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Preface

The present volume can be seen as a rejoinder to the present editors’ "Oligo-
poly Dynamics - Tools and Models", Springer-Verlag 2002. There is no doubt
that, besides dynamic oligopoly theory, business cycle theory has been the
fastest growing field within modern nonlinear economic dynamics.

The contributions are centred around the models of multiplier-accelerator
type, emerging from Paul Samuelson’s seminal work of 1939, as later devel-
oped into nonlinear formats by Hicks and Goodwin around 1950.

These nonlinear models left many open ends, because the tools then
available (or at least then known to economists) did not permit any more
systematic analysis. The situation is now very different due to the huge ac-
cumulation of new methods in nonlinear dynamics. The present focus on
these causal or recursive models also implies a deviation from current main
stream real business cycle theory, based on "rational expectations", i.e., self
fulfilling forecasts held by the economic agents. In view of modern dynam-
ics, in particular the possibility of mathematical chaos, the latter paradigm
simply becomes untenable.

Again this volume, like the aforementioned volume, is collaborative work,
bringing together some of the environments where nonlinear economic stud-
ies are carried out, i.e., the Universities of Bielefeld (Germany), Cartagena
(Spain), Siena (Italy), Udine (Italy), Urbino (Italy), and the Institute of Math-
ematics, National Academy of Sciences of Ukraine, and the authors are a
mixture of economists and mathematicians in approximately equal propor-
tions.

Also, again, the collaboration took place within the precincts of CERUM,
the Centre for Regional Science at Umed University (Sweden), where a con-
ference was held 10-11 June 2005. The book is produced according to a
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pre-organized plan fixed by the editors, and the authors were all particularly
selected and invited. The final organisation of the book and the contents of
the chapters were discussed during the conference.

The editors are indebted to several individuals and organisations for help
and support. Thanks first go to CERUM, and its director, Prof. Lars Westin,
who, besides taking the financial responsibility for the conference, acted as
moderator during the entire conference, and to the conference secretary, Ms.
Susanne Sjoberg, who organised everything practical in the best imaginable
way.

The conference became financially possible due to generous grants from
The Bank of Sweden Tercentenary Foundation, the Gosta Skoglund Founda-
tion, and joint support from the Umea City Council and Umed University
Board. In addition thanks are due to the University of Bielefeld and the
University of Urbino, where some preparatory work was done. Further sev-
eral of the authors are grateful for support of their own work from different
sponsors, but acknowledgement of such will be given in the individual con-
tributions.

Umead and Kiev, 30 November 2005

Toénu Puu Iryna Sushko
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Aims and Scope

Tonu Puu

1 Introduction

The aim of the present volume is very simple: It is just to revive the type of
business cycle modelling once current in economics in the wake of the semi-
nal work by Samuelson (1939), Hicks (1950), Goodwin (1949) and others.
Their common feature was that they all resulted in causal dynamical models,
with sometimes surprisingly complex outcomes in view of the simplicity of
the structure of most of the models, whether cast as differential equations in
continuous time, or as discrete time difference equations (maps as we would
nowadays say), using a fixed delay structure.

Nonlinearity was part of most of the models, and was, of course, responsi-
ble for the resulting complexity. It goes without saying that the mathematical
tools available to economists those days did not allow for any systematic
interpretation of the more complex results, so the analysis stayed at the level
of numerical calculation of a few exemplifying orbits. Further, the computa-
tional means (slide rules and mechanical calculators for which even division
was a true challenge) those days were far from our laptops today, so it would
have been impossible to distinguish between transients and asymptotic or-
bits.

Some systematic methods were in fact developing under the heading of
perturbation methods, in electrical and mechanical engineering for very similar
models, cf. Duffing (1918) and van der Pol (1927). See Stoker (1950) and
Hayashi (1964) for contemporary state of the art accounts. But, these seem
not to have been known to economists, at least they were never used.

Today the prospects for dealing with these types of models are radically
changed, but economists at large seem no longer to be interested in them.
The focus has shifted to business cycle models based on the "rational expec-
tations" paradigm.
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2 Rational Expectations and Intertemporal Equilibrium

This seems to have first been introduced by Muth (1960), and later elabo-
rated by Lucas (1976), Sargent (1984), and others. The work is strongly con-
nected to econometric modelling of more or less sophistication, but, stripped
to its bare bones, the message is simple: The agents in the models are as good
as the economists constructing then, and hence know the models and their
outcomes. As a result they are able to make, on average, correct, self-fulfill-
ing forecasts of the future.

It would be impossible to understand this paradigm without its reference to
general equilibrium economics, because a dynamical process with this self-
fulfilling characteristic is the same as an equilibrium state in a static
intertemporal equilibrium model.

Throughout the history of economics the equilibrium and the dynamic ap-
proaches were competitors. Most of the time the equilibrium outlook was
the dominant. One could either explain the facts in terms of a causally recur-
sive model or in terms of an equilibrium balance of forces, where there was
no internal tendency to move the system out of equilibrium. Obviously the
latter outlook is the less demanding, because one does not need to discuss
what happens when the system is out of equilibrium.

This difference of outlooks obviously has a relation to the epistemological
distinction between causal and teleological (or functional) explanation. In
the first, things occur for certain reasons, in the latter to certain ends. As a
matter of fact the Marshallian theory for partial market equilibrium was once
criticised on the grounds that price could not be determined at once by sup-
ply and demand. See Schumpeter (1954). Economics is not alone among the
sciences to have used teleological explanations. In physics conservative
mechanical systems, such as the Lagrangean or the Hamiltonian, can be rep-
resented as minimization of "action", and in biology it is very common to
explain the function of organs in terms of the service they perform for the
organism.

The most grandiose equilibrium theory in economics ever conceived was
of course the Walrasian general equilibrium theory for an arbitrary number
of interdependent markets. See Walras (1874-1877). The original work con-
siders not only the existence, in terms of equal numbers of equations and
variables, but also the stability of such an equilibrium (in terms of "taton-
nement" processes).

However, both lines of thought needed further elaboration. A system of
independent equations containing the same number of independent variables



Aims and Scope 3

does not necessarily have a solution, as the equations can be incompatible.
The first rigorous attempt was made by Wald (1936), later further elaborated
by Arrow and Debreu (1954) and Debreu (1959). Not only the existence, but
also the uniqueness of the solution was considered, and such constraints on
production technology and consumer preferences were specified as to guar-
antee existence and uniqueness. Though the achievement is intellectually
most impressive, it must be said that it is also totally void of information
content in this general form.

The stability issue was meanwhile dealt with by Hicks (1939), who reached
halfway, but gave a partly erroneous result, and finally solved by Samuelson
(1947), who specified such conditions for the system that would guarantee
local linear stability of the equilibrium.

All this is relevant for us because general equilibrium theorists were not
content with the temporary existence and uniqueness of general equilibrium
for an arbitrary system of markets. They also introduced "future" markets
and prices for goods traded in the future. In this way the evolution existed
already in the intertemporal equilibrium point - provided, of course, that
every agent had perfect foresight of the future. In this way the rational ex-
pectations hypothesis is a natural outgrowth of general equilibrium theory.

So, given its dominance in contemporary mainstream economics, com-
bined with the fact that Keynesian macroeconomics has been completely
dismantled, it is natural that business cycle theory is put in the framework of
rational expectations under the special heading of real business cycle theory.

3 Determinism and Predictability

However, it is a pity that the beautiful causal business cycle models, with
their simple logical structure and complex way of working, have been
scrapped. This is particularly true because today's knowledge of complex
dynamical systems allows for numerical and analytical treatment of most
issues left as open ends in the days the models of, loosely speaking, multi-
plier-accelerator type were proposed.

There is an additional reason why a revival of these classical recursive
models is important: There is an inherent contradiction in the very idea of
rational expectations. Suppose we accept the proposition that the average
agents are no less knowledgeable than the economists who model! their be-
haviour. This is probably something the general public, who constantly sees
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the multiplicity of professional forecasts, that only seem to share the feature
that they all go wrong, would agree to.

Assuming there exists a unique true model for the economy, and that it is
known to all the agents, is still a heroic assumption to make. Everyone, ex-
cept addicted fans of rational expectations modelling, would agree to this, so
there is no need to elaborate further. Supposing, however, that the assump-
tions are true, the agents would still need to make forecasts in order to choose
a proper action.

But, the main message of modern systems theory is that determinism in
principle and the possibility of forecasting are very different issues. Math-
ematical chaos makes prediction impossible. So, even if the all the agents
know the true model, they will still all make different forecasts - none of
which becomes true - and there is no reason to believe that any kind of aver-
age of these different expectations equals the actual realization of the proc-
ess resulting from the actions chosen - it may itself be chaotic, and hence
unpredictable.

This objection, however, does not affect the causal models, which hence
not only provide an until now underexplored wealth of economic theory, but
represent a type of models that do not become self-contradictory once we
recognize the fact that determinism does not guarantee predictability.

Outline of the Book

The outline of the book is as follows. Given we need some relevant math-
ematical tools for the global analysis of such dynamical systems that result
from models of the business cycle, a field in fast development, the exposi-
tion starts with two purely mathematical-methodological chapters The fo-
cus 1s on maps, not differential equations. Most of the contributions are
phrased in a discrete time setting, quite like the case of most classical mod-
els, there is only one exception to this (Chapter 10), and there no use is made
of other than classical methods. Chapter 1 deals with smooth maps, Chapter
2 with piecewise linear maps.

After these, Chapter 3 recalls the basics of Keyenesian macroeconomics,
and stresses its importance for Samuelson's multiplier-accelerator model, in
view of its stress on non-monetary issues and on the demand side of the
economy. It also gives a historical background to the multiplier and the prin-
ciple of acceleration.
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Chapters 4 and 5 then develop the Samuelson model to a nonautonomous
format where the coefficients in the recurrence equations are not constant
but may change during the process.

The multiplier-accelerator model, of which the Hicksian version is the best
known, came in two different variations. Both stress the fact that a linear
accelerator, or termed otherwise, investment function, is unlikely to hold,
both due to substantial considerations, and to the fact that it leads to oscilla-
tions that either explode, or that are completely damped out with time.

Hence some nonlinearity is needed that limits its action upwards and down-
wards, what Hicks called the floor (when income decreases so fast that more
capital could be dispensed with than what disappears through natural depre-
ciation), and what he called the ceiling (when income grows so fast that
available resources put a limit to further expansion).

The Goodwin tradition, which arose independently of the Hicksian, incor-
porates both limits in the investment function. The pure Hicksian tradition
only incorporates the floor in the investment function, and puts the ceiling as
a constraint on total expenditures, by the way the only non-Keynesian ele-
ment through which the supply side has some influence on the process.

Chapters 6 and 7 are in the Hicksian tradition, the first giving a full analy-
sis of the original floor-ceiling model as Hicks left it, the second dealing
with a slight variation where the floor is tied to the stock of capital.

The rest of the book deals with the Goodwin tradition, introducing various
nonlinear investment functions, such as polynomial (Chapter 11), or piecewise
linear (Chapter 12). Chapter 8 illustrates some of the important issues from
Chapter 1, such as coexistent attractors and their bifurcations, and Chapter 9
1s a variation where the formation of expectations is introduced as a basic
element. Chapter 10, gives a fresh historical account of the emergence of
Goodwin's original model, and is consequently formulated in terms of dif-
ferential equations.
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1 Some Methods for the Global Analysis of

Closed Invariant Curves in Two-Dimensional
Maps

Anna Agliari, Gian-Italo Bischi and Laura Gardini

1.1 Introduction

It is well known that models of nonlinear oscillators applied to the study
of the business cycle can be formulated both as continuous or discrete time
dynamic models (see e.g. [23], [33], [34]). However, economic time is of-
ten discontinuous (discrete) because decisions in economics cannot be con-
tinuously revised. For this reason discrete-time dynamical systems, repre-
sented by difference equations or, more properly, by the iterated application
of maps, are often a more suitable tool for modelling dynamic economic
processes. So, it is useful to study the peculiarities of discrete dynamical
systems and their possible applications to the study of self sustained oscilla-
tions. This is the main goal of this chapter, where we describe, on the light of
some recent results about local and global properties of iterated maps of the
plane, some particular routes to the creation/destruction of closed invariant
curves, along which self sustained oscillations occur.

In fact, even if in the fifties and sixties the methods for the study of
iterated maps were less developed than those for ordinary differential equa-
tions, the situation is now rapidly changing because many results have been
obtained about discrete dynamical systems (see e.g. [25], [26], [24], [16],
[42],[28], [29]). Indeed, the dynamic properties and bifurcations of one di-
mensional iterated maps are now quite well known, as well as their implica-
tions about periodic and chaotic behaviors of their trajectories (see e.g.[15],
[40],[41]). Even for two-dimensional maps more and more results can be
found in the literature, starting from the pioneering works {25] and [26], (see
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also [32], [35], [36], [1]). The qualitative methods for the study of discrete
dynamical systems are in many aspects similar to those employed in con-
tinuous time systems, but important differences are worth to be emphasized.
For example, a version of the Andronov-Hopf bifurcation theorem also ex-
ists for discrete dynamical systems, known as Neimark-Sacker bifurcation
theorem, and it is quite similar to the one in continuous time, with the ex-
pected difference that while in the continuous-time case an equilibrium point
undergoes an Hopf bifurcation when a pair of eigenvalues cross the line of
vanishing real part, in the discrete-time case the Neimark-Sacker bifurcation
occurs when a pair of eigenvalues cross the unitary circle of the complex
plane. However, remarkable differences can be evidenced, both concerning
the kind of motion along the closed invariant curve created at the bifurcation
(it is no longer a unique trajectory but the closure of infinitely many distinct
trajectories, either periodic or quasiperiodic) and the fate of such invariant
curve as the parameters move far from their bifurcation values.

In this chapter, some global bifurcations that cause the creation and de-
struction of invariant closed curves via global bifurcations are also consid-
ered, related with the occurrence of saddle-node or saddle-focus heteroclinic
or homoclinic connections and tangles. Some exemplary global bifurcations
are shown through numerical explorations and qualitative geometrical expla-
nations.

Indeed, several aspects in the study of the global dynamical properties
of two-dimensional discrete dynamical systems are still obscure, and their
study often require an interplay between analytical, geometric, numerical
and graphical methods. Moreover, the differences between continuous and
discrete dynamical systems become particularly evident when the latter are
obtained by the iteration of noninvertible maps. A map is invertible if it maps
distinct points into distinct points, whereas whenever distinct points which
are mapped into the same point exist, then we say it is a noninvertible map.
Hence, the geometric action of a noninvertible map can be expressed by say-
ing that it “folds and pleats” the phase space, so that distinct points can be
mapped into the same point (see e.g. [36], [3] for recent studies of the prop-
erties of noninvertible maps, [13], [12] and the monograph [39] for recent
applications in economics). This introduces some peculiar dynamic prop-
erties when a business cycle model is represented by a discrete dynamical
system obtained by the iteration of a noninvertible map.
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1.2 Basic Definitions and Properties of Two-Dimensional Discrete
Dynamical Systems

In this section we give some basic definitions and properties concerning two-
dimensional discrete dynamical systems', represented by the iterated appli-
cation of a map of the plane

=T, T:5—S, SCR? )

At any iteration it transforms a point z € S into a unique point z’ € S called
rank-1 (forward) image of . A point = such that T (z) = z’ is a rank-1
preimage of .

If x # y implies T'(x) # T (y) for each z, y in S, then 7" is an invertible
map in S, because the inverse mapping z = T~! (2) is uniquely defined;
otherwise 7' is said to be a noninvertible map, because points = exist that
have several rank-1 preimages, i.e. the inverse relation x = 71 (z/) is
multivalued. So, noninvertible means “many-to-one”, that is distinct points
z # y may have the same image, T'(z) = T (y) = «'.

Geometrically, the action of a noninvertible map can be expressed by
saying that it “folds and pleats” the space S, so that distinct points are
mapped into the same point. This is equivalently stated by saying that several
inverses are defined in some points of S, and these inverses “unfold” §.

For a noninvertible map, S can be subdivided into regions Zx, k& > 0,
whose points have & distinct rank-1 preimages. Generally, for a continuous
map, as the point 2’ varies in R?, pairs of preimages appear or disappear as
it crosses the boundaries separating different regions. Hence, such bound-
aries are characterized by the presence of at least two coincident (merging)
preimages. This leads us to the definition of the critical curves, one of the
distinguishing features of noninvertible maps (see [25] and [36]):

Definition. The critical curve LC of a continuous map 7T is defined as
the locus of points having at least two coincident rank-1 preimages, located
on a set LC_1, called set of merging preimages.

Portions of LC separate regions Zj, of the phase space characterized by
a different number of rank — 1 preimages, for example Zj and Zx. o (this
is the standard occurrence for continuous maps). The critical set LC is the
generalization of the notion of local extrema (minimum or maximum value)

The reader is addressed to [24], [32], [37], [36] for a more complete treatment.
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of a one-dimensional map? and the set LC_; is the generalization of local
extremum point of a one-dimensional map (i.e. T(LC_,) = LC)).

Starting from an initial condition zy € S, the (forward) iteration by T'
uniquely defines a trajectory

7(z0) = {zn =T" (x0), n=10,1,2,...}

where T is the identity function and 7™ = T o T™~!. The set of points that
form a trajectory is also called orbit, however many authors consider these
two terms as equivalent.

The simplest orbits are fixed points, that is a singleton {p*} such that

T (p*) = p*, so that T™ (p*) = p* for all n, and cycles of period k, that is a
set of k (k > 1) distinct periodic points {p},p3, ..., pf} such that T (p}) =
piyq fori=1,2,..,k—1and T (p}) = pi. Observe that the periodic points
of a cycle of period k are fixed points of the map T, and a fixed point is a
k—cycle with k = 1.
We recall that a set £ C R” is invariant for the map T if it is mapped onto
itself, T'(E) = E. This means that if z € E then T'(z) € E, ie. E'is
trapping, and each point of E is the forward image of at least one point of
E. The simplest examples of invariant sets are the fixed points and the cycles
of the map. More generally, the attracting (repelling) sets and the attractors
(repellors) of a map are invariant sets.

An attracting set A is a closed invariant set such that a neighborhood U
of A exists which is strictly mapped into itself and whose trajectories (i.e.
the trajectories starting from any point of U) converge to A. A closed in-
variant set which is not attracting is called a repelling set if however close to
A there are points whose trajectories goes away from A. An attractor (re-
pellor) is an attracting (repelling) set containing a dense orbit. An attracting
set may contain one or several attractors, coexisting with sets of repelling
points, whereas an attractor is an undecomposable set. In the case of a cycle
attractor (repellor) is synonymous of asymptotically stable (unstable). In
particular unstable nodes and foci are also called expanding.

As the definition suggests, there exist points which converge to an attract-
ing set (or to an attractor) A: The trapping set made up by all such points
constitutes the basin of attraction of A and it can be obtained considering the
union of the preimages of any rank of the neighborhood U (defined above):

B(4)= UT™" () )

?This terminology, and notation, originates from the notion of critical point as it is used
in the classical works of Julia and Fatou.
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where 7! (z) represents the set of all the rank-1 preimages of z and T~™ (z)
represents the set of all the rank-n preimages of x (i.e., the points mapped
into z after n applications of T").

In other words, the basin of an attracting set A is the set of all the points
that generate trajectories ultimately belonging to A or to the neighborhood
U defined above.

As we are interested in the asymptotic behavior of the trajectories, we
also introduce the w—Iimit set of a point z: A point ¢ € w(z) if there exists
an increasing sequence n; < ng < ... < 7y... such that the points 7™ (x)
tend to g as k goes to infinity (clearly such a point g belongs to the limit set
of the trajectory 7 (z)). The set w(z) is invariant and gives an idea of the
long run behavior of the trajectory from x.

The same definition can be associated with the backward iterations of
T, so obtaining the a—/imit set of x: A point ¢ € a(z) if there exists an
increasing sequence n; < ng < ... < 7y... such that the points TJ:"k (z),
for a suitable sequences of inverses ji in case of a noninvertible map, tend
to g as k goes to infinity (clearly such a point ¢ belongs to the limit set of
ST

In the particular case of a fixed point p* of T" we define the stable and
unstable sets of p* as

Wt (p*) = {a: : lirf " (z) :p*}

W (p*) = {x 2 lim T3 (z) = p*}

respectively, where T] means for a suitable sequence of inverses. This
means that the stable set of p* is the set of points « havmg p* as w-limit set
and the unstable set of p* is given by the points having p* in their a-limit set.

If p* is an asymptotically stable fixed point, then its stable set coincides
with its basin of attraction, B (p*), and its unstable set is not empty if the
map is noninvertible in p*. If p* is an expanding fixed point, then its unstable
set is a whole area and its stable set is not empty if the map is noninvertible
in p*.

Other important sets in the study of the global properties of a map T are
the stable and unstable sets of an hyperbolic® saddle fixed point p*. Indeed,

3 A fixed point p* is said hyperbolic if the jacobian matrix evaluated at p* has no eigen-
values of unit modulus.



12 Anna Agliari, Gian-Italo Bischi and Laura Gardini

if the map T admits several disjoint attracting sets, the stable sets of some
saddles (fixed points or cycles) often play the role of separatrices between
basins of attraction.

If p* is a hyperbolic saddle and 7" is smooth in a neighborhood U of p*
in which 7" has a local inverse denoted as 77 ! the Stable Manifold Theorem
states the existence of the local stable and unstable sets (defined in such a
neighborhood U of p*) as

WS (p*)={zeU:z,=T"(z) —p*and z, € U}
WY (p*) = {mEU:x_nle_"(a:)—>p*andx_n€U}.

The set W2 _(p*) (resp. WY, (p*)) is a one-dimensional curve as smooth
as T, passing through p* and tangent at p* to the stable (resp. unstable)
eigenspace. Then the global stable and unstable sets are made up, respec-
tively, by all the preimages of any rank and the (forward) images of the

points of the local sets, that is:

WE(p') = YT (Wi (7)) 3)
WY (p") = U T (Wi (") - 4

where T~ " denotes all the existing preimages of rank-n.

If the map is invertible, the stable and unstable sets of a saddle p* are
invariant manifolds of T'. If the map is noninvertible, the stable set of p*
is backward invariant, but it may be strictly mapped into itself (since some
of its points may have no preimages), and it may be not connected. The
unstable set of p* is an invariant set, but it may be not backward invariant and
(contrarily to what occurs in invertible maps) self intersections are allowed
(several examples will be shown in this book).

It is worth to observe that analogous concepts are also given for contin-
uous flows, but the main difference here is that the stable and unstable sets
are not trajectories, but union of different trajectories (indeed infinitely many
distinct trajectories). A qualitative representation of the local stable and un-
stable sets, I/VliC and WU, of a saddle fixed point p* is given in Fig.1, where
ES and EY are the eigenspaces.

In the following, we shall consider the stable (resp. unstable) set of a
saddle as given by the union of two branches merging in p* denoted by w;
and wy (resp o and o) because all the points in these branches have p* as
w—limit set (resp. in their a—/limit set).

Ws(p*)zwl Uwsg , wvY ()= Uas
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The concepts of stable and unstable sets can be easily extended to a cycle
of period k, say C = {p},p3,...,p%}, simply considering the union of the
stable (unstable) sets of the points of the cycle considered as & fixed points
of the map T*. For example

k
ey =Uw e, WD = {e: lm 140 -1t

=1

and analogously for the unstable set. In particular, for a k—cycle saddle we

EU

WU

loc

Figure 1: The local stable and unstable sets of the saddle p*.

obtain the stable and unstable sets from (3) and (4) with the map T instead
of T', that is
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The importance of the stable and unstable sets is related to the fact that they
are global concepts, that is, they are not defined only in a neighborhood of
the fixed point (or cycle). Thus, being interested in the global properties of
the map 7', we may study its invariant sets, through a continuous dialogue
between analytic, geometric and numerical methods, and focus our attention
on the basins of attraction of its attractors and on the stable and unstable sets
of some of its saddle points or cycles.

If the map is nonlinear, the stable and unstable sets may intersect, i.e. it
may exist a point ¢ such that ¢ € W*t (p*) N W¥* (p*) , or

e W3 )nw (p).

Such a point g is a homoclinic point and it can be proved that if a homoclinic
point exists then infinitely many homoclinic points must also exist, accumu-
lating in a neighborhood of p*. Intuitively, this can be understood observing
that the forward orbit of ¢ and a suitable backward sequence is also made up
of homoclinic points, and converge to p*. The union of the forward orbit and
a suitable backward orbit of a homoclinic point g is called a homoclinic orbit
of p*, or orbit homoclinic to p*:

T (Q) = {"')q-—'ﬂ’ 3 4-2,9-1,9,491,92, ---; 9n, }

where g, = T™ (¢) and T" (q) — p* while g_, = T; " (g) and T}, " (g) —
p* is a suitable backward orbit. More generally, an orbit homoclinic to a
cycle approaches the cycle asymptotically both through forward and back-
ward iterations, so that it always belong to the intersection of the stable and
unstable sets of the cycle.

The appearance of homoclinic orbits of a saddle point p* corresponds to
a homoclinic bifurcation and implies a very complex configuration of W<
and WY, called homoclinic tangle, due to their winding in proximity of p*.
The existence of an homoclinic tangle is often related to a sequence of bi-
furcations occurring in a suitable parameter range, and qualitatively shown
in Fig.2: First, a homoclinic tangency between one branch, say wi, of the
stable set of the saddle and one branch of the unstable one, say «;, followed
by a transversal crossing between w; and o, that gives rise to a homoclinic
tangle, and by a second homoclinic tangency of the same stable and unstable
branches, occurring at opposite side with respect to the previous one, which
closes the sequence. It is worth to recall that in the parameter range in which
the manifolds intersect transversely, an invariant set exists such that the re-
striction of the map to this invariant set is chaotic, that is, the restriction is
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topologically conjugated with the shift map, as stated in the Smale-Birkhoff
Theorem (see for example in [24], [35], [42], [9], [32]). Thus we say that
the map possesses a chaotic repellor, made up of infinitely many (countable)
repelling cycles and uncountable aperiodic trajectories. In the case shown in
Fig.2 such a chaotic repellor certainly exists after the first homoclinic tan-
gency and disappears after the second one.

o

©|

Figure 2: Homoclinic tangle involving the branches o of the unstable set
and w1 of the stable one.

Before and after the homoclinic tangle (i.e. before the first and after
the last homoclinic tangencies), the dynamic behavior of the two branches
involved in the bifurcation must differ: The invariant set towards which o
tends to (or equivalently the w-limit set of the points of a1 ) and the invariant
set from which w; comes from (or equivalently the a-limit set of the points of
w1) before and after the two tangencies are different. Also at the bifurcation
value, as in Fig.2a, are different from those of Fig.2c. Thus we can detect
the occurrence of such a sequence of bifurcations looking at the asymptotic
behavior of WS and WY.

We observe that if the saddle is a cycle C = {p}, p3, ..., b} }, we may have
homoclinic orbits of p}, 7 = 1, ..., k, belonging to the stable and unstable sets
of the periodic point p} (considered as fixed points of the map T°%): In such
a case we say that there exists points homoclinic to C. But it may also occur
that the unstable set WU (p}) transversely intersects WS(p} ), i = 1,...,k
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and p; , = pi: In such a case we have heteroclinic points and heteroclinic

tangle denotes the corresponding configuration of W and WY sets. An
example of heteroclinic tangle associated with a saddle cycle of period 4 is
qualitatively shown in Fig.3: It involves the internal branches a4 ; and wy ;
which, after a first tangency, transversely intersect each other and then have

a second tangency.
) |
Y
% .)
Wﬁm

(b),

()

Figure 3: Heteroclinic tangle associated with a saddle cycle of period 4 (or
4 saddle points of the map T*).

Let us also remark that, as in the case of a homoclinic tangle, also in a
heteroclinic tangle the asymptotic behavior of the involved branches, before
and after the two tangencies, changes. Dynamically, heteroclinic tangles
are as important as homoclinic ones since it is possible to prove that also
in such cases an invariant set exists on which the restriction of the map is
chaotic. This homoclinic bifurcation is also called a cyclical heteroclinic
connection in the sense of Birkhoff (see [10]), who first showed that the same
properties occur when the stable and unstable manifolds of a saddle fixed
point intersect transversely, or when there are two saddle fixed points, say s}

and s, such that WS (s5)nwV (s;) # (), thus giving cyclical heteroclinic
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points that form an heteroclinic connection (see also [19]). In such a case,
the transverse intersections of W (C) and W* (C) for the saddle cycle C =
{p7,p5,...,pi}, called homoclinic points of non simple type in [10] gives
the same properties as the homoclinic points of a saddle fixed point (called
homoclinic points of simple type in [10]). Thus the occurrence of a transverse
homoclinic orbit of a saddle cycle is enough to prove the existence of chaotic
dynamics, because it is possible to prove that in the neighborhood of any
homoclinic orbit there are infinitely many repelling cycles and an invariant
“scrambled set” on which the restriction of the map is chaotic in the sense of
Li and Yorke (see for example in [20], [21], [42]).

It is worth to notice that if the map 7 is noninvertible and p* is an ex-
panding fixed point of T (i.e., a fixed point such that the Jacobian matrix
evaluated at p* has all the eigenvalues greater than 1 in modulus) then the
stable set of p* is given by the preimages of any rank of p*, if they exist (as
defined at the beginning of this section). The existence of a stable set for
repelling points is a distinguishing feature of noninvertible maps, because
such a set is empty in invertible maps. In fact, for a noninvertible map the
only preimage of a fixed point p* is p*, as T (p*) = p*, whereas preimages
p*, # p* may existif T' is noninvertible, i.e. several rank-1 preimages exist.
This implies that for noninvertible maps homoclinic bifurcations may also
occur for expanding fixed points (repelling nodes and foci), whereas for in-
vertible maps they can only occur for saddles. Another difference between
invertible and noninvertible maps is associated with non connected basins of
attraction, which are only possible for noninvertible maps, whereas they are
always simply connected in invertible maps.

1.3 Closed Invariant Curves

The main interest in this chapter is to show some local and global bifurca-
tions related to closed invariant curves in two-dimensional maps, as the dy-
namics related to such curves is what can be interpreted (in applied models)
as cyclical behavior. As we shall see (in later sections and in several exam-
ples in later chapters), the appearance/disappearance of closed curves may
be related to some global bifurcation. However, the most known mechanism
leading to such curves is the Neimark-Sacker bifurcation.

Let us simply recall the properties of a focus fixed point p* = (z*, y*)
of a smooth map T, for which the Jacobian matrix DT in p* has complex-
conjugate eigenvalues, assuming that the stability of the fixed point is in-
vestigated as a function of one parameter ;. As long as the eigenvalues are
in modulus less than one, say for 1 < pg, the focus is stable and locally
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(in a small neighborhood of p*) the trajectories belong to spirals and tend
to the fixed point. When the eigenvalues are in modulus greater than one,
say for o > pq, the focus is unstable (repelling) and locally the trajectories
still belong to spirals, however they have a different asymptotic behavior.
The crossing of the complex eigenvalue trough the unitary circle, at . = g,
corresponds to a Neimark-Sacker bifurcation. The analytical conditions at
which it occurs, and the so called “resonant cases”, now belong to standard
dynamical results, which can be found in many textbooks, see for example
[28], {29]. [24], [32], [42]. Let us here briefly recall the matin features, which
are useful in the study of applied models. A Neimark-Sacker bifurcation is
related with closed invariant curves, existing in a small neighborhood of the
stable fixed point when the bifurcation is subcritical, or of the unstable fixed
point when it is supercritical. The critical case occurs when locally the map
behaves as a linear map, that is, the dynamic behavior at the bifurcation value
is that of a center, and locally infinitely many closed invariant curves exist
(instead of only one, as it occurs before or after the bifurcation value in the
subcritical or supercritical case, respectively). Fig.4a qualitatively shows a
bifurcation diagram in the subcritical case: A repelling closed invariant curve

o i
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Figure 4: Qualitative diagram of the Neimark-Sacker bifurcation: (&) sub-
critical case, (b) supercritical case.
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T" exists surrounding the stable fixed point, for u < pg. As p increases the
repelling closed curve decreases in size and shrinks merging with the fixed
point at 1 = pg, leaving a repelling focus. It is worth noting that in such
a case the closed repelling curve is generally the boundary of the basin of
attraction of the stable fixed point. After the bifurcation the fixed point is
unstable and the w-limit set of a point close to it depends on the nonlinearity
of the map (it may converge to another attracting set or diverge).

Fig.4b qualitatively shows a bifurcation diagram in the supercritical case:
At ;1 = py the fixed point becomes an unstable focus and for 1 > p, an at-
tracting closed invariant curve I" exists, surrounding the unstable fixed point.
Thus the w-limit set of points close to it is such closed invariant curve.

For p in a neighborhood of p the closed invariant curve I' (stable or
unstable) is homeomorphic to a circle, and the restriction of the map to "
is conjugated with a rotation on the circle. Thus the dynamics on I' are
either periodic or quasiperiodic, depending on the rotation number. Roughly
speaking, the rotation number represents the average number of turns of a
trajectory around the fixed point. When the rotation number is rational, say
m/n, it means that a pair of periodic orbits of period n exists on I', and
to get the whole periodic orbit a trajectory makes m turns around the fixed
point. The dynamics occurring in such a case on I' are qualitatively shown
in Fig.5a in case of a supercritical bifurcation (T" is aftracting): The closed
curve is made up by the unstable set of the saddle cycle, and I is also called
a saddle-(stable) node connection. Instead, Fig.5b shows the subcritical case
(T is repelling): The closed curve is made up by the stable set of the saddie
cycle, and I is also called a saddle-(unstable) node connection. When the
rotation number is irrational, the trajectories of 1" on the closed curve I are
all quasiperiodic. That is, each point on I" gives rise to a trajectory on the
invariant curve which never comes on the same point, and the closure of the
trajectory is exactly I'.

Investigating the bifurcation of a fixed point of T" as a function of two
parameters, it is quite common to derive the so called stability triangle,
whose boundaries represent the stability loss due to different properties of
the eigenvalues. That is, one side represents a flip-bifurcation (one eigen-
value equal to -1), another side a fold or pitchfork-bifurcation (one eigen-
value equal to +1), and a third side the Neimark-Sacker bifurcation (com-
plex eigenvalues in modulus equal to +1). In the supercritical case, such
a portion of bifurcation curves is the starting point of so called “period-
icity tongues”, or Arnol'd tongues, associated with different rational rota-
tion numbers m/n. A peculiar property of such tongues is associated with
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the summation rule [27]: Between any two tongues with rotation numbers
m1/ny1 and mg/ny there is also a tongue associated with the rotation number
'm’/n’ = (ml + mg)/(nl + 712).

Figure 5: Dynamics on a closed invariant curve ' (a) saddle-(stable)} node
connection, (b) saddle-(unstable) node connection, (c) saddle-(stable) focus
connection, (d) saddle-(unstable) focus connection.

It is clear that properties and bifurcations similar to those described above
for a fixed point can occur also for a k—cycle of any period & > 1, simply
considering the k periodic points as fixed points of the map T*. In such a
case the closed invariant curves T, of the map T* belong to a k—cyclical
set for the map T'. Several examples of bifurcation diagrams and invariant
closed curves I (cyclical or not), with rational rotation numbers and saddle-
connections or with quasiperiodic trajectories, will be shown in later chap-
ters, associated with several business cycles models.

The dynamic evolution of I" clearly depends on the nonlinearity of the
map. Several examples will be given, both in piecewise linear maps (see
the next chapter and Chapter 12) and in smooth maps (Chapters 8, 9, 11),
together with a survey of possible mechanisms leading to the destruction
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of a closed curve. We only note here that the destruction may occur in
two different ways: Either because the invariant closed curve I' becomes
no longer homeomorphic to a circle, or because the restriction of the map
on I" becomes no longer conjugate with a rigid rotation or an invertible map
of the circle. The first case naturally occurs when the cycle node (stable or
unstable) on I" becomes a focus: Fig.5c-d qualitatively represent this case,
together with a saddle-focus connection, which may be stable (Fig.5c) or
unstable (Fig.5d).

We finally remark that when a pair of parameters are let to vary in a
parameter plane outside the stability triangle, from the region close to a
supercritical pitchfork (or flip) bifurcation curve towards the region where
a supercritical Neimark-Sacker bifurcation occurs, then global bifurcations
associated with (attracting and repelling) closed invariant curves must nec-
essarily occur. Some of the mechanisms explaining such global bifurcations
are described in the next sections.

1.4 Effects of Critical Curves on Invariant Closed Curves

In this section we consider the transformations of an invariant closed curve,
born from a focus fixed point of a noninvertible map of the plane via a super-
critical Neimark-Sacker bifurcation, as some parameter is gradually moved
away from its bifurcation value. As stated in the previous section, just af-
ter the bifurcation an attracting invariant closed curve, say I, exists around
the unstable focus. It is smooth and homeomorphic to a circle, with radius
proportional to the square root of the distance from the bifurcation set in the
parameter space (see e.g. [24], p.305).

The dynamics of the iterated map restricted to I" is conjugate to a map
of the circle, and may be characterized by an irrational or a rational rotation
number. In the former case, the motion along I is non periodic (also called
quasiperiodic) and the iterated points are densely distributed along the whole
invariant curve, whereas in the latter case, if the rational rotation number has
the form m/n, the motion is n-periodic, i.e., an attracting cycle of period n
exists embedded into I', and the n periodic points are cyclically visited every
m turnings around the unstable focus. The latter situation is observed when
the parameters are chosen inside a m /n Arnold tongue. The whole curve I' is
covered by the iterated points only in the case of irrational rotation number,
otherwise only the periodic points are visited by the asymptotic dynamics,
so that it is difficult to see I numerically, when the period n is small, even if
the closed invariant curve exists (given by the saddle-node connection).
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However, the Neimark-Sacker bifurcation theorem only gives local results
in the parameter space, in the sense that it says nothing about the changes
in the shape, or even the existence, of the invariant curve, as the parameters
move away from the bifurcation values. Indeed, the closed invariant curve
may suddenly disappear, or drastically change its shape, or evolve into an
annular chaotic attractor (a chaotic ring). In the case of a noninvertible map
of the plane, important modifications of the shape and global properties of I"
occur due to the folding action of the critical curves.

In order to illustrate this point, let us consider an exemplary case, ob-
tained by using the quadratic map 7" : (z,y) — (2, ') defined by

J =y
T'{y’:y—)\x-i-mQ )

where ) is a real parameter (see [36] for a more detailed study of this map).
Given z’ and ¢/, if we solve the algebraic system with respect to the un-
knowns x and y we obtain

Tflz{ T=3- \/§+y,—xl ;Tg_lz{ =3+ \/%24‘3//_93,
y=1a y=1a'
(6)
So, a point (z', ') has two distinct rank-1 preimages if y/ > (2/ — A\2/4),
and no preimages if the reverse inequality holds. This means that the map
(5) is a Zp — Z2 noninvertible map, where Z; (region whose points have
no preimages) is the half plane Zo = {(z,y)|y < z — X2/4} and Z; (re-
gion whose points have two distinct rank-1 preimages) is the half plane
Zy = {(z,y)|y >z — A%/4}. The line y = = — A?/4, which separates
these two regions, is the critical curve LC, i.e. the locus of points having
two merging rank-1 preimages, located on the line z; = \/2, that repre-
sents LC_;. Any point (z,y) € Z2 has the two rank-1 preimages sym-
metrically located at opposite sides with respect to LC_1: Ty (z,y) €
Ry and TZ'1 (z,y) € Rp, where R; is the region defined by z < /2
and Ry is defined by = > A/2. We notice that, being (5) a continuously
differentiable map, the line LC_; belongs to the set of points at which
the Jacobian determinant vanishes, i.e. LC., <C Jy, where
Jo = {(z,y)|det DT (x,y) = 2z — A = 0}, and the critical curve LC is
the image by T of LC_4, i.e. LC = T(LC_;) = T{{z=)/2}) =
{(z,9)ly = = — N*/4}.
The folding action related to the presence of the critical lines can be
expressed by saying that the image of any region U separated by LC_; into
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two portions, say U; € R; and Uy € Rp, is folded along LC), in the sense
that T'(U;) N T'(Us) is a nonempty set included in Zs. This means that two
points p € U; and g € Us, located at opposite sides with respect to LC_1,
are mapped in the same side with respect to LC, in the region Zs. This
can be equivalently expressed by stressing the “unfolding” action of 71,
obtained by the application of the two distinct inverses in Z which merge
along LC'. Indeed, if we consider a region V' C Z», then the set of its rank-1
preimages 77 1(V) and T ' (V') is made up of two regions T; (V) € Ry
and T, ' (V) € Ry, that are disjoint if V N LC = ) whereas they merge
along LC_1if VNLC #0.

The map (5) has two fixed points, O = (0,0) and P = (A, A). It is easy
to see that O is stable for 0 < A\ < 1, and as A is increased through the
bifurcation value A = 1 a supercritical Neimark-Sacker bifurcation occurs at
which a stable invariant closed curve arises around the unstable focus O, as
shown in Fig.6a, obtained for A = 1.02. In the situation shown in Fig.6a the
other fixed point, P, is a saddle, whose stable set constitutes the boundary
that separates the basin of attraction of the closed invariant curve I" (the white
region) from the basin of diverging trajectories, also called basin of infinity
(the grey region). Notice that in Fig.6a the invariant curve I" appears to
be smooth and of approximately circular shape, so that the quasi-periodic
motion along it is very similar to purely trigonometric oscillations. It can
also be noticed that IT" is entirely included in the region R;, i.e. it has no
intersections with LC_;. It is important to remark that just after its creation
T’ cannot be too close to LC_1, because at the Neimark-Sacker bifurcation
the eigenvalues are complex conjugate and belong to the unit circle of the
complex plane, whereas along LC_; one eigenvalue must necessarily be
zero being det (DT') = 0 along LC_;. Therefore, intersections between I'
and LC_; are only possible when the parameters are sufficiently far from
the Neimark-Sacker bifurcation values.

We now describe the changes of the stable invariant closed curve T as
the parameter X is increased. Indeed, as far as the attracting invariant closed
curve I" does not intersect LC_; it can be thought of as entirely contained in
one sheet of the Riemann foliation. This means that a neighborhood U (T')
of " exists such that not only 7'(U) C U (since T' is attracting) but a unique
inverse exists, say 77 %, such that 7;' : T(U) — U. This implies that the
curve I', as well as the area of the phase plane enclosed by T', say a (I), is
both forward invariant (under 7T°) and backward invariant (under 7, h.

The situation changes when I' grows up until it has a contact with the
set of merging preimages LC_1, and then intersects it, as shown in Fig.6b,
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obtained for A = 1.3. We now describe the consequences of the contact
between I' and LC_4.

A=1.02
1.5
Y P
zZ, LC ‘
ZO
T
@ R, R,
LC,
_0'570.7 (a) X L5

Figure 6: (a) Just after the supercritical Neimark-Sacker bifurcation of the
fixed point O a smooth attracting closed curve T appears. (b) Far away from
the bifurcation value, the area inside I is no longer invariant.

Let Ag and By be the two points of intersection between I and LC_4,
and let R; and Ry the two regions, separated by LC'_q, giving the ranges of
the two inverses T, and T, *, respectively. Then the points A; = T (Ap)
and By = T (Byp), which must belong both to I" and to LC = T (LC_;),
are points of tangential contact between I and LC'. In fact, the arc 49Bg =
I'N Ry must be mapped by T in the arc A; B; = T (ApBy), entirely included
in the region Z3, on one side of LC (i.e. on the side of region Z5). If we look
at the area a (I"), bounded by the invariant curve, it is easy to see that such an
area is no longer invariant under application of 7'. In fact, T} 1 (A1 By) gives
an arc inside o (I") but not belonging to the invariant curve,-while AgBgy =
'NRyis givenby T 1 (A1Bs) . It means that the region k1, located between
the arc A1B1 of I" and LC, is “unfolded” by the action of the two inverses
T; ! and Ty ! in two distinct preimages, located in the regions R; and Ry
respectively, represented in Fig.6b by the two portions hf = T ! (hy) and
h% = T;! (h1) of a (T') bounded by the two arcs AgBy inside and along T
respectively. In other words, the two portions A} and A3 of a (T') are both
“folded” by T along LC outside the area a (T') (as both cover the area hj
which is outside I'). This implies that the area a (I'), bounded by T, is no
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longer forward invariant (since some points inside I" are mapped outside it,
and are exactly the points belonging to h} and h3).

This phenomenon of forward invariance of a closed curve, together with
noninvariance of the area inside it, is specific to noninvertible discrete maps,
that is, it cannot be observed neither in two-dimensional invertible maps nor
in two-dimensional continuous dynamical systems. The property of nonin-
variance of a (I} and the creation of convolutions of T are two aspects of the
same mechanism, related to the fact that curves crossing LC_; are folded
along LC and are confined into the region with an higher number of preim-
ages.

Another consequence of the intersection between I' and LC'_; is that for
a periodic cycle not belonging to I, it may happen that some of the periodic
points are inside and the others are outside the invariant curve I'. In the case
of the map (5) this may be observed for example when A = 1.4014, because
a stable cycle of period 7 coexists with the stable invariant curve I" (see Fig.7,
where the seven periodic points of the stable cycle are labelled as Cj, ..., C7).
As it can be seen in the figure, the periodic point C', inside I' in the region
h2, is mapped in the point Cy € hy, i.e. outside a (T).

A=14014
12 -
// SN

x 1.2

Figure 7: The periodic point C1, inside T in the region h%, is mapped in the
point Cy € hy, i.e. outside a (T).
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As the parameter A is further increased, the convolutions become more and
more pronounced and another phenomenon peculiar of noninvertible maps
can be seen, that is the appearance of knots, or loops, or self intersections
of the unstable set of the saddle belonging to the closed invariant curve, and
such a dynamic situation is soon followed by homoclinic situations (intersec-
tions between the stable and unstable sets of the saddle) leading to a chaotic
attractor, also called “weakly chaotic ring” in [36] for their particular shape.
An example is given in Fig.8a obtained with A = 1.505. As emphasized in
the enlargement shown in Fig.8b, the attractor is no longer a closed invariant
curve, as it includes loops and self-intersections. The mechanisms through
which such loops and chaotic rings are created, and the related loss of invari-
ance of I" have been recently studied by many authors (see e.g. [36], [17] or
[18] and references therein), and still have some open problems.

17 A=1.505
: P 1.2
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Figure 8: (a) 4 "weakly chaotic ring” caused by some homoclinic bifurca-
tion. (b) The enlargement shows the loops and the self-intersections of the
attractors.

As the parameter A is further increased, so that it is more and more far
from the Neimark-Sacker bifurcation value, a fully developed chaotic ring is
created, like the one shown in Fig.9, obtained for A = 1.54, on which the
dynamics are characterized by chaotic time series that exhibit some particu-
lar time patterns, as shown in Fig.9b. It is worth to notice that in Fig.9a the
attractor is very close to the boundary of the basin of diverging trajectories
(gray points in the figure). This suggests that a further increase of A will
lead to a contact between the attractor and the boundary of its basin, and
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this represents a global bifurcation that marks the destruction of the attractor
(more properly, it becomes a chaotic repellor after the contact). Such bifur-
cation is known as final bifurcation, or boundary crisis, and here corresponds
to the first homoclinic bifurcation of the saddle fixed point P on the basin
boundary. Indeed, its unstable set tends to the attractor while its stable set be-
longs to the frontier of the basin, thus a contact of the attracting set with the
basin boundary also implies a contact between the stable and unstable sets
of P. Of course, this contact between an invariant attracting set and its basin
boundary may occur at the beginning of the story, i.e. soon after the creation
of the closed invariant curve I'. In other words, even if the Neimark-Sacker
bifurcation theorem marks the appearance of T', it gives no indications about
its survival as the parameters are moved away from their bifurcation values.

A=1.54
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Figure 9: (a) The fully developed chaotic ring. (b) The corresponding chaotic
time series.

To sum up, just after a supercritical Neimark-Sacker bifurcation, the long
run dynamics of a discrete dynamical system is characterized by endoge-
nous oscillations that may be quasiperiodic or periodic, converging towards
a smooth and attracting closed curve I'. Then, when the parameters move
along a path away from the Neimark-Sacker bifurcation value, the closed in-
variant curve grows up, i.e. oscillations of increasing amplitude characterize
the asymptotic dynamics. Such enlargement of I' may lead to its disappear-
ance or to some changes of its shape, due to the nonlinearities of the map.
If the map is noninvertible, the intersections between I and LC'_; gives rise
to convoluted shapes of the invariant curve, until it is replaced by an annular
chaotic attractor.



28 Anna Agliari, Gian-Italo Bischi and Laura Gardini

As usual, sets of parameters are met at which stable cycles are created via a
saddle-node bifurcation. The periodic points of these stable cycles may be-
long to T, or may be inside a (I"), or outside a (T') or, if " intersects LC_1,
some of the periodic points may be inside and other outside a (I"). Further-
more, several coexisting attractors may be simultaneously present, such as
coexisting attracting cycles or quasiperiodic or chaotic attractors together
with attracting cycles.

An important property of noninvertible maps is that in any case, seg-
ments of the critical curves LC, together with a suitable number of their
images LC; = T*(LC'), may be used to bound a trapping region where all
the attracting sets are included. Such trapping sets, also called absorbing ar-
eas in [36], act like a bounded vessel inside which the asymptotic dynamics
of the bounded trajectories are ultimately confined (see also {3], [12], [39]).

1.5 Invariant Closed Curves and Saddle Connections

In this section we present some global bifurcations involving invariant closed
curves, which may be related to the appearance/disappearance of endoge-
nous fluctuations, to qualitative changes in their amplitude and to complex
structure in their basins of attraction. These bifurcations are related to the
dynamic behavior of the stable and unstable sets of same saddle cycle, so
they can be observed both with invertible and noninvertible maps. In the
following we restrict our attention to (at least locally) invertible maps.

Before proceeding, it is worth to recall that the bifurcations related to
invariant curves are well known in continuous dynamical systems, but in
discrete models are still an open problem (see [32]): Here we give some
qualitative results obtained by computer assisted proofs, with the awareness
that further investigations need for a more complete understanding.

As already stated above, from a local point of view, in a nonlinear dis-
crete map endogenous fluctuations naturally appear when a fixed point is
destabilized through a supercritical Neimark-Sacker bifurcation: A stable
focus becomes unstable and an attracting closed curve appears around it, be-
coming wider and wider when the parameters move away from the bifurca-
tion value. Generally this local bifurcation has no global effect, in the sense
that after the bifurcation the trajectories of points close to the unstable focus
reach the attracting closed curve. However, some recent papers (see, among
others, the endogenous business cycle models studied in [38] and in [31] or
the cobweb model with predictor selection proposed in [14]) have stressed
the importance of homoclinic tangencies and homoclinic tangles of saddles
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in the transition from local regular to global irregular fluctuations, due to in-
creasing complexity of the attractors. Moreover, if the map T' exhibits some
multistability phenomena, then the invariant closed curve may interact with
other attractors and interesting dynamic phenomena may occur, often asso-
ciated with homoclinic or heteroclinic tangles.

Different, but still interesting, problems arise when the Neimark-Sacker
bifurcation is of subcritical type, that is, when a repelling closed curve co-
exists with a stable focus, and generally such a repelling closed curve gives
the boundary of the basin of attraction of the stable focus. Indeed, a subcrit-
ical bifurcation may be seen as a catastrophe phenomenon, in the sense that
after its occurrence no attractors exist in the phase space or, if an attractor
exists, it is quite far from the bifurcating fixed point. Instead, in the case of
a supercritical Neimark-Sacker bifurcation, the phase portrait is completely
different: The attracting closed curve which appears after the bifurcation is
very small and close to the fixed point.

The dynamical behavior of a subcritical Neimark-Sacker bifurcation is
very importand in the economic literature (as well as in other applied mod-
els). In fact, the existence of a repelling closed curve which bounds the basin
of attraction of the stable fixed point implies that small shocks of the system
have no effects on its dynamical behavior, while large enough shocks may
lead to another attractor. This requires the coexistence of the fixed point with
a different attracting set, and may cause hysteresis phenomena. Indeed, in
such a case, if a parameter is varied so that a stable focus becomes unstable
via a subcritical Neimark-Sacker bifurcation, i.e. a repelling curve shrinks
and at the bifurcation merges with the fixed point, leaving a repelling focus,
then the trajectories that start close to the fixed point reach the second attrac-
tor. In this case, a simple restoration of the previous value of the bifurcation
parameter does not permit to move again the state of the system to the stable
equilibrium, since the phase point is out of its basin. An example of this sit-
uation is the so called “crater bifurcation” scenario (see [30]): Two invariant
closed curves, one repelling and one attracting, appear surrounding the fixed
point when it is still stable. As the parameters move, the attracting closed
curve moves away from the fixed point whereas the repelling one, which
play the role of separatrix between the basins of attraction, shrinks merging
with the fixed point in a subcritical Neimark-Sacker bifurcation. After such
a bifurcation, the trajectories, previously converging to the fixed point, are
converging to the attracting closed curve (which is quite far from the fixed
point). The phase portrait so obtained (unstable focus and attracting closed
curve) may suggest that a supercritical Neimark-Sacker bifurcation has oc-
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curred, but looking at the amplitude of the fluctuations we obtain the correct
understanding of the bifurcation sequence giving rise to it.

When a Neimark-Sacker bifurcation of subcritical type occurs, it is also
interesting to study the mechanism which gives rise to the appearance of the
repelling closed curve, or to the two closed curves in the case of a crater
bifurcation. Such occurrence may be related to the appearance of a pair of
cycles (a saddle cycle and a repelling one) on the boundary of the basin of
attraction of the fixed point. The heteroclinic connection of these cycles,
formed by the stable set of the saddle cycle which comes from the peri-
odic repelling points, constitutes a repelling closed curve. An example of
this situation is given in [8]. Sometimes, for example when a crater bifur-
cation occurs, more complex situations are possible: We shall see that, as
in the supercritical case, homoclinic tangencies and homoclinic tangles of
saddles play an important role in the mechanism associated with the appear-
ance/disappearance of closed invariant curves.

In continuous dynamical systems one of the mechanism associated with
the appearance and disappearance of closed invariant curves involves a sad-
dle connection: A branch of the stable set of a saddle point (or cycle) merges
with a branch of the unstable one (of the same saddle or a different one),
giving rise to an invariant closed curve.

When the involved saddle is a fixed point, the saddle connection can be
due to the merging of one branch of the stable set and one of the unstable
set, as in Fig.10a: We shall call such a situation homoclinic loop. Otherwise,
if both the branches of the stable and unstable sets are involved in the sad-
dle connection we obtain an eight-shaped structure that we shall call double
homoclinic loop (see Fig.10b).

Homoclinic loops and double homoclinic loops can also involve a saddle
cycle of period k, being related to the map 7, but in this case we can also
obtain an heteroclinic loop: Indeed, the map T* exhibits k saddles points
and a branch of the stable set of a saddle may merge with a branch of another
periodic point of the saddle cycle. Stated in other words, if S;,7 =1, ..., k,
are the periodic points of the saddle cycle and a ; U ap ; (wq,;U wo ;) are the
unstable (stable) sets of .S, then a heteroclinic loop is given by the merging,
for example, of the unstable branch a1 ; of S; with the stable branch w1 ; of
a different periodic point .S;. Then each periodic point of the saddle cycle is
connected with another one, and an invariant closed curve is so created that
connects the periodic points of the saddle cycle. In Fig.10c an heteroclinic
loop is shown, related to a pair of saddles (or a saddle cycle of period 2).
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All these loops correspond to structurally unstable situations and cause a
qualitative change in the dynamic behavior of the dynamical system. Since
they cannot be predicted by a local investigation, i.e., a study of the linear
approximation of the map, we classify them as global bifurcations. Indeed,
we study this kind of bifurcation looking at the asymptotic behavior of the
stable and unstable sets of the saddle: If a bifurcation associated with a loop
has occurred, before and after the bifurcation the involved branch of the un-
stable set converges to different attracting sets, and the points of the involved
stable branch have a different o-limit set, as well.
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Figure 10: Saddle connections: (a) homoclinic loop, (b) double homoclinic
loop, (c) heteroclinic loop.

Although homoclinic and heteroclinic loops may also occur in discrete
dynamical systems, in this case they are frequently replaced by homoclinic
tangles, as described in Section 1.2. That is, a tangency between the unsta-
ble branch WY (S) = Uq; ; with the stable one W (S) = Uws ; occurs,
followed by transverse crossings of the two manifolds, followed by another
tangency of the same manifolds, but on opposite sides.

In the following we shall qualitatively describe some global bifurca-
tions that involve closed invariant curves and may occur in the business
cycle models. We first consider global bifurcations causing the appear-
ance/disappearance of closed invariant curves, then the case in which at least
a closed invariant curve coexists with some cycle and we shall see as these
interact. All the global bifurcations here presented involve homoclinic con-
nections of the periodic points of a saddle cycle.
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1.6 Appearance of an Invariant Closed Curve (Homoclinic Loop)

In this section we show a mechanism which may cause the appearance of an
invariant closed curve (or cyclical closed invariant curves), already known in
the literature, see e.g. [35], [32], [2].

In the simplest starting situation, an attracting set A coexists with a sad-
dle point S* and a repelling fixed point P*: A qualitative draft of the global
bifurcation is given in Fig.11, where we assume that the attracting set A is
a focus fixed point as well as P*. Initially (see Fig.11a), the unstable set of
the saddle converges to the attracting set A, and a branch of it, say «;, turns
around the repelling focus P*. The a-limit set of the points of the branch w;
of the stable set of the saddle is the fixed point P* and ws comes from the
boundary of the basin of attraction of A. After the bifurcation (Fig.11c), we
have a bistability situation: The attracting set A coexists with an attracting
closed curve I'; surrounding the repelling focus. The basins of attraction of
A and I, are separated by the stable set of the saddle point S*. The attracting
closed curve I'; is the w-limit set of the points of the unstable branch «; and
the stable branch w; no longer exits from P*, coming from the boundary of
the set of the feasible trajectories (or the basin boundary of a different attract-
ing set). The changes in the asymptotic behavior of the two branches suggest
that the appearance of the curve I';; is due to a global bifurcation involving w;
and o;. Indeed, we can conjecture that at the bifurcation the stable branch
w1 and the unstable branch «; merge, giving rise to a homoclinic loop, as
shown in Fig.11b, whose effect is to create a closed invariant curve. Obvi-
ously, this is a schematic representation of the mechanism involved, since
we expect that, as usual with discrete maps, the single bifurcation value of
the homoclinic loop is replaced by an interval of values associated with an
homoclinic tangle between the two branches a; and wi, as shown in Fig.2:
A tangency, followed by transverse crossing, that gives homoclinic points to
the saddle S*, followed by a second tangency between the same manifolds
at which the transverse homoclinic points to S* disappear.

The same mechanism may also give rise to a repelling closed curve I',,,
but in such a case we start from the coexistence of at least two attractors,
say an attracting set A, an attracting fixed point P* and a saddle S*, as in
Fig.12a, where the attracting set A is a fixed point. The stable set of the
saddle separates the basins of attraction of A and P*. The branch w; of
W (8*) turns around P*. The branch ; of the unstable set WY (S*) tends
to P* whereas the w-limit set of the points of the branch «y is the attracting
set A. After the homoclinic loop, or homoclinic tangle, of the two branches
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Figure 11: Qualitative representation of a mechanism leading to the appear-
ance of an attracting closed curve.

Figure 12: Qualitative representation of a mechanism leading to a repelling
closed curve.
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aj and wi, shown in Fig.12b, a repelling closed curve I',, appears, bounding
the basin of attraction of P* (see Fig.12c). Such a curve is the o-limit set of
the points of the branch w; of the set W5 (S*) and A is the w-limit set of the
points of the whole unstable set WY (S*).

It is worth to observe that in the two cases considered above, the appear-
ance of a closed invariant curve is due to a mechanism associated with a ho-
moclinic loop, or tangle, and if the fixed points surrounded by the homoclinic
loop is repelling (resp. attracting) then the closed curve which appears is at-
tracting (resp. repelling). The case associated with the attracting fixed point
P* is also interesting because it may explain the appearance of the repelling
closed curve involved in the Neimark-Sacker bifurcation of subcritical type.

Clearly the bifurcations described above may involve saddles and attract-
ing or repelling cycles of period k£ (k > 1) instead of fixed points: In such a
case the mechanisms previously described occur for the map 7" and lead to
k cyclical invariant closed curves, repelling or attracting, for the map 7.

1.7 Appearance of Two Invariant Closed Curves (Heteroclinic
Loop)

In this section we describe the mechanism that may be associated with the
appearance/disappearance of two disjoint invariant closed curves, one at-
tracting and one repelling. This mechanism has been investigated also in
[7] and [2], where it was associated with a Neimark-Sacker bifurcation of
subcritical type.

It is know that when the map T depends on two parameters, two in-
variant curves can coexist if a bifurcation of codimension 2 occurs, called
Chenciner bifurcation or generalized Hopf bifurcation; see [32] for math-
ematical details, and [22] for an application in economics. When such a
bifurcation occurs, in the parameter space a curve exists crossing which an
attracting closed curve, I';, and a repelling one, I',,, appear very close one to
each other. The way in which they appear suggests a “saddle-node” bifurca-
tion for closed invariant curves, but it is well known that such a bifurcation,
although usual in continuous flows, is an exceptional case in discrete time.
Here we shall present a sequence of global bifurcations which give rise to
I's and I';, and involves two cycles, one of which is a saddle. We shall qual-
itatively describe this sequence when a saddle cycle and a focus cycle exist,
since this is the case effectively observed in our study, and we shall conclude
with a conjecture about the situation in which the focus cycle is replaced by
a node cycle.
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As in the previous section, we start from a situation, shown in Fig.13a, in
which only an attracting set A exists (a stable focus in Fig.13a). Moreover,
we assume that a pair of cycles of period %, a saddle S and a repelling focus
C, exist: The emergence of these two cycles can be due to a standard saddle-
node bifurcation, and then the node cycle turns into a focus. The stable

Figure 13: Qualitative representation of a sequence of global bifurcations
leading to the appearance of two closed invariant curves, one attracting and
one repelling.

k
set W9 (8) of the saddle cycle is such that the outer branch wy = Uwa,
=1
comes from outside (the boundary of the set of feasible trajectories or from
the basin boundary of coexisting attracting sets) whereas the a-limit set of
k
the points of the inner one w; = [Jw;; is the repelling focus C. The
i=1

k
unstable set WY (S) = |J (a1 U az,) reaches the attracting set A: Stated

i=1
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in other words, A is the w-limit set of the points of the two branches a4 ; and

k
a2;,%=1,..., k. As the parameters are moved, the branches wy = |Jws;
i=1
k
and ag = |J az, are closer and closer and at the bifurcation they merge

=1
giving rise to a heteroclinic loop (see Fig.13b). More precisely, each stable

branch ws ; of a periodic point of the saddle merges with the unstable branch
o ; of a different periodic point of the same saddle cycle, giving rise to
a closed connection among the periodic points of S. However, as already
remarked, this transition may occur via a homoclinic tangle of W (S) and
W' (S), which includes a tangency between the two manifolds, followed
by transverse crossings, and a tangency again of WY (S) and W5 (S), as
qualitatively shown in Fig.3.

After the bifurcation, originated by this structurally unstable situation, an
attracting closed curve I'; exists as well as a saddle-focus connection made
up by the stable set W (S), surrounded by T, (see Fig.13c). That a global
bifurcation really occurred is proved by the changes in the asymptotic behav-
iors of the to branches involved in the heteroclinic loop, as it can be seen in
the qualitative picture: After the bifurcation the stable set of the saddle con-
stitutes a closed invariant curve (a repelling saddle-focus connection), which
did not exist before the bifurcation, while the involved unstable branch of the
saddle tends to A before the bifurcations and tends to the attracting closed
curve I'y after. Thus two invariant curves exists after the bifurcation: An
attracting one I'; and an unstable saddle-focus connection, and a multistabil-
ity situation between the attracting set A and the closed curve I is created.
Moreover, note that the unstable saddle-focus connection made up by the
stable set of .5, and connecting the periodic points of S and C, bounds the
basin of attraction of A, and separates the two basins of attraction of A and
Ts.

Such a bifurcation of the outer branches is often followed by a similar
bifurcation of the inner ones. In fact, also the inner branches w; of the stable
set and o of the unstable one approach each other (as some parameters
are changed). At a new bifurcation, each stable branch w; ; of a periodic
point of S merges with the unstable branch o ; of a different periodic point
of the same saddle cycle, giving rise to a closed connection between the
periodic points of S and the periodic points of the cycle C, shown in Fig.13d.
The effect of this second heteroclinic loop, or more often homoclinic tangle,
are shown in Fig.13e: A repelling closed curve I, appears, replacing the
saddle-focus connection (and replacing it in the role of separatrix between
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the basins of attraction of A and I';). Once more, the occurrence of this
global bifurcation can be checked observing the behavior of the branches o
and wy involved in it.

Summarizing, we have seen that the coexistence of two closed invariant
curves, one attracting and one repelling, in discrete maps can be achieved
by a double mechanism: Starting from a repelling cycle and a saddle cycle,
a first saddle connection (or tangle) causes the appearance of the attracting
one associated with an (unstable) heteroclinic connection saddle - repelling
cycle that plays the role of separatrix of basins, which is then replaced by
the second closed curve, repelling, whose appearance is associated with a
second saddle connection (or tangle).

The same mechanism can be observed starting with an attracting k—cycle
(born together with a saddle), instead of a repelling one, i.e., a situation of
bistability due to the coexistence of the attracting set A and a k—cycle C.
In such a case the sequence of bifurcations takes place in a “reversed” way:
First the appearance of a repelling closed curve I';, associated with a saddle-
attracting cycle connection and then the appearance of an attracting closed
curve, replacing the heteroclinic connection. We use the qualitative figure
14 to illustrate such a sequence. At the beginning, the attracting set A (a
stable focus in Fig.14a) coexists with an attracting focus cycle C' of period
k, born as node cycle via saddle-node bifurcation together with a saddle cy-

k
cle S of the same period. The stable set W9 (S) = |J (w1 Uws;) of the
i=1

saddle cycle separates the basins of attraction of the two attracting sets, A

k

and the cycle C. The unstable set WY (S) = |J (a1 U ag,;) reaches the
i=1

attracting sets: More precisely, the outer branches a; ; converge to the cycle

C, whereas A is the w-limit set of the points of the inner branches o ;. Dif-
ferently from the case previously analyzed, as some parameters are changed
k

k
first the inner branches wy = {Jwi; and oy = |J a1, approach each other,
merging at the bifurcation so éivling risetoa hetérolclinic loop, (see Fig.14b),
or heteroclinic tangle. This bifurcation gives rise to a repelling closed curve
Ty, (see Fig.14c¢) which is the a-limit set of the points of the branches w ; of
the stable set of the saddle S. Also the asymptotic behavior of the branches
o ; is changed: Indeed with the branches o ; they give rise to a heteroclinic
connection, reaching the periodic points of the attracting cycle C'. The effect
of this global bifurcation is a change in the basin of attraction of A: After the
bifurcation it is bounded by the closed repelling curve I, so that it has been
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significantly reduced. Moreover another invariant closed curve exists, made
up by the unstable set of the saddle S, which connects the points of the two
k—cycles.

Figure 14: Qualitative representation of a sequence of global bifurcations
leading to the appearance of two repelling closed curves, one repelling and
one attracting.

Stronger effects on the dynamics are obtained after a second heteroclinic
loop, made up by the merging of the outer branches, shown in Fig.14d. In-
deed, after such a global bifurcation we obtain the coexistence of three at-
tracting sets: The focus cycle C, the set A and an attracting closed curve
T's, whose appearance is associated with the heteroclinic loop, or tangle (see
Fig.14e).

The repelling closed curve I';, bounds the basin of attraction of A; those
of I'; and C' are separated by the stable set of the saddle cycle S. The
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branches of the unstable set have as w-limit set the closed curve I'y on one
side, and the attracting cycle C' on the other side.

We remark again that if the cycle involved in the global bifurcation to-
gether with the saddle is repelling (attracting) then the closed curve appear-
ing after the first step is attracting (repelling), together with a repelling (at-
tracting) saddle-connection. The second step involves the saddle-connection,
after which two invariant closed curves still exist: We simply observe a
change in their topological structure.

The global bifurcations arising when cycles and invariant closed curves
coexist will be the topic of the next sections. Before that, let us observe that
if the repelling (or attracting) focus, considered in our examples, is replaced
by a repelling (or attracting) node, then the same sequence of bifurcations
can occur and the two curves appear more close to each other. In Fig.15 a

Figure 15: Qualitative representation of a mechanism leading to two invari-
ant closed curves associated either with a repelling node cycle (a,b,c) or an
attracting node cycle (d,e,f).
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qualitative draft is given: Fig.15a-b-c refer to the repelling cycle whereas
Fig.15d-e-f to the attracting one.

Moreover, if the node cycle is of very high period, then the saddle-node
connection appearing at the first step looks like an invariant closed curve: In
this case, the phase space recall in its shape that associated with a “saddle-
node” bifurcation of invariant closed curves. It is for this reason that we
propose this mechanism as a generic sequence of global bifurcations giving
rise to two coexisting closed curves. More theoretical studies need to con-
firm such a conjecture.

1.8 Coexistence of Curves and Cycles and Their Interactions
(Heteroclinic Loop)

In this section we show a mechanism that causes the transition from an at-
tracting closed invariant curve, say I',, with a pair of cycles of period k out-
side it, a saddle S and an attracting one, C, inside a wider attracting closed
invariant curve, say I',. This transition takes place via the occurrence of
two heteroclinic loops of the saddle S, first with the merging of the unstable
branches WY (S) = Ua; ; and the stable ones W (S) = Uw; ; and then via
the merging of the unstable branches W/ (S) = Uay; and the stable ones
WQS(S) = Uwo ;.

Similar bifurcation sequences have been observed in [4] and [5], asso-
ciated with a two-dimensional map having a fixed point which may lose
stability via a supercritical Neimark-Sacker bifurcation and a supercritical
pitchfork or flip bifurcation. Examples in economic dynamic modelling can
be found, for instance, among Kaldorian discrete-time models (see [11], [6]).
Further examples are given in several chapters of this book.

Let us consider the situation described in Fig.16. In Fig.16a we have an
attracting closed invariant curve I', (which may also follow from the situa-
tion described in Fig.11-13), and a pair of cycles that have been created via
a saddle-node bifurcation outside I',. Such external cycles do not form an
heteroclinic connection, whereas the stable set of the saddle S bounds the
basin of attraction of the related attracting fixed points C; of the map T*.
The unstable branches oy ; of S; tend to the attracting curve I'y, while the
unstable branches oz ; of S; tend to the attracting cycle.

At the bifurcation (Fig.16b) we may have that the closed invariant curve
T', merges with the unstable branches WY () = Uay ; and with the stable
ones W7 (S) = Uw ; as well, in a heteroclinic loop, or tangle, of the saddle
S, causing the disappearance of the attracting closed invariant curve Iy, and
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leaving another closed invariant curve, see Fig.16¢, which is now the hetero-
clinic connection involving the saddle S and the related attracting cycle C.
After the bifurcation of the heteroclinic loop a closed curve still exists, but
differently from I',, it includes the two cycles on it (Fig.16¢).

Figure 16: Qualitative representation of a mechanism causing the transition
from an attracting closed invariant curve into a wider one.

Starting from this situation, a second heteroclinic loop (or tangle) may
be formed. The heteroclinic connection turns into a heteroclinic loop in
which the unstable branches WY/ (S) = Uag; merge with the stable ones
W4 (8) = Uws ; (see Fig.16d). After the bifurcation a new closed attracting
curve exists, say [',, and the two cycles are both inside I', (Fig.16e). The
stable set of the saddle S separates the basins of attraction of the k attract-
ing fixed points C; of the map 7. The unstable branches Ua ; tend to the
attracting cycle while the unstable branches Uas ; tend to T'p.
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As mentioned before, in the case of discrete dynamical systems, the dy-
namic behaviors more frequently observed is such that the heteroclinic loop
of Figs.16b-d are replaced by homoclinic tangles. That is, a tangency occurs
between the two manifolds involved in the bifurcation, followed by trans-
verse intersections and a tangency again on the opposite side, after which
all the homoclinic points of the saddle .S, existing during the tangle, are de-
stroyed (several examples are shown in [4] and [5]).

It is worth noticing that all the unstable periodic points associated with
the first homoclinic tangle, due to W (S) N W5 (S) # 0, are in the region
interior to the set of periodic points of the saddle .S, whereas in the strange
repellor associated with the second homoclinic tangle, in which WY (S) N
W5 (S) # 0, all the unstable cycles are “outside” the saddle cycle S. The
existence of a strange repellor has noticeable consequences with regard to the
trajectories starting on the area occupied by it, since they are characterized
by a long chaotic transient.

Notice also that before the first heteroclinic loop (tangle) of Fig.16 we
have two distinct attracting sets: I', and the stable k—cycle outside it; after
the second one of Fig.16, we have again two distinct attractors: 'y, which is
wider than I, and the k—cycle inside it, while between the two heteroclinic
loops only one attractor may survive, that is the k-cycle.

It is plain that this process may be repeated many times. In fact, by a
saddle-node bifurcation a new pair of cycles may appear outside Iy, so that
we are again in the situation of Fig.16a, and the sequence of bifurcations
described in Fig.16 may repeat.

We finally remark that the sequence of bifurcations here described, that
cause the transition of a pair of cycles from outside to inside a closed invari-
ant curve, may occur through different mechanisms when the map is nonin-
vertible. In fact, in noninvertible maps the invariant curve may intersect the
critical set LC'"1, and when this occurs the periodic points of a cycle may be
part inside and part outside the closed invariant curve (see [36], [17]).

1.9 From an Invariant Closed Curve to Two Closed Curves
(Double Homoclinic Loop)

The last case we consider in this chapter is an example of double homoclinic
loop that involves a repelling closed curve I, and a saddle point S. Two at-
tracting sets, A;, i = 1, 2, are also coexisting, or cyclical ones. The repelling
closed invariant curve I',, surrounds the two attracting sets A; and the saddle
S. The stable set of S, W3(S), formed by the union of the preimages of any
rank of the local stable set, turns around infinitely many times approaching
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the repelling curve Ty, as qualitatively shown in Fig.17a. W¥(S) consti-
tutes the boundary that separates the basins of A; and As. As the parameters
are varied along the bifurcation path, the repelling closed invariant curve
I'y shrinks in the proximity of the saddle S, and consequently the stable
and unstable sets of the saddle approach each other, until ', disappears or,
more precisely, becomes a chaotic repellor at the homoclinic tangency (see
Fig.17b) at which the unstable set of S, WY (.S), has a contact with the sta-

@

Figure 17: Qualitative representation of a mechanism causing the transition
from an invariant closed curve to two closed curves.

ble one. This homoclinic tangency is followed by a transverse intersections
of the two manifolds, WY (S) and W*(S), and a dynamic scenario like the
one shown in Fig.17c is obtained, which is followed by another homoclinic
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tangency (see Fig.17d) leading to the disappearance of all the homoclinic
orbits of S and of the chaotic repellor. After this second tangency, WY (.S)
is completely outside of the stable set, so that the stable and unstable sets
are again disjoint, WU (S) N W9(S) = 0, and the preimages of the local
stable manifolds reach two disjoint closed invariant curves which have been
created around the two attracting sets A;, see Fig.17e.

If the map is symmetric with respect to the saddle S then the homoclinic
tangencies of the manifolds occur at the same time (an example of business
cycle model leading to such a bifurcation can be found in Chapter 8). In the
case of a map without symmetry properties, we still may have a transition
from the situation of Fig.17(a) to that of Fig.17(e), but the two homoclinic
loops may occur separately, that is, first the manifolds WU (S) and W (S)
are involved and then WY (S) and W5’ (S), or vice-versa (an example of
business cycle model leading to such a bifurcation can be seen in Chapter
11).
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2 Center Bifurcation for a Two-Dimensional
Piecewise Linear Map

Iryna Sushko and Laura Gardini

2.1 Introduction

It is already well known that the main bifurcation scenario which can be re-
alized considering a business cycle model in dynamic context, is related to
a fixed point losing stability with a pair of complex-conjugate eigenvalues.
In the case in which such a model is discrete and defined by some smooth
nonlinear functions, the Neimark-Sacker bifurcation theorem can be used,
described in the previous chapter. While for piecewise linear, or piecewise
smooth, functions which are also quite often used for business cycle mod-
eling, the bifurcation theory is much less developed. The purpose of this
chapter is to describe a so-called center bifurcation occurring in a family
of two-dimensional piecewise linear maps whose dynamic properties are, to
our knowledge, not well known. Namely, we shall see that in some similarity
to the Neimark-Sacker bifurcation occurring for smooth maps, for piecewise
linear maps the bifurcation of stability loss of a fixed point with a pair of
complex-conjugate eigenvalues on the unit circle can also result in the ap-
pearance of a closed invariant attracting curve homeomorphic to a circle.
However, differently from what occurs in the smooth case, the closed in-
variant curve is not a smooth, but a piecewise linear set, appearing not in a
neighborhood of the fixed point, as it may be very far from it. In fact, we
shall see that the position of the closed invariant curve depends on the dis-
tance of the fixed point from the boundary of the region in which the linear
map is defined (i.e., from what we shall call critical line LC__1).

We shall describe the global dynamics of a piecewise linear map at the
moment of the center bifurcation and after it, comparing the cases in which
the map is invertible and noninvertible. For this study we consider a family
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of two-dimensional piecewise linear maps F' : R? — R? given by

. F](x,y),<-'13,y)€R1;
1”@””{&@wwwem; M
where
I < ) ( (c—i—a)x—ay)7
Rl = x,y S +d/a}

( ) <cx—d+b(x+d/a—)>7

Ry = {(z,y):y>z+d/a}.

For convenience, as it will be explained below, we shall assume that the real
parameters a, b, ¢ and d satisfy the following conditions:

a>0, —(c+1)/2<b<1l,0<ec<l,d>0. )

Our choice of the map F is due to the fact that for b = 0 it is a piecewise
linear Hicksian multiplier-accelerator model with a lower constraint d, called
“floor’, introduced in Chapter 3 and described also in Chapter 6 (the case in
which an upper constraint, called ‘ceiling’, is not involved in asymptotic
dynamics). As we shall see, in such a case we have a particular kind of
noninvertibility in which a whole half-plane Ry is mapped into one straight
line, so that the map is of so-called (Zyp — Zoo — Z1) type. While for b # 0
the map F’ can be either invertible (for b > 0), or noninvertible (for b < 0) of
(Zo — Z>) type, so that we can compare the results of the center bifurcation
in these cases.

The map F is given by two linear maps F3 and F5 defined, respectively,
below and above the straight line

LC., = {(x,y) : y = + d/a}.
The image of this line by F is called critical line LC or LCy:
LCy = F(LC1) ={(z,y) : y = (z + d)/c},

and its image LC; = F*(LCy), i = 1,..., which is a curve made up by a
finite number of linear segments, is also called critical line (of higher rank).
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Although this notation is more properly used when the map is noninvertible,
we keep it in any case. As stated above, invertibility is controlled by the
parameter b. For b > 0 a point on the right of LC has a unique rank-1
preimage by F} ! (giving a point in R;), while a point on the left of LC has
a unique rank-1 preimage by F,,” ! (giving a point in Ry). Instead, for b < 0
a point on the left of LC has no rank-1 preimage, while a point on the right
of LC has two distinct rank-1 preimages: One preimage by F~ ! (giving a
point in Ry), and the other by Fy; ! (giving a point in Ry).

The map F has a unique fixed point (z*,y*) = (0, 0) which is the fixed
point of the map F7, while the fixed point of the map F; belongs to the main
diagonal of the phase plane, which is in Ry, so that it is not a fixed point of
F'. Using eigenvalues A o of the Jacobian matrix of the map F7, given by

M2 = (a+cEt(a+c)?—4a)/2, 3)

we get that for the parameter range given in (2) the fixed point (z*, y*) is
attracting for a < 1 and repelling for @ > 1, being a node for (c + a)? > 4a
and a focus for (¢ + a)? < 4a.

Thus, in the range (2) the fixed point loses stability at ¢ = 1 with a pair
of complex-conjugate eigenvalues crossing the unit circle, so that a center bi-
furcation occurs, which is the main interest of the present chapter. It is clear
that in a piecewise linear map the local bifurcation of a fixed point depends
only on a corresponding linear map (here F}), while the global behavior in
the phase space depends on the interaction between the other linear maps
(which may give rise to any kind of dynamics). In our case, in the region Ry
the map F3 is defined, so that although the map F' has no fixed points in that
region, the eigenvalues of F, say p, o, are important in the global behavior

of F'. We have
s = b ok VBT E )2,
so that for 0 < ¢ < 1 the fixed point of the linear map F5 is:
e arepelling node for (¢ + b)? > 4band b > 1;
e an attracting node for (¢ + )2 > 4band —(c +1)/2 < b < 1;
e aflip saddle forb < —(c+1)/2;

e a focus for (c + b)? < 4b, attracting for 0 < b < 1 and repelling for
b> 1.
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Here we are interested in the study of the dynamics after the center bifurca-
tion of (z*,y*), when the fixed point is an unstable focus and the dynamics
are bounded. To this purpose we restrict our analysis to the range of b for
which the fixed point of the map F; is stable, thatis —(c+ 1)/2 < b < 1.
Indeed, when the fixed point of the map F3 is unstable we may have diver-
gent trajectories: If, for example, b > 1, then for a > 1 (when the fixed point
of F' is unstable), we have only divergent dynamics, because the two linear
maps are both expanding, so that any combination of the two maps is also
expanding and no stable cycle can exist. Also for b < —(c+1)/2, when the
fixed point of the map F3 is a flip saddle (i.e., with one negative eigenvalue),
we may have both bounded and unbounded trajectories. This explains our
choice of the parameter range given in (2).

It is clear that when the fixed point (z*,y*) of F is stable then it is
globally stable (because for the range (2) the two linear maps are both con-
tracting, so that any combination of the two maps is also contracting and a
repelling cycle cannot exist). While when the fixed point (z*,y*) of F' is
unstable (¢ > 1) we can have bounded dynamics only as long as it is a fo-
cus, i.e. for (¢ + a)? < 4a (because when it is a repelling node then all the
trajectories are divergent, except for the fixed point).

As remarked above, at a = 1 the fixed point (z*, y*) undergoes the cen-
ter bifurcaiton, and the dynamic behavior occurring at this particular bifur-
cation value is described in the next section. We shall see that independently
on the sign of b (invertible or non invertible map) and independently on the
type of eigenvalues of the linear map F3, the map F' admits an invariant re-
gion, whose size depends on the distance of the fixed point from the critical
lines. We shall also comment the global behavior of F' (i.e. the dynamics
of points outside the invariant region). Then, in the next sections, we shall
describe the global behavior of F' after the center bifurcation, showing that
only the boundary of the region remains invariant, being an attracting closed
curve C, and the dynamics of F' on C are either periodic, or quasiperiodic,
depending on parameters.

2.2 Dynamics at the Bifurcation Value (a = 1)

In this section we first describe the phase portrait of the map F exactly at
the bifurcation value a = 1. In such a case the fixed point (z*,y*) is locally
a center: The map F} is defined by a rotation matrix (whose determinant
equals 1), and it is characterized by a rotation number which may be rational,
say m/n, or irrational, say p. It is clear that locally, in some neighborhood
the fixed point, the behavior of F is that of the linear map F}, thus we have
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a region filled with invariant ellipses, each point of which is either periodic
of period n (in case of a rational rotation number m/n) or quasiperiodic (in
case of an irrational rotation number p). Now the problem we are faced on
is to answer the following questions: How big is this region? What is its
boundary? What occurs to points outside it? We answer distinguishing the
two different cases on the kind of rotation number (rational or irrational).

The invariant region we are looking for clearly is completely included in
the region R (i.e., the region of definition for F}), and it is given by the set of
points of R; whose trajectories entirely belong to R;. Thus it must include
all the ellipses (invariant for F7) which are completely included in R;, so
that such a region must necessarily include a region bounded by an invariant
ellipse which is tangent to the straight line LC_;. So we can immediately
answer to some of the previous questions in the case of an irrational rotation
number.

If F is defined by a rotation matrix with an irrational rotation number p,
which holds for ¢ = 1, and

c=c¢, =g cos(2mp) — 1, 4)

then any point from some neighborhood of the fixed point is quasiperiodic,
and all the points of the same quasiperiodic orbit are dense on the invariant
ellipse to which they belong. (Note that for ¢ > 0 we have p < 1/6). In
such a case an invariant region () exists in the phase space, bounded by an
invariant ellipse £ of the map Fi, tangent to LC_1, and, thus, also tangent
to LC;, 1 = 0,1, .... We can state the following

Proposition 1. Let a = 1, ¢ = ¢, given in (4). Then in the phase space
of the map F there exists an invariant region @, bounded by an invariant
ellipse € of the map F tangent to LC_;. Any initial point (zg,yo) € @
belongs to a quasiperiodic orbit dense in the corresponding invariant ellipse
Of Fl.

Fig.1 shows the invariant region @ of the map F ata = 1, ¢ = 0.4,
d = 10. (Indeed, because of numerical precision, we cannot show a true
quasiperiodic case, but only its approximation by a periodic case of some
high period).

It is clear that such a region also exists (i.e., the region ) defined above)
and is invariant, when the map F} is defined by a rotation matrix with a
rational rotation number, but in such a case () is not the largest invariant
area. In fact, there are also other points outside the tangent ellipse £ which
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are periodic with an orbit completely included in the region R;. For the sake
of clarity we shall show this via an example.

So let 7 be defined by a rotation matrix with a rational rotation number,
which holds for a = 1, and

C=Cm/n =l 2cos(2mrm/n) — 1, )

obtained from Re A 2 = cos(2mm/n), then any point in some neighborhood
of the fixed point is periodic with rotation number m/n and all the points of
the same periodic orbit are located on an invariant ellipse’.

15

-15 . . .
-13 0 X 15

Figure 1: The invariant region Q of the map F ata = 1, ¢ = 0.4, d = 10.
F1 is associated with an irrational rotation number.

For short we call m/n-cycle a periodic orbit of period n with the rota-
tion number m/n. We can construct the invariant region, say P, existing for
a = 1 in the phase space by using as an example the case m/n = 2/13
(see Fig.2). As noticed above, the region P must include all the invariant
ellipses of the map £ which are entirely located in the region R;. That is, P
includes a region bounded by an invariant ellipse, say &1, tangent to LC_;.
However there are other periodic orbits belonging to R; : Note that there
exists a segment S; C LC_,, which we call generating segment, such that
its end points belong to the same m/n-cycle p = {p1,...,pn} located on
an invariant ellipse of F} which crosses LC_, denoted &2 (note that & is

"Note that for ¢ > 0 we have m/n < 1/6.
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not invariant for the map F). In our example S; = [p1,p7] € LC_;, and
p = {p1,...,p13} is the corresponding 2/13-cycle. Obviously, the generat-
ing segment Sy and its images by F7, that is the segments S; 11 = F1(S;),
Sit1 C LC;—1 = Fy(LCi—9), 1 = 1,...,12, form an invariant polygon P
with 13 edges completely included in the region R;, inscribed in £ and
whose boundary is tangent to &;.

Figure 2: The invariant polygon P of the map F at a = 1, ¢ =
2cos(2mm/n) — 1,d = 10 and m/n = 2/13, so that F is defined by a
rotation matrix with the rotation number 2/13.

Such a polygon P can be constructed for any rotation number m/n.
Summarizing we can state the following

Proposition 2. Let a = 1, ¢ = cpyp given in (5). Then in the phase
space of the map F there exists an invariant polygon P with n edges whose
boundary is made up by a ‘generating segment’ Sy C LC_1 and its n —
1 images Siy1 = F1(S;) € LCi1, i = 1,...,n — 1. Any initial point
(z0,Y0) € P is periodic with rotation number m /n.

To end our description of the dynamics at the bifurcation value a = 1,
we have to clarify the behavior of a trajectory with an initial point (zg, %)

which does not belong to the invariant region (either P or ). It is easy to
see that there are the following possibilities:

e If b = 0 then the eigenvalues of the Jacobian matrix of Fy are u; = ¢,
iy = 0, so that any initial point (zo,yo) € R is mapped by F5 in one
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step into a point of the straight line LCy. Then in the case of a rational
rotation number it is mapped in a finite number of steps exactly to the
boundary of the invariant region P, and ultimately it will be periodic,
while in case of an irrational rotation number the generic trajectory
tends to the boundary of the invariant region ).

e For 0 < b < 1 the fixed point of the map F3 is an attracting node, the
map F is invertible and, thus, the trajectory of any point (zg,yo) € Rz
is attracted to the boundary of the invariant region.

o If —(c+1)/2 < b < Othen F3 is a noninvertible map with an attracting
fixed point in R;. It can be shown that (zg,yo) € Rp is mapped in a
finite number of steps to the interior of the invariant region.

We already remarked that in the case b > 1 the fixed point of the map
F> is either a repelling focus (for (c + b)? < 4b), or a repelling node (for
(c + b)? > 4b), and a trajectory of the map F' with initial point (2, yo) not
belonging to the invariant region is divergent. While for b < —(c + 1)/2,
the fixed point of F is a flip saddle, and in such a case there may be initial
points having divergent trajectories as well as points mapped to the interior
of the invariant region. However, as already noticed above, the following
consideration is restricted to the range —(c+1)/2 < b < 1, so that the fixed
point of F3 is attracting.

The dynamics of the map F' at the bifurcation value considered in this
section give the name to the center bifurcation, and we notice again that the
magnitude of the invariant area (P or ) depends on the distance of the fixed
point from the critical line. But we are mainly interested in the description
of what occurs ‘after’, for a > 1 : We shall see that an invariant region
survives after the bifurcation, that is for a = 1+-¢ for some sufficiently small
e > 0. However, among all the infinitely many invariant curves existing at
the bifurcation only one survives, modified, after the bifurcation: The one
which is farthest from the fixed point and gives the boundary of the invariant
region. That is, the boundary of the ‘old’ invariant region is transformed into
an attracting closed invariant curve on which the dynamics of F' is reduced
to a rotation with rational or irrational rotation number.

2.3 Noninvertibility of (Zy — Z., — Z1) Type (a > 1,b = 0)

In order to investigate what occurs after the center bifurcation, for a > 1,
we consider first the map F' given in (1) at b = 0. It was already mentioned
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that in such a case any initial point (zo,yo) € R is mapped by F» in one
step into a point of the critical line LCyp. All consequent iterations by Fj
give points on this straight line approaching the attracting fixed point of F;
(which belongs to R;), until the trajectory enters R; where the map Fj is
applied. Then the trajectory begins to rotate in the couterclockwise direction,
moving away from the unstable focus (z*,y*), and in a finite number of
iterations it enters the region Ro where the map F; is applied again. Thus,
for an orbit the map F» plays the role of a return mechanism to the region
Ry, and the dynamics are bounded, as longs as the fixed point of F is a
focus. Moreover, due to the zero eigenvalue of the map F3, the dynamics
of F' are reduced to a one-dimensional subset C of the phase space which is
obtained iterating a suitable segment of LC_;. It is easy to see that after a
finite number of iterations of LC_; we necessarily get a closed area whose
boundary is a closed invariant curve. An example is shown in Fig.3: The
closed invariant curve C is obtained by 7 iterations of the segment [ag, bo] of
LC_1:C= Uzlez([ao, bo]))

i

20f

10¢

10 l 0 I 10 ‘ 20 x

Figure 3: The attracting closed invariant curve C of the map F at a = 1.5,
b =0, c= 0.15, d = 10. Points of the attracting and saddle cycles of period
7 are shown by black and white circles, respectively.

It is clear that any point with initial condition in R;, except for the fixed
point, has a trajectory which spirals away from the fixed point and enters the
region Ry in a finite number of steps, then application of F5 gives a point
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of LCy, which in a finite number of iterations is mapped into a point of
the segment [a;,b1] of LCy. This proves that the closed curve C is globally
attracting for F, except for the fixed point.

We are now interested in the dynamics of F' on C. First note that the
map F' is orientation preserving on C: It can be easily shown that for any
three ordered points u, v, w € C, their images by F' are ordered in the same
way on C. It follows that we cannot have any folding which means that the
restriction of F' on C is invertible and, thus, chaotic dynamics are impossible
(indeed, it becomes possible in the case ¢ < 0 when there are segments of
C which are folded, but we don’t consider this case here). Therefore, we
conclude that the dynamics of F' on C are either periodic, or quasiperiodic.
If F has an attracting cycle of period n, it has also a saddle cycle of the same
period. Fig.3 shows an attracting cycle (node) and a saddle cycle of period
7, and we remark the double meaning of the closed invariant curve: It is the
saddle-connection made up of the closure of the unstable set of the saddle
(approaching the points of the node), and also the union of a finite number
of critical segments. However, in a certain sense the phase portrait of the
map F at a > 1 is similar to that of a smooth map after the Neimark-Sacker
bifurcation: Namely, there exists a closed invariant attracting curve C on
which the map F is reduced to a rotation with rational or irrational rotation
number. In contrast to the smooth case, for the map F' such a curve is not
smooth, but piecewise linear, and it appears not in the neighborhood of the
fixed point, but far enough from it: Its location depends on the position of
the critical line LCy.

The considerations given above can be summarized as follows:

Proposition 3. Leza > 1,b = 0, (c+a)? < 4a. Then in the phase space
of the map F there exists a globally attracting invariant closed curve C which
is a broken line made up by a finite number of images of a segment belonging
to LC_1. The dynamics of F on C are either periodic, or quasiperiodic.

Fig.4 shows a two-dimensional bifurcation diagram in the (a, ¢) - para-
meter plane in which the regions corresponding to different attracting cycles
of period n < 32 are shown by different gray tonalities. If the (a, ¢) - pa-
rameter point belongs to an n-periodicity region, then the map F' has an
attracting and saddle cycles of period n, located on an attracting closed in-
variant curve, as stated in proposition 3.

Let us give some comments on the structure of the bifurcation diagram
shown in Fig.4. Similar bifurcation diagrams for piecewise linear and piece-
wise smooth dynamical systems were described in Gallegati et al., 2003,
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Hao Bai-Lin, 1998, Sushko et al., 2003, Zhusubaliyev and Mosekilde, 2003.
We can note that locally, near the bifurcation line a = 1, the periodicity
regions look like the Arnol’d tongues described for smooth maps when the
Neimark-Sacker bifurcation occurs (although the dynamics are different in
the phase space).

1

0.8

0.2}

Figure 4: Two-dimensional bifurcation diagram of the map F in the (a,c)-
parameter plane at b = 0, d = 10. Regions corresponding to attracting
cycles of different periods n < 32 are shown by various gray tonalities.

It is worth to note that the summation rule which holds for the rotation
numbers in the general case with smooth maps, also holds in the piecewise
linear case. That is, if m1/n; and mg/ngy are two rotation numbers asso-
ciated with the parameter ¢; and cy, respectively, at a = 1, then also the
rotation number (m1 + m2)/(n1 + ng) exists in between. The white region
in Fig.4 is related either to attracting cycles of higher period n > 32, or to
quasiperiodic trajectories. Indeed, similar to the smooth case, the parameter
values corresponding to quasiperiodic trajectories form curves located be-
tween the two nearest periodicity regions and issuing from the bifurcation
line @ = 1 at points corresponding to irrational rotation numbers. The so-
called ‘sausage’ structure of the periodicity regions with several subregions
is typical for piecewise smooth and piecewise linear systems (see, €.g., Hao
Bai-Lin, 1998, Sushko et al., 2003, Zhusubaliyev and Mosekilde, 2003). In
fact, different subregions of the same periodicity region of the map F are
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related to different compositions of the maps F} and F» which are applied to
get the corresponding cycle (attracting or saddle).

The difference between two-dimensional bifurcation diagrams for a piece-
wise linear and a smooth map in the case of a center bifurcation or Neimark-
Sacker bifurcation, respectively, consists not only in the qualitative shape of
the periodicity regions (the ‘sausage’ structure mentioned above), but also
in the kind of bifurcations associated with the boundaries of these regions.
It is known that in the smooth case the Arnol’d tongues are bounded by
curves corresponding to saddle-node bifurcation and either period-doubling,
or Neimark-Sacker bifurcation occurring for the related cycle. While for
piecewise linear maps such boundaries are related to border-collision bifur-
cations (see Nusse and Yorke, 1992). In the next section we describe the spe-
cial case associated with the bifurcation value a = 1, while here we describe
those associated with the boundaries of the regions for @ > 1. The border-
collision bifurcation, related to the boundary of a periodicity region, involves
the merging of the corresponding attracting and saddle cycles, similar to the
smooth saddle-node bifurcation, but it is not related to one eigenvalue which
become in modulus equal to 1. Instead, it is related to a collision of points
of these cycles with the critical line LC_, i.e. the border separating the re-
gions of different definitions of the map. The waist points of the ‘sausage’
structure correspond to particular border-collision bifurcations.

The effects of a border-collision bifurcation can be better seen from the
dynamics occurring in the phase space (and some times they cannot be un-
derstood from a bifurcation diagram). For example, let us add some obser-
vations related to the number of the segments of critical lines which form an
attracting invariant closed curve C at @ > 1, which also may change when
a periodic point crosses though LC_;. If we take the (a, c)-parameter point
inside the leftmost subregion of a periodicity region shown in Fig.4, related
to an attracting m/n-cycle, then the invariant attracting closed curve C is
made up by exactly n segments of the critical lines LC;,7 = 0,1, ...,n — 1.
It can be shown that in such a case 2 points of the corresponding attracting
cycle belong to the region Ry and n — 2 points are in R;. Fig.5 presents
an example in the case m/n = 2/13, when the curve C is made up by 13
segments of critical lines. While if the (a, c)-parameter point moves to the
next subregions, the number of periodic points in Ry first increases, and the
number of segments of C decreases (see Fig.6 which shows an example of C
made up by 7 segments in case m/n = 5/36), but then, if the (a, ¢)-point
continues to move to the right inside the periodicity region, some periodic
points enter R; again, so that the numbers of segments of C increases again.
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Figure 5: The attracting closed invariant curve C of the map F made up
by 13 segments, in the case m/n = 2/13, at a = 1.015, ¢ = 0.13613,
d = 10,b = 0. Points of the attracting and saddle cycles are shown by black
and white circles, respectively.
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Figure 6: The attracting closed invariant curve C made up by 7 segments, in
the case m/n = 5/36,at a = 1.68, ¢ = 0.15, d = 10, b= 0.
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2.4 Border Collision Bifurcations

In the previous section we have presented the bifurcation diagram in the case
b = 0 (Fig.4) and in the next two sections we shall consider those related with
b # 0. We shall see that when the parameter a belongs to a neighborhood of
a = 1, i.e., for a = 1 + ¢ for some sufficiently small £ > 0, the structure
of the periodicity regions is similar for all the range —(c + 1)/2 < b < 1,
and we have a qualitatively similar behavior. That is, the effect of a center
bifurcation is the appearance of an attracting closed invariant curve C which
is a broken line made up by a finite number of segments when b = 0, or
by infinitely many segments when b # 0. Here we describe the effect of the
special kind of border collision bifurcation related to a center bifurcation. In
Section 2.2 we have described the dynamics at the bifurcation value a = 1,
which holds for any value of b. Starting from a = 1 let us increase a little bit
the value of a, entering a periodicity tongue.

B

Ce

C
. LC, [

Figure 7. Qualitative figure of the border-collision bifurcations with few
points of the saddles and the attracting nodes shown by white and black
circles, respectively.

To fix the ideas let us consider the case m/n = 2/13 used also in Section
2.3. Then the position of the periodic points of the node and the saddle of
period 13 at a point A = (a, ¢) of the tongue shown in Fig.7 is qualitatively
the same as the one shown in Fig.5 (also the qualitative shape of the closed
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curve C is similar, even if the segments constituting C become infinitely many
when b # 0). Thus, among the infinitely many periodic points existing
at the bifurcation value on a segment of LC_;, only two cycles survive,
a saddle and a node, having points which are not close to each other. As
already remarked in the previous section, only 2 points of the corresponding
attracting cycle belong to the region Ry and n — 2 points are in R;, and only
1 point of the corresponding saddle cycle belongs to the region Rg, as it is
qualitatively shown in Fig.7 for the parameter point A. Then the effects of
the border collisions occurring at the boundaries of the tongue can be easily
shown moving the parameter point from A to B and from A to C. As the
point A moves towards B, then the points of the saddle cycle moves toward
those of the node giving the merging of only one pair of points, as shown
in the qualitative picture, which is exactly what occurs in a standard border-
collision bifurcation. Thus, periodic points merge and disappear (even if
no eigenvalue is equal to 1) when two of them merge on LC_;. A similar
behavior, but with the merging of a different pair of periodic points on LC_1,
occurs when we move the parameter point from A to C.

2.5 Center Bifurcation for b > 0: Invertible Case

In this section we describe the center bifurcation which occurs for the fixed
point of the map F’ given in (1) when the map is invertible, that is for b > 0.
As already mentioned in the previous sections we assume a > 1,0 < c < 1
and (c + a)? < 4a, so that the fixed point of F is an unstable focus. The
fixed point of the map F3, belonging to R;, is unstable for b > 1 (focus for
(c+b)? < 4b or node for (c+b)? > 4b) and in these cases all the trajectories
of the map F' (except for the fixed point) are diverging. Thus, we consider
the range 0 < b < 1.

Leta = 1+¢, e > 0. The dynamics of F' in such a case can be described
as follows: A trajectory with an initial point in some neighborhood of the
unstable focus (z*, y*) rotates under the map F} in the couterclockwise di-
rection, moving away from (z*,y*), and in a finite number of iterations it
necessarily enters the region Ry where the map F3 is applied. Then the tra-
jectory under the map F»> moves back to the region R; (given that F» has the
attracting fixed point in Ry).

For some sufficiently small € > 0 the dynamics of F' are bounded. To
see this first note that for b close to 0 the above statement is obvious. For the
values of b close to 1, note that at a = 1, b = 1 we have F} = Fj, so that
if b — 1_ and a — 1 then the distance between the fixed points of F} and
Fy tends to 0, so that choosing e small enough we get a bounded invariant
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region. In other words, we can say that the invariant region (@) or P, as
described in propositions 1 and 2), existing in the phase space for a = 1,
exists also after the center bifurcation, but now an inner point of this region,
being no longer periodic or quasiperiodic, is attracted from the boundary,
as well as an initial point outside the invariant region. Note that due to the
invertibility of F' a trajectory cannot jump from inside the invariant region to
outside and vice versa. For a sufficiently small ¢ the boundary is an attracting
closed invariant curve C, to which the dynamics of F are reduced. It can be
shown that for the parameter range considered, the restriction of F' to C is
invertible, so, as in the previous case (b = 0), the trajectory on C is regular.
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Figure 8: The attracting closed invariant curve C at a = 1.1, b = 0.1,
¢ = 0.25, d = 10. Points of the attracting and saddle cycles of period T are
shown by black and white circles, respectively.

Fig.8 presents an example of attracting closed invariant curve C on which
the map F is reduced to a rotation with the rotation number 1/7. That is,
there exist an attracting and a saddle cycle of period 7, so that the curve C is
formed by the closure of the unstable set of the saddle 7-cycle, approaching
the points of the attracting 7-cycle (i.e. a saddle-connection). Differently
from the case b = 0 in which the curve is made up by a finite number of
segments (belonging to the images of LC_ ), now it can be shown that there
are infinitely many corner points on C, so that it consists of infinitely many
linear segments approaching the periodic points of the attracting node.
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A typical two-dimensional bifurcation diagram of the map F in the (a, c)-
parameter plane for a fixed values of b is shown in Fig.9 where b = 0.1. We
notice that as long as the fixed point of the map F3 is an attracting node, that
is for ¢ > ¢* = 2v/b — b, which at b = 0.1 becomes ¢ > ¢* ~ 0.5325,
the (a, c)-bifurcation diagram looks similar to that of the case b = 0 (see
Fig.4), and we conjecture that complex dynamics can not occur. While for
¢ < ¢* the periodicity regions are stopped on the right by the gray region
denoting divergence to infinity, and, as we shall see below, chaotic dynamics
may occur, as well as multistability.

c=2Ya-a

divergence

Figure 9: Two-dimensional bifurcation diagram of the map F' in the (a, c)-
parameter plane at b = 0.1, d = 10. Regions corresponding to attracting
cycles of different periods n < 32 are shown by various gray tonalities.

It is worth to notice that the periodicity tongues shown in the two - di-
mensional bifurcation diagram correspond to attracting cycles, but they are
not necessarily related to closed invariant curves, made up by the saddle-
connection. Indeed, we know that for values of a close to 1 the closed in-
variant curve C exists but increasing a it may be destroyed. Thus let us first
give here the possible mechanisms leading to the destruction of a closed in-
variant curve C which, in a certain sense, are similar to those occurring in the
smooth case (to compare, see Aronson et al., 1982):

e A border-collision bifurcation occurring when a point of the attracting
cycle and a point of the saddle cycle collide and merge on LC_; and,
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as a result, these cycles disappear (Nusse, Yorke, 1992, Banerjee et al.,
2000). This bifurcation often occurs on the boundary of a periodicity
tongue, as already described in the previous section.

o The attracting n-cycle existing on C may lose stability via flip bifurca-
tion. The result of the flip bifurcation in the piecewise linear case (see
Maistrenko et al.,, 1998) in general is the appearance of a 2n-cycle of
chaotic attractors (i.e., cyclic chaotic attractors made up of 2n disjoint
pieces), which becomes a one-piece chaotic attractor via a sequence
of pairwise merging of the pieces.

¢ The attracting n-cycle (node) existing on C may become a focus. In-
deed, in such a case we can say that a closed invariant curve still exists
but is no longer homeomorphic to a circle. Thus this bifurcation de-
notes a qualitative change of the structure of the invariant curve, but
not its disappearance. However, we list it here, as some other authors
do, denoting the change of saddle-node connection into saddle-focus
one. The saddle-focus connection may be destroyed by a center bifur-
cation of the n-focus, giving rise to n cyclical closed invariant curves.
That is, the closed curve may be destroyed by a center bifurcation oc-
curring in the map F”.

o The saddle n-cycle may undergo a homoclinic bifurcation. That is,
the closed invariant curve is destroyed and replaced by a homoclinic
tangle with infinitely many points homoclinic to the saddle (so that
also a chaotic repellor exists, made up of infinitely many repelling
cycles). As we shall see in the example given below, such a homoclinic
tangle may occur inside a periodicity tongue.

In the bifurcation diagram shown in Fig.9 it can also be seen that near
the line a = 1 the bifurcation structure is similar to the case b = 0, but for
larger values of a the dynamics become more complicated: As the numerical
simulation shows, the periodicity regions can be overlapped, so that the map
F can have two coexisting attracting cycles, as well as an attracting cycle
coexisting with a chaotic attractor. To give an example, let us enlarge a part
of the bifurcation diagram where we have bistability (see Fig.10 with an
enlargement of the window indicated in Fig.9, where one of the bistability
regions is dashed).

To see which kind of bifurcation occurs when the (a, ¢c)-parameter point
crosses the bistability region, let us fix a = 2.07, b = 0.1 and increase the
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value of ¢ (the corresponding parameter path is indicated by the straight line
with an arrow in Fig.10). The phase portrait of the map F' at ¢ = 0.07, and its

Figure 10: The enlarged window of Fig.9, A dashed region corresponds to
an attracting 7-cycle coexisting with another attractor (regular or chaotic).

Figure 11: An attracting closed invariant curve C at a = 2.07, b = 0.1,
¢ = 0.07, d = 10. Points of the attracting and saddle cycles of period 7 are
shown by black and white circles, respectively.

enlarged part are shown in Figs.11 and 12(a): An attracting closed invariant
curve is formed by the unstable set of the saddle 7-cycle, approaching the
points of the attracting 7-cycle, which is the only attractor of the map F.
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Fig.12(a) shows also some branches of the unstable set of the saddle, so that
it can be seen that stable and unstable sets have no intersection.
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(@ * (b) x

Figure 12: The enlarged window of the phase portrait of F shown in Fig.11
ata = 2.07,b = 0.1, d = 10 and (a) ¢ = 0.07 (before the intersection
of the stable and unstable sets of the T-saddle) (b) ¢ = 0.074 in (after the
homoclinic bifurcation of the saddle).

Increasing the value of ¢, at ¢ = 0.0715 the first homoclinic bifurcation
(or homoclinic contact, the analogue of a homoclinic tangency in smooth
maps) occurs for the saddle cycle. After the tangency, the attractor of the
map F is still the 7-cycle node, but the closed invariant curve no longer
exists: It has been destroyed by the homoclinic tangency and it has been re-
placed by the homoclinic tangle, with a chaotic repellor. Fig.12(b) presents
the enlarged part of the phase space of the map F' at ¢ = 0.074 during the
homoclinic tangle. In order to remark the role of the chaotic repellor and
the compiex structure of the stable set of the saddle, we show the basins
of attraction of the 7 fixed points for the map F7. For the parameter val-
ues used in Fig.12(a), when the unstable set of the saddle gives rise to the
closed invariant curve, the stable set of the saddle has a simple structure, and
separates the basins (the 7 invariant regions) in a simple way, as shown in
Fig.13(a). While for the parameter values used in Fig.12(b), when the unsta-
ble set of the saddle intersects the stable one and the closed invariant curve
no longer exists, the stable set of the saddle has a complex structure, and sep-
arates the basin in a complex way, as shown in Fig.13(b). It is worth to note
that the map here is invertible, so that the 7 basins, although with complex
structure, must be simply connected (in the next section we shall see instead
disconnected basins in the noninvertible case).
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On further increasing of the parameter, at ¢ =~ 0.0777 the last homoclinic bi-
furcation (or homoclinic tangency) occurs for the saddle 7-cycle (the related
phase portrait is shown in Fig.14(a)). This value of ¢ approximately corre-
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Figure 13: Baisns of attraction of the 7 fixed points of the map F" (i.e. the
7-cycle of F)ata =2.07,b=0.1,d =10 and c = 0.07 in (a); c = 0.074
in(b).

sponds to the crossing of the lower boundary of the bistability region, so that
after this bifurcation the map F' has the attracting 7-cycle coexisting with a
chaotic attractor: Fig.14(b) presents an enlarged part of the phase portrait of
F at ¢ = 0.0778, where the basins of two attractors are shown by different
gray tonalities. The whole phase portrait is shown in Fig.15(a). Note that
after the last homoclinic tangency the unstable set of the saddle is not related
to a closed invariant curve: One branch tends to the 7-cycle and the other
branch tends to the chaotic attractor. While the stable set of the 7-saddle
gives the boundary of the two basins of attraction.If we continue to increase
the value of ¢ then at ¢ ~ 0.082595 a "saddle-node’ border-collision bifurca-
tion occurs when the attracting cycle and the saddle merge and disappear (see
Fig.15(b)). This value of c is related to the crossing the upper boundary of
the bistability region, so that after the bifurcation the chaotic attractor is the
unique attractor of F'. We can get the same attractor as a result of a sequence
of other bifurcations if the (a, c)-parameter point moves starting from a point
inside the 29-periodicity region, for example, a = 2.025, ¢ = 0.0925. These
values corresponds to the attracting and saddle 29-cycles of the map F. If,
for example, the parameters change as shown by the thick line with an arrow
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Figure 14: The enlarged part of the phase portrait of the map F at a = 2.07,
b=0.1d =10, and (a) c = 0.0777 (near the last homoclinic bifurcation
of the saddle T-cycle); (b) ¢ = 0.0778 (after the homoclinic bifurcation, The
basins of the coexisting attracting T-cycle and chaotic attractor are shown
in different gray tonalities).
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Figure 15: In (a) phase portrait of the map F at a = 2.07,b = 0.1, ¢ =
0.0778, d = 10 with basins of attraction of coexisting attracting 7-cycle and
chaotic attractor. In (b) two attractors of the map F at a = 2.07,b = 0.1,
¢ = 0.082595, d = 10, near the ‘saddle-node’ border-collision bifurcation
when the attracting and saddle T-cycles merge and disappear due to the
collision with LC_1.
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in Fig.10, then at a ~ 2.05, ¢ = 0.0872, the attracting 29-cycle undergoes a
flip bifurcation (i.e. the invariant closed curve is destroyed via a flip bifurca-
tion) resulting in a 2 x 29-cyclic chaotic attractor. Then, after the pairwise
merging of the cyclical pieces of the chaotic attractor, the map F has a 29-
cyclic chaotic attractor (for example, at a = 2.056, ¢ = 0.0859), which after
further merging of pieces becomes a one-piece chaotic attractor, an example
is shown in Fig.15(b).

2.6 Center Bifurcation for b < 0: Noninvertible Case

In this last section we describe the center bifurcation occurring in the map F’
given in (1) when it is noninvertible, for —(c+1)/2 < b < 0. We recall that
we assume a > 1,0 < ¢ < 1 and (c+ a)? < 4a, so that the fixed point of F
is an unstable focus, while in the given range for b the fixed point of the map
Fy, belonging to R;, is a stable node (with one positive and one negative
eigenvalue).

For values of the parameter a in a right neighborhood of 1 the dynamics
are qualitatively similar to those occurring in the invertible case, as already
remarked in section 2.2 of this chapter. Let us only emphasize the main dif-
ference, due to the fact that no point of the phase plane can be mapped in the
so called region Zp, above the critical line LC (as those points are without
preimages). For the parameter values taken inside a periodicity tongue the
map F still has a pair of cycles, a saddle and a node, and the unstable set of
the saddle gives rise to a saddle-node connection, which is a closed invariant
curve C made up by infinitely many linear pieces (with corner points). But
the area bounded by such a closed curve is not invariant. This is due to the
fact that arcs which cross the critical curve LC_; are folded on the criti-
cal line LC creating corner points, whose forward images give again corner
points. An example is shown in Fig.16, for parameter values inside a peri-
odicity tongue with rotation number 1/7. In that figure, the arrows indicate
the points of intersection between the invariant curve C and LC_; and two
more arrows indicate their images on LC. The non invariance of the area
bounded by C is immediately clear from that figure: All the points between
the line LC'.; and the invariant curve C are mapped outside the area bounded
by the curve, between the curve and the critical line LC. That points from
outside can be mapped inside the area bounded by C is immediately evident:
All the points on the right of LC, belonging to Z9, have two distinct rank-1
preimages, one on the right and one on the left of LC_;.

Another important difference between the invertible and noninvertible
case is related with the unstable set of the saddle cycles: Self intersection
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may occur, while it is impossible in invertible maps. This is one more mech-
anism which causes the destruction of the closed invariant curve C which for
noninvertible maps is to be added to the list already given in the previous
section. Summarizing in short we can list such mechanisms as follows:

border-collision bifurcation (which may occur at the boundary of a
periodicity tongue);

flip bifurcation of the attracting cycle on C;

transition of the node existing on C into a focus (followed by a center
bifurcation);

the saddle may undergo a homoclinic bifurcation (transverse intersec-
tions between stable and unstable sets of the saddle);

the unstable set of the saddle may develop selfintersections, giving
infinitely many loops on the invariant curve.
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Figure 16: The attracting closed invariant curve C at a = 1.1, b = —0.05,
¢ =0.25,d = 10.

Let us illustrate the last kinds of bifurcations by an example, taking the
parameter values in the periodicity tongue associated with the rotation num-
ber 1/6, shown in the bottom-left of the (a, ¢) parameter plane of Fig.17.
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Let us fix a = 1.1, b = —0.4 and increase the value of ¢ (the corresponding
parameter path is indicated by the straight line with an arrow in Fig.17).
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Figure 17: Bifurcation diagram in the (a, c) parameter plane at b = —0.4
and d = 10.

The phase portrait of the map F' at ¢ = 0.05 has a unique attractor: a
stable node of period 6, and in Fig.18 (a) we present the basins of attraction
of the 6 fixed points for the map F'® (black points in the figure). The stable
set of the saddle cycle (white points in the figure) gives the basin boundary.
While the unstable set of the saddle is an invariant set which is no longer
homeomorphic to a circle, as self intersections already exist. This is shown
by an enlarged part of the phase space in Fig.18 (b).

In Fig.18 (a) one more peculiarity of noninvertible maps can be seen:
The basins are not simply connected. However the disjoint portion of the
basin shown there is entirely included in the region Zy so that it has no other
preimages. While increasing the value of ¢, at ¢ = 0.06 that portion of the
basin intersects the critical curve LC thus giving a portion in the region Zo
and this small portion has infinitely many preimages, clearly visible in Fig.19
(a). The related unstable set of the saddle is still with self intersections, as
shown in the enlargement of the phase space in Fig.19 (b), but is it also
possible to see that it is now close to the stable set of the same saddle (basin
boundary in Fig.19 (a)), and this denotes that a homoclinic bifurcation is
going to occur.
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Figure 18: (a) Basins of attraction of the 6 fixed points of the map F® at
a = 11,0 = —04, c = 0.05; (b) The enlarged part of (a) with some
branches of the stable and unstable sets of the saddle 6-cycle.
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Figure 19: (a) Basins of attraction of the 6 fixed points of the map F at
a = 11,0 = —04, c = 0.06; (b) The enlarged part of (a) with some
branches of the stable and unstable sets of the saddle 6-cycle, near a homo-
clinic bifurcation.
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In fact, Fig.20 (a) (¢ = 0.0615) shows the homoclinic tangency and Fig.20
(b) (c = 0.064) shows the homoclinic transverse intersections between the
stable and unstable sets. It is clear that a strange repellor also exists in such a
regime, with the homoclinic tangle of the saddle cycle, and this can be seen
in the complex structure of the basins, with many disconnected component
in a fractal structure, as shown in Fig.21.
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Figure 20: The enlarged part of the phase space with some branches of the
stable and unstable sets of the saddle 6-cycle at o = 1.1, b = —04,¢c =
0.0615 (a) and c = 0.064 (b).

It is worth noticing one more property of the noninvertible maps, which
is the existence of absorbing areas inside which all the asymptotic dynam-
ics occur. Consider for example the case shown at ¢ = 0.064, for which
a strange repellor exists: We can say that all the unstable cycles constitut-
ing the strange repellor must belong to the annular absorbing area shown in
Fig.22 (a). This area can easily be constructed by taking the images of the
critical curves. In fact, an invariant area has necessarily the boundary given
by the images of the segment of LC_; belonging to the area itself, which
is called generating segment* (see, e.g., Mira et. al., 1996). In our case, by
taking 6 images of that segment we get the external boundary of a simply

2Given a noninvertible map F' and an invariant area A (i.e., such that F(A) = A), the
generating arc is defined by AN LC_;.
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connected invariant area, which includes also the unstable fixed point. But
as it is an unstable focus, we can also construct an annular absorbing area by
taking more images of the same segment. In fact, with 6 more iterations we
get the inner boundary of an area of annular shape shown in Fig.22 (a). It is
clear that any point of the phase space belonging the hole around the unsta-
ble focus is such that its trajectory enters the annular area and never escapes.
This means that all the limit set of the trajectories belongs to that annular
area, in particular all the cycles of F, except for the focus fixed point.

Figure 21: Basins of attraction of the 6 fixed points of the map F® ata = 1.1,
b=-04,c=0.064.

As it can be seen from Fig.21, the points of the stable node (black points)
and those of the saddle (white points) are very close to each other, and on
further increase of ¢ the parameter point reaches the boundary of the peri-
odicity tongue, where a saddle-node merging occurs via a border-collision
bifurcation. After such bifurcation the pair of 6-cycles disappear and the
map F is left with a chaotic attractor: That is, the chaotic repellor existing in
the annular area shown in Fig.22 (b), is transformed into a chaotic attractor
with knots and self intersection.
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=20 -20

(a) (®)

Figure 22: The annular absorbing area of the map F at a = 1.1, b = —0.4,
¢ = 0.064 (a) and c = 0.071 (b).
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3 Short History of the Multiplier-Accelerator
Model

Tonu Puu

3.1 Introduction

Business cycle theory is as old as business cycles themselves. To find this
out the reader may consult for instance Schumpeter (1954), the great source
for all history of economic analysis, or the standard reference on business
cycles, Haberler (1937). The variety of explanations is overwhelming, from
the influence of sun spot activity, to mere accumulation of random variables.

Most theories used different explanations for upswing and downturn. The
scenery changed thoroughly once Samuelson (1939) suggested one single
model, analogous to the simple harmonic mechanical oscillator, though based
on two substantial economic hypotheses: multiplier analysis, and the princi-
ple of acceleration. According to the first, consumers spend a fixed fraction
of their incomes, so that any initial income change leads to a convergent
geometric series of subsequent speading, which multiplies up the initial
change by a factor reciprocal to the fraction saved. According to the second,
capital is assumed to be needed in a fixed proportion to the output to be
produced, so investments, by definition the change in capital stock, are pro-
portionate to the change of output.

Keynesian macroeconomics provided an essential background to this model.
Though Keynes (1936) produced no dynamical theory, just a theory for sus-
tained unemployment, it was he who focused the dependence of consump-
tion and savings on income. The classics had focused the rate of interest as
equilibrating force for investments and savings. The main concern of Keynes
was to minimize the role of interest: For one thing, interest rates would be
inert downwards, due to speculation resulting in infinitely elastic liquidity
preference, i.e. demand for cash reserves. For another, investments would be
inelastic with respect to interest rates even if the latter had been less inert.
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In this sense Samuelson drew the full consequences of Keynesian
macroeconomics, as he skipped the monetary repercussions altogether.

Samuelson's model is Keynesian also in the sense that it only rests on facts
of the demand side. Just recall that the Keynesian system as stated, for in-
stance, by Hicks (1937), produces an overdetermined system of equations
where the supply function for labour literally becomes redundant. Every-
thing is thus determined through demand.

Further, according to the acceleration principle, investments just follow
the expected increase of demand. 1t s to this end that capital accumulates so
as to keep the right proportion to production.

Of course, Samuelson also made the theory dynamic. As mentioned, the
combination of multiplier and accelerator produces a linear model, a simple
harmonic oscillator, which can be explosive or damped (disregarding a struc-
turally unstable boundary case). So, in order to have bounded, and yet sus-
tained oscillations, two solutions were proposed: (i) Frisch (1933) suggested
that damped linear oscillatory systems be kept going through exogenous
shocks, just as the violin string through the rosin on the bow according to
Lord Rayleigh's classical model of 1894. (ii) Hicks (1950) suggested bounds,
floor and ceiling, to limit the motion of an otherwise explosive linear model.

Hicks further offered substantial explanations for these bounds: If inves-
tors follow the linear principle of acceleration, then, in periods of sharp in-
come decrease, investments may become, not only negative, i.e. dis-
investments, but may even exceed the disinvestment which occurs when no
worn out capital is replaced at all. As this means active destruction of capi-
tal, which is not a feature of reality, it must be prevented through imposing a
"floor" at the depreciation level.

Likewise, if income grows very fast, then other inputs than capital, labour
or raw materials, may become limiting, and a "ceiling" must be imposed. It
can be incorporated in the investment function along with the floor, which
means that it is the investors who abstain from further expenditures once
they realize that output cannot be increased due to limitations in the avail-
ability of other inputs, or it can be imposed as a limit to total expenditures,
investment, plus consumption, plus anything else. This, by the way, is one
and the only element in the Hicksian reformulation of Samuelson's model
through which the supply side becomes active.
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3.2 Keynesian Macroeconomics and the Business Cycle

To understand the background to business cycle modelling of multiplier-
accelerator type, it is important to recognize the significance of Keynesian
macroeconomics, emergent with the " General Theory of Employment, Inter-
est, and Money" in 1936. Not only is it the first complete statement of a
model of the economy in terms of macroeconomic variables, such as in-
come, consumption, savings, and investment, but its main message is to ne-
gate the importance of the monetary factors: the rate of interest, the nominal
wage rate, and the quantity of money.

We must however not forget that the Keynesian theory was completely
static, and that, as we will see, it would be very difficult to interpret its rela-
tions in any dynamic sense. Nevertheless, it set the stage for Samuelson's
business cycle machine of 1939, which actually drew the full consequences
of Keynesian macroeconomics and ignored the monetary phenomena alto-
gether, through just keeping the multiplier, and adding a different principle,
the acceleration principle, for the determination of investment.

As a background to multiplier-accelerator modelling we will therefore re-
capitulate the Keynesian system, which tends to become forgotten by the
economics profession of today. Despite his unusually high sophistication in
mathematics, Keynes did not believe in the usefulness of mathematical mod-
elling in economics, so he never wrote down a complete model, and, still
worse, what he described verbally remained a bit ambiguous. However, most
interpreters of the Keynesian system, such as Hicks in "Mr. Keynes and the
Classics" 1937, or Klein in "The Keynesian Revolution" 1947, interpreted
the model and its relations in the same way. The main difference lies in the
measurement units for the variables. It is easiest to interpret savings, invest-
ment, and income as monetary variables. However, Keynes was very insist-
ent on the proper interpretation of the variables to be in rea!/ terms, deflating
them by the price level or even by the wage level. For this reason it would be
wrong to just stick to the popular monetary model, as some of the main
Keynesian results, in particular the failure of lowering wages as a means to
attain full employment, do not show up in the monetary model. To this end
we present both variants

The Hicksian interpretation of 1937 with its IS and LM curves has become
the main frame whenever the Keynesian model is discussed. For a change,
we will base the following exposition on a another graphical construction,
due to Palander (1942), which is even more pedagogical, and more useful for
detecting features of the Keynesian system that the IS-LM analysis does not
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show. Unfortunately, this most detailed and elegant exposition, has never
been available for a wider readership because it was only published in Swed-
ish.

3.3 The Model in Monetary Variables

Let S denote savings and Y denote income. The Keynesian savings function
then reads:

§=5(Y) M)

This is an important deviation from classical economics where savings were
assumed to depend primarily on the rate of interest, thus together with the
investment function providing an equilibrium mechanism for the determina-
tion of the rate of interest. Keynes retains the classical form of the invest-
ment function:

1=1(r) @

where I denotes investment and » denotes the rate of interest. The idea is that
if all investments are ranked after their internal rate of yield, the "marginal
efficiency of capital”, and the cumulative sum of investment costs / for those
that yield more than the current rate » of interest is computed, then one ob-
tains / as a decreasing function of r.

Keynes stressed in particular that at low rates of interest, this sum of in-
vestments carried through becomes highly inelastic with respect to the rate
of interest, as we see in the NW quadrant of Fig. 1. Keynes also stressed that
other factors, in particular speculative behaviour, make the investment func-
tion shift drastically and erratically. In business cycle modelling the growth
rate of income was made a mechanical determinant for investment, and the
rate of interest was trashed altogether.

As for the savings function, it was assumed to start at zero income with
zero slope, all income being used for consumption. With increasing income
the slope was assumed to approach unity asymptotically, all further incre-
ments of income being saved once consumption was saturated. We can see
this shape of the savings function in the NE quadrant of Fig. 1.
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Fig. 1. Palander’s first diagram of the Keynes monetary system.
g g ry

It is interesting to note that Keynes gave evidence for the global shapes of
the behavioural functions, and that they were all assumed to be nonlinear.

To the saving and investment functions we now add the equilibrium condi-
tion:

I=S )

For this reason we are able to place the diagrams back to back in Fig. 1. Note
that substituting (1)-(2) in (3) gives the implicit function /(r) = S(¥) whose
graph is the Hicksian [S-curve. As both (1) and (2) are monotonic, we could
construct this curve through starting at any value of Y on the right, go up
vertically to the savings function, then draw a horizontal line to the invest-
ment function on the left, and finally drop a vertical line to the r axis, quite as
in the upper half of the rectangle in Fig. 1.

Likewise, we could expect the lower half of the diagram to represent the
Hicksian LM-curve. This indeed is so. In the SE quadrant we see a family of
grayshaded straight lines showing the partitions of given total quantities of

money M in transactions money M, and asset money M, , also called specu-
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lation cash. The black line represents an actual, or given, fixed quantity of
money:

M +M,=M “)

The rest of the gray parallel lines represent options for monetary policy
through the banking system.

How can we depict transactions money M, and income Y on the same
axis? The clue is in terms of an old equation from the quantity theory of
money:

M, =k-Y *)

which Keynes retained. Money was simply assumed to circulate with a con-
stant velocity, usually denoted ¥, to generate the expenditures creating in-
come Y. In the quantity theory of money its total quantity created income in
this mechanical way, as it also did later in the monetarism revival. What was
new in the Keynesian theory was that only a part of total money, net of asset
holding for cash, was used for transactions. The constant & in (5) is just the
reciprocal of the circulation velocity, i.e., equal to 1/V. Given the constant
proportionality, we can hence use different scales above and below the axis,
and display Y and M, on the same.

Note that it is (5) that is the hardest piece to interpret in a causal sense. Is it
income, generated by investment and consumption, that just absorbs part of
the money supply for transactions, or is it the other way around? Does trans-
action money in some sense create income? It seems safest to see (5) as a
pure equilibrium condition without any causal interpretation. Hicks in "Mr.
Keynes and the Classics" implied a causality from income to transactions
demand, which Allen (1956) used for putting up a dynamical system around
the IS-LM diagram in terms of a cobweb, whereas the quantity theorists,
classical and modern, no doubt saw causality the other way. Let us however
again recall that the Keynesian theory is an equilibrium theory for unem-
ployment with no obvious dynamisation possibilities at all.

The remaining piece on display in Fig. 1 is the demand for "speculation”
cash or asset money, the liquidity preference function, which no doubt is one
of the most ingenious pieces in the Keynesian model. According to Keynes,
wealth owners share their total wealth between assets, represented by bonds
and hoarded cash, waiting to be invested in bonds, once the circumstances
for security price rises become more favourable.
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Wealth owners have (differing) expectations about the normal level of the
interest rate. The lower it actually is, the fewer of course expect it to de-
crease further and the more expect it to rise. Financial asset prices and inter-
est rates tend to be related through reciprocity. The case is simplest for a
perpetual bond yielding £1 each period. With the interest rate r, its current
market value is simply the infinite geometric series of discounted yields, i.e.
2’201 /(1=r)' =1/r. The relation between bond price and interest is thus
represented by the positive branch of a hyperbola. It means that the lower the
interest rate, the higher are bond prices. Hence, if most wealth owners con-
sider interest rates to be unusually low and hence bound to rise, they also
expect bond prices to fall. To avoid losses, they keep more cash, waiting
until the expected rise has actually taken place.

But this is not all! The lower interest rates are, the larger are the price
changes, i.e., the expected losses, that go with a given rise in the rate of
interest. Suppose the rate of interest rises from 1 percent to 10 percent in
steps of 1 percent. The security price then decreases correspondingly from
£100to £10, but in decrements of £50, £16.67, £8.33, £5, £3.33, £2.38, £1.79,
£1.39, and £1.11 respectively. No doubt, the losses are most dramatic when
the rate of interest is low - in the first step the asset owner loses half his
Jfortune, whereas the latest steps are rather negligible. Of course, the gains,
should the direction of change be reversed, are equally immense, but, as we
recall, nobody believes in further decrease when the interest rate is low al-
ready.

For these reasons, when the interest rate approaches a critically low value,
all wealth owners prefer to hold cash in stead of bonds, and the demand for
asset money becomes virtually infinite. As a consequence, asset money de-
mand swallows all the available supply, without influencing the rate of inter-
est notably. This splitting of cash effectively undoes the quantity theory of
money, even though Keynes kept it in his system as an element, though ap-
plied to the transactions demand only.

The liquidity preference function:

M, =L(r) 6

hence has a lower asymptote, indicated by the vertical line in the left part of
Fig. 1. It is impossible in the Keynesian system to push the rate of interest
below this critical value, and hence the investments above the corresponding
value. Investments are limited from above due to this lower bound to the
interest rate. Not enough, Keynes also said that investments become insensi-
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tive to the rate of interest when it is low. Hence, investments are limited for
two different reasons, and the operation of the multiplier accordingly also
limits the possible incomes that can be generated in the system. This is shown
by the two shaded inaccessible regions on the right of the diagram.

The equilibrium point in Palander's diagram is obtained through letting a
rectangle rest with each of its corners on the graphs of the savings function,
the investment function, the line representing a fixed quantity of money, and
the liquidity preference function. To find this rectangle, Palander used the
strategy of a construction curve in the SE corner of the diagram. Draw just
any number of rectangles with only three of the corners resting on the sav-
ings, investment, and liquidity preference curves, and let the fourth trace the
dashed curve showing possible divisions between M, and M, . Then, fixing
total money supply, one of the policy instruments available, we select one of
the straight lines, and find the remaining corner of the equilibrium rectangle
at the intersection of the corresponding line and the constructed dashed curve.

The advantage of this way of graphical display is that we easily see how
the asymptote to the rate of interest translates to a corresponding asymptote
to transactions cash, i.e., to income on the right hand side of the diagram. If
we try increasing the supply of money further, we find that nothing but the
quantity of asset money increases, and can hence verify the Keynesian dic-
tum that monetary policy becomes inefficient when interest rates are low.
Not so fiscal policy, because taxation could be analysed through translating
the savings function horizontally, government expenditures through trans-
lating it vertically, but we do not want to enter the Keynesian model in that
much detail.

Palander's four quadrant exposition is superior to the IS-LM, because it so
clearly lets us see these facts about monetary policy. However, this is not all.
Hicks stopped at the IS-LM diagram, but Palander supplied another four
quadrant diagram, which we display in Fig. 2, and which lets us find out the
facts of the labour market, which was Keynes's main interest.

As we established an equilibrium (monetary) income Y in Fig. 1, we can
now realize that this monetary income is the product of the price level p, and
the real income Q, deflated through price level, i.e.:

p-0=Y 9

If we now display this hyperbola in Q, p - space in the NE quadrant of Fig. 2,
we can interpret (7) as a kind of aggregate demand function.

Having Q on the horizontal axis to the right, we can now also draw a graph
of the aggregate production function:
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Fig. 2. Palander's second diagram of the monetray Keynes system.

0=¢(N) (8)

in the SE quadrant, where N denotes labour force This is the traditional shape
of a production function with first increasing and then decreasing returns.
To the left we display its derivative, i.e. the marginal productivity curve
22 = ¢'(N), which first increases, and then decreases, quite as it should in
the classical increasing/decreasing returns case. Along with the marginal pro-
ductivity curve we also display the average productivity curve £=¢(N)/ N .

It is shaded gray, as is the part of the marginal productivity curve that has not
yet intersected the maximum of the average productivity curve. We want to

interpret 42 = ¢'(N) as a demand function for labour, because at profit maxi-

mum marginal productivity should equal the real wage rate % . As we know

from elementary production theory, only the portion of the marginal produc-
tivity curve, where marginal productivity does not exceed average produc-
tivity, results is positive profits, so only the section of the decreasing part
coloured black is our labour demand curve. Along this curve:
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=¢'(N) 9)

e

holds.

As we display the labour force axis pointing down, the marginal produc-
tivity pointing left, we can also put the real wage rate on the same axis point-
ing left.

There is now only the NW quadrant left empty. On the axes we have real

wages - horizontally, and price p vertically. Suppose we fix the money

wage rate w. Then we have the identity:

s f

p=w (10)

which is a hyperbola in the NW quadrant. Observe that we are not going to
count it among the equations of the Keynesian system, as it is just an iden-
tity. We could count it, but then we would have to add the real wage rate as a
new variable.

We drew a whole family of hyperbolas, shaded gray, because the money
wage rate is again a means of economic policy, now one controlled by trade
unions and other labour market agents.

We can again use the strategy of fitting a rectangle with its corners resting
on the four curves, but as an aid we can again leave the point in the NW
quadrant out, let only three points rest on the other curves, and use the fourth
corner to construct the dashed curve in Fig. 2. It shows possible relations
between price level and the real wage rate. By choosing a hyperbola in the
NW quadrant, i.e., selecting a money wage rate, we can find its intersection
with the constructed curve, and so complete the equilibrium rectangle.

At this stage it is appropriate to note that, though we have a demand curve
for labour, we have no supply curve! In the Keynesian system it is just re-
dundant. We have 9 equations, (1)-(9), and 9 variables, ¥, S, I, M,, M, ,r, 0,
N, and p. The wage rate w and the quantity of money M are fixed policy
variables, and &k = 1/V is a constant determined by transaction practice.

Let us now check out an important argument due to Keynes. Lowering
money wages are of no help for obtaining full employment. As a matter of
fact this cannot be seen in the diagram. Given the dashed construction curve,
we can lower real wages even down to zero by lowering money wages, and
hence increase employment to any extent we wish. This has been the cause
of some misunderstanding, as some authors claim that Keynesian theory still
needs sticky wages. However, we should recall that we dealt with the model
in monetary terms. With the variables defined in real terms we can indeed
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verify Keynes's dictum that even if money wages were not sticky, lowering
them in unemployment might not result in sufficiently low real wage rates.

3.4 The Model in Real Variables

To see this, we have to change Palander's diagrammatic method just a little.
Fig. 3 is very similar to Fig. 1, with the savings function, the investment
function, the liquidity preference function, and the construction curve for
the distribution of the stock of money between transactions cash and asset
money. There is, however, one big difference: All variables are now in real
terms. Real savings s = S/ p are a function of real income, Y/p = 0, so:

s=5(Q) (1)

Likewise, it is now real investment, i.e., i =/ p, which is a function of the
rate of interest 7:

i=i(r) (12)
Again we have the equilibrium equality between savings and investmer{ts3)
s=i

Transaction money, in real terms, m, = M, / p, is proportional to real in-
comnie:

m =k-Q (14)
and the demand for asset money, again in real terms, is:
m, =I(r) (15)
Equations (11), (12), and (15) just rephrase (1), (2), and (6) in real terms,

whereas (13) and (14) can be obtained from (3) and (5) through division by
P
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Fig. 3. Palander inspired first diagram for the real Keynes model.

Corresponding to the total nominal amount of money, we now also have a
real amount of money m = M / p, which is the sum of (real) transactions
demand and asset demand, i.e.,

m,+m,=m (16)

This is again obtained from (4) through dividing by p. The big difference is
that, unlike M, m is not a parameter for monetary policy, as it depends on the
price level which must be determined endogenously in the model

Now suppose we erase everything in Fig. 3, except the constructed distri-
bution curve for the different components of (real) money demand, and leave
just it for Fig. 4. Further, suppose we take a point such as the black dot on
this construction curve. This time we do not move horizontally from the dot
to the axis, but follow the constant (real) money line diagonally to the verti-

cal axis. The axis intercept obviously gives us the sum m, +m, = m of trans-

actions and asset demand for money in real terms, corresponding to the point
chosen. So, reading off the intercept, we can indeed write m on the left side
of the vertical axis.
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Fig. 4. Demand function in the real Keynes model.

What else do we have? From definition, m = M/ p, so:

Putting p on the left horizontal axis, we can display (17) as a hyperbola
whenever M is fixed by the monetary authorities. For the rest we just put p
on the remaining axes, and use a diagonal in the NW quadrant to shift verti-
cal coordinates to horizontal and vice versa.

We can again use the rectangle construction, this time with one corner cut
off, and, starting from any point on the curve in the SE quadrant, construct
the dashed curve in the NE quadrant of Fig. 4. The axes there are Q and p
respectively, so we again arrived at an aggregate demand curve. This time it
is not a hyperbola as in Fig. 1. The shape is distinctly different, as it goes
down to the Q axis at a certain value. Ultimately this is due to the shape of
the liquidity preference function, which hence limits possible total output in
the real version of the Keynesian model, but, as we saw, not so in the mon-
etary version of it.
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Fig. 5. Wage rate and unemployment in the real Keynes model.

In Fig. 5 we reproduce all the curves from Fig. 2, as most of the variables
there are in real terms already. We just replace the hyperbola shaped demand
function with the just derived demand function that goes down to the hori-
zontal axis. As we will see this alters the conclusions about the effects of
lowering money wages drastically, and fully justifies all Keynes's original
assertions.

Again, we can use the method of rectangles with corners resting on the
demand function, the production function, the labour demand function, and
the given money wage hyperbola. However, as before, we use the three first
to construct a dashed possibility curve in the NW quadrant, relating possible
real wage rates to prices. The equilibrium is where this dashed curve inter-
sects a hyperbola representing the given money wage.

What is new is that the shape of the demand function in the NE quadrant
also results in a minimum obtainable real wage rate, shown by the vertical
line in the left part of Fig. 5. No matter how much we lower the nominal
wage, can we undercut this minimal real wage rate. As a result, the possible
employment becomes limited, quite like production. This is shown by the
shaded strips which represent the inaccessible areas.
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3.5 Demounting Keynesianism

It did not last long before an active demounting of Keynesian macroeconomics
started. The process could be attributed to different causes. First, the Korean
War inflation in 1953 drastically changed the scenario from the Wall Street
Crash of 1929 and the Great Depression which inspired Keynes. Second,
Keynesian macroeconomics favoured active fiscal policy as means to achieve
political goals, so those who did not want that much of political intervention
preferred some different scientific paradigm. Third, there was a seemingly
irresistible urge among economists to unify macroeconomics and Walrasian
general equilibrium theory, which means deriving macroeconomics from
microeconomics. See for instance Barro and Grossman (1976).

The last urge remained a great mystery for the present author, as econom-
ics always took physics as an example. Once statistical mechanics and ther-
modynamics arouse as a theory relating volumes, temperatures, and pres-
sures, nobody tried to actually derive the relations from Newtonian princi-
ples of energy conservation in a closed container where billions of molecules
collided.

But, this was exactly what all those economists who for decades were con-
cerned with the "microfoundations of macroeconomics" tried. However, they
did not retrieve the Keynesian macoreconomics, but something entirely dif-
ferent, a model where unemployment was again due to sticky wages, chosen
unemployment for job search, and the like, quite as before Keynes.

There is nothing wrong in science to take a new start with new categories,
such as income, investment, and the rest, as Keynes did, quite like the cited
case of statistical mechanics. It is a destructive idea in science to try to find
"the unified theory of everything".

The political issue is easier to understand, clearly the Chicago school with
Milton Friedman as figurehead, which just revived the quantity theory of
money, had a political mission.

Finally, there is the interesting case of Don Patinkin, who formulated a
huge micro based theory in macroeconomic terms. See Patinkin (1956). The
difference to Keynes was that he introduced a new variable, "real balances”,
i.e., the quotient of money supply to price level, as an argument in the behav-
ioural equations. The argument goes as follows: Idle money balances are
owned by somebody, so suppose that the price level is decreasing more and
more. The owners of such balances then find themselves more and more
wealthy, and, eventually, they start consuming their wealth. This obviously
is in contradiction to Keynes's idea that, once consumption was saturated,
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people would even save all their income. Wealth was not even included as a
determinant for consumption.

If one includes the argument M/p, along with others, in any consistent
model, with any number of relations, and any number of variables, then a
fixed value of this M/p is determined along with the other arguments, and
hence the price level p becomes proportional to the quantity of money M,
quite as in Friedman's world. One does not need such an elaborate model to
arrive at this simple conclusion.

Fortunately, the dismounting of Keynesianism never affected the dynami-
cal theories inspired by Keynes, because none of the new protagonists had
anything in terms of dynamics to offer.

3.6 Statics and Dynamics of the Multiplier

Above we emphasized that the Keyenesian model is essentially static, a con-
clusion about which all contemporary commentators agree. The primary
mission of the model was to show how sustained involuntary unemploy-
ment, such as experienced in real life, not due just to sticky prices or market
imperfections, could be explained.

The truly original contribution was to construct a model in terms of new
macroeconomic variables, which only gradually, under the influence of the
Keynesian general theory itself, became operationalized through national
accounting.

Another important feature was that most relations of the model were as-
sumed nonlinear. These nonlinearities did not produce multiple equilibria,
but, provided a supply function for labour was included, the system con-
tained one equation too many, so it became overdetermined. However, the
supply function for labour was treated as redundant, and equilibrium was
determined through the remaining equations at unemployment,

Substantially, the influence of monetary issues was denied. As we have
seen, (i) lowering nominal wages could not help to achieve full employment,
(ii) the rate of interest tended to stick to a lower limit, any additional wealth
created by monetary policy being caught in the "liquidity trap", and (iii)
investments were but negligibly influenced by the rate of interest, even in
case it had been more flexible. Keynes regarded investments as highly vari-
able, though influenced by other factors than the rate of interest, so some
different mechanism to explain changes of investment would be needed in a
dynamical perspective. As we will see, this was provided by the principle of
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acceleration. For Keynes, investments were just a capricious and varying
element, which triggered with it repercussions through subsequent spending
by the consumers.

These repercussions are, already in Keynes's original theory, something
that can also be interpreted dynamically. Not only was, for once, the direc-
tion of causality from income to consumption obviously nonambiguous, but
it also had a distinctive dynamical interpretation.

Suppose we can approximate the savings function (1), i.e., S=S(Y) by a
straight line over some interval. The same then holds also for the consump-
tion function C=(C(Y)=Y-S(Y). Due to linearity, as assumed, the slope

4 = ¢ is locally a constant, quite as the slope 4 =g . From ¥ =C+S ob-

viously c+s=1.

Now, assume we have an initial increase in investment Al . This results in
an initial income change AY = AJ . However, this initial income change re-
sults in additional subsequent consumption spending, first c-Afl , then fur-

ther ¢?-Al, and so forth, in an infinite but convergent geometric series, so
the total increase of income amounts to:

AY=Y ' Ar=2o =5 (18)
—C

=0 §

This idea is discussed already by Keynes. Convergence of the series is due to
the fact that ¢ and s are in the unit interval. Of course (18) can also be ob-

tained directly through differentiating (1) and equating Al to AS, i.e., putting
Al = %-AY, whence, given £ =5, AY = Al /s . The name multiplier is

due to the fact that s < 1, and so 1/s > 1, hence multiplying up the initial
increase in investments through subsequent spending by consumers.

We have thus seen that the multiplier idea is there in Keynesian economics
both in a dynamical and in an equilibrium sense right from the outset. Once
we have a generation mechanism for investments we only need to add an
explicit period structure to land at the idea of the dynamic multiplier.

It is not so easy to say who has first priority to the idea of the multiplier,
neither who first formalized it in its static and dynamic form. Obviously,
Keynes described it very clearly in 1936, though to some extent it seems to
be a collective achievement, in which particular credit is due to Richard
Kahn. See Kahn (1931), which, however does not give a complete account
of his achievement. It should also be recalled that other multiplier mecha-
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nisms were explored, in particular the credit multiplier, which explained how
the banking system could expand total credit when only a fraction of depos-
its were kept as bank reserve, an idea having roots back in the 19th Century.

3.7 The Principle of Acceleration

Quite as it is difficult to say where the idea of the multiplier originated, so is
it difficult to trace the origin of the principle of acceleration. At least Aftalion
(1909) seems to have had a clear idea of it, though he only described things
in verbal terms. The idea is twofold: First, capital equipment is built up or
decays in anticipation of changes in consumer demand, so investment has a
lead in time as compared to consumption. Second, as investments are related
to expected changes of consumption, they tend to amplify or "accelerate"
the process, hence bringing in a feature of instability. When multiplier and
accelerator are linked together in one single feed back process, it is, of course,
no longer possible to say whether investment has a lead over consumption or
rather lags behind. The accelerator idea arose in the "overproduction” school
of business cycles. See von Haberler (1937).

As formalized by Samuelson (1939), the principle says that investment is
proportional to the rate of change of consumption, i.e., I =a-AC, where
the proportionality factor a is the "accelerator" coefticient. Hence it is the
natural companion to the multiplier, which relates consumption to invest-
ment, whereas the accelerator does the reverse. It also supplies the missing
determinant for investment once the monetary factors in truly Keynesian
spirit are scrapped.

There are several ways to motivate the principle of acceleration. The sim-
plest is maybe to assume a fixed proportion production technology as repre-

sented by a production function Q= min(%£,%), where K denotes capital, L
denotes labour, and a, b are fixed coefticients. Given this type of production
function, producers will need neither more nor less capital than K=a-Q.
Given the definition of net investment as change of capital stock, I:= AK,
and focusing the aggregate production of consumers' goods, we have C=Q
in equilibrium. Hence I =a-AQ =a-AC, quite as stated above.

Later Hicks (1950) realized that there is no need to restrict the action of the
accelerator to changes in consumption expenditures alone, it should act in
equal measure on all components of income, consumption, public spending,
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and investment itself. Hence J =a-AY , which we will use in the following,
even though it yields a slightly inaccurate representation of Samuelson's origi-
nal model. The difference in terms of model performance it marginal. As we
will see below, Hicks also introduced other changes to the model, which,
however, changed it radically.

3.8 Modelling in Continuous or in Discrete Time

Given the components, multiplier and accelerator, it remains to decide how
to model the dynamical process, in discrete time, or in continuous time, i.e.,
to use difference equations or differential equations. Samuelson (1939) chose
the latter, though the pieces could also be combined in continuous time, as
Harrod {1950) preferred.

This set a tradition for some time. Growth theory was modelled through
Jirst order differential equations, business cycle theory through second or-
der difference equations. It is noteworthy that both models were linear. The
combination of growth with continuous time, and cycles with discrete time
must have been a pure coincidence.

Harrod interpreted the rate of change of income as a time derivative, i.e.

AY =Y =4 . Hence, investments became [ = a-¥ . In the linear format the

savings function reads §=s-Y, so, using the equilibrium condition / = S,
one gets the simple first order differential equation:

yzv (19
with its obvious closed form solution:
Y =Y, exp(£¢) (20)

To do Harrod justice it must be emphasized that he explicitly stated that the
equilibrium growth path had to be considered unstable. There are several
verbal discussions in the book demonstrating this. These also show that Harrod
was groping for a higher order process which would model what bappens if
the actual route deviated from this unstable equilibrium path, though he failed
to formulate it mathematically. That a second order process in continuous
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time is fully viable as a model was demonstrated a few years later by Good-
win (1951) and Phillips (1954).

Harrod cannot be blamed for interpreting all this as a growth theory, the
flaw is due to his followers. As a growth theory it contains the absurdity that
growth is favoured through a high rate of saving and a low accelerator, though
second order models show the reverse. It was further known from Samuelson
(1947), that no unstable equilibrium is ever of any interest.

3.9 Cycles in Continuous Time

To show how the Harrod model can be made second order, let us consider
Phillips (1954), where an adaptive process was assumed, such that income
just increased in proportion to the difference of investments and savings,

ie., Yo (I -S). A similar adaptive delay was assumed also in the adjust-

ment of investments, i.e., [ e (v¥—1I). We follow the very clear account of

the model as given by Allen (1956).

In Phillips's equations adjustment speeds appeared, and, for generality,
Phillips assumed different speeds for the two adaptive processes, as did Allen.
The precedence of Samuelson and Hicks, who assumed identical unit lags in
the discrete format for all kinds of adjustments, makes it a licit simplifica-
tion to assume also equal adjustment speeds in continuous time. Then we
only need to assume a suitable measurement unit for time to make the speeds
unitary, and so dispense with the adjustment symbols altogether. We then
have: Y=1I—sY and [ =v¥-1.

Next, just differentiate the first equation once more, and use the original
equations to eliminate investment and its time derivative, thus obtaining the
reduced form equation:

Y-(v=1-5)Y+5sY=0 2}

This linear second order differential equation is capable of producing damped
or explosive oscillations, depending on the sign of (v - 1 - 5), quite as in the
corresponding discrete time process as formulated by Samuleson, which we
will discuss below.

We can immediately write the general solution in the oscillatory case:
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Y=e"(Acoswt + Bsinot) (22)

where
a=1(v-1-s) (23)
0 =14s—(v—1-5)° (24)

and 4, B are two arbitrary constants to accommodate the initial conditions.

Provided (v-1-s) >4s holds, the second order model can also generate
pure growth, at the rates %((v— 1 —s) + (v—l_s)z —43) . Hence we see that,

in contrast to the first order Harrod case, the growth rate is indeed lowered
by the rate of saving, and increased by the accelerator.

We also see from (23) that the oscillatory process is either explosive or
damped, depending on the sign of & =+(v—1—s). There is just one unlikely
boundary case, the case of a centre, with v=1 + s, where there is a bounded
simple harmonic oscillation that goes on for ever. As for stability, it is neu-
trally stable, but different initial conditions can lead to an infinity of differ-
ent oscillations with different phase and amplitude.

Goodwin (1951) used a similar model, but with a nonlinear investment
function, and then just one attractive limit cycle replaced this family of or-
bits, at the same time as it, unlike this exceptional boundary case, was robust
for wide ranges of parameter changes. There is no need to enter these mat-
ters in more detail, as we will meet them again in the context of second order
models in discrete time, which became main frame, perhaps because many
of the variables naturally are periodized concepts.

3.10 Samuelson's Business Cycle Model

As mentioned, Samuelson chose to model in discrete time, and he chose a
second order process. There is a basic time period unit, and all variables are
dated, either flows, such as income, investment, and savings, attributed to
periods, or stocks, such as capital, attributed to moments of time. In this



100 Ténu Puu

language S, =s-Y,_,, or, which is the same, C, =(1-s)-¥_ =c-Y_,. We en-
countered this idea already in the context of the dynamic multiplier. There is
a time lag, incomes earned during a given time period are spent during the
following. The need for capital is proportional to the volume of production
(i.e., to real income), but it takes time to build up capital, so proportionality
is to expected income, which, in terms of the simplest forecasting rule of all,

just projects past income. Hence, capital stock needed is K, =a-Y,_,, and,
investment accordingly becomes J, =K, - K, =a-(¥_, - ¥_,) . In addition,
we only need the income formation equation ¥, = C, + /, . Finally, substitut-

ing for C, and I,, we readily obtain the reduced form recurrence equation in
the income variable alone:
Y =(a+c) Y —a¥ (25)

=2

it is second order, as we see, and hence capable of generating growth or
cycles. However, like Phillips's model, it is linear.
It is easily solved in closed form. There exists just one fixed point

Y=Y ,=Y_,=0, which is stable if, and only if, ¢ < 1. Provided

(a +c)2 >4a, the general solution is:

Y, = X, + B, (26)

where A, B are arbitrary coefficients so chosen as to accommodate the initial
conditions, and where

+
_a Ci

1
Ma= 2

(a +c)2 —4q 27)

Aslongas (a+c)’ >4a holds, A,, are real numbers. With a, ¢ > 0, they are
both positive, and obviously we always have A1, < A,. Hence, the first solu-
tion term in (26) is bound to dominate with time. Asymptotically, ¥ — A4,
with income growing at the constant rate A, whena > 1.

When (a+ c)2 <4a ,then 1, become complex conjugates. If so, it is more
convenient to write the general solution as:
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Y, = p'(Acoswt + Bsin wr) (28)
where
p=va (29)
and
atc
@ = arccos (30)
2va

The arbitrary coefficients, 4 and B, are again chosen so as to fit given initial
conditions.

We see that with complex conjugate roots, the solution is the product of a
power function and a stationary trigonometric oscillation. This is the case of
primary interest in connection with business cycle theory. Depending on
whether p <1 or p>1, i.e., whether a<l1 or g¢>1, the power function leads to
damping or to explosion. Only in the unlikely boundary case when p=a=1
does the solution produce standing oscillations representing bounded per-
sistent motion.

Thus, of course, is due to the linearity of the model, and it presents a prob-
lem and a challenge. If p<1, then the model is hardly dynamical at all, be-
cause it can only show how any initial motion is damped out and the system
without exogenous shocks goes to eternal equilibrium. If, on the other
hand, p>1, then the model explodes, and the amplitude of the swings goes to
infinity, which means that income eventually oscillates between plus and
minus infinity. Such exponential growth, which was the basis for economic
growth theory for decades, is not a feature of reality, at least not globally, an
interpretation which the "limits-to-growth" movement and the "Club of Rome"
took as motive for a broad attack launched at the whole of linear dynamical
economics. See Forrester (1961).

Of course, negative income makes things even more absurd. To make things
straight, we have to insert a digression here about the negativity of income in
the depression phases. The full Samuelson model also contains "autonomous
expenditures”, for consumption, investment, or government spending, what-
ever, qualified by the property that they do not depend on anything in the
cycle.
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Replace the income formation equation by Y, = 4+C, + I,, where 4 denotes
these autonomous expenditures. Equation (25) then becomes

Y=A+(a+c)Y_ -a¥_,.
If we substitute ¥, =Y_ =Y _, = A/(1-c)= A/s, we easily find that it is

reduced to an identity. There is hence a constant solution, 4/s. It represents
an equilibrium income level, obtained through applying the multiplier 1/s to
the autonomous expenditures A, which replaces the zero equilibrium for (25)

as stated above. In mathematical terms this is a particular solution. If we now
replace ¥ by A/s+Y, ¥_ by A/s+Y_ ,and Y_, by A/s+Y_, in
Y =A+(a+c)-Y_ —a-Y_,, then we find that all the terms containing the

autonomous expenditures cancel, and that (25) is regained.

However, the variable is now, not income, but its deviation from equilib-
rium, and so negative values are no longer absurd per se. Of course, increas-
ing amplitude oscillations eventually produce downward deviations from
equilibrium so large that even income becomes negative, which, of course is
absurd.

As a conclusion, neither p<1, nor p>1 is any good. There remains the
case p=1, which results in constant amplitude simple harmonic oscillations,
but apart from the fact that the motion produced is much too regular to mimic
any real business cycle, modern mathematics discards such specific cases,
which at the slightest change transform the outcome of the model to some-
thing qualitatively different, as being structurally unstable or nongeneric,
and they are forbidden in good scientific practice. See Arnol'd, who even
advises to take friction in account in mathematical models of the pendulum,
no matter what we know about its empirical existence, just because the
frictionless pendulum produces a structurally unstable model.

For the case p<1 we could use an argument on "impulse" and "propaga-
tion" supplied by Frisch in 1933, even before the Samuelson model. Accord-
ing to it a dynamical process with an inherent capability of producing regu-
lar damped oscillations, could be kept going through exogenous random
shocks that put it in motion whenever it tends to come to rest. This idea was
formally modelled by Lord Rayleigh in the context of the violin string, the
tensioned string supplying the tendency to oscillation, and the rosin of the
bow supplying the exogenous shocks.

Even more interesting was the treatment of the model by Hicks, who as-
sumed p>1, i.e., the explosive case, but made the model nonlinear through
addition of his famous "floor" and "ceiling". This, however, is one of our
main topics, so we deal with it below in a section of its own.
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3.11 Quasiperiodicity in Samuelson's Model

First we have to finish up the discussion of Samuelson's model through em-
phasizing features which are seldom discussed at all.

The solution (28) is a product an exponential growth factor, increasing
whenever a > 1, and a simple harmonic oscillation. Note that the frequency
of oscillation, despite its regular look, as a rule is an irrational multiple of
27, so the oscillatory motion is quasiperiodic, i.e., not periodic in terms of
the basic predefined unit time period. Hence, the time series produced by the
oscillatory factor never repeat. Only when it happens that

a+c 2mm
=CoS$

2a

— GH

n
where m and » are integers, does the oscillatory part of the solution become
periodic.

In Fig. 6 we see that this happens on the set of parabola shaped curves. We
drew the curves for the basic resonances (with m = 1), and n = 3, ... 10.
Lower basic resonances do not fall within the admissible parameter range.
As n— oo, lim,_,_cos2xZ =1, so the periodic oscillation curves accumu-
late towards the curve:

atc_

! (32)

which is the same as (a + c)2 =4a , representing the borderline between real
and complex roots.

Fig. 6 displays the box (a,c) €[0,4]x[0,1], further a vertical line ata = 1,
and the parabola (32), which touches the top of this box, and towards which
the periodicity curves accumulate. As mentioned, they are shown for m =1
and » from 5 up to 10, and are labelled accordingly. All features, except the
periodicity curves, are well known from Samuelson's original article, though
the picture looks slightly different due to the fact that, as we know, he ap-
plied the accelerator to consumption expenditures only.

Above the parabola (32), the zero fixed point for (25) is a node, below it a

focus. To the left of the line a = 1 the fixed point is stable, to the right it is
unstable.
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Fig. 6. Periodic orbits in the oscillatory factor of the Samuelson model.

New features are the set of periodicity parabolas (31). The meaning of the
parabolas is that they are obtained for parameter combinations such that the
oscillatory part of the solution (25) becomes periodic.

The significant fact is that they are all thin curves, with zero area measure.
Once we, in the spirit of Hicks, make the model nonlinear, the curves swell
to thick tongues (so called Amol'd tongues), so periodicity becomes main
frame and no longer a rare phenomenon.

We stopped the display at n = 10, because for higher » the stack of reso-

nance curves accumulates and ultimately seems to fill the entire area, so that
we can no longer see any distinct curves. This is, of course, deceptive, due to
the finite resolution of the computer screen, which cannot display true 1-
dimensional objects.
The same in fact happens over the entire area if we consider other resonances
than the basic, i.e., those with m > 1. It is easiest to see this by studying the
intersection points of the periodicity parabolas with the vertical line ata=1,
marked by black dots in Fig. 6.

Substituting a = 1 into (31), we obtain cos(27m/n)=(1+c¢)/2, so, for any

m and n, we can solve for the value of ¢=2-cos(27tm/n)-1.
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As we know, the picture displays the fundamental resonances, with m = 1
andn=>5,...10in (31). But 1:6 is the same as 2:12, and 1:7 the same as 2:14,
so we can find a 2:13, i.e., a 13-period resonance curve (not shown) between
those labelled 6 and 7 in the picture.

Indeed we have 2cos(27/6)—1=0, and 2cos(27/7)—1=025. Further

2cos(47/13)—-1=0.14, so the 13-period resonance indeed fits between the

6-period and the 7-period ones according to (31). And so it continues: As 1:6
is the same as 4:24, and 2:13 the same as 4:26, we could again find a 4:25,

i.e., a 25-period curve, with 2cos(87/25)—1=0.07 between those for peri-

ods 6 and 13, and so on, ad infinitum.

Considering all rational numbers m/n in (31), we need not choose any par-
ticularly high numbers m and n to see the entire screen area completely filled.
(In reality both numerator and denominator range to infinity.) Again this is
deceptive, due to the finite resolution of the screen. In reality, though the
rational numbers are an infinite set, as are therefore the periodicity curves,
they are still by far outnumbered by the irrationals. If we pick parameter
values at random we never hit a rational point, i.e. any of the infinitely many
periodic curves of Fig. 6. As mentioned, this turns out completely different
for the nonlinear models to be introduced.

Fig. 6 also contains one additional feature, the grey vertical lines, which
represent constant growth rates, spaced at 10% intervals, left of the line a =
1, decrease rates, ranging from -90% to -10%, right of the line a = 1, in-
crease rates, ranging from +10% to +90%. Note that they represent growth
rates per period, so in the right part of the diagram growth is enormous. Just
consider the intersection point between the periodicity curve labelled 10 and
the fifth gray line to the right of @ = 1, where a = 2.25. For this parameter
value we get p=1.5 from (29). The growth over just one cycle is accordingly

15" which approximates to 5666%, so, no matter how we define the period,
the growth rates in the Samuelson model are always unrealistically huge.

By conclusion, we wanted to emphasize two features that have hardly ever
been mentioned in connection with the Samuelson model: The total absence
of periodicity in the oscillations, and the absurdly huge growth rates.
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3.12 Hicksian Floor and Ceiling

As we already indicated, Hicks (1950) introduced nonlinearities in the model,
thus at once removing some factual absurdities in the assumptions, and mak-
ing the Samuelson model capable of producing persistent but still bounded
oscillations.

According to the original principle of acceleration, investments are pro-
portional to past change of income, so if income decreases, investments be-
come negative, i.e., disinvestments. This is not absurd in itself as long as we
talk of net investment, as it just means that capital stock decreases. However,
capital stock cannot decrease more than the maximal depreciation on capital
in the absence of any renewal of worn out equipment. This provides a lower
bound on disinvestment. If the principle of acceleration results in dis-
investment that exceeds maximum depreciation, then it can only be realised
through an active destruction of capital. As no such thing happens in reality,
it is obvious that the bound must be effective. Limiting net investment to
maximum depreciation is just the same as requiring gross investment to be
nonnegative.

This is the Hicksian "floor", which requires replacing the principle of ac-

celeration I, =a-(Y,_, - Y,_,), as stated above, by:
I, =max{a(Y,_, -Y,),-1"} 33)

where I/ denotes the absolute value of the floor disinvestment. It is clear
that this makes the model nonlinear, and, in case of oscillatory motion, it is,
as Duesenberry (1950) pointed out, sufficient to produce bounded motion on
its own.

Hicks also introduced an upper bound. Given some fixed proportions pro-
duction function, such as Y = min(£,£), it is obvious that it can never be
useful to increase capital stock above the value 4- L. Hence available la-
bour force (or other limiting factors included in the production function)
impose an upper bound, the "ceiling". As Hicks never wrote down the com-
plete formal model with floor and ceiling, it remains a little ambiguous how
the ceiling should be interpreted. The question is whether it is the investors
who abstain from further investment when the ceiling is reached, something
like:
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Fig. 7. Various possible nonlinear investment functions under the principle of
acceleration.

1, = minf 1, max{a(¥,_,~ ¥,),~ I’ }} (34)

so that the ceiling as well is incorporated in the investment function, or whether
one prefers not to specify who abstains from intended expenditures.

Though Hicks himself seems to have been in favour of the latter, many
contributions interpreted it the other way, in particular the pioneering work
by Goodwin (1951), though he preferred a smooth nonlinear investment func-
tion, such as a hyperbolic tangent or an arctangent, rather than a straight line
cut off by lower and upper bounds. See Fig. 7 (top), where the investment
function with vertical bounds, and a smooth alternative are shown.

As mentioned, Goodwin also preferred to model in continuous time. He
was able to show the existence of a limit cycle in the model. However, more
spectacular phenomena, such as chaos, could not occur, because they never
do in second order difterential equations.

Further, even in discrete time, a smooth shape with horizontal asymptotes
is too mild for chaos, though its Taylor series with linear-cubic terms includ-
ing backbending sections works, as shown by the present author in Puu (1989),
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further analysed in Puu and Sushko (2004). See Fig. 7 (bottom). The same
holds true for a function with slanting bounds shown in the same picture.

There are good factual reasons for the backbending sections of the cubic
and the corresponding piecewise linear function. As a rule, once a boom
becomes overheated, or a slump too pronounced, the public sector usually
enters the stage with contracyclical measures. This can be because of a de-
liberate wish to actively fight too violent swings in the cycle, but we get the
same result if some responsible agencies just have long run budgets for in-
frastructure investments, and prefer to concentrate activities to periods when
labour and materials are cheap and idle. Of course, the backbending pieces
should never be allowed to get down to the horizontal axis, but small
backbending segments are sufficient for chaotic outcomes.

As we said, Hicks never wrote down the complete formal model with floor
and ceiling, though, from his verbal comments, one may conclude that he did
not want to incorporate the ceiling along with the floor in the investment
function, but rather to put it as a constraint on total spending, thus constrain-
ing income to:

Y, = min{C, +1,,7°} (33)

where Y° denotes maximum capacity production. Hicks did not quite make
up his mind about what actually happens at the ceiling. He suggested infla-
tion as the most likely event, which in the end fits expenditures in real terms
to available resources, but at the same time he did not want to include prices
or any other monetary variables.

A model, which, according to (33), incorporates the floor only in the in-

vestment function: [, = max{a(}f_l -Y,),-I }, and uses the income for-

mation equation (35): ¥, = min{C, +7,,Y°}, with consumption, as usual de-

fined by C, =¢-Y,_,, was first fully analysed by Hommes (1991), though the
formalization seems to have been due to Rau (1974). Quite as Hicks in-
tended, such a model shows sustained oscillations of limited amplitude, and
it actually makes periodicity main frame, as shown in Gallegati et al. (2003).

But, Hicks wanted more than this, he also wanted to incorporate growth
along with cycles in the process, to be more precise, not in terms of growing
amplitude of the swings, as in Samuelson's original model, but a growth
trend around which bounded cyclic oscillations took place. However, he did
not obtain this trend within the model, so he inserted it as an exogenous
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growth of the autonomous expenditures, assuming something like
4,=4,(1+g) .
Of course, then (35) transforms to ¥, = min{C‘ +1,+4,Y C}. In his draw-

ings Hicks, moreover, indicated that, in order to have a tractable model, both
bounds as well must be growing at the same rate as the autonomous expendi-
tures. Gandolfo (1985) used this combination of assumptions in an exercise,
where the reader was challenged to prove a proposition, which, by the way,
is not true. Given the three exogenously given and equal growth rates, the
model can easily be transformed into the stationary case analysed by Hommes.
It is this case which is analysed in Gallegati et al.

As we already stressed, Gandolfo's case is what best seems to conform to
Hicks's drawings (in semilogarithmic scale, where exponential curves are
transformed into straight lines).

There is a big problem with this setup. Of course, it is arbitrary to assume
equal growth rates for autonomous expenditures, floor, and ceiling, but this
is not the real problem. As Hicks related the floor to maximum depreciation
on capital, it is obvious that, with accumulating capital, the floor level should
be receding, rather than growing.

In some recent publications, Puu ef al. (2005) and Sushko et al. (2004), a
model was analysed where the floor was actually tied to the stock of capital,
by putting (33) in the form:

I, = max{a(Yr—I ~Y.,) “rKH} (36)

Obviously, one has to include capital in the model, but this is no problem,
because there already exists a capital formation theory inherent in the Hicksian

model. Investments are defined 7, = K, — K,_, , so one can just put it the other
way and write:

K, =K, +1, 37

As there is a theory for investments (36), there is also one for capital forma-
tion in terms of the cumulative sum of past investments. One feature of this
model is that, due to the growing capital stock, a growth trend in income is
actually generated endogenously, without introducing any exogenous growth
terms at all. Another is that limited amplitude growth rate cycles take place
around this trend, and that the average growth rates over cycles are reduced
by orders of magnitude from those of the original multiplier-accelerator model.
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We could not leave Hicks's contributions without emphasizing that he also
introduced distributed lag systems for multiplier and accelerator, thus rais-
ing the order of the recurrence equation. Numerical simulations at that time
sometimes produced just irregularity, as nobody could yet put the tag "chaos"
on it, but Hommes (1991) showed that just raising the order of the difference
equation by one results in chaotic motion. The order can, of course, also be
raised through coupling different open economies together through interre-
gional trade, each modelled by a second order process. See Sushko et al
(2003).

3.13 The Hicksian Revolution

It is obvious that Hicks's book of 1950 had a tremendous influence on busi-
ness cycle modelling. The same year saw Duesenberry's penetrating review,
and the following year Goodwin's model as well as Baumol's and Hansen's
books. Allen (1956) cannot be too highly recommended as a concise com-
pendium of the state of the art after the "Hicksian revolution".

In 1950 an important conference on business cycles was held at Oxford. A
delightful memorial of that is the following poem composed during the con-
ference by Sir Dennis Robertson. It reflects both the non-mathematician's
frustration at the mathematical language, which even Keynes avoided, but
which was creeping into economics. Its main importance is that it accurately
focused the main topic of the conference, as well as showing a full under-
standing of the fact that it was nonlinearity that was brought into dynamic
economics. The poem was originally published in the proceedings of that
conference, but republished in Robertson (1956):

As soon as I could safely toddle

My parents handed me a model.

My brisk and energetic pater
Provided the accelerator,

My mother, with her kindly gumption,
The function guiding my consumption;
And every week I had from her

A lovely new parameter,

With lots of little leads and lags

In pretty parabolic bags.

With optimistic expectations
1 started on my explorations,



3 Short History of the Multiplier-Accelerator Model 111

And swore to move without a swerve
Along my sinusoidal curve.

Alas! I knew how this would end;
I've mixed the cycle and the trend,
And fear that, growing daily skinnier,
I have at length become non-linear.

I wander glumly round the house

As though I were exogenous,

And hardly capable of feeling

The difference 'tween floor and ceiling.
1 scarcely now, a pallid ghost,

Can tell ex ante from ex post;

My thoughts are sadly inelastic,

My acts incurably stochastic.
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4 Multiplier-Accelerator Models
with Random Perturbations

Volker Bohm ™

4.1 Introduction

In his original contribution Samuelson (1939) for the first time presented
one of the major structural reasons of possible cyclical behavior in macroe-
conomic models: the interaction of the multiplier and the accelerator princi-
ples which induces a second order delay equation of real aggregate output.
While he realized that his model could not generate permanent cycles, it was
Hicks (1950) in a subsequent extension introducing ceilings and floors show-
ing that permanent “harmonic” fluctuations arise in a natural way under the
Multiplier-Accelerator principle. These models have received wide interest
within dynamical systems theory, since they supply a wide range of expla-
nations of truly complex business cycle phenomena originating from a linear
model with restrictions implying a minimal degree of non-linearity.

As an alternative to such restrictions, the introduction of random pertur-
bations to linear delay systems has also served as an explanation of busi-
ness cycle phenomena which has mainly been studied within linear time se-
ries analysis. The recent development of new techniques from the theory of
stochastic dynamical systems allows an extension of results within the dy-
namic frame work for the Multiplier-Accelerator model. Most importantly,
however, these techniques combined with the availability of efficient and
fast numerical techniques allow a significantly more detailed insight into the
range of qualitative features of the random Multiplier-Accelerator model.

* Acknowledgement: I am indebted to Thorsten Pampel, George Vachadze, and Jan Wen-
zelburger for useful discussions and criticism. This research was part of the project "Endo-
gene stochastische Konjunkturtheorie” supported in part by the Deutsche Forschungsgemein-
schaft under grant BO 635/9-3.
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This chapter takes this new view of random dynamical systems theory to
examine the classical Multiplier-Accelerator model when random perturba-
tions are introduced to model parameters. The emphasis of the chapter is on
the revelation of the dynamical richness of business cycle scenarios which
may occur in such simple economic models.

4.2 Random Dynamical Systems

The traditional description of the dynamic evolution of stochastic economic
models is carried out using the mathematical formalization of stochastic pro-
cesses, i. €. as a family of random variables given a specified exogenous
structure of stochastic properties. When the standard tools of stochastic
processes are used, the actual evolution of the stochastic data, (the sam-
ple paths), is often suppressed in favor of results and characterizations of
the evolution of the probabilistic features or the statistical properties of the
model. In this case the experimental perspective of the characteristics of a
specific sample path, i. e. the empirical observation becomes of secondary
importance. In many economic applications, however, as well as from a dy-
namical systems point of view, it is often natural and desirable to analyze the
generation of stochastic orbits directly. This can be done in many situations
by modelling the stochastic environment of a dynamical economic system in
an explicit fashion.

Consider for example a parameterized dynamical system £ : R™ X
R™ — R", given by a family of mappings

F(,§: X CR" - &, )

where £ € R™ is a vector of parameters which is subjected to random pertur-
bations and z is the vector of endogenous variables. The evolution of x (the
orbit) for a given value of the parameter £ € R™ is described in the usual
way by

»Tt:th(iEO) FEEF('vf)’ (2)
i. e. the dynamics follow the rules and the description of a deterministic dy-
namical system once the value of a particular £ is given. Now let £ follow a
given random path described by w := (...,&s—2,85-1,&s,&5+1, - - -)- Then,
the generation of the random path

Tip1 = Fe,(x4) = F(xg, &) forall ¢ 3)

means that the change of £ implies choosing at each ¢ a different mapping. If
F(-,€), & € [§,¢] is a family of contraction mappings with upper and lower
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bounds [¢, £], then for any random path w the associated evolution of z will
eventually be trapped in some compact interval [z, z]. For a one dimensional
system, for example, the dynamic evolution of {z;} can be visualized as in
Figure 1 for any initial value 2y and a given w = (... ,§,Z,§, £ €, &, .. ).

: : G(7E)

&8
I3
8 Y

Figure 1: A random orbit of x for w.

Formally a random dynamical system in the sense of Arnold (1998)' has
two building blocks:

— amodel describing a dynamical system perturbed by noise

— and a model of the noise.

1) The exogenous noise process is modelled as a so called metric dynamical
system known from ergodic theory.

Let ¥ : Q — Q be a measurable invertible mapping on a probability
space (92, F,P) which is measure preserving with respect to PP and
whose inverse ¥~ is again measurable. Assume that P is ergodic
with respect to ¥ and let ¢ denote the t-th iterate of the map 9. The
collection (Q, F, P, {19’5} . eZ) is called an ergodic metric dynamical
system (for details see Arnold (1998)).

!A synthesis of this view of dynamical systems with noise has been developed by many
researchers among them Kesten (1973), Brandt (1986), Borovkov (1998), Lasota & Mackey
(1994).
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Any stationary ergodic process {;},cn » &t 1 2 — R™ can be repre-
sented by an ergodic dynamical system. This implies that there exists
a measurable map £ : 2 — R™ such that for each fixed w € 2, a
sample path of the noise process is given by & (w) = £(V'w), t € Z.
Such a process is often referred to as a real noise process .

2) The second ingredient is a parameterized family of invertible time-one
maps of topological dynamical systems F' : X xR™ — X, X ¢ RE
inducing the random difference equation F : X x  — X,

ziy1 = F(24,£(P'w)) = F(9'w)ay. @)

For any @, the iteration of the map F' under the perturbation w induces
ameasurable map ¢ : Z x Q x X — X defined by

(F(9'w)o...0 F(w))zo if £>0
o(t,w,x0) =< =g if t=0
(Fw)to...o F@Ww)y Nzy if t<0

(%)

such that z, = ¢(t, w, xg) is the state of the system at time ¢.

— Forany zp € X and any w € , the sequence y(zo) := {7}, With
xp = ¢(t, w)xzo is called an orbit of the random dynamical system ¢.

— For any ¢ and s one has:

d(t+ s,w,z9) = FWw)o...o0F(w)zg (6)
= ¢(t, P w, ¢(s,w, o)) N

Many stochastic processes can be described as metric dynamical sys-
tems. As an example, consider the representation for a standard i. i. d. pro-
cess. Let {&} denote a family of independent and identically distributed
random variables with values in W C R™, which have the common distri-
bution (measure) A. Then one has:

e Qi =WZ=..... WxWxWx-..
o F = B(Q2) Borel o-algebra

o w=1_(...,6-1,&,&s+1,...) withw(s) = &
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e §: Q — Qis the so called shift map with w — 6w and fw(s) =
w(s+1) =&

e £: Q) — R™ is the evaluation map with {(w) = w(0)

® ft :5(9%})
o P=)Z

4.3 Random Fixed Points

The long run behavior of a random dynamical system is described by random
attractors, the random analogue of an attractor of a deterministic dynamical
system, the random fixed point being a special case?.

Definition 4.1

Consider a random dynamical system ¢ induced by the continuous mapping
F : X x R™ — X with real noise process & = £ o ¥, € : § — R™
measurable, over the ergodic dynamical system (Q, F, P, (9%)).

A random fixed point of ¢ is a random variable z, : ) — X on (0, F,P)
such that almost surely

T (Yw) = ¢(1,w, 2. (w)) = F(z4(w),E(w)) forall weQ, (8)
where Y C Q is a V-invariant set of full measure, P(Q') = 1.

Thus, a random fixed point is a stationary solution of the stochastic differ-
ence equation generated by the metric dynamical system. Some implications
of the definition can be observed directly. If ' is independent of the pertur-
bation w, then the Definition 4.1 coincides with the one of a deterministic
fixed point. Definition 4.1 implies that z,(9¢+1w) = F(z.(9w), £(Fw))
for all times ¢. Therefore, the orbit {z.(¥'w)}ten, w € 2 generated by .,
solves the random difference equation

Ti+1 = F(xtaft(w))‘

Stationarity and ergodicity of ¥ implies that the stochastic process {z. (9") }1en
is stationary and ergodic.

2Schmalfuf (1996, 1998), also Arnold (1998).
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The random fixed point z, induces an invariant distribution z.[P on RX de-
fined by

z.P(B) = P{we Q|z.(w) € B}. 9
The invariance of the measure PP under the shift 9 implies the invariance of

z4P, 1. e. (2,9)P(B) = z,P(B). If, in addition, E||z.|| < co, then

T
1
AT ; 15 (2. (0'w)) = 2,P(B) (10)

for every B € B(X). In other words, the empirical law of an orbit is well
defined and it is equal to the distribution z.[P of z,. Finally, if the perturba-
tion corresponds to an i. i. d. process the orbit of the fixed point =, will be
an ergodic Markov equilibrium in the usual sense (cf. Duffie, Geanakoplos,
Mas-Colell & McLennan 1994). The following definition of a stable random

X

1.2

0.8

04

T T T T t
0 125 250 250 500
Figure 2: Asymptotic convergence to a random fixed point.

fixed point (due to Schmalfuf (1996, 1998)) includes the notion of stability
given by Definition 7.4.6 in Arnold (1998).
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Definition 4.2

A random fixed point x. is called asymptotically stable with respect to a
norm || - |, if there exists a random neighborhood U(w) C X, w € 2 such
that P- a.s.

tlf& l|p(t, w, z0) — 2 (F'W)|| =0 for all zo(w) € U(w).

Figure 2 portrays the convergence property of a random fixed point for the
one dimensional growth model for three random orbits associated with dif-
ferent initial conditions and the same noise path.

The following theorem, which is due to Arnold (1998)?, will be the cen-
tral result applied to the random Multiplier-Accelerator model supporting the
numerical analysis and implying the dynamic and statistical properties to be
exhibjted. Consider invertible affine transformations on R™ defined by pairs
(A,b) where A is an invertible n x n matrix and b € R™. Let A denote
the space of non singular n x n matrices and assume A, A~!, and b to be
bounded.

Theorem 4.1

Let F¢ : R™® — R™ be an invertible affine random dynamical system with
stationary noise process {&;} on the probability space (Q, F,P). Assume
£€:Q — (AR") with {(w) = (A(w),b(w)), which implies the random
difference equation

Tep1 = A(0'w)zy + b(P'w) (11)
and the random dynamical system*

Mnm(m+2;$¢0+Lwr4mwwD,t>o
ot x,w) =<z« t=0 (12)
®(t,w) (ac - e+ Lw)? b(ﬁfw)> t<0

where
AW W) - - Aw), t>0
P(t,w) =41 t=0 (13)
A7 (W) - A7 (W) t <.

3Theorem 5.6.5 and Corollary 5.6.6.
4See Chapter 5 in Arnold (1998).
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1. There exists a unique random fixed point . : & — R”™ such that
2, (0 w) = A(Ww)z. (Vw) — b(tw) P —a.s. (14)
2. x4 induces an invariant distribution x,.P = .
3. with unique support supp(pis) = A
4. if A(w) are contracting maps, . is globally attracting, i. e. for any xg
tliglo lp(t,w, zo) — z:(P'w)| =0 P—a.s. (15)

and has the explicit form

-1
Tu(w) = Y Ot +1,w) 7 b(0w) (16)

t=—o00

4.4 Random Multiplier Accelerator Models

Consider the standard Multiplier-Accelerator model (in the version of Hicks
(1950)) defined by the three equations

C = m4+mY_y, O<m<1l mg,uv>0 a7
I = °4+0(Y1-Y3) v>0 (18)
Y = C+1I (19)

implying the determination of aggregate real income in each period as

Y = (mo+wo)+ (m+v)Y_1 —ovY o, (20)
which is a linear delay equation of order two. Using the form

Fly1,92) = (mo +vo) + (m +v)y2 — v 21

for the delay map f implies the associated two dimensional affine dynamical
system F : R?2 — R? defined by

F(y,,ye) = (y2, f(y1,2)) (22)
= (Y2, (mo + vo) + (M +v)y2 — vy1) (23)

O 1 U1 0
= + . (24)

—-v m+v Y2 mo + Vo
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The function F" has the unique fixed point (stationary state)

(25)

o mg +vg ™mo+ vy
1-m’ 1—-m J°

The accelerator v has no influence on the steady state § while aggregate
demand mg + vg does not influence the stability of the steady state. ¥ >> 0
requires m < 1. g is asymptotically stable if and only if 0 < m < 1 and
0 <€ v < 1. From the characteristic equation

X\ =A% = (m+v)A+v

one finds that the eigenvalues \; o are complex if and only if m < 2,/v —
v. Thus, for stability considerations (the projection into R? of) the space
of parameters can be partitioned into a complex and into a real region as
depicted in Figure 3. Therefore, for (m,v) € [0,1)? the mapping F is a
linear contraction with a unique steady state which is either a stable node or
a stable focus. The above description shows that the Multiplier-Accelerator

m
1r

real real

complex
I

I

I

|

I .

1 2 3 4
Figure 3: Regions of eigenvalues in Multiplier-Accelerator Model.

model consists of a family of affine parameterized maps F,, : R? — R?
with parameters p € ]Ri. Without restricting economic generality, one may
assume vg = 0 capturing all effects of aggregate demand in the parameter
0 < mg and thus restrict the analysis to situations of nonnegative parameter
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values = (mp,m,v) € R3, i e. aggregate demand, the multiplier, and
the accelerator. In most applications, economic reasoning suggests further
that the multiplier m takes values only between zero and one and that the
accelerator v is restricted to values between 0 and 4. Therefore, for the rest
of the analysis define the set of possible parameter values as

M = {(mg,m,v) ER*|0<mg <mp,0<m<1,0<v<4}. (26)

As a consequence, the Random Multiplier Accelerator Model consists of the
random family of affine maps F), : R? — R? with an associated (vector
valued) stochastic process of parameters {y; };2, defined on the probability
space (€2, F,P) which takes values in M, i. €. y; : & — M. More specifi-
cally, let u(w) = (mp(w), m(w), v(w)), and define

10= (L) mboe)) ™ 9= ()

which implies the random difference equation
Tir1 = A(Pw)z; + b(¥w)

(as in equation (11)) and the random dynamical system as in equation (12).
This formulation fits precisely into the mathematical framework presented in
Section 4.2. As a consequence, one has the following result for the class of
random multiplier accelerator models.

Proposition 4.1

Let the random multiplier accelerator model F,, be given as in equation
(24) and (26) and assume that the random perturbation is described by a
stationary and ergodic process { . } defined on a probability space (Q, F,P)
with values in a compact set M = {(mg,m,v) € M|m < 1,v <1} C M.

(i) There exists a unique random fixed point y* : O — RZ, given by

-1

yrw) =Y ®t+1w) T bWw), (27)
t=—00
with
AW W) - A(w), t>0
d(t,w) = t=0 (28)

I
AN (W) --- A7) t <.
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(ii) y* is asymptotically stable and induces a unique (stationary) invariant
distribution y*P on R? defined by

'P)(B) = P{we|y"(w) <€ B} (29)
for every B € B(R?).

(iii) Moreover,

T
Jm 23" 15 (%)) = y'B(B) = P{w € Qly*(w) € B} (30)
t=0

for every B € B(R?).

Equation (30) states that the empirical law of an orbit is well defined and it
is asymptotically equal to the distribution y*P of y*.

The result follows as a direct application of Theorem 4.1. The given
noise process can be represented as a real noise process in the sense of
Arnold (1998). The assumption that the multiplier m as well as the ac-
celerator v are assumed to be strictly less than one imply that the family
of mappings F), are contractions. Therefore, existence, uniqueness, and
asymptotic stability of the random fixed point y* follows from Theorem
4.1. While the result here is formulated for the simple two dimensional
Multiplier-Accelerator model, the mathematical framework is much more
general. It covers the whole class of affine random contraction mappings
of finite dimension and not only delay systems. Such random models have
unique globally attracting random fix points (stationary solutions). Most
importantly, however, these properties hold for very general stationary and
ergodic perturbations whether smooth or discrete, including in particular
Markov processes and so called Markov switching models. Thus, from a
time series perspective, Arnold’s result sets a bench mark for the description
of the invariance of affine economic models. Therefore, a large spectrum of
qualitatively different sample profiles can be shown to appear, all consistent
with a unique stationary and asymptotically stable solution. Observe that this
was primarily obtained by the dynamic features of the construction chosen
by the approach given in Arnold (1998).

The major purpose of the remainder of this section is to examine the dy-
namic qualitative properties of some specific random examples using numer-
ical simulations. This will reveal insights into the nature of the recurrence of
the stochastic multiplier accelerator model and into the role of the different
parameters determining the invariant behavior. This can be done safely (with
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proper care of the numerical analysis) due to the ergodicity property given in
condition (30). In this case, a statistical examination of the long run behav-
ior of one generic sample path suffices to characterize the invariant statistical
properties of the model.

(From an economic point of view the three perturbations correspond to
structurally different situations:

1. a perturbation of the additive parameter my corresponding to random
exogenous demand in consumption or investment;

2. a perturbation of the multiplicative parameters, 0 < m,v < 1, corre-
sponding to random propensities to consume or a random accelerator.

The numerical experiments will use i. 1. d. processes only, in spite of the fact
that general Markov processes fall under the assumptions of Proposition 4.1
as well. First, the analysis investigates the additive noise situation separately
from each of the multiplicative effects. The additive noise will be chosen
to be smooth, while the multiplicative and accelerator will be chosen from
discrete sets. Mixing these two types reveal some specific and interesting
features.

4.5 The Dynamics with Smooth Additive i. i. d. Noise

Consider the random equation (21) with an aggregate demand shock £ > 0

Ix(y1,92,€) ==mo + &+ (M + v)y2 — vy @31
which is distributed uniformly on some compact interval
£~1[0,2], A=0, (32)

implying a mean [E¢ = X and a variance V¢ = )\?/3. In time series anal-
ysis such systems are referred to as a second order autoregressive process,
denoted AR(2). Equation (31) induces a parameterized two dimensional ran-
dom dynamical system F : R? — R? given by

Fx(y1,92,6) == (¥2, faly1,92,6)) (33)
0 1 " 0

= + 34
—v m+v Y mo + €
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with additive noise, a so called Vector Autoregressive System of order 1,
denoted VAR(1) in time series analysis. The characteristics of the stationary
distribution are known from the standard time series approach and can be
calculated explicitly in this particular case.

Under the hypotheses of Proposition 4.1 the unique stationary solution
can be characterized numerically by the limiting statistical behavior of any
single sample path to be calculated from data. On the other hand, the true
moments of the random fixed point y* can also be calculated given the noise
distribution £ ~ [0, 2)] for any A > 0.

The stationarity of y* implies that the first moment Ey* must satisfy

., (0 1 . 0
By —(—v m+v)Ey +<m0+IE§>'

Hence, y and y3 have the same mean given by

v _ 0 1 \\'/ 0 \_motAl1
20 (- b)) (e =550 (1) 00

The covariance matrix Cov(yj,y5) satisfies

T
x 0 1 « (0 1 0 0
Cov(yi,vz) = (—-’U m + U> Covivi, vz) (—v m+ v) * (0 V5> .

As the solution one obtains

v v
Cov(yi,v3) = (Uli v;j) (36)
" Vo' = oy = gy = 1+v (37)
TR TR0 ) T 0~ (mt 0)?
and
m+v A2 m+v (38)
v = = — = -
B T Ty 2 T 31— 0) L+ )2 — (m+ )2
Therefore,

0 < v1g = v91 < V11 = Va9, forall)\>0,0<m<1.
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Observe, that the first moment is independent of the accelerator and it de-
pends on (m, A) only. The multiplier and accelerator together induce a pos-
itive cross correlation on the time series. Both correlation coefficients in-
crease as the accelerator increases. Notice in particular, that with a higher
accelerator the attractor increases in size, including values of the state vari-
able less than mg/(1 — m) and larger than (mg + 2))/(1 — m). For small
values of v, the attractor lies inside the cube defined by these two values.
Since £ has a uniform distribution, the attractor as well as the distribution
must be symmetric but not uniform. Table 1 shows the list of theoretical and
computed values.

To examine the qualitative properties of the (dynamic) invariant behav-
ior, two different cases will be discussed first to examine the role of the
accelerator. Choose m = 0.75 for the multiplier and consider two values
v = 0.1 and v = 0.8 for the accelerator. v = 0.1 implies real eigenvalues
such that the associated deterministic fixed point is a stable node implying
monotonic convergence without rotation. In contrast, v = 0.8 implies com-
plex eigenvalues and a corresponding stable focus in the deterministic case.
Most importantly, however, for each pair 0 << (m,v) << 1, the set valued
mapping associating the support of the invariant distribution with each pa-
rameter pair (m, v) will have compact images which depend on ) alone and
not on the particular noise chosen on [0, 2)]. This implies that the attractor
i. e. the support of the measure of the random fixed point will be a compact
set which depends on the interval [0, A], the support of £, but is independent
of the particular form of the distribution. In this case, one would expect that
under additive noise the complex case exhibits a much stronger rotation of
the random orbits in the state space than in the case with real eigenvalues.

Figure 4 provides time series characteristics for the case v = 0.1 (left
column) and v = 0.8 (right column). All calculations are carried out for
the same noise path. Panel (a) and (b) show the convergence to the random
fixed point for five different initial values of y;, while (¢) and (f) show typ-
ical time windows of the corresponding long run development of the (one
dimensional projection of the) random fixed point. Panel (c) and (d) show
the first 50 iterates with connecting lines. Observe that, in spite of the fact
that for v = 0.1 the deterministic fixed points are stable foci, the orbits show
a low rotation phenomenon, caused by the stochastic displacement of the
mappings. For v = 0.8, however, a strong rotation property appears induced
by the complex eigenvalues of the matrix.
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Figure 4: Transients and the role of the accelerator v; m = 0.75, A = (.1.

The difference in the cyclical behavior becomes even more apparent
when the long run of the random fixed point is examined. Panels (a) - (d)
of Figure 5 show the two attractors with corresponding relative frequencies
(densities). The grey shading of the profile of the invariant distribution indi-
cate equidistant levels of frequencies.

The attractor under low rotation is almost a parallelogram while un-
der high rotation it has an elliptical form. Observe that both are perfectly
symmetric with respect to the diagonal which implies that their respective
marginal distributions must be identical. Since the noise is strictly additive,
the mean is the same while the variance is higher in the case with v = 0.8
(see panels (e) and (f)). Table 1 provides numerical results of some of the
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Figure 5: The role of the accelerator v ; T = 107, m = 0.75, A = 0.1.

standard statistics for the two cases, confirming the symmetry (low skew-
ness), and the high variance for the situation with v = 0.8.

To complete the description of the statistical features, Figure 6 provides
data on autocorrelation for a large sample, which confirms the typical char-
acteristics of the autocorrelation functions of an AR(2) for both the high
rotation and the low rotation case (see for example Hamilton 1994).

The bifurcation diagram Figure 7 shows the change to the elliptic shape
of the support of the invariant distribution and the increasing variance as the
accelerator increases.
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statistic v = 0.1 v=0.8
theoretical estimate | theoretical estimate
mean 4.4 4.39986 4.4 4.39985
variance 0.008357 0.00837783 || 0.0358 0.0360081
stand. dev. || 0.09141662 | 0.0915305 0.189208879 | 0.189758
skewness 0 0.00297042 || 0 -0.00375951
Table 1: Statistics: mg = 1, m = 0.75; A = 0.1.
K1 Y1
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Figure 6: The role of v on correlation; m = 0.75, A = 0.1.

4.6 The Samuelson Model with Mixed Additive Noise

Consider now the situation with mixed discrete/continuous additive noise

fyi,92) = (mo+vo) + &+ (m+v)y2 — oy
& ~ [0,2)], uniformly A>0 (39)
mo ~ {0,1}, discrete with equal probability
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Figure 7: Bifurcation of the accelerator v € [0,1]; m = 0.75, A = 0.1.

describing a discrete switch of aggregate demand plus a small continuous
noise, both of which follow an i. i. d. process. According to Proposition
4.1, there exists a unique random fixed point (stationary solution) which is
asymptotically stable.

With finite discrete noise only (A = 0) the system becomes a so called
Iterated Function System>(IFS) which often possesses complex or *fractal’
attractors made up of uncountably many disjoint compact sets of Lebesgue
measure zero (Cantor sets). Such attractors are caused by gaps of the im-
ages of the finite list of mappings on invariant sets of the state space, i. e.
subsets which are left with probability one in finite time. As a consequence
the corresponding invariant measures will typically be ’fractal’ and without
densities. The experiment here is designed to reveal the effect of discrete
noise on the attractor and examine the role of additional small smooth noise,
to determine to what extent ”smoothing by noise” appears.

For the situation described by the system (39), the numerical analysis
reveals the following property: there exists 0 << (m,v) << 1, a pair of
values (m} < m3), and a small level of noise A > 0 such that the attrac-
tor consists of 2% self similar disconnected subsets of R2, for some k > 1
(see Figure 8). The invariant measure has 2¥ modes and has the same shape
on each subset. Thus, the associated random fixed point (stationary solu-
tion) moves in a random fashion between the disjoint subsets and not in any
specific harmonic or periodic way. The autocorrelation functions are not dis-
tinguishable from those of the smooth noise only (Figure 6). For example,
panel (c) and (d) of Figure 8 show a 16 piece attractor and the associated
histogram with 16 modes for A = 0.025. As the continuous noise increases
the attractor as well as the measure becomes more smooth with only four

5See Barnsley (1988) or Lasota & Mackey (1994).
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Figure 8: Low accelerator: v = 0.25; mg ~ {0,1}, £ ~ [0,2)]; m = .5.

modes. Figures 8 and 9 display the change of the attractor and the invariant
measure as the continuous noise increases from A = 0 to A = 0.5.

The sensitivity of these features with respect to the multiplier and the
accelerator is quite different. It is a remarkable fact, that the appearance of
the ’gaps’ is more frequent for low values of the accelerator. As in the case
with smooth additive noise alone, it appears again that the increase in the
rotation caused by complex eigenvalues is the reason for this phenomenon.
Therefore, a high value of the accelerator may create sufficient rotation by
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Figure 9: Low accelerator: v = 0.25; mp ~ {0,1}, £ ~ [0,2\], m = .5.

itself, so that even for A = 0, no gaps appear. As a consequence, for all
small positive values of A, the long run behavior induces essentially the same
invariant distribution as for A = 0, as can be seen in Figure 10.

Figures 11 displays the results of bifurcations of the accelerator under
different levels of noise for aggregate demand. The v-bifurcation shows quite
clearly the disconnected attractor for low values of the accelerator while its
mean remains at the same level. In contrast, any m-bifurcation displays the
joint effect of the multiplier on rotation and on the position of the attractor.
In both cases, the invariant measure will have multiple modes of different
order.

Summarizing the results of the experiments with additive demand shocks,
one finds that the attractor may consist of a symmetric collection of discon-
nected subsets of the state space provided the perturbation is discrete (with
small smooth noise) and the accelerator is low. In such a situation, the unique
stationary solution fluctuates in a random fashion between the disconnected
subsets inducing multi modal invariant distributions on the symmetric dis-
connected subsets of the attractor without regularity or periodicity. If the
smooth additive noise becomes larger or the accelerator becomes large, the
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Figure 10: High accelerator: v = 0.75; mgy ~ {0,1}; £ ~ [0,2)]; m = 0.5.

attractor is always a connected compact set. The multi modality disappears
as the noise and/or the accelerator increase. Then, the stationary distribu-
tion exhibits the typical features of a VAR(1) model with an AR(2) delay
structure with high rotation, an invariant distribution with support similar to
an ellipsoid and with positive cross correlation, as presented in section 4.5.
Thus, the statistical properties of smooth additive noise with high accelera-
tors may not be distinguishable from those of a mixed perturbation scenario
with low accelerators. However, from a time series perspective, much of the
regularity of the smooth case is lost. Sample paths will reveal clustering,
moment reversion, and slow convergence of moments. From the perspective
of time series analysis or estimating procedures, little seems to be known
about the theoretical properties of the invariant distributions or methods to

estimate parameters of an affine system under discrete noise®.

SFor some preliminary results see Bshm & Jungeilges (2004).
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4.7 Random Multiplier and Random Accelerator

Finally, consider a discrete perturbation of the multiplier or the accelerator
combined with small additive noise £ ~ [0,2)] on aggregate demand. In
such a case, the system becomes a Markov switching model and is no longer
a VAR(1), since the noise acts in a multiplicative way on the delay equation.
Due to Proposition 4.1, there exists a unique asymptotically stable random
fixed point (stationary solution) whose statistical properties can be derived
from the empirical statistics of a single sample path. The multiplicative ran-
dom effects change the local stability property of the mappings implying a
random change of the type of rotation. As a consequence, the attractor will
not be symmetric any longer implying also that the stationary solution may
show reversion of moments, volatility clustering or alike. However, while
the random accelerator leaves the steady state unchanged (for A = 0), the
random multiplier has both an effect on the rotation and on steady states.
Therefore, in the latter case, one would expect larger attractors (higher vari-
ance) than with a random accelerator alone, a feature which is confirmed by
the numerical experiments.

In general, one finds qualitatively that multiplicative discrete noise re-
duces the occurrence of “gaps” but it often induces non symmetric attractors.
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Discrete random multipliers generate less smooth invariant distributions than
discrete random accelerators (compare Figures 13 and 14). Random accel-
erators increase the rotation inducing more symmetry of the attractor. In the
latter case, the data may be indistinguishable from the situation with contin-
uous additive noise (VAR1). In particular, autocorrelations will be indistin-
guishable.

4.8 Two Special Cases with Discrete Noise

Consider a model with simultaneous discrete switching of the accelerator
and aggregate demand as characterized by Table 2 while keeping the multi-
plier constant. Four mappings which involve one real root and three complex
roots are chosen with equal probability. The table lists the set of parameters
but also the four associated fixed points and their eigenvalues A;.

The resulting dynamics, however, leads to an overall low rotation with
an asymmetric attractor (see Figure 15). The time series indicates effects of
mean reversion and of volatility clustering, while there does not appear any

1.2 7 T T ~ Y112 T T T - U1
8 1

12 16 2 24 2. 2 L7 22 27 32

(@ A=0.0,T7 =10" () A =0.05,T = 10"
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12 1.8 24 3 36 0.5 1.9 33 47 6.1
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Figure 12: Random Multiplier: m ~ {0.4,0.6}, mo+&; £ ~ [0,2)\]; v = .5.



136 Volker B6hm

(2) A = 0.05 (b) A =0.05

&
!
i

:
e S
o 1 o
|
i
§

\}

9.5 19 33 4.7 6.1

(© A=05 (@ X=05

Figure 13: Random multiplier: m ~ {0.4,0.6}, v = .5; mg+&, € ~ [0,2]].

Y2

208
2,05+
2024

1.99 -

1.96

T T T
1.96 1.99 202 2.05 208

(a) A = 0.01 (b) A = 0.01

Figure 14: Random Accelerator: v ~ {0.25,0.75}; m = 0.5; mg + &;
¢ ~ [0,2)].

substantial correlation of higher order. The fixed points of the four determin-
istic mappings are contained in the asymmetric attractor which is stretched
out along the diagonal. The invariant distribution is highly skewed with high
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Table 2: Parameters of Model SAMS.

N
=

g
-

! statistic ” time series SAMS ]
mean 8.12587
variance 6.88639
standard deviation || 2.62419
skewness 1.41137
kurtosis 2.80578
quantile (0.55) 7.72191

Table 3: Statistics of Model SAMS.

frequency occurring near the two lower fixed points and a high kurtosis.
Table 3 provides empirical estimates of the basic statistics only. Theoreti-
cal values of the true moments seem to be unaccessible and not known for
Markov switching models.

Finally, consider the model SAM4 describing a situation with simulta-
neous discrete switching of the multiplier, the accelerator, and of aggregate
demand as given by Table 4.

This corresponds to a pure Markov switching model. The two mappings
which are chosen with equal probability have fixed points with complex
eigenvalues. The time series also shows the typical moment reversion and
clustering as the previous model.
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In contrast to the previous situation SAMS, however, the resulting dy- .
namics shows a high degree of rotation with a less connected attractor than
in Model SAMS, which points to a "fractal’ structure. Observe that the two
stationary points are (1.7,1.7) and (5, 5) most likely are not in the attractor.
The invariant measure is much less smooth and less skewed. However, the
autocorrelation is not distinctly different than in Model SAMS.
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Figure 16: Characteristics of Model SAM4 (T’ = 106).

4.9 Summary and Conclusions

The random multiplier accelerator model can be described as a parameter-
ized family of random affine mappings, induced by a random family of sec-
ond order delay equations. If the multiplier and the accelerator are restricted
to be strictly between zero and one, i. e. the stable case, every Multiplier-
Accelerator map is a contraction. Applying a result on existence, uniqueness,
and asymptotic stability of a random fixed point for invertible affine random
maps due to Arnold (1998), it was shown that for stationary and ergodic
compact valued noise processes, the dynamics of the random Multiplier-
Accelerator model has a well defined unique, stationary and stable long run
random behavior, satisfying the following properties:

1. (almost all) random orbits/sample paths converge to a unique station-
ary solution which induces a unique invariant distribution on a unique
attractor;

2. time averages converge to the invariant distribution according to the
Mean Ergodic Theorem,;
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[ statistic H time series SAM4
mean 3.00249
variance 2.0681
standard deviation (| 1.43809
skewness 1.10593
kurtosis 0.578912
quantile (0.55) 2.8285

Table 5: Statistics of Model SAMA4.

3. when perturbations are discrete (finite) and i. i. d. , the random multiplier-
accelerator map corresponds to a Hyperbolic Iterated Function System
(IFS).

4. In this case, the unique attractor (the support of the invariant measure)
may be a complex (’fractal’) set or a Cantor set, and

5. the invariant measure (distribution) may be very complex (with dis-
continuous distribution functions).

With i. i. d. perturbations, the random multiplier accelerator model belongs to
the class of generalized two dimensional Vector Autoregressive Systems of
Order 1 (VAR1) including so called Markov switching models. A numerical
analysis with different i. i. d. perturbations showed that

1. additive uniform i. i. d. perturbations alone lead to symmetric attrac-
tors and distributions

2. on ellipsoidal attractors for high accelerators and on rectangular at-
tractors for low attractors;

3. fractal attractors and distributions under discrete additive noise are
more frequent for low than for high accelerators;

4. adding small/continuous additive noise reduces/eliminates the *fractal’
structure of the attractor implying a multi modal invariant distribution
on a finite collection of disjoint compact sets which make up the sup-
port/attractor;

5. random accelerators as well as random multipliers typically lead to
stationary solutions which can show a variety of complex time series
phenomena, like moment reversion and clustering;
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6. while the attractors and invariant distributions are typically non sym-
metric;

7. these features seem less prevalent under a discrete random accelerator
than under random multipliers or random aggregate demand.

Since the mathematical result is applicable to general invertible affine
random dynamical systems, the above features would be expected to appear
as properties of unique stationary stable solutions also in random affine delay
equations of any finite order as well as in more general affine economic mod-
els. Therefore, even with i. i. d. perturbations alone, these models represent
a rich structure for interesting complex business cycle features.
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5 Non-Autonomous Business Cycle Model

José S. Canovas Peria and Manuel Ruiz Martn

5.1 Introduction

In previous chapters we have considered different versions of the Hicksian
business cycle model. This model, as well as the original linear Samuelson
model, was stated on the base that savings (S), consumption (C) and cap-
ital stock (K) at ¢ are proportional to the income (Y) at ¢t — 1, and these
proportions do not depend on time, that is

St =38Yi1; Ci=Y1-Si=(1-5)Y; 1 =cYi1; Ki=aY 1 (1)
and therefore the income formation equation remains
Vi=C+L=Ci+ (K~ Ki1) = (a+c)Yie1 —aYiz, ()

where I; denote the investments at the instant ¢.

In this chapter we propose to modify this assumption by introducing non
constant coefficients in the difference equation (2). More concretely we pro-
pose a model rewriting equations (1) as follows:

Sy =5Y 1, Ci=caYi1; Ki=aiYi, 3

that is, the savings, consumption and capital stock in the period of time ¢
are proportional to the income at ¢ — 1 and these proportions depend on t.
This new assumption makes sense because these proportions could depend
on many factors, even on random factors.

Hence equation (2) remains as

Y; = (a¢ + ¢) Y1 — arYio. 4)
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and if we also consider autonomous expenditures A (as stated in Chapter 3),
one obtain the following difference equation:

Y: - (at + c)Yio1 + arYio = A, &)

Notice that there is no a general solution in closed form for (5). In order
to study it, we introduce a new variable X; := Y;_;. Then we can write

Xt - th—la
Vi=—a:Xeo1 +(cr +a)Yim1 + A,

or in term of matrices
Xe ) 0 1 Xia 4 0
Y; T\ —ar gt ay Y1 A )

(X4, Y1) = Fy(Xi-1,Yi-1), (6)

So,

where
B(X, Y) = (Y; ——atX -+ (Ct + at)Y -+ A)

We are going to study the system given in (6) under different assumptions
on the parameters a; and ¢;, by using the notion of non-autonomous discrete
system. We call the sequence (F}), denoted by F) o, a non-autonomous
cycle.

The next section will be devoted to introduce some notions and resuits
concerning non-autonomous discrete systems.

5.2 Non-Autonomous Discrete Systems

Let X be a metric space with metric dand let f, : X — X, n € N, be
a sequence of continuous maps. The pair (X, f1 ), Where fi o denotes the
sequence (f1, f2, .-, fn, -..), is a non-autonomous discrete system. Through-
out this chapter we are going to denote

k
fn = fntk © frtk-10-.. fn.

If z € X, then the trajectory (also orbit) of z under fi  is given by the
sequence

OI‘b(iL‘, f]-yoo) d (.’L‘, fl($)7 f12($)7 seey f{l(x)v )7



5 Non-Autonomous Business Cycle Model 145

where f' = f,o0...0 fao fi,n > 1, and f{ denotes the identity on X.
Notice that when f; o, is the constant sequence (f, f, ..., f, ...), then the pair
(X, fi,00) = (X, f) is a classical discrete dynamical system. The notion of
non-autonomous discrete system can be found in Kolyada et al. 1996.

One of the main goals in the study of autonomous and non-autonomous
systems is to characterize the set of limit points of trajectories, that is, to char-
acterize the set w(z, f1 o0 ) of accumulation points of the orbit Orb(z, f1,00)-
The set w(z, f1,00) is called the w-limit set of z under fi o,. In this set-
ting, only partial results have been stated for the particular case of X being
the compact unit interval [0, 1] (see Kolyada et al. 1995 and Kempf 2002).
When discrete dynamical systems are concerned the following result gives
an useful property satisfied by the w-limit set.

Theorem 1 [Sharkovsky et al. 1997] Let X be a compact set, let f : X —
X be a continuous map and x € X. Then the w—limit set w(x, f) is closed
and strictly invariant by f, that is, f(w(z, f)) = w(z, f).

In general, the study of non-autonomous systems is rather complicated. How-
ever, there are two special classes of non-autonomous systems which can be
deeply analyzed.

In the first one we consider the sequence f; o, such that f,, converges to
a continuous map f as n goes to infinity. Then the non-autonomous system
can be studied as a discrete dynamical system as follows. Let Y = {1/n :
n € N} U{0} be a compact set and definethemap T : Y x X — Y x X by

_ J /(n+1), falz)) ifn#0,
TQ/n,z) = { 0, f(z))  ifn=0. ™

Then T is continuous and the pair (NU{0}) x X, T") is a discrete dynamical
system called triangular. This is so because usually the map T is called a
triangular map.

The second case is when the sequence f1 «, is periodic, that is, there is
k € Nsuch that f,,,r = f, for any positive integer n. The smallest positive
integer k satisfying this condition is called the period of fi . Hence the
sequence fl[klo = (fF, fF 1, ...) is constant and then (X, fl[klo) is a discrete
dynamical system.

The following result involves the first special type of non autonomous
systems.

Proposition 1 Let X be a compact metric space and let f, : X — X be a
sequence of continuous maps such that ( f,) converges to a continuous map
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f X — X as n goes to infinity. Fixx € X. Then w(z, f1,0) is strictly
invariant by f ( that is f(w(z, f1,0)) = w(Z, f1,00))-

Proof. Let T'(n, ) be the map defined in equation (7). Since T moves 1/n
to 1/(n + 1), then any w-limit set of T" is contained in the set {0} x X. Let
g 1 Y x X — Y x X be the projection map on the second component, that is
m2(y, ) = x. Notice that mo(T™(1,z)) = fi*(z) forany z € X andn € N.
On the other hand, it is straightforward to check that y € w(x, f1,00) if and
only if (0,y) € w((1,2),T) and hence {0} X w(z, f100) = w((1,2),T).
Moreover, since by Theorem 1, w((1,x),T') is strictly invariant by T, on
one hand we have that

T(w((1,2),T)) = w((1,2),T) = {0} x w(z, fi,0), ¢

and on the other hand,

T(w((1,2),T)) = T({0} X w(2, fi,00)) = {0} X f(w(z, fre0)), (9

Therefore by comparing equations (8) and (9) we have that

f(w(x, fl,oo)) = w(ac, fl,oo)v
which finishes the proof. |

Remark 1 An alternative proof of the above proposition can be seen in
Kempf 2002 without using triangular maps. However, the use of triangu-
lar maps helps in shorten the proof.

As we mentioned before we also are interested in studying the special
case in which the sequence f1 o is periodic. To this end consider

fl,oo = (f17 f27 seny fk?fhf?a "'7fk7 )

that is f) o is a periodic sequence of continuous maps with period k. In this
case, the w-limit sets of f1 o can be computed as the next resuit shows.

Proposition 2 Let fi oo = (f1, fo, -, [, f1, f21 - [k, --.) be a periodic se-
quence of continuous maps of period k and fix x € X. Then

(2, fre0) = w(z, ) Vw(fi(@), £)U.. V(7 (@), 7o),
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Proof. First notice that the sequences fz[lﬂo fori =1,2,...,k— 1 are the con-

stant sequences f¥, respectively. Then, for any = € X, the set w(z, f}fﬂo) =

w(z, fik Yfori =1,2,...,k—1. In order to prove the equality of the statement
first we prove the following inclusion

w(2, fieo) C w(z, f1) Vw(fi(e), f£)U .. V(77 (), fr-1)-

To this end, let y € w(zx, fi,00). Therefore there is a strictly increasing
sequence of integers (n;) such that lim fi(z) = y. For any ¢ we have that
100
there exist m;, r; € N such that n; = k-m; +7; withr; € {0,1,...,k—1}.
Therefore there exists jp € {0,1,...,k — 1} such that jo = r; for infinitely

many ¢’s. Then

y = lim f5(@) = lim fEP (@) = Jim (75 )™ (G (2),

which shows that y € w(f{°(z), f]’f) +1)» and the inclusion is proved. Since it

is straightforward to see that w(fj, (), fJ’%H) C w(z, f1,00) then the equal-
ity holds and the proof conciudes. 1

The following notation will be used in what follows. Given two se-

quences of continuous maps fi,oc = (f1,f2,...) and 106 = (91,92, ),
we construct the sequence (f, g)1,00 = (f1, 91, f2, 2, ...). In this setting, it
will be useful the next result.

Proposition 3 Let fi oo = (fn) and g1,00 = (9n) be two sequences of con-

tinuous maps that converge uniformly to f and g respectively. Then (f, 9)} o, 12
converges uniformly to g o f.

Proof. First notice that the n** term of the sequence (f, g) [12130 i g, © frn. Fix
€ > 0. Since (g, ) converges uniformly to g there is np € N such that

d(gn(z), 9(2)) < e

for all z € X and n > ng. Also, since g is uniformly continuous there is
¢ > 0 such that if d(z,y) < 4, then d(g(z), g(y)) < €. On the other hand,
Since (f,) converges uniformly to f there is n; € N such that

d(fn(2), f(x)) <6
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forall z € X and n > n;. Then if n > max{ng, n; }, we have that

d((gn o fa)(2),(go f)(2)) < d(gn(fn(z)),9(fa()))
+d(g9(fn(2)), 9(f(z))) < 2

for any z € X, which finishes the proof of the proposition. |

In the next section we wonder about the w-limit sets of sequences of
maps F,, which define the non-autonomous cycle. Proposition 1 states that
when the maps 7, converge to a map F', then this set is invariant by F'. To
improve the result we will need some definitions which can be found in Aoki
et al. 1994.

Definition 1 Lez 6, > 0. Let (X, d) be a metric space, f : X — X be a
continuous map and () € X be a sequence.

(a) We say that the sequence (xy,) is a 6—pseudo orbit of f if it is held that
d(xpy1, flzn)) < dforn > 1.

(b) We say that Orb(z, f) e~shadows (x,) if d(xn, f*(z)) < € forn > 1.

(c} The map f has the shadowing property, also called pseudo orbit trac-
ing property, if for any € > 0 there is 6 > 0 such that any é—pseudo
orbit is e~shadowed by an orbit of f.

An interesting problem related with the dynamics of the sequence f1 oo,
when this sequence is periodic of period 2, is the so called Parrondo’s para-
dox. The Parrondo’s paradox can be stated as follows. Consider two con-
tinuous maps f,g : X — X and a sequence (a,) € {0,1}N. Define the
sequence f1,00 = (fn) by therule f, = fifap =0and f, = gif o, = 1.
Notice that the map f7* is constructed by the composition of the maps f and
g depending on the sequence (o, ). We say that the Parrondo’s paradox (see
Almeida et al. 2005, Arena et al. 2003, Parrondo et al. 2002, or Harmer et al.
2000 for additional information on the Parrondian phenomena) occurs when
the dynamical systems (X, f) and (X, g) are complicated (respectively sim-
ple) and the system (X, f1,00) is simple (respectively complicated). We will
analyze whether a Parrondo phenomena occurs for non-autonomous cycles
generated by two maps F; and Fy.
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5.3 A First Approach to the Model

Recall that the model presented in Section 5.1 is given by the following se-
quence of homeomorphisms

F(X,)Y)=(Y,—a:X + (¢t + a)Y + A), (10)

where (c;) and (a;) are sequences of real numbers such that 0 < ¢; < 1 and
a; > 0 for any £ > 1. The non-autonomous cycle is given by the sequence
Fy oo = (F}). We always assume that (a; + ct)? — 4ay < O forany t > 0, in
order to have complex eigenvalues.

For any ¢ > 1, the sequence of fixed points of the map F3 is given by

@ = {2 o)

1—¢'1—c

Notice that if ¢; = ¢ for every t > 1, then the above sequence is constant.
The following result shows that if we do not impose additional conditions
on a; and ¢; then the behavior of the sequence F o, can be complicated.

Proposition 4 Fix (Xo,Yp) € (R*)2. Then there is a sequence ((ay,ct))
with a; > 0 and 0 < ¢; < 1 such that Orb((Xo, Yp), Fi,00) is dense on R2.
Then w((—XO?YO)vFl,OO) = RQ.

Proof. Let D be a dense and countable subset of R such that Xg,Yy € D.
Then D x D = D? is dense on R2. Now, fix X; = Xo € D and consider

(X1, Y1) = F1(Xo,Yo) = (Yo, —aXo + (c+ a)Yp + A),
which gives us the equation
Y1 =—-aXo+ (c+a)Yy+ A 1D
Then a straightforward computation shows that

Y1 - A+a(Xo - YD)
Y

Then fixing Y1 € D and a such that

0 1

Yi—-A -
ch + a(Xo Yb)<
Y,
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one deduces that there are infinitely many ¢ such that equation (11) holds.
Choose a; and c¢; such that (11) holds. Now, we take (X2,Y3) € D? such
that Xo = Y7, and arguing as before we can find a2 and ¢z such that Y5 =
—as X1+ (ca+a2)Y1 +A. Since D? is a countable set, repeating this process
we get that D? = Orb((X, Yo), F1,0), and the proof concludes. 1§

Remark 2 The existence of a dense orbit is known as transitivity of the
system. Although transitivity is not enough to provide chaos (consider, for
instance, irrational rotations on the circle), notice that one can choose Y,, in
a random way and thus, the behavior of the orbit would be unpredictable.

Then by Proposition 4 it is clear that to obtain some order in the model,
the values of a; and c¢; can not be arbitrary, they have to be chosen follow-
ing some rules. We are going to consider different cases for the sequence
((ag,¢r)). In the next section we are going to assume that the sequence
((at, ct)) converges to (a,c). Afterwards we will study the proposed model
when the sequence ((ay, ¢;)) is not converging.

5.4 The Convergent Case

Assume that ({a¢, ¢;)) converges to (a,¢), ¢ < 1, as ¢ goes to infinity. Then
the sequence F; converges to the map F, where

F(X,Y) = (Y,—aX + (a + )Y + A). (12)

In addition, the sequence of fixed points (X, Y;*) converges to the fixed
point of F, denoted by (X*,Y™). Since X} = ¥;* = 1_—ACt forallt > 0 we
obtain that X* = Y™* = ﬁ. Now, we need some information on when the
orbits of the non-autonomous system are bounded. To this end, we introduce
the following technical computations.

Let ||(z,y)|| = v/x? + y? be the Euclidean norm defined on R2. This
norm induces a norm on M>(R) as follows (see Serre 2002, page 65). Let
A € M(R) and let AT be the transpose matrix. Denote by

p(A) = max{|\|; A is an eigenvalue of A}.
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Then

Al := /(A - AT). (13)

Consider the sequence of fixed points (X}, Y;*) (recall that X} = Y}*). In
order to get some information concerning the orbit of the point (X,Y"), we
are going to estimate
IFH(X,Y) = (X5, YOl
Notice that if F; = F for all ¢ > 0, with fixed point (X, Y*), then
IFHX,Y) — (X7, Yl = [IFY(X,Y) — (X, Y|

measures the distance between any point of the orbit of (X, Y) and the fixed
point. Under this assumption, as it was stated in Chapter 3, if a < 1 any
orbit converges to the fixed point of F, and therefore

—00
On the other hand if @ = 1 then ||F*(X,Y) — (X*,Y™*)|| is bounded and
finally if @ > 1 then ||F*(X,Y) — (X*,Y*)|| is unbounded if (X,Y) #
(X*,Y™).
Now fix ¢ > 0. We begin by estimating ||F3(X,Y) — (X7, Y)||. Let

W:( 01 )
—a; ¢+ a

Notice that a property of matrix norms are ||AB|| < ||A||||B||- For the
matrix W, after a straightforward calculation, we have that p(W - W7T) = q?
(recall that (a; + ¢¢)? — 4a; < 0).

Therefore by the previous paragraph we obtain that

IFR(X,Y) — (X5 Y0 = [[B(X,Y) - B(X{, Y

0 1 X - X}
—a; ¢+ ag Y -Y¢

< @f|(X,Y) = (X5, Y7)]]-
Then
IF(X,Y) - (XY < el H(XY) — (X5, Y0
< allFHXY) - (XL V)|
Fau|(X{1, Yiiy) — (X, V)
< a1a|FUAHXY) - (X, V)|

+ag[(X¢-1, Vi) = (X3, YOI
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Hence, in an inductive way, we obtain
IIFH(X,Y) — (X3, Y] < ZII n-1:Y X;‘Z,YTZ‘)IIH%

+H(X,Y)—<X;*,K*)I|Han- (14)

Now, we can prove the following result.

Theorem 2 Let Fy o = (F}) be a non-autonomous cycle defined as in (10)
converging to the continuous function F' defined as in (12). Then

(a) Ifa < 1, then for all (X,Y) € R? the w-limit set
w((X7 Y)’Fl,oo) = {(X*vY*)} = w((Xa Y)’F)

(b) Ifa > 1, then for all (X,Y) € R? the orbit Orb((X,Y), F1 o) is not
bounded or converges to the fixed point (X*,Y*) .

Proof. First, assume that (a;) converges to a < 1. By inequality (14) we
obtain

IFXY) - (XY < IIF(XY) - (X7, YY)
+HI(XE, ¥ = (X7, Y7)]
I(Xe, ) = (X5, Y9l

IA

4
+HI1(X,Y) = (X5 YO ] an

n=1
+ZH n— 17Y*—1) X:L?Y;)”Haj
On the other hand, there are tg € Nand 0 < 8, < 1such thatif ¢t > ¢,
thena; + < a < 1. Let
D = max{||(X{_1, Y{%y) = (X7 YOIL X Y™) = (X5, V0| - ¢ € N,
and

t
S = max{H an:t=1,2,...,t}.

n=1
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So, if t > tg, we have

t
IF{X,Y) = (X", Y*)|| < D+DSo"™™+4DS+ Y Da'™"
n=tg+1

t
D (1 + 8ol + S+ Y ozt_") .

n=to+1

IN

Since the serie .
> a®,
n=1

converges, we deduce that Orb((X,Y"), F1 ) is bounded and then, there is
a compact subset K C R2? such that Orb((X,Y), F1 ) C K. Since F;
converges uniformly over K, for a fixed § > 0 there is ¢y € N such that

IF(FyH(X,Y)) = F(F{H X, V)l <6, (15)
for all ¢ > t3. We claim that the sequence
(F°(X,Y) = Ff 1 (F°(X,Y)))

is a 5—pseudo orbit of F. To see this notice that by (15) ||[F{T(X,Y) —
F(FF1 X, V)| = (| Py (FFF 071X, Y)) — FEF X, V)] <
6 for all t > 1, which proves the claim.

By Aoki et al. 1994, page 86, the limit map F' has the shadowing prop-
erty. Then, there are € > 0 and (Z,, T.) € R? such thatif ¢ > 1, then

|Fio (X, Y) — FYZ.,T.)|| < ¢ (16)
Since a < 1, there is t; € N such that
FH(Ze, Te) — (X", V)|l <e a7

for all t > t;. Therefore, if ¢ > t3 + t; by applying inequalities (16) and
(17) we obtain that

|IFHX,Y) = (X", Y9)|| < ||FH(X,Y)— F"%(Z,, T.)|]
H|FtT(Z, Te) — (X*,Y*)]| < 2e.

Since € was arbitrarily chosen, the sequence (F7*(X,Y")) converges to the
fixed point (X™*,Y™).
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Now we assume that (a;) converges to a > 1. If Orb((X,Y"), F1 ) is not
bounded, there is nothing to prove. Otherwise, we are going to assume that
Orb((X,Y), F1,) is bounded. Then, there is a compact subset K C R2
containing the orbit. Since F} converges uniformly over K and the limit map
I’ has the shadowing property (see Aoki et al. 1994, page 86). Therefore
there are tg, 0, € and (Z,, T, ) as above. Then proceeding as in the previous
case (Z¢, T;) = (X*,Y™) for any € > 0 (otherwise Orb((Z, T¢), F') would
be unbounded) and hence, again by (16), w((X,Y), Fieo) = {(X*,Y*)}.
| |

Theorem 2 states that when a s~ 1, the dynamical behavior of any orbit
of the non-autonomous cycle is similar to an orbit of the dynamical system
generated by the limit map F'. Here three different possibilities can be ana-
lyzed. Firstly if a; < 1 for all ¢ > 1, intuition tells us that any orbit should
go to the fixed point of the limit map. To see this we have to go through sim-
ulations. In all the simulations we assume that A = 1. The initial condition
is always the same for all simulations (Xj, Yp) = (0.25,0.189). In Figure 1
we simulate the income traces and the orbit Orb((0.25,0.189), F;,) when
a; = 0.9 — 1/t and ¢; = 0.5 is constant and when ¢; = 0.45 + 1/t is vari-
able with the time ¢, respectively, for all £. Notice that in the first case, since
¢; = 0.5 for all ¢ then there is a unique fixed point in the real plane R2.

Secondly if a; > 1 for all £ > 1 an unbounded orbit appears. This
situation is simulated in Figure 2, (similar pictures are shown when ¢; = 0.5
is constant for all ¢, that is why we only show the case in which ¢; = 0.5+1/t
is variable with the time ?).

In Figure 3, the cycle starts with a; > 1, but finally it converges to
a=099 <1

There is not clear intuitions about what happens if a; can be arbitrarily
greater than, equal to or less than 1 depending on the instant on time ¢. To
investigate this, we only have inequality (14) to prove the following resulit,
in which convergence is not assumed.

Theorem 3 Let Fy o, = (F}) be a non-autonomous cycle defined as in (10).
Assume (X*,Y*) is the only fixed point in R? of F} for all t € N. Then for
all (X,Y) € R?

(a) If lim Moy an =0, then W((X,Y), Fioo) = {(X*,Y*)}.

(b) Iflimsup H:Lzl an = o, then Orb((X,Y"), F1 o) is bounded.
t—00
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Figure 1: We simulate in the upper part income traces (left) and orbit (right)
where a; = 0.9 — 1/t and ¢; = 0.5 with initial condition (Xo,Yp) =
(0.25,0.189) and in the lower part income traces (left) and orbit (right)
where a; = 0.95 — 1/t and ¢; = 0.45 + 1/t with the same initial condi-
tion. The orbit converges to the limit fixed point (2,2) and (1.81..,1.81..),
respectively, as Theorem 2 points out.

Proof. Notice that in this particular case inequality (14) reads as follows
¢
IF{(X,Y) = (X* Y| < [(X,Y) = (X% Y] [ ] an.
n=1

Therefore, if tll{{.lo Hfml an = 0, we have that
—3OQ

which proves the first statement.
To prove the second statement, since lim sup Hizl an = a, for a fix

t—oo

€ > 0 there exists tg € N such that\Hﬁlz1 an < a +¢if t > tg. Then, again
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Figure 2: Income traces (left) and orbit (right) where a; = 1.02 + 1/t and
¢t = 0.5 4 1/t with initial condition (Xo,Ys) = (0.25,0.189). As it is
expected, by Theorem 2, the orbit is not bounded.

Figure 3: Income traces (left) and orbit (right) where oy = 0.99 + 1/t and
¢t = 0.5 with initial condition (X,Yy) = (0.25,0.189). The limit map
holds that a = 0.99 < 1 and it is expected, by Theorem 2, that the orbit goes
to the fixed point (2,2). However, ay > 1 at the beginning of the orbit and
therefore the convergence is slow. In fact, if one looks at the first iterations,
it could be thought that the orbit diverges.

by (14) we obtain that

t
IFXY) = (XY < 1GGY) = (X Y9 ] aa
- n=1

< X Y) = (X5 Y)|I(a +e).
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Since the previous inequality has been proved for an arbitrary € > 0, then
the proof of the second statement finishes.

Notice that (X*,Y*) is the only fixed point of all maps F; if either ¢; =
c is constant or A = 0, that is, the model does not include autonomous
expenditures. Next result also gives us some conditions to have bounded
orbits, even when the fixed point changes with time.

Theorem 4 Let Fy o, = (F}) be a non-autonomous cycle defined as in (10)
which converges to F defined as in (12). Assume a; = 1 for all t € N. If the
series

ZH(X*—I? n-1) = (Xo, Y2l

converges then Orb((X, Y), Fi,00) is bounded for all (X,Y) € R2.

Proof. Let (X*,Y™*) be the fixed point of the limit function F'. Then, in-
equality (14) reads as

IFI(X,Y) - (X3, Y] < II(X Y) - (X5, Y0

+ZH -1 Yn—1) — (X5, Y )l
n=2
Since
IF{(X,Y) - (X5 Y9 < |IF(X,Y) - (X570
+HI(XE, YY) — (X, Y7)||
then

IFHX,Y) — (XY < (XY - (X5 Y9l
+II(X Y) - (X, YOl

+ZH n 1 n— (X:nYr;.k)H‘(lS)

Let
a = tl—}—glo H(X, Y) - (Xik’Yt*)”

and

,6 ZH —1» n— (X;:>Y7:)“
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Therefore, since the sequence ((X[,Y;*)) converges to (X*,Y™), by (18)
for any € > 0 there exists ¢g € N such that if £ > %y, then

IFHX,Y) = (X", Y| <e+a+B,
which finishes the proof of this theorem. J

In Figure 4 we simulate the situation presented in Theorem 4. Notice
that since a; = 1 for all ¢ > 1, the only thing we may say about the orbit is
that it is bounded, but we cannot say anything concerning the w-limit set of
the orbit. Although the orbit is bounded, we cannot say anything about the
complexity of the orbit. For instance, when F; = F for all ¢ > 1, that is the
sequence of maps is constant, the orbit is quasiperiodic (see Chapter 2) and
hence no complex dynamics appear. Nothing can be said in the general case.

X

Figure 4: Income traces (left) and orbit (right) where a; = 1 and ¢; =
0.5 + 1/t with initial condition (Xo,Yp) = (0.25,0.189). Since A = 1,
notice that the series Y oo o |(X;_1, Vi 1) — (X2, ;)| = 4v/2 and hence
the orbit Orb((X,Y), F1 o) is bounded.

When a; converges to 1 and a; # 1 for all t we have to go through sim-
ulations to see that in this case also the orbit Orb((X,Y"), F; o) is bounded
for all (X,Y) € R2. In Figure 5 we simulate this situation when a; < 1,
a; > 1 and a; is randomly alternating > 1 and < 1 for all £. Roughly
speaking, if a; > 1 the map F; gives unbounded orbits (we say that F; is ex-
pansive) and if a; < 1 all orbits converges to the fixed point. Using the idea
that F; expands the orbit when a; > 1 and contracts it when a; < 1 we can
“explain” some simulations which cannot be explained by using the results
proved in this chapter. These simulations point out that the condition a # 1
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in Theorem 2 is necessary and it cannot be avoided. It is also interesting to
emphasize how the behavior of the orbit of the non-autonomous system and
the orbit of the limit map can be totally different.

AN

Figure 5: For the initial condition (Xo,Yp) = (0.25,0.189) we simulate
the following cases from left to right: (1) income traces and orbit where
ar = 1—1/t and ¢, = 0.5. Notice that according to Theorem 3 the orbit goes
to the fixed point (2,2), although the convergence is very slow because a;
grows up to 1. (2) Income traces and orbit where a; = 1+ 1/t and ¢; = 0.5.
Here one can expect unbounded orbits because a; > 1 and hence any map
F; is expansive. (3) Income traces and orbit where a; = 1 + (—1)"/t where
7 is a random integer between 1 and t and c; = 0.5+ 1/t. These simulations
show how the hyphotesis o # 1 in Theorem 2 is neccesary.

5.5 Non-Autonomous Cycles Generated by Two Maps F; and I}

In this section, we study non-autonomous cycles which are generated by
two maps Fi and Fp. The simplest way in which we can obtain a non-
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autonomous cycle generated by two maps is with a periodic sequence Fy o =
(Fy, By, [1, Fy,...). In this case, the second iterate of the cycle is given

by a constant sequence Fl[zc]>o = (Fy o F1,F» o Fy,...). Moreover, given

(X,Y) € R?, its orbit Orb((X,Y), Fi ) is equal to
Orb((X,Y), Fy 0 F1) UOrb(F1(X,Y), F} o F3). 19
The above equality holds because
FAX,Y) = (Fyo F)"*(X,Y)
if n € Nis even and
FMX,Y) = (Fy o B)"?(F(X,Y))
if n € Nis odd. Then, it is easy to derive from (19) and Proposition 2 that
w((X,Y), Fl o) =w((X,Y), Fo0 F1) Uw(F1(X,Y), Fy 0 F3).

Recently, there are several papers which deals with the following ques-
tion. If F3 and F3 are chaotic (or simple) in some sense, is it true that F o,
or more precisely I o I3 is chaotic (or stmple)? (see for instance the refer-
ences Almeida et al. 2005, Harmer et al. 2000, Parrondo et al. 2002, Arena
et al. 2003, Klic et al. 1996 and Klic et al. 2002). As we stated in Section
5.2, this phenomenon is known as Parrondo’s paradox.

As we have done in the previous sections, the aim of this section is to ana-
lyze the asymptotic behavior of the orbit Orb((X,Y), F} o). If we translate
this into the present context, the problem reads as follows: can two stable
(resp. unstable) cycles provide an unstable (resp. stable) cycle?

In order to give an answer to the previous question we have to take into
account that we have two compositions Fy o 5 and Fy o Fy, which play a
role in the orbit of the non-autonomous cycle. In general, if the composition
f o g of two continuous functions f and g has a dynamical property (say,
stability, chaos in any context,...) it is not true that the converse composition
map g o f has the same property. In fact, it can be seen in Linero et al. 2002,
that, there are two continuous maps f and g on the interval [0, 1], such that
f o g is chaotic in the sense of Devaney while g o f is not. From the point of
view of non-autonomous cycles, we have to answer the following question:
do the maps Fy o Fy and F; o Fy have the same dynamical properties, let us
say for instance, stability?
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Consider the maps

o 1 b'e 0\ .
B(X,Y):(_ai q+ai)(Y)+(A>”=l’2' (20)

Then, we construct the compositions

(Foo )(X,Y) = A ( ;( ) + ( A( 1+02+a2) )
and
(FLoB)(X,Y) = Ay ( “;( ) + ( A(1+c1+a1) )
wher
e A= ( —a1(:2aik az) (e -l-wici‘ilal) — a2 )
and

Ay = ( ~az c2 + ap )
—ag(cl +a1) (Cl +a1)(02+a2) —ay ’

A simple calculation gives us that in the case in which the eigenvalues of
both matrices are complex (this is the case of interest), the modulus of the
eigenvalues coincide and its value is

A/ 2109.

Then, we obtain stability if ajag < 1 and unstability if ajae > 1. Moreover,
if both maps are stable, that is max{a1,as} < 1, then the compositions are
also stable, while if they are unstable, min{ai,as} > 1, then the composi-
tion is unstable. But notice that we can get stability even when one of the
maps is unstable.

When ajay = 1, we consider for instance the map F o F;. The charac-
teristic equation

—ai; — A ai +c
—ai(ca +a2) —ag+ (a1 +a1)(ca+ag) — A

= X + [al + a2 — (C1 + al)((:2 + az)])\ + ayas.

0

Since ajaz = 1, we put a = a; and 1/a = ag. Then the solutions of the

above equation are
~-K+vVK?-14
2 7
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where

K=a(l—a)+ (1~ a) - (1+eae)

Now, if | K| < 2, then the roots are complex with modulus 1, and hence the
orbits are periodic or quasiperiodic (for instance when ¢; = ¢g = 0.5 and
a = 2). By other hand, if |K| > 2, the roots are real, but in this case one of
the roots has modulus greater that one because | — K — v K2 — 4| > 2 and
hence, in the real case we cannot have stable maps but unstable maps (for
instance when ¢; = ¢g = 0.5 and a = 8). In a similar way it can be proved
the same for the composition F} o F5.

When the compositions are stable we can enunciate the next result whose
proof is a direct consequence of Proposition 2.

Theorem 5 Let F o, = (F1, Fy, F1, Fy, ...) be a periodic sequence of con-
tinuous functions defined as in (20). Assume that ayag < 1. Then for any
(X,Y) € R? we have

w((X,Y), Fi,00) = {(X31, Ya1), (X{2, Y12)},

where (X3;,Y5,) and (X35, Y7%) are the unique fixed point in R? of Fy o Fy
and Fy o Fy, respectively.

The periodic sequence described above is the simplest way of construct-
ing a non-autonomous cycle with two maps. A general way of doing this is
the following. Let (cz) € {1,2}" be an infinite sequence of 1 ’s and 2’s.
Let F1 o = (Fuy, Fay,...). If (ey) is the periodic sequence (1,2,1,2,...),
then we obtain the periodic sequence of Theorem 5. When (a) is constant,
for instance (1,1,1, ....), then we obtain an autonomous cycle defined by Fj.
Basically the same happens when (o) is eventually constant, that is, there
is ngp € N such that oy = oy, for all ¢ > tg. Now we are interested in
sequences with infinitely many 1’s and 2’s.

Then under the previous assumptions we are going to estimate
IFH(X,Y) = (X7, Y1),

where (X7, Y7*) is the fixed point of F; in order to find conditions for ob-
taining bounded and convergent orbits. To this end, notice that by inequality
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(4, [|FL (X,Y) — (X3, Y,)|| is smaller or equal to
H(X Y) at’ )HHaan

+ZH(X% oYa ) — (X2, )lIHan <

<X, Y) - (X3, )HHaaﬁu(Xz,Yz)—Xl,Yl)llZHan,

n=2j=n

because there are only two fixed points. Then, we can prove the following
result.

Theorem 6 Let () € {1,2}N be an infinite sequence. Let Fy o = (Fa,)
where F,, is defined as in (20). Assume that 3¢ _, H;zn aq; converges.
Then any orbit, Orb((X,Y), F1 ), of the non-autonomous sequence is
bounded. If in addition F'y and F has the same fixed point (X*,Y™*) and the
product H%:l aa,, Converges to zero, then any orbit converges to the fixed
point (X*,Y™).

n

Proof. If 57 _ =2 H —n Qa; converges, then 1%, @a, converges to zero.
Now proceed as in the proof of Theorem 3 to obtain the result. J

Notice that the sequence (o) can be generated in several ways. Here we
propose some of them which, in our opinion, have a special interest. The
first one is to choose the sequence () is in a random way. For instance, we
consider that a probabilty measure p on {1,2} such that u({1}) = u({2}) =
1/2. In this case one could make himself the following questions: is there
a common behavior, for almost all sequence (0)? or is that common be-
haviour similar to that of Iy o Fa and I o Fy?. By other hand, what hap-
pens if the measure (. changes? Figures 6 to 11 show simulations in which
the sequence (ay) is chosen in a random way.

To end this section, notice that we can combine the results obtained here
jointly with those obtained in section 5.4 to construct non-autonomous cy-
cles. Basically, we are going to construct non-autonomous cycles which are
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Figure 6: Income traces (left) and orbit (right) where a1 = 0.9, ag = .95
with initial condition (Xo,Yp) = (0.25,0.189). In the upper part of the
figure ¢y = 0.4 and co = 0.5, while in the lower part c; = ca = 0.5, that
is F1 and F» have the same fixed point. Both maps are contractive, but in
the first case the existence of different fixed points for Iy and Fy produces
a non-convergent orbit, while in the second case, the existence of a common
fixed point, jointly with Theorem 3, implies the convergence of the orbit to the
common fixed point. The example shows a situation in which the existence
of non common fixed points generates a complicated behaviour. It seems to
be difficult to obtain a mathematical explanation of this fact.

given by two sequences which converge to the maps F() and F(2 in the
following way.
Let

FOX,Y) = (Y, —a} X + (a} + c})Y) @1)

and
FP(X,Y) = (Y, —a2X + (a2 + A)Y) (22)
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Figure 7. Income traces (left) and orbit (right) where a1 = 1.09, ag = 1:05
with initial condition (Xo,Yp) = (0.25,0.189). In the upper part of the
figure c; = 0.4 and c2 = 0.5, while in the lower part ¢; = cg = 0.5, that
is Fy and F» have the same fixed point. Since both maps F| and Fy are
expansive, it is expected an unbounded orbit. Since the orbit is expanding
out, it seems that it is not important the fact that the maps share the fixed
point, because both simulations are similar. Notice that the same does not
happens when the maps are contractive.

be two sequences of cycles which converge to
FO(X,Y) = (Y,—-a'X + (a* + c1)Y)

and ‘
FA(X,Y) = (Y, -a®X + (a® + 2)Y),

respectively. Consider the non-autonomous cycle defined by the sequence

2 2 2
F(l )=(Fl(1)aF1( )7F2(1)7F2( ),'~')'

1,00
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Figure 8: Income traces (left) and orbit (right) where a1 = a2 = 1 with
initial condition (Xo,Yy) = (0.25,0.189). In the upper part of the figure
c1 = 0.4 and c2 = 0.5, while in the lower part c; = ¢y = 0.5, that is Iy
and Fy have the same fixed point and hence Fy = Fy. In both cases we
obtain bounded orbits, but the existence of different fixed points in the first
case gives us a more complicated orbit. Theorem 4 proves that the second
case is bounded.

If ala? = 1, then by Aoki et al. 1994, page 86, both maps F(1) o F() and
F® o F() have the shadowing property. Hence, by Propositions 2 and 3 and
proceeding as in the proof of Theorem 2, we can enunciate the next result.

Theorem 7 Let F) 1(10)0 and I 1(’20)0 be two non-autonomous cycles defined as

(21) and (22) respe,ctively, converging to
FO(X,Y) = (Y, —a* X + (o + c)Y)

and
FO(X)Y) = (Y, -a’X + (a® + A)Y),

respectively. Then for any (X,Y) € R? the following statements hold:
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Figure 9: Income traces (left) and orbit (right) where a1 = 1.2, a2 = 0.79
with initial condition (Xo,Yy) = (0.25,0.189). In the upper part of the
figure ¢y = 0.4 and cg = 0.5, while in the lower part c; = ca = 0.5, that is
I and Fy have the same fixed point. Notice that ajas < 1 and then roughly
speaking, if the number of times in which a) and ay appear is approximately
the same, according to Theorem 13, we have bounded and convergent orbits.
That is what it seems that happens in these simulations. Notice that the
existence of different fixed points implies a greater complexity.

() 1fa1a2 <1, then w((X,Y), FID) = {(X51, Y1), (X5, Y1)}, with
2,Y1%) and (X3,,Y5,) the ﬁxed points in R2 of FO) o F&) and
, respectively.

(b) If a*a® > 1, then the orbit Orb((X,Y), F(1 2)) is unbounded.

Figures 12 to 15 are simulations of different situations for the income

’ )

traces and orbits of the non-autonomous cycle F&g

rameters of the model. Notice that when ala? # 1, then all the simulations
can be rigorously explained by Theorem 14.

depending on the pa-
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Figure 10: Income traces (left) and orbit (right) where ay = 2.19 and ag =
0.9 with initial condition (X, Yp) = (0.25,0.189). In the upper part of the
figure ¢y = 0.4 and co = 0.5, while in the lower part ¢y = co = 0.5, that is
Fy and Fy have the same fixed point. Since ayas > 1, one would expect that
the modulus of the points in the orbit grows. Indeed the simulations show
unbounded orbits.

5.6 A Naive Approach to the General Case

As we saw in Section 5.3, if a; and ¢; can be chosen without any restric-
tion, then the orbit of the non-autonomous cycle can be a dense subset of
R2. In this section we are going to choose a; and c; in three different ways
which have not been studied before. In the cases we analyze we always ran-
domly choose c; and a; from a bounded closed interval. Three cases appear
because degenerate intervals, that is a single point, are taking into account,
but they cannot appear simultaneously. We can think that always either a;
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Figure 11: Income traces (left) and orbit (right) where a; = 1/0.9 and
ag = 0.9 with initial condition (X, Ys) = (0.25,0.189). In the upper part
of the figure c¢; = 0.5 and co = 0.4, while in the lower part ¢c; = co = 0.5,
that is Iy and F» have the same fixed point. Notice that ayas = 1, and then
one can expect bounded orbits. As before, the more complicated situation
appears when the fixed points of Fy and F5 are different.

or ¢; or both are chosen from a bounded closed interval following a uniform
probabilistic distribution.

So first, we consider that a; = a for all ¢ > 0 and ¢; € [c, ¢ is ran-
domly chosen. We are going to estimate ||F¥(X,Y) — (X}, Y)|| in order
to characterize bounded orbits. Now, inequality (14) reads as

IFHXY) = (X5 < Y0 a ™ I(Xy, Yosy) = (G V)
n=2

+a'||(X,Y) — (X5, Y| (23)

Then we can prove the following result.
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Figure 12: From left to right we simulate income traces and orbit in the
following cases: (1) a} = 0.9 — 1/t, af = 0.95 — 1/t, ¢} = 0.5+ 1/t and
2 =04+1/t,(2)a} =09~1/t,al =0.95—1/t,c} =0.5andc; = 0.4
and (3) a} = 1.2 —1/t, a? = 0.79 — 1/t, ¢} = 0.5 and ¢} = 0.4 with
initial condition (Xo,Yp) = (0.25,0.189), respectively. For the limit maps
we have that a*a® < 1 and then, by Theorem 14 it is expected that the orbits
converges to the fixed points of the composition of the maps FO) and ),

Theorem 8 Let Fy o, = (F}) be a non-autonomous cycle defined as in (10).
Assume that a; = a and ¢; € [¢,¢] with© < 1 forallt > 1. Then the
Jollowing statements hold:

(a) If a < 1, then any orbit, Orb((X,Y"), F1 ), of the non-autonomous
cycle is bounded.

(b) If a = 1 and the series
> X1, Yo) = (X0, V)
n=2

converges, then for all (X,Y) € R? the orbit, Orb((X,Y), Fi ), of
the non-autonomous cycle is bounded.
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Figure 13: First we simulate income traces (left) and orbit (right) where
aj =1.09—-1/t,a? = 1.02-1/t,c} =05+ 1/tandc? = 0.4+ 1/t
and second income traces (left) and orbit (right) where a; = 1.09 — 1/t,
a? = 1.02 — 1/t, ¢} = 0.5 and c? = 0.4, in both cases with initial condition
(Xo,Yo) = (0.25,0.189). Since ala® > 1, it is natural to expect unbounded
orbits, which is what the simulations show.

Proof. Since ¢ < 1, the sequence of fixed points ((X;,Y;*)) are bounded
because X} = Y;* < A/(1-¢). The proof of the first statement is analogous
to the proof of Theorem 3. For the second statement by (23) we have that

IF(X,Y) - (X5, ¥l < I(X,Y) - (X7, Y0)]
+ )Xo, Vi) = (X, YU
n=2

Now proceeding as in the proof of Theorem 3 we obtain the required result.
|

Below, in Figure 16 we simulate conditions 1 and 2 of Theorem 8 respec-
tively.
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Figure 14: For the initial condition (Xg,Yp) = (0.25,0.189) from left to
right we simulate income traces and orbit in the following cases: (1) aj =
1/0.9—1/t,a? =09 —1/t, ¢} =05+ 1/tand c; = 0.4+ 1/t, (2) o} =
1/0.9 —1/t, a2 =09—1/t,c} =05andc? =0.4and (3)a; = 1~ 1/,
a2 =1-1/t, ¢l =05+ 1/t and ¢} = 0.4 + 1/t. Notice that a*a® = 1
and then Theorem 14 does not give any information about the simulations.
Since a}a? < 1, one would expect the convergence of the orbit, which is

what happens in the simulations.

Notice that if ¢ = 1, then the sequence of fixed points is not bounded
and then, even when a < 1 the orbits of the non-autonomous cycle could be
unbounded as the simulations of Figure 17 shows.

Secondly, we fix ¢; = cfor all £ > 0 and assume that o, is bounded by
a,a € R and such that a; € [a, a] is randomly chosen. Again, the only thing
we are able to do is to characterize bounded orbits. To this end, we consider

IF (X, Y) = (X7, Y9,

where (X*,Y*) denotes the unique fixed point in R? of the sequence F} 4,
and we will try to obtain an upper bound. Then we use inequality (14) which
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Figure 15: For the initial condition (Xg,Yy) = (0.25,0.189) we simulate
income traces ( left) and orbit ( rzght) in the following cases: in the upper
a} = 1~|—1/t a? = 1+1/t ct —O5+1/tandct —04+1/tandmthe
lowera} =1+ 1/t, a2 =1+ 1/t, ¢l =0.5and c? = 0.4. Since ala® =1,
Theorem 14 does not help us to see if simulations are right. Anyway, a%a2 >

¢
1 and then one can expect that the orbits will be unbounded, which is what

simulations show.

in this setting reads as follows

t
10X, Y) = (X2, Y0 ] o

n=1

+Zl|( —1: Y1) — (X Y*)IIH%

n=2

IF(X,Y) = (X", Y|

IA

= II(XsY)—(X*7Y*)IIHan,

n=1
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Figure 16: In the upper part we show income traces (left) and orbit (right)
where a; = .95 and ¢; = 0.9 — 1/t with initial condition (Xo,Yy) =
- (0.25,0.189) and in the lower part income traces (left) and orbit (right)
where a; = 1 and ¢; = 0.9—1/t with the same initial condition. Here, notice
that the series S oo o (X7 _1, Vi 1) — (X2, Y = 300, v2/(0.81n2 —
18n + 0.1), which is convergent and then the orbit is bounded (cf. Theorem
8).

because ||(X)_1, Y, 1) — (X}, Y.)| = 0. Then, following the proof of
Theorem 3, it can be proved the next result which establishes conditions to

have bounded and convergent orbits.

Theorem 9 Let F o, = (F}) be a non-autonomous cycle defined as in (10).
Assume that ¢, = cforallt > 0 and a; € |a,a] is randomly chosen. Then
the following statements hold:

(a) Iflim;_oo [lfl:l an =0, then w((X,Y), F1oo) = {(X*,Y*)} for all
(X,Y) e R
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Figure 17: We simulate income traces (left) and orbit (right) in the following
cases: in the upper part ay = .95 and ¢; = 1 — 1/t and in the lower part
- ar = land ¢, = 1 — 1/t with initial condition (Xo,Yp) = (0.25,0.189).
Since ¢; converges to 1, the modulus of the fixed points are growing up and
then, even when a; < 1 we have an unbounded orbit, although in this case it
seems that its behaviour is simple.

(b) Iflimsup;_, ., H%zl an = a € R, then for all (X,Y) € R? the orbit
Orb((X,Y), F1,c0) is bounded.

Notice that the first case in Figure 5 is a simulations for (a) in The-
orem 9. In case (1) of Figure 5 we have that a; = 1 — 1/¢ and hence
lim; oo [ ey 1 — 1/n = 0.

Finally, we may assume that both parameters a; € [a,@] and ¢; € [c, ]
are randomly chosen. We distinguish two cases: € < 1 and € = 1. In the first
case, the sequence of fixed points is bounded, and then s = sup{||(X,Y") —
(X7, Y|+t € R} and r = sup{||(Xfy, Yiiy) — (X5, V)| : € RY are
finite (recall that X;* = Y¥;* = A/(1 — ¢;)) and hence inequality (14) can be
rewritten as follows
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t
IFHXY) = (X5 YN < X Y) = (X YOI T an

n=1

+Zn< LY - X*Y*)Ilﬂaa

< sHan—}-rZHaJ, (24)

n=2j=n

The inequality (24) allows us to enunciate the following result whose proof
is similar to the proof of Theorem 4.

Theorem 10 Let F o, = (F}) be a non-autonomous cycle defined as in
(10). Assume that both a; € |a, a] and ¢ € |c, €] are randomly cho-
sen, with ¢ < 1. If the sequence Zn =9 H , Gj converges then any orbit,

Orb((X,Y), F1 o), is bounded for all (X,Y) € R2.

Notice that when € = 1 the sequence of fixed points is not bounded. In
Figure 17 we simulate this situation.

Conclusions

In a classical model of business cycle, we introduce parameters depending
on time, producing a non-autonomous linear second order difference equa-
tion, which is analyzed in the setting of non-autonomous discrete systems.
Roughly speaking, one could think on a linear model whose parameters are
pertubed is some way, for instance a random way.

The stability and limit set of the orbits of the non-autonomous system
associated to the difference equation are studied. When all the maps of the
system are contractive, then the system is stable, producing bounded orbits.
In other cases, some simulations shows that when we have expansive maps
in the system, unbounded orbits and some type of chaotic behaviour may
appear. It must be pointed out that the chaotic behaviour appear when both,
contractive and expansive maps are in the system infinitely many times.
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It is an interesting question to analyze these type of “chaotic orbits”, that is:
are they really chaotic in some theoretical sense?
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6 The Hicksian Model with Investment Floor
and Income Ceiling

Laura Gardini, Tonu Puu and Iryna Sushko

6.1 Introduction

As we saw in Chapter 3, Hicks (1950) modified the Samuelson (1939) linear
multiplier-accelerator model through introducing two constraints. The lin-
ear multiplier-accelerator model itself only has two options: Exponentially
explosive or damped motion. According to Hicks, only the explosive case is
interesting, as only this produces persistent motion endogenously, but it had
to be limited through two (linear) constraints for which Hicks gave factual
explanations.

When the cycle is in its depression phase it may happen that income de-
creases so fast that more capital can be dispensed with than what disappears
through depreciation, i.e., natural wear and aging. As a result, the linear ac-
celerator would predict not only negative investments (disinvestments), but
to an extent that implies active destruction of capital. To avoid this, Hicks
introduced his floor to disinvestment at the natural depreciation level.

When the cycle is in its prosperity phase, then it may happen that income
would grow at a pace which does not fit available resources. Hicks has a
discussion about what then happens, in terms of inflation, but he contended
himself with stating that (real) income could not grow faster than available
resources which put a ceiling on the income variable.

Hicks never formulated his final model with floor and ceiling mathe-
matically, it seems that this was eventually done by Rau (1974), where the
accelerator-generated investments were limited downwards through the nat-
ural depreciation floor, and where the income is limited upwards through the
ceiling, determined by available resources. Formally:

I; = max(a(Yi—1 — Yi—2), = I7);
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Ciy = cYi1;
)ft - min(Ct + It,Yc).

Eliminating C; and I, one has the single recurrence equation:

Y; = min(c¥;_1 + max(a(Yi—y — Yi—2),—17),Y*). (1)
It remains to say that Hicks’s original discussion included an exponential
growth in autonomous expenditures, combined with the bounds I¥ and Y©
growing at the same pace, but taking the bounds as constant and deleting
the autonomous expenditures, gives a more clear-cut version. It was this
that was originally analyzed in detail by Hommes (1991), and the notation
above comes from Hommes. However, there were some pieces missing in
his discussion, such as two-dimensional bifurcation diagrams, which makes
it motivated to make a new attack on this model.

6.2 Description of the Map

Letz;, :==Y;, y; := Y;_y, d := I and r := Y. Then the model given in
(1) can be rewritten as a two-dimensional piecewise linear continuous map
F:R? - R?:

I < T ) _ ( min(cz + max(a(z — y), —d),r) ), @)

Yy z

which depends on four real parameters: ¢ > 0,0 <c<1,d > 0,7 > 0.
The map F is given by three linear maps F3, i = 1, 2, 3, defined, respec-
tively, in three regions R; of the phase plane:

R <;>H<ic+a)m—ay); 3)

Ry = {(z,y):(1+c/a)z—r/a<y<z+dfa};

(G)-(7)

= {(z,y):y>z+d/a,z<(d+7)/c};

f (-

R; = R?/R/R,.
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Three half lines denoted LC_;, LC” ; and LC” ; are boundaries of the re-
gions R;:
LC_, : y=z+d/a, z < (r+d)/e,
LC', : y=(Q+c/a)z~r/a, z< (r+d)/c,
LC", : z=(r+d)/c,y> (r+d)/c+d/a.
Their images by F' are called critical lines:
LCy : y=(z+d)/c,z <,
LCy : z=ry<(r+d)/e
The image of LC”; by F is a point (r, (r + d)/c). A qualitative view of the
phase plane of the map F fora > 1,d < rand a > ¢2/(1 — ¢) is shown

in Fig.1 (the last inequality indicates that the intersection point of LC” ; and
L) is in the negative quadrant).

Figure 1: Critical lines of the map F for a > 1,d < r,a > c*/(1 — ¢).

As it was mentioned in the introduction, an analogous model has been
studied by Hommes (1991). Main conclusions of this paper hold also for the
map F, namely, for a > 1 the map F" has an attracting set C homeomorphic
to a circle and all the trajectories of F' (except for the fixed point) are attracted
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to this set. It was also proved that the dynamics of the map F on C are
either periodic or quasiperiodic. In our consideration we show how the set C
appears relating this to the center bifurcation described in detail in Chapter
2. We also discuss the structure of the two-dimensional bifurcation diagram
in the (@, c)-parameter plane.

First note that the maps F5 and F3 have simple dynamics: The eigen-
values of Fy are p1; = ¢, 0 < ¢ < 1, puy = 0, so that any initial point
(z0,y0) € R is mapped into a point of LCj, while the map F3 has two zero
eigenvalues, and any (xg, yo) € R is mapped into a point of the straight line
x = r. In such a way the whole phase plane is mapped in one step to the
straight line z = r and a cone D = {(z,y) :y < (z +d)/c, x < 7} (see
Fig.1). Thus, the map F is a noninvertible map of so-called (Zo, — Z1 — Zp)
type: Any point belonging to the critical lines or to the half line x = 7,
y > (r +d)/c, has infinitely many preimages, any inner point of D has one
preimage and any other point of the plane has no preimages.

The map F has a unique fixed point (z*,y*) = (0, 0) which is the fixed
point of the map F} (while the fixed points of the maps F» and F3 belong to
R;, thus, they are not fixed points for the map F'). The eigenvalues of the
Jacobian matrix of F} are

A2 =(a+ct/(a+c)?—4a)/2, 6)

so that for the parameter range considered the fixed point (z*, y*) is a node
if (c+a)? > 4a, and a focus if (c+a)? < 4a, being attracting for a < 1 and
repelling for @ > 1. Thus, for a < 1 the fixed point (z*,y*) is the unique
global attractor of the map F' (given that F; and F3 are contractions).

6.3 Center Bifurcation (a = 1)

At a = 1 the fixed point (z*,y*) loses stability with a pair of complex-
conjugate eigenvalues crossing the unit circle, that is the center bifurcation
occurs. First we describe the phase portrait of the map F' exactly at the
bifurcation value @ = 1. Analogous description is presented in Section 2.2
of Chapter 2 for a two-dimensional piecewise linear map defined by two
linear maps, which for the particular parameter value b = 0 are the maps
Fy and F given in (3) and (4). It is proved that for the parameter values
corresponding to the center bifurcation there exists an invariant region in the
phase plane, which either is a polygon bounded by a finite number of images
of a proper segment of the critical line, or the invariant region is bounded
by an ellipse and all the images of the critical line are tangent to this ellipse



6 The Hicksian Model with Investment Floor and Income Ceiling 183

(see Propositions 1 and 2 of Chapter 2). In the following we use these results
for the considered map F' specifying which critical lines are involved in the
construction of the invariant region.

The map F} at a = 1 is defined by a rotation matrix. Moreover, if

C=Cm/n = 2cos(2mrm/n) — 1, @)

then the fixed point (z*,y*) is locally a center with rotation number m/n,
so that any point in some neighborhood of (z*, y*) is periodic with rotation
number m/n, and all points of the same periodic orbit are located on an
invariant ellipse of the map F;. Note that from ¢ > 0 it follows that m/n <
1/6. Denote

c=c®1- (d/r)?. 8)

Proposition 1. Let a = 1, ¢ = ¢y, then in the phase space of the map
F there exists an invariant polygon P such that

® if Cpn < C* then P has n edges which are the generating segment
S1 € LC_; and its n — 1 images Si+1 = F1(S;) € LCi—1, 1 =
1,..,n—1;

® if Cyyn > C* then P has n edges which are the generating segment
Sy C LC'  and its n. — 1 images S}, = F1(S;) C LC]_y;

® if Cpy/n = C* then P has 2n edges which are the segments S; and S},
1=1,...,n.

Any initial point (xg,y0) € P is periodic with rotation number m/n,
while any (xo,yo) ¢ P is mapped in a finite number of steps into the bound-
ary of P.

The proof of the proposition is similar to the one presented in Section
2.2 of Chapter 2. The value ¢* is obtained from the condition of an invariant
ellipse of F to be tangent to both critical lines LC—; and LC” ;. It can be
shown that for ¢, < c* only the upper boundary LC'_; is involved in the
construction of the invariant region, while if ¢,,/, > ¢* we have to iterate
the generating segment of the lower boundary LC” ; to get the boundary
of the invariant region. An example