
7Chapter 7

Solving Systems of Diophantine Linear
Equations

7

7 Solving Systems of Diophantine Linear Equations

7.1 Lattices .. 565

7.2 Diophantine Equations and Lattices 568

7.3 Basic Theory of Lattices 574

7.4 Gram–Schmidt Orthogonalization 577

7.5 Bounds on Lattice Vectors..................................... 579

7.6 Lattice Basis Reduction .. 586

7.7 Lattice Point Enumeration..................................... 598

7.8 Computing the Minimum Distance of Linear Codes 605

7 Solving Systems of Diophantine
Linear Equations

In this chapter we consider systems of linear equations whose solutions are
restricted to the integers. Linear equations of this form are called Diophantine
linear equations. In Chapter 8 we will reduce the problem of finding linear
codes with prescribed minimum distance to solving systems of Diophantine
linear equations. If we try to solve these systems it is crucial to have fast meth-
ods at hand. Here, we study one possible approach based on so called lattice
basis reduction. In Section 1.8 we saw an algorithm for determining the mini-
mum distance of a linear code. Section 7.8 contains another minimum distance
algorithm, also based on lattice basis reduction.

With Gaussian elimination we are able to solve linear systems A · x = d
of equations for vectors x ∈ Rn easily1. The same algorithm works also if we
restrict to x ∈ Qn. Then, since we can multiply the whole system with the
least common multiple of all denominators, we can also solve these systems
over Z. Unfortunately, the size of the denominators can grow very rapidly. So,
Gaussian Elimination does not longer run in polynomial time. But there exist
algorithms to compute the Hermitian normal form (HNF) efficiently, i.e. in
polynomial time, see for example [39]. Thus, with the help of the HNF we can
solve systems of Diophantine linear equations easily.

The situation changes when we have to solve systems of linear inequali-
ties over the integers or, equivalently, if we have to find nonnegative integral
solutions of systems of linear equations. Equally hard problems arise if the
variables xi are restricted to integers from intervals li ≤ xi ≤ ri for i ∈ n.
The problem to decide if there is such a vector x is known to be NP-complete.
At present, no algorithm is known which decides in a number of steps that is
polynomial in the size of the input for this problem if there is a solution or not.
Here, we restrict our attention to Diophantine linear equations of the following
form.

A · x = d, l ≤ x ≤ r,

for given A ∈ Zm×n, d ∈ Zm, l, r ∈ Qn, where l ≤ x ≤ r means li ≤ xi ≤ ri, for
each i ∈ n. We ask for solutions x ∈ Zn with l ≤ x ≤ r.

7.0.1Example In Chapter 8, Example 8.4.4, the following system of Diophantine
linear equations occurs during the construction of linear codes with prescribed

1for technical reasons we use the column convention in the present chapter

564 7. Solving Systems of Diophantine Linear Equations

minimum distance:

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
14

⎞⎟⎟⎟⎠ ,

where x0 ∈ {0, 1, 2, 3, 4}, x1 ∈ {0, 1, 2}, x2 ∈ {0, 1, 2, 3} and xi ∈ {0, 1, 2, 3, 4, 5}
for i ∈ {3, 4, 5}. It is easy to check that x = (0, 1, 2, 2, 5, 5)� is an integer
solution of the system of equations which also satisfies the additional lower
and upper bounds. �

Several equally hard variations of this problem exist. The knapsack problem
and the subset sum problem are just two instances.

The knapsack problem: Given nonnegative integers ci, wi, i ∈ n, and k, find a
subset S ⊆ {0, 1, . . . , n − 1} such that ∑j∈S wj ≤ k and ∑j∈S cj is maximal.

The subset sum problem: Given nonnegative numbers wi, i ∈ n, and k, find a
subset S ⊆ {0, 1, . . . , n − 1} such that ∑j∈S wj = k.

7.0.2 Example Let w = (31, 41, 59, 26, 53, 58, 97, 93, 23, 84, 62), k = 314 and c =
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The subset sum problem asks for subsets S ⊆ {0, 1, 2, . . . , 10} such that
∑i∈S wi = 314. There are three solutions: {3, 4, 5, 7, 9}, {0, 3, 4, 5, 9, 10}, and
{0, 2, 3, 6, 8, 9}.

In the knapsack problem, we ask for subsets S ⊆ {0, 1, . . . , 10} of maximal
size subject to the condition that ∑i∈S wi ≤ 314. Here, the solution is S =
{0, 2, 3, 4, 5, 8, 10}, ∑i∈S ci = 7 and ∑i∈S wi = 312 ≤ 314. �

As we will see in Section 7.8, the problem of computing the minimum distance
of certain linear codes can be reduced to a problem of solving a Diophantine
system of linear equations. Also, in Chapter 8, we will use systems of Dio-
phantine linear equations to construct optimal codes. Many further objects
from Discrete Mathematics can be constructed in a similar fashion. In fact,
Combinatorial Designs, Steiner systems and covering codes have all been con-
structed in a similar way by means of Diophantine equations.

Many algorithms for solving these problems have been proposed. Some
of them rely on relaxation techniques and use Linear Programming. Other
approaches use backtracking. The approach used here is based on lattices2 and

2in this chapter lattices are geometrical objects, different from the definition in 3.2.24

7.1 Lattices 565

on a very important method invented by Lenstra, Lenstra and Lovász [125] –
the celebrated LLL-algorithm. This method has been applied successfully to
break certain cryptosystems based on the knapsack problem [119].

The first step is to transform the problem of finding the solutions of linear
Diophantine equation systems into a problem involving lattices. A lattice is
just the set of integer linear combinations of a given set of linearly indepen-
dent vectors in a real vector space. In this setting, the problem can be reduced
to the question of finding sufficiently short vectors in a suitable lattice. Here,
short is usually meant in connection to a norm, like the �∞-norm or the Eu-
clidean norm. To find these short vectors in polynomial time, we apply the
LLL-algorithm. In a second step, we use exhaustive enumeration to find all
vectors which are solutions of our original problem. This last step needs expo-
nential time.

With this approach many finite incidence structures could be constructed,
see [15], [16], [25], [28], [29], [199] and the literature cited there.

7.17.1 Lattices

Let us recall briefly the basic definitions and fundamental theorems of the the-
ory of lattice. For a thorough introduction into the subject we refer the reader
to [77], for instance.

As usual, let Rn denote the real Euclidean n-dimensional space. Its ele-
ments v ∈ Rn are written as column vectors v = (v0, v1, . . . , vn−1)�.

For q ∈ R, q ≥ 1, we define the �q-norm by

‖−‖q : Rn → R : v �→
(

∑
i∈n

|vi|q
)1/q

,

and the �∞-norm as follows:

‖−‖∞ : Rn → R : v �→ max
i∈n

|vi| .

For m ∈ N, the vectors b(0), b(1), . . . , b(m−1) ∈ Rn span a subspace of Rn

which we denote by

〈b(0), b(1), . . . , b(m−1)〉 :=
{

∑
i∈m

xib
(i) ∣∣ xi ∈ R , i ∈ m

}
.

The notation for a subspace 〈b(0), b(1), . . . , b(m−1)〉 is not to be confused with
the standard bilinear form

〈v, w〉 = ∑
i∈n

vi · wi

566 7. Solving Systems of Diophantine Linear Equations

for v, w ∈ Rn. But the meaning should be clear from the context.
The basic notions are the following ones:

7.1.1 Definition (lattice) Let b(0), b(1), . . . , b(m−1) be m linearly independent vectors
in Rn.

The set

L(b(0), b(1), . . . , b(m−1)) :=

{
∑
i∈m

ui · b(i)
∣∣∣ ui ∈ Z, i ∈ m

}
⊂ Rn

is called the lattice (of vectors) with basis b(0), b(1), . . . , b(m−1).

The rank m of a lattice L with basis b(0), b(1), . . . , b(m−1) is the dimension of
the R-subspace 〈b(0), b(1), . . . , b(m−1)〉 which is spanned by the basis.

We will write
B :=

(
b(0) | . . . | b(m−1))

for the n × m-matrix whose columns are the vectors b(0), b(1), . . . , b(m−1). If
L = L(b(0), b(1), . . . , b(m−1)), then B is called a generator matrix of L.

0

b(1)

b(0)

Fig. 7.1 A rank 2 lattice spanned by b(0) and b(1)

It is well known [77, p. 18] that a lattice of vectors in Rn is a discrete additive
subgroup of Rn.

For a lattice L ⊂ Rn, the most important (and difficult) algorithmic prob-
lems can be described as follows.

7.1.2 Algorithmic problems for a given lattice L

The shortest vector problem (SVP): Find an �q-shortest vector in L, i.e. find an
element w in L such that

‖w‖q = min{‖w′‖q | w′ ∈ L \ {0}}.

7.1 Lattices 567

This question is most interesting for the Euclidean norm, the �1-norm, and
the �∞-norm.

The closest vector problem (CVP): Given a vector v ∈ Rn find a lattice vector
w which is closest to v in the �q-norm, i.e. such that

‖v −w‖q = min{‖v − w′‖q | w′ ∈ L} .

The lattice basis reduction: Given a basis b(0), b(1), . . . , b(m−1) of the lattice
L compute a new basis b′(0), b′(1), . . . , b′(m−1) of L consisting of “shortest”
vectors. Here, the meaning of short will have to be made precise. �

b(0) ′

b(1) ′

0

b(1)

b(0)

Fig. 7.2 Two different bases for b(0), b(1) and b(0) ′, b(1)′ of the same lattice

For an overview on the algorithmic complexity of the above problems we refer
to [147] and [199] and the literature cited there.

Concerning the last of the mentioned problems, we remark that the prob-
lem of finding a basis consisting of shortest vectors is not exactly defined pro-
vided the dimension is at least three. In fact, many different versions of the
concept of a shortest basis exist. Two classical concepts are the reduced bases
in the sense of Minkowski [150] and the reduced quadratic forms in the sense
of Korkine and Zolotarev [113]. The latter aims at minimizing the orthogonal-
ity defect of a lattice basis, a concept which we will encounter in Section 7.5.
Recently, one further variant has gained interest. In this, one finds a lattice
basis minimizing the maximal length of any of its members, see [2], [23].

The above reduction concepts rely on the computation of shortest lattice
vectors in sublattices and related lattices. Therefore, the problem of computing
a reduced lattice basis in the sense of Minkowski or Korkine and Zolotarev is
at least as hard as the shortest vector problem.

568 7. Solving Systems of Diophantine Linear Equations

7.2 7.2 Diophantine Equations and Lattices

Subset sum problems. Lagarias and Odlyzko [119] have introduced the tech-
niques of lattices and lattice basis reduction to the solution of subset sum
problems. Recall that these problems can be written as finding all solutions
x ∈ {0, 1}n of the system

A · x = d7.2.1

where A is a 1× n matrix over the integers and d is some integer. In fact, they
introduced the lattice whose generator matrix is the (m + n)× (n + 1)-matrix

B :=

⎛⎜⎜⎜⎜⎝
N · (−d) N · A

0
... In
0

⎞⎟⎟⎟⎟⎠7.2.2

where In denotes the identity matrix in Zn×n and N is a large integer con-
stant. Let us call this lattice the Lagarias-Odlyzko lattice. It turns out that the
solutions x of 7.2.1 are in bijection to certain short elements of the Lagarias-
Odlyzko lattice. Namely, if v = B · w is an element of the lattice which is zero
in the first m entries and where w is a {0, 1}-vector whose first component is
equal to one, then (w1, . . . , wn)� is a solution of the Diophantine system 7.2.1
and vice-versa. Moreover, the first m components of v are zero, and hence no
entry of v is a nonzero multiple of the large integer constant N. This means
that v is short in the Lagarias-Odlyzko lattice. Therefore, we see that solutions
of 7.2.1 are short vectors in the Lagarias-Odlyzko lattice. This means that it is
useful to attack this kind of Diophantine problem with the method of finding
short vectors in lattices. We illustrate this by an example.

7.2.3 Example Consider the subset sum problem of 7.0.2. Setting N = 100, the
generator matrix B of 7.2.2 of the Lagarias-Odlyzko lattice is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−31400 3100 4100 5900 2600 5300 5800 9700 9300 2300 8400 6200
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Multiplying this matrix by the vector w = (1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0)� gives
the vector v = (0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0)� . Therefore, (w1, w2, . . . , wn)� is

7.2 Diophantine Equations and Lattices 569

a solution to the subset sum problem: We have wi = 1 if and only if i ∈
S = {4, 5, 6, 8, 10}. This set S solves the subset sum problem 7.0.2. Note that
‖v‖2 =

√
5 and ‖v‖∞ = 1.

Multiplying the matrix by the vector w = (1, 1, 0, 1, 0, 2, 1, 1,−1, 1, 1, 0)�

gives v = (36500, 1, 0, 1, 0, 2, 1, 1,−1, 1, 1, 0). This means that (w1, w2, . . . , wn)�

does not solve the subset sum problem: The entries in (w1, w2, . . . , wn)� are not
all elements of {0, 1}. Furthermore, the linear equation A · (w1, . . . , wn)� = d
is violated. We note that ‖v‖2 =

√
1 332 250 011 and ‖v‖∞ = 36 500. �

Below, we will employ the following strategy. We will start with the lattice
basis which is given by the columns of the generator matrix B. We will then
compute another basis for the same lattice which consists of short vectors. This
transformation from one lattice basis to another is known as lattice basis reduc-
tion. A very important algorithm to achieve this transformation is the LLL-
algorithm which we will discuss in Section 7.6.

In the context of the subset sum problem and the Lagarias-Odlyzko lattice,
one hopes that through the process of lattice basis reduction one will even-
tually arrive at vectors v ∈ Zn+m which are of the form vi = 0 for i ∈ m
and either vi ∈ {0, 1} for m ≤ i < m + n or, alternatively, vi ∈ {0,−1} for
m ≤ i < m + n. It is proved in [119] that for a large class of subset sum prob-
lems a solution will correspond to the shortest vector of the lattice 7.2.2.

The Euclidean norm of such vectors is bounded above by
√

n. But not
every short vector is a solution. Since the Euclidean distance of a vector does
not distinguish between entries +1 and −1, it may happen that short vectors
are computed whose entries are 0 or±1. In fact, the “mixed sign case” happens
frequently among the vectors v ∈ L with ‖v‖∞ = 1.

r =
√

n r = 1
2
√

n

Fig. 7.3 Solution vectors for the lattice 7.2.2 (left) and for the lattice 7.2.4 (right) without the
first component which is equal to zero

570 7. Solving Systems of Diophantine Linear Equations

We can do better by appealing to the closest vector problem. The goal
is to eliminate entries in the short lattice vectors which are −1. To do this,
we introduce the vector z = (0, 1

2 , 1
2 , . . . , 1

2)�, which is not contained in the
Lagarias-Odlyzko lattice. We are now looking for the vectors closest to z in the
Lagarias-Odlyzko lattice. In fact, since we are looking for {0, 1}-vectors, we
may restrict our search to lattice vectors v at distance

‖v − z‖ =
√

∑
i∈n

(vi − zi)2 =
√

∑
i∈n

1/4 = 1/2
√

n.

The situation for n = 3 is illustrated in Fig. 7.3. The first component of the
lattice vectors is not shown as it is zero. The black dots indicate lattice points,
leading to solutions, which are either short (left picture) or close to z (right
picture). To solve the closest vector type problem, we use the augmented and
embedded Lagarias-Odlyzko lattice, generated by the (m + n + 1) × (n + 1)-
matrix

B :=

⎛⎜⎜⎜⎜⎜⎜⎝
−N · d N · A
−1/2

... In
−1/2

1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ .7.2.4

This means, we add a zero component to the original Lagarias-Odlyzko lattice
and add the new basis vector (−Nd,− 1

2 , . . . ,− 1
2 , 1)�. The last component en-

sures that the columns of 7.2.4 are linearly independent. Also, it serves as a
bookkeeping device. Namely, it keeps track of whether the new basis vector
was used in the expression of a lattice element in terms of the new basis. As
before, N ∈ N is a large integer constant. The solutions of the subset sum
problem now correspond to elements v = B · w ∈ Zm+n+1 of the new lat-
tice 7.2.4 where vi = 0 for i ∈ m, vi ∈ {−1/2, 1/2} for m ≤ i < n + m and
|vn+m| = |w0| = 1. For these vectors the maximum norm is equal to 1, and all
lattice vectors which are not solutions of the subset sum problem have maxi-
mum norm greater than 1.

7.2.5 Example Consider again the subset sum problem from 7.0.2 and put N = 100.
The extended Lagarias-Odlyzko lattice is generated by the matrix

7.2 Diophantine Equations and Lattices 571

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−31400 3100 4100 5900 2600 5300 5800 9700 9300 2300 8400 6200
−1 2 0 0 0 0 0 0 0 0 0 0
−1 0 2 0 0 0 0 0 0 0 0 0
−1 0 0 2 0 0 0 0 0 0 0 0
−1 0 0 0 2 0 0 0 0 0 0 0
−1 0 0 0 0 2 0 0 0 0 0 0
−1 0 0 0 0 0 2 0 0 0 0 0
−1 0 0 0 0 0 0 2 0 0 0 0
−1 0 0 0 0 0 0 0 2 0 0 0
−1 0 0 0 0 0 0 0 0 2 0 0
−1 0 0 0 0 0 0 0 0 0 2 0
−1 0 0 0 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that we have scaled all rows except for the first and the last one by a
factor of 2 to clear denominators.

Multiplying this matrix from the right by the same vector w = (1, 0, 0, 0, 1,
1, 1, 0, 1, 0, 1, 0)� as in Example 7.2.3 produces the short lattice vector v =
(0,−1, −1,−1, 1, 1, 1,−1, 1,−1, 1,−1, 1)� . Comparing this vector to the vec-
tor v of Example 7.2.3 shows that apart from the first entry we have replaced
all zeros by −1s. Also, we have left in place the 1s and we have added a final
entry. Furthermore, note that ‖v‖2 =

√
12 and ‖v‖∞ = 1. If the last compo-

nent of v is equal to 1, then vi = −1 corresponds to i �∈ S, vi = 1 corresponds
to i ∈ S. If the last component of v is equal to −1 it is the other way round. �

As shown in [43], this improvement enlarges the class of subset sum prob-
lems whose solutions are shortest vectors in the original Lagarias-Odlyzko lat-
tice 7.2.4 enormously.

Systems of Diophantine linear equations. In order to solve the problem
A · x = d for A ∈ Qm×n and d ∈ Qm with l ≤ x ≤ r for arbitrary bounds
l, r ∈ Qn, our algorithm proceeds in two steps.

First, we compute a basis consisting of integer vectors b(0), b(1), . . ., b(n−m)

of the augmented system 7.2.6⎛⎜⎝ −d A

⎞⎟⎠
︸ ︷︷ ︸

=: A′

·

⎛⎜⎝ x0
...

xn

⎞⎟⎠ = 0 . 7.2.6

In this system, the negative of the right hand side has been added to the coef-
ficient matrix A on the left, to form the extended coefficient matrix A′. Corre-
spondingly, a component x0 has been added to the vector x.

Since we can assume that the augmented matrix A′ has full row-rank m, the
kernel of the system 7.2.6 has dimension n − m + 1. Of course, only solutions

572 7. Solving Systems of Diophantine Linear Equations

of 7.2.6 with x0 = 1 are interesting. Several polynomial-time algorithms are
known to compute the integer basis of this kernel in Zn+1, as described in [39].
Since it is desirable for the second step of our algorithm to have a basis b(0),
b(1), . . ., b(n−m) ∈ Zn+1 consisting of short vectors, algorithms based on lattice
basis reduction are preferred [39], [198].

In order to handle the lower bounds, we reformulate the problem in such
a way that the lower bounds on the variables are zero. Substituting x := x − l,
d := d− A · l and r := r − l yields the equivalent problem

A · x = d and 0 ≤ x ≤ r.

Here, x is a vector in Zn such that 0 ≤ xi ≤ ri. This shows that we may assume
that the lower bound l is zero.

Furthermore, we assume that ri > 0 for i ∈ n. Otherwise, if there exists an
i ∈ n such that ri = 0 or ri < 0, it follows that xi = 0 or xi < 0, respectively.
In the first case the variable xi can be removed from the system of Diophan-
tine linear equations, whereas in the second case we see immediately that the
system has no solution.

For the above system 7.2.6 with lower bound 0 and arbitrary upper bounds
r ∈ Zn on the variables we introduce a modified version of the lattice 7.2.4. The
basis of the new lattice consists of the columns of the following (m + n + 1) ×
(n + 1)-matrix: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−N · d N · A
−rmax 2c0 0 · · · 0
−rmax 0 2c1 · · · 0

...
...

. . .
...

−rmax 0 · · · · · · 2cn−1

rmax 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.7.2.7

The entries rmax and ci are defined by

rmax = lcm{r0, . . . , rn−1} and ci =
rmax

ri
, i ∈ n ,

and, as usual, N ∈ N is a large integer constant. In 7.6.17, we will compute a
lower bound on the size of N.

After applying lattice basis reduction (see Section 7.6), the first n − m + 1
vectors of a reduced basis will have only zeros in the first m entries, provided
N is large enough. These are relatively short vectors. The remaining m vectors
contain at least one nonzero entry in the first m entries. Since entries in the
first m rows are multiples of the large integer constant N, these vectors are
long vectors. Thus, the new generator matrix of the lattice spanned by the

7.2 Diophantine Equations and Lattices 573

columns of 7.2.7 has the following form:

m rows

⎧⎪⎨⎪⎩
n + 1 rows

{

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ∗ · · · ∗
...

...
...

...
0 · · · 0 ∗ · · · ∗

∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸
n − m + 1 columns

︸ ︷︷ ︸
m columns

⎫⎪⎬⎪⎭ entries are
multiples of N

7.2.8

The last m vectors cannot contribute to a solution of our original problem.
Hence they can be removed from the basis. From the remaining n − m + 1
vectors we can delete the first m entries which are zero. This gives a basis b(0),
b(1), . . ., b(n−m) ∈ Zn+1 of the kernel of 7.2.6.

7.2.9Theorem With the above definitions, let

v = u0 · b(0) + u1 · b(1) + . . . + un−m · b(n−m) 7.2.10

be an integer linear combination of the basis vectors with vn = rmax. The vector v is
a solution of the system A · x = d, 0 ≤ x ≤ r, if and only if

v ∈ Zn+1 where − rmax ≤ vi ≤ rmax, i ∈ n . 7.2.11

Proof: Let v = u0 · b(0) + u1 · b(1) + . . . + un−m · b(n−m) be an integer linear
combination of the basis vectors with vn = rmax. By looking at the initial
basis 7.2.7 of the lattice we see that for every i ∈ n there is an integer yi such
that vi = −rmax + 2yici.

By using the definitions of rmax and ci it is easy to verify that −rmax ≤ vi ≤
rmax is equivalent to 0 ≤ yi ≤ ri, i ∈ n. �

In a second step, the algorithm will search in the lattice of integer linear
combinations of the basis vectors b(0), b(1), . . . , b(n−m) ∈ Zn+1. In this step, all
lattice vectors which correspond to solutions of the original problem A · x = d
are enumerated. Only solutions to 7.2.6 with x0 = 1 are enumerated.

574 7. Solving Systems of Diophantine Linear Equations

7.3 7.3 Basic Theory of Lattices

Let L ⊂ Rn be a lattice with basis b(0), b(1), . . . , b(m−1). We want to estimate
how short the vectors of a lattice basis for L can be. For this purpose, we
introduce the determinant of a lattice. We will see that the determinant has a
geometrical interpretation.

7.3.1 Definition If a set S ⊂ Rn is measurable in the sense of Lebesgue, then its
Lebesgue measure is called the volume of S and denoted by VolS.

7.3.2 Definition (fundamental parallelotope) Let L be a lattice with basis b(0), b(1),
. . . , b(m−1). The set

FB :=
{

∑
i∈m

xib
(i) | 0 ≤ xi < 1, i ∈ m

}
is the fundamental parallelotope of the lattice L with respect to the basis b(0), b(1),
. . . , b(m−1).
If m = n, i.e. if the lattice has full rank, the volume of the fundamental par-
allelotope FB is equal to the absolute value of the determinant of the matrix
B = (b(0) | . . . | b(n−1)). If m < n, i.e. if the lattice is embedded in a space
of higher dimension, the volume of the fundamental parallelotope in Rn is
0. Nevertheless, we will need the volume of the lattice L as a subset of the
m-dimensional space 〈b(0), b(1), . . . , b(m−1)〉 ⊂ Rn. For this we introduce the
Gram matrix G(B) of the basis B.

7.3.3 Definition (Gram matrix, determinant) Let B = (b(0) | . . . | b(m−1)) be a
generator matrix of a lattice L with basis b(0), . . . , b(m−1).

The matrix
G(B) =

(
〈b(i), b(j)〉

)
i,j∈m ∈ Rm×m

is called Gram-matrix G(B) of the lattice basis.

The determinant of the lattice L with respect to the generator matrix B is

det(L) =
√

det(G(B)) .

It is easy to see that det(L) is well-defined and that it is equal to the volume of
the fundamental parallelotope FB in the space 〈b(0), b(1), . . . , b(m−1)〉.

It is well-known that the volume of the fundamental parallelotope of a
lattice does not depend on the choice of the basis (cf. Fig. 7.2). Let m ∈ Z,
m > 0. A matrix M ∈ Zm×m with determinant ±1 is called unimodular.

7.3 Basic Theory of Lattices 575

7.3.4Lemma The volume of the fundamental parallelotope of a lattice L ⊂ Rn of rank m
is equal for all bases b(0), b(1), . . . , b(m−1) of L.

Proof: Let A =
(
a(0) | a(1) | . . . | a(m−1)) and B =

(
b(0) | b(1) | . . . |

b(m−1)) be two generator matrices of the lattice L with fundamental paral-
lelotopes FA and FB, respectively. Thus, we can express each basis vector
in {b(0), b(1), . . . , b(m−1)} as an integer linear combination of basis vectors in
{a(0), a(1), . . . , a(m−1)}, and vice versa. That is, there exists a matrix M ∈ Rm×m

which describes the change from generator matrix A to generator matrix B
with B = A · M. The change from generator matrix B to A can then be ex-
pressed by A = B · M−1.

Since every lattice vector is an integer linear combination of basis vectors,
the entries of the matrix M as well as the entries of the matrix M−1 are integers.
Thus, also det(M) and det(M)−1 = det(M−1) are integers. Since det(M) �= 0,
the only possibility is that det(M) = ±1. For the volume of the fundamental
parallelotopes this gives

VolFB =
√

det(G(B)) =
√

det(M)2 · det(G(A)) = VolFA . �

Let b(0), b(1), . . . , b(m−1) be a basis of a lattice L ⊂ Rn of rank m. From the above
proof we see that the columns of the matrix M ·

(
b(0) | b(1) | . . . | b(m−1))

form another basis of L provided that M ∈ Zm×m is a unimodular matrix.
This means that there is a one-to-one correspondence between the unimodular
matrices and the different bases of L.

A different kind of invariant of a lattice are the successive minima of Min-
kowski [150]. Again, this invariant does not depend on the choice of the basis.

7.3.5Definition (successive minima) Let L ⊂ Rn be a lattice of rank m. For an
integer i ∈ m let λi(L) be the least positive real number for which there exist
i + 1 linearly independent lattice vectors v ∈ L \ {0} with ‖v‖2 ≤ λi(L). The
numbers λ0(L), λ1(L), . . . , λm−1(L) are the successive minima of the lattice L.

From the definition it follows that

λ0(L) ≤ λ1(L) ≤ . . . ≤ λm−1(L) .

Linearly independent vectors v(i) ∈ L with ‖v(i)‖ = λi(L) for i ∈ m do not
necessarily form a basis of the lattice. For example, the lattice

L =
{

u0e(0) + u1e(1) + . . . + un−1e(n−1) + un(1
2 , . . . , 1

2)�
∣∣ u0, u1, . . . , un ∈ Z

}

576 7. Solving Systems of Diophantine Linear Equations

in Qn contains the vectors e(0), e(1), . . . , e(n−1). Therefore, the successive min-
ima of L are

λ0(L) = λ1(L) = . . . = λn−1(L) = 1 .

These successive minima are unique since the vectors e(i), i ∈ n, are the only
vectors in L with Euclidean norm equal to one. But the vectors e(0), e(1), . . . ,
e(n−1) do not form a basis of L.

The connection to quadratic forms. The arithmetic theory of lattices is closely
related to the theory of positive definite quadratic forms whose long history
dates back to Lagrange [120], Legendre [122], Gauss [66], Hermite [86] and
Korkine and Zolotarev [112], [113].

Gauss [65] was first to notice the close connection between positive definite
quadratic forms and lattices, i.e. the viewpoint of geometry. This geometric
point of view was later developed systematically by Minkowski [150] and is
now known as the “geometry of numbers”.

7.3.6 Definition (positive definite quadratic form) A positive definite quadratic form
is a map

fA : Zm → R : x �→ x� · A · x ,

where A ∈ Rm×m is a symmetric positive definite matrix, i.e. A� = A and
x� · A · x > 0 for x ∈ Rn \ {0}.
Let B ∈ Rn×m be a matrix of rank m with m ≤ n. Setting A := B� · B, we
note that fA(x) = x� · (B� · B) · x = ‖B · x‖2

2 ≥ 0 for x ∈ Zm. Since A has
maximal rank m, fA(x) = 0 is equivalent to x = 0. It follows that the matrix
A is symmetric and positive definite. Therefore, the minimum value of fA(x)
for all x ∈ Zm \ {0} is equal to the square of the �2-shortest vector in the lattice
with generator matrix B.

It is well-known that for any symmetric positive definite matrix A ∈ Rm×m

there exists a matrix B ∈ Rm×m such that A = B� · B. This is known as the
Cholesky decomposition of A (see [39], for instance). This shows that for every
positive definite quadratic form fA there exists a lattice L, namely the lattice
whose generator matrix is the matrix B with A = B� · B.

Indeed many results in lattice theory were first formulated in the language
of positive definite quadratic forms. An example is 7.5.4.

Exercises

E.7.3.1 Exercise Prove that the volume of a fundamental parallelotope of a lattice L is
equal to det(L).

7.4 Gram–Schmidt Orthogonalization 577

E.7.3.2Exercise Let A be a symmetric, positive definite matrix ∈ Rm×m. Show that
there exists a matrix B ∈ Rm×m with A = B� · B.

7.47.4 Gram–Schmidt Orthogonalization

7.4.1Definition (orthogonal vectors) A set of vectors v(0), . . . , v(m−1) ∈ Rn \ {0} is
called orthogonal if for i, j ∈ m

〈v(i), v(j)〉
{ �= 0, if i = j,

= 0, if i �= j .

7.4.2Lemma (Gram–Schmidt orthogonalization) Let b(0), b(1), . . . , b(m−1) be a set of
linearly independent vectors ∈ Rn. For i = 0, 1, . . . , m − 1, define vectors

b̂(i) = b(i) −
i−1

∑
j=0

µij · b̂(j) ,

where

µij =
〈b(i), b̂(j)〉
〈b̂(j), b̂(j)〉

.

Then b̂(0), b̂(1), . . . , b̂(m−1) are orthogonal.

Proof: Let b(0), b(1), . . . , b(m−1) be a set of linearly independent vectors ∈ Rn.

Then, b̂(0) = b(0) and b̂(1) = b(1) − 〈b(1),b̂(0)〉
〈b̂(0),b̂(0)〉 · b̂

(0). Therefore,

〈b̂(1), b̂(0)〉 = 〈b(1), b̂(0)〉 − 〈b(1), b̂(0)〉
〈b̂(0), b̂(0)〉

· 〈b̂(0), b̂(0)〉 = 0 .

By induction, it follows for 2 ≤ k ≤ m − 1 that

〈b̂(k), b̂(j)〉 = 〈b(k), b̂(j)〉 −
k−1

∑
i=0

〈b(k), b̂(i)〉
〈b̂(i), b̂(i)〉

· 〈b̂(i), b̂(j)〉

= 〈b(k), b̂(j)〉 − 〈b(k), b̂(j)〉
〈b̂(j), b̂(j)〉

· 〈b̂(j), b̂(j)〉

= 0 ,

for j = 0, 1, . . . , k − 1. �

578 7. Solving Systems of Diophantine Linear Equations

0

b(1)

b(0)

π1(b(1)) = b̂(1)

〈b(0)〉⊥

Fig. 7.4 Orthogonal projection π1 of b(1) into 〈b(0)〉⊥

The procedure 7.4.2 is called Gram–Schmidt orthogonalization. The vectors b̂(i),
i ∈ m, are referred to as Gram–Schmidt vectors and the numbers µij, 0 ≤ j ≤
i < m, are called Gram–Schmidt coefficients. We note that in general the set of
orthogonal vectors b̂(0), b̂(1), . . . , b̂(m−1) is not longer contained in L, since the
Gram–Schmidt coefficients µij are not necessarily integers.

For i ∈ m we can think of b̂(i) as the orthogonal projection of b(i) into the
subspace Hi−1 := 〈b(0), b(1), . . . , b(i−1)〉⊥, which is the subspace of dimension
m − i orthogonal to 〈b(0), b(1), . . . , b(i−1)〉 in 〈b(0), b(1), . . . , b(m−1)〉.

7.4.3 Definition (orthogonal projection) With the above notation, for t ∈ m the
orthogonal projection πt(v) is defined by

πt : Rn → 〈b(0), b(1), . . . , b(t−1)〉⊥, v �→
m−1

∑
j=t

〈v, b̂(j)〉
〈b̂(j), b̂(j)〉

· b̂(j) .

We note that the orthogonal projection depends on the choice of the basis
b(0), b(1), . . . , b(m−1) of the lattice L ⊂ Rn. Further, from the definition it can
be seen that for t ∈ m the orthogonal projection πt(v) of a vector v ∈ Rn

is a linear combination of the Gram–Schmidt vectors b̂(t), . . . , b̂(m−1). For any
lattice basis and any vector v ∈ Rn we have π0(v) = v.

The orthogonal projection πt is a linear mapping. Therefore, the projec-
tion of the lattice L(b(0), b(1), . . . , b(m−1)) into 〈b(0), b(1), . . . , b(t−1)〉⊥ is again a
lattice

Lt
(
πt(b(t)), . . . , πt(b(m−1))

)
:=

{
∑
i∈m

uiπt(b(i)) | ui ∈ Z
}

=
{m−1

∑
i=t

uiπt(b(i)) | ui ∈ Z
}

7.5 Bounds on Lattice Vectors 579

spanned by the basis πt(b(t)), πt(b(t+1)), . . . , πt(b(m−1)) for t ∈ m. The rank of
the lattice Lt is equal to m − t.

In matrix notation, the Gram–Schmidt orthogonalization can be written as

B = B̂ · µ�

with a lower triangular m × m-matrix

µ =

⎛⎜⎜⎜⎝
µ00

µ10 µ11
...

...
. . .

µm−1,0 µm−1,1 . . . µm−1,m−1

⎞⎟⎟⎟⎠ ,

where µii = 1, i ∈ m, and µij = 0 for 0 ≤ i < j < m. This shows that the
Gram–Schmidt orthogonalization is a unimodular transformation. In particu-
lar, det(µ) = 1 and we see that we can compute the determinant det(L) from
the Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(m−1) of a lattice basis b(0), b(1), . . . ,
b(m−1) via

det(L) = |det(B̂) · det(µ)| = ∏
i∈m

‖b̂(i)‖2 . 7.4.4

We note that the orthogonal basis b̂(0), b̂(1), . . . , b̂(m−1) depends on the ordering
of the basis b(0), b(1), . . . , b(m−1).

Exercises

E.7.4.1Exercise Prove that the orthogonal projection is a linear mapping.

E.7.4.2Exercise Show that for vectors b(0), b(1), . . . , b(n−1) ∈ Rn:√
det G(b(0), b(1), . . . , b(n−1)) = |det(b(0), b(1), . . . , b(n−1))| .

E.7.4.3Exercise Use elementary row and column transformations to bring the Gram
matrix G(b(0), b(1), . . . , b(m−1)), of linearly independent b(0), b(2), . . . , b(m−1) ∈
Rn, with m ≤ n, to the form

(
〈b̂(j), b̂(l)〉

)
j,l∈m .

7.57.5 Bounds on Lattice Vectors

The Hadamard inequality is a well-known lower bound on the length of the
vectors of a lattice basis.

580 7. Solving Systems of Diophantine Linear Equations

7.5.1 Lemma (Hadamard’s Inequality) If b(0), b(1), . . . , b(m−1) is a basis of a lattice
L ⊂ Rn, then

det(L) ≤ ∏
i∈m

‖b(i)‖2 .

Proof: Using 7.4.2 together with the mutual orthogonality of the vectors b̂(j)

we have

‖b(i)‖2
2 = ‖b̂(i)‖2

2 +
i−1

∑
j=0

µ2
ij‖b̂(j)‖2

2 ≥ ‖b̂(i)‖2
2 .

With 7.4.4, det(L) = ∏i∈m ‖b̂(i)‖2, the inequality follows. �

7.5.2 Remark The inequality of Hadamard can be written as

1 ≤ ∏
i∈m

‖b(i)‖2

‖b̂(i)‖2
=

1
det(L)

· ∏
i∈m

‖b(i)‖2

with equality if and only if the basis b(0), b(1), . . . , b(m−1) is orthogonal. There-
fore, the product ∏i∈m ‖b(i)‖2/‖b̂(i)‖2 is a measure of the “non-orthogonality”
of a basis b(0), b(1), . . . , b(m−1).

The inequality of Hadamard is trivially satisfied if the vectors b(0), b(1), . . . ,
b(m−1) are linearly dependent.

7.5.3 Definition (orthogonality defect) For a lattice basis b(0), b(1), . . . , b(m−1)

∏
i∈m

‖b(i)‖2

‖b̂(i)‖2

is called orthogonality defect of b(0), b(1), . . . , b(m−1).
Since det(L) = ∏i∈m ‖b̂(i)‖2 does not depend on the choice of the lattice

basis, the orthogonality defect is a measure for the geometric mean of the Eu-
clidean length of the basis vectors. Consequently, a basis consisting of short
vectors has a small orthogonality defect.

A classical result due to Hermite [86] gives an upper bound for the �2-
shortest vector of a lattice.

7.5.4 Theorem (Hermite) Let L ⊂ Zn be a lattice of rank m. Then L contains a nonzero
vector v such that

‖v‖2 ≤ (4/3)(m−1)/2 · det(L)2/m ,

where ‖ − ‖ denotes the Euclidean norm.

7.5 Bounds on Lattice Vectors 581

Proof: Using the first successive minimum, the claim of the theorem becomes

λ0(L)2 ≤ (4/3)(m−1)/2 · det(L)2/m .

Let B be a generating matrix of the lattice L and y ∈ Zm \ {0} be a vector for
which B · y takes on its minimum value, i.e. ‖B · y‖ = λ0(L). Then we know
that r = gcd(y0, y1, . . . , ym−1) = 1. For otherwise, since 1

r · y is integral,

‖B · (1
r
y)‖ =

1
r
‖B · y‖ =

1
r
· λ0(L) ,

which would contradict the minimality of λ0(L) in the case r > 1.
By induction it is easy to show that there exists a matrix W ∈ Zm×m such

that det(W) = 1 and the first column of W is equal to y (see Exercise 7.5.1).
Such a matrix is unimodular and hence by the remark after 7.3.4, B ·W is an-
other generator matrix of L. Moreover,

‖B ·W · (1, 0, . . . , 0)�‖ = ‖B · y‖ = λ0(L) .

Therefore, we can assume that B is a generator matrix of the lattice L and that
the successive minimum λ0(L) is attained for the first column of B, i.e. the first
basis vector. Now, we search for a matrix S ∈ Rm×m with S� · S = Im and
a0, a1, . . . , am−1 ∈ R such that

S · B =

⎛⎜⎜⎜⎜⎝
a0 a1 . . . am−1

0
... B′

0

⎞⎟⎟⎟⎟⎠ .

The matrix S can be constructed by taking as first row the entries of the first
column of B divided by ‖b(0)‖. The remaining rows are filled with linearly
independent vectors in Rm. After that, the rows of B must be orthogonalized
by the Gram–Schmidt process and scaled to have norm one. Then, for arbitrary
x ∈ Rm we have that

‖B · x‖2 = 〈Bx, Bx〉
= x�B�S�SBx

= 〈SBx, SBx〉

=

∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎝
a0 a1 . . . am−1

0
... B′

0

⎞⎟⎟⎟⎟⎠ · x

∥∥∥∥∥∥∥∥∥∥

2

= (∑
i∈m

aixi)2 + ‖B′ · (x1, . . . , xm−1)�‖2 .

582 7. Solving Systems of Diophantine Linear Equations

Since a0 = 1
‖b(0)‖ b(0)� · b(0) = ‖b(0)‖ and ‖b(0)‖ is minimal, it follows that

a0 = λ0(L). For the lattice L′ which is generated by B′, the determinant is

det(L)2 = det(G(B)) = det(G(SB)) = a2
0 · det(G(B′)) = a2

0 · det(L′)2 .

Therefore,

det(L′) = det(L) · 1
λ0(L)

.

We can now prove the initial claim by induction. The case m = 1 is clear.
For m > 1, suppose that there exists a vector x′ = (x1, . . . , xm−1)� ∈ Zm−1

with

‖B′ · x′‖2 ≤ (4/3)(m−2)/2 · det(L′)2/(m−1)

= (4/3)(m−2)/2 · det(L)2/(m−1) 1
λ0(L)2/(m−1)

.

For the fixed values x1, . . . , xm−1 ∈ Z we can choose x0 ∈ Z such that

|x0 +
a1x1 + . . . + am−1xm−1

a0
| ≤ 1

2
.

It follows that (
∑
i∈m

aixi

)2

≤ 1
4

λ2
0(L)

and therefore, since λ2
0(L) ≤ ‖B · x‖2, we have

λ2
0(L) ≤ 1

4
λ2

0(L) + (4/3)(m−2)/2 · det(L)2/(m−1) 1
λ0(L)2/(m−1)

.

An easy calculation shows that

λ2
0(L) ≤ (4/3)(m−1)/2 · det(L)2/m ,

which is the claim made at the beginning of the proof. Since this result is
equivalent to the assertion, the proof is finished. �

Minkowski started a systematic theory which is now known as the geometry
of numbers. In [149], he proved the following fundamental theorem.

7.5.5 Theorem (Minkowski) Let S be a convex set in Rn which is symmetric about the
origin (i.e. x ∈ S ⇒ −x ∈ S). If the volume of S is greater than 2n, then S contains
a nonzero vector v ∈ Zn.

For the proof of the theorem we use the following lemma by Blichfeldt [21].

7.5.6 Lemma (Blichfeldt) Let S be a measurable set in Rn. If VolS > 1 or S is bounded
and closed and VolS = 1 then S contains two different vectors x and y such that x − y
is in Zn \ {0}.

7.5 Bounds on Lattice Vectors 583

Proof: First we assume that VolS > 1. Without loss of generality we suppose
that S is bounded. The volume of the cube Q := {x ∈ Rn | 0 ≤ xi < 1, i ∈
n} is equal to 1. Since S is bounded there are finitely many integral vectors
u(0), u(1), . . . , u(k−1) ∈ Zn such that the intersection of S and u(i) + Q, i ∈ k, is
nonempty. Here, for v ∈ Rn the set v + Q is defined as v + Q = {x ∈ Rn |
∃q ∈ Q : x = v + q}.

For i ∈ k set Si := S∩ (u(i) + Q) and S′
i := Si − u(i), compare Fig. 7.5. Then,

for i ∈ k the sets S′
i are contained in Q. On the other hand, we have

∑
i∈k

VolS′i = ∑
i∈k

VolSi = VolS > 1 .

Therefore, these sets cannot be mutually disjoint and there are two sets S′
j, S′

l,
j, l ∈ k, and a vector z ∈ Rn such that

z ∈ S′
j ∩ S′

l .

It follows that both x := u(j) + z and y := u(l) + z are contained in S and
x − y = u(j) − u(l) is an integral vector.

Next, we assume that S is bounded and closed and VolS = 1. Let θr > 1 be
a sequence of numbers with limr→∞ θr = 1. For each r the set θrS has volume
strictly greater than 1. From the previous result it follows that for each r there
exist vectors x(r), y(r) ∈ θrS such that x(r) − y(r) is a nonzero integral vector.
Since S is bounded and closed there exist subsequences (x(rt))t∈N, (y(rt))t∈N

converging to some vectors x and y in S, respectively. The difference x − y
must be a nonzero integral vector, which proofs the assertion. �

Proof of Minkowski’s theorem: Define S/2 := {x ∈ Rn | 2x ∈ S}. Since
the volume of S is greater than 2n, S/2 has volume greater than 1. Using the
lemma of Blichfeldt, we know that S/2 contains two different vectors x and
y such that x − y ∈ Zn \ {0}. Therefore, 2x and 2y belong to S. Since S is
symmetric about the origin, also −2y belongs to S. The fact that S is convex
implies that 1

2 (2x) + 1
2 (−2y) = x − y ∈ S. Since x − y ∈ Zn this proves the

theorem. �

This result is sharp, as the n-dimensional cube
{
x ∈ Rn

∣∣ ‖x‖∞ < 1
}

has
volume 2n and does not contain an integral vector �= 0.

7.5.7Remark As we can see from the proof, the theorem of Minkowski is also valid
if the set S is bounded and closed and has VolS = 2n.

584 7. Solving Systems of Diophantine Linear Equations

0 u(0) u(1)

u(2)

S1

S0

S2

S′
1

S′
0S′

2

z x

y

Q

S

Fig. 7.5 Si = S ∩ (u(i) + Q) and S′
i = Si − u(i), i = 0, 1, 2, in the Lemma of Blichfeldt

7.5.8 Definition (Volume of the unit sphere) We denote by ρn the volume of the
unit sphere S := {x ∈ Rn | ‖x‖2 ≤ 1} in Rn:

ρn = VolS =
πn/2

n
2 !

,

where n
2 ! is defined by 0! = 1, 1

2 ! =
√

π/2, and n
2 ! = n

2 · (n
2 − 1)! for n ∈ Z,

n > 1.
As a direct consequence of 7.5.5, we have the following bound for the Eu-
clidean length of an �2-shortest vector in a lattice L.

7.5.9 Theorem (Minkowski) If L ⊂ Rn is a lattice of rank n, then there is a nonzero
vector v ∈ L with

‖v‖2 ≤ 2
(

det(L)
ρn

)1/n

=
2
π

(n
2

! · det(L)
)1/n

.

Proof: Let s ∈ R be a positive number and b(0), b(1), . . . , b(n−1) be a basis of the
lattice L. Consider the ellipsoid K = {x ∈ Rn | ‖B · x‖2

2 ≤ s} which is centered
at 0 and whose volume is

Vol(K) =
ρn · sn/2

det(L)
.

Choose s such that
ρn · sn/2

det(L)
= 2n .

7.5 Bounds on Lattice Vectors 585

By 7.5.5, there exists a nonzero lattice vector v ∈ L with

‖v‖2
2 ≤ 4

(
det(L)

ρn

)2/n

,

proving the theorem. �

7.5.9 gives an upper bound for the ratio

λ0(L)
det(L)1/n ≤ 2

ρ1/n
n

.

Occasionally, the weaker estimate

λ0(L)
det(L)1/n ≤

√
n

of [107] suffices.

7.5.10Definition (Hermite’s constant) The supremum of the ratio

λ2
0(L)

det(L)2/n

over all lattices in Rn of rank n is called Hermite’s constant and is denoted as γn.

Blichfeldt [22] provided the upper bound

γn ≤
n
(
1 + o(1)

)
eπ

. 7.5.11

Hermite’s constant is known exactly for n ≤ 8. Meanwhile, the best known
bounds for Hermite’s constant are

n + log(π log n)
2eπ

+ o(1) ≤ γn ≤ 1.744n
2eπ

(
1 + o(1)

)
.

The lower bound is from [148] and the upper bound is contained in [40].
Using the successive minima of a lattice, Minkowski [150] was able to

sharpen the bounds of Theorems 7.5.5 and 7.5.9:

7.5.12Theorem (Minkowski’s Second Theorem)

If L ⊂ Rn is a lattice of rank n with successive minima λ0(L), λ1(L), . . . , λn−1(L),
then

λ0(L)λ1(L) · · · λn−1(L) ≤ 2n det(L) .

Proof: The proof can be found in [77, p. 59]. �

586 7. Solving Systems of Diophantine Linear Equations

Exercises

E.7.5.1 Exercise Let y0, y1, . . . , ym−1 be integers with

gcd(y0, y1, . . . , ym−1) = 1 .

Show that there exists a matrix W ∈ Zm×m with det(W) = 1 whose first col-
umn is equal to (y0, y1, . . . , ym−1)�.

7.6 7.6 Lattice Basis Reduction

In this section we outline the classical concepts of lattice basis reduction as
developed by Korkine and Zolotarev and later by Minkowski. Furthermore,
we describe the celebrated LLL-algorithm which computes another type of re-
duced basis, the LLL-reduced or δ-reduced basis. We conclude this section by
discussing some improvements and variations of the LLL-algorithm. Unless
stated otherwise, by ‖−‖ we always denote the Euclidean norm in this section.

Classical concepts of lattice basis reduction. Reduction methods for positive
definite quadratic forms were first studied by Lagrange [120] for n = 2 and
Gauss [66], [65] and Seeber [176] for n = 3. Hermite [87] was the first to
propose a reduction method for positive quadratic forms for general values
of n.

In his seminal work [150], Minkowski introduced the notion of a reduced
basis of a lattice in dimension n for arbitrary positive integers n.

7.6.1 Definition (Minkowski-reduced basis) A basis b(0), b(1), . . . , b(n−1) of the lattice
L ⊂ Rn is reduced in the sense of Minkowski, if for t = 0, 1, . . . , n − 1

1. the vector b(t) is a shortest vector in L and

2. the set {b(0), b(1), . . . , b(t)} can be extended to a basis of L.

In [151], Minkowski showed that

1
det(L)

· ∏
i∈n

‖b(i)‖ ≤ 2n

ρn

(
3
2

)n(n−1)/2

= 2O(n2)

is an upper bound for the orthogonality defect of a Minkoswki-reduced ba-
sis. This bound is much larger than the bound which can be derived from
Minkowski’s Second Theorem 7.5.12. If there exists a basis b(0), b(1), . . . , b(n−1)

7.6 Lattice Basis Reduction 587

of the lattice L such that the lengths of the basis vectors equal the successive
minima, then we can bound the orthogonality defect by

1
det(L)

· ∏
i∈n

‖b(i)‖ ≤ 2n .

Since the vector b(0) of a Minkowski-reduced basis b(0), b(1), . . . , b(n−1) of a lat-
tice L is an �2-shortest vector in L, the computation of a Minkowski-reduced
basis of a lattice L is at least as hard as computing an �2-shortest vector in L.

From a computational point of view, the reduced bases of Korkine and
Zolotarev [113] have turned out to be more useful.

7.6.2Definition (Korkine–Zolotarev-reduced basis) A basis b(0), b(1), . . . , b(m−1) of
a lattice L ⊂ Rn is reduced in the sense of Korkine and Zolotarev [113], if

1. b(0) is an �2-shortest vector in L and

2. for all t ∈ m, b̂(t) is an �2-shortest vector in the lattice Lt(b(t), . . . , b(m−1)).

The upper bound on the orthogonality defect of a Korkine–Zolotarev-reduced
basis is much better than that of a Minkowski-reduced basis. Lagarias, Lenstra
and Schnorr [118] proved the following bounds.

7.6.3Theorem Let b(0), b(1), . . . , b(n−1) be a Korkine–Zolotarev-reduced basis of a lattice
L ⊂ Zn. Then √

4
i + 4

λi(L) ≤ ‖b(i)‖ ≤
√

i + 4
4

λi(L) for i ∈ n

and

∏
i∈n

‖b(i)‖ ≤
(

γn
n ·∏

i∈n

i + 4
4

)1/2
· det(L) . �

Let L be a lattice in Zn, and let b(0), b(1), . . . , b(n−1) be a Korkine–Zolotarev-
reduced basis for L. Using the asymptotic result 7.5.11 of Blichfeldt, the asymp-
totic upper bound for the orthogonality defect of a Korkine–Zolotarev-reduced
basis b(0), b(1), . . . , b(n−1) can be shown to be of order O(nn).

The vector b(0) of a Korkine–Zolotarev-reduced basis b(0), b(1), . . . , b(n−1)

of a lattice L is an �2-shortest vector in L. So, the computation of a Korkine–
Zolotarev-reduced basis of an lattice L is at least as hard as computing an �2-
shortest vector in L.

The LLL-algorithm. Summarizing, no fast algorithm to compute a Minkowski-
reduced basis or a Korkine–Zolotarev-reduced basis is known. A major break-
through was achieved by Lenstra, Lenstra, and Lovász in their seminal work

588 7. Solving Systems of Diophantine Linear Equations

[125]. They compute a different type of reduced basis, which is now called an
LLL-reduced basis. We only give a brief outline of the algorithm. For a detailed
description, the reader is referred to the original paper [125] or to textbooks,
like [39], for example.

Again, in this section the norm ‖ − ‖ always denotes the Euclidean norm.
For r ∈ R,
r� denotes the nearest integer to r, i.e.
r� :=
 1

2 + r�.
A high-level description of the algorithm is as follows.

7.6.4 Algorithm (LLL-algorithm [125]) The LLL (or L3) algorithm computes an LLL-
reduced basis. The input is a basis b(0), . . . , b(m−1) of the lattice L of rank m.

(1) Let δ ∈ R with 1
4 < δ < 1.

(2) Set k := 0.
(3) do

(4) 1. for j = 0, . . . , k − 1
(5) replace b(k) by b(k) −
µkj�b(j),
(6) where µkj is the Gram-Schmidt coefficient from 7.4.2.
(7) 2. if δ‖πk(b(k))‖2 > ‖πk(b(k+1))‖2 then

(8) interchange b(k+1) and b(k)

(9) update b̂(k+1), b̂(k) and µ

(10) set k := max(k − 1, 0)
(11) else

(12) set k := k + 1
(13) until k = m − 1. �

Step 1 (line (4)) of the algorithm achieves that in each stage the basis vectors
are “as orthogonal as possible”. This means that the Gram–Schmidt orthogo-
nalized vector is approximated by an integer linear combination of the basis
vectors, compare Fig. 7.6. The hope is that for 0 ≤ i ≤ k the basis vectors
b(0), b(1), . . . , b(i−1) are close to being orthogonal. That is, they are good ap-
proximations of their Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(i−1).

In Step 2 (line (7)) of the algorithm the Euclidean length of two vectors are
compared:

δ‖πk(b(k))‖2 > ‖πk(b(k+1))‖2 .7.6.5

The first vector
πk(b(k)) = b̂(k)

on the left hand side of 7.6.5 is the orthogonal projection of b(k) onto the sub-
space 〈b(0), b(1), . . . , b(k−1)〉⊥. The second vector

πk(b(k+1)) =
m−1

∑
i=k

µk+1,ib̂
(i) = b̂(k+1) + µk+1,kb̂

(k)

7.6 Lattice Basis Reduction 589

〈b(0)〉⊥

0

b(1)

b(0)

π1(b(1)) = b̂(1)

b(1) ′

Fig. 7.6 b(1)′ is the integer approximation of π1(b(1))

on the right hand side of 7.6.5 is the orthogonal projection of the vector b(k+1)

into 〈b(0), b(1), . . . , b(k−1)〉⊥. Depending on the length of their projected vectors
onto 〈b(0), b(1), . . . , b(k−1)〉⊥, we choose either b(k) or b(k+1) as the new vector
b(k). In order to prove convergence of the algorithm, we only accept b(k+1)

as the new basis vector b(k) if the length of the new orthogonal vector b̂(k) is
reduced significantly, i.e. if it is reduced by at least a factor of δ.

7.6.6Example To illustrate the LLL-algorithm we consider the rank 2 lattice which
is spanned by the vectors b(0) = (4

2) and b(1) = (11
4). Since m = 2, the variable

k remains equal to zero throughout the algorithm. An LLL-reduced basis with
δ = 1 is computed by executing the following steps.

0

b(1)

b(0)

The input basis consisting of the vectors

b(0) =
(

4
2

)
and b(1) =

(
11
4

)
.

0

b(1)

b(0)
〈b(0)〉⊥

b(1) ′

Since

µ10 =
〈(11

4), (4
2)〉

〈(4
2), (

4
2)〉

=
13
5

= 2.6 ,

we set
µ10� = 3 in step 1 (line (5)). Then
according to line (5), b(1) is replaced by

b(1)′ =
(

11
4

)
− 3 ·

(
4
2

)
=

(−1
−2

)
.

590 7. Solving Systems of Diophantine Linear Equations

0

b(0)

b(1)

Step 2 (line (7)): ‖π0(b(0))‖2 = 20 and
‖π0(b(1))‖2 = 5 are compared.

0

b(1)

b(0)

Since

20 = ‖π0(b(0))‖2 > ‖π0(b(1))‖2 = 5 ,

the two vectors are swapped.

0

b(1)

b(0)

〈b(0)〉⊥

b(1) ′

Again, in step 1 (line (5))

µ10 =
〈(4

2), (
−1
−2)〉

〈(−1
−2), (

−1
−2)〉

=
−8
5

= −1.6.

Therefore,
µ10� = −2 and the vector b(1)

is replaced by

b(1)′ =
(

4
2

)
− (−2) ·

(−1
−2

)
=

(
2

−2

)
.

0

b(0) b(1)

Since

5 = ‖π0(b(0))‖2 < ‖π0(b(1))‖2 = 8 ,

the two vectors are not swapped in step 2
(line (7)) and the algorithm terminates.

�

Algorithm 7.6.4 is only a very informal description of the algorithm. After
swapping the two vectors b(k) and b(k+1), the Gram–Schmidt coefficients and
the length of the Gram–Schmidt vectors require updating. The exact algorithm
is given in [125].

The LLL-algorithm as described in Algorithm 7.6.4 works with rational
numbers µij and with rational vectors b̂(i) for 0 ≤ j ≤ i < m. Since numerator
and denominator of rational numbers are integers which can be represented
exactly on a computer, it was proposed in [125] that the LLL-algorithm might
be formulated as an algorithm solely over the integers.

In order to represent all integers which appear in the course of the algo-
rithm, the subdeterminants Di of the Gram matrix can be used, i.e.

Di := det
(
〈b(j), b(k)〉

)
0≤j,k≤i = ∏

k∈i
‖b̂(k)‖ for i ∈ m .

7.6 Lattice Basis Reduction 591

We know from [125] that

‖b̂(i)‖2 = Di/Di−1 for i ∈ m,

Di−1b̂(i) ∈ L ⊂ Zn for i ∈ m (and D−1 := 1),

Djµij ∈ Z for 0 ≤ j < i < m.

Then, the LLL-algorithm can be modified to work with the integers Djµij and
the integer vectors Di−1b̂(i) instead of µij and b̂(i), respectively. Thus the LLL-
algorithm becomes an algorithm with exact arithmetic whose time complexity
can then be estimated.

For the time complexity of the original LLL-algorithm, note that each in-
terchange of the vectors b(k) and b(k+1) for 0 ≤ k < m − 1 in step 2 of 7.6.4
reduces the value of D := ∏m−2

i=0 Di by at least a factor of δ. In step 1 of the al-
gorithm, the Gram–Schmidt vectors and therefore also D remain unchanged.
But, there exists a lower bound for D which is independent of the choice of the
basis. This can be seen for example from 7.5.12: Di ≥ λ0(L)λ1(L) · · · λi(L)/2i

for i ∈ m. Therefore, Algorithm 7.6.4 terminates after a finite number of steps.
In [125] the following bounds on the time complexity of the LLL-algorithm

are given.

7.6.7Theorem Let M ∈ R, M ≥ 2, be such that ‖b(i)‖2 ≤ M for i ∈ m. The number of
arithmetic operations needed by the LLL-algorithm is O(m4 log M) and the integers
on which these operations are performed each have binary length O(m log M). �

7.6.8Definition (δ-reduced basis) The output b(0), b(1), . . . , b(m−1) of the LLL-algo-
rithm with 1

4 < δ < 1 is called δ-reduced basis of the lattice L. Sometimes, it is
simply called an LLL-reduced basis of the lattice L.
In [125], the following bounds on the quality of the reduction are shown:

7.6.9Theorem Let b(0), b(1), . . . , b(m−1) be a δ-reduced basis of the lattice L ⊂ Qn. Then

‖b(j)‖2 ≤
(4

4δ − 1

)i
· ‖b̂(i)‖2 for 0 ≤ j ≤ i < m . 7.6.10

det(L) ≤ ∏
i∈m

‖b(i)‖ ≤
(4

4δ − 1

)m(m−1)/4
· det(L) . 7.6.11

‖b(0)‖ ≤
(4

4δ − 1

)(m−1)/4
· det(L)1/m . 7.6.12

592 7. Solving Systems of Diophantine Linear Equations

Proof: Since the basis b(0), b(1), . . . , b(m−1) is δ-reduced, the condition of step 2
in the LLL-algorithm is not satisfied for all 0 ≤ k < m − 1. This together with
the fact that the Gram–Schmidt vectors are mutually orthogonal implies that
for 1 ≤ i < m

‖b̂(i)‖2 + µ2
i,i−1‖b̂(i−1)‖2 ≥ δ‖b̂(i−1)‖2.

With step 1 of the LLL-algorithm we can argue that µ2
i,i−1 ≤ 1

4 , see [125]. This
gives

‖b̂(i)‖2 ≥ 4δ − 1
4

· ‖b̂(i−1)‖2 for 0 < i < m.

It follows for 0 ≤ j ≤ i < m that

‖b̂(j)‖2 ≤
(4

4δ − 1

)i−j
‖b̂(i)‖2 .

With
‖b(i)‖2 = ‖b̂(i)‖2 + ∑

j∈i
µ2

ij‖b̂(j)‖2

and some elementary calculations (see Exercise 7.6.1) we get for i ∈ m:

‖b(i)‖2 ≤ ‖b̂(i)‖2 + ∑
j∈i

1
4

(4
4δ − 1

)i−j
‖b̂(i)‖2 ≤

(4
4δ − 1

)i
‖b̂(i)‖2 .

Hence,

‖b(j)‖2 ≤
(4

4δ − 1

)j
· ‖b̂(j)‖2 ≤

(4
4δ − 1

)i
· ‖b̂(i)‖2 .

Applying Hadamard’s inequality 7.5.1 and 7.6.10 with j = i we obtain

det(L) ≤ ∏
i∈m

‖b(i)‖ ≤ ∏
i∈m

(4
4δ − 1

)i/2
· ‖b̂(i)‖ =

(4
4δ − 1

) m(m−1)
4 · det(L) ,

which is 7.6.11.
If we set j := 0 in 7.6.10 then the product of the right hand side of 7.6.10 for

i ∈ m gives ‖b(0)‖ ≤
(4

4δ−1

)(m−1)/4 · det(L)1/m . �

It follows from 7.6.11 that the orthogonality defect of a δ-reduced basis can be
bounded above by

1
det(L)

· ∏
i∈m

‖b(i)‖ ≤
(4

4δ − 1

)m(m−1)/4
,

which is 2O(m2) for δ = 3/4. Thus, the orthogonality defect of an LLL-reduced
basis has approximately the same size as the orthogonality defect of a basis
which is reduced in the sense of Minkowski.

In [125], the authors provide upper bounds of the Euclidean lengths of the re-
duced basis vectors, compared to Euclidean lengths of a shortest lattice vector:

7.6 Lattice Basis Reduction 593

7.6.13Theorem Let L ⊂ Qn be a lattice with δ-reduced basis b(0), b(1), . . . , b(m−1). Then

‖b(0)‖2 ≤
(

4
4δ − 1

)m−1

· λ0(L)2 . 7.6.14

Proof: Let v be a vector in L such that ‖v‖ = λ0(L). Then we can write v =
∑j∈m rjb(j) = ∑j∈m r′j b̂

(j) with rj ∈ Z and r′j ∈ Q for j ∈ m. If t is the largest
index such that rt �= 0 then we have rt = r′t (cf. Exercise 7.6.2). Thus we deduce
the inequality

λ2
0(L) ≥ r′t

2‖b̂(t)‖2 ≥ ‖b̂(t)‖2 .

With 7.6.10 we have the bound

‖b(0)‖2 ≤
(4
4δ − 1

)t · ‖b̂(t)‖2 ≤
(4
4δ − 1

)m−1 · ‖b̂(t)‖2 .

Combining the two inequalities gives the required bound for ‖b(0)‖2. �

At first sight, the bound in 7.6.13 on the Euclidean length of the first basis
vector of a LLL-reduced lattice basis does not look promising. However, there
are situations where this theoretical bound is already good enough, i.e. where
any nonzero vector in L which is not an �2-shortest vector has Euclidean length
greater than (4

4δ−1)
(m−1)/2 · λ0(L). Problems of this type can be solved by the

LLL-algorithm in polynomial time. Examples are attacks on knapsack based
cryptosystems with low-density [119], [43].

Secondly, in nearly all practical situations the LLL-algorithm behaves much
better than the bound 7.6.14 indicates. It was already noted in [125] that the
bound

(4
4δ−1

)m−1 in 7.6.13, which proved to be rather pessimistic in most in-
stances, can be replaced by max

{
‖b(i)‖2

2/‖b̂(j)‖2
2 | 0 ≤ i ≤ j < m

}
. If an

LLL-reduced basis is available, then computing this bound is trivial. For i = 0
in many cases this bound turns out to be close to 1 and hence b(0) actually is
an �2-shortest vector in the lattice.

On the other hand, Kannan [106] notes that there are lattices L of rank m
for which the orthogonality defect of certain LLL-reduced bases reaches the
bound 7.6.11 and the square of the norm of the first basis vector is larger than
λ0(L) by a factor 2O(m2).

The following generalizations of 7.6.13 can be found in [125].

7.6.15Theorem Let L ⊂ Qn be a lattice with LLL-reduced basis b(0), b(1), . . . , b(m−1). For
t ∈ m let v(0), v(1), . . . , v(t−1) ∈ L be t linearly independent lattice vectors. Then we
have

‖b(t)‖2 ≤
(4

4δ − 1

)m−1
·max

{
‖v(i)‖2 | i ∈ t

}
.

Proof: See [125, Prop. 1.12]. �

594 7. Solving Systems of Diophantine Linear Equations

We note that if a lattice basis b(0), b(1), . . . , b(m−1) of a lattice L ⊂ Qn is δ-
reduced with 1

4 < δ < 1 then for 1 ≤ t ≤ m also the lattices Lt(b(t), . . . , b(m−1))
are δ-reduced. Moreover, the vector b̂(t) = πt(b(t)) is the first vector of the
lattice basis πt(b(t)), . . . , πt(b(m−1)) of the lattice Lt(b(t), . . . , b(m−1)). Apply-
ing 7.6.12 and 7.6.14 to the lattice Lt(b(t), . . . , b(m−1)) we get for t ∈ m:

7.6.16 Corollary Let L ⊂ Qn be a lattice with δ-reduced basis b(0), b(1), . . . , b(m−1). Then,
for t ∈ m:

‖b̂(t)‖ ≤
(4

4δ − 1

)(m−1−t)/2
· λ0

(
Lt(b(t), . . . , b(m−1))

)
,

‖b̂(t)‖ ≤
(4

4δ − 1

)(m−1−t)/4
· det

(
Lt(b(t), . . . , b(m−1))

)1/(m−t) . �

The upper bounds on the basis vectors in 7.6.15 can be used to determine the
size of the integer constant N in 7.2.7.

7.6.17 Theorem Let A · x = d with A ∈ Zm×n and d ∈ Zm. There exists a constant N
which depends only on the size of the entries of A and d such that the LLL-algorithm
computes a basis of the form 7.2.8 if applied to the basis 7.2.7.

Proof: Without loss of generality, we assume that the matrix A has rank m.
Thus we can permute the columns of A such that the first m columns, i.e.
A(0), A(1), . . . , A(m−1), are linearly independent. Let A′ =

(
A(0) | . . . | A(m−1)).

Then, each of the n − m + 1 linear systems

A′ · x = −A(m+i), 0 ≤ i < n − m,

and

A′ · x = d,

possesses a unique solution in Qm.
For 0 ≤ i < n − m let v′(i) ∈ Qm be the solution of the system of linear

equations A′ · x = −A(m+i) and v′(n−m) ∈ Qm be the solution of the system
A′ · x = d. Using Cramer’s rule we can explicitly compute the solutions v′(i)

for 0 ≤ i < n − m via

v′(i)k =
1

det(A′)
· det

(
(A(0), . . . , A(k−1),−A(m+i), A(k+1), . . . , A(m−1))

)
, k ∈ m,

and

v′(n−m)
k =

1
det(A′)

· det
(
(A(0), . . . , A(k−1), d, A(k+1), . . . , A(m−1))

)
, k ∈ m.

7.6 Lattice Basis Reduction 595

Setting M := max{‖A(0)‖, ‖A(1)‖, . . . , ‖A(n−1)‖, ‖d‖} and using Hadamard’s
inequality 7.5.1, we can bound the entries |v′(i)k |, k ∈ m, by

|v′(i)k | ≤ 1
|det(A′)| · ‖A(m+i)‖ · ∏

j∈m,j �=k
‖A(j)‖ ≤ 1

|det(A′)| · Mm

for i ∈ n − m and

|v′(n−m)
k | ≤ 1

|det(A′)| · ‖d‖ · ∏
j∈m,j �=k

‖A(j)‖ ≤ 1
|det(A′)| · Mm .

Since all of the above determinants are integral, it follows that

ṽ(i) := det(A′) · v′(i)

are integer vectors for 0 ≤ i ≤ n−m. Moreover, the vectors ṽ(i), 0 ≤ i ≤ n−m,
are solutions of

A′ · x = −det(A′) · A(m+i) and A′ · x = det(A′) · d ,

respectively. We note that ṽ(i) remains a solution of the linear system if we
multiply the linear system with a nonzero constant N.

By filling in sufficiently many zeros, the solutions ṽ(i) can be written as
vectors in Zn+1, such that

(A′ | A(m) | . . . | A(n−1) | −d) ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ(0)
0 ṽ(1)

0 · · · ṽ(n−m)
0

...
...

...

ṽ(0)
m−1 ṽ(1)

m−1 · · · ṽ(n−m)
m−1

det(A′) 0 · · · 0
0 det(A′)
...

. . .
0 det(A′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=: Ṽ ∈ Z(n+1)×(n−m+1)

= 0 .

The square of the Euclidean norm of the ith-column of Ṽ, 0 ≤ i ≤ n − m, can
be bounded by

‖Ṽ(i)‖2 ≤ m · M2m + det(A′)2 ≤ (m + 1) · M2m .

Multiplying Ṽ by the lower part of the generator matrix 7.2.7, i.e. by the rows
m, . . . , m + n, we get

V =

⎛⎜⎜⎜⎜⎜⎜⎝
−rmax 2c0 0 · · · 0
−rmax 0 2c1 · · · 0

...
...

. . .
...

−rmax 0 · · · · · · 2cn−1
rmax 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ · Ṽ .

596 7. Solving Systems of Diophantine Linear Equations

The resulting matrix V is the lower left part of a generator matrix of the lattice
of the form 7.2.8. An elementary calculation shows that the norm of column
V(i) of V, 0 ≤ i ≤ n − m, can be bounded by

‖V(i)‖ ≤ 2
√

n + 1 · rmax · ‖Ṽ(i)‖ ≤ 2
√

(n + 1)(m + 1) · rmax · Mm .

Now, let b(0), b(1), . . . , b(n) be an LLL-reduced basis of a lattice generated by
7.2.7. Using 7.6.15, the length of the first n − m + 1 basis vectors b(t), 0 ≤ t ≤
n −m, can be bounded by

‖b(t)‖2 ≤
(4

4δ − 1

)n
·max

{
‖V(i)‖2 | 0 ≤ i ≤ n − m

}
.

If we choose N such that

N ≥
(4

4δ − 1

)n/2
· 2

√
(m + 1)(n + 1) · rmax · Mm ,

then we have that

‖b(t)‖ < N

for 0 ≤ t ≤ n − m. Thus, the LLL-algorithm will produce a basis whose first
n−m + 1 vectors are all zero in the first m entries, for otherwise the Euclidean
length of such a column would be greater than N. Therefore, the LLL-reduced
basis has the form 7.2.8. �

For practical purposes it is interesting to note that in almost all cases it suffices
to choose N much smaller than the value of the previous bound.

Blockwise Korkine–Zolotarev reduction. As we have seen in Section 7.3, the
bounds for the length of the vectors of a Korkine–Zolotarev-reduced basis are
much better than the bounds 7.6.14 for an LLL-reduced basis of a lattice L.
Unfortunately, no algorithm is known which computes a Korkine–Zolotarev-
reduced basis in polynomial time.

In a sense, Korkine–Zolotarev reduction is a generalization of the LLL-algo-
rithm. In Step 2 of the LLL-algorithm, we compare the Euclidean length of
the projections of b(k) and b(k+1) onto the subspace 〈b(0), b(1), . . . , b(k−1)〉⊥. In
Korkine–Zolotarev reduction, we search for a nontrivial integer linear combi-
nation ukb(k) + uk+1b(k+1) + . . . + um−1b(m−1) which minimizes the Euclidean
length of

πk(ukb
(k) + uk+1b

(k+1) + . . . + um−1b(m−1)) .

No algorithm is known which finds the integer linear combination of the short-
est nontrivial projection in time which is polynomial in the number of vectors
(m − k). Therefore, Schnorr in [172] and [173] restricted the search to blocks

7.6 Lattice Basis Reduction 597

of β vectors at a time for some fixed integer constant β. A nontrivial integer
linear combination

ukb
(k) + uk+1b

(k+1) + . . . + uk+β−1b
(k+β−1)

minimizing the Euclidean length of

πk(ukb
(k) + uk+1b

(k+1) + . . . + uk+β−1b
(k+β−1))

is then found by exhaustive enumeration. This algorithm is called blockwise
Korkine–Zolotarev reduction. For a further description of improved practical ver-
sions, we refer to [173] and [174]. In a blockwise Korkine–Zolotarev-reduced
basis of a lattice of rank m the factor

(4
4δ−1

)(m−1)/2 in 7.6.14 can be replaced
by (1 + ε)m for any fixed ε > 0. Of course, the time complexity increases
exponentially as ε approaches 0.

To summarize the various reduction concepts, the Euclidean norm of the
vectors of a reduced basis can be bounded above as follows:

The LLL-algorithm computes a basis b(0), b(1), . . . , b(m−1) with

‖b(t)‖ ≤
(4

4δ − 1

)(m−1)/2
λt(L) for t ∈ m .

If b(0), b(1), . . . , b(m−1) is a Korkine–Zolotarev-reduced basis, then

‖b(t)‖ ≤
(t + 4

4

)1/2
λt(L) for t ∈ m .

If b(0), b(1), . . . , b(m−1) is a blockwise Korkine–Zolotarev-reduced basis,
then

‖b(0)‖ ≤ (1 + ε)mλ0(L) .

Exercises

E.7.6.1Exercise Let δ ∈ R with 1
4 < δ < 1. Show that for i ∈ m

‖b̂(i)‖2 + ∑
j∈i

1
4

(4
4δ − 1

)i−j
‖b̂(i)‖2 ≤

(4
4δ − 1

)i
‖b̂(i)‖2 .

E.7.6.2Exercise Let b(0), b(1), . . . , b(m−1) be a sequence of linearly independent vec-
tors in Rn and b̂(0), b̂(1), . . . , b̂(m−1) the associated Gram–Schmidt vectors. Any
vector v ∈ 〈b(0), b(1), . . . , b(m−1)〉 can then be written as v = ∑j∈m rjb(j) =
∑j∈m r′j b̂

(j) with rj, r′j ∈ R for j ∈ m. Prove the following: If t is the largest
index with rt �= 0, then rt = r′t.

598 7. Solving Systems of Diophantine Linear Equations

7.7 7.7 Lattice Point Enumeration

Let us again consider the problem of solving systems of Diophantine equa-
tions as described in 7.2.9. Usually, we are interested in finding all solutions
to this problem, or to conclude that there are none. In terms of the associ-
ated lattice 7.2.7, this mean that we wish to enumerate all lattice points which
are subject to a certain set of constraints. Such an approach has first been de-
scribed by Ritter [170] for {0, 1} problems. Here we solve the general problem
with arbitrary bounds on the variables.

A priori, a lattice L =
{

∑i∈m uib(i)
∣∣ ui ∈ Z

}
of rank m contains infinitely

many elements. It will turn out that there are bounds on the integers |ui|,
i ∈ m, which depend solely on the lattice basis b(0), b(1), . . . , b(m−1). These
bounds reduce the problem of finding vectors with the properties of 7.2.9 to a
finite subset of the original lattice. Therefore we are left with the problem of
enumerating all solution vectors of 7.2.9 in a finite subset of the lattice. In the
following, we will describe this search process in more detail.

One possibility to compute the above mentioned bounds on the integers
|ui| is by means of Linear Programming. This is not our approach here. In-
stead, we will use pruning tests to bound the integers |ui|. Compared to
the Linear Programming approach, these tests generally lead to a larger enu-
meration tree. Nevertheless, the pruning tests are very simple and easy to
compute, therefore the overall enumeration time seems to be faster than the
method based on Linear Programming. The pruning tests we use have quite
a long history and are based on the work of [44], [45], [105], [107], [110], [170].
From 7.2.10 we see that a solution vector v, i.e. a vector v of the form 7.2.11,
has the upper bounds

‖v‖2
2 ≤ (n + 1) · r2

max and7.7.1

‖v‖∞ ≤ rmax.7.7.2

The exhaustive enumeration is arranged as a backtracking algorithm starting
from un−m ∈ Z, which successively chooses values ut ∈ Z for t = n − m, n −
m − 1, . . . , 1, 0.

7.7.3 Definition In each level t of the backtracking algorithm w(t) = πt(∑n−m
j=t ujb(j))

is the projection of the linear combination of the already fixed variables ut,
ut+1, . . ., un−m into the subspace of Rn+1 which is orthogonal to the linear
span 〈b0, . . . , bt−1〉.

Starting from w(n−m+1) = 0, w(t) can be iteratively computed from w(t+1) by

w(t) =
(n−m

∑
i=t

uiµit

)
b̂(t) + w(t+1) ,7.7.4

7.7 Lattice Point Enumeration 599

with Gram-Schmidt coefficients µit. In each level t, n − m ≥ t ≥ 0, of the
backtrack algorithm we test all possible integer values for the variable ut. The
following tests allow to restrict the possible values of ut.

First pruning condition. For all j ≤ t the vectors b̂(j) are orthogonal to w(t+1)

and therefore

‖w(t)‖2
2 =

(n−m

∑
i=t

uiµit

)2

‖b̂(t)‖2
2 + ‖w(t+1)‖2

2 .

Further, we notice that w(0) =
n−m

∑
j=0

ujb
(j) . Using ‖w(j)‖2 ≥ ‖w(t)‖2 for j ≤ t

and 7.7.1 we can backtrack as soon as

‖w(t)‖2
2 > c := (n + 1) · r2

max .

For fixed ut+1, . . ., un−m, this gives a bound for ut:(
ut +

n−m

∑
i=t+1

uiµit

)2

≤ c − ‖w(t+1)‖2
2

‖b̂(t)‖2
2

.

This is the first pruning condition.

Second pruning condition. Let b
(i)

, i ∈ n−m + 1, be a basis of the dual lattice,
which is defined by the conditions 〈b(i)

, b(j)〉 = δij for 0 ≤ i, j ≤ n − m + 1.
If B is the matrix whose columns are the basis vectors b(i), i ∈ n − m, then
it was observed in [45] that ui = b

(i)� · B · u. Applying the inequality of

Cauchy–Schwarz, i.e. |b(i)� · (B · u)| ≤ ‖b
(i)‖2 · ‖B · u‖2, for i ∈ n − m + 1

then gives the bound

|ui| ≤ ‖b
(i)‖2 · ‖B · u‖2 ≤ ‖b

(i)‖2 ·
√

(n + 1) · r2
max

and similarly

|ui| ≤ ‖b
(i)‖1 · rmax .

Of course, the numbers ‖b
(i)‖1, ‖b

(i)‖2 can be precomputed before the enu-
meration.

Third pruning condition. The third test is an adaption to the special situation
that we are searching for an integer linear combination of the basis vectors
which consists solely of components whose absolute value is bounded by
rmax. It is based on the following theorem, see [170].

600 7. Solving Systems of Diophantine Linear Equations

7.7.5 Theorem If the given sequence of integers ut, ut+1, . . ., un−m ∈ Z can be extended
to u0, . . ., ut, . . ., un−m ∈ Z such that ∑i∈n−m+1 uib(i) has the form 7.2.11, then for
all yt, yt+1, . . ., yn−m ∈ R:∣∣∣∣ n−m

∑
i=t

yi
∥∥w(i)∥∥2

2

∣∣∣∣ ≤ rmax ·
∥∥n−m

∑
i=t

yiw
(i)∥∥

1 .

Proof: From 7.7.4 we see that 〈w(l), w(i)〉 = ‖w(i)‖2
2 for l < i. If w(0) has the

form 7.2.11 it follows from Hölder’s inequality, see exercise 5.1.2, and 7.7.2
that ∣∣∣∣ n−m

∑
i=t

yi
∥∥w(i)∥∥2

2

∣∣∣∣ =
∣∣∣∣ 〈w(0),

n−m

∑
i=t

yiw
(i)〉

∣∣∣∣
≤ ‖w(0)‖∞ ·

∥∥n−m

∑
i=t

yiw
(i)∥∥

1

≤ rmax ·
∥∥n−m

∑
i=t

yiw
(i)∥∥

1 . �

Of course the above inequality can be extended to arbitrary p-norms.

7.7.6 Remark We use this theorem in the enumeration algorithm in two ways.

First, we take (yt, yt+1, . . . , yn−m) = (1, 0, . . . , 0), which results in the test

‖w(t)‖2
2 ≤ rmax‖w(t)‖1 .7.7.7

Second, we will see that if the test 7.7.7 fails for some vector w(t) = xb̂(t) +
w(t+1), then it will also fail for all vectors w̃(t) = (x + r)b̂(t) + w(t+1) with
r ∈ Z and xr > 0. That means, we can stop the enumeration for these
values of r ∈ Z.
To show this, let x ∈ R and r ∈ Z such that xr > 0. For w(t) = xb̂(t) + w(t+1)

we define w̃(t) = (x + r)b̂(t) + w(t+1) and we set η := x
x+r . Then, it is easy

to see that

w(t) = ηw̃(t) + (1− η)w(t+1) and 0 < η < 1.

If w̃(t) can lead to a solution, then we set (yt, yt+1, . . . , yn−m) = (η, 1 −
η, 0, . . . , 0) and get with 7.7.5:

η‖w̃(t)‖2
2 + (1− η)‖w(t+1)‖2

2 ≤ rmax‖ηw̃(t) + (1− η)w(t+1)‖1 .

Together, it follows

‖w(t)‖2
2 ≤ η‖w̃(t)‖2

2 + (1− η)‖w(t+1)‖2
2

≤ rmax‖ηw̃(t) + (1− η)w(t+1)‖1

= rmax‖w(t)‖1 .

7.7 Lattice Point Enumeration 601

Therefore, if w̃(t) can lead to a solution, w(t) can also lead to a solution. On
the contrary, if w(t) cannot lead to a solution, i.e. if ‖w(t)‖2

2 > rmax‖w(t)‖1,
w̃(t) cannot lead to a solution for all w̃(t) = (x + r)b̂(t) + w(t+1) with r ∈ Z
and xr > 0.

7.7.8Algorithm (Lattice point enumeration) Given the generator matrix 7.2.7 of
the lattice L ⊂ Rm+n+1 of rank n + 1 from 7.2.7 all nonzero vectors v ∈ L such
that ‖v‖∞ ≤ rmax are determined.

Compute an LLL-reduced basis b(0), b(1), . . . , b(n) of the lattice L.

Delete the unnecessary columns and rows of the generator matrix accord-
ing to Section 7.2. The remaining basis b(0), b(1), . . . , b(n−m) ⊂ Rn+1 has
rank n − m + 1.

Compute the Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(n−m) together with the
Gram–Schmidt coefficients µij, see 7.4.2.

Set R := (n + 1) · r2
max.

The recursive backtracking algorithm enum() has two input parameters.
The first parameter t is the search level, it runs from n − m down to 0. The
second parameter w′ ⊂ Rn+1 is the vector which has been computed in the
level t + 1. The enumeration is initiated with the call of enum(n − m, 0).

(1) function enum(t, w′)
(2) begin

(3) firstprune := false
(4) yt := ∑n−m

i=t+1 uiµit

(5) ut :=
−yt�
(6) while true
(7) w :=

(
∑n−m

i=t uiµit
)
b̂(t) + w′

(8) if ‖w‖2 > R then return /* step back */

(9) if t > 0 then

(10) if prune(ut) then

(11) if firstprune then return /* step back */

(12) else

(13) next(ut)
(14) firstprune := true
(15) goto line (7)
(16) end if

(17) else

(18) enum(t − 1, w) /* step forward */

602 7. Solving Systems of Diophantine Linear Equations

(19) else /* t = 0 → solution */
(20) if w has the form 7.2.11 then print w
(21) next(ut)
(22) end while

(23) end �

The procedure next() in lines (13) and (21) determines the next possible integer
value of the variable ut. Initially, when entering a new level t, in line (5) ut is
set to be the closest integer value of −yt := −∑n−m

i=t+1 uiµit, say u1
t . The next

value u2
t of ut is the second closest integer to −yt then follows u3

t and so forth.
Therefore the values of ut alternate around −yt. If the function prune() returns
true for wt, then we do one more regular call of the procedure next() in line
(13), i.e. ut is set to be the next closest integer to −yt. In Fig. 7.7 this happens
while u4

t is determined.
After that, using 7.7.6, the enumeration proceeds only in this remaining

direction. Compare the computation of u5
t in Fig. 7.7. Finally, the second time

when the function prune() returns true, the algorithm steps back and increases
the enumeration level, see line (11).

u3
t u1

t u2
t u4

t u5
t

0 1 2 3 4 5

−yt

prune

Fig. 7.7 Enumeration in level t and pruning after u3
t

7.7.9 Example Suppose yt = −2.3 for 0 ≤ t ≤ n − m. Therefore, −yt = 2.3
and according to line (5), ut = round(−yt) =
2.3 + 1

2� = 2. First, as-
sume that the procedure prune() always return false. Therefore, in the subse-
quent calls of the procedure next() in line (21), the variable ut takes the values
3, 1, 4, 0, 5,−1, 6,

Now assume, after testing the values ut = 2 and 3, that the procedure
prune() returns true for ut = 1. Then the value of ut is set to 4 in line (13).

7.7 Lattice Point Enumeration 603

After subsequent calls of next() in line (21), ut takes the values 5, 6, 7 and so
forth until prune() returns true the next time. �

The function prune for the third pruning test according to 7.7.7 can be im-
plemented as follows.

7.7.10Algorithm

function prune(wt)
(1) if ‖w(t)‖2 ≤ rmax · ‖w(t)‖1

(2) return false
(3) else

(4) return true
(5) end if �

The first pruning test from page 599 is done in line (8) in 7.7.8, the second
pruning test from page 599 can be additionally added after line (6) in 7.7.8.

If in the forward step of the algorithm, i.e. in line (18) a new level t is en-
tered, then initially in the next call of enum() in line (5) ut is set to the closest
integer to −∑n−m

i=t+1 uiµit. Since

‖w(t)‖2
2 =

(
ut +

n−m

∑
i=t+1

uiµit

)2

‖b̂(t)‖2
2 + ‖w(t+1)‖2

2 ,

this choice of ut minimizes ‖w(t)‖2
2.

7.7.11Example We illustrate the algorithm by solving a system of Diophantine lin-
ear equations which occurs during the construction of linear codes with pre-
scribed minimum distance in Chapter 8, Example 8.4.4. In order to find a
(14, 3, 9)-code over F3 the following system must be solved:

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
14

⎞⎟⎟⎟⎠ ,

where x0 ∈ {0, 1, 2, 3, 4}, x1 ∈ {0, 1, 2}, x2 ∈ {0, 1, 2, 3} and xi ∈ {0, 1, 2, 3, 4, 5}
for i ∈ {3, 4, 5}. According to 7.2.7, the lattice is generated by the matrix

604 7. Solving Systems of Diophantine Linear Equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2000 2000 0 −1000 0 0
0 1000 1000 2000 0 −1000 0
0 0 3000 1000 0 0 −1000

−14000 3000 6000 4000 0 0 0
−60 30 0 0 0 0 0
−60 0 60 0 0 0 0
−60 0 0 40 0 0 0
−60 0 0 0 24 0 0
−60 0 0 0 0 24 0
−60 0 0 0 0 0 24

60 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where rmax = lcm(4, 2, 3, 5) = 60 and the constant N is set to N = 1000. In the
first step of the algorithm, the LLL-reduction is applied to the columns of the
above matrix. This results in the following new basis:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1000 0 0 0
0 0 0 0 −1000 0 0
0 0 0 0 0 0 1000
0 0 0 0 0 1000 0

−60 −60 0 0 0 −30 0
60 0 −60 0 0 0 0
0 20 100 0 0 40 0

−48 −12 −132 24 0 −48 0
−24 60 12 0 24 24 0

72 60 −60 0 0 24 −24
0 60 −60 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first three columns correspond to solutions of the above system. But the
first column corresponds to a solution where the right hand side of the above
system is not included since the last entry is equal to zero. The second column
corresponds to a solution, because all entries have absolute value at most 60.
The solution x = (x1, x2, . . . , x6)� of the original system of equations can now
be obtained by solving⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−60
0

20
−12

60
60
60

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−60 30 0 0 0 0 0
−60 0 60 0 0 0 0
−60 0 0 40 0 0 0
−60 0 0 0 24 0 0
−60 0 0 0 0 24 0
−60 0 0 0 0 0 24

60 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

7.8 Computing the Minimum Distance of Linear Codes 605

which results in x = (0, 1, 2, 2, 5, 5)� . For the exhaustive enumeration of all
solutions we can remove the unnecessary rows and columns and use the lattice
which is generated by the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−60 −60 0
60 0 −60
0 20 100

−48 −12 −132
−24 60 12

72 60 −60
0 60 −60

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Eventually, after 6 loops in the exhaustive enumeration step it is determined
that there are no further solutions. �

Exercises

E.7.7.1Exercise Use the computer software on the CD-ROM of the book to compute
the solution of the system of Diophantine linear equations from 7.7.11.

7.87.8 Computing the Minimum Distance of Linear Codes

Let C be a binary or ternary linear code. It is possible to compute the minimum
distance of such a code by using a variant of the lattice point enumeration
algorithm from Section 7.7. For this purpose, we note that in the binary case we
have −1 ≡ 1 mod 2 while in the ternary case −1 ≡ 2 mod 3. Thus, codewords
of binary or ternary codes can be represented by vectors with integral entries
in {0, 1,−1}.

Let F be a binary or ternary field, i.e. q = 2 or q = 3. Consider the lattice
LC which is spanned by the columns of the integral (n + k) × (k + n)-matrix

BC =

(
N · Γ� N · qIn

Ik 0

)
,

where Γ is a k × n generator matrix of the code C and N is a large integer
constant. The matrix qIn is used to reduce the integral linear combinations of
the columns of Γ� modulo q. Any lattice vector v ∈ LC with vi ∈ {0, 1,−1} for
i ∈ n corresponds to a codeword vC ∈ C and wt(vC) is the number of nonzero
entries in the first n coefficients of v. Thus, the minimum distance problem can

606 7. Solving Systems of Diophantine Linear Equations

be solved by finding a nonzero lattice vector with the least number (> 0) of
nonzero entries in the first n rows.

If the constant N is large enough, the reduced lattice basis contains k vec-
tors whose first n entries are all zero. These vectors can be removed. Further,
the lower k components are no longer necessary and can be removed, too. To
achieve an even better reduced basis, a useful strategy is to shuffle the remain-
ing basis vectors randomly and apply lattice basis reduction to the reordered
basis. This mixing and reduction step can be repeated several times. Finally,
the resulting basis is enumerated with 7.7.8, as described below. Here is an
example.

7.8.1 Example Since we write codewords as row vectors, we apply lattice basis re-
duction to rows in this example. So, the basis vectors are the rows of the gen-
erator matrix of the lattice LC.

The goal is to determine the minimum distance of the ternary Golay code.
It is also a quadratic-residue-code CQ(11, 6) over F3, see Section 4.4. A gener-
ator matrix is

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 2 1 2 0 1 0 0 0 0 0
0 2 2 1 2 0 1 0 0 0 0
0 0 2 2 1 2 0 1 0 0 0
0 0 0 2 2 1 2 0 1 0 0
0 0 0 0 2 2 1 2 0 1 0
0 0 0 0 0 2 2 1 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using N = 6, the generator matrix B�
C of the lattice LC is

B�
C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 12 6 12 0 6 0 0 0 0 0 1 0 0 0 0 0
0 12 12 6 12 0 6 0 0 0 0 0 1 0 0 0 0
0 0 12 12 6 12 0 6 0 0 0 0 0 1 0 0 0
0 0 0 12 12 6 12 0 6 0 0 0 0 0 1 0 0
0 0 0 0 12 12 6 12 0 6 0 0 0 0 0 1 0
0 0 0 0 0 12 12 6 12 0 6 0 0 0 0 0 1

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying the LLL-algorithm to the rows of B�
C gives

7.8 Computing the Minimum Distance of Linear Codes 607

BC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3
0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0
0 −6 −6 −6 0 −6 −6 0 −6 0 0 0 1 0 −1 0 0
0 0 0 0 0 −6 −6 6 −6 0 6 0 0 0 0 0 1

−6 0 −6 0 0 0 −6 −6 −6 0 −6 1 −1 0 1 0 −1
0 −6 −6 0 0 −6 0 0 0 6 6 0 1 0 1 1 1
0 0 −6 0 6 0 −6 0 −6 6 0 0 0 1 −1 1 0
0 −6 0 0 −6 0 −6 −6 −6 0 0 0 1 −1 −1 0 0
0 0 6 0 6 6 6 0 0 0 6 0 0 −1 1 0 1
0 0 6 0 0 6 0 6 6 6 0 0 0 −1 1 1 0

−6 −6 0 0 0 −6 0 0 −6 0 −6 1 0 1 1 0 −1
−6 6 0 0 −6 6 6 0 0 0 0 1 1 0 0 0 0
−6 −6 −6 0 0 0 −6 0 0 −6 0 1 0 −1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We delete the unnecessary rows and columns, see 7.2.8. Then scaling and mix-
ing the remaining rows gives⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 0 0 −1 0 0 0 1 1
0 0 1 0 1 1 1 0 0 0 1
0 0 1 0 0 1 0 1 1 1 0

−1 0 −1 0 0 0 −1 −1 −1 0 −1
−1 −1 0 0 0 −1 0 0 −1 0 −1
−1 1 0 0 −1 1 1 0 0 0 0

0 0 0 0 0 −1 −1 1 −1 0 1
0 −1 0 0 −1 0 −1 −1 −1 0 0
0 −1 −1 −1 0 −1 −1 0 −1 0 0
0 0 −1 0 1 0 −1 0 −1 1 0

−1 −1 −1 0 0 0 −1 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

LLL-reduction of this lattice produces the following basis⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 0 0 −1 0 0 0 1 1
−1 1 0 0 −1 1 1 0 0 0 0

0 0 0 −1 0 0 −1 0 −1 −1 −1
0 1 0 −1 0 1 0 1 −1 0 0
0 0 0 0 0 −1 −1 1 −1 0 1

−1 0 −1 1 0 0 0 −1 0 1 0
0 −1 0 −1 1 0 0 0 −1 0 1
0 −1 0 −1 0 0 −1 1 0 1 0

−1 0 1 1 0 0 1 0 0 0 −1
0 0 1 1 −1 1 0 −1 0 0 0

−1 0 0 1 0 1 0 0 1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The first row corresponds to a codeword of weight 5:

v = (0,−1,−1, 0, 0,−1, 0, 0, 0, 1, 1).

After 57 executions of the loop, algorithm 7.7.8 with the improvements de-
scribed below determines that there exists no nonzero vector with weight ≤ 4.
That means the minimum distance of the ternary Golay code is equal to d = 5.

�

608 7. Solving Systems of Diophantine Linear Equations

If we use a systematic generator matrix of C of the form Γ = (Ik | A), A ∈
Fk×n−k

q , we can do even better. We use the lattice LC which is generated by

BC =

(
A� qIn−k

Ik 0

)
,

It has the advantage that the constant N is not longer needed. In order to find a
nonzero codeword of minimal weight, we have to find a nonzero lattice vector
v in the rank n lattice LC ⊆ Zn with ‖v‖∞ = 1 which contains the minimal
number of nonzero entries. Note that if wt(v) = s and ‖v‖∞ = 1, then also
‖v‖2

2 = s.
The minimum distance of C can be computed by a variation of 7.7.8. Ini-

tially, in 7.7.8 we set R = d − 1, where d is an upper bound for the minimum
distance of C. If no other bound is known, d is the weight of the shortest code-
word in the generator matrix.

Then, the backtracking of the lattice point enumeration algorithm as de-
scribed in 7.7.8 is started. If a lattice vector v ∈ LC with ‖v‖∞ = 1 and
‖v‖2

2 ≤ R is found during the enumeration then it is printed, after line (24)
R is set to R := ‖v‖2 − 1, and the backtracking is continued. If it is known that
the minimum distance of C is a multiple of some integer c – for example if C is
a doubly even code – then we can even set R := ‖v‖2 − c in this situation.

Further improvements in the enumeration can be obtained by modifying
the lattice point enumeration of Section 7.7. For an integer 0 < t < n and a
vector v ∈ Rn, we define

maxt(v)

to be the sum of the t largest absolute values of entries of v. For example, if
v = (−1, 2.5,−3, 0.5)� , then max2(v) = 3 + 2.5 = 5.5.

Let R = d− 1, where d > 1 is an upper bound on the minimum distance of
the code C and let b(0), b(1), . . . , b(n−1) be a basis of the lattice LC. With the no-
tation of Section 7.7, 7.7.5 can be adapted to the computation of the minimum
distance of a linear code in the following way.

7.8.2 Theorem Let t ∈ n. If for fixed ut, ut+1, . . . , un−1 ∈ Z there exist coefficients u0,
u1, . . . , ut−1 ∈ Z with ‖∑i∈n uib(i)‖∞ ≤ 1 and ‖∑i∈n uib(i)‖2

2 ≤ R, then for all yt,
yt+1, . . . , yn−1 ∈ R: ∣∣∣∣ n−1

∑
i=t

yi
∥∥w(i)∥∥2

2

∣∣∣∣ ≤ maxR

(n−1

∑
i=t

yiw
(i)

)
.7.8.3

7.8 Computing the Minimum Distance of Linear Codes 609

Proof: We have 〈w(l), w(i)〉 = 〈w(i), w(i)〉 for 0 ≤ l < i < n. If there exist
u0, u1, . . . , un−1 ∈ Z such that for w(0) = ∑i∈n uib(i) simultaneously

‖w(0)‖∞ = 1 and ‖w(0)‖2
2 ≤ R ,

then it is easy to see that for an arbitrary vector v ∈ Rn the inequality

|〈w(0), v〉| ≤ maxR(v)

holds. It follows that∣∣∣∣ n−1

∑
i=t

yi〈w(i), w(i)〉
∣∣∣∣ =

∣∣∣∣n−1

∑
i=t

yi〈w(0), w(i)〉
∣∣∣∣

=
∣∣∣∣ 〈w(0),

n−1

∑
i=t

yiw
(i)〉

∣∣∣∣
≤ maxR

(n−1

∑
i=t

yiw
(i)

)
. �

Therefore, during the computation of the minimum distance of linear codes
we can replace in the enumeration algorithm 7.7.8 the test in 7.7.5 by 7.8.3.
Experiments show that 7.7.8 together with 7.8.3 can determine the minimum
distance of quadratic-residue-codes for values of n at least up to 100.

7.8.4Example For the quadratic-residue-code CQ(37, 19) over F3, whose generator
matrix is generated cyclically by the vector

(1,1,2,2,1,2,2,0,2,2,2,0,2,2,1,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

the LLL-algorithm determines the vector

(0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,0,0,0,1,2,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0)

of weight 10. The enumeration 7.7.8 together with 7.8.3 needs 586 799 itera-
tions to show that there is no codeword of lower weight. The parity extension
of CQ(37, 19) has minimum weight 11. A vector with minimum weight is

(1,2,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,1,2,0,0,0,0,2,0,2,0,0,0,0,2,1,0,0,0,0,0,2). �

7.8.5Example The generator matrix of the quadratic-residue-code CQ(61, 31) over
F3 is generated by the vector

(1,0,2,1,2,2,0,0,0,1,0,2,1,1,2,1,2,1,1,2,0,1,0,0,0,2,2,1,2,0,

1,0).

610 7. Solving Systems of Diophantine Linear Equations

The LLL-algorithm computes the vector

(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,1,0,

0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,2,0,2,2,0,0,0,0,0,2,0,0,1,0,0,0)

which has weight 11. The exhaustive enumeration determines that there is
no vector of lower weight. The parity extension of CQ(61, 31) has minimum
weight 12. A vector with minimum weight is

(2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,2,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,1,2,0,0,1,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0). �

7.8.6 Example The generator matrix of the quadratic-residue-code CQ(71, 36) over
F3 is generated by the vector

(2,2,2,2,2,2,2,0,0,2,2,1,1,2,2,2,0,2,2,2,0,1,1,0,2,0,2,0,1,0,0,0,0,0,0,1,

0,0).

The LLL-algorithm computes

(0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,

2,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,1,0,0,0,0,2,0,2,0,2,0,0,2,0,0,0,0,0)

of weight 17. The parity extension of CQ(71, 36) has 18 as upper bound for
minimum distance. A vector attaining this bound is

(0,0,0,1,0,0,0,1,1,1,2,1,0,0,2,0,0,1,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,

1,0,0,0,2,0,0,0,0,1,0,0,1,0,0,0,1,0,0,2,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0). �

7.8.7 Example The generator matrix of the quadratic-residue-code CQ(83, 42) over
F3 is generated by

(2,0,1,2,1,2,0,0,1,2,2,0,0,2,1,2,1,1,0,0,1,1,1,1,0,0,2,2,1,1,2,1,0,2,0,1,0,0,1,2,1,

1,0).

The LLL-algorithm computes

(0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,2,0,0,2,0,1,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,2,0,0,0,0,0,0,2,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,1,0,2,0,0,1,1,0,0,0,0).

Therefore, an upper bound for the minimum distance is 20. It follows that
the parity extension of CQ(83, 42) has 21 as upper bound for the minimum
distance.

The generator matrix of the quadratic-residue-code CQ(97, 49) over F3 is
generated by the vector

(1,1,1,0,0,1,1,0,2,1,0,0,0,1,0,2,1,2,0,0,2,2,2,0,1,0,2,2,2,0,0,2,1,2,0,1,0,0,0,1,2,0,1,1,0,0,1,1,

1,0).

7.8 Computing the Minimum Distance of Linear Codes 611

The LLL-algorithm finds

(0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,2,0,2,0,1,0,0,0,

0,0,2,0,2,1,1,0,0,0,0,1,0,0,0,2,0,1,1,1,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,2,0,1,0,0,0).

Therefore, an upper bound for the minimum distance is 23. �

If the above examples are reproduced with the software from the enclosed CD-
ROM the advantages and disadvantages of this algorithm can be seen. The
LLL-algorithm is very good in computing codewords of small weight very
fast. The second phase, which deterministically computes a codeword with
minimum weight and proves that there are no codewords of smaller weight
still needs exponential time.

Exercises

E.7.8.1Exercise Use the computer software on the CD-ROM of the book to compute
the minimum distance of the binary Golay code with generator matrix

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Compute the minimum distance of this code over F3.

