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Abstract. When a rigid body slides with friction on a surface, hopping motion is

observed: this is an everyday phenomenon. In rigid bodies mechanics, this phenom-

enon appears when it is no longer possible to compute the reaction contact forces.

The difficulty is overcome by a motion theory involving velocity discontinuities. Ve-

locity discontinuities may result either from an obstacle which makes impossible to

compute the acceleration: this is a cinematic incompatibility or from the impossibil-

ity to compute the reaction forces: this is a sthenic incompatibility. We describe two

examples: the Klein and Painlevé sthenic incompatibilities.

1 Introduction

When a rigid body collides with a rigid plane, it is no longer possible to
solve the smooth equations of motion because it is impossible to compute the
acceleration. This is a cinematic incompatibility. Collision theory, assumes a
time discontinuity of the velocity. This assumption associated with the basic
laws of mechanics, i.e., equations of motions and constitutive laws satisfying
the laws of thermodynamics, gives a solution to this problem by producing
a predictive theory which takes into account the cinematic incompatibilities
[2, 1].

The motion of rigid bodies may involve friction which introduces reaction
forces. These forces depend on the velocities through algebraic or differential
equations. It may happen that these equations have no solution whereas there
is no cinematic incompatibility. Again it is no longer possible to solve the
equations of motion. What occurs? May the predictive theory cope with this
unexpected situation? Is it too schematic and has more sophistication to be
added? In this case, one may think that the rigidity assumption has to be
removed. We show that the above mentioned collision theory is rich enough
to provide a solution and that there is no necessity to get rid of the rigidity
assumption. We call this kind of incompatibility, a sthenic incompatibility. We
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describe two examples: the Klein and Painlevé sthenic incompatibilities, [4],
[6], [2].

2 The Klein sthenic incompatibility

Let us consider a bar with length 2l, mass m, the ends of which are moving
in two slides which are fixed to a massive rigid support, (Fig. 1). One slide
has a Coulomb friction, the other one is without friction. The state of the
system bar-slides depends on a unique parameter: the abscissa x(t) of the bar
center of mass G. An horizontal force F is applied at distance b = GA of the
center of mass (b is positive downward, the b of Fig. 1 is positive). A torque
Ĉ is also applied. The angle of the bar with the inferior slide is θ ∈]0, π[.
Let the horizontal initial velocity U = dx/dt be given and let us find the
bar motion. For some values of the data, U , F and Ĉ it is not possible to
solve the equations of motions, more precisely it is not possible to find the
reaction forces of the slides, [4], [2]. What occurs? We show that it is possible
to overcome the difficulty within the rigid body theory by describing carefully
what occurs when velocities are discontinuous, [2], [1].

Fig. 1. Ends B and H of a bar are guided by two slides with normal vector N
(direction N is normal to the slides, direction T is tangential). The superior slide
is without friction. The inferior slide has a Coulomb friction. Force F is applied
at distance b = GA from center of mass G, θ is the angle between the bar and
the horizontal axis. Inferior slide applies reaction force (−rT ,−rN ) to the bar and
superior slide force (0, rN ).
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2.1 The constitutive laws

The 2-D system is made of the rigid bar and of the two horizontal rigid slides
which are fixed to a massive rigid support in such a way that we may assume
their velocities are 0. Contact is bilateral in each slide. The superior slide is
without friction. The inferior slide has a Coulomb friction. The interior forces
of the system are the reaction force (rT , rN ) of the slide at point B together
with the reaction percussions (PT , PN ) in case the velocities are discontinuous,
i.e., there is a collision or a velocity jump. We assume Coulomb friction at
point B. The Coulomb friction in case of discontinuity of velocity, involves the
quantity (U++U−) as shown in [2] and [1], (U+ and U− are the velocities after
and before the velocity discontinuity). We choose the same friction coefficient
µ for the smooth and non-smooth evolutions due to experimental evidence
and theoretical results, [1].

2.2 The equations

The equations of motion and constitutive laws give the following equations
[2]:

Smooth evolution

Almost everywhere in time

m
dU

dt
= −rT + F, (1)

0 = −rT l sin θ + 2rN l cos θ + Fb sin θ + C, (2)

by denoting C = Ĉ − bFN cos θ. Second equation is due to the zero angular
velocity. Constitutive law for the normal reaction force is

rN ∈ ∂I0(0) = R,

where I0 is the indicator function of the origin of R, [5]. Normal reaction force
can be positive or negative because the contact is bilateral. The Coulomb
constitutive law is

rT ∈ ∂IrN
(U), (3)

with
IrN

(x) = µ |rN | |x| .

Non smooth evolution

At any time

m [U ] = −PT , (4)
0 = −PT l sin θ + 2PN l cos θ, (5)
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where [U ] = U+ − U−. Second equation is due to the zero angular velocity.
Constitutive law for the normal reaction percussion is

PN ∈ ∂I0(0) = R.

Normal reaction percussion is positive or negative because the contact is bi-
lateral. The dissipation function for the tangential velocity is

IPN
(x) = µ |PN | |x| ,

which gives the constitutive law, [2], [1]

PT ∈ ∂IPN
(U+ + U−). (6)

2.3 An example of sthenic incompatibility

In a smooth evolution, the reaction forces or the interior forces satisfy two
algebraic equations (2) and (3), when velocity U is known. If these equations
have no solution, it is impossible to solve the differential equation (1), thus to
solve the smooth equations of motion: for instance, in case

U > 0, bF +
C

sin θ
< 0, |tgθ| > 2

µ
,

as shown in Fig. 2. Impossibility does not result from the impossibility to
compute the acceleration as when a solid collides a rigid plane. It results from
the impossibility to compute the interior forces. We have a sthenic incompat-
ibility whereas we have a cinematic incompatibility when a solid collides a
rigid plane.

Let us note that with such initial velocity U , force F and torque C, the
smooth evolution we are expecting because there is no obstacle, cannot exist.
A difficulty seems to prevent to solve the equations of motion. It may be
shown that this is not the case and that this situation is completely normal.
The difficulty is overcome by the system by having a velocity discontinuity
because in case

U+ + U− = 0 and |tgθ| > 2
µ
,

there is an unique solution U+ < 0 of the three algebraic equations (4), (5)
and (6). Indeed, motion may go on with this new initial condition because in
case

U < 0, bF +
C

sin θ
< 0, |tgθ| > 2

µ
,

there are two possible reaction forces rT as it is shown in Fig.3.



Sthenic incompatibilities in rigid bodies motion 149

Fig. 2. For U > 0, bF + C
sin θ

< 0, and |tgθ| > 2
µ
, there is no possible reaction force

because half-lines rT = µ |rN | and line 0 = −rT l sin θ + 2lrN cos θ + bF sin θ + C
do not intersect. This is a sthenic incompatibility: it is impossible to find reaction
forces which satisfy the equations of motion.

Fig. 3. For U < 0, bF + C
sin θ

< 0, |tgθ| > 2
µ
, there are two reaction forces at

intersection of half-lines rT = −µ |rN | and line 0 = −rT l sin θ+2lrN cos θ+bF sin θ+
C.

3 The Painlevé sthenic incompatibility

Let us consider a rigid slender bar which is sliding with friction on an hori-
zontal plane, as illustrated in Fig. 4. The mass of the bar is m, its length is 2l,
its mass moment of inertia is I. The coefficient of friction is µ. The bar, being
pointed in the direction of motion, is sliding towards the left. The velocity
of the center of mass is (UT , UN ). Velocity UT is the horizontal or tangential
velocity and velocity UN is the vertical or normal velocity. The velocity of the
contact point A is (VT , VN ) = (UT + ωlsinθ, UN − ωlcosθ), where θ is the
angle of the bar with respect to the horizontal and ω = dθ/dt is the angular
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Fig. 4. Painlevé’s example.

velocity. In some configurations, the sliding motion becomes impossible when
the contact forces diverge to infinity.

3.1 The equations of motion

It is easy to get, almost everywhere in time:

m
dUN

dt
= −rN − g, mdUT

dt
= −rT ,

I
dω

dt
= l(−rT sinθ + rNcosθ), (7)

where −(rT , rN ) is the reaction of the plane and (0,−g) is the gravity force,
and at any time:

m[UN ] = −PN , m[UT ] = −PT ,

I[ω] = l(−PT sinθ + PNcosθ), (8)

where −(PT , PN ) is the percussion reaction of the plane on the bar. The
constitutive laws for the reaction forces and percussions are still the Coulomb
friction law.

We suppose that the bar is sliding towards the left: ya = 0, VN = 0,
VT < 0. We suppose that at the beginning of the motion ω2mlsinθ − g < 0
and I −ml2cosθ(µsinθ − cosθ) > 0. The normal reaction is

rN =
I(ω2mlsinθ − g)

I −ml2cosθ(µsinθ − cosθ) ≥ 0.
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We suppose that the evolution is such that either the denominator or both
the numerator and the denominator of rN go to zero with rN going to infinity.
In this situation the smooth evolution is no longer possible. What happens? It
may be shown that, depending on the cinematic and geometric conditions, the
bar may leave the plane either smoothly (i.e., without velocity discontinuity)
or non smoothly (i.e. with a velocity discontinuity). This property is given by
the algebraic and differential equations resulting from the non smooth and
smooth Coulomb constitutive laws and equations of motion (8) and (7).

Consider now the data m = l = 1, I = 1/12, µ = 0.9, g = 1, with the ini-
tial conditions yA(0) = 0, θ(0) = 0.85, VT (0) = −7, VN (0) = 0, ω(0) = 0. The
reaction rN diverges to infinity. It can be proved that a discontinuity of veloc-
ity occurs, [2]. The future velocities (U+

T , U
+
N , ω

+) depending on (U−
T , U

−
N , ω

−)
are given by the algebraic equations (8) and the Coulomb constitutive law. In
this configuration there is not uniqueness of the solution. The angular velocity
ω+ is indeterminate. It depends on the parameter [ω] which verifies, [2]:

0 ≤ [ω] ≤ −2V −
T

l(µcosθ + sinθ)
= [ω]max. (9)

Figs. 5 and 6 show the effect of the sthenic incompatibility for [ω] = 2.

Fig. 5. Sthenic incompatibility for [ω] = 2 < [ω]max = 7.4398. The sthenic incom-
patibility is responsible for the jump of the bar moving towards the left.

4 Conclusion

The predictive motion theory involving velocity discontinuities, takes into ac-
count both cinematic and sthenic incompatibilities, [2]. The velocity disconti-
nuities result from two different reasons: the best-known cinematic incompat-
ibilities, when it is impossible to compute the acceleration and the less-known
sthenic incompatibilities when it is impossible to compute the reaction or in-
terior forces. These two incompatibilities are equivalent: they are overcome by
velocity discontinuities determined by the theory. The difficulties in modelling
the frictional hopping motion disappear if one uses this collision theory that
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Fig. 6. Sthenic incompatibility for [ω] = 2. After the jump of the horizontal velocity
due to the sthenic incompatibility, the bar flies, makes two turns and falls again on
the plane.

satisfies the basic requirements of mechanics. We prove that when a smooth
evolution is not possible, a velocity discontinuity occurs. The converse is also
true. Let us also note that as it is usual with Coulomb friction law, the solu-
tions of the Painlevé and Klein problems are not always unique.
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