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Preface

Pierre-François Verhulst was born in 1804 in Brussels. He became famous
through the quadratic equation he introduced in order to describe popula-
tion evolution subject to spontaneous creation but under constraints due to
its own accumulation or size. This led to the famous sigmoid curve used in
many fields of science. The discrete version of this equation has been found
to be exceptionally interesting following the superb numerical and analyti-
cal work of M. J. Feigenbaum. The discrete Verhulst equation has become
the paradigm of nonlinear equations implying various states of the system
including chaos, depending on the value of the control parameter.

During the last decades, mainstream nonlinear physics was almost exclu-
sively concerned with the properties of equilibria under strong rational as-
sumptions. Statistical physics was a little bit more ambitious, since through
the development of models and the search for the so-called universality, it
could touch upon fields which were not standard physics ones, but have
sometimes been called exotic. A few thought that nonlinear physics could do
nothing more or different than insure extension of rational equilibrium and
the steady state, and is even barely of interest for first-year undergraduate
students. The idea that the very structure of a physical system might evolve
in a complex manner as a result of nonlinearity and adaptation/feedback
processes remained largely confidential, and sometimes frightening to tradi-
tional teachers. This is rapidly changing. In the past few years, the concepts
of nonlinearity and complexity increasingly gained legitimacy in the eyes of
the profession. Extensive efforts have been made both on the experimental
and theoretical viewpoints.

The chapters of this book provide state-of-the-art solutions to some of
the most important issues and questions at stake in the current research on
nonlinear physics, we would say “science”, and on the evolution of quantities
in complicated fields or environments. They include important advances on
specific topics, while giving a fairly wide and balanced introduction to the
general field of investigation.

The idea behind this book was to make a path for nonlinear and statistical
physics to possibly impact the research and teaching of physical concepts to
many.



VIII Preface

There are 22 chapters, grouped into five parts. Part I is a general and
historical introduction, the second one deals with life-relevant physics, part
III is about econophysics, the fourth one deals with condensed matter and
the last one with miscellaneous topics.

Several of these chapters stem from a coordinated aim which started from
the organization of the “Verhulst 200 on Chaos” meeting, at the Royal Mili-
tary Academy (RMA) of Belgium, in Brussels, in September 2004. The meet-
ing was held under the patronage of His Majesty King Albert II. The outgoing
and the entering European commissioners in charge of scientific research as
well as six Belgian ministers were members of the Honorary Committee.

At the same time a “Risk of Chaos” workshop was held in the framework
of the COST P10 European program.

There were 12 keynote speakers, and about 40 invited papers or contri-
butions, presented orally or as posters, about one third of them having been
selected for contributing to this book, which goes much beyond proceedings
style and goals.

We would like to thank the sponsors of the above events:

• the Belgium Minister of Defence, through the Renaissance Association and
the RMA:

• the European Union through the 6th framework Program, in particular the
COST P10 “Physics of Risk” action:

• the Fonds National de la Recherche Scientifique:
• the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen:
• the University of Liège Research Council:
• the City of Brussels.

Sometimes sponsorship cannot be quantified; therefore lastly, but not the
least, we would like to thank again the RMA staff (especially Prof. Hugo
Pastijn, Dr. Dave Faulconer, and Lieutenant Colonel Jean-Paul Salmon) and
hierarchy for providing facilities for rooms, transportation, and so on. Their
enthusiasm and understanding made it possible to have very lively sessions
and fruitful meetings, thereby enhancing friendship (or friendly relations) for
the good of humanity and the world fraternity.

Liège, Brussels Marcel Ausloos
June 2005 Michel Dirickx
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México 01000, D.F.
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Part I

General and Historical Introduction



Chaotic Growth with the Logistic Model
of P.-F. Verhulst

Hugo Pastijn

Department of Mathematics, Royal Military Academy B-1000 Brussels, Belgium
Hugo.Pastijn@rma.ac.be

Summary. Pierre-François Verhulst was born 200 years ago. After a short biogra-
phy of P.-F. Verhulst in which the link with the Royal Military Academy in Brussels
is emphasized, the early history of the so-called “Logistic Model” is described. The
relationship with older growth models is discussed, and the motivation of Verhulst to
introduce different kinds of limited growth models is presented. The (re-)discovery
of the chaotic behaviour of the discrete version of this logistic model in the late pre-
vious century is reminded. We conclude by referring to some generalizations of the
logistic model, which were used to describe growth and diffusion processes in the
context of technological innovation, and for which the author studied the chaotic
behaviour by means of a series of computer experiments, performed in the eighties
of last century by means of the then emerging “micro-computer” technology.

1 P.-F. Verhulst and the Royal Military Academy
in Brussels

In the year 1844, at the age of 40, when Pierre-François Verhulst on November
30 presented his contribution to the “Mémoires de l’Académie” of the young
Belgian nation, a paper which was published the next year in “tome XVIII”
with the title: “Recherches mathématiques sur la loi d’accroissement de la
population” (mathematical investigations of the law of population growth),
he did certainly not know that his work would be the starting point for fur-
ther research by Raymond Pearl and Lowell J. Reed [10, 11], by the famous
A.-J. Lotka [8] and independently by Volterra [16] and later by V.A. Kos-
titzin [5], in the fields of mathematical biology, biometry, and demography.
It was in these Mémoires that he introduced a growth model for a closed
population (no immigration, no emigration) facing a living environment with
limited resources for the subsistence of its members. The purpose was to
predict the demographic evolution of the young Belgian society, and to an-
swer the question about the maximum population size sustainable with these
limited resources. He certainly did not expect that more than one century
later, the study of a discrete version of this model would give rise to a new
field in science: chaos theory. By the time he presented his paper, he was
already a member of the “Académie” (Academy of Sciences) and “Professeur
d’Analyse à l’Ecole Militaire de Belgique” – Professor of Calculus at the Mil-
itary Academy – which had been founded in 1834, and which became later



4 H. Pastijn

our present Royal Military Academy (Ecole Royale Militaire - Koninklijke
Militaire School) in Brussels.

In 1844 he had already a remarkable career behind him. Pierre-François
Verhulst was born in Brussels, October 28, 1804. This year we commemorate
the 200th anniversary of his birth. He was a member of a family that neglected
nothing to facilitate study opportunities for the young boy. In the Athénée
(secondary school – high school) of Brussels he received in August 1822 the
first prize of mathematics, shared with Plateau and Nerenburger, becoming
later his colleagues in the class of sciences of the Académie. Quetelet will
remind us later the excellent reputation of this Athénée of Brussels, which
previously as “Lycée” during the “Empire” period, had been the school of
several future polytechnicians. In September 1822, the young Verhulst wanted
to register for the “exact sciences” at the university of Ghent, although he
had not yet finished the complete curriculum at the Athénée in Brussels.
In Ghent too he completed his studies successfully after three years, with a
doctoral dissertation about the reduction of binomial equations. He obtained
his doctoral degree on August 3, 1825 (see also “Pierre-François Verhulst’s
final triumph” by J. Kint et al. in the present book).

After some teaching duties at the “Musée des Sciences et des Lettres” in
Brussels, he went to Italy to recover from fatigue and exhaustion, just before
the Belgian Revolution of 1830 broke out. In the short period 1830-1831 he
hardly thought about mathematics. He came back to Belgium and in spite of
his illness, he enrolled in the army to participate in the battle against Hol-
land. In 1832 he agreed to help Quetelet to establish the mortality tables for
the young Belgian state. This collaboration with Quetelet, who was one of the
first professors of the newly founded Military Academy in Brussels, led in 1834
to join him to the Military Academy first as a “Répétiteur” of “Analyse” (cal-
culus) without financial remuneration. Very quickly he became professor at
the Military Academy. Quetelet, in his “Notice sur Pierre-François Verhulst”
published in the “Annuaire de l’Académie royale des Sciences, des Lettres et
des Beaux-Arts de Belgique” [12], is mentioning the care with which Verhulst
prepared and permanently updated the lecture notes. Unfortunately to our
knowledge no copies of these notes are still available in the present archives
of the Royal Military Academy.

In 1841, after he bought at a public sale, an old issue of a book by Legen-
dre about elliptic functions, he published a compilation of what was currently
known about that subject in his book “Traité élémentaire des fonctions el-
liptiques”. This book is still available in the present collection of the Royal
Military Academy. After the publication of this book he is appointed as
“correspondant de la section des sciences” of the Académie royale on May 7,
1841. In December of the same year he is appointed member of the Académie
royale, to replace Garnier, his former professor at the University of Ghent.
From that year on he developed an ever increasing interest for the application
of mathematics in a political context. It was probably after the publication of



Chaotic Growth with the Logistic Model of P.-F. Verhulst 5

Quetelet’s “Essai de physique sociale” that he got convinced about the idea
that the sum of obstacles against an unlimited growth of a closed population
is increasing proportionally to the square of the population level currently
reached. It was the famous Fourier (“Théorie de la Chaleur”) who made
an analogous proposal in the introduction of the Tome I of his “Recherches
statistiques sur Paris” (1835), and Quetelet urged Verhulst to submit this
hypothesis to the investigation of empirical data available for Belgium. The
results of the early research of Verhulst on this subject have been published
already in 1838, in Tome X of the journal “Correspondance Mathématique
et Physique”, with Quetelet as chief editor. The idea of what Verhulst called
“the logistic growth model” (“la courbe logistique”) was born.

In 1845 his communication to the Académie with the title “Recherches
mathématiques sur la loi d’accroissement de la population” (Mathematical
investigations about the law of population growth) was published in Tome
XVIII of the report of the Académie. A second version of a growth model is
presented by him on May 15, 1846, to the Académie, in which he is actually
criticizing the logistic model presented by himself about one year earlier. The
text was published in Tome XX of the Mémoires de l’Académie in 1847. The
self-criticism about the logistic model in this publication, and the emphasis
Quetelet later puts in his “Notice sur Pierre-François Verhulst” [12] on Ver-
hulst’s hesitation and his own reluctance to accept the applicability of the
logistic model, are probably the main reasons why after Verhulst’s death the
logistic model was entirely forgotten for a long time.

In 1848 the King of the Belgians appointed him as President of the
Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique.
Although his health condition became ever worse, he continued to deliver his
lectures at the Military Academy and to take office as the President of the
Académie royale de Belgique. On February 15, 1849, P.-F. Verhulst died at the
age of 44. One of his last publications of which there is still a copy available in
the library of the Royal Military Academy is his very modest booklet of 1847
“Leçon d’Arithmétique dédiée aux candidats aux écoles spéciales” (Lesson in
Arithmetics to the candidates of the “special schools”) on 72 pages.

2 The Exponential Growth Process

Until the end of the 18th century human and raw material resources were
seemingly so unlimited from a Western point of view, that really no obstacles
were supposed to exist for the development of human activities and for the
growth of human population. This mental state was at the basis of the indus-
trial revolution. Engineers and other scientists considered almost everything
to be known and almost everything could be achieved by man without the
need for ecological considerations, related to constraints on natural resources.
With these ideas in mind it is quite natural to make very optimistic forecast-
ing about the growth of an economic system and about human population.
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So, when dealing with human population growth, Malthus suggested that the
growth speed of a population is proportional to the current population level.
When no other external constraints on the growth speed are considered, then
the continuous time model corresponding to this hypothesis is: dx/dt = rx,
with x denoting the population level at time t. The solution of this differ-
ential equation is an exponential function x(t) = x(0) exp(rt). The exponen-
tial growth model is clearly not appropriate to describe the evolution of a
population over a long period of time, even if it approximates sufficiently the
growth phenomenon during a certain period (for instance during the start-up
episode). This is essentially the consequence of the hypothesis of a constant
growth rate r during the whole lifetime of the process, and of independence
of this growth rate with regard to the current population level at time t.

3 Limited Growth Models

If we consider the coefficient r as roughly the difference between the birth
rate and the death rate (B−D), then this means that natality and mortality
in a population are independent both on the age and on the level (density) of
this population. This seems not to be true in the real world. The natality rate
is mostly decreasing for higher population densities, whereas the mortality
rate is generally increasing for higher densities. The most simple assumption
about these relationships is (with positive coefficients): B = b′ − bx and
D = d′ + dx.

Substitution into the Malthusian equation yields dx/dt = ex− fx2 with
e = b′ − d′ and f = b+ d.

This means that the obstacle against an unlimited growth rate is propor-
tional to the square of the current population level at time t. Another way to
obtain the same form for the differential equation is to consider the coefficient
r in the Malthusian equation as dependent (and decreasing) on x, instead of
being constant. The most simple dependence would then be: r = g − hx. In
this case we obtain:

dx
dt

= g
(

1 − h

g
x

)
x ,

with the same observation about the obstacle against unlimited growth. Of
course it is possible to imagine more sophisticated slowdown functions relat-
ing the growth rate to the current population level at time t. For example
such a slowdown function could be:

r = sg
[
1 −

(x
k

)m−1
]
,

with

s = −1 for m < 1 ,
s = 1 for m > 1 ,

and g, k, m real valued parameters.
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Notice that m = 2 is yielding the same quadratic right hand side of the
equation as we mentioned previously. The particular case form tending to 1 is
known as the well-known Gompertz model. For all values of m different from
1 and 2, the model is now known as the generalized logistic growth model.
For other old variants and generalizations we refer for instance to Lebreton
and Millier [6], to De Palma et al. [1] and to Kinnunen and Pastijn [4]. For
m = 2 we actually obtain the model introduced by P.-F. Verhulst in 1844
and which he called the logistic growth model (“la courbe logistique”).

4 The Logistic Growth Process

For continuous time, this process is described by a differential equation, which
is a special case of the Riccati type. The solution is straightforward:

for
dx
dt

= gx
(
1 − x

k

)
the closed form solution is

x(t) =
k

1 + C exp(−gt) with C =
k − x(0)
x(0)

.

The parameter k is the maximum size of the population, or the asymptotic
value of x(t). This is the closed form of the continuous time logistic growth
curve. Although there are two parameters, certain morphological aspects of
this curve are rather rigid. So, for instance the only existing inflexion point,
when x(0) is less than a certain value related to the equation parameters, has
always the same ordinate. This was one of the main reasons for introducing
variants and generalizations of this simple model in the late previous century,
in order to have more flexibility for fitting the model to experimental data.

The reason why Verhulst called this curve “la courbe logistique” in his
communication of November 30, 1844, is not clear. He does not give any
explanation. One might guess that he refers to the term logistics, related to
transportation and distribution in the supply chain of an army, analogous
to the supply of subsistence means of a population which he considered to
be limited. The term logistic was then already to a certain extent in use
in the military environment. He could have been familiar with it, through
his military contacts in the Military Academy in Brussels. Another possible
root of the term logistic could have been the French word “logis” (place to
live) which was of course related to the limited resources for subsistence of
a population, Verhulst was dealing with in his model. It is however pure
speculation, although the term was still in use in the Belgian army until the
mid 20th century as a rank of a non-commissioned officer called “Maréchal des
Logis”. Another explanation – probably the most likely one – is related to the
Greek word λoγσπκoζ, which means “the art of computation” (see also the
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“Dictionnaire Quillet de la langue française” of 1961 for this meaning of the
French word “logistique”). With his high school education, where Greek and
Latin were key subjects at that time, he certainly must have known this term.
When we adopt this explanation, Verhulst simply called his curve “logistique”
because it enabled him to predict the future population of Belgium – during
the era without computers – by simple computations.

In the second degree right hand side of the equation, the slowdown term
−(g/k)x2 can be interpreted as the result of the interacting competition be-
tween the individuals of the population. This competition is proportional to
the number of potential encounters per time unit, and is therefore propor-
tional to x. This interpretation is of course a bit simplistic because it doesn’t
take into account that the major reason for slowing down the growth speed is
exogenously imposed by the limited capacity of the closed “adiabatic” world
we are focusing on. A more chemico-physical interpretation of the right hand
side is that the relative growth rate for this logistic model is proportional to
the currently available non transformed resources (k − x). This idea stems
from the dynamics of autocatalytic chemical reactions. Therefore in chem-
istry, the logistic curve is often referred to as the autocatalytic function. This
last interpretation is perhaps a more fundamental one.

This theoretical justification and the marvellous fit of this model to real
world data of some first applications in economics and demography, let Kos-
titzin in 1937 [5] write: “Une population fermée tend vers une limite qui
ne dépend que des coefficients vitaux ; elle est indépendante de la valeur
initiale x(0)”. This optimistic view on the self-regulating mechanism of hu-
man population growth is inspired by the conviction that the logistic model
is of a universal validity and also by the bare mathematical fact that the
asymptotic attractor of this model is always locally stable, when these “vi-
tal” coefficients are positive – which is no restricting condition for real world
growth processes. However, the simple outlook of this logistic equation makes
us forget the complexity of the mechanisms in evolutionary processes.

With the model Verhulst introduced in 1844 he predicted that the max-
imum size of the Belgian population would be six million and six hundred
thousand individuals. Presently Belgium has a population of roughly eleven
million. In his communication of 1846, he adapts his logistic growth model.
The solution of the new differential equation is no logistic function any more.
Now his prediction of the maximum size of the Belgian population is about
nine million and four hundred thousand people, which is remarkably closer al-
ready to the present population level of Belgium. The main difference between
both models is the following in Verhulst’s own wordings. In the logistic model
the sum of obstacles against unlimited growth is proportional to the excess
population. This excess population is the difference between the current pop-
ulation at time t and a minimum level of the population which is sustainable
by means of a given number of available resources, which are considered as
constant. In the model of 1846 he considers the obstacles against unlimited
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growth to be proportional to the ratio of the excess population and the total
population at time t. It is now obvious that the logistic model was not the
most effective to predict the long-term evolution of the Belgian population.
This continuous time model is finally not as universally valid as it was some-
times considered. In addition, it is now recognized that the continuous time
model does not always reflect reality. When there are for instance jump-wise
simultaneous behavioural changes of all the individuals of the population, the
structural dynamics of the population may fundamentally change. This has
been “re-discovered” in 1974 and published in 1976 by R. May [9]. When we
construct a discrete version of the logistic differential equation, for instance
by applying the common Euler method for numerical integration, then we
obtain a discrete form of the logistic growth process:

x(t+ 1) = x(t)
(

1 + g
1 − x(t)
k

)
.

This equation is describing the evolution of a population which is progressing
jump-wise with equally time spaced intervals. The memory of this system is
only one time unit. This means that the future of this system only depends on
the “now and here”, and that the role of the grandparents is instantaneously
neglected. All individuals of the population have the same and synchronized
reproductive behaviour. The importance of this model is due to its peculiar
behaviour for some values of its parameters. This model has been extensively
studied by May [9], and was one of the first simple models to illustrate the
phenomenon of chaos. With the advent of the so-called “micro-computers”
of the eighties of last century, it became very easy to generate illustrations
of this “chaotic” behaviour.

5 Attractors for the Discrete Logistic Model

If a dynamic system defined by difference equations is allowed to evolve over
a long time, starting from different initial conditions, the information about
these initial conditions may disappear as time is going on. From a set of
different initial conditions the system may tend to the same restricted region.
This restricted region is called an attractor, whereas the set of initial points
that is “attracted” by this attractor is called the basin of attraction. We know
that there are three types of attractors: static or fixed point attractors, limit
cycles or periodic attractors, and “chaotic” attractors. These three types of
attractors have been illustrated for the equation

x(t+ 1) = rx(t)[1 − x(t)]
which is a simplified form of the discrete version of the logistic model. These
illustrations are widely present in the literature of the eighties of last cen-
tury, and showed the existence of what we now call chaos, for values of the
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parameter r beyond 3. This logistic model is a member of a quadratic family
[the right hand side is of the second degree in x(t)]. It is also a member of a
larger family of single peaked functions in the right hand side of the equation,
for which general properties with respect to the chaotic behaviour have been
studied.

Last century many variants and generalizations of the logistic model have
been introduced to describe the diffusion of new products and of technological
innovations. These models have been summarized by De Palma et al. [1].
The most well-known are those of Gompertz (see supra), Blumberg with the
differential equation dx/dt = rxa(1− xb/k), Bertalanffy with the differential
equation dx/dt = r1x

m − r2xn, Bass with the differential equation dx/dt =
(a+ bk/x)(K − x), all with positive parameters.

The Bass model was describing the evolution of several consumer goods
markets in the USA (refrigerators, TV-sets, air-conditioners,. . . ) during the
second half of last century. Several discrete versions of these models have been
studied by the author, and their chaotic behaviour illustrated [4]. It was then
also announced that variants and generalizations of these models, used for the
description of the substitution process of old by new technologies (Blackman–
Fisher–Pry), and for the evolution of commercial naval transportation and
railways in the USA (Sharif–Kabir), have chaotic attractors.

In the meantime, the study of chaos has achieved a certain degree of ma-
turity, conditions for its generation having been discovered in a wide category
of discrete models [7] and chaos itself having been considered in the general
context of fractal geometry.

6 Conclusion

The maturity of the field of chaos theory, and the fact that chaotic behaviour
now pervades almost all the sciences, is an argument to include this topic in
the future curricula of our engineering and science students. This inclusion
is possible in a very early stage of the student’s curriculum. The minimal
prerequisites are related to basic calculus. The logistic model of Verhulst still
nowadays plays an important role in the first introduction of chaos theory to
undergraduate students (“Encounters with chaos”, Denny Gulick, 1992). We
can be confident that through these undergraduate courses of chaos theory,
the ideas of Verhulst will survive in another format however than for the
purpose they were originally introduced. But that happens quite often in the
history of science.
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The so-called Logistic function of Verhulst led a turbulent life: it was first
proposed in 1838, it was dismissed initially for being not scientifically sound,
it became the foundation of social politics, it fell into oblivion twice and
was rediscovered twice, it became the object of contempt, was subsequently
applied to many fields for which it was not really intended and it sank to
the bottom of scientific philosophy. Today it is cited many times a year. And
last but not least, during the past three decades it has been claimed as the
prototype of a chaotic oscillation and as a model of a fractal figure.

It is only now, 155 years after Verhulst’s death, that it becomes clear that
his logistic function transcends the importance of pure mathematics and that
it plays a fundamental role in many other disciplines. The logistic curve has
lived through a long and difficult history before it was finally and generally
recognised as a universal milestone marking the road to unexpected fields of
research. Only at the end of the 20th century did Verhulst’s idea enjoy its
definitive triumph. But let us start at the beginning.

On August 3, 1825 the magnificent auditorium of Ghent University was
still under construction. It would only be completed early 1826. However,
at 11 a.m. of that particular August 3, a small function was held in the
provisional hall of the university. In the presence of the then rector of the
university, Professor Louis Raoul, a mathematician of scarcely 21 years old
defended his doctorate’s thesis. Even in those days, twenty-one was very
young to take one’s PhD. It was clear that, from that moment on, Pierre-
François Verhulst would not go through life unnoticed.

1 His Life

He was born in Brussels on October 28, 1804 as the child of wealthy parents.
As a pupil at the Brussels Atheneum, where Adolphe Quetelet was his math-
ematics teacher, he already excelled, and not only because of his knowledge
of mathematics. He also had linguistic talents. Twice he won a prize for Latin
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poetry. However, he had a distinct preference for mathematics. His desire to
study exact sciences was so strong that in September 1822, without even hav-
ing completed his grammar high school, Verhulst enrolled as a student at the
University of Ghent. Evidently, his lack of formalism caused some problems
when he tried to enrol, although, in those days such matters could easily be
resolved with some negotiating and argumentation. It was here that he met
Quetelet again, this time as his algebra professor. Just like his studies at the
Brussels Atheneum, his academic performance at the University of Ghent
was a success. In less than a year, between February 1824 and October 1824,
he was honoured with two prizes, one at the University of Leiden for his com-
ments on the theory of maxima, and a second time he won the gold medal of
the University of Ghent for a study of variation analysis [1].

In 1825, after only three years of study, Verhulst took his PhD in math-
ematics with a thesis entitled De resolutione tum algebraica, tum lineari ae-
quationum binominalium, in other words, with a thesis in Latin on reducing
binomial equations (Fig. 1).

Fig. 1. Doctorate’s thesis of Pierre-François Verhulst from 1825
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After his studies Verhulst returned to Brussels. He took a keen interest
in the calculus of probability and in political economy, an interest which
he shared with Quetelet. From then on Quetelet’s influence on Verhulst is
marked. Indeed, on several occasions Verhulst did some computations to sup-
port research carried out by Quetelet.

Moreover, Quetelet’s influence was not limited to passing on ideas and
stimulating research. It was through his agency that Verhulst was entrusted
with a teaching assignment at the “Musée des Sciences et des Lettres” in
Brussels in April 1827. A job which he soon had to give up on account of his
poor health. Verhulst would be in bad health all of his life as a result of a
chronic illness, the nature of which could not be retrieved from the documents
that are left from that period. A brief stay in Italy, shortly after his promotion,
did not help much to improve his state of health. During his stay in Rome in
September 1830, the Belgian Revolution broke out in Brussels. In the mind of
Verhulst, who was 26 at that time, a rather peculiar idea began to take shape.
An idea only conceivable by young people who in their youthful exuberance
and audacity let their imaginations run free. Verhulst always consistently
acted upon the consequences of his principles with the self-confidence of a
profound conviction. He conceives the rather original idea that the papal state
could use a constitution, just like Belgium, his own country which had just
become independent. And of course he is not satisfied with the idea alone, but
immediately prepares a draft constitution. It seems incredible, yet it is true:
the draft constitution was given some consideration by a few cardinals of the
papal Curia and was sent to various foreign ministries. However, the matter
came to the attention of the Roman bourgeoisie who was not at all pleased
with someone from Brussels lecturing the Italians on how to deal with their
political matters. The Roman police ordered him to leave the country at once.
Verhulst retired to his residence for a couple of days and tried to barricade
himself, expecting a siege by the police. But in the end, after having discussed
the matter with some friends, he decided to obey the expulsion order and left
Italy. Queen Hortense of Holland – at that time living in Rome – made in her
memoirs a lively account of the affair. Translated from French: “. . . A young
Belgian savant, Mr Verhulst, had come to Rome for his health. He came very
often to my house in the evening; we had frequent discussions together. He
asked to speak to me one morning, and brought a plan for a constitution for
the Papal States, which he wished to submit to my criticism before giving
it to the cardinal-vicar to submit to the pope. I could not help laughing at
the singularity of my position. I [the exiled Queen of Holland] to revise a
constitution, and for the pope! That seemed to me like a real joke. But my
young Belgian friend did not laugh. ‘I was talking yesterday evening,’ he said
to me, ‘with several cardinals; their terror is great. I told them of the only
way to save the church and the state. They agreed with all my observations.
And one of them wishes to submit them to the pope himself. Here is the
constitution of which I have sketched the basis . . . ’” [2]
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Back in Brussels, in 1831, he writes a document on behalf of the recently
established Congress – the present Belgian parliament – in which he deplores
the situation at the university and formulates a way to resolve it [3].

He complained about the political favouritism in the appointment of
university professors and the poor standard of the lectures. In spite of his
rebellious attitude he is appointed professor at the Royal Military Academy
in 1835, and in the same year he is also appointed professor of mathematics at
the Université Libre of Brussels, both newly established teaching institutes.
However, Verhulst had to give up his professorship at the Université Libre
of Brussels in 1840, following a decision of the then Minister of War, which
stipulated that professors at the Military School were not allowed to teach in
other education institutes. It is not unlikely that Quetelet had a part in the
appointments of Verhulst. In 1837 he married a miss Debiefve, who would
bear him a daughter about a year later.

Verhulst and Quetelet were closely associated in their life and work [4].
They were both professors at the Military School, they were both mem-
bers of the Académie royale des Sciences et des Belles Lettres de Bruxelles
and they were both interested in mathematical statistics which could be the
key to revealing the “natural laws” of human society. Although Verhulst
hardly made any general statements regarding the purpose and methodol-
ogy of these statistics, his practical routine was in line with the theories of
Quetelet. The application of mathematics was an essential feature. In both
Quetelet’s and Verhulst’s opinion scientific statistics should be based on a
precise mathematical formula to make the accurate incorporation of statis-
tical data possible. However, gradually a significant difference arose in the
approach of Verhulst and Quetelet. Verhulst was not in the least interested
in what Quetelet called “applied statistics”. Verhulst was of the opinion that
the calculations were only applicable if there was a direct relation between
cause and effect. Quetelet himself did not feel so strongly about such reserva-
tions. In contrast he always preferred to find some analogy between physical
laws and social phenomena. The debate on this problem, which must have
been going on between Verhulst and Quetelet for several years, came to a
sudden end with Verhulst’s untimely death [4]. It is difficult to determine
the precise nature of their relationship from the available documents of that
period. Adolphe Quetelet (1796–1876) was eight years older than Verhulst.
It is true that Quetelet called Verhulst “successively my pupil, my fellow-
worker, my colleague at the Military School, my confrere at the university
and the Academy and my friend”. However, according to several authors,
the relationship between both men was not always as serene as it appeared
at first sight. There is one thing we know for sure: they were both inter-
ested in mathematical statistics capable of explaining the so-called natural
laws of society. Quetelet spoke highly of Verhulst’s work, but he had more
regard for his compilations than for his original ideas. On one particular oc-
casion, at a public sale, Verhulst managed to get hold of a valuable edition of
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the complete works of the French mathematician Legendre (1752–1833). The
satisfaction of having acquired these works inspired Verhulst to study the
“Traité des fonctions elliptiques” and to read the works of the German Abel
(1802–1829) and the Norwegian Jacobi (1804–1851), with the intention of
making a compilation of all aspects related to elliptic functions. He read and
summarized the works of these three famous mathematicians as well as every
other document on this subject. Quetelet was full of praise about the result
of this study entitled “Traité élémentaire des fonctions elliptiques”, which, in
fact, was nothing more than a critical résumé of the works of others. How-
ever, Quetelet did not approve of what was in fact Verhulst’s most original
achievement, i.e., the logistic function. After the publication of his “Traité
élémentaire des fonctions elliptiques” Verhulst was admitted as a member of
the “Académie royale” in 1841. In 1848 Verhulst is appointed director of the
scientific department and later, in spite of his deteriorating health, the king
appointed him chairman of the Academy. He died a couple of months later
on February 15, 1849, at the age of 44.

According to Quetelet, Verhulst was somewhat of an “enfant terrible” [1].
He was self-willed, a man with a social conscience and a man of principle,
controversial and often an advocate of extreme ideas, but he also had a strong
sense of justice and acted from a deep feeling for his duty. He was straight-
forward and consistent in his thinking, but on the other hand also concilia-
tory. As chairman of the Academy he shrank from anything that might have
caused dissension. He was never offensive, and the higher his position the
more unassuming he became. Although he himself did not have the slightest
inclination for losing his temper, he respected the short-temperedness of oth-
ers. Although he loved taking part in debates, it was more out of a craving
for knowledge than in a spirit of contradiction or with the intention of im-
posing his own views. He was noted for his unperturbed equanimity. It would
have been difficult to find a man more conscientious. According to Quetelet’s
testimony, this sense of duty was marked during the last years of his life,
when he still went to work every day. It took him more than an hour to walk
the short distance from his house to his office. People saw him trudge along
the streets, resting with every step he took, to arrive finally at the academy,
panting heavily and completely exhausted.

2 His Work in the Field of Population Growth

Verhulst’s first research in the field of population growth dates from shortly
after the independence of Belgium. In order to grasp the full import of the
research on population growth in the nineteenth century, one must recall the
social climate of those days. During the first half of the nineteenth century
Flanders went through the worst economic depression in its entire history.
Although under the “Ancien régime” in the 18th century it had been one of
the most prosperous regions of Europe, it became a backward and shattered
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region with an impoverished and destitute population in only a few decades’
time. In addition to sheer destitution, the pauperization of the population
also resulted in demoralization, moral degeneration and social unrest. The
same confusion was also seen in other European countries. The correlation
between poverty and population was first demonstrated by Thomas Robert
Malthus, in his famous Essay on the Principle of Population, which was pub-
lished in 1798. Malthus stated that poverty is only the inevitable result of
overpopulation. In turn, overpopulation was the natural result of the fun-
damental laws of human society. The ideas of Malthus were the subject of
heated debates in the nineteenth century. The necessity of conducting a so-
cial policy to curb the pauperization of the population turned the study of
the laws of population growth into a scientifically respectable subject. A new
discipline, political economics, found enthusiastic adherents everywhere. A
demographic study of the population was initially impeded by a lack of sta-
tistical material or, even worse, by the unreliability of the available material.
It was only in 1820 that progress was made in the methods of compiling and
processing statistical data on which demographic conclusions could be based.
In Belgium it was again Adolphe Quetelet who organized the collection of
data with regard to population figures. He was the initiator of the first census
carried out in 1829, the results of which were published in 1832. As chairman
of the “Commission centrale de statistique” Quetelet was in charge of the
general censuses of 1846, 1856, and 1866. Quetelet also laid the foundations
of the international conferences of statistics, the first of which took place in
Brussels in 1853.

It was against this background that Verhulst started his research on popu-
lation growth. His research was based on the ideas of Malthus. In his opinion
it could not be denied that the population grew according to a geometric
sequence. On the other hand it was incontestable that a number of inhibiting
factors also increase in strength as the population grows. Verhulst argued
that, as a consequence, the growth of the population was bound by an ab-
solute limit, if only because of the limited availability of habitable land and
food supplies. This was an original interpretation, but also a deviation from
the original concept of Malthus. Malthus’ hypothesis can be formulated by
means of a differential equation (with p for the population figure)

dp
dt

= mp .

Integration of this equation produces the well known exponential growth
curve, on which economic Malthusianism is founded. Verhulst did not ac-
cept this and considered an alternative. In order to implement the check
on population growth, Verhulst had to subtract a still unknown factor from
the right-hand side of the equation; a factor which, according to Verhulst,
is dependent on the population figure itself. He started from the most obvi-
ous hypothesis, namely that the growth coefficient m is not constant but in
proportion to the distance of the population size from its saturation point.
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In other words Verhulst introduced an inhibitory term, proportional to the
square of the population size. Consequently, Verhulst stated that

dp
dt

= mp− np2 .

The solution of this differential equation gave rise to a function which was to
project the population growth

p =
mp0emt

np0emt +m− np0 ,

where p0 represents the population figure at a given time t = 0. Verhulst veri-
fied this formula by comparing the real population figures of France, Belgium,
Essex and Russia with the result of his calculations. The correspondence was
striking, although the available figures related to a period of only twenty
years. Verhulst created a new term for his equation and called it the logistic
function.

Verhulst never explained why he chose the term “logistique”. Yet, in the
nineteenth century this French term was used to designate the art of compu-
tation, as opposed to a branch of theoretical mathematics such as the theory
of proportions and relations. The term was also frequently used in connection
with logarithms in astronomic calculations.

As a matter of fact the military meaning of the word “logistic” also found
its origin around that period. The third supplement to the sixth edition of the
etymological dictionary of the Académie Française first mentions the term in
1835. The military meaning of the word also comprises the calculation of
the provisionment of an army or of a population. The “logistic problem” par
excellence is the provisioning of the population. Through his contacts at the
Military School, Verhulst must have been familiar with military terminol-
ogy. Verhulst probably used this term to launch the idea of an arithmetical
strategy that could be used to calculate the saturation point of a population
as well as the time at which that point would be reached within a given
percentage.

Verhulst’s results were published in 1838 [5] as a modest “Notice sur la
loi que la population suit dans son accroissement” in the “Correspondance
Mathématique et Physique”, a journal of which Quetelet was editor-in-chief.
Verhulst regarded his work as a first step towards a much more elaborate
study which would be published in 1845 and 1847 in the form of a “Mémoire
de l’Académie royale des Sciences et Belles-Lettres de Bruxelles” [6, 7]. For
more details on the life of Verhulst, see [8] and its references.

3 The Logistic Function After 1849

From then on this logistic principle of Verhulst led a most peculiar life. It may
be said that after Verhulst’s death his principle was completely forgotten. One
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can only guess why this was the case. But Quetelet’s rather ambiguous eulogy
[1] on Verhulst at the Academy a few months after his death had something to
do with it. In a condescending, almost contemptuous tone Quetelet expresses
his reservations with regard to Verhulst’s principle and even with regard to his
former “friend” himself. Quetelet had previously considered another principle
regarding population growth, founded on the analogy with a falling stone in a
viscous medium which encounters more resistance as its speed of fall increases.
Verhulst considered this concept too dogmatic and had always rejected it
strongly. For in Verhulst’s mind there was only one thing that mattered:
to find a correspondence between his calculations and the real population
figures, whereas Quetelet attached greater importance to a formal analogy
between the laws of physics and the behavioural pattern of a population:
much more than Verhulst, Quetelet was obsessed with the notion – which was
popular in the nineteenth century – to presuppose exact causal mechanisms
without which the world would not be able to function. The title of his
magnum opus “La Physique sociale” already outlines Quetelet’s tendency to
compare human social behaviour to the laws of physics. However, to state
that Quetelet’s attitude was the decisive factor in the scarce dissemination of
Verhulst’s ideas in the nineteenth century, would be a limited representation
of the facts. At least as important was the fact that Verhulst’s work never
developed into a practicable theory that could be tested by demographers.
John Miner of Johns Hopkins University translated Quetelet’s French eulogy
on Verhulst into English and published it in 1933 [9].

Whatever the reason may be, it is a fact that Verhulst’s work was com-
pletely ignored during the whole nineteenth century. The logistic curve was
rediscovered only in 1920. In that year two renowned American demogra-
phers, Raymond Pearl and Lowell Reed [10], who were not acquainted with
Verhulst’s publications, formulated the sigmoid growth curve a second time.
It was only when their manuscript was already at the printer’s that they
were informed of Verhulst’s work which had been published 75 years earlier.
In later publications they recognise their omission and they adopt the term
“logistic” from Verhulst [11].

The data of the United States census available to Pearl and Reed only
made up half of a logistic curve, and the population level was far from reaching
its saturation point. Nevertheless, they endeavoured to make an extrapola-
tion and stated that the American population – at that time only 80 million
people – would grow to a saturation point of 198 million people and that this
saturation point would only be reached by the end of the twentieth century.
Unlike Verhulst, Pearl and Reed did not deduce the curve’s equation from
any preliminary thinking. On the contrary, reflexions on the inhibitive effect
of diminishing ambient factors as a result of the population growth only ap-
pear towards the end of the article, and only to support the application of the
sigmoid curve. In other words, Pearl and Reed start from the idea that pop-
ulation growth follows a sigmoid curve. In addition they regard the sigmoid
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curve of population growth as a genuine principle of population growth. On
the one hand this was based on the fact that the logistic curve supported the
data fairly well, and on the other hand on the fact that, based on reasonable
assumptions, it provided a fairly accurate picture of the future evolution of
the population. In 1924, Pearl [12] compared his curve “in a modest way”
with Kepler’s law of planetary motion and with Boyle’s law of gases. . . For
many years, the emphasis which Pearl and Reed put on the systematic na-
ture of the logistic curve led to many heated and bitter discussions which
would only come to an end with Pearl’s death in 1940. In spite of, or maybe
thanks to, these fierce discussions, the logistic curve is sometimes also called
the Verhulst–Pearl curve.

A first sign of real recognition of Verhulst’s merits came in 1925 [13],
when the English statistician Udny Yule recognised that Verhulst was far
ahead of his time: “. . . Probably owing to the fact that Verhulst was greatly
in advance of his time, and that the then existing data were quite inadequate
to form any effective test to his views, his memoirs fell into oblivion; but they
are classics on their subject. . . ” But even that was not sufficient to make
Verhulst’s reputation and his name was lost again. Verhulst’s formula got its
final victory only after 1965. From then on scientists from various countries
and domains start to refer to Verhulst’s publications (Fig. 2). There are at
least five reasons for this.

First of all there is the major breakthrough of ecology as a new scientific
discipline: on account of the scope of their research ecologists are particularly
interested in the growth and the evolution of populations. Verhulst’s formula
appeared to be an excellent basis for calculating ecological growth problems.
A second aspect of Verhulst’s formula was that it required a considerable

Fig. 2. Citations to the publications of Pierre-François Verhulst
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degree of computation. It was only with the advent of the electronic calculator
and later the computer that the laborious job of making endless calculations
could be carried out with a minimum of effort.

A third factor was the discovery that the S-shaped logistic function could
also be applied to a wide variety of other fields, such as chemical autocatal-
ysis, Michaelis–Menten kinetics, cancer chemotherapy, the Hill equation, the
Langmuir isotherm, velocity equations of the first and second order of mag-
nitude, oxidation-reduction potentials, erythrocyte haemolysis, the flow of
streaming gases, etc. Verhulst’s principle was even applied to economics and
sociology. It seemed as if everything could be defined using the same sigmoidal
curve. Many scientists carried it beyond the limit and applied Verhulst’s for-
mula, whether it was relevant or not. This led to a situation in which over the
past thirty years Verhulst’s work was cited in just about every country of the
world, from Brazil to the People’s Republic of China, from the Soviet Union
to the United States of America. His publications are now cited about 15
times a year, which is quite remarkable considering that his work goes back
more than one hundred and sixty years. It is quite amusing in this context to
see that each year several authors mention 1938 and 1945 as the year of pub-
lication of his works, thinking that 1838 or 1845 must have been a printing
error. The journal “Correspondance Mathématique et Physique” ended its
publications in 1841. It was in fact published and edited by Quetelet himself
on behalf of the Belgian mathematicians. It would reappear only at the end
of Quetelet’s life from 1874 to 1880 under the name of “Nouvelle Correspon-
dance Mathématique et Physique” and from 1881 to 1961 as “Mathesis”.

4 Verhulst’s Principle and Chaos Theory

But there is a fourth reason why the work by Verhulst received so much
attention all of a sudden: its implication in chaos theory. Already in 1963
Edward Lorenz used a one-dimensional mapping equivalent to the Verhulst
mapping to explain certain aspects of his by now famous simplified weather
forecast model. In 1976 the biologist Robert May [14] stated explicitly that
the logistic model should be studied as early as possible in one’s scientific
education in order to start understanding nonlinear phenomena. Since the
work of May, Feigenbaum [15], and others the Verhulst model has become
the paradigm for the period-doubling route to chaos, as is for example nicely
illustrated in “The Beauty of Fractals” by H.O. Peitgen and P.H. Richter [16]
(one of the first mathematical “coffee table books”).

Meanwhile several authors have adopted this idea and it seems to be
generally acknowledged now that Verhulst’s logistic function is the basis of
modern chaos theory, although Verhulst himself had absolutely no idea that
something like that lay hidden in his formula.

To obtain deterministic chaos from Verhulst’s formula one has to replace
the continuous logistic differential equation by its discrete form



Pierre-François Verhulst’s Final Triumph 23

pn+1 − pn = rpn(1 − pn)

or equivalently
pn+1 = pn + rpn(1 − pn).

In this difference equation pn denotes the population size at time n, and
r > 0 is still the growth coefficient; the carrying capacity has been normalized
to 1. Using this prototype of a nonlinear iterative process one calculates the
evolution of a population by starting with some initial population p0 (be-
tween 0 and 1) and by applying the formula again and again, thus obtaining
successively p1, p2, p3, and so on.

When carrying out this iteration scheme one finds that the resulting evolu-
tion of the population depends strongly on the value of the growth parameter
r (Fig. 3):

1. For r < 2 the population sequence tends to the limit value 1. For r < 1
this happens in a monotone way, similar to the behaviour in the dif-
ferential equation (Fig. 3(a)), but for 1 < r < 2 in an oscillatory way
(Fig. 3(b)). As r increases to 2 these oscillations also increase, both in
amplitude and length: for r = 1.95 the limit is reached only after more
than 2000 steps!

2. For values of r between 2 and 2.5699 . . . the sequence displays, after
some initial steps, a periodic behaviour with a period which depends on
r. When r increases one first observes an oscillation between a maximum
and a minimum (period 2, Fig. 3(c)), then an oscillation between 4 dif-
ferent local extremes (period 4, Fig. 3(d)), and subsequently oscillations
with period 8 (Fig. 3(e)), period 16, and so on. Such a period-doubling
cascade has been identified as one of the typical ways in which a system
can go from orderly to chaotic behaviour.

3. For most values of r larger than 2.5699 . . . (and less than 3) the sequence
shows no regularity (periodicity) any more (Fig. 3(f)). For such values of
r the system is “chaotic”, a regime which is mainly characterized by a
few hallmarks as described in the next paragraph.

The main characteristic of a chaotic system is its extreme susceptibility to
a change in the initial condition (illustrated for the Verhulst model in Fig. 4).
Two sequences with almost identical values for p0 will at first behave in a
virtually identical manner, but then suddenly diverge so that from then on
there is no correlation between the two oscillations. A similar sensitivity is
also observed with respect to a change in the growth parameter r. Another
phenomenon is that a chaotic system sometimes seems to behave regularly
for a number of steps in the iteration. For example, for r = 2.7 and p0 = 0.05
there is an apparent regularity (a fixed point) between step 590 and step
670 (Fig. 5(a)); with r = 2.7001 and p0 = 0.05 there is an apparent period-
two behaviour between step 298 and step 316 (Fig. 5(b)). Under further
iteration these apparent regularities disappear again. Predictability and chaos
alternate with each other, but in a basically unpredictable manner.
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Fig. 3. Deterministic chaos obtained from Verhulst’s formula

At the moment when the system becomes chaotic, the size of the popu-
lation at each step in the iteration will be different from its value at any of
the previous steps. There is no stability or regularity any more. Moreover,
the long-term evolution of the population will strongly depend on the chosen
initial value p0. Even the smallest deviation – say in the hundredth or thou-
sandth decimal – from the initial value will have a significant effect and in
the end, result in a totally different evolution. It is important to notice that
also our computers which work with a fixed number of decimals, are subject
to this type of unpredictability, however powerful they may be.

5 Logistic Fractal of Verhulst

And finally, a fifth factor can be identified which contributes to the late
triumph of Verhulst’s logistic function. Indeed, using the logistic formula,
one can produce fractal figures comparable to the well-known Mandelbrot
fractal. For that purpose we consider again the discrete Verhulst iteration,

pn+1 = pn + rpn(1 − pn),
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Fig. 4. Example of extreme susceptibility to the initial condition in Verhulst’s
formula

but this time we allow p and r to be complex, and therefore related to points
in the plane. More precisely, p and r take values of the form a+ bi, and are
then identified with the point (a, b) in the plane. The iteration is started by
fixing a nonzero value for p0, for instance 0.01 + 0.01i. For each value of r
one can then calculate the resulting iteration sequence. One finds that there
are two possible results: either the sequence stays bounded, or it diverges to
infinity. The r-values for which the sequence stays bounded form a set which
we call a Verhulst fractal; observe that this Verhulst fractal depends on the
choice of the initial value p0. In a similar way as for the Mandelbrot set, such
Verhulst fractals are easily generated on a computer: points not belonging
to the fractal evolve towards infinity at different speeds, and by assigning
different colors to different speeds one obtains patterns such as in Fig. 6.
In this figure the black points form the Verhulst fractal; each picture in the
sequence is an enlargement of part of the preceding picture. What we learn
from these pictures is that the boundary of the Verhulst set has a fractal
structure, in the sense that however much we enlarge this boundary, it will
never become a simple line or curve. At each scale new details appear, and
the figure never reaches a limit.
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Fig. 5. Predictability and chaos alternating in Verhulst’s formula

6 Conclusion

Hence, twice in the past three decades Verhulst’s logistic function obtained a
new, additional meaning. The first time as a model of a chaotic oscillation and
the second time as an example of a fractal figure. The realization that complex
phenomena can be represented by means of a simple algebraic equation has
radically changed our way of thinking in the past years. Robert May was one
of the first people to understand its broader social significance: “Not only in
research, but also in the everyday world of politics and economics, we would
all be better off if more people realized that simple non-linear systems do not
necessarily possess simple dynamical properties.”

Verhulst’s function is but one of the many examples of a non-linear,
chaotic system, although it clearly illustrates the essence of deterministic
chaos. It also illustrates how a discovery can go through a real evolution
of its own and how the underlying significance of a discovery can change
radically as a result of the evolution of its scientific context. Some scientific
ideas have to wait for a long period before they come to their final triumph.
Verhulst’s logistic function is certainly one among them.
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Fig. 6. The Logistic fractal of Verhulst for the value p0 = −10−7; each figure to
the right and downwards is an enlargement of the preceding figure
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Summary. In this chapter we develop the point of view that Verhulst is a major
initiator of systems thinking. His logistic equation is a system archetype, i.e. a
simple system built with few feedback loops. In the Fifth Discipline [19] Peter
Senge calls this particular archetype “Limits to Success”. It can also be called
the “Iron law of Verhulst”, expressing that trees can never grow to heaven. In a
deeper analysis this equation illustrates the shifting loop dominance, one of the
basic principles of system dynamics. The basic message is that the combination of
some few archetypes, like the logistic growth, can afford valuable insight into many
complex systems such as the economy, environment, organisations, etc. This fruitful
concept is illustrated by a simple model in behavioural finance describing the equity
price evolution, and based on the interplay of three main growth archetypes: “Limits
to Success”, “Tragedy of the Commons”, and “Balancing Loop with Delay”.

1 Introduction

Chaos theory is said to have been founded by the 1-D logistic equation. This
is certainly true although, as it is well known, the merit of discovering chaos
in the discrete formulation of this formula may be given to May [16] in 1976,
more than one century later. In its original continuous format the logistic
equation is unable to generate chaos. This is a consequence of the Poincaré–
Bendixon theorem, which says that there is no chaos on the line, or on the
plane, thus at least 3-D is needed. In this chapter we develop the point of
view that Verhulst, more directly, started “systems thinking” applicable to
complex systems. There is clearly a straight line between Verhulst’s germane
ideas and the feedback-centred thinking of System Dynamics (SD), developed
by J.W. Forrester [6,7] in the 1960’s, and used by the early Club of Rome in
its famous book Limits to Growth [17]. What Verhulst’s equation simply says,
is that there is shifting loop dominance between two feedback loops (FBL): a
positive FBL initiates growth; it is brought into balance by a negative FBL
with growing importance, incorporating the limits to growth in a finite world.
The association of FBL’s of different polarities and the shifting dominance
between them is indeed the central thought of SD to model complex reality
in population dynamics, ecology, economy, organisations, etc. These ideas
have been later translated into management recipes by Peter M. Senge in
his famous book The Fifth Discipline [19]. Simple archetypes are presented
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there as elementary building blocks, pervasive in all organizational problems.
All archetypes result in the association of one to three FBL’s with different
polarities. Senge argues that most dynamic patterns can be reproduced from
the association of some of them.

In Sect. 2 we develop some basic concepts of systems thinking from this
perspective. We use as a starting point the logistic equation as an important
growth archetype in SD. In Sect. 3 we present two other growth archetypes,
“Tragedy of the Commons”, and “Balancing Loop with Delay”, developed
along similar lines to Verhulst’s logistic equation. In Sect. 4 we present a
simple behavioural model of stock-price evolution by combining the basic
mechanisms imbedded in these archetypes. Three families of investors are in-
teracting on the equity market: fundamentalists, opportunists and long-term
traders. This model comprises at least three stocks, and, therefore, chaotic
dynamics is possible, contrary to the case of the continuous 1-D logistic equa-
tion. A conclusion relative to systems thinking and its links to the Iron Law
of Verhulst is given in Sect. 5.

2 The Logistic Equation, a Prototype
of Systems Thinking

Figure 1 reproduces a possible influence diagram of the logistic equation of
Verhulst in the very framework in which it was originally published, i.e., pop-
ulation dynamics. It represents a one-stock, two-flow System-Dynamics (SD)
model of the evolution of a deer population; the latter is submitted to a food
availability constraint. The only stock is represented by a rectangular reser-
voir, according to the tradition introduced by J.W. Forrester, the initiator of
SD, in the early sixties of the last century.

Fig. 1. The influence diagram of the logistic growth of a deer population
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Calling P the population, its logistic growth is represented by the Verhulst
equation in a modernized form, and slightly modified to explicitly include the
deer death rate:

dP
dt

= rP
(

1 − P

K

)
−DP . (1)

According to the usage in ecology, r represents the fractional growth rate
corresponding to the r-strategy in a biotope, and K the limiting population
size at maturity, corresponding to the K-strategy; D is the fractional death
rate per unit of time, such that D =1/Lifetime of deer.

Figure 2 shows the evolution of the population and of the two flows,
“Births” and “Deaths”. At logistic equilibrium the two flows become equal,
so that the net flow vanishes. Figure 3 is the representation in the phase plane
(deer population, net growth rate). The equation of the 1-D flow on the r.h.s.
of (1) is a parabola. All this is of course well known. The influence diagrams
and the computations originate from the SD-code VENSIM R© [23].

Let us spend some more time examining the two feedback loops (FBL)
in Fig. 1. The positive FBL in the influence diagram represents the growth
process. The induced growth pattern is exponential; it corresponds to the
r-strategy.

Except for the natural death rate, the only negative influence is between
“deer population” and “relative food availability”: both variables move in
opposite directions. Assuming that less food means less non-lethal births

Fig. 2. The evolution of the stock and of the two flows in the logistic-growth model
of Fig. 1
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Fig. 3. The phase plane (P, dP/dt) of the logistic equation showing the parabolic
function on the r.h.s. of (1)

of fawns, a negative FBL is obtained. The induced growth pattern is goal
seeking with a resulting equilibrium population size K; it corresponds to the
K-strategy.

The dynamic behaviour of this simple dynamic system is dictated by
“shifting loop dominance” between the two FBL’s in the left part of the
diagram:

– First the (+) FBL activates the r-strategy, i.e. nearly exponential growth,
the (−) FBL remains weak because it is driven by the term rP (P/K) in
(1), which is still second-order, and nearly negligible;

– As P grows this latter term becomes larger, and progressive shifting loop
dominance appears. This concept has been introduced by Forrester [6–8].
In this specific case this simply means that the weaker (−) FBL becomes
increasingly active with respect to the (+) FBL. In the growth curve, an
inflection point is visible when P = K/2;

– At equilibrium, both loops are equally active, and thus exactly in balance,
and the nonlinear process of shifting loop dominance is then complete to
realise the asymptotic equilibrium at P = K.

Shifting loop dominance is the central idea of FBL-thinking, and thus
of SD [8]. The properties of nonlinear systems are changing in the phase
space. Some loops are dominant, or simply active, while some other ones are
dormant, or practically inactive. So that there are no universal properties
any more, contrary to what happens in linear systems.
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Even if all FBL’s are present from the beginning in the influence dia-
gram of the model, much different behaviour can be observed by numerical
integration as the relative strengths of several FBL’s change along the way.
This explains why nonlinear systems often show counterintuitive behaviours
as already stressed by Forrester in his Urban Dynamics [7]. This complexity
can be observed with only few FBL’s, but it increases when there are many
possible combinations of interacting FBL’s present in the model. Given n
FBL’s there are n(n+ 1)/2 FBL pairs to be compared. A larger system can
have hundreds, or thousands FBL’s!

This counterintuitive behaviour is a different concept from deterministic
chaos. It has to do with the co-existence of many possible attractors of dif-
ferent nature (strange attractors are just one family). Another complication
arises because of the possible bifurcations when parameters in the system (like
the birth fraction) change value. This further increases the unpredictability
and in fact the complexity of the system behaviour.

The 1-D logistic equation is unable to generate chaos, when the integration
is done properly. This is because of the Poincaré–Bendixon theorem, which
states that there can be no chaos on the line or the plane (see for example [9],
Chap. 5.8, on stability properties in nonlinear systems). Chaos is thus only
potentially observable in nonlinear systems with three stocks and more.

In the 1-stock case, chaos will only be observed as the result of an improper
choice of the integration time step, and in this case it is thus a mere mathe-
matical artefact (see [15]). Equation (1) indeed needs first to be numerically
integrated, with introducing of a discrete time step. The Euler integration
scheme in time t can be written as follows:

P (t+ ∆t) = P (t)
[
1 + r

(
1 − P (t)

K

)
∆t

]
. (2)

Assume that the initial condition is such that 0 < P (t = 0) < K. Because
for all finite t, the exact solution of (1) is such that P (t) < K, if ∆t is small
enough, P (t) will be increasing from P (0) without ever exceeding K, except
when P (t) comes very close to K from underneath. One should then observe
that for small enough ∆t’s:

P (t+ ∆t) > P (t) > 0 when K − P (t) > ε > 0 , (3)

where ε < ∆t is a very small number. Numerically, for t sufficiently large P (t)
will slightly exceed K, so that the flow of the r.h.s. becomes negative; P (t)
will then gently oscillate with hardly observable amplitude around K. It can
be intuitively understood that for larger ∆t steps, oscillations will become
of larger amplitude; once situations arise wherein P (t) becomes significantly
larger than K, overshoots of larger amplitude then occur, making P (t) swing-
ing hence and forth passing the K-value; the place where the population size
P crosses the horizontal line at the boundary value K then changes at each
period. Chaos arises when the set of crossing points becomes infinite. This
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Fig. 4. When the time step is too large, the integration of the logistic equation
with the Euler scheme generates similar pattern as in the logistic mapping, including
chaos

situation is shown in Fig. 4. It is observed that, contrary to expectations
from the continuous (2), P swings widely above the K = 1 boundary value
of the population. Similar evolutions appear to the logistic map when the
growth parameter increases. Several authors have established a correspon-
dence between this latter parameter, and the time step, obtaining herewith
the bifurcation diagrams in function of ∆t. This discussion does not need to
be reproduced here (see for example a review paper in [13]).

3 Archetypes

System Dynamics (SD) is a quantitative simulation technique; many authors
in many different fields, such as economics and finance, organisation, envi-
ronment, macroeconomics, etc. use it. A recent handbook is Sterman [22].
Soft modelling with SD is also a possibility. This approach limits the elab-
oration of models to the first qualitative step of establishing the influence
diagram, and analysing the feedback-loop (FBL) structure to deduce some
consequences for the system and to derive possible improvement strategies.
This approach has some merit, though it is sometimes of limited predictive
value: as mentioned before, systems often behave in a counterintuitive way
due to the complex feedback interactions, and numerical simulations are nec-
essary to test the actual behaviour patterns. Peter M. Senge is the author
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of The Fifth discipline [19]. His main message is that Systems Thinking is
indispensable for understanding and curing organizational problems. Unfor-
tunately the human mind has difficulty in abandoning linear thinking, which
was well adapted to local conditions of human societies in the past, but be-
comes far less adapted to global societies today. Senge further argues that, in
numerous cases, simple systems often consisting of two to three basic feed-
back loops (FBL) provide a sufficient insight on what is going wrong in the
enterprise. These elementary systems, called archetypes, thus can be assem-
bled as building blocks for modelling more complex situations. According to
Senge’s convictions most situations of crisis are reducible to a small number
of archetypes. His book enumerates ten main archetypes. Additional ones
have been developed in later books of Senge [20] on the basis of the work of
Kim [12]. The most important archetypes are centred on three main growth
patterns:

1. Logistic growth of (1) is described as combining exponential growth em-
bodied in a (+) FBL, and goal-seeking growth, embodied in a (−) FBL.
It represents the “Limits to Success” archetype in Senge’s book. The in-
terplay between the two FBL’s leads to the described shifting loop domi-
nance, as has been illustrated in the basic Verhulst model. The archetype
is shown in a more general way in Fig. 5: the whole model rests on the as-
sumption that some resource is limited and becomes inadequate at some
point. A more business-oriented case is shown in Fig. 6, called “Doctor’s
Practice” [18]. It illustrates the interplay between on the one hand the
growth process of the (+) FBL, around the mouth-to-mouth publicity
of satisfied patients, and, on the other hand, the constraints of the time
resource. The latter is impeding the further growth because of the (−)
FBL related to the diminishing acceptability of time spent in the waiting
room.

Fig. 5. The archetype “Limits to Success” as a generic model of Verhulst’s Iron
Law (according to [22])
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Fig. 6. The logistic growth in the doctor’s surgery, as a further illustration of
Verhulst’s Iron Law. The limited resource is here the time that the doctor can
devote to his patients (according to [18])

2. Overshoot and collapse growth appears in a second archetype “Tragedy
of the Commons”, according to the economist Garrett Hardin [10]. This
type of growth is quite pervasive in complex systems (traffic congestion,
exhaustion of depletable resources, collapsing of biotopes, etc.). It is ob-
tained from Verhulst’s logistic growth by adding just one more (−) FBL,
as shown in Fig. 7. In the first archetype of logistic growth in Fig. 5, the
resource is in some way an external parameter to the model, embodied in
the constant K in (1). The second (−) FBL on the right of the drawing
now includes the limiting resource in the model. It corresponds to an ero-
sion mechanism. The growth goal K, instead of being constant, will now
be suddenly and often unexpectedly be collapsing through the internal
nonlinear forces in the system. In human systems, the erosion is caused
by the inadequate use of a common good or resource (highway, oil, etc.)
in the egoistic search for individual advantage.
The model in Fig. 8 has two stocks, i.e. two ordinary differential equa-
tions, for representing both state variables, in this example deer popula-
tion P and vegetation level V . These equations look as follows:
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Fig. 7. The extension of the logistic model to a two-stock model representing the
erosion of the food resource in the archetype “Tragedy of the Commons”

Fig. 8. The extension of the deer model of Fig. 1, including the resource Vegetation
into the model. The deer population collapses when the food resource is eroded away
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dP
dt

= rP

(
1 − P

K

)
−D(V )P (4)

dV
dt

= sV

(
1 − V

L

)
− CPV . (5)

The variables and parameters in (4), representing the deer-population
dynamics, have the same meaning as in (1). D(V ), the death flow, is
a declining nonlinear function of its argument V to be represented by a
lookup table. It is of course equal to the natural death rate when the food
is abundant, and it grows to 100 % mortality when food is disappearing.
In (5), representing the vegetation dynamics, s and L are constants, and
they correspond to r and K in (4). The parameter C represents the
specific consumption of food per deer and time period.

3. The third archetype is called in Senge’s original work “Balancing Loop
with Delay”. It is basically a goal-seeking loop. Delays may be present
at several stages: when information is collected or processed to take ac-
tion, or before action leads to a change in the state of the system. The
generic archetype is shown in Fig. 9. All loops are negative, because each
information delay corresponds to one or several one-stock systems with

Fig. 9. The archetype “Balancing Loop with Delay” in which an information signal
within a negative goal seeking FBL is submitted to delays causing overshooting and
oscillations
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Fig. 10. In this archetype the oscillations are caused by the information delay
between the inventory state and the manpower hiring

an outgoing flow (see [22], Chap. 11). This archetype is typical for the ex-
istence of business cycles. An example is shown in Fig. 10, representing a
manpower-management problem; it consists in a goal seeking loop, which
is itself a first-order delay, embedded in a two-stock system: inventory and
manpower, as follows:

dS
dt

=
Goal − S
Tadj

, (6)

where S is the stock due to achieve the goal, and Tadj is the time con-
stant necessary for the goal-adjustment process; it also represents the
time delay constant. Equation (6) is the equation of a linear proportional
controller (e.g., a thermostat) used in engineered devices to bring the
state variable (e.g., the room temperature) to a desired goal. More com-
plex nonlinear controllers, used in engineering, can be developed for the
same purpose.
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4 Modelling a Bubble on the Stock Market

In this section we discuss the modelling of the development and crash of a
speculative bubble on the equity market (EM). The recent history of the
high-tech bubble mainly in the years 1997 to 2003 provides a good example.

The archetypes presented in the previous section are the starting basis
for modelling, because of their characteristic growth patterns. When a finan-
cial bubble first builds up, exponential growth is observed; later on tempo-
rary plateaux appear reminding of logistic growth equilibrium; there are also
pseudo-random oscillations reminding of the “Balancing Loop with Delay”;
finally crashes resemble the patterns in the Tragedy of the Commons.

Financial crashes were qualitatively modelled as cusp catastrophes by Zee-
man [24]. R.H. Day [4] was one of the first authors who intensively worked
in quantitative non-equilibrium models inspired from chaos theory in dis-
crete nonlinear systems. Following ideas of Shiller [21], Day postulates two
families of investors, smart and ordinary investors. The formers are called
α-investors; the latter are called β-investors. α-investors use quantitative val-
uations from fundamental analysis, they are basically goal-seekers and they
stabilise the market. Their investment profile as a function of the price has
a reverse shape, because they are contrarians. β-investors, by contrast, re-
main in phase with the price trend by using simple investment rules: they
overreact to sudden price moves or to fads, creating volatility. Day combines
both investors’ profiles to define iterative 1-D mappings of the stock price:
p(t + 1) = f [p(t)]. The patterns he observes show phases of high volatility,
betraying the existence of deterministic chaos like in the logistic mapping.
Unfortunately, with those models it is much more difficult to generate more
representative evolutions typical for EM, like bullish or bearish behaviours,
bubble formation and crashes, etc.

The idea developed by Kunsch et al. [14] is to use a continuous model
with at least three stocks, in order to have the possibility to observe chaos,
and a number of FBL’s able to generate representative and more realistic
EM signatures. The objective of considering at least three stocks is easy
to achieve by considering several investors’ families and information delays.
Each first-order delay requires one stock. Additional budget stocks represent
the financial constraints of investors.

Of course an important literature exists dealing with nonlinear dynamic
modelling of the EM (see for example [3], [2] from [11]), or with artificial
stock markets [1]. The ambition is not to present an up-to-date review of
these models generally placed in the field of behavioural finance. Rather it
is planned here to show how archetypes, inspired from Verhulst’s ancient
contribution, are still a source of inspiration for complexity modelling.

The universe in the EM model presented here is very simple. There are
only two assets: a risky asset quoted at a variable homogeneous price P (it
could represent a common equity index like Eurostoxx 50), and a risk-free
asset, e.g., a high-rating bond. This universe is frozen for a given simulation
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run. This means first that the total number of equity shares n is fixed in
all scenarios. Second, all economic parameters of the model are constant,
including the growth rate of the fundamental value, and the risk-free rate.
Some fixed constraints are imposed on the available budget of the investors
and their borrowing capacity.

Three homogeneous groups of investors are considered, instead of two in
Day’s model. They are called α-, βS-, and βL-investors, where “S” stays for
short-term, and “L” stays for long-term. Influence diagrams can be drawn
to represent each investor’s behaviour. Several important feedback loops are
identified. They assist the understanding of basic behavioural rules devel-
oped in the investors’ minds. Some characteristics are important to under-
stand. Negative loops assist the goal-seeking approach of fundamentalists.
α-investors therefore help stabilizing the stock prices. By contrast positive
loops, activated by short-term traders (βS-investors) are responsible for am-
plifying perturbations or rumours. Sometimes such a loop can act as a vir-
tuous circle, in case it triggers a desired growth effect in prices thanks to
long-term strategies of βL-investors. Sometimes the loop acts as a vicious
circle, because it amplifies the market volatility, or it triggers crashes. In the
EM model, the two roles will be played in turn.

The three families of investors are now described in more detail; it is
shown in each case in which way they are representative of the previously
introduced archetypes. Note beforehand that this model is very simplified
because many variables are considered as exogenous parameters, to be held
constant: the relative proportions of the different investor types, and the risk-
free interest rate among others. These assumptions could be removed at the
cost of higher complexity (e.g. including these parameters as model variables
into additional FBL’s), but that would be beyond the scope of the present
work.

The same presentation is adopted as in [14].
Note first that the total equity price P is split up into the three compo-

nents representing the contributions of investors from different groups:

P (t) =
1
n

(
Mα +MβS +MβL

)
= Pα + PβS + PβL . (7)

Mα,MβS,MβL represent the amounts of money invested by the three investor
types in the EM; n is the constant number of shares; Pα, PβS, PβL represent
the three components of the total price P , attributed to the three investor
types.

4.1 Family of α-Investors

α-investors are “smart investors” behaving in a similar way to the rational
goal-seekers assumed in Day’s model. Their sole aim is to achieve convergence
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Fig. 11. Negative Feedback loop of α-investors (goal-seeking behaviour)

towards a current goal price Gα for the stock price P . It is why the unique
feedback loop visible in Fig. 11 is a negative goal-seeking FBL. The price
component Pα obeys to a similar equation to (6):

dPα

dt
=
Gα − P
Tα

(8)

As said above, more complex goal-seeking formulations can be adopted.
Because there are possibly information delays in the price adjustment,
damped oscillations caused by slight overshooting above the goal price may
be observed.

In our model, the assumed current goal price Gα is the sum of two terms:
fundamental value gα, and risk premium Aα,βL resulting from the investing
behaviour of βL-investors, to be described later:

Gα = gα +Aα,βL (9)

– The fundamental value gα results from fundamental analysis, e.g., Divi-
dend Discount Model (DDM). Deterministic dividends are assumed here,
because stochastic changes do not bring more understanding on causal
mechanisms. Dividends are growing with the given constant industry
growth rate: gα is growing at the same rate.

– The risk premium depends on the arbitraging behaviour of βL-investors
between the stock return and the risk-free rate; this is explained below.
In case of a positive gap, they invest more money into the EM, creating
herewith a price increase ∆PβL , i.e. a risk premium above the fundamen-
tal value. In this case α-investors also adjust their long-term expectations,
and they follow the observed positive trend over the fundamental value.
In practice, the premium is incorporated into the goal price by α-investors
only up to a certain point; this occurs with a time delay τ . In the model it



Limits to Success. The Iron Law of Verhulst 43

is assumed that, in a bullish market mainly driven by the premium term,
α-investors will cap their goal price by a maximum arbitrage value ∆gmax

α .
The latter corresponds to an acceptable risk level. Thus the actual risk
premium is given by the following equation:

Aα,βL = min
(
∆gmax

α ,delayτ [max(0,∆PβL)]
)
. (10)

In the model α-investors do not experience any liquidity constraints. This
is a reasonable assumption, as they stop anticipating further price growth, as
the risk premium above the fundamental value becomes exceedingly large.

In conclusion, α-investors behave according to the goal-seeking part in the
logistic equation (Verhulst’s Iron Law). Because the goal is changing under
the effect of βL-investor strategies, there is a need for information collecting:
damped oscillations due to overshoots may be observed, as in the archetype
“Balancing Loop with Delay”.

4.2 Families of β-Investors

The β-investors are “ordinary investors” in Shiller’s sense [21]. They are not
entirely rational with respect to the use of information coming from the mar-
ket. They use different approaches to process the information, from rules of
thumb to advanced technical analysis. An important aspect is the time hori-
zon of anticipation, covering a continuum between short-term to long-term.
The model only considers two extreme cases in a continuum: βS-investors
have a short-time horizon (S); βL-investors have a long-term horizon (L). Also
proportions of the two types are kept constant. More sophisticated models
may consider intermediate investors’ profiles or varying proportions within
the model.

Family of βS-Investors

βS-investors are opportunistic traders who are following immediate price
movements; they buy in case of a price increase, and they sell when the
price is going down. Therefore they destabilise the goal-seeking efforts of α-
investors, who are contrarians, and they cause permanent noise. The presence
of a positive feedback loop, visible in the right part of Fig. 12, confirms the
existence of this destabilizing investment approach. The driver in this loop is
the first derivative of the price, initiating a vicious circle of growth or decay.
A negative loop is visible in the left part of the diagram. It becomes active
as the available budget drops to zero, forcing βS-investors to limit their stock
position or even to liquidate part of their portfolio. The dynamic equation of
βS-investors has been assumed to be the following:

dPβS

dt
= SβS f

(
dP̄
dt
, P

)
−RβS(BβS) , (11)
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Fig. 12. Feedback structure of short-term traders, i.e. βS-investors. The budget
acts as a control mechanism; the presence of information delays causes oscillations.
There is also a partial correspondence between this diagram and the archetype
“Tragedy of the Commons”

where SβS > 0 represents the strength of βS-investors on the market (as-
sumed to be constant). The function f(., .) depends in a nonlinear way on
the stock price P and the smoothed value of its first derivative dP̄ /dt. Its
sign is the same as the sign of the latter, indicating that βS-investors are
trend-followers modifying their positions according to increasing or declining
prices. A smoothed signal is calculated as an information delay as in (6), so
that this may be the cause of oscillating behaviour, as in the archetype “Bal-
ancing Loop with Delay”. Overshoots may also be observed, which bring the
budget to negative values. In such situations the βS-investors have to liqui-
date part of their portfolios. This appears in the last term on the r.h.s. of (11):
RβS(BβS) represents the reimbursement rate to bring the budget BβS back
to balance, in case it becomes negative. In conclusion, the delay mechanism
and the budget constraints make that βS-investors are a source of instability
and create pseudo-random oscillations in the search for price equilibrium on
the EM.

Family of βL-Investors

βL-investors rather have a long-term perspective. They permanently compare
the long-term stock return and the risk-free interest rate (irate, assumed to
be constant in this simple model). In case of a positive spread, in favour of
risky asset positions, they invest additional money, curbing on the growth of
the stock price. Therefore a positive feedback loop is visible in the upper part
of the diagram in Fig. 13. It is driven by the positive return spread between
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Fig. 13. Feedback structure of long-term traders, i.e. βL-investors. The budget fuels
growth up to a certain point just before collapse. There is a clear correspondence
between this diagram and the archetype “Tragedy of the Commons”

risky and risk-free assets, creating a risk premium. As indicated in (8) and
(9), α-investors will adjust in part their goal price to follow the growing price
trend caused by βL-investors. In contrast to βS-investors, βL-investors have
a borrowing capacity. They invest the borrowed money reinforcing herewith
the growing trend, and transform it progressively into a vicious circle. Of
course at some point there is shifting-loop dominance in favour of negative
FBL’s like in the archetypes “Limits to Success”, and the “Tragedy of the
Commons”. Such a loop is visible in the lower part of the diagram in Fig. 1: it
relates to the available money resources. βL-investors have an initial budget
and borrowing capacity up to a given permissible debt level. In any case, their
willingness to reimburse their loans will grow with the relative level of their
debt expressed as a percentage of the value of their stock position. As long
as some borrowing capacity remains, βL-investors further strengthen their
stock positions. Above some debt threshold, they experience an incentive to
liquidate at least part of their positions. Another negative loop is not directly
visible in Fig. 13, however. It finds its origin in the cap imposed by α-investors
on the permitted price growth above fundamentals, according to (10). The
simplified equation representing the dynamics of βL-investors is as follows:

dPβL

dt
= SβL(r − i) −RβL

(
BβS, VβL

)
, (12)

where SβL > 0 represents the strength of βL-investors on the market (as-
sumed to be constant in this simple model). r represents the smoothed stock
return, and i = irate, the risk-free interest rate. The growth pattern of the
first term on the r.h.s. of (12) is thus exponential. RβL represents the reim-
bursement rate of loans in case the current budget BβL is becoming negative
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and exceeds the borrowing capacity, which depends on the current value VβL

of the portfolio owned by βL-investors.
In conclusion βL-investors develop a growth mechanism that is similar to

the archetype “Tragedy of the Commons”. The growth is fuelled on a basis of
an artificial money-borrowing resource and the landing can be quite sudden
and hard, as some limits in the borrowing capacities are exceeded. Note that
α-investors contribute to define when the bubble crash will start by capping
the risk premium, as shown in (10).

4.3 Some Results of Simulation

In short some results of the EM model are presented in the form of time
diagrams. The latter represent the total stock price (upper curve represented
by a thick line), and its three components, indicated as Palpha (heavy line),
PbetaST (medium-heavy line), and PbetaLT (thin line), according to (7). There
are many possible choices for the parameters in the model, but we shall limit
our discussion to a few typical cases for bubble growth and crash. We again
adopt the presentation from [14].

A first scenario represents a boundary situation, helpful to calibrate the
model. The risk-free rate is assumed to be very high; it is then expected
that the risk premium is vanishing, i.e. no βL-investors will be present on
the market, and thus no bubble can appear. In this case the price will gently

Fig. 14. (From [14]). A calibration calculation in case there is no risk premium,
because of high risk-free rates
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follow the industry growth rate. The price components and the total price are
shown in Fig. 14 confirming our expectations. The total price rapidly comes
to the fundamental value. The lower curve shows the contribution of βS-
investors following the growing trends. Sometimes budgets become negative,
so that, according to (11), a broken line and oscillations back to positive
budget values are observed.

The following figures show two situations, in which the risk-free interest
rate is low, so that βL-investors can arbitrage. In Fig. 15 the market is initially
bearish. The return spread is negative, i.e. in favour of risk-free investment.
For quite a long time, the market is in near-equilibrium at the goal price set
by α-investors; the growth rate is equal to the industrial growth rate (7%
p.a.). However, the steady industrial growth brings about a fresh-born wave
of βL-investors. As a result the goal price also shifts up. βL-investors soon find
their limits. The borrowing capacity is reached. At this point, βL-investors
have to rapidly liquidate the largest part of their stock portfolio in order
to bring down their loan debt to an acceptable level. This reimbursement
constraint has the same effect on the price as a reflecting barrier. The price
bounces back creating chaotic ups and downs of the price in search for a new
equilibrium value. βS-investors amplify the appeared volatility. The price
volatility becomes so large that at some point the long-term return drops
below the risk-free rate. βL-investors disappear from the scene after a crash
of limited amplitude. The market moves to a new equilibrium following the
natural trend of fundamental values.

Fig. 15. (from [14]). The case of low interest rates, and an initially bearish market
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In Fig. 16 the same assumptions as in the previous figure are used for
simulating an initially bullish market. A burst in price sets up immediately;
it is accompanied by high volatility. The bouncing back of the price against
the debt barrier induces still more volatility than in the previous case. This
turbulent behaviour cannot maintain itself very long. The market moves to
its fundamental equilibrium as in the previous figure. After a while, a new
price upsurge is observed with still more volatility than previously in the
growing phase. It lasts for quite some time, exhibiting swings of considerable
amplitude. As before, a crash brings back the price to its natural equilibrium.
When pursuing the computation, regular replicas with similar shapes are
periodically observed.

Fig. 16. (from [14]) The case of low interest rates, and an initially bullish market

The more detailed paper contains additional runs with other choices of
parameters, and a comparison of simulations with real observations on the
EM. The readers are referred to this paper for more details. As a source of
inspiration for more advanced models, Fig. 17 presents, without any further
comments, the evolution of the Eurostoxx 50 index between October 1994
and September 2004 during the lifetime of the recent high-tech bubble.



Limits to Success. The Iron Law of Verhulst 49

Fig. 17. The evolution of the DJ Eurostoxx 50 from October 1994 to September
2004 (from the website wallstreet-online)

5 Conclusions

The author has attempted in this chapter to present Verhulst’s contribution
in a somewhat different light: discussions generally go about the links between
the logistic equation and chaos theory. It is argued here that in some way
Verhulst was a pioneer of nonlinear system theory. Systems thinking is today
becoming a necessity for survival: the world globalization forces us to think
in terms of causality networks rather that in terms of isolated cause-effect
links [5]. Verhulst’s ancient contribution thus remains modern, and it is still
needed.

With the logistic growth, Verhulst introduced for the first time in history
an influence diagram, in which two feedback loops are competing for domi-
nance. This simple system teaches us that exponential growth is impossible in
the natural world, because constraints on resources must be taken into con-
sideration. The Iron Law of Verhulst remains an important message, which is
unfortunately not yet accepted by all. Without this insight it is impossible to
start a reflection on how to remove the “Limits to Success”, which are today
threatening the very long-term existence of mankind in the limited spaceship
earth.
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1 Introduction

In 1838, P.-F. Verhulst [1] proposed an extension of the Malthus equation
of the continuous growth of a population. In the Malthus equation, the time
derivative of the population is directly proportional to the population, and
gives a solution as a temporal exponential curve without limitation and tend-
ing to infinity. Verhulst introduced, to the Malthus equation, a negative term,
proportional to the square of the population, with a view to obtaining a sta-
ble stationary finite state of the population. The Verhulst nonlinear equation
is called the logistic equation, for which an analytical solution exists.

For a non-continuous growth of a population, the differential equation is
traditionally transformed with the Euler algorithm to a discrete equation,
called the Verhulst map in the framework of chaos theory. This chaos map
gives solutions of several types depending on the value of the growth pa-
rameter of the population: stable fixed points, bifurcations and then chaos.
Simple analytical solutions of this chaos map exist for particular values of
the growth parameter. In the chaos zone, this solution depends directly on
the initial population, so the future evolution of the population is not pre-
dictable for long times if the initial condition is not known with precision.
This phenomenon is called the sensitivity to initial conditions.

The purpose of this chapter is first to demonstrate that the Verhulst map
is not the correct discrete equivalent to the Verhulst logistic equation. Due
to the discrete time interval, the square of the population must be trans-
formed to the product of the population at time t and the same population
at the following discrete time t + ∆t, giving a non-recursive equation called
an incursive equation (for inclusive or implicit recursive equation) [4]. The
solution of this incursive discrete equation is similar to the stable stationary
solution of the differential Verhulst logistic equation. The same result can be
obtained from an anticipative control to the Verhulst map.

Secondly, it will be shown that the Verhulst chaos map belongs to a class
of chaos maps at any order n, where n is the degree of the map. In this
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class, the Verhulst map depends on the power two, n = 2, of the population.
The concept of canonical chaos map will be introduced. The set of canonical
chaos maps is given by the Tchebychev polynomials that verify a very simple
relation of recurrence. Closed form solutions exist for these canonical chaos
maps. This set of canonical chaos maps will be transformed to a set of chaos
maps depending on a growth parameter.

Thirdly, this chapter will deal with the control of these chaos maps at
any order, with the method of the incursive predictive control that belongs
to the class of model predictive controls for which the model is the equation
of the map itself, and for which no setpoint is defined [5]. Such a control
transforms all the unstable states of the chaos maps to stable fixed points. A
new type of diagram will be introduced, which we shall call the stabilization
diagram. The resulting stabilization diagrams show a number of stable fixed
points directly related to the order of the maps. Numerical simulations will
be performed on these chaos maps for various orders: the first return map,
its bifurcation diagram and its stabilization diagram will be displayed as a
function of the growth parameter.

2 Analytical Solution of Chaos Maps

This section deals with the solution of the Verhulst logistic equation and
the deduction of the so-called Verhulst chaos map. The closed form solution
of the chaos map is then demonstrated and its relation to the Shift map is
established.

2.1 From the Verhulst Differential Logistic Equation
to the Verhulst Chaos Map

The original Verhulst [1] differential growth equation is given by

dN(t)
dt

= rN(t)
(

1 − N(t)
K

)
(1)

where N(t) is the value of the population at the current time t, r is the growth
rate and K is a limiting growth factor. The well-known analytical solution of
this equation is given by

N(t) =
ertN(0)

1 + (ert − 1)N(0)/K
(2)

where N(0) is the initial condition of the population at time t = 0. This
solution tends to N(t) = K, for t � 1/r. This means that the system loses
its initial value and that its future is completely defined by the value of
the parameter K, the value of which being fixed. So, such an equation is
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an anticipative system in the sense that the final future value, K, of the
population is already known and completely fixed at the present time.

Let us now deduce the classical discrete version of this equation. In defin-
ing P (t) = N(t)/K, (1) becomes

dP (t)
dt

= rP (t)[1 − P (t)] . (3)

With the forward derivative, the discrete equation is given by the well-known
Euler algorithm

P (t+ ∆t) = P (t) + ∆t[rP (t) − rP 2(t)] (4)

where ∆t is the time step. The time step can be taken equal to one (in re-
scaling the growth rate r) without lack of generality. So, with ∆t = 1, this
equation can be rewritten as

P (t+ 1)
1 + 1/r

=
(1 + r)P (t) − rP 2(t)

1 + 1/r
. (5)

With the change of variables x(t) = P (t)/[1+1/r] and a = 1+r, the Verhulst
chaos map is readily obtained:

x(t+ 1) = ax(t)[1 − x(t)] (6)

with a ∈ [0, 4] and x(t) ∈ [0, 1].
Let us summarize some properties of this map [8].
The stationary states are given by x(t + 1) = x(t) = x0, with x0 = 0 or

x0 = 1 − 1/a. The stability criterion of the stationary solutions is given by:∣∣∣∣dx(t+ 1)
dx(t)

∣∣∣∣ = |a− 2ax0| < 1 . (7)

For x0 = 0, | dx(t+1)/dx(t) |=| a |< 1, so this stationary solution is stable for
a < 1. This means that the population disappears due to a negative growth
rate r = a−1 < 0. The case a = 1 corresponds to a null growth rate r = 0. For
x0 = 1 − 1/a,| dx(t+ 1)/dx(t) |=| −a+ 2 |< 1, so this stationary solution is
stable for 1 < a < 3, and unstable for a ≥ 3. For 3 ≤ a ≤ 4, bifurcations occur
(period doubling: 2, 4, 8, 16, . . .), and then chaos (period 3, 5, 7, . . . mixed with
even periods 6, . . . ). Chaos begins to occur for the value of a related to the
universal constant of Feigenbaum [7, 6]: ac = 3.569945672 . . . So the chaos
zone is defined for 3.569945672 . . . ≤ a ≤ 4

2.2 Analytical Solution of the Verhulst Chaos Map

The analytical solution of the Verhulst chaos map (6), for a = 4,

x(t+ 1) = 4x(t)[1 − x(t)] (8)
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with x(t) ∈ [0, 1], is given by

x(t) =
1 − cos(2tg)

2
(9)

with g = arccos[1 − 2x(0)] where x(0) is the initial condition at t = 0.
This solution of the Verhulst chaos map is an exact closed form solu-

tion, because it is not necessary to compute all the successive iterates of
the equation to obtain any iterate x(t) for any t. From the fixed value of
the initial condition x(0) at time t = 0, the variable g is fixed to a con-
stant, and the successive values of x(t) as a function of time t, are given
by the calculation of cos(2tg) for the values of time t = 1, 2, 3, . . ., that is
cos(21g), cos(22g), cos(23g), . . ., and, contrary to the solution of the original
Verhulst differential equation, the chaos map never loses its initial condition
x(0), via the g function.

So a natural chaos system, if it is not perturbed by external effects, never
loses its initial condition, and its future is completely written in its initial
condition. But man, who tries to predict the future of this system, is limited
by the exact knowledge of the initial condition. Indeed, one can only measure
the initial condition with a certain number of decimals. Therefore, the future
of this system is written in the successive values of the decimals, in theory,
until infinity!

The next section explains the shift of the digits of the initial condition,
written in binary.

2.3 The Verhulst Chaos Map Transformed to the Shift Map

In order to explain that the whole future of a chaotic system is written in the
digits of its initial condition, let us consider the following change of variables

x(t) =
1 − cos[2πy(t)]

2
= sin2[πy(t)] (10)

in the Verhulst map (8) which becomes successively:

1 − cos[2πy(t+ 1)]
2

= 4
1 − cos[2πy(t)]

2

{
1 − 1 − cos[2πy(t)]

2

}
, or

1 − 2 cos[2πy(t+ 1)] = 2{1 − cos[2πy(t)]}{1 + cos[2πy(t)]} , or
1 − 2 cos[2πy(t+ 1)] = 2 − 2 cos2[2πy(t)] , or
cos[2πy(t+ 1)] = −1 + {1 + cos[4πy(t)]} ,

or
cos[2πy(t+ 1)] = cos[4πy(t)] (11)

and the following Shift map is obtained

y(t+ 1) = [2y(t)] mod 1 (12)
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with y(t) ∈ [0, 1], where mod 1 is the modulo 1, which means that only the
fractional part of 2y(t) is taken.

The exact closed form solution of (12) is given by

y(t) = [2ty(0)] mod 1 . (13)

For example, with y(0) = 0.3203125 . . .,
for which x(0) = sin2[πy(0)] = 0.7137775467151410471604834284444 . . . ,
the Table 1 gives the successive values of y(t) and x(t).

Table 1. Numerical example of the Shift map and the Verhulst map

t y(t) y(t + 1) binary y(t) x(t) = sin2(πy(t)) x(t) x(t + 1)

0 0.3203125 0.640625 0.0101001 0.7137775 0.7137775 0.8171966
1 0.640625 0.28125 0.101001 0.8171966 0.8171966 0.5975451
2 0.28125 0.5625 0.01001 0.5975451 0.5975451 0.9619397
3 0.5625 0.125 0.1001 0.9619397 0.9619397 0.1464466
4 0.125 ... 0.001 0.1464466 0.1464466 ...

In Table 1, the first column gives the time steps t = 0, 1, 2, 3, 4, the second
column shows the y(t) which are calculated from the shift map in the third
column y(t + 1) = 2y(t) mod 1, the fourth column shows the binary value
of the decimal y(t), the fifth column shows the x(t) = sin2(πy(t)) calculated
from the shift map y(t), the sixth column gives the x(t) calculated from the
Verhulst map in column seven x(t+ 1) = 4x(t)[1 − x(t)].

It is clearly shown in Table 1 that, on one hand, the iterations shift to
the left the digits of the binary y(t), and on the other hand that the x(t)
calculated from the shift map and from the Verhulst map are identical.

But it is possible to obtain any iterate y(t) at any time t, without com-
puting all the preceding iterates, from the exact closed form solution.

Indeed, from the initial condition: y(0) = 0.3203125 . . ., (13) gives
y(4) = [24y(0)] mod 1 = (5.125 . . .) mod 1 = 0.125 . . .
and from (10), one obtains
x(4) = sin2[πy(4)] = 0.14644660940672623779957781894758 . . .

Let us now demonstrate that the chaos map does not represent a correct
discrete Verhulst equation.

3 The Verhulst Incursive Map
is the Correct Discrete Verhulst Equation

I proposed [4], several years ago, to transform the Verhulst chaos map (6) to
the following Verhulst incursive map:
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x(t+ 1) = ax(t)[1 − x(t+ 1)] (14)

where the limiting factor [1 − x(t)] is defined in the next time step as [1 −
x(t+ 1)].

This incursive equation (for inclusive or implicit equation) can be trans-
formed (see the demonstration in the following section) to the following re-
cursive equation

x(t+ 1) = ax(t)
[
1 − ax(t)

1 + ax(t)

]
=

ax(t)
1 + ax(t)

(15)

where the limiting factor is equal to the whole equation.
This Verhulst incursive map (15) gives a stable solution for any value of

a.
Indeed, the two stationary states of this incursive equation are the same

as for the chaos map, x0 = 0 and x0 = 1 − 1/a. In applying the criterion of
stability ∣∣∣∣dx(t+ 1)

dx(t)

∣∣∣∣ =
∣∣∣∣ a

[1 + ax(t)]2

∣∣∣∣ < 1 , (16)

it is proved that, firstly, the stationary state x0 = 0,∣∣∣∣dx(t+ 1)
dx(t)

∣∣∣∣ = |a| < 1 , (17)

is stable for a < 1, and, secondly, the stationary state x0 = (a− 1)/a,∣∣∣∣dx(t+ 1)
dx(t)

∣∣∣∣ = 1/a < 1 , (18)

is always stable for a > 1.
The analytical solution of this nonlinear (15) is given by

x(t) =
(1 − 1/a)Cat

1 + Cat
(19)

as a closed form solution, where C is a constant. The initial value x(0) defines
the value of C by, x(0) = (1 − 1/a)C/(1 + C), so the solution

x(t) =
atx(0)

1 + (at − 1)x(0)/(1 − 1/a)
(20)

is similar to the solution of the original Verhulst differential logistic (2).
Let us demonstrate that the incursive (15) represents the correct discrete

equivalent of the logistic (1). For that, let us write the solution (2) of the
Verhulst logistic differential equation as

N(t2) =
er(t2−t1)N(t1)

1 + (er(t2−t1) − 1)N(t1)/K
(21)
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which gives the growth of the population from the time t1 to the time t2.
Indeed, in taking t1 = 0 and t2 = t, the continuous solution (2) is obtained.

Defining a time interval ∆t between t2 and t1 as t2 = t1+∆t, (21) becomes

N(t1 + ∆t) =
er∆tN(t1)

1 + (er∆t − 1)N(t1)/K
(22)

Choosing ∆t = 1, and t1 = t, one obtains

N(t+ 1) =
erN(t)

1 + (er − 1)N(t)/K
(23)

and with the change in variables, er = a and N(t)/K = x(t)/(1 − 1/a), (23)
is written as

x(t+ 1) =
ax(t)

1 + ax(t)
(24)

which is the discrete (15), and this is the correct discrete algorithm for the
Verhulst logistic differential equation.

As result, we conclude that the chaos emerging from the so-called Ver-
hulst chaos map is due to instabilities of the Euler algorithm and not from
fundamental biological properties of the Verhulst logistic differential equa-
tion.

This (24) can also be obtained from an incursive control as shown in the
next section.

4 Incursive Control for Stabilizing Chaos Maps

This section presents a survey of the role of incursive control with an example
of control of the Verhulst chaos map, with simulations.

Let us begin by the definitions of recursive and incursive systems.

4.1 Recursive and Incursive Systems Applied
to the Verhulst Chaos Map

A recursive system computes its vector current state x(t), at successive time
steps t = 0, 1, 2, . . . , from a vector function R of its past and present states
as

x(t+ 1) = R(. . . ,x(t− 2),x(t− 1),x(t);p) (25)

where the vector p is a set of parameters.
A weak incursive system [4] computes its current state at time t, as a

function of its states at past times,..., t − 2, t − 1, present time, t, and even
its predicted states at future times t+ 1, t+ 2, . . ..

x(t+ 1) = A(. . . ,x(t− 2),x(t− 1),x(t),x∗(t+ 1),x∗(t+ 2), . . . ;p) (26)
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where the future states x∗(t+1),x∗(t+2), . . ., are computed with a predictive
model of the system.

A strong incursive system [4] computes its current state at time t, as a
function of its states at past times,..., t − 3, t − 2, t − 1, present time, t, and
even its states at future times t+ 1, t+ 2, t+ 3, ....

x(t+ 1) = A(. . . ,x(t− 2),x(t− 1),x(t),x(t+ 1),x(t+ 2), . . . ;p) (27)

where the future states x(t + 1),x(t + 2), . . ., are computed by the system
itself.

The Verhulst chaos map (6):

x(t+ 1) = ax(t)(1 − x(t)) (28)

is a recursive system, and the Verhulst incursive map (14):

x(t+ 1) = ax(t)[1 − x(t+ 1)] (29)

is a strong incursive system, because the future value in the saturation
factor, [1 − x(t + 1)], is computed by the system itself. Indeed, in replacing
successively x(t+ 1) by ax(t)[1 − x(t+ 1)] in (29), one obtains the following
equation

x(t+ 1) = ax(t)(1 − ax(t)(1 − ax(t)(1 − ax(t)(1 − ax(t)(1 − ...))))) (30)

which is an infinite recursive equation that converges to

x(t+ 1) =
ax(t)

1 + ax(t)
(31)

which is the (15), given at the preceding section.
This incursive map (29) can be obtained from the following recursive map

(28) to be controlled

x(t+ 1) = ax(t)[1 − x(t)] + u(t) (32)

by an incursive control u(t)

u(t) = ax(t)[x(t) − x(t+ 1)] (33)

which can be transformed to a recursive control with (31) as follows

u(t) = ax(t)
[
x(t) − ax(t)

1 + ax(t)

]
. (34)

Indeed, in including (34) to (32), (31) is obtained. As it was shown in the pre-
ceding section, this incursive map is always stable. This incursive controller,
which is a powerful tool for stabilizing chaos maps, belongs to a special class
of controller, because no setpoint is defined. Such a controller stabilizes by
itself the unstable states to stable fixed points.

In the next section, this incursive controller will be compared to model
predictive controllers through numerical simulations in order to indicate how
to stabilize the chaos of the Verhulst map.
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4.2 Incursive and Model Predictive Controls
of the Verhulst Chaos Map

Predictive models were developed over the past two or three decades in
the field of control, what is referred as the Model-based Predictive Con-
trol (MPC). These include Model Predictive Heuristic Control (MPHC) [9],
Dynamic Matrix Control (DMC) [3], Internal Model Control (IMC) [10] and
Generalized Predictive Control (GPC) [2].

The key difference between a conventional feedback control and a pre-
dictive control is that the control error e = x − r, which is the difference
between the process output x and the setpoint r (the desired output), used
by the predictive controller is based on future and/or predicted values of the
setpoint x(t + τ), and also on future and/or predicted values of the process
output x(t + τ), rather than their current values. See [1] for an overview of
MPC.

The basic principle of the model predictive control of a discrete system,
with a time step ∆t,

x(t+ ∆t) = F [x(t)] + u(t) (35)

where u(t) is a control action, consists in minimizing a cost function J , given
for example by a weighted least squares criterion:

J = E

{
N∑

i=1

[x(t+ i∆t) − r(t+ i∆t)]2 +
Nu∑
i=1

wiu(t− ∆t+ i∆t)2
}

(36)

where {r(t + i∆t)} is the setpoint sequence (target tracking), {wi} is the
weight sequence, and N and Nu are fixed integers representing the time
horizons of the predicted outputs, x(t + i∆t), and control sequence, u(t −
∆t + i∆t). The anticipative outputs x(t + i∆t), i = 1 to N , are computed
from the model of the process to be controlled. The Verhulst map (28), to be
controlled by a control action u(t), in the chaos regime with a = 4, is written
as

x(t+ 1) = 4x(t)[1 − x(t)] + u(t) (37)

with the cost function (36) given by

J = [x(t+ 1) − x0]2 + w1u
2(t) (38)

with ∆t = 1, N = Nu = 1, with a constant setpoint r(t + 1) = x0 = 3/4,
that is the unstable equilibrium of the map [5]. The objective of the control is
to stabilize the map at its unstable equilibrium given by x0 = 3/4, obtained
from x0 = 4x0(1−x0), corresponding to the equilibrium condition x(t+1) =
x(t) = x0 in (37) [without the control u(t)]. Indeed, in applying the classical
criterion of stability given by ∣∣∣∣dx(t+ 1)

dx(t)

∣∣∣∣ < 1 (39)
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to the chaos map at the equilibrium x0 = 3/4, one obtains∣∣∣∣dx(t+ 1)
dx(t)

∣∣∣∣ =| 4 − 8x0 |= 2 (40)

which is greater then 1, so this equilibrium state x0 is unstable.
Putting (37) into (38), one obtains the following cost function at the

current time

J = [4x(t)(1 − x(t)) + u(t) − x0]2 + w1u
2(t) . (41)

The minimum of J is obtained with the condition dJ/du(t) = 0, so

u(t) =
x0 − 4x(t)[1 − x(t)]

1 + w1
. (42)

Now, let us put (42) into (37), to obtain

x(t+ 1) = 4x(t)[1 − x(t)] +
x0 − 4x(t)[1 − x(t)]

1 + w1
. (43)

After elementary mathematical transformations, (43) becomes

x(t+ 1) =
x0 + 4w1x(t)[1 − x(t)]

1 + w1
. (44)

The equilibrium conditions x(t + 1) = x(t) = x0 of (44) are x0 = 0 and
x0 = 3/4, as desired.

Applying the stability criterion (39) to (44), for x0 = 3/4, one obtains∣∣∣∣dx(t+ 1)
dx(t)

∣∣∣∣ =
∣∣∣∣4w1 − 8w1x0

1 + w1

∣∣∣∣ =
∣∣∣∣− 2w1

1 + w1

∣∣∣∣ < 1 (45)

and the chaotic map is stabilized to x = x0 = 3/4 for a weight in the range
0 < w1 < 1.

Let us show the differences between the incursive control and the model
predictive control by considering the control of the chaos map (37), with the
three following control functions [5]:
a) The incursive control [Equation (34), in the chaos regime with a = 4]:

u(t) = 4x(t)
x(t) − 4x(t)[1 − x(t)]

1 + 4x(t)
(46)

b) The model predictive control [Equation (42)]:

u(t) =
x0 − 4x(t)[1 − x(t)]

1 + w1
(47)

c) The incursive predictive control:
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u(t) =
x(t) − 4x(t)[1 − x(t)]

1 + w1
(48)

This third control is based on the incursive control applied to the model
predictive control by replacing the setpoint x0 by x(t) in the cost function
(38) as follows

J = [x(t+ 1) − x(t)]2 + w1u
2(t) (49)

This new controller (48) is obtained by minimizing this cost function (49).
Let us point out that the control (46) is similar to the control (48) by

taking a variable weight w1 = 1/4x(t).
Figures 1, 2 and 3 show the simulations of the chaos map (37), with the

three controllers (46), (47) and (48).

Fig. 1. Incursive Control (46), starting at step 50, of the chaos map

Fig. 2. Model Predictive Control (47), starting at step 50, of the chaos map
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Fig. 3. Incursive Predictive Control (48), starting at step 50, of the chaos map

From the simulations, the best controller is the incursive control (46), in
Fig. 1, where it is well seen that the control is optimal.

In Fig. 2, the model predictive control (47), with w1 = 1/2, shows damped
oscillations around the setpoint x0 = 3/4. Let us notice that the damping
effect depends on the value of the weight w1.

In Fig. 3, the incursive predictive control (48) shows a better control
than the model predictive control, with the same weight w1. The incursive
control and the incursive predictive control, find by themselves the setpoint
which is the unstable equilibrium of the chaos map. Indeed, these incursive
controllers do not use an explicit setpoint, but an implicit setpoint given
by the unstable equilibrium state which is stabilized. The incursive control
minimizes the distance between x(t + 1) and x(t), instead of the distance
between x(t+ 1) and a setpoint x0.

Let us now show how to generate Verhulst chaos maps at any order and
how to control them.

5 Recurrent Generation of Chaos Maps at any Order

With a view to obtaining a simple rule to generate chaos maps at any order,
let us make the following change of variables

X(t) = 1 − 2x(t) (50)

in the Verhulst chaos map (8) which becomes

X(t+ 1) = 2X2(t) − 1 (51)

with X(t) ∈ [1,−1], and the exact closed form solution (9) becomes
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X(t) = cos(2tg) (52)

with g = arccos[X(0)] or X(0) = cos g.
The purpose of the next section is to define a set of canonical chaos maps

with a general exact closed form solution given by

X(t) = cos(ntg) (53)

for n = 0, 1, 2, 3, 4, 5, . . . and g = arccos[X(0)] or X(0) = cos g.

5.1 Canonical Chaos Maps at any Order

The set of canonical chaos maps is defined by the following general equation

x(t+ 1) = cos[n arccosx(t)] (54)

with x(t) ∈ [1,−1] and n ∈ N . With the relation

cos[n arccos(x(t)] = xn(t) + C2
nx

n−2(t)[x2(t) − 1] + C4
nx

n−4[x2(t) − 1]2 + · · ·
(55)

where Cm
n = n!/m!(n−m)!, (54) becomes

x(t+ 1) = Tn[x(t)] = xn(t) +C2
nx

n−2(t)[x2(t)− 1] +C4
nx

n−4[x2(t)− 1]2 + · · ·
(56)

with x(t) ∈ [1,−1] and n ∈ N . This equation (56) is the set of canonical
chaos maps, for which the exact closed form solution is given by

x(t) = cos(ntg) (57)

for n = 0, 1, 2, 3, 4, 5, . . . and g = arccos[x(0)] or x(0) = cos g.
Let us remark that (55) corresponds to what is called the Tchebychev

polynomials Tn given by

Tn(X) = Xn + C2
nX

n−2(X2 − 1) + C4
nX

n−4(X2 − 1)2 + · · · (58)

which gives:

T0 = 1 ,
T1 = X ,

T2 = 2X2 − 1 ,
T3 = 4X3 − 3X ,

T4 = 8X4 − 8x2 + 1 ,
T5 = 16X5 − 20X3 + 5X ,

T6 = 32X6 − 48X4 + 18X2 − 1 ,
. . . (59)
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where Tn is of degree n, and, for n > 0, the coefficient of the term of the
highest degree of Tn is 2n.

These Tchebychev polynomials verify a very simple relation of recurrence
given by

Tn+2 = 2XTn+1 − Tn (60)

with the initial conditions T0 = 1 and T1 = X.
With the relation of recurrence (60), it is possible to generate the set of

canonical chaos maps as follows:

n = 0 x(t+ 1) = 1
n = 1 x(t+ 1) = x(t)
n = 2 x(t+ 1) = 2x2(t) − 1
n = 3 x(t+ 1) = 4x3(t) − 3x(t)
n = 4 x(t+ 1) = 8x4(t) − 8x2(t) + 1
n = 5 x(t+ 1) = 16x5(t) − 20x3(t) + 5x(t)
n = 6 x(t+ 1) = 32x6(t) − 48x4(t) + 18x2(t) − 1
n = 7 x(t+ 1) = 64x7(t) − 112x5(t) + 56x3(t) − 7x(t)

. . .

n = 10 x(t+ 1)=512x10(t) − 128x8(t) + 112x6(t) − 400x4(t) + 50x2(t) − 1
. . . (61)

Introducing a growth parameter a in (56), the set of chaos maps at any
order is given by the following map

x(t+ 1) = aTn[x(t)]
= a{xn(t) + C2

nx
n−2(t)[x2(t) − 1] + C4

nx
n−4[x2(t) − 1]2 + · · · } (62)

with a ∈ [−1,+1] and x(t) ∈ [−1,+1]. This set of chaos maps (62) can be
controlled by an action control u(t) as follows

x(t+ 1) = aTn[x(t)] + u(t) (63)

with the following general incursive predictive controller

u(t) =
x(t) − aTn[x(t)]

1 + w1
(64)

where

Tn[x(t)] = xn(t) + C2
nx

n−2(t)[x2(t) − 1] + C4
nx

n−4[x2(t) − 1]2 + · · · , (65)

with a ∈ [−1,+1] and x(t) ∈ [−1,+1].
In Subsect. 5.2, some numerical simulations of these chaos maps and their

stabilization will be given.
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5.2 Simulation and Incursive Control of Chaos Maps

In this last subsection, we show the numerical simulation of the chaos maps
(62) for n = 2, 3, 5, 10, 25, and their stabilization diagram with the incursive
predictive control (63), (64) for n = 2, 3, 5, 10, 25.

The chaos maps, which are numerically computed, are given by

x(t+ 1) = a[2x2(t) − 1] for n = 2 , (66)
x(t+ 1) = a[4x3(t) − 3x(t)] for n = 3 , (67)
x(t+ 1) = a[16x5(t) − 20x3(t) + 5x(t)] for n = 5 , (68)

and by

x(t+ 1) = a[512x10(t) − 128x8(t) + 112x6(t) − 400x4(t) + 50x2(t) − 1] (69)

for n = 10.
Let us remark that it is also possible to obtain this chaos map n = 10 by

inserting the canonical map n = 5 in the chaos map n = 2 as follows:

x(t+ 1) = a{2T 2
5 [x(t)] − 1} . (70)

In the same way, the chaos map n = 25 is obtained in inserting the
canonical chaos map n = 5 in the chaos map n = 5 as follows
n = 25

x(t+ 1) = a{16T 5
5 [x(t)] − 20T 3

5 [x(t)] + 5T5[x(t)]} (71)

with T5[x(t)] = 16x5(t) − 20x3(t) + 5x(t).
Figures 4 and 5 give the first return diagram of the chaos maps n = 2

and n = 10 for a = 1.
Figures 6, 8, 10, 12 and 14 give the bifurcation diagrams of the chaos

maps n = 2, 3, 5, 10, 25, with a ∈ [−1,+1].
Figures 7, 9, 11, 13 and 15 give the stabilization diagrams of the chaos

maps n = 2, 3, 5, 10, 25, with a ∈ [−1,+1], by using the incursive predictive
control.

For example, the control for n = 3 is given by

x(t+ 1) = a[4x3(t) − 3x(t)] + u(t) , (72)

u(t) =
x(t) − a[4x3(t) − 3x(t)]

1 + w1
. (73)

These stabilization diagrams of the chaos maps show that the number
of fixed points is equal to n = 2, 3, 5, 10, 25, respectively. The proposition
to create such stabilization diagrams could be of great interest in practice.
Indeed, it is often impossible to detect, in real time, the unstable points of
real chaotic systems. Instead of defining setpoints arbitrarily, it would be
more accurate to let the controller self-stabilizes an unstable point.
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Fig. 4. First return diagram for n = 2

Fig. 5. First return diagram for n = 10
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Fig. 6. Bifurcation diagram for n = 2

Fig. 7. Stabilization diagram for n = 2
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Fig. 8. Bifurcation diagram for n = 3

Fig. 9. Stabilization diagram for n = 3
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Fig. 10. Bifurcation diagram for n = 5

Fig. 11. Stabilization diagram for n = 5
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Fig. 12. Bifurcation diagram for n = 10

Fig. 13. Stabilization diagram for n = 10
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Fig. 14. Bifurcation diagram for n = 25

Fig. 15. Stabilization diagram for n = 25
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6 Conclusions

This chapter firstly presented the Verhulst logistic differential equation and
its analytical solution for various values of the growth parameter.

The classical discretization of this equation, with the Euler algorithm,
gives the so-called Verhulst map, exhibiting fixed points, bifurcations and,
then chaos for successive values of the growth parameter.

In the chaos zone, the Verhulst map has a closed form solution depend-
ing on the initial condition. It was recalled that the Verhulst map can be
transformed to the Shift map for which the successive iterates are given by
the fractional part of the shift, to the left, of the binary digits of the initial
condition.

The first part of this chapter showed that the bifurcations and chaos in
the Verhulst map are due to the Euler algorithm and not to the fundamen-
tal properties of the original Verhulst equation. It was demonstrated that
the correct algorithm is the incursive algorithm (for inclusive or implicit al-
gorithm) which gives fixed points similar to those of the original Verhulst
equation, what we called the Verhulst incursive map.

Such a Verhulst incursive map can be obtained from the Verhulst chaos
map with an incursive control, which is an anticipative controller.

The second part of this chapter demonstrated that the Verhulst chaos
map belongs to a family of canonical chaos maps, given by the Tchebychev
polynomials at any order (degree of the polynomials), for which closed form
solutions exist.

These canonical chaos maps can be generated by a simple relation of
recurrence.

With introduction of a growth parameter into these canonical chaos maps,
a set of Verhulst chaos maps at any order is proposed.

For some of these Verhulst chaos maps, their first return diagrams and
bifurcation diagrams are numerically computed.

Finally, the simulations of the anticipative control of these maps, with an
incursive controller, give stable fixed points which are exhibited in stabiliza-
tion diagrams.

In conclusion, the incursive tool is a powerful anticipative method for
stabilizing chaos, and open new avenues of research and development in the
framework of the theory of chaos.
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Summary. We study fully synchronized (coherent) states in complex networks of
chaotic oscillators, reviewing the analytical approach of determining the stability
conditions for synchronizability and comparing them with numerical criteria. As
an example, we present detailed results for networks of chaotic logistic maps hav-
ing three different scale-free topologies: random scale-free topology, deterministic
pseudo-fractal scale-free network and Apollonian network. For random scale-free
topology we find that the lower boundary of the synchronizability region scales ap-
proximately as k−µ, where k is the outgoing connectivity and µ depends on the local
nonlinearity. For deterministic scale-free networks coherence is observed only when
the coupling is heterogeneous, namely when it is proportional to some power of the
neighbour connectivity. In all cases, stability conditions are determined from the
eigenvalue spectrum of the Laplacian matrix and agree well with numerical results
based on histograms of coherent states in parameter space. Additionally, we show
that almost everywhere in the synchronizability region the basin of attraction of
the coherent states fills the entire phase space, and that the transition to coherence
is of first-order.

1 The Interplay Between Dynamics and Topology

The structure and dynamics underlying complex networks have been widely
investigated, providing insight for many systems where they arise naturally
[1–3]. Complex networks appear in a wide variety of fields ranging from lasers
[4], granular media [5, 6], quantum transport [7], colloidal suspensions [8],
electrical circuits [9], and time series analysis [10], to heart rhythms [11],
epidemics [12, 13], protein folding [14], and locomotion [15] among others
[1–3].

From the mathematical point of view, a network is a graph, composed by
nodes or vertices and by their connections or edges [2]. Sometimes, each node
is characterized by some dynamical state (amplitude), which evolves accord-
ing to some local contribution and to the interaction with the neighbourhood.
In other words, the complexity of the system underlying the network may be
introduced either in the way nodes are interconnected (topology) or in the
way nodes evolve in time (dynamics).
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When studying network dynamics one frequently assumes a regular topol-
ogy (lattice) where each node evolves according to some more or less compli-
cated dynamics, typically fixed points [16], limit cycles [17] or chaotic attrac-
tors [18,19]. One main goal of this approach is to study the so-called spatio-
temporal chaos which appears in many different spatially extended systems
out of equilibrium, such as hydrodynamical flows, chemical reactions and bi-
ological systems [20,21]. Two main topics in this context concern the study of
mechanisms underlying pattern formation and pattern selection [20–24] and
also the study of chaotic synchronization behaviour [16,25].

Spatially extended systems are fundamentally modelled by (i) sets of cou-
pled differential equations [20] with nonlinear terms, where both time and
amplitude are continuous, (ii) cellular automata [22], where both time and
amplitude are discrete or (iii) coupled map lattices [21], where time is dis-
crete as in cellular automata, but where the space of states is continuous.
In all these models the underlying networks have connections whose range
assumes all values from 1 (nearest neighbours) up to some maximum range,
in particular the size of the system (global coupling regime). In other words,
neglecting boundary conditions, these network systems assume translational
symmetry and therefore the underlying network is called a regular network.

To study more complicated network structures, one usually neglects node
dynamics and all complexity is introduced by the network topology, i.e. by
the way nodes are connected to each other. This can be done in three different
ways [2]: by randomly connecting the nodes (random networks [26, 27]), by
considering some random long-range connections in a regular network with
some small range of couplings (small-world networks [28,29]), or by consider-
ing the introduction of new nodes which are connected to the previous ones
following some rule of preferential attachment (scale-free networks [30]). For
all these cases there is no translational symmetry and no typical range con-
nection: connections do not have any ‘spatial’ interpretation. Therefore, one
uses some general topological quantities to characterize each particular net-
work, namely the average path length 〈	〉, i.e. the average minimum number
of connections linking two nodes, the clustering coefficient C, defined as the
average fraction of neighbours which are connected to each other, and the
distribution of connections P (k), representing the number of nodes having k
connections. Table 1 shows the values of these three quantities for all three
topologies.

Random networks were introduced by Erdös and Rényi in the late fifties
[26] to study organizing principles underlying some real networks [27]. In
random networks one defines some probability p(N) for any two nodes to be
connected in a total of N nodes. Consequently, the connections are typically
long-range connections having a completely irregular structure. One main
goal in studying random networks is to determine the critical probability
pc(N), beyond which some specific property is very likely to be observed,
e.g. the critical probability marking a transition to percolation [31]. One
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Table 1. Characterizing complex topologies with the topological quantities: average
path length 〈�〉, clustering coefficient C and distributions P (k) of connections k.
Here N is the total number of nodes, p is the probability for two nodes to be
connected, k̄ is the average number of connections per node, C0 is the clustering
coefficient of the regular network from which the small-world network is constructed,
and m is the number of initial connections of each new node in a scale-free network

Random Small-world Scale-free

〈�〉 ln N/ ln (pN) N for small p ln N/ ln ln N
ln N for large p

C k̄/N C0(1 − p)3 ∼ N−3/4

P (k) e−k̄k̄k/k! e−k̄k̄k/k! 2m2/k3

important feature of random networks, which also appears in real networks,
is their small average path length 〈	〉, i.e. the average distance between any
two nodes increases slowly with the system size. However, unlike random
networks, real networks also have large cluster coefficients C.

Small-world networks were introduced recently by Watts and Strogatz [28]
in order to implement both short 〈	〉 and large C features. Small-world net-
works have short-range connections between neighbours, as in regular net-
works, but they also have long-range connections similar to random networks,
without middle range ones. There are mainly two procedures to construct a
small-world network: starting from the same regular network, where each site
is coupled to some number of first neighbours, one either rewires each regular
connection with probability p (Watts–Strogatz model [28]) or adds a random
connection to each node with probability p (Newman–Watts model [32]). The
second procedure is more appropriate for most purposes, since it avoids the
possibility of generating disconnected clusters [32].

Both random and small-world topologies produce typically networks
where connections obey a Poisson distribution (see Table 1). However, there
are real systems which are scale-free, i.e. where the connection distribution
obeys a power law.

Scale-free networks were introduced by Barabási and Albert [30] using
growing and preferential attachment: one starts with a small amount of fully
interconnected nodes, and adds iteratively one node with m connections to
the previous nodes, chosen from a probability function proportional to their
number of connections. With this construction one obtains analytically [33–
36] a distribution of the connections P (k) ∝ k−γ , where γ → 3 as N →
∞, independently of the initial number of fully interconnected nodes and of
m. It is also possible to generate scale-free networks, either by imposing a
priori a power-law distribution of all randomly distributed connections, or
by following a deterministic iterative rule for new nodes. The first procedure
generates what is usually called a generalized random graph, while the latter
was recently referred as deterministic scale-free network [37].
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Deterministic scale-free networks are hierarchical structures composed by
some succession of generations of nodes, i.e. the set of new nodes appearing
simultaneously at a given iteration during the ‘construction’ of the network,
whose connections follow a particular power-law distribution [37–40], being
more easier to handle. The main difference between random and deterministic
scale-free networks arises from the local connectivity character of the latter:
random constructions generate irregular long-range connections, while de-
terministic networks impose a succession of generations of new nodes which
are, in some way, organized in ‘space’. Therefore, deterministic networks are
applied for instance in spin systems [39], and geographical and social net-
works [39,41].

After considering separately dynamical and topological complexity, the
next logical step toward real network dynamics is to consider them together.
One important question addressed in this context is to know whether full syn-
chronization between oscillators in such complex topologies would appear and
under which conditions the full synchronized state would be stable. By full
synchronization we mean the convergence of the amplitudes of all oscillators
to the same value, evolving coherently from then on. Therefore we call hence-
forth these fully synchronized states coherent states, to distinguish them from
partially synchronized configurations, when several different clusters of nodes
with the same amplitude are observed [16]. Synchronization and coherent be-
haviour of oscillator networks with complex topologies have been studied for
the random topology [42–45] and the small-world topology [46–49], and also
scale-free networks [45, 50–53]. In random networks, it is already known [42]
that with high coupling strengths it is possible to fully synchronize oscilla-
tors and the corresponding stability condition may be computed [43] from the
matrix of connections characterizing the network. In small-world networks,
synchronizability is observed [47] only at the end of the small-world regime
(high values of p), and recently [46] it was found that heterogeneity in the
coupling may destroy coherence. These findings for small-world networks are
somehow contradictory to the ones of other studies [45, 48] and other topo-
logical quantifiers have been proposed [49]. In scale-free networks some recent
studies indicate that synchronizability among oscillators depends on the av-
erage connectivity [52] and is robust to a delayed flow of information [50] and
to the removal of low-connected nodes [52].

In this chapter we describe the general approach to study coherent states
in any general complex network of oscillators, and apply it to the particular
case of a scale-free network of discrete-time oscillators, which is studied in
great detail. We start in Sect. 2 by describing the stability analysis approach
to the model introduced in (1) and deduce the corresponding conditions for
synchronizability. In Sect. 3 we apply this stability analysis procedure to the
particular case of scale-free networks, comparing our results with numerical
simulations. The random scale-free case is treated in Sect. 3.1, where we
show that the threshold value of such a transition as a function of coupling
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strength and outgoing connectivity obeys a power law with an exponent
that depends on the nonlinearity, while deterministic scale-free networks are
studied in Sect. 3.2, namely a pseudo-fractal network [38] and an Apollonian
network [39,40]. Discussion and conclusions are given in Sect. 4.

2 General Approach to Analyse Coherent States

For all the network topologies described above, if one considers discrete-time
oscillators, namely maps of the interval, the equation of evolution for their
amplitudes reads

xt+1 = f(xt) − εGg(xt) , (1)

where ε is the coupling parameter, t labels time, xt = (xt,1, . . . , xt,N ) with xt,i

representing the amplitude at time-step t of node i = 1, . . . , N , whereN is the
total number of nodes, f = (f(x1), . . . , f(xN )) and g = (g(x1), . . . , g(xN ))
with f and g being real nonlinear functions, and G is the coupling (Laplacian)
matrix, whose element Gij represents the relative strength with which node
i is coupled to node j, and satisfies the conditions

∑N
j=1Gij = 0 and Gii = 1

for all i = 1, . . . , N . In general G is a non symmetric matrix.
Usually, one chooses g(x) ≡ x when studying linear coupling, and g(x) ≡

f(x) when studying nonlinear coupling. Here we consider the nonlinear case.
Apart from this choice, all the information about the dynamics is introduced
in the function f(x), while all the information about the coupling topology
(regular, random, small-world or scale-free) and the coupling regime (either
homogeneous or heterogeneous) is included in the coupling matrix G.

From (1) one easily sees that the coherent state xt,1 = xt,2 = · · · = xt,N =
Xt evolves in time according to the local map Xt+1 = f(Xt). There are two
ways to study these coherent states: either by studying the stability of small
perturbations of the coherent states or by making statistics over significant
large samples of initial configurations, counting how many converge to a co-
herent state. Some attention to the parameter ranges must be taken, since the
basin of attraction of the coherent states may be bounded by regions of phase
space where amplitudes diverge. In particular, for maps of the interval one
has 0 ≤ ε ≤ 1 in order to guarantee convergence of any initial configuration.

In this chapter we shall illustrate both analytical and numerical ap-
proaches for the particular case of scale-free networks. To this end, we define
the coupling matrix as Gii = 1 and

Gij = − kα
j∑

k∈Ki
kα

k

(2)

if node i is coupled to node j, with kj representing the number of neighbours
of node j and Ki is the set of labels of all neighbours of node i. If nodes i
and j are not coupled Gij = 0. The parameter α is a real number controlling
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the heterogeneity in the coupling: positive values of α enhance the coupling
strength with sites having a large number of neighbours, while negative values
favour sites having less neighbours. For α = 0 the coupling between each site
and its neighbourhood is homogeneous.

For local dynamics we choose the well-known quadratic map f(x) = 1 −
ax2, where the free parameter a is restricted to the interval −0.25 ≤ a ≤ 2
and contains all possible dynamical regimes from a fixed point (e.g. a = 0)
to fully developed chaotic orbits (e.g. a = 2).

When determining the stability of coherent states, various criteria are pos-
sible. For instance, one could compute the maximum Lyapunov exponent and
obtain the conditions where it is negative. However, such a Lyapunov expo-
nent does not indicate the existence of a local instability in the synchronous
state, which may pull the trajectories apart from the coherent manifold.

The correct approach is based on the variational version of (1) proposed by
Pecora and Carroll [54], which is valid for any network of identical oscillators
as far as their local dynamics (quadratic map, Lorenz system, etc.) and their
coupling regime (linear, nonlinear, etc.) are concerned. For the nonlinear
coupling regime, the diagonal form of these variational equations reads [54–
56]

ξt+1,i = exp [Λ(ελi)]ξt,i = [Df(X) − ελiDf(X)] ξt,i , (3)

for the coherent states xt,i = X, where Λ(ελi) is the Lyapunov exponent,
Df(X) represents the identity matrix multiplied by the derivative of f(x)
computed at x = X and λi are the eigenvalues of the coupling matrix G. If
G has zero-sum rows, i.e.

∑N
j=1Gij = 0∀i, and all its eigenvalues λ1 ≤ λ2 ≤

· · · ≤ λN are real and nonnegative, then λ1 = 0 corresponds to the mode
parallel to the synchronization manifold and the largest Lyapunov exponent
defines a master stability function [54]. The coherent state is stable whenever
Λ(ελi) < 0 for i = 2, . . . , N [54–56].

In our case, it is easy to check from (2) that G has indeed zero-row sum,
yielding λ1 = 0. Moreover, all the eigenvalues of the matrix G are real and
nonnegative, since det(G − λI) = det(Ḡ − λI) where Ḡ is a positive semidef-
inite symmetric matrix, namely Ḡ = H

1/2
K

1/2
AK

1/2
H

1/2 with A being the
adjacency matrix of the network [52], and matrices H and K being the diag-
onal matrices with elements Hii = 1/(

∑
k∈Ki

kα
k ) and Kii = kα

i respectively.
From (3) and regarding the ordering of the eigenvalues λi one easily con-

cludes that the stability condition reads

εL ≡ 1 − exp (−λ̄)
λ2

< ε <
1 + exp (−λ̄)

λN
≡ εU , (4)

where λ̄ is the Lyapunov exponent of the local single map. In particular
there is a range of coupling strengths enabling synchronizability whenever
λN/λ2 < (1+e−λ̄)/(1− e−λ̄) holds. Therefore, by computing the eigenvalues
of the Laplacian matrix G one is able to find the range of couplings for which
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coherent states are stable. This approach can be applied for any system ruled
by (1).

3 Scale-Free Networks of Coupled Logistic Maps:
An Example

For the particular case of scale-free networks, recent results [45] show a tran-
sition to full synchronization for two particular values of the nonlinearity a
in the homogeneous regime (α = 0), when either the coupling strength or the
number of outgoing connections is varied. However, as far as we know there is
no detailed study showing how these coherent states depend on all the model
parameters. Therefore, we present in this section detailed numerical results
concerning synchronization in oscillator networks with scale-free topologies.
Our purpose is to give a complete example of how to study coherent solutions
in complex networks of oscillators, comparing both the stability analysis and
the numerical approaches.

The stability analysis is carried out just by computing the boundary val-
ues εL and εU in (4) as functions of the model parameters. The ranges of val-
ues where εL < εU are the ones where coherent solutions appear. As stated
above, for discrete oscillators, ruled by maps of the interval, the condition
0 ≤ ε ≤ 1 must be added.

Numerically, to detect coherent solutions from a given sample of initial
configurations, we compute the standard mean square deviation [45]

σ2
t = 1

N

N∑
i=1

(xt,i − x̄t)2 , (5)

where x̄t is the average amplitude at a given time step t. Whenever σ2 is zero
within numerical precision, i.e. σ2 ∼ 10−30, all the nodes are synchronized at
the same amplitude.

We divide our approach into two parts, one concerning random scale-free
networks (Sect. 3.1) and the other one concerning deterministic scale-free
networks (Sect. 3.2).

3.1 Random Scale-Free Networks

In this section, we use the algorithm of Barabási and Albert [2, 30] to con-
struct the random scale-free network (see Sect. 1), where at each node one
places a chaotic logistic map. In a previous work [45] a transition to coher-
ence between chaotic logistic maps was found for random scale-free networks,
occurring for particularly high coupling strengths, typically of the order of
εc ∼ 0.9. Our simulations have shown that these transitions occur after dis-
carding transients of ∼ 104 time steps and they do not change significantly
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Fig. 1. Typical histograms of the standard mean square amplitude deviation σ2

showing the sharp transition to coherence in function of (a) the coupling strength
ε with k = m0 = 8, and (b) the outgoing connectivity k with ε = 0.95. Values of
N represent the fraction of configurations which converge to a coherent state from
a total of 500 initial random configurations, after discarding transients of 104 time
steps. Here a = 2, N = 1000, and α = 0

with the network size. Moreover, as shown in Fig. 1, this transition to co-
herence is robust with respect to initial configurations, by varying either the
coupling strength ε (Fig. 1a) or the outgoing connectivity k (Fig. 1b). In
particular, above the threshold εc ∼ 0.9, all initial configurations converge
to a coherent state, indicating that in this parameter region the basin of
attraction of coherent states fills almost the entire phase space.

From stability analysis, we find that in the fully chaotic regime (a = 2)
the transition to coherence occurs for gradually smaller coupling strength if
the connectivity k is increased. Figure 2a shows the boundaries εL and εU as
a function of k for a = 2 (solid lines) and a = 1.9 (dashed lines) with the same
parameter values as in Fig. 1. As one sees, in both cases the lower boundary
εL decreases when k increases, while the upper boundary εU increases beyond
ε = 1. Therefore, one expects that the region of synchronizability increases
for larger values of connectivity k. Figure 2a also shows clearly that for a = 2
the intersection between both boundaries, εL = εU , occurs just above k = 7,
which explains why the transition to coherence in Fig. 1b occurs at this value.
For a = 1.9 this transition should occur near k = 5. Decreasing even more the
nonlinearity coherent solutions are observed for even smaller connectivities
and synchronizability regions increase, as shown in Fig. 2b. To see this feature
more clearly we magnify in Fig. 2c the rectangle of Fig. 2b. As one sees, one
exception occurs for a = 1.8, where the lower boundary is below the one for
a = 1.7, due to the fact that for a = 1.8 the Lyapunov exponent of the logistic
map is smaller than the one for a = 1.7, as illustrated below in Fig. 4. For all
these values of a, the single uncoupled map shows chaotic orbits. Moreover,
for any other network size N , the same curves are obtained.
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Fig. 2. Boundary values εL and εU in (4) in function of the connectivity k (a) for
a = 1.9 (dashed lines) and a = 2 (solid lines), and (b) for a = 1.5, 1.6, 1.7, 1.8, 1.9
and 2. The data in the rectangle in (b) is magnified in (c). The regions labelled
with ‘sync’ are the ones where coherent solutions are observed, i.e. εL < εU . Notice
that in (c) the boundary for a = 1.8 is below the one for a = 1.7, contrary to other
values (see text)

These analytical predictions extracted from the stability condition in (4)
and shown in Fig. 2 are strongly corroborated with our numerical simulations
as shown in Fig. 3. In Fig. 3a we plot the fraction F of initial configurations
which converge to a coherent state for a = 2, while Fig. 3b shows the threshold
values, εc and kc, at the transition curves where the entire sample of initial
configurations converge to a coherent state, for the same values of a as in
Fig. 2c. Here, one clearly sees that there is a clear and sharp transition to
coherence. Interestingly, the curves in Fig. 3b fit very well the ones in Fig. 2c,
which means that whenever the synchronizability condition εL < εU holds,
coherent states fill almost entirely the phase space.

Moreover, as illustrated in Fig. 3c, all curves obey a power law, within
our numerical precision,

εc ∝ k−µ
c . (6)

For the six above values of a, the exponents are respectively µ = 0.2345,
0.2354, 0.2353, 0.2231, 0.2023 and 0.1804: the exponent is almost constant
below a ∼ 1.7 and decreases above this value, as illustrated in the inset of
Fig. 3c.

To determine the nature of the transition to coherence seen in Figs. 3a
and 3b, we plot in Figs. 3d and 3e the average standard deviation in the
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Fig. 3. Transition to coherence as a function of connectivity k and coupling strength
ε. (a) Fraction Nσ=0 of coherent states from 500 random initial configurations for
a = 2. (b) Coherence transition curves in the (ε, k) plane for (from bottom to top)
a = 1.5, 1.6, 1.8, 1.7, 1.9 and a = 2, and (c) the same transition in a log-log plot,
showing power-law dependence between connectivity and coupling strength for the
transition curves, with an exponent µ which depends on the value of a (see inset).
Here α = 0, L = 1000 and we used transients of 104 time steps. By increasing
the transient size to ∼ 106 one clearly sees that the transition to coherence is of
first-order either (d) when varying the coupling strength ε or (e) when varying the
outgoing connectivity k
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region where transition to coherence is observed, using much higher resolu-
tion. One clearly sees that the transition to coherence is of first-order, when
varying ε or k. That the transitions are indeed of first order is easily recog-
nised by the clear existence of hysteresis: when increasing either ε or k the
configuration eventually falls into a coherent state, no longer spontaneously
desynchronizing, no matter how far the parameters are tuned back.

All results till now, concern the case of homogeneous coupling (α = 0).
Next, we study the case of heterogeneous coupling. Figure 4 shows the bound-
aries εL and εU in (4) as functions of the outgoing connectivity k, the nonlin-
earity a and the heterogeneity α, covering both the homogeneous and hetero-
geneous regimes. Figure 4a shows the two boundaries as a function of k for
a = 2 and α = 0 (solid lines), α = 1 (dashed lines) and α = 2 (dotted lines).
As one sees for nonzero values of α the boundaries are no longer smooth
curves, but instead they show fluctuations as k is increased, enlarging and
shrinking alternately the region of synchronizability, labelled as ‘sync’. When
varying a (Fig. 4b) the boundaries are mainly controlled by the Lyapunov
exponent of the local map (see (4)), where εL (resp. εU ) decreases (resp. in-
creases) whenever a periodic window occurs [57]. The fluctuations observed
in Fig. 4a are clearly seen in Fig. 4c, where the stability boundaries are plot-
ted in function of α fixing k = 8 and a = 2 (solid lines) and a = 1.5 (dashed
lines). The fluctuations are much higher for α > 1 and for the fully chaotic
regime both boundaries may even cross each other suppressing synchroniz-
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Fig. 4. Boundary values εL and εU in (4) in function of (a) connectivity k with
a = 2 and α = 0 (solid lines) α = 1 (dashed lines) and α = 2 (dotted lines), (b)
nonlinearity a for k = 8 and α = 0, 1 and 2, and (c) heterogeneity α with k = 8 and
a = 2 (solid lines) and a = 1.5 (dashed lines). The inset in (c) emphasises one small
region where synchronizability is not observed, εL > εU (see text). Here N = 1000
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ability (see inset of Fig. 4c). Moreover, the lower boundary εL decreases till
α ∼ 0.5, then increases till α ∼ 1 and decreases in average from there on.

All these analytical results computed from (4) and matrix G in (1) are
corroborated by our numerical simulations. In particular, the boundaries εL
and εU seen in Fig. 4c are obtained also when plotting the contour of Fig. 5a,
where we plot the average standard deviation from a sample of 500 initial
configurations and vary the coupling strength and heterogeneity for a = 2
and L = 1000. While Fig. 5a shows the numerical results for α > 0, i.e. in the
case where nodes are more strongly coupled to the neighbours with higher
connectivities, Fig. 5b shows the transition to coherence when α < 0. Here
synchronizability is observed only for α � −0.15 and for very high coupling
strengths ε � 0.95.
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Fig. 5. Transition to coherence in function of coupling strength ε and heterogeneity
α (a) when the most connected nodes dominate the dynamics (α > 0) and (b) when
the coupling to nodes with the least neighbours is strengthened (α < 0). Here, we
compute the average standard deviation from a sample of 500 initial configurations
and fix a = 2, k = m0 = 8 and N = 1000

We end our study of coherent solutions in random scale-free networks by
investigating briefly the role of hubs in the lattice. Instead of strengthening
the coupling to the most connected nodes by increasing α > 0, we now fix
α = 0 and impose synchronization between all the nodes with more than a
certain threshold kt of neighbours and observe which fraction of the initial
configurations converges to a coherent state. In this case the transition to
coherence converges asymptotically to a limit of the coupling strength, as
shown in Fig. 6a. The same occurs when synchronization is imposed to all
nodes with less than kt neighbours, as shown in Fig. 6b.

3.2 Deterministic Scale-Free Networks

In the previous section we focused on random scale-free networks, i.e. growing
networks where new nodes are connected following probabilistic rules. In this
section we study deterministic scale-free networks [37–39], using two different
deterministic topologies: the pseudo-fractal scale-free network introduced by
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Fig. 6. Transition to coherence when synchronization is imposed to all nodes having
a number of neighbours (a) larger than a threshold kt, and (b) smaller than kt

(see text). Here a = 2, k = 8, α = 0 and N = 1000

Dorogovtsev et al [38] and the Apollonian network introduced by Andrade
et al. [39] and also studied in [40]. Both networks are illustrated in Fig. 7.

The pseudo-fractal network of Dorogovtsev is obtained, starting from
three interconnected nodes, and at each iteration each edge generates a new
node, attached to its two vertices. Figure 7a illustrates this network after
three iterations, i.e. with three generations of nodes. The number of nodes
Nn and the number of connections Vn increase with the number of generations
as [38]

Nn = 3
2 (3n + 1) , (7a)

Vn = 3n+1 . (7b)

From Fig. 7a one easily sees that this network has indeed a scale-free topology,
since the number of nodes with degree k = 2, 22, . . . , 2n−1, 2n and 2n+1 is
equal to 3n, 3n−1, . . . , 32, 3 and 3 respectively. In particular, the exponent
of this power-law distribution is γ = 1 + ln 3/ ln 2. Moreover, the cluster

(a)

(b)

Fig. 7. Illustrations of two deterministic scale-free networks: (a) the pseudo-fractal
network [41], and (b) the Apollonian network [39]. Identical symbols label nodes
belonging to the same generation n (see text), namely © for n = 0, � for n = 1
and • for n = 2
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coefficient of a node with degree k is C = 2/k, and the average path length
is approximately 〈	〉 � 4 lnNn/(9 ln 3).

The Apollonian network is constructed in a different way: one starts with
three interconnected nodes, defining a triangle; at n = 0 one puts a new
node at the center of the triangle and joins it to the three other nodes, thus
defining three new smaller triangles; at iteration n = 1 one adds at the center
of each of these three triangles a new node, connected to the three vertices of
the triangle, defining nine new triangles and so on (see Fig. 7b). The number
of nodes and the number of connections are respectively given by

Nn = 1
2 (3n+1 + 5) , (8a)

Vn = 3
2 (3n+1 + 1) . (8b)

The distribution of connections obeys a power law, since the number of nodes
with degree k = 3, 3 × 2, 3 × 22, . . . , 3 × 2n−1, 3 × 2n and 2n+1 is equal to
3n, 3n−1, 3n−2, . . . , 32, 3, 1 and 3 respectively, and the exponent γ is the same
as for the pseudo-fractal network. Moreover, a node with k neighbours has a
cluster coefficient of C � 4/k as reported in [40], converging on average to
C∞ = 0.828, and the average path length grows weaker than lnNn [39].

Although both networks have similar values for the topological quantities,
they are quite different from the geometrical point of view: the pseudo-fractal
network has no metric, while the Apollonian network is embedded in Euclid-
ean space and fills it densely as n→ ∞, being particularly suitable to describe
geographical situations [39].

For stability analysis purposes (see Sect. 2), the Laplacian matrix G of
deterministic networks can be analytically determined from the adjacency
matrix A = {aij}, since they are related by

G = I + AT , (9)

where I is the identity matrix and the values of matrix T = {Tij} are defined
by

Tij = −
aji

[∑N
k=1 aik

]α

∑N
p=1 ajp

[∑N
k=1 apk

]α . (10)

A simple way to write the adjacency matrix of the pseudo-fractal network is

An =
[

An−1 Mn−1

M
T
n−1 ∅

]
Nn×Nn

, (11)

where Nn is given by (7a), M
T represents the transposed matrix of M and

for each generation n = 1, 2, . . . the matrix Mn reads

Mn =
[

Mn−1 Mn−1 ∅
∅ ∅ Bn−1

]
(2×3n−1)×3n

, (12)
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with

Bn−1 =

⎡⎢⎢⎢⎣
A0 ∅ . . . ∅
∅ A0 . . . ∅
...

...
. . .

...
∅ ∅ . . . A0

⎤⎥⎥⎥⎦
3n−1×3n−1

(13)

and whose starting form is

M0 = A0 =

⎡⎣0 1 1
1 0 1
1 1 0

⎤⎦
3×3

. (14)

For the Apollonian network, the adjacency matrix is given by the same
recurrence of (11), but this time with

A0 =

⎡⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤⎥⎥⎦ , (15)

and Mn being a matrix with (3n + 5)/2 rows and 3n columns and having in
each column only three nonzero elements.

Figure 8 shows the eigenspectra of the Laplacian matrices for both the
pseudo-fractal (Fig. 8a) and the Apollonian (Fig. 8b) networks, in function of
the heterogeneity. As one sees for a = 2 (solid lines) synchronizability is ob-
served only above α � 1.5, and in particular there is no synchronizability for
the homogeneous coupling regime (α = 0). Figure 9a shows the distribution
of the average standard deviation over a sample of 500 initial configurations,
from which one clearly sees that there are no coherent solutions. Here the
standard mean deviation is characterized by some large value which is almost
constant beyond the weak coupling regime (ε � 0.2). In the weak coupling
regime (ε � 0.2) the standard mean square deviation is even larger, since
the coupling is not strong enough to compensate the highly chaotic local
dynamics (a = 2).

From Fig. 8 one also sees that, for the pseudo-fractal and α > 1.5, the
upper threshold εU increases monotonically with the heterogeneity, while for
the Apollonian network the upper threshold decreases. This particular differ-
ence between both networks should be due to their geometrical differences,
in particular the fact that Apollonian networks are embedded in Euclidean
space could explain in some way that stronger dominance in the coupling to
the most connected nodes destroys coherence.

Choosing other values of a for which the local dynamics is chaotic, one
finds that the form of de curves εL(α) and εU (α) does not change. These
curves are only shifted: εL gets smaller, while εU increases. Figure 8 illustrates
this for the particular case of a = 1.5. Decreasing even further the nonlinearity
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(solid lines) and a = 1.5 (dashed lines). For each network we use 6 generations of
nodes (see text). These eigenspectra are the same for any number of generations

below the accumulation point a = 1.411 . . . synchronizability is attained for
any positive value of α, whenever the coupling strength is sufficiently strong.

Moreover there is a complicated dependence of the average standard de-
viation on the coupling strength and nonlinearity. As shown in Fig. 9b for de-
terministic scale-free networks one finds two main regions in the (a, ε) plane:
(I) a region where the standard mean square deviation is large and varies
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Fig. 9. (a) Typical histogram of the standard mean square deviation σ2 for the
pseudo-fractal network as a function of the coupling strength ε, with a = 2 and
α = 0. A similar result is obtained for the Apollonian network. (b) Histogram of
the standard mean square deviation σ2 as a function of nonlinearity a and coupling
strength ε, for deterministic scale-free networks with α = 0. The mean square
deviation is averaged over a sample of 500 initial configurations and during 100
time steps, after discarding transients of 104 time steps
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smoothly with the parameters and (II) a region where the mean square de-
viation is smaller but has larger fluctuations. This second region, observed
for a � 1.7, is somehow surprising, since irregular variations of the stan-
dard mean square deviation occur for low nonlinearity and high coupling
strengths, precisely where one would expect the most regular behaviour of
the node dynamics.

As for the heterogeneous coupling regime (α �= 0), Fig. 10 illustrates the
transition to coherence by varying the heterogeneity α for the pseudo-fractal
(Fig. 10a) and the Apollonian network (Fig. 10b). For both networks, one sees
that coherence sets in for α � 1.5, and the contour of the histograms marking
the transition to coherence fits well the regions in Fig. 8 labelled as ‘sync’.
Moreover, from Figs. 10c and 10d one observes that all these transitions to
coherence are of first-order.

0.5
0.6

0.7
0.8

0.9
1 ε

2

3

4
α

-30
-25
-20
-15
-10

-5
 0

log σ2 log σ2

lo
g

σ2

(a)

0.5
0.6

0.7
0.8

0.9
1 ε

2

3

4
α

-30
-25
-20
-15
-10

-5
 0

(b)

0.75 0.76 0.77

ε

−30

−20

0

0.955 0.965 0.975

ε

(c) (d)

Apollonian
Pseudo
fractal Pseudo

fractal

Apollonian

Fig. 10. Inducing transition to coherence by varying the heterogeneity α (see (1))
in scale-free networks. (a) Pseudo-fractal network and (b) Apollonian network. For
strong heterogeneity coherence appears beyond a relatively high coupling strength,
and disappears again for very large couplings (see text). For each network, we use
� = 6 generations of nodes and fix a = 2. (c) and (d) show high-resolution plots
of σ2 as a function of ε for α = 2, emphasizing the first-order phase transition to
coherence

Finally, we study the role of hubs in deterministic scale-free networks,
as we did in the previous section for random networks. To this end, we im-
pose synchronization among g = 1, . . . , 	 generations, with 	 being the total
number of generations, and observed in what conditions coherent states are
observed. In the pseudo-fractal network the first generation has N1 −N0 = 3
nodes, the second one has N2 − N1 = 9 nodes, and the nth generation has
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Fig. 11. Transitions to coherence in deterministic scale-free networks, when syn-
chronizing the first g generations of nodes out of � generations (see text). (a)
Pseudo-fractal network and (b) Apollonian network. The collective dynamical be-
haviour is quite insensitive to hubs (see text). Insets show that transitions to co-
herence are of first-order. For each network, we use � = 9 generations of nodes and
a = 2 fixed

Nn − Nn−1 = 3n nodes. In the Apollonian network the number of nodes
appearing at each generation is precisely the same.

Figure 11 shows the standard mean square deviation as a function of
coupling strength for pseudo-fractal (Fig. 11a) and Apollonian networks
(Fig. 11b). In each case we choose the fully chaotic map (a = 2) and im-
pose synchronization among the nodes of the first g generations by setting
them to their mean amplitude at each time-step. In both cases, one sees that
the standard mean square deviation remains large when synchronization is
imposed to all g < 	 − 2 generations. Coherent solutions are only observed
for g = 	− 2 and g = 	− 1, beyond a coupling threshold which is smaller for
the latter case. Surprisingly, for g = 	− 1 the transition to coherence occurs
for the same coupling strength in both networks. This may be due to the
fact that the fraction Ng/N� = 3g−� = 1/3 of nodes on which one imposes
synchronization is the same for both networks and is high enough to suppress
the influence of local connectivities.

For g = 	 − 2 the pseudo-fractal network shows coherence only above
very high coupling strengths, near ε ∼ 1, while for Apollonian networks the
threshold is much lower. This difference in the coupling strength threshold
is due to the fact that here the fraction of nodes Ng/N� = 1/9 to which
synchronization is imposed is small enough not to suppress the influence of
local connectivities. Therefore, since the hubs in the pseudo-fractal network
are less connected than the hubs in Apollonian networks, one needs higher
coupling strength to observe coherence. For any higher value 	 of generations
the same results are obtained, since one has for the quotient of the number
of nodes between two successive generations Nn/Nn−1 → 3 as n increases.
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As a general remark, one observes from Fig. 11 that one needs to synchro-
nize a rather high fraction of nodes (� 1/9) to induce coherence. Therefore,
it seems that, dynamical collective behaviour on scale-free networks is quite
insensitive to hubs. As shown in the insets of Figs. 11a and 11b, the transition
to coherence is also of first-order.

4 Discussion and Conclusions

In this chapter we studied fully synchronized solutions for three scale-free net-
work topologies. The main conclusion is the following: in random scale-free
networks synchronization of chaotic maps not only depends on the coupling
strength but is mainly controlled by the outgoing connectivity k, which is
a measure of the cohesion in the networks. Because of that, one finds co-
herent solutions in random scale-free networks of fully chaotic logistic maps
(a = 2) with outgoing connectivity k = 8 and homogeneous coupling, but
not in deterministic scale-free networks, since they have rather small effec-
tive outgoing connectivity, namely k = 2 for the pseudo-fractal network and
k = 3 for the Apollonian network. Therefore, although the exponent γ of con-
nection distributions in scale-free networks does not depend on the outgoing
connectivity [2], we have shown that, in general, synchronization of chaotic
maps in such coupling topologies is quite sensitive to it.

Our results were obtained both numerically, from histogram of signifi-
cantly large samples of initial configurations with a criterion for full syn-
chronization based on the mean standard deviation of amplitudes, (5), and
analytically from the eigenvalue spectra of the diagonalized variational equa-
tions computed at the coherent states, (3).

In particular, for random scale-free networks, the threshold values of the
coupling strength obey a power law, (6), as function of the outgoing connec-
tivity. The exponent of this power law depends on the nonlinearity a of the
chaotic map, being almost constant below ac ∼ 1.7 and decreasing linearly
above it. Interestingly this value of ac is in the vicinity of the bifurcation of
the quadratic map where the period-3 window appears, and coincides with
the appearance of other nontrivial behaviours in coupled map lattices with
regular topologies, namely in the velocity distribution of travelling wave so-
lutions [24].

For deterministic scale-free networks with homogeneous coupling, the
same value ac indicates the threshold above which no coherent solutions are
observed, independently of the coupling strength. Above ac, coherence is ob-
served only for heterogeneous coupling, namely for α � 1.5. However, for
this range of values, we have also shown that coherence is also absent either
for very small or for very large coupling strengths, due to spatial instabili-
ties. Another particularly interesting result that still needs to be explained
is that, for Apollonian networks, the coupling threshold beyond which co-
herence disappears gets smaller when the heterogeneity is further increased.
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This point is not observed for the pseudo-fractal network and may be due to
the geometrical differences between both deterministic networks.

As a general property, we have shown that all transitions to coherence
are of first-order, indicating a similarity with other complex networks [29].
Furthermore, all results are robust not only against changes of the initial
configurations of node amplitude but also, in random scale-free networks,
against changes of the connection network. We also presented results indicat-
ing that in scale-free networks hubs play apparently no fundamental role in
the dynamical collective behaviour.

Acknowledgments

The authors thank A.O. Sousa and C. Zhou for useful discussions. P.G.L.
thanks Fundação para a Ciência e a Tecnologia, Portugal, for financial sup-
port. J.A.C.G. thanks Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico, Brazil and Sonderforschungsbereich 404 of DFG for financial
support.

References

1. S. Bornholdt, H.G. Schuster (eds.): Handbook of Graphs and Networks (Wiley-
VCH, Weinheim 2003)

2. R. Albert, A.-L. Barabási: Rev. Mod. Phys. 74, 47 (2002).
3. S.N. Dorogovtsev, J.F.F. Mendes: Adv. Phys. 51, 1079 (2002)
4. R. Meucci, R. McAllister, R. Roy: Phys. Rev. E 66, 026216 (2002)
5. J.H. Snoeijer, T.J.H. Vlugt, M. van Hecke, W. van Saarloos: Phys. Rev. Lett.

92, 054302 (2004)
6. M. Otto, J.-P. Bouchaud, P. Claudin, J.E.S. Socolar: Phys. Rev. E 67, 031302

(2003)
7. C. Texier, G. Montambaux: Phys. Rev. Lett. 92, 186801 (2004)
8. H. Tanaka, J. Meunier, D. Bonn: Phys. Rev. E 69, 031404 (2004)
9. D.P. Almond, C.R. Bowen: Phys. Rev. Lett. 92, 157601 (2004)

10. M. Small, C.K. Tse, Phys. Rev. E 66, 066701 (2002)
11. I. Stewart: Nature 427, 601 (2004)
12. Y. Moreno, M. Nekovee, A. Vespignani: Phys. Rev. E 69, 055101(R) (2004)
13. Z. Dezso, A.L. Barabási: Phys. Rev. E 65, 055103 (2002)
14. M. Compiani, E. Capriotti, R. Casadio: Phys. Rev. E 69, 051905 (2004)
15. L. Zhaoping, A. Lewis, S. Scarpetta: Phys. Rev. Lett. 92, 198106 (2004)
16. P.G. Lind, J. Corte-Real, J.A.C. Gallas: Phys. Rev. E 69, 026209 (2004)
17. S.H. Strogatz: Physica D 143, 1 (2000)
18. L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F. Heagy: Chaos 7, 520

(1997)
19. C. Anteneodo, A.M. Batista, R.L. Viana: Phys. Lett. A 326, 227 (2004)
20. M. Cross, P. Hohenberg: Rev. Mod. Phys. 65, 851 (1993)



Coherence in Complex Networks 97

21. K. Kaneko, I. Tsuda: Chaos and Beyond (Springer-Verlag, Berlin Heidelberg
New York 2000)

22. S. Wolfram: A New Kind of Science (Wolfram Media Inc., New York 2002)
23. K. Kaneko (ed.): Theory and Applications of Coupled Map Lattices (John Wiley

& Sons Inc., New York Chichester 1993)
24. P.G. Lind, J. Corte-Real, J.A.C. Gallas: Phys. Rev. E 69, 066206 (2004)
25. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou: Phys. Rep.

366, 1 (2002)
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Growth of Random Sequences

K. Austin and G. J. Rodgers

Department of Mathematical Sciences, Brunel University, Uxbridge, Middlesex
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Summary. We study the behaviour of two classes of random sequences. In these
sequences each new element is generated by adding together two or more of the
previous elements, or multiples of previous elements in the sequence. At least one
of the elements is chosen randomly from a probability distribution of the previous
elements. We find that a wide range of different types of behaviour emerge from
linear to exponential growth and that the sequences exhibit a remarkably diverse
phase space. Interestingly, new transitions in phase space are observed when the
generating equations correspond to the backward difference equations.

Key words: Random sequences, Fibonacci sequence, Disordered systems,
Anderson model

1 Introduction

Integer sequences have attracted widespread interest in many fields of science
since (in the 13th century) Fibonacci discovered a sequence whose numbers
are found frequently both in nature and in man-made systems.

1.1 The Fibonacci Sequence

The numbers of the Fibonacci sequence,

Fn+1 = Fn + Fn−1 , (1)

are the same as the numbers of petals found on flowers, the numbers of
seeds on the spiral arms of a sunflower, the numbers that give the spacial
patterns of leaves growing up the stems of plants and the spiral pattern of a
snail’s shell. More recently, the Fibonacci numbers have also been found to
have applications in man-made systems. For example, in computer science
the Fibonacci numbers appear in database structures and random number
generation. An important property of the Fibonacci sequence is the “golden
ratio”. The Fibonacci sequence grows exponentially, with the nth element of
the sequence given by Fn ∼ [(1+

√
5)/2]n. The ratio (1+

√
5)/2 � 1.61803 . . .

is found everywhere in nature and was even known about in the time of the
ancient Greeks, who used it for its aesthetically pleasing proportions.
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Interest in integer sequences has more recently focussed on the introduc-
tion of random properties to incorporate stochasticity into the sequences.
In [1], Furstenberg and Kesten showed that for a general class of random-
sequence generating processes, the absolute value of the nth member of the
sequence will, with probability 1, get closer to the nth power of some fixed
number, as with the Fibonacci sequence. Furstenberg and Kesten’s work has
been found to have many applications. It was used in the first rigorous ex-
planation of Anderson localization, which came long after the mathematics
had been worked out.

1.2 Random Fibonacci Sequences

Viswanath [2] made use of Furstenberg and Kesten’s work in the study of a
stochastic version of the Fibonacci sequence,

xn+1 = ±xn ± xn−1 , (2)

where the signs are chosen independently with equal probability. Unlike
the deterministic rules of the original Fibonacci sequence, Viswanath’s [2]
rules are stochastic and generate not one but many different sequences.
Viswanath [2] showed that when the absolute value of the numbers of any
sequence generated by these rules is taken, the nth number in the sequence
will, on average, get closer to the nth power of the number 1.1398... There-
fore the sequences generated by these stochastic rules grow exponentially,
with yn ≡ 〈|xn|〉 ∼ (1.1398...)n, just like the Fibonacci sequence, but with a
new “stochastic golden ratio” of 1.1398...

1.3 Generalised Random Fibonacci Sequences

In [3], Embree and Trefethen generalised this result to show that for the
sequence generating equation

xn+1 = xn ± βxn−1 , (3)

there is a critical value of

β = β∗ ∈ (0.702582, 0.702585) , (4)

above which the sequences grow exponentially, but below which they decay
exponentially. At the critical value β = β∗, no exponential growth or decay
occurs. When two constant parameters are used rather than one, xn+1 =
αxn ± βxn−1, the same results are obtained by simple rescaling. This is
because the random signs ensure that the terms xn and xn−1 are uncorrelated.
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1.4 Alternative Random Sequences

An alternative stochastic version of the Fibonacci sequence is introduced
in [4]. Rather than adding or subtracting the two preceding elements with
equal probability as in [2] and [3], random elements are added according to

(i) xn = xn−1 + xq and (ii) xn = xp + xq , (5)

where p and q are chosen randomly between 0 and n − 1. The sequences
produced by (i) grow more slowly than the sequences in [2] and [3], with
stretched exponential growth. The value of the average nth element of the se-
quence is given by < xn >= An ∝ n−1/4 exp (2

√
n). The sequences produced

by (ii) grow linearly according to An � n + 1, or have power-law growth,
with An ∼ n2c−1, if a multiplicative factor is introduced into the generating
equation so that xn = c(xp + xq) [4].

1.5 Applications

Just as the Fibonacci sequence is linked to a variety of deterministic systems
in physics, biology and computer science, so too are stochastic sequences
linked with random or disordered systems. Stochastic sequences are present
in the random walk that appears in models of many stochastic processes in a
variety of fields. For example, Einstein’s explanation of Brownian motion was
one of the earliest to incorporate the random walk [5]. Other examples include
models of evolutionary biology to model adaptive walks on a fitness landscape
[6] and to financial markets [7] to model random elements of the markets
such as investor speculation and consumer demand. Stochastic sequences also
appear in a number of problems in one-dimensional disordered systems [8],
such as the Anderson model describing the propagation of electrons in a metal
with impurities. In this model the electrons interact with the inhomogeneous
potential of the system. The rates of transition of the electrons from one site
to another is a random function of position and therefore analogous to the
random progression of the stochastic sequence.

1.6 More Random Sequences

In this chapter we investigate the effect of generalising some of the random
sequences introduced so far. We firstly consider sequences where the random
elements are chosen randomly from a separable probability distribution of
the previous elements in the sequence. We then investigate the effect of in-
troducing multiplicative constants to the individual terms in the generating
equations of random sequences where the random elements are chosen from
a uniform probability distribution of the previous elements in the sequence.

In Sect. 2, we consider the sequences generated by

xn = xn−1 + γxq , (6)
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with γ > 0 and q chosen randomly from a probability distribution Pn(q), [9].
This is a generalisation of sequences considered in [4], where the case for
Pn(q) = 1/n and γ = 1 was considered. The mean and variance of the
sequences generated by Pn(q) = 1/n and the sequences generated by power-
law and exponential Pn(q) are obtained, as well as non-random Pn(q) =
δq,β(n−1).

In Sect. 3, we investigate the effect of introducing multiplicative constants
to the individual terms in the generating equations of the sequences studied
in [4] and introduce a new sequence as an extension of these studies. In
particular, we investigate the sequences generated by

xn =

⎧⎨⎩
γxp + δxq; (Section 3.1)
αxn−1 + γxq; (Section 3.2)
αxn−1 + βxn−2 + γxq . (Section 3.2)

Since the random signs in [2] and [3] are removed, the terms become correlated
so that the growth of the resulting sequences depends on the values of the
multiplicative constants.

We find that for each type of generalisation, new types of behaviour
emerge. In particular, the sequences are found to exhibit linear and exponen-
tial growth at the extremes of the free parameters, with intermediate types
of growth in-between. We summarise and discuss these results in Sect. 4.

2 Sequences with Random Elements Chosen
from a Probability Distribution

In this section we consider the sequences generated by

xn = xn−1 + γxq , (7)

where q is chosen randomly from the separable probability distribution
Pn(q) = P (q)/bn, with bn =

∑n−1
q=0 P (q), [9]. The average nth element,

An =< xn > is given by

An = An−1 +
γ

bn

n−1∑
q=0

P (q)Aq . (8)

We consider uniform, power-law and exponential forms of P (q) and then go
on to look at non-random Pn(q) = δq,β(n−1).

2.1 Uniform P (q)

First we consider the case of P (q) = 1 and hence bn = n. Substituting this
into (8), multiplying through by n and subtracting the equivalent expression
for n+ 1, we obtain
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An+1 −
(

2 +
γ − 1
n+ 1

)
An +

n

n+ 1
An−1 = 0 . (9)

This is equal to the nth Laguerre polynomial, Ln(−γ), [10] and for large n
yields the asymptotic solution

An ∼ kγn
−1/4 exp(2

√
γn) , (10)

[9]. This is the result obtained in [4] for γ = 1. We can calculate the average
growth of the second moment, Vn =

〈
x2

n

〉
for large n, by introducing two

averages

Vn =
〈
x2

n

〉
and Mn =

n−1∑
r=0

< xnxr > . (11)

Using (7), it is simple to show that Vn and Mn obey the coupled iterations

(n+ 1)Vn+1 − [2n+ (γ + 1)2]Vn + (n+ 2γ)Vn−1 = 2γ(Mn −Mn−1) (12)

and

(n+ 1)Mn+1 − (2n+ 2γ + 1)Mn + nMn−1 = (n+ γ + 1)Vn − nVn−1 . (13)

We can then take the continuum limit for continuous n to give the second-
order differential equations

[nV (n)]′′ − (2γ + 1)V ′(n) − γ2V (n) = 2γM ′(n) (14)

and
[nM(n)]′′ −M ′(n) − 2γM(n) = [nV (n)]′ + V ′(n) + γV (n) . (15)

In the limit n→ ∞, we can equate leading order terms to give the solutions
V (n) ∼ nφ exp(δ

√
n) and M(n) ∼ nφ+1/2 exp(δ

√
n), where

δ =
√

2γ
(
4 + γ +

√
16 + γ2

)
(16)

for γ > 0, [9]. This is in good agreement with [4], where δ � 4.3 was obtained
numerically for γ = 1.

2.2 Power-Law P (q)

If P (q) takes the form of a power-law, such that

P (q) = (q + 1)α (17)

and γ = 1, five different classes of behaviour emerge for the cases i) α > −1,
ii) α = −1, iii) −2 < α < −1, iv) α = 2 and v) α < −2. We consider each of
these in turn.
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i) α > −1

For α > −1, bn/bn+1 = 1 − (α + 1)/n + O(1/n2) for large n. From (8) we
obtain

An+1 − 2An +An−1 =
α+ 1
n

An−1 . (18)

This equation can be solved exactly in terms of generalised Laguerre polyno-
mials [10]. In this case, An ∼ L(−α)

n (−(α+1)), and we obtain the asymptotic
solution

An ∼ cα 1
n(2α+1)/4

exp[2
√

(α+ 1)n] (19)

as n→ ∞, with

cα =
(α+ 1)(2α−1)/4e−(α+1)/2

2
√
π

, (20)

[9].

ii) α = −1

When α = −1, bn/bn+1 = 1 − 1/(n+ 1) log n+O(1/n(log n)2) and (8) gives

An+1 − 2An +An−1 =
1

(n+ 1) log n
An−1 (21)

as n→ ∞. Using the WKB method [11], An is found to obey

An ∼ 1√
n log n

exp
[
2
√

n

log n

]
(22)

for large n. The growth of the sequences for α = −1 is slower than for α > −1
as Pn(q) is no longer as strongly dominated by q ∼ n.

iii) −2 < α < −1

For −2 < α < −1, bn/bn+1 = 1 − (n+ 1)α/ζ(−α) +O(nα−1) where ζ is the
Riemann zeta function [12]. For large n (8) gives

An+1 − 2An +An−1 =
(n+ 1)α

ζ(−α)
An−1 (23)

and the WKB approximation [11] yields

An ∼ 1
nα/4

exp

[
2

α+ 2
n1+α/2√
ζ(−α)

]
. (24)

Again, the growth of the sequences is found to be slower than for α ≥ −1 as
Pn(q) is not as strongly dominated by q ∼ n as for α > −1 or for α = −1.
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iv) α = −2

For α = −2 the large n behaviour of An is purely power-law with

An ∼ n
1
2+ 1√

ζ(2) (25)

where the exponent 1/2 + 1/
√
ζ(2) ≈ 1.108 is greater than 1.

v) α < −2

Finally, for α < −2, the right hand side of (23) can be neglected so that (23)
yields

An ∼ n (26)

as n → ∞. The sequences are now dominated by Pn(q) ∼ 1, resulting in
linear growth.

2.3 Exponential P (q)

Next we consider an exponential form of P (q), P (q) = aq. Again there are
found to be different solutions, in this case for different values of a. For i)
a = 1 the solution An = Ln(−1) is recovered. When ii) a < 1, bn → 1/(1−a)
for large n and An = n. When iii) a > 1, bn ∼ an/(a − 1) as n → ∞ and
hence

An ∼
[
1 +

√
1 − 1

a

]n

. (27)

We find that the average sequence growth is linear for a < 1 when Pn(q)
is dominated by q ∼ 1, exponential for a > 1, when Pn(q) is dominated by
q ∼ n and intermediate for a = 1.

2.4 Non-Random P (q)

Next we look at the non-random sequence

xn = xn−1 + xβ(n−1) (28)

where 0 ≤ β ≤ 1 is fixed and the index in the last term on the right hand
side is rounded to the nearest integer. If β = 0, the sequence grows linearly,
with xn = n and for β = 1, the growth of the sequence is exponential, with
xn = 2n. For 0 < β < 1 we can solve (28) for large n by taking the continuum
limit of continuous n to give

dx
dn

= x(βn) . (29)
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By substituting a power series solution for x(n) into (29) and solving for the
coefficients, we obtain

x(n) =
∞∑

r=0

nrβ
1
2 r(r−1)

r!
. (30)

For large n this summation is dominated by the term r ∼ log(n)/ log(1/β)
and evaluating the summation for large n yields

xn ∼ exp

[
(log n)2

2 log( 1
β )

]
. (31)

Hence for 0 < β < 1 an intermediate type of growth occurs.

3 Random Sequences with Multiplicative Constants

In this section we investigate the effect of introducing multiplicative con-
stants to the generating equations of the random sequences studied in [4]

Table 1. Summary of results for Sect. 2. Here, ζ is the Riemann zeta function [12]
and cα and kγ are coefficients for the Laguerre polynomials Ln

(−α)(−(α + 1)) and
Ln(−γ) respectively, [13]

Pn(q) An

(q + 1)α α < −2 n

α = −2 n
1
2+ 1√

ζ(2)

−2 < α < −1 1

n
α
4

exp

[
2

α+2
n1+α/2√

ζ(−α)

]
α = −1 1√

n log n
exp

[
2
√

n
log n

]
α > −1 cα

1

n
2α+1

4
exp[2

√
(α + 1)n]

aq α < 1 n

α = 1 kγn−1/4 exp(2
√

γn)

α > 1
[
1 +

√
1 − 1

a

]n

δβ(n−1) β = 0 n

0 < β < 1 exp

[
(log n)2

2 log( 1
β

)

]
β = 1 2n
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and also introduce a new random sequence as an extension of these studies.
We consider the sequences generated by xn = γxp + δxq, xn = αxn−1 + γxq

and xn = αxn−1 + βxn−2 + γxq in turn.

3.1 Sequences Generated
by Randomly Chosen Previous Elements

Introducing multiplicative constants to the generating equation xn = xp +xq

studied in [4] gives
xn = γxp + δxq (32)

where γ and δ are constants and p and q are chosen randomly between 0 and
n− 1. The average value of xn, An, can be shown to obey

An =
γ + δ
n

n−1∑
r=0

Ar (33)

and can be simplified to give the recursion relation

An =
n+ γ + δ − 1

n
An−1 . (34)

For large n, the solution to this equation is An ∼ nγ+δ−1. This is the result
obtained in [14] for δ = 0. It is a simple matter to show that adding extra
random terms with multiplicative constants to (32) simply multiplies this
result by extra constant powers of n. Following the method of [9], in Sect. 2,
we next introduce the averages

Vn =
〈
x2

n

〉
and Mn =

n−1∑
r=0

< xnxr > (35)

to give the two coupled iterations

(n+ 1)2Vn+1 − [(δ2 + γ2 + 2n)n+ (δ + γ)2]Vn (36)
+[(δ2 + γ2)n− (δ − γ)2 + (n− 1)2]Vn−1 = 4αγ(Mn −Mn−1)

and
(n+ 1)Mn+1 − (2(α+ γ) + n)Mn = (α+ γ)Vn . (37)

Since we are only interested in the large n behaviour of the sequences, we
take the continuum limit of the iterations for continuous n to give the second
order differential equations

(n+ 1)2V ′′(n) + [(4 − δ2 − γ2)n+ (38)
(δ − γ)2]V ′(n) + 2(1 − δ2 − γ2)V (n) = 4δγM ′(n)

and
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(n+ 1)M ′′(n) + (n+ 1)M ′(n) + (1 − 2α− 2γ)M(n) = (α+ γ)V (n) . (39)

In the limit n → ∞, the solutions are V (n) ∼ nα2+γ2−1 and M(n) ∼
nα2+γ2−1 for (α − 1)2 + (γ − 1)2 = 1 in the region [ α ≥ 0, γ ≥ 0 and
α + γ ≥ 1 ]. This was the result obtained in [14] for α = 2 and γ = 0.
For 1 < (α − 1)2 + (γ − 1)2 < 2 in the region [ α ≥ 0, γ ≥ 0 and
α + γ ≥ 1 ], the solutions are V (n) ∼ nα2+γ2−1 and M(n) ∼ n2α+2γ−1, and
for (α − 1)2 + (γ − 1)2 = 2 in the region [ α ≥ 0, γ ≥ 0 and α + γ ≥ 1
], the solutions are V (n) ∼ n2(α+γ−1) and M(n) ∼ n2α+2γ−1. Thus for
1 ≤ (α−1)2 +(γ−1)2 ≤ 2 in the region [α ≥ 0, γ ≥ 0 and α+γ ≥ 1] we were
able to find the average growth of the second moment, Vn =

〈
xn

2
〉
, and show

that in this region it always diverges faster than the mean, An =< xn >.

3.2 Sequences Generated by One Randomly Chosen
and One Non-Random Previous Element

Adding multiplicative constants to xn = xn−1 +xq [4] gives the more general
equation

xn = αxn−1 + γxq . (40)

An is then given by

An = αAn−1 +
γ

n

n−1∑
q=0

Aq . (41)

Following the method that was used in Sect. 2 to obtain V (n) and M(n), we
obtain the second order differential equation

(n+ 1)A′′(n) + [(1 − α)n+ 1]A′(n) + (1 − α− γ)A(n) = 0 (42)

for large n in the limit of continuous n. We find that the form of the solution
to this equation is dependent upon the multiplicative constant α, with α = 1
a special case. In particular, there are different solutions for i) α > 1, ii)
α = 1 and iii) α > 1. We consider these in turn.

i) α > 1

For α > 1, the solution is exponential, with

A(n) ∼ exp [(α− 1)n] . (43)

In this region the growth of the average sequence is dominated by the term
xn−1 in the sequence generating equation so that the sequence growth is
exponentially fast.
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ii) α = 1

For α = 1, there is intermediate growth of the average nth element, given by

An ∼ exp [2
√
γn] (44)

as found in [4] and [9]. This ‘special’ case corresponds to the first backward
difference equation with an added random term. Here the sequences are not
so strongly dominated by the xn−1 term in the generating equation and the
growth is slower than exponential.

iii) α < 1

When α < 1, the average sequence growth is purely power-law, with

An ∼ nα+γ−1
1−α . (45)

In this region the sequences are no longer dominated by the xn−1 term and
the solution has the same form as the solution to (32).

To summarise, on average the sequences are found to grow exponentially
fast when α > 1, as in this region the growth is dominated by the xn−1 term in
the generating equation. For α < 1, the average sequence grows according to a
power law as the xn−1 term no longer dominates. For α = 1, an intermediate
type of growth occurs when the generating equation corresponds to the first
backward difference equation. Results for Sect. 3 are summarised in Table 2.

3.3 Sequences Generated by One Randomly Chosen
and Two Non-Random Previous Elements

The next sequences we study are those generated by the equation

xn = αxn−1 + βxn−2 + γxq . (46)

This equation looks like the original Fibonacci sequence but with an extra
random term and multiplicative constants. Following the method of Sect. 3.2,
we find that the average of the nth element obeys the third order differential
equation

−βnA′′′(n) + [(β + 1)n+ 1]A′′(n) (47)
+[(1 − α− β)n+ β + 1]A′(n) − (1 − α− β − γ)A(n) = 0

in the limit of continuous n as n→ ∞. The resulting sequences are dependent
on both of the constants α and β, with four cases; i) [α+ β > 1, β �= 0] and
[α + β = 1, α > 2], ii) α = 2 and β = −1, iii) [α + β = 1, α < 2] and iv)
α+ β < 1.
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i) [α + β > 1, β �= 0] and [α + β = 1, α > 2]

We find that there are two regions in phase space, [α + β > 1, β �= 0] and
[α+β = 1, α > 2] where the average sequences grow exponentially according
to

An ∼ exp

[
β + 1 +

√
(β + 1)2 + 4β(1 − α− β)

2β
n

]
. (48)

In these regions the sequence growth is dominated by the xn−1 and xn−2

terms. For β = 0 and α > 1, the average sequence still grows exponentially,
but according to (43).

iii) α = 2 and β = −1

For α = 2 and β = −1, there is the ‘special’ solution

An ∼ exp
[
3
2
(γn2)1/3

]
, (49)

when the generating equation corresponds to the second backward difference
equation with an added random term. This is a new intermediate type of
sequence growth resulting from the extra term, xn−2, in the sequence gener-
ating equation.

iv) [α + β = 1, α < 2]

For [α+ β = 1, α < 2] there is another intermediate type of growth given by

An ∼ exp
[
2
√

γn

β + 1

]
, (50)

corresponding to the solution for (40) when α = 1.

v) α + β < 1

Finally for α+ β < 1, the solution is again purely power-law, with

An ∼ nα+β+γ−1
1−α−β . (51)

The sequences are no longer dominated by the xn−1 and xn−2 terms in the
generating equation and the solution takes the same form as that for (40)
when α < 1.

In summary, we find that there are two regions of phase space, [α+β > 1]
and [α + β = 1, α > 2], where the average sequence grows exponentially
fast. In these regions the sequence growth is dominated by the xn−1 and
xn−2 terms in the sequence generating equation. For α+β < 1, the sequence
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growth is no longer dominated by the xn−1 and xn−2 terms and the sequences
grow according to a power law. For [α+ β = 1, α < 2], an intermediate type
of growth occurs, and interestingly a new intermediate type of growth occurs
for [α + β = 1, α = 2], when the generating equation corresponds to the
second backward difference equation. Results for Sect. 3 are summarised in
Table 2.

Table 2. Summary of results for Sect. 3

xn An

γxp + δxq nγ+δ−1

αxn−1 + γxq α < 1 n
α+γ−1
1−α

α = 1 exp [2
√

γn]

α > 1 exp[(α − 1)n]

αxn−1 + βxn−2 + γxq α + β < 1 n
α+β+γ−1
1−α−β

[α + β = 1, α < 2] exp
[
2
√

γn
β+1

]
[α = 2 and β = −1] exp

[
3
2
(γn2)1/3

]
[α + β > 1, β �= 0] exp

[
β+1+

√
(β+1)2+4β(1−α−β)

2β
n

]
and [α + β = 1, α > 2]

4 Discussion

We have generalised previously studied random sequences in two different
ways to study the effect on their behaviour. In Sect. 2 we considered se-
quences of the form xn = xn−1 + γxq, where q = 0, 1, 2, ..., n − 1 is chosen
randomly from the probability distribution Pn(q). We found the exact so-
lution for the mean of the sequence < xn >= An when Pn(q) = 1/n and
showed that the average of the second moment

〈
x2

n

〉
= Vn diverges faster

than the mean. We also considered power-law, exponential and non-random
forms of Pn(q) and found that the sequences can grow exponentially, linearly,
or with intermediate growth. The sequences were found to exhibit exponen-
tial growth when Pn(q) is dominated by q ∼ n and linear growth when q ∼ 1.
Between these regimes the sequences exhibit an intermediate type of growth.
The boundaries of the different types of behaviour are summarised in Table
1.
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In Sect. 3, we investigated the effect of introducing multiplicative con-
stants to the individual terms in the generating equations of both new and
previously studied random sequences. We obtained analytical results for
the mean of the random sequences generated by (i) xn = γxp + δxq, (ii)
xn = αxn−1 + γxq and (iii) xn = αxn−1 + βxn−2 + γxq, where p and q
are chosen randomly between 0 and n− 1, and α, β, γ and δ are constants,
with γ > 0 and δ > 0. We found that the solutions depend on all the mul-
tiplicative constants, while the form of the solution depends on α and β for
γ > 0 and δ > 0. For (i), each element in the sequence is made up from
randomly chosen previous elements and the average sequence grows accord-
ing to a power law. We were also able to find the average second moment,
Vn =

〈
x2

n

〉
, for 1 ≤ (α − 1)2 + (γ − 1)2 ≤ 2 in the region [ α ≥ 0, γ ≥ 0 and

α + γ ≥ 1 ] for these sequences and to show that in this region, Vn =
〈
x2

n

〉
always diverges faster than An =< xn >. For (ii) and (iii), we found that
the type of growth that the average sequences exhibit is highly sensitive to
the constant multiplicative parameters α and β. In (ii), when α > 1, the
next element in the sequence is dominated by the most previous elements
and the average sequence grows exponentially. For α < 1, the elements in
the sequences are no longer dominated by the most previous elements and
the average sequence grows according to a power law, as with (i). There is
a transition at α = 1, when the generating equation corresponds to the first
backward difference equation with an added random term. In this case an
intermediate type of growth occurs and we find that the average sequence
grows as a stretched exponential. For (iii), a similar behaviour occurs, where
in this case for α+ β > 1, the average sequence grows exponentially and for
α + β < 1, the average sequence grows according to a power law. However,
for (iii), the intermediate behaviour becomes more complex, with three types
of behaviour emerging for α + β = 1. For α + β = 1, α > 2, the average
sequence continues to grow exponentially. For α + β = 1, α < 2 the average
sequence grows as a stretched exponential, but for α = 2, β = −1, another
intermediate type of behaviour is observed when the generating equation cor-
responds to the second backward difference equation with an added random
term. This suggests that if we add more non-random previous elements with
multiplicative constants to the generating equations, we obtain extra dimen-
sions in phase space for the solutions to the average sequence growth. Also,
new transitions are observed when the generating equations correspond to
the backward difference equations.

Although these sequences are fairly straightforward generalisations of
those previously studied, they are found to display a wide range of new and
interesting behaviour with a remarkably diverse phase space.
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1 Introduction

By introducing the logistic equation in the context of demographic mod-
elling [1], J.-F. Verhulst made seminal contributions to at least two important
fields of research: On the one hand, to the quantitative approach to Popula-
tion Dynamics, a subject in which substantial development beyond Verhulst’s
ideas only occurred 100 years after him. On the other, to the basics of Nonlin-
ear Science through a detailed study of the predictions of a nonlinear model
and its comparison with experimental data.

The dynamics of biological populations in aquatic environments [2–4] is
an excellent framework to see recent developments in which these disciplines
work together. Growth, limitation, competition, predation and all the other
kinds of biological interactions appear in this context, and nonlinear processes
are relevant both in the biological dynamics and in the motion of the turbu-
lent fluid in which the population lives.

In this contribution we present two examples in the above field. In both
cases a prominent role is played by the logistic growth process (i.e. pop-
ulation growth limited by finite resources), but other ingredients are also
included that strongly change the phenomenology. In Sect. 1, a phytoplank-
ton population experiencing logistic growth is studied, but in interaction with
zooplankton predators that maintain it in a state below the carrying capacity
of the supporting medium. In the appropriate parameter regime the system
behaves in an excitable way, with perturbations inducing large excitation-
deexcitation cycles of the phytoplankton population. The excitation cycles
become strongly affected by the presence of chaotic motion of the fluid con-
taining the populations.

In Sect. 2, an individual based model of interacting organisms is presented,
for which logistic growth is again the main ingredient. Reproduction of a given
individual is limited by the presence of others in a neighbourhood of finite size.
This nonlocal character of the interaction is enough to produce an instability
of the basic state of particles homogenously distributed, and clustering of

�http://www.imedea.uib.es/PhysDept
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the individuals occurs, which form groups arranged in an hexagonal lattice
(when the population lives in a two-dimensional space).

2 Plankton Dynamics Driven
by an Environmental Open Flow

Plankton is the generic name given to a large number of aquatic organisms,
most of them microscopic, living in the oceans, lakes or rivers, and character-
ized by the fact that they are transported by water currents in an approxi-
mately passive manner [2]. A major distinction in this group should be made
between phytoplankton, the organisms with photosynthetic capabilities, that
can grow from nutrients in the water and light, and zooplankton, the small
predators that consume them. This distinction leads to the simplest mod-
els of aquatic population dynamics, which take into account just these two
trophic levels.

Here we consider the phytoplankton-zooplankton competition model pro-
posed in [5]. Phytoplankton growths logistically, and in addition it is limited
by the zooplankton grazing, which itself dies grazed by upper trophic levels
not explicitly modelled. The fundamental feature of the model is its excitable
behaviour. In just a few words, this means that activator and inhibitor vari-
ables can be identified. The activator (phytoplankton in our case) displays
some kind of autocatalytic growth behaviour, but the presence of the in-
hibitor (zooplankton) controls it so that the dynamical system has a stable
fixed point of low phytoplankton population as the unique global attractor.
The essence of the excitability phenomenon is the presence of a threshold,
such that if the system is perturbed above it, variables reach the stable fixed
point only after a large excursion in phase space in which phytoplankton
population grows to values close to the carrying capacity of the medium.
This behaviour usually appears when the activator has a temporal response
much faster than the inhibitor, which then takes some time before stopping
the growth of the activator. Observed plankton bloom phenomena have been
interpreted in this dynamical context [4, 5].

Explicitly, the dynamics of the space- and time-dependent phytoplankton,
P = P (x, t), and zooplankton, Z = Z(x, t), concentrations is ruled by

∂

∂t
P + v · ∇P −D∇2P = r

[
βP

(
1 − P

K

)
− f (P )Z

]
∂

∂t
Z + v · ∇Z −D∇2Z = rε [f (P )Z − ωZ] . (1)

The left-hand-side terms represent the transport processes: both species are
advected by the same fluid flow characterized by the velocity field v = v(x, t),
that we assume to be incompressible and not altered by the back-influence
of the biological concentration fields. We choose v to be two-dimensional
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to emphasize the role of horizontal transport [3], and defined on a two-
dimensional square box domain Ω = [0, 2L] × [−L,L] with Cartesian co-
ordinates x = (x, y). The diffusion operator D∇2, assumed to be the same
for both species, models small-scale complex turbulent motions not explic-
itly included in v. The right-hand-side contains the biological interactions
terms: r controls the ratio of the transport time scales to the biological
activity time scales, ε sets the ratio of phytoplankton- to the much larger
zooplankton-growth time scale, K is the phytoplankton carrying capacity, β
the phytoplankton growth rate, ω a linear zooplankton mortality, and

f(P ) =
P 2

P 2
0 + P 2

(2)

is a Hollings type III response function, describing the zooplankton predation
on phytoplankton. As demonstrated in [5], is the functional form in (2) the
responsible for the excitable character.

Following [5] we take non-dimensional units such that β = 0.43, K = 1,
ε = 0.01, P0 = 0.053, and ω = 0.34. This corresponds to phytoplankton dou-
bling times of the order of days, and zooplankton time scales in the range
of months. Biological concentrations have been scaled so that the phyto-
plankton carrying capacity (of the order of 100 µg of Nitrogen equivalent per
liter) is the unity. For these parameter values the biological dynamical sys-
tem is in the excitable regime. Excitable behaviour generally appears for ε
small enough, which biologically means that, as already stated, time scales
for phytoplankton growth are much shorter than for zooplankton. This is the
biologically relevant case. We study the influence of transport by varying its
relative strength via the parameter r. D is fixed to 10−5 and L = 9, which
means that the diffusive spatial scale corresponding to the phytoplankton
doubling time is between three and four orders of magnitude smaller than
system size.

Since the velocity field v = (vx, vy) is two-dimensional and incompressible
it can be written in terms of a stream function Ψ(x, y, t):

vx =
∂Ψ

∂y

vy = −∂Ψ
∂x

. (3)

We consider the following stream function [6]:

Ψ = Ψ0 tanh
(y
d

)
+ µ exp

(
− (x− L)2 + y2

2σ2

)
cos (k(y − vt)) . (4)

It represents an oceanic jet perturbed by a localized wave-like feature, trapped
by topography or some geographical accident. The first term is the main jet,
of width d, flowing towards the positive x direction with maximum velocity
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Ψ0/d at its centre. The wave-like perturbation, of strength µ, is represented
by the second term. It is localized in a region of size σ around the point
(x, y) = (L, 0), and the wavenumber and phase velocity (directed towards
the positive y direction) are k and v, respectively. The complete velocity field
is time-periodic with period 2π/kv.

It is very important to note that the region Ω is open with respect to
this flow, so that we have the situation of chaotic scattering [7]: particles
enter Ω from the left, following essentially straight trajectories, experience
the irregular motion called transient chaos [7] when reaching the wave region
(which in consequence becomes a mixing region), and finally they leave the
system. For µ large enough, recirculation in the mixing region gives birth to
a chaotic saddle in Ω. The chaotic saddle is the (fractal) subset of the mixing
region where particles are trapped forever. It is formed by an infinite number
of bounded hyperbolic orbits in the mixing region. The stable manifold of
the saddle contains orbits coming from the inflow region but never escaping
from the mixing zone. Concerning the unstable manifold, if a droplet of dye
(or any other passive tracer) is injected into the mixing region, most of it
will be advected downstream in a short time. But part of the dye will remain
close to the chaotic saddle for very long times, and continuously ejected along
its unstable manifold. In this way passive tracers such as dye traces out the
unstable manifold of the chaotic saddle, giving rise to the fractal patterns
characteristic to open flows. We next study how these flow structures affect
the plankton dynamics given by the right-hand-side of (1). Pictures of the
stream function and of the chaotic saddle can be seen in [6].

Equations (1) are solved by a semilagrangian method. The fixed point
representing stable phytoplankton-zooplankton coexistence in the absence of
flow and diffusion is given by P = Pe and Z = Ze, with Pe = P0

√
σ/(1 − σ) =

0.03827 and Ze = β(1 − Pe/K)(P 2
0 + P 2

e )/Pe = 0.04603. We choose these
values to be imposed as Dirichlet boundary conditions on the boundary of
Ω. In this way fluid particles enter in the system with a plankton content
corresponding to the equilibrium concentrations, which is a rather natural
condition from the biological point of view. During an excitation phase, the
values of phytoplankton concentration rise to P ≈ 0.8 − 0.9

Since (Pe, Ze) is a stable equilibrium point, dynamics will be trivial with-
out an initial seed to trigger the excitation dynamics. Our initial condition is
a localized patch of high phytoplankton concentration close to the left part
of Ω: P (x, t = 0) = Pe + Q exp[−((x − x0)2 + y2)/l2], Z(x, t = 0) = Ze.
We take Q = 0.5, x0 = 0.3L, and l = 0.11L. The jet transports the patch
towards the scattering or mixing region, where interesting dynamics occurs.
The flow parameters are d = 1, Ψ0 = 2, σ = 2, k = 1, and v = 1, giving a
flow period T = 2π/kv = 2π.

We now consider µ = 3 (a chaotic saddle is present in the system above
µ ≈ 2). For small r, the biological dynamics is slow compared to the time
scales of stirring by the flow. The phytoplankton patch is strongly deformed
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when reaching the scattering region. Plankton is stretched into long and thin
filaments that become rapidly diluted into the surrounding unexcited fluid
by the effect of diffusion. Thus excitation is destroyed by the fast stirring
and by diffusion. Increasing r, i.e. by making the biological dynamics faster
or the flow slower, a dramatic change occurs. The transition to the new
regime occurs around r ≈ 1. Plankton is again stretched in filaments but the
width stabilizes and the excitation becomes distributed in the system, without
leaving it (it remains forever) and oscillating in shape following the period
of the flow. Some features of the distributions of both phytoplankton and
zooplankton (see Fig. 1) seem to mimic the shape of the unstable manifold
of the chaotic saddle, so that in these zones we can say that plankton is
basically covering it with a finite width. Summing up, the relevant result
we have shown is the following: transient chaos, characteristic of open flows,
plus transient excitation, characteristic of excitable systems, give rise to a
permanent pattern of high biological activity (excitation).

Fig. 1. Distribution of phytoplankton (left) and zooplankton (right) at time t = 100
and parameters r = 10 and µ = 3. Dark grey corresponds to low concentration and
lighter grey to higher concentration. A state of permanent excitation is sustained
in the region close to the chaotic saddle and its unstable manifold (being the do-
main far from this region in the unexcited equilibrium state). The shape of the
distributions changes in time with the period of the flow

The explanation for the observed behaviour can be elaborated along the
lines of previous works [8, 9] as follows: The tendency of the chaotic flow to
stretch fluid elements into long and thin filaments competes with the effect
of diffusion and biological growth, which tends to expand excited regions,
so that a compensation can be achieved in some parameter range. Above a
given biological growth rate, steady filament solutions appear via a saddle-
node bifurcation. This can be explicitly shown in simplified models capturing
some of the features of the full system (1). When this steady solution does not
exist, initial perturbations decay as in the usual excitation-deexcitation cycle,
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so that excitation disappears at long times. At sufficiently large biological
growth rate, however, the steady filament solution exists, is stable, and the
initial perturbation can be locally attracted by it. Chaotic flow deforms the
simple filament solution obtained under simplified assumptions [8,9], but the
results in [8] indicate that it still provides a useful description of the process.
Chaotic stretching and folding of the excited filament in a closed system ends
up when it fills the whole domain, after which an homogeneous deexcitation
finishes the excitation cycle. In an open system, however, the continuous
outflow of excited material inhibits the filling of the full domain, so that
distributions related to relatively simple filament steady solutions can persist
permanently.

3 Nonlocal Logistic Growth

In this section we discuss the interacting particle model with non-local inter-
actions introduced in [10]. It is just a simple modification of the Brownian
Bug model of [11] where there is an ensemble of diffusing particles (the bugs),
each of them dying or duplicating with given probabilities per unit of time.
As we shall see below the modification consists in the introduction of an inter-
action among the particles so that the birth rates for any of them diminish in
regions of high particle density. This is precisely Verhulst logistic mechanism,
here implemented in a particle model instead that in the original Verhulst
equation for the global population.

The microscopic rules are enumerated in the following. Let N(t) be the
number of bugs in the system (a two-dimensional periodic box Ω of size L×L;
in all our computer simulations we shall take L = 1):

1. There is an initial population of N(t = 0) = N0 bugs or particles, ran-
domly located.

2. One particle, j, is selected at random and it reproduces (i.e., it is trans-
formed into two particles) with a rate (probability per unit time) λ(j)
or dies with a rate β(j). Both rates are not constant but depend on the
number of particles surrounding the particle j. Explicitly we take:

λ(j) = max
(

0, λ0 − 1
Ns
N j

R

)
, (5)

and

β(j) = max
(

0, β0 − α

Ns
N j

R

)
, (6)

where λ0 and β0 are constants. N j
R denotes the total number of particles

which are at a distance smaller than R from particle j (excluding the
particle j itself). R is thus a range of interaction, Ns is a saturation
parameter, and α controls the asymmetry between its influence on death
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and on reproduction (in the rest of this paper we take α = 0 so that only
birth rates are modified by the local density of particles). In the case of
reproduction, the newborn particle is located at the same place as the
parent particle. The process is repeated a number of times equal to N(t),
so that each particle is checked for birth or reproduction once in average.

3. Each particle moves in random direction a distance drawn from a Gaussian
distribution of standard deviation σ (this models Brownian motion).

4. When advection is considered, the particles are transported by an exter-
nal flow to be described later.

5. Time is incremented an amount τ = 1, and the algorithm repeats.

Figure 2 shows typical spatial configurations observed at large times under
this algorithm. When the maximum growth rate µ ≡ λ0−β0 is small (µ < µc),
population dies at long times. Above this value of µ, an active phase with a
persistent average number of individuals is attained. The nature of the spatial
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Fig. 2. Long-time spatial structures for the interacting particle model. Left column
corresponds to two patterns with the same value of D = 10−4, and two different
values of µ = 0.5 (up) and µ = 0.9 (bottom). Right column corresponds to fixed
µ = 0.7, and D = 10−4 (upper), and D = 10−5 (bottom). In all the plots, Ns = 50
and R = 0.1
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distribution in the active phase depends on the values of the parameters. For
large enough value of the effective diffusion coefficient D ≡ σ2/τ , the spatial
distribution of particles is homogeneous on average, whereas clear clustering
occurs for small D. As in the Brownian Bug model [11], different clusters are
coming from different families (i.e. each cluster is made of descendants of a
different initial reproducing individual). But the most striking feature is that
they organize in a periodic pattern. The periodicity of the pattern is of the
order of R, the interaction range. In addition to decreasing D, this transition
to a periodic organization occurs by increasing R and, for small enough D,
by increasing µ.

Particle clustering seems to be a rather natural way to make compati-
ble the high local growth at relatively large value of µ, with the reduction
of this growth that a too crowded neighbourhood would imply: the empty
space between the clusters acts as a buffer zone keeping the competition for
resources less limiting than in a homogeneous distribution. We believe that
this dispersion of the total population in small groups over a large spatial area
is a general consequence of the logistic mechanism when applied to particle
systems.

We try now to understand this pattern forming process. To this end we
write down a mean-field-like description of the model, which completely ne-
glects fluctuations, and check if the clustering instability appears there. The
mean-field equation is written in terms of an expected density φ(x, t) as fol-
lows

∂tφ(x, t) = D∇2φ(x, t) +
(λ0 − β0)φ(x, t) − 1

Ns
φ(x, t)

∫
|x−r|<R

dr φ(r, t) . (7)

This expression can be understood as a nonlocal version of the Verhulst
logistic equation, complemented also with the diffusion term arising from
the Brownian motion of the bugs. With more generality, the nonlocal term
may be written as φ(x, t)

∫
A

drG(x − r) φ(r, t), where A ⊂ Ω. Our model
corresponds then to a kernel G(x) given by

G(x) =
{

1 if |x| ≤ R
0 if |x| ≥ R . (8)

Stationary homogenous solutions of equation (7) are the empty phase
φ(x, t) = 0, and the active or survival phase φ(x, t) = φs = µNs/πR

2 (re-
member that µ = λ0−β0). For µ < 0 the only stable solution is the absorbing
one; the transition to the survival state is approached at µ = 0, and this state
is stable for a range of positive values of µ. At the deterministic level the tran-
sition is transcritical. We note that the critical value µ = 0 is smaller than
the one observed numerically in the particle model (µc > 0), this deficiency
of the mean-field description being a well known consequence of neglecting
fluctuations.
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We perform now a stability analysis of the φs solution by considering small
harmonic perturbations around it, φ(x, t) = φs + δφ(x, t), with δφ(x, t) ∝
exp(λt+ ik · x). After simple calculations (see details in [10]) one arrives to
the following dispersion relation

λ(K) = −DK2 − 2µ
KR

J1(KR) , (9)

where K = |k|, and J1 is the first-order Bessel function. It is clear that
the relevant parameters in the problem are µ and D/R2 (in fact the precise
dimensionless combinations are µτ and Dτ/R2, see [12]). The eigenvalue
λ(K) (which is in fact a function of KR, µ, and D/R2) is real and can be
positive for some values of the parameters. This is shown in Fig. 3 where
we plot λ against K for fixed D/R2 and different values of µ around the
critical value µP = 185.192D/R2, which is the value of µ at which λ(K)
becomes positive [10]. Positive values of λ(K) in a range of values of K imply
instability of the homogeneous distribution against perturbations containing
this range of wavenumbers (K around Kc = 4.779/R) and pattern formation
with the corresponding wavelengths (≈ 1.31R).
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Fig. 3. Linear growth rate λ vs wavenumber K from (9) for different values of µ
close to the onset of pattern formation. We take R = 0.1 and D = 10−5 so that
µP = 0.185

The behaviour of the deterministic (7) is thus clear: for µ < 0 the only sta-
ble solution is φ = 0. Then there is an interval, 0 < µ < µP , where one has the
homogeneous density φ = φs, and for µ > µP spatial patterns emerge. This
last transition can also be crossed by decreasing D/R2 at fixed µ > 0. The
details of this sequence of transitions and the critical parameter values do not
coincide with the behaviour of the particle model, implying that fluctuations
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Fig. 4. Steady spatial pattern from the deterministic (7). µ = 0.70, R = 0.1,
D = 10−5, and Ns = 50. Note the strong similarity with the pattern in the bottom-
right plot in Fig. 2

are rather important. However, the presence of a pattern forming instability
is well explained and even the selected pattern wavenumber (Kc ≈ 4.779/R)
is quantitatively reproduced by the mean-field approach [10]. Figure 4 shows
a steady pattern of density which is the solution of (7) reached at long times.
It is analogous to the one shown for the discrete model in the bottom-right
panel of Fig. 2, confirming for the full nonlinear model (7) the behaviour
identified from the linear stability analysis of the homogeneous solutions.

So far the only motion considered for the bugs has been Brownian motion.
If they live in a turbulent aquatic medium, they will be also subjected to
straining fields that will deform the clusters and, as in the previous Section,
alter the population dynamics. We have implemented in the fourth step of
the algorithm defining the particle model a simplified flow consisting in shear
motions alternating in direction: if we denote by (xi(t), yi(t)) the coordinates
of the particle i at time t, after one iteration of the map they become

xi(t′) = xi(t) +A cos(yi(t)) , (10)
yi(t′) = yi(t) +A cos(xi(t′)) , (11)

where t′ = t+τ . The parameter A gives the strength of the flow and, depend-
ing of its value, particles can follow regular or chaotic trajectories. Next we
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Fig. 5. Snapshots of the long-time spatial structure for the distribution of particles
with an external flow. From top to bottom and left to right, A = 0, A = 0.1, A = 0.5,
and A = 1. The other parameters: µ = 0.9, D = 5 × 10−6, Ns = 50, and R = 0.1

analyze the behaviour of the model when the flow changes. In Fig. 5 we show
instantaneous configurations of the particle distributions as they are being
stirred by the flow at different values of A. Increasing A leads to increas-
ingly chaotic trajectories and mixing behaviour in the flow. It is seen that
the periodic array of clusters in the absence of flow becomes more filamental-
like as the flow strength increases. The shape of the filamental structures
reflects the known unstable and stable foliation of phase space for the map
(11). Inhomogeneity persists for rather strong flow, but finally the distrib-
ution becomes homogenized. At this point, the particle distribution should
be very close to Poissonian, with density given by the homogeneous solution
of (7). This is indeed what is observed in Fig. 6 where we plot time evolu-
tion of the total number of particles. For large values of A the total number
of particles, N(t), fluctuates around the homogeneous deterministic solution
value φs = µNs/πR

2. For smaller flow strength A the spatial structure in the
neighbourhood of each particle becomes relevant, and the number of parti-
cles approaches the value in the absence of flow, corresponding to the pattern
state of clustered particles. Thus, we see that the nonlocal interactions lead to
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Fig. 6. N(t) vs time for different values of the external flow strength, A. From
top to bottom: A = 0, A = 0.01, A = 0.05, and, fluctuating around the value
φs = µNs/πR2 (horizontal white line), A = 1 and A = 3. The other parameters are
µ = 0.8, Ns = 50, D = 10−5, and R = 0.1

a coupling between flow and population dynamics, mediated by the changes
in local distribution geometry that the flow induces.

4 Summary

In this contribution we have presented results on two model systems com-
ing from the context of population dynamics in aquatic flowing media. In
both cases the logistic mechanism of P.-F. Verhulst is an essential ingredient,
although the presence of nontrivial predation dynamics in one case, and of
a finite range of interaction in the other lead to interesting new phenom-
ena, namely excitability and pattern formation, respectively. In both model
systems the consideration of fluid flow leading to chaotic trajectories (the
process known as chaotic advection or Lagrangian turbulence [13]) has addi-
tional impact on the dynamics.
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Summary. The feasibility of an experimental method for investigations of the
particle flux to an absorbing surface in turbulent flows is demonstrated in a La-
grangian as well as an Eulerian representation. A laboratory experiment is carried
out, where an approximately homogeneous and isotropic turbulent flow is generated
by two moving grids. The simultaneous trajectories of many small approximately
neutrally buoyant polystyrene particles are followed in time. In a Lagrangian analy-
sis, we select one of these as the centre of a “sphere of interception”, and obtain
estimates for the time variation of the statistical average of the inward particle flux
through the surface of this moving sphere. The variation of the flux with the radius
in the sphere of interception, as well as the variation with basic flow parameters is
well described by a simple model, in particular for radii smaller than a characteris-
tic length scale for the turbulence. Applications of the problem to, for instance, the
question of the feeding rate of micro-organisms in turbulent marine environments
are pointed out.

1 Introduction

Often the problem of turbulent diffusion in neutral turbulent flows is analysed
in terms of an initial value problem [1,2]. However, for many applications, a
boundary value problem is more relevant. As such an example we here con-
sider the turbulent particle flux to a perfectly absorbing spherical surface,
which is a realistic physical model for many practical applications. This for-
mulation of the problem serves, for instance, as a model for predator-prey
encounters in turbulent waters, and seems to be the application of the prob-
lem that has received most attention recently [3,4]. For small predators, fish
larvae for instance [5], it can safely be assumed that their self-induced motion
is small or negligible, and that they are passively convected by the local flow
velocity, at least to a good approximation. Similarly, it can be assumed that
their food (micro-zooplankton, for instance) is also passively convected by
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the same flow. The feeding process can be modelled by assuming that any
individual prey entering a suitably defined “sphere of interception” is cap-
tured with certainty. The surface is thus “virtual” in the sense that it does
not disturb the flow.

In turbulent waters, the prey flux to a passively convected predator is
related to the problem of relative diffusion, but now considered as a boundary
value problem, with the sphere of interception acting as a perfect absorber of
prey. This is the standard model for this particular problem [6,7]. We use this
as a terminology in the following, for simplicity and definiteness. The general
interest in the problem arises essentially from the simple observation that the
food concentration in the near region of a predator will rapidly be depleted,
and without any self-induced motion a predator will be starving, unless the
prey within its sphere of interception is replaced by turbulent mixing in the
surrounding flow. Although the results presented in this work explicitly refer
to spherical volumes, the scaling laws that are obtained will have a wider
range of applications.

We propose and demonstrate the feasibility of an experimental method
for a quantitative study of turbulent transport into an absorbing surface,
and present results for varying parameters [8]. It is demonstrated that a rel-
atively simple model equation is adequate for describing the basic features
of our observations. The paper is organized as follows; in Sect. 2 we give a
short summary of the experimental set-up, and the experimental conditions.
In Sect. 3 we discuss experimental results for particle fluxes to an absorb-
ing sphere where the centre is identified by a particle which is moving with
the flow. Section 4 contains a discussion of a simple analytical model which
gives results in fair agreement with observations. Finally, Sect. 5 contains our
conclusions.

2 Experimental Set-up

The basic features of the present experiment are described elsewhere [9, 10].
A short summary will suffice here. The turbulence is generated by the motion
of two plastic grids, in the top and bottom of a tank with 320×320×450 mm3

inner dimensions, see Fig. 1 for a schematic illustration.
Typical Taylor micro-scale Reynolds numbers [11], Rλ = λ2/(η2

√
15), are

∼ 100 for the present conditions, using the Taylor micro scale λ =
√

15νσ2/ε,
where ν � 0.89 mm2/s is the kinematic viscosity of the water, ε the specific
energy dissipation rate, and σ2 is the variance of one velocity component. The
Kolmogorov length scale η = (ν3/ε)1/4 is less than 1/2 mm for the present
conditions, while Kolmogorov time scales τη are in the range 0.05–0.12 s.
The “micro-scale” η represents the length-scales, where the viscous effects
become important. A characteristic Eulerian length scale, LE as well as ε are
determined by fitting a von Kármán type wavenumber spectrum [9,10] to the
experimentally obtained data
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50
cm

Fig. 1. Schematic illustration of the experimental set-up, showing the movable grids
and the 4 video cameras. A restricted measuring volume of 140×140×120 mm3 is
shown by thin lines

E(k) = αε2/3L5/3
E

(LEk)4

[1 + (LEk)2]17/6
, (1)

where α is the spectral Kolmogorov constant [12]. LE is found to be in the
range 20–25 mm. We can interpret LE as the lower limit for separations
between fixed frame detection points, where the velocities of fluid elements
tend to become uncorrelated. As a working hypothesis we can assume that
velocities are also statistically independent for separations larger than LE .
An integral length scale can be defined by the integral of the parallel velocity
component correlation function R‖(r) as Lint =

∫∞
0
R‖(r)dr. A summary of

parameters for 8 different conditions used in the present work is given in
Table 1.

The motions of small polystyrene particles of size a = 0.5 − 0.6 mm are
followed with 4 video cameras, and the simultaneous positions of typically
500–1000 particles recorded at time intervals of 1/25 s. The size of the effective
measuring volume is approximately 140 × 140 × 120 mm3. It is ensured that
the particles used in the experiment are approximately neutrally buoyant [9].
By a tracking procedure it is then possible to link the positions of particles
[9], and thus to follow their individual motions in 3 spatial dimensions. In
particular also their time varying velocity can be deduced. An illustrative
sample trajectory is shown in Fig. 2. The figure shows a series of small spheres,
centred at the particle positions, at individual sampling times. Since the time
sequence used here is one of the longer ones obtained, the superposition of
the spheres at subsequent sampling times gives rise to an appearance like a
grey “band”.

Experiments are carried out for different intensities of the turbulent veloc-
ity fluctuations, 〈u2〉. With the polystyrene particles acting as markers for the
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Table 1. Summary of the parameters derived from the second order structure
function and the spectra obtained from it, based on measurements in the restricted
volume shown in Fig. 1

αε2/3 LE σ Lint ε τη η λ Rλ

(mm4/3/s2) (mm) (mm/s) (mm) (mm2/s3) (s) (mm) (mm)

45 31 18 23 160 0.075 0.26 5.1 100
41 27 16 20 140 0.080 0.27 4.9 88
40 29 16 22 135 0.081 0.27 5.1 93
45 28 17 21 160 0.075 0.26 4.9 91
24 29 12 22 62 0.120 0.33 5.8 81
65 29 21 22 279 0.056 0.22 4.5 104
56 28 19 21 225 0.063 0.24 4.6 97
25 27 12 20 65 0.117 0.32 5.6 78

Fig. 2. Sample of particle trajectory obtained experimentally with 1/25 s time
resolution. The small spheres give the particle position, and the continuous line a
numerically interpolated particle trajectory, projected onto three of the bounding
surfaces of the box. The distance between the tic-marks on axes is 10 mm. The
spheres are here shown enlarged, for the sake of illustration
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local flow velocities, experimental estimates can be obtained for the second or-
der structure function, Ψ2(y) =

〈
(ui(r, t) − ui(r + y, t))2

〉
being independent

of t for time stationary conditions. An example is shown in Fig. 3, including
also a fit for small separations given by a dashed line, using the universal
Kolmogorov (εr)2/3 law. If we let the separation vector be along the y-axis,
we have the longitudinal structure function Ψ2‖(y) ≡ 〈

(uy(0, t) − uy(y, t))2
〉

given by the dotted line, with CK being the Kolmogorov constant, related
to the spectral constant α from (1) by CK ≈ 1.315α [12]. We note that CK

is known with some uncertainty, and a value of CK ≈ 2.5 can be justified as
well as CK ≈ 2.0 [10,12]. The dash-dotted line in Fig. 3 gives the transverse
structure function Ψ2⊥(y) ≡ 〈

(ux(0, t) − ux(y, t))2
〉
. By a general relation [11]

we have

Ψ2⊥ =
1
2y

d(y2Ψ2‖)
dy

,

for locally homogeneous and isotropic turbulence. With Ψ2‖ ≈ CK(εy)2/3, we
find Ψ2⊥ ≈ (4/3)Ψ2‖ in the universal subrange. The full line in Fig. 3 shows
〈(u(r, t) − u(r + y, t))2〉 = 2(〈u2〉 − 〈u(r, t) · u(r + y, t)〉). The purpose of
Fig. 3 is to demonstrate the existence of a universal range, and to indicate
the range of its validity, here up to separations of the order of 20 − 25 mm.

Fig. 3. Experimentally obtained second order structure function, as function of
separation variable y. The heavy dashed line shows a y2/3 fit. The dotted line refers
to the longitudinal structure function, and the dot-dashed line to its transverse
counterpart. The full line gives the structure function Ψ2‖ + 2Ψ2⊥

The average distance between particles is much larger than their diameter,
and particle interactions can be ignored. We estimate a Stokes number [13] as
St ≡ (2/9)(a/LE)2Re with Re being the Reynolds number based on

√〈u2〉
and LE . For typical values [10] of LE = 25 mm and Re ≈ 500 we find St ≈
0.05 � 1. To the given accuracy, we assume that the particles follow the
flow as passive tracers [14], and that the particle density is uniform, when
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interpreting fluxes to an absorbing surface. The assumption was substantiated
by analysing the particle distributions and comparing the results to a model
Poisson distribution.

3 Particle Flux into a Moving Sphere

With the records for simultaneous particle trajectories being available, we
can select one of them to represent the “predator” and label all the others
as “prey”. We then select a predetermined radius R in the sphere of inter-
ception, and then remove all the particles which happen to be inside this
sphere at the initial time. During the subsequent Lagrangian motion of the
reference “predator”, we count the number of prey entering its co-moving
sphere of interception between successive time steps. Each time a particle
enters, it is “eaten” in the sense that it is removed from the database [8].
Of course, if the data analysis is carried out for very long times, all particles
representing prey will eventually be removed. Here we are only interested in
the time evolution of the prey flux for times up to an eddy turn-over time.
As long as R is much smaller than the size of the measuring volume, we can
with negligible error assume the prey concentration to be constant at large
distances, corresponding to an ideally infinite system. By choosing a large
number of realizations, we can give an estimate for the ensemble averaged
Lagrangian prey flux as a function of time after release.

In Fig. 4 we show, with solid lines, examples of the time varying particle
flux to a self consistently moving sphere of interception with a given radius, R.
This flux is the result of a competition between, on one hand, the depletion of
the density of polystyrene particles in the near vicinity of the reference sphere

Fig. 4. Time variation of the estimate for the averaged particle flux for unit density
〈J(t)〉/n0, to moving spheres, with radii, R = 10, 20 and 30 mm
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as they “absorbed”, and, on the other hand, inward flux of such particles,
due to the turbulent motions in the flow. In each realization, we divide the
flux by the particle density for that particular realization. The result thus
represents the particle flux for unit particle density, i.e. 1 particle per mm3.
For small radii, R < LE , we find that the flux level is almost constant in time.
A decreasing trend becomes more conspicuous as the radius is increased, and
for R > LE we find a significant flux reduction for times approaching the eddy
turn-over time, here estimated by τF ≡ LE/σ. The flux is largest initially,
when the concentration of “prey” in the surrounding is largest. At later times
there will be a possibility for encountering fluid elements which have already
been emptied, and the prey flux becomes smaller. The flux depletion due to
this effect increases evidently for increasing radii in the reference sphere.

4 Analytical Results

The problem of turbulent particle flux to a perfect absorber moving with the
flow can be studied analytically by allowing for some simplifying assumptions.
Here, an absorbing spherical surface is assumed to have its centre defined by
a particle, which is moving with the flow.

4.1 Dimensional Arguments

The present problem is characterized by a few dimensional quantities. With
the viscosity, ν, being immaterial for the flow dynamics for scale lengths larger
than the Kolmogorov length scale η ≡ (ν3/ε)1/4, we only have one quantity
characterizing the turbulent flow, namely ε with dimension length2/time3, and
the length scale R characteristic for the particular problem, here a moving
sphere of interception. Out of these quantities the only combination giving a
quantity with dimension time is R2/3/ε1/3, while ε1/3R7/3 gives length3/time.
The physical dimension of the averaged normalized particle flux 〈J〉/n0 is
length3/time.

Quite generally it can then be argued, by purely dimensional reasoning,
that the turbulent flux for given reference density n0 must have the form

〈J〉
n0

= ε1/3R7/3f
(
tε1/3/R2/3

)
, (2)

with f being a dimensionless function of a dimensionless variable. The actual
form of f can only be determined by a more detailed model analysis. We can
argue that we, in Fig. 4, have determined f experimentally, without reference
to any explicit model equations. The arguments do not depend on any specific
shape of the reference volume, and assume only that it scales self-similarly
with one length scale, R. The functional dependence f in (2) will, of course,
be different for different shapes of the volume. Note that for t > R2/3/ε1/3,
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see Fig. 4, the variation of f(τ) is rather slow for parameters relevant here.
The observations summarized in Fig. 4 seem to indicate that f approaches a
constant value for large times. The constant is assumed to be universal, and
we find it here to be in the range 5–10, as discussed in more detail later. The
observation is not as trivial as it might seem [15].

4.2 A Model Diffusion Equation

The particle flux to a perfectly absorbing sphere, which is moving with the
flow has been modelled by, for instance, a simple diffusion equation with
a properly chosen diffusion coefficient which depends on the simultaneous
mean square velocity differences obtained at given spatial separations, but
independent of time [7]. Essentially, the argument is based on the second
order structure function

Ψ2(r) ≡
〈
(ur(0, t) − ur(r, t))

2
〉
≈ CK(εr)2/3 , (3)

with the approximation being valid for separations r smaller than the length
scale of the turbulence, see Fig. 3. A diffusion coefficient is constructed from a
characteristic velocity and a characteristic length. The velocity is taken to be√
Ψ2(r). For the limiting form expressed in (3), the only length characterizing

the two particles is their separation r. The resulting diffusion coefficient is
consequently K(r) ∼ r4/3ε1/3. The proposed diffusion equation for the den-
sity n is actually identical to the one suggested by Richardson in his study
of distance-neighbour functions [16]

∂

∂t
n(r, t) = C

ε1/3

r2
∂

∂r
r10/3 ∂

∂r
n(r, t) . (4)

The result is written for spherically symmetrical geometry, with r being the
radial coordinate, measured from the position of the centre of the reference
sphere, and C is a numerical constant, assumed to be universal. While (4) was
here argued by dimensional reasoning, it has also an analytical derivation [2].
As a consequence of (4) we have the well-known result for the mean-square
separation of two initially close particles 〈r2〉 = CRεt

3, with the Richardson
constant being CR ≈ 0.5 [10]. We have the relation C = (3/2)(3CR/143)1/3,
giving C ≈ 0.33. In the present model, the time varying diffusion flux of
particles to a perfectly absorbing sphere is given by

J(t) = 4πCε1/3R10/3 dn(r, t)
dr

∣∣∣∣
r=R

,

with n(r, t) obtained from (4).
The derivation of (4) assumes that ε is a deterministic constant, and

thereby ignores intermittency corrections [17]. Although the relation (4) had
some experimental support from the time when it was first proposed [16],
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and also supported more recently [10], its general validity has been criti-
cized [1, 2], as also summarized recently [10]. The range of validity of (4) is
thus not fully explored. For large separations, a simple diffusion equation,
with constant diffusion coefficient, is expected to apply, as indicated for in-
stance by experimental results [18], for initial conditions having scales larger
than the integral length scale. These cases [10, 18] referred to particle re-
leases considered as initial value problems. It seems that a diffusion equation
as (4) can indeed be applied for analysing relative two-particle diffusion in
certain variable ranges [10]. On the other hand, one cannot expect a diffu-
sion coefficient depending solely on relative times or spatial separations to
be universally applicable for this problem [2]. In general, a Fokker–Planck
equation, with (4) being one special example, describes a Markov process,
where the probabilities of future states depend solely on the present, and not
past ones. Modelling of turbulence as a simple Markov process is known to
be rather inaccurate, and a study of the limits of applicability of models like
(4) is therefore worthwhile.

From (4) is easy to derive [7] a steady state flux to a sphere with radius
R as

J0

n0
=

28π
3
Cε1/3R7/3 . (5)

where n0 is the constant particle density at r → ∞.

4.3 Comparison Between Analytical and Experimental Results

In order to compare our observations with analytical results, we show by
open circles in Fig. 5, the flux value at a time t = τF /2, with τF being the
eddy turn-over time. This time is sufficiently short to give a large number of

Fig. 5. The particle flux, 〈J〉/n0, to a moving sphere of interception is shown with
open circles for different radii, as is measured at 1/2 eddy turn over time, t = τF /2.
The full line gives the time-asymptotic result (5). Parameters are σ = 19mm/s,
τF = 1.6 s, and ε = 225 mm2/s3. The fluxes are normalized to unit density
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particle traces for the averaging, and on the other hand, sufficiently long to
give an estimate close to the asymptotic flux value of the particle flux. Vertical
lines give the uncertainties on the experimental estimates. For small radii R,
this uncertainty is large because we only seldom find close particles. For R >
5 mm, on the other hand, this uncertainty is smaller than the size of the circles
in Fig. 5. The analytical curve, given by a full line, is the asymptotic limit from
(4), where we used ε = 225 mm2/s3. Taking into account that we have not
introduced any free or adjustable parameters, we find the agreement between
the analytical and experimental results to be satisfactory, although we note a
slight, but systematic, reduction of the measured flux as compared with the
analytical asymptotic result. The experimental results for the smallest radii
give an underestimate, since in this limit a nontrivial fraction of the particles
are “glancing”, i.e. they manage to pass through the reference sphere within
one sampling time, and are therefore not counted.

The model equations become inadequate for spatial separations larger
than the largest eddies in the turbulence, r ≥ LE , although we find that the
R7/3-scaling seems to have a wider range of validity, in particular at early
times, t < τF /2. The analysis summarized here refers explicitly to spherical
volumes. Qualitatively, the arguments will apply to different shapes as well,
as long as they scale self-similarly with one characteristic length, R.

We also present results for the flux variation for a fixed value of the ra-
dius of the moving sphere of interception, R = 20 mm, and varying ε, see
Fig. 6. In order to sample each dataset at a consistent time, we present re-
sults for a selected time τF /2 used also in Fig. 5, using the proper value of σ.
In this limit, we can in all cases assume that the particle flux is close to its
asymptotic, or saturated, level. The circles show the result for ε obtained by
fitting the second order structure function. Other methods for determining
ε can be found, however [9], and these results are used to give the horizon-

Fig. 6. Variation of the normalized flux, 〈J〉/n0, with varying ε for a fixed value of
R = 20mm. The full line gives the time-asymptotic result obtained from (4). See
also Fig. 5
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tal uncertainty bars. The theoretical full line is also in this case obtained as
the asymptotic limit of the solution of Richardson’s diffusion equation, us-
ing the most recent experimental value [10] of Richardson’s constant. Within
the range of variability, we find the scaling with ε to agree reasonably well
with theoretical predictions based on (4). The numerical agreement between
the measurements and analytical results is within a factor of 2, the analysis
predicting a slightly larger flux than the observed value, also in agreement
with the results shown in Fig. 5. The selected value R = 20 mm can be taken
as representative for the length scales smaller than or equal to LE in the
experiments.

The results summarized in Figs. 5 and 6 refer to fluxes obtained at fixed
normalized times. We can also demonstrate a scaling law for the time varia-
tions of these fluxes, and compare the results to the results from a model like
the one given by (4). In Fig. 7 we show the normalized fluxes for 8 different
experimental conditions, see Table 1, and radii R = 5, 6, 7, 8, 9, 10, 12.5, 15,
17.5 and 20 mm. The figure demonstrates the experimental scatter, which is
consistent with the uncertainties of the estimates for ε. Also here we note a
“banded” structure in the figure. We find that the uppermost group of curves
originates from the two datasets with the largest ε-values, see for instance
also Fig. 6, where these two datasets also seem to be slightly distinct from
the others.

Again, we note that the results have a wider range of applicability, and
need not refer explicitly to spherical forms. A change in shape of the reference
volume, will only imply a change in the numerical constant. Thus, the scaling
law implied in Fig. 6 will apply, for instance, to the prey flux for any predator,
independent of its range of vision, when it is exposed to different turbulence
intensities.

Fig. 7. Normalized flux, 〈J〉/(n0ε
1/3R7/3), as a function of the normalized temporal

variable, tε1/3/R2/3. Curves are shown for 8 realizations with different turbulence
conditions, each with curves for different R. The dashed line gives a theoretical
result, obtained from (4). The (unphysical) singularity at t = 0 for the full line
solution is due to the assumed infinite initial gradient at r = R
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Given the experimental uncertainties, the scaling relations obtained by
dimensional reasoning are found to be well satisfied when analysing the data
from the present experiment. The more specific diffusion equation model (4),
is only giving qualitative agreement for the measured Lagrangian fluxes at
early times. It seems, however, that the asymptotic limit is well accounted
for by the model, in particular also the numerical coefficient obtained by use
of the most recent value of the Richardson constant [10]. To some extent,
the modest agreement between the model and the experimental results at
early times might be surprising, since (4) has given better agreement with
estimates of the distance-neighbour functions [10]. We note, however, that in
the present case there is an ambiguity in the model for the diffusion coefficient:
the result (4) uses characteristic eddies being of magnitude comparable to the
predator-prey separation [7], which is the most obvious choice when modelling
an equation for the distance-neighbour function. For the present case, it could
as well be argued that the characteristic eddies should have a size comparable
to the separation distance between prey and the surface of interception. Since
such models can serve as guidelines only, we shall not pursue the problem
any further here.

As particles are absorbed by the surface, with fluxes shown in Fig. 7, the
particle density will be depleted in the flow surrounding the moving reference
sphere. We can analyse also here the average particle density for r > R, as a
function of time, with results shown in Fig. 8. The radius R is chosen to be
in the universal subrange. The first curve is shown at the first sampling time,
i.e. t = 1/25 s. Variations with distance are obtained in “bins” of 1 mm, and
the second bin from the surface at r = R is the first one shown. To reduce
the noise level, we normalized also here the curves with the radial density
variation found at t = 0. If we choose a smaller value for R, the noise level
increases, while larger R will fall outside the universal subrange.

Fig. 8. Time evolution of the normalized density around an absorbing spherical
surface moving with the flow, for R = 15 mm
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5 Conclusions

In this correspondence we investigated the turbulent flux to a perfectly ab-
sorbing surface, with particular attention to the problem of predator-prey
encounters in turbulent flows. We summarized the basic elements of an ex-
perimental method for investigating the prey flux to a moving predator. In
the limit of small R, we found evidence for an R7/3 flux scaling (see Fig. 5) in
terms of the radius of the sphere of interception. We also found indications of
an ε1/3 scaling with the turbulent dissipation rate (see Fig. 6), in agreement
with the predictions of the model (4). This model agrees to some extent also
quantitatively with the observations. In the asymptotic time limit, to the
extent it can be reached in the present experiment, the data gives a flux well
approximated by (5), provided R < LE . This will in general be the limit rel-
evant for marine environments [19]. We suppose that the observations justify
extrapolation to radii, R, smaller than those experimentally accessible. In a
general sense, our results provide experimental evidence also for the impor-
tance of turbulent motion for the feeding process in marine environments.
We expect that in order to obtain a general analytical model, which can give
results for extended time periods and all R, we shall have to allow for a
diffusion coefficient which depends on time as well as spatial separations, in
particular including also memory effects [2].

The turbulent flux to a moving sphere can be significantly smaller than
the flux to a stationary one. This can be argued simply by noting that the
relative mean square velocity of a particle convected past a stationary sphere
is 〈u2〉, while it is 〈(u(r, t) − u(r + y, t))2〉, for a passively convected sphere-
particle pair, with separation y. For small separations, y � LE , we have
[7, 20] the result (3), and the relative velocity is small, implying a small
flux to the passively convected sphere. For large separations, y � LE , on
the other hand, u(r, t) and u(r + y, t) can be supposed to be statistically
independent. The mean square relative velocity is then 2〈u2〉. The flux in
this latter case is expected to be larger than that to the stationary sphere
with a factor

√
2, although such large separations cannot be achieved for the

present experimental conditions.
We can define a “gain factor” as the ratio between the flux to a stationary

sphere divided by the flux to the passively convected sphere with the same
radius, R. In Fig. 9 we show this gain factor for various radii, R. All points are
obtained at the reference time τF /2 used before. We find that the gain factor
is considerable for small spheres of interception, using the length scale LE as
a measure. For R ≈ LE this gain factor is close to 1, and the particle flux is
the same for a stationary as for the moving sphere. For larger values, R > LE ,
the flux to a moving sphere exceeds that to a stationary one. The variation
of the initial value of the fluxes seen, for instance, on Fig. 4 are consistent
with these observations. Heuristically, we can argue for a parameter variation
of the gain factor as given by the ratio of the two scaling laws obtained by
dimensional arguments, which here gives σ/(εR)1/3. This ratio is shown by
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Fig. 9. Variation of the gain factor for a stationary sphere for various radii of the
sphere of interception, R. The figure refers to a time t = τF /2.

a dashed line in Fig. 9, with a numerical constant not accounted for. We
find, in this case, that this scaling law does not follow the data points in any
convincing way, although the trend seems reasonable. After all, neither the
Eulerian nor the Lagrangian data followed the scaling perfectly, the Eulerian
data best at small R, the Lagrangian data best at somewhat intermediate
values. To expect a perfect agreement for the ratio of the two quantities may
seem somewhat optimistic, in particular also because a small mean flow in the
system gives a bias for the Eulerian fluxes. The gain factor shown in Fig. 9
can, for instance, be interpreted as the gain in prey flux for an imagined
predator with possibilities for self-induced motion, which it uses to exactly
compensate the motions in the surrounding water.

Fig. 10. Lagrangian transit time distribution, shown as a function of normalized
temporal variable tε1/3/R2/3. The figure contains 6 experimental conditions with
ε = 62, 65, 135, 160, 225, and 279 mm2/s3, and each of these analysed for radii
R = 5, 10, 15, and 20 mm
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The present analysis, when applied to the predator-prey problem implic-
itly assumes that prey is captured with certainty. This might be an accept-
able assumption for slow motions in the flow, but evidently it might become
questionable when the flow is strongly turbulent. Little seems to be known
about the capture probability of prey, when the relative velocities are large,
although some observations have been quantified [21]. These results refer
seemingly only to relatively large predators, fish larvae for instance. We can
not here add to that discussion, but might note that one possibly essential
part of the information, relevant for a detailed discussion, might be the distri-
bution of transit times for prey through the sphere of interception. Also this
question can be analysed on the basis of the present experimental data [15].
We can thus obtain the distribution of transit times taken as the time dif-
ference from a particle entering a reference sphere until it leaves it again for
the first time (i.e. first passage time distributions). It turns out that also this
distribution follows a seemingly universal scaling, as long as the radius of the
moving reference sphere is within the universal subrange.

The problem discussed in the present communication is evidently of gen-
eral interest. It has implications also for coagulation processes in turbulent
colloids, for instance. A detailed investigation of this latter problem can, how-
ever, not be made by experiments like ours because the volume of the particles
change upon coagulation, with a consequent change in their response to the
turbulent flow motions. We can not reproduce this effect, for evident reasons.
In standard studies of this problem [22], restricted to diffusion by Brownian
motion, this effect is in part also ignored. With the same assumption it is
possible to perform the relevant studies in experiments like ours, with re-
sults having implications for the formation rate of coagulants larger than the
Kolmogorov scale η in turbulent flows.
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Summary. Lotka–Volterra models of interacting populations are typically used
on a time scale that is shorter than the lifetime of species. Such long-term behav-
iour of ecosystems is very often studied but using models that operate at the level
of species rather than individuals. Such an approach usually refers to the notion
of fitness that is not commonly accepted. In the present paper we show that a
Lotka–Volterra model can be used to describe long-term behaviour of multi-species
ecosystems. Interactions among species in our model form a network whose evo-
lution is determined by the dynamics of the model. Numerical simulations show a
power-law for the distribution of intervals between extinctions, but only for ecosys-
tems with a sufficient variability of species and with networks of connectivity above
a certain threshold that is very close to the percolation threshold of the network.
Effect of slow environmental changes on extinction dynamics, degree distribution
of the network of interspecies interactions, and some emergent properties of our
model are also examined

1 Introduction

Population dynamics, now an important part of biology and sociology, cer-
tainly has its roots in mathematics. This is because growth laws, that describe
time evolution of the size of a given population, are very often formulated
in terms of differential equations. In the simplest form one assumes that the
growth of a population is proportional to the population itself. Such a nat-
ural at first sight assumption has an immediate and unpleasant consequence:
exponentially diverging size of this population. It was a fundamental contri-
bution of Verhulst to provide a remedy for such a drawback, by limiting the
growth rate with a term that decreases with the size of the population [1].
Stimulated by such an important discovery, population dynamics became a
rapidly developing field, aiming to describe also more complicated systems
as e.g. interacting populations.

The earliest approach to study interacting populations was initiated by
Lotka and Volterra [2], and their model quickly became a cornerstone of
population dynamics [3]. Being inspired by a certain surprising, at that time,
behaviour in some prey-predator systems, this model is typically used to
describe populations on time scales shorter than the lifetime of species. It
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means that long-term properties of ecosystems (macro-evolution) are usually
not captured within such an approach. On the other hand, models used to
describe macro-evolution very often use the dynamics that operates at the
level of species rather than individuals. Such coarse-grained models usually
refer to the notion of fitness of a species that is however not commonly
accepted [4].

Recently, there has been some attempts to study macro-evolution using
models equipped with dynamics that operates at the level of individuals [5–7].
Taking into account that Lotka–Volterra models are relatively successful in
describing many aspects of population dynamics it would be desirable to
apply such an approach also to macro-evolution of large ecosystems.

Actually, Lotka–Volterra models were already used by May to study some
aspects of the stability of ecosystems [8]. His results, based on the mathemat-
ical analysis of an equilibrium state, caused some concern among ecologists,
since counter-intuitively, May predicted that complex ecosystems (i.e., those
with a large number of species and a large number of interactions between
these species) are more likely to be unstable. Ensuing debate tried to reconcile
May’s results with our intuition that is based on observations of e.g., tropical
forests (that seem to be complex and stable), and agricultural ecosystems
(simple and unstable). It was suggested that some of his assumptions (as
e.g., the very existence of an equilibrium state of an ecosystem) might not
be valid and that ecologically relevant definition of stability is different from
the one used in the study of (typical) dynamical systems [9].

In addition to that, Abramson introduced a discrete version of the Lotka–
Volterra ecosystem [10] and studied certain characteristics of extinctions. His
model is an example of a one-dimensional food chain with M(∼100) trophic
levels and a single species occupying a given trophic level. Since in realis-
tic food webs M∼4 − 6 with typically many species belonging to a given
trophic level [11, 12], these are highly nonrealistic assumptions. Neverthe-
less, extinction dynamics in Abramson’s model shows some features that are
characteristic to Earth biosystem.

In the present chapter we introduce a Lotka–Volterra model that describes
a simplified ecosystem of N species of predators and one species of preys [13].
Our model can thus be considered as a simple food web model with only two
trophic levels. The competition between predator species is described by a
certain network [14] of interactions whose evolution is governed by the dy-
namics of the model. Namely, when a certain species becomes extinct (i.e., its
density falls below a certain threshold) it is replaced by a new species with
a newly created set of interactions with some of the existing species. Despite
obvious simplifications, the model exhibits some properties that are typical
of more complicated ecosystems, as for example power-law distributions of
the intervals between extinctions. Within our model we can also examine how
robust this power-law distribution is. We find that under certain conditions,
as for example very sparse interactions between species, or too strong domi-
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nance of a small group of species, these power-law characteristics disappear
and the model is driven into a regime where extinctions have exponential
distributions or where there are no extinctions and the ecosystem enters a
steady state. In our opinion, such regimes might be relevant when a restricted
(either in space or time) evolution of an ecosystem or its part is studied. In-
terestingly, a threshold value of the connectivity that separates power-law
extinctions and steady state is very close to the percolation threshold of the
random network of inter-species interactions.

According to a large class of statistical physics models of biological evolu-
tion, avalanches of extinctions do not require external factors to trigger them,
but might be a natural consequence of the dynamics of the ecosystem. As a
result, these external factors, as e.g. climate changes, solar activity or impact
of a big meteorite, are very often neglected in such studies [15]. But such
factors certainly affect the ecosystem and there is a good evidence of it [16].
Let us emphasize that even the basic mechanism that triggers avalanches of
extinctions is not known and is a subject of an intensive multidisciplinary
debate.

One possibility to take external factor(s) into account in our model is
to modify the growth rate of the preys. Since the dynamics of the model
is nonlinear, such a change might have more dramatic consequences than
merely a change of the densities of the species. And indeed we noticed that
the dynamics of extinctions is strongly dependent on the growth rate. It
turns out, that in our model abundance of preys leads to a larger frequency
of extinctions, and in periods of hunger there are less extinctions. This is
clearly due to the nonlinearity of the dynamics. A larger growth rate increases
the density of preys that in turn increases the densities of predators. With
increased densities, the dynamics becomes more competitive and extinctions
become more frequent. Such a periodically modulated growth rate leaves
also some traces in the probability distribution of the extinctions. It might
be interesting to notice that paleontological data also show some traces of
periodic events, but their proper understanding is still missing [16,17].

During evolution some species are favoured and selected at the expense of
less fortunate ones. Evolution constantly searches for the best solutions, which
resembles an optimization process. For example a large size of organisms
of a given species might be of advantage in some situations, but it might
cause some problems in other ones. What might be the Nature solution to
this problem? Will it be middle-size species or rather two groups of species
sitting at the extremes of conflicting requirements? In our opinion, this aspect
of evolution is also often omitted in models of macroevolution. Within our
model we look at such emergent properties of species selected by evolution. It
turns out that depending on some dynamical details, our model can reproduce
both types of solutions of such an optimization problem.
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2 Model and Numerical Calculations

We study a Lotka–Volterra ecosystem that consists of N species of predators
with densities ρi (i = 1, 2, . . . , N) which are all feeding on one species of preys
with density ρ0. We assume that each predator species i is characterized by
a parameter ki (0 < ki < 1) that enters the evolution equations of the model
through death and growth terms

ρ̇0 = g(t)ρ0(1 − ρ0) − ρ0
N

N∑
i=1

f(ki)ρi (1)

ρ̇i = −d(ki)ρi(1 − ρ0) + f(ki)ρiρ0

(
1 − kiρi +

∑′
j kjρj

ki +
∑′

j kj

)
, (2)

where i = 1, 2, . . . , N . In our model we assume that species interact mainly
through environmental capacity terms (the last term in (2)). Namely, the
growth rate of a given species i is reduced not only due to its density but also
due to weighted (with the factor k) densities of a group of randomly selected
neighbouring species. In (2) the summation over these neighbouring species
is denoted by (

∑′). A more detailed description of our model can be found
elsewhere [13].

The differential (1)–(2) are solved using a fourth-order Runge–Kutta
method. Multi-species Lotka–Volterra ecosystems were subject to intensive
studies since the pioneering work of May [8]. It is known that such systems
might evolve toward a steady state with positive densities. However, in some
cases, in a steady state, the density of some species might be zero. Each time
the density of a certain species in model (1)–(2) drops below a threshold
value which we fix as ε = 10−7 we consider such a species as extinct. Such
a species is then replaced by a new one with a randomly assigned density
(from the interval (0,1)), a coefficient k (0 < k < 1) that is randomly drawn
from the distribution p(k), and a new set of neighbours (all links of the ‘old’
species are removed). With such rules the model rather describes N niches,
and we assume that the time to create a species that will occupy a niche is
relatively short as compared to the typical lifetime of species.

We assume that a newly created species makes z links with randomly
selected neighbours. Links are not directional, so a newly created species will
also enter the evolution equation of species it is neighbouring. If the extinct
species were chosen randomly, the network of interactions would be a random
graph. However, it is the dynamics (1)–(2) that determines which species are
extinct. Since the extinct species are not selected randomly, the resulting
network is in general not a random graph.
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3 Results

In the following we describe numerical results obtained for some particular
cases of model (1)–(2).

3.1 Intervals Between Extinctions

Various paleontological data suggest that the dynamics of extinctions has
some power-law distributions of sizes or durations [16]. In our model we
measured time intervals t between successive extinctions. In this calculation
we used a constant growth term of preys g(t) ≡ 1. We examined two cases: (i)
model I: f(ki) ≡ 1, d(ki) ≡ 1 and (ii) model II: f(ki) = ki, d(ki) ≡ 1. Unless
specified otherwise we select ki randomly with a homogeneous distribution on
the interval (0,1) (p(k) = 1). Our results are shown in Fig. 1. In the simplest
case, model I with z = 4 and ki ≡ 1 (i.e., all species during the evolution
have identical ki(= 1)) we obtain an exponentially decaying distribution of
intervals between extinctions P (t). Such a decay is also seen for model I
(z = 4) with a linear distribution of ki namely p(k) = 2k. We expect that such
a behaviour appears when the distribution of ki in the ecosystem is relatively
narrow and shifted toward unity. Such an effect might be due to the small
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Fig. 1. Probability distribution of intervals between successive extinctions P (t)
calculated for some particular cases of model (1)–(2) for N = 100. Inset shows the
same data but plotted on a lin-log scale
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width of the distribution p(k) (i.e., a distribution from which we draw ki) or
might be dynamically generated as in model II. In this case even though ki

are chosen from a homogeneous distribution, the dynamics favours large ki

species (due to their larger growth rate) and they dominate the ecosystem.
When the distribution of ki in the ecosystem is more uniform (model I with
p(k) = 1) our simulations suggest that P (t) decays as a power law. Let us
notice, however, that a power-law behaviour is seen only on approximately
one decade and we cannot exclude that on a larger time scale a different
(perhaps exponential) behaviour appears as was already observed in some
other macroevolutionary models [5]. Let us also notice that for model I with
p(k) = k−1/2/2 the power-law distribution P (t) seems to decay as t−2, i.e.,
with an exponent consistent with some paleontological data [16] as well as
with the predictions of some other models [6]. However, one has to recognise
that the error bars on experimental data are rather large and that a non-
power law behaviour cannot be excluded.

However, a power-law decay of P (t) is seen only for sufficiently large z.
When z is too small, we observed that the ecosystem enters a steady state
where all ρi are positive and there are no extinctions. This is probably due
to the fact that the competition among predators is too weak (or rather too
sparse). To examine the transition between these two regimes in more de-
tail we measured the average time τ between extinctions and the results are
seen in Fig. 2. One can see that τ diverges around z ∼ 1.8. Such a value
of the threshold parameter suggests that this transition might be related to
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probability R as a function of z. The plotted results are based on calculations for
N = 100, 200, 300 and 400 and extrapolation N → ∞
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the percolation transition in our network of interspecies interactions. To ex-
amine such a possibility we measured the average size of the largest cluster
of connected links in the network R (normalized by the number of species
N); the results are shown in Fig. 2. The vanishing of this quantity locates
the percolation transition [18]. One can see that the percolation transition
takes place at a larger value, namely around z ∼ 2.0. Our results suggest
that these two transitions take place at different values of z. However the
analysis of finite size effects especially in the estimation of τ is rather dif-
ficult and we cannot exclude that these two transitions actually overlap, as
might be suggested by their proximity. Such a result would show that the dy-
namical regime of an ecosystem (i.e., steady state or active with power-law
distribution of extinctions) is determined by the geometrical structure of its
interactions.

3.2 Effect of a Modulated Growth Rate

Now we examine the role of a modulated in time growth rate of preys. Such
a modulation is supposed to mimic the influence of an external factor like
a change of climate. One of the questions that one can ask in this context
is how such a change affects the extinction dynamics. We studied model I
with p(k) = 1 and d(ki) ≡ 1. For the growth rate of preys we chose g(t) =
1+A sin(2πt/T ), where A and T are parameters. A typical behaviour in case
of model I with such a growth rate is shown in Fig. 3. One can see that
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Fig. 3. A time evolution of the density of preys ρ0, average density of predators
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i=1, and the number of extinctions M (divided by 20) in the time
interval ∆t = 103 for the model I with N = 100 and z = 4. A rescaled modulated
growth rate (g(t) − 1)/10 = 0.09 sin(2πt/T ) (T = 105) is also shown
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an increased growth rate increases the density of preys ρ0 that increases the
density of predators. However, it increases also the frequency of extinctions.
Such a behaviour, namely an increased extinction rate during abundance of
food, might at first sight look as counterintuitive. This effect is related to
the form of environmental capacity terms in the growth rate in (2), namely
1−(kiρi+

∑′
j kjρj)/(ki+

∑′
j kj). Such a term certainly has a larger variability

for increased density of predators ρi, and for some species (depending on the
distribution of links, coefficients ki and densities) it causes faster extinction.
Let us also notice that since the period of modulation T is quite large, there is
no retardation effect between the density of preys and predators. We observed
such a retardation for smaller values of T (∼ 1000).

The modulated growth rate of preys also affects the probability distrib-
ution P (t) of the intervals between extinctions as shown in Fig. 4. One can
see that a period of modulation T is imprinted in P (t). Let us notice that
certain paleontological data do show some signs of periodicity but its origin
still remains unclear [16,17].
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Fig. 4. Probability distribution P (t) of the intervals between successive extinctions
calculated for model I with a modulated growth rate (N = 100)

It is known that slowly changing ecosystems sometimes undergo catastro-
phic shifts [19]. As a result, the ecosystem switches to a contrasting alter-
native stable state. It would be interesting to examine whether multi-species
ecosystems, as described by our model (1)–(2), might also exist in such al-
ternative states. If so, one can ask whether for example the structure of the
network of interspecies interactions or extinction dynamics are the same in
such states.
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3.3 Emergent Properties of Species

It might be interesting to ask what are the characteristics of species that are
preferred by the evolution in our ecosystem. Since species are characterized
only by the number ki it is equivalent to calculate the distribution of ki in the
steady state of the model (1)–(2). Of course, due to selection, this distribution
will in general be different from the distribution p(k), i.e., the distribution
from which we draw ki for a newly created species. Some of our results are
shown in Fig. 5 (all results for g(t) ≡ 1, z = 4, N = 100).
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Fig. 5. Distribution of ki in the steady state of some particular cases of model
(1)–(2) (see text)

In the case of model I (f(ki) ≡ 1, d(ki) ≡ 1) with a homogeneous initial
distribution of ki (p(k) = 1) one can see that the steady state distribution is
also approximately homogeneous (with a slight bias favoring small-k species).
We checked that model I shows this behaviour also for other distributions p(k)
(what you put is what you get). A different behaviour appears for model II
(f(ki) = ki, d(ki) ≡ 1). In this case the growth rate factor f(ki) of the
i-th species is proportional to ki that certainly prefers species with large
ki. Numerical results for a homogeneous distribution p(k) = 1 confirm such
a behaviour (Fig. 5). We observed similarly strong preferences of large ki

species also for Model II with other distributions p(k).
We also examined the selection pattern in the presence of some competing

effects. To compensate a strong preference toward large-k species we made
simulations for our model with f(ki) = ki, d(ki) =

√
ki and p(k) = 1.

Such a term reduces the death rate of small-k species. Our results show
(Fig. 5) that in this case the distribution of ki has two maxima, one at each



156 A. Lipowski and M. Droz

extremity of the interval (0,1). On the other hand with the same model but
for d(ki) = (1 − ρ0)−ki (that also reduces the death rate of small-k species)
we obtain a distribution with a single maximum around k = 0.45. It would
be desirable to understand the origin of the qualitative difference between
these two cases.

Actually, there is yet another property of our species that is subjected
to evolutionary selection, namely the number of links li (degree) of a given
species. Although at the beginning each species acquires z links this number
changes during the evolution because some links of a given species might be
created or removed due to creation or extinction of another species. And since
it is the dynamics of our model and not the random process that determines
which species are removed, one can expect that the degree distribution might
be different from the Poissonian distribution that is characteristic for random
graphs (see [20] for a precise definition of random graphs).

To check the statistical properties of the network of interactions in our
model we calculated the degree distribution. Our results for model I with
z = 4 and N = 100 are shown in Fig. 6. Let us notice that although each
species has z links at the beginning it does not mean that the average number
〈li〉 of links connected to a given site equals z, since the dynamics of the
model might preferentially remove sites having a certain connectivity. And
indeed, numerical calculations show that in this case 〈li〉 = 2.98 < z =
4, i.e., dynamics preferentially removes sites with a large connectivity. For
comparison with the random graph we also plot the Poissonian distribution
r(l) = e−〈li〉〈li〉l/l!, where 〈li〉 = 2.98. It should be emphasized that the
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Fig. 6. Probability distribution r(l) of sites with a given connectivity l for model I
with z = 4 and N = 100 compared with the corresponding Poissonian distribution
(〈li〉 = 2.98)
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distribution might be approximately fitted using a Poisson distribution, for
example with 〈li〉 = 2.65. However, it is not a physically relevant distribution
since the average connectivity 〈li〉 = 2.65 differs from the value 〈li〉 = 2.98
obtained from the simulations. In this sense the distribution is not Poissonian.
One can see that for large connectivity the degree distribution decays faster
than the Poissonian distribution. This result confirms that the dynamics of
the model preferentially removes highly connected species. Such sites are
probably more susceptible to fluctuations of the system due to extinctions
and creations of new species. On the other hand, poorly connected species are
more likely to arrive at a relatively stable state. Similar results concerning
the degree distribution were obtained for some other cases of our model.

4 Conclusions

In the present chapter we studied the extinction dynamics of a Lotka–Volterra
model for a two-level food web. In our model N species of predators feed on a
single species of preys. The competition between predators, that is specified
by a certain network of interactions, leads to their extinction and replacement
by new species. The distribution of the intervals between successive extinc-
tions in some cases has power-law tails and thus resembles extinction patterns
of real ecosystems. However, when the network of interactions between preda-
tors is too sparse the ecosystem enters a steady state. We have shown that
such a change of behaviour might be related to a percolation transition of the
network. We also examined the influence of external factors on the evolution
of the ecosystem. More specifically, we studied the evolution of our model
in the case when the growth rate of preys is changing periodically in time.
It turns out that such a modulation substantially changes the frequency of
extinctions. Counterintuitively, periods with abundance of preys have higher
frequency of extinctions than periods with lesser amount of preys. Moreover,
we examined some properties of species that are preferentially selected by
the dynamics of our model. Under some conditions preferred species are a
compromise to the conflicting dynamics. Under some other conditions, pre-
ferred species form two antagonistic (with respect to the conflicting rules)
groups. We also examined the degree distribution of the network of inter-
actions between species. It turns out that the dynamics of the model has a
slight preference to remove species of high connectivity. As a result the de-
gree distribution shows some deviation from the Poissonian distribution that
is characteristic to random graphs.

It would be desirable to examine some extensions of our model. For exam-
ple one can introduce additional trophic levels or other forms of interspecies
interactions. One can also examine a variable number of species that would
allow one to create new species using certain mutation mechanism rather
than assuming that they appear as soon as a niche becomes empty. Another
possibility that is outside the scope of most macroevolutionary models would
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be to make further studies of emergent properties of the species. For exam-
ple, one can imagine that a group of species in the ecosystem is well adapted
and essentially not subjected to evolutionary changes. On the other hand
there is a group of ‘newcomers’ for which evolutionary changes are much
more frequent. How are the evolution and the properties of the ‘newcomers’
influenced by the properties of well-adapted species? Such problems might
be easily approached within our model. The selection of a certain group of
species (with a given value of k for example) can be considered as a selection
of a certain strategy. One can examine models of this kind where species
have multi-component parameters [k = (ka, kb, . . .)]. Consequently, one can
study an evolutionary selection with more complicated traits, strategies, or
behaviours. Such an approach would provide an interesting link with certain
evolutionary aspects of game theory [21].
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Exact Law of Live Nature

Mark Ya. Azbel’
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Cedex 9, France

Summary. Exact law of mortality dynamics in changing populations and environ-
ment is derived. The law is universal for all species, from single cell yeast to humans.
It includes no characteristics of animal-environment interactions (metabolism etc.)
which are a must for life. Such law is unique for live systems with their homeostatic
self-adjustment to environment. Its universal dynamics for all animals, with their
drastically different biology, evolutionary history, and complexity, is also unique for
live systems – cf. different thermodynamics of liquids and glasses. The law which
is valid for all live, and only live, systems is a life specific law of nature.

Mortality is an instrument of natural selection and biological diversity. Thus, the
law which is preserved in evolution of all species is a conservation law of mortality,
selection, evolution, biology. The law implies new kind of mortality and adaptation
which dominate in evolutionary unprecedented protected populations and, in con-
trast to species specific natural selection, proceed via universal stepwise rungs. The
law demonstrates that intrinsic mortality and at least certain aspects of aging are
disposable evolutionary byproducts, and directed genetic and/or biological changes
may yield healthy and vital Methuselah lifespan. This is consistent with experi-
ments. Universality implies that yeast may provide a master key to the cellular
mechanism of universal mortality, aging, selection, evolution, and its regulation in
all animals. This suggests that one may look for its manifestations in animal cells,
e.g., in their replicative senescence.

Arguably, universal biology emerged in response to major mass extinctions
which posed universal threat to different species, and is related to disposable genes,
which were beneficial for longevity in the wild, but became detrimental in evolu-
tionary unprecedented conditions.

Further theoretical and experimental studies of the universal law and its impli-
cations are suggested.

1 Motivation and Approach

Life evolved via selection of the fittest. Selection posed different challenges
for different species, thus yielded enormous biological diversity and complex-
ity of survivors. In contrast, five major mass extinctions [1] were universal
“rapidly adjust or die” threat to the very existence of large proportion of
species (96% perished in the most drastic extinction about 248 to 238 mil-
lion years ago). Universal threat could yield certain universality in selection.
Indeed, presented physical approach unravels universality which underlies
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enormous diversity of evolutionary branches. Evolutionary data are sparse
and largely qualitative. So, study universality of diverse living species. selec-
tion proceeded via death of the frail. Thus, quantify selection with mortality.
To amplify universality, consider different human [2] and protected labora-
tory populations of med- and fruit flies [3, 4], nematodes (including mutants
and biologically amended) [5–8], yeast [5,9,10] in changing conditions. Their
protection from elements of nature, predators, shortage of resources, diseases,
etc. nearly eliminates extrinsic mortality, and thus selection, which dominate
in the wild. Their predominantly intrinsic mortality is well quantified. It is
heterogeneous and non-stationary (e.g., within human lifespan infant mor-
tality increased 30-fold and life expectancy by 50%). Animal populations
(especially genetically homogeneous) are relatively small, and their mortality
significantly fluctuates1. So, consider life expectancy e and probability l for
a live newborn to survive to a given age x. These quantities are robust to
heterogeneity, non-stationarity and fluctuations. Indeed, suppose the popu-
lation consists of the groups with the number NG(x) of survivors to age x. If
CG = NG(0)/N(0) and lG = NG(x)/NG(0) are correspondingly the ratio of
the population and the survivability to x in the group G, then the population
survivability l self-averages over population heterogeneity:

l =
∑
NG(x)∑
NG(0)

=
∑

CGl
G = 〈lG〉 (1)

(〈· · · 〉 denotes averaging). Since l = p(0)p(1) . . . p(x − 1), where p(x) is the
probability to survive from x to (x + 1), so ln l(x) averages ln p over, and
fluctuations with, time x. Similarly, life expectancy e = 〈eG〉 averages over
population heterogeneity and entire lifespan. Life expectancy changes 20,000
times from yeast to humans. To account for this change, scale age x and life
expectancy e with a single species specific parameter F . Choose F = 1 year
for humans, F = 0.5 day for flies and nematodes, F = 0.25 generation for
yeast (the choice of F see later). Then Fig. 1 for all animals manifests predom-
inantly universal2 dependence of survivability l on the scaled life expectancy
e/F and age x/F .

1The lifespan of four populations of 623, 662, 248 and 5751 inbred 3×3 male
fruit flies in 4-dram shell vials with weekly transfer to fresh medium [3] varied
from 18.6 to 34.3 days. In the populations with close life spans (18.6 and 22 days)
the probabilities to die on the 38-th day were 18 times different. In the largest
population the mortality rate of 15 days olds was 17 times lower than of those
4 days younger and 3 days older. Such giant fluctuations may be related to vial
difference and their weekly change. Nematode populations [5–8] include only 50–
100 worms.

2Actuary Gompertz [11] in 1825 presented the first universal law of mortality
for human advanced age. Thereafter the search for such law for all animals went
on – see [12, 13] and references there. Accurate knowledge of human mortality is
important for economics, taxation, insurance, gerontology, etc. So, demographic life
tables present millions of mortality data in different countries over their history. To
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Fig. 1. Universal dependence of survivability (vertical axis) on scaled life ex-
pectancy e/F (horizontal axis) for given scaled ages x/F of 125 Swiss (1876–2001
years, crosses) and 50 Japanese (1950–1999, dashes) female [2]; 17 fly [3,4] (black)
and 15 nematode [5–8] (white); 14 yeast [5,9,10] (circles) populations. Their scaling
parameters F and ages x are correspondingly F = 1 year; 0.5 days; 0.25 genera-
tions and x = 30, 85, 73 (upper, lower and middle curves) years; 15, 45 (squares),
35 (triangles) days; 7, 21 (white), 16 (black) generations. Each sign presents raw
experimental data for a population. Some of them overlap and are indistinguishable
for humans and flies, nematodes and yeast. Few accidental deviations are omitted.
Solid lines demonstrate the universal law. The difference between presented and
other human data (e.g. those for, e.g., 252 Swedish female and 159 English male
populations) is on the scale of difference between nematodes and yeast

In all cases total survivability l = l∗+l′, where l∗ is universal, i.e. depends
on e/F and x/F only, while non-universal l′ which depends on all multiple
factors affecting mortality is � l∗. (From now on, unless specified otherwise,
only universal variables are considered, and the superscript star is omitted).

2 Universality Law: Derivation

Universality for different heterogeneous and homogeneous populations implies
that the relation between universal l and e is the same as the relation between
their values in any of the groups in the population, i.e. if l = l(e/F, x/F ),
then lG = l(eG/F, x/F ). So, by (1), l = 〈lG〉 = 〈l(eG/F, x/F )〉 and l =
l(e/F, x/F ) = l(〈eG/F 〉, x/F ), i.e.

better estimate and forecast mortality, demographers dropped the universal law and
developed over 15 mortality approximations [14]. Yet, 180 years after Gompertz,
the existence of the universal mortality law remains controversial.
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Fig. 2. Survivability vs scaled age for Japanese females who died in 1999 [2] (black
triangles) and yeast [5] (white triangles). Their scaled life expectancies are corre-
spondingly 84 and 89

〈
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,
x
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F

〉
,
x
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)
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Such equation implies [15] that l is a universal piecewise linear function of
e/F with simultaneous for all ages x/F intersections (denote such depen-
dence as the universal law) and that at any age population heterogeneity,
i.e. eG/F in all groups, is restricted to a single interval (“echelon”) of e/F
between universal intersections (denote this as a restricted heterogeneity).
The universal law agrees with Fig. 1, and restricted heterogeneity implies
that dominant fraction of all its populations reduces to a single echelon.

The knowledge of exact analytical dependence on e allows one to establish
species specific scales F which provide its minimal relative mean square de-
viation from experimental3. These scales demonstrate (see Fig. 2) proximity
of human (e/F = 84) and yeast (e/F = 89) survival curves vs x/F despite
enormous (∼ 20, 000 times) difference in their life expectancies. Proximity
is not always as good as in Fig. 1. Empirical study [16] demonstrates very
different age dependence in different echelons (especially in young and old
age), thus high sensitivity to contributions of few echelons. Ages and con-
ditions with low mortality may be more universal (like high e/F in Fig. 2).

3The number of human data (whose statistics is by far the best) included in
the approximations was chosen equal to the average number of data per each class;
human e/F were chosen equidistant. Some scaled ages x/F in Fig. 1 are slightly
different for different classes (e.g. 73 human years are compared to 35 rather than
to 73/2 = 36.5 fly days) to amplify universality. At certain ages some intersections
in Fig. 1 are weakly pronounced and unobservable.
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Poor animal statistics and unknown analytical formula of age dependence
(thus insufficiently accurate scaling) do not allow to account for more than a
single echelon. Large size and by far the best statistics of human populations
allows it.

Consider the period probability d(x) = [l(x)− l(x+1)] for a live newborn
to die between x and (x + 1) years (note that human F = 1 and x/F =
x). Similar to l(x), the value of d(x) self-averages over heterogeneity, but
it is more time specific than l. The most time specific parameter is “infant
mortality” d(0) = q(0) which depends on the time from conception to x = 1
only. Similar to Fig. 1, the dependence of d(x) on q(0) for each human curve,
is approximately piecewise linear, also with 5 (as in Fig. 1) intersections (see,
e.g. Fig. 3) which are nearly simultaneous at all ages, but somewhat different
in different countries. Since both d(x) and q(0) are self-averaging variables,
previous analysis yields the universal law. Suppose the universal j-th echelon
boundaries are

qj < q
G(0) < qj+1. (3)

Since mortality is never negative, its ultimate minimum is q1 = 0. An arbi-
trarily heterogeneous population may be distributed at several intervals, and
piecewise linear law reduces d(x) to the sum over all intersection crossover
values dj(x):

d(x) =
∑

cjdj(x), where
∑

cj = 1. (4)

3 Results

The number of population specific concentrations cj of intersection dj(x)
depends on the heterogeneity of the population. If it reduces to a single
echelon, thus to two crossovers, then d(0) = q(0) and dj(0) = qj yield the
universal law (which maps on coexistence of two phases):

d(x) = cjdj(x) + (1 − cj)dj+1(x); cj =
qj+1 − q(0)
qj+1 − qj . (5)

If a population reduces to two echelons, thus to three crossovers, then, by
(4), d(x) reduces to q(0) and one population specific concentration. Simple
algebra proves that then intersections in all such populations are situated at
universal segments of the universal law or their extensions, and allow one to
determine the universal law. This is the case in most developed countries (e.
g., in 1948–1999 Austria, 1921–1996 Canada, 1921–2000 Denmark, 1841–1998
England, 1941–2000 Finland, 1899–1997 France, 1956–1999 West Germany,
1906–1998 Italy, 1950–1999 Japan, 1950–1999 Netherlands, 1896–2000 Nor-
way, 1751–2000 Sweden, 1876–2001 Switzerland). The resulting universal law
in Fig. 4 is verified with few percent accuracy with ∼ 3000 human curves [2]
(18 countries, two sexes, ages from 1 to 95) – see Fig. 3, where straight lines
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Fig. 3. (Upper plot). Period probabilities for live newborn Japanese (black) and
Swedish (white) females to die (year of death from 1950 to 1999 and 1751 to 2002)
between 60 and 61 (squares), 80 and 81 (triangles), 95 and 96 (diamonds) years
of age vs. infant mortality q(0). Japanese relative mean squared deviations from
the universal law with two echelons (straight lines) are correspondingly 2.4%, 2.3%
and 10%. Significant Swedish deviations are related to 1918 flu pandemic in Europe.
(Lower plot). Same for French (diamonds) and Japanese (triangles) females (year of
death from 1898 and 1950 to 2001 and 1999) between 80 and 81 years of age. Empty
diamonds correspond to 1918 flu pandemic and World Wars. They are disregarded
in the universal law with two echelons (straight lines), which yield relative mean
square deviations from black signs to generic 5%. When Japanese q(0) = 0, its
extrapolation yields d(80) = 0

demonstrate the accuracy of approximations with two echelons. (Deviations
are more pronounced when infant mortality significantly changes from one
calendar year to another due to wars, epidemics, crop failures etc., and/or
is relatively large, i.e. when conditions are insufficiently protected. The ac-
curacy may be improved if all echelons in Fig. 4 are accounted for). General
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Fig. 4. Universal law (thick lines) of human mortalities d(60), d(80) and d(95) vs
q(0)-middle, lower and upper curves. At q(0) < 0.003 it is extrapolated. Thin lines
extend its linear segments. Intersections (similar to those in Fig. 3) are exemplified
by diamonds and squares for England (two successive intersections), France, Italy
and Japan, Finland, Netherlands, Norway, Denmark, France, England. Note that
all intersections are close to universal straight lines

universality in Fig. 1 suggests that (properly scaled) law in Fig. 4 is universal
for all protected animal populations. Consider its predictions and implica-
tions. (Earlier these results were predicted empirically [13,15,16] and derived
analytically [17]).

4 Discussion and Conclusions

Derived law is universal for all species, from single cell yeast to humans. At
a given age x it depends in Fig. 1 on a single population specific parameter –
life expectancy e – and a single species specific parameter F . The law includes
no characteristics of non-stationary and heterogeneous animal- environment
interactions (e.g. via metabolism) which are necessary conditions of life. Such
law is specific for live systems with their homeostatic self-adjustment to envi-
ronment. Its dynamics which is universal for all animals, with their drastically
different biology, evolutionary history, and complexity, is also unique for live
systems – cf. different thermodynamics of liquids and glasses. The law which
is valid for all live, and only live, systems is a life specific law of nature.

Mortality is an instrument of natural selection and biological diversity.
The law which is preserved in evolution of species from humans to yeast
is a conservation law of selection, evolution, and biology. It suggests their
universal mechanism which dominates in evolutionary unprecedented pro-
tected populations with predominantly intrinsic mortality. Then the contri-
bution of all other mechanisms is either relatively small or indirect, via the
universal mechanism. Its universality in all animals implies that single cell
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yeast may be a master key to it and its regulation. Universal law demon-
strates that species specific natural selection is replaced in protected pop-
ulations by predominantly universal adaptation of intrinsic survivability to
genotypes, phenotypes, life history, environment, etc., via properly scaled
life expectancy. Universal adaptation is stepwise and proceeds via universal
“ladder” of “rungs” with simultaneous for all ages crossovers. The number
of its crossovers equals the number of major extinctions. (Note that each
live species in the course of its entire history survived all extinctions). Less
universal extinctions may yield mini-rungs, and possibly punctuated evolu-
tion [18]).

Universal Fig. 1 establishes universal scale of ages for different species, and
suggests that life expectancy in all existing species is restricted to around 100
human years, while minor directed genetic and/or biological changes increase
it to the Methuselah 250 (healthy and vital [8]) human years.

When infant mortality vanishes, the universal law yields, according to
Fig. 4, zero universal mortality till certain age (∼ 80 years for humans), thus
correspondingly low total mortality and high life expectancy. Mortality on the
scale of stochastic fluctuations, i.e. consistent with zero universal mortality,
was indeed observed in humans, flies, nematodes, yeast. In 2001 Switzerland
only 1 (out of 60,000) girl died at 5, 9, and 10 years; 5 girls died in each age
group from 4 to 7 and from 9 to 13 years; 10 or less from 2 till 17 years; no
more than 16 from 2 till 26. Statistics are similar in all 1999–2002 Western
developed countries [2]. Similarly, mortality of dietary restricted flies at 8 days
was ∼ 0.0004 [19]. Yeast mortality [9] was zero during half of its mean life span
(Jazwinski et al. [9] presented the first model which stated that a sufficient
augmentation of aging process resulted in a lack of aging). The probability to
survive from 80 to 100 years increased in Western Europe 20-fold in the last
50 years [20]. Mean life expectancy increased almost three times in the last
250 years with improving (medical included) human conditions [2]; 2.4-fold
with genotype change in Drosophila [3]. None of nematodes with changes in
small number of their genes and tissues [8] died till 27 days, i.e. during 54
human years on Fig. 1 scale; from 58 till 90, from 126 till 162 “human years”.
25% of amended nematodes survived till 296 and thereafter did not die till 318
“human years”. All human data demonstrate remarkably low non-universal
(in particular, accidental) mortality, whose fraction does not increase with
the decrease in total mortality. Zero mortality till certain age implies zero
universal mortality at any age (unless it has a singularity at certain age [21]),
thus very low total mortality, and the Methuselah life expectancy. Indeed,
mean life span of mutant nematodes increased to 90 days [6, 7] and to the
Methuselah 124 days [8] (248 years on “human” scale), with no apparent loss
in health and vitality.
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An important implication of the universal law is its plasticity. Universal
mortality at any age is related to infant mortality4 (see Fig. 4). Thus, it
rapidly adjusts to, and is determined by, current living conditions if they do
not significantly change in 2 years, from conception till 1 year, for humans;
few percent of the life span for any species. So, universal mortality is inde-
pendent of the previous life history (“short mortality memory” of it) and,
together with infant mortality, it may be rapidly reduced and reversed to its
value at a much younger age. Indeed, following unification of East and West
Germany, within few years mortality in the East declined toward its levels
in the West, especially among elderly with ∼ 45 years of their different life
histories. Mortality of the female cohort, born in 1900 in neutral Norway, at
59 years restored its value at 17 years, i.e. 42 years younger [2]. Note that
such mortality decrease, similar to the one in East Germany after its unifi-
cation, is not dominated by death of the frail. The latter alters composition
of the cohort, and the resulting change in mortality depends on life history
rather than on current conditions only. Thus, it contributes to the deviations
from the universal laws (which are relatively small) rather than to the univer-
sal mortality. Mortality plasticity is also very explicit in experiments where
dietary restriction in rats [22] and flies [19] is switched on. However, when
dietary restriction is switched off and changes to full feeding, their longevity
remains higher than in the control group of animals fully fed throughout life.
Also, when fly temperature was lowered from 27 to 18 degrees or vice versa,
the change in mortality, driven by life at previous temperature, persisted in
these flies compared to the control ones. Such long memory of life history may
be related to rapid changes in temperature or feeding, since universal law is
valid when infant mortality little changes within a day for flies, a month for
rats, a year for humans. This calls for comprehensive tests of mortality adap-
tation to such conditions. Similar tests may verify a possibility to reverse and
reset mortality of a homogeneous cohort to a much younger age.

Restricted heterogeneity implies that at the intersections population ho-
mogenizes. This agrees with experimental data [15].

4Thus, eliminating all deaths before age 50 would not yield just about a 4-year
rise in current life expectancy at birth, as it would if mortality at higher ages were
little correlated with lower age mortality. Demo- and biodemographers consider the
most specific mortality variable – the probability to die between ages x and (x+1).
It equals

q(x) =
l(x) − l(x + 1)

l(x)
=

d(x)

1 − d(0) − d(1) − · · · − d(x − 1)
,

thus its universality is not as explicit as that of d(x) and was unnoticed.
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5 Outstanding Problems

Vanishing and highly plastic universal mortality calls for evolutionary and
biological explanation. In the wild competition for sparse resources is fierce,
and only relatively few genetically fittest animals survive to their evolution-
ary “goal”-reproduction. Even human life expectancy at birth was around
40–45 years just over a century ago, and 17.2 years for males in 1773 (crop
failure year) Sweden. There are no evolutionary benefits from genetically pro-
grammed death and/or aging of tiny number of survivors to old age. Since
prior to and during reproductive age (when survival is evolutionary benefi-
cial) mortality, and even aging (thus irreparable damage), may be negligible
in protected populations (see above) and there are no evolutionary benefits
in switching off repair mechanisms later, so intrinsic mortality and aging
are presumably disposable evolutionary byproducts. Such byproducts may
be related to genes, which are beneficial for non-universal longevity in the
wild, but are detrimental in evolutionary unprecedented protected conditions
where longevity is predominantly universal (new kind of Williams antagonis-
tic pleiotropy). Such genes are relatively easy to alter or switch off. This
is consistent with healthy and vital Methuselah age in nematodes. Univer-
sality suggests that its mechanism may be reduced to genetically regulated
universal processes in cells, and related to a certain universal genome (cf.
“longevity genes” [23–26]. Single cell yeast may provide a master key to the
cellular mechanism of Methuselah age, adaptation, and their regulation, in
all animals (see cartoon in Fig. 5). One may look for its manifestations in
animal cells, e.g., in their replicative senescence (see review [27] and refer-
ences therein), apoptosis, possibly even in certain aspects of cancer ( [28] and
references therein) and cancer gene therapy (e.g., inhibition of ontogenes and
activation of tumor suppressor genes).

In protected populations non-universal mortality is relatively small, thus
all other mechanisms are less important or correlated with universal mecha-
nism. Conservation law of universal evolution allows for its quantitative study
with current survivors, as well as for accurate definition of species, families
etc. according to their intersection scales in Figs. 1 and 4. Remarkably simple
species specific scales in Fig. 1 suggest the existence of their “quantization
law”.

Universal piecewise linear dependence on e/F is related to its invariance
to restricted population heterogeneity. Invariance which yields analytical for-
mula of the universal dependence on age, remains to be established, as well
as accurate species specific scaling of mortality dependence on age and infant
mortality.

Universal law presents universal demo- and biodemographic approxima-
tion, which may be important for economics, taxation, insurance, gerontology,
etc.

Interconnection between universal evolution, selection, mortality, aging
and its vitality, and presumably mass extinctions, suggests certain univer-
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Fig. 5. The ladder of rungs in the human “bridge of death”. Better social and
medical protection at its successive rungs implies higher “protective walls” against,
thus delay in, death and aging, but does not shift the precipice of the maximal life
span at the bridge end. Biological amendments increase the maximal life span and
shift the “bridge of death” end

sality in biology at large and calls for multidisciplinary (evolutionary, bio-
logical, demographic, physical and mathematical) study. Universal law, its
implications, and predictions may be comprehensively verified and refined
theoretically (with available mortality data) and experimentally. Other out-
standing problems include partitioning of universal intrinsic and non univer-
sal extrinsic mortality and their relative contribution; “quantization law” of
evolutionary scales in Figs. 1, 4; establishing genes, cellular mechanism and
the origin of plasticity of universal mortality; physical and biological nature
of intersections and echelons.
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Appendix

Demographic life tables present mortality data in different countries over
their history. For males and females, who died in a given country in a given
calendar year, the data list, in particular, “period” probabilities q(x) (for sur-
vivors to x) and d(x) (for live newborns) to die between the ages x and (x+1)
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[note that d(0) = q(0)]; the probability l(x) to survive to x for live newborns;
the life expectancy e(x) at the age x. The tables also present the data and
procedures which allow one to calculate the values of q(x), d(x), l(x), e(x) for
human cohorts, which were born in a given calendar year. Populations, their
conditions and heterogeneity are different, yet demographic approximations
reduce period mortality of any given population to few parameters. Assump-
tion that under certain conditions a dominant fraction of period mortality in
all heterogeneous populations is universal is sufficient to derive the universal
Fig. 1, as well as (5) and its conditions (3). According to Fig. 4, until � 65
years, d(x) decreases when q(0) increases. Beyond � 85 years, d(x) increases
together with q(0). In between, d(x) exhibits a well pronounced maximum
(naturally, smeared by generic fluctuations). Consider the origin of such de-
pendence on age. The value of d(x) is proportional to the probability for
a newborn to survive to x and to die before the age (x + 1). When living
conditions improve, the former probability increases, while the latter one de-
creases. In young age the probability to survive to x is close to 1, so d(x) is
dominated by the mortality rate, and thus monotonically decreases together
with q(0). For sufficiently old age, low probability to reach x dominates. It
increases with improving living conditions, i.e. with decreasing q(0), thus
d(x) increases with decreasing q(0). At an intermediate age, when improv-
ing living conditions sufficiently increase survival probability, d(x) increase
is replaced with its decrease. Then d(x) has a maximum at a certain value
of q(0). Thus, minor genetic and/or biological changes should yield the d(x)
maximum at 95 years and beyond. To quantify the accuracy of the results,
consider the number D(x) of deaths at a given age x in each calendar year.
According to statistics, the corresponding stochastic (i.e. minimal) error is
∼ 2/[D(x)]1/2. At 10 years of age it increases from ∼ 20% in 1976 to ∼ 200%
in 2001 Switzerland and leads to large fluctuations in q(10). At 40 years it is
∼ 20%; at 80 years it is ∼ 6% in Switzerland and ∼ 2% in Japan. Universal
Fig. 4 and accuracy of the universal d(x) vs d(0) with two echelons may be
refined with larger number of echelons in populations. The total number of
(4) is 2XT , where 2 is the number of sexes, (X−1) is the maximal considered
age, T =

∑
Tg, where Tg is the number of calendar years in the period life

tables of the country g. The total number of (4) variables with 5 intersections
is 10T +5X. Since T ∼ 2000, X ∼ 100, the number of variables is ∼ 20 times
less than the number of equations. So, consider non-universal mortality with
the crossover concentrations which change with age (e.g., every five years) to
provide the same number of equations and variables. The resulting change
in the concentrations, calculated according to life tables and (4), determines
the relative non-universal mortality.
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In this chapter we present a new approach to the study of manifestations
of chaos in real complex systems. Recently we have achieved the following
result. In real complex systems the informational measure of the chaotic
character (IMC) can serve as a reliable quantitative estimation of the state
of a complex system and helps to estimate the deviation of this state from its
normal condition. As the IMC we suggest the statistical spectrum of the non-
Markovity parameter (NMP) and its frequency behaviour. Our preliminary
studies of real complex systems in cardiology, neurophysiology and seismology
have shown that the NMP has diverse frequency dependence. It testifies to
the competition between Markovian and non-Markovian, random and regular
processes and makes a crossover from one relaxation scenario to the other
possible. On this basis we can formulate the new concept in the study of
the manifestation of chaoticity. We suggest the statistical theory of discrete
non-Markov stochastic processes to calculate the NMP and the quantitative
evaluation of the IMC in real complex systems. With the help of the IMC we
have found the evident manifestation of chaoticity in a normal (healthy) state
of the studied system, its sharp reduction in the period of crises, catastrophes
and various human diseases. It means that one can appreciably improve the
state of a patient (of any system) by increasing the IMC of the studied live
system. The given observation creates a reliable basis for predicting crises and
catastrophes, as well as for diagnosing and treating various human diseases,
Parkinson’s disease in particular.

1 Introduction

Today the study of the manifestations of chaos in real complex systems of di-
verse nature has acquired great importance. The analysis of some properties
and characteristics of real complex systems is impossible without a quantita-
tive estimate of various manifestations of chaos. The dynamics or evolution
of the system can be predicted by the change of its chaoticity or regularity.
The discovery of the phenomenon of chaos in dynamic systems has changed



176 R.M. Yulmetyev et al.

the attitude with regard to the functioning of complex systems, a human or-
ganism in particular. The chaos is the absence of regularity. It characterizes
the randomness and the unpredictability of the changes of the behaviour of a
system. At the same time, the presence of chaos in dynamic systems does not
mean it cannot be taken under control. Instability of dynamic systems in the
state of chaos creates special sensitivity to both external and internal influ-
ences and perturbations. The series of weak perturbations of the parameters
of the system allows to change its characteristics in the required direction.
“Chaos” is frequently understood as a determined dynamic chaos, that is,
the dynamics depend on the initial conditions, parameters.

Lasers, liquids near the threshold of turbulence, devices of nonlinear op-
tics, chemical reactions, accelerators of particles, classical multipartite sys-
tems, some biological dynamic models are examples of nonlinear systems with
manifestations of determined chaos. Now manifestations of chaos are being
studied in different spheres of human activity.

The control of the behaviour of chaotic systems is one of the most im-
portant problems. Most of the authors see two basic approaches to solve the
problems [1,2]. Both directions envisage a preliminary choice of a certain per-
turbation. The selected perturbation is used to exert influence on the chaotic
system. The first direction relies on an internal perturbation, the choice of
which is based on the state of the system. The perturbation changes the pa-
rameter or the set of parameters of the system, which results in the ordered
behaviour of the chaotic systems. The methods focusing on the choice of such
parameters (perturbations) are referred to as “methods with a feedback” [1]-
[6]. They do not depend on the studied chaotic system (model) as these
parameters can be selected by observing the system for some period of time.
One also considers that the methods with a delayed feedback [3, 7] belong
to the first direction. The second approach presupposes that the choice of
the external perturbation does not depend on the state of the chaotic system
under consideration. By affecting the studied system with the similar pertur-
bation, it is possible to change its behaviour. The present group of methods
is an alternative to the first one. These methods can be used in cases when
internal parameters depend on the environment [1, 8, 9].

Generally, when choosing internal (external) perturbations it is possible
to determine three basic stages: the estimation of the initial information, the
choice of the perturbation and the bringing of the chosen strategy of control
into action (its practical realization). At the first step the information on
the state of the studied system is collected. At the second stage the received
information is processed according to the plan or strategy of the control. On
the basis of the achieved results the decision on the choice of the internal
(of the external) perturbation is accepted. After that the chosen strategy of
chaos control is put into practice [2].

The initial idea of the present concept was to separate Markov (with
short-range time memory) and non-Markov (with long-range time memory)
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stochastic processes. However, the study of real complex systems has revealed
additional possibilities of the given parameter. Actually, the non-Markovity
parameter represents a quantitative measure of the chaoticity or regularity
of various states of the studied system. An increase of the given parameter
(ε1(0) � 1) corresponds to an increase of the chaoticity of the state of the
system. A decrease of the non-Markovity parameter means a greater ordering
(regularity) of the state of the system. The given observation allows one to
define a new strategy for estimating the chaoticity in real systems. This new
approach in chaos theory can be presented as an alternative to the existing
methods. Further analysis of the non-Markovity parameter allows one to
define the degree of chaoticity or regularity of a state of the system.

In this work the new strategy for the study of manifestations of chaotic-
ity is applied to real complex systems. The possibilities of the new approach
are revealed at the analysis of the experimental data on various states of a
human organism with Parkinson’s disease. Parkinson’s disease is a chronic
progressing disease of the brain observed in 1–2% of elderly people. The given
disease was described in 1817 by James Parkinson in the book “An essay on
the shaking palsy”. In the 19th century the French neurologist Pierre Marie
Charcot called this disease “Parkinson’s disease”. The steady progress of the
symptoms and yearly impairment of motor function is typical of Parkinson’s
disease. Complex biochemical processes characteristic of Parkinson’s disease
result in a lack of dopamine, a chemical substance which carries signals from
one nerve cell to another. The basic symptoms typical of Parkinson’s dis-
ease form the so-called classical triad: tremor, rigidity of muscles (disorder of
speech, amimia), and depression (anxiety, irritability, apathy). The disease
steadily progresses and eventually the patient becomes a helpless invalid. The
existing therapy comprises a set of three basic treatments: medical treatment,
surgical treatment and electromagnetic stimulation of the affected area of the
brain with the help of an electromagnetic stimulator. Today this disease is
considered practically incurable. The treatment of patients with Parkinson’s
disease requires an exact estimate of the current state of the person. The
offered concept of research of manifestations of chaoticity allows one to track
down the least changes in the patient with the help of an exact quantitative
level of description.

Earlier we found out an opportunity for defining the predisposition of a
person to the frustration of the central nervous system due to Parkinson’s
disease [13]. Our work is an extension and development of the informational
possibilities of the statistical theory of discrete non-Markov random processes
and the search for parameters affecting the health of a subject.
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2 The Statistical Theory of Discrete Non-Markov
Random Processes. Non-Markovity Parameter
and its Frequency Spectrum

The statistical theory of discrete non-Markov random processes [10–12] forms
a mathematical basis for our study of complex live systems. The theory allows
one to calculate the wide quantitative set of dynamic variables, correlation
functions and memory functions, power spectra, statistical non-Markovity
parameter, kinetic and relaxation parameters. The full interconnected set of
these variables, functions and parameters creates a quantitative measure of
chaoticity used for the description of processes, connected with the function-
ing of alive organisms.

We use the non-Markovity parameter ε as a quantitative estimate of the
non-Markov properties of the statistical system. The non-Markovity para-
meter allows to statistical processes into Markov processes (ε → ∞), quasi-
Markov processes (ε > 1) and non-Markov processes (ε ∼1). Besides the
non-Markovity parameter we also use the spectrum of the non-Markovity
parameter. We define the spectrum as the set of all values of the physical pa-
rameter used for describing the state of a system or a process. Let’s consider
the first and the nth kinetic equations of the chain of connected non-Markov
finite-difference kinetic equations [10,11]:

∆a(t)
∆t

= λ1a(t) − τΛ1

m−1∑
j=0

M1(jτ)a(t− jτ) , (1)

· · ·
∆Mn(t)

∆t
= λn+1Mn(t) − τΛn+1

m−1∑
j=0

Mn+1(jτ)Mn(t− jτ).

The first equation is based on the Zwanzig–Mori kinetic equation of nonequi-
librium statistical physics:

da(t)
dt

= −Ω2
1

∫ t

0

dτM1(jτ)a(t− jτ) .

Here a(t) is a normalized time correlation function (TCF):

lim
t→0

a(t) = 1, lim
t→∞ a(t) = 0 .

The zero memory function a(t) and the first-order memory function M1(t)
in (1),
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M0(t) = a(t) =
〈A0

k(0)Am
m+k(t)〉

〈|A0
k(0)|2〉 , t = mτ,

M1(jτ) =
〈A0

k(0)L̂12{1 + iτ L̂22}jL̂21A
0
k(0)〉

〈A0
k(0)L̂12L̂21A0

k(0)〉 , M1(0) = 1.

A0
k(0) = (δx0, δx1, δx2, · · · , δxk−1),

Am
m+k(t) = (δxm, δxm+1, δxm+2, · · · , δxm+k−1),

describe statistical memory in complex systems with a discrete time (A0
k(0)

and Am
m+k(t) are the vectors of the initial and final states of the studied

system). The operator L̂ is a finite-difference operator:

iL̂ =
∆
∆t
, ∆t = τ ,

where τ is a discretization time step, L̂ij = ΠiL̂Πj (i, j = 1, 2) are matrix
elements of the splittable Liouville quasi-operator, Π1 = Π,Π2 = P = 1−Π
and Π are projection operators.

Let us define the relaxation times of the initial TCF and of the first-order
memory function M1(t) as follows:

τa = Re
∫ ∞

0

a(t)dt, τM1 = Re
∫ ∞

0

M1(t)dt, . . . , τMn
= Re

∫ ∞

0

Mn(t)dt .

Then the spectrum of the non-Markovity parameter {ε} is defined as an
infinite set of dimensionless numbers:

{εi} = {ε1, ε2, . . . , εn, . . .} ,
ε1 =

τa
τM1

, ε2 =
τM1

τM2

, . . . , εn =
τMn

τMn+1

,

ε =
τrel
τmem

. (2)

Note that a(t) = M0(t). The number εn characterizes the ratio of the re-
laxation times of the memory functions Mn and Mn+1. If for some n the
value of the parameter εn → ∞, then this relaxation level is Markovian. If εn
changes in limits from zero to a unit value, then the relaxation level is defined
as non-Markovian. The times τrel (relaxation time) and τmem (memory life
time) appear when the effects of the statistical memory in the complex dis-
crete system are taken into account by means of the Zwanzig–Mori method
of kinetic equations. Thus, the non-Markovity parameter spectrum is defined
by the stochastic properties of the TCF.

In [10] the concept of generalized non-Markovity parameter for a frequency-
dependent case was introduced:

εi(ω) =
(
µi−1(ω)
µi(ω)

) 1
2

. (3)
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Here as µi(ω) we have the frequency power spectrum of the ith memory
function:

µ1(ω) = |Re
∫ ∞

0

M1(t)eiωtdt|2, . . . , µi(ω) = |Re
∫ ∞

0

Mi(t)eiωtdt|2 .

The use of εi(ω) allows one to find the details of the frequency behaviour
of the power spectra of the time correlations and memory functions.

3 The Universal Property of Informational
Manifestation of Chaoticity in Complex Systems

In our work the discussion of the manifestation of chaoticity is carried out on
the basis of a statistical invariant which includes a quantitative informational
measure of chaoticity and pathology in a covariant form. The existence of
this invariant is very important for taking decisions in the problems related
to medicine as well as for analysing a wide area of physical problems related
to complex systems of various nature.

In each live organism there is a universal informational property of the
following form:

IMC + IMP = Invariant . (4)

Here IMC is an informational (quantitative) measure of chaoticity for the
concrete live system, IMP is an informational measure of a pathological state
of a live organism. As an informational (quantitative) measure of the degree of
chaoticity (regularity) we propose to use the first point of the non-Markovity
parameter at zero frequency: ε1(0) = [µ0(0)/µ1(0)]1/2. The physical sense of
the parameter consists in comparing the relaxation scales of the time cor-
relation function (a(ω)) to the memory functions of the first order (µ(ω)).
Depending on the values of this parameter one can discriminate Markov
processes (with short-range memory) and non-Markov processes (with long-
range memory effects). Thus, the phenomena distinguished by the greatest
chaoticity correspond to Markov processes. Non-Markov processes are con-
nected with greater regularity. The informational measure of a pathological
state (IMP) defines the qualitative state of a real live system.

The quantitative estimate IMC of the degree of chaoticity of a system con-
tains the information on a pathological state of the system. It testifies to the
close interrelation of the given quantities. A high degree of chaoticity is char-
acteristic of a normal physiological state. In a pathological state the degree of
chaoticity decreases. A high degree of regularity is typical of this condition.
Thus, the quantitative estimate of the chaoticity in live systems allows one to
define their physiological or pathological state with a high degree of accuracy.
In the right-hand side of (4) we have a statistical invariant, which reveals the
independence of the physical (as well as biophysical, biochemical and bio-
logical) laws in the given live organism from the concrete situations as well
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as the methods of description of these situations. The invariance, submitted
in (4), is formulated as the generalization of the experimental data. Among
other physical laws the properties of invariance reflect the most general and
profound properties of the studied systems and characterize a wide sphere
of phenomena. Equation (4) reflects an informational observation. It consists
of two informational measures: the measure of chaoticity and the measure of
pathology (disease).

Let us use the operator of transformation T (S′, S) in both parts of (4). It
realizes the transition of the system from one state S to another one S′. By
taking into account the statistical invariance I(S′) = T (S′, S)I(S) = I(S) in
the right-hand side of (4) we get:

∆P = P (S′) − P (S) = −∆C = −{C(S′) − C(S)},∆P + ∆C = 0 . (5)

Here the following designations are introduced: I(S) = Invariant, P (S) =
IMP(S) is an informational measure of pathology (disease) for the state S,
C(S) = IMC(S) is an informational measure of the chaoticity for the state
of patient S. Besides in (5) we take into account the rules of transformation:

C(S′) = T (S′, S)C(S), P (S′) = T (S′, S)P (S) . (6)

Equations (4)–(6) are rather simple but they make the quantitative de-
scription of the state of a patient possible, both during the disease and under
the medical treatment. Equations (4)–(6) have a general character. They are
true for many complex natural and social systems. It is possible to develop
the algorithms of prediction of various demonstrations of chaos in complex
systems of diverse nature on the basis of these equations.

4 The Quantitative Factor of Quality of a Treatment

One of the major problems of the medical physics consists in the develop-
ment of a reliable criterion to estimate the quality of a medical treatment,
a diagnosis and a forecasting of the behaviour of real live complex systems.
As one can see from the previous section, such a criterion should include the
parameter of the degree of randomness in a live organism. The creation of a
quantitative factor for the quality of a treatment QT is based on the behav-
iour law of the non-Markovity parameter ε1(0) in the stochastic dynamics of
complex systems. The greater values of the parameter ε1(0) are character-
istic of stable physiological states of systems; the smaller ones are peculiar
for pathological states of live systems. Thus, by the increase or reduction
of the non-Markovity parameter one can judge the physiological state of a
live organism with a high degree of accuracy. Therefore the non-Markovity
parameter allows one to define the deviation of the physiological state of a
system from a normal state.
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The factor QT defines the efficacy or the quality of the treatment and is
directly connected with the changes in the quantitative measure of chaoticity
in a live organism. We shall calculate it in a concrete situation. Let us consider
1 as the patient’s state before therapy, and 2 as the state of the patient after
certain medical intervention. Then ε1(1) and ε1(2) represent quantitative
measures of the chaoticity for the physiological states 1 and 2. The ratio δ of
these values (δ = ε1(2)/ε1(1)) will define the efficacy of the therapy. Various
jth processes occur simultaneously in the therapy. Therefore the total value
of δ can be defined by the following way:

δ =
n∏

j=1

εj1(2)
εj1(1)

, (7)

where j = 1, 2 . . . n is the number of factors affecting the behaviour of the non-
Markovity parameter. However, the natural logarithm ln δ is more convenient
for use.

Then we have:

δ > 1, ln δ > 0 ;
δ = 1, ln δ = 0 ;
δ < 1, ln δ < 0 .

The three values of δ mentioned above correspond to the three different
qualities of treatment: effective, inefficient and destructive treatment. They
reflect an increase, preservation and reduction of the measure of the chaoticity
in the therapy. Thus, one can define QT (ε) = ln δ according to (7) as follows:

QT (ε) = ln
n∏

j=1

εj1(2)
εj1(1)

. (8)

However, the total factor QT is defined both by the quantitative measures
of the chaoticity and by other physiological and biochemical data. Now we
shall consider the transition of the patient from state 1 into state 2. Then
by analogy, one can introduce the physiological parameter k(1), determined
for state 1, and k(2) for state 2. In the case of Parkinson’s disease one can
introduce the amplitude or the dispersion of the tremor velocity of some
extremities (hand or leg) of the patient as this parameter. In other cases any
medical data, which is considered for diagnostic purposes, can be used. For
greater reliability it is necessary to use the combination of various parameters
kj(1) and kj(2).

The value:

QT = ln
n∏

j=1

εj1(2)
εj1(1)

kj(2)
kj(1)

(9)

will be considered as a generalized quantitative factor of quality of the ther-
apy.
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However in real conditions it is necessary to increase or weaken the mag-
nitude of chaotic, or physiological contributions to (9). For this purpose we
shall take the simple ratio:

ln
∏

(anbm . . .) = n ln a+m ln b+ · · ·
By analogy, we can reinforce or weaken various contributions depending on
the concrete situation:

QT = ln
n∏

j=1

(
εj1(2)
εj1(1)

)mj (
kj(2)
kj(1)

)pj

. (10)

If incomplete experimental data are available in some situations, one can
assume pj = 1 (attenuation of the physiological contribution). A valuemj > 1
can mean an amplification of the chaotic contribution. Otherwise, if we want
to weaken the chaotic contribution, we should take mj = 1 and if we want
to reinforce the physiological contribution we come towards pj > 1. We have
presented the results of the calculation of the quantitative factor QT below
in Sect. 6

5 Experimental Data

We have taken the experimental data from [15]. They represent the time
records of the tremor velocity of the index finger of a patient with Parkinson’s
disease (see, also http://physionet.org/physiobank/database/). The effect of
chronic high frequency deep brain stimulation (DBS) on the rest tremor was
investigated [15] in a group of subjects with Parkinson’s disease (PD) (16
subjects). Eight PD subjects with high amplitude tremor and eight PD sub-
jects with low amplitude tremor were examined by a clinical neurologist and
tested with a velocity laser to quantify time and frequency domain char-
acteristics of tremor. The participants received DBS of the internal globus
pallidus (GPi), the subthalamic nucleus (STN) or the ventrointermediate nu-
cleus of the thalamus (Vim). Tremor was recorded with a velocity laser under
two conditions of DBS (on–off) and two conditions of medication (L-Dopa
on–off).

All the subjects gave informed consent and institutional ethics procedures
were followed. The selected subjects were asked to refrain from taking their
medication at least 12 h before the beginning of the tests and were not allowed
to have more than one coffee at breakfast on the two testing days. Rest
tremor was recorded on the most affected side with a velocity-transducing
laser [16, 17]. This laser is a safe helium–neon laser. The laser was placed
at about 30 cm from the index finger tip and the laser beam was directed
perpendicular to a piece of reflective tape placed on the finger tip. Positive
velocity was recorded when the subjects extended the finger and negative
velocity when the subjects flexed the finger.
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The conditions, counterbalanced across subjects, included the following:

1. The L-Dopa condition (no stimulation).
2. The DBS condition (stimulation only).
3. The “off” condition (no medication and no stimulation).
4. The “on” condition (medication on and stimulation on).
5. The effect of stopping DBS on tremor (time record of the tremor 15, 30,

45 and 60 min after having switched the stimulator off).

In Fig. 1 the time records of the velocity of changing tremor of the index
finger of the second patient’s hand (man, 52 years old) under various condi-
tions of influence on the organism are submitted as an example. High tremor
velocity is observed: 1) in a natural condition of the patient (a), 2) 15 (45)
minutes after the stimulator was switched off. Lower tremor speed occurs:
1) when both methods (stimulation, medication) are used, 2) when each of
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Fig. 1. The velocity of the change of tremor of the index finger of the patient’s
right hand (the second subject) with Parkinson’s disease under various conditions
of the experiment. (a) deep brain stimulation off, medication off; (b) the subject
was receiving stimulation of the GPi, medication on; (c) deep brain stimulation off,
medication on; (d) the subject was receiving stimulation of the GPi, medication
off; (e)–(h) the recording of rest tremor in the right index finger of the subject
15 (30, 45, 60) minutes after the stimulator was switched off, this subject was off
medication for at least 12 hours
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these methods is used separately, 3) 30 (60) minutes after the stimulator was
switched off. Similar results are presented in [15].

6 Results

In this section the results obtained by processing the experimental data for
one of the patients (subject number 2) are shown. Similar or related pictures
are observed in the experimental data of other subjects.

6.1 The Non-Markovity Parameter as a Quantitative Measure
of Defining Chaoticity

In this subsection the technique to calculate quantitative and qualitative
criteria under various conditions influencing the state of a patient is given.
The basic idea of the approach consists in defining the quantitative ratio
between chaoticity and regularity of the observed process. It allows one to
judge the physiological (pathological) state of a live system by the degree of
chaoticity or of regularity. The highest degree of chaoticity in the behaviour
of a live system corresponds to a normal physiological state. Higher degree of
regularity or specific ordering is characteristic of various pathological states
of a live system. In the given work we use the non-Markovity parameter
ε1(0) as a special quantitative measure defining chaoticity or regularity of
the studied process. The examples [10–14], [18] which have been investigated
by us earlier serve as a basis for such a reasoning. As one of the examples
we shall consider the tremor velocity of the changing of the subject’s index
fingers in the case of Parkinson’s disease.

The comparative analysis of the initial time record and the non-Markovity
parameter for all the submitted experimental data allows one to discover
the following regularity. The value of the non-Markovity parameter ε1(0)
decreases with the increase of the tremor velocity of the patient’s fingers
(deterioration of the physiological state) and grows with the decrease of the
tremor velocity (improvement of the state of the patient). We shall also con-
sider the power spectrum µ0(ω) of the initial TCF under various conditions
influencing an organism, the window-time behaviour of the power spectrum
µ0(ω) and the non-Markovity parameter ε1(ω), the time dependence local
averaging relaxation parameter λ1(t) as additional sources of information.

Figure 2 represents the power spectrum of the initial TCF for various
experimental conditions. One can observe a powerful peak in all the figures
at the characteristic frequency ω = 0.07 f.u.(ω = 2πν, 1 f.u. = 2π/τ, τ =
10−2 s). The amplitude values of this peak for µi(ω) (i = 1, 2, 3) are given in
Table 1. The given peak testifies to a pathological state of the studied system.
A similar picture is observed in patients with myocardial infarction [11]. The
comparison of these values reflects the amplitude of the tremor velocity at
the initial record of time.
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Fig. 2. The power spectrum µ0(ω) of the initial TCF for the velocity of changing
of tremor of subject number 2 under various conditions that influence an organ-
ism. (a) deep brain stimulation on, medication on; (b) deep brain stimulation on,
medication off; (c) deep brain stimulation off, medication on; (d) deep brain stim-
ulation off, medication off; (e)–(h) the power spectrum µ0(ω) of the initial TCF
for the recording of rest tremor in the right index finger of the subject 15 (30, 45,
60) minutes after the stimulator was switched off, medication off. At the frequency
ω = 0.07 f.u., with 1 f.u. = 100 Hz (the characteristic frequency), a peak is found.
The presence and amplitude of this peak are determined by the state of the patient

Table 1. The value µ0(ω) for the initial TCF and µi(ω) (i = 1, 2, 3) for the memory
functions of junior orders at the frequency ω = 0.07 f.u. 1: Deep brain stimulation;
2: Medication (subject number 2). For example, OFF OFF – no DBS and no med-
ication

ON ON OFF OFF 15 30 45 60
ON OFF ON OFF OFF OFF OFF OFF

µ0 75 250 812 1.71 × 104 4.34 × 104 1.53 × 104 2.51 × 104 3.68 × 104

µ1 19 52 1.28 × 103 1.17 × 104 3.21 × 104 1.32 × 104 1.82 × 104 2.8 × 104

µ2 42 60 113 71 300 62 137 224
µ3 37 54 141 73 147 74 152 186
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In Table 1 the second patient’s amplitude values µ0(ω) for the initial TCF
and the memory functions of junior orders µi(ω) (i = 1, 2, 3) at the frequency
ω = 0.07 f.u. are submitted. The terms of the first row define the conditions
under which the experiment is carried out. Under all conditions a power peak
at the frequency ω = 0.07 f.u. can be observed. The amplitude values of the
given peak (in particular in the power spectrum µ0(ω)) reflect the amplitude
of the tremor velocity. For example, the least amplitude 75 τ2 corresponds
to the condition (ON, ON; or: deep brain stimulation on, medication on).
The highest amplitude 4.34×104τ2 corresponds to the greatest tremor speed
(see Figs. 1e, 2e). Thus, the given parameter can be used to estimate the
physiological state of a patient. A similar picture is observed in all other
patients.

In Fig. 3 the initial time record (the normal state of the subject; OFF,
OFF) and the window-time behaviour of the power spectrum of the TCF (the
technique of the analysis of the given behaviour is considered in Ref. [18])
are submitted. In these figures regions 1, 2, 3, which correspond to the least
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Fig. 3. The initial time series and the window-time behaviour of the power spec-
trum µ0(ω) of the TCF. Two figures are submitted to illustrate the case of subject
number 2: no stimulation of the brain and no medication. The change of regimes
in the initial time series is reflected in the decrease of the tremor velocity (regions
1, 2 and 3) and becomes visible as a sharp reduction of the power spectrum µ0(ω)
(see, the 1st, 12th, 17th windows for more details)
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values of the tremor velocity are shown. The minimal amplitude of the peaks
of the power spectrum µ0(ω) corresponds to the regions with the least tremor
velocity.

In Fig. 4 the frequency dependence of the first point of the non-Markovity
parameter ε1(ω) is submitted for the second subject under various experimen-
tal conditions. The value of the parameter ε1(0) at zero frequency is of special
importance for our study of manifestations of chaoticity. It is possible to judge
the change of the state of a subject by the increase (or by the decrease) of
this value. The comparative analysis of the initial time records allows one to
come to similar conclusions. In Figs. 4d–h a well-defined frequency structure
of the non-Markovity parameter can be seen. This structure is completely
suppressed and disappears only when during the treatment. The characteris-
tic frequency of the fluctuations corresponds approximately to ω = 0.06 f.u.
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Fig. 4. The first point of the non-Markovity parameter ε1(ω) for the second subject
under various experimental conditions: (a) deep brain stimulation off, medication
on; (b) deep brain stimulation on, medication on; (c) deep brain stimulation on,
medication off; (d) deep brain stimulation off, medication off; (e)–(h) the recording
of rest tremor in the right index finger of the subject 15 (30, 45, 60) minutes after
the stimulator was switched off, medication off. The non-Markovity parameter at
zero frequency ε1(0) plays a special role. These values (6.02 in the first case and
1.0043 in the last one) define the chaoticity or the regularity of the studied states.
The amplitudes of these values also characterize the state of the subject
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These multiple peaks are the most appreciable at low frequencies. At higher
frequencies these fluctuations are smoothed out. As can be seen in these
figures, the 2nd subject has a strong peak which remains stable over time.
As our data show, the comb-like structure with multiple frequencies can be
observed in all patients with high tremor velocity. In a group of patients
with low tremor velocity it disappears, and a wider spectrum that presents
some fluctuations over time is observed. The present structure testifies to
the presence of characteristic frequency of fluctuations of tremor of human
extremities.

In Table 2 the dispersion interval of the values and the average value ε1(0)
for the whole group of subjects (16 subjects) are submitted. Let us consider 2
conditions: OFF, OFF and OFF, ON. In the first case the dispersion interval
and the average value ε1(0) are minimal. It means the presence of a high
degree of regularity of the physiological state of the patient. The degree of
regularity is appreciably reduced when applying any method of treatment.
Here the degree of chaoticity grows. The maximal degree of chaoticity corre-
sponds to the condition OFF, ON (medication is used only). The difference
in ε1(0)av.val with medication and without it (OFF, OFF) is 3.8 times (!).
On the basis of the comparative analysis of the given parameters the best
method of treatment for each individual case can be found. It is necessary
to note, that the given reasoning is true only for the study of the chaotic
component of the quantitative factor of the quality of treatment QT . The
most trustworthy information about the quality of treatment can be given
by the full quantitative factor QT which takes account of other diagnostic
factors.

Table 2. The dispersion interval ε1(0)int of the values and the average value
ε1(0)av.val of the first point of the non-Markovity parameter under various ex-
perimental conditions for the group of 16 subjects. 1: Deep brain stimulation; 2:
Medication

OFF
OFF

ON
OFF

OFF
ON

ON
ON

15
OFF

30
OFF

45
OFF

60
OFF

ε1(0)int 1–1.8 2–18 2–22 1.5–8 1.5–3 1.8–5 1.7–4.5 2–6
ε1(0)av.val 1.41 4.14 5.31 3.17 2.43 2.92 2.76 2.93

The results of the calculation of the quantitative factor QT are shown in
Table 3. The data are submitted for a single patient and for the whole group.
Here QT (ε) is the chaotic contribution to the quantitative factor (see (8)). QT

is the total quantitative factor (see (10)), where ε(1)(1) and ε(1)(2) are the
chaotic contributions for the tremor amplitudes k(1)(1), k(1)(2); ε(2)(1) and
ε(2)(2) are the dispersions of the tremor amplitudes k(2)(1), k(2)(2) (physio-
logical contributions). The full factor QT provides detailed information about
the quality of the treatment. The present factor includes both the chaotic
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Table 3. The quantitative factor QT (ε) and the total quantitative factor QT for
the second patient and for the whole group (16 subjects). 1: Deep brain stimulation;
2: Medication. mj = 1, pj = 1

2nd
patient

OFF
OFF

ON
OFF

OFF
ON

ON
ON

15
OFF

30
OFF

45
OFF

60
OFF

QT (ε) 0.758 2.556 1.756 0.291 0.438 0.041 0.017
QT 1.763 2.013 2.654 –0.013 0.883 –0.004 0.856

Whole
group

QT (ε) 1.077 1.326 0.810 0.544 0.728 0.671 0.731
QT 3.661 2.883 4.071 1.47 1.734 1.624 1.742

component QT (ε), and the physiological contribution QT (k). The calculation
of QT (k) is described in Sect. 4. One can define the quality of a treatment
by means of QT . The positive value of the given factor defines an effective
treatment. For a separate patient and for the whole group, QT reaches its
maximal value under the conditions ON, ON. The total quantitative factor is
supplemented by a diagnostic (physiological) component. It allows one to take
into account those features of the system which the chaotic component does
not contain. For the second patient under condition 15 OFF (see Table 3)
the factor QT has a negative value. It testifies to the negative influence of the
given treatment on the organism of the patient. The best treatment is thus
the combination of the two medical methods: electromagnetic stimulation
and medication.

Figure 5 reflects the behaviour of the parameter ε1(0) for four different
subjects. The points lying above the horizontal line testify to an improvement
of the state of the subject and the efficacy of the treatment. The points,
lying below the horizontal line testify to a deterioration of the state of the
subject and the inefficiency of the applied treatment. For example, Fig. 5b
corresponds to the sevenfold change of the quantitative measure of chaoticity
for the 9th patient. In the case of the 8th patient (see Fig. 5c) no influence
could change the measure of the chaoticity. Therefore there was practically
no change in the state of the subject either. In some cases (see Figs. 5b, 5d)
the DBS or the medication reduces the measure of chaoticity which testifies
to a deterioration of the state of the subject. This approach allows one to
define the most effective (or inefficient) treatment in each individual case.

6.2 The Definition of a Predictor of Sudden Changes
of the Tremor Velocity

In this subsection the window-time behaviour of the non-Markovity para-
meter ε1(ω) for a certain case (the second patient, two methods of medical
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Fig. 5. The behaviour of the parameter ε1(0) for four various patients: (a) the
second subject, high amplitude tremor, (b) the 9th subject, low amplitude tremor
(the stimulation of the GPi); (c) the 8th subject, high amplitude tremor, (d) the
15th subject, low amplitude tremor (the stimulation of the STN). The value of ε1(0)
for seven consecutive conditions of the experiment: 1 - both methods are used; 2 -
treatment by medication is applied only; 3 - the DBS is used only; 4 (5, 6, 7) -
value of the parameter 15 (30, 45, 60) minutes after the stimulator was switched
off; the horizontal line corresponds to the value of the parameter when no method
is used. This representation allows one to define the most effective treatment for
each patient

treatment were used) and the procedure of local averaging of the relaxation
parameters are considered. These procedures allow one to determine specific
predictors of the change of regimes in the initial time records.

The idea of the first procedure is, that the optimum length of the time
window (28 = 256 points) is found first. In the studied dependence (in our
case the frequency dependence of the first point of the non-Markovity pa-
rameter) the first window is cut out. Then the second window is cut out
(from point 257 to point 512), etc. This construction allows one to find the
local time behaviour of the non-Markovity parameter. At the critical mo-
ments when the tremor velocity increases the value of the non-Markovity
parameter comes nearer to a unit value. One can observe that the value of
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Fig. 6. The initial signal – the change of tremor velocity when the second patient
is treated by two methods – and the window-time behaviour of the first point of the
non-Markovity parameter ε1(ω). At the time of a sharp change of the mode (sharp
increase of the tremor velocity) in the behaviour of the initial time series (regions
1–7) a gradual decrease of the non-Markovity parameter down to a unit value (the
3rd, 6th, 10th, 14th, 17th, 20th, 27th windows) is observed. The decrease of the
non-Markovity parameter begins 2–2,5 s earlier than the tremor acceleration on an
initial series

the non-Markovity parameter starts to decrease 2–2.5 s before the increase of
the tremor velocity (see Fig. 6).

The idea behind the second procedure is the following: one can consider
the initial data set and take an N -long sample. We can calculate kinetic
and relaxation parameters for the given sample. Then we can carry out a
“step-by-step shift to the right”. Then we calculate kinetic and relaxation
parameters. After that we execute one more “step-by-step shift to the right”
and continue the procedure up to the end of the time series. Thus, the local
averaged parameters have a high sensitivity to the effects of intermittency
and non-stationarity. Any non-regularity in the initial time series is instantly
reflected in the behaviour of the local average parameters. The optimal length
of the sample is 120 points. In Figs. 7, 8 the initial time record and the
time dependence of the local relaxation parameter λ1(t) are shown in two
cases. The change in the time behaviour of the parameter λ1(t) begins 2–3 s
prior to the change of the regimes of the time record of the tremor velocity.
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Fig. 7. The change of the tremor velocity for the second patient (stimulation of the
brain and medication are not used) and the time dependence of the local relaxation
parameter λ1(t). The localization procedure allows one to find sudden changes of
relaxation regimes of the system under consideration. The largest amplitude values
of the local relaxation parameter are in the region of the lowest tremor velocity.
The change of the time behaviour of the parameter λ1(t) begins 2–3 s earlier than
the sharp change of the regimes in the initial time series appears

The increase of speed of the local relaxation parameter (λ1(t)) testifies to a
decrease of tremor velocity.

7 Conclusions

In this chapter we have proposed a new concept for the study of man-
ifestations of chaoticity. It is based on the application of the statistical
non-Markovity parameter and its spectrum as an informational measure of
chaoticity. This approach allows one to define the difference between a healthy
person and a patient by means of the numerical value of the non-Markovity
parameter. This observation gives a reliable tool for the strict quantitative
estimates that are necessary for the diagnosis and the quantification of the
treatment of patients. As an example we have considered the changes of
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Fig. 8. The change of the tremor velocity for the second patient (15 minutes after
the stimulator was switched off, medication off) and the time dependence of the local
relaxation parameter λ1(t). The site characterizing the minimal tremor velocity is
allocated. The increase and decrease of the local relaxation parameter occur 2.5 s
before the decrease or increase of the tremor velocity. The similar behaviour of
the parameter λ1(t) can be explained by its high sensitivity to the presence of
nonstationarity of the initial signal

various dynamic conditions of patients with Parkinson’s disease. The quanti-
tative and qualitative criteria used by us for the definition of chaoticity and
regularity of the investigated processes in live systems reveal new informa-
tional opportunities of the statistical theory of discrete non-Markov random
processes. The new concept allows one to estimate quantitatively the efficacy
and the quality of the treatment of different patients with Parkinson’s dis-
ease. It allows one to investigate various dynamic states of complex systems
in real time.

The statistical non-Markovity parameter ε1(0) can serve as a reliable
quantitative informational measure of chaoticity. It allows one to use ε1(0) for
the study of the behaviour of different chaotic systems. In the case of Parkin-
son’s disease the change of the parameter defines the change of a quantitative
measure of chaoticity or regularity of a physiological system. The increase of
the chaoticity reflects the decrease of the quantitative measure of pathol-
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ogy and the improvement of the state of the patient. The increase of the
regularity defines high degree of manifestation of pathological states of live
systems. The combined power spectra of the initial TCF µ0(ω), the three
memory functions of junior orders and the frequency dependence of the non-
Markovity parameter compose an informational measure which defines the
degree of pathological changes in a human organism.

The new procedures (the window-time procedure and the local averaging
procedure) give evident predictors of the change of the initial time signal.
The window-time behaviour of the non-Markovity parameter ε1(ω) reflects
the increase of the tremor velocity 2–2.5 s earlier. It happens when the non-
Markovity parameter approaches a unit value. The procedure of local averag-
ing of the relaxation parameter λ1(t) reflects the relaxation changes of physi-
ological processes in a live system. The behaviour of the local parameterλ1(t)
reacts to a sudden change of relaxation regimes in the initial time record 2–3 s
earlier. These predictors allow to lower the probability of ineffective use of
different methods of treatment.

In the course of the study we have come to the following conclusions:

– The application of medication for the given group of patients proved to
be the most efficient way to treat patients with Parkinson’s disease. Used
separately stimulation is less effective than the use of medication.

– The combination of different methods (medication plus electromagnetic
stimulator) is less effective than the application of medication or of stim-
ulation. In some cases the combination of medication and stimulation
exerts a negative influence on the state of the subject.

– After the stimulator is switched off its aftereffect has an oscillatory char-
acter with a low characteristic frequency corresponding to a period of
about 30 min.

– The efficacy of various medical procedures and the quality of a treatment
can be estimated quantitatively for each subject separately with utmost
precision.

However, if we take both chaotic and physiological components into ac-
count, the general estimation of the quality of treatment will be more univer-
sal. The combination of two methods (DBS and medication,QT = 4.071) pro-
duces the most effective result in comparison with the effect of DBS (3.661)
or of medication (2.883) given separately. This is connected with additional
aspects of the estimation of the quality of treatment due to the study of
both chaotic and diagnostic components of a live system. This conclusion
corresponds to the results of [15].

In conclusion we would like to state that our study gives a unique op-
portunity for the exact quantitative description of the states of patients with
Parkinson’s disease at various stages of the disease as well as of the treat-
ment and the recovery of the patient. On the whole, the proposed concept of
manifestations of chaoticity opens up great opportunities for the alternative
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analysis, diagnosis and forecasting of the chaotic behaviour of real complex
systems of live nature.

Acknowledgements

This work supported by the RHSF (Grant No. 03-06-00218a), RFBR (Grant
No. 02-02-16146) and CCBR of Ministry of Education RF (Grant No. E 02-
3.1-538). The authors acknowledge Prof. Anne Beuter for stimulating criti-
cism and valuable discussion and Dr. L.O. Svirina for technical assistance.

References

1. S. Boccaletti, C. Grebogi, Y.-C. Lai et al.: Phys. Reports 329 ,103 (2000)
2. H. Touchette, S. Lloyd: Physica A 331, 140 (2004)
3. K. Pyragas: Phys. Lett. A 170, 421 (1992)
4. E.R. Hunt: Phys. Rev. Lett. 67, 1953 (1991)
5. V. Petrov, V. Gaspar, J. Masere et al.: Nature 361, 240 (1993)
6. B.B. Plapp, A.W. Huebler: Phys. Rev. Lett. 65, 2302 (1990)
7. W. Just, H. Benner, E. Reibold: Chaos 13, 259 (2003
8. R. Lima, M. Pettini: Phys. Rev. A 41, 726 (1990)
9. Y. Braiman, J. Goldhirsch: Phys. Rev. Lett. 66, 2545 (1991)

10. R.M. Yulmetyev, P. Hänggi, F.M. Gafarov: Phys. Rev. E 62, 6178 (2000)
11. R.M. Yulmetyev, P. Hänggi, F. Gafarov, Phys. Rev. E 65, 046107 (2002)
12. R.M. Yulmetyev, F.M. Gafarov, P. Hänggi et al.: Phys. Rev. E 64, 066132

(2001)
13. R.M. Yulmetyev, S.A. Demin, N.A. Emelyanova et al.: Physica A 319, 432

(2003)
14. R.M. Yulmetyev, N.A. Emelyanova, S.A. Demin et al.: Physica A 331, 300

(2003)
15. A. Beuter, M. Titcombe, F. Richer et al.: Thalamus & Related Systems 1, 203

(2001); M. Titcombe, L. Glass, D. Guehl et al.: Chaos 11, 766 (2001)
16. A. Beuter, A. de Geoffroy, P. Cordo: J. Neurosci. Meth. 53, 47 (1994)
17. K.E. Norman, R. Edwards, A. Beuter: J. Neurosci. Meth. 92, 41 (1999)
18. R.M. Yulmetyev, P. Hänggi, F.M. Gafarov: JETP, 123, 643 (2003)



Monte Carlo Simulations of Ageing
and Speciation

Suzana Moss de Oliveira1,2 and Dietrich Stauffer1,3
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Köln, Euroland
stauffer@thp.uni-koeln.de

Summary. We present results from computer simulations of ageing and specia-
tion, using mostly the Penna bit-string model which is based on the mutation-
accumulation hypothesis.

1 Introduction

Verhulst would be 200 years old now, and the combined age of the present
authors is more than half that age. Therefore, it is appropriate if we apply
Verhulst death probabilities to simulations of biological ageing. But there is
more to life than eating, drinking, giving conference talks, and dying. We also
want to be better than others, like the Brazilians from São Paulo would like
when compared to those from Rio de Janeiro, or Homo Neanderthalis (living
in Düsseldorf) would like to be better than Homo Sapiens from Cologne.
This differentiation is called speciation if members from one group can no
longer have viable children with members of the other group. (The opposite
is not true: Both authors count themselves among homo sapiens and are
male and female but have no children together [1]). We concentrate here on
widespread simulations of ageing and on the few speciation theories which
take into account the ageing of the individuals. In particular we want to know
which ageing simulations explain the exponential growth of adult mortality
with increasing age, i.e. the Gompertz law from about the same time as
the Verhulst probability, and which theories explain the branching into two
species without the help of any river or mountain.

The Chowdhury model assumes ageing and then puts it into a foodweb
model. This model is reviewed elsewhere [2] and thus will not be given in this
chapter.

Sections 2.1 and 2.2 deal with the asexual Penna model of biological age-
ing and some of its applications and in Sects. 2.3 and 2.4 we present its
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sexual variant including some important results. Recent reviews are pub-
lished in [3–5], and an earlier exhaustive review including complete Fortran
programs and more biological literature is given in [6]. In Sect. 2.5 we present
alternative computer simulations performed in order to explore some other
possible reasons for biological ageing, different from mutation accumulation.
Finally, Sect. 3 is dedicated to more recent versions of the sexual Penna model
adapted to the study of sympatric speciation.

2 The Penna Model

2.1 Asexual Version

According to the mutation accumulation-theory, Darwinian selection pressure
tries to keep our genomes as clean as possible until reproduction starts. For
this reason we age: bad mutations that appear early in life are not transmitted
and disappear from the population, while those that become active late in life
can accumulate, decreasing our survival probability but without risking the
extinction of the species. The Alzheimer disease is a good example of such a
mechanism: although its corresponding defective gene is present in the genetic
code since birth, its effects generally appear at old ages (around 80). As a
consequence, this disease is a very common one. The Penna model’s dynamics
can be regarded as a computational realization of the mutation accumulation
theory.

In the original asexual version of the model [7] the chronological genome of
each individual is represented by a bit-string of 32 bits. Each bit corresponds
to one “year” in the individual lifetime, and consequently each individual
can live at most for 32 “years”. A bit set to one means that the individual
will suffer from the effects of a deleterious inherited mutation (genetic dis-
ease) in that and all following years. As an example, an individual with a
genome 10010... would start to become sick during its first year of life and
would become worse during its fourth year when a new disease appears. One
step of the simulation corresponds to reading one bit of all chronological
genomes. Whenever a new bit of a given genome is read, we increase by one
the individual’s age.

Selection pressure is modelled by the introduction of a threshold T for
the number of deleterious mutations that can be simultaneously active in
a living individual’s genome. Usually, the probability of death because of
genetic causes is assumed to be given by a step function Θ(Nmut − T ), with
Θ(x) = 1 if x ≥ 0 and = 0 otherwise; Nmut corresponds to the number of
accumulated diseases up to the current individual’s age. If T = 2, for instance,
the individual of the example above would die at age 4. Smoother functional
forms have also been used [8] but, except at very old ages, the fundamental
results of the Penna model do not appear to be sensitive to this choice.
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Death for non-genetic causes, representing the outcome of intra-specific
competition for the limited resources of the environment, is modelled by a
density- and time-dependent quantity, the Verhulst factor. This is a mean-
field death probability, given by

V (t) =
N(t)
Nmax

,

where N(t) is the total population at the beginning of time step t and Nmax is
the carrying capacity, that is, the maximum population size the environment
could support if no other causes of death would exist. We usually consider
Nmax ten times larger than the initial population N(0). At each time step and
for each individual a random number between zero and one is generated and
compared with V : if it is greater than V , the individual dies independently
of its age or genome. The larger the population size is, the higher is the
probability of an individual to die due to this death roulette.

The introduction of the Verhulst factor, or some equivalent form of lim-
iting factor for the total population, is a necessity in simulational models
to avoid population overflow. The one just presented has been criticized by
some authors, since really random deaths in nature are hardly observed.
In [9], for instance, the authors adopted the alternative strategy of killing
randomly only the newborns. In [10], simulations of the Penna model on a
lattice present an equivalent strategy.

If the individual survives until a minimum reproduction age R, it gen-
erates b offspring in that and all following years. The offspring genome is a
copy of the parent’s one, except forM mutations at randomly chosen genome
positions introduced at birth. Although the model allows good and bad mu-
tations, generally we consider only the bad ones. The reason is that harmful
mutations are around 100 times more frequent than the backward ones –
reverse mutations deleting harmful ones [11]. In this case, if a bit position
holding a bit 1 is randomly tossed in the parent’s genome, it remains 1 in
the offspring genome; however, if a bit zero is randomly tossed, it is set to 1
in the mutated offspring genome. In this way, for the asexual reproduction,
the offspring is always as good as or worse than the parent. Even so, a stable
population is obtained, provided the birth rate b is greater than a minimum
value [12].

2.2 Applications of the Asexual Version

A crucial test of ageing theories is the Pacific Salmon, which dies shortly after
producing offspring. Alternative theories of ageing, based on wear and tear,
on damage due to oxygen radicals, or on telomere depletion leading to the
Hayflick limit, can hardly explain this sudden death of previously healthy an-
imals. Within the mutation accumulation hypothesis as implemented in the
Penna model, it is explained very simply by introducing a maximum repro-
duction age: Random mutations acting for ages above that age are not weeded
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out by Darwinian selection pressure, and thus the bits for ages above the ces-
sation of reproduction are all mutated (if back mutations are prohibited).
Thus the animals die necessarily shortly after producing offspring. [13,14].

In the opposite direction, a good ageing model should also explain the
Gompertz law of the 19th century, which is well obeyed by modern humans
of industrialized countries:

q � µ ∝ exp(ba) ,

where q is the mortality at age a, i.e. the fraction of people dying between ages
a and a+1, but alive at age a. By definition this q cannot become bigger than
one and, for q > 1/2, it is better to use the mortality function µ � − ln(1−q),
also called the hazard factor [15]. This mortality function can increase above
unity and is defined as −d lnS(a)/da � ln[S(a)/S(a+ 1)], where S(a) is the
probability to survive from birth to age a. Figure 1 shows that the mortality
function for Germany around the year 2000 agrees, for adult men, very well
with the Gompertz law, and Fig. 2 shows that the Penna model reproduces
this law. For children, the standard Penna model, the Gompertz law, and
reality all differ from each other.

For old age, the last dozen years has raised the hope that the mortality of
the oldest old shows a maximum, a plateau, or at least a mortality deceler-
ation (i.e. a negative second derivative d2µ(a)/da2 with respect to age.) For
flies and some other animals this deviation is widely believed to hold [16]; in
the case of humans, for which demographic statistics are the most complete,
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Fig. 1. Mortality function µ for German men (from www.destatis.de) compared
with a Gompertz fit in this semilogarithmic plot
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Fig. 2. Mortality function µ for the standard asexual Penna model, counting (upper
data) or not (lower data) the deaths from the Verhulst factor. From [5]

lots of exaggerations are published in [14] which contradict existing reliable
data for Swedish or German men, Fig. 1. (Women usually obey less strictly
the Gompertz law.) Only above the age of 110 years does a plateau possibly
exist [15,17] but the statistics there are sparse, and systematic errors due to
age exaggeration seem still to play an important role in many industrialized
countries [17]. Perhaps with better statistics and better estimates of system-
atic errors the deviations of human mortalities from the Gompertz law will
have vanished in years to come. Nevertheless, several modifications of the
Penna model were published to give downward deviations from the Gom-
pertz law, first in [18] and perhaps best in [19]. For ecosystems with prey
and predator, He et al. [20] found strong oscillations with time on a lattice,
similar to those found in the solutions of the Lotka–Volterra equations.

The reason for ageing in the mutation accumulation theory is the high
selection pressure before the minimum age of reproduction is reached, and
the lack of such selection after the offspring is produced. This does not mean,
however, that only the minimum age of reproduction fixes the maximum
lifespan. Figure 3 shows that it also depends slightly on the length of the
genomic bit-string. Only if besides the minimum age of reproduction also
the mutation rate per bit is kept constant, do the results for long bit-strings
become independent of the bit-string length. There seem to be no simple
scaling laws how the mortality curves depend on this bit-string length [21].
Their simulations with sex are complemented here by our asexual simulations
in Fig. 4.
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This figure shows that for the longer genomes, the survival curve becomes
more rectangular than for the shorter genomes. This compression of mortality
was actually observed during the medical progress in most of the last two
centuries, though perhaps no longer in the last few decades in Europe. In
the extreme case it means that we remain healthy until our sudden death,
similar to Pacific Salmon [13]. But the genetic reasons for this rectangular
survival curve are different: Now nearly all bits become mutated to one,
independent of their position (age), for long genomes. Thus the individuals
die if their age reaches the threshold of tolerated diseases at which they die.
This threshold, as well as the mutation rate per genome and the minimum
age of reproduction, were taken as 1/8 of the genome length in this scaling
test. Following [9] we applied the Verhulst deaths only to the babies.

These simulations used the program given below, based on the one pub-
lished and explained in [6]. The bit-string consists of w computer words of
nbyte bytes each such that the overall genome lengths is 8wnbyte bits. This
parameter nbyte is defined in line 6 and the same number must be put into
line 7 after the integer*, except that integer*1 does not exist in usual
Fortran and needs to be replaced by byte. Thus the word length varies from
1 to 8 bytes. (The random integers ibm always use 8 bytes.)

c asexual version (females only); variation of genome size c

many words w for each genome; Verhulst\index{Verhulst} variable or

constant c Verhulst at birth only

implicit none

integer popdim,nbyte,nbit,nshift,w,nbiw

parameter(w=2,nbyte=8,popdim=100000,nbit=8*nbyte,nbiw=nbit*w)

integer*8 gen1f(popdim,w), gene1, p, bit(0:nbit)

c byte gen1f(popdim,w), gene1, p, bit(0:nbit)

integer popmax,inipop,maxstep,medstep,minage,fage,lim,fmut,

1 n6,t,i,seed,fa,n,imut,age,nmut,fpop,j,k,irun,nrun,agm,birth,

2 fnumber(0:nbiw),dataf(popdim)

parameter(popmax=popdim/10, inipop=popmax/10, maxstep=20000,

1 medstep=maxstep/2, minage= nbiw/8, fage=nbiw, lim=nbiw/8,

2 fmut=nbiw/8, birth=4, seed=2, nrun=1 )

real factor

integer*8 ibm,verhu,mult,fymed(0:nbiw),count(0:nbiw),ict

data n6/’00007FFF’X/

if(nbyte.eq.8) nshift=58

if(nbyte.eq.4) nshift=59

if(nbyte.eq.2) nshift=60

if(nbyte.eq.1) nshift=61

c

ict=0

ibm=2*seed-1

factor=(0.5/2147483647)/2147483647

mult=13**7
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mult=mult*13**6

print *, popmax,inipop,maxstep,medstep,minage,

1 fage,lim,fmut,birth,seed,nbit,w,nrun

bit(0)=1

do 2 i=0,nbiw

if(i.gt.0.and.i.lt.nbit) bit(i)=ishft(bit(i-1),1)

fymed(i)=0

fnumber(i)=0

count(i)=0

2 ibm=ibm*16807

do 29 irun=1,nrun

print *, irun

call flush(6)

do 28 i=0,nbiw

28 fnumber(i)=0

fpop=inipop

fnumber(0)=fpop

do 6 i=1,fpop

dataf(i)=0

do 6 k=1,w

6 gen1f(i,k)=0

c dataf: age at bits 0 to 14, mutations at 15 to 29

c

do 7 t=1,maxstep

if((t.le.100.and.t.eq.(t/10)*10).or.t.eq.(t/1000)*1000.or.

1 (t.le.1000.and.t.eq.(t/100*100)).or.t.le.10) then

if(irun.eq.1) print *, irun, t,fpop

call flush(6)

end if

c verhu=2147483648.0d0*(fpop*4.0/popmax-2.0)*2147483648.0d0

i=1

fa=fpop

9 age =iand(n6,dataf(i))

verhu=2147483648.0d0*(fpop*4.0/popmax-2.0)*2147483648.0d0

k=1+age/nbit

agm=mod(age,nbit)

nmut=iand(n6,ishft(dataf(i),-15))

n=iand(1,ishft(gen1f(i,k),-agm))

if(n.ge.1) nmut=nmut+1

fnumber(age)=fnumber(age)-1

age=age+1

if(nmut.ge.lim.or.age.eq.nbiw) then

c death

if(fpop.le.1) goto 1

do 21 k=1,w

21 gen1f(i,k)=gen1f(fpop,k)

dataf(i)=dataf(fpop)

fpop=fpop-1
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if(fpop.ge.fa) then

i=i+1

else

fa=fa-1

endif

else

c survival

fnumber(age)=fnumber(age)+1

dataf(i)=ior(age,ishft(nmut,15))

if(age.ge.minage.and.age.le.fage) then

do 12 n=1,birth

ibm=ibm*16807

if(ibm.lt.verhu) goto 12

c birth

fnumber(0)=fnumber(0)+1

fpop=fpop+1

if(fpop.gt.popdim) goto 1

dataf(fpop)=0

do 23 j=1,w

23 gen1f(fpop,j)=gen1f(i,j)

do 13 imut=1,fmut

ibm=ibm*16807

k=iabs(ibm)*factor*w+1

gene1=gen1f(i,k)

ibm=ibm*16807

p=bit(ishft(ibm,-nshift))

c mutations in mother

c gen1f(fpop,k)=ior(gene1,p)

gen1f(fpop,k)=ior(gen1f(fpop,k),ior(gene1,p))

13 continue

12 continue

c if(female suitable) then

endif

i=i+1

endif

c if(death) .. else (survival, birth) ..

if(i.le.fa) goto 9

c end of selection and birth, now start averages

if(t.lt.maxstep-medstep .or. t.ne.(t/10)*10) goto 7

do 10 i=0,nbiw

10 fymed(i)=fymed(i)+fnumber(i)

do 25 i=0,nbit

do 26 j=1,w

do 26 k=1,fpop

if(i+j.eq.1) ict=ict+1

gene1=gen1f(k,j)

age=i+nbit*(j-1)

26 count(age)=count(age)+iand(1,ishft(gene1,-i))
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25 continue

7 continue

29 continue

print100,(i,fymed(i)*1.0/medstep,count(i-1)*1.0/ict,i=1,nbiw)

100 format(1x,i5,2f13.5)

stop

1 print *, ’error’ ,t, fpop

stop

end

2.3 Sexual Version

In the sexual version of the Penna model [22, 23] the population is divided
into males and females. Individuals are diploids, with their genomes repre-
sented by two bit-strings that are read in parallel. Each bit-string contains
the genetic information inherited from one of the parents. In order to count
the accumulated number of mutations and compare it with the threshold T ,
it is necessary to distinguish between recessive and dominant mutations. A
mutation is counted if two bits set to 1 appear at the same position in both
bit-strings (homozygous) or if it appears in only one of the bit-strings (het-
erozygous) but at a dominant position (locus). The dominant positions are
randomly chosen at the beginning of the simulation and are the same for all
individuals.

After reaching the minimum reproduction age R, a female randomly
chooses a male with age ≥ R to breed. To construct one offspring genome first
the two bit-strings of the mother are cut in a random position (crossing), pro-
ducing four bit-string pieces. Two complementary pieces are chosen to form
the female gamete (recombination). Finally, Mf deleterious mutations are
randomly introduced. The same process occurs with the male’s genome, pro-
ducing the male gamete with Mm deleterious mutations (see Fig. 5). These
two resulting bit-strings form the offspring genome. The sex of the baby is
randomly chosen, with a probability of 50% for each one. This whole strat-
egy is repeated b times to produce the b offspring. The Verhulst killing factor
works in the same way as in the asexual reproduction.

2.4 Applications of Sexual Version

From the example of Pacific Salmon one could first guess that women should
not survive menopause, or more generally, females should not survive the end
of their reproductive phase (which is observed in many animals: [24], Austad
in [14]). Simulations [6] show that this is not so: Men are assumed to be able
to reproduce until their death, and then they also help women to survive
after menopause since the sex of the child is selected randomly; thus, within
this model, mutations relevant for old age accumulate equally for both men
and women, prohibiting to selectively kill women but not men.
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Fig. 5. Schematic representation of sexual reproduction in the Penna model using
bit-strings of only four bits (individuals would live at most for four “years”). Vertical
lines indicate crossover positions. Arrows indicate where random mutations were
introduced in each gamete. The union of the two gametes forms the offspring genome

These simulations only explain why menopause is possible and not why
it arises. For humans, cultural effects may be important [25]: Grandmothers
help in raising their grandchildren instead of giving birth. For animals, in
general, this explanation does not hold. Fortunately, simulations of the sexual
Penna model, with a lethal risk of giving birth increasing with age, and with a
certain age interval where offspring can survive only if their mother takes care
of them, have shown that cessation of female reproductive ability emerges by
itself, without being put in at the beginning [26], Fig. 6. This self-organisation
explains menopause or its analogues without recourse to any traits special
to humans; these computer simulations [26] were, to our knowledge, the first
quantitative explanations of menopause analogues for animals. Correlations
like those in Fig. 1 of [25] are also found in the Penna model (to be published).

Why do women live longer than men, in nearly all countries at present?
One of the authors claims that men drink too much wine and eat too many
steaks, as opposed to her. The other claims to be oppressed by women in
general and Mother Nature in particular, since he got only one X chromo-
some while women got two. Only the second claim thus far is confirmed by
computer simulations [27]: A bad mutation in one X chromosome does not
reduce the health if the other X chromosome is not mutated and if the bit-
position is recessive; for men with only one X chromosome this helpful effect
is impossible. However, the actual difference between male and female life
expectancies at birth in Sweden (no war since nearly two centuries) shows
drastic variations in time, Fig. 7, though always favouring women. Thus pre-
sumably both genetic and life-style reasons are important and may even be
coupled [28].
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Fig. 6. Fraction of females with a given age of menopause as a function of the
age of menopause. Circles: parental care for 5 years; Diamonds: parental care for 4
years; Line: no parental care

If men are slightly defective versions of women, why has Mother Nature
invented them? Why not follow bdelloid rotifers and some fungi [29], who have
lived without males since ∼ 108 years. Redfield [30] already questioned the
usefulness of males and was largely ignored by fellow biologists [31], while
her paper triggered many simulations of physicists reviewed in [3]. By as-
suming that mutations only kill the individual when enough of them have
accumulated, but that already before they reduce the survival probabilities
in addition to the Verhust deaths, an advantage of sexual versus asexual re-
production was found [32], in spite of the loss of births by a factor two (since
men don’t become pregnant). Much clearer is the situation for bacteria where,
without a separation of males and females, a clear advantage was found if
sometimes they exchange parts of their genome [33]. Also changes in the envi-
ronment favours sex [34]. However, no explanation was found yet explaining
why hermaphroditic reproduction is not clearly dominating over other forms
of life [3]. A good review of the biological questions is given in [35].
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Fig. 7. Difference between the female and male life expectancies at birth for Swe-
den, over more than two centuries

2.5 Other Models

The Dasgupta model [36] uses no bit-string as a genome but instead works
with survival probabilities. Originally it was thought not to give a large num-
ber of different ageing steps, but years later minor modifications solved this
problem. It even was successfully generalized to sexual reproduction.

Mueller and Rose [37] tried to find a mortality plateau for the oldest old;
it seems however that their simulations were not run long enough to get into
a good equilibrium. Charlesworth made simulations with the same aim, but
not many follow-up simulations are known to us [38]. Promislow [39] has very
recently published a senescence theory based on pleiotropic protein networks,
using the scale-free networks investigated by physicists. More similar to the
Penna model is the one of [40].

More follow-up was published for the Stauffer model [4] which revived the
century-old Weismann idea that we die to make place for our children. This
idea works if one assumes that the total number of offspring during the life of
an individual remains constant [41]. Thus random mutations which increase
the life span simultaneously reduce the birth rate per unit time. Normally
this model gives a mortality increasing linearly (not exponentially) with age,
as for mayflies (but not for humans). It was used for another confirmation
[42] that menopause and its analogues are not necessarily connected with
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grandmothers and human civilization: Death risk increasing with age was
sufficient to let menopause emerge by itself.

All these theories including the Penna model use the accumulation of
mutations over many generations, sometimes combined with antagonistic
pleiotropy, which has good effects at young age and bad effects at old age.
There may be entirely different reasons for ageing, like the wear and tear
which often ends the careers of athletes. Or oxygen radicals produced by nor-
mal metabolism may slowly damage the cells and their DNA; perhaps the
polyphenol resverotrol in red wine helps to scavenge these dangerous mole-
cules. But we are not aware of quantitative theories allowing a comparison
with real mortality functions.

The most recent quantitative theory known to us uses telomeres [43].
These are end segments of the DNA string; at each cell division, the dupli-
cation of the DNA causes the loss of one of these segments. If none of them
is left the cell no longer divides and has reached its Hayflick limit in vitro.
The enzyme telomerase may restore lost telomeres in vivo. Aviv et al sug-
gested, against widespread opinion, that telomere loss may be the reason for
ageing [44]. Masa et al [43] combined telomeres with cancer and showed that
genetic manipulation for longer telomeres may increase the risk of dying due
to cancer, which can prevail over the positive effect of longer telomeres on the
longevity. Figure 8 shows one of the resulting mortality functions, in striking
similarity with reality, Fig. 1.

3 Sympatric Speciation

3.1 Model with a Single Phenotypic Trait

Speciation involves the division of an already well-adapted species, so that
each part moves onto a new adaptive peak. This process is easily understood
if a species becomes subdivided by a physical barrier, like a river: Each part
experiences different mutations, population fluctuations and selective forces,
in what is called allopatric speciation. In contrast, conceiving the division of
a single population and radiation onto separate peaks without geographical
isolation, in what is called sympatric speciation, is intuitively more difficult.
Through which mechanism can a single population be converted into two
reproductively isolated segments in the absence of spatial barriers to prevent
gene exchange?

Many papers have appeared during the last 5 years, mainly produced
by biologists (see for instance [45, 46] and also [47] for a review), proposing
different mechanisms to explain the origins of sympatric speciation. We con-
centrate here on simulations including ageing. The first successful attempt
to simulate this phenomenon through the Penna model [48] was performed
using the same ingredients proposed in [45, 46], which are: competition for
resources (related to some ecological phenotypic trait of the individuals) and
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Fig. 8. Mortality function in a telomere model with cancer, from [43]. Note the
similarity with the plot for German men, Fig. 1

sexual selection (related to some phenotypic trait that determines sexual
preferences).

In the simulations presented in [48], the ecological and the sexual selection
traits were chosen to be the same. A sudden change of the food resources
provokes a change in the individuals’ phenotypes, favouring two substantially
different phenotypes (disruptive selection). Assortative mating (non random
mating) then leads to reproductive isolation between these two phenotypes,
followed by the elimination of all intermediate phenotypes (speciation). The
biological motivation of these simulations was to mimic a real phenomenon
observed in the Galapagos Islands [49–51], where the size of the available seeds
is dictated by the amount of rain. Depending on the season, the distribution
of these seeds changes from a broad one, centred at middle-sized seeds, to
a double-peaked distribution, of only small and large seeds. It has a great
impact on the morphology of beak sizes in the population of ground finches
that feed on these seeds: the distribution of beak sizes follows that of the
seeds, in a very fast process of adaptation.

The first step to implement the above ingredients was to introduce a phe-
notype into the Penna model. It was done by adding to the chronological
genome an extra-pair of non-age structured bit-strings of 32 bits each, repre-
senting the beak. The dynamics of reproduction and mutations are the same
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Fig. 9. Schematic representation of gamete formation in sexual reproduction,
adding now a non age-structured part to the chronological genome. Arrows indicate
where random (good and bad) mutations occurred. The same scheme applies to the
father’s genome (who cares about males?)

for both the age-structured and the new strings – for the latter, a mutation
that changes a bit from 1 to 0 is also allowed (Fig. 9).

The beak size is determined by counting, in this non-structured pair of
bit-strings, the number of recessive bit-positions (chosen as 16) where both
bits are set to 1, plus the number of dominant positions with at least one
of the two bits set. It will be a number n between 0, meaning a very small
beak, and 32, for a very large one. The second step was to make use of the
Verhulst factor to attribute a selective character to the beak size and to
change the competition between individuals from a general one to an intra-
specific competition, where animals with large (small) beaks dispute only
among them.

The new Verhulst factor is given by:

V (t) =
Nn(t)

NmaxF (n)
,

where Nn(t) accounts for the population that competes for resources avail-
able to individuals of beak size n. The fitness function F (n) is a measurement
of the individual’s ability to make use of food resources, depending on the
current distribution of seeds and its beak size. Nmax is the same carrying
capacity of the original Verhulst factor and so the practical role of the func-
tion F (n) is to increase or decrease this carrying capacity perceived by each
individual, depending on its beak size.

The simulations were done with two different functional forms for the
function F (n). At the beginning of the simulations, F (n) is a single-peaked
function with a maximum at n = 16, representing large availability of
medium-sized seeds. The whole population of finches will compete for the
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same resources and Nn(t) is the total population. After some number Nstep

of iterations, the function F (n) changes to a two-peaked shape, with max-
ima at n = 0 and n = 32, and now the food resources concentrate on either
small or large seeds, with a vanishing number of medium-sized ones. Only
small(large)-beaked individuals – those with n < (>)16 – can compete for
the small(large) seeds. For that reason, the death probability V (t) of an in-
dividual with n < (>)16 is computed by assigning to Nn(t) the number of
individuals with n < (>)16 plus half of the population that has n = 16. An
individual with n = 16 competes either for small or large seeds, and this
choice is random.

Finally, in order to simulate sexual selection a single locus was introduced
into the genome that codes for this selectiveness, also obeying the general
rules of the Penna model for genetic heritage and mutation. If it is set to
0, the individual will not be selective in mating (panmictic mating), and it
will be selective (assortative mating) if this locus is set to 1. The mutation
probability for this locus was set to 0.001 in all simulations. Females that
are selective will choose mating partners that satisfy some criterion related
to the beak size.

At the beginning of the simulations, when the fitness function F (n) is
single-peaked, there is no selective pressure for mating selectiveness, and
the population mates randomly: all females are non-selective. After F (n)
becomes double-peaked, females that mutate into selectiveness will choose
mating partners that have beak sizes similar to their own: if a female has
n < (>)16 and is selective, she will only mate with a partner that also has
n < (>)16.

In Fig. 10 we show the distribution of beak sizes of the populations at time
step Nstep = 12 000, up to which the fitness function was single-peaked, and
at time step 50 000, after it has been double-peaked for 30 000 time steps. A
stable polymorphism has clearly been established as a result of the duplicity of
food resources. The fraction of selective females in the population, which was
0 at the start of the run, also increases to nearly 1.0 after the establishment
of a double-peaked F (n). Now there are two distinct populations, each of
which does not mate with a partner from the other.

3.2 Model with Two Phenotypic Traits

Not always the ecological trait, determining individual fitness to the envi-
ronment, is the same used by females to choose a partner. In case of fish,
for instance, sexual selection is related to the colour, while fitness depends
on the size [52]. In order to make the simulations more realistic a second
phenotypic trait – another pair of non age-structured bit-strings – was added
to the Penna chronological genome [53].

Dynamics of death and birth follow the same rules as before, and the
phenotype space for this new sexual trait is mapped again onto an integer
between 0 and 32. For mating, a female chooses, among a random selection
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Fig. 10. Distribution of beak sizes when middle-sized seeds are abundant (cir-
cles – time step = 12,000) and when only small and large-sized seeds are available
(squares – time step = 50,000). We show the fraction of the population with each
beak size

of a fixed number of males, chosen to be 6 in the simulations, a suitable
mating partner for whom the phenotype for this second trait (colour, say)
matches her own. Let us call f the phenotype of the female and m the one
for the male, for the sexual selection trait. Then, if the female has mutated
into selective, it follows the rules:

If f < 16 then it selects the male with the smallest m;
If f > 16 then it selects the male with the largest m;
If f = 16 then the female chooses randomly to act as one of the above.

If we think about this mating trait as colour, for instance, and assign
f < (>)16 to a blue (red) character, a blue (red) female will choose the male
that lies deepest into the blue (red) region.

Figure 11 shows that, like in the former case, the distribution of the
fitness trait is single-peaked at n = 16 up to step Nstep, as a consequence
of the number of loci (16) where the 1 allele is dominant, and moves into
a polymorphism after the ecology becomes bi-modal. The sexual selection
trait also shows a single peak until step Nstep, and splits the population
in two groups afterwards. But now a strong correlation develops between
these traits, and the individuals with sexual selection phenotype < (>)16
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Fig. 11. Distribution of fitness (size = squares) and sexual (colour = *) traits
at the end of the simulation. These traits are correlated, and the population with
fitness trait to the left has its sexual trait also to the left of the plot

have their fitness trait < (>)16. Sexual selectiveness also develops as a result
of evolutionary dynamics, and at the end of the simulation all females are
selective.

3.3 Model Without Phenotypic Traits

A much simpler strategy, without considering phenotypes but adopting the
same ingredients of competition and sexual selection, has also succeeded in
obtaining speciation through the Penna model. In this case a single bit po-
sition, which was taken as position 11 in the Penna chronological genome,
determines the mating [53]. Each diploid individual has k = 0, 1, or 2 bits set
at this position. A female with k such bits at position 11 selects only males
with the same number k of such “speciation” bits to mate. The simulation
starts with a single species, that is, all individuals have k = 0. Due to the
randomness of mutations and crossover, offspring do not necessarily have the
same k speciation bits set to one as their parents, and this randomness allows
the emergence of new species out of the original one. At every time step t
three populations Nk, depending on the number k = 0, 1, 2 of speciation bits
set to one, are now co-evolving, and each of these three sub-populations is
half male and half female.
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Co-existence is again obtained by adopting intra-specific competition,
that is, by replacing the standard Verhulst factor by three separate Verhulst
factors for the separate populations k = 0, 1, 2. Suppose, for instance, that
the original population k = 0 is vegetarian, and that the second population
k = 2 emerging out of it consists of carnivores. Both populations are limited
by the amount of food, but their food sources are completely different; thus,
there is no competition between the two different populations, but the meat-
eating females will not select any herbivore males for mating, and vice versa.
The small population with k = 1 can be regarded as one that feeds in both
niches. It is added half to k = 0 and half to k = 2 for the evaluation of the
two intra-specific Verhulst factors,

V0 =
(N0 +N1/2)

Nmax
and V2 =

(N2 +N1/2)
Nmax

,

and has the arithmetic average of these two Verhulst factors as its own food-
limiting Verhulst factor.

Figure 12 shows how males of the new species N2 emerges from the old
species N0. For the females the results are about the same.

Similar results were found using a square lattice without Verhulst factors;
intra-specific competition is introduced through some rules that determine
whether a place for a newborn exists [54].
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Fig. 12. Variation in time of N0 (dashed line, original species) and N2 (+, new
species). Note linear, not logarithmic, vertical scale. The intermediate population
N1, that competes both with N0 and N2, is only about one percent of the total and
is not shown
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The influence of recombination rate in speciation has also been investi-
gated making use of the Penna model [55].
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1 Introduction

Despite the fact that Verhulst’s idea [1] of regulated biological populations
is 200 years old, it is still very useful since it allows to investigate features
of various systems. Here an eight order logistic map is applied in modelling
the influence of information flow delay onto the behaviour of an economic
system.

The delay of information flow is an internal feature of all economic sys-
tems, because continuous monitoring of such systems both on macro and
microeconomic scales is either extremely difficult or even impossible. The
more so since the data is not easily available nor even reliable as it could be
in physics laboratories. Macroeconomic parameters such as Gross Domestic
Product, Gross National Product, inflation, demographic data etc. are an-
nounced in well defined time intervals (monthly, quarterly or annually). The
same situation is observed in the case of various companies. They announce
their financial statements about their economic results at specific dates and
for given time intervals – according to internal or external rules (usually ac-
cording to law regulations). Sometimes some “warning” is issued. However
the tendency is that intervals between announcements are rather long, e.g.
the value of a dividend is announced annually or at various trimester ends.
It seems obvious that only very small companies are able to perform contin-
uous monitoring. But even then, the process of collecting information from
a significant (on a macroscopic scale) number of such companies inhibits or
makes it impossible to perform continuous monitoring. In view of the data
collecting procedure it is clear that every economic decision is based on some
information describing a past situation. It is also important to notice that
the time delays between information gathering, decision taking, policy imple-
mentation, and subsequent data gathering are not constant, nor are a fortiori
continuous variables, as that was considered in [2]; indeed the information
about the system is updated at the end of discrete time intervals.

Therefore econophysics-like modelling of such features encounters some
difficulty, surely at the testing level. Recently a microscopic-like approach has
been presented, through a model [3–5] including some measure of a company
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fitness with respect to an external field, and a birth-death evolution, accord-
ing to some business plan, and the local company close range environment.
The information flow was however considered to occur instantaneously.

In order to investigate the discrete information flow time delay and its
effect, a model, hereby called the ACP model [3–5], has been modified by
splitting the information about the system into two parameters. One is mon-
itored continuously (is updated at every iteration step) and is known to the
system itself; the second, like official statements of the system, is announced
at the end of discrete time intervals and is used by companies for calculating
their strategies. Therefore the strategy of a company depends on the delay
time information and the information itself. As it is shown in Sect. 3 the
length of the time delay (td) influences quite strongly and in a nontrivial way
the behaviour of the overall system.

Detailed description of the ACP model is given in Sect. 2 and the prop-
erties of the system as a function of time delay and initial concentration are
investigated (Sect. 3) in the case of short, medium and long time delays.

2 ACP Model

For the sake of clarity the basic ingredients of the ACP model are recalled here
below. The main problem was to simulate the behaviour of economic systems
in spatio-temporally changing environmental conditions, e.g. political changes
and destruction of economic barriers. The model was set in the form of a
Monte Carlo simulation. Notice that the ACP model [3–5] contains among
its variants an adaptation of the Bak–Sneppen model and was built in order
to answer economic questions3. The model consists of

1. space – a square symmetry lattice,
2. companies, which are initially randomly placed on the lattice, in an
3. environment characterized by a real field F ∈ [0, 1] and a selection

pressure sel,
4. each company (i) is characterized by one real parameter fi ∈ [0, 1] (its

so-called fitness).

The following set of actions was allowed to companies:

1. companies survive with the probability

pi = exp(−sel|fi − F |) (1)

2. companies may move on the lattice horizontally or vertically, one step at
a time, if some space is available in the von Neuman neighbourhood.

3. if companies meet they may

3Let us recall that the Bak–Sneppen model was originally built in order to
investigate the coevolution of populations [6]
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a) either merge with a probability b,
b) or create a new company with the probability 1 − b.

The ACP model may be described in a mean field approximation [7, 8] by
introducing the distribution function of companies N(t, f), which describes
the number of companies having a given fitness f at time t. The system is
then additionally characterized by the concentration of companies c(t).

The present report of our investigations is restricted to the case of the best
adapted companies (f = F ), so that the selection pressure has no influence
on the survival of companies. So the only factor which could alter the number
of companies is the strategy, i.e. the decision to merge or create a new entity.
The ideas behind the mean field approximation [7, 8] are applied here and
developed by introducing a strategy depending on the system state and the
discrete time of the official announcement about the state of the system.

The introduction of the strategy depending on the state of the system
reflects the idea of Verhulst [1], when replacing the constant Malthus grow
rate by the function 1 − x, which introduced a limit for the system to grow.
In the present investigation it is assumed that the strategy should depend
on the state of the system. Moreover the company board takes its decision
knowing information announced about its environment. The generation of
new entities is more likely in the case of a low concentration of companies
than when this concentration is high. The merging parameter describes the
reversed dependency, i.e. merging is more likely to occur in the case of a high
density of companies than if the density is low. The simplest function which
fulfils this condition is 1 − c, the same as in Verhulst original work [1].

The additional ingredients to the ACP model are thus

1. the merging parameter b is replaced by a strategy (1 − c),
2. the companies know the value of the concentration c according to official

statements announced after the time delay td.

The evolution equation of the system with companies, using the state depen-
dent strategy is:

ct = ct−1 +
1
2
ct−1(1 − c8t−1)(1 − (1 − ct−1)8)(2ST (c(g(t))) − 1) , (2)

where ST (c) = 1 − c, g(t) = k[t/k] and [ ] denotes the procedure of taking
a natural number not larger than the one given in the brackets. The time is
measured in iteration steps IS.

3 Results

Numerical methods were used in order to investigate properties of the system.
Because the coevolution equation (2) is given as an iteration equation the time
is discrete and counted in iteration steps (IS). The following features of the
system were examined:
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1. the coevolution of c(t) as a function of the initial concentration,
2. the stability time defined as the time required to achieve a unique

stable solution; because of numerical reasons the criterium applied here
is |cn+1 − cn| < 10−10,

3. the crash time tc, such that ctc
< 0 (it is understood as the time when

all companies are wiped out from the system),
4. the stability intervals – the intervals of initial values for which the

evolution of the system is longer than a given time ts
5. the complex Lyapunov exponent

λ = lim
N→∞

1
N

N∑
n=1

log2

(
dxn+1

dxn

)
. (3)

The Lyapunov exponent calculated in its complex form (3) gives also some
information about the oscillations of the system. Using the properties of
logarithm:

a < 0 ⇒ log a = log(−1 · |a|) = log(−1) + log |a| . (4)

The imaginary part of log2(dxn+1/dxn) gives some information on whether
the distances between consecutive iterations are monotonic.

The numerical iterations were performed for the initial concentration in
the interval c0 ∈ (0, 1), at consecutive values distant of 0.02. Therefore 500
histories of evolution were investigated.

It is possible to observe three types of coevolution: a unique, a periodic
and a chaotic solution. In the case of a unique solution the system may
approach this solution as a “damped” coevolution or “damped oscillation”.
The damped coevolution happens if ∀t > 0: c(∞) − c(t) > 0 or if ∀t > 0:
c(∞) − c(t) < 0 and |c(t − 1) − c(t)| ≥ |c(t) − c(t + 1)|, where c(∞) is
the asymptotic state of the system. This means that the distance between
concentration and asymptotic concentration is decreasing in every iteration
step and the concentration is either smaller or bigger than the asymptotic
concentration. The damped oscillations are observed if |c(t − 1) − c(t)| ≥
|c(t)−c(t+1)| and ∃t0 such that ∀t > t0: c(t) > c(∞) and c(t+1) < c(∞). This
means that the distance between consecutive concentrations of companies is
decreasing. In the case of a periodic solution for t > t0 there exists a n-tuple
of concentrations which is repeated for t > t0, where t0 is the time required
by the system to reach the stable or periodic solution. The length of the n-
tuple is defined as the period of oscillations. The system is chaotic if the real
part of the Lyapunov exponent is positive: Re (λ) > 0.

The coevolution of the system is presented either as a function of time
(Figs. 1, 4, 7, 10, 13, 15, where the coevolution is plotted for chosen initial
concentrations) or as a function of initial concentration (Figs. 2, 5, 8, 11, 14,
16, where the coevolution of the system is plotted in one vertical line so the
plot is a set of coevolutions for 500 different initial concentrations.
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3.1 Stability Window

The short time delay (td) is defined by 2 IS ≤ td ≤ 4 IS. In this case the
system evolves to the unique stable solution c = 0.5. Within this time delay
the Lyapunov exponent is equal to zero; no chaotic behaviour is seen.

td = 2 IS

The time delay td = 2 IS means that the information about the system is
updated every two iteration steps. The evolution of the system is presented
in Fig. 2 and is plotted as a function of initial iteration. For every 500 initial
concentrations 103 iteration steps have been used. The history examples are
presented in Fig. 1 as a function of concentration in time. In the case of the
shortest time delay considered here the system has a unique solution c = 0.5.
The stability time as a function of initial concentration is shown in Fig. 3.
For a very low initial concentration 0 < c0 � 0.01 a long time (ts ≥ 47 IS)
is needed in order to achieve the stable state. It is also illustrated in Fig. 1,
where in the case of low initial concentrations c0 = 0.002 the stability time is
quite long (about 100 IS). However except for very small initial concentrations
(c0 > 0.1) the stability time is short, i.e. ts ∈ (10 IS, 20 IS).
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Fig. 2. Coevolution of the system as a function of initial concentration. The co-
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 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.2  0.4  0.6  0.8  1

tim
e

initial concentration

Fig. 3. The time required for the system to achieve a stable concentration as a
function of initial concentration; delay time td = 2 IS
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td = 3 IS

Increasing the time delay by one unit, up to three iteration steps, induces
important changes in the system. In the evolution of the system, damped
oscillations become observable, e.g. for c0 = 0.002 damped oscillations are
observed for t ∈ (140 IS, 155 IS) (Fig. 4 and Fig. 5). The maximum time
required for the system to achieve a stable state extends to ts ≥ 220 IS
as compared with ts ≥ 47 IS for td = 2 IS. For most initial concentrations
(c0 > 0.05) the stability time is in the interval ts ∈ (70 IS, 100 IS). Therefore
the system requires a longer time to achieve a stable state. However there are
some “stability points” for which the system achieves a stable state markedly
faster. These can be found on Fig. 6; these points are: c0 = 0.074, ts = 76 IS;
c0 = 0.136, ts = 73 IS; c0 = 0.284, ts = 61 IS; c0 = 0.5, ts = 1 IS; c0 =
0.826, ts = 58 IS; c0 = 0.952, ts = 67 IS.

Comparing the results obtained in the case td = 2 IS and td = 3 IS it can
be noticed that the stability times is significantly extended and new features
become visible (damped oscillations). Therefore we can conclude that the
system is very sensitive to the flow of information and that increasing td to
td + 1 IS changes the behaviour of the system quite significantly.
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Fig. 5. Coevolution of the system as a function of initial concentration. The co-
evolution of a system is represented by a vertical series of dots; delay time td = 3 IS
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Fig. 6. The time required for the system to achieve stable concentrations as a
function of its initial concentration; delay time td = 3 IS
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td = 4 IS

For a time delay td = 4 IS, the features seen above (damped oscillations) are
also present as it can be observed on both figures showing the coevolution
for the considered initial concentrations and for chosen histories presenting
explicitly the time evolution of the system – Fig. 5 and Fig. 8 respectively.
It is worth noticing that the damping of the oscillations is much weaker than
in the case td = 3 IS (compare Figs. 5 and 8). The oscillation amplitude is
decreasing significantly more slowly for the case td = 4 IS than for td = 3 IS.
However in all considered cases td = 2 IS, td = 3 IS, td = 4 IS, the system has
one stable solution, but the stability time depends on the delay time; it is the
longest in the case td = 4 IS (3200 IS ≤ ts ≤ 4200 IS). The time required for
the system to achieve a stable state is presented in Fig. 9. As in the previous
case td = 3 IS there are initial concentrations for which the system reaches
the stable state significantly quicker, e.g. c0 = 0.23.
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Fig. 7. Evolution of the system for given initial concentrations; delay time td = 4 IS

3.2 Medium Time Delay

td = 5 IS and td = 6 IS

The five iteration step delay time (td = 5 IS) is very interesting, because this
is the shortest time for which cycles of concentration can be observed. For



232 J. Mískiewicz and M. Ausloos

Fig. 8. Coevolution of the system as a function of initial concentration. The co-
evolution of a system is represented by a vertical series of dots; delay time td = 4 IS
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Fig. 9. The time required for the system to achieve stable concentrations; delay
time td = 4 IS
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this time delay the system has several solutions. Despite the fact that the real
part of the Lyapunov exponent is still equal to zero, its imaginary part is not.
According to (4) this shows that the system has a periodic solution. These
solutions can be seen in Fig. 11 and Fig. 10. In the case of Fig. 11 the evolution
is shown as a function of its initial concentration, whereas Fig. 10 presents
the system evolution as a function of time for chosen initial concentrations.
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Fig. 10. Evolution of the system for chosen initial concentrations; delay time td =
5 IS

Oscillating solutions can also be found in the case td = 6 IS; the imaginary
part of the Lyapunov exponent, as in the previous case (td = 5 IS) is negative
(Fig. 12).

3.3 Long Time Delay

td ≥ 7 IS

Extending the delay time above six iteration steps leads to a possible collapse
of the system. For td ≥ 7 IS the system may crash. The crash is defined when
the concentration of companies becomes negative or zero. Examples of such
evolutions which lead to a crash are presented in the cases td = 12 IS and
td = 15 IS in Fig. 14 and Fig. 16 respectively. The crash of the system is
presented in such plots as a white band containing very few points in the
vertical direction. It is also seen in Fig. 17, where for several intervals on
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Fig. 11. Coevolution of the system as a function of initial concentration. The
coevolution of a system is represented by a vertical series of dots; delay time td =
5 IS
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Fig. 12. Lyapunov exponent for td = 6 IS
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the initial concentration axis, e.g. td ∈ (0.15; 0.2) ∪ (0.34; 0.36) ∪ (0.53; 0.61)
the crash of the system occurs very quickly. However there are some initial
concentrations for which the evolution of the system before crash time is
quite long (up to 400 IS). Additionally in the case td = 15 IS, the system
may evolve toward a stable state, with a full occupation of the environment
by companies. Examples of such an evolution as a function of time for given
initial concentrations are presented in Fig. 13 and Fig. 15 for the cases td =
12 IS and td = 15 IS respectively.
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Fig. 13. Coevolution of the system as a function of time for chosen initial concen-
trations; td = 12 IS

4 Conclusions

Economic cycle causes and occurrences are fascinating and relevant subjects
of interest in many economic questions [9, 10]. The problem has also been
studied by means of sociology techniques [11], showing that opinions about
recession or prosperity undergo drastic changes from one equilibrium to an-
other, both having fluctuations in stochastically resonant systems. In the
present investigation, an information flow, typical of economic systems, has
been incorporated into the ACP model [3–5]. This has led to observe differ-
ent forms of so-called cycles, through concentration oscillations. In the case
of a short delay time td ∈ (2 IS, 4 IS), between data acquisition and policy
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Fig. 14. Coevolution of the system as a function of its initial concentration. The
coevolution of a system is represented by a vertical series of dots; td = 12 IS
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Fig. 16. Coevolution of the system as a function of its initial concentration. The
coevolution of a system is represented by a vertical series of dots; td = 15 IS
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Fig. 17. The crash time of the system as a function of its initial concentration;
td = 15 IS
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implementation by a company, the system evolves toward a unique stable
equilibrium state. This situation can be highly welcomed in some economic
systems. Indeed this indicates that, through an information control, a sys-
tem can insure the existence of a high number of companies, whence not
threatening the system of a collapse.

In the case of medium size delay times td = 5 IS or td = 6 IS, the system
undergoes oscillations: stable concentration cycles appear in the system. This
form of evolution is often observed in economy, e.g. agricultural markets,
where without external control the level of agricultural production oscillates
between over- and underproduction. Since the enlarging of the delay time
leads to the possibility of the system to crash, such a system may require
some external (governmental) control, for its stability. In reality, the delay
of information flow and policy implementation may also fluctuate. For long
information flow delay times, td ≥ 7 IS , the systems may crash for most
initial concentrations. However, despite the frequent possibility of the system
to crash the situation is not hopeless because the crash time in many cases
is long enough to allow for some particular control and to avoid the collapse
of the company concentration. It is also possible to observe an “economic
resonance” where despite a long delay time the system evolves for a long
time or can even reach a stable state, which insures its existence. This latest
observation is especially interesting for market control purposes, because it
points to the existence of initial conditions for which the system may evolve
during a very long time, which is vital for the possibility of creating and
applying some control procedures.
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Summary. This chapter examines the signatures that arise after large financial
crashes in order to evidence the presence of logistic growth in indices of markets
that validates the hypothesis of symmetry on the trend before and after the crash. It
is also shown how the probability meaning of the logistic function can be exploited
in order to set up a bayesian analysis model. The large crash in the NASDAQ 100
composite index which occurred in April 2000 is presented as a case study.

1 Introduction

The aim of this chapter is to show how the logistic function can occur in fi-
nancial markets and to explore its relevance when dealing with large crashes
produced by the collapse of speculative bubbles due to endogenous causes.
The theory about crashes has already assessed the validity of a scaling prop-
erty in the proximity of large financial crashes ( [5,7–9,11,19–22,24–26]). The
studies examine also the behaviour of financial data after the occurrence of a
large drawdown. The analysis of signatures in financial indices that undergo
some large crash is important in order to estimate the time necessary for the
market to exit from the descent that follows the fall and thus for driving
decisions about investment policies. Empirical evidences show that the sym-
metry between pre and post crash behaviours can be established only in the
presence of log-periodic corrections to scaling [18]. After the occurrence of a
crash a market experiences an oscillatory deflating. The time of the exit of
the market from the anti bubble and its return to the fundamental values
can be obtained from the symmetry with respect to the rise of the bubble.
However the mirroring is not perfect and the analysis of deviations from sym-
metry can be useful also for the estimate of the expected deflating behaviour
of prices.

A logistic sigmoidal law [1] can be detected by suppressing the oscillations
through the patterns that arise after the occurrence of a crash. This is based
on symmetry hypotheses. The case of the large crash during April 2000 of
the NASDAQ index is deeply studied here.

The outline of the chapter is the following: the next section resumes the
main results of the theory of large financial crashes. Section 3 examines the
logistic function for a description of post crash behaviour. In Sect. 4 the large
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Fig. 1. The NASDAQ 100 composite index from January 1st, 1997 to June 5th,
2003

crash which occurred during April 2000 in the NASDAQ 100 composite index
is examined. In the last section it is shown how the detection of the logistic
function allows to set up a bayesian analysis model for crashes.

2 Large Financial Crashes Models

A series of papers about speculative bubbles proposes an explanation of large
financial crashes due to causes endogenous to the market. Similarities with
critical phenomena like earthquakes [4] and the sound emission in materials
close to the rupture point led the research to the detection of cooperative
underlying phenomena evidenced through discrete scale invariance in finan-
cial data close to large crash [15] that can thus be well described as critical
points [7]. Market indices have been widely studied through the literature.

Let F be a market index and τ the interval of time to the crash. Then
a general form for an evolution equation for F close to the crash time is
obtained by the Landau expansion of F around τ = 0:

dF (τ)
d log τ

= αF (τ) + β | F (τ) |2 F (τ) · · · (1)

where in general the coefficients may be complex [10]. In this expansion only
terms that are invariant with respect to a change of phase φ→ φ+C where
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F ≡ Beiφ are kept because a phase translation corresponds to a change of
time units.

Equation (1) is independent from the sign of τ and can be useful for both
the description of the ascent of a bubble and the relaxation dynamics of after
crashes market prices. Thus before the crash τ = tc−t (t < tc), where t is the
time and tc is the time of the crash, and (1) describes the bullish behaviour of
a bubble; after the crash τ = t− tc (t > tc) and (1) characterizes the bearish
phase of an anti bubble.

The research of foreshock and aftershock patterns through the same equa-
tion relies on the hypothesis that self-aggregation phenomena of the market
are suitable for its description through hierarchical structures that drive the
system to the crash. A further taxonomy that distinguishes the causes that
generate crashes can be found in [13] and confirms the detection of log-
periodic power law signatures as a hallmark of speculative bubbles due to
causes endogenous to the market. An important remark is that the crash
time tc is the expected time for the end of the bubble. It corresponds to the
most probable time for the occurrence of a crash [15], but it could either
occur before, albeit with small probability, or do not happen at all, leading
the bubble to deflate smoothly. If the amplitude of the crash is proportional
to the bubble part of the crash then F (t) actually is the value of the index at
time t. However if the amplitude is proportional to the total price then the
best quantity to model is the logarithm of the index value [12,27].

2.1 First Order Solution

The maintenance of only the first term in the r.h.s. of (1) gives the following
evolution equation

F (t) � A+B(tc − t)m + C(tc − t)m cos[ω ln(tc − t) − φ] where t < tc . (2)

tc is the crash time and A, B, C, m , ω, φ, tc are parameters to be estimated
via numerical optimization, for example by a least square method.

In the limit m → 0 and under the hypothesis ω ln(1 − t/tc) � 1 (2)
becomes [15]

F (t) � A+B ln(tc − t) +C ln(tc − t) cos[ω ln(tc − t)− φ] where t < tc . (3)

Setting C = 0, (3) becomes

F (t) � A+B ln(tc − t) for t < tc . (4)

The symmetry hypothesis leads to the following aftershock behaviour

F (t) � A+B(t− tc)m + C(t− tc)m cos[ω ln(t− tc) − φ] where t > tc . (5)

Hence in the limit m → 0 and under the hypothesis ω ln(1 − t/tc) � 1, (5)
becomes
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F (t) � A+B ln(t− tc) + C ln(t− tc) cos[ω ln(t− tc) − φ)] where t > tc (6)

leading to the following approximation

F (t) � A+B ln(t− tc) where t > tc (7)

if C = 0. Empirical studies available through the literature state that the
values of m and ω belong to a narrow range of values [13]. Such a behaviour
is a robust feature of the bubbles that collapse into a large crash and can
be obtained by models of cooperative behaviour among investors [15]. As an
alternative to ω the values of λ = e2π/ω have been studied. The value of λ
describes the difference equation of successive either maxima or minima in
the oscillations and thus it is of immediate use. Available results about the
range of λ are consistent with the ones about ω [25].

2.2 Second Order Solution

The second order solution of (1) is obtained by keeping the two first terms
in the r.h.s.:

F (t) � A′+
τα√

1 + ( τ
∆t )

2α

{
B′ + C ′ cos

[
ω log τ +

∆ω

2α

(
1 +

( τ
∆t

)2α
)

+ φ′
]}
(8)

where τ =| t− tc |. This equation doesn’t change form for the description of
pre and post crash data.

3 The Logistic Function

The logistic function, also known as sigmoidal function because of its shape,

σ : R→ R , σ(x) =
1

1 + e−a(x)
, x ∈ R

was born for the description of population dynamics [2], but is now widely
used in probability theory, statistics and neural networks. The aim of this
section is to show how it can occur through functions that describe large
financial crashes.

3.1 The First Order Solution

The first order solution can lead to the logistic function for the description
of after crashes behaviour. In fact from (7):

tc
t
� 1

1 + e[F (t)−A]/B
. (9)
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Thus the after crash behaviour can be described through the logistic function
σ(·)

tc
t
� σ[F (t)] , (10)

where a(x) = −ax + b, with a = −1/B and b = A/B + log tc. Therefore
when using the first order solution the sigmoidal function is suitable for the
description of data after the crash, but not before it.

3.2 The Second Order Solution

When setting C ′ = 0 (8) can be approximated by

F (t) � A′ +B′ τα√
1 + ( τ

∆t )
2α

(11)

(
F (t) −A′

B′

)2 ( 1
∆t

)2α

� σ(log τ) where a(x) = 2α(log τ) − 2α log ∆t .

(12)
This equation does not change form for the description of pre and post crashes
data τ =| t − tc |. In this case the logistic function relies over the logarithm
of the time and describe the rescaled quantity of interest.

3.3 Probabilistic Approach

The logistic function is well known in probability and especially in bayesian
analysis. The probabilistic meaning of the logistic function allows to provide
an interpretation of the r.h.s. of (10) as a probability estimate for the oc-
currence of the crash at time tc, that can be calculated relying on the level
of F (t). Moreover, the approximation states that this probability decays like
the inverse of the time to crash, under an appropriate rescaling of the time.
This allows to remark the analogy with Omori formula [23] for a law for the
rate Q(t) of the shocks following a main earthquake, that decays from the
main shock as Q(t) ∝ 1/tp where p is close to 1.

The sigmoidal function occurring in (10) has the interesting feature to
be well suited for the description both before and after a crash. Moreover
it depends on the logarithm of time, thus keeping trace of the log-periodic
structure embedded in the market.

4 Numerical Results

The crash of the index NASDAQ 100 composite which occurred in April 2000
has been deeply examined. The data set collects index values of each trading
day since January 1st, 1997 to September 26th, 2002.
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As also pointed out in Sect. 2 a rational bubble model proposed in [14]
shows that if the magnitude of the crash is proportional to the increase of
values exclusively produced by the rise of the bubble [12] then the right
quantity to study is the data time series, but if the depth of the crash is
proportional to the values, then it is necessary to study the logarithm of
data.

As evidenced in [13], in the case of NASDAQ data, the logarithm of the
index values must be chosen and thus the data {y(t)}t used here below are
the logarithm transformation of the NASDAQ 100 composite index.

The time is expressed as a fraction of the year, according to the series of
papers about crashes. Different unit measures for the time lead to different
numerical values of parameters. One year contains approximately 260 trading
days, depending on the overlap between holidays and weekends, but it is
normalized to 100 days. As an example 2000.18 is March 10th, 2000.

A minimum least square method was used in order to perform the fit
of functions (2–11) to data. Constraints are mandatory over the scope of
the logarithm function (tc > t before the crash and t > tc after the crash).
Moreover lower and upper bounds for each parameter were fixed across all the
examples by relying on the literature for the fit of data before the crash [11],
[13]. In (2) parameters A, B, C, φ represent the rescaling of measure units,
whilst parameters m and ω contain structural information about the market
dynamics because they quantify the acceleration in the price increase and
the oscillations, respectively [13]. In the fit of (2, 3, 5, 6, 8) the optimal value
of ω is searched by taking into account the narrow range across the series of
speculative bubbles due to endogenous causes. The same remark holds for the
exponent m. In fact the values of m and ω were found to belong to a short
range through several analyses of speculative bubbles observed on a wide
variety of markets. As an example in [13] for more that thirty crashes on the
major financial indices ω ≈ 6.36± 1.56 and m ≈ 0.33± 0.18. The bounds on
λ ∈ [2.3, 2.5] are consistent with the ones on ω [25]. Thus the bounds used in
the optimization procedures related to the fit of (2) are ω > 4.5 and ω < 8.5.
Another bound over the time is obtained from the empirical evidence that
the estimate of the most probable crash time is in a range of approximately
at most three months from the actual date of the beginning of the index
drop [16]. The end of the bubble is defined as the date at which the market
reached its maximum. The bounds for each fit after the crash are obtained
from the ones stated before the crash by using the symmetry hypothesis.

The optimal set of parameters is very sensitive to the choice of the initial
point. Thus optimization procedures were performed by choosing a grid of
100 initial points for each parameter, equally spaced in the interval between
the related bounds. For each fit the value of the parameters that gave rise
to the lowest value of the residuals without active constraints is reported in
Tables 1 and 2.
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Table 1. Analysis of NASDAQ 100 composite precursory patterns of the crash of
April 2000. Data set contains daily index values from January 1st, 1997 to March
10th, 2000

Formula Parameters Figure

(13) A = 9.36, B = −1.60, tc = April 11th, 2000, m = 0.26. (2)

(15) A = 9.36, B = −1.60, tc = April 11th, 2000, m = 0.26, (3)
C = 0.05, ω = 6.32, φ = −0.83.

(4) A = 7.91, B = −0.54, tc = July 4th, 2000. (4)

(3) A = 7.93, B = −0.60, tc = August 10th, 2000, (5)
φ = 2.96, ω = 6.26, C = −0.07.

(18) A = −18.60, B = 34.65, tc = June 21st, 2000, 1
∆t

= 144.01, (10)
α = −0.034.

(19) A′ = −18.60, B′ = 34.65, tc = June 21st, 1
∆t

= 144.01, α = −0.03, (11)
C′ = 0.08, ω = 7.32, ∆ω = 1.02, φ′ = 0.10.

Table 2. Analysis of NASDAQ 100 after crash signatures. Crash of April 2000. Data
set contains daily index values from September 13th, 2000 to September 26th, 2002

Formula Parameters Figure

(16) tc = August 8th, 2000 A = 10.57, B = −3.00, m = 0.11. (6)

(17) tc = August 8th, 2000, A = 10.57, B = −3.00, m = 0.11, (7)
C = 0.097, ω = 9.713, φ = −1.82.

(7) A = 7.62, B = −0.40, tc = July, 20th, 2000. (8)

(6) A = 7.58, B = −0.33, tc = July 31st, 2000, (9)
φ = −2.47, ω = 8.38, C = 0.10.

(18) A′ = 9.17, B′ = 21.85, tc = July 8th, 2000, 1
∆t

=179.58, α = −0.03. (12)

(19) A′ = 9.17, B′ = 21.85, tc = July 8th, 2000, 1
∆t

=179.58, α = −0.03, (13)
C = 0.13, ω = 6.86, ∆ω = 4.62 , φ = 3.99.

The next paragraphs describe the methods and the results both for the fit
to first and second order solutions, each of them before and after the crash.
The data set used in order to study the ascending speculative bubble ending
to the crash uses index data available for the trading days since January 1st,
1997 till March 10th, 2000, for a total amount of 833 points [11]. The first
point can be identified as the lowest values of the index prior to the onset
of the bubble while the last point is that of the all time high of the index.
Moreover this data set gives rise to the best estimate of the crash time when
using (4) [16]. For the post crash study data range since September 13th, 2000
till September 26th, 2002. Data between March 10th, 2000 and September
13th, 2000 are not considered in order to allow the market to overcome its
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most unstable phase and to start a descent with the same slope as that of
the last month before the crash. The results are collected in Tables 1, 2.

4.1 The First Order Fit

Data {y(t)}t were at first fitted by

y(t) � A+B(tc − t)m (13)

by the least square estimate, whence the residuals

y(t) −A−B(tc − t)m

(tc − t)m
(14)

should be a pure cosine function

y(t) −A
(tc − t)m

−B = C cos[ω ln(tc − t) − φ] (15)

and were fitted again by least square methods. This procedure splits the
optimization of (2) into two phases and allows avoid numerical problems due
to the number of variables.

Before the Crash

These fits are necessary in order to get the values of the parameter in order to
compare them with the after crashes ones. The results of the fit are collected
in Table 1. The first function fitted is (13). The lower bound for (A,B, tc,m)
is (5,−10, 2000.19, 0), the upper is (10,−0.1, 2001.21, 10), and the optimal
values are consistent with the ones reported in [13] (see Fig. 2). The fit of
(13) is necessary in order to proceed with the fit of (15). The bounds for
(C,ω, φ) are (−10, 4,−1) and (10, 8, 1), so they are not tight. The results
obtained are consistent with the one reported in [11] (see Fig. 3). The next
function to fit is (4) and the bounds for (A,B, tc) are (7,−1, 2000.19) and
(9,−0.1, 2000.52). The procedure used for the best fit of (2) evidences its
limits when fitting (3). In this case it gave rise to poor fitting and it was
necessary to perform a simultaneous optimization over all the parameters.
The bounds on (C,ω, φ) given by (−10, 1,−1) and (10, 10, 0).

After the Crash

The data set contains NASDAQ data since September 13th, 2000 to Septem-
ber 26th 2002. The best results with no active constraints are collected in
Table (2). Formula (5) was tested starting with the best fit of

y(t) � A+B(t− tc)m . (16)
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Fig. 2. NASDAQ 100 before the crash. The continuous curve is the best first order
fit according to (13)
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Fig. 3. NASDAQ index before the crash. The continuous curve is the best first
order fit according to (15)
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Fig. 4. NASDAQ index before the crash. The continuous curve is the best first
order fit according to (4)
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Fig. 5. NASDAQ index before the crash. The continuous curve is the best first
order fit according to (3)
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The bounds for (A,B, tc,m) are (9,−3, 2000.06, 0) and (20,−1, 2000.70, 1).
The bounds are chosen relying over the results got for data that precede the
crash they are not tied with respect to these values, in order to allow a wide
search for the minimum value. A remark can be made about the estimate of
tc: for (16) the estimate of the crash time is approximately 20 days after the
last day used for the fit and in (16) tc is approximately 20 days before the
initial day. This gives a confirmation about the symmetry of the process.
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Fig. 6. NASDAQ index after the crash. The continuous curve is the best first order
fit according to (16)

Formula (5) was fitted by using the values of A, B, tc, and m already got
with the fit of (16) and by using the least squares method over the residuals

y(t) −A
(t− tc)m

−B = C cos[ω ln(t− tc) − φ] (17)

for the estimate of C, ω, φ. The bounds for (C,ω, φ) are (−1, 3,−20),
(1, 10, 20).

There is a wide basin of attraction also for (C,ω, φ) = (0.06, 4.04,−4.94),
but no convergence has been evidenced to values of ω around 2π. The bounds
for (17) are again not strict (−1, 3,−2) ≤ (C,ω, φ) ≤ (1, 10, 0) and the fit of
the residuals leads to the estimate of (5).

The estimate of (6) was made over all the variables simultaneously, as
done for (3)
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Fig. 7. NASDAQ index after the crash. The continuous curve is the best first order
fit according to (17)

4.2 The Second Order Fit

The fit of the (8) has also been performed in two steps. At first the parameters
A′, B′, tc, ∆t were estimated by the following approximation:

y(t) � A′ +B′ τα√
1 + ( τ

∆t )
2α
. (18)

Then searching for the minimum of the residuals has been performed by using

y(t) −A′
τα√

1+( τ
∆t )2α

− B′ � C ′ cos
{
ω log τ +

∆ω

2α

[
1 +

( τ
∆t

)2α
]

+ φ′
}

(19)

Before the Crash

The best fit of (18) was made with lower and upper bounds for (A,B, tc,
1/∆t, α) given by (−100, 0, 2000.19,−10,−20) and (100, 100, 2000.70, 1000, 0),
respectively. The results are given in Table 1.

After the Crash

The bounds are the same ones used for the best fit reported in the previous
paragraph.
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Fig. 8. NASDAQ index after the crash. The continuous curve is the best first order
fit according to (7)

4.3 The Logistic Approach

As shown in Sects. 3 and 4 from the approximations to first and second
order solutions it is possible to get the logistic function. The values of the
parameters of the logistic can be calculated immediately from the fits in
Tables 1 and 2. Some important remarks must be made. The first one is
about the fact that this kind of aftershock behaviour relies over the structure
of the market that is detected through the log-periodic oscillations. Thus it is
necessary to perform the fit of the formula that contains oscillations, too, in
order to test for the presence of the periodic part. Moreover the description
of the after crash behaviour is interesting in order to give an estimate of the
deflate of the bubble whilst it is still at its beginning. An empirical strategy
that can be held by investors can be the one of performing the data fit
as soon as possible. However a raw application of this procedure can lead
to huge instabilities and high volatility over the parameter set because the
overall function is not stationary.

An important remark is that the residuals on the left hand side of each
(15) after the crash, and (17) before and after the crash are stationary log-
periodic processes with zero mean. Also (7) that gives rise to (10) can be
fitted from (6) taking into account the residuals
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Fig. 9. NASDAQ index after the crash. The continuous curve is the best first order
fit according to (6)
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Fig. 10. NASDAQ index before the crash. The continuous curve is the best second
order fit according to (18)
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Fig. 11. NASDAQ index before the crash. The continuous curve is the best second
order fit according to (19)
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Fig. 12. NASDAQ index after the crash. The continuous curve is the best first
order fit according to (18)
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Fig. 13. NASDAQ index after the crash. The continuous curve is the best first
order fit according to (8)

F (t) −A
ln(t− tc) +B � C cos[ω ln(t− tc) − φ] where t > tc (20)

that exhibits the usual log-periodic structure.
This remark provides a guideline for the estimate of the parameters of

the left hand side that allows to improve the stability of their estimate. For
trading purposes the optimization task can be performed by adding subsets
of data, as soon as they are available and thus depending on the time. In
this dynamic setting it is necessary to take into account the accelerating
oscillations cos[ω ln(tc − t)−φ] which lead to local periods converging to zero
according to a geometrical progression with scale factor λ ≈ e2π/ω.

Therefore a dynamic fitting procedure that can ensure the best stability
over the parameters is a mixed online and batch one where data points are
added only when a sequence as long as one period at least is available. The
length of sequences changes because the period changes as the logarithm of
the time. When more than one frequency is detected over the data before the
crash then the best choice is to use the theoretical results and to try the
theoretical value ω � 2π for the after crash data.

Because of the fact that the function is periodic with the logarithm of
time then the length of the sequences to be added is not fixed, but goes as
the logarithm of the time. Thus when working with respect to the variable
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Fig. 14. NASDAQ index after the crash, rescaled through (10). The continu-
ous curve is a detail of the best first order fit according to (10). Please refer to
Table 2, line corresponding to the (7) for the values of parameters

“time” it is not possible to work over vectors of fixed size, but it is necessary
to change their length.

The point symmetric to January 1st, 1997 with respect to the initial crash
time is June 5th, 2003. At that time the market has stopped its descent and
it is going to start a longer rise, but at that point it is still in the bounds of
log-periodic oscillations.

5 Bayesian Analysis

Large financial crashes can be classified on the causes that generate them.
Only endogenous crashes exhibit scaling. It is interesting to understand how
strong is the mirroring between the progressively accelerating power law up
to the crash and the subsequent approximately symmetrical power law decay,
that is lower for exogenous peaks, in order to detect the end of the deflating
period of the anti-bubble and the restart of the market. The parameters from
the fit of either the first or the second order solutions or both of them can
be used in order to write the proper form of the logistic functions. Thus it is
possible to get an immediate estimate of them. An interesting question is to
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understand how the parameters of the logistic function that describe the pre
crash growth have to change in order to describe the after crash decay. In
order to perform the addressed tasks it is possible to rely over some bayesian
analysis results that can be useful for the fit of the parameters of the logistic
function [3]. Let t̄c be the crash time estimated over data before the crash.
Define a binary variable Iδ(tc). Iδ(tc) = 1 if |tc − t̄c| < δ, and 0 otherwise. It
is a measure of the stability of the estimate of tc. The estimate of the crash
is correct when Iδ(tc) = 1. The value of δ that describes the range of the
estimate of tc can be chosen from numerical results over the data before the
crash. The estimate of parameters depends on data yt = {yt}t. It is possible
to fix an a priori probability distribution over the parameters that occur in
the logistic function in a = a(yt). Usually the prior distribution over them
is given as a gaussian one, centered on the expected values of parameters. In
this case it is possible to use as expected values of the parameters the ones
obtained from the best fits before the crash, thus relying on the symmetry
hypothesis. The variance can be fixed and gives the spread of the numerical
instabilities. With the usual notations of conditional probability it is possible
to define

p(Iδ(t) = 1|y, a(y)) =
1

1 + exp−a(y)
. (21)

This probability assignment is consistent with the detection of the logistic
law (10). The estimate of the probability to get the crash in the given interval
can be performed when more data are available and thus considering yt+T

instead of yt. As remarked in the previous paragraph the interval time T
must be equal to a period in order to get some stability in the numerical
estimates. The best fit of the parameters of the sigmoidal function proceeds
via the usual least square method with the observation of successive data
yt+T . After each observation there is an a posteriori distribution

p(Iδ(t) = 1|yt+T ) =
∫
P (Iδ(t) = 1|a(yt+T ))P (a(yt+T )|yt+T ) da(yt+T )

(22)
where

P (a(yt+T )|yt+T ) =
∫
P (a(yt+T )|yt+T ) da .

And the joint a posteriori distribution is given by

p(a(yt+T )|yt+T ) =
1
Z
P (a(yt+T ))

N∏
n=1

P (Iδ(t) = 1 | a(yt)) ,

where Z is a normalizing constant. Theoretical upper and lower bounds are
available [3,6] in order to approximate (22), that provides a framework for the
description of the adjustment of the probability when new data are available.
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6 Conclusions

This chapter shows the occurrence of the logistic function in the description of
large financial crashes due to speculative bubbles. It can be accomplished for
both the first and second order approximation to the solution of the Landau
equation. In the case of first order expansion its probabilistic meaning is also
on line with Omori law. The study of after crashes signatures is important
in order to estimate the time necessary to the market to absorb the shock
and for taking decisions about after crashes investment policies. Whereas the
speculative bubbles exhibit symmetry, the logistic function can be used also
for the description of after crash data and for the deflating of bubbles. A
further observation is that the use of a logistic function instead of the tradi-
tional solutions to the Landau equation allows the use of bayesian learning
results that give an estimate over the fit of the function to data. The large
crash of the index NASDAQ 100 composite that has occurred during April
2000 is presented as a case study. The null hypothesis is that post crash per-
fectly symmetric to pre crash, thus giving a description of the deflating of the
bubble. As soon as time passes and new data arrives it is possible to detect
whether the symmetry is respected, thus confirming the estimated end of
the bubble, or allowing a different classification of the post crash behaviour.
Further examples can be found in [12]. The Argentina stock market bubble
of 1992 is well fitted by (4) and the logarithm of data if its anti-bubble is
well fitted by (7). The same happens for the Venezuela bubble ending in 1997
and its related anti-bubble [12]. In these cases however the descent is more
rapid, even if the log-periodic structure is maintained and allows to keep the
difference with the case of crashes where the values return quickly to their
fundamentals looking close to the behaviour of a damped harmonic oscilla-
tor [25,26]. As an example in [20] the S&P500 dumps like a single dissipative
harmonic oscillator and thus the symmetry after crash is not maintained and
it is interesting to study the fastness of the rejection of the after crash sym-
metry. Moreover it is also interesting to give some bounds [17] in order to
understand if the decay is violating the mirroring, thus getting a different
classification of the crash and consequently a different estimate for the end
of the anti-bubble. A further development of this study could be to investi-
gate a taxonomy among crashes in order to detect the minimal time which
is necessary after the occurrence of the crash in order to give a stable esti-
mate for the post crash logistic function and thus to determine some further
information about the type of crash towards the forecast of the end of the
bearish period and for the start of a new phase of the market.
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Summary. Agent based models have been used to study the dynamics of wealth or
income distributions in populations. In this chapter we develop a generic theory of
interacting agents where the property of memory may be included. The model may
be analysed both analytically and numerically via computer simulation. Particular
regimes are analysed and compared with empirical data for both the UK and the
Republic of Ireland. We also demonstrate that with the inclusion of memory the
predicted wealth distribution can exhibit Pareto tails with values of the exponent
that are greater than unity unlike the model without memory where the exponent
is always unity.

1 Introduction

Reverend Thomas Malthus [3] is generally recognized as the person who made
the first serious attempt to understand and quantify economic growth. How-
ever his predictions of everlasting exponential growth were quickly recognized
as being incorrect. The issue was resolved by Verhulst [1] in a series of semi-
nal papers [2]. A statistical as opposed to deterministic approach to economic
modelling was first made by Italian economist Pareto [4] who examined the
distribution of wealth in Italian society. He found that the high end (tail) of
the wealth distribution was described by power law, f1 (w) ∼ w−1−α. Pareto
noted at the time that “The problem of pure economics bears a striking like-
ness to that of rational mechanics... It therefore appears quite legitimate to
appeal also to mathematics for assistance in the solution of the economic
problem.”

Recently it has been shown via numerous empirical studies [5–8] that this
power-law tail is temporarily stable over a wide range of wealth values. Stud-
ies of income data in Sweden in [5], Revenue data concerned with the net
capital of individuals at death in the United States [6], income distributions
in Japan in [8], the UK [18] and Australia [19]) all support Pareto’s initial
conclusions. In addition, distributions of sizes, cities, Internet files, biological
taxa, gene families and protein family frequencies in [7]) also suggest that
Pareto’s conclusions are of a general nature and suggest that this high end
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tail that exhibits the power law is characterized by several multiples or even
tens of multiples of the average wealth. Note that in this paper we use words
income and wealth interchangeably. This corresponds to the starting assump-
tion that these economic systems are in equilibrium ((quasi-)stationary) and
the plausible assertion here that income of an individual is roughly equivalent
to wealth in his or her possession in the long term i.e. at death.

Models based on stochastic processes with multiplicative noise (with the
updated value of process depending on a product of the present value and
a random variable) that yield a power-law distribution of the value of the
process have been known for years from studies as diverse as studies of eco-
nomic growth [12], city populations [13], wealth distributions [14], stochastic
renewal processes [15] and of frequency of words in text [11]. Recently Di
Matteo [19] published a model based on additive stochastic processes with
individuals (agents) interacting through a network. In this model the distri-
bution that is a weighed sum of Gaussians with averages proportional to the
connectivity of the network, equal variances, and weights depending on the
degree distribution of the network appears to be a power law in the high
end and a log-normal distribution in the low end. Other models [20] sim-
ulate in a simplistic way the effect of tax. However all these models relate
essentially to a Generalized Lotka–Volterra equation that combines a multi-
plicative stochastic process with a process that redistributes a fraction of the
total money to ensure the money possessed by an agent is never zero. The
resulting distribution f1(v) has the form:

f1 (v) ∼ e(1−α)/v

v1+α
(1)

where α − 1 is a positive number that is, it is suggested related to social
security and some random investments.

A different class of models [21–24] are based by analogy with the kinetic
theory of dilute gases (so called wealth exchange models). In these models,
agents exchange money via pairwise interactions and the rate of exchange
depends on the number of agents. The models yield a power-law tail as a
result of the breaking of the conservation of wealth in exchange processes
(inelastic scattering).

We have examined in detail elsewhere the basic model due to Patriarca,
Chakraborti and Kaski (PCK) [9] and shown that aspects of the model [10]
can be solved analytically. The model yields a form for the wealth distribution
that appears reasonable for low values of wealth. At the high end, the model
admits a power law but the value of α for the model is precisely unity whereas
it is known that for empirical data that α may be 1.5 or higher. Here we
propose a generalized model (RRH model) that includes the possibility of
agents with memory. The model is developed in section (2). We then proceed
to examine various limits. The generalization clearly encompasses the PCK
model as a special case therefore and continues to fit reasonably well the
low end of the wealth distribution. This is now demonstrated in section (5)
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using data from both the UK and the Republic of Ireland. In the following
sections, we examine the possibility that multi point and opposed to pairwise
interactions might allow a change in the tail index, α. The result is negative.
We finally show that when memory is included, the power law describing the
higher end tail can take on values that differ from unity and that are more in
agreement with empirical data. This result is demonstrated both analytically
and supported via numerical simulation.

2 Kinetics of Wealth Distributions

Elsewhere [16] we developed the solution of the PCK model where agents
have no memory. Here we consider a more generalized model that includes
the possibility of agents with a memory. As with the simple PCK model the
time evolution of the distribution of wealth is described through dynamical
rules that involve exchanges between two agents (two-agent exchanges) in
two consecutive times t and t+ δt, viz.:

wi (t+ δt) = λiŵi(t) + ε [(1 − λi)ŵi(t) + (1 − λj)ŵj(t)]
wj (t+ δt) = λjŵj(t) + ε1 [(1 − λi)ŵi(t) + (1 − λj)ŵj(t)] (2)

where λi and λj describe the amount of money saved during the exchange
process by agents i and j respectively (saving propensities). The random
number ε ∈ [0, 1] is uniformly distributed with 〈ε〉 = 1/2 and ε1 = 1− ε. The
variables ŵi(t) and ŵj(t) are computed from values of wealth at time t and
at some random time q ≤ t that is sampled from a distribution pt(q), that
we call the memory horizon distribution, prior to the start of the dynamical
process.

ŵi(t) = wi(t) + γwi(q) (3)
ŵj(t) = wj(t) + γwj(q) (4)

Thus our process is not Markovian and is measured by some decay rate
of the distribution pt(q) (to be specified in next paragraph). Notice that with
this definition of memory, the agents tend to accumulate money in the long
term with a rate that is specified by the parameter γ (the money accumulation
parameter).

Since the model involves two-agent exchange processes at two times it
is convenient to describe it in terms of a four-agent distribution function
f4(v, w, v′, w′; t, q). This function specifies the probability density of an event
in which two randomly chosen agents have wealth values Vt = v and Wt = w
at time t and values Vq = v′ and Wq = w′ at time q < t. This means
that f4(v, w, v′, w′; t, q) := P (Vt = v,Wt = w, Vq = v′,Wq = w′). The two-
agent function f2(v, w; t) is obtained by integrating the four-agent function
over values v′, w′ ≥ 0 at time q. The kinetic equation for the two-agent
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distribution function is constructed by counting all states of agents (v′, w′) at
time t and (v′′, w′′) at time q, states that give rise to a predefined state (v, w)
at time t+ δt. We assume that the waiting times between wealth exchanges
are distributed exponentially with some rate r. Therefore conditioning on
the occurrence of the exchange process in time interval [t, t+ δt] for small δt
yields:

f2(v, w; t+ δt) = (1 − r δt)f2(v, w; t)

+(r δt)
∫

R4
+

dv′dw′dv′′dw′′ f4(v′, w′, v′′, w′′; t, q)

×P (Vt+δt = v,Wt+δt = w |Vt = v′,Wt = w′, Vq = v′′,Wq = w′′ ) ,(5)

where the integration in (5) runs from zero to infinity, the conditional proba-
bility in the integrand in (5) is expressed via a delta function (no dissipation
of wealth assumption) as follows:

δ (v − λ(v̂)v̂ − ε {[1 − λ(v̂)]v̂ + [1 − λ(ŵ)]ŵ})
× δ (w − λ(ŵ)ŵ − ε1 {[1 − λ(v̂)]v̂ + [1 − λ(ŵ)]ŵ}) , (6)

where
v̂ = v′ + γv′′ and ŵ = w′ + γw′′ (7)

and the saving propensities λ(v) may depend on the values of wealth v. In
order to change (5) into an algebraic equation we make use of a generalized
Laplace transform:

L(λ,γ) : f(v1, v2) → f̃ (λ,γ)(x) := L(λ,γ)
v1,v2

[f(v1, v2)] (x)

:=
∫ ∞

0

dv1
∫ ∞

0

dv2 e−(x1+λ(v1+γv2)x2)(v1+γv2)f(v1, v2)dv (8)

where x = (x1, x2). Note that (8) depends on the functional form λ(v̂). For
λ(v̂) = λ = const(v̂) the generalized transform f̃ (λ,γ)(x) = Lv1,v2 [f(v1, v2)]
(x1+λx2, γ(x1+λx2)) and in general (λ(v̂) �= const(v̂)), as we will see in next
paragraph, the generalized transform is expressed via partial derivatives of
the Laplace transform itself. Multiplying both sides of (5) by exp(−xv− yw)
and integrating over v′, v′′ ∈ [0,∞] and w′, w′′ ∈ [0,∞] we get:

f̃2(x, y; t+ δt) − f̃2(x, y; t)
r δt

+ f̃2(x, y)

= f̃ (λ,γ)
4 (

(
εx+ ε1y
ε1(x− y)

)(
εx+ ε1y
−ε(x− y)

)
; t, q) (9)

where f̃2 and f̃ (λ,γ)
4 are the Laplace and generalized Laplace transforms of

the two-agent and the four-agent functions respectively. Note that the first
and the second vector on the right hand side of (9) corresponds to values
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of wealth of the first agent and of the second agent at times t and time q
respectively.

In order to solve (9) we need to express the generalized Laplace transform
through the Laplace transform. We assume that values of wealth of different
agents at the same time are independent whereas values of wealth of the same
agent at times t and q are not. This is a plausible assumption since in real
societies densities of agents are small but agents possess a memory horizon
even though its distribution decays fast with the time lag. This means that
the four point function in (9) factorizes as follows:

f̃
(λ,γ)
4 (x1,x2; t, q) = f̃ (λ,γ)

2 (x1; t, q)f̃
(λ,γ)
2 (x2; t, q) (10)

We assume the saving propensity λ(v) to be a periodic function λ(v) =
λ(v+2L) of the wealth v. This means that λ(v) can be expanded in a Fourier
series:

λ(v) = λ0 +
∞∑

n=1

λ(n) sin(
nπ

L
v) (11)

Inserting (11) into the definition of the generalized Laplace transform (8),
factorizing the exponential in the integrand into two parts that depend on
x1 and on x2 only and expanding the exponential with x2 in a Taylor series
we obtain:

f̃
(λ,γ)
2 (x) = L(λ,γ)

v1,v2
[f2(v1, v2)] (x) =

[
1 + Ax2,s(x)

]
f̃2(s(x), γs(x)) (12)

where s(x) = x1 + x2λ0 and

Ax1,x2 :=
∞∑

n=1

(−x1)n

n!

( ∞∑
m=1

λ(m)∂−x2 sin(
π

L
m∂−x2)

)n

(13)

is a pseudo-differential operator that is defined by means of a Taylor ex-
pansion in partial derivatives of higher order. Inserting (12) into the kinetic
equation (9) we obtain in the limit δt → 0 the following pseudo-differential
equation: [

r−1∂t + 1
]
f̃2(x, y; t) =[

1 + Aε1(x−y),P1(x,y)

]
f̃2(P1(x, y), γP1(x, y); t, q)

× [
1 + A−ε(x−y),P2(x,y)

]
f̃2(P2(x, y), γP2(x, y); t, q) (14)

where
P(x, y) = ((λ0 + ελ1)x+ ε1λ1y, (λ0 + ε1λ1)y + ελ1x) (15)

we defined a vector whose components P1(x, y) and P2(x, y) are invariant
with respect to interchanging (ε, x) with (ε1, y).

A further analysis of (14) is left for future work.
In the following we now assume λ(v) = const(v) = λ and consider the

following particular cases:
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– Agents that have no memory (γ = 0) and the saving propensity λ is the
same fixed number for all agents

– An extension of the model to include three-agent exchange processes.
– Agents have a memory (γ > 0) and the savings propensity for agents may

be different and characterized by a distribution ρΛ(λ). Note that in this
case agents can accumulate wealth during an exchange process.

3 Lack of Memory and Equal Savings

In the absence of memory i.e. γ = 0, wealth is conserved during the exchange
processes and the two-agent distribution function reaches a stationary solu-
tion at large times. The model has been solved numerically by Chakrabarti
[17], who found that to a good approximation the distribution of wealth could
be fitted well by a heuristic function:

f1 (v) =
nn

Γ (n)
vn−1 exp (−nv) (16)

where Γ (n) is the gamma function and the parameter n is related to the
saving propensity, λ as follows:

n (λ) = 1 +
3λ

1 − λ (17)

This relation (17), in effect a conjecture by Patriarca, Chakraborti and Kaski
(PCK) [10], can in fact be derived analytically. Since the PCK conjecture is
concerned with the one-agent distribution we may assume that its explanation
can be achieved using the mean field approximation

f̃2(x, y; t) = f̃1(x; t)f̃1(y; t) (18)

using this approximation, (30) takes the form:

f̃1(x) =
〈
f̃1((λ+ ελ1)x)f̃1((ελ1)x)

〉
ε
=

1
λ1x

λ1x∫
0

f̃1(λx+ φ)f̃1(φ) dφ (19)

where the average in the first equality in (19) is over ε = Uniform (0,1) and
in the second equality we substituted for ελ1x. In this case a solution f̃1(x) =∑∞

n=0(−1)nmnx
n that is analytic in x exists. The moments 〈vn〉 = mn · n!

satisfy recursion relations:

mp =
p∑

q=0

mqmp−qC̃
(p)
q (λ) where C̃(p)

q (λ) =

(1−λ)∫
0

(λ+ η)q
ηp−qdη

1 − λ (20)
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where the constants C̃(p)
q are computed from following recursion relations:

C̃
(p)
q+1 =

(1 − λ)p−q−1 − (q + 1)C̃(p)
q

p− q with C̃
(p)
0 =

(1 − λ)p

p+ 1
(21)

Solving the equations of moments (20) with initial conditions m0 = 1 and
m1 = 1 recursively, i.e. expressing, via the pth equation, mp as a function of
λ and all previous values of m one obtains:

m2 =
λ+ 2

2(1 + 2λ)
m3 =

λ+ 2
2(1 + 2λ)2

(22)

m4 =
72 + 12λ− 2λ2 + 9λ3 − λ5

24(1 + 2λ)2(3 + 6λ− λ2 + 2λ3)
(23)

The first three moments m1, m2 and m3 coincide with the moments mconj
1 ,

mconj
2 andmconj

3 of PCKs function (16) if the relation between the parameters
n and λ is given by (17). Indeed the coefficients mconj

i (n) of a series expansion
of the Laplace transform

f̃1(x) =
(

n

x+ n

)n

=
∞∑

j=0

(−1)jmconj
j (n)xj (24)

of the function (16) agree with moments (23) up to the third order, subject
to (17) being satisfied. This is shown in a nice way in Fig. 1. The deviation
∆f̃1(x) between the exact solution of (20) and the Ansatz (16) has a leading
fourth order:

∆f̃1(x) =
(n− 1)(n+ 1)(n+ 8)

8n3(10n3 + 30n2 + 45n− 4)
x4 +O

(
x5
)

(25)

It is hard to say whether a more general class of functions than (16) would
fulfill (20) to higher expansion orders.

4 Three-Agent Exchange Processes

Elsewhere [16] we have shown that the two-agent exchange process in the
mean field approximation does not provide a full explanation of the model.
Obviously many-agent distribution functions fm(x1, . . . , xm) may not be pro-
duced correctly within this approach but more importantly the value of α for
the high end wealth distribution where the savings are chosen according to a
random distribution is always unity. Might this change if we include m-point
interactions:

wi (t+ δt) = λiwi(t) + εi

⎡⎣ m∑
j=1

(1 − λj)wj(t)

⎤⎦ (26)
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Fig. 1. Deviations ∆(λ; n) =
∑10

p=0

∣∣(mp(λ) − mconj
p (n))/p!

∣∣ of the exact moments

mp of the wealth distribution from the moments mconj
p derived from the conjecture

plotted as a function of λ for n = 2, 3 . . . , 9. Solid lines (dot symbols) correspond
to analytical (numerical) solutions of the moment (20). We see that the minima
λ = (n− 1)/(n + 2) = {1/4, 2/5, 3/6, 4/7, 5/8, 6/9, 7/10, 8/11} of the deviations do
correspond to the PCK conjecture (17)

where εi ∈ [0, 1] and
∑m

i=1 εi = 1. This means that at every time step,
exchange processes involving any number of agents can happen with a certain
likelihood. We perform the analysis for m = 3 in order to establish the type
of mathematical difficulties we might encounter. Now the kinetic equation
for the two-agent distribution function in the Laplace domain is expressed
through three-agent distribution functions and takes the form:

1
r
∂tf̃2(x, y; t) + f̃2(x, y; t)

= (1 − σ)
〈
f̃2 (λx+ λ1 [εx+ (1 − ε)y] , λy + λ1 [εx+ (1 − ε)y] ; t)

〉
+
σ

2

〈
f̃3 (λx+ λ1 (ε1x+ ε2y) , λy + λ1 (ε1x+ ε2y) , λ1 (ε1x+ ε2y) ; t)

〉
+
σ

2

〈
f̃3 (λ1 (ε2x+ ε3y) , λx+ λ1 (ε2x+ ε3y) , λy + λ1 (ε2x+ ε3y) ; t)

〉
(27)

where λ+ λ1 = 1, ε+ ε1 ≤ 1 and σ and (1 − σ) denote likelihoods of three-
agent and two-agent exchange processes respectively. The first (second and
third) term(s) on the right-hand side in (27) account(s) for two-(three-)agent
exchange processes respectively. Setting y = 0 and σ = 0 we obtain the
kinetic equation of two-agent exchanges (19) Setting x = y = 0 we obtain an
identity because f2(0, 0) = f3(0, 0, 0) = 1.

Now the transcendental equation derived from the kinetic equation (27)
has the following form (compare with (41)):
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1 = (1 − σ) (〈(λ+ ελ1)α〉 + 〈(ελ1)α〉)
+
σ

2
(〈(λ+ ε1λ1)α〉 + 〈(λ+ ε2λ1)α〉 + 2 〈(ε1λ1)α〉 + 2 〈(ε2λ1)α〉) (28)

where ε, ε1, ε2 = Uniform(0,1) and 0 < ε1 +ε2 < 1 are sampled independently
from ε. Note that since 〈ε〉 = 1/2 and 〈ε1 + ε2〉 = 2/3 both sides of (28)
coincide for α = 1. For α > 1 the right hand side is a strictly decreasing
function of α because it is a sum of powers functions aα where a < 1.

Thus α = 1 is once again the only solution of this equation for arbitrary
saving propensity distributions ρΛ(λ) and for any likelihood σ ∈ [0, 1] of
three-agent exchange processes. This result is confirmed by numerical simu-
lations.

5 Comparison of the Model to Empirical Data

We have analysed distributions of yearly incomes in the United Kingdom
within 1993–2002 and in the Republic of Ireland within 2001–2004 and fit-
ted the Patriarca, Chakraborti and Kaski model with a non-random saving
propensity to the data (see Fig. 2). The fitted values of saving propensities for
both countries are plotted versus time in Fig. 3. Since the number of years-
data available is small it is hard to see any trend in the saving propensities
as a function of time. However, the accuracy of the fit, in terms of the error
bars, is reasonable. Most of the data that we analysed were characterized
by an exponential decay of the distribution of wealth in the high end of the
distributions. Hallmarks of power laws were vaguely visible in few data sets
and set in only starting from a couple of multiples of the average income.
This may be due to the fact that high-income data are underestimated due
to the fact that rich people (tax-evaders) are not willing to disclose their full
earnings to the revenue commissioner.

6 Presence of Memory and Random Savings

For λ(v) = const(v) the pseudo-differential operators on the right hand side
in (14) are equal to zero. Therefore (14) takes the form:[

r−1∂t + 1
]
f̃2(x, y; t)

= f̃2(P1(x, y), γP1(x, y); t, q)f̃2(P2(x, y), γP2(x, y); t, q) (29)

Setting y = 0 in (29) and using f̃2(x, 0) = f̃2(0, x) = f̃1(x) we obtain an
equation for the one-agent function[

r−1∂t + 1
]
f̃1(x; t)

= f̃2(P1(x, 0), γP1(x, 0); t, q)f̃2(P2(x, 0), γP2(x, 0); t, q) (30)
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We differentiate (30) with respect to x at x = 0 and obtain the time depen-
dence of the mean wealth

〈v〉 (t) := − ∂x1 f̃2(x1, 0; t)
∣∣∣
x=0

= − ∂x2 f̃2(0, x2; t)
∣∣∣
x=0

(31)

We have:[
r−1∂t + 1

] 〈v〉 (t) = (λ+ 2ελ1) (〈v〉 (t) + γ 〈v〉 (q)) = 〈v〉 (t) + γ 〈v〉 (q) (32)

where in the second equality in (32) we have averaged over ε using 〈ε〉 = 1/2.
Now we assume that the memory horizon distribution pt(q) = p(t − q) is
homogenous in time. This allows us to solve (32) as follows:

〈v〉 (t) = L−1
s

[ 〈v〉 (0)
s− γrp̃(s)

]
(t) (33)

where p̃(s) := Lt [p(t)] (s) is the Laplace transform of 〈v〉 (t) with respect to
time t. We assume for simplicity that the memory horizon decays exponen-
tially:

p(t) = θe−θt (34)

with a mean 1/θ (memory horizon), and that 〈v〉 (0) = 1. This yields

〈v〉 (t) =
s1 + θ
s1 − s2 exp(s1t) − s2 + θ

s1 − s2 exp(−|s2|t) (35)

where
rγ = s1,2

(
1 +

s1,2

θ

)
. (36)

Since the wealth is not conserved we assume that the two-point function has
a quasi-stationary solution of the form:

f̃2(x, y; t, q) = Φ2(xv̂t,q, yv̂t,q) , (37)

where v̂t,q := 〈v〉 (t) − C 〈v〉 (q) and C is a constant that will be determined
later. Inserting (37) into (30) and replacing x by x/(v̂t,q) we obtain:[
r−1 〈s1〉x∂x + 1

]
Φ2(x, 0) = Φ2((λ+ ελ1)x, γ(λ+ ελ1)x)Φ2(ελ1x, γελ1x) ,

(38)

where

〈s1〉 :=

〈 .

v̂t,q

v̂t,q

〉
q

= s1
∫ t

0

θe−θτdτ
1 − Ce−s1τ

= s1

[
1 +

∞∑
n=1

Cn 1 − e−(θ+ns1)t

(1 + n s1
θ )

]
=

t→∞ s1

[
1 +

∞∑
n=1

Cn

(1 + n s1
θ )

]
(39)
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For small values of x and y we expand the function

Φ2(x, y) = 1 − x− y +A(xα + yα)

in a series, insert it into (38), and compare coefficients at powers of x. This
yields:

x: 1 + r−1 〈s1〉 = 1 + γ (40)
xα: 1 + αr−1 〈s1〉 = (〈(λ+ ελ1)α〉 + 〈(ελ1)α〉) (1 + γα) (41)

where the average on the right hand side in (41) is over the distributions of
λ and of ε. We insert (39) into (40) and we realize that (40) is equivalent to
(36) if C = rγ/θ and C ≪ 1.

From (40) we see that (41) is fulfilled for α = 1 and we seek for a different
solution α ∈ [1, 2]. Since for γ > 1 the derivative of the right hand side of
(41) with respect to α changes sign from minus to plus for some α ≥ 1 there
will be another solution for α �= 1 of (41). The analysis of these solutions and
their comparison to the numerical calculations is left for future work.

We emphasize that this analysis is valid in following limits:

(a) The money accumulation parameter per wealth exchange rγ is much
smaller than the inverse memory horizon θ.

(b) The money accumulation parameter γ > 1.
(b) The time in the simulation is large enough t→ ∞.

We have also performed numerical simulations with the rate of wealth
exchanges r = 1, and with γ > θ. Results of these simulations, shown in
Fig. 4, clearly show that the distribution has a slope different from unity
in the high end and the corresponding value of α can take on values that
conform with empirical values.

7 Conclusions

We have presented a generalised model of agent interactions that incorpo-
rates agent memory and shown that both analytic and numerical solutions
for the subsequent wealth distributions may be obtained. The model includes
the approach of PCK as a special case. Using data from both the Republic
of Ireland and the UK we show that the model describes reasonably well the
low end of the wealth distribution. Furthermore contrary to the PCK model
our generalised model including agent memory can account for the observed
values of the Pareto exponent α that characterises the high end wealth dis-
tribution. A more detailed analysis of these results and other aspects will be
given elsewhere.
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12. R. Gibrat: Les Inégalités économiques (Librairie du Recueil Sirey, Paris 1931)
13. G.K. Zipf: Human Behavior and the Principle of Least Effort (Addison-Wesley,

1949)
14. Y. Ijiri, H. Simon: Skew Distributions and the Sizes of Business Firms (North-

Holland, New York 1977)
15. H. Kesten: Random Difference Equations and Renewal Theory for Products of

Random Matrices, Acta Mathematica, CXXXI: 207-248, 1973
16. P. Repetowicz, S. Hutzler, P. Richmond: preprint cond-mat/0407770, submitted

to Physica A
17. A. Chatterjee, B.K. Chakrabarti: Physica Scripta T 106, 36 (2003) and cond-

mat/0311227; A. Chatterjee, B.K. Chakrabarti, S.S. Manna: Physica A 335,
155 (2004)

18. T. Cranshaw: poster presentation at EPS meeting Applications of Physics in
Financial Analysis (APFA) 3, London December (2003)

19. T. Di Matteo, T. Aste, S.T. Hyde: preprint cond-mat/0310544
20. S. Solomon et al: Phys. Rev. E 66031102 (2002); S. Solomon, P. Richmond:

Eur. Phys. J. B 27, 257 (2002); P. Richmond, S. Solomon: Int. J. Mod. Phys.
C 12, 333 (2001)

21. F. Slanina: Phys. Rev. E 69, 46102 (2004)
22. D. Ben-Avraham, E. Ben-Naim, K. Lindenberg, A. Rosas: preprint cond-

mat/0308175
23. E. Ben-Naim, P.L. Krapivsky: Phys. Rev. E 61, R5 (2000)
24. P.L. Krapivsky, E. Ben-Naim: J. Phys. A: Math. Gen 35, L147 (2002)



Part IV

Condensed Matter



Agglomeration/Aggregation and Chaotic
Behaviour in d–Dimensional Spatio–Temporal
Matter Rearrangements Number–Theoretic
Aspects

Adam Gadomski1 and Marcel Ausloos2

1 U.T.A. Bydgoszcz, Institute of Maths & Physics, Bydgoszcz PL–85796, Poland
agad@atr.bydgoszcz.pl
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Summary. Matter gets organized at several levels of structural rearrangements.
At a mesoscopic level one can distinguish between two types of rearrangements,
conforming to different close-packing or densification conditions, appearing during
different evolution stages. The cluster formations appear to be temperature- and
space-dimension dependent. They suffer a type of Verhulst-like saturation (frustra-
tion) when one couples the growing (instability) and mechanical stress relaxation
modes together. They manifest a chaotic behaviour both in space and time do-
mains. We pretend to offer a comprehensive and realistic picture of a material or
mega-cluster formation in d dimension.

1 Introduction

Matter organisations at a mesoscopic (molecular–cluster) level typically man-
ifest a multitude of microstructural rearrangements. Cluster–cluster aggrega-
tions of proteins and/or colloids, phase separations, flocculation–coagulation
phase transformations, sol-gel systems, (wet) sand or rice piles, etc., are mani-
festations of loosely-packed rearrangements, typically occurring under moder-
ate or high temperature conditions. In contrast ripened polycrystals, sintered
powders, soap froths and bubbles, and other cellular systems, constitute a
type of rearrangement that usually emerges in a (relatively) low temperature
limit and under certain (“field dependent”) matter close–packing constraints.
Beside such an agglomeration, fracture, desaggregation, desorption, dissolu-
tion, and alike, can be thought to be the “inverse process”, finding its place
in the opposite part of the relevant phase diagram [1].

In all of them spatial as well as temporal signatures of chaotic behaviour,
due to matter reorganisations, can be detected: They are temperature and
space-dimension dependent. In particular, one can show rigorously that in the
limit of the spatial dimension going to infinity loosely-packed agglomerations
become non–chaotic by suppressing totally their instability growing mode
since it is related to the nonequilibrium agglomerate’s entropy [2], while their
closed-packed counterparts are not. When the growing mode is coupled to a
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mechanical stress relaxation mode as a power law via some phenomenological
relation of Hall–Petch–Griffith (H-P-G) [3] type (an Onsager-type conjecture
[4] of the present study), certain marks of Bethe–lattice frustration, related
to a spatial overcrowding of the Cayley–tree branches, appear in the (mean-
field) approach – a kind of frustration qualitatively of very similar type than
that observed in Verhulst-type systems in an adequate time and parametric
zone.

In the specific cases discussed in this review, however, by increasing the
space dimension, d, we automatically induce some increase of the possible
number of degrees of freedom in the system. Thus, when taking into account
the coupling of the late-time growing and relaxation modes, say, in a fairly
synchronized viz. power-law way of H-P-G type, one obtains that even though
the material’s relaxation goes slower than in the case when such a coupling is
proposed in an unsynchronized (Debye-relaxation involving, i.e. rapid) way,
one is, however, able to establish or restore an apparent dynamic microstruc-
tural order within the system the nonequilibrium (chaotic) measures of which
are proposed below. There is, unfortunately, no way of establishing such an
order when the coupling fails the power-law type synchronization require-
ment [3, 4].

Thus, when an ample space amongst the clusters is recovered by the sys-
tem at its mature growing stage, we consider that the system successfully
tries to avoid a chaotic matter organisation in space. Note that tempera-
ture may markedly help in surmounting the activation-energy barrier of the
agglomeration, especially when it is raised appropriately, whence when not
”damaging’ a possibly smooth evolution of the system. Full success is, how-
ever, guaranteed when the limit of d → ∞ is reached. If there is no chance
for recovering the ample space, the late-time growing stage is realized in a
moderately chaotic way. The mechanical stress relaxation, in turn, enters a
readily chaotic regime, since the (nonequilibrium) entropy of the system di-
verges to plus infinity. The overall scenario resembles, in general, a formation
of large (fractal) colloid aggregates that typically occurs with and without
temperature and/or space-dimension dependent gravity factor domination,
like as if imposing some limits to gelation of colloids [5].

The paper is arranged as follows. In Sect. 2, we define both the closely-
packed as well as loosely-packed agglomerations, calling the latter the aggre-
gation throughout. In Sect. 3, we list some qualitative signatures of chaos
in matter-agglomerating systems, and refer briefly to different definitions as
well as meanings of chaos. In Sect. 4, we present quantitative measures of
chaos signatures in systems of interest, whereas in Sect. 5 we unveil number-
theoretic measures, featuring a chaotic spatio-temporal behaviour of them.
In Sect. 6, according to some suggestions given in [6], on which much of our
report is based, in order to see which agglomerations behave orderly or non-
chaotically, we explore the limit of d→ ∞, and arrive at a certain interesting
(perhaps, surprising) conclusion, favouring aggregation of matter, or some
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structural loosely-packed, and typically high-temperature, matter rearrange-
ments – in contrast to those emerging under close-packing low-temperature
conditions. We close the paper by offering a concluding address in Sect. 7.

2 Agglomeration vs Aggregation of Matter – a Model
Description

Following [7], throughout the present study, we wish to distinguish between
the notions of agglomeration and aggregation of matter. By the former we
mean an assembly of grains or molecular clusters, kept together by relatively
strong forces (e.g. ionic), so that there is no easy possibility of taking the
clusters apart, or destroying them. For the latter, because of the appearance
of weak bonds between clusters, such as Van der Waals or hydrogen types, the
possibility of cluster separation becomes an observed tendency of the matter
rearrangement due to their weak bonds. For a schematic explanation of the
difference between both matter arrangements, see Fig. 1.
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3 3
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tt

A: V =total const B: Vtotal≠const

Fig. 1. Typical cluster-merging (three-grain) scenario for closely-packed (left, de-
noted by A) and loosely-packed (right, denoted by B) agglomerations. Two consec-
utive time steps t1 and t2 are shown. The former usually goes by a scenario with
the preservation of the total agglomerate’s volume (though in a more irregular way,
when its logarithmic speed is measured, cf. Sects. 3–6), whereas the latter does
not [8]. In the former, the clusters do not perform a translational motion but their
boundaries may fluctuate in time and space, even though they are quite strongly
confined by their neighbourhood. In the latter, an almost opposite situation in the
time-and-space domain is typically observed. Some void is left behind a loosely
packed system
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2.1 Basic System of Equations Describing
Model Matter Agglomeration

As in previous work [8, 9] we begin with a local continuity equation

∂

∂t
f(v, t) +

∂

∂v
J(v, t) = 0 , (1)

preferentially supplemented by the corresponding initial (of delta-Dirac type
as a first attempt) and boundary (typically, of absorbing type) conditions
(IBCs).

In a few subsequent studies a thermodynamic-kinetic description [8–10] of
model complex matter agglomeration has been worked out. For the current3

in the space of cluster volumes

J(v, t) = −
[
B(v)

∂

∂v
Φ
]
f(v, t) −D(v)

∂

∂v
f(v, t) , (2)

has been used [9], where f(v, t) is the distribution of clusters of volume v:
this means, that f(v, t)dv is the (relative) number of clusters with size in
the infinitesimal volume interval [v, v + dv]; t is the time; Φ represents the
physical potential, equivalent to the free energy of the system (see [9] for an
explanation of the term). It is assumed to be one of the most relevant drivers
of the agglomeration process at the mesoscopic level, assuring its nonequilib-
rium character. In fact, the current (2), in the form presented above, comes
from a rigorous derivation, starting from the Gibbs equation for the entropy
production [10]. It has quite strong foundations anchored in nonequilibrium
thermodynamics [9]. It is worth mentioning that upon inserting (2) into the
continuity equation, (1), one gets a second-order partial differential equation
of the Fokker–Planck–Kolmogorov (F-P-K) type [11].

For the dynamics of such a system some routes to chaotic behaviour have
been sketched elsewhere by considering the (in)stability of Markov semi-
groups in [12]. The mobility B(v) is also defined in the configurational v–
space and reads [9]

B(v) =
D

kBT
vα, α =

d− 1
d

, (3)

where D is a diffusion reference constant. Realize that the principal role
of D is to scale the time variable; kB represents the Boltzmann constant.
Note that the mobility B(v) is related to the Onsager coefficient, L(v), that
appears in the derivation of the matter flux equation (2) under a set of
assumptions, mostly based on the locality of the Kramers-type process [10,
13], etc. L(v), and hence B(v), could be measured by comparing the current
and the thermodynamic force [10]. The quantityD(v) = Dvα is to be inferred

3For a method to derive diffusion currents for different types of systems one is
encouraged to look into [10]
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from the Green–Kubo (G-K) formula [14], so that there is some quite strong
suggestion for deriving B(v) both, experimentally as well as theoretically [9].

There is a debate about a possible violation of the G-K formula [14, 15].
For instance, it is proved that for a gas of charged particles subjected to
an external electric field, the mean mobility of a charged particle, based on
the G-K formula, is reliably well estimated for suitably small values of the
external field. Moreover, at a microscopic scale one observes a nonlinear (or
chaotic) behaviour of the particles, which is, unfortunately, not reflected by
the macroscopic (mobility) measure. In our case, we assume algebraic corre-
lations in v–space, for a phenomenological formula. The assumption seems
to be as natural as possible: D(v) ∝ vα; that means that both the diffusiv-
ity D(v) and the mobility B(v) are proportional to the cluster hypersurface,
s(d) := Rd−1. It should be underlined that it is, in our opinion, the com-
mon physical case in clustering phenomena, and is working properly at the
mesoscopic level considered in our approach.

Notice right here that exactly the same assumption has been used
to model in a F-P-K way the formation of surface nanostructure arrays
[16]. Therein, an experimentally-observed passage between direct curvature-
dependent ripening of matter nano-islands (our densely-packed agglomera-
tion), and inverse ripening, with an elastic-field caused contraction of grow-
ing quantum dots [17] (our sparsely-distributed agglomeration of matter),
has been presented.

There are, however, matter agglomerations, for a given T , that do not
conform usually to

D(v) ∝ B(v) ∼ vα � s(d) . (4)

To them belong both some physical-metallurgical transformations [18], such
as martensitic, and presumably, also certain phase orderings of non-diffusive
kind, emerging in model biosystems, such as those occurring in lipid bio-
membranes [19]. Other than algebraic types of correlations in the hyperspace
can likely be expected for these. If a power law of the type given by (4)
can be kept for further modelling, some additional correlations in time must
complete a more comprehensive correlational proposal, cf. [20]. Other types
of correlations in the hyperspace, even if they allow to get a general so-
lution to the problem, may not accommodate the boundary conditions [9],
so that one would expect either to be left with an unsolved specific prob-
lem or to encounter anomalous or irregular behaviour of the agglomerating
system [8, 19, 20]. In such a case another type of finite, instead of infinite
boundary boundary conditions [20], can sometimes give a remedy for the
problem [21]. Here, under the term infinite boundary conditions [8] we typi-
cally understand the boundary conditions of absorbing (Dirichlet) type

f(v = 0, t) = f(v = Vclust, t) = 0 (5)

in which the single cluster volume is taken at infinity, Vclust = ∞, whereas in
case of the finite boundary conditions it assumes a finite value, 0 < Vclust <
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∞, cf. [21], and a discussion therein. Although the latter unquestionably
seems more physical the former is more frequently used to reveal the evolu-
tions in matter-agglomerating systems [22] – this resembles to some extent
a situation in statistical-thermodynamical systems undergoing an equilib-
rium phase transition: As such they are typically considered in the so-called
thermodynamic limit (here, with a number of subunits going to ∞) under
the mentioned agglomeration-oriented, e.g. condensation conditions, and the
analogy would presumably extend over the examined nonequilibrium evolu-
tions too [9, 21].

2.2 Thermodynamic Potentials Driving Matter Agglomerations

In previous work [9] the analytic form of a (so-called) compaction potential
was obtained, i.e.

Φ(v) = Φ0 ln (R/R0) , (6)

where Φ0, R0 – constants, and R stands for some cluster radius. Because

v ≡ v(d) ∼ Rd, d = 1, 2, 3, . . . , (7)

one gets also Φ(v) ∝ ln (v/v0), where v0 is a constant.
The logarithmic potential assures the emergence of rather compact and

curvature-involving structures, whence the name of “compaction potential”
[22]. It should be noted that Φ is an entropic potential [9]. Thus, it can be
a cause of some desaggregation, or matter-influenced impingement effects,
occurring within the overall aggregation space.

In a previous study on the phase transformation kinetics for loosely packed
“diffusive” agglomerates [8] we have written the matter flux of a purely dif-
fusive nature prescribed in configurational space as follows

J(v, t) = −D(v)
∂

∂v
f(v, t) . (8)

(The diffusion function D(v) = Dvα is proportional to the cluster (grain)
surface.)

Both closely-packed and loosely-packed agglomerations follow from the
general form (2). Indeed, the loosely-packed case is obtained when the first
(drift) term in r.h.s. of (2) can be neglected. Formally, B(v) → 0 when
T → ∞. From the physical point of view, it corresponds to sufficiently high
temperatures T ≥ Tpass > 0, where Tpass can be treated as a cross-over tem-
perature4 above which the agglomeration takes place exclusively by yielding
loosely-packed microstructures. However, the drift term in r.h.s. of (2) de-
pends both on v and T . It tends uniformly, which means independently of v,
to zero at the high temperature limit if

4Borrowing from the nomenclature of phase transitions and critical phenomena
one might sometimes opt for calling it the threshold temperature
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B(v)
∂Φ(v)
∂v

� C = const . (9)

Then for a given system, temperature Tpass does not depend on v and looks
consistently defined.

Some additional argumentation can be provided that such a constant
(limit) C exists and is well defined. Namely, when applying both (3) and (7)
one sees with sufficient accuracy that

C ∝ 1
∆R

× ∆Φ(v)
kBT

. (10)

This means that C is essentially determined by a product involving two
contributions: a certain curvature-like term, κ = 1/ | ∆R |, and some di-
mensionless energetic argument, εE = | ∆Φ(v) |/kBT . The above claimed
high-temperature limit, with the cross-over temperature Tpass as a reference
temperature characteristic of a system of interest, would naturally demand
0 < εE � 1 while, because of approaching the mature growing stage any
change in the cluster radius must be small, 0 <| ∆R |� 1, and therefore,
its inverse would tend to some big value, i.e. κ � 1. Thus, C will take on a
finite value. It is believed that for certain agglomerations under readily high-
temperature conditions it will eventually acquire a small value5, that means,
0 < C � 1 naturally holds. It is a case when the potential

Φ(v) ∝ v1−α � v1/d . (11)

In [16] a condition of setting the current equal to zero, J = 0, has been
chosen to balance diffusive and non-diffusive terms in the F-P-K type de-
scription, cf. [10], aiming at getting a proper behaviour of the metastable
nanostructure [17] arrays. We are of the opinion that such a proposal is le-
gitimate in the relatively low-temperature domain. When the temperature
is raised, but agglomeration is still allowed to occur, the proposal may fail.
Thus, the above is a possible solution for the high-temperature limit. A type
of localization of the Gaussian distribution, characteristic of the inverse ripen-
ing (a metastable state of the nanostructure evolution) can also be obtained
within the present modelling, cf. [8]. This is the case of (8) when in a (read-
ily) mature growing stage, since the single volume v of the cluster does not
change much. As a matter of fact, there is no small-cluster population avail-
able for merging (Fig. 1), i.e. D(v) → const., which nearly corresponds to
the high-temperature criteria of (9), or equivalently (10). In so doing, (8)

5Such a belief comes undoubtedly from the fact that we offer our approach for
systems evolving in an overdamped regime, such as those of biopolymeric type. For
them the Reynolds number is typically of the order of 10−3, i.e. very low, so that
the mobility per se, even for a single biomolecule but also for a molecular cluster,
must clearly be of negligible value [13], regardless of whether we measure it in the
v–space or, what is usually done, in a position space
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represents the 1st Fick law in its standard form. Upon inserting it into (1)
one immediately arrives at the 2nd Fick law (in the configurational space)
with its standard Gaussian solution, the metastable case being emphasized
in [16].

The above potential form (11), designed for loosely-packed agglomeration,
seems legitimate here: Note that the ‘force’ Fc−c ∝ ∂Φ(v)/∂v behaves like

Fc−c ∝ 1
vα

� 1
s(d)

, (12)

because v ∼ Rd. Thus, Fc−c acts as the inverse of the area of the cluster hy-
persurface, s(d), which implies that the smaller the area is, the bigger the force
acting on the cluster can be, this way impeding the formation of new clus-
ters, which would contribute to an aggregate’s density increase. Qualitatively,
a similar dependence is found for the closely-packed matter agglomeration:
from (6) one gets, as above, for the ‘force’

Fc−c � 1
v(d)

. (13)

Here, Fc−c acts as the inverse of the hypervolume of the cluster, v(d) := Rd,
which makes a clear difference between closely-packed and loosely-packed
agglomerations, presumably leading to a certain relaxation of the surface
tension conditions for loosely-packed clusters-containing systems [22].

Referring further to (9) and using the similarity relation, (7), one gets

Φ(R) ∝ Φ(R0)
R

R0
, (14)

where

Φ(R0) =
kBT

Dα
R0, T ≥ Tpass , (15)

and consequently, Φ(R) ∝ R. Moreover,

Dα = D(1 − α) . (16)

R0 can now be specified to be the initial cluster radius. Note that Dα is a
d–dependent quantity.

2.3 Cluster Volume Fluctuations as Reliable Characteristics
of Matter Agglomeration

Aggregations and agglomerations emerge in a fluctuating changing medium.
Therefore, any reasonable quantitative attempt on resolving the fluctuation
impact on their speed is worth examining here. In what follows, let us propose
an evaluation of the reduced variance
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σ2(t) =

〈
v2(t)

〉− 〈
v1(t)

〉2
〈v1(t)〉2 ≡

〈
v2(t)

〉
〈v1(t)〉2 − 1 , (17)

as a direct measure of the cluster volume fluctuations.
The notation used in (17) refers to the statistical moments

〈vn(t)〉 =
∫ ∞

0

vnf(v, t) dv n = 0, 1, 2, . . . (18)

of the stochastic process, where the matter agglomeration is usually described
by the local continuity equation, (1).

The explicit solutions, f(v, t)–s, have been presented elsewhere [8, 9, 20],
and Refs. therein. The zeroth moment,

〈
v0(t)

〉
, is related to the average

number of molecular clusters in the system, and usually shows an algebraic
decrease with time [8]. The first moment,

〈
v1(t)

〉
, is related to the total

volume which is a constant value for closely-packed agglomerations [22] and
an increasing function of time for loosely-packed agglomerations [8], cf. Fig. 1.
From the expressions of both moments, it follows that the average cluster
radius, Rav(t), behaves as a power law in time, with a growth exponent 1/(d+
1) that apparently contains some signature of random close-packing of matter
by having included the super-dimension d+1 [9,23]. (d+1 tells us something
about the minimum number of non-overlapping neighbours of a given cluster
in a d–dimensional space.) These constitute the main characteristics of the
model agglomeration/aggregation process in its late-stage (t� 1) limit.

The question remains about asymptotic values of the moments < vn(t) >
that must be known when applying formula (17). For closely-packed agglom-
erations, the moments are found to obey a power law [22]

〈vn(t)〉 ∼ t(n−1)/(2−α) (n = 0, 1, 2), t� 1 , (19)

whereas for matter aggregation one finds another power law [8]

〈vn(t)〉 ∼ t[(n−1)+α]/(2−α) (n = 0, 1, 2), t� 1 . (20)

Notice, that for α = 0 (d = 1) both power laws above approach the same
form, namely 〈vn(t)〉 ∼ t(n−1)/2. When utilizing (17) and (19) it appears
that for closely-packed agglomerations, σ2(t) can be fully identified with the
inverse of

〈
v0(t)

〉
(the average number of clusters), cf. [22] for details, what

because of the constancy of
〈
v1(t)

〉
, leads to σ2(t) ∝ Vsp(t), where Vsp ≡

Vsp(t) � 〈
v1(t)

〉
/
〈
v0(t)

〉
, and can be termed the mean specific volume of

the tightly-packed agglomerate, being equivalent to the inverse of its mean
number density. The specific volume fluctuations read

σ2(t) ∝ td/(d+1) , (21)

and if d→ ∞, σ2(t) � Vsp ∝ t.
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When using (17) and (20), however, it turns out that for loosely-packed
agglomerations σ2(t) is a quantity equivalent to the average cluster radius
Rav(t), see [8, 9]. They behave in time as

σ2(t) ∝ t1/(d+1) . (22)

When d → ∞, σ2(t) � Rav(t) → const, which means, that on average the
system ceases to grow. Note that the standard diffusional regime, is always
characterized by the one-half exponent, is achieved exclusively for the aggre-
gations in d = 1 because the only linear characteristic is Rav ≡ Rav(t): Note
that Vsp(t) is not a linear characteristic, since Vsp(t) ∝ [Rav(t)]3 usually holds.
Here the d = 1–case must clearly be disqualified as standard diffusional, cf.
(21).

Commenting on the last relations, (21) and (22), one might furthermore
conclude that they reflect a well-known Onsager conjecture that the fluctu-
ations in a system undergo the same type of changes as the corresponding
macroscopic dynamic variables [4]: Here one may think of the specific volume
of the agglomerate and the grain radius, and their behaviour in the late-time
domain, respectively.

2.4 Coupling the Instability (Growing) and Mechanical Stress
Relaxation Modes of Matter Agglomeration

Poisson was likely the first who recognized that viscoelastic properties of
fluids and solids can reasonably be compared in a suitable, mostly short-time
domain, though the specification of the domain must be more precise for
specifying the systems of interest. Maxwell successfully followed the ideas of
his famous French predecessor, arriving at his well-known, in general non–
Markovian, model of relaxation [2]. In what follows we present our Maxwell–
model-based ideas on how to distinguish between the two agglomerations
under study, and how to switch on a kind of coupling between the (late-stage)
growing and relaxational modes in the viscoelastic d–dimensional matrix that
we investigate. The existence of the coupling seems to be experimentally
justified, see [5,15,16], and involves generically the viscoelastic nature of the
mega-cluster late-stage formation [2].

Thus, the afore presented rationale toward quantifying the fluctuations
of the system can be strengthened with a supporting phenomenological ar-
gumentation. The idea comes from a “coupled” diffusion-relaxation picture
that appears in such a complex system. In any diffusion-migration growing
process, the mechanical strain-stress fields play such a role as well. In our case,
such a situation can be safely expected in the temperature domain T ≤ Tpass.
Another type of relaxation of the stress field, say σm, is expected to prevail
when the closely-packed agglomeration conditions are met. A different be-
haviour may be observed when the closely-packed agglomeration conditions
are lost for the first time, that is, at T = Tpass, when the loosely-packed con-
text appears. In both temperature regimes, the relaxation of σm(t) over the
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course of time, is very likely to go in a way essentially described by the current
(2). This is expected to occur [22] presumably under (nearly) homogeneous
strain conditions, εm ≈ const, for t� 1. For an additional motivation of cou-
pling matter agglomeration and stress relaxation picture, related to fracture
phenomena, see [1, 22].

From [22] it can be learned, that in the absence of non-Arrhenius or
fractal type kinetics, seemingly modifying the diffusion coefficient D(v) [20],
one expects the Maxwell dashpot-and-spring model to reflect properly the
relaxation behaviour. We wish to set up here a phenomenological picture,
showing that both agglomeration and mechanical stress relaxation, where
the stress relaxation takes place under slow growth conditions, proper of a
mature growing stage in a viscoelastic multiphase medium [13,15], are coupled
processes [5, 16]. To work out the problem quantitatively, we will represent
one of the two contiguous and matter-exchanging clusters in the agglomerate,
say cluster (grain) 1, as an expanding one, equivalent to the spring, growing
at the expense of its neighbour, to be named cluster (grain) 2, i.e the dashpot,
to which, according to the Maxwell model, the contracting action should be
assigned, cf. Fig. 2 for details; see [22].

For the system with non-wide gaps, the Maxwell model conditions are
almost satisfied, so that the two-cluster action can be extended over all pairs
of contiguous clusters until the expanding (growing) eventually survive. In a
next step, the same kind of competition appears as in the well argumented
Laplace–Kelvin–Young scenario suitable for cellular systems [9]. This picture
holds in the closely-packed context.

In the loosely-packed context (a system with wide gaps), we may have
qualitatively almost the same picture [2] but with several differences which
implies that cluster expansion would not be likely so vigourous. Since the
corresponding gap is wider, therefore untight, the fluid leakage might be
more pronounced. Thus, the fluid response against the piston wall is weaker,
and the Maxwell type stress relaxation no longer applies, cf. the caption of
Fig. 2.

The stress relaxation can be described by introducing an exponent χ in
the Maxwell-like quasi-fractional model presented here below. This exponent
should be, in general, d-dependent, and points to a difference when compar-
ing with the classical Maxwell model [2]. Here, we offer a coupled matter
diffusion and stress relaxation picture, but for a random walk performed in
the configurational space [22]. As is known, the Maxwell stress relaxation
picture leads to an exponential decay of the stress:

σm(t) ∼ exp(−t/τM ) , (23)

where τM is a reference time for the concentrated clusters [2] to be eventually
inferred from the Einstein–Stokes-like formula [13, 22]. This behaviour holds
for T < Tpass. As mentioned above, for T ≥ Tpass we propose

dσm

dt
+
σχ

m

τ
= 0 , (24)
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Fig. 2. Maxwell sequential spring-and-dashpot (quasi-fractional) model with nar-
row (d–independent) and wide (d–dependent) gaps, shown schematically in two
subsequent time instants t1 and t2, where t2 > t1 > 0, from left to right, respec-
tively. Grain “1” consists of the spring and the piston’s upper wall, to which the
second end of the spring is attached, while its first end is mounted either on 01 or
02, from left to right, respectively. Grain “2” consists of the viscous medium inside
the cylinder as well as the inner wall of the piston. The cylinder’s walls complete the
overall model structure of the viscoelastic grains. The material exchange between
“1” and “2” is assured by the existence of the gaps: narrow CP1−2 gaps in case of
closely-packed agglomeration, and some two wider (here, represented by the left-

hand side gap, LP
(d)
1 ) in case of the aggregation. Therefore, the piston-and-cylinder

system, containing a viscous fluid, here composed of big and small particles, is
either more (densely-packed agglomeration) or less (undensely packed formation)
leakproof. The overall material exchange is caused by spring expansion along z
axis, which results here in a longitudinal expansion of grain “1” at the expense
of grain “2”, cf. http://www.j-npcs.org/abstracts/vol2000no4.html. Notice formally
that: O1E = O2E, and for t1 one has z1(t1) = O1E, z2(t1) = BE as well as for t2
one gets z1(t2) = O2I, z2(t2) = IE, which results in grain expansion-contraction
behaviour, like O1B < O2I and BE > IE, when mutually comparing the distances
along the z axis at t1 and t2, respectively

where the above is usually true when the internal strain field, εm is practically
constant, see above. When solving (24), one obtains

σm(t) ∼ (t/τ)−1/(χ−1)
, t� 1 , (25)

where χ = 2d+ 3; about τ , see [22] or [13]. Notice that for χ = 1 and τ = τM
in (24) one gets the solution (23); for χ �= 1 (25) is the only solution to the
relaxational problem as stated. When comparing (23) and (25) one sees that
the relaxational response goes slower for the late-time loosely packed aggre-
gational context than for its densely-packed agglomerational counterpart.
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3 Qualitative Signatures of Chaos
in Matter–Agglomerating System

Let us consider a few qualitative signatures of chaos in matter–agglomerating
systems from the literature. Such certain signatures for systems of the type
studied in the present work are summarized in Table 1.

Table 1. Qualitative signatures of chaos in a model matter–agglomerating system
of interest

Item Signature Refs.

One: Entropic system of molecular-chaotic behaviour [13,14,24]
Two: Lack of matter - depletion zones around [13,22,25]

the charged clusters
Three: Competition-and-loss effect: (un)tight [2, 23,26]

spring-and-dashpot model
Four: IBCs of normal (e.g., Neumann) or abnormal type [6, 20,21]

should be taken appropriately
Five: Bethe-type frustration in coupled relaxation and [1,23,26]

late-growing events
Six: Growth viz. instability: random close-packing [9,23,24]

with its d + 1–account
Seven: Nonequilibrium entropy measures viz. mean-harmonic [2, 14,28]

speeds
Eight: Entropic potential(s) assuring nonequilibrium character [2, 9, 14]

of the phenomenon
Nine: G-K type construction of D(v), B(v), and its consequences [2, 14,27]
Ten: Diffusion-space pre-chaotic (Fibonacci) feature by Dα [8, 14,28]

The items stated in Table 1 do not exclude other possible forms to chaos,
or its signatures, in matter-agglomerating systems. We do not pretend to
describe all of them, or even their majority. For routes to chaos recommended
from physical point of view one would usefully consult [27,28]; which routes,
or scenarios of chaos, are recommended by mathematicians, especially when
a partial-differential-equation formalism of F-P-K type is effective, can be
found in [6], and in Refs. therein.

4 Some Quantitative Measures of Chaos Signatures
in Matter–Agglomerating System

In [22] some entropic-like nonequilibrium measures of growth

ν(d)
sp =

(
ln [σ2(t)]

ln t

)
for t�1

, d = 1, 2, 3, . . . (26)
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as well as for the mechanical stress relaxation evolution

µ(d)
sp =

(− ln [σm(t)]
ln t

)
for t�1

, d = 1, 2, 3, . . . (27)

have been proposed. This seems to be working most appropriately in a
growth-and-relaxation synchronization metastable regime

σm ∼ R−1/2
av ∼ σ−1 , (28)

which represents the H-P-G condition [3]

σm ∼ R−1/2
av , (29)

appropriate for the fluctuational late-time regime [13] of interest here. Bear in
mind that if certain empirical modifications of the formula (29) are applied
toward obtaining a specific form, interconnecting (26) with (27), one gets
something like

ν(d)
sp = qµ(d)

sp , (30)

where typically q > 2. In the classical H-P-G limit ν(d)
sp = 2µ(d)

sp holds. How-
ever q may also strive for obtaining superplastic effects, i.e. when taking
on fractional values, cf. [9], and Refs. therein. This is sometimes termed in
physical-metallurgical literature the inverse H-P-G effect.

Because of (22)

ν(d)
sp =

1
d+ 1

, d = 1, 2, 3, . . . . (31)

Realize that formulae (28) and (29) might again be interpreted in terms of
the Onsager conjecture [2, 4], see above. Since the overall exponent in (25)
reads

1
χ− 1

=
1

2(d+ 1)
, (32)

which is exactly one half of the growth exponent ν(d)
sp given in (22), see (31)

too, one consequently provides

µ(d)
sp =

1
2(d+ 1)

, d = 1, 2, 3, . . . (33)

Let us emphasize here that 1/(χ− 1) stands for the so-called Nutting expo-
nent for relaxation, and can be interpreted in terms of the loss tangent, that
means, a well-known dissipation factor in the relaxation phenomena, mostly
in dielectric (e.g., macromolecular) environments [22].
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5 Number-Theoretic Measures of Spatial and Temporal
Irregularities in Aggregation-Agglomerating Systems

It is interesting to note here that χ = χ(d) , i.e.

χ(d) = 2(d+ 1) + 1 . (34)

A certain generator of the Bethe–lattice elements, is recovered starting from
the 3-bond (initial) generator for d = 0, and continuing with d, upon iden-
tifying d as the numbers of emerging bonds in a gelling system [5]. This
is a very useful tool for the mean-field description of gels, and other multi
bond-containing systems.

In this way, an odd number Bethe–lattice generator for subsequent d–s
can be offered, see Fig. 3.

Fig. 3. An example of a not much developed Bethe lattice, which by itself manifests
a frustration because of “having problems” with containing all of its nodes in the
available d–dimensional space [26], to some extent so as, for example, the population
of Verhulst fellow countrymen does in the available Belgium territory [29]

Another, equally interesting observation can be offered, namely

2

ν
(2)
sp

=
1

ν
(1)
sp

+
1

ν
(3)
sp

. (35)
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This means that for loosely-packed agglomerations the harmonic-mean
rule for the growth speed is exactly fulfilled. Mutatis mutandis, one can ex-
pect the same type of rule, (35), for µ(d)

sp . Let us recall that the fluctuations
σ2(t) have been proposed as a reliable criterion of differentiating between ag-
gregation and agglomeration, and that an efficiency (harmonic-rule, see (35))
additional criterion, derived from the constructed fluctuational proposal, sup-
ports the aggregation in dimension d (d = 1, 2, 3), with an emphasis placed
on d = 2, where ‘golden-ratio-like’ or harmonic-mean properties are in favor.
The mean-harmonic speed implies that the center of mass of a moving body,
referred consequently to as the molecular cluster, may not span the same
distance, say s, back and forth, during a time period. This leads to a quite
realistic quantification of a mean speed on the distance 2s, and also shows that
not an arithmetic mean of the back and forth speeds but a harmonic mean
applies here. Such a schedule can likely be extended over the aggregation
that essentially relies on random matter attachments and/or detachments
of particles [8, 25], in such a way a forward sub-process may essentially go
unidimensionally, like in a ballistic motion, whereas its reverse counterpart
would explore the whole three-dimensional domain. This situation typically
appears in the case of matter desorption, in which detachment occurs part
by part from a “reactive” surface spot.

Some other confirmation of (mean) harmonicity, its close relation to the
golden rule, and to the Fibonacci sequencing (characterizing well the frac-
tality of “diffusive” microstructures), is hidden in the (macro)ion (or, clus-
ter [22]) diffusion coefficient Dα, in our model, (16), which is also included
in the free energy Φ. The label, or the lower index, is simply α, which for
d = 1 results in α = 0 ≡ 0/1, for d = 2 gives α = 1/2, whereas for d = 3
offers α = 2/3. The values of the diffusion coefficient (16) are: D0 ≡ D/1,
D1/2 ≡ D/2 as well as to D2/3 ≡ D/3, respectively. They correspond to
the first five-number Fibonacci sequence, composed of the numerators and
denominators of α-s, like 0,1,1,2,3, and obey an+2 = an+1 + an, for the three
subsequent Fibonacci numbers an, an+1 and an+2. If so, one can provide the
following two recursive formulae

α(d−1) =
ad−1

ad
, d = 1 , (36)

and

α(d−1) =
ad

ad+1
, d = 2, 3 , (37)

where a0 = 0, a1 = 1, a2 = 1, a3 = 2, a4 = 3 are the first five Fibonacci
numbers. Since the analogy with gelling systems seems evident [22], this
cannot be taken entirely as a surprise. The bonding in gels clearly goes as a
branching process, being (as in the case of ultrametric space) quite naturally
described geometrically in terms of Fibonacci numbers, thereby involving the
notion of fractality [5].
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When finishing this section, let us note that both the characteristic chaotic
measures, cf. (31) for example, have their random close-packing account d+1
involved. This is a landmark of randomness but readily appears as a space-
filling action of modelled matter reorganisations. Realize that our rationale
may apply just in the same vein to cluters-containing assemblies, evolving
in a d–dimensional space, – where a cluster is characterized by its fractal
dimension 0 < dF < d, cf. [9, 22].

6 Chaos in an Infinite-Dimensional Agglomerating
and/or Aggregating System

Consider the case limd→∞. A corresponding chaotic measure for the late-stage
growing event in the agglomeration of matter, very reminiscent of nonequi-
librium correlational entropy measure [2], reads

ν(∞)
sp = lim

d→∞

(
ln[σ2(t)]

ln(t)

)
for t�1

, (38)

whereas its counterpart for the relaxation is given by an analogous formula,
namely that

µ(∞)
sp = lim

d→∞

(− ln[σm(t)]
ln(t)

)
for t�1

, (39)

holds. They are consistent formally with the so-called correlational entropy
(Kolmogorov–type) measure, defined in [28] and follow the rationale pre-
sented in [6], in which some measures of chaos in dynamical systems described
by partial differential equations have been discussed. For “thermostatic” sys-
tems out of equilibrium one has to speak of the so-called generalized fractal
dimension formalism, first introduced by Grassberger and Proccacia, see [28],
and Refs. therein.

The most attractive reason for introducing such measures arises from the
fact that if one evaluates both ν(∞)

sp and µ(∞)
sp , one unambiguously gets for

the aggregation
ν(∞)
sp = µ(∞)

sp = 0 , (40)

whereas for the close-packed agglomeration one provides

ν(∞)
sp = 1 , (41)

and
µ(∞)

sp = ∞ . (42)

Thus, for both cases, (41) and (42), one arrives at a chaotic behaviour in
the nonequilibrium system [2, 28] of a densely-packed agglomerate. This is
not the case of the aggregation for which the common measure of its chaotic
character is zero, cf. (40).
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Thus, proceeding consistently with the approach offered in [6] we may
conclude that the late-time aggregation process develops in an ordered way.
The case d = 2 appears to be the most efficient since the harmonic-mean rule
(35) is applied; for it the nonequilibrium character of the random process
should be emphasized [30]. It is intriguing to realize that the system property
called the harmonicity throughout is very much related to its nonequilibrium
entropic or chaotic characteristic(s).

7 Concluding Address

Based on the above, we are allowed to state the following:

(i) in matter-agglomerating systems chaos is revealed as a complex spatio-
temporal and temperature-dependent phenomenon;

(ii) nonequilibrium chaotic measures of any late-stage matter agglomeration
modelled can be proposed relying upon the nonequilibrium Kolmogorov-
type entropy measure, which makes a reliable (harmonic) quantification
of the tempo of the process;

(iii) coupling late-stage matter agglomeration with relaxation of assisting
elastic fields via an Onsager-type [4], or, in the parlance of physical
metallurgy, H-P-G conjecture [3], leads to several characteristic sub-
effects (Bethe-lattice generator, first-five Fibonacci-number signatures,
random close-packing d+1–criterion [23], etc.) having their rationale in
fundamental properties of the entropic or harmonic-mean character of
the phenomenon6;

(iv) as for the formal point of view: The presented mesoscopic system, Sect. 2,
serving to describe the matter aggregation can be derived rigorously
based on the Gibbs entropy production equation [9, 10,22], and

(v) its chaotic signatures can be inferred as presented in Sects. 3–6, sup-
ported somehow by the ideas contained in [6]; at this point, a general
task remains to be done as to connect the type of chaos with the entropy-
based scheme [10,22] used to derive the equations of F-P-K [11], or dif-
fusion, types [8,9,27], and how far the proposed measures of chaos (also,
the ones used in the present review) are reminiscent of those used con-
ventionally in nonlinear science [2,14,27,28,30]? Perhaps, the Edwards’
entropy measures for slowly moving grains, evolving (bio)polymer- or
colloid-type matrices and compacted powders could also contribute to
solve the problem [32].

6As can be for example observed in clays made of an inorganic material known
as laponite [31]
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Summary. It is shown that the onset of instabilities observed in the fracture of
brittle isotropic materials is a consequence of the mathematical structure of chaos
that underlies such phenomena. The straight line crack velocity is written in the
form of a logistic map explaining the onset of instabilities observed by Fineberg
et al. This approach provides a single and concise tool to study this and other
nonlinear aspects presented by dynamic crack growth.

1 Introduction

Dynamic fracture has been stimulating a growing interest not only because
of its fundamental importance in understanding fracture processes but also
because of the challenges to mathematical analysis and experimental tech-
niques.

Fineberg and co-workers performed experiments on fast crack growth [1,2]
for different brittle materials, such as PMMA, soda-lime glass, etc., revealing
many new aspects, defiant to the fracture dynamic theory, related to unstable
crack growth. They observed the existence of a critical velocity starting from
which instability begins and measured the correlation between the fluctua-
tions in crack growth velocity and the ruggedness of the generated surfaces.
They found a time delay (of the order of the stress relaxation time) present
during the whole fracture process in the materials used by them. In spite
of this experimental observation that can be associated to stress relaxation
properties in viscoelastic materials, they were unable to relate it physically
to the onset of the instability phenomenon itself. Therefore the need for a
correct mathematical description of the instability process in crack growth
represent one of the interesting challenges in dynamic fracture.

On the other hand, Kostrov–Nikitin [3] and Christensen [4] modelled the
quasi-static crack growth case in viscoelastic materials showing that the stress
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field at the crack tip does not depend on the relaxation properties of the ma-
terial but that it is determined by the instantaneous elastic modulus at the
crack tip. Similarly, analogous considerations have been taken and extended
to dynamic case [6,7,7]. Analyzing this last situation Freund [8] admits that
there is really a paradox because the process zone in front of the crack tip
depends strongly on the loading conditions and usually ideal boundary con-
ditions are considered, such as a thin crack tip describing a punctual fracture
in a short range effect in the obtaining of asymptotic solutions to the prob-
lem. Therefore, such paradox is solved by introducing a separation zone of
finite extend in the form of a cohesive flaw zone of some length, say lo, ahead
of the moving crack tip [8, 9] to separate the crack formed from the instan-
taneous process at the crack tip. Such cohesive zone accompanies the crack
growth process at the crack tip, while the crack opens gradually against the
resistance of some cohesive stress within this zone. The time, t, required for
a crack tip to advance a distance equal to lo, as the crack grows at crack
growth velocity, vo, introduces a process time, given by t = lo/vo, that must
be compared to a characteristic relaxation time, τ ∼ t, of the material to
determine whether the process is “fast” or “slow” [8].

Actually, if it is considered that the relaxation time, τ , is much smaller
than the time, t, taken by the process zone to move forward the crack, the
zone is stable and the relaxation effects don’t affect the process as it is shown
for the quasi-static case (v → 0) [3] by the results of Kostrov–Nikitin and
Christensen [4]. But for fast crack growth the relaxation time τ is very large
compared to the time, t, taken by the process zone to move a distance lo.
This happens when the crack growth velocity tends to the Rayleigh waves
velocity of the material. In this case the relaxation effects become impor-
tant and the crack becomes unstable as shown experimentally by Fineberg
and co-workers [1,2] by means of the correlation measured between the fluc-
tuation in crack growth velocity and the ruggedness of the generated sur-
faces. In these correlation measurements they found a time delay between
the oscillations in the crack growth velocity and the surface profile of ap-
proximately 3 µs and 1.0 µs for PMMA and soda-lime glass respectively. The
critical velocities at which the instability begins are 340 m/s and 1100 m/s,
respectively, and both values correspond to 0,34 of the respective Rayleigh
surface wave velocity, cR, in these materials, whose values are 975 m/s and
3370 m/s for PMMA and soda-lime glass respectively. This means that at
these velocities the characteristics lengths of the process zone is of the order
of lo = 3 µs × 340m/s ∼ 1, 02mm and lo = 1.0 µs × 1100m/s ∼ 1.10mm for
the two materials cited above, also agreeing with other experimental results
found by Fineberg and co-workers.

In view of these results there are two alternatives to be considered: either
the fast crack growth process is described by using the stress field modelled
with a retardation time that takes into account the effects of relaxation of
the material, or the mathematical description of a process zone is used that
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keeps all the information of delay produced by the relaxation of the material,
leaving unsolved the instability process, and the previous case is ignored. His-
torically the latest option has been the solution proposed by Irwin and other
scientists to describe the complex effect of the plasticity and viscoelasticity
at the crack tip [10–12]. It is not a surprise that, when intending to study
a Mechanics of the Fracture that can be universally applied to any kind of
material and to any mode of loading, it should receive another formulation.

In this chapter, in order to explain Fineberg et al. results [1,2] one makes
use of a physical model in which the retardation time is introduced in an
explicit way generalizing the classical formulation of Fracture Mechanics. It
will also be shown that this mathematical procedure will include the frac-
ture process inside the family of phenomena described by nonlinear dynamic
processes with the advantage of using the whole mathematical development
so far accomplished for these processes and the classic formulation of Fracture
Mechanics generalized by the explicit inclusion of time retardation.

2 Theoretical Development of a Chaotic Model
to Dynamic Fracture

2.1 The Fast Crack Growth in the Fineberg–Gross Experiments

Consider a semi-infinite plane plate under Mode-I loading and plane strain
in elastodynamic crack growth conditions, as shown in Fig. 1. The exper-
imental configuration of the body under testing is equivalent to a infinite
plate condition to avoid the edges effects on the crack growth process. In this
experiment a fast crack growth develops as a result of a high loading rate
and a high strain rate in the dynamic fracture process. In agreement with

Fig. 1. Experimental set up of a plane plate under Mode I loading in dynamic
fracture process in accord to Fineberg–Gross [1, 2] experiments
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Fineberg–Gross [1, 2] the aspect of the fracture surfaces is rugged and the
crack growth velocity shows a instability from a critical velocity.

In their experiments [1, 2] Fineberg–Gross showed that when the crack
speed reaches a critical value a strong temporal correlation between the ve-
locity, vo(t), and the response in the form of the fracture surface at Ao(t+ τ)
takes place (having its notation changed, in the present text, to Lo(t) instead
of Ao(t) to designate the fracture surface length). The time delay measured
between this two magnitudes presents a value τ of about � 3 µs for PMMA
and 1.0 µs for soda-lime glass, for example, showing that there is a given value
for each material.

2.2 The Origin of the Time Delay
from Fineberg–Gross Experimental Evidences

Crack growth is a complex process that involves many physical phenomena
(bond breaking, sound and light emission, heat generation, etc.) which par-
ticipate in the crack growth process. Also, the relative importance of each
one depends on the conditions under which crack growth takes place. It is
well known that for any given material a certain time delay exists between
the loading and the crack growth, at the beginning of the crack growth, in
experiments performed under time-dependent loading conditions [8]. More-
over, this time delay tends to disappear with the crack growth [8]. However,
since dynamic fracture involves heat generation it is necessary to take into
account the fact that a viscoelastic material such as the one used by Fineberg–
Gross [1, 2] shows viscoelastic relaxation phenomena. This is so because the
heat developed at the crack tip might have changed the local properties of the
material making the hypothesis of viscoelastic relaxation very plausible. In
the case of a viscoelastic material, such as PMMA, if a considerable amount of
viscoelastic material is formed at the crack tip (size of the order of lo ∼ voτ),
the time delay appears locally remaining because of the existence of the per-
sistent creep phenomenon that takes place at fast dynamic crack growth, as it
is evident by the correlation shown in the Fineberg–Gross experiments [1,2].
Therefore, this may explain the phenomenology behind the time delay ob-
tained by Fineberg et al. experiments [1, 2]. Taking into account this strong
evidence of time delay between the two magnitudes mentioned above the fast
dynamic crack growth can be expressed by the elastodynamic energy release
rate, GoD, at a given time such as it does not depend on the crack velocity at
the same moment [12–15] as shown in Fig. 2 and as it will be shown below.

The time delay obtained by Fineberg and co-workers [1, 2] attributed to
the viscoelastic properties of the material at the crack tip, possibly develops
in several steps. In the case of the vitreous (glasses) and polymeric materials
the viscoelastic properties of the material at the crack tip become evident
because at fast crack growth heat develops at crack tip, and due to the poor
heat conduction, temperature rises with possible softening of this material,
(in front of the crack tip) as explained above, even at room temperature. In



A Chaos and Fractal Dynamic Approach to the Fracture Mechanics 299

Fig. 2. Schematic crack tip region with time delay between the input flux energy,
φ(t) and output flux energy, ψ(t + τ)

the case of metals, due to higher heat conduction, the viscoelastic properties
only appear when the sample is tested at temperatures greater than thirty
percent of their absolute melting temperatures [11].

“There are two competing mechanisms involved in the crack growth that
characterize the creep deformation. The blunting of the material in front of
the crack tip relaxes the crack tip stress field and tends to retard crack growth.
The other mechanism results in an accumulation of creep damage in the form
of microcracks and voids that enhance crack growth as they coalesce” [11].

2.3 The Foundations of Quasi-Static
and Dynamic Fracture Mechanics

For quasi-static crack growth the usual elastic energy release rate, Go, is given
by [12]

Go ≡ d(F − ULo)
dLo

, (1)

where F is the work performed by external forces on the sample, ULo is the
change in elastic strain energy caused by the introduction of a crack with
length, Lo, into the sample. Lo is the distance between two points of the
crack (or projected crack length) and the subscript zero denotes the plane
projected magnitudes.

The Griffith–Irwin energy balance approach for stable fracture requires
that [10,16]

Go ≥ Ro , (2)

where Ro is the crack resistance per unit thickness defined as

Ro ≡ dUγo

dLo
, (3)

and Uγo is the product of the specific elastic surface energy of the material,
γo(eff), by the projected surface area of the crack (two surfaces, length Lo),
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i.e., the plane surface area of the crack with actual (rugged) crack length L
and unit width. It is important to stress that L refers to the actual (rugged)
crack length and Lo to the projected crack length of L, i.e., a distance between
two points [17]. Therefore

Uγo = 2Loγo(eff) , (4)

and according to Alves [17] the constant crack growth resistance, Ro = 2γ(eff)

needs to be corrected by the ruggedness in the follow way

Ro = 2γeff
dL
dLo

, (5)

where the mathematical term dL/dLo was called the local ruggedness of the
fracture surface [17]. From the quasi-static Griffith criteria, the condition to
trigger the beginning of crack growth, is given by Go = Ro. Gao [18] in-
troduced the role of the surface roughening and branching instabilities in
dynamic fracture proposing a so-called “wavy-crack model” motivated by
experimental observations where rapidly moving cracks develop roughened
fracture surfaces. The essence of his model consists in separating the micro-
scopic crack-tip motion with local velocity, from the macroscopically observ-
able crack motion with apparent velocity.

Similarly for the stationary case the elastodynamic energy release rate,
GoD, is given by [12]

GoD ≡ d[F − (ULo + To)]
dLo

, (6)

and To is the kinetic energy of the crack growth which can be written as:

To =
1
2
ρv2o

∫ ∫ [(
du
dx

)2

+
(

du
dy

)2
]

dx dy . (7)

The velocities indexed by o, as vo, refers to the growth rate of the projected
crack length, Lo. This equation will be not considered in the calculations
that will be followed here; it is just shown up in the text in order to form the
body of the classic considerations, that cannot explain the phenomenon in
question. A more general expression was included, however, the calculations
do not require the explicit use of the expression of the kinetic energy, To, but
general principles will just be used.

Mott in 1948 [19] proposed that all excess of the elastodynamic energy
release rate, GoD, above the energy necessary to create the fracture surfaces,
2γeff , is transformed into kinetic energy of crack growth. However, it is pos-
sible to generalize this proposition to the case of a material which shows a
non-constant crack growth resistance, R = 2γeff , that develops a ruggedness
such as that of the kind dL/dLo expressed in Alves [17]. Rewriting (6):



A Chaos and Fractal Dynamic Approach to the Fracture Mechanics 301

GoD =
d(F − ULo)

dLo
− dTo

dLo
. (8)

The first term on the right side of (8) corresponds to the usual elastic energy
release rate, Go given by (1), and so:

GoD = Go − dTo

dLo
. (9)

This equation shows the relationship between Go and the elastodynamic en-
ergy release rate, GoD. In analogous way to (2), the Irwin–Mott condition of
dynamic crack growth is given by

GoD(Lo, vo) ≥ Γ0(Lo, vo) , (10)

where Γ0 = Γ0(Lo, vo) is the dynamic crack growth resistance, now depending
on the crack growth length, Lo, and velocity, vo.

In agreement with Griffith fracture criterion for the quasi-static case it is
possible to write, in analogous way, the elastodynamic crack growth condi-
tion, as follows

GoD(Lo, vo) = Γ0(Lo, vo) , (11)

where Γ0 can be write as Γ0(Lo, vo) = Ro − dTo(Lo, vo)/dLo using (5) for
crack resistance, Ro.

The expression (6) mentioned here will not be used in the same way, but
completes the idea to be explained in the following section by using a variable
separation in the non steady-state case, which is a quite knew procedure.

2.4 Advanced Dynamic Fracture Mechanics Considerations

The literature [13] points to the fact that experimental results confirm the
continuum theory of dynamic brittle fracture for fast cracks, where expres-
sions similar to 6 are used to explain the phenomena in focus. On the other
hand, in classical dynamic fracture mechanics it is usually assumed that rup-
ture is controlled by the expression [8]

GoD � Go

(
1 − vo

cR

)
= 2γeff . (12)

This expression equating GoD with vo is only true locally, i.e., in the
immediate vicinity of the crack tip. For the configuration of plane stress
applied to a medium of infinite extent, for example, a crack will constantly
accelerate.

For this case, the quasi-static energy release rate, Go = πσ2
0Lo/2Eo, in

(12), is proportional to the fault crack length, Lo, so that as the rupture
grows, Lo grows, and the velocity, vo, tends to cR in order to maintain 2γeff
at a constant value. This formula fails because, accordingly to the well es-
tablished fracture mechanics theory, as the velocity increases, 2γeff ceases to
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be a constant and depends on rupture speed. At velocities near 0.4 or 0.5 of
cR, rupture branches appear and (12) ceases to be applicable [3,20,21]. This
explanation was well known to Kostrov, Slepyan, Knauss and Ravi–Chandar,
Rice, etc and was rediscovered by physicists in the early 1990s [1,2,13,22,23].
In the dynamical case Slepyan [8,20] proposed that the elastodynamic energy
release rate, GoD(Lo, vo), can be written in terms of the elastic energy release
rate, Go(Lo), for the stable case [16] in the following way:

GoD(Lo, vo) = Go(Lo)g
(
vo
cR

)
. (13)

where cR is the Rayleigh velocity.
To write the functional dependence of this elastodynamic energy release

rate, GoD(Lo, vo), Slepyan [20] propose a Maximum Energy Dissipation Prin-
ciple. In Alves [24] one has also demonstrated the need for correcting this
principle in order to include the ruggedness of fracture surface [17]. For the
Fineberg–Gross [1, 2] experimental set up of a semi-infinite plane plate un-
der Mode I loading, the elastodynamic crack growth condition, given by (11)
yields:

GoD(Lo, vo) =
2γeff(dL/dLo)

1 − vo

cR
(dL/dLo)

= Γ0(Lo, vo) , (14)

Equation (14) shows a great agreement with Gross experimental results [22]
as was fitted by Alves [24].

Using the Maximum Energy Dissipation Principle of Slepyan [20], mod-
ified to include the ruggedness, dL/dLo of fracture surface, and the Irwin–
Mott crack growth dynamic condition given by (10) in (14), including (13),
one can assert that:

Go(Lo)g
(
vo
cR

)
≥ 2γeff(dL/dLo)

1 − vo

cR
(dL/dLo)

. (15)

Comparing (14) with (13) it can be concluded in agreement with Alves [17]
that for the brittle materials case where J ≡ G, that:

Go(Lo) ≥ 2γeff
dL
dLo

, (16)

and

g

(
vo
cR

)
∼ 1

1 − vo

cR

. (17)

This is an equation that shows dependence on the particular experimental
set up under use. The case studied here is of a plane plate under Mode I
loading and boundary conditions of infinite body accordingly to Freund [25].



A Chaos and Fractal Dynamic Approach to the Fracture Mechanics 303

2.5 The Foundations of Non-Stationary
Dynamic Fracture Mechanics

For, for the non-stationary case the dynamic energetic balance for the bi-
dimensional case can be write written as

P = U̇ + Ṫ + φ , (18)

where φ is the rate of work done by the traction on the surface S, U̇ is the
rate of increase of the strain energy, Ṫ is the kinetic energy in the region with
R with area A and F is the energy flux into the crack-tip region.

P =
∫

S

Tiu̇i ds , (19)

U = lim
Γ∗→0

∫
R

W (εij) dA , (20)

T = lim
Γ∗→0

∫
R

1
2
ρu̇iu̇i dA , (21)

Since the loop Γ ∗ moves with the crack tip, the region R is time-dependent.
In this case the dynamic energy released rate, GoD can be write as

φ = GoD(Lo, vo, t)vo = P − (U̇ + Ṫ ) , (22)

For the purposes of our calculations we consider that the non-stationary
energy released rate GoD(Lo, vo, t) can be described by a function of kind:

GoD(Lo, vo, t) = GoD(Lo, vo)f(t) = Gog

(
vo
cR

)
f(t) , (23)

where f(t ≥ τ) → 1
Considering that the Mott postulate [19] is valid not only at the beginning

of the crack growth, at t = 0, but instantaneously at any time, t, during
the whole crack growth process, i.e., while, as a crack grows with velocity
vo(Lo(t)). Thus the energy flux, φ0(t), to the crack tip that is characterized
by the velocity vo(Lo(t)) is given by:

φ0(t) = GoD[Lo(t), vo(Lo(t)), t] vo(Lo(t)) , (24)

where one made use of (9). The coefficient of vo(Lo(t)) is the elastodynamic
energy release rate, GoD[Lo(t), vo(Lo(t)), t], given by (23) [8]. Therefore

φ0(t) = Go(Lo(t)) g(
vo(Lo(t))
cR

) f(t) vo(Lo(t)) , (25)
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Based on (13) the energy flux, given in (25), can be written as

GoD[Lo(t), vo(Lo(t)), t] vo(Lo(t))

= Go(Lo(t)) g
(
vo(Lo(t))
cR

)
f(t) vo(Lo(t)) . (26)

For the particular case of a semi-infinite plane plate under Mode I loading
the energy flux to the crack tip is derived from (14) as

φ0(t) =
2γeff(dL/dLo)

1 − vo

cR
(dL/dLo)

f(t)vo(t) . (27)

2.6 Advanced Considerations Based on Fractal Aspects
of Fracture Surface for Dynamic Fracture Mechanics

In a fast crack growth experiment as that performed by Fineberg and Gross
the oscillations produced in the crack growth velocity can make that it reaches
velocities close to the values of Rayleigh waves speed, (vo → cR), and when
the correspondent energy injected into the crack tip is above this value, it is
enough to create new paths for the crack generating branchings [1,2]. Starting
from there, if to continue having an increase in the energy injected into the
crack tip due to an indefinite loading stress, that is to say, G(t) → ∞, the
instability and branching process stays and it starts to happen in different
scales, i.e., for each new crack made by branching, being obtained a self-affine
geometric pattern (invariant by scale transformation). This way it is observed
that the fractal nature of instability and of branching it is nothing else than a
physical confirmation that the phenomenology of the process described above
continues reproducing in scale, indefinitely, while there is an energy excess
into the crack tip. It can also be understood, that the chaotic nature of
the fracture possesses a kind of “phenomenological memory” that repeats in
different scales being registered in the fractality of fracture surfaces generated
in the dynamic crack growth.

Based in the Fineberg experimental results it can be assumed that the
temporal dependence of rugged crack growth of crack length has a structured
self-similar [8] or self-affine fractal behaviour [17,20,26,27] in the time, such
as, an appropriated function satisfying the relaxation process can be supposed
as,

L[Lo(t+ τ)] = h[L(Lo(t))] , (28)

where τ is a time lag with magnitude of the order of the viscoelastic relaxation
time in the sample. This hypothesis means that the crack length generated
in the dynamic fracture process elapses on itself.

For the crack growth velocity to be in agreement with (28) another ap-
propriated self-affine equation can be written as
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vo[Lo(t+ τ)] = vo[Lo(t)]
dh[L(t)]
dLo(t)

dLo(t)
dL(t)

. (29)

where vo[Lo(t)] = v[L(t)]dLo(t)/dL(t).
This mathematical procedure, naturally, introduces in the equations of

dynamic fracture the two necessary conditions to describe the instability
process. To know: (i) a decoupling of the dynamical functions between the
input and output of system which are the elastodynamic energy release rate,
GoD, and work of fracture, Γ0, by means of the dynamical variables of length,
Lo, and crack growth velocity, vo, [28] as it is shown in (28) and (29) and (ii)
the existence of at least two situations equally probable [20], unifying them
into a single condition. This second condition will be focused latter on.

One observes that, while the input energy flux into the crack tip, φ0(t),
given by (25) depends on the the crack growth velocity function, g( vo

cR
), the

output energy flux, ψ(t), must depend on the local ruggedness created instan-
taneously in the crack growth process. Therefore, the response in the form
of fracture surface, designated by ψ(t + τ), as being the energy adsorbed to
form the rugged crack (shown in Fig. 2), can be written as

ψ(t+ τ) =
dUγ [L(t), v(t)]

dL(t)
dL(t)

dt
dh[L(t)]
dL(t)

=
dUγ [L(t), v(t)]

dL(t)
dL(t+ τ)

dt
, (30)

Since ψ(t + τ) = ψ0(t + τ), due to the energetic equivalence among the
rugged and the projected crack path, then one can express (30) as

ψ0(t+ τ) = Γ0[Lo(t), vo(Lo(t))]vo[Lo(t+ τ)] , (31)

where L(t + τ) is the ruggedness (i.e. actual) fracture surface length in the
time, t+ τ , and Lo(t+ τ) is its corresponding plane projected length on the
direction of crack growth.

Substituting (14) into (31), one gets

ψ0(t+ τ) =
2γeff(dL/dLo(t))

1 − vo[Lo(t)]
cR

(dL/dLo(t))
vo[Lo(t+ τ)] , (32)

This equation describe the dissipation rate in the formation of the fracture
surface formation in the time t+ τ .

2.7 Dynamic Fracture Model with a Time Delay

Sharon & Fineberg [13] admit that theory predicting the motion of a crack
is governed by the balance between the energy flux into the crack tip, φ0(t),
and the dissipation rate, ψ0(t), here given by (31) including the time delay
between them.
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φ0(t) = αψ0(t) , (33)

where 0 < α < 1 is a conversion factor of elastodynamic energy into surface
energy (work of fracture).

However it is necessary to take into account the relaxation process at
the crack tip. Observe that (26) says that the energy balance between the
instantaneous input flux and stationary flux at crack tip, in accordance with
Irwin–Mott’s (10), can be written in a general form as Stationary Flux(time,
t) = Input Flux(time, t)/Coupling function of time, f(t) or

φo(stationary)(t) =
φ0(t)
f(t)

, (34)

where from (23), (24) and (25) we have:

φo(stationary)(t) = GoD[Lo(t), vo(Lo(t))]vo[Lo(t)] , (35)

depending on the projected crack length, Lo(t), already formed in each in-
stant, t.

Substituting (35) into (26) one gets:

GoD[Lo(t), vo(Lo(t))]vo[Lo(t)]

= Go(Lo)g
(
vo(Lo(t))
cR

)
vo[Lo(t)] . (36)

The particular experimental apparatus in use influences the functional
form of the kinetic energy, To(Lo, vo) developed by the cracks and this in turn
affects the ruggedness developed instantly in the fracture. Therefore it should
exist a relationship between the response in the form of a local ruggedness
created instantaneously in the crack growth process and the of the crack
growth velocity function, g( vo

cR
), Thus, assuming a function dh(L(t))

dLo(t)
dLo

dL ∼
1/[g(vo(Lo(t))

cR
)] the energy flux, given by (26), can be written as

GoD[Lo(t), vo(Lo(t))] vo[Lo(t)]
dh[L(t)]
dLo(t)

dLo

dL
= αGo[Lo(t)]vo[Lo(t)] . (37)

Observe from (37) that the Mott postulate, enunciated before, becomes
valid instantaneously during the whole crack grow process by means of a
new insight in the energy flux balance with time delay. Therefore from the
elastodynamic crack growth condition given in (11), and using (29) in (37),
this equation can be expressed as

Γ0[Lo(t), vo(Lo(t))]vo[Lo(t+ τ)] = αGo[Lo(t)]vo[Lo(t)] . (38)

In accordance with the self-affine hypothesis made in (28) and (29) the
energy flux balance between the input and output with a time delay, τ , may
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be written as α. Relaxed Flux(time past, t) = Output Flux(time present =
time past plus relaxation time, t + τ), or in accordance with Irwin–Mott’s
(10), (38) can be written in a general form as

φo(relaxed)(t) =
1
α
ψ0(t+ τ) . (39)

Therefore at time, t, the flux of elastodynamic energy into the specimen to
the crack tip, φ0(t) = GoD[Lo(t), vo(Lo(t)), t] vo[Lo(t)], will create in front
of the crack tip, at time t+ τ , the conditions for the formation of a process
zone (viscoelastic region of size ∼ lo) that will separate at time, t+ τ , form-
ing a rugged crack having length L(t + τ), necessary for crack growth (e.g.
breaking of chemical bonds, formation and nucleation of dislocations, etc.).
This theoretical result resumes all the problematics found by Fineberg and
Gross [1, 2], already explained in the Sects. 2.1 and 2.2 of this chapter.

2.8 Chaotic Nature of Dynamic Fracture

The chaotic nature of fractures can be revealed by different forms depend-
ing of the particular experimental set up. For the case of a semi-infinite
plane plate under Mode - I loading the function g(vo[Lo(t)]/cR) determines
a logistic map well known in the literature concerning chaos theory [29, 30].
Therefore, using (14) in (38) or (41) and (32) in (39) this becomes,

αGo[Lo(t)]vo[Lo(t)]

=
2γeff(dL/dLo(t))

1 − vo[Lo(t)]
cR

(dL/dLo(t))
vo[Lo(t+ τ)] . (40)

Rewriting (40) and multiplying the resulting by dL/dLo term it yields the
following expression for the normalized crack growth velocity vo[Lo(t + τ)]
corresponding to projected surface

vo(Lo(t+ τ))
cR

dL

dLo(t)

∣∣∣∣
t+τ

=
αGo(Lo(t))
2γeff( dL

dLo(t) )

×vo(Lo(t))
cR

dL

dLo(t)
[1 − vo(Lo(t))

cR

dL

dLo(t)
] , (41)

which has the form of the equation of the logistic map (Fig. 3) [29–31]. For
convenience, instead of the delay in time, τ , (41) can be written, as a sequence
of events, i.e.,

xok+1 = µ0xok(1 − xok) , (42)

where xok corresponds to the normalized projected surface crack growth ve-
locity and the coefficient, µ0, to control parameter of (31), i.e.,
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Fig. 3. Logistic map of the logistic equation xok+1 = µ0xok(1−xok) related to the
input energy flux, φ0(t), and output flux of dissipated power, P0(t + τ) in function
of the normalized velocities vo(t)/cR and vo(t+τ)/cR, showing the cycles or periods
of iteration

µ0 ≡ αGo(Lo)
2γeff(dL/dLo)

, (43)

xok ≡ vo[Lo(t)]
cR

dL
dLo(t)

, (44)

and

xok+1 ≡ vo[Lo(t+ τ)]
cR

dL
dLo(t)

, (45)

respectively.
In Fig. 4, the iterations of this equation are shown as a function of the

control parameter, µ0, [30] which can be identified with the crack growth
characteristics.

Fig. 4. Iterates of the logistic map of (48) as a function of µ0 for 1.0 ≤ µ0 ≤ 4.0. An
transient of 200 points has been discarded in each case [30]. The control parameter,
µ0, is given by (43) and vo(t + τ)/cR is the normalized velocity as it was explained
in the text
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Observe that a normalized crack growth velocity to rugged surface, defined
as v(L(t)) = vo[Lo(t)]dL/dLo(t), can also be written in the logistic equation
form, in analogous way to plane projected fracture surfaces, dropping all the
zero subscripts in the (42), (43) and (44) in a such way that the new rugged
crack growth velocity can be written as

v[L(t+ τ)]
cR

=
αG(L)
2γeff

v[L(t)]
cR

(
1 − v[L(t)]

cR

)
, (46)

where G(L) is the elastic energy release rate to the rugged crack path, giving
place to write xk+1 = µxk(1− xk). In analogous way it gets xk = v[L(t)]/cR
and µ = αG(L)/2γ(eff). This means that the same conditions can be repeated
at each new crack path created, in a indefinite branching process, originating
a self-affine spatial fractal pattern formed by all cracks generated during the
branched crack growth process.

2.9 The Instability Process Under the Sight of Time Delay

Therefore, the instability dynamic process on the fast crack growth and crack
branching in brittle materials like the soda-lime glass and PMMA can be
explained in the following way: The existence of a time delay, τ , between the
energy flux injected into the crack tip, φo(inst), (25), and the spent energy flux
(or the dissipated power, ψ0, (31)) to form the fracture surfaces, (32), (Fig. 3),
produces from a critical velocity, (44), a “uncompassing” (Fig. 3) between
the crack growth velocity, vo(t), and the rate of formation of the fracture
surfaces, vo(t+τ) = dAo(t+τ)/dt. This “uncompassing” is responsible for an
indetermination in the crack growth velocity, (Fig. 4), at crack tip that by its
turn gives rise to a dynamic instability in the form of oscillations in the crack
growth velocity. This instability produces a rugged fracture surface increasing
the consumption of energy. This increase limits the crack growth velocity to
a smaller value than the speed of Rayleigh waves in the material, (vo ≤ cR),
(46), producing a new delay in relation to fracture surfaces formation rate
and increasing still more the “uncompassing” between the injected energy
flux and the worn-out energy rate to form the fracture surfaces and so forth
(Figs. 3 and 4).

3 Results

Equations (45) and (41) can be explored through the graphs of ψ0(t+ τ) and
φ0(t) versus vo(t) (Figs. 3 and 4) and of vo(t+ τ)/cR versus µ0 (Fig. 4). By
means of this diagram one notices that combining the magnitudes, φ0(t) and
ψ0(t+ τ) it generates an instability whenever a temporal delay exists among
them. Actually, (42) is the well-known logistic equation. However, Before
analyzing Fineberg et al. experimental results [1] we start from the use of
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Slepyan’s criterion, given by Maximum Energy Dissipation Principle [20],
and modify it in order to include the ruggedness term, dL/dLo, of fracture
surface [24]. From this result it was possible to obtain the energy balance
between the input and output of the system, where in our notation it is given
by (46). Observe that this expression can be written in the following way:

αGo[Lo(t)]
(

1 − vo[Lo(t)]
cR

dL
dLo(t)

)
vo[Lo(t)]

= 2γeff
dL

dLo(t)
vo[Lo(t+ τ)] . (47)

Although its left side reminds the expression of the classical result pro-
posed by Freund [8] where the elastodynamic energy release rate being,
GoD = Go[1 − vo(t)/cR], for a medium with infinite extension ((8.77) of
Freund [8]). Therefore, a first result that must be observed in this paper
is that the classical dynamic fracture mathematical formalism is reobtained
from (41) when the relaxation process is almost negligible and the persistent
creep phenomenon is not considered into a thin crack tip in short range effect
described by punctual process zone. In this case it has that vo(t+ τ) = vo(t)
and therefore the classical comes out:

vo(t)
cR

=
(

1 − 2γeff
Go(Lo)

dL
dLo(t)

)
dLo(t)

dL
. (48)

Whenever the elastic energy release rate, Go(Lo), increases linearly with the
crack length, Lo, which in the absence of ruggedness, i.e. dL/dLo = 1, (48)
becomes,

vo = cR

(
1 − Loc

Lo

)
. (49)

This result shows the stable region of the fracture process formed by “fixed
point of order one” of the logistic map (Fig. 4) where the conditions of the
crack growth are considered to be slow because the viscoelastic properties of
the material do not influence the process.

On the other side, the first graph (Fig. 3) shows the dependence of elasto-
dynamic energy flux, φ0(t), given by (43) and (44), that flows into the crack
tip, and of the dissipated power spent to form the fracture surface, ψ0(t+ τ),
given by (31) and (48), in function of the normalized crack growth velocities
vo(t)/cR and vo(t + τ)/cR respectively. This graph shows that the energy
flux, φ0(t), possesses a maximum value at vo/cR = 0.5 and a nonlinear de-
pendence of dissipated power, ψ0, on the normalized velocity vo(t+ τ)/cR as
it was proposed by the model (26).

The second graph (Fig. 4) shows the iterations of the logistic map, (41)
and (48), of the normalized crack velocity, vo(t + τ)/cR, (44) as a function
of the control parameter, µ0, given by (43). This control parameter, µ0 =

Go

2γeff (dL/dLo) , for a medium with infinite extension, is linearly proportional
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to the crack length, Lo(t); then as the crack grows, the control parameter
increases. Therefore this graph represents the dependence of the speed with
the retardation, vo(t+ τ), in function of the projected crack length, Lo. For
values of 1 ≤ µ0 ≤ 3 the crack growth process is dynamically stable since
at those speeds the viscoelastic process zone in front of the crack tip is too
small to influence the process. However, the time delay that exists between the
energy that flows into the crack tip, φ0(t), and the dissipated power for crack
growth, ψ0(t+τ), causes instabilities that show up in the interval 3 ≤ µ0 ≤ 4.
Such instability begins only when the control parameter reaches the value,
µ0 = 3. Exactly at this point, µ0 = 3, there is a flip bifurcation [29–31] and
it begins the influence of the time delay (where τ ∼ lo/vo) into the process
zone causing instabilities in the crack growth. As shown in Fig. 4 at µ0 > 3
the fixed points determined by (48) are not stable anymore. Considering that
the relaxation with time delay is fixed it is seen that the length of the process
zone oscillates in time becoming responsible for the oscillations in the crack
growth velocity, vo(t). The velocity function, vo(t+τ) in (41), which is related
to the dissipated power, ψ0(t + τ), to µ = 3, has the value equal to 2/3cR.
This value from (48) corresponds to a critical velocity

vo(critic) = 1/3cR . (50)

The main assumption of a time delay is expressed mathematically by
formula (48) where the factor µ0 of (43) is taken to be fixed. This means
that the crack growth velocity at t + τ is proportional to the energy flux
into the growing crack tip at time t. This relationship is very interesting
since it leads to the oscillating type of instability for the steady motion (with
vo(steady) = cR(1 − 1/µ0)dLo/dL as the solution (48) if 3 ≤ µ0 ≤ 4. By the
way, if µ0 increases (from µoc = 3 to a limit value µo max = 4), the minimum
limit of the averaged speed, vo min, is given approximately by

vo min

cR
=
(

1 − 1
3

)(
dLo

dL

)
max

=
2
3

(
dLo

dL

)
min

, (51)

just depending on the maximum value of ruggedness, dLmin/dLo, in this
point. For a value of ruggedness equal to, dL/dLo = 3/2 the limit of the
averaged speed, vo, is given by:

vo = 0.44 cR , (52)

and the maximum limit of the averaged speed, vo max, is given approximately
by

vo max

cR
=
(

1 − 1
4

)(
dLo

dL

)
max

=
3
4

(
dLo

dL

)
max

, (53)

depending also on the maximum value of the ruggedness, dLmax/dLo, at this
point. Equally for a value to ruggedness value equal to dL/dLo = 3/2 the
limit of the averaged speed, vo, is given by:
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vo = 0.5 cR , (54)

from where the normalized crack velocity vok/cR saturates at cR(dLo/dL)max,
below of Rayleigh waves velocity, which is approximately the saturation ve-
locity measured by Fineberg et al. [1, 27].

As can be seen in Fig. 3, v0 max and consequently GoD has tendency to
approach the maximum of the energy flux. After µ0 ≥ 4 there is no sense to
speak about the influence of µ0 parameter over the crack growth because the
GoD reaches the maximum constant flux and vo reaches a maximum constant
velocity and after this the crack growth follows a new stationary state con-
serving the ruggedness already created to maintain the this maximum values.
It can also be observed that (53) assumes an infinite body sample where the
influence of external stress field it is negligible and after the maximum flux
condition have been reached the dynamic energy release rate, GoD, does not
depend anymore on the sample length.

3.1 Comparison Between Theory and Experiment

Fineberg et al. [1, 2] observed that at the onset of instability the fracture
surface changes from a featureless (on a scale larger than 1 µm) to a jagged
structure which develops into coherent oscillations and coalesce downstream
of the crack growth broadening to extend over the entire width of the sample.
This change in morphology as the crack accelerates can be associated with
the geometric increase in the number of flip bifurcations, or, with the number
of non-trivial stable fixed points as can be seen in Fig. 4. To each stable
fixed point corresponds a given velocity vok+1/cR. As the crack grows the
straight line crack velocity oscillates among the allowed velocities, looking
for alternative paths of energy dissipation in excess at the crack tip by means
the generation of a rugged surface that mathematically correspond to more
energetic path. It is therefore reasonable to associate the issuing increase of
ruggedness with the number of possible velocities. At µ0 < 3 there is only one
possible velocity (one stable fixed point on the logistic map) and therefore
the surface is smooth. As the crack propagates µ0 (given by (43)) increases
with the crack length, Lo(t), and the number of allowed straight line crack
velocities becomes larger and larger. The straight line crack velocity oscillates
among the allowed values (projections of the actual velocity) resulting in
morphologies of higher complexity, in agreement with the observations of
Fineberg et al. [1, 2].

Peter Gumbsch [32–34], using molecular dynamics methods in your sim-
ulations, reported that the instability in dynamic crack growth sets at
Go/2γo(eff) = 3. This condition for initiate initiating instabilities, consid-
ering αdL/dLo � 1.0, is equivalent to µ0 = 3.0, as is given by (43). Therefore
this result is in reasonable agreement with the result shown by the chaotic
model presented in this paper.
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Taking for the energy conversion factor α = 1.0 one obtains from (48) the
value of 0.33 for the normalized crack velocity at which instabilities should
occur. However, Fineberg and co-workers observed that beyond a critical
value of 0.34 the normalized velocities, vo/cR, start to show instabilities [1,2].
Therefore this theoretical value of 0.33 cR is in excellent agreement with the
value of experimental result of 0.34 [1, 2], measured by Fineberg–Gross et
al., at the moment the instability starts. Gross [22] also observed that a
visible rough structure (branching) appears near from 0.42 cR in the form of
a parabolic crack branching.

4 Discussion

The experiments performed by Fineberg and co-workers [1, 2] provide evi-
dence for instability in the brittle fracture of isotropic materials. On the other
hand, theories based on conventional concepts such as energy balance [16] and
quasi-static configurational forces at crack tips show no indication of strong
oscillatory or branching instabilities [35]. Yoffe [36] by analyzing the stresses
in the neighborhood of a crack tip growing at high velocity hinted about the
emergence of instabilities but the analysis is not a truly dynamic theory of
forces and accelerations of fractured surfaces.

The basic property of dynamic fracture mechanics is that the processes
near the fault tip occur at near wave velocities, and for this reason the crack
tip is independent of the details of loading. This is a famous theorem proved
independently by Kostrov and Eshelby in 1964 and 1969, respectively, for
the antiplane case and by Kostrov and Nikitin in 1970 for general loading.
Observe that (17) refers to a particular experimental set up. Therefore, in
accord to the functional dependence of this equation for the g(vo/cR) term
or depending on of the particular form of the experiments other kinds of
logistic maps can be obtained, since that the same procedure of calculations
accomplished until now can be done. Equation (46) developed in this paper
is equivalent to (12), and the same improvements (finite size of the sample,
influence of boundary, etc.) proposed to (12) [8] can be incorporated into (43)
and (46) without consequences on the results presented in this paper. This
is corroborated by experimental evidence [1, 2, 13] showing that the onset of
instabilities is independent of the size of the sample and/or of the geometrical
set up of the experiment (see also [3]).

5 Summary and Conclusions

This chapter presents arguments in favour of chaotic behaviour of rupture.
The arguments are general and based on energy conservation principle which
are totally valid in fracture mechanics. The central hypothesis is the energy
flux through the crack tip is converted there into fracture energy with a time
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delay, τ , due to the development of a viscoelastic process zone in front of the
crack tip. It is tacitly assumed in this paper that such a delay exists and it has
a well defined time scale, τ , being a characteristic property of the material.
Its magnitude is of the order of the viscoelastic relaxation time of the sample
material under local fracture conditions. A key assumption of the theory is
that the onset of instability observed in the velocity of dynamic crack growth
is due to the time delay, which yields (41) and (46). This time delay factor,
τ , in (28) implies the possibility to derive an equation for the crack growth
the velocity in the form of a logistic map equation.

Before concluding this chapter it is necessary to notice that the hypoth-
esis of linear energy transfer as given by (46) and (45) is an oversimplified
approach. The energy release rate, Go, is linearly dependent on the crack
length whereas the crack resistance, Ro, rises in a non-linear form [10, 12].
Based on (28), (29) and (41), this property will be used in a forthcoming
paper in which it is shown that the energy dissipation can also be written in
the form of a logistic map having as consequence crack branching and other
phenomena so far not explained by the classical fracture theory.

The purpose of this chapter is to show that contrary to what has been
thought previously, the most familiar models in fracture mechanics are in-
trinsically incomplete. Therefore, it was used an as simple as possible case of
dynamic crack growth of a semi-infinite body with plane strain condition, and
well established concepts and results, to derive an expression for the crack
velocity in the well known form of a logistic equation and map. From this map
conclusions regarding instabilities of crack growth are drawn and compared
with the experimental results obtained by Fineberg and co-workers [1]. This
work shows that other logistic maps can be built, accordingly to the partic-
ularity of the experiment and accordingly to the expression of its the kinetic
energy. This article presents a new picture for dealing with fracture dynam-
ics, making use of logistic maps as a new method for predicting the possible
velocities that a crack can reach and from there to try to reproduce its geo-
metric fractal behaviour, ruggedness, etc. Each particular material and each
particular experimental testing condition will determine the type of map and
the type of crack as well. The logistic map built has an interpretation which
enables to understand even more complex situations for the phenomenon
under study.

From the above results it is concluded that the instabilities involved in dy-
namic fracture are consequences of the mathematical structure of chaos that
underlies such phenomena. It was possible to write the straight line crack
velocity in the form of a logistic map explaining the onset of instabilities
observed by Fineberg et al. [1]. This achievement brings into fracture me-
chanics all the mathematical structure developed for complex systems. This
theoretical approach provides a single and concise tool to determine among
others properties the conditions under which crack growth becomes dynam-
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ically unstable and branching takes place as will be shown in a forthcoming
paper.

The literature usually shade that there are fractals in the quasi-static
fracture of surfaces. Then undoubtedly, in fracture dynamics there will be
chaotic behaviour in the formation of the same ones. Therefore, if the model
proposed in this chapter is not the final answer for the subject, at least it
is an initial step, it lifts and it opens a new proposal for studying fracture
dynamics. Therefore, we want to say that experimental research is needed to
illuminate the theoretical evidences more closely.

Acknowledgments

This research work was in part supported financially by CNPq, FAPESP,
CAPES and one of the authors, Lucas Máximo Alves, thanks the Brazilian
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1 Introduction

The result of a measurement x e.g. of the length of Dutch men or the weight
of rice grains is usually Gaussian distributed with a well-defined average x̄
and width σ. Quite to the contrary, around 1944 Gutenberg and Richter [1]
discovered that the size of earthquakes follow a power law distribution: an
earthquake of energy E has a probability to occur given by

P (E) ∼ E−τ (1)

where τ is close to 1. Such power law behaviour is quite special since an
average and width cannot be defined. A particularly nasty property is that
the probability decays only as a power law, while in the Gaussian case it
decays faster than exponentially. As a result there is a non-negligible chance
for a huge earthquake.

Many systems in nature display dynamics dominated by similar punctu-
ated behaviour, which we call here generically ‘avalanches’. Other examples
are: snow-avalanches [2], forest fires, rain fall [3], stock-market indices [4] and
the extinction of species in biology [5]. In all these cases, due to a power
law distribution function, there is a finite chance for very big, catastrophic
events.

In 1988, Bak, Tang and Wiesenfeld [6] introduced the Self-Organized Crit-
icality (SOC) model; it was made accessible for a broad audience by the book
“How Nature Works” [7]. In fact, apart from the power law behaviour, there
are now many more criteria [8] for SOC behaviour, which enable a more
stringent test.

Although there has been a very significant amount of numerical simu-
lations on SOC systems, there are only very few controlled experimental
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investigations. Up to now experimental work was much hampered by the dif-
ficulty to determine whether a particular system is SOC or not. In fact, for
sand piles both SOC and non-SOC behaviour has been reported [9] (based
on power law scaling of avalanches only).

We study experimentally a 3-dimensional pile of rice with a 1 × 1 m2

floor area. Using the more stringent criteria, we discovered [10] that rice
behaves as SOC: not only is the avalanche distribution a power law, but also
finite size scaling (FSS) is obeyed: the maximum avalanche size scales in a
particular manner with the size of the system, as predicted by SOC-theory.
We determine the exponent (power) of the power law distribution function as
well as the fractal dimensions of the avalanche cluster (avalanche exponents).
On the other hand, we also determine the growth and roughness exponents
(surface exponents) for the rough surface that remains after many avalanches.
SOC theory does not fix the exact values of the individual exponents, but does
predict scaling relations e.g. between the avalanche and surface exponents.
We find that as far as we tested these relations, they are obeyed for our
experimental data.

In addition, SOC theory predicts that a system which is not yet ‘critical’
moves in a particular manner toward the SOC state described by the so-called
gap-equation. This approach is characterized by another exponent, the value
of which, interestingly, is given through another scaling relation containing
only values for the SOC state [11]. Also this relation is obeyed for our pile.

After introducing our experimental set-up, we review these ideas and cor-
responding experimental work in more detail below. We conclude by some
(experimentally tested) ideas on how to prevent big catastrophes.

2 Experiment: A Big Rice Pile

For the experiments we use long grained rice with dimensions of typically
2× 2× 7 mm3, similar to rice A of [12]. Our experimental set-up is shown in
Fig. 1. It consists of a rice pile of 1× 1 m2 floor area on the top of which rice
rains down from a linear source. Uniformity within 5% in the distribution
along this line is guaranteed by the use of a distributor board, see Fig. 2.

By the distributor board the stream of rice is continuously split such that
at the bottom we end up with a row of 64 uniformly distributed sub-streams.
A plastic flap at the bottom is used for further spreading and to slow down
the rice before it impinges onto the surface of the pile.

To rain down at a uniform rate, the rice is fed to the distribution board
from a mechanically stirred funnel, from which the rice emerges at an ap-
proximately constant rate of typically 1500 grains per image (taken at 30 s
interval), distributed over the whole width of the distributor board.

To monitor the shape of the pile as function of time, a set of coloured
(red, green and blue) lines (see Fig. 3) is projected onto the pile using an
overhead projector. Photographs are taken from a different viewpoint with
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Fig. 1. The rice set-up with 1×1 m2 floor area. Rice rains down from the distributor
board onto the top of the pile. The 3-dimensional shape of the pile is reconstructed
from the shape and position of a set of coloured lines projected onto the pile

Fig. 2. The binary distributor board used to create a uniform line source

respect to the projector, such that the shape of the pile can be reconstructed
using the geometry of stereoscopy.

Typically an experimental run lasts 4 hr, with a picture being taken
every 30 s. The pictures are taken with a digital camera with a resolution
of 2048 × 1536 pixels. For each picture the centre of gravity of each line is
detected (see Fig. 3, lower panel), from which the 3-dimensional surface is re-
constructed. From the 3-dimensional surfaces, the roughening properties (see
Sect. 3 below) and the avalanche properties (see Sect. 4 below) are calculated.
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Fig. 3. (Top panel) detail of the set of coloured lines projected onto the pile.
(Bottom panel) the centre of gravity of the lines as recognized by the software

3 The Rough Surface of the Pile

The surface of the rice pile is not completely smooth, but shows surface fluc-
tuations, which are mainly due to the occurrence of avalanches that remove
material from a more elevated part of the pile and deposit it at a lower
position. Since the avalanches have all kinds of sizes, they lead to surface
fluctuations of all kinds of size.

A common way to analyze such ‘rough’ surfaces is to consider the spatial
and temporal dependences of the root-mean-square (RMS) ‘width’ of the
surface. For this we first fit a plane h̄ (x, y, t) to the surface h (x, y, t) of the
pile. The RMS deviations w (L, t) of the surface with respect to this plane
are then easily calculated from

w (L, t) =

(
1
L2

L∑
x,y=1

[
h (x, y, t) − h̄ (x, y, t)

]2) 1
2

. (2)

It is well known [13], that initially this width grows as a power law of
time w (L, t) ∼ tβ where β is called the growth exponent, while at later
times, when lateral correlations span the whole size of the system L, this
width grows as a power law of system size w (L, t) ∼ Lα where α is called
the roughness exponent. Hence the exponents α and β can be obtained from
the slope in a log-log plot of w vs. L and t respectively, see Fig. 4. In fact, a
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Fig. 4. (a) Determination of the roughness exponent from the spatiotemporal cor-
relation function C (L, 0) and the distribution function σ (k) as defined in the text.
The line indicates the average slope, which defines the value for the roughness expo-
nent obtained. (b) Determination of the growth exponent from the spatiotemporal
correlation function C (0, t) and the distribution function σ (ω) as defined in the
text. The line indicates the average slope, which defines the value for the growth
exponent obtained

more accurate way to determine these exponents was used for this figure. It
is based on the correlation function

C (L, t) =
(
〈[h (x+ ξ, y + η, t+ τ) h (ξ, η, τ)]〉L,τ

) 1
2

(3)

where the 〈·〉τ indicates averaging over all τ > 0, and where 〈·〉L indicates
averaging over all points (ξ, η) and all (x, y) at a radius L from the origin.
The behaviour of this correlation function is similar to that of the width i.e.
C (0, t) ∼ tβ and C (L, 0) ∼ Lα. Alternatively [14], one may also start with
the radially averaged power spectrum S (k) of the surface defined by

S (k) =
∣∣∣ĥ (kx, ky)

∣∣∣2 (4)

where ĥ denotes the 2-dimensional Fourier transform of the surface and k2 =
k2

x + k2
y. The corresponding spatial distribution function σ (k) behaves in the

same manner [14] as the correlation function C (x, t) where

σ2 (k) =
∫ k

0

S (κ)κ dκ . (5)

Similar relations are defined for the temporal distribution function σ (ω).
In Fig. 4 we show this scaling behaviour.

The resulting exponents are α = 0.42(3) for the roughness exponent and
β = 0.28(3) for the growth exponent. Before discussing these values, we shall
now turn our attention to the avalanche behaviour.
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4 Avalanches on the Rice Pile

A typical avalanche is shown in Fig. 5. The size and shape of the avalanches
can be determined from the height difference of the surface between two
consecutive images. In this manner we determine the size of the avalanches
(as a volume, which can be expressed in the number of rice grains parti-
cipating) and also the shape of the avalanches. In particular, we determine
the fractal dimensionD of the avalanche cluster and also the fractal dimension
dB of the area on which the avalanche happened: this area is a projection of
the avalanche shape on the surface of the pile. Both fractal dimensions are
determined using box counting [15].

Fig. 5. Typical avalanche on the rice pile. The picture shows the avalanche as the
difference in height between two successive images

A plot of avalanche size as a function of time, presented in Fig. 6, clearly
shows the punctuated behaviour.

The avalanches were determined in the central part of the pile with a size
of 600× 600 mm2. In Fig. 7a we plot the size distribution for the avalanches
in this area, but also for subsets of this area.

We observe power law behaviour with a size distribution exponent τ =
1.21 (2) (corresponding to the straight line), but clear deviations from this
behaviour occur above a certain size, which is related to the size of the area
of observation. Interestingly, SOC-theory makes a precise prediction for this
deviation: it occurs because the avalanche ‘feels’ the size of the system L, i.e.
because the linear size of the avalanche becomes comparable to L. Clearly
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Fig. 6. Size of the avalanches as a function of time in the steady state, i.e. after
the system has been left running for a long time. Results for three experiments are
shown. Note the punctuated behaviour

Fig. 7. (a) Size distribution of the avalanches. P (s, L) is the number of avalanches
of size s that were observed while monitoring a window of size L × L (b) Finite
size scaling of the size distribution of the avalanches. Note the nice data-collapse:
the deviation from power law behaviour starts from a size s ∼ LD where D is the
fractal dimension of the avalanche volume

this happens for s ≈ LD and hence the deviation should scale with s/LD.
This is verified in Fig. 7b , where, in addition, the vertical axis was multi-
plied by sτ to take out the power law. Clearly a very nice data-collapse is
observed confirming the ”finite size scaling”-prediction of SOC theory. This
data collapse yields an accurate value for the exponents: D = 1.99 (2) and
τ = 1.21 (2).
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5 Relation Between Avalanches and Surface

An avalanche disturbs and changes the surface on which it occurs and intu-
itively one might expect that there exists a relation between the properties
of an avalanche and the surface that remains after the avalanche has taken
place. On the other hand, avalanches are quite different from granular piles,
and hence a comparison is not trivial. Below we discuss two relations between
the statistical properties of avalanches and the surface that they leave behind.
Subsequently, we verify whether these are obeyed in our experiments.

The first and most simple scaling relation is found by calculating the vol-
ume of a (fractal) avalanche. By definition, this volume is LD since D is the
fractal dimension of the avalanche cluster (which can be determined directly
in our experiment). On the other hand, the volume should also be equal to the
fractal surface times the fractal height. The fractal surface area is the projec-
tion of the avalanche cluster on an average (flat) plane trough the pile surface.
The area of this projection is by definition LdB where dB is the surface fractal
dimension of the avalanche cluster, which can be easily obtained in our ex-
periment. The height or thickness of an avalanche is obtained by subtracting
the heights (in the direction perpendicular to the average plane, mentioned
above) of the piles before and after the avalanche. Since the avalanche modi-
fies the pile only locally, this fractal thickness scales as the surface roughness
and is proportional to Lα. Combining these ingredients yields LD ∼ LdBLα

from which we obtain the scaling relation

D = dB + α . (6)

The second scaling relation follows from the fact that the deviation from
power law behaviour seen in Fig. 7 occurs because avalanches above a certain
size ‘feel’ that the pile is finite. We shall now make this more explicit.

As stipulated above, the time evolution of an initially flat surface subject
to roughening is such that at short times its root-mean-squared width w
increases with time as w ∼ tβ . After some time, however, lateral correlations
extend over the whole area of the pile and w does not increase anymore: it
is limited to a pile-size dependent value w ∼ Lα, where L is the linear size
of the pile and α is the roughness exponent. At the cross-over time t×, both
relations hold from which

t× ∼ Lα/β . (7)

On the other hand, since this cross-over is due to correlations that start
to span the whole system, t× is also the moment when the first avalanche
occurs that spans the whole pile; by definition the size of this avalanche is
s×. Since we seed the pile with a constant rate, t× also is proportional to the
amount of mass M we must add to the pile to obtain such a pile-spanning
avalanche. However, before we create an avalanche of size s×, many smaller
avalanches have occurred, adding to the amount of material that we have to
add before a pile-spanning avalanche takes place. Thus the total mass M is
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Fig. 8. The scaling relation D (2 − τ) = α/β is derived by comparing the time
needed for correlations to span the whole pile and the time needed to create
avalanches that span the whole pile (see text)

equal to the integral of the size distribution function up to s×, i.e. the shaded
area in Fig. 8. This gives

t× ∼M =
∫ s×

0

sP (s) ds ∼
∫ s×

0

s s−τds ∼ s2−τ
× . (8)

In the finite size scaling analysis we found that s ∼ LD, hence we obtain

t× ∼ s2−τ
× ∼ LD(2−τ) . (9)

Combination with (7) yields the exponent relation

D (2 − τ) =
α

β
. (10)

Equations (6) and (10), which were previously derived by Paczuski et
al. [8], offer an interesting possibility: one can calculate the roughness and
growth exponents, α and β, from the avalanche properties only. In the table
below we compare the values [10] from such an analysis with those obtained
above from a direct roughness analysis of the surface of the pile:

α β
from roughness analysis 0.42 (3) 0.28 (3)
from avalanche analysis 0.41 (3) 0.26 (2)

Clearly, an excellent agreement is found, which supports the underlying
assumption i.e. that SOC theory yields a valid description of the avalanche
behaviour in our pile.
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It is interesting to note that the values we find for the roughening of our
rice pile are very close to those observed for Kardar-Parisi-Zhang [16] (KPZ)
systems. For a 2-dimensional interface it was found from simulations that
for KPZ systems α = 0.39 and β = 0.24, rather close to the values given in
the table above. In addition, if we consider the roughening of contour lines
(lines of equal height) on our pile, we find for these 1-dimensional interfaces
α = 0.48 (3) and β = 0.33 (3), while it can be shown [13] rigorously that for
1-dimensional KPZ α = 1/2 and β = 1/3. Strangely enough, our system is
very unlike a KPZ system: the latter is governed by a Langevin (differential)
equation, which describes the development of the interface in a deterministic
and local fashion (although the effects of disorder are very important and
must be included in the description). To the contrary, our system seems much
more random and non-local due to the occurrence of avalanches. Nevertheless
the most likely manner of change of our pile is by increase or decrease of its
height, which is most easy in a direction that is parallel to the local normal
to the surface. Exactly this is also the main ingredient in the derivation of
the KPZ equation: growth always proceeds along the local normal. Possibly,
the KPZ model extends to non-Langevin systems obeying this same growth
rule.

6 Avalanches as Spatiotemporal Fractals

In this section we discuss the spatiotemporal structure of the avalanches.
It is quite natural under our condition of constant seeding of the pile, to
consider all avalanches together as belonging to one superavalanche, which is
punctuated in time. In fact, using similar theoretical ideas as above, one can
make a testable prediction for the power spectrum of this superavalanche.

To derive a scaling relation for the avalanche power spectrum exponent,
let us consider the development of an avalanche, see Fig. 9. Shown are five
successive stages of the development of an avalanche cluster, which is shown
full-grown at the top. At the bottom of the figure, the substrate area of
this avalanche is shown. At a certain moment during the avalanche a site
is changed (indicated in the middle three pictures by a red colour) or not
(blue). If we consider a single site, then the behaviour as a function of time is
punctuated and a time-line through such a site (indicated by the vertical line)
is a fractal. We define the length of this time-line as T θ where T is the total
time needed to create the full-grown avalanche and θ is the fractal dimension
of the time-line (to be calculated below). If the linear size of the full-grown
avalanche cluster is L (note the change in definition of L), then (according to
similar arguments as given above concerning t×) the time needed to create
such correlated cluster is T ∼ Lα/β . Hence the length of the time-line is
T θ ∼ Lθα/β . The full-grown cluster is created during the time T and has a
volume that is easily calculated from its substrate area LdB and its height,
corresponding to the number of times T θ that activity occurred during its
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Fig. 9. Schematic representation of the spatiotemporal structure of an avalanche.
Shown are five successive stages of development of an avalanche cluster, shown in
full-grown state at the top. At the bottom the substrate area of the full-grown
avalanche is shown. As time progresses there is activity (grey) or not (black) at a
particular site. A time line running through one site is indicated by the vertical
line. For further explanation see text

growth. From this we obtain for the volume of the full-grown avalanche cluster
V = LdB × Lθα/β . On the other hand, this size is also LD, since D is the
fractal dimension of the full-grown avalanche. Combining yields the scaling
relation
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D = dB + θ
α

β
. (11)

Solving this for θ yields

θ = (D − dB)
β

α
= β (12)

where we have used (6). Hence the fractal dimension of the time line through
a single site has the same value as the growth exponent.

We now determine the consequence for the power spectrum. Consider first
the activity-function A (t) for a certain timeline, such as in Fig. 9. A (t) is
one at each moment of activity and zero at all other times. On the average
the total number of ones of A during a time t, which we call n (t) is given by

n (t) =
∫ t

0

A (τ) dτ ∼ tβ (13)

since the number of points on a length t of time-line with fractal dimension
β is given by tβ .

By definition, the temporal correlation function for the avalanche is
C (t) = 〈A (τ)A (τ + t)〉τ (note that this C (t) for activity during avalanches
is different from the C (t) calculated above for rough surfaces), where the
average is over all starting times τ and all time lines. In this context, C (t) is
also called [8] the all-return probability Pall (t) i.e. the probability for a site
that is active at τ = 0 to become active again at τ = t. Hence [8] on the
average n (t+ 1) = n (t) + C (t). Thus

C (t) ∼ dn (t)
dt

∼ tβ−1 . (14)

And for the power spectrum [17]:

S (f) ∼ f−β . (15)

An experimental power spectrum is shown in Fig. 10. The red line in-
dicates power law behaviour with a negative power of 0.27 (3). According
to (15) one expects a value equal to the growth exponent β = 0.28 (3) as
determined above. Clearly we find a good agreement supporting again the
applicability of SOC theory.

7 How to Prevent Avalanches

It is rather worrying that despite vigorous efforts to prevent snow avalanches
by controlled explosions, accidents still occur. In fact, the same applies to
forest fires (notably in the National Parks in the US), where ‘controlled’
burning sometimes gets out-of-hand and starts large fires. In fact, it is a
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Fig. 10. Power spectrum of the avalanches of Fig. 6. The red line indicates power
law behaviour with a negative power of 0.27 (3) , very close to the value of the
growth exponent, 0.28 (3) , in good agreement with SOC theory

property of SOC that ‘small’ disturbances may lead to big avalanches, making
control very difficult.

In Fig. 11 we replot the data of a comparative study [2] of snow avalanches
in two regions of the US, one where controlled explosions were used to try
to prevent the occurrence of large avalanches and another, where no explo-
sions were made. Clearly, the power law distributions are very similar, with
nearly equal slope. The disturbed region shows even slightly worse behav-
iour: the sizes are slightly larger and the decay is slightly slower, making
large avalanches relatively more likely.

To investigate another method for the prevention of devastating avalan-
ches, we study the transient state. This is the state of the system before it
reaches criticality. The rice pile was prepared manually to be at an angle much
smaller than the critical angle (we refer to this state hereafter as ‘flat’), after
which the measurement was immediately started. A detailed analysis of the
multi-scaling properties of the temporal correlation function was made [18],
but here we shall concentrate on the avalanche properties.

The punctuated behaviour of the avalanches is shown in Fig. 12, where
we see that initially large avalanches do not occur. Indeed averaging the
avalanche sizes over 100 consecutive time-steps shows a linear increase with
time, see Fig. 13, while the system is moving from the prepared ‘flat’ state
towards steady-state SOC behaviour.
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Fig. 11. Replot of the data of Birkeland and Landry [2], showing that the avalanche
size distribution for snow avalanches is slightly ‘worse’ for the region where attempts
were made to prevent large avalanches by controlled explosions

Fig. 12. Avalanche volume versus time immediately after preparing the pile man-
ually in a rather flat state. Clearly, in the beginning large avalanches do not occur
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Fig. 13. Size of the avalanches of Fig. 12 averaged over 100 time steps. Clearly the
average avalanche size increases linearly with time while the system is developing
towards the SOC steady state

Interestingly, SOC theory [8] prescribes how the system should approach
the SOC state. We call the critical slope of the rice fc. This is the maximum
slope that a rice pile can have without starting to slide. The value fc =
0.92 (1) was determined experimentally [11] (i) by slowly tilting a small box
with rice until it started to slide and (ii) from the maximum slope observed
anywhere in our large pile during many experiments.

We call the maximum slope observed anywhere in the pile at a cer-
tain instant in time G. SOC theory describes how G approaches fc af-
ter starting from a ‘flat’ state. In particular, it predicts that the average
avalanche size 〈∆V 〉 diverges as the SOC state is approached according to
〈∆V 〉 = (fc −G)−γ . Combining this with the experimental observation that
〈∆V 〉 ∼ t yields

fc −G ∼ t−1/γ . (16)

Indeed, from the experimental data we find a reasonable agreement to
this behaviour, see Fig. 14, except for the very beginning of the experiment.

In fact, according to SOC theory [8, 11], the observed power 1/γ is given
by

1
γ

=
1 + dB/D − τ

2 − τ . (17)
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Fig. 14. Difference between actual maximal slope anywhere in the pile G and the
critical slope fc of rice as a function of time. The red line indicates power law
behaviour with slope 0.8 (1)

This is an interesting relation, because it connects the behaviour in the
transient non-SOC state as given by γ to exponents (D, dB and τ) of the
steady SOC state. Experimentally, we find 1/γ = 0.8 (1), while using the
values obtained above for D, dB and τ, one would expect 1/γ = 0.74 (2),
which is a nice agreement.

In addition to the change in average avalanche size, also the avalanche
size distribution exponent τ changes during the transient state, see Fig. 15.
Initially τ is larger, indicating a faster decrease of the distribution function
with increasing avalanche size and hence a smaller chance for large avalanches.
This makes the transient state safer. An alternative to firing explosives in
(near-)critical snow masses is to disturb the snow at an early stage. Thus
the snow may be kept from developing SOC behaviour. In addition, due to
the larger τ in the transient, even if triggering provokes an avalanche, the
chances that it is very big are significantly reduced. Similar arguments hold
for controlled burning in the prevention of forest fires.
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Fig. 15. Change of the avalanche size distribution exponent τ as a function of time
in the transient state. Clearly at early times the distribution function is steeper,
making large avalanches less likely

8 Conclusions

Self-organized criticality is a class of models meant to describe punctuated
behaviour in naturally occurring phenomena such as earthquakes, avalanches
and extinctions of species in biology. These wildly different phenomena have
characteristic properties, such as the size of events, that all have power law
distribution functions. The exponents of these power laws may vary from
system to system, however, SOC theory [8] gives explicit relations between
the exponents. In fact, many of the exponents can be expressed in terms of
only three of them: D, dB and τ .

We have experimentally investigated the statistical properties of avalan-
ches on a 3-dimensional pile of rice and find that avalanche sizes are indeed
power law distributed. In addition, we find that the starting point for devi-
ations from power law behaviour scales as s× ∼ LD, as predicted by SOC
theory. Using this and direct imaging of the avalanches, we have directly
measured D, dB and τ . From the properties of the surface of the pile, we
independently determined its roughness and growth exponents α and β. We
have thus verified that within experimental accuracy, the scaling relations
D = dB + α and D (2 − τ) = α/β are obeyed.
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In addition, we have verified that the value of the exponent of the power
spectrum of the avalanches is equal to β as predicted by another scaling
relation.

It is striking that, while we find SOC behaviour in our rice pile and are
thus able to verify the exponent relations proposed by Paczuski et al. [8]
for our system, for sand the occurrence of SOC is highly debated [9]. It is
conceivable that a certain minimum amount of disorder is necessary for SOC
behaviour to occur. This idea is supported by the experiments of Altshuler
et al. on steel balls [19] and by some of us on superconductors [20], and may
also explain why in the Oslo experiments [12], long grained rice (like ours)
behaved as SOC while more rounded rice did not.

In experiments that started from a manually prepared ‘flat’ pile, we in-
vestigated the approach from this ‘flat’ state towards the SOC state. Again,
within experimental accuracy, the scaling relation (17) is corroborated by our
experiment. In the approach towards SOC, the avalanches are smaller and
their distribution is steeper, making the chance for large avalanches much
smaller than in the SOC state. It seems that the best strategy to avoid huge
avalanches is to stay away from the SOC state. That is indeed possible by
continuously disturbing the pile.
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11. C.M. Aegerter, K.A. Lőrincz, M.S. Welling, R.J. Wijngaarden: Phys. Rev. Lett.

92, 058702 (2004)
12. V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang, P.

Meakin: Nature 379, 49 (1996)
13. A.L. Barabasi and H.E. Stanley: Fractal Concepts in Surface Growth (Cam-

bridge University Press, Cambridge, 1995)
14. J. Schmittbuhl, J.-P. Vilotte, and S. Roux: Phys. Rev. E 51 (1995) 131; M.

Siegert: ibid. 53, 3209 (1996); J.M. Lopez, M.A.Rodriguez, R. Cuerno: ibid.
56, 3993 (1997)

15. B.B. Mandelbrot: The Fractal Geometry of Nature (Freeman, New York 1983)



Nonlinear Dynamics and Fractal Avalanches in a Pile of Rice 335

16. M. Kardar, G. Parisi, Y.C. Zhang: Phys. Rev. Lett. 56, 889 (1986)
17. H.J. Jensen: Self Organized Criticality (Cambridge University Press, Cambridge

1998)
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Summary. We study the dynamics of iterates at the transition to chaos in the
logistic map and find that it is constituted by an infinite family of Mori’s q-phase
transitions. Starting from Feigenbaum’s σ function for the diameters ratio, we de-
termine the atypical weak sensitivity to initial conditions ξt associated to each
q-phase transition and find that it obeys the form suggested by the Tsallis sta-
tistics. The specific values of the variable q at which the q-phase transitions take
place are identified with the specific values for the Tsallis entropic index q in the
corresponding ξt. We also describe the bifurcation gap induced by external noise
and show that its properties exhibit the characteristic elements of glassy dynamics
close to vitrification in supercooled liquids, e.g. two-step relaxation, aging and a
relationship between relaxation time and entropy.

1 Introduction

The logistic equation was introduced in 1845 by the Belgian mathematician
and sociologist Pierre-François Verhulst to model the growth of populations
limited by finite resources [1]. The discrete time variable version of Verhulst’s
growth law, the logistic map, has become a foundation stone for the theory
of nonlinear dynamics. The logistic map is the archetypal example of how
the use as starting point of simple nonlinear discrete maps have often led to
significant developments in the theory of nonlinear dynamical systems [2].
The discovery of the universal properties associated to the renowned period-
doubling and intermittency routes to chaos displayed by the logistic map,
similar to those of conventional critical phenomena in statistical physics,
triggered, about three decades ago, an upsurge of activity in the field and
now both routes, as well as many other remarkable features displayed by the
logistic map, are well understood.

Here we might argue that at the present time the logistic map is again
becoming a prototypical model system. This time for the assessment of the
validity and understanding of the reasons for applicability of the nonexten-
sive generalization of the Boltzmann–Gibbs (BG) statistical mechanics [3,4].
This is a formalism assumed to be appropriate for circumstances where the
system is out of the range of validity of the canonical BG theory. And these
circumstances are believed in some cases to be a breakdown in the chain of
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increasing randomness from non-ergodicity to completely developed phase-
space mixing.

The logistic map contains infinite families of critical attractors at which
the ergodic and mixing properties breakdown. These are the tangent bifurca-
tions and the accumulation point(s) of the pitchfork bifurcations, the so-called
onset of chaos [2]. At each of the map critical attractors the Lyapunov coeffi-
cient λ1 vanishes, and the sensitivity to initial conditions ξt for large iteration
time t ceases to obey exponential behaviour, exhibiting instead power-law or
faster than exponential behaviour. The pitchfork bifurcations are also critical
attractors at which the negative Lyapunov coefficient of periodic orbits goes
to zero. There are other attractors at which the Lyapunov coefficient diverges
to minus infinity, where there is faster than exponential convergence of orbits.
These are the superstable attractors located between successive pitchfork bi-
furcations and their accumulation point is also the onset of chaos.

Here we review briefly specific and rigorous results on the dynamics asso-
ciated to the critical attractors of the logistic map, or of its generalization to
nonlinearity of order z > 1, fµ(x) = 1 − µ |x|z, −1 ≤ x ≤ 1, 0 ≤ µ ≤ 2. (The
phase space variable is x, the control parameter is µ and the conventional
logistic map corresponds to z = 2). Our results relate to the anomalous sen-
sitivity to initial conditions at the onset of chaos, the associated spectrum of
Tsallis q-Lyapunov coefficients, and the relationship of these with the Mori q-
phase transitions [5], one of which was originally observed numerically for the
Feigenbaum attractor [5, 6]. In particular, we identify the Mori singularities
in the Lyapunov spectra with the appearance of special values for the Tsallis
entropic index q. As the properties of the logistic map are very familiar and
well understood it is of interest to see how previous knowledge fits in with
the new perspective.

Tsallis suggested [7] that for critical attractors ξt (defined as ξt(x0) ≡
lim∆x0→0(∆xt/∆x0) where ∆x0 is the initial separation between two orbits
and ∆xt that at time t), has the form

ξt(x0) = expq[λq(x0) t] ≡ [1 − (q − 1)λq(x0) t]−1/(q−1) , (1)

that yields the customary exponential ξt with λ1 when q → 1. In (1) q is the
entropic index and λq is the q-generalized Lyapunov coefficient; expq(x) ≡
[1− (q− 1)x]−1/(q−1) is the q-exponential function. Tsallis also suggested [7]
that the Pesin identity K1 = λ1 (where the rate of entropy production K1

is given by K1t = S1(t) − S1(0), t large, and S1 = −∑
i pi ln pi) would be

generalized to Kq = λq, where the q-generalized rate of entropy production
Kq is defined via Kqt = Sq(t) − Sq(0), t large, and where

Sq ≡
∑

i

pi lnq

(
1
pi

)
=

1 −∑W
i pq

i

q − 1
(2)

is the Tsallis entropy; lnq y ≡ (y1−q − 1)/(1 − q) is the inverse of expq(y).
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To check on the above, we have recently analysed [8–11] both the pitch-
fork and tangent bifurcations and the onset of chaos of the logistic map and
found that indeed the Tsallis suggestions hold for these critical attractors,
though with some qualifications. For the case of the tangent bifurcation it
is important to neglect the feedback mechanism into the neighbourhood of
the tangency to avoid the crossover out of the q-exponential form for ξt. As
we explain below, for the onset of chaos there is a multiplicity of q-indices,
appearing in pairs qj , and Qj = 2 − qj , j = 0, 1, . . ., and a spectrum of q-
Lyapunov coefficients λ(k,l)

qj and λ(k,l)
Qj

for each qj and Qj , respectively. (The
superindex (k, l) refers to starting and final trajectory positions). The dynam-
ics of the attractor confers the q-indexes a decreasing order of importance.
Retaining only the dominant indices q0 and Q0 yields a quite reasonable
description of the dynamics and considering the next few leading indexes
provides a satisfactorily accurate account.

Although in brief, we also describe our finding [12] that the dynamics at
the noise-perturbed edge of chaos in logistic maps is analogous to that ob-
served in supercooled liquids close to vitrification. The three major features
of glassy dynamics in structural glass formers, two-step relaxation, aging,
and a relationship between relaxation time and configurational entropy, are
displayed by orbits with vanishing Lyapunov coefficient. The known proper-
ties in control-parameter space of the noise-induced bifurcation gap play a
central role in determining the characteristics of dynamical relaxation at the
chaos threshold.

2 Critical Attractors in the Logistic Map

For our purposes it is convenient to recall some essentials of logistic map prop-
erties. The accumulation point of the period doublings and also of the chaotic
band splittings is the Feigenbaum attractor that marks the threshold between
periodic and chaotic orbits, at µ∞(z), with µ∞ = 1.40115 . . . when z = 2.
The locations of period doublings, at µ = µn < µ∞, and band splittings, at
µ = µ̂n > µ∞, obey for large n power laws of the form µn − µ∞ ∼ δ(z)−n

and µ∞ − µ̂n ∼ δ(z)−n, with δ = 0.46692 . . . when z = 2, which is one of the
two Feigenbaum’s universal constants. For our use below we also recall the
sequence of parameter values µn employed to define the diameters dn of the
bifurcation forks that form the period-doubling cascade sequence. At µ = µn

the map displays a ‘superstable’ periodic orbit of length 2n that contains the
point x = 0. For large n the distances to x = 0, of the iterate positions in
such 2n-cycle that are closest to x = 0, dn ≡ f (2n−1)

µn
(0), have constant ratios

dn/dn+1 = −α(z); α = 2.50290 . . . when z = 2, which is the second of the
Feigenbaum’s constants. A set of diameters with scaling properties similar to
those of dn can also be defined for the band splitting sequence [2]. Other di-
ameters in the 2n-supercycles are defined as the distance of the mth element
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xm to its nearest neighbour f (2n−1)
µn

(xm). That is

dn,m ≡ f (m+2n−1)
µn

(0) − f (m)
µn

(0), m = 0, 1, 2, . . . , (3)

with dn,0 = dn. Feigenbaum [13] constructed the auxiliary function

σn(m) =
dn+1,m

dn,m
(4)

to quantify the rate of change of the diameters and showed that it has finite
(jump) discontinuities at all rationals, as can be seen by considering the vari-
able y = m/2n+1 with n large (and therefore omitting the subindex n). One
obtains [2,13] σ(0) = −1/α, but σ(0+) = 1/αz, and through the antiperiodic
property σ(y + 1/2) = −σ(y), also σ(1/2) = 1/α, but σ(1/2 + 0+) = −1/αz.
Other discontinuities in σ(y) appear at y = 1/4, 1/8, etc. As these decrease
rapidly in most cases it is only necessary to consider the first few.

An important factor of our work is that the sensitivity to initial conditions
ξt(x0) can be evaluated for trajectories within the Feigenbaum attractor via
consideration of the discontinuities of σn(m). If the initial separation is chosen
to be a diameter ∆x0 = dn,m and the final time t is chosen to have the form
t = 2n − 1, then ∆xt = dn,m+2n−1, and ξt(x0) can be written [14] as

ξt(m) �
∣∣∣∣σn(m− 1)
σn(m)

∣∣∣∣n , t = 2n − 1, n large . (5)

For the clarity of the presentation, we shall only use absolute values of po-
sitions so that the dynamics of iterates do not carry information on the
self-similar properties of “left” and “right” symbolic dynamic sequences [2].
This choice does not affect the results on the sensitivity to initial conditions.

3 Mori’s q-Phase Transitions in the Logistic Map

During the late 1980’s Mori and coworkers developed a comprehensive ther-
modynamic formalism to characterize drastic changes at bifurcations and at
other singular phenomena in low dimensional maps [5]. The formalism was
also adapted to the study of critical chaotic attractors and was illustrated by
considering the specific case of the onset of chaos in the logistic map [5,6,15].
For critical attractors the scheme involves the evaluation of fluctuations of
the generalized finite-time Lyapunov coefficient

λ(t, x0) =
1

ln t

t−1∑
i=0

ln
∣∣∣∣dfµ∞(xi)

dxi

∣∣∣∣ , t� 1. (6)

Notice the replacement of the customary t by ln t above, as the ordinary
Lyapunov coefficient
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λ1(x0) = lim
t→∞

1
t

t−1∑
i=0

ln
∣∣∣∣dfµ∞(xi)

dxi

∣∣∣∣ (7)

vanishes at µ∞, t→ ∞.
The probability density distribution for the values of λ, P (λ, t), is written

in the form
P (λ, t) = t−ψ(λ)P (0, t), t� 1 , (8)

where ψ(λ) is a concave spectrum of the fluctuations of λ with minimum
ψ(0) = 0 and is obtained as the Legendre transform of the ‘free energy’
function φ(q), defined as

φ(q) ≡ − lim
t→∞

1
ln t

lnZ(t, q) , (9)

where Z(t, q) is the dynamic partition function

Z(t, q) ≡
∫

dλ P (λ, t) t−(q−1)λ . (10)

The ‘coarse-grained’ function of generalized Lyapunov coefficients λ(q) is
given by λ(q) ≡ dφ(q)/dq and the variance v(q) of P (λ, t) by v(q) ≡ dλ(q)/dq
[5, 6]. Notice the special weight t−(q−1)λ in the partition function Z(t, q) as
this shapes the quantities derived from it. These functions are the dynamic
counterparts of the Renyi dimensions Dq and the spectrum f(α̃) that char-
acterize the geometric structure of the attractor.

A “q-phase” transition is indicated by a section of linear slope mc = 1−qc
in the spectrum (free energy) ψ(λ), a discontinuity at qc in the Lyapunov
function (order parameter) λ(q), and a divergence at qc in the variance (sus-
ceptibility) v(q). For the onset of chaos at µ∞(z = 2) a single q-phase transi-
tion was numerically determined [5, 6, 15] and found to exhibit a value close
to mc = −(1 − qc) � −0.7; arguments were provided for this value to be
mc = −(1 − qc) = − ln 2/ lnα = −0.7555 . . . Our analysis described below
shows that the older results give a broad picture of the dynamics at the
Feigenbaum attractor and that actually an infinite family of q-phase transi-
tions of decreasing weights take place at µ∞.

4 Tsallis Dynamics at the Edge of Chaos

By taking as initial condition x0 = 0 we found that the resulting orbit consists
of trajectories made of intertwined power laws that asymptotically reproduce
the entire period-doubling cascade that occurs for µ < µ∞ [9,11]. This orbit
captures the properties of the so-called ‘superstable’ orbits at µn < µ∞,
n = 1, 2, . . . [2] (see Fig. 1), and can be used as reference to read all other
orbits within the attractor. At µ∞ the Lyapunov coefficient λ1 vanishes and
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Fig. 1. Absolute values of positions in logarithmic scales of iterations τ for a
trajectory at µ∞ with initial condition x0 = 0. The numbers correspond to iteration
times. The power-law decay of the time subsequences can be clearly appreciated

in its place there appears a spectrum of q-Lyapunov coefficients λ(k,l)
q . This

spectrum was originally studied in [6] and [15] and our recent interest has
been to study its properties in more detail to examine their relationship
with the Tsallis statistics. Recent analytical results about the q-Lyapunov
coefficients and the q-generalized Pesin identity are given in [9] and [11].

Now, consider a first approximation to the function σn(m) for n large,
applicable to general non-linearity z > 1. This is to assume that half of the
diameters scale as α (as in the most sparse region of the attractor) while the
other half scale as α0 = αz (as in the most crowded region of the attractor).
This approximation captures the effect on ξt of the most dominant trajecto-
ries within the attractor. With these two scaling factors σn(m) becomes the
periodic step function

1
σn(m)

=

⎧⎪⎪⎨⎪⎪⎩
α0 = αz,
α,

−α0 = −αz,
−α ,

0 < m ≤ 2n−1,
2n−1 < m ≤ 2 · 2n−1,

2 · 2n−1 < m ≤ 3 · 2n−1,
3 · 2n−1 < m ≤ 4 · 2n−1, . . .

(11)

Use of (11) into (5) for the sensitivity ξt(m) yields the result
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ξt(m) =
{
α−(z−1)n,
α(z−1)n ,

m = (2k + 1)2n−1 ,
m = (2k + 2)2n−1 ,

(12)

where k = 0, 1, . . . and where the final observation time is of the form t =
l2n − 1, l = 1, 2, . . .. With the introduction of the total time variable τ ≡
m+ 1 + t, (12) can be rewritten in terms of the q-exponential functions

ξτ (m) =

{
[1 + (1 − q0)λ(k,l)

q0 τ ]1/(1−q0) ,

[1 + (1 −Q0)λ
(k,l)
Q0

τ ]1/(1−Q0),

m = (2k + 2)2n−1 ,
m = (2k + 1)2n−1 ,

(13)

where
q0 = 1 − ln 2

lnα0/α
= 1 − ln 2

(z − 1) lnα
, (14)

λ(k,l)
q0

=
(z − 1) lnα

(k + 2l + 1) ln 2
, (15)

Q0 = 1 +
ln 2

lnα0/α
= 1 +

ln 2
(z − 1) lnα

, (16)

λ
(k,l)
Q0

= − 2(z − 1) lnα
(2k + 4l + 1) ln 2

. (17)

Notice that Q0 = 2− q0. For z = 2 one obtains Q0 � 1.7555 and q0 � 0.2445,
this latter value agrees with that obtained in several earlier studies [7,9,11,16].
The two scales considered describe correctly only trajectories that start at
the most sparse region of the multifractal (x � 0) and terminate at its most
crowded region (x � 1), or the inverse. (This is why we obtain the two
conjugate values q and Q = 2−q, as the inverse of the q-exponential function
satisfies expq(y) = 1/ exp2−q(−y)). The vertical lines in Fig. 2a represent the

ranges of values obtained when z = 2 for λ(k,l)
q0 and λ(k,l)

Q0
. See [14] for more

details.
We consider the next discontinuities of importance in σn(m). Indepen-

dently of the number of discontinuities taken into account one obtains q-
exponential forms for ξt. The value of σ(y = m/2n+1) at y = 1/4 measures
1/α1, with α1 � 5.4588 for z = 2, and it is associated to one ‘midway’ region
between the most crowded and most sparse regions of the attractor (the other
‘midway’ region being associated to σ(3/4)). With three scaling factors, α,
α0 and α1, we have three values for the q index, q0, q1 and q2 (together with
the conjugate values Q0 = 2 − q0, Q1 = 2 − q1 and Q2 = 2 − q2 for the in-
verse trajectories). To each value of q there is a set of q-Lyapunov coefficients
running from a maximum λqi,max to zero (or a minimum λQi,min to zero).
The results when z = 2 for the ranges of values obtained for the q-Lyapunov
coefficients are shown as the vertical lines in Figs. 2(a), 3(a) and 4(a). Similar
results are obtained for the case of four discontinuities in σn(m), etc.
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Fig. 2. q-phase transitions with index values q0 and Q0 = 2− q0 obtained from the
main discontinuity in σn(m). See text for details

5 A Family of q-Phase Transitions at the Edge of Chaos

As a function of the variable −∞ < q < ∞ the q-Lyapunov coefficients ob-
tained in the previous section are functions with two steps with the jumps
located at q = qi = 1 − ln 2/ lnαi(z)/α(z) and q = Qi = 2 − qi. Immedi-
ate contact can be established with the formalism developed by Mori and
coworkers and the q phase transition obtained in [6]. Each step function for
λ(q) can be integrated to obtain the spectrum φ(q) (λ(q) ≡ dφ/dq) and from
this its Legendre transform ψ(λ) (≡ φ−(1−q)λ). We illustrate this first with
σn(m) obtained with two scale factors, as in (11). We show numerical values
for the case z = 2. From (14) to (17) we obtain

λ(q) =

⎧⎨⎩
λq0,max, q ≤ q0 = 1 − ln 2/(z − 1) lnα � 0.2445 ,
0, q0 < q < Q0 ,
λQ0,min, q ≥ Q0 = 2 − q0 � 1.7555 ,

(18)

where λq0,max = lnα/ ln 2 � 1.323 and λQ0,min = −2 lnα/ ln 2 � −2.646.
The free energy functions φ(q) and ψ(λ) that correspond to (18) are given

by

φ(q) =

⎧⎨⎩
λq0,max(q − q0), q ≤ q0 ,
0, q0 < q < Q0 ,
λQ0,min(q −Q0), q ≥ Q0 ,
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Fig. 3. q-phase transitions with index values q1 and Q1 = 2− q1 obtained from the
main two discontinuities in σn(m). See text for details

and

ψ(λ) =
{

(1 −Q0)λ, λQ0,min < λ < 0 ,
(1 − q0)λ, 0 < λ < λq0,max .

We show these functions in Fig. 2. The constant slopes of ψ(λ) represent
the q-phase transitions associated to trajectories linking two regions of the
attractor, that in this case are its most crowded and most sparse, and their
values 1 − q0 and q0 − 1 correspond to those obtained for the q-exponential
ξt (13). The slope q0 − 1 � −0.7555 coincides with that originally detected
by Mori and colleagues [5].

When we consider also the next discontinuity of importance in σn(m),
at σ(1/4) = 1/α1, we obtain a set of two q-phase transitions for each of the
three values of the q index, q0, q1 and q2. We show in Figs. 2, 3 and 4 the
functions λ(q), φ(q), and ψ(λ) obtained for these three cases. The parameter
values for the q-phase transitions at 1− q0 and q0 − 1 appear again, but now
we have also two other sets at 1 − q1 and q1 − 1, and at 1 − q2 and q2 − 1,
that correspond, respectively, to orbits that link a ‘midway’ region of the
attractor with the most sparse region, and with the most crowded region of
the attractor.
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6 Noisy Dynamics at the Edge of Chaos

Consider now the logistic map z = 2 in the presence of additive noise

xt+1 = fµ(xt) = 1 − µx2
t + χtε, −1 ≤ xt ≤ 1, 0 ≤ µ ≤ 2 , (19)

where χt is the random variable with average 〈χtχt′〉 = δtt′ , and ε measures
the noise intensity [2,17]. Except for a set of zero measure, all the trajectories
with µ∞(ε = 0) and initial condition −1 ≤ x0 ≤ 1 fall into the attractor with
fractal dimension df = 0.5338 . . .. These trajectories represent nonergodic
states, since as t→ ∞ only a Cantor set of positions is accessible out of the
total phase space. For ε > 0 the noise fluctuations erase the fine features
of the periodic attractors as these widen into bands similar to those in the
chaotic attractors, yet there remains a definite transition to chaos at µ∞(ε)
where the Lyapunov exponent λ1 changes sign. The period doubling of bands
ends at a finite value 2N(ε) as the edge of chaos transition is approached and
then decreases at the other side of the transition. This effect displays scaling
features and is referred to as the bifurcation gap [2, 17]. When ε > 0 the
trajectories visit sequentially a set of 2n disjoint bands or segments leading
to a cycle, but the behaviour inside each band is completely chaotic. These
trajectories represent ergodic states as the accessible positions have a fractal
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dimension equal to the dimension of phase space. Thus the removal of the
noise ε→ 0 at µ∞ leads to an ergodic to nonergodic transition in the map.

In the absence of noise (ε = 0) the diameter positions x2n = dn = α−n

visited at times τ = 2n by the trajectory starting at x0 = 1 is given by the
Feigenbaum fixed-point map solution g(x),

xτ =
∣∣∣g(τ)

(x0)
∣∣∣ = τ−1/(1−q0)

∣∣∣g(τ1/(1−q0)x0)
∣∣∣ , (20)

that in turn is obtained from then → ∞ convergence of the 2nth map com-
position to (−α)−ng(αnx) with α = 21/(1−q0). When x0 = 0 one obtains in
general [9]

xτ =
∣∣∣g(2l+1)(0)g(2

n−1)(0)
∣∣∣ =

∣∣∣g(2l+1)(0)
∣∣∣α−n, τ = (2l + 1)2n, l, n = 0, 1, . . .

(21)
When the noise is turned on (ε always small) the 2nth map composition

converges instead to

(−α)−n[g(αnx) + χεκnGΛ(αnx)] , (22)

where κ a constant whose numerically determined [18,19] value κ � 6.619 is
well approximated by ν = 2

√
2α(1 + 1/α2)−1/2, the ratio of the intensity of

successive subharmonics in the map power spectrum [2, 19]. The connection
between κ and the ε-independent ν stems from the necessary coincidence of
two ratios, that of noise levels causing band-merging transitions for succes-
sive 2n and 2n+1 periods and that of spectral peaks at the corresponding
parameter values µn and µn+1 [2,19]. Following the same procedure as above
we see that the orbits xτ at µ∞(ε) satisfy, in place of (20), the relation

xτ = τ−1/(1−q0)
∣∣∣g(τ1/(1−q0)x) + χετ1/(1−r)GΛ(τ1/(1−q0)x)

∣∣∣ , (23)

where GΛ(x) is the first-order perturbation eigenfunction, and where r =
1 − ln 2/ lnκ � 0.6332. So that use of x0 = 0 yields

xτ = τ−1/(1−q0)
∣∣∣1 + χετ1/(1−r)

∣∣∣ (24)

or
xt = exp2−q0

(−λq0t) [1 + χε expr(λrt)] (25)

where t = τ − 1, λq0 = lnα/ ln 2 (λq0,max of the previous section) and λr =
lnκ/ ln 2.

At each noise level ε there is a ‘crossover’ or ‘relaxation’ time tx = τx − 1
when the fluctuations start destroying the detailed structure imprinted by
the attractor on the orbits with x0 = 0. This time is given by τx = εr−1,
the time when the fluctuation term in the perturbation expression for xτ

becomes ε-independent, i.e.
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xτx
= τ−1/(1−q0)

x |1 + χ| . (26)

Thus, there are two regimes for time evolution at µ∞(ε). When τ < τx the
fluctuations are smaller than the distances between adjacent subsequence
positions of the noiseless orbit at µ∞(0), and the iterate positions in the
presence of noise fall within small non overlapping bands each around the
ε = 0 position for that τ . In this regime the dynamics follows in effect the
same subsequence pattern as in the noiseless case. When τ ∼ τx the width of
the fluctuation-generated band visited at time τx = 2N matches the distance
between two consecutive diameters, dN − dN+1 where N ∼ − ln ε/ lnκ, and
this signals a cut-off in the advance through the position subsequences. At
longer times τ > τx the orbits are unable to stick to the fine period-doubling
structure of the attractor. In this 2nd regime the iterate follows an increas-
ingly chaotic trajectory as bands merge progressively. This is the dynamical
image – observed along the time evolution for the orbits of a single state
µ∞(ε) – of the static bifurcation gap first described in the map space of
position x and control parameter µ [17, 18].

7 Analogy with Glassy Dynamics

We recall the main dynamical properties displayed by supercooled liquids on
approach to glass formation. One is the growth of a plateau and for that
reason a two-step process of relaxation, as presented by the time evolution
of correlations e.g. the intermediate scattering function Fk [20]. This consists
of a primary power-law decay in time t (so-called ‘β’ relaxation) that leads
into the plateau, the duration tx of which diverges also as a power law of the
difference T −Tg as the temperature T decreases to a critical value Tg. After
tx there is a secondary power-law decay (so-called ‘α’ relaxation) that leads
to a conventional equilibrium state [20]. A second characteristic dynamical
property of glasses is the loss of time translation invariance, a characteristic
known as aging [21]. The time decay of relaxation functions and correlations
display a scaling dependence on the ratio t/tw where tw is a waiting time.
A third distinctive property is that the experimentally observed relaxation
behaviour of supercooled liquids is described, via regular heat capacity as-
sumptions [20], by the so-called Adam–Gibbs equation,

tx = A exp(B/TSc) , (27)

where the relaxation time tx can be identified with the viscosity, and the
configurational entropy Sc is related to the number of minima of the fluid’s
potential energy surface (and A and B are constants).

Returning to the map, phase space is sampled at noise level ε by orbits
that visit points within the set of 2N bands of widths ∼ ε, and this takes
place in time in the same way that period doubling and band merging pro-
ceeds in the presence of a bifurcation gap when the control parameter is run
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through the interval 0 ≤ µ ≤ 2. That is, the trajectories starting at x0 = 0
duplicate the number of visited bands at times τ = 2n, n = 1, . . . , N , the
bifurcation gap is reached at τx = 2N , after which the orbits fall within bands
that merge by pairs at times τ = 2N+n, n = 1, . . . , N . The sensitivity to ini-
tial conditions grows as ξt = expq0

(λq0t) (q0 = 1 − ln 2/ lnα < 1) for t < tx,
but for t > tx the fluctuations dominate and ξt grows exponentially as the
trajectory has become chaotic and so one anticipates an exponential ξt (or
q = 1). We interpret this behaviour to be the dynamical system analogue
of the ‘α’ relaxation in supercooled fluids. The plateau duration tx → ∞ as
ε → 0. Additionally, trajectories with initial conditions x0 not belonging to
the attractor exhibit an initial relaxation stretch towards the plateau as the
orbit falls into the attractor. This appears as the analog of the ‘β’ relaxation
in supercooled liquids. See [12].

Next, we determine the entropy of the orbits starting at x0 = 0 as they
enter the bifurcation gap at tx(ε) when the maximum number 2N of bands
allowed by the fluctuations is reached. The entropy Sc(µ∞, 2N ) associated to
the state at µ∞(ε) has the form

Sc(µ∞, 2N ) = 2Nεs , (28)

since each of the 2N bands contributes with an entropy εs where

s = −
∫ 1

−1

p(χ) ln p(χ)dχ , (29)

and where p(χ) is the distribution for the noise random variable. In terms of
tx, given that 2N = 1 + tx and ε = (1 + tx)−1/(1−r), one has

Sc(µ∞, tx)/s = (1 + tx)−r/(1−r) (30)

or, conversely,
tx = (s/Sc)(1−r)/r. (31)

Since tx � εr−1, r − 1 � −0.3668 and (1 − r)/r � 0.5792 then tx → ∞ and
Sc → 0 as ε→ 0, i.e. the relaxation time diverges as the ‘landscape’ entropy
vanishes. We interpret this relationship between tx and the entropy Sc to be
the dynamical system analog of the Adam–Gibbs formula for a supercooled
liquid. See [12]. Notice that (31) is a power law in S−1

c while for structural
glasses it is an exponential in S−1

c [20].
Last, we examine the aging scaling property of the trajectories xt at

µ∞(ε). The case ε = 0 is more readily appraised because this property is
actually built into the position subsequences xτ =

∣∣g(τ)(0)
∣∣, τ = (2l + 1)2n,

l, n = 0, 1, . . .. These subsequences are relevant for the description of trajec-
tories that are ‘detained’ at a given attractor position for a waiting period
of time tw and then ‘released’ to the normal iterative procedure. We chose
the holding positions to be any of those along the top band shown in Fig. 1
for a waiting time tw = 2l + 1, l = 0, 1, . . .. Notice that, as shown in Fig. 1,
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for the x0 = 0 orbit these positions are visited at odd iteration times. The
lower-bound positions for these trajectories are given by those of the subse-
quences at times (2l+1)2n (see Fig. 1). Writing τ as τ = tw + t we have that
t/tw = 2n − 1 and

xt+tw
= g(tw)(0)g(t/tw)(0) (32)

or
xt+tw

= g(tw)(0) expq0
(−λq0t/tw) . (33)

This property is gradually modified when noise is turned on. The presence of
a bifurcation gap limits its range of validity to total times tw + t < tx(ε) and
so progressively disappears as ε is increased. See [12].

8 Concluding Remarks

We have re-examined the dynamical properties at the onset of chaos in the
logistic map and obtained further understanding about their nature. We ex-
hibited links between original developments, such as Feigenbaum’s σ function,
Mori’s q-phase transitions and the noise-induced bifurcation gap, with more
recent advances, such as q-exponential sensitivity to initial conditions [9],
q-generalized Pesin identity [11], and dynamics of glass formation [12]. The
dynamics at the edge of chaos is anomalous because it is an incipient chaotic
attractor with vanishing ordinary Lyapunov coefficient λ1. Chaotic orbits
possess a time irreversible property that stems from mixing in phase space
and loss of memory, but orbits within critical attractors are non-mixing and
have no loss of memory. As a classic illustration of the latter case the attractor
at the onset of chaos presents dynamical properties with self-similar structure
that result in a set of power laws for the sensitivity to initial conditions. We
determined exact analytical expressions for ξt.

Our most striking finding is that the dynamics at the onset of chaos is
constituted by an infinite family of Mori’s q-phase transitions, each associ-
ated to orbits that have common starting and finishing positions located at
specific regions of the attractor. Each of these transitions is related to a dis-
continuity in the σ function of ‘diameter ratios’, and this in turn implies a
q-exponential ξt and a spectrum of q-Lyapunov coefficients for each set of
orbits. The transitions come in pairs with specific conjugate indexes q and
Q = 2 − q, as these correspond to switching starting and finishing orbital
positions. Since the amplitude of the discontinuities in σ diminishes rapidly,
in practical terms there is only need of evaluation for the first few of them.
The dominant discontinuity is associated to the most crowded and sparse re-
gions of the attractor and this alone provides a very reasonable description,
as found in earlier studies [7,9,11,16]. Thus, the special values for the Tsallis
entropic index q in ξt are equal to the special values of the variable q in the
formalism of Mori and colleagues at which the q-phase transitions take place.
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As described, the dynamics of noise-perturbed logistic maps at the chaos
threshold presents the characteristic features of glassy dynamics observed
in supercooled liquids. In particular our results are [12]: (i) The two-step
relaxation that takes place when ε→ 0 is obtained in terms of the bifurcation
gap properties, specifically, the plateau duration tx is given by a power law in
the noise amplitude ε. (ii) The map analogue of the Adam–Gibbs law is given
also as a power-law relation between tx(ε) and the entropy Sc(ε) associated
to the noise widening of chaotic bands. (iii) The trajectories at µ∞(ε→ 0) are
shown to obey a scaling property, characteristic of aging in glassy dynamics,
of the form xt+tw

= h(tw)h( t/tw) where tw is a waiting time.
The limit of vanishing noise amplitude ε→ 0 (the counterpart of the limit

T − Tg → 0 in the supercooled liquid) brings about loss of ergodicity. This
nonergodic state with λ1 = 0 corresponds to the limiting state, ε→ 0, tx →
∞, for a family of small ε states with glassy properties, which are expressed for
t < tx via the q-exponentials of the Tsallis formalism. It has been suggested
on several occasions [22,23] that the setting in which nonextensive statistics
appears to come out is linked to the prevalence of nonuniform convergence,
such as that involving the thermodynamic N → ∞ and the infinitely large
time t→ ∞ limits. Here a similar situation happens, that is, if ε→ 0 is taken
before t→ ∞ a nonergodic orbit restrained to the Feigenbaum attractor and
with fully-developed glassy properties is obtained, whereas if t→ ∞ is taken
before ε→ 0 a chaotic orbit with q = 1 would be observed.
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1 Introduction

Chaotic systems occur in nature everywhere. Examples are: the turbulent
flow of gases and liquids, e.g. when pouring milk into a cup of coffee, in
the bath tub, in hurricanes, or in the formation of galaxies. Chaos occurs
in biology in the dynamics of populations and species. It occurs in the rate
of heart beats, in attacks of epilepsy, and in the brain. It occurs also in
chemical reactions. Most of the dynamics occurring in nature is chaotic. The
occurrence of non-chaotic systems in nature is more of an exception. The
mathematical description of chaos has reached a mature state over the last
decade. The tools being used are classical phase space, Lyapunov exponents,
Poincaré sections, Kolmogorov–Sinai entropy and others.

There is also chaos in the quantum systems [1–3]. People have investi-
gated in quantum physics the analogues of classically chaotic systems. For
example, a stadium-shaped billiard is classically chaotic. The corresponding
quantum system is a system of ultra-cold atoms bouncing against walls of
stadium shape, being created by interaction of the atoms with laser beams.
Quantum chaos has been found to play an important role in dynamical tun-
nelling [4, 5]. The fingerprints of chaos in quantum systems and the mathe-
matical tools of its description are quite different from those used in classical
chaos. The necessity for a different treatment is due to the nature of quantum
mechanics: There is no proper phase space in quantum systems – Heisenberg’s
uncertainty principle forbids that a point in phase space (uncertainty zero in
position and momentum) exists. Heisenberg’s uncertainty relation is a direct
consequence of quantum mechanical fluctuations. A common approach to de-
scribe quantum chaos is random matrix theory and the use of energy level
spacing distributions [3]. A fundamental conjecture by Bohigas, Giannoni and
Schmit [6] postulates that the energy level spacing distributions possesses a
dominant part – which depends on the particular system – and a sublead-
ing universal part – independent of the particular system. The universal part
gives a level spacing distribution of Wignerian type, if the corresponding clas-
sical system is fully chaotic. Such level spacing distribution can be generated
also by random matrices of a certain symmetry class. The conjecture has not
been rigorously proven yet, but has been verified and found to be valid in
almost all cases.
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This approach is successful and very popular. However, it has some short-
comings: First, the conjecture by Bohigas et al. holds strictly only in the case
of a fully chaotic system, while in nature most systems are only partly chaotic,
i.e. so-called mixed systems where its classical counterpart has coexistence of
regular and chaotic phase space. In such cases the quantum system yields a
level spacing distribution, which is neither Wignerian nor Poissonian (where
the latter corresponds to a completely regular system). There is no math-
ematical prediction of the functional form of such distribution. However, a
number of interpolations between the Poisson and Wigner distribution have
been proposed [7–11]. Second, we may ask: How about the comparison of the
classical with the quantum system? And what is the quantitative degree of
chaos? How can we answer this when the instruments used to measure chaos
are quite different for both systems?

Starting from this perspective and having in mind the goal to compare
classical with quantum chaos, one may try the following strategy: Find a uni-
form description of chaotic phenomena, valid for both, classical and quantum
systems. In more detail: Starting from nonlinear dynamics and phase space in
classical systems, one may look for a suitable quantum analogue phase space.
Starting from random matrix theory and energy level spacing distributions
of quantum systems, one may seek a random matrix description and a level
spacing distribution of suitable dynamical objects in classical physics. In the
following we shall discuss some progress recently made in this direction. Using
some of those results, we shall compare for a particular system the chaotic
behaviour of the quantum system with the classical system. The numerical
analysis shows that the quantum system is globally less chaotic than the
classical system. We believe that such finding is not limited to the particular
system. In particular, we want to understand the underlying reason for such
behaviour.

2 Cases Where Quantum Chaos Was Found
to Be Weaker

First, Casetti et al. [12] considered the N -component Φ4 theory in the pres-
ence of an external field and in the limit of large N . They used mean field
theory and observed a strong suppression of chaos in the quantum system,
due to quantum corrections causing the system to move away from a hy-
perbolic fixed point responsible for classical chaos. Second, Matinyan and
Müller [13] studied another field theoretic model which is classically chaotic,
namely massless scalar electrodynamics. They investigated the corresponding
quantum field theory using effective field theory and loop expansion. They
noticed that quantum corrections increase the threshold for chaos due to
a modification of the ground state of the system. A third example is the
kicked rotor which is a classically chaotic system in 1-D. Schwengelbeck and
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Fig. 1. Volume of chaotic phase space over total phase space versus energy. Com-
parison of results from classical action (dotted line) with quantum action (full line)

Faisal [14] considered the corresponding quantum system using Bohm’s in-
terpretation of quantum mechanics to introduce trajectories and a quantum
equivalent phase space. They found that the Kolmogorov–Sinai entropy goes
to zero in the quantum system, i.e. it is non-chaotic. This approach has also
been applied to study chaos in anisotropic harmonic oscillators [15], coupled
anharmonic oscillators [16] and the hydrogen atom in an external electromag-
netic field [17]. Finally, Caron et al. [18] considered the anharmonic oscillator
in 2-D, which is classically a mixed chaotic system. Using the concept of the
quantum action functional, a quantum analogue phase space has been con-
structed. As a result, the phase space portrait of the quantum system was
found to be slightly but globally less chaotic for all energies (see Fig. 1).
Because the quantum action has been constructed from the classical action
by taking into account quantum fluctuations [19–25], hence the softening
of chaos in the quantum system must be due to quantum fluctuations. We
suspect that such softening effect may not solely show up in chaos. Indeed,

looking at a double-well potential V (x) = λ
(
x2 − 1

8λ

)2

in the context of
tunnelling, we observe that quantum effects cause the quantum potential to
be much “weaker” than the classical potential (see Fig. 2), i.e. the poten-
tial wells are less pronounced and the potential barrier is much lower for the
quantum potential (note that the quantum potential has a triple-well shape).
The shape of the potential for tunnelling translates into the shape of the in-
stantons. Thus it comes as no surprise that the instanton of the quantum
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Fig. 2. Comparison of classical potential and quantum potential (multiplied by a
scale factor 1.7331) for quartic coupling λ = 1/32. Also shown is the ground state
wave function and two lowest energy levels

action (actually a double-instanton) is softer than the classical instanton (see
Fig. 3).

3 Uniform Description of Chaos

Let us recall that the conjecture by Bohigas et al. is about random matrix
theory and energy level spacing distributions to describe chaos in quantum
systems, while chaos in classical systems is conventionally described in terms
of phase space. That is, the tools to describe chaos in classical and quan-
tum physics are different. For the purpose to better understand the physical
content of this conjecture or eventually to find a mathematical proof, it is
highly desirable to use the same language, respectively, tools in quantum
physics as in classical physics. This can be viewed in two ways: Either one
adopts the point of view that chaos should be analysed in terms of phase
space. Then a uniform description is achieved by use of classical phase space
in classical physics and the quantum analogue phase space in quantum sys-
tems. How about the point of view that chaos should be analysed in terms
of random matrix theory and level spacing distributions? In the following we
propose how to construct such a level spacing distribution, which will play
the same role in classical physics as the energy level spacing distribution in
the quantum system.
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Fig. 3. Comparison of classical instanton with instanton from the quantum action

One may immediately object that the energy level spacing distribution in
quantum physics is due to the fact that one considers a system of bound states
(with a “confining” potential), which due to the rules of quantum mechanics
gives a discrete spectrum. The discreteness of the spectrum is a quantum
effect, i.e., a physical effect. Having in mind to construct a counterpart in
classical physics, one may object that classical physics is continuous. There
is no discreteness inherent in classical physics. If any discreteness occurs it will
be due to some (mathematical) approximation. Hence, how can a level spacing
distribution derived from a classical function be discrete and physical? First
we want to propose a function and show how to construct a meaningful level
spacing distribution. Afterwards, we shall try to answer the last question.

We would like to emphasize two properties: First, the level spacing dis-
tribution of the quantum system – in the case of a classically fully chaotic
system – corresponds to a Wigner distribution. The type of Wigner distrib-
ution is determined by the symmetry of the Hamiltonian. E.g., there is the
Gaussian orthogonal ensemble (GOE), the unitary ensemble and the symplec-
tic ensemble. Thus, we need a function which carries the same symmetries. A
function convenient for this purpose is the classical action. Another property
to be emphasized is locality. Let us recall that the level spacing distribution,
e.g. the GOE distribution, is invariant under orthogonal transformations. Be-
cause an orthogonal transformation maps any orthogonal basis of states onto
another orthogonal basis, the level spacing distribution is essentially inde-
pendent of the particular choice of the basis. That means, we may choose
a basis that is quasi-local, i.e., built from square integrable functions which
are identically zero everywhere except in a small interval where they are
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non zero and constant. Those box functions are almost local. The advantage
of locality is the fact that symmetries of the Hamiltonian often have to do
with transformations in position space, and locality facilitates the analysis of
such symmetries. Why do we need to bother about symmetries? Because the
energy level spacing distribution is meaningful only (and gives the Wigner
distribution for a chaotic system, respectively a Poissonian distribution for
an integrable system) if the energy levels have all the same quantum numbers
(except for the quantum number of energy). For example, for the spectrum
of the hydrogen atom, one should take the bound states all with the same
angular momentum quantum numbers, e.g., l = m = 0.

3.1 Action Matrix

We consider a system defined by a Lagrange function L(q, q̇, t). Let S denote
the corresponding action,

S[q(t)] =
∫ T

0

dt L(q, q̇, t) . (1)

Let qtraj denote the trajectory, i.e. the solution of the Euler–Lagrange equa-
tion of motion. Such trajectory is a function, which makes the action func-
tional stationary. Each trajectory is specified by indicating the initial and
final boundary points, i.e., q(t = 0) = qin and q(t = T ) = qfi. We as-
sume that those boundary points are taken from some finite set of nodes,
qin, qfi ∈ {q1, . . . , qN}. Thus with each pair of boundary points, (qk, ql) we
associate a trajectory qtraj

kl (t). Then we introduce an action matrix Σ, where
the matrix element Σkl corresponds to the value of the action S evaluated
along the trajectory qtraj

kl (t),

Σkl = S[qtraj
kl (t)] . (2)

All matrix elements Σkl are real. They are also symmetric, Σkl = Σlk. Thus
the action matrix Σ is a Hermitian N × N matrix. Consequently, Σ has a
discrete spectrum of action eigenvalues, which are all real,

σ(Σ) = {σ1, . . . , σN} . (3)

3.2 Symmetry

For the purpose to compute a level spacing distribution from the action eigen-
values, one must first address the issue of symmetry. Let us consider for ex-
ample the harmonic oscillator in 2-D. We may take the coordinates qk to be
located on the nodes of a regular grid (reaching from −Λ to +Λ on the x and
y axis), with a spacing ∆x = ∆y = a = const. For example, the action of
the harmonic oscillator, with the classical trajectory going from xa to xb in
time T is given by
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Σa,b =
mω

2 sin(ωT )
[
(x2

a + x2
b) cos(ωT ) − 2xa · xb

]
. (4)

This function is invariant under rotations. When choosing the coordinates qk
to be located on the regular grid, the continuous symmetry of rotation will
become a discrete symmetry of finite rotations (a group). We have to find
the irreducible representations of such group and sort the action eigenvalues
according to those irreducible representations (this can be done by inspect-
ing the properties of the corresponding eigenvector). Then one has to select
a particular representation and retain a subset of eigenvalues in that repre-
sentation. The action level spacing distribution can then be obtained from
the action eigenvalues in such subset.

This procedure is feasible. However, it has two disadvantages. First, find-
ing the irreducible representations and classifying the eigenvectors accord-
ingly is laborious. More importantly, the fact that one has to work with a
subset of eigenvalues only and not the whole ensemble of eigenvalues means
a drastic reduction of the size of the statistical ensemble. In other words, the
statistics of the resulting level spacing distribution will deteriorate.

For those reasons it would be highly desirable to avoid the above strategy.
This is indeed possible by using the following trick. One can camouflage the
symmetry by choosing the coordinates off the nodes of the regular grid. That
means, for example to define new coordinates as follows,

qdeform
k = qk + εk , (5)

where εk denotes a randomly chosen small deformation (in angle and length).
In this way the nodes are irregularly distributed. Consequently, the discrete
symmetry of the action matrix Σkl disappears when replacing it by the “de-
formed” action matrix,

Σdeform
kl = action evaluated along the classical trajectory

from node qdeform
k to node qdeform

l . (6)

In doing so we avoid a laborious symmetry analysis and secondly shall have
a better statistics!

3.3 Action Level Spacing Distribution

Now we want to construct a level spacing distribution of action levels. We
proceed in analogy to random matrix theory and the method of constructing
an energy level spacing distribution. For an overview on how to compute level
spacing distributions see [26]. One has to separate the dominant system de-
pendent part from the subleading universal part which describes the properly
normalized fluctuations. Because we are here interested only in the fluctu-
ation part, we suppress the leading part. One should note that this means
to discard all physical information which depends on the particular system.
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For example thermodynamical functions can not be computed from the sub-
leading fluctuating part. The strategy to obtain the subleading part is called
unfolding. One constructs a fit to the original spectrum and multiplies the
spectrum such that on average the mean spacing distribution becomes unity.
Also the integrated level spacing distribution will be normalized to unity.

We have applied this to simple integrable systems in 1-D. For integrable
systems one would expect a Poissonian distribution for the action level spac-
ing distribution. Preliminary results are compatible with a Poissonian distri-
bution. The following remarks are in order. The first numerical results for
integrable systems have to be repeated with precision and analysed carefully.
Second, one wants to see what happens in chaotic systems. Possibly such
strategy applied to a fully chaotic system will result in a Wignerian action
level spacing distribution. Finding an answer will be computationally much
more involved, simply because the action functions for the integrable systems
considered above are analytically known, while for a chaotic system (i.e. non-
integrable) this needs to be calculated numerically. Moreover, the numerical
precision required needs to be sufficient to resolve small fluctuations. In the
statistical sense, one is interested in a sample of large size. But that means
that after unfolding the fluctuations will become small and hence require a
high numerical precision for its resolution. Presently, numerical studies of
such question are under way.

Let us get back to the question posed at the beginning of Sect. 3: How can
a level spacing distribution derived from a classical function be discrete and
physical? In our opinion, the answer lies in the fact that the level spacing
distribution is universal, that is, it does not depend, for example, on the
parameters of the discrete grid. Different grids give the same result. This has
been verified numerically. It also should not depend on the deformation εk
(as long it is not too close to zero and the discrete symmetry is restored).
Also this has been verified numerically and found to be satisfied. Thus one
could in principle go with the volume of the lattice V = (2Λ)D to infinity and
with the lattice spacing ∆x = ∆y to zero. The result should not change, but
one would have reached the continuum limit. The discreteness would then
disappear.

4 Renormalisation Flow of Parameters
of the Quantum Action

In Sect. 2 we have seen examples for the observation that quantum chaos
seems to be weaker than chaos in the corresponding classical system. Of
course it would be interesting to explore a much wider class of systems in
order to see if such observation holds more generally. Here we want to pick
one of the above examples, namely the chaotic anharmonic oscillator in 2-D
and try to understand why quantum chaos is weaker than classical chaos.
The classical action is given
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S =
∫ T

0

dt
1

2m
(ẋ2 + ẏ2) − V (x, y) ,

V =
mω2

2
(x2 + y2) + λx2y2 = v0 + v2(x2 + y2) + v22x2y2 . (7)

For λ = 0 the system is reduced to the standard harmonic oscillator, which
is integrable. The chaoticity is introduced and controlled by the parameter
λ. Thus small λ causes mild chaos, while large λ makes the system strongly
chaotic. The quantum action has been postulated to be of the functional form
like the classical action, i.e. the kinetic term of the quantum action may differ
in the value of the mass, and the potential of the quantum action should also
be local, depend only on coordinates, but may have a different functional
form. Here let us consider an Ansatz of the following form

S̃ =
∫ T

0

dt
1

2m̃
(ẋ2 + ẏ2) − Ṽ (x, y) ,

Ṽ = ṽ0 + ṽ2(x2 + y2) + ṽ22x2y2 + higher order polynomials . (8)

As a quantitative measure of the strength of chaos we take the strength of
the parameters of the action, in particular, the parameter λ. The parameters
of the quantum action can be interpreted as a “renormalisation effect” of
the parameters of the classical action. The calculation of those parameters
has to be done numerically, following the definition of the quantum action
to be a functional which fits the transition amplitudes [19]. However, in a
certain limit, the quantum action is known to be an exact representation of
the transition amplitudes and moreover the action is related via differential
equations to the classical action [22]. This limiting case is using imaginary
time and let time go to infinity (Feynman–Kac limit). Because we want to
obtain an analytical result, we shall use perturbation theory. This means that
we consider the regime of small λ = v22.

In order to simplify the matter, let us start by considering the system in
1-D. Thus we have the potential

V (x) =
1
2
mω2x2 + λx4 ≡ v2x2 + v4x4 . (9)

We assume λ to be small,
λΛsc

v2
� 1 , (10)

where Λsc introduces a physical length scale, e.g. the analogue of the Bohr
radius. According to [23] the following relation between the classical and the
quantum potential holds,

2m(V (x) − Egr) = 2m̃(Ṽ (x) − ṽ0) − �

2

d
dx2m̃(Ṽ (x) − ṽ0)√

2m̃(Ṽ (x) − ṽ0)
sgn(x) . (11)
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We define the functions

W (x) = 2m(V (x) − Egr) , (12)

U(x) = 2m̃(Ṽ (x) − ṽ0) , (13)

where Egr denotes the ground state energy of the lowest eigenstate of the
quantum mechanical system (obtained from the Schrödinger equation). Due
to (9), the function W (x) must have the form

W (x) = w0 + w2x
2 + w4x

4 . (14)

This function is symmetric with respect to parity. Then the function U(x)
representing the quantum potential, will be parity symmetric too. We make
an Ansatz of the form

U(x) = u0 + u2x
2 + u4x

4 + u6x
6 + · · · (15)

The assumption that the expansion parameter λ is small is now expressed by

w4 ≡ w(0)
4 ε , ε� 1 (16)

Now using (14) and (15) in combination with (11), we obtain

w0 + w2x
2 + w4x

4 = u2x
2 + u4x

4 + u6x
6 + · · ·

− �

2
2u2 + 4u4x

2 + 6u6x
4 + · · ·√

u2 + u4x2 + u6x4 + · · · for x > 0 . (17)

The smallness of w4 implies that the terms of fourth order and higher in x
occurring in the function U(x) are small compared to the second order, i.e.

u4x
2 + u6x

4 + · · · � u2 . (18)

Now doing a Taylor expansion in the small terms u4x
2 + u6x

4 + · · · allows
to express the r.h.s. of (17) as a polynomial in x. Then comparing terms in
x order by order, we find the following relations

w0 = − �

4
√
u2

3 4u2
2 ,

w2 = u2 − �

4
√
u2

3 6u2u4 ,

w4 = u4 − �

4
√
u2

3 (10u2u6 − 4u2
4) . (19)

Now we try to find the parameters u2 and u4 as solution of those equations.
The first equation gives

u2 = (w0/�)2 . (20)
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On the other hand we have, due to (13),

w0 = −2mEgr . (21)

Due to the anharmonic perturbation the ground state energy is different from
the ground state energy of the harmonic oscillator. However, because of the
smallness of the perturbation, we can express the ground state energy Egr

using perturbation theory as a power series in ε,

Egr = E(0) + εE(1) + ε2E(2) + · · · , (22)

where E(0) = Eosc
gr . Thus from (21) and (22) we obtain

√
u2 = mω + ε

2mE(1)

�
+O(ε2) , (23)

or

u2 = m2ω2 + ε
4m2E(1)

�
+O(ε2)

= w2[1 +
2E(1)

E(0)
ε+O(ε2)] . (24)

Next let us consider (19b). We obtain

u4 = − 2
3�

√
u2(w2 − u2) . (25)

Recalling w2 = m2ω2 and (24), we find

u4 = −2
3
m3ω3

�

E(1)

�ω
ε+O(ε2) . (26)

In (24), (26) we have expressed the parameters of the quantum action in terms
of the parameters of the classical action. However, it remains to compute the
energy E(1). Again we use stationary perturbation theory. The Hamiltonian
is given by, taking into account (14), (16),

H = H(0) + εH(1)

H(0) =
p2

2m
+

1
2
mω2x2

H(1) =
w

(0)
4

2m
x4 . (27)

To first order of perturbation theory in ε the energy E(1) is given by

E(1) = 〈ψosc
gr |w

(0)
4

2m
x4|ψosc

gr 〉 . (28)



366 H. Kröger et al.

which yields the result

E(1) =
3w(0)

4 �
2

8m3ω2
. (29)

Substituting this result into (24), (26) we finally obtain

u2 = w2

[
1 + (

3�

2m3ω3
)w4 +O(ε2)

]
, (30)

and
u4 = −1

4
w4 +O(ε2) . (31)

5 Interpretation

Let us see what happens when we keep the classical parameters fixed, except
for w4, i.e., we keep w(0)

4 fixed and vary ε. Note that w2 > 0 and w4 > 0. We
also have w(0)

4 > 0 and ε > 0. Now we want to study what happens when
ε→ 0. Equation (30) yields

u2 > w2

u2 −→ε→0 w2 . (32)

Likewise, (31) yields

u4 < w4

u4 −→ε→0 w4 −→ε→0 0 . (33)

In other words, in the limit ε → 0 the classical potential approaches the
potential of the harmonic oscillator. The potential of the quantum action
asymptotically approaches the classical potential, hence also the harmonic
oscillator potential. That is, the renormalisation group flow of the parameters
u2(ε), u4(ε) goes to a Gaussian fixed point. Second, for any value of ε the value
the quadratic term of the potential is larger for the quantum potential than
for the classical potential. Third, for any value of ε the value the quartic term
of the potential is smaller for the quantum potential than for the classical
potential. Recall that the quadratic term is the term, which, if it would stand
alone, would make the system integrable. On the other hand, the quartic term
is the term which drives the system away from integrability (and introduces
chaos in 2-D). Thus we find that quantum fluctuations, which are the cause
for the differences ∆2 = w2 − u2 and ∆4 = w4 − u4 to be nonzero, have the
tendency to drive the quantum system closer to the regime of integrability.

Now the above perturbative calculations were performed in 1-D. Chaos
in time-independent Hamilton systems exists only for D ≥ 2. A similar, but
more tedious calculation can be performed in 2-D. It confirms the above
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result that quantum fluctuations drive the system closer to the regime of
integrability and away from the regime of chaos.

Of course such perturbative calculations are meaningful only in a neigh-
bourhood of the Gaussian fixed point. It would be desirable to extend the
calculations to a larger regime. However going to higher order of perturba-
tion theory would make those calculation much more tedious. Nevertheless
the perturbative result gives some insight into the dynamical consequences
of quantum fluctuations.
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In this chapter it is shown that the elementary tools of Riemannian differen-
tial geometry can be successfully used to explain the origin of Hamiltonian
chaos beyond the usual picture of homoclinic intersections. The stability of
dynamics is related to the curvature of the configuration space manifold,
this is possible because the natural motion of standard Hamiltonian systems
(i.e. with a quadratic kinetic energy term) can be seen as geodesics of the
configuration space manifold equipped with the standard Jacobi metric. The
stability properties of such manifold can be investigated through the Jacobi
equation for geodesic spread and a geometric indicator of chaos similar to
the largest Lyapunov exponent can be used. The case of a general two de-
gree of freedom system is considered. The method is applied to the restricted
three-body problem and the results of the Jacobi equation is compared with
the detailed qualitative information provided by the approximate Lyapunov
exponents. Complete agreement is found. The configuration space manifold
associated with the Hamiltonian studied here is everywhere of positive cur-
vature. The fluctuations of curvature of manifold along the geodesics yield
parametric instability of the trajectories and thus chaos. Chaotic flows of
physics have nothing to do with Anosov flows defined on negative curvature
manifolds.

1 Introduction

The differential geometric approach of Hamiltonian chaos has recently been
proposed and successfully applied to the study of chaos in Hamiltonian sys-
tems [1–3]. This method provides a geometric explanation of Hamiltonian
chaos and an effective method to quantify it [4]. The starting point of this
method is that trajectories of a standard Newtonian system can be viewed as
the geodesics of a Riemannian manifold endowed with a suitable metric. The
instability properties of geodesics, and therefore of corresponding dynamics
are shown to be related to the curvature properties of the underlying man-
ifold through the Jacobi equation for the evolution of geodesic separation.
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By combining analytic computations with numerical simulations, we have a
powerful tool for the study of chaos in Hamiltonian systems.

In the present work, we verify that the geometry of the configuration space
appears to enfold all the information of a nonlinear Hamiltonian system for
what concerns regular and chaotic dynamics.
We show that the Riemannian approach is effective for systems with two
degrees of freedom. For such a system, we can solve the Jacobi equation and
we show that the solution of Jacobi equation brings all those detailed infor-
mation about order and chaos that can be obtained by analyzing Lyapunov
exponent at different energies.

In Sect. 2, we recall the basic definitions and concepts of the geometric
formulation of Newtonian mechanics, including the stability criteria and the
Jacobi equation for a generic two-dimensional system. In Sect. 3, we apply the
theory to the restricted three-body problem. We show that geometry contains
all the information about order and chaos and is in complete agreement with
the results of the largest Lyapunov exponent.

2 The Relationship Between Mechanics
and Riemannian Geometry

We aim at considering Newtonian mechanics from a geometrical point of
view. More precisely, the trajectories of a Hamiltonian flow are regarded as
geodesics of a Riemannian manifold, equipped with a suitable metric, so that
weak or strong chaotic instability can be related with geometrical properties
of the underlying manifold.

The natural geometrical setting of Hamiltonian dynamics is within the
framework of symplectic or, more generally, Poisson geometry. However, since
we are mostly interested in the study of Hamiltonian systems that have a
standard kinetic part, also Riemannian geometry can be used. The adva-
ntage of using a Riemannian manifold relies on the possibility of measuring
the distances between two points, thus the separation between two differ-
ent trajectories. It is well known how Newtonian mechanics can be rephrased
in the Riemannian geometrical language.

Different choices are possible for the ambient space (configuration space,
configuration space-time, phase space); therefore, different metrics can be
used. Besides, for more general problems, when the Riemannian description is
not possible, still a geometrical approach in the same spirit can be developed
with the aid of Finsler spaces.

In the following, as the first step to use the geometry, we use the config-
uration space manifold equipped with a Riemannian metric.

The relationship between dynamics and Riemannian geometry is estab-
lished through variational formulation of both geodesics and Newtonian dy-
namics. The geodesics of a Riemannian manifold are defined as the extrema
of the arc length functional:
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δ

∫ B

A

ds = 0 . (1)

On the other hand, the trajectories, in configuration space of a mechanical
system according to the Maupertuis least action principle are given by the
extrema of the action integral [6]:

δ

∫
γ(t)

2T dt = 0 , (2)

where T is the kinetic energy and γ(t) are all the isoenergetic curves joining
two points q0 and q1.

Comparing (1) and (2) and setting ds = 2T dt, it is seen that the trajec-
tories of a mechanical system can be viewed as geodesics of the configuration
space manifold M equipped with a suitable metric which can be obtained
through:

gij = 2aij(E − V (x)) . (3)

In local coordinates, the geodesic equations of a Riemannian manifold are
given by [7]:

d2xi

ds2
+ Γ i

jk

dxj

ds
dxk

ds
= 0 , (4)

where s is the proper time and Γ i
jk are the Christoffel coefficients and xi’s

are the configuration space coordinates.
Equation (4) are also the equations of motion that can be obtained from

the Lagrange equations. In local coordinates the components of the Riemann
tensor are given by:

Rl
kij = ∂iΓ

l
kj − ∂jΓ

l
ki + Γm

kjΓ
l
mi − Γm

kiΓ
l
mj . (5)

The trace Rkl = Ri
kil is the Ricci tensor and the scalar R = gklRkl is the

scalar curvature of M , which is called Ricci scalar.
It has been shown that from the curvature properties of a Riemannian

manifold some relevant consequences about the stability properties of its
geodesics can be derived [1,2,7,8]. This is the central point that this work is
focussed on.

Now consider some region of the manifold through whose points geodes-
ics can be drawn in various directions. Concentrate on one geodesic and its
neighboring geodesics. Let s designate the parameter that locates points on
the geodesic and τ is a continuous parameter that labels different geodesics.
In order to measure the degree of sensitivity to initial conditions, we consider
a congruence of geodesics γ(τ, s) and a separation vector J , which is Lie
dragged by the congruence (as is shown in Fig. 1) [1]. Now choose any given
geodesic γ(τ0, s) as the “reference geodesic” and define the parameterization
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Fig. 1. bundle of geodesics and Jacobi vector, base vectors also are represented

so that γ(τ0, s) = γ(τ = 0, s). then the magnitude of the separation vector
J(s) is defined by:

J(s) =
[
∂γ(τ, s)
∂τ

]
τ=0

. (6)

Using finite difference in τ, s, as is shown in Fig. 2, we can see that J(s) can
be interpreted as the distance between two nearby geodesics. Two geodesic
coordinates e1,e2 which we will use as the base vectors of the decomposition
of J are shown in Fig. 1.

Fig. 2. The Jacobi can be used to measure the separation between nearby geodesics

By taking the second variation of J we can obtain the Jacobi equation
[1, 7]:

∇
ds

∇
ds

J(s) +R(J ,v)v = 0 , (7)

where v = γ̇ and ∇/ds = ∇γ̇ is the covariant derivative along the geodesic.
The Jacobi equation (7) gives the dynamics of the geodesics with respect

to the “reference geodesic”. Divergence of J explain the instability of the
geodesic and so the relevant Hamiltonian system [1,8]. The instability of the
system can be studied by means of this equation. It shows the relationship
between geodesic instability and chaos.
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For a general two degree of freedom system, we can assume the following
decomposition for J :

J(s) =
2∑

i=1

ξi(s)e(i)(s) , (8)

where
{
e(1),e(2)

}
is an orthonormal system of parallely transported vectors.

In this reference we have [1, 8]:

∇s∇sJ =
2∑

i=1

d2ξi
ds2

e(i)(s) . (9)

Moreover,

R(v,J)v =
∑

j

〈R(v,J)v,e(i)〉e(i) (10)

=
∑

j

〈Rv,e(i))v,e(i)〉ξie(i) .

So (7) can finally be written as:

d2ξi
ds2

+
∑

i

Qijξj = 0 i, j = 1, 2 (11)

with Qij = 〈R(v,e(i))v,e(i)〉.
We can choose our basis

{
e(1),e(2)

}
such that e(1)⊥v,e(2) ‖v so that

gije
i
(α)e

j
(β) = δαβ [8]; then since v is parallely transported by definition of the

geodesic, e(2) is parallely transported too, and if e(1)⊥e(1) then e(2) is also
parallely transported. With respect to a local(static) reference frame they
can be written as:

e(1) =
{
−dx2

ds
,
dx1

ds

}
, (12a)

e(2) =
{

dx1

ds
,
dx2

ds

}
. (12b)

They are the same as the base vectors of Fig. 1.
Now (11) becomes:

d2ξ1

ds2
+Q11ξ

1 +Q12ξ
2 = 0 , (13a)

d2ξ2

ds2
+Q22ξ

2 +Q21ξ
1 = 0 . (13b)

The components of the Riemann tensor are derived from (5). In two di-
mensions it can be shown that the only nonvanishing component of R is R1212

and for the Jacobi metric it is equal to [1, 8]:



374 H. Safaai and M.H.G. Saadat

R1212 =
∆V (x)

2
+

(∇V (x))2

2W
, (14)

where W = E − V (x) and ∆, ∇ are the Euclidean Laplacian and gradient,
respectively. We used MAPLE to calculate the Riemann tensor components
analytically.

Combining (14) and (12) we obtain Q12 = Q21 = Q22 = 0 and

Q11 =
1
W 2

[
∆V (x)

2
+

(∇V (x))2

2W

]
. (15)

So (13a) and (13b) become:

d2ξ1

ds2
+

1
2
Rξ1 = 0 , (16a)

d2ξ2

ds2
= 0 , (16b)

where R denotes the scalar curvature of configuration space manifold.
It is obvious that a negative curvature yields an unstable solution of (16a),

(16b). This is the case of abstract geodesic flows of ergodic theory, which
are defined on hyperbolic manifolds (more precisely, they are defined on the
unitary tangent bundle of manifolds of everywhere negative curvature). How-
ever, for many systems like the restricted three-body problem, the curvature
is mainly positive and the way to make the solution unstable is the rapid
change of the curvature along the geodesic, which brings about parametric
resonance and chaos [9]. Hyperbolicity is not the only way to make unstable
solutions of (16a). If R is not constant, the loss of stability of the geodesics
can also be introduced by parametric instability. Let us briefly recall what
parametric instability is. If the parameters of a dynamical system vary pe-
riodically in time, then a stable solution can be made unstable even if it is
stable for each value of the parameters; this is the case of a harmonic os-
cillator whose frequency is periodically modulated in time with a suitable
period [9, 10]. It has been shown in several papers that this is the dominant
mechanism of instability in several physical geodesic flows on high dimen-
sional manifolds. In Sect. 3, we show that this is also the case for a typical
two degrees of freedom system.

Passing from the proper time s to the physical time t in (16a), (16b) we
find:

d2ξ1

dt2
− 1
W

dW
dt

dξ1

dt
+ 2R1212ξ

1 = 0 , (17a)

d2ξ2

dt2
= 0 . (17b)

From (17a), (17b) we see that the only component of the geodesic separation
vector which conveys information about the stability behaviour of nearby
geodesics is the transverse component ξ1 .
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Equations (17a), (17b) describe without approximation the stability prop-
erties of the dynamics of two-degree of freedom Hamiltonian systems.

To solve the Jacobi equation, we can use a new function:

Y (t) = ξ1(t) exp

[
−1

2

∫
dt
Ẇ

W

]
≡ ξ1(t)√

W
. (18)

Inserting (18) into (17a) we obtain the Hill equation:

d2Y

dt2
+Q(t)Y = 0 , (19)

where,

Q(t) =
[
∆V +

(∇V )2

W

]
− 1

4

[
Ẇ

W

]2

+
1
2

d
dt

[
Ẇ

W

]
(20)

= 2R1212 − 1
4

[
Ẇ

W

]2

+
1
2

d
dt

[
Ẇ

W

]
.

From (18) we have ξ1(t) =
√
WY (t), the prefactor

√
W has only bounded

oscillations and ξ1 has the same stable or unstable behaviour as Y (t).
The stability (19) which is derived from the Jacobi equation is our main

tool to observe the chaos and instability in a two-dimensional dynamical
system (restricted three-body problem).

Whenever Q(t) in (19) has a nonvanishing stochastic component the solu-
tion Y (t) has an exponentially growing envelope whose growth rate provides
a measure of the degree of chaoticity. This rate of growth is similar to Lya-
punov exponent and can be used as an indicator of chaos that is derived from
geometry. It is defined as [13]:

Λ = lim
t→∞ ln

Y 2(t) + Ẏ 2(t)
Y 2(0) + Ẏ 2(0)

. (21)

This quantity is a measure of the divergence of the nearby geodesics. It is
similar to the largest Lyapunov exponent, but to produce this quantity, it is
not necessary to linearize the equations of motion and it can be derived from
an exact (19). We computed this quantity by solving (19) and in the next
section we report it for each case and compare it with the classical Lyapunov
exponent.

At this point one can ask what is the difference with respect to the com-
mon definition of chaos, because here apparently the same definition is given.
First, it is necessary to distinguish between the usual explanation of the ori-
gin of chaos and the operational method to detect it numerically (Lyapunov
exponents). Dating back to Poincaré, Melnikov, and others, the origin of
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chaos is attributed to homoclinic intersections of perturbed separatrices near
hyperbolic points. This is a perturbative picture. It requires the use of action–
angle variables and applies to quasi-integrable Hamiltonians. Moreover, for
typical Hamiltonians of physical interest, the explicit change of coordinates
to action–angle ones, in general, is a lengthy work that quickly becomes in-
tractable with the increase of the dimension of the system. In practice and
particularly at large dimensions, homoclinic intersections mainly gives a qual-
itative picture of the source of chaos. The main idea of this work is to show
the tight relationship between local instability of the trajectories and local
geometry (curvature) of the underlying manifold. The link between local in-
stability and chaos is made by the compactness of the manifold where the
trajectories live. The geometrical approach makes use of the natural coordi-
nates (positions and velocities) and applies at any energy and at any strength
of the nonintegrable part of the Hamiltonian, and allows a unified treatment
of both the explanation of the origin of chaos and the method to measure its
intensity.

3 Numerical Computation for Restricted
Three-Body Problem

In order to understand the capabilities of the Riemannian approach to re-
trieve the information about order and chaos, we apply the previous analysis
to a two-degree of freedom system. Therefore, by studying the stability of the
solutions of (19) along the trajectories originating from regular and chaotic
regions, it is possible to obtain qualitative information about order and chaos.
In addition, we evaluate the both largest Lyapunov exponent and geomet-
ric indicator of chaos (21) approximately and make quantitative comparison
between geometric analysis and the traditional one.

One of the simplest systems that can exhibit a chaotic behaviour is the
restricted three-body problem, a schematic of which is presented in Fig. 3.

Fig. 3. Restricted three-body system
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In this system we have a large body with mass M , a small body with
mass mj and a very small body with mass me which is much smaller than
M and mj . We assume that me is so small that it cannot influence mj and
so mj have a regular planar motion around M . The motion of the smallest
body get influence from both M and mj and can have a regular or chaotic
motion.

From now on we choose physical units in which we have G = 4π2 and
M = 1 for convenience. In these units, all the masses are actually expressed
as fractions of M .

The Hamiltonian of the system in these units can be written in the form:

H =
1
2
meẋ

2 +
1
2
meẏ

2 +
1
2
mj(r2jω

2
j ) − 4π2me

r
− 4π2mj

rj
− 4π2memj

r12
,

T =
1
2
meẋ

2 +
1
2
meẏ

2 , (22)

V =
1
2
mjr

2
jω

2
j − 4π2me

r
− 4π2mj

rj
− 4π2memj

r12
.

Equations of motion for me can be derived with the Lagrange-Euler method:

r̈ = −4π2

(
r

r3
+mj

r − rj

|r − rj |3
)
. (23)

We consider a circular motion around M for mj , so the position of mj can
be written in cartesian coordinates as:{

xj = rj cos(ωjt) ,
yj = rj sin(ωjt) ,

(24)

where r(x, y) is the position vector of me and rj(xj , yj) is the position vector
of mj which have a circular motion around M with angular speed ωj . The
biggest mass M is always in the origin. In (23) we do not see M , because
we fix it as a constant. Now we can write the equations of motion for me,
explicitly:⎧⎪⎪⎨⎪⎪⎩

ẍ = −4π2

(
x

(x2+y2)
3
2

+mj
x−rj cos(ωjt)

[(x−rj cos(ωjt))2+(y−rj sin(ωjt))2]
3
2

)
ÿ = −4π2

(
y

(x2+y2)
3
2

+mj
y−rj sin(ωjt)

[(x−rj cos(ωjt))2+(y−rj sin(ωjt))2]
3
2

) (25)

From (3), we can obtain the metric of the ambient manifold:

g11 = 2me(E − V (r, rj)) ,
g12 = g21 = 0 ,
g22 = 4me(E − V (r, rj)) .

(26)

Or explicitly,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g11 =2me

⎛⎜⎝E − 1

2
mjr

2
j ω

2
j +

4π2me√
(x2 + y2)

+
4π2mj

rj

+
4π2mjme√

(x − rj cos(ωjt))2 + (y − rj sin(ωjt))2

⎞⎟⎠ ,

g12 =g21 = 0 ,

g22 =4me

⎛⎜⎝E − 1

2
mjr

2
j ω

2
j +

4π2me√
(x2 + y2)

+
4π2mj

rj

+
4π2mjme√

(x − rj cos(ωjt))2 + (y − rj sin(ωjt))2

⎞⎟⎠ .

(27)

The equations of motion have been integrated numerically by means of
a Hamming modified predictor-corrector algorithm of fourth order, which
is ideal for dynamical models. In order to perform an accurate numerical
integration of the equations of motion, the time step is typically varied and
adjusted in the interval 10−3 − 10−4. With this time step range, the error
∆E/E did not exceed 10−5 − 10−6. Together with the equations of motion
and by means of the same algorithm, we have also integrated the Jacobi
equation in its equivalent form (19) and after computing, we have computed
the geometric indicator of chaos (Λ) with the use of (21). Using the same
algorithm, we obtained the approximate largest Lyapunov exponent (λ) with
the method of [12]. Besides its simplicity, this algorithm has the advantage of
being symplectic, which means that its effect upon the equations of motion is
equivalent to a canonical transformation of variables. This ensures a faithful
numerical representation of a Hamiltonian flow [1].

We fix the following parameters through the computations:⎧⎪⎪⎨⎪⎪⎩
rj = 5.203AU ,
ωj = 2π

11.86 year−1 ,
me = 2.96 × 10−6 ,
mj0 = 317.9me .

(28)

These are exactly the parameters of the (Sun, Earth, Jupiter) system in the
units where Msun = 1. Here, the unit of distance is the Astronomical Unit
and the unit of time is the year, also mj0 is a constant which mj is considered
as some multiple of it.

The only variable is mj . We considered three different values for mj and
solved the equations of motion in each case. we consideredmj = 60mj0 ,mj =
300mj0 ,mj = 450mj0 , with mj0 defined in (28). For each mj we chose the
same initial conditions x0 = 1, y0 = 0, ẋ0 = 0, ẏ0 = 1 for me. We have kept
Y (0) = 10−9 and Ẏ (0) = 0 as initial conditions of the Jacobi equation in all
cases.
Y (t) is proportional to the separation of the two nearby geodesics (trajec-

tories). The divergence of Y (t), in spite of Y (0) being small, reveals sensitive
dependence on initial conditions which is a signature of chaotic motion.

The solution of (19) for mj = 60mj0 is plotted in logarithmic scale in
Fig. 4(a). As it is seen, the envelope of Y (t) appears to be bounded or lin-
early growing for this initial condition. After solving Y (t) we can compute
the geometric indicator of chaos Λ. We see that it is a negative number so
the geodesic flow is stable. In Fig. 4(b) the Lyapunov exponent is obtained
by using a simple method which is explained in [12]. We can see that its
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Lyapunov exponent is negative and it agrees with which we obtained from
the geometric method (Fig. 4(a)) and the geometric indicator of chaos. In
Fig. 4(c) the nonzero component of the Riemann curvature tensor of the
manifold is plotted and we see that it is always positive and fluctuating. the
orbit of the third mass is plotted In Fig. 4(d). We can see that because of
the influence of mj , its orbit deviates from a regular elliptic orbit.

(a) log Y (t) − t, Λ = −0.0152 (b) log β(t) − Nt, λ = −0.0023

(c) R1212 − t (d) Orbit of me

Fig. 4. mj = 60 mj0

The solution of (19) for mj = 300mj0 is plotted in logarithmic scale
in Fig. 5(a). As it is seen, the envelope of Y (t) appears to be bounded or
linearly growing for this case. The geometric indicator of chaos is computed
and it is also a negative number which shows the validity of this argument. In
Fig. 5(b) the Lyapunov exponent is computed. We can see that its Lyapunov
exponent is negative and it agrees with which we obtained from the geometric
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(a) log Y (t) − t, Λ = −0.089 (b) log β(t) − N , λ = −0.017

(c) R1212 − t (d) Orbit of me

Fig. 5. mj = 300 mj0

method. Both the geometric indicator of chaos and Lyapunov exponent are
greater than those of the previous case and it shows that by increasing mj

we can make this system chaotic. In Fig. 5(c) the nonzero component of the
Riemannian curvature tensor of the manifold is plotted and it is obvious that
it is always positive. The orbit of the me is plotted In Fig. 5(d). From this
figure, one can find that this orbit is more irregular than the orbit of the
previous case and the eccentricity of the orbit changes more than that of the
previous case.

As the third example, we did the same steps for the third case with
mj = 450mj0 which we shall see that it is a chaotic case. We solved (19) and
plotted Y (t) in logarithmic scale in Fig. 6(a). In this case, we see that this
function is increasing rapidly and the geometric indicator of chaos is a positive
number. The magnitude of Y (t) after a short time increases 106 times and so
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(a) log Y (t) − t, Λ = 0�186 (b) log β(t) − N , λ = 0�0578

(c) R1212 − t (d) Orbit of me

Fig. 6. mj = 450 mj0

the geodesics which originate from a compact region will diverge and go far
away. Also we computed the Lyapunov exponent in Fig. 6(b). The Lyapunov
exponent also is a positive number and it shows that we have chaotic motion.
This is in agreement with which we obtained by the geometric method and
by solving the Jacobi equation. The nonzero component of the Riemann
curvature tensor is plotted in Fig. 6(c) and we see that it is always positive
and fluctuating. So chaos is generated with the mechanism of parametric
resonance. In Fig. 6(d) the orbit of me is plotted and we can see that it is
more irregular than in the previous cases.

We have just seen that the comparison between the detailed information
given by the geometry (from Y (t) and Λ) reveals a complete qualitative
and quantitative agreement with results obtained from the classical method
(Lyapunov exponents). Here we can speak about the origin of chaos.
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Evaluation of R1212 by using (14), and the scalar curvature R =
2R1212/W

2, shows that both are always positive for the restricted three-
body problem, no matter whether it is computed along a regular or chaotic
orbit. Therefore, in the geodesic flow defined by the restricted three-body
problem, chaos is due to the parametric resonance of the nearby geodesics
induced by fluctuations of the positive curvature. By comparing Figs. 4(c),
5(c) and 5(c) it is obvious that in all three cases the curvature is always
positive and rapidly fluctuating, but the difference between these three cases
is that by increasing mj the amplitude of the fluctuations increases. For ex-
ample the magnitude of the fluctuations in the regular case mj = 60mj0 is
of the order 10−10 but this magnitude for the chaotic case mj = 450mj0 is
of the order 10−3. It increases by the order of 107. So we can conclude that
for occurring parametric resonance and so chaos in a system it is necessary
that not only the curvature fluctuates rapidly but also its amplitude be large
enough. A deep understanding of the parametric resonance can help us to
understand more about the occurrence of chaos in Hamiltonian systems. It
may be possible to study the chaotic criteria of a system with only studying
the behaviour of the curvature of its equivalent Riemannian manifold.

Finally we can summarize the results in a table:

Table 1. Λ and λ in three cases

mj = 60 mj0 mj = 300 mj0 mj = 450 mj0

geometric indicator of chaos (Λ): −0.0152 −0.089 0.1860
largest Lyapunov exponent (λ): −0.0023 −0.017 0.0578

4 Conclusion

In this chapter, we have shown that the geometric description of Hamiltonian
chaos based on Riemannian geometry is in agreement with the standard ap-
proaches (Lyapunov exponents). This has been shown for a two degree of
freedom system (restricted three-body problem) and the results of the sta-
bility (19), which has been derived from the Jacobi equation are computed
and the behaviour of the system (chaotic or regular) specified and compared
with the phenomenological standard methods. Also we used a geometric in-
dicator of chaos (Λ) and it was shown that it can be used for predicting the
behaviour of system like the Lyapunov exponents but it is derived from an
exact equation (not a linearized one as in deriving Lyapunov exponents). A
complete agreement is found. This method can be applied for studying chaos
in any Hamiltonian system in any energy and in any range of the nonlinearity
parameters and so it is very useful to apply this method to real systems like
engineering problems.
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The results reported in this paper are not simply alternatives to the con-
ventional tools to describe chaos, but have a deeper meaning [13]. They pro-
vide an explanation of the origin of Hamiltonian chaos that is an alternative
to the conventional interpretation, which is based on homoclinic intersections.
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1 Introduction

The name Tokamak, an acronym for the Russian expression TOrichnaia
KAmera MAgnitnaia Katushka [1], is given to toroidal chambers in which
plasma particles are confined by a magnetic field which has two basic orthog-
onal components, one acting in the direction of the major curvature of the
torus, the other in the direction of the minor curvature of the torus.

The magnetic field line equations define a Hamiltonian system [3, 4]. In
the ideal i.e. integrable case the helical magnetic field lines lay on constant
pressure surfaces, called magnetic surfaces, having the topology of nested
tori surrounding the magnetic axis. Deviations to the ideal case are always
present in experiments either due to internal factors such as instabilities and
fluctuations or due to external causes such as magnetic imperfections arising
from the poloidal distribution of the toroidal coils. The perturbed systems,
generically non integrable [3] can be studied using the Poincaré map associ-
ated to a given poloidal cross-section. This map is an area-preserving map
which has to be compatible with the toroidal geometry. A typical phase por-
trait of the Poincaré map exhibits a complex structure of regular and chaotic
zones which form a fat fractal [2]. The field line transport properties are de-
termined by the competition between order and chaos which is observable by
varying the parameters of the system.

The localization of the regions of phase-space covered by regular orbits
and the description of the mechanisms for their destruction is important
from both theoretical and practical points of view. From a practical point of
view, the study of magnetic internal transport barriers relates to the more
general study of particle internal transport barriers (ITB) which is of great
importance for nuclear fusion because the particle radial transport is strongly
reduced in their presence and hence the particle confinement time is increased.
For magnetic ITB a reduction of particle transport is expected due to a
reduction of the magnetic field line radial wandering (charge particle guiding
centres follow magnetic field lines). From a mathematical point of view, a
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magnetic internal transport barrier is an invariant set, mainly formed by
regular orbits, separating a core chaotic zone situated near the magnetic axis
of the tokamak, from a peripheral chaotic zone situated near the tokamak
wall. This magnetic ITB cannot be traversed by magnetic field lines, i.e. the
magnetic transport through the ITB is suppressed and all magnetic field lines
passing through the central stochastic zone are confined.

The aim of the chapter is to present recent results on the configuration
of the transport barriers in some realistic models of magnetic field line dy-
namics in a tokamak geometry. This study leads to a new understanding of
the dynamic of this kind of magnetic systems based on very ingenious corre-
lations with the theory of numbers and on hidden geometrical aspects. The
chapter is organized as follows. Section 2 is devoted to the presentation of
the mathematical models. Some definitions and basic results from the theory
of dynamical systems are presented in Sect. 3. The transport barriers as well
as their localization in phase-space are described in Sect. 4. Section 5 con-
tains a description of some scenarios of magnetic field line reconnection and
of magnetic island merging. Conclusions are drawn in Sect. 6.

2 The Mathematical Models

A set of toroidal coordinates (r, θ, ζ), where ζ is the toroidal angle around
the symmetry axis of the torus and (r, θ) are the polar coordinates in a (cir-
cular) poloidal cross-section at distance R0 to the symmetry axis and having
maximal radius a, is usually used for the description of the magnetic line
configuration. However, since canonicity of the coordinates is needed for the
derivation of the discrete dynamical systems describing the behaviour of the
magnetic field lines one uses the toroidal flux ψ = r2/2 instead of the radial
coordinate r [3]. A Poincaré section is defined from the intersection points
of a magnetic field line starting at position (θ0, ψ0) with the poloidal sec-
tion S : ζ = cst. The intersection point after n toroidal turns is denoted by
(θn, ψn). The third coordinate ζ does not appear here as it is a constant para-
meter depending only on the position of the poloidal section. The application

TK : S1 × R+ → S1 × R+ , TK(θn, ψn) = (θn+1, ψn+1) (1)

has to be an area-preserving map compatible with the toroidal geometry (if
ψ0 = 0 then ψn = 0 for all n ∈ N and if ψ0 > 0 then ψn > 0 for all n ∈ N). A
map satisfying the imposed constraints is derived from the mixed generating
function FK : S1 × R+ → S1 × R+ (see [3], [5]):

FK(θn, ψn+1) = ψn+1 θn + α0(ψn+1) +K P (θn, ψn+1) . (2)

The corresponding discrete system is
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ψn+1 = ψn −K ∂P (θn, ψn+1)
∂θn

θn+1 = θn +W (ψn+1) +K
∂P (θn, ψn+1)
∂ψn+1

(mod 1) (3)

where W (ψ) = dα0(ψ)/dψ. The analytical expression of TK is obtained by
determining θn+1 and ψn+1 from (3) as a function of θn and ψn. The appli-
cation W (ψ) is often called the winding function, q ≡ 1/W the safety factor
or more simply the q-profile and s = d ln q/d lnψ the shear profile. The lat-
ter quantity is positive when q is an increasing function and it is negative
when q is a decreasing function of the toroidal flux (or radius). By choosing
adequately the forms of α0(ψ) and P (θ, ψ) in (2) some well-known mod-
els used in plasma physics are recovered. For instance, with α0(ψ) = ψ2/2
and P (θ, ψ) = −(2π)−1 cos(2πθ) one obtains the Chirikov–Taylor system
generated by the celebrated “standard map” [6]. With α0(ψ) = ψ2/2 and
P (θ, ψ) = −(2π)−1 ψ cos (2πθ) the “Wobig map” is obtained [7] while with
α0(ψ) = a (ψ − ψ3/3) and P (θ, ψ) = −(2π)−1 cos(2πθ) one obtains the non-
twist standard map [23,24]. None of these maps is applicable to toroidal fusion
devices because either the positivity of the toroidal flux is not guaranteed or
the profile for the winding function is unphysical. They should therefore be
considered as academic models.

More realistic models of magnetic field line dynamics also satisfying (2)
are known as the Tokamap [3] and the Rev-Tokamap [10]. They involve a
monotonous and a non-monotonous winding function, respectively. The per-
turbation P = P (θ, ψ) is chosen in order to be consistent with the toroidal
geometry. The tokamap is obtained by choosing in (3)

P (θ, ψ) = − 1
(2π)2

ψ

1 + ψ
cos(2πθ)

WT (ψ) =
1
4

(2 − ψ) (2 − 2ψ + ψ2) , (4)

where an index T stands for Tokamap. A magneto-hydrodynamic derivation
of the realistic (decreasing) winding function W (or safety factor q = 1/W )
is given in [8]. The tokamap is deduced also as a particular case of a map for
guiding centre particles [9]. The study of reversed shear configurations can
be performed using a different winding function [10]

WRT (ψ) = w
[
1 −A (C ψ − 1)2

]
(5)

where the lowerscript RT stands for reversed tokamap (or rev-tokamap). The
parameters are

A =
w − w0

w
, C = 1 +

√
w − w1

w − w0
, (6)

where w0 = W (0) and w1 = W (1).
This map is RTK : S1 × R+ → S1 × R+, RTK(θ, ψ) = (θ, ψ) with
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ψ =
1
2

(
ψRT +

√
ψ2

RT + 4ψ
)

θ = θ + w [1 −A (C ψ̄ − 1)2] − K

4π
1

(1 + ψ)2
cos(2πθ) (mod 1) (7)

where ψRT = ψ − 1 − K
2π sin(2πθ). The winding function W has a local

maximum when ψ = 1/C. In order to further exemplify some results to
be shown in this chapter two other maps are proposed. One is the bounded
tokamap obtained from (11) by choosing WBT (ψ) = WT (ψ), as in the usual
tokamap, and

P (θ, ψ) = − 1
(2π)2

ψ (1 − ψ)
1 + ψ

cos(2πθ)

The analytical expression of the bounded tokamap is BTK :

ψ =
ψBT +

√
ψ2

BT + 4ψ (1 − K
2π sin(2πθ))

2 (1 − K
2π sin(2πθ))

θ = θ +WBT (ψ) − K

4π2
cos(2πθ)

ψ
2

+ 2ψ − 1
(ψ + 1)2

(mod 1) (8)

where ψBT = ψ− 1− K
2π sin(2πθ). The main difference between the tokamap

and the bounded tokamap is that BTK has two invariant geometrical circles;
one ψ = 0 near the magnetic axis of the tokamak and the other ψ = 1
that defines the tokamak wall. The latter transport barrier is induced by the
perturbation, not by the winding function W .

The second proposed map, the degenerate tokamap, is obtained from (11)
by choosing

P (θ, ψ) = − 1
(2π)2

ψ

1 + ψ
cos(2πθ)

WDT (ψ) =
1
4

(2 − ψ) (2 − 2ψ + ψ2) + ψ2

(
2 − 7

4
ψ

)
. (9)

The analytic expression of this map is DTK : S1 × R → S1 × R:

ψ =
1
2

(
ψDT +

√
ψ2

DT + 4ψ
)

θ = θ +WDT (ψ) − K

4π
1

(1 + ψ)2
cos(2πθ) (mod 1) (10)

with ψBT = ψ − 1 − K
2π sin(2πθ). The perturbation is the same as for the

tokamap but the winding function is modified. It is still a monotone decreas-
ing function but such that W ′

DT (1/2) = W ′′
DT (1/2) = 0 (a prime denotes a
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∂/∂ψ derivative) in contrast to the tokamap which has W ′
T (ψ) < 0 for all

(θ, ψ) ∈ S1 × [0, 1]. The conditions WDT (0) = WT (0) and W ′
DT (0) = W ′

T (0)
ensure that the tokamap and the degenerate tokamap have similar behaviour
near the polar axis ψ = 0. All four maps described in this chapter are submit-
ted to the condition K < 2π which must hold since the analytical properties
of the maps have to be at least of class C1.

3 Definitions and Basic Results

The prototype of area-preserving maps which will be studied in the sequel
is f : S1 × R → S1 × R, f(θ, ψ) not= (θ, ψ) defined by the system of implicit
equations (thus the notation not= ):

ψ = ψ −K g′(θ)h(ψ)
θ = θ +W (ψ) +K g(θ)h′(ψ) (mod 1) (11)

where g : S1 → R, h : R → R are bounded functions of class C2 (two times
derivable) and g is a 1-periodic function in θ.

– An orbit of (θ0, ψ0) is the set {(θn, ψn), n ∈ N} such that (θn+1, ψn+1) =
f(θn, ψn).

– A lift of f , i.e. F : R × R → R × R, F (θ, ψ) not= (x, ψ), can be obtained
from (11) by removing the mod 1 in the second equation.

– The winding (or rotation) number of an orbit is defined as

ω = lim
i→∞

xi

i
(12)

if the limit exists.
– The orbit of (θ0, ψ0) is periodic of period n if fn(θ0, ψ0) = (θ0, ψ0). The ro-

tation number of a periodic orbit is a rational. The stability of the periodic
point (θ0, ψ0) is characterized by the eigenvalues of the Jacobian matrix
J(θ0,ψ0) f

n which are called the multipliers of (θ0, ψ0) and will be denoted
by λ1 and λ2. Because f is an area-preserving map (det(J(θ,ψ) f) = 1 for
all (θ, ψ) ∈ S1×R) their product λ1 λ2 is 1. Elliptic periodic points have
complex multipliers (and λ2 = λ1), while hyperbolic periodic points
have real multipliers λ1 = 1/λ2 �= ±1 and parabolic periodic points
have λ1 = λ2 = ±1.

– A set homeomorphic to a circle that is mapped onto itself by f is called
a rotational invariant circle. All orbits contained in an invariant circle
densely fills it and they have the same winding number, which is generi-
cally irrational. An orbit for which there is no winding number is chaotic.

– A transport barrier is a f -invariant subset of S1 × R separating two
other f -invariant subsets of S1 × R. The transport barriers cannot be
crossed by the orbits starting from its neighbourhood.
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– The map f is a positive twist map (respectively negative) if

∂θ

∂ψ
(θ, ψ) > 0 (respectively

∂θ

∂ψ
(θ, ψ) < 0)

for all (θ, ψ) ∈ S1 × R.
– A map for which (∂θ/∂ψ)(θ, ψ) = 0 for some (θ, ψ) ∈ S1 × R is called a

non-twist map.

The study of twist area preserving maps initiates with the works of H.
Poincaré (see [17] pp 38). Their dynamics is described by the Poincaré–
Birkhoff theorem and the KAM (Kolmogorov–Arnold–Moser) theory.

The unperturbed map corresponds to K = 0. It is an integrable map
in the sense that the orbit of (θ0, ψ0) is included in the (geometrical) circle
ψ = ψ0 and it is periodic if W (ψ0) ∈ Q, or quasiperiodic (dense in the circle)
if W (ψ0) /∈ Q. Every circle ψ = ψ0 with ψ0 /∈ Q is a transport barrier.

In the case of the perturbed map (K > 0) some orbits are dense in
rotational invariant circles which are transport barriers. The elliptic periodic
points are surrounded by stability islands. The hyperbolic periodic points
having same rotation number are connected by their stable and unstable
manifolds. If these manifolds do not intersect transversely the dynamics near
them is regular (the orbits of the neighboured points are dense in rotational
circles or in curves surrounding elliptic periodic points ). If the manifolds
intersect transversely, a chaotic layer is formed in a zone containing their
(topological) closure. The phase portrait of the tokamap (which is a negative
twist map [8]) is presented in Fig. 1 where the coordinates θ and ψ are
represented on the horizontal and vertical axis , respectively. Near the vertical
line θ = 0.5 the elliptic periodic points with the rotation number 1/1, 2/3,
1/2, 1/3, 1/4, and 1/5 can be identified. Some chaotic layers surrounding
the hyperbolic periodic points are observed in the upper part of the figure.
These chaotic layers are separated by invariant circles. A large chaotic zone is
observed in the central part of the phase space. In this region some manifolds
of hyperbolic points having the rotation number 1/3, 1/2 respectively 2/3
overlap. Since the tokamap is almost integrable near the polar axis ψ = 0 a
regular zone is also observed in the lower part of the phase space.

For K � 1 the maps given by (11) are close (at least in a C0 topol-
ogy) to the integrable map corresponding to K = 0, hence they are almost
integrable. In this case the main part of the orbits is still regular and the even-
tually formed chaotic layers are very thin (being separated by very frequent
rotational circles).

The Poincaré–Birkhoff theorem [11] ensures that to each rational number
n/m in an appropriate interval corresponds a pair of periodic orbits of rota-
tion number n/m in the perturbed map: an elliptic one and an hyperbolic
one. The points of these orbits interlace and they are included in the so-called
n/m-type Poincaré–Birkhoff island chains.
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Fig. 1. Phase portrait of tokamap (a twist map) corresponding to K = 4.5 and
w = 1

The KAM theory provides the conditions for the existence of invariant cir-
cles in a slightly perturbed integrable twist map: the invariant circles having
diophantine rotation number are more robust than the others [12].

For larger values of K this theorem may not be applicable, even if numer-
ical evidences indicate that some resistant barriers have diophantine rotation
number [8,13]. Some conditions for the existence of invariant circles were pro-
posed in the eighties by J.M. Greene [14], S. Aubry [15] and J.N. Mather [16].
In this case the enlargement of the chaotic zone can be explained by the con-
verse KAM theory (cone crossing criterion, folding properties, overlapping
criterion etc.) [17].

The non-twist maps started to be explored only in the last decade, al-
though the richness of new phenomena exhibited by such maps (the existence
of twin Poincaré–Birkhoff chains with the same rotation number, reconnec-
tion, meandering tori) were pointed out early in the eighties [18]. The phase
portrait of rev-tokamap (a non-twist map) is presented in Fig. 2. The twin
Poincaré–Birkhoff island chains having the rotation number 1/2 can be ob-
served. The lower one is contained in a regular region, but the upper one
is surrounded by a chaotic layer. The hyperbolic points of twin Poincaré
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Fig. 2. The phase portrait of the rev-tokamap (a non-twist map) with parameters
K = 1.95, w = 0.67, w0 = 0.3333, w1 = 0.1667

chains with the rotation number 2/3 are connected both by homoclinic and
heteroclinic connection. Between them a meandering circle is observed.

The non-twist maps are used to describe the behaviour of magnetic field
lines in reversed tokamaks [3], chaotic advection in fluids [19,20], chaotic ion-
ization in atomic physics [21], oscillations in astrophysics [22]. It is also to
be noted that non-twist maps appear naturally in iterations of twist maps
because the composition of twist maps is generally not a twist map. There
exist only few theoretical results concerning the dynamical behaviour of these
maps. However, even if the Aubry–Mather variational theory for twist maps
does not generalize to non-twist maps, an analogue of the KAM theory
has been developed [23–25]. The regions of instability for non-twist area-
preserving maps are studied in [26]. The non-twist maps with reversing sym-
metry group studied in [27] and an analytical method for determining the
reconnection threshold was proposed in [28].

The tokamap and the bounded tokamap and negative twist maps. They
deviate the lines θ = cst to the left.

The rev-tokamap and the degenerate tokamap are non-twist maps because
the equation (∂θ/∂ψ)(θ, ψ) = 0 has solutions in S1 × R+. Their properties
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Fig. 3. The effect of tokamap, bounded tokamap, degenerate tokamap (all corre-
sponding to K = 5.9, w = 1) and rev-tokamap (K = 5.9, w = 0.67, w0 = 0.3333,
w1 = 0.1667) on the vertical line θ = 0.1

are different because the winding function of the rev-tokamap is a quadratic
function having a maximum, while the winding function of the degenerate
tokamap is a decreasing function (having an inflexion point ψ = 1/2).

Figure 3 shows the line θ = 0.1 and its images produced by the tokamap,
the bounded tokamap, the degenerate tokamap and the rev-tokamap. The
image is tilted to the left by the tokamap and the bounded tokamap showing
they are negative twist maps. For the two remaining maps, the rev-tokamap
and the degenerate tokamap, the image is no more a graph of a function
depending on ψ. This results from non-twist property of the maps.

In order to describe the transport barriers in non-twist maps we introduce
the following definitions.

Definition 1. Let f : S1 × R → S1 × R, f (θ, ψ) not=
(
θ, ψ

)
be a non-twist

map defined by (11).

– The regular set of f is Creg :W ′ (ψ) = 0.
– The shearless orbit has a rotation number which is a local extremum

of all rotation numbers of orbits in the map. The closure of the shearless
orbit, denoted by Csh, is called the shearless curve.
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– The critical twist set of f is the curve Cnt : (∂θ∂ψ)(θ, ψ) = 0.
– The non-twist annulus is the closure of all orbits starting from Cnt.

The unperturbed system (K = 0 in (11)) defined with a quadratic winding
function satisfies the obvious equalities (∂θ/∂ψ)(θ, ψ) = W ′(ψ) = W ′ (ψ) =
0 which imply that the curves Cnt, Creg and Csh coincide i.e. Cnt = Creg =
Csh : ψ = ψmax where ψmax is the value of ψ for which W is maximum.
If the winding function has no extremum (as in the case of the degenerate
tokamap) the shearless curve does not exist but the regular and the critical
twist curves are well defined.

In the perturbed case (K �= 0) these curves are different and a natural
question arises on how to relate the dynamical properties of the system with
each of them. These curves have the following equations:

Cnt :W ′ (ψ̄)+ kg (θ)h′′
(
ψ̄
)

= 0 , (13)

Creg :W ′ (ψ) = 0 , (14)

The analytical form of the shearless curve (if it exists) cannot usually be given
because it involves the numerical computation of the (perturbed) winding
number.

The shearless curve is f -invariant but the regular set and the critical
twist set are not f -invariant. For this reason the non-twist annulus (which is
f -invariant) has to be considered.

If the equation (∂θ/∂ψ)(θ, ψ) = 0 has a unique solution for every θ ∈ S1,
which is a typical situation, the critical twist set of f is a rotational circle.
The non-twist annulus collects all the points having a non-twist dynamic.
The phase space splits in three invariant zones on which the map f acts
separately.

In Fig. 4 the non-twist annulus and the chaotic invariant zones of the
rev-tokamap (a non-twist map [10]) are represented. The map BTK acting
below or above the non-twist annulus has opposite twist properties due to the
opposite monotonicity of W . The map DTK of the degenerate tokamap case
has negative twist properties both below and above the non-twist annulus
because WDT is a monotonous function.

The existence of the shearless curve is a non-twist essential phenomenon
hence the shearless curve is contained in the non-twist annulus.

4 Transport Barriers

In the twist systems the transport barriers which are usually analysed are
invariant circles. However, large transport barriers can be obtained by using
appropriate perturbations which create some zones where the twist map is
almost integrable. This is what is happening with the bounded tokamap (8).
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Fig. 4. The non-twist annulus and the invariant chaotic regions in the rev-tokamap
model (k = 2.5, w = 0.67, w0 = 0.3333, w1 = 0.1667)

Proposition 1. In an annulus surrounding the circle ψ = 1 the map (8) is
almost integrable.

Proof : In an annulus surrounding the invariant circle ψ = 1 the map (8) is
close to the map IK : S1 × R → S1 × R, IK(θ, ψ) not= (θ′, ψ′) defined by

ψ′ = ψ

θ′ =
(
θ +W (1) +

K

8π2
cos(2πθ)

)
(mod 1) (15)

because

d2((θ′, ψ′), (θ, ψ)) =
(
K

2π
ψ (1 − ψ)

1 + ψ
sin(2πθ)

)2

+

(
W (ψ) −W (1) +

K

16π2

ψ
2

+ 2ψ − 3
(ψ + 1)2

)2

is a small quantity for ψ ≈ 1 (which means ψ = 1 because ψ = 1 if and only
if ψ ≈ 1). (Q.E.D.)
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Fig. 5. The phase portrait of the bounded tokamap (K = 5.9, w = 1)

It results from this that a transport barrier having positive area appears
in a region surrounding the circle ψ = 1. In Fig. 5 some regular orbits can
be observed near the circle ψ = 1. The chaotic layers formed around the
Poincaré–Birkhoff chains having the rotation numbers 1/2, 3/7, 2/5, 1/3,
2/7, 1/4, 1/5 etc. are getting closer and closer to ψ = 0 but are separated by
invariant circles. We note that for K = 5.9 (the value considered in Fig. 5)
there are no transport barriers in the tokamap model.

Proposition 2. The region where the non-twist map f given by (11) is clos-
est (in C0 topology) to a rigid rotation is an annulus intersecting the curve
Creg.

Proof : Consider (θ0, ψ0) ∈ S1 ×R+ and the map fc defined by the implicit
equations

ψ′ = ψ
θ′ = θ +W

(
ψ0

)
.

It results that

d2((θ, ψ), (θ′, ψ′)) =
(
K g′(θ)h(ψ)

)2
+
[
W (ψ) −W (ψ0) +K g(θ)h′

(
ψ
)]2

.
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Now, because W (ψ)−W (ψ0) = W ′(ψ0)(ψ−ψ0) + 1
2W

′′(ψ0)(ψ−ψ0)2 + · · ·
is smaller near Creg (here W ′(ψ0) = 0) it results that f and fc restricted to
the disk surrounding (θ0, ψ0) are closer in C0 topology if (θ0, ψ0) ∈ Creg than
in all other cases. (Q.E.D)

It is important to mention that the winding functionW and the functions
g and h which define the perturbation are independent objects. It results from
the integrability of fc that the region where f has a chance to be almost
integrable (hence to have regular dynamics) is an annulus intersecting Creg.
Such an annulus does not exist for large perturbations (i.e.

∣∣Kg′(θ0)h(ψ0)
∣∣

or
∣∣Kg′ (θ0)h (ψ0

)∣∣ are large for all (θ0, ψ0) ∈ Creg) because f and fc are
not close enough to ensure the regularity of f . It can be very large for small
perturbations, usually when K � 1.

Figure 6 shows the phase portrait of the degenerate tokamap (a non-twist
map) for K = 5.9. The central region of the phase space presents a clear
regular zone. It is the annulus where the map is almost a pure rotation.

In order to relate the non-twist properties of a map to the existence of
an annulus where the map is almost integrable we consider the rev-tokamap
system.

Fig. 6. The phase portrait of the degenerate tokamap (K = 5.9)
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Using the explicit form of WRT one obtains Creg : ψ = 1/C, i.e.

Creg : ψ =
1
C

+
K

2π (1 + C)
sin(2πθ)

The implicit (13) cannot be solved analytically for the rev-tokamap hence Cnt

is computed numerically (using the Broyden method with the error 10−15).
Computer experiments point out that Creg and Cnt are very close even for
large values ofK ∈ [0, 2π). This effect is due to the fact that

∣∣Kg (θ)h′′
(
ψ̄
)∣∣ <

[2π (1 + 1/C)3]−1 is usually small. We can conclude that in the non-twist
annulus the rev-tokamap is almost integrable.

The analytical result concerning the regular annulus is in agreement with
the experimental observations in tokamaks which point out the existence of
a regular zone surrounding the so-called “zero shear region” i.e. the shearless
curve.

In order to give a different perspective on the objects Creg and Cnt, we
consider their intersections with the line θ = 0.5. These points are represented
in Fig. 7 for a fixed winding function characterized by the parameters w =
0.67, w0 = 0.3333 and w1 = 0.1667 and for various values of K in the range
[0.6, 4.5]. For small values ofK the non-twist annulus is thin (it reduces to the
curve ψ = 1/C for K = 0). Its size increases as K increases hence the non-
twist dynamical property becomes more important. The shearless curve and
the regular curve are located between the non-twist annulus. The steep jump
observed in the position of the shearless curve for K ∈ [1.8, 1.9] is explained
by the collision-annihilation of some periodic points having a rotation number
slightly less than 0.67.

The non-twist annulus is, as shown above, a useful analytic tool, but the
computer experiments have also revealed a transport barrier containing the
non-twist annulus for small values of K. For K = 0 the map is integrable and
the non-twist annulus reduces to a curve. For small perturbations (K < 2.5)
the regular zone extends down to the circle ψ = 0 and no chaotic zone can be
easily identified in this region. By further increasing K some invariant circles
are destroyed, a chaotic zone is formed around the hyperbolic points having
the rotation number 1/2 and both sides of the transport barrier are clearly
identified. The transport barrier gets narrower while the non-twist annulus
gets larger as K is increased. This phenomenon is shown in Fig. 7.

Very sharp changes in the position of the upper bound of the ITB is ob-
served when K ∈ (1.2, 1.3), K ∈ (1.7, 1.8), K ∈ (2.7, 2.8) and K ∈ (3.4, 3.5).
These abrupt variations are explained by the chaotisation of some Poincaré–
Birkhoff chains in the negative twist region. The Poincaré–Birkhoff chain of
1/3-type enters in the globally stochastic zone for a value of K in the range
K ∈ (1.2, 1.3). The same phenomenon occurs for the periodic orbit of 1/2-
type for K in the range K ∈ (1.7, 1.8), for the periodic orbit of 4/7-type for
K in the range K ∈ (2.7, 2.8) and finally for the periodic orbit of 3/5-type
for K in the range K ∈ (3.3, 3.4). The width of the islands in a Poincaré–
Birkhoff chain generally decreases when the period increases; for this reason
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Fig. 7. The position of ITB, of the boundaries of non-twist annulus, of the shearless
curve and of the regular curve on the line θ = 0.5 for the rev-tokamap with the
same winding function (w = 0.67, w0 = 0.3333, w1 = 0.1667) and various values of
K ∈ [0.6, 3.9]

the effect of the chaotisation of 1/2-type periodic orbits (K ∈ (1.7, 1.8)) on
the position of the ITB upper bound is more important than for the other
cases.

Many other periodic orbits also enter into the globally stochastic zone,
but these cannot be observed in Fig. 7 because their periods are large and
the corresponding island chains are very thin.

The rev-tokamap has positive twist property below the non-twist annulus
and negative twist property above it. As long as an invariant circle is con-
tained in these regions their destruction can be explained by arguments used
in the theory of twist maps, the KAM theory or the cone crossing criterion
for example. More interesting is the case of invariant circles contained in the
non-twist annulus.
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5 Reconnection and Transport Barriers

Reconnection is a global bifurcation in the dynamics of a non-twist area
preserving map. It is a change in the topology of the invariant manifolds
of the hyperbolic points of two Poincaré–Birkhoff chains having the same
rotation number m/n.

We shall study the reconnection process in the rev-tokamap model. In the
degenerate tokamap model this phenomenon does not occur because there
are not twin Poincaré–Birkhoff chains (the winding function is monotonous).
Reconnection appears in systems with fixed winding function W whose max-
imum value decreases to a value slightly larger than m/n as the stochasticity
parameter K is increased or for fixed K as the maximum value of W is
decreased.

The general scenario for reconnection is as follows: before reconnection
the Poincaré–Birkhoff chains having same rotation number are separated by
invariant sets (usually invariant circles), at the reconnection threshold the
hyperbolic periodic points of the two chains are connected by their manifolds
and after reconnection two dimerized island chains are formed. Each of them
contains a set of hyperbolic periodic points connected either by heteroclinic
connections or by homoclinic connections surrounding elliptic periodic points.
These dimerized islands are separated by meanders.

In the generic position before reconnection the periodic points situated
approximately at the same θ have opposite stability (one is elliptic, the other
is hyperbolic). In this case, the twin Poincaré–Birkhoff chains approach each
other until the hyperbolic points get connected by a heteroclinic connection.
This is the typical behaviour in the rev-tokamap model.

Starting from a nongeneric position before reconnection, the periodic
points situated approximately at the same θ have the same stability. Be-
fore reconnection a saddle-centre bifurcation occurs in a Poincaré–Birkhoff
chain i.e. a new pair of periodic points having the same rotation number as
the preexistent ones is created. By modifying the parameter the new points
annihilate the old elliptic orbit. Finally only one elliptic orbit remains in a
generic position with the other Poincaré–Birkhoff chain. From this moment
the generic route to reconnection is followed.
We shall describe the reconnection of the 2/3 Poincaré–Birkhoff chains for
K = 2 and K = 4 for decreasing values of w:

– The value K = 2 is small enough to ensure that the reconnection occurs
in the regular zone:
– For w > wr ≈ 0.6702 the island chains are in the regular zone in a

generic position and they are separated by invariant circles;
– For w = wr ≈ 0.6702 the reconnection occurs;
– For w < wr ≈ 0.6702 the dimerized islands are separated by meanders.
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Fig. 8. Twin Poincaré–Birkhoff chains from the rev-tokamap model (K = 4, w =
0.71, w0 = 0.3333, w1 = 0.1667)

– For K = 4 the perturbation is stronger. The reconnection occurs in a
chaotic layer produced by the manifolds of the hyperbolic points (these
manifolds intersect transversely):
– For w = 0.7 the island chains are outside the regular annulus in a

nongeneric position (see Fig. 8).
– For w = 0.685 a saddle-centre bifurcation occurred in the upper island

chain. Because at the bifurcation threshold the periodic points which
bifurcate is parabolic (its multipliers are λ1 = λ2 = 1) the map is
almost integrable around it, hence the upper chain enters the regular
zone (Fig. 9)

– For w = 0.68213 the reconnection occurs (Fig. 10) in a chaotic layer.

By decreasing w the periodic points of the upper island chain situated
approximately on the same vertical approach each other, collide and annihi-
late. The other island chain enters the regular zone and remains there until
the collision–annihilation of its points occurs.

The main conclusion of this section is that the reconnection takes place
inside the non-twist annulus (because it is specific to the non-twist dynamics)
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Fig. 9. The saddle-centre bifurcation occurred in the upper Poincaré–Birkhoff chain
(rev-tokamap K = 4, w = 0.685, w0 = 0.3333, w1 = 0.1667)

in a zone which can be regular or chaotic, depending on the stochasticity
parameter.

In our last example, the shearless curve disappears at the end of the
reconnection process (because it would be located between the dimerized
island chains in a chaotic region) but a regular zone i.e. a transport barrier
can however be identified (Fig. 9). Therefore the shearless curve of the rev-
tokamap is not the most resistant invariant circle. This result, in contradiction
with what is observed for the non-twist standard map [19], is explained by the
fact that the latter map has time reversal and symmetry properties which are
not possessed by the former. For this reason the rev-tokamap exhibits more
general dynamical properties.

6 Conclusions

Four Poincaré maps giving the intersection points of a magnetic field line with
a given poloidal cross section are presented: the tokamap representing usual
tokamak conditions, the rev-tokamap for a tokamak running with reversed
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Fig. 10. The rev-tokamap phase portrait at the reconnection threshold (K = 4,
w = 0.68213, w0 = 0.3333, w1 = 0.1667)

shear conditions, the bounded map with the outmost tokamak magnetic sur-
face forced to be a smooth surface and the degenerate tokamap. Each of the
four maps develops its own magnetic structure which are explained using
some of the new results on non-twist maps reported here.

To be specific, the maps may be characterized in terms of the ITB width,
the formation of the ITB and the process of magnetic reconnection:

(a) Previous studies of the ITB width considered as important three particu-
lar curves: the regular curve, the non-twist curve and the shearless curve
which coincide in the unperturbed case for non-twist maps. The detailed
study of the four maps for different parameter values has definitively
showed that the regular curve indeed relates to the regular dynamics but
that the shearless curve does not.

(b) The mechanisms leading to the formation of ITB’s with positive area
has been clarified in two situations which had not been considered previ-
ously: twist systems, like for instance the bounded tokamap, support the
formation of large ITB because of their proximity to an integrable system
and non-twist systems with monotonous unperturbed winding function,
like the degenerate tokamap (see Sect. 4).
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(c) The principal difference between twist and non-twist maps lies in the
possibility in the former to proceed with a reconnection mechanism. This
process of reconnection is described in details in two limits, for small per-
turbations (in a regular zone) and for large perturbations (in the chaotic
zone). The main consequence of a reconnection in a chaotic layer is that
in the rev-tokamap system the shearless curve is not always the most
resistant invariant circle (this result differs from the usual behaviour of
models that have a symmetry group).

Maps for magnetic field line behaviour for tokamak geometries have al-
ready given a number of unexpected results that could facilitate the analysis
of experimental results, even considering particles instead of magnetic field
lines in ITB’s. Further progresses are however still awaited in the area of
guiding centre maps where some difficulties arise due to more stringent topo-
logical constraints.
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Parkinson’s disease 175, 177, 182–185,

194, 195
percolation transition 153, 157
phase portrait 385, 390–392, 396, 397,

403
phase space 32, 77, 81, 84, 85, 99, 110,

112, 118, 127, 340, 348–350, 352,
355–358, 370, 390, 394, 397

phase transition 280
phenotype 168, 211, 213–215
plateau 40, 350, 351, 353
population growth 3, 5, 6, 8, 17–21,

117, 147, 339
power law 79–81, 85, 86, 89, 90, 95,

241, 276, 279, 283
power-law 109, 111, 112, 152, 259–261,

267, 341, 343, 350–353



410 Index

power-law growth 101, 109
predicted state 59
Probability distribution 99, 101, 102,

111
probability distribution 149, 151, 154,

156, 256
program 198, 203
pseudo-fractal network 81, 89, 90,

92–96

quantitative factor of quality of the
medical treatment 181

quantitative factor of quality of the
treatment 182

quantum chaos 355, 356, 362
Quetelet 4, 5, 13–20, 22

random process 156, 292
random scale-free network 83, 88, 95,

96
random sequence 106
random sequences 99, 101, 103,

105–107, 109, 111–113
reconnection 386, 391, 400–404
reconnection threshold 392, 400, 403
relaxation 175, 178–180, 193, 195, 241,

275, 276, 282, 284, 285, 287, 288,
291, 292, 295–298, 304, 306, 310,
311, 350, 351

relaxation mode 284
relaxation parameter 185, 191–195
relaxation time 179, 295, 296, 304,

307, 314, 339, 341, 349–351
Renyi dimensions 343
replicative senescence 161, 170
rescaling 100, 243, 244
restricted three-body problem 369,

370, 374–376, 382
rev-tokamap 387
reversed tokamap 387, 391–395,

397–404
Riemann curvature tensor 379, 381
Riemannian curvature 380
Riemannian geometry 370, 382
Riemannian manifold 369–371, 382
Riemannian metric 370
rugged crack growth 304

scalar curvature 371, 374, 382

scale-free network 77–81, 83, 88, 93,
95, 96, 209

scaling 55, 163, 165, 170, 201, 203, 239,
255, 318, 321, 323–327, 329, 333,
334

Selection 162
selection 78, 155, 156, 158, 161, 162,

167, 170
selection pressure 198, 200, 201, 224,

225
selection trait 158, 214
selection traits 211
separation vector 135, 371, 372, 374
shift map 54, 56, 57, 74
shock 241, 243, 251, 257
short mortality memory 169
sigmoid growth curve 20
single state 350
slow growth conditions 285
stability 24, 33, 148, 227, 229, 238, 254,

256, 278, 369, 371, 374–376, 382,
389, 390, 400

stability analysis 80, 83, 84, 90, 125
stability criterion 55, 58, 61, 62, 370
stability intervals 226
stability time 226, 227, 229, 231
stabilization diagram 53, 54, 67, 69–74
stable state 154, 157
state 38, 54, 59, 60, 78, 117, 121, 124,

127, 154, 262, 351
state dependent strategy 225
state variable 39
state variables 36
state with glassy properties 353
stationary state 58
steady state 53, 55, 58, 139, 149, 150,

152, 153, 155, 157, 301, 312
stochastic process 101, 177, 260, 283
stress relaxation 285, 288
sympatric speciation 210
symplectic 370, 378
synchronization 78, 80, 82, 83, 88, 89,

93–95, 276, 288
synchronous state 82

telomere 199, 210, 211
temperature 169, 275–277, 280, 281,

298, 299, 350
three-dimensional 290, 318, 319, 333



Index 411

time delay – initial concentration
resonance 238

tokamap 387–393, 396, 402
total mortality 168
transition 80, 83, 84, 86, 87, 99, 101,

112, 121, 124, 125, 152, 153, 181,
182, 348, 349, 352

transition curve 85, 86
transition to a periodic organisation

124
transition to chaos 339
transition to coherence 77, 83–89, 93,

94, 96
transition to full synchronization 83
transition to percolation 78
trend 40, 42, 44, 45, 47, 137, 144, 239,

267
two-dimensional 118, 119, 122, 321,

326, 370, 375
two-step relaxation 339, 341, 353

uniform description 356, 358
universal intrinsic mortality 171
universal mortality 169–171
universal mortality law 163
unstable state 60

Verhulst 3–5, 7, 8, 10, 13–27, 29–31,
33, 35–37, 39–41, 43, 45, 47, 49, 51,
53, 54, 56, 57, 74, 117, 122, 128,
147, 197, 199, 201, 203, 206, 212,
216, 223, 225, 259, 275, 276, 289,
339

Verhulst chaos map 53–57, 59–61, 64,
74

Verhulst differential equation 58, 59,
74

Verhulst differential growth equation
54

Verhulst equation 29–31, 122

Verhulst incursive map 57, 58, 60, 74

Verhulst logistic equation 124

Verhulst map 22, 53, 54, 56, 57, 60, 61,
74

von Neuman neighbourhood 224

yeast mortality 168

zero mortality 168

zero universal mortality 168

zooplankton mortality 119
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