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Summary. In this chapter we develop the point of view that Verhulst is a major
initiator of systems thinking. His logistic equation is a system archetype, i.e. a
simple system built with few feedback loops. In the Fifth Discipline [19] Peter
Senge calls this particular archetype “Limits to Success”. It can also be called
the “Iron law of Verhulst”, expressing that trees can never grow to heaven. In a
deeper analysis this equation illustrates the shifting loop dominance, one of the
basic principles of system dynamics. The basic message is that the combination of
some few archetypes, like the logistic growth, can afford valuable insight into many
complex systems such as the economy, environment, organisations, etc. This fruitful
concept is illustrated by a simple model in behavioural finance describing the equity
price evolution, and based on the interplay of three main growth archetypes: “Limits
to Success”, “Tragedy of the Commons”, and “Balancing Loop with Delay”.

1 Introduction

Chaos theory is said to have been founded by the 1-D logistic equation. This
is certainly true although, as it is well known, the merit of discovering chaos
in the discrete formulation of this formula may be given to May [16] in 1976,
more than one century later. In its original continuous format the logistic
equation is unable to generate chaos. This is a consequence of the Poincaré–
Bendixon theorem, which says that there is no chaos on the line, or on the
plane, thus at least 3-D is needed. In this chapter we develop the point of
view that Verhulst, more directly, started “systems thinking” applicable to
complex systems. There is clearly a straight line between Verhulst’s germane
ideas and the feedback-centred thinking of System Dynamics (SD), developed
by J.W. Forrester [6,7] in the 1960’s, and used by the early Club of Rome in
its famous book Limits to Growth [17]. What Verhulst’s equation simply says,
is that there is shifting loop dominance between two feedback loops (FBL): a
positive FBL initiates growth; it is brought into balance by a negative FBL
with growing importance, incorporating the limits to growth in a finite world.
The association of FBL’s of different polarities and the shifting dominance
between them is indeed the central thought of SD to model complex reality
in population dynamics, ecology, economy, organisations, etc. These ideas
have been later translated into management recipes by Peter M. Senge in
his famous book The Fifth Discipline [19]. Simple archetypes are presented



30 P.L. Kunsch

there as elementary building blocks, pervasive in all organizational problems.
All archetypes result in the association of one to three FBL’s with different
polarities. Senge argues that most dynamic patterns can be reproduced from
the association of some of them.

In Sect. 2 we develop some basic concepts of systems thinking from this
perspective. We use as a starting point the logistic equation as an important
growth archetype in SD. In Sect. 3 we present two other growth archetypes,
“Tragedy of the Commons”, and “Balancing Loop with Delay”, developed
along similar lines to Verhulst’s logistic equation. In Sect. 4 we present a
simple behavioural model of stock-price evolution by combining the basic
mechanisms imbedded in these archetypes. Three families of investors are in-
teracting on the equity market: fundamentalists, opportunists and long-term
traders. This model comprises at least three stocks, and, therefore, chaotic
dynamics is possible, contrary to the case of the continuous 1-D logistic equa-
tion. A conclusion relative to systems thinking and its links to the Iron Law
of Verhulst is given in Sect. 5.

2 The Logistic Equation, a Prototype
of Systems Thinking

Figure 1 reproduces a possible influence diagram of the logistic equation of
Verhulst in the very framework in which it was originally published, i.e., pop-
ulation dynamics. It represents a one-stock, two-flow System-Dynamics (SD)
model of the evolution of a deer population; the latter is submitted to a food
availability constraint. The only stock is represented by a rectangular reser-
voir, according to the tradition introduced by J.W. Forrester, the initiator of
SD, in the early sixties of the last century.

Fig. 1. The influence diagram of the logistic growth of a deer population
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Calling P the population, its logistic growth is represented by the Verhulst
equation in a modernized form, and slightly modified to explicitly include the
deer death rate:

dP
dt

= rP
(

1 − P

K

)
−DP . (1)

According to the usage in ecology, r represents the fractional growth rate
corresponding to the r-strategy in a biotope, and K the limiting population
size at maturity, corresponding to the K-strategy; D is the fractional death
rate per unit of time, such that D =1/Lifetime of deer.

Figure 2 shows the evolution of the population and of the two flows,
“Births” and “Deaths”. At logistic equilibrium the two flows become equal,
so that the net flow vanishes. Figure 3 is the representation in the phase plane
(deer population, net growth rate). The equation of the 1-D flow on the r.h.s.
of (1) is a parabola. All this is of course well known. The influence diagrams
and the computations originate from the SD-code VENSIM R© [23].

Let us spend some more time examining the two feedback loops (FBL)
in Fig. 1. The positive FBL in the influence diagram represents the growth
process. The induced growth pattern is exponential; it corresponds to the
r-strategy.

Except for the natural death rate, the only negative influence is between
“deer population” and “relative food availability”: both variables move in
opposite directions. Assuming that less food means less non-lethal births

Fig. 2. The evolution of the stock and of the two flows in the logistic-growth model
of Fig. 1
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Fig. 3. The phase plane (P, dP/dt) of the logistic equation showing the parabolic
function on the r.h.s. of (1)

of fawns, a negative FBL is obtained. The induced growth pattern is goal
seeking with a resulting equilibrium population size K; it corresponds to the
K-strategy.

The dynamic behaviour of this simple dynamic system is dictated by
“shifting loop dominance” between the two FBL’s in the left part of the
diagram:

– First the (+) FBL activates the r-strategy, i.e. nearly exponential growth,
the (−) FBL remains weak because it is driven by the term rP (P/K) in
(1), which is still second-order, and nearly negligible;

– As P grows this latter term becomes larger, and progressive shifting loop
dominance appears. This concept has been introduced by Forrester [6–8].
In this specific case this simply means that the weaker (−) FBL becomes
increasingly active with respect to the (+) FBL. In the growth curve, an
inflection point is visible when P = K/2;

– At equilibrium, both loops are equally active, and thus exactly in balance,
and the nonlinear process of shifting loop dominance is then complete to
realise the asymptotic equilibrium at P = K.

Shifting loop dominance is the central idea of FBL-thinking, and thus
of SD [8]. The properties of nonlinear systems are changing in the phase
space. Some loops are dominant, or simply active, while some other ones are
dormant, or practically inactive. So that there are no universal properties
any more, contrary to what happens in linear systems.
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Even if all FBL’s are present from the beginning in the influence dia-
gram of the model, much different behaviour can be observed by numerical
integration as the relative strengths of several FBL’s change along the way.
This explains why nonlinear systems often show counterintuitive behaviours
as already stressed by Forrester in his Urban Dynamics [7]. This complexity
can be observed with only few FBL’s, but it increases when there are many
possible combinations of interacting FBL’s present in the model. Given n
FBL’s there are n(n+ 1)/2 FBL pairs to be compared. A larger system can
have hundreds, or thousands FBL’s!

This counterintuitive behaviour is a different concept from deterministic
chaos. It has to do with the co-existence of many possible attractors of dif-
ferent nature (strange attractors are just one family). Another complication
arises because of the possible bifurcations when parameters in the system (like
the birth fraction) change value. This further increases the unpredictability
and in fact the complexity of the system behaviour.

The 1-D logistic equation is unable to generate chaos, when the integration
is done properly. This is because of the Poincaré–Bendixon theorem, which
states that there can be no chaos on the line or the plane (see for example [9],
Chap. 5.8, on stability properties in nonlinear systems). Chaos is thus only
potentially observable in nonlinear systems with three stocks and more.

In the 1-stock case, chaos will only be observed as the result of an improper
choice of the integration time step, and in this case it is thus a mere mathe-
matical artefact (see [15]). Equation (1) indeed needs first to be numerically
integrated, with introducing of a discrete time step. The Euler integration
scheme in time t can be written as follows:

P (t+ ∆t) = P (t)
[
1 + r

(
1 − P (t)

K

)
∆t

]
. (2)

Assume that the initial condition is such that 0 < P (t = 0) < K. Because
for all finite t, the exact solution of (1) is such that P (t) < K, if ∆t is small
enough, P (t) will be increasing from P (0) without ever exceeding K, except
when P (t) comes very close to K from underneath. One should then observe
that for small enough ∆t’s:

P (t+ ∆t) > P (t) > 0 when K − P (t) > ε > 0 , (3)

where ε < ∆t is a very small number. Numerically, for t sufficiently large P (t)
will slightly exceed K, so that the flow of the r.h.s. becomes negative; P (t)
will then gently oscillate with hardly observable amplitude around K. It can
be intuitively understood that for larger ∆t steps, oscillations will become
of larger amplitude; once situations arise wherein P (t) becomes significantly
larger than K, overshoots of larger amplitude then occur, making P (t) swing-
ing hence and forth passing the K-value; the place where the population size
P crosses the horizontal line at the boundary value K then changes at each
period. Chaos arises when the set of crossing points becomes infinite. This
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Fig. 4. When the time step is too large, the integration of the logistic equation
with the Euler scheme generates similar pattern as in the logistic mapping, including
chaos

situation is shown in Fig. 4. It is observed that, contrary to expectations
from the continuous (2), P swings widely above the K = 1 boundary value
of the population. Similar evolutions appear to the logistic map when the
growth parameter increases. Several authors have established a correspon-
dence between this latter parameter, and the time step, obtaining herewith
the bifurcation diagrams in function of ∆t. This discussion does not need to
be reproduced here (see for example a review paper in [13]).

3 Archetypes

System Dynamics (SD) is a quantitative simulation technique; many authors
in many different fields, such as economics and finance, organisation, envi-
ronment, macroeconomics, etc. use it. A recent handbook is Sterman [22].
Soft modelling with SD is also a possibility. This approach limits the elab-
oration of models to the first qualitative step of establishing the influence
diagram, and analysing the feedback-loop (FBL) structure to deduce some
consequences for the system and to derive possible improvement strategies.
This approach has some merit, though it is sometimes of limited predictive
value: as mentioned before, systems often behave in a counterintuitive way
due to the complex feedback interactions, and numerical simulations are nec-
essary to test the actual behaviour patterns. Peter M. Senge is the author
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of The Fifth discipline [19]. His main message is that Systems Thinking is
indispensable for understanding and curing organizational problems. Unfor-
tunately the human mind has difficulty in abandoning linear thinking, which
was well adapted to local conditions of human societies in the past, but be-
comes far less adapted to global societies today. Senge further argues that, in
numerous cases, simple systems often consisting of two to three basic feed-
back loops (FBL) provide a sufficient insight on what is going wrong in the
enterprise. These elementary systems, called archetypes, thus can be assem-
bled as building blocks for modelling more complex situations. According to
Senge’s convictions most situations of crisis are reducible to a small number
of archetypes. His book enumerates ten main archetypes. Additional ones
have been developed in later books of Senge [20] on the basis of the work of
Kim [12]. The most important archetypes are centred on three main growth
patterns:

1. Logistic growth of (1) is described as combining exponential growth em-
bodied in a (+) FBL, and goal-seeking growth, embodied in a (−) FBL.
It represents the “Limits to Success” archetype in Senge’s book. The in-
terplay between the two FBL’s leads to the described shifting loop domi-
nance, as has been illustrated in the basic Verhulst model. The archetype
is shown in a more general way in Fig. 5: the whole model rests on the as-
sumption that some resource is limited and becomes inadequate at some
point. A more business-oriented case is shown in Fig. 6, called “Doctor’s
Practice” [18]. It illustrates the interplay between on the one hand the
growth process of the (+) FBL, around the mouth-to-mouth publicity
of satisfied patients, and, on the other hand, the constraints of the time
resource. The latter is impeding the further growth because of the (−)
FBL related to the diminishing acceptability of time spent in the waiting
room.

Fig. 5. The archetype “Limits to Success” as a generic model of Verhulst’s Iron
Law (according to [22])
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Fig. 6. The logistic growth in the doctor’s surgery, as a further illustration of
Verhulst’s Iron Law. The limited resource is here the time that the doctor can
devote to his patients (according to [18])

2. Overshoot and collapse growth appears in a second archetype “Tragedy
of the Commons”, according to the economist Garrett Hardin [10]. This
type of growth is quite pervasive in complex systems (traffic congestion,
exhaustion of depletable resources, collapsing of biotopes, etc.). It is ob-
tained from Verhulst’s logistic growth by adding just one more (−) FBL,
as shown in Fig. 7. In the first archetype of logistic growth in Fig. 5, the
resource is in some way an external parameter to the model, embodied in
the constant K in (1). The second (−) FBL on the right of the drawing
now includes the limiting resource in the model. It corresponds to an ero-
sion mechanism. The growth goal K, instead of being constant, will now
be suddenly and often unexpectedly be collapsing through the internal
nonlinear forces in the system. In human systems, the erosion is caused
by the inadequate use of a common good or resource (highway, oil, etc.)
in the egoistic search for individual advantage.
The model in Fig. 8 has two stocks, i.e. two ordinary differential equa-
tions, for representing both state variables, in this example deer popula-
tion P and vegetation level V . These equations look as follows:
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Fig. 7. The extension of the logistic model to a two-stock model representing the
erosion of the food resource in the archetype “Tragedy of the Commons”

Fig. 8. The extension of the deer model of Fig. 1, including the resource Vegetation
into the model. The deer population collapses when the food resource is eroded away
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dP
dt

= rP

(
1 − P

K

)
−D(V )P (4)

dV
dt

= sV

(
1 − V

L

)
− CPV . (5)

The variables and parameters in (4), representing the deer-population
dynamics, have the same meaning as in (1). D(V ), the death flow, is
a declining nonlinear function of its argument V to be represented by a
lookup table. It is of course equal to the natural death rate when the food
is abundant, and it grows to 100 % mortality when food is disappearing.
In (5), representing the vegetation dynamics, s and L are constants, and
they correspond to r and K in (4). The parameter C represents the
specific consumption of food per deer and time period.

3. The third archetype is called in Senge’s original work “Balancing Loop
with Delay”. It is basically a goal-seeking loop. Delays may be present
at several stages: when information is collected or processed to take ac-
tion, or before action leads to a change in the state of the system. The
generic archetype is shown in Fig. 9. All loops are negative, because each
information delay corresponds to one or several one-stock systems with

Fig. 9. The archetype “Balancing Loop with Delay” in which an information signal
within a negative goal seeking FBL is submitted to delays causing overshooting and
oscillations
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Fig. 10. In this archetype the oscillations are caused by the information delay
between the inventory state and the manpower hiring

an outgoing flow (see [22], Chap. 11). This archetype is typical for the ex-
istence of business cycles. An example is shown in Fig. 10, representing a
manpower-management problem; it consists in a goal seeking loop, which
is itself a first-order delay, embedded in a two-stock system: inventory and
manpower, as follows:

dS
dt

=
Goal − S
Tadj

, (6)

where S is the stock due to achieve the goal, and Tadj is the time con-
stant necessary for the goal-adjustment process; it also represents the
time delay constant. Equation (6) is the equation of a linear proportional
controller (e.g., a thermostat) used in engineered devices to bring the
state variable (e.g., the room temperature) to a desired goal. More com-
plex nonlinear controllers, used in engineering, can be developed for the
same purpose.
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4 Modelling a Bubble on the Stock Market

In this section we discuss the modelling of the development and crash of a
speculative bubble on the equity market (EM). The recent history of the
high-tech bubble mainly in the years 1997 to 2003 provides a good example.

The archetypes presented in the previous section are the starting basis
for modelling, because of their characteristic growth patterns. When a finan-
cial bubble first builds up, exponential growth is observed; later on tempo-
rary plateaux appear reminding of logistic growth equilibrium; there are also
pseudo-random oscillations reminding of the “Balancing Loop with Delay”;
finally crashes resemble the patterns in the Tragedy of the Commons.

Financial crashes were qualitatively modelled as cusp catastrophes by Zee-
man [24]. R.H. Day [4] was one of the first authors who intensively worked
in quantitative non-equilibrium models inspired from chaos theory in dis-
crete nonlinear systems. Following ideas of Shiller [21], Day postulates two
families of investors, smart and ordinary investors. The formers are called
α-investors; the latter are called β-investors. α-investors use quantitative val-
uations from fundamental analysis, they are basically goal-seekers and they
stabilise the market. Their investment profile as a function of the price has
a reverse shape, because they are contrarians. β-investors, by contrast, re-
main in phase with the price trend by using simple investment rules: they
overreact to sudden price moves or to fads, creating volatility. Day combines
both investors’ profiles to define iterative 1-D mappings of the stock price:
p(t + 1) = f [p(t)]. The patterns he observes show phases of high volatility,
betraying the existence of deterministic chaos like in the logistic mapping.
Unfortunately, with those models it is much more difficult to generate more
representative evolutions typical for EM, like bullish or bearish behaviours,
bubble formation and crashes, etc.

The idea developed by Kunsch et al. [14] is to use a continuous model
with at least three stocks, in order to have the possibility to observe chaos,
and a number of FBL’s able to generate representative and more realistic
EM signatures. The objective of considering at least three stocks is easy
to achieve by considering several investors’ families and information delays.
Each first-order delay requires one stock. Additional budget stocks represent
the financial constraints of investors.

Of course an important literature exists dealing with nonlinear dynamic
modelling of the EM (see for example [3], [2] from [11]), or with artificial
stock markets [1]. The ambition is not to present an up-to-date review of
these models generally placed in the field of behavioural finance. Rather it
is planned here to show how archetypes, inspired from Verhulst’s ancient
contribution, are still a source of inspiration for complexity modelling.

The universe in the EM model presented here is very simple. There are
only two assets: a risky asset quoted at a variable homogeneous price P (it
could represent a common equity index like Eurostoxx 50), and a risk-free
asset, e.g., a high-rating bond. This universe is frozen for a given simulation
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run. This means first that the total number of equity shares n is fixed in
all scenarios. Second, all economic parameters of the model are constant,
including the growth rate of the fundamental value, and the risk-free rate.
Some fixed constraints are imposed on the available budget of the investors
and their borrowing capacity.

Three homogeneous groups of investors are considered, instead of two in
Day’s model. They are called α-, βS-, and βL-investors, where “S” stays for
short-term, and “L” stays for long-term. Influence diagrams can be drawn
to represent each investor’s behaviour. Several important feedback loops are
identified. They assist the understanding of basic behavioural rules devel-
oped in the investors’ minds. Some characteristics are important to under-
stand. Negative loops assist the goal-seeking approach of fundamentalists.
α-investors therefore help stabilizing the stock prices. By contrast positive
loops, activated by short-term traders (βS-investors) are responsible for am-
plifying perturbations or rumours. Sometimes such a loop can act as a vir-
tuous circle, in case it triggers a desired growth effect in prices thanks to
long-term strategies of βL-investors. Sometimes the loop acts as a vicious
circle, because it amplifies the market volatility, or it triggers crashes. In the
EM model, the two roles will be played in turn.

The three families of investors are now described in more detail; it is
shown in each case in which way they are representative of the previously
introduced archetypes. Note beforehand that this model is very simplified
because many variables are considered as exogenous parameters, to be held
constant: the relative proportions of the different investor types, and the risk-
free interest rate among others. These assumptions could be removed at the
cost of higher complexity (e.g. including these parameters as model variables
into additional FBL’s), but that would be beyond the scope of the present
work.

The same presentation is adopted as in [14].
Note first that the total equity price P is split up into the three compo-

nents representing the contributions of investors from different groups:

P (t) =
1
n

(
Mα +MβS +MβL

)
= Pα + PβS + PβL . (7)

Mα,MβS,MβL represent the amounts of money invested by the three investor
types in the EM; n is the constant number of shares; Pα, PβS, PβL represent
the three components of the total price P , attributed to the three investor
types.

4.1 Family of α-Investors

α-investors are “smart investors” behaving in a similar way to the rational
goal-seekers assumed in Day’s model. Their sole aim is to achieve convergence
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Fig. 11. Negative Feedback loop of α-investors (goal-seeking behaviour)

towards a current goal price Gα for the stock price P . It is why the unique
feedback loop visible in Fig. 11 is a negative goal-seeking FBL. The price
component Pα obeys to a similar equation to (6):

dPα

dt
=
Gα − P
Tα

(8)

As said above, more complex goal-seeking formulations can be adopted.
Because there are possibly information delays in the price adjustment,
damped oscillations caused by slight overshooting above the goal price may
be observed.

In our model, the assumed current goal price Gα is the sum of two terms:
fundamental value gα, and risk premium Aα,βL resulting from the investing
behaviour of βL-investors, to be described later:

Gα = gα +Aα,βL (9)

– The fundamental value gα results from fundamental analysis, e.g., Divi-
dend Discount Model (DDM). Deterministic dividends are assumed here,
because stochastic changes do not bring more understanding on causal
mechanisms. Dividends are growing with the given constant industry
growth rate: gα is growing at the same rate.

– The risk premium depends on the arbitraging behaviour of βL-investors
between the stock return and the risk-free rate; this is explained below.
In case of a positive gap, they invest more money into the EM, creating
herewith a price increase ∆PβL , i.e. a risk premium above the fundamen-
tal value. In this case α-investors also adjust their long-term expectations,
and they follow the observed positive trend over the fundamental value.
In practice, the premium is incorporated into the goal price by α-investors
only up to a certain point; this occurs with a time delay τ . In the model it
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is assumed that, in a bullish market mainly driven by the premium term,
α-investors will cap their goal price by a maximum arbitrage value ∆gmax

α .
The latter corresponds to an acceptable risk level. Thus the actual risk
premium is given by the following equation:

Aα,βL = min
(
∆gmax

α ,delayτ [max(0,∆PβL)]
)
. (10)

In the model α-investors do not experience any liquidity constraints. This
is a reasonable assumption, as they stop anticipating further price growth, as
the risk premium above the fundamental value becomes exceedingly large.

In conclusion, α-investors behave according to the goal-seeking part in the
logistic equation (Verhulst’s Iron Law). Because the goal is changing under
the effect of βL-investor strategies, there is a need for information collecting:
damped oscillations due to overshoots may be observed, as in the archetype
“Balancing Loop with Delay”.

4.2 Families of β-Investors

The β-investors are “ordinary investors” in Shiller’s sense [21]. They are not
entirely rational with respect to the use of information coming from the mar-
ket. They use different approaches to process the information, from rules of
thumb to advanced technical analysis. An important aspect is the time hori-
zon of anticipation, covering a continuum between short-term to long-term.
The model only considers two extreme cases in a continuum: βS-investors
have a short-time horizon (S); βL-investors have a long-term horizon (L). Also
proportions of the two types are kept constant. More sophisticated models
may consider intermediate investors’ profiles or varying proportions within
the model.

Family of βS-Investors

βS-investors are opportunistic traders who are following immediate price
movements; they buy in case of a price increase, and they sell when the
price is going down. Therefore they destabilise the goal-seeking efforts of α-
investors, who are contrarians, and they cause permanent noise. The presence
of a positive feedback loop, visible in the right part of Fig. 12, confirms the
existence of this destabilizing investment approach. The driver in this loop is
the first derivative of the price, initiating a vicious circle of growth or decay.
A negative loop is visible in the left part of the diagram. It becomes active
as the available budget drops to zero, forcing βS-investors to limit their stock
position or even to liquidate part of their portfolio. The dynamic equation of
βS-investors has been assumed to be the following:

dPβS

dt
= SβS f

(
dP̄
dt
, P

)
−RβS(BβS) , (11)
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Fig. 12. Feedback structure of short-term traders, i.e. βS-investors. The budget
acts as a control mechanism; the presence of information delays causes oscillations.
There is also a partial correspondence between this diagram and the archetype
“Tragedy of the Commons”

where SβS > 0 represents the strength of βS-investors on the market (as-
sumed to be constant). The function f(., .) depends in a nonlinear way on
the stock price P and the smoothed value of its first derivative dP̄ /dt. Its
sign is the same as the sign of the latter, indicating that βS-investors are
trend-followers modifying their positions according to increasing or declining
prices. A smoothed signal is calculated as an information delay as in (6), so
that this may be the cause of oscillating behaviour, as in the archetype “Bal-
ancing Loop with Delay”. Overshoots may also be observed, which bring the
budget to negative values. In such situations the βS-investors have to liqui-
date part of their portfolios. This appears in the last term on the r.h.s. of (11):
RβS(BβS) represents the reimbursement rate to bring the budget BβS back
to balance, in case it becomes negative. In conclusion, the delay mechanism
and the budget constraints make that βS-investors are a source of instability
and create pseudo-random oscillations in the search for price equilibrium on
the EM.

Family of βL-Investors

βL-investors rather have a long-term perspective. They permanently compare
the long-term stock return and the risk-free interest rate (irate, assumed to
be constant in this simple model). In case of a positive spread, in favour of
risky asset positions, they invest additional money, curbing on the growth of
the stock price. Therefore a positive feedback loop is visible in the upper part
of the diagram in Fig. 13. It is driven by the positive return spread between
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Fig. 13. Feedback structure of long-term traders, i.e. βL-investors. The budget fuels
growth up to a certain point just before collapse. There is a clear correspondence
between this diagram and the archetype “Tragedy of the Commons”

risky and risk-free assets, creating a risk premium. As indicated in (8) and
(9), α-investors will adjust in part their goal price to follow the growing price
trend caused by βL-investors. In contrast to βS-investors, βL-investors have
a borrowing capacity. They invest the borrowed money reinforcing herewith
the growing trend, and transform it progressively into a vicious circle. Of
course at some point there is shifting-loop dominance in favour of negative
FBL’s like in the archetypes “Limits to Success”, and the “Tragedy of the
Commons”. Such a loop is visible in the lower part of the diagram in Fig. 1: it
relates to the available money resources. βL-investors have an initial budget
and borrowing capacity up to a given permissible debt level. In any case, their
willingness to reimburse their loans will grow with the relative level of their
debt expressed as a percentage of the value of their stock position. As long
as some borrowing capacity remains, βL-investors further strengthen their
stock positions. Above some debt threshold, they experience an incentive to
liquidate at least part of their positions. Another negative loop is not directly
visible in Fig. 13, however. It finds its origin in the cap imposed by α-investors
on the permitted price growth above fundamentals, according to (10). The
simplified equation representing the dynamics of βL-investors is as follows:

dPβL

dt
= SβL(r − i) −RβL

(
BβS, VβL

)
, (12)

where SβL > 0 represents the strength of βL-investors on the market (as-
sumed to be constant in this simple model). r represents the smoothed stock
return, and i = irate, the risk-free interest rate. The growth pattern of the
first term on the r.h.s. of (12) is thus exponential. RβL represents the reim-
bursement rate of loans in case the current budget BβL is becoming negative
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and exceeds the borrowing capacity, which depends on the current value VβL

of the portfolio owned by βL-investors.
In conclusion βL-investors develop a growth mechanism that is similar to

the archetype “Tragedy of the Commons”. The growth is fuelled on a basis of
an artificial money-borrowing resource and the landing can be quite sudden
and hard, as some limits in the borrowing capacities are exceeded. Note that
α-investors contribute to define when the bubble crash will start by capping
the risk premium, as shown in (10).

4.3 Some Results of Simulation

In short some results of the EM model are presented in the form of time
diagrams. The latter represent the total stock price (upper curve represented
by a thick line), and its three components, indicated as Palpha (heavy line),
PbetaST (medium-heavy line), and PbetaLT (thin line), according to (7). There
are many possible choices for the parameters in the model, but we shall limit
our discussion to a few typical cases for bubble growth and crash. We again
adopt the presentation from [14].

A first scenario represents a boundary situation, helpful to calibrate the
model. The risk-free rate is assumed to be very high; it is then expected
that the risk premium is vanishing, i.e. no βL-investors will be present on
the market, and thus no bubble can appear. In this case the price will gently

Fig. 14. (From [14]). A calibration calculation in case there is no risk premium,
because of high risk-free rates
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follow the industry growth rate. The price components and the total price are
shown in Fig. 14 confirming our expectations. The total price rapidly comes
to the fundamental value. The lower curve shows the contribution of βS-
investors following the growing trends. Sometimes budgets become negative,
so that, according to (11), a broken line and oscillations back to positive
budget values are observed.

The following figures show two situations, in which the risk-free interest
rate is low, so that βL-investors can arbitrage. In Fig. 15 the market is initially
bearish. The return spread is negative, i.e. in favour of risk-free investment.
For quite a long time, the market is in near-equilibrium at the goal price set
by α-investors; the growth rate is equal to the industrial growth rate (7%
p.a.). However, the steady industrial growth brings about a fresh-born wave
of βL-investors. As a result the goal price also shifts up. βL-investors soon find
their limits. The borrowing capacity is reached. At this point, βL-investors
have to rapidly liquidate the largest part of their stock portfolio in order
to bring down their loan debt to an acceptable level. This reimbursement
constraint has the same effect on the price as a reflecting barrier. The price
bounces back creating chaotic ups and downs of the price in search for a new
equilibrium value. βS-investors amplify the appeared volatility. The price
volatility becomes so large that at some point the long-term return drops
below the risk-free rate. βL-investors disappear from the scene after a crash
of limited amplitude. The market moves to a new equilibrium following the
natural trend of fundamental values.

Fig. 15. (from [14]). The case of low interest rates, and an initially bearish market
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In Fig. 16 the same assumptions as in the previous figure are used for
simulating an initially bullish market. A burst in price sets up immediately;
it is accompanied by high volatility. The bouncing back of the price against
the debt barrier induces still more volatility than in the previous case. This
turbulent behaviour cannot maintain itself very long. The market moves to
its fundamental equilibrium as in the previous figure. After a while, a new
price upsurge is observed with still more volatility than previously in the
growing phase. It lasts for quite some time, exhibiting swings of considerable
amplitude. As before, a crash brings back the price to its natural equilibrium.
When pursuing the computation, regular replicas with similar shapes are
periodically observed.

Fig. 16. (from [14]) The case of low interest rates, and an initially bullish market

The more detailed paper contains additional runs with other choices of
parameters, and a comparison of simulations with real observations on the
EM. The readers are referred to this paper for more details. As a source of
inspiration for more advanced models, Fig. 17 presents, without any further
comments, the evolution of the Eurostoxx 50 index between October 1994
and September 2004 during the lifetime of the recent high-tech bubble.
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Fig. 17. The evolution of the DJ Eurostoxx 50 from October 1994 to September
2004 (from the website wallstreet-online)

5 Conclusions

The author has attempted in this chapter to present Verhulst’s contribution
in a somewhat different light: discussions generally go about the links between
the logistic equation and chaos theory. It is argued here that in some way
Verhulst was a pioneer of nonlinear system theory. Systems thinking is today
becoming a necessity for survival: the world globalization forces us to think
in terms of causality networks rather that in terms of isolated cause-effect
links [5]. Verhulst’s ancient contribution thus remains modern, and it is still
needed.

With the logistic growth, Verhulst introduced for the first time in history
an influence diagram, in which two feedback loops are competing for domi-
nance. This simple system teaches us that exponential growth is impossible in
the natural world, because constraints on resources must be taken into con-
sideration. The Iron Law of Verhulst remains an important message, which is
unfortunately not yet accepted by all. Without this insight it is impossible to
start a reflection on how to remove the “Limits to Success”, which are today
threatening the very long-term existence of mankind in the limited spaceship
earth.
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