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8 Linear Codes with a Prescribed
Minimum Distance

After the enumeration of the isometry classes of codes in Chapter 6, we are now
approaching the systematic construction of representatives of these classes. In
this and the following chapter, we will present methods for constructing lin-
ear (n, k)-codes with prescribed minimum distance d. This means that for a given
lower bound d on the minimum distance, we construct all (n, k,≥ d)-codes, i.e.
codes whose minimum distance is at least as good as the lower bound we have
chosen. We present essentially two different methods for solving this problem.
Of course, both methods may fail to construct such codes, for instance if the
lower bound d on the minimum distance was chosen too large. Nevertheless,
in this case both methods provide proof that no code with the parameters un-
der consideration exists. Needless to say that this construction problem is a
very important and interesting one. In essence, all of coding theory is con-
cerned with finding codes which allow one to transmit more data with fewer
errors.

The above-mentioned construction of codes often leads to new and inter-
esting codes either directly or indirectly by means of constructions and modi-
fications in the sense of Section 2.2. In fact, A. Brouwer’s helpful tables for the
parameters of best known linear codes can sometimes be improved by such a
search.

The construction that we have in mind in this chapter applies first of all to
projective codes (cf. Exercise 1.3.21 and 6.1.14), i.e. codes whose columns can
be taken as representatives of a set of points in projective space. The construc-
tion problem is then reduced to the problem of finding an equivalent structure
in projective space called a minihyper. This is essentially a system of points in
a suitable projective space with certain intersection properties with respect to
hyperplanes. The necessary calculations amount to solving a system of Dio-
phantine equations, similar to the techniques used for the construction of com-
binatorial designs.

Since for interesting parameter sets the coefficient matrix of the system of-
ten is too big to allow a direct solution, a well-known reduction is applied.
Namely, we make an assumption about the presence of non-trivial automor-
phisms. This reduces the size of the coefficient matrix and thereby eases the
problem to become more tractable. Of course, such a reduction is risky as it
does not allow one to find solutions which do not satisfy the assumption on
the presence of automorphisms. In this situation, the algorithm classifies codes
with a given minimum distance which are invariant under the chosen group
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of automorphisms. In many cases this reduction indeed led to the discovery
of new optimal codes (i.e. one could say that the end justifies the means in
this case). Lastly, we also search for arbitrary nonredundant codes, i.e. codes
which are not necessarily projective. The systematic construction of complete
transversals of isometry classes of linear codes with a lower bound on their
minimum distance is done in Chapter 9.

8.1 8.1 Minihypers

We begin with a closer examination of the use of generator matrices for encod-
ing. For this purpose we introduce the notation γ�

∗,j for the j-th column of a
generator matrix Γ = (γij) and γi,∗ for its i-th row. Using this notation, we can
describe the generator matrix Γ of an (n, k)-code as

Γ =
(

γ�
∗,0

∣∣ . . .
∣∣ γ�

∗,n−1

)
=

⎛⎜⎜⎝
γ0,∗

...
γk−1,∗

⎞⎟⎟⎠ .

In terms of the standard bilinear form 〈v, w〉 = ∑i viwi, we express a codeword
c := v · Γ corresponding to a message v ∈ Fk

q as follows:

c = v · Γ = (〈v, γ∗,0〉, . . . , 〈v, γ∗,n−1〉) .

By definition, n −wt(v · Γ) components of v · Γ are zero. In terms of the bilin-
ear form, this means that n − wt(v · Γ) columns of the generator matrix Γ are
orthogonal to v, i.e., contained in the hyperplane

H(v) := P(v)⊥ =
{

w ∈ Fk
q
∣∣ 〈v, w〉 = 0

}
∈ U (k, k − 1, q).

This fact leads us to the following basic result:

8.1.1 Theorem A k × n-matrix over Fq generates an (n, k, d, q)-code C if and only if the
columns of any generator matrix Γ of C satisfy the following two properties. Every
hyperplane H ∈ U (k, k − 1, q) contains at most n − d columns of Γ and there is at
least one hyperplane H ∈ U(k, k − 1, q) which contains exactly n − d columns of Γ.
This property is independent of the choice of the generator matrix Γ of C, in that this
property either holds for all generator matrices of C or none of the generator matrices
of C has this property.
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Proof: 1. By 1.2.8, the minimum distance of a linear code equals the minimum
weight of a nonzero codeword c := v · Γ for v ∈ Fk

q, v �= 0. The above argument
shows that every hyperplane H = H(v) ∈ U (k, k − 1, q) contains at most n− d
columns of Γ with equality if and only if the codeword c = v · Γ is of minimum
weight d.

2. Conversely, if Γ = (γij) is a k × n-matrix over Fq satisfying

max
{
|{j | γ∗,j ∈ H}|

∣∣ H ∈ U (k, k − 1, q)
}

= n − d,

then it is clear from the first part of the proof that its rows generate an (n, k′, d)-
code C over Fq of dimension k′ ≤ k. In order to show that k′ = k we have to
check that the rows of Γ are linearly independent. Assume that Γ does not have
full rank k. This means that the rows are linearly dependent, say

0 = c = v · Γ,

for some v �= 0. Since each cj = 0, every column γ∗,j is contained in the
hyperplane H(v), i.e.

∣∣{j
∣∣ γ∗,j ∈ H(v)

}∣∣ = n, contradicting the fact that∣∣{j
∣∣ γ∗,j ∈ H(v)

}∣∣ ≤ n − d < n.

Thus Γ really generates an (n, k, d, q)-code. �

We now recall from the metric classification of linear codes that permuting
columns and/or multiplying columns of a generator matrix Γ with a nonzero
element of Fq yields a generator matrix of a code which is linearly isometric.
In fact, it is often simpler to deal not with the generator matrix Γ of a code but
instead consider a certain map (or multiset), as described in the next remark.
This applied to nonredundant codes only:

8.1.2Remarks Let Γ denote a generator matrix of a nonredundant linear code C
(which means that it does not contain a zero column). Then

Γ can be identified with the mapping

Γ : n → Fk
q\{0} : j �→ γ∗,j.

Up to linear isometry, we may consider instead of column vectors the one-
dimensional subspaces generated by the column vectors. They are the ele-
ments or points of the projective geometry

PGk−1(q) =
{

P(v)
∣∣ v ∈ Fk

q\{0}
}

.

This means in fact that we can replace Γ by the mapping

Γ̃ : n → PGk−1(q) : j �→ P(γ∗,j).
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The reason is that we easily obtain from Γ̃ a matrix Γ′ that generates a linear
code C′ linearly isometric to C, by simply taking from each value P(γ∗,j) of
Γ̃ a nonzero element and using it as the j-th column of Γ′.

Moreover, because of isometry, it is possible to replace

Γ̃ = (P(γ∗,0), . . . , P(γ∗,n−1))

by its orbit
Sn(Γ̃)

which consists of all the reorderings of this sequence Γ̃. I.e. instead of the
sequence of the points we consider the multiset of them. (In order to indicate
a multiset we use the notation {{. . .}}. In such a multiset, elements can occur
several times, e.g. in {{a, a, b, c, c, c}}, a multiset of order 6, the element a
occurs twice and c occurs three times.) This means that we replace Γ even
by the multiset ˜̃Γ := {{P(γ∗,0), . . . , P(γ∗,n−1)}}

of cardinality n. It is clear that we can easily deduce from ˜̃Γ a matrix Γ′′ that
generates a code C′′ linearly isometric to C.  

For example the matrix

Γ =

⎛⎜⎝ 1 0 0 1 1 1 1 1
0 1 0 0 2 2 2 2
0 0 1 1 1 1 2 2

⎞⎟⎠
generates an (8, 3)-code over F3. The corresponding mapping is

Γ̃ = (P(100), P(010), P(001), P(101), P(121), P(121), P(122), P(122))

and the resulting multiset is

˜̃Γ = {{P(010), P(001), P(101), P(121), P(121), P(122), P(122), P(100)}}.

8.1.3 Corollary Both the mapping Γ̃ and the multiset ˜̃Γ characterize the isometry class of
the code C generated by Γ. Moreover, it is obvious how to obtain from Γ̃ as well as
from ˜̃Γ a generator matrix that generates a linear code linearly isometric to C. �

We are now in a position to rephrase 8.1.1 in terms of multisets. For this
purpose we introduce the following kind of restriction of the multiset ˜̃Γ to a
hyperplane H: ˜̃Γ ↓ H :=

{{
P ∈ ˜̃Γ ∣∣ P ⊆ H

}}
.



8.1 Minihypers 619

For example the restriction of the multiset ˜̃Γ defined by the above (8, 3)-code
to the hyperplane H = H(110) = {x ∈ F3

3 | x0 + x1 = 0} is

˜̃Γ ↓ H(110) = {{P(121), P(121), P(122), P(122)}} .

Its cardinality | ˜̃Γ ↓ H(110)| is four. Using this notation we formulate the fol-
lowing corollary due to [88]:

8.1.4Corollary There is a nonredundant (n, k, d, q)-code if and only if there is a multiset
X of order n, consisting of points of PGk−1(q) such that

max
{
|X ↓ H|

∣∣ H ∈ U(k, k − 1, q)
}

= n − d. �

In fact, according to [88], we obtain even the weight distribution in this
case:

8.1.5Theorem If X is a multiset of points in PGk−1(q) with

max
{
|X ↓ H|

∣∣ H ∈ U(k, k − 1, q)
}

= n − d,

then each matrix Γ whose columns are generators of the points of X generates an
(n, k, d, q)-code C with weight distribution WC(x, y) = ∑n

i=0 Aixiyn−i, where A0 =
1 and

Ai = (q− 1) ·
∣∣{H ∈ U (k, k − 1, q)

∣∣ |X ↓ H| = n − i
}∣∣ , for i > 0.

Proof: For each codeword v · Γ we have |X ↓ H(v)| = n −wt(v · Γ). Since the
generator matrix Γ has full rank k, a codeword v · Γ has weight 0 if and only if
v = 0, and so A0 = 1. The coefficients Ai, i > 0, are

Ai =
∣∣{c ∈ C\{0}

∣∣ wt(c) = i
}∣∣

=
∣∣∣{v ∈ Fk

q\{0}
∣∣ wt(v · Γ) = i

}∣∣∣
=

∣∣∣{v ∈ Fk
q\{0}

∣∣ |X ↓ H(v)| = n − i
}∣∣∣

= (q − 1) ·
∣∣{H ∈ U (k, k − 1, q)

∣∣ |X ↓ H| = n − i
}∣∣ ,

as stated. �

8.1.6Example (simplex-code) The k-th order q-ary simplex-code defined in 2.1.5
is an example of a nonredundant code. It is generated by any matrix Γ whose
columns represent all θk−1(q) := (qk − 1)/(q− 1) points of PGk−1(q) (cf. 3.7.2).
Using hyperplane intersections, we can easily deduce its parameters: Recall
that every hyperplane contains θk−2(q) points, each of which is represented by
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exactly one column of the generator matrix Γ. Therefore, the parameter of this
code are n = θk−1(q) and n − d = θk−2(q), i.e.

(n, k, d) =
(
(qk − 1)/(q− 1), k, qk−1

)
.

The weight distribution is

1 + (qk − 1)xqk−1
.

Moreover, since

qk − 1
q− 1

= qk−1 + qk−2 + . . . + q + 1 = ∑
i∈k

qk−1

qi = ∑
i∈k

⌈
d
qi

⌉
,

this code meets the Griesmer-bound, it is an optimal linear code. �

Codes that are generated by a matrix Γ with pairwise linearly independent
columns, so that ˜̃Γ is a set in the strict sense, are called projective (cf. 6.1.14).
For instance simplex-codes are projective. In other words the columns of gen-
erator matrices of projective linear (n, k)-codes correspond to pairwise distinct
points. In order to emphasize this we shift from the calligraphic X , that we
used for multisets, to the notation X. Moreover we note that the restriction of
sets to hyperplanes is the intersection. Projective codes are clearly nonredun-
dant. As an immediate consequence we obtain

8.1.7 Corollary There exists a projective linear (n, k, d)-code over Fq if and only if there
exists a subset X of order n in PGk−1(q) such that

max
{
|X ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= n − d. �

The complement of such a set X of points is called a minihyper. Mini-
hypers are well-known objects in geometry. Several articles (cf. [25], [26],
[54], [75], [79], or [143]) deal with minihypers and also with the connection be-
tween minihypers and linear codes. Hamada [78] discovered the relationship
between Griesmer optimal linear codes and minihypers which we introduce
now. We want to describe them in detail and we also give an algorithm for the
construction of these objects.

8.1.8 Definition (minihyper) A (b, t)-minihyper in PGk−1(q) is a set B of b points of
PGk−1(q) such that every hyperplane contains at least t points of B and at least
one hyperplane contains exactly t points of B. Formally, a set B ⊆ U (k, 1, q) is
a (b, t)-minihyper in PGk−1(q) if and only if

|B| = b and min
{
|B ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= t.  

Using the concept of minihypers we reformulate the connection between
projective codes and projective geometries.
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8.1.9Corollary There is a projective (n, k, d)-code over Fq if and only if there is a (b, t)-
minihyper in PGk−1(q) where

(b, t) = (θk−1(q)− n, θk−2(q)− n + d).

Proof: Let X be a set of n points with

max
{
|X ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= n − d.

Since every hyperplane contains θk−2(q) points, the set-theoretic complement
B := U (k, 1, q) \ X satisfies the equation

min
{
|B ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= θk−2(q)− (n − d).

Being the complement of X in PGk−1(q) = U (k, 1, q), the set B has θk−1(q)− n
elements. Thus B is a

(θk−1(q)− n, θk−2(q)− n + d)

minihyper in PGk−1(q). Since all arguments can be reversed, the existence of
such a minihyper gives rise to a projective (n, k, d)-code. �

8.1.10Lemma If d ≤ qk−1 and C is an (n, k, d, q)-code which attains the Griesmer-bound
n = ∑i∈k�d/qi�, then C is a projective code. �

This lemma, the proof of which is left as Exercise 8.1.3, together with 8.1.9
implies the following corollary which is due to Hamada:

8.1.11Corollary Let d ≤ qk−1 and assume that n = ∑i∈k�d/qi� which is taken from the
Griesmer-bound. Then there exists a nonredundant linear (n, k, d)-code over Fq if and
only if there exists a (θk−1(q)− n, θk−2(q)− n + d)-minihyper in PGk−1(q). �

8.1.12Example (Fano-plane) A well-known example is provided by the projective
geometry PG2(2), which is also known as the Fano-plane. It consists of the
seven points and seven hyperplanes shown in the following table:

P0 = P(100) = {000, 100}
P1 = P(010) = {000, 010}
P2 = P(001) = {000, 001}
P3 = P(110) = {000, 110}
P4 = P(011) = {000, 011}
P5 = P(101) = {000, 101}
P6 = P(111) = {000, 111}

H0 = {000, 100, 010, 110} = P0 ∪ P1 ∪ P3

H1 = {000, 010, 001, 011} = P1 ∪ P2 ∪ P4

H2 = {000, 100, 001, 101} = P0 ∪ P2 ∪ P5

H3 = {000, 100, 011, 111} = P0 ∪ P4 ∪ P6

H4 = {000, 010, 101, 111} = P1 ∪ P5 ∪ P6

H5 = {000, 001, 110, 111} = P2 ∪ P3 ∪ P6

H6 = {000, 110, 011, 101} = P3 ∪ P4 ∪ P5
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100 010

001

110

011101

111

Fig. 8.1 The Fano-plane

The incidence relation between these points and hyperplanes is represented
by the famous graph shown in Fig. 8.1. Each of the hyperplanes, which are
the lines, together with the cycle, yields a (3, 1)-minihyper in PG2(2). This
property can easily be verified by looking at the figure. For example, take the
line

B = {P3 = P(110), P4 = P(011), P5 = P(101)}.
If we write the representatives of the four elements of the complement

X = {P(100), P(010), P(001), P(111)}

in a matrix column by column, we obtain the generator matrix

Γ =

⎛⎜⎝ 1 0 0 1
0 1 0 1
0 0 1 1

⎞⎟⎠
of a binary (4, 3, 2)-code. �

Now we are interested in a general approach to the construction of such
a minihyper and, correspondingly, of codes with a prescribed minimum dis-
tance. For this purpose we introduce the following notion:

8.1.13 Definition (blocking set) A t-blocking set in PGk−1(q) is a set B of points of
PGk−1(q) such that every hyperplane contains at least t points of B:

min
{
|B ∩ H|

∣∣ H ∈ U(k, k − 1, q)
}
≥ t.  

Hence, minihypers are t-blocking sets with additional properties. The larg-
est possible size of an intersection of B and a hyperplane H is θk−2(q). There-
fore B is a t-blocking set in PGk−1(q) if

t ≤ |B ∩ H| ≤ θk−2(q)
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for all hyperplanes H ∈ U (k, k− 1, q). As t-blocking sets are suitable selections
of points, they can be described by the incidence matrix Mk,q = (mij), the rows
of which correspond to the hyperplanes Hi ∈ U (k, k − 1, q), i ∈ θk−1(q), and
the columns of which correspond to the points Pj ∈ U (k, 1, q), j ∈ θk−1(q). The
entry mij of the i-th row and j-th column is defined as follows:

mij :=
{

1 if Pj ⊆ Hi,
0 otherwise.

Hence a t-blocking set B is nothing but a selection of columns of the matrix
Mk,q, or a 0-1-vector x = (x0, . . . , xθk−1(q)−1)� which satisfies the condition

Mk,q · x ∈ {t, . . . , θk−2(q)}θk−1(q) .

This means that there is a vector y = (y0, . . . , yθk−1(q)−1)� with components
yi ∈ {t, . . . , θk−2(q)} fulfilling the equation Mk,q · x = y, which is equivalent to
the equation (

Mk,q
∣∣ −I

)
·
(

x
y

)
= 0,

where I is the identity matrix. Summarizing, we obtain the desired construc-
tion of blocking sets:

8.1.14Corollary There is a bijection between the set of all t-blocking sets in PGk−1(q) and
the set of vectors (x

y) with xi ∈ {0, 1} and yi ∈ {t, . . . , θk−2(q)} that solve the linear
system of equations: (

Mk,q
∣∣ −I

)
·
(

x
y

)
= 0.

If (x
y) denotes such a solution then the corresponding t-blocking set B in PGk−1(q) is

B =
{
Pj

∣∣ xj = 1
}

. �

8.1.15Example (Fano-plane, cont.) We again consider the Fano-plane and construct
all 1-blocking sets in PG2(2). There are seven hyperplanes and points as men-
tioned in Example 8.1.12. The corresponding incidence matrix is

M3,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Solving the corresponding linear system of equations from 8.1.14 we obtain 64
solutions (x

y) with the required properties x ∈ {0, 1}7 and y ∈ {1, 2, 3}7. Seven
solutions correspond to the lines which are (3, 1)-minihypers in PG2(2). The
minihyper B = {P3, P4, P5} corresponds to the solution(

x
y

)
= (0, 0, 0, 1, 1, 1, 0; 1, 1, 1, 1, 1, 1, 3)� . �

So far, we have constructed minihypers in the Fano-plane. In order to ob-
tain new linear codes, we need to search for t-blocking sets or minihypers.
The method proposed in 8.1.14 may not work because the incidence matrix
Mk,q can become too big for solving the system of Diophantine equations for
interesting parameters. In these cases, the intention is to reduce the incidence
matrix Mk,q to a much smaller matrix so that it is possible to solve the cor-
responding system of Diophantine equations applying the lattice point enu-
meration algorithm described in the previous chapter. To achieve this goal we
make an assumption about the presence of non-trivial automorphisms, simi-
lar to the methods that are used to construct combinatorial t-designs [18], [14],
[15], [17]. In fact, such an assumption about the presence of non-trivial au-
tomorphisms leads to a very interesting area of Algebraic Combinatorics, the
theory of groups acting on lattices. This is the topic of the following section.

Exercises

E.8.1.1 Exercise Show that the set of points in PG2(q) defined by the conic{
〈(x, y, z)〉

∣∣ x2 = yz
}

corresponds to a q-ary (q + 1, 3, q − 1)-code.

E.8.1.2 Exercise Verify that the set of points in PG3(q) defined by the hyperbolic quadric{
〈(x, y, z, w)〉

∣∣ zw = xy
}

corresponds to a q-ary ((q + 1)2, 4, q2)-code.

E.8.1.3 Exercise Prove 8.1.10. Hint: Check that the generator matrix Γ of C does not
contain zero columns. Assume that Γ has a repeated column. In this case, the
matrix ⎛⎜⎜⎜⎜⎝

1 1 . . .
0 0
...

... Γ′

0 0

⎞⎟⎟⎟⎟⎠
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generates a code which is linearly isometric to C. Here, Γ′ is a generator matrix
of an (n − 2, k − 1, d′)-code C′ with d′ ≥ d. The inequality from the Griesmer-
bound for C′ then leads to a contradiction.

8.28.2 Group Actions on Lattices

In this section we investigate actions of subgroups of the general linear group
GLk(q) on the set U (k, q) = PG(Fk

q) of all subspaces of Fk
q. This action is in-

teresting because U(k, q) forms a lattice, the linear lattice, and since the action
preserves the partial order, i.e. we have the implication

S ≤ T =⇒ AS ≤ AT

for all subspaces S, T ∈ U(k, q) and all A ∈ GLk(q). Hence let us introduce
first the general concept of group actions on posets respectively lattices.

8.2.1Definition (poset action) Let (X,≤) denote a poset on which a group G acts
from the left. Then we call the action GX a poset action if the implication

x ≤ x′ =⇒ gx ≤ gx′

holds for all x, x′ ∈ X and g ∈ G. This will be abbreviated by

G(X,≤).  

We note that we can in fact replace the implication by an equivalence since
gx ≤ gx′ also implies x ≤ x′ if we apply g−1 from the left.

Analogously, we define a lattice action if the group elements commute with
the infimum and supremum operator.

8.2.2Definition (lattice action) Let (X,∧,∨) denote a lattice and let G be a group
acting on X. Then GX is called a lattice action if and only if

g(x ∧ x′) = gx ∧ gx′ and g(x ∨ x′) = gx ∨ gx′

for all x, x′ ∈ X and g ∈ G. We indicate this situation as follows:

G(X,∧,∨).  

Recall that a lattice (X,∧,∨) is always a poset, the corresponding order
relation ≤ can be obtained by

x ≤ x′ : ⇐⇒ x ∧ x′ = x ⇐⇒ x ∨ x′ = x′.

Using this equivalence we prove the following lemma.
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8.2.3 Lemma Let (X,∧,∨) be a lattice, (X,≤) the corresponding partial order and let G
be a group acting on X. Then GX is a poset action if and only if GX is a lattice action.

Proof: 1. Assume that GX is a poset action. We have x∧ x′ ≤ x and x∧ x′ ≤ x′

for all x, x′ ∈ X. Since G preserves the order relation we obtain g(x ∧ x′) ≤ gx
and g(x ∧ x′) ≤ gx′ for all g ∈ G and hence g(x ∧ x′) ≤ gx ∧ gx′. If we assume
that g(x ∧ x′) < gx ∧ gx′ we obtain, after applying g−1 from the left, that

x ∧ x′ = g−1(g(x ∧ x′)) < g−1(gx ∧ gx′) ≤ g−1(gx) ∧ g−1(gx′) = x ∧ x′,

which yields the contradiction x ∧ x′ < x ∧ x′. Thus we have g(x ∧ x′) =
gx ∧ gx′. The statement g(x ∨ x′) = gx ∨ gx′ follows analogously.

2. Now we assume that GX is a lattice action. We have the following chain of
equivalences:

x ≤ x′ ⇔ x = x ∧ x′ ⇔ gx = g(x ∧ x′) = gx ∧ gx′ ⇔ gx ≤ gx′,

for all x, x′ ∈ X and g ∈ G. This completes the proof. �

8.2.4 Definition (poset automorphism) Let (X,≤) denote a poset. Then a bijection
f : X → X is called a poset automorphism if and only if

x ≤ x′ =⇒ f (x) ≤ f (x′)

for all elements x, x′ ∈ X.  
The set of all poset automorphisms of a poset (X,≤) forms a subgroup

of the symmetric group SX , the automorphism group of (X,≤), which will be
abbreviated by Aut(X,≤). A subgroup of this full automorphism group is
called a group of automorphisms of (X,≤). Now recall the image G = δ(G) of
the permutation representation

δ : G → SX : g �→ g with g : x �→ gx

that obviously can be used to characterize a poset action: GX is a poset action
if and only if

G ≤ Aut(X,≤).8.2.5

For this reason we also say that G acts on a poset (X,≤) as a group of auto-
morphisms in order to express that GX is a poset action. The most important
properties of poset actions are the following ones:
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8.2.6Lemma If G(X,≤) denotes a poset action with finite G, then it has the following
properties:

1. Any two elements in the same orbit are incomparable, i.e. the orbits are antichains.

2. If ω and ω′ are orbits such that there exist x ∈ ω and x′ ∈ ω′ where x < x′, then
we have, for any comparable pair of elements y ∈ ω and y′ ∈ ω′, that y < y′.

3. The partial order on X induces the following partial order on G\\X:

ω ≤ ω′ :⇐⇒ ∃ x ∈ ω, x′ ∈ ω′ : x ≤ x′.

4. Consider an orbit ω ∈ G\\X and an arbitrary representative x ∈ ω. For any orbit
ω′ the numbers∣∣{x′ ∈ ω′ ∣∣ x ≤ x′

}∣∣ and
∣∣{x′ ∈ ω′ ∣∣ x ≥ x′

}∣∣
depend only on the orbit ω and not on the chosen representative x ∈ ω.

5. For any x, x′ ∈ X, we have

|G(x)| ·
∣∣{z ∈ G(x′)

∣∣ x ≤ z
}∣∣ =

∣∣G(x′)
∣∣ · ∣∣{y ∈ G(x)

∣∣ x′ ≥ y
}∣∣ .

Proof: 1. If x ∈ X were comparable with gx �= x, say (without restriction)
x < gx, then we had x < gx < g2x < . . . < g−1x < x, which is a contradiction.

2. Suppose x, y ∈ ω, x′, y′ ∈ ω′, where x < x′ and y and y′ are comparable.
Then y > y′ would yield, for suitable g, g′ ∈ G: gx = y > y′ = g′x′, and hence
also x > g−1g′x′, which contradicts the first part that posets are antichains.

3. The reflexivity of ≤ on G\\X is obvious as well as the antisymmetry, and
so it remains to prove the transitivity. Hence we assume that ω < ω′ and
ω′ < ω′′, and consider elements x ∈ ω, x′, y′ ∈ ω′, y′′ ∈ ω′′ which satisfy
x < x′, y′ < y′′. There exists g ∈ G with gx′ = y′, and hence

ω $ gx < gx′ = y′ < y′′ ∈ ω′′,

so that ω < ω′′, as stated.

4. This follows from x ≤ x′ ⇐⇒ gx ≤ gx′.

5. Using 4., this follows from a trivial “double count” of the set{
(y, z)

∣∣ y ∈ G(x), z ∈ G(x′), y ≤ z
}

. �
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As mentioned in Section 3.2 we represent a poset (X,≤) by its zeta function
ζ : X × X → {0, 1} which is defined by

ζ(x, x′) :=
{

1 if x ≤ x′,
0 otherwise.

If X is finite we can assume X = {x0, . . . , xm−1} to be topologically sorted, in
the following sense:

8.2.7 Definition (topological sorting) A poset (X,≤) is topologically sorted if the el-
ements of X are numbered in such a way that xi < xj implies i < j for all
elements xi, xj ∈ X.  

It is not difficult to check (Exercise 8.2.1) that every finite poset (X,≤) can
be sorted topologically. Therefore, in the following we always assume that the
elements of the finite poset X in question have been numbered topologically
as {x0, . . . , xm−1}. In this case, the zeta matrix

Z(X,≤) := (ζ ij), where ζ ij := ζ(xi, xj),

is upper triangular with ones along the main diagonal, and hence invertible
over Z. Its inverse

Z(X,≤)−1 =: M(X,≤) = (µij),

the Möbius matrix of the poset, defines the Möbius function of the finite poset:
µ(xi, xj) := µij ∈ Z. In addition we remark that an action on a poset is a poset
action if and only if

ζ(x, x′) = ζ(gx, gx′)

for all g ∈ G and x, x′ ∈ X. Here is our main example of a poset action:

8.2.8 Example (the linear lattice) As we have already mentioned at the beginning
of this section, the set U (k, q) of subspaces of Fk

q forms a lattice with infimum
S∧ T := S∩ T and supremum S∨ T := 〈S∪ T〉 (the subspace generated by the
union of S and T). The general linear group GLk(q) acts on this linear lattice
in the following canonical way: For M ∈ GLk(q) and S ∈ U (k, q) we have

MS :=
{

v · M� ∣∣ v ∈ S
}

.

This action is clearly a poset action, U (k, q) is partially ordered by inclusion,
and it is obvious that the action respects inclusion:

S ≤ T =⇒ MS ≤ MT.

Hence, by 8.2.3, this action is also a lattice action,

GLk(q) (U (k, q),∧,∨) ,
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and so the general linear group acts as a group of automorphisms on U (k, q).
The zeta function of this linear lattice is

ζ(S, T) =
{

1 if S ≤ T,
0 otherwise.

Since this lattice is of great importance for the following, let us evaluate its
Möbius function. To begin with, we claim that the sum of the values of the
Möbius function over a full nontrivial interval is zero for each poset (X,≤),
where all intervals are finite. Such posets are called locally finite (cf. 3.2.24 and
Exercise 3.2.16).

∑
y:x≤y≤z

µ(x, y) = ∑
y:x≤y≤z

µ(y, z) = δx,z =
{

0 if x �= z,
1 if x = z.

8.2.9

In order to verify the first equation we use that the Möbius matrix is the inverse
of the zeta matrix: (µ(x, y)) · (ζ(x, y)) = I gives

∑
y:x≤y≤z

µ(x, y) = ∑
y:x≤y≤z

µ(x, y)ζ(y, z) = (µ ∗ ζ)(x, z) = δ(x, z) = δx,z,

the second statement follows similarly. The next result is on the Möbius func-
tion of a finite lattice L with its elements

0 :=
∧

λ∈L

λ and 1 :=
∨

λ∈L

λ.

We state that
0 < λ ∈ L =⇒ ∑

κ:κ∨λ=1
µ(0, κ) = 0. 8.2.10

In order to prove this we consider the expression

σ(λ) := ∑
κ,ν

µ(0, κ)ζ(κ, ν)ζ(λ, ν)µ(ν, 1) = ∑
κ

µ(0, κ) ∑
ν≥κ∨λ

µ(ν, 1).

Since, by 8.2.9, the inner sum ∑ν≥κ∨λ µ(ν, 1) is zero, except for the case when
κ ∨ λ = 1, we find that

σ(λ) = ∑
κ:κ∨λ=1

µ(0, κ).

Hence it remains to prove that σ(λ) = 0. In order to do this we rewrite σ(λ) in
the following form:

σ(λ) = ∑
ν≥λ

µ(ν, 1) ∑
κ≤ν

µ(0, κ).

The inner sum is zero, and hence σ(λ) = 0, which completes the proof.
We are now in a position to evaluate the Möbius function of the linear lat-

tice. We claim that

µ(S, T) =
{

(−1)mq(m
2 ) if S ≤ T,

0 otherwise,
8.2.11
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where m := dim(T)− dim(S) and (0
2) = (1

2) = 0.
For its proof (by induction on m) we note first that if S = T, then µ(S, T) =

1 and m = 0. If S < T, then µ(S, T) = µ(0, Fm
q ), m > 0, since the lattice

of subspaces between S and T is order isomorphic to the lattice of subspaces
of Fm

q . This is known from Linear Algebra (the Homomorphism Theorem).
Hence it suffices to prove that

µ(0, Fm
q ) = (−1)mq(m

2 ), m > 0.8.2.12

In order to check this we pick a one-dimensional subspace U and deduce from
8.2.10 that

µ(0, Fm
q ) = − ∑

S∨U=Fm
q , S �=Fm

q

µ(0, S),

where the sum is taken over all proper subspaces S such that S ∨U = Fm
q , i.e.

over all the (m− 1)-dimensional subspaces S of Fm
q that do not contain U. For

all these S we have, by induction assumption, that

µ(0, S) = (−1)m−1q(m−1
2 ).

Moreover, the number of such subspaces is (Exercise 8.2.2)[
m

m − 1

]
(q)−

[
m − 1
m − 2

]
(q) =

[
m

m − 1

]
(q)−

[
m − 1

1

]
(q) = qm−1.8.2.13

Thus, we finally obtain that

µ(0, Fm
q ) = (−1)mq(m

2 ),

which completes the proof of 8.2.12 on the values of the Möbius function of
the linear lattice. �

Our next step is a helpful reduction process that can be applied both to the
zeta matrix and to the Möbius matrix of a poset or lattice, provided that we are
given a poset or a lattice action. In this case, 8.2.6 implies the following

8.2.14 Corollary Let GX be a poset action and let ω0, . . . , ωl−1 be the orbits of G on the
poset X. Then the values

∑
x∈ω j

ζ(xi, x) and ∑
x∈ω j

ζ(x, xi), i, j ∈ l,

are independent of the chosen representative xi ∈ ωi. �

This result enables us to introduce the Plesken matrices [162]

A∧ := A∧(G) = (a∧ij), and A∨ := A∨(G) = (a∨ij),
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defined by

a∧ij := ∑
x∈ω j

ζ(xi, x) =
∣∣{x ∈ ωj

∣∣ xi = xi ∧ x
}∣∣ =

∣∣{x ∈ ωj
∣∣ xi ≤ x

}∣∣
and

a∨ij := ∑
x∈ω j

ζ(x, xi) =
∣∣{x ∈ ωj | xi = xi ∨ x

}∣∣ | =
∣∣{x ∈ ωj | x ≤ xi

}∣∣ .
We note that these numbers are well-defined because of the 4th item of 8.2.6.
In this language, the 5th item of 8.2.6 can be restated as

|ωi| · a∧ij = |ωj| · a∨ji . 8.2.15

Using topological sorting of the orbits we obtain

8.2.16Corollary For the Plesken matrices A∧(G) and A∨(G) corresponding to a poset
action of a finite group G on a poset X the following is true:

1. If D(G) := diag (|ω0| , . . . , |ωl−1|) denotes the diagonal matrix containing the
lengths of the orbits of G on X on its diagonal, then

A∨(G) = (D(G) · A∧(G) · D(G)−1)�.

2. The diagonal entries of the matrices A∧(G) and A∨(G) are all one.

3. The orbits ωi can be numbered such that A∧(G) is an upper triangular and
A∨(G) a lower triangular matrix. �

8.2.17Example (the linear lattice cont.) The orbits ωi of the general linear group on
the lattice U(k, q) are the sets of subspaces of the same dimension i, 0 ≤ i ≤ k.
Hence

A∨(GLk(q)) =
([

i
j

]
(q)

)
i,j∈k+1

.

Using 8.2.15 we obtain

A∧(GLk(q)) =
([

k − i
j− i

]
(q)

)
i,j∈k+1

.

Of course, things become more complicated if we consider subgroups G of the
general linear group GLk(q). The reason is that the orbits of the general linear
group, which are the sets of subspaces of same dimension, may split into sev-
eral orbits. Nevertheless we consider this more general situation, since we find
that certain submatrices of A∧(G) respectively A∨(G) are crucial for the con-
struction of minihypers respectively linear codes with prescribed minimum
distance.
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The dimension of a subspace is invariant under multiplication by an in-
vertible matrix M ∈ GLk(q). Thus

G\\U(k, q) =
k⋃

s=0

G\\U(k, s, q).

This simple fact causes a block structure of the matrices A∧ := A∧(G) and
A∨ := A∨(G). Namely, if

G\\U(k, s, q) =
{

ω
(s)
0 , . . . , ω

(s)
ls−1

}
is the set of orbits of G on the s-subspaces, we obtain, for Si ∈ ω

(s)
i , the matrix

A∧
s,t(G) =

(
a(∧,s,t)
ij

)
i∈ls, j∈lt

with entries

a(∧,s,t)
ij :=

∣∣∣{T ∈ ω
(t)
j

∣∣ Si = Si ∧ T
}∣∣∣ =

∣∣∣{T ∈ ω
(t)
j

∣∣ Si ≤ T
}∣∣∣ .

In the same vein, we get

A∨
s,t(G) =

(
a(∨,s,t)
ij

)
i∈ls, j∈lt

,

where

a(∨,s,t)
ij :=

∣∣∣{T ∈ ω
(t)
j

∣∣ Si = Si ∨ T
}∣∣∣ =

∣∣∣{T ∈ ω
(t)
j

∣∣ T ≤ Si

}∣∣∣ .

Recall once again that the entries of these matrices only depend on the respec-
tive orbit ω

(s)
i , not on the chosen representative Si.

These two matrices are exactly the submatrices of A∧ respectively A∨ the
rows of which belong to the orbits of G on the s-subspaces and whose columns
belong to the orbits of G on the t-subspaces. If

ω
(0)
0 , ω

(1)
0 , . . . , ω

(1)
l1−1, . . . , ω

(k−1)
0 , . . . , ω

(k−1)
lk−1−1, ω

(k)
0

denotes the ordering of all orbits of G on U (k, q) we obtain the following block
decomposition:

A∧(G) =
(
A∧

s,t(G)
)
s,t∈k+1 and A∨(G) =

(
A∨

s,t(G)
)
s,t∈k+1 ,

where A∧
s,t(G) and A∨

s,t(G) are ls × lt-matrices. �

From 8.2.16 we deduce the relation between the different block matrices:
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8.2.18Corollary If Ds(G) = diag
(
|ω(s)

0 |, . . . , |ω(s)
ls−1|

)
, s ∈ k + 1, then the following is

true:
A∨

s,t(G) =
(
Dt(G) · A∧

t,s(G) · D−1
s (G)

)�
. �

Here are several special cases of these matrices: For t ∈ k + 1 we have

A∧
t,t(G) =

⎛⎜⎝ 1 · · · 0
...

. . .
...

0 · · · 1

⎞⎟⎠ , A∧
t,k(G) =

⎛⎜⎝ 1
...
1

⎞⎟⎠ .

For all s, t ∈ k + 1 with s > t:

A∧
s,t(G) =

⎛⎜⎝ 0 · · · 0
...

...
0 · · · 0

⎞⎟⎠ .

For all t ∈ k + 1:
A∧

0,t(G) =
(
|ω(t)

0 |, . . . , |ω(t)
lt−1|

)
.

The proofs are very easy. We continue with two numerical examples:

8.2.19Example For the parameters k := 8, q := 2 and the general linear group G :=
GLk(q) we obtain the following Plesken matrices:

A∧ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 255 10795 97155 200787 97155 10795 255 1
1 127 2667 11811 11811 2667 127 1

1 63 651 1395 651 63 1
1 31 155 155 31 1

1 15 35 15 1
1 7 7 1

1 3 1
1 1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

A∨ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 3 1
1 7 7 1
1 15 35 15 1
1 31 155 155 31 1
1 63 651 1395 651 63 1
1 127 2667 11811 11811 2667 127 1
1 255 10795 97155 200787 97155 10795 255 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

�
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8.2.20 Example Let k := 3 and q := 2. We consider the action of the complete mono-
mial group M3(2) which is in fact isomorphic to the symmetric group S3, act-
ing by permuting the 3 coordinates:

M3(2) =

⎧⎪⎨⎪⎩
⎛⎜⎝ 1 0 0

0 1 0
0 0 1

⎞⎟⎠ ,

⎛⎜⎝ 0 1 0
0 0 1
1 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 0 1
1 0 0
0 1 0

⎞⎟⎠ ,

⎛⎜⎝ 1 0 0
0 0 1
0 1 0

⎞⎟⎠ ,

⎛⎜⎝ 0 0 1
0 1 0
1 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 1 0
1 0 0
0 0 1

⎞⎟⎠
⎫⎪⎬⎪⎭ .

Figrue 8.2 shows the Hasse diagram of this lattice. The vector space F3
2 corre-

sponds to the vertex on top level. Subspaces in the same orbit are connected
by a horizontal edge. The orbits, shown in the table next to the diagram, are
arranged from the left to the right in each level. �

Let us now restrict attention to the matrix A∨
k−1,1(G), which can be used to

construct minihypers with a prescribed group G ≤ GLk(q) of automorphisms,
as we will see in the following section. Before that, let us mention an efficient
way of computing this matrix.

8.2.21 Lemma For a matrix M ∈ GLk(q) and a subspace S of Fk
q the following equation

holds:
(MS)⊥ = (M�)−1S⊥.

Proof: Since (M�)−1 = (M−1)�, we have

(MS)⊥ =
{

v ∈ Fk
q
∣∣ ∀ w ∈ MS : 〈v, w〉 = 0

}
=

{
v ∈ Fk

q
∣∣ ∀ w ∈ S : 〈v, w · M�〉 = 0

}
=

{
v ∈ Fk

q
∣∣ ∀ w ∈ S : 〈v · M, w〉 = 0

}
=

{
v · M−1 ∈ Fk

q | v ∈ Fk
q : ∀ w ∈ S : 〈v, w〉 = 0

}
=

{
v · M−1 ∈ Fk

q
∣∣ v ∈ S⊥

}
= (M�)−1S⊥. �

8.2.22 Definition (dual group) Let G be a subgroup of GLk(q), then we define G∗ to
be the set of all transposed matrices of G

G∗ := {M� | M ∈ G}
which is called the dual group of G.  
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orbit representative orbit-
length

ω0 {(000)} 1
ω1 〈(001)〉 3
ω2 〈(011)〉 3
ω3 〈(111)〉 1
ω4 〈(001), (010)〉 3
ω5 〈(111), (001)〉 3
ω6 〈(101), (011)〉 1
ω7 F3

2 1
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A∧ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 1 3 3 1 1
1 0 0 2 1 0 1

1 0 1 1 1 1
1 0 3 0 1

1 0 0 1
1 0 1

1 1
1
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A∨ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 0 1
1 0 0 1
1 2 1 0 1
1 1 1 1 0 1
1 0 3 0 0 0 1
1 3 3 1 3 3 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 8.2 Lattice action of M3(2) on F3
2
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The dual group G∗ is isomorphic to G via the mapping

ι : G → G∗ : M �→ (M�)−1

since the equation

((M · N)�)−1 = (M�)−1 · (N�)−1

holds for invertible matrices M and N.

8.2.23 Corollary If P(v) runs through a transversal of the orbits of G∗ on the set of points
U (k, 1, q), then H(v) runs through a transversal of the orbits of G on the set of hyper-
planes U (k, k − 1, q). Furthermore, for the orbit of G on H(v) we have

G(H(v)) =
{
H(w)

∣∣ P(w) ∈ G∗(P(v))
}

. �

This corollary enables us to compute the orbits of a group G ≤ GLk(q)
on the set of hyperplanes U (k, k − 1, q). Instead of computing these orbits we
construct orbit representatives of G∗\\U (k, 1, q) which is much easier since the
representation of points needs one basis vector while hyperplanes are repre-
sented by k − 1 basis vectors.

Exercises

E.8.2.1 Exercise Prove that every finite poset can be sorted topologically.

E.8.2.2 Exercise Prove 8.2.13.

E.8.2.3 Exercise Prove that [
r − s
r − t

]
(q) · A∧

s,r = A∧
s,t · A∧

t,r .

for s, t, r ∈ k + 1 with s ≤ t ≤ r.

E.8.2.4 Exercise Show that we have, for the action of the monomial group,

A∧
t,k(Mk(q)) = A∨

n−t,n−k(Mk(q)), resp. A∨
t,k(Mk(q)) = A∧

n−t,n−k(Mk(q)).
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8.38.3 Prescribing a Group of Automorphisms

As announced we are now going to use the prescription of a group of automor-
phisms for a construction of certain blocking sets respectively minihypers in
projective geometries. Of course, such a prescription is risky since there may
no exist a blocking set with this automorphism group. On the other hand, if
there are such linear codes, then it will pay off since the number of columns
of the incidence matrix Mk,q, which correspond to the points, will reduce to
the number of orbits of the group on the set of 1-subspaces, and the same will
happen to the rows which correspond to the hyperplanes. Quite often, this
data reduction will bring the construction of linear codes within the reach of
current computers.

8.3.1Definition (automorphism of a blocking set) An element M ∈ GLk(q) is called
an automorphism of a t-blocking set B ⊆ PGk−1(q) if M permutes the points of
B, i.e.

MB := {MP | P ∈ B} = B.

Recall from 8.2.8 that the action is MP = MP(v) = P(v · M�).
A group consisting only of automorphisms of B is called a group of auto-

morphisms of B, the maximal group with this property is called the full group
of automorphisms and it is abbreviated by Aut(B).  

The crucial facts for the construction of t-blocking sets with a prescribed
group of automorphisms are the following ones.

8.3.2Remarks Let G be a subgroup of GLk(q).

The group G is a group of automorphism of a t-blocking set B in PGk−1(q)
if and only if B is a union of G-orbits on U(k, 1, q).

The incidence between points P and hyperplanes H is invariant under the
action of G, i.e. if P ⊆ H then MP ⊆ MH for all M ∈ G.

The number m of G-orbits on the set of points U (k, 1, q) is equal to the num-
ber of G-orbits on the set of hyperplanes U (k, k − 1, q).

If {ω0, . . . , ωr−1} respectively {Ω0, . . . , Ωr−1} are the sets of G-orbits on
U (k, 1, q) respectively U (k, k − 1, q) with representatives Pi ∈ ωi respec-
tively Hi ∈ Ωi, then the cardinality |ωj ∩ Hi| = |{P ∈ ωj | P ⊆ Hi}| is
independent of the chosen representative Hi of the orbit Ωi.  

These facts embed the construction problem of blocking sets into the theory
of group actions on lattices. They motivate the reduction of the incidence ma-
trix Mk,q between 1-subspaces and (k − 1)-subspaces to the incidence matrix
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MG
k,q = (mG

ij ) between the G-orbits of 1-subspaces and the G-orbits of (k − 1)-
subspaces:

mG
ij := |ωj ∩ Hi|,

i.e. this matrix is a Plesken matrix:

MG
k,q = A∨

k−1,1(G).8.3.3

The following theorem describes the fundamental construction:

8.3.4 Theorem There is a bijection between the set of all t-blocking sets in PGk−1(q)
with G ≤ GLk(q) as a group of automorphisms and the set of solutions (x

y), with
xi ∈ {0, 1} and yi ∈ {t, . . . , θk−2(q)}, of the following system of linear equations:(

MG
k,q

∣∣ −I
)
·
(

x
y

)
= 0,

where x = (x0, . . . , xr−1)�, y = (y0, . . . , yr−1)� for r = |G\\U(k, 1, q)|. If (x
y)

denotes a solution, then the corresponding t-blocking set B is

B =
⋃

j:xj=1

ωj.

Proof: Let B be the set of all t-blocking sets in PGk−1(q) having G ≤ GLk(q)
as a group of automorphisms and let S be the set of all solutions (x

y) of the
linear system of equations (MG

k,q | −I) · (x
y) = 0 with xj ∈ {0, 1} and yj ∈

{t, . . . , θk−2(q)}. It is easy to see that the mappings

ϕ : S → B :
(

x
y

)
�→ B with B :=

⋃
j:xj=1

ωj

and

ψ : B → S : B �→
(

x
y

)
with xj :=

{
1 if ωj ⊆ B,
0 otherwise,

and yi := |B ∩ Hi|,

are mutually inverse bijections. �

If (x
y) denotes an admissible solution of this linear system of equations and

B =
⋃

j:xj=1 ωj the corresponding t-blocking set in PGk−1(q), then the cardinal-
ity of B is

b = ∑
j:xj=1

|ωj|.

If we add this equation as as further row to the linear system of equations we
obtain the corresponding construction of (b, t)-minihypers in PGk−1(q) with a
prescribed group of automorphisms and hence projective codes.
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8.3.5Corollary The set of all t-blocking sets in PGk−1(q) with cardinality b, having a
subgroup G ≤ GLk(q) as a group of automorphisms can be obtained from the set of
vectors (x

y) with xi ∈ {0, 1} and yi ∈ {t, . . . , θk−2(q)}, i ∈ r := |G\\U (k, 1, q)|,
solving the linear system of equations:

⎛⎜⎜⎜⎜⎜⎝
mG

0,0 . . . mG
0,r−1 −1

...
...

. . .
mG

r−1,0 . . . mG
r−1,r−1 −1

|ω0| . . . |ωr−1| 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
...

xr−1

y0
...

yr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
...
0
b

⎞⎟⎟⎟⎟⎠

If (x
y) denotes such a solution, then the corresponding t-blocking set B with |B| = b is

B =
⋃

j:xj=1

ωj.

This blocking set B is a (b, t)-minihyper in PGk−1(q) if and only if the vector y con-
tains a component which is exactly t, i.e. if and only if there is an index j with yj = t.

�

8.3.6Example We want to construct (6, 1)-blocking sets in PG2(3), i.e. the param-
eters are q = 3, k = 3, t = 1, b = 6, θ2(3) = (33 − 1)/(3 − 1) = 13 and
θ1(3) = (32 − 1)/(3− 1) = 4. The projective geometry PG2(3) consists of the
following 13 points

P0 = P(001),
P1 = P(010),
P2 = P(011),
P3 = P(012),
P4 = P(100),

P5 = P(101),
P6 = P(102),
P7 = P(110),
P8 = P(111),
P9 = P(112),

P10 = P(120),
P11 = P(121),
P12 = P(122).

Hence the incidence matrix M3,3 is of size 13× 13. Now we prescribe the com-
plete monomial group G := M3(3) which yields three orbits on the set of
points U(3, 1, 3):

ω0 = {P0, P1, P4},
ω1 = {P2, P3, P5, P6, P7, P10},
ω2 = {P8, P9, P11, P12}.

In addition we obtain the orbits on the set of hyperplanes U (3, 2, 3):

Ω0 = {P⊥
0 , P⊥

1 , P⊥
4 },

Ω1 = {P⊥
2 , P⊥

3 , P⊥
5 , P⊥

6 , P⊥
7 , P⊥

10},
Ω2 = {P⊥

8 , P⊥
9 , P⊥

11, P
⊥
12}
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and the reduced matrix turns out to be of size 3× 3:

MG
3,3 = A∨

2,1(M3(3)) =

⎛⎜⎝ 2 2 0
1 1 2
0 3 1

⎞⎟⎠ .

This shows that we have obtained a data reduction by the factor 169/9 which
is nearly 20. The corresponding system of Diophantine equations is

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1
x2

y0

y1

y2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
6

⎞⎟⎟⎟⎠

where xi ∈ {0, 1} and yi ∈ {1, 2, 3, 4}. It is easy to see that (0, 1, 0; 2, 1, 3)� is
the only solution of this system which corresponds to a (6, 1)-blocking set

B = ω1 = {P2, P3, P5, P6, P7, P10}. �

8.4 8.4 Linear Codes of Prescribed Type

We have seen that codes with minimum distance d ≤ qk−1 meeting the Gries-
mer-bound are always projective. If such a code is regarded as an n-set in
PGk−1(q), then the complement of that n-set defines a minihyper and vice
versa. The minihyper approach only works for projective codes. It does not
work work general codes, since it is not clear how to define complements of
multisets. In order to avoid such investigations we construct the n-multiset
defining the linear code directly, using the same construction that we used for
minihypers: We solve a linear system of Diophantine equations.

In Section 8.1, we have shown how to construct blocking sets with the aid
of the incidence matrix Mk,q = (mij) by solving a system of Diophantine equa-
tions. The 0-1-vector x corresponds to a selection of points defining the block-
ing set B. The complement of the blocking set B then was a projective code.
After changing some entries in the system of equations, this method allows us
to construct the projective codes directly.

If U (k, 1, q) = {P0, . . . , Pr−1} respectively U(k, k − 1, q) = {H0, . . . , Hr−1},
where r := θk−1(q) again denotes the number of points respectively hyper-
planes, then the solutions (x

y) with xj ∈ {0, 1} and yj ∈ {0, . . . , n − d} of the
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system

⎛⎜⎜⎜⎜⎝
m0,0 . . . m0,r−1 −1

...
...

. . .
mr−1,0 . . . mr−1,r−1 −1

1 . . . 1 0 . . . 0

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
...

xr−1

y0
...

yr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
...
0
n

⎞⎟⎟⎟⎟⎠

define the projective (n, k)-codes over Fq with minimum distance greater than
or equal to d. The first part x of a solution (x

y) defines a selection of points
which determine the columns of a generator matrix: The point Pj is selected if
and only if xj is 1. Now if we permit values greater than 1 for the components
xj, then the vector x describes a multiset X , containing the point Pj exactly xj

times.
Hence the solutions (x

y) with xj ∈ {0, . . . , n} and yj ∈ {0, . . . , n − d} of the
system of Diophantine equations correspond to the nonredundant (n, k)-codes
over Fq with minimum distance greater than or equal to d.

Assume that X is such a multiset corresponding to a solution (x
y) and con-

sider vj ∈ Fk
q\{0} such that Hj = H(vj), then yj = |X ↓ H(vj)|. We obtain the

weight distribution from 8.1.5:

Ai = (q− 1) ·
∣∣{j ∈ r

∣∣ yj = n − i
}∣∣ , for i > 0.

But as with the construction of blocking sets and projective codes the system
of equations is still too big for an efficient computation of solutions. Therefore,
again we reduce the dimension of the matrix of coefficients by prescribing a
group of automorphisms. But first we have to make clear what a prescription
of such a group means in the case of multisets and codes.

If Γ = (γij) denotes a generator matrix of an (n, k)-code C and

X Γ := {{P(γ∗,0), . . . , P(γ∗,n−1)}}

denotes the n-multiset of points in PGk−1(q) defined by the columns of the
generator matrix Γ, then the following holds true for each M ∈ GLk(q):

MX Γ := {{MP(γ∗,0), . . . , MP(γ∗,n−1)}} = X M·Γ.

8.4.1Definition (projective automorphism) A projective automorphism of a generator
matrix Γ of a nonredundant (n, k)-code is an element M ∈ GLk(q) which leaves
the multiset XΓ invariant:

MXΓ = XΓ.
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A group consisting only of projective automorphisms of Γ is called a group
of automorphisms of Γ. The largest group with this property is called the full
group of projective automorphisms and it is abbreviated by Aut(Γ).  

If Γ and Γ′ denote two generator matrices of the same (n, k)-code C, then
there is an element N ∈ GLk(q) such that Γ′ = N · Γ. Now if M is a projective
automorphism of Γ, i.e MXΓ = XΓ, then the conjugate element N · M · N−1

defines a projective automorphism of Γ′, since

N · M · N−1XN·Γ = N · MXN−1·N·Γ = N · MXΓ = NXΓ = XN·Γ,

i.e. the conjugate group

NGN−1 :=
{

N · M · N−1 ∣∣ M ∈ G
}

is a group of projective automorphisms of N · Γ. The set of matrices N · Γ,
where N ∈ GLk(q), contains all the generator matrices of C, and thus all the
conjugates NGN−1 of G are groups of projective automorphisms, so that we
can introduce the following notion of type of a code:

8.4.2 Definition (stabilizer type of a code) Let G be a subgroup of GLk(q). An
(n, k)-code C over Fq has as stabilizer type the conjugacy class

G̃ :=
{

NGN−1 ∣∣ N ∈ GLk(q)
}

if there is a generator matrix Γ of C such that Γ has G as a group of projective
automorphisms.  

This concept allows us to formulate the following important consequence:

8.4.3 Theorem Let G be a subgroup of GLk(q) with orbits ω0, . . . , ωr−1 on the set
U (k, 1, q) of points and orbits Ω0, . . . , Ωr−1 on the set U(k, k − 1, q) of hyperplanes.
Consider representatives Hi ∈ Ωi and put

mG
ij :=

∣∣{P ∈ ωj | P ⊆ Hi
}∣∣ .

There is a bijection between the set of all linear (n, k)-codes over Fq with minimum
distance at least d and type G̃ and the set of vectors (x

y) with xi ∈ {0, . . . , 
n/|ωi|�}
and yi ∈ {0, . . . , n − d}, i ∈ r := |G\\U (k, 1, q)|, solving the linear system of equa-
tions:

⎛⎜⎜⎜⎜⎜⎝
mG

0,0 . . . mG
0,r−1 −1

...
...

. . .
mG

r−1,0 . . . mG
r−1,r−1 −1

|ω0| . . . |ωr−1| 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
...

xr−1

y0
...

yr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
...
0
n

⎞⎟⎟⎟⎟⎠
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If (x
y) is a solution of this system, then the first part x defines an n-multiset X of points

as follows

X =
⋃

i:xi>0

xi⋃
j=1

ωj,

where ∪ means the union of multisets. Representatives of the points of X , written
column by column in a matrix, yield a generator matrix of an (n, k, d, q)-code C.
Furthermore, the weight distribution WC(x, y) = yn + ∑n

i=1 Aixiyn−i is given by

Ai = (q − 1) ∑
j:yj=n−i

|Ωj|. �

8.4.4Example Suppose we are now looking for a linear (14, 3, 9)-code over F3. Such
a code is optimal. First note that a code with these parameters cannot be pro-
jective, since there are exactly 13 points in PG2(3), i.e. at least one point has to
occur twice in a generator matrix of such a code. The parameters q = 3 and
k = 3 are the same as in example 8.3.6 and we also prescribe the group M3(3)
as a group of automorphisms. The orbits on the points and hyperplanes are
also shown in 8.3.6. The corresponding system of equations is

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

y0

y1

y2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
14

⎞⎟⎟⎟⎠ ,

where x0 ∈ {0, 1, 2, 3, 4}, x1 ∈ {0, 1, 2}, x2 ∈ {0, 1, 2, 3} and yi ∈ {0, 1, 2, 3, 4, 5},
see also 7.7.11. A solution of this system is (0, 1, 2; 2, 5, 5)� , which means that
the orbit ω1 occurs once in the corresponding multiset X and the orbit ω2

occurs twice in X . Thus we obtain the following multiset

X = ω1 ∪ ω2 ∪ ω2

= {{P2, P3, P5, P6, P7, P10, P8, P9, P11, P12, P8, P9, P11, P12}}

and finally the generator matrix

Γ =

⎛⎜⎝ 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 1 2 1 1 2 2 1 1 2 2
1 2 1 2 0 0 1 2 1 2 1 2 1 2

⎞⎟⎠
of an optimal (14, 3, 9)-code. For the weight distribution we obtain:

WC(x, y) = y14 + 20x9y5 + 6x12y3,

since A9 = (3− 1) · (|Ω1|+ |Ω2|) = 20 and A12 = (3− 1) · |Ω0| = 6. �
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8.5 8.5 Numerical Results

On the following pages we present new codes obtained with the proposed
method. Applying the modifications to these codes described in the second
chapter all in all we got more than 400 new codes (see [32]).

For each pair of values (q, k) we show a table with parameters n, d, G, r
of 8.4.3. A row in such a table means that we have constructed a code over
Fq with dimension k, with length n, minimum distance d and type G̃. The
number r is the number of orbits of the corresponding group G on the set of
points U(k, 1, q). A bold minimum distance d means, that the (n, k, d)-code is
optimal.

For the finite field Fq = Fpm we use the additive representation, i.e. the ele-
ments of Fpm = Fp/I( f ) which are cosets k0 + k1x + . . . + km−1xm−1 + I( f ) are
coded as numbers k0 + k1p + . . . + km−1pm−1. The corresponding irreducible
polynomials can be found in Table 3.3.

Table 8.1 Linear codes for q = 2 and k = 10

n d G r

177 84 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 0 1 0 0
1 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 1 1
1 1 0 1 0 1 0 0 1 1
1 0 1 1 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 0
1 0 1 0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 51
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Table 8.2 Linear codes for q = 3 and k = 6

n d G r

191 126 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 20

202 132 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 20

219 144 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
1 0 0 0 0 2
0 1 0 0 0 1
0 0 1 0 0 2
0 0 0 1 0 2
0 0 0 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 23

Table 8.3 Linear codes for q = 3 and k = 7

n d G r

202 129 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 1 1 0 1 0
1 0 1 1 2 2 0
1 2 1 1 2 2 0
0 0 2 2 0 0 0
0 2 0 1 0 1 0
0 2 1 2 1 2 0
0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 35

222 144 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0
1 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 2 0
0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 45
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Table 8.4 Linear codes for q = 3 and k = 8

n d G r

64 37 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 72

224 141 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0
0 0 1 0 0 2 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 69

228 144 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0
0 0 1 0 0 2 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 69
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Table 8.5 Linear codes for q = 4 and k = 5

n d G r

56 40 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠〉 69

70 50 〈

⎛⎜⎜⎜⎜⎜⎝
0 1 1 3 3
1 3 0 1 2
0 3 0 1 2
3 2 0 2 2
1 3 3 1 1

⎞⎟⎟⎟⎟⎟⎠〉 33

99 72 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 31

137 100 〈

⎛⎜⎜⎜⎜⎜⎝
2 2 1 0 1
3 3 2 1 3
3 1 3 3 1
0 0 0 2 0
1 3 0 3 2

⎞⎟⎟⎟⎟⎟⎠〉 33

163 120 〈

⎛⎜⎜⎜⎜⎜⎝
3 3 2 2 1
2 1 3 3 2
3 1 2 1 2
2 1 3 3 3
1 0 0 1 3

⎞⎟⎟⎟⎟⎟⎠〉 21

177 130 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25
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Table 8.6 Linear codes for q = 4 and k = 5

n d G r

182 134 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25

189 140 〈

⎛⎜⎜⎜⎜⎜⎝
2 0 2 0 0
3 1 2 3 1
0 0 0 2 2
3 0 0 0 3
3 2 1 0 2

⎞⎟⎟⎟⎟⎟⎠〉 21

194 144 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 2 1 0
3 2 0 2 0
3 0 1 1 0
2 0 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 21

226 168 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25

236 176 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25
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Table 8.7 Linear codes for q = 4 and k = 6

n d G r

102 72 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 0 2
0 2 0 0 0 0
0 0 0 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 0
2 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 2
0 0 0 2 0 0
0 0 0 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

108 76 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

134 96 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

140 100 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

146 104 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51
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Table 8.8 Linear codes for q = 4 and k = 6

n d G r

161 115 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 3 0
0 0 0 3 0 0
3 0 0 0 0 0
0 0 0 0 0 3
0 0 3 0 0 0
0 3 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

165 118 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

175 126 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 3 0
2 3 3 0 0 3
3 2 2 1 2 0
3 3 1 1 1 0
1 0 3 3 0 1
0 1 1 3 3 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 17

180 130 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

185 134 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51
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Table 8.9 Linear codes for q = 4 and k = 6

n d G r

191 138 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

195 141 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

201 145 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

205 148 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

210 152 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51
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Table 8.10 Linear codes for q = 4 and k = 6

n d G r

220 160 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

226 163 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

232 168 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

237 172 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

242 176 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51
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Table 8.11 Linear codes for q = 4 and k = 7

n d G r

126 88 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 1 2 3 3
2 2 1 2 2 3 2
0 0 1 0 3 1 1
2 2 3 0 3 1 0
1 3 1 0 3 1 2
1 1 1 0 3 3 2
2 3 0 3 0 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 89

158 110 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0
0 0 1 0 0 0 1
0 0 1 1 0 0 0
1 0 0 0 0 0 0
1 1 0 1 0 0 0
1 0 1 0 1 1 1
0 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 181

161 112 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0
0 0 1 0 0 0 1
0 0 1 1 0 0 0
1 0 0 0 0 0 0
1 1 0 1 0 0 0
1 0 1 0 1 1 1
0 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 181

189 132 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 1 3 2 1
1 3 3 0 0 2 2
2 2 3 0 2 3 1
0 3 2 2 2 2 1
2 0 0 0 0 3 2
3 2 0 0 1 3 1
2 2 0 1 0 3 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 89
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Table 8.12 Linear codes for q = 5 and k = 5

n d G r

53 40 〈

⎛⎜⎜⎜⎜⎜⎝
4 1 2 3 3
2 2 2 4 0
1 3 4 1 3
3 2 0 4 0
4 0 0 4 0

⎞⎟⎟⎟⎟⎟⎠〉 61

92 70 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 2
1 0 0 0 2
0 1 0 0 1
0 0 1 0 4
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠〉 45

100 76 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 2
1 0 0 0 2
0 1 0 0 1
0 0 1 0 4
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠〉 45

110 85 〈

⎛⎜⎜⎜⎜⎜⎝
1 2 3 4 4
3 1 1 4 4
2 0 3 3 2
3 4 3 4 4
4 3 1 1 0

⎞⎟⎟⎟⎟⎟⎠〉 71
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Table 8.13 Linear codes for q = 5 and k = 6

n d G r

50 34 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 2 0 0 0
0 4 2 0 0 0
0 2 3 0 0 0
0 0 0 1 3 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 173

70 50 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 1 0
0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 35

73 52 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 110

Table 8.14 Linear code for q = 7 and k = 4 with generator matrix

Γ :=

⎛⎜⎜⎜⎝
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 2 3 3 6 0 0 2 4 4 6 0 2 4 5 5 6 1 1 2 5 5 6 2
0 3 6 5 0 6 0 1 2 2 1 5 6 4 4 6 1 5 2 4 5 3 3 6 4 6
1 6 1 5 6 2 1 4 1 2 4 4 5 4 6 1 1 5 1 2 6 6 4 1 4 0

⎞⎟⎟⎟⎠
n d G r

26 20 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 3 0
0 1 1 0
0 0 0 1

⎞⎟⎟⎟⎠〉 74
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Table 8.15 Linear codes for q = 7 and k = 5

n d G r

28 20 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 6 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 147

34 25 〈

⎛⎜⎜⎜⎜⎜⎝
5 3 0 0 0
2 5 0 0 0
0 0 3 0 0
0 0 0 0 1
0 0 0 5 0

⎞⎟⎟⎟⎟⎟⎠〉 189

48 36 〈

⎛⎜⎜⎜⎜⎜⎝
6 6 2 4 0
4 4 4 4 0
4 6 2 0 0
1 0 4 5 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 131
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Table 8.16 Linear codes for q = 8 and k = 4

n d G r

85 72 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 7 0
0 1 7 0
0 0 0 1

⎞⎟⎟⎟⎠〉 73

97 82 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠〉 57

103 88 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠〉 57

108 92 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠〉 57

117 100 〈

⎛⎜⎜⎜⎝
0 5 7 1
3 4 0 3
2 2 4 7
1 3 6 1

⎞⎟⎟⎟⎠〉 45
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Table 8.17 Linear codes for q = 8 and k = 5

n d G r

79 63 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
1 0 0 1 0
0 1 0 4 0
0 0 1 6 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 121

98 80 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 61

100 81 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 61

103 84 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 61

119 98 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
1 0 0 1 0
0 1 0 4 0
0 0 1 6 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 121

130 107 〈

⎛⎜⎜⎜⎜⎜⎝
4 2 0 0 0
5 6 0 0 0
0 0 1 2 0
0 0 1 4 0
0 0 0 0 7

⎞⎟⎟⎟⎟⎟⎠〉 81
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Table 8.18 Linear code for q = 9 and k = 3 with generator matrix

Γ :=

⎛⎜⎝ 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 2 2 5 7 5 7 5 7 6 8
1 1 6 6 5 7 8 5 7 0 0 1 7 8 6 1 8

⎞⎟⎠
n d G r

17 14 〈

⎛⎜⎝ 0 1 0
1 0 0
0 0 1

⎞⎟⎠〉 51

Table 8.19 Linear codes for q = 9 and k = 4

n d G r

41 34 〈

⎛⎜⎜⎜⎝
8 4 1 8
5 8 7 8
7 3 1 2
0 2 1 5

⎞⎟⎟⎟⎠〉 20

102 88 〈

⎛⎜⎜⎜⎝
1 6 0 0
8 6 0 0
0 0 0 6
0 0 5 0

⎞⎟⎟⎟⎠〉 46

123 106 〈

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 2
0 1 0 0
0 0 1 7

⎞⎟⎟⎟⎠〉 20

130 112 〈

⎛⎜⎜⎜⎝
0 6 0 0
3 7 1 0
4 1 3 0
0 0 0 1

⎞⎟⎟⎟⎠〉 50




