct + at \ Y t - i r \ A 

So, 

where 

{XuYt) = Ft{Xt-i.Yt-i), (6) 

Ft{X, Y) = (F, -atX + {ct + at)Y + A). 

We are going to study the system given in (6) under different assumptions 
on the parameters at and cu by using the notion of non-autonomous discrete 
system. We call the sequence [Ft), denoted by Fi^oo, a non-autonomous 
cycle. 

The next section will be devoted to introduce some notions and results 
concerning non-autonomous discrete systems. 

5.2 Non-Autonomous Discrete Systems 

Let X be a metric space with metric d and let / „ : X -^ X, n G N, be 
a sequence of continuous maps. The pair (X, /i,oo)> where /i,oo denotes the 
sequence (/ i , /2, •••, /n, •••)' is a non-autonomous discrete system. Through­
out this chapter we are going to denote 

fn — fn-\-k O fn+k-l ^ " - fn-

If x G X, then the trajectory (also orbit) of x under /i^oo is given by the 
sequence 

Orb(x,/i,oc) - (x , / i (x) , / f (x) , . . . , / r (a : ) , . . . ) , 
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where / f = /n <̂  ••• ^ /2 o / i , "̂  ^ 1, and fi denotes the identity on X. 
Notice that when /i^oo is the constant sequence ( / , / , . . . , / , . . . ) , then the pair 
{X, /i,oo) = (^7 / ) is a classical discrete dynamical system. The notion of 
non-autonomous discrete system can be found in Kolyada et al. 1996. 

One of the main goals in the study of autonomous and non-autonomous 
systems is to characterize the set of limit points of trajectories, that is, to char­
acterize the set a;(x, /i,oo) of accumulation points of the orbit Orb(a;, /i,oo)-
The set uj{x,fi^oo) is called the (x;-limit set of x under /i,oo- In this set­
ting, only partial results have been stated for the particular case of X being 
the compact unit interval [0,1] (see Kolyada et al. 1995 and Kempf 2002). 
When discrete dynamical systems are concerned the following result gives 
an useful property satisfied by the a;-limit set. 

Theorem 1 [Sharkovsky et al 1997] Let X be a compact set, let f : X -^ 
X be a continuous map and x G X. Then the uo—limit set u{x, f) is closed 
and strictly invariant by / , that is, f{Lu{x, / ) ) = UJ{X^ / ) . 

In general, the study of non-autonomous systems is rather complicated. How­
ever, there are two special classes of non-autonomous systems which can be 
deeply analyzed. 

In the first one we consider the sequence /i,oo such that fn converges to 
a continuous map / as n goes to infinity. Then the non-autonomous system 
can be studied as a discrete dynamical system as follows. Let Y = {1/n : 
n G N} U {0} be a compact set and define the map T:YxX-^YxXhy 

l[i/n,x).-<^ (0 , / (x)) i fn = 0. ^̂ ^ 

Then T is continuous and the pair ((NU{0}) x X, T) is a discrete dynamical 
system called triangular. This is so because usually the map T is called a 
triangular map. 

The second case is when the sequence /i,oo is periodic, that is, there is 
fc G N such that fn+k = fn for any positive integer n. The smallest positive 
integer k satisfying this condition is called the period of /i,oo- Hence the 

sequence /} j ^ = (/f, /^+i, . . .) is constant and then (X, / ] o )̂ is a discrete 
dynamical system. 

The following result involves the first special type of non autonomous 
systems. 

Proposition 1 Let X be a compact metric space and let fn : X ^^ X be a 
sequence of continuous maps such that {fn) converges to a continuous map 
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f : X -^ X as n goes to infinity. Fix x E X. Then u;{x^ /i,oo) i^ strictly 
invariant by f ( that is f{uj{x, /i,oo)) = ^(2:, /i,oo)l 

Proof. Let T{n^x) be the map defined in equation (7). Since T moves 1/n 
to l / ( n + 1), then any c«;-Hmit set of T is contained in the set {0} x X. Let 
7r2 : F X X —> y X X be the projection map on the second component, that is 
7r2(y, x) = X. Notice that 7r2(T'^(l, x)) = / f (x) for any x e X and n G N. 
On the other hand, it is straightforward to check that y G u{x, /i,oo) if and 
only if (0,y) G uj{{l,x),T) and hence {0} x u;(x,/i,oo) = u;({l,x),T). 
Moreover, since by Theorem 1, ct;((l,x),T) is strictly invariant by T, on 
one hand we have that 

T(a;(( l ,x) ,T)) = a ; ( ( l , x ) , T ) = {0} x uj{xji,^), (8) 

and on the other hand, 

T(u;((l, x), T)) = T({0} x uj{x, /i,oo)) - {0} x f{u;{x, /i,oo)), (9) 

Therefore by comparing equations (8) and (9) we have that 

f{uj{x, /l,oo)) = ^{X, /l,cx)), 

which finishes the proof. | 

Remark 1 An alternative proof of the above proposition can be seen in 
Kempf 2002 without using triangular maps. However, the use of triangu­
lar maps helps in shorten the proof. 

As we mentioned before we also are interested in studying the special 
case in which the sequence /i^oo is periodic. To this end consider 

/l,oo = ( / l , / 2 , - - - , A , / l , / 2 , - - . , / f c , - - - ) 

that is /i^ 00 is a periodic sequence of continuous maps with period k. In this 
case, the a;-limit sets of /i^oo can be computed as the next result shows. 

Proposition 2 Let fi^oo = ( / i , /2, •••, A , / i , /2, ••., A , •••) be a periodic se­
quence of continuous maps of period k and fix x G X. Then 
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Proof. First notice that the sequences f^^fori = 1,2,..., fc — 1 are the con­

stant sequences //^, respectively. Then, for any x G X, the set ^ ( ^ , / | Jo) = 

a;(x,//^) fori = l,2,...,fc —1. In order to prove the equality of the statement 

first we prove the following inclusion 

<^{x, /i,oo) c u^ix, /i") u oj{Mx), /2") u... u uj{fr\x), /::_,). 
To this end, let y G ^(a;,/i,oo)- Therefore there is a strictly increasing 
sequence of integers (n^) such that lim fi^{x) = y. For any i we have that 

i—^oo 

there exist m^, r̂  G N such that rii = k-rrii + ri with r̂  G { 0 , 1 , . . . , fc — 1}. 
Therefore there exists jo e {0,1,... ,k — 1} such that jo = '̂ i for infinitely 
many i's. Then 

y = lim / r ^ x ) = lim / ; „ V T ( / f (^)) = Hm ( 4 + i ) ' " H / f (a:)), 

which shows that y G C4;(/̂ ° (or), /j^j+i), and the inclusion is proved. Since it 
is straightforward to see that a;(/jo(x), /j^+i) ^ (̂ (a?, /i,oo) then the equal­
ity holds and the proof concludes. | 

The following notation will be used in what follows. Given two se­
quences of continuous maps /i,oo = ( / i , /2, . . . ) and ^i,oo = {91,92,-), 
we construct the sequence (/, p}i,oo = {h->9i,h,92, •..}• ^^ this setting, it 
will be useful the next result. 

Proposition 3 Let fi^oo = (fn) ^^^ 5̂ 1,00 = {9n) be two sequences of con­
tinuous maps that converge uniformly to f and g respectively. Then (/, g) [ |^ 
converges uniformly to g o f. 

Proof. First notice that the n^^ term of the sequence (/, g)[ |^ is gn^ fn- Fix 
£ > 0. Since (p^) converges uniformly to g there is no G N such that 

d{gn{x),g{x)) <e 

for all X G X and n > no- Also, since g is uniformly continuous there is 
6 > 0 such that if d{x, y) < 5, then d{g{x),g{y)) < e. On the other hand. 
Since (/„) converges uniformly to / there is n i G N such that 

dUn{x)J{x))<5 
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for all X G X and n > n i . Then if n > max{no, n i } , we have that 

d{{gn O fn){x), {g o f){x)) < d{gnUn{x)),g{fn{x))) 

+d{g{fn{x)),g{f{x)))<2e 

for any x E X, which finishes the proof of the proposition. | 

In the next section we wonder about the cc;-limit sets of sequences of 
maps Fn which define the non-autonomous cycle. Proposition 1 states that 
when the maps Fn converge to a map F , then this set is invariant by F. To 
improve the result we will need some definitions which can be found in Aoki 
et al. 1994. 

Definition 1 Let 5,e > 0. Let (X, d) be a metric space, f : X —^ X be a 
continuous map and (xn) ^ X be a sequence. 

(a) We say that the sequence (xn) is a 6-pseudo orbit off if it is held that 
d{xn+ij{xn)) < 6forn > 1. 

(b) We say that Orb(a:, / ) eshadows (xn) ifd{xn, f^{x)) < eforn > 1. 

(c) The map f has the shadowing property, also called pseudo orbit trac­
ing property, if for any £ > 0 there is 6 > 0 such that any 6-pseudo 
orbit is e-shadowed by an orbit off. 

An interesting problem related with the dynamics of the sequence fi^oo, 
when this sequence is periodic of period 2, is the so called Parrondo's para­
dox. The Parrondo's paradox can be stated as follows. Consider two con­
tinuous maps f^g : X -^ X and a sequence {an) G {0,1}^. Define the 
sequence /i,oo = (fn) by the rule fn = f if an = 0 and fn = g if an = 1. 
Notice that the map / f is constructed by the composition of the maps / and 
g depending on the sequence (an). We say that the Parrondo's paradox (see 
Almeida et al. 2005, Arena et al. 2003, Parrondo et al. 2002, or Harmer et al. 
2000 for additional information on the Parrondian phenomena) occurs when 
the dynamical systems {X, f) and (X, g) are complicated (respectively sim­
ple) and the system (X, /i,oo) is simple (respectively complicated). We will 
analyze whether a Parrondo phenomena occurs for non-autonomous cycles 
generated by two maps F\ and F2. 
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5.3 A First Approach to the Model 

Recall that the model presented in Section 5.1 is given by the following se­
quence of homeomorphisms 

Ft{X, Y) = (y, -atX + {ct + at)Y + A), (10) 

where (ct) and (at) are sequences of real numbers such that 0 < ĉ  < 1 and 
â  > 0 for any t > 1. The non-autonomous cycle is given by the sequence 
Fi^oo = {Ft)' We always assume that {at -{- ctf' - 4at < 0 for any t > 0, in 
order to have complex eigenvalues. 

For any t > 1, the sequence of fixed points of the map JF^ is given by 

{xivn-' ^ 
l-ct l-ct 

Notice that if Q = c for every t > 1, then the above sequence is constant. 
The following result shows that if we do not impose additional conditions 

on at and Ct then the behavior of the sequence Fi^oo can be complicated. 

Proposition 4 Fix (XcYb) ^ (M"^)^. Then there is a sequence {{at.ct)) 
with at > 0 and 0 < Ct < I such that Orb((Xo, ^^0)5^1,00) ^^ dense on R^. 

Proof. Let D be a dense and countable subset of R such that XQ.YQ G D. 

Then D x D = D'^ is dense on R^. Now, hx Xi = Xo e D and consider 

{Xi,Yi) = Fi{Xo.Yo) = {Yo^-aXo^{c + a)Yo + A), 

which gives us the equation 

Yi = -aXo + (c -h a)Yo + A. (11) 

Then a straightforward computation shows that 

Yi-A + a{Xo-Yo) 
'= % • 

Then fixing Yi ^ D and a such that 
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one deduces that there are infinitely many c such that equation (11) holds. 
Choose ai and ci such that (11) holds. Now, we take (X2,l2) ^ ^^ such 
that X2 = Yi, and arguing as before we can find a2 and C2 such that Y2 = 
—a2Xi + (c2 + a2)ll -\-A. Since D^ is a countable set, repeating this process 
we get that D^ = Orb((Xo, Yb), ^1,00), and the proof concludes. | 

Remark 2 The existence of a dense orbit is known as transitivity of the 
system. Although transitivity is not enough to provide chaos (consider, for 
instance, irrational rotations on the circle), notice that one can choose Yn in 
a random way and thus, the behavior of the orbit would be unpredictable. 

Then by Proposition 4 it is clear that to obtain some order in the model, 
the values of at and ct can not be arbitrary, they have to be chosen follow­
ing some rules. We are going to consider different cases for the sequence 
((at,ct)). In the next section we are going to assume that the sequence 
{{at.ct)) converges to (a, c). Afterwards we will study the proposed model 
when the sequence {{at, ct)) is not converging. 

5.4 The Convergent Case 

Assume that ((at, ct)) converges to (a, c), c < 1, as t goes to infinity. Then 
the sequence Ft converges to the map F, where 

F(X, Y) = (y, -aX + (a + c)Y + A). (12) 

In addition, the sequence of fixed points (X^*,y^*) converges to the fixed 
point of F, denoted by (X*, F*). Since X^ =^ F̂ * = 3 ^ for alH > 0 we 
obtain that X* = F* = f^. Now, we need some information on when the 

1—c ' 

orbits of the non-autonomous system are bounded. To this end, we introduce 
the following technical computations. 

Let ||(x,y)|| = yx^ + y^ be the Euclidean norm defined on R^. This 
norm induces a norm on M2(E) as follows (see Serre 2002, page 65). Let 
A e M2(R) and let A^ be the transpose matrix. Denote by 

p{A) — max{|A|; A is an eigenvalue of A}. 
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Then 
ll^ll := ^p{A-Ai'). (13) 

Consider the sequence of fixed points (X *̂, Y^) (recall that X^ = Y *̂). In 
order to get some information concerning the orbit of the point (X, Y), we 
are going to estimate 

\\Fl{x,Y)-{x;,Yn\\. 
Notice that if Ft = F for all t > 0, with fixed point {X*,Y*), then 

\\Fi{X,Y) - {X:,Y*)\\ = \\F\X,Y) - {X*,Y*)\\ 

measures the distance between any point of the orbit of (X, Y) and the fixed 
point. Under this assumption, as it was stated in Chapter 3, if a < 1 any 
orbit converges to the fixed point of F, and therefore 

lim | |F^ (X,y) - (X* , r* ) | |= :0 . 

On the other hand if a - 1 then \\F^{X,Y) - (X*,y*)|| is bounded and 
finally if a > 1 then \\F\X,Y) - {X*,Y*)\\ is unbounded if {X,Y) ^ 
(x*,y*). 

Now fix t > 0. We begin by estimating \\Ft{X, Y) - (X^ y^*)||. Let 

W^ 
0 1 

-at ct -f at 

Notice that a property of matrix norms are | |AS|| < ||A||||B||. For the 
matrix W, after a straightforward calculation, we have that p{W • W^) = at 
(recall that {at + ct)^ - 4at < 0). 

Therefore by the previous paragraph we obtain that 

\\Ft{X,Y)-{X;,Yn\\ = m{X,Y)-Ft{X;,Yn\\ 
0 1 \ f X-Xl 

Then 

\\FI{X,Y)-{XIY: 

-at ct + at J \ Y 
< at\\iX,Y)-iX:,Yt*)\\. 

< at\\Fl-\X,Y)-{X:,Yt*)\\ 

< at\\Fl-\X,Y)-{XUYtU)\\ 
+at\\{XU,YtU)-iX:,Yt*)\\ 

< at-iat\\Fl-Hx,Y)-{XUyt-i) 
+at\\{XUYtU)-iX;,Yt*)\\. 
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Hence, in an inductive way, we obtain 

m{x,Y)-ixiYn\\ < Eii(^n-iTn*-i)-(^:,^„*)iin«,-
n = 2 j = n 

+\\iX,Y)-{X;,Y;)\\Y[an. (14) 
71=1 

Now, we can prove the following result. 

Theorem 2 Let Fi^oo = (Ft) be a non-autonomous cycle defined as in (10) 
converging to the continuous function F defined as in (12). Then 

(a) Ifa< 1, then for all {X, Y) G R^ the u-limit set 

(b) If a > 1, then for all {X, Y) e R^ the orbit Orb((X, Y"), Fi,oo) is not 
bounded or converges to the fixed point (X*, F * ) . 

Proof. First, assume that (at) converges to a < 1. By inequality (14) we 
obtain 

\\Fl{x,Y)-ix*,Y*)\\ < ||F*(x,y)-(x;,y;)|| 
+ll(x;,y;)-(x*,mi 

< \\ix:,Yn-{x\Y*)\\ 

+ \\iX,Y)-{X:,Yn\\flan 
71=1 

71=2 j=n 

On the other hand, there are to G N and 0 < /3, a < 1 such that if t > to, 
then at -f-/? < a < 1. Let 

D = max{\\{xuyt-i)" (x^^Ymi||(x*,y*) - (x;,y;)||: t e N}, 
and 

t 
S = max{ J][ an : t = 1,2, . . . , to}. 

7 1 = 1 
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So, if t > to, we have 

t 

||Fi^(X,y)-(X*,F*)|| < D-^DSa^-^^+toDS^ Y^ Da "̂̂  

n=to+l 

\ n = t o + l / 

Since the serie 
n = l 

converges, we deduce that Orb((X, Y"), Fi,oo) is bounded and then, there is 
a compact subset K C B? such that Orb((X,y'),Fi,oo) C K. Since Ft 
converges uniformly over K, for a fixed 5 > Q there is to € N such that 

\\Ft{Fl-\X,Y)) - F{Fl-\X,Y))\\ < S, (15) 

for all t>to. We claim that the sequence 

(F*+*°(x,r) = F4+i(F*<'(x,r))) 

is a 5-pseudo orbit of F. To see this notice that by (15) \\FI'^*°{X, Y) -
F(F*+*°-^(X,F))|| = \\Ft+t,{Fl+'°-'iX,Y)) ~ F{Fl^'o-\X,Ym < 
5 for alH > 1, which proves the claim. 

By Aoki et al. 1994, page 86, the limit map F has the shadowing prop­
erty. Then, there are e > 0 and (Z^, T )̂ € M? such that if t > 1, then 

\\Fl^''{X,Y)-F\Ze^Te)\\<s (16) 

Since a < 1, there is ti G N such that 

| |F* (Z„T, ) - (X* ,y*) | |<£ (17) 

for all t > ti. Therefore, if t > to -\- ti by applying inequalities (16) and 
(17) we obtain that 

\\Fi{X,Y)-{X*,Y*)\\ < \\FliX,Y)-F''*°{Ze,Te)\\ 

+\\F'-'°{Ze,Te) - {X*,Y*)\\ < 2e. 

Since e was arbitrarily chosen, the sequence (Ff(X, Y)) converges to the 
fixed point (X*,y*). 
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Now we assume that (at) converges to a > 1. If Orb((X, F),Fi^oo) is not 
bounded, there is nothing to prove. Otherwise, we are going to assume that 
Orb((X, y),Fi,oo) is bounded. Then, there is a compact subset K C R'^ 
containing the orbit. Since Ft converges uniformly over K and the limit map 
F has the shadowing property (see Aoki et al. 1994, page 86). Therefore 
there are to, 5, £ and (Z^, T^) as above. Then proceeding as in the previous 
case {Ze, Te) = (X*, F*) for any e > 0 (otherwise Orb((Ze, T^), F) would 
be unbounded) and hence, again by (16), ijo{{X,Y),F\oo) — {(X*,F*)}. 

I 
Theorem 2 states that when a 7̂  1, the dynamical behavior of any orbit 

of the non-autonomous cycle is similar to an orbit of the dynamical system 
generated by the limit map F. Here three different possibilities can be ana­
lyzed. Firstly if â  < 1 for all t > 1, intuition tells us that any orbit should 
go to the fixed point of the limit map. To see this we have to go through sim­
ulations. In all the simulations we assume that A — 1. The initial condition 
is always the same for all simulations (XQ, FQ) = (0.25,0.189). In Figure 1 
we simulate the income traces and the orbit Orb((0.25,0.189), Fioo) when 
at = 0.9 — 1/t and ct — 0.5 is constant and when Q = 0.45 + \jt is vari­
able with the time t, respectively, for all t. Notice that in the first case, since 
Ct = 0.5 for all t then there is a unique fixed point in the real plane E^. 

Secondly if â  > 1 for all t > 1 an unbounded orbit appears. This 
situation is simulated in Figure 2, (similar pictures are shown when ĉ  = 0.5 
is constant for all t, that is why we only show the case in which ct = 0.5+1/i 
is variable with the time 0-

In Figure 3, the cycle starts with at > 1, but finally it converges to 
a = 0.99 < 1. 

There is not clear intuitions about what happens if at can be arbitrarily 
greater than, equal to or less than 1 depending on the instant on time t. To 
investigate this, we only have inequality (14) to prove the following result, 
in which convergence is not assumed. 

Theorem 3 Let Fi,oo = (Ft) be a non-autonomous cycle defined as in (10). 
Assume {X*,Y*) is the only fixed point in E^ of Ft for all t £ N. Then for 
all (X, Y) e R^ 

(a) / / l i m n L i ^n = 0, then u;((X, F ) , Fi,oo) = {(X*, F*)}. 
6—>00 

(b) If lim sup rin=i ^ri = OL, then Orb((X, F ) , Fi^oo) ^^ bounded. 
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Figure 1: We simulate in the upper part income traces (left) and orbit (right) 
where at = 0.9 — 1/t and Ct = 0.& with initial condition (XQ^YO) = 
(0.25,0.189) and in the lower part income traces (left) and orbit (right) 
where at = 0.95 — 1/t and ct — 0.45 + 1/t with the same initial condi­
tion. The orbit converges to the limit fixed point (2,2) and (1.81.., 1.81..), 
respectively, as Theorem 2 points out. 

Proof. Notice that in this particular case inequality (14) reads as follows 

\\Fi{x,Y) - (x*,y*)|| < ||(x,y) - (x*,y*)|f f[a,. 
n = l 

Therefore, if lim n n = i ^n = 0, we have that 
t—^oo 

\im\\F{{X,Y)-{X\Y* 
t-^oo 

0, 

which proves the first statement. 
To prove the second statement, since limsupI7n=i ^n = ot, for a fix 

t—>oo 

6 > 0 there exists to EN such that Y[li=i ctn < <^ + ^ i^ t > to. Then, again 
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50 100 150 200 m m 350 -2O0Q - 1 0 0 0 a 1000 ZDOiK 

Figure 2: Income traces (left) and orbit (right) where at = 1.02 + 1/t and 
Ct •= 0.5 -f- 1/t with initial condition (XQ^YQ) = (0.25,0.189). As it is 
expected, by Theorem 2, the orbit is not bounded. 

W&'^' '•' 

200 400 60D 

Figure 3: Income traces (left) and orbit (right) where â  = 0.99 + 1/t and 
Ct = 0.5 with initial condition (Xo^yb) = (0.25,0.189). The limit map 
holds that a — 0.99 < 1 and it is expected, by Theorem 2, that the orbit goes 
to the fixed point (2,2). However, at > 1 at the beginning of the orbit and 
therefore the convergence is slow. In fact, if one looks at the first iterations, 
it could be thought that the orbit diverges. 

by (14) we obtain that 

\F{{X,Y)-{X\Y*)\\ < \\{X,Y)-{X\Y*)\\J[an 
n = l 

< \\{X,Y)-{X\Y*)\\{a + e). 
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Since the previous inequality has been proved for an arbitrary e > 0, then 
the proof of the second statement finishes. | 

Notice that (X*, Y*) is the only fixed point of all maps Ft if either Q = 
c is constant or 4̂ = 0, that is, the model does not include autonomous 
expenditures. Next result also gives us some conditions to have bounded 
orbits, even when the fixed point changes with time. 

Theorem 4 Let Fi^^o = {Ft) be a non-autonomous cycle defined as in (10) 
which converges to F defined as in (12). Assume at = I for all t G N. If the 
series 

oo 

/ J K ^ n - l ^ ^ n - l ) ~ ( ^ n ' ^ n )ll 
71=2 

converges then Orb((X, F ) , FI^OQ) is bounded for all (X, Y) G M .̂ 

Proof. Let (X*, Y*) be the fixed point of the limit function F, Then, in­
equality (14) reads as 

\\Fl{x,Y)-ix:,Y;)\\ < \\ix,Y)-ix;,Yn\\ 

+ ^ l l ( x : _ i , y ; _ i ) - ( x : , y ; ) | | . 
n=2 

Since 

then 

\Fl{X,Y)-{X*,Y*)\\ < \\Fl{X,Y)-{X;,Yn\\ 
+\\{Xt,Y;)-{X*,Y*)\\ 

\Fl{X,Y)-{X*,Y*)\\ < \\iXt,Y;)-{X*,Y*)\\ 
+\\{x,Y)-{x;,Yn\\ 

t 

+ E l l ( ^ n - l ' ^ n - l ) - ( ^ n , 5 ^ „ * ) I U l 8 ) 
n=2 

Let 

and 

a=\mi\\{X,Y)-{X:,Yn 
t-^OO 

(^ — Z^ I l ( ^ n - l 5 ^ n - l ) "" (^n^^n*)!!-
n=2 
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Therefore, since the sequence {{X^,Y^*)) converges to (X*,Y"*), by (18) 
for any ^ > 0 there exists to G N such that if t > to, then 

| | F i * ( X , y ) - ( X * , F * ) | | < 6 + a + /3, 

which finishes the proof of this theorem. | 

In Figure 4 we simulate the situation presented in Theorem 4. Notice 
that since at = 1 for all t > 1, the only thing we may say about the orbit is 
that it is bounded, but we cannot say anything concerning the a;-limit set of 
the orbit. Although the orbit is bounded, we cannot say anything about the 
complexity of the orbit. For instance, when Ft = F for alH > 1, that is the 
sequence of maps is constant, the orbit is quasiperiodic (see Chapter 2) and 
hence no complex dynamics appear. Nothing can be said in the general case. 

Figure 4: Income traces (left) and orbit (right) where at = I and Ct = 
0.5 + 1/t with initial condition {XQ^YQ) = (0.25,0.189). Since A = 1, 
notice that the series X^^2 11 i^n-1 > ^n-1) ~ i^n ^^n)\\ = 4\/2 and hence 
the orbit Orb((X, y ) , FI^^Q) is bounded. 

When at converges to 1 and at ^ 1 for all t we have to go through sim­
ulations to see that in this case also the orbit Orb((X, Y),Fi^oo) is bounded 
for all {X^Y] G M?, In Figure 5 we simulate this situation when at < 1, 
at > I and at is randomly alternating > 1 and < 1 for all t. Roughly 
speaking, if â  > 1 the map Ft gives unbounded orbits (we say that Ft is ex­
pansive) and if at < 1 all orbits converges to the fixed point. Using the idea 
that Ft expands the orbit when at > 1 and contracts it when at < 1 we can 
"explain" some simulations which, cannot be explained by using the results 
proved in this chapter. These simulations point out that the condition a ^ 1 
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in Theorem 2 is necessary and it cannot be avoided. It is also interesting to 
emphasize how the behavior of the orbit of the non-autonomous system and 
the orbit of the limit map can be totally different. 

Figure 5: For the initial condition (Xo,lo) = (0.25,0.189) we simulate 
the following cases from left to right: (1) income traces and orbit where 
at = 1 — 1/t and ct = 0.5. Notice that according to Theorem 3 the orbit goes 
to the fixed point (2,2), although the convergence is very slow because at 
grows uptol. (2) Income traces and orbit where at = 1 + 1/t and Ct = 0.5. 
Here one can expect unbounded orbits because at > 1 and hence any map 
Ft is expansive. (3) Income traces and orbit where at = 1 -\- {—ly /t where 
r is a random integer between I and t and Q = 0.5 -f 1/t. These simulations 
show how the hyphotesis a ^ 1 in Theorem 2 is neccesary. 

5.5 Non-Autonomous Cycles Generated by Two Maps Fi and F2 

In this section, we study non-autonomous cycles which are generated by 
two maps JFI and F2. The simplest way in which we can obtain a non-
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autonomous cycle generated by two maps is with a periodic sequence Fi,oo = 
{Fi,F2,Fi^F2, ...)• In this case, the second iterate of the cycle is given 
by a constant sequence F | ^ — (F2 o Fi ,F2 o Fi , . . . ) . Moreover, given 
(X, Y) e R^ its orbit Orb((X, Y),Fi^^) is equal to 

Orb((X, y ) , F2 o Fi) U Orb(Fi(X, F ) , Fi o F2). (19) 

The above equality holds because 

Fr(x,y) = (F2oFi)"/2(x,y) 

if n G N is even and 

Ff (X,y) = {FioF2T'\Fi[X,Y)) 

if n € N is odd. Then, it is easy to derive from (19) and Proposition 2 that 

a ; ( ( X , y ) , F i , o o ) = ^ ( ( X , y ) , F 2 o F i ) U u ; ( F i ( X , y ) , F i o F 2 ) . 

Recently, there are several papers which deals with the following ques­
tion. If Fi and F2 are chaotic (or simple) in some sense, is it true that Fî oo» 
or more precisely F2 o Fi is chaotic (or simple)? (see for instance the refer­
ences Almeida et al. 2005, Harmer et al. 2000, Parrondo et al. 2002, Arena 
et al. 2003, Klic et al. 1996 and Klic et al. 2002). As we stated in Section 
5.2, this phenomenon is known as Parrondo's paradox. 

As we have done in the previous sections, the aim of this section is to ana­
lyze the asymptotic behavior of the orbit Orb((X, Y), Fi,oo)- If we translate 
this into the present context, the problem reads as follows: can two stable 
(resp. unstable) cycles provide an unstable (resp. stable) cycle? 

In order to give an answer to the previous question we have to take into 
account that we have two compositions Fi o F2 and F2 o Fi , which play a 
role in the orbit of the non-autonomous cycle. In general, if the composition 
f o g of two continuous functions / and g has a dynamical property (say, 
stability, chaos in any context,...) it is not true that the converse composition 
map go f has the same property. In fact, it can be seen in Linero et al. 2002, 
that, there are two continuous maps / and g on the interval [0,1], such that 
f o gis chaotic in the sense of Devaney while go f is not. From the point of 
view of non-autonomous cycles, we have to answer the following question: 
do the maps Fi o F2 and F2 o Fi have the same dynamical properties, let us 
say for instance, stability? 
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Consider the maps 

F,{X^Y)=( 0 ^ ]^ V ^ V f °. V^ = l>2. (20) 
-ai Ci + ai J \ Y J \ A 

Then, we construct the compositions 

and 

(F,of,)(x,y-) = ̂ ,l J ) + (^(j^^_^^^, 

where 

^ 1 
-ai ci + ai 

-a i (c2 + 02) (c2 + a2)(ci + ai) - (22 

and 

^2 
—a2 C2 + a2 

-a2(ci + ai) (ci + ai)(c2 + a2) - ai 

A simple calculation gives us that in the case in which the eigenvalues of 
both matrices are complex (this is the case of interest), the modulus of the 
eigenvalues coincide and its value is 

\/aia2. 

Then, we obtain stability if aia2 < I and unstability if aia2 > 1. Moreover, 
if both maps are stable, that is max{ai, a2} < 1, then the compositions are 
also stable, while if they are unstable, min{ai, a2} > 1, then the composi­
tion is unstable. But notice that we can get stability even when one of the 
maps is unstable. 

When aia2 = 1, we consider for instance the map F20 Fi. The charac­
teristic equation 

0 -
—ai — A ai + ci 

-ai(c2 + a2) -a2 + (ci + ai)(c2 + a2) - A 

= Â  -h [ai -\-a2- (ci + ai){c2 + a2)]A -I- aia2. 

Since aia2 = 1, we put a ~ ai and l/a = a2. Then the solutions of the 
above equation are 

-K ± y/K^ - 4 
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where 

K = a{l- c i ) + - ( 1 - C2) - (1 + C1C2). 

Now, if \K\ < 2, then the roots are complex with modulus 1, and hence the 
orbits are periodic or quasiperiodic (for instance when ci = C2 = 0.5 and 
a = 2). By other hand, if\K\ > 2, the roots are real, but in this case one of 
the roots has modulus greater that one because \ — K — y/K^ — 4| > 2 and 
hence, in the real case we cannot have stable maps but unstable maps (for 
instance when ci = C2 = 0.5 and a = 8). In a similar way it can be proved 
the same for the composition Fio F2. 

When the compositions are stable we can enunciate the next result whose 
proof is a direct consequence of Proposition 2. 

Theorem 5 Let JPI,OO = (^i? ^2? - î? -̂ 2̂  •••) be a periodic sequence of con­
tinuous functions defined as in (20), Assume that aia2 < 1. Then for any 
(X, Y) e R 2 we have 

a;((X,y),Fi,oo) = {(^2*1,^2*1), (^1*2.^*2)}, 

where (-^21' 2̂*1) ^^^ (-^12' 1̂*2) ^^^ ^^^ unique fixed point in M? 0/F2 o Fi 
and Fi o F2, respectively. 

The periodic sequence described above is the simplest way of construct­
ing a non-autonomous cycle with two maps. A general way of doing this is 
the following. Let (at) G {1,2}^ be an infinite sequence of 1 's and 2's. 
Let Fî oo = {Fai,Fa2y")' If (o t̂) is the periodic scqucncc (1,2,1,2,. . .) , 
then we obtain the periodic sequence of Theorem 5. When (at) is constant, 
for instance (1,1,1,.. . .), then we obtain an autonomous cycle defined by F i . 
Basically the same happens when {at) is eventually constant, that is, there 
is no G N such that at — at^ for all t > to. Now we are interested in 
sequences with infinitely many I's and 2's. 

Then under the previous assumptions we are going to estimate 

\\Fi{X,Y)-{Xl,Y{)\\, 

where {Xf, Y{) is the fixed point of Fi in order to find conditions for ob­
taining bounded and convergent orbits. To this end, notice that by inequality 
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(14), | |F i^ (X,F) - {X*^„yaM is smaller or equal to 

\\{X,Y)-{X*,^,Y:j\\flac,„ 
n=l 

71=2 j=n 

< \\{X,Y) - {X:^,Y:M n «a„ + \\{Xl,Yi) - iXlY{)\\ J2 n «".' 
n—1 n=2j=n 

because there are only two fixed points. Then, we can prove the following 
result. 

Theorem 6 Let (at) G {1,2}^ be an infinite sequence. Let Fi^oo = {^at) 
where Fat ^^ defined as in (20), Assume that ^ ^ ^ 2 Y]!^i=n ^ctj converges. 
Then any orbits Orb((X, y),i^i^oo)» of the non-autonomous sequence is 
bounded. If in addition Fi and F2 has the same fixed point (X*, y*) and the 
product n n = i ĉKn converges to zero, then any orbit converges to the fixed 
point {X\Y''). 

Proof, If X]n=2 11̂ =71 ^oij converges, then n n = i ^^n converges to zero. 
Now proceed as in the proof of Theorem 3 to obtain the result. | 

Notice that the sequence {at) can be generated in several ways. Here we 
propose some of them which, in our opinion, have a special interest. The 
first one is to choose the sequence (at) is in a random way. For instance, we 
consider that a probabilty measure // on {1,2} such that //({l}) = /i({2}) = 
1/2. In this case one could make himself the following questions: is there 
a common behavior, for almost all sequence {at)? or is that common be­
haviour similar to that of Fi o F2 and F2 o Fi ?. By other hand, what hap­
pens if the measure /i changes? Figures 6 to 11 show simulations in which 
the sequence (at) is chosen in a random way. 

To end this section, notice that we can combine the results obtained here 
jointly with those obtained in section 5.4 to construct non-autonomous cy­
cles. Basically, we are going to construct non-autonomous cycles which are 
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Figure 6: Income traces (left) and orbit (right) where ai ~ 0.9, a2 = 0.95 
with initial condition (XQ, Yb) = (0.25,0.189). In the upper part of the 
figure ci = 0 . 4 and C2 = 0.5, while in the lower part ci = C2 = 0.5, that 
is Fi and F2 have the same fixed point. Both maps are contractive, but in 
the first case the existence of different fixed points for Fi and F2 produces 
a non-convergent orbit, while in the second case, the existence of a common 
fixed point, jointly with Theorem 3, implies the convergence of the orbit to the 
common fixed point. The example shows a situation in which the existence 
ofnon common fixed points generates a complicated behaviour It seems to 
be difficult to obtain a mathematical explanation of this fact. 

given by two sequences which converge to the maps F^^^ and F^'^^ in the 
following way. 

Let 

and 

Fi'\x, Y) = (Y, -a\X + {a\ + c\)Y) 

Ff\x,Y) = {Y,-a\X^{a\ + c\)Y) 

(21) 

(22) 
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Figure 7: Income traces (left) and orbit (right) where ai = 1.09, a2 = 1.05 
with initial condition (XO^YQ) = (0.25,0.189). In the upper part of the 
figure ci = 0.4 and C2 = 0.5, while in the lower part ci = C2 = 0.5, that 
is Fi and F2 have the same fixed point. Since both maps Fi and F2 are 
expansive, it is expected an unbounded orbit. Since the orbit is expanding 
out, it seems that it is not important the fact that the maps share the fixed 
point, because both simulations are similar Notice that the same does not 
happens when the maps are contractive. 

be two sequences of cycles which converge to 

F W ( X , Y) = (y, - a ^ X + (a^ + c^)Y) 

and 
F ( 2 ) ( X , Y) = (y, -a^X + (a^ -f c^)Y), 

respectively. Consider the non-autonomous cycle defined by the sequence 

n.(l,2) _ / r . ( l ) p{2) ^(1) j^{2) . 
^ 1 , 0 0 - V-^1 ' - ^ 1 ' - ^ 2 ' - ^ 2 ^"')' 
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Figure 8: Income traces (left) and orbit (right) where ai = a2 ~ 1 with 
initial condition (Xo,i^) = (0.25,0.189). In the upper part of the figure 
ci = 0.4 and C2 = 0.5, while in the lower part ci = C2 = 0.5, that is Fi 
and F2 have the same fixed point and hence Fi = F2. In both cases we 
obtain bounded orbits, but the existence of different fixed points in the first 
case gives us a more complicated orbit. Theorem 4 proves that the second 
case is bounded. 

If a^a? ^ 1, then by Aoki et al. 1994, page 86, both maps F ( ^ ) O F ( 2 ) and 
i^(2) oF^^) have the shadowing property. Hence, by Propositions 2 and 3 and 
proceeding as in the proof of Theorem 2, we can enunciate the next result. 

Theorem 7 Let F^ ^ and F]^ ̂  be two non-autonomous cycles defined as 
(21) and (22) respectively, converging to 

F(I) (X, Y) = (y, -a^X + (a^ + c^)Y) 

and 
F(2)(X,y) = (F, -a^X + (a^ + c^)Y), 

respectively. Then for any (X^Y) G K^ the following statements hold: 
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Figure 9: Income traces (left) and orbit (right) where a i = 1.2, a2 = 0.79 
with initial condition {XQ^YQ) = (0.25,0.189). In the upper part of the 
figure ci = 0 . 4 and C2 = 0.5, while in the lower part ci = C2 = 0.5, that is 
Fi and F2 have the same fixed point. Notice that aia2 < 1 and then roughly 
speaking, if the number of times in which ai and a2 appear is approximately 
the same, according to Theorem 12, we have bounded and convergent orbits. 
That is what it seems that happens in these simulations. Notice that the 
existence of different fixed points implies a greater complexity. 

(a) Ifa'a^ < 1, thenLo{{X,Y),Fil^^) = {(Xli,^^*!). (^1*2.̂ 1*2)}^ ^ith 
(Xf2,yi*o) and (X2*i,r2*i) the fixed points in R^ of F^^^ o ^(2) and 
F ( 2 ) O F^i)^ respectively. 

(b) Ifa^a^ > 1, then the orbit Orb((X, F ) , F^^^^) is unbounded. 

Figures 12 to 15 are simulations of different situations for the income 
traces and orbits of the non-autonomous cycle F[^^ depending on the pa­
rameters of the model. Notice that when a^a^ ^ 1, then all the simulations 
can be rigorously explained by Theorem 14. 
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Figure 10: Income traces (left) and orbit (right) where ai = 2.19 and a2 = 
0.9 with initial condition (XQ, YQ) = (0.25,0.189). In the upper part of the 
figure ci = 0.4 and C2 — 0.5, while in the lower part ci = C2 = 0.5, that is 
Fi and F2 have the same fixed point. Since a 1̂ 2 > 1, one would expect that 
the modulus of the points in the orbit grows. Indeed the simulations show 
unbounded orbits. 

5.6 A Naive Approach to the General Case 

As we saw in Section 5.3, if at and ct can be chosen without any restric­
tion, then the orbit of the non-autonomous cycle can be a dense subset of 
R^. In this section we are going to choose at and ct in three different ways 
which have not been studied before. In the cases we analyze we always ran­
domly choose Ct and at from a bounded closed interval. Three cases appear 
because degenerate intervals, that is a single point, are taking into account, 
but they cannot appear simultaneously. We can think that always either at 
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Figure 11: Income traces (left) and orbit (right) where a\ — 1/0.9 and 
a2 = 0.9 with initial condition (XQ^YQ) = (0.25,0.189). In the upper part 
of the figure ci = 0.5 and C2 = 0.4, while in the lower part ci = C2 = 0.5, 
that is Fi and F2 have the same fixed point. Notice that aia2 = 1, and then 
one can expect bounded orbits. As before, the more complicated situation 
appears when the fixed points ofFi and F2 are different. 

or ct or both are chosen from a bounded closed interval following a uniform 
probabilistic distribution. 

So first, we consider that at ~ a for a lH > 0 and ct G [c, c] is ran­
domly chosen. We are going to estimate | |Fi(X, Y") — (X^*,y/)| | in order 
to characterize bounded orbits. Now, inequality (14) reads as 

\\Fl{X,Y)-{Xt,Ym < E « * " " ^ ' l K ^ » - l ' ^ n - l ) - ( ^ n ' ^ n ) l l 
n—2 

+a*||(x,y)-(x;,y;)||. (23) 

Then we can prove the following result. 
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Figure 12: From left to right we simulate income traces and orbit in the 
following cases: (1) a} = 0.9 - 1/t, a^ = 0.95 - 1/t, c] == 0.5 + 1/t and 
cl = 0.4 + l/t (2) a\ = 0.9 - 1/t, af = 0.95 - 1/t ^ = 0.5 and c} = 0.4 
and (3) aj = 1.2 - 1/t af = 0.79 - 1/t q̂  = 0.5 and cf = 0.4 wzY/z 
initial condition {Xo^Yo) — (0.25,0.189), respectively. For the limit maps 
we have that a^a'^ < 1 and then, by Theorem 14 it is expected that the orbits 
converges to the fixed points of the composition of the maps F^^^ and F^'^\ 

Theorem 8 Let i^i,oo == {Ft) be a non-autonomous cycle defined as in (10). 
Assume that at — a and Ct G [c, c] with c < 1 for all t > 1. Then the 
following statements hold: 

(a) If a < 1, then any orbit, Orb((X, F),Fi^oo)> of the non-autonomous 
cycle is bounded. 

(b) lfa=l and the series 

oo 

j^\\{x:_„Y:_,)-ix*^,Y:)\\ 
n=2 

converges, then for all (X, Y) € R^ the orbit, Orb((X, Y),Fi oo), of 
the non-autonomous cycle is bounded. 
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Figure 13: First we simulate income traces (left) and orbit (right) where 
aj = 1.09 - 1/t a? = 1.02 - 1/t, c} = 0.5 -f 1/t and cf = 0.4 + l/t 
and second income traces (left) and orbit (right) where a\ = 1.09 — l / t , 
af = 1.02 — l / t , c\ = 0 . 5 and cf = 0.4, in both cases with initial condition 
(Xo, lo) = (0.25,0.189). Since a^a^ > 1, it is natural to expect unbounded 
orbits, which is what the simulations show. 

Proof. Since c < 1, the sequence of fixed points ((X^*,!^*)) are bounded 
because X^ = i^* < A/{l — c). The proof of the first statement is analogous 
to the proof of Theorem 3. For the second statement by (23) we have that 

\FliX,Y)-iX:,Y; < \\ix,Y)-{x:,Y; 
t 

+ Ell(^-l'^"-l)-(^n'^n)ll-
72=2 

Now proceeding as in the proof of Theorem 3 we obtain the required result. 

Below, in Figure 16 we simulate conditions 1 and 2 of Theorem 8 respec­
tively. 
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Figure 14: For the initial condition (Xo,Fo) = (0.25,0.189)/r(9m left to 
right we simulate income traces and orbit in the following cases: (1) a] = 
1/0.9 - 1/t, af = 0.9 - 1/t, cl = 0.5 + l/t and cf = 0.4 + l/t (2) a] = 
1/0.9 - l / t a | = 0.9 - l/t c] = 0.5 and cf = 0.4 an^i (5) 4 = 1- l/t, 
af = 1 - l / t c | == 0.5 + l/t and cf = 0.4 + l/t. Notice that a}a^ = 1 
and then Theorem 14 does not give any information about the simulations. 
Since aja^ < 1, one would expect the convergence of the orbit, which is 
what happens in the simulations. 

Notice that if c = 1, then the sequence of fixed points is not bounded 
and then, even when a < 1 the orbits of the non-autonomous cycle could be 
unbounded as the simulations of Figure 17 shows. 

Secondly, we fix Q = c for alH > 0 and assume that at is bounded by 
a^a eR and such that at G [a, a] is randomly chosen. Again, the only thing 
we are able to do is to characterize bounded orbits. To this end, we consider 

\\FliX,Y)-{X*,Y*)\\, 

where (X*, Y"*) denotes the unique fixed point in R^ of the sequence Fî oo» 
and we will try to obtain an upper bound. Then we use inequality (14) which 
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Figure 15: For the initial condition {XQ^YQ) = (0.25,0.189) we simulate 
income traces (left) and orbit (ri^ht) in the following cases: in the upper 

lower a] 
1 + 1/t a^ = 1 + 1/t cl = 0.5 + 1/t and c\ 

1 + 1/t a? = 1 + 1/t c\ = 0.5 and c^ 
= 0.4 + 1/t and in the 
0.4. Since o}a^ — 1, 

Theorem 14 does not help us to see if simulations are right. Anyway, a^af > 
1 and then one can expect that the orbits will be unbounded, which is what 
simulations show. 

in this setting reads as follows 

\\F{{X,Y)-{X\Y*)\\ < \\{X,Y)-iX^,Yn\\llan 

n = l 

+ E l l ( ^ n - l ' ^ n - l ) - ( ^ n , ^ n * ) l i r i « . -
n-2 

= \\{X,Y)-iX*,Y*)\\llan, 

j=n 
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Figure 16: In the upper part we show income traces (left) and orbit (right) 
where at = .95 and Ct = 0.9 — 1/t with initial condition (XQ, YQ) == 
(0.25,0.189) and in the lower part income traces (left) and orbit (right) 
where at = 1 and ct = 0.9 — 1/t with the same initial condition. Here, notice 

thattheseries^::^,\\{X*_„Y*_,)-iX*„,Y:)\\ = Y,n=2^/iO-81n^-
18n + 0.1), which is convergent and then the orbit is bounded (cf Theorem 

8). 

because \\{X;^_^,Y^__^) - (X*,F^*)|| = 0. Then, following the proof of 
Theorem 3, it can be proved the next result which establishes conditions to 
have bounded and convergent orbits. 

Theorem 9 Let Fi^oo = (Ft) be a non-autonomous cycle defined as in (10). 
Assume that ct — cfor all t > 0 and at G [a, a] is randomly chosen. Then 
the following statements hold: 

(a) Iflimt 

{X,Y)eR^. 
0. thenio{iX,Y),Fi,^) = {{X* ,Y*}} for all 
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Figure 17: V^e simulate income traces {left) and orbit (right) in the following 
cases: in the upper part at = -95 and Ct = 1 — 1/t and in the lower part 
at = 1 and ct = 1 — 1/t with initial condition {XQ^YQ) = (0.25,0.189). 
Since Ct converges to 1, the modulus of the fixed points are growing up and 
then, even when at < Iwe have an unbounded orbit, although in this case it 
seems that its behaviour is simple. 

(b) //limsupt_,oo n l = i an = ae] 
Orb((X, y ) , Fi^Qo) is bounded. 

I, then for all {X, Y) E R^ the orbit 

Notice that the first case in Figure 5 is a simulations for (a) in The­
orem 9. In case (1) of Figure 5 we have that at = I — 1/t and hence 
limt^ooU'n=il-l/n = 0, 

Finally, we may assume that both parameters at G [a, a] and ct G [c, c] 
are randomly chosen. We distinguish two cases: c < 1 and c = 1. In the first 
case, the sequence of fixed points is bounded, and then s — sup{| |(X, Y) — 
(X; ,y,*) | | : t G R} andr = svi^{\\{X;^i,Y,\i) - {X^,Y,*)\\ : t € R} are 
finite (recall that X^ =Y^* = A/{1 — ct)) and hence inequality (14) can be 
rewritten as follows 
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\Fi{x,Y)-ix;,Yn\\ < ||(x,F)-(x;,y;)|inan 
n = l 

< 

n=2 

t 

n = l 

-l^^n-l) ~ 

t t 

n=2j=n 

' i^n-T„*)iin%-
j=n 

(24) 

The inequality (24) allows us to enunciate the following result whose proof 
is similar to the proof of Theorem 4. 

Theorem 10 Let Fî oo = {Ft) be a non-autonomous cycle defined as in 
(10). Assume that both at G [a, a] and Ct G [c,c] are randomly cho­
sen, with c < 1. If the sequence Yl>n=2 117=71 % converges then any orbit, 

Orb((X, y ) , Fi,oo), is bounded for all (X, Y) e R^. 

Notice that when c = 1 the sequence of fixed points is not bounded. In 
Figure 17 we simulate this situation. 

Conclusions 

In a classical model of business cycle, we introduce parameters depending 
on time, producing a non-autonomous linear second order difference equa­
tion, which is analyzed in the setting of non-autonomous discrete systems. 
Roughly speaking, one could think on a linear model whose parameters are 
pertubed is some way, for instance a random way. 

The stability and limit set of the orbits of the non-autonomous system 
associated to the difference equation are studied. When all the maps of the 
system are contractive, then the system is stable, producing bounded orbits. 
In other cases, some simulations shows that when we have expansive maps 
in the system, unbounded orbits and some type of chaotic behaviour may 
appear. It must be pointed out that the chaotic behaviour appear when both, 
contractive and expansive maps are in the system infinitely many times. 
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It is an interesting question to analyze these type of "chaotic orbits", that is: 
are they really chaotic in some theoretical sense? 
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6 The Hicksian Model with Investment Floor 
and Income Ceiling 

Laura Gardini, Tonu Puu and Iryna Sushko 

6.1 Introduction 

As we saw in Chapter 3, Hicks (1950) modified the Samuelson (1939) linear 
multiplier-accelerator model through introducing two constraints. The lin­
ear multiplier-accelerator model itself only has two options: Exponentially 
explosive or damped motion. According to Hicks, only the explosive case is 
interesting, as only this produces persistent motion endogenously, but it had 
to be limited through two (linear) constraints for which Hicks gave factual 
explanations. 

When the cycle is in its depression phase it may happen that income de­
creases so fast that more capital can be dispensed with than what disappears 
through depreciation, i.e., natural wear and aging. As a result, the linear ac­
celerator would predict not only negative investments (disinvestments), but 
to an extent that implies active destruction of capital. To avoid this, Hicks 
introduced his floor to disinvestment at the natural depreciation level. 

When the cycle is in its prosperity phase, then it may happen that income 
would grow at a pace which does not fit available resources. Hicks has a 
discussion about what then happens, in terms of inflation, but he contended 
himself with stating that (real) income could not grow faster than available 
resources which put a ceiling on the income variable. 

Hicks never formulated his final model with floor and ceiling mathe­
matically, it seems that this was eventually done by Rau (1974), where the 
accelerator-generated investments were limited downwards through the nat­
ural depreciation floor, and where the income is limited upwards through the 
ceiling, determined by available resources. Formally: 

/ , = m a x ( a ( y , _ i - y , _ 2 ) , - / 0 ; 
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Ct = cYt-i-

Eliminating Ct and It, one has the single recurrence equation: 

Yt = mm{cYt-i + max(a(y,_i - y,_2), -I^),Y'). (1) 

It remains to say that Hicks's original discussion included an exponential 
growth in autonomous expenditures, combined with the bounds I^ and Y^ 
growing at the same pace, but taking the bounds as constant and deleting 
the autonomous expenditures, gives a more clear-cut version. It was this 
that was originally analyzed in detail by Hommes (1991), and the notation 
above comes from Hommes. However, there were some pieces missing in 
his discussion, such as two-dimensional bifurcation diagrams, which makes 
it motivated to make a new attack on this model. 

6.2 Description of the Map 

Let Xt := Yt, yt '-= ^ - i , d := I^ and r := Y^. Then the model given in 
(1) can be rewritten as a two-dimensional piecewise linear continuous map 

X \ f min(cx+ max(a(x — y),—d),r) \ 

y )^[x J , (2) 
which depends on four real parameters: a > 0 , 0 < c < l , d > 0 , r > 0 . 

The map F is given by three linear maps F^, z = 1,2,3, defined, respec­
tively, in three regions Ri of the phase plane: 

Ri = {(x, y) : (1 + c/a)x — r/a <y<x + d/a} ; 

R2 = {{x,y) :y > x-\-d/a,x < {d-\-r)/c}; 

2, i?3 = W/R1/R2. 
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Three half lines denoted LC-i, LC'_i and LC'Li ^^^ boundaries of the re­
gions Ri'. 

LC_i y = X + d/a^ X < (r + d)/c, 

y = {1 -h c/a)x — r/a^ x < (r + d)/c^ 

X = (r + d)/c, y > (r + d)/c + d/a. 

Their images by F are called critical lines: 

LCQ : y = (x + d)/c, x < r, 

LCo : X = r, y < (r + d)/c. 

The image ofLC'!_i by F is a point (r, (r + d)/c). A qualitative view of the 
phase plane of the map F for a > 1, d < r and a > c^/(l - c) is shown 
in Fig.l (the last inequality indicates that the intersection point of LC^_^ and 
LCQ is in the negative quadrant). 

Figure 1: Critical lines of the map F for a > 1^ d < r, a> c^/(l — c). 

As it was mentioned in the introduction, an analogous model has been 
studied by Hommes (1991). Main conclusions of this paper hold also for the 
map F, namely, for a > 1 the map F has an attracting set C homeomorphic 
to a circle and all the trajectories of F (except for the fixed point) are attracted 
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to this set. It was also proved that the dynamics of the map F on C are 
either periodic or quasiperiodic. In our consideration we show how the set C 
appears relating this to the center bifurcation described in detail in Chapter 
2. We also discuss the structure of the two-dimensional bifurcation diagram 
in the (a, c)-parameter plane. 

First note that the maps F2 and F3 have simple dynamics: The eigen­
values of F2 are /xj = c, 0 < c < 1, /i2 = 0, so that any initial point 
(^OJ 2/0) ^ R2 is mapped into a point of LCo, while the map F3 has two zero 
eigenvalues, and any (XQ, ^0) ^ ^ 3 is mapped into a point of the straight line 
X = r. In such a way the whole phase plane is mapped in one step to the 
straight line x = r and a cone D = {(^,y) '- y < {x + d)/c, x <r} (see 
Fig. 1). Thus, the map F is a noninvertible map of so-called (Zoo — Zi — ZQ) 
type: Any point belonging to the critical lines or to the half line x = r, 
y > {r + d)/c, has infinitely many preimages, any inner point ofD has one 
preimage and any other point of the plane has no preimages. 

The map F has a unique fixed point (x*, y*) = (0,0) which is the fixed 
point of the map Fi (while the fixed points of the maps F2 and F3 belong to 
i?i, thus, they are not fixed points for the map F). The eigenvalues of the 
Jacobian matrix of Fi are 

Ai,2 = {a + c± ^{a + c)2 - 4a)/2, (6) 

so that for the parameter range considered the fixed point (x*, y*) is a node 
if (c + a)2 > 4a, and a focus if (c + a)^ < 4a, being attracting for a < 1 and 
repelling for a > 1. Thus, for a < 1 the fixed point (x*,y*) is the unique 
global attractor of the map F (given that F2 and F3 are contractions). 

6.3 Center Bifurcation (a = 1) 

At a = 1 the fixed point (x*,y*) loses stability with a pair of complex-
conjugate eigenvalues crossing the unit circle, that is the center bifurcation 
occurs. First we describe the phase portrait of the map F exactly at the 
bifurcation value a = 1. Analogous description is presented in Section 2.2 
of Chapter 2 for a two-dimensional piecewise linear map defined by two 
linear maps, which for the particular parameter value 6 = 0 are the maps 
Fi and F2 given in (3) and (4). It is proved that for the parameter values 
corresponding to the center bifurcation there exists an invariant region in the 
phase plane, which either is a polygon bounded by a finite number of images 
of a proper segment of the critical line, or the invariant region is bounded 
by an ellipse and all the images of the critical line are tangent to this ellipse 
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(see Propositions 1 and 2 of Chapter 2). In the following we use these results 
for the considered map F specifying which critical lines are involved in the 
construction of the invariant region. 

The map Fi at a = 1 is defined by a rotation matrix. Moreover, if 

def 
c = Cm/n = 2 cos(27rm/n) - 1, (7) 

then the fixed point (x*,y*) is locally a center with rotation number m/n, 
so that any point in some neighborhood of (x*, y*) is periodic with rotation 
number m/n, and all points of the same periodic orbit are located on an 
invariant ellipse of the map Fi. Note that from c > 0 it follows that m/n < 
1/6. Denote 

c = c * 1 ^ ^ 1 - ( d / r ) 2 . (8) 

Proposition 1. Let a = 1, c = c^/ni ^^^^ ^^ the phase space of the map 
F there exists an invariant polygon P such that 

• if ^m/n < ^* th^^ P f^^^ ^ edges which are the generating segment 
Si C LC-i and its n — 1 images Si-^i = Fi{Si} C LCi-i, ^ = 
l , . . . , n - l ; 

• if ^m/n > <̂* ^^^^ P h^^ ^ edges which are the generating segment 
S[ C LC_i and its n - \ images S[j^^ = -F'llS'-) C LCl_^] 

• if ^m/n — ^* ^^^^ P ^^^ 2n edges which are the segments Si and S[^ 
2 = 1, ...,n. 

Any initial point (xo,yo) ^ P is periodic with rotation number m/n, 
while any (XQ, ^o) ^ P is mapped in a finite number of steps into the bound­
ary of P. 

The proof of the proposition is similar to the one presented in Section 
2.2 of Chapter 2. The value c* is obtained from the condition of an invariant 
ellipse of Fi to be tangent to both critical lines LC-i and LC[_i. It can be 
shown that for c^/^ < c* only the upper boundary L C - i is involved in the 
construction of the invariant region, while if c^/„ > c* we have to iterate 
the generating segment of the lower boundary LC[_i to get the boundary 
of the invariant region. An example of the invariant polygon P in the case 
^m/n = c* is presented in Fig.2, where a = 1, d = 10,r = 1 0 / v 2 — \ /2 , 
c = ci/8 = c* = V2 — 1. For such parameter values the polygon P has 16 
edges, which are the segments Si C LCi-.2 and 5̂ - C LC[_2, i = 1,..., 8. 
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Any point of P is periodic with rotation number 1/8 (in Fig.2 the points of 
two such cycles belonging to the boundary of P are shown by black and gray 
circles), while any point (XQ, yo) ^ P is mapped to the boundary of P . 
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Figure 2: The invariant polygon P with 16 edges at a = 1, c 

v/2 - 1 = c*, d = 10, r = 1 0 / \ / 2 - \ / 2 . 
Cl/8 

Consider now the case in which the map Pi is defined by the rotation 
matrix with an irrational rotation number p, which holds if 

def 
c = Cp = 2cos(27rp) — 1, (9) 

where p < 1/6. Then any point in some neighborhood of the fixed point 
(x*,y*) is quasiperiodic, and all points of the same quasiperiodic orbit are 
dense on the corresponding invariant ellipse of the map Pi . Using the Propo­
sition 2 of Chapter 2 and the values c* given in (8) we can state the following 

Proposition 2. Let a — 1^ c = Cp. Then in the phase space of the 
map F there exists an invariant region Q, bounded by an invariant ellipse £ 
of the map Pi which is tangent to LC-i (and to all its images) if c < c*, 
to LC'_i if c > c*, and to both critical lines LC-i and LC'_i if c = c*. 
Any initial point (XQ, 2/o) ^ Q belongs to a quasiperiodic orbit dense in the 
corresponding invariant ellipse of Fi, while any initial point (XQ, yo) ^ Q 
is mapped to £. 
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Note that from (8) it follows that if d > r then the inequality c* < 0 holds, 
thus, given c > 0, for d > r only the lower boundary LC'_i is involved in 
the construction of the invariant region of the map F at a = 1. 

6.4 Bifurcation Structure of the (a, c)-Parameter Plane 

In this section we describe the dynamics of the map F after the center bi­
furcation, that is for a > 1. In short, an initial point (xo,2/o) from some 
neighborhood of the unstable fixed point {x*,y*) moves away from it under 
the map Fi and in a finite number k of iterations it necessarily enters either 
the region i?2, or Rs (in the case in which (x*, y*) is a focus the statement 
is obvious, while if (x*, y*) is a repelling node this can be easy verified us­
ing the eigenvalues Aî 2 given in (6) and the corresponding eigenvectors). If 
{xk.Vk) € i?2, then the map F2 is applied: F2{xk,yk) = {xk+i,yk+i) ^ 
LCQ. All consequent iterations by F2 give points on LCQ approaching the 
attracting fixed point of F2 (which belongs to i?i), until the trajectory en­
ters Ri where the map Fi is applied again. If (xk^Vk) ^ ^ 3 , then the 
map F3 is applied: Fs{xk,yk) = {xk-\.iyyk+i) € LCQ. We have that ei­
ther {xk+i^yk-\-i) ^ i?i, or {xk^i,yk+i) ^ ^ 3 and one more application of 
Fs gives its fixed point (r, r) e JRI, SO, the map Fi is applied to this point. 
In such a way the dynamics appear to be bounded. 

Indeed, it was proved in Hommes (1991), that for a > 1 any trajectory of 
F rotates with the same rotation number around the unstable fixed point, and 
it is attracted to a closed invariant curve C homeomorphic to a circle. It was 
also proved that the dynamics of F on C, depending on the parameters, are 
either periodic or quasiperiodic. We can state that such a curve C is bom due 
to the center bifurcation of the fixed point, described in the previous section: 
Namely, the bounded region P (or Q), which is invariant for a = 1, exists 
also for a > 1, but only its boundary remains invariant, and this boundary is 
the curve C. 

We refer as well to Chapter 2 in which it is shown that also in a more 
generic case of a two-dimensional piecewise linear map, defined by two lin­
ear maps, the center bifurcation can give rise to the appearance of a closed 
invariant attracting curve C, on which the map is reduced to a rotation with 
rational or irrational rotation number. Recall that in the case of a rational 
rotation number m/n the map has an attracting and a saddle m/n-cycle on 
C, so that the curve C is formed by the unstable set of the saddle cycle, ap­
proaching the points of the attracting cycle. While in the case of an irrational 
rotation number the map has quasiperiodic orbits on C. In Section 2.3 of 
Chapter 2 the curve C is described in detail for the map defined by the linear 



186 Laura Gardini, Tonu Puu and Iryna Sushko 

maps Fi and F2 given in (3) and (4). So, we can use these results for the 
considered map F if the curve C belongs to the regions i?i, R2 and has no 
intersection with the region i?3, thus, only the maps Fi and F2 are involved 
in the asymptotic dynamics. Obviously, we have a qualitatively similar case 
if the curve C has no intersection with the region R2 and, thus, only the maps 
Fi and F3 are applied to the points on C. One more possibility is the case 
in which the curve C belongs to all the three regions jR ,̂ z = 1,2,3. We can 
state that in the first and second cases the curve C can be obtained by iter­
ating the generating segment of LC_i and LC'_i, respectively, while in the 
third case both generating segments can be used to get the curve C. 

To see which parameter values correspond to the cases described above 
we present in Fig.3 a two-dimensional bifurcation diagram in the (a, c)-
parameter plane for fixed values d = 10, r == 30. Different gray tonali­
ties indicate regions corresponding to attracting cycles of different periods 
n < 41 (note that regions related to the attracting cycles of the same period 
n, but with different rotation numbers are shown by the same gray tonality). 
The white region in Fig.3 is related either to periodic orbits of period n > 41, 
or to quasiperiodic orbits. 
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Figure 3: Two-dimensional bifurcation diagram of the map F in the (a, c)-
parameter plane at d = 10, r = 30. Regions corresponding to attracting 
cycles of different periods n < 41 are shown by various gray tonalities. 
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Let us first comment on some particular parameter values of the bifurcation 
line a = 1. As described in the previous section, at a = 1, c = c^jn given in 
(7), in the phase plane of F there exists an invariant polygon P such that any 
point of P is periodic with the rotation number mjn. So, the points a = 1, 
c = c^/n, for different vfijn < 1/6, are starting points for the corresponding 
periodicity tongues. For example, a = 1, c = Ci/g = V^ — 1 is the point 
from which the 8-periodicity tongue starts, corresponding to the attracting 
cycle with the rotation number 1/8. Recall that according to the summation 
rule (see Hao and Zheng (1998)), between any two rotation numbers mi/rii 
and m2/n2 there is also the rotation number m^/n^ = (mi +m2)/(ni +712), 
so that a = 1, c = c^f/n' is the starting point for the corresponding peri­
odicity region. If the (a, c)-parameter point is taken inside the periodicity 
region, then the map F has the attracting and saddle cycles with correspond­
ing rotation number, and the unstable set of the saddle cycle form the closed 
invariant attracting curve C. Note that in the case in which both constrains 
are involved in the asymptotic dynamics, the map F may have two attract­
ing cycles and two saddles of the same period coexisting on the invariant 
curve^ (as it occurs, for example, inside the 7-periodicity tongue at a = 2.9, 
c = 0.136, d = 10,r = 30). While if the (a, c)-parameter point belongs to 
the boundary of the periodicity region, then the border-collision bifurcation 
occurs (see Nusse and Yorke (1995)) for the attracting and saddle cycles, 
giving rise to their merging and disappearance (see Chapter 2). 

The parameter points a — 1, c — Cp given in (9), for different irrational 
numbers p < 1/6 correspond to the case in which any point of the invariant 
region Q is quasiperiodic. Such parameter points are starting points for the 
curves related to quasiperiodic orbits of the map F. 

At a = 1, c = c* = 8/9, (which is the value c* given in (8) at d = 10 and 
r — 30) there exists an invariant ellipse of Fi tangent to both critical lines 
LC-i and LC[_i, so that for c < c* the boundary of the invariant region 
can be obtained by iterating the generating segment of LC-i, while for c > 
c* we can iterate the segment of LC'_i. Thus, after the center bifurcation 
for c < c* at first only LC-i is involved in the asymptotic dynamics, and 
then increasing a there is a contact of the curve C with the lower boundary 
LC'_i. And vice versa for eye". For example, the curve denoted by L 
inside the 7-periodicity region in Fig.3 indicates a collision of the curve C 
with the lower boundary LC'_i. The curves related to similar collision are 
shown also inside some other periodicity regions. Before this collision the 

^ The authors wish to note that the first example of bistability in this model was notified 
by Professor V. Bohm. 
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dynamics of F on C is as described in Proposition 3 of Chapter 2, while after 
both boundaries LC-i and LC[_i are involved in the asymptotic dynamics. 
One more curve shown inside the periodicity regions (for example, the one 
denoted by R inside the 7-periodicity region) indicates that the point (x^y) = 
(r, r) becomes a point of the corresponding attracting cycle. 

To clarify, let us present examples of the phase portrait of the map F 
corresponding to three different parameter points inside the 7-periodicity re­
gion, indicated in Fig.3. Fig.4 shows the closed invariant attracting curve C 
at a = 1.6, c = 0.125, when C has no intersection with the region i?3, being 
made up by 7 segments of the images of the generating segment ofLC-i. 
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Figure 4: The attracting closed invariant curve C with the attracting and 
saddle cycles of period 7 at a — 1.6, c = 0.125, d = 10, r = 30. 

Figure 5: The attracting closed invariant curve C with the attracting and 
saddle cycles of period 7 at a — 1.75, c = 0.125, d = 10, r = 30. 
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The closed invariant curve C corresponding to the parameter values a = 
1.75, c — 0.125, is shown in Fig.5. In such a case both boundaries LC-i 
and LC[_i are involved in the dynamics. It can be easily seen that images 
of the generating segments of LC-i and LC[_i form the same set, so it does 
not matter which segment is iterating to get the curve C. 

Fig.6 presents an example of C at a = 1.85, c — 0.125, when two 
consequent points of the attracting cycle belong to the region i?3, so that 
(x, y) = (r, r) is a point of the attracting cycle. 
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Figure 6: The attracting closed invariant curve C at a — 1.85, c = 0.125, 
d = 10, r = 30. 

In Fig.7 we show the enlarged window of the bifurcation diagram pre­
sented in Fig.3 in order to indicate the (a, c)-parameter region corresponding 
to the case in which only the lower boundary is involved in the asymptotic 
dynamics. The curve denoted by U indicates the contact of the trajectory 
with the upper boundary LC_i, so that just after the center bifurcation, for 
c > c* at first only the lower boundary LC'_i is involved in the asymptotic 
dynamics (see Fig.8 with an example of the attracting closed invariant curve 
CdiXa — 1.05, c = 0.94). Then, increasing a the trajectory has a contact also 
with the upper boundary LC-i. Note that for the main periodicity tongues 
(those related to the rotation number 1/n) just after the center bifurcation 
the point (r, r) immediately becomes a point of the attracting cycle, because 
after the bifurcation two points of the attracting cycle must be in the region 
i?3, but we know that two successive applications of F3 give the point (r, r). 
In Hommes (1991) it was proved that if and only if the attracting set C con­
tains the point (r, r), then the restriction of the map F to C is topologically 
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conjugate to a piecewise linear nondecreasing circle map / , and there exists 
a unique circle arc / on which / is constant being strictly increasing on the 
complement of/. From this statement it follows that in such a case the map 
F cannot have quasiperiodic trajectory, but only periodic ones. 

1.3 

Figure 7: Enlarged window of the bifurcation diagram of the map F shown 
in Fig 3. 

Figure 8: The attracting closed invariant curve C with the attracting 23-cycle 
on it ata = 1.05, c = 0.94, d = 10,r = 30. 

Summarizing, we state that for c < c* (or c > c*) given in (7), increasing 
the values of a from a = 1, the closed invariant attracting curve C at first is 
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made up by a finite number of images ofLC-i (or LC'_i, respectively), then 
a contact vŝ ith LC'_i (or LC-i) occurs after which to get the curve C WQ can 
iterate the generating segment either LC-i or LC'_i. As long as the curve C 
does not contain the point (r, r ) , the dynamics of F on C are either periodic, 
or quasiperiodic, while if (r, r) belongs to C then dynamics are only periodic. 
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7 Growth Cycles in a Modified Hicksian 
Business Cycle Model 

Tonu Pun 

7.1 Introduction 

We are now going to discuss a version of the Hicksian floor and ceiling 
model, where the floor is related to actual depreciation on capital, and the 
ceiling is deleted altogether. This version with floor only was briefly stated 
in Chapter 3, and has been presented in two previous publications, Puu et aL 
(2005) and Sushko et al. (2004). A further development, with the ceiling as 
well related to capital stock in its capacity of a limiting production factor, 
was presented in Puu (2005), but will not be discussed at present. 

Tying the floor to capital stock requires that we include capital as an addi­
tional variable in the multiplier-accelerator model, but, as was argued in 
Chapter 3, this is no problem, because the model already contains a theory 
for investments, and hence also for the formation of capital as the sum of 
cumulated investments. It is just a matter of making this explicit. 

The deletion of the ceiling is no big problem, because, whenever the solu­
tion is oscillatory, we get bounded motion with floor alone. This was real­
ized by James Duesenberry (1950) in his review of Hicks's book. Allen (1956) 
gave a very clear account of the argument: "On pursuing this point, as 
Duesenberry does, it is seen that the explosive nature of the oscillations is 
largely irrelevant, and no ceiling is needed. A first intrinsic oscillation oc­
curs, the accelerator goes out in the downswing, and a second oscillation 
starts up when the accelerator comes back with new initial conditions. The 
explosive element never has time to be effective - and the oscillations do not 
necessarily hit a ceiling". 

Of course, the argument applies only to the case with a fixed floor. Once 
we tie the floor through depreciation to a growing stock of capital, the floor 
is no longer fixed. Due to the growing capital stock, a growth trend with 
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growth cycles around it is created. Hence, nothing is bounded in the present 
model variation. This results in both problems and advantages. 

The primary advantage is that, to the liking of economists, the model pro­
duces economic growth endogenously along with cyclic growth rate devia­
tions, and that it does this without any need to introduce exogenous growing 
autonomous expenditures. This is the only model of the multiplier-accelera­
tor variety presented until now which is able to explain growth and cycles on 
its own. It is an advantage in terms of scientific procedure, because any ex­
ogenous element is something having a flavour of ad hoc sticking to it. 

The problem is in terms of analysis. Methods of nonlinear dynamics are 
suited to analyse fixed points, periodic and quasiperiodic motions, and chaos, 
but all applicable to stationary time series! There are no similar methods to 
analyse growing systems! In the Gandolfo (1985) format with growing au­
tonomous expenditures, floor and ceiling, there is an externally given unex­
plained growth rate. Using this growth rate trends can be eliminated, and the 
remaining motion reduced to a stationary one, but we have no such thing in 
the present case. 

We have to construct some new variables within the model which display 
stationary motion, even though the original ones are growing. A clue to this 
can be found in a publication by the present author over 40 years ago. See 
Puu (1963). The method suggested there applies to the original multiplier 
accelerator model, but can be easily adapted to be applied to the present 
model. 

7.2 Relative Dynamics 

To see the idea, let us reconsider the original Samuelson model, stated in its 
reduced form as (25) in Chapter 3: 

Y^^,={a + c)Y^-aY^^, (1) 

In Puu (1963) there was defined a new variable: 

y...--=^ (2) 

This is the relative growth factor for income, which transforms (1) into: 
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/ 

/ 

r1 

Figure 1. "Cobweb" for the nonlinear iteration of relative dynamics. 

yt 
(3) 

Unlike (1), (3) is first order, but nonlinear. The denominator, which can 
become zero, may present some technical problems, but in case the model 
produces stable growth, or periodic growth cycles, then (3) indeed goes to a 
fixed point, or to a periodic cycle, which the model (1) in original variables 
does not. We know from Chapter 3 that there are no periodic solutions in the 
original linear model, but, once periodicity, due to the introduction of the 
floor, becomes main frame, the method of defining relative variables will 
show up as most usefiil. 

The method using relative variables was originally introduced as a peda­
gogical device, to the end of reducing the order of the recurrence equation 
and to make the iteration suited for a simple graphical analysis. To give a 
flavour of it we reproduce one of the original diagrams as Fig. 1. 

The graphical method is the same as that used for iterative first order sys­
tems in current chaos studies, and ages earlier, by economists in the context 
of dynamic multiplier analyses, and in "cobweb" price dynamics. In Fig. 1 
we see a pair of hyperbolas, representing the right hand side of equation (3). 
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Further, there is a 45 degree line through the origin, which is used to shift 
any new iterate of (3) as initial condition for the next iteration. We also see 
the "cobweb" trace resulting from repeating this over and over. Should we 
choose parameters a, c so as to hit etperiodic solution, we would eventually 
see a web connecting a. finite number of points visited over and over. As we 
know, this is an unlikely case, so the general scenario is quasiperiodic, i.e., a 
web that fills the entire space. This is deceptive, as there are still infinitely 
many gaps, representing rational rotations, which we cannot see in the finite 
screen resolution. 

Equation (1) has the closed form solution: 

• AX,+BM, (4) 

where 

A„=^±lV(« + cr-4a (5) 

are the eigenvalues. As noted in Chapter 3, when the expression under the 

root sign is negative, i.e., when (a + c) < 4a, the eigenvalues become com­
plex conjugates, and the solution is better written in the form (28) of Chapter 
3, which we reproduce here for convenience: 

Y^ = p^ {A cos cot-\-B sin cot) /^\ 

where 

p = V^ (7) 

and 

a+c .Q. 
CO = arccos—p^ (o) 

2^fa 

The solution (6) is the product an exponential growth factor, increasing (de­
creasing) whenever a > I {a < I), and a simple harmonic oscillation. The 
reason why the oscillatory factor is not periodic is that, from (8), as a rule, 
the frequency of oscillation o) fails to be a rational multiple of IK , so the 
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oscillatory motion is quasiperiodic in terms of our basic predefined unit time 
period. 

The only exception, as we saw in Chapter 3, is when it happens that: 

a-\-c iTtm 
- ^ = cos-— (9) 
2yla n 

holds with m and n integers. Then the oscillatory part of the solution is in­
deed periodic. We saw that this happens on thin curves in the parameter 
plane displayed in Fig. 6 of Chapter 3. 

When we know the closed form solution (6) to (1), we can, of course, 
using definition (2), also construct the solution to (3): 

^p^-^cos(ft)(^ + l)) (10) 

which simplifies to 

y^^^ = p(^cos(0-smcO'tan{Q)t)) (H) 

Unlike (6), which contains a multiplicative power function, (11) only con­
tains constants and pure trigonometric functions, and is hence stationary, as 
a rule quasiperiodic, or, should (9) happen to hold, periodic. 

In Fig. 2 we display an illustrative case with a= 1.25 and c = 0.225. Ac­
cording to (8), this parameter combination results in co ^O.SS, which is rela­
tively close to ITT/I - 0.90, so the oscillation is about, but not quite, 7-peri-
odic. 

Of course, we could find much better rational approximations to the true 
rotation number, for instance 2;r • 16 / 59 ~ 0.85, to pick j ust one example, but 
for the point we want to make it is better to use as low a periodicity as possi­
ble. Later, in the nonlinear model we will be concerned with an example 
where we indeed have exact 7-periodicity, so it is good to prepare for it. 

In the picture we show two continuous time traces, the gray including the 

growth factor, i.e., p ' cos(co/), and the black, stationary, just cos(cot). On 

these continuous curves we marked the points in discrete time f = 0,1,2, etc., 
which are the only relevant points in the discrete time setting. We also indi­
cated the discrete time intervals through the vertical strips in different shade. 
The points for ^ = 7, 14, 21 etc., marked by larger dots, unlike the point for t 
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Figure 2. Time traces for income and for its quasiperiodic oscillatory? part. 

= 0, are not quite at the top of the oscillating trace, but slide more and more 
down to the left. Therefore, there is no exact recurrence, and the time series 
is «o^ periodic. It is just this noncommensurability of the period of the trace 
with the period In that quasiperiodicity means in our context. 

As a companion to Fig. 2, which shows the solution for income (6), we 
also display Fig. 3, which shows the evolution of the relative income ratio 
variable according to (11). The continuous curves represent (11), and con­
tain tangents, which, unlike the sine and cosine, have branches which go to 
±oo with regular intervals. However, again, only the marked points are rel­
evant in the discrete time setting, and we would have to be really unlucky to 
hit exactly an infinite branch. As in Fig. 2, we find that the big points at 7-
period intervals slide successively to the left, as an indication of the fact that 
the sequence of points is not exactly 7-periodic. 
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yt \ 
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Figure 3. Relative dynamics for the income growth rate. 

7.3 Growth in the Relative Dynamics System 

To anticipate the nonlinear model, suppose that we indeed have an exact 
periodicity, for instance 7-periodicity, which we are close to. Then, given the 
rational rotation 1/7, or any other m/n, (11) can be written 

iTun . iTim flnm 
yt+i - P\ ̂ os sm tan 1 

« n \ n 

(12) 

with m = 1 and n = 7At is then easy to calculate that for any t: 

cos sm tan| (/+/) | |= 1 
n \ n 

(13) 
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t 

0 
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yt 

1.764263 

0.685839 

-0.392585 

4.453809 

1.100000 

0.271678 

-3.082132 

1.764263 

y. 

1.000000 

0.685839 

-0.269250 

-1.199190 

-1.319109 

-0.358372 

1.104550 

1.948717 

Table 1. Growing income with 7-periodic cycle in the growth rate. 

From (12)-(13), we get: 

Yiy.i =p" (14) 

whenever the solution is n-periodic. Accordingly, from (2) and (14): 

As an example, put m= 1, n = 7, as already indicated. Hence, CO = 2K/7. 
Further put p = 1.1. Then from (7) we have a = 1.21, and further from (9) 

c = 2.2 • cos(2;r / 7) -1.21 = 0.16. Note that we could never choose this exact 
numerical value for the computer to produce an exactly 7-periodic cycle. In 
terms of Fig. 6 in Chapter 3, the case corresponds to the intersection point of 
the parabola labelled 7, and the first vertical line to the right ofa=l. 

From equation (12) we can now easily calculate the orbit for relative in­

come growth ratios ĵ +̂j = 1.1 - (cos(2;r / 7) - sin(27r / 7) • t?in{2m 17)). The re­

sults are listed in Table 1. 
The entries in the column for 3; ,̂ for ^ = 0, ... 7, are calculated from the 

formula just stated. As we see, Jy = JFQ ' which confirms periodicity. After 
that entry, the column, if continued, is just a repetition of the seven entries 
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over and over. The entries in the column for Y^, can be obtained in two dif­
ferent ways: 

(i) They have actually been calculated as continued products 5^J^'_ y-t ^ 

(using Y^-\) from the previous column. 

(ii) They could also be calculated from the formula Y^ = l.V • cos[27tt 17). 

We can check that 1̂  = 1.1̂  • Y^ ~ 1.948717, so the growth rate over one com­

plete cycle is about 95%. The unit entry Y^ is chosen arbitrarily. The table 

shows us how the time series for income can be retrieved as a continued 

product of the income ratios, the initial income remaining arbitrary. We can 

hence use a value Y^ different from unity and scale the whole income series 

up or down in proportion. 

Note also that, whereas y^ is periodic, Y^ is not, it is growing] This is the 
point in defining the relative variable for a growing system. In the linear 
model periodicity is, as we know, an unlikely phenomenon, but these facts 
become interesting once nonlinearity is introduced and periodic solutions 

become mainframe. Fuither, note that, whenever y^ is periodic, then there 
must be an even number of negative entries in order that the product over a 
cycle be equal to unity, as stated in (13). 

Given the fact that, for any periodic motion, there is always an even number 

of negative entries of y^ over a complete period, we can reformulate (14) as: 

^"^j\n\y^^.\ = A2Inp, or even better, as: 

\np = -±\n\yj (16) 

which is a convenient formula for calculating the growth factor from a series 
of relative variables whenever the solution is periodic. 

7.4 Capital Accumulation 

As the principle of acceleration governs investment, the original Samuelson 
model actually contains an implicit process for capital accumulation. From 
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definition we have /̂ +i = K^^^ -K^. Hence, just rearranging: 

K =K+I (17) 

However, from the principle of acceleration we have /̂ ĵ =a{Y^-Y,_^), so 

using this recursively, we obtain: ^'^^ /̂ ĵ = a(}^ -1^), or 

Given we know the initial capital, and the development of income, we can 
calculate the orbit for capital as well. If income grows exponentially accord­
ing to (6), then it is obvious that capital does so as well. 

Suppose that an oscillatory solution applies according to (6), and assume 
amplitude and phase such that A = l,B = 0, i.e., such that 7̂  = ^ = 1. As a 
consequence: 

K,^,=K,-ha{p'cos{(Ot)-Y,) (1^) 

In the right hand side of (19) there are two components, the compound con­

stant K^-QYQ, which indicates the amount to which initial capital exceeds, 

or falls short of the optimal, as required by the acceleration principle, and the 

time dependent term ap' cos{(ot), where p = 4a . Provided a> 1, we also 

have p > 1, so that the oscillations are growing. 
Suppose now that we deal with the (presently unlikely) case of an ^/-peri­

odic solution, i.e., that (o = litm I n. Then, on = iTtm, so, generalizing slightly, 
for any initial t, we get the simple formula: 

i^,,,=i:,+a(p«-};_,) (20) 

The right hand side in (20) is always growing when a > 1, so, in case of 
periodicity, capital accumulates over each cycle. Further, putting / = 1, re­
calling that YQ = A = l, and assuming nonnegative initial capital, i.e. ^j > 0, 
we conclude that capital never becomes negative, which is reassuring. If it is 
zero from the start, then it becomes positive after only one period, and, as we 
saw, just goes on accumulating. 
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7.5 Depreciation and Gross Investment 

If there is depreciation on capital, then gross investments are different from 
and larger than net investments which we dealt with up to now. Suppose that 
depreciation is just some proportion r of total capital. Then gross invest­
ments become 7,̂ ^ + D^^^ =a[Y^-Y^_^)-^ rK^, where the capital accumulation 

equations are as stated in (19) and (20). 
We have thus seen that there is a capital accumulation theory implicit in 

the original multiplier-accelerator model, though it does not feed hack in any 
way into the model, and therefore it is a sort of separate system, which de­
pends on, but does not itself influence the development of income. 

As we will see, it is natural to relate the Hicksian "floor" to actual depre­
ciation, and thus provide the missing feedback. The whole system then be­
comes nonlinear, and one of the effects of this will be seen to make periodic­
ity, which, as we saw, was a rare phenomenon in the original model, the 
dominant scenario. 

We have thus commented a seldom mentioned fact about the original mul­
tiplier-accelerator model, i.e., that it actually contains a capital formation 
theory through the principle of acceleration. If we want to introduce the 
Hicksian floor in the investment function, we will also have to change the 
capital formation theory accordingly, but this is quite straightforward. 

7.6 Hicksian Floor 

Let us so recall some basic facts from Chapter 3 about the Hicksian reformu­
lation of Samuelson's model. As noted. Hicks (1950) proposed that the prin­
ciple of acceleration be limited in its downward action through the condition 

/̂ î >-I^, where superscript / alludes on "floor". The well known argu­
ment was that capital owners do not actively destroy capital when income 
decreases at such a speed that more capital can be dispensed with than what 
disappears through natural wear and aging. 

Obviously, this negative limit to net investments corresponds to a zero 
limit to gross investments. The floor limit to net investment is the maximum 
J/iinvestment that takes place when no worn out capital is replaced at all. It 
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can be considered as fixed, or varying over time, so to be completely general 

we write //^,. It was interpreted as a fixed number by Hommes (1991), and 
as exponentially growing by Gandolfo (1985). In Chapter 3 we saw that the 
latter is a rather problematic assumption to retain. 
One particular problem pertains to the assumed growing floor case as pre­
ferred by Gandolfo and others. The floor should delimit disinvestment to the 
amount of depreciation on current capital. When capital accumulates, then 
maximum depreciation on it increases. Accordingly, as a consequence, the 

floor - l/+i should be decreasing over time (in absolute value), not growing. 
Including the floor, the acceleration principle, as we saw in Chapter 3, has 

to be reformulated to the nonlinear (piecewise linear) format (33) of Chapter 
3, which we restate here for convenience: 

I,,,=m^x{a{Y,-Y,_,)-lQ (21) 

By assuming depreciation to be a given fraction of total capital, as suggested 
above, we could calculate depreciation, and formally relate the floor to the 

stock of capital, i.e., put /̂ ,̂ = D̂ ĵ = rK^. Accordingly the investment func­
tion (21) changes to: 

I,^,=max{a{Y,-Y,_,)-rK,} (22) 

The stock of capital now feeds back into the investment function. We there­
fore need a theory for capital accumulation, but, fortunately, as we saw in 
Section 7.4, there is implicit a theory for capital formation in Samuelson's 
model, and hence also in the Hicksian model. This tiny change closes the 
model in a most natural way, and, as we will see, introduces a fundamental 
change to how the model works. 

As for the ceiling, we skip it altogether. As we saw in the introduction to 
this Chapter, Duesenberry (1950) suggested that both floor and ceiling would 
not be needed for bounded motion. He obviously took for granted the case of 
fixed bounds. 

Given we model the investment function as in (22), the floor is not fixed, 
but, as we will see, the argument applies to a reformulation in terms of rela­
tive variables. We already introduced the relative income ratio in (2), and 
will introduce a companion for capital below. Then Duesenberry's argument 
is still valid in the sense that income growth rate cycles have limited ampli­
tude even if we skip the ceiling. 
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7.7 The Reformulated Model 

It is now time to assemble the bits and pieces of our reformulation of the 
original Hicks model. Some of its properties were already discussed in Puu 
et al. (2005) and Sushko et al (2004). 

Given the consumption function Q -cY^-i^ and the income formation iden­

tity 5̂  = Q + /^, we can state the equation for income generation: 

Y...=cY,+I,,, (23) 

and, we can rewrite the definition /̂ ,̂ = K^^^ -K^ as a capital updating equa­
tion: 

K,,,=K,+I„, (24) 

It only remains to plug (22) into (23)-(24) and we finally have our system: 

Y,^,=cY,+m^x{a{Y,-Y,_,)-rK,} (25) 

K,,, = K, +m2ix{a{Y,-Y,_,)-rK] (26) 

Note that equation (25) is just the original Hicksian multiplier-accelerator 
model with a floor, where the only new element is that the floor is deter­
mined by capital stock. As for equation (26), it is just the original Hicksian 
definition of investments, restated as a capital updating equation, using the 
same determinant for investments as in (25). 

Tying the investment floor to the stock of capital converts (25)-(26) into 
one interdependent system, where (25) can no longer be studied independ­
ently. Given we know Y^,Y^_^, and K^, we can calculate }̂ ,̂ and AT̂ ,̂. Note 
that then we also automatically advance }̂ _, to 1 .̂ As a matter of fact the 
system (25)-(26) is third order. We could have introduced a new symbol for 
lagged income Y^_^, such as Z,, with definition Ẑ ,̂ = Y^ as a third equation, 
but, the traditional way of stating the original multiplier-accelerator model is 
through one single equation, so we preferred to keep this style of presenta­
tion. Further, through the strategy of converting to relative variables, as al­
ready indicated in Section 7.2, the order of the system will actually be low­
ered from third to second. 
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Observe further that the system (25)-(26) has three parameters: the propen­
sity to consume c, the rate of capital depreciation r, and the accelerator or 
capital coefficient a. Obviously c and r are positive fractions less than unity, 
whereas a is just positive. It must exceed unity in order to create sufficient 
instability to keep the dynamical process going, and past empirical measure­
ments, for whatever they are worth, estimate a to the interval 2 to 4. As for r, 
it depends on the durability of capital, the more durable capital is, the lower 
is r. In the sequel the condition c + r<\ plays an important role. It is fulfilled 
when the space left for investments by the consumers is not less than capital 
depreciation, and we consider it rather likely that it is fulfilled. 

It is noŵ  more convenient to state (25)-(26) as two different systems, de­
fined in two different regions of phase space. In order to achieve this we first 
define a constraint whose sign decides whether the first or the second argu­
ment in the investment function (22) applies. To this end put: 

R,-a{l-X_,)^rK, (27) 

It is obvious that, whenever i?̂  > 0, investments will be accelerator gener­
ated in the next time period, so the first argument in (22) applies. Whenever 
î , < 0, the floor is activated, and the second argument applies. Note that 
when i?, = 0, then the arguments of the investment function are equal, so it 
does not really matter in which case we include the weak inequality. 

We thus get: 

[T^,=cT+a(Y-Y^ .) .^r.. 

and 

K,,, = K,+a{Y,-Y,_,) 

Y =cY -rK 
F,: {::' : ' R,^O (29) 2- K,^,={l-r)K, 

Observe that (28) gives us the original multiplier-accelerator model back, 
with the first equation an autonomous (second order) iteration in income 
alone, and the second a dependent companion for the updating of capital 
stock. In the system (29) the roles are reversed. Here it is the second equation 
for capital which stands on its own, and just means a proportional decay of 
capital, as if it were a radioactive substance. The disinvestments implicit in 
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this decay are fed back into the first equation, which, except for this, is just a 
multiplier process in consumption alone. 

A common feature shared by (28) and (29) is linearity. As we will see (29) 
is always a contraction, whereas (28) can be a contraction or an expansion. 
In the case which interests us, we deal with an expansion. The process is 
kept going through jumping between the regions, and this is also what pro­
vides for nonlinearity in the model. 

7.8 Fixed Points, Stability, and Bifurcation 

There exist fixed points for both maps (28) and (29). In the case of (28), we 
note that there is just one fixed point for income, i.e., Y^^^ = Y^ = Y^^=0. On 
the other hand K,^^ =K,=K can then take any (positive) value. Substituting 
the equilibrium values into the definition (27) we see that R^^^ > 0 indeed 
holds (given that capital is positive). Hence the fixed point with zero income 
and arbitrary positive capital indeed belongs to the definition region for the 
map (28). 

As for (29) we easily find that there is just the fixed point Y^^^=Y^=0, and 
Kf^i = K^=0. Under the weak inequality in the definition range for (29), 
this fixed point with zero income and capital again belongs to the definition 
range for the map. 

Stability is easiest to check for this latter fixed point of (29), because this 
map is truly two-dimensional. We can linearize, and write down its Jacobian 
matrix: 

c -r 

0 {\-r\ 
(30) 

Given that 0 < c < 1,0 < r < 1, the determinant is positive and less than unity, 
so the fixed point is stable. Note that, due to the form of (29), we do not need 
to substitute for the variable values at the fixed point. The matrix and its 
determinant are independent of where in phase space we are. As the Jacobian 
matrix is in triangular fonn, we can read the eigenvalues directly from its 
main diagonal elements, i.e. c and (1 -r) respectively. As both eigenvalues 
are positive and less than unity, the map (29) is a simple contraction in the 
entire range of its definition. 
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From the dynamics point of view this stable fixed point could be a big prob­
lem. However, things are not that bad. The second equation of (29) has the 

closed form solution K^^^ = (l ~ ^)^ ̂ \ > so the process (starting from any posi­

tive amount of capital) indeed implies that the fixed point is approached, but, 

it takes infinite time for (l - )̂̂  to really get down to zero. As we will show 

below, the process of iterating (29) is, however, in a finite number of steps, 
mapped into the region where (29) is no longer defined, whereas (28) is 
working. This map may, on the contrary, be unstable, as we will now see. 

From (28) we find that the tlrst equation is autonomous in income alone. 
However, it is second order, and the whole map is order three. We can write 
down the characteristic equation for this first equation right away: 

A ' - (a + c)A + fl = 0 (31) 

Again, the map (28) is linear, so we do not need to substitute for the phase 
variables. Note that this also holds with respect to the equilibrium stock of 
capital, which we saw was arbitrary. The, solutions to (31), i.e., the 
eigenvalues, were written in (5) above for the original multiplier-accelerator 
model, but we repeat them here for convenience: 

K,=^±\4{a + cf-Aa (32) 

It is easy to check that X^X^ =a,so, like the case of the original model, a = 1 
is a borderline for stability. The fixed point with zero income and arbitrary 
capital is stable for a < 1, and unstable for a >i. 

Note that, for a = 1, the expression under the root sign becomes (l + c) - 4, 

which is negative for c < 1. 
Hence, the eigenvalues are complex conjugates with unit modulus for a = 

I, i.e., at the moment the fixed point loses stability, and can hence be written: 

/lj2 =cosft)±isin6) (33) 

where, as usual, i = V ^ , and: 

a-\-c 
cos CO = sm co = -^4a-{a+cf (34) 
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Suppose now that the fixed point bifurcates to a periodic solution, i.e., that 
(0 = iTvm/n. Substituting for co in the first equation of (34) along with a = 1, 
and solving, we get: 

sf2;r̂ V c = 2cos 2;r— - 1 (35) 

If we w ânt to check the lowest fundamental resonances, i.e., putting m = 1, 

then, for « = 1,2, 3,4, 5, and 6, we get: c = 1, -3, -2, -1 , (V5-3)/2 - -0.38, 

and 0 respectively. Only for 7t > 6 do we get bifurcations from fixed point to 
some periodic cycle with admissible parameter values 0 < c < 1. 

It is interesting to refer back to Fig. 6 of Chapter 3. The calculated c values, 
as a matter of fact, coincide with the points where the correspondingly num­
bered periodicity curves intersect the bifurcation line a = 1. In the present 
model these curves will be seen to set out from the just calculated bifurca­
tion points, not as curves, but as thick tongues, as we see in Fig. 6 below. 

It would be tempting to speak of a Neimark bifurcation, and of Amol'd 
tongues. But, this terminology applies to stationary systems, periodic, 
quasiperiodic, or chaotic. Our system, however, is not stationary, it is grow­
ing, and only after reduction to relative variables, are we able to calculate the 
tongues. So at most can we speak of a Neimark-like bifurcation in our non­
standard model. 

We did not yet speak of the stability of the second equation of (28), but this 
is quite trivial. Capital is just neutral, so any previous K, is just perpetuated 
as ^ ,^ j , and the stability/instability issue completely hangs on the stability of 
the income generating process - if the latter is stable, then capital approaches 
some neutral equilibrium value, if not, then capital accumulation is as unsta­
ble as the income generation process. 

It should also be emphasized that we focus on oscillatory motion, i.e., where 
the eigenvalues (32) are indeed complex conjugates. We just saw that on the 
bifurcation line a = 1 nothing else can happen. If we look at Fig. 6 in Chapter 
3 (or Fig. 6 in this Chapter), we see why this is so. The curve for emergence 
of complex eigenvalues, i.e. where the expression under the root sign in (32) 
becomes zero, has its maximum for a = 1, so the entire admissible segment 
0 < c < 1 is contained in the area for complex roots. But, this does not hold to 
the right (or left) of the bifurcation line. Then for sufficiently large c, though 
less than unity, the eigenvalues can become real. To the right of the bifurca­
tion line, the process then settles on pure unlimited growth without oscilla-
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tions. To the left of the line the system goes to the fixed point, again without 
oscillations. 

Suppose now that we deal with an oscillatory solution, i.e. that [a+c) <4a, 

and that the fixed point is unstable, i.e. a > 1. Then (28) is an expansion, 
whereas (29) is a contraction, and we will see how the process keeps going, 
alternating between the definition regions for the two maps. This was proved 
already in Puu et al. (2005), more elegantly than in the following, though 
using some "higher" mathematics. 

7.9 Why the Map Leaves the Floor 

Suppose that the system for a while has been in the region of phase space 
where (29) applies, i.e. where (27) is nonpositive. Let us then substitute 
Y^ = cY,_^ - rK,_^, and Y^_, = cY,_^ - rK,_^ from (29) in (27). Then: 

R,^a[c{Y,_,~Y,_,)-r{K,_, -K,_,)) + rK, (36) 

But, from (29) K^_, - K^_^ = -rK^_^, and ^, = (l - rf K,_^, so: 

R, =c{a{Y,_, -Y,_,))^[ar' ^r{\-r)')K,., (37) 

From (27) we also have a(Y^_^ - ^-2) = ^t-\ ~ ̂ ^t-\' ^^ substituting and using 

7^,..=(l-r)^,.,,weget: 

R^ =cR^_,+[ar' +r[\-r){\-r-c))K^_^ (38) 

Obviously, capital is positive, and further the coefficient of the second term: 

K = ar^^r{\-r){\-r-c) (^^) 

is positive as well. Note that we assumed a > 1 as a condition for instability 

for the fixed point. Hence K>r^ •¥r[\-r)(l-r-c). Suppose the contrary of 
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what we want to prove, i.e. that K: < 0. Then r^ + r[\ - r)[\ - r - c) < 0 must 

hold. Dividing through by the common factor r, which is positive, and by 

(1 - r), which is positive as well, we conclude that 0 1 + r / (l - r ) . As the 

second term is positive, we conclude that c, the propensity to consume, would 
have to exceed unity in order to result in a negative K . This is contrary to 
assumption, and hence we have K: > 0, as a result of a > 1, c < 1, and 0 < r < 1. 

Using (39), the recun'ence relation (38) looks particularly simple: 

R,=CR,_,+KK,_, (40) 

The second term is a product of two positive numbers, so, as we consider 
i?,_, < 0, we are looking for the possibility to get R^>0 due to the added 
positive term, and also due to the fact that the nonpositive number is scaled 
down through successive multiplication by c < 1. 

To fmd this out, we have to use (40) iterated over a sequence of periods. 
So, suppose we start with r = 2, for which R^ = cR^ + KKQ , and iterate accord­
ing to (40) t-\ times. Then: 

i?,„=c'i?,+^£c^(i-ry-'-x (41) 

Assume now c<\-r, Then obviously c'iX-r) ^ >c ^ holds. Further, as 

c < 1, we have c^~^ > d . Hence, as everything in the second term of (41) is 
positive, we obtain: 

R,^,>c'{R,+tKK,) (42) 

We assumed that i?, < 0, whereas KK^ > 0. The latter is multiplied by the 
number t, i.e., the number of terms in the sum in (41), so, in a finite number 
of steps, the positive term is bound to dominate, and produce R^^^ > 0. The 

positive factor c^, of course, decreases with time as c < 1, but it stays finite 
in finite time. 

Now this is what we wanted to prove: When the process sticks to the floor, 
it is bound to leave this constraint in a finite number of iterations, so that the 
accelerator starts working again, and the process is kept going. 
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It is worth noting that the condition c < 1 - r is a sufficient condition for the 
process to leave the floor region. It is by no means necessary. When the 
series in equation (41) is evaluated, we find that the whole expression boils 
down to a sum of two power functions. In case they have opposite sign, then 
(41) as a function of time attains a maximum. Only if this maximum is nega­
tive does the process never leave the floor region. 

7.10 Why the Map Hits the Floor 

Once we know that, whenever the process sticks to the floor, approaching 
the zero equilibrium, it will in a finite number of steps liberate itself from the 
floor and return to a working accelerator, we also know that the process will 
go on for ever. This is true, of course, only provided that the multiplier-
accelerator process itself is unstable, i.e. provided a> \ holds. For the sake 
of completeness we will also show that the unstable process hits the floor 
again and again, in spite of the fact that capital is accumulating, and the floor 
constraint hence slackens during the accumulation process. 

Suppose the map (28) has been active for some while, which means that 
R^ has been positive. Then we can substitute for Y^ and Y^_^ from the first 
equation of (33), and obtain: 

R. =a{a^clY,_,-Y,_,)-a'{Y,_,-Y,_,) + rK, (43) 

Next, let us eliminate the income differences, using (27) for periods t -1 and 
t-l. Hence: 

R,={a + c){R,_, - rK,_,) - a{R,_, - rK,_,) + rK, (44) 

We now have to deal with the capital entries in equation (44). The formation 
of capital while the accelerator is working is described in the second equa­
tion of (28). But we already have the result of its repeated application stated 

above in (18), i.e. K^^^ = ATj+a(}^-7^). So, letusapplythisfor^-l,/-2, and 

^ - 3 in (44). The resuh is: 

R^={a-¥c)R,_,-aR^_^+r{\-c){K^-aYQ) + ra[Y^_^-{a + c)Y^_^+aX_^) (45) 
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Figure 4. Trace for income (gray and growing), and for its growth factor (black and 
stationary). 

While (28) is working, its first equation states that }̂ _, =[a + c)X_2 -aY^_^, so 

(45) loses its last term and simplifies to: 

R,={a + c)R,_, -aR^_, ^r{l-c){K, -aY,) (46) 

where r(l-c)(^, -a7o) can be positive or negative depending on whether 

initial capital K^ exceeds or falls short of initial optimal capital according to 

the accelerator, i.e., aY^. 

The important fact about (46) is that the last term is a constant. Putting: 

R, = R,.,=R,.2=K = r{K,-aY,) (47) 

in (46), we find that it is reduced to an identity. Hence, R = r(X', -^}^) is a 
particular solution to the nonhomogenous difference equation (46). We can 
hence restate it as: 

{R,-R) = {a + c){R,_,-R)-a{R,_,-R) (48) 
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Figure 5. Trace for income, and for its growth factor over a prolonged period. 

and note that it is a difference equation of exactly the same form as (1) above, 
even if we now stated it for the branch constraint (27). 
Accordingly, we already know the solution to (48). It is the product of a 
growth factor, and a trigonometric oscillatory factor. We already said that we 

are just interested in the oscillatory and growing cases, with {a-\-cf <^a 

and (3 > 1. Due to the growth factor, R^~R is bound to recurrently exceed 

any negative value, and hence R^ is bound to become negative, even wheni? 

happens to be positive. 

7.11 Periodic Solutions 

This completes the proof Provided c < 1 - r , a > 1, and (« + c)̂  < 4a hold, 

the model keeps going for ever, growing with oscillating growth rates for 
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t 

0 

1 

2 

3 

4 

5 

1 ^ 
7 

yt 

5.207056 

1.259941 

0.507890 

-0.868097 

1.525107 

0.680385 

-0.337195 

5.207056 

^ 

1.000000 

1.259941 

0.639912 

-0.555505 

-0.847205 

-0.576425 

0.194368 

1.012083 

Table 2. Growing income with 7-periodic cycle for the modified model 

income and capital, visiting the floor constraint over and over, and leaving it 
again. We will now see how this fact fundamentally changes the working of 
the model, producing periodic growth cycles, which did not occur in the 
original model. Unfortunately, analytic methods are no longer of any use, so 
we have to rely on numerical work at the computer. 
We present a picture for the case a = 1.25, c = 0.25, and r = 0.01 in Fig. 4. It 
is easy to check that the three constraints stated above are fulfilled, though 
the propensity to consume is unrealistically low. The reason for this choice 
is that it is then easy to pick a fundamental resonance of low periodicity. As 
we see in Fig. 4, we hit a 7-periodic cycle. The gray trace represents the 
development of income, the black trace the ratio of income to that of the 
previous period. The gray income trace is actually growing, and hence not 
periodic, though it is difficult to see this over just three cycles, because the 
growth rate is now so low. This lowering of growth rates is another conse­
quence of the modified model. To convince ourselves that the gray trace is at 
all growing, we show Fig. 5, of the same traces over di prolonged period. 
Though we no longer can identify the cycles in the compressed picture, we 
clearly see that the black trace is stationary, whereas the gray grows 
exponentially. 

Figs. 2 and 4 are different, not only because the latter has nothing of the 
smooth sinoid shape of the former. What is really interesting is that, whereas 
the black trace in Fig. 2 was only approximately 7-periodic, its counterpart 
in Fig. 4 is exactly 7-periodic. Not only is it now easy to pick the above 
stated parameter combination to produce exact 7-periodicity, but we could 
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find infinitely many nearby, or even more distant parameter combinations 
within a so called resonance tongue, that produce the same. As stated above, 
the thin resonance curves of Fig. 6 in Chapter 3 are replaced by thick reso­
nance tongues in Fig. 6 below. 

We can also present the difference in terms of Table 2, to be compared to 
Table 1 above. Both are numerical calculations of 7-period cycles. However, 
to get the exact 7-periodicity for Table 1, we cheated by choosing the ra­
tional rotation co = 2;r / 7, as we could not have picked this through choosing 
the parameter values. 

Further, the way of calculation is different. In Table 1 we calculated y^, 
and then obtained Y^ as continued products of the former. Now we do the 
reverse, i.e. calculate Y,, and then obtain the y^ as quotients Y^ I Y^_^ accord­
ing to the definition (2). To tell the complete story, in order to make the 
nonlinear system converge upon cyclicity in growth rates, we first run a cou­
ple of thousand transient iterations, which we trash. Through this, the initial 
YQ of the cycle displayed, would not equal unity, but we can rescale the time 
series, in order to make the Tables comparable, and in order to be able to 
easily read off the growth rate over a cycle. Note that this does not affect the 
entries of the y^ column, because any such rescaling constant appears in 
both numerator and denominator of YJ }̂_i and hence cancels. 

Another interesting fact is the low growth factor, 1.012083 over a 7-period 

cycle, i.e. 1.012083̂ ^̂  ^ 1.001823 for one period. Suppose that we did not have 
the floor constraint. Then we know that the growth factor, given a = 1.25, 

- 7 

would be vl.25 = 1.118034 for one period, or Vl.25 ^ 2.183660 over a com­
plete cycle. So, despite the fact that the floor constraint slackens with accu­
mulating capital, its existence lowers the growth rate to about one hundredth 
of what it is in the original model without the floor. As we will see, this 
property holds over the entire parameter space. 

7.12 Conversion to Relative Dynamics 

For further studies of the multiplier-accelerator model with floor dependent 
on accumulated capital, as formulated in (28)-(29), we now introduce the 
relative variables, y^ and k^ the first already defined in (2), but restated here 
for convenience: 
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y.^r-— (49) 

*,.,:= % ^ (50) 

The most convenient relative variable transformation for capital is the ratio 
of capital stock to income in the previous period. This may seem a bit arbi­
trary, but we must recall that capital is a stock concept, dated through attribu­
tion to a time point, whereas income is a, flow concept, dated through attribu­
tion to a time period. Setting up a time scale is always a bit arbitrary, as we 
realise even from everyday language by denoting the same hundred years as 
"Cinquecento" (in Italian) but as 16th Century (in English). We chose t to 
denote the time period between time points t and /+1, and so (50) is as logi­
cal as anyone may want. 

We now need to restate R^ in the branch condition (27), in terms of the 

relative variables. So, for a start, divide (27) through by }^_,, thus obtaining: 

^ = a{y,-\)+rk, (51) 

from definitions (27) and (49)-(40). There is, however, a problem with using 
the right hand side of (51) as choice condition between the branches of the 
map (28)-(29). The choice condition is stated in tenns of inequalities, and, as 
we know, Y^_^ may take on negative values, hence changing the sense of the 
inequality. We therefore have to neutralize this effect, for instance by multi­
plying (51) through by a variable which takes the same sign as Y^_^. We only 
have two to choose from, y^ and k^, but the latter indeed is a suitable vari­
able according to (50). Multiplication through by k^=KJ Y^_^ results in: 

Pt=-7^ = a{yt-^)K-^rk^ (52) 

where p̂  always takes the sign of R^, because capital is positive, and in­
come is squared. 

It now remains to convert (28)-(29). Dividing the first equation of (28) 

through by Y^, results in y^^^ =c^-a{\-\l y^). Doing the same with the sec-
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ond equation, results in the quotient KJY^ in the right hand side, which is 

not one of our new relative variables. But KJY^=[KJ 1̂ _, )(}^_, IY^)-=kJ y^, 

so A:̂ ĵ =kjy^-^a[\-\ly^). Collecting facts, we have the first map: 

/,: 

y,̂ , = c + a 1-

yt 

( 
1 

V 

•-] y.) 

y,j 

p ,>0 (53) 

Doing the same transformation to (29), again using what we just found out 

about KJY^-kJ y^^^Q transform the first equation to ŷ ĵ = c - rk^ I y^, 

and the second to k^^^ = (l ~ ^)^/ / yt • Hence the other map becomes: 

A- y, 

yt 

p , < 0 (54) 

The map (53)-(54) represents the same model as (28)-(29) above, though the 
fact that it is stated in relative variables makes the solutions predominantly 
periodic, which is not the case with the original absolute variables. As we 
recall, y^ is the income growth factor, and k^ is the capital/income ratio. 

7.13 Numerical Study 

We will now take a closer look at the case where the roots are conjugate 

complex, i.e. (a + c) < 4« , but (28) is not damped, i.e. a > 1. Geometrically 

this means below the parabola, and to the right of the vertical line at unit 
accelerator in Fig. 6, Chapter 3. 

Fig. 6 of this Chapter is a direct companion to Fig. 6 of Chapter 3, though 
for the nonlinear model with floor linked to depreciation on accumulated 
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1.0 ! 

0 

i > 

I ! 

0 1.0 a 4.0 

Figure 6. Bifurcation diagram with periodic ArnoVd tongues. 

capital stock. We see the same box (a,c)G [0,4] x[0,l] in parameter space, 
the same vertical line at a = 1, the threshold of instability of the zero fixed 
point for the model in original (i.e. not relative) variables, and the parabola 

[a-\-c) =4a, the watershed between oscillatory (below) and steady (above) 

solutions. 
What we see in Fig. 6 is a set of periodicity tongues, so called Arnol'd 

tongues, which almost completely fill out the right part of the space below 
the parabola, though only periodicities up to 45 were computed. The method 
used was to run the system (53)-(54) on the computer, skipping the first 
thousand iterates, belonging to the transient, and then check for the lowest 
periodicity among the 45 selected. The tongues corresponding to each pa­
rameter combination were then coloured according to the lowest periodicity 
which would fit the time series computed. Two remarks are in place. 

First, by checking for the lowest periodicity, we do not catch the existence 
of multistability, i.e., coexistence of different periodicities for one and the 
same parameter combination. Such multistability may exist also in terms of 
different coexisting solutions of the same periodicity. This cannot be seen at 
all in a bifurcation diagram such as Fig. 6. To see multistability, we would 
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Figure 7. Growth rates for periodic solutions. Band width 0.2 %. 

have to select one parameter point, and then produce a picture of the phase 
plane with different attractors and their basins of attraction. 

Second, as already mentioned, almost the whole picture is filled with pe­
riodicity tongues of the lowest 45 periodicities. In reality there exist all 
periodicities, so there are more tongues for higher periods, but they must be 
thin because there is not much space left. It is likely that, had we proceeded 
with higher periods, a little more space would be filled, but the clear pattern 
of white streaks would remain. Probably they represent cycles of infinite 
period, i.e. quasiperiodic orbits. 

Note that we have three parameters, so we have to fix one, i.e. r in order to 
produce a plane picture. We chose r = 0.01. 

Comparing Fig. 6 to Fig. 6 from Chapter 3, we see that, in the nonlinear 
model, it is quasiperiodicity that has become a rare phenomenon, whereas 
the reverse held for the original linear multiplier-accelerator model. How­
ever, there is a relation: The periodicity tongues of Fig. 6 start out from 
exactly the points on the a = 1 line, where the thin periodicity curves in Fig. 
6 of Chapter 3 intersect that line. Accordingly, we do not find any 5-period 
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tongue, as it does not intersect this line at a positive value of c. Running the 
computer program for <2 < 1, does not produce any periodic tongues, because 
the model restated in relative variables is divergent for those parameter val­
ues. 

The lowest tongue is 6-period, and we also find the rest of the periodicities 
displayed in Fig. 6 of Chapter 3, in Fig. 6 of this Chapter as well, further in 
approximately the regions we would expect them to be located. 

Note the peculiar shape of the periodicity tongues, like twisted bands, or 
strings of "sausages", 3 pieces for the 8- and 9-period tongues, four pieces 
for the 10-period tongue. This depends on different orders of application of 
the component maps, and was explained in Sushko et al. (2004). 

7.14 Growth 

Fig. 7 presents some different aspects of the same bifurcation diagram as 
Fig. 6. We see the same pattern of white streaks, and can identify the tongues, 
though the gray scale shading is different. We now chose colouring accord­
ing to the growth rates. The numerical procedure was exactly as illustrated 

in Table 2, with the only difference that we did not calculate y^ as a ratio 

from Y^ and Y^_^, but directly from the relative dynamics model (53)-(54). 

After checking for periodicity, we calculated the growth factor as the geo­

metric average of the calculated y^ values over a complete cycle. 

The width of each band represents a growth rate of 0.002 per period. As 
we see, these bands recur in bundles of 15. (This is due to the fact that the 
picture was produced by a DOS program, where only 15 (nonblack) colours 
are available.) This is actually helpful, because we can easily see where one 
bundle ends and the next begins. So, by the end of the first we have a growth 
rate of 0.03, by the end of the second 0.06, etc. Note that the first bundle ends 
at approximately a ~ 2.5, where the growth rate according to the original 

linear model would have been ^[25 ^ 158, i.e. 58% compared to 3% in the 
nonlinear model. This lowering of growth rates was mentioned above, and 
we now see that indeed this holds over the entire parameter plane. It hardly 
needs saying that we by the procedure described only can calculate growth 
rates for cyclic processes. 
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8 Coexistence of Attractors and Homoclinic 
Loops in a Kaldor-Like Business Cycle Model 

Anna Agliari and Roberto Died 

8.1 Introduction 

Coexistence of attractors is often a characteristic feature of economic models 
represented by nonlinear dynamic systems [see, among others, Agliari et al 
(2002), Bischi & Kopel (2001), Dieci et al (2001), Agliari et al (2000)]. 
Generally speaking, when multiple attractors coexist in the phase-space for a 
particular choice of the parameters of the model, a crucial question is about 
the role played by the initial conditions in determining the asymptotic behav­
ior of the system. Moreover, in order to perform a proper bifurcation analysis 
with respect to some specific parameters it is necessary to take into account 
that parameter variations determine in general both qualitative changes (in­
cluding appearance/disappearance) of the attractors, and structural changes 
of the basins of attraction of the coexisting attractors. The latter point has 
been less emphasized in the economic literature. In general, typical fea­
tures of such qualitative changes of the basins are the following: (a) they 
are due to global bifurcations (not associated with the eigenvalues of the lin­
earized system around a particular steady state) and (b) they may bring about 
a kind of "complexity" which is different from the one usually reported in 
the literature (associated with "strange attractors", and "sensitivity to initial 
conditions"): Namely, simple attractors (steady states, cycles of low period, 
attracting closed curves) may have basins with complex structures. 

In recent years, several studies have pointed out particular mechanisms 
of basin bifurcations, which are associated with contacts between basin boun­
daries and "critical sets", in the case of dynamical systems represented by 
the iteration of noninvertible maps [Mira et al (1996), Agliari et al (2002), 
Agliari (2001)]. Other possible mechanisms, which may occur in the case 
of invertible maps as well, are associated with homoclinic tangencies of the 
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stable and unstable manifolds of saddles. The present Chapter illustrates 
the latter type of phenomena, in situations of coexisting attractors that arise 
from a particular version of Kaldor's business cycle model in discrete time, 
described by a nonlinear two-dimensional dynamical system. 

The particular Kaldor-like model at hand, where consumption is mod­
elled as an S'-shaped function of income, and investment is a linear increas­
ing function of output (and a linear decreasing function of capital), has been 
developed in Herrmann (1985), and studied also in Lorenz (1992, 1993), 
Dohtani et al (1996), mainly in order to prove the emergence of chaotic dy­
namics in Kaldor-like models under extreme values of the output adjustment 
parameter. However, the particular parameter constellation which is assumed 
within the present Chapter (under which multiple equilibria exist) has been 
excluded from the analysis carried out in earlier work, though it corresponds 
to economically meaningful situations. We will show that for this choice 
of parameters, business fluctuations along a stable closed curve (which typ­
ically arise in Kaldor model), coexist with alternative dynamic outcomes 
(stable steady states, or stable periodic orbits of low period), which the sys­
tem may reach in the long-run depending on the initial state. Furthermore, 
we will explain the bifurcation mechanisms which determine such situations 
of coexistence, the appearance or disappearance of attractors and the qual­
itative changes of the basins of attraction. The global dynamic phenomena 
which are detected in this Chapter are described in Chapter 1 and have also 
been detected in a different version of the Kaldor model in discrete-time [see 
Bischi et al (2001) and Agliari et al (2005b)], where investment is an 
increasing ^-shaped function of output (and depends negatively on capital 
stock) and savings depend linearly on income. Therefore such dynamic phe­
nomena seem to be very persistent ones, and their occurrence seems to be 
ultimately related to the following basic assumptions: (i) investment or con­
sumption have sigmoid shaped graphs, in a way that the marginal propensity 
to invest is larger (smaller) than the marginal propensity to save for normal 
(extreme) levels of income, and (ii) the investment schedule shifts down­
wards (upwards) as output increases (decreases) as a result of a negative 
dependence on accumulated stock of capital. Both these assumptions are 
essential qualitative features of Kaldor's original model. On the other hand, 
very similar dynamic phenomena have been detected also in Agliari et al 
(2005a), where a two-dimensional map with a "minimal" structure qualita­
tively similar to that in Agliari et al (2005b), and to the one being studied 
here, has been analyzed in details. Further examples are shown in this book. 
Chapters 9 and 11. 
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The Chapter is organized as follows. In Section 8.2 we present the business 
cycle model, perform useful changes of coordinates, and reduce it to a two-
dimensional map. Section 8.3 presents some general properties of the map, 
namely the symmetry, the steady states and local asymptotic stability condi­
tions, and the conditions for invertibility. Section 8.4 focuses on particular 
global bifurcations, involving qualitative changes of the basins of attraction, 
occurring in a particular regime of parameters where three equilibria exist, 
and relates these phenomena to the behavior of the stable and unstable man­
ifolds of saddles. 

8.2 The Model 

Let us consider the following discrete-time version of the Kaldor (1940) non­
linear model of the business cycle 

Yt+i=Yt + a{It-{Yt-Ct)) 
Kt+i=It + {l-5)Kt ^^ 

where the dynamic variables Yt and Kt represent the income (or output) level 
and the capital stock in period t, respectively, and both the investment It and 
the consumption Ct (or equivalently the savings St = Yt — Ct) are assumed 
to depend in general on Yt and Kt. 

The first equation in (1) views the output level as reacting over time 
to the excess demand or, put differently, to the difference between ex-ante 
investment {It) and saving {St = Yt — Ct). The speed of adjustment is 
measured by the parameter a (a > 0), where a value of a smaller than 1 
means a prudent reaction by firms, while a value of a greater than 1 denotes 
rash reactions and coordination failure. 

The second equation in (1) models the capital stock as being increased 
by realized investment (here assumed to coincide with ex-ante investment) 
It = It {Yt^ Kt), and decreased by depreciation 5Kt, where 5 {Q < 5 < 1) 
represents the capital stock depreciation rate. 

The discrete dynamical equations (1) (or, alternatively, their continuous-
time counterparts) provide the common structure of several versions of the 
Kaldor model, which have been proposed in the literature up to now [see 
Dana & Malgrange (1984), Herrmann (1985), Grasman & Wentzel (1994), 
Bischi et al. (2001), among others]. Such models are able to produce both 
periodic or quasi-periodic trajectories and further dynamic scenarios, rang­
ing from chaotic fluctuations to coexistence of different attractors, once the 
investment and the savings function It and St are specified in a way consis­
tent with Kaldor's original qualitative assumptions, namely (a): dIjdY > 
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dS/dY (i.e. propensity to invest higher than the propensity to save) for 
"normal" levels of income, but dl/dY < dS/dY for extreme income lev­
els, below and above the "normal" range; (b) dl/dK < 0, i.e. a negative 
relationship between investment and capital stock, or dS/dK > 0, i.e. a 
positive relationship between savings and capital stock. In particular, as­
sumption (a) has been illustrated by Kaldor using an 5-shaped investment 
function, or equivalently a savings function characterized by an inverted 5-
shape. The present Chapter is a dynamical exercise on the particular version 
of the Kaldor model introduced in Herrmann (1985), which has been stud­
ied also in Lorenz (1992, 1993), and in Dohtani et al (1996). While in the 
aforementioned papers the focus was on chaotic dynamics, in our analysis 
we will explore different regimes of parameters, where the dynamical be­
havior is characterized by coexistence of attractors. 

Our assumptions about consumption {Ct) and investment {It), which are 
the same as in Herrmann (1985), are stated and discussed below. 

• Consumption 

At each time t, the consumption is a sigmoid shaped function of in­
come: 

Ct = CO + ^ c i arctan (^ {Yt - F*)") (2) 

where Y* denotes the exogenously assumed equilibrium (or normal) 
level of income and CQ, ci, C2 are positive parameters. A qualitative 
plot of the consumption function (2) is given in Fig.l. The consump­
tion is therefore an increasing function of income (ranging between 
Co — ci and co -h ci):However, while for extreme values of income 

Figure 1: Qualitative consumption function. 
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consumption remains nearly constant, there exists a region around the 
normal level Y* where consumption increases rapidly at a rate close 
to C2, which represents the consumption propensity at Y* (we assume 
0 < C2 < 1).̂  The consumption function (2), or equivalently the in­
verted S'-shaped savings function St = Yt — Ct, reflects the view that 
the proportion of income which is saved is higher in non-ordinary pe­
riods, when Yt is far from F*, because in such periods people perceive 
a larger portion of their income as being transitory^. 

• Investment 

At each time t, the investment is a linear function of income and capital 
stock. Precisely it is assumed that (gross) investment responds to a 
gradual adjustment of the actual capital stock to the desired capital 
stock, i.e., 

/, = b [xf - Kt) + 5Kt 

where K^ is the desired stock of capital at time t, assumed linear in 
current output, that is Kf = kYt, with k representing the desired 
capital-output ratio (which here will be considered as an exogenous 
parameter) and 6, 0 < 6 < 1, is the capital stock adjustment para­
meter. Therefore the investment function can be rewritten as a linear 
function of income and capital, as follows 

It - bkYt -{b- 5)Kt (3) 

where the Kaldorian negative relationship between investment and cap­
ital stock is fulfilled provided that b > 6. 

Substituting the consumption and investment functions (2)-(3) in model 
(1) we get 

' Yt+i = (1 - a + abk) Yt + (aco + | c i arctan ( f f {Yt - F*)) -

-{b-5)Kt) 
[ Kt+i = b{kYt-Kt)-\-Kt 

(4) 

^ Given that Y* is the turning point of the function (2), C2 is the maximum propensity to 

consume. 
2 See Gallegati & Stiglitz (1993) for a model of business fluctuations where a similar 

consumption function is involved. 
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from which the coordinates of the exogenous steady state can be easily ob­
tained 

y * CQ 
1-kS 

kCQ 
1-kS 

In order to simpHfy the analysis of the model (4), we normalize the 
steady state to (0,0), by reformulating the model in terms of deviations 

\ yt = Yt-Y^ ^̂ ^ 

With the new coordinates (5), the dynamical system (4) is represented by 
the following map 

f x' = (1 -b)x + bky 

• I y' = a{S -b)x -{• {1- a-\- ahk) y -f | a c i arctan i f^2/) 

where the symbol' denotes the unit time advancement operator. Note first 
that the map T is independent on CQ, that is CQ is only a "location" parameter 
and does not affect the asymptotic behavior of the system. Second, though 
the map T depends on 6 parameters, in our analysis we will assume 6, fc, 5, 
ci as fixed parameters, and we will perform stability and bifurcation analysis 
in the parameter space 

Q. = {{a, C2) : a > 0 and 0 < C2 < 1} 

8.3 General Properties of the Map 

In this section we analyze some general properties of the map T in (6), which 
will play a role in the analysis of the global dynamics. Precisely we will 
discuss a symmetry property, the steady states and their local asymptotic sta­
bility, and the conditions of invertibility or noninvertibility of the map. 

8.3.1 Symmetry Property 

It can be easily checked that the map T is symmetric with respect to the ori­
gin (0,0). This means that two points which are symmetric (with respect to 
the origin) are mapped into points which are also symmetric. This has impor­
tant implications for attractors and basins of attraction of T. An immediate 
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consequence is that any invariant set of T either is symmetric with respect 
to the origin, or it admits a symmetric invariant set. In particular this holds 
for the fixed points and cycles of T. Thus, whenever further fixed points 
exist besides (0,0), they must be in symmetric positions, and any cycle of 
T of odd period necessarily coexists with a symmetric one having the same 
characteristics. Moreover, the basins of attraction of the attracting sets of T 
either are symmetric or symmetric basins also exist. 

8.3.2 Fixed Points and Local Stability Analysis 

The equilibrium points of the model (6) are the fixed points of T, solutions 
of the system 

{ X — ky 

a{6 -b)x-\-a{bk-l)y + ^aci arctan (fff y) = 0 

Besides the trivial solution £'* = (0,0), the map T may have further fixed 
points, whose ^/-coordinates satisfy 

(1 — k5) y = —ci arctan { -—-y 

Since the straight line of equation z — {1 — k6) y and the sigmoid-shaped 

graph of the function z = | c i arctan (ff^y) intersect in three points if the 

slope of the straight line is positive and lower than that of the curve evaluated 

at the origin, we obtain the following 

Proposition 1 The map T in (6) has 

• the unique fixed point £"* = (0,0), z/ (1 — k5) < 0 or C2 < (1 — k5) 

• three fixed points, E* = (0,0) and two fidrther points, P* and Q*, 
symmetric with respect to E*, if C2> (1 — kS) > 0. 

The condition for the existence of further equilibria, stated in Proposition 1, 
has a straightforward interpretation, in that it can be rewritten as 

(1 - C2)y* < (5fcy* = SK* 

where the quantity {1 — C2)Y* represents the savings at the exogenously as­
sumed normal equilibrium, while 6K* is the amount of depreciation at the 
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same equilibrium. Therefore further equihbria exist if the equilibrium sav­
ings are insufficient to replace capital depreciation at the "normal" stationary 
state. 

Let us now consider the local stability of the fixed point E* — (0,0). As 
usual, the analysis of local stability of a fixed point is obtained through the 
localization, in the complex plane, of the eigenvalues of the Jacobian matrix 
evaluated at the fixed point, and their dependence on the parameters of the 
model. 

The Jacobian matrix of the map T in (6) is 

J{x,y) = 
1 -

a{5 
b 
b) l + a{bk 

bk 

1) + 
H^y) 

(7) 

and at E* it specializes to 

r = 1-b bk 
a{S -b) H - a ( 6 f c - I + C2) 

Observe that J* does not depend on the parameter ci: Then only five 
parameters are relevant in this context. To localize the eigenvalue of J*, 
denoting by Tr its trace and by Det its determinant, we use the following 
well known necessary and sufficient condition [see e.g. Gumoswki & Mira 
(1980), Medio & Lines (2001)]: 

i) 1 - T r + Det = ba{l-C2- k5) > 0 

ii) l+Tr-\-Det = 2{2-b)-a{2-b){l- 02) + abk {2 - 5) > 0 

iii) 1 - Det = 6 + a (1 - 6) (1 - C2) - abk (1 - 5) > 0 

For fixed values of 5, fc, b we can determine the region of local asymp­
totic stability of the steady state E*, in the plane (a,C2), as stated in the 
following 

Proposition 2 Assume Sk < 1, b < 1. 

• Ifb> 5 and (2 - bf > 6fc (4 - 45 + 5b) the fixed point E* = (0,0) 
is locally asymptotically stable if the parameters a and 02 belong to 
the region OABCD of the plane (a,C2), with vertices O = (0,0), 
A _ f 2(2-6) n\ u - fStl^ (2-b)^-bk{6b-4S-^4)\ ^ _ 
^ - [2-b-bk{2-S)^^)^ ^ - \bk(b=^' M W A ~ 
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( M ^ ' 1 - Sk\ D = {0,1- 6k), where the sides AB, BC and CD 

belong to the hyperbola of equation 

, , a-2 bk(2-6) 

to the hyperbola of equation 

, ^ , b-abk{l-5) 
ci = C2N a = 1 + . / . . ' (9) 

a[l — b) 
and to the line C2 = 1 — 5k, respectively; 

• ifb> 6 and (2 - bf <bk{4-46-{- 6b) the fixed point J5* = (0,0) 
is locally asymptotically stable if the parameters a and C2 belong to 
the region OBCD of the plane (a, C2), with vertices O = (0,0), B = 

( , , ( i 4 _ ( i _ , ) , 0 ) , C = ( ^ , 1 -5fc ) , D ^ {0,1-Sk). where 

the sides BC and CD belong to the hyperbola of equation 

, ^ , b-ahkil-5) 

and to the line C2 — I — 6k, respectively; 

• ifb<6 the fixed point E* = (0,0) is locally asymptotically sta­
ble if the parameters a and C2 belong to the region OABD of the 

plane (Q;,C2), with vertices O = (0,0), A = (2-h-hk{2-S)^^}' ^ ~ 

{ kfi-b)' ^ ~ ^^)' ^ = (0,1 — 6k), where the sides AB and BD be­
long to the hyperbola of equation 

, , a-2 bk(2-6) 
C2 = C2f{a) = — ^ - ^ 

and to the line C2 = 1 — 6k, respectively 
If b = 6 the vertex B is missing, because the hyperbola of equation 
^2 = ^2/ (a) approaches asymptotically the straight line of equation 
02 = 1 — 6k for a ^^ 00, 

Moreover if the point (a, C2) exits the stability region by crossing the 
side AB, then a supercritical flip bifurcation occurs at which E* be­
comes a saddle point and a period 2 attracting cycle appears; if the 
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point (a, C2) exits the stability region by crossing the side BC, then a 
Neimark bifurcation occurs at which E^ is transformed into an unsta­
ble focus; if the point (a, C2) exits the stability region by crossing the 
side CD, then a supercritical pitchfork bifurcation occurs at which two 
stable fixed points are created close to £"*, which becomes a saddle. 

Proposition 2 confirms analytically that the non-Kaldorian case h <5 (where 
the condition of inverse dependence of investment on capital stock is not 
fulfilled) cannot produce a Neimark bifurcation followed by self-sustained 
fluctuations of output and capital stock along a stable closed curve. On the 
other hand, in the opposite case 8 < h, self-sustained oscillatory behavior 
around the unstable steady state £•* occurs for sufficiently small values of 
C2 ,̂ i.e. when the propensity to save 1 — C2 is large enough, whereas for 
high values of C2 the typical situation is that of two stable steady states P* 
and Q* and an unstable steady state E*, located in the middle, i.e. a situ­
ation of bi-stability (without oscillations). For sufficiently small values of 
C2, if condition (2 - hf > 6fc (4 - 45 + 6b) is fulfilled, also cycles of low 
period are possible, as a consequence of a flip bifurcation. This is what can 
be immediately deduced from the local analysis carried out in Proposition 2. 
However, global analysis will point out that long-run oscillatory behavior is 
possible even for high values of C2 (beyond the pitchfork boundary), in pa­
rameter ranges where two further equilibria P* and Q* exist and are stable, 
or where they exist unstable but further stable periodic orbits exist. This will 
reveal phenomena of coexistence of the Kaldorian business cycle with other 
possible long-run dynamic outcomes, where the role played by the initial 
condition will be crucial. 

8.3.3 Invertibility of the Map 

Under particular parameters constellations, the map T in (6) is a noninvert-
ible map of the plane. This means that while starting from an initial con­
dition (xo,yo) the forward iteration of (6) uniquely defines the trajectory 
{xt.yt) = T^ {xQ.yo), t = 1,2,..., the backward iteration of (6) may not 
exist, or whenever it exists, may not be unique. Recent economic literature 
dealing with cases of multiple attractors in two-dimensional discrete-time 
dynamical systems represented by noninvertible maps [see e.g. Bischi & 
Kopel (2001), Dieci et al (2001), Agliari et al (2000)], has pointed out the 

^ Based on numerical evidence, we claim the supercritical nature of the Neimark bifurca­
tion in this case. 
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role played by noninvertibility in bringing about bifurcations and complex 
structures of the basins of attraction. Complexity of the basins of attraction 
is also detected within the present model, though we must stress that in our 
case this is not due to the noninvertibility of the map. The goal of the present 
subsection is therefore to determine the regions of the space of parameters 
where the map is invertible (and noninvertible), in order to prove that the 
particular parameter constellation which will be adopted for our numerical 
simulation is one belonging to the invertibility region. Considering again 
the (a, C2)-plane (for fixed values of the remaining parameters) so that the 
ranges of invertibility or noninvertibility of the map T can be compared with 
the local bifurcation curves, we can state the following proposition 

Proposition 3 The map T is invertible for any parameter combination (a, C2) 
ifl — h<hk{l — 5). In the opposite case 1 — 6 — 6fc (1 — (5) > 0, the non­
invertibility region is an unbounded set defined by 

a> '-' l-b-bk(l-S) 
(10) 

(a-l)(l-6)-abfc(l-(5) 

Such a region has a vertex on the a-axis, given by Z = (•^_^_^^"^^_^x, 01. 

Proof. The rank-1 preimages of a point {u, v) are the solutions of the system 

{ u = {1 — b)x + bky 

v = a{6 — b)x+{l — a-^ abk) y + |Q;CI arctan ( ^y) 

in the unknown variables x and y. Rearranging the two equations of such a 
system we obtain 

{
^ _ u-bky 

Then the ^/-coordinates of the rank-1 preimages of the points (li, v) must 
satisfy the equation 

q {u, v) + my = —aci arctan ( y I (11) 
TT V2ci y 
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whQVQq{u,v) =v-a{5-b)j^^mdm= (c^-m-b)_-c.bkii-S) ^ 

It is simple to verify that if m < 0 or m > ac2, equation (11) has a unique 
solution for any given (u^v). Therefore if 

r {a-l)il-b)-abkil-S) ^ Q 

{ ia-l)il-b)-abkil-S) ^ ^^^ 

holds, the map T is invertible, i.e. has a unique inverse. If m = 0, then 
a unique solution of (11) exists if —aci < q{u,v) < ac i , otherwise no 
solution exists. 

In the case 0 < m < ac2, one, two or three solutions of the equation 
(11) may exist depending on the value ofq = q {u, v). In particular, for a 
given m, two solutions exists if the straight line at the left side of (11) is 

tangent to the S-shaped curve / (y) = |Q;CI arctan f ̂ y), that is if 

ac2 
m = 

1 + {my} 
We obtain that the equation (11) admits two solutions if g {u, v) becomes 

equal to qi or g2, where 

2ci 
qi = 

7rC2 
2ci 

q2 = 
7rC2 

\/m (ac2 — m) — ac2 arctan I — ̂ Jm (ac2 — m) 1 

\m J 
ac2 arctan I — \ / m (ac2 — m) ) — yjm (ac2 — m) 

L V ^ / J 

Moreover, \iq {u, v) < qiovq (zz, v) > q2 the equation (11) has a unique 
solution, while if gi < g (n, v) < q2 three solutions exist.O 

From Proposition 3 we deduce that, if 

r {a-l)il-b)-abkil-5) ^ Q 

I (a-l)(l-|>7-^6/c(l-.) ^ ^̂ ^ (12) 

the map T is noninvertible and, following the notation used in Mira et al 
(1996), it is a Zi — Z3 — Zi map, which means that the phase plane is 
subdivided in different region Zi and Z3, whose points have one and three 
different rank-1 preimages, respectively. Such regions, or zones, are sepa­
rated by the critical line LC, i.e. the locus of points having two merging 
rank-1 preimages. 
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Thanks to the above computation, it is easy to obtain that the critical line is 
given by two distinct branches, that is LC = L^ U L^ with 

L^ : y - ^ ^ x + , , (13) 

1 — 0 

The locus of the merging preimages of the points belonging to the set LC, is 
the rank-0 critical line LC-i and it is given by L^^ U L^^, where 

2ci 
I/^i : y = ^/m {ac2 - m) 

m7rc2 
2ci Lti : y= y/m {ac2 - m) 

m7rc2 

i.e. the points which satisfy the tangency condition. 
Such critical lines can be also obtained from the Jacobian matrix of the 

map T, indeed LC-i is the locus of point at which the determinant of the 
Jacobian matrix (7) vanishes, and LC = T (LC_i). 

In particular, we are interested in the intersection of the noninvertibility 
region with the region of local stability of E*. We restrict our analysis on 
the case b > S, which is the one of interest from the point of view of the 
dynamic analysis. Proposition 2 suggests that two different cases need to be 
considered. 

• Case 1: (2 — 6) > 6fc (4 — 45 + 5b). In such a case it is simple to 
show that the noninvertibility region (10) intersects the stability region 
of E*, since the vertex B belongs to that region. In fact, the a- and 
C2-coordinates of the vertex B satisfy the first and second inequality 
in (10), respectively. 

• Case 2: (2 — b)^ < 6fc (4 — 45 + 6b). In such a case the map is in-
vertible. In fact the condition (2 — 6)^ < 6fc (4 — 45 + 6b) implies 
l - 6 - 6 A : ( l - 5 ) < 0 . 4 

"̂ This result is derived by observing that in this case the intersection point between flip 
and Neimark bifurcation curves belongs to the half-plane C2 < 0, and therefore the horizontal 
asymptote of the Hopf bifurcation curve must be negative, i.e. l — bk{l — S) / {1 — b) < 0. 
Given that 6 < 1, the latter condition implies 1 — b— bk{l — S) < 0. 
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In our analysis we shall consider constellations of parameters belonging to 
Case 2, under which the map T is invertible: The corresponding stability 
region of £** is shown in Fig.2. 

8.4 Global Dynamics Under Coexistence of Equilibria 

As we have seen in Section 8.3, the local bifurcation curves of the "normal" 
steady state ^* suggest the existence of at least two different qualitative dy­
namic scenarios, outside the region of local asymptotic stability (see Fig.2). 
The first scenario, where a is small enough and C2 is located just beyond its 

Figure 2: Stability region of E*. 

pitchfork bifurcation value C2 = 1 — 6k, is one where E* is a saddle point 
and two further attracting steady states exist in the phase-space xy, on the 
line y = x/k, in symmetric positions with respect to E* (bi-stability). The 
second scenario, where C2 < ?2 and a is just larger than its Neimark bifurca­
tion value, is one where the unique steady state E*is an unstable focus and 
an attracting invariant closed curve exists around it in the phase space. As 
it is well known, however, the above results have only a local validity. In 
particular, nothing can be said in general about the survival of the attracting 
curve far from the Neimark bifurcation curve in the space of parameters: In 
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principle, it is possible that the attracting curve born via Neimark bifurca­
tion is still surviving even for parameters far from the local stability region 
where in particular C2 > C2, i.e. where two further equilibria exist. This is 
precisely what happens in the case of the present model. Of course in similar 
cases [see also Agliari et al (2005a,b)] a number of interesting questions are 
about the mechanisms which lead to the coexistence of an attracting closed 
curve with two further equilibria, the quahtative changes and the fate of the 
coexisting attractors (in particular the attracting curve) when the parameters 
are moved away from the region of stability, and the effects of changes of the 
parameters on the basins of attraction. These questions are the main topic of 
the present Section. 

As we have also remarked in Section 8.3, other general properties of 
the map T in (6) may play a crucial role in the asymptotic behaviour of the 
system. One of this properties is the noninvertibility, which holds in the 
region (10) of the space of parameters: This may be in general at the origin 
of complex structures of the attractors and the basins of attraction (see the 
textbook Mira et al (1996) and Chapter 1, Section 1.4). We rule out this 
possibility here, by choosing a regime of parameters under which the map T 
is invertible, in order to simplify as much as possible our understanding of 
the dynamic phenomena that we are going to analyze. Precisely, our analysis 
will be restricted to the region of invertibility of the map, and will follow 
a path in the parameter space through the region of existence of three fixed 
points, characterized by increasing values of a for a fixed value of C2 > C2 = 
1 — 5k, We will drive our attention to two different situations of coexistence 
of attractors, and to the associated bifurcations of attractors and basins: In the 
first one the two (locally) stable steady states bom at the pitchfork bifurcation 
coexist with endogenous self-sustained oscillatory motion on an attracting 
closed curve; in the second one, where all the three steady states are unstable, 
the attracting curve coexists with periodic orbits of low period. A remarkable 
fact about the following examples is that they represent phenomena which 
occur when the selected parameters are far from the local bifurcation curves 
and therefore are due to global mechanisms. A second fact is that, though the 
two situations to be analyzed are apparently quite different from each other, 
they are ultimately determined by very similar mechanisms, associated with 
saddle connections and homoclinic tangles of some saddle cycle as described 
in Chapter 1 (to which we refer for technical details and symbolisms). 

In the following we shall consider fixed values for the parameters fc, 6, 5, 
and ci, given by fc = 1, 6 = 0.8, 5 = 0.25, ci = 2. With these parameters, 
the pitchfork bifurcation occurs at 62 = I — 6k = 0.75. Therefore we 
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consider c^ > 0.75, so that three fixed points exist, and increase a starting 
11 fi-om S = YY = 1.4545, which is the a-coordinate of the vertex C in Fig.2. 

8.4.1 Three Coexisting Attractors and Homoclinic Bifurcation of E* 

Immediately after the pitchfork bifurcation of the exogenous steady state 
E*, two attracting fixed points, the nodes P* and Q*, appear, located at 
symmetric positions with respect to the saddle E*. Their basins of attraction 
are separated by the stable manifold W^ {E*). The unstable set W^ (E*) 
reaches the two fixed points: More precisely, a branch, say ai , tends to P* 
whereas the other one, say 0̂ 2, goes to Q*. 
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Figure 3: (a) a = 1.5; C2 = 0.98: Basins of attraction of P* and Q*. (b) 
a = 1.55; C2 = 0.98: More and more convolutions of W^ (E*) appear. 

The phase portrait of Fig.3a shows an example of this situation: It has 
been obtained at a = 1.5 and C2 = 0.98, then quite far from the bifurcation. 
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Indeed at this parameter values the two nodes have turned into stable foci and 
the stable set of the saddle exhibits some convolutions separating the basins 
of attraction of P* and Q*, B (P*) and B (Q*) respectively (represented in 
Fig.3 with different gray tonalities). 

As the speed of adjustment a increases, the set W^ (J5*) involves more 
and more winging around the fixed points P* and Q*, as shown in Fig.Sb. 
Consequently, the basin boundary appear to be more complicated and a tra­
jectory starting from the region where the convolutions become thicker is 
subject to greater uncertainty about its long run behavior. In fact, a slight 
perturbation of an initial condition taken in such a region (see enlargement 
of Fig.Sb) may cause a crossing of the basin boundary and consequently the 
convergence to a different equilibrium. 

Moreover this basin structure suggests that some global bifurcation is 
about to occur. Indeed, when a is slightly increased, as in Fig.4a, an attract­
ing closed curve F appears in the area where there was many convolutions 
of W^ (E*). This means that long-run quasi-periodic self-sustaining fluc­
tuations are now a possible outcome, as well as dampened oscillations con­
verging to the fixed points: Three typical trajectories, starting from initial 
condition taken in the three different basins, are represented versus time in 
Fig.4b. 

The basins of attraction of P* and Q* are still separated by the stable 
manifold of the saddle E*, but, differently from the case illustrated in Fig.3, 
now the preimages of the points of W^ {E*) accumulate on a repelling 
closed curve F, appeared with F and very close to it (see enlargement in 
Fig.4a). The appearance of F and F could be due in principle to a "saddle-
node" bifurcation for closed curves, given that the two curves are very close 
to each other, but we know that such a bifurcation is very quite rare in dis­
crete maps. Then a mechanism similar to that described in Section 1.7 may 
be conjectured in this case: A saddle cycle appears via saddle-node bifurca­
tion together with a repelling (or attracting) node cycle of the same period, 
then a saddle connection made up by the merging of two branches of the 
stable and unstable manifolds of the saddle gives rise to an attracting (or re­
pelling) closed curve and to a heteroclinic connection between the periodic 
points of the two cycles made up by the stable (or unstable) set. These two 
invariant closed curves appear very close to each other and if the period of 
the cycle is very high they look like those of Fig.4a. 

Whichever is the underlying mechanism, the appearance of the two in­
variant closed curves, one attracting and one repelling, has a noticeable ef­
fect on the asymptotic behaviour of the model, since three attractors now 
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coexist (the two equilibria, P*and Q*, and the closed curve F), the basins 
B (P*) and B (Q*) are strongly reduced and the majority of the trajectories 
are quasi-periodic (or periodic of very high period), since the curve T is now 
the basin boundary of F. 
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Figure 4: a == 1.552; C2 = 0.98: Three coexisting attractors. {di) Phase 
space, (b) Three typical trajectories versus time. 

Moreover the repelling closed curve F is involved in other important 
qualitative changes in the structure of the basins of attraction as the adjust­
ment speed is increased further. Indeed, as we can see in Fig.5a, it progres­
sively reduces in size and shrinks in proximity of the saddle £"*. Up to now, 
initial conditions taken close to the exogenous equilibrium have produced 
trajectories converging to P* or Q*, but this is no longer true in the para-
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meter constellation of Fig.5b, where trajectories starting close to E* exhibit 
self-sustaining oscillations. 
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Figure 5: (a) a = 1.568; C2 = 0.98: The repelling curve T shrinks in the 
proximity of E*. (h) a — 1.57; C2 = 0.98: T is splitted into two repelling 
closed curves. 

This means that the points of the unstable manifold of £** no longer 
reach the two equilibria but converge to F. This change in the asymptotic 
behaviour ofW^ {E*) proves that a global bifurcation has occurred, involv­
ing both the unstable branches of the saddle E*. Indeed in the phase portrait 
of Fig.5b we can observe the splitting of F into two repelling closed curves, 
Fp and Fg, each one bounding the basin of the corresponding fixed point. 
These two repelling closed curves are the a-limit sets of the points of the 
two branches uji and 002 of the stable set W^ (E*), which have modified 
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their behavior as well. Then we deduce that when the parameter a ranges 
from 1.568 to 1.57, a homoclinic bifurcation of E"* occurs, whose effect is 
the transition from one "large" repelling closed curve, basin boundary of the 
attracting set {P*, Q*}, to two "small" repelling closed curves, basin bound­
aries of JB (P*) and B (Q*) respectively. This situation has been classified 
as double homoclinic loop in Chapter 1, since it involves both the branches 
of the stable and unstable sets of E*\ Its evolution, qualitatively described 
in Section 1.9 of that Chapter, is represented in Fig.6, where some enlarge­
ments of the phase space as well as of the stable and unstable sets of £"* are 
shown. 

Figure 6: (a) a = 1.56855; C2 = 0.98: Enlargement of the basins of 
attraction in the proximity of E*. (b) a = 1.56855; C2 = 0.98: Sta­
ble (black) and unstable (gray) manifolds of E* at the first tangency. (c) 
a = 1.56855051; C2 = 0.98: Enlargement of the basins of attraction in 
the proximity of E*. (d) a = 1.56855051; C2 = 0.98: Stable (black) and 
unstable (gray) manifolds of E* at the second tangency. 
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The first homoclinic tangency is shown in Fig.6a,b, obtained at a = 1.56855: 
The branch ai ofW^ (-B*) converges to P* and it is completely contained 
in its basin of attraction; the same is true for a2 with respect to the fixed 
point Q*. The stable branches have a complex structure: The repelling 
closed curve F is replaced by a strange repellor, generated at the tangency 
and separating the basins of {P*, Q*} and F. After the transversal crossing 
of W^ (£•*) and W^ (E"*), at which more and more homoclinic points of 
E* are created, the second homoclinic tangency occurs at a = 1.5685501, 
as shown in Fig.6c,d, and closes the tangle. The homoclinic points of E* 
disappear as well as the chaotic repellor, leaving the two disjoint curves Tp 
and TQ as boundaries of the basins of attraction of P* and Q*, respectively. 
After the homoclinic tangle both the branches of W^ (£"*) converge to the 
attracting closed curve F and those of the stable set W^ {E*) come from the 
repelling closed curves Fp and TQ. 

A different illustration of this homoclinic tangle, occurring in a very nar­
row range of the parameter a, is proposed in Fig.7, where we show the as-
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Figure 7: The asymptotic behaviour of the unstable manifold of E* at 
(a) a = 1.56855; C2 = 0.98. (b) a = 1.5685503; C2 = 0.98. (c) 
Q; = 1.5685501;C2 = 0.98. 
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ymptotic behavior of the whole unstable set of the saddle E*. In Fig.7a, 
obtained at the same parameter value as Fig.6a corresponding to the first ho-
moclinic tangency, the points of W^ (E*) converge to the two equilibria, 
forming an eight-shaped structure; then, in fig.Vb the unstable set W^ {E*) 
enters the basin of attraction of the attracting closed curve T as well as that 
of the attracting set {P*, Q*}: The separator of the three basins of attraction 
is a chaotic repellor, associated with the infinitely many periodic points ex­
isting close to the homoclinic trajectories. As a is further increased, more 
and more points of W^ (£*) converge to T until at the second homoclinic 
tangency, shown in Fig.7c, no points of the unstable set converge to the two 
stable foci. 

As the parameter a further increases, the two repelling closed curves 
Tp and TQ become smaller and smaller, until a new bifurcation value a = 
OLN is reached at which a Neimark subcritical bifurcation occurs: The two 
repelling closed curves collapse in P* and Q* respectively and at a > â v 
the attracting closed curve T is the unique surviving attractor, since the two 
fixed points become unstable foci. 

8.4.2 Coexistence of Cyclical and Quasi-Cyclical Trajectories and 
Homoclinic Loop of a Saddle Cycle 

After the subcritical Neimark bifurcation of P* and Q*, the saddle £̂ * coex­
ists with two repelling foci, from which the stable set W^ (£"*) comes. The 
points of the unstable manifold W^ (E*) converges to the attracting closed 
curve F surrounding the three unstable fixed points. 

This situation persists until at a certain value of a, say asn, a saddle-
node bifurcation occurs, causing the appearance of two cycles of period 8, a 
saddle, S, and a stable node, C, which turns into a stable focus cycle imme­
diately after. The two cycles are located outside the attracting closed curve 
and, as a increases from asn^ a larger and larger portion of trajectories ex­
hibits period-8 oscillations, as shown in Fig. 8a, where the basins of attraction 
of the two attractors are represented in different gray tones. The points close 
to the exogenous equilibrium £̂ * still give rise to quasi-periodic fluctuations. 

The phase portrait shown in Fig. 8b is completely different: Quasi-
periodic and period-8 trajectories still coexist, but now the attracting closed 
curve r surrounds the stable focus cycle C and the majority of the trajec­
tories exhibit quasi-periodic motion. Moreover the long run behaviour of 
trajectories starting in the area close to E* is no longer predictable, since 
a small shock on them may have strong consequences given the many and 
many convolution of the separatrix of the two basins in this area. 
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Figure 8: (a) a = 1.7; C2 = 0.98: The attracting curve T coexists with a 
stable cycle C of period 8 and a saddle cycle S of the same period, (b) 
a — 1.745; C2 = 0.98: A new curve T surrounds the attracting period 8 
cycle. 
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The aim of this subsection is to explain the global mechanisms which cause 
this important modification in the basin structures, transforming an attract­
ing closed curve, coexisting with a stable cycle external to it, into a larger 
one, surrounding the stable cycle. As we shall see, the global bifurcation in­
volved in this transition is of the same type of those described in Section 1.8, 
involving the invariant manifolds of the saddle cycle 8. Moreover, despite 
the different dynamic situation described here, the bifurcation mechanisms 
are similar to the ones analyzed in the previous section. 

Let us start from Fig.8a, obtained at a = 1.7 > agn'- Two attrac-
tors exist, the closed curve F and a focus cycle C, surrounding the curve, 
while the two basins, B (C) and B (F), are separated by the stable mani­
fold W^ {S) = uji U UJ2 of the saddle cycle S. The branches of the un­
stable one W^ {S) reach the attracting closed curve (ai) and the stable fo­
cus cycle (a2)- As the parameter a is increased, the two branches cji and 
Qi start to oscillate until a homoclinic tangency occurs. More precisely, at 
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Figure 9: Heteroclinic tangle involving the inner branches of stable and un­
stable manifolds of the cycle S. (a) a = 1.7102384; C2 = 0.98: First homo-
clinic tangency. (b) a = 1.7102386; C2 = 0.98: Transversal crossing, (c) 
a = 1.7102387; C2 = 0.98: Second homoclinic tangency 
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a — 1.7102384 the stable branch a\^i of the periodic point Si has a tan­
gential contact with the unstable branch cji j of a different periodic point 
Sj (see Fig.9a) and this occurs cyclically for all the periodic points of the 
saddle S. This contact is the starting point of a heteroclinic tangle, which 
develops into a transversal crossing of the involved inner branches (Fig.9b) 
and closes at a = 1.7102387, when a second cyclical homoclinic tangency 
occurs (Fig.9c). Observe that at the end of the heteroclinic tangle, the two 
branches ai and cji have inverted they reciprocal position with respect to 
thatofFig.9a. 

Approaching the heteroclinic tangle, the curve F exhibits more and more 
oscillations, as in Fig. 10a obtained at the same parameter values of Fig.9a, 
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Figure 10: a = 1.7102384; C2 = 0.98. (a) Oscillations of the attracting 
closed curve T. (b-c) a = 1.7102386; C2 == 0.98: Two different trajectories 
with initial conditions (13.7,-0.7) and (13.5,-0.6) respectively. 
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before coming into resonance with the cycle, forming an attracting set with 
the saddle S and the focus cycle C, with C the attractor within it. Moreover 
during the tangle a chaotic repellor TZ is created in the area occupied by the 
transversal crossing of the two manifolds: The existence of TZ has important 
effects on the long run behaviour of the trajectories, as we can observe in 
Figs.lOb,c, obtained at the same value of Fig.9b. 

In such figures, two trajectories of the variable x are represented versus 
time and both converge to the cycle of period 8: In Fig. 10b only a few itera­
tions are needed to reach the period 8 oscillations whereas in Fig. 1 Oc a longer 
transient part exists (note that the first 320 iterations have been dropped in 
Fig. 10c). This difference in the transient part is due to the initial conditions: 
The one of Fig. 10c is taken in the area occupied by the chaotic repellor, 
and the existence of the infinitely many unstable cycle causes its particular 
behavior. 

The effects of the observed heteroclinic tangle are illustrated in Fig.l 1: 
The attracting closed curve F has disappeared, leaving the focus cycle C 
as unique attractor (Fig.l lb). More precisely, F has been replaced by the 
heteroclinic connection of the periodic points of the cycles, made up by the 
unstable manifold of the saddle S which reach the periodic points of the fo­
cus cycle (Fig.l la).With a similar mechanism the final situation of Fig.8b is 
obtained. Indeed, increasing a the two outer branches a2 and 002 approach 
each other, oscillating. This is the prelude to a new heteroclinic tangle, again 
occurring in a very small range of the parameter a\ The first tangential con­
tact between the unstable branch a2,i of the periodic point Si and the stable 
branch uj2j of a different periodic point Sj is followed by their transversal 
crossing and then by the homoclinic tangency occurring at the opposite side 
with respect to the previous one (as illustrated in Fig.l2a,b,c). A chaotic re­
pellor appears at the first homoclinic tangency, persists during the transversal 
crossing phase and disappears at the closure of the tangle: Consequently, the 
trajectories starting close to it have a longer transient part before converging 
to the period 8 cycle. But the main effect of this global bifurcation is the 
appearance of an attracting closed curve F, which replaces the heteroclinic 
connection between the periodic points of the cycles S and C. As soon as 
it has appeared, it exhibits many oscillations, as shown in Fig. 13 obtained 
at the same parameter value as in Fig. 12c, and surrounds the periodic points 
of the attracting cycle. As a increases, F becomes smoother and smoother 
reaching the shape of Fig.8b. 

In order to discuss the results of our numerical analysis carried out in the 
last two sections, let us first remark that the original Kaldor's (1940) busi-
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Figure 11: a = 1.72; C2 = 0.98: (a) Heteroclinic connection made up by the 
unstable manifold of the saddle cycle S. (b) The period 8 focus cycle C is 
the unique attractor. 
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ness cycle model - in spite of its simplicity and though it has been criticized 
on a number of grounds - is still present in modem treatments of business 
cycle theory and continues to stimulate pedagogical and methodological re­
search (see e.g. Gabisch & Lorenz (1989)); such research is mainly oriented 
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Figure 12: Heteroclinic tangle involving the outer branches of stable and 
unstable manifolds of the cycle S. (a) a = 1.74265991; C2 = 0.98: First 
homoclinic tangency. (b) a — 1.74266; C2 = 0.98: Transversal crossing, (c) 
a = 1.742660085; C2 = 0.98: Second homoclinic tangency 

to achieve a deeper understanding of the full range of dynamic outcomes 
compatible with the key qualitative assumptions of the model. Our contribu-
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tion belongs to this stream of research, and focuses on particular phase-space 
transitions that determine two characteristic dynamic scenarios: 

(i) the coexistence of two stable steady states and a stable closed curve, 
and the qualitative changes of their basins of attraction, in a regime of pa­
rameters where the exogenous, "normal" equilibrium is unstable (a saddle 
point); 

(ii) the change of size and location of an attracting invariant curve with 
respect to a coexisting stable periodic orbit, in a parameter range where the 
map admits three unstable equilibria. 
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Figure 13: a = 1.742660085; C2 
its appearance. 

0.98: The oscillations of the curve t at 

The main insight gained from our numerical and graphical investigation 
of such scenarios is that - though these phenomena look very different from 
each other at first sight - they are ultimately determined by the same kind of 
behavior of the stable and unstable set of the saddle point (in the first case), 
or of a saddle cycle (in the second case). Following the qualitative changes 
of stable and unstable manifolds closely, we have been able to detect numer-
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ically particular ranges of the parameter where transversal intersections and 
homoclinic tangles exist, which proves the existence of chaotic behavior, and 
explains the complex structures of the basins of attraction in those particular 
situations. We remark once again that very similar dynamic phenomena have 
been detected also in a quite different version of the Kaldor model [Agliari 
et al (2005b)], for plausible values of the parameters: This leads us to con­
jecture that such kinds of dynamic behavior might be ultimately related to 
the essential qualitative features of the original Kaldor model. 
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9 Expectations and the Multiplier-Accelerator 
Model 

Marji Lines and Frank Westerhoff 

9.1 Introduction 

In this paper we investigate how a simple expectations mechanism modi­
fies the basic dynamical structure of the multiplier-accelerator model due to 
Samuelson (1939). Consumption depends on the expected value of present 
income rather than lagged income. National income is determined as a non­
linear mix of extrapolative and reverting expectations formation rules (pro­
totypical predictors used in recent literature on financial markets). The total 
level of economic activity depends endogenously on the proportion of agents 
using the predictors. 

The very simplicity of Samuelson's descriptive macroeconomic model 
makes it an excellent candidate for studying the effects of introducing expec­
tations without changing the emphasis of the formalization. That is, agents' 
expectations are not part of an optimization problem and the resulting frame­
work remains in the class of descriptive models. (For bibliographical refer­
ences of past and recent extensions to Samuelson's model see Westerhoff 
(2005) and the bibliographies in other chapters of this volume.) 

The expectations hypotheses follow in the style of Kaldor. Some desta­
bilizing force exists for values near the equilibrium but the economy neither 
explodes nor contracts indefinitely due to a global stabilizing mechanism 
that is activated when the economy deviates too much from its equilibrium. 
These interacting forces permit a greater variety of attracting sets including 
point equilibria above and below the (unique) Samuelsonian equilibrium and 
closed curves on which lie both quasiperiodic and periodic cycles. More­
over, under realistic values for the multiplier and coefficient of acceleration, 
a larger area of the parameter space is characterized by stable limit sets and 
much of that is dominated by solutions with persistent fluctuations. 
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The remainder of the paper is organized as follows. Section 2 reconsiders 
Samuelson's business cycle model. In section 3, we discuss the hypothe­
ses introduced to describe expectations formation and aggregation rules. In 
section 4 we study the properties of the model using the local linear approx­
imation. In section 5 we use analysis and numerical simulations to study the 
global properties of the model. In section 6 conclusions are offered. 

9.2 The Multiplier and the Accelerator 

Samuelson's seminal model incorporates the Keynesian multiplier, a multi­
plicative factor that relates expenditures to national income and the accel­
erator principle whereby induced investment is proportional to increases in 
consumption. An increase in investment therefore leads to an increase in 
national income and consumption (via the multiplier effect) which in turn 
raises investment (via the accelerator process). This feedback mechanism 
repeats itself and may generate an oscillatory behavior of output. It may also 
lead to explosive oscillation, monotonic convergence to an equilibrium point 
or monotonic divergence, depending on the values of the marginal propen­
sity to consume and the acceleration coefficient (See Gandolfo 1996 for a 
complete treatment of the dynamics over parameter space). 

The assumptions are well-known. Consumption in period t depends on 
national income in period t — 1 

Ct = bYt-i 0 < 6 < 1 (1) 

where b is the propensity to consume out of previous period income. Invest­
ment is partly autonomous and independent of the business cycle, denoted 
la, and partly induced, proportional to changes in consumption with accel­
eration coefficient, k: 

It = Ia + k{Ct - Ct-i) fc > 0. (2) 

The equilibrium condition for a closed economy is 

Yt = Ct + It^ (3) 

Combining (1), (2) and (3), we obtain a second-order linear difference 
equation, in the income variable: 

y, = 4 + 6(1 + k)Yt-i - bkYt-2- (4) 
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That is, current national income depends on autonomous investment and on 
the output of the previous two periods. The fixed point of (4), the long-run 
equilibrium output, is determined as 

with 1/(1 — b) the multiplier. It follows from (1) and (2) that the other 
equilibrium values are C — bY and I = Ia.\X can be shown that stability of 
the fixed point requires 

6 < i . (6) 

It can also be shown that no improper oscillations occur and that the flutter 
boundary, between monotonic and oscillatory solutions, is 6 = 4fc/(l -h 
fc)^. With only two parameters the dynamics over parameter space are easily 
determined. Damped oscillations occur only in the area with b < 1/k and 
b < 4fc/(l H- fc)^. In that case temporary business cycles arise due to the 
interplay of the multiplier and the accelerator, increased investment increases 
output which, in turn, induces increased investment. 

A major criticism of linear business cycle theory is that changes in eco­
nomic activity either die out or explode (persistent cycles only occur for a 
nongeneric boundary case). In reaction to this deficiency the nonlinear the­
ory of business cycle has developed. In particular, in the seminal work of 
Hicks (1950) the evolution of an otherwise explosive output path was lim­
ited by proposing upper and lower bounds for investment, so-called ceilings 
and floors. These simple frameworks of Samuelson and Hicks are still used 
as workhorses to study new additional elements that may stimulate business 
cycles (see, besides the current monograph, Hommes 1995 and Puu, et al. 
2004). 

9.3 Expectations 

As argued by Simon (1955), economic agents are boundedly rational in the 
sense that they lack knowledge and computational power to derive fully opti­
mal actions. Instead, they tend to use simple heuristics which have proven to 
be useful in the past (Kahneman, Slovic and Tversky 1986). Survey studies 
reveal that agents typically use a mix of extrapolative and reverting expecta­
tion formation rules to forecast economic variables (Ito 1990, Takagi 1991). 
Similar results are observed in asset pricing experiments. For instance. Smith 
(1991) and Sonnemans et al. (2004) report that financial market participants 
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typically extrapolate past price trends or expect a reversion of the price to­
wards its long-run equilibrium value. Indeed, the dynamics of group expec­
tations have successfully been modeled for financial markets. Contributions 
by Day and Huang (1990), Kirman (1993), de Grauwe et al. (1993), Brock 
and Hommes (1998) or Lux and Marchesi (2000) demonstrate that interac­
tions between heterogeneous agents who rely on heuristic forecasting rules 
may cause complex financial market dynamics, as observed in actual mar­
kets. 

Our goal is to investigate the importance of expectations for the variabil­
ity of output. Our main modification of Samuleson's model is that the agents' 
consumption depends on their expected current income (and not on their 
past realized income). Note that Flieth and Foster (2002) and Hohnisch et 
al. (2005) model socioeconomic interactions between heterogeneous agents 
to explain the evolution of business confidence indicators. Both papers are 
able to replicate typical patterns in the German business-climate index (the 
so-called Ifo index), yet refrain from establishing a link between expecta­
tions and economic activity. We believe, however, that mass psychology, 
expressed via expectations and visible in business confidence indicators, is a 
major factor that may cause swings in national income. For example, new era 
thinking may lead to optimistic self-fulfilling prophecies (e.g. the New Econ­
omy hype) while general pessimism may cause economic slumps (Shiller 
2000). 

Then, with respect to Samuelson's hypothesis that consumption depends 
on last period's income (1), we assume that consumption depends on the 
expected value of current income, which is based on information available 
last period: 

Ct = bEt-i[Yt] (7) 

The aggregate expectation Et-i[Yt] is formed as a weighted average of ex-
trapolative (denoted 1) and reverting (denoted 2) expectations: 

Et-i[Yt] = wtEl,[Yt] + (1 - wt)El,[Yt] 0<w<l. (8) 

Expectations are formed with reference to a "long-run" equilibrium which 
is taken to be the fixed point of Samuelson's linear model, denoted in what 
follows ?is y = la/{1 — b). In the extrapolative expectation, or trend, for­
mation rule, agents either optimistically believe in a boom or pessimistically 
expect a downturn. Such expectations are formalized as 

El,[Yt] = Yt-i + Mi(yt-i -y) /̂ i > 0. (9) 
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If output is above (below) its long-run equilibrium value, y, people think 
that the economy is in a prosperous (depressed) state and thus predict that 
national income will remain high (low) (a similar assumption has been ap­
plied by Day and Huang 1990). 

Equilibrium-reverting expectations are formed as 

EliiYt] = Yt-i + ii2{y - Yt-i) 0 < /X2 < 1 (10) 

where /i2 captures the agents' expected adjustment speed of the output to­
wards its long-run equilibrium value. 

The more the economy deviates from y, the less weight the agents put 
on extrapolative expectations. Agents believe that extreme economic condi­
tions are not sustainable. Formally, the relative impact of the extrapolative 
rule depends on the deviation of income from equilibrium at the time that 
expectations are formed: 

Wt = ; -^ 7 > 0 (11) 

with 7 as a scale factor. The percentage gap is typically less than one which, 
when squared, results in a small number. Setting 7 > 1 increases the weight 
factor, resulting in a more realistic distribution between extrapolative and 
equilibrium-reverting expectations. (For example, if 7 = 10 and the per­
centage gap is 10%, the proportion of agents using E^ is 50%; the propor­
tion is 99% for 7 = 1.) Extrapolative and reverting expectations are linear 
functions of the previous level of national income, but the expectation oper­
ator, combining the heterogeneous expectations through a nonlinear weight­
ing function, is not. In Figure 1 wt and 1 — wt, the weights given to each 
type of expectation are plotted against national income (7 = 10, 6 = 0.8, 
y = 5000). Close to equilibrium the trend-following expectation dominates 
(and dXYt = y, Wt = 1), acting as a destabilizing force for any small de­
viation from the long-run equilibrium. Expectations are equally distributed 
(with 7 = 10) at a 10% gap between actual and long-run values of income. 
At further distances from y the reverting expectation dominates, acting as a 
global stabilizing force. 

Other weighting functions and other basic types of expectation forma­
tion rules can be found in, e.g.. Brock and Hommes (1997, 1998). The for­
mer paper explores the expectation formation of heterogeneous producers 
in cobweb markets while the latter paper investigates the selection of fore­
casting rules among financial market participants. However, the essential 
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idea is the same. For similar states of the current economy (market) agents 
have differing expectations about the future state, these expectations feed­
back through the economy (market), but the aggregate expected value is not 
necessarily equal to the (deterministic) value of that future state. It is also 
typically assumed that extremes will be considered unsustainable, providing 
a global mechanism for stability. This new approach to modeling how agents 
incorporate future uncertainty in their decision-making process breaks with 
both the rational expectations hypothesis and with earlier homogeneous, ag­
gregate expectation hypotheses that R.E. criticized. Of course, assumptions 
about agent's expectations must be coherent with the particular context, but 
we argue that for business cycle theory our approach may provide a reason­
able alternative. 
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Figure 1: Weights against national income: w extrapolative, 1 — w reverting. 

Substituting (2) and (7) into (3) we derive the expectations version of (4) 

as 
Yt = Ia + b{l + k)Et-i[Yt] - bkEt-2[Yt-i] (12) 

Then using (8)-(l 1) we arrive at a second-order nonlinear difference equation 
Yt = f{Yt-i,Yt-2)' For the analysis we introduce an auxiliary variable 
Zt = Yt-i, deriving a first-order system in {Yt, Zt) (see the Appendix for 
full system and Jacobian) 

Yt =Ia + b{l + k)Et-i[Yt]-bkEt-2[Zt] 
Zt =Yt-i 

(13) 
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with Jacobian matrix 

/ UC\ I uxdEt-ilYt] ^j dEt-2lZt] \ 

9.4 Local Dynamics 

In this section we consider fixed points and the conditions for which local 
stability is lost. It can be shown that the equilibrium value for Samuelson's 
multiplier-accelerator model is also an equilibrium for the modified model. 
At 3̂  the trend followers are predicting perfectly, wi = I and the Jacobian, 
calculated at that value, simplifies to: 

j^y^^^Kl + m^,,) -bkil + ,,)^ ^^^^ 

with trace trJ = 6(1 + fc)(l + /x̂ ) and determinant detj = 6fc(l + ^i) . 
We can use the stability conditions for a two-dimensional system to help 
understand how the equilibrium might lose its local stability: 

1 + tr J{y) + det J{y) > 0 (z) 
1 - tr J{y) + det J{y) > 0 {ii) 

1 - det J{y) > 0. (m) 

The first condition holds always and we should not expect to see flip 
bifurcations. The second condition and third conditions, which reduce to, 
respectively: 

b<-^— and b<—-^ (15) 

are not necessarily satisfied, leaving open the possibility of both fold and 
Neimark-Sacker bifurcations. The parameter assumptions are simply that 
fjii, k > 0 and the binding inequality is condition {ii) if k < 1, condition 
{Hi) if fc > 1. 

In Samuelson's linear model the stability conditions are satisfied always, 
except for the third which requires b < 1/k. In the linear case, of course, 
there is only one equilibrium set and it is a fixed point, so that when stability 
is lost the system itself is unstable. In the nonlinear case a fixed point may 
lose stability at the parameter value for which some other limit set becomes 
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an attractor or there may be co-existing attractors which are Hmit sets for 
different collections of initial conditions. In the case of the Neimark-Sacker 
bifurcation, when the third condition is broken, global stability may continue 
in the form of an attractor which is a sequence of points lying on a closed 
curve. If attracting (and we see below that they are), these sequences rep­
resent endogenous fluctuations which are a generic feature of the dynamics 
(rather than the particular case of constant amplitude oscillations in Samuel-
son's model). 

If the accelerator coefficient is less than unity, the breaking of the second 
condition leads to a pitchfork bifurcation, that is, as y loses stability 2 new 
(stable) fixed points appear. These are determined by returning to the second 
order difference equation (12) which, setting Yt-i — Zt — Y becomes 

y = 3̂  + ^ ( y - 3 ^ ) ( « ) ( / x i + M2)-M2) (16) 

with equilibrium weight 

w = y2^^2^Y-yy' 

Expanding and simplifying (16) gives 

72(6(/i2-l) + l) 

These two fixed points are complex-valued for 6 < 1/(1 + /^i) and become 
real and equal in value to y at the critical value b •= 1/(1 + /i^) . For 
b > 1/(1 + fXi) there are two positive, real equilibria determined by (17), 
one larger and one smaller than y, respectively Yi,Y2, each attracting over 
a given basin, a situation of bi-stability. With these basics in mind we now 
turn to a study of the global dynamics using a combination of analysis and 
numerical simulations. 

9.5 Global Dynamics 

Consider first a comparison of the dynamics over the parameter space (fc, 6). 
In Figure 2, left, Samuelson's linear model is characterized by a single fixed 
point, stable to the left of the stability frontier b = 1/fc, unstable to the 
right. At the boundary crossing the fixed point is a focus, adjacent to the left 
are damped oscillations (in gray), adjacent to the right explosive fluctuations 
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(in black). The existence of any kind of persistent fluctuations is guaran­
teed only for those combinations of parameter values that are on the stability 
frontier itself, that is for bk = 1. 

In Figure 2, right, we have the same parameter space for the expecta­
tions version of the multiplier-accelerator with standard constellation fi^ = 
^^ = 0.5, la = 1000, 7 = 10, {Yo,Zo) = (4000,4000) and infinity set 
at 10^ ,̂ transients at 5000 with maximal period 24 and precision epsilon set 
at 0.01. This and all following plots were produced with the open-source 
software iDMC - Copyright Marji Lines and Alfredo Medio, available at 
www.dss.uniud.it/nonlinear. 

5 0 1 2 3 ^ k 

Figure 2: Parameter space (fc, h): left, linear model; right, with expectations. 

The black area again represents the lack of any attracting finite limit set, 
and the gray area on the left again represents stable fixed points. The lighter 
area in the middle section is characterized by quasi-periodic or high-order 
periodic fluctuations, in white, and cycles of the given periods in grays. For 
both the original and the expectation models higher values of the multiplier 
and the accelerator lead to instability. An economy with high demand result­
ing from spending most of its income on consumption encourages entrepre­
neurs to invest in order to keep up the supply of these goods and services. 
As a consequence the economy heats up. The acceleration coefficient is a re­
action parameter, how strongly investment responds to changes in demand. 
It can also be interpreted as the capital-output ratio, how much new capital 
will be necessary to produce the increased output. When Samuelson was 



264 Marji Lines and Frank Westerhoff 

modeling the interaction between the multipher analysis and the principle of 
acceleration in the late thirties the propensity to consume was much lower 
(and not only due to the Great Depression but also to spending habits), as was 
the capital-output ratio. Consumption out of income in the United States to­
day has almost reached the upper bound of 6 = 1, creating growth not only 
in the US but in the economies that supply it with goods and services such 
as China and India. Of course there are other issues involved, but if these 
interactions are fundamental and their dynamics are well-approximated by 
the models, the sustainability of the current situation in the U.S. is doubtful. 

A noticeable difference in the model dynamics is that the area of attrac-
tors is much larger for the expectations version and that there is a significant 
area of attractors characterized by fluctuations (a pertinent issue for business 
cycle models). On the other hand, the area for which y is stable (below the 
second condition, the line b = 0.66, and to the left of the third condition, 
b = 0.66/kns) is smaller than that of Samuelson's model. In both models 
there is some trade-off between the accelerator coefficient and the propen­
sity to consume out of income for maintaining stability, and high values are 
de-stabilizing for both. The extreme simplicity of the dynamics in the linear 
version (3^ is stable or unstable) is replaced by more challenging dynamics, 
but y (through its stable and unstable manifolds) remains crucial to their 
explanation. 

For b < 0.66 stability of 3̂  is lost through a Neimark-Sacker bifurcation. 
Fixing b a constant and increasing k so as to cross through the curve of 
the stability frontier at bns = 0,66/k, we have y changing from a stable 
focus to an unstable focus as, simultaneously, an invariant closed curve is 
created (denoted, generically, as T). As k is further increased the periodic or 
quasiperiodic limit sets on T continue to be attracting over a large interval 
until the stability frontier for F is reached, after which no attractors exist. 

For b e (0.66,1), stability of 3̂  is lost through a pitchfork bifurcation 
at the critical value bp = 0.66 which has been traced in Figure 2, right to 
separate the subspace characterized by stable fixed point 3̂  from that charac­
terized by stable fixed points Yi, ̂ 2- The bifurcation scenario moving right 
from the upper sub-space is more relevant for economics as a typical range 
for the propensity to consume out of expected income is 6 G (0.75,1). For 
small k there are the two co-existing fixed points which are attractors, each 
with its own basin of attraction, B{Yi), B{Y2) (that is, initial conditions de­
termine on which point the trajectory comes to rest). These lose stability 
as k is increased and a region of periodic or quasiperiodic attractors gives 
way to no attractors at all for larger values of the acceleration coefficient. 
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Using the standard constellation the (fc, b) combination at which Yi and 
Y2 lose stability due to a Neimark- Sacker bifurcation can be calculated as 
fc(1.5?> — 3 + f ) = 1. These critical values are represented in Figure 2, right, 
by the curve extending from (1,0.667) to (2,1). 

Let 6 = 0.8. Given the standard parameter values, local properties of the 
fixed points can be calculated. First, 3̂  is a saddle point and remains so for at 
least up to fc = 5, let Ai > 1 and A2 < 1. The two equilibria of the pitchfork 
bifurcation also exist and we have, increasing from k = 0: Yi,Y2 are stable 
nodes, then (near k = 0.3) they become stable foci. These fixed points lose 
stability through a Neimark-Sacker bifurcation at fc = 1/6, $ ^ 1.43. 
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Figure 3: Above, bifurcation diagram; below, Lyapunov exponents. 

Numerical simulations of the dynamics of the economy, with these pa­
rameter values, are provided in Figure 3; the single parameter bifurcation 
diagram for k G (1,2.6), above; the Lyapunov exponents over the same 
interval, below. Both figures suggest that there are three basic types of long-
run dynamics and that for trajectories beginning at (4000, 4000) the changes 
occur at around fc = 1.26 and fc = 2.13. For small values of the acceleration 
coefficient the economy experiences bi-stability. The weight in the economy-
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wide expectation operator is not a function of k and, for the given parameter 
values, 75% expect the trend to continue while 25% expect reversion. The 
economy moves toward one of the two fixed points, far from the Samuel-
sonian equilibria, and switching between high and low equilibrium values 
increases with k. Over the next interval, approximately k e (1.26,2.13) the 
economy is characterized by persistent fluctuations over a range of values 
symmetrical around y. For some values the recurrent behavior seems cycli­
cal (cycles of 10 are evident), but for most the motion is quasiperiodic or 
periodic of order greater than 24. The last type of behavior is found in the 
tentacles of the octopus, period-8 cycles that cover a wider span of national 
income than the invariant cycle that preceded it. The periodic cycle loses 
stability at around fc = 2.55 after which no attractor exists. 

There are 3 puzzles to explain in this bifurcation scenario: the increased 
switching between Yi and Y2; the attracting curve appearing before the criti­
cal value; the period-8 cycle which does not seem to derive from frequency-
locking. 

The switching behavior of the economy occurs because of the pitchfork 
bifurcation and bi-stability that exists for k small. The switching between 
long-run behavior increases because as k changes the separatrix, the bound­
ary separating basins of attraction, becomes increasingly entwined. This 
phenomena can be seen in Figure 4 which presents the basins of attraction 
for the fixed points in the state space Y e (4000,6000) under the standard 
constellation. 

Moving clockwise from upper-left k increases through 0.2 (Yi.Yz stable 
nodes), 0.9,1.1, 1.255 (Yi, Y2 stable foci). Recall that initial conditions used 
in Figure 2 are (4000, 4000), the lower-left hand comer of the basin plots. 
The other dynamical puzzles are not so clear. In fact, on the basis of local 
evidence and the single and double parameter bifurcation diagrams alone, 
we cannot explain the large curve F appearing at a value of k less than the 
critical value of the Neimark-Sacker bifurcation of Yi, Y2 and the origin of 
the period-8 cycle, lying as it does outside the bounds of the invariant circle. 
The global bifurcation scenarios that answer these questions are described 
by Agliari, Bischi and Gardini in Chapter 1, to which we refer the reader 
(see, also, the business cycle application by Agliari and Dieci in Chapter 8). 
We consider each of these puzzles in turn. 

From foci to invariant curve. An important point to note is that, although 
over the interval of interest the Samuelsonian fixed point has already lost 
local stability through a pitchfork bifurcation, the saddle point y is still a 
significant factor in the global dynamics through its stable and unstable man-



9 Expectations and the Multiplier-Accelerator Model 267 

ifolds. In fact, it is the stable manifold w^{y) (associated with A2) that plays 
the role of separatrix for the basins of attraction of the stable foci Yi^Yz. 
The unstable manifold w'^{y) (associated with Ai) has two branches, each 
exiting y and connecting to either Yi or Y2 until the basins become disjoint. 

Figure 4: Basins of attraction in state space as k increases. 

Another point is that when there are co-existing attractors and global 
changes in the dynamics, bifurcation diagrams calculated on the basis of 
a single initial condition cannot tell the whole story. In Figure 5 we use 
a series of simulations of the state space to help describe what is happen­
ing over the interval k e (1.25,1.43), moving clockwise as k increases, 
k = 1.25,1.27,1.35,1.42. Again both axes are Y e (4000,6000), symmet­
ric around y — 5000, and the initial conditions used in Figure 3 simulations 
are in the lower axes' intersection. In the upper-left figure the separatrix 
w^{y) separates the state space into basins of attraction for Yi^Yz. The 
convolutions of the stable manifold form a ring of entwined basins around 
the fixed points where, increasing fc, an attracting invariant closed curve ap-
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pears. At the creation of the attracting curve, call it T ,̂ a second curve, Tu, 
also appears which is repelling. Tu belongs to the area bounded by Fg. The 
latter forms the separatrix between collections of initial conditions with tra-
jectories tending to one or other of the stable foci and initial conditions with 
trajectories tending to the attracting F. As k is further increased the radius 
of Fs increases while that of F̂ ^ decreases and the basins ofYi,Y2 contract. 
Between upper and lower right the basins become disjoint through a homo-
clinic bifurcation. Finally, the subcritical Neimark-Sacker bifurcation for Yi, 
Y2 occurs for a value of k just beyond that in Figure 5, lower left, and the 
basins disappear altogether. 

Figure 5: Basins from upper-left, clockwise: k = 1.244,1.27,1.35,1.42. 

There are a number of global bifurcations involved in this interval. First, 
and most mysterious, is the creation of the attractor F5, which comes to 
co-exist with the stable foci, and the separatrix F^ defining its basin of at­
traction. The likely sequence leading to the formation of F5 is that proposed 
in Chapter 1, Section 7 which we summarize as follows. In the vicinity of 
the tightly woven basins, where the stable manifold is coiled like yam on 
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a spindle, at a certain parameter value (in this case around k = 1.259) a 
saddle-node bifurcation leads to a saddle cycle of high period along with a 
node cycle of the same period. The periodic points of the node immediately 
become repelling foci. In quick succession, over a narrow interval of fc, we 
have the following changes. The periodic points are joined through a saddle 
connection of the outwards branches of stable manifolds of point i and un­
stable manifolds of point j forming an unstable saddle-focus connection Tu 
surrounded by an attracting invariant curve Tg. Tu is destroyed as a second 
heteroclinic loop forms from the connection of the inward stable branches of 
point j and the inward unstable branches of point i and this unstable saddle-
focus connection becomes Tu, the separatrix in Figure 5. 

All initial conditions outside of Tu are attracted to the invariant curve and 
any economy beginning from these values (or after being disturbed to them) 
is destined to a recurrent fluctuation, even though there are three equilibria 
within the closed curve, two of which are stable. Only trajectories with initial 
conditions on the inside of T^, a small area of the state space, tend to Yi or 
Y2 with damped oscillations. Looking back at Figure 3 it can be observed 
that at this bifurcation the Lyapunov exponents separate, the largest at 0, 
representing motion on the invariant curve, the other negative, representing 
the attracting property of the curve. 
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Figure 6: Lyapunov exponents: left, k G (1.258,1.2595); right, k G 
(2.15,2.156). 

In Figure 6, left k G (1.258,1.2595), the exponents are calculated over 
500 iterations. There seems to be some evidence of chaotic transients, as we 
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would expect for the saddle connection, but these disappear before reaching 
5000 iterations (the time range used in Figure 2). 

The next change occurs between upper right and lower right, in which 
a homoclinic bifurcation of y gives rise to a double homoclinic loop and 
Tu breaks into two repelling curves forming the disjoint basin boundaries 
B{Yi), B{Y2)- In this bifurcation, over a narrow interval of parameter values 
a homoclinic tangency (in which w'^{y) comes to touch w^{y)) is followed 
by a transversal crossing of the manifolds and a second homoclinic tangency 
iw'^{y) is tangent on the opposite side of w^{y)). Recall that the stable 
manifold is the separatrix for the basins ofYi and Y2. The unstable mani­
fold branches of w'^{y) are provided in Figure 7 for the standard parameter 
constellation and k = 1.289, left; k = 1.29, right. Between these values 
w'^{y) becomes tangent, then crosses, and becomes tangent again to w^{y). 
After the homoclinic bifurcation, trajectories with initial conditions close to 
y converge to Tg rather than Yi or Y2. That is, economies starting close to 
the Samuelsonian equilibrium move away and fluctuate around it. 

Figure 7: Unstable manifold of Y: left, k = 1.289; right, k = 1.29. 

Finally, the two loops of F̂ ^ shrink around Yi and Y2 as k is increased 
until, at fc = 1.429 (just beyond the value used in Figure 5, lower left), the 
fixed points lose stability through subcritical Neimark-Sacker bifiircations as 
the modulus of the complex, conjugate eigenvalues reaches one. From this 
value until just before fc = 2.13 all attractors lie on the increasing amplitude 
invariant curve, F^, to which all initial conditions are attracted. 

From invariant curve to period-8 cycle. The last type of periodic behavior 
becomes visible at around k = 2.13. We describe the scenario with reference 
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to Figure 8, where the basins of attraction are simulated as k increases, start­
ing upper-left and moving clockwise: k = 2.128,2.13,2.15,2.17. The state 
space has been enlarged with respect to previous figures to y G (0,10000), 
as the invariant curve has blown up considerably. The initial conditions for 
Figure 2 are slightly southwest of center. A saddle-node bifurcation takes 
place between k = 2.128 and k = 2.13. In the upper-left there is still 
the single attracting invariant curve on which all trajectories eventually lie. 
After the bifurcation, upper-right, Tg is still attracting for all initial condi­
tions within in it, but most others are attracted to a period-8 cycle which has 
appeared around the invariant circle. The basin pieces for the cycle B{C) 
expand, the basin B{Ts) shrinks until, by fc = 2.17, the invariant curve has 
disappeared and all further attractors are periodic. For the propensity to con­
sume out of expected income at 6 = 0.8 the last attractor, a period-8 cycle, 
becomes unstable around k = 2.53. 

The invariant curve F^ is destroyed and the aperiodic fluctuations disap­
pear through the heteroclinic loop sequence described earlier. Starting from 
coexistence in upper-right, the periodic points and associated saddle points 
are very near to each other and lie on the boundaries of the basin of attrac­
tion for the focus cycle B{C). The branches of the stable manifolds of the 
saddle cycle serve as separatrix between B{C) and B{Ts). The outer branch 
of the unstable manifold of the saddle leads to the focus cycle, the inner 
branch leads to the invariant curve. As k is increased, the inner unstable 
branch of the saddle point i becomes tangential to the inner stable branch 
of nearby saddle point j , and this happens all around the cycle. This hete­
roclinic tangency starts a tangle, followed by a transversal crossing of these 
branches and another heteroclinic tangency. Transversal crossings are usu­
ally associated with chaotic repellers and long chaotic transients. A hint of 
this can be seen in Figure 3 as there is a slight rise in the Lyapunov charac­
teristic exponent near the bifurcation interval. There are clearly chaotic tran­
sients evident in Figure 6, right, which are calculated over 5000 iterations 
and k e (2.15,2.156). At the end of the tangle the branches are switched 
in position. The unstable branches of the saddle point i tend to the nearby 
stable foci (to the right and left, h and j) forming a heteroclinic saddle-focus 
connection that leaves no initial condition leading to F^. 

For 6 = 0.8 this is the end of the story. Had we fixed the propensity 
to consume at some other level, slightly above or below for example (refer 
again, to Figure 2, right), the sequence would have continued with another 
heteroclinic saddle-focus connection forming from the outer branches of the 
saddle points. This connection would be an invariant closed curve, envelop-
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ing and destroying the stable focus cycle. Still higher values of 6 would have 
avoided the period-8 cycle altogether and ended with the first invariant curve 
becoming unstable. 

k=2.17 k=2.15 

Figure 8: Basins from upper-left, clockwise: k = 2.128,2.13,2.15,2.17. 

9.6 Conclusions 

Samuelson's linear multiplier-accelerator model is a classic example of a 
business cycle model based on the combined effects of the multiplier and 
accelerator principles. The equations are simple and the linear dynamics are 
completely understood. It is interesting to see how these dynamics change 
under a simple alteration to the consumption hypothesis: expenditures are a 
function of expected income rather than realized last period income and there 
are two types of expectations (each a linear function of last period income). 
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The aggregate expected income is a nonlinear combination of extrapolative 
and reverting expectation rules. The equilibrium of Samuelson's model is 
also a fixed point of the extended model, but other limit sets exist. A com­
parison of the dynamics of the linear multiplier-accelerator model and the 
nonlinear expectations-multiplier-accelerator model brings to light essential 
differences. 

As regards the equilibrium of Samuelson's model, the stability condi­
tions on y are more restrictive in the nonlinear model. However, with non­
linear expectations, local stability of a fixed point may be lost while global 
stability continues in the form of: convergence to either of 2, co-existing 
stable fixed points; a periodic or quasiperiodic sequence of points lying on a 
closed curve. 

In fact, over the parameter space {k,b) the nonlinear model has a much 
larger area characterized by attractors, under reasonable values for the extra 
parameters and persistent oscillations are a generic possibility in the non­
linear model. This characteristic is of special importance given that the phe­
nomenon under study is the business cycle. Moreover this was accomplished 
by allowing consumption to depend on expectations and expectations to be 
heterogeneous, that is, by creating a more realistic economic context. 

Appendix 

Substituting the expectations formation hypotheses (9) and (10), the expec­
tations weight hypothesis (11) into the aggregate expectations operator (8) 
the complete system (13) is 

Yt - / a + 6(l + fc) 
l-^7^(^H^) 

(y,_i + /xi(y,_i-3^))+ 

+ 1 -

-bk 

+ 1 -
1+72 ( 

Zt =Yt-t-i 
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The Jacobian matrix calculated in either of the fixed points Ŷ , i = 1,2, is 

6(l + fc)$ -6fc$ 

(3;2 + ^2(f._3;)2)2 -^3;2+^2(y._y)2+ /^2 
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10 Tloors' and/or ^Ceilings' and the 
Persistence of Business Cycles 

Serena Sordi 

10.1 Introduction 

In chapters 3,6,7 and 12 of this book and in a number of other recent contri­
butions (e.g. Gallegati et al 2003) the dynamics of Hicks' (1950) discrete-
time multiplier-accelerator model has been analysed in depth and the role 
played by 'floors' and/or 'ceilings' clarified. In this chapter we intend to 
tackle the same problem with reference to models formulated in continuos-
time, in particular Goodwin's (1951) model of the interaction between the 
dynamic multiplier and the nonlinear accelerator. Of course, the choice of 
this model is not casual; rather, it is dictated by a number of factors. First, 
although Goodwin's article was published in January 1951, in the first issue 
of volume 19 of Econometrica, it was certainly already in 'incubation' and 
its main idea 'in the air' some years earlier. This is testified to by the fact that 
the paper (with the provisional title "The business cycle as a self-sustaining 
oscillation") had already been presented by Goodwin at the American Win­
ter Meeting of the Econometric Society held in Cleveland, Ohio on 27-30 
December 1948 (for a summary, see Goodwin 1949). Moreover, from what 
we read in a footnote contained in the second page of the published version 
of the paper, we can infer that Goodwin became aware of Hicks' contribu­
tion only at the end of his research on the topic, when he was making the 
final revision of his paper. In short, we can consider it as contemporaneous, 
if not antecedent, to Hicks' contribution. The second reason for our choice is 
that, at the same time as Duesenberry (1950), Goodwin (1950) also promptly 
wrote an important and well known review of Hicks' book. In it, as in Due­
senberry's review, it is clearly stated and explained that "either the 'ceiling' 
or the 'floor' will suffice" (Goodwin 1950, p. 319) in order to maintain and 
perpetuate the cycle. The final reason for our choice is the fact that in the lit-
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erature (e.g., Le Corbeiller 1958, 1960, de Figueiredo 1958, Sasakura 1996, 
Velupillai 1990, 1991, 1998, 2004), when reference is made to the 'Good­
win oscillator' (or 'oscillator with a Goodwin characteristic' or 'two-stroke 
oscillator' or 'one-sided oscillator' or 'two-straight-line oscillator') what is 
meant is the discovery by Goodwin of an oscillator capable of generating 
persistent fluctuations with only one barrier. 

The analysis that follows is an attempt to clarify some of the issues raised 
in this literature. In order to prepare the ground for this, the next section is 
devoted to a concise presentation of the model. 

10.2 The Multiplier-Nonlinear Accelerator Interaction 

The final equation of Goodwin's (1951) model is the following second order 
differential equation with a forcing term: 

eey + {[e^{l-a)9]y-ct>{y)} + {l-a)y = 0A{t + e) (1) 

where y is income, cj) {y) induced investment, OA (•) the sum of the au­
tonomous components of consumption /? (•) and investment / (•), 0 < a < 1 
the marginal propensity to consume, e,6 > 0 the time-lag of the dynamic 
multiplier and the time-lag between investment decisions and the resulting 
outlays respectively and where y = dy/dt, y = d^y/dt^. 

Goodwin arrives at equation (1) by means of a 'step by step' procedure 
that has the purpose of removing one by one the unrealistic aspects of the 
simple multiplier and accelerator principle. Leaving out the first step, which 
leads to a rather crude model in which there is either investment at the max­
imum rate allowed by the existing productive capacity (fc* > 0) or disin­
vestment at the maximum rate allowed by not replacing capital goods which 
are being scrapped for depreciation (fc** < 0),̂  such a procedure can be 
described as follows. 

First, the instantaneous multiplier is replaced by the dynamic multiplier 
(Goodwin 1951, p. 9):^ 

y = c+k-€y = /3{t) + ay + k-€y (2) 

where c = /3 {t) -\- ay is consumption, k the capital stock and k = dk/dt, 
net investment. 

^ This is the only version of the model that is usually considered in textbooks. See, for 
example, Gandolfo (1997, pp. 464-465) and Gabisch and Lorenz (1989, pp. 118-122). 

^See also Goodwin (1948), where this continuous-time formulation of the dynamic mul­
tiplier was first introduced. 
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Second, net investment is assumed to consist of an autonomous component 
I (t) and an induced component cf) {y): 

k = l{t) + 4>{y) (3) 

The latter, in its turn, is assumed to be determined by the nonlinear ac­
celerator, such that the simple acceleration principle (with an acceleration 
coefficient equal Xov > Q) holds only over some middle range but passes to 
complete inflexibility at either extremity fc* and fc**. 

Fig.l illustrates the case considered by Goodwin (1951, p. 7), namely, 
the case of an asymmetric nonlinear accelerator with |A:*| > |A:**|. 

Figure 1: The nonlinear asymmetric accelerator with \k*\ > \k* 

As shown in the figure, (j) (y) is well approximated by the following 
piecewise linear investment function: 

fc* if y > k*/v 
^?wL{y) = { ^y ifk^'Vy <y< k*/v 

A:** if y < k**/v 
(4) 

that, for simplicity, is used in all the simulations that follow. 
Finally, the time-lag 9 between decisions to invest and the correspond­

ing outlays is taken into account (Goodwin 1951, pp. 11-12), such that (3) 
becomes: 
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k{t) = l{t) + <p{yit-9)) (5) 

Introducing (5) into (2) and rearranging, we obtain: 

ey{t-he) + {l-a)y{t + e)-ct>{y{t))^0A{t + 9) 

from which, expanding the two leading terms y {t-{-9) and y{t-\- 9) in a 
Taylor series and dropping all but the first two terms in each, (1) is readily 
obtained. 

It is not too difficult to understand that the whole 'step by step' proce­
dure, including the final approximation, is simply tantamount to assuming 
that (2) holds and that induced investment adjusts to its desired level, given 
by the nonlinear accelerator, with a time-lag of length equal to 9: 

k-l(t) = ct>{y)-9-\k-l(t) (6) 

Combining (6) in (2), we get: 

e9y + {[e^{l-a)9]y-cj> {y)} ^ (I - a)y ^ U--^ l\ OA [t) (7) 

that, as is easy to check, is nothing other than the original final equation (1) 
of Goodwin's model in the case in which the expansion in Taylor series and 
approximation is applied also to the leading term OA {t-{- 9). 

The subsequent analysis in Goodwin's article is based on the simplifying 
assumption that all autonomous expenditures are constant, so that̂  

OA {t) = 0% Vt 

Thus, equation (7), using the new variable z — y — 0\/ (1 — a), can be 
written in terms of deviations from equilibrium as: 

e9z + {[5 + (1 - a) 6*] i - (/) (i)} -f- (1 - a) ^ - 0 

or, choosing the time-unit so as to have 9=1: 

Z+-[{6 + s)z-(l> (i)] + -Z=:0 (8) 

where 0 < 5 = 1 — a < 1 is the marginal propensity to save. 

Clearly, in this case equations (1) and (7) are identical. 
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Equation (8) is a generalisation of a well known differential equation which, 
in physical applications, goes under the name of Lord Raileigh equation (see, 
for example, Le Corbeiller 1936, 1960). Using the terminology introduced 
by Le Corbeiller (1960), given any variable x, a Lord Raileigh-Type (LRT), 
is a differential equation of the type: 

X + F (x) + X == 0 (9) 

where the characteristic function (or, 'characteristic') F (x) is such that (9) 
has a unique periodic solution (limit cycle). Thus, equation (8) - when v > 
e + s and, as a consequence, the origin is locally unstable - is a LRT equation 
with characteristic equal to:^ 

F{z) = -^[cl>{z)-{6 + s)z] 

We then know (see Appendix 1) that, for given e and s, (8) is either a 
so-called two-stroke or 2i four-stroke oscillator, depending on the degree of 
asymmetry of the investment function. 

To appreciate fully and clarify the meaning of this, it is useful first to 
consider the case of a symmetric investment function, such that | fc* | = | fc** |. 
As shown in Fig.2(/0, in this case the model generates a symmetric limit 
cycle. Using the analogy with a physical system (see Le Corbeiller 1936 and 
Appendix 1 below), we can then describe it by saying that, over a full cycle, 
the total energy stored in the system increases along the arcs 2-3 and 4-1 and 
decreases along the arcs 1-2 and 3-4: this is exactly what is meant by the 
expression '/owr-stroke oscillator'. 

This case, however, does not appear to be worth considering any further 
given that it implies a very unrealistic cycle such that, in an oscillation from 
peak to peak, the recession and the expansion are specularly identical and 
exactly of the same length (see Fig.2(z//)). Thus, it misses one of the main 
advantages of nonlinear modelling listed by Goodwin in his path-breaking 

"̂ Strictly speaking, (8) becomes a LRT equation only after it has been reduced to a dimen-
sionless form (see Goodwin 1951, pp. 12-13). To avoid this complication, for illustrative 
purposes only, we assume that s = e in all simulations that follow. This assumption is un­
necessary for the generation of the limit cycle, as long 2iSs-\-e <v. However, as we will see, 
it has the advantage of making straightforward the interpretation of the condition for a limit 
cycle in terms of exchanges of energy. 
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contribution, namely the capability of making "the depression as different 
from the boom as we wish" (Goodwin 1951, p. 4).^ 

To make sure that the model has this capability, we need an asymmetric 
accelerator such as, for example, the one drawn by Goodwin in his paper 
and that (choosing fc* and fc** arbitrarily such that |fc*| > \k**) we have 
reproduced in Fig.l above. Leaving unchanged all the remaining parameters 
we used to generate the symmetric cycle of Fig.2, it is not too difficult to 
understand what are the consequences of this change. 

10 0 10 20 

{iu) 

Figure 2: The Goodwin symmetric (four-stroke) oscillator: (i) the charac­
teristic function, (ii) the limit cycle in the phase plane and (Hi) the periodic 
solution for z (t) (e = 0.4, s = 0.4, v = 2,k* = 6, F* = - 6 / 

As shown in Fig.3, the symmetric oscillator of Fig.2 becomes asymmet­
ric and such that, over a cycle from peak to peak, the positive deviations of 

If, going on with the quotation, we accept Goodwin's view that such a capability is "one 
way of assessing the degree of nonlinearity" of a model, we can conclude that the model with 
a symmetric nonlinear accelerator has the lowest possible degree of nonlinearity. 
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national income from its equilibrium level are much larger than the negative 
ones. Moreover, the expansion is a smaller fraction of the period than the 
recession is. 

This is due to the fact that, as shown in Fig.3(0, the 'ceiling' to invest­
ment spending is much less restrictive than the 'floor'. It can even happen, 
as with the values for k* and fc** we have used in the simulation, that the 
'ceiling' never becomes effective over the cycle (see Fig.3(/z)). In this case, 
the final dynamic equation of the model is said to be a two-stroke oscillator, 
namely, an oscillator such that the total energy stored in the system varies 
from a maximum to a minimum value (along the arc 1-2) and back again 
(along the arc 2-1) only once per cycle.^ 

(/) 

fi->c 

•iMs)[^^jM^y^] 

_ — / / / 
/ / 

u / i/ -
/ / -

, / / • 

tr)z 

Kiii) 

Figure 3: The Goodwin asymmetric (two-stroke) oscillator with |A:*| > |fc* 
(e = 0.4, s = OA,v = 2, fc* = 9, A:** = - 3 / 

^The transition from the one to the other type of oscillator as one of the parameters is 
varied is discussed in Appendix 1 where, for illustrative purposes, following Le Corbeiller 
(1960) and de Figueiredo (1958), a LRT equation with a cubic characteristic is considered. 
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For the sake of completeness, it should be noted that the result is exactly 
the opposite when we take k* ^ fc** such that \k* \ < \k**\. As shown 
in Fig.4, in this case the final dynamic equation of the model is still a two-
stroke oscillator, but now such that, over the stable limit cycle, the negative 
deviations from equilibrium dominate the positive ones. Moreover, it can 
happen, as in the case shown in the figure, that the 'floor' - rather than the 
'ceiling' - never becomes effective over a cycle. 

10 20 

Figure 4: The Goodwin asymmetric (two-stroke) oscillator with |fc*| < |fc* 
(e = 0.4, s = OA,v = 2, fc* = 3, A:** = -9). 

In summary, we have confirmation of the claim made by both Goodwin 
(1950) and Duesenberry (1950) in their reviews of Hicks' (1950) book on the 
trade cycle, that either the 'ceiling' or the 'floor' may suffice to perpetuate 
the cycle. 

Under the qualifications which will be given in the next section (see also 
Appendix 2), the two fiinctions F{z) pictured in Figs.3(z) and 4(z) are exam­
ples of the so-called 'Goodwin characteristic'. 
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10.3 The 'Goodwin Characteristic^ and the Persistence of the 
Cycle 

The analysis we have developed in the previous section allows us to clarify 
some issues raised in the recent literature on the topic. To do so, a good start­
ing point is the recent contribution by Sasakura (1996), where the existence 
of a unique stable limit cycle in Goodwin's model (for the general case of 
asymmetric nonlinearity of the investment function) is rigorously proved. In 
particular, it is interesting that, in a footnote at the very end of his paper - as 
if it were a secondary aspect (but it is not!) - Sasakura (1996, p. 1171) notes 
that the limit cycle in Goodwin's model is a two-stroke oscillator such that: 

... it is the floor of investment that is essential to the persis­
tence of business cycles. Goodwin (1982, pp. viii-ix) attaches 
importance to the ceiling, but his model works as an endogenous 
business cycle model without it (the Goodwin characteristic!) 

Now, as we have seen, it is certainly true that, when \k*\ > |fc**|, de­
pending on the relative values of |fc* | and |fc** |, it may happen that the model 
works as an endogenous business cycle model without the 'ceiling'. How­
ever, on the basis of the analysis we have developed in the previous section, 
we know that this, as such, it is not an intrinsic feature of Goodwin's model. 
As we have shown, when |fc*| < |fc** |, exactly the opposite may happen, i.e., 
the model may endogenously generate a persistent cycle without the 'floor'. 
Thus, a more appropriate conclusion is to say that, although in his 1951 paper 
Goodwin considered the case in which |A:* | > |fc** |, it is the opposite case, in 
which |fc*| < |fc**|, that is closer to the view expressed by Goodwin (1982) 
and later fully worked out by him in the first part - on "Macrodynamics" -
of Goodwin and Punzo (1987). 

The fact is that, if we try to reconstruct the 'genesis' of the 'Goodwin 
characteristic',^ we are in a position to arrive at an even more stunning con­
clusion. 

Thanks to Le Corbeiller's (1958) reconstruction, we know that all the 
debate about the distinction between two- and four-stroke oscillators (and the 
related concept of the 'Goodwin characteristic') started in December 1950 
or thereabouts, i.e., just a couple of weeks before Goodwin's (1951) paper 
(with a 'floor* to investment more restrictive than the 'ceiling') was actually 

^Some useful information in this regard is contained in various contributions by Velupillai 
(e.g., 1990, 1991, 1998 and 2004). 
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published. All started when Goodwin, at that time still at Harvard University, 
went to see Le Corbeiller in his office "in great elation" and showed him that 
an equation such as (9) with a characteristic F (x) made up of two straight 
lines could have a periodic solution. That a characteristic of that type could 
generate a limit cycle was thought to be impossible at that time and this is 
the reason why Le Corbeiller named this kind of characteristic the 'Goodwin 
characteristic'. By 1960, thanks to de Figueiredo's Ph.D. thesis, discussed at 
Harvard in 1958, and to Le Corbeiller's article on "Two-Stroke Oscillators", 
the theory of this new type of oscillator had been fully developed. 

It is not too difficult to understand how the multiplier-nonlinear accel­
erator interaction we have discussed in the previous section can originate a 
'Goodwin characteristic' as rigorously defined in Le Corbeiller (1960). To 
do so, we must again consider separately the two basically different cases 
that may arise in the model, according to whether the 'ceiling' is more re­
strictive of the 'floor' or viceversa. 

it) 

e 

-

• ^^^f^p 

l^m 

-

Figure 5: Thepiecewise linear accelerator (i) with only the 'ceiling' and (ii) 
with only the 'floor \ 

k!Sy we have seen in the previous section, when the 'floor' is sufficiently 
less restrictive than the 'ceiling', it may happen that the former does not play 
any role in the generation of the stable limit cycle. When this happens, we 
can safely disregarded the 'floor' altogether and assume that the piecewise 
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linear investment function is such that the linear accelerator always holds 
until the 'ceiling' is reached, after which investment remains at the maximum 
rate allowed by the existing productive capacity (see Fig. 5(z)); analytically: 

0PWL {y) ^ <?̂ pwLc (y) 
vy fory < k*/v 
fc* fory > k*/v 

(10) 

Introducing (10) into (9), we get a LRT equation with the following char­
acteristic (see Fig.6(0): 

F{z)^ 
V — {e -\- s)] z for i < k*/v 

k* - {e -\- s) z\ for i > fc*/t; (11) 

which is indeed a 'Goodwin characteristic', very similar to the one drawn 
by hand by Le Corbeiller in his 1958 letter to Goodwin with the intention 
to reproduce the one drawn by Goodwin at the blackboard during their 1950 
meeting. 

Figure 6: The Goodwin piecewise linear (two-stroke) oscillator with only the 
'ceiling' (e = 0.6, s = 0.6, v = 2,k* = 3 / 

In order to draw conclusions about the dynamics of the model when (11) 
is considered, we must study equation (9) separately for each regime (cfr. 
Appendix 2). In the first regime, where z < k*/v, equation (9) becomes: 
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1 s 
z- -[v-(e + s)]z+-z = 0 (12) 

6 e 

with characteristic equation given by 

X^--[v-{6-hs)]X^-z = 0 
€ e 

and eigenvalues 

^ ' ' ' " ^ I ' ' " ^̂  + ^̂  ^ ^[v-[e + s)f-Ase^ 

where, by assumption, v > e + s. Asdi consequence, the unique equilibrium 
2; = 0 is either an unstable node when: 

v> {^/e + y/sf 

or an unstable focus when: 

{e-\-s) <v < {y/e-\-y/sf 

On the other hand, when the second regime applies, so that z > k*/v, 
equation (9) becomes: 

z + - (e + s) i + -2: = -fc* (13) 
6 € £ 

with singular point z = k*/s. 
Writing the characteristic equation, we get: 

1 s 
X^ + -{e-}-s)X-h-z=:0 

from which 
Xi,2 = ^{-{e + s)±{e-s)} 

Thus, since both eigenvalues are real and negative, the equilibrium for 
this regime is a stable node. Choosing values of the parameters such that in 
the first regime the equilibrium is an unstable focus, it is not too difficult to 
show by numerical simulation that the model has a stable limit cycle solu­
tion. The results of the simulation for this case are shown in Fig.6(z/) where, 



10 'Floors' and/or 'Ceilings' and the Persistence of Business Cycles 289 

as was to be expected (cfr. Fig.4), a stable limit cycle - along which the neg­
ative deviations from equilibrium dominate the positive ones - is pictured. 
Needless to say, much importance in this case is attached to the 'ceiling' to 
investment spending that, by itself, accounts for the persistence of the cycle. 
The implication of all this is that Goodwin, in December 1950, at the time of 
his meeting with Le Corbeiller, already had in mind what he then explicitly 
theorised years later, namely that "(t)he basic, single, given, short-run non-
linearity is full employment, whether of capacity or of labour" (Goodwin 
1982, p./x). 

The fact is that, in the article that appeared in Econometrica in the fol­
lowing month, exactly the opposite case is considered and pictured. To ob­
tain the proper 'Goodwin characteristic' for this case, it is enough to notice 
that, if the 'ceiling' is so much less restrictive than the 'floor' that it does not 
play any role in the generation of the limit cycle, the former can be safely 
disregarded altogether (see Fig. 5(z/)) so that the investment function be­
comes: 

f fc** for ii < k** Iv 
'/'PWL(y)«^PWLf(y) = | ^ . f o ^ . > ^ . . / ; (14) 

Introducing (14) into equation (9) we get a LRT equation with the fol­
lowing characteristic: 

F{z) = 
fc** -{e + s) z\ for z < k**/v 

v — {e -{- s)] z for i > k**/v 

Also in this case, on the basis of an analysis similar to the one we have 
performed for the other case, it is not too difficult to find values of the pa­
rameters for which the equation generates a stable limit cycle (see Fig. 7). 
As we see, such a limit cycle is exactly specular with respect to the previous 
one; in particular, it is now the 'floor' to investment spending that, by itself, 
accounts for the existence and persistence of the cycle. 

This result proves to be very useful in order to understand an aspect 
discussed in the literature (see, for example, Velupillai 1998, p. 11 and 2004, 
p. 36), but - we believe - never properly clarified. 

Up to now, we have considered oscillators with piecewise-linear char­
acteristics. However, more in general, we can say that a 'Goodwin charac­
teristic' is any characteristic with only one bend and such that equation (9) 
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Figure 7: The Goodwinpiecewise linear (two-stroke) oscillator with only the 
'floor' (6 = 0.6, s = 0.6, v = 2, fc** = -3). 
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Figure 8: The two-stroke oscillator with the exponential characteristic 
F (x) = -p{2~ e^) x(p = 0.5). 
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admits a unique periodic solution.^ Some LRT equations with (exponential) 
characteristic functions which satisfy these conditions are suggested in Le 
Corbeiller (1960, pp. 390-391). It turns out that all of them, for example 

X - p (2 - e"") X + , 0 (16) 

are two-stroke oscillators which generate limit cycles such that the negative 
amplitude of x is much greater than the positive amplitude (see Fig. 8). 

It is possible, however, to imagine cases in which exactly the opposite 
happens. One of these is suggested by Le Corbeiller in his 1958 letter to 
Goodwin and is the following: 

- p (2 - e-^) x + x = 0 (17) 

The resulting stable limit cycle for this two-stroke oscillator is shown in 
Fig. 9. 

(0 (//) 

f \p(^-e^)x 

\ / l 

/ 
/ -

Figure 9: The two-stroke oscillator with the exponential characteristic 
F (x) = -p[2- e-^) x(p = 0.5;. 

This equation, however, is not included among the examples given in Le 
Corbeiller (1960), where it is replaced by (16). On the basis of the analy­
sis we have developed in this chapter, we can conclude that, although both 
(16) and (17) admit a stable limit cycle solution, they are crucially different 

^The general condition which must be fulfilled if this is to happen (Le Corbeiller 1960, 
p. 390) is that, in the equation (9) - written in terms of the 'velocity-controlled damping', 
X -{- R{x)X -{- X = 0- R{x) is negative at i: = 0 and there exists a value xo > 0 (< 0), 
such that R (x) is negative for x < xo {x > xo) and positive for x > xo (x < xo). 
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from a qualitative point of view: whether (17) is qualitatively equivalent to 
the Goodwin oscillator with only the 'ceiling', (16) is qualitatively equiva­
lent to the Goodwin oscillator with only the 'floor'. It could well be that Le 
Corbeiller, after having written in 1958 the letter to Goodwin, realised that 
the characteristic of (16) - rather than that of (17) - is what is qualitatively 
equivalent to Goodwin's 'blackboard sketch'. 

10.4 Conclusions 

In this chapter we have used the framework introduced by Le Corbeiller 
(1960) to discuss and qualify Sasakura's contention that, although Goodwin 
attached importance to the ceiling, the limit cycle in his (1951) model is gen­
erated without it. We have stressed in the introduction that both Duesenberry 
(1950) and Goodwin (1950) promptly wrote reviews of Hicks' book, in both 
of which it was clearly stated and explained that either the 'ceiling' or the 
'floor' will suffice in order to maintain and perpetuate the cycle. Goodwin, 
however, not only wrote the review, but, as we have discussed, he actually 
discovered such a one-sided oscillator! From the analysis we have devel­
oped, it follows that such a discovery was the outcome of the attempt by 
Goodwin to explain the persistence of the cycle with the help of only the 
'ceiling', in his opinion the basic, single, given, short-run nonlinearity. It ap­
pears amazing that this result was obtained by Goodwin in December 1950 
or thereabouts, namely, just a couple of weeks before his 1951 Economet-
rica article - with a final equation qualitatively equivalent to (17), such that 
the persistence of the cycle is obtained with no role for the 'ceiling' - was 
published. 

Appendix 1 

As explained by Le Corbeiller (1960, p. 388) and de Figueiredo (1958, p. 
xvi), a two-stroke oscillator is an oscillator such that the energy stored in it 
varies from a minimum to a maximum value only once when a complete pe­
riod of the variable is traversed, whereas a four-stroke oscillator is the (more 
usual) oscillator in which the energy varies from a minimum to a maximum 
twice within each period. 

To appreciate this distinction and its interpretation in terms of exchanges 
of energy, it is useful to consider, equation (9) with the following cubic char­
acteristic (see Le Corbeiller 1960, pp. 392-395 and de Figueiredo 1958, pp. 
7.1-7.16): 

^ 3 -

F {x) = -e (l — a ) x — ax —— £ > 0 , 0 < a < l (18) 
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where x is any given variable. As clearly appears from Fig. 10, the parameter 
a is a measure of the asymmetry of the characteristic function F (x). 

Figure 10: The characteristic function (18) for different values of the para­
meter a. 

For a = 0, equation (9) reduces to the original Lord Rayleigh equation. 
This is a (symmetric) four-stroke oscillator such that, as shown in Fig.l 1(/), 
over the limit cycle, the total energy stored in the system, 

x^ x^ 

increases along the arcs 2-3 and 4-1 and decreases along the arcs 3-4 and 
1-2. 

As a increases but remains below a certain critical value, equation (9) 
with the cubic characteristic (18) is still a four-stroke oscillator, although 
asymmetric, as in Fig.l l(z7), where a = 0.10. 

The critical case is then shown in Fig.l l(zzz), where a = 0.24 and where 
the points 3 and 4 of the previous two figures merge. 

Finally, the case in Fig.l l(zv), where a — 0.80, illustrates what happens 
when the parameter is further increased: the total energy stored in the system 
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now increases only once over the cycle (along the arc 2-1) and decreases in 
the remaining part (along the arc 1-2). It goes without saying that, in all four 
cases considered, these positive and negative energy exchanges are such that 
they perfectly compensate over the limit cycle. 

(i) a = 0.0 {ii)a=0.\0 
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Figure 11: The limit cycle of the LRT equation (9) with the cubic character­
istic (18) for different values of the parameter a. 

To conclude, it is useful to underline two important aspects of the limit 
cycles of Fig. 11 (see Le Corbeiller 1960, p. 302). First, it clearly appears 
that the distinction between four and two stroke-oscillators does not depend 
upon the number of points of intersection between the characteristic and the 
O ẑ-axis. Rather, it depends on whether, apart from the origin, there are one or 
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two such points inside the limit cycle. Second, the existence of a limit cycle 
is not due to the fact that the characteristic is sigmoid. It appears indeed that 
the parts of the characteristic outside the limit cycle do not play any role. 

This is what opens the way to the possibility of having a limit cycle with 
a so-called Goodwin characteristic as discussed in the next Appendix and in 
Section 10.3 above. 

Appendix 2 

Strictly speaking, the 'Goodwin characteristic', as defined by Le Corbeiller 
(1958, 1960) and analysed at length in Figueiredo's (1958) Ph.D. thesis, is 
any characteristic made up of two straight lines, with or without rounded-off 
corners, such that equation (9) is a two-stroke oscillator. 

One possibility, analysed in detail by de Figueiredo (1958, Ch. 6), is to 
assume that in equation (9) we have (see Fig. 12(/)):̂  

F{x) —PiX for i: < xo 
P2X — {pi + P2) ^0 for X > xo 

(19) 

where 0 < jOj < 2, /02 > /̂ i > 0 and XQ > 0. 
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Figure 12: The two-stroke oscillator with the piecewise linear characteristic 
(19) r/>i = 1, P2 = 3, xo = I). 

În de Figueiredo's contribution this is defined as the 'two-straight-line oscillator'. In a 
footnote, it is then stressed that this oscillator was first observed by R. Goodwin in economics. 
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With this characteristic (9) is an oscillator with negative damping for x < XQ 
and positive damping for x > XQ. Given that it is a piecewise linear equation, 
we must study its dynamics in the two regimes separately. 

In the first regime, such that x < XQ, equation (9) becomes: 

X — pix -f X = 0 (20) 

with X = 0 as singular point. 
From the characteristic equation: 

we then find that the eigenvalues: 

Ai,2 = 2 {̂ 1 "̂  ^Jpi-A 

are always complex with positive real parts. Thus, we can conclude that the 
equilibrium point is an unstable focus. 

In the other regime, such that x > XQ, the LRT equation becomes: 

X + P2X + X = (pi + P2) ̂ 0 (21) 

From the characteristic equation: 

Â  + ^2-̂  + 1 = 0 

we then find: 

Ai,2= 2 { " ^ 2 ± \ / p 2 - 4 | 

Thus, the unique equilibrium point of (21) - x = {p^-\- P2) XQ - is either 
a stable focus, when 0 < ^2 < 2, or a stable node when p2 > 2. 

Both for 0 < P2 < 2 and p2 > 2, it is possible to prove that equation (9) 
with (19) fulfills the conditions for a unique stable limit cycle given by de 
Figueiredo in two theorems (see de Figueiredo 1958, Theorem 4.1 and 5.1 
respectively). A case with p2 > 2 is illustrated in Fig. 12. 
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11 A Goodwin-Type Model with Cubic 
Investment Function 

Iryna Sushko, Tonu Puu and Laura Gardini 

11.1 Introduction 

The present chapter is in the Goodwin (1951) tradition, with all bounds in­
corporated in the investment function, even the ceiling, which means that it is 
the investors who abstain from investing more once available resources put a 
limit on further expansion (in real terms). Goodwin modelled a continuous-
time process, as described in Chapter 10, whereas the present model is cast 
in discrete time. 

Goodwin further advocated a smooth investment function with asymp­
totes, such as a hyperbolic tangent shape. One of the present authors, Puu 
(1989) suggested a combination of linear-cubic terms in the investment func­
tion. The back-bending, caused by the cubic, needed to be given a factual 
explanation in terms of economics. Even if the complete model could be 
tuned so as to limit motion so that the cubic never hit the axes, which would 
be absurd, the existence of a maximum and a minimum were still responsible 
for some of the more exotic phenomena, and so needed an explanation. 

This was not difficult. If one considers the hyperbolic tangent shape 
of the investment function as relevant for private investments, one could in 
addition consider public investments. In particular long-term budgets for 
infrastructure investments tend to be countercyclically distributed. This is 
partly due to an active wish to fight excessive changes in the cycle causing 
unemployment or inflation, and partly due to the advantage of using idle 
resources and low costs in the slump rather than in the boom. 

A slightly different model was studied in Puu and Sushko (2004). The 
setup was as follows: Consumption was defined as Ct = (1 — s)Yt-i + 
esYt-2, where 0 < 5 < 1 was the complementary proportion saved (or, in 
terms of other chapters of this book, 1 — s = c), and a fraction 0 < e < 1 of 
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savings was assumed to be spent after being saved for one period. Investment 
was defined as It = v{{Yt-i - Yt-2) - {Yt-i - lt-2)^). To this we add the 
income identity 1̂  = Ct + /t. As we see, the consumption and investment 
variables can be eliminated, and the model cast as a second order recurrence 
equation in income alone, though containing a cubic nonlinearity. 

The setup of the model just described obviously is non-generic, as the 
investment function is symmetric with respect to the origin. The aim of the 
present study is to also include an even order quadratic term to the investment 
function: / , = a((y,_i - Yt-2) + b{Yt-i - Yt-2f - {Yt-i - ^^-2)^), so as 
to break the symmetry, and produce a more generic model. The consumption 
function is defined as Ct = cl^-i, thus skipping the two-period lagged setup 
of Puu and Sushko (2004). As before, substituting to the income identity, we 
get a second order difference equation in income variable: 

Yt = cYt-i + a{{Yt-i - Yt-2) + h{Yt-i - Yt-2)^ - {Yt-i - Yt-2)^). (1) 

11.2 Description of the Map 

Let xt := Yt, yt := Yt-i. Then to describe the dynamics of the model 
introduced above we have to study the behavior of trajectories of a two-
dimensional map F : R^ -^ R^ given by 

f X \ f cx-\-a{x-y) + ab{x - y)^ - a{x - y)^ \ 

where a, b and c are real parameters such that 

a > 0, 0 < c < 1. (3) 

The parameter b is responsible for the symmetry of the investment function, 
namely, for 6 = 0 the 'floor' and 'ceiling' are located at equal distance from 
the origin, while the case 6 7̂  0 is more general. 

In this chapter we shall illustrate some local and global bifurcation mech­
anisms related to the Neimark-Sacker bifurcation in a smooth map (already 
introduced in Chapter 1). We shall see how the stability loss of the fixed 
point with a pair of complex-conjugate eigenvalues on the unit circle results 
in the appearance (in the neighborhood of the fixed point) of an attracting 
closed invariant curve homeomorphic to a circle^, and how this curve can be 
destroyed leading to complex dynamics. 

În invertible maps it is also called a two-dimensional torus, being associated with the 
Poincare section of a three dimensional flow. 
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To begin, let us derive some simple properties of the map F. First note that 
F is a noninvertible map: In the phase space there exist two straight lines 
denoted LC-i and LC'_i, which are related to the vanishing determinant of 
the Jacobian matrix of F : 

LC-i = {{x,y) :y = x-ki}, 

LC'_i = {{x,y) :y = x-k2}, 

where ki = {b - Vb'^ + 3) /3 , ^2 = (6 -f y/b'^ + 3) /3 . Images of these lines 
by F are also straight lines, called critical lines and denoted LC and LC\ 
respectively: 

LC = [{x^y) : y — x/c — aki{kf — bki — 1)} , 

LC' = {{x,y) :y = x/c-ak2{k2-bk2-l)} . 

The role of the critical curves LC and LC' is related to the foliation of the 
Riemann phase plane: Any point between these two lines has three different 
preimages, while any point outside this strip has only one preimage. Thus, 
the map F has a noninvertibility of so-called (Zi — Zs — Zi) type. Other 
examples of maps with such a kind of noninvertibility can be seen in Mira 
et al. (1996), Dieci et al (2001), Chiarella et al. (2002), Puu and Sushko 
(2004), Bischi era/. (2005). 

It is known that the critical lines and their images play an important role 
for the dynamics of a noninvertible map (for a survey see Mira et al (1996)). 
As we shall see, these images may define the boundary of an absorbing area 
to which the attractors of the map, as well as other invariant sets, necessarily 
belong. A contact of the boundary of some basin of attraction with the criti­
cal lines usually results in a global bifurcation causing the appearance of new 
isolated islands of the basin (Mira et al. (1994)). Regarding to an invariant 
attracting closed curve, which is the main interest of the present chapter, we 
shall see that the intersection of this curve with LC-i or LC'_i can give rise 
to the appearance of infinitely many loops, which are impossible in invertible 
maps (as already emphasized in Mira et al. (1996), Frouzakis et al. (1997)). 
We shall also see other features of closed invariant curves, related, in partic­
ular, to the homoclinic bifurcation, described in Chapter 1 and Chapter 8 for 
a fixed point, while here it will be related to a cycle of period 7. 

Let us first describe the simplest kind of attractor of the map F , that 
is, its fixed point. It can be easily seen that F has a unique fixed point 
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(x*,^*) = (0,0). The eigenvalues of the Jacobian matrix of F at (x*,?/*) 
depend on the parameters a and c: 

Ai,2 = {a + c± v/(a + c)2 - 4a)/2, (4) 

from which we deduce that for the parameter range given in (3) the fixed 
point (x*, y*) is a node if (c + a)^ > 4a, and a focus if (c + a)^ < 4a, being 
attracting for a < 1 and repelling for a > 1. 

So, for a < 1 the fixed point of F is attracting, but it obviously cannot 
be a global attractor: Due to the cubic shape of the function defining our 
map, there are initial points whose trajectories are divergent. Indeed, the 
basin of attraction of the fixed point is bounded by the closure of the stable 
manifold of a saddle cycle of period 2, denoted {pi,P2}? where pi (XQ, t/o) = 
(6fc/(l - c) 4- y/k/a/2, bk/{l - c) - y/k/a/2), fc = (c + 2a + l ) / 2 and 
P2 = F(pi). 

It can be verified that for the parameter range here considered the saddle 
cycle {pi,P2} always exists (as an example, see Fig.2), and its stable mani­
fold separates the basin of divergent trajectories from the set of points of the 
phase plane having bounded trajectories (which may include several disjoint 
basins and invariant sets). Running ahead we can say that the contact of an 
attractor with the stable manifold of this saddle results in a boundary crises 
which causes an explosion of the basin of divergent trajectories. Often, after 
such a contact, almost all the trajectories of F go to infinity and the surviv­
ing set is a chaotic repellor with a Cantor like structure (although a surviving 
attractor may also exist, with a basin of attraction so small that it is numeri­
cally unobservable). 

11.3 Neimark-Sacker Bifurcation and Arnol'd Tongues 

At a = 1 the fixed point (x*, i/*) has complex-conjugate eigenvalues on the 
unit circle. It is known that if there is no so-called strong resonance, that 
is Re Aî 2 7̂  cos27rm/n, where n < 4, and min is an irreducible fraction, 
then a Neimark-Sacker bifurcation occurs resulting, when supercritical, in an 
attracting invariant closed curve C homeomorphic to a circle, which appears 
in the neighborhood of the fixed point. Note that other generic transversality 
conditions have to be also fulfilled, see Guckenheimer and Holmes (1985), 
Kuznetsov (1998). It can be verified that these conditions are satisfied for 
the parameter range here considered. 



11 A Goodwin-Type Model with Cubic Investment Function 303 

The dynamics of the map F on the curve C are either periodic or quasiperi-
odic, depending on the parameters. Namely, if at a = 1 also the condition 

def 

c = c^/n = 2cos(27rm/n) — 1, (5) 

holds, then after the bifurcation, that is for a — 1 + e for a sufficiently small 
e > 0, a pair of cycles of period n, an attracting node and a saddle, with 
rotation number m/n exist on the curve C (also called a phase-locked torus), 
so that this curve is made up by the closure of the unstable manifold of the 
saddle cycle. Note that for c > 0 we have m/n < 1/6. While if 

def 

c = Cp = 2cos(27rp) — 1, (6) 

where p is an irrational number, then after the bifurcation there are quasi-
periodic trajectories on the curve C (also called quasiperiodic torus). 

The dynamics of F locally, in the neighborhood of the fixed point, de­
pend only on the parameters a and c, while the parameter b influences, obvi­
ously, the global dynamics. Due to the symmetry with respect to the origin of 
the map F for negative and positive values of 6, we can restrict our analysis 
only to the case b> 0 (the case 6 < 0 is analogous, with trajectories symmet­
ric with respect to the origin in the phase space, and symmetric structure of 
the parameter space). We don't consider in this chapter the particular value 
6 = 0, however in such a case F has dynamics qualitatively similar to those 
described in Puu and Sushko (2004). 

Fig.l presents a two-dimensional bifurcation diagram of the map F in 
the (a,c)-parameter plane at 6 = 0.2, where the parameter regions corre­
sponding to the attracting cycles of different periods n < 32, are shown by 
different gray tonalities. The periodicity regions starting from the bifurca­
tion line a = 1 are called ArnoVd tongues. It is known that the boundaries 
of the Amol'd tongue are two curves corresponding to saddle-node bifur­
cation of the related cycles (the lower and upper boundaries of the period­
icity tongues in Fig.l), while other boundaries (to the right) are related to 
either period-doubling or Neimark-Sacker bifurcation of the related attract­
ing cycle. The periodicity tongue associated with the rotation number min 
starts from the parameter point (a, c) = (1, c^/n), while the parameter point 
(a, c) = (1, Cp) is the starting point for the curve corresponding to a closed 
curve with quasiperiodic trajectories, related to the irrational rotation num­
ber p. Such a structure of the parameter plane reflects the Neimark-Sacker 
bifurcation theorem mentioned above, according to which for the parameter 
values taken near the bifurcation line a — 1, that is for a = 1 + e for some 
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sufficiently small e > 0, in the neighborhood of the fixed point there exists 
an attracting invariant closed curve C on which the map F is reduced to a 
rotation with rational or irrational rotation number. Examples of the curve 
C in case of rotation numbers 1/6 and 1/7 can be seen in Fig.2 and Fig.8, 
respectively. 

Figure 1: Two-dimensional bifurcation diagram of the map F in the (a, c)-
parameter plane for b = 0.2. Parameter regions related to attracting cycles 
of different periods n < 32 are shown by different gray tonalities. 

At fixed value of c, on increasing the value of a the curve C is destroyed 
and the dynamics of F become more complicated. Let us first recall in short 
possible scenarios leading to the destruction of a closed invariant attracting 
curve: 

(1) The related attracting cycle, being a node at its birth, becomes a fo­
cus. We can say that the closed invariant curve still exists but it is no longer 
homeomorphic to a circle (an example can be seen in Fig.8). In such a case it 
is quite common that when the parameter point leaves the periodicity tongue 
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then the attracting focus undergoes a Neimark-Sacker bifurcation, and cycH-
cal closed invariant curves appear; 

(2) The related attracting cycle can undergo period-doubling bifurcation; 
(3) The curve C can lose its smoothness and becomes nondifferentiable 

(due to infinitely many oscillations of one branch of the unstable manifold 
of the saddle, approaching the node); 

(4) The related saddle cycle undergoes homoclinic bifurcation; 
(5) Intersection of the curve C with a critical line can lead to the cre­

ation of infinitely many loops, that is, to the selfintersections of the unstable 
manifold of the saddle (see Fig.3). 

If the parameter point leaves the periodicity tongue crossing the saddle-
node bifurcation curve when C is still smooth, then we have transition from 
the phase-locked torus to the quasiperiodic one. In the two cases (3) and 
(4), if the parameter point leaves the periodicity tongue crossing the saddle-
node bifurcation curve, then the curve C is transformed into a set with fractal 
structure. 

The destruction of a two-dimensional torus in the case of dififeomor-
phisms was first described in Afraimovich and Shil'nikov (1983). In Aron-
son et. al. (1982) it was in particular shown that torus can be destroyed 
also due to the contact with its basin boundary. See also Anishchenko et 
al. (1994), Amol'd et al. (1991) for further details and examples. The first 
four scenarios can occur both in invertible and noninvertible maps (for the 
examples related to noninvertible maps see Gumowski and Mira, (1980a,b)), 
while the case (5) obviously can occur only for a noninvertible map (several 
examples are given in Mira et al. (1996), Frouzakis et al. (1997), Maistrenko 
et al (2003)), and one example will be given also in the next section. 

In the last section we shall describe a sequence of transformations occur­
ring at fixed c and increasing a, associated with a 7-node, which becomes at 
first a 7-focus (i.e. case (1) above), then it becomes a 7-node again (with one 
negative eigenvalue), which undergoes the flip bifurcation. Futher increase 
of a leads to appearance of two 7-cyclical closed invariant curves, attracting 
and repelling, via global bifurcations as described in Chapters 1 and 8. 

To close this section we mention an important feature of nonlinear maps 
for parameter values taken far from the Neimark-Sacker bifurcation curve, 
which is that the periodicity regions can be overlapped (as it can be seen in 
Fig.l or Fig.7). This means that coexistence of attracting cycles of different 
periods is not a rare phenomenon, and usually this situation leads to several 
kinds of global bifurcations in the invariant sets and/or in the basins of at­
traction of the coexisting attracting sets. 
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11.4 First Example of Bifurcation Sequence: Creation of Loops 
and Period-Doubling Cascade 

In this section we present a bifurcation scenario of transition to complex dy­
namics, related to the destruction of the closed invariant curve C via creation 
of infinitely many loops (an effect of the noninvertibility, leading to the self-
intersections of the unstable set of the saddle cycle), and the period-doubling 
cascade of the attracting cycle existing on C. 

Let 7^ denote an attracting cycle of period n, and 7^, 7^, denote saddle 
cycles of period n with, respectively, positive and negative eigenvalue related 
to the unstable eigendirection. 

For the first example we fix 6 = 0.2 and c = 0.02 and will increase a 
starting from a = L3, as shown in Fig.l by the straight line with an arrow. 
The phase portrait of the map F at a == 1.3 is presented in Fig.2: There 
exists an attracting invariant closed curve C made up the unstable manifold 
of the saddle cycle 7 "̂ approaching points of the attracting cycle 75. The 

0 J ••• 

.''P. 
L Q 

"0.5 

-0.5 0.5 

Figure 2: Phase portrait of the map F at a = L3, b = 0.2, c = 0.02. The 
attracting closed invariant curve is formed by the closure of the unstable 
manifold of the saddle Q-cycle (shown by white circles), approaching the 
points of the attracting 6-cycle (the black circles). 
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basins of attraction of C and that of infinity (i.e., of divergent trajectories) 
are separated by the stable manifold of the saddle cycle {pi,P2} • It can be 
seen that the curve C intersects the critical line LC-i and is folded on LC 
(i.e., tangent to LC and bent to the right) without creation of loops, which in 
particular means that the map F is invertible on C, and C is homeomorphic 
to a circle. However, it is worth noticing that the area bounded by C is not 
invariant under application of F: In fact it is invariant only as long as the 
closed curve C has no intersections with the lines LC-i and LC^i, and this 
is no longer true in the case shown in Fig.2. According to the results stated 
in Frouzakis et al. (1997) (see also Maistrenko et al. (2003)), the cusp points 
and then the loops are created on C if the slope of the tangent of the curve C 
at the point of intersection with LC-i (or LC'_i) at first is the same and then 
becomes larger then the slope of the eigenvector associated with the zero 
eigenvalue of the Jacobian matrix of the map F at that point. Fig.3 shows 
the curve C at a = 1.45 when the loops are already created, thus the map F 
is noninvertible on the curve C, which obviously is no longer homeomorphic 
to a circle. 

-0.6 -0.4 -0.2 0.2 0.4 0.6 X 

Figure 3: The attracting closed invariant curve C with infinitely many loops 
at a = lA5,b = 0.2, c = Om, 

If we continue to increase the values of a, the cycle 7^ undergoes a cas­
cade of the period-doubling bifurcations: At a ^ 1.4952 the first period-
doubling bifurcation occurs resulting in a saddle 7^ and attracting cycle 
722- Fig.4 presents the phase portrait of the map F at a = 1.5, where the 
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attracting cycle 7̂ 2 and two saddle cycles 73" and 7^ are shown, together 
with the unstable manifold of 7g", which has infinitely many loops. The 
value a = a* ^ 1.548481 is a limit for the values related to the period-
doubling cascade of the cycle 75. Approaching the value a* from the oppo­
site side we have a cascade of homoclinic bifurcations for the saddle cycles 
ry~j^^ fc = 1,..., bom during the period-doubling cascade of 75. Each of these 
homoclinic bifurcations gives rise to the pairwise merging of pieces of cyclic 
chaotic attractors. As an example, Fig.5 shows the 12-piece chaotic attractor 
at a = 1.56, near the first homoclinic bifurcation of the cycle 7^ (shown 
by the gray circles). The result of this homoclinic bifurcation is a 6-piece 
chaotic attractor. 

-0.6 -0.4 -0.2 0.2 0.4 0.6 X 

Figure 4: The phase portrait of the map F and its enlarged part at a = 1.5, 
b = 0.2, c = 0.02 : The points of the saddle cycles J'Q and 7^, are shown 
by white and gray circles, respectively; Black circles indicate points of the 
attracting cycle 712-

The basin of attraction of each of the 6 pieces of the chaotic attractor is 
separated by the stable manifold of the saddle cycle of period 6, while the 
unstable branches tend to the attractor (indeed, the closure of the unstable set 
of the saddle includes the chaotic pieces). Thus, if we consider the map F^, 
a contact of the chaotic pieces with the boundary of their immediate basins 
results in the first homoclinic bifurcation of the 6-saddle. Such a bifurcation 
gives rise to the merging of these 6 pieces into a one piece chaotic attractor. 
Fig.6(a) presents a one-piece chaotic attractor soon after this contact bifurca­
tion. In general such a transition is accompanied by a so-called "rare points" 
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phenomenon, reflecting the difference in density of the points along the at-
tractor, as explained in detail in Mira et al. (1996), Gardini et al. (1996), 
Maistrenko ê  a/. (1998). 

-0.6 -0.4 -0.2 0.2 0.4 0.6 X 

Figure 5: The 12-piece cyclic chaotic attract or of the map F at a = 1.56, 
6 = 0.2, c = 0.02. 
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Figure 6: (a) One-piece chaotic attractor of the map F at a — 1.5802, 
h = 0.2, c = 0.02; (b) Its absorbing area. 

All the attracting sets of the map F existing in the considered parame­
ter range, after the bifurcation of the fixed point (see Fig.2 up to Fig.6(a)) 
belong to an absorbing area which is obtained by taking the images of a 
few segments of LC_i and LC'_i, which are exactly those pieces inside the 
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area. An example is shown in Fig.6(b): The area is bounded by six images 
of the indicated segments of LC-i and LC'_i. The simply connected area 
is invariant, while the annular area, shown in gray in Fig.6(b), which more 
strictly includes all the existing invariant sets (except for the repelling fixed 
point), is absorbing but not invariant: A thinner annular invariant area can be 
obtained by using further images of the critical segments. 

11.5 Second Example: Focus, Bistability and Global Bifurcations 
of Closed Invariant Curves 

In this section we present one more example of bifurcation sequence which 
includes the destruction of the closed invariant curve C followed by a par­
ticular type of global bifurcation. This transition to complex dynamics is 
more complicated with respect to the one described in the previous section, 
as it includes bistability and one more Neimark-Sacker bifurcation. A global 
bifurcation related to this "secondary" Neimark-Sacker bifurcation will be 
emphasized, which gives rise to a pair of cyclical closed invariant curves, 
one attracting and one repelling. 
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Figure 7: Two-dimensional bifurcation diagram of the map F in the (a, c)-
parameterplane atb = 0.5. 

We present a sequence of bifurcations related to the attracting cycle 77, 
fixing the parameters 6 = 0.5,c = 0.21 and increasing the value a starting 
from a = 1.24. The corresponding parameter path is shown in Fig.7 by the 
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straight line with an arrow. The phase portrait of the map F at a = 1.24 
is qualitatively similar to the one shown in Fig.2: Namely, there exists a 
closed attracting invariant curve C, homeomorphic to a circle, made up by 
the unstable manifold of the saddle cycle 77", approaching the points of the 
attracting node 77. Increasing a the cycle 77 becomes a focus (see Fig. 8 
where a = 1.31), so that the curve C is no longer homeomorphic to a circle. 
The basins of attraction of each point of the attracting cycle 77 (considering 

-0.4 -0.2 

Figure 8: The phase portrait and its enlarged part of the map F at a = 1.31, 
6 = 0.5, c = 0.21. 
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Figure 9: Individual basins of attraction of points of the attracting cycle 77 
(the black circles), bounded by the stable manifold of the saddle cycle 77" 
(the white circles). 
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the map F'^) is presented in Fig.9: The boundary, formed by the stable man­
ifold of the saddle cycle 77" has a regular structure. The intersection of the 
basin with the critical lines LC and LC^ creates disconnected components 
of the basins, located on LC-i and LC'_i. 

Increasing a a saddle-node bifurcation occurs giving rise to an attracting 
and a saddle cycle of period 21, and, thus, to bistability: Fig.lO presents the 
phase portrait of the map F at a = 1.378, with the attracting cycles 77 and 
721 (shown by big and small black circles, respectively), the saddle cycle 721 
(the black squares) and the repelling cycle of period 7 (the white circles), 
which is the former saddle cycle 77" after the period-doubling bifurcation 
resulted in the saddle cycle 7̂ 4 (white squares). The basin of attraction of 
the cycle 721 is shown in white, while the basin of attraction of 77 is shown in 
dark gray. These two basins are separated by the stable set of 721. The light 
gray region corresponds to divergent trajectories. Further development of 

X 1 

Figure 10: The phase portrait of the map F at a — 1.378, h = 0.5, c = 0.21 
with coexisting attracting cycles 721 and 77 whose basins of attraction are 
shown in white and gray, respectively 
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the scenarios, increasing a, is related to the cascade of the period-doubling 
bifurcations of the cycle 721. Fig. 11 shows an enlarged part of the phase 
space with several pieces of a 21-piece cyclic chaotic attractor coexisting 
with the attracting cycle 77 at a = 1.381. This chaotic attractor disappears 
due to a boundary crises, i.e., a contact with its basin boundary, which at the 
same time is the first homoclinic bifurcation of the saddle cycle 721- Soon 
after this contact there is only one attractor, the cycle 77, surrounded by a 
chaotic repellor created at the mentioned homoclinic bifurcation. 

Figure II: An enlarged part of the phase space of the map F at a = 1.381, 
6 = 0.5, c = 0.21. 

The parameter path shown in Fig.7 is chosen in such a way that at the 
exit of the 7-periodicity tongue the cycle 77 undergoes a period-doubling 
bifurcation resulting in a saddle cycle 77 and an attracting cycle 714. For 
example, at a = 1.41335 the parameter point is inside the periodicity re­
gion corresponding to an attracting cycle 714. However, as a increases, the 
parameter point moves towards a region which is also close to the Neimark-
Sacker bifurcation of the 7-cycle, and the global bifurcation may occur, al­
ready described in Chapters 1 and 8 (related there with a fixed point of the 
map). Indeed, such a global bifurcation has been detected, which gives rise 
to the appearance of a pair of disjoint 7-cyclical closed invariant curves, one 
attracting, denoted r7, and one repelling, denoted r7, surrounding the points 
of the saddle cycle 7^ and the attracting cycle 714. After the first homoclinic 
bifurcation of the cycle j ' ^ the curve T^ undergoes pairwise splitting and be-
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comes a 14-cyclical repelling closed invariant curve T[^: The phase portrait 
of the map F at a = 1.4134 is shown in Fig. 12 (a) and an enlargement is 
given in Fig. 12 (b), where it can be seen one curve of Fy and two curves of 
T[^, which surround the points of the cycles 7̂ 4 and 77 , shown by black and 
white circles, respectively. The 14-cyclical repelling closed invariant curve 
r'̂ 4 bounds the basin of attraction of 7^4, while the wider basin (among 
the points having bounded trajectories) is that of points attracting to Fy. As 
expected, on further increasing of a the cycle 7̂ 4 becomes unstable via a 
subcritical Neimark-Sacker bifurcation, leaving the 7-cyclical closed curve 
F7 as unique attracting set. 

0.264 

Figure 12: 7;̂  (a) the 1-cyclical attracting closed invariant curve Fy is visible, 
while in the enlargement (b), besides one curve of F7, it can be also seen two 
curves of the 14-cyclical repelling closed invariant curve T[^, which bound 
the basin of attraction of the cycle 714. 
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12 A Goodwin-Type Model with a Piecewise 
Linear Investment Function 

Laura Gardini, Tonu Puu andlryna Sushko 

12.1 Introduction 

The model studied in the present chapter is a variation of the one presented in 
Chapter 11, so for a background we refer to the introduction of that chapter. 
The difference is that we now replace the cubic investment function by a 
five-piece linear one (see Fig.l). We shall see that the dynamic behavior of 
the model is different. In terms of economics we have the advantage that the 
constant pieces automatically prevent the investment function from cutting 
the horizontal axis more than once. 

12.2 Center Bifurcation of the Fixed Point (a = 1) 

In Chapter 6 we have described the simplest version of the Hicksian business 
cycle model defined by a two-dimensional piecewise linear map, showing 
that the main bifurcation scenarios in the model is the center bifurcation 
of the fixed point resulting in periodic or quasiperiodic dynamics (see also 
Hommes (1991), Gallegati et al. (2003)). In the present chapter we shall 
see the emergence of more complex dynamics, such as multistability and 
chaos, in a different version of the business cycle model also defined by a 
two-dimensional piecewise linear map. 

We consider the dynamical system generated by a family of two - dimen­
sional piecewise linear maps F :M? -^M? given by 

^̂1 jl-fr""'""" !• <» 
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where I{z) is the piecewise Hnear investment function defined as 

I{z) 

( -h, z< - r ; 
Iz — a-{-l^ —T < z < —1; 
az, —l<z<l., 
Iz -\- a — I, 1 < 2: < r ; 

(2) 

where r = {h — a + l)/l (see Fig.l). The map F depends on four real 
parameters a,c,l and h, such that 

a > 0 , 0 < c < l , Z < 0 , O < / i < a . (3) 

The investment function given in (2) is symmetric with respect to the ori­
gin (for an analogous business cycle model with symmetric cubic investment 
function see Puu and Sushko (2004)). It is not a generic case, and breaking 
of the symmetry can be introduced in several ways, but in this chapter, for 
simplicity, we limit our consideration to the symmetric case. It can be eas­
ily seen that the map F is also symmetric with respect to the origin, which 
immediately implies the following 

Property. Any invariant set A of the map F (i.e., such that F{A) = A) 
is either symmetric itself with respect to the origin, or there exists one more 
invariant set A! symmetric to A with respect to the origin. 

Figure 1: The investment function. 
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One of the aims of the present consideration is to illustrate the center bifur­
cation described in detail in Chapter 2, which occurs for piecewise linear 
maps when the fixed point loses stability with a pair of complex-conjugate 
eigenvalues on the unit circle (see also Sushko et al. (2003)). In a similar­
ity to the Neimark-Sacker bifurcation (see Chapter 1, or Kuznetsov (1995)) 
it results in an attracting closed invariant curve C homeomorphic to a circle, 
and dynamics of F on C is reduced to a rotation with rational or irrational ro­
tation number. We will present some examples of the bifurcation sequences 
leading through the breakdown of the curve C to complex dynamics. 

The map F is given by five linear maps F^, z = 1,..., 5, defined, respec­
tively, in five regions i?̂  of the phase plane: 

.̂ : (M„ ( !-«)-«»), (4) 
Ri = {{x,y):x-l<y <x-^l}] 

i?2 = {{x,y) :x-{-l<y <x + r}, 
Rs = {{x,y) :x-T <y <x-l}] 

-R4 = {{x,y) :y>x + r}, 
i?5 = {{x,y):y <X-T}. 

So, in the phase space of the map F there are four straight lines on which F 
changes its definition: 

LC_i, LCii • y = x±l, 
LCL^, LC'l^ : y = x±T. 

Their images by F are called critical lines: 

LC, LC : y={x± a)/c, 

LC\ LC" : y=-{x± h)/c. 

The i-th iteration by F of the critical line is a broken line, called critical line 
of rank 2. 
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It can be easily verified that the map F is noninvertible. Fig.2 shows schemat­
ically the folding action of F : Any point of the phase plane on the right of 
LC or on the left of LC^ has zero preimages, any point between LC and 
LC, or between LC^ and LC^^ has two preimages, any point between LC" 
and LC^^ has one preimage and, finally, any point of the straight lines LC 
and I/C^ has infinitely many preimages (given that the whole regions i?4 
and i?5 are mapped, respectively, into the straight lines L C and LC'^). So, 
the map F has noninvertibility of (ZQ — Z2 — Zoo — Zi — Zoo — Z2 — ZQ) 
kind (as a reference to noninvertibility and theory of critical lines see Mira 
et al. (1996)). 

An obvious result can be immediately reached: For the parameter range 
considered the dynamics of F are always bounded, namely, in the phase 
plane there exists an absorbing area bounded by the critical lines LC[_i, 
LC%LCmdLC'. 

Figure 2: The folding action of the map F. 

The unique fixed point of F is the fixed point of the map Fi which is 
(x*,y*) = (0,0), given that the fixed points of other linear maps Fi, i = 
2, . . . ,5 , are on the main diagonal belonging to i?i, and thus they are not 
fixed points of F . The eigenvalues of the Jacobian matrix of Fi are 

Ai,2 = {a + c± yf{a + c)2 - 4a)/2, (7) 

so that for a > 0, 0 < c < 1 the fixed point (x*, ?/*) is a node if (c + a)^ > 
4a, and a focus if (c -f a)^ < 4a, being attracting for a < 1 and repelling for 
a > 1. At a = 1 the fixed point undergoes the center bifurcation. Before the 
description of its results let us first derive some other properties of F 
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The eigenvalues of the Jacobian matrix of the maps F2 and F3 (which differ 
only by a shift constant) are 

Mî 2 = (Z + c ± ^{l + c)2 - 40 /2 . (8) 

Given that Z < 0, we have that ji^ 2 are always real and 0 < /i^ < 1, while 
—1 < )tX2 < 0 if c > —21 — 1, and 112 < —1 if c < —21 — 1. The eigenvalues 
of the Jacobian matrix of the maps F4 and F5 (which also differ only by a 
shift constant) are vi = c and 1/2 = 0. We can state 

Proposition \. If a <1 and the ranges of c, I and h are as given in (3), 
then the fixed point (x*, y*) is the global attractor of the map F. 

Obviously, the map F cannot have divergent trajectories. To see that the 
proposition is true, we have to show that it cannot have other attractors. For 
c > —2/—1, when all the maps F^, z = 1,..., 5 are contractions, the statement 
is obvious. While in case c < —21 — 1, when /i^ 2 ^^e such that 0 < /i^ < 1 
and /i2 < — 1, the statement can be proved by contradiction: Suppose, there 
exist another attractor. It necessarily must belong to an absorbing area, made 
up by images of the critical lines, but a simple geometrical reasoning shows 
that such an area shrinks by F to the origin. 

Consider now the map F given in (1) exactly at the bifurcation value 
a = 1, when the fixed point (x*, y*) undergoes the center bifurcation. Using 
the results presented in Section 2.2 of Chapter 2, we can state that at a = 1 
there exists an invariant region in the phase plane, and its structure depends 
only on the map Fi and the critical lines LC-i, LCti (^^^' ^^us, it depends 
only on the parameters a and c). Let us repeat that if at a = 1 the map Fi 
is defined by the rotation matrix with some rational rotation number m/n, 
which holds for 

c = c^/n = 2cos(27rm/n) - 1, (9) 

then any point from some neighborhood of the fixed point is periodic with 
rotation number m/n, and all points of the same periodic orbit are located 
on an invariant ellipse. The following proposition describes the dynamics of 
F in such a case: 

Proposition 2. Let a = 1, c = c^/n, then in the phase plane of the map 
F there exists an invariant polygon P such that 

• If n is even then P has n edges which are two generating segments 
Si C I /C- i , SI C LCti a^dtheir images Si^i = Fi{Si) C LQ-i, 
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• If n is odd then P has 2n edges which are two generating segment 
Si C LC_i , S{ C L C i i and their images SiJ^i = Fi{Si) C Ld-i, 

Any initial point (xo,2/o) € P is periodic with rotation number m/n, while 
any (XQ, yo) ^ P is mapped inside P in a finite number of iterations. 

See Fig.3 with an example of the polygon P with 14 edges at a = 1, c = 

Cl/7-

X 15 

Figure 3: The invariant polygon P of the map F at a = 1, c = Ci/y = 
2 cos(27r/7) — 1. Any point of P is periodic with rotation number 1/7; As 
an example, two such cycles are shown by black and gray circles. 

If at a = 1 the map Fi is defined by the rotation matrix with an irrational 
rotation number p, which holds for 

def 2cos(27r/)) (10) 

then any point from some neighborhood of the fixed point is quasiperiodic, 
and all points of the same quasiperiodic orbit are dense on the corresponding 
invariant ellipse. In such a case the following proposition holds: 

Proposition 3. Let a = 1, c = Cp. Then in the phase space of the map F 
there exists an invariant region Q, bounded by an invariant ellipse £ of the 
map Fi tangent to both critical lines LC-i, LCti (^^^ ^^ ̂ ^^ their images). 
Any initial point (XQ, yo) E Q belongs to a quasiperiodic orbit dense in the 
corresponding ellipse of F i , while any (XQ, yo) ^ Q is mapped inside Q in 
a finite number of iterations. 
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Note that Propositions 2 and 3 hold for any values of / and h. We already 
know that generally, increasing a, i.e., for a = 1 + e, 5 > 0, only the 
boundary of the region P or Q remains invariant for some sufficiently small 
6, being an attracting closed invariant curve C on which the dynamics of F 
are periodic or quasiperiodic, respectively. Further increase of a leads to 
destruction of this curve and then to more complex dynamics. 

12.3 Destruction of the Curve C and Routes to Chaos (a > 1) 

Before presenting some general description of the dynamics of F for a > 1, 
let us first consider a particular parameter value a = h. In such a case we 
have r = 1, LC-i = LC'_i (and LC^i = LC'1{) so that the map F is given 
by three linear maps Fi , F2 (which is equal to F4) and F3 (equals F5), being 
noninvertible of (ZQ — Zoo — Z\ — Zoo — ZQ) kind. This case corresponds to 
the version of the piecewise linear Hicksian business cycle model with both 
'floor' and 'ceiling' (which are on the same distance from the origin in our 
case) incorporated in the investment function. Using the results obtained for 
piecewise linear maps of such a kind of noninvertibility (see Section 2.3 of 
Chapter 2), we can state 

Proposition 4. For a = h > 1, 0 < c < 1, in the phase plane of the 
map F there exists an invariant closed attracting curve C, homeomorphic to 
a circle, made up by a finite number of images of two generating segments, 
belonging, respectively, to LC-i and LCti- ^^^ ^^P F onC is reduced to 
a rotation with rational or irrational rotation number, and has, respectively, 
either periodic or quasiperiodic dynamics. 

We emphasize that a = /i is a particular case in which the curve C exists 
for any a > 1 and cannot be destroyed. Without going into details we just 
present an example of the curve C in a case of rotation number 1/7, so that 
the map F has an attracting and a saddle cycle of period 7. Given that such 
cycles are not symmetric with respect to the origin, then, according to Prop­
erty stated in the previous section, there must exist two more cycles of period 
7, symmetric to the first two cycles, respectively: Fig.4 shows the phase por­
trait of the map F a t a = h — 2 , c = 0.21, with two coexisting attracting 
cycles of period 7 and their basins of attraction, bounded by the stable sets of 
two saddle cycles of period 7; The curve C is made up by 6 segments which 
are 3 images of the generating segments of LC_i and LCt_i. The curve C is 
also formed by the closure of unstable sets of the saddle cycles of period 7. 

Fig.5 presents a two-dimensional bifurcation diagram for the map F at 
a — h, where the regions corresponding to the attracting cycles of period 
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n, n < 32, are shown by different gray tonalities. We don't describe here 
the structure of this bifurcation diagram referring to Chapter 2 where a de­
tailed description of a similar diagram is presented (we only remind that an 

Figure 4: The phase portrait of the map Fata = h = 2, c = 0.21 : 
Two coexisting attracting 7-cycles (the black and gray circles) are shown 
together with their basins of attraction, bounded by the stable sets of two 
saddle 7-cycles. 

Figure 5: The two-dimensional bifurcation diagram of the map F in the 
(a, c)-parameterplane in case a = h. 

odd periodicity region is related to two coexisting attracting cycles of the 
same period and, respectively, two saddle cycles). We would like to com­
pare this diagram with two analogous bifurcation diagrams: One is related 
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to the Hicksian business cycle model with the 'floor' in the investment func­
tion and the 'ceiling' in the income function (see Fig.3 of Chapter 6), and the 
other one is related to the Hicksian business cycle model with only one limit 
which is the 'floor' in the investment function (see Fig.4 of Chapter 2). All 
the three versions of the nonlinear Hicksian model possess either periodic or 
quasiperiodic dynamics and more complex dynamics cannot occur. The first 
two models never produce divergent trajectories. In the second model for 
sufficiently large a the main periodicity tongues mainly survive related to a 
particular trajectory which touches both upper and lower limits, while in the 
first model all periodicity tongues, bom at a = 1, exist for any a > 1. 

Consider now the case a> h. Given that the main interest of the present 
consideration is related to the bifurcation scenarios developing while a in­
creases starting from a = 1, we consider h < 1. For example, let us fix 
h = 0.5. Regarding the value of the parameter Z, note that for Z -^ 0_ we 
have T —> oo. Obviously, in such a case after the center bifurcation, that is 
for a = 1 + e, e > 0, an attractor of the map F belongs to the regions jRi, 
i?2, ^3 and has no points in the regions R4 and JR5. Thus, only the maps Fi, 
F2 and Fs are involved in the asymptotic dynamics. In such a case we can 
apply the results presented in Section 2.6 of Chapter 2 and state that for suffi­
ciently small e > 0 in the phase space of the map F there exists an invariant 
closed attracting curve C homeomorphic to a circle, and dynamics of F on 
C are either periodic or quasiperiodic. The main diflFerence of this case with 
respect to the case a = his that the curve C is not formed exactly by a finite 
number of proper segments of images the critical lines, but it is just a limit 
set for such images, and, as a consequence, the curve C has not finite but 
infinite number of segments and, thus, infinitely many comer points, which 
in case of a rational rotation are accumulating to the points of the related 
attracting cycle. The curve C can be destroyed by one of the mechanisms 
recalled in Section 2.6 of Chapter 2. In the example which we describe here 
this mechanism is related to transformation of the attracting cycle (which is 
bom as a node) to a focus (see Fig.7a). 

Fig.6 presents two-dimensional bifurcation diagrams of the map F in 
the (a, c)-parameter plane at fixed h = 0.5 and Z = —0.1 (a), Z = —0.3 
(b). For the parameter ranges presented in these diagrams only the maps F^, 
i = 1,2,3, are involved in the asymptotic dynamics (i.e., the attractor, or 
attractors, in case of multistability, are located in the regions Ri). It can be 
seen that the structure of both diagrams near the bifurcation value a = 1 is 
similar to the case a — h, namely, the parameter point (a, c) = (1, Cm/n) is 
the starting point for the periodicity tongue related to the attracting cycle with 



326 Laura Gardini, Tonu Puu and Iryna Sushko 

the rotation number m/n (or to the two attracting cycles when n is odd), but 
increasing the value of a such a periodicity tongue is destroyed. Comparing 
Fig.6a and Fig.6b, it can be seen that decreasing / such a destruction occurs 
for smaller values of a. 

' (b )" 

Figure 6: Two-dimensional bifurcation diagrams of the map F in the (a, c)-
parameterplane at h = 0.5,1 = —0.1 (a) and I = —0.3 (b). 

Let us give some examples of bifurcation scenarios which can be real­
ized if the (a, c)-parameter point moves inside a periodicity tongue. For this 
purpose we choose the 8-periodicity tongue and move the parameter point in 
the directions indicated in Fig.6b by the straight lines A and B, The starting 
point of the 8-periodicity tongue is (a, Ci/g) = (1? A/2 — !)• Increasing a, for 
example at a = 1.005, in the phase plane there exists the closed attracting 
invariant curve C, made up by the closure of the unstable set of the saddle 
cycle of period 8, but already for a = 1.01 the attracting 8-cycle is a focus, 
so the curve C is no longer homeomorphic to a circle. Fig.7a presents an 
example of the saddle-focus connection at a = 2.2 and c — 0.35. 

Starting from this parameter point we decrease the value of c following 
the parameter path A, Fig.7b presents the phase portrait of the map F at a = 
2.2, c = 0.33 : It can be seen that the unstable set of the saddle 8-cycle has 
selfintersections (which is impossible for invertible maps). At c ?̂  0.3085 
the saddle 8-cycle undergoes a homoclinic bifurcation (see Fig.7c with an 
enlarged part of the phase plane), after which the saddle-focus connection 
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no longer exists. At c ^ 0.28 a border-collision bifurcation (Nusse and 
Yorke (1995)) occurs giving rise to an attracting and a saddle cycle of period 
6 (an analog of the saddle-node bifurcation), so that the parameter point 
enters the bistability region. The enlarged part of the phase space related to 
this bifurcation is shown in Fig.7d. We emphasize that at the bifurcation the 
merging points of the attracting and saddle cycles are critical points. After 

Figure 7: The saddle-focus connection at a — 2.2, I = —0.3, h = 0.5, 
c = 0.35 (a) and c = 0.33 (b). The enlarged part of the phase plane at 
c = 0.3085 (c) (the homoclinic bifurcation of the saddle 8-cycle), and at 
c = 0.28 (d) (the 'saddle-node' border-collision bifurcation for an attracting 
and a saddle 6-cycle, two couples of merging points of which are shown by 
gray circles and indicated by the arrows). 

the bifurcation the basin of attraction of the attracting 6-cycle is bounded 
by the stable set of the saddle 6-cycle, while the basin of attraction of the 
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attracting 8-cycle is bounded by the stable set of the saddle 8-cycle (see 
Fig.8). If we continue to decrease the value of c the basin of the attracting 

X 3 

Figure 8: Basins of attraction of coexisting attracting G-cycle and 8-cycle. 

8 cycle decreases. At c ^ 0.174 the border-collision bifurcation occurs for 
the attracting and saddle cycles of period 8, when a pair of points of the 
attracting and the saddle cycles merges on LC-i and another pair merges on 
LCti- O^ further decreasing of c the parameter point leaves the bistability 
region. 

At c ^ 0.085 the attracting 6-cycle becomes a regular saddle: One of 
its eigenvalue passes through 1. Due to the piecewise linear definition of the 
map F, it is a particular kind of a pitchfork-like border-collision bifurcation: 
A fc-cycle becomes a saddle and two coexisting A:-cyclic chaotic attractors 
appear. Fig.9 shows schematically the phase portrait of the map F at the 
bifurcation value, where [k, r^], i = 1,..., 6, denotes a segment of the eigen­
vector related to the eigenvalue 1, passing through the point p^ of the 6-cycle, 
and k, Ti are intersection points of the eigendirection with the related critical 
lines. Any point of the segment [p̂ , ri] or \li,pi] is periodic of period 6. This 
bifurcation gives rise to two cyclic chaotic attractors of period 6 (see Fig. 10 
which shows such attractors aX a = 2.46, c = 0.081). If we increase the 
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value of a then at a ?̂  2.48 the first homoclinic bifurcation of the saddle 6 
cycle gives rise to the pairwise merging of the pieces of the attractors into 
a 6-pieces cyclic chaotic attractor, which then becomes a one-piece attrac-
tor due to the first homoclinic bifurcation of another saddle cycle of period 
6, bom due to the 'saddle-node' border-collision bifurcation. (For the de-

Figure 9: The schematic view of the phase portrait of the map F at the 
bifurcation value related to thepichfolk bifurcation of the attracting 6-cycle. 

Figure 10: Two cyclic chaotic attractors of period 6 are shown by different 
gray tonalities. Here a — 2.46, c = 0.081,1 = —0.3, h = 0.5. 

scription of different mechanisms of reunion of pieces of a cyclical chaotic 
attractor in piecewise linear maps see Maistrenko et al (1998)). 
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Let us consider now the parameter path indicated in Fig.6b by B , increasing 
a from a = 2.2 at fixed c = 0.35. At a ^ 3.33333 the attracting 8-cycle 
undergoes the center bifurcation: At the bifurcation value there exist in the 
phase space 8 invariant regions (because of numerical precision, we cannot 
say precisely if the invariant region is bounded by an ellipse, or it is a polygon 
with a high number of edges). After the bifurcation the map F has 8-cyclic 
attracting rings (see Fig. 11a which shows the attractor at a = 3.33334). 
Further increasing of the value a leads to the merging of 8 pieces of the 
attractor into one-piece attractor due to the homoclinic bifurcation of the 
saddle 8 cycle (see Fig.l lb which shows the attractor soon after the merging, 
at a = 3.335). 

Figure 11: The attractor of the map F at c = 0.35, I — —0.3, h = 0.5, 
a = 3.33334 (a) and a = 3.335 (b). 

All the examples presented above are related to the case in which only the 
maps Fi , F2 and F3 are involved in asymptotic dynamics, that is the constant 
branches of the investment function I{z) (see Fig.l) play a role only for 
transient, but not asymptotic dynamics, which seems to be more reasonable 
from the economic point of view. To give an example of the case in which 
all five linear maps Fi, i = 1,..., 5 are involved in asymptotic dynamics, 
we show two bifurcation diagrams in the (/,c)-parameter plane in Fig. 12, 
where h = 0.5, a = 1.1 (a) and a = 3 (b). We have numerically checked 
whether the trajectory (after some transient) has points in the regions R4 and 
i?5. The related parameter values are indicated by black points in Fig. 12b 
(the corresponding attracting set is a one-piece chaotic attractor), while in 
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Fig. 12a for the whole range of I the limit trajectory has no points in these 
regions. 

-0.6 -0.4 

(a) 

Figure 12: Two-dimensional bifurcation diagram of the map F in the (/, c)-
parameterplane at h = 0.5, a = 1.1 (a) and a = 3 (b). 
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Figure 13: The attracting closed invariant curve C at a = 2^ c = 0.35, 
1 = -0.3 and h = 1.8. 

To get a closed invariant attracting curve located in all five regions of the 
phase space we take h > 1 : Fig. 13 shows an example of such a curve at 
a = 2, c = 0.35, / = -0.3 and h = 1.8. Peculiarity of such a case is related 
to the fact that now we have a composition of the linear maps with zero 
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and nonzero eigenvalues, and it influences the bifurcation scenarios, which 
can be realized varying the parameters. The curve C, presented in Fig. 13, is 
made up by 4 images of the generating segment of LC[_i and 4 images of 
the generating segment of LC f̂̂ , while the images of the critical lines LC-i 
and LCt_i bound an absorbing area (or, more precisely, and absorbing ring) 
including the curve C. The map F is reduced on C to a rotation with the 
rotation number 1/8 and has two cycles of period 8, one attracting and one 
saddle. Increasing a the number of segments of the curve C increases (see 
Fig. 14a), and then coinciding segments of the unstable set of the saddle 8-
cycle appear (see Fig. 14b). It would be interesting to give a detailed analysis 
of possible scenarios of the destruction of a closed invariant curve in such a 
case, but we leave it as a subject for a future study. 

Figure 14: The attracting closed invariant curve C at c = 0.35, I 
h = 1.8, a = 2.16 (a) and a = 2.3 (b). 

-0.3, 
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