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1 Introduction

By introducing the logistic equation in the context of demographic mod-
elling [1], J.-F. Verhulst made seminal contributions to at least two important
fields of research: On the one hand, to the quantitative approach to Popula-
tion Dynamics, a subject in which substantial development beyond Verhulst’s
ideas only occurred 100 years after him. On the other, to the basics of Nonlin-
ear Science through a detailed study of the predictions of a nonlinear model
and its comparison with experimental data.

The dynamics of biological populations in aquatic environments [2–4] is
an excellent framework to see recent developments in which these disciplines
work together. Growth, limitation, competition, predation and all the other
kinds of biological interactions appear in this context, and nonlinear processes
are relevant both in the biological dynamics and in the motion of the turbu-
lent fluid in which the population lives.

In this contribution we present two examples in the above field. In both
cases a prominent role is played by the logistic growth process (i.e. pop-
ulation growth limited by finite resources), but other ingredients are also
included that strongly change the phenomenology. In Sect. 1, a phytoplank-
ton population experiencing logistic growth is studied, but in interaction with
zooplankton predators that maintain it in a state below the carrying capacity
of the supporting medium. In the appropriate parameter regime the system
behaves in an excitable way, with perturbations inducing large excitation-
deexcitation cycles of the phytoplankton population. The excitation cycles
become strongly affected by the presence of chaotic motion of the fluid con-
taining the populations.

In Sect. 2, an individual based model of interacting organisms is presented,
for which logistic growth is again the main ingredient. Reproduction of a given
individual is limited by the presence of others in a neighbourhood of finite size.
This nonlocal character of the interaction is enough to produce an instability
of the basic state of particles homogenously distributed, and clustering of
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the individuals occurs, which form groups arranged in an hexagonal lattice
(when the population lives in a two-dimensional space).

2 Plankton Dynamics Driven
by an Environmental Open Flow

Plankton is the generic name given to a large number of aquatic organisms,
most of them microscopic, living in the oceans, lakes or rivers, and character-
ized by the fact that they are transported by water currents in an approxi-
mately passive manner [2]. A major distinction in this group should be made
between phytoplankton, the organisms with photosynthetic capabilities, that
can grow from nutrients in the water and light, and zooplankton, the small
predators that consume them. This distinction leads to the simplest mod-
els of aquatic population dynamics, which take into account just these two
trophic levels.

Here we consider the phytoplankton-zooplankton competition model pro-
posed in [5]. Phytoplankton growths logistically, and in addition it is limited
by the zooplankton grazing, which itself dies grazed by upper trophic levels
not explicitly modelled. The fundamental feature of the model is its excitable
behaviour. In just a few words, this means that activator and inhibitor vari-
ables can be identified. The activator (phytoplankton in our case) displays
some kind of autocatalytic growth behaviour, but the presence of the in-
hibitor (zooplankton) controls it so that the dynamical system has a stable
fixed point of low phytoplankton population as the unique global attractor.
The essence of the excitability phenomenon is the presence of a threshold,
such that if the system is perturbed above it, variables reach the stable fixed
point only after a large excursion in phase space in which phytoplankton
population grows to values close to the carrying capacity of the medium.
This behaviour usually appears when the activator has a temporal response
much faster than the inhibitor, which then takes some time before stopping
the growth of the activator. Observed plankton bloom phenomena have been
interpreted in this dynamical context [4, 5].

Explicitly, the dynamics of the space- and time-dependent phytoplankton,
P = P (x, t), and zooplankton, Z = Z(x, t), concentrations is ruled by

∂

∂t
P + v · ∇P −D∇2P = r

[
βP

(
1 − P

K

)
− f (P )Z

]
∂

∂t
Z + v · ∇Z −D∇2Z = rε [f (P )Z − ωZ] . (1)

The left-hand-side terms represent the transport processes: both species are
advected by the same fluid flow characterized by the velocity field v = v(x, t),
that we assume to be incompressible and not altered by the back-influence
of the biological concentration fields. We choose v to be two-dimensional
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to emphasize the role of horizontal transport [3], and defined on a two-
dimensional square box domain Ω = [0, 2L] × [−L,L] with Cartesian co-
ordinates x = (x, y). The diffusion operator D∇2, assumed to be the same
for both species, models small-scale complex turbulent motions not explic-
itly included in v. The right-hand-side contains the biological interactions
terms: r controls the ratio of the transport time scales to the biological
activity time scales, ε sets the ratio of phytoplankton- to the much larger
zooplankton-growth time scale, K is the phytoplankton carrying capacity, β
the phytoplankton growth rate, ω a linear zooplankton mortality, and

f(P ) =
P 2

P 2
0 + P 2

(2)

is a Hollings type III response function, describing the zooplankton predation
on phytoplankton. As demonstrated in [5], is the functional form in (2) the
responsible for the excitable character.

Following [5] we take non-dimensional units such that β = 0.43, K = 1,
ε = 0.01, P0 = 0.053, and ω = 0.34. This corresponds to phytoplankton dou-
bling times of the order of days, and zooplankton time scales in the range
of months. Biological concentrations have been scaled so that the phyto-
plankton carrying capacity (of the order of 100 µg of Nitrogen equivalent per
liter) is the unity. For these parameter values the biological dynamical sys-
tem is in the excitable regime. Excitable behaviour generally appears for ε
small enough, which biologically means that, as already stated, time scales
for phytoplankton growth are much shorter than for zooplankton. This is the
biologically relevant case. We study the influence of transport by varying its
relative strength via the parameter r. D is fixed to 10−5 and L = 9, which
means that the diffusive spatial scale corresponding to the phytoplankton
doubling time is between three and four orders of magnitude smaller than
system size.

Since the velocity field v = (vx, vy) is two-dimensional and incompressible
it can be written in terms of a stream function Ψ(x, y, t):

vx =
∂Ψ

∂y

vy = −∂Ψ
∂x

. (3)

We consider the following stream function [6]:

Ψ = Ψ0 tanh
(y
d

)
+ µ exp

(
− (x− L)2 + y2

2σ2

)
cos (k(y − vt)) . (4)

It represents an oceanic jet perturbed by a localized wave-like feature, trapped
by topography or some geographical accident. The first term is the main jet,
of width d, flowing towards the positive x direction with maximum velocity
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Ψ0/d at its centre. The wave-like perturbation, of strength µ, is represented
by the second term. It is localized in a region of size σ around the point
(x, y) = (L, 0), and the wavenumber and phase velocity (directed towards
the positive y direction) are k and v, respectively. The complete velocity field
is time-periodic with period 2π/kv.

It is very important to note that the region Ω is open with respect to
this flow, so that we have the situation of chaotic scattering [7]: particles
enter Ω from the left, following essentially straight trajectories, experience
the irregular motion called transient chaos [7] when reaching the wave region
(which in consequence becomes a mixing region), and finally they leave the
system. For µ large enough, recirculation in the mixing region gives birth to
a chaotic saddle in Ω. The chaotic saddle is the (fractal) subset of the mixing
region where particles are trapped forever. It is formed by an infinite number
of bounded hyperbolic orbits in the mixing region. The stable manifold of
the saddle contains orbits coming from the inflow region but never escaping
from the mixing zone. Concerning the unstable manifold, if a droplet of dye
(or any other passive tracer) is injected into the mixing region, most of it
will be advected downstream in a short time. But part of the dye will remain
close to the chaotic saddle for very long times, and continuously ejected along
its unstable manifold. In this way passive tracers such as dye traces out the
unstable manifold of the chaotic saddle, giving rise to the fractal patterns
characteristic to open flows. We next study how these flow structures affect
the plankton dynamics given by the right-hand-side of (1). Pictures of the
stream function and of the chaotic saddle can be seen in [6].

Equations (1) are solved by a semilagrangian method. The fixed point
representing stable phytoplankton-zooplankton coexistence in the absence of
flow and diffusion is given by P = Pe and Z = Ze, with Pe = P0

√
σ/(1 − σ) =

0.03827 and Ze = β(1 − Pe/K)(P 2
0 + P 2

e )/Pe = 0.04603. We choose these
values to be imposed as Dirichlet boundary conditions on the boundary of
Ω. In this way fluid particles enter in the system with a plankton content
corresponding to the equilibrium concentrations, which is a rather natural
condition from the biological point of view. During an excitation phase, the
values of phytoplankton concentration rise to P ≈ 0.8 − 0.9

Since (Pe, Ze) is a stable equilibrium point, dynamics will be trivial with-
out an initial seed to trigger the excitation dynamics. Our initial condition is
a localized patch of high phytoplankton concentration close to the left part
of Ω: P (x, t = 0) = Pe + Q exp[−((x − x0)2 + y2)/l2], Z(x, t = 0) = Ze.
We take Q = 0.5, x0 = 0.3L, and l = 0.11L. The jet transports the patch
towards the scattering or mixing region, where interesting dynamics occurs.
The flow parameters are d = 1, Ψ0 = 2, σ = 2, k = 1, and v = 1, giving a
flow period T = 2π/kv = 2π.

We now consider µ = 3 (a chaotic saddle is present in the system above
µ ≈ 2). For small r, the biological dynamics is slow compared to the time
scales of stirring by the flow. The phytoplankton patch is strongly deformed
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when reaching the scattering region. Plankton is stretched into long and thin
filaments that become rapidly diluted into the surrounding unexcited fluid
by the effect of diffusion. Thus excitation is destroyed by the fast stirring
and by diffusion. Increasing r, i.e. by making the biological dynamics faster
or the flow slower, a dramatic change occurs. The transition to the new
regime occurs around r ≈ 1. Plankton is again stretched in filaments but the
width stabilizes and the excitation becomes distributed in the system, without
leaving it (it remains forever) and oscillating in shape following the period
of the flow. Some features of the distributions of both phytoplankton and
zooplankton (see Fig. 1) seem to mimic the shape of the unstable manifold
of the chaotic saddle, so that in these zones we can say that plankton is
basically covering it with a finite width. Summing up, the relevant result
we have shown is the following: transient chaos, characteristic of open flows,
plus transient excitation, characteristic of excitable systems, give rise to a
permanent pattern of high biological activity (excitation).

Fig. 1. Distribution of phytoplankton (left) and zooplankton (right) at time t = 100
and parameters r = 10 and µ = 3. Dark grey corresponds to low concentration and
lighter grey to higher concentration. A state of permanent excitation is sustained
in the region close to the chaotic saddle and its unstable manifold (being the do-
main far from this region in the unexcited equilibrium state). The shape of the
distributions changes in time with the period of the flow

The explanation for the observed behaviour can be elaborated along the
lines of previous works [8, 9] as follows: The tendency of the chaotic flow to
stretch fluid elements into long and thin filaments competes with the effect
of diffusion and biological growth, which tends to expand excited regions,
so that a compensation can be achieved in some parameter range. Above a
given biological growth rate, steady filament solutions appear via a saddle-
node bifurcation. This can be explicitly shown in simplified models capturing
some of the features of the full system (1). When this steady solution does not
exist, initial perturbations decay as in the usual excitation-deexcitation cycle,
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so that excitation disappears at long times. At sufficiently large biological
growth rate, however, the steady filament solution exists, is stable, and the
initial perturbation can be locally attracted by it. Chaotic flow deforms the
simple filament solution obtained under simplified assumptions [8,9], but the
results in [8] indicate that it still provides a useful description of the process.
Chaotic stretching and folding of the excited filament in a closed system ends
up when it fills the whole domain, after which an homogeneous deexcitation
finishes the excitation cycle. In an open system, however, the continuous
outflow of excited material inhibits the filling of the full domain, so that
distributions related to relatively simple filament steady solutions can persist
permanently.

3 Nonlocal Logistic Growth

In this section we discuss the interacting particle model with non-local inter-
actions introduced in [10]. It is just a simple modification of the Brownian
Bug model of [11] where there is an ensemble of diffusing particles (the bugs),
each of them dying or duplicating with given probabilities per unit of time.
As we shall see below the modification consists in the introduction of an inter-
action among the particles so that the birth rates for any of them diminish in
regions of high particle density. This is precisely Verhulst logistic mechanism,
here implemented in a particle model instead that in the original Verhulst
equation for the global population.

The microscopic rules are enumerated in the following. Let N(t) be the
number of bugs in the system (a two-dimensional periodic box Ω of size L×L;
in all our computer simulations we shall take L = 1):

1. There is an initial population of N(t = 0) = N0 bugs or particles, ran-
domly located.

2. One particle, j, is selected at random and it reproduces (i.e., it is trans-
formed into two particles) with a rate (probability per unit time) λ(j)
or dies with a rate β(j). Both rates are not constant but depend on the
number of particles surrounding the particle j. Explicitly we take:

λ(j) = max
(

0, λ0 − 1
Ns
N j

R

)
, (5)

and

β(j) = max
(

0, β0 − α

Ns
N j

R

)
, (6)

where λ0 and β0 are constants. N j
R denotes the total number of particles

which are at a distance smaller than R from particle j (excluding the
particle j itself). R is thus a range of interaction, Ns is a saturation
parameter, and α controls the asymmetry between its influence on death
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and on reproduction (in the rest of this paper we take α = 0 so that only
birth rates are modified by the local density of particles). In the case of
reproduction, the newborn particle is located at the same place as the
parent particle. The process is repeated a number of times equal to N(t),
so that each particle is checked for birth or reproduction once in average.

3. Each particle moves in random direction a distance drawn from a Gaussian
distribution of standard deviation σ (this models Brownian motion).

4. When advection is considered, the particles are transported by an exter-
nal flow to be described later.

5. Time is incremented an amount τ = 1, and the algorithm repeats.

Figure 2 shows typical spatial configurations observed at large times under
this algorithm. When the maximum growth rate µ ≡ λ0−β0 is small (µ < µc),
population dies at long times. Above this value of µ, an active phase with a
persistent average number of individuals is attained. The nature of the spatial
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Fig. 2. Long-time spatial structures for the interacting particle model. Left column
corresponds to two patterns with the same value of D = 10−4, and two different
values of µ = 0.5 (up) and µ = 0.9 (bottom). Right column corresponds to fixed
µ = 0.7, and D = 10−4 (upper), and D = 10−5 (bottom). In all the plots, Ns = 50
and R = 0.1
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distribution in the active phase depends on the values of the parameters. For
large enough value of the effective diffusion coefficient D ≡ σ2/τ , the spatial
distribution of particles is homogeneous on average, whereas clear clustering
occurs for small D. As in the Brownian Bug model [11], different clusters are
coming from different families (i.e. each cluster is made of descendants of a
different initial reproducing individual). But the most striking feature is that
they organize in a periodic pattern. The periodicity of the pattern is of the
order of R, the interaction range. In addition to decreasing D, this transition
to a periodic organization occurs by increasing R and, for small enough D,
by increasing µ.

Particle clustering seems to be a rather natural way to make compati-
ble the high local growth at relatively large value of µ, with the reduction
of this growth that a too crowded neighbourhood would imply: the empty
space between the clusters acts as a buffer zone keeping the competition for
resources less limiting than in a homogeneous distribution. We believe that
this dispersion of the total population in small groups over a large spatial area
is a general consequence of the logistic mechanism when applied to particle
systems.

We try now to understand this pattern forming process. To this end we
write down a mean-field-like description of the model, which completely ne-
glects fluctuations, and check if the clustering instability appears there. The
mean-field equation is written in terms of an expected density φ(x, t) as fol-
lows

∂tφ(x, t) = D∇2φ(x, t) +
(λ0 − β0)φ(x, t) − 1

Ns
φ(x, t)

∫
|x−r|<R

dr φ(r, t) . (7)

This expression can be understood as a nonlocal version of the Verhulst
logistic equation, complemented also with the diffusion term arising from
the Brownian motion of the bugs. With more generality, the nonlocal term
may be written as φ(x, t)

∫
A

drG(x − r) φ(r, t), where A ⊂ Ω. Our model
corresponds then to a kernel G(x) given by

G(x) =
{

1 if |x| ≤ R
0 if |x| ≥ R . (8)

Stationary homogenous solutions of equation (7) are the empty phase
φ(x, t) = 0, and the active or survival phase φ(x, t) = φs = µNs/πR

2 (re-
member that µ = λ0−β0). For µ < 0 the only stable solution is the absorbing
one; the transition to the survival state is approached at µ = 0, and this state
is stable for a range of positive values of µ. At the deterministic level the tran-
sition is transcritical. We note that the critical value µ = 0 is smaller than
the one observed numerically in the particle model (µc > 0), this deficiency
of the mean-field description being a well known consequence of neglecting
fluctuations.
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We perform now a stability analysis of the φs solution by considering small
harmonic perturbations around it, φ(x, t) = φs + δφ(x, t), with δφ(x, t) ∝
exp(λt+ ik · x). After simple calculations (see details in [10]) one arrives to
the following dispersion relation

λ(K) = −DK2 − 2µ
KR

J1(KR) , (9)

where K = |k|, and J1 is the first-order Bessel function. It is clear that
the relevant parameters in the problem are µ and D/R2 (in fact the precise
dimensionless combinations are µτ and Dτ/R2, see [12]). The eigenvalue
λ(K) (which is in fact a function of KR, µ, and D/R2) is real and can be
positive for some values of the parameters. This is shown in Fig. 3 where
we plot λ against K for fixed D/R2 and different values of µ around the
critical value µP = 185.192D/R2, which is the value of µ at which λ(K)
becomes positive [10]. Positive values of λ(K) in a range of values of K imply
instability of the homogeneous distribution against perturbations containing
this range of wavenumbers (K around Kc = 4.779/R) and pattern formation
with the corresponding wavelengths (≈ 1.31R).
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Fig. 3. Linear growth rate λ vs wavenumber K from (9) for different values of µ
close to the onset of pattern formation. We take R = 0.1 and D = 10−5 so that
µP = 0.185

The behaviour of the deterministic (7) is thus clear: for µ < 0 the only sta-
ble solution is φ = 0. Then there is an interval, 0 < µ < µP , where one has the
homogeneous density φ = φs, and for µ > µP spatial patterns emerge. This
last transition can also be crossed by decreasing D/R2 at fixed µ > 0. The
details of this sequence of transitions and the critical parameter values do not
coincide with the behaviour of the particle model, implying that fluctuations
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Fig. 4. Steady spatial pattern from the deterministic (7). µ = 0.70, R = 0.1,
D = 10−5, and Ns = 50. Note the strong similarity with the pattern in the bottom-
right plot in Fig. 2

are rather important. However, the presence of a pattern forming instability
is well explained and even the selected pattern wavenumber (Kc ≈ 4.779/R)
is quantitatively reproduced by the mean-field approach [10]. Figure 4 shows
a steady pattern of density which is the solution of (7) reached at long times.
It is analogous to the one shown for the discrete model in the bottom-right
panel of Fig. 2, confirming for the full nonlinear model (7) the behaviour
identified from the linear stability analysis of the homogeneous solutions.

So far the only motion considered for the bugs has been Brownian motion.
If they live in a turbulent aquatic medium, they will be also subjected to
straining fields that will deform the clusters and, as in the previous Section,
alter the population dynamics. We have implemented in the fourth step of
the algorithm defining the particle model a simplified flow consisting in shear
motions alternating in direction: if we denote by (xi(t), yi(t)) the coordinates
of the particle i at time t, after one iteration of the map they become

xi(t′) = xi(t) +A cos(yi(t)) , (10)
yi(t′) = yi(t) +A cos(xi(t′)) , (11)

where t′ = t+τ . The parameter A gives the strength of the flow and, depend-
ing of its value, particles can follow regular or chaotic trajectories. Next we
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Fig. 5. Snapshots of the long-time spatial structure for the distribution of particles
with an external flow. From top to bottom and left to right, A = 0, A = 0.1, A = 0.5,
and A = 1. The other parameters: µ = 0.9, D = 5 × 10−6, Ns = 50, and R = 0.1

analyze the behaviour of the model when the flow changes. In Fig. 5 we show
instantaneous configurations of the particle distributions as they are being
stirred by the flow at different values of A. Increasing A leads to increas-
ingly chaotic trajectories and mixing behaviour in the flow. It is seen that
the periodic array of clusters in the absence of flow becomes more filamental-
like as the flow strength increases. The shape of the filamental structures
reflects the known unstable and stable foliation of phase space for the map
(11). Inhomogeneity persists for rather strong flow, but finally the distrib-
ution becomes homogenized. At this point, the particle distribution should
be very close to Poissonian, with density given by the homogeneous solution
of (7). This is indeed what is observed in Fig. 6 where we plot time evolu-
tion of the total number of particles. For large values of A the total number
of particles, N(t), fluctuates around the homogeneous deterministic solution
value φs = µNs/πR

2. For smaller flow strength A the spatial structure in the
neighbourhood of each particle becomes relevant, and the number of parti-
cles approaches the value in the absence of flow, corresponding to the pattern
state of clustered particles. Thus, we see that the nonlocal interactions lead to
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Fig. 6. N(t) vs time for different values of the external flow strength, A. From
top to bottom: A = 0, A = 0.01, A = 0.05, and, fluctuating around the value
φs = µNs/πR2 (horizontal white line), A = 1 and A = 3. The other parameters are
µ = 0.8, Ns = 50, D = 10−5, and R = 0.1

a coupling between flow and population dynamics, mediated by the changes
in local distribution geometry that the flow induces.

4 Summary

In this contribution we have presented results on two model systems com-
ing from the context of population dynamics in aquatic flowing media. In
both cases the logistic mechanism of P.-F. Verhulst is an essential ingredient,
although the presence of nontrivial predation dynamics in one case, and of
a finite range of interaction in the other lead to interesting new phenom-
ena, namely excitability and pattern formation, respectively. In both model
systems the consideration of fluid flow leading to chaotic trajectories (the
process known as chaotic advection or Lagrangian turbulence [13]) has addi-
tional impact on the dynamics.
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(2002)
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