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In this chapter we present a new approach to the study of manifestations
of chaos in real complex systems. Recently we have achieved the following
result. In real complex systems the informational measure of the chaotic
character (IMC) can serve as a reliable quantitative estimation of the state
of a complex system and helps to estimate the deviation of this state from its
normal condition. As the IMC we suggest the statistical spectrum of the non-
Markovity parameter (NMP) and its frequency behaviour. Our preliminary
studies of real complex systems in cardiology, neurophysiology and seismology
have shown that the NMP has diverse frequency dependence. It testifies to
the competition between Markovian and non-Markovian, random and regular
processes and makes a crossover from one relaxation scenario to the other
possible. On this basis we can formulate the new concept in the study of
the manifestation of chaoticity. We suggest the statistical theory of discrete
non-Markov stochastic processes to calculate the NMP and the quantitative
evaluation of the IMC in real complex systems. With the help of the IMC we
have found the evident manifestation of chaoticity in a normal (healthy) state
of the studied system, its sharp reduction in the period of crises, catastrophes
and various human diseases. It means that one can appreciably improve the
state of a patient (of any system) by increasing the IMC of the studied live
system. The given observation creates a reliable basis for predicting crises and
catastrophes, as well as for diagnosing and treating various human diseases,
Parkinson’s disease in particular.

1 Introduction

Today the study of the manifestations of chaos in real complex systems of di-
verse nature has acquired great importance. The analysis of some properties
and characteristics of real complex systems is impossible without a quantita-
tive estimate of various manifestations of chaos. The dynamics or evolution
of the system can be predicted by the change of its chaoticity or regularity.
The discovery of the phenomenon of chaos in dynamic systems has changed
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the attitude with regard to the functioning of complex systems, a human or-
ganism in particular. The chaos is the absence of regularity. It characterizes
the randomness and the unpredictability of the changes of the behaviour of a
system. At the same time, the presence of chaos in dynamic systems does not
mean it cannot be taken under control. Instability of dynamic systems in the
state of chaos creates special sensitivity to both external and internal influ-
ences and perturbations. The series of weak perturbations of the parameters
of the system allows to change its characteristics in the required direction.
“Chaos” is frequently understood as a determined dynamic chaos, that is,
the dynamics depend on the initial conditions, parameters.

Lasers, liquids near the threshold of turbulence, devices of nonlinear op-
tics, chemical reactions, accelerators of particles, classical multipartite sys-
tems, some biological dynamic models are examples of nonlinear systems with
manifestations of determined chaos. Now manifestations of chaos are being
studied in different spheres of human activity.

The control of the behaviour of chaotic systems is one of the most im-
portant problems. Most of the authors see two basic approaches to solve the
problems [1,2]. Both directions envisage a preliminary choice of a certain per-
turbation. The selected perturbation is used to exert influence on the chaotic
system. The first direction relies on an internal perturbation, the choice of
which is based on the state of the system. The perturbation changes the pa-
rameter or the set of parameters of the system, which results in the ordered
behaviour of the chaotic systems. The methods focusing on the choice of such
parameters (perturbations) are referred to as “methods with a feedback” [1]-
[6]. They do not depend on the studied chaotic system (model) as these
parameters can be selected by observing the system for some period of time.
One also considers that the methods with a delayed feedback [3, 7] belong
to the first direction. The second approach presupposes that the choice of
the external perturbation does not depend on the state of the chaotic system
under consideration. By affecting the studied system with the similar pertur-
bation, it is possible to change its behaviour. The present group of methods
is an alternative to the first one. These methods can be used in cases when
internal parameters depend on the environment [1, 8, 9].

Generally, when choosing internal (external) perturbations it is possible
to determine three basic stages: the estimation of the initial information, the
choice of the perturbation and the bringing of the chosen strategy of control
into action (its practical realization). At the first step the information on
the state of the studied system is collected. At the second stage the received
information is processed according to the plan or strategy of the control. On
the basis of the achieved results the decision on the choice of the internal
(of the external) perturbation is accepted. After that the chosen strategy of
chaos control is put into practice [2].

The initial idea of the present concept was to separate Markov (with
short-range time memory) and non-Markov (with long-range time memory)
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stochastic processes. However, the study of real complex systems has revealed
additional possibilities of the given parameter. Actually, the non-Markovity
parameter represents a quantitative measure of the chaoticity or regularity
of various states of the studied system. An increase of the given parameter
(ε1(0) � 1) corresponds to an increase of the chaoticity of the state of the
system. A decrease of the non-Markovity parameter means a greater ordering
(regularity) of the state of the system. The given observation allows one to
define a new strategy for estimating the chaoticity in real systems. This new
approach in chaos theory can be presented as an alternative to the existing
methods. Further analysis of the non-Markovity parameter allows one to
define the degree of chaoticity or regularity of a state of the system.

In this work the new strategy for the study of manifestations of chaotic-
ity is applied to real complex systems. The possibilities of the new approach
are revealed at the analysis of the experimental data on various states of a
human organism with Parkinson’s disease. Parkinson’s disease is a chronic
progressing disease of the brain observed in 1–2% of elderly people. The given
disease was described in 1817 by James Parkinson in the book “An essay on
the shaking palsy”. In the 19th century the French neurologist Pierre Marie
Charcot called this disease “Parkinson’s disease”. The steady progress of the
symptoms and yearly impairment of motor function is typical of Parkinson’s
disease. Complex biochemical processes characteristic of Parkinson’s disease
result in a lack of dopamine, a chemical substance which carries signals from
one nerve cell to another. The basic symptoms typical of Parkinson’s dis-
ease form the so-called classical triad: tremor, rigidity of muscles (disorder of
speech, amimia), and depression (anxiety, irritability, apathy). The disease
steadily progresses and eventually the patient becomes a helpless invalid. The
existing therapy comprises a set of three basic treatments: medical treatment,
surgical treatment and electromagnetic stimulation of the affected area of the
brain with the help of an electromagnetic stimulator. Today this disease is
considered practically incurable. The treatment of patients with Parkinson’s
disease requires an exact estimate of the current state of the person. The
offered concept of research of manifestations of chaoticity allows one to track
down the least changes in the patient with the help of an exact quantitative
level of description.

Earlier we found out an opportunity for defining the predisposition of a
person to the frustration of the central nervous system due to Parkinson’s
disease [13]. Our work is an extension and development of the informational
possibilities of the statistical theory of discrete non-Markov random processes
and the search for parameters affecting the health of a subject.
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2 The Statistical Theory of Discrete Non-Markov
Random Processes. Non-Markovity Parameter
and its Frequency Spectrum

The statistical theory of discrete non-Markov random processes [10–12] forms
a mathematical basis for our study of complex live systems. The theory allows
one to calculate the wide quantitative set of dynamic variables, correlation
functions and memory functions, power spectra, statistical non-Markovity
parameter, kinetic and relaxation parameters. The full interconnected set of
these variables, functions and parameters creates a quantitative measure of
chaoticity used for the description of processes, connected with the function-
ing of alive organisms.

We use the non-Markovity parameter ε as a quantitative estimate of the
non-Markov properties of the statistical system. The non-Markovity para-
meter allows to statistical processes into Markov processes (ε → ∞), quasi-
Markov processes (ε > 1) and non-Markov processes (ε ∼1). Besides the
non-Markovity parameter we also use the spectrum of the non-Markovity
parameter. We define the spectrum as the set of all values of the physical pa-
rameter used for describing the state of a system or a process. Let’s consider
the first and the nth kinetic equations of the chain of connected non-Markov
finite-difference kinetic equations [10,11]:

∆a(t)
∆t

= λ1a(t) − τΛ1

m−1∑
j=0

M1(jτ)a(t− jτ) , (1)

· · ·
∆Mn(t)

∆t
= λn+1Mn(t) − τΛn+1

m−1∑
j=0

Mn+1(jτ)Mn(t− jτ).

The first equation is based on the Zwanzig–Mori kinetic equation of nonequi-
librium statistical physics:

da(t)
dt

= −Ω2
1

∫ t

0

dτM1(jτ)a(t− jτ) .

Here a(t) is a normalized time correlation function (TCF):

lim
t→0

a(t) = 1, lim
t→∞ a(t) = 0 .

The zero memory function a(t) and the first-order memory function M1(t)
in (1),
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M0(t) = a(t) =
〈A0

k(0)Am
m+k(t)〉

〈|A0
k(0)|2〉 , t = mτ,

M1(jτ) =
〈A0

k(0)L̂12{1 + iτ L̂22}jL̂21A
0
k(0)〉

〈A0
k(0)L̂12L̂21A0

k(0)〉 , M1(0) = 1.

A0
k(0) = (δx0, δx1, δx2, · · · , δxk−1),

Am
m+k(t) = (δxm, δxm+1, δxm+2, · · · , δxm+k−1),

describe statistical memory in complex systems with a discrete time (A0
k(0)

and Am
m+k(t) are the vectors of the initial and final states of the studied

system). The operator L̂ is a finite-difference operator:

iL̂ =
∆
∆t
, ∆t = τ ,

where τ is a discretization time step, L̂ij = ΠiL̂Πj (i, j = 1, 2) are matrix
elements of the splittable Liouville quasi-operator, Π1 = Π,Π2 = P = 1−Π
and Π are projection operators.

Let us define the relaxation times of the initial TCF and of the first-order
memory function M1(t) as follows:

τa = Re
∫ ∞

0

a(t)dt, τM1 = Re
∫ ∞

0

M1(t)dt, . . . , τMn
= Re

∫ ∞

0

Mn(t)dt .

Then the spectrum of the non-Markovity parameter {ε} is defined as an
infinite set of dimensionless numbers:

{εi} = {ε1, ε2, . . . , εn, . . .} ,
ε1 =

τa
τM1

, ε2 =
τM1

τM2

, . . . , εn =
τMn

τMn+1

,

ε =
τrel
τmem

. (2)

Note that a(t) = M0(t). The number εn characterizes the ratio of the re-
laxation times of the memory functions Mn and Mn+1. If for some n the
value of the parameter εn → ∞, then this relaxation level is Markovian. If εn
changes in limits from zero to a unit value, then the relaxation level is defined
as non-Markovian. The times τrel (relaxation time) and τmem (memory life
time) appear when the effects of the statistical memory in the complex dis-
crete system are taken into account by means of the Zwanzig–Mori method
of kinetic equations. Thus, the non-Markovity parameter spectrum is defined
by the stochastic properties of the TCF.

In [10] the concept of generalized non-Markovity parameter for a frequency-
dependent case was introduced:

εi(ω) =
(
µi−1(ω)
µi(ω)

) 1
2

. (3)
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Here as µi(ω) we have the frequency power spectrum of the ith memory
function:

µ1(ω) = |Re
∫ ∞

0

M1(t)eiωtdt|2, . . . , µi(ω) = |Re
∫ ∞

0

Mi(t)eiωtdt|2 .

The use of εi(ω) allows one to find the details of the frequency behaviour
of the power spectra of the time correlations and memory functions.

3 The Universal Property of Informational
Manifestation of Chaoticity in Complex Systems

In our work the discussion of the manifestation of chaoticity is carried out on
the basis of a statistical invariant which includes a quantitative informational
measure of chaoticity and pathology in a covariant form. The existence of
this invariant is very important for taking decisions in the problems related
to medicine as well as for analysing a wide area of physical problems related
to complex systems of various nature.

In each live organism there is a universal informational property of the
following form:

IMC + IMP = Invariant . (4)

Here IMC is an informational (quantitative) measure of chaoticity for the
concrete live system, IMP is an informational measure of a pathological state
of a live organism. As an informational (quantitative) measure of the degree of
chaoticity (regularity) we propose to use the first point of the non-Markovity
parameter at zero frequency: ε1(0) = [µ0(0)/µ1(0)]1/2. The physical sense of
the parameter consists in comparing the relaxation scales of the time cor-
relation function (a(ω)) to the memory functions of the first order (µ(ω)).
Depending on the values of this parameter one can discriminate Markov
processes (with short-range memory) and non-Markov processes (with long-
range memory effects). Thus, the phenomena distinguished by the greatest
chaoticity correspond to Markov processes. Non-Markov processes are con-
nected with greater regularity. The informational measure of a pathological
state (IMP) defines the qualitative state of a real live system.

The quantitative estimate IMC of the degree of chaoticity of a system con-
tains the information on a pathological state of the system. It testifies to the
close interrelation of the given quantities. A high degree of chaoticity is char-
acteristic of a normal physiological state. In a pathological state the degree of
chaoticity decreases. A high degree of regularity is typical of this condition.
Thus, the quantitative estimate of the chaoticity in live systems allows one to
define their physiological or pathological state with a high degree of accuracy.
In the right-hand side of (4) we have a statistical invariant, which reveals the
independence of the physical (as well as biophysical, biochemical and bio-
logical) laws in the given live organism from the concrete situations as well



Manifestation of Chaos in Real Complex Systems 181

as the methods of description of these situations. The invariance, submitted
in (4), is formulated as the generalization of the experimental data. Among
other physical laws the properties of invariance reflect the most general and
profound properties of the studied systems and characterize a wide sphere
of phenomena. Equation (4) reflects an informational observation. It consists
of two informational measures: the measure of chaoticity and the measure of
pathology (disease).

Let us use the operator of transformation T (S′, S) in both parts of (4). It
realizes the transition of the system from one state S to another one S′. By
taking into account the statistical invariance I(S′) = T (S′, S)I(S) = I(S) in
the right-hand side of (4) we get:

∆P = P (S′) − P (S) = −∆C = −{C(S′) − C(S)},∆P + ∆C = 0 . (5)

Here the following designations are introduced: I(S) = Invariant, P (S) =
IMP(S) is an informational measure of pathology (disease) for the state S,
C(S) = IMC(S) is an informational measure of the chaoticity for the state
of patient S. Besides in (5) we take into account the rules of transformation:

C(S′) = T (S′, S)C(S), P (S′) = T (S′, S)P (S) . (6)

Equations (4)–(6) are rather simple but they make the quantitative de-
scription of the state of a patient possible, both during the disease and under
the medical treatment. Equations (4)–(6) have a general character. They are
true for many complex natural and social systems. It is possible to develop
the algorithms of prediction of various demonstrations of chaos in complex
systems of diverse nature on the basis of these equations.

4 The Quantitative Factor of Quality of a Treatment

One of the major problems of the medical physics consists in the develop-
ment of a reliable criterion to estimate the quality of a medical treatment,
a diagnosis and a forecasting of the behaviour of real live complex systems.
As one can see from the previous section, such a criterion should include the
parameter of the degree of randomness in a live organism. The creation of a
quantitative factor for the quality of a treatment QT is based on the behav-
iour law of the non-Markovity parameter ε1(0) in the stochastic dynamics of
complex systems. The greater values of the parameter ε1(0) are character-
istic of stable physiological states of systems; the smaller ones are peculiar
for pathological states of live systems. Thus, by the increase or reduction
of the non-Markovity parameter one can judge the physiological state of a
live organism with a high degree of accuracy. Therefore the non-Markovity
parameter allows one to define the deviation of the physiological state of a
system from a normal state.



182 R.M. Yulmetyev et al.

The factor QT defines the efficacy or the quality of the treatment and is
directly connected with the changes in the quantitative measure of chaoticity
in a live organism. We shall calculate it in a concrete situation. Let us consider
1 as the patient’s state before therapy, and 2 as the state of the patient after
certain medical intervention. Then ε1(1) and ε1(2) represent quantitative
measures of the chaoticity for the physiological states 1 and 2. The ratio δ of
these values (δ = ε1(2)/ε1(1)) will define the efficacy of the therapy. Various
jth processes occur simultaneously in the therapy. Therefore the total value
of δ can be defined by the following way:

δ =
n∏

j=1

εj1(2)
εj1(1)

, (7)

where j = 1, 2 . . . n is the number of factors affecting the behaviour of the non-
Markovity parameter. However, the natural logarithm ln δ is more convenient
for use.

Then we have:

δ > 1, ln δ > 0 ;
δ = 1, ln δ = 0 ;
δ < 1, ln δ < 0 .

The three values of δ mentioned above correspond to the three different
qualities of treatment: effective, inefficient and destructive treatment. They
reflect an increase, preservation and reduction of the measure of the chaoticity
in the therapy. Thus, one can define QT (ε) = ln δ according to (7) as follows:

QT (ε) = ln
n∏

j=1

εj1(2)
εj1(1)

. (8)

However, the total factor QT is defined both by the quantitative measures
of the chaoticity and by other physiological and biochemical data. Now we
shall consider the transition of the patient from state 1 into state 2. Then
by analogy, one can introduce the physiological parameter k(1), determined
for state 1, and k(2) for state 2. In the case of Parkinson’s disease one can
introduce the amplitude or the dispersion of the tremor velocity of some
extremities (hand or leg) of the patient as this parameter. In other cases any
medical data, which is considered for diagnostic purposes, can be used. For
greater reliability it is necessary to use the combination of various parameters
kj(1) and kj(2).

The value:

QT = ln
n∏

j=1

εj1(2)
εj1(1)

kj(2)
kj(1)

(9)

will be considered as a generalized quantitative factor of quality of the ther-
apy.
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However in real conditions it is necessary to increase or weaken the mag-
nitude of chaotic, or physiological contributions to (9). For this purpose we
shall take the simple ratio:

ln
∏

(anbm . . .) = n ln a+m ln b+ · · ·
By analogy, we can reinforce or weaken various contributions depending on
the concrete situation:

QT = ln
n∏

j=1

(
εj1(2)
εj1(1)

)mj (
kj(2)
kj(1)

)pj

. (10)

If incomplete experimental data are available in some situations, one can
assume pj = 1 (attenuation of the physiological contribution). A valuemj > 1
can mean an amplification of the chaotic contribution. Otherwise, if we want
to weaken the chaotic contribution, we should take mj = 1 and if we want
to reinforce the physiological contribution we come towards pj > 1. We have
presented the results of the calculation of the quantitative factor QT below
in Sect. 6

5 Experimental Data

We have taken the experimental data from [15]. They represent the time
records of the tremor velocity of the index finger of a patient with Parkinson’s
disease (see, also http://physionet.org/physiobank/database/). The effect of
chronic high frequency deep brain stimulation (DBS) on the rest tremor was
investigated [15] in a group of subjects with Parkinson’s disease (PD) (16
subjects). Eight PD subjects with high amplitude tremor and eight PD sub-
jects with low amplitude tremor were examined by a clinical neurologist and
tested with a velocity laser to quantify time and frequency domain char-
acteristics of tremor. The participants received DBS of the internal globus
pallidus (GPi), the subthalamic nucleus (STN) or the ventrointermediate nu-
cleus of the thalamus (Vim). Tremor was recorded with a velocity laser under
two conditions of DBS (on–off) and two conditions of medication (L-Dopa
on–off).

All the subjects gave informed consent and institutional ethics procedures
were followed. The selected subjects were asked to refrain from taking their
medication at least 12 h before the beginning of the tests and were not allowed
to have more than one coffee at breakfast on the two testing days. Rest
tremor was recorded on the most affected side with a velocity-transducing
laser [16, 17]. This laser is a safe helium–neon laser. The laser was placed
at about 30 cm from the index finger tip and the laser beam was directed
perpendicular to a piece of reflective tape placed on the finger tip. Positive
velocity was recorded when the subjects extended the finger and negative
velocity when the subjects flexed the finger.
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The conditions, counterbalanced across subjects, included the following:

1. The L-Dopa condition (no stimulation).
2. The DBS condition (stimulation only).
3. The “off” condition (no medication and no stimulation).
4. The “on” condition (medication on and stimulation on).
5. The effect of stopping DBS on tremor (time record of the tremor 15, 30,

45 and 60 min after having switched the stimulator off).

In Fig. 1 the time records of the velocity of changing tremor of the index
finger of the second patient’s hand (man, 52 years old) under various condi-
tions of influence on the organism are submitted as an example. High tremor
velocity is observed: 1) in a natural condition of the patient (a), 2) 15 (45)
minutes after the stimulator was switched off. Lower tremor speed occurs:
1) when both methods (stimulation, medication) are used, 2) when each of
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Fig. 1. The velocity of the change of tremor of the index finger of the patient’s
right hand (the second subject) with Parkinson’s disease under various conditions
of the experiment. (a) deep brain stimulation off, medication off; (b) the subject
was receiving stimulation of the GPi, medication on; (c) deep brain stimulation off,
medication on; (d) the subject was receiving stimulation of the GPi, medication
off; (e)–(h) the recording of rest tremor in the right index finger of the subject
15 (30, 45, 60) minutes after the stimulator was switched off, this subject was off
medication for at least 12 hours
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these methods is used separately, 3) 30 (60) minutes after the stimulator was
switched off. Similar results are presented in [15].

6 Results

In this section the results obtained by processing the experimental data for
one of the patients (subject number 2) are shown. Similar or related pictures
are observed in the experimental data of other subjects.

6.1 The Non-Markovity Parameter as a Quantitative Measure
of Defining Chaoticity

In this subsection the technique to calculate quantitative and qualitative
criteria under various conditions influencing the state of a patient is given.
The basic idea of the approach consists in defining the quantitative ratio
between chaoticity and regularity of the observed process. It allows one to
judge the physiological (pathological) state of a live system by the degree of
chaoticity or of regularity. The highest degree of chaoticity in the behaviour
of a live system corresponds to a normal physiological state. Higher degree of
regularity or specific ordering is characteristic of various pathological states
of a live system. In the given work we use the non-Markovity parameter
ε1(0) as a special quantitative measure defining chaoticity or regularity of
the studied process. The examples [10–14], [18] which have been investigated
by us earlier serve as a basis for such a reasoning. As one of the examples
we shall consider the tremor velocity of the changing of the subject’s index
fingers in the case of Parkinson’s disease.

The comparative analysis of the initial time record and the non-Markovity
parameter for all the submitted experimental data allows one to discover
the following regularity. The value of the non-Markovity parameter ε1(0)
decreases with the increase of the tremor velocity of the patient’s fingers
(deterioration of the physiological state) and grows with the decrease of the
tremor velocity (improvement of the state of the patient). We shall also con-
sider the power spectrum µ0(ω) of the initial TCF under various conditions
influencing an organism, the window-time behaviour of the power spectrum
µ0(ω) and the non-Markovity parameter ε1(ω), the time dependence local
averaging relaxation parameter λ1(t) as additional sources of information.

Figure 2 represents the power spectrum of the initial TCF for various
experimental conditions. One can observe a powerful peak in all the figures
at the characteristic frequency ω = 0.07 f.u.(ω = 2πν, 1 f.u. = 2π/τ, τ =
10−2 s). The amplitude values of this peak for µi(ω) (i = 1, 2, 3) are given in
Table 1. The given peak testifies to a pathological state of the studied system.
A similar picture is observed in patients with myocardial infarction [11]. The
comparison of these values reflects the amplitude of the tremor velocity at
the initial record of time.
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Fig. 2. The power spectrum µ0(ω) of the initial TCF for the velocity of changing
of tremor of subject number 2 under various conditions that influence an organ-
ism. (a) deep brain stimulation on, medication on; (b) deep brain stimulation on,
medication off; (c) deep brain stimulation off, medication on; (d) deep brain stim-
ulation off, medication off; (e)–(h) the power spectrum µ0(ω) of the initial TCF
for the recording of rest tremor in the right index finger of the subject 15 (30, 45,
60) minutes after the stimulator was switched off, medication off. At the frequency
ω = 0.07 f.u., with 1 f.u. = 100 Hz (the characteristic frequency), a peak is found.
The presence and amplitude of this peak are determined by the state of the patient

Table 1. The value µ0(ω) for the initial TCF and µi(ω) (i = 1, 2, 3) for the memory
functions of junior orders at the frequency ω = 0.07 f.u. 1: Deep brain stimulation;
2: Medication (subject number 2). For example, OFF OFF – no DBS and no med-
ication

ON ON OFF OFF 15 30 45 60
ON OFF ON OFF OFF OFF OFF OFF

µ0 75 250 812 1.71 × 104 4.34 × 104 1.53 × 104 2.51 × 104 3.68 × 104

µ1 19 52 1.28 × 103 1.17 × 104 3.21 × 104 1.32 × 104 1.82 × 104 2.8 × 104

µ2 42 60 113 71 300 62 137 224
µ3 37 54 141 73 147 74 152 186



Manifestation of Chaos in Real Complex Systems 187

In Table 1 the second patient’s amplitude values µ0(ω) for the initial TCF
and the memory functions of junior orders µi(ω) (i = 1, 2, 3) at the frequency
ω = 0.07 f.u. are submitted. The terms of the first row define the conditions
under which the experiment is carried out. Under all conditions a power peak
at the frequency ω = 0.07 f.u. can be observed. The amplitude values of the
given peak (in particular in the power spectrum µ0(ω)) reflect the amplitude
of the tremor velocity. For example, the least amplitude 75 τ2 corresponds
to the condition (ON, ON; or: deep brain stimulation on, medication on).
The highest amplitude 4.34×104τ2 corresponds to the greatest tremor speed
(see Figs. 1e, 2e). Thus, the given parameter can be used to estimate the
physiological state of a patient. A similar picture is observed in all other
patients.

In Fig. 3 the initial time record (the normal state of the subject; OFF,
OFF) and the window-time behaviour of the power spectrum of the TCF (the
technique of the analysis of the given behaviour is considered in Ref. [18])
are submitted. In these figures regions 1, 2, 3, which correspond to the least
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Fig. 3. The initial time series and the window-time behaviour of the power spec-
trum µ0(ω) of the TCF. Two figures are submitted to illustrate the case of subject
number 2: no stimulation of the brain and no medication. The change of regimes
in the initial time series is reflected in the decrease of the tremor velocity (regions
1, 2 and 3) and becomes visible as a sharp reduction of the power spectrum µ0(ω)
(see, the 1st, 12th, 17th windows for more details)
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values of the tremor velocity are shown. The minimal amplitude of the peaks
of the power spectrum µ0(ω) corresponds to the regions with the least tremor
velocity.

In Fig. 4 the frequency dependence of the first point of the non-Markovity
parameter ε1(ω) is submitted for the second subject under various experimen-
tal conditions. The value of the parameter ε1(0) at zero frequency is of special
importance for our study of manifestations of chaoticity. It is possible to judge
the change of the state of a subject by the increase (or by the decrease) of
this value. The comparative analysis of the initial time records allows one to
come to similar conclusions. In Figs. 4d–h a well-defined frequency structure
of the non-Markovity parameter can be seen. This structure is completely
suppressed and disappears only when during the treatment. The characteris-
tic frequency of the fluctuations corresponds approximately to ω = 0.06 f.u.
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Fig. 4. The first point of the non-Markovity parameter ε1(ω) for the second subject
under various experimental conditions: (a) deep brain stimulation off, medication
on; (b) deep brain stimulation on, medication on; (c) deep brain stimulation on,
medication off; (d) deep brain stimulation off, medication off; (e)–(h) the recording
of rest tremor in the right index finger of the subject 15 (30, 45, 60) minutes after
the stimulator was switched off, medication off. The non-Markovity parameter at
zero frequency ε1(0) plays a special role. These values (6.02 in the first case and
1.0043 in the last one) define the chaoticity or the regularity of the studied states.
The amplitudes of these values also characterize the state of the subject
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These multiple peaks are the most appreciable at low frequencies. At higher
frequencies these fluctuations are smoothed out. As can be seen in these
figures, the 2nd subject has a strong peak which remains stable over time.
As our data show, the comb-like structure with multiple frequencies can be
observed in all patients with high tremor velocity. In a group of patients
with low tremor velocity it disappears, and a wider spectrum that presents
some fluctuations over time is observed. The present structure testifies to
the presence of characteristic frequency of fluctuations of tremor of human
extremities.

In Table 2 the dispersion interval of the values and the average value ε1(0)
for the whole group of subjects (16 subjects) are submitted. Let us consider 2
conditions: OFF, OFF and OFF, ON. In the first case the dispersion interval
and the average value ε1(0) are minimal. It means the presence of a high
degree of regularity of the physiological state of the patient. The degree of
regularity is appreciably reduced when applying any method of treatment.
Here the degree of chaoticity grows. The maximal degree of chaoticity corre-
sponds to the condition OFF, ON (medication is used only). The difference
in ε1(0)av.val with medication and without it (OFF, OFF) is 3.8 times (!).
On the basis of the comparative analysis of the given parameters the best
method of treatment for each individual case can be found. It is necessary
to note, that the given reasoning is true only for the study of the chaotic
component of the quantitative factor of the quality of treatment QT . The
most trustworthy information about the quality of treatment can be given
by the full quantitative factor QT which takes account of other diagnostic
factors.

Table 2. The dispersion interval ε1(0)int of the values and the average value
ε1(0)av.val of the first point of the non-Markovity parameter under various ex-
perimental conditions for the group of 16 subjects. 1: Deep brain stimulation; 2:
Medication

OFF
OFF

ON
OFF

OFF
ON

ON
ON

15
OFF

30
OFF

45
OFF

60
OFF

ε1(0)int 1–1.8 2–18 2–22 1.5–8 1.5–3 1.8–5 1.7–4.5 2–6
ε1(0)av.val 1.41 4.14 5.31 3.17 2.43 2.92 2.76 2.93

The results of the calculation of the quantitative factor QT are shown in
Table 3. The data are submitted for a single patient and for the whole group.
Here QT (ε) is the chaotic contribution to the quantitative factor (see (8)). QT

is the total quantitative factor (see (10)), where ε(1)(1) and ε(1)(2) are the
chaotic contributions for the tremor amplitudes k(1)(1), k(1)(2); ε(2)(1) and
ε(2)(2) are the dispersions of the tremor amplitudes k(2)(1), k(2)(2) (physio-
logical contributions). The full factor QT provides detailed information about
the quality of the treatment. The present factor includes both the chaotic
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Table 3. The quantitative factor QT (ε) and the total quantitative factor QT for
the second patient and for the whole group (16 subjects). 1: Deep brain stimulation;
2: Medication. mj = 1, pj = 1

2nd
patient

OFF
OFF

ON
OFF

OFF
ON

ON
ON

15
OFF

30
OFF

45
OFF

60
OFF

QT (ε) 0.758 2.556 1.756 0.291 0.438 0.041 0.017
QT 1.763 2.013 2.654 –0.013 0.883 –0.004 0.856

Whole
group

QT (ε) 1.077 1.326 0.810 0.544 0.728 0.671 0.731
QT 3.661 2.883 4.071 1.47 1.734 1.624 1.742

component QT (ε), and the physiological contribution QT (k). The calculation
of QT (k) is described in Sect. 4. One can define the quality of a treatment
by means of QT . The positive value of the given factor defines an effective
treatment. For a separate patient and for the whole group, QT reaches its
maximal value under the conditions ON, ON. The total quantitative factor is
supplemented by a diagnostic (physiological) component. It allows one to take
into account those features of the system which the chaotic component does
not contain. For the second patient under condition 15 OFF (see Table 3)
the factor QT has a negative value. It testifies to the negative influence of the
given treatment on the organism of the patient. The best treatment is thus
the combination of the two medical methods: electromagnetic stimulation
and medication.

Figure 5 reflects the behaviour of the parameter ε1(0) for four different
subjects. The points lying above the horizontal line testify to an improvement
of the state of the subject and the efficacy of the treatment. The points,
lying below the horizontal line testify to a deterioration of the state of the
subject and the inefficiency of the applied treatment. For example, Fig. 5b
corresponds to the sevenfold change of the quantitative measure of chaoticity
for the 9th patient. In the case of the 8th patient (see Fig. 5c) no influence
could change the measure of the chaoticity. Therefore there was practically
no change in the state of the subject either. In some cases (see Figs. 5b, 5d)
the DBS or the medication reduces the measure of chaoticity which testifies
to a deterioration of the state of the subject. This approach allows one to
define the most effective (or inefficient) treatment in each individual case.

6.2 The Definition of a Predictor of Sudden Changes
of the Tremor Velocity

In this subsection the window-time behaviour of the non-Markovity para-
meter ε1(ω) for a certain case (the second patient, two methods of medical
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Fig. 5. The behaviour of the parameter ε1(0) for four various patients: (a) the
second subject, high amplitude tremor, (b) the 9th subject, low amplitude tremor
(the stimulation of the GPi); (c) the 8th subject, high amplitude tremor, (d) the
15th subject, low amplitude tremor (the stimulation of the STN). The value of ε1(0)
for seven consecutive conditions of the experiment: 1 - both methods are used; 2 -
treatment by medication is applied only; 3 - the DBS is used only; 4 (5, 6, 7) -
value of the parameter 15 (30, 45, 60) minutes after the stimulator was switched
off; the horizontal line corresponds to the value of the parameter when no method
is used. This representation allows one to define the most effective treatment for
each patient

treatment were used) and the procedure of local averaging of the relaxation
parameters are considered. These procedures allow one to determine specific
predictors of the change of regimes in the initial time records.

The idea of the first procedure is, that the optimum length of the time
window (28 = 256 points) is found first. In the studied dependence (in our
case the frequency dependence of the first point of the non-Markovity pa-
rameter) the first window is cut out. Then the second window is cut out
(from point 257 to point 512), etc. This construction allows one to find the
local time behaviour of the non-Markovity parameter. At the critical mo-
ments when the tremor velocity increases the value of the non-Markovity
parameter comes nearer to a unit value. One can observe that the value of
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Fig. 6. The initial signal – the change of tremor velocity when the second patient
is treated by two methods – and the window-time behaviour of the first point of the
non-Markovity parameter ε1(ω). At the time of a sharp change of the mode (sharp
increase of the tremor velocity) in the behaviour of the initial time series (regions
1–7) a gradual decrease of the non-Markovity parameter down to a unit value (the
3rd, 6th, 10th, 14th, 17th, 20th, 27th windows) is observed. The decrease of the
non-Markovity parameter begins 2–2,5 s earlier than the tremor acceleration on an
initial series

the non-Markovity parameter starts to decrease 2–2.5 s before the increase of
the tremor velocity (see Fig. 6).

The idea behind the second procedure is the following: one can consider
the initial data set and take an N -long sample. We can calculate kinetic
and relaxation parameters for the given sample. Then we can carry out a
“step-by-step shift to the right”. Then we calculate kinetic and relaxation
parameters. After that we execute one more “step-by-step shift to the right”
and continue the procedure up to the end of the time series. Thus, the local
averaged parameters have a high sensitivity to the effects of intermittency
and non-stationarity. Any non-regularity in the initial time series is instantly
reflected in the behaviour of the local average parameters. The optimal length
of the sample is 120 points. In Figs. 7, 8 the initial time record and the
time dependence of the local relaxation parameter λ1(t) are shown in two
cases. The change in the time behaviour of the parameter λ1(t) begins 2–3 s
prior to the change of the regimes of the time record of the tremor velocity.
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Fig. 7. The change of the tremor velocity for the second patient (stimulation of the
brain and medication are not used) and the time dependence of the local relaxation
parameter λ1(t). The localization procedure allows one to find sudden changes of
relaxation regimes of the system under consideration. The largest amplitude values
of the local relaxation parameter are in the region of the lowest tremor velocity.
The change of the time behaviour of the parameter λ1(t) begins 2–3 s earlier than
the sharp change of the regimes in the initial time series appears

The increase of speed of the local relaxation parameter (λ1(t)) testifies to a
decrease of tremor velocity.

7 Conclusions

In this chapter we have proposed a new concept for the study of man-
ifestations of chaoticity. It is based on the application of the statistical
non-Markovity parameter and its spectrum as an informational measure of
chaoticity. This approach allows one to define the difference between a healthy
person and a patient by means of the numerical value of the non-Markovity
parameter. This observation gives a reliable tool for the strict quantitative
estimates that are necessary for the diagnosis and the quantification of the
treatment of patients. As an example we have considered the changes of
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Fig. 8. The change of the tremor velocity for the second patient (15 minutes after
the stimulator was switched off, medication off) and the time dependence of the local
relaxation parameter λ1(t). The site characterizing the minimal tremor velocity is
allocated. The increase and decrease of the local relaxation parameter occur 2.5 s
before the decrease or increase of the tremor velocity. The similar behaviour of
the parameter λ1(t) can be explained by its high sensitivity to the presence of
nonstationarity of the initial signal

various dynamic conditions of patients with Parkinson’s disease. The quanti-
tative and qualitative criteria used by us for the definition of chaoticity and
regularity of the investigated processes in live systems reveal new informa-
tional opportunities of the statistical theory of discrete non-Markov random
processes. The new concept allows one to estimate quantitatively the efficacy
and the quality of the treatment of different patients with Parkinson’s dis-
ease. It allows one to investigate various dynamic states of complex systems
in real time.

The statistical non-Markovity parameter ε1(0) can serve as a reliable
quantitative informational measure of chaoticity. It allows one to use ε1(0) for
the study of the behaviour of different chaotic systems. In the case of Parkin-
son’s disease the change of the parameter defines the change of a quantitative
measure of chaoticity or regularity of a physiological system. The increase of
the chaoticity reflects the decrease of the quantitative measure of pathol-
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ogy and the improvement of the state of the patient. The increase of the
regularity defines high degree of manifestation of pathological states of live
systems. The combined power spectra of the initial TCF µ0(ω), the three
memory functions of junior orders and the frequency dependence of the non-
Markovity parameter compose an informational measure which defines the
degree of pathological changes in a human organism.

The new procedures (the window-time procedure and the local averaging
procedure) give evident predictors of the change of the initial time signal.
The window-time behaviour of the non-Markovity parameter ε1(ω) reflects
the increase of the tremor velocity 2–2.5 s earlier. It happens when the non-
Markovity parameter approaches a unit value. The procedure of local averag-
ing of the relaxation parameter λ1(t) reflects the relaxation changes of physi-
ological processes in a live system. The behaviour of the local parameterλ1(t)
reacts to a sudden change of relaxation regimes in the initial time record 2–3 s
earlier. These predictors allow to lower the probability of ineffective use of
different methods of treatment.

In the course of the study we have come to the following conclusions:

– The application of medication for the given group of patients proved to
be the most efficient way to treat patients with Parkinson’s disease. Used
separately stimulation is less effective than the use of medication.

– The combination of different methods (medication plus electromagnetic
stimulator) is less effective than the application of medication or of stim-
ulation. In some cases the combination of medication and stimulation
exerts a negative influence on the state of the subject.

– After the stimulator is switched off its aftereffect has an oscillatory char-
acter with a low characteristic frequency corresponding to a period of
about 30 min.

– The efficacy of various medical procedures and the quality of a treatment
can be estimated quantitatively for each subject separately with utmost
precision.

However, if we take both chaotic and physiological components into ac-
count, the general estimation of the quality of treatment will be more univer-
sal. The combination of two methods (DBS and medication,QT = 4.071) pro-
duces the most effective result in comparison with the effect of DBS (3.661)
or of medication (2.883) given separately. This is connected with additional
aspects of the estimation of the quality of treatment due to the study of
both chaotic and diagnostic components of a live system. This conclusion
corresponds to the results of [15].

In conclusion we would like to state that our study gives a unique op-
portunity for the exact quantitative description of the states of patients with
Parkinson’s disease at various stages of the disease as well as of the treat-
ment and the recovery of the patient. On the whole, the proposed concept of
manifestations of chaoticity opens up great opportunities for the alternative
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analysis, diagnosis and forecasting of the chaotic behaviour of real complex
systems of live nature.
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