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9 The General Case

After the construction of codes with prescribed automorphism group, we are
now attacking the general case, i.e. we will no longer make any assumption
on the presence of nontrivial automorphisms. The main goal is the evaluation
of a transversal of the isometry classes, for any given parameter set. Of course,
this daunting task can only be solved for small parameters. Also, since we
are mostly interested in good codes, we shall restrict attention to codes with
minimum distance at least 3, the reason is that this restriction makes things
much easier.

The main point is that the construction of a transversal of codes and the
classification by isometry classes are not two separate issues but rather go
hand in hand. We will see that the classification is best done already during
the construction of codes. In fact, the construction of codes is supported by the
classification part in that not too much overhead is constructed which other-
wise would have to be deleted later. The corresponding algorithmic principle
is that of orderly generation of discrete structures. The order refers to an order
which we impose on the objects, for instance the lexicographical order given
by the columns of the generator matrices. This leads to a central problem in
the systematic construction of transversals of orbits, e.g. of isometry classes:
We have to introduce a normal form, following the request of D. Slepian, who
wrote in 1960 ([184]):

“The task of analyzing group codes would be greatly simplified if a canonical
form could be found for each equivalence class of Ω-matrices1. That is, for a
given n and k, we should like to be able to write down one generator matrix from
each equivalence class. This would provide a simple means of describing each of
the essentially different (n, k)-codes.”

The plan of this chapter is as follows. We first show how to reduce the com-
putation of transversals of isometry classes to a problem in finite projective ge-
ometry. This will give us control over the minimum distance. The remaining
problem of computing orbits can be solved using methods from Computa-
tional Group Theory. We will give a very brief introduction to this area, focus-
ing mainly on fundamental algorithms for permutation groups. After that, we
describe the method of orderly generation, and we apply this to the construc-
tion of optimal linear codes. The major issue is that of computing orbits of a
group on subsets. We treat the permutation representation of the projective
linear group. Finally, we present numerical data which was computed. We

1a group code is a linear code, an Ω-matrix is a generator matrix Γ
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classify the isometry classes of optimal linear codes for small parameters and
over small fields.

9.1 9.1 The Problem

We are faced with the following problem: For a given length n, dimension k,
minimum distance d and field Fq, we would like to determine the isometry
classes of linear (n, k, d, q)-codes. For instance, this could be done by listing
generator matrices for each such code. Before we embark on this mission, let
us recall what we have learned in the earlier chapters.

9.1.1 Remarks In order to evaluate a transversal of the isometry classes of linear
(n, k, d, q)-codes, we can use the following facts:

In Chapter 1 we saw that a linear code C can be described both by a gen-
erator matrix Γ and by a check matrix ∆. The check matrix is a generator
matrix of the dual code C⊥. Moreover, as (C⊥)⊥ = C, the mapping

⊥ : U (n, k, q) → U (n, n − k, q), C �→ C⊥

is a bijection from the set of (n, k)-codes to the set of (n, n − k)-codes over
Fq. In fact, as the map ⊥ is compatible with the various types of isometries,
this map descends to a bijection of the corresponding isometry classes. This
fact holds true both for linear and for semilinear isometry classes. In the fol-
lowing, when we speak of isometry classes (unqualified) we mean that the
result holds regardless of whether the isometry classes under consideration
are linear or semilinear. It remains to investigate the map ⊥ further.

As we are interested mainly in good codes, we may ignore codes with min-
imum distance at most 2. Such codes cannot correct a single error, so this
restriction does not exclude anything which would be interesting. So, from
now on we consider only codes C with minimum distance at least 3, for
short: linear (n, k,≥ 3, q)-codes.

From 1.3.9 we know that check matrices of such codes have pairwise lin-
early independent columns. In the language of 6.1.14, this means that such
codes have projective duals. Conversely, a code whose check matrix is pro-
jective has minimum distance at least 3 (see Exercise 1.3.21). Therefore, the
duality map may be restricted to induce bijections between the following
isometry classes of codes:
1. (n, n − k) projective codes,
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2. (n, k)-codes with minimum distance greater than or equal to three (or
(n, k,≥ 3)-codes).  

Vector spaces are often difficult to handle with a computer. In part this
results from the fact that there are usually many different bases for the same
space. As far as Slepian’s problem of computing transversals of linear codes is
concerned, we have to consider orbits of the isometry group on vector spaces.
This raises other issues, like how to represent these orbits on the Computer,
when typically each orbit is very long and the orbit elements are vector spaces.
In order to overcome these problems, we may look for different representa-
tions of codes. We take the approach indicated in the last item of the previous
remark of looking at the projective dual code. We can build on ideas from
Section 6.1. The fundamental result 6.1.13 identifies linear isometry classes of
linear codes with certain orbits of groups on mappings into projective space.
In 6.1.25, the result is specialized to injective functions, which can be identified
with their image, since we have the symmetric group acting on the domain of
the map. These results may be summarized and slightly generalized as

9.1.2Theorem

1. There is a one-to-one correspondence between the linear isometry classes of projec-
tive (n,≤ k, q)-codes and the set of orbits

PGLk(q)\\
(

PGk−1(q)
n

)
.

2. There is a one-to-one correspondence between the semilinear isometry classes of
projective (n,≤ k, q)-codes and the set of orbits

PΓLk(q)\\
(

PGk−1(q)
n

)
.

In both cases, the isometry classes of projective (n, i, q)-codes correspond to the orbits
on n-subsets of PGk−1(q) with the property that the n points span a vector space of
dimension i, for 0 ≤ i ≤ k. �

In order to describe the underlying map between codes and orbits of points,
we start with a generator matrix

Γ = (γi,j) ∈ Fk×n
q

of a projective (n, k, q)-code. Then

P
(
Γ
)

:=
{

P(γ∗,0), P(γ∗,1), . . . , P(γ∗,n−1)
}
⊆ PGk−1(q), 9.1.3
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is a set of n points in PGk−1(q) with the property that these points span a vector
space of dimension k. Here,

P(γ∗,j) = 〈γ∗,j〉

is the projective point whose homogeneous coordinates are listed in the j-th
column of Γ.

From the definition of the map, it is clear that rearranging the columns of
Γ does not change the set P(Γ). The action of GLk(q) on generator matrices is
similar to the action of PGLk(q) on n-sets of points in PGk−1(q). This is because
left-multiplying Γ by an invertible matrix A gives rise to the set {P(A · γ∗,j) |
j ∈ n} which is the image of P(Γ) under the projective transformation induced
by A.

This shows that the map Γ �→ P(Γ) descends to a map from the linear
isometry classes of projective codes to the orbits of n-sets of points of PGk−1(q)
under the projective linear group PGLk(q). This map is a one-to-one correspon-
dence and preserves the dimension.

Furthermore, the action of ΓLk(q) on generator matrices corresponds to
the action of PΓLk(q) on n-sets of points in PGk−1(q). Thus, the given map
descends to a map from the semilinear isometry classes of projective codes
to the orbits of n-sets of points of PGk−1(q) under the projective semilinear
group PΓLk(q). Again, the resulting map is a one-to-one correspondence and
preserves the dimension.

In order to describe the inverse map, we introduce the following notation.
To a set S of n different points p0, . . . , pn−1 in PGk−1(q) we associate the gen-
erator matrix

Γ(S) = (ai,j) ∈ Fk×n
q9.1.4

where pj = 〈a∗,j〉 for j ∈ n. This construction is not unique for two reasons. At
first, we are making a choice by ordering the points of the set. Furthermore, the
vector a∗,j with pj = 〈a∗,j〉 is unique up to non-zero scalar multiples. Therefore,
the matrix Γ(S) is unique up to order of its columns and multiplication of columns
by nonzero scalars. Changing to a different set

A · S = {P(A · a∗,j) | j ∈ n}

results in changing the generator matrix to A · Γ(S). Summarizing, the code
generated by Γ(S) is determined up to linear isometry.

Under the duality map, the previous result becomes
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9.1.5Corollary

1. There is a one-to-one correspondence between the linear isometry classes of (n,≥
k,≥ 3, q)-codes and the set of orbits

PGLn−k(q)\\
(

PGn−k−1(q)
n

)
.

2. There is a one-to-one correspondence between the semilinear isometry classes of
projective (n,≥ k,≥ 3, q)-codes and the set of orbits

PΓLn−k(q)\\
(

PGn−k−1(q)
n

)
.

In both cases, the isometry classes of (n, k + i,≥ 3, q)-codes correspond to the orbits
on n-subsets of PGn−k−1(q) with the property that the n points span a vector space of
dimension k − i, for for some i with 0 ≤ i ≤ k. �

Here, if S = {p0, . . . , pn−1} is a set of n points in PGn−k−1(q) we obtain a
projective check matrix

∆(S) = (bi,j) ∈ F(n−k)×n
q 9.1.6

where pj = 〈b∗,j〉 for j ∈ n (notice that this is a vector of length n − k). This
matrix is well-defined up ordering of the columns and up to non-zero scalar
multiples of the columns. Since we take this matrix as a representative of an
isometry class of codes, this non-uniqueness does not bother us.

The last result is already very close to what we really want. Apart from
codes with minimum distance 1 or 2, Slepian’s problem of finding a transversal
of all isometry classes of codes is solved (provided we can evaluate the orbits
in question, this remains to be seen). But we can refine this approach a little, to
better suit the application in coding theory. What if Slepian would have asked

“For a given n and k and dmin, we should like to write down one generator
matrix from each equivalence class of (n, k)-codes whose minimum distance is
at least dmin.”

That is, what if we are interested in codes with a given minimum distance.
The point with codes is that we really are not interested all that much in the
generality of all available codes. The focus is of course on “good” codes, i.e.
codes whose minimum distance is high. That means, we wish to direct atten-
tion to finding only a subset of the set of all (n, k)-codes, namely those with
minimum distance greater than or equal to dmin, where dmin is some specified
lower bound which we choose beforehand. Of course, in the spirit of Slepian
we still want one generator matrix from each equivalence class, i.e. we still
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want to classify the codes exhaustively. In particular, if no such code exists,
our construction procedure should prove this fact. As we will see shortly, it is
possible to refine our approach and take into account the prescribed minimum
distance dmin right from the start. Of course, this restriction will save us a lot
of work since we can skip a whole lot of codes which do not meet the required
minimum distance. In a sense, we are looking for the needle in the haystack.

Let us introduce the following terminology.

9.1.7 Definition In a projective space, a set of points 〈v(0)〉, 〈v(1)〉, . . . , 〈v(r−1)〉 is said
to be in in general position (or independent) if they generate a vector space of
dimension r. That is, the points are independent in projective space if and only
if the representing vectors v(0), v(1), . . . , v(r−1) are independent as vectors.  

It is clear that this property does not depend on the choice of the represent-
ing non-zero vectors v(i) out of their respective subspace 〈v(i)〉.

Using this language, we can rephrase 1.3.10 as follows. The generator ma-
trices of linear codes over Fq of length n, dimension at least k and with min-
imum distance at least dmin for some integer dmin ≥ 3 correspond (up to or-
dering of the columns and multiplication of columns by non-zero scalars) to
the n-subsets of PGn−k−1(q) with the property that any dmin − 1 points are in
general position.

In fact, this correspondence descends to a correspondence between isome-
try classes of codes and orbits of projective groups on sets of points in projec-
tive space.

9.1.8 Theorem For any given dmin ≥ 3, we have the following:

1. The linear isometry classes of linear (n,≥ k,≥ dmin, q)-codes correspond one-to-
one to the subset of

PGLn−k(q)\\
(

PGn−k−1(q)
n

)
,

consisting of the orbits of n-sets whose dmin − 1-subsets are all in general position.
2. Correspondingly, the semilinear isometry classes of linear (n,≥ k,≥ dmin, q)-

codes correspond one-to-one to the subset of

PΓLn−k(q)\\
(

PGn−k−1(q)
n

)
,

consisting of the orbits of n-sets whose (dmin − 1)-subsets are all in general posi-
tion.

In both cases, the true minimum distance d of these codes is determined by the size of
the smallest set of points which are dependent. Also, the true dimension of such a code
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is determined as n − r, where r is the vector space dimension of the space spanned by
the n points. �

The rest of this chapter is devoted to solving the problem of constructing
and classifying codes algorithmically using Theorem 9.1.8. It involves tech-
niques from Computational Group Theory. The major issue, namely that of
computing orbits on sets is addressed in Sections 9.2 and 9.6. The following
Section 9.2 handles the “base case”, where the sets have size 1 and hence are
in fact points. Section 9.6 treats the general case, building on the results of
Section 9.2.

9.29.2 Computing with Permutation Groups

In this section we address the problem of explicit computations with permu-
tation groups. Our main goal is to compute orbits of permutation groups on
subsets. This is part of a rather new branch of mathematics called Computa-
tional Group Theory, or CGT for short. Our main references are the recent book
by Holt, Eick and O’Brien [91], the book by Seress [177] and the one by But-
ler [35]. For more on combinatorial algorithms see the book by Kreher and
Stinson [116]. Several computer algebra systems covering CGT are available.
The two most prominent are GAP [63] and Magma [140].

Let G be a finite group acting on a finite set X. For technical reasons we
prefer in this chapter actions from the right, i.e. mappings

X × G → X : (x, g) �→ xg,

such that (xg)g′ = x(gg′) and x1 = x. But we still use the symbol G(x) for the
orbit of x and Gx for its stabilizer.

Let us assume that G acts faithfully, which means that only the identity
element of G fixes every point in X. According to 1.4.5, G is isomorphic to the
permutation group G = δ(G) induced by G on X, a subgroup of the symmetric
group SX on X. Hence we can assume that G is a permutation group on X, i.e.
that G ≤ SX. In this section, we are concerned with computational tasks like
the following.

1. For x ∈ X, compute G(x) = {xg | g ∈ G}, the orbit of x under G.

2. For x ∈ X, compute Gx = {g ∈ G | xg = x}, the stabilizer of x in G.

3. For x, y ∈ G with y ∈ G(x), compute an element g ∈ G with xg = y. We
call such an element a transporter element.
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A remark concerning the last problem is in order. The required element g ∈ G
with xg = y may not be unique. In fact, by Lemma 3.4.1 the set of all elements
g ∈ G with this property forms a unique right coset of the stabilizer Gx, the
stabilizer of x in G.

In order to get started, the group has to be specified in some concrete way.
A very simple way is by a set of generators, i.e. a set S of elements of G which
together generate G, i.e. 〈S〉 = G. If G is finite, this means that each element
g ∈ G can be written as a word of finite length over the alphabet S (Exer-
cise 9.2.1). This will suffice for the moment. A more sophisticated represen-
tation of a group will be presented in Section 9.7. So for now, let us always
assume that G is given by a finite set of generators S = {s0, . . . , sr−1}.

The first problem is that of computing the orbit of a point x ∈ X under the
group G. We start by introducing a graph which describes the action of G on
the set X.

9.2.1 Definition (action graph) Let the group G act on the finite set X. Assume that
G is generated by a set of generators S = {s0, . . . , sr−1}. The action-graph of G
on X with respect to the set S is the directed graph (digraph) G = (X, E). That
is, the vertices of G are the elements of X. The edge set E consists of directed
labeled edges. There is an edge from vertex x to vertex y labeled by sj if

xsj = y.

We write x → y to indicate that there is an edge from x to y. A directed path
is a sequence of x0, x1, . . . , xu−1 of vertices which are pairwise distinct (except
possibly for x0 and xu−1 which may coincide) such that x0 → x1 → . . . →
xu−1. We write x � y is there is a path from x to y. The length of a path is the
number of edges used. We also define a cycle to be a path where the start and
the endpoint coincide (i.e. with x0 = xu−1 in the above notation). A loop is a
cycle of length 1, i.e. an edge from a vertex x to itself.  

The action graph may have loops, i.e. edges of the form (x, x) for some
vertex x ∈ X. Also, it may have several edges from vertex x to vertex y, namely
if there are several elements s ∈ S with xs = y.

9.2.2 Lemma Let the group G act on the finite set X. Let G = (X, E) be the action graph
with respect to the generating set S of G. Then the orbits of G on X correspond one-
by-one to the connected components of G . In particular, the connected components of
G are well-defined and independent of the choice of the generating set S of G.
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Proof: Without loss of generality, we can replace G by the finite group G/K,
where K is the kernel of the action of G on X, i.e. the pointwise stabilizer of the
whole set X. The fact that G/K is finite follows from the fact that X is finite.
Thus we may assume that G is a finite group. By Exercise 9.2.1, each g ∈ G
can be written as a word si0si1 . . . siu−1 in the generators. Recall that we write
x � y if there is a directed path from x to y in G . Such a path gives rise to a
group element g = sj0 sj1 . . . sju−1 with xg = y. If g−1 = si0si1 . . . siv−1, then there
also is a path

y → ysi0 → ysi0si1 → . . . → yg−1 = x

in G , i.e. y � x. This means that

x � y ⇐⇒ y � x.

In other words, the relation “�” is undirected, and we can replace it by the
symmetric x ∼ y (so that “∼” really is an equivalence relation on X). We
conclude that the concept of a connected component is well-defined in action
graphs. Also, we have shown that x ∼ y if and only if x and y belong to
the same G-orbit. This means that the connected components of G correspond
bijectively to the G-orbits on X. It remains to show that the connected compo-
nents in the action graph depend only on the group G, and not on the choice of
the generating set S for G. To this end, let T = {t0, . . . , ts−1} be another gener-
ating set for G. Write GS and GT for the action graphs of G with respect to the
generating sets S and T. We need to show that x � y in GS if and only if x � y
in GT . We note that x � y in GS implies that xg = y for g = si0si1 . . . siu−1.
The element g has an expression in terms of the second generating set, say
g = tj0 tj1 . . . tjv−1 . But then x � y in GT . The converse follows by symmetry. �

9.2.3Remark In Computer Science, a subset U of vertices in a directed graph is
called strongly connected if both x � y and y � x hold for all x, y ∈ U.
The maximal strongly connected subsets of a graph are called strongly con-
nected components and there are algorithms to compute these for a given
graph (see [42]). It follows from 9.2.2 that the connected components of an
action graph are strongly connected components. Nevertheless, there is a dif-
ference. The reason is that the strongly connected components in general di-
graphs may still have edges between them. The connected components in
action graphs do not have this property.  

9.2.4Example Figure 9.1 shows action-graphs of S6 with respect to two different
generating systems. The left picture uses s0 = (0, 1, 2, 3, 4, 5) and s1 = (0, 1).
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Fig. 9.1 Two action-graphs for S6

The right picture is obtained by using the Coxeter generators si = (i, i + 1),
where i = 0, 1, . . . , 4. Edge labels and loops are not shown. �

To compute the orbit G(x) of a point x ∈ X, we compute a spanning tree of
the connected component of G containing x. This spanning tree is a cycle-free
connected subgraph of G , rooted at x, whose vertices are the elements of G(x).
This means that there is a unique directed path from x to any element y in
G(x). This spanning tree can be described by the following data structure:

9.2.5 Definition (Schreier-tree) Let G be a group acting on a finite set X. Let G be
given by generators s0, . . . , sr−1. Let G = (X, E) be the action graph for G acting
on X. Let x be an element of X. A Schreier-tree for the orbit of x is a spanning
tree for the connected component of G containing x. The tree is rooted at x and
all edges are pointing away from x.  

We remark that a spanning tree for a connected component of a graph is in
general not unique. For action graphs, this reflects the fact that there may be
different ways to obtain a given element y ∈ X as an image of x under group
elements g1, g2 ∈ G. We will investigate these questions no further but we
note, however, that the shape of the tree is important for performance consid-
erations. For example, the average depth of a node should be small. There are
special methods to build “shallow” Schreier-trees, see Seress [177]. The trick is
to change the generating set S which is used for calculating the action graph
beforehand.

The following basic orbit algorithm computes a Schreier-tree for the orbit
of x under G. It uses a data structure called queue, which is similar to a waiting
line. The new elements are appended to the end of the queue, and the elements
are taken out in order. This means that the front-most element is processed
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first, then the second element and so forth until all elements are processed and
the queue is empty.

9.2.6Algorithm (orbits on points)

Input: A permutation group G acting on a finite set X = {x1, . . . , xn}, a
generating set S = {s0, . . . , sr−1} of G, a point x ∈ X.

Output: A Schreier-tree T = (O, E) for the orbit O = G(x).

(1) let Q be a queue holding the element x
(2) let O := {x}, E = ∅, so that T = ({x}, ∅) has only one node x
(3) while Q �= ∅ do

(4) let y be the first element of Q (remove y from Q)
(5) for i ∈ r do

(6) z := ysi

(7) if z �∈ O then

(8) append z to Q, add z to O
(9) add the edge (y, z) labeled by si to E
(10) end if

(11) end for

(12) end while �

9.2.7Example Let G be the permutation group generated by

s0 = (3, 4)(9, 14)(10, 13)(11, 12),
s1 = (3, 9)(4, 14)(10, 11)(12, 13),
s2 = (3, 11)(4, 12)(9, 10)(13, 14),
s3 = (2, 3)(6, 9)(7, 10)(8, 11),
s4 = (1, 2)(5, 6)(10, 12)(11, 13),
s5 = (0, 1)(6, 7)(9, 10)(13, 14).

The action-graph and a spanning Schreier-tree are shown in Fig. 9.2. It can be
shown that G � PGL4(2). See also Examples 9.2.11,9.3.11 and 9.8.12 below. �

Let us now consider the problem of computing Gx, the stabilizer of x in G,
for x ∈ X. The following result, due to Schreier, provides a set of generators
for Gx, given generators for G.

9.2.8Theorem (Schreier) Let G be a finite group generated by a set of elements S. Let
H be a subgroup of G and let R be a set of right coset representatives for H in G
containing 1. For r ∈ R and s ∈ S, let rs be the unique element in R with rs ∈ Hrs.
Then H is generated by all elements of the form rsrs−1, where r ∈ R and s ∈ S. Each
such element is called a Schreier-generator
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Fig. 9.2 Action-graph and Schreier-tree

Proof: The set R is a system of right coset representatives of H in G so that

G =
⋃

r∈R
Hr.

We extend the function defined in the theorem to the whole group by letting
g, for g ∈ G, be the unique element in R with g ∈ Hg. Note that hg = g if
h ∈ H. Also, g = g for all g ∈ G. Finally, g = 1 if and only if g ∈ H. Suppose
g = s1s2 · · · st ∈ G with each si ∈ S. Put

g0 = 1, g1 = s1, g2 = s1s2, . . . , gt = s1s2 · · · st = g.

Write
u0 = g0 = 1, u1 = g1, . . . , ut = gt = g.

Then

gu−1
t = s1s2s3 · · · stu−1

t = u0s1u
−1
1 u1s2u−1

2 u2 · · · u−1
t−1ut−1stu−1

t ,9.2.9

which equals g if g is in H since then ut = g = 1. By definition of the function
g �→ g, we deduce from gi−1 = ui−1 that gi−1 ∈ Hui−1. Hence there exists an
element h ∈ H with gi−1 = hui−1. Therefore gi−1si = hui−1si, which implies
gi−1si = ui−1si. It follows that for i ≥ 1

ui = ui = gi = gi = gi−1si = ui−1si,

which is an element of the form rs with r ∈ R and s ∈ S. Now let g ∈ H and
hence ut = 1. Then 9.2.9 becomes

g = gu−1
t =

t

∏
i=1

ui−1siu
−1
i =

t

∏
i=1

ui−1siui−1si
−1,
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i.e. g can be written as a product of elements of the form rsrs−1, with r ∈
R, s ∈ S. This finishes the proof. �

One particular instance of this is the computation of point stabilizers in per-
mutation groups.

9.2.10Corollary Let the group G act on the finite set X and let S be a set of generators for
G. For x ∈ X, let R = {r1, r2, . . . , r�} with r1 = 1 be a set of elements such that the
following holds: For each y ∈ G(x) there is one and only one element r ∈ R with
xr = y (and therefore |G(x)| = �). Then

Gx = 〈rsrs−1 | r ∈ R, s ∈ S〉. �

The last of the three problems is that of computing transporter elements g such
that yg = z (provided y and z are in the same G-orbit, say G(x), of course).
Such transporter elements can be computed from the Schreier-tree of the orbit.
Let T = (G(x), E), and let y and z be elements of the orbit. Following the edge
labels along the path from x to y and from x to z, respectively, we obtain group
elements u and v with xu = y and xv = z. Then yu−1v = xv = z, so that u−1v
is a transporter element.

9.2.11Example (continuation of Example 9.2.7) An element g ∈ G mapping 6 to 13,
for example, can be determined directly from the tree:

g = s−1
3 s−1

1 s2s4 = (1, 2, 12, 14, 10, 7, 3)(4, 11, 8, 9, 5, 6, 13).

The reader should carefully note that this product of permutations has to be
read from the left to the right, since in this chapter we prefer actions from the
right. �

We need further notation concerning the solution of orbit type problems.

9.2.12Definition (orbit data structure) Let G be a group which acts on the finite set
X. The triple

orbit(G, X) = (T , σ, ϕ) := (T , σ, ϕ)

is the orbit data for G acting on X provided that

1. T is a transversal of the G-orbits on X,

2. σ : X → L(G) : x �→ Gx,

3. ϕ : X → G : x �→ g with xg ∈ T .

Here, L(G) denotes the lattice of subgroups of G as defined in 3.4.4. We call σ

the stabilizer map and ϕ the transporter map.  
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9.2.13 Remarks

1. It follows from 3.4.1 that the image of the map ϕ is unique only modulo
elements of the stabilizer.

2. The orbit data structure is not a purely mathematical object. The point
with the maps ϕ and σ is that we should be able to compute function values
efficiently. When we say that the orbit data (T , σ, ϕ) for G on X is available,
we mean that we have determined T and are able to evaluate the maps σ

and ϕ with reasonably small effort.
3. It may be that σ(y) is known only for elements of the transversal T . If this

is the case, and if in addition we are able to compute transporter elements,
then for a given x in X we compute g = ϕ(x), y = xg and σ(y) = Gy. It
follows from 3.4.3 that

σ(x) = Gx = g−1Gyg = g−1σ(y)g.  

Exercises

E.9.2.1 Exercise Let G be a group, generated by a set S = {s0, . . . , sr−1} of generators.
Then each g ∈ G has an expression of the form g = sε0

i0
sε1
i1

. . . sεr−1
ir−1

with ik ∈ r
and εk ∈ {±1}. Show that if G is finite, we can find an expression for g of this
form with εk = 1 for k ∈ r.

9.3 9.3 A Permutation Representation

To get back to codes, let us start by enumerating the points of finite projective
spaces. This allows us to translate the action of the general linear group from
that of a matrix group to that of a permutation group. We will do the case of
Fk

q first, and then move on to the projective case.

Assume that κ0, κ1, κ2, . . . , κq−1 are the elements of the field Fq, where we
always require that κ0 = 0 is the zero element and κ1 = 1 is the unit element
in the field.

We start by ranking the points in Fk
q = {∑k−1

i=0 vie(i) | vi ∈ Fq}. Recall
from 1.3.5 that for every integer q ≥ 2 we have the base q expression of an
integer m ∈ qk

m = ∑
i∈k

aiq
i,

which we abbreviate as m = (ak−1, . . . , a0)q.
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9.3.1Lemma Let q be a prime power. Let m ∈ qk be an integer with m = (ak−1, . . . , a0)q.
The map

rk−1
k,q : qk → Fk

q : m �→ (κa0 , . . . , κak−1), 9.3.2

is a bijection, we call it the unrank function for Fk
q. Its inverse

rkk,q : Fk
q → qk : (κa0 , . . . , κak−1) �→ m, 9.3.3

is the rank function for Fk
q. �

The proof is straightforward.

9.3.4Example Let F3 = {κ0, κ1, κ2}, with κ0 = 0 = 0, κ1 = 1 = 1, and κ2 = 2 = 2.
We obtain the following unrank function for F2

3.

rk−1
2,3 (0) = (0, 0), rk−1

2,3(1) = (1, 0), rk−1
2,3 (2) = (2, 0),

rk−1
2,3 (3) = (0, 1), rk−1

2,3(4) = (1, 1), rk−1
2,3 (5) = (2, 1),

rk−1
2,3 (6) = (0, 2), rk−1

2,3(7) = (1, 2), rk−1
2,3 (8) = (2, 2).

Correspondingly

rk2,3((0, 0)) = 0, rk2,3(e(0)) = 1, rk2,3(e(1)) = 3, . . . �

Let us turn our attention to the projective space PGd(q). We want to enumerate
(i.e. label) the set of one-dimensional subspaces 〈v〉 of Fd+1

q , where v �= 0.
Recall from Section 3.7 that we denote the number of points of PGd(q) by

θd(q) =
qd+1 − 1

q − 1
= |PGd(q)| = qd + qd−1 + . . . + q + 1.

In order to enumerate the points of a projective space PGd(q), we are going to
choose nonzero representatives out of each one-dimensional subspace of V =
Fd+1

q . Let e(0), . . . , e(d) be the standard basis of V. We introduce the following
notation. For

u = 〈u0e(0) + . . . + ude
(d)〉 ∈ PGd(q),

let lc(u) be the largest index i for which ui �= 0 (and hence ui+1 = · · · = ud =
0). We call lc(u) the leading coefficient of u. Notice that this definition depends
on the labeling of the basis vectors, which is intentional. To label the one-
dimensional subspaces of V we need to pick one nonzero vector out of each
such subspace. A simple way to do this is to take as representatives the vectors

u = (u0, . . . , ud) ∈ Fd+1
q

whose rightmost nonzero coordinate is one, i.e. with uk = 1, uk+1 = · · · =
ud = 0, where k = lc(u). Such vectors are called standard.
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There is one more condition which we pose but which seems a little unmo-
tivated at this point. We require that the unit vectors and the all-one vector get
the smallest possible ranks, i.e. we ask that

rk(〈e(0)〉) = 0,

rk(〈e(1)〉) = 1,
...

rk(〈e(d)〉) = d,

rk(〈e(0) + . . . + e(d)〉) = d + 1.

The reason for this requirement will become clear in Section 9.8, when we ex-
hibit a special property of these vectors (namely, they form a “base” in the
sense of Section 9.7).

The remaining vectors are of the form

u = (u0, . . . , uk−1, 1, 0, . . . , 0)

with (u0, . . . , uk−1) ∈ Fk
q \ {0}, where k = lc(u). If k = d we also have that

(u0, . . . , ud−1) �= (1, . . . , 1). We decide to order these vectors first according to
the value of k (which can take any value from 1 to d). Among the vectors u for
a given k = lc(u) we order according to the ranks of (u0, . . . , uk−1) as points in
Fk

q as given by 9.3.3. We skip the zero vector which cannot occur. If k = d we
also need to skip the all-one vector. This requires some additional effort. We
will shift the rank before we apply 9.3.2 and conversely we will also shift the
rank after application of 9.3.3. The all-one vector – as an element of Fd

q – has
rank

1 + q + q2 + . . . + qd−1 =
qd − 1
q − 1

= θd−1(q).

Therefore, we need to increase all ranks which are greater than or equal to this
number by one before calling 9.3.2. Conversely, if we are ranking a vector u
with lc(u) = d, we need to decrease all ranks of (u0, . . . , ud−1) ∈ Fd

q by one
if they happen to be greater than θd−1(q). To facilitate this we will introduce
a shift function. Summarizing, we have the following unrank and rank func-
tions for the points of PGd(q). We remark that the if clauses are to be read in
order, that is, the second and all following if clauses are to be understood as
“otherwise if.”

9.3.5 Lemma We define the unrank function rk−1
d;q : θd(q) → PGd(q) by

rk−1
d;q(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈e(m)〉 if m ≤ d,

〈
d

∑
i=0

e(i)〉 if m = d + 1,

〈rk−1
d,1;q(m − d − 1)〉 otherwise,

9.3.6
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where

rk−1
d,k;q(m) =

⎧⎪⎨⎪⎩
rk−1

d,∗;q(m) if k = d

e(k) + rk−1
k,q (m) if m < qk

rk−1
d,k+1;q(m − qk + 1) otherwise.

9.3.7

Here,
rk−1

d,∗;q(m) = e(d) + rk−1
d,q

(
shiftθd−1(q)(m)

)
9.3.8

with

shiftj(m) :=
{

m if m < j,
m + 1 otherwise.

9.3.9

This map rk−1
d;q is a bijection. Its inverse is the rank function for PGd(q), denoted as

rkd;q. For a point 〈u〉 with u = (u0, u1, . . . , ud) ∈ Fd+1
q \ {0} one has rkd;q(〈u〉) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k if 〈u〉 = 〈e(k)〉
d + 1 if 〈u〉 = 〈1, . . . , 1〉

d + 2− k + qθk−2(q) + rkk,q

(
u0
uk

, . . . , uk−1
uk

)
if k = lc(u) < d

2 + qθd−2(q) + shift−1
θd−1(q)

(
rkd,q

(
u0
ud

, . . . , ud−1
ud

))
if lc(u) = d.

9.3.10

�

9.3.11Example We have θ2(2) = 22 + 2 + 1 = 7, θ2(3) = 32 + 3 + 1 = 13 and
θ3(2) = 23 + 22 + 2 + 1 = 15. Table 9.1 shows the labeling of points of PG2(2),
PG2(3) and PG3(2). Let us see some specific examples. We have

rk−1
3;2 (4) = 〈1, 1, 1, 1〉 by 9.3.6,

rk−1
3;2 (5) = 〈rk−1

3,1;2(1)〉 by 9.3.6

= 〈e(1) + rk−1
1,2 (1)〉 by 9.3.7

= 〈e(1) + e(0)〉 = 〈1, 1, 0, 0〉 by 9.3.2,

rk−1
3;2 (14) = 〈rk−1

3,1;2(10)〉 by 9.3.6

= 〈rk−1
3,2;2(9)〉 by 9.3.7

= 〈rk−1
3,3;2(6)〉 by 9.3.7

= 〈rk−1
3,∗;2(6)〉 by 9.3.7

= 〈e(3) + rk−1
3,2 (shift7(6))〉 by 9.3.7

= 〈e(3) + rk−1
3,2 (6)〉 by 9.3.9

= 〈e(3) + e(2) + e(1)〉 = 〈0, 1, 1, 1〉 by 9.3.2,

rk−1
2;3 (12) = 〈rk−1

2,1;3(9)〉 by 9.3.6

= 〈rk−1
2,2;3(7)〉 by 9.3.7

= 〈rk−1
2,∗;3(7)〉 by 9.3.7
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Table 9.1 Labeling PG2(2), PG2(3) and PG3(2)

m rk−1
2;2 (m) rk−1

2;3 (m) rk−1
3;2 (m)

0 〈1, 0, 0〉 〈1, 0, 0〉 〈1, 0, 0, 0〉
1 〈0, 1, 0〉 〈0, 1, 0〉 〈0, 1, 0, 0〉
2 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1, 0〉
3 〈1, 1, 1〉 〈1, 1, 1〉 〈0, 0, 0, 1〉
4 〈1, 1, 0〉 〈1, 1, 0〉 〈1, 1, 1, 1〉
5 〈1, 0, 1〉 〈2, 1, 0〉 〈1, 1, 0, 0〉
6 〈0, 1, 1〉 〈1, 0, 1〉 〈1, 0, 1, 0〉
7 〈2, 0, 1〉 〈0, 1, 1, 0〉
8 〈0, 1, 1〉 〈1, 1, 1, 0〉
9 〈2, 1, 1〉 〈1, 0, 0, 1〉
10 〈0, 2, 1〉 〈0, 1, 0, 1〉
11 〈1, 2, 1〉 〈1, 1, 0, 1〉
12 〈2, 2, 1〉 〈0, 0, 1, 1〉
13 〈1, 0, 1, 1〉
14 〈0, 1, 1, 1〉

= 〈e(2) + rk−1
2,3 (shift4(7))〉 by 9.3.7

= 〈e(2) + rk−1
2,3 (8)〉 by 9.3.9

= 〈e(2) + 2e(1) + 2e(0)〉 = 〈2, 2, 1〉 by 9.3.2.

Conversely, we have

rk3;2(〈1, 1, 1, 1〉) = 4 by 9.3.10,

rk3;2(〈1, 1, 0, 0〉) = 3 + 2− 1 +
0
1

+ rk1,2
(
(1)

)
by 9.3.10

= 4 + 1 = 5 by 9.3.3,

rk3;2(〈0, 1, 1, 1〉) = 2 +
6
1

+ shift−1
6

(
rk3,2

(
(0, 1, 1)

))
by 9.3.10

= 8 + shift−1
7 (6) by 9.3.3,

= 8 + 6 = 14 by 9.3.9,

rk2;3(〈2, 2, 1〉) = 2 +
6
2

+ shift−1
4

(
rk2,3

(
(2, 2)

))
by 9.3.10

= 5 + shift−1
4 (8) by 9.3.3

= 5 + 7 = 12 by 9.3.9. �
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9.3.12Example Using the ranks of the previous example, the permutations of Exam-
ples 9.2.7 and 9.2.11 can be written as matrices. Recall that we use row-vector
convention, i.e. the images of a linear map are written in the rows of the cor-
responding matrix. For instance, the elements of the generating set S can be
written as matrices as follows.

s0 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠ ,

since 0s0 = 0, 1s0 = 1, 2s0 = 2, 3s0 = 4 and 0, 1, 2, 4 are the ranks of the pro-
jective points which are represented by the vectors in the rows of this matrix.
Similarly, we obtain

s1 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎞⎟⎟⎟⎠ , s2 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1

⎞⎟⎟⎟⎠ , s3 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ ,

s4 =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ , s5 =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ .

From this we see that the group of Example 9.2.7 really is a projective linear
matrix group. That it is the full group PGL4(2) will follow from a result in
Section 9.8, where a special generating set (“strong generators”) for this group
is exhibited. The permutation

(1, 2, 12, 14, 10, 7, 3)(4, 11, 8, 9, 5, 6, 13)

of Example 9.2.11 is in fact the matrix

A =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0

⎞⎟⎟⎟⎠ ,

and we have that

rk−1
3;2 (6) · A = 〈1, 0, 1, 0〉 ·

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0

⎞⎟⎟⎟⎠
= 〈1, 0, 1, 1〉 = rk−1

3;2 (13). �
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9.4 9.4 The Lexicographical Order

Let (X,≤) be a totally ordered set. In this section, we are concerned with
the set of subsets of X, also known as the power set of X. In addition to our
customary notation 2X, we will introduce the notation P(X) for this set. That
is,

P(X) = {A | A ⊆ X}.
Clearly, the size of P(X) is 2|X|. Later on, we will also consider the set of sub-
sets of size k of X, for some nonnegative integer k ≤ |X|. We denote this set
as

P k(X) = {A | A ⊆ X, |A| = k}.
We introduce the following notation. For a subset A of a totally ordered set X
we write A = {a0, a1 . . . , am−1}< to indicate that the elements of A are listed
in order, i.e. that a0 < a1 < · · · < am−1. The set P(X) can be ordered in a very
natural way, using the ordering of elements of X. This is the lexicographical
order which has already appeared in 3.4.20.

9.4.1 Definition (the lexicographical order) For subsets A = {a0, a1, . . . , am−1}< and
B = {b0, b1, . . . , bn−1}< of the totally ordered set X we put

A , B ⇐⇒
{
∃ r < min(m, n) : ai = bi for i ∈ r and ar < br, or
m ≤ n and ai = bi for i ∈ m.  

9.4.2 Example Let X = {a, b, . . . , z} be the Roman alphabet with the usual ordering
of letters. Then P(X) is ordered lexicographically as follows (we leave out set
brackets and commas for simplicity).

∅ ≺ a ≺ ab ≺ abc ≺ · · · ≺ abc . . . wxyz ≺ abc . . . wxz
≺ abc . . . wy ≺ abc . . . wyz ≺ abc . . . wz ≺ · · ·
≺ b ≺ bc ≺ · · · ≺ bcd . . . xyz ≺ · · · ≺ y ≺ yz ≺ z. �

Let (X,≤) be a totally ordered finite set. The lexicographical order on P(X)
can be represented by a tree, the order tree T(X,,) or simply T,. The nodes of
T, are the subsets of X, i.e. the elements of the power set P(X). The edges of
T, can be described as follows. For subsets A and B (of a totally ordered set
X), we say that A is a prefix of B if A ⊆ B and either A = B or min(B \ A) >

max A. In other words, the prefixes of a set B = {b0, b1, . . . , bm−1}< are just
the sets {b0, . . . , bi} for i ≤ m − 1. If A is a prefix of B then we say that B is
a descendant (or offspring) of A or that A is an ancestor of B. We say that B is
an immediate descendant of A if B is a descendant of A and |B| = |A| + 1, i.e.
B = A∪ {max B}. Two nodes are siblings if they are immediate descendants of
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Fig. 9.3 Order tree of subsets of {0, 1, 2, 3, 4}

the same node. The edges of the tree T, are between immediate descendants.
One can think of these edges as being directed, pointing from the smaller to
the larger set. In this sense, T, is a rooted tree, with the empty set serving as
root. A leaf is a node without descendants. An inner node is a node which is not
a leaf. We say that a node has distance i from the root if the unique path from
the root to that node has length i. The i-th level of the tree is the set of nodes at
distance i from the root. A common ancestor of two sets A and B is an ancestor
of both A and B. The immediate common ancestor of A and B is the ancestor of A
and B which is largest in size. We arrange the siblings of a node according to
their largest element, using the original ordering of elements of X. The siblings
are drawn from left to right in increasing order. Thus T≺ is an ordered tree. In
the Computer Science literature (cf. [42], for example) these trees are known as
binomial trees. We also mention that it is ubiquitous in the Computer Science
literature that trees grow top down. Thus the root node is the node on top of
the drawing, whereas the leaves are the nodes at the bottom.

9.4.3Example Consider the five element set X := {0, 1, 2, 3, 4}< . Figure 9.3 displays
the order tree T(X,,). Here, we label the nodes by the largest element of the set
which they represent (the root node is represented as an empty node). Clearly,
the set corresponding to a node can be reconstructed by simply collecting all
labels of nodes along the unique path from the root to the node.

There are essentially two different ways of traversing the nodes of a tree.
The depth first search strategy (or pre-order traversal) is to move down the tree,
visiting a node and its offsprings recursively. This is done in such a way that
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the leftmost offspring and its whole branch is visited first. Then on the way
back one moves to the right, visiting possible siblings and their whole sub-
trees recursively. This way all the siblings are dealt with before the procedure
returns to its ancestor. One may imagine this procedure as follows. Think of
the tree as a fence in the plane. Walk around that fence, starting from the root
node in the direction to the leftmost offspring, keeping the fence to your left.
A different way to visit the nodes of a tree is the breadth first search order. Here,
the nodes at any given level are visited in order, starting from the root and
going down to deeper levels.

The ordering of subsets is encoded in the tree. Namely, we encounter the
sets in lexicographical order if we visit the nodes of the tree in depth first
strategy. In the above example, the depth first search arranges the subsets
of {0, . . . , 4} in the following order, which is indeed lexicographical.

∅ ≺ 0 ≺ 01 ≺ 012 ≺ 0123 ≺ 01234 ≺ 0124 ≺ 013 ≺ 0134
≺ 014 ≺ 02 ≺ 023 ≺ 0234 ≺ 024 ≺ 03 ≺ 034 ≺ 04
≺ 1 ≺ 12 ≺ 123 ≺ 1234 ≺ 124 ≺ 13 ≺ 134 ≺ 14
≺ 2 ≺ 23 ≺ 234 ≺ 24 ≺ 3 ≺ 34 ≺ 4.

Using breadth first search, the nodes of the tree will be visited in the following
order:

∅,
0, 1, 2, 3, 4,
01, 02, 03, 04, 12, 13, 14, 23, 24, 34,
012, 013, 014, 023, 024, 034, 123, 124, 134, 234,
0123, 0124, 0134, 0234, 1234,
01234. �

Let us collect fundamental properties of the order tree in the following lemma.
The proofs are straightforward and therefore omitted.

9.4.4 Lemma Let X = {x0, x1, . . . , xn−1}< be a finite totally ordered set. Let , be the
lexicographical order on P(X). Then the order tree T, has the following properties.

1. For every node of the tree, the corresponding set is the union of the labels along the
path leading to that node. Moreover, the labels are encountered in ascending order
along this path.

2. The nodes at level i correspond to i-subsets of X, and hence there are (n
i ) of them.

3. For A, B ⊆ X, a common ancestor of A and B corresponds to a prefix of A∩ B and
vice-versa. The immediate common ancestor is the prefix of A ∩ B which is largest
in size.
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4. The tree has 2n−1 leaves corresponding to the subsets of X which contain xn−1.
The tree has 2n−1 inner nodes corresponding to the subsets of X which do not
contain xn−1.

5. The subtree rooted at a set A ⊆ X consists of the subsets B ⊆ X for which A is a
prefix of B. If max A = xi, there are 2n−1−i such nodes. In particular, the subtree
whose root is {xi} (i.e. the tree which is rooted at the i-th descendant of the global
root), contains all subsets A ⊆ X with min A = xi. There are 2n−1−i such sets.

6. Two subtrees rooted at sets A and B (with A, B ⊆ X) are equal in shape and
labeling of the nodes if and only if max A = max B.

7. If the order tree is traversed in depth first search, the subsets are encountered in
lexicographic order. That is, a subset A precedes a subset B in the lexicographical
order if and only if A is reached first when traversing the tree T(X,,) in depth first
search. In terms of the common ancestor C of A and B we can say that A , B if
and only if either C = A or min A \ C < min B \ C. That is, A , B if and only
if either B is a descendant of A or the branch containing B is to the right of the
branch containing A among the siblings of the immediate common ancestor of A
and B.

8. Let A be a subset with max A = xi (put i = −1 if A = ∅). The leftmost leaf in
the subtree rooted at A is the set A ∪ {xi+1, . . . , xn−1}. The rightmost leaf in the
subtree rooted at A is the set A ∪ {xn−1}.

9. Let A be a subset with max A = xi (put i = −1 if A = ∅). The subtree rooted at
A contains exactly (n−1−i

k−|A|) sets of size k. �

It is of course useful to have rank and unrank functions for the set of subsets
of a finite set.

9.4.5Lemma Let X = {x0, x1, . . . , xn−1}< be a totally ordered finite set of n elements.
Define a function, the rank function, from P(X) to the set of integers 2n as follows.
For a set A ⊆ X define

rkX : P(X) → 2n : A �→
{

0 if A = ∅,
|A| + ∑ xi∈X\A

xi<max A
2n−1−i otherwise.

This function is one-to-one and onto. Its inverse is the unrank function, defined as

rk−1
X (r) := rk−1

X (r, 0),

where

rk−1
X (r, m) := ∅ if r = 0,
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while for 0 < r < 2n−m we have

rk−1
X (r, m) :=

{
{xm} ∪ rk−1

X (r − 1, m + 1) if 2n−1−m ≥ r,

rk−1
X

(
r − 2n−1−m, m + 1

)
if 2n−1−m < r.

�

9.4.6 Example For X = {0, . . . , 4} as above, we have

rkX({1, 3, 4}) = 3 + 25−1−0 + 25−1−2 = 23,

which can be verified by counting the nodes in Fig. 9.3. The tree rooted at {0}
has 16 nodes, and the tree rooted at {1, 2} brings in another 4 nodes, so that
the set {1, 3, 4} has indeed rank 23. On the other hand, we have

rk−1
X (23) = rk−1

X (23, 0)
16<23= rk−1

X (7, 1)
8≥4= {1} ∪ rk−1

X (6, 2)
4<6= {1} ∪ rk−1

X (2, 3)
2≥2= {1, 3} ∪ rk−1

X (1, 4)
1≥1= {1, 3, 4} ∪ rk−1

X (0, 5)

= {1, 3, 4},

which is the original set again. �

Sometimes we are only interested in the set Pk(X) of k-subsets of X, where k
is some fixed integer with 0 ≤ k ≤ |X|. The elements of Pk(X) can be ranked
and unranked as well.

9.4.7 Lemma Let X = {x0, x1, . . . , xn−1}< be a totally ordered finite set of n elements.
Let k be an integer with 0 ≤ k ≤ n. Define a function, the rank function of Pk(X) to
the set of integers (n

k) as follows. For a k-subset A = {xa0 , xa1 , . . . , xak−1}<, put

rkX,k : Pk(X) →
(

n
k

)
: A �→

k−1

∑
i=0

ai−1

∑
j=ai−1+1

(
n − 1− j
k − 1− i

)
,

where a−1 := −1. The function rkX,k is one-to-one and onto. Its inverse is the func-
tion rk−1

X,k, which is given by

rk−1
X,k(r) = rk−1

X,k(r, 0),

where
rk−1

X,k(r, m) := ∅ if k = 0,
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whereas for k > 0

rk−1
X,k(r, m) =

⎧⎨⎩ {xm} ∪ rk−1
X,k−1(r, m + 1) if (n−1−m

k−1 ) > r,

rk−1
X,k

(
r − (n−1−m

k−1 ), m + 1
)

if (n−1−m
k−1 ) ≤ r.

�

9.4.8Example For X = {0, . . . , 4} as above, we have

rkX,3({1, 3, 4}) =
(

5− 1− 0
3− 1− 0

)
+

(
5− 1− 2
3− 1− 1

)
=

(
4
2

)
+

(
2
1

)
= 8,

which can of course be verified by counting nodes in Fig. 9.3. The tree rooted
at {0} contains six 3-subsets, and the tree rooted at {1, 2} brings in another
two 3-subsets, so that the set {1, 3, 4} has rank 6 + 2 = 8. On the other hand,
we have

rk−1
X,3(8) = rk−1

X,3(8, 0)

(5−1−0
3−1 )=6≤8

= rk−1
X,3(2, 1)

(5−1−1
3−1 )=3>2

= {1} ∪ rk−1
X,2(2, 2)

(5−1−2
2−1 )=2≤2

= {1} ∪ rk−1
X,2(0, 3)

(5−1−3
2−1 )=1>0

= {1, 3} ∪ rk−1
X,1(0, 4)

(5−1−4
1−1 )=1>0

= {1, 3, 4} ∪ rk−1
X,0(0, 5)

= {1, 3, 4},

which is the original set again. �

Exercises

E.9.4.1Exercise Compute the rank of A = {2, 3, 5, 7} as a subset of {0, . . . , 7}.

E.9.4.2Exercise Compute rk−1
X (99) where X = {0, . . . , 7}.

E.9.4.3Exercise Compute the rank of A = {2, 3, 5, 7} as a 4-subset of {0, . . . , 7}.

E.9.4.4Exercise Compute rk−1
X,4(66) where X = {0, . . . , 7}.
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E.9.4.5 Exercise If X = {apple, orange, pear, potato, banana, mango, lemon}< , compute

1. rkX({orange, potato, mango}),
2. rkX,3({orange, potato, mango}),
3. rk−1

X (79) and
4. rk−1

X,3(27).

9.5 9.5 Orderly Generation of Codes

In order to construct linear codes, we need to direct attention to the technique
of orderly generation of discrete structures. A discrete structure is simply a type
of object which can be defined as an orbit of a group acting on a finite set. Ex-
amples in Combinatorics are graphs, codes, designs etc. When we speak of the
construction of objects, we mean that we produce one object out of each iso-
morphism class. This object is called the representative, or the labeled object.
In the 1970s, the technique of orderly generation has been invented indepen-
dently by Read [165] and Faradžev [51, 52, 53] for the construction of graphs.
The name comes from the fact that it generates representatives for the orbits
in question in lexicographic order. A more refined version is described by
McKay [146], who also presents an extensive literature list. McKay broadens
the technique to general structures and introduces the concept of a canonical
extension.

In the following, we will first discuss the technique of orderly generation
in some detail and then come back to linear codes later. We start with an action
of a group G on a finite set X, whose elements we call points. The group G also
acts on subsets of X, via

P(X)× G → P(X) : (R, g) �→ Rg = {xg | x ∈ R}.

We call this the induced action of G on P(X). The setwise stabilizer of a set R ⊆ X
is the subgroup

GR := {g ∈ G | Rg = R} = {g ∈ G | ∀ r ∈ R : rg ∈ R}.

A related concept is the pointwise stabilizer of a set R = {r0, . . . , rs−1}, which is
the subgroup

Gr0,...,rs−1 := {g ∈ G | rig = ri for all i ∈ s} =
⋂
i∈S

Gri .

Occasionally, we will consider groups which are of mixed type. For instance,
if we wish to stabilize the set R setwise, and in addition fix the point x, then
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we will write

GR,x = GR ∩ Gx = {g ∈ G | Rg = R, and xg = x}.

Here, the point x may or may not be a member of the set R. Another case is
when the set R is enlarged by one further element x outside of R. The setwise
stabilizer of R ∪ {x} is denoted as

GR∪{x} = {g ∈ G | ∀r ∈ R : rg ∈ R ∪ {x} and xg ∈ R ∪ {x} }.

We would like to compute the orbits of G on the set of subsets of the finite
set X = {x0, . . . , xn−1}<. The following problems arise.

1. Compute a transversal T for the G-orbits on subsets of X, which is a set of
subsets of X such that
(a) each orbit of G on P(X) is represented by one subset in T , and
(b) no such orbit is represented twice.
The elements of the transversal are called orbit representatives.

2. For S ⊆ X, compute σ(S) = GS = {g ∈ G | Sg = S}, the setwise stabilizer
of S in G.

3. For S ⊆ X, determine an element ϕ(S) = g ∈ G which maps S to its orbit
representative in T , i.e. a transporter element (such an element might not
be unique).

Of course, in many applications one is not interested in the totality of sub-
sets. Instead, often one has restrictions coming from the particular problem
one is interested. This means that we are only interested in a subset of P(X),
or even subsets of

P i(X) = {S ⊆ X | |S| = i},

the set of subsets of size i. To formalize this idea, we may indicate this condi-
tion by a function

f : P(X) → {0, 1}, S �→ f (S)

where f (S) is one if and only if the set S is admissible, i.e. satisfies the condition.
We require that the condition is invariant under the action of the group, i.e.
that

f (S) = f (Sg) ∀ g ∈ G, ∀ S ⊆ X. 9.5.1

Also, we require that the condition is hereditary, i.e. that

f (S) = 1 ⇒ f (T) = 1 ∀ T ⊆ S ⊆ X. 9.5.2
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In the following, we will assume that such a function f : P(X) → {0, 1} has
been defined. This is no restriction as one can always define f (S) = 1 for all
S ⊆ X. If f is such a test-function, we may restrict the action of G to the set

P ( f )(X) := P(X)∩ f−1({1}) = {S ∈ P(X) | f (S) = 1}
or to one of the sets

P ( f )
i (X) := P i(X)∩ f−1({1}) = {S ∈ P i(X) | f (S) = 1}.

There are many different ways to choose a transversal. One particular is
the canonical transversal. It consists of canonical orbit representatives, which are
the sets R ⊆ X with

R , Rg for all g ∈ G.

Each orbit G(S), S ⊆ X is represented in this transversal by its least element,

S = min
R∈G(S)

R = min
g∈G

Sg,9.5.3

where the minimum is taken with respect to the lexicographical order. The
function which takes a set S to its canonical orbit representative S can be
thought of as a projection map. It satisfies the property that S = S. The image
of this function is the canonical transversal

T = {S | S ∈ P(X)}.
It consists of the canonical subsets.

9.5.4 Lemma Let X be a totally ordered finite set, and let G be a group acting on X. Let
A be a canonical subset of X in the sense of 9.5.3. Then every prefix B of A is also
canonical.

Proof: Let A = A = {a0, a1, . . . , an−1}< be a canonical subset of X. Let B =
{a0, . . . , am−1} with m − 1 ≤ n − 1 be a prefix of A. Assume that B is not
canonical. Thus there exists an element g ∈ G with Bg = C = {c0, . . . , cm−1} ,
B and C �= B. Since |C| = |B| it must be the case that there exists r < m with
ci = ai for i ∈ r and cr < ar . Also Ag = C ∪ {amg, . . . , an−1g}. In order to
compare Ag with A in the lexicographical order, put

d =
n−1
min
i=m

aig.

If d > cr then Ag = {c0, c1, . . . , cr , . . .}< and therefore Ag , A but Ag �= A,
contradicting the fact that A is canonical. Otherwise, let s be the least index
such that d < cs. Then Ag = {c0, c1, . . . , cs−1, d, . . .}< and because ci = ai

for i ∈ s and d < cs = as, again we have the contradiction that Ag , A
but Ag �= A. We conclude that the assumption was incorrect and thus B is
canonical. �
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The method of orderly generation looks at all extensions of the form

S ∪ {x},

called extension sets. Here, S is a member of the transversal of i-subsets and x
is in X \ S. In fact, one requires that x is the least element in its GS-orbit and
that x > max S. Then, one employs a test for whether a given set S ⊆ X is
canonical. Such a test is not easy to provide, as it involves a systematic search
over the whole group G, to test whether the set Sg is lexicographically less
than S for any given g ∈ G. If no Sg precedes S in the lexicographic order, S is
canonical and will be output by the algorithm. The automorphism group of S
is just the set of all elements g ∈ G for which Sg = g, so

GS = {g ∈ G | Sg = S}

can be computed at the same time. Of course, this backtrack procedure can
be refined. One would try to avoid looking at every group element g ∈ G.
This can be done by taking into account the subgroup structure of G. In fact,
the automorphism group will be constructed by successively extending the
known part of the group with new automorphisms found during the search.
We omit the details here. The algorithm orderly generation can be summa-
rized as follows. We do not state this algorithm as a theorem since we do not
prove its correctness. Nevertheless, we mention that correctness can be proved
using 9.5.4. We define

T ≤i =
i⋃

j=0

T j.

9.5.5Algorithm (orderly generation)

Input: A group G acting on a set X<, a test-function f , an integer i
Output: T ≤i, the canonical transversal for the G-orbits on admissible sets

of size ≤ i.

(0) if f (∅) = 1 then scan(∅, G) end if

(1) end

Where the function scan is defined as follows.

(2) scan(S, A)
(3) compute T S, the canonical transversal of the A-orbits on X \ S.
(4) for each x ∈ T S do

(5) if x > max S then

(6) if f (S ∪ {x}) = 1 then
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(7) if S ∪ {x} is canonical then

(8) print S ∪ {x}
(9) if |S| + 1 < i then

(10) scan(S ∪ {x}, GS∪{x})
(11) end if

(12) end if

(13) end if

(14) end if

(15) end for

(16) end �

As already mentioned, testing whether a given set is the lexicographically
least set among its G-orbit is a hard problem. It is actually easier to drop the
requirement that the canonical element is the least among its orbit and replace
it by some other kind of canonical form. This is McKay’s variant. It relies on a
function ϕ such that

Rϕ(R) = Sϕ(S) whenever R ∼G S.9.5.6

Such a function ϕ can be realized by a “partition backtrack” algorithm (cf.
Leon’s series of articles [128, 129, 130]). In addition, this algorithm computes
the set-stabilizer of the set in question. If such a map ϕ is to be used for the
orderly generation of orbits, the “scan” algorithm needs to change. This is
because an extension S ∪ {x} where x is smallest among its GS-orbit is not
necessarily canonical with respect to the function ϕ. Also, the requirement that
x > max S must be dropped. To make things work, one introduces another
function

m : P(X) → X,9.5.7

satisfying the two conditions

1. m(R) ∈ R, and
2. m(Rg) ∼GRg m(R)g.

Such a function m is easily defined in terms of the map ϕ. For instance, one can
take

m(R) =
(

min Rϕ(R)
)

ϕ(R)−1.

To see that this works, we argue as follows. It is clear that m(R) ∈ R. Since
ϕ(R)ϕ(Rg)−1 maps R to Rg, we deduce from 3.4.1 that there exists an element
h ∈ GRg such that

ϕ(R)ϕ(Rg)−1 = gh.
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We conclude that

m(Rg) =
(

min Rgϕ(Rg)
)

ϕ(Rg)−1

=
(

min Rϕ(R)
)

ϕ(Rg)−1

= m(R)ϕ(R)ϕ(Rg)−1

= m(R)gh,

which shows that m(Rg) is in the same GRg-orbit as m(R)g.

We may summarize this algorithm as

9.5.8Theorem (McKay [146]) Let G act on the finite set X<. Let f : P(X) → {0, 1}
be a test-function on X which is G-invariant and hereditary (in the sense of 9.5.1
and 9.5.2). Let ϕ and m be functions as in 9.5.6 and 9.5.7, respectively. Then for any
given integer i ≤ |X|, Algorithm 9.5.9 computes a transversal T ≤i of the orbits of G
on admissible subsets of X of size at most i together with the corresponding stabilizers
in G.

9.5.9Algorithm (orderly generation by canonical augmentation)

Input: A group G acting on a set X<, a test-function f , an integer i,
functions ϕ and m as in 9.5.6 and 9.5.7, respectively.

Output: T ≤i, a transversal for the G-orbits on admissible sets of size ≤ i.

(0) if f (∅) = 1 then scan(∅, G) end if

(1) end

Where the function scan is defined as follows.

(2) scan(S, A)
(3) compute T S, a transversal of the A-orbits on X \ S.
(4) for each x ∈ T S do

(5) if f (S ∪ {x}) = 1 then

(6) compute y := m(S ∪ {x}) and B := GS∪{x}
(7) if x ∼B y then

(8) print S ∪ {x}
(9) if |S| + 1 < i then

(10) scan(S ∪ {x}, B)
(11) end if

(12) end if

(13) end if

(14) end if
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(15) end for

(16) end �

Proof: We proceed by induction on j, the size of the subsets under considera-
tion. If j = 0, the algorithm outputs ∅ and G∅ = G, provided that f (∅) = 1.
Let us assume that T i, a transversal for the G-orbits on P ( f )

i (X) is computed
correctly (together with the corresponding stabilizers in G). We need to show
that each G-orbit on (i + 1)-subsets is represented exactly once in the output
of the algorithm. We proceed in two steps.

At first, we claim that each G-orbit on admissible (i + 1)-subsets is repre-
sented at least once in the output. To see this, let R be an admissible (i + 1)-
subset of X. Since f is hereditary, the subset R \ {m(R)} is again an admissible
i-subset. By induction hypothesis, there exists an element g ∈ G such that

(R \ {m(R)})g = S ∈ T i.

We define
z := m(R)g ∈ X \ S.

Since T S is a transversal of the GS-orbits on X \ S, there exists an element
h ∈ GS such that

zh = x ∈ T S.

We conclude that

Rgh = (R \ {m(R)})gh∪ {m(R)gh}
= Sh ∪ {zh}
= S ∪ {x}

and S ∪ {x} is one of the extensions considered in lines (5)-(9). Since

y = m(S ∪ {x}) = m(Rgh) ∼GS∪{x} m(R)gh = zh = x,

the extension S ∪ {x} is accepted in line (7).

Secondly, we claim that each G-orbit on admissible (i + 1)-subsets is rep-
resented at most once in the output. Assume the contrary. Let R ∼G S be two
admissible (i + 1)-subsets computed by the algorithm. Then

R = U ∪ {x}, S = V ∪ {y}

with U,V ∈ T i, x ∈ T U , y ∈ T V . In addition, we know that

x ∼GR m(R), and y ∼GS m(S),
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since U ∪ {x} and V ∪ {y} must both have been accepted in line (7) of the
algorithm. Since R ∼G S, there exists an element g ∈ G such that Rg = S.
Thus GS = g−1GRg. Since x ∼GR m(R), there exists an element r ∈ GR such
that xr = m(R), and so

xg(g−1rg) = m(R)g,

i.e.
xg ∼GS m(R)g,

since g−1rg ∈ g−1GRg = GS. Thus

y ∼GS m(S) = m(Rg) ∼GS m(R)g ∼GS xg ∈ S.

This means that there exists an element h ∈ GS with

y = xgh.

Thus

Ugh = (R \ {x})gh = (Sg−1 \ {x})gh = Sh \ {xgh} = S \ {y} = V,

i.e. U ∼G V. But U and V are elements of the transversal T i, and by induc-
tion hypothesis, this transversal contains exactly one representative of each
G-orbit. It follows that

U = V,

and therefore x �= y (since R �= S by assumption). Thus

Ugh = V = U,

i.e. gh ∈ GU . From xgh = y we conclude that x ∼GU y, which is a contradiction
to the fact that the algorithm considers in line (4) only representatives x ∈ T U

of the U-orbits on X \ U. The assumption must be wrong and the claim is
proved. This finishes the proof of the fact that algorithm 9.5.9 is correct. �

Let us return to the problem of computing isometry classes of linear codes.
Given a length n, a dimension k and a lower bound dmin for the minimum
distance, let us now construct all (n, k)-codes over some finite field Fq whose
minimum distance is at least dmin where dmin ≥ 3. From 9.1.5 we deduce the
following. Depending on whether we want to compute linear or semilinear
isometry classes, we are interested in the orbits of G = PGLn−k(q) or G =
PΓLn−k(q) on

Pn(X), X = PGn−k−1(q),

respectively.

It remains to take the prescribed minimum distance dmin into account. In
order to apply 9.1.8, we need to check whether the n-subset of PGn−k−1(q)
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under consideration has the property that any dmin − 1 points are independent.
If S ⊆ PGn−k−1(q) is a set of size n, we put

f (S) =
{

1 if any dmin − 1 points of S are independent,
0 otherwise.

This function f is our test-function. We need to check if the function f satis-
fies the requirements listed in 9.5.1 and 9.5.2. Since both groups PGLn−k(q)
and PΓLn−k(q) preserve the linear structure of Fn−k

q , the condition about lin-
ear independence of subsets is invariant under the action. It is clear that the
condition is hereditary. Let us put

Yn,k,dmin,q = P ( f )
n (PGn−k−1(q)) =

{
S ⊆ PGn−k−1(q)

∣∣∣ |S| = n, f (S) = 1
}

.

The next result shows a connection between canonical orbit representatives
and systematic generator matrices.

9.5.10 Lemma Consider the action of G ≥ PGLk(q) on n-subsets of points of X =
PGk−1(q). Let X be totally ordered according to 9.3.5. Let

A := {〈u(0)〉, . . . , 〈u(n−1)〉}<

be a canonical orbit representative. Let

Γ(A) =
(
u(0)�

∣∣∣ · · ·
∣∣∣ u(n−1)�

)
be the generator matrix corresponding to A. Then the following conditions are equiv-
alent.

1. The rank of the matrix Γ(A) is r.

2. 〈u(i)〉 = 〈e(i)〉, for i ∈ r and u(j) ∈ 〈e(0), . . . , e(r−1)〉 for j = r, . . . , n − 1.

3. 〈u(i)〉 = 〈e(i)〉, for i ∈ r and 〈u(r)〉 �= 〈e(r)〉.

Proof:

1. ⇒ 2.: Since G is transitive on r-dimensional subspaces, the rank condition
implies that the orbit of A contains an element B = {〈e(0)〉, . . . , 〈e(r−1)〉, . . .}.
But {〈e(0)〉, . . . , 〈e(r−1)〉} is the lexicographically least set of size r. Hence A
contains this set, i.e.

A = {〈e(0)〉, . . . , 〈e(r−1)〉, 〈u(r)〉, . . . , 〈u(n−1)〉},

and – also by the rank condition – each column of Γ(A) is in the span of these
vectors:

u(j) ∈ 〈e(0), . . . , e(r−1)〉, r ≤ j ≤ n − 1.
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2. ⇒ 3.: If r = k, there is nothing to show. Otherwise we have that u(r) ∈
〈e(0), . . . , e(r−1)〉 which implies 〈u(r)〉 �= 〈e(r)〉.

3. ⇒ 1.: Since {〈u(0)〉, . . . , 〈u(r−1)〉} = {〈e(0)〉, . . . , 〈e(r−1)〉}, the rank of Γ(A)
is ≥ r. Now assume that the rank of Γ(A) is strictly greater than r. This implies
that there is a column of Γ(A) which is linearly independent from the first r
columns. Let this be column i ≥ r. Then u(i) �∈ 〈e(0), . . . , e(r−1)〉. Since G is
transitive on subspaces of fixed dimension, there is an element g ∈ G with

{〈e(0)〉, . . . , 〈e(r−1)〉, 〈u(i)〉}g = {〈e(0)〉, . . . , 〈e(r)〉}.

But the latter set is the lexicographically least set of size r + 1. The prefix of
length r of the canonical set A must therefore coincide with this set, i.e. we
have shown that 〈u(r)〉 = 〈e(r)〉, which contradicts 3. Thus the assumption
that the rank of Γ(A) is greater than r was incorrect. This means that the rank
of Γ(A) is indeed r. �

9.5.11Corollary Let A = {〈u(0)〉, . . . , 〈u(n−1)〉}< be a canonical representative for an
orbit of PGLk(q) acting on n-subsets of PGk−1(q). If the vectors u(i) are standard,
then the matrix

Γ(A) =
(
u(0)� | · · · | u(n−1)�)

is systematic. �

As described above, we compute the orbits of G on Y(i,k,dmin,q) where i goes
from 0 to n. Here we choose G = PGLn−k(q) or G = PΓLn−k(q), depending on
whether we want to compute linear or semilinear isometry classes of codes. As
described in 9.1.1, the sets in Y(i,k,dmin,q) give rise to (i,≥ i − n + k,≥ dmin, q)-
codes, which is sensible only for i ≥ n− k. As pointed out before, we will have
to go through all values i ≤ n, since the orbits on Y(i,k,dmin,q) will be constructed
inductively. At each step, the canonical transversal T i for the orbits of G on
the set Y(i,k,dmin,q) is computed, as well as some additional data. This additional
data can be used to realize functions σi and ϕi with (T i, σi, ϕi) as in 9.2.12. The
union

T ≤n =
n⋃

i=0

T i

of all canonical representatives is the tree of canonical representatives. The leaves
at depth n comprise the isometry classes of codes. We follow the convention of
labeling nodes by their largest element. We display the ranks of the projective
points rather than the projective points themselves.

Given an orbit representative A = {〈u(0)〉, . . . , 〈u(s−1)〉}<, we construct the
corresponding code as follows. As in 9.1.6, we form the check matrix ∆(A). At
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this point we come back to the initial remarks in Section 9.1 about the matrix
∆(A) being not uniquely defined. This non-uniqueness has two reasons. The
first one lies in the fact that the elements of the set A may be rearranged freely.
We have resolved that issue by requiring that the elements of A be ordered in-
creasingly (according to their ranks as given by 9.3.5). The second problem lies
in the choice of the representatives u(i) for the projective points. To this end,
we simply require that u(i) is standard, i.e. that its rightmost nonzero coordi-
nate is one. With these two conventions, the matrix ∆(A) becomes unique and
we may take this matrix as a check matrix of a code. This (n,≥ k,≥ d, q)-code
is a representative of an isometry class. More precisely, if the rank of ∆(A) is
r, then we have found an (n, n − r,≥ d, q)-code. Here we have n − r ≥ k since
r ≤ n − k. In order to obtain a generator matrix, we proceed as follows.

By 9.5.10, ∆(A) is systematic provided that A is the lexicographically least
element in its G-orbit. If r is determined as the index for which 〈u(i)〉 = 〈e(i)〉
for i = 0, . . . , r − 1 and 〈u(r)〉 �= 〈e(r)〉, then the rank of ∆(A) is r. Thus, we can
write

∆(A) =

(
Ir M
0 0

)
for some r × (n − r)-matrix M. By 1.3.9, a generator matrix of the code is

Γ(A) =
(
−M� | In−r

)
.

Let us consider an example.

9.5.12 Example We wish to construct and classify binary (8, 4)-codes with minimum
distance at least dmin = 3. For this we are looking for sets of 8 points in
PG3(2). Since dmin − 1 = 2, and since two distinct points of a projective space
are always linearly independent, any subset is admissible. In order to con-
struct the codes, we compute the orbits of PGL4(2) on P≤8

(
PG3(2)

)
(here,

P≤i(X) := ∪i
j=0P i(X)). The resulting tree of canonical orbit representatives

is shown in Fig. 9.4 (see Example 9.3.11 for the ranks of points in PG3(2)).
We find 6 leaves at level 8, which comprise all essentially distinct (8, 4,≥ 3)-
codes. Table 9.2 shows the corresponding check and generator matrices. The
last code is equivalent to the extended (7, 4)-Hamming-code. Being the only
code with distance 4, this is the optimal binary code with length 8 and di-
mension 4. Notice that the second to last code is decomposable. Its generator
matrix contains a zero column. The code can thus be seen as the direct sum
(in the sense of 2.2.11) of a (6, 4)-codes with a (rather trivial) (1, 0)-code. For a
description of the algorithm to compute the orbits, we refer to the next section.
In 9.6.12, we will pick this example up again and show more details of the ac-
tual computation. �
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Fig. 9.4 Orbits of PGL4(2) on P≤8
(
PG3(2)

)
Table 9.2 Binary (8, 4,≥ 3)-codes

A ∆(A) Γ(A) d

{0, 1, 2, 3, 4, 5, 6, 7}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 1 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 1 1 0 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 4, 5, 6, 8}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 1 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 4, 5, 6, 9}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 4, 5, 6, 10}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 5, 6, 7, 8}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
0 1 1 0 0 0 1 0
1 1 1 0 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 8, 11, 13, 14}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

⎞⎟⎟⎟⎠ 4
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9.6 9.6 The Algorithm Snakes and Ladders

The two algorithms presented in the previous section rely on the fact that we
are able to compute a canonical from of every subset. This is indeed a hard
problem, and it can be tedious to provide a canonical form for a specific group
action, since computing the canonical form depends very much of the nature of
the group action under consideration. In this section, we will present an orbit
algorithm which is general in the sense that it does not depend on the nature
of the group in question. The algorithm proceeds in breadth first search, i.e.
constructs the orbit representatives level by level. Also, it avoids backtracking
as much as possible. The price one pays is that the amount of memory required
correlates linearly to the number of orbits computed. In a sense, one trades
computing time with memory. Of course, this is a limitation which may restrict
the scope to which problems can be tackled. On the other hand, the speedup
from the memory versus time tradeoff makes it realistic to tackle instances of
hard problems, such as the computation of isometry classes of linear codes
which is our main topic.

Essentially, this algorithm is due to Schmalz [171] (“Leiterspiel” loosely
translated as “snakes and ladders”). Whereas Schmalz formulated his algo-
rithm very much in the language of group theory, here we will stick to the
concept of a group acting on a set. That is, we will describe the algorithm as
computing orbits of a group G on subsets of a set X on which G acts. This
is different from the approach taken by Schmalz, whose algorithm is formu-
lated in the language of double cosets in finite groups. The name Leiterspiel
(“ladder game”) refers to the fact that the algorithm works along a sequence
of subgroups which are alternately subgroups and overgroups of each other
(what we will call the “down-and-up process”).

We assume that orbits on points can be computed, for instance using the al-
gorithms described in Section 9.2. The main goal is to provide a triple (T , σ, ϕ)
which is a solution to the orbit problem for G acting on admissible subsets of X.

We will favor an inductive solution to the problem, namely by computing
the orbits of G on P ( f )

i (X) for i = 0, 1, . . . . In the search tree, this corresponds
to a breadth-first search. Let

orbit
(
G,P ( f )

i (X)
)

= (T i, σi, ϕi),

be a solution to the orbit problem on i-subsets. Note that the case i = 0 is
trivial, whereas i = 1 is the basic orbit problem on points, which we are able
to solve using the methods provided in Section 9.2.

Assume that a transversal T i of orbits of G on sets P ( f )
i (X), i.e. on admis-

sible sets of size i has already been computed. Often this will be the canonical
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transversal, i.e. the transversal consisting of all sets which are canonical with
respect to some ordering. For sake of simplicity, we will say that a set R is
canonical if it belongs to one of the transversals T i for some i.

In order to compute T i+1, we consider extensions of sets in T i. An extension
is a set of the form

R ∪ {x} ∈ P ( f )
i+1(X),

where R is in T i ⊆ P ( f )
i (X) and x is in X \ R. There are four major tasks

involved in computing the “next level” of orbits on (i + 1)-sets:

Problem 1 Ensure that each G-orbit on admissible (i + 1)-sets is reached.

Problem 2 Determine when two extensions R ∪ {x} and S ∪ {y} are isomor-
phic (i.e. belong to the same G-orbit). Note that here R and S are canonical, i.e.
elements of the transversal T i.

Problem 3 Compute the stabilizer in G of an extension set R ∪ {x}. Here we
assume that the stabilizer of the canonical set R is known.

Problem 4 Provide a transporter map ϕi+1 for (i + 1)-sets. That is, given an
(i + 1)-subset F ⊆ X, compute an element g ∈ G such that Fg ∈ T i+1.

Problem 1 is addressed easily. Let F be an admissible (i + 1)-subset of X.
Let z := max F and put H := F \ {z}, which is admissible since f is hereditary.
Thus H ∈ G(R) for some R ∈ T i and Hg = R for g = ϕ(H). Let x := zg ∈
X \ R. This shows that F ∼G R∪ {x}, which is one of the candidate sets which
we considered. We note that later on, we will reduce the number of candidate
sets further (see 9.6.2).

Problem 2 amounts to determining when two extensions R ∪ {x} and S ∪
{y} with R, S ∈ T i belong to the same G-orbit. The following “exchange
lemma” gives a necessary and sufficient condition for deciding that question
(cf. Fig. 9.5).

9.6.1Lemma Assume that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi). For R, S ∈ T i, x ∈ X\R,

y ∈ X\S, we have R ∪ {x} ∼G S ∪ {y} if and only if one of the following two
conditions holds

1. R = S and x ∼GS
y or

2. there exists an r ∈ R such that

((R\{r})∪ {x})t = S and rt ∼GS
y

where t = ϕi((R\{r})∪ {x}).
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Fig. 9.5 The two cases of Lemma 9.6.1

Proof: Necessity: Assume that R ∪ {x} ∼G S ∪ {y}. Then there exists an ele-
ment g ∈ G with

(R∪ {x})g = S ∪ {y}.

We must show that 1. or 2. holds. Assume that Rg = S and hence xg = y.
Since R and S are both orbit representatives in T i, we must have R = S. But
then Sg = Rg = S, i.e. g ∈ GS and hence x ∼GS y, which is 1. Otherwise we
have S �= Rg ⊆ S ∪ {y}, and hence xg ∈ S. Let r = yg−1 ∈ R. Hence

((R \ {r} ∪ {x})g = S.

But also
((R \ {r} ∪ {x})t = S,

where t = ϕi((R\{r}) ∪ {x}) is the transporter element mapping (R\{r}) ∪
{x} onto the canonical representative S. Thus g is contained in the left coset
tGS, i.e. g = th for some h ∈ GS. Now rth = rg = y, i.e. rt ∼GS y, which is 2.
Sufficiency: If 1. is valid, and if g ∈ GS maps x to y, then clearly (R ∪ {x})g =
Rg∪ {xg} = S ∪ {y}. If 2. holds with h ∈ GS mapping rt to y then

(R ∪ {x})th = ((R\{r})∪ {x})th ∪ {r}th = Sh ∪ {rth} = S ∪ {y}. �

The first part of this result has an important implication for the candidate
set of extensions (Problem 1):

9.6.2 Corollary It suffices to consider only extensions of the form R ∪ {x} where R is a
canonical i-set and x ∈ X \ R is canonical under the stabilizer of R in G. �
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GR,x

GR GR∪{x}

Fig. 9.6 The “down-and-up” process

From now on, we consider only extensions R ∪ {x} of the form described
in the previous corollary.

Let us now describe the problem of computing the stabilizer of extension
sets (Problem 3). If the extension is R ∪ {x}, then this amounts to computing

GR∪{x},

the setwise stabilizer of R ∪ {x}. We assume that GR, the setwise stabilizer of
the canonical set R is known. The difficulty is that there is no relationship be-
tween the groups GR and GR∪{x} (meaning that neither is a subgroup of the
other in general). However, they share a common subgroup, namely the group
GR,x which is the set of elements of G which stabilize R setwise and x point-
wise. The idea is to first go down from GR to GR,x (the “downstep”), which is
relatively straightforward. Generators for GR,x can be computed from genera-
tors for GR by means of 9.2.10. The difficulty is to compute the group GR∪{x}
from the subgroup GR,x (i.e. the “upstep”). In the following, we will address
this problem first (we will call it the “down-and-up” process, cf. Fig. 9.6).
Afterwards, we will present the algorithm to compute orbits on sets which
combines all the ideas developed so far.

Recall that for a subgroup V of G we have

XV = {x ∈ X | ∀v ∈ V : xv = x}.

The following result is a consequence of 3.4.1.

9.6.3Lemma Let the group H act on a set X. Let V = Hx be the stabilizer of a point
x ∈ X. In addition, let R be a set of elements of H such that for each y ∈ H(x)
there exists one and only one g ∈ R with xg = y. Then R is a set of right coset
representatives of V in H. �
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In the situation of the lemma, we call H the extension of V w.r.t. the coset
representatives R and we write

H = Ext(V,R, x) =
⋃

r∈R
Vr,

where the last union is over disjoint cosets. For R ∈ T i and x ∈ X \ R, let us
define

R∗(x) :=

{
r ∈ R

∣∣∣∣∣ (R \ {r}) ∪ {x} ∈ G(R) and rt ∈ GR(x),
where t = ϕi((R \ {r}) ∪ {x})

}
9.6.4

and put R(x) = R∗(x) ∪ {x}. The next result describes the stabilizer of exten-
sion sets.

9.6.5 Lemma Let G act on the finite set X. Assume that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi).

For R ∈ T i let orbit (GR, X \ R) = (T R, σR, ϕR). Fix x ∈ T R. Then the orbit of x
under GR∪{x} is R(x). In particular GR∪{x} = Ext(GR,x,R, x) where

R = {1} ∪
{
t · ϕR(rt)

∣∣ r ∈ R∗(x), t = ϕi((R \ {r}) ∪ {x})
}
.

Here, GR,x = GR ∩ Gx = {g ∈ G | Rg = R, xg = x} and GR∪{x} is the setwise
stabilizer of the set R ∪ {x}.

Proof: Let Ox = GR∪{x}(x) be the orbit of x under GR∪{x}. We claim that
Ox = R(x) = R∗(x) ∪ {x}.

Consider r ∈ R. Let g ∈ GR∪{x} with rg = x. Since g maps R ∪ {x} onto
itself, we have

R ∪ {x} = (R ∪ {x})g−1 = Rg−1 ∪ {xg−1} = Rg−1 ∪ {r}.

This implies that Rg−1 = (R \ {r}) ∪ {x} and therefore

((R \ {r}) ∪ {x})g = R ∈ T i,

i.e. (R \ {r}) ∪ {x} ∈ G(R). By definition, the group element t = ϕi((R \
{r}) ∪ {x}) maps (R \ {r}) ∪ {x} to the canonical representative in T i of its
G-orbit, which must be the set R. Thus

((R \ {r}) ∪ {x})t = R = ((R \ {r}) ∪ {x})g.

We conclude that t and g belong to the same left coset of GR, i.e. there is an
element h ∈ GR such that g = th. Thus

((R \ {r}) ∪ {x})t = ((R \ {r}) ∪ {x})gh−1 = Rh−1 = R.

Also, rt = rgh−1 = xh−1 ∼GR x and therefore r ∈ R∗(x).
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Since x is clearly an element of its own orbit under GR∪{x}, it remains to
show that the elements r ∈ R∗(x) lie in Ox. If r ∈ R∗(x), we have that ((R \
{r}) ∪ {x})t = R and rt ∼GR x ∈ T R where t = ϕi((R \ {r}) ∪ {x}). The
second condition implies that rth = x where h = ϕR(rt) ∈ GR. The equation

(R ∪ {x})th = ((R \ {r}) ∪ {x})th ∪ {r}th = Rh ∪ {r}th = R ∪ {x}
shows that g = th stabilizes R ∪ {x}. In addition, since xg−1 = r we have that
r ∈ Ox. This proves the claim.

We are now able to show that GR∪{x} = Ext(GR,x,R, x). It is clear that
GR,x is a subgroup of GR∪{x}. Next, GR∪{x},x = GR∪{x} ∩ Gx = GR,x. Hence
the cosets of GR,x in GR∪{x} are in one-to-one correspondence with the distinct
images of x under GR∪{x}. If we revisit the proof of the claim above, we no-
tice that for r ∈ R∗(x) the element tϕR(rt) where t = ϕi((R \ {r}) ∪ {x}) is
in GR∪{x} and maps r ∈ R∗(x) = Ox \ {x} to x. Since the identity element
(denoted as 1) is trivially contained in GR∪{x} and maps x to x, the union R
of 1 and all elements tϕR(rt) as above forms a transporter set for the distinct
elements of Ox in GR∪{x}. By the standard argument alluded to above we have
that GR∪{x} is the union of the right cosets of GR,x with respect to the elements
of R. Therefore by 9.6.3, GR∪{x} is the extension of GR,x with respect to the
point x and the transversal R. �

The following result is helpful in computing the set R∗(x). It may reduce
the number of r ∈ R which have to be tested.

9.6.6Lemma Let G act on the finite set X. Assume that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi).

For R ∈ T i let orbit (GR, X \ R) = (T R, σR, ϕR). Fix x ∈ T R and r ∈ R. Then

1. If r ∈ R∗(x) then rs ∈ R∗(x) for all s ∈ GR∪{x}.

2. If r �∈ R∗(x) then rs �∈ R∗(x) for all s ∈ GR∪{x}.

Proof: Let r ∈ R∗(x) and s ∈ GR∪{x}. Then (R \ {r}) ∪ {x} ∈ G(R) and
rtr ∈ GR(x) for tr = ϕi((R \ {r}) ∪ {x}). The latter condition means that there
is an element h ∈ GR such that

rtrh = x.

We will now show that rs ∈ R∗(x). Using the fact that s ∈ GR∪{x} we obtain

((R \ {rs}) ∪ {x})s−1tr = ((R∪ {x}) \ {rs})s−1tr

= (R∪ {x})s−1tr \ {rs}s−1tr

= (R∪ {x})tr \ {r}tr

= ((R \ {r}) ∪ {x})tr
= R,
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i.e. (R \ {rs}) ∪ {x} ∈ G(R). Thus with trs = ϕi((R \ {rs}) ∪ {x}) we have

((R \ {rs}) ∪ {x})trs = R.

Putting the two equations together we see that s−1tr and trs differ only by an
element u ∈ GR, i.e.

trs = s−1tru.

Thus
rs · trs = rss−1tru = rtru = (rtrh)h−1u = xh−1u ∈ GR(x),

since h and u are both elements of GR. This proves the first part. For the second
part, assume that r �∈ R∗(x) but rs ∈ R∗(x). Then by the first part we deduce
that r = rss−1 ∈ R∗(x), which is a contradiction. �

9.6.7 Remarks

1. In the previous result, the group GR∪{x} may be replaced by the subgroup
GR,x. The reason for doing this is that the group GR∪{x} may not be known
initially, whereas the smaller group GR,x may be known. In fact, we have

GR∪{x} = Ext(GR,x,R, x)

where R is defined in terms of R∗(x). Thus when testing elements r for
membership in R∗(x) we cannot use GR∪{x}. Since GR,x is simply a point
stabilizer in the known group GR, we may start with this group instead.
Later on, when non-trivial elements

g(0), . . . , g(i−1)

in R have been found, we may form the overgroup

H(i) = 〈GR,x, g(0), . . . , g(i−1)〉 ≤ GR∪{x}

and apply 9.6.6 to s ∈ H(i).
2. To apply 9.6.6, one computes the orbits of H = GR∪{x} (or any known

subgroup thereof, see the previous remark) on the elements of R. For each
orbit H(r), only the representative r needs to be tested for membership in
R∗(x). If r ∈ R∗(x) then H(r) ⊆ R∗(x). Otherwise H(r) ∩ R∗(x) = ∅.  

Summarizing, we have seen in Lemma 9.6.1 how to decide whether or not
two extensions R ∪ {x} and S ∪ {y} are in the same G-orbit, i.e. isomorphic.
This is the main tool for reducing isomorphic copies. It is now time to take the
lexicographical order into account. We use the following tie breaker. If two
extensions are isomorphic then we always keep the lexicographically smaller
one of the two and we discard the other one. So, if R , S then we keep R∪{x}.
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Or, if R = S but x < y then we keep R ∪ {x} and discard R ∪ {y}. Essentially,
we do a breadth first search in the tree of canonical orbit representatives. This
step comprises the isomorph rejection.

We assume that all representatives of i-orbits are available, i.e. that

(T i, σi, ϕi)

has been computed. Next we examine the sets R ∈ T i in lexicographically
increasing order. For each such set R, we compute the orbits of its stabilizer
GR = σi(R) on the remaining points X \ R. Let

(T R, σR , ϕR)

be the resulting orbit data. As usual, we assume that T R is the canonical
transversal. This means that the elements of T R (which are just points) are
the least among their respective GR-orbit. Next, we consider the extensions of
the form R ∪ {x} where x ∈ T R (in increasing order). Since GR is known by
assumption, the stabilizer GR,x can be computed. Recall that

GR,x = GR ∩ Gx

is the pointwise stabilizer of x in GR. Actually,

GR,x = σR(x)

is part of the orbit data which has been computed in the previous step. Next,
we compute the set R∗(x) of 9.6.4. For this, we try all r ∈ R and see if the set
(R \ {r})∪{x} is contained in the G-orbit of R. This can be done by computing

t = ϕi((R \ {r}) ∪ {x})

and testing whether
((R \ {r}) ∪ {x})t = R.

If this is the case then we have to test the second condition, which requires
that rt is in the same GR-orbit as x. For this, we simply compute h = ϕR(rt)
and test if rth = x. If all these conditions hold then r ∈ R∗(x), otherwise we
proceed to test the next element in R.

Assume that r ∈ R∗(x) has been found. Then

((R \ {r}) ∪ {x})t = R, and rth = x

where t and h are as above. Thus

(R∪ {x})th = ((R \ {r}) ∪ {x})th ∪ {r}th = Rh ∪ {x} = R ∪ {x},
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i.e. a := ar := th is an automorphism of the extension set R ∪ {x}. This auto-
morphism a has the property that ra = x, i.e. xa−1 = r. In other words, this
automorphism is a coset representative for the subgroup GR,x in GR∪{x}. If R
is the collection of all ar for r ∈ R∗(x) together with the identity, then R is a
transversal of the cosets of GR,x in GR∪{x}. In other words,

GR∪{x} = Ext(GR,x,R, x).

As remarked above, once the first automorphism ar has been found, we
can immediately form the group H(1) := 〈GR,x, ar〉, which is a subgroup of
GR∪{x}. Later on, we may use H(1) to reduce the number of r ∈ R which need
to be tested for membership in R∗(x). We proceed by induction on i = 1, 2, . . . .
Whenever another automorphism generator ar has been found while testing
an element r ∈ R, we define the group extension

H(i+1) = 〈H(i), ar〉.

Of course, once an element r ∈ R has been proven to be outside of R∗(x), we
can eliminate the whole orbit H(i)(r) ⊆ R from the search. All this follows
from 9.6.6.

What happens if r ∈ R does not lie in R∗(x)? Then we have found a group
element g = th with t = ϕi((R \ {r}) ∪ {x}) and h ∈ GS such that

((R \ {r}) ∪ {x})t = S,

and rth = y. Thus

(R ∪ {x})th = ((R \ {r}) ∪ {x})th ∪ {r}th = Sh ∪ {y} = S ∪ {y}.

This means that the extension R ∪ {x} is isomorphic to S ∪ {y}, i.e.

R ∪ {x} ∼G S ∪ {y}.

Here, we use the word isomorphic as a synonym for “being in the same G-
orbit.” In this language, we can say that the element th is an isomorphism
between the two extensions. Note that R = S is still possible (but then x < y).
We claim that R ∪ {x} precedes S ∪ {y}. To see this, recall that we proceed in
a breadth first search fashion, i.e. we process the extensions at any given level
in lexicographically increasing order. Hence, if S ∪ {y} were less than R ∪ {x}
then we would have detected the fact that R ∪ {x} ∼G S ∪ {y} earlier, and
we would have discarded R ∪ {x}. So, at this point we decide to eliminate the
extension S∪ {y}, since it is not canonical. However, we will not totally delete
the extension from the search tree. Instead, we decide to save the isomorphism
th which maps R ∪ {x} to S ∪ {y}. Actually, we decide to store the inverse,

ψS(y) := (th)−1
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and call this a fusion element. Also, we introduce a fusion node for the extension
S ∪ {y}. The fusion node serves as a means of recoding the information which
we gained about isomorphic sets. If S ∪ {y} is a fusion node, we always have
that

(S ∪ {y})ψS(y) = R ∪ {x} is canonical. 9.6.8

The fusion nodes will help to speed up the algorithm when it comes to com-
puting transporter elements, as we will see in the next paragraph. Summariz-
ing, we have seen how to construct the canonical transversal T i+1 of orbits on
sets of size i + 1 together with the respective stabilizers.

Let us now address the problem of defining the transporter map ϕi+1 (since
this map is needed for the induction). More specifically, given a set F of size
i + 1, the question is to find the canonical representative

R ∪ {x} ∈ T i+1

with F ∼G R ∪ {x}. In particular, we wish to determine an element g ∈ G
with Fg = R ∪ {x}. This problem can be solved recursively. The set F is split
into z := max F and Z = F \ {z}. By induction, we can compute an element
t := ϕi(Z). Then S := Zt is a canonical orbit representative. Using the orbit
data, we compute h ∈ GS such that zth = y is canonical under GS. If S ∪ {y}
is canonical under G, we return th. Otherwise, if S∪ {y} is a fusion node, then
we have a fusion element ψS(y) such that

(S ∪ {y})ψS(y) = R ∪ {x}

is canonical by 9.6.8 and we return thψS(y). This finishes the description of the
algorithm. Let us present the algorithm as

9.6.9Theorem Let G act on the finite set X. Assume that we can compute stabilizers, group
extensions and orbits on points for subgroups of G. Furthermore, let f : P(X) →
{0, 1} be a test function which is G-invariant and hereditary (in the sense of 9.5.1
and 9.5.2). Then Algorithm 9.6.10 computes the orbits of G on P ( f )(X) = P(X) ∩
f−1({1}), the set of admissible subsets of X. �

9.6.10Algorithm (orbits on subsets)

Input: orbit
(
G,P ( f )

i (X)
)

= (T i, σi, ϕi)
Output: orbit

(
G,P ( f )

i+1(X)
)

= (T i+1, σi+1, ϕi+1)

(0) for R ∈ T i do

(1) compute orbit(GR, X \ R) := (T R, σR, ϕR)
(2) end for

(3) T i+1 := ∅
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(4) for R ∈ T i (in increasing order) do

(5) for x ∈ T R (in increasing order) with f (R ∪ {x}) = 1
and for which ψR(x) has not yet been defined do

(6) GR,x := σR(x)
(7) H := GR,x

(8) for all r ∈ R which are least in their H-orbit do

(9) t := ϕi((R \ {r}) ∪ {x})
(10) S := ((R \ {r}) ∪ {x})t
(11) h := ϕS(rt)
(12) y := rth

(now: (R ∪ {x})th = S ∪ {y}, S ∈ T i, y ∈ T S)
(13) if S = R and y = x then (case 1 of 9.6.1)
(14) H := 〈H, th〉

(th is an automorphism of R ∪ {x})
(15) else (case 2 of 9.6.1)
(16) ψS(y) := (th)−1

(th is an isomorphism from R ∪ {x} to S ∪ {y})
(17) end if

(18) end for

(19) append R ∪ {x} to T i+1
(20) σi+1(R∪ {x}) := H (= GR∪{x})
(21) end for

(22) end for

(23) return (T i+1, σi+1, ϕi+1)

Where the function ϕi+1 is defined as follows.

(24) function ϕi+1(F)
(25) z := max F, Z := F \ {z} (a set of size i)
(26) t := ϕi(Z)
(27) S := Zt
(28) h := ϕS(zt), y := zth
(29) if ψS(y) has been defined then

(30) return thψS(y)
(31) else

(32) return th
(33) end if

(34) end function �

Proof: The proof is by induction. The orbits of subsets of size 0 are trivially
known. The orbits of subsets of size 1 are known by assumption. Now assume
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that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi) has already been computed. In order to

prove correctness of Algorithm 9.6.10, we verify that T i+1 is a transversal for
the orbits of G on Pi+1(X), and that σi+1(R) = GR for R ∈ T i+1 and that
ϕi+1(S) = t such that St ∈ T i+1 for all S ∈ Pi+1(X).

First of all, each (i + 1)-subset S can be written as S = S′ ∪ {y} where S′ is
an i-subset and y ∈ X \ S′. Putting g := ϕi(S′) we get S ∼G Sg = S′g ∪ {yg}
where S′g is an orbit representative in T i. Hence we get representatives of all
G-orbits on (i + 1)-sets from the extensions of the form R ∪ {x} where R ∈ T i

and x ∈ X \ R. In lines (0) and (4), (5) these extensions of orbit representatives
are considered. In line (1), the orbits of GR on X \ R are computed for R ∈ T i.
The result is (T R, σR, ϕR), where

1. T R is a transversal of the orbits of GR on X \ R,

2. σR : X \ R → L(G) is such that σR(x) = GR,x = (GR)x is the stabilizer of x
in GR, and

3. ϕR : X \ R → G is a map with ϕR(y) = g ∈ G such that yg ∈ T R.

The candidate set is the set of extensions R ∪ {x} where R ∈ T i and x ∈ T R.
In lines (4) and (5), the extensions R ∪ {x} are considered again.

We must now show that the extensions which are added to T i+1 in line
(20) are pairwise not in the same G-orbit. Let R ∪ {x} and S ∪ {y} be two
arbitrary distinct extension sets (with R, S ∈ T i and x ∈ T R and y ∈ T S).
By 9.6.1, R ∪ {x} ∼G S ∪ {y} if and only if either R = S and x ∼GR y, or for
one r ∈ R the equations

((R \ {r}) ∪ {x})t = S and rt ∼GS y 9.6.11

hold for t = ϕi((R \ {r}) ∪ {x}). First, consider the case R = S and x ∼GR y.
Since R ∪ {x} is different from S ∪ {y}, we must have x �= y. But x and y
are different elements of the transversal T R of GR orbits, which contradicts
x ∼GR y. Hence we must be in the second case, i.e. 9.6.11 holds true for some
r ∈ R. Without loss of generality, we assume that

R ∪ {x} , S ∪ {y},

i.e. that R ∪ {x} has been considered before S ∪ {y} in lines (4) and (5).
By 9.6.11, there is an element r ∈ R for which ((R \ {r}) ∪ {x})t = S with
t = ϕi((R \ {r}) ∪ {x}) and rth = y ∈ T S with h = ϕS(rt) ∈ GS. In this
case, the fusion element ψS(y) = (th)−1 will be defined in line (16) which pre-
vents the extension S ∪ {y} from being considered in lines (4) and (5). This
proves that the computed set T i+1 intersects each G-orbit at most once. From
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the above, we already know that T i+1 contains elements from every orbit, and
hence T i+1 is a transversal of the (i + 1)-orbits of G, as required. The fact
that GR∪{x} = Ext(GR,x,R, x) has been shown in 9.6.5. The transversal R is
never explicitly computed. Instead, in line (7) the group H is initialized to be
H = GR,x = σR(x). The if clause in line (13) evaluates to true if and only if
r ∈ R∗(x), which means that th is an element of R. Therefore, the group H is
extended by th in line (14). Line (8) reduces the number of r ∈ R which have
to be tested. According to 9.6.7, we require that r ∈ R be minimal in its H-orbit.
At the end of the loop, in line (18), the full group GR∪{x} has been computed
in H. In lines (19) and (20), the new canonical representative R∪ {x} is added
to T i+1 and the stabilizer GR∪{x} is stored as σi+1(R ∪ {x}). At the end of the
for loops in lines (21) and (22), the transversal T i+1 is complete.

It remains to show that ϕi+1(F) is an element g ∈ G with Fg ∈ T i+1. In line
(25), F is written as a union of an i-set Z and the element z. For t = ϕi(Z) we
then have Zt = S ∈ T i in line (27). Hence the orbit data for the set S has been
computed and we can evaluate h = ϕS(zt) and define y = zth in line (28). We
now have

FthψS(y) = (Z ∪ {z})thψS(y) = S ∪ {y}.
If ψS(y) has not been defined then S ∪ {y} is canonical and we return th. Oth-
erwise, there has been an extension R∪ {x} and an element r ∈ R \ R∗(x) such
that ((R \ {r}) ∪ {x})t′ = S, with t′ := ϕ((R \ {r}) ∪ {x}), and y = xt′h′ for
h′ = ϕS(xt′) ∈ G{S}. Since r is not in R∗(x), the if clause in (13) did not hold
and the element (t′h′)−1 has been stored as ψS(y). Hence

FthψS(y) = (Z ∪ {z})thψS(y)

= (S ∪ {y})ψS(y)

= (S ∪ {y})(t′h′)−1

= (R ∪ {x}) ∈ T i+1.

This proves that in each case ϕi+1(F) is an element that maps F to its canonical
orbit representative, as required. This completes the proof that the algorithm
computes the orbit data for G acting on subsets. �

9.6.12 Example (continuation of Example 9.5.12) Let us consider the binary (8, 4)-
codes again. The generation tree is shown in Fig. 9.7. A node A is represented
by a box, with the label max A indicated in a circle right above the box. The
circled numbers immediately below the box are the possible extensions. In-
side the box, information on the stabilizer is given. The first number is the
order of the stabilizer. After that, the orbits of the stabilizer on points are indi-
cated. Inside each orbit, the numbers are arranged in increasing order. Hence
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Fig. 9.7 Generation tree of (8, 4,≥ 3, 2)-codes
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the first number is the least orbit representative. Not every orbit leads to an
extension. The rank condition must be satisfied for possible extensions (since
d = 3, the rank condition is always satisfied in this example). The solid lines
stand for extensions leading to canonical sets, i.e. to new orbit representatives
at depth one step further down the tree. These lines always connect circles
with equal numbers. The three dashed and somewhat curly lines are related
to fusion nodes. Recall that fusion nodes stand for extension sets which are not
canonical. Each fusion node is connected by a curly line to the corresponding
canonical node, which is to the left. Associated with every curly line is a fusion
element. The three fusion nodes are

{0, 1, 2, 3, 4, 5, 8, 9}, {0, 1, 2, 3, 5, 6, 10}, and {0, 1, 2, 3, 5, 6, 7, 9}.

The corresponding fusion elements are (in matrix form and as permutations of
the points of PG3(2), respectively)

ψ{0,1,2,3,4,5,8}(9) =

⎛⎜⎜⎜⎝
1 0 1 0
1 1 1 1
0 0 0 1
1 0 0 0

⎞⎟⎟⎟⎠ = (0, 6, 13, 12, 9, 2, 3)(1, 4, 5, 10, 14, 7, 8),

ψ{0,1,2,3,5,6}(10) =

⎛⎜⎜⎜⎝
1 1 1 0
1 1 0 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎟⎠ = (0, 8, 12, 10)(1, 5, 2, 3)(4, 14, 9, 6)(7, 11),

and

ψ{0,1,2,3,5,6,7}(9) =

⎛⎜⎜⎜⎝
1 1 1 0
1 0 1 0
0 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠ = (0, 8, 7)(1, 6, 5)(3, 4, 9)(11, 13, 12).

For instance, the fusion node {0, 1, 2, 3, 5, 6, 10} is connected to the canonical
node {0, 1, 2, 3, 4, 5, 8}. This is because application of the fusion element maps
one set onto the other:

{0, 1, 2, 3, 5, 6, 10}(0, 8, 12, 10)(1, 5, 2, 3)(4, 14, 9, 6)(7, 11) = {8, 5, 3, 1, 2, 4, 0}.

Let us trace the computation of the automorphism group of the extended
Hamming code, for example. As pointed out in Example 9.5.12, the (8, 4) ex-
tended Hamming code is the rightmost leaf at level 8, i.e. the set

{0, 1, 2, 3, 8, 11, 13, 14}.

Essentially, the computation consists of 8 repetitions of the “down-and-up”
process described earlier in this section. For each prefix R of the set in ques-
tion, we compute from the given group GR the groups GR,x and GR∪{x}. We
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Fig. 9.8 Computing the automorphism group of the (8, 4) extended Hamming code

proceed by induction on the size of the prefix R, i.e. we start with R = ∅, then
consider R = {0}, after that R = {0, 1} and so forth. This means that we are
moving from the left to the right in Fig. 9.8, which shows the elements of R
at the bottom. Above, the order of the groups GR (circled) and GR,x is plotted
on a logarithmic scale. The computation starts with the empty set, whose au-
tomorphism group is G = PGL(4, 2) of order 20160 (this is the root node in
Fig. 9.7). Then the point 0 is chosen. Since 0 is in an orbit of length 15,

|G0| = 20160/15 = 1344.

Next, we add the point 1 to the set. Since 1 is in an orbit of G0 of length 14, we
have

|G0,1| = 1344/14 = 96.

The upstep results in an automorphism which interchanges 0 and 1, so that
G0,1 is of index 2 in the set stabilizer G{0,1}, which must therefore be of order
2 · 96 = 192. Then the point 2 is added from an orbit of G{0,1} of length 12,
so that G{0,1},2 has order 192/12 = 16 (recall that G{0,1},2 denotes the intersec-
tion of the set stabilizer of {0, 1} with the point stabilizer of 2. The following
upstep detects that 2 is in an orbit of length 3 under G{0,1,2}, so that the next
set stabilizer is G{0,1,2} of order 16 · 3 = 48. The computation continues in this
way. Eventually, the automorphism group of the extended Hamming code is
computed to be the set stabilizer

G{0,1,2,3,8,11,13,14}

of order 1344. �
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Fig. 9.9 The binary (18, 9, 6)-codes

Figure 9.9 shows the generation tree for the unique binary (18, 9, 6)-code.
The sole purpose of this example is to give a rough idea of the nature of such
trees. We suppress all labels and automorphism group order information.
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9.79.7 Base and Strong Generating Sets

The orbit algorithm as described above depends on the availability of good
algorithms to work with permutation groups. In particular, point stabilizer
subgroups and extension overgroups need to be computed (as well as orbits
on points). It turns out that our first attempt at these algorithms, based on sets
of generators, does not perform well for large examples. The reason is that the
number of generators produced by 9.2.10 may become too large, which in turn
deteriorates the performance of the orbit algorithm on points.

In this section, we will overcome this bottleneck by introducing a better
data structure for permutation groups. This data structure, introduced by
Sims [181, 182], is called a stabilizer chain. It represents the group by means of
a chain of subgroups terminating in the trivial group. Each group in the chain
is the stabilizer of a point in the previous group.

To begin with, let G be a group acting faithfully on a set finite, totally or-
dered set X = {x0, . . . xn−1}<. A subset B = {b0, . . . , br−1} ⊂ X is called base
for G on X if the pointwise stabilizer Gb0,...,br−1

= 1, i.e. if only the identity of G
fixes all the points of B. An ordered base for G on X is a sequence (b0, . . . , br−1)
such that the corresponding set {b0, . . . , br−1} is a base for G. An ordered base
B gives rise to a chain of subgroups

G = G(0) ≥ G(1) ≥ · · · ≥ G(r) = 〈1〉, 9.7.1

where

G(i+1) = G(i)
bi

9.7.2

is the stabilizer of bi in G(i). This is called the stabilizer chain (or Sims chain) for
G with respect to B. The base is called irredundant if no two (consecutive) terms
of the sequence of subgroups coincide.

The images of the base points determine a permutation in the following
sense.

9.7.3Lemma Let G be a permutation group with base B = (b0, . . . , br−1). Let g and h be
two elements of G. Then g = h if and only if big = bih for i ∈ r. In other words,
knowing the images of all base points determines a permutation uniquely.

Proof: The condition big = bih for i ∈ r is equivalent to bigh−1 = bi for all
i ∈ r, which in turn is equivalent to gh−1 ∈ G(r) = 〈1〉, using the fact that B is
a base. Thus gh−1 = 1, i.e. g = h. �
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By 3.4.1, the cosets of G(i+1) in G(i) correspond to the different elements in
the orbit

O(i) = G(i)(bi),

which we call the i-th basic orbit. In particular, since G(i+1) is a point stabilizer
in G(i) by 9.7.2, the index satisfies∣∣∣G(i)

∣∣∣ /
∣∣∣G(i+1)

∣∣∣ = |O(i)| =: �i

and hence by 9.7.1

|G| = ∏
i∈r

∣∣∣G(i)
∣∣∣ /

∣∣∣G(i+1)
∣∣∣ = ∏

i∈r
�i.9.7.4

For i ∈ r, we choose coset representatives σi,0, . . . , σi,�i−1 for G(i+1) in G(i), so that

G(i) =
⋃
j∈�i

G(i+1)σi,j9.7.5

is the decomposition of G(i) into cosets of G(i+1). We require that σi,0 = 1, the
identity element of G, for all i ∈ r. A strong generating set for G relative to B is
a set S of elements of G with the property that

〈S ∩ G(i)〉 = G(i) for i ∈ r.9.7.6

9.7.7 Example Consider the symmetric group G = Sn acting on the set n. An ordered
base for G is B = (0, 1, . . . , n − 2). G(i) is isomorphic to Sn−i (acting on the set
{i, . . . , n − 1}). The basic orbits are of length �i = n − i. Coset representatives
are σi,j = (i, i + j) for j ∈ �i and i ∈ n − 1. The sets

U = {(0, 1, . . . , n − 1), (0, 1)}

and
V = {(0, 1), (1, 2), . . . , (n − 2, n − 1)}

both generate Sn. For n ≥ 3, U is not a strong generating set (for example the
group G(1), which is the symmetric group acting on {1, . . . , n − 1} contains
none of the generators). On the contrary, the generating set V is a strong gen-
erating set for all n. This is because V ∩ G(i) = {(i, i + 1), . . . , (n − 2, n − 1)}
generates Sn−i acting on the set {i, . . . , n − 1}. In fact, for each n ≥ 2, the per-
mutations (i, i + 1) for i ∈ n − 2 form a strong generating set for Sn. �

The point of knowing a strong generating set S for a permutation group G is
that the basic orbits G(i)(bi) can be computed easily. Namely, it is straightfor-
ward to compute the subsets

S(i) := S ∩ G(i), i ∈ r,



9.7 Base and Strong Generating Sets 719

Up

Front

Down

Back

Left Right

16

2

5

19

13

9

12

22

1

4

20

18

7

10

24

14

17 83 15

21 116 23

Fig. 9.10 Rubik’s 2× 2× 2 cube

which for fixed i ∈ r contain those generators which fix the first i base points
b0, . . . , bi−1. Using the orbit algorithm of Section 9.2, one computes the corre-
sponding basic orbit. From this orbit, coset representatives σi,0, . . . , σi,�i−1 can
be determined (they are just the transporter elements of Section 9.2). The point
is that the basic orbits and the corresponding Schreier trees can be constructed
easily from the strong generating set. This is not the case for arbitrary gen-
erating sets, where one has to go through more complex algorithms, like the
Schreier–Sims algorithm described in [91], for example. The difficulty lies in
the fact that the basic orbits O(i) = G(i)(bi) can only be computed when gen-
erators for G(i) are known. This explains why the set S(i) which generates G(i)

is so valuable.

One further remark concerning the Schreier tree is in order. Recall that we
require that σi,0 = 1. This condition is automatically satisfied for Schreier trees,
since the path from the root to itself corresponds to the empty word, which
by definition is the identity element in the group. Let us consider another
example.

9.7.8Example Figure 9.10 shows Rubik’s cube in the simplified version with sides
of length 2 instead of three. We label the faces with the integers in {1, . . . , 24}
as indicated beneath. Here, we start labeling points from 1, since many current
computer algebra systems have permutations act on 1, 2, 3, . . . We will follow
this convention throughout this example, for the sake of allowing the reader
to verify the claims made by using a standard software package.

Consider the group G which is generated by the rotations of the sides. We
follow the widely accepted notation due to Singmaster (cf. [183]), which de-
notes the quarter turns in clockwise direction of the left, right, front, back, up
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and down side of the cube by L, R, F, B,U and D, respectively. However, we
stick to the notation A−1, A−2, . . . for the inverse, the square of the inverse etc.
of the element A (as opposed to using A′ for the inverse of A which is some-
times used). The permutations which correspond to these six generators are

R = (7, 14, 24, 10)(8, 15, 23, 11)(9, 13, 22, 12)

B = (13, 17, 20, 23)(14, 18, 19, 22)(16, 21, 24, 15)

D = (4, 11, 22, 21)(5, 12, 24, 20)(6, 10, 23, 19),

L = (1, 4, 20, 18)(2, 5, 19, 16)(3, 6, 21, 17),

F = (1, 8, 12, 6)(2, 9, 10, 4)(3, 7, 11, 5),

U = (1, 16, 13, 7)(2, 17, 14, 8)(3, 18, 15, 9).

An ordered base for the group G is (1, 4, 7, 10, 13, 16, 19). We get the follow-
ing stabilizer chain, where we indicate the length of the fundamental orbit in
parenthesis and where the grey area in the pictures indicates faces which have
been stabilized.

G = G(0)
1

(24)

≥
(
G(1) =

)
G1

4

(21)

≥
(
G(2) =

)
G1,4

7

(18)

≥
(
G(3) =

)
G1,4,7

10

(15)

≥
(
G(4) =

)
G1,4,7,10

13

(12)
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≥
(
G(5) =

)
G1,4,7,10,13

16

(9)

≥
(
G(6) =

)
G1,4,7,10,13,16 19 (6)

≥
(
G(7) =

)
G1,4,7,10,13,16,19 = 1.

Hence by 9.7.4, the order of G (i.e. the number of positions) is

24× 21× 18× 15× 12× 9× 6 = 88 179 840.

Note that the generating set {L, R, F, B,U, D} for G is not strong. A strong
generating set can be found by considering moves which fix the grey part and
permute the remaining faces among themselves. The point is that these moves
may bring the grey part into disarray for a while. However, at the end of the
move the grey faces are brought back into place. By computing Schreier trees
it can be checked that

S = {ν, τ, δ, B, ω, R, D, L}
is a strong generating set, where

τ = (BLFRD)3 = (19, 24)(20, 22)(21, 23),

ρ = DFU−1R−1UFD−1F−1 = (4, 5, 6)(7, 9, 8)(10, 12, 11)(19, 21, 20),

ν = ρ2B−1ρB = (19, 20, 21)(22, 24, 23),

δ = BτB−1 = (16, 20)(17, 19)(18, 21),

ω = DBD−1B−1 = (10, 23, 11, 22, 12, 24)(16, 19, 18, 20, 17, 21).

We find that

G(6) = G1,4,7,10,13,16 = 〈ν, τ〉,
G(5) = G1,4,7,10,13 = 〈ν, τ, δ〉,

G(4) = G1,4,7,10 = 〈ν, τ, δ, B〉,
G(3) = G1,4,7 = 〈ν, τ, δ, B, ω〉,
G(2) = G1,4 = 〈ν, τ, δ, B, ω, R〉,
G(1) = G1 = 〈ν, τ, δ, B, ω, R, D〉,
G(0) = G = 〈ν, τ, δ, B, ω, R, D, L〉,

which are groups of order 6, 54, 648, 9720, 174 960, 3 674 160 and 88 179 840,
respectively. More details on the group of Rubik’s cube (in particular, the ver-
sion with sides of length 3) can be found in the books by Neumann, Stoy and
Thompson [158] and in the above-mentioned book by Singmaster [183]. �
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Our next goal is to identify group elements with integers, using a known
stabilizer chain for the permutation group. This serves two purposes. Firstly,
it is convenient, as integers are often easier to handle in computer programs.
Secondly, this enables us to pick group elements uniformly at random, which
is useful for randomized algorithms for permutation groups. To begin with,
let us introduce the multibase representation of an integer.

9.7.9 Lemma Let L = (�0, . . . , �r−1) be a sequence of positive integers and define m =
∏i∈r �i. Any integer n in m = {0, . . . , m− 1} has a unique representation of the form

n = ∑
i∈r

ai ∏
j∈i

�j

with integers ai ∈ �i for i ∈ r (here, an empty product is defined to be 1). We write

n = (ar−1, . . . , a0)L

and call this the multibase representation of n with respect to B.

Proof: Put mi = ∏j∈i �j for i ∈ r + 1, i.e. mr = m.
Existence: If r = 1 we may put a0 = n and we are finished. Thus let us assume
that r ≥ 2. Given n = nr−1 with n ∈ m, integral division yields unique integers
ar−1 ≥ 0 and nr−2 with

n = nr−1 = ar−1mr−1 + nr−2 with nr−2 ∈ mr−1.

Here we have ar−1 = 
nr−1/mr−1�, and since nr−1 = n < m = mr−1�r−1 we
have ar−1 ∈ �r−1. If r ≥ 3, we may repeat this argument for nr−2 and obtain an
equation of the form

nr−2 = ar−2mr−2 + nr−3 with nr−3 ∈ mr−2 and ar−2 ≥ 0.

Here we have ar−2 = 
nr−2/mr−2�, and since nr−2 < mr−1 = mr−2�r−2 we
have ar−2 ∈ �r−2. If we proceed in this way, we define integers ai ∈ �i and
ni−1 ∈ mi. Eventually we arrive at an equation of the form

n1 = a1m1 + n0 with n0 ∈ m1 and a1 ∈ �1.

Note that by definition m1 = �0, so that we may simply put a0 = n0 ∈ m1 = �0.
Thus, we have written n as

n = nr−1

= ar−1mr−1 + nr−2

= ar−1mr−1 + ar−2mr−2 + nr−3
...

= ∑
i∈r

aimi.
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Uniqueness: Let
(ar−1, . . . , a0)L = n = (br−1, . . . , b0)L

be two expressions for n. Subtraction yields

0 = ∑
i∈r

(bi − ai)mi.

Put ∆i := bi − ai. Let j be such that ∆j �= 0 (such an index j exists if we assume
that the expressions are distinct). Therefore

∆jmj = − ∑
i∈r
i �=j

∆imi. 9.7.10

Notice that
|∆i| ≤ bi < �i, i ∈ r. 9.7.11

If j < r − 1, we may consider 9.7.10 modulo mj+1 to get

∆jmj ≡ − ∑
i∈j−1

∆imi mod mj+1. 9.7.12

Using 9.7.11 we get that

|∆i|mi ≤ (�i − 1)mi = �imi − mi = mi+1 − mi.

Therefore, over the integers, the right hand side of 9.7.12 is bounded above by∣∣∣∣∣ ∑
i∈j−1

∆imi

∣∣∣∣∣ ≤ ∑
i∈j−1

|∆i|mi ≤ ∑
i∈j−1

(
mi+1 − mi

)
= mj − m0 = mj − 1 < mj.

But ∆j �= 0, which means that 9.7.12 has no solution modulo mj+1. Hence
∆j �= 0 is impossible. If j = r − 1, 9.7.10 becomes

∆r−1mr−1 = − ∑
i∈r−1

∆imi.

The same argument as before shows that the absolute value of the right hand
side of this equation is bounded above by mr−1, which contradicts the fact that
∆r−1 is nonzero. These contradictions show that the multibase representation
is unique. �

We introduce some more notation. For a sequence L = (�0, . . . , �r−1), let

←
L= (�r−1, . . . , �0)

be the reversed sequence. The following result enables us to identify group ele-
ments with integers.
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9.7.13 Lemma Let the group G be of order |G| with base B = (b0, . . . , br−1) and basic orbits
of lengths |G(i)(bi)| = �i, i ∈ r. Furthermore, assume that coset representatives σi,j
for j ∈ �i, i ∈ r have been chosen. Put L = (�0, . . . , �r−1). Define a map

rk−1 : |G| → G : n �→ σr−1,a0σr−2,a1 · · · σ0,ar−1 ,

where (ar−1, . . . , a0)←
L

is the multibase representation of n with respect to
←
L . This

map is bijective, we call it the unrank function for G. Its inverse is the rank function
for G.

Proof: By 3.4.1, each element g ∈ G(0) = G can be written as

g = g(1)σ0,ar−1,

for a uniquely determined coset representative σ0,ar−1 , ar−1in�0 and a unique
element g(1) ∈ G(1). Repeating this argument for g(1) yields a unique coset
representative σ1,ar−2 , ar−2 ∈ �1, and a unique element g(2) ∈ G(2) such that

g(1) = g(2)σ1,ar−2 .

If r > 2, we may proceed in this fashion. In the i-th step we find an equation
of the form

g(i) = g(i+1)σi,ar−1−i
,

for some unique elements g(i+1) and σi,ar−1−i
, ar−1−i ∈ �i. This process termi-

nates once we reach
g(r−1) = g(r)σr−1,a0 ,

with a0 ∈ �r−1, since then g(r) ∈ G(r) = 1, the trivial group, i.e. g(r) = 1.
Back-substituting the equations into each other gives

g = g(1)σ0,ar−1

= g(2)σ1,ar−2σ0,ar−1

...

= σr−1,a0σr−2,a1 · · · σ1,ar−2σ0,ar−1,

with ai ≤ �r−1−i for i ∈ r. This means that we are able to write the given
group element g in a unique way as a product of coset representatives. In
the literature, the indicated process is known as the sift algorithm. To turn this
representation into a number, we simply consider the sequence a0, . . . , ar−1 as
multibase representation

(ar−1, ar−2, . . . , a0)←
L

= n

of some integer n ∈ |G| = ∏i∈r �i. This process defines a rank function on the
set of group elements. In fact, this function is bijective because different group
elements give different factorizations and hence different multibase represen-
tations of numbers. The inverse process gives the unrank function. �
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Table 9.3 Unranking the elements of S3

n (a1, a0)(2,3) rk−1(n) = σ1,a0σ0,a1

0 (0, 0) 1 = 1 · 1
1 (0, 1) (1, 2) = (1, 2) · 1
2 (1, 0) (0, 1) = 1 · (0, 1)
3 (1, 1) (0, 1, 2) = (1, 2) · (0, 1)
4 (2, 0) (0, 2) = 1 · (0, 2)
5 (2, 1) (0, 2, 1) = (1, 2) · (0, 2)

σ1,0 σ1,1

σ0,0

σ1,0 σ1,1

σ0,1

σ1,0 σ1,1

σ0,2

σ1,1σ0,2σ1,0σ0,2σ1,1σ0,1σ1,0σ0,1σ1,1σ0,0σ1,0σ0,0

(0, 2, 1)(0, 2)(0, 1, 2)(0, 1)(1, 2)1

543210

Fig. 9.11 The elements of S3 by rank

We remark that the order of the terms in the function rk−1 of 9.7.13 matters,
since we do not require the group to be abelian.

9.7.14Example Consider the symmetric group S3 acting on {0, 1, 2} with base B =

(0, 1). The basic orbits are of length �0 = 3 and �1 = 2. Hence
←
L=

←
(3, 2)= (2, 3).

Coset representatives are

σ0,0 = 1, σ0,1 = (0, 1), σ0,2 = (0, 2), σ1,0 = 1, σ1,1 = (1, 2).

The unrank function lists the elements in the order indicated in Table 9.3. The
ordering may be visualized as in Fig. 9.11. The coset representatives are shown
as the nodes of a tree. The leaves stand for elements of the group. The corre-
sponding permutations and their ranks are shown at the bottom. �

We are now in a position to define another important graph associated to a
group. If G is a group and if S is a set of elements of G, the Cayley-graph of G
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Fig. 9.12 The Cayley-graph of S3

with respect to S is the action-graph whose vertices are the elements of G and
whose edges are defined by the right-multiplication by elements s ∈ S. That is,
the Cayley-graph of G with respect to S has an edge from x to y labeled by si ∈
S if xsi = y holds in G. Figure 9.12 shows the Cayley graph of S3 with respect
to the generating set S = {s0, s1} where s0 = (0, 1, 2) and s1 = (0, 1). Cayley
graphs are often used to investigate combinatorial problems theoretically, and
they can also be useful for studying the concepts defined in this section.

9.7.15 Example Consider the Cayley graph of Rubik’s cube. As noted above, for the
2× 2× 2 cube, we may assume that one corner is fixed, for instance the front-
top-left corner 1, 2, 3. That leaves only the generators R, D and B as well as
their inverses. We consider the Cayley graph of G(1) = G1 (of order 3 674 160,
see above) with respect to these 6 generators. Cayley graphs admit the defin-
ing group as vertex transitive automorphism group. Therefore, in order to
compute the diameter of the graph it suffices to compute the distance of the
vertex furthest away from a given vertex. If Γi is the set of vertices at distance i
from the identity node, then Jianyi Yao, a student at Colorado State University,
reports the following numbers:

i |Γi|
0 1
1 6
2 27
3 120
4 534

i |Γi|
5 2256
6 8969
7 33058
8 114149
9 360508

i |Γi|
10 930588
11 1350852
12 782536
13 90280
14 276
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In particular, this means that there are 276 “worst case” positions, i.e. positions
which can be restored with no less than 14 quarter turns. This agrees with
results obtained by Cooperman et al. [41], which report that the diameter of
this graph is 14. �

Summarizing, the concept of base and strong generating set defines a new
data structure for permutation groups. This data structure is based on the
stabilizer chain corresponding to the base. To represent that chain, one needs
one Schreier tree for each basic orbit. At any particular level, one obtains coset
representatives for the next subgroup in the chain from the Schreier tree. Using
a fixed ordering of these representatives, 9.7.13 allows one to access group
elements numerically. For further details on working with stabilizer chains,
we refer to the above-mentioned books by Holt [91] and by Seress [177]. We
only mention that randomization plays a key role in those algorithms.

Exercises

E.9.7.1Exercise Let G be a finite group and let S be a subset of G. Show the following.

1. The Cayley-graph of G with respect to S is connected if and only if S gen-
erates G.

2. The Cayley-graph is undirected (i.e., (u, v) is an edge whenever (v, u) is
an edge) if and only if S is closed under inverses (i.e., s ∈ S ⇔ s−1 ∈ S).
In particular, this is the case if S consists of involutions, i.e. elements of
order 2.

9.89.8 The Projective Linear Group

The goal of this section is to describe a stabilizer chain for PGLk(q), the projec-
tive linear group of PGk−1(q). We will find a base for this group, and we will
list the coset representatives σi,j explicitly. This leads us to determine a strong
generating set. In the same vein, we will also treat the projective semilinear
group PΓLk(q) in the following section.

For −1 ≤ s < d, define the set

PGd\s(q) = {〈u〉 ∈ PGd(q) | lc(u) > s}.
We also put

θd\s(q) = |PGd\s(q)| = θd(q)− θs(q) =
qd+1 − qs+1

q − 1
,

with θ−1(q) = 0. As usual, we rank and unrank the elements of this set.
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9.8.1 Lemma Let d, s and q be given, where q is a prime power and −1 ≤ s < d. Define a
map rk−1

d\s;q from θd\s(q) to PGd\s(q) by

rk−1
d\s;q(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈e(s+1+n)〉 if n ≤ d − s − 1

〈
d

∑
i=0

e(i)〉 if n = d − s

〈rk−1
d,s+1;q(n − d + s)〉 otherwise,

where rk−1
d,s+1;q is the function of 9.3.7. The map rk−1

d\s;q is a bijection, we call it the
unrank function for PGd\s(q). Its inverse is the rank function for PGd\s(q), denoted
as rkd\s;q. For a point 〈u〉 ∈ PGd\s(q), with u = (u0, u1, . . . , ud) ∈ Fd+1

q \ {0} one
has rkd\s;q(〈u〉) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k if 〈u〉 = 〈e(s+1+k)〉
d − s if 〈u〉 = 〈1, . . . , 1〉

d + 1− k + qk−qs+1

q−1 + rkk,q

(
u0
uk

, . . . , uk−1
uk

)
if k = lc(u) < d

1 + qd−qs+1

q−1 + shift−1
θd−1(q)

(
rkd,q

(
u0
ud

, . . . , ud−1
ud

))
if lc(u) = d.

9.8.2

For s = −1, we get the ordinary unrank function back, i.e.

rkd\−1;q = rkd;q and rk−1
d\−1;q = rk−1

d;q . �

9.8.3 Example We have θ2\−1(3) = 13, θ2\0(3) = 13 − 1 = 12, θ2\1(3) = 13 − 4 = 9.
Table 9.4 shows the functions rk2\s;3(x) for −1 ≤ s ≤ 1. �

9.8.4 Example We have θ3\−1(2) = 15, θ3\0(2) = 14, θ3\1(2) = 12 and θ3\2(2) = 8.
Table 9.5 shows the functions rk3\s;2(x) for −1 ≤ s ≤ 2. �

Let us introduce some notation for special kinds of matrices. We denote by Fn,i
the (n × (n + 1)) matrix which is obtained from the identity matrix In+1 by
removing the i-th row. In other words, we put

Fn,i =

(
Ii 0�i 0
0 0�n−i In−i

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
. . .

... 0
1 0

0 1

0
...

. . .
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

a matrix whose i-th column is zero. In addition, let Eu,v be the k × k matrix
whose only nonzero entry is in the (u, v)-position, with value one. Formally

Eu,v = (δi,uδv,j)i∈k,j∈k.
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Table 9.4 The functions rk2\s;3(〈x〉) for 〈x〉 ∈ PG2(3)

rk2\s;3(〈x〉)
〈x〉 ∈ PG2(3) s = −1 s = 0 s = 1

〈1, 0, 0〉 0
〈0, 1, 0〉 1 0
〈0, 0, 1〉 2 1 0
〈1, 1, 1〉 3 2 1
〈1, 1, 0〉 4 3
〈2, 1, 0〉 5 4
〈1, 0, 1〉 6 5 2
〈2, 0, 1〉 7 6 3
〈0, 1, 1〉 8 7 4
〈2, 1, 1〉 9 8 5
〈0, 2, 1〉 10 9 6
〈1, 2, 1〉 11 10 7
〈2, 2, 1〉 12 11 8

Table 9.5 The functions rk3\s;2(〈x〉) for 〈x〉 ∈ PG3(2)

rk3\s;2(〈x〉)
〈x〉 ∈ PG3(2) s = −1 s = 0 s = 1 s = 2
〈1, 0, 0, 0〉 0
〈0, 1, 0, 0〉 1 0
〈0, 0, 1, 0〉 2 1 0
〈0, 0, 0, 1〉 3 2 1 0
〈1, 1, 1, 1〉 4 3 2 1
〈1, 1, 0, 0〉 5 4
〈1, 0, 1, 0〉 6 5 3
〈0, 1, 1, 0〉 7 6 4
〈1, 1, 1, 0〉 8 7 5
〈1, 0, 0, 1〉 9 8 6 2
〈0, 1, 0, 1〉 10 9 7 3
〈1, 1, 0, 1〉 11 10 8 4
〈0, 0, 1, 1〉 12 11 9 5
〈1, 0, 1, 1〉 13 12 10 6
〈0, 1, 1, 1〉 14 13 11 7
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Lastly, we introduce the 2× 2-matrix

P =

(
0 1
1 0

)
.

The next result describes a base and strong generating set for the projective
linear group PGLk(q) in the standard action on PGk−1(q). For sake of sim-
plicity, we do not distinguish in our notation between the matrices and the
induced permutations on the projective space. Also we let group elements be
denoted either by matrices or by the corresponding permutations.

9.8.5 Theorem (base and strong generating set for PGLk(q)) Let q = ph with p
prime and h a positive integer. Let PGk−1(q) be the one-dimensional subspaces of the
vector space V = Fk

q with basis e(0), . . . , e(k−1). Assume that κ0, κ1, . . . , κq−1 are the
elements of the field Fq, ordered in such a way that κ0 = 0 and κ1 = 1.

1. For i ∈ k + 1, let

bi :=

⎧⎨⎩ 〈e(i)〉 if i < k,
〈∑
i∈k

e(i)〉 if i = k.

The sequence B = (b0, . . . , bk) is a base for PGLk(q) acting on PGk−1(q). The
corresponding stabilizer chain has basic orbits of lengths

�i =

{
θk−1\i−1(q) for i ∈ k,

(q − 1)k−1 for i = k.

2. Coset representatives can be chosen as follows.
(a) For i ∈ k, and for j ∈ �i, let

σi,j =

⎛⎜⎝ Ii 0
v

0 Fk−i−1,s−i

⎞⎟⎠ ,

where 〈v〉 = rk−1
k−1\(i−1);q(j) and s = lc(v) ≥ i.

(b) For j ∈ �k, define

σk,j = diag(1, κa0+1, . . . , κak−2+1),

where j = (ak−2, . . . , a0)q−1 is the base (q − 1) representation of j.
If q = 2, the base point bk is redundant.

3. A strong generating set for PGLk(q) is the set

S =
{
P0, . . . ,P k−2, E r,j,D1, . . . ,Dk−1

∣∣∣ r ∈ h, j ∈ k − 1
}

,9.8.6
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where

P i =

⎛⎜⎝ Ii 0 0
0 P 0
0 0 Ik−2−i

⎞⎟⎠ , 9.8.7

E r,j = Ik + βrEk−1,j, 9.8.8

Di = Ik + (α − 1)Ei,i. 9.8.9

Here, (β0, . . . , βh−1) is an Fp-basis for Fq (as vector space over Fp) and α is a
primitive element for Fq, i.e. a generator of the multiplicative group F∗

q . If q = 2,
the elements Di of 9.8.9 are all equal to Ik and may be omitted from the set S.

Proof: The pointwise stabilizer in GLk(q) of the unit vectors e(0), . . . , e(k−1)

consists of the diagonal matrices with nonzero determinant. These are just the
diagonal matrices whose diagonal entries are all nonzero. The stabilizer of the
unit vectors and the vector e(0) + . . . + e(k−1) are the matrices of the center Z k,
defined in 3.7.5, i.e. the matrices of the form λIk where λ ∈ F∗

q . Hence in the
factor group PGLk(q) = GLk(q)/Z k, only the identity element stabilizes

b0 = 〈e(0)〉, . . . , bk−1 = 〈e(k−1)〉, and bk = 〈e(0) + . . . + e(k−1)〉.

This shows that B is a base. The statement about the lengths of the basic orbits
will follow once we have verified that the given coset representatives are a
transversal for G(i+1) in G(i). For i = 0, we consider matrices of the form

σ0,j =

(
v

Fk−1,s

)
, j ∈ �0,

where 〈v〉 = rk−1
k−1;q(j) and where s = lc(v). Developing the determinant of

σ0,j along the nonzero entries of the matrix Fk−1,s leaves a nonzero one by one
matrix as last term. Thus σ0,j is an element of PGLk(q). The fact that we can
put any element 〈v〉 of PGk−1(q) into the first row of the coset representative
means that PGLk(q) is transitive on the set of points of PGk−1(q). Thus

�0 = θk−1(q) = θk−1\−1(q) =
qk − 1
q− 1

.

Next, consider the case where 0 < i < k. Elements in G(i) stabilize point-
wise the base points b0, . . . , bi−1, which means that they fix the subspaces

〈e(0)〉, . . . , 〈e(i−1)〉
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spanned by the first i unit vectors. Since the diagonal matrices are in G(i+1),
we may choose these unit vectors themselves for the first i rows of σi,j, so that

σi,j =

(
Ii 0
∗ ∗

)
.

The i-th row of σi,j is the image 〈v〉 of bi = 〈e(i)〉 under σi,j. In order to make
σi,j invertible, v must not lie in the span of e(0), . . . , e(i−1). Thus lc(v) ≥ i, i.e.
〈v〉 ∈ PGk−1\i−1(q). For j ∈ θk−1\i−1(q) = �i we may take

〈v〉 = rk−1
k−1\i−1;q(j),

so that

σi,j =

⎛⎜⎝ Ii 0
v

0 Fk−i−1,s−i

⎞⎟⎠ .

By computing the determinant one verifies that this matrix σi,j is invertible,
provided that s = lc(v). This shows that the given set of matrices σi,j form
coset representatives for G(i+1) in G(i). Also, the lengths of the basic orbits are
�i = θk−1\i−1(q).

For i = k we need coset representatives for G(k+1) in G(k). Recall that G(k)

is the group of diagonal matrices (modulo scalars, i.e. modulo Z k) whereas
G(k+1) is the identity modulo Z k. Thus coset representatives for G(k+1) in G(k)

are diagonal matrices with nonzero elements on the diagonal. Modulo Z k, we
may choose representatives of the form

diag(1, λ1, . . . , λk−1),

where λ1, . . . , λk−1 are nonzero field elements which can be chosen indepen-
dently. This shows that �k = (q − 1)k−1. We consider the map which takes an
integer j ∈ (q − 1)k−1 to the matrix

diag(1, κa0+1, . . . , κak−2+1) ∈ PGLk(q),

where
j = (ak−2, . . . , a0)q−1

is the base q− 1 representation of j. Since κai+1 �= 0 (recall that we require that
κ0 = 0 and κu �= 0 for u > 0), this map is a bijection onto the mentioned set of
coset representatives for G(k+1) in G(k). This finishes the proof of the first two
parts of the theorem.

Let us now verify that the set given in 9.8.6 is a strong generating set for
PGLk(q). This is proved inductively, going from the small groups to the larger
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ones in the stabilizer chain, i.e. from the large indices to the smaller ones.
Recall that we have set

S(i) = S ∩ G(i)

for i ∈ k + 1. Showing that the generating sets S(i) for G(i) are strong can be
done by induction. We put

H(i) = 〈S(i)〉 ≤ G(i), i ∈ k + 1,

and then show that H(i) = G(i). In each step we need to show that

|H(i)(bi)| = �i = |G(i)(bi)|,

since then by 3.4.1 and by induction hypothesis,

|H(i)| = |H(i+1)| · �i = |G(i+1)| · �i = |G(i+1)|

and therefore H(i) = G(i).

The statement is clear for i = k + 1, since S(k+1) = ∅ and hence H(k+1) =
G(k+1) = 1. For i = k,

S(k) = S ∩ G(k) = {D j | 1 ≤ j < k}.

Modulo Z k, every diagonal matrix can be written as a product of (powers of)
suitable D j. This shows that G(k) = H(k) = 〈S(k)〉.

The set S(k−1) = S ∩ G(k−1) is

S(k−1) = S(k) ∪ {E r,j | r ∈ h, j ∈ k − 1},

with E r,j as in 9.8.8. Written out, we have

E r,j =

(
Ik−1 0
v′ 1

)
,

with
v′ = βre(j) ∈ Fk−1

q for r ∈ h, j ∈ k − 1.

Now consider the basic orbit G(k−1)(bk−1). This is just the set

PGk−1\k−2(q) =
{
〈v〉 ∈ PGk−1(q) | lc(v) = k − 1

}
.

Thus,
v = (v0, . . . , vk−2, 1) = (v′, 1)

with v′ = (v0, . . . , vk−2) ∈ Fk−1
q arbitrary. Notice that if w = (w′, 1) is an-

other vector with w′ = (w0, . . . , wk−2) ∈ Fk−1
q , then the corresponding coset

representatives multiply as follows(
Ik−1 0
v′ 1

)
·
(

Ik−1 0
w′ 1

)
=

(
Ik−1 0

v′ + w′ 1

)
.
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This shows that in the factor group G(k) modulo G(k+1), multiplication of coset
representatives

σk,j =

(
Ik−1 0

v

)
=

(
Ik−1 0
v′ 1

)
results in addition of the first k − 1 components of the vectors in the last rows.
In particular, the coset representatives form a group by themselves (i.e. a
“complement” of G(k) in G(k−1)). It is clear that the first k− 1 components form
an additive group Fk−1

q . Furthermore, since Fq � Fh
p (as additive groups), we

have the isomorphism from the group of coset representatives onto Fk−1
q �

Fh(k−1)
p . Therefore, a basis for the group of coset representatives is given by

the matrices E r,j, where r ∈ h and j ∈ k − 1. But these are exactly the elements
of S(k−1) \ S(k). This shows that the elements of S(k−1) generate the full basic
orbit G(k−1)(bk−1), and hence by the remark that 〈S(k−1)〉 = H(k−1) = G(k−1).

For i ∈ k − 1, the only strong generator in S(i) \ S(i+1) is the matrix P i

of 9.8.7. This matrix “swaps” the coefficients of the basis vectors e(i) and e(i+1).
We claim that a Schreier-tree for the basic orbit G(i)(bi) can be obtained from
S(i) = S(i+1) ∪ {Pi}. The points of G(i)(bi) which are not in G(i+1)(bi+1) are the
points of the set PGk−1\i−1(q) which are not contained in PGk−1\i(q). They are
the elements of the form

〈(v0, . . . , vi−1, 1, 0, . . . , 0)〉 = 〈v0e(0) + . . . + vi−1e
(i−1) + e(i)〉

for arbitrary v0, . . . , vi−1 ∈ Fq. Since

biP i = 〈e(i)〉P i = 〈e(i+1)〉 = bi+1,

the points of G(i+1)(bi+1) can be reached from bi using P i and generators from
S(i+1). The equation

〈v0e(0) + . . . + vi−1e
(i−1) + e(i+1)〉P i = 〈v0e(0) + . . . + vi−1e

(i−1) + e(i)〉

shows that all other points of G(i)(bi) \ G(i+1)(bi+1) can be reached as well.
Hence 〈S(i)〉 = H(i) = G(i). This finishes the proof of the theorem. �

9.8.10 Corollary The order of PGLk(q) is

(q − 1)k−1 ∏
i∈k

θk−1\i−1(q) =
1

q − 1 ∏
i∈k

(qk − qi). �
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9.8.11Example A stabilizer chain for PGL3(3) is obtained from the ordered base
(〈e(0)〉, 〈e(1)〉, 〈e(2)〉, 〈e(0) + e(1) + e(2)〉). Coset representatives are σ0,0 = I3,

σ0,1 =

⎛⎜⎝010
100
001

⎞⎟⎠ , σ0,2 =

⎛⎜⎝001
100
010

⎞⎟⎠ , σ0,3 =

⎛⎜⎝111
100
010

⎞⎟⎠ , σ0,4 =

⎛⎜⎝110
100
001

⎞⎟⎠ , σ0,5 =

⎛⎜⎝210
100
001

⎞⎟⎠ ,

σ0,6 =

⎛⎜⎝101
100
010

⎞⎟⎠ , σ0,7 =

⎛⎜⎝201
100
010

⎞⎟⎠ , σ0,8 =

⎛⎜⎝011
100
010

⎞⎟⎠ , . . . , σ0,12 =

⎛⎜⎝221
100
010

⎞⎟⎠ , σ1,0 =

I3, σ1,1 =

⎛⎜⎝100
001
010

⎞⎟⎠ , σ1,2 =

⎛⎜⎝100
111
010

⎞⎟⎠ , σ1,3 =

⎛⎜⎝100
110
001

⎞⎟⎠ , . . . , σ1,11 =

⎛⎜⎝100
221
010

⎞⎟⎠ ,

σ2,0 = I3, σ2,1 =

⎛⎜⎝100
010
111

⎞⎟⎠ , σ2,2 =

⎛⎜⎝100
010
101

⎞⎟⎠ , . . . , σ2,8 =

⎛⎜⎝100
010
221

⎞⎟⎠ , σ3,0 = I3,

σ3,1 = diag(1, 2, 1), σ3,2 = diag(1, 1, 2), σ3,3 = diag(1, 2, 2).

Strong generators are P1 = σ0,1, P2 = σ1,1, E0,0 = σ2,2 =

⎛⎜⎝100
010
101

⎞⎟⎠ , E0,1 =

σ2,4 =

⎛⎜⎝100
010
011

⎞⎟⎠ , D2 = σ3,1 = diag(1, 2, 1), D3 = σ3,2 = diag(1, 1, 2). �

9.8.12Example As pointed out in 9.3.12, the elements s0, . . . , s5 listed in 9.2.7 are
generators for G = PGL4(2). In fact, they are strong generators for G with
respect to the base (b0, b1, b2, b3), where bi = rk−1

3;2(i). In the following, to keep
the notation simple we will identify projective points with their ranks. Thus,
we would say that the base is (0, 1, 2, 3). Let G(i) = Gb0,...,bi−1

= G0,...,i−1 be the
stabilizer of the first i base points. Then

S(i) = S ∩ G(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{s0, s1, s2, s3, s4, s5} if i = 0,
{s0, s1, s2, s3, s4} if i = 1,
{s0, s1, s2, s3} if i = 2,
{s0, s1, s2} if i = 3.

The basic orbits O(i) and the corresponding Schreier-trees are shown in
Fig. 9.13. From the Schreier-trees, coset representatives can be determined eas-
ily. For instance, an element of G(2) mapping b2 = 2 to 10 (which is the 8-th
element in the orbit O(3)) is

σ2,7 = s3s1s2
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Fig. 9.13 The basic orbits O(i) for PGL4(2)

= (2, 3)(6, 9)(7, 10)(8, 11)

·(3, 9)(4, 14)(10, 11)(12, 13)

·(3, 11)(4, 12)(9, 10)(13, 14)

= (2, 10, 7, 3)(4, 13)(6, 11, 8, 9)(12, 14)

Also, the group order is the product of the lengths of the basic orbits, which
is 15 · 14 · 12 · 8 = 20160. It is now easy to access group elements numerically.
For instance the group element 1777 (the birth year of Gauss) can be deter-
mined as follows. We write 1777 = ((14 + 4)12 + 6)8 + 1, i.e. the multibase
representation is 1777 = (1, 4, 6, 1)8,12,14,15. Therefore we need coset represen-
tatives mapping b0, . . . , b3 to the second, 5-th, 7-th and second orbit element,
respectively. That is, we need coset representatives σi,j such that

σ0,1(0) = 1, σ1,4(1) = 5, σ2,6(2) = 9, σ3,1(3) = 4.
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From the Schreier-trees, we obtain that

σ0,1 = s5,

σ1,4 = s4s3s1s3s4,

σ2,6 = s3s1,

σ3,1 = s0,

so that the group element 1777 is

σ3,1σ2,6σ1,4σ0,1 = s0s3s1s4s3s1s3s4s5

= (0, 1, 5)(2, 10, 12, 6, 3, 4)(7, 9, 13, 8, 11, 14).

It is also possible to compute the coset representatives σi,j directly using 9.8.5
and the labeling of points as indicated in Table 9.5. This gives

σ3,1σ2,6σ1,4σ0,1 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 1 0 0
1 1 0 0
0 1 0 1
1 1 1 1

⎞⎟⎟⎟⎠
This matrix sends the standard basis 0, 1, 2, 3 to 1, 5, 10, 4, respectively. Since
group elements are the same whenever they have the same effect on all base
points, this must be the same as the permutation

(0, 1, 5)(2, 10, 12, 6, 3, 4)(7, 9, 13, 8, 11, 14)

from above. Lastly, Fig. 9.14 depicts the coset representatives according to
the 4 subgroups in the stabilizer chain of PGL4(2). The numbers shown are
the actual elements in the basic orbits O(i), each corresponding to one coset
representative σi,j. �

Exercises

E.9.8.1Exercise Verify the statement of 9.8.1 that rkd\−1;q = rkd;q and that rk−1
d\−1;q =

rk−1
d;q .

E.9.8.2Exercise It was noted after 9.2.5 that the Schreier-trees are not unique, for in-
stance they depend on the choice of the generating set. On the other hand,
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3 4 9 10 11 12 13 14

2 3 4 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 1112 13 14

Fig. 9.14 The coset representatives for PGL4(2)

shortly before 9.7.9 it was noted that a stabilizer chain can be used to access
group elements numerically. Convince yourself that the labeling of group el-
ements using a stabilizer chain does not depend on the chosen generating set
provided the elements of each of the fundamental orbits are ordered lexico-
graphically. Therefore, a different choice of Schreier-trees in Example 9.8.12
would still yield the same group element with number 1777 as long as the
elements of the basic orbits are listed in order.

E.9.8.3 Exercise Compute the position 999 999 of Rubik’s 2 × 2 × 2 cube, following
the ideas developed in Exercise 9.8.2.

9.9 9.9 The Projective Semilinear Group

The next result describes a base and strong generating set for PΓLk(q). The
proof of this result follows easily from 3.7.11 and is omitted.

9.9.1 Theorem (base and strong generating set for PΓLk(q)) Let q = ph with p prime
and h a positive integer. Let PGk−1(q) be the one-dimensional subspaces of the vector
space V = Fk

q with basis e(0), . . . , e(k−1). If q is prime then PΓLk(q) � PGLk(q)
and 9.8.5 applies. Otherwise, if q = ph with h > 1, choose a primitive element α for
Fq. For i ∈ k + 1, let bi be as in 9.8.5. Put bk+1 = 〈αe(0) + e(1)〉.
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1. The sequence B = (b0, . . . , bk, bk+1) is an ordered base for PΓLk(q) acting on
PGk−1(q). The corresponding stabilizer chain has basic orbits of lengths

�i =

⎧⎪⎨⎪⎩
θk−1\i−1(q) for i ∈ k,

(q − 1)k−1 for i = k,
h for i = k + 1.

2. Coset representatives γi,j, i ∈ k + 2, j ∈ �i can be chosen in the following way.
(a) For i ∈ k + 1, and for j ∈ �i, let

γi,j =
(

σi,j, 0
)

with σi,j as described in 9.8.5.

(b) For j ∈ �k+1, let
γk+1,j =

(
Ik, j

)
.

3. A strong generating set for PΓLk(q) is given by the elements

(σ, 0),

where σ runs through all elements of a strong generating set of PGLk(q) as de-
scribed in 9.8.5, together with the element

(Ik, 1). �

9.9.2Corollary The order of PΓLk(q) is

h(q − 1)k−1 ∏
i∈k

θk−1\i−1(q) =
h

q− 1 ∏
i∈k

(qk − qi). �

9.9.3Example The field F8 is generated over F2 by a root α of the polynomial X3 +
X2 + 1 (so that α3 = 1 + α2). In the additive labeling, the field elements are

κ0 = 0,

κ1 = 1,

κ2 = α,

κ3 = α + 1,

κ4 = α2,

κ5 = α2 + 1,

κ6 = α2 + α,

κ7 = α2 + α + 1.
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3 5 8

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Fig. 9.15 The coset representatives for PΓL2(8)

Using the rank function of 9.3.5, the 9 points of the projective line PG1(8) are
numbered as

0 = 〈(1, 0)〉,
1 = 〈(0, 1)〉,
2 = 〈(1, 1)〉,
3 = 〈(κ2, 1)〉,
4 = 〈(κ3, 1)〉,
5 = 〈(κ4, 1)〉,
6 = 〈(κ5, 1)〉,
7 = 〈(κ6, 1)〉,
8 = 〈(κ7, 1)〉.

A base for PΓL2(8) is (0, 1, 2, 3). Strong generators are

s0 =

((
1 0
0 1

)
, 1

)
= (3, 5, 8)(4, 6, 7),

s1 =

((
1 0
0 κ2

)
, 0

)
= (2, 7, 4, 8, 6, 5, 3),

s2 =

((
1 0
1 1

)
, 0

)
= (1, 2)(3, 4)(5, 6)(7, 8),

s3 =

((
0 1
1 0

)
, 0

)
= (0, 1)(3, 7)(4, 5)(6, 8).

The basic orbits have length 9, 8, 7, and 3, respectively. We conclude that the
group PΓL2(8) has 1512 elements. Figure 9.15 depicts the coset representatives
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according to the 4 subgroups in the stabilizer chain of PΓL2(8). The numbers
shown are the elements in the basic orbits O(i), each corresponding to one
coset representative σi,j. �

Exercises

E.9.9.1Exercise Compute a base and stabilizer chain for PΓL(3, 4) using 9.9.1. List
the coset representatives.

9.109.10 Numerical Data

Let us now present numerical data concerning the classification of isometry
classes of linear indecomposable codes for small finite fields. In all cases, we
classify the semilinear isometry classes over Fq. If q is a prime, then of course
the semilinear isometry classes are the same as the linear isometry classes. We
present results for the fields Fq with q ∈ {2, 3, 4, 5, 8, 9, 16, 25, 27} in Tables 9.6-
9.24. For a given length n and dimension k, the corresponding entry in the table
lists the number of semilinear isometry classes of (n, k)-codes with a given
minimum distance. For instance, an entry of the form

dxey f z

indicates that there are x classes of codes with minimum distance d, y classes
with minimum distance e and z classes with minimum distance f . The mini-
mum distances are ordered decreasingly, and the first value, d, is the optimal
minimum distance in that parameter case. Exponents whose value is 1 are
omitted. Underlined entries indicate non-trivial MDS-codes.
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Table 9.6 Optimal indecomposable F2 codes

n\k 1 2 3 4 5 6 7

4 4

5 5 3

6 6 4 3 3

7 7 423 4 33 3

8 8 5 42 4336 4 34

9 9 6 5242 48 44318 35

10 10 625242 52418 419 44336 34

11 11 7 6352 6 58429 5 466 430 42358 33

12 12 8 726352 66519 6 5124201 4214 441 42384

13 13 827363 7 616537 66572 51541159 4580 445

14 14 9 8373 8 75637 7 6395292 665261 51146704 41488

15 15 10 928473 83717 8 756195 7 69152547 655995 56441037

16 16 1029384 812741 84737 8 7561145 6180529826 6354010

17 17 11 1039484 92832 8187241 84784 73 6377

18 18 12 11210494 10 911871 8108 83471777 827108 72

19 122113105 106933 978550 8411 828719021 8 781

20 11 1021 103981 9386480 81833 826

21 1027 1029178

22 1037 9248

23 1029 929

24 106
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Table 9.7 Optimal indecomposable F2 codes (cont.)

n\k 8 9 10 11 12 13 14 15 16 17 18 19

12 32

13 4 3109 3

14 448 4 3126 3

15 43473 443 4 3142 3

16 5 4268258 47456 447 4 3143

17 6 513757 5 414390 439 3129

18 6918 6 529371 425024 433 3113

19 7 61700 531237 439302 425 391

20 8 733 7 61682 514135 424 367

21 812 8 720 7 6739 52373 416 350

22 89 8 715 7 6128 5128 415 334

23 88 8 715 7 68 5 49 321

24 89 8 711 6 48 314

25 87 45

Table 9.8 Optimal indecomposable F2 codes (cont.)

n\k 20 21 22 23 24 25 26

25 39

26 44 35

27 42 33

28 42 32

29 4 3

30 4 3

31 4 3

32 4



744 9. The General Case

Table 9.9 Optimal indecomposable F3 codes

n\k 1 2 3 4 5 6 7

3 3

4 4 3

5 5 32

6 6 4232 34

7 7 5 4332 42312 34

8 8 6 5343 5 413325 43336 33

9 9 6354 6 58440 5 4413185 4 387 33

10 10 7265 66539 6 5194403 5 413431205 4 3195 32

11 11 8 74 7 635 675452 6 53444840 5 435438297 3399

12 12 9 8476 8 715 6353 6858550 6 536473941 4844361060

13 9386 9 877107 772 65037 695191851 56

14 93872 81475221 7236 647674 6

15 93 722

16 9

Table 9.10 Optimal indecomposable F3 codes (cont.)

n\k 8 9 10 11 12 13 14 15 16

11 3

12 3805 3

13 415323457485 31503 3

14 5 42020 32658

15 41778 34304

16 41019 36472

17 4337 38846

18 490 311127

19 420 312723

20 49 313358



9.10 Numerical Data 745

Table 9.11 Optimal indecomposable F3 codes (cont.)

n\k 17 18 19 20 21 22 23 24 25 26 27 28

21 312723

22 311127

23 38846

24 36472

25 34304

26 32659

27 31505

28 3807

29 3402

30 3201

31 394

32 347

Table 9.12 Optimal indecomposable F3 codes (cont.)

n\k 29 30 31 32 33 34 35 36

33 323

34 312

35 36

36 34

37 32

38 3

39 3

40 3



746 9. The General Case

Table 9.13 Optimal indecomposable F4 codes

n\k 1 2 3 4 5 6 7 8 9 10 11

3 3

4 4 3

5 5 4 32 3

6 6 4332 4 36

7 7 5244 47319 310

8 8 6254 53438 416396 313

9 9 7 65 63539 544326 4193466 317

10 10 8 74 645 625642 5444189 42332380 318

11 84 725 6841 6 519418 5 466475 415313080 318

12 816 7275 619181 413 317

13 830 7452 44 313

14 86 714 42 310

15 83 74 4

16 82 73

17 82 72

18 8

Table 9.14 Optimal indecomposable F4 codes (cont.)

n\k 12 13 14 15 16 17 18

15 38

16 4 35

17 4 33

18 32

19 3

20 3

21 3



9.10 Numerical Data 747

Table 9.15 Optimal indecomposable F5 codes

n\k 1 2 3 4 5 6 7 8

3 3

4 4 3

5 5 4 32 3

6 6 5 4432 4 39 3

7 7 53 417329 321

8 8 6357 516 4923344 342

9 7268 6165248 5134 438734570 392

10 776486 693 5558 41568362846 3174

11 660 5503 440893814405 3296

12 631 536 47062

Table 9.16 Optimal indecomposable F5 codes (cont.)

n\k 9 10 11 12 13 14 15 16 17 18 19 20 21 22

12 3476

13 47258 3669

14 44678 3832

15 41810 3948

16 4572 3948

17 4183 3832

18 488 3669

19 436 3476

20 421 3296

21 47 3174

22 44 392

23 4 342

24 4 322

25 4 312



748 9. The General Case

Table 9.17 Optimal indecomposable F5 codes (cont.)

n\k 22 23 24 25 26 27 28

26 4 35

27 33

28 32

29 3

30 3

31 3

Table 9.18 Optimal indecomposable F8 codes

n\k 1 2 3 4 5 6 7 8 9

3 3

4 4 3

5 5 4 32 3

6 6 5 44 43310 3

7 7 6 52449 42354 3

8 7 62 5 41700 423323 3

9 72 6 5 468877 4232097 3

10 4 312868

11 372638

12 3373366



9.10 Numerical Data 749

Table 9.19 Optimal indecomposable F9 codes

n\k 1 2 3 4 5 6 7 8

3 3

4 4 32

5 5 42 32

6 6 52 46 32

7 7 6 53 43 3

8 7 62 55 42 3

9 7 62 52 4 3

10 7 62 5 4 3

Table 9.20 Optimal indecomposable F16 codes

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3

4 4 32

5 5 43 33

6 54 422 34

7 5125 4125 35

8 52981 4685 36

9 56888 41534 36

10 5356 41262 35

11 510 4300 34

12 54 4159 33

13 52 470 32

14 5 430 3

15 5 49 3

16 5 45 3

17 5 43 3

18 42



750 9. The General Case

Table 9.21 Optimal indecomposable F25 codes

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 3

4 4 34

5 5 47 37

6 519 4205 319

7 47163 334

8 379

9 3132

10 3223

11 3293

12 3379

13 3391

14 3379

15 3293

16 3223

Table 9.22 Optimal indecomposable F25 codes (cont.)

n\k 15 16 17 18 19 20 21 22 23 24

17 3132

18 379

19 334

20 319

21 37

22 34

23 3

24 3

25 3

26 3



9.10 Numerical Data 751

Table 9.23 Optimal indecomposable F27 codes

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 3

4 4 33

5 5 44 34

6 514 4174 314

7 58261 48261 329

8 372

9 3134

10 3257

11 3390

12 3565

13 3670

14 3738

15 3670

16 3565



752 9. The General Case

Table 9.24 Optimal indecomposable F27 codes (cont.)

n\k 15 16 17 18 19 20 21 22 23 24 25 26

17 3390

18 3257

19 3134

20 372

21 329

22 314

23 34

24 33

25 3

26 3

27 3

28 3




