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Summary. The feasibility of an experimental method for investigations of the
particle flux to an absorbing surface in turbulent flows is demonstrated in a La-
grangian as well as an Eulerian representation. A laboratory experiment is carried
out, where an approximately homogeneous and isotropic turbulent flow is generated
by two moving grids. The simultaneous trajectories of many small approximately
neutrally buoyant polystyrene particles are followed in time. In a Lagrangian analy-
sis, we select one of these as the centre of a “sphere of interception”, and obtain
estimates for the time variation of the statistical average of the inward particle flux
through the surface of this moving sphere. The variation of the flux with the radius
in the sphere of interception, as well as the variation with basic flow parameters is
well described by a simple model, in particular for radii smaller than a characteris-
tic length scale for the turbulence. Applications of the problem to, for instance, the
question of the feeding rate of micro-organisms in turbulent marine environments
are pointed out.

1 Introduction

Often the problem of turbulent diffusion in neutral turbulent flows is analysed
in terms of an initial value problem [1,2]. However, for many applications, a
boundary value problem is more relevant. As such an example we here con-
sider the turbulent particle flux to a perfectly absorbing spherical surface,
which is a realistic physical model for many practical applications. This for-
mulation of the problem serves, for instance, as a model for predator-prey
encounters in turbulent waters, and seems to be the application of the prob-
lem that has received most attention recently [3,4]. For small predators, fish
larvae for instance [5], it can safely be assumed that their self-induced motion
is small or negligible, and that they are passively convected by the local flow
velocity, at least to a good approximation. Similarly, it can be assumed that
their food (micro-zooplankton, for instance) is also passively convected by
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the same flow. The feeding process can be modelled by assuming that any
individual prey entering a suitably defined “sphere of interception” is cap-
tured with certainty. The surface is thus “virtual” in the sense that it does
not disturb the flow.

In turbulent waters, the prey flux to a passively convected predator is
related to the problem of relative diffusion, but now considered as a boundary
value problem, with the sphere of interception acting as a perfect absorber of
prey. This is the standard model for this particular problem [6,7]. We use this
as a terminology in the following, for simplicity and definiteness. The general
interest in the problem arises essentially from the simple observation that the
food concentration in the near region of a predator will rapidly be depleted,
and without any self-induced motion a predator will be starving, unless the
prey within its sphere of interception is replaced by turbulent mixing in the
surrounding flow. Although the results presented in this work explicitly refer
to spherical volumes, the scaling laws that are obtained will have a wider
range of applications.

We propose and demonstrate the feasibility of an experimental method
for a quantitative study of turbulent transport into an absorbing surface,
and present results for varying parameters [8]. It is demonstrated that a rel-
atively simple model equation is adequate for describing the basic features
of our observations. The paper is organized as follows; in Sect. 2 we give a
short summary of the experimental set-up, and the experimental conditions.
In Sect. 3 we discuss experimental results for particle fluxes to an absorb-
ing sphere where the centre is identified by a particle which is moving with
the flow. Section 4 contains a discussion of a simple analytical model which
gives results in fair agreement with observations. Finally, Sect. 5 contains our
conclusions.

2 Experimental Set-up

The basic features of the present experiment are described elsewhere [9, 10].
A short summary will suffice here. The turbulence is generated by the motion
of two plastic grids, in the top and bottom of a tank with 320×320×450 mm3

inner dimensions, see Fig. 1 for a schematic illustration.
Typical Taylor micro-scale Reynolds numbers [11], Rλ = λ2/(η2

√
15), are

∼ 100 for the present conditions, using the Taylor micro scale λ =
√

15νσ2/ε,
where ν � 0.89 mm2/s is the kinematic viscosity of the water, ε the specific
energy dissipation rate, and σ2 is the variance of one velocity component. The
Kolmogorov length scale η = (ν3/ε)1/4 is less than 1/2 mm for the present
conditions, while Kolmogorov time scales τη are in the range 0.05–0.12 s.
The “micro-scale” η represents the length-scales, where the viscous effects
become important. A characteristic Eulerian length scale, LE as well as ε are
determined by fitting a von Kármán type wavenumber spectrum [9,10] to the
experimentally obtained data
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Fig. 1. Schematic illustration of the experimental set-up, showing the movable grids
and the 4 video cameras. A restricted measuring volume of 140×140×120 mm3 is
shown by thin lines

E(k) = αε2/3L5/3
E

(LEk)4

[1 + (LEk)2]17/6
, (1)

where α is the spectral Kolmogorov constant [12]. LE is found to be in the
range 20–25 mm. We can interpret LE as the lower limit for separations
between fixed frame detection points, where the velocities of fluid elements
tend to become uncorrelated. As a working hypothesis we can assume that
velocities are also statistically independent for separations larger than LE .
An integral length scale can be defined by the integral of the parallel velocity
component correlation function R‖(r) as Lint =

∫∞
0
R‖(r)dr. A summary of

parameters for 8 different conditions used in the present work is given in
Table 1.

The motions of small polystyrene particles of size a = 0.5 − 0.6 mm are
followed with 4 video cameras, and the simultaneous positions of typically
500–1000 particles recorded at time intervals of 1/25 s. The size of the effective
measuring volume is approximately 140 × 140 × 120 mm3. It is ensured that
the particles used in the experiment are approximately neutrally buoyant [9].
By a tracking procedure it is then possible to link the positions of particles
[9], and thus to follow their individual motions in 3 spatial dimensions. In
particular also their time varying velocity can be deduced. An illustrative
sample trajectory is shown in Fig. 2. The figure shows a series of small spheres,
centred at the particle positions, at individual sampling times. Since the time
sequence used here is one of the longer ones obtained, the superposition of
the spheres at subsequent sampling times gives rise to an appearance like a
grey “band”.

Experiments are carried out for different intensities of the turbulent veloc-
ity fluctuations, 〈u2〉. With the polystyrene particles acting as markers for the
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Table 1. Summary of the parameters derived from the second order structure
function and the spectra obtained from it, based on measurements in the restricted
volume shown in Fig. 1

αε2/3 LE σ Lint ε τη η λ Rλ

(mm4/3/s2) (mm) (mm/s) (mm) (mm2/s3) (s) (mm) (mm)

45 31 18 23 160 0.075 0.26 5.1 100
41 27 16 20 140 0.080 0.27 4.9 88
40 29 16 22 135 0.081 0.27 5.1 93
45 28 17 21 160 0.075 0.26 4.9 91
24 29 12 22 62 0.120 0.33 5.8 81
65 29 21 22 279 0.056 0.22 4.5 104
56 28 19 21 225 0.063 0.24 4.6 97
25 27 12 20 65 0.117 0.32 5.6 78

Fig. 2. Sample of particle trajectory obtained experimentally with 1/25 s time
resolution. The small spheres give the particle position, and the continuous line a
numerically interpolated particle trajectory, projected onto three of the bounding
surfaces of the box. The distance between the tic-marks on axes is 10 mm. The
spheres are here shown enlarged, for the sake of illustration
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local flow velocities, experimental estimates can be obtained for the second or-
der structure function, Ψ2(y) =

〈
(ui(r, t) − ui(r + y, t))2

〉
being independent

of t for time stationary conditions. An example is shown in Fig. 3, including
also a fit for small separations given by a dashed line, using the universal
Kolmogorov (εr)2/3 law. If we let the separation vector be along the y-axis,
we have the longitudinal structure function Ψ2‖(y) ≡ 〈

(uy(0, t) − uy(y, t))2
〉

given by the dotted line, with CK being the Kolmogorov constant, related
to the spectral constant α from (1) by CK ≈ 1.315α [12]. We note that CK

is known with some uncertainty, and a value of CK ≈ 2.5 can be justified as
well as CK ≈ 2.0 [10,12]. The dash-dotted line in Fig. 3 gives the transverse
structure function Ψ2⊥(y) ≡ 〈

(ux(0, t) − ux(y, t))2
〉
. By a general relation [11]

we have

Ψ2⊥ =
1
2y

d(y2Ψ2‖)
dy

,

for locally homogeneous and isotropic turbulence. With Ψ2‖ ≈ CK(εy)2/3, we
find Ψ2⊥ ≈ (4/3)Ψ2‖ in the universal subrange. The full line in Fig. 3 shows
〈(u(r, t) − u(r + y, t))2〉 = 2(〈u2〉 − 〈u(r, t) · u(r + y, t)〉). The purpose of
Fig. 3 is to demonstrate the existence of a universal range, and to indicate
the range of its validity, here up to separations of the order of 20 − 25 mm.

Fig. 3. Experimentally obtained second order structure function, as function of
separation variable y. The heavy dashed line shows a y2/3 fit. The dotted line refers
to the longitudinal structure function, and the dot-dashed line to its transverse
counterpart. The full line gives the structure function Ψ2‖ + 2Ψ2⊥

The average distance between particles is much larger than their diameter,
and particle interactions can be ignored. We estimate a Stokes number [13] as
St ≡ (2/9)(a/LE)2Re with Re being the Reynolds number based on

√〈u2〉
and LE . For typical values [10] of LE = 25 mm and Re ≈ 500 we find St ≈
0.05 � 1. To the given accuracy, we assume that the particles follow the
flow as passive tracers [14], and that the particle density is uniform, when
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interpreting fluxes to an absorbing surface. The assumption was substantiated
by analysing the particle distributions and comparing the results to a model
Poisson distribution.

3 Particle Flux into a Moving Sphere

With the records for simultaneous particle trajectories being available, we
can select one of them to represent the “predator” and label all the others
as “prey”. We then select a predetermined radius R in the sphere of inter-
ception, and then remove all the particles which happen to be inside this
sphere at the initial time. During the subsequent Lagrangian motion of the
reference “predator”, we count the number of prey entering its co-moving
sphere of interception between successive time steps. Each time a particle
enters, it is “eaten” in the sense that it is removed from the database [8].
Of course, if the data analysis is carried out for very long times, all particles
representing prey will eventually be removed. Here we are only interested in
the time evolution of the prey flux for times up to an eddy turn-over time.
As long as R is much smaller than the size of the measuring volume, we can
with negligible error assume the prey concentration to be constant at large
distances, corresponding to an ideally infinite system. By choosing a large
number of realizations, we can give an estimate for the ensemble averaged
Lagrangian prey flux as a function of time after release.

In Fig. 4 we show, with solid lines, examples of the time varying particle
flux to a self consistently moving sphere of interception with a given radius, R.
This flux is the result of a competition between, on one hand, the depletion of
the density of polystyrene particles in the near vicinity of the reference sphere

Fig. 4. Time variation of the estimate for the averaged particle flux for unit density
〈J(t)〉/n0, to moving spheres, with radii, R = 10, 20 and 30 mm
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as they “absorbed”, and, on the other hand, inward flux of such particles,
due to the turbulent motions in the flow. In each realization, we divide the
flux by the particle density for that particular realization. The result thus
represents the particle flux for unit particle density, i.e. 1 particle per mm3.
For small radii, R < LE , we find that the flux level is almost constant in time.
A decreasing trend becomes more conspicuous as the radius is increased, and
for R > LE we find a significant flux reduction for times approaching the eddy
turn-over time, here estimated by τF ≡ LE/σ. The flux is largest initially,
when the concentration of “prey” in the surrounding is largest. At later times
there will be a possibility for encountering fluid elements which have already
been emptied, and the prey flux becomes smaller. The flux depletion due to
this effect increases evidently for increasing radii in the reference sphere.

4 Analytical Results

The problem of turbulent particle flux to a perfect absorber moving with the
flow can be studied analytically by allowing for some simplifying assumptions.
Here, an absorbing spherical surface is assumed to have its centre defined by
a particle, which is moving with the flow.

4.1 Dimensional Arguments

The present problem is characterized by a few dimensional quantities. With
the viscosity, ν, being immaterial for the flow dynamics for scale lengths larger
than the Kolmogorov length scale η ≡ (ν3/ε)1/4, we only have one quantity
characterizing the turbulent flow, namely ε with dimension length2/time3, and
the length scale R characteristic for the particular problem, here a moving
sphere of interception. Out of these quantities the only combination giving a
quantity with dimension time is R2/3/ε1/3, while ε1/3R7/3 gives length3/time.
The physical dimension of the averaged normalized particle flux 〈J〉/n0 is
length3/time.

Quite generally it can then be argued, by purely dimensional reasoning,
that the turbulent flux for given reference density n0 must have the form

〈J〉
n0

= ε1/3R7/3f
(
tε1/3/R2/3

)
, (2)

with f being a dimensionless function of a dimensionless variable. The actual
form of f can only be determined by a more detailed model analysis. We can
argue that we, in Fig. 4, have determined f experimentally, without reference
to any explicit model equations. The arguments do not depend on any specific
shape of the reference volume, and assume only that it scales self-similarly
with one length scale, R. The functional dependence f in (2) will, of course,
be different for different shapes of the volume. Note that for t > R2/3/ε1/3,
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see Fig. 4, the variation of f(τ) is rather slow for parameters relevant here.
The observations summarized in Fig. 4 seem to indicate that f approaches a
constant value for large times. The constant is assumed to be universal, and
we find it here to be in the range 5–10, as discussed in more detail later. The
observation is not as trivial as it might seem [15].

4.2 A Model Diffusion Equation

The particle flux to a perfectly absorbing sphere, which is moving with the
flow has been modelled by, for instance, a simple diffusion equation with
a properly chosen diffusion coefficient which depends on the simultaneous
mean square velocity differences obtained at given spatial separations, but
independent of time [7]. Essentially, the argument is based on the second
order structure function

Ψ2(r) ≡
〈
(ur(0, t) − ur(r, t))

2
〉
≈ CK(εr)2/3 , (3)

with the approximation being valid for separations r smaller than the length
scale of the turbulence, see Fig. 3. A diffusion coefficient is constructed from a
characteristic velocity and a characteristic length. The velocity is taken to be√
Ψ2(r). For the limiting form expressed in (3), the only length characterizing

the two particles is their separation r. The resulting diffusion coefficient is
consequently K(r) ∼ r4/3ε1/3. The proposed diffusion equation for the den-
sity n is actually identical to the one suggested by Richardson in his study
of distance-neighbour functions [16]

∂

∂t
n(r, t) = C

ε1/3

r2
∂

∂r
r10/3 ∂

∂r
n(r, t) . (4)

The result is written for spherically symmetrical geometry, with r being the
radial coordinate, measured from the position of the centre of the reference
sphere, and C is a numerical constant, assumed to be universal. While (4) was
here argued by dimensional reasoning, it has also an analytical derivation [2].
As a consequence of (4) we have the well-known result for the mean-square
separation of two initially close particles 〈r2〉 = CRεt

3, with the Richardson
constant being CR ≈ 0.5 [10]. We have the relation C = (3/2)(3CR/143)1/3,
giving C ≈ 0.33. In the present model, the time varying diffusion flux of
particles to a perfectly absorbing sphere is given by

J(t) = 4πCε1/3R10/3 dn(r, t)
dr

∣∣∣∣
r=R

,

with n(r, t) obtained from (4).
The derivation of (4) assumes that ε is a deterministic constant, and

thereby ignores intermittency corrections [17]. Although the relation (4) had
some experimental support from the time when it was first proposed [16],
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and also supported more recently [10], its general validity has been criti-
cized [1, 2], as also summarized recently [10]. The range of validity of (4) is
thus not fully explored. For large separations, a simple diffusion equation,
with constant diffusion coefficient, is expected to apply, as indicated for in-
stance by experimental results [18], for initial conditions having scales larger
than the integral length scale. These cases [10, 18] referred to particle re-
leases considered as initial value problems. It seems that a diffusion equation
as (4) can indeed be applied for analysing relative two-particle diffusion in
certain variable ranges [10]. On the other hand, one cannot expect a diffu-
sion coefficient depending solely on relative times or spatial separations to
be universally applicable for this problem [2]. In general, a Fokker–Planck
equation, with (4) being one special example, describes a Markov process,
where the probabilities of future states depend solely on the present, and not
past ones. Modelling of turbulence as a simple Markov process is known to
be rather inaccurate, and a study of the limits of applicability of models like
(4) is therefore worthwhile.

From (4) is easy to derive [7] a steady state flux to a sphere with radius
R as

J0

n0
=

28π
3
Cε1/3R7/3 . (5)

where n0 is the constant particle density at r → ∞.

4.3 Comparison Between Analytical and Experimental Results

In order to compare our observations with analytical results, we show by
open circles in Fig. 5, the flux value at a time t = τF /2, with τF being the
eddy turn-over time. This time is sufficiently short to give a large number of

Fig. 5. The particle flux, 〈J〉/n0, to a moving sphere of interception is shown with
open circles for different radii, as is measured at 1/2 eddy turn over time, t = τF /2.
The full line gives the time-asymptotic result (5). Parameters are σ = 19mm/s,
τF = 1.6 s, and ε = 225 mm2/s3. The fluxes are normalized to unit density
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particle traces for the averaging, and on the other hand, sufficiently long to
give an estimate close to the asymptotic flux value of the particle flux. Vertical
lines give the uncertainties on the experimental estimates. For small radii R,
this uncertainty is large because we only seldom find close particles. For R >
5 mm, on the other hand, this uncertainty is smaller than the size of the circles
in Fig. 5. The analytical curve, given by a full line, is the asymptotic limit from
(4), where we used ε = 225 mm2/s3. Taking into account that we have not
introduced any free or adjustable parameters, we find the agreement between
the analytical and experimental results to be satisfactory, although we note a
slight, but systematic, reduction of the measured flux as compared with the
analytical asymptotic result. The experimental results for the smallest radii
give an underestimate, since in this limit a nontrivial fraction of the particles
are “glancing”, i.e. they manage to pass through the reference sphere within
one sampling time, and are therefore not counted.

The model equations become inadequate for spatial separations larger
than the largest eddies in the turbulence, r ≥ LE , although we find that the
R7/3-scaling seems to have a wider range of validity, in particular at early
times, t < τF /2. The analysis summarized here refers explicitly to spherical
volumes. Qualitatively, the arguments will apply to different shapes as well,
as long as they scale self-similarly with one characteristic length, R.

We also present results for the flux variation for a fixed value of the ra-
dius of the moving sphere of interception, R = 20 mm, and varying ε, see
Fig. 6. In order to sample each dataset at a consistent time, we present re-
sults for a selected time τF /2 used also in Fig. 5, using the proper value of σ.
In this limit, we can in all cases assume that the particle flux is close to its
asymptotic, or saturated, level. The circles show the result for ε obtained by
fitting the second order structure function. Other methods for determining
ε can be found, however [9], and these results are used to give the horizon-

Fig. 6. Variation of the normalized flux, 〈J〉/n0, with varying ε for a fixed value of
R = 20mm. The full line gives the time-asymptotic result obtained from (4). See
also Fig. 5
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tal uncertainty bars. The theoretical full line is also in this case obtained as
the asymptotic limit of the solution of Richardson’s diffusion equation, us-
ing the most recent experimental value [10] of Richardson’s constant. Within
the range of variability, we find the scaling with ε to agree reasonably well
with theoretical predictions based on (4). The numerical agreement between
the measurements and analytical results is within a factor of 2, the analysis
predicting a slightly larger flux than the observed value, also in agreement
with the results shown in Fig. 5. The selected value R = 20 mm can be taken
as representative for the length scales smaller than or equal to LE in the
experiments.

The results summarized in Figs. 5 and 6 refer to fluxes obtained at fixed
normalized times. We can also demonstrate a scaling law for the time varia-
tions of these fluxes, and compare the results to the results from a model like
the one given by (4). In Fig. 7 we show the normalized fluxes for 8 different
experimental conditions, see Table 1, and radii R = 5, 6, 7, 8, 9, 10, 12.5, 15,
17.5 and 20 mm. The figure demonstrates the experimental scatter, which is
consistent with the uncertainties of the estimates for ε. Also here we note a
“banded” structure in the figure. We find that the uppermost group of curves
originates from the two datasets with the largest ε-values, see for instance
also Fig. 6, where these two datasets also seem to be slightly distinct from
the others.

Again, we note that the results have a wider range of applicability, and
need not refer explicitly to spherical forms. A change in shape of the reference
volume, will only imply a change in the numerical constant. Thus, the scaling
law implied in Fig. 6 will apply, for instance, to the prey flux for any predator,
independent of its range of vision, when it is exposed to different turbulence
intensities.

Fig. 7. Normalized flux, 〈J〉/(n0ε
1/3R7/3), as a function of the normalized temporal

variable, tε1/3/R2/3. Curves are shown for 8 realizations with different turbulence
conditions, each with curves for different R. The dashed line gives a theoretical
result, obtained from (4). The (unphysical) singularity at t = 0 for the full line
solution is due to the assumed infinite initial gradient at r = R



142 J. Mann et al.

Given the experimental uncertainties, the scaling relations obtained by
dimensional reasoning are found to be well satisfied when analysing the data
from the present experiment. The more specific diffusion equation model (4),
is only giving qualitative agreement for the measured Lagrangian fluxes at
early times. It seems, however, that the asymptotic limit is well accounted
for by the model, in particular also the numerical coefficient obtained by use
of the most recent value of the Richardson constant [10]. To some extent,
the modest agreement between the model and the experimental results at
early times might be surprising, since (4) has given better agreement with
estimates of the distance-neighbour functions [10]. We note, however, that in
the present case there is an ambiguity in the model for the diffusion coefficient:
the result (4) uses characteristic eddies being of magnitude comparable to the
predator-prey separation [7], which is the most obvious choice when modelling
an equation for the distance-neighbour function. For the present case, it could
as well be argued that the characteristic eddies should have a size comparable
to the separation distance between prey and the surface of interception. Since
such models can serve as guidelines only, we shall not pursue the problem
any further here.

As particles are absorbed by the surface, with fluxes shown in Fig. 7, the
particle density will be depleted in the flow surrounding the moving reference
sphere. We can analyse also here the average particle density for r > R, as a
function of time, with results shown in Fig. 8. The radius R is chosen to be
in the universal subrange. The first curve is shown at the first sampling time,
i.e. t = 1/25 s. Variations with distance are obtained in “bins” of 1 mm, and
the second bin from the surface at r = R is the first one shown. To reduce
the noise level, we normalized also here the curves with the radial density
variation found at t = 0. If we choose a smaller value for R, the noise level
increases, while larger R will fall outside the universal subrange.

Fig. 8. Time evolution of the normalized density around an absorbing spherical
surface moving with the flow, for R = 15 mm
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5 Conclusions

In this correspondence we investigated the turbulent flux to a perfectly ab-
sorbing surface, with particular attention to the problem of predator-prey
encounters in turbulent flows. We summarized the basic elements of an ex-
perimental method for investigating the prey flux to a moving predator. In
the limit of small R, we found evidence for an R7/3 flux scaling (see Fig. 5) in
terms of the radius of the sphere of interception. We also found indications of
an ε1/3 scaling with the turbulent dissipation rate (see Fig. 6), in agreement
with the predictions of the model (4). This model agrees to some extent also
quantitatively with the observations. In the asymptotic time limit, to the
extent it can be reached in the present experiment, the data gives a flux well
approximated by (5), provided R < LE . This will in general be the limit rel-
evant for marine environments [19]. We suppose that the observations justify
extrapolation to radii, R, smaller than those experimentally accessible. In a
general sense, our results provide experimental evidence also for the impor-
tance of turbulent motion for the feeding process in marine environments.
We expect that in order to obtain a general analytical model, which can give
results for extended time periods and all R, we shall have to allow for a
diffusion coefficient which depends on time as well as spatial separations, in
particular including also memory effects [2].

The turbulent flux to a moving sphere can be significantly smaller than
the flux to a stationary one. This can be argued simply by noting that the
relative mean square velocity of a particle convected past a stationary sphere
is 〈u2〉, while it is 〈(u(r, t) − u(r + y, t))2〉, for a passively convected sphere-
particle pair, with separation y. For small separations, y � LE , we have
[7, 20] the result (3), and the relative velocity is small, implying a small
flux to the passively convected sphere. For large separations, y � LE , on
the other hand, u(r, t) and u(r + y, t) can be supposed to be statistically
independent. The mean square relative velocity is then 2〈u2〉. The flux in
this latter case is expected to be larger than that to the stationary sphere
with a factor

√
2, although such large separations cannot be achieved for the

present experimental conditions.
We can define a “gain factor” as the ratio between the flux to a stationary

sphere divided by the flux to the passively convected sphere with the same
radius, R. In Fig. 9 we show this gain factor for various radii, R. All points are
obtained at the reference time τF /2 used before. We find that the gain factor
is considerable for small spheres of interception, using the length scale LE as
a measure. For R ≈ LE this gain factor is close to 1, and the particle flux is
the same for a stationary as for the moving sphere. For larger values, R > LE ,
the flux to a moving sphere exceeds that to a stationary one. The variation
of the initial value of the fluxes seen, for instance, on Fig. 4 are consistent
with these observations. Heuristically, we can argue for a parameter variation
of the gain factor as given by the ratio of the two scaling laws obtained by
dimensional arguments, which here gives σ/(εR)1/3. This ratio is shown by
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Fig. 9. Variation of the gain factor for a stationary sphere for various radii of the
sphere of interception, R. The figure refers to a time t = τF /2.

a dashed line in Fig. 9, with a numerical constant not accounted for. We
find, in this case, that this scaling law does not follow the data points in any
convincing way, although the trend seems reasonable. After all, neither the
Eulerian nor the Lagrangian data followed the scaling perfectly, the Eulerian
data best at small R, the Lagrangian data best at somewhat intermediate
values. To expect a perfect agreement for the ratio of the two quantities may
seem somewhat optimistic, in particular also because a small mean flow in the
system gives a bias for the Eulerian fluxes. The gain factor shown in Fig. 9
can, for instance, be interpreted as the gain in prey flux for an imagined
predator with possibilities for self-induced motion, which it uses to exactly
compensate the motions in the surrounding water.

Fig. 10. Lagrangian transit time distribution, shown as a function of normalized
temporal variable tε1/3/R2/3. The figure contains 6 experimental conditions with
ε = 62, 65, 135, 160, 225, and 279 mm2/s3, and each of these analysed for radii
R = 5, 10, 15, and 20 mm
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The present analysis, when applied to the predator-prey problem implic-
itly assumes that prey is captured with certainty. This might be an accept-
able assumption for slow motions in the flow, but evidently it might become
questionable when the flow is strongly turbulent. Little seems to be known
about the capture probability of prey, when the relative velocities are large,
although some observations have been quantified [21]. These results refer
seemingly only to relatively large predators, fish larvae for instance. We can
not here add to that discussion, but might note that one possibly essential
part of the information, relevant for a detailed discussion, might be the distri-
bution of transit times for prey through the sphere of interception. Also this
question can be analysed on the basis of the present experimental data [15].
We can thus obtain the distribution of transit times taken as the time dif-
ference from a particle entering a reference sphere until it leaves it again for
the first time (i.e. first passage time distributions). It turns out that also this
distribution follows a seemingly universal scaling, as long as the radius of the
moving reference sphere is within the universal subrange.

The problem discussed in the present communication is evidently of gen-
eral interest. It has implications also for coagulation processes in turbulent
colloids, for instance. A detailed investigation of this latter problem can, how-
ever, not be made by experiments like ours because the volume of the particles
change upon coagulation, with a consequent change in their response to the
turbulent flow motions. We can not reproduce this effect, for evident reasons.
In standard studies of this problem [22], restricted to diffusion by Brownian
motion, this effect is in part also ignored. With the same assumption it is
possible to perform the relevant studies in experiments like ours, with re-
sults having implications for the formation rate of coagulants larger than the
Kolmogorov scale η in turbulent flows.
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