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Preface  

1 Multiagent Engineering: A New Software Construction 
Paradigm

Multiagent systems have a long academic tradition. They have their roots 
in distributed problem solving in Artificial Intelligence (AI) from where 
they emerged in the mid-eighties as a distinctive discipline. Research in 
multiagent systems owes much to the work of Rosenschein on rationality 
and autonomy of intelligent agents, the European MAAMAW workshop 
series, and last but not least the famous readings of Bond & Gasser (1988) 
and Jacques Ferber´s book on multiagent systems (1991). It gained further 
by a public discussion via the Distributed AI mailing list in summer 1991, 
when the pioneers of the field compared in much detail the concepts of 
distributed problem solvers to multiagent systems. Within only five years, 
a new exciting field of research had been established. 

Now, 15 years later, the field has matured to a degree that allows the re-
sults of academic research to be passed on to practical use and commercial 
exploitation. This potential coincides with a need for much larger flexibil-
ity of our IT infrastructure in light of its highly distributed character and 
extreme complexity, but also the global character of the business processes 
and the large number of business partners due to outsourcing and speciali-
zation. Many experts claim that multiagent systems are the right software 
technology for the needed IT infrastructure at the right time. 

The appeal has much to do with the broad perspectives of multiagent 
systems research.  

1. The sociological perspective considers agents as members of a collec-
tion of agents (groups) of a more or less formally established agent or-
ganization, or of an agent society. In that perspective, agents have ac-
quaintances, exhibit social behaviors, and establish social relationships. 
Important themes are collective action, joint intentions, and group be-
haviors. 

2. The AI perspective is concerned with intelligent behavior on the individ-
ual and on the collective level. It studies strategies for collective prob-
lem solving, and is particularly interested in cooperative planning algo-
rithms, negotiation protocols, distributed representations of knowledge, 
and collective forms of temporal and spatial reasoning. All these are re-
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quired in physically distributed systems, where the nodes exhibit to a 
substantial degree locally autonomous behavior. 

3. The economic perspective claims that bounded rationality, limited 
physical resources, and incomplete knowledge require agents to behave 
“economically rational.” That is, the agents need goals and objectives, 
they need appropriate decision-making rules, they may display strategic 
behaviors, and they must be capable of coping both with intra-agent 
(e.g., role) conflicts, and with inter-agent conflicts. Important contribu-
tions come from game theory and decision theory. 

4. Finally, the application perspective developed, often experimentally, ap-
plications in a wide range of fields. Examples can be found in mechani-
cal engineering, robotics, production planning and control, in business, 
the natural sciences (e.g., simulation of ant colonies, of fish populations, 
etc.), and in the social sciences. 

Once we start to exploit the field of multiagent systems in the practical 
world we pass from research to engineering. This book – Multiagent Engi-
neering: Theory and Applications in Enterprises – intends to support the 
passage by focusing on the technology of multiagent systems as a power-
ful, productive tool in the hands of software engineers satisfying extremely 
complex, dynamic new applications in enterprises.  

This book, thus, concentrates on a fifth, the engineering perspective.
After introducing the basic concepts of agent technology it gives an over-
view of two powerful multiagent systems in promising application sce-
narios, production logistics and health care. It then turns to the technical 
details of multiagent technology all the way from (early) requirements en-
gineering to system testing. The evaluation section summarizes the main 
results and presents new and interesting insights from a legal perspective, 
which, of course, is highly relevant if enterprises decide to employ multi-
agent technology in order to improve their competitiveness through ex-
tremely adaptive new enterprise information systems architectures. 

2 Who Should Read This Book, and Why? 

Why would we claim that multiagent systems satisfy extremely complex, 
dynamic new applications in enterprises? The thinking goes that the vari-
ous aforementioned perspectives in their combination make multiagent 
technology – and by extension the software systems relying on them – ex-
tremely flexible. Then when would we need flexibility? Certainly when the 
applications and their environments are highly dynamic, i.e. change on 
short notice and in many and often unforeseen ways. Multiagent systems 
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should be capable of quickly adapting the behavior of the local subsystems 
(agents) as well as of the overall (multiagent) system, of exchanging coop-
eration protocols, of integrating new agents or withdrawing older agents. 

To turn promise into reality is foremost an engineering task. Engineer-
ing must take place on two levels: The individual agent as the basic entity 
and the multiagent system as the collaborative effort of several agents gov-
erned by an intelligent interplay between these two levels. And since agent 
technology goes beyond traditional object-oriented or component-oriented 
software, it raises new challenges for the software engineer. 

First of all, then, the book has been written for software engineers. They 
will find answers to questions such as: What are the relevant new features 
of this new tool, compared with other recent software technologies like 
object orientation and component technology? Which software develop-
ment challenges can and should be addressed by it? How shall the software 
development process be organized? What are the concrete benefits and are 
they really worth the risks coming with each new technology? What are 
the “hidden costs” of the technology that need to be considered? 

The last two questions are not merely technical. Rather, they express 
concerns of business managers as well. They must ultimately decide how 
well multiagent technology can contribute to their business objectives, 
whether their IT systems must indeed cope with rapidly changing produc-
tion technologies, enterprise processes, supply chains, business models, 
markets, and customer demands, and whether multiagent technology 
seems to be a solution superior to today’s enterprise software.  

The book is thus a unique source of knowledge about multiagent engi-
neering, starting from its basics and then considering all phases in the 
software lifecycle from early requirements engineering through system de-
sign and implementation to testing and illustrating these in the framework 
of two applications with a high degree of dynamics.  

3 A Reader’s Guide 

The book has to keep in mind that it addresses a diverse readership ranging 
from business managers to software engineers and that even software en-
gineers are a heterogeneous group exhibiting different levels of knowledge 
in software technology, artificial intelligence, and multiagent systems.  

The book starts with a management summary that gives a brief over-
view of the most important issues and their solutions. As the title suggests, 
the chapter intends to put the business manager in a position to decide 
whether the investment in agent technology is worth the desired benefits 



VIII Preface 

and which issues deserve closer inspection by the IT specialists in the en-
terprise. Part I addresses both the business manager and the software 
engineer new to agent technology. It gives a concise introduction to 
multiagent technology and lays the foundation for the remainder of the 
book. In particular, its last chapter presents operational definitions for the 
different types of flexibility of multiagent systems. Parts II and III, 
Agent.Enterprise and Agent.Hospital respectively, have been written for 
readers primarily interested in the application of multiagent technology in 
important business domains. They illustrate to the software engineer how 
one builds large multiagent systems and at the same time demonstrate to 
the business manager the benefits of agent technology or, to some degree, 
how difficult it sometimes can be to be absolutely sure when one 
technology is superior to another one. Each part starts with an overview 
and is followed by further chapters that give more details on the design, 
implementation, and evaluation of the multiagent system. Since both 
systems take a fairly strict supply chain/logistics perspective, their designs 
can easily be compared. It is thus recommended that readers primarily 
interested in manufacturing information systems focus on Part II, but they 
may also gain useful insights from Part III and vice versa for readers 
interested in new approaches to health care information systems. Part IV 
concerns itself with the methodical underpinning for engineering 
multiagent systems software. Its readers should primarily be software 
architects, software designers, and software engineers. This part should be 
understood even without knowing the details in Parts II and III. On the 
other hand, after having gone through Part IV it may well be worth the 
reader’s effort to go through Parts II and III as illustrative examples for 
applying the methods, protocols, architectures, and tools introduced in Part 
IV. Finally, Part V evaluates multiagent technology and thus presents 
interesting new insights from different evaluation perspectives. The reader 
of this part should be familiar with the basics of multiagent technology as 
gained from Part I and Chapters II.1 and III.1. 
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1 Agent Technology 

Originally agent technology was a social systems technology, with roots in 
distributed artificial intelligence. Social organizations are known to be able 
to tolerate many unexpected situations and, given enough time, to adapt to 
even dramatic changes in their environment. They do so by division of 
competences and a balance between individual and collective intelligence. 
These are the properties that made agents attractive to software engineer-
ing. Thus, today’s agent technology is also a software systems technology 
geared to deal with information systems that are highly distributed, with 
the components only loosely connected. 

In a nutshell, then, agent technology is a marriage between software en-
gineering and social engineering. Agent technology is the basis of an IT in-
frastructure that flexibly follows the changes in a business rather than 
slowing or inhibiting them, particularly if the application environment is 
highly dynamic. 

Such a technology does not come cheaply and as a latecomer to the 
business world it carries not only its own promises but also its own risks. 
To the engineer, though, risks constitute the challenges that are to be over-
come in order to realize the promises. This book takes the attitude of the 
engineer. After introducing the basic concepts underlying agent technology 
it gives an overview of two promising application scenarios, one in pro-
duction logistics and the second in health care. It then turns to the technical 
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challenges before closing with further issues that have a bearing on the ap-
plication of the technology. In the remainder we summarize the main re-
sults and insights of the various sections. 

2 What Agents Are and What They Are Good for 

Flexibility of an IT infrastructure that can cope with the dynamics of busi-
ness processes is a vague concept. Vendors of enterprise software will ar-
gue with good reason that their systems have been designed with just that 
in mind. But there is a limit: When the changes in the processes become 
too drastic or too numerous, part of the software will have to change as 
well. 

The book claims that with agent software the limit can be pushed further 
afar. But how does agent software achieve its flexibility? It does so on two 
levels: the individual agent as the basic entity, and the multiagent system 
as the collaborative effort of several agents. 

The individual agent can be characterized by eight properties altogether. 
The first four are essential for any piece of software to qualify as an agent. 

1. A software agent is a computer system that is situated in some environ-
ment. As such, agents do not dissolve once a task has been finished, 
rather the interaction with the environment is an ongoing, non-termi-
nating one. 

2. A software agent offers a useful service. Its behavior can only be ob-
served by its external actions, its internal processes remain encapsu-
lated. Thus, an agent has all the traits of a conventional component or 
object software. 

3. A software agent is capable of autonomous action in its environment in 
order to meet its design objectives, i.e. to provide its service. The 
agent’s functionality does not directly depend on the properties or states 
of other entities within the system the agent is part of it has the sole 
control over the activation of its service. 

4. The autonomy of a software agent is guided by its own goals, with goal 
deliberation and means-end assessment as parts of the overall decision 
process of practical reasoning. Hence, the non-deterministic, seemingly 
chaotic latitude an agent has is tempered by the agent’s own goals. 

Properties 3 and 4 set software agents apart from object-oriented or 
component-oriented software. In essence, goals are what makes agent tick. 
These goals are imposed from outside, for example by the enterprise 
served by the IT infrastructure. An agent is authorized by some other en-
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tity, called its principal, to take actions on its behalf. The agent acts as the 
principal’s representative. 

However, the four properties do not yet relate to flexibility. Indeed, the 
need for flexibility arises when the environment appears non-deterministic 
as well. We refer to a software agent that is capable of operating in a non-
deterministic environment as an intelligent software agent, and describe it 
by several additional properties. 

1. An intelligent software agent is reactive, that is, it continuously per-
ceives its environment and responds in a timely manner to changes that 
occur.

2. An intelligent software agent achieves an effective balance between 
goal-directed and reactive behavior. That is, timely response must be 
seen in the light of autonomy: The environment cannot dictate to the 
agent when and how to react. 

3. An intelligent software agent may be proactive, that is, take the initia-
tive in pursuance of its goals. 

4. An intelligent software agent may have to possess social ability, that is, 
it is capable of interacting with other agents to provide its service. 

Agents are just stepping stones on the way to complex, flexible services. 
Multiagent systems (MAS) are defined as consisting of heterogeneous 
agents that are generally self-motivated and act to fulfill internal goals, but 
may also share tasks with others. There is no global or centralized control 
mechanism. Agents have to reason to co-ordinate their actions, plans, and 
knowledge. Agents, in these systems, can cope with situations in a flexible 
way involving inconsistent knowledge about the environment (world, other 
agents), partial domain representation, and changing, overlapping plans re-
sulting from the need to interact with other agents. The properties of MAS 
appear to be almost infinite regarding the number of agents, their flexibil-
ity, their abilities, the ways of interaction, the initial state of the system, 
etc.

One may say that agents must coalesce into a social organization to le-
verage their full potential. This is the reason why even a technical view of 
multiagent systems has an organizational perspective and makes use of so-
cial models. Central to these models is the interaction and the protocol that 
it follows, such as negotiations, auctions, blackboards. 

Clearly then, agent software is complex software. The system-level be-
havior often cannot be predicted analytically from the description of indi-
vidual agents. Hence, one would like to have a kind of operational crite-
rion that tells when to turn to agent technology. Suppose we define techni-
cal flexibility as the set of options that are available to the software system 
to react to demands from the environment. We claim that agent software 
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should be considered whenever the range of observed environmental 
situations (the problem space) and the range of options to respond to them 
(the solution space) is so large as to elude enumeration by conventional 
means. 

3 Application I: Agent.Enterprise 

One of the areas where flexibility is essential to survival in a highly com-
petitive world is manufacturing logistics. The manufacturing domain, once 
entirely restricted to intra-organizational processes, today is dominated by 
complex networks of actors across enterprise boundaries. Mass customiza-
tion, short development cycles, concentration on core competencies, and 
increasing customer orientation pose additional challenges. Production 
technology, already well versed in centralized production planning, has 
added strategies, methods and tools to modify a production plan on short 
notice. Consequently, manufacturing logistics offer an ideal environment 
to study whether agent technology can beat the already proven approaches 
when it comes to even higher flexibility at the same or even lesser cost. 

To pursue the study both from a technological and organizational per-
spective we developed a scenario and platform called Agent.Enterprise. 
Agent.Enterprise integrates intra-organizational value chains, specifically 
the underlying production planning and control, into inter-organizational 
supply chains. Flexibility is needed both within the individual enterprise 
and across the enterprises. Hence, a multiagent approach should apply to 
both. More specifically, if intra-organizational value chains are supported 
by multiagent systems, the inter-organizational supply chains resulting 
from interacting local value chains result in a combination of MAS into 
what could be called a multi-multiagent system (MMAS). 

Manufacturing is a wide field. We select five issues, each with its own 
specific scenario, and study MAS support on both the information logistics 
and the material transformation level. 

In a flexible production environment the separation and sequencing of 
process planning, production control and scheduling can no longer be 
maintained. Rather they should be interleaved so that a fast response is 
possible to sudden customer requirements and trouble situations, such as 
broken tools, machine breakdowns, or missing devices, in a manufacturing 
environment. We demonstrate with around 2,000 experiments that a multi-
agent system with a three-layer architecture, capability management, and 
most importantly, internal and external conflict management can indeed 
add considerable flexibility over and above traditional approaches. 
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Centralized planning assumes that nothing can go wrong. But things can 
go wrong, surprises may occur, high-priority orders must be processed, 
and machines may break down. Deviations from the norm are usually 
taken care of in the job shop. The job shop should thus be an ideal target 
for agent technology. We introduce a priority-based decision algorithm for 
Job-Shop scheduling for the solution of a mixed-model sequencing prob-
lem in a multiagent system. By benchmarking the solution in more than 
1,000 simulation runs and comparing the results to a centralized solution 
of the same problem based on an optimal OR algorithm for the undisturbed 
case it was possible to demonstrate the superiority of the multiagent sys-
tem solution in the case of production disruptions and close to equal per-
formance when everything runs normal. Indeed, guidelines for the success-
ful application of multiagent systems in production planning and control 
can be developed. 

One of the most complex manufacturing domains is semiconductor wa-
fer fabrication and, hence, should be an ideal candidate for a multiagent 
solution. We examined whether a hierarchically organized multiagent sys-
tem for production control in semiconductor wafer fabrication facilities 
would yield significant benefits. Among the three-layer hierarchy the top 
layer takes care of the decisions concerning top priority due dates of the 
lots. The middle layer manages the detailed lot schedules by start and end 
dates of the lots where an agent is assigned to each work area. The base 
layer assigns lots to machines based on the middle-layer schedules. In a 
50-day simulation using three simulation models the agent-based system 
produced the same solution quality as a centralized load-balancing heuris-
tic. The result is particularly significant because it assumed that no ma-
chines break down. One would expect the agent approach to be superior if 
breakdowns occur. 

While the first three scenarios deal with the individual enterprise a 
fourth study examines how software agents can reduce the negative effects 
of disruptive events across inter-organizational supply chains. An event 
management system based on software agents monitors the supply chain 
and identifies potential disruptive events in order to improve the robust-
ness against time delays and defective events. Extensive simulations dem-
onstrate that it is possible to achieve reductions in cost and cycle times in 
multi-level supply chains using agent technology. 

In a final setting we demonstrate how to plan, on an inter-organizational 
level, a multi-multiagent system so that one gains the full benefits of de-
centralized supply chains. The required global planning function is based 
on a decentralized negotiation protocol for cooperative economic sched-
uling. Cooperation can only function if the participants trust each other. 
Therefore, the individual nodes in the net maintain trust accounts to protect 
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themselves against exploitation while allowing the local solution to tempo-
rarily deviate from the optimum and still proceed towards a globally opti-
mal solution. It can be shown that the global welfare could be increased by 
a search strategy similar to altruistic Simulated Annealing without adverse 
effects on the global solution quality. 

Agent.Enterprise integrates the five aforementioned scenarios. It was 
implemented as a network of multiagent systems, Agent.Enterprise Net-
Demo, across several universities. Agent.Enterprise does indeed indicate 
the potential of a decentralized, multiagent system-based solution for flexi-
ble supply chain management. 

4 Application II: Agent.Hospital 

Health care services seem a most natural application of multiagent sys-
tems. Where else are events less predictable and the needs for flexibility 
more pronounced? Hence, health care services look like an ideal scenario 
to demonstrate the merits of agent technology. 

But what exactly would be gained by employing agents? To study the 
issue we model the services by orienting them along the individual patient. 
As he or she receives one treatment after another, what evolves could be 
called a healthcare supply chain. No two chains are completely alike be-
cause each relates directly to the patient’s individual disease(s) or in-
jury(ies), and his or her personal situation. A chain may commence with an 
emergency service called to a car accident, or a practitioner being visited 
by a new patient. In serious cases, it may involve one or more hospitals 
and even external experts providing specialized competences for diagnosis, 
surgery, and other forms of patient treatment. 

The problem is compounded and the need for flexibility multiplied be-
cause a large, say, 1,000 bed hospital may have to manage 1,000 different 
supply chains at the same time. Each of these 1,000 supply chains occupies 
a possibly large number of persons each with his or her individual con-
texts, which often display highly dynamic behaviors. Each supply chain 
competes for typically short resources (e.g., emergency services in a town, 
doctors and surgery rooms at a hospital), at the same time interacting with 
other supply chains through synergistic, antagonistic, causal and temporal 
relationships, etc. The high degree of autonomy of the most important ac-
tors – patients, and doctors – increases the overall complexity further, of-
ten making it impossible to establish any centralized form of supply chain 
planning, monitoring, and control. 
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To design, implement and apply the supply chain model, we developed 
Agent.Hospital, an open platform that integrates as its ‘members’ multi-
agent systems that were developed independently and that provide services 
for diagnostic, therapeutic, managerial and administrative processes in 
health care institutions, respectively. It provides platform services (e.g., di-
rectory services), architectural patterns (e.g., gateway implementations), 
and tools (e.g., ontology management) with the explicit objective of inte-
grating already existing multiagent systems that may belong to different 
enterprises (their ‘owners’). Particular attention has being paid to preserv-
ing the technical and organizational autonomy of new Agent.Hospital 
members. I.e., the integration into Agent.Hospital does not (at least not 
substantially) affect the internal definitions, structures, and behaviors of 
the respective multiagent system nor does it affect the availability, produc-
tion, and delivery of any of its services to its local owner institution.  

Once technically integrated, cooperation between the members of 
Agent.Hospital may emerge. The cooperation is supported through exist-
ing agent communication languages, specific interaction protocols for 
controlling agent collaboration and maintaining up-to-date global knowl-
edge and an ontology repository including reasoning capabilities for the 
semantically correct use of formally represented knowledge. 

In health care, humans care for humans. Thus, at the center of the MAS 
are artificial software agents as representatives of their human principals.
In case of centralized operating theatres in large hospitals, human princi-
pals – e.g., surgeons, anesthetists, and operating room nurses affiliated 
with different organizational units – independently delegate scheduling 
tasks to their agents. Based upon formal models of the preferences, and 
constraints of their principals, the agents then cooperate on developing an 
appropriate solution for a set of interacting scheduling problems. The re-
sult is a cooperative solution, which simultaneously optimizes ‘social wel-
fare’ and the use of medical and organizational resources. 

Coordination requires effective information logistics, in our case agent-
based information logistics. This involves the management of information 
flows, information storage, information access, information use (including 
information interpretation), and information manipulation. Typically, im-
mediate treatment starts with an almost empty array of information which 
fills continuously over time by examinations conducted and decisions 
taken by organizationally and geographically distributed departments. In-
formation logistics is the basis for, among others agent-based patient 
scheduling. It focuses on the efficient allocation of scarce resources in 
hospitals to the treatments and examinations of different patients. Particu-
lar attention has been paid to the most important reasons for coordination 
complexity in hospitals: stochastic patient arrivals; stochastic durations of 
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patient examinations and treatments; many doctors and nurses involved 
due to medical specialization as well as work shifts of hospital employees; 
patient transportation depending on the type of disease or injury, patient 
constitution, status, and treatment; complications and emergencies; etc. 
The challenge is to coordinate a high number of parallel logistical activi-
ties in such a way that all necessary conditions are appropriately satisfied 
and all medical, technical, financial, and administrative constraints are 
adequately considered. In particular we choose shift scheduling, appoint-
ment scheduling, and surgery team scheduling as relevant examples and 
include a detailed introduction into the SeSAM hospital simulation toolkit 
and a comprehensive discussion of the obtained simulation results. 

Diagnosis and therapy require documentation at all stages of a patient’s 
treatment. For this we suggest the approach of active, medical documents
as a special solution to information logistics in agent-based systems. We 
propose an agent-based architecture of medical documents in order to draw 
on the benefits of inherent distribution, local autonomy, dynamic contexts, 
etc.

In health care, many of the agents have humans as their principals and 
humans tend to move around. This raises additional questions. How can all 
the mobile ‘resources’, e.g., patients, hospital staff, etc. be kept informed 
about decisions and other types of information relevant to them which 
emerge from processes at other geographical locations? How can relevant 
information from local sources be integrated into the global picture and, of 
course, how can this information continuously being kept up to date? And 
how can the human movements and activities be controlled and monitored 
in order to implement new scheduling decisions within acceptable time 
spans? The technical answer is a solution based on mobile devices and 
their connection to software agents, with each agent representing a par-
ticular human principal within a health care supply chain. 

The section on Agent.Hospital attempts to demonstrate the great bene-
fits that agent technology offers to scenarios where complexity, physically 
distributed autonomy, and dynamics scale up extensively.  

5 Agent Engineering 

As defined in Section 2, multiagent systems (MAS) are distributed, dy-
namic and open software systems that consist of heterogeneous compo-
nents that are generally self-motivated and act both to fulfill internal goals 
and share tasks with others. Because there is no centralized control mecha-
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nism, agents have to reason to co-ordinate their actions, plans, and knowl-
edge. 

Consequently, traditional or modern software engineering methods and 
techniques, while important, do not suffice. Rather, agent-oriented soft-
ware engineering (AOSE) should combine them with knowledge engi-
neering techniques. Software engineering can contribute process models 
such as the Rational Unified Process with its emphasis on feedback,
model-driven architectures, or rapid prototyping and agile development 
approaches such as Extreme Programming. Knowledge engineering can 
add Knowledge Analysis and Design Support (KADS) that integrates 
knowledge, relations between components, and a model-building process 
that includes organizational, application, task, expertise, cooperation, con-
ceptual, and design models. 

A number of AOSE methodologies have emerged in recent years. All 
tend to be strong on certain aspects and weak on others. To choose among 
them it seems useful to establish some kind of benchmark against which to 
judge them. To this end we discuss seven process steps that should some-
how become part of any AOSE method: requirements engineering, inter-
action design, architectural design, semantics specification, dependability 
specification, tool and platform selection, and validation. 

Requirements engineering should reflect the peculiarities of agent tech-
nology. In a nutshell, one must account for the desired flexibility, with the 
agent properties of proactivity, sociability, autonomy and reactivity form-
ing the building blocks. Information about goals is required to implement 
proactive or reactive behavior. The capability to communicate, coordinate 
and cooperate with other agents in an organizational setting determines a 
social context. The aspect most resistant to capture by present-day re-
quirements engineering is the notion of autonomy. Hence, the modern ten-
dency is to start from goals as the fundamental concept. Such a process is 
referred to as Goal-Oriented Requirements Engineering (GORE). Goals 
are the core concept in terms of modeling the stakeholders’ interests and 
concerns, organizational goals, reasons for the later system to exist or hints 
on the alternatives for the subsequent development decisions. 

A requirements specification must be turned into a working software 
system. The first objective is to isolate the various issues that determine 
the usefulness to the environment and localize them within specific soft-
ware parts. By employing a particular architectural pattern a particular 
structural organization schema for software systems can be expressed. 
Agent software patterns are needed for both the architectural design of the 
individual agent and the interaction design of the multiagent system. For 
the individual agent this book recommends a layered architecture that as-
signs the agent properties to five levels of abstraction altogether. The in-
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teraction design is governed by the notion of conversation between agents 
as a specialized form of asynchronous message exchange. Message soft-
ware is known to follow a layers pattern referred to as a protocol stack, 
with the lowest layer representing the physical transport and the remainder 
realized as part of the agents themselves. Merging the layered architecture 
of the individual agent and the layered protocol stack is then a relatively 
straightforward affair. The approach can be kept general enough to result 
in a reference architecture that covers all agents no matter what their ser-
vice is and where only certain details must still be filled in for a concrete 
agent. 

The reference architecture still leaves open the general philosophy gov-
erning agent behavior. To lend precision to the behavior and interaction, 
these should be formalized in a framework of semantics. Such a formal 
specification should pursue three objectives: external use, e.g., a logical 
language to specify the agent’s behavior; internal use to implement the 
agent’s reasoning processes; and interaction among the agents. The book 
introduces a number of formalisms together with a characterization of 
what to expect from them. Starting from an abstract view on the founda-
tions of semantics defined as meaning and reference, communication as-
pects and foundation of logics are discussed, followed by a description of 
interaction and reasoning in a dynamic context via temporal logic, situa-
tion calculus, non-monotonic reasoning, belief revision and uncertainty in-
ference due to incompleteness and incorrectness in the domain model. 
They may be applied as part of the most popular formalization of rational 
agency, the belief-desire-intention (BDI) model. As a logical basis for in-
teraction among agents, ontologies are introduced and the integration of 
heterogeneous ontologies is discussed. 

An environment should be able to justifiably place reliance on the ser-
vices of a multiagent system, i.e. the system should appear dependable. It 
is well known that dependability should be designed right into a system 
rather than added as an afterthought. Particularly due to the high degree of 
distribution and the autonomy of agents, multiagent systems pose numer-
ous and often novel challenges but also offer new opportunities to deal 
with dependability. Thereby, a distinction should be made between unin-
tentional and intentional failures. Processing of unintentional failures 
should follow a dependability model. We introduce a model for endoge-
nous disturbances that distinguishes between internal faults that have 
causes internal to the agent and external faults that may be due either to in-
frastructure failures or to peer failures, along with various dependability 
techniques such as transactional approaches, belief management, or trust 
and reputation. This model can be related to the reference architecture for 
agents such that for each layer one can identify the faults originating from 
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it, determine which faults can be taken care of within the layer and which 
ones are to be passed upwards to the next higher layer where the principle 
repeats itself. 

A technology becomes widely accepted only if it can economically be 
developed and deployed. The maturity of a technology is reflected in its 
engineering frameworks and tools, runtime platforms, and the industrial 
standards that underlie them. And indeed, several exist for multiagent 
systems. Moreover, it is possible to associate them with the layers of the 
reference architecture so that one obtains good indications on what kind of 
platform addresses which agent issues. On the lower layers middleware 
platforms provide a solid basis for developing open, interoperable agent 
systems, as they primarily tackle interoperability, agent management and 
communication means. Best suited to the middle layers are reasoning plat-
forms that employ an internal reasoning architecture for systematically de-
ducing an agent’s actions from some internal world knowledge. On the 
uppermost layer social platforms address the organizational architecture 
and its cooperation and coordination mechanisms. Standards that apply to 
the middleware platforms in particular are provided by the specifications 
of the Foundation for Intelligent Physical Agents (FIPA). They address in 
detail all building blocks required for an abstract agent platform architec-
ture. Standards like RDF and OWL capture the semantics of symbolic rep-
resentations for ontology descriptions. 

Agent software is no different from other software systems when it 
comes to assuring the quality of the product: Verification and validation
are essential aspects in the development life cycle. Verifying agent soft-
ware is particularly difficult due to the combination of complex semantics, 
goals, non-determinism, concurrency, and distribution. We should admit 
that to this day verification and validation remain a challenge to the agent 
system community. There is as yet no standard for verification and as-
sessing of agent technologies available for ensuring adequate quality of a 
system. Fortunately, a mix of methods from software engineering, knowl-
edge engineering and artificial intelligence and their more or less artful 
combination seem to work reasonably well. They can be organized into 
five approaches (in order of increasing strength of proof but also computa-
tional complexity): testing, run-time monitoring, static analysis, model 
checking, and theorem proving. Still, they require expertise and best-prac-
tice know-how on the part of the individual developers to design, execute, 
and evaluate complex evaluation procedures. 
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6 Evaluation 

At the end of the day we have to answer the question of what the real 
benefits and risks of agent technology are and how these can be evaluated 
with reliable results. This is a particularly difficult question since a direct 
comparison of a multiagent-based solution against any other convention-
ally designed enterprise software system is often impossible, or at least 
extremely expensive and time-consuming. At the same time, however, this 
problem is by itself an important innovation barrier preventing enterprises 
from reinventing their technologies as a basis of future competitiveness. 

The last section of this book thus tackles the evaluation question from 
three independent perspectives: benchmarking, simulation systems, and le-
gal concerns. 

Before developers and users may utilize a new technology such as mul-
tiagent systems, several questions need to be answered. Under what cir-
cumstances, for example, might the use of a multiagent system be appro-
priate or superior to that of other systems? The evaluation and bench-
marking of the two (multi-)multiagent systems Agent.Hospital and 
Agent.Enterprise – their system objects, system components, and system 
functionalities – against typical real world requirements demonstrates that 
the agent approach is indeed appropriate and of practical relevance.  

While Agent.Hospital and Agent.Enterprise are the result of intensive 
collaboration between scientists and potential users, a large-scale transfer 
of the results to the real world would have been too risky. Hence, one 
could view both as multiagent-based simulation systems. Seen from this 
viewpoint the two scenarios provide an interesting opportunity to evaluate 
multiagent-based simulation technology against other types of simulation 
technologies, and to study, based upon these two complex systems, in full 
detail the particular promises of agent technology for the design and per-
formance of simulation systems. 

Agent-based simulation or multiagent simulation applies the concept of 
multiagent systems to simulation. The corresponding model consists of 
simulated agents and a simulated environment. Simulated agents may rep-
resent concrete individuals or abstract active entities of an original system. 
The agents act and interact with their environment according to their be-
havior and emergent phenomena, and dynamic interdependencies of agents 
can be examined. The evaluation clearly demonstrates that the most im-
portant strengths of agent technology, i.e. goal-driven behavior, local 
awareness and autonomy, social abilities, intelligent interplay of active vs. 
reactive behaviors, and high flexibility, also significantly enhance the ca-
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pabilities of complex, distributed simulation systems for highly dynamic 
applications. 

If intelligent agents are substituted for human decision makers, who 
then is to be held legally responsible for the results? Apparently, the study 
of multiagent systems remains incomplete unless we also consider the le-
gal issues related to software agents (and collections of them) if these 
comprise an enterprise software system or are part of it. The discussion of 
these issues reveals a need to control the agents’ autonomy by legal regu-
lations, either by interpreting existing laws or by suggesting new regula-
tions. Legal issues constitute an interesting new perspective: While they 
introduce hardly any new challenges to software design, maintenance, or 
control, they can no longer be ignored if multiagent systems are to be use-
ful.



Part I 

What Agents Are and What They Are Good For 



1 Agents 

Peter C. Lockemann 
Universität Karlsruhe (TH), Institut für Programmstrukturen und 
Datenorganisation, lockemann@ipd.uka.de 

Abstract. Agents are many things to many people. This is not a sound basis for 
engineering software agents or multiagent systems. Since this book deals with en-
gineering such systems, the first thing to do is to agree on the notion of software 
agent that is to be used throughout the book. The approach will be in terms of the 
qualitative properties that are deemed essential or at least important. 

1.1 Introduction 

Flexibility – the capability to adapt quickly to a changing environment – is 
one of the foremost challenges to today’s business processes. In the intro-
ductory Part I we claim that the technology of software agents is one of 
those software technologies that hold particular promise for an IT infra-
structure that enhances rather than inhibits the rapid response of business 
processes to newly arising requirements. 

Where could these requirements come from? Basically from a world-
wide competition where market share is not only determined by cost con-
siderations but as much or even more by novel product and service ideas, 
functions and qualities that serve the actual or just perceived needs of a 
large customer base better than those of the competitors, or by the supply 
of products and services at a shorter time than the competition, or by better 
differentiation between the needs and wishes of individual customers, or 
by more agility in utilizing new technologies and more intelligent service 
and production processes than those at competing companies. 

But agent technology is not an easy and cheap technology. And it com-
petes with other software technologies and organizational structures that 
offer a good measure of flexibility. Hence, a second claim of this book is 
that agents are superior to other technologies and organizations when the 
environmental situations are highly complex. As a working definition, we 
call a situation complex if there is no practical way to enumerate both the 
potential problem space and the potential solution space. 
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Nor is agent technology a new technology. Even though, it is not yet 
widely employed in practice. Therefore, a first step in this book should be 
to introduce the concept of software agent in some detail and argue why 
systems of software agents (multiagent systems) have the potential for 
adding the necessary flexibility to business processes that operate in a 
complex world. 

1.2 Metaphoric Notion of Agent 

To use a colloquial term for a technical artifact is dangerous because it 
may lead to misleading associations and conclusions. On the other hand, if 
one explicitly employs the term as a metaphor it makes it easier for those 
that ultimately decide on the investment into a certain technology to take 
an educated decision. 

In fact, in the standard dictionaries one finds three clearly distinctive 
definitions of “agent”: 

1. a person who does something or instigates some activity; 
2. one who acts for or in the place of another and by the other’s authority; 
3. something that produces or is capable of producing an effect. 

The third definition seems to have the least relevance for us, if we inter-
pret “agent” as a kind of catalyst, as in “cleansing agent”. The first defini-
tion often has a very narrow interpretation along spy novels like “secret 
agent” or “agent provocateur”. 

Hence, the second definition seems to be the most natural, particularly if 
its combined with the first. Take the travel agent, the insurance agent, the 
real-estate agent, whom we charge to act on our behalf, and whom we ex-
pect to do something for us. We shall use the term “agent” in that sense as 
a metaphor: An agent is an entity capable of action, and it takes its actions 
on behalf of another entity. 

Why would we turn to an agent? Because it offers a range of potential 
actions that we deem useful to our present purpose. Or in modern termi-
nology, because the agent offers a useful service, where a service is a set 
of obligations – functions and associated qualities – the agent is willing to 
undergo. Obviously, obligations can only be met if the agent restricts itself 
to a certain domain. The travel agent offers a range of travel functions, 
like seat reservations, hotel reservations, tour bookings, travel insurance 
(which it may in turn secure from another agent, an insurance agent), or 
simply travel information. Some may be specialized further to, e.g., busi-
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ness travel, leisure travel, vacations, adventure trips, or airline travel, or 
South East Asian vacations. 

How do we get the agent to work for us? Usually by asking the agent to 
perform a certain task, i.e., by requesting one of its functions. Typical of 
services, the asking customer has less interest in how the agent proceeds to 
dispose of its obligation but more so in the final result. Nor has the agent 
an interest to reveal in all its details the process by which it produces the 
result. Therefore: An agent’s behavior is solely judged by the quality of its 
results.

In other words, we give the agent a certain degree of latitude in per-
forming a task. How much latitude it needs, and how well it will use it will 
depend on the agent’s own goals. Such goals may be customer satisfaction, 
but also earning a reasonable return. Some of its goals may be in conflict, 
so it has to choose among them or at least to rank them. 

How wide the latitude is has something to do with the complexity of the 
situation the task has to support. Take as one extreme that you know ex-
actly which train to take and where to change trains, but you do not want 
to go through the hassle of finding the best fare, to order the tickets and 
make seat reservations. That does not leave that much latitude on the part 
of the agent, and does not require that much expertise. On the other hand, 
suppose that as a European you have heard about the great experience of 
skiing in the Rockies and you want to spend a week there, have at least 
200 kilometers of runs, and pay no more than 5.000 Euros. In this case the 
agent has to leaf through several catalogues, develop a number of altern-
atives, compare them and finally choose one, or even go back to the princi-
pal for the final choice. 

Along with the latitude goes a responsibility to use it wisely. Suppose 
that the customer last time was dissatisfied with the choice of hotel. The 
agent should keep that in mind when acting again for that customer: An
agent should be able to learn from past experiences in order to improve on 
future solutions.

One may argue that by entrusting the agent with a task and by the agent 
obliging itself to the task customer and agent enter into a contract. It is 
only fair then to give the agent the liberty to decline the task or pose con-
ditions, or to break off its work, perhaps incurring some penalty, or to de-
cide when to start or complete work.

So far agents became active only on a customer’s demand. Should 
agents take initiatives as well? Take the travel agent who now knows of 
the principal’s love for skiing in the Rockies. Since his own goal is a good 
return on his business he may decide on his own to contact the principal to 
remind him of attractive offers. From a principal’s perspective an agent 
may spring to life on its own initiative to further its own goals.
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Agents and customers may sometimes pursue goals that are in conflict. 
Such conflicts may arise in particular if an agent serves several customers. 
Take a real-estate agent. It must satisfy the prospective buyer’s needs. But 
it does not review the entire market, rather it has a group of sellers who put 
up their property on his block, so they are its customers, too. And it earns a 
commission from the sale whose size depends on the sales price. This 
looks like the real-estate agent is in a constant conflict-of-interest situation 
whose resolution is not entirely transparent to the customers involved. Or 
take an insurance agent who is expected to find the best bargain for his 
customer given his needs. It may be a neutral agent arranging policies with 
many insurance companies, or instead the agent may work for one par-
ticular company in which case the best bargain is limited to the offerings 
of the company. Thus: Pursuance of goals may lead an agent into con-
flicts. Its clients should become aware of the agent’s policy for resolving 
these conflicts of interest.

Does the metaphor of agent as used above satisfy our original need for 
flexibility in a complex world? From a purely social viewpoint it does not 
seem that demanding. If we had to implement all the traits by software, we 
would exceed present-day capabilities. So after all, it seems a useful meta-
phor for our further discussion. 

1.3 Software Agents 

1.3.1 From Metaphor to Software 

The previous section developed a real-world metaphor for the notion of 
“agent”. Our goal is a technical artifact as part of an IT infrastructure for 
business. To indicate its technical foundation we refer to it as “software 
agent”. More precisely, a program deserves to be called a software agent
only if it exhibits a behavior that has many traits of that of our metaphoric 
human agent. But we would certainly accept further opportunities that go 
beyond human performance. 

Now, software agents are not a new concept but have long been known 
from a field called Distributed Artificial Intelligence (DAI). Unfortunately, 
the range of definitions is very broad, often reflecting phenomena impor-
tant to an application domain rather than neutral criteria that could guide 
both their technical construction and the decision on their applicability. 
Take [Nwan1996] with his phenomenological typology of agents. In fact, 
there are complaints that software “agent” is one of the most overused 
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words that masks the fact that there is a heterogeneous body of research 
and development being carried out under this banner. An indication of the 
situation is the inflation of adjectives to the word “agent”. Take search 
agents, report agents, presentation agents, navigation agents, management 
agents, help agents, smart agents, user agents, collaborative agents, inter-
face agents, mobile agents, information agents, hybrid agents, reactive 
agents, to name a few. 

Nonetheless, if one strips all these definitions of their application as-
pects and human-looking traits there remains a solid body of properties for 
which technical solutions can be developed. We base the discussion on the 
properties as introduced by [Wool2002] and relate them to the metaphoric 
agent characteristics of Section 1.2. 

1.3.2 Minimal Properties of Agents 

Our characterization of agent started off with the observation that the agent 
offers a useful service, provided the agent restricts itself to a certain do-
main. Consequently, there must be some environment that defines the do-
main, and that makes use of the service. 

There is a DAI counterpart to that characterization, the simple software 
model Figure 1 taken from [Wool2002]. 

sensor 
input

AGENT

ENVIRONMENT

action 
output

Figure 1. Simple model of an agent in its environment 

Everything outside the agent is called its environment. The agent is said 
to sense its environment and to act on its environment. Like its real-world 
counterparts, agents do not dissolve once a task has been finished, rather 
the interaction is an ongoing, non-terminating one. This gives rise to a first 
property of software agents: 

Property 1 

A software agent is a computer system that is situated in some environ-
ment. 
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Not only should the agent offer a useful service, its behavior is solely 
judged by the quality of its results. To reflect this characterization, we 
formulate a second property of software agents, one that could also be de-
rived from Figure 1: 

Property 2 

A software agent offers a useful service. Its behavior can only be observed 
by its external actions, its internal processes remain encapsulated. 

The two properties do not by themselves as yet justify the term “agent”. 
Classical machine control software meet Property 1, and objects in object-
oriented software, components in component software or a Web Service 
satisfy Property 2. There must be something else that sets agents apart 
from other pieces of software. Take the characterization of real-world 
agents that they have a certain degree of latitude in performing a task,
where the degree of latitude depends on the agent’s own goals, and where 
the latitude includes the liberty to decline the task or pose conditions, or to 
break off its work, perhaps incurring some penalty, or to decide when to 
start or complete work.

In DAI all these characteristics translate into the single notion of auton-
omy: The agent’s functionality does not directly depend on the properties 
or states of other entities within the system the agent is part of, it has the 
sole control over the activation of its service and may refuse to provide it, 
or ask for compensation [Sheh2001]. This gives rise to the central prop-
erty: 

Property 3 

A software agent is capable of autonomous action in its environment in or-
der to meet its design objectives, i.e., to provide its service. 

The key problem facing an agent, then, is that of deciding which of its 
potential actions it should perform and when, in order to best satisfy its 
objectives. A decision process where the key factor is the agent’s own 
goals is referred to as practical reasoning. There are two aspects of practi-
cal reasoning, goal deliberation and means-end assessment. Often the 
agent may pursue several goals some of which may be in conflict, so dur-
ing goal deliberation the agent may have to give priority to one. And once 
a goal has been chosen, there may still be several means how to achieve 
the goal, so the agent has to assess them before choosing among them. 
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Property 4 

As a corollary to Property 3, the autonomy of a software agent is guided by 
its own goals, with goal deliberation and means-end assessment as parts of 
the overall decision process of practical reasoning. 

Properties 3 through 4 set software agents apart from object-oriented or 
component-oriented software. Even though in object-oriented software 
each object may run in a separate thread and may thus exhibit some traits 
of autonomy, it is the lack of own goals that makes the inferior to software 
agents [LuAI2004]. 

1.3.3 Intelligent Agents 

From an outsider’s standpoint, due to practical reasoning software agents 
exhibit unpredictable, or non-deterministic behavior. One may benignly 
call such a behavior flexible, but so far we did not relate it to the need for 
flexibility. 

Following Wooldridge we claim that the need for flexibility arises when 
the environment appears non-deterministic as well. All too often an agent 
cannot observe its entire environment, and hence explain all the observa-
tions by its own actions or those of known players. Hence, the agent does 
not have complete control over the environment, it can just influence it. 
Just take a group of travel agents who try to make airline reservations, per-
haps on the same flight. Agents that are capable of dealing with such envi-
ronments seem to be a special breed: 

Definition 

An intelligent software agent is a software agent capable of operating in a 
non-deterministic environment. 

According to Wooldridge such environments are either inaccessible, i.e., 
the agent cannot obtain complete, up-to-date information, and/or uncertain, 
i.e., the agent’s action has no single guaranteed effect, and/or dynamic, i.e., 
there are changes in ways beyond the agent’s control, and/or continuous, 
i.e., there are uncountable many states. Wooldridge stresses the fact that 
the real challenge to the agent are the changes taking place while the agent 
is executing a task. This gives rise to a first property of intelligent agents: 

Property 5 

An intelligent software agent is reactive, that is, it continuously perceives 
its environment, and responds in a timely fashion to changes that occur. 
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Reactivity is a passive trait: The agent remains in a receptive state, and 
responds once it recognizes changes of certain kinds. For example, a client 
asking the agent to perform a certain task is such a change. Continuous 
observation goes beyond responding to a request, though, and is the direct 
result of the need for dealing with a non-deterministic environment 
[Pnue1986]. Timely response must be seen in light of autonomy: The envi-
ronment cannot dictate to the agent when and how to react. As a conse-
quence, Wooldridge extends Property 4: 

Property 6 

An intelligent software agent achieves an effective balance between goal-
directed and reactive behavior. 

At any particular time the goal-directed or the reactive behavior will be 
subordinate to the other. The normal modus will be the reactive behavior, 
with the agent responding to some event in the environment in a goal-di-
rected fashion. On the other hand, if the goals dominate the behavior the 
agent must become active, take its own initiative to affect changes in the 
environment in order to further its own goals.

Property 7 

An intelligent software agent may be proactive, that is, take the initiative 
in pursuance of its goals. 

In the real world, agents may become clients of other agents, for exam-
ple when they cannot solve a given problem on their own but must dele-
gate part of the problem solution to other agents. In the world of software 
agents this property cannot taken for granted. Rather we must explicitly 
state whether agents should be able to interact with one another. 
Wooldridge refers to this capability as social ability. Social ability may 
also be a way to overcome or resolve conflicts in the pursuance of goals.

Property 8 

An intelligent software agent may have to possess social ability, that is, it 
is capable of interacting with other agents to provide its service. 

Goal deliberation and plan selection may be affected by past experi-
ences of an agent. Or as we noted, a real-world agent should be able to 
learn from past experiences in order to improve on future solutions.

Property 9 

An intelligent software agent may be able to learn.
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For this book we are interested in intelligent software agents that at least 
satisfy Properties 1 to 6 and 8. 

1.3.4 Agent Authorization 

What has been missing from our discussion so far is the metaphoric char-
acteristic that an agent takes its actions on behalf of another entity. Such an 
entity is called the agent’s principal. In the real world, the principal must 
have authorized the agent for the desired actions (in a legal or contractual 
sense). The principal may be a single person, a homogeneous group of per-
sons, or a legal entity, to name a few. 

software module

object / component

encapsulation of 
internal processes

software agent

autonomous, with
practical reasoning

intelligent agent

reactive, balance of 
goal -directed and 
reactive behavior

authorization

authorized by 
other party

proactive able to learnsocial

overlapping

overlapping

sensor / actor

situated in some 
environment

Figure 2. Hierarchy of agent properties 

In a metaphoric sense the agent acts as the principal’s representative. As 
such its actions must be guided by the principal’s goals. Consequently 
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what we termed in Property 4 the agent’s own goals are in fact those of its 
principal. It makes little sense to assign an agent to more than one princi-
pal because this would instill in it different, perhaps conflicting goals. On 
the other hand, the same principal may be responsible for more than one 
agent. Translated into the software world we will have to name a principal 
for each software agent, be it a real person or another agent. 

An agent serves clients. There may be a single client (perhaps identical 
to the principal), or many clients, and this even simultaneously and when 
their interests are in conflict. It is the principal’s responsibility to supply its 
agent with the policy for resolving conflicts of interest. 

See Figure 2 for a summary for the discussions in Section 1.3. 

1.3.5 Properties and Flexibility 

Our hypothesis for this chapter was that systems of software agents have 
the potential for adding the necessary flexibility to business processes that 
operate in a complex world. To support the hypothesis, we should be able 
to demonstrate that the properties of software agents have indeed a positive 
influence on flexibility. Table 1 summarizes the influence. 

Table 1. Properties and flexibility 

Property Ensuing flexibility 

1. Situated in some environment No relation 

2. Service-orientation and encap-
sulation 

No relation 

3. Autonomy Take many factors into account 

4. Goal-based practical reason-
ing 

Large decision space 

5. Reactivity Respond to environmental changes 

6. Balance between goal-direc-
tion & reactivity 

Adjust behavior to the environmental dy-
namics 

7. Proactivity Initiate changes in the environment 

8. Social ability Coordinate adjustment of behavior with 
others 

9. Learning capability Adjust behavior to the environmental trends 
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1.4 Agents or Not? 

1.4.1 Testing the Waters 

While the properties in Section 1.3 seem to give some precision to what 
we mean by the term of agent, by offering a number of criteria to judge 
them, one should admit that they still are rather qualitative in nature. Sup-
pose that we wish to take the properties and develop a software architec-
ture such that with each property we associate specific methods, algo-
rithms and data structures. Or suppose that we place an agent in an envi-
ronment and wish to decide which properties the agent should include to 
operate in this environment. Or even, do we need an agent at all or would 
an ordinary object or component do the job? Ultimately, then, we need to 
be able to make the properties operational. In a nutshell, this is what this 
book tries to achieve. 

To get a feeling how easy or hard this promises to be we take a short 
look at a few popular pieces of software that go under the term of agent. 
This sounds like an academic exercise. But since agent technology is a 
complex technology we should not fool ourselves into calling a needed 
piece of software an agent if a simple software approach would do. Hence, 
the yardstick should be whether the environment is large, complex and dy-
namic, or if many goals have to be observed, i.e., whether, the need of 
practical reasoning seems large. 

1.4.2 Thermostat 

Hardly a book on agents that does not use the example of the thermostat. 
Thermostats have a sensor for detecting room temperatures, the sensor is 
directly embedded within the environment (the room) and produces two 
outputs, either temperature is o.k. or temperature is too low. The actions 
available to the thermostat are to turn the heat on or off. 

The term agent is a misnomer, though. The environment is deterministic 
because it is just the room temperature that is observed, no matter what 
factors affect the temperature like open doors or windows. No flexibility is 
needed, and indeed everyone could quickly write down a simple algorithm 
for it! (Ignore the fact that the thermostat is a piece of hardware. For all we 
know it may as well be a piece of software residing on a chip.) 
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1.4.3 Auction Agents 

Everyone knows it, the ebay agent. It is a piece of software, and it provides 
a service. It is created for a customer when he or she bids for a particular 
article. Hence, it is tied to a specific combination of bidder and article. The 
two constitute its environment. 

We claim that the ebay agent does not deserve to be called an agent. 
From the agent’s viewpoint the environment is deterministic because even 
though other bids for the article arise from actions outside it is sufficient 
for it to observe the bids on the article. Nor is the ebay agent autonomous. 
Its actions are entirely predictable, and that is what we as bidders expect 
from it. It is given an upper limit for the bid, and it is supposed to submit 
the currently highest bid as long as it stays within the limit. It does not pur-
sue any own goals, so everyone could quickly write down a simple algo-
rithm! 

1.4.4 Webrobots 

Search engines for the Web consist of three major components, a Webro-
bot system to generate and update an information base to describe the 
content of (parts of) the Web, an information retrieval system for building 
a searchable data structures from the documents discovered by the Webro-
bot system, and a query processor for querying the Web via the data 
structures built by the information retrieval system [Gloe2003]. The term 
Webrobot seems to suggest that the collection of Web data involves some 
sort of machine intelligence, and indeed it is suggested in [Klus1999] that 
Webrobots fall into the class of (non-cooperative) information agents. 

From an environmental viewpoint one could see a need for agents. The 
environment appears non-deterministic due to its size, continuous growth 
and fluctuations. The authors of Google while they still were Ph.D. stu-
dents describe some of their experiences with their robot (more precisely, 
the crawlers) [BrPa1998]. It seems that when they started running their 
crawlers across half a million servers they ran into all kinds of unexpected 
situations, and they conclude “because of the immense variation in web 
pages and servers, it is virtually impossible to test a crawler without run-
ning it on a large part of the Internet”. 

Not surprisingly, then, Webrobots are highly complex software systems 
with four major components. The gatherer visits the Web sites world-
wide – in fact, though, it stays put at a central site and downloads the Web 
pages. For performance reasons several gatherers work in parallel. Gather-
ers receive their orders from a loader which supplies them in the form of 
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URL lists. The loader is the strategic component, because it has to take de-
cisions which Web sites to visit, and – more important – when to revisit 
them (to “crawl” them in the narrow sense) to discover changes and to 
maintain an information base that is as fresh as possible or meaningful or 
economical. The basis for the strategies is a URL database which charac-
terizes all Web sites – in a way this database is a description of the observ-
able parts of the environment – and it contains all the information that en-
ters into the strategic decisions. The checker decides whether a document 
should be passed on to the information retrieval system, i.e., it acts as a 
filter. 

Do Webrobots meet the important properties? Are they autonomous? 
Do they pursue conflicting goals like high performance, up-to-date infor-
mation, large Web covering, economy, avoidance of malicious sites, gain 
of sponsorships, and so on, where we leave it to the Webrobot how to re-
solve conflicts? Do they have some learning capability? The providers will 
not tell. If we knew we would know more about how complex an envi-
ronment should be before one would have to resort to agent technology. 

1.4.5 Interface Agents 

The metaphor underlying interface agents is that of a personal assistant 
who is collaborating with the user in the same work environment. These 
agents emphasize autonomy and learning in order to perform tasks for their 
owners. An agent tracks the actions taken by the user in the interface, i.e., 
“watches over the shoulder of its user”, learns new shortcuts, and suggests 
or chooses better ways of doing the task. As [Nwan1996] points out, inter-
face agents learn by observing and imitating the user, through receiving 
positive and negative feedback from the user, by receiving explicit in-
structions from the user, or by learning from peers like asking other agents 
for advice. 

Particularly daunting environments are huge information spaces, like the 
worldwide network of scientific libraries and publishers, and perhaps also 
highly unstable, like the Web. The best known interface agents are infor-
mation agents that support users in their information retrieval tasks in such 
spaces. [Lieb1999] distinguishes between agents for information recon-
naissance, remembrance agents, agents for common interests, and match-
making agents. Reconnaissance agents try to continuously bring new Web 
pages to the user’s attention by following links from new pages that seem 
pertinent to the user’s interests. These interests may have gathered from 
questionnaires filled out by the user, but even better, by automatic infer-
ence from the user’s actions or reactions. Such agents, then, are reactive, 
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proactive and capable of learning. Remembrance agents differ in that they 
take the user’s current interests rather than their general interests into ac-
count and search for and present information pertinent to the user’s current 
context. Again, these agents are reactive, proactive and capable of learn-
ing. Agents for common interests explore an information space on behalf 
of small groups, by finding what interests they have in common. Finally, 
matchmaking agents help a user find others who have similar interests 
from a large, anonymous group, for example to pool their experiences for 
the information search (collaborative filtering). 

Do these agents pursue their own goals? In RETSINA [Syca1999] the 
user provides the agent (a combination of an interface agent, a task agent 
and an information agent, with the decision making concentrated in the 
task agent) with a description of his overall goals. In addition the agent ac-
quires and models user preferences to guide the performance of a task once 
it has been initiated. In particular, the task agent interprets the task specifi-
cation and extracts the solutions to the problem, forms a plan to reach the 
associated goals, identifies the subgoals, and initiates plan execution. 

Interface agents clearly are full-blown intelligent agents. They pursue 
their own goals, but these goals have been imposed their users (the princi-
pals). Or the other way round, the agent makes the user’s goals his own. 

1.4.6 Shopbots 

Superficially, shopbots appear similar to interface agents in that they also 
search an information space based on the user’s interests. In fact, though, 
there are significant differences. Their environment is much more limited, 
generally a list of participating vendors with their advertised offers, usually 
through a catalogue. The user enters a specific purchase request, frequently 
a particular kind of article with a number of desired or mandatory features 
[GuMM1999], and the shopbot searches the list for the appropriate ven-
dors. The shopbot may but need not include learning capabilities, for ex-
ample by learning and implicitly using known preferences of the user. 

Some shopbots enable consumers to narrow down the products that best 
meet their needs by guiding them through a large product feature space, 
using filtering techniques by allowing shoppers to specify constraints on 
the product’s features and then to solve a constraint satisfaction problem. 
Other shopbots recommend products by automated collaborative filtering 
that compares a shopper’s product ratings with those of other shoppers and 
identifies the shopper’s nearest neighbors (recommender system). Other 
shopbots again may do price comparisons as the first criterion of choice, 
but are known to depend heavily on the willingness of vendors to partici-
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pate and to have weaknesses when a price tells only half the story (e.g., ig-
nores added value through services). 

Do shopbots have to be agents? It depends on circumstances. If the en-
vironment is fairly stable with a known community of vendors, i.e., deter-
ministic, and the shopper’s goals are straightforward, algorithmic solutions 
that leave no latitude may suffice. If the shopbot has to reconcile the con-
flicting goals of the shopper and of vendors and perhaps other shoppers, 
practical reasoning may be needed. 

1.5 Conclusions 

The chapter has shown that there is a good deal of agreement among the 
community on when a piece of software deserves to be called a software 
agent. The characterization is in terms of qualitative properties rather than 
any precise formal notation. Hence, there will always be borderline cases 
where it is more a matter of taste whether to call a software module just 
sophisticated or an intelligent agent. 

For the engineer the issue is less one of academic discussion but more 
so of whether the solution to his problem must exhibit a flexibility that can 
only be attained with the fairly demanding agent technology. 

Figure 3. Dataflow model of an agent 

How agents achieve this flexibility is shown in the data flow diagram of 
Figure 3. It refines Figure 1 by adding Properties 1 through 9. On the left, 
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the environment is presented by a state as the origin of a continuous flow 
of state information. Function VIS filters out the stimuli that can be per-
ceived by the agent. On the right the agent continuously observes the envi-
ronment through the function SEE. Function NEXT combines the percep-
tion with the state of the environmental (mental) model that the agent cur-
rently holds, and produces a modified model. 

Properties 3 to 7 are reflected by the lower half on the right. Property 3 
is reflected by a model state that is not directly associated with the change 
at a specific time t (therefore often called a belief), and Property 4 by the 
goals that affect all routes to the action. Function REACT reflects the re-
active behavior and is influenced both by the beliefs and the goals (Prop-
erty 5). A second path via function GOAL-DIRECTED BEHAVIOR ac-
counts for practical reasoning and leads to function ACT as well. The two 
inputs to ACT mirror Property 6. Property 7 is simulated via function SPY 
that perceives the environment only if woken up (indicated by the clock). 
The further behavior follows one of the other properties. 

On this level of abstraction, Property 8 is implied in the environmental 
state, and Property 9 can be suitably incorporated in the environment 
model and function NEXT. 
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Abstract. In the previous chapter agents and their properties have been intro-
duced. In real-world business applications, it is assumed that the benefit of agent 
technology is reached by dynamic interaction of autonomous agents. This interac-
tion and co-operation forms a multiagent system (“MAS”). The organization of 
agents within such systems is strongly related to organization theory. The specific 
flexibility of MAS arises from the ability to follow predefined structures or evolve 
structures from dynamic interaction. In this chapter, fundamental concepts and 
properties of MAS are introduced with special focus on interaction and communi-
cation, roles, and structures. 

2.1 Introduction 

In the previous chapter intelligent agents have been introduced as autono-
mous, flexible problem solving entities which operate in a specific envi-
ronment. Agents meeting in the environment may interact and co-operate, 
and thus form a multiagent system (“MAS”). Since there is a strong anal-
ogy between real organizations and MAS this chapter will discuss MAS in 
detail with the focus on the organizational perspective. First, an overview 
of the evolution of MAS is provided, followed by the identification of key 
properties of MAS. The key properties ‘communication’, ‘interaction’, 
‘structures’, and ‘roles’ are each detailed out in separate sections. 

2.2 The Evolution of Multiagent Systems 

The descriptive definition of the illusive animal agent given in the previ-
ous chapter leads to the assumption that many different branches of sci-
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ence influenced its evolution, and also the kind of possible flexibility for a 
given application area. Academic and industrial researchers with very dif-
ferent goals have investigated agents, agent systems, and their capabilities. 
Nevertheless, the consolidation efforts made by standardization organiza-
tions passed the point of inflexion in the development of agents and agent 
systems, allowing the agent technology’s graduation and its deployment 
within real industrial environments. 

Today it is nearly impossible to determine which sector first focused on 
agents. However, in this section we try to sketch the development process 
of agents and agent systems, and their evolution to multiagent systems 
without any pretence of a correct chronological order of contributions, but 
of their influence on the development process. 

The first agent property refers to the agent environment that enables an 
agent to exist. That is, the agent environment must provide a kind of ele-
mentary “energy” for the hosted agents. In an agent environment we can 
think of an agent as a consumer of computational power, network band-
width, memory, and also higher-level resources like services, similar to an 
operating system process or thread. In a more abstract way, an agent 
should be seen as an entity in its environment consuming existing services 
like “life energy”. How the environment can offer services, and how an 
agent is able to search, select and use offered services is investigated under 
the aspect of agent systems infrastructures. Furthermore, under this aspect 
the following topics are also considered: 

• low level communication: agent to agent, agent to platform, and plat-
form to platform, offered as blackboard or message passing service, 

• service directories: service descriptions, service registration, service dis-
covery, and also quality of service, 

• reliability: mechanisms to recover crashed agents with using transaction 
logs and data backups, or hot or cold stand-by approaches, 

• mobility: migration of an agent from one agent platform to another one, 
based on the assumption that it is cheaper to move computation to the 
place where the data is provided than moving the data. 

Agent systems of the first generation were developed with the objective 
to analyze one or more topics of the infrastructure aspects and first ap-
peared around 1985. They suffered from being closed systems due to the 
lack of standardized communication and interaction interfaces, resulting 
from their ad-hoc design process (e.g., Voyager, Aglets, Grashopper, 
EMIKA). Their developers usually were research teams in the area of 
communication networks, distributed systems, and network management. 
The investigation of these agent systems and their behavior also covers the 
properties 2 and 3. The provision of a useful service by an agent may vary 
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from a simple communication service, like a message delivery service for 
other agents, agent systems, and users, or a more complex service, like 
planning, scheduling, or co-ordination. A service can be offered by an 
agent depending on its availability as a continuously available service, or 
as a service made available on demand. Furthermore, a service can be pre-
defined, or be composed at demand time from a collection of other ser-
vices that also can be predefined or composed. 

In Artificial Intelligence the investigation of knowledge management, 
planning, scheduling, automated learning, and reasoning led to many new 
combined approaches with target applications in robotics, support decision 
systems, and expert systems. Many of these approaches were adapted to 
agent systems with the aim to build intelligent agents, able to act and react 
autonomously in their environment. The outcome of this process, and the 
efforts made by the standardization organizations MASIF and FIPA, led to 
a new generation of agent development frameworks (e.g., JADE, FIPA-
OS, SeSAm, Zeus, etc.). The improved software engineering process and 
the implemented standardized communication layer of the second genera-
tion of agent systems have removed the “closed systems characteristic” of 
the first generation of agent systems. The powerful technical capabilities of 
these systems, e.g. their simple syntactic and semantic adaptivity, the stan-
dardized communication layer, and the broad range of existing interfaces 
to already deployed industrial systems enabled them to be deployed as 
middleware for semantic integration of distributed heterogeneous systems, 
e.g. databases, knowledge bases, data mining tools, monitoring applica-
tions. In the second generation of agent systems the focus moved from one 
to multiagent communication, interaction and problem solving. Because of 
their semantically very flexible ontology-based communication and rea-
soning, multiagent systems (“MAS”) are able to act as semantic routers 
between connected applications and interfaces, enabling developers to in-
tegrate existing systems within a shorter time. Furthermore, this high 
flexibility of MAS enables developers to accelerate the development pro-
cess of new applications, and finally to achieve a faster time to market. 

2.3 Properties of Multiagent Systems 

In [BoGa1988] MAS are defined as consisting of heterogeneous agents 
that are generally self-motivated and act to fulfill internal goals, but may 
also share tasks with others. There is no global or centralized control 
mechanism. Agents have to reason to co-ordinate their actions, plans, and 
knowledge. Agents, in these systems, can cope with situations in a flexible 
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way involving inconsistent knowledge about the environment (world, other 
agents), partial domain representation, and changing, overlapping plans re-
sulting from the need to interact with other agents. The properties of MAS 
appear to be almost infinite regarding the number of agents, their flexibil-
ity, their abilities, the ways of interaction, the initial state of the system, 
etc.

From the very beginning emergent behavior has been one of the most 
important criteria for MAS. It can be described by three aspects: The first 
aspect is focused on emergent properties as a large-scale effect of locally 
interacting agents: “Emergent properties are often surprising because it 
can be hard to anticipate the full consequences of even simple forms of in-
teraction” [Axel1997]. In [Ferb1999] the focus lies on emergent organiza-
tion: “Even societies considered as being complex such as colonies of bees 
or ants, should not necessarily be considered as individuals in their own 
right if we wish to understand their organization and the regulation and 
evolution phenomena prevailing there. In terms of multiagent systems, this 
means that an organization can emerge from the juxtaposition of individ-
ual actions, without its being necessary to define a specific objective (an 
element from the assembly O) which represent such an outcome”. The 
third aspect links emergence with the transition from reactive agents to de-
liberative ones. Doing so “the idea that intelligent behavior emerges from 
the interaction of various simpler behaviors” [Wool1999] emerges from 
this theoretical basis. 

A closer look at all three aspects suggests that communication is the 
main source for achieving global structures by local interaction, dynamic 
organization by simple (communication) rules, and intelligent behavior of 
the MAS as a whole. 

Despite the diversity of MAS properties it is possible to describe the or-
ganizational structures within MAS [Ferb1999]. In [HiFU1994], an organi-
zation is defined as the entirety of measures to accomplish aims and goals. 
It is socially structured based on the division of labor, and organizes the 
activities of people which are part of the system as well as the deployment 
of resources and the processing of information. [KiKu1992] identify five 
properties of organizations which can be adapted to describe properties of 
MAS: a set of goals, perpetuity, members, formal structure, and activities 
of members. Goals are inherently part of, and reason for, MAS. The design 
of MAS is geared towards meeting a set of specified goals which are pur-
sued for a given period of time, allowing for flexible system behavior. 
Agents within the system pursue their own goals depending on their roles 
and are organized in some structures. Depending on their roles and goals, 
agents solve problems and interact, communicate, and co-operate. 
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In the following, the operational behavior will be detailed by analyzing 
interaction and communication within MAS. Furthermore, organizational 
structures will be examined with respect to roles and structures. Funda-
mental concepts will be also discussed in the context of an exemplary sce-
nario: enterprises are using MAS for the management and implementation 
of supply chains. 

2.4 Interaction and Communication 

The implementation of an operational behavior within MAS requires the 
interaction between agents, e.g., in order to share information, coordinate 
actions, flexibly resolve conflicts, and optimize the organizational pro-
cesses. [Ferb1999] identifies a set of assumptions fundamental for the 
interaction and communication within MAS: the presence of agents 
capable of acting and/or communicating, constructs which can serve as a 
meeting point for agents, and dynamic elements allowing for local and 
temporary relationships between agents. 

2.4.1 Blackboard Communication 

All these assumptions require the agents to be able to communicate. The 
most general approach for communication is interaction via the environ-
ment where an action of an agent causes an effect which is perceivable and 
interpretable by other agents (see Figure 1). 

AGENT AGENT

BLACKBOARD

AGENT…
act perceptact percept act perceptact percept act perceptact percept

AGENT AGENT

BLACKBOARD

AGENT…
act perceptact percept act perceptact percept act perceptact percept

Figure 1. The blackboard architecture 

A special kind of interaction was described by [Newe1962] with the 
blackboard metaphor: 



40 I. J. Timm et al. 

“Metaphorically we can think of a set of workers, all looking at the 
same blackboard: each is able to read everything that is on it, and to judge 
when he has something worthwhile to add to it. This conception is just that 
of Selfridges Pandemoneums‘ a set of demons, each independently looking 
at the total situation and shrieking in proportion to what they see that fits 
their nature.”

With ‘blackboard technology’ the effects of the actions of an agent are 
recognizable by all other agents in the environment. It is characterized by 
[Cork1991]: 

• Independence of expertise: problem solving agents do not depend on the 
expertise of other agents – they can proceed once they find required in-
formation on the blackboard. They can contribute independently from 
other agents. 

• Diversity in problem-solving techniques: the internal knowledge repre-
sentation and inference mechanisms of each agent contributing to the 
blackboard may differ. 

• Flexible representation of blackboard information: there is no restric-
tion to what kind of information is placed on the blackboard. 

• Common interaction language: a common representation of information 
placed on the blackboard is required in order to allow the agents to in-
terpret the information. 

• Positioning metrics: in order to allow for an efficient retrieval of 
information, the context of each piece of information is used for struc-
turing. 

• Event-based activation: interaction between agents is not direct but is 
triggered by events on the blackboard (e.g., new/changed information). 

• Need for control: a control component that is independent of the prob-
lem solving agents manages the course of problem solving. 

• Incremental solution generation: no agent alone is capable of solving 
the problem at hand – the solution is achieved by incrementally building 
on contributions of other agents. 

With respect to the scenario of co-operating enterprises, the enterprises 
use a shared memory for the co-ordination of their activities, e.g., a custom 
order is placed on the blackboard by the original equipment manufacturer 
(OEM). Following a priority scheduling mechanism the enterprises are se-
quentially producing partial orders, or assemble them. The co-ordination 
between the participating enterprises is carried out by writing results on the 
blackboard to make them accessible for any other participants. 

Recent research focuses on distributed blackboards with more sophisti-
cated formalization, management, and access mechanisms [OmZa1999]. 
This may become more important especially in the field of eTeaching and 
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eLearning. Nevertheless, flexibility of communication is restricted by the 
need for a blackboard. 

2.4.2 Message Passing 

Communication based on varying access rights influenced by the informa-
tion provider for accessing information within the system is called directed 
communication. Directed communication in MAS is performed by mes-
sage passing, where a message is sent from one agent to another, and the 
environment is used only as a means of transportation (see Figure 2). In 
message passing in MAS, messages are sent from a sender agent to a re-
ceiver agent. The messages are based on the speech act theory [Aust1962], 
and are encoded in an agent communication language. A series of mes-
sages produces a dialog and often follows predefined structured protocols. 

AGENT AGENT
message

AGENT AGENT
message

Figure 2. Message passing 

The speech act theory is based on the observation that certain classes of 
natural language utterances are capable of changing the state of the world. 
A speech act has three different aspects [Wool2002]: the elocutionary act, 
which is the act of making an utterance; the illocutionary act, which is the 
action performed in saying something; the perlocution, which is the effect 
the act has on the state of the world. Additionally, performative verbs like 
request or inform denote different types of speech acts. The work of 
[Sear1969] extended the speech act theory by adding a classification of 
possible types of speech acts. It consists of five key classes: representative 
acts, committing the speaker to the truth of an expressed proposition (e.g., 
“A new order has been released.”); directive acts, expressing the attempt of 
the speaker to get the audience to do something (e.g., “Company A has to 
produce part C.”); commissive acts, committing the speaker to a course of 
action (e.g., “We are going to produce part C.”); expressive acts, express-
ing a psychological state (e.g., “Thank you for delivery.”); declarative acts, 
effecting a change in an institutional state of affairs (e.g., “Company A is 
the default supplier for part C.”). 

With the help of the speech act theory agents become capable of not 
only planning how to autonomously achieve their goals, but additionally of 
planning their interaction with other entities like agents or other software 
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systems in the environment. Thus, agents obtain a high degree of flexibil-
ity in interaction. In the early times of distributed AI research, [CoPe1979] 
characterized the semantics of speech acts with the plan representation 
language STRIPS [FiNi1971]. Pre- and post-conditions of speech acts rep-
resented in a multimodal logic enable a smooth integration into formally 
defined agents as well as the use of standard planning algorithms. 

2.5 Roles in Multiagent Systems 

Communication – as introduced in the last section – is a very flexible way 
of coordinating agents. However, there could be a huge overhead for en-
abling co-ordination between agents leading to a high communication 
complexity, e.g., if the relationship between agents has to be negotiated. In 
the context of real-world applications – like the supply chain scenario – it 
is crucial to provide an efficient approach for scalability, i.e., if the amount 
of agents increases linearly the communication complexity should not in-
crease exponentially. The solution for a reduction of complexity is the in-
troduction of organizational structures in MAS. Following the organization 
theory, there are two major measures: roles and structures. In this section 
roles in MAS will be discussed with respect to organizational theory, as 
well as some specific requirements. 

In an organizational model roles are among the key components as they 
allow for the abstraction from individuals which eventually will adopt the 
role. In addition to roles there are positions within organizations which are 
occupied by individuals. In the organizational context there are three di-
mensions of roles: position-specific (e.g., the CEO of an enterprise), task-
specific (e.g., seller or supplier), and individual-specific (e.g., person B of 
company A) [Scot1967]. A position is always in correlation with a social 
or organizational role [RoSt1981] [Kah+1964] [JaCL1951]. While an indi-
vidual usually occupies only one position, it can hold different roles which 
may vary in the course of interaction. Since a position in an organization is 
more persistent than an individual which occupies it, individuals may 
change the position within the organization while holding the same roles. 
In an organizational context, [GrMM1958] and [Dahr1968] define roles as 
consisting of: 

• generalized expectations of the interaction partner (behavior, appear-
ance, properties, character), 

• allocation to defined functional areas and hierarchical levels, leading to 
expectations for the role (the role achieves sanction powers), 

• definition of goals, action programme, and communication channels, 
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• range of authority, in which a role can define mandatory expectations 
for other roles, e.g., defining a superior. 

The role models used in MAS are motivated by approaches from organi-
zation theory and social science. Thus, the underlying understanding of 
roles is similar to the definition introduced above. With respect to applica-
tions, it is useful to restrict the concept of roles in such a way that it is rep-
resenting cognitive states on the basis of knowledge permissions or re-
sponsibilities [Lind2001]. This reduction appears to be too restrictive with 
respect to expressiveness, and not restrictive enough with respect to com-
municational efficiency. However, such concepts could be used for im-
plementations of views on internal representations of even huge world 
models, which allows for efficient inferences. Recent approaches towards 
the design of open MAS are explicitly modeling social models, including 
roles, which are not limited to cognitive states [DaDD2003] [Pets2002]. 

Obviously, the concept of positions and roles leads to potential conflicts 
of interest, especially if an agent holds multiple roles. [KiKu1992] distin-
guish between inter- and intra-role conflicts. Intra-role conflicts are caused 
by a specific role and internalizations of external conflicting expectations, 
e.g., by contradicting instructions from different superiors. Agents that 
hold multiple roles have to deal with potential inter-role conflicts, i.e., a 
current action which is consistent with role A and in conflict with role B. 
The management of such conflicts is crucial to realize robust behavior in 
MAS, and has been discussed, for example, in [Timm2004] [DaTo2004]. 
Additionally, ambiguity of roles can cause problems, if role specifications 
are not communicated efficiently, or if specifications are vague. In contrast 
to role conflicts, which have to be handled dynamically at run-time, role 
ambiguity is a problem which should be solved partly at design time 
(vagueness); the communication problem, however, has to be dealt with 
dynamically. 

The main difference between MAS and real world organizations is that 
individuals (humans) in real organizations can always act autonomously, 
i.e., overcome role restrictions. Reliability in an organization is ensured by 
rewarding role conformant behavior and sanctioning misdemeanor 
[Scot1967]. Transforming the role paradigm to MAS leads to the question 
whether agents should be allowed to overcome role restrictions. In a com-
putational system there is the possibility to explicitly exclude misde-
meanor. However, this would limit benefits of MAS significantly: disjunc-
tive (non-conflicting) roles, restricted autonomy of agents, and limited 
openness of MAS may lead to a loss of flexibility and may prevent emer-
gent effects. In analogy to real organizations a computational system has to 
include mechanisms ensuring reliable behavior if individuals are allowed 
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to break restrictions. These mechanisms are in the focus of current re-
search on trust in MAS [FaCa2004] [DaRJ2004]. 

Summarizing, roles are a means for enabling more flexible system be-
havior, i.e., they allow for the exchange of individuals adopting a role 
without changing the configuration of the system, as well as for an adap-
tive, context-dependent behavior of agents. 

2.6 Structures in Multiagent Systems 

The concept of roles focuses on different views on individuals, and real-
izes an abstraction of individual abilities, goals and behaviors. Due to ex-
ternal expectations on roles, communication efforts are reduced signifi-
cantly. However, if a set of individuals is required, communication efforts 
can increase considerably due to coordination activities, e.g., managing 
inter-role conflicts. Thus, in large scale systems it is necessary to develop 
institutionalized co-ordination through reusable structures, providing for 
flexible system behavior. In organizations there are concepts for individu-
als joining with respect to task classes, tasks, and capabilities. 

Organizational structures can be viewed as abstract sets of individuals, 
i.e., they are represented externally by a subset of individuals and have a 
hidden internal structure, e.g., an enterprise participating in a supply chain 
may be represented by its buying department. For an implementation of 
these structures it is important to decide on internal and external functions 
which have to be performed, e.g., problem representation, solution pres-
entation, directory structure, and structure management. These functions 
can be realized by the concept of roles introduced above. There is a gen-
eral distinction between internal (e.g., directory) and external (e.g., repre-
sentation) roles. Role assignment depends on the system design and is dis-
cussed later. Additionally, roles within a structure can be subdivided into 
operational and management functions. Mandatory properties for struc-
tures include organization (control) of managerial and operative processes. 
The control of processes follows four approaches: centralized, decentral-
ized, hierarchic, and democratic [ThJa2001]. In context of the supply chain 
scenario, the OEM would control the complete chain, i.e., it would not 
only control 1st tiers, but also 2nd, 3rd, etc. tiers directly. Hierarchical 
structures are a specialization of centralized structures, where the OEM 
controls 1st tiers, 1st tiers control 2nd tiers, etc. These structures are used for 
most supply chains. In a decentralized as well as in a democratic approach 
there is no leading entity, and the network is managed dynamically by the 
interaction of participating enterprises. Thus, the supply chain is an emer-
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gent effect of these interactions. The approaches differ in available com-
munication channels: in democratic networks communication is not lim-
ited, i.e., each enterprise is able to communicate with others, while in de-
centralized approaches the network is organized in a peer-to-peer manner. 
Obviously, democratic approaches are providing the highest flexibility, al-
though decision-processes as well as their underlying communication ef-
forts can increase dramatically. In real organizations hierarchical structures 
are showing a good balance between flexibility and coordination efficiency 
[KiKu1992]. 

These four types of structure management result in specific communi-
cation channels with significantly varying effects on communication and 
co-ordination efficiency as well as flexibility. [HiFU1994] introduce four 
approaches to intra-organizational communication: star (centralized, Fig-
ure 3a), ring (decentralized, Figure 3b), chain (hierarchy, Figure 3c), and 
network (democratic, Figure 3d), which can be used for the implementa-
tion of the above mentioned control approaches. Balancing the properties 
of these communication channels and the organization of managerial and 
operative processes with flexibility is domain dependent and has to be con-
sidered individually for concrete applications. 
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AGENT AGENT

AGENT AGENT

AGENT

AGENT

AGENTAGENT

AGENT

AGENT

AGENTAGENT AGENT

AGENT

AGENT

AGENTAGENT

(a) star (b) ring

(c) chain (d) network

Figure 3. Interaction structures 
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Furthermore, there is a distinction between open and closed structures in 
analogy to operating systems [Tane1994]. In open structures agents are 
able to pronounce their membership, and any external agent is allowed to 
communicate with agents belonging to the structure. However, in closed 
structures, a managing entity decides on the membership of agents, as well 
as a representative entity routing the communication. While the realization 
of an open structure does not require sophisticated services, the imple-
mentation of a closed structure needs specific notions of communication 
and management, e.g., a closed structure with a high demand on availabil-
ity will be managed in a distributed way. In the following, some dimen-
sions of organizational structures will be discussed in more detail. 

Organizational structures and structures in MAS are characterized by 
three dimensions: capabilities, duration, and decision-making. If the capa-
bility of an organizational structure were a synergetic fusion of individual 
skills, abilities and capabilities, it would be important to consider the type 
of designated synergy effects. If the organizational structure consisted of a 
homogenous set of agents with respect to their capabilities, the capabilities 
of this institution would enable a solution of the same problem sets at a 
larger scale or in a shorter period of time. These structures are similar to 
fundamental approaches in parallel computing [Quin1994], especially grid 
computing [RBGD2004]. As opposed to homogenous sets of agents, 
structures can also consist of agents with heterogeneous capabilities, in or-
der to solve problems which cannot be solved by individual agents due to 
their limited range of capabilities. These heterogeneous structures intro-
duce new challenges to the management of capabilities. Individual agents 
match capabilities to tasks autonomously, using algorithms which are hid-
den from other agents. These structures need algorithms and mechanisms 
for matching sets of heterogeneous capabilities with tasks. These chal-
lenges are researched in multiple fields, e.g., web service composition 
[MaLe2004] [Pis+2004], multiagent capability management [TiWo2003] 
[ScTW2004], and distributed planning [Durf1999]. Real applications usu-
ally require structures which consist mostly of a combination of heteroge-
neous and homogeneous sets of agents, thus allowing scalable solutions for 
a wider range of problems. 

A further aspect of structures in MAS is the consideration of duration. 
Structures can persist over the complete life time of MAS. Thus, co-ordi-
nation mechanisms between agents can be considered at design time and 
consequently implemented statically into the agents. Such an approach en-
ables an efficient co-ordination with only a small communication over-
head, but it nevertheless limits the flexibility of the system. Dynamic struc-
tures allow for flexible reactions and the re-organization of MAS in 
changing environments. However, the efficiency of the necessary co-ordi-
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nation is inferior to static structures, as additional communication efforts 
are required for forming, managing, and disbanding. The duration of 
structures may depend on goals, i.e., the structure may be disbanded once 
the goals of the structure have been reached. These can be described ex-
plicitly by joint intentions or system goals, or implicitly in utility functions 
of the agents, the MAS structure, or the system. 

Table 1. Classification of economical structures 

Economical 
Structures 

Level Capabilities Duration Decision  
Making 

Cartel
(e.g., OPEC) 

horizontal 
vertical 
diagonal 

homogeneous 
heterogeneous 

short- to 
long-term 

influence  
depends on 
resources 

Collaboration 
(e.g., VW Sharan and 
Ford Galaxy  

horizontal homogeneous short- to 
mid-term 

democratic 

Cooperation 
(e.g., DaimlerChrys-
ler and Recaro/Lear)  

horizontal 
vertical 

homogeneous 
heterogeneous 

short- to 
mid-term 

hierarchic 

Alliance 
(e.g. Star-Alliance:  
United Airlines,  
Lufthansa, etc.) 

horizontal 
diagonal 

homogeneous 
heterogeneous 

long-term globally  
democratic, 
locally  
autonomous 

Department 
(e.g., Buying- and 
Sales-department) 

horizontal 
vertical 

homogeneous 
heterogeneous 

short- to 
mid-term 

hierarchic 

Institution 
(e.g., EADS) 

horizontal 
vertical 
diagonal 

homogeneous 
heterogeneous 

mid- to 
long-term 

hierarchic,  
democratic 
or matrix 

Location 
(e.g., stock market) 

horizontal 
vertical 
diagonal 

homogeneous 
heterogeneous 

short- to 
long-term 

market-ba-
sed 

The third dimension for MAS structures is how decisions are made how 
to form, manage, and disband structures. The scope ranges from decision 
makers appointed at design time to democratic selection algorithms during 
run-time [Sand1999]. Similar to the problem of design time vs. run-time in 
capability management, co-ordination efforts increase significantly in run-
time approaches while the flexibility increases. Thus, the main criteria for 
choosing an appropriate level of decision making capabilities as well as 
capability management depends on the balance of flexibility and co-ordi-
nation efficiency. 
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These dimensions can be used for the classification of concrete struc-
tures. Groups or teams are typical representatives of organizational struc-
tures in MAS. In the context of the dimensions mentioned above groups 
consist of homogeneous sets of agents which are the basis for scalability or 
optimization of MAS. In general, groups are formed for higher efficiency, 
i.e., increased payoff for individual agents. These kinds of structures are 
discussed in coalition formation using approaches from game theory 
[Sand1999]. In contrast to groups, teams consist of heterogeneous agents, 
and are formed to solve specific problems. In this case, individual payoff is 
not the major selection criterion, but individual capabilities are used for 
forming a team. Team formation is consequently described using logic-
based approaches [Wool2000]. 

These dimensions provide useful criteria for classifying structures. Ta-
ble 1 shows representative types of structures. Additionally, a fourth 
dimension has been added which is specific to the economical domain. 
This fourth dimension is indicating up to three types of interaction: hori-
zontal (interaction within the same market), vertical (interaction within dif-
ferent markets), and diagonal (horizontal and vertical interaction). From a 
decision-making point of view, there are three specific structures: alli-
ances, institutions, and cartel. In a cartel, a group of enterprises which has 
a dominant position in the market is trying to dictate prices and conditions 
within this market. A single enterprise within such cartels has influence 
proportionally to its market share. In alliances, markets are often parti-
tioned into regions; thus, each enterprise is deciding within its regional re-
sponsibility. Further decisions are made democratically. If an interaction 
between enterprises has a mid- or long-term perspective it can be institu-
tionalized. In such an institution, internal organizations – including deci-
sion-making processes – are negotiated individually and domain depend-
ent. Thus, the full range of decision-making policies is available. 
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Abstract. The most important promise of multiagent technology is flexibility. 
Multiagent technology enhances the adaptability of IT systems in two ways: it fa-
cilitates “external” maintenance and it increases their own capabilities to perform 
necessary adaptations by themselves. These are important contributions to the 
competitiveness of enterprises as they increase their capabilities to react appropri-
ately to changes in their markets, to meet their customers’ demands better than be-
fore, and to take greater advantage of new market opportunities than would other-
wise be possible. This contribution develops a formal framework for the 
description, and analysis of the flexibility of multiagent systems. It elaborates this 
framework in much detail and evaluates it on the basis of examples from the field 
of multiagent engineering. 

3.1 Introduction 

The development of a new software technology raises various questions 
about its practical benefits: For which type of design problems is it really 
well suited? Which requirements of an enterprise application does it better 
meet than (if any) other technologies? How does it enhance the robustness, 
scalability, and maintainability of software systems? Also: Why should 
any software engineer or software customer actually decide to pursue this 
new and possibly risky software technology? 

With respect to multiagent technology, the answer of this book is: flexi-
bility. The effective support of the adaptability of information is the most 
important strength of multiagent technology. This strength goes far beyond 
the capabilities of any other contemporary software technology and thus 
needs much more attention than it has attracted to date. This is important 
for enterprises which are increasingly challenged by the rapidly changing 
demands of their customers, by the continuously increasing competition in 
their markets, by (often dramatic) increases in the number of internal and 
external processes to be managed, and also by the growing impact of pro-
cess technology on their competitiveness. Multiagent technology, which is 
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essentially a software-based process technology, is thus of great relevance 
to any enterprise being faced with high flexibility demands. 

How does multiagent technology achieve this high degree of flexibility? 
The theoretical foundations have already been introduced in Chapters I.1 
and I.2. The autonomy of agents enables them to plan, perform and evalu-
ate their actions according to their internal states, goals and resources. 
They are aware of the state and dynamics of their external environments 
and they are thus capable of individually exhibiting situated behaviors. 
They coordinate their actions with other agents belonging to the same 
multiagent system. Multiagent systems can employ a variety of organiza-
tional structures together with appropriately defined cooperation protocols 
in order to manage what has been called the micro macro link: the dynamic 
interplay between the individual agents on the micro level and the whole 
multiagent system on the macro level. Finally, multiagent systems are 
much more open than any other software system: new agents can always 
join an existing multiagent system (if this agrees) and members of a multi-
agent system may even withdraw at runtime. 

This chapter starts with a review of selected flexibility concepts in dif-
ferent fields of literature (Section 3.2). We found that a production theory 
perspective is best suited for our purposes, leading to a set of six defini-
tions of flexibility: qualitative flexibility, quantitative flexibility, problem 
solving flexibility, economic flexibility, time flexibility, and configuration 
flexibility. Formalizing this framework requires formal definitions of 
agents and multiagent systems. This is provided in Section 3.3. On this ba-
sis, Section 3.4 develops formal specifications for the flexibility definitions 
mentioned above. Section 3.5 presents initial considerations on the appli-
cation of the framework in multiagent engineering. Section 3.6 summari-
zes the results. 

3.2 Towards a Flexibility Framework for Multiagent 
Systems 

Flexibility denotes the ability of a system (e.g., human being or machine, 
more or less complex biological, technical, or social systems) to be adap-
table, i.e. to behave as required in different situations. Though flexibility is 
an important concept in many disciplines, it is still a vague concept in mul-
tiagent technology. This section therefore aims to establish an operational 
flexibility framework for multiagent systems. 

Flexibility requires interactions between (at least) two systems: the 
system under consideration (agent a) and its counterpart, which we call its 



  Flexibility of Mulitagent Systems 55 

environment. Necessarily, the agent must be able to perceive information 
about the behavior of the environment and to react to the signals received 
from there. Flexibility further requires that the agent has to address at least 
one goal, e.g., to solve a problem, to complete a task, to survive physically, 
to display technical robustness, to act efficiently, etc. Flexibility is thus 
part of the agent’s problem solving strategy. It may enhance its ability to 
achieve its goals, in particular if the achievement of these goals is 
somehow dependent on its environment. This may change its status over 
time, may conflict with the agent’s goals, or may offer opportunities for 
(increased) synergies. Flexibility has thus much to do with situated 
behaviors (see I.1). 

3.2.1 Contributions From Selected Fields 

Flexibility is an important concept in many fields within and outside com-
puter science. There are, thus, lots of specific definitions, concepts, and ex-
periences, each inspired from very different perspectives. Multiagent engi-
neering can draw from any of these, but within the context of this book the 
areas of software technology, machine learning, organizational theory, and 
production theory are of major interest. 

The software technology perspective focuses on the engineering pro-
cess, on requirements engineering and modeling, on engineering frame-
works and tools, on implementation languages, on architecture patterns 
and software lifecycle management for agents and multiagent systems 
[Balz2001]. Flexibility imposes particular demands on the maintainability, 
adaptability to different application areas, configuration and integration 
management, testability, scalability and openness. In the field of multi-
agent systems, attention has mainly been put on requirements engineering 
and modeling, on single agent architectures, and on implementation issues. 
All other design phases, in particular the late phases like testing, configu-
ration and integration management, and maintenance have not been con-
sidered yet. This is a relevant drawback as flexibility is just about the 
modification of already existing systems. 

Machine learning [Weis1995] is a subfield of artificial intelligence. In 
that perspective, multiagent systems are societies of more or less autono-
mous intelligent systems (agents). Flexibility thus addresses the ability of 
agents and multiagent systems to adapt themselves (automatically) to dy-
namic changes in their environments. Changes in the system behavior 
through external actions (e.g., maintenance) are not considered. The ma-
chine learning perspective has much to do with autonomous action and it 
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has particular advantages, if external access (e.g., by humans) is difficult 
or impossible. 

Figure 1. Selected approaches of semantic frameworks for flexibility 

In an organizational theory perspective agents are considered as “artifi-
cial members” of multiagent systems. Membership establishes a temporal 
relation between an agent and a multiagent system. Organizational rules 
organize the division of labor, coordinate joint behaviors, and manage in-
teractions within and between workflows [HiFU1994, p. 34] [KiGa 1998] 
[KiMu1998]. Flexibility denotes the ability of a multiagent organization to 
choose from given organizational alternatives (structures, rules, behaviors, 
workflows, roles, division of labor, information flow, etc.) to better meet 
external demands [KiKu1992, p. 379]. It is well understood that adaptation 
may cost time and money, may affect already established procedures, may 
be the source of confusion, failures, and other problems within the organi-
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zation, and may also affect the interaction of the multiagent organization 
with its environment. 

Production theory considers systems of production in enterprises and 
how they transform input into output. The relationships between input and 
output are formalized through production functions. These include specifi-
cations of the capabilities, behaviors, and interaction of the machines in 
use. In a production theory perspective, multiagent systems provide, typi-
cally on request, services to their environments. This is an interesting per-
spective as it simply focuses on the result of the behaviors of a multiagent 
system, which meets quite naturally the notion of flexibility introduced at 
the very beginning of this section. I.e. flexibility is the capability of a mul-
tiagent system to meet the changing demands of its environment (custom-
ers) and to react to changing internal situations in such a way that external 
demands can be fulfilled again. Below, we thus apply to the production-
oriented perspective to develop a flexibility framework for multiagent 
systems. 

In production theory and related fields there has been intensive discus-
sion on definitions for flexibility.1 Many definitions focus on the reactivity 
of companies and act on the assumption that environmental changes can-
not be directly influenced and therefore have to be taken for granted [Zapf 
2003, p. 90]. For this reason, flexible production processes will enable 
companies to react quickly and with goal-orientation to environmental 
changes [KüSc1990, p. 94]. This definition is often related to notions of 
(operational) flexibility or elasticity [Kalu1993, p. 1174]. Recent work em-
phasizes the active aspect of flexibility and argues that enterprises can also 
try to modify their environments according to their own needs [Schl 1996, 
p. 94] [Zapf2003, p. 90]. It is generally agreed that flexibility (due to inter-
nally or externally induced changes in environment) necessarily requires 
free resources that are not bound otherwise [Meff1985, p. 123] [Knof 
1992]. Finally, an important contribution comes from Adam [Adam 1993] 
who has suggested an operational overall framework for the description 
and analysis of the flexibility of production automata in plants. This frame-
work provides us with an appropriate conceptual basis for the development 
of our flexibility framework for multiagent systems. 

                                                     
1 Among others [Brow1984] [ChKi1998] [Dank1995] [MoSh1998] [BaSt1995] 

[StRa1995] [HyAh1992] [MaBr1989]. 
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3.2.2 Conceptualization of a Flexibility Framework for 
Multiagent Systems 

Referring to [Adam1993], the flexibility of a multiagent system is given 
through 

• its service portfolio (i.e. the set of different services si it can offer as a 
reaction to received input, denoted as qualitative flexibility QualFlex),

• for each service si: how often can it deliver this service per unit of time 
(denoted as quantitative flexibility QuantFlex),

• the number of different (cooperative) problem solving processes that 
can produce a single service (denoted as problem solving flexibility 
ProblSolvFlex).

Obviously, the flexibility of an existing multiagent system depends on 
its current configuration, including the set of participating agents, the in-
teraction patterns, its cooperation and coordination protocols, the coopera-
tion language in use, etc. 

Examples 

• Multiagent system M1 can offer a set of services si (1  i  m), but each 
service only once a day. M1 is thus less quantitative flexible than another 
multiagent system M2 offering these services 10 times a day. 

• After having been maintained, M2 is able to produce the services sj (1  j 
 n), with n > m. The qualitative flexibility of M2 is now greater than 

that of M1.
• Though the quantitative flexibility as well as the qualitative flexibility of 

M2 exceeds that of M1, the problem solving flexibility of M1 wrt a par-
ticular service sk may be higher than that of M2 iff M1 can employ more 
different (cooperative) problem solving processes than M2.

In general, flexibility is not free. It may require additional resources, 
may be risky for already established processes and services (e.g., due to 
bottleneck problems, limited scalability, etc.), and may in some cases even 
lead to confusion of the environment (e.g., because of delays of service 
deliveries, reduced service quality, etc.). We call these costs the economic 
flexibility of a MAS. Further, multiagent system adaptation may take some 
time. We call this the time flexibility2 of a MAS. Economic flexibility and 
                                                     
2  Time differs from other types of “economic” resources as it introduces a new 

dimension into the discussion, the time axis. Reasoning over time is distinct 
from reasoning over space, over monetary investments, etc. This has motivated 
the decision to treat time as a flexibility dimension on its own. 
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time flexibility may interact. E.g., adaptations under time pressure are of-
ten more expensive (and risky) than adaptations that can be performed 
calmly. 

Finally, it may even be necessary to be able to modify the configuration 
of a multiagent system. This may change its internal structure, its interac-
tion patterns, cooperation and coordination protocols, and existing mem-
bership agreements, but, possibly, also the exclusion of members from the 
multiagent system and the integration of new ones. We call this the con-
figuration flexibility of a multiagent system. If the configuration flexibility 
equals ∅, the configuration of a multiagent system cannot be changed. We 
call this also static flexibility of a multiagent system.

To summarize: 

• Adaptation denotes the process of fitting the behavior of a multiagent to 
the changed demands of its environment. This requires (at least): (i) that 
there is already an interaction between the system and its environment, 
(ii) that the behavior (demand) of the environment has changed (or is 
changing), (iii) that the MAS is able to sense this change and to reason 
about it, and (iv) developing new behaviors (displaying new services) 
expected to better meet the new demands of the environment. 

• Adaptation may be performed within the current configuration of a 
multiagent system (static flexibility), or through modifications of its 
configuration (configuration flexibility). 

• Adaptation is not free. It takes time to adapt a multiagent system and ad-
aptation may require further resources. Let curr denote the status of the 
multiagent system before adaptation (i.e. “current”) and let adapted de-
note its status after adaptation: 

MAScurr [  QuantFlexcurr × QualFlexcurr × ProblSolvFlexcurr]
 SetOfServicescurr (1)

MAScurr × AdaptTime × AdaptResources  MASadapted (2)

Remark 

Sometimes, the same adaptation result may be achieved either within the 
current configuration (static flexibility), or through changes in the current 
configuration (modification flexibility). This must therefore be decided be-
fore an adaptation starts. The result of this decision may depend on avail-
able time and resources. 

MASadapted [  QuantFlexadapted × QualFlexadapted × ProblSolvFlexadapted]
 SetOfServicesadapted (3)
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The above formalization provides a generic framework within which 
one can give precise definitions of different types of flexibility each cover-
ing different (and relevant) flexibility perspectives. On that basis one can 
further develop methods and tools in order to describe, analyze, forecast, 
and design flexibility characteristics of multiagent systems. How this can 
be done in a particular case depends upon the concrete specification of the 
multiagent system, the services and resources available, the given environ-
ment(s), etc. The next step is thus to introduce a formal specification of 
agents, and multiagent systems (Section 3.3) in order to perform detailed 
elaborations of different definitions of flexibility (Sections 3.4 and 3.5). 

3.3 Formalization of Agents and Multiagent Systems 

In literature there are already numerous formalizations of agents, and mul-
tiagent systems. In this contribution we built upon the recent work of 
Burkhardt and Kirn ([BuAW2000] [Kirn2002]) in order to develop a con-
ceptual specification of multiagent systems. 
We define the concept of agents based upon their problem solving behav-
ior. They perform their actions in a three-step cycle. 

1. Information reception: agents observe (sense) their environments via 
sensors to identify the relevant information as sensory_input ∈ Sensory 
Inputs and transfer them into one or more perception ∈ Perceptions.

 sense: SensoryInputs  Perceptions (4) 

2. Information processing: in the second step the agent draws conclusions 
and updates his internal_state ∈ InternalStates. The state internal_ 
statenew is normally dependent on the state internal_stateold and a spe-
cific set of perceptions:

 reason: InternalStates × Perceptions  InternalStates (5) 

The definition of InternalStates is based upon the environment model 
EnvModel, the Goals, and the Commitments (already promised services 
to be fulfilled in future) of the agent: 

 reason: (EnvModelold × Goalsold × Commitmentsold) × Perceptions  
 (EnvModelnew × Goalsnew × Commitmentsnew) (6)

3. Actions: In the third step the agent fulfils its commitments by perform-
ing action ∈ Actions in its environment: 

 act: Commitments  Actions (7) 
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The behavior of an agent can thus be described by sequences of the 
mappings sense, reason and act.

By definition, each agent is a member of the overall agent community. 
The agent community is given by: 

AgentCommunity := (A × C) (8) 

where A := {a1, …, ai, …, an} is the set of agents existing in the network 
and C := {cij | cij  (ai, aj); 1  i, j  n} is the set of directed communica-
tion channels between pairs of agents. 

Please note that cij cji. C defines the overall connectivity of the agent 
society. Necessarily, interaction requires communication. Thus, cij also 
represents the set of possible interactions of the action(s) of agent ai with 
the sensor(s) of agent aj.

Multiagent systems are subsets of AgentCommunity. They are defined as  

 MASi ⊆ A × C (9) 

In accordance with literature, we assume that MASk is established only 
iff a cooperative problem solving process is required (dynamic definition). 
MASk declines, iff problem solving is completed. 

We can therefore assume that if an agent accepts the invitation to join a 
cooperative problem solving process, it is immediately bound to this 
problem solving process. The binding of an agent can be static (static 
planning) or dynamic. If an agent decides to provide a specific service si to 
this problem solving process, this service si is bound to this process, too. 
This establishes a second level of binding. 

The overall system behavior of a multiagent system is thus manifested 
in six steps: 

Step I: Selecting agents ai ∈ A that will be invited to join cooperative 
problem solving. 

Step II: Binding agents ai ∈ A to constitute MASk.
Step III: Selecting services si ∈ SetOfServices needed for problem solving. 
Step IV: Binding services si ∈ SetOfServices to the process of problem 

solving. 
Step V: Performing the problem solving process. 
Step VI: Decline of the MASk.

Remark 

This is a generic definition of a multiagent system, supporting our analysis 
of the flexibility framework introduced in Section 3.2. To this purpose, it 
abstracts from many conceptual and technical details (e.g., agent platform, 
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common agent language, ontologies, coordination and cooperation proto-
cols, directory services, etc.) needed to develop a concrete multiagent sys-
tem. 

3.4 Formalization of the Flexibility Framework 

Building on the formal models of agency and multiagent systems in Sec-
tion 3.3, we now formalize the flexibility framework of Section 3.2. Sec-
tions 3.4.1 to 3.4.5 assume static flexibility and give formal definitions for 
qualitative, quantitative, problem solving, economic, and time flexibility. 
In Section 3.4.6, we extend the analysis to the concept of configuration 
flexibility. 

3.4.1 Qualitative Flexibility 

Qualitative flexibility QualFlex denotes that set of services si, 1  i  n 
(service portfolio) which a multiagent system can deliver to its environ-
ment. A quantitative measure of qualitative flexibility is the size of this set: 

 QualFlex: SetOfServices  |N (10) 

qual_flex := |SetOfServices| (11) 

This still simple definition ignores that the elements of SetOfServices
may be different in many aspects. They may be unequal wrt their rele-
vance, they may be requested in different frequency, at different times, in 
different quantities, etc. Depending on the requirements of a particular ap-
plication it may thus be necessary to employ more sophisticated flexibility 
measures, e.g., such as statistical distribution functions. 

Remark 

In general, not all elements of SetOfServices are known. The set SetOfSer-
vices may even change over time. This may cause all well-known prob-
lems of incomplete, vague and non-monotonic knowledge. Similar consid-
erations hold for all flexibility definitions below. 

3.4.2 Quantitative Flexibility 

Quantitative flexibility QuantFlex denotes how often a multiagent system 
can provide each of its services sj per unit of time. Assumed, agent ai can 
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provide a set of services sj (1  j  n) k times per unit of time. Then, a sim-
ple definition of quantitative flexibility is given through: 

 QuantFlex: SetOfServicesi  SetOfServicesi × |N (12) 

 quant_flex(s1,…, sj, …, sn) := {(sj, kj) | j := 1, …, n, k ∈ |N} (13) 

This definition ignores that the elements of SetOfServices may be differ-
ent wrt to their relevance for a given demand of the environment and that 
the quantitative output of service sj may change over time. 
Additional formalisms may thus be needed to get more appropriate specifi-
cations of QuantFlex.

Example 

Assumed, agent ai provides three services s1, s2 and s3. Each service can be 
provided up to kj times. This leads to QuantFlex := {(s1, k1), (s2, k2), (s3,
k3)}. However, the triples (100, 100, 100) and (1, 1, 10.000) for kj, j := 1, 
…, 3 describe very different quantitative flexibilities that cannot easily be 
compared. 

3.4.3 Problem Solving Flexibility 

A multiagent system i may be able to produce a service si in different 
ways, i.e. through different sequences of activities. We call these 
sequences the problem solving patterns of a MAS i wrt a particular service 
sj, denoted as Patternsi,j. We can thus define: 

 ProblSolvFlexi: Patternsi,j  |N (14) 

 probl_solv_flexi(sj) := |Patternsi,j| (15) 

Again, this is still a simple definition. It ignores, for example, that there 
may be different pre- and postconditions for each pattern, that they may re-
quire different quantities and qualities of resources, etc. This, however, de-
pends on the underlying application and the concrete specification of the 
multiagent system under consideration. 

If one aims to use this concept, a new reasoning component must be in-
tegrated into the architecture of a multiagent system. The inference process 
works as follows: 

1. Self observation: The multiagent system has to keep track of all steps 
performed during problem solving. 

2. Evaluation: The MAS evaluates these after the end of a problem solving 
process. 
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3. Learning: Store learning results as a new pattern in the problem solving 
pattern database. 

4. Monitoring: As multiagent systems typically exist in dynamic environ-
ments, they are supposed to continuously monitor the applicability of 
the pattern in their databases. 

5. Use: If necessary, employ an already existing pattern to solve a current 
task. 

3.4.4 Economic Flexibility 

We have already stated that flexibility cannot be taken for granted. Three 
main types of costs, all together denoted as potential expenses pe, can be 
identified: 

1. Resources R: Flexibility may require additional resources (computing 
time, storage, bandwidth, access to external knowledge, etc.). These re-
sources can be limited, they can cost money, they can be controlled by 
someone else, etc. If a multiagent system aims to involve such resources 
it may have to pay a price for it. 

2. Risks for current commitments CC: As a result of changed internal 
structures and/or behaviors, the risk may arise that current commitments 
are broken (e.g., through a crash of ongoing problem solving processes, 
decreased performance, bottleneck problems, limited scalability, delays 
of service deliveries, reduced service quality, etc.). In such cases, these 
risks RiskCC have to be calculated in appropriate economic terms, e.g., 
in monetary equivalents. 

3. Changes of external behaviors E: Flexibility may lead to changes in be-
haviors of the environment. This may require additional internal activi-
ties and may even complicate the internal planning and reasoning pro-
cesses. This also can be (at least, in principal) mapped to appropriate 
(monetary) terms. 

We call these costs the economic flexibility of a MAS. If curr denotes 
the current state of a multiagent system, adapted the state after adaptation, 
and M the additional costs (e.g., in terms of monetary equivalents), then a 
first definition of EconFlex can be given by: 

M := R × CC × E (16)

 EconFlex: SetOfServicescurr × M  SetOfServicesadapted (17) 
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 econ_flex(si) := { sj | sj := si  (rx, ccy, ez) ∧ (rx, ccy, ez) ∈ M ∧
x = 1, …, m, y = 1, …, n, z = 1, …, o)} (18)

Please note that different combinations of additional resources (rx, ccy,
ez) ∈ M may transform a service si to the same new service sj. This case 
can be considered as a combination of economic flexibility and problem 
solving flexibility. 

3.4.5 Time Flexibility 

Time flexibility denotes the amount of time necessary to perform required 
adaptations. This is of particular interest if a multiagent system needs to 
perform adaptations in very short time. May t ∈ |N denote the number of 
units of time (e.g., seconds) needed to perform a requested adaptation of 
service si. Then, a simple definition of time flexibility is given by: 

 TimeFlex: SetOfServicescurr × |N  Boolean (19) 

This definition does only denote, that the MAS under consideration is 
able to perform a particular adaptation within time span t. This can be 
expressed through: 

( ) =
otherwiseFALSE

l" successfuadaptation" iffTRUE
tsflextime i :,_ (20)

Remark 

In the long term, multiagent systems must be able to perform necessary 
adaptations faster than changes occur to their environments. 

3.4.6 Configuration Flexibility 

According to the definitions in Section 3.3 a multiagent community 
AgentCommunity is given by: 

• A := {a1, a2, …, an}: set of agents, each able to sense, reason and act 
• C := {cij | cij (ai, aj); 1 i, j n}: set of directed communication chan-

nels between pairs of agents ai, aj

• AgentCommunity := (A × C) 
• Multiagent systems MASi are defined as subsets of AgentCommunity: 

MASi ⊆ A × C
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Configuration flexibility is a mapping from the current structure of a 
MAS to a new structure. For our model of multiagent systems, this is de-
noted by the following definition: 

 ConfigFlex: Acurr × CCcurr  Aadapted × CCadapted (21) 

Let A be the set of agents which has been removed together with the set 
of agents which have been added and let C be the set of directed commu-
nication channels which has been removed together with the set of com-
munication channels which have been added. Then we write: 

 config_flex(MASi) := A × C (22) 

Iff config_flex(MASi) = ∅ then MASi is called static flexible. 

Remark 

Section 3.3 provided a generic definition of multiagent systems. This ab-
stracts from many conceptual and technical details (e.g., agent platform, 
common agent language, ontologies, coordination and cooperation proto-
cols, directory services, etc.) needed to develop a concrete multiagent sys-
tem. In a concrete, case, thus, the above definition must be extended to the 
conceptual model of the multiagent system(s) under development. 

3.5 Applications and Further Research 

The conceptual specification of multiagent system flexibility developed 
above can be used in many ways. 

First, our flexibility framework provides software engineers with a new 
requirements engineering perspective, which, in turn, leads to a better un-
derstanding and much easier use of the advantages of multiagent technol-
ogy. Thus, if software engineers are faced with high flexibility demands 
they can now (and have to) decide whether multiagent technology may be 
a relevant candidate for system development (or migration). This facili-
tates multiagent technology-driven innovations of enterprise software ar-
chitectures, for making multiagent technology a tool for lots of software 
engineers, and for further innovations of the software engineering process 
as such. 

After deciding to apply multiagent technology, this framework can fur-
ther be used for what we call “flexibility engineering”: the systematic de-
sign and implementation of adaptation strategies. The design process fol-
lows the definitions introduced above, and will further be driven by the 
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specification of the concrete multiagent system architecture, including 
agent languages, coordination and cooperation protocols, etc. 

Next, the framework may serve for testing. These are important tasks as 
multiagent systems control their external behaviors through bottom up 
strategies, without low or even any centralized control. In that perspective, 
the framework can also serve to restrict flexibility. This provides an inter-
esting new approach for the control of emergent behaviors (which may not 
always be fully accepted in enterprise applications). 

Finally, the framework can also be used to evaluate existing multiagent 
systems wrt their flexibility characteristics. 

3.6 Summary 

Flexibility is the most important characteristic of multiagent technology. 
We lack however substantial research in (MAS) flexibility engineering. 
This chapter aims to provide first theoretical foundations for such work. 

To that purpose we compared flexibility definitions in four selected 
fields. From the results we learned that a production theory perspective to-
gether with its elaborated flexibility concepts can provide a valuable basis 
for our own theoretical work (e.g., [Adam1993]) on multiagent flexibility. 

On this basis, Sections 3.3 and 3.4 developed and formalized a flexibil-
ity framework for multiagent systems which, of course, can also be applied 
to all other types of conventionally designed software systems. 

Finally, Section 3.5 introduced some applications from the multiagent 
engineering perspective, arguing, that this framework may even establish a 
new field of research: the field of software flexibility engineering. 
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Abstract. The manufacturing logistics domain is continually evolving towards 
ever more complex supply chain structures which call for increasingly flexible 
production capabilities. A concept is proposed which leverages agent technology’s 
capabilities to provide flexibility in such a complex environment while at the same 
time it does not interfere with the manifold interdependencies and individual be-
haviors of actors in modern enterprise networks. The Agent.Enterprise concept is 
demonstrated in a prototype implementation which integrates various multiagent 
systems (MAS) into a multi-multiagent system (MMAS). It provides integrated 
yet distributed and flexible supply chain management, from inter-organizational 
coordination down to detailed shop-floor level production planning. 

1.1 Introduction 

Within the last years, technology for intelligent agents has been increas-
ingly regarded as a promising approach to solve complex problems in real 
world business applications. Numerous publications including several 
books document this development. However, many of them primarily fo-
cus on technical aspects of agent technology and multiagent systems (e.g. 
software engineering and design issues) (e.g. [GiMO2003] [OdGM2004]). 
Other publications concentrate on applications of agent technology in very 
specialized domains, e.g. development of scheduling systems [BuJW 
2004]. Hence, for the majority of large and complex problems in business 
environments agent technology seems to be a “promising approach” which 
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has not yet proven its applicability as a widely accepted technology in 
industry. 

The priority research program “Intelligent Agents in Real-World Busi-
ness Applications” of the Deutsche Forschungsgemeinschaft aims at bridg-
ing the gap between current research trends in agent technology and their 
application to real-world problems. Doing so, multiple interdisciplinary 
research projects focus on two application domains: manufacturing logis-
tics and healthcare management. Within this section we focus on the 
manufacturing logistics domain which is addressed in five projects which 
cover various aspects of the domain. While this chapter provides an over-
view of the application domain as a whole, specific application scenarios 
and business cases as well as related results are discussed in subsequent 
chapters. 

Customer
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Product
delivery

Original
Equipment

Manufacturer
(Final assembly)

Order(s)

Product specification
(in case of customer-
specific product)

Parts, sub-
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(Manufacturing)

Raw
material

(R&D, if
necessary)

Flow of information

Flow of material (may involve an
external logistics service provider)

Customer

Core Agent.Enterprise scenario 
implemented in the 

Agent.Enterprise NetDemo

Figure 1. Scope of the Agent.Enterprise scenario 

One of the main challenges for the priority research program is to iden-
tify and successfully implement real-world applications, in which agent 
technology provides benefits not yielded by conventional approaches. One 
benefit is for instance additional flexibility of processes which adapt 
quickly to changing customer demand. However, this has effects both on 
the internal and external processes of enterprises: Value chains are not re-
stricted to internal processes but cover multiple enterprises in complex 
supply networks. Besides processes, which might be supported by agent 
technology, organizational structures and even organizational cultures are 
affected by the introduction of agent-based solutions. 
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The different aspects addressed in the research projects are integrated in 
one large application scenario termed Agent.Enterprise. It integrates inter-
organizational supply chain solutions with intra-organizational manufac-
turing planning applications in one supply chain management control loop. 
An overview of the scenario domain is depicted in Figure 1: Multiple 
manufacturing facilities act together in a supply chain to provide goods to 
final customers. Besides information processes for communicating demand 
and fulfillment information, the physical processes of material transforma-
tion are considered in the scenario, too. 

Based on this scenario a testbed for agent-based applications in the 
manufacturing logistics domain was designed and implemented conjointly 
by the research projects. It is termed Agent.Enterprise NetDemo and dem-
onstrates the advantages of loosely coupling multiple agent-based solu-
tions for supply chain management purposes as opposed to centralized tra-
ditional IT-system architectures (for details cf. II.1.4.3). 

1.2 Challenges in the Application Domain 

As addressed in the introduction of I.1, companies face a global market 
characterized by numerous competitors, a steadily increasing complexity 
of products, manufacturing technology, and business processes as well as a 
highly turbulent production environment. The business processes have to 
be highly efficient, need to provide flexibility, and are required to react to 
short-term changes of customer demand as well as unforeseen events dur-
ing fulfillment. Furthermore, traditional long-lasting customer-supplier re-
lationships are superseded by new business models, e.g. Virtual Enter-
prises and increased recognition of inter-enterprise supply chains 
[CaAF2003]. Such systems consist of networks formed by co-operating 
partners that are covering various companies (Original Equipment Manu-
facturers (OEM), suppliers, sub-suppliers, etc.). The global optimization of 
corresponding business processes offers a vast potential for improvement 
of process flexibility and reduction of process costs. At the same time, 
various new problems arise: For instance, fluctuating demands multiply 
and create the so-called bullwhip effect. In addition, the global planning 
process is hindered by the fact that companies may not be willing to reveal 
their production data to potential competitors unless they are forced to do 
so by powerful OEMs (as it is common in the automotive industry). 

Furthermore, the task of planning, operating, and monitoring of supply 
chains is getting more complex with an increasing number of participating 
enterprises, since heterogeneity and autonomy of partners, uncertainty of 
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events, as well as an increased amount of necessary interaction have to be 
considered. Thus, negative consequences multiply (e.g. delays in suppli-
ers’ processes) due to latency of reaction to unforeseen events in supply 
chains. Planning reliability is decreased and it is increasingly difficult for 
enterprises to achieve cost-efficient production processes and thus, to 
maintain their profitability. 
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Figure 2. Key logistic performance indicators in the manufacturing logistics do-
main according to [WiCi2002] 

Performance of supply chain processes is typically measured with re-
spect to key performance indicators. Figure 2 illustrates typical key 
performance indicators of the manufacturing logistics domain as well as 
their desired states. For instance, schedule reliability on the shop-floor 
should be high to assure that orders are finished at their planned due date. 
This results in a high delivery reliability within a supply chain from an in-
ter-organizational (external) perspective. Unfortunately, some of the de-
sired states complement one another while other desired states are contra-
dictory. For example, one desired state from an enterprise’s internal 
(mostly technical) perspective is a low level of work-in-progress (WIP) 
and thus, a low level of fixed capital in a supply chain (external, mostly 
economic perspective). Low WIP level means short queues of orders 
waiting in front of each resource on the shop-floor. Since the ratio of 
queue time compared to the (fixed) processing time is decreasing, the 
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overall throughput time of an order is comparatively short. On the other 
hand, short queues mean that queues may run out of waiting orders in 
some situations. Consequently, resources may become idle and resource 
utilization is reduced. Hence, the desired system states “low WIP level” 
and “high resource utilization” represent conflicting goals. These examples 
illustrate the complexity of planning tasks in the manufacturing logistics 
domain. 

Further complexity in the management of a supply chain results from 
disruptive events which require fast reactions. However, inter-organiza-
tional order monitoring and so called Supply Chain Event Management
(SCEM) are non-trivial issues as is shown in II.5 while the effects on pro-
cess performance are significant. 

1.3 Suitability of Agents in the Manufacturing 
Logistics Domain 

Although agent technology is inherently suited to solve problems where 
conflicting goals (e.g. in production planning) have to be achieved (e.g. 
through negotiation), this feature alone does not justify its use: Other 
mechanisms such as optimization algorithms can also consider different 
constraints of a problem. In fact, further characteristics of a problem do-
main need to be considered before opting for an agent-based solution. Rus-
sel and Norvig provide a set of properties to describe domains and deter-
mine their suitability for intelligent software agent support [RuNo2003]. 
These properties characterize the task environment and are applicable to 
the manufacturing logistics domain as detailed below. 

Each property provides one dimension of a graph (a hexagon) to char-
acterize a typical task or problem in the manufacturing logistics domain 
(see Figure 3). The larger the resulting hexagon, the better suited is agent 
technology to the problem at hand and vice versa. The properties as ap-
plied to the manufacturing logistics domain are: 

• Observability: If an environment is fully observable by an actor, the ac-
tor has access to all important information generated within the envi-
ronment. In contrast, partially observable environments are common to 
multi-actor scenarios, since e.g. internal strategies of actors are regularly 
not accessible to other actors. In the past, enterprises mostly focused on 
in-house development and production with the consequence of full ob-
servability of these processes. Today, production is streamlined and fo-
cused on core competencies. Tasks such as design and production of 
subsystems and components (e.g. a brake system of a car) are com-
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pletely outsourced to suppliers. Thus, an enterprise often has only lim-
ited visibility into processes of its suppliers although it is highly de-
pendent upon them. Consequently, observability decreases significantly 
(“partly”). 

• Predictability: Assuming that the influence of an actor’s behavior on the 
state of an environment is predictable, the environment is characterized 
as deterministic, else as stochastic. Due to the trend towards ever more 
complex global supply networks and customer-supplier relationships, 
demand as well as effects of disruptive events in manufacturing pro-
cesses are increasingly hard to predict. Typical effects are the bullwhip 
effect or ripple effects of disruptive events in supply chains. Thus, busi-
ness environments tend to be more stochastic than in the past. 

• Sustainability: Actions of an actor which are independent from previous 
actions are termed episodic while actions that depend upon previous ac-
tions are characterized as sequential. Environments where sequential
actions prevail demand tracing of effects of previous actions. Today, 
this is increasingly important in Customer Relationship Management 
(CRM) since long term development of individual relationships with 
customers is a primary goal. Strategic decisions such as the design of 
new products suited for customization are also affected by sequential 
behavior of customers. 

• Reliability: A stable environment which does not change until a specific 
action of an actor takes effect is static otherwise dynamic. For instance, 
on a shop-floor, a machine failure prevents execution of the original 
production plan. Assuming that a new process plan is to be generated 
although it takes a few hours, the shop-floor situation may not be the 
same once the new plan is executed, because human actors have worked 
according to their individual plans in the meantime. Dynamic environ-
ments are common to many industries which face global competition, 
short product life cycles and fluctuating demand. 

• Continuity: Describes, how time is handled in the environment: If each 
action is clearly associated to a specific time slot, the environment is 
discrete. Most environments tend to be continuous from the point of 
view of an observer since events occur at random points in time and 
may occur in parallel. 

• Interaction Density: The number of communication channels required to 
solve a problem is determined by the number of actions and the intensity 
of interactions among them to find a solution (e.g. a production plan). 
Within a (theoretical) “single-actor” environment, an actor does not de-
pend on communication with other actors. However, real business envi-
ronments are “multi-actor” environments both on an enterprise level 
(departments, multiple machines and workers etc.) and on a supply 
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chain level (at least one customer, in most cases lots of partners in a 
supply chain). 
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Figure 3. Changing task environments in the manufacturing application domain, 
criteria according to [RuNo03, pp. 41-44]. 

In the past, many of the influencing factors were rated as less critical. 
For instance, typical manufacturing processes provided better observability 
(in-house processes), higher predictability (smaller markets) and less 
sustainability (less intense customer relationships) (see Figure 3). Hence, 
IT-systems developed in the last decades were focused on solving prob-
lems with these characteristics while they are not suited to succeed in to-
day’s manufacturing logistics domain. The changed task environment in 
the manufacturing logistics domain requires different aspects of flexibility 
as introduced in I.3. Some examples are: 

• A decrease of predictability of demand requires an increase in quantita-
tive flexibility to adapt the output of a production or supply chain system 
to the changing demand. 

• Sustainability which is ever more sequential (e.g. due to CRM activi-
ties) requires an increase in I/O flexibility to provide for instance cus-
tomized products while maintaining a constant mix of input factors. 
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• Dynamic environments with a low reliability call for process flexibility
to adapt e.g. production processes without changing the type of output. 
Furthermore, defect flexibility needs to be increased, for instance 
through event management techniques which handle disruptive events in 
a process. 

Concluding, today’s problems are no longer characterized by a small 
area around the origin of the diagram in Figure 3 but by much larger areas 
which requires an increase in various aspects of flexibility. Agent technol-
ogy promises to provide such flexibility increases while existing technolo-
gies cannot provide these as easily. In the following chapters examples of 
specific domain problems within enterprises and within multi-level supply 
chains of the manufacturing logistics domain are analyzed according to 
these six properties to illustrate the necessity for flexible solutions based 
on agent technology (see II.2 to II.5). 

1.4 Intelligent Agents in the Manufacturing 
Logistics Domain 

The projects of the research program have developed concepts and imple-
mented prototype systems to solve specific problems in the manufacturing 
logistics domain: Within these projects, evaluations and benchmark tests 
with typical scenarios were conducted in order to substantiate hypotheses 
and to compare behavior and results of MAS with traditional, mostly cen-
tralized solutions. Furthermore, the Agent.Enterprise NetDemo demonstra-
tor was implemented conjointly as a proof-of-concept for an agent-based 
supply chain planning and monitoring system. With respect to the topics of 
scheduling and monitoring existing agent-based concepts and solutions are 
analyzed: 

Scheduling 

Problems of resource allocation in various industrial domains are one main 
focus area for agent applications. For instance, at DaimlerChrysler agents 
negotiate in order to control a manufacturing process in cylinder produc-
tion [BuSc2000]. In the transportation domain, allocation of trucks to 
transportation routes and tours is optimized by negotiating agents in a so-
lution provided by Whitestein Technologies [DoCa2005]. Distributed co-
ordination of resource allocation in supply chain processes is considered in 
many research projects. For an overview see e.g. [WaGP2002]. Often, a 
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wide range of different types of software agents is proposed for covering 
planning and execution of actions (e.g. [FoBT2000]). 

Monitoring 

Some providers of SCEM systems claim to use agent technology for pro-
viding flexibility within their solutions [PSIL2005]. This is an indicator for 
the suitability of agent technology to information logistics tasks in supply 
chains. Active research is conducted on information gathering agents al-
though these are generally concerned with searching for information in 
Internet resources especially to prepare a transaction (e.g. comparing and 
combining offers) [Wag+2001] [ChLL2000]. A series of workshops on 
Cooperative Information Agents (CIA) is regularly organized since 1997 
by Klusch [Klus2005]. Latest results have focused on aspects of informa-
tion gathering based on the semantic web, interactive and mobile agents, 
agents in peer-to-peer computing, and recommender agent systems. How-
ever, agent-based monitoring in supply chains is seldom directly addressed 
by current research except by the project presented in II.5. 

1.4.1 Agents for Particular Tasks in the Manufacturing Domain 

The research projects which are involved in the Agent.Enterprise activities 
address the outlined problems. They offer services ranging from supply 
chain management and scheduling over shop-floor production planning 
and control to proactive monitoring services which guarantee reliability of 
supply chain processes in case of unforeseen disruptions. Table 1 gives an 
overview of the various MAS functionalities. 

The DISPOWEB system presents a decentralized negotiation protocol 
for cooperative economic scheduling in a supply chain environment. These 
protocols are evaluated using software agents that maximize their profits 
by optimizing their local schedule and offer side payments to compensate 
other agents for lost profit or extra expense if cumulative profit is achiev-
able. To further increase their income the agents have to apply a random-
ized local search heuristic to prevent the negotiation from stopping in lo-
cally optimal contracts. The developed search mechanism assures truthful 
revelation of the individual opportunity cost situation as the basis for the 
calculation of side payments and to protect the agents against systematic 
exploitation. 

The IntaPS approach described in II.2 proposes a system architecture 
based on the application of cooperative agents for optimizing information 
logistics for process planning and production control. Evaluation and 
benchmarking of this approach shows its ability to consider the early 
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stages of process planning. That means capacity information and due dates 
will be taken into account. Furthermore, process planning knowledge will 
be used for short term scheduling decisions at the shop-floor. Conse-
quently, problems will be eliminated which result from delayed return of 
manufacturing knowledge and capacity data or other problems in informa-
tion flows, e.g. due to the use of static process plans. 

Table 1. Overview of involved projects and MAS functionalities 

Project Main MAS Functionality 

DISPOWEB [DISP2005] Negotiations among enterprises 
on supply chain level 

IntaPS [Inta2005] Integrated process planning and scheduling 
(with focus on discrete manufacturing) 

KRASH/ControMAS1

[KRAS2005] 
Production planning and controlling 
(with focus on assembling industries) 

FABMAS [FABM2005] Production planning and controlling 
(with focus on batch production) 

ATT/A42 [ATT2005] Monitoring of orders including suborders
in supply chains 

MAS-based decentralized planning approaches produce better planning 
results than centralized job-shop algorithms. This is especially significant, 
if the decision space for a MSP problem is both complex and heteroge-
neous as it is in unit assembly environments. In these environments MAS 
provide good results in the decision space by taking time-dependent plan-
ning parameters into account. This is shown by the KRASH/ControMAS 
approach (see II.3). Additionally, in case of disruptive events waiting 
queues of production lines are handled more efficiently with MAS. 

A third MAS for production planning with a focus on batch production 
is presented in II.4. However, it is currently not integrated in the 
Agent.Enterprise NetDemo demonstrator3.

For agent-based monitoring and Supply Chain Event Management 
(SCEM) in multi-level supply chains (ATT) it is shown that this concept 
provides significant reductions of follow-up costs of disruptive events (see 
II.5). Currently available client-server-based SCEM systems generally do 

1  ControMAS is successor of the KRASH project. 
2  A4 is successor of the ATT project. 
3  Since FABMAS is not part of the Agent.Enterprise NetDemo demonstrator, 

specific aspects of batch production are not considered in the current Agent.En-
terprise scenario. 
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not provide the necessary communicative abilities to realize inter-organ-
izational monitoring and waste efforts on orders that do not encounter 
problems, thereby reducing efficiency of the SCEM systems. Experiments 
with a generic prototype and results from an industrial showcase substanti-
ate these findings. For instance, within a showcase, potential cost reduc-
tions add up to nearly 100,000 Euros per quarter for a single logistics ser-
vice provider (see II.5). 

Detailed information concerning special challenges, which are ad-
dressed by the individual projects, their approach and the benefits achieved 
by the implemented MAS can be found in subsequent chapters. Neverthe-
less, some basic features of each system are illustrated in the context of the 
Agent.Enterprise scenario. 

1.4.2 The Agent.Enterprise Scenario 

All individual MAS solutions are integrated in the Agent.Enterprise sce-
nario. The scenario comprises a simplified supply chain of a manufacturer 
of agricultural equipment (tractors etc.). Although the supply chain has 
limited complexity and the products represent models of tractors, trailers, 
etc., all criteria for an application to a real supply chain are fulfilled: For 
instance, the product structure of the tractor models is stored in a product 
database for product data management (PDM). Bills of material (BOM) for 
all products, process plans with estimated process times, and costs for 
manufacturing of some parts are available. Other parts are marked as sup-
plied parts including a reference to the supplier(s). A typical supply chain 
management cycle of distributed supply chain activities for the scenario is 
shown in Figure 4. 

The initial distributed supply chain planning (SCP) is performed by 
agents of the DISPOWEB system. After generating an initial plan of or-
ders and suborders concerning prices and dates of delivery, software 
agents located at the different supply chain partners (shaded triangles) ne-
gotiate: They minimize costs and consider due dates of deliveries ( ).
These optimized delivery plans are used on the intra-organizational level 
within each enterprise to plan the production of goods on each stage of the 
supply chain in detail. The different intra-organizational MAS (e.g. IntaPS, 
ControMAS) are concerned with varying aspects of production planning 
( ). They require input from DISPOWEB agents and generate detailed 
plans for their production facilities in order to initiate their own “Plan-
Execute-Control” cycle on the shop-floor level. These plans are the initial 
input for a controlling system on supply chain level (ATT). 
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Figure 4. MAS interaction within the Agent.Enterprise scenario 

This MAS monitors orders on every stage of the supply chain using a 
distributed architecture in order to proactively detect events which 
endanger the planned fulfillment. In case of such an event (e.g. a 
disruption in a production cycle) the ATT system initiates communication 
with related partner enterprises and informs them of the event ( ). This 
information can be used to trigger rescheduling of plans on an enterprise 
level ( ) or, in case of major events, it results in renegotiation of the 
contracts on the inter-enterprise level of the DISPOWEB system ( ). An 
overview of activities and corresponding actors in the supply chain is 
given in Table 2. 
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Table 2. Activities and actors in the Agent.Enterprise scenario 

Step Activity (Actor) 

Negotiate initial plan of production among supply chain partners 
(DISPOWEB).  

Operational assembly planning (KRASH/ControMAS). 
Production planning for mechanical parts (IntaPS). 

Monitoring of orders and related suborders (ATT). 
Trigger internal planning systems in case of minor critical events (ATT). 
Next 
Trigger replanning by DISPOWEB agents in case of a severe critical event 
(ATT). Next 

Internal rescheduling in reaction to a critical event (KRASH, 
IntaPS). Next 

Renegotiate plan of production between supply chain partners due to se-
vere critical event (DISPOWEB). Next 

1.4.3 Fundamentals of Agent.Enterprise Testbed 
Implementation 

Since all MAS in Agent.Enterprise are evaluated individually with respect 
to their specific research problems and benchmarks, an evaluation of the 
Agent.Enterprise approach as a whole focuses on the technological inte-
gration of the various MAS. For this purpose, the Agent.Enterprise Net-
Demo has been developed. It provides an open testbed for agent technol-
ogy in the manufacturing logistics domain designed to be applied to com-
plex manufacturing supply chains. Objective of the testbed is to prove the 
feasibility of managing supply chains cooperatively by multiple heteroge-
neous MAS and enabling comparative experiments with different research 
approaches in the context of the Agent.Enterprise scenario. 

Therefore, the testbed features a bottom-up approach of loosely coupled 
MAS forming a supply chain according to the Agent.Enterprise scenario. 
This results in a so-called multi-multiagent system (MMAS). The MMAS 
incorporates three types of MAS as defined by the scenario: one for sup-
ply-chain-wide planning of orders (SCP role by DIPSOWEB), one spe-
cialized on intra-organizational production planning and scheduling (sup-
plier-role by IntaPS and ControMAS), and one for supply chain monitor-
ing (SCT role by ATT). Each enterprise (shaded triangles in Figure 4) in 
the supply chain is represented by three agents within the MMAS: 

• one SCP-agent for supply chain (re-)planning of orders, 
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• one gateway agent for each enterprise which provides access to an 
enterprise’s SCT-MAS for monitoring released orders and 

• another gateway agent per enterprise as the link to the internal produc-
tion planning MAS (supplier-role) of the different enterprises in the 
Agent.Enterprise supply chain (see Figure 5). 

Gateway agents perform all necessary actions such as translating mes-
sages from the Agent.Enterprise format to the MAS-specific format and 
vice versa. For this purpose, a MAS-independent ontology (Agent.Enter-
prise Interface Ontology) has been designed. The mapping between the 
Agent.Enterprise Interface Ontology and the MAS-specific ontologies is 
realized by the gateway agent: In addition, interaction among gateway 
agents of different participating MAS is performed according to the 
Agent.Enterprise Communication Protocol, which consists of a number of 
nested FIPA-compliant agent communication protocols [SNSS2004]. 
FIPA-compliant ACL messages, which are sent from one participating 
MAS to another, are transmitted using a Hypertext Transfer Protocol 
(HTTP)-based message transport protocol. Thus, these messages can easily 
be transmitted via the Internet in a distributed environment. 

GW = Gateway
PPC = Production Planning and Control

FIPA-compliant MAS-Platform A
(e.g. JADE)

MAS A

(e.g. PPC on

enterprise level)

GW-
Agent

A

FIPA-compliant MAS-Platform B
(e.g. FIPA-OS)

MAS B

(e.g. planning on
supply chain level)

GW-
Agent

B

Figure 5. The Agent.Enterprise gateway agent concept 

An important aspect of the testbed is loose coupling of the MAS: Due to 
the gateway agent concept, each participating MAS is executed without 
modification to its internal planning and coordination algorithms and data 
structures. The gateway agent concept also provides a fair degree of flexi-
bility to the testbed. Currently, internal production planning is performed 
by the aforementioned MAS – developed within the different research 
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projects of the research program – which assume the supplier roles. It 
would also be possible to develop gateway agents which implement a 
wrapper layer for conventional (non-agent-based) planning systems and 
link them to the Agent.Enterprise supply chain. This would allow experi-
ments to compare conventional with agent-based coordination and plan-
ning approaches. 

1.5 The Agent.Enterprise NetDemo’s Portal and 
Benefits 

To provide a wider audience with the opportunity to gather hands-on ex-
perience with agent technology applied to the manufacturing logistics do-
main, the testbed is accessible via the Agent.Enterprise NetDemo portal-
website [NetD2006]. The portal visualizes interactions within the MMAS, 
provides the opportunity to initiate new experiments (e.g. placement of 
new orders) and allows to reset the simulation. 

The welcome screen of the Agent.Enterprise NetDemo portal presents 
an overview of the participating MAS and offers links to examine them in 
detail (see Figure 6). Therefore, each participating MAS is visualized sepa-
rately while it is situated in the context of the entire supply chain. In addi-
tion, the portal features a documentation of the Agent.Enterprise Commu-
nication Protocol as Agent-based Unified Modeling Language (AUML) 
diagrams as well as the Agent.Enterprise Interface Ontology (for download 
as Protégé file). 

To our knowledge, the Agent.Enterprise NetDemo is currently unique – 
or at least exceptional – in two points: First, the MMAS underlines the fea-
sibility of managing realistic complex supply chains with loosely coupled 
heterogeneous MAS. Its integration capabilities indicate the potential to 
exploit benefits of specialized agent-based solutions in larger contexts. 
Second, the portal is unique in that it provides a publicly available oppor-
tunity to user-driven experiments on agent technology in realistic commer-
cial application scenarios. 

Furthermore, the development of the testbed has also brought about im-
portant technological advancement, e.g. in the areas of MAS integration 
and agent-oriented software development methods. Some of the insights 
have already been published ([SNSS2004] [NiSt2004]) and/or influenced 
Part IV of this book. 
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Figure 6. The Agent.Enterprise NetDemo portal-website4

1.6 Conclusion and Outlook 

This chapter presented the Agent.Enterprise approach. It is based on two 
foundations: First, the application of cooperative software agents for opti-
mizing scheduling in the field of concurrent process planning and produc-
tion control. Second, a closed-loop control cycle in supply chains is real-
ized by providing distributed monitoring and event management capabili-
ties with dedicated MAS. Doing so, the challenges of today’s manufactur-
ing logistics environment are met by an integrated yet flexible and distrib-
uted concept of loosely coupled MAS. The Agent.Enterprise NetDemo
demonstrator illustrates this ability as a proof-of-concept: Based on a pro-
totypical implementation and a realistic application scenario, the presented 
research work confirms the ability of agent technology to solve real-world 
planning and control problems in supply chains. 

4  Here: detailed view of DIPSOWEB’s SCP-MAS that currently builds an initial 
schedule for the production of a tractor ordered by a customer. 
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Detailed analysis of benefits to be achieved in the various specific 
problem domains is conducted in subsequent chapters. At this point, it is 
concluded that benefits of integrating all these MAS solutions will at least 
reach the level of cumulated individually realized benefits while overall 
supply chain flexibility is significantly increased with an MMAS ap-
proach. Hence, increasing requirements for flexibility in the manufacturing 
logistics domain, specifically regarding the dimensions defined in II.1.3, 
can be met with agent technology and realized with available software de-
velopment resources. Based on these results we assume that agent technol-
ogy today provides all means to provide additional flexibility to supply 
chain processes in the manufacturing logistics domain. Since single indus-
trial-strength applications begin to emerge (see I.4) we predict that next-
generation agent applications will provide industrial-strength solutions to 
various specific isolated problems. Although this isolation is required in 
the beginning to set up these systems, integration into MMAS is the logical 
next step since real-world supply chains are highly interdependent and 
complex. That complexity can be managed by MMAS is the main contri-
bution and outcome of the Agent.Enterprise scenario and demonstrator. 
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Abstract. This chapter deals with the application of intelligent software agents to 
improve information logistics in the area of process planning and production con-
trol. Therefore, enterprises will be able to fulfill the requirement of flexible, reli-
able and fault-tolerant manufacturing. Fulfillment of these requirements is a pre-
requisite for successful participation in modern business alliances like supply 
chains, temporal logistics networks and virtual enterprises. Thus, agent-based im-
provements of information logistics enable enterprises to face the challenges of 
competition successfully. Conducted research activities focused on the develop-
ment of agent-based systems for integrated process planning and production con-
trol. They led to the “IntaPS” approach which is presented in this chapter. 

2.1 Introduction 

Modern manufacturing is in need of flexible and adaptive concepts for 
process planning and scheduling to meet market requirements. However, 
today’s industrial products are often characterized by a complex design, 
functionality, and necessary manufacturing and assembly processes. Com-
puter systems for the support of process planning, production control, and 
scheduling tasks have to handle critical paths, bottlenecks, and risk of fail-
ures (e.g. machine breakdowns) within real-time. In this context, real-time 
means spontaneous reaction and re-planning in contrast to traditional re-
planning where updated plans are computed e.g. in overnight batch-job 
runs of the planning system. Furthermore, with respect to manufacturing of 
complex and sophisticated products, the planning and scheduling tasks re-
quires a high degree of knowledge about products and production pro-
cesses. Therefore, computer-aided support for production planning and 
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control systems is in need of formalized knowledge, which can be handled 
and processed adequately. 

A promising approach to achieve the goal of flexible manufacturing is 
the application of intelligent agents. Since agents are able to collaborate 
and solve problems in a distributed manner, they are used for complex 
tasks, which can hardly be solved with a centralized approach and while 
exhibiting a natural distribution. In these domains agents can provide great 
benefit caused by the ability to react adequately to external influences 
(technical flexibility) and using the dynamic potential flexibility of a sys-
tem (see I.3). In this context, the application of agent technology provides 
enterprises with opportunities to improve their competitiveness within the 
global economy. Especially small and medium-sized enterprises (SME) 
will benefit from this development, since many SME’s focus on very spe-
cialized products in niche markets. These enterprises are affected by 
changing customer behavior in particular. 

Assessment of the 
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Figure 1. Properties of a shop floor manufacturing environment1

Furthermore, many SME’s act as sub-contractors in supply chains in-
stead of targeting the end-user market and face competition. Due to im-
proved and reliable information logistics in the planning and execution of 

1  According to [RuNo2003]. 
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manufacturing operations, these enterprises will meet this competition suc-
cessfully (see II.1). 

This chapter focuses on the development and application of agent-based 
systems for integrated process planning and production control in a shop 
floor environment. This meets to the IntaPS approach, which is presented 
in the following. According to Russell and Norvig [RuNo2003] and II.1.3 
respectively Figure 1 points out properties of a shop floor manufacturing 
environment in the context of already described typical business environ-
ments. 

A typical shop floor environment is characterized by a high amount of 
interaction density between all participants. Due to the fact that the shop 
floor environment is not fully observable and controlled by dynamic pro-
cesses the predictability is basically influenced by stochastic events. Since 
most manufacturing processes depend on prior executed manufacturing 
steps the sustainability is very low. Manufacturing processes are continu-
ous, which means that events may occur for a period of time without inter-
ruption and may also occur in parallel. 

2.2 Conventional Approaches 

With respect to the manufacturing domain, attention has to be drawn to 
process planning and production control. The traditional approach of sepa-
rating planning activities (e.g. process planning) from executing activities 
(e.g. production control and scheduling ) is characterized by definite bor-
derlines [Ever2002, GaSl1999]. These borderlines result in a gap between 
involved systems, which implies a loss of time and information. This 
situation becomes obvious for instance in the strict spatial as well as tem-
poral separation of process planning and production control. In most cases, 
static linear process plans are used for information exchange. Thus, the 
current situation in industrial applications is characterized by several 
problems. For example, information about the capacity and current load of 
resources as well as further economic aspects are not considered while 
conventional static process plans are generated. Resulting process plans 
are not flexible enough to be quickly adapted to unexpected situations at 
shop floor level (e.g. machine breakdowns, missing devices or broken 
tools etc.) [ToTe1998]. Thus, process plan modifications carried out on the 
shop floor level in case of unexpected events will lead to feasible, but not 
to optimal results. Furthermore, modifications carried out by centralized 
process planning groups are very time-consuming. This problem is intensi-
fied by the fact that complexity of new and innovative manufacturing 
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processes as well as knowledge necessary for process planning increases. 
Due to well-trained workers, this knowledge is mostly available at shop 
floor level. Unfortunately, it often takes a long time until this knowledge is 
available at a centralized process planning group. Due to this lack of 
knowledge exchange, quality and reliability of planning results is reduced 
on a long-term basis [Deen2003]. Consequently, advantages of the appli-
cation of innovative manufacturing technologies, which are often more 
suitable regarding economical as well as ecological aspects, remain un-
used.

These drawbacks become particularly obvious in decentralized job-
shops with batch-job production. In this case, a lack of software support 
for process planning and scheduling activities in decentralized manufac-
turing can be spotted. In this context, a survey was carried out by IFW to 
determine the state of decentralization in industrial companies in Germany 
[Woel2003]. 75 companies from industries like mechanical engineering, 
automotive industry, and suppliers for automotive industry (enterprises 
with individual or batch-job production) answered a questionnaire con-
cerning their efforts to decentralize managerial and manufacturing func-
tions as well as their corresponding IT infrastructure. Approximately a 
quarter of them answered at each case: (a) “decentralization is no subject 
of interest”, (b) “projects for decentralization are planned”, (c) “projects 
are in progress”, and (d) “projects had been carried out”. 

Most decentralization projects aim at reduction of lead time, higher 
flexibility, and robustness or cost reduction. Known obstacles are for ex-
ample the lack of worker motivation to support decentralization measures 
and shortage of manpower for planning and executing decentralization 
projects. Despite these obstacles, most companies are satisfied with the re-
sults of decentralization: 37% stated that the goals of their projects are ful-
filled. Only 3% acknowledged that they missed all of their goals. The 
measures taken by the companies deal for example with shifting tasks to 
the shop floor (e.g. scheduling tasks, detailed process planning tasks, and 
NC code generation), rearrangement of machines and resources at the shop 
floor, and the introduction of team production as well as further education 
of workers. 

Another question referred to CAPP systems (computer aided process 
planning) used for computer aided process plan generation. Approximately 
32% of the companies use the PP module of the SAP R/3 ERP system for 
process plan generation (see Figure 2; left). 21% use other commercial 
systems for this purpose. Another notable result is the fact that a quarter of 
all interviewed companies use proprietary software tools for process plan-
ning and 20% perform this task without computer support. 
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A similar situation characterizes the IT infrastructure for production 
control systems (see Figure 2; right). It is noteworthy that more than one-
third of all interviewed companies use proprietary software (22%) or no 
software (17%) for this purpose. 
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Figure 2. Survey on decentralization 

These survey results emphasize the proposition of the lack of appropri-
ate software tools to support necessary tasks like distributed process plan-
ning and production control. Thus, the assumption is affirmed that there is 
a strong need for new flexible information technologies and tools to sup-
port process planning and production control in a decentralized way as it is 
proposed in I.3. 

2.3 Analysis and Model Building 

The aim of integrating process planning and production control functional-
ity to overcome the limitations discussed above is well known for several 
years. A very promising approach to improve information logistics in pro-
cess planning and scheduling in batch job production is the use of multi-
agent systems. 

Not only with respect to the production engineering domain, the inter-
ests in agent technology and agent related topics have risen enormously in 
the last decade [JeWo1998]. Co-operative agents can act autonomously, 
communicate with other agents, are goal-oriented (pro-active), and use ex-
plicit, formalized knowledge [Weis1999]. Thus, the use of an agent-based 
approach with autonomously, co-operatively, and purposefully acting in-
telligent software units seems to be very promising to make possible short-
term and flexible reaction in manufacturing. 

Since numerous applications of software agents in the manufacturing 
domain focus on planning and scheduling tasks from a logistic point of 
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view, the main topic of the research project IntaPS (Integrated process 
planning and production control) is set to the agent based integration of 
process planning and production control. The IntaPS approach is based on 
the application of co-operative agents and in-house electronic market-
places. The basic architecture of IntaPS consists of two substantial compo-
nents, which link information systems from earlier stages of product de-
velopment and resources on the shop floor (see Figure 4). Today, central-
ized CAPP approaches perform all tasks for process plan generation at a 
single location (e.g. in a single instance of the CAPP program) [Ever2002]. 
In distributed system architectures these tasks are to be distributed among 
the involved software components. Since the benefit of multiagent systems 
results from emergent behavior through efficient communication, the strat-
egy for system design should be not only to make the single agent as com-
plex as necessary but also as simple as possible. 

The following table lists typical activities which have to be carried out 
in process planning. The abbreviation behind each activity names the re-
sponsible entity: 

Table 1. Responsibilities for process planning activities 

Step Activity Responsibility 

1 Determination/design of raw part RLPP 

2 Identification of machining tasks RLPP 

3 Divisions/sequencing of machining operations (RLPP/)OA–RA 

4 Selection of machine tool OA-RA 

5 Selection of cutting tools RA 

6 Selection of machining parameters RA 

7 Estimation of time and cost RA 

8 Generation of NC code *

9 Documentation of process plan OA-RA/SA 

RLPP stands for ‘Rough-level Process Planning’ carried out by the cen-
tralized component. The sequence of machining operations and selection 
of machine tools are results of negotiations between order agents and re-
source agents (indicated by OA – RA). Known restrictions for sequencing 
are implied in the formal description of identified machining tasks gener-
ated by the RLPP (indicated by (RLPP/)). While calculating bids and of-
fers during negotiations, resource agents evaluate their ability to perform 
requested machining tasks (indicated by RA). Thus, complete process plans 
(from the point of view of orders) and loading status (from the point of 
view of resources) are results of a negotiation. Since human users of plan-
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ning systems like IntaPS prefer to have a bird-eyes view over the shop 
floor situation as a whole, service agents (indicated by SA) are used to 
gather information and to visualize them in the user interface for each 
user’s request. 

The activity of NC code generation is marked with an asterisk (*), since 
the performing entity depends on the organization of the individual com-
pany. If a company uses shop-floor-oriented programming procedures 
(SOP), the respective functionality has to be integrated into the resource 
agents. If a centralized CAM (Computer Aided Manufacturing) department 
generates NC codes, this department itself may be represented by a re-
source agent and other resource agents use its offered services. Some ad-
ditional tasks performed by process planning groups in enterprises are not 
covered by the functionality of the IntaPS system, e.g. processing bill of 
materials (map design part list to manufacture/assembly bill of material), 
inspection planning (while inspection stations are not represented yet by 
resource agents), and consulting service for product design group to 
achieve a proper design-for-manufacturing. Nevertheless, the planner will 
be able to spend more time on these additional tasks due to time-saving 
generation of process plans and less efforts for manual interaction in case 
of re-planning. One important aspect of IntaPS is the structured modeling 
of the application domain. The modeling method consists of three phases: 
Conceptualization, analysis, and design. 

During the first phase called Conceptualization, the analyzed domain is 
examined from a user-centric point of view. Typical use-cases as well as 
some basic communication requirements are identified. The objective of 
this phase is to get a basic idea of relevant interactions between partici-
pating entities. The results of this phase are documented using UML charts 
(Use-case diagrams, Message-Sequence-Charts) and are refined in the sec-
ond phase. 

The second phase is called Analysis and results in five mostly formal-
ized models which serve as a basis for prototype implementation: These 
five models are: 

• Organizational model: Description of the organizational structures in 
which the MAS has to be used (in this case: process planning depart-
ment and shop floor of an enterprise) such as hierarchical structures, re-
lationship between agents, their environment and agent society struc-
ture, identification of agents and roles. 

• Task model: Determination of goals of the individual agents and their 
tasks. 

• Agent model: Detailed model (e.g. represented as a UML class diagram) 
and (semiformal) textural description of the agents. 
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• Coordination model: Model of the agent interaction and coordination in-
cluding specification of suitable communication protocols (e.g. based on 
state chart diagrams and detailed sequence message charts). 

• Expertise model: Modeling knowledge of the domain, agents, and envi-
ronment. 

These models are mostly represented in UML. Some descriptions of in-
dividual agent properties contained in the agent model are based on semi-
formal textual patterns. 

The last phase is called Design and deals with the detailed design of the 
agents as well as the agent platform respectively the electronic market-
place. Thus, the third phase leads to implementation activities for the reali-
zation of the MAS and in this case to the IntaPS prototype. 

In the context of the expertise model the Ontology Inference Layer 
(OIL) is used for the specification of an ontology which is common to all 
agents participating in the electronic marketplace. Formalization of neces-
sary knowledge for rough-level process planning as well as for decentral-
ized detailed planning is an important task of the IntaPS project. Therefore, 
common information models of the manufacturing domain are analyzed 
(Figure. 3). 
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Figure 3. Relevant information models in the production engineering domain 

Relevant information as well as other information concerning the do-
main is represented by three major information models: product model, re-
source model, and process model. These three major models depend on 
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different well-known information models, which were adapted to the spe-
cific demands of IntaPS. For example, appreciable information models are: 
a formal description of manufacturing features from ISO 14649 ‘STEP-
NC’ [Weck2003], product structure definitions based on ISO 10303-4x 
‘STEP’ [ISO10303-44], and a classification of manufacturing processes 
according to DIN 8580. 

In case of the STEP-NC information model, STEP-NC-compliant manu-
facturing features are used for rough-level process planning. Since order 
agents need a well-structured description of manufacturing tasks to be car-
ried out to execute the corresponding manufacturing order, they take ad-
vantage of STEP-NC. STEP-NC offers an object-oriented view to manu-
facturing tasks and describes manufacturing features like ‘hole’, ‘pocket’, 
or ‘slot’ instead of using a geometrical description of the tool path like 
conventional NC programming systems (e.g. so called G-code). Thus, the 
order agents build up an object-oriented task model for their corresponding 
work piece and are able to describe manufacturing tasks in a machine-in-
dependent way while tendering their request at the electronic market for a 
later decentralized detailed planning. 

Furthermore, STEP-NC manufacturing features are used by resource 
agents for detailed process planning. During negotiations between order 
and resource agents, single manufacturing features like a dedicated in-
stance of a pocket are analyzed by each involved resource agent. The sin-
gle resource agent decides whether its corresponding resource (e.g. a spe-
cific machine tool) is able to process this manufacturing feature or not by 
evaluating its local knowledge base of contrivable manufacturing pro-
cesses. If the agent decides, that its corresponding resource is able to pro-
cess this manufacturing feature, the resource agent will offer its services to 
the order agent by submitting a proposal. Therefore, the resource agent re-
quires information like estimated duration of the manufacturing process 
and uses the STEP-NC-based manufacturing feature and its attributes to 
calculate estimated processing times and machining parameters. 

2.4 Design and Architecture 

The IntaPS approach is based on a system of intelligent agents implement-
ing integrated process planning and production control. The application ar-
chitecture is derived from the previously introduced model and illustrated 
in Figure 4. In order to transform this architecture into a software system, 
agent architectures, agent decision, and coordination between agents be-
havior have to be designed. 
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Figure 4. The IntaPS architecture 

Central to the IntaPS approach a new and innovative agent architecture 
has been developed: Discoursive Agents. The Discoursive Agents approach 
specifies an architecture for agent behavior, knowledge representation, and 
inferences for application in eBusiness, esp. in the manufacturing domain. 
It strictly separates internal and external aspects due to privacy and secu-
rity issues. We introduce a three layer architecture (cf. Figure 5) consisting 
of communicator, working on a low-level realization of speech acts; con-
troller, determining general agent behavior; and executor, i.e. an interface 
to existing components, e.g. enterprise resource planning (ERP) systems 
and further information sources [Timm2001]. 

Nowadays, the communicator should be implemented with respect to 
standardization efforts like FIPA [PoCh2001]. In the case of the IntaPS re-
search project, the communicator is realized on top of a FIPA compliant 
agent toolkit [BePR1999]. The executor has to be implemented according 
to its directly connected resources, e.g. machine tools. For evaluation pur-
poses, the executor may serve as an interface to external simulation sys-
tems, e.g., eMPlant. While the communicator and executor layer is con-
structed in a straight forward manner, the design of the controller layer is 
more sophisticated implementing innovative concepts for agent-interaction 
in electronic marketplaces (open, adaptive communication (oac)), and de-
cision making (conflict-based agent control (cobac), and capability man-
agement ). 
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Figure 5. The discourse agent architecture 

The controller layer determines the behavior, strategy, and state of the 
agent, i.e., an agent behaves in the way the functions and procedures in the 
controller are implemented resp. executed. It can only learn from experi-
ence acknowledged in the controller layer. The architecture presented here 
is based on the deliberative agent architecture BDI [RaGe1995]. The for-
mal foundation is introducing a new multi-modal logic [Timm2004a], 
which integrates the formal approaches VSK-logic [WoLo2000] for inter-
agent behavior and the LORA-logic [Wool2000] for deliberative agent be-
havior. In the following, we are presenting the core algorithms of the con-
troller layer: open, adaptive communication (oac) for negotiation, capabil-
ity management for fuzzy matchmaking, and conflict management for 
resolving conflicts of interest (cobac). 

2.4.1 Open, Adaptive Communication 

Common approaches to agent-oriented analysis and design like 
[WoLo2000] or [LuGI1997] lack an intuitive methodology to generate and 
customize agent communication protocols. Furthermore, communication 
protocols are often defined within a static structure, which cannot be di-
rectly adapted by the agents during runtime. In the manufacturing domain 
in the IntaPS project, where complex products are manufactured according 
to customer requirements, this kind of flexibility is required since negotia-
tions about the products features will vary from customer to customer. 
Therefore, the agents collaborating have to be able to adapt their protocols 
according to the dialogue partner, their own state, the multiagent system's 
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state, and experience of prior communications. Within the oac approach 
two main extensions of classical concepts are implemented: use of com-
munication protocols is not restricted to a given set and protocols of oppo-
nents do not have to be known (open), as well as dialogues do not have 
static structures only, but are flexible and can be adapted, refined and even 
synthetisized during runtime (adaptive). 

The oac approach is based on a probabilistic methodology, a Markov 
chain in analogy to dynamic belief networks [RuNo2003]. A Markov 
model is defined by a number of dialogue states Xi, and propabilities prob 
(Xi, Xj) for a transition from state Xi to state Xj. This model is highly 
flexible and allows adaptation, refinement and synthesis. It is easy to con-
vert standard communication protocols, cg. Figure 6 into this formalization 
defining all transition probabilities as zero, if no transition exists in the 
protocol, as unity, if the Xj is definitely following Xi and splitting the 
probabilities for all possible branches. 
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Figure 6. oac representation of FIPA-request protocol 

The analysis and design of these protocols is done with minimum effort 
as only required protocol structures have to be defined and initial commu-
nication protocols be generated. The agents are modifying their protocols 
autonomously during simulation and application as follows: 

• Adaptation: The execution of existing communication protocols leads to 
an adjustment of the selection probabilities (transition probabilities in 
the model) of the next action due to prior experience. 

• Refinement: Within refinement an agent is extending protocols by add-
ing new “states” Xi i.e. performatives out of a given set of basic com-
municative acts, e.g. FIPA-ACL [FIPA2000b]. Another method of re-
finement is to keep the states as they are, but to implement “new” tran-
sitions by setting zero transition probabilities to p>0, or to extinct cer-
tain transitions annulling their probabilities. Refinement is selected if an 
existing protocol tends not to lead to a satisfying result according to the 
agent's goals. 

• Synthesis: The automatic generation of protocols is the desired method-
ology for the creation of new communication protocols. The basis for 
this method is a predefined set of dialogue “skeletons” as they are oc-
curring within common communication protocols. The first step of the 
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synthesis is to select one of them as a core model. The necessary exten-
sion and customization of this rudimentary model follows the adaptation 
and refinement steps above. 

2.4.2 Capability Management 

Recent research projects deal with shop floor planning problems, e.g. by 
improving scheduling with respect to robustness and dynamic distributed 
environments. However, agent technology may be used to overcome ex-
isting traditional limitations in today’s manufacturing systems, too 
[Mare2002]. The IntaPS approach is not bound to the restrictions of simple 
linear process plans [TWHT2001]. Since process plans are the result of 
agent communication, new alternative processing sequences can be found, 
e.g. in case of re-planning caused by unexpected machine breakdown. Or-
der agents need knowledge about constraints related to the product’s fea-
tures and the necessary capabilities to manufacture these features. In addi-
tion, resource agents need knowledge about their capabilities. Thus, man-
agement of capabilities is important for negotiation of process plans. Cur-
rently, capabilities are only under consideration during design time, i.e. 
agents are implemented for a set of problem-solving methods. Even in 
adaptive approaches to agent design and implementations the skills and 
capabilities of agents are addressed to in a static manner. Requirements 
towards capabilities of agents are subject to change in dynamic environ-
ments, esp. if agents have the skill to form teams. In case of dynamic team 
formation, the set of capabilities can change significantly. Thus, the ex-
plicit representation of as well as inference on capabilities and set of capa-
bilities are in question to build flexible multiagent systems. In the follow-
ing, we address these problems with the term capability management.

In the IntaPS approach, a representation for capabilities based on 1st or-
der logic has been chosen. Within these predicates, concept terms denote 
types of capability. The concept terms are organized in taxonomic hierar-
chies allowing for subsumption inference in order to achieve more flexible 
and “fuzzy” match-making between problem descriptions and capabilities 
[ScTW2004]. The capability management process is divided into four 
steps: a) identification of matching capabilities (“Is an agent capable to 
perform the action?”); b) generation of new composite capabilities (“Is a 
set of capabilities required?”); c) selection of the best-fit capability 
(“Which (composite) capability is suited best for a problem task?”); d) and 
learning new composite capabilities. It is implemented in the Discoursive 
Agents architecture assisting the option generation process (steps a and b) 
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and the option filtering (step c). The learning process is triggered by new 
perceptions concerning the success of new, composed capabilities. 

Additionally, capability management is used for team-formation in 
MAS. The process is based on the team-formation process proposed by 
[Wool2000]. Here, the basic assumption that all agents know the capabili-
ties of one another is replaced by allowing agents to infer on their own as 
well as on other agents capabilities by using capability management. 

2.4.3 Conflict Management 

Agents representing machines within the IntaPS prototype are goal driven. 
In order to balance the various goals, e.g., produce or maintain, the agents 
need to implement a sophisticated conflict management. The conflict man-
agement (cobac) implemented in the Discoursive Agents architecture is 
based on BDI substituting the process of goal generation resp. option fil-
tering. In the first step of the cobac algorithm options are generated on ba-
sis of accessible desires and current intentions. During the creation of a 
new option, a plan is selected for pursuing the desire in question using a 
plan allocation function. An evaluation function is assessing each option of 
the option set, using the desire assessing function and the current state of 
the plan, such that an option with an almost completed plan will receive 
high priority within the option filtering process. Next to the intention re-
consideration, this evaluation function implements the commitment to an 
intention and should ensure that important and almost completed tasks will 
be finished first. In the next step the options are filtered. The filtering uses 
conflict assessment and resolution, i.e., for each pair of options, a synergy 
as well as a conflict value is calculated. Two options receive a high syn-
ergy value if they are pursuing similar desires and the plans are not contra-
dictory, e.g. the post condition of plan A is not prohibiting the pre condi-
tion of plan B. A conflict and synergy potential is calculated as the sum of 
each conflict and synergy value and is used as a performance indicator 
within the process of conflict resolution. The conflict classification and 
resolution algorithm is motivated from the field of inter-personal conflict 
studies [Vlie1997]. A conflict taxonomy is introduced in [Timm2001], 
where each pair of options is classified as a leaf in this taxonomy. For each 
type of leaf, there is a resolution strategy taking the cooperation or conflict 
potential into account. E.g. if two objectives are very similar, they can be 
merged in a cooperative setting and two objectives pursuing conflicting 
post conditions can be removed. 
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2.5 System Description 

In the previous section an outline of the basic algorithms has been pro-
vided. Based on this specification, an implementation of the concepts, esp. 
cobac, oac, and capability management has been realized. The implemen-
tation of these algorithms as well as necessary concepts for the simulation 
has been performed in Java. The architecture of the prototype has been de-
signed in an open, modular manner, in order to enable integration of pro-
gramming languages like Prolog for explicit knowledge representation and 
inference. The Discursive Agents architecture has been formalized and 
specified in multi-modal logic. A prototypical implementation has to be re-
stricted in contrast to the specification with respect to decidability and 
complexity. The main bottlenecks are computing accessibility and esti-
mating future states. In the IntaPS project, a prototypical implementation 
of the Discursive Agents architecture has been realized. This implementa-
tion transforms the theoretical concepts into Java in a straight forward 
manner. Doing so, any well-formed formulas with respect to the grammar 
may be expressed. Furthermore, elementary implementations for planning, 
dynamic conflict, and capability management have been integrated. The 
prototype also considers the branching temporal structures where states are 
represented as nodes in a tree, and the transition or edges are representing 
plans. Conventional temporal branching structures consider individual ac-
tions as edges instead of complete plans. However, this modification was 
chosen with respect to complexity and efficiency reasons. 

The underlying agent toolkit is JADE [BePR1999]. The JADE agent is 
used as a super class for the Discourse Agent (communicator). The imple-
mentation of the controller layer focuses on the three algorithms cobac, 
oac, and capability management. As the formal specification of the algo-
rithms is restricted to decidable parts of the multi-modal logic, implemen-
tation is directly following their formal model. There are only little modi-
fications and extensions necessary with respect to the IntaPS domain. 

Additionally for testing and evaluation purposes, a simulation manager 
has been implemented. It is designed as domain-independent controller for 
starting and deleting of agents, collecting results, logging agent behavior, 
and introspection of the system during runtime. The simulation manager 
interface allows the user of the prototype to specify simulation scenarios, 
e.g., the parameters of the involved agents, as well as further simulation 
parameters, e.g. duration of the simulation. In the IntaPS context, the con-
figuration interface is used for the specification of complex shop-floors. 

The above introduced implementation of intelligent agents is used in 
simulation as follows: The simulation manager is selecting a profile of an 
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agent to be started. Resource agents are started with respect to the speci-
fied outline of the shop-floor in the scenario specification. Order agents 
may be started following a list of predefined orders or in a randomized 
manner. The profile specifies the parameters, knowledge base, and desires 
of an agent. After the agents have been started, they are initializing their 
local states and prepare for negotiations. 

2.6 Evaluation and Benchmarking 

2.6.1 Evaluation for User Domain Purposes 

Prototype implementations like the IntaPS approach have to meet the chal-
lenge of being tested with realistic application scenarios. Whether they 
prove a better performance than conventional systems, industrial users will 
be interested in implementing them in enterprises (see Section 2.2). In case 
of the IntaPS approach, an evaluation concept has been developed using a 
simulated shop floor environment (Figure 7). The evaluation concept is 
based on reference data sets, which are part of a realistic scenario. 

Figure 7. Evaluation concept of the IntaPS approach 

Focus of this scenario is the manufacturing of a product that consists of 
self-manufactured components as well as bought components like screws 
or washers. The self-manufactured components are produced by using dif-
ferent production processes in a shop floor. Afterwards they are assembled 
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to units first and finally to the complete product. The scenario contains 
further technical information about the products and orders (e.g. product 
type or data of manufacturing features) as well as economic and logistic 
information like due dates and order quantities. 

Reference data sets will be processed in two different ways: With con-
ventional tools as well as using the IntaPS prototype (Figure 7, right side). 
Using conventional tools (Figure 7, left side) sets of static process plans 
will be created using a standard process plan editor and scheduled by a 
conventional scheduler. The scheduled manufacturing orders are “manu-
factured” in a simulated (“virtual”) shop floor environment. The “virtual” 
shop floor is realized using “Tecnomatix eM-Plant” (former SIMPLE++) 
and the common ERP-system “SAP R3”. Simulation results are logged by 
these systems and are used for statistical analyses. In addition, the same re-
ference data sets are processed using the IntaPS prototype. 

As in the first case, “eM-Plant” and “SAP R3” logs all relevant events 
and simulation results. Finally, statistical data like average and maximum 
load of resources, lead times or delay of delivery will be compared and 
evaluated. This conduces the verification and validation of the IntaPS 
prototype. One of the current research activities of IntaPS deals with the 
identification of significant performance indicators that aim at the bench-
mark between agent-based and conventional systems of the job shop 
scheduling. Thereby, the user of the IntaPS MAS will be able to get ad-
vices how to improve the structure of the shop-floor (e.g. to identify bot-
tleneck resources or changes in the product range).

Further developments aim at the integration of the existing IntaPS ap-
proach at the enterprise level into the supply chain level Agent.Enterprise 
scenario as described in II.1. 

2.6.2 Algorithmic Evaluation 

In the following, an empiric evaluation of selected algorithms of the In-
taPS-approach (cobac, oac) is presented. The evaluation is based on a 
number of simulation runs of agents which use the given algorithms. Ad-
ditionally, these algorithms are benchmarked with common state-of-the-art 
approaches from multiagent research. 

2.6.2.1 Evaluation of Open Adaptive Communication 

The open, adaptive communication is supposed to be especially suited for 
heterogeneous environments, in which an agent is not only part of the sys-
tem, but also may become part of a new system. Electronic marketplaces 
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with local communication-rules or -conventions pose a special challenge. 
Therefore, the evaluation is supposed to show that the discourse agents are 
capable of adapting to new environments. The evaluation is performed on 
an electronic marketplace with varying communication rules and conven-
tions (conservative, communicative, aggressive). The success criteria of 
the discourse agents adoption is measured by the workload of the agent as 
well as how much it has “earned” in a virtual currency. 

In order to gain statistically significant data, the simulation has been re-
peated 10 times with a conservative, learning agent in an aggressive mar-
ket with 100 iterations each. Each of these repetitions has been randomized 
and statistically evaluated. The indexes of the results are shown in Table 2. 

Table 2. Results of the oac-evaluation 

Index Results per iteration 

 0-10 
iter. 

11-25 
iter. 

26-50 
iter. 

51-100 
iter. 

average 21.472 37.030 49.262 53.322 

standard deviation 1.348 2.472 2.101 1.250 

significance (against non-learn-
ing agents) 

+++ +++ +++ +++ 

probability < 0.0001 < 0.0001 < 0.0001 < 0.0001 

confidence intervals 
lower bound 
upper bound 

20.508 
22.437 

35.262 
38.797 

47.759 
50.765 

52.428 
54.216 

First, the average values of the 10 repetitions do not show a significant 
deviation to the single simulation indicating good reproduction. The stan-
dard deviation is smaller than 7% of the average values, emphasizing these 
results. The final row shows the 95% confidence intervals resulting from 
these values. The most prominent feature of these intervals is, that they are 
completely disjoint, i.e., the learning success is significant from interval to 
interval. For each interval, a t-test for covering the differences between 
learning and non-learning agents has been performed. Each has shown a 
most significant result (p < 0.0001). Verification of the total results with an 
analysis of variance also indicated highly significant differences both for 
the influence of learning and the learning success from interval to interval 
(cf. Figure 8b). For details, please refer to [Timm2004b]. 
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a) b) 

Figure 8. Results of the oac-evaluation 

2.6.2.2 Evaluation of Conflict Based Agent Control 

The evaluation of the cobac-algorithm is performed in the IntaPS-scenario. 
In order to assess the behavior of the cobac-algorithm, an evaluation with 
1700 experiments and 163.200 decision cycles has been performed. Addi-
tionally, a state-of-the-art intention-selection algorithm based on dynamic 
priorities has been implemented in order to benchmark the cobac-algo-
rithm. 

Table 3. Results of the cobac-evaluation 

Algorithm Number of desires Number of  
experiments 

Average 
(balance) 

Standard deviation 

cobac 5 100 797.90 221.08 

cobac 7 100 847.15 174.99 

priorities 5 100 382.24 342.31 

priorities 7 100 720.17 263.69 

The cobac-algorithm as well as the priority intention selection algorithm 
are each tested with a set of generic desires (five desires) and an extended, 
set of partially composed desires (seven desires). The experiments have 
been used to assess the behavior of the cobac algorithm in different situa-
tions as well as to benchmark it against the priority intention selection. In 
Table 3 and in Figure 9, the results (balance) for both algorithms are 
shown.

The priority-controlled agent shows a significant statistical spread in the 
success parameters. Besides the balance shown in Table 3, especially the 
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number of accepted but not processed orders is a major problem for the 
priority-based agent, since it fails to handle the backlog when it reaches a 
certain amount. The discourse agent using the cobac-algorithm appears to 
be more stable and overall more superior to the priority-based agent. In 
Figure 9a/b the difference between the results of the discourse agent using 
the cobac algorithm (ISCN) and a priority based approach (ISPN) are 
shown.

It is obvious, that the mean value as well as the distribution of cobac 
(ISCN) is superior to the priority based approach (ISPN). Additionally, the 
variance of the ISPN is significantly greater, also leading to negative result 
values. The main advantage of the cobac-algorithm appears to be in the 
ability to create composed goals on the basis of partially synergetic or con-
flictive goals. The resulting compromises are handling dynamic situations 
more efficiently. The alternative algorithm is only capable to achieve 
similar results by a significant increase of the pre-composed goals. 

a) b) 

Figure 9. Results of the cobac-evaluation 

2.7 Conclusions 

Despite the fact, that agent-based applications are not state-of-the-art in 
manufacturing industry yet, the concept of intelligent software agents of-
fers an enormous potential for the design of future collaborative manufac-
turing systems. This chapter presented the IntaPS approach based on the 
application of co-operative software agents for optimizing information lo-
gistics in the field of concurrent process planning and production control. 
Due to the approach of a wide integration and concurrency of planning and 
executing tasks, capacity information and due dates will be taken into con-
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sideration for the early stages of process planning. Furthermore, process 
planning knowledge will be used for short-term scheduling decisions at the 
shop floor. Therefore, problems will be eliminated, which result from 
time-delayed return of manufacturing knowledge and capacity data or 
other lacks of information flows e.g. from the use of static process plans. 

In general intelligent software agents are a promising approach to im-
prove information logistics in manufacturing enterprises. Thus, enterprises 
will be able to fulfill the requirement of flexible, reliable and fault-tolerant 
manufacturing. Fulfillment of these requirements is a prerequisite for suc-
cessful participation in modern business alliances like supply chains, tem-
poral logistic networks and virtual enterprises. Thus, agent-based im-
provements of information logistics enable enterprises to face the chal-
lenges of competition successfully. 

Further information is available at http://www.intaps.org. 
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Abstract. Multiagent systems (MAS) offer new perspectives compared to con-
ventional, centrally organized architectures in the field of production planning and 
control. They are expected to be more flexible while dealing with a turbulent pro-
duction environment with its environment-immanent disturbances. In this chapter, 
a MAS is developed and compared to an Operations Research Job-Shop algorithm 
using a simulation-based benchmarking scenario. Environmental constraints for a 
successful application of MAS are identified and classified to be applied to next 
generation priority-rules based decision algorithms in MAS-based production 
planning and control. 

3.1 Introduction 

Today, enterprises, especially manufacturing companies, have to face a 
global market characterized by numerous competitors, a steadily increas-
ing vicissitude and complexity of business processes besides a highly tur-
bulent production environment. Consequently, manufacturing systems 
have to provide the flexibility and reliability that is required to stay com-
petitive. 

Decentralized planning and controlling approaches offer interesting per-
spectives compared to conventional centralized architectures. In the scope 
of production planning and control (PPC), multiagent systems are expected 
to be more flexible than centrally organized systems. In II.1 the criteria to 
classify the environment of multiagent systems with regard to the applica-
tion for manufacturing are described in detail. 

The respective criteria to appraise the environment, in which the appli-
cation oriented benchmarking of multiagent systems, this chapter deals 
with, is done, are shown in Figure 1. Due to the fact that the shop-floor 
scenario is limited to company internal processes at a first glance, the ob-
servability would be expected to be possible in every detail, however, by 
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being integrated into a supply net, the possibilities of observing production 
parameters by machine data acquisition decreases. 

Figure 1. The environment of unit assembly in manufacturing according to Rus-
sels Criteria [RuNo2003] 

In the manufacturing scenario mentioned above, the contacts between 
the different partners are increasingly isolated projects with high dynamics 
in the planning of the production process because of a growing vicissitude 
of the market and unpredictable production break downs. 

To prove or disprove the thesis of MAS being more flexible and thus 
being able to increase the planning quality for well-defined shop floor sce-
narios, a simulation-based benchmarking platform on the basis of a real 
test case scenario was developed in the scope of the KRASH (Karlsruhe 
Robust Agent SHell) and the ControMAS (Control MAS) project. A per-
formance measurement system is included to provide qualitative as well as 
quantitative results. 

The platform is used to compare existing PPC approaches based on Op-
erations Research (OR) algorithms with decentralized MAS approaches. 
Furthermore, different scenarios can be simulated with various levels of 
complexity. This makes it possible to set up a map that identifies applica-
tion scenarios, where MAS provide a real benefit to potential industrial us-
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ers. In the next step, abstract priority rules can be extracted from these re-
sults to gather further knowledge about the preferences of MAS. 

After the description of existing approaches, initially, the respective 
simulation-based benchmarking platform is described. The developed 
MAS approach is presented in Section 3.3 and 3.4. Section 3.5 shows the 
results of the comparison of the centralized and decentralized planning ap-
proaches and draws conclusions of the results. 

3.2 Existing Approaches for Unit Assembly 
Environments 

Today, central approaches are used for production planning and control. 
The main advantage of the central approach, e.g. SAP APO is that all data 
is always available and the communication effort is very small. In a dy-
namic environment characterized by continuous manufacturing and almost 
non-predictable and not fully observable behavior of manufacturing units, 
the central approach does not achieve the required flexibility. 

The transferability of the planning results upon an industrial shop floor 
environment is one of the major prerequisites. Thus the evaluation of the 
different approaches has to be performed on the basis of a real, or at least a 
realistic, production scenario. Besides industrial relevance, the application 
of a MAS has to be motivated. In technical literature e.g. [WeMe1999], 
[SWFM1995] or [Cav+1999], MAS are characterized to be more flexible 
(see I.3) and robust as described by Frey [FNWL2003] in a dynamic, 
turbulent production environment compared to centralized approaches. 

In addition, they are able to handle complex production planning prob-
lems more effectively by dividing them into less complex partial planning 
problems. At that background, the scenario can be characterized by: 

• sufficient production planning complexity, 
• occurrence of short-term disturbances, e.g. machine failures, 
• features like flexibility have to be key requirements. 

A circuit breaker production plant represents the benchmarking envi-
ronment. Within this plant, a production area (“Unit Assembly Area”) is 
chosen, where components are assembled which will be used later in the 
final assembly. The area consists of 13 assembly lines. Six different com-
ponent families and four sub-component families that are part of the com-
ponents, are assembled. Thus, the test case represents a multi-level assem-
bly. Material flow is controlled by a Kanban system [Ohno1993]. Raw 
material consumption in final assembly determines the production in com-



118 J. Wörner, H. Wörn 

ponent assembly. Orders in this area, including start dates, product IDs and 
quantities have been extracted in a simulation study beforehand. As a con-
sequence, this part of the plant can be analyzed separately thus reducing 
the complexity of the task in a reasonable way. The correctness of the data 
was approved by a company running the production plant. 

3.3 Multiagent System Approach for Unit Assembly 
Manufacturing

In this paragraph, the suitability of MAS in the range of production plan-
ning and control is analyzed, taking into consideration existing production 
planning and control approaches. A Kanban system is especially suitable 
for the integration of a MAS. Both systems are highly distributed, since 
Kanban consists of decentralized, self-controlling control cycles. To level 
the workload of the machines, a line balancing has to be performed. The 
main goal while setting up a Kanban system is the minimization of the in-
ternal buffer stock. The two parameters directly affecting the buffer stock 
are the maximum consumption rate of the raw material and the maximum 
replenishment lead time [Ohno1993]. 

The problem of minimizing the consumption rate is handled by a pro-
duction smoothing (dispatching of a suitable product mix, so that the con-
sumption rate of raw materials gets almost constant), whereas the replen-
ishment lead time depends on internal production planning and control and 
the corresponding process structure (production of small lot sizes and ma-
terial flow-oriented shop floor layout). In the case of disturbances, the 
standard deviation of the replenishment lead time has to be minimized (and 
thus its maximum). MAS are expected to deal with this task in a more ef-
fective manner due to their enormous flexibility. 

3.4 Benchmarking Platform and Architecture 

Solutions generated by MAS are expected to be more flexible and robust 
than conventional centralized approaches. On the other hand, centralized 
OR algorithms should provide better results in non-disturbed production 
environments, because of the huge number of experiences integrated in re-
spective algorithms and methods. In addition, MAS are mostly developed 
within the scope of academic projects, thus there are only few perceptions 
related to real-world scenarios and the related shop floor complexity. 
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To prove or disprove the above assertion and compare the two varying 
approaches not only on a qualitative, but also on a quantitative basis a 
benchmarking scenario has to be defined and implemented. Cavalieri de-
fines a benchmarking framework and provides a common platform [Cav+ 
1999] [CGMT2000]. This means that the results of different planning 
approaches are comparable taking into account the requirements for quali-
fied benchmarks. The developed benchmarking platform is used to per-
form the comparison task based on simulation and thus provides the neces-
sary dynamical behavior. 

The simulation model maps a real production scenario of a circuit 
breaker assembly. The planning task is a mixed-model assembly line bal-
ancing problem (MALBP) and a mixed-model sequencing problem (MSP). 
They differ in the planning horizon. The first one is a long-term and the 
second one a short-term decision problem [Scho1999]. 

Figure 2. Platform components 

The formal representation of the environment requires the definition of a 
meta-model. CIMOSA (Open System Architecture for CIM) (CIMOSA 
Association, 1996) was chosen as the modeling methodology, since it is 
publicly available, not restricted to a certain tool, and it is well-docu-
mented. eMPlant was chosen as the event-driven simulation tool including 
a building block library. The tool VICTOR (VIrtual FaCTORy lab) [Reit 
1995] and [Reit1996] merges both CIMOSA and eMPlant. The modeling 
process is performed using CIMOSA elements which are mapped on the 
original eMPlant building blocks. Thus, an executable eMPlant model is 
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automatically created. The CIMOSA model itself is represented in a tex-
tual format. 

Cavalieri presents design guidelines for suitable production benchmarks 
[CaMV2003]. In addition, a highly sophisticated web-based modeling 
framework was developed enabling the user to define a scenario and re-
spective processes which are stored in a test case library afterwards. Both, 
the static and the dynamic features of the environment are modeled. Addi-
tionally, measures of performance according to the criteria, shown in Fig-
ure 1, are defined. This approach provides a wide range of benchmarking 
scenarios representing various PPC problem classes. An interesting exten-
sion would be the integration of a simulation component which is able to 
map the non-deterministic dynamic behavior of the scenarios. The modular 
benchmarking platform (see Figure 2) consists of a process model (CIM-
OSA Function and Information View), a performance measurement system 
and interfaces for the MAS (accessing the CIMOSA Function and Infor-
mation View). 

The process model is built up by a building block library. This enables 
the user to create own scenarios by combining the building blocks in an 
adequate manner with standardized interfaces. The process structure of the 
building blocks is represented by the CIMOSA Function View. The infor-
mation related to the scenario is mapped on the CIMOSA Information 
View. The definition of interfaces is based on a PPC database structure, 
presented in Figure 3. 

Figure 3. PPC database structure 

The material flow in an economic environment and the possibilities of 
assigning orders to certain machines are given implicitly by the instantia-
tion of this data structure as shown by Frey [Frey2003]. The technical 
specifications represented by database schemas are available at [DBRA 
2005]. The required technical robustness of multiagent systems has been 
described by Frey [FNWL2003]. 
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The following elements of the scenario’s information view are mapped 
within the tables of a database as shown in Figure 3: 

• The table Product contains product-specific data. The bill of materials 
lists all parts required for the assembly of the product whereas the op-
eration list represents the single work steps of the product assembly. 

• Operation is a table assigning operations to machines which are able to 
perform this particular work step (including a potential setup process). 

• The Order table lists all customer orders. Besides product and quantity, 
due dates, or starting dates of the orders are defined. 

• Based on the orders and other parameters, the Production Order table is 
the result of the planning process and finally determines production 
dates, facilities and quantities. 

• The Disturbance Profile table is machine-specific and rests upon distur-
bance histories gathered from an MDA (Machine Data Acquisition) or a 
PDA (Production Data Acquisition) system and rules of thumb based on 
experiences. 

The planning results are stored in the Schedule table. It contains the 
planning results of the PPC modules and the current status of the ma-
chines’ waiting queues. 

The CIMOSA Information View contains static information like master 
data, order data, production data and dynamic statistical data gathered 
during the simulation. Based on these data, performance measures like av-
erage buffer stock, consumption rates, throughput times, transportation 
times of the AGV system as well as processing times are implemented as 
shown by Frey and Wörn [FrWo2001]. 

Tailored interfaces enable other external MAS to access the bench-
marking platform. In the first version of the benchmarking platform, the 
integration is performed using standardized interfaces of eMPlant, where 
the MAS has to be integrated directly by using the socket or C++ interface 
or implementing the MAS in the eMPlant-specific object-oriented pro-
gramming language Simtalk. 

This procedure is not too comfortable for the MAS developers, yet it is 
possible to use the discrete event mechanism of the simulation software. 
The second approach is a more sophisticated one. Its system architecture is 
depicted in Figure 4. 

In this approach, the MAS is conceived as being decoupled from the 
benchmarking platform. Therefore it is not apparent for the MAS if it is 
working in a real application environment or inside of a simulation model. 
The current work is focusing on the synchronization of states and events 
on the basis of database triggers. They are used to synchronize the simula-
tion and the MAS. 
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Figure 4. System architecture 

In addition, numerous MAS which are working in one integrated scenar-
io can be synchronized, too. In this case the agent systems are co-opera-
tively dealing with different tasks. A scenario with numerous MAS is pre-
sented in II.1, Figure 4. The agent-oriented modeling of the scenario is per-
formed by an abstract assign of agents to real objects. 

Another major issue is the management of disturbances, since MAS are 
a promising technology to handle them more effectively as compared to 
existing approaches. Thus a complex parameterization of the scenario is 
possible. 

The parameterization affects two dimensions, the complexity of the sce-
nario and the homogeneity of the problem space. Both dimensions are ex-
pected to have an effect on the planning system. They can be varied by in-
dividually setting up the parameters like lot size, number of machines, 
workload, disruption profile and more. 

The disruption interval is the time gap between the occurrences of two 
consecutive disruptions. Along with the disruption duration, it forms the 
disruption profile of a machine. During the simulation studies, these pa-
rameters have been varied continuously and a map has been set up mark-
ing those scenarios that prefer a MAS treatment. 

3.5 Multiagent System 

The developed multiagent system was intended to solve a mixed-model 
sequencing problem (MSP). With respect to the throughput time, the cor-
responding centralized OR algorithm produces optimum solutions for the 
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non-disturbed case, whereas its performance is limited in the case of dis-
ruptions. 

The problem of disturbance handling and MAS-based scheduling has 
been addressed by the MASCADA project at the KU Leuven. This project 
presents a MAS based on the PROSA (Product, Resource, Order and Staff 
Agent) architecture. 

Jain and Foley analyze the effects of interruptions on flexible manufac-
turing systems and deduct guidelines for the development and implemen-
tation of schedules to cope with these uncertainties [JaFo2002]. 

In this case, a MAS was developed to handle a line balancing decision 
problem within an unit assembly manufacturing environment. The system 
operates on an intra-plant level, whereas there are interfaces to external 
suppliers and customers (orders). These interfaces have been used within 
the Agent.Enterprise scenario described in II.1. The developed system per-
forms production planning and control tasks for unit assembly, however, 
the emphasis is set upon the execution functionality. 

The MAS was directly integrated into the simulation environment due to 
performance and maintainability reasons. Additionally, an implementation 
based on FIPA-OS and JADE is available. Three algorithms for production 
planning and control have been implemented so far: 

• Job-Shop (long-term planning horizon), 
• MAS_pre (short-term planning horizon), 
• MAS_act (no planning horizon). 

These algorithms differ within the planning horizon. The planning hori-
zon is part of the waiting queue which is “visible” to the algorithm and 
thus may be used for optimization purposes. “Job-Shop” is an MSP line 
balancing algorithm [Scho1999] and performs the planning task starting 
the simulation; consequently, it is not able to react to changes. 

Having n machines, the order is assigned to the machine which obeys: 

)min( ,, 1mii1mxx CDCD −− = , n1i ...=∀  (1)

CDi,j Planned completion date of order i at machine i 

N Number of machines that are able to process the current order 

M Current position of the order within the waiting queue 

The completion dates are calculated using the processing times of an or-
der. In the non-disturbed case, this approach presents a forward scheduling 
algorithm which leads to an optimum solution with respect to the through-
put time. MAS_pre assigns the orders to the production facility as soon as 
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they are available. This leads to a short-term planning horizon. MAS_pre 
is able to react to changes within the planning horizon. 

Figure 5. AUML diagram of the MAS_act approach 

On the other hand, MAS_act is an exclusively reactive system. The ma-
chine agents ask for new orders as soon as they have finished the current 
order as shown in Figure 5. A performance comparison of both reactive 
and planning-based control architectures is also performed by Brennan 
[Bren2000]. Similar to the results presented in this chapter, the role of the 
planning horizon with respect to the performance of the system is ana-
lyzed. Both of the MAS approaches are communicating, using a protocol 
similar to the well-known ContractNet protocol [Paru1987]. 

The system consists of machine agents and order agents. Each machine 
agent represents a production facility and applies for an assembly order, if 
it is available. The order agent represents a production order and is respon-
sible for the material and information flow of the system. Due to the reac-
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tive behavior of the MAS, the system is not able to reach general optimum 
solutions, as indicated by investigations [Frey2003]. Archimede and Cou-
dert address this challenge by presenting the SCEP (Supervisor, Custom-
ers, Environment, Producers) framework for a reactive MAS that improves 
the range of co-operation, yet sustaining the ability to react to disturbances 
[ArCo2001]. 

The rating process for the machine agents in this project is based on a 
performance measurement number (PMN) as shown in Equation 2. The re-
maining processing time of an order is calculated on the basis of the cur-
rent schedule and the processing time for each product. The primary goal 
of the planning strategy was the minimization of the throughput time and 
an effective line balancing of the various machines. 

60MDTRPT

1
PMN

n

1i
i +

=

=

 (2) 

N Number of Orders in the Waiting Queue of the Machine Agent 

RPTi Remaining Processing Time of Order i 

MDT Average Disruption Time 

Besides the throughput time itself, its standard deviation is of interest, 
since it determines the predictability of the system. This is an important 
feature for a production planner, since MAS are assumed to act unpre-
dictably due to their autonomy. 

The performance is decisively affected by this performance measure-
ment number. Similar to the Job-Shop algorithm, the processing time of 
the remaining orders in the waiting queue is calculated. The rating results 
in the inverse processing time and is scaled to 1, i.e. 0 ≤ x ≤ 1, whereas 1 is
the highest rating. 

As a consequence, the order is assigned to that machine agent that will 
finish its order first. If the machine agent is disrupted, then the disruption 
time has to be considered in addition to the processing time. Normally, an 
estimated disruption time is unknown. To avoid this problem, each ma-
chine agent contains a disturbance history gathered during the simulation. 

In reality, this information may be extracted from a MDA (Machine 
Data Acquisition) or a PDA (Production Data Acquisition) system. The 
global effects of several local balancing objectives in flexible manufactur-
ing systems on performance measurement numbers like throughput time, 
make span, mean flow time and mean tardiness is analyzed by Kumar and 
Shanker [KuSh2002]. 
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3.6 Benchmarking Results 

3.6.1 Simulation Studies 

Within the simulation studies, the complexity of the scenario and the ho-
mogeneity of problem space were continuously varied by changing the 
corresponding production parameters. Discrete values for disruption dura-
tion, number of operations, lot size, disruption interval and workload were 
chosen. It was investigated if the behavior of the MAS is continuous and 
predictable, depending on the environmental production constraints, or if 
the MAS performs non-deterministically. 

The following sections will focus on disruption duration and lot size. 
Detailed explorations performed by Frey [Frey2003] point up that espe-
cially these two parameters are the most interesting comparing a central 
approach with the developed distributed MAS. For each configuration, 
represented by a tuple of the five parameters listed above in Table 1, the 
corresponding average throughput time and the standard deviation of the 
throughput time were analyzed, which led to more than 1000 simulation 
runs.

Table 1. Parameter units 

Parameter Unit 

Disruption Duration Minutes 

Number of Operations Number 

Lot Size Pallets 

Disruption Interval Processing time for one lot size 

Workload Factor, which extends the interval between the dis-
patching of two consecutive orders 

Within the evaluation process, the results were abstracted with respect 
to only two parameters to reduce complexity of the results and increase 
their clearness. The scaled difference calculated by the amount of scenar-
ios with the MAS performing better, minus the amount of scenarios with 
the Job-Shop algorithm performing better represents the final decision 
variable. The evaluation procedure may be described as the following: 

• Choose two of the parameters. 
• Fixing those two parameters, perform simulation runs with the other 

three varying. 



  Benchmarking of Multiagent Systems 127 

• For these simulation runs, calculate the amount of scenarios where the 
MAS is performing better and subtract the amount of scenarios with the 
Job-Shop algorithm performing better. 

• Scale the result, so that –2 ≤ x ≤ 2, x being the final decision variable. 

The benchmarking results are presented in the form of area diagrams, 
the two axes mapping the two parameters mentioned above. The diagrams 
are intuitive graphical representations of the decision variable x. In addi-
tion, the color gradient enables the recognition of general tendencies con-
cerning the behavior of MAS. Within the area diagrams, presented in Fig-
ure 6, the bright areas identify scenarios where a centralized Job-Shop al-
gorithm produces better results concerning the average throughput time or 
its standard deviation (x < 0). The dark areas represent boundary condi-
tions where the MAS is superior (x > 0). 

3.6.2 Preliminary Analysis 

The aim of the preliminary analysis is the limitation of the evaluation 
space. The effects of the number of additional machines and the variation 
of the disruption profiles are investigated to perform further evaluations on 
the basis of these results while fixing these two parameters. 

In the first step, the complexity of the planning task was scaled up by 
increasing the number of operations which are necessary to assemble a 
product, introducing additional production facilities and extending the dis-
ruption intervals and duration for the individual machines. Similar ma-
chines that are able to handle the same operations were assigned the same 
disruption profiles. Surprisingly, the introduction of disturbances had al-
most no effect on the results. 

On the contrary, the Job-Shop algorithm even produced better results. 
Closer investigations of results revealed the reason for this behavior. The 
production plant ran on its capacity limits. The workload of the machines 
is almost 100% during day shift. Consequently, there is no vacant capacity 
for rescheduling activities. When handling disturbances, vacant production 
capacities are one prerequisite for the successful use of reactive MAS. 
Otherwise, the Job-Shop algorithms always produce better results. 

But even for this rather disadvantageous scenario for a MAS, it is 
clearly identifiable that the standard deviation of throughput time is de-
creasing with increasing complexity of the scenario. Small lot sizes in-
crease the complexity of the planning process and offer more degrees of 
freedom. This leads to a more complex decision space. The results for the 
standard deviation of throughput time depending on the complexity of the 
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system show the MAS producing almost constant throughput times. The 
standard deviation is obviously smaller compared to the centralized ap-
proach. Even if the average MAS results are worse than those of the Job-
Shop algorithm, the standard deviation is normally smaller. In the next 
step, additional production capacity was introduced. It can be shown that 
no clear pattern is noticeable. The MAS performs well and gets slightly 
better when the interval between the dispatching of two consecutive orders 
is extended (resembles the factor increasing; as shown in Table 1), which 
leads to additional vacant production capacity. 

Now the MAS have the opportunity to reschedule orders as soon as 
disturbances occur on one of the machines. But even now, the results got 
only slightly better compared to the centralized approach. Since redundant 
production facilities had the same disruption profile, rescheduling activi-
ties led to the effect, that the order was often disrupted on the machine 
which was chosen by the rescheduling algorithm. The superior planning 
quality of the Job-Shop algorithm and flexibility of the MAS nearly com-
pensated each other. In the third step, both the complexity of the scenario 
and the homogeneity of the problem space were varied, so the MAS could 
fully benefit from its flexibility and its reactive behavior. The redundant 
machines got different disruption profiles representing different reliabil-
ities. In reality, this corresponds to a mixed shop floor consisting of more 
than one generation of machines, as it is quite common. 

In addition, the planning complexity was also increased. For this class 
of scenarios (different disruption profiles) the application of MAS makes a 
palpably impact. The results get better with decreasing lot sizes and in-
creasing workflow factor, as supposed beforehand and explained above. 

Due to the hitherto results, the rest of the evaluation process is per-
formed on the basis of a scenario class without additional machines (i.e. 
the original circuit breaker assembly production plant) and different dis-
ruption profiles for the machines. This limits the evaluation space to a rea-
sonable degree and the general features of MAS are expected to show up 
more evidently. In the following sub sections the two most interesting 
benchmarking criteria are presented. 

3.6.3 Benchmarking of the Disruption Duration 

The room for improvements of a decentralized MAS approach is positively 
affected by the disruption duration. While the centralized Job-Shop ap-
proach is not able to react to machine failures, the MAS can dispatch or-
ders adaptively. However, vacant production capacity is a prerequisite. 
MAS produce steadily increasing results compared to the centralized OR 
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algorithm. This assertion is also valid for the standard deviation of 
throughput time. 

Furthermore, it is apparent that the MAS gets slightly better with the 
workload decreases. The factor 1.5, analyzed by Frey [Frey2003], leads to 
vacant production capacity. The standard deviation remains unaffected by 
the workload, which is defined by the dispatching mechanism. 

3.6.4 Evaluation of the Lot Size Benchmarking Criteria 

The lot size is an input variable for the production planning process. An 

order in the order list is split into 
 SizeLot
QuantityOrder  partial orders. The amount of 

partial orders is inversely proportional to the lot size. Small lot sizes entail 
many orders being dispatched which leads to a rise of complexity of the 
shop floor scenario. 

Due to the huge amount of partial orders and the long planning horizon, 
the planned schedule increasingly differs from the real one in case of dis-
turbances occur. The centralized Job-Shop approach is not able to regulate 
this deviation, as it can be derived from Figure 6.

The original goal of a line balancing algorithm, to minimize the comple-
tion dates by effectively balancing orders, is no longer feasible. This is 
caused by the missing consideration of disturbances in the planning pro-
cess. The effect is even more obvious when looking at the standard devia-
tion. The throughput time is calculated by summarizing processing and 
waiting time of the corresponding order. The waiting times for the ma-
chines are almost constant when using a MAS, which is caused by the 
highly effective treatment of waiting queues. 

As a consequence, the completion dates can be estimated more pre-
cisely. Further analysis results, presented by [Frey2003] show that the dy-
namic dispatching of orders is handled slightly more efficient with de-
creasing workload. The MAS gets Non-deterministic vacant production 
capacity accessible, whereas the Job-Shop approach is not able to make 
use of it. The general advantage of MAS is caused by two factors. On the 
one hand, MAS can dispatch orders upon vacant machines dynamically. 
On the other hand, they are able to handle waiting queues more efficiently 
compared to centralized approaches. Depending on the order density, these 
MAS features come into conflict with each other, which leads to the al-
most constant behavior. This example once more points out several pa-
rameters affecting the behavior of a MAS at the same time. At this back-
ground, the flexibility of MAS elucidated in I.3 leads to better results of 
production planning and control in the described unit assembly manufac-
turing environment. Further research and development aim at the integra-
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tion of a priority-rules-based approach at the enterprise level of the Agent. 
Enterprise scenario as described in II.1. 

Figure 6. Average and standard deviation of the throughput time 

3.7 Conclusion 

MAS-based decentralized planning approaches produce better planning re-
sults than centralized Job-Shop algorithms when the decision space for a 
MSP problem is both complex and inhomogeneous. MAS facilitate good 
results in the decision space by taking into account time-dependent plan-
ning parameters. In addition, the waiting queues of the lines are handled 
more efficiently when disturbances occur. On the other hand, MAS nor-
mally provide less optimal solutions due to their local approaches of prob-
lem solving through negotiation. OR algorithms are highly sophisticated 
and effective in the non-disturbed case due to their much longer planning 
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horizon and the global point of view. Yet, the corresponding re-scheduling 
algorithms that are applied in the case of disruptions are not sufficiently 
performing. The planning process for real industrial applications takes too 
much time to comply with real-time demands. The inhomogeneity of the 
problem space turned out to be the decisive factor for the suitability of a 
MAS in the scope of production planning and control. 

In this case, the quality of the solutions is dynamically evolving and can 
not be predetermined. The other important factor is the complexity of the 
planning task. This structure and time complexity was mapped upon pro-
duction parameters. During the evaluation, it was possible to assess the pa-
rameters according to their impact upon the results. Especially, the order 
was defined identically for all of the performance figures, throughput time, 
processing time and their standard deviations. 

Two key features explaining the superiority of MAS in a turbulent pro-
duction environment were identified in this chapter. First of all, MAS have 
the ability to “follow” good results. Due to the short planning horizon, the 
machine agents are able to consider time-dependent planning variables for 
their ratings, which lead to more precise results. The waiting queues of the 
lines are handled more efficiently when disturbances occur. The line bal-
ancing process is more effective and thus the medium throughput times 
and its standard deviations are smaller. The second factor is important with 
respect to the predictability of the results. These two key features affect 
each other, which finally explain the behavior of the MAS. 

Another aspect, not being mentioned yet, is the maintainability of the 
different manufacturing systems. Due to its modular design, MAS are 
easier to maintain and the extensibility is guaranteed by the simple plug 
and play mechanisms of the respective agent platforms. This backs the ex-
planations regarding flexibility in I.3 once again. On the other hand, the 
development effort to implement a MAS is higher, mainly caused by 
communication topics. However, MAS and rescheduling algorithms pre-
sent a mean to guarantee robustness on the shop floor. 

Standardization is a crucial task for the industrial propagation of agent-
based technologies. This affects both the technological platform layer and 
the application layer. Standardized MAS solutions for well-defined PPC 
problems, including realistic and comprehensible benchmarks, are key 
factors for a successful dissemination and application in the future. 
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Abstract. FABMAS is a hierarchically organized multiagent system for produc-
tion control of semiconductor wafer fabrication facilities (wafer fabs). The pro-
duction control of wafer fabs is challenging from a complexity and coordination 
point of view. Semiconductor manufacturing involves one of the most complex 
manufacturing processes ever used. In this paper, we describe the application do-
main and major design decisions that lead to the FABMAS system prototype. A 
detailed discussion of the suggested software architecture of the agent-based sys-
tem is included. Furthermore, we present the results of computational experiments 
that show that FABMAS outperforms dispatching based production control 
schemes that are currently in use. The paper also discusses some limitations and 
drawbacks of the suggested approach and identifies areas of future research. 

4.1 Introduction 

Semiconductor manufacturing has been growing tremendously in the last 
decade. The goal of semiconductor manufacturing is the production of in-
tegrated circuits (ICs), also called chips, on silicon wafers. Today this do-
main consists of very complex manufacturing systems. The semiconductor 
manufacturing domain is characterized by several hundred of very expen-
sive machines, hundreds of lots, a customer demand driven type of manu-
facturing, an over time changing product mix, sequence dependent set-up 
times, re-entrant process flows and a mix of single wafer, single lot, and 
batch processes. Here, a batch is defined as a set of lots that have to be 
processed at the same time on the same machine [MaSi2003]. Further-
more, the semiconductor manufacturing domain is characterized by sto-
chastic events like machine breakdowns and the change of customer re-

1  For more information on the FAB Multi Agent System (FABMAS) we refer to: 
http://www.wirtschaft.tu-ilmenau.de/deutsch/institute/wi/wi1/projekt/start.html
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lated due dates of the lots (cf. to [AtAt1995] [UzLM1994] [PfFo2005] for 
a more detailed description of semiconductor manufacturing problems). 

Production control of semiconductor wafer fabs is challenging because 
of the complexity of the under laying production process and its stochastic 
and dynamical nature. 

The motivation for the research described in this paper is driven by two 
different sources. 

1. We find a high degree of automation on the shop floor in high-tech 
industries like semiconductor manufacturing. Data collection capabili-
ties are highly developed within manufacturing execution systems 
(MES). Therefore, a computer-based decision support is highly desir-
able.

2. The capabilities of computers are increased in the last decade. There are 
huge improvements in hardware and software (for example, modern 
middleware). Furthermore, based on the improved computer perfor-
mance we can observe a renaissance of computer intensive methods 
from Operations Research (OR) and Artificial Intelligence (AI). 

Commercial production control software packages (mainly MES) ap-
plied to the semiconductor manufacturing domain have the following 
drawbacks: 

1. They are based mainly on software technologies from the early 90s. The 
underlying architecture follows only in parts the client-server architec-
ture. 

2. An extension or further development of these information systems from 
a functional point of view is difficult. 

3. A communication, i.e. information exchange, with other information 
systems on the shop floor and on other planning and control layers is 
complicated. 

4. None of the currently used systems contains modern production control 
algorithms. There is no clear separation between the structure of the 
production control system and the production control schemes. 

5. Most of the systems rely on centralized databases. However, for deci-
sion-making very often local data would be enough. 

Techniques from Distributed Artificial Intelligence (DAI), especially 
multiagent systems (MAS) (cf. I.2), provide approaches that allow for the 
flexible collaboration of decentralized software systems (“agents”) to solve 
superior tasks. That leads to the question which production control capa-
bilities can be obtained through the collaboration of agents that work de-
centralized. Furthermore, it is challenging to investigate whether these de-
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centralized systems equipped with cooperative capabilities may outper-
form more traditional production control systems. 

The following coordination problems have to be solved in wafer fabs: 

1. control of planned and dynamic bottlenecks, i.e. a starvation of planned 
bottlenecks has to be avoided, whereas appropriate scheduling and dis-
patching decisions have to be made for dynamic bottlenecks, 

2. appropriate set-up and batching decision-making, i.e., the situation in 
front of downstream and upstream machine groups has to be taken into 
account during making scheduling decisions in front of parallel ma-
chines with sequence-dependent setup times or in front of a group of 
batching machines, 

3. determination of enterprise-wide schedules is highly desirable instead of 
local optimization of schedules for selected machines because only in 
this situation global performance measures can be taken into account. 

The semiconductor manufacturing domain is well suited to serve as a 
test-bed for the usage of techniques from DAI because it contains enough 
complexity (huge number of machines, products, and lots) as well as chal-
lenging coordination problems. 

This chapter of the book is organized as follows. In the next Section, we 
discuss related literature. In Section 4.3, we describe our distributed hierar-
chical production control approach. The design and the implementation of 
our agent-based production control system is the topic of Section 4.4. We 
describe computational experiments in Section 4.5. Conclusions are pre-
sented and some future research topics are suggested in Section 4.6. 

4.2 Related Work 

Currently it seems that dispatching rules are the widely used production 
control approach in semiconductor manufacturing [PfFo2005]. Dispatch-
ing rules have the drawback that they are short-sighted in time and space. 
Usually, they support only one performance measure of interest. It is rather 
hard to work towards more global oriented goals. Furthermore, dispatching 
rules are only to a certain extent able to adapt to different situations like 
high load of the manufacturing system or tight due dates. 

There are several prototypes for production control of wafer fabs de-
scribed in the intelligent scheduling literature. The system LMS from IBM 
(cf. [SuFo1990] for more details), the system ReDS (cf. [Hada1994]), and 
the system MMST from Texas Instruments [FKKS1994] are examples for 
such prototypes. These systems are partially distributed and LMS uses also 
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functional agents. However, these prototypes rely on the software tech-
nologies from the early 90s (for example Lisp) and they are not in further 
use in our days because of technical and also organizational reasons 
[Kemp1994]. A more recent prototype of a knowledge-based scheduler 
applied to wafer fabs is described in [MiYi2003]. Discrete event simula-
tion and neural networks are used to make scheduling decisions in a situa-
tion-dependent manner. However, because of the time consuming simula-
tion-based training data collection for the neural network this approach is 
more appropriate for a static than for a dynamic environment. 

Hierarchical production control approaches are quite popular in semi-
conductor manufacturing (cf. [SrBG1994] [VaRi2001] [VaRK2003]). 
These approaches try to deal with the inherent complexity of wafer fabs by 
using a hierarchical decomposition approach. However, the approaches de-
scribed so far rely heavily on control theory and therefore are not able to 
deal with individual lots. Hence, due date related performance measures 
are not possible. They also do not exploit the distributed character of deci-
sion-making within hierarchies. The resulting systems are not distributed 
from a software technology point of view. 

Multiagent systems have attracted many researchers in the manufactur-
ing domain. For more details, we refer, for example, to the survey papers 
[ShNo1999] and [CaCa2004]. However, often only experiences with a 
contract net type production control scheme are reported. Furthermore, the 
domains of application are more related to low complexity (flexible) 
manufacturing systems. A rigorous performance assessment is often 
missed. It is at least questionable whether a complex manufacturing can be 
controlled by a contract net type approach so that appropriate dispatching 
rules are outperformed. The holonic manufacturing approach (see [McBu 
2000] for a more detailed discussion) is going to reduce theses problems 
by allowing agents to contain other agents. Following this approach we 
can model hierarchical relationships with less effort. 

Only one more recent agent-based production control system develop-
ment effort [AEMS2005] in a very preliminary stage is reported in the lit-
erature for the semiconductor manufacturing domain. The system imple-
ments a starvation avoidance strategy based on negotiations among agents 
that represent lots and machines. However, the system is described only on 
a conceptual level, computational results are not reported. 

A modified shifting bottleneck heuristic is described in [MaFC2002]. 
This heuristic decomposes the overall scheduling problem into scheduling 
problems related to single groups of parallel machines. The view of the 
overall problem is ensured by the concept of disjunctive graphs. An effi-
cient implementation and some computational results of the shifting bot-
tleneck heuristic are described in [MoRo2004]. The combination of a two-
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layer hierarchical approach with the shifting bottleneck heuristic is de-
scribed in [MoDr2005]. However, the distributed character of the approach 
is not used in [MoDr2005]. From the presented computational experiments 
it turns out that shifting bottleneck type solution heuristics are able to out-
perform dispatching rule based approaches in several situations. 

So far, we described only related work with respect to solution tech-
niques. However, scheduling on the shop floor is also limited by missing 
state of the art software systems and other infrastructure issues. We are far 
away from having an ultimate architecture for future production control 
systems. It seems to be possible that modern production control system 
will be agent-based and distributed. Therefore, it is highly desirable to de-
velop ideas for leading edge production control systems. 

Based on the discussed related literature it appear to be reasonable to 
compare an agent-based system with dispatching approaches and also with 
the centralized shifting bottleneck heuristic from a solution quality point of 
view. At the same time, it is necessary to compare issues like interopera-
bility and data requirements to run a certain production control application. 

4.3 Distributed Hierarchical Decision-Making in the 
Semiconductor Wafer Fabrication Domain 

As suggested by Mesarovic [MeMT1970] and Schneeweiss [Schn2003] it 
turns out that hierarchical decomposition is a powerful tool to deal with 
complexity and uncertainty in systems. Generally, we say that two objects 
are in a hierarchical relationship if at least one of the following three con-
ditions is valid [Schn2003]. 

1. The decision-rights of the two objects are different. 
2. They make decisions at different points of time. 
3. The information status of the two objects for decision-making is differ-

ent.

Note that only the first condition is usually associated with rigid master-
slave type hierarchical approaches. The notation of hierarchies suggested 
by Schneeweiss [Schn2003] is much more expressive. Consequently, we 
will use the term “distributed decision-making” when there are several de-
cision-making units that make their decisions at different points of time 
and when the decision-making units have to collaborate to solve the over-
all problem. 

Decision-making requires goals and a certain degree of pro-activity. On 
the other hand, communication abilities are required for the different deci-
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sion-making entities in order to coordinate, i.e. harmonize, the distributed 
decisions. Therefore, as pointed out in [Schn2003] software agents (cf. a 
definition of agents in I.1) are an appropriate (software) tool to implement 
distributed decision-making systems if the resulting agent-based systems 
are enriched by more sophisticated coordination and optimization abilities. 

Having this argumentation in mind, we will describe in a first step a 
distributed hierarchical approach to carry out production control for wafer 
fabs. Then, in a second step, we will identify the necessary agents in order 
to construct the distributed production control system. 

Because of the multi-product, customer oriented type of wafer fabs we 
are interested in minimizing the total weighted tardiness (TWT) of the lots 
as performance measure. Note that this problem is NP hard [Lawl1977]. 
The quantity TWT is defined as follows: 

( )
=

−=
n

1j
jjj 0dCwTWT ,max:  (1) 

Cj Completion time of lot j 

dj Due date 

wj Weight factor that describes the importance of lot j (and the related cus-
tomer) 

n Number of lots already completed within a certain time horizon 

Note that TWT is our primary measure of interest. However we have to 
measure the cycle time of the lots and the throughput too. 
The suggested hierarchical approach contains three different layers. Based 
on our primary performance measure, we identify a top layer that has to 
take into account the due dates of the lots during its decision-making. The 
top layer works on aggregated routes. Each aggregated route consists of 
several macro-operations. A single macro-operation contains usually three 
to five consecutive process steps. All process steps of a macro-operation 
have to be performed in a single work area. A work area itself is defined as 
a set of groups of parallel machines that are nearby located on the shop 
floor. A wafer fab usually contains the lithography work area, the etching 
work area, the diffusion work area, and the implantation work area. The 
described situation is shown in Figure 1. 
The top layer is used to determine start dates and end dates for single 
macro-operations of a lot with respect to a certain work area. Note that the 
result of the top layer is a rough schedule for all lots that takes the external 
due dates of lots into account. This schedule has to be refined by the other 
layers of the hierarchy. We use a simple infinite capacity approach that ba-
sically estimates waiting times as a multiple of the processing times to the 
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macro-operations (cf. [MoDr2005] for more details on the top layer of the 
hierarchy). 
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Figure 1. Decomposition of a wafer fab into different work areas 

The start dates and end dates are necessary for the middle layer in order 
to determine detailed schedules for the lots. We assign a single decision-
making unit to each work area. Hence, a distributed calculation of the 
schedules is possible. A shifting-bottleneck type heuristic is applied to the 
lots within each work area. The heuristic relies on the start dates and end 
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dates of the top layer. We call this approach naive distributed shifting bot-
tleneck heuristic (NDSBH). After determining a detailed schedule for one 
work area we can determine new start dates and completion dates for the 
lots in the remaining work areas. This allows for the implementation of it-
erative improvement schemes. When we start the iteration from a fixed 
bottleneck work area we call the approach DSBH-I. We call the approach 
DSBH-II when we determine the most critical work area dynamically and 
repeat the iteration. For a more detailed description of the distributed 
shifting bottleneck heuristic, we refer to [MoDr2005]. Compared to the 
centralized shifting bottleneck heuristic described in [MoRo2004] the dis-
tributed variant needs less memory and runs faster.

We have to consider a third layer. This layer is called base layer. The 
base layer is used to assign lots to machines based on the schedules of the 
middle layer. In case of exceptions (like machine breakdowns) that may 
lead to infeasible schedules, the assignment of lots to machines that are 
available is done in a dispatching-based manner. We use several dispatch-
ing rules and a contract net type resource allocation approach in this situa-
tion.

Several approaches are discussed in the literature to identify agents. 
There is a rich body on agent-based analysis and design approaches. 
Bussmann et al. [BuJW2001] provided the most pertinent ideas for the 
purpose of the FABMAS prototype. They pointed out that the analysis of 
the decision-making process of the shop floor is the main source in order 
to identify agents for a given manufacturing system. A role based analysis 
and design approach as suggested for example in [ZaJW2003] is not ap-
propriate because there is no straightforward mapping between roles and 
decision tasks. 

Furthermore, we borrow ideas from the PROSA reference architecture 
[Van+1998]. PROSA suggests the product, resource, order, and staff agent 
types. The first three agent types are called decision-making agents 
whereas staff agents are used to support decision-making agents in the 
course of their decision-making process. Staff agents encapsulate more 
centralized aspects in an agent-based system. PROSA is used as a starting 
point for identifying agents. However, because of its high level of granu-
larity several refinements are necessary. 

A decision-making agent is assigned to each decision-making unit in the 
hierarchical approach. We also have to consider the dynamic system enti-
ties as suggested by PROSA. Furthermore, the scheduling and dispatching 
schemes on the different layers of the hierarchy are used to identify staff 
agents. 

We identify a manufacturing system agent as a specific decision-making 
agent. This agent has to determine the rough production schedules on the 
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top layer. Therefore, it has to set certain parameters of the lot planning al-
gorithm. In addition, this agent has to coordinate the distributed shifting 
bottleneck heuristic in the iterative case. The manufacturing agent is sup-
ported by a lot planning agent that determines the rough plans for the lots 
and additionally by a manufacturing system monitoring agent. 

On the middle layer, we identify work area agents that are responsible 
for making detailed scheduling decisions for the lots within its work area. 
Each work area agent is supported by a work area scheduling agent that is 
responsible for determining detailed schedules based on the shifting bot-
tleneck heuristic. We consider monitoring agents for each single work 
area.

In the base layer, we identify machine group agents that have to imple-
ment the schedules from the middle layer. They support a contract net type 
resource allocation scheme when the schedules from the middle layer are 
infeasible. 

We also consider lot agents that represent individual lots on the shop 
floor. Batch agents are used for the representation of already formed 
batches. 

4.4 Design and Implementation of the Agent-Based 
Production Control System 

It turns out that we can use an agent-based system to implement our dis-
tributed hierarchical production control approach. The resulting agent-
based system should support: 

1. flexible representation of the process conditions of semiconductor 
manufacturing domain, 

2. modeling capabilities for agent hierarchies, 
3. capabilities to emulate a wafer fab represented by a discrete event 

simulation model for performance assessment of our agent-based pro-
duction control system, 

4. integration capabilities for legacy software in order to use more ad-
vanced heuristics for staff agents. 

After developing a small complexity MAS prototype based on the 
JAFMAS framework using the Java programming language [MoSS2002], 
investigating some agent-based toolkits, and based on some not very opti-
mistic information from the literature [Vrba2003], we decided to design 
and to implement our MAS based on the .NET framework mainly because 
none of the existing agent toolkits and agent frameworks support our four 
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key requirements (for a more detailed discussion of this design decision we 
refer to [MoSt2005] due to space limitations). We decide to follow the 
FIPA standard for agent-based systems (cf. IV.7) as close as possible in or-
der to ensure in principle interoperability of the FABMAS prototype with 
other MAS. Later, we generalized our agent system architecture in the 
Manufacturing Agency (ManufAg) agent framework [MoSt2005]. 

We follow a role based approach in order to design our single agent ar-
chitecture. Roles are used to encapsulate the normative behavior repertoire 
of agents [OdPF2003]. Each single role is characterized by a set of possi-
ble behaviors. Transitions from a certain behavior to another behavior are 
possible. We present a corresponding UML class diagram in Figure 2. 

Figure 2. Single agent architecture 

Our single agent architecture is somewhat similar to the layered archi-
tecture discussed in the literature. Decision-making agents are basically re-
active agents, whereas the staff agents correspond to the local and coopera-
tive planning layers in the layered approach. Each single agent contains an 
agent mailbox for incoming messages and has access to an agent commu-
nicator that is responsible for outgoing messages. 

The agent-based system FABMAS consists of several runtime environ-
ments. The runtime environment contains 

1. an Agent Container, 
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2. a Directory Service, 
3. an Agent Management System, 
4. an Agent Communicator. 

The agent container as a collection of all active agents in the agent run-
time environment contains the agents for production control (domain 
agents) and the system agents (e.g. agent management and directory ser-
vice). An agent container is part of each runtime. 

The agent directory service contains the information on the offered ser-
vices of the agents during runtime. A directory service agent is located in 
each runtime. The directory service agents (of the different runtimes) in-
teract and exchange information about the agent services of the MAS. 
Agents register their specifications as a service-entry at the directory ser-
vice agent of the agent runtime where the agent is located and registered. 
Agents can ask the directory service agent looking for other agents with 
special services. Each agent can only ask his local directory service agent 
for the desired information. If the local directory service agent is not able 
to fulfill the inquiry the agent tries to find the information by interaction 
with the other directory service agents within the entire MAS. Hence, it is 
not necessary to establish a global directory service as a centralized infor-
mation point in a distributed system. 

An agent management system administrates the life cycle for all agents 
of its runtime. The creation of the agent, the observation of the agent be-
haviors, the provision of potentially mobility services and the removal of 
an agent if it is not any longer needed are the services of the agent that are 
represented by the agent management system. 

For the communication between the agents an agent communicator is 
necessary. This agent communicator encapsulates direct and multicast 
communication capabilities. The relating agent communicator handles 
each communication act. When an agent is interested in sending a message 
then a message is stored in the outgoing mailbox and the agent communi-
cator sends the message to the receiver agent that is addressed in the mes-
sage. 

In order to build a distributed agent hierarchy across different platforms, 
a unique identifier, called Hierarchy Identifier (HI), is introduced. This 
identifier is the organizational knowledge base for each agent. It provides 
the agents with a system wide unique hierarchy name that does not depend 
on the runtime where the agent is hosted. Furthermore, the HI stores the 
potential parent agent of a hierarchically organized agent and keeps track 
of its subsidiary child agents. The hierarchical organization of the agents is 
performed automatically as soon as an agent gets alive. The hierarchical 
organization system owned by each single runtime helps the agent to find 
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its place within the hierarchy by looking for the appropriate parent and 
child agents. The used agent runtime environment is shown in Figure 3. 

A single runtime environment is used for each work area. Each runtime 
environment contains all the agents that are related to the work area. Fur-
thermore, a fixed runtime environment also contains the manufacturing 
system agent and the corresponding lot planning agent. 

Each single runtime environment represents the data for decision-mak-
ing locally. We use data replication and therefore redundancy in order to 
reduce the communication overhead. For example, the routes of the prod-
ucts are stored for each single runtime environment. We use data structures 
for lots and resources in order to maintain the necessary data. 

Decision-making agents and staff agents interact in a rather generic 
way. For example, each decision-making agent has to set several parame-
ters in order to use the algorithms that are represented by the staff agent. 

Figure 3. Agent runtime environment 

We developed an ontology that contains the vocabulary for a meaning-
ful communication of the different agents within FABMAS. The FAB-
MAS ontology is described in [MoSt2003]. In order to use the ontology we 
developed the content language FABtalk [MoSt2004]. FABtalk is basically 
a context-free grammar that can be used to construct more complex 
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meaningful statements during agent interactions. We convert the classes of 
the ontology in XML constructs that can be used by FABtalk. 

Before presenting some computational results from performance as-
sessment we are going to present some ideas of our implementation ap-
proach. We use basically an iterative, incremental approach. We started 
with the implementation of a small complexity MAS for production con-
trol using the Java programming language and the JAFMAS framework. 
The results and experiences made during this phase of the project are 
documented in [MoSS2002]. Based on these results we started with the de-
sign and the implementation of the described FABMAS architecture based 
on the C# programming language and the .NET remoting middleware. The 
suggested architecture is contained in a more general and abstract form in 
the ManufAg framework [MoSt2005]. At the same time, we developed all 
the necessary production control algorithms as stand-alone solutions 
(mainly by using the C++ programming language) and also the architec-
ture for performance assessment [MoDr2005]. By using the concept of de-
cision-making and staff agents the developed algorithms were later inte-
grated with minimal effort in the FABMAS prototype. Because we have 
experience with the performance of all stand-alone algorithms the integra-
tion with FABMAS was quite straightforward. After implementing the in-
frastructure we developed a domain-specific ontology and a content lan-
guage. After developing these prerequisites we were able to perform our 
performance assessment experiments. In summary, we agree with many 
observations from [WoJe1999] (for example, not every object should be 
modeled as an agent, building a MAS requires computer science know-
ledge), however, our picture on developing own agent-based systems 
(from scratch) is much more optimistic. 

4.5 Performance Assessment of the Prototype 

In this section we describe the results of simulation-based benchmark ef-
forts for our agent-based system FABMAS. Simulation is used to emulate 
the manufacturing process of interest. We apply a performance assessment 
architecture that is already described in [MoRS2003]. The center point of 
the used architecture is a blackboard type data layer between the agent-
based production control system and the simulation model. The data layer 
residents in the memory of a computer and is basically an object model. It 
acts as a mirror that contains the relevant business objects from the opera-
tive databases of the manufacturing execution system (MES) and the enter-
prise resource planning system (ERP). The blackboard type data layer is 
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updated in an event-driven manner by the simulation system. We show the 
used architecture for performance assessment in Figure 4. 

FABMAS

Blackboard-type data layer

DispatcherDispatcher

FABMAS

Blackboard-type data layer

DispatcherDispatcher

Figure 4. Architecture for performance assessment 

We simulate 50 days. We do not include any machine breakdowns in 
our experiments. We use three different reference simulation models of 
wafer fabs in our experiments. 

The first one is adapted from a small complexity model suggested by re-
searchers from Intel [ElRT1997]. The original model contains only three 
work centers and two product routes with six steps. The process flow is 
organized in two layers. Among the machine groups, there is a batch pro-
cessing one and a machine group with sequence-dependent set-up times. 
The model imitates some important features of wafer fabs. We call this 
model minifab model. Our first model contains three work areas. Each of 
them contains the machinery of the minifab model. The process flows are 
organized into two layers. The first work center is visited two times. 
Therefore, it contains 15 machines and two products with 24 process steps. 
We denote this model as model A. 

The second model is a reduced variant of the MIMAC Testbed Data 
Set 1 [FoFL1995]. It contains two routes with 103 and 100 steps respec-
tively. The process flow is highly re-entrant. The lots are processed on 147 
machines that are organized into 38 work centers. Among the machines are 
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batching machines. The model contains four work areas. We denote the 
second model by model B. 

The third model is the MIMAC Testbed Data Set 1. It contains over 200 
machines that are organized into over 80 work centers. The work centers 
form five work areas. The model contains two routes with 210 and 245 
steps respectively. The third model is called model C. 

We are interested in the performance measures TWT, cycle time (CT) 
and throughput (TP). All values for these measures are presented relative 
to the corresponding values obtained by a FIFO dispatched system. We ex-
pect that the performance of our approach depends on the due date setting 
and the load of the wafer fab. Furthermore, based on previous experiments 
with the centralized shifting bottleneck approach [MoRo2004] we investi-
gate the dependency of the solution quality from various parameter set-
tings of the hierarchical approach. We use different scheduling intervals 

upτ  for the top layer of the hierarchy. For the middle layer, we perform ex-

periments with different scheduling interval ∆τ  and an additional schedul-
ing horizon ahτ , i.e., every ∆τ  time units we determine a schedule for a 
horizon of ahττ ∆ + . Furthermore, we are interested in the reduction of time 
for computation if we distribute the different agent runtimes (i.e., all the 
agents that are assigned to a certain work area) on different computers. 

For due date setting, we use the relation 

=

+=
jn

1i
jijj pFFrd :  (2) 

rj release date of lot j

pij processing time of step i of lot j

nj number of process steps of lot j

The used experimental design for our experiments is summarized in Ta-
ble 1. 
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Table 1. Experimental design 

Factor Level Count 

Model A,B,C 3 

Due Date Setting Tight (FF = 1.6), 
Wide (FF = 2.0)

2

Load of the System High, Moderate 2

Approach for Middle Layer NDSBH, DSBH-I, DSBH-II 3 

Production Scheduling Interval of 
the Top Layer 

{ }h4,h2up = 2

Scheduling Interval of the Middle 
Layer 

{ }h4,h2=∆
2

Additional Horizon { }h2,h0ah = 2

Computing single computer, distributed 2 

In a first series of experiments we change the settings for ∆τ  and ahτ .
We use model A and model B for these experiments. Furthermore, 

h4up =τ  is valid. We present the corresponding TWT values in Table 2. 

We can see from Table 2 that we obtain the smallest TWT values for the 
combination h2=∆τ  and .h0ah =τ

The combination h4=∆τ  and h2ah =τ  also provides results of similar 
quality. Larger scheduling horizons lead to worse results. It is interesting 
to mention that we obtain a similar solution quality as for the shifting bot-
tleneck heuristic implementation described in [MoRo2004]. 
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Table 2. Solution quality for changing scheduling horizon 

Approach NDSBH DSBH-I DSBH-II 

Model Model 
A

Model 
B

Model 
A

Model 
B

Model 
A

Model 
B

Scheduling Horizon  

2+0 0.6534 0.362 0.642 0.3677 0.5800 0.3733 

2+2 0.754 0.4518 0.6809 0.4108 0.5481 0.5155 

2+4 0.6846 1.2406 0.6149 1.3295 0.5882 1.0928 

4+0 0.6033 0.4549 0.5915 0.4261 0.6359 0.3732 

4+2 0.4751 0.4685 0.5068 0.4462 0.5271 0.3836 

4+4 0.6136 1.1084 0.5639 1.5133 0.5623 1.5591 

6+0 0.8364 0.5045 0.8521 0.4639 0.8738 0.5027 

6+2 0.6488 0.5144 0.6437 0.4677 0.658 0.4339 

6+4 0.5489 1.0226 0.6543 1.5081 0.6561 1.5943 

8+0 1.1687 0.5892 1.2687 0.6972 1.2217 0.6589 

8+2 0.9164 0.4452 0.8886 0.6172 0.9199 0.743 

8+4 0.7979 1.3268 0.7391 2.0676 0.722 2.2628 

In a second series of experiments we are interested in the solution qual-
ity that we can expect for different characteristics of the wafer fab. We 
consider model B. It hold h2up =τ , h2=∆τ , and h2ah =τ . We present the 

corresponding results in Table 3. It turns out that tight due dates lead to 
larger improvements of TWT than wide due dates. In most cases we obtain 
better results for a high loaded system. The results for CT and TP are basi-
cally independent of the system conditions. The relative TWT values are 
rather high in case of wide due dates. This is mainly caused by TWT val-
ues close to zero for a FIFO dispatched system. The hierarchical approach 
performs not so well in this situation. We did experiments with other due 
date and slack-based dispatching rules (like, for example the earliest due 
date (EDD) and the critical ratio (CR) rule [AtAt1995]). In many situa-
tions, especially for tight due dates and a high load of the system, but not 
always, our approach was able to beat these dispatching rules. 

We made a couple of experiments in order to find out how much we can 
gain from distributing the different decision-making entities of the work 
area layer on different computers in terms of speedup the computation. 
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The experiments were performed on a cluster of 2.4 GHz PCs with 256 
MB RAM in a 100 Mbps Ethernet network. 

Table 3. Solution quality for changing characteristics of the models 

Approach NDSBH DSBH-I 

Measure TWT CT TP TWT CT TP 

Load Due 
Date

Tight 0.5987 0.9895 1.0140 0.6187 0.9897 1.0102 High 

Wide 39.3131 1.0073 1.0064 47.4678 1.0049 1.0051 

Tight 1.0597 0.9956 0.9925 0.8796 0.9892 0.9962 Mode-
rate Wide 26.0175 1.0062 1.0013 139.106 1.0168 1.0013 

According to the number of work areas in each of our three test models 
we use three, four, and five computers respectively. We show the savings 
in time required for computation in Table 4 for h4up =τ , 0ah =τ , h2=∆τ ,

and h4=∆τ . We use NSBH in these experiments. 

Table 4. Computational time savings due to distributed computing 

Computational Time 
Saving (in %) 

Model A Model B Model C 

τ∆ = 2h 21 35 34 

τ∆ = 4h 45 47 40 

From Table 4 it turns out that the savings in case of a larger scheduling 
interval are greater. In the case of model C we run the algorithm on five 
different computers, hence the communication efforts are greater com-
pared to model B. From the experiments it turns out that a distribution, es-
pecially in case of models of large-scale wafer fabs, offers some advan-
tage. 

4.6 Conclusions and Future Research 

In this book chapter, we described an agent-based system that can be used 
for distributed hierarchical production control of wafer fabs. We use a 
proper hierarchical decomposition of the entire production control prob-
lem. We designed appropriate decision-making agents and related staff 
agents. We implemented the resulting agent-based system by using the C# 
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and the C++ programming languages. We performed a simulation-based 
performance assessment of the resulting production control system. It turns 
out that the new scheduling approach outperforms more traditional pro-
duction control approaches like, for example, dispatching rules. We also 
compared our approach with a rather sophisticated centralized scheduling 
approach. 

As a main result we conclude that our agent-based system produces ap-
proximately the same solution quality in term of total weighted tardiness, 
cycle time, and throughput as the centralized shifting bottleneck heuristic 
(cf. [MoDr2005]). It outperforms pure dispatching based production con-
trol approaches in case of a high system load and tight due dates in many 
situations. However, because of distributed determination of the schedules 
the agent-based production control is faster. Furthermore, it requires less 
memory. We come up with an architecture that leads to the required sepa-
ration between structure of the production control system and the used 
production control algorithms. Clearly, it is rather easy to exchange pro-
duction control algorithms during runtime of the production control system 
by simply remove an old staff agent and launch an appropriate new staff 
agent. 

There are several future research needs. First of all, we have to include 
more adaptive system behavior in our production control system. Cur-
rently, we investigate the usage of fuzzy rules for the determination of se-
quences for scheduling machine groups within the distributed shifting bot-
tleneck heuristic in a situation-dependent manner. A second research di-
rection is a further extension of the suggested software architecture within 
the ManufAg agent framework [MoSt2005]. So far, we have implemented 
only the FABMAS prototype and a second prototype of a production con-
trol system applied to simple flexible manufacturing systems. However, in 
future research we also have to address the problem of modeling auto-
mated material handling systems (cf. [BaCS2004] for some preliminary 
steps into this direction). 
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Abstract. Operational fulfillment of supply chain processes in enterprise networks 
is regularly affected negatively by disruptive events. Event management promises 
to identify such problems in a timely fashion and significantly increase reaction 
time. A concept based on software agent technology is presented which enhances 
time and defect flexibility of supply chain processes. Evaluation of the concept in-
dicates cost and cycle time reductions in multi-level supply chains which are not 
achieved by conventional approaches. 

5.1 Introduction 

During execution of fulfillment processes in supply chains stochastic 
problems occur which have a significant impact on the performance of 
enterprises and their supply chains: timeliness of fulfillment, quality mea-
surements, costs and revenues of supply chain partners are affected nega-
tively. Even small events in suppliers’ processes result in deviations from 
globally planned and optimized schedules with serious impacts on supply 
chain performance. Nevertheless, negative consequences can be reduced, if 
event-related information is provided to supply chain partners at an early 
stage shortly after such events have occurred and corrective actions can be 
taken. Enhanced information provision increases defect flexibility of a sup-
ply chain system as defined in I.3.2 which results in lower follow-up costs 
of negative events. 

However, a lack of reliable and accurate information on events and in-
sufficient communication of event-related data between supply chain part-
ners is observed. Thus, the supply chain control loop of planning, execu-
tion, and control (see II.1) is blocked regarding the control function in sup-
ply chains. The resulting information deficit at supply chain partners re-
garding event-related information will be referred to as the Supply Chain 
Event Management (SCEM) problem [Zimm2005]. 
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Improved information management in supply chains is required to re-
duce the SCEM problem and increase the time for taking appropriate reac-
tions to negative events. Consequently, time flexibility is increased: al-
though increases in time flexibility refer to faster implementation of system 
modifications (see I.3.2), we argue that an increase in reaction time in a 
given situation (ceteris paribus) provides more time for system modifica-
tions and is thus a second aspect of time flexibility. The objective of infor-
mation management is to provide a flexible SCEM solution for overcom-
ing the information deficit and thereby improving the time and defect flexi-
bility of a supply chain. To realize this objective supply chain partners 
ought to act proactive: first, partners in the supply chain have to “sense” 
what kind of information might be needed by themselves in the future and 
act proactive by pulling information from all available data sources in-
cluding related partners. Second, information on disruptive events identi-
fied by a partner should be communicated to potentially interested supply 
chain partners proactively (information push). A SCEM solution has to en-
able and support both types of proactivity. 
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Figure 1. Characteristics of the SCEM problem, criteria according to Russel 2003. 

The environmental properties (see II.1) of the SCEM domain are 
characterized in Figure 1: the interaction density among supply chain part-
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ners is high while at the same time a single partner only has restricted ob-
servability of (disruptive) events in the enterprise network. 

Since stochastic events are at the core of the SCEM problem, predict-
ability is very low. Disruptive events tend to be single occurrences without 
path-dependency: sustainability is rated primarily episodic. Reliability of 
the environment is dynamic in supply chains. Although events are discrete, 
their occurrence is continuous since it is unpredictable over time. 

Following the line of argument in II.1, traditional IT-systems suited for 
problems which cover “small areas” in the criteria-graph of Figure 1 are 
not well-suited for the SCEM problem. However, agent technology is se-
lected since it provides necessary flexibility features for SCEM such as 
autonomy, reactivity and proactiveness of behavior and social ability to 
communicate with other agents (or humans). These characteristics are 
agreed upon as being fundamental to the notion of a software agent (see 
I.1) [WoJe1995] [Jenn2001]. Proactivity as the primary requirement for a 
SCEM solution is inherently satisfied by agent technology: an agent is en-
dowed with a goal it pursues. Furthermore, its advanced capabilities to en-
gage in dialogs with other software agents enables it to proactively gather 
SCEM data and to decide on the necessity of proactively generating alert 
messages. 

5.2 Conventional Approaches 

Since the 1990s tracking-and-tracing systems are implemented within lo-
gistics service providers’ networks [BSKP2002]. These systems provide 
on-demand information on transportation orders’ status often via web-in-
terfaces. However, such systems do not provide an assessment of an or-
der’s status in relation to its planned fulfillment [BSKP2002]. These issues 
are only addressed by SCEM systems. In the last years an increasing de-
mand for SCEM systems [Bitt2000] [MoWa2001] [LoMc2002] is ob-
served which is addressed by a growing number of available SCEM sys-
tems [ToRH2003]. Current SCEM solutions primarily focus on intra-or-
ganizational processes within single enterprises, while implementations 
with a true inter-organizational supply chain perspective are rare 
[Masi2003]. One reason is that current offerings of SCEM systems build 
upon centralized architectures which prevent the integration of multiple 
systems among different enterprises. This is illustrated by an initiative of 
the automotive industry to interconnect existing supply chain monitoring 
systems. In its official recommendation it points out that decentralized in-
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frastructures are needed which aim at cooperation between enterprises. 
However, such solutions are not available [Odet2003]. 

Another major drawback of current SCEM systems is their lack of 
autonomous proactive behavior and their inability to participate in flexible 
dialogs with changing communication partners (e.g. for data gathering and 
alert exchange). However, some SCEM vendors are beginning to use 
agent-technology (or at least proclaim certain functions to be agent-based) 
[Barr2003]. This is an additional indicator for the suitability of agent tech-
nology to implement a SCEM system. 

5.3 Analysis and Model Building 

5.3.1 Supply Chain Event Management Process 

All functions of the proposed SCEM solution are aggregated in a generic 
process for event management (see Figure 2). This process is applicable to 
every enterprise in a supply chain [BoZi2005] and realizes inter-organiza-
tional event management. The first activity is the Monitoring decision
which is initialized by different triggers: queries from customers, alerts 
from suppliers and internally available critical profiles (CCPj). Critical 
profiles are used to identify orders with a high probability of encountering 
disruptive events and thus focus monitoring efforts on high-risk orders 
[BoZi2005]. This allows preventing excessive communication and re-
source consumption due to proactive data gathering. Although it is possi-
ble that more than one type of trigger requires monitoring of the same or-
der, the SCEM process is only initiated once for each order and continued 
until the order is finished. 

A strategy for proactively gathering SCEM data in supply chains is used 
within the activity Information gathering. This activity is cyclically initi-
ated as long as a monitored order is not finished (see Figure 2). Data is 
gathered both from internal data sources (e.g. an ERP system) and from 
external supply chain partners to assess suborders, as indicated by the two 
query variants. Since a status request for a suborder forces the queried 
supplier to monitor its own order and its related suborders, a cascading 
distributed data gathering mechanism is realized in a supply chain, if the 
SCEM process is implemented by every supply chain partner. 

Interpretation of SCEM data analyses all gathered SCEM data and Alert 
generation decides whether and how to generate alerts. Both process steps 
use Fuzzy Logic mechanisms to imitate human assessment mechanisms 
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[ZWMB2005]. Alerts are directed to actors within an enterprise in order to 
initiate reactions to contain negative effects of disruptive events. Besides, 
alerts are sent to customers who will be affected subsequently by the ef-
fects of disruptive events (see Figure 1). After an order is finished and 
monitoring is terminated, results of monitoring activities are evaluated 
(Evaluation of CCPj) to improve existing critical profiles and enhance the 
focus of SCEM efforts on potentially critical orders. 

Monitoring decision

Information gathering

Alert generationEvaluation of CCPj

Order finished

Order not finished

CCPj

AlertSupQueryCust

QuerySup

ResponseSup

AlertCust

AlertInternal

ResponseCust

QueryInternal

ResponseInternal

Discourse agent

Coordination agent

Surveillanceagent

Wrapper
agent

Interpretation of SCEM data

Cust CustomerControl flowControl flow

Sup SupplierObject flowObject flow

CCPj

CCPj Critical profile

Figure 2. SCEM process and agent types 

5.3.2 Agent Types 

Four different agent types are defined (see Figure 3) that are responsible 
for different tasks in the SCEM process. A detailed explanation of associ-
ated roles is provided in [ZiWB2005]: 

1. A discourse agent provides the interface to external supply chain part-
ners.

2. The coordination agent coordinates initialization of monitoring pro-
cesses and distributes their results. 

3. A surveillance agent is responsible for creating an information product 
by gathering and interpreting SCEM data. 

4. A wrapper agent hides heterogeneous data sources from a SCEM sys-
tem and allows standardized access to these sources. 
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To realize the SCEM concept within a supply chain, each supply chain 
partner provides one agent society with a discourse and a coordination 
agent, as well as various surveillance and wrapper agents (see Figure 3) 
[Zim+2002]. A single coordination agent in each enterprise assures that 
initialization of monitoring efforts as well as management of external 
status requests and alerts is handled consistently within an enterprise. The 
coordination agent also allows gaining an overview of all monitored orders 
of an enterprise and serves as a management cockpit. 

For each monitored order of an enterprise a dedicated surveillance agent 
is triggered by the coordination agent. Varying priorities of orders result in 
different update cycles in the SCEM process which are to be enforced by 
the surveillance agents. Managing these cycles by a single agent for vari-
ous orders would require additional scheduling procedures. To avoid these 
complexities, an encapsulation of the data gathering and analysis functions 
in dedicated surveillance agents for each monitored order is proposed for a 
SCEM agent society. 
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Figure 3. Agent society 

Wrapper agents provide a standard interface to internal data sources for 
surveillance agents. An integration of theses abilities in surveillance agents 
would require a replication of all access details for each available data 
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source in every surveillance agent. This redundancy is avoided by intro-
ducing wrapper agents. 

5.3.3 Agent Interactions 

Two main dimensions of communication are distinguished in the agent-
based SCEM concept (see Figure 3): 

• Interaction between enterprises which is referred to as inter-organiza-
tional communication: it is facilitated by discourse agents of the enter-
prises which exchange messages via the Internet. Every SCEM agent 
society has one discourse agent that serves as the single point-of-contact 
for external communication of SCEM data among enterprises. 

• Intra-organizational communication within one enterprise: it refers to 
the interactions within one agent society between the various agent 
types that realize a SCEM system of a single enterprise. 

Interactions among all agent types are based on requests for SCEM data 
and requests for activities to be performed for gathering or manipulation of 
this data. A suitable basic interaction protocol is the standardized FIPA 
“Request” interaction protocol [FIPA2002]. The content of the messages is 
defined based on a SCEM ontology which is discussed in detail in [ZKBB 
2005]. Each agent type decides, based upon the message type, the sender 
and the content of a message, on an appropriate action, in order to fulfill its 
duties within the SCEM process (e.g. analysis of received data). Besides 
reactions to messages, every agent can decide proactively to take or initiate 
further actions in the event management process (e.g. send an alert). 

The result is a distributed system of agent societies for monitoring criti-
cal orders across a supply chain with a combination of proactive SCEM 
data gathering (pull mechanism) and distribution of alerts (push mecha-
nism). The implicit demand for information on disruptive events is satis-
fied with messages that are exchanged between supply chain partners. 
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5.4 System Description 

5.4.1 Generic Prototype 

A generic prototype with all agent types has been realized for conducting 
experiments in a laboratory environment1: each enterprise in a simulated 
supply chain hosts one agent society (see Figure 4). A single wrapper 
agent per enterprise is required to access a database that simulates the en-
terprise’s ERP system which provides all internal SCEM data on orders. 
The main focus of the implementation is on SCEM features provided by 
coordination and surveillance agents, whereas only basic mechanisms of 
discourse and wrapper agents are realized. Every agent society is realized 
on its own instance of the FIPA-conform JADE agent platform. As in a re-
alistic supply chain, agent platforms can be hosted on different computers 
to realize a physical distribution of SCEM systems. An additional agent 
type provides white and yellow pages services to all discourse agents of a 
supply chain: a global directory facilitator (GlobalDF, see Figure 4). 

Within the generic prototype all agents rely on the SCEM ontology. The 
JADE agent platform selected for implementation of the generic prototype 
supports a special representation of ontologies based on Java Beans (JB) 
[CaCa2004]. Information on a certain instance of an ontological concept 
(e.g. a specific order) is represented as an instance of a JB class Order. In-
stantiation of ontological concepts define knowledge facts of an agent’s 
knowledge base. Besides creating, accessing and manipulating the knowl-
edge base with JBs, this representation is used by the JADE platform to 
define content of FIPA-ACL messages. Thus, knowledge is standardized 
among agents in a SCEM system, easily exchanged between agents, and 
always accessible through Java programming instructions. 

To facilitate simulation of all orders in a supply chain during experi-
ments a single data base aggregates all ERP systems of enterprises in a 
simulated supply chain. Each wrapper agent responsible for accessing in-
ternal data from its enterprise’s ERP system has a restricted view on this 
database. 
A simulator reflects changes in fulfillment processes in the ERP system. 
These changes are identified by agents of the SCEM system. Most func-
tions are integrated in a special agent type: a simulator agent that has direct 

1  This prototype is also integrated in the Agent.Enterprise NetDemo environment 
to demonstrate use of agent-based SCEM in a Multi-MAS environment. 
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access to both the ERP system and an experiments data base (see Fig-
ure 4). 
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Figure 4. Architecture of the MAS 

This agent initiates new experiments by starting all agent societies and 
triggers monitoring through requests to Enterprise 1 which it transmits via 
an additional discourse agent. During execution of fulfillment processes it 
generates disruptive events for selected orders of the supply chain. It stores 
these disruptive events and its effects on process times (delays) in the ERP 
system for discovery by the agents of the SCEM systems. As soon as a 
surveillance agent has identified a new disruptive event and its corre-
sponding delay, a reaction mechanism (B_Sim in Figure 4) is triggered that 
calculates how much of the delay can be reduced depending on the re-
maining reaction time. The results of this reaction are stored in the ERP 
system, and measurements (e.g. time point of identification of disruptive 
event, reaction consequences) are stored in the experiments data base. All 
delays in suborders that cannot be coped with propagate to the next cus-
tomer level of the supply chain. Such propagation is assured by the simu-
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lator agent. In case several suborders are delayed, a maximum delay is as-
sumed for the main order. Thus, propagating disruptive events are simu-
lated and effects of agent-based SCEM are measurable. 

5.4.2 Industry Showcase 

A second prototype of an agent-based SCEM system is realized as a show-
case within a real-world environment of a logistics service provider (LSP). 
The prototype provides insight into the ability to integrate agent-based 
SCEM concepts into existing fulfillment processes and IT-infrastructures. 
The showcase is documented in detail in [BoZi2005].

Industrial carriers which receive suborders from the LSP and which are 
integrated in the agent-based SCEM solution do not have their own SCEM 
agent societies, but only provide conventional web-interfaces for their 
customers. These interfaces offer status information on transportation or-
ders. Dedicated wrapper agents are realized to integrate these web inter-
faces in the agent-based SCEM system. The implementation is based on 
the FIPA-compliant FIPA-OS platform. A focus of the showcase is on in-
tegration of real-world data sources and on realization of the proactive 
monitoring of orders based on critical profiles. The latter results from re-
quirements of the LSP which wanted to focus monitoring efforts to reduce 
its main problems: large amounts of irrelevant and outdated data that it 
gathers in its databases but that nobody uses for proactive event manage-
ment. 

The coordination agent offers a graphical user interface (GUI) which al-
lows a user to monitor and manage the SCEM agent society of the LSP 
(see Figure 5). A user can manually start surveillance agents to monitor 
certain orders, access detailed information of a specific surveillance agent, 
and terminate observation tasks. The GUI provides a short overview of all 
currently active surveillance agents with their monitored order’s identifier, 
predicted duration of the order, and an aggregated status that indicates 
whether the order is on time, late, critical, or finished. Configuration and 
management of critical profiles is also managed by this GUI. 

If a user decides to monitor a specific order or if an order is identified as 
potentially critical by a profile, the coordination agent instantiates and ini-
tializes a surveillance agent. The surveillance agent monitors the fulfill-
ment process across the entire supply chain from order reception to order 
delivery. The system uses a series of milestones which divide the fulfill-
ment process into individual sub-processes defined by the LSP. 
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Figure 5. GUI of coordination agent 

Based on the order’s milestone plan which defines when a milestone is 
supposed to be completed, each surveillance agent identifies any devia-
tions. All deviations are registered by the agent and displayed to the user 
upon request. The main GUI provided by each surveillance agent employs 
a traffic light metaphor. To indicate the status of a monitored order the 
agent differentiates between states of single milestones and an aggregated 
status of an order. This order status indicates whether an order is fulfilled 
on time, late, or critical. Proactive alerts to actors are provided by the 
agents through warning emails and an automatic display of a surveillance 
agent’s GUI to an actor (“pop-up”). 

5.5 Evaluation and Benchmarking 

5.5.1 Analytical Cost-Benefit-Model 

Evaluation of the agent-based SCEM concept is guided by the question: 
How much can follow-up costs of disruptive events be reduced by a SCEM 
system? A theoretical cost-benefit-model presented in [Zimm2005] pro-
vides hypotheses on the specific benefits of agent-based event manage-
ment in multi-level supply chains. At the core of the model is the assump-
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tion that the time ∆T between occurrence of a disruptive event and identi-
fication of the event determines follow-up costs: the larger ∆T the less 
time for reaction remains and the higher follow-up costs are incurred by 
supply chain partners. Two hypotheses are derived from the cost-benefit-
model [Zimm2005]: 

• The number of update cycles (SCEM cycles) in the SCEM process 
determines ∆T and thus follow-up costs of disruptive events. A cost-op-
timal number of update cycles exists for each order. 

• The use of critical profiles provides additional benefits through further 
reductions of ∆T and associated costs. 

Based on the cost-benefit-model three benchmark situations are estab-
lished that are rated with associated costs: without any event management, 
manual event management with conventional tracking-and-tracing systems 
and isolated state-of-the-art SCEM systems [Zimm2005]. The highest 
benchmark is realized by isolated SCEM systems. In Figure 6 resulting 
costs of this benchmark situation in a typical supply chain scenario are 
compared to the agent-based approach. 
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Figure 6. Cumulated costs of SCEM scenarios 

Two conceptual differences determine the additional benefits of agent-
based SCEM compared to isolated SCEM systems: 

• Inter-organizational proactive data gathering and alerts assure that an 
agent-based SCEM system of a customer gains advance knowledge on 
disruptive events that will threaten its processes in the future. Since such 
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inter-organizational communication is seldom realized today in SCEM 
systems [Masi2003] isolated SCEM systems can only identify disruptive 
events as soon as they eventually affect the enterprise’s processes. Ad-
ditional reaction time which is quantified by a reduction of ∆T provides 
additional reductions of follow-up costs of up to 50% according to sce-
nario calculations with the cost-benefit-model (see Figure 6 middle col-
umn). 

• Critical profiles allow focusing monitoring efforts on potentially critical 
orders thereby enhancing efficiency of event management activities. 
Based on data of the logistics service provider (see industry showcase)
realistic critical profiles are identified [BoZi2005]. Since focused moni-
toring with such profiles decreases costs of monitoring the number of 
cost-optimal update cycles per order is increased [Zimm2005]. This re-
sults in an additional reduction of costs of up to 40% compared to the 
benchmark “isolated SCEM system” which adds to the benefits from in-
ter-organizational communication (see Figure 6 right column). 

In addition to these monetary effects Figure 6 indicates more fair distri-
bution of remaining negative effects of disruptive events among supply 
chain partners. Most benefits are realized by customers and customers of 
customers in a supply chain. This is considered a fair constellation, since 
in the situation with isolated SCEM systems most costs are incurred by 
those partners not responsible for an initial disruptive event. 

5.5.2 Experimental Results 

Experiments conducted with the generic prototype are used to validate the 
hypotheses of the cost-benefit-model. All experiments are conducted with 
the simulator presented above. The mechanism for reducing a delay as-
sumes that to a certain extent the planned duration of fulfillment processes 
can be reduced. However, this reduction is limited to a predefined thresh-
old, since in reality fulfillment processes (e.g. a production process) al-
ways have some minimum duration (e.g. for working on a product). 

Depending on when event information becomes available, the intensity 
of a reaction changes: the earlier information is available the more intense 
is the reaction and vice versa. A linear function is selected for calculating 
the exact extent of a reaction. However, in real-world scenarios different 
reaction functions to calculate a reaction might also be realistic. 

Within experiments, disruptive events are inserted by the simulator 
during fulfillment of a suborder which is placed with Enterprise 4 (see 
Figure 7). All orders in the supply chain have the same planned duration of 
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five days. An initial advance planning horizon for Enterprise 3 is 15 days. 
A maximum reduction of 10%, which is 12 hours, is defined for every en-
terprise. 
Consumer Enterprise1 Enterprise2 Enterprise3 Enterprise4

Enterprise5
Disruptive events

= Enterprise

= Order issued

Figure 7. Supply chain configuration 

In Figure 8 results of an experiment are depicted where a disruptive 
event occurs very early during fulfillment at Enterprise 4 (within the first 
day of the planning horizon) and results in an initial delay of 100 hours. 
Measurements are taken at Enterprise 3 for different numbers of SCEM 
cycles. 
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Figure 8. Impact of SCEM cycles – experimental results 

Since a very precautious reaction function with only 10% maximum re-
duction is selected, the maximum reduction at Enterprise 3 with its 120 
hours cycle time is 12 hours. The potential for reduction of the delay 
which remains after implementation of different SCEM cycle configura-
tions is depicted in Figure 8 (left side). The results state that an increase in 
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SCEM cycles results in a sharp decline of the remaining delay similar to 
behavior predicted by the theoretical cost-benefit-model. In the experi-
ments the minimum number of SCEM cycles per order is an average of 2.5 
which results from fixed intervals between data gathering rounds and the 
specific fulfillment duration of an order. An increase of SCEM cycles al-
lows realizing nearly the maximum reduction of 12 hours at Enterprise 3
that is represented by nearly zero remaining potential for reduction in Fig-
ure 8. Similar reductions are realized on following supply chain levels (not 
depicted here): on average, the reductions of delays are even larger since 
information is available earlier for customers in supply chains as predicted 
by the cost-benefit-model. 

In Figure 8 right side the experimental results are rated with costs both 
for follow-up costs of the delay and costs for each SCEM cycle [ZiWB 
2005]. This results in a clear indication of a cost-optimal number of SCEM 
cycles as predicted by the cost-benefit-model. 

5.5.3 Showcase Assessment 

An assessment of the industry showcase provides insight into the impact of 
agent-based SCEM on real-world processes and associated costs. For in-
stance, the prototype provides significant improvements compared to the 
manual monitoring processes currently implemented at the LSP. A conser-
vative estimation of process times for a single manually conducted SCEM 
cycle results in a cumulated 125 seconds for finding status information on 
a certain order and assessing this information. Associated costs are ap-
proximately 1.15 Euro per manual SCEM cycle since average costs of per-
sonnel are 34 Euro per hour [ZiWB2005]. The showcase prototype pro-
vides the same information automatically in a matter of seconds and with-
out manual intervention. Although no direct cost measurements are avail-
able for the prototype it is assumed that every update cycle costs at most 4 
Euro Cent [ZiWB2005]. The difference between manual and automatic 
data gathering efforts is more than 1 Euro per SCEM cycle. 

Costs associated with reactions to disruptive events largely determine 
benefits of SCEM. For the LSP a process analysis has been conducted 
which exemplifies a method to determine cost functions for different reac-
tions [Zimm2005]. In the analysis reactions to severe disruptive events 
within orders of important European customers are in the focus: a second 
delivery has to be triggered since the initial delivery is definitely not ar-
riving at the planned delivery date. Typical reasons for this reaction are - 
as stated by experts of the LSP - damages during transportation and incor-
rect routing of goods (e.g. to another country). 
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In every case where a new (second) delivery is initiated due to a disrup-
tive event, internal activities within the administration of the LSP take 
about one hour and consist of devising a plan for reaction and creating a 
new delivery note. The internal warehouse processes are well designed 
with a very short reaction time: picking and packaging is finished about 20 
minutes after the delivery note is received in the warehouse, if goods are 
available on stock. Packaged goods then wait for pick-up by a carrier. 

Four variants depending on the remaining time for reaction exist. For in-
stance, if only about one day remains a dedicated direct courier with a 
small and fast transportation vehicle can reach most locations of central 
Europe within about 24 hours. The required cycle times associated with 
processes of the alternatives determine how long each alternative is viable 
for a specific order’s fulfillment. For each alternative the associated costs 
are gathered in interviews with experts of the LSP.

Based on the process analysis and associated costs a cost function is de-
vised (see Figure 9). It illustrates use of the cheapest alternative available 
for each point in time between beginning of fulfillment of an order and its 
planned delivery date. 
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Figure 9. Cost function 

In the example, a planned cycle time for orders of 10 days is assumed 
which is realistic for deliveries to central European countries outside the 
European Union. For instance, only before four and a half days of fulfill-
ment have passed is a second regular transport by truck viable with lowest 
costs of 119 Euro. 

The step-wise cost function illustrates realistic alternatives for the LSP 
in relation to the remaining reaction time during an order’s fulfillment. 
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Two statistical trends based on a linear and a non-linear trend are depicted. 
In the example the linear function provides better statistical results and un-
derlines the viability of using linear cost models for assessing the benefits 
of event management in supply chains (e.g. reaction function in experi-
ments). The cost function in Figure 9 indicates a cost reduction potential 
for follow-up costs compared to the worst case (after day 10) of more than 
80% for early disruptive events. 

5.6 Conclusions 

The role of agent-based SCEM in the Agent.Enterprise scenario is to close 
the control loop in supply chain management: while production planning is 
conducted by several other MAS, the SCEM MAS effectively controls or-
der fulfillment in multi-level supply chains and gives feedback event-re-
lated information to actors and planning systems. 

It is shown that an agent-based concept is suited to reduce negative ef-
fects of disruptive events in supply chains. While agent technology sup-
ports the autonomy of supply chain partners it also offers mechanisms to 
both pull and push event-related information. Hence, the initial informa-
tion deficit is significantly reduced which is reflected by improved process 
measurements (e.g. reduced delays) and reduced follow-up costs of dis-
ruptive events. Follow-up costs of disruptive events costs serve as an indi-
cator for defect flexibility. To this end the defect flexibility (see I.3.2) of a 
supply chain is increased by the reduction in follow-up costs of disruptive 
events (up to 50% compared to existing SCEM concepts). With respect to 
the concept of time flexibility, the increase in reaction time realized with 
agent-based SCEM is a second indicator for measuring the improvement in 
flexibility of a supply chain system to adapt to unpredictable events in its 
processes. In experiments (see above), significant increases in reaction 
time are realizable which depend on the point-in-time when an event oc-
curs and on the type of reaction function. 
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Abstract. This chapter presents a decentralized negotiation protocol for coopera-
tive economic scheduling in a supply chain environment. These protocols are 
evaluated using software agents that maximize their profits by optimizing their lo-
cal schedule and offer side payments to compensate other agents for lost profit or 
extra expense if cumulative profit is achievable. To further increase their income 
the agents have to apply a randomized local search heuristic to prevent the nego-
tiation from stopping in locally optimal contracts. We show that the welfare could 
be increased by using a search strategy similar to Simulated Annealing. Unfortu-
nately, a naive application of this strategy makes the agents vulnerable to exploi-
tation by untruthful partners. We develop and test a straightforward mechanism 
based on trust accounts to protect the agents against systematic exploitation. This 
“Trusted” Simulated Annealing mechanism assures truthful revelation of the indi-
vidual opportunity cost situation as the basis for the calculation of side payments. 

6.1 Introduction 

Real-life supply chain management (SCM) is closely related to problems 
caused by the diverging interests of the actors (enterprises) and the distrib-
uted structure of the underlying optimization (scheduling). Increasing out-
sourcing of former in-house processes and more intense customer relation-
ships shifted the demands of SCM from hierarchical coordination to a 
more heterarchical, partially market-based coordination. But when assum-
ing long-term relationships of selfish, independently acting units many of 
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the influencing factors such as observability and interactivity can no longer 
be considered as uncritical. New coordination concepts and protocols have 
to be taken into account in order to increase the efficiency of cooperative 
production processes that are planned by independent organizational units. 

One way to address these needs is to employ a holonic multiagent sys-
tem (MAS), in which the process structure is mapped onto single agents 
[Eyma2001]. Each agent – operating a single production facility – maxi-
mizes its own profit by determining an optimal internal schedule. To 
streamline the production process and to avoid penalty costs due to pro-
cessing bottlenecks or late delivery, agents have been programmed to carry 
out economic scheduling. Accordingly, they employ “outsourcing con-
tracts” to reduce their production load and to optimize their schedules. The 
negotiation has to be seen as a second inter-agent schedule optimization 
process, leading to social contract equilibrium of the MAS based on prices 
calculated according to the production load. Due to the fact that the calcu-
lation of the agents’ prices cannot be directly monitored by the contract 
partners, a trust protocol has been included to foster truthful bidding. An-
other characteristic problem in this context is the unwillingness of actors to 
reveal sensitive but (in terms of system optimization) valuable informa-
tion. By implementing an incentive compatible mechanism to avoid ex-
ploitation by competitors our decentralized supply chain optimization sys-
tem is able to deal with such agency problems, too. We address the revela-
tion issue by introducing a trust account mechanism, which helps to pre-
vent individual long-term exploitation. The trust mechanism is directly in-
tegrated with the schedule optimization procedure, similar to [PSEP2002]. 

Russel and Norvig provide a set of properties to describe domains and 
determine their suitability for intelligent software agent support 
[RuNo2003]. These properties characterize the task environment and are 
applicable to the manufacturing logistics domain as detailed below. In the 
context of the already described typical business environments presented 
in II.1, the DISPOWEB-approach (see Figure 1) addresses among others 
the following requirements: 

• It increases the flexibility of resources, e.g. industrial facilities, leads to 
more and more heterogeneous tasks, which are processed on a single re-
source. Allocation mechanisms could thus not rely on discrete time-
windows but need to handle tasks that start and finish on a continuous 
time line.

• Resulting from adding more and more features/variants into existing and 
new product lines, the number of participants with a need of coordina-
tion and communication increases. The resulting requirement for I/O 
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flexibility need to be inherently implemented into new coordination 
frameworks. 

• Taking into account asymmetric information and opportunistic behavior 
requires the development of “stable” mechanisms. In the presented ap-
proach the decrease in observability of supply chain partners is ad-
dressed by implementing trust accounts into the protocols. 
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Figure 1. Characteristics of the DISPOWEB approach1

Concluding, today’s automation requires SCM systems to increase their 
potential in all six areas around the origin of the diagram in Figure 1. 
Agent technology promises to provide such flexibility (see I.3) but should 
not be considered as a silver bullet to solve real-life problems. DISPO-
WEB makes use of agent technology to implement a concept of decentral-
ized optimization. Moreover it provides a certain level of “fairness” to the 
participants. 

After depicting the theoretical foundations of our holonic MAS in the 
next section, we deliver a detailed description of the combined trust and 
scheduling protocol. In the analysis of our experimental results the useful-
ness of the mechanism is demonstrated by applying it to settings based on 

1 Criteria according to [RuNo2003, pp. 41-44]. 
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purely selfish, altruistic or mixed agent ”strategic worlds”. As benchmarks, 
we employ individual income distribution and global welfare. 

6.2 Agents and Trust in the Manufacturing Logistics 
Domain 

Besides sociological, psychological, behavioral, and philosophical dimen-
sions of trust [CaBG2002] artificial intelligence research considers the 
cognitive aspect of human rationality to have a major formative impact on 
trust as a concept in human and artificial societies. In this context Cas-
telfranchi and Falcone characterize trust “basically as a mental state, a 
complex attitude of an agent x towards another agent y about the behavior/ 
action relevant for the result” [CaFa2001]. According to Mui et al. 
[MuHM2002] trust and reputation stand in a reciprocity relationship de-
fined as a “mutual exchange of deeds”, where trust is “a subjective expec-
tation an agent has about another’s future behavior based on the history of 
their encounters” and reputation denotes the “perception that an agent 
creates through past actions about its intentions and norms”. Based on this 
definition, trust between agents in computational models can be estab-
lished by “accounting” the historic behavior of the agents. For the most 
part, reputation factors consist of direct and indirect reputation components 
representing the agent’s own perception of its prospective contract partner 
or the interaction cognition reported by other agents respectively [MuMH 
2002].

Jurca and Faltings [JuFa2003] identify three problems related to reputa-
tion reporting in competitive software agent trading models: First, by re-
porting information the agent provides a competitive advantage to other 
agents; second by reporting positive ratings the agent slightly decreases its 
own reputation with respect to the average reputation of the other agents; 
and third, the agents could be thus tempted to give negative reputation 
ratings to improve their own situation. By implementing a combined trad-
ing and side payment scheme employing reputation-information trading 
agents, the model compensates for these drawbacks. Applying reputation 
and trust mechanisms in SCM, Padovan et al. [PSEP2002] implement an 
electronic market that employs a simple reputation mechanism based on 
direct and indirect reputation in order to exclude fraudulent participants 
from negotiation. The implementation of centralized and decentralized 
trust mechanisms in a market organized along the value chain, integrating 
risk premiums for potential loss in contracts, leads to improved system re-
liability for both cases. In a similar model [Eyma2001] use genetic algo-
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rithms to vary the agents’ behavior. By analyzing decentralized coordina-
tion in the supply chain, they instruct their agents to take information about 
the reputation of a potential transaction partner into consideration and use 
it to choose the appropriate partner. Franke et al. [FrSK2005] analyze the 
impact of direct discounted reputation on supply webs. In this model, 
strong reputation stimulates the formation of monopolies and stable supply 
chains. The well known bullwhip effect is observed to antagonize this 
reputation effect. 

Sabater [Saba2003] presents the SuppWorld scenario with a market 
structure, in which agents acquire the input products for a given manufac-
turing process while aiming to maximize their revenue. Using different ne-
gotiation tactics and enabled to form coalitions for the exchange of reputa-
tion information, they act in a simulative economy. Relying on the ReGreT 
system, which takes an individual (direct) and a social (indirect) view of 
reputation into account, Sabater introduces an ontological meaning en-
abling a differentiation of reputation with respect to crucial aspects of the 
supply chain such as delivery on time or quality reliability [JoSi2001] 
[SiJo2002] and systemically evaluates the impact of reputation on the 
SCM framework. 

6.3 A Model-Based Approach to Evaluate Negotiation 
Protocols in the Manufacturing Logistics Domain 

Based on the arguments in the preceding section, prototype systems have 
been developed in this project in order to solve specific problems in the 
manufacturing logistics domain. Within this project, evaluations and 
benchmark tests with typical Operations Research scenarios were con-
ducted in order to compare the different outlined negotiation protocols. 

The global problem, which is similar to the Economically Augmented 
Job Shop Scheduling problem [Cone2003], is decomposed into Weighted 
Job Interval Scheduling Problems (WJISP). The optimization of the 
WJISP in the multiagent system is conducted by using Simulated Anneal-
ing (SA). Depending on the properties of a typical setting, e.g. smaller 
intervals, other optimization approaches may be able to improve the per-
formance of the individual agents (cf. [GoKu1998] [DaSe2003] [Elen 
2003]). The assumptions of the DISPOWEB-model are summarized in the 
following paragraphs: 

• Each job is composed by a number of subtasks to be executed sequen-
tially (other inputs are not critical): Although we adopted this classical 
job shop scheduling assumption for our multiagent scheduling model, it 
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is unrealistic to assume only one predecessor for each task. The relaxa-
tion requires the WJISP’s release times to be defined as the maximum of 
all contract times over all suppliers. 

• Closed model with deterministic jobs: We assume every task to be 
known to the agents, i.e. they only renegotiate existing contracts. Ex-
tending to a dynamic model with emerging tasks is straightforward, 
however: Whenever a new service or product request has to be priced, 
the agent’s WJISP defined by its current portfolio of contracts is ex-
tended by two additional contracts. 

• Immediate delivery: Our negotiation model assumes the supplier’s due 
date and the customer’s release time to be identical. This assumption 
can easily be relaxed by introducing intermediary logistics agents for 
storage or transport. The negotiation protocol does not have to be altered 
with respect to a potentially different internal scheduling calculus ap-
plied by these agent types. 

• Static costs for task outsourcing: Currently we assume an outsourcing 
option to be available for all tasks and every agent at all times, meeting 
whatever deadline the customer will require. While this simplification 
reduces the problem’s complexity it is true that in most economies for 
almost any product or service a substitute will be available at any time 
for a price below infinity. 

• Unlimited compensation budgets: We assume each agent to have unlim-
ited financial resources for side payments. Since the side payments only 
serve to compensate for economic value generated by relaxing the 
agent’s scheduling constraints or to collaboratively escape suboptimal 
plans, the sheer number of re-contracting steps applied keeps the prob-
ability of persistent financial loss very low. 

The resulting set of possible optimization problems is obviously not a 
simple mapping of a real-world problem. Such an approach would not only 
exceed the resources of this project but make a benchmarking (in terms of 
comparable results) almost impossible. While our approach preserves the 
complexity that is typical scheduling problems, it is stronger structured 
(less flexible), deterministic, and the single tasks are more predictable in 
terms of processing time than typical real-world optimization problems. 
Due to the fact that our agents do not consider situation dependent proper-
ties of other agents, e.g. their current workload, this does not restrict our 
analysis of the protocol. 
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6.3.1 The Multiagent System Negotiation Protocol 

Each agent optimizes a WJISP defined by the tasks’ execution times and 
time windows that are specified by supply and delivery contracts. Besides 
this optimization of the internal schedule, an agent tries to achieve a wider 
temporal action space by offering compensation payments and/or selling 
free slack time to contract partners. 

As mentioned in the assumptions, the payoff function of the consumer is 
higher for earlier deliveries. A schedule with less slack time thus results in 
earlier delivery times and increases the payments that can be distributed 
among the agents. 

For every given plan an agent can calculate its opportunity cost or bene-
fit incurred or gained by a specific agent from moving the contract time 
(defining due date for the supplier and release time for the customer re-
spectively). Since widening of the interval always leads to a relaxed 
WJISP, the new WJISP always has the same or lower cost while narrowing 
the interval generates a WJISP with the same or higher cost. 
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Figure 2. Time dependent prices of the multiagent WJISP 

Consider, for example, agent 3 in Figure 2. Re-contracting the release 
time of job 1 (the upper one) from t = 20 to t = 23 or even later would de-
crease the remaining interval such that the scheduling of this task becomes 
impossible. On the other hand, the resources freed by this would allow for 
scheduling of the (currently outsourced) second task in the optimal solu-
tion leading to total cost of 15 instead of 14 monetary units (MU), i.e. a 
cost increase of 1 MU. Relaxing the contract to t = 18 or earlier would al-
low for scheduling both, the first and the second task thus yielding an ad-
ditional profit of 6 MU. For agent 1 a contract time of t = 17 or earlier 
renders job 1 impossible but in turn allows for scheduling the third task 
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(third from top) causing a total cost increase by 6 MU. When relaxing the 
deadline to (at least) 21 however, all tasks can be scheduled by agent 1 
(starting with the third one). 

Assuming both agents had agreed on delivery time of t = 20 adding the 
respective cost deltas indicated in Figure 2 to their agreed price would de-
fine time-dependent price functions representing the agents’ opportunity 
cost or benefits. By communicating this function to the partner, each agent 
could calculate an optimal re-contracting step. In our case, agreeing on t = 
18 would lead to a total surplus of 6 MU that could be shared by the two 
agents. 

When calculating the price functions showing the optimal contract time 
for this task, we have to assume all other contracts to be kept unchanged. 
This in turn means, the re-contracting operation for task 1 now leads to 
outdated price functions for all other tasks of agent 1 and agent 2, i.e. up-
dating would be required to determine whether their contracting time is 
still optimal. 

Of course, this raises the question whether it is really efficient to have 
the agent calculate the price functions for all points in time before commu-
nicating them, especially when the whole system of interdependent nego-
tiations is still far from any equilibrium. 

As an alternative we therefore considered a “memory-free” alternative 
randomly choosing a time offset and then proposing this shift to the con-
tracting party, making both agents estimate the implications of just this 
specific change (by solving their respectively modified WJISPs). Although 
this comes with the disadvantage of not finding the bilaterally optimal 
contract time for a given contact in one search step, it drastically reduces 
the number of WJISPs to be solved by each agent. 

If the agents agree on a new delivery time (e.g. t = 18 in our scenario) 
and one agent profits more from the new delivery time than the other 
agent’s additional cost, the total profit should be shared equally. In the ex-
ample agent 2 makes a side payment of 3 MU to agent 1, leading to a 
situation where both agents profit from the change of the delivery contract. 

6.3.2 Selfish Agents 

To evaluate the decentralized economic scheduling protocols outlined 
above, we modified the Fisher & Thompson 6x6 Job Shop Scheduling 
Problem [FiTh1963], by introducing an outsourcing price of 50 MU per 
unit of required processing time. Besides the size of this example, which 
allows for concise presentation of the findings, it is one of the three initial 
benchmarks published for the JSSP. 
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Figure 3 shows the total welfare surplus obtained via 50,000 selfish re-
negotiation trials, defined as the total cost of the (heuristic) solution of the 
final WJISPs compared to the total cost of the agents’ initial WJISPs’ so-
lution. We ran 200 independent simulations, yielding the individual se-
quences of dots (left chart), whereas the black line shows the average im-
provement over all simulation runs up to a given number of negotiations. 
While the right chart in Figure 3 depicts the final distribution after 50,000 
negotiation trials averaging the values of the achieved welfare in this set-
ting results in 4,210.16 MUs. Table 1 in Section 6.3.5 provides an over-
view of averaged welfare values of each analyzed setting. 
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Figure 3. Welfare distribution for agents applying the selfish strategy 

Implied by the selfishness of the protocol no agent will ever accept any 
proposal making him worse off compared to the current schedule, so there 
is no downside risk of any decrease in welfare, neither on a social scale nor 
for any individual agent. However, as the income distribution of Figure 4 
shows, the distribution of benefits from negotiation is significantly skewed 
towards later tiers of the supply chain, leaving almost no benefits for agent 
1 and agent 2. 
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Figure 4. Income distribution of agents applying the selfish strategy 

6.3.3 Altruistic Negotiation 

Due to the complexity of the global scheduling problem relying purely on 
improvement steps will not lead to optimal schedules. We therefore intro-
duce a mechanism that accepts delivery times which temporarily make 
both agents worse off. Similar to the agents’ internal optimization we used 
a SA-like approach such that the agents accept contract changes depending 
on virtual temperature and amount of monetary loss. This allows the 
agents to search for globally superior solutions even if no direct improve-
ments could be achieved. 

As we see from Figure 5 an altruistic strategy (with a Simulated-An- 
nealing-based acceptance criterion for non-profitable transitions) applied 
by all agents (no defecting agent) leads to worse results for the initial ne-
gotiation steps, but this temporary loss is compensated for by a significant 
increase in total welfare after 20,000 renegotiations, almost doubling the 
expected benefits of the selfish strategy. 
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While in the setting with solely altruistic agents the profits is almost 
equally distributed (with a slight advantage of the agents at the end of the 
supply chain), the introduced altruism is extremely prone to exploitation: 
Figure 6 depicts the distribution of income when agent 4 exaggerates its 
true cost by 20 %. While the defecting agent generates extraordinary prof-
its the other agents may be worse off in the end compared to their initial 
plans. Most of their side payments finally end up at agent 4, not returning 
anything to them. 

As shown in Figure 6 it is very easy for an agent to increase its income 
by pretending to have higher costs. To avoid such exploitation our agents 
use a memory that stores the aggregated side payments. How the agents 
use this memory is detailed in the following section. 
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6.3.4 Avoiding Exploitation via Trusted Annealing 

Agents who try to maximize their profits at the expense of other agents 
systematically underestimate their profits or overestimate the costs of a 
new delivery time. In light of the consumers’ willingness to pay for earlier 
deliveries, the agents should, at least in the long run, increase their joint 
income by agreeing to new delivery times. So, each agent should limit its 
side payment to the other agent. The left side of Figure 7 shows the agents’ 
true cost and benefit from a given re-contracting proposal. The right side 
illustrates that agent b will overcompensate the loss of agent a by a side-
payment of 3 monetary units, yielding a profit of 2 MUs for both agents 
(rights side). All side payments are cumulated in accounts that are associ-
ated to the negotiation partners. Based on these accounts, a trust limit can 
be used to restrict the re-contracting if a certain level of side payments has 
been spent. In case both agents are truth-telling their mutual trust accounts 
of cumulated payments will fluctuate around zero, since the probability 
that it is always the same agent incurring the negative effects of recon-
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tracting is very low. On the other hand, if agent a is consistently cheating 
by exaggerating losses and hiding profits, side-payments from agent b to 
agent a will be higher on average than payments from a to b, leading to an 
ever increasing negative balance on agent b’s trust account for agent a. By 
selecting a trust limit agent b decides at which negative balance he will 
start to reject any re-contracting incurring further side payments to agent a.
He will resume side-payments, however, once agent a proposes sufficient 
contract changes to reduce this deficit. 
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Figure 7. Trust accounting for a truthful agent vs. a defecting agent 

Based on the trust account each agent grants the other agents a tempo-
rary advantage hoping for a system wide efficiency increase from which he 
could benefit in later periods. In our application trust only acts as the result 
of aggregate reputation. The advantage of the integration of trust accounts 
in the economic WIJSP lies mainly in three points: 

• A more convincing economic interpretation of the WIJSP can be 
achieved by introducing the trust accounts and simulating the outcome 
of varying system participants’ behavior. 

• The decomposition of the WJSSP into separate instances of the WJISP 
reduces the computational complexity of the optimization tasks to be 
solved. While enabling the economic agents to generate tentative partial 
solutions by solving the WJISP, trust has to be introduced into the de-
centralized system to grant the incentive compatibility of the scheduling 
mechanism. 

• Similar to the pure Simulated Annealing approach, our trust mechanism 
for decentralized economic scheduling is a nature inspired optimization 
process and therefore easier to integrate into real world scenarios. 
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The trust accounting mechanism used in our model does not employ a 
composed reputation index using, for example, indirect reputation like 
most MAS reputation applications do. This is not necessary due to the 
equilibrium property of the system introduced by the SA negotiation pro-
cess. In addition the use of indirect trust could inhibit the detection of opti-
mal scheduling solutions in the iterated bilateral negotiation strategies by 
blocking whole clusters of negotiation partners. On the other hand, the use 
of indirect trust could help to identify regularly cheating agents earlier at 
the risk of further increasing information flow and negotiation effort. 

As we can see from Figure 8 even small trust accounts do not pose a 
significant obstacle to generating benefits for altruistic agents: After a few 
initial rejections the accounts accumulate credit from beneficial negotia-
tion thus leading to a more and more altruistic behavior. 
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To prevent the exploitation by a defecting agent it is advisable to use a 
low initial setting for trust accounts. Too much initial goodwill allows the 
defecting agent to withdraw this goodwill. 

As Figure 9 illustrates, trusted annealing safely prevents exploitation by 
a defecting agent. However, the problem of a strong bias in welfare distri-
bution, as we have seen in the selfish case, prevails: Agent 0 and agent 1 
hardly participate in any gains. Although this results partially from the fact 
that they do not have a supply side to renegotiate with (but only custom-
ers), it nevertheless raises the question if it is possible to implement any 
“distributional fairness” criterion by a purely decentralized protocol or 
whether this requires communication to a central intermediary. 
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Figure 9. Income distribution of the agents granting maximum credit 100 and 
agent 4 defects (trusted annealing) 

6.3.5 Overview of Results 

This section provides a short overview of the simulation’s results (Ta-
ble 1). The negotiations that rely on purely selfish strategies achieve the 
lowest averaged welfare. To improve the quality of decentralized planning 
agents could cooperatively apply an altruistic SA protocol, temporarily 
allowing for decreases in solution quality (and profit) for the sake of es-
caping local contract optima which are far from a globally optimal solu-
tion. Trust accounts can be introduced, without a considerable decrease of 
the solution quality. 

Trying to increase profits by giving false information is a pattern that 
has to be considered in distributed manufacturing environments. Assuming 
that agents use a selfish strategy to defend themselves against exploitation 
in such settings the Trusted Annealing protocol could increase the welfare 
dramatically. Obviously, if a setting with solely altruistic agents is possible 
a (slightly) higher welfare could be achieved. 
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Table 1. Overview of the cumulated welfare values 

Welfare Std. Dev. 

Selfish agents 4,210.16 174.04 

Altruistic agents 9,174.02 137.58 

Altr. and defecting agent(s) 9,029.24 221.52 

Trusted Annealing 9,107.21 147.92 

Trusted Annealing with defecting agent(s) 7,584.11 171.13 

6.4 Coupling Trust-Based Negotiation With 
Scheduling Support Systems 

An important issue for real world applications of SCM-MAS is the inte-
gration of the automated negotiation process into human controlled busi-
ness environments. One way to achieve this is to employ Negotiation Sup-
port Systems (NSS), which are able to close the gap between the necessity 
of human involvement and automated decision processes, by introducing 
hybrid systems like SILKROAD. “In hybrid negotiation systems, structured 
or formalized tasks are automated, and decision support mechanisms are 
used to assess unstructured tasks, whereas humans interactively control the 
execution of the negotiation and perform the exception handling” 
[Stro2001]. The outlined trust-based scheduling system could propose the 
acceptance or rejection of the manufacturing tasks according to the trust 
account of a proxy agent coupled to a specific production facility. The de-
cision itself has then to be acknowledged by the human control agents, 
whereas the trust-accounting of the SCM-MAS is corrected corresponding 
to the human’s decision. The overall performance of the NSS should then 
be near to the distribution calculated in our setting. 

One drawback of our protocol could be a high sensitivity to the addi-
tional parameters introduced by the Simulated Annealing approach or the 
interleaving of contract renegotiation (cooperative action) and the agents’ 
internal optimization of the WJISPs defined by these contracts. Cooling 
too fast or too low a starting temperature will rather emulate the selfish 
strategy while cooling too slow or too high an initial temperature will yield 
contracts which are not even locally optimal. 

The same holds for the number of internal search steps trying to adapt 
the solution of the old WJISP to the new version after a re-contracting 
step. Too small numbers will generate “noisy” estimates of a re-contract-
ing step’s cost impact on the two agents involved, increasing the number 
of false acceptance or rejection decisions. A high number reduces this er-
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ror at the price of overall computational resources spent. Although there is 
a significant benefit of additional computational effort here, 250 steps per 
re-contracting step already allow for adequate estimates of the cost differ-
ence and thus produce a low rate of erroneous acceptance or rejection. 

6.5 Conclusion 

Due to the growing number of applications of MAS in the production 
planning domain, decentralized scheduling mechanisms are of increasing 
interest especially in supply chain environments. A main problem while 
bringing optimizing software to work in real supply chains is the unwill-
ingness of business participants to reveal sensitive information to a central 
planning institution. In the decentralized negotiation protocol presented 
here, agents are neither urged to reveal their internal planning state nor 
their exact utility function to other agents but nevertheless reach a solution 
of high quality. 

We have shown how the quality of decentralized planning significantly 
improves when agents apply an altruistic SA protocol, temporarily allow-
ing for decreases in solution quality (and profit) for the sake of escaping 
local contract optima which are far from a globally optimal solution. To 
limit this altruism’s vulnerability to exploitation, trust accounts can be in-
troduced, fortunately almost without sacrificing solution quality. 

The downside of our approach is the high number of negotiation steps 
necessary to achieve good solutions. However, with ever decreasing cost 
of information and communication technology, we believe this will pose 
no major obstacle. 

A number of future extensions could help to further improve the 
model’s solution quality or usability for real-world applications: 

• Up to now our model assumes agents either to be truth-telling or defect-
ing. An important extension could be the analysis of a trust discounting 
protocol, also allowing to protect against agents dynamically changing 
their behavior from altruistic to selfish in later stages of the negotiation 
process. 

• Although the application of a SA re-negotiation process defines a prob-
ability distribution over the agents’ strategy space and the incorporation 
of trust accounts modifies this probability distribution based on the his-
toric behavior of the other players, it is highly unlikely that this mixed 
strategy and its evolution during the re-contracting game is optimal. A 
rigid game theoretic analysis could help to further improve solution 
quality. 
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• As discussed in the simplifying assumptions, multiple inputs to tasks are 
worthwhile extensions. The introduction of tasks simultaneously re-
quiring multiple resources should also be considered for future exten-
sions. 
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Abstract. In SPP 1083 the Hospital Logistics group studies the applicability of 
agent-based information systems in health care business scenarios by identifying 
problems, analyzing requirements, elaborating the state of the art of conventional 
and agent-based systems, specifying and designing multiagent applications, and 
evaluating their application. This chapter includes a survey of both the projects 
forming the group and their collaboration in order to integrate the systems de-
signed by them into the agent testbed named Agent.Hospital. Therefore, two ex-
emplary (hospital) processes are presented involving each project’s multiagent ap-
plication. Also, the ontology OntHoS and agent infrastructure services used in 
Agent.Hospital are shown. 

1.1 Introduction 

Driven by the requirements coming from patients, the domain of health 
care is characterized by complexity, dynamics, variety, and fragmentation 
of distributed medical prevention, diagnosis, treatment, and rehabilitation 
processes. Among other aspects, shared decision-making, combined with 
different skills and roles of health care professionals, and incompleteness 
and asymmetry of information results in an environment requesting high 

1  This chapter is based on the paper “Paulussen, T. O.; Herrler, R.; Hoffmann, 
A.; Heine, C.; Becker, M.; Franck, M.; Reinke, T.; Strasser, M.: Intelligente 
Softwareagenten und betriebswirtschaftliche Anwendungsszenarien im Ge-
sundheitswesen. In: Dittrich, K.; König, W.; Oberweis, A.; Rannenberg, K.; 
Wahlster, W. (Eds.): INFORMATIK 2003 Innovative Informatikanwendungen. 
GI-Edition Lecture Notes in Informatics, P-34. Köllen Verlag, Bonn, 2003, 
Vol. 1, pp. 64-82.” 
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demands on information systems applied to reach advanced levels of 
automation. 

Multiagent technology is assumed to be one possible solution to meet 
requirements coming from complex and dynamic environments. Due to 
their adaptability and flexibility, agent-based information systems have the 
potential to significantly improve the competitiveness of enterprises. Their 
application should allow more effective and efficient (logistic) processes 
and may also generate new customer welfare by making product im-
provements available. 

Against this background, health care, and especially hospital logistics, 
was chosen as one exemplary application domain used in the German Pri-
ority Research Program “Intelligent Agents and Their Application in Busi-
ness Scenarios.” A special interest group named Hospital Logistics has 
been founded, including all (sub-) projects referring to the application of 
agent-based inter- or intra-hospital information systems. 

Each project has its own specific research question and considers, ex-
amines, and analyses specific organizational parts of different hospitals. A 
nearly complete model of a virtual hospital was generated by the combina-
tion of the projects’ partial models. Both the partial models and the devel-
oped multiagent systems of each project form the agent technology testbed 
Agent.Hospital (cf. [KHHK2003a] [KHHK2003b]), which is addressed 
and introduced in this chapter. 

The chapter is organized as follows: First, the sub-domain hospital is 
presented by exemplarily identifying domain specific problems in Section 
1.2. Based on this, Section 1.3 presents the goals of the single subprojects. 
Section 1.4 deals with the development of the ontology OntHoS, whereas 
the agent testbed Agent.Hospital is described in detail in Section 1.5. Giv-
ing two selected examples, the interaction of the subprojects is shown in 
Section 1.6. A summary and an overview regarding Part III of this book 
conclude this chapter. 

1.2 Hospital Logistics as an Object of Investigation 

Due to rising costs, economic ways of acting gain more and more impor-
tance in the domain of health care. Among other aspects, this is reflected in 
the abolishment of the principle of coverage of all hospital costs, i.e. all 
costs of a hospital were met by the health insurance scheme in 1993. It is 
also reflected by the introduction of the diagnosis related groups (DRGs) 



Agent.Hospital 201 

in 20022, which succeeded other case-based models of remuneration. 
DRGs particularly force health care institutions to act economically, as 
they are now liable for their actions (cf. [Rych1999] [Jast1997]). They also 
encourage competition between hospitals. Further, the rapid development 
of new methods of treatment and diagnosis, the application of new medi-
cations, and the progress in medical engineering induce an increasing dif-
ferentiation and specialization of health care service providers. As a result, 
the demands on networking between all actors participating in fragmented 
and distributed treatment processes rise. Increasing mobility of patients, 
change of the age structure, and patients’ incremental claims to quality of 
treatments intensify this situation. 

Hospitals can be defined as social organizations with the purpose of im-
provement of the patient’s state of health [Dlug1984]. The main differ-
ences between logistics in production and hospitals are based on the fact 
that not lifeless material is managed, but diseased people. A hospital is 
thus a service enterprise where production and consumption of services 
coincide [Greu1997] [Herd1994]. The patient is directly involved in his 
treatment and its success [DuWi1997]. 

A hospital is partitioned into semi-autonomous functional areas, where 
patients pass through according to their particular diseases [Schl1990]. 
These areas are either organizationally assigned directly to certain (single) 
departments or can be deployed to several departments as centralized ser-
vice units [Schm1999], as radiology or operating theatres normally are. 
Although functional centralization enables more efficient exploitation of 
rooms and resources and thus more flexibility, the autonomy of functional 
areas induces the necessity of a comprehensive coordination among the 
medical departments. 

Especially when deploying centralized operating theatres, coordination 
may become complex. In such cases, scheduling is usually carried out by 
requests coming from different departments, finally verified and, if re-
quired, corrected by a physician in the role of a coordinator. After this 
verification, the schedule is forwarded to the central operating theatre de-
partment assigning the staff, e.g., nurses, to the surgical operations. This 
multilevel scheduling process is carried out in many hospitals manually, 
i.e. without IT support. Causes for this are different and contradicting in-
terests and priorities of the involved actors resulting in requirements not 
capable by conventional systems. Even without considering emergency 
cases, this manual planning approach results in complex coordination 
processes. 

2 Germany. 
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Additionally, in contrast to the production domain, there is the problem 
that the patient’s disease is not or only partially known at the time of his 
admission. Therefore, procedures such as examinations and treatments 
cannot be predetermined completely [Wend1987]. The lack of accompa-
nying information can be reduced progressively only by multiple and se-
quential diagnoses, resulting in changes and adaptations of the processes. 
Further, complications and emergency cases induce partially heavy dis-
ruption in regular hospital processes [Schl1990]. 

In order to react flexibly to those uncertainties, treatments are assigned 
to patients by a ward’s physician and forwarded to the particular functional 
area by requests. The functional areas then call the patients from the wards 
depending on their workload. Coordination among different functional ar-
eas, which may help avoiding idle time for both patients and the functional 
areas, is unusual or does not exist [PJDH2003]. Thus, an optimized ex-
change of information between these units, or even better, between all ac-
tors participating in specific treatment process is one of the main chal-
lenges of hospital logistics. 

Similar problems also exist in hospital emergency centers, whose pro-
cesses are characterized by cooperation of different clinical departments 
and handling of various medical data [KnRS2000]. Here emergency physi-
cians coordinate the interaction of different departments in order to per-
form examinations and emergency or ambulant treatments. Unlike in pre-
viously described functional areas, the availability of resources primarily 
forms the requirements to be met. When locating and calling/using these 
resources, e.g., medical staff or equipment, both disruptions of running 
medical processes and effects on already scheduled appointments have to 
be considered. 

An additional challenge becomes obvious if clinical trials are taken into 
account. In order to prove the effectiveness of therapeutic methods, par-
ticularly the application of medication, it is not only necessary to carry out 
experiments with animals, but also tests on humans. As information sys-
tems vastly support scheduling, their usage becomes more and more cru-
cial for the allocation of clinical trials (which are, of course, profitable). 
Their application may reduce scheduling times, increase planning reliabil-
ity, optimize structures and processes, and significantly improve the qual-
ity of documentation. Furthermore, they may help in integrating clinical 
trials into the regular operation of hospitals. This is characterized by con-
siderable complexity, as the design of trials allows only marginal flexibil-
ity regarding the selection of patients, medication, and documentation. 

Currently existing hospital information systems are not capable of miti-
gating the exemplarily described problems and meeting the outlined chal-
lenges. In particular cooperation, coordination, and communication be-
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tween all actors participating in treatment processes are not supported suf-
ficiently. 

Also, the localization of patients, professionals, and resources still takes 
place by beeper, pagers, and announcements. Thus, localization, identifica-
tion, and information about availability are still not manageable in an 
automated way. Direct personal communication is needed, which is time-
consuming and characterized by an unacceptable error rate. 

Furthermore, access to electronic patient records, which is restricted to 
preserve the privacy of personal data, does not have the necessary flexibil-
ity in terms of context sensitive composition and analysis of medical data. 
Although clinical data systems and paperless records are very common 
nowadays [BWWD2002], they are in general still passive and quite in-
flexible. Retrieving data, even from patient records, is time-consuming 
[Ginn2002] and also implies the risk of overlooking important informa-
tion.

At least from an inter-hospital perspective, proprietary data exchange 
formats complicate and avoid the integration of, e.g., fragmented treatment 
processes. Even standards like CEN, ISO, or HL7 do not lead to adequate 
interoperability, as they are not existent, not used, or not usable due to 
their incompatible software realization. 

1.3 Aims and Approaches of Participating Projects 

The Policy Agents project (cf. III.2) aims at the solution to the described 
scheduling problem for operating theatres. Using an agent-based planning 
system, scheduling for operating theatres can be largely automated 
[CzBe2002]. Special project focus is on the explicit consideration of the 
departments’ and persons’ interests. For this purpose a software agent with 
a person specific preference profile represents each actor. These software 
agents negotiate autonomously in finding schedules and try to reach an ef-
ficient resource allocation well below the usual transaction costs (see also 
[BeKS2001] [CzBe2002] [CzBe2003]). 

The MedPAge project (cf. III.4) deals with planning, controlling, and 
coordination of clinical processes across boundaries of functional areas. A 
patient-centered approach is chosen, which models both the hospital’s re-
sources and the patients as autonomous software agents. On the basis of 
preference functions, agents representing patients negotiate autonomously 
with each other for scarce hospital resources. As a coordination mecha-
nism a market mechanism is implemented, in which the resource allocation 
is improved until Pareto optimality is reached [PJDH2003] [AwPa2001]. 
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The focus of the EMIKA project (cf. III.7) is the real-time coordination 
of patient logistics in radiology in order to integrate acute emergency cases 
preferably without delay into the current schedule and to analyze these in 
terms of time accuracy. In a decentralized implementation with localizable 
devices (e.g., RFID3 chips), software agents act as shadow objects of the 
devices. They identify their physical environment and the context of use in 
order to generate a state model of the reality. Thereon, they decide 
autonomously whether the current schedule can be met or new planning is 
necessary. Permanent dynamic feedback between reality and the informa-
tion system is established via the interaction with mobile devices without 
central control of the system [SaEM2002]. 

The ADAPT project (cf. III.5) focuses solutions to the described prob-
lems regarding clinical trials. The main goal is the construction of an 
agent-based simulation system that simulates processes relevant to the im-
plementation of clinical trials [HHPA2003]. For that purpose adequate 
simulation models were implemented, which map necessary and partici-
pating actors. These models were based on an actor-centered view and 
were implemented by an agent-oriented approach. The developed proto-
type supports medical personnel and other staff of participating depart-
ments dealing with analysis, evaluation, and scheduling of the clinical tri-
als [HeHK2002]. 

The ASAinlog project (cf. III.6) tackles questions in hospital information 
logistics regarding the use of patient records. There are two main aims: (1) 
All persons involved in the treatment process are to be provided with rele-
vant and context-sensitive information at the right point in time and at the 
right place; (2) Processes for cooperation and coordination are to be effec-
tively supported regarding information needed for cooperation, i.e. con-
text-sensitive medical data. Central elements of the solution are active 
medical documents implemented as composite software agents. They en-
capsulate both data of patients and elementary agents that interpret and 
concatenate these medical and administrative data. 

In the AGIL² project (cf. III.3), e.g., treatment processes are modeled 
using a Java based tool (AGILShell), which was developed in the first 
phase of the project and can be deployed for the design and implementa-
tion of multiagent systems. The pursued approach comprises three steps: 
(1) domain experts model existent processes; (2) analysis of processes in 
order to identify application scenarios for agents; (3) optimization of pro-
cesses through integration of agents. Based upon existent processes of the 
previously described projects, an “agentified” process is elaborated by in-
terdisciplinary cooperation. In this process, agents carry out tasks that were 

3 RFID –  Radio Frequency Identification. 
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previously done by humans. The described approach improves the quality 
of the software, since the user is actively involved [BACR2001] [Sta+ 
2001].

In order to take advantage of all described approaches, full integration 
and coordination of the individual projects through the consortium Hospi-
tal Logistics is necessary. The need for support and coordination is imple-
mented on the basis of the cooperation platform RealAgentS (http://www. 
realagents.org) [AnKi2003]. 

1.4 Development of the Common Ontology OntHoS 

One of the first steps in the direction of an integrated scenario was the es-
tablishment of a task force in March 2002. Its aim was the development of 
an ontology crossing the boundaries of the individual projects. It was 
recognized that the developed multiagent systems were based upon differ-
ent knowledge representations and slightly different terms, blocking com-
plex interactions between the systems. In order to abolish this deficit, the 
ontology OntHoS for the domain hospital and nursing was developed. 

OntHoS was modeled using a widely used ontology and knowledge en-
gineering tool, Protégé. It allows the domain expert to model the formal 
definition of concepts and terms of the application domain and provides 
support for programmers regarding agent implementation. For that pur-
pose, a defined ontology can be transformed into Java code. The advantage 
of this approach is the absence of an additional error-prone manual trans-
formation process between model and implementation.

One problem of the collaborative development of an ontology is the in-
tegration of overlapping concepts. Therefore the domain was divided into a 
set of concept categories. As a result, a consensus regarding the underlying 
hierarchy was found (cf. Figure 1). At several places, one tried to use 
established ontologies or parts of it, e.g., the temporal concept, which is 
mainly based upon the Dharma Guideline Model [Dhar2005]. Neverthe-
less, most of the categories could not be based upon existing ontologies. 
For these reasons, each project elaborated suggestions, which were dis-
cussed within the group and, if necessary, adapted. As a result, the ontol-
ogy OntHoS is capable of expressing message contents of all project agent 
systems. 

The concept classes used in OntHoS are described as follows (cf. 
[BHHK2003]): 

• Temporal concept: The defined terms are domain-independent defini-
tions of temporal concepts, e.g., date, fixed or relative points in time, 



206 S. Kirn et al. 

time intervals, or duration. In addition, more abstract terms such as 
“today” or “now” are defined, which need reference points of time for 
interpretation. 

• Medical concept: Terms within this concept define medical knowl-
edge. These range from symptoms, diagnoses, and therapies to a rep-
resentation structure for formalizing clinical guidelines. Knowledge 
bases for a particular scenario can be developed by the insertion of in-
stances of a defined class or term. 

Figure 1. OntHoS – main hierarchy level of the ontology and base concepts (left) 
and concept hierarchy of appraisals (right) 

• Employee concept: This concept group unites terms for the descrip-
tion of clinical staff, e.g., qualifications and roles. 

• Appraisal concept: For planning and scheduling in hospitals and for 
making decisions terms for expressing evaluations are needed. In or-
der to be as flexible as possible it is only distinguished between ab-
solute and relative appraisals. Absolute appraisals are, e.g., school 
grades, relative appraisals are terms like “better than.” 

• Appointment concept: For the scheduling of treatments and examina-
tions additional terms – not included, e.g., in the temporal concept – 
are necessary, e.g., appointment task, appointment time, etc. We dis-
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tinguish between previously agreed upon appointments and appoint-
ment suggestions to be evaluated. 

• Document concept: Format and contents of different typical clinical 
documents such as findings or patient records are described. Stan-
dards for hospital information systems are also to be taken into ac-
count.

• Organizational concept: In order to model a hospital, underlying 
organizations and their units are to be described. There are usually 
functional units that provide services such as examinations and treat-
ments. Additionally, there are wards, administration, and special 
units, e.g., a pharmacy or an external orthopedic service. All units 
have resources and provide several types of services (see process con-
cept). 

• Process concept: Processes can be described as sequences and altern-
atives of atomic actions. A simple basis process representation was 
chosen, which can be extended in order to support domain modelers 
with different kinds of model languages, e.g., modeling using EPCs 
(Event-driven Process Chains) or Petri nets. Atomic actions of these 
processes are either medical or logistic actions. Medical actions are 
subdivided into examinations, treatments, or nursing. Many actions 
need to be carried out by special functional units and others need 
special resources or persons (see object concept or employee con-
cept). 

• Object concept: In contrast to the terms described above, which refer 
to abstract, non-existent concepts, object concepts define all real ob-
jects and persons. Real objects are, e.g., rooms, medical or technical 
devices, or drugs. Objects can be relevant resources for actions or 
they can be subject to appraisals. Persons like patients and clinical 
staff are subclasses of this concept, whereas their tasks, qualifications, 
and roles are partly described by the employee concept. 

1.5 Agent Technology Testbed Agent.Hospital 

Agent.Hospital is a testbed for agent-based information systems in health 
care, supporting both the development and the evaluation at the level of 
modeling and implementation. At the model level a framework for differ-
ent partial models of health care is provided. At the implementation level, 
infrastructure services and multiagent-based modular health care services 
exist. As the integration of additional partial models and multiagent appli-
cations has been one requirement right from the beginning, Agent.Hospital
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is designed to be an open framework. Thus, only open standards for, e.g., 
application integration, are used. 

Figure 2 illustrates the architecture of Agent.Hospital. Currently, the fol-
lowing integrated supply chains are implemented: Clinical trials, radio-
therapy (ADAPT), emergency patients (AGIL), lung cancer treatment 
(ASAinlog), angina pectoris (MedPAge), gall stone treatment (MedPAge 
and Policy Agents), operating theatre processes (Policy Agents), and ra-
diological processes (EMIKA). Further information, as detailed process 
models, can be retrieved from http://www.realagents.org. 

Figure 2. Architecture of and supply chains in Agent.Hospital (as of 2003)4

Several infrastructural services are provided by Agent.Hospital coupling 
the subsystems of the individual projects. These comprise the following 
services (for a detailed description see [KHHK2003b]): 

• Agent.Hospital Directory Facilitator (AHDF): Directory service for 
the registration and supervision of ServiceAgents and for display of 
registered agents and their services. 

• Agent.Hospital TimeService (AHTS): a time service that allows for the 
registration of several groups of ServiceAgents and for their discrete 
timing. 

4 Please note that some allocations of projects have changed, e.g., ADAPT is 
now located at the Universität Hohenheim, ASAinlog at TU München. 
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• Agent.Hospital Ontology Repository (AHOR): A repository for do-
main and task ontology of the health care domain. This service sup-
ports the exchange of task ontology and the access to the common 
domain ontology OntHoS [BHHK2002]. 

• Agent.Hospital Knowledge Base (AHKB): A knowledge base for the 
health care domain. It is comprised of an A-box and a T-box. The T-
box contains all terms of the domain ontology and structures for for-
mulating concepts. The A-box aggregates instances of terms and con-
cepts of the T-box, which helped in modeling representative scenarios 
of the health care domain. 

• Agent.Hospital Actor Agent (AHAA): An additional common element 
of Agent.Hospital relevant for coordinating the services. Instances of 
actor agents represent patients with their basic personal data and indi-
vidual time schedule. 

• Agent.Hospital CVS (ACCVS): A repository for the administration of 
source code of ServiceAgents. It supports the exchange of commonly 
usable modules and interface classes between the developers. 

Most of these services are based on and extend existing infrastructural 
services of the FIPA-compatible Java Agent Development Framework 
JADE.5 Afterwards they were reintegrated in JADE. 

Besides the infrastructural services, Agent.Hospital contains Ser-
viceAgents of the individual projects. These implement gateways among 
the organizational units of the domain model and provide their functional-
ities in the form of an agent service to the remaining organizational units 
and their representing agents. By the deployment of FIPA-compatible 
gateway agents for the functional integration of the technically different 
multiagent systems, a standard at the level of communication was estab-
lished. This enables the cross-project usage of common interaction proto-
cols, agent communication languages, and knowledge representation lan-
guages (for a detailed description see [KHHK2003b]). 

The central integration element of Agent.Hospital is AHDF, as it im-
plements the mediation of the services. The main task of the AHDF, and 
also the differentiating criterion regarding the global DF (Directory Fa-
cilitator) of the Agentcities6 network, is the bundling of services of the 
same context to an application-specific services forum. The implemented 
functionality of the AHDF is domain independent and allows for the de-
ployment in the production domain within the SPP 1083 (cf. II.1). 

5 Cf. http://jade.tilab.com/ 
6 Cf. http://www.agentcities.net/ 
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Finally, Agent.Hospital is implemented as part of the Agentcities
community. As a result, five new Agentcities platforms have emerged: 
Aachen, Ilmenau, Würzburg, Freiburg, Hamburg, all integrated by the 
common directory service Agent.HospitalDF.

1.6 Selected Agent.Hospital Application Scenarios 

Two cross-project application scenarios demonstrate the interaction of the 
projects’ multiagent systems within the Agent.Hospital framework: (1) 
clinical trials and (2) diagnosis and treatment of colon cancer. Except for 
the ADAPT project, in these scenarios the acronyms of the projects are 
similarly to the names of the developed multiagent systems. The ADAPT 
projects consists of two applications named DAISIY (Deliberative Agents 
for Intelligent Simulation Systems) and SeSAm (Shell for Simulated Agent 
Systems). Although both systems are part of Agent.Hospital, SeSAm is 
used additionally for simulating the Agent.Hospital real world environ-
ment, in which the other multiagent systems are situated. 

1.6.1 Clinical Trials 

The goal of (controlled) clinical trials is the deduction of a general state-
ment regarding the benefit-risk ratio of treatments on the basis of study re-
sults, which have to be reproducible within a given probability. Besides 
strong medical and statistical requirements to be fulfilled by hospitals 
when performing clinical trials, additional challenges for the participating 
hospitals exist. So, besides the determination of the required patients 
needed during a certain time period, a hospital has, e.g., to calculate 
whether sufficient resources are available. If shortages jeopardizing trial 
execution are identified, the hospital is obligated to, e.g., employ addi-
tional trial nurses or documentalists. Usually, such decisions are made in-
tuitively, which may lead to inefficiencies and errors – due to the com-
plexity of trials. 

Figure 3 illustrates an exemplary section of the integrated scenario pro-
cess “clinical trials.” The description is based upon the extended EPC. The 
tight bipartite alternation of events and functions is abolished in order to 
simplify the representation. 

In general, at the beginning of clinical trials a lot of diagnostic and 
therapeutic measures need to be coordinated and scheduled. Also resources 
like equipment and staff need to be assigned and possibly informed. The 
process given in Figure 3 focuses on this first phase. It illustrates both US 
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(ultra sound) and MRI (magnetic resonance imaging) examinations and re-
lated surgery. 

Figure 3. Exemplary section of a process of the integrated scenario “clinical tri-
als” 

As a first step, the eligibility of the patient for the trial is checked. The 
DAISIY-system evaluates the data provided by the SeSAm-system with 
specific inclusion and exclusion criteria of the clinical trial. If the patients 
meet the study requirements, an individual study plan is generated for the 
measures to be taken by the service RequestStudyPlan. The trial’s docu-
mentalist can insert individual appointments. After the medium-term study 
plan is planned for the patient (usually a study cycle of four weeks), the 
electronic patient record is extended applying the ASAinlog service Add-
NewDocument. The multiagent systems of MedPAge and Policy Agents 
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start their operative planning and scheduling of binding appointments 
based on this information, i.e. they are triggered by the active patient re-
cords of the ASAinlog system. While MedPAge schedules the examina-
tions, the surgery is scheduled by Policy Agents. 

If the actual appointment for an examination approaches, tracking ser-
vices provided by EMIKA are deployed. They support the localization of a 
particular bed or a mobile examination device or inform the physician 
about the current appointment. 

In case of, e.g., an emergency examination involving the resource MRI, 
the responsible systems for the management of the trial and for the sched-
uling of the resource reschedule appointments if necessary. This is per-
formed on the basis of standardized agent languages (here FIPA-ACL – 
Agent Communication Language [FIPA2005a]) and interaction protocols 
(e.g., FIPA Agent Interaction Protocol [FIPA2005b]). The described sec-
tion of the process ends with the temporary discharge of the patient from 
the hospital. 

1.6.2 Colon Cancer Treatment 

Colon cancer is, with an incidence of 40:100,000, the third most frequent 
carcinoma in Germany [Psch1998]. Besides medical relevance (the prob-
ability of surviving for five years is 95%-100% at best and below 6% at 
worst [Psch1998]), the involvement of all individual projects was a crite-
rion for choosing colon cancer diagnosis and treatment as a reference sce-
nario. In order to make sure that the exemplary scenario process illustrated 
in Figure 4 and described on the following pages maps a realistic medical 
process, it was evaluated in cooperation with anesthetists, internists, and 
surgeons of the Charité Hospital, Berlin. 
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The scenario process starts with the arrival of a patient at the hospital 
and his admission to the emergency room. After an anamnesis, an emer-
gency physician arranges a blood and x-ray examination using the coordi-
nation services provided by agents of the AGIL² project. As the emergency 
room lacks radiology equipment, the coordination task is transferred to the 
MedPAge multiagent system in order to rearrange appointments of, e.g., 
(central) radiology. Also, the EMIKA system ensures that the necessary 
staff and examination devices, despite other appointment schedules, are 
available. 

Based upon the findings of the blood and x-ray examination a surgical 
council is initiated by the emergency physician. It decides whether the pa-
tient is operated on immediately, first stays in the hospital for further ob-
servation, or can be discharged. Within the exemplary process an intestinal 
obstruction is diagnosed. The patient is also suspected of having cancer. 
So, surgery is needed immediately. 

In this case, the Policy Agents system is involved by AGIL.2 It sched-
ules the allocation of operating theatres using the localization services pro-
vided by EMIKA. 

Figure 5. Diagnostic examinations 

During the surgery a tissue sample is removed and transferred to pathol-
ogy for further analysis. After the surgery, the patient is relocated to the 
surgical ward. Meanwhile, additional supplementary examinations for the 
exclusion of metastases and other tumors are performed. These diagnostic 
measures (see Figure 5) are coordinated by the MedPAge project, while 
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the patient is scheduled in regular intervals by the EMIKA agents for 
check-ups in radiology. 

If there are no metastases or tumors, the patient is cured and needs no 
further therapy. If there are metastases, their number and localization give 
clues about further actions. If there is a single metastasis, it will be re-
moved in follow-up surgery if possible (coordination via Policy Agents). If 
there are several metastases in a single organ, or in several organs, or if the 
single metastasis cannot be removed due to its localization, additional sur-
gery makes no sense. The patient will be treated with chemotherapy. 

For clinical trials only those patients are suited that fulfill special study 
requirements. During the process it will continuously be checked whether 
the patient meets these requirements and can participate in a study. The 
ADAPT project chooses patients for a clinical trial and optimizes the ac-
complishment of the trial (cf. Figure 4). If the patient meets the require-
ments and if the patient agrees to participate, he becomes a trial patient for 
chemotherapy. 

The previously described projects interact with the agents of the 
ASAinlog project during the entire process. These agents manage and pro-
vide relevant data in terms of active documents, forming the active patient 
record. The interactions between the multiagent systems ASAinlog, Med-
PAge, and EMIKA are illustrated in Figure 6. 
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Figure 6. Detailed diagnostic examination in the example scintigraphy 
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1.7 Summary and Outlook 

The goal of the Hospital Logistics consortium is the deployment of intelli-
gent software agents in realistic business application scenarios in the 
health care domain, especially in hospitals. In this chapter, the cooperation 
between the projects forming this group is shown. A selection of the prob-
lems identified is given, trying to illustrate the challenges regarding infor-
mation systems used in this domain. Also, the aims of the projects have 
been described in brief. 

As both problems and goals of all projects showed high interdependen-
cies, the group decided to integrate both their partial models and developed 
multiagent systems into the agent testbed Agent.Hospital. This testbed, de-
veloped in cooperation with the Technology consortium of SPP 1083 
[Kre+2003], is described by (1) the ontology OntHoS used for agents 
communication, (2) the organizational structure of Agent.Hospital, (3) the 
main infrastructural services, and (4) two application scenarios. 

In Part III of this book, all projects participating in Agent.Hospital and 
thus outlined in this chapter were described in detail. With the information 
given in this chapter the overall domain specific situation can be consid-
ered when looking at specific research questions addressed by the projects. 
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Abstract. The scheduling of centralized operating theatres in large hospitals can 
be regarded as an archetypal cooperative decision problem. Multiagent systems 
(MAS) form an appealing paradigm for solving such problems. In a MAS-setting, 
each involved individual can be represented by an intelligent software agent that 
carries the specific constraints and the main preference-structures of his human 
principal. The scheduling can then be done by inter-agent negotiations, resulting 
in a cooperative solution, which optimizes “social welfare” and medical and or-
ganizational resource allocation simultaneously. For measuring human preference 
structures a concept based on conjoint analysis is introduced, that deduces indi-
vidual utility functions suitable for inter-agent negotiations from human prefer-
ence statements. Aggregation of individual preferences to find a final compromise 
schedule is then done by a distributed negotiation mechanism, based on the Nash-
Bargaining-Solution of game theory. 

2.1 Introduction 

The scheduling of centralized operating theatres in large hospitals can be 
regarded as a typical cooperative decision problem suited for delegation. 
Typical features of the problem are: 

• a low involvement of participants, which enforces delegation; 
• it is time consuming for those responsible for the scheduling – also an 

argument to strengthen automation; 
• it features a high degree of repetition, which essentially counts for the 

possibility of learning by feedback. 

The process of scheduling use of operating rooms involves different 
parties: surgeons, anesthetists and operating room nurses. Each one, in 
general, belongs to different – relatively autonomous – organizational 
units. Optimizing the cooperation of working teams composed of human 
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individuals, derived from these different units is the main focus of this 
scheduling approach. 

Individuals, but also organizational units, have particular preference 
structures, resulting in conflictive goals and therefore leading to conflicts 
of interests between them. These conflicts should be resolved in a fair 
manner. In addition, environmental influences worsen the problem of sim-
ply resolving different interests: Hospitals operate in a highly dynamic and 
complex environment generating the need to adapt very fast and flexible to 
environmental variables and their changes. 

The Policy-Agent (PA)-Project presented in this paper assumes each in-
volved individual to delegate the negotiation process to an intelligent soft-
ware agent. These software agents strive in finding a compromise schedule 
obeying hard medical constraints while simultaneously resolving individ-
ual conflicts of interest. 

Next section shows details of scheduling operation theaters as they are 
typical for German hospitals. The subsequent section discusses the general 
design of the PA-MAS, their tasks and interactions. Thereafter, focus has 
been laid on providing solutions to two central problems of negotiating 
software agents crucial to the MAS-approach chosen: The delegation- and 
the coordination-problem. Delegation and coordination are detailed in Sec-
tions 2.4 and 2.5. Last section shows empirical results of the solution pro-
vided. 

2.2 Application Scenario 

Traditionally, each medical department had its own operating room. This 
has been changed in hospital organizations where operating rooms are 
combined to form a centralized operating theatre, establishing thus an in-
dependent organizational unit to be used by different medical departments. 
This allows for a better utilization of rooms, devices and personnel as well 
as to higher flexibility in planning and reacting to emergencies. On the 
other hand, scheduling complexity rises dramatically causing the need for 
automated planning systems. 

The conventional manual planning process relies heavily on direct 
communication between different departments and follows in a sequential 
manner strict formal rules, which lead to a reduction of complexity: 

In the first step, each medical department gets the assignment of specific 
operating rooms for their daily disposal. Next, the department heads make 
a preliminary schedule of planned operations. This preliminary schedule 
will obey department specific preferences (department policies) but not 
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any interdependencies. The plans at next stage are transmitted to the oper-
ating theatre coordinator, who first checks compatibility with scarce re-
sources. Then he decides about needed anesthetists and makes an assign-
ment. If incompatibilities occur, the coordinator has to contact the in-
volved departments and negotiate a compromise solution. Finally, the 
plans are handed to the nurse personnel who have to assign the needed 
nurses. Again, incompatibilities respectively a shortcut of available oper-
ating room personnel has to be resolved by negotiation. 

The presented scheduling process shown so far has some severe short-
cuts since it does not allow counting for the existing interdependencies in 
an adequate manner, leading to frequent interactions of the responsible co-
ordinator. Also, those who are at the end of this sequential process only 
have reduced possibilities to change the presented schedule. This is the 
cause of major job dissatisfaction of nurse personnel, yielding to specific 
problems in planning their demand and resulting in frequent overtime 
work [CzBe2003]. 

2.3 Multiagent Solution 

The scheduling problem presented here leads to different requirements for 
a MAS: 

• First, human-to-human interaction should be reduced to a minimum, 
thus reducing the needed time to resolve incompatibilities by phone. 

• Second, sequential processes imply time-consuming feedback cycles, if 
any incompatibilities arise. Therefore, the planning procedure should 
happen in a simultaneous way, where any constraints are obeyed imme-
diately. 

• Third, a MAS should take care of the organizational and individual 
interests of the involved parties whenever possible. This will give strong 
evidence for the acceptance of the planning system and will allow a bet-
ter degree of staff satisfaction. 

In the PA-MAS these requirements are met by a two-stage-scheduling 
approach: 

• In the first stage, the agent system creates a preliminary plan without re-
spect to individual preferences. Only medical and organizational de-
mands and constraints are taken into account. Therefore known sched-
uling approaches and algorithms can be used. The scheduler-component 
interacts with the planner via dialogs and offers him sub plans for modi-
fication, reordering or to place them into a Gantt-chart [BKNP2003]. 
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Sub plans consist of a set of actions, selected with respect to the con-
straints of the concepts of the used ontology OntHoS from the resource 
database [BHHK2003]. 

• In the second stage, the preliminary plan is improved by agent negotia-
tion. In this stage, the agents of the involved individuals try to achieve 
the best realizable working schedule for their principals. Using a nego-
tiation approach based on the Nash-Bargaining-Solution the final sched-
ule optimizes “social welfare”, i.e. respects the individual preferences of 
the involved staff, without satisfying medical or efficiency goals. 

In the following focus is laid on detailing the second stage of the sched-
uling process, thereby addressing two central problems of this stage: the 
delegation relationship between human principal and artificial agent as 
well as the design of the coordination mechanism required to efficiently 
resolve preference conflicts in team forming. 

2.4 Delegation 

In contrary to standard maximization problems, the solution of negotiation 
problems typically depends not only on decisions taken by one party. 
Rather, the result depends on actions resp. decisions taken by any of the 
involved parties during the negotiation process. Thus, all participants try to 
maximize their individual utility functions, but they control a subset of 
relevant variables only. Solving negotiation problems, therefore, implies 
the willingness to accept concessions and compromises by each involved 
participant. From an information economic standpoint, this requires more 
knowledge than the information transferred in fixed goal structures i.e. 
new goals must be flexible generated during the course of negotiations 
(compare to I.3.5.4). 

Therefore the negotiating individuals need not only to know which al-
ternative they prefer, i.e. their (ordinal) preference ordering, they also need 
to know how much they prefer one alternative over the other. This requires 
a utility function that has to be valid on an interval scale of measurement at 
least, thus allowing for intra-individual utility comparisons, while still 
maintaining an easy measurement approach. In the PA-Project this is done 
by using conjoint analysis as method of utility measurement [BCPS2005] 
[CBPS2005]. The needed adaptation to overtime preference changes is 
handled by combining a learning mechanism with a traditional measure-
ment approach (compare to I.3.4.3 ). 
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2.4.1 Conjoint Analysis 

Conjoint analysis (CA) aims at statistically revealing the additional infor-
mation that is hidden in ordinal preference statements. In CA, decision al-
ternatives are described by a number of attributes, each attribute being 
made up of certain levels. CA demands some effort in constructing the 
survey; especially the correct determination of attributes and attribute lev-
els for the specific application is crucial [LuTu1964]. 

The alternatives – in the application of scheduling hospital operating 
theatres are the possible assignments of anesthetists, nurses and surgeons 
to time slots and operations – should be ranked by the individual. In gen-
eral, since the number of all possible alternatives is far too large, only a 
subset will be presented for ranking. This subset is called the set of stimuli.
Addelman has shown that in order to allow an uncorrelated statistical esti-
mation of part-worths, the set of stimuli must fulfill the condition of “or-
thogonal frequencies”. This condition requires every attribute level to ap-
pear with all levels of the other attributes in proportional frequency to their 
number of appearances in the whole sample. Designs that hold this condi-
tion are called Orthogonal Main-Effect Plans (OMEPs) [Adde1962]. In the 
PA-MAS, an algorithm based on suggestions by Jacroux is used for design 
reduction. This method guarantees computation of a minimal OMEP,
which consists of the smallest sample size still allowing uncorrelated esti-
mation of part-worths [Jacr1992]. 

Having decided on the set of stimuli the next step is the analysis of the 
principal’s preference structure. Therefore, the principal has to evaluate the 
presented stimuli by ranking them according to his preferences: 

• A limited number of stimuli is presented to the principal at once and has 
to be brought by him into the right order. 

• Every additional stimulus is inserted into the existing order by pair wise 
choice, i.e. the principal repeatedly decides between the new stimulus 
and an already sorted one just by stating his preference between the two 
alternatives. 

Relying on the fact, that through the ordering of multi-attributive objects 
(or alternatives) more information than a simple ordinal ranking is gener-
ated, the relative importance of each attribute level can be calculated and 
expressed as part-worth-utility (short: part-worth). This is done by analyz-
ing the occurrence of the different attribute levels within the ranking. 
Combining the part-worths by means of an additive utility function an in-
terval scaled total utility function – sufficient for agent negotiation appli-
cations – is generated: 
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The part-worths for the different attribute levels are calculated based on 
the order of the stimuli revealed by the principal. Assuming an additive 
utility function, the principal’s total utility for a multi-attributive a0 is rep-
resented by the sum of its part-worths: 
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Estimating the part-worths is done by an ordinary least square regres-
sion (OLSR). In doing so, to each ranked stimulus ai a number zi corre-
sponding to the rank-level is assigned (most preferred stimuli get the high-
est number). By OLSR the part worth utilities βjm are calculated, such that 
the sum of squared errors becomes minimal: 
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In addition, the resulting βjm will undergo a process of normalization 
[Klei2002]. 

2.4.2 Preference Adaptation 

Considering the fact that individual preferences may change over time, a 
utility function that was determined by CA once cannot be regarded as 
statistically valid forever. Instead, an agent system that is supposed to be in 
use for a longer period must be able to adjust dynamically to changes 
within the principal's preferences. That is, it needs to detect if the agents 
utility function still represents the principals preferences correctly and to 
adjust it in case it does not. 

To accomplish this task, some user interaction is required. As, obvi-
ously, intelligent agents are supposed to make their principals' lives easier, 
too much interaction is not beneficial. Research has shown that while most 
users are willing to give some short feedback about the quality of the 
agent's work, they consider a longer procedure as frustrating and annoying 
[ScAm2004]. Keeping that in mind, a procedure for permanently moni-
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toring the quality of the agent's utility model, while reducing communica-
tion with the principal to a minimum, has been designed. 

The learning process proposed in this section is based on the main idea 
that in order to facilitate easy communication, the principal only needs to 
respond to a single question after selected negotiations done by the agent. 

For this, he must evaluate the result of the negotiation (ap) (ap =primary 
assignment) together with the next possible alternative (as), which might 
be the outcome of negotiation (as = secondary assignment). Note that in 
the light of the agents’ meaning ap is the best possible result achievable 
during negotiation, whereas as is the second best one, that is the best pos-
sible assignment if ap would not have been included in the set of possible 
alternatives. Consequently, the utility assignment expressed by the part-
worths ßjm represents a preference order of the agent that states ap a as or
ap ~a as. (The symbols a, ~a indicate the preference ordering of the agent, 
whereas p, ~p that of the principal). 

In order to get feedback, the agent presents both alternatives, ap and as

to his principal and asks for a ranking of these. Clearly, if the principal de-
cides ap p as, or ap ~p as and this coincides with the agent’s preference or-
der on these two alternatives, there is no need to change anything. In all 
other cases, the preference order the agent had learned needs some adjust-
ment. 

In the following, a method is proposed for adaptation of the part-worths 
in order to count for the discrepancy in preference orders of agent and 
principal with respect to ap and as, i.e. 

 (ap a as  and  (ap p as or ap ~p as )) or  
 (ap ~a as  and  (ap p as or ap p as)) (3) 

In order to handle this situation, the reduced design that led to the actual 
part-worths ßjm is augmented by the alternatives ap and as (if these alternat-
ives are not already included in the reduced design), and the principal is 
asked to rank theses additional stimuli with respect to the others. Since 
there are at most two additional stimuli to be ranked, the necessary effort 
remains limited. The resulting utility function correctly will state the prin-
cipal’s preferences with respect to the alternatives of the reduced design 
and also provides a better approximation for the unknown utility function 
based on the complete set of alternatives. 
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2.5 Coordination 

Every coordination mechanism, realized for solving conflicts of interest 
between human beings or in this case their artificial representatives, has to 
address the so called bargaining problem of economics. Below the general 
bargaining problem is detailed. Thereafter the Nash-Solution of the bar-
gaining problem, that forms the foundation of the negotiation mechanism 
used in the PA-Project is illustrated and interpreted in the light of modern 
bargaining theory. Last, the used negotiation mechanism is exemplified. 

2.5.1 The Bargaining Problem 

The Edgeworth Box shown in Figure 1 illustrates the simplest form of the 
bargaining problem: a two person (P1, P2) two goods (X1, X2) pure ex-
change economy. The length of the Edgeworth Box represents the total 
amount of X1 available in the economy, while the height of the box shows 
the total amount of X2. Any point within the box represents a possible dis-
tribution of X1 and X2 between P1 and P2. Assuming conventional shaped 
indifference curves for both P1 and P2, example indifference curves, la-
beled Ij(Py) (j = 1..7, y = 1, 2) are superimposed onto the box. Index j corre-
sponds to higher levels of utility, i.e. P1 is happier on I7(P1) than on I6(P1).

Given an initial endowment c (c1(P1), c2(P1), c1(P2), c2(P2)) both individuals 
can increase their utility by bargaining. Every point in the shape S = (a, b, 
c, e) is at least as good as c for both P1 and P2. At every point outside of S
at least one individual achieves a worse result than at the point of initial 
endowment. Therefore, these points are not eligible solutions in a negotia-
tion between P1 and P2. Instead of accepting a negotiation result outside of 
S at least one individual prefers staying with its initial endowment c, thus 
making c the so called conflict point of the negotiation game (S, c). Bar-
gaining between rational individuals will continue in S until no individual 
can make better without reducing the utility level of the other, i.e. a so 
called Pareto optimal solution is reached. 

In the example above every point on line (a, d, b) is Pareto optimal and 
thus a possible solution to the game (S, c). Due to Pareto efficiency, every 
solution point on line (a, d, b) is a stable one, since in any case at least one 
individual will not make further concessions in bargaining. These points 
are allocation efficient in the sense, that there is no waste of utility poten-
tial. Thus, while every form of negotiation between rational individuals 
must have a solution located on line (a, d, b)1, the exact solution point at 

1  The so called “core solution” of game theory. 
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which negotiating individuals arrive remains subject to the concrete course 
of the bargaining process. The behavior of the involved individuals, there-
fore, turns out to be widely indeterminate and subject to normative rea-
soning. 

Every coordination mechanism designed to solve coordination prob-
lems – either implicitly or explicitly – gives an answer to the problem of 
the indeterminacy of a bargaining solution. 

Figure 1. Simple bargaining problem 

Typically, indeterminacy of bargaining is reduced by explicitly intro-
ducing additional concepts like justice or fairness to the bargaining pro-
cess. Applying these constructs, the solution point a – all surplus given to 
P2, nothing to P1 – or vice versa the solution point b most likely will be 
excluded, while on first look solution point d – surplus divided between P1

and P2 – seems to be the most reasonable one. Due to the non-metrical na-
ture of utility this choice remains difficult. Truly, point d looks like a fif-
ty/fifty split of surplus, but implicitly this solution assumes equal relevance 
of utility-gain of P1 and utility-gain of P2 [NeMo1947]. 

In general, individual utilities are not comparable. Therefore, any defi-
nite solution to the bargaining problem must address the problem of the 
impossibility of inter-individual utility comparisons. In the PA-Project a 
negotiation mechanism based on the Nash-Bargaining-Solution is used, as 
this solution relies explicitly on a concept of fairness. 
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2.5.2 The Nash-Bargaining-Solution 

Given a two-person negotiation situation, where Pi are the involved per-
sons having utility function ui (i = 1, 2). Let c = (c1, c2) be the point of 
conflict and S the set all possible solutions (u1j, u2j). The ordered pair (S, c)
designates the (two-person) negotiation game. In 1950 Nash characterized 
a fair bargaining solution of (S, c) by four axioms. Requiring S to be a 
closed and convex set, it can be shown there is only one unique solution 
point û(S, c) = max (u1-c1) * (u2-c2), (u1, u2) ∈ S, that simultaneously ful-
fills all four axioms, the so called Nash-Bargaining-Solution [Nash1950]. 

Below, these four axioms are presented and interpreted in the sense of 
modern bargaining theory, as they are adopted in the PA-Project. 

2.5.2.1 Pareto Efficiency 

If û = (û1, û2) is the Nash-Solution of the negotiation game (S, c), then 
there does not exist any point u´ = (u´1, u´2) ∈ S with: 

 (u´1 > û1 and u´2  û2) or (u´1  û1 and u´2 > û2) (4) 

Clearly a bargaining solution, i.e. a solution to the problem of utility 
distribution, also should be an efficient allocation. Pareto efficiency is a 
minimum requirement for every bargaining solution. 

2.5.2.2 Invariance to Equivalent Utility Representations 

Since a utility-function u is determined up to linear transformations only, 
the solution of a bargaining game must be independent of this kind of 
transformation, i.e. if ui is transformed to ui’ = ai + biui, bi > 0, (i = 1, 2)
and a corresponding transformation applies to any point in S yielding the 
bargaining problem (S’, c’) the resulting optimal solution û’ equally corre-
sponds to û.

Game theory has shown that confining utility theory to simple ordinal 
preferences – as done in classical economics – is not sufficient in negotia-
tions. Negotiations require the individual decision maker to regularly 
evaluate different alternatives and to give concessions in order to arrive at 
a compromise solution. For this, at least the strength of individual prefer-
ences must be known requiring at least cardinal-interval scaled utility 
functions. Also this axiom excludes direct inter-individual utility compari-
sons from the bargaining solution. 
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2.5.2.3 Symmetry 

A negotiation game is called symmetric, if point of conflict c = (c1, c2) re-
sults in identical payoffs, c1 = c2, and if (u1, u2) ∈ S implies (u2, u1) ∈ S.
Clearly, as Nash requires, symmetric games should have an optimal solu-
tion û = (û1, û2) with identical payoffs û1 = û2, which is a matter of fair-
ness. As a consequence, in the case of symmetry two rational individuals 
will get to a definite and unique solution of the bargaining problem corre-
sponding to point d in Figure 1. 

2.5.2.4 Independence of Irrelevant Alternatives 

If, instead of (S, c) having the optimal solution û = û(S, c), the bargaining 
problem (S´, c) is considered, where S´= S ∪ {u´}, u´ ∉ S, and u´ ≠ û holds 
(i.e. u´ is an irrelevant alternative), the augmented problem (S´, c) has the 
same optimal solution û as the original one (S, c).

In negotiation terms this axiom requires the players to gradually narrow 
down the set of alternatives under consideration to smaller and smaller 
subsets of the original negotiation set, gradually eliminating outcomes as 
unacceptable (and therefore irrelevant), until just the (optimal) solution 
remains. 

2.5.3 Policy-Agents Negotiation Mechanism 

The negotiation problem of the PA-Project differs somewhat from the 
simple bargaining treated so far. Any solution involves not only two com-
ponents but rather consists of an assignment of at least one surgeon, one 
anesthetist, two nurses, an operating room, a time-slice and a patient. 
Scheduling is known to belong to the class of NP-complete problems, thus, 
in the light of the huge set of alternatives, algorithmic complexity is pro-
hibitive. 

Also, in contradiction to standard negotiations about the allocation of 
normal goods, in the presented application the negotiators are “negotiation 
goods” themselves, as their allocation in the final schedule affects not only 
their own utility functions but also the utility functions of at least some of 
the other involved negotiators. 

These problems are solved by a negotiation approach using arbitration 
agents. As the solution space is too large for allowing all agents to negoti-
ate over all alternatives simultaneously, it is necessary to divide up inter-
action. A two stage approach is followed: First, an initial assignment of 
people and rooms calculated by conventional methods is performed. This 
initial assignment is basis of improvements during second step, where the 
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agents negotiate with each other in order to arrive at a solution which is 
allocation efficient as well as fair in sense of the Nash criterion. 

In order to reduce algorithmic complexity we assume the operating 
room, the anesthetist, the surgeon and the patient to be given by the initial 
assignment and not subject to any negotiations of second step, i.e. the 
nurses are assumed to be interchangeable. Remember that there are two 
nurses for every operation. 

Assume there are n operation theatres. For an initial assignment of 
nurses N = 2*n nurses are needed. In the case of 10 operating rooms,2 20 
nurses must be assigned. In order to reduce negotiation-complexity further, 
negotiating groups had been formed, which sequentially try to find im-
provements. For example, in the simplest case the assignment (n1,n2) → R1

and (n3,n4) → R2, where ni designates nurse i (i = 1,..,4) and Rj room j
(j = 1, 2), may be questioned in order to arrive at an assignment, let’s say 
(n1, n4) → R1 and (n2, n3) → R2 the agents consider to be better.3 The opti-
mal assignment will be calculated by the arbitrator-agent based on Nash-
Solution theory. 

Next, the actual assignment with respect to room R1 and R3 may be ne-
gotiated, i.e. (n1, n4) → R1 and (n3, n5) → R3. The algorithm will proceed to 
negotiate the assignment of pairs of rooms (Rj, Rk) as long as there is a 

change of assignment during a complete cycle of all 
2

n
combinations. 

2.6 Results 

The pair wise allocation procedure of the last paragraph, in general, cannot 
arrive at the optimal solution. Therefore, some calculations (cf. Figure 2-5) 
have been performed in order to compare pair wise allocation, i.e. consid-
ering the assignment of four agents to pairs of rooms (Ri, Rj), against the 
simultaneous assignment of six agents, corresponding to triples of rooms 
(Ri, Rj, Rk) and finally of eight agents, corresponding to quadruples of 
rooms. In addition, the number of rooms is varied from two to ten.4 The re-

2 The analysed hospital runs 10 operating theatres. 
3 Knowing the utility-functions of the nurse-agents, negotiation overhead further 

is reduced by introducing an arbitration agent, who optimizes allocation of 
these four agents. 

4 Nine different basic planning scenarios result from these variations. Each of 
these is tested with twelve randomized scheduling scenarios resulting in 108 
simulations for each algorithm. 
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sults are compared to a heuristic procedure which first composes working 
teams based on the part-worth utilities and afterwards assigns these teams 
to the scheduled operations. 

In order to allow the efficiency of the chosen approach different criteria 
are evaluated: 

• the average percentage of possible utility reached (PUR) by the agents is 
shown. This figure would be 100 % for an agent that could dictate the 
negotiation result without caring for the other agents; 

• the standard deviation of this utility, measuring the distribution of indi-
vidual utilities; 

• the minimal utility reached, i.e. the utility achieved by the individual 
who makes the worst deal. 

If one identifies “mean degree of satisfaction” with “average percentage 
of possible utility reached”, which is at least strongly correlated, Figure 2
shows surprisingly good results of the negotiation procedure and far out-
reaches the heuristic approach. Also, the additional effort to choose larger 
groups of agents (consisting of 6 or 8 agents) for negotiation instead of the 
minimal four ones does not pay for. Results are only slightly better, but 
completion time rises significantly (cf. Figure 3).
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Figure 4 shows the standard deviation of average utility. Standard devia-
tion of utilities at the different negotiation scenarios remains nearly con-
stant at about ten percent across the whole experimental range. Compared 
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to the heuristic approach, the negotiation procedures significantly work 
better. 

Figure 5 shows the average minimal utility reached as well as the range 
of minima encountered over all scenarios. The negotiation procedures 
manage to maintain a minimum utility-level of about 60% PUR in average, 
i.e. even the “loser” of the coordination game regularly receives at least 
60% of the utility he could obtain if he was in charge of the coordination 
process all alone. 

The absolute lower bounds of the negotiated utility ranges, i.e. the worst 
cases over all test-scenarios still lie at around 50% PUR. Again this is sig-
nificantly better than the results generated by the heuristic procedure, were 
the lower bounds regularly fall under 10% PUR and average minimal util-
ity constantly declines below 30% PUR for n > 8.
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2.7 Conclusion 

In solving the problem of optimized working team allocation during medi-
cal operations different evaluation criteria must be met. A MAS approach 
should be efficient from a technical as well as an economical point of 
view. 
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Technical efficiency includes both the efficiency of computation and the 
efficiency of distribution and communication. In the PA-Project efficient 
distribution and communication is achieved by the use of arbitration agents 
minimizing negotiation overhead. Computational efficiency results 
through successive four agent negotiation. 

Economical efficiency combines efficient resource allocation with effi-
cient utility distribution. For the application domain considered in the PA-
Project efficient utility distribution means the presentation of a solution to 
the bargaining problem. The results presented show the adequacy of the 
chosen algorithm based on the Nash-Bargaining-Solution. 
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Abstract. Situated and context-sensitive information logistics surface as decisive 
requirement for supporting critical care units, because information relevant for 
patient treatment stems from heterogeneous as well as distributed data sources. 
Immediate treatment starts with an incomplete and almost empty array of infor-
mation which fills continuously over time by examinations conducted by organi-
zationally as well as geographically distributed departments. Agent technology 
and multiagent systems appear as a promising enabling technology to improve in-
formation logistics in intensive care units. However, an overall development 
methodology is required that enables an engineering process from the capture of 
know-how about clinical processes towards a model-based generation of multi-
agent systems. This contribution reports on an agile development methodology 
used for the design, implementation and testing of applications for agent-based in-
formation logistics. 

3.1 Introduction 

Decision-making in critical care units requires the integration of informa-
tion from various clinical data sources, such as the patient, the laboratory, 
the surgery and the clinical personnel. However, information management 
and processing is aggravated by the highly heterogeneous and distributed 
nature of the current clinical data and information repositories in addition 
to complex, dynamic working processes. Furthermore, critical situations 
such as the arrival of emergency patients demand a context-sensitive pro-
vision of information in a timely fashion: the time from entering the emer-
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gency room to the beginning of the operation can be less than 15 minutes. 
Hence, intelligent clinical information logistics should provide help in 
collecting, preparing and presenting data as well as reducing tedious pager 
or phone calls. Up to this point in time, there is unfortunately no system 
available that provides the flexibility and comprehensiveness of support 
for the treatment of emergency care patients. 

Agents and in particular multiagent systems (MAS), with their ability to 
provide intelligent and proactive services within a distributed environment, 
have a huge potential to improve the management of clinical information 
logistics. In the clinical information space, autonomous agents can proac-
tively collect, integrate and analyze relevant patient data, and condense 
and communicate the most relevant information to the responsible decision 
makers. 

The objective of AGIL (Agent-based Information Logistics for Opera-
tion Theatre Management in Anesthesia) has been the development of a 
generic development methodology for the capture of know-how about 
clinical information processes and the support of certain clinical proce-
dures by autonomous agents. The development methodology is supported 
by the AGIL-Shell which supports a seamless development process from 
process capture via generation of operational code for a multiagent system 
up-to testing scenarios. Specific attention has been devoted to the support 
of clinical processes that can be characterized by their complexity of 
information flow and communication processes. The approach has been 
validated by developing a prototype of a multiagent system for emergency 
care units. 

Following our methodology, one first acquires a semi-formal model of 
the existing clinical processes. This model will be used for the identifica-
tion of information bottlenecks and potential agent application scenarios. 
Based on the existing process, one then designs an “agentified” process, in 
which agents fulfill tasks like theatre management, decision-support, noti-
fication services, information filtering, and patient tracking. Many of the 
agents are ergonomically designed to run on small mobile computer de-
vices. A prototype of our agent system has been successfully implemented 
in Java following an Extreme Programming methodology. 

The clinical setting and processes 

A closer look at the clinical processes frequently reveals geographical and 
organizational distribution as major cause for unnecessary bottlenecks 
[HuJF1995] [KnRS2000]. Distribution is caused by the high level of spe-
cialization that characterizes modern health care. As illustrated in Figure 1, 
an average patient will most likely be treated by staff from different de-
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partments such as anesthesia, surgery, laboratory, and administration. Al-
though all these departments operate on a shared object (the patient) they 
do not necessarily share data, information and knowledge about this ob-
ject. Patient data are typically distributed across many types of individual 
and incompatible media such as paper-based forms, telephone calls, fax 
messages, and departmental information systems. The still most common 
way of maintaining a patient data record is to collect the various forms and 
notes in a paper-based patient record that is moved together with the pa-
tient's bed. The sheer amount of these data prevents clinicians from 
quickly getting a comprehensive overview of the patient's state. As a re-
sult, physicians might be unable to access relevant information or simply 
be not aware of critical process attributes. 

Figure 1. Processes and responsibilities are distributed among several clinical de-
partments and locations 

Generalizing this scenario, the following properties describe the clinical 
processes. 

• Distribution: Tasks, concerns, organization and know-how are distrib-
uted among various human agents and departments. Since all of the 
clinical units have to deal with only certain aspects of the patient, data 
and information are also distributed. Accordingly, patient data are dis-
tributed across various types of media, such as fax messages, data sheets 
or insular clinical information systems. Besides diversity in formats, 
there are also diverging standards for semantic descriptions in terms of 
ontologies. 
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• Parallelism: The tasks mentioned above run concurrently, as do the 
surgical procedures. 

• Non-determinism: Since patients are complex and little-understood bio-
logical system, the prediction of the outcome of surgical procedures is 
difficult. Unexpected emergency cases happen, as do incidents in anes-
thesia. 

• Self-organization: Responding to the uncertainty, the clinical staff has to 
react in a flexible manner. Although there is a strict hierarchy in terms 
of commands, the personnel acts to a certain extent self dependent. 
Many decisions in theatre management are a matter of negotiation, since 
resources are limited. 

• Communication-intensity: The properties mentioned above demand for 
sophisticated and efficient communication processes among the clinical 
personnel. Commands, requests, intentions, schedules, patient informa-
tion and emergency calls have to be delivered to the right person at the 
right time. 

Most of these aspects deal with information flow and processing be-
tween (human) agents in a distributed environment. Decision-makers in 
clinical domains are becoming increasingly aware of the potential benefits 
of computerized information logistics. However, the current situation in 
most hospitals can be characterized as a weakly coupled agglomeration of 
incompatible media and terminology. The information flow between the 
clinical units is aggravated by the need for manual data transformation 
between the various systems, fax messages, phone calls and verbal com-
munication. 

A major shift is needed from first generation Hospital Information Sys-
tems, mainly intended as simple centralized information repositories, to a 
distributed environment composed of several interconnected agents which 
actively cooperate in maintaining a full track of the patient’s record and 
supporting care providers in all the phases of patient management 
[LaFS1995]. 

In order to implement an operational information backbone that moni-
tors the flow of information and actively notifies members in the process 
chain, clinicians commonly call for the support of their workflow by 
means of simplified communication and data presentation [HaKK2001], 
i.e. medical pathways ought to be accompanied and supported by intuitive 
information services. A major step in this direction is taken by the various 
efforts towards medical standards for data and information exchange, such 
as HL7 and UMLS [BeMu1997]. The utilization of these standards allows 
one to replace more and more paper-based forms by digital counterparts, 
leading to a shared data backbone that can be exploited for the implemen-
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tation of advanced information services. On the other hand, this data back-
bone bears the risk of an overload of information flow. The focus of these 
services therefore shifts to the critical issue of how to provide the clini-
cians in charge with exactly that piece of information which they require to 
execute their actual task. In other words, clinicians aim to reduce the man-
ual collection and translation of medical data required, while by the same 
time preventing data overload by means of smart information filtering and 
brokering services. 

Hence, agent technology appears as an attractive enabler for improving 
information logistics due to agent properties, such as responsiveness, mo-
bility, and their ability to learn. However, the question arises of how to 
capture know-how about the processes and how to use agent technologies 
and its characteristics in clinical information logistics. AGIL addressed 
these issues by the development of an overall engineering method for 
process capture and evolutionary system implementation. 

3.2 An Agile Development Method 

Prior to developing any computer system, the people involved in the proj-
ect must agree on a methodology to define what roles specific people play, 
what decisions they must reach, and how and what they will communicate 
[Cock1997]. Methodologies typically suggest a selection of modeling and 
programming languages, and corresponding tools. This section describes a 
novel methodology for developing multiagent systems, which has been 
adopted for clinical information agents. Our basic observation is that such 
systems should be developed in a rather explorative style in a close 
collaboration between domain experts and technicians (Section 3.2.1, 
[Knub2002]). In order to make this collaboration work, we propose a sim-
ple and intuitive, yet sufficiently formal process metaphor as the central 
modeling language (Section 3.2.2, cf. [RFKR2002). We describe a model-
ing tool with which clinical processes can be modeled, analyzed and incre-
mentally enhanced by agents (Section 3.2.3, [KnRo2001]). 

3.2.1 Modeling as an Iterative, Collaborative Effort 

General-purpose software methodologies are insufficient for developing 
multiagent systems, particularly because the complex communication sce-
narios of agents require specific modeling primitives. Therefore, research-
ers have extended approaches from Software Engineering, leading to the 
emerging field of Agent Oriented Software Engineering (AOSE, see 
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[CiWo2001] for a recent overview). Existing AOSE methodologies, like 
GAIA [WoJK2000] and DeLoach [Delo1999], define a systematic se-
quence of activities that guide the developers through classical Software 
Engineering phases like requirements analysis, design, implementation, 
and test. A major goal of these systematic, rather “waterfall-based” ap-
proaches is to ensure that development processes become reproducible and 
(at least apparently) plan-able, and that design models are not constrained 
by implementation details. However, the general weakness of these AOSE 
approaches is the overhead when models need to be changed. DeLoach’s 
approach is divided into seven successive phases, with intermediate mod-
els between each phase. GAIA's design model is relatively decoupled from 
the implementation, i.e. the entire design (perhaps even the analysis) has to 
be revised in order to develop a model that can actually be implemented. 
In these methodologies, customer feedback is available late, so that 
systematic methods are suitable only when requirements are relatively sta-
ble.

In our opinion, the assumption of relatively fixed requirements is unre-
alistic with clinical multiagent systems, because the complexity of poten-
tial agent interaction scenarios and the emerging behaviors within a multi-
agent system can make pre-planning very difficult. 

In order to elicit the requirements for a clinical system, software engi-
neers will have to interact closely with domain experts, who are the only 
ones able to assess potential agent features, benefits and pitfalls. Since 
agents have to execute tasks on behalf of various types of human actors 
(e.g., anesthetists, laboratory nurses, and administrative staff), many indi-
viduals with different backgrounds and partially contradicting require-
ments need to be interviewed. In decentralized domains like clinical care, 
it is almost impossible to find a single individual that will be able to over-
view all potential agent scenarios in a comprehensive up-front design. “As 
a consequence, users such as the medical or administrative personnel of a 
hospital must be allowed to select the applications most suitable for their 
needs and requirements” [LSTO1997]. Furthermore, the close involvement 
of highly specialized domain experts such as clinicians requires a different 
level of collaboration than supported by waterfall-based methods. Most of 
the AOSE approaches rely on quite formal modeling artifacts, which lead 
to a considerable cognitive gap between the engineers and the clinical ex-
perts, so that the domain experts or end users are relatively excluded from 
the phases. This, however, is crucial in health care, where domain experts 
and decision makers usually only possess shallow computer knowledge 
and require hands-on experiments to clarify their requirements. 

Due to these reasons, we argue that clinical multiagent systems can (and 
probably should) be developed in a rather feedback-driven style in a close 
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collaboration between technicians and domain experts. While so-called 
agile methodologies like Extreme Programming (XP) [Beck1999] have 
gained a rapidly growing attention in mainstream software technology 
during the last years, their achievements have until recently not been trans-
ferred to the domain of multiagent systems. XP proposes a set of values 
and principles, which can help to produce experimental prototypes rapidly 
and to use customer feedback to make the prototypes mature and turn them 
into robust and well-tested systems. A key value of XP is simplicity that 
suggests keeping models and modeling meta-models as simple as possible, 
so that direct communication with customers is supported and the team 
does not spend valuable resources for features that are later rejected by the 
customers. We have adapted XP to agents (see [Knub2002] for details) and 
successfully applied the resulting methodology for the development of a 
clinical multiagent system. 

Figure 2. Rapid development of prototypes through constant feedback loops 

The development process modifies incrementally the various models to 
meet the clinical requirements. The application scenario and agents therein 
are designed collaboratively by clinical staff and computer technicians by 
means of a simple process modeling framework. It is often convenient to 
first acquire a model of the existing clinical processes (without agents), 
and then to identify where agents can help to improve those processes. 
This leads to a new “agentified” process design, which then can rapidly be 
translated into an executable system. 
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Building blocks for the implementation of certain process patterns are 
used in the process of “agentifying” for the reuse of code. 

3.2.2 A Modeling Tool for Process Analysis and Agent Design 

The AGIL-Shell is a tool that can be used to model clinical processes, to 
analyze them in order to detect potential agent scenarios, and to design 
these agents. This tool provides various graphical views of the processes 
and agents. 

• Process Graph: The main view of AGIL-Shell is a graph in which do-
main experts and engineers can define processes by arranging activities 
and media as nodes, and by representing the media flow and the se-
quence of activities by means of edges. For each activity, the name and 
the performing role are visualized. For each agent message, the com-
mand (performative) and content ontology are shown.

• Process Explorer: Complex process models can be quickly navigated 
along their hierarchy of processes and sub-processes in a tree view. 

• Customizer: The properties of the currently selected activity, process, 
message, agent or ontology class can be edited by a Customizer. 

• Community Viewer: This graph displays the communication pathways 
between the roles involved in a particular process. The graph is auto-
matically derived from the process graph at design time. The agents are 
shown as nodes displaying also the role type (human, interface agent, 
etc.) and, for agents, the state properties. This view allows the identifi-
cation of information bottlenecks. Nodes with many incoming and out-
going arrows represent roles that operate on a large accumulation of 
data. These pivotal points of information flow might benefit most from 
agent-based information services as a rule of thumb. By the way, the 
community view can be compared to the acquaintance model from the 
GAIA methodology [WoJK2000]. 

Beside these views, other types of graphical visualization of (clinical) 
processes can be derived from the meta-model. For example, the sequence 
of activities allows extracting a life-cycle view in which only those activi-
ties are shown which are performed by a given technical or human agent. 
Such views allow for the crosschecking of the design with the human 
process participants, who can – from their local point of view – assess 
whether their daily routine is sufficiently covered by the overall process. 

A large chunk of the executable source code can be generated from the 
process models, because it contains sufficient information about the types 
of agents, the (potential) message flow between them, the services they are 
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expected to provide, and the ontologies they rely on. Parts of the agent 
source code are test cases in the sense of Extreme Programming, which 
check whether agents correctly expose the desired functionality. 

Figure 3. A screenshot of the process and agent modeling tool AGIL-Shell 

The individual process models describe the information flow within sin-
gle scenarios like the reception of emergency patients. The main purpose 
of these scenarios is to identify the types of agents and their services, so 
that the implementation can commence. The identified agent application 
scenarios can also serve as templates for other scenarios in related model-
ing projects. This allows designing clinical agent systems from reusable 
modules, which suits to the modular architecture of modern hospitals: Al-
though most hospitals are made of similar units such as emergency rooms 
and laboratories, their spatial distribution, size and internal policies can 
vary noticeably. A simple approach for building customized clinical sys-
tems is to copy selected process models into a process repository that can 
be browsed during modeling to identify parts that might be reused. Such a 
process repository can serve as a portal to clinical best practices and thus 
also serves as a tool for knowledge management. 

For advanced and semi-automated support for the identification of po-
tential agent application scenarios we propose an approach similar to the 
Design Patterns [GHJV1995] from object-oriented software engineering. 
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Design Patterns describe solutions and best practices for frequently recur-
ring problems and thus provide modeling knowledge that can be exploited 
by others. Design Patterns additionally define a terminology (a so-called 
Pattern Language), with the help of which design decisions and structures 
can be communicated on a high level of abstraction. We have adapted the 
idea of Design Patterns to our process-oriented multiagent system design. 
As elaborated in [WoJK2000], these Agent Design Patterns can help iden-
tify potential agent application scenarios by describing typical interactions 
between humans and how agents can support them. The proposed patterns 
mainly consist of a configurable template of process models that describe 
typical application scenarios of specific agent types. 

The patterns are annotated with semantic metadata that specify con-
straints on the pattern’s applicability and the consequences that need to be 
considered when applying the pattern. These patterns can be maintained in 
a library and visualized and explored by a browser. Whenever the precon-
ditions of a pattern can be captured formally, the browser can generate 
proposals semi-automatically. In future, the process metamodel will allow 
agent designers to annotate scenarios with optional metadata, enabling 
tools to generate proposals for the application of an agent scenario. 

3.2.3 Analysis and Design of Clinical Information Agents 

We performed a process analysis in a large German university hospital, 
which has led initially to the design of about 30 sub-processes with 160 
agent activities and 32 different agent types which were nearly doubled in 
later iterations. Our analysis was performed to identify process bottlenecks 
in which agents can be introduced to optimize the logistics of clinical in-
formation. We investigated structure, information flow, and involved per-
sonnel in an emergency department by a participative process analysis, as 
described in [MaFr2000]. The basic idea was to let process participants 
capture the existing processes themselves, because the complex organiza-
tional web and the different parallel tasks can only be disassembled by 
people with sufficiently deep domain knowledge. The analysis was done 
by a practitioner supported by involved physicians, and took several 
months. The findings of this analysis were captured in a process model 
using the AGIL. Then, the same tool was used to incrementally redesign 
this process model with agents. 

Our process analysis focused on the treatment of emergency patients. 
Emergency units are in Germany typically staffed by an attending anes-
thetist. Anesthetists are also involved in nearly all surgical procedures, so 
that they need to communicate and collaborate intensively with various 
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other departments. Further, since anesthetists require a comprehensive 
overview of patient data to decide on a treatment plan, and since a main 
task during anesthesia is to maintain protocols and other formal “paper-
work”, anesthesiology is a particularly promising application area for 
agents. Computer support in anesthesia is additionally promising because 
the practices of anesthesia are repeated over and over again, so that clinical 
guidelines have become standard. 

3.2.4 An Extreme Programming Case Study 

We have used our approach to develop a prototypical clinical multiagent 
system for emergency rooms in Java. Our case study was conducted as XP 
courses for Computer Science students at the University of Ulm, Germany 
in 2001 and 2002. The courses took place in a single office with 5 PCs and 
involved each 8 students, a coach, and a medical doctor, who was perma-
nently on-site to provide clinical knowledge. The courses took 7 days, the 
first two of which were used to introduce the students to XP, agents, and 
the tools (IntelliJ, JUnit and CVS). For the reminder of this subsection we 
will present the basic principles of Extreme Programming and report on 
major findings identified during the course with regard to our development 
methodology. 

• 40-hour-week: The practical work itself was done during one 40-hour 
week. The students were explicitly not encouraged to work overtime. 
After the course, the students reported that they used to be quite ex-
hausted after a full day of pair programming, but were very disciplined 
and concentrated while in the office. Nevertheless, the atmosphere was 
very relaxed and enjoyable and thus stimulated creativity and open, hon-
est communication. This helped to prevent communication barriers be-
tween technicians and the clinical expert. 

• Planning game: At the beginning of each day, the team jointly defined 
the features that were to be implemented next. Since the process models 
(story cards) described the phases of a patient's treatment on its way 
through the hospital in a rather sequential style, we found it most useful 
to implement the agents in their order of appearance within the process. 
We locally focused on those agents that – according to the domain ex-
pert – promised the most business value. 

• Pair programming: Each pair of programmers had to develop and test 
their individual agent in isolation. The students found pair programming 
very enjoyable and productive. The intense communication helped to 
spread a basic understanding of the clinical processes among the pro-
grammers. We changed pairs almost every day. 
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• Testing: Agents are typically rather small and loosely coupled systems 
that solve their tasks in relative autonomy. As a consequence, writing 
automated test cases is quite easy for agents, because the single agents 
have a small, finite number of interaction channels with external system 
units. Many tests therefore consisted of sending a test message to the 
agent and of checking whether the expected reply message was deliv-
ered back and whether the agent’s state has changed as expected. The 
students found testing quite useful to clarify requirements although it 
was considered to be additional work by some. During the course, the 
students have implemented 76 test cases, amounting to 4909 lines of 
code, while the 43 agent source code classes amount to 5673 lines. The 
students enjoyed using JUnit very much, because correct test runs im-
proved motivation and trust in the code. We found specifying and im-
plementing tests extremely important, because it clarified several mis-
understandings between the domain world and the programmers. 

• Collective ownership: Since each pair only operated on the source pack-
age of a single agent, there was barely any overlapping. Only ontology 
classes (which describe the content of agent messages) had to be modi-
fied by various teams. Coordination of these changes was accomplished 
very informally by voice and the code versioning system CVS. 

• Coding standards: In the beginning of the project, we defined a project-
wide coding standard that was very easy to follow, because the Java tool 
we used provides automated code layout features. Thus it was very sim-
ple to shift implementation tasks between the pairs and to change pair 
members regularly. 

• Simple design: The students were explicitly asked to focus on program-
ming speed instead of comprehensive up-front designs. This seemed to 
be sufficient because the agents were rather small units with few types 
of tasks to solve. Despite the focus on simplicity, experienced students 
almost automatically identified some useful generalizations of agent 
functionality. Our initial process model underwent several evolutionary 
changes. Despite the various small changes, the overall design remained 
quite stable throughout the project, so that our process modeling frame-
work proved to be appropriate. 

• Refactoring: Since the agents were rather small units, they were very 
easy to maintain and refactor. Even if an agent evolved into a perfor-
mance or quality bottleneck after a series of refactorings, it was possible 
to completely rewrite it from scratch without risking the functionality of 
the overall system. IntelliJ’s refactoring support was valuable. 

• Continuous integration and short releases: The agents were uploaded 
onto the CVS server and integrated at least every evening. Since the 
students were only allowed to upload those agents that passed all test 
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cases, there were almost no integration problems. Agent interactions 
were tested and presented on a beamer with the help of a small simula-
tion environment that could trigger external events. 

• On-site customer: In the questionnaires that were filled out by the stu-
dents after the course, the presence of the domain expert was deemed 
very positive. He was asked to provide clinical knowledge regularly, at 
least once an hour, so that expensive design mistakes were prevented. 
His presence did not even mean an overhead for him, because he could 
use the ”spare time” for other types of work on his own laptop. 

• Metaphor: Many communication bottlenecks and misunderstandings be-
tween clinicians and developers are due to different terminology and 
perceptions. Metaphors, which map clinical domain concepts onto sym-
bols the engineers are acquainted with, can help. For example, the pro-
cess of anesthesia, with its induction, monitoring, and extubation phases 
can be compared to aviation, where take-off, cruising, and landing are 
the main activities. This metaphor helped us to draw some insightful 
parallels between the requirements of clinical monitoring devices and 
cockpit technology. 

3.3 Discussion 

In a clinical environment, one has to deal with a plethora of software and 
hardware units. However, the level of interoperability is rather low and 
often the integrating factor still remains to be a nurse copying values from 
one printout into the next form by hand. Agent technology does have the 
potential to integrate information islands caused by missing interfaces, in-
compatible data formats and the like. 

The inherent modularity of agents allows one to customize a clinical in-
formation infrastructure to a hospital’s individual requirements and pre-
requisites. The co-ordination mechanisms found in multiagent systems of-
fer a high level of flexibility, e.g. when unexpected emergency patients 
need to be treated. 

A major challenge for the engineering for this kind of software is re-
quirements elicitation, because intimate knowledge of the work processes 
is required. Our methodology exploits ideas from agile software develop-
ment approaches such as Extreme Programming in the face of uncertain re-
quirements. It builds upon collaboration with domain experts and human 
creativity driven by rapid feedback. We support collaborative requirements 
elicitation by means of an iterative, tool-supported modeling approach that 
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allows one to capture existing and agentified processes in a format that is 
sufficiently simple to be understood and maintained by domain experts. 

Interestingly, we have experienced that the concept of agents are a use-
ful and well-perceived communication metaphor for discussions with users 
and domain experts during the requirements elicitation and design phase. It 
can be used in addition to process or rule-based approaches. It seems to be 
more natural to think along the concepts of subjects talking and interacting 
with each other instead of abstract processes and activities, especially in 
very dynamic and “chaotic” environments. Yet this new modeling para-
digm has to be investigated further. 

We enable creativity by means of a searchable repository of reusable 
agent design patterns and other types of process modeling knowledge. Our 
tool, called AGIL-Shell (Agent-based Information Logistic), is used for 
process and agent modeling and can automatically generate source code 
for a variety of agent platforms (native Java, Java Enterprise, JADE/FIPA-
OS). This tool proved helpful for the creation of prototypes used in simu-
lations to verify the targeted processes. The elicited process and agent 
models can be synchronized automatically with executable agent source 
code, so that rapid feedback is ensured. 

A special focus should be put on human-agent interaction. Trust and co-
operation are two important topics even more pressing in a critical, safety 
concerned environment. In a time critical situation, the interaction between 
man and agent need to be without hesitation. Especially here, the pro-ac-
tive aspects can be utilized. Trust of a user in an agent’s decisions and ac-
tivities is a vital precondition to the delegation of work. The most sophisti-
cated and verified MAS will be useless if the user does not trust the sys-
tem. 

The aspect of co-operation goes even further. A user agent may accom-
pany a user during some period of time. It can become an assistant much 
like a secretary or butler, adjusting and learning about the preferences and 
peculiarities of its user. It can initiate actions in the interest of its user even 
without the human knowing. In a hospital environment one could think of 
a patient’s advocate reminding the staff to treat a patient who is sitting in 
the waiting room for long. 

3.4 Conclusion 

We have developed an agile methodology for the development of MAS, in 
particular multiagent systems that support the collaboration of distributed 
work groups like clinical departments. 
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Classical engineering principles appear inappropriate due to the com-
plexity and dynamics of processes, and due to uncertain clinical require-
ments. Instead, we have successfully applied an Extreme Programming 
approach, which explicitly involves communication and evolution into the 
process. The communication was based on a simple, yet sufficiently for-
mal process modeling metaphor. Code generation and the various practices 
of XP, which help to reduce the cost of change, supported evolution. The 
implementation process has led to many process improvements and a pro-
totypical clinical information system. 

Using the concept of software-agents in the analysis and design phase of 
an (agile) software engineering approach is an efficient and natural way to 
discuss with customers and users, because entities that communicate and 
interact seem a more natural mapping than processes and information flow 
of traditional pure-process oriented approaches. 
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Abstract. Patient scheduling in hospitals is a very complex task. This complexity 
stems from the distributed structure of hospitals and the dynamics of the treatment 
process. Hospitals consist of various autonomous, administratively distinct units 
which are visited by the patients according to their individual disease. However, 
the pathways (the needed medical actions) and the medical priorities (the health 
condition of the patients) are likely to change due to new findings about the dis-
eases of the patients during examination. Moreover, the durations of the treat-
ments and examinations are stochastic. Additional problems for patient scheduling 
in hospitals arise from complications and emergencies. Thus, patient scheduling in 
hospitals requires a distributed and flexible approach. To this end, a flexible, 
agent-based approach to patient scheduling is developed in this chapter. After a 
description of the addressed patient scheduling problem, the proposed mechanism 
for patient-scheduling is presented and evaluated. 

4.1 Introduction 

In this chapter, an agent-based coordination mechanism for patient sched-
uling in hospitals is described. Patient scheduling is concerned with the op-
timal assignment of the patients to the scarce hospital resources 
[Schl1990], where the goal of the patients is to minimize their stay time 
and the goal of the resources is to minimize their idle time. However, pa-
tient scheduling in hospitals resolves as a very complex task. Hospitals 
consist of several autonomous, administratively distinct wards and ancil-
lary units [DeLi2000] [KuOP1993], which are visited by the patients for 
their treatments and examinations in accordance with their illness [Schl 
1990]. However, the pathways (the needed medical actions) and the 
medical priorities (the health condition of the patients) are likely to change 
due to new findings about the diseases of the patients during examination 
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[PJDH2003]. Further, the durations of the treatments and examinations are 
stochastic [BrWo1991] [RoCh2003]. Additional problems for patient 
scheduling in hospitals arise from complications and emergencies, which 
are in urgent need for treatment [PJDH2003]. Due to this, patient schedul-
ing in hospitals requires an approach which is distributed, in order to leave 
the authority at the responsible units, and flexible, to be able to react to 
new information in a timely manner. 

For this reason, a multiagent based approach was chosen for this prob-
lem, because it allows the representation of every coordination object as a 
single autonomous agent with own goals [WeGo1996]. Further, the agents 
can react with the needed flexibility to changes (as new information about 
the health status of a patient becomes available) and disturbances (emer-
gencies and complications) through proactiveness and responsiveness 
[Jenn2001]. In this context, the notion of flexibility refers to the term 
“technical flexibility”, that is, the ability to react adequately to external in-
fluences (see I.3). 

The remainder of this chapter is structured as follows. Section 4.2 elabo-
rates the patient scheduling problem in hospitals. Based upon this, the con-
ceptual framework of the proposed multiagent system is developed in Sec-
tion 4.3. In Section 4.4, a prototypic implementation of the coordination 
mechanism is evaluated and benchmarked against the status quo of patient 
scheduling in hospitals. This chapter closes with conclusions and an out-
look to future work in section 4.5. 

4.2 The Patient Scheduling Problem in Hospitals 

Hospitals are service providers with the primary aim to improve the health 
state of their patients, where the treatment of the patients is the main value 
adding process in hospitals [Fein1999] [GrTT997]. Hospitals consist of 
several autonomous, administratively distinct wards and ancillary units 
[DeLi2000] [KuOP1993] [PJDH2003]. During hospitalization, the patients 
reside at the wards and visit the ancillary units for treatments according to 
their individual disease, where the treatment process comprises the medi-
cal tasks which must be performed for the patients during hospitalization. 

The service provision in a hospital can be viewed from a patient (or job) 
perspective and from a resource perspective. While the patients focus on 
the sequence of their medical tasks with the goal to minimize their stay 
time, the resources focus on the treatments and examinations within the re-
sources with the goal to minimize their idle times [DeLi2000] [KuOP 
1993].
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The patient scheduling is now concerned with the (optimal) temporal as-
signment of the medical tasks for the patients to the (scarce) hospital re-
sources [Schl1990]. However, the patient scheduling problem in hospitals 
is confronted with a high degree of uncertainty. The patients arrive con-
tinuously at the hospital and the necessary medical treatments are often not 
completely determined at the beginning of the treatment process. More-
over, the new findings during diagnostic examinations might change the 
(medical) priority of the patients, invoke additional treatments or exami-
nations, and make other medical actions obsolete [PJDH2003]. Further, the 
service times of treatments and examinations are stochastic [BrWo1991] 
[RoCh2003]. Finally, complications and arrivals of emergency patients – 
which are in urgent need for treatment – result in schedule disturbances. 

To be able to handle the process dynamics in a distributed environment, 
hospitals commonly use a very flexible approach for patient scheduling 
which can be compared to a first-come first-served priority rule. Typically, 
a ward physician prescribes the necessary treatments and examinations for 
the patients. These prescribed medical tasks are send as treatment requests 
to the ancillary units. Based upon these requests the ancillary units order 
the patients from the wards when they deem appropriate [DeLi2000] 
[KuOP1993]. This allows the units to react very flexible to changes with 
very low communication needs. If, for example, an emergency patient 
needs to be inserted, the next patient will simply be called from the ward 
later, leaving this patient available to other ancillary units. 

However, because there is no inter-unit coordination, this procedure 
cannot resolve resource conflicts, which occur if the same patient is re-
quested by more than one ancillary unit at the same time [DeLi2000]. Be-
cause the ancillary units only have a local view, that is, they do not – and 
cannot – take the whole pathway of the treated patients into their schedul-
ing consideration, no inter-unit process optimization can be undertaken 
(i.e., the medical tasks for the patients cannot be scheduled and coordi-
nated in an efficient manner). This causes undesired idle times as well as 
overtime hours for the hospital resources and extended patient stay times. 

4.3 Conceptual Framework 

In this section, the conceptual framework of an agent-based coordination 
mechanism for patient scheduling is developed. As described previously, 
the patient scheduling problem is concerned with the optimal assignment 
of the treatments and examinations of the patients to the scarce hospital re-
sources; where the goal of the patients is to minimize their stay time and 
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the objective of the resources is to minimize their idle time. In order to 
achieve this assignment in a goal-driven manner, the proposed coordina-
tion mechanism relies on the economic concept of mutual selection. In this 
context, the patients and resources can be identified as the coordination 
objects, which are modeled as autonomous agents; where the patient-
agents try to acquire the needed medical services, that is, treatment or ex-
amination time slots, from the resource-agents. Because a resource is gen-
erally demanded by several patients, each resource-agent auctions off the 
medical services (time slots) of its hospital resource. In order to participate 
in the resource auctions, the patient-agents need utility functions, which 
enable them to determine the values of the required time slots and thus to 
generate the bids for the time slots. 

4.3.1 Health-State Dependent Utility Functions 

In the proposed auction-based coordination mechanism, the patient-agents 
compete with each other over the scarce hospital resources in order to 
achieve the objectives of their corresponding patients as good as possible. 
This kind of coordination problem represents a worth-oriented environ-
ment [RoZl1994], in which the degree of goal achievement can be evalu-
ated through a utility function cf. [PJDH2003]. The usage of continuous 
utility functions (instead of single values assigned to specific goals) allows 
the coordination objects to relax their goals, that is, to compromise in order 
to reach a better overall solution cf. [RoZl1994]. 

In contrast to the domain of electronic commerce or industrial produc-
tion control, the bid-price for a resource time slot in hospitals can neither 
be based on the patient's willingness to pay for a time slot nor be derived 
from cost accounting, respectively. The preferences of the patient-agents 
rather have to be based upon medical priorities, that is, the health state of 
the patients [PJDH2003]. Because the patient-agents have to reason about 
the execution time of their treatments, time-dependent utility functions are 
developed which capture the health state development of the patients 
[Pau+2004]. In these utility functions the disease of a patient is viewed as 
disutility (decrease in quality of life) [HoRu1991] [PJDH2003]. Because 
the loss of utility adds up as long as the disease is not cured, this disutility 
over time can be viewed as opportunity costs for not curing the disease 
right away [PJDH2003]. Thus, the utility functions of the patient-agents 
are modeled as (opportunity) cost functions. 

For the construction of these utility (or cost) functions, a cardinal 
measurement of the health state is required. Hospitals currently use numer-
ous health state or priority measures, like the APACHE II score (Acute 
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Physiology and Chronic Health Evaluation) in intensive care units cf. 
[KDWZ 1985], or a simple 1 to 6 priority scale to indicate the priority of 
cardiac patients (as observed in the performed field studies). In order to 
achieve inter-agent comparable priorities, the various used measures need 
to be expressed through one single health measure. For this reason, this 
work proposes a health state measure which was inspired by the (macro-
economic) concept of years of well being [Torr1987], which already incor-
porates the notion of time. Here, a health state H of 1 denotes total health 
and 0 refers to death. In order to determine the value of a health state H for 
a certain disease, it must be determined (by a decision maker) what time 
period xT of total health (H=1) equals one specific time period 1T with this 
disease, i.e. 

.xH1xTHT1 =⇔×=×  (1) 

Through this, the health state of a patient can be described in time units 
[PJDH2003]. For example, [Torr1987] determined a health state of 0.7 for 
a middle angina pectoris; in other words, that suffering one year from a 
middle angina pectoris equals 0.7 years of total health. 

Because the loss of utility adds up as long as the disease is not cured, 
this disutility over time can be viewed as opportunity costs for not curing 
the disease right away [PJDH2003]. These opportunity costs C(t) equal the 
difference between the achievable health state through treatment z and the 
patient's health state development over time without treatment H(t). Be-
cause a treatment might not be able to restore total health, the achievable 
health state z might be lower than 1 (total health). In [Torr1987], for ex-
ample, the health state after a kidney transplantation has a value of 0.84. 

Further, the health state of a patient can either remain constant or can 
decrease over time. In case of a decreasing health state a linear reduction is 
assumed for practical reasons, i.e., H(t)=s–bt, where s denotes the initial 
health state and b the decrease rate [PJDH2003]. From this, the costs C(t)
are
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In other words, the initial health state a might also be viewed as the se-
verity and the decrease rate b as the criticality of the patient's illness. Fig-
ure 1 shows an exemplary course of an illness with linear reduction of the 
health state, resulting in a quadratic, convex opportunity cost curve. 

Finally, the achievable health state through treatment (z) might decrease. 
Because a decrease of the achievable health state due to late treatment 
would result in a lifelong decrease of the quality of life for the patient, 
these patients are treated immediately as emergency patients. 
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Figure 1. Linear reduction of the health state 

After the determination of the time dependent utility function, it is nec-
essary to consider the case of stochastic treatment durations. Because the 
service times of the medical tasks might be stochastic, it is necessary for 
the patient-agents to consider this uncertainty in the bargaining process. 
For this reason, the cost function C(t) has to be extended to a cost function 
C(µ, ) based upon the expected mean µ and variance ² of the starting time 
distribution (t,µ, ). To calculate the value of C(µ, ), the starting time 
distribution (t,µ, ) has to be weighted with the cost function C(t) of the 
patient agent, i.e. 

.)(),,(),(
~

tdtCtC
-

∞

∞
= σµϕσµ  (3) 

Based upon decision theory the variance of the envisaged starting time 
for a task is viewed as risk (of delay), where a linear opportunity cost 
curve indicates risk neutrality, because the benefit from the chance to start 
earlier compensates (in case of a symmetric distribution function) the dis-
utility through the chance of a delayed start. A convex opportunity cost 
function on the other hand indicates risk adversity, because the possible 
gains from an early start are outweighed by the possible losses due to a 
delayed start [Schn1991]. This should be illustrated by the following ex-
ample equation, using a normal distribution and the described health state 
dependent cost function. The expected costs C(µ, ) for a patient agent for a 
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timeslot with a mean starting time µ and variance ² can now be calculated 
by 
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where the variance ² is only influenced by b. With regards to decision 
theory, the health decrease rate b can be interpreted as the determinant of 
the agent's attitude to risk, that is, for b=0 the agent is risk neutral and for 
b>0 the agent is risk adverse [Schn1991]. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9 10

time t

pr
ob

ab
ili

ty
p(

t)

0

1

2

3

4

5

co
st

C
(t

)

A(b>0)

B(b=0)

Figure 2. Stochastic treatment duration 

This is illustrated in Figure 2, where curve A shows a risk adverse and 
curve B a risk neutral preference or cost function of the patients. However, 
if the starting time distribution is not symmetric, even risk neutral patients 
are sensitive to different variances. 

Because the service times of the treatments and examinations in a hos-
pital often do not correspond to a normal distribution, discrete distribution 
functions are used in this work. Therefore, the expected cost for a treat-
ment results as the sum of the cost-values at+b/2×t2 of each time point (the 
n classes of the distribution) weighted by its probability p, i.e. 
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4.3.2 Coordination Mechanism 

For the assignment of the treatments and examinations of the patients to 
the scarce hospital resources, a market inspired coordination mechanism 
(based upon the Contract Net Protocol [Smit1980] [DaSm1983]) is used. 
In this coordination mechanism the resources auction off their time-slots. 
Consequently, a resource time-slot is assigned to the patient-agent with the 
highest bid. The rational for this is, that the patient-agent who gains the 
highest utility from a specific time-slot is willing to pay the highest price 
for it (up to the expected utility). 

In detail, the proposed coordination mechanism consists of four phases: 

1. the subscription phase, where the patient-agents subscribe to the re-
quired resource-agents to inform them about their demanded medical 
tasks, 

2. the announcement phase, in which the resource-agents initiate new auc-
tions and announce them to the subscribed patient-agents, 

3. the bidding phase, where the patient-agents generate and submit their 
bids for the needed time slot, 

4. and the awarding phase, where the winner of the auction is determined. 

Thus, this coordination mechanism turns the Contract Net Protocol on 
its head, as the potential contractors (resource-agents) announce their 
availability and the manager (patient-agents) bid for their pending tasks cf. 
[Durf2001]. 

4.3.2.1 Subscription Phase 

In order to participate at a resource auction the patient-agents must sub-
scribe to the required resource-agents, that is, inform the resource-agents 
about the required treatments and examinations. However, to be able to 
subscribe to a resource-agent the patient-agents first must identify the re-
sources capable of performing the needed treatments and examinations. 
Because the capabilities of the resources might overlap, i.e., different re-
sources might be able to perform the same treatment, a yellow page service
is used at which the resource-agents advertise their capabilities, and the 
patient agents inform themselves about the adequate resources. This allows 
the agents to flexible incorporate changes in the hospital environment (see 
also I.3). 

When a resource-agent receives a subscription from a patient-agent it in-
forms the subscriber about the duration of the requested medical task. Be-
cause the service times of the medical tasks are stochastic, the resource-
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agent submits an array containing a discrete (empirical) distribution func-
tion, which is generated from historical task durations. 

The subscription phase is somewhat distinct from the bidding and 
awarding phase. A subscription of a patient-agent is only needed if the 
treatment pathway of the corresponding patient is altered, that is, when a 
new treatment or examination is needed or an already registered medical 
task becomes obsolete. Thus, the main purpose of the subscription phase is 
to avoid unnecessary broadcast messages when a resource agent initiates a 
new auction, which is described next. 

4.3.2.2 Announcement Phase 

The announcement phase initiates the actual auction mechanism. A re-
source-agent opens an auction for a new treatment or examination if its as-
sociated hospital resource has (almost) finished the current medical task. 
Similar to the current practice in hospitals, this allows the resource to react 
in an efficient manner to complications and emergency patients: if a treat-
ment takes longer than expected or an emergency patient (who has not yet 
been entered into the information system) needs urgent treatment, the re-
source-agent just does not open a new auction until the exception is han-
dled. Obviously, for this to work, the resource-agent needs some external 
input in order to update its beliefs about the state (busy or idle) of its 
physical resource. 

In order to open a new auction, the resource-agent informs all sub-
scribed patient-agents about the new auction and queries their envisaged 
starting time. In response, each contacted patient-agent replies the time at 
which the patient it represents is expected to be available. This can either 
be immediate if the patient is idle or later, otherwise. If the patient is not 
idle, the corresponding patient-agent transfers an array containing a distri-
bution function of the finish time of the medical task the patient is cur-
rently engaged in. Based upon this information, the resource-agent com-
putes the expected finish time distributions for all participating patient-
agents. Then, the resource-agent submits these finish time distributions to 
the participants and calls for proposals (bids). This call for proposals initi-
ates the bidding phase. 

4.3.2.3 Bidding Phase 

In the bidding phase the patient-agents generate and submit bids for the 
prescribed medical procedures to the resource-agents. To be able to evalu-
ate their current schedule and to calculate bid-prices for time slots, the pa-
tient agents rely on the utility functions described in Section 4.3.1. Based 
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upon these utility functions the agents generate the bid-prices by calculat-
ing the expected loss of utility (cost of waiting) if they would loose a spe-
cific auction. In other words, the price a patient-agent is willing to bid for a 
specific time slot corresponds to the expected disutility the patient-agent 
would suffer if it does not win the auction. Therefore, the patient-agent has 
to determine the value of its own schedule with and without winning the 
desired time slot. To determine the schedule in case of loosing the auction, 
the finish time distributions of the other participating patient-agents are 
considered as block time of the corresponding resource. After the bids are 
generated, they are submitted (proposed) to the auctioneer. 

4.3.2.4 Awarding Phase 

The last step of the coordination mechanism is the awarding phase. After 
the auctioneer (the resource-agent) has received the proposals containing 
the bids of the patient-agents, it awards its time slot to the patient-agent 
which causes the lowest harm to all other agents. In the case a patient-
agent wins in more than one auction – as a patient-agent generally partici-
pates in multiple simultaneous auctions –, it must decide which award it 
should accept. Here, the patient-agent chooses the resource it gains the 
highest utility out of. If an awarded resource time slot is rejected by the 
patient-agent, the corresponding resource-agent awards its auctioneered 
time-slot to the next best bidder until one patient-agent accepts the award 
or all participants rejected the time-slot. 

4.4 Evaluation and Benchmark 

For the evaluation and benchmark of the proposed coordination mecha-
nism, a prototypic multiagent system was implemented. To test and evalu-
ate the prototype under real-world conditions a simulation environment 
was built, that allows simulating different scenarios by varying several pa-
rameters, such as the hospital size, the divergence of treatment durations, 
or the probability of emergency cases. Additionally, in order to benchmark 
the proposed coordination mechanism against the status-quo patient 
scheduling in hospitals, a priority rule based strategy was also imple-
mented. 
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4.4.1 Prototype Realization 
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Figure 3. Prototype implementation 

The prototype implementation is organized in three separate layers: The 
coordination layer, the hospital layer, and the infrastructure layer (see Fig-
ure 3). The coordination layer is comprised of the different coordination 
mechanisms, each of which can be applied to perform the treatment sched-
uling. The coordination mechanism described in the previous sections and 
the alternative strategies used for benchmarking have been designed and 
implemented using agent-oriented tools and concepts. More details about 
the concrete realization of the coordination mechanisms can be found in 
[Pau+2004] [BrPL2004]. 

The hospital layer is designed to support the execution of the coordina-
tion by providing the facilities to perform simulation runs or to run the 
system as an application. When a simulation run is initiated, the informa-
tion from the hospital model is used to create the hospital infrastructure 
consisting of initial patient and resource agents. During the run, the system 
agent uses different random distributions to approximate real arrival rates 
of patients and other occurrences like emergencies. It therefore decides at 
when next arrival or emergency will take place. The system agent is con-
ceived to emulate all simulation external occurrences. Hence, for running 
the system as application instead of simulation it is merely required to 
adapt the system agent to react on some user interface and set-up the time 
service with real time. 

The infrastructure layer provides system-level services for the imple-
mentation such as agent management and execution, as well as persis-
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tency. Basic agent services as the agent lifecycle management, agent 
communication and search facilities are provided by a FIPA-compliant 
agent middleware platform [PoCh2001]. These basic services are enhanced 
with a rational agent layer following the BDI-metaphor [RaGe1995], 
which enables the usage of goal-oriented concepts at the design and im-
plementation level. Hence, it facilitates the development with the intro-
duction of high-level agent-oriented programming concepts [PoBL2005]. 
The persistency infrastructure consists of a relational database manage-
ment system, which is connected with an object-relational mapping layer. 
The mapping layer enables object-oriented data access by making the un-
derlying relational database model transparent. 

4.4.2 Scalability 

The scalability denotes the additional computation effort (needed time to 
solve a problem) invoked by an increase of the problem size cf. 
[Durf2001] [LNND1998]. To be able to derive the scalability, the com-
plexity of the test problems should only differ with respect to the problem 
size. For this, the open shop benchmark problems of [Tail1992] were used. 
In these problems the amount of jobs equal the amount of resources; thus 
the number of tasks is n×n, where n denotes the number of resources or 
jobs, respectively. 

The Taillard open shop benchmark consists of six different problem 
sizes (4×4, 5×5, 7×7, 10×10, 15×15, 20×20), each comprising ten problem 
instances (the used problems are available from [Tail1992]). Figure 4 
shows the (logarithmic) mean run time of the proposed coordination 
mechanism (“Auctions”) for each problem size (n×n), and a curve repre-
senting a quadratic scaling (“O(n²)”) for comparison. Through comparison 
of the empirical run times of the proposed mechanism with the calculated 
O(n²) curve it can be stated, that the proposed mechanism approximately 
scales quadratic with the problem size. 
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Figure 4. Scaling of Taillard n×n open shop problems 

4.4.3 Continuous Patient Arrival 

This subsection investigates the performance of the proposed coordination 
mechanism in a dynamic environment, where the patients arrive continu-
ously at the hospital. To analyze the suitability, the mechanism is com-
pared against a coordination mechanism using a first-come first-serve
(FCFS) priority rule in three different scenarios: 

1. short inter-arrival intervals with few medical tasks for each patient; 
2. short inter-arrival intervals with many tasks; and 
3. long inter-arrival intervals with many tasks. 

A test of long inter-arrival intervals with few tasks was omitted, because 
pre-tests have shown that the problem was too easy (almost no resource 
conflicts occurred). 

The setup of the tests is a follows. In all tests the last patient doesn’t ar-
rive after the 400th minute. The short inter-arrival intervals where uni-
formly drawn from of the interval [1,10] (minutes), and the long inter-arri-
val intervals were randomly chosen between [1,60]. Because these tests are 
designed to analyze and compare the effect of short versus long inter-arri-
val intervals on the performance of the coordination mechanism sepa-
rately, a uniform distribution of the inter-arrival intervals in both tests was 
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chosen. The treatments for the patients were drawn out of a database con-
taining 3393 actual, historically performed hospital treatments, involving 
the following six ancillary units: RAD (radiology), ECG (electrocardi-
ography), ENDO (endoscopy), CT (computer-tomography), MR (mag-
netic-resonance-imaging), and NUC (nuclear-medicine). 
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Figure 5. Results “short-few” 

For the test with the few medical tasks up to three treatments were as-
signed, and for the tests with many treatments one to seven treatments 
where drawn out of the treatment-database cf. [KuOP1993]. Thus, the 
most tasks have to be scheduled at the test with short inter-arrival intervals 
and many tasks. The best, average and worst achieved results (average pa-
tient idle time) of the test runs are given in Figure 5 (short-few), Figure 6 
(short-many), and Figure 7 (long-many). 
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Figure 6. Results “short-many” 
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Figure 7. Results “long-many” 



270 T. O. Paulussen et al. 

4.4.4 Resource Capacity 

In Figure 8, a solution achieved through the proposed coordination mecha-
nism for one “small-many” test problem is given. To test the handling of 
multiple resources capable of performing the same treatment, the “small-
many” test from Figure 8 was rerun with two additional radiological and 
endoscopic units, and one additional electrocardiography unit. The result 
of this modification is given in Figure 9, showing again a good load 
balancing behavior of the proposed mechanism. 

Figure 8. Single resource capacity. 

Figure 9. Increased resource capacity 
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4.4.5 Emergencies 

To test the behavior of the proposed mechanism in case of emergencies, 
simulations were run with different emergency probabilities (the chance 
that an arriving patient is an emergency). Here, each emergency patient re-
ceives only one task, but this task must be performed immediately. Using 
the simulation setup of the previous subsection, tests with an emergency 
probability of 5, 10, 20, 25, and 50 percent were performed with the pro-
posed coordination mechanism as well as with the first-come first-served 
mechanism. While normal patients do not arrive after the 300th minute, 
emergency patients can arrive until the 600th minute (the occurrence of 
emergencies must be bounded, because the system would run infinitely 
otherwise). Figure 10 shows a schedule with emergency patients (dark 
bars). 

Figure 10. Resource allocation with emergency patients 

The results in percentage improvement of the idle time of the patients by 
the proposed coordination mechanism over the first-come first-served pri-
ority rule are given in Figure 11. Here, the achieved improvement over the 
hospital benchmark decreases with an increase in the emergency probabil-
ity. However, this is plausible, because an increase of unpredictable tasks 
consequently reduces the scheduling potential of any scheduling approach. 
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Figure 11. Results of simulation with emergency patients 

4.5 Conclusions 

Patient scheduling in hospitals requires a distributed and flexible approach 
in order to cope with the distributed structure of hospitals and to handle the 
inherent dynamics of the treatment processes. To this end, an agent-based 
coordination mechanism was presented in this chapter. Within this ap-
proach the patient-agents compete with each other over the scarce hospital 
resources. Through a decentralized auction mechanism the resource time 
slots are assigned to the patient-agents who gain the highest utility out of 
these time slots. 

Because the utility of a patient in a hospital cannot – or at least should 
not – be based on the patient's willingness to pay for a specific resource 
time slot, it is important to develop utility functions which adequately rep-
resent the health stateover time. To this end, a novel health-state dependent 
utility function was introduced. Through these utility functions, the pa-
tient-agents can generate their bids for the time slot auctions at the re-
source-agents. 

The proposed coordination mechanism significantly improves the cur-
rent patient scheduling practice in hospitals (modeled as a first-come first-
serve priority rule), while providing the required flexibility. 

Currently the proposed coordination mechanism considers the health 
state of the patients as the only determinant of the patients priority. Thus, 
future research should address the question how the utility function of the 
patient agents can be adapted to handle multiple preferences. Here, the 
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multi-attributive utility theory [Schn1991] might provide a good starting 
point. In this work, the proposed coordination mechanism was bench-
marked against the status quo patient scheduling in hospitals. In future 
work, this benchmark will be extended to consider state of the art sched-
uling heuristics and meta-heuristics, e.g. genetic and evolutionary algo-
rithms. Finally, the proposed mechanism will be evaluated in a real hospi-
tal. Here it is essential to integrate the existing legacy systems of the hos-
pital. However, an agent-based system is assumed to be well suited for 
this, because the legacy systems can be encapsulated through agents, and 
thus easily be integrated into the framework cf. [Jen+2000]. 
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Abstract. The structures in health care are currently changing. Clinical manage-
ment and physicians have the obligation to both ensure quality of care and to work 
more cost effectively. The optimization of the system respecting these contrary 
goals is a big challenge. New information technology and computer applications 
like adaptive agent based assistance agents may be one way to optimize the sys-
tem. Additionally organizational changes regarding resources or processes may 
also enhance the system. In many cases the effects of optimization ideas are diffi-
cult to foresee. This chapter describes the possibilities of multiagent simulation for 
experimentation and optimization of adaptive scheduling in hospitals. It presents a 
specialized agent based construction kit for hospital simulation and describes the 
results of realized example scenarios. 

5.1 Introduction 

This chapter addresses the problem of coordinating and scheduling logisti-
cal issues in hospitals, in particular those pertaining to treatments and ex-
aminations. Despite the introduction of clinical information systems in re-
cent years, the execution schedule of medical tasks is often determined by 
ad-hoc decisions and typically costly factors such as patient treatment du-
ration, efficient resource loadings or balanced working hours are not opti-
mized. Often simple waiting queues (first-in first-out) in front of functional 
units can be found to determine the execution sequence. If appointments 
are made, they are individually negotiated by telephone. Even though this 
is one particular solution, it is suboptimal and is likely to cause unneces-
sary delays and result in an uneven distribution of work amongst the func-
tional units. 

Some properties of hospital patient scheduling hamper manual or central 
problem solving. Firstly patient scheduling is inherently distributed. Sev-
eral organizational units - traditionally autonomous and different in their 
nature - are involved and make their own decisions regarding appoint-
ments. The patients on the other hand are very individual, suffer from dif-
ferent diseases with different severities and often need immediate care. 
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Our patients of a clinic in particular, have individual preferences and re-
strictions. In fact many of the patient constraints are hard to formalize in 
detail and furthermore they are dynamic and subject to future change. 
Centralized systems can hardly represent all of the constraints and keep 
them up to date. Complexity is also an issue, as the processes are interde-
pendent and patients may compete for the same resources. Compared to 
other scheduling domains, patient scheduling has very dynamic demands. 
Current schedules may become obsolete by sudden changes: durations of 
task execution may be unpredictable; emergencies have to be treated ur-
gently and patients may not appear on time. A system that successfully 
deals with these problems has to provide the capability for efficient, dy-
namic rescheduling. 

Considering these problem characteristics we arrive at the following 
conclusion: A scheduling system has to be distributed and individually 
configurable, and it has to perceive the changes of the environment and be 
able to adapt to these situations very quickly. The natural properties of 
agents deal very well with these circumstances: They are situated in an en-
vironment; they reason about changes in the environment, they act 
autonomously and interact socially with each other to solve problems. 
These properties can also be summarized as the adaptivity of an agent. 

As we have illustrated, optimization of patient scheduling is very prom-
ising and the agent paradigm fits well for these problem properties. The 
projects of the priority research program SPP 1083 followed two basic ap-
proaches to provide solutions for the problem domain. 

• Introduction of agent based scheduling systems: This approach com-
prises the development of an agent based scheduling assistance system. 
These systems can improve patient scheduling by endowing patients as 
well as functional units with assistance agents for appointment negotia-
tion. (see III.4; [HeHe2004a]) The interaction between software agents 
is faster, cheaper and less problematic (if frequently repeated) than hu-
man interaction. The prerequisite for the application of software agents 
is that the system should be continually up-to-date and in close contact 
with their human counterparts. Then agents can perform a more exhaus-
tive search for ‘good’ solutions than humans. Even if this could also be 
realized by a centralized scheduling system, an agent based solution re-
flects more closely the existing organization and therefore can better 
deal with the inherent uncertainties in the clinical environment. 

• Agent based simulation of hospital processes: The second approach 
deals with the development of hospital simulations to evaluate schedul-
ing questions. Effects on global evaluation parameters like staytime and 
average unit load are the result of dynamic interactions between humans 
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or between software agents and humans. Multiagent simulation is very 
helpful when predicting the overall effects of different strategies of 
agent based scheduling assistance systems. These effects can be exam-
ined under normal as well as stress conditions, and important influences 
upon the system can be determined. Building simulations is effort inten-
sive therefore powerful tools and methodologies are needed to create 
credible and useful simulations. 

Both approaches apply agent technology to improve the ability to man-
age scarce resources in hospitals. The combination of system development 
and simulation based evaluation is very promising. Whilst III.4 has already 
discussed scheduling systems, this chapter will consider agent based 
simulation more closely. 

In the next section the required basics of agent based adaptive schedul-
ing and scheduling in hospitals are discussed in more detail. Furthermore 
aspects of adaptivity in agent based scheduling are treated. III.5.3 deals 
with the state of the art in hospital simulation, the role of pathway models 
for scheduling and simulation and finally presents a novel agent construc-
tion kit for hospitals. III.5.4 presents case studies that have been realized 
and the first results of these simulations. 

5.2 Adaptivity Aspects of Agent Based Scheduling in 
Hospitals 

Scheduling examples are known from everyday life. Besides the clinical 
application mentioned above, the bandwidth reaches from finding a time 
for a joint meeting to more complex problems like production scheduling 
or the scheduling of shift plans. Fundamentally, scheduling deals with the 
temporal assignment of activities or tasks to limited resources [Saue2000] 
[Bla+1996] [Pine1995]. Scheduling also determines time-intervals of task 
execution. Usually non-linear constraints and optimization-criteria have to 
be regarded. Due to the exponential size of the solution space these prob-
lems usually cannot be solved by an exhaustive search algorithm. There-
fore approximate methods like algorithms of operations research or artifi-
cial intelligence have been applied in the past. These approaches provide 
representations and heuristic problem solving algorithms. Much research 
about scheduling can be found in the manufacturing domain, where pro-
duction tasks have to be assigned to resources [Hest1999] [Schm2000] and 
due times have to be considered. 
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Whereas scheduling in the manufacturing domain can often be dele-
gated to one central system some application domains require distributed 
systems. Supply chain management across several enterprises and inher-
ently distributed organizations like hospitals lack the possibility of central 
planning. A basic property of these domains is that the knowledge about 
the problem is distributed and usually cannot be shared by reasons of dis-
tributed responsibilities, missing communication infrastructure, data secu-
rity, or protecting a company’s intellectual property. Since no central plan-
ner can be realized and authorized to collect the necessary knowledge 
about the problem, distributed problem solvers look for partial solutions 
and have to solve conflicts by interaction and negotiation about a suitable 
solution. 

Even within hospitals we find very different kinds of scheduling, each 
problem showing their own specific properties. In the following these 
types are introduced to show the typical properties, which also affect the 
necessity for adaptivity and therefore possible solution approaches: 

• Shift scheduling: This problem deals with the creation of shift plans. The 
resource allocation of daily shifts with personnel can be treated as the 
temporal assignment of shift roles to available nursing staff. Typical 
properties of this problem are that schedules have to be created periodi-
cally and for a fixed planning period of discrete time (days). Usually 
there is no need for rescheduling because unforeseen employee absence 
(e.g. because of illness) can be compensated by a spare employee. Com-
plex constraints are considering functional issues (e.g. number of nurses 
of various qualifications per shift), legal issues (e.g. max nightshifts in 
series), logical issues (e.g. nurse cannot be assigned to two jobs at the 
same time) and preferences of the staff (e.g. nurse x prefers to work just 
the early shift). Central planning for shift scheduling is reasonable, be-
cause the staff as well as the constraints are very constant. [HePu2004] 

• Appointment scheduling: Appointment scheduling in hospitals deals 
with the temporal assignment of examinations, treatments and transport 
actions (tasks) to certain resources or functional units. In contrast to the 
previous example, schedules cannot be created periodically. Appoint-
ment requests are generated continuously and have to be responded in 
time. Additionally, appointment scheduling deals with an open planning 
period and continuous time. Constraints are typically task execution or-
ders, capacities of functional units and minimal stay times of patients. 
Due to the high probability of unforeseen changes (unexpected task du-
rations, emergencies, etc.) the task execution has to be monitored and 
tasks have to be rescheduled in case of changes. As already mentioned 
scheduling knowledge in hospitals is inherently distributed and changes 
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occur quickly, so central systems do not have access to the necessary in-
formation and lack adaptivity to comprehensively solve the problem. In 
a distributed agent based system the problem can be split into small ne-
gotiation tasks between task requesters and service providers. 

• Surgery-team-scheduling: Surgery-team-scheduling is more like orga-
nizing meetings than bilateral appointments. It deals with the creation of 
surgery teams and the temporal assignment to certain resources (e.g. 
rooms). In contrast to appointment scheduling for patients it involves 
more people (and therefore objectives from different origins). The sys-
tems are very dynamic, since the durations of surgeries are hardly pre-
dictable. Typically schedules have to be created periodically every day 
for a fixed planning period of discrete time. Typical problem constraints 
are: considering availability of team members, required qualifications of 
team members and room preferences. An agent based approach provid-
ing coordinator agents for each task and different team member agents 
seems also very suitable, because of the dynamics and distribution. 

Table 1. Properties of different scheduling problems in hospitals

 Shift scheduling Appointment 
scheduling 

Surgery-team-scheduling 

Assignment Shift roles to 
nurse 

Task to functio-
nal units/ resour-
ces 

Task to time  

Scheduling 
times 

Periodically 
(monthly) 

Continuous  Periodically  
(daily, for the next day) 

Period length Fixed Unlimited Fixed 

Assigned time Discrete (days) Continuous Continuous

Dynamics Few changes  Many changes, 
rescheduling 

Few changes, but often 
delays 

Complexity of 
constraints 

Many con-
straints, many 
interdependen-
cies 

Few constraint 
types, interde-
pendencies 

Few constraint types but 
high number, interde-
pendencies 

Knowledge 
distribution 

Slow changing 
knowledge, cen-
tralized 

Inherently distri-
buted, spread and 
changing knowl-
edge  

Inherently distributed, 
spread and changing 
knowledge 

In Table 1 the properties of scheduling problems in hospitals are 
summarized. Because of their different properties different kinds of solu-
tions are required. Whereas central predictive scheduling works well for 
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shift scheduling, it has problems when dealing with appointment schedul-
ing and surgery-team-scheduling. Distribution and adaptivity are central to 
these problems. With an agent based approach, agents take care of their 
own goals and considers the individual local constraints in planning a 
schedule. Global conflicts of the schedule have to be negotiated between 
the agents. Using this approach the natural distribution of information can 
be kept and a practical solution can be generated as well. Furthermore, 
agents are capable of quick adaptation to dynamic changes and emerging 
conflicts can be solved locally between some of the agents. The principal 
drawbacks of an agent based approach to scheduling are that the amount of 
necessary information exchange compared to central approaches might be 
very high and a more exhaustive search for a solution could be performed 
on a central system. Nevertheless, central solutions are not applicable in all 
problem domains. 

As shown adaptivity and distribution is central to dynamic scheduling 
problems like appointment scheduling and surgery-team-scheduling. 
Adaptivity is supported by the key properties of intelligent agents. Ac-
cording to several definitions in the literature [WoJe1995] [Ferb1995] 
these typical attributes of agents are: situatedness, autonomy, reactivity, 
social ability, pro-activity, mobility and learning. In the following, three 
aspects of adaptivity supported by agent based scheduling and their rela-
tion to the key properties are described: 

• Adaptation to the dynamic environment: Agents are situated in an envi-
ronment and are constantly aware of their local situation by their abili-
ties for perception. By interaction with the user or other agents (social 
ability), they can efficiently detect if plan execution is out of synchroni-
zation with the schedule, and react promptly. Additionally intelligent 
agents can adapt their behavior and respond to the behaviour of other 
agents. In negotiation they may anticipate certain situations and there-
fore parameters (like e.g. negotiation thresholds) may be learned. 

• User adaptation: Software agents can act pro-actively and goal-directed 
based upon the individual configuration and goals of their users. With 
regard to scheduling this includes an individual definition of preferences 
and constraints. Very sophisticated agents may also be able to learn user 
preferences, react accordingly and thus improve the usability of the 
system. 

• System adaptation: System adaptation means the ability to adapt the 
multiagent system to another situation (e.g. another hospital). This prop-
erty is supported by the modular design of agent systems. Communica-
tion interfaces and protocols for interaction have to be explicitly de-
fined. On the one hand this makes agents candidates for substitution and 
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on the other hand reusable in different scenarios. They are not statically 
linked to a domain and are flexibly looking for interaction partners. Sys-
tem adaptation can also be reached by introducing interface or proxy 
agents to connect the agent system to legacy systems. 

5.3 Simulation Toolkit for Hospitals – Hospital 
Extension of an Agent Simulation Tool 

If applications like the ones described in III.4 or [HeHe2004a] are to be 
evaluated some problems arise. Often a test in the real world is not appli-
cable for reasons of cost or security (see also V.2 Simulation and Evalua-
tion). Also different management decisions for optimization can be taken 
concerning resources, processes or scheduling strategies. However, certain 
prognoses on effects and side-effects of probable optimization steps are 
debatable in most cases. Simulation models help to get better estimations 
of effects and are therefore useful to support decisions or to design and 
evaluate novel information systems [Ouel2003]. It would seem that multi-
agent simulation in contrast to traditional simulation techniques is espe-
cially suited for realizing models of dynamic, distributed systems [SiUr 
2001] [KOPD2004] Experiments can be performed quickly, cheap and 
safely inside the computer. 

Nevertheless tool support is crucial for creating experiments. Principally 
you have to decide between using a general purpose simulation framework 
and using a domain specific simulation tool. Unspecific tools are usually 
very versatile but the creation of models is more complicated and time-
consuming. Often the application of these tools is a job for simulation ex-
perts or programmers. Using domain specific simulation tools typically fa-
cilitates fast and easy model creation. Even domain experts may be able to 
make experiments with simulation models. The drawback of specific tools 
is that they are not very flexible if the user wants to realize unforeseen use 
cases. 

Specialized but also flexible simulation tools would also be desirable for 
modeling the scheduling of hospital patients. The organizational structure 
and the processes in hospitals are not just different from department to de-
partment but also from hospital to hospital. The effects of changes may be 
dependent on hospital specific parameters. Therefore simulation results 
can not be generalized and the adaptation of the model for different hospi-
tals is necessary. The creation and modification of models to realize new 
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scenarios should be as easy as possible and on the other hand the model 
should be prepared for future needs. 

In this section basic ideas of the hospital simulation are described and a 
novel construction kit for scheduling scenarios based on the established 
agent simulation tool SeSAm is presented. This kit is supposed to ease 
modeling work and provides specialized editors for modeling clinical path-
ways. Two simulation models are presented in the area of radiation therapy 
and internal medicine. 

5.3.1 State of the Art in Hospital Simulation 

Simulation is much more widespread in the manufacturing domain than in 
health care. Reasons might be that hospitals have neglected cost pressure 
for many years and that clinical processes are usually more complex and 
more varying than manufacturing processes. Nevertheless one can find 
some approaches for hospital simulations in the literature and there are 
even commercial applications. Task scheduling as well as efficient re-
source utilization are a very promising field for optimization and therefore 
tackled very often. For example [ErDO2002] use simulation for the 
evaluation of a novel appointment system in an outpatient clinic. Agent 
based approaches for task scheduling in hospitals have also been presented 
by Decker and Paulussen [DeLi1998] [Pau+2004]. These systems were 
also evaluated using simulation. Some approaches [Rile1999] [AlCe1999] 
were initially designed for usage as a decision support system. Within 
these systems different strategies can be evaluated respecting the given 
circumstances. Sibbel and Urban have presented an ambitious project for 
creating an agent-based hospital simulation system and already have the 
aim of creating a visual general purpose construction kit [SiUr2001]. Many 
providers of commercial simulation systems have realized the need for 
simulation in health care and are offering specialized extensions (e.g. Flex-
sim or Promodel). The major problem of many existing simulation models 
and systems for hospital simulation is that they do not represent the patient 
process in its whole complexity. Often a very reduced and simplified set of 
the actual processes is used. This is critical, because the load of resources 
may also be influenced by the neglected tasks, and the associated interde-
pendencies between processes may play an important role. 
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5.3.2 The Role of Clinical Pathways for Appointment 
Scheduling and Simulation 

Clinical Pathways – sometimes also referred to as clinical guidelines – de-
scribe the patient processes or task structures in a standardized manner. 
The introduction of DRG’s (Diagnosis Related Groups) for reasons of 
quality assurance and accounting forced health care officials and physi-
cians to formalize pathways. This pressure generally improved the avail-
ability of systematic process descriptions and, as a side effect, the results 
can be utilized for automated task scheduling and for the creation of real-
istic simulation models. Nevertheless physicians are usually reluctant to 
rigidly formalize processes. Another problem is that hampers formaliza-
tion, is that medical processes are manifold and formal representations 
from computer science or economic science lack expressivity (if kept sim-
ple) or are too complicated to be used by physicians. That is the reason 
why pathways are often described textually following a structured tem-
plate. Sometimes descriptive diagrams are used but often without strong 
semantics. These semi-formal pathway representations are a first step but 
further formalization has to be made to utilize these pathways in simula-
tion and planning. To acquire the necessary knowledge about pathways in 
internal medicine, several existing approaches for representing pathways 
have been examined and the suitability for the simulation purposes was 
evaluated. Partial order plans are easy to handle by planning algorithms, 
but as a limitation all specified actions have to be executed and alternatives 
can not be represented. Decker [Deck1996] has developed the TAEMS 
framework for the representation of task structures. This framework has 
useful features, like the representation of required resources or task altern-
atives. It is suited to planning but for simulation purposes it lacks the pos-
sibility of stochastic branching. A further representation for clinical path-
ways is the Asbru-Language [MiSJ1996]. 

This representation is very detailed and also allows specifying knowl-
edge about medical decisions. This makes dealing with the language very 
complicated and the lack of visual modeling makes the work difficult for a 
medical domain expert. Due to the specific requirements of the project a 
pragmatic pathway representation was developed. It can be seen as an ex-
tension of partial order plans, which integrates task order restrictions, sto-
chastic branches, alternatives as well as complex temporal constraints. A 
visual editor eases modeling work and guarantees concise pathways (see 
Figure 1). The appropriateness of the representation has been proved in a 
case study, where a set of the most common gastroenterological pathways 
have been implemented. 
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Figure 1. A simplified pathway diagram 
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5.3.3 A Hospital Simulation Toolkit Based on an Established 
Agent Simulation Tool 

The hospital simulation kit is based on the multiagent simulation environ-
ment SeSAm1 (ShEll for Simulated Agent systeMs). SeSAm already pro-
vides many useful features like 

• Visual agent modeling: Simulation models in SeSAm are constructed 
completely by visual programming. Editors for the agents’ properties 
are available and the agent behavior is described by UML activity 
graphs. Agent modelers do not have to learn syntactic notations of a 
programming language. 

• Integrated simulator: The integrated simulator interprets and executes 
the declarative agent model in a time stepped manner. Internal compila-
tion ensures maximal performance. 

• Experimentation support: For deriving results from simulation, analysis 
functions can be defined, which record evaluation parameters during 
simulation. These can displayed in different types of charts (block chart, 
series charts) or alternatively logged to a file for later processing. Addi-
tionally experiment scripts can be defined to execute various simulation 
runs in a batch job. 

• Extensibility: A flexible plug-in mechanism allows third party develop-
ers to include their own functionality. Interfaces to the SeSAm core and 
user interface make almost every kind of extension possible. Many use-
ful extensions like database support and ontology support are available. 

Despite all the advantages the major drawback is that SeSAm is a gen-
eral purpose tool and it means still a lot of work to realize complex be-
havior like negotiation and scheduling from scratch. Therefore the basic 
idea of the hospital simulation toolkit is to provide a domain specific ex-
tension. This extension contains reusable agents, components and corre-
sponding specialized editors. In the following these agents and compo-
nents are described in more detail. 

• Pathway modeling tool: SeSAm already provides activity graphs for 
modeling the agents’ behavior. Nevertheless it is advantageous to spec-
ify the patient processes separately. As previously described an editor 
for pathway libraries was implemented. This editor can be used as a 
small stand-alone tool that can be used by physicians. New pathway li-
braries are saved as XML-files and can be used by the hospital exten-
sion to get realistic treatment requirements within the simulation model. 

1  A more detailed description of SeSAm can be found in Chapter V.2 Simulation 
and Evaluation 
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• Time-feature: The basic SeSAm simulator simulates tick by tick and it 
does not provide any concrete time model. Using this module for adjust-
able time, the user can specify the desired relation between a simulation 
tick and simulated minutes. The time advance can be changed dynami-
cally to speed up simulations during the night or to skip weekends. 

• Timetable-feature: This feature can be used by patient agents as well as 
by functional units to keep their confirmed appointments. Each timeta-
ble is associated with exactly one agent. Based on the contents of the 
timetable an agent might select his next actions. The timetable is also 
consulted when seeking for appointment proposals or deciding if a pro-
posal will be accepted. Primitive behavior functions allow setting and 
removing new appointments, as well as asking for the next appointment 
or getting all appointments of a specific date. During the simulation run, 
a graphical timetable shows the current appointments of the selected 
agent (see Figure 2, right). 

• Serviceprovider feature: This feature provides new properties for organ-
izational units like laboratories, wards and functional units. These enti-
ties can be configured in a corresponding user interface. Here the mod-
eler specifies a list of services (examination names) and daily opening 
hours (see Figure 2, top). Patient agents are able to search for the ser-
vices and depending on the configuration they can either request an ap-
pointment from the functional unit or queue immediately. The service 
provider feature offers basic scheduling functions to search for suitable 
appointments and for calculating, if the current simulation time is within 
the opening times. 

• Patient-feature: This feature provides new means for modeling patient-
agents. Patients generally suffer from any disease. This feature allows 
the selection of an according pathway from a pathway-library, which is 
specified with the previously mentioned editor. Patients with pathways 
associated with severe diagnoses are treated as emergencies. Primitive 
behavior functions are available to set the state of a task (preconditions 
fulfilled, task finished) and to determine the next possible tasks. De-
pending on the desired scenario scheduling functions can be called to 
negotiate all upcoming tasks with the respective functional units or 
scheduling can be omitted to directly queue at the functional unit. As an 
additional functionality the patient feature contains the medical record, 
showing a protocol of all executed tasks and accumulating the value of 
the overall waiting times, for statistical evaluation purposes. 
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Figure 2. Components of the SeSAm Hospital Extension2

5.3.4 Setting up the Virtual Hospital 

In the previously described toolkit components are used to construct hos-
pital simulation models. In this section we want to describe supported 
model parameter in more detail. Model parameters can be divided into 
measurable evaluation variables and configuration parameters. Some pa-
rameters are static environmental parameters and some parameters can be 
influenced to optimize the system. 

Hospital configuration 

• Number and kind of resources: The number and kind of functional units 
have an influence on waiting times and average load of resources. The 
original situation of the exemplar hospital can be modeled by placing 
predefined agents on a two-dimensional layout sketch of the hospital. 

2  Patients and organization units have different new features, specialized to 
realize scheduling scenarios. 
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• Individual configuration of opening times: Each functional unit may 
have different opening times. Different opening times may be subject to 
simulation experiments, because they are easy to realize compared to 
introducing a new resource. 

• Probabilistic duration of treatment activities: The expected treatment 
times are usually determined by the type of task and are specified in the 
treatment plan. Steps that may be taken to reduce the duration on em-
ploying more staff and parallelizing actions. 

Environmental parameters 

• Patient mix and arrival rate: The term “patient mix” denotes the distri-
bution of patients by disease and emergency. It has effects on the up-
coming tasks and therefore the load of functional units. The patient mix 
and the arrival rate of patients are environmental parameters, which are 
dependent upon the geographical infrastructure and can hardly be influ-
enced for optimization. 

• Reliability of patients to be on time: The best schedule is not working if 
patients do not appear in time. Therefore the simulation results regard-
ing the quality of schedules are also dependent upon the reliability and 
average lateness of the patients. One factor that significantly influences 
the reliability is the classification as either in-patient or ambulatory 
treatment. 

• Probability of device failure: Not just patients but also devices of func-
tional units might be unreliable. Thus the probability of device failures 
is also an environmental parameter that has effects on patient treatment. 

Different types of scheduling 

There are many possibilities for how appointments are scheduled and the 
pathways that are executed. This is highly dependent on organizational and 
infrastructural circumstances and the means of execution often changes 
with the introduction of new information technology. The scheduling type 
also may vary from unit to unit within one hospital. Essentially there are 
the following types: 

• On-line scheduling: On-line scheduling means task selection without 
any predictive planning. Incoming patients or medical samples are put 
on a queue and are treated one by one. The queue can be managed either 
by the first-come first-served strategy or priority driven. Priorities might 
be medical priorities (e.g. emergencies) as well as coordination heurist-
ics. The on-line scheduling strategy needs very little organization and is 
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applicable, if the tasks are very short or the patient’s presence is not re-
quired (e.g. blood samples in the laboratory). 

• On-line scheduling with call: To reduce waiting times in on-line 
scheduling and to make simultaneous queuing at several units possible, 
some functional units register a patients request and call him, if he is 
likely to be treated soon. In this case a lead time for the patient to come 
to the functional unit has to be communicated. This strategy is espe-
cially suited for inpatient treatment, if tasks are of unpredictable dura-
tion.

• Predictive scheduling: Predictive scheduling means that appointments 
are made in advance. Discrepancies between the actual execution and 
the schedule have to be compensated by a local waiting queue. Ambu-
latory patients usually get predictive appointments. Additionally, im-
portant and expensive tasks are also often scheduled in advance because 
a constant load of the resources is cost-relevant and desirable. If confi-
dence of the schedule is of importance, buffer times may be introduced 
to compensate variable durations of tasks. 

• Predictive-reactive scheduling: The drawback of predictive scheduling 
is that it does not deal very well with uncertainties. Waiting times (for 
patients) and idle times (for functional units) could be avoided, if the 
task execution was monitored and a dynamic rescheduling process was 
started after growing discrepancies. 

Evaluation parameters 

Evaluation parameters are those parameters, which are not initially de-
fined, but result from the simulation. Those are: 

• Average staytime of patients: This parameter summarizes the average 
staytime of patients from admission until dismissal. Staytime is an im-
portant cost factor, because in most cases the hospitals get a flat rate for 
each pathway. Therefore the average patient staytime regarding a single 
pathway is very interesting as well. 

• Waiting times: Regarding patient satisfaction, waiting times for queuing 
in front of functional units is also of interest. Especially waiting times 
related to certain functional units can show bottlenecks in the supply. 

• Resource load: The load of resources like functional units can be de-
fined by the number of executed treatments a day. Another approach is 
to compare the relation between active time and idle time. If a func-
tional unit is allowed to do overtime, the number of necessary additional 
working hours indicates another measure of the load. 
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• Number of reschedules: Hospital configuration and scheduling strategies 
have influence on the number of reschedules. Whereas the positive as-
pect of reschedules is that patients have reduced waiting times, the 
drawback is that frequent reschedules might be annoying for patients as 
well. 

Based on these “adjusting screws” and “indicators” of the hospital 
simulation toolkit one can realize various experiments answering schedul-
ing or resource questions. For example, a hospital could examine the ef-
fects on the average staytime if it were to introduce priority-driven selec-
tion of patients. Another hypothesis might be that modern information 
technology (e.g. automatic phone calls) allows a higher grade of dynamic 
rescheduling and optimized throughput. Experiments can show how many 
patients (average arrival date a day) can be treated for a given situation or 
how many additional working hours would be necessary to deal with a 
given situation. 

5.4 Realized Case Studies 

In this section two example simulation models based on the framework are 
presented in detail. The first example deals with the optimization of radia-
tion therapy (containing rather simple pathways) the second presents the 
ambitious attempt to depict a rather comprehensive part of a gastroen-
terological unit. 

5.4.1 Simulation of a Radiation Therapy Clinic 

Regarding the treatment of cancer radiation therapy plays an important 
role besides surgery and chemical therapy. Ambulatory patients are usually 
sent by their local general practitioner. 

After their arrival a couple of appointments are made for examinations 
and adjustment of radiation devices. The scheduling of the first appoint-
ment is most critical because it has to be performed at short notice and 
many constraints (e.g. minimum delay between examinations, etc.) have to 
be considered. After the first examination in the outpatient department one 
of three possible treatment plans (clinical paths) is selected. The path de-
termines, which treatment tasks (listed in Table 2) are executed in which 
order. Different functional units or resources are responsible for task exe-
cution: a radioscopy device, where a suitable patient position for radiation 
can be determined and a further unit to make computer tomography pic-
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tures, and finally there are four devices for radiation therapy, each having 
its own schedule. The first exposure in these units is for adjustment and 
takes longer than the following daily exposures and there are reserved time 
intervals for adjustment. As soon as the patients have passed the adjust-
ment, the phase of daily exposures starts for an average treatment time of 
30 days. A medical assistant is responsible for the scheduling after the pa-
tient’s admission. He sends appointment requests to the different func-
tional units and monitors the compliance of the path constraints. Since the 
times given in Table 2 are just average times, the execution time of single 
tasks may differ from the pre-planned schedule. A simulation model de-
picting this scenario was built upon the SeSAm Hospital Framework. It 
simulates the described scheduling and treatment in the radiation therapy 
department. Patients with random paths are generated by the simulation. 
The arrival rate and the random distribution of the paths can be specified 
by the modeler. Furthermore he can modify the number and opening hours 
of functional units. By running the simulation evaluation parameters like 
average stay time, patient throughput and the average load of devices can 
be measured and shown as a series chart. 

Table 2. Table with task durations and order restrictions 

 Task Cond. Involved resource  
(amount/opening times) 

Duration 

1 Pre-localization before 3 ~20 min 

2 Simulation before 4 

Simulator (1/8:00-17:00) 

~30 min 

3 CT before 2 CT (1/8:00-15:00) ~30 min 

4 Adjustment before 5 ~15 min 

5 Exposure   

Radiation therapy (4/8:30-17:00) 

~10 min 

For the validation of the model an actual state model has to be created 
and resulting evaluation parameters are to be compared with reality. In the 
simulation of the radiation therapy we were able to reproduce real world 
phenomena like periodical oscillations of the load of certain devices and 
verify that the maximum patient quantity was consistent with reality. 
Having validated the actual state model, different simulation experiments 
can be performed, comparing the original model with alternative settings. 
Possible questions for a comparison are: 

• Calculation of the maximum load: The amount of patients can be influ-
enced by modifying the arrival rate, so one can determine the amount of 
patients that can be treated for a given resource configuration. 
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• Effects of buffer times: Buffer times in the schedule allow a flexible 
reaction to unexpected changes (like device breakdown or emergencies). 
On the other hand buffer times might also have negative effects on pa-
tient throughput, if the general load is very high.

• Strategies for dealing with device breakdowns: If one of the four radia-
tion devices breaks, the available time slots for treatment are reduced. 
Two strategies might counter this shortage: A second shift can be intro-
duced at one of the working devices or all working devices extend their 
opening hours and the staff is apportioned to the rest. 

• Strategies to assign patients to radiation devices: Patients may be 
treated at one of the four radiation devices. If assigned to one of them, 
all consecutive treatments have to be performed at this device. This 
leads to typical periodical oscillations of the load. It’s desired to avoid 
big variations. Effects of different assignment criteria can be evaluated 
within the simulation. 
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Figure 3. Chart with patient staytime during the simulation of the current situa-
tion3

Effects of these model changes on the average waiting time of a patient 
or the load of devices can be easily observed with the analysis charts. Fig-
ure 3 shows the average and maximum staytimes according to the real 
situation. We can observe an average treatment time (from admission until 
all examinations are finished) of about three days up to a maximum of ten 

3  Variations in the staytime are mainly weekday-dependent. 
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days (including weekends). An important observation is, that the series 
chart is not constantly growing, showing us that this resource configuration 
can handle the current patient arrival rate. The simulation of alternative 
configurations has shown that the clinic can treat up to three additional pa-
tients a day resulting in a slight increase of the average staytime. If more 
than three additional patients would arrive, other changes – like for exam-
ple extending working hours – have to be made to compensate the in-
creased patient number. 

Another experiment showed how the clinic could balance the load of his 
devices more effectively (see Figure 4). A new assignment strategy consid-
ering the current load and already scheduled dates was evaluated and com-
pared with the current situation. We observed that the periodical variations 
got better and the maximum load could be reduced with the new strategy. 

These two examples show the possibilities given by the toolkit. By us-
ing the building blocks similar experiments concerning other questions are 
quickly realized. 
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Figure 4. Analysis of the device load4

5.4.2 Simulation of Complex Pathways in Internal Medicine 

As a second example we realized a simulation model of a clinic for inter-
nal medicine. In contrast to radiation therapy there are quite a lot of path-
ways and patients usually stay in the hospital for several days. Patients in 
internal medicine tend to be elderly and suffer multiple medical com-
plaints. Therefore one or more pathways are assigned after the initial diag-
nosis. We have currently collected data about 16 pathways that occur in 46 
combinations (multiple complaints). During their stay patients are assigned 
to a ward that performs the task of care and medication. The patients have 
to visit several functional units like the sonographic and endoscopic labo-

4  The left graph shows the current situation, at right side describes the effects of a 
new strategy. 
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ratory, the radiological unit or the intracardiac catheter lab. Additionally 
samples are sent to the central lab or the microbiological unit. On-line 
scheduling and waiting queues are used to determine the execution se-
quence of upcoming examination and treatment tasks. The resulting stay-
times and waiting hours of patients can be measured as results of the 
simulation. Figure 5 shows the average patient staytime according to some 
suffered diseases. We validated this model by a comparison of the simula-
tion results with the actual staytimes. A current project in progress exam-
ines the effects of more sophisticated scheduling strategies in this scenario, 
especially the application of predictive-reactive scheduling. As a prerequi-
site to introduce these new scheduling methods some hypotheses concern-
ing the communication infrastructure and the outreach ability of patients 
have to be made. These hypotheses are usually not realistic in the current 
situation, but the introduction of electronic agent based assistance systems 
can satisfy the necessary requirements. Thus the simulation can show the 
potential of the new technology. 

Although this scenario has very different characteristics compared with 
radiation therapy the toolkit also offered useful instruments for the imple-
mentation of the model. The variety of configuration possibilities makes it 
flexible to implement different types of scenarios.
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Figure 5. Evaluation of the average patient staytime in days5

5  The staytime is separately calculated for every occurring combination of 
diseases (P1,…,Px). The picture shows just a part of the possible disease-
combinations. 
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5.5 Conclusion and Outlook 

Clinical management and physicians are constantly facing the problem of 
balancing the quality of care against cost efficiency. New information 
technology and computer applications like agent based assistance agents 
may be one way to optimize the system. Additionally organizational 
changes regarding resources or processes may also enhance the system. In 
many cases the effects of optimization ideas are difficult to foresee. Multi-
agent systems are very useful for performing experiments with distributed 
and dynamic systems like hospital organizations, because their abstraction 
provides an intuitive and realistic model paradigm. A specialized con-
struction kit for hospital simulations was presented that allows implement-
ing simulations in a fast and simple manner. In summary, this simulation is 
useful for system developers as well as hospital management for the 
following reasons: 

• discovering the properties of different systems designs (system devel-
oper), 

• providing a testbed for developing agent applications (system devel-
oper), 

• supporting management decision-making (management).

A thoroughly validated, realistic model presents credible predictions for 
the real world system. Creating big and comprehensive simulation models 
means a lot of modeling work but is also a big challenge. A specialized 
simulation environment allows the effort to be concentrated on the variable 
factors like the organizational configuration and the clinical pathways. 
Whereas the structural part is of limited complexity, the main effort lies in 
acquiring knowledge of clinical pathways. This problem has been ad-
dressed with the development of a new pragmatic pathway representation 
that meets the requirement of process simulation. 

Regarding a comprehensive simulation framework, some challenges 
remain for the future work. In the current state of development, process 
costs and the occupation of single employees are not examined. We also 
have a very good long term perspective to increase the detail level of the 
simulations. The increased utilization of clinical information systems 
makes more real world data available for the configuration and validation 
of simulation models. 
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Abstract. Distributed and heterogeneous information systems can be observed in 
health care. In order to implement the vision of seamless health care, the bounda-
ries of institutions need to be closed. Furthermore, information needs to be pro-
vided to the members of the health care team according to the principle of infor-
mation logistics for the effective and efficient support of treatment processes. 
Since health care can be understood as a complex, adaptive system, an agent-
based approach for an information system being capable of reacting flexibly to 
changes in its environment is an adequate solution. After the identification of 
characteristics of the health care domain the solution concept of active, medical 
documents is described, complemented by an analysis and development approach 
for a corresponding agent-based system. 

6.1 Introduction 

The current discussion in health care focuses on the improvement of pa-
tient orientation and quality of medical care. In order to achieve these 
goals, information technology is attached a considerable value. Medical in-
formation is usually distributed among several information systems at dif-
ferent locations, since sundry participants are involved in treatment pro-
cesses. In order to allow for a seamless and consistent treatment process a 
uniform maintenance for medical information seems to be adequate. This 
idea reflects the transition from electronically stored medical information 
within a single institution to a universally accessible information folder 
across the borders of institutions and service providers in health care. In 
order to meet this requirement, we describe an agent-based implementation 
concept based on active, medical documents and a possible development 
process. The results were elaborated on within the ASAinlog subproject of 
the German Priority Research Program “Intelligent Agents and Their Ap-
plication in Business Scenarios”. 

The remainder of this chapter is structured as follows. In Section 6.2 we 
start by giving an overview of different implementations of electronic 
medical documents. We attach a description of a vision of seamless health 
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care. As a result we postulate the need for a uniform medical patient ar-
chive. 

Section 6.3 describes health care systems as complex adaptive systems. 
Additionally, we identify deficits in information logistics in health care: 
health care is characterized by inherent distribution, heterogeneity, and 
multi-contextuality of information. Information systems for usage within 
an institution are supplemented through special applications. This accounts 
for distribution and heterogeneity of information and demonstrates the 
need for an integrative solution. Software agents are capable of collecting, 
opening, and preprocessing of data from heterogeneous and distributed 
data sources. The members of the health care team act at different loca-
tions and with distinct intentions and needs. Software agents exhibit pro-
active and autonomous behavior which is capable of mapping the require-
ments of the personnel. A hospital is characterized as an open and dynamic 
environment. This is determined, in some cases, by an ad hoc unknown 
treatment process, as the diagnosis is established during the hospital stay. 
The requirement of flexibility is driven by unpredictable resource and per-
sonnel conflicts due to emergency situations. Software agents are capable 
of reacting to such changes in their environment. Proactive behavior is not 
supported by current hospital information systems. The use of functional-
ities such as context-based information retrieval would foster the work 
process of the health care team. 

Section 6.4 starts by illustrating the advantages of deploying agent-
based systems and their suitability when facing the described problems in 
information logistics. The core of the proposed agent-based solution is the 
concept of an active, medical document, which is implemented as a com-
posite software agent. This component encapsulates both medical and co-
ordinative and administrative information. Furthermore, this document al-
lows for the integration of access rights mechanisms. Information is ex-
tracted from various sources by dedicated agents and aggregated into the 
medical document at run-time. This procedure allows for taking into ac-
count different ontologies as they exist when integrating various service 
providers in health care. The active part of the document checks e.g. for 
current appointments and points to upcoming examinations. Another agent 
visualizes the aggregated contents and takes into account varying display 
properties. The analysis of information is carried out at the storage location 
of relevant data. Only the results of the information collection process are 
reported back to the document. Processing intensive operations are relo-
cated to the original location of information. The idea of an active, medical 
document is supplemented by the concept of active, dynamic activity areas 
which allow for modeling information logistics within a treatment process 
and take into account treatment processes across boundaries of institutions. 
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For building an agent based system in the described application domain, 
the continuous development process described as follows is deployed. The 
ethnography-based analysis approach, “Needs Driven Approach”, provides 
guidelines as a starting point for an extensive requirement process. The 
approach’s deployment results in the description of domain models. These 
are transformed to constructs of software engineering by mapping ele-
ments of a defined meta-model to elements of agent-based systems. This 
process is ensued by the application of an architecture-based method for 
the construction of multiagent systems. This development process identi-
fies the following steps: domain modeling, specialization of a pattern ar-
chitecture, construction of fragments of the system, integration, and inte-
gration and allocation of the subsystems. The proposed approach combines 
the results of socio-scientific and engineering disciplines. We conclude our 
contribution and give an outlook to further work in Section 6.6. 

6.2 Vision 

6.2.1 Patient Records 

Before outlining the benefits of deploying a visionary electronic health re-
cord, it is important to define what is meant by this term. Medical records 
comprise not only medical and administrative information, but also co-
ordinative data. In line with Waegemann [Waeg1999] we distinguish be-
tween several stages of the implementation of an electronic health record 
(cf. Figure 1): 

• An Automated Medical Record is defined as being in parallel with paper 
based documentation. We observe incremental steps in computerization 
within an institution. 

• A Computerized Medical Record denotes a completely paperless system 
within a single institution. 

• If all medical data are integrated into a single record within an institu-
tion, we refer to it as a Provider-based Electronic Medical Record. All 
information that is distributed among different information systems is 
integrated into a single information folder. 

• Electronic Patient Records extend this idea by aggregating information 
that is distributed among several institutions. The borders across institu-
tions are bridged by a single information repository.

• An Electronic Health Record places the focus of the treatment process 
on the patient in order to allow him or her to control the access to and 
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modification of the data of an electronic health record. Furthermore, the 
patient is capable of adding additional information such as wellness and 
general health information.
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Figure 1. Types of patient records 

We aim for an integrative solution across several institutions which al-
lows the patient himself or herself to view or add information that is cap-
tured during the treatment process. The electronic health record is designed 
as a life-long collection of all health related data. Studies clearly show that 
a significant number of patients is interested in viewing health related in-
formation [Ros+2005]. We can clearly conclude that there is an obvious 
trend towards integrated, patient-centered health records. 

6.2.2 Vision 

Up until now information systems in health care were mostly reactive sys-
tems. In order to support the treatment process and its varying require-
ments we describe an agent-based medical document that comprises all 
stages of the treatment process. As an example, consider the following 
scenario: 

A patient consults his general practitioner. Using an identification card 
which allows access to his medical record, the patient’s medical informa-
tion is retrieved from several and possibly locally distributed information 
systems. The general practitioner is able to view all medical information 
about the patient and, using the current description of the patient’s illness, 
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provide a diagnosis. When a hospital admission is necessary, the process 
of admission is automatically negotiated taking into account the current 
capacity of relevant hospitals. Once at the hospital, assignment to a ward 
has been previously arranged. The responsible physician has all relevant 
information which were extracted from hospital information systems of 
previous hospitalizations together with medical data provided by the gen-
eral practitioner’s information system. After diagnostic evaluation, the pa-
tient is assigned a surgery date. However, due to an emergency case, the 
scheduled surgery needs to be rescheduled. Once surgery has been per-
formed, the results are inserted into the hospital information system. Sug-
gestions for further treatment and medication are dynamically deduced 
from the patient’s health condition. The results of the hospital stay are ag-
gregated and visualized by the general practitioner who provides the pa-
tient with nutritinoal advice. 

Current information systems are not capable of dealing with the re-
quirements that are described in the previous scenario. There are inherent 
deficits in information logistics that need to be addressed in order to bring 
the described scenario to implementation. 

6.3 Health Care Systems 

6.3.1 Characteristics 

Health care is characterized by inherent distribution of information. Typi-
cal hospitals are organized into compartments dealing with specialized 
tasks. Many departments deploy special information systems to meet par-
ticular requirements. As a result, there is a typical variety of information 
systems each storing medical data about patients. Their integration is often 
implemented using standards like HL7 [Arbo2005]. The potential interop-
erability within institutions is no longer a problem. Nevertheless, the 
aggregation of information that is stored in distributed information systems 
across the borders of institutions needs to be collected. 

New research results in treatment processes generate information that 
needs to be taken into account during the treatment process. Additionally, 
new methods for treatment and diagnosis generate more data-volume in-
tensive information. As a result, the members of the health care team need 
to cope with a vast amount of data and information.

The members of the health care team are usually highly specialized in 
terms of their tasks. These tasks are performed at different locations. Fur-
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ther, the performed tasks differ in terms of goals and tasks need to be co-
ordinated in order to accomplish the delivery of effective treatment to the 
patient. A treatment process consists of several parts, each of which is 
looked after by one of the health care professionals. All these actors need 
to cooperate and to communicate in order to achieve the improvement or 
stabilization of a patient’s state of health. As mentioned, the total number 
of the participating actors is quite significant. Therefore, the demand for 
personal assistance provided by an adequate information system is high. 
The relationship between the actors in terms of communication, coopera-
tion, and coordination needs to be supported by information systems in or-
der to allow for efficient and dynamically changing processes. 

Health care is characterized by open and dynamic environments. Flexi-
ble treatment processes demand flexible support of the health care team. 
Current information systems provide static guidance for the health care 
team members. 

For the development of agent-based information systems we need to 
provide modeling techniques for the described complex system. One ap-
proach is described in the following section. 

6.3.2 Health Care as a Complex Adaptive System 

According to Tan et al. [TaWA2005] health care can be understood as a 
complex adaptive system. A complex adaptive system is defined as “a 
collection of individual, semiautonomous agents that act in ways that are 
not always predictable and whose actions seek to maximize some measure 
of goodness, or fitness, by evolving over time” [TaWA2005, p.38]. Treat-
ment processes are inherently complex, since many different actors with 
mutually dependent tasks participate. Additionally, the actual treatment 
process is also characterized by inherent complexity. As there are numer-
ous diseases requiring varying therapeutical interventions, and, as patients 
may react in different ways to different treatments, the “perfect” treatment 
process cannot always be determined in advance and must be flexible to be 
applied in a changing environment. 

Tan et al. [TaWA2005] described the health care system in terms of the 
chaos theory. Chaos theory describes systems with nonlinear equations. 
The output of an equation is put into the next equation. The result of this 
process yields nonlinearity after several iterations. A chaos system con-
tinuously changes and evolves and is therefore an appropriate model for 
health care as a complex adaptive system [TaWA2005, p. 41]. Because of 
these characteristics, a health care system cannot be entirely controlled, but 
can rather only be potentially guided [TaWA2005, p. 43]. 
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After the identification of characteristics of the health care system, 
which complicate the development of adequate information systems, we 
propose in the following sections an agent-based solution to the deficits in 
information logistics in health care. 

6.4 Building an Agent-Based Solution 

6.4.1 Suitability of Agents 

As outlined above, health care is characterized by special properties that 
make it difficult to develop adequate information systems. These systems 
must be capable of improving the patient-centeredness and the efficiency 
of treatment processes while taking into account the flexible adaptations to 
the patient’s health situation. Current research results make us confident 
that agent-based systems are capable of dealing with the intricacies of 
complex health care systems (see e.g. [ZaSc2004] [Zach2004a] [Zach 
2004b] [More2003] [MoIS2003] [MMGP2002] [BHHS2003]). 

The inherent distribution of health care information systems can be ade-
quately tackled by agent-based systems. Software agents can be advanta-
geously deployed for collecting, preprocessing, and interpreting distributed 
information. Information logistics is a typical application domain for mul-
tiagent systems [JeSW1998, p. 27]. 

Software agents are capable of providing support for managing exten-
sive data volumes. Due to their proactive behavior they can be assigned to 
collect relevant data and make this data available at the current point in 
time. 

Paper-based medical documents are not only deployed for documenta-
tion reasons but also for the coordination between physicians and other 
members of the health care team. Therefore, an electronic equivalent of 
paper-based documents must be able to support the communication be-
tween the members of the health care team. The concept of an active, 
medical document implemented as a composite software agent is capable 
of providing such requirements. Furthermore, software agents are capable 
of flexible reactions to previously undetermined environmental changes. 
Hospitals are attached the same characteristics: Various diseases need to 
be tackled dynamically, since treatment processes are not fully predeter-
mined at the beginning. In addition, emergency cases disturb scheduled 
appointments and cause rescheduling. The patient’s changing health state 
makes dynamically adapted treatment processes necessary. 
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As outlined above, health care systems and especially treatment pro-
cesses in hospitals are inherent complex adaptive systems. Such systems 
evolve over time through self-adaptation without central control [TaWA 
2005, p. 39]. Multiagent systems as such lack a central control because 
they are inherently distributed. Health care systems modeled as complex 
adaptive systems can therefore be implemented by an agent-based para-
digm. According to Jennings [Jenn2001] multiagent systems are an ade-
quate means for the development of complex distributed systems. 

6.4.2 Active, Medical documents 

A patient record, regardless of whether it is paper or digital form, serves 
documentation purposes and at the same time serves as a medium for co-
operation and communication within the team. For example, the physician 
orders an x-ray examination. A nurse arranges an appointment with the ra-
diology department. Following completion of the x-ray, findings and ther-
apy measures are documented in the medical record. This described appli-
cation highlights the central role of the health record. Due to its central 
role, the health record needs to be adequately mapped to a software im-
plementation. For this purpose, we propose an approach based upon active, 
medical documents. Such documents are constructed as composite soft-
ware agents and are composed of administrative and medical data of the 
patient. Additionally, other agents enrich the functionality of the health re-
cord. They deal with the collection of relevant medical data, the prepro-
cessing for presentation of relevant data and the extraction of data to medi-
cal personnel. Furthermore, the agents monitor and trigger appointments, 
control complex treatment processes, associate similar disease patterns and 
recommend potential therapies. Additionally, agents grant access to medi-
cal data or parts of it. Figure 2 illustrates an excerpt of the described con-
cept. We assume a composite agent to be an aggregate of internal service 
agents. The specialized service agent ViewManager is responsible for 
displaying relevant information at the user interface. Before displaying, all 
information needs to be collected and extracted from various data sources. 
A DataRetrievalManager is responsible for delegating data retrieval 
tasks to external search agents. These migrate to the location of the data to 
be retrieved and extract these. Data may be previously preprocessed and is 
reported back to the DataRetrievalManager. This manager collects 
data from the search agents and composes them. A DataWrapper agent 
is the single point of contact for accessing the medical document. After 
checking the access rights, the previously described process for data re-
trieval is triggered. 
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Figure 2. Structure of an active, medical document 

A further dedicated service agent controls the process supporting the 
treatment of the patient. As already outlined, flexible adaptations to deter-
mined processes can arise due to emergency situations or a change in 
health status. Having these considerations in mind, we identify flexibility 
in terms of production theory. Furthermore, process flexibility is imple-
mented due to a need to change treatment in order to achieve the required 
outcome, i.e. recovery or stability of the disease. Additionally, changing 
requirements of the environment result in the selection of potential actions 
of agents. Therefore, technical flexibility can be observed. 

6.4.3 Continuous Development Process 

One of the biggest impediments for the penetration of agent-technology is 
the lack of adequate development methods [LMSW2004, p. 20]. Luck et 
al. [LMSW2004, p. 20] argued, that basic principals of software engineer-
ing need to be deployed when constructing agent-based systems. But these 
need to be augmented in order to meet the requirements of the agent para-
digm. Although there are some established development approaches, Luck 
et al. [LMSW2004, p. 20] conclude that they are not yet fully mature. 

After describing the advantages of using active, medical documents, we 
describe a continuous development process for agent-based systems to be 
deployed in the health care scenario. The proposed development process 
unites socio-scientific (ethnographic) approaches of domain analysis and 
engineering (architecture-based) methodologies for the design and imple-
mentation of software systems. The basic idea is the seamless integration 
of analysis, design, and implementation methods throughout the develop-
ment process. 

As illustrated in Figure 3 the development process begins by modeling 
the requirements of the system by means of domain analysis. A general or 
domain specific pattern architecture is specialized according to the re-
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quirements specified in phase 2. This pattern architecture is comprised of 
several subsystems and forms the basis for further development. In phase 
3, the single subsystems are implemented according to the evolutionary 
modeling paradigm. Building block libraries, agent-oriented design pat-
terns, and frameworks support this step. Phase 4 deals with the integration 
of the previously developed subsystems. An overall test completes the de-
velopment process. Semantic and syntactic gaps need to be bridged be-
tween the development phases. This gap is especially wide between do-
main models and architecture models. The development process is simpli-
fied by providing transformation rules between the models. 

For domain analysis, phase 1, we propose the deployment of the Needs 
Driven Approach (NDA) [ScKr1996] [Schw2001]. This approach is based 
on ethnography and exhibits the prerequisite as an observation-based 
mechanism for capturing work processes and their related elements. The 
observation is guided by a set of focus areas, which are derived as follows 
[ScKr1996]: Tasks, processes, structure of interaction, means of work, 
locations the work is performed in, adoption of technology and structure of 
informational memory. 
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Figure 3. Phases for the development of a multiagent system

The original NDA is refined by detailing guidelines for the observation 
of the domain to be analyzed. These guide the analysis engineer in captur-
ing the requirements step-by-step [ScKr2005]. The guidelines are sepa-
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rated into several stages and comprise the following five sections (cf. Fig-
ure 4). To begin, the work setting, such as rooms, organizational structure 
and involved actors, must be described. This allows the observer to acquire 
an orientation within the domain which is needed for gathering further in-
formation. The results of these observations are captured in floor plans, or-
ganization charts and a list of actors. In section two of Figure 4 the de-
scription of tasks and locations where actors accomplish these tasks fol-
lows. Users and their tasks are depicted in use case diagrams. By creating 
these diagrams for different locations, users are mapped to rooms, and the 
tasks performed in those rooms are identified. This follows an observation 
of partial work flow and its integration in section three of Figure 4. The 
treatment process in health care is the focus as it represents the central 
building block of this domain. Process models describe actions and their 
dependencies. Actors, necessary material and tools are associated with 
these actions. Parts of the interaction between actors are often already 
known at this point as they are provided implicitly by the description of the 
observed work processes. In section four (Figure 4) these interaction parts 
are completed, put into a new perspective by detaching them from the 
work processes, and then described in interaction diagrams. These dia-
grams constitute an integral part of the Needs Driven Analysis much the 
same as interactions play an important role in health care (i.e. the collabo-
ration of different health care professionals is essential to deliver a specific 
treatment). Furthermore, interactions and processes are closely linked. 
Therefore, the association between interactions and processes is described 
in detail in section five (Figure 4). By separating processes and interac-
tions, the complexity of diagrams is reduced. The described guidelines 
provide a general starting point of the requirements analysis. They allow 
the analyst to get quickly into the field of domain analysis. The guidelines 
are generally verbalized and are therefore capable of being applied to other 
domains. Thus, they provide an open framework for requirements analysis. 

Since health systems are inherently distributed, there is also the need for 
modeling processes across the boundaries of institutions. For this purpose, 
the concept of active, dynamic activity areas [ScKr2004] can be employed. 
These areas provide an adequate means for interrelating parts of the pro-
cess models and describing flexible work processes thereby enabling the 
integration of cross-institutional work flow. An activity area is comprised 
of actors, their tasks, and the necessary data and tools, e.g. medical de-
vices. It contains explicit or implicit knowledge about the processing of 
tasks, their decomposition, their forwarding, and delegation. Activity areas 
are dynamic in terms of adding, removing, or changing the involved ac-
tors, i.e. affecting their migration. Actions such as making-up and finishing 
interactions, changing the process knowledge, and the integration of new 
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data sources or devices all add further dynamic aspects. These activity ar-
eas are heterogeneous with respect to their properties, e.g. the used data 
and its storage. 

Figure 5 exemplifies activity areas for a section of the health care do-
main. Consider a patient visiting an internal medicine ward within a hos-
pital. The patient’s activity area, as well as the activity area of the ward in-
cluding physicians, nurses, information systems, and medical devices, are 
merged. The information exchange between physicians regarding the 
medical information about the patient is facilitated by active, medical 
documents. Additional information about the patient’s health status is ex-
tracted from clinical information systems. Results of the physical exami-
nation, which are relevant for treatment decisions, are shared with a gen-
eral practitioner via active, medical documents. 

• Observe those locations, tasks are performed in.

• Create adequate room models via floor plans.

• Observe the formal organizational structure.

• Map these structures to organizational charts.

• Identify relevant actors.

• Identify actors‘ tasks.

• Observe the location in which actors perform their tasks.

• Define use case diagrams.

• Describe steps of (partial) work processes that actors perform to accomplish their tasks.

• Identify work material and tools, that actors use to accomplish their tasks.

• Merge the partial processes of the individual actors to complete treatment processes.

• Define process diagrams.

• Observe interaction relationships between actors.

• Classify interaction relationships (e.g. formal or informal)

• Create interaction diagrams.

• Observe the association between interactions and processes.

• Describe informal organizational structure.

Figure 4. NDA-guidelines for the requirements engineer 

The concept of activity areas allows for the explication of integration 
and cooperation between different institutions and thus adds further ex-
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pressive power to domain analysis. By means of this concept, separated 
work processes, as identified in the analysis phase, are connected by merg-
ing activity areas of different institutions thereby bridging the gap between 
the boundaries of organizations. This modeling technique reflects the ob-
servable trend from separated information systems to integrated health 
information systems [KuGi2001] [Waeg1999]. The concept of an active, 
medical document can be embedded seamlessly into activity areas. Since 
search agents collect relevant medical data and extract these from various, 
locally distributed information systems, information is able to be shared 
among different institutions. 
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Figure 5. Active, dynamic activity areas 

Reinke [Rein2003] described a method for an architecture-based con-
struction of multiagent systems (ArBaCon), depicted in Figure 3. Through 
the application of the NDA approach in several case studies, we have con-
cluded that this approach is especially suited for capturing the specialties 
of the health care domain. Since ArBaCon models are described exclu-
sively as pure or enhanced UML constructs, there is the need to transform 
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gathered NDA domain models into constructs of software engineering, in 
order to apply ArBaCon for the remainder of the development process.  
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Figure 6. Object-oriented domain meta-model 

During the application of the NDA in a case study a meta-model (cf. 
Figure 6 was conceived which defines the interrelations between the ele-
ments of the obtained domain models. The meta-model identifies a process 
step as a collection of associated actors, location, material and tools. This 
meta-model also forms the starting point for defining transformation rules 
for the mapping between domain models and software engineering models. 
Thus, the meta-model facilitates bridging semantic and syntactic gaps be-
tween the domain and the software engineering area.
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Figure 7. Transformation rules between domain models and constructs of soft-
ware engineering 
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As depicted in Figure 7 domain elements are mapped to constructs of 
software engineering. According to this mapping, an actor of the domain is 
represented by the authority on behalf of which an agent acts. Locations 
are mapped to agent platforms which can reside on locally distributed 
nodes. Identified process steps are carried out through the agent’s tasks. 
Material such as documents are represented by resources which the agents 
use when performing their tasks. Applying these transformation rules, the 
seamless integration of elaborated domain models using description tech-
niques, which are similar to the domain into the ArBaCon method, is fa-
cilitated. 

6.5 Evaluation 

As described by Hevner et al. [HMPR2004], a fundamental element of the 
applied design science approach in information systems includes an 
evaluation of the constructed solution. The goal of the evaluation is to 
show the usefulness of the described agent-based approach. 

As an evaluation method, a comparison to current information systems 
is a reasonable approach. According to the requirements for information 
systems in health care, these systems need to provide information in com-
pliance with the principle of information logistics. This principle is defined 
as follows [Augu1990]: The right information is provided at the right point 
of time, in the right amount, at the right place, and in necessary quality. 
Current information systems are usually isolated solutions exhibiting ex-
port functionality. As a result, electronic information exchange is usually 
restricted to special data formats, if any. Agent-based systems allow for the 
integration of non-agent applications and the extraction and provision of 
relevant data. Therefore, software agents enable the vision of seamless 
health care. Furthermore, software agents allow for the reorganization and 
rescheduling of treatment processes according to changes in timetables and 
the patient’s health status. Thus, an agent-based solution provides added 
value in comparison to current information systems in two dimensions. 

6.6 Conclusion and Outlook 

This chapter described the deployment of agent-based systems in health 
care. We began by giving definitions for different forms of electronic pa-
tient records. Since more and more patients are interested in viewing their 
medical data, the trend towards an electronic health record is gaining sup-
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port not only by the needs of medical personnel, but by the demands of 
patients as well. Electronic Health Records maximize the self-determina-
tion of patients and extend the boundaries of electronic communication. 
We identified the missing data interchange between heterogeneous infor-
mation systems as the prevailing challenge regarding the provision of inte-
grated and seamless health care which includes the communication across 
boundaries of institutions. Furthermore, information logistics, i.e. the com-
munication, cooperation, and coordination processes needs to be supported 
adequately by information systems. We showed that health care systems 
can be understood as complex adaptive systems and can be modeled by 
multiagent systems. Therefore, we propose an agent-based solution for 
future information systems in health care. Our agent-based solution fo-
cused on the provision of an adequate system to meet the complex de-
mands of communicating and coordinating treatment. We described the 
concept of an active, medical document which is implemented as a com-
posite software agent. For the development of an agent-based system we 
described a process model which unites socio-scientific and engineering 
methods in order to analyze the domain and build an agent-based system 
step-by-step. In order to bridge syntactic and semantic gaps between do-
main models and models of software engineering, we defined transforma-
tion rules. These transformation rules map domain model elements to con-
structs of agent-based engineering. 

The outlined approach for the construction of multiagent systems for 
deployment in health care is currently being applied. The basis of the re-
sulting prototype is formed by the implementation of an agent-based ac-
tive, medical document. Using this approach, a hospital information sys-
tem is embedded into the agent system. Active documents will be enriched 
for the support of flexible, dynamically changing treatment processes. 
Furthermore, the patient is empowered by giving web-based access to all 
medical data and by allowing the addition of personal health-related data. 
Finally, data consistency and persistency need to be tackled in an extended 
implementation. 
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Abstract. This chapter describes the conceptualization and realization of a real-
time managed mobile information system in healthcare. The particular application 
addressed is a dynamic, self-organized scheduling of the treatment of patients. 
Building blocks for this project are locatable, interactive Personal Digital Assis-
tants (PDAs) to connect medical staff and patients; physical resources are con-
nected by locatable Radio Frequency Identification (RFID) chips. These physical 
objects are represented in the information system by software agents. The multi-
agent platform EMIKA implements a negotiation-based schedule system to enable 
a dynamic planning process. The EMIKA-System has been developed to proto-
type level and functionally tested in a real-time laboratory [SaEM2002]. Lessons 
learned from the realization pertain to technical functionality and to privacy and 
security issues. 

7.1 Problem Definition and State of the Art 

In classical information systems, a centralized scheduler using allocation 
rules creates an optimized appointment plan; however, due to the high dy-
namics of the hospital environment, the appointments have to be con-
stantly adapted. This way scheduling becomes a continuous, never-ending 
process. Especially in life-crucial environments, as in hospitals, any hold-
ups can have severe consequences. This chapter addresses a flexible real-
time reaction to hold-ups. Scheduling patient logistics can be regarded as 
an ill-structured task [Schl1990], since it requires the assessment of treat-
ment priorities and the allocation of resources, e.g. doctors’ time and 
availability. Unforeseeable hold-ups due to emergencies, delayed patients 
and varying treatment times prevent a complete advance mapping of the 
entire tasks and thereby a reliable planning of individual treatment sched-
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ules. Various planning goals compete with one another. A minimum 
throughput time of patients and a maximum allocation of resources cannot 
be simultaneously optimized [Gäfg1990]. Different scheduling mecha-
nisms work in parallel. Outpatients are summoned to prefixed appoint-
ments; emergency patients always lead to a real-time adaptation of what-
ever schedule exists at that point in time and inpatients are summoned 
from the wards in the event of under-allocated resources [ScCZ1996]. All 
three scheduling types have in common that, for treatment, patients need 
resources in the form of a doctor and diverse medical equipment. 

The approach to handle this complexity of scheduling in EMIKA1 is to 
divide the complex task into several less complex subtasks [CyMa1963]. 
The divided tasks, however, remain loosely connected, in order to buffer 
goal conflicts and to model a highly dynamic and complex environment 
like a hospital for three reasons: 

1. There are three types of patients with conflicting scheduling strategies: 
Outpatients require planning reliability to be able to coordinate the ap-
pointments with their activities outside the hospital (predictive schedul-
ing). Inpatients are summoned directly in the course of time when the 
required resources are available (dispatching). Through urgent appoint-
ments (emergencies) or cancellations, the already existing and opti-
mized appointment sequences must be additionally amended (reactive 
scheduling). Other projects using software agents focused on improving 
predictive scheduling concepts, which try to generate an optimized pa-
tient flow sequence under several scheduling constraints and optimiza-
tion parameters well in advance of the real treatment execution time (see 
III.3 and III.4). The EMIKA project can acknowledge such optimized 
sequences and incorporates changes initiated by real-time events. 

2. Optimizing schedule sequences: Even when only a limited number of 
auxiliary conditions are observed, this is an NP-hard problem due to the 
exponential number of alternate solution paths [GaJo1979]. The non-ob-
servance of dependencies on other appointments, the full utilization of 
the resources and the aims of the actors would create further disruptions 
in a ‘domino effect’ and thereby lead to a generally less efficient coor-
dination result. 

3. Because the requirements and general conditions in a hospital are not 
precisely known in advance, uncertainty is inherent in the system and 
makes exact planning almost impossible. Job-shop scheduling using 

1 Echtzeitgesteuerte mobile Informationssysteme in klinischen Anwendungen 
(Real-time mobile Information Systems in clinical Applications) – Institut für 
Informatik und Gesellschaft, Abt. Telematik (http://www.telematik.uni-freiburg 
.de/emika/) 
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deterministic data cannot be applied, as hospital processes cannot as-
sume having a given quantity of orders, production facilities and con-
stant processing time [KuRo1995]. 

7.2 A Layered Realization of Agent-Based Mobile 
Healthcare Information Technology 

Supporting hospital procedures with information systems requires having a 
constant up-to-date picture of the locations and intentions of hospital re-
sources and actors. In the EMIKA experimental system, the actors and re-
sources are modeled using software agents, which get their information 
about the physical reality through a networking infrastructure employing 
PDA and RFID tags to track resources. The emerging multiagent system 
coordinates through self-organizing behavior, evaluating the opportunities 
and limitations of this approach. Why agents and multiagent systems are 
beneficial for such environments can be found in Part I. “What Agents Are 
And What They Are Good For?” of this book. 

Surgery 1

Assistant

Patient

Male-nurse

Physical world Logical world

Assistant
Doctor

0
1
0
1
1
0
0
1

Figure 1. Physical and logical world 

EMIKA divides the application scenario into the physical world and its 
information system model, the logical world as seen in Figure 1. The 
physical world encompasses the concrete, tangible hospital environment, 
which is occupied by patients, physicians and other hospital staff. Parame-
ters of the physical world, such as the location of a resource, the current 
task of a physician and the waiting time of a patient are sensed by in-
formation technology and modeled using digital data structures of the logi-
cal world. The projection of the physical world generates a logical mirror 
image, which is closer to reality the more often the projection is made – 
preferably in real time [HoNE2004]. At the same time, the complex real 
world data is retrieved in digitalized form – the mirror image is always a 
simplified model. The logical mirror image enables hold-ups and alternat-
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ive treatment paths to be identified and is the precondition for further 
flexible reactions (see I.3). 

The modus operandi of the logical world is automated decision making, 
after having analyzed the detected states and processes of the physical 
world. The "logical world" of patient logistics detects and relays where 
queues build up before surgeries, which treatment takes longer than ex-
pected, and which resources or staff members are currently available or 
occupied. The procedures which are necessary for continuous planning, 
making appointments and coordination of processes handle this informa-
tion [Cor+2003]. 

Physical World

Logical World

1) Detection
of RFID tags
through sensors

2) Acquisition of
events from the
physical world

3) Planning and
optimization of
the schedule

4) Notification of
the physical world

5) Transmission
of information
to mobile devices

Figure 2. Connection of the physical and logical world 

Executing the planning process alone has little effect however, if the re-
sults are not communicated back to the physical world. This cycle of de-
tection, processing and notification is summarized in Figure 2. 

Figure 3. EMIKA scale model 
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EMIKA's research efforts combine simulations, prototypical and em-
pirical methods. A scale model of a hospital department, shown in Figure 
3, has been equipped with realistic information technology for the purpose 
of a technical and functional evaluation. The scale model allows for the 
testing of the hospital logistic processes and their coordination without af-
fecting the extremely sensitive hospital procedures. The technical configu-
ration of the model comprises RFID readers on the door frames and RFID 
tags on all movable resources, whose change in location can be recorded in 
the physical sphere and transmitted to the information system. The re-
sources generate a data stream when they pass through the doors, which 
yields location information through pre-processing in the receiver process 
and logical interconnection with the previous location. 

7.2.1 Communication Layer 

RFID readers are attached to the door frames (see Figures 3 and 4). The 
passing of an RFID chip fixed to a mobile object (“tag”) through an RFID 
reader produces a “passing” event. The reader sends a signal on a stan-
dardized frequency (here 13 MHz) which is received by the passive tag 
that has no power supply of its own. The electrical impulse is sufficient 
enough to stimulate the tag processor which then sends back an identifying 
bit string of up to 128-bit. The RFID reader forwards this identification to 
an information system for further processing. 
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Figure 4. Plan of the scale model 

Such passing and location information can also be gained via other 
channels. In the EMIKA prototype, additional infrared data can be pro-
cessed. Infrared (IrDA) beacons are fixed in the rooms in such a way that a 
certain area is covered (see Figure 5). Objects with infrared receivers can 
receive and send data at any time as long as they are within the range of an 
IrDA beacon. Alternative location detection methods like triangulation 
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with radio cell-based wirelessnetworks e.g. Bluetooth, W-LAN, GSM, 
UMTS and satellite navigation systems e.g. GPS or GALILEO do not pro-
vide the required accuracy for indoor positioning in the EMIKA-System. 
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Figure 5. Combination of RFID and IrDA technologies 

7.2.2 Middleware Layer 

The amount of information generated by the hardware is huge and am-
biguous. On the one hand, continuous identification data is transmitted 
from the RFID readers, which does not however result in any change in 
condition in the physical world. Only the first contact between reader and 
RFID tag marks the actual incident (entering or leaving a room). The trans-
formation effort of the middleware consists in filtering the continuous data 
stream and only relaying the events. 

Furthermore, since no direction of movement is indicated, the event data 
can be ambiguously interpreted. The passing of a door frame in both di-
rections produces the same RFID event – a close passing or a turning-
around in the doorway is also thereby not recognized as such. To handle 
this problem, the data received from the RFID reader must be pre-pro-
cessed with the aid of context knowledge in such a way that a clear as pos-
sible determination of location is reached. In the EMIKA prototype, differ-
ent solutions are implemented and combined to get the best results for lo-
cation information. 

To illustrate the problem, a map of the scale model is shown in Figure 4. 
There is an RFID reader at the door between surgery 1 and the hall. If an 
individual passing event is discovered at this door, it is not clear whether 
the carrier has moved from the hall to surgery 1, or vice-versa. The current 
realization relies on a history, which is adjusted after each event. For ex-
ample, if the last position was surgery 1, a new reader event at the door 
would change the location information to the hall. 
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This mode of operation seems trouble-free as long as all reader events 
are detected. In a real operating environment, however, it is possible that 
through concealment, movement beyond the range or the passing of sev-
eral tags at the same time, reader events are lost. The resulting inconsis-
tency between the last entry in the history of the object and the actual 
situation increases with each lost event. 

In order to solve this problem, a graph of the environment models the 
rooms as states and the doors as edges. In the case of lost events, the pos-
sible paths between the last reader event and the actual measured event are 
examined. The approach can be illustrated using Figure 6. For example, if 
a reader event is lost when the object leaves the hall towards the waiting-
room, the location information becomes inconsistent. If the ensuing reader 
events were waiting-room/hall and hall/surgery 1, the intersection of both 
events would be the hall. From this, it can be concluded that the object is 
now, after the last event, in surgery 1. Nevertheless, if the error frequency 
is relatively high and many reader events are omitted, the reliability of the 
position determination inevitably decreases or becomes impossible. 

Waiting-Room

Surgery 2

Hall

Surgery 1

Surgery 2

Hall

Surgery 1

1

1
2

2

3

3

4

Figure 6. Environment graph 

In particular, cycles in the environment graph are a problem (see box in 
Figure 6). A known position in surgery 1 and a lacking reader event at the 
door between surgery 1 and surgery 2 leads to a situation in which the next 
event (door surgery 2/hall) cannot be interpreted: there is not enough in-
formation to decide in which direction this door has been passed. A rem-
edy for this problem is the application of two or more RFID tags attached 
to the mobile objects. 

Figure 7 shows a multi-tagged object passing an RFID reader fitted on 
the wall. The object is fitted with four differently positioned tags. On the 
assumption that every person enters a room forwards, it is possible to de-
termine the direction of movement of the object on the basis of the 
chronological order of the contact of two side tags. The reader quality of 
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the tag data can offer further information regarding the movement: a tag, 
which is held almost parallel to the induction lines of the reader (this is la-
bel 1 in Figure 7) is activated more quickly than the more badly positioned 
label 2. Only when the carrier moves further forward does the situation 
change and the identification of label 2 becomes “visible”. 

Label 1
Label 3

Label 2

Right Side

RFID - reader

           Wall

Left Side
Label 4

Figure 7. Object fitted with multiple tags 

A directory service compares the recorded identification of the hardware 
with the address of a software object (or a database entry). In the EMIKA 
prototype, data management is carried out decentralized through the indi-
vidual agents. The recorded position data is therefore sent directly to the 
respective agents via messaging protocols. 

7.2.3 Application Layer 

On the basis of the additional location data, the information system can 
now immediately detect arising problems such as, for instance, long wait-
ing queues or a missing doctor in a surgery. The reaction time increases 
and a flexible adaptation of the schedule can be carried out in real-time 
[EySM2003]. 

7.2.3.1 Negotiation of Priorities 

The currently prevailing planning variable for optimizing scheduling and 
reservations is time duration. The waiting periods of patients in hospital 
should be minimized; the utilization of medical equipment should be 
maximized (see also III.4). 

In EMIKA, a virtual time-dependent monetary substitute in the form of 
time points is introduced as coordination variable and constitutes the direct 
connection to the optimizing time variable. The time points enable the 
evaluation of the time required in hospital. The patients pursue the strategy 
of completing all their treatment in the shortest time. Through the selection 
of the most cost-favorable resource at a point in time in each case, overall 



  Self-Organized Scheduling in Hospitals 327 

“costs” are minimized. Compensation for waiting periods spent includes 
the throughput time into the optimizing strategy in which the patients ex-
perience constantly increasing priority. All hospital resources try to ar-
range their appointments as closely together as possible and to treat the 
highest priority first, calculated in time points gained. This creates a de-
mand and time-dependent price function which signalizes the actual ca-
pacity of the resources. With increasing utilization, the price for the re-
maining capacity increases. A comparison of the prices of two corre-
sponding resources by the patients leads to a relative control function, 
which prefers cheaper (less requested) resources. 

Predictive scheduling takes place in order to build up an optimized treat-
ment sequence, which defines the order in which the patients should arrive 
at the hospital. The effect of changes in scheduling (e.g. emergencies) is 
that they tend to rearrange the sequence; without disturbances, we just 
have to preserve that given order. A First-in-First-out condition guarantees 
that the pre-arranged, optimized sequence persists until no further event 
(e.g. emergency) occurs and changes of the scheduled sequence become 
necessary. A given sequence for the scheduling is considered in a market-
based coordination [Eyma2003] as auxiliary condition with the result that 
patients of the same group, with the same needs and in the same situation, 
obtain reservations in the sequence in which they enter into the system 
(hospital). The compensation of the waiting period ensures that those pa-
tients of a group, which are in the system (hospital) earlier, always have a 
higher budget than the patients from the same group entering later. 

The goal of the dispatching strategy is to schedule inpatients when re-
sources are in low demand. Instead of the price level falling to near zero at 
idle times, the inclusion of inpatients aims at keeping utilization continu-
ous. Inpatient bids are set so low that they are not considered during a con-
stant flow of outpatients. In the market mechanisms, inpatient bids are 
constantly included, but raise only slightly during waiting times. Only 
when the resource prices fall lower than a flexible and endogenously 
emergent threshold are those bids automatically taken into account. With 
the capability to predict a future abundance of resource capacity, it may be 
possible to call patients directly from the wards. For the experiment shown 
here, we assume a near-zero transport time. 

Through reactive scheduling, a “normal” process is adapted according to 
the situation. Existing appointments are replaced and individual decisions 
and plans change. As the emergency patients arrive with a higher budget, 
the respective emergency resources react by raising their prices over a 
threshold where normal outpatient bids can no longer compete. This leads 
to an almost exclusive availability of the emergency resources for emer-
gency patients. The various and individual payment reserves lead to a par-
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titioning of the market in layers according to available budget. Once the 
emergency patients have been treated, the high-priced demand disappears 
and the market re-integrates. 

Treatment coordination is achieved through direct negotiation between 
software-agents, which signal the desired schedules (goals) on behalf of 
the actors involved in each case. The negotiation parameter (which indi-
cates scarcity and priorities) basically is time, perceived as busy times of 
hospital resources and waiting times for patients. 

7.2.3.2 Connection to Physical World 

The first step for communication with external devices is the transfer of 
data out of the information system onto the external units. Basically, two 
ways of addressing can be pursued, either that of the person or the loca-
tion. If the hospital staff is equipped with personal, mobile end devices 
(PDAs, beepers), a direct communication with this end device is the best 
way. After the planning system has figured out which person has to either 
actively make or passively confirm an alteration, the end device allocated 
to this person is addressed. If such a direct allocation is not possible (e.g. 
in the case of patients), the location at which the person presently finds 
himself can also be addressed instead of the person himself [Zuge2003]. 

A special aspect is the change of plans for devices which cannot act by 
themselves in the physical world. A wheelchair or a mobile diagnostic 
apparatus required at another location cannot move itself. In this case, the 
transport order must be sent to the external device of a transport service as-
sistant, who then performs the necessary change in the physical world. 

Figure 8. Notification of the user about a rescheduling 
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The external units and internal objects of the information system must 
be able to communicate with each other via a common interface. In 
EMIKA, this is realized via Java sockets which transport XML-based mes-
sages. Moreover, the addressing of the external units on the systems level 
takes place via permanently allocated IPv4 addresses. 

The wireless transfer of information to a PDA or a Tablet-PC also takes 
place in the hospital via customary radio technologies. In order to guaran-
tee the necessary reachability, RFID cannot currently be implemented, as 
the time of the next connection is uncertain. Technologies with higher 
reachability and thereby also higher energy expenditure and exposure are 
Wireless LAN and Bluetooth. The deployment of mobile telephone tech-
nologies like GSM, GPRS or UMTS do not offer any guarantee of reach-
ability in closed buildings, such as hospitals, due to their screening effect. 

When the information has finally been received by the persons in the 
physical world, they can evaluate and confirm the received data (cf. Figure 
8), but also alter or ignore it on the basis of their own knowledge. Even ig-
noring provides the system in turn with further information (e.g. the noti-
fied doctor could have no opportunity to reply due to an emergency) and 
thereby initiates a feedback to the renewed rescheduling process. 

7.2.4 Simulating Self-Organized Scheduling in the Application 

The realization of the prototype alone does provide some insight into the 
technical feasibility of connection agents and mobile information technol-
ogy, and thus the vertical link between the physical and the logical world. 
However, the horizontal adaptation within the logical world can only be 
evaluated using agent-based simulation (see V.2 for a discussion of agents 
in simulations). In the following section, we have used an agent-based 
simulation of the patient logistics application, which was realized using the 
SeSAM toolkit (see III.5). 

In the logical model of the hospital environment, each patient and each 
resource is represented by a software-agent. Treatment coordination is 
achieved through direct negotiation between these software-agents, which 
signal the desired schedules (goals) on behalf of the actors involved in 
each case. Using the time-dependent monetary substitute, EMIKA creates 
an internal economic market platform for treatment schedules [StEy2004]. 

A waiting room, an emergency treatment room and two “normal” treat-
ment rooms were modeled as resources in the simulation. In the course of 
the simulation, the hospital environment generates a set number of inpa-
tients, a constant stream of outpatients and a random number of emergency 
patients at irregular intervals (see Figure 9). 
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Figure 9. Modeling of the hospital environment 

The various patient types are represented by various groups of patient 
agents (see Table 1). The outpatients, who require treatment in any of the 
three treatment rooms; the inpatients, who can be directly summoned for 
treatment and the emergency patients, who require treatment in the emer-
gency treatment room only. Each individual software agent represents a 
group-specific strategy, which is determined according to medical objec-
tives through individual needs, starting budget and waiting-time compen-
sation. 

Table 1. Parameter of the individual groups of patient agents (TU = time unit) 

 Outpatients Inpatients Emergency 

appointment in room A, B or C A, B or C A 

starting budget 10 TU 10 TU 20 Tu 

waiting-time compensation 1 TU O,1 TU 5 TU 

Any number of patient agents can stay in the waiting room. From there, 
they negotiate with the resources (treatment rooms) for reservations and 
increase their budget through spent waiting periods until they obtain a res-
ervation (see Figure 10). Each patient agent can carry out negotiations with 
those resource agents, for which a medical treatment possibility exists. 

b
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= budget at t
= budget at t-1
= waiting time compensation
= price at t

treatment

wait
b =b +wct t-1

negotiate appointment
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Figure 10. Structure of the patient agents 

A treatment room can only be visited by one patient at a time and if he 
has previously reserved it. The agents of the resources receive information 
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as to how many patients require a resource of their type, on the basis of 
which they can make an initial price offer (see Figure 11). The vacant re-
sources offer their capacities on the market for treatment schedules 
through price offers. The patient agents compare the offers of resources 
suitable to them and make an individual decision. The offer prices sink 
constantly if no patient has responded to the offers (at-1 = no). 

Figure 11. Structure of the resource agents 

Experiment No. 1 - The individual negotiations between patient agents 
and resource agents subsequently lead to a dynamically coordinated proce-
dure, in which treatment sequences are produced and carried out according 
to the situations arising.  

Figure 12. Prices with various patient numbers – above, below and full capacity 
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If the waiting room fills up, the prices increase, so as to fall again with a 
lower flow of patients. In the experiments, the market-based coordination 
mechanism reacts flexibly to the changing situations and enables a 
continuously adapted order of priority of the treatment rooms. In the 
course of the experiments, the prices for a treatment schedule of the same 
length alter depending on the demand (number and type of the patients in 
the waiting room). Lower prices give incentive to make appointments for 
“less” demanded treatment rooms. 

The individual resources reach their full utilization by booking new ap-
pointments through negotiations. The resources accordingly vary their 
prices depending on the demand and their own capacity. In a preliminary 
capacity experiment, the hospital environment of the simulation was mod-
eled through three periods with various amounts of patients; time tact 0-
500 resources operated above capacity, time tact 500-1000 resources oper-
ated below capacity and time tact 1000-1400 resources operated at full ca-
pacity. The prices of the resources continuously rise in Figure 12 with an 
amount of patients which lies above their capacities, fall in the case of a 
lower amount of patients and remain in a dynamic equilibrium when the 
amount corresponds exactly to their capacities. The price value of the dy-
namic equilibrium average is correlated to the actual waiting periods. The 
dynamic prices thereby reflect, as expected, the actual capacities of the re-
sources. The prices of all treatment rooms show a typical structure for the 
actual utilization for each situation. 

Experiment No. 2 - In a second experiment, the environment of the hos-
pital was modeled in such a way that emergency patients came into the 
system at irregular intervals in addition to a constant stream of outpatients. 

The clear peaks in the centre of Figure 13 show how emergencies (with 
correspondingly high input budget) remove the treatment room equipped 
for emergencies from the allocation dynamic, in that the price of the treat-
ment room becomes prohibitively high for the other patient agents. On 
conclusion of the emergency treatment, however, the treatment room re-
enters into the “market”. 

Emergency patients acquire higher payment reserves via a larger start-
ing budget and a higher waiting-period compensation, whereby an acceler-
ated schedule booking is attained. Parallel to this, the higher payment re-
serves lead to higher prices, whereby the demand is lowered. The resource 
shortage is signalized to the remaining actors and flows with it in their de-
cision calculation. Although the emergency only determines the price for 
its treatment schedule, indirect shortage signals are transmitted to the other 
patients, which influence the choice of their appointment. Through the in-
creased prices, the emergency signalizes the shortage of the emergency 
treatment room and works as control function. 
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Figure 13. Prices with constant stream of outpatients and random number of 
emergency patients 

Experiment No. 3 - In a third experiment, a set number of inpatients 
were additionally generated (Figure 14). Inpatients only occupy resources 
when free capacities are available, so that other processes are not dis-
rupted. The inpatients were treated in the experiment between the time tact 
0-250, 700-800 and from time tact 1100, which leads to a higher usage of 
resources in general compared to the previous experiment. 

Figure 14. Prices with constant stream of outpatients, set number of inpatients and 
random number of emergency patients 



334 T. Eymann, G. Müller, M. Strasser 

7.3 Lessons Learned and Outlook 

A preliminary, obvious result of the EMIKA prototype is that the amount 
of information in the logical world positively correlates with the quality of 
scheduling and reaction time in the physical environment. However, the 
pure availability of information also has its downside. A still unsolved as-
pect is the total lack of privacy. An EMIKA-like solution depends on the 
availability of as much information as possible and it would lose function 
if privacy were demanded [EyMo2004]. 

Connectivity and communication are essential for the automated pro-
cessing of accumulated data and to manage patient care procedures. The 
efficient availability of information is of paramount importance for keep-
ing workflows and processes running. However, there are some consider-
ations regarding privacy and identity of patients: 

Firstly, it is possible to track many signals from a source, regardless of 
time, location and communication channel. The result is a privacy threat: 
the human user’s actions can be fully observed, his goals preferences de-
rived from the observations. By sharing information between different re-
ceivers, even more characteristics and their interdependencies are made 
available until we recognize “the transparent user”. 

Secondly, it is possible to construct different profiles or “digital identi-
ties” by combining a purposeful or accidentally selected set of received 
signals. This is an inverse situation to that above and the threat is not to 
privacy, but to accountability. 

The possibility to connect not only to computers, but also to processes is 
the cornerstone of systems like EMIKA. The interplay of security for data 
and code has dramatically changed the patterns and occurrence of errors, 
safety and the ensuing security. 

However, with progressing technology, the hard problem of IT privacy 
and security is further away from a solution than ever before. Current ap-
proaches to address these problems can be characterized as those tackling 
privacy concerns, and those providing security and trust guarantees. As for 
the former, identity management systems have been designed and de-
ployed [MuGJ2001].2 With regard to the latter, a plethora of security 
mechanisms have been realized. In particular, these mechanisms focus on 
the secure transfer of data between peers (confidentiality) and on the as-
surance of data’s respectability (integrity). 

Generally speaking, the classical approach to eliminate security vulner-
abilities is the application of software engineering methods. However, de-
spite noticeable advances in this area over the last years, the vulnerability 

2 See http://www.iig.uni-freiburg.de/telematik/atus/index.html for details. 
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rate in classical systems keeps increasing. There is no indication that this 
does not also apply to EMIKA-like systems. 

Traditionally, known security threats are remedied by devising security 
policies, which in essence describe threatening events that should not oc-
cur. Security mechanisms, namely authentication, authorization, and ac-
counting (AAA), then ensure that these policies are followed by prohibit-
ing undesirable events from taking place. Just by way of evidence, AAA 
policies are expressed in this manner: authentication protocols prevent 
communicating partners from committing transactions with wrong partners 
(in particular, with an adversary); authorization techniques preclude illicit 
users from accessing resources to which they do not have the right; finally, 
accountability mechanisms avoid repudiation of the actions of a user. 

However, to anticipate and describe each and every unwanted scenario 
is an infeasible exercise in EMIKA, where emergent, at design time un-
foreseen behavior plays an essential role. In this setting, one simply does 
not know what action to forbid, or which chain of actions will lead to a se-
curity threat. This supports the assumption that, although security policies 
based on prohibitions should not be disregarded, they are insufficient to 
actually provide a thorough account for security in highly dynamic sys-
tems [Mue+2005]. 

A promising approach to address this problem is based on the idea of 
commands. Instead of only specifying threatening situations, security poli-
cies expressed by means of commands also characterize situations that 
should occur, i.e. goals that should be accomplished. As an example, con-
sider the downloading of a software module as a system extension. A rea-
sonable policy is that it seamlessly integrates into the system and eventu-
ally fulfils the desired task. But by only stating the desired outcome of its 
execution, nothing is stated for instance about the access permissions (au-
thorization) of the downloaded module, to prevent it from accessing unre-
quired but sensitive system data. 

The research project EMIKA implemented concepts to allow self-or-
ganization of complex tasks on the basis of economic coordination mea-
sures. The agents signal their individual preferences using a criteria 
derived from economic concepts, which is basically related to money and 
budgeting. 

Self-organization of life-saving resources is technically possible and its 
future realization in a real environment looks promising [Mue+2003]. 
Apart from the required set of building blocks, EMIKA has also shown 
that the coordination metrics is anything but simple and is the main source 
of any acceptance issue. In this case study, we have used a substitute of 
money to define scheduling priorities. In principle, making life-saving de-
cisions on the basis of available budget leads to long-winded ethical dis-
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cussions. However, arguments pro money are that scheduling decisions are 
required to be made transparent and software designers and users are free 
to define what the currency is – call it "health points" or "medicoins". 

The continuous data-gathering process consequently leads to a dynami-
cally updated mapping of the reality. This saves time to react and improves 
the probabilities that the reaction is adequate to the arisen problem. A self-
organization of the dynamic treatment process by means of mobile tech-
nologies and software agents seems at least functionally obtainable. The 
main acceptance issue can be found in the long-lasting tradition to protect 
patient’s privacy and the resistance to schedule according to market strate-
gies based upon prices. For future work regarding privacy, a new concept 
of liveness properties is about to be introduced and tested. 

References 

[Cor+2003] Coroama, V.; Hähner, J.; Handy, M.; Rudolph-Kuhn, P.; Mager-
kurth, C.; Müller, J.; Strasser, M.; Zimmer, T.: Leben in einer 
smarten Umgebung: Ubiquitous-Computing-Szenarien und 
Auswirkungen. Technical Reports 431. ETH Zürich, Institute for 
Pervasive Computing, Zürich, 2003. 

[CyMa1963] Cyert, R. M.; March, J. G.: A behavioral theory of the firm. 
Blackwell Business, Cambridge, Mass., 1963. 

[Eyma2003] Eymann, T.: Digitale Geschäftsagenten – Softwareagenten im 
Einsatz. Springer Xpert.press, Heidelberg, 2003. 

[EyMo2004] Eymann, T.; Morito, H.: Privacy Issues of Combining Ubiqui-
tous Computing and Software Agent Technology in a Life-Criti-
cal Environment. Paper presented at IEEE International Confer-
ence on Systems, Man and Cybernetics. Hague, Netherlands, 
2004.

[EySM2003] Eymann, T.; Sackmann, S.; Müller, G.: Hayeks Katallaxie: Ein 
zukunftsweisendes Konzept für die Wirtschaftsinformatik? In: 
Wirtschaftsinformatik 45(2003)5, pp. 491-496. 

[Gäfg1990] Gäfgen, G.: Gesundheitsökonomie. Nomos, Baden-Baden, 1990. 
[GaJo1979] Garey, M. R.; Johnson, D. S.: Computers and intractability: a 

guide to the theory of NP-completeness. Freeman, San Fran-
cisco, 1979. 

[HoNE2004] Hohl, A.; Nopper, N.; Eymann, T.: Automatisierte und Interak-
tive Kontextverarbeitung zur Unterstützung der Patientenlogis-
tik. Paper presented at Workshop on Mobile Computing in 
Medicine. Stuttgart, 2004. 

[KuRo1995] Kurbel, K.; Rohmann, T.: Ein Vergleich von Verfahren zur Ma-
schienenbelegungsplanung: Simulated Annealing, Genetische 



  Self-Organized Scheduling in Hospitals 337 

Algorithmen und mathematische Optimierung. In: Wirtschaftsin-
formatik 37(1995)6, pp. 581-593. 

[MENS2004] Müller, G.; Eymann, T.; Nopper, N.; Seuken, S.: EMIKA Sys-
tem: Architecture and Prototypic Realization. IEEE International 
Conference on Systems, Man and Cybernetics edn. Hague, 
Netherlands, 2004. 

[MuGJ2001] Müller, G.; Gerd tom Markotten, D.; Jendricke, U.: Benutzbare 
Sicherheit – Der Identitätsmanager als universelles Sicherheits-
werkzeug. In: Müller, G.; Reichenbach, M. (Eds.): Sicherheits-
konzepte für das Internet. Springer Xpert.press, Heidelberg, 
2001, pp. 135-146. 

[Mue+2003] Müller, G.; Kreutzer, M.; Strasser, M.; Eymann, T.; Hohl, A.; 
Nopper, N.; Sackmann, S.; Coroama, V.: Geduldige Technologie 
für ungeduldige Patienten: Führt Ubiquitous Computing zu mehr 
Selbstbestimmung? In: Living in a Smart Environment. Sprin-
ger, Heidelberg, 2003. 

[Mue+2005] Müller, G.; Accorsi, R.; Höhn, S.; Kähmer, M.; Strasser, M.: Si-
cherheit im Ubiquitous Computing: Schutz durch Gebote? In: 
Mattern, F. (Ed.): Der Computer im 21. Jahrhundert – Perspekti-
ven, Technologien, Wirkungen. Springer, Heidelberg, 2005. 

[SaEM2002] Sackmann, S.; Eymann, T.; Müller, G.: EMIKA – Real-Time 
Controlled Mobile Information Systems in Health Care Appli-
cations. In: Bludau, H. B., Koop, A. (Ed.): Mobile Computing in 
Medicine. Köllen, Bonn, 2002, pp. 151-158. 

[ScCZ1996] Scheer, A. W.; Chen, R.; Zimmerman, V.: Prozeßmanagment im 
Krankenhaus. In: Adam, D. (Ed.): Krankenhausmanagment. 
Schriften zur Unternehmensführung. SzU, Wiesbaden, 1996. 

[Schl1990] Schlüchtermann, J.: Patientensteuerung, 26th edn. Eul, Bergisch 
Gladbach, Köln, 1990. 

[StEy2004] Strasser, M.; Eymann, T.: Self-organization of schedules using 
time-related monetary substitutes. In: Bichler, M. et al. (Ed.): 
Coordination and Agent Technology in Value Networks. Con-
ference Proceedings Multi-Konferenz Wirtschaftsinformatik, Es-
sen, 2004. GITO-Verlag, Berlin, 2004, pp. 45-58. 

[Zuge2003] Zugenmaier, A.: Anonymity for Users of Mobile Devices 
through Location Adressing. Rhombos-Verlag, 2003. 



Part IV 

Agent Engineering 



1 The Engineering Process 

Ingo J. Timm, Thorsten Scholz 
Universität Bremen, Technologie-Zentrum Informatik 
{i.timm | scholz}@tzi.de 

Holger Knublauch 
Stanford School of Medicine, Stanford Medical Informatics 
holger@smi.stanford.edu 

Abstract. Engineering highly flexible software systems for real-world applica-
tions on the basis of intelligent agents and multiagent systems is a challenging 
task. Conventional software engineering provides established methodologies and 
tool support. Additionally, knowledge engineering captures the necessary aspects 
of integrating knowledge in intelligent agents. However there is still a gap be-
tween software and knowledge engineering methodologies. State-of-the-art ap-
proaches of agent-oriented software engineering partially integrate these ap-
proaches. Nevertheless, challenges for the engineering process of agent technol-
ogy remain open and therefore are addressed in this section on agent engineering. 

1.1 Introduction 

A key prerequisite for running successful software projects is the use of 
adequate software engineering techniques. Software engineering provides 
adequate methodologies supporting the development process of realistic 
large scale applications. Furthermore, software engineering tools are re-
quired for economically efficient engineering processes aiming for com-
mercial applications. 

Modern business processes and the increasing importance of networks 
demand for new paradigms for the architecture of complex software sys-
tems. Traditional software architecture and methodologies like object-ori-
ented design have been originally developed for monolithic, static, and 
closed systems. However, most systems are now distributed, dynamic and 
open. The multiagent systems paradigm offers a more suitable approach to 
understand, represent and model such complex systems. Agents are auton-
omous computer systems that are situated in an environment to fulfill 
tasks. Multiagent systems are societies of agents that share the same envi-
ronment and communicate with each other. In this introductory chapter we 
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give an overview of the state of the art in multiagent system development, 
and set the stage for the remaining chapters in this book. 

The multiagent paradigm shift can be regarded as a gradual evolution 
from existing software engineering approaches. On the micro level, agents 
can be regarded as objects that encapsulate a state and expose behavior. 
Agents also need to be implemented in some programming language and 
interact with conventional (typically object-oriented) systems. In the first 
section of this chapter we therefore refer to basic methodologies of soft-
ware engineering (Section 1.1). On the macro level, multiple communicat-
ing agents form new types of organizations which are not easily captured 
and designed with the help of conventional methodologies. Higher levels 
of abstraction are needed that go beyond the level of objects and their 
methods. Furthermore, agents need to agree on domain formalizations in-
cluding semantics to be able to communicate in a meaningful way. We 
therefore take a look into methodologies, languages and tools from the 
field of knowledge engineering (Section 1.2). Based on this background, 
Section 1.3 introduces state-of-the-art approaches in agent-oriented soft-
ware engineering, and Section 1.4 discusses their limitations and chal-
lenges. Here, the remaining chapters of the agent engineering part of this 
book are introduced, which are addressing these challenges. 

1.2 Software Engineering 

Software should fulfill requirements of customers with respect to their 
specific context and environment. Software engineering is a structured 
process of transforming customer demands into software systems, which 
meet the requirements defined within the process. Software engineering 
covers requirements analysis, design, implementation, testing, and delivery 
of software systems (cf. Figure 1) [Boeh1995]. The software development 
process is not necessarily completed with delivery of the system but may 
also include maintenance and revision. 

Testing

Requirements
Engineering Deployment

TestingDesign

Implementation

Figure 1. The software development life cycle typically runs through various 
stages. 
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The history of software engineering may be divided into phases, and de-
velopment methodologies evolved from approaches taken in earlier phases. 
In the pre-history of software engineering, development mostly consisted 
of pure “hacking”, i.e. systems have been implemented ad hoc without 
structured design phases. As size and complexity of software systems in-
creased, these unstructured approaches soon turned out to be inadequate, 
as they were incomprehensible to non-programmers and failed to analyze 
requirements correctly. One of the first structured approaches to software 
engineering, the waterfall-model, considers successive stages: Analysis of 
a priori requirements, design, implementation, and testing. The shortcom-
ings of this approach may be found in difficulties to capture all require-
ments correctly in advance. Furthermore, there is no feedback between the 
various stages. As an improvement, the iterative waterfall model contains 
pre-defined loops. However, these feedback loops may lead to a model 
drift, i.e., improved models may cause substantial change in the code resp. 
implementation. Many variations of this idea, e.g. the Rational Unified 
Process, increase the importance of feedback. Nevertheless, they all suffer 
from the fact that it is difficult to synchronize models and implementation 
while the system evolves. 

Req. Analysis

Design

Implementation

Testing

Accepance Test,

Integration

Figure 2. The eXtreme programming approach 

Modern approaches in software engineering try to overcome the prob-
lems of insufficient feedback loops. The integration of models and imple-
mentation is proposed by model-driven architectures using a higher level 
of abstraction. In this approach, the models are used to drive code genera-
tion for various target platforms. The most widely used modeling language 
for model-driven architecture is the Unified Modeling Language (UML). 
UML defines visual notations such as use case diagrams, class diagrams 
and sequence diagrams. UML is now widely supported by engineering 
tools and can be used for various stages during the development. Where 
the predefined modeling elements alone are not sufficient, the expressivity 
of UML can be extended by means of extension mechanisms like stereo-
types or metaclasses. This makes it possible to build new languages on top 
of UML, for example to optimize it for the design of multiagent systems. 
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The major bottleneck of model-driven architecture is the difficulty to de-
velop appropriate tools which convert the high level design models into 
executable code. As a result, the vision of “pure design” is often unrealistic 
and low level programming is still needed. 

In addition to systematic, structured development methodologies, many 
software developers have applied rapid prototyping and (later) agile de-
velopment approaches such as eXtreme Programming (cf. Figure 2). These 
approaches focus on testing, less design effort and very fast implementa-
tion cycles. The basic assumption of these approaches is that software will 
naturally evolve when it has been exposed to user feedback. However, 
software engineering in this context is restricted to small systems and 
small developer teams and the reusability of developed models is limited. 

Figure 3. The spiral model1

1  See [Boeh1988]. 
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Nevertheless, agile methodologies are an attractive option for subsys-
tems, even if the general process follows a more systematic development 
model. Also, the popularity of agile approaches has resulted in improved 
tools and techniques for software testing. For industrial applications vali-
dation or even verification of software systems is crucial. Most modern 
development tools such as Eclipse or IntelliJ provide built-in facilities to 
build and execute software tests. 

The agile approaches as described above are mainly motivated and in-
troduced for the implementation level. However, large-scale software proj-
ects require a sophisticated management of the development process. 
Boehm introduced an iterative software engineering process, the spiral 
model, to integrate the benefits of rapid prototyping and structured system 
development [Boeh1988]. Additionally to the implementation and valida-
tion, there are three more major process steps, which consist of definition 
of system goals and evaluation of alternatives, risk analysis, and planning 
of the next cycle (cf. Figure 3). 

The software engineering of intelligent agents or multiagent systems re-
quires specific extensions but significant results from conventional soft-
ware engineering may be incorporated. Summarizing, lessons learned for 
multiagent systems are 

• numerous structured engineering processes exist for the development of 
large-scale software systems, 

• standards like UML should be reused wherever possible, 
• domain-specific extensions for multiagent systems are required, and 
• many problems may only be solved with iterations and validation. 

1.3 Knowledge Engineering 

While software engineering explores the development of arbitrary software 
systems, the field of knowledge engineering provides methodologies and 
tools for creating a distinct class of software systems, the so called knowl-
edge-based systems [Feig1977]. Similar to agent research, various defini-
tions for knowledge-based systems exist. In a nutshell, knowledge-based 
systems can be described as systems that encode a formal representation of 
(asserted) human knowledge, and use this knowledge to infer new knowl-
edge to expose “intelligent” behavior. The architecture of knowledge-
based systems typically separates between the representation of the knowl-
edge and the inference engines or other components to fulfill knowledge-
based tasks. 
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Historically, one of the main challenges in knowledge engineering has 
been acquiring, encoding, and representing knowledge in a machine-un-
derstandable way. The origins of knowledge representation can be traced 
back to formal logic and the efforts to build a solver for any problem (gen-
eral problem solver). In the early 70ies, object-centered knowledge repre-
sentations have been introduced to cope with increasing complexity of 
real-world problems. Especially, frame-based representations have been 
developed, enhancing interactions between knowledge and software engi-
neering leading to object-oriented approaches. 

ConceptualProblem Solving
Behaviour

Conceptual Model

Transformation

Conceptual Model

AI System
Implementation

Observer

Interpretational

Framework

Designer

AI Techniques

Conceptual Model

Figure 4. Knowledge engineering approach 

More sophisticated knowledge-based systems have been based on 
highly specified problem-solving methods with specific knowledge bases. 
Problem-solving in this context exceeds conventional method-design in 
software engineering. This development led to the establishment of a new 
research area in knowledge engineering: knowledge acquisition. The key 
question here is not how to represent knowledge, but how to gather knowl-
edge from a human expert. A general approach to knowledge acquisition is 
found in Figure 4 [WiSB1992, p. 9] where problem solving behavior in the 
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real world is analyzed and interpreted for a conceptual model. For the im-
plementation of a knowledge-based system, this model has to be trans-
formed into a design model, which is implemented as a software system in 
the next step. Furthermore, approaches with enhanced complexity are re-
quired for problem solving facing uncertainty and possibly incorrect deci-
sions. 

Application
Model

Organizational
Model

Task
Model

System

Model of
Cooperation

Model of 
Expertise

Model
Conceptual

Model
Design

Figure 5. KADS models for the knowledge engineering task 

Knowledge bases and problem-solving methods require high implemen-
tation efforts, and the engineering efforts of knowledge-based systems 
could be significantly reduced by reusing priory developed knowledge or 
methods. Therefore, strong efforts have been spent within the 80ies and 
early 90ies to evolve a standardized engineering process. One of the main 
achievements of these efforts is the “Knowledge Analysis and Design Sup-
port” (KADS), providing types of knowledge, relations between com-
ponents, and model-building process. The model-building process contains 
the creation of seven different models: organizational, application, task, 
expertise, cooperation, conceptual, and design model (cf. Figure 5, [WiSB 
1992, p. 11]. The philosophy of KADS is to provide a structured process 
of creating these models in a semi-formal or formal way, such that they 
may be integrated in a straight forward way. Common KADS framework 
integrates three types of knowledge models: task, inference, and domain, 
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which should be sufficient for the description of application-related knowl-
edge [WiSB1992]. The task knowledge refers to problem-solving capabili-
ties. The inference knowledge describes the reasoning steps in a functional 
way. The domain knowledge includes structure and contents of domain 
knowledge. The relations between the components define their role in the 
inference process. 

The main bottleneck of the KADS approach is its complexity and design 
effort building knowledge-based systems. Facing these problems, the next 
step in evolution of knowledge engineering has focused on the develop-
ment of isolating problem-solving methods for an increased reusability. 
This leads to problem-solving units and components for knowledge mod-
eling [FBMW1990] [Mott1999]. 

Summing up, some methodologies for knowledge engineering have 
been suggested in the 90ies, however, the focus lays now on languages and 
tools, together with some rules of thumb. 

Parallel to the research on systematic engineering methodologies, the 
knowledge engineering community has also worked on defining suitable 
modeling languages for knowledge capture and sharing. The central notion 
in these languages is the term ontology. An ontology is a formal represen-
tation of concepts so that it can be shared between human or software 
agents. Ontology languages typically provide means to define concepts/ 
classes and their characteristics such as properties, restrictions and in-
stances. Many different ontology languages such as KIF have been sug-
gested in the 1980s and 90s, but no widely used standard emerged. 

In recent years, the field of ontology languages has received a signifi-
cant boost as many people recognized its importance for developing multi-
agent systems and other web-based applications in the context of the so-
called Semantic Web. The Semantic Web is a large-scale effort supported 
by the World Wide Web Consortium and its president Tim Berners-Lee, 
with the aim of making internet content more accessible and “comprehen-
sible” to software agents. One of the cornerstones of the Semantic Web is 
the Web Ontology Language (OWL ) and its base language RDF. OWL 
and RDF are Web-based knowledge representation languages that allow 
users to define domain concepts, properties, logical relationships and indi-
viduals in a machine-readable format. OWL and RDF ontologies can be 
uploaded on the Web and shared between applications or agents. The for-
mal underpinnings of OWL in a variant of logic called Description Logic 
can be exploited to drive automated reasoning tools for classification and 
consistency checking tasks. Due to its clean foundation on formal logic 
and well-defined Web-based standards, the Semantic Web therefore serves 
as a powerful infrastructure or habitat for agent-based systems. 
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Ontology languages and methodologies have been supported by genera-
tions of modeling tools. While many of these tools are limited to “aca-
demic” prototypes and research projects, some of them have established a 
solid position in their niche. The currently most widely used knowledge 
modeling tool with support for OWL and RDF is Stanford’s Protégé sys-
tem [KFNM2004], which provides a customizable user interface for de-
fining ontologies and to invoke reasoners. While – like UML-based tools – 
Protégé is a general purpose tool for many domains, the architecture of 
Protégé makes it easy to integrate additional services optimized for agent 
design or simulation. 

Knowledge engineering is an important task for the development of in-
telligent agents or multiagent systems. However, only few approaches for 
successful adaptation may be identified. The lessons learned for multiagent 
systems are, that: 

1. there is a large number of approaches for the specification of models, 
2. ontologies may be a powerful mechanism to capture domain experts 

knowledge, 
3. ontologies may be used for reasoning at run-time, 
4. the Semantic Web is a natural infrastructure for agents, 
5. formal logic may be used to support the construction of consistent 

knowledge models (consistency checking, classification). 

These experiences have been taken into consideration within the devel-
opment of agent-oriented software engineering methodologies. In the fol-
lowing, we will give an overview over these methodologies. 

1.4 Approaches to Agent Oriented Software 
Engineering

In the previous sections software and knowledge engineering have been 
introduced. As mentioned before, the design of large scale multiagent sys-
tems requires a sophisticated engineering process which integrates aspects 
of knowledge as well as software engineering. In the last years, multiple 
approaches to AOSE have emerged which differ basically in the target ar-
chitecture of the agents or in the stages considered in the process of engi-
neering, e.g., design, requirements analysis, etc. A first survey on AOSE 
methodologies has been introduced by Müller [Muel1997]. However, the 
research field of AOSE has recently gained more significance in the agent 
community. As a result, there is a good selection of books summarizing or 
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reflecting the current state of the art, e.g., [BeGZ2004] [WeJa2005] [Lu 
AD2004] [OdGM2005] [Gar+2003].2

In the following we present a brief overview on AOSE methodologies 
which are distinguished according to Bergenti et al. as: special purpose 
methodologies and general methodologies for agent-based system devel-
opment [BeGZ2004]. Special purpose methodologies benefit from their 
close connection to specific domains and problems. Their shortcomings 
arise from the difficulties of transferring the tools and methods to other 
situations. The general methodologies for agent-based system development 
are not restricted to a specific application area or a specific part of the 
system, but should be applicable to the most problem domains and the de-
velopment of multiagent systems. 

The main variation of AOSE methodologies is the different starting 
points and their “disciplinary background”. Weiß and Jakob identify four 
main starting points for AOSE: agent technology, requirements engineer-
ing, object-orientation, and knowledge engineering [WeJa2005]. Four rep-
resentatives, one for each starting point, are introduced in the following: 
GAIA for agent technology [WoJK2000], Tropos for requirements analy-
sis [CaKM2002], MaSE for object orientation [DeLo2004], and MAS-
CommonKADS for knowledge engineering [IGGV1997]. 

1.4.1 GAIA 

The focus of agent technology-based approaches like GAIA lies on agent 
specific abstraction, e.g., group, organization, role, and methods for speci-
fication of coordination and communication [WeJa2005]. GAIA is one of 
the first methodologies proposed for the analysis and design of multiagent 
systems [CJSZ2004] introduced by Wooldridge et al. 2000. The original 
version considered benevolent agents interacting in closed multiagent sys-
tems (MAS). The methodology compromises of three phases: requirements 
specification, analysis (role model, interaction model), and design (agent 
model, service model, acquaintance model). Further phases from software 
engineering, e.g., testing, were not considered. The shortcomings of GAIA 
were addressed by Zambonelli et al. who extended GAIA with respect to 
organizational abstractions [ZaJW2003]. In consequence, the extended 
GAIA is more suited for designing and building systems in complex and 
open environments. Juan et al. extended GAIA by a sophisticated approach 
called ROADMAP for requirement specification [JuPS2002]. The main 
benefits of this extension are a dynamic role hierarchy, models to explic-

2  For advanced reading, please refer to these books. 
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itly describe the agent environment, and the agent knowledge [CJSZ2004]. 
Even with these extensions, GAIA is limited to the software engineering 
phases requirements specification, analysis, and design. Implementation 
and testing are not considered. Knublauch applied agile software engineer-
ing to the GAIA methodology in order to compensate this shortcoming 
[Knub2002]. 

1.4.2 Tropos 

The Tropos methodology is focusing on requirements engineering as spe-
cific starting point [WeJa2005]. Therefore, it is intensively linked to tech-
niques and formalisms of the requirements engineering field (Bresciani et 
al. 2004). Agent-oriented requirements engineering parallels goal-oriented 
requirements engineering (cf. IV.2; [MyCY1999]). The Tropos approach 
uses object oriented modeling techniques, i.e., UML, and has been specifi-
cally designed for the development of BDI agents within the JACK agent 
platform [NoRi2001]. There is a framework for Tropos, which provides 
techniques for formal analysis, i.e., the verification of requirement specifi-
cations. The specification language is based on the temporal language 
KAOS [Lems2001]. The Tropos methodology consists of five phases: 
early requirements, late requirements, architectural design, detailed design, 
and implementation. It is inspired by modeling socially based MAS and 
therefore focuses on organization theory, strategic alliances, and social 
patterns. This focus is reflected in the differentiation between early and 
late requirement analysis. In the second phase of requirement analysis, 
there is the description of dependencies between actors. Architectural de-
sign is used for a first sketch of the system, where goals and tasks are as-
signed to the system resp. sub-goals and sub-tasks are assigned to actors. 
The resulting models are detailed out in the next phase. Even if the Tropos 
methodology uses an explicit implementation phase, there is no focus on 
the steps after the model building. 

1.4.3 Multiagent Systems Engineering 

While object-orientation is a significant feature in the Tropos methodol-
ogy, it becomes the essential starting point for the MaSE methodology 
(Multiagent Systems Engineering). Object-oriented methods are not only 
integrated but extended to agent specific software engineering. Nearly all 
existing object-oriented principles and techniques are applied and adapted 
to the specific requirements of AOSE. In this context, domain independ-
ency of the approach is emphasized, such that MaSE is a general method-
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ology for developing multiagent systems, introduced by DeLoach et al. 
[DeWS2001]. There are no restricting assumptions for the agent architec-
tures, communication, or implementation language [WeJa2005]. The 
MaSE methodology is based on UML and has a strong focus on analysis 
and design. As a result of the analysis phase, models for goal hierarchies, 
use cases, sequence diagrams, concurrent tasks, and role models are cre-
ated. These models are used within the design phase which is the next step 
in the MaSE methodology. In the design phase, models for agent classes, 
conversations, agent architectures, and deployment are specified. Com-
pared to the GAIA method, MaSE and GAIA both gather the same type of 
information in the analysis phase, just in different models [BeGZ2004]. 

1.4.4 MAS-CommonKADS 

As has been pointed out in the introduction of this chapter, there are close 
interactions between the fields of knowledge engineering and AOSE. Es-
pecially, the previously introduced KADS methodology for knowledge en-
gineering has been specifically designed for modeling knowledge domains 
including actors, organizations, and interactions. This close relationship to 
agent engineering seems to be advantageous for developing agents or mul-
tiagent systems. Therefore, it is not surprising, that one of the first struc-
tured approaches to AOSE has emerged as an extension of the KADS ap-
proach. This approach was introduced nearly simultaneously in a two-fold 
way as MAS-CommonKADS [IGGV1997] and as CoMoMAS [Glas1996]. 
Both approaches integrate two phases analysis and design of the software 
engineering process only. Although, the original approach in the variation 
of CommonKADS also included the implementation step [ScWB1993]. 
Depending on the modeling language used within MAS-CommonKADS 
or CoMoMAS, there has been a formal syntax or semantics included to 
some extent. In consequence, the main application areas are knowledge-
centered domains. The approach seemed promising; however, it failed to 
integrate tools, especially like agent platforms, such that significant im-
plementation effort arose. 

1.5 Challenges for Agent Oriented Software 
Engineering

The main benefit of multiagent systems as proposed in this book is flexi-
bility, which is realized by a high degree of autonomy and emergent or-
ganization as well as dynamic negotiation. Each software engineering pro-



  The Engineering Process 353 

cess may be structured by the following tasks: requirements engineering, 
specification resp. design, implementation, and testing. A significant para-
digm shift has been introduced by object orientation in conventional soft-
ware engineering. For AOSE, it is in question if a similar paradigm shift 
has occurred which is connected to increasing efforts for requirements 
engineering and specification while implementation efforts decrease sig-
nificantly. Hints supporting this claim are the strong focus on requirements 
engineering, model building, and formal languages applied to MAS. In 
either case, special requirement arises for the engineering process of multi-
agent systems, such that conventional approaches to software engineering 
are not sufficient. Knowledge engineering on the other hand, is not an 
exclusive option for AOSE as it fails in lack of supporting tool or method 
support. 

In principle, AOSE could benefit from both engineering technologies: 
from the strong tool and methodology support in software engineering and 
the advantageous know-how about model building, knowledge representa-
tion, and inference in knowledge engineering. Schreiber and Wielinga 
stated a strong relationship between these areas but until today, there is no 
convincing approach bridging the gap between them in an integrated 
AOSE approach [ScWi1996]. 

The development of multiagent systems faces specific challenges lead-
ing to a general engineering process. As in software engineering, there are 
different approaches to organize the development phase: sequential, agile, 
and iterative processes. In any of these processes, we identified a set of 
seven process steps: requirements engineering, interaction design, archi-
tectural design, semantics specification, dependability specification, tool 
and platform selection, and validation (cf. Figure 6). In concrete software 
development, there might be a variation of the ordering of these steps, es-
pecially interaction and architectural design should be intertwined. 

Architecture

Interaction

Design

Dependability

Semantics

Specification Testing
Requirements
Engineering

Tool & Platform
Selection and
Implementation

Figure 6. Mandatory process steps in AOSE 

In the following, we are discussing the major challenges according to 
this process, separating AOSE from conventional software and knowledge 
engineering. 
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The first challenge in AOSE is the construction of an adequate require-
ments specification. Following conventional approaches to requirements 
engineering, flexibility and emergent behavior of MAS cannot be modeled 
adequately. The consideration of requirements engineering in context of 
agents and multiagent systems is twofold: On the one hand, requirements 
analysis may be applied for identifying agents within a domain; on the 
other hand, the notion of agents and multiagent systems may be used for 
performing a requirements analysis. Bieser et al. are investigating require-
ments analysis as an independent approach for analysis of a domain. The 
decision if agent technology is applied as a solution remains open. How-
ever, goal-oriented requirements engineering may be a good compromise 
between technology independency and requirements specification for 
MAS. 

In MAS, multiple agents are interacting with each other. Therefore, 
static specification of agent relationships is not sufficient. Obviously, the 
design of interaction differs from interface design in conventional software 
engineering significantly. As the structure and process of interaction is a 
significant feature of multiagent’s flexibility, the challenge for AOSE 
arises from the interaction design. Interaction has to be restrictive enough 
to enable reliable system behavior and should be permissive enough to al-
low for flexibility or emergent behavior. Within IV.3, Krempels et al. 
introduce different concepts of interaction within MAS. Furthermore, 
characteristics of interaction are discussed with respect to performance and 
design and implementation of large scale multi-multiagent systems. 

Interaction is essential for MAS design, but not sufficient to establish 
the agents` design. Intelligent agents differ essentially from conventional 
software objects. Consequently the architectural design of intelligent 
agents is a key challenge for AOSE. It is the basic feature to enable the 
transformation of the requirement specification into software. In IV.4, 
Lockemann et al. introduce a service-oriented architecture for implement-
ing agent properties as introduced in I.1. 

The effort of creating design models for interaction and architecture is 
significantly higher than in conventional software engineering. If formal 
specification is used, there may be the possibility to use parts of the speci-
fication without transformation in the MAS. Therefore, construction and 
usage of semantics is a challenge for AOSE. The definition of agents and 
multiagent systems requires explicit knowledge representation. In multi-
agent systems we may identify three different parts of a knowledge-base 
for an agent: 

• environment, 
• agent interaction and opponents, and 
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• internal state. 

The interdependencies of knowledge and MAS are discussed within 
Chapter IV.5 on semantics for agents. Here, Scholz et al. introduce funda-
mental concepts for semantic consideration of intelligent agents, multi-
agent systems, as well as the interaction and communication between 
agents. 

MAS are highly dynamic systems allowing for flexible adaptation to 
concrete situations. On the other hand, software systems for real-world ap-
plications have to act in concordance with the requirements specification. 
From this contradiction a further challenge arises. The problem is to con-
struct agents and MAS being flexible and dependable. In IV.6, Nimis et al. 
introduce approaches for ensuring reliability within MAS. 

Experiences gathered in the knowledge engineering domain suggest, 
that complexity and variation of applications require efficient methods and 
reusable modules. Thus, another challenge is the tool support for specifi-
cation and implementation as well as standardization of agent related tech-
nology. For commercial applications, the reusability of agents but also 
MAS is important. Therefore, Braubach et al. deal with existing standards 
and available tools in Chapter IV.7 on Tools and Standards. 

After implementation of a system, it is important to evaluate, validate or 
verify the system with respect to the requirements. Testing of software as 
long as it is not based on model checking or formal verification is not con-
sidered within current AOSE approaches adequately [WeJa2005]; [BeGZ 
2004]. In highly distributed systems testing is complex and suffers from 
concurrency [Ried1997]. Therefore, the challenge for testing MAS is 
discussed in IV.8. As there are no significant approaches in AOSE; Timm 
et al. present a general approach from software engineering and artificial 
intelligence and their application in AOSE. 

In consequence, we are focusing on the specific requirements of agents 
and multiagent systems in the following chapters in Part IV: requirements 
engineering (cf. IV.2), interaction design (cf. IV.3) and architectural de-
sign (cf. IV.4), semantics (cf. IV.5), dependable agent systems (cf. IV.6), 
tools and standards (cf. IV.7), as well as testing (cf. IV.8). 

Further Reading 

As mentioned before, there is a set of good textbooks and collections on 
AOSE. The book of Bergenti et al. [BeGZ2004] focuses on a detailed and 
technical description of different approaches to AOSE methodologies. 
Here, special as well as general purpose development methodologies are 
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presented. Weiß and Jakob [WeJa2005] compare AOSE methodologies in 
a consistent way using a comprehensive scenario. As a final recommenda-
tion, the book of Luck et al. [LuAD2004] presents a technical view to 
AOSE, where existing methodologies play a minor role. 
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Abstract. This chapter investigates requirements engineering (RE) for agent-
based systems and in this context discusses the assumption that requirements en-
gineering methods and tools are independent of the used technology. For this pur-
pose, specific needs of agent-based systems that must be considered during re-
quirements engineering are examined. As a possible approach for the fulfillment 
of the discussed needs, the capability of methods of goal-oriented requirements 
engineering (GORE) to support requirements engineering for agent-based systems 
is investigated. 

2.1 Introduction 

The development of agent-based systems requires the use of appropriate 
processes, methods and tools of software engineering (SE). Accordingly, 
the engineering of agent-based information systems usually follows a 
software process [WeJa2005]. While these software processes may vary 
greatly, they typically consist of several phases, such as requirements en-
gineering, information system design, implementation, test and mainte-
nance. These phases generally are interdependent, as their successful com-
pletion relies on deliverables provided by previous phases [Balz2000]. 
Therefore, phases of software processes may not be completed properly or 
in time, if required deliverables are missing, incomplete or inappropriate. It 
is a well-known fact that such problems regularly result in increased cost 
or significant delay of software development [Boeh1981]. 

As an early step of SE, requirements engineering (RE) deals with re-
quirements of stakeholders concerning the information systems to develop. 
For this purpose, requirements are collected and brought into a specifica-
tion the developer is capable of building the desired system upon. In that 
way RE provides crucial deliverables for the following phases of informa-
tion systems design and implementation. As a consequence, RE is consid-
ered as a critical prerequisite for efficient and successful software projects, 
because inadequate or incomplete results of RE may lead to technological 
and economic risks in software development [Part1998]. 
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A general assumption in RE is that procedures, methods and tools of RE 
are fully independent of the technologies used later on to design and 
implement the system. In the context of a new technology, such as agent 
technology, this leads to two questions: Does this new technology demand, 
according to new design opportunities, the development of currently un-
available RE methods? Does the new technology by itself introduce new 
types of requirements, which have not been considered so far in RE as it is 
performed today? It is the purpose of this chapter to investigate these two 
questions in detail. 

This chapter is structured as follows: To obtain a basic understanding 
we sum up the state of the art in RE and discuss specific aspects of agent-
based technologies which must be considered during RE in Section 2.2. 
Section 2.3 discusses goal-oriented requirements engineering (GORE) 
methods as a common approach to engineer requirements for agent-based 
systems. Respective methods are introduced in Section 2.3.1 and evaluated 
regarding their capability to support the phases of RE in Section 2.3.2. Fur-
thermore their capability to specify relevant criteria of the organizational 
environment of information systems is investigated in Section 2.3.3. Sec-
tion 2.4 summarizes the results of this chapter and discusses possible per-
spectives for further research in this area. Section 2.5 lists the references 
used in this chapter. 

2.2 Agent-Oriented Requirements Engineering 

A sophisticated RE is considered an important prerequisite for successful 
software projects, as a lot of mistakes and failures during system develop-
ment are the direct causes of inadequate requirements elicitation and 
analysis [IbRe1996]. A systematic and prioritized requirements-elabora-
tion prevents these problems by supporting early discovery of unsuitable 
requirements and thus limits the costs of error correcting, which usually 
grow exponentially over time during development [Boeh1981] 
[NaKu1991]. 

2.2.1 Phases and Methods of Requirements Engineering 

Even though there is overall consensus on the importance of RE, the defi-
nitions of the requirements process and its activities are not standardized 
[Kava2002]. The variety of proposed approaches for RE ranges from two 
activities (problem analysis and product description [Davi1993], require-
ments elicitation and requirements analysis [Grah1998]) to four activities 
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(elicitation, negotiation, specification documentation and verification/vali-
dation [Pohl1996]) all the way to a framework consisting of eight activities 
(eliciting, elaborating, structuring, specifying, analyzing, negotiating, 
documenting and modifying [vanL2004]). 

A further process model presented by [HiDa2003] adds more detail to a 
process model proposed by the SWEBOK [AbMo2004]. This model is 
mappable to the Sommerville Model [Somm2005] and thus combines most 
aspects of the other approaches. Therefore, we will base our further analy-
sis on its five phases and introduce them shortly: 

• Phase of requirements elicitation: Includes the learning, uncovering, ex-
tracting, surfacing and/or discovering of needs of customers, users, and 
other potential stakeholders. Techniques used in this phase may be in-
terviews, scenarios, prototypes, facilitated meetings and/or observations 
[AbMo2004], as well as group elicitation, cognitive techniques or con-
textual techniques [NuEa2000]. The result of this phase is a deeper un-
derstanding of the stakeholder needs, which may be incrementally de-
tailed during the further process. 

• Phase of requirements modeling: Is used to create and analyze models 
of requirements. The aim of the modeling is an increasing understanding 
of the respective requirements, as well as an identification of incom-
pleteness and inconsistency. For this purpose, especially the modeling 
of essential properties of the system environment and/or the application 
domain in terms of data, structures, rules and behaviors is considered as 
useful [Broy2004]. Furthermore, the provision of appropriate model-
representations improves the ability to communicate about requirements 
with stakeholders. This phase is closely connected to the triage phase. 

• Phase of requirements triage: In this phase, subsets of the requirements 
ascertained by the requirements elicitation are determined, which are 
considered as appropriate to be addressed in specific releases of a sys-
tem. This may be done by requirement prioritization, resource estima-
tion and requirement selection [Davi2003]. Also integrated in this phase 
are the analysis and understanding of the requirements, their overlaps 
and conflicts as well as the negotiation about the requirements priority 
with the stakeholders to obtain a consistent set of requirements 
[Somm2005]. Thus this phase is closely connected to the modeling 
phase.

• Phase of requirements specification: Includes the documentation of the 
desired external behavior of a system. The specification notation or lan-
guage used for this purpose may be formal, semi-formal or informal, 
ranging from logic to natural language [NuEa2000]. In this phase, the 
focus lies on the ability to communicate with the system designers and 
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developers without losing sight of the other requirements’ stakeholders. 
This phase results in a representation of the user requirements that sys-
tem designers and developers are capable of understanding. 

• Phase of requirements validation/verification: Comprises the determina-
tion of reasonableness, consistency, completeness, suitability, and lack 
of defects in a set of requirements. The purpose of requirements valida-
tion is to certify that the requirements are acceptable descriptions of the 
system to be implemented (the stakeholders´ intention). Techniques 
which can be used may be review and/or testing [PaEM2003]. In con-
trast, requirements verification checks requirements specifications for 
internal consistency through mathematical proofs or inspection tech-
niques [HoLe2001]. Thus this phase will be closely connected to the 
specification, because its result is a consistent, thorough and best suiting 
specification. 

While the above enumeration of phases may convey the impression that 
the order of the requirements process is sequential, the introduced activi-
ties are usually intertwined or run in parallel [HoLe2001] [HiDa2003] 
[Somm2005]. 

These phases serve as a generic framework for the engineering of re-
quirements, whereas RE as part of SE must face several challenges. In 
particular, the need of businesses to respond quickly to new opportunities 
and challenges must be taken into account. Accordingly, SE and, hence, 
RE paradigms and methods are affected by several change drivers [Somm 
2005]: 

• need for rapid software delivery, 
• increasing rate of requirements changes, 
• need for improved ROI on software, 
• new approaches to system development. 

Especially the effects of the last key change driver can be observed 
when looking at the ongoing changes in SE over the last 30 years. These 
effects do not affect only single, but all entities involved in software de-
velopment and maintenance, because these entities overlap to some extent 
or depend on each other. Thus “[…] one must focus on individual aspects 
[…]” in the SE process [LeRa2002]. Nevertheless, closer connection and 
integration of the RE and remaining development processes seems desir-
able to “[…] address the system development challenges of the 21st cen-
tury […]” [Somm2005]. 

This seems particularly true for agent-oriented software engineering 
(AOSE). Here, processes and methods for the engineering of agent-based 
systems must be capable of meeting the special needs driven by agent-
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based technologies. However, the decision for the use of specific tech-
nologies, such as agent-based technologies, usually comes after the initial 
RE phase. Thus, methods are needed, which on the one hand allow the en-
gineering of requirements independent of specific technologies, but on the 
other hand are able to supplement requirements specific to the used tech-
nologies. For this purpose, additional technology-specific requirements 
must be integrated with already elicited technology-independent require-
ments. 

2.2.2 Agent-Oriented Requirements 

Methods of goal-oriented requirements engineering (GORE) seem capable 
of meeting the needs just mentioned. In fact, these methods are an out-
growth of agent-oriented development and are already used in AOSE 
[ArWo2002] [Hein2005]. 

2.2.2.1 Functional and Non-Functional Requirements 

Aspects of information systems, which may be used as requirements, are 
proposed by different quality models and standards. As a well-known 
standard, the ISO/IEC 9126 standard defines top-level characteristics as 
requirements concerning the capability of the application: 

• to provide defined functions (functionality),
• to provide a specified performance level under specified conditions 

(reliability),
• to be understood, learned, used and attractive to the user (usability),
• to provide appropriate performance with given resources (efficiency),
• to be modified for corrections, improvement or adaptation (maintain-

ability),
• and to be transferred to different environments (portability).

These requirements furthermore are refined in several sub-characteris-
tics [ISO2001]. 

In general, one distinguishes functional and non-functional requirements 
[ThDo1990] [Chun1993]. Functional requirements determine the available 
behaviors and functions as a result of installing and interacting with the 
system. In contrast, non-functional requirements (NFR) determine avail-
able properties and qualities as a result of installing and interacting with 
the system [Jack1998]. Reliability, usability, efficiency, maintainability 
and portability are considered as non-functional requirements. 
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As functional requirements depend on specific aspects of the respective 
domain and individual application, no general assumption about them can 
be made. Thus, in the following we focus on non-functional requirements. 

2.2.2.2 Linking Requirements and Flexibility 

Agent technology is a candidate for system design whenever a high degree 
of flexibility is needed. Therefore, before mapping the aforementioned top-
level requirements to the specific capabilities of agent-based systems, we 
take the intermediate step of examining the relative importance of the non-
functional requirements for flexibility. Flexibility has several aspects. 
Technical flexibility is the ability of a system to react adequately to exter-
nal influences with its current functionality and configuration. Economic 
flexibility is the adaptability of a system to changing demands under the as-
sumption that additional resources are to be involved. Static flexibility is
all flexibility potential that remains fixed within a given period of time. 
Dynamic flexibility is the capability of changing flexibility potential at run-
time. 

The various aspects of flexibility will indeed contribute to the fulfill-
ment of ISO/IEC 9126 requirements types. Maturity, as a sub-characteris-
tic of reliability, addresses the avoidance of failures as a result of faults in 
the software. Here dynamic, static, and technical flexibility may be useful. 
Fault tolerance, as another sub-characteristic of reliability, can be 
achieved through dynamic and technical flexibility. Portability requires a 
high degree of flexibility to react in different environments and situations 
and encompasses all four identified dimensions of flexibility. Adaptability 
as a sub-characteristic of portability describes “[…] the capability of the 
software product to be adapted to different specified environments without 
applying actions or means, other than those provided for this purpose for 
the software considered.” [ISO2001]. These issues are addressed by tech-
nical, static, and dynamic flexibility. Coexistence, as a further sub-charac-
teristic, also addresses technical, static, and dynamic flexibility. Finally, 
the capability of systems to adapt to users may have effects on usability
and may benefit from dynamic and static flexibility. 

2.2.2.3 Relating Agent Properties and Flexibility 

The third and last step is to relate the aspects of flexibility to agent proper-
ties and, as a result, determine how the non-functional requirements can 
exploit the potential of agent technology. According to [WoJe1995] there 
are four high-level requirement categories [DeIm2005] that can be seen as 
building blocks for flexibility in agent-based systems: proactivity, i.e. so-
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ciability, autonomy and reactivity. These requirements in turn, are con-
nected to aspects of agent-based technologies, as already discussed in pre-
vious chapters, such as goals, situated behavior and autonomy. 

Goals, reactivity and proactivity 

In the agent-technology context, a goal is an “[…] information that de-
scribes situations that are desirable.” [RuNo2003]. Goals are defined as the 
consistent and achievable subset of desires whereas desires are inputs to 
the agent’s deliberation process [SiRG2001]. Thus, information about 
goals is required to implement proactive or reactive behavior that enables 
agents to act flexibly and provide flexibility. 

Goals should thus be the fundamental concept underlying the require-
ments engineering methods for agents. These methods should consider 
how the intended system would meet organizational goals [DeIm2005]. 
The interesting question is whether the organizational goal concepts used 
by these methods will ever be matched by the more technology-oriented 
goal concept used by agent-based system. In general, it seems that the goal 
concept in the RE domain is semantically richer than the technology-ori-
ented one, since more complex goals, which are typical for human beings, 
are considered and cannot be integrated directly into agent-based systems 
yet. 

Situated behavior and sociability 

An agent should be able to “[…] continuously interact with, or to be em-
bedded in its environment.” [Weis2003]. This situatedness refers to the 
agent’s capability to use its environment as an information source, by per-
ception of the environment or communication with other agents to better 
cope with situations where the agent has no complete world-model of 
[GoWa2003]. Thus it has to interact with other agents in an organizational 
setting, something that can be seen as a capability to communicate, coordi-
nate and cooperate in a social context. This in turn enables flexibility 
through the ability to deal with dynamic situations and environments. 

Here, requirements regarding organizational aspects and aspects of in-
teraction must be considered in RE. This may be done using already ex-
isting common RE methods, such as scope definition or stakeholder analy-
sis. To some degree, respective requirements are also the subject of GORE 
methods. The open question yet is if these methods are sufficient to handle 
the respective requirements. 
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Autonomy 

The concept of autonomy suffers from a major problem, in that “[…] it is 
difficult to limit it in a definition.” [HeCF2003]. It is “[…] one of the most 
used but least operationalized words in the fields of intelligent agents and 
multi-agent systems.” [LuDM2003]. 

This is a major problem for the connection to the RE domain: How can 
the domain elicit requirements or adapt methods to capture a requirement 
which is not really clear, even though different methods exist to elicit un-
certain knowledge? Therefore, as long as the concept of autonomy is not 
concretized, it cannot be supported in RE methodology appropriately. 

2.3 Goal-Oriented Requirements Engineering 

As we just saw, while there is no direct connection between high level re-
quirements, such as those provided by ISO/IEC 9126, the requirement of 
flexibility, and design aspects of agent systems, it seems possible to iden-
tify indirect links between these levels of requirements, in particular be-
tween high-level requirements and the requirement for flexibility, as well 
as between the requirement for flexibility and design aspects of agent sys-
tems. We also noted that goals seem to be the key to the process of re-
quirements engineering with agents. We refer to such a process as Goal-
Oriented Requirements Engineering (GORE). This section gives an intro-
duction. 

2.3.1 Overview 

The main problem within the requirements engineering process lies in the 
fact that customers’ expectations are often vague, incomplete, inconsistent 
or expressed informally [DeIm2005]. To better cope with this fact and to 
build a sound basis for further system development, the concept of early 
requirements engineering was brought into play which is “[…] concerned 
with the understanding of a problem by studying an organizational setting 
[…]” [CaKM2001]. Thus the intentions of stakeholders are captured by 
forming them into goals because “[…] the study of contemporary require-
ments engineering […] methodologies indicates that modeling of organiza-
tional goals constitutes a central activity of the RE process.” [Kava2002]. 
Furthermore “Goals have been recognized to be among the driving forces 
for requirements elicitation, elaboration, organization, analysis, negotia-
tion, documentation, and evolution.” [vanL2004]. 
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According to their significant new description element, the early re-
quirements engineering methods focusing on goals form a special branch 
of requirements engineering named “Goal-Oriented Requirements Engi-
neering” (GORE). They represent an extension of the classical RE meth-
ods and better support the early-requirements phase: “Previously the world 
to be modeled consisted just of entities and activities.” [DeIm2005]. 

Goals are the core concept in terms of modeling the stakeholders’ inter-
ests and concerns, organizational goals, reasons for the later system to ex-
ist or hint on the alternatives for the subsequent development decisions. 
Agents on the other hand are seen as entities with goals. GORE methods 
try to serve both goal concepts. Some of the more noteworthy methods are: 

• KAOS [DaLF1993] [vaDL1998] [vanL2000], 
• EKD (Enterprise Knowledge Development ) [KaLo1998],
• AGORA (Attributed Goal-Oriented Requirements Analysis) [KaHS 

2002],
• GBRAM (Goal-Based Requirements Analysis Methodology) [Ant+ 

2001],
• Albert I & II (Agent-oriented Language for Building and Eliciting Real-

Time requirements) [DDDP1994]. 

Each method focuses on a different part of the RE-process as far as 
functions, phases or modeling elements are concerned. 

In the following section we will first show how far the methods are us-
able during the RE phases defined in Section 2.2.1 and then analyze from a 
perspective of meta-modeling which types of organizational goals are cur-
rently supported by existing RE methods. To complete this analysis we 
consider further GORE methods and also methods from the related re-
search field of Agent-oriented Requirements Engineering (AORE) with the 
case of i* [Yu1997] and Agent-oriented Software Engineering (AOSE) 
with the case of Tropos [CaKM2001]. 

2.3.2 Goal-Oriented Requirements Engineering Methods in the 
Requirements Engineering Phases 

Based on a review of the documentation of existing GORE methods, fur-
ther research conducted by [NuEa2000] [KaLo2004] and especially the 
work done by [Hein2005] we analyze the capability of methods of GORE 
to support the previously presented phases of RE. While an objective as-
sessment of the capabilities of these methods is intended, the level of detail 
of the available documentation of some methods is not always adequate for 
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this purpose. In these cases a more subjective decision, whether a method 
seems to fulfill the basic needs of a certain RE phase, was brought about. 

• Phase of requirements elicitation: According to the results of [Hein 
2005] the phase of requirements elicitation is the quantitatively best 
supported phase. It is found that in relative comparison EKD facilitates 
better than Tropos, i* and AGORA. On the other hand KAOS does not 
support this phase at all. [KaLo2004] comes to the same result. None of 
the methods explicitly stress a certain method for the elicitation of 
customers or stakeholder needs as requested in the definition. 

• Phase of requirements modeling: In the underlying analysis papers, the 
modeling phase is connected with either the elicitation or the triage 
phase and called “negotiation”. To come to a judgment of whether a 
method supports modeling or not we refer to the next section in this pa-
per which deals with the question of goal modeling from a meta-mod-
eling perspective. 

• Phase of requirements triage: The results of the aforementioned 
“negotiation” phase are directly connected to this phase according to the 
fact that the triage phase is concerned with the communication with 
stakeholders and/or actors about the elicited and modeled goals and re-
quirements in terms of deliberation. [Hein2005] comes to the conclusion 
that for this phase no single method is best suited, even though Tropos 
and i* have rudimentary support for negotiation with the stakeholders. 
[KaLo2004] underlines this impression because they do not associate 
any of the analyzed methods with this phase. 

• Phase of requirements specification: The results from [Hein2005] show 
that this phase is supported best in comparison to the other phases. In 
detail, the support of KAOS for this phase is considered best followed 
by Tropos, NFR and GSC. [KaLo2004] also considers GBRAM as a 
suitable method to support this phase. Furthermore, Albert I & II facili-
tate this phase in a formally defined way. 

• Phase of requirements validation: According to [Hein2005] and 
[KaLo2004] this phase is the worst supported phase in terms of activi-
ties explicitly advised in this phase’s definition. GSN implicitly supports 
this phase according to the formal specification notation. This also ap-
plies for Albert I & II, GBRAM and NFR, which do allow an evaluation 
of the impact of decisions. URN and AGORA are assumed to support 
this phase best. 

Table 1 sums up the discussed results1:

1 s = suited; cs = conditionally suited; na = not appraisable. 
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Table 1. GORE methods per RE phase 

 Elicitation Modeling Triage Specification Validation 

GSN na s s s cs 

AGORA s s s s s 

i* s s s na na 

GDC s s s na na 

NFR cs s cs s cs 

GBRAM na s s s cs 

EKD s s s cs na 

GCS Method na na cs s na 

KAOS s s na s na 

ALBERT I&II na cs na s cs 

URN cs s s s s 

Tropos s s s s na 

2.3.3 Mapping of Requirements Through Goal-Oriented 
Requirements Engineering 

As stated in the previous sections, goals and organizational aspects are im-
portant elements of requirements engineering for agent-based systems. To 
analyze the capability of GORE methods regarding the modeling of such 
goals and organizational aspects, we take a closer look at these elements 
using a meta-modeling perspective. 

Meta-models apply in many research fields, such as the evaluation of 
object-oriented analysis methods [Stra1996] or Model Driven Architec-
tures [KlWB2003]. In scientific literature the term “meta-model” is used in 
very different ways. But in general a meta-model can be understood as a 
models’ model, also called an object model. 

According to [Stra1996] language based and process based meta-models 
are distinguished. Language-based meta-models represent the syntax, se-
mantic and notation of the object models [KaKu2002]. The syntax de-
scribes the elements and rules for creating models using grammar. Seman-
tics represent the meaning of a modeling language and for this purpose 
consist of a semantic domain describing domain-specific meaning and a 
semantic mapping to connect syntactical elements and domain-specific 
elements. Finally, the visualization of the respective modeling language is 
defined by the notation. In contrast, process-based meta-models define 
single modeling steps that need to be done when creating object models. In 
this chapter, we use language-based meta-models. 



370 T. Bieser et al. 

2.3.3.1 Goal Meta-Model 

The term “goal” is used to convey several meanings, including human 
tasks, problem-solving outcome or desired states. Therefore it seems diffi-
cult to identify a uniform notion of goals in requirements engineering. It is 
however possible to distinguish enterprise, process and evaluation goals as 
abstract types of goals [KaLo2004]: 

Figure 1. Goal meta-model 

Enterprise goals describe wishes a company wants to achieve and can 
be business wide or single actor goals. Process goals designate any de-
mand to be satisfied or issue to be discussed. Evaluation goals in contrast 
aim to assist requirements engineering validation signifying the stake-
holders’ criteria against which a system specification can be assessed 
[KaLo2004] [Mylo1992]. For the purpose of this chapter, we focus on en-
terprise goals and thus assess the capability of GORE methods regarding 
their capability to model these. 

The underlying elements of the enterprise goal meta-model are: 
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• Goal: In general goals designate an aimed state or development that ar-
rives as the effect of decisions [Hein1976] [Bidl1973]. Therefore goals 
have a guiding action character; the aiming and fulfilling intention is an 
integral part [Fres1992]. 

• Actor: An actor normally has at least one goal. The goal achievement 
leads to concrete tasks. An actor represents a role [Balz2000] [Jeck 
2004] that can be taken by persons or groups, and interacts with other 
actors again. 

• Resource: Generally spoken, resources characterize means or instru-
ments to solve certain tasks. At the most, resources subsume working 
fund, basic materials, persons or information [Gabl2000]. 

• Relationship: Between the goals, diverse interdependency relations exist 
that provide information on which way the implementation of a specific 
goal influences the others: they can be either satisfying (complemen-
tary), neutral or influencing (concurrent) [BeDS2000]. 

• Rationale: The rationale is the explanation for the fundamental reasons 
[Kuep1975]. 

An analysis of the before mentioned GORE methods has shown that es-
pecially AGORA, I*, NFR, EKD and GBRAM address the business focus 
the most, wherefore the focus will be constricted to them. 

The analysis shows that i* accomplishes most of the specified criteria, 
whereas EKD and GBRAM meet them less. None of the studied methods 
address actors on the level of individuals or groups. Although i* exclu-
sively caters to the needed resources, it leaves out the rationale for the 
specified goals. Thus the “why”-question suffers noticeably. Measured by 
the defined characteristic values, both GBRAM and EKD handle the goal 
term undifferentiated. They also do not address the necessary single tasks 
and activities for achieving the specified goals. 
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Table 2. GORE methods per goal element 

 AGORA i* NFR EKD GBRAM 

Goals    

Time referenced      

Hardgoal      

Softgoal     

Prioritized    

Contribution    

Rationale    

Actors
Individual      

Group      

Tasks    

Resources     

Relationship     

Satisfying and/or 

Influencing conflict support 

2.3.3.2 Company Organization Structure Meta-Model 

On eliciting goals the organizational context may not be disregarded, as a 
poor understanding of the surrounding domain is a primary cause of proj-
ect failure [CuKI1988]. Therefore a deep understanding of the needs, in-
terests, priorities and abilities of the various actors and players is indis-
pensable [Yu1997]. Therefore the characteristic elements of an organiza-
tional meta-model need to be defined [RoMu1997] [HiFU1994] and mod-
eled in a semantic data model [Balz2000]: 

• Role: In research literature a consistent understanding of this term does 
not exist yet. Therefore we define in this context a role to be the mini-
mal qualification for the execution of a task (e.g. special skills), trans-
ferred competences, privileges and responsibilities. 

• Job: A job combines several tasks and delegates them to a person 
permanently. One task comprises different single activities that need to 
be processed. Activities are elements of any processes. Various relations 
(e.g. technical assignment or substitute regulations) exist between single 
jobs. Jobs that perform tasks together are often centralized to depart-
ments. 
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• Job type: Job types represent jobs with the same competences. One job 
type can comprise several roles whereas one role can be referenced by 
several job types. 

• Task responsible: A task responsible is at least one person, as only per-
sons can carry competences and responsibilities. It is also possible that 
one job is executed by two or more persons, which can be both internal 
and external [HiFU1994] [Thom1992]. As external persons (e.g. 
customers or freelancers) need to be modeled too, we abandon the obli-
gation of attaching a person to a job. 

• Organizational unit: Single units are combined to organizational units, 
which on their part build the company organization structure. They can 
be differentiated as permanent and temporary. Temporary organization 
units normally lie orthogonal to the permanent units and allow building 
structures such as projects or committees. 

• Connecting paths: As jobs always only accomplish sub-tasks they need 
to be connected in the sense of cooperation and coordination. Therefore 
several connecting paths are established, on which either physical ob-
jects or information is exchanged. Consequently we differ between 
routes of transport and information paths. The issue of routes of trans-
port is normally subsumed under the term “materials logistics.”  
Information logistics on the other hand must supply jobs with their re-
quired information and support the information exchange between jobs. 
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Figure 2. Organization structure meta-model 

For the analysis of existing GORE methods in reference to the ability to 
capture organizational structures to a sufficient extent all methods have 
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been taken into account, as the consideration of these structures is not 
bound to a special type of method as was the case in the goal-focused 
analysis. The formal organizational elements worked out of the evaluated 
methods are presented in Table 3. 

Table 3. GORE methods per formal organizational element 
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As a first result it is obvious, that eight of the evaluated methods do not 
picture the organizational reality at all, as can be found in Workflow-Man-
agement-Systems, for instance as a counter example. Only four methods, 
namely i*, EKD, URN and Tropos, contain the option to sufficiently map 
at least some of the needed elements. Single roles can be modeled and 
connected to task responsibles that appear in a non-nearer specified role. 

2.4 Conclusion and Further Research 

In this chapter, some questions that arise in the context of requirements 
engineering for agent-based systems were discussed. Thus a notion about 
the demands that suitable RE methods must face was developed to see if 
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existing methods comply with these needs. Therefore we presented the dif-
ferent phases and methods of RE to get a basic understanding of agent-
based RE in general. In a second step we analyzed flexibility as the major 
advantage of agent systems and split it up into more operationalizable con-
stituents: goals, situated behavior and autonomy. Because of the goal-ori-
entation of MAS, we restricted our view to the methods of Goal-Oriented 
Requirements Engineering and their capability to manage relevant re-
quirements. 

We found out that not all introduced phases of requirements engineering 
are covered by all discussed GORE Methods. The AGORA method is 
suited best to support all RE phases. Furthermore, not all relevant aspects 
regarding goals and organizational requirements are handled adequately by 
all GORE methods. Here, the i* method provides the best support for mod-
eling goals and further organizational aspects. 

The most significant capability of agent-based systems is to provide 
flexibility. This capability comprises technical, economic, static and dy-
namic flexibility as the capability of changing flexibility potential at run-
time, which characterizes the ability to adapt to changes in different ways. 
None of the analyzed GORE methods directly support these dimensions of 
flexibility. Instead they focus, among other aspects, on the derived char-
acteristics, such as goals. 

GORE methods can be considered as independent of the underling tech-
nology insofar as they focus on requirements from a very abstract point of 
view. Thus, they are in a way suitable for RE for agent-based systems, as 
they focus on the description of requirements by defining goals and the 
environment of a system. By this, they allow the identification of techno-
logically independent requirements, while concrete technical requirements 
of a system are not considered. However, this abstract point of view may 
not be suitable to capture all relevant types of requirements. This becomes 
apparent when looking at the requirements discussed in connection with 
flexibility. They are omitted by the GORE methods presented above. Yet, 
we showed that indirect links between high-level requirements, flexibility 
requirements and concrete design aspects of agent systems, such as goals 
and organizational environments, can be identified. Thus, flexibility re-
quirements can be represented only indirectly by goals and organizational 
environments in GORE methods. 

Further research in this line will pursue the development of new GORE 
methods for better addressing the agent-based requirements. While a first 
step towards the identification of new requirements was done in this chap-
ter, there is still a lot of analysis necessary to better define aspects of flexi-
bility. However, as the current focus of GORE methods is not suitable to 
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capture all types of requirements, additional RE methods may be needed to 
capture these very requirements. 
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Abstract. Interaction is one of the core challenges in multiagent systems. It en-
ables agents to share their knowledge, to do competitive or cooperative planning, 
coordination or bargaining, to interact with their principals, and to simple act. In-
teraction has to be restrictive enough to enable reliable system behavior and 
should be permissive enough to allow for flexibility or emergent behavior and per-
formance. Obviously, the design of interaction differs from interface design in 
conventional software engineering significantly. Agents may also be designed for 
use in changing, respective unknown environments. 

3.1 Introduction 

The main benefit of MAS might be found in the provided flexibility. This 
flexibility is similar to the properties of emergence, which have been dis-
cussed from the early days of MAS research on. As one of the key chal-
lenges for engineering MAS is interaction design. Conventional design and 
implementation of distributed systems consists of standardizing interaction 
and consequently implementing strict interfaces. The approach of Web 
Services incorporates flexible links of consumer to provider services. Nev-
ertheless, there is no “slack” in their interaction, which allows for solving 
dynamically emerging problems. 

Interaction design should enable a system engineer to avoid a possible 
rigid design character of distributed interacting system components. This 
Chapter will introduce the fundamental concepts and general approaches 
used in agent interaction design, the agent interaction capabilities, and 
types of agent interactions. 

This chapter is organized as follows: We introduce the foundations of 
agent interaction with special focus on categories of application domains. 
On this basis, different properties of communication resp. interaction 
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mechanism evaluation are discussed. The following sections are focused 
on different types of interaction infrastructures, i.e., shared memory and 
message passing. Subsequently, agent communication languages are 
briefly introduced. The question of mechanism design resp. design of in-
teraction in AOSE is discussed following the four AOSE methodologies 
introduced in IV.1. Concluding, challenges for the design of interaction in 
heterogeneous multiagent systems are identified. 

3.2 Foundations of Agent Interaction 

A collection of agents becomes an agent society only if the agents can 
interact. As mentioned earlier, the autonomy of the individual agents re-
sults in loose coupling among the agents. Weiss [Weis1999, p. 3] identifies 
four major characteristics of multiagent systems that have a direct bearing 
on the interaction between agents: 

• Each agent has just incomplete information and is restricted in its capa-
bilities. 

• System control is distributed. 
• Data is decentralized. 
• Computation is asynchronous. 

In other words, there is no “natural” central authority to which the 
agents can turn to organize the cooperation – if they need such an authority 
they would have to find one of their own, an agent, to take on this respon-
sibility. 

The characteristics of multiagent systems as described above imply that 
the agents are organized in a distributed way, i.e., they have their own 
knowledge bases as well as their own control cycles. Depending on the ap-
plication of the multiagent system, the agents will have to solve problems 
either cooperatively or competitively, and this will determine the kind of 
required interaction. Rosenschein and Zlotkin distinguish between three 
different categories of application domains [RoZl1994]: task-oriented 
(TOD), state-oriented (SOD), and worth-oriented (WOD) domains. These 
domains are organized in a three-tier theoretical model, where WOD are 
the most general and TOD the most specific kind of domains. 

• TOD: multiagent systems are mainly used for distributed problem solv-
ing under the assumption that all required resources are available, i.e., 
agents are cooperatively solving problems or tasks which cannot be 
solved by a single agent or entity. 
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• SOD: the challenge for agents in these domains arises from efficient and 
effective negotiation about bottleneck resources, and agents have to 
transform an initial state to one of their goal states. In contrast to TOD,
these domains are characterized by conflicts and competition over lim-
ited resources. 

• WOD are a generalization of SOD, where every state is associated with 
a function assessing the private value for the agents (the “worth” to an 
agent). This allows for the application of decision or game theoretic ap-
proaches to agent coordination. SODs may be implemented as WOD
where all none-goal states are assessed a value of 0. 

For multiagent design, it is crucial to clarify the type of domain before 
specification of interaction issues. Interaction control in TOD settings 
should mainly rely on behavior whereas monetary assessments as in auc-
tion protocols seem less suitable. In WODs conflicting recommendations 
may be proposed so that structured and monetary-based communications 
are the first choice for interaction design. Open negotiation does not take 
advantage of the possibility to evaluate individual states by each agent. 
Therefore, a pattern-based interaction control seems superior for this case. 

In consequence, interaction may be evaluated with respect to the change 
of value for an agent. The resulting question for the interaction design is 
the choice of the adequate interaction control for a specific situation. 

As introduced in I.2, there are two basic concepts for realizing agent 
interaction: shared memory and message passing. Message passing results 
in a looser coupling of agents, leaving them more latitude and thus better 
flexibility in their actions. Consequently, in recent research and applica-
tions of multiagent systems message passing is the predominant method 
for agent interaction. Notice, that none of the research projects presented in 
Parts II and III utilized a shared memory approach.

3.3 Interaction in Multiagent Systems 

Cooperative distributed problem solving has been one of the starting points 
for distributed artificial intelligence research in the 80ies. The study of 
how loosely-coupled networks of problem solvers could work together to 
solve problems beyond individual capabilities has been in focus of re-
search [DuLC1989]. Cooperation has been necessary, because no single 
agent is assumed to have sufficient expertise, resources, or information to 
solve a problem solely. The basic assumptions of this approach are that 
agents are benevolent, share common goals at least implicitly, and there is 
no potential for conflicts of interest between agents. 
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In real-world business scenarios the assumption of benevolent agents or 
cooperative settings does not hold. Furthermore, it is assumed that multi-
agent systems are “societies” of self-interested actors, which do not neces-
sarily share common goals. A reason for this may be found in the fact, that 
agents in a multiagent system have been designed and implemented in a 
different way and thus do not share common goals. Therefore encounters 
between such agents resemble games where agents have to act strategically 
in order to achieve their goals. Since agents are designed with autonomous 
behavior they must be capable of dynamically coordinate their actions and 
cooperate with other agents at run-time of the system. In contrary classic 
distributed systems have their coordination and cooperation potential 
hardwired at design time [Wool2002]. 

A simplified approach would distinguish between two types of multi-
agent systems: cooperative and competitive. However even in cooperative 
settings coordination mechanisms based on competition, e.g. auction pro-
tocols, may be applied. 

For evaluation purposes, the assessment of efficiency is crucial. In order 
to make a well-founded decision, a set of evaluation criteria is required to 
support the decision process. Rosenschein and Zlotkin introduced a set of 
five attributes of negotiation mechanisms, which may assist in the selec-
tion of concrete mechanisms [RoZl1994]. The first property, efficiency, is 
related to an agent’s usage of resources with consideration of global and 
Pareto optimality (cf., e.g., [Krep1990]). The stability of a negotiation 
mechanism is closely related to the definition of strategies in equilibrium, 
i.e., no individual agent should have an advantage of acting incentively 
[FuTi1991]. This aspect is accompanied by the property symmetry, which 
is addressed to the problem, that interaction mechanisms should not be ar-
bitrarily biased against an agent. Two further properties deal with com-
plexity issues: simplicity, the overall computational complexity for an indi-
vidual agent but also for the community of agents should be in balance 
with benefits of cooperation between agents and the distribution property 
suggests that there should not be a central decision maker for applying the 
negotiation mechanism. Sandholm has proposed similar evaluation criteria 
for the choice of interaction control in [Sand1999]. In his approach, social 
welfare measures the “global good” of all agents, i.e., the payoffs or utili-
ties in a given solution and is closely related to the next criterion, the 
Pareto efficiency. This criterion measures also the “global good”, but does 
not require inter-agent utility comparisons. In contrast to these global effi-
ciency criteria is the local individual rationality. Here, the payoff of an 
agent from a negotiated solution should be no less than the payoff it would 
have if it would not participate in the negotiation. The next criterion is sta-
bility which Sandholm defines on the basis of the Nash Equilibrium, i.e., 
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strategies resp. dominant strategies. The last two efficiency criteria are ad-
dressed to complexity: computational efficiency within an agent as well as 
distribution and communication efficiency.

While the evaluation criteria of Rosenschein and Zlotkin as well as 
Sandholm form an abstract basis for the assessment of interaction mecha-
nisms, the challenge here lies on the formulation of criteria, which may be 
applied to practical settings of multiagent system applications. These set-
tings for evaluation are given by agents in a multiagent system, a problem 
associated with a payoff-function for its solution, and a cost-function asso-
ciated with agents indicating their effort for participating in the solution. 
Mandatory categories for the evaluation are efficiency, reliability, and 
complexity. The efficiency might be measured by individual and global 
outcome, e.g., individual rationality, global welfare, and Pareto efficiency. 
The main criteria for reliability range from stability defined as resistance 
against manipulation on basis of non-cooperative game theory to symme-
try which indicates that both sides of an interaction reach comparable pay-
offs. The third category, complexity, is regarded to technical efficiency, 
i.e., aspects as computation, communication, and speed up through distri-
bution are considered. 

3.4 Shared Memory 

The oldest cooperation model and for a long time the mainstay of con-
trolled agent interaction has been the blackboard system. It follows the 
natural metaphor of a group of human specialists seated next to a large 
blackboard. The specialists work cooperatively to solve a problem, using 
the blackboard for developing the solution. Problem solving begins with 
the problem and initial data written onto the blackboard. The specialists 
watch the blackboard, looking for an opportunity to apply their expertise to 
the evolving solution. When a specialist finds sufficient information to 
make a contribution, he records the contribution on the blackboard. 

The metaphor is abstracted to the architecture of Figure 1, with the 
blackboard as a common workspace, and the specialists represented by so-
called knowledge sources having their processing machinery and imple-
mentation hidden from direct view. The basic assumption is that each 
knowledge source is an expert on some aspects of the problem and can 
contribute to the solution independently of the other sources. Knowledge 
sources are triggered into action in response to blackboard and external 
events, and may add, modify or remove information on the blackboard. 
Rather than continuously scanning the blackboard, a knowledge source 
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subscribes to certain kinds of events. Obviously then, a control component 
separate from the knowledge sources is needed for managing the black-
board and, more importantly, the course of problem solving. 

Blackboard
agent
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agent

Knowledge 
agent

Knowledge 
agent

.

.

Knowledge 
agent

Knowledge 
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Knowledge 
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.

Figure 1. Blackboard system, basic distributed solution. 

Blackboard systems have several drawbacks that make them less attrac-
tive for modern multiagent systems. They require a centralized blackboard 
and control component, problem solving is purely sequential, and the need 
for synchronous communication contradicts the autonomy of agents. A 
distributed approach that relies on a planning and execution strategy is re-
ferred to as “task sharing” or “task passing” [Durf1999]. Another distrib-
uted option would introduce a special agent to control the blackboard, like 
illustrated in Figure 2. 
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Figure 2. Blackboard system 

The main properties of multiagent systems using a shared memory ap-
proach may be found in the assumption that any agent is using the same 



Interaction Design 389 

problem representation, the agents are interacting cooperatively, there is no 
need for direct or private interaction, and there is no need for pro-active 
behavior. In problem domains where cooperative problem solving is in 
question, i.e., task-oriented domains, shared memory approaches may be 
an efficient approach for coordination and interaction. However the shared 
memory approach could evolve to a bottleneck and therefore has a nega-
tive influence on scalability. 

3.5 Message Passing 

In contrast to the shared memory approach, the message passing approach 
is characterized by more complex message structures, separation of inter-
nal and external representations, and is often speech-act based. Message 
passing seems essential as an interaction infrastructure whenever the as-
sumption of cooperative behavior does not hold or where the underlying 
technical infrastructure is a distributed system. Furthermore, message 
passing is more suitable for scaling up or distributing multiagent systems. 
However, the individual effort for handling communication is considerably 
higher compared to shared memory approaches. This results from the re-
quired naming schema for the identification of agents in distributed sys-
tems, the routing overhead needed for message delivery, and the encoding 
for different communication and representation layers. 

The naming schema must allow the identification of an agent and its 
communication addresses. Furthermore, the naming schema must be im-
plemented by directory services used for agent and service discovery, and 
must hide the logical underlying communication protocols, e.g. HTTP, 
WAP, IIOP, and the used physical communication infrastructures, e.g 
Ethernet, ATM, Bluetooth, etc. In heterogeneous distributed systems the 
gap among platforms with different implemented protocols must be closed 
with the help of gateways that support many protocols at the corresponding 
logical or physical communication layer, and are able to translate the pro-
tocol of an incoming message to one that will be understood by the mes-
sage receiver. 

Routing of messages is necessary to determine the way on which a mes-
sage will be delivered from the sender to the receiver. If a message is de-
livered to the receiver without the intervention of an intermediate agent or 
gateway, the message is delivered directly and the two communication 
parties communicate in direct mode. The indirect communication mode 
involves intermediate benevolent parties, which support the communica-
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tion demand of the former parties. These definitions can be carried over to 
interactions. 

Due to the discussed naming schema and message routing the message 
format becomes more complex. Furthermore, the separation of internal and 
external representation of the message content requires a few consecutive 
encoding and decoding steps, corresponding to the appropriate abstraction 
layer. This leads to a kind of virtual envelope that contains elements for 
the identification of an agent, message routing information and content de-
scription, e.g.: agent identifier, agent communication addresses, encoding 
language, content language, the type of the message, a time stamp of the 
message, etc. 

3.5.1 Conversations 

The possibility for more sophisticated interaction between technical com-
ponents makes up for the complex message structure. Just take the differ-
ence between interaction among objects and agents. Interaction among 
objects is restricted to the reciprocal invocation of public methods and 
limited object protocols in the form of well-defined sequences of method 
calls. Agents are supposed to interact at a higher level: An agent is able to 
decide by itself when and whether an external requested action is to be 
processed, and is also able to process a message based on its internal 
knowledge base and domain vocabularies, i.e., does more than strictly exe-
cuting the body of a method. 

Agents that communicate via the message passing mechanism can com-
pletely hide their internal knowledge base and reasoning engines from the 
other agents. Therefore, the message passing approach is more suitable for 
interactions in SOD and WOD.

Since communication among agents is of a more sophisticated quality 
we will in the remainder refer to the communication among two or more 
agents as a conversation.

As matter of principle, the interaction among agents should follow a 
limited number of institutionalized, i.e., generic (conversation) patterns. 
The design of these patterns is an important objective of the design of an 
agent society architecture. Typical conversation patterns are contract nets, 
auctions, bargaining, etc. If existing interaction patterns do not suffice and 
new patterns cannot be designed in advance, the conversation could be 
controlled by the agents’ behavior, that is, guided by a problem solving 
method or a utility function. 
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3.5.2 Pattern-Based Conversations 

Conversations are considered in real life as part of the normal acquain-
tance. Usually a conversation has a goal, varying from a simple announce-
ment to complicated negotiations. One can either observe conversations 
among humans to identify patterns that are used for specific situations, or 
should design the pattern with a special objective in mind, e.g. efficiency, 
a limitation of time, participants etc. The representation of conversations 
as directed graphs, containing a node for each participant of the conversa-
tion and a directed edge for interaction taken, would simplify the recogni-
tion process. The edges could be labeled to reflect the chronological order 
of the interactions among the participants. 

Figure 3. Conversation pattern represented as DG 

In Figure 3 we observe that participant a interacts with all the other par-
ticipants excepting the participant h. This justifies the assumption that par-
ticipant a holds the role of a coordinator. Depending on the conversation 
context, its role could be: 

• a coordinator for a call for proposals in a contract net or in an auction, if 
and only if the messages 1 to 6 were sent simultaneously, 

• a coordinator in a leader election algorithm, notifying the participants b
to g that the participant g becomes leader, and receiving its commitment 
therefore, 

• a sentinel requesting from the participants b to g the time of their last in-
teraction with participant h, etc. 

The most widely used truly distributed interaction protocol is the con-
tract net protocol. The protocol is modeled on the contracting mechanism 
used by businesses to govern the exchange of goods and services and 
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achieves a satisfactory overall “social” outcome if the agents pursue only 
their self-interest [Sand1999]. 

The protocol provides a solution for the so-called connection problem: 
finding an appropriate agent to work on a given task. An agent wanting a 
task solved is called the manager, agents that might be able to solve the 
task are called potential contractors. The manager 

• announces a task that needs to be performed, 
• receives and evaluates bids from potential contractors, 
• awards a contract to a suitable contractor and 
• receives and synthesizes results. 

From a contractor’s perspective the process is to 

• receive task announcements, 
• evaluate own capability or interest to respond, 
• respond (decline, bid), 
• perform the task if bid is accepted and 
• report the results. 

Any agent can act as a manager by making task announcements, and 
any agent can act as a contractor by responding to task announcements. 
This flexibility allows for further task decomposition: a contractor for a 
specific task may act as a manager by soliciting the help of other agents in 
solving parts of the task. 

A B

cfp m
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n

deadline
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i

Figure 4. Conversation pattern represented in AUML 

Conversations can be described in a formal fashion. Take the conversa-
tion pattern in Figure 4 which is part of a contract net. Therefore we as-
sume that participant a holds the proactive role of a coordinator and corre-
sponds to node a in Figure 3. We assume further that the interactions 1 to 6
take place simultaneously. The conversation participants b to g hold the 
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reactive role of a simple conversation participant. In Figure 4 the partici-
pant b is representative of this reactive role and the initiator a of the for-
mer, proactive one. 

More complex conversation patterns could consist of many simpler 
conversation patterns, as the one in Figure 3. With the help of the observa-
tion method it seems that only simple patterns could be identified, and for 
complex patterns the observation sense of someone will be overextend. As 
simple patterns we could consider the patterns of conversations of type 
question-answer, request-agree/refuse and auction mechanisms. More 
complex conversation patterns that are harder to recognize, may be be-
cause the conversation patterns contain an embedded negotiation strategy, 
a game strategy, or are part of a problem solving method should be coop-
eratively designed by domain and problem solving experts. This enables 
the pattern designers to take into account also the functional and non-func-
tional requirements, resulting from the requirements analysis, as well as 
limitations of suitable problem solving methods, e.g. stability, the space 
and time complexity of algorithms, etc. At this point it’s a good time to 
remind us that a conversation among technical components, e.g., intelli-
gent agents should not be an end in itself, and that it should be an essential 
part of the problem solving method of competitive or cooperative partici-
pants. 

It can happen that for a complex problem no suitable conversation pat-
terns can be found. In this case the interaction designer could try to com-
pose a new conversation pattern, lets name it a conversation meta pattern, 
using well known patterns for generic situations. When a conversation 
pattern was recognized, it should be analyzed with the objective to deter-
mine the roles of the conversation participants, e.g. initiator, responder, ar-
bitrator, etc. In the case of a designed conversation pattern, the roles of the 
participants are well known before the conversation pattern is design. The 
roles of conversation participants could be specified with the help of rules, 
that define the proactive, reactive, or possibly alternating behavior of a 
participant in a conversation, depending on preceding interactions. 

3.5.3 Behavior-Based Conversations 

A large part of conversations among technical systems could be assigned 
to corresponding patterns or will be designed based on known conversa-
tion patterns. Complex conversations that are not covered by existing pat-
terns have to be controlled by the agents’ behavior. An agents’ behavior is 
guided by a problem solving method or a utility function. 
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In case of behavior-based conversation control, the behavior of an agent 
is guided with respect to its capabilities, e.g. communication, interaction, 
mobility, adaptability, etc., by one or more utility functions of the agent. A 
utility function could influence the agents’ behavior in a direct way, in the 
sense that the agents’ behavior change is the immediate effect of the value 
change of the utility function. In other words, the agents’ behavior follows 
the utility functions graph, on which we can imagine virtual triggers for 
actions of the agent, which finally determines the agents’ behavior. The 
utility function itself could be influenced in this case by interactions of the 
agent with other agents (incoming messages), by changes of internal states 
of the agent, which could depend on other utility functions, finite state ma-
chines, probabilistic networks, by events recognized by the agent with the 
help of its sensors, etc. 

Furthermore, an agents’ behavior could be influenced in an indirect way 
when the agent adapts its behavior as consequence of changes of its envi-
ronment. In this case the agent seems to have a more reactive than proac-
tive behavior. As example we could consider a mobile agent that would 
like to do a complex computation, and therefore, would move from time to 
time to a known agent platform with a low system load. The mobile 
agents’ behavior will be influenced directly, that means that the agent will 
stop its computation and will move to another agent platform, when the 
agent received a message containing a movement request, and then moves 
as rational effect of this message. The same agent could be influenced in 
an indirect way, when one more agent will arrive on the same agent plat-
form, causing a very high load. The former agent, will recognize the high 
platform load, and will move as a result of this to an agent platform with a 
lower load. 

From an observer's point of view an agent’s behavior, influenced di-
rectly by conversations and environmental changes, is perceived as reac-
tive behavior because it produces an immediate effect. It is difficult for the 
observer to associate a delayed action of an agent with one of many possi-
ble preceding causes, and therefore, to perceive a delayed action as part of 
the agents’ reactive behavior. In this case, or when the agents’ behavior is 
influenced more by the agents’ internal states, which are determined by 
different control mechanisms and are invisible to the observer, the behav-
ior is perceived as proactive. Due to the nondeterministic change of an 
agents’ environment, it is difficult to predict its behavior and also the flow 
of its conversations influenced thereby. In highly dynamic environments, 
like instant and ad-hoc networks, it seems to make sense to reduce the 
message types used in interactions and conversations to a few very generic 
ones that would be useful to most interactions among agents. 
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In cooperative problem solving methods, all the participants have to 
contribute in some way to the final solution. If the problem could be de-
composed into different tasks, one agent should do this job and assign 
these tasks to the other cooperating agents. Furthermore, an agent or a 
group of agents should orchestrate the cooperation. The interactions 
among these agents as well as the conversation flow could be specified in a 
way similar to the one in parallel systems. Depending on the common 
problem and its decomposition capabilities, the required conversations will 
be made based on one of the possible interaction structures, known also 
from parallel systems: full meshed, mesh, torus, ring, cube, and hypercube. 
Characteristics that have to be considered for efficiency reasons are: con-
nectivity, diameter, narrowness, and expandability of these structures. 

3.6 Agent Communication Languages 

FIPA/ACL specifies messages between agents by communicative acts syn-
tactically (message model) as well as semantically (formal model) 
[FIPA2002a] [FIPA2002b]. Communicative acts are classified with re-
spect to their semantic perspective and use performatives in analogy to 
speech act theory. The performatives request, inform, confirm, and discon-
firm are the basis from which another 18 performatives are derived 
[Timm2004]. The formal model of a message is associated with a perfor-
mative and uses the semantic language SL [Sade1992]. It consists of a 
logical expression, a feasibility precondition and a rational effect. The 
logical expression is the formal representation of the message. The seman-
tics of the message is specified in analogy to AI planning by pre-condi-
tions as indicators if an action is applicable, and by an effect describing 
world-state changes after the execution of the action. Unlike AI planning 
though, SL defines a rational effect, i.e., if the agents behave rationally, the 
effect will be achieved. However, with respect to irrational behavior, SL 
allows explicitly for effects not consistent with the rational effect. 

Sequences of messages form a complex behavior resp. course of action. 
A sequence of messages is called conversation if the messages are related 
with respect to a goal, semantic or temporal context. In message passing 
there are three main approaches for conversations: unilateral, bilateral, or 
multilateral. Unilateral conversation is used for messages, which do not 
require responses, e.g., expressive acts or communication with the envi-
ronment. Bilateral and multilateral conversations require the response of 
the communication partners and they are distinguished by the number of 
communication partners. In a bilateral setting, there is exactly one initiator 
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and one responder while in the multilateral setting there is no restriction on 
the number of responders. A special case in bi- and multilateral conversa-
tion is the dialog, which is characterized by a sequence of messages altern-
ating between initiator and responder(s). 

The challenge in conversations is to select specific actions resp. perfor-
matives for achievement of a goal, e.g., contracting another company for 
production and delivery. This situation is similar to AI-planning in that 
conversations are instantiations of plans. In order to achieve a library of 
reusable conversation patterns, the FIPA standardizes a set of interaction 
protocols including request, query, contract-net and others. Interaction 
protocols reduce the complexity of the plan space drastically by limitation 
of the number of possible actions. For example, the FIPA-Request protocol 
uses 6 out of 22 possible performatives, request, refuse, agree, failure, in-
form-done, and inform-result with a plan length of three actions 
[FIPA2002c]. This reduces the combinatorial complexity in the plan space 
by a factor of almost 50 (63 vs. 223). The actual reduction is even higher, 
since for each possible expansion there are no more than three possible ac-
tions. With the help of this reduction, the efficient integration of possible 
answers of an agent opponent in the communication process becomes fea-
sible without the need for complex plan recognition algorithms. 

A fundamental assumption for successful communication is that all 
communication partners are capable of understanding the content of the 
message, i.e., sender and receiver are able to decode messages with the 
same semantic conclusions. However, this assumption has a strong impact 
on system design and is leading to problems known from early distributed 
expert systems. Hence, the Knowledge Sharing Effort (KSE) in the 
framework of DARPA standardization created context description proto-
cols for knowledge interchange in expert systems. The main efforts were 
KIF [GeFi1992] as a knowledge representation and KQML [FiLM1997] 
[Fin+1995] as a knowledge exchange protocol. Due to the strong relation-
ships between distributed expert systems and MAS, these developments 
have been widely used in DAI and had a considerable impact on the evo-
lution of a standard agent communication language. The result, the FIPA 
agent communication language (FIPA-ACL) is standard in nowadays 
MAS implementations and is used by the majority of agent researchers. 
FIPA-ACL consists of three main specifications: Communicative acts, in-
teraction protocols, and content languages [FIPA2001a] [FIPA2001b] 
[FIPA2002d] [FIPA2003]. Although FIPA does not demand the use of a 
specific content language, mandatory requirements for content languages 
are defined in the standardization. Any content language has to provide 
three modeling concepts: propositions, objects, and actions. Additional re-
quirements are a normative definition, a “good” level of syntax allowing 
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for parsing, clear and intuitive but not necessarily formal semantics, and 
the provision of usage examples. A fundamental assumption for content 
languages is that they incorporate the agent context, i.e., beliefs, abilities, 
and wants [Wool2001]. A standard approach in DAI is to use multimodal 
logics, e.g., with KD45 semantics [RaGe1995]. However, ontology lan-
guages like OWL [Bec+2004] [PaHH2004] can easily be adapted to the 
requirements and additionally offer a well structured representation of 
knowledge disregarding the semantics of beliefs, abilities, and wants. Fur-
ther aspects regarding the semantics of the content of an interaction are 
discussed in IV.5. 

3.7 Design Methodologies 

Interaction design is accounted by existing AOSE methods as part of the 
system development process, and is always considered very close to the 
analysis and identification of roles. In this section, the interaction design 
part of several established AOSE methods is addressed. 

3.7.1 Generic Architecture for Information Availability 

The Generic Architecture for Information Availability (GAIA) 
[Zam+2003] method recommends the analytical identification and deduc-
tion of the roles of the final target system from the problem domain de-
scription. Simultaneously the necessary interactions among the role hold-
ers are designed, and therefore, to each role the required technical and or-
ganizational authorizations, restrictions and obligations are assigned. The 
set of identified roles are combined in a role model and the defined inter-
actions in an interaction model. However, the resulting MAS design has a 
rigid character and therefore, it seems that the use of pattern based interac-
tion control seems to be the more suitable solution. 

3.7.2 Multiagent Systems Iterative View 

In contrast to GAIA, the Multiagent Systems Iterative View (MASSIVE) 
[Lind2001] does not consider in advance a given technology for the im-
plementation of the target system. This would be one of the results of the 
iterative design. In MASSIVE the interaction design is based on a task 
model and a role model. The task model contains an hierarchical task-tree 
with all the tasks, resulting from the requirements to the target system. The 
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role model contains all roles of the target system. Each role is composed of 
a group of atomic tasks and their corresponding activities. 

Interaction design covers in MASSIVE the specification of the neces-
sary interactions among the role holders, and the definition of the interac-
tion flow with the help of interaction protocols. In MASSIVE the use of 
pattern based interaction control is also suitable, but the resulting designs 
do not have the rigid character of GAIA models. 

3.7.3 Multiagent System Engineering 

The Multiagent System Engineering (MaSE) [DeWS2001] recommends a 
two-phase design approach. As part of the first phase – the analysis phase, 
a set of UML sequence diagrams is deduced from use cases of the problem 
domain and for each involved entity, a role is defined and assigned to it. 
Further, a set of tasks is defined, providing solutions for all the identified 
requirements of the target system. In the system design phase – the second 
phase of MaSE, the interactions are designed based on the already speci-
fied sets of roles and tasks. The conversations, at which an identified role 
should be involved, are also derived from the UML sequence diagrams. 
For each conversation of a role the interaction protocols for the conversa-
tion initiator and the conversation praticants, as responder, are defined. 

The interaction design in MaSE is made on the basis of an instruction, 
and therefore it seems that the pattern-based interaction control approach is 
more suitable. Existing interaction protocols can be used in MaSE as 
communication components, and the interaction becomes a mean to end of 
the problem solving method. 

3.7.4 Tropos 

Tropos [GKMP2003] is a generic AOSE method that accentuates the early 
and late requirements analysis, and the consistent use of concept defini-
tions in the whole development process. The interaction design in Tropos 
is part of the architecture design phase. In this phase the target system is 
composed of many subsystems, represented as actors.

The actors are interconnected among themselves with dependency 
edges, representing data and control flows. This model could be improved 
in the way that data flows for input, output and control for each actor is 
specified. 

The generic interaction design in Tropos accords a favor for goal-based 
interaction design, resulting in a more adaptive and flexible architecture of 
the target system. However, if this is not one of the main non-functional 
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requirements of the target-system, the interaction design could also be 
made pattern-based, resulting in a pattern-based interaction control, and in 
the integration of interaction protocols. 

3.8 Challenges 

In MAS, the core feature is the interaction of autonomous agents. However 
methods from software- and knowledge engineering are not sufficient to 
cope with the high degree of flexibility which is inherent in multiagent 
systems. As the structure and process of interaction is a significant feature 
of multiagent’s flexibility, the challenge for AOSE arises from the interac-
tion design. Interaction has to be restrictive enough to enable reliable sys-
tem behavior and should be permissive enough to allow for flexibility or 
emergent behavior. As mentioned before, AOSE methodologies address 
interaction design especially for the identification and analysis of roles. 
Nevertheless, effective and efficient interaction requires the match of ap-
plication requirements and available interaction mechanisms. 

The concepts and challenges, which have been, introduced mostly deal 
with homogeneous, self-contained multiagent systems. Nevertheless, in 
real-world business applications, especially in logistics, a wide range of 
conventional as well as multiagent systems are applied. In most cases, 
these systems are highly heterogeneous, which poses new challenges to-
wards the integration process. For example, information systems within a 
supply chain are naturally distributed and are developed spatially separate. 
Even if multiagent systems are applied within delimited areas which im-
plement standards like FIPA, it cannot be assumed that the different multi-
agent systems use a homogeneous implementation of interaction. Hetero-
geneities within the interaction behavior as well as the semantics of the 
communication (cf. IV.5) require a strong focus on the interaction design 
of these multi-multiagent systems. 

These challenges are found especially in the integration of the multi-
agent systems in the manufacturing domain to the Agent.Enterprise Net-
Demo (cf. II.1), which have been developed distributed. The subsequent 
integration of multiple multiagent systems poses specific challenges to 
AOSE methodologies supporting the interaction design process. These 
challenges consist of: Definition of the multiagent system interfaces; Defi-
nition of the interaction semantics; Selection or definition of interaction 
protocols; Assurance of interaction behavior. 

The first challenge, the definition of the multiagent system interfaces is 
addressed to the question, which agents are going to interact with other 
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agents in other multiagent systems. Since the integration aspects are com-
plex towards semantics, interaction behavior, and security, a good choice 
for such a multiagent system interface is the definition of a special agent, 
serving as a gateway for the system [SNSS2004]. 

The next challenge to interaction design for the integration of heteroge-
neous multiagent systems is the selection and definition of interaction 
protocols. In order to tackle this challenge, the real-world process of in-
formation-, material-, and decision-flow has to be analyzed and appropri-
ate interaction protocols, which map the processes, have to be selected. 
Since these processes are in most cases complex, a composition of stan-
dard interaction protocols might be the appropriate solution. For example, 
this has been done for the Agent.Enterprise NetDemo, where first the dif-
ferent roles within the integrated multi-multiagent system have been iden-
tified. The next step is the specification of the interactions between these 
roles, and the final step the composition of the specific FIPA interaction 
protocols to the global supply-chain interaction protocol (cf. II.1). 

The third challenge, the definition of interaction semantics, has a strong 
similarity to the challenges found in the semantic web. Here, the integra-
tion of different ontologies is the major problem. Even There are numerous 
approaches addressed to this question (i.e., mediator technology (cf. 
[Wied1992] [Gar+1997] [Wach2003]), federated/global schemas (cf. 
[LaRo1982] [Tem+1987]), shared ontologies (cf. [StTi2002]), which offer 
different degrees of flexibility for the integration process. In Agent.Enter-
prise, the global schema approach has been used, where an ontology as a 
specification of the semantics for the interaction has been jointly devel-
oped by the participating projects. Nevertheless, the more flexible ap-
proach is the use of context based mediator technology [Wach 2003], but 
its adoption to agent technology was not in the focus of the Agent.Enter-
prise development. 

The last challenge is aimed to the development process itself. Ensuring 
the interaction behavior in a distributed, heterogeneous multi-multiagent 
system is crucial to the overall systems behavior. If one multiagent system 
within the multi-multiagent system shows incorrect interaction behavior, 
this may have a negative impact on the overall systems performance. In the 
Agent.Enterprise NetDemo, the behavior of the sub-systems has been en-
sured by time-consuming distributed tests. More sophisticated approaches 
for validation of the interaction behavior are discussed in IV.8. 
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Abstract. This chapter introduces a reference architecture that provides a me-
thodical framework for the implementation of software agents. The central con-
cept is a layered architecture where each layer offers a well-defined service to the 
higher layers, and where each of the agent properties of I.1 is unambiguously 
associated with a single layer. The design method proceeds in three phases: A first 
phase examines the functional service characteristics in order to determine which 
responsibilities should be assigned to single agents and which to collections of 
agents. The second phase structures the individual agent into the layers along the 
non-functional properties. The third phase augments the layered structure by the 
interactive capabilities of agents. 

4.1 Introduction 

A requirements specification must be turned into a working software and 
hardware system. This is a multi-step task. Perhaps the most decisive step 
is the first, architectural design. Since it is an accepted doctrine that mis-
takes are much cheaper to correct when caught in the early stages than 
when discovered in the late stages, good architectural system design has 
enormous economical potential. Consequently, architectural design should 
follow a rigorous methodology rather than intuition. 

Buschmann et al. [Bus+1996] describe such a methodology which they 
call pattern-oriented software architecture. Generally speaking, a pattern 
for software architecture (or architectural pattern for short) describes a 
particular, recurring design problem that arises in specific design con-
texts, and presents a well-proven generic scheme for its solution. A pattern 
expresses a fundamental structural organization schema for software sys-
tems, describes their constituent components, specifies their responsibili-
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ties, and includes rules and guidelines for organizing the relationships 
between them and the ways in which they collaborate.

The definition is general enough to cover many levels of detail starting 
from architectural design on the level of programming-in-the-very-large all 
the way down to individual components and objects. It is also general 
enough to cover a wide range of software with differing requirements. 
Nonetheless, as pointed out in IV.1.5, agent-oriented software engineering 
poses its own challenges. To meet the challenges, IV.4 combines the 
principle of pattern-orientation with the specifics of agent-oriented soft-
ware. 

The focus of this chapter is the individual agent. This focus does indeed 
include the interaction between agents: It is well-known that in distributed 
systems – and multiagent systems are distributed systems – the communi-
cation between the components takes place on a functionally trivial physi-
cal level so that all higher-level interaction must be realized as part of the 
components themselves. However, before designing the individual agents 
one must first identify the responsibilities within the multiagent system, 
and then determine the constituent components by deciding which respon-
sibilities to relegate to different agents and which to encapsulate within a 
single agent. The remainder is devoted to the architectural patterns that can 
be applied to the individual agent. 

4.2 Service-Oriented Design 

4.2.1 Responsibilities and Services 

The principle underlying all methods for architectural design is separation 
of concerns [Vog+2005]. The methods differ to what is considered a con-
cern and how to separate such concerns. Starke equates concerns with re-
sponsibilities of pieces of software [Star2002]. In particular, he calls a 
piece of software with focused, well-defined and guaranteed responsibili-
ties a (software) component.

Generally speaking, given a requirements specification for an entire 
system the design task is to construct a collection of components, with 
each one assigned a responsibility that is to be matched by its competence.

Responsibility and competence are hazy terms. Lately, the term service 
has become accepted to describe the responsibilities and competences of 
software systems as they enter into more dynamic relationships prevailing 
in distributed systems. More precisely, a service is the range of tasks that a 



Architectural Design 407 

component offers to its outside world and is capable of performing. Real-
izing an overall responsibility by a set of narrower responsibilities would 
then be the same as collecting a set of services into a larger service. A use-
ful interaction is that one where a component may draw on a service of an-
other component to gain a competence it does not own by itself. Conse-
quently, interaction between software components is by one component 
requesting a service from another component and the other component ful-
filling the request. 

A metaphor may illustrate the perspective (Figure 1). Since a service is 
the result of assigning a responsibility to a component, a service represents 
an obligation for the component. But likewise, the component calling on 
the service (the service client, or client for short) has an obligation to pro-
vide the called component (the service provider, or server for short) with 
all the information needed to render the desired action. In other words, in-
teraction between two components involves mutual obligations and may be 
formulated as something akin to a service level agreement. 

server

competence

client

request

service

service level agreement

obligation

obligation

Figure 1. Service metaphor 

The service perspective makes good sense for agents as well, since I.1, 
with Property 2, reflects on the central role of the notion of service in 
agents. 

4.2.2 Service Organization 

Architectural design that is based on the notion of service is referred to as 
service-oriented design. The result of service-oriented design is a collec-
tion of service providers that enter into client-server relations among them-
selves. This raises two major design issues: 

1. What are the service providers? 
2. What is the cohesion among the service providers? 
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To turn to the first question, Vogel et al. [Vog+2005] relate the principle 
of separation of concerns to another widely-used design principle, divide-
and-conquer. Starting from the specific needs of a given external world, 
the principle essentially imposes a top-down system view. It is a recursive 
process because it decomposes a given service into lesser responsibilities, 
and these again, until one reaches services that do not warrant further de-
composition. The result is a service hierarchy, or more generally a service 
heterarchy if the same service is the result of more than one service de-
composition. Figure 2 illustrates a heterarchy. 

Divide-and-conquer is basically an analytic method. The synthetic 
equivalent is a bottom-up view that starts from a pool of existing compo-
nents and determines an organization of the interactions that can be proven 
to result in the desired overall system responsibility. In practice both 
methods are combined into a so-called middle-out approach. 

To answer the second question, we follow Vogel [Vog+2005] and dis-
tinguish between loose coupling and strong cohesion. Operationally 
speaking, loose coupling leaves interacting services fairly independent of 
another, implying that changes to one do not affect the other. Conse-
quently, loose coupling results in separate software components. On the 
other hand, strong cohesion stands for numerous interdependencies, and it 
is recommended, therefore, to encapsulate these services within one and 
the same software component. 

Loose coupling seems natural to the upper levels of the heterarchy 
where a given requirement is decomposed into more limited but still fairly 
coarse services. For example, if the service is to be provided by a multi-
agent system, the early design must be concerned with breaking the ser-
vices into more limited services where each can be meaningfully assigned 
to a unit realized either by an agent or a group of agents, and where the 
original service can be obtained by proper interaction between the smaller 
units. This is indicated in Figure 2. The figure also shows that ultimately a 
level is reached where strong cohesion takes over. In our example the ser-
vices below this level are encapsulated within individual agents (which 
may already pre-exist and become part of a middle-out design). 

Indeed though, as we proceed further down with decomposition we 
come across basic services needed by many if not all components above. 
Consequently, we encounter another barrier across which to apply loose 
coupling. Since experience indicates that on the lowest levels services are 
domain-independent and common to different service implementations, we 
relegate these services to separate providers referred to as a resource man-
agers. Resource managers are usually collected into a framework (or plat-
form). In our case, a common platform would be provided at every loca-
tion where agents are to be installed, without becoming part of the agent 
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proper. This is again indicated in Figure 2. If such a platform is capable of 
dealing with the differences between local computer systems, operating 
systems, data formats and the like, i.e., if the platform can overcome the 
heterogeneity between different systems, and if it can take care of the mes-
sage exchange in a distributed system, the platform is referred to as a mid-
dleware.

4.2.3 Service Characteristics 

So far we deliberately left open how to characterize the concerns that 
guide the decomposition and influence the choice between loose coupling 
and strong cohesion. We now introduce a hypothesis that makes use of the 
different aspects of a service: 

• What is the service? More precisely, what is the collection of related 
functions that the service provider makes available to a client? We refer 
to the collection as the service functionality. Functions are specified in 
terms of their syntactical interfaces (signatures) and their semantic ef-
fects, the latter often expressed by their input-output behavior and the 
effected change of state. Functionality is what a client basically is inter-
ested in. 

• How good are the qualities of service? The qualities are expressed in 
terms of attributes that determine, beyond the functionality, the useful-
ness of a service to a client. The attributes are collectively referred to as 
the non-functional properties of a service. 

• How is the service attained? To answer the question one has to get at 
least a rough idea on how to implement the service. 

In our hypothesis we claim that divide-and-conquer starts with func-
tional decomposition. Functional decomposition is primarily guided by 
service functionality, whereas the non-functional properties are just passed 
along. Decomposition comes to an end when all derived units are decided 
to be agents, usually on pragmatic grounds such as reusability, cost, main-
tainability that are known to induce strong cohesion further down. The re-
sulting service collection forms the (multiagent) society architecture. 

Once the level of individual agents has been reached, our thesis is that 
the non-functional properties are the ones that are responsible for the 
strong cohesion. Consequently, we start a process of conscious assignment 
of the non-functional properties. Properties that cannot, or not entirely, be 
taken care of on one level are propagated to the next lower level where the 
process is repeated. If needed, the functionality is adjusted by subordinate 
functional decomposition. Keller, in his dissertation [Kell2003], cites em-
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pirical evidence that confirms the importance of the non-functional prop-
erties in a system architecture. The prevailing architectural pattern for co-
hesive decomposition is the layers pattern. Higher layers build their ser-
vice not from interaction among lower peers but by calling the lower-level 
services and incorporating their results on the higher level. The result is a 
(layered) agent architecture. 

Finally we reach the framework (or platform) containing the resource 
managers. Preferably, platforms should be used that are tailored to the spe-
cific needs of agents. 

Figure 2 summarizes the design principles of this chapter. 

Figure 2. Design model for multiagent systems 

4.2.4 Agent Services 

The last step in developing our design model is to clearly identify which 
agent properties of I.1 refer to functionality and which can be equated with 
non-functional qualities. 

Properties 2 and 8, 
(2) A software agent offers a useful service. Its behavior can only be ob-
served by its external actions, its internal processes remain encapsulated,
(8) An intelligent software agent may have to possess social ability, that is, 
is capable of interacting with other agents to provide its service,
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are common properties that offer a link to the functional properties to the 
service an agent provides. What these properties are is determined by the 
application domain of the agent: 
(1) A software agent is a computer system that is situated in some envi-
ronment.

In other words, there must be some part of agent software that will have 
to reflect the application domain and will have to be specifically designed 
for this domain. 

On the other hand, all other agent properties of I.1.3 qualify as non-
functional properties. 
(3) A software agent is capable of autonomous action in its environment in 
order to meet its design objectives, i.e., to provide its service.
(4) As a corollary to Property 3, the autonomy of a software agent is de-
termined by its own goals, with goal deliberation and means-end assess-
ment as parts of the overall decision process of practical reasoning.
(5) An intelligent software agent is reactive, that is, it continuously per-
ceives its environment, and responds in a timely fashion to changes that 
occur.
(6) An intelligent software agent achieves an effective balance between 
goal-directed and reactive behavior.
(7) An intelligent software agent may be proactive, that is, take the initia-
tive in pursuance of its goals.
(9) An intelligent software agent may be able to learn.

These properties sound generic, that is, they apply to a software agent 
no matter what its domain is. Ideally then, it should be possible to devise 
an architectural framework that reflects these non-functional properties 
and need “only” be augmented to cover the specific functionality. 

Property 8 states that agents do not act in isolation but offer their ser-
vices to other agents. These will expect the properties of 

• Performance: Services must be rendered with adequate technical 
performance at given cost. Performance is a prerequisite for the scal-
ability of multiagent systems, that is, continuous growth in the number 
of agents without deterioration in overall functionality and qualities. In 
turn, scalability is a prerequisite to keep multiagent systems open sys-
tems. 

• Reliability: The service must guarantee its functionality and qualities to 
any client, under all circumstances, be they errors, disruptions, failures, 
incursions, interferences within or outside the agent. Reliability must 
always be founded on a failure model. There may be different models 
for different causes. 
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• Security: Services must remain trustworthy, that is, show no effects be-
yond the guaranteed functionality and qualities in the face of failures, 
errors or malicious attacks. 

An agent can pursue goals or even learn only if it possesses an internal 
memory. In particular it may need the non-functional property of 

• Durability: The agent may have unlimited lifetime, hence the memory 
data must remain durable unless and until explicitly overwritten. 

4.3 Agent society architecture 

We start with the first stage of our design model in Section 4.2.3, develop-
ment of an agent society architecture. Obviously, determining the individ-
ual constituent agents that make up the multiagent system depends on the 
overall service the system is intended to provide, and this is highly do-
main-specific. All we can do at this point is to sketch some methods that 
allow to derive a decomposition of the overall requirements into indepen-
dent services, and to distribute them to separate autonomous entities. 

4.3.1 GAIA 

The GAIA methodology is founded on the view of a multiagent system as 
a computational organization consisting of a collection of roles that enter 
into certain relationships to one another, and that take part in systematic, 
institutionalized patterns of interactions with other roles. GAIA deals with 
both the macro (societal) level and the micro (agent) level aspects of de-
sign [WoJK2000]. 

GAIA, as most other agent-oriented methodologies, assumes that an ini-
tial requirements specification is already available. From this requirements 
specification the roles and the interactions between them have to be de-
rived. Roles are described by properties such as responsibilities, permis-
sions and activities. Interactions are captured as protocols describing the 
purpose and course of an interaction between two or more roles. In a sec-
ond step, from the roles and interactions the required services can be de-
rived. Agent types are designed, supporting one or more roles, by using the 
functionality of the services. 

The basic methodical idea of GAIA, its two dimensions of responsibili-
ties and interaction protocols, will be the foundation of the reference archi-
tecture in Section 4.4. 
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4.3.2 Tropos 

Tropos [Bre+2004] is a methodology that supports all activities of the 
software engineering process ranging from application domain analysis to 
the final system design. Hence, Tropos supports four main development 
phases: Early Requirements, Late Requirements, Architectural Design, and 
Detailed Design. 

Tropos takes a global view where an agent society is an organization in 
which the agent application is one actor embedded into an environmental 
setting consisting also of other actors which need not necessarily to be 
software systems. Within the Early Requirements phase the stakeholders 
and their intentions are analyzed, whereby, stakeholders are described as 
social actors that depend on one another for goals to be fulfilled. These 
goals are identified by a goal-oriented analysis and are refined into goal-
hierarchies that possibly offer alternative ways of goal achievement. The 
Late Requirements analysis focuses on the software system being devel-
oped. This system is introduced as one actor within the organization and 
the dependencies to other actors along with its system goals need to be 
identified. These dependencies represent the system’s functional and non-
functional requirements. The purpose of the Architectural Design phase is 
to subsequently elaborate the system’s global architecture in terms of sub-
systems (actors) interconnected through data and control flows (dependen-
cies). The Detailed Design phase deals with the description of the individ-
ual agents where it applies one particular architectural pattern, the BDI 
agent model [Wool2002]. Beliefs, plans, goals, and additionally the com-
munication relationships are specified in detail leading to a natural transi-
tion into the Implementation Phase in which a mapping from the models to 
code has to be carried out. 

4.3.3 Prometheus 

Like Tropos, the Prometheus methodology [PaWi2004] covers both the 
design of an agent society and of its constituent agents and assumes that 
the individual agents follow the architectural pattern of the BDI model. 
The basic construct is the behavioral description of individual intelligent 
agents. The methodology is divided into three layers of different abstrac-
tion, System Specification, Architectural Design, and Detailed Design. 

Tropos comes closest to the design philosophy of Section 4.2 as the 
main objective of the System Specification phase is to identify the overall 
services (here called functionalities) that the planned application should 
support. For that purpose use cases and the overall system goals are identi-
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fied and refined into initial functionality descriptors. Within the Architec-
tural Design phase these descriptors in connection with other artifacts such 
as agent acquaintances and data coupling diagrams are employed to derive 
the relevant agent types of the system, that is, the necessary agent types are 
directly derived from the functionalities. In this process well-established 
software engineering principles such as coherence and coupling are used to 
decide which functionalities should belong to which agent types. The 
identified agent types together with their interrelationships are composed 
into a global system overview diagram, which shows the static structure of 
the multiagent system and is somewhat comparable to a class diagram of 
the traditional UML modeling for object-oriented systems. At the Detailed 
Design stage the internal behavior of the agents is described in the form of 
descriptors for the constituting elements such as beliefs, plans, and goals. 

4.4 Individual Agent Architecture 

4.4.1 Layering 

We now turn to the second part of our design model, design of the archi-
tecture of an individual agent. It would be most convenient if we could de-
velop an architecture that covers all agents no matter what their service 
and where only certain details must still be filled in for a concrete agent. 
Such an architecture is called an architectural framework or a reference 
architecture. Alternatively, one could interpret a reference architecture as a 
set of guidelines for deriving a concrete architecture. 

To develop a reference architecture there must be enough generic prop-
erties, both functional and non-functional. We observed earlier this is in-
deed the case for agents. Hence, there is a good chance to find a suitable 
reference architecture. 

Our design model of Section 4.2.3 foresees an abstract implementation 
as a layered architecture that is derived by refinement. Refinement is the 
conscious assignment of the non-functional properties to different levels of 
abstraction, where the levels may additionally be determined by functional 
decomposition. Ideally, we develop an architecture where we can associate 
a non-functional property with a specific layer. The question of “How is 
the service attained?” is answered not by an interaction pattern among 
peers but by constructing functionality and quality attributes of a layer 
from those found on the next lower layer. 
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The design model itself needs some further refinement. We add two 
rules: 

• We assume that Properties 1 to 4 suffice to construct the basic layered 
structure, since they are the ones shared by all agents. Properties 5 to 9 
of intelligent agents should only have an influence on the internals of 
some of the common layers. 

• We divide each layer into two sections, one that characterizes those as-
pects that apply irrespective of the application domain, and another that 
accounts for the domain. If we succeed, the first section can essentially 
be made part of a common agent platform whereas the second remains 
to be filled according to the domain characteristics. 

4.4.2 Reference Architecture 

Although we concentrate on the agent properties we are aware that soft-
ware agents need a kind of “substrate” that supplies them with the neces-
sary ingredients to be able to function at all. The substrate includes the 
typical operating systems functionality, data management facilities as of-
fered, e.g., by relational database systems, and data communication ser-
vices such as HTTP or IIOP. We include these facilities in the reference 
architecture as the domain-independent part of the bottom layer L1. 

Also part of the bottom layer are all mechanisms that reflect Property 1 
that a software agent is situated in some environment, and Property 2 that 
the agent interacts with its environment by externally observable actions. 
Consequently, layer L1 must include the sensors and effectors necessary 
for the interaction. Which ones are effectively needed depends, of course, 
on the domain being served. 

Property 2 implies that an agent is an active component. We decide to 
locate all mechanisms that make an agent an executable component, i.e., 
the agent runtime environment, on the next higher layer L2. The basic 
computing infrastructure on layer L1 serves as the foundation of the envi-
ronment. The environment is at the core of agent behavior and can often be 
found as the central part of agent development frameworks. Take as an ex-
ample of a core service the life cycle management of an agent. It makes 
sense to locate Property 3, to be capable of autonomous action, on layer L2 
as well. To allow an agent to control its own behavior independent of the 
progress of other agents, the runtime environment should enable each 
agent to run in its own control thread. 

Property 4 states that the external actions are a result of goal delibera-
tion and means-end assessment. There is a considerable gap between the 



416 P. C. Lockemann et al. 

signal level of sensing and effecting the environment and deriving the nec-
essary actions by practical reasoning. Therefore, as first step commensu-
rate with the level of the runtime environment we translate the signals into 
processes that can be handled by a software agent. 

Layer L3 is the next step towards satisfying Property 4. To offer “a use-
ful service” (Property 2), the agent must have some understanding of its 
environment, i.e., the application domain and its active players. The under-
standing is reflected on layer L3 by the world model of the agent. To link 
the world model and the sensed observations, and after adapting the model 
if necessary to translate the changes to effected actions, the agent may 
make use of ontologies that reflect the overall community knowledge. 
Consequently, there are two sections to layer L3, a section for managing 
the ontologies, and a section that deals with the world model. 

Figure 3. Reference architecture for agents 

Layer L4 is the one where ultimately the agent behavior according to 
Property 4 is realized. The layer must include all mechanisms necessary 
for goal deliberation and means-end assessment. Goal deliberation has 
more of a strategic character, means-end assessment is more tactical in 
nature and results in a selection among potential actions. The goals may 
originate from a single principal or, if the agent serves many clients, from 
several principals. Particularly in the latter case the goals may sometimes 
be in conflict so that the agent must reconcile them. Since both, goal delib-
eration and means-end assessment make use of the world model of layer 
L3, the rules for practical reasoning and the world model must match in 
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structure, e.g., distinction between facts, goals and means, and in formal-
ization, e.g., use of a symbolic representation. 

Being situated in an environment can often mean working for some 
common goal. The agent may then have to pursue some common goal over 
and above its own goals. We decide to differentiate in the architecture 
between the goals of the individual agent and the communal goals. The 
former are located on layer L4, the latter on layer L5. On L5 the actions 
are derived according to the more abstract social and economical princi-
ples governing the community as a whole. Figure 3 summarizes the refer-
ence architecture for agents. 

4.4.3 Localizing Agent Intelligence 

The reference architecture just derived provides the framework where ac-
cording to the design principle of Section 4.4.1 some of the details are still 
to be filled in by considering Properties 5 to 9 of intelligent agents. 
Property 5 states that an intelligent software agent is reactive, that is, it 
continuously perceives its environment and responds in a timely fashion to 
changes that it observes. Clearly, meeting the property affects the action 
selection on L4 and the agent platform on L2. 

In particular, the need for reactivity may cut short goal deliberation. 
That there is an interaction between the two, but that the interaction may in 
fact be rather complicated, is reflected by Property 6 that requires an intel-
ligent software agent to achieve an effective balance between goal-directed 
and reactive behavior. In particular the balance may result in the revision 
of goals and may thus also affect the world model. 

Proactivity of an agent (Property 7), i.e., being able to take the initiative 
in pursuance of its goals, is closely related to autonomy and, hence, is al-
ready technically solved by the runtime environment of layer L2. Having 
control over its own progression, the agent can continuously pursue its 
own goals without the need for external events to trigger the activities. An 
effect can also be expected on level L4 where there may be a need to rec-
oncile long-term and short-term goals. 

Property 8 introduces another aspect of intelligence in a software agent, 
the capability of interacting with other agents. This is an extension to the 
reasoning behind layer L5: While pursuing common goals the agent may 
communicate with other agents to elicit certain responses or to influence 
their own goals, i.e., it may take a more proactive role than just adjusting 
its own behavior. To do so, it ought to be aware of the social and economi-
cal constraints that direct the interaction. On a technical level, the commu-
nication should follow appropriate interaction protocols, hence Property 8 
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has also an effect on layer L2. Further additions to L2 deals with the di-
rectory services of service-oriented architectures, or specific communica-
tion formats such as speech act based messages. 

Finally we should localize Property 9, an agent’s capability to learn. Ef-
fects can be expected on layers L3 because the world model must be able 
to reflect past experiences and conclusions, L4 because goal deliberation 
and means-end assessment should now include machine learning tech-
niques, and particularly L5 where past experiences may alter the coordina-
tion strategies. Figure 4 summarizes the responsibilities of the layers for 
the various properties. 

Figure 4. Assignment of agent properties to the layers of the reference architec-
ture 

4.4.4 Reinterpreting the Jadex Architecture 

There are several so-called agent architectures that fall somewhere be-
tween the fairly abstract level of our reference architecture and the con-
crete architecture of a domain-specific agent. Such architectures usually 
reflect a certain philosophy or view of agents by their designers. We claim 
that these architectures fit into the reference architecture, but occupy only 
a very few layers for which they serve as a refinement. As a consequence, 
these architectures are incomplete and must be augmented by implementa-
tions for the remaining layers. 
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Perhaps the most popular among the agent architectures is the belief-de-
sire-intention (BDI) model. To study how the model fits into the reference 
architecture we examine a software framework for agents that follows the 
BDI model, the Jadex reasoning engine [BrPL2005] [PoBL2005a]. Jadex 
is intentionally conceived as pure reasoning engine, factoring out basic as-
pects of agent management. Hence, Jadex is realized as a rational agent 
layer that sits on top of a middleware agent infrastructure that corresponds 
to layers L1, L2 (and optionally L5) (Figure 5). Currently, Jadex has been 
tested on three different middlewares: JADE [BBCP2005], Diet1 and on a 
simple standalone layer. 

The Jadex reasoning engine uses a world model that is based on beliefs 
and belief sets. The beliefs are stored and managed within a container 
called belief base in the form of single and multi-valued facts (Property 
P1). In contrast to other BDI systems such as Jason2 and dMars 
[IKLW1998] that employ a formal representation of beliefs, in Jadex an 
object-centered perspective was chosen. The reasoning engine can inspect 
the knowledge base by posing queries in a declarative and set-oriented 
language similar to OQL. This part of Jadex clearly occupies layer L3. 

Means-end reasoning (Property P4) follows the “classical” BDI mecha-
nism as proposed by Rao and Georgeff [RaGe1995]. For a given goal or 
event the relevant plans are searched within the library of plan templates. 
In a second step it is checked which of those options are applicable in the 
current context by evaluating their preconditions. Finally, from the list of 
applicable plans a candidate is selected (e.g., via meta-level reasoning) and 
executed. Thereafter, affected mental attitudes such as fulfilled goals are 
updated accordingly. Since BDI was originally conceived to address real-
time decision making by alleviating the unacceptably slow reaction times 
of traditional planning systems, Jadex naturally addresses Property P5 as 
well. 

While goal deliberation (Property P4) is considered neither in current 
BDI theories nor in other available agent frameworks, the Jadex reasoning 
engine introduces new concepts such as explicit goals and goal delibera-
tion mechanisms (see e.g. [BPLM2004]), and enhances the original BDI 
architecture by allowing the integration of extensions such as goal delib-
eration strategies into the interpreter [PoBL2005b]. The foundation for 
such extensions is a generic goal lifecycle that introduces explicit goal 
states allowing a uniform treatment of different kinds of goals during the 
agent’s lifetime, and thus goes some way towards meeting Property P7 
[BPLM2004]. As an example, the Easy Deliberation strategy handles con-

1 See http://diet-agents.sourceforge.net/ for details. 
2 See http://jason.sourceforge.net/ for details. 
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flicts between goals given relative order of goal importance [PoBL2005c]. 
The relationship between goal deliberation and action generation (Property 
P6) is not fixed within the architecture but heavily depends on the used 
deliberation strategy which determines the computational costs. 

In summary, Jadex primarily addresses Properties P4, P5, P6 and 
somewhat P7. In our reference architecture these properties are located on 
layers L3 and L4. Consequently, Jadex can be considered a refinement of 
layers L3 and L4 (see Figure 5). 

Host Platform (e.g., JADE) 

Adapter Agent (e.g., JADE Agent) 

Jadex Agent Interface

Adapter Layer 
(e.g.,Timing-, MessageReceiver-, Scheduler-, DispatcherBeh.)

Core ReasoningLayer

(Beliefs, Plans, Goals, etc.)

Adapter Agent Interface

L3
L4

L2
L5

L2

Jadex   Agent

Figure 5. Jadex as a refinement of the reference architecture 

4.4.5 Reinterpreting the InteRRaP Architecture 

As a second example we consider InteRRaP [Muel1996]. InteRRaP has as 
its main objective the integration of reactivity, goal-orientation, and coop-
eration into a single model. Hence, InteRRaP seems to focus on Properties 
6 (effective balance between goal-directed and reactive behavior) and 8 
(social ability). Now, if we examine Figure 4, we would then expect that 
the InteRRaP model would in particular fill in more details of the layers L4 
and L5. Figure 6 shows the InteRRaP architecture. 
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Figure 6. InteRRaP as a refinement of the reference architecture 

The core is the control unit. It is divided into three layers, the Behavior-
based Layer, the Local Planning Layer and the Cooperative Planning 
Layer. The Behavior-based Layer reflects the short-term reactive behavior 
of the agent, the Local Planning Layer is responsible for the longer-term 
goal-directed behavior. Together the two constitute Layer L4 of the refer-
ence architecture. The balance between goal-directed and reactive behavior 
is achieved by dividing the two layers into two functional components 
each, SG (situation recognition and goal activation) and PS (planning and 
scheduling). Each SG component examines its specific knowledge base, 
and then hands its conclusions to the PS component. If PS has insufficient 
information it turns to the PS component on the next lower layer which, 
probably with the help of its SG partner, determines the shorter-term ac-
tions and then notifies the SG component one layer up. 

The third layer, Cooperative Planning Layer, corresponds to Layer L5 of 
the reference architecture. Like the other two layers it contains both, an SG 
and a PS component, and interacts with the Local Planning Layer in ex-
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actly the same way described before. For a detailed example see 
[Muel1996]. 

In close correspondence to the control unit the knowledge base is also 
organized into three-layers, a World Model, a Mental Model and a Social 
Model. All three can be seen as part of Layer L3 in the reference architec-
ture. 

4.5 Incorporating Agent Interaction 

4.5.1 Protocol Architecture 

A set of rules that regulates the interaction between two (or more) agents is 
called an interaction protocol. Conceptually the protocol must be enforced 
by some mechanism that is located – as a sort of virtual connector – be-
tween the agents (Figure 7). In fact, though, as noted in IV.3 in the prevail-
ing form of interaction, conversations, there is no “natural” central author-
ity to which the agents can turn to organize the cooperation. Rather it is up 
to the individual agents themselves to incorporate the mechanisms for or-
ganizing and controlling the information exchange if it is above the physi-
cal layer. In other words, each agent contains software that reflects its 
contribution to the protocol, and altogether the protocol is realized in a 
distributed fashion across the agents. Hence, we have to augment the agent 
reference architecture of Section 4.4 by further elements. 

Agent

Send Receive

Agent

Physical transport medium

Message protocol

Receive Send

Figure 7. Design architecture for a multiagent system 

Conversations are based on (asynchronous) message exchange. As is 
well-known from telecommunications, the corresponding communication 
software follows the layers pattern and, hence, is referred to as a protocol 
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stack. Figure 8 illustrates the protocol mechanism for the ISO/OSI refer-
ence model [Stal2005]. 
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Figure 8. ISO/OSI data communications reference architecture

What does the protocol stack within an agent look like? Taking our cues 
from the ISO/OSI model, the lower four layers – the transport system – are 
oblivious to the purpose of the message exchange, let alone the application 
domain. Consequently, the mechanisms necessary for physical communi-
cation can be located on layer L1. Property 8, An intelligent software agent 
may have to possess social ability, that is, is capable of interacting with 
other agents to provide its service, is already preconditioned towards inter-
action and was associated with layer L5. Hence, we would expect that the 
conversation protocols are primarily reflected in that layer. Protocols gov-
ern a sequence of message exchanges between the agents. Hence, what we 
need in between is a layer that is geared towards agent messages. Layer L2 
seems the right layer. Interaction depends on some common understanding 
among the agents, i.e., a shared world model and ontology. Layer L3 thus 
must provide suitable mechanisms for proper message encoding. Layer L4 
controls the behavior of the individual agent and, hence, does not seem to 
contribute anything to the coordination per se, so it does not participate in 
the protocol stack. 

Figure 9 outlines the protocol stack within an agent and may be seen as 
an extended reference architecture for agents. Clearly, protocol layers L1 
and L2 are domain-independent. Even layer L5 can be formulated in a do-
main-independent way as long as one employs generic interaction proto-
cols. However, some interaction protocols are intimately related to the 
agent architectures on layers L3 and L4. Just consider the InteRRaP archi-
tecture of Section 4.4.5. 
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Figure 9. Agent implementation architecture for a multiagent system 

4.5.2 Example: Contract Net 

The most widely used conversation protocol is the contract net protocol. 
An agent – called the manager – seeks other agents – called (potential) 
contractors – to contribute to the solution of a task. In doing so the man-
ager announces a task that needs to be performed, receives, and evaluates 
bids from potential contractors, awards a contract to a suitable contractor, 
and receives and synthesizes results. On the other hand, the contractor re-
ceives task announcements, evaluates its own capability or interest to re-
spond, responds (declines or bids), performs the task if the bid is accepted, 
and reports the results. Figure 10 gives an example, the FIPA contract net 
protocol (see below). 

The protocol must be translated into the detailed protocol stack spanning 
layers L5, L3, L2 and L1. These stacks will have to reflect the responsi-
bilities each agent assumes within the protocol. For example, Dinkloh and 
Nimis use Figure 10 as the basis of a finite-state automaton that is turned 
into the implementation of protocol stacks for both, initiator and partici-
pant [DiNi2003]. The protocol determines the message exchange based on 
a higher-level communication language, FIPA-ACL, which obviously 
must also be provided on layer L2 at the location of each agent. The con-
tract net itself defines the layer L5 protocol. 
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Figure 10. FIPA-Contract Net Protocol 

4.5.3 Living Systems Technology Suite 

The layered communication model of a commercial development and run-
time suite, Living System® Technology Suite (LS/TS) by Whitestein 
Technologies AG, closely parallels the protocol stack of Figure 9 and may 
thus also serve as a proof of concept for our reference architecture. LS/TS 
distinguishes four levels in a so-called tiered model. The Interaction Tier 
deals with basic messaging including rendezvous policies. It is followed by 
the Linguistic Tier for the classification of message types (speech acts). 
Both correspond to Layer L2 in the protocol stack. The next level, the 
Domain Tier, represents the topic of conversations, with the knowledge 
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captured in domain ontologies, and corresponds to Layer L3. The upper-
most Tier, the Social Tier, represents the structure of the conversation such 
as roles, protocols, and matches the responsibilities of Layer L5. 

4.6 Agent Platforms 

Finally we take a look at the platform section of Figure 3. Clearly, layers 
L1 and L2 of our reference architecture are fairly generic and thus domain-
independent. Furthermore, its services appear useful to any agent no matter 
what its specific purpose. Hence according to Section 4.2.3, these layers 
are prime candidates for the agent platform (or framework) section. Such a 
platform would be provided at every location where agents are to be in-
stalled, without becoming part of the agent itself. Hence, a platform 
(framework or middleware) imposes a standard, and it is the responsibility 
of each location to provide a suitable mapping between the local systems 
and the middleware. 

FIPA (Foundation for Intelligent Physical Agents) proposes a reference 
architecture for an agent middleware, and a good number of mature im-
plementations exist for it. We shall briefly cover it in this section in order 
to demonstrate that agent developers can safely concentrate on the coordi-
nation protocols. 

The FIPA reference architecture is shown in Figure 11. It assumes that 
layer L1 is provided by standard system software so that it can concentrate 
on layer L2. It consists of a number of related specifications. Basic among 
them are the FIPA Abstract Architecture Specification [FIPA2002a] and 
the FIPA Agent Management Specification [FIPA2002b]. Both together 
define an agent management system for the lifecycle management of the 
local agents, and a directory facilitator for registering external services. 

AP 2Agent Platform 1

Message Transport Service (L2)

Agent Agent Mgmt
System

Directory
Facilitator

Ontology
Agent

(L3)

Transport protocols, e.g. FIPA -IIOP

Transport syntax, e.g. XML - Syntax

Contents syntax, e.g. FIPA - SL

(L2)(L2)

Cooperation protocols (L5)

Figure 11. FIPA-Agent Management Reference Model 
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The platform core of the FIPA architecture, however, is the message 
transport system on layer L2. The architecture offers standards for various 
transport protocols, transport syntaxes and contents syntaxes. In particular, 
FIPA introduces an agent communication language (ACL, see IV.3). 

Relegating the basic message exchange mechanisms to a platform al-
lows agent designers to concentrate on the purposeful agent interaction 
which, as we saw before, is the subject of agent layer L5. For this purpose, 
the FIPA architecture offers specific interaction protocols such as the 
FIPA-Contract Net interaction protocol. 

4.7 Conclusions 

Architectural design of software, although deemed important by the com-
munity, often remains a neglected topic [Kell2003]. Good architectural de-
sign, though, tends to isolate the various issues to be concerned with, and 
localizes them within specific software parts. The foremost benefit is in a 
division of work, well-defined responsibilities and a well-controlled devel-
opment process. If encapsulated in a reference architecture, one can also 
gain a blueprint along which to organize similar development processes. 
The purpose of this chapter was to demonstrate that such an approach is 
entirely feasible for the development of software agents. 
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Abstract. In the previous chapters design issues have been discussed with respect 
to architecture and interaction. These chapters are focused on techniques and 
methodologies. However, an explicit semantics of agent architectural and interac-
tion behavior is required for the analysis and implementation of complex real-
world systems. Additionally, the adaptation of a multiagent system to real-world 
domains requires the formal specification of knowledge. In this chapter, we intro-
duce semantics from a general perspective with special focus on agent technology, 
e.g., semantics for communication. Finally, we introduce formal semantics for 
representation of intelligent agents and multiagent systems. 

5.1 Introduction 

The definition of agents, multiagent systems as well as multi-multiagent 
systems is a key challenge in agent engineering. The specific characteristic 
of agent engineering, comparable to developing distributed knowledge-
based systems with complex interaction, requires sound and formal speci-
fication of the system. The advantage of formalizing agent behavior in a 
logical framework consists in providing a descriptive level that abstracts 
from the agent’s architecture as well as from algorithmic details. An ex-
ample for such an abstract description was mentioned earlier: the modal 
logic proposed for modeling BDI agents. In computer science, this level of 
abstraction is well known as the specification level of an information pro-
cessing system and is distinguished from its implementation level. Gener-
ally, it turns out to be much easier to prove that the system’s specification 
matches our expectations about the functionality of the system (i.e. the 
agent’s behavior) than to prove the same for the system implementation. 
According to [SiRG1999], the challenge lies in developing “techniques for 
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ensuring that agents will behave as we expect them to – or at least, will not 
behave in ways that are unacceptable or undesirable.” 

Any formalization of deliberative agents establishes a balance between 
the expressiveness of the formalism and its computational complexity. 
[RaGe1995], for instance, describe a simple BDI-logic that is decidable in 
linear time. Often, however, the price for a logical formalism sufficiently 
expressive to capture particular type of agent behavior is prohibitively 
high. In this case, an agent that is reasoning in the formalism would not be 
able to act rapidly enough under the temporal constraints of its environ-
ment. Although such a logic may be useful for the purpose of analysis, it is 
certainly not suited as a basis for building actual agents. To clarify this 
point, [SiRG1999] distinguish two different objectives which can be fol-
lowed by the developer of an agent formalism. 

• Specification: External Use of the Formalism. This is the objective of 
the agent designer who uses a logical language to specify the agent’s 
behavior. Tools from logic (e.g. model checking) are applied to analyze 
whether the specification is consistent. 

• Reasoning: Internal Use of the Formalism: The agent’s deliberation 
processes are implemented by reasoning within the formalism. This is 
the objective followed by most work on MAS. 

In multiagent systems a third aspect is accompanying them: Interaction, 
i.e., the internal use of the formalism for interaction of the participating 
agents within a system. This area of research is comparable to the Seman-
tic Web. In both domains, the Semantic Web as well as the interaction in 
multiagent systems, ontologies are the key technology for ensuring se-
mantically sound interaction of heterogeneous autonomous entities. Addi-
tional problems in the multiagent domain arise from the connection of de-
liberation cycle with its underlying knowledge representation and the se-
mantics of transferred information within messages. Here mediation be-
tween ontologies is required. 

In this chapter, semantics from a general perspective with special focus 
on agent technology is introduced. Starting from an abstract view on the 
foundations of semantics defined as meaning and reference, communica-
tion aspects and foundation of logics are discussed. In the following, inter-
action and reasoning are described in abstract agent context. Here, the fo-
cus lies on specific approaches to the semantic description of dynamic be-
havior like temporal logic, situation calculus, or non-monotonic reasoning. 
As a logical basis for interaction in distributed systems, i.e., agents resp. 
multiagent systems, ontologies are introduced as a building block for inter-
action semantics. For the flexibility of multiagent systems as well as for 
the interaction of heterogeneous systems, one of the key challenges lies in 
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the integration of heterogeneous ontologies, which is discussed in the sub-
sequent section. In the second part of the chapter, the focus lies on seman-
tics for agent architectures. Here, recent trends in formalization as well as 
an unified approach to the formal foundation of agent deliberation is pre-
sented. For multiagent systems it might be of interest to analyze the sys-
tems semantics, i.e., the dynamic change of the multiagent system. 

5.2 Semantics: Foundation, Communication, and 
Reasoning 

This section gives a brief introduction to the question of semantics, i.e., the 
problem of assigning meaning to linguistic expressions, formal as well as 
“natural” ones, i.e., those of everyday common language, in its application 
to agents and multiagent systems (as introduced above and in accordance 
with [Wool2000]). As we want to understand agents’ actions as meaning-
ful w.r.t. some goal agents are supposed to achieve, we have to deal with 
the interpretation of the (external) relation of agents to their environment 
as well as with the question how the symbolic structures on which the 
agents’ operations depend are meaningful in relation to their internal sym-
bolic representations of the environment. In the following, we are focusing 
on semantics from an internal, agent-local point of view, i.e. semantics ap-
plied to agents for communication, reasoning, and action planning. The 
question for meaning comes up on the object- and meta-level, i.e. for 
knowledge representation and reasoning in agents on the one hand, and 
also with reasoning about rational agents. The latter aspect is closely tied 
to the tasks of specification and verification: We want to define agents in a 
way that they do what we mean and we want to show that their “behavior” 
conforms to that definition. 

5.2.1 Foundation of Semantics 

For our discussion of semantics, we assume the framework of logic in its 
most general sense, just as Allen Newell expressed in 1981 that “there is 
no non-logical knowledge representation”: “Just as talking of program-
mer-less programming violates truth in packaging, so does talking of non-
logical analysis of knowledge.”

According to a long-standing tradition, logic has been considered as the 
basis of any theory of argumentation. Traditionally, logic deals with the 
doctrines of concept formation, judgment (expressing assertions), and rea-
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soning. In computer science, there are different uses of logic. It is used as a 
tool

• for the analysis, design and specification of modeling tasks and 
• formalisms, 
• a representation formalism itself, and 
• a programming language (Prolog). 

As a reason for its widespread use, usually it is stated that standard logic 
has the advantage of a clear and well-defined semantics. So, what is the 
background for this claim, and what is semantics all about? Semantics is 
the investigation of the meaning of linguistic expressions or of signs in 
general, and in particular of the validity conditions of sentences and propo-
sitions. 

5.2.1.1 Semantics: Meaning and Reference 

The question for semantics has always been closely tied to the use of hu-
man language. The function of language has clearly been stated by Plato as 
“somebody communicates something to somebody else”, a view which has 
been prevailing till this day. He describes semantics in terms of a picture 
theory, i.e., a unique relation between names and things. A modern version 
of picture theory can be found in Wittgenstein’s “Tractatus Logico-Phil-
osophicus” (1921), where each element of a declarative sentence stands for 
something, be it an object or a quality or a relation, etc.; the connectives 
and the way the words are put together correspond to the way the objects 
and qualities and so on are related in the world - understood as the totality 
of facts and not of things. 

Within this framework, all prevailing problems can be formulated which 
come up with any attempt to answer the two fundamental questions of se-
mantics: The substance-related or ontological question “What are mean-
ings?”, and the functional or epistemological question “How can signs 
mean (something)?” Considering the relation between names and things, 
either names have been regarded as a particular kind of things, which leads 
to an external relation between things, or things have been regarded as 
special kind of names (representations) resulting in an external relation 
between signs. A third answer has been that names are a priori assigned to 
(in individual actions) accessible individual things as individual instances 
of sign schemata, resulting in an internal relation between language and 
world. 

Thorough investigations have shown that both of the external answers 
taken separately lead to extreme difficulties in explaining communication. 
Therefore, the need for a combination of both approaches became obvious. 
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The canonical solution is due to Frege’s (1892) theory of “Sinn” (meaning) 
and “Bedeutung” (reference). The meaning of a proposition governs its 
linguistic understanding (“by which”), and it is required to assess its valid-
ity in the world (“whereabout”). The transition from names - playing a sig-
nificative, extensional role - to statements (propositions) - playing a com-
municative, intentional role - is provided by propositional functions, which 
in turn are represented by predicative expressions. Hence, predicative ex-
pressions are to be explained in a meaning-related way, i.e. intentionally, 
and in a reference-related way, i.e. extensionally, as well. 

This claim can be satisfied by means of two equivalence relations be-
tween predicative expressions, because, according to the modern theory of 
abstraction as conceived by Frege, each function is obtained by abstracting 
over its representing terms. The first one, synonymy, is an analytic 
equivalence relation which holds due to terminological rules or meaning 
postulates and which leads to concepts. As an intentional abstraction, it en-
compasses our knowledge of language. On the other hand, general (mate-
rial) equivalence is empirical, hence synthetic, and comprises knowledge 
of the world. 

5.2.1.2 Including Communication 

In order to cope with the communicative aspect, the so called semantic tri-
angle, sign, meaning, reference, is extended to a pragmatic quadrangle by 
including the distinction between speaker and hearer, which in particular 
allows to take into account the difference between speaker-reference and 
hearer-reference, which is important for the function of names. Then the 
pragmatic context of linguistic expressions, their use (token) or type of 
use, resp., provides a foundation for the determination of their meaning. In 
Wittgenstein’s words: “The meaning of a word is its use in the language”. 
The primacy of pragmatics, expressed by “communication is action”, leads 
to a foundation of semantics where meaning is rooted in a theory of action. 
The recent theory of speech acts (see below), which also plays an essential 
role for agent communication, is justified exactly by such a pragmatic 
foundation. 

5.2.1.3 Pragmatic Foundation of Logic 

Referring to our introductory remarks about the general logical framework, 
immediately the question comes up whether there is a pragmatic founda-
tion for logic itself. What would be symbolic actions which allow to assign 
a meaning to composite logical expressions? In fact, dialogical logic pro-
vides an answer; an approach, which, often referred to as “logic as game”, 
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has recently gained considerable popularity. Dialogical logic sets up a 
framework for two-person games, where two partners play games about 
the validity or truth (if truth-value definiteness is given) of composite logi-
cal formulae. For each connective and each quantifier rules are given 
which define the moves, attacks (doubts), and defenses for formulae com-
posed with the resp. connective. The justification of these rules is precisely 
a pragmatic one: executing a move is an action. In further abstraction steps 
games can be turned into formal developments in a tableau calculus, 
reaching the level of a full formalization. Logical truth of a formula, i.e. 
truth by its form alone, is given if such a tableau can be closed. Among 
many publications, readers interested in a detailed exposition are referred 
to [LoLo1978]. 

Dialogical logic has the advantage of covering constructive (“intuition-
istic”) and classical logics as well up to the level of modal logic. It com-
prises the traditional proof-theoretic exposition of logic - although in a top-
down fashion due to the tableau method - and, because of its pragmatic 
foundation, without the need to refer to Hilbert-style axioms. Model theory 
plays primarily an exhibitory role as models are constructed by successful 
tableau proofs, and model theoretic methods are nevertheless important 
tools on the meta level, but it is not required as a foundational discipline in 
Tarski’s sense. Tarski’s approach attempts to introduce truth in a purely 
formalistic way as illustrated by his famous example: The sentence “Snow 
is white” is true if and only if snow is white. But pushing the problem of 
truth to the meta-level leads to a vicious circle as long as one does not 
leave the formalism. 

5.2.2 Foundation of Semantics 

The most popular formalization of rational agency is the belief-desire-in-
tention (BDI) model which is based on the assumption of the primacy of 
beliefs, desires, and intention in rational action. It is rooted in the philoso-
phical tradition of understanding practical reasoning in humans and has 
been developed in its present form by Michael Bratman [Brat1987]. 

For agents, conceived as computational systems in its broadest sense, 
formal theories have been developed that allow to reason about their ac-
tions – often referred to as “behavior” in an anthropomorphic terminology. 
Those theories can be understood as defining the semantics of such sys-
tems, i.e. they allow to interpret a given state of affairs and the agent’s rea-
soning in a logical precise way. To build such theories, rational action has 
to be reduced to its operationalizable aspects and the theory has to provide 
justifications for the adequacy of the required abstractions. In particular, 
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for the BDI model, a logical language has to be designed which extends 
standard logic with representations for beliefs, desires and intentions in the 
first place. LORA (Logic of Rational Agents) is such a language, origi-
nally developed by Rao and Georgeff and presented in depth in [Wool 
2000]. In addition to the BDI component, it contains a temporal compo-
nent to represent the dynamics of agents and their environments, and an 
action component to represent the agents’ actions and their effects. 

5.2.2.1 Logic for Multiagent Systems 

In order to provide a concise and efficient notation, in general a modal 
logic framework is chosen, which can be understood as a class of special-
ized languages for representing the properties of relational structures, as, 
e.g. temporal relations. So, e.g., LORA is a first-order branching time 
logic, containing modal connectives for representing the beliefs, desires, 
and intentions of agents, as well as expressions in a dynamic-logic style for 
representing and reasoning about the actions agents perform. It is well 
known that the satisfiability problem for first-order logic is only semi-de-
cidable, and the corresponding problem for modal logics is even worse. So 
there will presumably never be practical theorem-proving methods for 
such logics. But that does not mean that designing it is a useless enterprise 
at all. In general, it can play a threefold role in the engineering of agent 
systems: as a specification language, as a programming language, and as a 
verification language. As for specification, it helps to give precise defini-
tions and to identify inconsistencies in designs. For programming and veri-
fication, it is an indispensable tool for formalization, even when in terms 
of execution the language has to be weakened or incomplete inference al-
gorithms must be used. 

An important feature of logical models of multiagent systems is that 
they must be able to represent the information-state of each agent contain-
ing knowledge and belief, and that they allow to explore the relation be-
tween both. In particular, the representation of shared knowledge is essen-
tial for reasoning and, in particular, planning. To express the knowledge/ 
belief distinction in a clear and succinct way, modal operators in their 
epistemic reading have been a well proven tool. 

5.2.2.2 Agent Communication 

In the following, we will focus on the issue of agent communication in 
general, i.e., the linguistic framework of agent communication languages, 
and on the role of formal ontologies. One important feature is that they en-
sure semantic compatibility w.r.t. to the conceptualization of the objects 
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and their properties agents have to deal with, the conceptual representation 
of the environment itself, and w.r.t. to their operations in the environment. 
The purpose of this presentation is to complement the theoretical exposi-
tion of LORA and similar languages as given in Section 5.3 (see also 
[Wool2000]), to which the interested reader is referred to, from an appli-
cation-oriented point of view. 

Agents are supposed to be autonomous in the following technical sense 
that they have control over both their state and their “behavior”. Therefore, 
it is not possible, that an agent can “invoke a method” in another agent as 
in object-oriented programming. Agents cannot force other agents to per-
form some action and they cannot directly access the internal state of other 
agents, in particular not write any data into it. But they can exchange mes-
sages with each other, i.e., communicate. In our understanding of commu-
nication as a special form of action, agents can perform communicative 
actions to convey messages to other agents in order to influence their in-
ternal state and their future actions, let it be communicative or other ones. 

5.2.2.3 Speech Acts 

Speech act theory, originally conceived in the philosophy of language by 
Austin, Searle, and others, has at its center precisely the notion of commu-
nication as action. Usually, three different aspects of speech acts are dis-
tinguished: the elocutionary act - making an utterance -, the illocutionary 
act - the action performed in saying something -, and the perlocution - the 
effect of the act. Subsequently, a typology of speech acts has been elabo-
rated which are associated with corresponding performative verbs, com-
prising representatives, directives, commissives, expressives, and declara-
tions. Furthermore, in order to perform speech acts successfully, general 
conditions on communication situations were identified, among which sin-
cerity is an important one. In a framework of systems like agents, which 
shall be able to plan how to autonomously achieve goals, such plans must 
include communicative actions. So, Cohen and Perrault [CoPe1979] and 
others gave an operational account of speech acts in terms of AI planning 
techniques, and which later on has been generalized in embedding speech 
act theory in a more general theory of intentional rational action for agents. 

5.2.2.4 The Meaning of Agent Communication Language
Expressions 

The semantic question we are facing is how to assign meaning to the ex-
pressions of agent communication languages. The actual agent communi-
cation language, based on speech acts, is FIPA-ACL; it has been standard-
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ized in 1995 by the Foundation of Intelligent Physical Agents. The FIPA 
standard defines an unambiguous format for messages in a LISP-like syn-
tax, 20 performatives (such as “inform”, “query”, “confirm”, etc.) to 
stipulate the intended interpretation of messages, and it does not mandate a 
specific object language for message content. In general, it is assumed that 
the content is given by a logical expression. Here is an example of a FIPA-
ACL message (from [Fipa2001]): 

(inform
   :sender    agent1 
   :receiver  agent2 
   :content   (price good2 150) 
   :language  s1 
   :ontology  hpl-auction) 

The formal semantics of FIPA-ACL is defined in terms of a “Semantic 
Language” SL, a quantified multi-modal logic containing modal operators 
for referring to the beliefs, desires and intentions of agents and expression 
types in a dynamic-logic style for representing agent’s actions. It was in-
spired by previous work of Cohen, Levesque, Sadek, and others. The se-
mantics definition of FIPA-ACL provides a translation semantics which 
maps each ACL expression to a corresponding SL formula which in turn is 
a constraint that the sender of the message must satisfy. 

Intuitively, the example message encodes an inform speech act directed 
from agent1 to agent2, containing a predicate term expressed in the lan-
guage SL. Whereas the meaning of the logical symbols in the content ex-
pression is defined in SL, the interpretation of its non-logical symbols is 
provided by a formal ontology, in our case “hpl-auction”. The actual 
wording suggests strongly that the given predicate expression gives a price 
information for a good named “good2” of 150 currency units, but its pre-
cise meaning has of course to be taken from the formal ontology where the 
concept of “price” will be located within a terminological hierarchy and 
will possibly carry some further attributes. 

5.2.2.5 Formal Ontologies: Meaning of Content Words

Whereas the problem of semantics of logical symbols has been addressed 
above, we will now broach the issue of formal ontologies, dealing with the 
non-logical symbols (“content words”), and the important role they play 
for agent systems. The term ontology, which in philosophy denotes the 
doctrine of “what there is”, is used here in a much more restricted way. 

Formal ontologies consist of (formal) definitions of the concepts and 
relations in a domain, in our case the agents, their environment, and the 
tasks they have solve in it. A formal ontology defines, which and in which 
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way objects, substances, aggregates, changes, events, actions, time and 
place specifications, etc., are available for knowledge representation and 
reasoning. For this purpose, within a logical framework a basic inventory 
of linguistic expression types is required, which enables representations of 

• Concepts (also: classes, categories) resulting from predication and ab-
straction, represented by predicates; 

• Relations among concepts resulting from terminological (predicator) 
rules and are represented in a super-/sub-concept hierarchy; 

• Assigned properties (“roles”, attributes) to concepts, represented by (bi-
nary) relations. 

• Further content-based relations between concepts are laid down by rules 
(“axioms”). 

Furthermore, languages for the representation of formal ontologies need 
to provide a suitable vocabulary for conceptual modeling; this question 
will be discussed in more detail below. Formal ontologies resemble a lot to 
terminological systems, hierarchical dictionaries and thesauri, but usually 
they convey more information than those which capture the use of terms, 
but not more. Usually, empirical, encyclopedic knowledge is not contained 
in dictionaries, but is an essential component of formal ontologies. 

5.2.2.6 Reference and Application Ontologies 

Among formal ontologies, at least two kinds can be distinguished, refer-
ence and application ontologies. Reference (or foundational) ontologies 
account for a generic, universal conceptual inventory, i.e. a representation 
language and fundamental distinctions, and for foundational relations like 
parts and wholes (mereonymy), similarity, dependence, connection, inher-
ence, and temporal order. Today, instead of just a single “upper level”, of-
ten a small set of foundational ontologies is provided, and current work 
aims even at a foundational ontologies library. 

Application ontologies provide conceptual models of particular applica-
tion domains; the formal ontologies presented in this volume are of this 
type. For a general overview of formal ontologies in agent architectures 
see also [SyPa2004]. 

Building a formal ontology is still more an art than a science, although 
for scientific domains like physics or biology a lot can be adopted from 
fundamental work in the philosophy of science. Many formal ontologies 
have been constructed upon empirical evidence within the framework of 
ordinary language. Recently, methods of systematic conceptual construc-
tion based on epistemic criteria have been proposed, among which the 
OntoClean methodology in combination with the DOLCE reference ontol-
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ogy (Descriptive Ontology for Linguistic and Cognitive Engineering) by 
Guarino et al. is the most advanced [GuWe2004] [Gan+2002]. For already 
existent ontologies, they provide a systematic approach to the construction 
and remodeling of ontologies. 

Experience has shown that basic conceptual modeling constructs such as 
instantiation, generalization, association, aggregation have been used in a 
less rigid and systematic way in many cases. Therefore, the distinction 
between particulars and universals, class-instance-of and membership, 
subsumption and instantiation, part-of and part-whole relations, as well as 
composition, disjunction, identity, etc., need to be made compatible among 
different ontologies before they can be combined. 

5.2.2.7 Semantic Content in Formal Ontologies 

The question for semantic content in formal ontologies has to be answered 
in a twofold way: On the one hand, the ontology representation language 
offers epistemological constructs the semantics of which has to be defined 
similar to languages of formal logic as indicated below for the case of de-
scription logics. On the other hand, starting with some primitive concepts, 
the structure and attribution of domain concepts as represented by means 
of these epistemological constructs makes up a definition of the semantics 
of the given domain. In our case, these are the concepts and roles which 
define the agents’ “world”, i.e., the epistemological and operational 
categories which constitute the conditions of all possible perceptions and 
actions. Those are the (only) formal linguistic means agents have at their 
disposal for the representation of states of affairs and of situations or 
world-states as a whole. 

5.2.2.8 Computational Logic 

To enable a computational device such as an agent to make use of the rep-
resented knowledge it must be equipped with some kind of an inference 
mechanism. For our logical framework, this means that we have to address 
the computational aspects of logic. Given a formal logical language with 
its syntax and semantics and the subsequent expressive power, first of all 
the reasoning problem has to be specified. Investigations of the reasoning 
problem are aimed at its decidability and computational complexity. Fi-
nally, a problem solving procedure, i.e. a specific implementation solving 
the reasoning problem, has to be provided, and the problems to be ad-
dressed at this level are its soundness and completeness and the practical 
aspects of complexity. 
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Of course, an ideal computational logic should be expressive, and have 
decidable reasoning problems for which sound complete and efficient rea-
soning procedures are available. Unfortunately, as one might expect, the 
field of logic is not an ideal world at all. As we know, even the question 
for decidability cannot be answered positively for full first-order logic. 
Therefore, for practical purposes, specialized logic-based representation 
formalisms are needed. Among them, a family of sublanguages of first-or-
der logic named “Description Logics” has been developed, which explore 
the “most” interesting expressive decidable logics with classical semantics, 
and which can be equipped with “well-behaving” reasoning procedures 
[Baa+2003]. 

5.2.2.9 Description Logics as Ontology Languages 

Description Logics (DLs) are structured fragments of classical first-order 
logic which offer expressive means according to the requirements for for-
mal ontologies as described above: concepts arranged in subsumption hier-
archies, properties (roles) and individuals (instances). They can be charac-
terized as sound and complete logics which are suitable to formalize theo-
ries and systems for expressing structured information and for accessing 
and reasoning with it in a principled way. The representation is object-ori-
ented and done at the predicate level; there are no variables in the formal-
ism. For structured descriptions, a restricted set of epistemologically ade-
quate language constructs is provided to express complex relational struc-
tures of objects. Of particular importance is the distinction between con-
ceptual (terminological, “T-Box”) knowledge and knowledge about in-
stances (assertional, “A-Box” ). For reasoning, automatic classification to 
determine the subsumption – i.e., universal (material) implication - lattice 
plays a central role. 

Constructions of conceptual models begin with a small set of primitive 
concepts and roles. Further concepts are defined by composite expressions 
which express sufficient and necessary conditions. Compositional opera-
tors are negation (complement), conjunction, disjunction, and value and 
existential restrictions for roles. The semantics of this language which has 
become familiar under the name “ALC ” is defined model-theoretically, 
i.e. by associating a set-theoretical expression, denoting its interpretation 
in a domain, with each syntactic construct as shown in Table 1. This proce-
dure can be justified by introducing a predicative set theory through ab-
straction, taking the pragmatic foundation of logic for granted. For the 
syntax of DL, a simple variable-free notation has been established, derived 
from frame languages and standard logic. 
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Table 1. Syntax and semantics (with a brief explanation) of ALC1

A A ⊆ ∆ Primitive concept 

R R = ∆ × ∆ Primitve role 

∆ Universal concept (top) 

⊥ ∅ Empty concept (bottom) 

¬C ∆ \ C Complement 

C D C D∩ Conjunction 

C D C D∪ Disjunction 

∀R.C y{x | .R (x,y) → C (y)} Universal quant. (value restr.) 

∃R.C y{x | .R (x,y) ∧ C (y)} Existential quant. (exist. restr.) 

A DL knowledge base consists of a T-Box (usually a formal ontology) 
and an A-Box which describes a certain situation in terms of its instances. 
Figure 1 gives an example. 

Figure 1. Example of a DL knowledge base2

As for reasoning, the fundamental inference relation is concept satisfi-
ability, i.e. the proof that a concept expression has a model. All other kinds 
of inferences can be shown to be reducible to concept satisfiability: sub-
sumption, general satisfiability, instance checking, retrieval, and realiza-

1  C and D denote concept expressions, either concept names or composite ex-
pressions. 

2  With the “subset” sign partial definitions are introduced, giving necessary 
conditions. The equal sign introduces complete definitions, specifying necessa-
ry and sufficient conditions (example due to E. Franconi). 
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tion. For DLs, tableaux provers have become a de facto standard for proof 
procedures. For comprehensive overview of DL, see [BaHS2005]. 

On top of ALC, a variety of more expressive DLs have been developed 
and investigated. A particularly important DL is called SHIQ, which adds 
to ALC [Bec+2004]: 

• qualified number restrictions, 
• “General Inclusion Axioms” (GCI), 
• transitive and inverse roles, 
• role hierarchies, and 
• data types (“concrete domains”), e.g. real numbers.

The importance of this DL is due to the fact that it provides the basis for 
OWL-DL, a version of the (Semantic) Web Ontology Language OWL (cf. 
[AnHa2004] [Bec+2004]). In fact, for OWL-DL (qualified) number re-
strictions and nominals, i.e. classes with a singleton extension, have to be 
added [HoSa2005]. 

For the Semantic Web, a hierarchy of standardized representation lan-
guages based on XML has been proposed: The basic layer is given by 
XML plus namespaces plus data types (XMLSchema). The second layer 
consists of RDF (Resource Description Framework), a language to express 
associative triples (subject-predicate-object) which can be combined to as-
sociative networks as directed labeled graphs. RDF offers as modeling 
primitives instance-of, subclass and properties with range, domain, and 
cardinality restrictions. This layer is enriched by RDFS (RDFSchema), 
which provides a limited modeling vocabulary and allows to organize it in 
a typed hierarchy with facilities for the definition of classes and sub-
classes, and of roles and role hierarchies, but there is no commitment to an 
inference mechanism. The logic layer, built on top of that, is exactly the 
place where OWL-DL is located as an extension to RDFS(FA), a sub-lan-
guage of RDFS with a First Order style semantics. 

OWL as a standardized language guarantees a stable future for a very 
expressive description logic. Future layers will deal with extensions like 
rules and defaults which go definitely beyond DL, sacrificing at least com-
pleteness or even decidability. 

5.2.2.10 Temporal Logic 

An extension already mentioned is the possibility to represent and process 
temporal statements. A common approach to deal with time in logic is to 
use versions of modal logic. Temporal operators like ‘always’ and ‘some-
times’ are defined in analogy to ‘necessary’ and ‘possible’. An example of 
a theorem of such a temporal logic would be “If always Q then sometimes 



Semantics for Agents 445 

Q”. Augmenting ‘always’ and ‘sometimes’ with other modalities such as 
“P” for past (“It has at some time been the case that…”) and “F” for future 
(“It will at some time be the case that…”) leads to modal languages known 
as tense logics; they have been pioneered by Arthur Prior et al. In the sim-
plest cases, time is regarded as consisting of a linear sequence of states, 
whereas in more advanced logics (as LORA) branching time is introduced 
in order to represent possible futures. Further extensions introduce binary 
temporal operators as ‘since’ and ‘until’. From a semantic point of view, of 
course the various axiomatizations of temporal operators are to be ques-
tioned for their adequateness; otherwise temporal logics are just modal 
logics (for a detailed account of temporal logic see [OeHa1995]). To plan 
actions in a changing world, in most cases a metric representation of time 
is required: actions occur in time, they have durations, and frequently they 
occur concurrently. For this purpose, metric temporal logics have been de-
veloped. 

5.2.2.11 Situation Calculus 

For planning, understood as an inference task, a first attempt to take situa-
tions into consideration was to add a further argument position to any 
situation-describing predicate. Unfortunately, the desired abstractions can-
not be expressed adequately in this simple way. Therefore, situation cal-
culus was designed by McCarthy, Kowalski, and others, a second-order 
language specifically suited for representing dynamically changing worlds. 
As such, it is incomplete, but nevertheless a useful tool for semantically 
characterizing actions and their properties. Appropriate extensions of logic 
programming for situation calculus are available (cf. [Reit2001]). 

As an outlook, let us briefly mention two practical requirements which 
are important for agent systems, but which force us to leave the secure se-
mantic grounds we have been in up to now: Non-monotonic reasoning and 
acting under uncertainty. The investigation of semantic problems in these 
areas is still a research challenge. 

5.2.2.12 Non-Monotonic Reasoning 

Reasoning with incomplete knowledge is another important issue in agent 
systems, and its general importance is also reflected by the fact that it is 
addressed by a future layer in the Semantic Web language hierarchy. So, in 
a next step, we will have to deal with non-monotonic reasoning (for a 
comprehensive overview see [BrDK1997]). Examples are reasoning with 
defaults, revising beliefs, or asserting and retracting formulae in a knowl-
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edge base. In a dynamic world, an agent will have to revise appropriately 
his beliefs when it is facing any of the following situations: 

• new information from the outside world has to be assimilated, 
• premises turn out to be erroneous or change over time, 
• assumptions made during problem solving are violated, 
• an obvious contradiction is encountered, …

This brings up an entirely new situation compared to standard logic and 
its semantics, where the monotonicity property holds: If a formula p fol-
lows from a set of premises Q, then p also follows from any superset of Q. 
As your set of beliefs grows, so does the set of conclusions that can be 
drawn. In contrast to common sense reasoning, conclusions are never 
withdrawn. In agent systems, as long as we insist on the consistency of 
knowledge bases, in the case of contradictions we have to identify the 
source of conflict and withdraw any belief depending on conflicting as-
sumptions or inconsistent data. As in many cases the knowledge available 
only suffices to formulate general rules that usually apply, but also allow 
for exceptions, an agent might be forced to revise a general assumption if 
it encounters an individual which instantiates an exception. 

5.2.2.13 Belief Revision and Reason Maintenance Systems 

To support approaches to the belief revision problem, computational tools 
have been developed: Reason Maintenance Systems (RMS). In them, data 
dependencies are represented explicitly in a network composed of asser-
tions and justifications. In fact they are data dependency network man-
agement systems, pursuing the goal to keep the knowledge base consistent. 
Because this task is common to a variety of applications, it has been sepa-
rated from the problem specific algorithms and encapsulated in a module 
of its own. Basically, two kinds of RMS are to be distinguished: 

• justification-based, which maintain a single actual context, and 
• assumption-based which allow for multiple contexts.

5.2.2.14 Uncertainty and Bayesian Inference 

The last requirement to be briefly addressed in this section is the need of 
agents to acting under uncertainty. In the real world, an agent can never be 
completely sure. In many cases, there is a certain degree of uncertainty due 
to incompleteness and incorrectness in the domain model. The fact that 
many domain rules will be incomplete because too many conditions would 
have to be enumerated, or some conditions are unknown, has been called 
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the qualification problem. But nevertheless, agents have to make rational 
decisions, taking into consideration that their knowledge leads in the best 
case to a “degree of belief” for the truth of assertions. 

For reasoning under uncertainty, the concept of subjective probability in 
combination with Bayes’ rule has become the most important approach: 
Bayesian inference uses probability theory to make probabilistic infer-
ences. But its application is justified only if the required probability distri-
butions can be obtained, which is often very hard in practice (and in many 
cases neglected). Bayes’ rule allows to compute the a posteriori probability 
distribution for (a set of) query variables or hypotheses, given exact values 
for the probabilities of some evidence variables (e.g. gained through per-
ception): 

P(H|E) = P(E|H) * P(H) / P(E) 

i.e., Posterior = Likelihood * Prior / Evidence (1) 

In general, instead of a logical approach, agent systems can be defined 
by means of decision theory, where rational decisions of agents are made 
by considering action benefits vs. the certainty of success. Decision theory 
is a normative theory of action in that it tells an agent what it should do in 
principle, but the actual implementation of the utility optimization function 
imposes nevertheless a hard problem: it seems to require an unconstrained 
search over the space of all actions and their results which is extremely ex-
pensive. And the difficulties increase if we are not only considering one 
action, but a sequence of actions as in planning. Another problem is that 
for utility functions the same difficulty holds as for probability distribu-
tions: they are hard to obtain in practice. 

5.3 Merging Ontologies 

Nowadays, autonomous software agents (short: agents) communicate via a 
standardized format using FIPA-ACL [Fipa2001]. In the content field of 
the FIPA-ACL message format, assertions are applicable. These assertions 
are elements of the A-Box of a formal ontology. Before starting, every 
agent gets a local copy of the T-Box (see Section 5.2.2.9 for explanation of 
T-Box). To ensure consistency of the assertions w.r.t. the T-Box, ontology 
merging is applied. The structure of this section is as follows. In the sec-
ond paragraph we shed light on the problem of ontology merging and ex-
plain it by an example. Then, in the third paragraph, we show some exist-
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ing ideas, frameworks and algorithms that can be applied to the problem. 
We close with a brief discussion of still missing features for this task. 

In human-agent interaction concepts might be added to or changed in 
the local copy of the T-Box of one agent. If this change is unknown to 
other agents (its communication partners), it will generate an ontology ex-
ception. Let us look at an example: 

In the ATT-Multi-Agent-System (MAS, see II.2), this problem occurs if 
a new kind of disruption (as an explanation for supply chain delays in de-
livering) is added. Think of a logistics company where a truck and its 
freight are stolen. Before this situation occurred, no local copy of the T-
Box contained a concept “theft” because nobody thought about thefts. So, a 
human disponent adds this concept to his copy of the T-Box and informs 
his agent (here a Surveillance-Agent (SA1) of ATT-MAS) that it must up-
date its local copy. In this case the SA1 informs the SA of its customer 
(SA2) that (corresponding to an order containing this freight) a disruption 
of the type “theft” has occurred. As explained above, assertions are used in 
communication and therefore SA1 sends SA2 an instance of “theft”. With-
out ontology merging capabilities, SA2 will generate an ontology excep-
tion (meaning “message not understood”). 

Applying the following approaches to (semi-automatically) merge on-
tologies to agent communication is a possibility to improve inter-agent 
“understanding”. 

Before merging ontologies it is necessary to have the same understand-
ing of basic ontological aspects. The OntoClean methodology already in-
troduced in Section 5.2.1 enables this. 

The OntoMorph method [Chal2000] was originally designed to translate 
knowledge bases from one formalism to another. It uses two mechanisms: 
syntactic and semantic rewriting. Syntactic rewriting (via patterns) works 
as central part of this system. Semantic rewriting finds (through reasoning) 
subclass-superclass relations and then applies syntactic rewriting to them. 
The Rosetta [Bock2005] agent based translation scenario uses the Onto-
Morph method in the implemented wrapper agents. 

The prompt tool is member of the Protege plugin family3 and allows au-
thors to merge ontologies semi-automatically. Based on lexical analysis, 
pairs of related terms of the source ontologies are computed. Anchor-
PROMPT [NoMu2000] takes these pairs as input. It interprets the formal 
ontology as a graph where nodes represent concepts and edges represent 
roles. Anchor-PROMPT computes paths in the resulting graph and these 
paths are used to find equivalence classes. A cumulative similarity score 

3  http://protege.stanford.edu/download/plugins.html
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(based on heuristics) and analysis of the path assigns matching candidates. 
These are presented to the user for merging. 

Looking at these approaches, one can see that there are still open prob-
lems in the field of ontology merging. If we look closer at the OntoMorph
methodology, the syntactical matching leads to similarity of “car” to “car-
penter”. Additionally this method is not designed to create one ontology 
out of several others. Anchor-PROMPT needs similarity in the way the 
ontologies to be merged were modeled. It is significant that the approaches 
do not use reasoning capabilities to assist the merging task. As explained 
in Section 5.1, domain ontologies (formal ontologies) correspond to de-
scription logics such that reasoners like RACER [HaMo2001] can be used 
to answer queries referring to T-Boxes. It is still an open research question 
to integrate reasoner feedback with ontology merging. There exist some 
problem classes related to the given example that need not to be worked 
out by merging ontologies. For these problems might fit other solutions 
like aligning order translating ontologies. A short overview of other meth-
odologies gives [StTi2002]. 

5.4 Semantics for Agent Architectures 

In I.1 to I.3, properties of Intelligent Agents, MAS, and especially flexibil-
ity have been introduced in an informal way. The main properties, i.e., 
autonomous behavior and flexibility of agents and multiagent systems, are 
new challenges for the design and the implementation of these systems. 
There are various approaches for the formalization of the definition and 
specification of MAS and their properties [RaGe1995] [LePi1999] 
[DuLM2003] [GeNi1987]. In this chapter, formal concepts for agents, 
MAS, and their properties are introduced in a general manner allowing for 
specific extensions resp. specializations. In the previous section formal 
languages are discussed in context of interaction and decision making in 
agents. This section is focused on architectural and decision making issues 
within agents. 

5.4.1 Recent Trends in Formalization 

The majority of formal approaches are focused on enabling intelligent be-
havior within agents [vHWo2003] [WoJe1995] [RaGe1998] [FiGh2002] 
[NiTa2002] [Timm2001]. As introduced before, design of intelligent 
agents is often based on an explicit, cognitive model of beliefs, desires, 
and intentions (BDI). The underlying idea is that an agent is creating an 
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explicit world model (beliefs) on the basis of observations and its actions. 
Additionally, it contains a set of objectives (desires or persistent goals) and 
a set of goals which are currently pursued (intentions). The agent pursues 
its goals by autonomously created plans. BDI-agents are “the dominant 
force” in formal approaches [Inv+2004, p. 5] for which [Wool2000a] al-
ready identified three major reasons: 

• It is based on a widely accepted theory of rational actions of humans. 
• They are successful in a great number of complex applications. 
• There is a large family of well-understood, sophisticated, and formal-

ized approaches available. 

However, modeling heterogeneous MAS requires the abstraction of in-
dividual agents’ behavior. The model of the system should only include 
those actions, which are perceivable to other agents or which change the 
environment. Standard BDI approaches do not focus on system behavior 
but on agent internal knowledge representation and decision making. 
Wooldridge and Lomuscio introduce VSK as a formal model for MAS 
based on multimodal logic [WoLo2000a]. VSK integrates an environment 
depending visibility function (visibility) and an agent depending percep-
tion function (see). These concepts realized as modalities enable varying 
virtual environments for specific agents. A third modality is used for rep-
resentation of the local state of agents (knowledge). However, the interac-
tion of desires, beliefs, and intentions is not handled explicitly. Semanti-
cally, VSK is based on multi-modal sorted first-order logic [WoLo2000a] 
and for temporal aspects it includes the possible worlds semantics, i.e., be-
liefs resp. propositions about knowledge follow weakS5 (KD-45) modal 
system [MeHV1991]. In spite of the convincing concept of VSK, the un-
derlying multi-modal sorted first-order logic suffers from the well-known 
problems introduced before. 

5.4.2 Agents on a Meta Level 

In the following the basic concepts for agents are introduced on a meta-
level. As a starting point, we use the formalization concept introduced in 
[Kirn2002]. Agents as the core concept of this book are the building blocks 
for multiagent systems. In I.1, agents are introduced with basic properties. 
One of the main properties is, that agents are situated in an environment 
(cf. I.1.2.2, Property 1) and act upon information they perceived from the 
environment. A general approach to formal agent behavior has to be based 
on these three phases, perceive, reason, do. 
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Perceive 

For each agent agt, there exists a unique environment env(agt), which is 
principally visible for it. Agents observe their environment via sensors in 
order to identify the relevant information constituting its perceptions 
perc(agt): 

perceive : env(agt) → perc(agt) (2) 

The environment is not constant but changing from agents’ actions or 
external events. For concrete situations at time t, the notion should be ex-
tended to 

perceive : env(agt,t) → perc (agt,t) (3) 

Reason

Reasoning is the core functionality of agents. It enables agents to process 
perceptions and change their internal state. Depending on the agent’s in-
ternal architecture and state design, it is able to deliberate, plan, or select 
appropriate actions for execution. Let loc(agt) denote the local state of 
agent agt. The reasoning process may be formalized by: 

 reason : loc(agt) × perc(agt) → loc(agt) (4) 

To be more precise, reasoning has to be specified in context of time: 

 reason : loc(agt,t) × perc(agt,t) → loc(agt,t+∆) (5) 

The local state of an agent may be constituted by highly complex struc-
tures. There are several aspects, which have been discussed in order to 
specify this structure. The above mentioned reasoning in BDI logics uses 
beliefs, desires and intentions for this purpose. Kirn proposes the definition 
of commitments and goals as mandatory properties of a local state 
[Kirn2002]. 

Additionally, in several formalizations, an explicit state transformation 
function is introduced for updating the agent’s local state. For building an 
intelligent agent, this function has to be specified analogously to belief re-
vision functions [ChGM2002] [MaDK2002]. 

Do

In the third step the agent is selecting an action act(agt) according to its 
internal state, which is performed in its environment: 

do : loc(agt) → act(agt) (6) 
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The behavior of an agent can thus be described within a temporal con-
text as follows: 

 do: loc(agt,t) → act(agt,t) (7) 

Summarizing an agent can be defined as a tuple, consisting of the three 
decision functions perceive, reason, do, as well as the accompanying con-
cepts environment, perceptions, local states (including initial state loc0), 
and actions: 

 Agt =  env, perc, loc, perceive, reason, do, loc0 (8)

5.5 Unifying Formalisms 

In agent research, a common approach includes the formal description and 
semantic explication of agent behavior. As a formal basis the behavior and 
architecture will be described following the BDI approach [RaGe1991] 
and their specializations Lora [Wool2000], VSK [WoLo2001], and dis-
course agents [Timm2004]. The Lora logic is focused on internal decision 
behavior of rational agents. States of the global system are considered im-
plicitly. For a specification of a multiagent system it is advantageous to 
explicitly model the relationships of agents as well as local and global 
states. As mentioned before, the VSK logic is addressed to describe these 
issues as well as the perception-relation between environment and specific 
agents. Due to the individual advantages of VSK and Lora, the formal 
model of discourse agents integrates both aspects: sophisticated decision 
making and system perspective. 

In agent design, a major challenge is the specification of agent behavior. 
Therefore, the core element of agent architectures is the control cycle, 
where generic actions are activated resp. executed as a consequence of in-
ternal state-transformations or external perceptions. The control cycle of 
an agent should specify the pro-active as well as reactive behavior. The 
control flow of discourse agents is illustrated in Figure 2. It differs from 
conventional BDI approaches in the reflection phase where an agent adapts 
its internal state with respect to external perceptions. Here, it explicitly dif-
ferentiates between adaptation of beliefs, i.e., the core knowledge base of 
an agent, desires, i.e., persistent goals, strategy, and plans. The possibility 
to adapt desires and strategies should enable the multiagent system to be-
come more flexible, even on a long-term strategic level. The reflection of 
plans is an explicit approach for learning from recent plan execution for 
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future situations and behavior and, therefore, a mid-term adaptation of 
agent behavior. 

In the following semantics of an intelligent agent is introduced follow-
ing the meta-level conceptualization as introduced before: perceive, rea-
son, do. In VSK agents are defined by perception (perceive), local state 
transformation resp. deliberation (reason), and action selection (do). These 
three elements form the abstract behavior of an agent: The agent perceives 
its environment, it adapts its local state with respect to new information as 
well as deliberation on desires and intentions, and it selects an action 
which is adequate in the current setting. In virtual as well as physical envi-
ronments agents usually do not have complete access to all information in 
the environment. For example, messages sent between agents are not ac-
cessible to agents which do not participate in the interaction. These aspects 
are also discussed in context of “visibility” within section system seman-
tics (Section 5.4). In the last section, perception is defined on the basis of 
env(agt) (Equation 2) to emphasize the agent-dependent view on the envi-
ronment. Each agent has a perception function (see) which maps environ-
mental states to a set of perceptions. The underlying idea is that an agent 
using malfunctioning sensors is not capable of perceiving all accessible in-
formation. However, if its sensors are fixed, it would be able of perceiving 
the information. In software MAS, data packages delayed through the net-
work could lead to restricted views on the environment even if the envi-
ronment is fully accessible. 

The second step of agent behavior is to adapt its local state considering 
the accessible and perceived environmental states as well as its local state. 
The state transformation is realized by the next function mapping. 
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Figure 2. Control flow of discourse agents 

Finally the agent has to select an action to be performed in the environ-
ment. However an agent may select the null action which determines that 
the agent is not changing the environment willfully. The action selection is 
one of the core aspects of intelligent behavior in agents; [WoLo2000a] are 
not requiring detailed behavior for flexibility reasons, such that agents us-
ing different internal inferences (reactive, deliberative agents) may be for-
malized in this framework. Following the conceptualization introduced in 
the last section, do is executed without changing its internal state. Here, 
this formalization differs from [WoLo2000b] and [Timm2004], where de-
liberation and, consequently, change of internal state takes also place in the 
do function. The formal definition of an agent following VSK is summa-
rized as follows: 
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Ag = <L, see, next, do, l0> (9) 

L = {l0, …, lm} : set of possible agent’s states 

see : E2 → P : function for perceiving environmental states 

next : L × P → L: local state transformer function 

do : L → Act : action selection function 

l0 ∈ L : initial state of the agent 

In this definition, the see function is dependent on the concrete design of 
an agent, i.e., its sensors. Therefore, only the two major functions next and 
do will be discussed in more detail in the following sections. 

5.5.1 Belief Revision (Next) 

One of the major design principles in the BDI framework is the notion of 
beliefs for knowledge acquired by the agent. In competitive environments 
an agent may not have access to all information or may even perceive in-
tentionally incorrect information from opponents. Therefore, in contrast to 
conventional knowledge based systems, it is assumed that information 
resp. knowledge within an agent may be uncertain, fuzzy, incomplete, or 
incorrect. Beliefs are propositions of a specific agent about the environ-
ment, opponents, or itself. Therefore the validity of beliefs may change 
due to internal reasoning or external perceptions. In consideration of the 
concrete model of BDI, the local state of an agent may vary from consist-
ing of beliefs only to more complex models which include beliefs, desires, 
intentions, strategies, and plans. Summarizing, there are two main chal-
lenges for agents resp. multiagent belief revision: Handling of uncertain, 
fuzzy, incomplete, or incorrect knowledge between states or within states. 

The first step in the decision process of a BDI agent is to reflect its in-
ternal state and update the models of the environment and opponents with 
respect to recent perceptions. A completely autonomous or automatic ad-
aptation to the environment is a non-trivial task and is handled in current 
AI research projects, e.g., [ChGM2002] [MaDK2002]. The elementary 
challenge for an intelligent agent is to compute input information (percep-
tion) and the resulting changes to the knowledge base (beliefs). The con-
crete formulation of belief revision depends on the language for knowl-
edge representation used within the agents. Many approaches in agent re-
search utilize multi-modal logic in combination with branching temporal 
structures. Here, belief revision is performed as follows: Each iteration of 
belief revision creates a new state as a clone of the current state. Inconsis-
tent beliefs to the current perceptions are removed. The advantage of this 
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approach is that each state is consistent and usual inference mechanisms 
may be applied. The discourse agents specification proposes this approach 
as a first step. However, inconsistent perceptions or exceptions in the be-
liefs may not be handled easily. 

On top of the reflective behavior the local state of an agent is trans-
formed again by the deliberation process. In common BDI approaches de-
liberative behavior is characterized by intention reconsideration, genera-
tion of options resp. intentions, and filtering of these options. In the dis-
course agents architecture, filtering is specialized to a specific conflict 
management approach. 

Intention reconsideration is the function for deciding on an intention 
commitment in the current situation. Following [RaGe1991], three types of 
commitments may be differentiated: 

• Blind commitment: An agent pursues an intention until the agent beliefs 
that the intention has been satisfied. 

• Single-minded commitment: An intention will be removed if the agent 
comes to the conclusion, that there is no action sequence resp. plan to 
satisfy the intention. 

• Open-minded commitment: An agent keeps the intention as long as it be-
liefs that it is possible to satisfy the intention.

Even if open-minded commitment does not seem to be an adequate 
means in concrete business applications, it may be advantageous to use 
this commitment. Here, computing temporal structures with all possible 
worlds emerging from the current situation is impossible, even computing 
a significant number of possible worlds may be hard. With open-minded 
commitment agents would be enabled to continue pursuing an intention 
even if they are not capable of calculating an action sequence within a 
plan.

The next step in the BDI approach is the generation of options, e.g., 
creation of goal sets. Many approaches in literature introduce this as an in-
deterministic function which is not specified in detail. In discourse agents, 
conflict management is used for creating alternative goals, the so called 
options. The generation of options is considering those desires which are 
not already pursued with an intention. For the remaining desires, accessi-
bility is computed. A desire is classified as accessible, if the agent beliefs 
that it is possible to achieve this desire in at least one possible world. For 
each accessible desire, a plan is allocated. The step of plan allocation for 
desires is used to support the analysis of interdependencies between op-
tions. An additional step in discourse agents is the assessment of options. 
In conventional BDI approaches, there is no numeric evaluation of options. 
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This evaluation enables an adequate application of BDI in worth-oriented 
domains as introduced in IV.3. 

On the basis of this evaluation, filtering of options may be performed 
by, e.g., conflict management or priority based selection. As a result of the 
reasoning, a new local state is created containing revised beliefs and an 
extended or updated set of intentions. 

5.5.2 Action Execution (Do) 

The executive behavior (do) ensures action execution on the basis of in-
tentions, i.e., an action sequence is generated resp. planned with regard to 
the intention selection in the reasoning process. This process is shown 
schematically in Figure 3.  

re-)planning

execute

intentions

action plan

action sequence

beliefs

action

intention selection

(re-)planning

sequence

Figure 3. Executive behavior of discourse agents 

In the first step, the evaluation of the intentions is updated due to the 
current situation in the environment and the agent’s local state. With 
respect to these evaluations, an intention is selected for execution. In case 
of the discourse agents architecture, the intentions already contain a plan 
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which is revised according to the current state. In conventional BDI 
approaches a new plan is generated on the basis of active intentions and 
the current state. Depending on the concrete specification and implementa-
tion of an agent, actions of a plan may be executed iteratively or some ac-
tions may be executed and the next decision cycle with perception, reason, 
do is started. 

In a formal model, the do function is a mapping from an agent local 
state to an action. The action execution is performed within the environ-
ment, cf. next section. However, if the design of an agent is in question, 
there are various approaches to specify and implement the execution mod-
ule. In physical agents, the action execution model is normally an interface 
to the actuators. In software agent settings, the execution is usually limited 
to communication. In the context of this book, agents may represent physi-
cal entities. However, these agents are not directly connected to real-world 
entities, such that the execution behavior is the interface for connecting 
simulation systems. 

5.6 System Semantics 

In the following, a formalization for environment and system semantics is 
presented. In the introduction to agent semantics, three logics were dis-
cussed: Lora, VSK, and discourse agents. The Lora approach includes nei-
ther a specific system behavior nor an explicit environment model and 
therefore is not considered in this section. As mentioned before, the dis-
course agents integrate Lora and VSK in such a way, that discourse agents 
are a specialization of VSK. The environment and system semantics is 
therefore an injective mapping between discourse agents states and all pos-
sible VSK states. In consequence, we are focusing on VSK logic in this 
section. 

The formal VSK model is based on the assumption that there is exactly 
one agent environment and n agents. The state of the environment is ex-
pressed by a predicate e∈E. Agent environments may contain different as-
pects. In software MAS, agent environments can be used for communica-
tion and providing mandatory information, e.g., addresses or service de-
scriptions. Furthermore they may include rules valid for any agent, e.g., 
social laws [ShTe1995]. 

This global environment can be partitioned into virtual sub-environ-
ments, which are accessible to groups, resp. structures or individual agents. 
Accessibility is realized by visibility functions which are part of the envi-
ronment and each of them is associated with one agent, i.e., visi is the visi-
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bility function for agent i. This approach can also be used for the physical 
or logical movement of the agents, i.e., if an agent moves from one virtual 
environment to another, this is realized by a dynamic modification of its 
visibility function. The visibility functions define anything which is acces-
sible to the agent and not what an agent actually perceives, i.e., it is sensor-
independent. Formally, the visibility function behaves like an equivalence 
relation on environmental states, i.e., it returns a set of states which are in-
distinguishable with respect to accessibility. 

Next to visibility and states, agent actions, e.g., communication acts, are 
part of the environment within the formal model of VSK. For each agent, 
there is a set of actions specified in the environment. These sets include 
those actions executed in the environment and exclude those which are 
used for internal reasoning. Additionally, a null-action is defined for doing 
nothing. 

The transformation of states is realized by a mapping from the Cartesian 
product of the agent actions and an environmental state to an environ-
mental state. This formulation implements a discrete instead of a continu-
ous environment. The formal definition of an environment is given by: 

Env = <E, Act1, …, Actn, vis1, …, visn,τ, e0> (10)

E E = {e0,…,em} : set of all possible environmental states 

Acti Acti : set of actions of agent i 

τ τ : E × Act1 × … × Actn → E : state transformer function 

e0 e0 ∈ E : initial state of the environment. 

For applications it is useful to define the agent environment with respect 
to the FIPA standardization, i.e., service directories, and agent manage-
ment and communication can also be mapped to the formal environment 
model [Timm2004]. 

For a systemic view on semantics of MAS, it is necessary to define the 
complete MAS formally. In the VSK framework a MAS contains the agent 
environment and the agents. With respect to the formal definitions in the 
previous sections the formal definition of a MAS is given by: 

MAS = <Env, Ag1, …, Agn> (11) 

The global state of a MAS is specified by the environmental state as 
well as the local states of each agent (g = <e, l1, …, ln>). Temporal resp. 
dynamic behavior of a system are defined implicitly. VSK uses an induc-
tive approach for building the temporal structure. The initial state of a 
system is based on agents and the environment starting in their initial 
states (e0, l

0
1, …, l0

n). However, the initial state of the system includes a 
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first synchronization of the agents with the environment and a transforma-
tion of their local state. As mentioned before, agents do not have total per-
ception of the environment. Accessibility and perception of the environ-
ment depend on the agent specific authorization which is formally repre-
sented by an agent-specific visibility function. The initial global state is 
derived from the initial environmental state and the initially transformed 
local states of the agents. New global states are achieved by agents’ ac-
tions, i.e., the environmental state is transformed with respect to the ac-
tions and the local states are synchronized as described above. Formally, 
VSK defines “runs” for MAS, which are potentially infinite sequences of 
global states: 

1. The initial global state is defined by  
g0 = <e0, next1(see1(vis1(e0))), …, nextn(seen(visn(e0)))> 

2. Given gt = <et, l
1

t, …, ln
t> with t∈N0:

t : gt+1 = <et+1, l
1

t+1, …, ln
t+1>

is defined by: 
a) et+1 = τ(et, do1(l1

t), …, don(ln
t)) and

b) li
t+1 = nexti(li

t, seei(visi(et))) ∀i∈{1, …, n}. 

Further Reading 

For further reading on VSK refer to [WoLo2000a], [WoLo2000b], 
[WoLo2000c], [WoLo2001], and [Wool2000b]. An adaptation to the FIPA 
specification and extension to deliberative behavior can be found in 
[Timm2004]. 
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Abstract. If an environment depends on the services of a multiagent system it 
should do so only if it can justifiably place reliance on this service. If so, the sys-
tem appears to the environment reliable, or dependable. It is well-known that de-
pendability should be designed right into a system rather than added as an after-
thought. Particularly due to the high degree of distribution and the autonomy of 
agents, multiagent systems pose numerous and often novel challenges but also of-
fer new opportunities to deal with dependability. This chapter examines the im-
portant issues and discusses how appropriate solutions can be associated with spe-
cific layers of the reference architecture of IV.4. Specifically, a distinction is made 
between unintentional and intentional failures, the former resulting in a suite of 
solutions referred to as error processing, the latter in measures called trust man-
agement. 

6.1 Introduction 

Designs are incomplete if they assume that nothing can ever go wrong. Or 
expressed the other way round: Chances that something outside the norm 
can occur should be taken into account right from the beginning and made 
an integral part of system design rather than – as happens only all too of-
ten – added as an afterthought. 
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Consider the job-shop example of II.3 where several agents interact fol-
lowing the Contract Net Protocol (Figure 1). 

Figure 1. Scenario using the contract net protocol 

Suppose that the protocol has progressed to the point where the order-
agent accepts the offer of machine-agent A. Suppose further that the accept 
message never reaches agent A due to a communication failure (1). If no 
precautions are taken, agent A forever holds the resources reserved for the 
order-agent, while the order-agent never gets his order fulfilled. Or earlier 
on, suppose that machine-agent B submitted a proposal that would be the 
best if the order-agent could just understand B’s choice of wording (2). 
Again, without some sort of precaution the order-agent would pay more 
than necessary. Or more towards the end, assume that machine-agent A 
breaks down while processing the order, or takes longer than promised be-
cause it encounters some shortage (3). The order-agent would be expected 
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to find some way around the problem if it were designed to handle such a 
contingency. 

Informally speaking, we call a multiagent system dependable if it main-
tains its service according to specifications even if disturbances occur that 
are due to events endogenous to the system. We call a multiagent system
robust if it continues its service according to specifications once it dealt 
with exogenous events (events in the application environment) it was not 
specifically prepared for (Figure 2). An endogenous event within the 
multiagent system may be perceived by a single agent as an internal fault, 
namely if the event arises within the agent, or as an external fault, namely 
if the event is due to a disturbance in some other agent or the underlying 
technical platform. 

Environment

action
output 

sensor
input 

Multiagent system
~dependability

obustness~r

Figure 2. Dependability and robustness 

In this chapter we concentrate on the dependability of multiagent sys-
tems. Accordingly, we study the mechanisms that an agent or the entire 
multiagent system maintains in order to guarantee that all services are ren-
dered according to specification even when disturbances occur. We distin-
guish two major classes of disturbances or malfunctions: Those that are
unintentional, that is, where all agents within the multiagent system are in-
nocent victims, and those that are intentional, that is, where one or more 
agents as a consequence of their autonomy pursue intentions contrary to 
the overall interests of the system. Sections 6.2 through 6.6 cover uninten-
tional malfunctions, Section 6.7 addresses intentional malfunctions. Since 
there are a good number of countermeasures that differ in the malfunctions 
they deal with, we take a systematic approach by associating each of them 
with a layer of the reference architecture of IV.4.
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6.2 A Dependability Model 

6.2.1 Failures and Dependability 

We base our dependability model on (some of) the definitions of Laprie 
[Lapr1985] [Lapr1992]. 

• Computer system dependability is the quality of the delivered service
such that reliance can justifiably be placed on this service. 

• The service delivered by a system is the system behavior as it is per-
ceived by another special system(s) interacting with the considered sys-
tem: its user(s). The service specification is an agreed description of the 
expected service. 

• A system failure occurs when the delivered service deviates from the 
specified service. 

Accordingly, dependability, service and failure are notions that describe 
a component’s external appearance. Failures should be avoided, but if one 
occurs there must be some internal cause. 

• The cause – in its phenomenological sense – of any failure is a fault.
Upon occurrence, a fault creates a latent error. For example, a pro-
grammer 's mistake is a fault; the consequence is a latent error in the 
written software (erroneous instruction or piece of data). 

• A latent error becomes an effective error when it is activated in the 
course of providing a service and leads to failure. For example, the fault 
discussed before becomes effective upon activation of the module where 
the error resides and an appropriate input pattern activating the errone-
ous instruction, instruction sequence or piece of data. 

Ideally, faults do not occur. Or at least, we should make sure that only 
very few faults occur in a software component, in our case an agent. We 
speak of fault avoidance as the collection of all measures that reduce the 
number of faults. Fault occurrences may be prevented by, e.g., advanced 
construction methods, better training in programming or by testing. Auton-
omy and concurrency poses specific issues to software agent testing which 
are discussed in detail in IV.8. 

Latent errors are not recognized as such. Consequently, only effective 
errors can be subject to treatment. Accordingly, a dependability model de-
scribes the service, the effective errors occurring within the system, which 
ones are dealt with and how (error processing), and what the ensuing fail-
ures are. Figure 3 outlines the basics of the dependability model. 
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Figure 3. Faults, errors and failures 

6.2.2 Dependability Model for Unintentional Faults 

The dependability model from above assumes that faults are unintentional.
To make the model operational we need to refine what processing of un-
intentional errors is all about. Error processing will have to take note of the 
nature of the effective error which in turn has something to do with the 
nature of the underlying fault. 

As noted before, an endogenous disturbance within the system takes ei-
ther of two forms. It is an internal fault if it is due to causes purely internal 
to the component under consideration. For example, if we consider a layer 
in the reference architecture of IV.4, an internal fault may be due to a pro-
gramming fault or faulty parameter settings within the code of that layer. It 
is an external fault if it occurs outside the component. External faults fall 
into two categories. 

• Infrastructure failures: Infrastructure is all the hardware and software 
the component depends on to function. Examples are processor and 
memory hardware, operating systems, file systems, data communication 
systems, but also the agent platforms. 

• Peer failures: Peers are components on the same level of service. Peers 
fail if they do not deliver on a request. For example, the connection to it 
has been lost or its own infrastructure failed (total failure), or it came to 
a regular end but ran into unfavorable conditions that kept it from 
reaching the desired objective (unfavorable outcome, see Pleisch and 
Schiper [PlSc2004]). 
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Error processing may itself be more or less successful, and this will af-
fect the result of a service request. From the service requestor’s viewpoint 
the returned states fall into different classes (Figure 4). 

initial
state

regular state

old state 
equivalent to
original state

sustainable state

undisturbed 
service execution / 

fault resilience

fault containment

fault mitigation

incorrect state

error exposure

Figure 4. States after service provision 

At best, the fault may have no effect at all, i.e., the state reached after 
servicing the request is identical to the regular state. Or the state is still the 
old state, i.e., the state coincides with the state prior to the request because 
the fault simply caused the request to be ignored. A bit worse, servicing 
the request may reach a state that while no longer meeting the specification 
may still allow the service requestor a suitable continuation of its work 
(sustainable state). All three states meet the definition of dependability. At 
worst, the outcome may be a state that is plainly incorrect if not outright 
disastrous. 

To distinguish between the states we introduce the following notions. 
We speak of fault tolerance if a service reaches one of the three depend-
ability states. Specifically, under fault resilience the correct state is 
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reached, under fault containment the old state and under fault mitigation
the sustainable state. Otherwise we have error exposure.

Our goal is to relate the dependability model to the layered reference ar-
chitecture. Therefore, Figure 5 shows two layers where the lower layer 
provides a service requested by the upper layer. Clearly, fault resilience 
and fault containment fall to the provider. Fault containment is achieved 
by recovery. Typical techniques for fault resilience are recovery followed 
by retry, or service replication. Fault mitigation requires some action on 
the provider’s part as well, such as partial recovery. Since fault contain-
ment, fault mitigation and fault exposure lead to irregular states, the re-
questor must be informed by error propagation. In case of fault contain-
ment the requestor will simply resume work in some way. In case of fault 
mitigation the requestor may have to transfer by compensation to a state 
from where to resume regular work. Fault exposure leaves the requestor 
with no choice but to initiate its own error processing. 

One may argue that compensation may only mask part of a fault so there 
still is some error exposure. Consequently, error processing may span 
more than one layer. Nonetheless we will base the subsequent discussion 
on the simpler model of Figure 5. 

6.2.3 Intentional Faults: Trust and Reputation 

The dependability model of Section 6.2.2 assumes that peers are coopera-
tive and if they fail it was not by intention. However, in an environment of 
agents peers are autonomous and, hence, may very well decide to pursue 
their own interests, with the effect of intentional non-delivery. Such unco-
operative behavior is not immediately recognizable by the requesting 
agent. 

In our introductory example one could imagine such an uncooperative 
behavior by a malicious machine-agent. It could outbid all other agents 
without ever intending to deliver the promised goods, but rather in the 
hope of harming the requesting order-agent or its principal. 

Dealing with intentional faults must follow a model that differs from 
Figure 5. For one, these faults are exclusively peer failures. Second, they 
usually are not immediately recognizable. Take the agent from above that 
pursues objectives that are not in line with the agent system. Or take an 
agent that behaves selfishly, i.e., refuses to follow the specified protocol in 
order to gain benefits from others without service in return. For example, a 
selfish agent (also known as free rider or freeloader) would demand pre-
payment but would not return the commodities it was paid for. 
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Figure 5. Dependability model: Error processing and responsibilities 

Instead we need a model that offers remedies of a preventive nature. The 
prevailing concepts are trust as an individual agent’s opinion of some other 
agent, and reputation as the general opinion of a society of agents towards 
a certain agent (see [Mars1994] for an exhaustive analysis of trust and 
reputation). 

More precisely, trust is the subjective belief of one agent in another 
agent’s willingness and ability to follow the protocol of the multiagent 
system to process a certain request. The definition implies that: 

• Trust is unidirectional, i.e., an agent that trusts another one might not be 
trusted from the other side in turn. 
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• Trust is subjective. Each agent computes trust individually. Thus, one 
agent could trust another agent while others do not. 

• Trust is bound to a certain domain of interest. For example, one would 
trust a baker to bake fine biscuits, but not to roast tasty steaks. 

• Trust is based on belief, not on a comprehensive set of facts. Therefore 
the notation of trust gives statistical guarantees at best, and contains the 
risk of fraud. 

In general, it is quite easy (or inexpensive in economic terms) to esti-
mate a trust factor from an incomplete set of data, e.g., the outcome of the 
last interactions with a certain agent. By contrast, it would be very expen-
sive to provide a complete database of all interactions with that agent in 
the past, and there may not even be enough interaction in a multiagent 
system with a high degree of fluctuation. Only the agent society as a whole 
may be able to do so. This explains the importance of reputation. 

• Reputation is the aggregated trust value of many agents in a specific do-
main of interest. 

• Reputation is shared among the agents. In particular, each agent has the 
same information about the standing of a certain other agent, but decides 
individually if it deems that agent trustworthy or not. 

• Reputation is expressed in a generalized, normalized manner. Agents 
that wish to exchange reputation information have to agree on a com-
mon set of domains and measures. 

6.3 Layered Agent Dependability Model 

6.3.1 Single Layer 

Figure 5 demonstrates that fault processing may not always be effective 
when confined to a single layer. Instead it must often be spread across lay-
ers. As the discussions in IV.4 demonstrate, the next higher level cares less 
about certain details but has available to it a wider context. E.g., it follows 
a sequence of statements rather than a single one, or considers a larger da-
tabase, and thus may be in a better position to process the failure. Conse-
quently, a layered reference architecture not only is attractive to structure 
the normal function of a complex piece of software but should also help to 
organize and localize the various dependability issues. Hence, we use the 
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layered reference architecture of IV.4 for organizing the dependability of 
agents. 

In order to discuss the responsibilities of each layer we use an abstrac-
tion of the dependability model of Figure 5 that borrows from the Ideal 
Fault Tolerant Component of Anderson and Lee for software component 
architectures [AnLe1981, p. 298]. 

As Figure 6 illustrates, a layer can be in one of two operation modes. 
During normal activity the component receives service requests from lay-
ers higher up, eventually accomplishes them using the services of the next 
lower layer components and returns normal responses. It may also draw on 
the services of other components on the same layer or receive service re-
quests from such components. 

service
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normal service
response

fault 
resilience: 
return to 
normal 

operation

exceptions

normal
service operation

abnormal activity
(fault processing)

layer n

layer n-1

service
request

normal service
response

service
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infrastructure
failure
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error 
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failure

fault

normal 
service

response

peer failure
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Figure 6. Abstract dependability model for a single layer 

If the lower layer fails to service the request, this can be interpreted on 
the current layer as the occurrence of an external fault. The mode changes 
to abnormal activity where the fault is interpreted and treated. Fault pro-
cessing follows the model of Figure 5. Propagated errors are signaled as a 
failure to the next higher layer. Otherwise the layer returns to normal mode 
and tries to resume normal operation. 

Abnormal activity mode may also be the result of failures within the 
same layer. If it is a peer failure that is recognized as such and requires 
immediate counteraction it is treated as an external fault. If a peer failure 
remains unrecognized it will propagate upwards as part of a normal service 
response and may then induce an internal fault higher up. 

If the failure within the same layer is a malfunction within the same 
component it is treated as an internal fault. A typical mechanism for sig-
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naling such a malfunction is (in Java terminology) by throwing exceptions. 
Exceptions can also be used to model a situation where a fault was not 
activated further down and thus remains unrecognized while crossing a 
layer in normal mode and moving upwards as a normal service response. 
Only on a layer higher up the fault is detected as such. Take a missing 
Web page whose loss may only be noticed close to the user level. 

Another failure within the same layer is a peer failure that is recognized 
as such and requires immediate counteraction. On the other hand, if a peer 
failure remains unrecognized it will propagate upwards as part of a normal 
service response and may then induce an exception higher up. 

6.3.2 Multiple Layers 

Given the reference architecture for agents, we will now have to augment 
each layer by the model of Figure 6. For each layer we should identify the 
faults originating from it, determine which faults whatever their origin can 
be taken care of within the layer and which ones are to be passed up-
wards – hopefully in mitigated form – to the next higher layer where the 
principle repeats itself. 

For the rest of this section we give a structured overview of the various 
faults that may occur on each layer, and short summaries of some of the 
approaches to cope with them. For this purpose we take a developer’s 
point of view and go through the layers in order of increasing abstractness. 
Figure 7 depicts failures and approaches and thus summarizes the follow-
ing subsections. A deeper discussion of some selected approaches is given 
in Sections 6.4 to 6.6. 

6.3.3 System Environment Base Services Layer (L1) 

Layer L1 encompasses all services general to a computing environment, 
notably the hardware, the operating system, the data management and due 
to the distributed system organization, data communication. Consequently, 
all failures occurring are infrastructure failures.

The individual agent is affected by hardware and operating system fail-
ures. Operating systems have a built-in dependability that allows them to 
recover from hardware failures, usually by built-in redundancy features 
such as parallel processors, mirrored disks, repeated disks writes, RAID 
storage. The operating system will show a failure only if such measures are 
ineffective. If the failure is catastrophic the system will stop executing al-
together. If the failure is non-catastrophic such as excessive waiting or un-
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successful disk operation, a failure will be propagated upwards with a de-
tailed description of the cause. 

Figure 7. Dependability in the layered agent architecture 

Data communication rests on a communication infrastructure, like the 
Internet with HTTP or IIOP running over TCP/IP. Hence, all faults typical 
for classical data communication (e.g., package loss/duplication/reorder-
ing, or network partition) will occur. Almost all of them are internally re-
solved by any of the numerous protocols, i.e., modern data communication 
is inherently dependable (see for example [Hals1996]). This leaves very 
few failures to be propagated upwards, such as network delays, connection 



  Towards Dependable Agent Systems 477 

loss, non-correctable transmission failures, unreachable destination, or life-
time expiration. Some dependability aspects are subject to agreement and 
become quality-of-service (QoS) parameters, e.g., transmission reliability 
with respect to loss and duplication (at-least-once, at-most-once, exactly-
once, best effort), or order preservation. Qualities outside the agreement 
must be controlled on the next higher layer and if deemed unsatisfactory 
will raise an exception there. 

Note that a catastrophic failure cannot be recognized by the affected 
agent but will only be detected by other agents where it is translated into 
an unreachable destination (“node is down!”). 

6.3.4 Agent-Specific Infrastructure Services Layer (L2) 

Layer L2 is purely mechanistic: It offers those infrastructure services that 
are specialized towards the specific needs of agents, but it restricts the ser-
vices to those that can safely ignore the domain semantics and the goals 
and intentions of the agents. It provides the services as part of platforms. 
Examples are agent development/runtime frameworks like JADE [BBCP 
2005] or LS/TS (Living Systems® Technology Suite [Whit2005]). Typical 
services concern message handling and exchange, trading and naming, or 
agent mobility. To give an example, message handling is in terms of the 
FIPA-ACL messages with their numerous higher-level parameters, where 
in particular the message content may be expressed in terms of the FIPA- 
ACL communicative acts. 

Now think of an uncorrectable data transmission failure on the commu-
nication layer. It can result in a message loss on the platform layer. Some 
of the multiagent development frameworks have rudimentary mechanisms 
to deal with such situations. As an example, JADE allows to specify a 
time-out interval within which a reply to a given message must be re-
ceived. If the time-out expires before the expected message has been re-
ceived, an exception method is invoked that determines a contingency be-
havior as defined by the developer. The behavior could be a retry, re-
questing a resend of the original message. 

Such a behavior could solve the problems caused by the lost accept 
message (1) in our introductory example, where the successful progression 
of the protocol is blocked. The machine-agent would experience a time-out 
which it would follow with resending the proposal provided the transmis-
sion problem is of a non-permanent nature. 

Or take trading, locating an agent that offers the services needed by an-
other agent. The yellow pages functionality of FIPA's Directory Facilitator 
implements such a function. Typical problems are incorrect or outdated 
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agent service registrations or implementation faults in the frameworks 
themselves. Outdated entries can internally be resolved by an active Di-
rectory Facilitator that periodically checks for availability of the registered 
services. Otherwise the upper layers must be notified of the failure to exe-
cute the needed agent service, where most probably the coordination layer 
(L5) would have to handle it by finding an alternative peer to provide a 
similar and available service. 

6.3.5 Ontology-Based Domain Model Layer (L3) 

The borderline between layers L2 and L3 is fundamental in nature: While 
L2 is devoid of domain semantics L3 is tailored towards dealing with the 
domain semantics. L3 is also highly specific in that the layer deals fore-
most with static aspects while the dynamics are left to layer L4. Conse-
quently, any unresolved failures from below are best passed directly 
through to layer L4. 

Aside from programming faults the only problems that may arise on 
layer L3 are peer failures in connection with ontologies. For example, in 
an exchanged message the partner agent does not share the ontology of the 
agent under consideration so that there is a mismatch in the meaning at-
tributed to a certain term. But even if sender and receiver share the same 
ontology, different coding into and decoding from the transport syntax can 
be a source of errors. The ontology mismatch problem is addressed by 
various approaches like Mena et al. [MeIG2000] that try to negotiate the 
meaning of the ontological terms during the course of the agents' interac-
tion. Just think of failure (2) of the introductory example, where the pro-
posal needs a reformulation or translation to be understood by the receiv-
ing order-agent. 

6.3.6 Agent Behavior Layer (L4) 

This layer deals with the agent functionality and itself has a more or less 
complicated internal structure that is based on certain assumptions, i.e., the 
way knowledge and behavior of the agents are presented and processed. 
Clearly then, layer L4 should be the layer of choice for all faults whose 
handling requires background knowledge on the domain, the goals and the 
past interaction history. Consequently, most of the error processing will 
fall under the heading of fault resilience. This is true even for catastrophic 
infrastructure failures. Suppose the agent temporarily loses control when 
its platform goes down, but regains it when the platform is restarted. Re-
covery from catastrophic failure is usually by backward recovery on the 
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platform layer. The resulting fault containment should now be interpreted 
in light of the agent’s prior activities. If these were continuously recorded 
the agent may add its own recovery measures, or judge itself to be some-
what uncertain of its environment but then act to reduce the uncertainty. 

In our example, the order-agent after an elapsed period of time could 
become uncertain, if either failure (3) occurred, meaning that a shortage 
delayed the delivery of the ordered goods, or if only the message that 
should indicate the completion of its production has been lost. The order-
agent could reduce the uncertainty by enquiring with the producing ma-
chine-agent. If the delay would be confirmed or if no information would be 
provided it could become necessary to involve the interaction layer L5 to 
find an alternative provider to reassign the manufacturing. 

6.3.7 Agent Interaction Layer (L5) 

Whereas Layer L4 is the most critical for dependable functioning of the 
single agent, layer L5 must ensure the dependable performance of the en-
tire multiagent system. The interaction between the agents and, hence, de-
pendability aspects involve two issues. The first is a technical issue dealing 
with the interaction protocol that organizes the collaboration under the as-
sumption that each participating agent supports the common goal. The 
second issue is one of trying to ensure that the agents are indeed supportive 
of one another and, hence, deals with trust and reputation (see Section 6.6). 

IV.3 refers to the communication between and, hence, coordinated inter-
action of agents as a conversation. From the perspective of the first issue 
conversations follow a – usually predefined – conversation protocol. Suc-
cessful conversation imposes a common convention on the message se-
quence and meaning. A number of approaches deal with this issue by sup-
porting the protocol design process. Paurobally et al. [PaCJ2003], Nodine 
and Unruh [NoUn1999], Galan and Baker [GaBa1999] and Hannebauer 
[Hann2002] present approaches in which they enrich a specification 
method for conversation protocols by a formal model that allows them to 
ensure the correctness of the protocol execution analytically or construc-
tively. 

At run-time conversations are threatened by uncorrectable interoperabil-
ity failures that are passed upwards from lower layers. The infrastructure 
layers may pass up network splits and unreachable peers, the ontology 
layer semantic disagreements, the agent behavior layer unforeseen behav-
ior of peer agents. Layer L5 may itself discover that peers respond in mu-
tually incompatible ways. Techniques of fault resilience seem essential if 
the user is not to be burdened. For example, the agents may search for al-
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ternative services that are either very similar to the one originally needed, 
or they may attempt to agree on a new protocol with different peer roles or 
peers. 

6.3.8 Errors Passed Through to the User 

A multiagent system may not be able to automatically handle each and 
every fault, and probably should not even be designed to do so, particu-
larly if the outcome of the failure has a deep effect on the MAS environ-
ment and it remains unclear whether any of the potential therapies im-
proves the environmental situation. Consequently, a careful design should 
identify which errors should be passed as failures up to what one could 
conceptually see as an additional “user” layer. Agents would indicate un-
recoverable problems to the user and request his or her corrective input. To 
give a somewhat extreme example, if the user detects that the failure of the 
MAS has financial consequences for him or her, he or she may have to de-
cide on litigation. V.3 discusses these and similar consequences for the 
principals of agents. 

6.4 Layer L2 Techniques: Resilience and Recovery 

As noted above, layer L2 has no knowledge of the domain semantics and 
the goals and intentions of the agents. Therefore all it can do is make sure 
that somehow the correct state is mechanistically reached (fault resilience), 
or an earlier, correct state is preserved (fault containment by recovery), or 
a state is reached that combines several old states into one that is well-de-
fined (fault mitigation). 

6.4.1 Resilience by Replication 

A well-known resilience technique is process replication. In case a process 
fails a functioning replica substitutes it. Specifically, in multiagent systems 
the replicated entities are agents. 

In replication the content of the replicates remains transparent to the 
system. Clearly then, replication is a technique below layers L3 to L5 and 
above layer L1. Agent replication that fits this characterization was intro-
duced in Pleisch and Schiper [PlSc2004] or in Kumar and Cohen 
[KuCo2000]. And indeed, replication will result in fault resilience only if 
the replicas do not fail at the same time and for the same reason. Conse-
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quently, agent replication will protect against infrastructure failures such 
as hardware, operating system, or middleware failures provided the agents 
are hosted on different subsystems, or communication link failures. Repli-
cation will neither protect against unfavorable outcomes, application fail-
ures, nor against programming faults if the programs have been replicated 
as well. 

Clearly, the risk of losing a service is inversely proportional to the rate 
of replication. Economics dictate a suitable balance. The following ap-
proach allows a choice of balance by using availability categories and re-
store times. Given these, one can compute the lower and upper bounds of 
the needed availability of the needed replications. If the lower bound ex-
ceeds the availability of the best host available, one must resort to a cluster 
that consists of several hosts, where their number depends on the desired 
availability category. Replicas of an agent are created on all of the hosts of 
the cluster. In case of a failure, a replica substitutes for the failed service-
providing agent. One host in the cluster acts as a leader with the task of 
deciding which replica to choose. To avoid the leader to become a new 
single point of failure, the leader should dynamically be selected from the 
member hosts of the given cluster, e.g., with an adapted leader election-al-
gorithm that protects against link failures [Garc1982]. 

A service provider agent has to acquire a lease time from the leader and, 
if necessary, must renew it before expiration. Fault resilience is now 
achieved in two phases. During the first, once the leader detects the expi-
ration of a lease time it starts a new replica of the respective service pro-
vider agent. The second phase starts immediately after the chosen replica 
has been launched and becomes available. If the failing agent is still up 
and running it will itself detect its inability to acquire a fresh lease time. 
Possible reasons could be a communication link failure, the quality of the 
provided service, etc. For a predefined period of time it is possible for this 
agent to submit the results it computed to its successor. After expiration of 
this deadline the agent terminates itself irrespective of a potential recovery. 
Whenever the failure of the erroneous agent has become final the started 
replica takes over the service provision and during this time adopts the 
identifier of its predecessor. 

Resilience comes at a price. The approach causes an increased commu-
nication load for the whole system due to the required synchronization for 
the leader election algorithm, the acquisition and renewal of the lease 
times, and the replication process of the monitored agents. Consequently, 
the approach seems economical only for networks with cheap link estab-
lishment, or where cost is not a factor as in ad-hoc networks. Expensive 
links as in cell-phone networks should be avoided. 
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Reconsider failure (3) of the introductory example, where the contract-
ing machine-agent can not deliver its goods within the stipulated time. As-
suming that the good to produce is just a piece of information rather than 
of a physical nature, a replicate machine-agent may be able to deliver on 
time if not hindered by the same obstacle that already prevented the suc-
cess of the original agent. 

6.4.2 Recovery via Transactional Conversations 

Figure 5 shows the central role that error recovery assumes in fault toler-
ance. Error recovery substitutes an error-free state for the erroneous state. 
In particular, backward error recovery brings the system back to a state 
prior to the error becoming effective. 

A well-known behavioral abstraction that includes recovery is the trans-
action. In its purest form the transaction has the ACID properties1: It is 
atomic, i.e., is executed completely or not at all, hence in the latter case, 
assumes backward recovery; it is consistent, i.e., if executed to completion 
it performs a legitimate state transition; it is isolated, i.e., remains unaf-
fected by any parallel transactions; and it is durable, i.e., the state reached 
can only explicitly be changed. Transaction systems are mechanistic sys-
tems that guarantee these properties even in the presence of failures, and 
do so without any knowledge of the algorithms underlying the transac-
tions. Consequently, recovery is a layer L2 technique. To provide the 
guarantees, transaction systems rely on data redundancy and process histo-
ries. 

Conversations involve several parties. Therefore, the transactional ab-
straction of a conversation is the distributed transaction [NiLo2004]. Re-
covery is then implemented via a 2-Phase-Commit (2PC) protocol, with a 
single coordinator as the initiator and any number of clients [WeVo2002]. 
Hence, conversations spawn local transactions in the participating agents, 
that are coordinated by the initiating agent. Each agent must include a re-
source manager that locally enforces the ACID-properties and manages 
access to the data items, and a transaction manager that guarantees, via the 
2PC, atomicity for distributed transactions. The data items – the state of 
the agents and the environment – are kept in local databases. The initiator 
is chosen as the agent that started the conversation. 

Take again the job-shop example Figure 1 with its Contract Net Proto-
col [Smit1980]. The initiating agent negotiates with the machine agents to 

1 ACID: Atomicity, Durability, Isolation and Consistency, see Weikum and Vos-
sen (2002). 
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reserve a time slot. During the conversation a machine agent changes its 
databases according to the machine schedule, and perhaps restores it if it 
fails to gain the contract. Likewise, the initiator will adjust its database ac-
cording to the final outcome of the conversation. At the end, the initiating 
agent’s transaction manager decides whether the distributed transaction 
was successful or not, and accordingly initiates global commit or rollback. 

Distributed transactions benefit from a standardized architecture that 
determines the basic workflow and the interfaces (see, e.g., the X/Open 
DTP Reference Model [Open1996]) and, hence, can be implemented by 
commercial products. They also stand a good chance of being incorporated 
into a dependable FIPA-compliant [PoCh2001] agent development frame-
work. Figure 8 and the description below illustrate how distributed transac-
tions can be integrated into the agent development framework FIPA-OS 
[PoBH2000] while making use of the commercial products Oracle 9i 
RDBMS2 for Resource Manager and ORBacus OTS3 for Transaction Man-
ager (for technical details see [Vogt2001]). 

ressource
manager:
Oracle 9i

ressource
manager:
Oracle 9i

State-DB State-DB

Agent A

ta -task ta-task

Agent B

Conversation

user-task user -task

Transactionmanager: ORBacus OTS

FIPA-OS FIPA-OS
ORBacus

IIOP

Figure 8. Integration of transactional conversations in FIPA-OS: system architec-
ture 

In FIPA-OS the different kinds of functionality of an agent are accom-
plished by so-called tasks. Roughly speaking, an agent has a special task to 
handle the protocol execution for each conversation type it participates in. 

2 Oracle Corporation: http://www.oracle.com/database. 
3 IONA Technologies: ORBacus Object Request Broker: 

http://www.orbacus.com. 
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To allow for a structured agent design, FIPA-OS provides the ability to 
split the functionality of a task into so-called child-tasks. A parent-task
initiates its child-tasks, can track their execution, and is informed when a 
child-task has finished its work. In Figure 1 the order-agent and the two 
machine-agents would be separate tasks. 

Nearly all effort that is necessary to execute the distributed transactions, 
in particular the interaction with the Transaction Manager and the Re-
source Managers, are handled transparently by generic transactional tasks 
(ta-tasks). The ta-tasks are parent-tasks of the so-called user-tasks that 
carry out the actual conversations. 

ta-task A user-task: CNP-Initiator user-task: CNP-Responder ta-task B (parent-task)

Request(Job-Shop-CN, TX-context)

Agree()

NewTask(CNI) NewTask(CNR)

CFP()

DB-read: getFreeTimeslots()

DB-write: ReserveTimeslot(t1)

Propose(t1)

Accept()

DB-write: BookTimeslot(t1)

Inform-Done()

DB-write: BookedTimeslot (t1)

done() done()

Inform(TX-ok)

Inform(global-commit)

initialization

actual

conversation

2PC voting

and decision

Request(TX-vote)

Figure 9. Integration of transactional conversations in FIPA-OS: action sequence 

To illustrate the transactional conversations, take the sequence diagram 
Figure 1 as translated into a distributed transaction according to Figure 9. 
In the initialization phase when an agent wishes to start a transactional 
conversation, its ta-task generates a transaction context and sends it to the 
ta-task of the peer agents together with an identifier for the requested type 
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of conversation. The local and the remote ta-task then initiate the required 
user-tasks to carry out the actual conversation. 

In the second phase the user-tasks follow the normal conversation pro-
tocol. The ta-tasks observe the execution and the occurrence of local state 
changes. To allow for the developer to have a certain degree of control, he 
can distinguish between state changes that take part in the distributed 
transaction and, hence, are globally transactional, and state changes that 
are of a purely local nature and remain locally transactional. The user-
tasks have to indicate to the ta-tasks their global data items. For these a 
database connection is established that is under control of the Transaction 
Manager, whereas the local items use a separate database connection with 
ACID semantics. In case of a distributed transaction rollback, global state 
changes are undone, whereas local state changes persist. 

The decision of whether to rollback or to commit the distributed trans-
action takes place in the third phase. The changes in the states of the com-
municating agents and the environment now are synchronized via the suc-
cess or failure of the overall distributed transaction. Therefore, the ta-tasks 
of the communicating agents first vote and then distribute the decision ac-
cording to the 2-Phase-Commit Protocol, in which the ta-task initiating the 
conversation has the role of the coordinator node. 

Take the lost message (1) of the introductory example. The detection of 
the message loss leads to a rollback that resets the states of the order-agent 
and of the involved machine-agents to their original states. In particular, 
the reserved time-slot of machine-agent A is released. It can be offered 
again if layer 4 would attempt a retry of the Contract Net Protocol. 

Transactional conversations clearly are a technique for fault contain-
ment. They give the developer guarantees on consistent agent states, while 
he may still use the framework he is accustomed to. He only has to anno-
tate the agent and environment states that he wishes to have under global 
transaction control with a few additional lines of code. Nonetheless, de-
pendability based on 2PC also has its (well-known) price: In case of seri-
ous delays or node failures altogether all other agents are held up. Hence, 
2PC has a negative effect on agent autonomy. 

6.4.3 Mitigation via Transactional Queues 

Distributed transactions are less than ideal because they require a fairly 
tight coupling of agents within a conversation – just the opposite from 
what we expect from multiagent systems. If we practice looser coupling, 
though, recovery can no longer be fully coordinated either. For example, 
we could instead limit backward recovery to each individual agent. The 
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conversation as a whole is no longer protected, that is, left in a state where 
consistency across the agent society can no longer be guaranteed. None-
theless, if we can additionally guarantee that communication can be recov-
ered as well we know at least that each part of the conversation individu-
ally is in the old or new state. Such a fault mitigation technique could then 
form the basis for compensation on some higher layer. 

The heart of conversations is (asynchronous) message passing that guar-
antees loose coupling (see IV.3). Fault mitigation as described above can 
then be achieved by queued transactions [WeVo2002]. They consist of 
three transactions. The ones at each participating agent are determined by 
the agent’s action but must additionally include the queuing and dequeuing 
operations (Figure 10). The third transaction covers the queue manager 
(persistent, recoverable message queues) and, in particular, guards against 
message loss. Consequently, a persistent queue manager seems to be an 
absolute necessity for a multiagent system. 

Message queue handler

ConsumerProducer

Outbound 
Propagation 

Agent

Inbound 
Propagation 

Agent

Producer 
System
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System

bot
enq
send
mark
commit
listen
...

listen
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bot
deq
commit

Queue
Manager

Message channel

Queue
Manager

Producer
Transaction

Consumer
Transaction

transmission
transaction

Figure 10. Transactional message queues 

6.5 Layer L3/L4 Techniques: Uncertainty 
Management

Layers L3 and L4, or more precisely the agents incorporating these layers, 
are cognizant of their goals and intentions, the reasons for communicating 
with other agents, and have the necessary domain knowledge. Conse-
quently, these layers are the ones that know how to compensate for the 
states passed up from below by fault containment or mitigation. We dis-
cuss below one technique that seems particularly suited to agents. 
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6.5.1 Compensation via Uncertain Agents 

Agents are made to cope with the non-determinism of their environment. 
The non-determinism arises from the autonomy of other agents with which 
an agent collaborates, but also from the limited view an agent has of the 
surrounding system (see I.1.3). One might say the agent often is uncertain
of its environment. The multiagent system as a whole will remain uncer-
tain as well because global behavior emerges from uncertain local interac-
tions, and also because collectively the agents will never observe the envi-
ronment at the same instance in time. 

Now then, couldn’t one view, e.g., fault mitigation as it results from 
transactional queues as producing a state that appears uncertain to the par-
ticipating agents? And wouldn’t what Pearl [Pear1994] refers to as uncer-
tainty management be a suitable abstraction for the needed compensation? 
And finally, wouldn’t agents be ideally suited for such type of compensa-
tion because of their capability to deal with uncertainty? 

IV.5.4 seems to answer the question in the positive. It points out that in 
the BDI framework beliefs stand for the knowledge acquired by the agent, 
and that this knowledge may be uncertain, fuzzy, incomplete, or incorrect 
– in short, imperfect. To be a bit more precise, several authors in 
[MoSm1997] distinguish between: 

• Imprecision: Information is imprecise when it denotes a set of possible 
values, and the real value though unknown is one of the elements. 

• Inconsistency: Several pieces of information are in conflict and 
irreconcilable so that only incoherent conclusions can be drawn. 

• Uncertainty: A statement is either true or false, but the agent’s knowl-
edge about the world does not allow him to state confidently if that 
statement is true or false. 

Beliefs can be considered a subjective opinion held by an agent at a 
given time on whether a statement holds, i.e., whether it reflects a state in 
the real world. In general, as the agent receives new information it may 
have to adjust its beliefs, a process referred to in IV.5.4. 

Now suppose that failures occur in a multiagent system while the world 
keeps going on. After recovery the most likely outcome is uncertainty, 
with inconsistency a possible consequence. Therefore, it makes sense to 
concentrate on uncertainty. If the agent recovers from an error it may 
choose to keep to its old beliefs and then seek information from its envi-
ronment to adjust its beliefs. If the agent is failed by other agents it may 
have to question its old beliefs and adjust them on the basis of the failed 
response. Consequently, managing one’s beliefs involves three issues: 

• When should the agent solicit information from the environment? 
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• From where should the agent solicit what information? 
• How are old beliefs transformed to new beliefs? 

6.5.2 Belief Management 

We examine the third issue in a bit more detail. True, it still is pretty much 
a research topic [MoSm1997]. There exist a number of theoretical ap-
proaches like [LoLI2002] that describe how BDI-Agents can cope with un-
certainty. For this purpose they introduce new concepts like norms and 
sometimes obligations to restrict the agents' actions, thus constraining their 
autonomy. 

In pursuit of practical solutions, a number of belief models have 
evolved. Transformations of beliefs vary according to the models. What 
one would expect from them is that they observe certain postulates for up-
dates (see, e.g., [KaMe1992]). Informally speaking, the transformations 
should reflect the principle that “when changing beliefs in response to new 
evidence, you should continue to believe as many of the old beliefs as pos-
sible” [Harm1986]. 

Basically there are three transformations that constitute belief revision: 

• Expansion: Suppose an agent makes a new observation. This operator 
simply adds the observation as a new belief no matter whether it contra-
dicts existing beliefs or not. As a consequence, the database may now 
contain incompatible information. 

Expansion makes sense if we wish to defer resolving contradictions, 
e.g., until the agent had a chance to communicate with others. More often, 
though, an agent will not tolerate local contradictions but rather resolve 
them. Two operators follow a resolution principle: 

• Revision: Adds a new proposition. If the information is incompatible 
with the previous state then older contradictory information is removed. 
Revision is non-deterministic because there may be more than one way 
to restore consistency, and it may be unknown which one is chosen. 

• Contraction: Removes a proposition that until now has been considered 
valid. Contraction may trigger further removals until no incompatible 
proposition can further be derived. Hence, contraction is also non-de-
terministic. 

• Revision and Contraction are also non-monotonic. 

Belief models and the ensuing transformations are either qualitative or 
quantitative. Qualitative models are based on some sort of logic, e.g., first-
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order logic with special predicates, non-monotonic logic, probabilistic 
logic, and apply plausible reasoning to infer new beliefs. Quantitative 
models associate numerical belief functions with beliefs. Probabilistic 
models estimate the chance that a statement is true in the real world. The 
best-known, efficient mechanism for propagating probabilistic beliefs are 
Bayesian Networks. A formal framework for probability assignment from 
statements made by different witnesses is the Dempster-Shafer Theory 
[Shaf1976]. Possibilistic models estimate the possibility that a statement is 
true in the real world. Possibility theory is a special interpretation of fuzzy 
set theory. Update operators called possibilistic imaging achieve effects 
similar to expansion and revision. 

6.6 Layer L4/L5 Techniques: Distributed Nested 
Transactions 

What has been said at the beginning of Section 6.5, that intelligent error 
processing must be cognizant of an agent’s goals, intentions and domain 
knowledge, and of the reasons for communicating with other agents, 
should apply to layer L5 as well, although with more emphasis on agent 
interaction. This raises the question of whether one could not build com-
pensation directly into the conversations. Several transactional models do 
indeed incorporate compensation, notably Sagas and nested transactions. 

action node

control node

synchronization node

parallel execution

sequential execution

alternate execution

action node

control node

synchronization node

parallel execution

sequential execution

alternate execution

action node

control node

synchronization node

parallel execution

sequential execution

alternate execution

Figure 11. Nested agent transaction 

We discuss nested transactions. These seem a natural abstraction to re-
flect both, the agent behavior that takes the layered architecture into ac-
count, and the conversation that ties a group of agents together. In par-
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ticular, a nested transaction models a behavior where an action may again 
spawn several related actions that we may consider to be on the next lower 
level, and so on [Nagi2000] [Nagi2001a]. From the transactional view-
point, a transaction in a nested transaction model can launch any number 
of subtransactions, thus forming a transaction tree (Figure 11). 

For the individual agent we employ a restricted form of nested transac-
tion: Actions take exclusively place in the leaves, whereas intermediate 
nodes just control the execution within their subtrees whose subtransac-
tions may execute sequentially, in parallel or alternatively. 

Isolation has a tendency to block other transactions from continuing. It 
thus runs counter to the autonomy and, hence, flexibility of agents. Conse-
quently, we choose the open nested transaction model. In it a subtransac-
tion (or the entire transaction) commits once all its children have termi-
nated, and makes its results available to all other subtransactions. On the 
other hand, if one of the children fails, the parent transaction has the choice 
between several actions: abort the subtransaction, backward recover and 
retry it, or attempt forward recovery by launching a so-called compensat-
ing subtransaction. Forward recovery is particularly important because the 
results of its subtransactions have already become visible. 

Next, we need a behavioral abstraction for the conversation. Since com-
pensation is due to the approach of layer L2 where we avoided synchroni-
zation by a coordinator in order to maintain autonomy, we cannot re-intro-
duce the coordinator on layer L5. Instead we build the synchronization di-
rectly into the nested transactions for the agents. Each individual transac-
tion is augmented by special synchronization nodes [Nagi2001b]. Figure 
11 shows such a node (indicated by the arrow). Figure 12 illustrates the 
synchronization for two separate transactions. M11 does not only start sub-
transactions M111 and M112 but also wakes up subtransaction S11. In turn, 
M112 cannot continue until S11 has finished and S1 has regained control. For 
full compensation support, two further pairs of synchronization nodes are 
needed. Pair (3) prevents the termination of the slave transaction tree be-
fore the termination of the master transaction tree, and Pair (4) causes the 
compensation of the slave subtree S1 in the case M11 fails. More common, 
however, will be simpler master-slave situations. 

Distributed nested transactions can easily cope with the communication 
failure (1) and the production disturbance (3) of Figure 1, provided that the 
faults occur within transaction trees where suitable compensation actions 
are defined. 

Distributed nested transactions are a very powerful approach. Alternat-
ive compensations can be designed into a tree, and compensations may 
even be added while the transaction executes. The price is that there is no 
longer a clear separation between agent behavior and conversation so that 
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conversations are difficult to extract and adapt, and a specific conversation 
can only be initiated from a specific agent which was prepared beforehand 
for the task. 
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Figure 12. Two synchronized agent transactions 

A compromise well worth to investigate could be sagas. Sagas [GaSa 
1987] have a fairly rigid transaction model that directly incorporates com-
pensation. A Saga consists of two sets of flat ACID subtransactions. The 
first set (T1, …, Tn) defines the intended behavior with a predefined order 
of execution. Isolation is relaxed in that other transactions may see the 
effects of partially executed sagas. The second set of subtransactions (CT1,
…, CTn-1) defines the corresponding compensating actions, where each 
CTi can semantically undo the effects of its Ti. A Saga commits if all its 
subtransactions Ti commit (resulting in the subtransaction sequence T1 … 
Tn), and it aborts if one Ti aborts. In the latter case the compensating 
subtransactions corresponding to the already committed subtransactions 
are executed in the reverse order (T1 … Ti-1CTi-1 … CT1).

Garcia-Molina et al. (in [Gar+1991]) introduce nested sagas that extend 
the model by a second layer of sagas, and mechanisms for transaction 
communication that could be used to reflect conversations. Sagas seem 
particularly attractive because they have been incorporated in current busi-
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ness process modeling languages (e.g., BPEL4WS, WSCI) and workflow 
systems (e.g., BizTalk Server, WebSphere MQ Workflow) [GFJK2003]. 

Another approach for compensation-based recovery on layers L4 and L5 
similar to Nagi’s distributed nested transactions is due to Unruh et al. 
[UnBR2004] [UHBR2005]. It relies on a hierarchical decomposition of the 
agents’ goals and employs goal-based semantic compensation, task retries 
and checkpointing. 

6.7 Trust and Reputation Management 

The layered dependability model of Section 6.3 covers unintentional faults 
only. To maintain a unified approach to dependability we should assign 
trust and reputation techniques to specific layers as well. Since trust and 
reputation are foremost social issues layer L5 must be involved. Layer L4 
must be included since the agent must somehow judge the actions of peers 
in light of its own intentions (see Figure 7). Since trust needs to keep track 
of the history, and reputation employs communication protocols, trust and 
reputation make use of the services on layers L1 and L2. In this chapter, 
though, we concentrate on the higher layers. For overviews on trust and 
reputation techniques see [RKZF2000] and [RaJe2005]. 

6.7.1 Trusted Third Parties 

If a centralized approach is feasible, one can install a trusted third party (a 
specialized agent) that maintains trust values for each agent. While it had 
to be aware of any relationships between the agents, it would be easy for 
an agent to issue queries concerning other agents. A further advantage is 
the central authentication by assigning immutable identities to the users, 
and the capability to identify and expel misbehaving participants. On the 
negative side, centralized reputation systems are always suspected of act-
ing on their own behalf and not in the interest of the users, and can easily 
become an object of censorship. Also they constitute a single point of fail-
ure that can endanger the agent system as a whole. 

To avoid these dangers, or whenever a centralized approach is no altern-
ative, one must resort to truly distributed solutions. We discuss some of 
these in the remainder of Section 6.7. 
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6.7.2 Individual-Level Trust: A Model 

In a distributed approach the trust of one agent into another can only be 
based on own observations. A suitable reference model is the iterated 
prisoners’ dilemma, which is a well-known and well-understood problem 
in game-theory [Axel1984]. In the prisoners dilemma each of two players 
tries to maximize its own advantage without any concern for the other. 
Each player can decide to defect or to cooperate, and both of the players 
have to decide simultaneously. Individually, a player obtains the maximal 
payoff if it defects and the other one cooperates, and the minimal payoff if 
it cooperates and the other one defects. Globally, the optimal payoff is ob-
tained if both of the players cooperate. 

Suppose a player uses the strategy with the optimal payoff. Unfortu-
nately, the strategies of the peers are unknown. But it is possible to deduce 
the strategy of the peers from their behavior in the past. Thus, a corner-
stone of these systems is a private history. Each agent manages its own 
history of past transactions, and fills it with its own observations on the 
outcome of transactions with other peers. 

The iterated prisoners dilemma tells us that one of the best deterministic 
strategies is Tit-for-Tat [Axel1984]. An agent using this strategy first co-
operates, and then imitates its opponent, i.e., if the other agent defects, the 
agent defects as well, and likewise in case of cooperation. However, game-
theoretical strategies depend on some assumptions which do not hold in 
reality, in particular that the agents have to interact many times instead of 
one-shot interactions, the payoff does not change from transaction to trans-
action, and there are only two possible actions for each transaction (defect 
and cooperate). In addition, in multiagent systems the agents can select 
their transaction partners among a set of agents offering comparable ser-
vices (disclosed prisoners dilemma). Therefore, trust systems based on lo-
cal observations provide a more or less complicated trust measure that is 
intended to cope with these challenges. 

The model is only of theoretical value. A reliable trust measure depends 
on a sufficiently large number of observations on a given agent and, con-
sequently, fails in open multiagent systems where agents join and leave at 
high rates, or in systems where many agents do not interact twice, be it be-
cause of unpleasant experiences or because of the limited range of services 
a single agent offers. 
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6.7.3 Individual-Level Trust: The Bayesian Approach

A recent approach regarding trust management is the Bayesian network-
based trust model [WaVa2003]. The approach is based on Bayesian 
learning in a multiagent system. A Bayesian network is a relationship net-
work using statistical methods to represent probability relationships be-
tween the agents, i.e., the agents are the nodes and the probabilities are the 
weights in a graph. 

Each agent maintains a simple Bayesian network for each peer it has 
interacted with. The network has a root node which can have the values
T=0 (“unsatisfying”) and T=1 (“satisfying”). The probability p(T=1) = 
(number of satisfying interactions/number of all interactions) = 1-p(T=0)
represents the overall amount of trust in the peer.

A leaf node represents a specific capability of the peer in the form of a 
conditional probability table. For example, in a Bayesian network rating a 
bakery one node could refer to products with a table of p(“bread”|T=1), 
p(“crackers”|T=1), where each term denotes the conditional probability 
(“weight”) that an interaction which involved, say, crackers was satisfying. 
Another node could refer to the quality with p(“fresh”|T=1), 
p(“aged”|T=1), p(“outdated”|T=1). Figure 13 shows the Bayesian net-
work for one particular agent. After each transaction the agent updates the 
weights of the corresponding network. For example, when an agent buys a 
new bread it may increase the weights for p(“bread”|T=1) and
p(“fresh”|T=1).

Agent t

Products Quality

p(„crackers“|T=0)p(„crackers“|T=1)

p(„bread“|T=0)p(„bread“|T=1)
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Figure 13. The Bayesian approach 

Based on the Bayesian network the agent can compute the probability 
that the corresponding peer is trustworthy under various conditions. To 
validate its own observations or to determine the trustworthiness of un-
known peers, an agent can issue recommendation requests, e.g, 
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p(T=1|N1=“bread”,N2=“fresh”), to other agents and combine their trust 
probabilities with its own observations. Responses from untrusted sources 
can be discarded at once. The agent may also assign weights to the ob-
tained trust coefficients that indicate its preference for statements coming 
from trusted and unknown agents. 

The Bayesian approach enables the agents to determine the trustworthi-
ness of its partners in a very flexible way, and to share trust coefficients 
between agents. There are shortcomings though. The approach is not suit-
able for very large multiagent systems where the majority of agents do not 
repeatedly interact with each other. Flooding the system with recommen-
dation requests seriously limits its scalability. The division into strangers, 
trusted and untrusted peers is too static because the assignment of a peer 
may depend on the issue at hand. Thus, other approaches use more sophis-
ticated trust dissemination protocols and model complex relationships 
between the agents. 

6.7.4 Reputation: The Collaborative Filtering Approach 

To share reputation information the participants must agree on a common 
set of measures and domains that describe the behavior of the agents and 
the quality of their services. Collaborative filtering is a method to detect 
common preferences among the opinions of a set of different users. Based 
on a set of observations, collaborative filtering then makes recommenda-
tions to users with similar preferences. For instance, collaborative filtering 
is used at www.amazon.com. 

[ZaMM1999] show that collaborative filtering can be applied to reputa-
tion management. In the approach, each agent is assigned a reputation 
value. The agent system is modeled as a directed graph. Each interaction 
between two agents form a new edge between the nodes, while the edges 
are weighted with the rating of the outcomes of the action. If an agent rates 
the same agent again, the new edge supersedes the old one. 

When an agent A queries the reputation value for agent B, the system 
uses Breadth First Search in order to find all directed paths connecting A
and B with a length less than n. The trust value of B is now computed as 
follows: For each path from B to A, the weights of the edges are used to 
determine an auxiliary trust value, and the values of all of the paths are ag-
gregated to the trust value of B.

The strengths of the approach are the personalized computation of 
reputation values and the fine-granular representation of relationships be-
tween the agents. However, the approach lacks a sophisticated model for 
different domains of services offered by the agents. Furthermore, it de-
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pends on a highly connected graph of relationships between the agents. If 
there are no short paths between two nodes, Breadth First Search is expen-
sive in distributed applications. 

6.7.5 Reputation in Loosely Connected Communities 

Finding agents that have relevant information about the behavior of a 
given agent is one of the most serious challenges in distributed reputation 
management systems. Solutions like flooding (sending each request to all 
agents) or random walk (taking a random way from agent to agent) con-
struct a quorum of statistical significance, but are insufficient with agents 
that have very few ratings in a system consisting of many participants. 

A feasible distributed solution comes from Distributed Hash Tables 
(DHT), a variant of Peer-to-Peer Overlay Networks. A DHT is a data 
structure that is distributed among all participants in the system. The DHT 
allows to store and retrieve (key,value)-pairs very efficiently without in-
volving a trusted third party. [KaSG2003] describe a reputation manage-
ment system where so-called score managers compute the trust values. 
The score manager for a given agent is hash computed from the agent’s IP 
address. If an agent is aware of the IP address of the agent in question, the 
DHT is able to locate its score manager. 

Trust values are secure because when an agent forwards a request in the 
approximate 'direction' of the score manager only the score manager IP is 
known to the intermediate nodes that pass on the request. Further, an agent 
cannot become its own score manager and manipulate its own score be-
cause it cannot compute the manager’s IP address. 

Using a DHT provides an efficient way to provide global reputation 
values in loosely connected communities of agents. Each reputation re-
quest involves only a small number of hosts, and the only ex-ante knowl-
edge is the distributed hash function. But running a DHT beneath the mul-
tiagent system itself increases the complexity of the system as a whole. In 
addition, global data structures are (even in the distributed case of a peer-
to-peer system) vulnerable against attacks. 

6.8 Conclusions 

These days dependability is considered a major issue by system vendors 
and researchers. With the ever growing complexity of IT systems much of 
the more recent efforts go into the direction of self-organizing systems – 
witness programs such as “autonomic computing” or “organic computing”. 
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Since multiagent systems can be considered a prime example of self-orga-
nizing systems one would expect them to benefit from these efforts. So far, 
however, dependability still seems to be a neglected issue in the agent lit-
erature. This chapter attempted to outline a number of approaches to de-
pendable MAS that range all the way from the application of classical ap-
proaches to information systems dependability (Sections 6.3, 6.4 and 6.6) 
to approaches that are more in the vein of self-organization (Sections 6.5 
and 6.7). Where the authors also see a major contribution is to relate the 
dependability issue to the reference architecture of IV.4 and, hence, to pro-
vide an organizational framework within which to solve the dependability 
issues. 

One may argue that a discussion of dependability is incomplete unless 
accompanied by a discussion of privacy and security. However, the latter 
raises such a large number of intricate issues that it would warrant a sepa-
rate chapter. Also, our tacit understanding in this chapter is that agents re-
main stationary. Including mobile agents as well would add further com-
plications such as the trustworthiness of current agent executors. 
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Abstract. In this chapter tools, especially agent platforms, and relevant standards 
for realizing agent-oriented applications are presented. As there are a plenty of dif-
ferent agent platforms available the objective here is not to present an exhausting 
platform comparison, but to introduce meaningful platform categories, relate them 
to existing standards and illustrate them with typical representatives. The categori-
zation helps to understand the existing heterogeneous agent technology landscape 
and is one integral part of a proposed selection method. This method reflects the 
fact that different problem domains may demand very different solutions in terms 
of the used methodology and underlying agent platform. It sketches the important 
steps that can be used to find a suitable methodology and agent platform fitting to 
the problem domain at hand. 

7.1 Introduction 

This chapter discusses how the concepts of the previous chapters can be 
actually realized as part of a larger agent-based project. Given that most 
implementation details are to a large extent dependent on the concrete ap-
plication requirements, this chapter can only provide general consider-
ations regarding the selection of appropriate tools and standards. As the 
field of Agent Technology matures, tools and standards become an impor-
tant success factor for the development of agent-based applications, as they 
allow drawing from the existing experience. Tools, most notably agent 
platforms, represent reusable implementations of generic technical re-
quirements. Standards capture state-of-the-art knowledge and best prac-
tices. 

7.2 From the Problem Domain to the Implementation 

The reason for selecting agent technology as part of a software project is 
mostly driven by the characteristics of the application domain at hand. 
[Weis2002] has identified some domain characteristics that advocate the 
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use of agent technology in general: Agents are a suitable technology and 
metaphor for the problem domain, when 

• There is a dynamic number of components, i.e., the system needs to be 
open, allowing for new components to be introduced at any time. 

• An external control of the entities comprising the system is not possible 
or not wanted, i.e., the system components have to be autonomous and 
self-dependent. 

• The coordination within the system takes place by using complex 
communication relationships, i.e., for processes executed by the system 
complex interactions between the subcomponents of the system are re-
quired. 

Among others, these characteristics are an important factor influencing 
the concrete decisions to be taken towards the transition from the require-
ments to an implemented system. Major decisions that have to be made re-
gard the methodology to be followed (cf. IV.1), and the agent platform to 
be used as a basis for the implemented system. The methodology guides 
the development process by proposing different development steps and the 
modeling artifacts being produced at each step. The agent platform forms 
the runtime environment for the agents that make up the application. 

7.2.1 Criteria for Selecting an Agent Platform and a 
Methodology 

Figure 1. Influence relationships for application realizations 

Decisions regarding both the methodology and the platform are influenced 
by the characteristics of the problem domain. Various catalogs of selection 
criteria have been proposed for comparing agent platforms (e.g. in [BDDE 
2005] [EiMa2002]) and for comparing methodologies (see [SBPL2004]). 
The following presents some areas of domain dependant criteria consid-
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ered most important as stated in [PoBL2005b]: Concepts, Standards,
Tools, and Applications.

• Criteria in the area of concepts refer to the agent metaphor (e.g. delib-
erative entities vs. autonomous processes), and more specifically to de-
tails of the agent model (such as which mental attitudes are supported by 
a deliberative agent architecture). 

• Relevant standards may come from two sources; on the one hand some 
standards are directly relevant to the problem domain (e.g. HL71 for 
health applications), on the other hand approved agent related standards 
(see Section 7.2.2) facilitate a consistent and interoperable design and 
implementation. 

• Tool support has to address all phases of the development process start-
ing from modeling the domain and elaborating the requirements to the 
system design and implementation. Implementation level tools can be 
further subdivided into code-oriented tools such as integrated develop-
ment environments (IDEs), tools for debugging and testing, and tools 
for deployment and administration of an implemented system. 

• Finally, examples of successful applications provide case studies of how 
to apply a certain approach and may reveal certain pitfalls. 

Evaluation of these criteria is highly interrelated as these criteria apply 
to methodologies and platforms and to the problem domain as well. There-
fore, the choice of an appropriate methodology and agent platform is cru-
cial for the success of a project: The concrete platform determines the 
means, i.e. the concepts and supported standards that are available for 
system realization. Hence, it prescribes a certain agent philosophy, which 
has to be used for system implementation. If this agent philosophy does 
not reflect the important properties from the problem domain, a mismatch 
between problem domain and agent platform will complicate the realiza-
tion. Such interdependencies also exist between the agent platform and the 
methodology. The methodology has to support the same agent philosophy, 
otherwise a mismatch between methodology and agent platform occurs, 
leading to a gap between modeling and implementation [SBPL2004]. 
Moreover, tool support not only for a methodology or a platform itself but 
also for mapping methodological design artifacts to a platform-specific 
implementation (e.g. code generators) further facilitates a smooth transi-
tion from design to implementation. Moreover, existing example applica-
tions of a methodology or platform allow to draw some conclusions perti-
nent to the given problem domain, e.g. regarding the context or size of the 
application. 

1 http://www.hl7.org/ 
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As a result, most of the time a trade-off has to be made regarding con-
cepts and standards. Some of them may match best to the problem domain 
but there may be insufficient support with respect to existing methodolo-
gies or agent platforms (see Figure 1). The availability and quality of tool 
support, as well as the existence of case studies describing successful (or 
failed) applications can further support the decision in favor of or against 
some methodology or agent platform. Finally, there is a number of other 
selection criteria which can be evaluated independently from the problem 
domain, such as the performance, availability (free or commercial), or us-
ability of given tools, or the amount and quality of supplied documentation 
materials. 

7.3 Agent Platforms 

An agent platform has the purpose to simplify the development of agent 
applications by providing an infrastructure agents can live in. It consists of 
the basic management facilities for hosting agents on a uniform infra-
structure and, additionally, offers ready-to-use communication means for 
the agents. Agent platforms are characterized most notably by the internal 
and social architecture (layer 4 resp. 5 of the reference architecture intro-
duced in IV.4) they employ. The internal architecture determines the inter-
nal concepts and mechanisms an agent uses to derive its actions, whereas 
the social architecture is responsible for coordination between agents and 
team management. Technically, a platform is characterized by the pro-
gramming language it provides for realizing agents and the available tools 
for development, administration, and debugging. 

In the remainder of this section an overview of existing agent platforms 
is given. This overview is not intended as an exhaustive list of all available 
platforms. For such a list the reader may refer to the “Agent Software” 
page of AgentLink2 or (more focused on complete platforms) the agent 
platform page of the Jadex project3. Instead, this section will identify 
categories of platforms according to the reference architecture, highlight 
the important properties of these categories with respect to the above men-
tioned selection criteria, and present some representative platforms for 
each category. Finally, some general guidelines exemplify how to apply to 
selection criteria to choose among the available platforms and methodolo-
gies. 

2 http://www.agentlink.org/ 
3 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/links.php 
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7.3.1 Categorization of Agent Platforms with Respect to the 
Reference Architecture 

Referring to the reference architecture introduced in IV.4 a categorization 
of agent platforms can be done in accordance to the layers they emphasize 
(cf. Figure 2). 

Considering an agent platform as a middleware for agent-based services 
implies that at least L1-L3 need to be addressed in an adequate manner. 
Middleware platforms, therefore, provide a solid basis for developing 
open, interoperable agent systems, as they primarily tackle interoperability, 
agent management, and communication means. Anyhow, not all important 
aspects of agent development are supported equally well. One important 
point that is not addressed to a satisfactory degree concerns the agent’s 
reasoning process. Most middleware platforms rely on a simple task-based 
model that allows for programmatically composing complex behavior out 
of simpler pieces. 

Reasoning platforms focus on L4 and partly on L3 of the general refer-
ence architecture and hence employ an internal reasoning architecture for 
systematically deducing an agent’s actions from some internal world 
knowledge. As the internal reasoning process often is intricate, support for 
L1-L3 varies greatly for different representatives. Additionally, middle-
ware and reasoning platforms do not conceptually provide means for 
structuring and programming agent societies. 

Problem
Domain

Methodology

Application
Implementation

Agent
Platform : influence

Legend
:

Figure 2. Coverage of layers for different categories of agent platforms 

Social platforms address this issue by implementing organizational ar-
chitectures (L5). An important question considering this kind of platform 
is, whether the underlying architecture depends on the concepts provided 
by the internal architecture (L4). In this case, the cooperation and coordi-
nation mechanisms of the organizational architecture can be quite elabo-
rated allowing complex structures to be realized. On the other hand, the 
applicability of such an architecture and platform is restricted to agents 
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conforming to a certain kind of agent type, such as BDI, which is undesir-
able for open system scenarios. 

A common denominator for all the categories is the need for represent-
ing knowledge in an adequate manner (L3). At first sight this might be 
most interesting for reasoning platforms as they use the knowledge for in-
ternal deduction processes, but as communication plays a vital role in most 
multiagent applications the need for exchanging knowledge is a predomi-
nant issue. 

To capture the semantics of symbolic representations, ontologies can be 
defined. Ontology descriptions follow standards like RDF4 and OWL5 (see 
IV.1 and IV.2.3). Ontology modeling tools such as Protégé6 allow creating 
and editing ontology specifications in various standardized formats. Spe-
cialized reasoning engines such as RACER7 can be used to operate on the 
represented world knowledge, to derive new facts and possible courses of 
action. 

7.3.1.1 Middleware Platforms 

In the field of distributed systems, middleware is normally seen as “[…] 
network-aware system software, layered between an application, the oper-
ating system, and the network transport layers, whose purpose is to facili-
tate some aspect of cooperative processing. Examples of middleware in-
clude directory services, message-passing mechanisms, distributed trans-
action processing (TP) monitors, object request brokers, remote procedure 
call (RPC) services, and database gateways.”8

As agent orientation builds on concepts and technology of distributed 
systems, middleware is equally important for the realization of agent-based 
applications. Thereby, the term agent middleware is used to denote com-
mon services such as message passing or persistency management usable 
for agents. The paradigm shift towards autonomous software components 
in open, distributed environments requires on the one hand new standards 
to ensure interoperability between applications. On the other hand new 
middleware products implementing these standards are needed to facilitate 
fast development of robust and scalable applications. Agents can be seen 
as application layer software components using middleware to gain access 
to standardized services and infrastructure. 

4  http://www.w3.org/RDF/ 
5  http://www.w3.org/2004/OWL/ 
6  http://protege.stanford.edu/ 
7  http://www.racer-systems.com/ 
8  http://iishelp.web.cern.ch/IISHelp/iis/htm/core/iigloss.htm 
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Before concrete examples of middleware platforms will be described the 
relevant middleware standards are introduced. Thanks to the FIPA stan-
dards the platform architecture has a common ground and interoperability 
between different middleware platforms could be achieved. Supplementary 
the MASIF standards define the basic concepts of agent mobility. 

FIPA Standards 

Figure 3. FIPA specification overview (from FIPA website) 

An important foundation for the realization of middleware platforms are 
the specifications of the Foundation for Intelligent Physical Agents 
(FIPA)9 (see [PoCh2001]). The work on specifications considered applica-
tion as well as middleware aspects. Specifications related to applications 
provide systematically studied example domains with service and ontology 
descriptions. The middleware-related specifications address in detail all 
building blocks required for an abstract agent platform architecture (see 
Figure 3). 

The abstract architecture specification (FIPA00001) defines at a high 
level how two agents can find and communicate with each other. For this 
purpose a set of architectural elements and their relationships are de-
scribed. Basically, two types of directories, for agents as well as for agent 
services, are introduced, which can be used by agents to register them-
selves or search for specific services. The communication between two 
agents relies on a message transport component, which has the task to send 
a message following the agent communication language (ACL) format. 
For agent communication and agent message transport many refining stan-
dards are available. 

In the area of agent communication, various standards have been de-
fined for diverse interaction protocols, communicative acts, and content 

9  http://www.fipa.org 
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languages. Interaction protocols set up a context which constrains the pos-
sible course of interaction to predefined courses. Examples of interaction 
protocols include, besides others, Dutch (FIPA00032) and English (FIPA 
00031) auctions as well as the contract-net protocol (FIPA00029). The 
communicative act library specification (FIPA00037) describes the set of 
allowed performatives, which denote the meaning of a message according 
to speech act theory [Sear1969]. In addition different content languages 
can be employed for the representation of the message content. Examples 
include the FIPA semantic language (FIPA00008) and RDF (FIPA 00011). 

On the other hand the message transport has to deal with the representa-
tion of ACL messages and their envelopes as well as with the underlying 
transport protocols. For messages and envelopes different representations 
such as XML (FIPA00071/85) and a bit-efficient version (FIPA00069/88) 
have been proposed. Transport protocol specifications exist for IIOP 
(FIPA00075) and for HTTP (FIPA00084). 

Figure 4. FIPA agent management reference model (from FIPA00023) 
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Most important for understanding the platform operation according to 
FIPA is the agent management specification (FIPA00023) (see Figure 4). 
It defines the necessary building blocks of an agent platform and their re-
lationships, including mechanisms for agent management, as well as infra-
structure elements such as directory services and message delivery. In this 
respect the agent management system (AMS) is responsible for exerting 
supervisory control over access to and the use of the agent platform. It 
maintains a directory of all agents living on the platforms. Another impor-
tant component of an agent platform is the directory facilitator (DF) which 
provides yellow pages services to other agents. Agents hosted on a plat-
form can access non-agent software and send messages to other agents on 
the same or another platform using the message transport service. 

The FIPA specifications have been implemented in a number of agent 
platforms and interoperability among those platforms has been shown, for 
example in the agentcities network [WiCR2002]. 

MASIF Standards 

The Mobile Agent System Interoperability Facility (MASIF) [OMG2000] 
is a standard for mobile agent systems proposed by the Object Manage-
ment Group (OMG). The main objective of MASIF is to establish a com-
mon ground that allows MASIF compliant agent frameworks to perform 
agent migration even in heterogeneous environments (assuming a common 
platform implementation language). It aims to achieve a first level of in-
teroperability for the transportation of agent information where the infor-
mation format is standardized. This means that once the agent data has 
been transferred the platform is responsible for interpreting the informa-
tion. The transmitted data makes explicit the agent profile describing the 
language, serialization, and further agent requirements on the platform. In 
this way MASIF enables an agent system to understand the agent’s de-
mands. 

To achieve this kind of mobile agent interoperability MASIF tackles 
four different areas in the standard: agent management, agent transfer, 
agent/platform naming, and agent system type/location syntax. Agent 
management concerns the life cycle control of agents including agents 
hosted on remote platforms. The management is addressed by standardized 
interfaces for agent creation and termination as well as for suspending and 
resuming agent execution. Agent transfer underpins the main goal of agent 
mobility and aims at a common infrastructure in which agents can freely 
move among different platforms. One necessary prerequisite for locating 
remote agents possibly hosted on another type of platform is the standardi-
zation of the syntax and semantics of agent and platform names. In addi-
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tion, the agent system type is of importance as the agent transfer depends 
on the fact that the system can support the agent. Finally, the location syn-
tax is standardized to ensure that platforms can find each other (cf. 
[Mil+1998] for details). 

In addition to the functional aspects, MASIF also tackles security issues 
arising in the context of mobile agents. An agent system has the task to 
protect its resources from new agents arriving at the platform. For this pur-
pose the platform must be able to identify and verify the authority of an in-
coming agent. This allows for access control and agent authentication. 

One big problem of MASIF is that it is based on CORBA and has there-
fore never been widely accepted. The MASIF standard has been used 
mainly for specialized mobile agent platforms such as Aglets [ClPE1997]. 
Nevertheless, also platforms supporting both FIPA and MASIF have been 
developed such as Grasshopper [BaMa1999]. 

JADE

A prominent example of a middleware-oriented agent platform is JADE 
(Java Agent DEvelopment Framework) [BBCP2005], a Java framework 
for the development of distributed multiagent applications. It represents an 
agent middleware providing a set of available and easy-to-use services and 
several graphical tools for administration and debugging. One main objec-
tive of the platform is to support interoperability by strictly adhering to the 
FIPA specifications concerning the platform architecture as well as the 
communication infrastructure. Recently, a “Web Services Integration 
Gateway” added support for agents acting as client or server in a Web Ser-
vice application. Moreover, JADE is very flexible and can be adapted to be 
used also on devices with limited resources like PDAs and cell phones. 
The JADE platform is open source software, distributed by TILAB (Tele-
com Italia LABoratories). Since May 2003, an international JADE Board 
has the task of supervising the management of the project. Currently, the 
JADE Board consists of five members: TILAB, Motorola, Whitestein 
Technologies AG, Profactor, and France Telecom. Many JADE applica-
tions ranging from research prototypes to industrial products have been 
developed over the last years (see [BBCP2005]). As one example 
Whitestein has used JADE to construct an agent-based system for decision 
support in organ transplant centers [CFBB2004]. 

ADK 

The agent development kit (ADK) is a commercial/open-source Java-
based agent platform developed by Tryllian Solutions B.V. The main focus 
of the company is in the application integration area, involving all kinds of 
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legacy system integration. In ADK, agent programming follows a task 
framework in which behavior is implemented as a set of simple tasks ar-
ranged in a workflow-like manner. The platform includes a visual design 
environment and administrative tools for deployment. The platform is tar-
geted to be used in industrial systems (as opposed to research), and empha-
sizes mobility and security aspects. To facilitate the integration of legacy 
systems, interoperability with existing solutions is an important factor for 
the platform and a number of accepted industry standards are supported: 
SNMP (Simple Network Management Protocol) allows remote manage-
ment of the agent platform. JNDI (Java Naming and Directory Interface) 
can be used for agent naming and lookup. Agents can receive messages 
sent using JMS (Java Messages Service), FIPA, or the JXTA peer to peer 
network. Moreover, agents can act as Web Service or interact with existing 
Web Services using the SOAP/WSDL/UDDI stack. Recently a business 
rule engine has been added, to support the maintenance of processes di-
rectly at the business level. Several production grade applications have 
been developed such as the “ePosit” system for intelligent Web search, or 
the “Continuous Auditing” system, which allows monitoring of decentral-
ized organizations and automating routine auditing tasks. 

FIPA-OS 

FIPA-OS was one of the first open-source, FIPA-compliant software 
frameworks originating from research at Nortel Networks Harlow Labo-
ratories in the UK. It is implemented in Java and like JADE uses a simple 
task-based approach as internal agent structure. Although development of 
FIPA-OS has been discontinued in 2003, the platform is still available for 
download. In addition FIPA-OS has been released as a reduced version 
suitable to small and mobile devices (MicroFIPA-OS). Tool support is 
limited to simple graphical user interfaces for administering and configur-
ing the platform and agents on the platform. Up to now, FIPA-OS has been 
used mostly in research and beta stage prototype applications. For exam-
ple, emorphia Ltd. has developed an agent-based intelligent meeting 
scheduler named Friday based on FIPA-OS. 

DIET 

DIET Agents is a multiagent platform developed as part of an EU project 
under the leadership of British Telecom. The DIET (Decentralized Infor-
mation Ecosystem Technologies) project aimed at developing a light-
weight, scalable, and robust agent platform targeted to peer-to-peer (p2p) 
and/or adaptive, distributed applications. Primary application area of the 
platform in the course of the project was information retrieval, filtering, 
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mining, and trading. The platform uses bottom-up, nature-inspired tech-
niques from Evolutionary Computation and Artificial Life to provide an 
open, robust, adaptive, and scalable environment for information process-
ing and management. Tests performed by the project partners showed that 
the platform supports up to 100000 agents running on a single computer. 
After the project had finished in 2003, the platform was released as open 
source and is currently continued to be developed as a generic middleware 
agent platform. Besides the platform itself, a graphical tool for visualizing 
and debugging applications has been made available. Existing applications 
have mostly been developed in the course of the research project as proto-
types and proof of concepts, e.g., for a collaborative tool visualizing social 
networks, self-organizing communities, and p2p content sharing applica-
tions. 

7.3.1.2 Reasoning Platforms 

Reasoning platforms are based on specific internal agent architectures. 
Such internal agent architectures have been conceived to support the rea-
soning process of agents and therefore systematize the process of how an 
agent decides which action it wants to perform in any given situation. Ac-
cording to [WoJe1995] these architectures can be categorized into reac-
tive, deliberative and hybrid architectures. 

Reactive architectures abstain from any kind of symbolic knowledge 
and do not use symbolic reasoning. The most prominent reactive architec-
ture is Brook’s subsumption architecture [Broo1986] which assumes that 
an agent is composed of a hierarchy of task-accomplishing behaviors. Be-
haviors at a lower level in the hierarchy represent primitive actions and 
have precedence over higher-level behaviors. Even though the resulting 
agents are quite simplistic in nature, it could be shown that this kind of ar-
chitecture is well-suited for certain kinds of applications such as the 
movement control for robots. 

Deliberative architectures require an agent having a symbolic model of 
the world and using logical (or at least pseudo-logical) reasoning for its 
decisions. Many deliberative architectures are based on a central planner 
component which is responsible for deducing reasonable agent actions. 
Examples of such architectures are IRMA [BrIP1988] and IPEM [AmSt 
1988]. Main drawback of most purely deliberative architectures is their 
inefficiency as symbolic reasoning requires complex computations and 
thus cannot guarantee responsive agent behavior under all conditions. 

To the rescue, many hybrid architectures have been proposed, which 
aim at bringing together the best from both approaches. Hybrid architec-
tures combine reactive and deliberative facets leading to agent behavior 
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that is responsive as well as intelligent. Even though there are no standards 
for reasoning facets of platforms two predominant architectures exist. 
Most influential architectures with respect to their practical relevance are 
the SOAR [LeLR1996] and the BDI [Brat1987] models of agency. 

SOAR is based on Newell’s psychological theory “Unified Theory of 
Cognition (UTC)” [Newe1990], which postulates the pursuit for a single 
set of mechanisms that account for all aspects of cognition such as mem-
ory, problem solving, and learning. “A UTC must explain how intelligent 
organisms flexibly react to stimuli from the environment, how they exhibit 
goal-directed behavior and acquire goals rationally, how they represent 
knowledge (or which symbols they use), and learning.”10

The BDI model was originally conceived by Bratman as a theory of 
human practical reasoning [Brat1987]. Its success is based on its simplicity 
reducing the explanation framework for complex human behavior to the 
motivational stance [Denn1987]. Following the motivational stance, 
causes for actions are only related to desires ignoring other facets of cog-
nition such as emotions. Another advantage of the BDI model is the con-
sistent usage of folk psychological notions that closely correspond to the 
way people communicate about human behavior [Norl2004]. Starting from 
Bratman’s work, Rao and Georgeff [RaGe1995] conceived a formal BDI 
theory, which defines beliefs, desires, and intentions as mental attitudes 
represented as possible world states. The intentions of an agent are subsets 
of the beliefs and desires, i.e., an agent acts towards some of the world 
states it desires to be true and believes to be possible. To be computation-
ally tractable Rao and Georgeff also proposed several simplifications to 
the theory, the most important one being that only beliefs are represented 
explicitly. Desires are reduced to events that are handled by predefined 
plan templates, and intentions are represented implicitly by the runtime 
stack of executed plans. As a multitude of platforms have been developed 
based on the BDI paradigm, only a small selection is presented here. For a 
more detailed overview of BDI systems see [MaDA2005]. 

JACK 

The JACK platform is developed as a commercial product by Agent Ori-
ented Software [HRHL2001]. It is based on the BDI architecture and pro-
vides its own programming language called JACK agent language (JAL). 
JAL is a conservative extension of Java introducing BDI concepts and 
some features of logic languages such as cursors and logical variables. An 
agent in JACK is composed of a number of different JAL files, mainly rep-

10  http://en.wikipedia.org/wiki/Unified_Theory_of_Cognition 
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resenting the agent itself as well as its plans, belief base, and events. To 
execute a JACK agent, its set of JAL files is first precompiled to Java 
source code and in a second step compiled to executable Java byte code. 
JACK addresses several weaknesses of traditional BDI systems. Most no-
tably, it introduces the notion of a capability for the modularization of 
agents [BHRH2000]. Additionally, the SimpleTeams approach (see below) 
has been conceived to support the cooperation of agents within BDI teams. 
JACK represents an industry-grade product delivering extensive docu-
mentation and supporting tools. Especially, JACK ships with an IDE that 
supports the detailed design and implementation phase. The IDE supports 
inter alia the project management, the editing of files by syntax highlight-
ing and the compilation and execution from within the IDE. Additionally, 
a graphical plan editor allows for creating plans visually and observing 
their execution at runtime. It has been used in a variety of industrial appli-
cations as well as for many research projects. The application areas include 
Unmanned Aerial Vehicles (UAVs), human-like decision making, and 
decision support systems (details can be found in [Wini2005]). 

Jadex 

Jadex [BrPL2005] [PoBL2005] is an open source software framework de-
veloped at the University of Hamburg. It allows the creation of goal ori-
ented agents following the belief-desire-intention (BDI) model. The frame-
work is realized as a rational agent layer that sits on top of a middleware 
agent infrastructure such as JADE [BBCP2005], and supports agent devel-
opment with well established technologies such as Java and XML. 
Thereby, Jadex avoids intentionally the introduction of a new program-
ming language and subdivides the agent description into structure and be-
havior specification. The structure of an agent is described in an XML file 
following a BDI metamodel defined in XML-schema whereas the behavior 
is implemented in plans that are ordinary Java files. This has the advantage 
that any state-of-the art IDE (offering XML and Java support) can be 
utilized for programming Jadex agents. Jadex introduces the basic 
concepts beliefs, plans, goals, events for agent programming, and 
capabilities for modularization purposes. Besides the focus on middleware 
support, the Jadex reasoning engine addresses traditional limitations of 
BDI systems by introducing new concepts such as explicit goals and goal 
deliberation mechanisms (see e.g. [BPML2004] making results from goal 
oriented analysis and design methods (e.g. KAOS or Tropos) more easily 
transferable to the implementation layer. Besides the framework, 
additional tools are included to facilitate administration and debugging of 
agent applications. Jadex has been used to realize applications in different 
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domains such as simulation, scheduling, and mobile computation. For ex-
ample, Jadex was used to realize a multiagent application for negotiation 
of treatment schedules in hospitals (see III.4). 

Jason

Jason [BoHV2005] is a platform for programming agents in Agent-
Speak(L) [Rao1996], a logic-based agent-oriented programming language 
that is adequate for the realization of reactive planning systems according 
to the BDI architecture. In AgentSpeak(L) an agent consists of beliefs rep-
resented as ground (first-order) atomic formulae, plans comprising basic 
actions, and subgoal calls as well as events that represent all kinds of rele-
vant occurrences such as new goals or beliefs. Jason is a relatively slim 
BDI system strictly adhering to the formal AgentSpeak(L) semantics. This 
enables Jason to be used for model checking and verification purposes. 
The platform, which is available as open source, offers means for distrib-
uting an MAS over network and comes with a simple IDE for editing and 
starting agent applications. It has been used so far for several small aca-
demic applications. 

SOAR 

In contrast to the aforementioned reasoning platforms SOAR is not based 
on BDI, but relies on UTC [Newe1990]. The SOAR architecture at its 
heart is a typical production system that matches and applies rules on a 
working memory. It is enhanced with a learning mechanism called chunk-
ing [LeLR1996] which infers more abstract rules from observing the rule 
application process. On top of this production system a goal-driven prob-
lem solver following the problem space hypothesis is placed. SOAR util-
izes an agent deliberation cycle consisting of the five phases: perceptual 
input, operator proposal, operator selection, operator application, and out-
put. In the perceptual input phase sensory data from the environment is 
updated and made available for the system. Next, in the proposal phase, 
production rules fire to interpret the new data until no new data can be de-
duced (quiescence), propose operators for the current situation and com-
pare the proposed operators. In the selection phase, the operator to apply is 
chosen on basis of the proposed set of operators. When no unique operator 
is preferred, a so called impasse occurs and a new subgoal is created, 
which has the task to resolve the conflict (a process called automatic sub-
goaling hypothesis). In the application phase the selected operator is exe-
cuted and, finally, in the output phase output commands are sent to the en-
vironment. The SOAR architecture for single agents is supplemented by a 
social architecture for agent teams (see below). The SOAR platform comes 
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with an extensive tool support, documentation, and example applications. 
VisualSoar is a simple form of an IDE specifically tailored to support 
writing SOAR agents and execute them in the runtime environment. In ad-
dition a SOAR debugger tool is provided for observing the internal data 
and behavior of an agent. SOAR has been used in many projects ranging 
from simple research to complex commercial application scenarios. As an 
example Soar Technology Inc.11 uses SOAR agents for building various 
(e.g., pilot) training applications. 

7.3.1.3 Social Platforms 

Social agent platforms provide support for expressing group behavior 
within multiagent systems. These systems build upon different group be-
havior theories and architectures, which will be discussed next. Funda-
mentally, teamwork involves the structural as well as behavioral dimen-
sion. Nevertheless, current research does not provide integrated theories 
covering both dimensions at a satisfactory degree within one coherent 
framework. Hence, in the following both aspects will be discussed sepa-
rately. 

One very simple, but nonetheless influential, structuring mechanism for 
agent teams is the Agent-Group-Role (AGR) model [Ferb2003]. Basically, 
an agent is seen as an active, communicating entity playing roles within 
groups. A group in turn is described as a set of agents sharing some com-
mon property. It is used as a context for a pattern of activities and subdi-
vides organizations. Agents are only allowed to communicate, if they be-
long to the same group. A role is the abstract representation of an agent’s 
functional position in a group. An agent must play a role in a group, but an 
agent may play arbitrary many roles. One of the basic principles of the 
AGR model is that at the organizational level no agent description and, 
therefore, no mental issues should be used. This makes AGR independent 
of any particular agent model (in L4) and allows simple agents as well as 
very complex agents, possibly employing the intentional stance, being part 
of the same organizational structure. There are some approaches to stan-
dardize the structural aspects of teamwork; most notably, the role concept 
and related terms specified as part of the AUML, which has many simi-
larities to the AGR model (see [OdPF2003] for details). 

The most influential framework for describing the behavioral aspects of 
teamwork is the joint intentions theory [CoLe1991]. It formulates the for-
mal principles for describing how agents can pursue a common goal rely-
ing on the basic concepts beliefs, goals, and their collective counterparts as 

11  http://www.soartech.com/ 
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foundations. The notion of a joint intention is regarded as a joint commit-
ment of some agents to perform a collective action while being in a certain 
shared mental state. The joint commitment to perform some action is 
thereby represented as a joint persistent goal shared by all involved agents. 
One important property of such a joint goal, in contrast to an individual 
goal, is that the participating agents agree to inform each other about a 
possibly changing goal state. This means that each individual agent accepts 
responsibility for the pursuit of the common goal and informs the other if 
it, e.g., finds out that the goal is unachievable allowing others to share that 
knowledge. Despite its neatness, the joint intentions theory does not ad-
dress some important aspects. It is not discussed how agents can establish 
a joint intention towards some action. Also, the defection of a single agent 
causes the entire group task to fail. For these reasons, the joint intentions 
theory was subject to several extensions which tried to expand and en-
hance the basic model. Examples for such extensions are Jennings’ joint 
responsibility theory [JeMa1992] and Tambe’s STEAM model [Tamb 
1997].

MadKit 

MadKit is a modular and scalable multiagent platform developed by Fer-
ber and colleagues [GuFe2001]. It is built upon the AGR (Agent/Group/ 
Role) organizational model, in which agents are members of groups and 
play certain roles. As the AGR model is independent from the underlying 
internal agent model, it allows a high heterogeneity of agent architectures 
and communication languages to be used. The MadKit platform is realized 
by following three design principles. Firstly, the system is based on a mi-
cro-kernel architecture that provides the basic services for agent resp. 
group management and message passing. Secondly, most services within 
MadKit are realized as agents making the system structure very flexible. 
Thirdly, MadKit provides a component oriented model for displaying 
agent GUIs within the platform. The tool support for the platform is quite 
extensive and comprises a graphical administration as well as several 
monitoring and debugging tools. The platform has been used for the reali-
zation of various applications such as TurtleKit, an agent simulation envi-
ronment, and SEdit, a tool for the design and animation of structured dia-
grams. 

STEAM 

STEAM [Tamb1997] is a general model of teamwork conceived to support 
performing coordinated tasks within some group of agents. It utilizes the 
formal joint intentions theory as basic building block, but borrows some 
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ideas from the SharedPlans theory as well [GrKr1996]. Moreover, STEAM 
proposes several improvements regarding practical issues for making the 
model efficiently implementable. STEAM introduces team operators (team 
activities) and team beliefs as new concepts. Whenever a team activity 
needs to be executed, the agents belonging to the relevant team must first 
establish a joint intention for this team activity. To achieve a joint inten-
tion, an “establish commitments” protocol is carried out. After the joint 
intention has been established, a team operator can only be terminated by 
modifying the team state (mutual beliefs within this team). Conditions de-
scribing success and failure states can be specified for team operators indi-
vidually. STEAM automatically takes responsibility for updating the team 
state whenever an important change occurs within a local view of a team 
belief. In this case the corresponding agent broadcasts this change to all 
other team members that update their view accordingly. In case of a failure 
during the team activity STEAM provides also means for replanning the 
task. For this purpose, the contributions of the team members for a team 
operator are specified in terms of roles. A role is considered here as the set 
of activities an individual or subteam undertakes in service of the team’s 
overall task. STEAM allows specific role relationships being specified 
(and, or, depends on) that are employed to determine the state of a team 
operator and, possibly, to engage into repair operations, e.g., substitute 
some critical subteam. STEAM has been implemented for the SOAR agent 
platform as a set of rules. This implementation has been used for diverse 
application domains, including RoboCup soccer and simulation environ-
ments for training. 

JACK SimpleTeams 

The JACK SimpleTeams approach [HoRB1999] aims at providing coordi-
nated activities for groups of agents. It is based on the idea that a team is 
itself an autonomous entity that can exist without its team members and 
can reason about its behavior. The approach is an extension conceived 
specifically for BDI agents and adds new team constructs for roles, team 
plans and team beliefs to the standard BDI concepts. A team is represented 
as an extended BDI agent that is capable to cope also with these new con-
cepts. The structure of a team is described with roles. More precisely, it is 
characterized by the roles it performs and the roles it requires others to per-
form. Thereby, roles are used as abstract placeholders for arbitrary team 
instances playing that role at runtime. For this reason roles can be seen as a 
kind of interface for teams. Concretely, a role defines the relationship be-
tween teams and subteams in terms of the goal and belief exchanges im-
plied by the relationship. The tasks of a team can be specified via team 
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plans that extend the plan concept of BDI agents and enable coordinated 
task achievement. A team plan can be used to accomplish some task col-
laboratively by a (sub-)set of agents belonging to the team. Therefore, a 
team plan offers possibilities to influence the actual selection of agents 
working on the task and new means for the distribution of subtasks to the 
participating members. The distribution of subtasks is done by subgoal 
delegation to team members. This allows the team members to decide in 
their own responsibility how to accomplish the goal retaining the full 
flexibility of multiagent systems. To enable easy information exchange 
between the team members and the team itself, the concept of team beliefs 
is introduced. Team beliefs can either distribute data from the team to the 
subteams or aggregate data from the members back to the team. At run-
time, a team runs through different phases. In the initial phase, the team 
formation is performed. This means that role fillers for all roles within the 
team are searched. When this formation ends, the team enters the opera-
tional phase, in which the actual task processing is done. JACK Sim-
pleTeams is a general purpose teamwork architecture. Nevertheless, it was 
used primarily for military application scenarios so far. 

7.3.2 Platform Summary 

Table 1. Platform summary 

 Concepts Standards Tools Applications Availability

JADE M FIPA, WS A, D Production Open source 

FIPA-OS M FIPA A Beta Open source 

ADK M FIPA, WS,
JMS, …

I, A Production Commercial 

DIET M - D Beta Open source 

Jadex M, R FIPA, WS, 
JMS 

A, D Production Open source 

Jason R - I, D Beta Open source 

JACK 
+Simple-
Teams 

R
R, S 

- I, D Production Commercial 

SOAR 
+STEAM 

R
R, S 

- I, D Production Open source/ 
Commercial 

MadKit S - A, D Production Open source 
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Table 1 shows a summary overview of the presented agent platforms. A 
first thing to note is that some of the platforms, although historically per-
taining to only one of the possible agent metaphors (M=middleware, 
R=reasoning, S=social) now start to address other areas as well, making 
them more generic and suitable for a wide range of application domains. 
JACK and SOAR, which started as pure reasoning platforms, have been 
extended to support social concepts as well, and the Jadex platform pre-
sents an approach to integrate high-level reasoning with existing middle-
ware technology. 

Traditionally, only the middleware platforms are directly based on some 
existing or new standards. Some of them initially focused only on a single 
set of specifications (e.g. JADE, FIPA-OS ), other such as ADK tried to 
provide support for a wide range of existing standards including FIPA, 
Web Services (WS), and others. Middleware support is a serious issue, as 
most newly developed applications have to be integrated with one or more 
existing systems. Although, nowadays for most standards reusable third 
party libraries are available, when standards are not supported by the plat-
form directly, the agent programmer has the tedious task of making the ap-
plication to interoperate with other standards-compliant software. 

In the recent years tool support has become more and more an issue for 
developers of agent platforms, but there is still some way to go until agent 
technology is supported by development tools of the quality known from 
object oriented tools. None of the presented platforms provides all kinds of 
tools desirable for efficient application development (I=integrated devel-
opment environments, A=administrative tools, D=debugging tools). For 
platforms supporting agents written in pure Java (here the middleware 
platforms and MadKit) existing Java-IDEs can still be used, with the ad-
vantage of a development environment already familiar to the program-
mer. In contrast, newly developed IDEs (e.g. for the reasoning platforms) 
offer the advantage of directly supporting agent-oriented concepts. 

Compared to the wide distribution of object oriented application frame-
works (e.g. web containers or application servers) real case studies of ap-
plications developed with agent platforms are still scarce or at least hard to 
find. Nevertheless, they do exist for most of the presented platforms, 
proving that successful agent applications can be built. Given that there is 
some 10-20 years gap between the first works on object oriented pro-
gramming and the advent of the agent paradigm, it is reasonable to say that 
agent technology still has the potential to become as predominant as object 
oriented technology is at the moment. 

Finally, the availability column shows if platforms are distributed as 
commercial products or open source implementations. Open source plat-
forms are not only free in the sense that one does not have to pay for them, 
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but also that there is the freedom to modify the platform itself, if needed. 
On the other hand, commercial products offer guaranteed support and 
should be mature and well tested. Some systems like SOAR are even 
available in both flavors. Therefore, different options are available for any 
kind of problem domain, and application developers can usually choose 
among a set of commercial products and open source implementations. 

Although only a small cutout of available agent platforms has been pre-
sented, it should now be evident that there exists a large diversity in the 
different platforms. For example, no platform supports all three agent 
metaphors (middleware, reasoning, social). Many platforms claim a gen-
eral applicability, but every platform is based on its own interpretation of 
the agent paradigm. Therefore, even though it might be somewhat usable 
in many domains, a platform would perform best in a domain where it of-
fers a fitting agent metaphor, readily available tools, and directly supported 
standards. Therefore, an agent developer has to choose carefully among 
the available options. In the following, the authors will try to give some 
guidelines how this choice can be simplified. 

7.4 Guidelines for Choosing among Platforms and 
Methodologies

One big problem of agent technology nowadays is its strong heterogeneity. 
This applies to the agent architectures (internal and social), to the method-
ologies, and to the agent programming languages [PoBL2005b]. To further 
illustrate this issue one can look closer at the internal agent architecture 
BDI. Even though a consensus exits with respect to the basic concepts, the 
concrete interpretations and thus architectures and platforms differ consid-
erably. In the field of agent-oriented software engineering also a great vari-
ety of agent methodologies emerged. Some of them claim to be agent ar-
chitecture independent such as GAIA [WoJK2000] whereas others are 
specifically tailored for some agent philosophy such as Prometheus [PaWi 
2004]. Although it might be tempting to use a generally applicable meth-
odology, it should be clear that such a methodology cannot support agent 
development with the same concepts as the platform does. 

Carrying these considerations to the extreme, it is even contended how 
agent programming should be done. Some approaches favor new and spe-
cialized agent languages (e.g. JACK ), whereas others employ existing 
programming languages such as Java (e.g. Jadex). 

Hence, it becomes clear that the choice of the right combination of an 
agent methodology and a suitable platform is crucial for exploiting the 
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potential of the agent paradigm for a given problem domain. This choice 
should start with an analysis of the problem domain gathering initial re-
quirements and bringing light to the essential properties of the planned ap-
plication. From these initial settings, it should be discussed which agent 
philosophy deems most promising and allows the description of preferably 
many domain structures and behaviors. Having agreed on a common agent 
philosophy facilitates the selection of an agent platform and a suitable 
methodology considerably as it reduces the number of available candi-
dates. 

Figure 5. Selection framework 

Given that a preselection of platforms and methodologies on basis of the 
favored agent philosophy has been carried out, the further selection pro-
cess should not be done in isolation for either of both. Instead, it has to be 
found a constellation of methodology and platform that fits to each other. 

For this process a general framework has been proposed in [SBPL2004]. 
It is based on a catalog of criteria that should be measured for both, the 
platform and the methodology candidates (cf. Figure 5). The set of criteria 
is divided into platform dependent and independent criteria, whereby, the 
independent criteria can be examined in a feature analysis. Categories for 
independent criteria include the notation (usability, expressiveness, etc.), 
the process (coverage of workflows, complexity, etc.), and pragmatic as-
pects (tool support, documentation, etc.). Independent criteria have been 
subject of several methodology comparisons that aimed to rank them with 
respect to the aforementioned factors [ShSt2001]. 



  Tools and Standards 525 

For platform dependent criteria (e.g. regarding the supported agent con-
cepts), it needs to be determined if and how the methodology as well the 
platform supports a property. The match between them is analyzed to show 
their appropriateness. This means that a match with respect to a property 
exists when either platform and methodology support a considered prop-
erty in the same (or a very similar) way or when both do not support the 
property. The shared absence of a property is regarded as a match, because 
the absence of a concept in both platform and methodology also identifies 
appropriateness. 

To arrive at a final decision, the platform dependent criteria should be 
weighted according to the demands of the application domain as some 
agent concepts (e.g. mobility) might be irrelevant for a given domain. For 
each pair of methodology and platform the overall match quality can be 
estimated. The platform and methodology pair with the weighted best 
match should be chosen. This selection process can be simplified, if the 
preselection phase is rather rigid or if for some external reasons (e.g. com-
pany relationships) a certain platform or methodology has to be used. 

7.5 Conclusions 

This chapter has presented an overview of agent standards and platforms. 
The agent platforms have been categorized by their main architectural fo-
cus leading to three different classes: middleware, reasoning and social 
platforms. Middleware platforms address primarily layers L1-L3 of the 
reference architecture focusing on support for interoperability with other 
FIPA compliant platforms. Secondly, reasoning platforms mainly deal 
with the agent internal decision process that leads to concrete agent be-
havior. Thirdly, social platforms highlight organizational structures as well 
as coordinated (team) behavior. Based on the criteria Concepts, Standards,
Tools, and Applications typical representatives of the respective categories 
have been evaluated. 

Given that a vast amount of different platforms belonging to one or an-
other category exists, this chapter also sketches a systematical approach for 
choosing a platform for a specific development project. Roughly speaking, 
the approach consists of two phases; a domain dependent preselection 
phase and a subsequent stage for platform/methodology evaluation. In the 
first stage, a domain analysis is used to set-up a fitting agent metaphor em-
phasizing the important aspects of the domain. Thereafter, in the second 
stage, the remaining platforms are evaluated together with possibly fitting 
methodologies. The basic assumption in this connection is that an agent 
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platform and a concomitant methodology are strongly interrelated and 
should be chosen together for guaranteeing effective application develop-
ment. As a result, one obtains estimated quality measurements for plat-
form-methodology pairs. The pair exhibiting the best match and the best 
criteria coverage should be chosen. 
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Abstract. Verification and validation of software systems are essential aspects in 
the software development life-cycle. However, verifying AI software is difficult as 
it suffers from non-determinism. In multiagent systems, this problem is increased 
by the known problems of verifying concurrent, distributed or object-oriented 
systems. On the basis of challenges for verification of multiagent systems, ap-
proaches for testing, runtime monitoring, static analysis, model checking, and 
theorem proving are discussed. 

8.1 Introduction 

Agent technology is often referred to as next generation’s paradigm for 
analyzing, designing, and implementing large scale, adaptive, and intelli-
gent software. Within this book, we are proposing that flexibility is the key 
benefit of agent technology. The natural distribution of agents as well as 
their complex interactions (e.g. communication protocols) are used as 
standard arguments to “prove” the benefit of agent technology. In contrast 
to these expectations, agent technology has not yet become a standard ap-
proach for building large scale, flexible, or intelligent software. Nowadays, 
major bottlenecks for the application of agent technology are arising from 
evaluating, validating, or even proving a multiagent system’s behavior, 
mainly because of their nondeterministic characteristics [HuDe2004]. 
Furthermore, there is no standard for verification and assessing of agent 
technologies available for ensuring adequate quality of a system. To over-
come the gap of a missing quality model for multiagent system a glance 
towards mainstream software quality looks promising. Thus a sound basis 
for further considerations about verification methods is set as agent-ori-
ented software engineering can build upon the common state of the art of 
existing engineering paradigms. 
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The objective for quality management in software engineering is to 
reach predefined quality properties. Quality is characterized as the sum of 
all properties of a (software) product or an activity, which are related to the 
fulfillment of predefined requirements. Quality properties are those prop-
erties that enable the differentiation of entities either in qualitative or 
quantitative perspective. Software product quality can be defined as fol-
lows [Ried1997]: 

• Functionality is a set of properties with respect to the existence of a set 
of functions that implement the specified requirements: 
• Adequacy indicates the existence or applicability of the software for 

the specified tasks, 
• Correctness is used for deciding if the results or effects of a software 

are correct, 
• Interoperability considers the applicability to interact with predefined 

systems, 
• Normative adequacy is used for estimation of satisfaction of applica-

tion specific norms or commitments or juridical rules of the software, 
• Security deals with aspects of unauthorized access to the program or 

data.
• Dependability is the capability of the software to keep a performance 

portfolio in predefined conditions over a specified time period and is de-
fined by the properties of: 
• Maturity is used for determining the frequency of failures or fault 

states, 
• Fault tolerance describes the appropriateness with respect to a prede-

fined performance level of a system in situations where either un-
specified access to interfaces or software failures occur, 

• Recovery is the possibility of a system to be recovered on a prior 
performance level including retrieval of data in adequate time. 

• Usability is the property which is related to the effort required for using 
the software as well as an individual assessment of using the software 
by a predefined group of users. 

• Efficiency is a set of properties which indicates the ratio between the 
performance level of software and the amount of used resources in pre-
defined conditions. 

• Adaptability is related to the necessary effort for performing given 
modifications (corrections, improvements, or adaptations) 

Riedemann distinguishes two different types of activities within quality 
management: constructive and analytic activities [Ried1997]. The con-
structive quality management covers methods, languages, and tools, which 
ensure distinct properties of the emergent product, i.e., the constructive 
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approach is pursued within analysis, design, and implementation. In ana-
lytic quality management activities are performed in order to diagnose the 
fulfillment level of the quality properties. They are subdivided into verifi-
cation, validation and evaluation. Even so [HoMe1993] emphasize that 
misconceptions arise if terms are used in a different way like formal verifi-
cation in artificial intelligence. Thus in the remainder we apply the term 
evaluation to express the determination of how far one or several agreed, 
prescribed, or expected features of an object are fulfilled in accordance 
with [HaMS1987]. By this evaluation is one specific type of analytic qual-
ity management activities. 

In contrast to Riedemann, Menzies and Pecheur differentiate evaluation 
activities with respect to the required amount of expertise. They identify 
five approaches differing in strength of proof: testing, run-time monitoring, 
static analysis, model checking, and theorem proving (cf. Figure 1 follow-
ing [MePe2004, p. 6]). 

E
xp

e
rti

se

Strength

Theorem
Proving

Model
Checking

Static
Analysis

Run-Time
MonitoringTesting

Figure 1. Classes of evaluation in AI 

This spectrum of evaluation activities is headed by the most formal ap-
proach, theorem proving, which ensures correct system behavior resulting 
in a formal proof of correctness. Model checking verifies software ac-
cording to its formal specification on the basis of model satisfaction. In 
contrast to static analysis, run-time monitoring analyses systems by their 
run-time behavior with specified input parameters resp. pre-defined condi-
tions. Testing uses special programs that simulate input sequences and 
analyses the results with respect to the requirements. 

In this chapter, we introduce evaluation from software as well as knowl-
edge engineering perspective. Based on the insights gained in these fields, 
agent oriented software engineering methodologies are discussed with re-
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spect to quality assurance. One of the key challenges in the development of 
agent and multiagent systems lies in ensuring desired flexible behavior. 
However, flexible behavior is difficult to be proved or evaluated. After 
identifying the challenges for agent and multiagent evaluation, different 
approaches are introduced following the five evaluation classes: testing, 
runtime monitoring, static analysis, model checking, and theorem proving. 
The main difference to the previously mentioned approaches of evaluation 
lies in the necessity to specify explicit models for evaluation. Conse-
quently, these approaches are in need of strong expert knowledge. 

8.2 Software and Knowledge Engineering 

In software engineering, specification and evaluation are crucial for devel-
opment, maintenance, and extension of non-trivial software systems. The 
importance of a formal specification, e.g., algebraic specification, grows as 
the complexity of the software system increases. However, two types of 
problems may occur here: On the one hand, the specifications may be in-
consistent, incomplete, or fuzzy. On the other hand, the implementation 
may suffer from misinterpretation of the specification as well as from er-
rors. From an AI perspective, multiagent systems are considered as knowl-
edge-based systems and therefore they are more complex and flexible than 
conventional software. Especially non-deterministic or heuristics algo-
rithms may even prevent evaluation of the system or proof of correctness. 
However, knowledge-based systems are still software systems and ap-
proaches to evaluation from conventional software engineering still apply 
to them. Yet, “the cost of complexity is that complex systems are harder to 
understand and hence harder to test.” [MePe2004, p. 4]. 

Testing in software engineering is crucial for ensuring quality of sys-
tems [Thal2002]. The main purpose is to identify errors within the algo-
rithms, modules, or software. However, there is no possibility to recognize 
correctness [Dijk1969]. Testing can be classified with respect to the con-
sideration of system’s details as white-box, black-box, and grey-box test-
ing. The traditional approaches to software engineering (e.g., the waterfall 
model) consider testing after implementation [Royc1970]. In white-box 
testing, the implementation is analyzed with insight of the source code. 
Modern software engineering approaches (e.g., RUP [Kruc2001] or ex-
treme programming [BeAn2004]) address testing continuously within the 
implementation process. Furthermore, developers formulate test cases be-
fore or during implementation, and these test cases may be executed auto-
matically on demand. This procedure is also known as “Test-driven De-
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velopment” [Beck2002]. In test-driven development, part of the system’s 
specification emerges from the collection of formally specified test cases. 
Unit tests are a realization of white-box tests, where test cases are designed 
with knowledge of the underlying algorithm [RaSt2005]. These test-cases 
are typically specified in the programming language used for coding. In 
black-box approaches, testing analyses the system’s behavior on the basis 
of the input/output behavior only. For these tests, the actual implementa-
tion is disregarded, and only the interface specification is taken into ac-
count. Black-box testing is usually performed by testers who are not the 
programmers of the software. The black-box approach is a very general 
approach and can be applied successfully in any of the three model 
evaluation steps. The third class of testing, grey-box testing, weakens the 
assumption that the tester may not have any code insight in such a way that 
basic concepts of the implementation may be familiar to the tester. This 
approach is often used in context of agile programming, and may find ap-
plication within the evaluation of the design and the implementation 
model. 

Run-time monitoring is a procedure to analyze the behavior of a system 
in run-time. This approach is similar to logfile-profiling and involves more 
complex analysis methods, e.g., rule-based verification [BGHS2004]. 
However, commercial tools are available to support this process by knowl-
edge-based systems. For example, Temporal Rover executes inserted code 
fragments based on complex conditions expressed in temporal logics 
[Drus2000]. In recent research, there are new approaches to identify prob-
lems of concurrency [HaRo2001]. An essential feature is the possibility to 
store the system’s state when errors occur. The benefits of run-time moni-
toring lie in the efficient usage of system resources, restoring of system 
states, and scalability. Nevertheless, there is a tendency to analyze standard 
procedures only, such that exceptional paths stay unconsidered. The lim-
ited number of executions yields only uncertain results or even false nega-
tives [MePe2004]. 

The static analysis concentrates on the structures within the source code 
without execution of the system. Usually, static analysis is part of the 
compilation of a system, i.e. compilers are evaluating the syntactical con-
sistency of a system. Objects of the analysis are control flow and data 
flow. The methods are abstract interpretation, program slicing, and auto-
mated analysis of program patterns [NiNH1999]. One of the benefits of the 
approach is the possibility to find segments of code, which a) are guaran-
teed to be free from errors, b) are sure to cause errors, c) may cause errors, 
or d) are unreachable. Moreover, the static analysis can be automated 
completely, such that even the analysis of huge software systems becomes 
feasible. However, in these cases understanding, interpretation, and fixing 
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the reported errors, may be troublesome. Additionally, the number of false 
positives increases with the complexity of the systems, e.g. Brat et al. re-
ported this effect in analyzing the Martian rover software [Bra+2003]. 
Summarizing, static analysis may be used in early stages of software engi-
neering to notify developers about errors or error potentials and to prevent 
time-consuming errors at run-time [MePe2004]. In consequence, static 
analysis is part of most recent integrated development environments. 

Clarke and Emerson introduced model checking in the early 80ies for 
conventional programming paradigms [ClEm1981]. The basic idea of 
model checking is to verify a property of a system by exploring all of the 
systems reachable states. In the first applications, model checking was 
successfully used to analyze communication protocols in concurrent sys-
tems since these protocols have finite states [QuSi1981]. However, it de-
volved as a gold standard for verification of digital hardware. The starting 
point in model checking is the specification of two models: system model 
and property model [MePe2004]. In the system model, relevant features of 
the system are captured as a formal abstraction of the implementation with 
respect to the properties to be checked while the property model is a for-
mal specification of the requirements the system is supposed to meet. This 
abstraction is performed by implementing state machines for representing 
system models. For the representation of system dynamics in the property 
modal temporal logics, e.g., CTL or LTL, are used [ClGP2000]. Model 
checking is used for deciding whether or not a system model is valid with 
respect to the requirements specified in the property model or to identify 
one counter example. There are two main approaches to model checking: 
forward state traversal, and backward state traversal. In forward state tra-
versal the evolution of states is computed in a straight forward manner: 
from a starting state any states which can be computed by a post function 
are computed until an inconsistency is identified or any possible states 
have been explored. There is also a differentiation in forward state tra-
versal model checking with respect to the computation of future states. In 
enumerative model checking any states are actually computed, while in 
symbolic model checking states are classified with respect to an equiva-
lence relation. In opposite to forward state traversal, symbolic model 
checking using backward state traversal computes the predecessor states. 
Hanzinger et al. state that forward state traversal is advantageous over 
backward state traversal, since successor states are often easier to compute 
than predecessor states and optimizations to the algorithm, e.g., on-the-fly 
[GPVW1995] and partial-order [Pele1994] methods, can be incorporated 
more easily [HeKQ1998]. 

Theorem proving is used for formal verification of software systems. 
Here, a mathematical model of a computer program is generated to deter-
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mine whether it satisfies desired properties. Rushby identifies the 
achievement of adequate automation as a core challenge to the use of theo-
rem proving to verify parallel systems [Rush2000]. Furthermore, he con-
cludes on the role of human experts in this process: “Formal deduction by 
human-guided theorem proving (i.e., interactive proof checking) can, in 
principle, verify any correct design, but doing so may require unreason-
able amounts of effort, time, or skill” [Rush2000]. The main difference to 
other approaches is that theorem proving uses symbolic representations of 
values. In consequence, each operation, procedure, or function within the 
implementation is computed on a symbolic base. Thus, either the invoca-
tion is substituted by a symbolic deduction, or only current symbolic val-
ues or parameters are assigned. These are used in the invocation in the 
course of the calculation as the symbol of the operation, procedure, or 
function. For solving this problem, a theorem prover is required, which is 
able to compute any deductions and is proved to be correct. Nevertheless, 
it is impossible to provide an automatic and complete theorem prover with 
sufficient expressive power for a programming language [Ried1997]. In 
recent research, model checking and theorem proving are combined to 
overcome the shortcoming of these approaches. In proof systems for ex-
ample, model checkers are used as decision procedures within larger 
proofs [OwRS1997], while in model checkers proof-based solvers find ap-
plication in order to prune inaccessible paths in the symbolic state space 
[PaVi2004] [Mou+2004]. 

Quality assurance of large scale software systems developed in distrib-
uted teams of programmers is a challenging task. During development, 
usually three main models are generated: requirements model, design 
model, and implementation model. Following Thaller, these models have 
to be evaluated in order to ensure high quality software [Thal2002]. In 
most cases, the evaluation process is performed with specific methodolo-
gies for each of the models. In Figure 2, the process of the minimal evalua-
tion within software engineering is illustrated. 

The evaluation of the models is performed in opposite direction of their 
construction. In the first step, the implementation is evaluated for example 
by unit tests during the coding. If the implementation model appears to be 
correct, modules are integrated and their composite behavior is evaluated. 
After completion, the software is supposed to satisfy the specification of 
the design model. However, there may be inconsistencies between the de-
sign model and the requirements model. These are identified in the accep-
tance tests, which are the final stage of evaluation. 
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Figure 2. Minimal evaluation in software engineering 

8.3 Challenges for Evaluation in Agent Oriented 
Software Engineering 

In software engineering it is crucial to specify requirements formally. This 
enables the developer or customer to validate or even verify if the software 
system meets the requirements. In safety or security relevant applications, 
modern approaches in software engineering propose formal verifications 
for proving correctness of the system in any possible situation. If formal 
verification is not necessary or not possible (complexity issues), other 
evaluation methods are used for assuring software quality, i.e. a software 
system is tested whether or not it fulfils formal requirements in an explic-
itly specified range. 

As mentioned in IV.5, formal approaches are widely used for agent de-
sign. Formal languages are mainly applied as internal or external specifi-
cation languages. However, the corresponding correctness proofs are at 
most not terminating or decidable, like multi-modal logics or first-order 
logic. Although formalization is a key methodology in agent research, 
formal verification is limited to very specific aspects. In current applica-
tions, description logics are widely used for representing communication 
content such that formal prove of interaction behavior should be feasible. 

Evaluation of intelligent agents is far more complex. In contrast to con-
ventional software systems, intelligent agents are acting autonomously (cf. 
I.1), such that requirements have to be specified primarily as goals or con-
text for agent behavior. Furthermore, intelligent agents should act with re-
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spect to the current situation in the environment as well as their internal 
state. The definition and specification of formal requirements as a basis of 
evaluation has to include complete state models of the environment and the 
agent. The main challenge for intelligent agent testing arises from the indi-
vidual agent’s flexibility.

However, common agent-oriented methodologies also contain a soft-
ware engineering process, which in some cases like MaSE [DeWS2001] or 
Prometheus [PaWi2004] is closely related to object orientation. Similar to 
AOSE, early object oriented methodologies are not dealing with evaluation 
explicitly [Booc1994] or even claim for a natural reduction of evaluation 
efforts [Rum+1991]. However, later studies showed that the actual error 
rate in object oriented code is even higher than in conventional software 
[Hatt1998]. The increased modularization is accompanied by increased 
interdependencies between modules, which are mainly implicit. Methods 
or classes referring each other may cause procedural coupling or deadlocks 
[HaWi1994]. The use of objects or classes is not necessarily known at de-
sign or implementation time. Therefore, methods have to cope with uni-
versal inputs that cannot be predicted and tested sufficiently [SmRo1990]. 
The properties of an object are determining its state. Conventional testing 
requires testing in any possible state which is not feasible for complex ob-
jects [TuRo1993]. Further problems arise from the concept of information 
hiding or inheritance (esp. polymorphic inheritance). Summarizing, the 
coverage of testing of object-oriented code is considerable low in compari-
son to standard software [SnWi2002]. AOSE testing suffers from similar 
problems as testing of object oriented software, which can obviously be 
derived by analyzing the analogous complexity in terms of interaction or 
distribution of both paradigms. 

Another dimension of complexity evolves from the key feature of multi-
agent systems, system flexibility, realized by emergent effects, emergent 
properties or emergent organization (cf. I.2, [TTHW2001]). The aspect of 
emergence is often considered as non-deterministic behavior and increases 
the testing problem, as for a given input vector the output is unknown, e.g. 
non-deterministic. Non-determinism arises from runtime behavior leading 
to flexible solutions (emergent effect), constellation of agents and agent 
types which determines the properties of the system (emergent property), 
or interaction within the system which determines the dynamic relationship 
between agents (emergent organization). The aspects of emergence are not 
specified explicitly in advance, such that a major challenge for testing 
multiagent systems may be identified as testing a system with partially im-
plicit specification. The evaluation of a system that contains properties that 
are not modeled is difficult and may result in an incomplete analysis. 
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Agents are assumed to be situated in an environment, reflect their inter-
nal states with respect to the sensed environment, and act in the environ-
ment. Furthermore, in multiagent systems there are multiple agents inter-
acting with each other and the environment. Obviously, this causes concur-
rency problems. Evaluation of concurrent software is an enormous chal-
lenge in conventional software engineering [Ried1997]. However, even if 
concurrency is handled, non-deterministic environments may cause addi-
tional problems. These problems may increase if mobile agents are in 
question. The challenge for evaluation here is to cope with these difficul-
ties by introducing a new dimension to the evaluation procedure. In con-
current system evaluation, Riedemann proposes explicit control on sched-
ule, time, and invocation of methods [Ried1997]. 

In the following sections, we will discuss a brief overview on evaluation 
in current AOSE and possible approaches to meet these challenges, even if 
there is no gold standard for the problems. 

8.4 Evaluation in Agent Oriented Software 
Engineering

The context of intelligent agents and multiagent system as discussed in the 
last section is challenging for evaluation. While there are many open 
problems identified in the agent community, there is still a comparably 
small amount of approaches dealing with validation and verification in 
AOSE. Current AOSE methodologies do not integrate evaluation in an 
adequate way. The state of the art surveys from Weiß & Jakob however 
emphasize the necessity of verification in real-world applications [WeJa 
2005]. In concordance to this, Gómez-Sanz et al. reported that current 
research is focused on formal verification [GóGW2004]. The state of the 
art for validation and verification of multiagent systems is discussed in 
[GóGW2004] in detail. Summarizing, there are multiple approaches to 
formal verification, which are not integrated in AOSE methodologies. 
However, the Tropos methodology [MyKC2001] is integrating validation 
for multiagent systems. 

Formal approaches to evaluation suffer from complexity with respect to 
expertise and computation possibly causing overextended efforts. However 
we are proposing to apply to AOSE any of the classes of evaluation (cf. 
IV.8.1): testing, run-time monitoring, static analysis, model checking, and 
theorem proving, depending on the field of application of the evaluation 
method. In the following, we are discussing possible approaches to each of 
these classes. 
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8.4.1 Testing 

In current AOSE, there are no agent-specific approaches for testing. How-
ever, in software engineering there are multiple testing methods available 
which may be applied to the agent engineering process. One of the most 
prominent testing approaches in SE is the unit test, which finds application 
during the implementation of functions, methods, interfaces, or classes. 
The key benefit of the unit test approach is that tests may be applied re-
peatedly and automatically, i.e. every specified test is automatically per-
formed after changes in the implementation of the unit, even if the changes 
are not directly connected to the test object. As discussed above, unit tests 
for object oriented implementation are broadly supported by tools and de-
velopment environments. In consequence the unit test approach should be 
applied to the design and implementation of agents, since their structural 
implementation is carried out usually in an object oriented way. 

However, specific aspects of knowledge representation and inference as 
well as interaction resp. communication in multiagent systems remain un-
considered. There are multiple ways to implement the knowledge base of 
an agent. In the case of implicit knowledge representation conventional 
unit test approaches find application as the knowledge is part of the code 
and architecture. In more sophisticated approaches, explicit knowledge ap-
proaches are used based mainly on logics, e.g., description logics (ontolo-
gies), or Prolog. These representation approaches should be verified using 
formal approaches like model checking or theorem proving. These formal 
approaches can be combined with conventional unit testing, for example to 
execute a description logic reasoner within object-oriented code. 

Testing of interaction is a challenge for AOSE as interaction in multi-
agent systems is assumed to emerge at run-time. Nevertheless, especially 
in the design of open multiagent systems, boundaries for the agent behav-
ior are defined for mandatory interactions. These boundaries are usually 
specified by valid sequences of messages, i.e. interaction protocols. Addi-
tionally, propositions on the content of the messages further specify the 
boundaries. Thus, testing of each agent should include the check of their 
compliance with these boundaries. In order to test the interaction behavior, 
it is necessary to establish a controlled test environment for the agent un-
der test. In specialization of unit tests, an agent is considered as a unit. 
However, the test cases are more complex since they need to include the 
specifics of the agent environment and consider the variance of the ex-
pected results resp. sequence of the interaction. In consequence, testing re-
quires the definition of allowed message sequences; here, we propose to 
use grammar as syntactical specification of valid sequences. Messages in 
an interaction are considered as words of a language and sequences as sen-
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tences. This allows for application of syntactic checkers like parsers for 
structural consistency. As mentioned before, in agent interaction the con-
tent of a message is also relevant to the behavior of an agent. Different 
solutions for this problem may be applied. On the one hand, simple ap-
proaches are matching content on equivalence, e.g., string comparison. On 
the other hand, a good compromise between computational complexity and 
problem adequacy is to use a matching algorithm based on the formal con-
tent representation, e.g., subsumption for description logics. 

Test Cases
Test Framework 

Agent under Test

Validator

Generator

Grammar

Sequence

Assignment Tester

Environment

Figure 3. Interaction test framework 

An interaction test framework that incorporates these aspects is shown 
in Figure 3. The controlled environment consists mainly of the tester that 
utilizes a test case generator for the generation and selection of appropriate 
test cases. This is done on the basis of a concrete assignment of a message 
which is evaluated by the validator component using the specified gram-
mar and allowed sequences. This framework enables the test of agent in-
teraction behavior in a controlled way without postponement of the test to 
the run-time of a multiagent system. The basic approach outlined here is 
detailed out in [Horm2006]. However, tool-supported approaches are re-
quired in order to establish the interaction tests in the AOSE process. 

8.4.2 Runtime Monitoring 

Analogous to testing, in runtime monitoring the basic idea is to establish a 
controlled environment and a control structure for running tests under spe-
cific configurable conditions. In contrast to testing, not specific units are 
considered, but the system behavior at run-time. In AOSE the challenge 
arises from analyzing a distributed and partially non-deterministic system. 
There are two main testing objectives for runtime monitoring: an agent or 
a multiagent system. For runtime analysis in AOSE we propose to consider 
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grey- and black-box approaches only, since either in heterogeneous sys-
tems, internal structures or details of coding are hidden or the non-deter-
ministic behavior of agent inferences is not suited for simple white-box ap-
proaches. In the following we will discuss two pragmatic approaches to 
runtime monitoring in AOSE: simulation covering both agent and multi-
agent runtime monitoring, and certification management only for agent 
runtime monitoring. Even if there is no domain-independent tool support 
available for these approaches, the methodologies can be transferred to 
concrete engineering projects. 

In simulation-based runtime monitoring, a controlled environment as 
well as a control structure are established. Additionally, a specific agent is 
introduced in the MAS, which is collecting and documenting information 
about the dynamic system behavior. To cope with the challenge of great 
variations and unforeseeable states of environment and MAS, a stochastic 
simulator is introduced that triggers the control unit and establishes vary-
ing conditions in a high number of sequential runs. By this, the test proce-
dure becomes a stochastic process and statistical analysis of the system be-
havior is possible, which is considered as a grey-box test. 

In this setting it is possible to evaluate the dynamic and adaptive be-
havior of the agents and the system. The duration of each simulated run of 
the system depends on the dynamic characteristics. For example, if the 
system is supposed to reach a balanced state with respect to the relevant 
parameters for the test within short time the duration of the simulated run 
should be short. Relevant parameters for the test procedure may be derived 
from the set of goals the agents are pursuing respectively the requirements 
for the MAS behavior. 

Statistical analysis is focused on both aspects, the dynamical behavior 
looking at the parameter development over time (time series analysis) and 
the summarizing results (reached state at the end of the run or mean val-
ues). Special statistical methods fit to these tasks, for example t-test, 
Kruskal-Wallis-test, ANOVA (analysis of variance). 

Timm developed a structured testing environment for runtime analysis 
of MAS and applied it to different application scenarios and domains 
[Timm2004a]. Especially interactive behavior of adaptive coordination in 
electronic market places was tested in the transport logistic domain. In this 
setting the agents (discourse agents see II.2; IV.5) had to adapt their 
communication behavior to varying heterogeneous marketplaces. II.2, Fig-
ure 8 shows the effect of the induced learning process measured on the 
evolving profit scale within 10 simulation runs. It is obvious, that the 
learning process was successful thus meeting the predefined requirement 
for the system [Timm2004b]. 
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The benefit of a simulation approach for runtime monitoring is, that it is 
easy to extend the system for benchmarking purposes (cf. II.2, Figure 9. In 
consequence the monitoring, analysis, and interpretation of multiagent 
system behavior are enabled, i.e., an accumulation of individual agent’s 
behavior is the basis for interpretation of the key performance indicators 
resp. quality properties. Algorithms in highly dynamic systems like multi-
agent systems may be compared and evaluated with respect to required 
goals as done in [Timm2004a], where more than 2.000 simulation runs 
consisting of over 1.44 mio. conversations in one scenario and more than 
192.000 deliberation cycles in another scenario have been monitored, 
tested, and interpreted by statistical methods. 

The approach discussed above finds practical application when archi-
tecture and implementation are known during test specification. However, 
testing agent behavior during run-time is also necessary, especially in open 
multiagent systems, where agents may join a society and offer services at 
any given time. Furthermore, some agents may be provided by third par-
ties. Consequently, there is no knowledge about the internals or architec-
ture available. Third party agents are coupled to the multiagent systems by 
providing a service description, e.g. following the FIPA standard by means 
of an entry in the directory facilitator. Certification management as intro-
duced in [ScTS2005] addresses these issues by performing runtime moni-
toring automatically. The general idea here is to provide a means for the 
automatic certification of third party agents or web service capabilities. 

In this approach a conceptual framework with the objective to support 
integrated identification, evaluation, and selection of services for reliable 
behavior of applications using distributed services is provided. On a con-
ceptual level, three main components are mandatory:

• Capability management for the identification of the best-fitting service, 
i.e. services are identified on basis of their capabilities. The problem 
here is to match a given task to capabilities; in real-life applications this 
includes not only direct but also fuzzy mappings [ScTW2004]. 

• Certification management for the evaluation of the services, i.e. avail-
able services need to be evaluated according to the offered capabilities 
as well as other quality issues resulting in a quality measurement. 

• Catalogue management for supporting the service retrieval process, i.e. 
it integrates capability and certification management for providing a 
unified service exploration interface for service consumers. 

To implement this framework, these components have to be realized and 
integrated as agents. In Figure 4, the architecture for the agent system real-
izing an integrated catalogue, capability, and certification management is 
visualized. The agent for catalogue management is implementing the key-
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role and is responsible for managing service registration inquiries, invoca-
tion of the certification process, and providing an exploration interface to 
query on registered services. It utilizes the capability management for the 
match-making between consumer problems and service problem solving 
capabilities. 
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Figure 4. Certification management architecture 

The agent for certification management certifies QoS of service provid-
ers with regard to provided capabilities using the capability management 
agent for inference on capabilities. The certification of problem solving 
capabilities is performed by putting the service to the test with a set of 
problems and a standard solution. Problems are domain specific, and are 
either taken from the problem database (PDB) or created dynamically by a 
problem generator agent. These agents need to be adapted for each domain 
in order to generate relevant problems for the certification process. The re-
sults from this service are evaluated according to a standard solution. On 
this basis a measure of completeness, which is the QoS for the provided 
capability, may be derived. The QoS are stored in a database (QoS DB), 
which is updated in regular intervals with re-certification of the services. 

This approach may be easily adapted to domains where services and 
problems are well understood and formal performance measures exist. In 
[ScTS2005] the approach has been successfully applied to the search do-
main and in the IntaPS project (cf. II.2), it is transferred to the manufactur-
ing domain. 

The approach of certification management can be generalized to the 
analysis of multiagent systems. However, as there is no formal specifica-
tion of services provided by the complete MAS, which differ from the ser-
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vices provided by the agents within the MAS, this generalization seems to 
be inadequate. 

8.4.3 Static Analysis 

Static analysis aims to identify structural errors in source code without 
running the system (cf. IV.8.2). In AOSE, the challenge is to cope with 
distributed and concurrent processes. “Especially if it comes to concurrent 
and distributed processes, e.g., the multiagent systems, the advantages of 
Petri nets are obvious” [CaMo2005, pp. 47-48]. The advantage of Petri 
nets is that it provides not only a formal semantics but also an operational 
semantics. Consequently, Petri nets have been established as a key meth-
odology for analyzing parallel or concurrent systems [Ried1997]. For the 
analysis of concurrent systems, the identification of control structures is 
required, leading to an abstract Petri net model of a system. An early ap-
proach introduces control nets as a specialization of Petri nets, and in-
cludes a method for translation of control structure to these nets 
[Herz1976]. Doing so, a worst-case analysis of multitasking processes is 
established, the respective algorithm runs in polynomial time. This proce-
dure enables the programmer to proof “deadlock-freeness” of a system. 

During the last years, Petri nets have been applied successfully to the 
modeling of agents and multiagent systems. Hanachi et al. used Petri nets 
for the implementation of agent behavior [HaHS1999]. Here, cooperative 
nets as a specialization of Petri nets [Sibe1994] are transferred to agents. 
However, this model does not contain a notion for multiagent systems. 
Further approaches are focused on interaction behavior or multiagent sys-
tem design. Holvoet addresses the interaction of agents without regard to 
multiagent systems and he additionally limits the agent’s autonomy struc-
turally [Holv1995]. Dealing with multiagent systems and interaction re-
quires more expressiveness in the representation. Thus, Fernandez and 
Belo research on colored Petri nets to model multiagent system activity. 
The agents are represented as tokens in this approach [FeBe1998]. Espe-
cially Moldt et al. have applied (colored) Petri nets and nets-in-nets to 
various aspects of agent and multiagent systems [MoWi1997] [MoVa 
2000] [MoRo2003]. In [KoMR2001] an integrated approach to modeling 
of multiagent systems, interaction, and agents is presented. The general 
approach is based on hierarchical Petri nets, the so called nets-in-nets or 
reference nets, i.e., nodes which are represented as nets or nets may be 
represented as nodes. Here, the autonomy of individual agents is pre-
served. Together with Braubach et al. he introduced a Petri net based mod-
eling approach to goal-based agents [BPLM2004]. However, these ap-
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proaches do not consider analysis of systems behavior. The formal proper-
ties are not completely validated yet; a PhD thesis for formal aspects, e.g., 
stability, completeness, and correctness is in progress [KoMR2001]. 

Concluding, Petri nets are especially suited for the analysis of dynamic 
aspects of interaction in multiagent systems in order to avoid deadlocks. 
However, the remaining shortcomings discussed in IV.8.2, especially the 
identification of false positives, are still relevant. 

8.4.4 Model Checking 

Model checking is a model-based approach that bases on a model of a 
system and verifies that a temporal logic formula holds for the model 
[HuDe2004]. Whilst axiomatic approaches are based on syntactic proof, 
model checking approaches lean onto the specification language’s seman-
tics [Wool1998]. 

Current work concerning the application of model checking approaches 
in multiagent systems can be divided into two major streams [KaLP2004]: 
in the first category, standard predicates are used to interpret the various 
intentional notions of multiagent systems. They are used together with 
standard model checking techniques based on temporal logics. [WFHP 
2002] is a good example for this stream as they build their programming 
language MABLE for the automatic verification using the model checker 
SPIN [Holz1997]. In the other stream methods are developed that extend 
common model checking techniques by adding other operators. 

According to [KaLP2004] model checking approaches in the domain of 
multiagent systems have severe limitations as many of the most interesting 
properties that have to be checked involve universal formulas which di-
rectly lead to a non-finite number of states. In this understanding common 
approaches are bounded in terms of time and knowledge which was over-
come by [KaLP2004] in that they combined the works of unbounded 
model checking [McMi2002] with agent-relevant issues. 

8.4.5 Theorem Proving 

Theorem proving is a logic-based proof for checking that a set of formulas 
satisfies a goal via inferences [HuDe2004]. Therefore both the system and 
the description of the system’s properties have to be available in a formal 
way. Thus it can only be applied to logic-based multiagent systems. [FiWo 
1997] present a temporal belief logics approach to reason about Concur-
rentMETATEM systems. Based on security, liveness and fairness-proper-
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ties of the single agent and the system in total they prove the specifica-
tion’s fulfillment by static and temporal properties of the system to be. 

Agent-based systems, in contrast to conventional programs, exhibit in-
telligent behavior because of their autonomous abilities enabled by their 
underlying knowledge-bases. As knowledge-bases consist of logical ex-
pressions, deriving faults from the verification and validation via theorem 
proving is a common task in agent-oriented development. [JaAb2001] 
suggest the analysis of single agent’s knowledge-bases by deducing Petri-
nets from them. Thus they present a theoretical framework for the verifi-
cation that can be applied to verify any agent-architecture that can be de-
rived to their suggested one, in polynomial time. 

On the contrary to the presented agent-based works, [WoCi2000] criti-
cize that one focal problem in the development of agent-based systems 
concerning the usage of theorem proving has not been solved yet. Ac-
cording to them the problem lies in the connection between the knowl-
edge-bases and the implementation language of the later system. They 
have to be integrated in a non-logic language which impedes the applica-
tion of theorem proving methods. Another problem can be found in the 
formalization of the system’s properties due to the fact that the question 
which properties an agent-based system provides in detail is not answered 
either. 

8.5 Conclusion 

Summing up, evaluation is essential for software engineering and due to 
the huge challenges in AOSE even more crucial. Approaches for evalua-
tion from conventional software engineering however fail to meet the spe-
cific requirements and challenges of AOSE. Unfortunately, there is no 
gold standard to evaluation in MAS; one reason is the multitude and dif-
ference of existing MAS-approaches. But on the other hand even current 
state-of-the-art methodologies fail to integrate a sufficient evaluation phi-
losophy. In consequence, tool support is insufficient. Formal methods in-
troduced in agent research may overextend available resources and efforts. 
As there is a broad spectrum of domains for agent technology, different 
evaluation approaches are required taking into account the actual applica-
tion and domain. Consequently, developers of MAS have to design, exe-
cute, and evaluate complex evaluation procedures by themselves. 

The classification of evaluation methods (cf. IV.8.2) introduced by 
Menzies and Pecheur may be used for decision-support in this process to 
decide on the adequate general evaluation procedure [MePe2004]. On this 
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basis, we discussed different approaches to evaluation with respect to the 
different classes. Keeping in mind that formal approaches are often of lim-
ited use to concrete software projects, we are convinced that especially 
testing in design time and run-time analysis are crucial to sophisticated de-
velopment of real-world applications. These approaches have been suc-
cessfully applied to development of multiagent systems in logistics in our 
research. However, these approaches are in need of methodology and tool 
support in order to fit into arbitrary real-world software development. 

Further Reading 

For further readings on evaluation, please refer to the comprehensive book 
of Riedemann [Ried1997]. Even, if this book is limited to the validation of 
conventional software, Riedemann has a strong focus on validation of con-
current and large scale software systems. In [MePe2004], an excellent sur-
vey on verification of AI systems is provided. Here, the focus lies mainly 
on formal verification. 
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Abstract. This chapter introduces benchmarking as a special form of evaluation 
and addresses problems and demands concerning the benchmarking of multiagent 
systems. It gives an overview of the evaluation concepts used in the German re-
search program SPP 1083 for intelligent agents and realistic commercial applica-
tion scenarios as well as examples for evaluation and benchmark studies for multi-
agent systems. The article provides basics for setting-up evaluation studies, re-
garding special concerns for the evaluation of multiagent systems. Moreover, the 
exemplary overview may serve as orientation for further evaluation and bench-
marking of multiagent systems in realistic and commercial application scenarios. 

1.1 Introduction 

Before developers and users may utilize a new technology, such as multi-
agent systems, several questions need to be answered. For example: Under 
what circumstances is the use of a multiagent system be appropriate or su-
perior to other systems? And, how can users adapt the system to their 
needs in the most efficient way? To answer these questions and to be able 
to make adequate decisions, it is necessary to execute evaluation studies 
and to provide the relevant information regarding the properties of multi-
agent systems. 

Therefore, the aim of this article is to introduce the purpose of evalua-
tion and the basic concepts for setting up evaluation studies. An important 
comparative form of evaluation is benchmarking. When setting up evalua-
tion studies, special problems and demands concerning the benchmarking 
of multiagent systems have to be taken into account. Moreover, the con-
cepts of these studies have to be adjusted to the field of application that is 
considered. Concerning realistic commercial application scenarios, differ-
ent evaluation concepts have been developed within the German research 
program for intelligent agents and realistic commercial application sce-
narios, which provide an orientation for setting up respective evaluation 
and benchmark studies. 
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The chapter is structured as follows: the first part presents different as-
pects of evaluation and a basic model of evaluation. In the second part 
benchmarking is discussed in detail, addressing special issues concerning 
the assessment of multiagent systems. Finally, an overview of the evalua-
tion concepts used in the German research program for intelligent agents 
and realistic commercial application scenarios is presented. 

1.2 Evaluation and Benchmarking 

The aim of evaluation is to show the applicability of an approach under 
certain constraints and to deliver decision support for choosing the best 
approach for a certain problem. One method to assess these questions is 
benchmarking, providing a comparative evaluation of different ap-
proaches. Depending on the questions under study, any kind of evaluation 
or benchmarking may have different forms and aspects [MaGr1993], as 
will be discussed in the next section. 

However, regarding the evaluation of information systems in general, all 
these forms and aspects base on a collective model of evaluation which 
will be explained in Section 1.2.2. 

1.2.1 Important Aspects of Evaluation 

1.2.1.1 Point of Reference 

Depending on the reference used, evaluation may be descriptive or com-
parative. Within descriptive evaluation, there is no other concrete system 
one refers to or compares with. Therefore, relevant performance measures 
are documented as information that may be used for comparison and 
evaluation of individual needs for a certain application. Descriptive 
evaluation is especially important in cases with a lack of adequate refer-
ence systems and may serve as reference for future comparative evalua-
tion. Comparative evaluation may also be called benchmarking [HeHR 
2004] [RePo1997]. It has a concrete reference system or value to compare 
with and is especially important when deciding between different ap-
proaches or assessing the applicability of two systems. The theoretic back-
ground of benchmarking will be discussed in more detail in Section 1.3 of 
this chapter. 
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1.2.1.2 Time 

Depending on the point of time of the evaluation one can distinguish for-
mative evaluation and summative evaluation [Scri1980]. Formative 
evaluation is done associated to system development for eliminating prob-
lems or enhancing the systems’ performance. The information received 
from evaluation is reused for a redesign of the system. Therefore, evalua-
tion may be used to trigger a feedback-loop until a satisfactory result is 
gained. In contrary, summative evaluation is done at the end of develop-
ment to assess the quality of the system developed. This is also the point in 
time where statements can be given for what kinds of problems multiagent 
systems are applicable or under which circumstances they are superior to 
other approaches. 

1.2.1.3 Method 

Depending on the method of how the results of evaluation are received or 
measured, one can differentiate between laboratory or real world evalua-
tion [Dix1998]. The advantage of elaborative evaluation is that several pa-
rameters may be considered and varied independently. Especially regard-
ing formative evaluation, it may be done where the consequences of real-
world tests would be too risky or too costly. Within the research program 
for multiagent systems in economic applications this is important as the 
systems directly influence economic performance. Moreover, in the medi-
cal domain they influence the treatment process of patients. One way of el-
aborative evaluation is simulation. As this is an important method within 
this context, it will be described and discussed in more detail in V.2. 

1.2.1.4 Focus 

The focus of evaluation distinguishes a micro and macro evaluation, de-
pending on whether only parts of the system are examined, or whether the 
whole system is under evaluation [MaGr1993]. 

1.2.2 Model of Evaluation 

Evaluating a multiagent system for use in a certain application corresponds 
to the evaluation of an information system, characterized by interplay of 
man, task and technology [Hein1993] [GaHa1997]. Men are task managers 
confronted with a certain task, a certain problem and may use technology, 
in form of hardware and software to solve the addressed problem. 
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For these man/task/technology systems a common model of evaluation 
exists, within each task is represented by its structural organization and the 
process organization of an institution. This implies that the technology 
system has to be evaluated within a certain field of application. The input 
of the evaluation model is a new information technology for which exists 
the need of evaluation. The output of the model is information to support 
decisions concerning the adoption of a new technology. The evaluation re-
sults may also influence changes of the technology system already in use 
as well as changes in the application-specific organization of man/task. 
The evaluation process is determined by a target system and a method of 
evaluation. The evaluation method determines not only the method but 
also techniques and tools for the process of evaluation. For example, labo-
ratory studies simulating the task managers and the process organization 
for the fulfillment of an operational task may be executed. Finally within 
the evaluation process, the concrete values are measured according to the 
evaluation criteria of the target system (compare Figure 1). 

Figure 1. Evaluation model1

To evaluate how well a multiagent system is appropriate for a certain 
economic application by the use of benchmarking, it is necessary to com-
pare procedures and processes and to take into account different methods 
and information systems for application support. The benchmark objects to 
be evaluated are different solution approaches or optimization methods and 
their transformation into agent software. In order to determine target val-

1  See [GaHa1997]. 
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ues, economic as well as technical metrics may be of interest. As a bench-
mark an approach may be chosen that is either known to be optimal for the 
problem or an existing standard procedure. Depending on the benchmark 
design chosen, the applicability of a technique may be measured by how 
well it performs in comparison to the best known solution or how much it 
exceeds an existing standard. 

To achieve this aim, simulation is important as it can generate mea-
surements for evaluating the interaction of task and technology. However, 
the interaction of the system with human task managers can only be as-
sessed in real-world tests as there too many parameters that may be partly 
hidden, and thus can not be considered in a simulation model. 

1.3 Benchmarking of Multiagent Systems 

As described in Section 1.2.1, benchmarking is a comparative method of 
evaluation. It identifies the applicability of certain evaluation objects for a 
specific task and performs a performance comparison [HeHR2004] 
[RePo1997]. Instead of normative or prognostic values, benchmarking 
uses comparative values as target values that serve as a point of reference 
for evaluating the applicability of an approach. Often, the comparison to 
the “best practices” or “best in class” is used [BeSc2004]. During the 
1980s, the notion of benchmarking was formed by the benchmark study of 
the copier manufacturer Xerox in 1979 and the publications of Robert 
Camp [Camp1989] [Camp1995]. 

Benchmarking uses a systematic procedure for evaluation and contains 
the phases (1) planning of the measurement, (2) execution of the mea-
surement and (3) interpretation of the measured results [HeHR2004]. 
Within the planning of the measurement, the objects that have to be evalu-
ated are determined as well as relevant performance criteria. Benchmarks 
are either developed individually or standard benchmarks are used. During 
the execution of the measurement corresponding data is gathered or 
benchmark routines will be processed. In this case, subjective measure-
ment techniques (e.g. interrogation, behavior analysis) and/or objective 
measurement techniques (e.g. management ratios) may be applied [HeMe 
1998]. To interpret the measured results, these are combined in an applica-
tion value and ranked. Within quantitative benchmarking, a positioning of 
the own performance towards an objective benchmark or a derived target 
value is done. In addition, a qualitative benchmarking should give design 
recommendations and enable the adoption of approaches, concepts or 
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practices [Legn1999]. In addition to formerly reached values, benchmarks 
provide indices as to whether further improvements are necessary. 

Benchmarking can be done in different fields with different aspects of 
evaluation (see Table 1). 

Table 1. Benchmarking for business process management and for measurement of 
computer performance 

 Business process 
management 

Measurement of computer 
performance 

Benchmark object Business processes Computer systems 

Benchmark criteria Operational target values: 
time, costs, quality 

Throughput times 

Benchmark method Process analysis  Execution of benchmark 
routines 

Benchmark (reference) Qualitative  Quantitative 

For example, in business process management economic target values 
such as time, cost and quality should be improved by process analysis. 
Based on guideline values or reference values of leading enterprises – so 
called benchmarks - it is the aim of benchmarking to gain a lasting im-
provement of their own efficiency. Therefore, the focus is not only on how 
good other enterprises are but also, on how they manage to generate this 
efficiency [TeRK2000] [ToMa1997]. Another example is the measurement 
of computer performance. Often throughput times are used as target values 
for a quantitative benchmarking. Benchmark routines are designed such 
that they represent a certain workload, or synthetic jobs are constructed 
that equal a forecasted workload [Hein2002] [HeHR2004]. 

The following subsections will discuss in more detail the design of 
benchmark studies. First, the general structure of adequate designs will be 
shown and subsequently, specific aspects concerning test scenarios as well 
as possible performance metrics and exemplary studies will be reviewed. 

1.3.1 Study Design 

The design of evaluation and benchmarking studies basically includes – 
even if varying terms are used – three elements or dimensions: (1) the 
problem scenarios to be tested on, (2) the target values or performance 
metrics of interest and (3) the solution methods to be benchmarked or 
evaluated. Similarly, Howe and Dahlman [HoDa2002] state that for com-
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parative evaluation and benchmarking for obvious practical reasons it is 
necessary to run a subset of planners on a subset of problems. 

Durfee [Durf2001], for example, gives a more detailed sample on rele-
vant dimensions for evaluating multiagent systems. He considers the agent 
population that represents the parameters of the solution method, the task 
environment that represents the parameters of possible problem instances 
and the solution that represents different dimensions on target or perfor-
mance values. The agent population may vary in quantity, heterogeneity 
and complexity. The task environment properties define the degree of 
interaction, of dynamics, and of distributivity. Finally, the solution proper-
ties may focus quality, robustness, overhead limitations, or combined 
dimensions. 

Rardin and Uzsoy [RaUz2001] address the problem of how to develop 
evaluation designs for heuristic optimization methods. They notice that 
most evaluation designs of algorithms are designed for exact optimization 
methods. However, within heuristic optimization the quality of a solution 
often must be evaluated when there is no exact solution or even a credible 
estimate of one available. Therefore, they suggest some guidelines that 
should be addressed when evaluating or benchmarking heuristic optimiza-
tion methods. To generate benchmarks, different problem instances (vary-
ing in problem size or number and nature of constraints) have to be tested 
with different approaches for discovering how changing problem charac-
teristics affect performance. As significant questions they discuss the trade 
off between time needed for solution and quality of solution. They give 
advice on how to generate fair and meaningful benchmark studies when 
using different solution methods. Concerning performance measurement, 
they also give an overview on possible methods of how to generate refer-
ence values for evaluating the quality of a solution. Regarding small prob-
lem instances, exact solutions are available. In other cases, bounds or sta-
tistical estimations on optimal values as well as best known solutions may 
be applicable. 

1.3.2 Test Scenarios 

In order to perform a fair comparison of different planning approaches, the 
same problem scenarios and benchmark tests have to be used. There are 
two possibilities of choosing the benchmark tests, either by applying al-
ready existing standard problem scenarios, or developing new application-
specific ones. 

In the first case, one recalls testbeds documented in the literature and 
processes them with the mechanism that should be evaluated. Subse-
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quently, the obtained results are compared with those given in the litera-
ture. For shop scheduling, for example, such benchmark scenarios can be 
found in [Tail1992] [DeMU1998] or concerning the traveling salesman 
problem in [BiRe1990]. The advantage of this approach is that there is a 
comparison to the current state of research and to the efficiency of ap-
proaches from other areas of research. However, the disadvantage of this 
method is the restriction to the existing standard benchmarks in the litera-
ture. A comparison is only possible for previously defined test scenarios 
and reported target values and performance criteria. 

Furthermore, such scenarios do not necessarily represent the problems a 
multiagent system is designed and suitable for. Especially with respect to 
flexibility and multidimensional aspects, the existing scenarios are not dy-
namic enough or focus on a too restrictive and one-sided view of target 
values. For example, regarding shop scheduling problems, hardly any of 
the standard benchmarks include uncertainties and stochastic effects in 
their planning environments. Moreover, there is often one dominant target 
value for performance measurement such as makespan for shop scheduling 
problems. 

Besides the use of existing benchmark instances it is possible to develop 
new and more adequate test scenarios. They are set up with characteristics 
that consider the properties of the system that should be evaluated. The ad-
vantage of this approach is the ability to construct benchmarks such that 
specific questions can be addressed, for example flexibility aspects when 
choosing problem scenarios with an adequate dynamic environment. How-
ever, the disadvantage of defining new benchmark instances is that no 
standard comparison values exist and benchmarks (in the sense of corre-
sponding guides or comparison values) have to be derived separately. This 
means that other solution methods or heuristics have to be adapted to and 
tested on the new problem scenario, or performance data from real-world 
applications has to be collected as point of reference. 

The problem of selecting and defining test scenarios has also been dis-
cussed by Howe and Dahlman [HoDa2002]. Regarding systematic evalua-
tion and benchmarking, a lot of combinations of test scenarios and plan-
ners exist that might be examined. However, not all possible combinations 
can be executed and nor would it be meaningful if they were. Therefore, 
the question is which test problems, planners, and performance metrics 
shall be chosen. To enable an informed decision, it is necessary to know 
how variations within these three aspects influence the results. Therefore, 
Howe and Dahlman [HoDa2002] examine questions like: “May a general 
purpose planner be biased by a particular selection of problems? What is 
the effect of parameter settings? Are time cut-offs unfair?” and give 
guidelines based on tests of several assumptions. They show that the se-
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lection of the problem set influences the results of evaluation and state that 
the problem sets should be constructed to highlight the designers’ expecta-
tions regarding superior performance for their planners or select the prob-
lem set randomly from the benchmark domain if the performance on a 
“general” problem should be evaluated. 

Likewise, Hanks et al. [HaPC1993] state a trend towards controlled ex-
perimentation as evaluation method where researchers vary features of a 
system or features of an environment and measure the effect of these 
variations on aspects of system performance by using benchmarks (pre-
cisely defined standard tasks) and testbeds (challenging environments). 
They see the danger that scientific progress may focus only on the ability 
to better solve these abstract standard benchmarks instead of bringing pro-
gress for real problems. As benchmarks and testbeds are simplified sce-
narios to check certain characteristics the results or lessons learned may 
not be easily applicable to real problems. However, without simplifications 
it is not possible to carry out systematic experiments. In their paper, they 
discuss in detail this dilemma against the background of classical planning 
and agent architectures. As classical planning assumes a completely static 
planning environment with fully known information, they call for planning 
testbeds for agent architectures to consider exogenous events, complexity 
of the world, quality and cost of sensing and effecting, more relative 
measures of plan quality, multiple agents as well as a clean definition of 
the interface to the world, a well-defined model of time and support facili-
tating experimentation. However, the problem of choosing adequate test 
scenarios still remains and arises especially when deciding between a more 
real-world domain-dependent scenario and a simplified but generalizable 
scenario as well as between an easily parameterizable scenario and a more 
complex scenario. 

1.3.3 Performance Metrics 

After having defined the test scenarios under study, the next step is to de-
termine performance metrics that represent relevant criteria for the evalua-
tion of the systems’ performance and the solution quality reached. These 
metrics have to be chosen depending on the questions and the target values 
under research. 

Helsinger et al. [HLWZ2003] focus on the evaluation of large distrib-
uted multiagent systems and adequate tools and techniques for perfor-
mance measurement. They distinguish the uses of performance measure-
ment data by who is using it, by the information it imparts, and by the 
method used for its propagation. Moreover, they separate three abstraction 
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levels for performance measurement: Firstly, the computer system level 
that measures the effect of a multiagent system on the computer system 
e.g. by CPU utilization, network throughput, memory consumption. Sec-
ondly, there are generic agent system level metrics, e.g. message traffic, 
task counts. Finally, on the highest level, there are application-specific 
measurements concerning data structures up to functional performance 
relative to the applications’ requirements. These third level metrics are 
used to determine the overall system success. 

The work of Brennan and O [BrO2000] gives an example for an evalua-
tion study of a job shop scheduling problem experiencing the need for 
adaptability and flexibility when considering disturbances such as machine 
failures or uncertain processing times. They model a manufacturing system 
with job-agents, machine-agents, station-agents and a mediator agent. As 
benchmark scenario they use a shop floor layout problem taken out of 
[Cav+1999] that is proposed to serve as a benchmark platform for com-
paring multiagent system control systems. With this setup, four different 
coordination strategies, based on the contract-net protocol and on auction-
based bidding are tested. The change in solution quality is evaluated while 
raising the number of jobs to be scheduled in situations with and without 
machine failure. 

Korba and Song [KoSo2002] evaluate the scalability of security services 
in multiagent systems. They scale the system along the following four di-
mensions: number of agents on a given platform, number of agents across 
multiple platforms, size of data on which the agents are operating and di-
versity of agents. As performance metrics, they use CPU usage and mem-
ory requirement, number of searches per second, interaction time, and re-
sponse time to a request. Based on their tests, they present results on how 
different designs affect performance and scalability and give advice which 
system should be used in security services for multiagent systems. 

1.4 Benchmarking of Multiagent Systems in Realistic 
Commercial Application Scenarios 

In the research program on intelligent agents and realistic commercial ap-
plication scenarios of the German research community (DFG), a variety of 
different multiagent systems have been evaluated and benchmarked for 
different application scenarios. 

The following section gives a summary of the evaluation concepts for 
multiagent systems in this research program. Based on the theoretical 
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background of evaluation and benchmarking, we structure the overview of 
the different evaluation concepts using the following four criteria: 

• evaluation objects, 
• evaluation criteria, 
• evaluation method, and 
• evaluation reference. 

1.4.1 Evaluation Objects 

The evaluation objects concerning commercial applications are taken from 
the fields of manufacturing logistics (see Part II) and hospital logistics (see 
Part III). For each field, different objects are examined. For example, in 
manufacturing logistics, stock keeping processes (see II.3), shop floor con-
trol processes (see II.2), or supply chain management processes are fo-
cused on (see II.5). The field of hospital logistics monitors hospital patient 
scheduling (see III.4), the control of clinical processes (see III.5), or the 
trading of work plans according to the detection of the personnels’ prefer-
ence structures (see III.2). 

Each evaluation object is examined regarding application scenarios that 
contain challenges like high dynamics, stochastic effects, or process dis-
ruptions. In the field of manufacturing logistics, for example, machine 
failures and changing customer orders are included. In hospital logistics, 
highly variable treatment times arise and changes in the amount of patient 
arrivals including most urgent emergency cases must be considered. 

Concerning multiagent systems from a technological point of view, 
relevant evaluation objects are system properties, software engineering 
processes, multiagent system skills and agent communication properties. 
Other evaluation objects are the algorithmic proceeding, the robustness of 
services, multiagent simulations or software development methods. 

1.4.2 Evaluation Criteria 

Regarding the evaluation criteria of commercial applications in manufac-
turing logistics, aspects such as cost and time values are of interest in sup-
ply chain management processes, shop floor control, as well as in stock 
keeping processes (see II.2, II.3 and II.5). Throughput or cycle times are 
collective criteria in all of these applications. Moreover, many studies 
measure the costs of disturbances, monitoring costs (see II.5), resource 
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utilization, delivery reliability, capital lockup, production costs (see II.2), 
adherence to delivery dates, and traceability of the control (see II.3). 

In the domain of hospital logistics, the evaluation criteria for hospital 
patient scheduling, control of clinical processes, and the trading of work 
plans require a specific quality or efficiency of planning. Amongst others, 
corresponding criteria are average patient waiting times (see III.4), the re-
duction of stay time (see III.5), or utility based welfare criteria (see III.2). 
Further criteria are data security, user satisfaction, or flexibility aspects. 

To assess the properties of the developed multiagent systems, the tech-
nological view of the systems focuses on evaluation criteria exemplary 
specifying the response time and reaction time of a multiagent system, the 
resource or memory consumption, the system availability, the scalability, 
or the correctness of algorithms. Concerning software development and 
engineering processes, the time of development or the quality of the re-
sulting system and the development process (for example effectiveness, af-
fordability,or use in practice) are measured. 

1.4.3 Evaluation Method 

In both application domains (manufacturing logistics and hospital logis-
tics) simulation studies have been performed as evaluation methods (see 
Tables 2 and 3). The scenarios chosen were implemented as near as possi-
ble to a real-world situation, including the dynamic and stochastic effects 
associated with the evaluation objects. Analytic examinations or user 
studies are further methods that were used for evaluation. Moreover, em-
pirical tests were used, especially for software development processes. 

1.4.4 Evaluation Reference 

In the commercial applications, the benchmarks are derived from alternat-
ive logistic planning systems or heuristics common to the respective field 
of application. Examples are analytic comparison values or actual values 
reached by the status quo of the planning (see Tables 2 and 3). A bench-
mark system for stock keeping processes was the PP/DS module of the 
SAP APO system. Other heuristics, for example, were priority rule-based 
approaches. The status quo of the planning could be represented by data 
collection from real-world organizations and applications. 

Especially concerning technological evaluation, alternative algorithms, 
multiagent system platforms, simulation systems, or process models for 
software development were used as benchmark references. 
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Nevertheless, descriptive evaluation was important for assessing the de-
veloped multiagent systems. Often benchmark values on the real-world 
scenarios under study were not available and mostly had to be derived 
separately. Furthermore, there were certain questions to be investigated, 
that should give an insight into the properties of the developed approach. 
Questions concerning the performance of the system under scaling prob-
lem parameters (such as scaling size, disruptions, or stochastic effects) 
were assessed by descriptive evaluation. 

1.4.5 Overview of Evaluation Concepts 

This section gives a structured overview of the evaluation concepts ex-
plained in the previous sections (see Tables 2 and 3). For each project im-
portant application (top of line) and technological aspects (bottom of line) 
are listed. 
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Table 2. Overview of the evaluation concepts for manufacturing logistics 

Proj. Object Criteria Method Reference 

SCM-processes 
Event-manage-
ment 

Costs (disruptions, 
monitoring) 
Times (throughput 
times) 

Theoretic analy-
sis model, simu-
lation, industrial 
showcase 

Existing moni-
toring systems 

A
4

System proper-
ties
Use of semantic 

1. E.g., response-
time, resource-
usage. 

2. Effort (e.g. for 
integration) 

Simulation, 
Qualitative eva-
luation methods 

Descriptive 
evaluation 

Shop floor con-
trol 

Ratio systems (e.g. 
lead time, resource 
performance) 

Simulation Analytic com-
parison values; 
Existing sys-
tems (SAP/R3) 

In
ta

PS
 

Agent control, 
communication, 
black box test-
ing, capability 
management  

Correctness of 
problem solutions 
and algorithms 

Simulation, sta-
tistic evaluation, 
unit-tests 

Alternative al-
gorithms 

Stock keeping 
in job shop 
manufacturing 

Throughput time, 
adherence to deli-
very dates 

Simulation PP/DS module 
of the SAP APO

K
R

A
SH

 Robustness ser-
vices 

QoS: throughput, 
response time, fre-
quency of con-
flicts 

Simulation Standard MAS 
platforms with-
out robustness 
services  

Rule- and norm-
based control 

1. Throughput 
time, adherence 
to delivery 
dates, 

2. Traceability 

1. Simulation 
2. User study 

1. PP/DS mod-
ule of the 
SAP APO 

2. Descriptive 
evaluation 

C
on

tr
oM

A
S 

1. Rule- and 
norm based 
agent archi-
tecture 

2. Integration 
approach 

1. a. Response 
time b. Trace-
ability 

2. Throughput 

1. a. Simulation
b. User study 

2. Simulation 

1. a. Imperative 
agent architec-
tures 
1. b., 2. Descrip-
tive evaluation 
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Table 3. Overview of the evaluation concepts for hospital logistics 

Proj. Object Criteria Method Reference 

Clinical proces-
ses 

Planning quality, 
utilization, stay-
time  

Simulation Current situa-
tion  

A
D

A
P

T
 I

I

1. MAS-
simulation 

2. Process mod-
els 

3. MAS-assis-
tance system 

1. Modeling time, 
number of 
agents 

2. Development 
time, quality 

3. Re-/planning 
quality  

1. Development 
projects 

2. Analyti-
cal/empirical 
comparisons 

3. Simulation 

1. Competing 
systems 

2. Alternative 
models 

3. Situation 
without as-
sistance 
system 

Hospital patient 
scheduling 

Planning quality, 
flexibility 

Practical simu-
lation 

“Status quo” 
and “state-of-
the-art” plan-
ning  

M
ed

P
A

ge

Software engi-
neering proces-
ses 

1. SE-tasks 
2. Platform prop-

erties 

1. SE-projects 
2. Measure-

ments of test 
applications 

Alternative 
platforms 

1. Detection of 
preference 
structures 

2. Negotiation 
of working 
plans 

1. Contentment, 
analysis accu-
racy, learning 
module 

2. Technologic, 
economic effi-
ciency; overall 
welfare 

1. Use in prac-
tice, inter-
views, 
simulation 

2. Simulation 

1. Use in prac-
tice (SPSS, 
TiCon) 

2. Different al-
gorithms 

Po
lic

y 
A

ge
nt

s 

1. Preference 
structure 

2. OP-planning
3. Team build-

ing 
4. Schedules 
5. Heuristics 

1./2. User inter-
face, 3. Constraint-
/Preference satis-
faction, 4. Quality, 
5. Complexity 

1./2. Use in 
practice, 2./4. 
Simulation, 5. 
Complexity ana-
lysis, simulation 

1./2. Adaptiv-
ity, usability, 3. 
Overall 
weights, 4. Per-
formance ra-
tios, 5. Run-
ning time  
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1.5 Conclusion 

Experimental evaluation and benchmarking are meaningful instruments to 
assess multiagent systems and help to make research progress understand-
able and clear. The article has provided a foundation for setting up evalua-
tion studies, has introduced different aspects of evaluation, and presented a 
generic model of evaluation. 

Benchmarking has been discussed separately as a special form of 
evaluation. Furthermore, certain problems and demands concerning the 
benchmarking of multiagent systems have been addressed. When deter-
mining evaluation objects and selecting adequate test scenarios, there is a 
trade off between standard benchmarks and individual benchmarks. Stan-
dardized simplified benchmark scenarios allow generalizable conclusions 
providing common comparison values from different research areas. How-
ever, they are less informative for making conclusions on real application 
problems. Individual benchmarks may include more realistic assumptions 
on stochastic and dynamic environments thus providing more meaningful 
conclusions to the applicability of multiagent systems in real-world prob-
lems. Yet, these scenarios generate results that are more difficult to gener-
alize and they are only directly comparable with individual and separately 
derived benchmarks. 

Regarding the evaluation of multiagent systems in realistic fields of ap-
plication, the work of the German research program for intelligent agents 
and realistic commercial application scenarios was presented. The different 
evaluation concepts that have been developed were discussed and struc-
tured. In common, these concepts had the aim of assessing the applicability 
of a multiagent system when considering influences from stochastic effects 
and dynamic environments. The overview of the respective evaluation 
concepts may serve as a direction for setting up further evaluation and 
benchmarking studies for multiagent systems in corresponding fields of 
applications. 
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Abstract. Multiagent simulation applies the concepts of multiagent systems to 
simulation. It is a perfect means to represent and examine emergent effects in dis-
tributed systems. Multiagent simulation models may be used to gain insights into 
system interdependencies, to make predictions and also for testing software sys-
tems. This chapter introduces the basic concepts and tools for agent based simula-
tion and shows the possibilities of agent based simulation by means of the par-
ticular tool SeSAm. Extensions are presented that allow using multi agent simula-
tion as an evaluation testbed for agent based application systems. 

2.1 Introduction 

The development of agent-based software is a quite complex task as it in-
volves difficulties like for example dealing with sophisticated software ar-
chitectures, thinking about control and synchronization of concurrent and 
interrelated processes, handling distributed control and data and dealing 
with the unpredictability of interaction patterns [Jenn2000]. Formal, auto-
matic verification and validation of distributed software is a big issue in 
research, but it’s yet far from practical relevance. Therefore, extensive 
testing and evaluation is very crucial to ensure software quality. 

Very often, software tests cannot be performed in the actual deployment 
environment for various reasons. One reason might be security issues. In a 
life-critical environment it is too risky to apply immature and uncertified 
software. Even if we could apply it, we would probably not be able to test 
it under extreme conditions. Costs are also an important issue: Testing in 
the real environment can be very expensive and time-consuming. Espe-
cially multiagent applications require big and distributed testing environ-
ments involving many people and physical devices. Sometimes the appli-
cation environment and hardware might not even exist at the time the 
software is developed. Consider for example the introduction of highway 
toll in different European countries. Usually it is not feasible to wait until 
the final environment is available. Tests have to be performed as early as 
possible. 
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In software projects like characterized above, using simulation for gen-
erating a virtual environment can be a suitable means for testing and 
evaluation. Simulation provides the following options: 

• Simulation and especially multiagent simulation helps understanding 
multiagent systems in the context of a specific environment. Thus, one 
learns about appropriate architectures on the agent and agent system 
level and properties of protocols. These things can be examined in a 
particular environmental setting. The knowledge gained can be used 
when designing and implementing the software agents. 

• Simulation studies can prove the applicability and potential success of a 
particular approach before much effort is spent in realizing the actual 
system. The simulation can show how different environmental parame-
ters the system. Simulation studies often are a convincing proof of con-
cept.

• Moreover, agent based simulation models can be used as testbeds for the 
actual multiagent system or application. In this case a simulated envi-
ronment is connected to an agent based application. A realistic stream of 
external events is provided by the simulation environment to test the 
correctness of the software agents. Additionally, dynamic effects and 
interdependencies between actors and software agents can be examined. 

As shown, simulation is very useful for understanding, designing and 
especially testing software. It can be applied in different phases of the 
software engineering process. Regarding the development of multiagent 
systems especially agent-based simulation seems appropriate, because both 
techniques are based on the same paradigm. This chapter starts with an in-
troduction to the principles of simulation (Section 2.2) and agent based 
simulation (Section 2.3). Following a general overview on agent based 
simulation tools is given (Section 2.4) and one particular system for 
modeling and simulation is presented in detail (Section 2.5). Whereas 
these tools are not especially dedicated to test software, Section 2.6 pre-
sents extensions, which support the usage of the simulation tool as a soft-
ware testbed. Finally a summary on the possibilities of agent based simu-
lation is given in Section 2.7. 

2.2 Simulation – Theory, Approaches and Definitions

Reviewing the relevant literature, quite a bunch of paradigms and tech-
niques for simulation and modeling can be found: Queuing nets, Petri-nets, 
discrete event (based) simulation, object oriented simulation, simulation 
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based on cellular automata, macro and micro-simulation, distributed simu-
lation, etc. Agent based simulation, agent-oriented simulation, even agent-
directed simulation are nowadays added to this by no way complete list. 

Computer simulation in general means “the execution of experiments 
with a model of a dynamic system”. This model is usually simpler than the 
original system but has to capture the essential characteristics. During 
simulation the behavior of the model can be observed in the course of time 
and resulting output variables are evaluated to make statements about the 
original system. E.g. it might be examined how the system behaves when 
configured with a particular set of input values [Zeig1984] [Fish1995]. In 
this case we talk about prediction models. Another aim of simulation mod-
els – especially interesting in scientific application domains – is to prove 
hypotheses and to gain insight into interdependencies of a system, which is 
not completely known by now. Such models are called explanation mod-
els.

A simulation model typically consists of simulation entities and transi-
tion rules. Depending on the simulation paradigm entities might be vari-
ables, objects, cells or agents. Transformation rules describe how the enti-
ties and thus the system are changing over time. The set of model entities 
and transition rules might be described by a lot of different representations. 
The most suitable representation is depending on the aim of the simulation 
study and the necessary level of granularity: Queuing nets are useful to de-
scribe and simulate performance of queuing processes. More general pro-
cess descriptions can be executed by process simulation tools (like eM-
Plant). Macro models typically consist of differential equations that con-
nect the variables of the model. The rules of a cellular automaton describe 
how cell states change over time. Finally a convenient representation of 
agent behavior consists of activity graphs or rule sets. 

Another basic criterion of simulation is the time advance and the way 
the virtual simulation time is treated. Basically, there are the following op-
tions: Simulation time might be continuous, discrete time-stepped or dis-
crete event driven [MoDa2000] [GiTr1999]. In continuous simulation the 
state of variables can change with arbitrary small time steps. The mathe-
matical base of these continuous models are (nonlinear) systems of differ-
ential equations, which can be solved by numeric integration. Discrete 
simulation on the other hand allows discrete time advance as well as just 
discrete changes of state variables. Discrete simulation can be either time-
stepped or event driven. In time-stepped simulations the simulated time 
advances with an a priori fixed time advance interval. The constant time 
advance is advantageous for on-line observation. Modeling is quite intui-
tive, but simulation time might be wasted if many simulation entities are 
inactive during a long period of time. In contrast event driven simulation 
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allows a flexible time advance based on the occurrence of events. Entities 
are only active when they receive an event; after the agent has finished 
(re-)acting, the current time value is set to the time of the next event. The 
major drawbacks are that modeling also comprises the intricate handling of 
an event queue and that on-line observation is rather difficult as time may 
“jump”. In practice event based simulation can be found more in engi-
neering applications, whereas time-stepped simulation is more common in 
the simulation of biological or physical systems. 

Another classification of simulations is based on the distinction between 
macro simulation and micro simulation. Macro simulation treats the mod-
eled system as one entity with several variables describing its properties. 
Micro simulation models consist of a set of active objects with distinct lo-
cal behavior, which act together to produce the overall behavior. Macro 
models in general are more abstract and allow observations just on the 
global system level. Thus, they are not appropriate for several simulation 
purposes, e.g. for the analysis of self-organization or emergence. A famous 
example of microscopic simulation and demonstration of emergent be-
havior is the flocking model [Reyn1987]. A good application domain for 
demonstrating the differences between macroscopic and microscopic 
simulation is traffic simulation. Macro simulations compute numbers of 
entities in the network (or in parts of the network) and update these num-
bers during simulation, micro simulations actually are based on the local 
route decisions or movement of the entities. Agent-based approaches are 
highly developed in this domain [KlBO2005]. 

Besides the model design and execution, a very essential part of the 
overall simulation study is making experiments and analyzing the results. 
Simulation models provide input variables for the configuration of the ini-
tial scenario, runtime or status variables and output variables (evaluation 
parameters). An experiment determines input and evaluation parameter of 
a model and comprises several simulation runs with different initial con-
figuration. Another important term in this context is the “experimental 
frame” [Zeig1984]. Regarding a certain input variable there may be just a 
certain interval that produces valid results in the overall model. This set of 
useful values is called the “experimental frame”. 

Models may contain stochastic and interactive elements; modeling 
based on probability distributions is favorably if the distribution is known 
and modeling detailed cause and effect-relations is too complicated. Inter-
active elements might be user interfaces to control parameters or agents. If 
stochastic or interactive elements are used, simulation runs are not deter-
ministic. Therefore it is advisable in this case to make several simulation 
runs to get meaningful results. During a simulation run evaluation pa-
rameters can be recorded and the results can be visualized in different 
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ways. Whereas series chart are useful to show parameter values in the 
course of time, block charts show cumulated results (e.g. average values) 
at the end of the simulation. A simulation experiment usually involves sev-
eral simulation runs with different initial values.

2.3 Agent Based Simulation 

Agent based simulation or multiagent simulation applies the concept of 
multi agent systems to simulation. A respective model consists of simu-
lated agents and a simulated environment. Simulated agents might repre-
sent concrete individuals or abstract active entities of an original system. 
The agents act and interact with their environment according to their be-
havior and emergent phenomena and dynamic interdependencies of agents 
can be examined. Agents are typically defined by state and attributes and a 
set of behavior rules, which determines how they change their state and the 
environment [Klue2001] [KOPD2002]. 

The agent based simulation paradigm is very similar to other simulation 
paradigms like object oriented simulation, individual based simulation or 
cellular automata. The most relevant differentiation criterion from object 
oriented simulation is that simulation entities are active autonomous com-
ponents, which is not necessarily the case in object oriented simulation. 
Thus from the modelers point of view simulated agents are on a higher ab-
straction level than simulated objects. In pure object oriented simulations 
there are central transition rules or programs that change the (passive) 
simulation objects (like e.g. in Netlogo and Starlogo). In some cases we 
also find distributed behavioral rules but the autonomy of the agents is re-
stricted. Thus, an exact classification is often difficult and there is a con-
tinuous transition from object-oriented to agent-based simulation. 

Compared with the concept of individual based simulations - agent 
based simulations do not limit their scope to individuals. They may deal 
with abstract entities like groups or other organizational units as well. 
Sometimes, heterogeneity as related to agents is mentioned as a core char-
acteristic of individual based simulation. However, typical agent-based 
simulations are based on concepts of Artificial Intelligence, like rules or 
planning, whereas individual-based simulation are based on mathematical 
formalisms like Logit models or formalisms of Rational Choice, etc 
[Bier1998]. These formalisms are usually not suitable for agents, because 
they are not able to represent the locally restricted perception of agents. 
But there are extensions of these formalisms (e.g. Bounded Rational 
Choice) that may also be used for agent modeling. Summarized, agent-
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based simulation can be seen as a more general version of individual-based 
simulation. 

Cellular automata are a very restricted kind of micro simulation. They 
are based on a special kind of spatial representation (a grid) and contain 
very homogeneous entities (the cells). The uniform transition rules of an 
automaton cell are very restricted. A cell may just change its own state in 
dependence of the state of its neighbors. There is no environment or other 
model entities beyond the cells. Cellular automata can be realized as sim-
ple agent based models as well. 

According to the criteria given in Section 2.2 we can characterize multi-
agent simulation as follows: The entities in agent-based Simulation are ac-
tive autonomous entities called agents. Transition rules can be derived 
from the behavior descriptions of these agents. Time advance in computer 
based multi agent simulations is necessarily discrete as interaction happens 
in distinct points of time, but both alternatives are common – event based 
as well as time driven simulations. Typically agent based simulations are 
micro simulations with a lot of single agents and emergent effects. There-
fore, agent models have to be validated carefully. If properly used, they 
can provide valuable insight to complex systems. 

Besides knowing about the different forms of simulation paradigms it is 
also important to have criteria to select the appropriate simulation method 
for the purposes of his modeling effort. The following domain properties 
argue for agent based simulation: 

• Distributed environment: Spatially or organizationally distributed enti-
ties with local perception and action are subject to the simulation. 

• Active entities: The simulated entities are actively changing their state 
and their environment. Autonomy of agents is relevant within the simu-
lated system. 

• Process Interdependency: Processes and behaviors of agents influence 
each other. Isolated process simulation is not possible. This argument is 
even more compelling when there are flexible interaction with a priori 
unknown partners. 

• Individual properties of the agents: The heterogeneous properties of the 
individual agent are of importance. Dynamic interdependencies can not 
just be explained by using average attribute values. Feedback loops can 
not be computed in advance. 

• Micro model knowledge: Detailed knowledge about the behavior and 
configuration of the model entities is available. 

For these reasons multiagent simulation became very popular in artifi-
cial life science and biology [KPRT1998], sociology [MaFT2002] or traf-
fic science [KlBO2005]. 
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2.4 Tools for Agent Based Simulation 

Creating simulation models from scratch is very effortful, gathering and 
analyzing simulation data them as well. Thus, tool support for the process 
of implementing executable models and performing simulation runs is 
nearly inevitable. A couple of very different tools for multiagent simula-
tion have been developed over the last years. In a short review some 
popular tools for agent based simulation are presented in this section. 

AgentSheets (http://www.agentsheets.com) has already a long tradition 
(since 1989). It is a completely visual development kit for multi agent 
simulations and addresses developers with little knowledge about pro-
gramming. It allows realizing parallel and interactive agent based models. 
Agents are objects that can be programmed by the user. He can visually 
construct rules and actions that determine the behavior of the agent, espe-
cially in interaction with users. For example, agents can react on mouse 
and keyboard events, they can move and change their look, play music or 
videos, talk, send E-mails or calculate functions. Many examples of inter-
active games have been implemented. However, the program obviously 
aims on the educational sector as it is very well elaborated in the visual as-
pects (modeling, animation, language) but contains only basic features for 
experimenting with multi agent models (experiment scripts, complex 
analysis features, simulation without animation, …). 

MadKit [GuFe2000] is a quite novel toolkit, which is based on a ge-
neric, highly customizable and scaleable agent platform. The Java-based 
platform consists of a micro kernel and various extension libraries. The 
micro kernel provides agent life cycle management, message passing and 
control of local groups and roles. A special extension called the “synchro-
nous engine” provides a basic simulation infrastructure. Simulations are 
basically created by extending java interface classes for agents. Also GUI 
classes for animation are provided. In contrast to AgentSheets, there is no 
explicit model representation, but programming knowledge and framework 
knowledge is required to realize simulations. Summarizing, MadKit is a 
very flexible framework for building agent based simulations but there is 
still a lot of work to do to actually implement a simulation. 

Swarm [MBLA1996] is the most popular toolkit for agent based simula-
tion. Like MadKit it is a programming framework, but from its beginning 
it was dedicated to simulation of artificial life (swarm) experiments. 
Swarm software comprises a set of code libraries for Objective C. They 
provide a basic programming framework facilitating the creation of agent 
based models. The basic Swarm system does not provide any declarative 
behavior description but there are extensions that provide declarative 
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model representations for behavior description like MAML [GuKF1999] 
or tools for special application domains, like EcoSwarm. The Swarm com-
munity is quite active and therefore a lot of useful extensions are available 
like simulation control, data collection and visualization as well as analy-
sis. Presumed one is a good programmer, Swarm is very powerful and 
might be a good choice for the intended projects. 

Repast (http://repast.sourceforge.net/) is another open source toolkit for 
agent based simulation developed at the University of Chicago. Newer 
than Swarm it borrows many concepts of its predecessor. In contrast to 
Swarm there are implementations in several programming languages like 
Python, Java or .NET. Additionally it provides built-in adaptive features 
such as genetic algorithms and regression. Repast is intended to be used 
for flexible models of living social agents. Therefore the extension to ac-
cess common GIS-formats are useful for realizing enhanced spatial envi-
ronments. Like in Swarm programming competence is required to imple-
ment simulation models. 

Jadex (see IV.7) was developed within the MedPAge Project. It is basi-
cally a FIPA-compliant BDI agent system, which allows the development 
of goal based software agents. In comparison to most other frameworks it 
has a declarative behavior description. Although originally designed for 
developing agent applications, several additional tools support the creation 
of agent based simulations as well. Three components help managing the 
peculiarities of simulation. An event service - realized as an agent - stores 
upcoming events and controls time advance for the event based simulation. 
Several groups of service agents can register at the event service for pro-
cessing the generated event streams. Another component called ASCML al-
lows the definition and distributed starting of initial agent scenarios. Fi-
nally, a logger agent allows debugging and observation of the simulation. 

SeSAm – a development at the University of Wuerzburg – was first ap-
plied in 1995 for the simulation of social insects. Over the years it grew to 
a more and more flexible, integrated simulation toolkit. Like AgentSheets, 
it provides visual agent modeling based on a high-level declarative lan-
guage with several language concepts for supporting complex models. 
Also, it offers features for creating systematic experiments and result 
analysis. SeSAm will be described in more detail in the next section. 
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Table 1. Overview on agent based simulation toolkits 

 First year/ 
last update 

Time 
advance 

Modeling 
language 

Google-
links1 

Experi-
ments/ 
analysis 

Swarm 1996/2005 Event Code 327 k X/X 

RePast 2000/2005 Event Code 69 k X/X 

MadKit 2000/2005 Event/Time Code 4 k -/- 

MASON 2003/2005 Event Code 163 k -/- 

Ascape 1998/2000 Time Code 1 k  -/X 

SeSAm 1996/2005 Time  Visual 26 k  X/X 

JadeX 2002/2005 Event Textual/ 
Code 

1 k -/- 

XRaptor 2000/2003 Time Code 0.2 k  -/- 

AgentS-
heets 

1991/2003 Time Visual 4 k -/- 

Anylogic 1992/2005 Event/Time Visual 1.3k 
(+Agent) 

X/X 

MATLAB 1994/2005   147k 
(+Agent) 

X/X 

Several other – historic and recent – toolkits for agent based simulation 
like MASON [Luk+2003], XRaptor [MPSU1995] or Ascape [Park2001], 
can be found in the literature. Also several commercial tools, like MAT-
LAB (http://www.mathworks.com) [Thor2000] or Anylogic (http://www. 
xjtek.com) have started to offer extensions for agent-based simulation or 
can be used to implement agent based models. It would be too much to de-
scribe them here in detail. Table 1 gives some insight about actuality, 
popularity and abilities of some often cited agent simulation tools. In the 
current stage of development the toolkits are to different make a general 
statement about the optimal simulation tool. The choice usually depends 
on the requirements of the projects and the abilities of the modelers. Some 
projects might be realized more efficiently in an event based manner using 
some low level simulation programming language. In other cases, the 
modelers might be domain experts without knowledge of programming 
languages. These users would probably prefer visual modeling. The avail-
ability of different domain specific extensions is another important crite-

1 The given number represents the number of hits, when searching for the term “agent” in 
combination with the name of the framework or toolkit. All results where derived at the 
26. May 2005.
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rion to identify the ideal simulation tool. Detailed comparisons of simula-
tion tools can be found in [ToHo2003] [Oech2004] [Fedr2005]. 

2.5 The Shell for Simulated Agent Systems Toolkit 

At least one of the tools shortly introduced in the previous section shall be 
described in more detail. SeSAm (ShEll for Simulated Agent systeMs) is a 
general purpose simulation tool. It provides the following key features, 
which will be illustrated on the next pages. 

Visual agent modeling 

Simulation models in SeSAm are constructed completely by visual pro-
gramming based on a quite intuitive representation for the agent architec-
ture and behavior representation. Thus, agent modelers can start quickly 
and do not have to learn the syntactic notations of a programming lan-
guage. Due to the activity-based behavior description, the implemented 
models are very intuitive. The visual representation can be used for docu-
mentation and even if you are not familiar with the system, it gives you an 
impression on how the simulation works. Graphical editors are available 
for all model elements like the agents’ properties and behavior, the situa-
tion or analysis definitions. Visual modeling per se facilitates model im-
plementation as only appropriate input possibilities are offered. However, 
several aspects provide enhanced usability: different views on complex in-
formation, hierarchical views, uniform interaction design, or documenta-
tion facilities (like proposed in [GrPe1996]). Additionally, SeSAm was in-
spired by modern programming environments and also offers code com-
pletion, refactoring- and debugging tools. Therefore SeSAm is not only a 
valuable system for modeling beginners, but also for implementation ex-
perts. All user groups can realize complex simulations in a quite comfort-
able way. 

Specifying an agent starts with defining his properties. Agent attributes 
are characterized by their name, type and accessibility. They may be de-
clared as public attributes, which can be accessed by other agents and rep-
resent commonly observable attributes of the agent. The other possibility 
are private attributes, which can just be accessed and manipulated by the 
agent himself and represent his internal mental state. The agent’s behavior 
is specified and implemented using an extension of UML activity diagrams 
[Oech2004]. Basically, these activity diagrams consist of activities and 
transition rules. The activities represent states containing a series of ac-
tions. These actions are executed until an exiting rule condition is evalu-
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ated as true and the next activity will be selected. Special activity nodes 
mark the start and end of the agent behavior. An example of an activity 
graph can be seen in the left window shown in Figure 1. The simulated en-
vironment (also called “world”) can be modeled like an agent, also incor-
porating attributes and behavior for global information and dynamic 
changes. Additionally, the environment may optionally have one of differ-
ent forms of spatial extension (2D map, 3D-Map, GIS-Map, etc.). 

Figure 1. Example of visual behavior modeling in SeSAm2

SeSAm is not completely declarative, like e.g. SMDL (http://sdml.cfpm. 
org). The declaration is based on so called “primitives” – basic primitive 
functions and actions provided by SeSAm (e.g. Move, SetVariable, Ge-
tAllObjectsOnPosition, +). The semantics of these primitives is defined in 
Java and also documented with text. Primitives are atomic language ele-
ments that can be composed to hierarchical function calls and user func-
tions. Basic primitives are put together to define high level primitives in a 
treelike structure (e.g. MoveToNearestCustomer). During simulation these 
primitives are executed by agents for perceiving and manipulating the en-
vironment. Using the primitives and complex user functions the modeler is 
able to define the agents’ behavior (see Figure 1; right window). In the 
same way he can also visually define analysis functions or experiment 

2  The left window shows an UML activity graph describing the behaviour of an 
agent. The right dialog shows the definition of an activity; a series of actions 
can be defined to specify, what the agent is doing, while he is in this activity. 
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scripts. For special purposes it is also possible to extend the large set of 
existing basic primitives with the provided plug-in-mechanism (e.g. in-
cluding primitives for accessing databases). 

After the necessary agent classes are defined, the agents (individual in-
stances of them) are placed into an initial situation. Default settings for at-
tribute values of agents and the world can be overwritten by individual 
start settings for each instance. A spatial map of configurable size can be 
used for spatial arrangement, if spatial aspects are of importance for the 
model. 

Integrated Simulator 

The integrated simulator interprets and executes the declarative agent 
model in a time stepped manner. Before starting a simulation run, a model 
compiler creates the runtime objects and is compiling the behavior de-
scription. 
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Figure 2. Online animation of the simulated model (left picture)3

To improve simulation performance, this compilation includes optimi-
zation steps like constant folding, inlining and lazy evaluation of list it-
erators. These techniques are inspired from compiler design and intended 
to reduce simulation time. An interactive control panel allows starting, 
stopping and resuming the simulation at any time. If the model has a spa-
tial component, the agents can be observed on an animated map during the 
simulation. Each simulation run is started within his own processor thread. 
At every time step (tick) all agents sequentially get the chance to reason 
and act. The execution sequence is randomly shuffled every tick. This fact 
forces modelers to be careful about synchronization. They have to explic-
itly take care about synchronization of the “virtual parallel actions” of dif-

3  Here, the agents are displayed on a two-dimensional map. To analyze the 
results different chart views (right picture) can be defined to record important 
evaluation parameter of the model. 
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ferent agents instead of making assumptions on a given succession of 
agents. 

Experimentation support 

To derive results from the simulation runs, SeSAm provides integrated 
components for model instrumentation, data preprocessing and systematic 
experimentation. A model probe collection, a so called “analysis”, de-
scribes a set of output values which should be recorded together during a 
simulation run. The modeler also specifies in which time intervals these 
measurements should be taken. E.g. a particular probe could record the 
total number of agents every 100th tick. An analysis could comprise probes 
for all types of agents. Four different possibilities are given for dealing 
with the values generated by an analysis: 

• Series Chart: This analysis can be used for online-observation. It shows 
the recent development of the observed values. 

• Block Chart: This is an alternative form of presenting values for online 
observation. The observed values are shown as blocks of different size. 
This analysis is inappropriate to show parameter evolutions as only the 
situation at one time step is visible, but it can pinpoint relations between 
parameters. 

• Table: This analysis is the numeric form of the “Block chart” analysis. 
Instead of depicting them as a block charts, the exact values are shown 
in a table. This form of online visualization is advisable when there are 
quite different values coming from a probe and these differences would 
not allow to distinct between lower values. 

• CSV-File: This analysis writes all recorded data into a comma-separated 
list. This data can be analyzed off-line with spreadsheet- or statistical 
programmes. If you use this analysis type and you turn off the on-line 
animation of the simulation run, computation time is saved, yet no rele-
vant data is lost. 

In many cases, simulation runs have to be repeated, either to validate re-
sults of stochastic simulation or to examine effects of with different initial 
conditions. SeSAm provides a generic mechanism to define and execute 
simulation experiments, i.e. collections of different simulation runs. Since 
simulation runs can take a lot of time, distributing experiments within the 
local network is supported. To use this option, a SeSAm client service has 
to be installed on every machine that may be used for experiments. The 
service is waiting and simulating in the background and therefore allows to 
continue working with this machine. If an experiment defining a queue of 
simulation runs is started, each simulation run will be handed over to one 
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client machine and the results are returned after a simulation run is fin-
ished. 

Interactive simulation 

In the typical case of a simulation experiment, there is no user interaction 
after start. For some applications and domains interactive simulation is 
very interesting. This form of simulation is also called “participatory 
simulation” and currently becomes quite fashionable in the area of agent-
based simulation [ReIZ2000] [Sem+2005] [GuDL2005]. The user be-
comes part of the simulation and may change values, direct agents or in-
duce events. He might e.g. trigger or clear machine malfunction in a fac-
tory simulation. Interaction allows testing the simulation model manually, 
helps to understand the relations between model parts and also allows cre-
ating more complex models, where humans are “playing” agents whose 
behavior is difficult to model. 

In recent versions of SeSAm interface designers were provided for cre-
ating interaction elements for agents and resources. These interaction ele-
ments may be arranged into a user and model specific graphical interface 
with buttons, sliders and input fields. These graphical components are 
bound to model parameter and can be used to observe the simulation run, 
but also to manipulate agents and the world during the simulation run. 
Thus, several interfaces for different user types (modeler, end user) may be 
created. This is especially useful for simulation beyond pure science and 
engineering, in training and educational settings, for marketing and other 
purposes. 

Extensibility 

Third party developers can use the flexible plugin mechanism to create 
extensions and to include additional application- and domain-specific 
functionality. There are interfaces to the SeSAm core and user interface. 
They make extensions nearly on every level of model elements possible. 
The user may define additional primitive functions, new data types, per-
sistence handlers, menu entries, GUI-panels and context menu actions. An 
example plug-in, which is very often used and therefore part of the stan-
dard version, is the 2d-spatial map representation. This plug-in provides a 
position type, behavior primitives for movement and spatial perception and 
finally GUI-panels for the animated map. Optionally this plug-in can be 
replaced by a 3d-representation or a sophisticated representation like it is 
used in geographical information systems. Recently a plugin to use GIS-
maps has been developed. Using this extension simulated vehicles are able 
to move across some street network [ScHK2004]. Another available exten-
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sion is able to import data structures from ontologies into the model and 
therefore prior work can be reused. The database plugin provides primi-
tives for accessing and modifying data in SQL databases. Many plugins 
like these are already available and prepare SeSAm for future needs. 

Summarizing, SeSAm is a very flexible tool for modeling and simulat-
ing agents. The main advantage of SeSAm is that it is a very short way 
from the model idea to simulation implementation and you get results 
quickly. Visual programming allows even inexperienced modelers to real-
ize their models. It supports model formalization for all users that start 
with coarse model concepts instead of an elaborated specification. This 
would be necessary when using standard programming languages. Never-
theless, the declarative agent behavior representation is turing-complete in 
the sense of computability theory. Advanced developers esteem many 
features like auto completion, refactoring and debugging support. Thus, 
even complex models can be handled and the comprehensive environment 
supports all steps from modeling to analysis of results. 

For these reasons SeSAm has already been successfully applied in vari-
ous domains. In the health care domain, SeSAm was used to find optimi-
zations for hospital patient scheduling (see III.5). In biological simulations 
hypotheses about ant and bee behavior were examined; e.g. for under-
standing the process of energy efficient heating of the bee hive brood nest. 
Psychological experiments using interactive simulation showed how peo-
ple use strategic knowledge to solve problems; test persons had to inter-
vene into the simulation and to formalize strategies for directing fire 
fighting units to bring a fire under control. Traffic simulations were im-
plemented to show how traffic jams are emerging on busy streets. The next 
question was how information about these congestions is influencing route 
choices of simulated car drivers and in consequence the emergence of jams 
[KlBa2004]. Quite another intention was pursued by the developers of a 
high-rack storage simulation. This model served as a testbed for the stor-
age control software [Tri+2005]. 

These examples show the board applicability of multi agent simulation 
in general and the tool SeSAm in particular. 

2.6 Simulation Testbeds for Agent Based Software 

Basically agent based simulation and agent based software development 
are used with different intentions. Whereas simulation is used for predic-
tion, training or proving hypotheses about an existing or planned system, 
agent based software is intended to solve actual problems. Nevertheless 
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there are many similarities and analogies according techniques, frame-
works and basic theories for the agent system itself. 

Software agents are designed to be applied to solve problems in a dis-
tributed way. Mostly, this is necessary due to the distributed environment 
of the software agents. They interact with the real world and legacy sys-
tems. In most cases a software agent is part of a multi agent system (= the 
application software). Due to their autonomy and their interdependent, 
mostly parallel processes, testing and evaluation of such systems is diffi-
cult. Isolated tests of single agents are usually not meaningful as problems 
often occur due to the interplay between the agents and the environment. 
On the other hand, comprehensive tests in the real environment would be 
too costly. Using multiagent simulation to produce environmental inputs 
and to evaluate agent based software is a logical solution to this dilemma 
[KlHo2003]. 

Figure 3. Sketch of a possible scenario where the left diagram describes the origi-
nal situation and right diagram represents the simulated environment 

Figure 3 illustrates how an example agent based application can be em-
bedded to either a real environment (left side) or a simulated environment 
(right side). A new agent based application (ABA) is planned to work in an 
environment consisting of additional information systems and users. These 
users do not have direct access to the ABA or to the information system, 
but to individual user interface agents, which transmit their inputs, hold 
some individual preferences but do not perform any major reasoning. This 
separation is advantageous as the user interface can be adapted to individ-
ual users and ABA or information systems can be easily replaced. It is also 
useful for completely integrating the ABA into a simulated application en-
vironment. If the communication protocols between the three systems are 
standardized, user interface agents and existing systems can be replaced by 
an agent based simulation (right diagram) that interacts with the agents of 
the ABA using the same protocols (ontology and message syntax). The 
real world consisting of user agents and information systems are repre-
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sented by the simulation model. This testbed can simulate realistic, but 
also extreme environmental conditions. The environmental dynamics can 
be reproduced as simulation includes the handling of virtual time. Simula-
tion time may be lots faster than real time leading to stress tests for the 
ABA system. Such tests usually cannot be done in the real world for tech-
nical reasons as well as of cost or security. 

A desirable characteristic for the testbed would be that the ABA has not 
to be adapted to it. It should not make any difference for the ABA agents 
whether they interact with real user and information agents or with the 
simulation environment. Therefore standardized communication between 
the simulated agents and the software agents is of importance. The FIPA 
standards (see IV.4.6) and a shared, defined ontology may be one solution. 
Another possible approach is to connect application and simulation by a 
shared database with well defined structure. 

Implementing simulation testbeds raises different difficulties depending 
on the used tool. In tools like Jadex or Madkit which were designed for 
interoperability in the first, there is no explicit technical distinction be-
tween environmental and application agents. As a consequence integrating 
the agents does not require additional interfaces, but the developers have to 
carefully design the overall system. Therefore, replacing parts of the com-
plete system by e.g. simulated user agents or agents that only use a virtual 
information source is quite hard as there is no separation between them 
and the application agents themselves. Additionally, there is no basic 
simulation framework that handles the proceeding of the virtual time. 

On the other side, basing the testbed on a simulation environment like 
e.g. SeSAm, requires that the complete simulation model or parts of it are 
able to interact with non-virtual agents outside of the simulation run and 
outside of the regime of the virtual time. For supporting such kind of func-
tionality, SeSAm provides the following plug-in extensions: 

• FIPA-Extension: This extension allows simulated agents to be addressed 
and interact with external FIPA-compliant agents. The plugin provides 
behavior primitives for searching service agents and sending/receiving 
messages. 

• Ontology Plugin: In addition to message transport a common ontology 
is a basic prerequisite for mutual understanding between agents. The 
ontology plugin allows importing and using ontologies developed with 
the popular ontology modeling tool Protégé. The ontological informa-
tion is directly used for generating data structures that can be used in 
message construction and parsing. 

• Database Plugin: Real world systems often manage their data in data-
bases. This plugin allows SeSAm agents to access and modify informa-
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tion stored in external databases. Behavior primitives allow the agents to 
perform SQL-Queries and Statements. 

Two recent projects shall illustrate the use of multi agent simulation as a 
testbed in very different domains: 

A first example for a multi agent simulation testbed is the integrated 
health care scenario Agent.Hospital (see III.1). In Agent.Hospital various 
agent based health care systems offer their services on FIPA compliant 
platforms, like e.g. patient scheduling, storing medical records or alloca-
tion of surgery teams. These multi agent systems have been linked together 
and also integrated into the worldwide network of agent platforms, named 
Agentcities. A joint directory facilitator allows finding and addressing 
certain services within a “virtual hospital”. 

For testing and presentation an integrated simulation scenario based on a 
SeSAm model was created. An exemplified patient process was chosen 
that required interaction with every participating agent system. The simu-
lated patients were modeled by the domain experts and the interaction with 
the agent applications were specified by the system developers. One pre-
requisite for interoperability of the SeSAm simulation and the different 
agent applications was the development of a hospital ontology (see III.1). 
During the simulation the availability of external services is checked by 
simulated agents. Requests regarding these services are directed to the ac-
cording external system and answers were received and processed by the 
simulated agents. Thus, an integrated system consisting of simulated envi-
ronment and all agent applications was realized. 

There were two benefits of this integration: First the simulation runs il-
lustrated how the many multiagent systems can work together. Secondly 
the appropriateness of the interaction can be shown. New applications may 
be easily integrated into the simulated environment as far as the imple-
mented standardized interfaces are supported. This first experiment of 
connecting agent based applications via a simulated agent-based environ-
ment was very encouraging and showed that it is possible and compara-
tively easy to create simulated environments as testbeds for software 
agents. 

Meanwhile, analogous concepts for testing complex control software are 
already used in industry. Within a collaboration project between the Uni-
versity of Wuerzburg and industrial partners, agent based simulation mod-
els of high bay storages were developed using SeSAm [Tri+2005]. The 
models were designed for testing the control software of an automatic 
warehouse containing high rack storages. Although this control software is 
not agent-based, it has to handle several concurrent and interrelated pro-
cesses. Therefore the multi agent paradigm seemed very appropriate for 
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implementing a simulation model and due to the graphical user interfaces 
of SeSAm the simulations were also useful for customer presentations. A 
high bay warehouse contains active elements like human operators, trans-
port units (conveyer belts, elevators) or scanners as well as passive ele-
ments like pallets, bins or boxes. Different factors like the warehouse lay-
out, the amount of orders and error probabilities of scanners have signifi-
cant effects on the flow of the goods and the transport control. The control 
software manages complex routing decisions and triggers the conveyers. 
The simulation model provides interfaces, such that it can be accessed and 
behaves like the real physical hardware. Interaction basically happens via a 
common database. Using this approach, the developers are able to test their 
software before the actual warehouse is build up. Different errors could be 
found in the early stages of development and costly subsequent changes 
could be avoided sparing significant costs for each warehouse project. 

2.7 Summary 

Agent based simulation has shown to be very useful for many purposes 
like making predictions based on models, understanding complex effects, 
training users in simulated environments or testing and evaluating soft-
ware. Especially in distributed environments with dynamic process inter-
dependencies, agent based simulation has advantages compared to other 
simulation techniques. 

Several tools for developing agent simulations can be found in the lit-
erature. Some of the available tools have already a very long and continu-
ous tradition, but most of them are still academic. The tools ease the work 
for modeling and implementation and also provide support for making ex-
periments and analysis. 

The simulation tool SeSAm was presented in more detail. Its strength is 
the usage of a declarative behavior description and the possibility for visu-
al modeling. Influences from modern software engineering make the visual 
modeling process even more effective. Simulations projects can be ac-
complished very fast and even by inexperienced modelers. 

Finally the approach of testing agent based applications with agent 
based simulation was presented. In contrast to the traditional applications 
of agent based simulation in biology and sociology this is quite novel field 
of research. Nevertheless two examples of this chapter showed that this is 
a very promising approach and even commercial success can be observed. 
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Abstract. The following chapter discusses various legal aspects concerning the 
implementation and usage of (software) agents. The underlying question if and 
how agents can issue legally effective declarations of intention is paramount in or-
der to enable any reasonable usage of agents and, therefore, evaluated in greater 
detail in Section 3.2. Furthermore, the issue of how to deal with potential errors in 
agents’ declarations (Section 3.3), the requirements of agents’ signatures (Section 
3.4) as well as liability (Section 3.5) and consumer protection issues (Section 3.6) 
are discussed. Finally, data protection issues and their implications on the usage of 
agents (Section 3.7) are scrutinized. 

3.1 Introduction 

The objective of this chapter is the critical discussion and evaluation of the 
importance of legal aspects in connection with (the usage of) software 
agents. As Parts II and III illustrated, there is a wide scope of potential 
fields for the application of agents. In many of them, agents execute decla-
rations for their principals, and those declarations are meant to be legally 
binding, otherwise the principal’s major benefit from using agents – 
mainly a reduction of transaction costs – could be neglected. This applies, 
e.g., for agents deployed in enterprise resource planning systems or on 
virtual market places as well as agents deployed in hospital scenarios as 
described by Paulussen et al. in Chapter III.1. 

Apart from the legal bindingness and effectiveness of agents’ behavior, 
various other legal aspects are interesting in connection with agents. Con-
cerning business transactions performed by agents, consumer protection 
and data protection issues as well as electronic signatures, amongst others, 
are of great relevance. And, what is more, one also has to consider the 
various legal consequences of agents’ misconduct: Contractual conse-
quences on the one hand (i.e., the question whether a contract can be re-
tracted) and liability issues on the other hand. 

Legislation specifically concerning electronic agents is very rare so far. 
Moreover, existing legal instruments reach their limits when being applied 
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to agents. It is therefore yet not quite clear how to handle most of the 
above mentioned aspects. In the following chapter possible solutions for 
these problems in order to legally facilitate a more widespread usage of 
agents will be outlined. 

This chapter mainly refers to the German legal system. References to 
the legal situation in other countries or to European legislation are made 
where appropriate. 

3.2 Legally Effective Declarations by Agents 

Many conceivable fields of application for electronic agents – such as en-
terprise resource planning, production control, electronic procurement, 
virtual market places – aim at a situation which is considered binding for 
both (or all) parties involved in a transaction. The legal instrument to reach 
such bindingness is the conclusion of a contract. Hence, the primarily in-
teresting question concerning legal aspects of MAS is whether and how 
contracts can be concluded through agents. And, what is even more im-
portant: How can a contract be concluded in a way that is legally binding 
and enforceable? The question behind this is whether agents have to be re-
garded as independent persons in this connection, or whether they are 
things, i.e. mere tools for the conclusion of contracts. 

3.2.1 Can Agents Execute Declarations of Intention on Their 
Own? 

The notion of an agent as a person acting as an other person’s representa-
tive as well as the agent’s autonomy – both described by Lockemann in I.1 
– suggest that an agent is some kind of personality. This, from a mere 
philosophical point of view, seems to be one of the most fascinating ques-
tions concerning artificial intelligence (see e.g. [Beie2003]). However, the 
question also has a juridical implication: As an independent personality, an 
agent could execute declarations and conclude contracts on its own and 
would have to be considered as its principal’s representative not only in a 
metaphoric sense, but also in a legal one. 

The following scenario may help to identify and discuss the underlying 
legal problems: 

A buyer charges his software agent with buying a certain good for him. 
The agent gathers information from various sellers’ websites, picks the 
most promising, negotiates with the seller (or his agent) about the price 
and further conditions in accordance to its principal’s preferences (which 
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the agent might have learned from earlier transactions), and finally orders 
the good. The buyer only observes the result of this transaction. 

It is quite clear that, in this scenario, not the agent itself becomes a party 
to the contract. De facto, the agent acts as its principal’s representative. 
But does the law recognize the agent as a representative as well? §§ 164–
181 of the German Civil Code [BGB] do not expressly state that a repre-
sentative needs to be a natural person (i.e. a human), but presume this 
(which is unquestionable, because the historic legislator of the BGB did 
not foresee the technical development). Agents are clearly artifacts, not 
human beings. But is that the final answer to our question or can agents 
form some kind of legal personality and thus be representatives in a legal 
sense? 

There are basically two ways how agents could be recognized as legal 
personalities: On the one hand, agents could be legal entities, as e.g. incor-
porated associations or limited liability companies are. This however re-
quires a statutory act that constitutes an agent’s quality as a legal entity. 
Neither in Germany nor in any other country such legislation exists. 

On the other hand, the similarity of agents and humans could be close 
enough to justify treating agents as (or similar to) natural persons. Rea-
soning by analogy generally has two prerequisites: An unintended lack of 
regulation for a situation with comparable interests to an already regulated 
situation (cf. [Hein2005, preamble § 1 introduction, note 48]). Obviously, 
there is a lack of regulation for agents, and, this lack does not seem to be 
intended by legislators as they surely were unable to foresee the technical 
development towards computer systems with human-like qualities. But can 
these situations really be compared? If agents’ qualities came close to hu-
man qualities relevant for the conclusion of contracts, i.e. legal and con-
tractual capacity, or more precisely, the capabilities addressed by these two 
terms, this would unconditionally be the case. 

Legal capacity 

In general, legal capacity is understood as the ability to hold rights and ob-
ligations (cf. [Schm2001, § 1 note 6]). This implies the ability to hold pat-
rimony and it requires an own identity. As shown above, under existing 
law agents have not explicitly been conferred legal personality. However, 
some authors try to enable agents to hold patrimony. Sartor, e.g., proposes 
that agents could be transferred a certain amount of (electronic) money to 
be used for transactions and to serve as a warranty for the counter parties 
involved in contracts with the agent (cf. [Sart2002, pp. 6-8]). Although this 
and similar concepts may sound promising, currently we have to stick to 
the finding that agents do not possess legal capacity. 
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Contractual capacity 

Contractual capacity is defined as the ability to independently conclude 
valid legal transactions (cf. [Hein2005, introduction § 104 note 2]). This 
requires the ability of free decision-making, backed by (a minimum of) 
conscious and moral thinking (cf. [NiSe2004, p. 549]). Agents may pos-
sess a certain intelligence and autonomy, however, they are incapable of 
free decision-making as yet. 

Conclusion 

In summary, agents lack legal as well as contractual capacity and, there-
fore, are unable to execute their own declarations of intention or rather 
enter their own contracts. Thus, they are also unable to act as representa-
tives in a legal sense. Even if a special legal subject, such as an “electronic 
person” suggested by some authors, would be created, it can be doubted 
that this would solve all juridical problems. Being “electronic persons”, 
agents would have to act as representatives for their principals in a legal 
sense. Although this comes closer to their factual function, it evokes fur-
ther problems, e.g., how to handle situations where an agent exceeds his 
principal’s will. A human representative would be liable according to § 
179 BGB, i.e., he would become party to the contract himself instead of 
the principal. Agents however currently cannot be subjects of liability or 
parties to contracts. Questions like this have to be considered when creat-
ing a legal framework for electronic agents. 

3.2.2 How Can an Agent’s Declaration Be Ascribed to Its 
Principal? 

The finding that an agent is incapable of executing its own declarations of 
intention and, therefore, cannot act as its principal’s representative, leads 
to a further question: Can the declarations of intention issued by an agent 
be ascribed to its principal? Only if it can is the agent’s action legally 
binding for the principal. 

Under German law, it is generally accepted that declarations of inten-
tion, which were automatically generated by a computer system on the ba-
sis of given parameters, but without any involvement of a human immedi-
ately before the declaration is executed – so called computer declarations
– are declarations of the user of the respective computer system (cf. 
[Corn2002, p. 354]). 

However, the situation is different if autonomous agents instead of 
automated computer systems are involved in the conclusion of a contract: 
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Much of the decision-making is shifted from the user to the agent due to 
the agent’s intelligence and autonomy. Consequently, the user lacks the 
control which would be needed as a link between the user and the final 
declaration generated by the computer. 

A declaration of intention generated by an agent can nevertheless be at-
tributed to the agent’s user. The situation equals the one typical for so 
called blank declarations, i.e. declarations that were signed, but deliber-
ately left incomplete and completed by a third person. The original issuer 
has only very little influence on the final content of the declaration, how-
ever, this kind of declaration has long been accepted as a valid declaration 
of intention (cf. [LaWo2003, § 48 note 34]). If this applies to humans act-
ing completely independent of the principal, it also should be applied to 
electronic agents, because here, the principal has at least some control 
through specifying the parameters for the agent’s behavior. 

To conclude, declarations of intention generated by agents can be attrib-
uted to their respective principal and are therefore legally binding. 

3.2.3 Execution and Reception of Declarations by Agents 

The finding that a declaration of intention generated by an agent is basi-
cally attributable to its principal does not automatically imply the legal ef-
fectiveness of such a declaration. The declaration needs to be executed by 
the issuer and (according to § 130 sec. 1 BGB) received by its addressee. 

Execution of declarations 

Executing a declaration of intention is defined as voluntarily putting it into 
circulation in a way that is undoubtedly definite (cf. [Hein2005, § 130 note 
4]). To provide an example, in case of an e-mail this means voluntarily 
clicking the “send”-button. Yet, it is certainly more difficult to determine 
when an agent’s declaration was executed. One might be tempted to con-
sider the activation of the agent as a voluntary act by the user, however, 
this cannot be regarded as execution of a declaration as the agent still 
needs to concretize the content of the declaration before finally posting it. 
Hence, the declaration is executed when the respective agent posts it to the 
recipient (cf. [NiSe2004, p. 551]). 

Reception of declarations 

The reception of a declaration of intention requires that the declaration 
reached the addressee’s sphere of influence in a way that enables him to 
take note of it under normal circumstances. An agent certainly belongs to 
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its user’s sphere of influence, no matter how autonomously it is able to act. 
But does the user have the possibility to take note of the declaration as 
soon as it was stored by the agent? This obviously depends on the capacity 
and configuration of the agent and, furthermore, on the kind of data the 
declaration consists of. If the declaration is not interpretable by the agent it 
simply functions like a mailbox, so that the user is able to take notice of 
the declaration as soon as it was stored by his agent. 

Admittedly, the situation could be judged differently if the content of a 
declaration is standardized and therefore interpretable for agents and the 
agent is sufficiently intelligent to comprehend it. One then might assume 
that the comprehension of the declaration by the agent will suffice as re-
ception, and the user’s possibility to take note of it is no longer relevant. 
This again reflects the agent’s factual function as a representative of its 
user, however, as long as agents are incapable of being representatives in a 
legal sense, they are (legally) limited to the above-described mailbox 
function. Consequently, declarations can only be deemed as received by 
the user when stored by his agent. 

3.2.4 Agents’ Declarations in Other Legal Systems 

As the above written only referred to the German legal system, a brief 
overview of the legal situation in other countries, especially concerning the 
conclusion of contracts by agents will be given in this subsection To put it 
short, no existing legal system grants legal personality to agents. Usually, 
either legal and/or contractual capacity are prerequisites for conferring le-
gal personality to an entity, or – as in British and American law – some 
kind of positive justification is needed. The justification can be based on 
moral entitlement, social reality or legal convenience (cf. [AlWi1996, 
p. 35]). In the end, the same reasoning as under German law applies: 
Computer systems lack self-consciousness, they are incapable of con-
scious, morally backed decision-making and do not possess social capacity 
for autonomous actions (cf. [Kerr1999, pp. 18-20] and [AlWi1996, 
pp. 35-37]). 

For that reason, agents have to be viewed as auxiliary means used by the 
principal to facilitate transactions. However, the theoretic constructions for 
ascribing declarations executed by an agent to its principal differ in various 
legal systems. 

The first attempt to initiate legislation that explicitly regulates contracts 
concluded by information systems was undertaken by the United Nations 
Commission on International Trade Law by presenting a model law on 
Electronic Commerce [UNCITRAL], which was aimed to simplify global 
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electronic commerce. In its Art. 13 the model law regards data messages 
sent by information systems as equivalent to those sent by individuals. As 
a consequence, contractual declarations executed by electronic agents are 
ascribed to the agents’ respective principal and therefore regarded as le-
gally valid (cf. [Weit2001, pp. 24-25] and [Kerr1999, pp. 30-32]). How-
ever, the UNCITRAL model law is not binding for any state, it is a mere 
proposition. 

Canada and the US were the first two states to adopt explicit legislation 
concerning contracts concluded with the help of software agents. Accord-
ing to sec. 14 of the US Uniform Electronic Transactions Act [UETA], 
contracts concluded by electronic agents acting on behalf of both contrac-
tual parties or by an electronic agent and an individual acting on its own 
behalf are legally binding. Additionally, sec. 202 and 213 a) of the Uni-
form Computer Information Transactions Act [UCITA] make clear that 
contracts can be formed through electronic agents and that the behavior of 
electronic agents leading to a contract legally binds their principals. In its 
sec. 21 the Canadian Uniform Electronic Commerce Act [UECA] also ex-
plicitly states that contracts can be formed by the interaction of humans 
and/or electronic agents. 

Concerning the EU member states, the Electronic Commerce Directive 
[EU2000a], or more precisely its Art. 9, gives a strong hint that contracts 
concluded by means of agents should generally be considered as valid: 
Art. 9 does not explicitly mention electronic agents, but the European 
Commission made clear that the deployment of intelligent software mod-
ules must not be hindered by the member states’ implementation of the di-
rective (cf. [Euro2002, p. 22]). This leads to the conclusion that under the 
EU Electronic Commerce Directive all member states have to accept con-
tracts concluded by electronic agents as legally valid and binding for their 
respective principals. Amongst others, [Schw2001] as well as [AlWi1996] 
illustrate the legal situations in other countries such as Austria or Great 
Britain. 

At large, we can draw the conclusion that – although the preconditions 
for this differ – under most (at least western) legal systems, agents are ca-
pable of executing declarations and concluding contracts that are legally 
binding for their human principals. Agents are basically regarded as some 
kind of tool in this connection, not as entities acting independently in a le-
gal sense. With their intelligence and autonomy (in a technical sense) in-
creasing, this might change in the future – and, most probably, will make 
an adaptation of legal regulations inevitable. 
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3.3 Handling of Errors in Agents’ Declarations 

The previous section ascertained that agents are basically capable of acting 
in a way that legally binds their principals. This evokes a further question: 
What happens if an agent for some reason acts in a way that does not cor-
respond to its principal’s will? Or, more precisely: What are the conse-
quences if the agent concludes a contract its principal would never have 
entered in such a way? The crucial question is whether the principal is 
bound by the agent’s declaration or whether he can retract such a declara-
tion.

3.3.1 Potential Errors 

There are different types of conceivable situations leading to a contract 
which does not correspond to the principal’s will. Thus, some kind of legal 
error handling is necessary. These situations correspond with the classifi-
cation of potential failures undertaken by Nimis et al. in IV.6, implying 
that the question of legal error handling only arises when an error became 
effective and lead to an unwanted outcome. The dependability model in-
troduced in IV.6 can, therefore, be extended to cover declarations by add-
ing a sixth, legal, layer on top of layer 5. Thus, internal and external faults 
propagating to the legal layer need to be examined.

First of all, among the internal faults, the principal might have faultily 
instructed his agent by accident, e.g. he mistyped the financial limit or 
other parameters, and the agent negotiated on that basis. 

Secondly, though the principal instructed the agent according to his will, 
the agent might exceed the limits given by its principal due to miscalcula-
tion or design errors or misinterpretation of its scope of discretion, e.g., by 
prioritizing the principal’s preferences in a way that in fact does not meet 
the principal’s will. 

Thirdly and as an external fault, though the agent was instructed cor-
rectly and its decision-making process took place without any errors, the 
resulting declaration that finally reaches the other contracting party might 
differ from the one originally sent by the agent because of data loss (infra-
structure failure) or manipulations by third parties during transmission 
(peer failure).
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3.3.2 Legal Solutions 

From a legal point of view, these three situations have to be judged differ-
ently. 

Concerning the first type of errors, a faulty declaration executed by the 
principal could be retracted by him according to § 119 sec. 1 BGB, if the 
reason for the faultiness of this declaration is simply misspelling the price 
or other relevant aspects for the contract. As the source of faultiness is un-
doubtedly the same, the retraction should apply as well if the principal ac-
cidentally instructs his agent wrongfully, so that the agent negotiates on a 
wrong basis. As shown in Section 3.2.4, the agent is a mere tool the princi-
pal uses for generating and executing his declarations of intention. Ob-
serving this, it is clearly the principal who causes the error, not the agent, 
and the error is still persistent in the final declaration received by the other 
contracting party. Thus, the principal should have the right to retract his 
declaration of intention according to § 119 sec. 1 BGB. 

However, the principal does not have the right to retract his declaration, 
if the error does not directly affect the declaration executed by the agent 
but simply consists in the programming or configuration of the agent. 
Thus, the error is latent and does not need to be treated – just like the latent 
technical errors described above by Nimis et al. 

This is different for errors of the second type. The discrepancy between 
the principal’s will and the content of the actual declaration of intention is-
sued by the agent is not the principal’s fault. It rather is the agent’s miscal-
culation that lead to the faulty declaration. Although the reasoning process 
of an agent is much more complex than that of an inventory control sys-
tem, the circumstances are similar: In both cases, the user delegated the 
decision-making to some piece of software. He can only influence this 
process through setting certain parameters in advance (although in the case 
of an inventory control system these parameters are quite detailed, i.e., the 
user can explicitly define business processes), but has no control over the 
actual result of the decision-making, which normally is directly posted to 
the other contracting party. 

Under German law, errors in the decision-making process do not justify 
the retraction of a declaration of intention (cf. [Hein2005, § 119 notes 29 
and 18]). The German Federal Supreme Court recently clarified this for 
declarations automatically executed by means of an inventory control sys-
tem (cf. [Bund2005, p. 178]). This surely cannot be judged differently if 
the calculating error has been made by an agent – otherwise the use of 
agents would be privileged in comparison to other technical means. This 
result seems fair as the principal, who on the one hand has to carry the risk 
of being bound to a declaration he would not have executed in such a way 



606 T. Nitschke 

himself, on the other hand gains economic advantages by the usage of an 
agent. 

Errors of the third type actually comprise two different constellations: 
On the one hand, data, in our case: a declaration of intention, can get (par-
tially) lost during transmission after the principal or his agent sent the 
declaration. In such cases, § 120 BGB entitles the principal to retract his 
declaration as far as the error really occurred outside the principal’s sphere 
(which, in practice, is a question of provableness). On the other hand, the 
declaration might have other content than intended by the principal due to 
manipulation by a third party. In this case, the principal also enjoys a right 
of retraction granted by § 123 sec. 1 BGB. 

3.3.3 Consequences 

With the capability of agents growing steadily, especially the errors of the 
second type may increase: The more intelligent agents become and the 
more autonomously they reach decisions, the more probable does it be-
come that their decisions will differ from the principal’s will. This can – at 
least partly – be compensated through an improvement of the agent’s rea-
soning process. Other technical measures can reduce the risk of errors as 
well, e.g., secure communication protocols to prevent the manipulation of 
data during transmission or dependability enhancement to prevent or treat 
unintended errors (cf. Nimis et al., supra IV.6). 

In some situations of course, technical means are incapable of prevent-
ing errors in agents’ declarations that lead to contracts unwanted by the 
principal. At least for some of them, there is a legal possibility to revoke 
these declarations. For one of the possible sources of error however, the 
agent’s reasoning process, there is unfortunately no right of retraction so 
far. This might pose an impediment to the mass deployment of agents for 
contractual purposes. However, up to now it seems fairest to impose the 
risk of being bound to a contract based on a faulty declaration executed by 
an agent on the agent’s user, not on his contractual partner. 

3.4 Signatures by Agents and Formal Requirements 

An important, yet often underestimated aspect in connection with contracts 
concluded via electronic networks – especially the internet – is how to 
produce evidence of the conclusion of such a contract in a legal dispute. 
After all, it is quite well known that electronic documents can easily be 
manipulated by third parties. A large number of recently finished or pend-
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ing law suits concerning online auctions, where vendors or buyers claim 
not to have made a certain declaration leading to the conclusion of a con-
tract, illustrates this. 

An electronic declaration of intention needs to be authentic, integer and 
authorized in order to have any probative value in a law suit. This applies 
for e-mails or other electronic documents sent by humans as well as for 
declarations executed by agents. As a growing number of acknowledge-
ments of orders, invoices, certificates, time stamps and inquiries is gener-
ated and signed automatically, the problem already has a huge practical 
relevance. 

Authenticity in this connection means that a declaration was really is-
sued by the person that claims to be the issuer. Integrity means that a 
document has not been altered during the transmission from its issuer to 
the recipient. Authorization means that the transmission of a document was 
really intended by its issuer. 

There is a broad consensus – not only in Germany – that simple e-mails 
are insufficient to prove the authenticity, integrity and authorization of a 
declaration of intention as soon as they are contested by one party in a law 
suit. The situation is different if a declaration is encrypted and/or digitally 
signed: Contesting the authenticity, integrity or authorization becomes 
much more difficult, depending on the complexity of the security mecha-
nisms applied. 

3.4.1 European and German Signature Regulation 

A legal framework for such mechanisms, especially electronic signatures, 
is provided by the EU signature directive [EU2000b], which is imple-
mented by the German signature code [SigG]. According to the German 
signature code (and similar to other EU member states legislation), there 
are three different types of electronic signatures:

• Simple electronic signatures merely consist of the name of a person, 
typed under an electronic declaration, or of a handwritten signature that 
has been scanned and pasted into the document. 

• Advanced electronic signatures require a cryptographic key that facili-
tates the identification of the signatory and that is under his sole control; 
moreover, the signature has to be uniquely linked to the signed docu-
ment, so that later changes of the data can be detected. PGP for example 
meets these conditions. 

• Qualified electronic signatures additionally require a valid qualified cer-
tificate and have to be generated by a secure signature-creation device. 
According to the EU signature directive and its implementation in the 
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German BGB, qualified electronic signatures have the force of docu-
ments in written form. 

Whereas agents can undoubtedly generate simple electronic signatures
by adding their respective user’s name to a declaration, one may wonder if 
they are able to meet the requirements of the two other types of signatures. 

Concerning advanced electronic signatures, one of the prerequisites is 
especially problematic: It is argued that advanced signatures require a se-
cure signature-creation device, which is under the user’s sole control. 
However, [BeNS2005, pp. 215-216] demonstrate that software solutions 
are sufficient for validly generating advanced electronic signatures. Thus, 
agents can, in principle, generate signatures of this type. 

The situation is even more problematic with regard to qualified elec-
tronic signatures. Here, using a secure signature-creation device (i.e., 
smart card and PIN-pad) is compulsory. In order to meet this precondition, 
users could identify themselves in the required way and then legitimize 
their respective agent to accomplish one or several business transactions. It 
could be argued that this procedure would allow presentation problems to 
occur (i.e. other data than indicated is actually signed) and, what is more, 
the user possibly would not even notice that his agent generates signatures 
on his behalf. This consideration of course should be left to the respective 
user in the light of the economic advantages he gains through the autono-
mous signature process. Furthermore, the SigG does not explicitly require 
signatures to be generated by natural persons. Thus, agents are basically 
capable of creating qualified electronic signatures as well. This is in line 
with the notion of agent, especially with agents’ autonomy. However, it 
can only be considered as an intermediary result as there are various legal 
consequences linked with qualified electronic signatures. 

3.4.2 Probative Value of Electronically Signed Documents 

Whereas simple electronic signatures do not provide any gain in probative 
value (– the name or scanned signature can as easily be manipulated as the 
rest of the document –), advanced electronic signatures improve the situa-
tion of the party bearing the burden of proof. But still, the evaluation of the 
authenticity, integrity and authorization underlies the discretion of the 
court (cf. § 286 German Civil Procedure Code [ZPO], which refers to this 
as free evaluation of evidence). 

With regard to qualified electronic signatures, § 371a ZPO stipulates a 
prima facie evidence, which makes it easier to furnish evidence of the au-
thenticity, integrity and authorization of an electronic document: They are 
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presumed as long as the other party does not prove the contrary (although 
jurists still argue about the details of this counter-evidence). 

In our view it does not make any difference for the probative value of an 
electronic declaration whether it was digitally signed with a qualified 
electronic signature by an agent or by a human. 

3.4.3 Agent Signatures and Formal Requirements 

However, it does in fact make a difference whether an electronic declara-
tion was signed by an agent or by a human in connection with formal re-
quirements. Qualified electronic signatures have the same force as hand-
written signatures according to § 126b BGB in most cases, so that statutory 
formal requirements can be met by both types of signatures. 

Legal requirements of writing usually aim to caution against overhasty 
contract conclusion (cf. [Hein2005, § 125 Rn. 2]). This warning function, 
however, cannot work if the user is not personally involved in the signing 
process, because his agents performs the signature for him. As a conse-
quence, agent and human signatures are not equal in this respect. Thus, 
statutory writing requirements cannot be met by agent signatures (cf. 
[BeNS2005, pp. 217-218]). 

3.5 Liability 

One of the more important legal aspects – also highly relevant in practice – 
is the question of liability for agent’s behavior. As shown in Subsection 
3.2.2 of this chapter, users basically are legally bound by contracts entered 
into by faultily programmed agents. Thus, the possibility to sue the pro-
grammer of the agent might be of high interest to the user. 

It is quite obvious – under German law as well as under that of other 
states – that the programmer of an agent is liable for errors of his “prod-
uct”. This comprises as well the liability for misbehavior of the agent as 
far as this is clearly based on incorrect programming. Of course, it is the 
user, not the programmer, who is liable for his agent’s behavior if it is due 
to wrongful configuration. 

Hence, the problem is actually not a legal but a factual one: It is fairly 
hard to find out and even harder to prove from whose sphere the error 
originates. 

Quite surprisingly, there is some clarifying regulation which is applica-
ble to a very special field of application: Mobile agents. According to § 9 
sec. 1 of the German Tele Services Act [TDG], the operator of a server is 
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not liable for the mere transfer or caching of data. As (mobile) agents, in 
the end, merely are data, the same has to apply for operators transferring 
mobile agents through their networks. As a consequence, operators cannot 
be made liable for the behavior of mobile agents who merely migrate 
through their network or who are cached on their servers. 

3.6 Consumer Protection 

If agents are applied on virtual market places involving business-to-con-
sumer constellations, another problem arises: Many states, especially those 
who are members of the European Union, have more or less strict con-
sumer protection regulations, which on the one hand entitle consumers to 
terminate contracts and on the other hand impose a number of information 
duties on vendors. The objective of these regulations is to compensate for 
the information asymmetries typically existing in business transactions. In 
general, consumers are considered to be less experienced and shall there-
fore be protected from precipitately concluding disadvantageous contracts 
(cf. [Jana2003, pp. 1-3]). 

For the European Union, the Electronic Commerce Directive stipulates 
fairly detailed information duties, which were implemented almost literally 
in most of the member states. The Electronic Commerce Directive has 
been transposed into German law by §§ 312a–312d BGB. § 312c BGB 
stipulates various information duties and is only applicable to distance 
selling contracts. These are defined as contracts about the delivery of 
goods or the supply of services between a consumer and a vendor, which 
are exclusively concluded by use of telecommunication means. Therefore, 
distance selling contracts also encompass the ordering of goods via the 
internet. As software agents are merely tools in concluding contracts, it is 
the users whose consumer characteristics are relevant. Additionally, § 312e 
BGB, which implements the EU Distance Selling Directive [EU1997], 
stipulates some further information duties for contracts concluded via the 
internet. 

If the aforementioned information duties are not properly and entirely 
fulfilled by the vendor, the consumer retains the right to terminate the 
contract without being bound to the relatively short period for revocation 
(§ 312d sec. 2 BGB). Hence, failure to fulfill the information duties also 
risks the economic success of the transaction. 
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3.6.1 Information Duties 

§ 312c BGB requires the vendor to inform the consumer about the com-
mercial purpose of the contract, the identity and address of the supplier, 
the price, fundamental characteristics of the respective good or service 
and, the existence of a right to terminate the contract. This information has 
to be provided prior to the conclusion of the contract and in a clear and 
comprehensible way. Additionally, this information also has to be made 
lastingly available (cf. § 126b BGB) and provided until the fulfillment of 
the contract at the latest. Until then, the consumer also has to be notified 
about how to exercise his right to terminate the contract and the resulting 
legal consequences, the warranty provisions as well as contact details for 
potential complaints and objections. 

Similar to § 312c BGB, § 312e BGB requires vendors to furnish infor-
mation and auxiliaries for customers in order to detect and correct errors in 
their orders, to explain the technical way to the conclusion of a contract, to 
download the general terms and conditions. Furthermore, the receipt of an 
order has to be immediately acknowledged. 

3.6.2 Performance of Compulsory Information 

The fulfillment of the information duties is fairly easily achievable when 
only humans are involved in a business transaction. However, if electronic 
agents take part in such a transaction the fulfillment is incomparably more 
demanding. On the one hand, one has to differentiate between information 
duties prior and subsequent to the conclusion of the contract. On the other 
hand, one has to consider whether the fulfillment of information duties is 
sensible and technically feasible when agents are involved. Hereby, a con-
flict arises between the objective of the consumer protection regulations, 
i.e., the comprehensive and personal information of the consumer, and the 
economic and technical purpose of agents, i.e., information processing for 
their users in order to relieve them. 

Antecedent and subsequent information duties 

Information duties subsequent to the conclusion of the contract can quite 
easily be performed. § 126b BGB requires that users can print or digitally 
save the information permanently. Hence, vendors either can hand the re-
spective information directly to the agent or notify the agent from where it 
can gather the information. In the end, it is of little relevance how the in-
formation is transferred to the consumer, i.e., if it is directly posted to him 
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via e-mail or if it is sent to his agent. In both cases, the user is put in a po-
sition to take note of the respective information. 

With respect to antecedent information duties, the case is more difficult. 
Informing the user prior to the conclusion of a contract is practically im-
possible because he deploys the agent exactly in order to avoid taking note 
of any larger amount of information, no matter whether it is based on legal 
obligations or not. 

Usefulness of providing information to agents 

A more detailed look at the compulsory information reveals that some of 
the information does not seem to make sense if an agent acts on behalf of 
the customer, e.g., the duty to explain the technical steps necessary to con-
clude a contract (§ 312e sec. 1 s. 1 No. 1 BGB and § 3 No. 1 of the regula-
tion on information duties according to civil law, [BGB-InfoV]) or the 
duty to explain how to detect and correct errors before posting the order (§ 
312e sec. 1 s. 1 No. 1 BGB and § 3 No. 3 BGB-InfoV). This information is 
completely unnecessary for the agent because it “knows” the technical 
process of the contract conclusion (as the standards for this need to be de-
fined beforehand) and was assigned by its user in order to avoid mistakes 
of the type aimed at by the law (i.e., primarily mistyping). For the user the 
information is useless as he is not involved in the process of concluding 
the contract. 

One might presume that the vendor should be exempted from the duty to 
provide such “useless” information. However, this presumption is prema-
ture: First of all, the vendor cannot necessarily distinguish whether an 
agent is involved or a person. Furthermore, statutory information duties are 
mandatory, i.e., they can not be waived by contracting parties and apply no 
matter if an individual needs the information in a particular case or not (cf. 
[NiSe2004, p. 553]). 

Information that still makes sense when agents are involved in a trans-
action clearly has to be provided. This requires standardized representation 
of the respective information in order to make it comprehensible to the 
agent. Although some attempts to formalize legal norms and terms have al-
ready been undertaken, e.g., in the field of data protection (P3P), there are 
no comprehensive XML schemes, ontologies or negotiation protocols that 
contain all issues relevant to electronic commerce so far – and, due to the 
complexity of the task, this might take a while. 

But could information duties for that reason be omitted as far as elec-
tronic agents are involved in transactions? Gitter and Rossnagel indeed ar-
gue that it is the consumer who makes the fulfillment of information duties 
impossible for the vendor by deploying an agent. According to them it 
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therefore seems unfair to impose the risk of permanent revocability of the 
contract on the vendor. It could be deemed contradictory behavior if a con-
sumer were able to refer to the lack of certain information in this situation 
(cf. [GiRo2003, p. 69]). 

However, the pitfall of this approach lies in the fact that the argument of 
contradictory behavior is an exceptional provision under German law, 
which is only applicable to prevent inequitable results in particular cases 
(cf. [Hein2005, § 242 note 13]) where no regulation exists. In contrast to 
that, consumer protection law explicitly regulates the cogent character of 
information duties. Hence, consumers cannot be deemed to have re-
nounced their rights, less than ever implicitly by deploying an agent. One 
has to bear in mind that it is the vendor who designs the business models 
facilitating the use of electronic agents and who not only economically 
benefits from them, but also knows the limits of the agents’ capabilities as 
well as the mandatory character of consumer protection law (cf. 
[NiSe2004, p. 554]). As a consequence, the vendor has to technically allow 
for the statutory information duties. 

3.6.3 Related Problems 

Similar problems arise in practically any area where statutory information 
duties are imposed. An example is § 6 of the German Tele Services Act 
[TDG], which requires suppliers of information or telecommunication ser-
vices to inform their customers about their name, address, phone and fax 
numbers, e-mail address, public registers, tax identification number and 
others. 

Again, the question arises if it is sufficient to furnish the user’s agent 
with the required information. And again, it is unclear how to cope with 
the fact that it is technically impossible to fulfill information duties when 
agents are involved due to a lack of standardization. Furthermore, the an-
swers to these questions are also similar: As the possibility to gather the 
respective information from a prominent place on the website of a supplier 
is normally sufficient to fulfill the requirements of § 6 TDG, it conse-
quently should also suffice to post the (possibly standardized) information 
to an agent, from whom its user is capable to retrieve the substance of the 
information. And here as well, the supplier has to technically allow for the 
statutory information duties. 
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3.7 Data Protection 

Apart from data security, i.e., the technical protection of data against ac-
cess by third parties, which should go as a matter of course, data protection 
law plays an important role for business transactions by agents. In connec-
tion with electronic commerce as well as with other applications for multi-
agent systems such as the ones for the medical sector described in Part III, 
a large amount of personal data is captured, processed and transmitted. 
According to German data protection law – which is based on the EU Data 
Protection Directive [EU2002] – this is generally forbidden, except where 
permitted by law (which occurs relatively rarely in practice) or consented 
to by the person concerned. Due to the principle of informed consent (cf. 
[Simi2003, § 4a notes 23-26]) prevailing in (German) data protection law, 
two questions arise: What information does the person concerned have to 
be furnished with and what are the prerequisites for a valid consent? 

3.7.1 Compulsory Information Concerning Data Protection 

§ 4 sec. 1 of the German Tele Service Data Protection Act [TDDSG] – to-
gether with § 4 sec. 3 of the Federal Data Protection Act [BDSG] – stipu-
lates that a person who offers information services has to provide informa-
tion about the manner, extent and purpose of the capturing and processing 
of personal data as well as the responsible organization and the eventual 
transmission of the data to an organization outside the EU (cf. [Zsch2005, 
p. 725]). This again leads to a question parallel to the one described in 
Subsection 3.2.3 in connection with consumer protection: Is it sufficient to 
provide the requested information to the agent or does the principal have to 
receive it personally, and how can the information be provided? 

The second part of the question is relatively easy to answer. As already 
mentioned, information needs to be provided in a standardized way in or-
der to be interpretable by agents. The P3P initiative (http://www.w3.org/ 
P3P/) already undertook steps in this direction. Thus, either agents or their 
respective users are, in principle, capable of retrieving the required infor-
mation. 

The first part of the question, however, is more problematic. Basically, 
as in consumer protection law, furnishing the agent with the relevant in-
formation seems sufficient, because the principal has at least the possibility 
to take note of the information his agent received. Furthermore, one has to 
keep in mind that the principal deliberately deployed the agent to relieve 
him from taking note of a huge amount of information, comprising infor-
mation based on statutory duties as well. With the help of his agent, it is 
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still possible for the user to execute a declaration based on informed con-
sent; the purpose of the information duties is thereby not thwarted. In the 
end, it should therefore be viewed as sufficient if the information is pro-
vided to the agent. 

3.7.2 Consent to Capturing and Processing of Personal Data 
Through Agents 

As stated by the law, consent is required explicitly and in written form or 
alternatively with a qualified electronic signature (cf. § 4a sec. 1 BDSG; § 
126 sec. 3 BGB; § 2 SigG). However, under certain circumstances it can 
be declared electronically according to § 4 sec. 2 together with § 3 sec. 3 
TDDSG. This requires that the consent is based on an unequivocal and de-
liberate act by the person concerned – which underlines the importance of 
the information duties. What is more, the declaration of consent has to be 
recorded. Finally, § 4 sec. 3 TDDSG stipulates that consent can be revoked 
by the person concerned at any time. 

As a result, individuals can validly consent to the processing of their 
personal data via electronic networks. But can agents do the same on be-
half of their principals? The BDSG does not explicitly require consent to 
be declared strictly personally. However, academics heavily debate 
whether a representative is capable to consent for an individual (cf. 
[Zsch2005, p. 725]). Critics argue that it is insufficient to only inform the 
representative, but not the principal because of the highly personal char-
acter of the consent. The same could also apply to agents. 

However, if we find that agents – no matter how large their autonomy is 
– are mere tools from a legal point of view, one could as well argue that 
the loss of control the principal experiences by charging his agent is much 
smaller compared to charging a human representative. Therefore, it seems 
acceptable that a tool is executing one’s consent despite the highly per-
sonal character of this declaration. The deliberate act required by § 4 sec. 2 
TDDSG is then represented by the user’s charging and instructing of his 
agent. Consequently, agents are capable of consenting to the processing of 
personal data on behalf of their users. As this again forms a declaration of 
intention, the same principles as explained in Subsection 3.2.2 
unconditionally apply to the execution of this kind of declaration. 
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3.8 Conclusion 

As the previous sections showed, a number of new legal questions arise in 
connection with agents deployed in electronic markets as well as in other 
fields of application. For the time being, the existing legal systems (i.e. not 
only the German legal system to which this chapter mainly refers to) are 
capable to provide – more or less satisfying – answers to most of these 
questions. As a result, agents can, from a legal point of view, be deployed 
in all of the scenarios mentioned in the foregoing chapters of this book, 
and are also capable of producing legally valid results for their users. Yet, 
various questions remain, for which legal answers still need to be found, 
i.e. existing legal instruments have to be refined in order to be fully appli-
cable to agents. Other issues, like the legal capacity of agents, are currently 
emerging, but will demand solutions as agent technology and AI advance 
further and further. 
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