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2.1  Introduction 

Group velocity dispersion is a well known effect in optical fibres where 
the frequency dependence of the group index is responsible for pulse 
spreading, leading to inter-symbol interference (ISI) and power penalty 
[1]. However, it has only been realised recently that dispersive effects aris-
ing from optical filters might be detrimental to propagation of high bit-rate 
signals in wavelength division multiplexing (WDM) systems and networks 
[2, 3]. The need to take the dispersion of wavelength selective elements 
into account is being made more acute due to a number of technology 
trends. First, the increase of individual channel bit rates to 10 Gbit/s and 
the expected migration towards 40 Gbit/s per channel mean that even small 
dispersion values can no longer be ignored. Second, the quest for increased 
capacity in a single fibre has led to intense research in order to maximise 
the spectral efficiency and therefore reduce the channel spacing in WDM 
systems. Consequently, the relative bandwidth available to each channel is 
reduced, meaning that the channel experiences the effect of the edge of the 
passband of the filter transfer function, where the filter dispersion is ex-
pected to be most significant. Adjacent channel crosstalk reduction also 
triggers the need for WDM filters with steeper passband edges that, de-
pending on the technology, are likely to result in increased dispersion 
[4, 5]. Finally, the evolution of WDM systems from point-to-point links to 
more complex network structures including optical add-drop multiplexers 
and optical cross-connects means that a number of filtering elements will 
be cascaded over the path of a specific channel. As the effect of dispersion 
is accumulative, more severe signal degradation is to be expected in future 
all-optical transparent networks [3, 6]. 

It has therefore become essential to be able to control the dispersion of 
optical WDM filters, either to limit potential signal degradation as in mul-
tiplexers and demultiplexers to be used in terminal equipment or within 
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add-drop and cross-connect nodes, or to provide tailorable dispersion as 
for example in chirped fibre Bragg gratings for dispersion compensation. 
The need for dispersion characterisation of optical filters has appeared in 
the mid-nineties, and suitable measurement methods have essentially been 
inspired from the experience gained in the characterisation of single mode 
optical fibres [7, 8]. However, specificities due the wavelength selective 
nature of the components often mean that known optical fibre characterisa-
tion solutions might not be directly transferred to the case of WDM filters. 
First, the desired bandpass or bandstop filter characteristics of most of the 
filters of interest will induce new requirements in terms of dynamic range 
of the measurement method, especially since the wavelength region where 
dispersion is expected to be significant corresponds to the edges of the 
transfer functions, where the attenuation of the device might be large. Sec-
ond, WDM filters exhibit spectral features that are strongly wavelength 
dependent, as opposed to optical fibres where both attenuation and disper-
sion vary relatively slowly with wavelength. Finally, the dispersion values 
exhibited by WDM components are usually relatively small, whereas in 
the case of optical fibres the dispersion values to be measured can very 
often be made arbitrarily large by increasing the length of fibre over which 
the measurement is performed, assuming uniform distribution of the dis-
persion over the fibre length. The consequences of those new requirements 
on the choice of a suitable measurement method are discussed in more 
depth in this chapter. It should be noted that another branch of optics 
where similar challenges are met is the characterisation of components for 
femtosecond laser design, for which proper dispersion engineering is es-
sential, owing to the short pulse widths involved [9]. 

This chapter gives a general introduction to the topic of phase-related 
characteristics of wavelength filters and further presents a number of tech-
niques suitable for the characterisation of phase-related quantities (including 
group delay and dispersion) complemented by typical experimental results 
measured on relevant wavelength filters. Section 2.2 starts with a compi-
lation of useful definitions and then focuses on causality arguments, which 
may be used to infer the phase response of some types of optical filters from 
their wavelength-dependent attenuation. A discussion of the applicability of 
the method is illustrated by a practical example. Two categories of tech-
niques enabling the determination of dispersion-related quantities are pre-
sented in Sect. 2.3, namely interferometric methods and radio-frequency 
(RF) amplitude modulation techniques. Emphasis is given to low coherence 
interferometry and the modulation phase-shift methods as they are very of-
ten considered as the methods of choice for WDM filter characterisation. 
General dispersion properties of WDM filters are presented in Sect. 2.4 to-
gether with their consequences on optical communication system design. 
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Methods for evaluating the impact of WDM filter dispersion on the limita-
tion of their usable bandwidth and cascadability are introduced. The effect of 
group delay ripples is also discussed. Finally, some examples of passband 
and dispersion engineering for the design of advanced WDM filters are pro-
vided. Properties specific to a given filter technology are described in more 
detail in the relevant chapters elsewhere in this book. 

2.2  Theoretical Considerations 

2.2.1  Definitions 

Throughout this chapter the transfer function of an optical linear element, 
such as a wavelength filter, will be written 

iH H e . (2.1) 

Note that the definition of the sign of the phase in (2.1) might differ 
from the one used in some other chapters of this book. According to the 
theory of linear systems, the transfer function is the Fourier transform of 
the impulse response of the filter  

i tH h t e dt . (2.2) 

The group delay of the filter can be calculated from the phase of its 
transfer function according to 

d

d
. (2.3) 

The definition of  is sometimes also found with negative sign (cf. e. g.
Chaps. 8 and 9). This is a consequence of the choices of the sign for the 
phase in the definition of transfer functions such as (2.1), as well as of the 
time dependence in the complex representation of the electric field. 

In practice, only the relative group delay is of practical interest as it is 
the variations of  with wavelength that result in pulse distortion, therefore 
making it unnecessary to characterise the absolute group delay. The dis-
persion, usually expressed in ps/nm, is the derivative of the group delay 
with respect to wavelength 

d

d
D . (2.4) 

It can be checked that the set of definitions above is fully consistent 
with that customarily used for optical fibres, where D would represent the 
total dispersion accumulated over a length L of fibre. 
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2.2.2  Minimum-phase Filters and Amplitude-phase Relations 

It is known from the theory of linear systems that the phase response of 
a filter can be inferred from its amplitude response provided the so-called 
“minimum-phase” condition is satisfied [10, 11]. It is therefore natural to 
consider such a numerical approach to retrieve the dispersion from the 
amplitude transfer function of optical filters. Provided the minimum-phase 
condition holds, the mathematical relations linking the amplitude and the 
phase of an optical filter are analogous to the Kramers–Kronig relations 
between the absorption and refractive index (or real and imaginary parts of 
the dielectric constant) of a material [12]. Mathematically, quantities satis-
fying such relations are known as Hilbert transform pairs. As a conse-
quence, “amplitude-phase”, “Kramers–Kronig”, or “Hilbert transform” 
relations are often used indifferently in the context of wavelength filter 
characterisation. In this section, the conditions for the existence of such 
relations are presented, followed by a discussion of their practical use for 
the determination of the dispersive properties of WDM filters. 

The Minimum-phase Condition 

Let us consider a passive linear optical filter with impulse response h(t).
Such a physical system is causal and stable, therefore its impulse response 
is real valued and satisfies the conditions h(t) = 0 for t < 0 and |h(t)| < .
Let H( ) be the transfer function of the optical filter (i. e. the Fourier trans-
form of its impulse response) and HL(s), where s is a complex variable, its 
Laplace transform. The Fourier transform can be evaluated from the 
Laplace transform according to HL(i ) = H( ). The fact that h(t) is causal 
translates into HL(s) being analytic in the right-hand plane. Under those 
assumptions it can be shown that 

1 H
H P d

i
 (2.5) 

where P denotes the Cauchy principal value. Equation (2.5) can be derived 
either from causality considerations for the impulse response (see e. g. 
[13]) or, equivalently, from contour integration along a path where H( ) is 
analytic and avoiding the singularity at = .

One important consequence of (2.5) is that the real (respectively imagi-
nary) part of the transfer function H( ) can be determined from the know-
ledge of its imaginary (respectively real) part. The real and imaginary parts 
of H( ) are said to constitute a Hilbert transform pair. 
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The logarithm of the transfer function of a linear device as defined in 
(2.1) can be expressed as 

ln lnH H i . (2.6) 

Therefore, by applying the results of (2.5) to the function ln H( ), it is 
tempting to derive Hilbert transform relations between the logarithm of the 
amplitude transfer function and the phase of an optical filter. However, this 
would require the function ln HL(s) to fulfil the initial assumption of being 
analytic in the right-hand plane. One important issue is that HL(s) might 
have zeros in the right-hand plane where the logarithm is not defined. If 
we moreover assume that HL(s) has no zeros for (s) 0, where  denotes 
the real part, then its phase will be uniquely determined by its amplitude 
response according to 

ln | |1 H
P d . (2.7) 

Filters for which the logarithm of the Laplace transform of their impulse 
response is analytic in the right-hand plane are said to be of the “mini-
mum-phase” type. 

Amplitude-phase expressions that are equivalent to (2.7) are often found 
in the literature. For instance, starting from (2.7) and performing the 
change of variable u = ln / , a new expression for the phase can be writ-
ten which highlights the relation between the variations of the amplitude 
response with frequency and the phase response 

1 | |
ln |  |   ln coth

2
ud u

H e du
du

. (2.8) 

The factor ln coth|u|/2 peaks around u = 0 corresponding to =  and ex-
hibits a fast decrease when |u| increases. Consequently, the main contribu-
tion to the integral (2.8) arises from values in the vicinity of u = 0, and the 
phase of the transfer function at  depends mostly on the slope of the ampli-
tude transfer function around the same frequency . An immediate conse-
quence is that any attempt to realise sharp edges in the transfer function of 
a minimum-phase optical band-pass filter will result in increased dispersion 
at those edges. Recalling our discussion of Sect. 2.1, it can be concluded 
that, for a minimum-phase optical filter, the two goals of achieving low 
crosstalk and low dispersion cannot be reached simultaneously. Filters 
which are not minimum-phase will offer more degrees of freedom in order to 
achieve these two desired features. Note, however, that the fact that a filter is 
non minimum-phase does not prevent it from exhibiting a high dispersion at 
the edges of its passband, but simply means that its dispersion cannot be 
calculated from the attenuation spectrum. 
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Practical Applicability of Amplitude-phase Relations 

Some early work on the applicability of the Kramers–Kronig relations to 
the determination of the group delay of optical filters was first presented in 
[14] in the context of sub-picosecond laser design at 800 nm, where it was 
clearly demonstrated that such relations do not necessarily exist for some 
types of filters. Their applicability to etalon filters was further discussed in 
[15] where the need for a careful consideration of the zeros of the transfer 
function as well as of the frequency dependence of all optical parameters 
was highlighted. At the same time, the determination of the dispersion of 
components to be used in WDM systems around 1550 nm became the ob-
ject of increased attention. Kramers–Kronig relations were successfully 
applied to the reflectivity of fibre Bragg gratings (FBG) [16, 17], showing 
good agreement between recovered and theoretical group delay. A com-
parison between measured group delay and delay recovered from meas-
ured amplitude responses was later presented in [18] for uniform fibre 
gratings, showing good agreement for some devices. It was later on never-
theless suggested that, for real imperfect gratings, the modelling of the 
group delay of the corresponding perfect grating will often provide a better 
estimate than the recovery of the group delay by applying the Kramers–
Kronig relations to the measured reflectivity [19]. 

The first step in determining the dispersive properties of a particular 
WDM filter based on Kramers–Kronig analysis is therefore to analyse 
whether this filter is of the minimum-phase type. An in-depth discussion of 
the applicability of the minimum-phase condition for different optical filter 
technologies has been presented in [5]. It was shown that generalised 
Mach–Zehnder filters (including arrayed waveguide gratings) are in gen-
eral not minimum-phase. Interference filters such as Fabry–Perot and thin-
film filters are inherently of the minimum-phase type when used in trans-
mission. It has also been shown that grating filters are minimum-phase in 
transmission but that it is not always the case in reflection [20]. Neverthe-
less, in case the grating is symmetric, its group delay is identical in reflec-
tion and transmission, therefore enabling the reflection group delay to be 
recovered from the grating transmittivity. 

Whether a given filter is of the minimum-phase type can in theory be  
determined from checking the analyticity of its transfer function in the right-
hand plane provided the filter response can be accurately modelled. How-
ever, this does not necessarily imply that the real, imperfect, implementa-
tion of the filter belongs to the same category (minimum or non-minimum 
phase). Indeed, it has been reported that the effect of loss in arrayed 
waveguide grating filters can move the zeros of their complex transfer func-
tions from the imaginary axis to the left-hand plane [5], making the real 



2.2 Theoretical Considerations 23 

filters satisfy the minimum-phase condition. Note that in the case when its 
zeros in the right-hand plane are known, a transfer function can be decom-
posed into the product of a minimum-phase function and an all-pass transfer 
function [15, 19] from which the phase response can be calculated. How-
ever, such an approach is not usable when the only information available 
about the filter is a measured amplitude response over a small part of the 
real frequency axis. 

Once it has been ensured that the filter is minimum phase, practical con-
siderations such as the frequency range over which the integration (2.7) 
needs to be performed as well as the implementation of the phase retrieval 
algorithm and its robustness to noisy measurement data and close to the 
zeros of the transfer function need to be taken into account. Numerous tech-
niques have been proposed in the literature in order to compute Kramers–
Kronig relations (see e. g. [21, 22] and the references in [23]). In the context 
of WDM filters, a calculation algorithm based on a non-linear frequency 
transformation known as the Wiener–Lee transform [10] has been applied to 
the case of fibre Bragg gratings [17] as well as a method using digital signal 
processing techniques [24]. More recently, an iterative approach [25] has 
shown its effectiveness at reconstructing the group delay of fibre gratings 
based on their transmission, even in the presence of significant noise. 

As an illustration the amplitude-phase algorithm described in [17] has 
been applied to the case of a uniform fibre Bragg grating used in reflection. 
Such a symmetrical grating is known to be of the minimum-phase type 
[5, 20]. The measured reflectivity of a uniform fibre Bragg grating with 

Fig. 2.1. Comparison of the measured and calculated power transfer functions in re-
flection for a 33 GHz uniform fibre Bragg grating 
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full-width half-maximum (FWHM) bandwidth equal to 33 GHz is plotted 
in Fig. 2.1 together with the corresponding theoretical transfer function 
calculated using the coupled mode equations formalism [26], showing good 
agreement for the main lobe and the first two sidelobes on both sides. 

The phase responses calculated from the measured and theoretical re-
flectivities using the Wiener–Lee transform algorithm are shown in 
Fig. 2.2 (top). Good agreement is observed at the centre of the reflectivity 
main lobe. The phase discontinuities occur at the minima of the reflectivity 
where, due to imperfections in the real grating and the limited resolution of 
the optical spectrum analyser used for amplitude transfer function meas-
urements, the measured and calculated reflectivities deviate significantly, 
hence the discrepancies observed for the phase. 

The group delay calculated by differentiating the phase retrieved using 
the Wiener–Lee transform algorithm applied to the theoretical reflectivity 
and the theoretical group delay obtained using coupled mode equations are 
compared in Fig. 2.2 (bottom). Apart from the spikes in the recovered 
group delay occurring close to the zeros of the reflectivity, a good agree-
ment is obtained, especially in the main lobe of the transfer function. Note 
that the theoretical group delay curve has been slightly up-shifted in 
Fig. 2.2 in order to allow for an easier comparison. 

Fig. 2.2. (Top) phase responses calculated by applying the Wiener–Lee transform 
algorithm to the measured and calculated reflectivities of the uniform fibre grating 
whose transfer function is represented in Fig. 2.1. The calculated reflectivity is also 
plotted on a linear scale. (Bottom) corresponding theoretical group delay and group 
delay recovered from the theoretical reflectivity 
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The example above nevertheless confirms the concerns raised in [19] 
regarding the practical applicability of the method. Even if the main fea-
tures of the phase or group delay of a filter that is known to be of the 
minimum-phase type can be retrieved by Kramers–Kronig analysis, the 
accuracy of the method might be questioned when it deals with the charac-
terisation of the phase of imperfect real devices. 

2.3  Measurement of the Dispersion of WDM Components 

Due to the aforementioned difficulties associated with the use of ampli-
tude-phase relations, direct measurement of the phase, group delay or dis-
persion of WDM filters is often preferred. In this section, two broad cate-
gories of phase-related quantities measurement techniques, based on either 
interferometry or small signal amplitude modulation of a continuous light-
wave, are presented, and their advantages and limitations discussed. 

2.3.1  Interferometric Techniques 

A broad class of techniques enabling the characterisation of phase-related 
quantities makes use of interferometers where phase shifts can be con-
verted into intensity variations that can be detected using a conventional 
photodiode. Several approaches have been followed in order to measure 
the phase properties of optical filters. A common difficulty to most imple-
mentations is the need for stabilisation schemes aimed at suppressing 
phase drifts as well as a precise calibration of the measurement set-up in 
the absence of the device under test. 

Some early measurements have made use of coherent sources for the 
characterisation of the phase of optical filters. For instance in [27], meas-
uring the power oscillations at the output of a Michelson interferometer 
while a laser was tuned over the device passband enabled to characterise 
the dispersion of a bulk grating pair as well as that of a linearly chirped 
waveguide grating. An all-fibre Michelson interferometer using phase 
modulation in the reference arm and lock-in detection was proposed in 
[28] and was used for some of the first characterisations of the group 
delay of a variety of fibre gratings [29]. The technique directly measures 
the phase change induced by the device under test while a laser is tuned 
over its passband. Phase-locked interferometry, where the delay of the 
reference arm of a Michelson interferometer is continuously adjusted 
while the wavelength is scanned, has been shown to enable group delay 
measurements with high temporal and spectral resolution, however at the 
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price of a complex experimental set-up where the delay is measured using 
the interference pattern of an auxiliary coherent source [30]. 

A second approach consists of a wavelength domain analysis of the inter-
ference fringes obtained at the output of a Michelson or Mach–Zehnder 
interferometer under broadband illumination. Initially applied to the charac-
terisation of short lengths of optical fibres [31], the technique has also been 
used for the characterisation of wavelength-selective elements such as 
a grating pair [32] and, more recently, short lengths of photonic bandgap 
fibres [33]. Dispersion affects the wavelength periodicity of the interference 
fringes measured using an optical spectrum analyser. The local maxima or 
minima of the phase versus wavelength correspond to slow modulation of 
the interference fringes. Once the phase turning points have been identified, 
the phase can be fully reconstructed by keeping in mind that consecutive 
local maxima of the fringes on either side are obtained for phase jumps of 

2 . The interferometer needs to be balanced within the coherence length of 
the source, requiring a tuneable path length in the reference arm and possi-
bly stabilisation of its operating point. Both temporal and spectral resolution 
depend on the number of interference fringes visible in the bandwidth of the 
device under test, making the method unsuitable for narrow filters with low 
dispersion. On the other hand, wide bandwidth and highly dispersive de-
vices could be characterised by this technique as long as the knowledge of 
small group delay ripples is not required. 

Low Coherence Interferometry 

A powerful approach to the characterisation of the group delay of WDM 
filters is low coherence interferometry [34 36], also sometimes known as 
Fourier transform spectroscopy. A typical low coherence interferometry 
set-up is represented in Fig. 2.3 in a Mach–Zehnder configuration suitable 
for the characterisation of transmission filters such as arrayed waveguide 
gratings [37]. Reflective devices such as fibre Bragg gratings can be char-
acterised in the same set-up using a circulator or in an equivalent Michel-
son interferometer configuration [38]. A low coherence source generates 
a broadband signal that is input to a 3 dB coupler. The device under test is 
inserted into one of the arms of the Mach–Zehnder interferometer while the 
second arm contains a variable length reference path. When the optical path 
length difference between the light contributions propagating in the two 
arms of the interferometer is within the coherence length of the source, 
interference fringes are obtained at the output 3 dB coupler and can be re-
corded via a photodetector followed by an analogue-to-digital converter for 
further processing. 
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Fig. 2.3. Low coherence Mach–Zehnder interferometer for the measurement of the 
complex transfer function of optical filters used in transmission. An equivalent 
Michelson structure can be used for reflective devices. DUT: device under test; PD: 
photodiode; A/D: analogue-to-digital converter; M: motor driving the translation stage 
setting the variable delay 

The method can be understood as follows. Let E1(t) and E2(t) be the con-
tributions to the electric field at the output 3 dB coupler that have propagated 
from the source through the upper and lower arm of the interferometer, re-
spectively. Let t1 and t2 be the delays from port  to port  corresponding to 
propagation through the device under test (DUT) and the reference arm, 
respectively. Let E(t) be the field emitted by the source and S( ) its spectral 
density. The intensity detected at port  is proportional to the square of the 
modulus of the field averaged over a large number of optical cycles 

2

21 )()()( tEtEtI , (2.9) 

where the angled brackets denote time averaging. Assuming identical po-
larisations for E1 and E2, the intensity becomes 

)()(2)()()()()( *
21

*
22

*
11 tEtEtEtEtEtEtI . (2.10) 

The first two terms are constant (dc) offsets, while the interference term 
can be shown to contain information about the transfer functions of the 
two arms of the interferometer. If the transfer functions of the device under 
test and of the reference path are denoted H( ) and Href( ), respectively, 
the two contributions to the total field at port  can be written, assuming 
an ideal 3 dB coupler and neglecting the equal constant phase shifts ex-
perienced in the couplers along the two paths, 

1

1

1
( )  ( ) ( )  ,

4
i t tE t E H e d  (2.11) 
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where )(
~
E is the Fourier transform of the input field E(t). In a similar way 

2

2

1
( )  ( ) ( )  

4
i t t

refE t E H e d . (2.12) 

Hence the interference term 
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With the usual assumptions of ergodicity and stationarity for the field 
E(t), the time average can be replaced by ensemble average and it can be 
shown that 

)( ' 2)'(
~

)(
~ * SEE  (2.14) 

where  is the Dirac delta function. The interference term in (2.10) can 
therefore be written 

)()(
2

1
)()(2)( *1*

2121 refac HHSFtEtEI  (2.15) 

where F–1 denotes inverse Fourier transform. The argument of the interfer-
ence term is the difference in time delay 21 = t2 t1 that is linked to the opti-
cal path difference x between the light propagating in each of the arms of 
the interferometer. Consequently, if the interference fringes are recorded 
while x is changed by continuously increasing the length of the reference 
path along a translation stage, the interferogram I( x) contains information 
about the complex transfer function (therefore including the desired phase 
information) of the device under test. In practice the Fourier transform of 
the fringes also contains information about other devices in the test path 
(such as the optical fibre patch cords, imperfections in the 3 dB coupler, 
etc.). However, performing a measurement scan without the device under 
test enables a total calibration of the set-up from which the parasitic contri-
butions to the measured H( ) as well as *

refH ( )S( ) can be determined. 
A variant of the technique makes use of a tuneable narrow band source 

and detects the shift of the centre of the fringes’ envelope when the wave-
length of the source is changed, enabling a direct determination of the 
variations of the group delay with wavelength [9, 34]. The time resolution 
depends on the visibility of the fringes’ envelope which improves with 
increasing source bandwidth, while the spectral resolution is also obvi-
ously limited by the bandwidth of the source, making the method only 
suitable for the characterisation of broad bandwidth components. An all-
fibre implementation of a low coherence reflectometry technique suitable 
for the characterisation of a broadband grating was also presented in [39]. 
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Fig. 2.4. Calculated low coherence interference fringes obtained from a broadband Gaus-
sian source with 40 nm FWHM (top) and after reflection by a fibre Bragg grating filter 
designed for 50 GHz channel spacing (centre). Fourier transforming the fringes enables 
the determination of the spectral density of the source and the complex transfer function of 
the filter. Interference fringes that would be obtained from a linear phase grating with 
identical amplitude transfer function are also represented for comparison (bottom)

Figure 2.4 shows calculated low coherence interferometry fringes ob-
tained by using a broadband source modelled as having a Gaussian spec-
trum with 40 nm full-width half-maximum (FWHM) bandwidth. The in-
terferograms have been calculated with and without a Gaussian apodised 
grating designed for WDM systems with 50 GHz channel spacing in the 
test arm of the Michelson interferometer. Fourier transforming the inter-
ference fringes would enable to recover the grating complex transfer 
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function. In order to illustrate that the phase transfer function is indeed 
influencing the recorded interferogram, an additional calculation has been 
performed where a hypothetical device having the same amplitude re-
sponse as the 50 GHz grating, but linear phase, was considered in the test 
arm of the interferometer. Note that the spatial spread of the interfero-
grams is larger in the presence of the optical filter as a consequence of 
band limitation. Consequently the larger scale used in the centre and bot-
tom graphs of Fig. 2.4 does not enable to resolve the interference fringes 
but only their envelope. 

The method is fast since both, amplitude and phase characteristics of the 
filter, can be obtained with a single scan of the tuneable delay line. How-
ever, it requires a high linearity of the translation stage in the reference 
arm. In practice a second interferometer making use of e. g. an He-Ne laser 
is used to monitor the change in path length while the variable delay is 
scanned. The wavelength resolution depends on the scanning range and 
can be increased by zero padding the interferogram before applying a fast 
Fourier transform (FFT) algorithm. The technique has also been shown to 
exhibit a large dynamic range [38], making it suitable for the characterisa-
tion of the dispersion at the edges of the passband of WDM filters. How-
ever, the visibility of the fringes decreases when a bandpass element such 
as a WDM filter is included in the test arm. As the group delay and disper-
sion are obtained by differentiation of the phase, a sufficient signal-to-
noise ratio should be ensured to avoid numerical errors. Smoothing of the 
measured data, averaging over multiple scans, or enhanced balanced detec-
tion can be applied. 

The use of low coherence interferometry has been reported for the char-
acterisation of fibre Bragg gratings [38, 40], showing clear benefits in 
terms of accuracy and acquisition speed compared to the widely used 
modulation phase-shift method that will be described in Sect. 2.3.2, how-
ever at the price of increased complexity of the measurement set-up. One 
unique feature of the method is the possibility to retrieve the group delay 
characteristics of individual gratings in a cascade, provided the contribu-
tion of each component to the interferogram can be isolated, or by process-
ing of the entire interferogram if the reflection bands of the gratings do not 
overlap [41]. The method has also been successfully applied to the charac-
terisation of the dispersion of arrayed waveguide gratings (AWGs). In one 
approach the entire interferogram is Fourier transformed, directly leading 
to the device dispersion [37]. Resolving the respective contributions of 
each waveguide in the array, from which the phase and amplitude error 
distribution can be determined, has also been shown to enable full accurate 
modelling of the AWG including its dispersion [37, 42, 43].
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2.3.2  RF Modulation Methods 

The Modulation Phase-shift Method 

Due to its relative simplicity of implementation, the modulation phase-
shift (MPS) technique [44, 45] has become the method of choice for char-
acterisation of the dispersion of optical fibres as well as of optical compo-
nents. Early reports of the use of the MPS method for WDM filters fo-
cused on devices such as Mach–Zehnder planar dispersion equalisers [46] 
or arrayed waveguide grating multiplexers [3]. A typical phase-shift set-up 
is shown in Fig. 2.5. Light from a continuous wave (CW) tuneable laser 
is externally modulated with a sinusoidal signal at frequency fm using 
a Mach–Zehnder modulator (MZM). The choice of the modulation fre-
quency, typically from a few tens of megahertz up to a few gigahertz, will 
be discussed in detail later. The modulated light is then input to the device 
under test before being detected by a photodiode. The photocurrent is 
bandpass filtered around fm before being input to a vector voltmeter (VM). 
In practice, a network analyser can conveniently be used to provide the 
radio frequency signal used to drive the modulator and perform relative 
phase measurements. Comparison of the phase of the detected photocur-
rent at fm with the reference phase of the modulating signal enables the 
determination of the group delay of the device under test according to 

02 mf  (2.16) 

where 0 is the wavelength of the tuneable laser source that is precisely 
monitored using a wavelength meter (WM). Repeating the measurement 
while the wavelength is tuned over the wavelength range of interest enables 

Fig. 2.5. Modulation phase-shift measurement set-up. TLS: tuneable laser source; 
WM: wavelength meter; MZM: Mach–Zehnder modulator; RF: radio frequency signal 
generator; DUT: device under test; PD: photodiode; EBPF: electrical bandpass filter; 
VM: vector voltmeter 
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the determination of the relative group delay as a function of wavelength 
from which the dispersion can theoretically be calculated according to (2.4). 

In order to understand the limitations of the MPS method, it is essential to 
clarify the assumptions under which (2.16) has been derived. The complex 
representation of the electric field at the output of the MZM can be written 

ti
min etmEtE 0cos10  (2.17) 

where 0 is the angular frequency of the continuous lightwave generated in 
the tuneable laser, m is the modulation angular frequency,  is the phase 
of the modulating signal, and m is the modulation index. The spectrum of 
the modulated signal consists of a carrier at 0 and of two side-bands at 

0 - m and 0 + m. The electric field at the output of the DUT, whose 
complex transfer function has been defined according to (2.1), can easily 
be calculated by considering the attenuation and phase shifts experienced 
by the carrier and the two side-bands. If it is assumed that the carrier and 
the two side-bands experience the same amount of attenuation from the 
DUT (i. e. the magnitude of its transfer function can be considered constant 
over the bandwidth of the amplitude-modulated signal), therefore 

0 0 0m mH H H , (2.18) 

then the component of the photocurrent that is retained after electrical 
bandpass filtering around m can be written 

2

0 0 0cos cos
2 2m mi t i m H t  (2.19) 

where + and - are shorthand notations for the phase shifts experienced by 
the upper and lower side-bands, respectively. Hence the phase difference 
between the detected signal and the reference signal used to drive the 
modulator is 

2
. (2.20) 

Equation (2.20) shows that the amplitude-modulated (AM) signal effec-
tively probes the DUT at two frequencies corresponding to its two side-
bands, and that the method effectively returns an average of the phase of 
the DUT at the side-bands’ frequencies. If, furthermore, the phase can be 
assumed to vary linearly around the laser carrier frequency, 

0 0 0 , (2.21) 

then the phase difference  can be directly related to the group delay at 0

according to (2.16). This last assumption is equivalent to considering the 
group delay constant over the bandwidth of the amplitude-modulated signal. 
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Equation (2.16) shows that, for a given phase resolution of the vector 
voltmeter or network analyser, typically of the order of 0.1°, the group 
delay resolution of the method can be improved by increasing the modula-
tion frequency. However, this will result in a larger frequency separation 
between the side-bands of the AM signal. Consequently, the assumption 
that the phase of the DUT can be considered linear over the bandwidth of 
the amplitude modulated signal might no longer be satisfied. 

The modulation phase-shift technique is widely used for the characterisa-
tion of the dispersion of optical fibres [47] where both, dispersion and at-
tenuation, are expected to be slowly varying functions of wavelength, mean-
ing that the assumptions of (2.18) and (2.21) are fulfilled over a frequency 
range up to a few gigahertz corresponding to the separation between the AM 
signal side-bands. However, the situation is radically different in the case of 
the characterisation of WDM filters where both, the dispersion and attenua-
tion, are expected to vary significantly with wavelength, especially at the 
edges of the pass-band or stop-band of the device. Furthermore, as the dis-
persion values associated with optical filters are expected to be relatively 
small, the use of relatively high modulation frequencies might be required 
for their characterisation, hence increasing the side-bands’ separation. Con-
sequently, a compromise has to be found between group delay resolution 
and distortion induced by the averaging effect. 

This point is illustrated in Fig. 2.6 where results of phase-shift measure-
ments performed on a fibre Fabry–Perot filter with a FWHM bandwidth of 
40 GHz are represented together with the calculated group delay response of 
the filter. While reasonably good agreement is obtained for a modulation 

Fig. 2.6. Relative group delay of a 40 GHz fibre Fabry–Perot filter measured by the 
phase-shift technique using modulation frequencies of 10 and 20 GHz. The calculated 
group delay curve is shown for comparison. Note that raw measurement data without
curve fitting nor averaging are presented 
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frequency of 10 GHz, this is no longer the case at 20 GHz where the meas-
ured group delay departs significantly from the theoretical value. 

The relative error induced by the use of a too high modulation frequency 
can be assessed numerically if the theoretical group delay or dispersion re-
sponses are known. Not only the relative phase experienced by the two side-
bands affects the accuracy of MPS measurements, but also their relative 
attenuation. Figure 2.7 shows the theoretical group delay response of 
a Gaussian apodised fibre Bragg grating designed for 50 GHz channel spac-
ing (FWHM bandwidth: 44 GHz) together with simulated phase-shift meas-
urement results that would be obtained when using modulation frequencies 
of 1, 5, 10, and 20 GHz. Relatively good agreement is observed between  
the theoretical group delay and the simulated measurement performed with 
a modulation frequency of 1 GHz. However, the group delay features at the 
edges of the passband are no longer properly characterised when the modu-
lation frequency is increased to 5 or 10 GHz. An inversion of the variations 
of the measured group delay close to the passband centre frequency even 
appears when a modulation frequency of 20 GHz is used. In contrast to the 
case of a real measurement, only the choice of a too high modulation fre-
quency affects the retrieved group delay in those simulations. In practice, 
the resolution of the group delay at low modulation frequencies will be lim-
ited by the phase accuracy of the vector voltmeter and the signal-to-noise 
ratio of the detected signal. The latter will limit the bandwidth over which 
accurate measurements can be performed due to the filter attenuation. 

Fig. 2.7. Theoretical transfer function of a Gaussian apodised fibre Bragg grating 
designed for 50 GHz channel spacing and simulated group delay curves obtained with 
the phase-shift method using modulation frequencies of 1, 5, 10, and 20 GHz
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In the case of the characterisation of the group delay ripples typically 
associated with fibre Bragg gratings (those will be discussed in more de-
tails in Sect. 2.4.3 as well as in Chap. 5), increasing the modulation fre-
quency will decrease the amplitude of the measured ripples [48]. Depend-
ing on their wavelength periodicity, some modulation frequencies might 
even result in an inversion of the polarity of the measured group delay 
ripples [49]. 

A drawback of the modulation phase-shift method is that it enables the 
determination of the group delay of the device according to (2.16), and not 
of its dispersion. The dispersion can be obtained by numerical differentia-
tion based on (2.16). However, the numerical differentiation of noisy 
measurement data turns out to be difficult unless a fitting or smoothing 
procedure is used [50]. Consequently, it has become customary to use 
a representation of the group delay as a function of wavelength to describe 
the measured dispersive properties of WDM filters in scientific publica-
tions or product data sheets. An adaptation of the MPS method, known as 
the “differential phase-shift technique” [51], uses low speed modulation of 
the frequency of the laser source operated in an otherwise conventional 
phase-shift set-up to directly detect the change in group delay occurring 
over the wavelength excursion of the laser , hence enabling a direct de-
termination of the dispersion according to 

/ 2 / 2

2 m

D
f

. (2.22) 

The method suffers from the same limitations as the conventional phase-
shift technique regarding accuracy of the measurement of devices having 
strong wavelength-dependent features such as WDM filters, but it removes 
the need for curve fitting in order to obtain the dispersion from the meas-
ured group delay. A detailed comparison of the MPS and differential 
phase-shift techniques in a metrology environment can be found in [52, 53]. 

Enhancement of the Accuracy of the Phase-shift Technique 

Since the shortcomings of the modulation phase-shift method for the char-
acterisation of WDM filters have been realised, a number of approaches 
have been suggested in order to improve its accuracy. 

If a single side-band (SSB) signal is substituted to the double side-band 
amplitude-modulated signal in a conventional phase-shift set-up, the dif-
ference between the phase of the detected signal at m and the phase of the 
sinusoidal signal driving the modulator becomes 

0 , (2.23) 
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where the sign depends on the selected side-band, and 0 is the phase shift 
induced by the filter at the carrier frequency 0. Such a single side-band 
signal can easily be generated by creating a 90 degree phase-shift between 
the sinusoidal signals applied to the two arms of a dual-drive Mach–
Zehnder modulator [54]. By keeping the CW laser frequency 0 constant 
and sweeping the modulating frequency, it becomes possible to directly 
map the phase transfer function of the device under test with high accuracy 
[55], including group delay ripples that would not be resolved using the 
conventional MPS method. 

Another approach consists in locking one of the side-bands of the AM 
signal to a precise absolute frequency and increasing the modulation fre-
quency simultaneously with the CW laser carrier frequency, so that the 
second side-band scans over the wavelength range of interest [56]. As for 
the SSB method, the wavelength range over which the measurement is 
performed is then limited by the maximum frequency at which amplitude 
modulation and detection are possible, typically up to a few tens of giga-
hertz. The characterisation of typical WDM filters will require the meas-
urement to be repeated at different carrier frequencies or locked side-band 
absolute frequencies in order to scan over the full bandwidth of the device. 

Post-processing of measurement data obtained using the conventional 
phase-shift technique has also been proposed as a way to circumvent the 
averaging effect of the method at high modulation frequencies. In [57] the 
measured group delay spectrum meas( ) has been shown to be equal to the 
convolution of the real group delay with a rectangular function  equal to 
1/2 m over the interval [- m, m],

2meas m . (2.24) 

Fourier transforming (2.24) leads to 

 sincmeas mu u u , (2.25) 

where T(u) and Tmeas(u) are the Fourier transforms of the real and meas-
ured group delay, respectively, and where the Fourier variable u is related 
to the inverse of the frequency period of the ripples. This approach has 
been successfully applied to explain the reduction of the amplitude of 
measured group delay ripples when the modulation frequency is increased, 
as well as the inversion of polarity observed for some modulation frequen-
cies, depending on the spectral content of the ripples. However, deconvo-
lution of measured phase-shift data is made difficult due to the zeros of the 
sinc function. Performing phase-shift measurements at two different modu-
lation frequencies and using a weighted average of their Fourier transforms 
has been shown to overcome this difficulty [58]. 
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Beyond the influence of the modulation frequency, other limitations of 
the accuracy of the MPS method such as the residual chirp of the Mach–
Zehnder modulator, the phase linearity of the electrical devices when the 
power of the detected optical signal is varying, for instance due to the edge 
of the transfer function of a filter [59], or the influence of the amplified 
spontaneous emission noise of the laser source [60] have been pointed out. 
Phase drifts of the measurement system might also constitute a limiting 
factor, especially when either high spectral resolution characterisation is 
performed by using small tuning steps for the CW laser, or when high ac-
curacy is sought at lower modulation frequencies by averaging over a large 
number of measurements of the electrical phase difference . Fast wave-
length scanning has been demonstrated using continuously swept lasers 
[61], however, at the price of reduced wavelength accuracy due to the im-
possibility to use conventional wavelength meters. 

In spite of its known limitations, the modulation phase-shift method has 
established itself as the standard for group delay measurements of WDM 
filters due to is relative simplicity. Careful optimisation of the measure-
ment set-up and procedure has been shown to enable high accuracy charac-
terisation [53, 59, 62]. It is nevertheless essential to be aware of its limita-
tions in order to allow for a correct interpretation of MPS measurement 
results, as provided for instance in WDM filter manufacturers’ data sheets. 

The Dispersion Offset Method 

The analysis of the modulation phase-shift method shows that the ampli-
tude of the photocurrent at the modulation frequency also depends on the 
phase properties of the device under test through the even orders of its 
Taylor expansion, as can be seen in (2.19). If a second order Taylor expan-
sion is sufficient to describe the phase around the carrier wavelength 0,
the cosine term describing the amplitude of the photocurrent in (2.19) can-
cels for modulation frequencies satisfying 

2
2
0

1 2  
k

k c
f

D
, (2.26) 

where k is a strictly positive integer. It is therefore possible to relate the 
frequencies at which the magnitude of the photocurrent cancels to the value 
of the dispersion at the carrier frequency. Such an RF modulation method, 
also known as “fibre transfer function” method, has been proposed for the 
measurement of dispersion in optical fibres [63, 64] and can be extended to 
the direct characterisation of the dispersion of filters [65]. The method re-
lies on the fact that, due to the dispersive nature of optical components, the 
propagation constants of the two side-bands of the amplitude-modulated 
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signal are different. For a given dispersion value, modulation frequencies 
can be found where the components of the beat signal between the carrier 
and the side-bands are in counterphase, resulting in cancellation of the 
photocurrent seen as dips in the small-signal frequency response. The ex-
perimental approach consists of sweeping the frequency of the modulating 
signal and detecting the cancellations of the photocurrent on a network 
analyser in order to measure the frequencies fk from which the dispersion at 
the CW laser frequency can be calculated according to (2.26). Such a mea-
surement can be performed by using a set-up similar to the one represented 
in Fig. 2.8. 

From (2.26) it can be seen that the minimum dispersion that can be 
measured by this method depends on the maximum frequency at which the 
amplitude modulated signal can be generated and detected. This limitation 
arises from the fact that, for a given amount of dispersion, the phase mis-
match between the side-bands required for cancellation of the photocurrent 
is only achieved when the side-band separation is large enough. For in-
stance, a minimum dispersion of 156 ps/nm can be measured at 1550 nm if 
the maximum modulation frequency is 20 GHz. By inserting a constant 
dispersion offset, such as a length of standard single mode fibre, small 
values of both positive and negative dispersions can be measured, making 
the method suitable for the characterisation of optical filters. Such an off-
set will increase the total amount of dispersion to a value large enough to 
be measured by the set-up. The dispersion of the device under test is then 
equal to the change in total dispersion after it has been inserted. Stability 
of the dispersion offset over time should therefore be ensured, for instance 
by keeping it at a constant temperature. 

Fig. 2.8. Dispersion offset measurement set-up. TLS: tuneable laser source; MZM: 
Mach–Zehnder modulator; FO: fibre offset; DUT: device under test; PD: photodiode; 
NA: network analyser 
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When characterising optical filters, the two side-bands of the AM signal 
might experience different attenuation. In this case, it can easily be shown 
[65] that imperfect cancellation of the detected signal occurs, resulting in 
shallower dips in the modulation transfer function, but that the frequencies 
of the dips are not affected by the relative amplitude of the side-bands. How-
ever, this effect limits the accuracy of the determination of the dips’ frequen-
cies. Consequently, the applicability of the method depends on the steepness 
of the slope of the amplitude transfer function of the filter under test. 

As an example, the dispersion offset method has been applied to the char-
acterisation of a commercial fibre grating Mach–Zehnder optical add-drop 
multiplexer (OADM) based on the design initially proposed in [66], show-
ing values in excess of 40 ps/nm in the considered wavelength range, as 
illustrated in Fig. 2.9. 

In the remaining part of this chapter, it will be examined how the know-
ledge of the dispersion of optical filters can be related to their impact on 
transmission systems and networks, thus allowing proper selection of a fil-
ter type for a given application. 

2.4  Dispersion of WDM Filters and System Implications 

The dispersive properties of WDM filters have been the object of increased 
attention over the past few years. Consequently, those are now systemati-
cally studied, either based on measurements performed on real devices 
using one of the methods described in Sect. 2.3, or based on filter model-
ling. The phase behaviour of various WDM filter technologies has been 
discussed in depth in previous work [4, 5, 67], and the phase characteristics 

Fig. 2.9. (Left) measured frequency response of 50 km of standard single mode fibre. 
The shift of the frequency dips enables to determine small dispersion values introduced 
by optical components such as WDM filters. (Right) dispersion of a fibre grating Mach–
Zehnder optical add-drop multiplexer measured with the dispersion offset technique 
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of some of the filter types covered in the present book are presented indi-
vidually in the relevant chapters. In this section, some general issues about 
the dispersion of optical filters and its system implications are discussed. 
First, the group delay behaviour of three of the most widely used WDM 
filter technologies (fibre Bragg gratings, multilayer interference filters, and 
arrayed waveguide gratings) is compared based on measurements per-
formed on commercially available components. The system impact of fil-
ter dispersion and methods for its numerical and experimental evaluation 
are then reviewed. The special case of group delay ripples presented by 
some types of filters such as chirped Bragg gratings is treated separately. 
Finally, novel filter designs where additional degrees of freedom are intro-
duced in order to simultaneously tailor their amplitude and phase re-
sponses are briefly presented. 

2.4.1  Dispersive versus Linear–phase Filters 

Filter technologies such as fibre Bragg gratings (Chap. 5), thin-film inter-
ference filters (Chap. 7) and arrayed waveguide gratings (Chap. 4) have 
a strong potential for WDM systems applications due to their versatility 
and design degrees of freedom. They are typically used in subsystems such 
as optical add-drop multiplexers and optical cross-connects (OXCs), as 
well as in terminal multiplexers and demultiplexers. In what follows, typi-
cal group delay curves measured on commercial devices are compared in 
order to highlight the characteristic features of each type of filter. All 
group delay curves presented here have been measured using the standard 
modulation phase-shift method. 

One of the main advantages of the fibre Bragg grating technology is that 
the transfer function of the filter can be tailored by the proper choice of the 
distribution of the coupling coefficient along the fibre length, which is 
itself determined by the longitudinal effective refractive index profile. In 
this way it becomes possible to “square” the passband and to reduce the 
crosstalk level of fibre grating filters used in reflection, a process known as 
apodisation. Whether this process necessarily results in increased group 
delay at the edges of the transfer function depends on whether the filter  
is minimum-phase, which is not systematically the case when a fibre grat-
ing is used in reflection, as will be described in Sect. 2.4.4. For instance,  
a Gaussian apodisation profile can be used to simultaneously square the 
pass-band while maintaining an acceptable crosstalk level [26]. As an il-
lustration, two commercial-grade devices designed for dense wavelength 
division multiplexing (DWDM) systems with 100 and 50 GHz channel 
spacing have been characterised by the phase-shift technique. The results 
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obtained with a modulation frequency equal to 2 GHz are shown in 
Fig. 2.10. It can be seen that the shape of the group delay curve is similar 
for both bandwidths. However, the extent of the variations of the group 
delay with wavelength is much higher in the 50 GHz grating case, indicat-
ing that this device exhibits higher values of dispersion in the passband 
than its 100 GHz counterpart. 

Dielectric multilayer interference filters, also known as thin-film filters, 
consist of several Fabry–Perot like cavities separated by reflectors made of 
stacks of alternating low and high refractive index quarter-wave layers. 
The possibility to tailor their bandwidth and the steepness of the slope of 

Fig. 2.10. Measured reflectivity and group delay of Gaussian apodised fibre Bragg 
gratings designed for 100 GHz (top) and 50 GHz channel spacing (bottom). The modu-
lation phase-shift frequency used for the group delay measurements is fm = 2 GHz 
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their transfer function by engineering the number of cavities and /4 di-
electric layers makes them particularly attractive for DWDM applications 
[68, 69]. A typical transfer function of a thin-film (de)multiplexer is repre-
sented in Fig. 2.11, showing a characteristic flat-top and relatively steep-
slope response. The 3 dB and 20 dB bandwidths of the transfer function are 
80 and 120 GHz, respectively. The dispersion is equal to 0 ps/nm at the 
centre wavelength and is found to vary between 60 and 20 ps/nm within 
the 3 dB bandwidth. The dispersion behaviour of thin-film filters depends 
on the device structure and can also be influenced by imperfections in 
layer deposition resulting in non-uniformities and surface roughness [70]. 
As such devices can be shown to be minimum-phase in transmission [5], 
any attempt to square their transfer function, for instance in order to ac-
commodate smaller channel spacing in DWDM systems, will result in 
increased dispersion at the edges of the passband. However, exploiting 
their design degrees of freedom can be used to mitigate dispersion effects 
while preserving an acceptable amplitude response [71, 72]. Additionally, 
a second stage consisting of a reflective all-pass filter can be added in or-
der to partially compensate for the dispersion of conventional transmission 
bandpass filters [73] (cf. Fig. 7.7). 

As pointed out in [5], the mechanism of resonant coupling in grating de-
vices means they could be considered to the limit as being equivalent to 
thin-film filters with a large number of cavities. The measured group delay 
responses represented in Figs. 2.10 and 2.11 confirm the similar behaviour 
of these two types of filters, although the characterised thin-film filter  

Fig. 2.11. Measured transmittivity and group delay (modulation frequency fm = 2.5 GHz)
of a thin-film filter-based demultiplexer 
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appears to be less dispersive than a Gaussian apodised grating of equivalent 
bandwidth. 

Arrayed waveguide gratings consist of two free-propagation regions to 
which the input and output fibres are connected, linked by an array of 
waveguides designed in such a way that the optical length difference be-
tween two consecutive waveguides is constant [74, 75, see also Chap. 4]. 
Those devices can be used as (de)multiplexers as well as wavelength 
routers. It can easily be shown that, if the distribution of the excitation of 
the arrayed waveguides is symmetric, then an AWG is a linear-phase de-
vice, consequently dispersion-free [5, 67]. 

Figure 2.12 shows the measured power transfer function and group de-
lay of a conventional (i. e. whose passband has not been flattened by some 
of the techniques discussed briefly in Sect. 2.4.4 as well as in Chap. 4) 
AWG designed for 200 GHz channel spacing and having a 3 dB bandwidth 
of 125 GHz. A modulation frequency as high as 10 GHz was necessary in 
order to be able to measure the group delay in the passband, indicating that 
the device exhibits low dispersion values. At such a high modulation fre-
quency, the limitations of the measurement method described in Sect. 2.3.2 
should be kept in mind. The maximum dispersion value in the passband is 
estimated to be 2 ps/nm, confirming the nearly linear-phase nature of 
conventional non passband flattened AWGs. 

The origin of residual dispersion has been investigated in AWG multi-
plexers with a Gaussian spectral response, as well as for passband flattened 
devices [42]. Phase and amplitude errors in the transmission of the arrayed 
waveguides have been identified as the main source of the dispersion. Fourier 

Fig. 2.12. Measured transmittivity and group delay (modulation frequency fm = 10 GHz)
of an arrayed waveguide grating demultiplexer designed for 200 GHz channel spacing 
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transform spectroscopy measurements performed on InP and silica-on-
silicon devices showed that slowly-varying phase errors (i. e. non-random 
contributions to the phase distribution of each path in the arrayed 
waveguides) were responsible for dispersion imperfections [43, 76], as con-
firmed by device modelling [77]. 

The three examples shown above highlight the importance of the choice 
of a proper technology if the dispersive properties of DWDM filters are 
relevant. The degrees of freedom offered by apodisation of fibre Bragg 
gratings enable to realise nearly ideal flat-top transfer functions offering 
low adjacent channel crosstalk and reduced passband narrowing when 
cascaded, however, at the expense of dispersion at the edges of the pass-
band. This has been shown to be even more critical for narrow bandwidth 
devices necessary to accommodate reduced channel spacing. On the other 
hand, concepts such as AWGs do theoretically offer dispersion-free de-
vices (in practice limited by manufacturing imperfections resulting in am-
plitude and phase errors between the arrayed waveguides) at the expense 
of a less ideal amplitude transfer function. It will be shown in Sect. 2.4.4 
how extra degrees of freedom can be introduced for advanced components 
design in order to mitigate those usual trade-offs. Even though their prop-
erties have not been detailed in this section, it is essential to keep disper-
sion in mind for the other filter technologies presented elsewhere in this 
book, including bulk grating based devices [78, 79], ring resonators [80], 
and wavelength interleavers [81]. 

2.4.2  System Impact of WDM Filter Dispersion 

Since it has been realised that the dispersion of optical filters might affect 
the performance of WDM systems [2, 3], a number of theoretical, numeri-
cal, and experimental studies attempting to assess the impact of filter dis-
persion have been reported. Such investigations aim at either getting 
a better understanding of the impact of a given complex transfer function 
on the quality of the filtered signal, hence potentially enabling to optimise 
the design trade-offs for the amplitude and phase responses, or at assessing 
the tolerances or scalability limitations of optical links or networks making 
use of such filters. 

From a component design point of view, the focus is on evaluating signal 
distortion induced by the combined effects of the amplitude and phase re-
sponses, in order to assess whether it is possible to reach a desired amplitude 
response target while keeping the phase induced distortion under control. In 
the case of wavelength (de)multiplexers, a so-called flat-top transfer func-
tion, presenting low adjacent channel crosstalk level, reduced bandwidth 
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narrowing when cascaded, as well as small dispersion values at the passband 
edges will be sought. In other types of filtering elements such as dispersion 
compensating devices, the target will be to achieve a desired dispersion pro-
file over a given bandwidth while minimising the effects of undesired group 
delay variations known as group delay ripples (cf. Sect. 2.4.3). 

Optical network designers will have interest in determining the maxi-
mum number of devices that can be cascaded over a link, hence the num-
ber of nodes over which a signal can be routed transparently without re-
sorting to optical or electro-optic regeneration [82]. Clearly, this number 
will depend on the rate at which the effective bandwidth of a cascade of 
filters decreases, justifying the need for flat-top transfer functions that are 
more resilient to bandwidth narrowing, but also on the dispersion accumu-
lated over the path, including filter-induced dispersion. Additionally, the 
knowledge of system margins is of paramount importance for the design of 
all-optical WDM networks. These margins include the tolerance to mis-
alignment between the signal centre frequency and the centre frequencies 
of the filters present along the link, which may be limited by the dispersion 
at the edges of the filters’ passbands. 
It is therefore essential to be able to evaluate dispersion-induced limita-
tions arising because of WDM filters. Together with other key filter pa-
rameters such as: 

insertion loss, 
passband shape, 
adjacent channel crosstalk, 
in-band crosstalk for devices such as wavelength routers, 
polarisation-dependent loss and polarisation mode dispersion, 
thermal and mechanical stability, 

the knowledge of the dispersive properties of a given filter and its system 
implications will help assessing the suitability of this particular filter tech-
nology to the system under design. 

It is beyond the scope of this chapter to present results on dispersion-in-
duced signal degradation for all the filter technologies presented elsewhere 
in this book. Those will depend not only on the filter type, but also on its 
practical realisation, as well as on numerous system parameters, including 
bit-rate, modulation format, signal extinction ratio, and chirp. Conse-
quently, such results will not be general enough to be of significant value, 
and general trends of the dispersive behaviour of the most widely used 
filter technologies have already been presented in Sect. 2.4.1. Instead, gen-
eral techniques used to evaluate the influence of WDM filter dispersion on 
signal degradation are introduced and illustrated by specific examples. 
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Many of the early demonstrations of the impact of filter dispersion refer 
to fibre gratings. Some of the first evaluations of the dispersion-induced 
limitation of the usable bandwidth of grating filters have been performed 
by assuming a maximum tolerable value of dispersion, for instance 
1000 ps/nm corresponding to about 1 dB power penalty for a 10 Gbit/s 
non-return-to-zero (NRZ) system [83]. By calculating the grating complex 
transfer function, typically by using a transfer matrix approach based on 
coupled-modes equations [84], it becomes possible to evaluate the fre-
quency range over which the filter dispersion remains within this limit 
[85]. While such an approach enables to easily link grating design parame-
ters (such as the apodisation function, grating length, and refractive index 
modulation value) to a system related quantity (the grating usable band-
width), it ignores the interaction between amplitude and phase filtering as 
well as the fact that the dispersion may vary significantly over the modu-
lated spectrum width, especially at the edges of the filter passband. Conse-
quently, more accurate system modelling is required in practice. Calculat-
ing the amount of broadening experienced by a single Gaussian pulse has 
been used to evaluate the dispersive behaviour of a chirped moiré grating 
exhibiting almost constant in-band group delay [86]. However, in digital 
optical communication systems, a linear device such as an optical filter 
may introduce intersymbol interference, and it is therefore desirable to 
evaluate its effect on a whole data pattern, usually modelled as a pseudo-
random bit sequence (PRBS). It is customary to resort to numerical simu-
lation in order to calculate the complex envelope of a modulated signal 
after it has been filtered by one or a cascade or WDM filters. In the ab-
sence of suitable receiver models able to properly evaluate the bit-error-
rate (BER) of signals strongly deteriorated by intersymbol interference, 
qualitative comparisons based on calculations of the eye-opening penalty 
(EOP) are often used. However, such a figure of merit is difficult to relate 
to the BER-based quantities, such as power penalty, that are used in prac-
tice to define the system margins. 

It is therefore preferable, whenever possible, to perform an experimental 
evaluation of the filtering-induced signal degradation. Such early investi-
gations have been reported for instance in [87, 88] for a single apodised 
fibre Bragg grating used in reflection or in transmission. The influence of 
the chirp of a 10 Gbit/s NRZ modulated signal was further investigated. 
Asymmetries in the penalty against wavelength detuning curves for 
chirped signals enabled to conclude on the influence of the grating disper-
sion that exhibits opposite signs on the short and long wavelength sides of 
the passband. A first experimental comparison of the power penalty in-
duced by a fibre Bragg grating and an arrayed waveguide grating filter was 
presented in [89], clearly outlining the inherent dispersive limitations of 
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fibre gratings as opposed to linear phase devices [90]. Other early reports 
on the evaluation of the system impact of filter dispersion include penalty 
measurements in transmission and reflection for a single tuneable grating 
[91]. As an illustration, Fig. 2.13 shows the measured penalty as a function 
of wavelength for a 10 Gbit/s NRZ signal reflected by a Gaussian apodised 
FBG designed for 50 GHz channel spacing. The usable bandwidth for 
a maximum tolerable power penalty can be determined from such a meas-
urement. However, distinguishing the relative contribution of phase and 
amplitude filtering is difficult. Numerical simulations, where it is possible 
to independently calculate the effect of amplitude, phase, and conjugated 
filtering, might provide qualitative insights into the main source of signal 
degradation and can be used to complement such penalty measurements. 

When a fibre grating is used in transmission, as is typically the case in 
optical add-drop multiplexer structures, either using optical circulators [92] 
or in a Mach–Zehnder interferometer configuration [66] (cf. Figs. 5.28 and 
5.29), its out-of-band dispersion might induce degradation to the channels 
that are immediately adjacent to the dropped one. This might ultimately 
limit the channel spacing in DWDM networks making use of such devices. 
This potential limitation was recognised in [93] where a single Gaussian 
pulse analysis was performed based on an analytical expression for the 
out-of-band dispersion of a grating used in transmission. An evaluation of 
grating dispersion in transmission and its consequence on pulse degrada-
tion was also performed in [94, 95] where the use of the grating in  

Fig. 2.13. Power penalty (at a BER of 10 9 – non-preamplified receiver) for a 10 Gbit/s 
NRZ signal reflected by the fibre grating designed for 50 GHz channel spacing whose 
complex transfer function is represented in Fig. 2.10. The conjugate effects of ampli-
tude and phase filtering are accounted for in the penalty curve. Black squares: power
penalty, full line: reflectivity 
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an OADM was considered. The cascadability of Gaussian apodised grat-
ings was also investigated in [96] based on an analytical expression for the 
out-of-band dispersion and a maximum tolerable value of dispersion. The 
fact that fibre gratings are minimum-phase filters in transmission has also 
been exploited to provide bounds on their dispersion and to examine the 
consequences for grating design [97]. Figure 2.14 shows the group delay 
of a fibre grating-based Mach–Zehnder OADM close to its stop-band. No 
dispersion impairments are expected if this device is used in a WDM sys-
tem with 200 GHz (1.6 nm at 1550 nm) channel spacing. However, opera-
tion with 100 GHz channel spacing would result in dispersion of the order 
of 5 to 15 ps/nm for the closest channels on both sides of the stopband. 
The attenuation and group delay ripples observed on the short wavelength 
side of the stop-band will be discussed in Sect. 2.4.3. 

As already mentioned, for network and system design, it is often desir-
able to know not only the impact of a single WDM filter on signal distor-
tion, but also that of a full cascade of filters, as encountered by the signal 
propagating along a given path in the network. In this case the full range of 
analytical and numerical techniques described previously remains avail-
able [95]. For instance, in [6] it was found that dispersion accumulation is 
the main limitation to the cascadability of flat-top FBGs and thin-film fil-
ters. Approximating the dispersion at the centre of the passband with 
a linear function of wavelength enabled to numerically assess the detuning 
tolerance of a cascade of filters for a given value of power penalty. 

Fig. 2.14. Measured transmittivity and relative group delay in transmission of a fibre 
grating Mach–Zehnder OADM. The group delay around the stop-band was measured at 
a modulation frequency of fm = 5 GHz, while fm = 2.5 GHz was used to characterise the 
group delay associated to the amplitude ripples on the short wavelength side (inset) 
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From the experimental side, transmission over a filter cascade can be 
emulated by re-circulating loop experiments where the signal is propagated 
a number of times through a single component. One obvious limitation to 
the scheme is that it emulates propagation through perfectly aligned filters 
having strictly identical transfer functions which is certainly not the case in 
a real network. However, unless one is able to do experiments on a specific 
link or path through a network, taking into account the relative detuning of 
the filters as well as manufacturing-induced differences between their 
transfer functions would require a statistical treatment in order to obtain 
results of a sufficiently general value, especially when the system is made 
nonlinear due to propagation over optical fibre spans. Other known limita-
tions of re-circulating loop experiments are the extra loss induced by the 
loop switch, as well as the fact that some length of fibre is necessary to 
store data into the loop. Consequently, if one is interested in evaluating the 
degradation induced by the filter alone, it should be ensured that this fibre 
span is perfectly dispersion-compensated and operated in the linear re-
gime. In spite of these limitations, re-circulating loops are convenient tools 
to emulate filtering-induced degradation in large scale WDM networks 
when only a few filter samples are available, as would be the case for de-
vice prototyping. 

Such an approach has been used in [3] to successfully demonstrate that 
the cascadability of WDM filters is also influenced by their dispersive 
characteristics. The detuning tolerance of dispersive multilayer interfer-
ence filters was found to be less than half that of dispersion-free AWG 
designs. In Fig. 2.15 it is shown how the usable bandwidth of the fibre 
Bragg grating designed for 50 GHz channel spacing, whose transfer func-
tion is represented in Fig. 2.10, narrows when the device is cascaded up to 
5 times in a re-circulating loop. Furthermore, its optimum operation wave-
length is shifted towards the short wavelength side of its passband 
(1558.98 nm) corresponding to an extremum of the group delay curve, 
hence zero-dispersion [98]. 

Another reported approach has consisted in measuring the power pen-
alty induced by a single grating, and after ensuring good agreement with 
simulations, numerically extrapolating the results to a cascade of filters 
[99]. Straight line experiments aiming at evaluating the power penalty 
induced by a cascade of FBGs have also been reported [100]. In [101], an 
experimental and numerical comparison of the power penalty induced by 
cascading fibre Bragg gratings and thin-film filters was further conducted. 
It was confirmed in this study that the dispersion of the gratings was 
largely responsible for the measured penalty. More recently, a detailed 
comparison of the cascadability behaviour of conventional Blackman 
apodised gratings with dispersion-optimised designs has confirmed the 
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importance of proper dispersion engineering for high bandwidth utilisa-
tion in FBG-based devices [102]. 

The use of vestigial side-band (VSB) filtering has enabled the demonstra-
tion of DWDM systems with high spectral efficiency and record capacity 
[103]. In such schemes the redundancy of the information contained in the 
two side-bands of e. g. an NRZ signal is exploited in order to reduce the 
channel spacing after partial suppression of one of the side-bands by optical 
filtering. In contrast to the conventional use of filtering elements as 
(de)multiplexers, the edge of the passband of optical filters is now used to 
effectively suppress the undesired side-band. Alternatively, a notch filter 
can be used for the same purpose [104]. In both cases, the need for a sharp 
filter cut-off necessary in order to obtain good side-band suppression may 
cause the preserved side-band to experience significant dispersion, depend-
ing on the filter technology. Consequently, a trade-off between the side-
band suppression ratio and the dispersion-induced pre-chirping of the signal 
needs to be considered since both result from the steepness of the VSB filter 
transfer function [105]. The negative dispersion associated with the short 
wavelength edge of the passband or stopband of a fibre grating might actu-
ally contribute to the observed enhanced dispersion tolerance of VSB sig-
nals whose corresponding side-band has been suppressed, as observed in 
[104]. To illustrate this point, the eye-opening penalty of a filtered 10 Gbit/s 
NRZ signal has been calculated for various values of the detuning of its 
centre frequency with respect to the centre of the passband of a Gaussian 
apodised FBG designed for 50 GHz channel spacing. The results are shown 

Fig. 2.15. Power penalty as a function of wavelength for 1 to 5 round trips in a re-
circulating loop set-up where a 10 Gbit/s NRZ signal is reflected by a Gaussian apo-
dised FBG designed for 50 GHz channel spacing 
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in Fig. 2.16 for transmission over 100 km standard single mode fibre, as 
well as directly at the output of the VSB filter. For comparison, the corre-
sponding eye opening penalties have also been calculated with a hypotheti-
cal VSB filter whose amplitude transfer function is the same as that of the 
FBG, but exhibiting no dispersion (linear-phase filter). It is clearly seen 
that, beyond reduction of the signal spectral width potentially allowing for 
increased spectral efficiency, the negative filter dispersion is mostly respon-
sible for the enhanced dispersion tolerance observed for positive frequency 
detunings. Consequently, the dispersion of the VSB filter needs to be taken 
into account for the proper design of such systems, as outlined in [104], as 
well as in [106] where a low dispersion bulk diffraction grating multiplexer 
was used for side-band suppression. 

2.4.3  Group Delay Ripples 

Fast oscillations of the group delay of an optical filter with respect to 
wavelength are usually referred to as group delay ripples (GDR). Here, fast 
oscillations means that their frequency period is small compared to the 
filter bandwidth and to the average trend of the group delay change within 

Fig. 2.16. Top: calculated transfer function (reflectivity and dispersion) of a Gaussian 
apodised fiber Bragg grating designed for 50 GHz channel spacing. Bottom: eye-
opening penalty as a function of NRZ signal detuning with respect to the grating centre 
frequency. The EOP was calculated using a 210 1 pseudo-random sequence directly 
after the VSB filter (0 km) and after transmission over 100 km SMF. For comparison, 
EOPs have also been calculated assuming the VSB filter is linear-phase 
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the filter passband. Such ripples can be found in a number of resonant 
WDM filter types including chirped fibre Bragg gratings used for disper-
sion compensation [107] or for gain equalisation [108], long period fibre 
gratings [109], and various structures of all-pass filters designed for dis-
persion compensation [110, 111]. The amplitude and periodicity of the 
GDRs depend on the filter design as well as on imperfections in the fabri-
cation process. In the following, GDRs are illustrated in more detail in the 
context of chirped fibre Bragg gratings. However, the subsequent discus-
sion on their impact on optical fibre communication systems holds inde-
pendently of the filter technology. 

In the case of FBGs, group delay ripples occur due to interference in-
duced by reflections at the grating ends [112]. Those ripples can therefore 
be reduced by a proper apodisation of the grating [107, 113], cf. also 
Chap. 5. Furthermore, imperfections in the fabrication process are respon-
sible for random variations of the period and amplitude of the grating re-
fractive index modulation that also induce GDRs through residual multiple 
reflections [114, 115]. Consequently, beyond the optimisation of the apodi-
sation profile, improvements in the fabrication process are also necessary in 
order to allow better control of GDRs in chirped fibre gratings [116]. 

Figure 2.17 shows the attenuation and group delay (measured using the 
phase shift technique with a modulation frequency of 130 MHz) of an 
early chirped FBG. The average dispersion of the device (obtained from 
the slope of a linear fit to the measured group delay as a function of wave-
length over the 1555.0 to 1555.4 nm range) is of the order of 800 ps/nm, 

Fig. 2.17. Measured reflectivity and relative group delay of an early chirped fibre 
Bragg grating for dispersion compensation, showing typical group delay ripples asso-
ciated with this type of component 
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enabling compensation of the dispersion accumulated over about 50 km of 
standard single mode fibre. GDRs with a period of about 4 GHz and peak-
to-peak amplitude of up to several tens of picoseconds are clearly visible, 
resulting in large variations of the local dispersion. This example is pro-
vided for illustrative purpose only as contemporary chirped FBGs exhibit 
much lower GDRs thanks to optimised apodisation and improved fabrica-
tion techniques. 

In order to specify the amount of GDR that can be tolerated for a given 
system, it is essential to be able to assess its influence on the filtered sig-
nals. The impact of GDRs on system performance is difficult to predict 
since it depends on their amplitude, period (relative to the signal spectral 
width), and phase (with respect to the channel centre frequency). The pur-
pose of a typical chirped FBG is to compensate for the dispersion accumu-
lated by the signal over propagation in optical fibre. Consequently, pro-
vided higher order dispersion effects can be ignored in the fibre, a linear 
dependence of the group delay of the FBG with respect to wavelength is 
expected. Any departure from this situation is likely to result in unwanted 
signal distortion. For instance, a signal tuned close to the quadrature point 
of a sinusoidal group delay ripple having a frequency period sufficiently 
large compared to the bit rate will experience nearly constant dispersion, 
while the effect will be equivalent to that of higher order dispersion in case 
the signal is tuned close to an extremum of the ripple [117, 118]. Conse-
quently, the ripple will be responsible for the creation of echo pulses that 
may interact with neighbouring information bits, hence leading to inter-
symbol interference. This point is illustrated in Fig. 2.18, where the effect 
of a sinusoidal GDR on an isolated raised cosine pulse has been calculated 
for three different relative detunings between the ripple and the centre fre-
quency of the pulse spectrum. In the case of a sinusoidal GDR, the delay 
of the echo pulses can be shown to be equal to the inverse of the frequency 
period of the ripple. The worst case signal degradation is then induced by 
GDRs whose period is close to the bit rate [118–120]. Beyond this qualita-
tive understanding some figure of merit needs to be found in order to be 
able to quantify the effects of GDRs [121]. The problem is complicated by 
the fact that the ripples of real fabricated components are not sinusoidal 
and that, as pointed out earlier, the induced system penalty depends also on 
the phase and amplitude of the ripple. 

Numerous theoretical and numerical studies have contributed to a better 
understanding of the effects of the different relevant GDR parameters such 
as peak-to-peak amplitude, frequency, and phase (on top of some of the 
previous references, some relevant discussions can be found in e. g. 
[122 124]). It was shown in [125] that the peak-to-peak value of the phase 
ripple over the signal bandwidth (as opposed to that of the group delay 
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ripple) could be used to accurately predict the worst case penalty experi-
enced by the filtered signal, even in the presence of realistic GDR profiles. 
A method enabling the direct determination of the phase ripple with high 
resolution was subsequently proposed [126]. Good correlation between 
system performance and two figures of merit that can be extracted from 
GDR measurements (the residual dispersion and the variance of the resid-
ual phase ripple in the signal bandwidth) has also been reported in [127]. 
Ultimately, as in the general case for dispersive devices discussed in 
Sect. 2.4.2, experimental investigations can be performed to assess the real 
impact of GDRs on the performance of a fabricated filter [128, 129]. Fur-
thermore, as the GDRs induced by imperfections in the fabrication process 
are not reproducible from one device to another, investigations of cascaded 
filtering, e. g. when chirped FBGs for dispersion compensation are used in 
multi-span systems, require some form of statistical analysis [130]. 

Coupling to cladding modes is responsible for amplitude ripples on the 
short wavelength side of the transfer function of fibre gratings used in 
transmission [26, 131], as can be observed on the measured transfer function 

Fig. 2.18. Calculated illustration of the effect of a sinusoidal group delay ripple on an 
isolated pulse depending on the phase of the ripple with respect to the modulated spec-
trum centre frequency. The dotted line represents the pulse shape at the filter input. 
Here, the pulse spectral width compared to the GDR period means that the pulse will 
experience higher order dispersion even when the signal is tuned to the quadrature 
point of the ripple. In this example, an arbitrarily high value of the peak-to-peak GDR 
(100 ps) has been used in order to enhance its effect 
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of an early FBG Mach–Zehnder OADM depicted in Fig. 2.14. Such ampli-
tude ripples are associated with group delay ripples having the same perio-
dicity, as shown in the inset of Fig. 2.14. In this particular case, the period of 
the ripples is estimated to be about 0.5 nm around 1551 nm, and the maxi-
mum dispersion values are 15 ps/nm. The evaluation of system impair-
ments related to those dispersion and amplitude ripples would require statis-
tical considerations on their amplitude, periodicity, and phase, as well as on 
the topology and wavelength assignment of the WDM network where such 
OADMs would be used. Fortunately, techniques exist that can successfully 
suppress these short-wavelength ripples [132, 133]. 

2.4.4  Advanced Filter Design 

Optical filters for WDM systems have to satisfy a number of system re-
quirements. As discussed previously, those include low out-of-band 
crosstalk, large detuning tolerance in order to allow for possible system 
drifts, as well as low dispersion, especially when multiple filtering elements 
are encountered by a signal over its path in a transparent network domain. 
Depending on the filter technology, it might be contradictory to attempt to 
achieve several of those goals simultaneously. For instance, approaching 
a flat-top power transfer function is a desirable feature for a wavelength 
(de)multiplexer as it results in low adjacent channel crosstalk as well as 
reduced passband narrowing due to cascading. However, if the filter is mini-
mum-phase, increased dispersion at the edges of its passband will result 
from the action of squaring its amplitude response. Inversely, conventional 
arrayed waveguide grating (de)multiplexers have been shown to exhibit 
very low dispersion in their passband. Unfortunately, their amplitude re-
sponse can be well approximated by a Gaussian transfer function [75], and 
consequently exhibits smooth roll-off, making them prone to severe pass-
band narrowing when concatenated over a given path in a network. 

In this section, the implications of those design trade-offs on filter dis-
persion are illustrated based on two examples. First, the effect of passband 
flattening of AWGs on their dispersive properties is examined. Second, it 
is shown how advanced apodisation profiles can be used in order to reduce 
the dispersion of fibre Bragg gratings while maintaining their ideal square 
amplitude response. 

Passband-flattened AWGs 

Several methods have been proposed in order to approximate the desired 
flat-top transfer function for AWGs [134–138]. One promising approach 
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consists in approximating a flat-top response by the summation of two 
Gaussian distributions. This principle can be realised in practice by using 
a multi-mode interference (MMI) coupler [139] before the input slab, as 
proposed in [140, 141]. Alternatively, using a parabolic horn before the 
input slab has also been shown to result in passband flattening, as proposed 
in [142]. These last two approaches are the ones considered here. Issues to 
take into account when introducing a passband flattening process in the 
design of an AWG (de)multiplexer are the possible presence of ripples in 
the amplitude response, the introduction of excess loss, as well as the in-
troduction of dispersion [143]. 

Numerical simulations have been performed to compare the dispersion 
properties of devices having the same 3 dB bandwidth. The results of accu-
rate device modelling are shown in Fig. 2.19 for a conventional Gaussian, 
as well as for AWGs whose passbands have been flattened by using either 
an MMI coupler or a parabolic horn at the input of the free propagation 
region. 

As expected, the standard Gaussian design is dispersion-free, whereas 
relatively large dispersion values are observed in conjunction with ~1 dB 
amplitude ripples when an MMI coupler is employed to square the field 
distribution before the input slab. Clearly, such high dispersion values 

Fig. 2.19. Calculated power transfer function and group delay of a conventional Gaus-
sian and of passband-flattened AWGs using an MMI coupler or a parabolic horn. The 
three devices are designed for the same 3 dB bandwidth of 100 GHz (device modelling 
by Chrétien Herben, METEOR project) 
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would be unacceptable for high bit rate applications and the large ampli-
tude ripple would also prevent cascading the device. Using a parabolic 
horn, both amplitude ripple and dispersion are reduced. Further, a proper 
design of the parabolic horn has been shown to result in flat-top transmis-
sion with reduced chromatic dispersion [144]. Low dispersion passband 
flattened designs based on engineering the relative attenuation and phase 
shifts of the arrayed waveguides have also been demonstrated [145]. 

Low Dispersion Fibre Bragg Gratings 

Since fibre Bragg gratings are compact, low-loss devices that are inher-
ently compatible with optical fibres, considerable interest exists for realis-
ing advanced transfer functions that would present a rectangular passband 
in conjunction with linear phase. 

It can be shown that, in the weak coupling regime, the coupling poten-
tial due to the refractive index corrugation (z), where z is the longitudi-
nal coordinate of the grating, and the reflectivity are related by a Fourier 
transform-like expression [146]. Although this relation no longer holds 
for strong gratings, it can nevertheless provide some rough design guide-
lines for the optimisation of the shape of the reflectivity of grating filters. 
The coupling potential (z) depends directly on the amplitude and phase 
of the refractive index perturbation [147]. Therefore, in order to achieve 
a flat-top transfer function, the refractive index profile should follow 
a sin z / z dependence. However, this requires the ability to synthesise 
phase-shifts in the refractive index profile. Gratings realised following 
this approach have been shown in [148] to exhibit far less dispersion than 
gratings with conventional Gaussian apodisation profiles. The use of other 
symmetric refractive index profiles with phase-shifts has enabled the 
demonstration of filters with square amplitude response and reduced dis-
persion [149, 150]. 

It has been mentioned in Sect. 2.2.2 that grating filters are generally not 
of the minimum-phase type when used in reflection. This opens the possi-
bility to achieve the double goal of synthesising devices with an ideal rec-
tangular transfer function and low dispersion at the edges of the passband. 
However, it has also been demonstrated in [20] that, if the grating is sym-
metric, its group delay is identical in transmission and in reflection. 
A grating being minimum-phase in transmission [20], the group delay in 
reflection of a symmetric device is then uniquely determined by its reflec-
tivity. Therefore, using an asymmetric refractive index profile offers addi-
tional degrees of freedom for the design of low dispersion filters with 
nearly square amplitude responses. In [151–154] asymmetric refractive 
index profiles with multiple phase-shifts have been demonstrated, allowing 
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the fabrication of nearly dispersion-free, high reflectivity, rectangular grat-
ings. However, unlike the symmetric designs presented above, the disper-
sion-free operation of those filters is dependent on the direction of light 
propagation. Consequently, they may not be used in conventional OADM 
structures. The development of advanced grating writing techniques, to-
gether with efficient algorithms enabling to calculate the required refractive 
index profile to achieve a given target filter response [155], have allowed 
the fabrication of grating structures where both amplitude and phase re-
sponses can be engineered [156]. 

Figure 2.20 shows the asymmetric apodisation profile of a low disper-
sion fibre Bragg grating [157]. The grating was fabricated using the polari-
sation control method [158], and its measured reflectivity and group delay 
are represented together with simulation results. A reflectivity of 99.7% 
for a 20 mm long device as well as a group delay fluctuation of less than 
10 ps were obtained within the 3 dB bandwidth of a device designed for 
100 GHz channel spacing. The good dispersion properties of the grating 
were confirmed by penalty measurements at 10 Gbit/s, showing that up to 
99% of the filter’s 20 dB bandwidth could be used with less than 1 dB
power penalty. 

Consequently, recent results have demonstrated that advanced asymmet-
ric refractive index profiles with multiple phase shifts can be used in order 
to simultaneously realise nearly ideal square amplitude responses with low 
dispersion. 

Fig. 2.20. (Left) measured (solid line) and calculated (dotted line) reflectivity and 
group delay of a low dispersion fibre Bragg grating whose normalized apodisation 
profile is shown as inset. (Right) measured penalty as a function of detuning for 
10 Gbit/s return-to-zero (RZ) modulation [157]. Device modelling and characterisation 
by Hans-Jürgen Deyerl 
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2.5  Conclusion 

In this chapter, the need for accurate determination of the dispersive prop-
erties of WDM filters and estimate of their impact on systems has been 
highlighted. Over the past few years, the awareness of both component and 
system designers towards this sensitive issue has grown, and it is now cus-
tomary to present group delay curves and specifications together with the 
amplitude response of optical filters. 

From the characterisation side, two key experimental methods, namely 
low coherence interferometry and the modulation phase-shift technique, 
have been presented in detail and their benefits and limitations discussed. 
These limitations should be kept in mind when analysing group delay 
curves found in the literature and product descriptions. 

Beyond component characterisation, it is also essential to be able to 
quantify the effect of filters’ complex transfer functions on the signal 
quality in an optical link or network. It has been reviewed how the in-
band dispersion of WDM filters may limit the usable bandwidth of the 
devices as well as the number of devices that can be cascaded along 
a given path in a network. For some types of components, group delay 
ripples might induce some further signal degradation. The out-of-band 
dispersion in OADMs might also limit the channel spacing in DWDM 
systems. 

Improved component manufacturing techniques are effective at reduc-
ing spurious dispersive effects due to e. g. group delay ripples or coupling 
to cladding modes which were critical in early generations of devices. 
However, basic physical limitations will remain which result from the fact 
that various filters are of minimum-phase type, and hence have dispersive 
properties fully determined by their amplitude response. It has also been 
illustrated how the introduction of extra degrees of freedom can be used to 
circumvent some of the limitations of conventional filter designs, allowing 
the realisation of advanced WDM filters whose amplitude and phase re-
sponses can be engineered to meet specific targets inferred from system 
requirements. 

There is no reason to doubt that the increase in capacity needs observed 
since the dawn of optical communications will stop in the near future, 
meaning that the limits of high bit-rate and high spectral efficiency sys-
tems will need to be pushed further. Visions of complex transparent optical 
networks may also come closer to reality. These trends will make the re-
quirements for understanding and control of dispersion in WDM filters 
even more important. 
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