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6 Enumeration of Isometry Classes
We have gathered linear codes in classes of codes which are of the same quality
with respect to error correction. Since the metric structure of a code determines
its error correction properties we have introduced the notion of isometric codes
and the just mentioned classes of codes are called isometry classes. Each of these
classes is an orbit of an isometry group of Fn

q . The linear isometry classes are
orbits under the linear isometry group Mn(q), the semilinear isometry classes
orbits under the semilinear isometry group. This chapter is concerned with the
enumeration of isometry classes of codes using methods from Combinatorics,
in particular Pólya’s Theory of Enumeration. This theory deals with the combina-
torial properties of finite group actions. In particular, properties of the acting
group like numbers of fixed points are used to get results about the number
of orbits. The fundamental tool is the Lemma of Cauchy-Frobenius, which was
introduced in 3.4.2 and refinements thereof. To count the isometry classes of
codes we need detailed information about the isometry groups. Depending
on whether we count linear isometry classes (in the first sections) or semilin-
ear isometry classes (in Section 6.7) we have to study the projective linear or
the projective semilinear groups over the appropriate finite fields.

An interesting and helpful notion introduced in Section 6.2 is the concept of
indecomposable linear codes. Each code can be written in an essentially unique
way as a sum of such codes. We derive the number of indecomposable linear
codes, obtaining this way an idea of the complexity of the construction of all
the isometry classes of indecomposable linear codes. Furthermore, a special
class of indecomposable codes, the critical indecomposable codes, are described
in detail in Section 6.5.

For the actual computation of the number of linearly nonisometric (n, k)-
codes over Fq, we need detailed information about the natural group action
of the projective linear group PGLk(q) on PG∗

k−1(q). Especially, we describe
the conjugacy classes of the linear group GLk(q) by using the Jacobi normal
form of the automorphisms of Fk

q. This approach is based on module theoretic
considerations already introduced in Chapter 4. In Section 6.3 we derive a
complete description of the cycle index for the natural action of PGLk(q) on
PG∗

k−1(q).

Numerical results concerning the enumeration of linear isometry classes of
codes are displayed in Section 6.4. Extended tables, computed by SYMMET-
RICA (cf. [190]), can be found online [58] or on the attached CD.

Closely related to the enumeration of nonisometric codes is the random gen-
eration of linear codes. The algorithm presented in Section 6.6 generates repre-
sentatives of linear isometry classes which are distributed uniformly at random
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over all classes of (n,≤ k)-codes over Fp for given n, k and p. We use a quite
general method which is due to Dixon and Wilf [46]. This method applies
whenever the structure under consideration is defined as an orbit of a finite
group acting on a finite set.

At the very end of this chapter in Section 6.8 we prove that every local
isometry between two (n, k)-codes over Fq can be extended to a global isom-
etry of Fn

q . This demonstrates that the seemingly weaker condition of a local
isometry is equivalent to our approach from Section 1.4 and Section 1.5. (See
also [84, second edition, Section 9.1].)

Normal bases of a finite extension Fq over Fp have been introduced in Sec-
tion 3.3. Finally, in Section 6.9 we prove that it is always possible to construct
a normal basis of a finite field extension over a finite field. The proof uses
methods from module theory introduced in Chapter 4 and Section 6.3.

6.1 6.1 Enumeration of Linear Isometry Classes

To begin with, we recall that two linear codes C and C′ in Fn
q are said to be

linearly isometric if there exists a linear isometry

ι : Fn
q → Fn

q

which maps C onto C′. The group of all linear isometries on Fn
q , the linear

isometry group, was indicated in Section 1.4 by

Mn(q).

It is the set of all n × n-matrices over Fq which contain in each of their rows
and columns exactly one nonzero element of Fq. The application of a linear
isometry to a generator matrix (via right multiplication) amounts to a permu-
tation of its columns and/or a multiplication of columns by nonzero elements
of Fq. We have seen in 1.4.12 that Mn(q) is isomorphic to a wreath product,

Mn(q) � F∗
q �n Sn.

The linear isometry group acts on Fn
q , whence also on its power set, and it

has already been mentioned that the corresponding set of orbits,

F∗
q �n Sn\\2Fn

q ,

is the set of isometry classes of block codes. Some of them are sets of subspaces,
the linear isometry classes of linear codes. Using the notation

U (n, q) :=
{

U
∣∣ U ≤ Fn

q

}
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for the set of all subspaces of Fn
q , we express the set of linear isometry classes

of linear codes in Fn
q as

F∗
q �n Sn\\ U (n, q).

This set can still be refined since each linear isometry preserves both the di-
mension and the minimum distance of a code. For this reason, we introduce
the following subsets of U (n, q)

U (n, k, q) :=
{

U ≤ Fn
q
∣∣ dim(U) = k

}
, 1 ≤ k ≤ n,

and
U(n, k, d, q) :=

{
U ≤ Fn

q
∣∣ dim(U) = k, dist(U) = d

}
.

Thus we obtain

6.1.1The metric classification of linear codes The set of nontrivial linear isometry
classes of linear codes of length n over Fq is the set of orbits

F∗
q �n Sn\\(U(n, q) \ {0}) =

n⋃
k=1

dmax(n,k,q)⋃
d=1

F∗
q �n Sn\\ U (n, k, d, q).

Each transversal of the orbit set

F∗
q �n Sn\\ U (n, k, d, q)

is a complete system of pairwise linearly nonisometric linear (n, k, d, q)-codes. �

6.1.2Example Considering the set of linear isometry classes of linear (n, k)-codes
instead of the set of all (n, k)-codes reduces dramatically the number of objects
to be classified. For instance, the numbers

[ n
k

]
(2) of k-dimensional subspaces

of Fn
2 (cf. Exercise 6.1.3) are displayed in Table 6.1.
With the methods described in this section we will be able to determine

the numbers Unk2 given in Table 6.7. They are the numbers of linear isome-
try classes of binary (n, k)-codes. From these tables we deduce, for instance,
that there are more than 53 million 4-dimensional subspaces of F10

2 but only
516 linear isometry classes of binary (10, 4)-codes. Later on (cf. Table 6.7) we
will see that there are only 276 isometry classes of (10, 4)-codes without zero
columns. Using methods from Chapter 9, we will obtain that there are only 19
isometry classes of (10, 4)-codes with optimal minimum distance d = 4. �

If we want to apply the metric classification of linear codes for enumerative
or constructive purposes, we run into problems since the sets U (n, k, q) are
abstract sets of vector spaces. But we know from Linear Algebra that each
code possesses bases, k-tuples of linearly independent elements. They are the
generator matrices of a code. Still there is a problem concerning complexity.
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Table 6.1 Values of
[ n

k

]
(2)

n\k 1 2 3 4 5
1 1 0 0 0 0
2 3 1 0 0 0
3 7 7 1 0 0
4 15 35 15 1 0
5 31 155 155 31 1
6 63 651 1 395 651 63
7 127 2 667 11 811 11 811 2 667
8 255 10 795 97 155 200 787 97 155
9 511 43 435 788 035 3 309 747 3 309 747

10 1 023 174 251 6 347 715 53 743 987 109 221 651
11 2 047 698 027 50 955 971 866 251 507 3 548 836 819
12 4 095 2 794 155 408 345 795 13 910 980 083 114 429 029 715

Table 6.2 Values of Unk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 3 1 0 0 0 0
4 4 6 4 1 0 0 0
5 5 10 10 5 1 0 0
6 6 16 22 16 6 1 0
7 7 23 43 43 23 7 1
8 8 32 77 106 77 32 8
9 9 43 131 240 240 131 43

10 10 56 213 516 705 516 213
11 11 71 333 1 060 1 988 1 988 1 060
12 12 89 507 2 108 5 468 7 664 5 468
13 13 109 751 4 064 14 724 29 765 29 765
14 14 132 1 088 7 641 39 006 117 169 173 035
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Each (n, k)-code has many bases, except for very trivial cases. Hence, if we
want to describe a subspace by a generator matrix, we are faced with a great
variety of possibilities. So, instead of the abstract set of vector spaces we have
to manage a big set of matrices. In 1.4.14 and Exercise 1.4.14 we have already
introduced for n ≥ k ≥ 1 the set of all generator matrices of (n, k)-codes over
Fq as the set

Fk×n,k
q :=

{
Γ
∣∣ Γ ∈ Fk×n

q , rank(Γ) = k
}

of all k × n-matrices over Fq of rank k. In the Exercises 1.4.14 and 1.4.16 we
have described actions of the general linear group GLk(q) and of the full mono-
mial group Mn(q) on Fk×n,k

q , and we have shown that these two actions com-
mute. According to Exercise 1.4.10, two commuting group actions GX and HX
induce an action of the direct product G × H on X.

Since, according to Exercise 1.4.14, exactly the left multiplications by ele-
ments A ∈ GLk(q) transform a generator matrix of the space C ∈ U (n, k, q)
into another generator matrix of C, the orbits of GLk(q) on Fk×n,k

q correspond
to the subspaces of dimension k:

U(n, k, q) = GLk(q)\\Fk×n,k
q .

The operations of elements of the linear isometry group commute with the
operations of the elements of GLk(q), and so the set of linear isometry classes
of (n, k)-codes is equal to the set of orbits

(GLk(q)× F∗
q �n Sn)\\Fk×n,k

q 6.1.3

with respect to the action

(GLk(q)× F∗
q �n Sn)× Fk×n,k

q → Fk×n,k
q ,

defined by
((A, B), Γ) �→ A · Γ · B�.

Using Exercise 1.4.9 (which says that the set of orbits of a direct product is the
set of orbits of one factor on the set of orbits of the other factor) we rephrase
6.1.3 as

GLk(q)\\
(
F∗

q �n Sn\\Fk×n,k
q

)
. 6.1.4

Because of the condition on the rank, the set Fk×n,k
q is not easy to handle. We

may thus prefer to work with the even larger set Fk×n
q of all k × n-matrices

without any condition on the rank. In 6.1.15 and Exercise 6.1.6 it will be clear
that it is possible to determine the number of isometry classes of linear (n, k)-
codes from |GLk(q)\\(F∗

q �n Sn\\Fk×n
q )| and |GLk−1(q)\\(F∗

q �n Sn\\F(k−1)×n
q )|.

The set Fk×n
q can be reduced a bit, since matrices which contain zero columns

are not of interest for coding theoretic purposes. (Such columns are redundant
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in coding theory, since the corresponding components are zero in each code-
word, and so they give no information. Moreover, two generator matrices of
the same code have the same number of columns of zeros, and these columns
occur at the same column indices. Generator matrices of isometric codes also
have the same number of columns of zeros, but these columns need not oc-
cur at the same column indices.) For this reason we introduce the following
notion:

6.1.5 Definition (nonredundant code) A linear code C is called nonredundant if its
generator matrix Γ contains no zero column.  
In fact, this condition is independent of the choice of the generator matrix Γ.

It is, therefore, reasonable to restrict attention to the set of all k× n-matrices
without zero columns. The advantage is that the set of all k × n-matrices over
Fq which contain no zero column can be written as a set of mappings

(Fk
q\{0})n =

{
f
∣∣ f : n → Fk

q\{0}
}

.

The generator matrix Γ of a nonredundant (n, k)-code is identified with the
mapping Γ : n → Fk

q\{0} where Γ(i)� is the i-th column of Γ.
Rewriting our problem in these terms shows that instead of the situation

in 6.1.4 we are now faced with the set of orbits

GLk(q)\\
(
F∗

q �n Sn\\(Fk
q\{0})n

)
.6.1.6

According to Exercise 1.4.9, the general linear group acts in the following
way on F∗

q �n Sn\\(Fk
q\{0})n:

GLk(q)×
(
F∗

q �n Sn\\(Fk
q\{0})n

)
→ F∗

q �n Sn\\(Fk
q\{0})n,

(A, F∗
q �n Sn( f )) �→ F∗

q �n Sn(Af ).6.1.7

When writing Af , we identify the function f ∈ (Fk
q\{0})n with the corre-

sponding k × n-matrix ( f (0)� | . . . | f (n − 1)�). Then Af = (A · f (0)� | . . . |
A · f (n − 1)�) and, therefore, Af (i) = (A · f (i)�)� = f (i) · A�.

For this reason, we first investigate the action of a wreath product in more
detail and explain how to split it into two group actions which are easier to
handle (cf. [123], [124]).

6.1.8 Lehmann’s Lemma Let GX and HY be two group actions. For the natural action of
the wreath product H �X G on YX, defined in 1.4.9, we have:

1. If the mapping ϕ is given by

ϕ : YX → (H\\Y)X : f �→ ϕ( f ) where ϕ( f )(x) = H( f (x)),
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then the mapping

Φ : H �X G\\YX → G\\((H\\Y)X) : H �X G( f ) �→ G(ϕ( f ))

is a bijection, where G acts canonically (cf. 1.4.7) on this set of functions.

2. The orbit of f ∈ YX under the action of H �X G is given by

H �X G( f ) = ϕ−1(Φ(H �X G( f ))) = ϕ−1(G(ϕ( f ))).

Proof: 1. For f1, f2 ∈ YX the following facts are equivalent:

Φ(H �X G( f1)) = Φ(H �X G( f2))

G(ϕ( f1)) = G(ϕ( f2))

ϕ( f2) ∈ G(ϕ( f1))

ϕ( f2) = ϕ( f1) ◦ g for some g ∈ G

ϕ( f2)(x) = ϕ( f1)(gx) for some g ∈ G and all x ∈ X

H( f2(x)) = H( f1(gx)) for some g ∈ G and all x ∈ X

f2(x) ∈ H( f1(gx)) for some g ∈ G and all x ∈ X

f2 = (ψ; g) f1 for some (ψ; g) ∈ H �X G

f2 ∈ H �X G( f1)

H �X G( f2) = H �X G( f1).

Reading these implications from the bottom to the top, we deduce that Φ is
well-defined. Reading them the other way round it follows that Φ is injective.
In order to prove that Φ is surjective, we first realize that ϕ is surjective, i.e.
each F ∈ (H\\Y)X is of the form ϕ( f ) = F for some f ∈ YX. (The function f
should be determined in such a way that for each x ∈ X the value f (x) belongs
to F(x), i.e. F(x) = H( f (x)).) If ϕ( f ) = F, then

Φ(H �X G( f )) = G(ϕ( f )) = G(F),

whence Φ is also surjective.
2. In order to prove the second assertion, consider a function F ∈ (H\\Y)X

and assume that F = ϕ( f ) for some f ∈ YX. Then

ϕ−1({F}) = ϕ−1({ϕ( f )}) = H �X {1} ( f )

=
{

f̃ ∈ YX
∣∣∣ f̃ (x) = ψ(x) f (x) for ψ ∈ HX and x ∈ X

}
.

Next we prove that

ϕ( f ◦ g) = ϕ( f ) ◦ g, g ∈ G.
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(The reader should realize that on the left hand side we are faced with the
natural action of G on YX and on the right hand side with the natural action
of G on (H\\Y)X.) The action of G commutes with the application of ϕ, since
ϕ( f ◦ g)(x) = H( f (g(x))) and (ϕ( f ) ◦ g)(x) = ϕ( f )(gx) = H( f (gx)) for all
x ∈ X. Finally we obtain

H �X G( f ) =
{
(ψ; g) f

∣∣ (ψ; g) ∈ H �X G
}

=
{

x �→ ψ(x) f (g−1x)
∣∣∣ ψ ∈ HX, g ∈ G

}
=

⋃
g∈G

{
x �→ ψ(x) f (g−1x)

∣∣∣ ψ ∈ HX
}

=
⋃
g∈G

H �X {1} ( f ◦ g −1)

=
⋃
g∈G

ϕ−1
({

ϕ( f ◦ g −1)
})

=
⋃
g∈G

ϕ−1
({

ϕ( f ) ◦ g −1
})

= ϕ−1
( ⋃

g∈G

{
ϕ( f ) ◦ g −1

})
= ϕ−1

({
ϕ( f ) ◦ g −1

∣∣∣ g ∈ G
})

= ϕ−1 (G(ϕ( f )))

= ϕ−1 (Φ(H �X G( f ))) . �

An application of Lehmann’s Lemma allows us to rewrite 6.1.6 in the form

GLk(q)\\
(
Sn\\

(
F∗

q\\(Fk
q\{0})

)n)
.6.1.9

This result shows the close connection between finite geometry and the theory
of linear codes: The set of orbits of F∗

q on Fk
q\{0} is the set of elements (also

called points) of the (k − 1)-dimensional projective space PG∗
k−1(q) (cf. Sec-

tion 3.7). Hence, we actually investigate

GLk(q)\\
(
Sn\\PG∗

k−1(q)
n).6.1.10

Here the symmetric group Sn acts in a natural way on the domain of the map-
pings in PG∗

k−1(q)
n. How does GLk(q) act on the orbits Sn\\PG∗

k−1(q)
n? From

6.1.7 we deduce that the application of A ∈ GLk(q) to the F∗
q �n Sn-orbit of

f ∈ (Fk
q\{0})n yields the orbit F∗

q �n Sn(Af ). If ϕ is the mapping defined as
in Lehmann’s Lemma, then the elements of A(Sn(F)) for F ∈ PG∗

k−1(q)
n are
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the elements in ϕ
(
F∗

q �n Sn(Af )
)

for some f ∈ ϕ−1({F}). We want to describe
this set again as an orbit under a suitable group action. For this reason, in Sec-
tion 3.7 we have deduced from Exercise 1.4.13 the natural action of GLk(q) on
PG∗

k−1(q) as described in 3.7.4. Here it is repeated once again.

GLk(q)× PG∗
k−1(q) → PG∗

k−1(q) : (A, F∗
q (v)) �→ F∗

q(v · A�).

6.1.11Lemma Consider A ∈ GLk(q) and let ϕ be given by

ϕ : (Fk
q\{0})n → PG∗

k−1(q)
n : f �→ ϕ( f ) where ϕ( f )(i) := F∗

q ( f (i)).

Then
ϕ
(
F∗

q �n Sn(Af )
)

= A(Sn(ϕ( f ))), f ∈ (Fk
q\{0})n,

where on the right hand side the action of GLk(q) on Sn\\PG∗
k−1(q)

n appears, which
is induced by the natural action of GLk(q) on PG∗

k−1(q).

Proof: From the second part of Lehmann’s Lemma we obtain

ϕ(F∗
q �n Sn(Af )) = Sn(ϕ(Af )).

Using Exercise 1.4.13 we deduce that ϕ(Af ) = Aϕ( f ), since

ϕ(Af )(i) = F∗
q( f (i) · A�) = AF∗

q ( f (i)) = Aϕ( f )(i)

for all i ∈ n. Thus, Sn(ϕ(Af )) = Sn(Aϕ( f )) and this orbit equals A(Sn(ϕ( f ))),
since A operates by matrix multiplication from the left, and π permutes the
columns of (the matrix) f . �

This way we have just replaced the action of GLk(q) × F∗
q �n Sn on (Fk

q\{0})n

by the action of GLk(q) × Sn on PG∗
k−1(q)

n, where this action is of the form
1.4.11. Therefore, GLk(q) acts only on the range PG∗

k−1(q) and Sn acts only on
the domain n. Instead of 6.1.10 we are finally dealing with

(GLk(q)× Sn)\\PG∗
k−1(q)

n. 6.1.12

This proves the following fundamental result:

6.1.13Theorem The linear isometry classes of linear, nonredundant (n, k)-codes over Fq

are the orbits of GLk(q) × Sn on PG∗
k−1(q)

n, the representatives of which are of rank
k. They form a subset of

GLk(q)\\
(
Sn\\PG∗

k−1(q)
n).

The inner orbit set Sn\\PG∗
k−1(q)

n can be represented by any complete system of
mappings f : n → PG∗

k−1(q) of pairwise different content

c( f ) : PG∗
k−1(q) → N : y �→ | f−1({y})|.
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Hence, the set of all linear isometry classes of linear, nonredundant (n, k)-codes over
Fq can be identified with the set of orbits of GLk(q) on the set of mappings
f ∈ PG∗

k−1(q)
n of pairwise different content which form k × n-matrices of rank k. �

Moreover, the class of bijective functions f : n → PG∗
k−1(q) is the class of

the simplex-codes. This fact demonstrates the particular role of simplex-codes
and their dual codes, the Hamming-codes.

6.1.14 Definition (projective codes and projective matrices) A nonredundant (n, k)-
code C is called projective if the columns of any generator matrix Γ of C are
pairwise linearly independent. In this case, we call Γ a projective matrix. In
other words, a k× n matrix Γ over Fq is called projective if no two columns are
linearly dependent. If n = 1 we require that Γ is not the zero matrix.  
Thus, projective codes have projective generator matrices and vice-versa. The
columns of a projective generator matrix Γ are never zero and are representa-
tives of pairwise distinct one-dimensional (punctured) subspaces of Fk

q. There-
fore, they give rise to an injective mapping

Γ : n → PGk−1(q) or Γ : n → PG∗
k−1(q).

Here we prefer to use PG∗
k−1(q) since its elements are orbits under the action

of F∗
q . It is straightforward to verify that being projective is a property of the

isometry class of a code. That is, for linearly isometric codes C1 and C2 the
code C2 is projective if and only if C1 has this property.

Generalizing this definition, an arbitrary (n, k)-code C is called injective or
reduced if the mapping

Γ : n → PG∗
k−1(q) ∪ {0},

corresponding to the columns of an arbitrary generator matrix Γ of C, is injec-
tive.

The numbers of linear isometry classes of linear codes will be obtained
from a refinement of the metric classification 6.1.1. Besides the total number of
linear isometry classes, we also evaluate the number of linear isometry classes
of nonredundant codes as well as of projective codes.

The set of all k-dimensional nonredundant subspaces of Fn
q is indicated as

V(n, k, q).

By V(n, k, q) we denote the set of all projective U ∈ V(n, k, q), and we write
U (n, k, q) for the set of all injective U ∈ U(n, k, q). For the sets of linear isome-
try classes in U(n, k, q) and V(n, k, q) we use the symbols

U n,k,q := Mn(q)\\ U(n, k, q), Vn,k,q := Mn(q)\\V(n, k, q),
U n,k,q := Mn(q)\\U(n, k, q), Vn,k,q := Mn(q)\\V(n, k, q).
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In addition, we introduce the following sets:

T n,k,q :=
⋃
l≤k

Vn,l,q (= Vn,≤k,q ),

T n,k,q :=
⋃
l≤k

Vn,l,q (= Vn,≤k,q ),

comprising the classes of linear (n, l)-codes of dimension l ≤ k. The cardinali-
ties of these sets are denoted by

Tnkq, Tnkq, Vnkq, Vnkq, Unkq, Unkq.

Of course, there is a close connection between these numbers. Using Exer-
cise 6.1.6 we obtain the following basic results for the enumeration of linear
isometry classes of linear codes (cf. Exercise 6.1.6):

6.1.15Corollary

Tnkq is the number of orbits computed in 6.1.12,

Tnkq = |(GLk(q)× Sn)\\PG∗
k−1(q)

n| = |GLk(q)\\
(
Sn\\PG∗

k−1(q)
n)|.

If k > 1, then Tn,k−1,q is also the number of GLk(q) × Sn-orbits of mappings
f ∈ PG∗

k−1(q)
n corresponding to matrices of rank not greater than k − 1.

Tnkq is the number of GLk(q) × Sn-orbits on the set of injective functions in
PG∗

k−1(q)
n,

Tnkq = |(GLk(q)× Sn)\\PG∗
k−1(q)

n
inj| = |GLk(q)\\

(
Sn\\PG∗

k−1(q)
n
inj

)
|.

Vnkq = Tnkq − Tn,k−1,q, Vnkq = Tnkq − Tn,k−1,q for 1 < k ≤ n.

Unkq = ∑n
i=k Vikq, Ukkq = Vkkq, and Unkq = Vn−1,k,q + Vnkq for n > k.

The initial values for these recursions are Vn1q = 1 for n ∈ N∗, V11q = 1 and
Vn1q = 0 for n > 1. �

This way we have expressed Unkq, Unkq, Vnkq, and Vnkq in terms of Tnkq and
Tnkq. The remaining problem is the evaluation of Tnkq and Tnkq. In order to ob-
tain these numbers we could, of course, use the Lemma of Cauchy–Frobenius
3.4.2 and compute the average number of fixed points. But it is our intention
to get a more general result which gives a generating function for these num-
bers. It will turn out that the weighted form of the Lemma of Cauchy–Frobenius
is more suitable for this purpose. For this reason we introduce weight func-
tions. They are mappings defined on the set, on which the group acts, which
are constant on each orbit. The range of these weight functions is usually a
commutative ring (mostly a polynomial ring) which contains Q as a subring
since we need to allow division by |G|. The following generalization of the
Lemma of Cauchy–Frobenius allows us to count orbits with additional prop-
erties expressed by weights.
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6.1.16 The Lemma of Cauchy–Frobenius, weighted form Consider a finite action GX
and suppose that w : X → R is a mapping from X into a commutative ring R which
contains Q as a subring. If w is constant on the orbits of G on X, then, for each
transversal T of the set of orbits we have

∑
t∈T

w(t) =
1
|G| ∑

g∈G
∑

x∈Xg

w(x).

Proof: The following identities are obvious, possibly up to the final one which
uses the fact that w is constant on the orbits:

∑
g∈G

∑
x∈Xg

w(x) = ∑
x∈X

∑
g∈Gx

w(x) = ∑
x∈X

|Gx|w(x)

= |G| ∑
x∈X

|G(x)|−1w(x) = |G| ∑
t∈T

w(t). �

If the values w( f ) of the weight function are monic monomials over Q,
then the values in

{
w( f ) | f ∈ YX}

are linearly independent. Hence, the right
hand side of the weighted form of the Lemma of Cauchy–Frobenius yields the
number of orbits of any given weight.

For group actions on YX of the form 1.4.7 we introduce, for any given map-
ping W : Y → R, the multiplicative weight w : YX → R, by

w( f ) := ∏
x∈X

W( f (x)).6.1.17

This mapping is clearly constant on the orbits of G on YX.
We recall from elementary theory of permutation groups that the permu-

tation g : x �→ gx induced by GX possesses a decomposition into pairwise
disjoint cycles. If this decomposition consists of ai(g) cycles of length i, for
i = 1, . . . , |X|, then the sequence

(a1(g), a2(g), . . . , a|X|(g))

is called the cycle type of g. In other words, ai(g) is the number of orbits of
length i of the group 〈 g 〉 on X, i.e.

ai(g) =
∣∣{ω ∈ 〈 g 〉\\X

∣∣ |ω| = i
}∣∣ =

∣∣{ω ∈ 〈 g 〉\\X
∣∣ |ω| = i

}∣∣ .
The cycle type of g satisfies ∑n

i=1 iai(g) = |X|, since X is the disjoint union of
the cycles of 〈 g 〉.

An application of the weighted form of the Lemma of Cauchy–Frobenius
gives:
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6.1.18Pólya’s Theorem Let GX be a finite group action which induces according to 1.4.7
a group action on the finite set of mappings YX. Let R be a commutative ring which
contains Q as a subring. If T is a transversal of G\\YX, then for each W : Y → R
and the corresponding multiplicative weight w : YX → R we have

∑
t∈T

w(t) =
1
|G| ∑

g∈G

|X|
∏
i=1

(
∑
y∈Y

W(y)i

)ai(g)

=
1
|G| ∑

π∈G

|X|
∏
i=1

(
∑
y∈Y

W(y)i

)ai(π)

,

where ai(g) or ai(π) is the number of cyclic factors of length i of the permutation
g ∈ SX or π ∈ SX. �

The most general multiplicative weight function is obtained by considering
the elements of Y as algebraically independent indeterminates in the polyno-
mial ring Q[Y]. The mapping W : Y → Q[Y] which takes y ∈ Y to itself gives
rise to the multiplicative weight

w : YX → Q[Y] : f �→ ∏
x∈X

f (x) = ∏
y∈Y

y| f−1({y})|.

The image of f is a monic monomial in Q[Y], which uniquely describes the
content (cf. 6.1.13)

c( f ) : Y → N : y �→
∣∣∣ f−1({y})

∣∣∣
of f . The sum of weights of the elements in a transversal T of the orbits is

∑
t∈T

w(t) =
1
|G| ∑

g∈G

|X|
∏
i=1

(
∑
y∈Y

yi

)ai(g)

.

This result can be formulated – as it was already done by G. Pólya – in terms
of the cycle index polynomial corresponding to the action GX.

6.1.19Definition (cycle index polynomial) If G is a finite group acting on a finite set
X, then the cycle index C(G, X) of the action GX is the polynomial

C(G, X) :=
1
|G| ∑

g∈G

|X|
∏
i=1

zai(g)
i ∈ Q[z1, z2, . . . , z|X|],

where (a1(g), . . . , a|X|(g)) is the cycle type of g.  
Pólya’s Theorem shows that the sum of the weights of the elements of a

transversal can be obtained from the cycle index by replacing the indetermi-
nate zi by the sum of the i-th powers of all weights, ∑y∈Y W(y)i, i.e.

∑
t∈T

w(t) = C(G, X)
∣∣
zi:=∑y W(y)i.

Our aim is to evaluate the generating function for Tnkq. For fixed k and q,
this is the formal power series whose coefficient of xn is Tnkq. For this reason
we still give a short introduction to
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6.1.20 The ring of formal power series over a ring Let R be an integral domain, then
R[[x]], the ring of formal power series over R in the indeterminate x, is given
by

R[[x]] =

{
∑
n≥0

anxn
∣∣∣ an ∈ R, n ∈ Z, n ≥ 0

}
.

Together with addition and multiplication

∑
n≥0

anxn + ∑
n≥0

bnxn := ∑
n≥0

(an + bn)xn

(
∑
n≥0

anxn

)
·
(

∑
n≥0

bnxn

)
:= ∑

n≥0

(
n

∑
r=0

arbn−r

)
xn,

R[[x]] is an integral domain.
If f is a nonzero formal power series of the form f = ∑n≥N anxn ∈ R[[x]]

with aN �= 0, then N is called the order of f , for short

ord( f ) = N.

For technical reasons, we associate the zero series with the order +∞.
A family ( fj)j∈ J is called summable if for each n ≥ 0 the cardinality of the

index set
Jn :=

{
j ∈ J | ord( fj) ≤ n

}
is finite. In this case we set

∑
j∈ J

fj := ∑
n≥0

snxn,

where sn is the coefficient of xn in the (finite) sum

∑
j∈ Jn

fj.

Finally, if (an)n≥0 is an arbitrary sequence of numbers, then the ordinary gen-
erating function for this sequence is given by

∑
n≥0

anxn.

Using this, we can now prove the decisive result we need in order to enu-
merate linear codes:

6.1.21 Theorem Let HY be a finite group action. The generating function for the number of
(H × Sn)-orbits on Yn is

∑
n∈N

|(H × Sn)\\Yn| · xn = C(H,Y)
∣∣
zi:=∑∞

j=0 xi·j.

For the subset Yn
inj of the injective functions in Yn we obtain

∑
n∈N

|(H × Sn)\\Yn
inj| · xn = C(H,Y)

∣∣
zi :=1+xi.
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Proof: 1. From Exercise 1.4.9 it follows that

(H × Sn)\\Yn = H\\ (Sn\\Yn) .

Thus, according to Exercise 6.1.1, the orbit (H × Sn)\\Yn corresponds to the set
of H-orbits on the set of mappings f ∈ Yn of different content. The content
c( f ) of f ∈ Yn maps y ∈ Y to c( f )(y) := | f−1({y})|, the cardinality of the
inverse image of y. It is a decomposition of n into |Y| summands. Such a
decomposition can be viewed as a mapping ϕ ∈ NY such that

∑
y∈Y

ϕ(y) = n.

2. If we now define a weight

W : N → Q[x] : W(n) := xn,

then we obtain the first assertion directly from the following generalization
of 6.1.18.

Since the action of H on NY is not a finite group action, we need a general-
ization of Pólya’s Theorem. For ϕ ∈ NY we define the weight w(ϕ) by

w(ϕ) := ∏
y∈Y

W(ϕ(y)) = x∑y∈Y ϕ(y).

Then ϕ is the content of some f ∈ Yn if and only if w(ϕ) = xn. Thus, the set of
Sn-orbits on Yn is in bijection to the set

NY
n :=

{
ϕ ∈ NY

∣∣∣ w(ϕ) = xn
}

.

Moreover, the (H × Sn)-orbits on Yn correspond to the H-orbits on NY
n , where

H acts on the domain Y as introduced in 1.4.7. The three families (xn)n≥0,
(|(H × Sn)\\Yn| xn)n≥0, and

(
|NY

n |xn)
n≥0 are summable in Q [[x]], which is the

ring of formal power series in the indeterminate x over Q. Hence,

∑
n∈N

xn = ∑
n∈N

W(n), ∑
n∈N

|(H × Sn)\\Yn| xn, ∑
n∈N

|NY
n |xn

exist as elements of Q [[x]]. Since NY is the disjoint union of NY
n for n ∈ N, the

last sum is equal to ∑ϕ∈NY w(ϕ). Moreover, all elements of an orbit ω = H(ϕ)
have the same weight, which allows us to set w(ω) := w(ϕ). Consequently,
we get

∑
n∈N

|(H × Sn)\\Yn| xn = ∑
n∈N

|H\\NY
n |xn = ∑

ω∈H\\NY

w(ω).

Since (w(ϕ))ϕ∈NY is a summable family, also (w(ϕ))ϕ∈(NY)h
is summable for

h ∈ H, where (NY)h is the set of fixed points of h. Moreover,
(
|Hϕ|w(ϕ)

)
ϕ∈NY
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is summable, where Hϕ is the stabilizer of ϕ. Following the ideas of the proof
of Pólya’s Theorem, we determine the sum of the weights of the fixed points
of h ∈ H in NY as

∑
ϕ∈(NY)h

w(ϕ) =
|Y|
∏
i=1

(
∑

n∈N
W(n)i

)ai(h)

,

and finally

∑
ω∈H\\NY

w(ω) = C(H,Y)
∣∣
zi=∑n∈N W(n)i = C(H,Y)

∣∣
zi=∑n∈N xi·n .

3. The second assertion follows similarly, since the contents of injective func-
tions are decompositions whose summands are either 0 or 1. Thus, instead
of NY we consider {0, 1}Y , and the weight W : {0, 1} → Q[x] is defined by
W(0) := 1 and W(1) := x. This gives the second assertion about the generat-
ing function for the number of orbits of injective functions. �

We are now in a position to derive the generating functions for the numbers

Tnkq = |(GLk(q)× Sn)\\PG∗
k−1(q)

n|

and
Tnkq = |(GLk(q)× Sn)\\PG∗

k−1(q)
n
inj|

by an application of the last theorem. These numbers are numbers of orbits
of the general linear group. As pointed out in Section 3.7, we can restrict our
attention to the projective linear group

PGLk(q) := GLk(q)/Z k,

which is the factor group over the center Z k of the general linear group. This
reduction is possible, since the action of the general linear group is an action
on mappings (to be exact, on orbits of mappings), the range of which is the
projective space PG∗

k−1(q). It proves

6.1.22 Corollary Since the general linear group GLk(q) operates as the projective linear
group PGLk(q) on the projective space PG∗

k−1(q), we have

Tnkq = GLk(q)\\(Sn\\PG∗
k−1(q)

n) = PGLk(q)\\
(
Sn\\PG∗

k−1(q)
n)

and

Tnkq = GLk(q)\\(Sn\\PG∗
k−1(q)

n
inj) = PGLk(q)\\

(
Sn\\PG∗

k−1(q)
n
inj
)
. �

Using these identities we obtain, by an application of 6.1.21, the following
result [61]:
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6.1.23Corollary The generating functions for the numbers Tnkq and Tnkq can be obtained
from the cycle index of the natural action of the projective linear group on the projective
space in the following way:

∑
n∈N

Tnkqx
n = C(PGLk(q), PG∗

k−1(q))
∣∣
zi :=∑∞

j=0 xi·j ,

and

∑
n∈N

Tnkqx
n = C(PGLk(q), PG∗

k−1(q))
∣∣
zi:=1+xi. �

6.1.24Example Let us consider isometry classes of binary linear codes. Since the
wreath product F∗

2 �n Sn is isomorphic to the symmetric group Sn, we are faced
with an action of Sn × GLk(2) on (Fk

2 \ {0})n. In this situation the projective
linear group is simply the linear group, and from 6.1.23 we obtain that

∞

∑
n=0

Tnk2x
n = C(GLk(2), Fk

2 \ {0})
∣∣
zi :=∑∞

j=0 xi·j,

and
∞

∑
n=0

Tnk2x
n = C(GLk(2), Fk

2 \ {0})
∣∣
zi :=1+xi.

These cycle indices are known for q = 2, see [50], [60], [82], [83], [184], and
programs for their evaluation are implemented in SYMMETRICA ([190]), so
that tables can be determined easily. Comparing Tables 6.2 and 6.1 shows that
the set of isometry classes of (n, k)-codes is much smaller than the set of of all
(n, k)-codes for given parameters n and k. �

If the cycle indices C(PGLk(q), PG∗
k−1(q)) are known for general q, it is pos-

sible to evaluate the numbers Tnkq and Tnkq, from which we can deduce Vnkq,
Vnkq, Unkq, and Unkq for arbitrary fields Fq. A method for computing these cy-
cle indices is described in Section 6.3. Finally, in Section 6.4 we present several
tables of these numbers which were calculated using SYMMETRICA (cf. [59]).
They extend the results of D. Slepian on binary codes, see [184]. It is also pos-
sible to determine the number of linear isometry classes of linear (n, k)-codes
over Fq by using the software of the attached CD for moderate parameters n,
k and q.

For later applications to the construction of transversals of isometry classes
of projective codes in Chapter 9 we mention the following two facts: From
Exercise 6.1.2 it follows that

Sn\\PG∗
k−1(q)

n
inj =

(
PG∗

k−1(q)
n

)
,
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the set of all n-subsets of PG∗
k−1(q). This implies

T n,k,q = PGLk(q)\\
(

PG∗
k−1(q)
n

)
.6.1.25

Exercises

E.6.1.1 Exercise Let the symmetric group Sn act on the set of mappings Yn as de-
scribed in 1.4.7. Show that two mappings f1, f2 ∈ Yn belong to the same orbit
if and only if they are of the same content, i.e.

| f−1
1 ({y})| = | f−1

2 ({y})| for all y ∈ Y.

E.6.1.2 Exercise Let Yn
inj denote the set of mappings f ∈ Yn which are injective, i.e.

with | f−1({y})| ≤ 1, for all y ∈ Y. Show that the Sn-orbits on this set can be
represented by n-subsets of Y.

E.6.1.3 Exercise Let x be an indeterminate over R. Two nonnegative integers n and k
define the rational function

[ n
k

]
by

[n
k

]
:=

⎧⎪⎨⎪⎩
[n]!

[k]![n − k]!
if k ≤ n,

0 otherwise,

where
[0]! := 1, [n]! := [n][n − 1] · · · [1], n ≥ 1,

and [n] = 1 + x + . . . + xn−1 for n ≥ 1. Prove that the number of subspaces of
dimension k of Fn

q is the value of the Gauss-polynomial
[ n

k

]
at q:

| U (n, k, q)| =
[n

k

]
(q) :=

(xn − 1) · · · (xn−k+1 − 1)
(xk − 1) · · · (x − 1)

∣∣∣
x=q

=
(qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
.

The numbers
[ n

k

]
(q) are known as the q-binomial numbers. In the notation of

Section 3.7, we have θn−1(q) = |U (n, 1, q)| =
[ n

1

]
(q) = qn−1

q−1 .

E.6.1.4 Exercise Show that the action of Mn(q) on U (n, k, q) can be restricted to ac-
tions on V(n, k, q), on U(n, k, q), and on V(n, k, q), which means that these sub-
sets of U(n, k, q) are unions of orbits of the linear isometry group.



6.1 Enumeration of Linear Isometry Classes 461

E.6.1.5Exercise Prove that for finite actions GX, HY and the corresponding canonical
actions on YX the following enumeration formulae hold true:

|G\\YX| =
1
|G| ∑

g∈G
|Y|c(g) = C(G, X)

∣∣
zi :=|Y|,

where c(g) := ∑i ai(g) = |〈 g 〉\\X| denotes the number of cycles in the cycle
decomposition of the permutation g, while

|(H × G)\\YX| =
1

|H||G| ∑
(h,g)∈H×G

|X|
∏
i=1

|Yhi |ai(g) =
1
|H| ∑

h∈H
C(G, X)

∣∣
zi:=|Yhi |

and
|H �X G\\YX| = C(G, X)

∣∣
zi:=|H\\Y|.

E.6.1.6Exercise Prove the assertions in 6.1.15. Show that the rank of a matrix corre-
sponding to a mapping Γ ∈ PG∗

k−1(q)
n does not depend on the choice of the

representatives of the elements Γ(i) in PG∗
k−1(q). Check that the matrices in

the orbit (GLk(q)× Sn)(Γ) are all of the same rank.
For � < k, show that the mapping

GL�(q) → GLk(q) : A �→
(

A 0
0 Ik−�

)
,

where Ir is the unit matrix of rank r, is an embedding of GL�(q) into GLk(q).
Consider the natural embedding of F�

q in Fk
q given by v �→ (v | 0k−�).

If the function Γ ∈ PG∗
k−1(q)

n describes a matrix of rank � < k, find a
function Γ′′ ∈ PG∗

�−1(q)
n which in a natural way can be identified with a suit-

able element of the orbit (GLk(q) × Sn)(Γ). Show that all elements of the or-
bit (GL�(q) × Sn)(Γ′′) correspond in the same way to elements of the orbit
(GLk(q) × Sn)(Γ). (Hint: For finding Γ′′, determine by elementary row oper-
ations on Γ a matrix Γ′ in which the last k − � rows consist of zeros only. The
mapping Γ′′ can be obtained from Γ′ by omitting the last k − � entries in each
column.)

In order to prove that for k > 1 the number of GLk(q)× Sn-orbits of map-
pings Γ ∈ PG∗

k−1(q)
n corresponding to matrices of rank not greater than k − 1

is equal to Tn,k−1,q, show that all matrices in the orbit (GLk(q)× Sn)(Γ) in

which the last row consists of zeros only, i.e. GLk(q)(Γ) $ Γ′ =

(
Γ′′

0n

)
with Γ′′ corresponding to a mapping in PG∗

k−2(q)
n, are of the form(

A B
0k−1 D

)
· Γ′ · Mπ =

(
A · Γ′′ · Mπ

0n

)
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for some A ∈ GLk−1(q), B ∈ F(k−1)×1
q , D ∈ GL1(q) = F∗

q and a permuta-
tion matrix Mπ for π ∈ Sn. This is the (GLk−1(q) × Sn)-orbit of Γ′′. Thus
the (GLk(q) × Sn)-orbits of matrices Γ of rank less than k and without zero
columns correspond to the (GLk−1(q)× Sn)-orbits on PG∗

k−2(q)
n.

E.6.1.7 Exercise Let R be a ring. Consider the set S of all sequences (rn)n≥0 with
rn ∈ R for n ≥ 0. Prove that this set together with addition and multiplication

(rn)n≥0 + (sn)n≥0 = (rn + sn)n≥0, (rn)n≥0, (sn)n≥0 ∈ S,

(rn)n≥0 · (sn)n≥0 = (tn)n≥0, tn =
n

∑
i=0

risn−i, (rn)n≥0, (sn)n≥0 ∈ S,

is a ring. In addition, show that

S is commutative if and only if R is commutative,

S is a ring with 1 if and only if R is a ring with 1,

S is an integral domain if and only if R is an integral domain.

Now assume that R is an integral domain. Let s = (rn)n≥0 be an element of
S different from 0. Then N = min {n ≥ 0 | rn �= 0} is called the order of s, in
short ord(s). The order of 0 is defined to be +∞. Show that the mapping

d : S × S → R : d(s(1), s(2)) :=
{

2− ord(s(1)−s(2)) if s(1) �= s(2),
0 if s(1) = s(2),

is a metric on S. This metric induces a topology on S, the order topology. Prove
that a topological basis of the system of neighborhoods of s(0) ∈ S is given by

Un(s(0)) =
{

s ∈ S | ord(s − s(0)) > n
}

, n ∈ N.

A family (s(n))n≥0 with s(n) ∈ S is called summable if the following limit exists
with respect to the order topology:

lim
N→∞

N

∑
n=0

s(n).

Prove that (s(n))n≥0 is summable in S if and only if limn→∞ ord(s(n)) = +∞,
which is equivalent to limn→∞ s(n) = 0.

If (s(n))n≥0 is a summable family, then we set

∑
n≥0

s(n) = lim
N→∞

(
N

∑
n=0

s(n)

)
.
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We identify the elements r of R with the series (r, 0, 0, . . .) in S. Consider the
particular element x = (0, 1, 0 . . .) ∈ S. Show that any sequence (rn)n≥0 ∈ S
can be written as

∑
n≥0

rnxn,

where xn is the n-fold product of x introduced in Exercise 1.6.6. This represen-
tation as a sum makes sense, since the family (rnxn)n≥0 is summable.

Finally, we identify S with the ring R[[x]] of formal power series over r in
the indeterminate x.

E.6.1.8Exercise Prove the following formulae for the order of formal series over an
integral domain R. For f , g ∈ R[[x]] we have ord( f + g) ≥ min{ord( f ), ord(g)}
and ord( f g) = ord( f ) + ord(g). We use the convention +∞ > n for all n ∈ N,
+∞ ≤ +∞, and (+∞) + n = n + (+∞) = (+∞) + (+∞) = +∞ for n ∈ N.

6.26.2 Indecomposable Linear Codes

The enumerative formulae just derived and the corresponding tables of num-
bers give us a good idea about the multitude of linear isometry classes of linear
codes without zero columns in their generator matrices. But we are mainly in-
terested in the optimal codes, i.e. in the (n, k)-codes with maximal minimum
distance d. Hence, we are in fact interested in a small fraction of the total va-
riety of linear isometry classes which we have enumerated. To begin with, we
mention that there exists a Decomposition Theorem for linear codes. D. Slepian
has shown in [184], that every linear code can be decomposed in an essentially
unique way into an outer direct sum of indecomposable codes, and we recall
from Section 2.2, that the minimum distance of an outer direct sum is the least
among the minimum distances of its components. This motivates enumera-
tion and the construction of the linear isometry classes of indecomposable linear
codes, the generator matrices of which do not contain zero columns and whose
minimum distance is maximal, for given parameters n, k, q. In this section we
restrict our investigations to nonredundant codes.

6.2.1Definition (indecomposable codes) We call a code decomposable, if it is linearly
isometric to a code with a generator matrix in the form of a block diagonal
matrix

Γ =

(
Γ0 0
0 Γ1

)
=: Γ0 � Γ1,

consisting of two generator matrices Γi of linear (ni, ki)-codes with 1 ≤ ki ≤ ni

for i ∈ 2. Hence, it is linearly isometric to the outer direct sum of at least
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two codes. Correspondingly, we speak about a decomposable generator matrix.
Otherwise, both the code and its generator matrix are said to be indecomposable.

 
At first we prove a Decomposition Theorem for linear codes. For this pur-
pose we recall some concepts and facts from Linear Algebra about indepen-
dent families. We are dealing with finite families S of elements of Fk

q. These
are finite sequences S = (vi)i∈n of vectors vi ∈ Fk

q of length n ≥ 1. The fam-
ilies S0 = (v0i)i∈n0, . . . , Sr−1 = (vr−1,i)i∈nr−1 in Fk

q are called independent if an
equation of the form

∑
i∈r

∑
j∈ni

αijvij = 0, αij ∈ Fq,

always implies that

∑
j∈ni

αijvij = 0 for i ∈ r.

In other words, there are no linear relations between vectors of different inde-
pendent families.

The proof of the next lemma is left to the reader.

6.2.2 Lemma If S0, . . . , Sr−1 are independent families in Fk
q, and if Ri are nonempty

subfamilies of Si, then also R0, . . . , Rr−1 are independent families in Fk
q. �

A family S = (vi)i∈I in Fk
q is called indecomposable, if it cannot be expressed

as the union of at least two (nonempty) independent subfamilies (vi)i∈I′ and
(vi)i∈I′′ where I is the disjoint union I′ ∪ I′′. Otherwise, S is called decompos-
able. In the sequel, we want to prove that any decomposable sequence can
be decomposed uniquely into the union of indecomposable subfamilies. For
doing this, we need some notions about linear combinations.

Let S = (vi)i∈n be a family in Fk
q. A linear combination

∑
i∈n

αivi, αi ∈ Fq,

is called irreducible, if there does not exist a proper partial sum (consisting of
at least one and at most n − 1 summands) which yields zero. Otherwise, the
linear combination is called reducible.

6.2.3 Lemma Let S be a family of vectors in Fk
q. Any reducible linear combination of

vectors of S which yields zero can be decomposed into a sum of irreducible linear
combinations.
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Proof: If the linear combination

∑
i∈n

αivi = 0

is reducible, then there exist partial sums which also yield zero. Assume that

αi0vi0 + . . . + αir−1vir−1 = 0

is such a partial sum of minimal length. Then this partial sum is irreducible.
Moreover,

∑
i∈n

αivi − ∑
j∈r

αijvij = 0

is also a partial sum which yields zero. Either it is also irreducible, or we can
repeat the procedure just described, in order to obtain, after a finite number of
steps, the desired decomposition into irreducible linear combinations. �

Using the sequence S = (vi)i∈n, we can form qn − 1 different linear com-
binations such that not all coefficients αi are equal to zero. Omitting all those
linear combinations which do not yield the value zero and also those which
are reducible, we end up with a finite list L of irreducible linear combinations
which sum up to zero.

Two vectors vi and vj from S are called directly connected, if there exists a
linear combination in L with coefficients αi �= 0 �= αj. A vector of S which
does not occur in any of the linear combinations in L is called directly connected
with itself . Two vectors vi and vj from S are called connected, if there exists an
integer m ≥ 0 and a sequence (vi0 , vi1 , . . . , vim) of vectors in S such that i = i0,
j = im and vir is directly connected with vir+1 for r ∈ m. In order to indicate
that vi and vj are connected we write vi ∼ vj and also i ∼ j. (When v is directly
connected with itself we also write v ∼ v.)

6.2.4Lemma Let S = (vi)i∈n be a family in Fk
q.

1. The relation ∼, introduced above, is an equivalence relation on the set of vectors vi

for i ∈ n. The equivalence class of vi corresponds to the subfamily (vj)j∼i.

2. The family (vj)j∼i is indecomposable.

3. Let {vi | i ∈ I′} be a complete set of representatives with respect to ∼. Then the
families (vj)j∼i for i ∈ I′ are independent.

4. If R is an indecomposable family in S, then there exists exactly one i ∈ I′ such
that R is a subfamily of (vj)j∼i.
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Proof: The proof of the first part is obvious. If we suppose that (vj)j∼i is
decomposable, then there exist two nonempty, disjoint sets I′ and I′′ such that
I′ ∪ I′′ = {j | j ∼ i} and (vj)j∈I′ and (vj)j∈I′′ are independent families. Choose
j1 ∈ I′ and j2 ∈ I′′. Since vj1 ∼ vj2 , there exists a sequence vj1 = vi0 ∼ . . . ∼
vim = vj2 such that vir is directly connected with vir+1 for r ∈ m. From the
special choice of j1 and j2 in I′ and I′′, respectively, we derive the existence of
at least one index r such that ir belongs to I′ and ir+1 belongs to I′′. Then vir
and vir+1 are directly connected, which is a contradiction to the fact that they
belong to two independent families. Consequently, (vj)j∼i is indecomposable.

In order to prove the third assertion, assume that

∑
i∈I′

∑
j∼i

αijvj = 0

is a linear combination, which contains vectors from at least two different fam-
ilies (vj)j∼i with nonzero coefficients. Then this linear combination is not ir-
reducible, since otherwise vectors of different equivalence classes would be
directly connected. According to 6.2.3, this reducible linear combination can
be written as a sum of irreducible linear combinations, each of which is zero.
Since they are irreducible, none of these linear combinations contains vectors
from different equivalence classes. Forming the sum of all irreducible linear
combinations containing vectors from (vj)j∼i we get

∑
j∼i

αijvj = 0

for each i ∈ I′.
Assume that R = (vi)i∈ J for J ⊆ n is an indecomposable subfamily of S.

For i ∈ I′ let Ri = (vj)j∈ J, j∼i. We have just proved that (vj)j∼i for i ∈ I′ are
independent families. Then there is exactly one i0 ∈ I′ such that Ri0 is not
empty. If we suppose on the contrary that there are at least two nonempty
families, then, according to 6.2.2, they are also independent families. Hence,
R is the union of at least two independent families, which is a contradiction
to the assumption that R is indecomposable. This finishes the proof of the last
assertion. �

Based on these results we prove the next

6.2.5 Theorem A finite family S of vectors in Fk
q can be written in a unique way as the

union of independent, indecomposable sets.

Proof: According to 6.2.4, we obtain a decomposition of S into independent,
indecomposable families by determining the equivalence classes (vj)j∼i for
i ∈ I′.
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Conversely, consider a decomposition of S into independent, indecompos-
able families Rk for k in an index set K. From the last statement of 6.2.4 we
deduce that for each k ∈ K there exists exactly one i ∈ I′ such that Rk is a
subfamily of (vj)j∼i. Moreover, since the family (vj)j∼i is indecomposable, R�

is not a subfamily of (vj)j∼i for � �= k. Hence, the indecomposable families
Rk correspond in a unique way to the independent, indecomposable families
(vj)j∼i for i ∈ I′. �

6.2.6Remark Let S denote the family of columns of a generator matrix Γ of an (n, k)-
code C. Then C is indecomposable if and only if S is indecomposable. This
characterization is, first of all, independent of the choice of a generator matrix
Γ of C, since the columns of A · Γ, for A ∈ GLk(q), satisfy the same dependency
relations as the columns of Γ. Secondly, this characterization is independent
of the choice of the representative C of its linear isometry class, since a linear
isometry permutes the columns of Γ and multiplies them by nonzero elements
of F∗

q . (See Exercise 6.2.1.)  
We are now in a position to prove Slepian’s Theorem:

6.2.7The Decomposition Theorem for Linear Codes Any (n, k)-code C over Fq is
linearly isometric to an outer direct sum of indecomposable codes Ci:

C � C0 � . . . � Cr−1.

This decomposition is unique in the following sense. If we are given another decompo-
sition of C of the form

C � C′
0 � . . . � C′

r′−1

with indecomposable codes C′
i , then r = r′ and there exists a permutation σ ∈ Sr so

that Ci and C′
σ(i) are linearly isometric.

Proof: We only have to prove the uniqueness of such a decomposition. As-
sume that C is linearly isometric to two decompositions, say,

C0 � . . . � Cr−1

and
C′

0 � . . . � C′
r′−1

with indecomposable (ni, ki)-codes Ci and indecomposable (n′
i, k

′
i)-codes C′

i
with generator matrices Γi and Γ′

i, respectively. The parameters ni, n′
i, ki, and

k′i satisfy the equations

∑
i∈r

ni = n = ∑
i∈r′

n′
i and ∑

i∈r
ki = k = ∑

i∈r′
k′i. 6.2.8
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By assumption there exist matrices A ∈ GLk(q) and B ∈ Mn(q) such that

A · Γ′ · B = Γ6.2.9

such that
Γ := Γ0 � . . . � Γr−1

and
Γ′ := Γ′

0 � . . . � Γ′
r′−1.

The columns of Γ decompose into indecomposable families S0, . . . , Sr−1, where
S0 consists of the first n0 columns of Γ, S1 of the next n1 columns, and so
on. According to 6.2.9, the columns of A · Γ′ · B = Γ and Γ′ · B satisfy the
same dependency relations. Hence, the first n0 columns of Γ′ · B form an
independent set S̃0, the following n1 an independent set S̃1, and so on.

On the other hand, Γ′ · B arises from Γ′ by reordering the columns and
multiplying the columns by elements of F∗

q . Hence after some permutation,
the columns of Γ′ · B satisfy the same dependency relations as the columns of
Γ′. But the columns of Γ′ decompose into r′ independent families which are
given by the decomposition of Γ′. The first n′

0 columns form an independent
set S′

0, the following n′
1 an independent set S′

1, and so on. From 6.2.5 we deduce
that r = r′. Moreover, there exists a permutation σ ∈ Sr , such that for i ∈ r the
lengths n′

σ(i) and ni of the indecomposable families S′
σ(i) and S̃i coincide, and

the family S̃i consists – up to scalar multiples – of those columns of Γ′ which
contain the submatrix Γ′

σ(i). Thus, Γ′ · B can be written in the form A′ · Γ′′,
where A′ is a suitable permutation matrix in GLk(q) and Γ′′ is given by

Γ′′ = (Γ′
σ(0) · B0) � . . . � (Γ′

σ(r−1) · Br−1),

for suitable matrices Bi ∈ Mni(q). Finally, if we put A′′ := A · A′ ∈ GLk(q),
then

A′′ · Γ′′ = A · Γ′ · B = Γ.6.2.10

Let T0 be the matrix consisting of the first n0 columns of Γ, T1 the matrix, con-
sisting of the next n1 columns, and so on. Analogously, we define the matrices
T′′

i as submatrices of Γ′′. From this construction it follows immediately that Ti

is a matrix of rank ki and T′′
i is of rank k′

σ(i). Since Ti = A′′ · T′′
i and A′′ is regu-

lar, we deduce that k′
σ(i) ≥ ki. This, together with 6.2.8, gives that k′

σ(i) equals
ki. If we write the matrix A′′ as block matrix (A′′

ij)i,j∈r, consisting of blocks A′′
ij,

which are ki × kj-matrices, from 6.2.10 we obtain

A′′
ii · Γ′

σ(i) · Bi = Γi, i ∈ r.

Comparing the degrees we obtain that the diagonal blocks A′′
ii are all regular.

Hence, Γ′
σ(i) and Γi are generator matrices of linearly isometric codes Ci and

C′
σ(i). �
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Using the notation introduced in Exercise 2.3.17, the last theorem can be
restated for linear isometry classes of linear codes as:

6.2.11Corollary The linear isometry class Ĉ of any linear code C over Fq can be expressed
as an outer direct sum of the linear isometry classes Ĉi of indecomposable codes Ci:

Ĉ = Ĉ0 � . . . � Ĉr−1.

The indecomposable summands Ĉi are uniquely determined by Ĉ apart from their or-
der. �

Another consequence is the following cancellation law:

6.2.12Corollary Let Ĉ0, Ĉ1 and Ĉ2 be linear isometry classes of linear codes. From
Ĉ0 � Ĉ1 = Ĉ0 � Ĉ2 we obtain that Ĉ1 = Ĉ2. �

For systematic linear codes there is an easy and obvious

6.2.13Test on Indecomposability A generator matrix Γ = (Ik | A) of a linear (n, k)-code
with k < n is (together with the generated code) indecomposable if and only if there
exists a sequence aij, alm, . . . of nonzero entries in A such that each element (except
the first one, of course) lies in the same row or in the same column as its predecessor,
and so that each row is represented by at least one element of the sequence.

Proof: Because of the special form of Γ, the first k columns of Γ define k in-
dependent families. Each of these families consists of just that column. The
remaining columns of Γ, i.e. the columns of A, can be represented as linear
combinations of the first k columns. Moreover, the columns of Γ form an in-
decomposable family if and only if the first k columns are connected. This
implies the statement. �

We can also represent the elements of A as the vertices of a graph GA. In
this graph two vertices are connected by an edge, if they are both different
from 0 and occur either in the same row or column of A. Then the code C is
indecomposable, if and only if there is a walk in GA which visits each of the k
rows at least once.

In case n = k, this theorem does not apply. It is clear that (n, n)-codes are
indecomposable if and only if n = 1.

If the codes do not have zero columns (as we assumed in this section),
and if there exists a walk in GA which visits each of the k rows of A at least
once, then there exists a walk in GA which visits all columns of A. With this
characterization it is easy to prove
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6.2.14 Theorem A nonredundant linear code C is indecomposable if and only if its dual
code C⊥ is indecomposable. �

6.2.15 Examples

1. The code with generator matrix

Γ =

⎛⎝ 1 0 0 1 1 1
0 1 0 0 0 1
0 0 1 0 0 1

⎞⎠
is indecomposable, since the sequence γ05, γ15, γ25 is a sequence of entries
of the last n − k = 3 columns of Γ which has the required properties.

2. Any nonredundant (n, 1)-code is indecomposable.

3. Any (n, k)-MDS-code with k < n is indecomposable. �

Indecomposable codes are optimal in the following sense.

6.2.16 Theorem Let C be an (n, k)-code with k < n and with minimum distance d. Then
there exists an indecomposable (n, k)-code C′ such that dist(C′) ≥ d.

Proof: For r ≥ 2, let C � C0 + . . . + Cr−1 be a decomposable code, where Ci

are (ni, ki, di)-codes. From the properties of the outer direct sum (cf. 2.2.11) it
follows that dist(C) = min{di | i ∈ r}.

By induction on r we prove the assertion of the theorem: If r = 2, we
consider the following generator matrix Γ of C:

Γ =

(
Ik0 A0 0 0
0 0 Ik1

A1

)

with (ni − ki)× ki-matrices Ai. Without restriction we suppose that dist(C) =
dist(C0) ≤ dist(C1). If k1 < n1, then 6.2.13 shows that the matrix

Γ′ :=

(
Ik0 A0 0 B
0 0 Ik1

A1

)
with B :=

⎛⎜⎜⎜⎜⎝
1 . . . 1
0 . . . 0
...

...
0 . . . 0

⎞⎟⎟⎟⎟⎠6.2.17

generates an indecomposable code C′. Let v denote a nontrivial linear combi-
nation of the rows of Γ′. Unless the first k0 entries of v are all zero, we have
wt(v) ≥ dist(C0) since the first k0 entries of v are a codeword in C0. If the
first k0 entries of v are all zero then the second half of v is a nonzero codeword
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in C1, whence wt(v) ≥ dist(C1). Therefore, the minimum distance of C′ is at
least dist(C) .

If k1 = n1, we have n1 = 1, since C1 was supposed to be indecomposable.
Hence, 1 = dist(C1) ≥ dist(C) ≥ 1. But every indecomposable (n, k)-code has
d ≥ 1, and so the theorem is proved for the case r = 2.

Now we assume that r > 2. The induction assumption gives the existence
of an indecomposable (n − nr−1, k − kr−1)-code C′ with

dist(C′) ≥ dist(C0 � . . . � Cr−2) = min {dist(C0), . . . , dist(Cr−2)} .

Moreover, it implies the existence of an indecomposable (n, k)-code C′′ with

dist(C′′) ≥ dist(C′ � Cr−1) = min
{
dist(C′), dist(Cr−1)

}
≥ min

{
min {dist(C0), . . . , dist(Cr−2)} , dist(Cr−1)

}
= dist(C). �

6.2.18Theorem Any indecomposable code of length greater than 1 has minimum distance
at least 2. �

6.2.19Theorem Up to linear isometry, for any field Fq and n > 2 there is a unique inde-
composable (n, n − 1)-code C over Fq. It has a generator matrix of the form⎛⎜⎝ 1 1

. . .
...

1 1

⎞⎟⎠ .

Therefore, C is linearly isometric to the parity check code of Fn−1
q . It is also linearly

isometric to the dual of a one-dimensional code generated by the all-one vector. If
q = 2, then C is the set of all vectors of Fn

2 which have even weight.

Proof: Since C is indecomposable and of length greater than 1, by 6.2.18, its
minimum distance is at least 2. By the Singleton-bound 2.1.1, it is at most 2,
thus dist(C) = 2. There exists a code linearly isometric to C with generator
matrix Γ = (In−1 | A) where A is an (n − 1) × 1-matrix. Since the rows of
Γ are codewords of weight not smaller than dist(C), each component of A is
different from 0. By a suitable monomial transformation, there exists a code
linearly isometric to C which has a generator matrix of the form (In−1 | A′)
where all components of A′ are equal to 1. �

We are now going to show how indecomposable codes can be enumerated.
For this purpose, we introduce the following sets and symbols for their cardi-
nalities:
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Let Rnkq denote the set of linear isometry classes of nonredundant, inde-
composable (n, k)-codes over Fq,

Rnkq :=
{

Mn(q)(C) ∈ Vnkq
∣∣ C is indecomposable

}
.

Rnkq := |Rnkq| indicates the number of linear isometry classes of nonre-
dundant, indecomposable (n, k)-codes over Fq.

The symbol Rnkq denotes the set of linear isometry classes of (nonredun-
dant), indecomposable, projective (n, k)-codes over Fq, i.e.

Rnkq :=
{

Mn(q)(C) ∈ Vnkq
∣∣ C is indecomposable

}
.

Rnkq := |Rnkq| indicates the number of linear isometry classes of (nonre-
dundant), indecomposable, projective (n, k)-codes over Fq.

From 6.2.19 it follows immediately that R21q = 1, R21q = 0, and Rn,n−1,q =
1 = Rn,n−1,q for n > 2. Moreover, we already know R11q = 1 = R11q, Rnnq =
0 = Rnnq for n > 1, Rn1q = 1 for n ≥ 1, and Rn1q = 0 for n ≥ 2. The
following theorem (cf. [61]) gives a recursive procedure for the evaluation of
the numbers Rnkq and Rnkq from Vnkq and Vnkq, respectively.

6.2.20 Theorem For n ≥ 2 we have

Rnkq = Vnkq − ∑
a

∑
b

n−1

∏
j=1
aj �=0

(
∑
c

U(c)

)
,

where

U(c) =
j

∏
i=1

C(Sν(i,c), ν(i, c))
∣∣
z�=Rjiq

6.2.21

is a product computed from substitutions into the cycle indices of symmetric groups of
degree ν(i, c) for

ν(i, c) = |{� ∈ aj | c� = i}|, 1 ≤ i ≤ j.

The first sum runs through the cycle types a = (a1, . . . , an−1) of n with at least two
summands, i.e. ai ∈ N and ∑ iai = n, and with the additional property ∑ ai ≤ k,
whereas the second sum is taken over the (n− 1)-tuples b = (b1, . . . , bn−1) ∈ Nn−1,
for which ai ≤ bi ≤ iai, and ∑ bi = k. The third sum runs over all aj-tuples
c = (c0, . . . , caj−1) ∈ Naj satisfying j ≥ c0 ≥ . . . ≥ caj−1 ≥ 1 and ∑ ci = bj.

Analogously, Rnkq can be evaluated recursively from Vnkq and Rjiq with j < n.

We would like to remark that the numbers U(c) in 6.2.21 are expressed solely
in terms of cycle indices of symmetric groups in their natural action (see Exer-
cise 6.3.3).
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Proof: In order to obtain Rnkq, we have to subtract from Vnkq the number of all
classes of nonredundant, decomposable (n, k)-codes over Fq. In other words,
we have to evaluate the number of isometry classes of (n, k)-codes which can
be written as a direct sum of indecomposable (ni, ki)-codes where

∑
i∈r

ni = n, ∑
i∈r

ki = k, 1 ≤ ki ≤ ni, 2 ≤ r ≤ k. 6.2.22

According to 6.2.7, the (ni, ki)-codes in a decomposition can be arranged so
that n0 ≥ n1 ≥ . . . ≥ nr−1 holds true, and, if successive ni are equal, for exam-
ple ni = ni+1, then we can assume, in addition, that the inequality ki ≥ ki+1 is
satisfied. In order to describe all decompositions, first we list all partitions
of n into at least two but not more than k parts. Hence, we suppose that
n = n0 + n1 + . . . + nr−1 is a partition with n0 ≥ . . . ≥ nr−1 ≥ 1 and 2 ≤ r ≤ k.
Its type is of the form (a1, a2, . . . , an−1) with aj := |{i | i ∈ r, ni = j}|. De-
composable codes corresponding to different types (a1, a2, . . . , an−1) are not
linearly isometric.

In a second step we calculate for each such partition of n all sequences
(k0, . . . , kr−1) satisfying 6.2.22. If we are given such a sequence (k0, . . . , kr−1),
we put

bj := ∑
i:ni=j

ki, 1 ≤ j ≤ n − 1.

Then
n−1

∑
j=1

bj = ∑
i∈r

ki = k and aj ≤ bj ≤ j · aj. 6.2.23

Decomposable codes corresponding to the same type (a1, a2, . . . , an−1) which
give rise to different vectors b are not linearly isometric. Conversely, we can
start with any sequence (b1, . . . , bn−1) satisfying 6.2.23 and evaluate all se-
quences (k0, . . . , kr−1) with bj = ∑i:ni=j ki which give linearly nonisometric
codes with parameters (ni, ki) for i ∈ r. According to 6.2.7, for each j with
bj �= 0 (which implies aj �= 0) we have to determine all partitions of bj into
exactly aj parts of the following form:

bj = ∑
i∈aj

ci, j ≥ c0 ≥ . . . ≥ caj−1 ≥ 1. 6.2.24

These sequences c describe all possible ways of writing a (j · aj, bj)-code as
the outer direct sum of aj codes of length j and dimension ci for i ∈ aj. Codes
with different sequences are clearly not isometric.

In a final step we have to evaluate the number of linearly nonisometric de-
composable (j · aj, bj)-codes which are outer direct sums of aj codes of length j.
For each partition c of bj with the properties 6.2.24 let U(c) be the number of
linearly nonisometric (j · aj, bj)-codes which are the outer direct sum of inde-
composable (j, ci)-codes for i ∈ aj.
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We may assume that during the recursive procedure for the evaluation of
the Rnkq, the numbers Rj,ci,q for j < n have already been computed. If all
components ci of c are pairwise different, then the number U(c) is equal to the
product

∏
i∈aj

Rj,ci,q,6.2.25

which is a special case of 6.2.21. (See Exercise 6.2.8.)
Otherwise, there exist s, t with s < t and cs = ct. Since cs = cs+1 = . . . = ct,

and according to 6.2.7, any permutation of the summands with the same pa-
rameters in a given direct decomposition into indecomposable codes leads to
linearly isometric codes. Hence, for 1 ≤ i ≤ j let ν(i) := ν(i, c) denote the
cardinality of the set {� ∈ aj | c� = i}. Obviously, there is a bijection be-
tween the classes of codes which are outer direct sums of ν(i) indecomposable
(j, i)-codes and the orbits of the symmetric group Sν(i) acting on the set of all
mappings from ν(i) into a set of Rjiq elements. In this case, the symmetric
group acts canonically on the set of these mappings:

Sν(i) × Rjiq
ν(i) → Rjiq

ν(i) : (π, f ) �→ f ◦ π−1.

A combination of Pólya’s Theorem and the result of Exercise 6.1.5 completes
the proof that U(c) is given by 6.2.21.

Since U(c) is the number of decomposable (j · aj, bj)-codes which are an
outer direct sum of indecomposable (j, ci)-codes for i ∈ aj, we can determine
the number of all decomposable (j · aj, bj)-codes which are the outer direct
sum of aj indecomposable codes of length j, by summing over all sequences c
satisfying 6.2.24.

By summing these numbers over all cycle types (a1, . . . , an−1) of n with
∑ ai = k, and over all sequences b with the properties 6.2.23, we compute
the number of all linearly nonisometric, nonredundant, decomposable (n, k)-
codes over Fq. It must be subtracted from Vnkq in order to obtain the number
of all linearly nonisometric, nonredundant, indecomposable (n, k)-codes over
Fq. �

In Section 6.4 we present tables of Rnkq and Rnkq which were computed
by using SYMMETRICA. They can also be determined with the software in-
cluded on the attached CD. In the case q = 2, these tables confirm (and in
some parts also correct) the numbers given by D. Slepian in [184]. Moreover,
these numbers lead to the conjecture that the sequences (Rnkq)1≤k<n are uni-
modal and symmetric for fixed n and q. The symmetry follows directly from
the fact that the dual of an indecomposable code is again indecomposable (cf.
Exercise 6.2.9). However, the unimodality has not yet been proved (see [61]).

For fixed n and q, the sequences Rnkq are symmetric, i.e.

Rnkq = Rn,n−k,q, 1 ≤ k ≤ 
n/2�.
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Therefore, it is possible to use the formula from 6.2.20 in order to compute
further values of Vnkq. Let n0 be a positive integer and q the cardinality of a
field. At first we compute the numbers Vnkq for 1 ≤ n ≤ n0 and 1 ≤ k ≤

n0/2� as described in the previous section. This allows us to determine the
numbers Rnkq for 1 ≤ n ≤ n0 and 1 ≤ k ≤ 
n0/2�. For 1 ≤ n ≤ n0 and

n0/2� < k ≤ n0 we determine the missing numbers Rnkq either by symmetry
(for k < n) or by setting Rnkq = 0 for k ≥ n. From 6.2.20 we immediately
obtain the following formula

Vnkq = Rnkq + ∑
a

∑
b

n−1

∏
j=1
aj �=0

(
∑
c

U(c)

)
,

which allows us to compute the missing values Vnkq for 1 ≤ n ≤ n0 and

n0/2� < k ≤ n0.

6.2.26Example Let n0 = 12 and q = 2. From Table 6.21 on page 508 we obtain the
numbers Rnk2 for 1 ≤ n ≤ 12 and 1 ≤ k ≤ 6. Now we determine the values
Rnk2 for 7 ≤ k ≤ 12 as shown in Table 6.3 on the left hand side. This allows the
computation of the values Vnk2 for 1 ≤ n ≤ 12 and 7 ≤ k ≤ 12, shown in the
right hand side of Table 6.3, without determining the cycle indices of PGLk(2)
for 7 ≤ k ≤ 12. �

Table 6.3 Extending tables by using the symmetry of Rnk2

Rnk2

n\k 7 8 9 10 11 12
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 1 0 0 0 0 0
9 7 1 0 0 0 0

10 51 8 1 0 0 0
11 361 79 10 1 0 0
12 2484 754 121 12 1 0

Vnk2

n\k 7 8 9 10 11 12
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 1 0 0 0 0 0
8 7 1 0 0 0 0
9 35 8 1 0 0 0

10 170 47 9 1 0 0
11 847 277 61 10 1 0
12 4408 1775 436 78 11 1
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Exercises

E.6.2.1 Exercise Let Γ be a generator matrix of an (n, k)-code over Fq and let M be
a monomial matrix in Mn(q). Discuss the relations between the linear depen-
dencies occurring between the columns of Γ and between the columns of Γ · M.

E.6.2.2 Exercise Prove 6.2.11.

E.6.2.3 Exercise Find a proof of 6.2.12.

E.6.2.4 Exercise Use Exercise 1.3.9 in order to prove that 6.2.14 is true.

E.6.2.5 Exercise Prove that any (n, k)-MDS-code with k < n is indecomposable.

E.6.2.6 Exercise Show that the code which is generated by the matrix in 6.2.17 is in-
decomposable.

E.6.2.7 Exercise Prove 6.2.18.

E.6.2.8 Exercise Prove that 6.2.25 is a special case of 6.2.21.

E.6.2.9 Exercise Prove that Rnkq = Rn,n−k,q is true for 1 ≤ k ≤ 
n/2�.

6.3 6.3 Cycle Indices of Projective Linear Groups

We have seen how the linear isometry classes of (n, k)-codes over Fq can be
enumerated using cycle indices of projective linear groups PGLk(q). It remains
to discuss the evaluation of these multivariate polynomials. The formal defi-
nition

C(G, X) :=
1
|G| ∑

g∈G

|X|
∏
i=1

zai(g)
i ∈ Q[z1, z2, . . . , z|X|]

of cycle indices, given in 6.1.19, shows that we must determine the cycle types

a(g) = (a1(g), . . . , a|X|(g))

of the homomorphic images g of the elements and the order of the acting group
GLk(q) or of its epimorphic image PGLk(q). According to Exercise 6.3.1, the
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orders of these groups are

|GLk(q)| = [q]k := (qk − 1)(qk − q) · · · (qk − qk−1) 6.3.1

and
|PGLk(q)| = [q]k/(q − 1). 6.3.2

These groups are quite big, and so it is not efficient to establish a complete
catalog of all their elements, except for very small values of q and k. A much
more economic way is to use the fact that the cycle types of conjugate elements
(as well as of images of conjugate elements under homomorphisms) are the
same (see Exercise 6.3.2). It reduces the problem to a characterization of the
conjugacy classes and the evaluation of the cycle types of representatives of
each of these classes. Using this fact we rewrite the cycle index of a group G
which acts on a set X in the following form:

C(G, X) =
1
|G| ∑

C
|C|

|X|
∏
i=1

zai(gC )
i , 6.3.3

where gC is a representative of the conjugacy class C, the summation is over
all the conjugacy classes C of elements in G, and

a(gC) = (a1(gC), . . . , a|X|(gC))

denotes the cycle type of gC , the permutation induced by gC on X. As we
already know, the cycle type of g satisfies

|X|
∑
i=1

iai(g) = |X| .

In general, we call a sequence a = (a1, . . . , an) of nonnegative integers a cycle
type of n, if ∑n

i=1 i · ai = n is satisfied. For short, we write a �� n, and we note in
passing that each cycle type a �� n occurs as type of a permutation of n.

Let us now concentrate on the evaluation of the cycle index of the natural
action of G := PGLk(q) on X := PG∗

k−1(q). The action 3.7.4 of GLk(q) on
PG∗

k−1(q) induces this action of the projective linear group. According to 3.7.6,
it can be written as

(F∗
q(A), F∗

q (v)) �→ F∗
q(v · A�), A ∈ GLk(q), v ∈ Fk

q. 6.3.4

Here in this section it is more convenient to represent vectors as column vec-
tors, so 6.3.4 is written as

(F∗
q(A), F∗

q(v)) �→ F∗
q(A · v), A ∈ GLk(q), v ∈ Fk

q.
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The notation A · v is similar to the notation of applying an endomorphism A
of Fk

q to the vector v which we indicate just by Av.
In order to evaluate the cycle index of the projective linear group we pro-

ceed as follows. In a first step each conjugacy class of GLk(q) will be described
by a normal form which is a particular representative of the conjugacy class.
Then we evaluate the cardinalities of the conjugacy classes and the cycle types
of their representatives.

The announced normal forms of the elements in GLk(q) are obtained by
using a general approach known from linear algebra, and described in most of
the standard lectures on this subject, e.g. in [155].

First we determine a normal form of an arbitrary endomorphism A of Fk.
Let x be an indeterminate over F. Then the vector space Fk together with the
outer composition

F[x] × Fk → Fk : ( f , v) �→ f v :=
d

∑
i=0

κiA
iv,6.3.5

becomes an F[x]-module, where f denotes the polynomial f = ∑d
i=0 κixi.

Let {e(0), . . . , e(k−1)} be the canonical basis of Fk consisting of the unit vec-
tors. Then

Fk = ∑
i∈k

F e(i) = ∑
i∈k

F[x]e(i).

Since F[x]e(i) is a subset of Fk, the cyclic F[x]-module F[x]e(i) is of finite di-
mension, and the canonical epimorphism from F[x] to F[x]e(i) has a kernel
different from 0. This kernel is an ideal in the principal ideal domain F[x],
whence it is generated by a monic polynomial gi ∈ F[x] of degree at least 1.

The polynomial f ∈ F[x] annihilates v ∈ Fk if f v = 0. The polynomial
f ∈ F[x] annihilates W ⊆ V if f annihilates each vector of W. The monic
polynomial f ∈ F[x] \ {0} of smallest degree which annihilates v is called
the minimal polynomial of v. The monic polynomial f ∈ F[x] \ {0} of smallest
degree which annihilates Fk is called the minimal polynomial of A. It is usually
indicated by MA. The most important property of minimal polynomials is
described in the next

6.3.6 Lemma Let A be an endomorphism of Fk. The polynomial g ∈ F[x] annihilates
v ∈ Fk or Fk if and only if g is a multiple of the minimal polynomial of v or A,
respectively. �

The proof is left to the reader.
From the Homomorphism Theorem (Exercise 3.2.3) we deduce that F[x]e(i)

is isomorphic to F[x]/I(gi), and the polynomial gi annihilates the module
F[x]e(i) completely, since gie(i) = 0. If g denotes the least common multiple of
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g0, . . . , gk−1, then g annihilates the whole vector space Fk. Consequently, g is
the minimal polynomial of A, and Fk can also be seen as an F[x] := F[x]/I(g)-
module. Now we decompose g into its pairwise distinct monic, irreducible
factors fi ∈ F[x],

g = ∏
i∈t

f ci
i ,

where t denotes the number of different factors, and ci ≥ 1 is the multiplicity of
the i-th factor. For i ∈ t the polynomials hi := ∏j �=i f

cj
j are relatively prime by

construction, i.e. gcd(h0, . . . , ht−1) = 1, and according to Bézout’s Identity (cf.
Exercise 3.1.6) there exist polynomials Hi ∈ F[x] such that 1 can be expressed
as

1 = H0h0 + . . . + Ht−1ht−1.

Putting Ei := Hihi, we obtain a decomposition of 1 ∈ F[x] into a sum of
pairwise orthogonal and idempotent elements

1 = E0 + . . . + Et−1. 6.3.7

This decomposition of 1 yields, according to Exercise 4.5.2, a decomposition –
the primary decomposition – of Fk as a direct sum of primary components of the
form

Fk = E0Fk ⊕ . . . ⊕ Et−1Fk.

The F[x]-module EiFk and the F[x]-module EiFk describe the same set, there-
fore the primary components are A-invariant, since

A(EiF
k) = xEiF

k = EixFk ⊆ EiF
k = EiF

k, i ∈ t.

Now we consider each of these components EiFk as an F[x]/I( f ci
i )-module.

According to 4.7.11, the ring F[x]/I( f ci
i ) has exactly one composition series.

Thus it follows from 4.7.12 that EiFk is a direct sum of submodules

EiF
k = Ui0 ⊕ . . .⊕Ui,ni−1, Uij = F[x]uij � F[x]/I( f

tij
i ), 1 ≤ tij ≤ ci, 6.3.8

where Uij is cyclic over the ring F[x]/I( f ci
i ). These submodules can be ordered

in such a way that 1 ≤ ti0 ≤ ti1 ≤ . . . ≤ ti,ni−1 = ci holds true. Also the
submodules Uij are A-invariant. Summarizing, the vector space Fk is the direct
sum of cyclic subspaces

Fk =
⊕
i∈t

⊕
j∈ni

Uij, Uij = F[x]uij � F[x]/I( f
tij
i ), 1 ≤ tij ≤ ci. 6.3.9

Let f := ∑d
i=0 κixi, κd = 1, be a monic, irreducible polynomial of de-

gree d. Assume that f is the minimal polynomial of v ∈ Fk, whence U =
F[x]v � F[x]/I( f ) is a d-dimensional cyclic subspace of Fk. Using the basis
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(v, Av, . . . , Ad−1v) of U, the restriction of the endomorphism A to U is repre-
sented by the companion matrix C( f ) of f given by

C( f ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 −κ0

1 0 . . . 0 0 −κ1

0 1 . . . 0 0 −κ2
...

...
. . .

...
...

...
0 0 . . . 1 0 −κd−2
0 0 . . . 0 1 −κd−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Assume that f n is the minimal polynomial of v ∈ Fk, whence U = F[x]v �
F[x]/I( f n) is an nd-dimensional cyclic subspace of Fk. We choose a basis of
U of the form (v, Av, . . ., Ad−1v, f v, Af v, . . ., Ad−1 f v, . . ., f n−1v, Af n−1v,
. . ., Ad−1 f n−1v), so that the normal form of the restriction of A to U is the
following square block-matrix

H( f n) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C( f ) 0 0 . . . 0 0
I′d C( f ) 0 . . . 0 0
0 I′d C( f ) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C( f ) 0
0 0 0 . . . I′d C( f )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
n blocks,

where I′d is the elementary matrix B(2)
0,d−1,1 of dimension d (cf. Exercise 1.7.3),

which is the identity matrix Id with an additional 1 in the right upper corner.
The matrix H( f n) is an nd× nd-matrix and is called the hyper companion matrix
of f n. In the case n = 1 the matrices H( f 1) and C( f ) coincide.

Now we introduce the following notion. Assume that f0, . . . , ft−1 are pair-
wise distinct monic, irreducible polynomials over F. If there exists a decom-
position 6.3.9 of Fk with exactly a(i)

j cyclic subspaces isomorphic to F[x]/I( f j
i )

for 1 ≤ j ≤ ci and for i ∈ t, then the Jacobi normal form of A is a block-diagonal
matrix of the form

diag
(
D( f0, a(0)), . . . , D( ft−1, a(t−1))

)
6.3.10

where a(i) is a cycle type of ∑ci
j=1 ja(i)

j , for i ∈ t. The block-diagonal matrix
D( f , a), determined by a monic irreducible polynomial f and a cycle type a,
is built from companion and hyper companion matrices of f in the following
way:

D( f , a) = diag
(
C( f ), . . . , C( f )︸ ︷︷ ︸

a1 times

, H( f 2), . . . , H( f 2)︸ ︷︷ ︸
a2 times

, . . .
)
.

A different approach to normal forms can be found in [60].
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The characteristic polynomial of an (n × n)-matrix A over F is defined as
χA(x) := det(xIn − A). Developing this determinant for A = C( f ) with re-
spect to the top row, we get χC( f ) = f . Consequently, χH( f n) = f n, and if

A = diag
(
D( f0, a(0)), . . . , D( ft−1, a(t−1))

)
, then

χA = ∏
i∈t

f γi
i ,

where γi = ∑j ja(i)
j . In other words, the sequence a(i) is a cycle type of γi.

By construction, the minimal polynomial of the companion matrix C( f )
is equal to f , and MH( f n) = f n. Consequently, the minimal polynomial of

A = diag
(
D( f0, a(0)), . . . , D( ft−1, a(t−1))

)
is given by

MA = ∏
i∈t

f ci
i ,

where ci is the maximal j such that a(i)
j �= 0. From this description it is obvious

that MA is a divisor of χA. This proves the

6.3.11Cayley–Hamilton Theorem If A is an endomorphism of Fk, then χA(A) = 0. �

Now we come back to our main situation F = Fq. As we have seen in the
proof of 3.2.25, there exist exactly

mq(d) =
1
d ∑

t|d
µ(t)q

d
t

monic, irreducible polynomials of degree d over Fq, where µ is the number
theoretic Möbius function (cf. Exercise 3.2.15). Each of these polynomials
of degree not greater than k, with exception of the polynomial f (x) = x,
can occur as a divisor of the characteristic polynomial of a regular matrix
A ∈ GLk(q). We indicate these polynomials by f0, f1, . . . , ftk−1, where

tk :=

(
k

∑
i=1

mq(i)

)
− 1.

If, moreover, di indicates the degree of the polynomial fi for i ∈ tk, then we
obtain the following description of the conjugacy classes in GLk(q):

6.3.12Theorem For each conjugacy class in GLk(q) there exists exactly one pair (γ, a),
where γ = (γ0, . . . , γtk−1) ∈ Ntk is a solution of

∑
i∈tk

γidi = k, 6.3.13
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and a = (a(0), . . . , a(tk−1)) is a sequence of cycle types a(i) �� γi, so that

diag
(
D( f0, a(0)), . . . , D( ftk−1, a

(tk−1))
)

6.3.14

is the normal form of this class. Conversely, to each such pair (γ, a) there exists exactly
one conjugacy class the normal form of which is the block-diagonal matrix 6.3.14. �

Our next task is the evaluation of the size of the conjugacy classes. Con-
jugation on GLk(q) is a particular group action of GLk(q) on itself (cf. Exer-
cise 3.4.2). The centralizer of A ∈ GLk(q) is the stabilizer of A with respect to
this action.

6.3.15 Theorem (J.P.S. Kung [117]) Let f ∈ Fq[x] be a monic, irreducible polynomial of
degree d, and let a �� γ be a cycle type of the positive integer γ. For i ∈ {0, 1, . . . , γ}
determine mi by

mi :=
i

∑
k=1

kak +
γ

∑
k=i+1

iak.

Then the order of the centralizer of D( f , a) in GLγd(q) is

b(d, a) :=
γ

∏
i=1

∏
j∈ai

(
qdmi − qd(mi−j−1)

)
.6.3.16

Proof: Let n = γd be the dimension of a vector space V equipped with the
basis B = (e0, . . . , en−1) so that the linear mapping A : V → V has a repre-
sentation with respect to this basis in the form D( f , a), where f is a monic,
irreducible polynomial in Fq[x] of degree d and a �� γ. (The vectors ei should
not be mixed up with the unit vectors e(i).) We also consider V as an Fq[x]-
module. Determine c by

c := max {i | 1 ≤ i ≤ γ, ai �= 0} ,

then ker f c = V, mc = γ, and

dim(ker f i) = d

(
i

∑
k=1

kak +
γ

∑
k=i+1

iak

)
= dmi for 1 ≤ i ≤ c.

Consequently, the sets

Ui :=
{

v ∈ V
∣∣ f iv = 0 and f i−1v �= 0

}
= ker f i \ ker f i−1

contain qdmi − qdmi−1 elements for 1 ≤ i ≤ c. Now we want to choose a par-
ticular series of elements of the given basis of V – called canonical generators
of A – by taking exactly one element of B from each cyclic subspace in the
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decomposition 6.3.8 of V. For example, a list of canonical generators is given
by

e0, ed, e2d, . . . , e(a1−1)d,
ea1d, e(a1+2)d, e(a1+2·2)d, . . . , e(a1+2(a2−1))d,
. . .
e(a1+...+(c−1)ac−1)d, e(a1+...+(c−1)ac−1+c)d, . . . , e(a1+...+(c−1)ac−1+c(ac−1))d.

Now we label these canonical generators consecutively as ê0, ê1, . . . . To be
more precise, for j ∈ ai, i ≥ 1 we have

êa1+...+ai−1+j = e(a1+2a2+...+(i−1)ai−1+ij)d.

In order to complete the proof, we still need to characterize the vector space
automorphisms which commute with A.

6.3.17Lemma Let ψ be a vector space endomorphism which commutes with A := D( f , a).
Then:

1. ψ is uniquely determined on V by the values ψ(êi) on the canonical generators.

2. If v ∈ Ui is a canonical generator, then ψ(v) belongs to ker f i for 1 ≤ i ≤ c.

3. ψ is a vector space automorphism if and only if there are no linear relations with co-
efficients in Fq[x] among the values ψ(êi). In particular, any canonical generator
v ∈ Ui is mapped onto ψ(v) ∈ Ui.

Proof: The proof of the first two assertions is left to the reader (cf. Exer-
cise 6.3.8). As was shown in 6.3.8, assume that the vector space V has a de-
composition into a direct sum of cyclic subspaces

V =
a1+...+ac−1⊕

�=0

V� with V� � Fq[x]/I( f j�) for 1 ≤ j� ≤ c.

Moreover, let ê� be the unique canonical generator of A which belongs to V�.
Then

(ê�, A · ê�, . . . , Adj�−1 · ê�)
is a basis of V�. Finally we assume that the monic polynomial f is of the form
f = ∑d

i=0 αixi with αd = 1.
If ψ is an automorphism of V, then(

ψ(ê�), A · ψ(ê�), . . . , Adj�−1 · ψ(ê�)
)

is a basis of ψ(V�). In other words, ψ(V�) is also a dj�-dimensional cyclic sub-
space of V. And Fq[x]ψ(ê�) = ψ(V�), since Adj� · ψ(ê�) = ψ(Adj� · ê�) and

ψ(Adj� · ê�) = ψ
(
∑
i∈d

(−αi)Aij� · ê�
)

= ∑
i∈d

(−αi)Aij� · ψ(ê�) ∈ ψ(V�).



484 6. Enumeration of Isometry Classes

Conversely, if ψ is an endomorphism which is not an automorphism of V,
then the vectors ψ(e0), . . . , ψ(en−1) are linearly dependent. Thus, there exist
αi ∈ Fq, i ∈ n, not all equal to 0, such that

∑
i∈n

αiψ(ei) = 0.

This is a nontrivial linear combination of ψ(ei). Equipping each subspace V�

with the basis (ê�, A · ê�, . . . , Adj�−1 · ê�) described above, we derive

0 =
a1+...+ac−1

∑
�=0

∑
r∈dj�

α�rA
r

︸ ︷︷ ︸
=:φ�(A)

·ψ(ê�) =
a1+...+ac−1

∑
�=0

φ�(x)ψ(ê�)

for suitable α�r ∈ Fq. By construction, not all polynomials φ� are equal to zero,
whence we have found a nontrivial linear relation between the vectors ψ(ê�)
with coefficients in Fq[x]. This contradicts our assumption. �

6.3.17 shows that the image of a canonical generator v ∈ Ui under an automor-
phism ψ is again an element of Ui. In the notation of 6.3.8, this means that ψ

only permutes the subspaces Uij of a submodule EiFk
q which are isomorphic

to the same factor module Fq[x]/I( f j).
In order to complete the proof of 6.3.15, we determine the number of all

possible automorphisms ψ of V by an application of 6.3.17. Starting with the
last canonical generator of A, the value ψ(êa1+...+ac−1) must be chosen in Uc.
There are qdmc − qdmc−1 possibilities to do so. If êa1+...+ac−2 also belongs to
Uc, then there remain qdmc − qdmc−1qd = qdmc − qd(mc−1+1) possibilities to de-
termine ψ(êa1+...+ac−2) in Uc so that ψ is an automorphism. (This is just the
overall number of vectors in V which do not belong to the Fq[x]-submodule
generated by ker f c−1 and ψ(êa1+...+ac−1).) In a similar fashion, the values of
the other canonical generators of A which also belong to Uc are determined.
Altogether there are

∏
j∈ac

(
qdmc − qd(mc−1+j)

)
= ∏

j∈ac

(
qdmc − qd(mc−j−1)

)
possibilities to determine an automorphism ψ on Uc.

Now assume that Wk, 0 ≤ k ≤ a1 + . . . + ac − 1, denotes the Fq[x]-module
generated by ψ(êj) for j ≥ k. Assume that the canonical generator êk belongs
to Ui and that the values ψ(êj) are already determined for j > k. In order to
determine an automorphism, the vector ψ(êk) must be chosen from ker f i, but
it may not belong to the Fq[x]-module generated by ker f i−1 and ker f i ∩Wk+1.
This shows that if ψ is an automorphism already determined on Ui+1, . . . ,Uc,
then there are

∏
j∈ai

(
qdmi − qd(mi−1+ai+1+...+ac+j)

)
= ∏

j∈ai

(
qdmi − qd(mi−j−1)

)
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possibilities to determine the values of ψ for the canonical generators belong-
ing to Ui (these are the generators êa1+...+ai−1, . . . , êa1+...+ai−1) such that ψ is
also an automorphism of ker f i. Eventually, the product of these expressions
for i = 1, . . . , c (or i = 1, . . . , γ) yields b(d, a). �

As we have seen in the previous proof, the order b(d, a) of the centralizer
of D( f , a) in GLγd(q), where f is an irreducible polynomial of degree d and
a �� γ, depends only on the degree of f and on the cycle type a. It does not
depend on the particular polynomial f itself. According to 3.4.1, the size of the
conjugacy class of a normal form 6.3.14 is

[q]k
∏i∈tk b(di, a(i))

.

Before we compute the cycle type of the permutation representation of the
natural action 6.3.4 of F∗

q(A) ∈ PGLk(q) on PG∗
k−1(q), we investigate once

more the action of GLk(q) on Fk
q. From Exercise 1.4.13 it follows that this action

can be reduced to an action on Fk
q \ {0}. In the next step, we determine the

subcycle index of the following action:

GLk(q)× Fk
q \ {0} → Fk

q \ {0} : (A, v) �→ A · v,

from which we will later on determine the cycle index C(PGLk(q), PG∗
k−1(q)).

Recall that in the present section we write vectors as columns and not as rows.
We introduce subcycles and integral elements of vectors v ∈ Fk

q \ {0} in the
following way: The vector v belongs to a subcycle of A of length s if and only if

s = min
{

n ∈ N∗ ∣∣ An · v ∈ F∗
q(v)

}
.

The integral element of v is the element α0 ∈ F∗
q for which As · v = α0v. The set

〈 A 〉(F∗
q(v)) =

{
Ai · αv

∣∣ i ∈ N, α ∈ F∗
q

}
is the disjoint union of s subsets, each containing q − 1 elements, since

〈 A 〉(F∗
q(v)) =

.
∪
i∈s

AiF∗
q (v) =

.
∪
i∈s

{
Ai · αv

∣∣ α ∈ F∗
q

}
=

.
∪
i∈s

{
αAi · v

∣∣ α ∈ F∗
q

}
=

.
∪
i∈s

F∗
q (A

i · v).

These s(q − 1) vectors in Fk
q \ {0} describe exactly s elements of the projec-

tive space PG∗
k−1(q), which are the elements of exactly one cycle of length s of

A ∈ GLk(q) or F∗
q (A) ∈ PGLk(q) on PG∗

k−1(q), namely(
F∗

q(v), . . . , F∗
q(A

s−1 · v)
)
.

Moreover, each vector v′ ∈ 〈 A 〉(F∗
q(v)) belongs to a subcycle of A of length

s with integral element α0. Using indeterminates z attached with two indices
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– the first one giving the length s of a subcycle and the second one indicating
the integral element α0 corresponding to the subcycle – the operation of A on
〈 A 〉(F∗

q(v)) is described by the subcycle expression sc(A, v) := zq−1
s,α0 . Since the

set Fk
q \ {0} is the disjoint union of 〈 A 〉(F∗

q(vi)), i ∈ I, we define the subcycle
type of A to be the product of the subcycle expressions ∏i∈I sc(A, vi). A term
of the form zr

s,α0
in the subcycle type of A indicates that there exist r · s vectors

v ∈ Fk
q \ {0} such that s = min{n ∈ N∗ | An · v ∈ F∗

q(v)} and As · v = α0v.
Moreover, the exponent r is always a multiple of q − 1.

6.3.18 Definition (subcycle index) The subcycle index for the action of the general
linear group GLk(q) on Fk

q \ {0} is the sum of the subcycle types of A ∈ GLk(q)
divided by the order of GLk(q), i.e.

SC(GLk(q), Fk
q \ {0}) =

1
|GLk(q)| ∑

A∈GLk(q)
∏

〈 A 〉(F∗
q(v))

sc(A, v).

The last product must be computed over all 〈 A 〉(F∗
q(v)) in the set{

〈 A 〉(F∗
q(v))

∣∣ v ∈ Fk
q \ {0}

}
.  

6.3.19 Remark (cycle index of PGLk(q) on PG∗
k−1(q)) From the subcycle index of

GLk(q) on Fk
q \ {0} it is quite easy to obtain the cycle index of the action of

PGLk(q) on PG∗
k−1(q) by omitting the second index of each indeterminate and

by dividing each exponent by q − 1.  
Hence, as the next step we compute the subcycle index of GLk(q) acting

on Fk
q \ {0}. Since the subcycle types of conjugate matrices in GLk(q) are the

same, it is enough to determine the subcycle types of the normal forms 6.3.14.
First we determine them for hyper companion matrices, later we will deduce
a method which allows us to compute the subcycle type of block-diagonal
matrices.

The companion and hyper companion matrices depend on polynomials
f ∈ Fq[x]. The subcycle types of these matrices can be obtained from the
subexponents of the corresponding polynomials. Therefore, next we introduce
exponent and subexponent of a polynomial.

6.3.20 Definition (exponent, order, period) The exponent, order, or period of a polyno-
mial f ∈ Fq[x] with f (0) �= 0, is the smallest positive integer e, for which f is
a divisor of xe − 1 (cf. [131]). We indicate it as

Exp( f ) := min {e ∈ N∗ | f is a divisor of xe − 1} .  

Some properties of the exponent of a polynomial are collected in the next
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6.3.21Lemma Let f ∈ Fq[x] be a monic, irreducible polynomial of degree d with f (0) �= 0.

1. The exponent of f is equal to the order of an arbitrary root β of f in the multi-
plicative group F∗

qd . In other words, for any root β of f we have

Exp( f ) = min {n ∈ N∗ | βn = 1} = ord(β).

2. Exp( f ) is a divisor of qd − 1, but it does not divide qr − 1 for 1 ≤ r < d.

3. The set E(d, q) of all positive integers, which occur as exponents of monic, irre-
ducible polynomials of degree d over Fq, is

E(d, q) =
{

e ∈ N∗
∣∣∣ e | (qd − 1) and e � (qr − 1) for 1 ≤ r < d

}
.

4. The number of all monic, irreducible polynomials f of degree d over Fq with
f (0) �= 0 and with exponent e ∈ E(d, q) is ν(d, e) := φ(e)/d, where φ is the
Euler function (cf. 3.4.15).

5. For n ∈ N∗, the polynomial f is a divisor of xn − 1 if and only if Exp( f ) is a
divisor of n. (This assertion holds true for arbitrary f ∈ Fq[x] with f (0) �= 0.)

6. For n ∈ N∗, the exponent Exp( f n) is equal to Exp( f )pt, where p is the charac-
teristic of Fq, and t is given by t := min {r ∈ N | pr ≥ n}.

Proof: 1. Let β ∈ Fqd be a root of f . From 3.2.19 we know that f is the minimal

polynomial of β. Moreover, β, βq, . . . , βqd−1
are all the roots of f , they all are

simple and have the same order in F∗
qd . Consequently, β satisfies the equation

βn = 1 if and only if f is a divisor of xn − 1. From the definitions of ord(β)
and Exp( f ) it is clear that ord(β) = Exp( f ).

2. Since β is an element of F∗
qd , its order is a divisor of qd − 1, and moreover

d = min
{

n ∈ N∗ | βqn = β
}

, since β is a root of an irreducible polynomial

over Fq of degree d. Hence, d = min
{

n ∈ N∗ | βqn−1 = 1
}

, and, therefore,
ord(β) is not a divisor of qr − 1 for 1 ≤ r < d.

3. Thus, E(d, q) is a subset of{
e ∈ N∗

∣∣∣ e | qd − 1 and e � qr − 1 for 1 ≤ r < d
}

.

We still prove that for each positive integer e with e | qd − 1 and e � qr − 1 for
1 ≤ r < d there exists an irreducible polynomial f of degree d such that
Exp( f ) = e. Assume that e is a divisor of qd − 1 and e � qr − 1 for 1 ≤ r < d.
Since F∗

qd is cyclic, there exist φ(e) elements β ∈ F∗
qd , which are of order e. Ac-

cording to the particular choice of e, these β do not belong to a proper subfield
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Fqr of Fqd for r < d. Thus, their minimal polynomials are of degree d and
exponent e.

4. Each of these minimal polynomials has exactly d distinct roots in Fqd , which
are all of the same order. Hence, there are φ(e)/d different monic, irreducible
polynomials over Fq of degree d with exponent e.

5. Assume that e = Exp( f ) is a divisor of n. Then

f | xe − 1 | xn − 1.

Conversely, let f be a divisor of xn − 1. According to the division algorithm,
there exist m ∈ N and 0 ≤ r < e such that n = me + r and, therefore,

xn − 1 = (xme − 1)xr + (xr − 1).

Consequently, f is a divisor of xr − 1. This is only possible for r = 0, which
proves that e is a divisor of n.

6. Assume that e = Exp( f ) and en denotes the exponent of f n. From f | f n |
xen − 1 and from the fifth assertion we deduce that e | en. As a consequence of
f | xe − 1, we derive

f n | (xe − 1)n | (xe − 1)pt
= xept − 1,

whence en | ept. Hence, en is of the form en = epr where, 0 ≤ r ≤ t. Since e
is a divisor of qd − 1, the integers e and p are relatively prime, thus xe − 1 has
only simple roots. All roots of the polynomial xepr − 1 = (xe − 1)pr

occur with
the multiplicity pr , all roots of f n, however, with the multiplicity n. Finally, f n

is a divisor of xepr − 1, whence comparing the multiplicities of their roots we
obtain that n ≤ pr and, consequently, r = t. �

6.3.22 Definition (subexponent) The subexponent of a polynomial f ∈ Fq[x] with
f (0) �= 0 is defined as

Subexp( f ) := min
{

n ∈ N∗ ∣∣ ∃ α0 ∈ F∗
q such that f | xn − α0

}
.

If f | xn − α0 with α0 ∈ F∗
q and n = Subexp( f ), then α0 is called the integral

element of f (cf. [89]).  
Using the notation from 6.3.21, some properties of the subexponent of a poly-
nomial are collected in the next lemma, the proof of which is left as an exercise
for the reader.
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6.3.23Lemma Let f ∈ Fq[x] be a monic, irreducible polynomial of degree d with f (0) �= 0.

1. Any root β ∈ Fqd of f satisfies

Subexp( f ) = min
{

n ∈ N∗ ∣∣ βn ∈ F∗
q

}
.

In other words, Subexp( f ) is equal to the order of βF∗
q in the cyclic factor group

F∗
qd /F∗

q .

2. Subexp( f ) is a divisor of (qd − 1)/(q− 1).

3. For n ∈ N∗, the subexponent Subexp( f n) is equal to Subexp( f )pt, where p is
the characteristic of Fq and t is given by t := min {r ∈ N | pr ≥ n}. If α denotes
the integral element of f , then αpt

is the integral element of f n.

4. Subexp( f ) is a divisor of Exp( f ) and the quotient

h :=
Exp( f )

Subexp( f )

is a divisor of q− 1. Moreover, h is the multiplicative order of the integral element
of f and h = gcd(q− 1, Exp( f )).

5. The subexponent of f can be computed from its exponent by

Subexp( f ) =
Exp( f )

gcd(q − 1, Exp( f ))
.

6. Consider e ∈ E(d, q) and let h := gcd(q − 1, e). For each α ∈ F∗
q of multiplica-

tive order h there exist exactly φ(e)/(d · φ(h)) monic, irreducible polynomials
f ∈ Fq[x] of degree d, exponent e, subexponent e/h, and with integral element α.

7. The number of all monic, irreducible polynomials over Fq of degree d and of subex-
ponent s is

∑
e

φ(e)
d

,

where the sum is taken over all e ∈ E(d, q) with e/ gcd(e, q − 1) = s.

8. In the case q = 2 the subexponent and the exponent of f coincide.

9. Let S(d, q) be the set of all pairs (s, α) such that there exists a monic, irreducible
polynomial over Fq of degree d with subexponent s and integral element α. Then

S(d, q) =
⋃

e∈E(d,q)

{
(s, α)

∣∣∣∣ s =
e

gcd(e, q − 1)
, ord(α) = gcd(e, q − 1)

}
.

For each (s, α) ∈ S(d, q) there are exactly

m(d, s, α) :=
ν(d, s ord(α))

φ(ord(α))
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monic, irreducible polynomials over Fq of degree d with subexponent s and integral
element α. �

The connection between the subcycle type of a hyper companion matrix
H( f r) and the subexponent and the integral element of f is described in

6.3.24 Lemma Let f ∈ Fq[x] be a monic, irreducible polynomial of degree d with f (0) �= 0,
subexponent s, and integral element α. Then the subcycle type of H( f r) on Frd

q \ {0}
is equal to

r

∏
i=1

z(qid−q(i−1)d)/si
si,αi ,

where si = Subexp( f i) and αi = αsi/s is the integral element of f i for 1 ≤ i ≤ r.

Proof: For 1 ≤ i ≤ r let Ui := ker f i \ ker f i−1 be the set of those v ∈ Frd
q ,

which are annihilated by f i, but not by f i−1. Consider v ∈ Ui, A = H( f r), a
positive integer n, and β ∈ F∗

q . Since f i is the minimal polynomial of v,

An · v = βv ⇐⇒ An · v − βv = 0 ⇐⇒ (xn − β)v = 0 ⇐⇒ f i | xn − β.

Consequently, v belongs to a subcycle of H( f r) of length si = Exp( f i) with
integral element αi = αsi/s, where α is the integral element of f . Since the set
Ui contains qid − q(i−1)d vectors, it contributes the term

z(qid−q(i−1)d)/si
si,αi

to the subcycle type of H( f r). �

Next we describe the announced method for computing the subcycle type
of a 2 × 2-block diagonal matrix from the known subcycle types of the two
diagonal blocks. By induction, this allows us to compute the subcycle type of
any matrix in normal form 6.3.14.

Assume that A1 ∈ GLk1
(q) and A2 ∈ GLk2(q) are regular matrices. Then

diag(A1, A2) ∈ GLk1+k2(q). The set Fk1+k2
q \ {0} can be decomposed in the

following way(
Fk1

q \ {0} × {0}k2
) .
∪
(
{0}k1 × Fk2

q \ {0}
) .
∪
(
Fk1

q \ {0} × Fk2
q \ {0}

)
.

In the sequel, let β denote a primitive element of F∗
q .

6.3.25 Lemma Assume that we have indeterminates zn,α attached with two indices, where
n ∈ N∗ and α ∈ F∗

q . We define a multiplication � by

zj1
s1,βr1 � zj2

s2,βr2 := zj3
s3,βr3 ,
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where

s3 = lcm(s1, s2)
q − 1

gcd (q − 1, lcm(s1, s2)r1/s1 − lcm(s1, s2)r2/s2)
,

r3 ≡ r1s3

s1
≡ r2s3

s2
mod q − 1,

and
j3 =

s1 j1s2 j2
s3

.

Using this multiplication, we define a multiplication � of subcycle types by(
ν1

∏
i=1

zti
ui,αi

)
�

(
ν2

∏
j=1

z
wj
vj,κ j

)
:=

(
ν1

∏
i=1

zti
ui,αi

)(
ν2

∏
j=1

z
wj
vj,κ j

)
ν1

∏
i=1

ν2

∏
j=1

(
zti
ui,αi � z

wj
vj,κ j

)
.

The subcycle type of the matrix diag(A1, A2) is the �-product of the subcycle types of
A1 and A2. (The n-th power with respect to the multiplication � will be denoted by
(. . .)� n.) The operator � can be extended linearly to Q[{zn,α | n ∈ N∗, α ∈ F∗

q}].

Proof: Assume that v1 ∈ Fk1
q \ {0} belongs to a subcycle of A1 of length s1

with integral element βr1 . Then also (v�1 | 0�k2
)� belongs to a subcycle of

diag(A1, A2) of length s1 with integral element βr1 . (In the present section
we write vectors as columns, thus (v�1 | 0�k2

)� is a column of length k1 + k2.)

Similarly, the subcycles of A2 containing a vector v2 ∈ Fk2
q \ {0} correspond

to the subcycles of diag(A1, A2) containing (0�k1
| v�2 )�. Thus, we only have

to investigate pairs (v�1 | v�2 )� ∈ Fk1
q × Fk2

q with v1 �= 0 and v2 �= 0. More-
over, we suppose that v1 belongs to a subcycle of A1 of length s1 with integral
element βr1 and v2 to a subcycle of A2 of length s2 with integral element βr2 .
Then lcm(s1, s2) is equal to

min
{

n ∈ N∗ ∣∣ ∃ α1, α2 ∈ F∗
q : diag(An

1 , An
2 ) · (v�1 | v�2 )� = (α1v�1 | α2v�2 )�

}
.

In particular, for i = 1, 2 we have

αi = (βri)lcm(s1,s2)/si = βri lcm(s1,s2)/si .

Now we determine the length s3 and the integral element α of the subcycle
containing (v�1 | v�2 )�. They satisfy the identity

s3 = min
{

n ∈ N∗ | ∃ α ∈ F∗
q : diag(An

1 , An
2 )(v�1 | v�2 )� = α(v�1 | v�2 )�

}
.

Thus, we have to determine the smallest positive integer n such that αn
1 = αn

2 .
This number is the multiplicative order of α1α−1

2 in F∗
q , which can be computed

by

ord(α1α−1
2 ) =

ord(β)
gcd(ord(β), r1 lcm(s1, s2)/s1 − r2 lcm(s1, s2)/s2)

.
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Hence, s3 = lcm(s1, s2) ord(α1α−1
2 ) and the corresponding integral element is

of the form

βr3 = α
ord(α1α−1

2 )
i = βri lcm(s1,s2) ord(α1α−1

2 )/si = βris3/si .

If the subcycle type of Ai contains a term zji
si,β

ri , then, by construction, there

are exactly si ji elements in Fki
q \ {0} in the subcycles of Ai of length si with in-

tegral element βri , for i = 1, 2. Consequently, all pairs of these elements, these
are s1 j1s2 j2 vectors in Fk1

q × Fk2
q , belong to subcycles of diag(A1, A2) of length

s3 with integral element βr3 . Since all these subcycles are of length s3, by this
construction we get exactly s1 j1s2 j2/s3 subcycles of length s3 with integral ele-
ment βr3 . This yields the factor zs1 j1s2 j2/s3

s3,βr3 = zj1
s1,βr1 � zj2

s2,βr2 in the subcycle type
of diag(A1, A2). Therefore, the subcycle type of diag(A1, A2) is the product of
expressions of the form

zj1
s1,βr1 , zj2

s2,βr2 ,
(
zj1
s1,βr1 � zj2

s2,βr2

)
which are due to the vectors of the form (v�1 | 0�k2

)�, (0�k1
| v�2 )�, and (v�1 |

v�2 )�, where vi ∈ Fki
q \ {0} is contained in a subcycle of Ai of length si with

integral element βri , for i = 1, 2. Finally considering all possible combinations
(v�1 | v�2 )� yields the desired subcycle type of diag(A1, A2). �

The multiplication � is associative and commutative (cf. Exercise 6.3.11).
Moreover the empty product is defined to be 1.

Collecting all the results of the present section, we have proved the follow-
ing formula for the computation of the cycle index C(PGLk(q), PG∗

k−1(q)).

6.3.26 Theorem Assume that fi for i ∈ tk are the monic, irreducible polynomials of degree
di ≤ k over Fq which can occur as divisors of a characteristic polynomial of a regular
matrix of rank k (thus fi �= x). For n > 1 we use 6.3.23.3 in order to compute both
the subexponents si,n of f n

i and the corresponding integral elements αi,n from si,1, the
subexponent of fi, and from αi,1, the integral element of fi.

The subcycle index SC(GLk(q), Fk
q \ {0}) of the action of GLk(q) on Fk

q \ {0} is

1
[q]k

∑
γ

∑
a

[q]k
∏i∈tk b(di, a(i)) �

i∈tk

γi

�
j=1

(
j

∏
�=1

z
ui,�
si,�,αi,�

)� a(i)
j

,

where ui,� is given by

ui,� =
q�di − q(�−1)di

si,�
.

Moreover, [q]k denotes the order of GLk(q), and b(di, a(i)) is the order of the cen-
tralizer of D( fi, a(i)) as computed in 6.3.16. The first sum is taken over all solutions
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γ = (γ0, . . . , γtk−1) ∈ Ntk of 6.3.13. For each solution γ and for each i ∈ tk we have
to determine the set of all cycle types of γi

CT(γi) := {a | a �� γi} .

The second sum is taken over all tk-tuples

a = (a(0), . . . , a(tk−1)) ∈ ×
i∈tk

CT(γi).

As already mentioned before, by omitting the second index of each indeterminate and
by dividing the exponent of each indeterminate (in the subcycle index of GLk(q)) by
q − 1, we obtain the cycle index of the action of PGLk(q) on PG∗

k−1(q). �

6.3.27Example In order to present a nontrivial example we determine the cycle index
of PGL3(3) acting on PG∗

2(3). At first we need a list of all monic, irreducible
polynomials different from f = x of degree at most 3 over F3 together with
their exponents, subexponents and integral elements (cf. Table 6.4).

Table 6.4 The irreducible polynomials of degree at most 3 over F3 different from f = x

i fi di ei si αi

0 x + 1 1 2 1 2
1 x + 2 1 1 1 1
2 x2 + 1 2 4 2 2
3 x2 + x + 2 2 8 4 2
4 x2 + 2x + 2 2 8 4 2
5 x3 + 2x + 1 3 26 13 2
6 x3 + 2x + 2 3 13 13 1
7 x3 + x2 + 2 3 13 13 1
8 x3 + x2 + x + 2 3 13 13 1
9 x3 + x2 + 2x + 1 3 26 13 2

10 x3 + 2x2 + 1 3 26 13 2
11 x3 + 2x2 + x + 1 3 26 13 2
12 x3 + 2x2 + 2x + 2 3 13 13 1

With these polynomials we determine the following normal forms. In ad-
dition to each normal form we also indicate its subcycle type.

The polynomials of degree 3 occur only in the form

D( fi, (1, 0, . . .)) for i ≥ 5.

They have subcycle types
z26/si
si,αi = z2

13,αi
.
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In the normal forms of GL3(3) companion matrices of polynomials of de-
gree 2 occur only in combination with polynomials of degree 1. These nor-
mal forms are described by

diag(D( fi, (1, 0, . . .)), D( fj, (1, 0, . . .))) for 0 ≤ i ≤ 1, 2 ≤ j ≤ 4.

They have subcycle types

z2/si
si,αi � z

8/sj
sj,αj = z2

1,αi
� z

8/sj
sj,2

.

In all other normal forms just polynomials of degree 1 occur. For 0 ≤ i, j ≤
1 and i �= j they can be described as:

normal form subcycle type

D( fi, (3, 0, . . .))
(
z2
1,αi

)� 3

D( fi, (1, 1, 0, . . .)) z2
1,αi

�
(
z2
1,αi

z2
3,αi

)
D( fi, (0, 0, 1, 0, . . .)) z2

1,αi
z8
3,αi

diag(D( fi, (2, 0, . . .)), D( fj, (1, 0, . . .)))
(
z2
1,αi

)� 2
� z2

1,αj

diag(D( fi, (0, 1, 0, . . .)), D( fj, (1, 0, . . .)))
(
z2
1,αi

z2
3,αi

)
� z2

1,αj

In order to derive the subcycle index of GL3(3) acting on F3
3 \ {0}, the subcycle

type of every normal form must be multiplied by the cardinality of its conju-
gacy class and, finally, the sum of these subcycle types must be divided by the
order of GL3(3).

SC(GL3(3), F3
3 \ {0}) = 1/11232

(
1728z2

13,1 + 1728z2
13,2 + 702z2

1,1z
4
2,2z

4
4,1

+ 702z2
1,2z

4
2,2z

4
4,1 + 1404z2

1,1z
2
4,2z

2
8,1 + 1404z2

1,2z
2
4,2z

2
8,1 + z26

1,1 + z26
1,2

+ 104z8
1,1z

6
3,1 + 104z8

1,2z
6
3,2 + 624z2

1,1z
8
3,1 + 624z2

1,2z
8
3,2 + 117z8

1,1z
2
1,2z

8
2,1

+ 117z8
1,2z

2
1,1z

8
2,1 + 936z2

1,1z
2
1,2z

2
2,1z

2
3,1z

2
6,1 + 936z2

1,1z
2
1,2z

2
2,1z

2
3,2z

2
6,1

)
.

This yields the cycle index

C(PGL3(3), PG∗
2(3)) = 1/5616

(
1728z13 + 1404z1z4z8

+ 624z1z
4
3 + 702z1z

2
2z

2
4 + 936z2

1z2z3z6 + 104z4
1z

3
3 + 117z5

1z
4
2 + z13

1

)
. �

The computation of the subcycle index can still be simplified. Actually, it is
not necessary to know all the different monic, irreducible polynomials over Fq

of degree at most k. As we have seen in part 9 of 6.3.23, for each (s, α) ∈ S(d, q)
it is possible to determine the exact number of monic, irreducible polynomi-
als over Fq of degree d with subexponent s and integral element α. Since the
subcycle type of H( f n) depends only on the three parameters (d, s, α) and on
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n, of course, we need not determine the conjugacy classes of GLk(q) them-
selves. It suffices to know how many different monic, irreducible polynomials
with parameters (d, s, α, n) occur in the normal forms. This approach motivates
the following formula for the computation of the subcycle index of GLk(q) on
Fk

q \ {0}:

∑
c��k

k
�
d=1

∑
r

�
(s,α)∈S(d,q)

∑
t

ξ(m(d, s, α), t)
r(s,α)
�
j=1

(
∑
a��j

1
b(d, a)

z(d, s, α, a)

)� tj

Here z(d, s, α, a) stands for the subcycle type of a matrix D( f , a), where f is an
arbitrary monic irreducible polynomial in Fq[x] of degree d with subexponent
s and integral element α, and where a �� j is a cycle type of j. This subcycle
type can be computed by

z(d, s, α, a) =
j

�
�=1

(
�

∏
n=1

zun
sn,αn

)� a�

,

where sn stands for spt and αn for αpt
, where p is the characteristic of Fq, and

t is the smallest nonnegative integer such that pt ≥ n. The exponents un are
computed via

un =
qnd − q(n−1)d

sn
.

The first sum in the subcycle index of GLk(q) is taken over all cycle types c �� k.
Here c is of the form c = (c1, . . . , ck) and the number cd represents the number
of monic, irreducible polynomials of degree d (counted with their multiplici-
ties), which occur as factors of the characteristic polynomial of a normal form
in GLk(q).

The second sum is taken over all functions r from S(d, q) to N which satisfy

∑
(s,α)∈S(d,q)

r(s, α) = cd.

If the characteristic polynomial has exactly cd irreducible factors of degree d,
then the value r(s, α) stands for the number of irreducible factors with param-
eters (d, s, α).

The third sum is taken over all cycle types t �� r(s, α) with the additional
property that

∑
j

tj ≤ m(d, s, α).

Such a cycle type t describes the type of a set-partition of a set of cardinality
r(s, α) into at most m(d, s, α) subsets. For any t �� r(s, α) there are

ξ(m(d, s, α), t) :=
(

m(d, s, α)
t1, t2 . . . , m(d, s, α) − ∑j tj

)
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possibilities to choose – among the m(d, s, α) different monic, irreducible poly-
nomials with parameters (d, s, α) – for each j exactly tj polynomials, which
occur with the multiplicity j in the considered characteristic polynomial.

Finally the last sum is taken over all cycle types a �� j. These cycle types
describe all possible normal forms whose characteristic polynomials are the
j-th power of one monic irreducible polynomial. The reader should recall that
the characteristic polynomial of D( f , a) equals f j in this situation.

6.3.28 Example We continue 6.3.27 by determining the sets E(d, q), S(d, q) for q = 3,
1 ≤ d ≤ 3, and the numbers ν(d, e) and m(d, s, α) for e ∈ E(d, q) and (s, α) ∈
S(d, q). This provides all the necessary information for computing the subcycle
index of GL3(3). In fact, the information contained in Table 6.4 is not needed
for this purpose.

E(1, 3) = {1, 2} ν(1, 1) = 1 ν(1, 2) = 1
E(2, 3) = {4, 8} ν(2, 4) = 1 ν(2, 8) = 2
E(3, 3) = {13, 26} ν(3, 13) = 4 ν(3, 26) = 4
S(1, 3) = {(1, 1), (1, 2)} m(1, 1, 1) = 1 m(1, 1, 2) = 1
S(2, 3) = {(2, 2), (4, 2)} m(2, 2, 2) = 1 m(2, 4, 2) = 2
S(3, 3) = {(13, 1), (13, 2)} m(3, 13, 1) = 4 m(3, 13, 2) = 4 �

In [142], explicit formulae for the numbers Tnkq, Tnkq, Vnkq, Vnkq, Rnkq, and
Rnkq are given for k ≤ 3. This is done by a careful analysis of the conjugacy
classes of elements of PGLk(q). The formulae result from counting fixed points
and applying the Lemma of Cauchy–Frobenius. Since in the general formula
too many different cases must be considered, we present some of the resulting
formulae for n = 7.

For example, for any field of characteristic p = 2 we obtain

T73q =
q6 + 7q5 + 9q4 + 183q3 + 632q2 − 364q + 1344

5040
+

+
[

q2 + 18q + 20
36

]
3|q−1

+
[

16
5

]
5|q−1

+
[

6
7

]
7|q−1

,

where
[x]a|b :=

{
x if a | b,
0 else.

For characteristic p > 2 we get

T73q =
q6 + 7q5 + 9q4 + 183q3 + 1157q2 + 56q − 201

5040
+

+
[

q2 + 10q − 15
72

]
3|q

+
[

q2 + 18q + 77
36

]
3|q−1

+
[

4q + 13
12

]
4|q−1

+
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+
[

1
3

]
12|q−1

+
[

1
6

]
12|q−9

+
[

16
5

]
5|q−1

+
[

2
5

]
5|q

+
[

8
7

]
7|q−1

+

+
[

6
7

]
7|q+1

+
[

2
7

]
7|q

+
[

2
7

]
7|q2+q+1

.

Similar formulae can be found for Vnkq and Rnkq. For p = 2 and n = 7 we
obtain

V73q =
q6 + 7q5 + 8q4 + 197q3 + 456q2 + 420q + 384

5040
+

+
[

q2 + 14q + 36
36

]
3|q−1

+
[

14
5

]
5|q−1

+
[

3
7

]
7|q−1

,

and

R73q =
q6 + 7q5 + 8q4 + 190q3 + 414q2 + 588q + 272

5040
+

+
[

q2 + 14q + 40
36

]
3|q−1

+ [2]5|q−1 +
[

3
7

]
7|q−1

.

For p > 2 and n = 7 we have

V73q =
q6 + 7q5 + 8q4 + 197q3 + 981q2 + 1050q − 1896

5040
+

+
[

q2 + 6q − 3
72

]
3|q

+
[

q2 + 14q + 81
36

]
3|q−1

+
[

4q + 13
12

]
4|q−1

+

+
[

1
3

]
12|q−1

+
[

1
6

]
12|q−9

+
[

14
5

]
5|q−1

+
[

2
5

]
5|q

+
[

5
7

]
7|q−1

+

+
[

3
7

]
7|q+1

+
[

1
7

]
7|q

+
[

2
7

]
7|q2+q+1

and

R73q =
q6 + 7q5 + 8q4 + 190q3 + 939q2 + 903q − 2008

5040
+

+
[

q2 + 6q + 13
72

]
3|q

+
[

q2 + 14q + 85
36

]
3|q−1

+
[

2q + 5
6

]
4|q−1

+

+
[

1
3

]
12|q−1

+
[

1
6

]
12|q−9

+ [2]5|q−1 +
[

1
5

]
5|q

+
[

5
7

]
7|q−1

+

+
[

3
7

]
7|q+1

+
[

1
7

]
7|q

+
[

2
7

]
7|q2+q+1

.
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The expressions for Tnkq, Vnkq, and Rnkq are even more complicated.

Exercises

E.6.3.1 Exercise Prove that the orders of the groups GLk(q) and PGLk(q) are given by

|GLk(q)| = (qk − 1)(qk − q) . . . (qk − qk−1) =: [q]k, |PGLk(q)| =
[q]k

q − 1
.

E.6.3.2 Exercise Let GX be a group action. Prove that conjugate elements g1, g2 ∈ G
induce permutations g1, g2 of X of the same cycle type. In other words, if
g2 = gg1g−1 for some g ∈ G, then ai(g1) = ai(g2) for all i. Hint: Which
relation holds between the cycles of π and ρπρ−1 for π, ρ ∈ SX?

E.6.3.3 Exercise Prove that the cycle index of the natural action of the symmetric
group Sn on the set n = {0, 1, . . . , n − 1} is given by

C(Sn, n) = ∑
a��n

n

∏
k=1

1
ak!kak

zak
k .

Hint: Prove first the following propositions:

1. The cycle type a(π) of a permutation π ∈ Sn characterizes the conjugacy
class of π in Sn. Hence, elements in different conjugacy classes of Sn have
different cycle types.

2. For each cycle type a �� n there exist permutations π ∈ Sn with a(π) = a.

3. The number of elements of Sn of cycle type a �� n is

n!
∏n

k=1 ak!kak
.

E.6.3.4 Exercise Let A be an endomorphism of Fk. Show that Fk together with the
outer composition 6.3.5 is an F[x]-module, that is, for all f , f1, f2 ∈ F[x] and all
v, v1, v2 ∈ Fk we have f1( f2v) = ( f1 f2)v, ( f1 + f2)v = f1v + f2v, f (v1 + v2) =
f v1 + f v2 and 1Fv = v.

E.6.3.5 Exercise Prove 6.3.6.

E.6.3.6 Exercise Prove that 6.3.7 is a decomposition of 1 into pairwise orthogonal
idempotents.
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E.6.3.7Exercise Let A be an endomorphism of Fk. Prove that Fk is a cyclic F[x]-
module if and only if the characteristic polynomial χA and the minimal poly-
nomial MA of A coincide.

E.6.3.8Exercise Prove 6.3.17.

E.6.3.9Exercise Prove that conjugate matrices in GLk(q) have the same subcycle type.

E.6.3.10Exercise Prove 6.3.23.

E.6.3.11Exercise Prove that the multiplication � of 6.3.25 is commutative and associa-
tive.

6.46.4 Numerical Data for Linear Isometry Classes

In Tables 6.7–6.12 we present the numbers of linear isometry classes of nonre-
dundant linear codes and of projective linear codes for q = 2, 3, 4. For comput-
ing these numbers we had to determine the auxiliary data Tnkq and Tnkq given
in Tables 6.13–6.18. The numbers of all linear isometry classes of linear codes
are displayed in Tables 6.19–6.20. Some values for Unk2 were already presented
in Table 6.2. Finally the numbers of indecomposable linear codes are presented
in Tables 6.21–6.26. These numbers were computed with the computer alge-
bra system SYMMETRICA ([190]). Due to restrictions of the page size in some
tables the entries for n = 13 or n = 14 are omitted. It is also possible to de-
termine tables of

[ n
k

]
(q), Tnkq, Tnkq, Vnkq, Vnkq, Unkq, Rnkq and Rnkq with the

software from the attached CD.
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Table 6.5 Values of
[ n

k

]
(3)

n\k 1 2 3 4
1 1 0 0 0
2 4 1 0 0
3 13 13 1 0
4 40 130 40 1
5 121 1 210 1 210 121
6 364 11 011 33 880 11 011
7 1 093 99 463 925 771 925 771
8 3 280 896 260 25 095 280 75 913 222
9 9 841 8 069 620 678 468 820 6 174 066 262

10 29 524 72 636 421 18 326 727 760 500 777 836 042
11 88 573 653 757 313 494 894 285 941 40 581 331 447 162
12 265 720 5 883 904 390 13 362 799 477 720 3 287 582 741 506 063
13 797 161 52 955 405 230 360 801 469 802 830 266 307 564 861 468 823

Table 6.6 Values of
[ n

k

]
(4)

n\k 1 2 3 4
1 1 0 0 0
2 5 1 0 0
3 21 21 1 0
4 85 357 85 1
5 341 5 797 5 797 341
6 1 365 93 093 376 805 93 093
7 5 461 1 490 853 24 208 613 24 208 613
8 21 845 23 859 109 1 550 842 085 6 221 613 541
9 87 381 381 767 589 99 277 752 549 1 594 283 908 581

10 349 525 6 108 368 805 6 354 157 930 725 408 235 958 349 285
11 1 398 101 97 734 250 405 406 672 215 935 205 104 514 759 495 347 685
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Table 6.7 Values of Vnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 1 0 0 0 0
4 1 3 3 1 0 0 0
5 1 4 6 4 1 0 0
6 1 6 12 11 5 1 0
7 1 7 21 27 17 6 1
8 1 9 34 63 54 25 7
9 1 11 54 134 163 99 35

10 1 13 82 276 465 385 170
11 1 15 120 544 1 283 1 472 847
12 1 18 174 1 048 3 480 5 676 4 408
13 1 20 244 1 956 9 256 22 101 24 297
14 1 23 337 3 577 24 282 87 404 143 270

Table 6.8 Values of Vnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 1 0 0 0 0
4 1 4 3 1 0 0 0
5 1 5 8 4 1 0 0
6 1 8 19 15 5 1 0
7 1 10 39 50 24 6 1
8 1 14 78 168 118 37 7
9 1 17 151 538 628 255 53

10 1 22 280 1 789 3 759 2 266 518
11 1 26 506 5 981 26 131 28 101 7 967
12 1 33 904 20 502 208 045 500 237 230 165
13 1 38 1 571 70 440 1 788 149 11 165 000 11 457 192
14 1 46 2 687 241 252 15 675 051 269 959 051 734 810 177
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Table 6.9 Values of Vnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 1 0 0 0 0
4 1 4 3 1 0 0 0
5 1 6 9 4 1 0 0
6 1 9 24 17 5 1 0
7 1 12 55 70 28 6 1
8 1 17 131 323 189 44 7
9 1 22 318 1 784 1 976 490 65

10 1 30 772 12 094 36 477 13 752 1 240
11 1 37 1 881 89 437 923 978 948 361 102 417
12 1 48 4 568 668 922 25 124 571 91 149 571 25 983 495
13 1 59 10 857 4 843 901 665 246 650 9 163 203 790 9 229 228 790

Table 6.10 Values of Vnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0
4 0 0 2 1 0 0 0
5 0 0 1 3 1 0 0
6 0 0 1 4 4 1 0
7 0 0 1 5 8 5 1
8 0 0 0 6 15 14 6
9 0 0 0 5 29 38 22

10 0 0 0 4 46 105 80
11 0 0 0 3 64 273 312
12 0 0 0 2 89 700 1 285
13 0 0 0 1 112 1 794 5 632
14 0 0 0 1 128 4 579 26 792
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Table 6.11 Values of Vnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0
4 0 1 2 1 0 0 0
5 0 0 3 3 1 0 0
6 0 0 4 8 4 1 0
7 0 0 4 19 15 5 1
8 0 0 3 44 61 26 6
9 0 0 3 91 277 162 40

10 0 0 2 199 1 439 1 381 375
11 0 0 1 401 8 858 17 200 5 923
12 0 0 1 806 62 311 311 580 182 059
13 0 0 1 1 504 459 828 6 876 068 9 427 034
14 0 0 0 2 659 3 346 151 159 373 844 608 045 192

Table 6.12 Values of Vnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0
4 0 1 2 1 0 0 0
5 0 1 4 3 1 0 0
6 0 0 8 10 4 1 0
7 0 0 10 35 19 5 1
8 0 0 13 136 122 33 6
9 0 0 17 657 1 320 376 52

10 0 0 19 3 849 25 619 11 632 1 057
11 0 0 19 23 456 645 751 845 949 95 960
12 0 0 17 138 200 16 822 798 81 806 606 25 058 580
13 0 0 13 761 039 418 686 704 8 140 667 601 8 935 079 862
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Table 6.13 Values of Tnk2

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 4 4 4 4 4
4 1 4 7 8 8 8 8
5 1 5 11 15 16 16 16
6 1 7 19 30 35 36 36
7 1 8 29 56 73 79 80
8 1 10 44 107 161 186 193
9 1 12 66 200 363 462 497

10 1 14 96 372 837 1 222 1 392
11 1 16 136 680 1 963 3 435 4 282
12 1 19 193 1 241 4 721 10 397 14 805
13 1 21 265 2 221 11 477 33 578 57 875
14 1 24 361 3 938 28 220 115 624 258 894

Table 6.14 Values of Tnk3

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 4 4 4 4 4
4 1 5 8 9 9 9 9
5 1 6 14 18 19 19 19
6 1 9 28 43 48 49 49
7 1 11 50 100 124 130 131
8 1 15 93 261 379 416 423
9 1 18 169 707 1 335 1 590 1 643

10 1 23 303 2 092 5 851 8 117 8 635
11 1 27 533 6 514 32 645 60 746 68 713
12 1 34 938 21 440 229 485 729 722 959 887
13 1 39 1 610 72 050 1 860 199 13 025 199 24 482 391
14 1 47 2 734 243 986 15 919 037 285 878 088 1 020 688 265
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Table 6.15 Values of Tnk4

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 4 4 4 4 4
4 1 5 8 9 9 9 9
5 1 7 16 20 21 21 21
6 1 10 34 51 56 57 57
7 1 13 68 138 166 172 173
8 1 18 149 472 661 705 712
9 1 23 341 2 125 4 101 4 591 4 656

10 1 31 803 12 897 49 374 63 126 64 366
11 1 38 1 919 91 356 1 015 334 1 963 695 2 066 112
12 1 49 4 617 673 539 25 798 110 116 947 681 142 931 176
13 1 60 10 917 4 854 818 670 101 468 9 833 305 258 19 062 534 048

Table 6.16 Values of Tnk2

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1
3 0 1 2 2 2 2 2
4 0 0 2 3 3 3 3
5 0 0 1 4 5 5 5
6 0 0 1 5 9 10 10
7 0 0 1 6 14 19 20
8 0 0 0 6 21 35 41
9 0 0 0 5 34 72 94

10 0 0 0 4 50 155 235
11 0 0 0 3 67 340 652
12 0 0 0 2 91 791 2 076
13 0 0 0 1 113 1 907 7 539
14 0 0 0 1 129 4 708 31 500
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Table 6.17 Values of Tnk3

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1
3 0 1 2 2 2 2 2
4 0 1 3 4 4 4 4
5 0 0 3 6 7 7 7
6 0 0 4 12 16 17 17
7 0 0 4 23 38 43 44
8 0 0 3 47 108 134 140
9 0 0 3 94 371 533 573

10 0 0 2 201 1 640 3 021 3 396
11 0 0 1 402 9 260 26 460 32 383
12 0 0 1 807 63 118 374 698 556 757
13 0 0 1 1 505 461 333 7 337 401 16 764 435
14 0 0 0 2 659 3 348 810 162 722 654 770 767 846

Table 6.18 Values of Tnk4

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1
3 0 1 2 2 2 2 2
4 0 1 3 4 4 4 4
5 0 1 5 8 9 9 9
6 0 0 8 18 22 23 23
7 0 0 10 45 64 69 70
8 0 0 13 149 271 304 310
9 0 0 17 674 1 994 2 370 2 422

10 0 0 19 3 868 29 487 41 119 42 176
11 0 0 19 23 475 669 226 1 515 175 1 611 135
12 0 0 17 138 217 16 961 015 98 767 621 123 826 201
13 0 0 13 761 052 419 447 756 8 560 115 357 17 495 195 219
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Table 6.19 Values of Unk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 3 1 0 0 0 0
4 4 7 4 1 0 0 0
5 5 12 12 5 1 0 0
6 6 20 31 20 6 1 0
7 7 30 70 70 30 7 1
8 8 44 148 238 148 44 8
9 9 61 299 776 776 299 61

10 10 83 579 2 565 4 535 2 565 579
11 11 109 1 085 8 546 30 666 30 666 8 546
12 12 142 1 989 29 048 238 711 530 903 238 711
13 13 180 3 560 99 488 2 026 860 11 695 903 11 695 903
14 14 226 6 247 340 740 17 701 911 281 654 954 746 506 080

Table 6.20 Values of Unk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 3 1 0 0 0 0
4 4 7 4 1 0 0 0
5 5 13 13 5 1 0 0
6 6 22 37 22 6 1 0
7 7 34 92 92 34 7 1
8 8 51 223 415 223 51 8
9 9 73 541 2 199 2 199 541 73

10 10 103 1 313 14 293 38 676 14 293 1 313
11 11 140 3 194 103 730 962 654 962 654 103 730
12 12 188 7 762 772 652 26 087 225 92 112 225 26 087 225
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Table 6.21 Values of Rnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 1 1 0 0 0 0
5 1 2 2 1 0 0 0
6 1 3 5 3 1 0 0
7 1 4 10 10 4 1 0
8 1 5 18 28 18 5 1
9 1 7 31 71 71 31 7

10 1 8 51 165 250 165 51
11 1 10 79 361 809 809 361
12 1 12 121 754 2 484 3 759 2 484
13 1 14 177 1 503 7 240 16 749 16 749
14 1 16 254 2 893 20 341 72 828 113 662

Table 6.22 Values of Rnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 2 1 0 0 0 0
5 1 3 3 1 0 0 0
6 1 5 10 5 1 0 0
7 1 7 24 24 7 1 0
8 1 10 55 105 55 10 1
9 1 13 116 403 403 116 13

10 1 17 231 1 506 3 000 1 506 231
11 1 21 438 5 425 23 579 23 579 5 425
12 1 27 813 19 440 199 473 469 473 199 473
13 1 32 1 451 68 478 1 758 953 10 925 684 10 925 684
14 1 39 2 533 237 709 15 575 102 267 929 503 723 109 414
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Table 6.23 Values of Rnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 2 1 0 0 0 0
5 1 4 4 1 0 0 0
6 1 6 14 6 1 0 0
7 1 9 38 38 9 1 0
8 1 13 104 238 104 13 1
9 1 18 276 1 573 1 573 276 18

10 1 25 711 11 566 34 288 11 566 711
11 1 32 1 793 88 140 909 664 909 664 88 140
12 1 42 4 446 665 736 25 020 688 90 186 547 25 020 688
13 1 53 10 691 4 836 136 664 473 418 9 137 113 963 9 137 113 963

Table 6.24 Values of Rnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 0 1 0 0 0 0
5 0 0 1 1 0 0 0
6 0 0 1 2 1 0 0
7 0 0 1 4 3 1 0
8 0 0 0 5 9 4 1
9 0 0 0 5 22 19 6

10 0 0 0 4 40 70 35
11 0 0 0 3 60 220 190
12 0 0 0 2 86 629 977
13 0 0 0 1 110 1 700 4 875
14 0 0 0 1 127 4 463 24 920
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Table 6.25 Values of Rnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 1 1 0 0 0 0
5 0 0 2 1 0 0 0
6 0 0 4 4 1 0 0
7 0 0 4 14 6 1 0
8 0 0 3 39 39 9 1
9 0 0 3 88 227 93 12

10 0 0 2 196 1 340 1 078 199
11 0 0 1 399 8 652 15 695 4 468
12 0 0 1 805 61 904 302 573 164 499
13 0 0 1 1 503 459 017 6 813 448 9 113 636
14 0 0 0 2 658 3 344 644 158 913 391 601 158 522

Table 6.26 Values of Rnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 1 1 0 0 0 0
5 0 1 3 1 0 0 0
6 0 0 7 5 1 0 0
7 0 0 10 26 8 1 0
8 0 0 13 124 83 12 1
9 0 0 17 643 1 173 244 17

10 0 0 19 3 831 24 942 10 266 663
11 0 0 19 23 437 641 872 820 142 84 184
12 0 0 17 138 181 16 799 302 81 159 989 24 211 108
13 0 0 13 761 022 418 548 455 8 123 840 077 8 853 245 774
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6.56.5 Critical Codes

According to 6.2.13, appending a nonzero column to an indecomposable code
yields a code which is again indecomposable. This shows that there exists an
infinite family of k-dimensional indecomposable linear codes over any field
Fq and for any dimension k. On the other hand, the (n − 1, k)-code obtained
by deleting an arbitrary column of a generator matrix of an indecomposable
(n, k)-code can be either decomposable or indecomposable. For this reason, we
investigate a restricted class of indecomposable codes, the critical, indecompos-
able codes, for short critical codes, introduced in [6]. An indecomposable code
is called critical if the removal of any column of a generator matrix results in
a decomposable code. In this section we prove that for a given dimension
there are only finitely many critical, indecomposable codes and that any inde-
composable code is obtained from a critical code by appending columns to a
generator matrix of the critical code. Similarly as in Section 6.2, we may al-
ways assume that the codes are nonredundant. The present section is mainly a
summary of [6]. All theorems and examples are quoted or excerpted from [6].
However, the order of the material presented is changed slightly.

Given an arbitrary code C, we may consider the subcode which is gener-
ated by the codewords of weight 1. If such words exist, the subcode generated
by them splits off as an outer direct summand. Therefore, C is not indecom-
posable. If dist(C) > 1, we investigate the subcode E of C which is generated
by the vectors of weight 2. If such vectors exist, then E may or may not be
an outer direct summand. The code E itself turns out to be an outer direct
sum of codes, each summand being equivalent to a code which is the dual of
a one-dimensional code generated by the all-one vector.

The support of a vector was defined in Section 1.6. The support of a vector
space is the union of the supports of its elements. If the support of E is suffi-
ciently large compared to the support of the code C and C is indecomposable,
then we will prove that C is a critical code.

A particular class of vector space homomorphisms plays an important role
for the following considerations.

6.5.1Definition (code homomorphism) Let C and D be two linear codes over Fq. A
code homomorphism is a vector space homomorphism ϕ : C → D such that

wt(ϕ(c)) ≤ wt(c), c ∈ C.  

In other words, code homomorphisms are linear mappings which are contrac-
tions with respect to the Hamming metric.
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6.5.2 Examples

1. Let Y be a subset of n = {0, . . . , n − 1} and n ≥ 1. For f ∈ Fn
q let f ↓ Y be

the restriction of f to Y. If C is a subspace of Fn
q and D = { f ↓ Y | f ∈ C},

then the mapping ϕ : C → D defined by ϕ( f ) := f ↓ Y is a code homo-
morphism. It is called a projection of C onto D. If dim(D) = dim(C), then
in coding theory we usually say that D is obtained from C by puncturing
(cf. 2.2.8). We call D the projection of C onto Y.

2. If C′ is a subspace of C ⊆ Fn
q , then the natural injection of C′ into C is a

code homomorphism.

3. If C is a critical, indecomposable code of length n > 1, then the projections
of C onto n \ {i} are decomposable for i ∈ n.

4. A projection D of a decomposable code C is decomposable or indecompos-
able. If it is indecomposable, then dim(D) < dim(C). �

Based on code homomorphisms it is possible to introduce the category of
linear codes. We will not do it here. For further details consult [6].

If ϕ : C → D is a vector space isomorphism so that both ϕ and its inverse
ϕ−1 : D → C are code homomorphisms, then ϕ is called a code isomorphism. It
follows, therefore, that a code isomorphism preserves weights. If ϕ : C → D
is a code isomorphism and C and D are of the same length, then ϕ is a linear
isometry in the sense of Section 1.4. Hence, if we do not restrict our attention
to nonredundant codes, then the notion “up to isomorphism” is a generaliza-
tion of the notion “up to linear isometry”. Two codes which are the same up to
isomorphism can have different block-lengths. Restricting ourselves to nonre-
dundant codes the two notions mean the same. The projection C → D of a
nonredundant code C is a code isomorphism if and only if C = D.

Even if the code homomorphism is a vector space isomorphism its inverse
need not be a code homomorphism.

6.5.3 Example For n > 1 let C be the (n, n − 1)-parity check code and D the punc-
turing of C in the first component. Then the projection ϕ : C → D is a vector
space isomorphism. For each c ∈ C whose first component is different from
0 we have wt(ϕ(c)) < wt(c) and, consequently, wt(ϕ−1(ϕ(c)) > wt(ϕ(c)).
Thus, ϕ−1 is not a code homomorphism. �

6.5.4 Definition (critical code) An indecomposable code C is called critical, indecom-
posable or just critical if, whenever ϕ : C → D is a projection which is not a code
isomorphism, either dim(D) < dim(C), or D is decomposable.  
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6.5.5Examples

1. Up to isomorphism, there is exactly one critical code of dimension 1 over
Fq, namely Fq.

2. In dimension 2 there is up to isomorphism one critical code, namely the
(3, 2)-code with generator matrix(

1 0 1
0 1 1

)
.

3. For n ≥ 3, the unique indecomposable (n, n− 1)-code (cf. 6.2.19) is a critical
code. It has a generator matrix of the form⎛⎜⎝ 1 1

. . .
...

1 1

⎞⎟⎠ 6.5.6

where all entries, which are not specified, are equal to 0.

4. There is no critical code of length 2.

5. Consider an indecomposable code C with a repeated column, the last col-
umn say. Projecting this code onto all but the last column yields a sur-
jective code homomorphism, which is not an isomorphism. The image is
indecomposable and has the same dimension as C, whence C is not critical.
In particular, a critical, indecomposable code has no repeated columns. For
example, according to Table 6.21 there exist two indecomposable binary
(5, 2)-codes. They are given by the generator matrices

Γ1 =
(

1 0 0 0 1
0 1 1 1 1

)
and Γ2 =

(
1 0 1 0 1
0 1 0 1 1

)
.

They both project onto the unique critical binary code of dimension 2.

6. According to Table 6.22, there exist exactly two indecomposable binary
(5, 3)-codes. They are given by the generator matrices

Γ1 =

⎛⎝ 1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

⎞⎠ and Γ2 =

⎛⎝ 1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

⎞⎠ .

Their weight distributions are

wC1(x) = 1 + 2x2 + 4x3 + x4 and wC2(x) = 1 + 3x2 + 3x3 + x5.

Deleting the second column of Γ1 and the last column of Γ2 shows that
both codes project onto the same critical binary (4, 3)-code with generator
matrix ⎛⎝ 1 0 0 1

0 1 0 1
0 0 1 1

⎞⎠
�
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It is possible to generalize the last example.

6.5.7 Theorem Over any field there is a unique critical code of dimension 3. Up to isomor-
phism, it is the (4, 3)-code with generator matrix.⎛⎝ 1 0 0 1

0 1 0 1
0 0 1 1

⎞⎠ .

Proof: Assume that C is a three-dimensional, critical code over Fq. Then we
can find a linearly isometric code with generator matrix (I3 | A).

If A has a column of weight three, then the columns of I3 together with
this additional column are the generator matrix of a projection of C. Moreover,
this projection is a critical, three-dimensional, indecomposable code. Hence, it
must be the generator matrix for the code linearly isometric to C. By changing
the basis suitably, one can achieve that the column of weight 3 consists of three
ones. A monomial transformation then gives the desired generator matrix.

If there is no column of weight 3 in A, then all columns of A have weight
2. There are no columns of weight 1, since they would be repeated columns,
contradicting the fact that C is critical. Moreover, since C is indecomposable,
there must be at least two columns in A whose zeros are in different rows.
We want to prove that there is no critical (5, 3)-code. Again, by a suitable
monomial transformation we can assume that the generator matrix is of the
form ⎛⎝ 1 0 0 1 1

0 1 0 1 0
0 0 1 0 1

⎞⎠ .

Projecting C onto the last four coordinates gives a three-dimensional critical,
indecomposable code which is easily seen to be linearly isometric to the (4, 3)-
code. This shows that no critical, three-dimensional, indecomposable code
with block length greater than four exists. �

The situation in dimension 4 is more interesting.

6.5.8 Example The binary (5, 4)-parity check code is a critical code.
The projection of the binary (7, 4)-Hamming-code onto any 6 coordinates

is a critical (6, 4)-code. A suitable generator matrix of this code is given by⎛⎜⎜⎝
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 1 0 1

⎞⎟⎟⎠ .
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This critical code belongs to an infinite class of critical binary (2m, m + 1)-
codes, m ≥ 2, with generator matrix⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0

. . .
0 0 0 0 . . . 1 1
0 1 0 1 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ .

For m = 2 we have the (4, 3)-parity check code, for m = 3 the code above. �

If C is an indecomposable code which is not critical, then there exists a pro-
jection of C onto an indecomposable code of the same dimension but smaller
length. This proves the next

6.5.9Corollary For any indecomposable code C, there exists a critical code D of the same
dimension as C and a projection of C onto D. �

All indecomposable codes are given by adjoining columns to the generator
matrix of a critical code. For example, all 2-dimensional binary indecompos-
able codes have generator matrices of the form(

1 . . . 1 0 . . . 0 1 . . . 1
0 . . . 0 1 . . . 1 1 . . . 1

)
and project onto the unique critical (3, 2)-code over F2 by eliminating repeated
columns.

By eliminating repeated columns we obtain the reduced code of C. By
further deleting zero columns we obtain a projective code. The reduced code
is indecomposable if and only if the original code had this property.

6.5.10Definition (critical column) Let C be an indecomposable code of length n > 1.
The i-th column, i ∈ n, of C is critical if the projection of C onto n \ {i} is
a decomposable code. In other words, the i-th column is critical if the code
which is obtained from C by puncturing the i-th coordinate is decomposable.

 

6.5.11Corollary An indecomposable code C of length n > 1 is critical if and only if all its
columns are critical. �

Now we determine all critical (n, n − 2)-codes for n > 2.

6.5.12Theorem If C is a critical (nonredundant) (n, n − 2)-code over Fq, then n > 3.
It has minimum distance 2 and the subcode E of C generated by all codewords of
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weight 2 has support n. Moreover, C is linearly isometric to a code with a generator
matrix of the form

Γ = (In−2 | A) with A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a0
...

...
1 ar−1

0 1
...

...
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the weight of the second column of A is greater than n − 2 − r but less than
n − 2. Moreover, if ai �= 0, then there exists some j ∈ r \ {i} with aj = ai.

Conversely, any matrix A as above yields a critical (n, n − 2)-code over Fq.

Proof: For n = 3 there is no critical, nonredundant (3, 1)-code. Hence, we
assume that n > 3. The code C is linearly isometric to a code with generator
matrix of the form (In−2 | A) where neither of the two columns of A can
have weight n − 2, since otherwise C would not be critical. By a monomial
transformation we can assure that the first column of A is a sequence of r ones,
r < n− 2, followed by a sequence of zeros. If a = (a0, . . . , ar−1, ar , . . . , an−3)� is
the second column of A, then necessarily ai �= 0 for i ≥ r, since C cannot have
minimum weight 1. By a further monomial transformation, we can assume
that these entries are equal to 1. Moreover, since C is indecomposable there
must be some i ∈ r so that ai �= 0. Thus, the weight of the second column of A
is greater than n − 2− r but less than n − 2.

We next prove that for each i ∈ r with ai �= 0 there exists some j ∈ r,
j �= i, such that aj = ai. If for i with ai �= 0 there were no j with ai = aj, then
we can proceed as follows: Multiply the last column by a−1

i so that there is a
single 1 in the last column. (Then the elements in the last column are of the
form aja−1

i .) By elementary row operations it is possible to replace all nonzero
entries different from 1 in the last column by 0. (For each j different from i
we have to multiply the i-th row by aja

−1
i and subtract the result from the j-

th row.) After these row operations all entries of the last but one column are
different from 0. Hence this matrix contains the n − 2 unit vectors, a column
of weight n − 2 and a further column. Thus it is a generator matrix of a code
which is not critical. This is a contradiction, since this code is linearly isometric
to a critical code.

Lastly, we prove the assertion concerning the subcode E. The last n − 2− r
rows of Γ belong to E, whence {i ∈ n | r ≤ i ≤ n − 3} ∪ {n − 1} is a subset of
the support of E. Moreover, there exists i ∈ r such that ai = 0. Consequently,
{n − 2} ∪ {i ∈ r | ai = 0} is also contained in the support of E. Finally, con-
sider some i ∈ r with ai �= 0, then there is some j ∈ r with aj = ai, and the sum
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of the i-th and j-th row is contained in E. Its support is {i, j}. Therefore, i and
j also belong to the support of E. This proves that E has full support. �

Now we want to describe the structure of critical codes. This way we find
a “quasicanonical form” of critical and indecomposable codes.

First we need the following lemma describing the subspace generated by
all codewords of weight 2.

6.5.13Lemma Let E be a code over Fq with minimum distance 2 which is generated by its
vectors of weight 2. Then

E = E0 � . . . � Er−1

where each Ei is linearly isometric to an indecomposable (ni, ni − 1)-parity check code
with ni ≥ 2.

Proof: We consider E as a code of length n with support n = {0, . . . , n − 1}.
We introduce an equivalence relation on n by saying that i is in relation to j
whenever there exists a codeword c ∈ E of weight 2 so that ci �= 0 �= cj. Let
X0, . . . , Xr−1 be the equivalence classes of this relation.

For i ∈ r let Ei be the subspace of E which is generated by all vectors of
weight 2 with support in Xi. Then Ei ∩ Ej = {0} for i �= j and E0 � . . . � Er−1 =
E. By construction |Xi| = ni ≥ 2. Projecting Ei to its support Xi yields an
indecomposable (ni, ni − 1)-code. �

6.5.14Corollary Any code with minimum distance 2 which is generated by its vectors of
weight 2 is linearly isometric to a code with generator matrix⎛⎜⎜⎜⎜⎝

Γ0 0 . . . 0
0 Γ1 0
...

. . .
...

0 0 . . . Γr−1

⎞⎟⎟⎟⎟⎠ ,

where Γi, i ∈ r, is an (ni − 1)× ni-matrix, ni ≥ 2, of the form 6.5.6. �

Note that this code is indecomposable if and only if r = 1.
From the test on indecomposability, 6.2.13, we obtain the following

6.5.15Corollary If C is a critical code with generator matrix of the form (Ik | A), then
any walk visiting all the k rows of the graph GA defined on page 469 also visits every
column of GA.

Proof: If there were a walk visiting all rows but not all columns, then some
columns of A could be eliminated and the resulting code would still be inde-
composable. This is a contradiction to the assumption that C is critical. �
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This, however, is only a necessary, not a sufficient property for a code to be
critical. We proceed with the following combinatorial lemma, which will later
be applied to the supports of the columns of A.

6.5.16 Lemma Let R be a finite set and C a collection of subsets of R satisfying the two
conditions:

1. There is a sequence R0, R1, . . . , Rm−1 of elements of C such that Ri ∩ Ri+1 �= ∅
for i ∈ m − 1 and

⋃
i∈m Ri = R.

2. C is minimal with respect to the above property, i.e. no proper subset of C posses a
sequence of elements satisfying this property.

Then there exists some r ∈ R and i ∈ m such that r ∈ Ri and r �∈ Rj for j �= i.
Moreover, if |C| > 1, then there exist at least two elements r, r′ ∈ R, r �= r′, and
i, i′ ∈ m, i �= i′, with r ∈ Ri, r �∈ Rj for j �= i and r′ ∈ Ri′ , r′ �∈ Rj for j �= i′.

Proof: Any sequence from C having the required property must contain each
element of C at least once by the minimality assumption. Choose a sequence
R0, . . . , Rm−1 from C with the required property and with m minimal. If m = 1,
then C = {R0} and the assertion is trivial. Otherwise, consider the shorter se-
quences R1, . . . , Rm−1 and R0, . . . , Rm−2. Since they both enjoy the intersection
property, necessarily

m−1⋃
i=1

Ri �= R �=
m−2⋃
i=0

Ri.

Due to the fact that m was minimal neither R0 occurs among R2, . . . , Rm−1

nor Rm−1 occurs among R0, . . . , Rm−2. Choose r0 ∈ R0, r0 �∈ ⋃m−1
i=1 Ri and

rm−1 ∈ Rm−1, rm−1 �∈
⋃m−2

i=0 Ri. Then r0 �= rm−1 and we get the desired result.
�

6.5.17 Theorem Every critical (n, k)-code with n > 2 has minimum distance 2. If n ≥ 4,
then the code contains at least two vectors of weight 2 with disjoint support.

Let E be the subcode of C generated by all codewords of weight 2. Then either
C = E or there exists a subspace F of C of minimum distance greater than 2 so that
C = E + F and E ∩ F = {0}. The subcode E can be expressed as E = E0 � . . . �
Er−1, r ≥ 1, where each Ei is linearly isometric to an indecomposable (ni, ni − 1)-
parity check code.

When C = E + F with F �= {0}, then F is an indecomposable code. Assume
without loss of generality, that the support of E is equal to s = {0, . . . , s − 1}. If
s < n, then the columns of F with column index in {s, . . . , n − 1} are critical columns
of F. The code F is also known as the auxiliary indecomposable code attached to C.
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A generator matrix of a code linearly isometric to C is of the form

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
Γ0 0 . . . 0 0
0 Γ1 . . . 0 0
...

. . .
...

0 0 . . . Γr−1 0
Λ0 Λ1 . . . Λr−1 Λr

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where Γi, i ∈ r, is an (ni − 1) × ni-matrix, ni ≥ 2, of the form 6.5.6. Each Λi, i ∈ r,
is of the form

Λi =

⎛⎜⎝ 0 . . . 0 �0i
...

. . .
...

...
0 . . . 0 �δ−1,i

⎞⎟⎠
where δ = dim(F) = k − ∑i(ni − 1), and (�0i, . . . , �δ−1,i) ∈ Fδ

q \ {0}. Finally, all
columns of the δ × (n − s)-matrix Λr are nonzero and critical. The matrix Γ is called
a quasicanonical form of C. The submatrix (Λ0 | . . . | Λr) is a generator matrix of
F. The nonzero columns of this submatrix yield a generator matrix⎛⎜⎝ �00 . . . �0,r−1

...
. . .

...
�δ−1,0 . . . �δ−1,r−1

Λr

⎞⎟⎠
of F projected onto its support which is a nonredundant, indecomposable code.

Proof: Assume that C is a nonredundant, critical (n, k)-code with n > 2 and
systematic generator matrix Γ = (Ik | A), where necessarily k < n. Let R be k,
the set of all row-indices of Γ, and let C be the set of the supports of the columns
of A. According to 6.5.15, C satisfies the assumptions of 6.5.16. Consequently,
there exists some i ∈ k such that i belongs to exactly one column of A, thus the
i-th row of Γ is a codeword of weight 2. By 6.2.18, any indecomposable code
of length greater than 1 has minimum distance at least 2. Hence, dist(C) = 2.

Assume that n ≥ 4. If n − k ≥ 2, then |C| > 1, whence there exist i, j ∈ k,
i �= j, so that there is exactly one column of A the support of which contains
i and there is exactly one column of A the support of which contains j. Con-
sequently, the i-th and the j-th row of Γ are two codewords of weight 2 with
disjoint support. If n − k = 1, then C is the (n, n − 1)-parity check code which
contains at least two codewords of weight 2 with disjoint support.

Let E be the subcode of C generated by the vectors of weight 2. By 6.5.13

E = E0 � . . . � Er−1,

where each Ei is linearly isometric to a unique indecomposable (ni, ni − 1)-
code, ni ≥ 2. If ni = 2, then Ei is the repetition code, otherwise Ei is a critical
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code. It is possible that the support of E is a proper subset of n. In this case
assume, without loss of generality, that the support of E is s. Moreover, we as-
sume that the support X0 of E0 consists of the first n0 columns, and the support
Xi of Ei consists of the ni columns following the support of Ei−1, for 1 ≤ i < r.
Thus X0 = {0, . . . , n0 − 1} = n0, X1 = {n0, . . . , n0 + n1 − 1} = (n0 + n1) \ n0,
and so on.

If r = 1 and C = E, we are done. Otherwise E is properly contained
in C and C = E + F where F ∩ E = {0}. Since E contains all codewords
of C of weight 2, the code F has minimum distance at least 3. By suitable
row operations it is possible to find generators of F the support of which is
contained in

S =

{
i

∑
j=0

nj − 1
∣∣∣ i ∈ r

}
∪ {s, s + 1, . . . , n − 1} .

Recall that ∑i
j=0 nj − 1 belongs to the support of Ei, i ∈ r. Moreover, since C is

indecomposable, S is the support of F.
The fact that C is indecomposable implies that also F is indecomposable.

The fact that C is critical implies that all columns with index in {s, . . . , n − 1}
are critical. �

If r > 1 and s = n, then necessarily r ≥ 3, since otherwise the weight of the
generators of F would be less than 3, what is impossible since all codewords
of weight 2 belong to E and there are no codewords of weight 1 in C.

This way we obtain only a quasicanonical form of critical codes since we
have specified neither the order of the Γi nor the order of the nonzero columns
of the matrices Λi. This description of the quasicanonical form yields a method
for constructing critical codes and arbitrary indecomposable codes. Any inde-
composable code is linearly isometric to a code with generator matrix

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
Γ0 0 . . . 0 0 N0

0 Γ1 . . . 0 0 N1
...

. . .
...

...
0 0 . . . Γr−1 0 Nr−1

Λ0 Λ1 . . . Λr−1 Λr Nr

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with suitable matrices Ni, 0 ≤ i ≤ r.

6.5.18 Example Consider the binary (5, 2, 3)-code F with generator matrix

Γ =
(

1 0 1 0 1
0 1 0 1 1

)
which is indecomposable and has one critical column, the last. Now we want
to construct a nonredundant, critical (9, 6)-code with auxiliary code F. Since
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ni ≥ 2, we have r = 4, n0 = n1 = n2 = n3 = 2 and s = 8. Therefore, a
quasicanonical form of the critical (9, 6)-code is⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

�

Using these quasicanonical forms, we are able to classify the critical
(n, n − 2)-codes in more details.

6.5.19Corollary The quasicanonical generator matrix of a critical, indecomposable (n, n −
2)-code over Fq with n > 3 is of the form

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
Γ0 0 . . . 0
0 Γ1 . . . 0
...

. . .
0 0 . . . Γr−1

Λ0 Λ1 . . . Λr−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where r ≥ 3, Γi is an (ni − 1) × ni-matrix, ni ≥ 2, given by 6.5.6, i ∈ r. Moreover,
Λi = (0 | . . . | 0 | e(i)) is an (r − 2) × ni-matrix for i ∈ r − 2,

Λr−2 =

⎛⎜⎝ 0 . . . 0 1
...

. . .
...

...
0 . . . 0 1

⎞⎟⎠ and Λr−1 =

⎛⎜⎝ 0 . . . 0 �0
...

. . .
...

...
0 . . . 0 �r−3

⎞⎟⎠
with pairwise different, nonzero elements �0, . . . , �r−3. Thus, we obtain the following
estimates: q − 1 ≥ r − 2 and n ≥ 6.

Proof: The quasicanonical form of critical codes was described in 6.5.17. Ac-
cording to 6.5.12, the code E generated by all codewords of weight 2 has full
support. Whence, n − s = 0 and the matrix Λr does not occur in this quasi-
canonical form. By construction r = 1 and r = 2 are impossible. If r ≥ 3, then
the auxiliary code F projected onto its nonzero columns is an (r, r − 2)-code
F̃ with minimum distance d ≥ 3. Therefore, it is an MDS-code. According to
2.5.6, there exists a systematic generator matrix of a code linearly isometric to
F̃ with generator matrix of the form⎛⎜⎜⎜⎝

1 0 . . . 0 1 �0

0 1 . . . 0 1 �1
...

. . .
...

...
0 0 . . . 1 1 �r−3

⎞⎟⎟⎟⎠ .

�
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For the binary case we obtain even a canonical form of critical (n, n− 2)-codes.

6.5.20 Corollary The binary critical (n, n − 2)-codes, n ≥ 6, have the canonical form

Γ =

⎛⎜⎜⎜⎝
Γ0 0 0
0 Γ1 0
0 0 Γ2

Λ0 Λ1 Λ2

⎞⎟⎟⎟⎠ ,

where Γi is an (ni − 1) × ni-matrix given by 6.5.6, i ∈ 3, with n0 ≥ n1 ≥ n2 ≥ 2,
and Λi is an 1× ni-matrix of the form

Λi = ( 0 . . . 0 1 ) , i ∈ 3.

Proof: Since F2 contains exactly two elements, we obtain from 1 ≥ r − 2 that
r ≤ 3, thus r = 3. Another proof of this fact is based on 2.5.7, where we have
shown that there exist only trivial binary MDS-codes. Hence, only for r = 3
there exist binary (r, r − 2, 3)-codes. �

6.5.21 Corollary The number of linearly nonisometric critical binary (n, n − 2)-codes with
n ≥ 6 is the same as the number of partitions of n − 3 into three parts.

Proof: The matrices Λi in the last row of a canonical form of a critical binary
(n, n − 2)-code have exactly one row. Therefore,

2

∑
i=0

(ni − 1) = n − 3

is the sum of the ranks of the matrices Γi for i ∈ 3. Since n0 ≥ n1 ≥ n2 and
n2 − 1 ≥ 1, the sequence (n0 − 1, n1 − 1, n2 − 1) is a partition of n − 3. �

6.5.22 Example For n = 6 there is exactly one partition of 3 with three parts, namely
3 = 1 + 1 + 1. We have met the corresponding critical (6, 4)-code in 6.5.8. For
n = 7 there is the unique partition 4 = 2 + 1 + 1 which yields the canonical
form

Γ =

⎛⎜⎜⎜⎜⎝
1 0 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 1 0 1 0 1

⎞⎟⎟⎟⎟⎠ .

�
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6.5.23Theorem A nonredundant, binary, critical (n, n − 2)-code C contains the all-one
vector if and only if it comes from a partition of n − 3 into three parts all of the same
parity (this means, that all three parts are either odd or even).

Proof: Assume that n − 3 has a partition k0 + k1 + k2 with k0 ≥ k1 ≥ k2 ≥ 1.
Using the canonical form 6.5.20 of C we have: If all three ki are odd, then

(1, . . . , 1︸ ︷︷ ︸
k0

, 1, . . . , 1︸ ︷︷ ︸
k1

, 1, . . . , 1︸ ︷︷ ︸
k2

, 0) · Γ = (1, . . . , 1).

If all three ki are even, then

(1, . . . , 1︸ ︷︷ ︸
k0

, 1, . . . , 1︸ ︷︷ ︸
k1

, 1, . . . , 1︸ ︷︷ ︸
k2

, 1) · Γ = (1, . . . , 1).

Conversely, assume that c = (1, . . . , 1) is contained in C. Then there exists
some v ∈ Fn−2

2 so that v · Γ = c. Moreover, assume that Γ corresponds to
a partition k0 + k1 + k2 = n − 3 with ki = ni − 1, i ∈ 3. If k0 is odd, then
the first k0 entries of v must be equal to 1. These entries guarantee that c0 =
c1 = . . . = ck0−1 = 1. The first k0 components of c are not influenced by the
remaining vi, k0 ≤ i < k. Since ck0 = 1, necessarily vn−3, the last component
of v, must be 0. Therefore, k1 and k2 are also odd, since otherwise cn0+n1−1 =
0 or cn0+n1+n2−1 = 0. If k0 is even, then similar considerations show, that
necessarily vn−3 = 1, in order to have ck0 = 1 and consequently, both k1 and
k2 must be even. �

Now we investigate the dual of a critical code.

6.5.24Examples

1. If C is the critical (n, n − 1)-code, n > 2, over Fq, then, according to Exer-
cise 1.3.9 its dual code C⊥ is generated by (−1, . . . ,−1, 1). Thus, it is lin-
early isometric to the code generated by the all-one vector and its reduced
code is the (1, 1)-code Fq.

2. If C is a critical (n, k)-code over Fq different from the critical (n, n− 1)-code,
then C has an auxiliary code F. Let F̃ be the projection of F onto its support,
then F̃ is a nonredundant, indecomposable code. We want to prove that
the reduced code of C⊥ is linearly isometric to the reduced code of F̃⊥. By
6.2.14 the dual of F̃, whence also the reduced code of F̃, is indecomposable.
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Using the quasicanonical form described in 6.5.17, the code C is linearly
isometric to a code C′ with generator matrix⎛⎜⎜⎜⎜⎜⎜⎝

Ik0 0 . . . 0 0 A0

0 Ik1 . . . 0 0 A1
...

. . .
...

...
0 0 . . . Ikr−1

0 Ar−1

0 0 . . . 0 Iδ A

⎞⎟⎟⎟⎟⎟⎟⎠
where ki = ni − 1, Iki

is the unit matrix, i ∈ r, and (Iδ | A) is a systematic
generator matrix of a code linearly isometric to F̃, where δ = n − ∑i ki and
A is a δ × (n − k)-matrix. Moreover, the rows of the matrix Ai, i ∈ r, are
copies of a nonzero multiple of a single row of A or they are unit vectors.
The dual of C′ has a generator matrix of the form

(−A�
0 | . . . | −A�

r−1 | −A� | In−k).

All columns of −A�
i , i ∈ r, are nonzero multiples of columns of −A� or

they are unit vectors, therefore, the reduced code of C⊥ is linearly isometric
to the reduced code of F̃⊥. �

It seems natural to ask from which critical, indecomposable codes a given inde-
composable code might arise by augmentation of their quasicanonical genera-
tor matrices. Or, equivalently, given an indecomposable (n, k)-code C, what
are the the critical, indecomposable (m, k)-codes which arise as projections
from C?

6.5.25 Definition (spectrum of a code) The spectrum spec(C) of an indecomposable
code C is the set of all linear isometry classes of critical, indecomposable codes
D which satisfy

dim(D) = dim(C)

there exists a projection of C onto D.  

6.5.26 Theorem The spectrum of an (n, k)-MDS-code with 1 < k < n contains only the
linear isometry class of the unique critical (k + 1, k)-parity check code.

Proof: In each systematic generator matrix (Ik | A) of any code linearly iso-
metric to C all columns of A have weight k. Thus, the only critical k-dimen-
sional code obtained as a projection of C is linearly isometric to the unique
critical, (k + 1, k)-parity check code. �
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6.5.27Corollary The spectrum of the m-th order q-ary Hamming-code C contains only one
element.

If m > 2, projecting C onto all but one coordinate yields a critical code in which
the code generated by all vectors of weight 2 is the sum of the unique indecomposable
q-ary (q, q− 1)-code repeated (qm−1 − 1)/(q− 1) times and the auxiliary code is the
(m − 1)-th order q-ary Hamming-code.

Proof: The first assertion follows from 6.5.26. The proof of the second assertion
is based on design theory. The reader should consult [7]. �

6.5.28Example The second order ternary Hamming-code has a generator matrix(
1 0 1 1
0 1 1 −1

)
.

Therefore, the quasicanonical form of the critical code in the spectrum of the
third order ternary Hamming-code is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

No matter which nonzero column we append as the last column, we obtain an
indecomposable (13, 10)-code. In order to obtain the Hamming-code, we must
append a column so that the minimum distance of the new code is equal to 3.
For this reason the nonzero entries in the first two rows must have opposite
signs. Similar arguments hold for all but the last two rows. Using for instance
(1,−1, 1,−1, 1,−1, 1,−1, 0, 0)� as the last column we obtain a generator ma-
trix of the Hamming-code. �

It is also possible that the spectrum contains more than one linear isometry
class.

6.5.29Example Consider the binary (7, 4)-code with the generator matrix⎛⎜⎜⎝
1 0 0 0 1 1 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎠ .
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Projecting onto the first five columns gives the unique critical (5, 4)-code while
projecting onto all but the fifth column gives the critical (6, 4)-code of 6.5.8. �

The proof of the following theorem is left to the reader.

6.5.30 Theorem Let C be a nonredundant, binary, indecomposable (n, k)-code.

1. If C contains the all-one vector, then each code in its spectrum contains the all-one
vector.

2. Let k > 1. If C contains the all-one vector, and spec(C) contains the critical
(k + 1, k)-parity check code, then k is odd.

3. Assume that k is even and C contains the all-one vector. Then the critical
(k + 1, k)-parity check code is not in spec(C). If a critical (k + 2, k)-code is con-
tained in spec(C), then it must come from a partition of k − 1 into three odd
parts. �

Now we come back to binary Reed–Muller-codes.

6.5.31 Theorem

1. The (m − 1)-th order Reed–Muller-code RM2
m,m−1 of degree m > 1 is the unique

critical (2m, 2m − 1)-code.

2. The spectrum of RM2
m,m−2, for m ≥ 2, contains exactly one code. This is the

critical code underlying the m-th order binary Hamming-code (cf. 6.5.27).

3. Assume that m > 3. The spectrum of RM2
m,1 consists of all critical codes of dimen-

sion m + 1 containing the all-one vector. Thus, there is a difference between the
spectra depending on the parity of m. If m is odd, then the critical (m + 2, m + 1)-
code is not in the spectrum, whereas it is contained in the spectrum when m is
even. The critical (m + 3, m + 1)-codes in the spectrum of RM2

m,1 are described
in 6.5.23.

Proof: 1. According to Exercise 2.4.3, the code RM2
m,m−1 contains all vectors of

length 2m of even weight, therefore, it is the unique critical (2m, 2m − 1)-code.

2. From 2.4.11 we obtain that RM2
m,m−2 is the parity extension of the m-th order

binary Hamming-code. Projecting on all but 2 coordinates gives the underly-
ing critical code. Any two coordinates yield the same critical code.

3. Every binary Reed–Muller-code contains the all-one vector. By the first part
of 6.5.30, all codes in the spectrum of RM2

m,1 contain the all-one vector. Since
dim(RM2

m,1) = m + 1, (cf. 2.4.7) we obtain the assertion on the (m + 2, m + 1)-
code from the second part of 6.5.30. �
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The spectra of the ternary and binary Golay-codes are described in [6].

Exercises

E.6.5.1Exercise Prove 6.5.30.

6.66.6 Random Generation of Linear Codes

In Sections 6.1–6.3 we have shown how to enumerate the linear isometry class-
es of linear codes, in Chapter 9 we will describe how to determine a (complete)
set of representatives for given parameters n, k and q. From the tables of num-
bers of linear isometry classes we immediately realize that only for relatively
small values of these parameters it will be possible to determine the sets of
representatives completely. The order of the acting group increases, and the
number of representatives quickly gets out of hand. In such situations, prob-
abilistic methods may still allow the construction of linear codes which are
distributed uniformly at random over all isometry classes.

The Dixon–Wilf-algorithm allows the generation of linear codes which are
distributed uniformly at random over all linear isometry classes. Actually this
algorithm was first developed for the random generation of unlabeled graphs
(cf. [46]). It can always be applied for the random generation of objects, which
are orbits of a finite group acting on a finite set.

Therefore, we present the algorithm for an arbitrary finite action of a group
G on a set X. The algorithm describes a method how to choose elements x0 of X
at random such that the probability that x0 belongs to a given orbit ω ∈ G\\X
is 1/ |G\\X| for each orbit ω. This allows us to sample elements of X which
are uniformly distributed over the G-orbits on X.

6.6.1Dixon–Wilf-algorithm Let G be a finite group acting on a finite, nonempty set X.
Choose a conjugacy class C of elements of G with the probability

p(C) :=
|C| ·

∣∣Xg
∣∣

|G| · |G\\X| for an arbitrary g ∈ C.

Pick any g ∈ C and determine at random a fixed point x of g. Then the probability
that x lies in a given orbit ω ∈ G\\X is equal to 1/ |G\\X|.

Proof: Let C0, . . . , CN−1 be the conjugacy classes of elements of G with repre-
sentatives gi ∈ Ci. As a consequence of the Lemma of Cauchy–Frobenius 3.4.2,
it follows

∑
i∈N

p(Ci) =
∑i∈N |Ci| |Xgi |

∑g∈G |Xg |
= 1,
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whence p(.) is a probability distribution. Then for each ω ∈ G\\X we deter-
mine the probability that x belongs to ω as

p(x ∈ ω) = ∑
i∈N

p(Ci)p(x ∈ Xgi ∩ ω)

= ∑
i∈N

p(Ci)

∣∣Xgi ∩ ω
∣∣∣∣Xgi

∣∣ = ∑
i∈N

|Ci|
∣∣Xgi

∣∣
|G| |G\\X|

∣∣Xgi ∩ ω
∣∣∣∣Xgi

∣∣
=

1
|G| |G\\X| ∑

i∈N
|Ci|

∣∣Xgi ∩ ω
∣∣ =

1
|G| |G\\X| ∑

g∈G

∣∣Xg ∩ ω
∣∣ .

The last sum is equal to |G|, since for ω = G(x) we have

∑
g∈G

∣∣Xg ∩ ω
∣∣ = ∑

g∈G
∑

x∈Xg∩ω

1 = ∑
x∈ω

∑
g∈Gx

1 = ∑
x∈ω

|Gx| = |Gx| |ω| = |G| . �

As we have seen in 6.1.15, the linear isometry classes of linear (n, l)-codes for
1 ≤ l ≤ k with k ≤ n correspond to the GLk(q) × Sn-orbits on the set of
mappings from n to PG∗

k−1(q).
For this reason we formulate the Dixon–Wilf-algorithm for the canonical

action of a direct product H × G on YX introduced in 1.4.11.

6.6.2 Corollary Let GX and HY be two finite group actions. Choose a conjugacy class C of
elements of H × G with the probability

p(C) :=
|C| |YX

(h,g)|
|G| |H| |(H × G)\\YX| for arbitrary (h, g) ∈ C.

Pick any (h, g) ∈ C and determine at random a function f ∈ YX which is fixed under
the action of (h, g), i.e. f (gx) = h f (x) for all x ∈ X. Then the probability that f lies
in a given orbit ω ∈ (H × G)\\YX is equal to 1/|(H × G)\\YX|. �

According to Exercise 6.3.3, the conjugacy classes of G := Sn are characterized
by the cycle types a �� n. The conjugacy classes of H := GLk(q) were described
completely in 6.3.12. Hence, the conjugacy classes of GLk(q) × Sn are exactly
the elements of the cartesian product C1 × C2, where C1 is a conjugacy class of
GLk(q) and C2 is a conjugacy class of Sn. This shows how to obtain represen-
tatives of the conjugacy classes of GLk(q) × Sn. In 6.3.14 the representatives
of the conjugacy classes of GLk(q) are described as block diagonal matrices of
companion and hyper companion matrices of monic irreducible polynomials
over Fq. In order to list them all, it is necessary to know all these polynomials
of degree up to k. As we have seen in Section 6.3, it was not necessary to know
these polynomials explicitly as far as enumeration of linear isometry classes is
concerned.
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For certain values of k and q, tables of these polynomials exist. Recall from
the beginning of Section 3.5 that all irreducible polynomials of a given degree
n over Fq can be computed once a normal basis of Fqn over Fq is known.

This motivates the following strategy. For 2 ≤ r ≤ k we generate monic
polynomials of degree r over Fq at random. Using 3.5.20 we test these polyno-
mials whether they are irreducible. We repeat this till for each r we have found
an irreducible polynomial of degree r. With these polynomials we are able to
determine a normal basis of Fqr over Fq for each r. For more details see Sec-
tion 6.9. Then we compute all Lyndon words of length r over an alphabet of q
elements as described in 3.5.5. We consider these Lyndon words as the coeffi-
cient vectors of elements of Fqr with respect to the normal basis of Fqr over Fq

just constructed. Using 3.5.2, we compute the minimal polynomials of these
elements. These minimal polynomials provide a complete list of irreducible
polynomials of degree r over Fq.

The number of GLk(q) × Sn-orbits on PG∗
k−1(q)

n was already computed
as Tnkq in 6.1.23. The number of fixed points of (A, π) ∈ GLk(q) × Sn in
PG∗

k−1(q)
n can be deduced from the next

6.6.3Lemma Assume that GX and HY are two finite group actions which induce natural
actions of G, H and H × G on YX (as described in 1.4.7, 1.4.10, and 1.4.11).

The number of fixed points of g ∈ G on YX is given by

|Y|c(g) for c(g) :=
|X|
∑
i=1

ai(g),

where (a1(g), . . . , a|X|(g)) is the cycle type of the induced permutation g on X.

The number of fixed points of h ∈ H on YX is given by

|Yh||X| ,

where Yh is the set of fixed points of h on Y.

The number of fixed points of (h, g) ∈ H × G on YX is given by

|X|
∏
i=1

|Yhi |ai(g) ,

where (a1(g), . . . , a|X|(g)) is the cycle type of the induced permutation g on X,
and Yh is the set of fixed points of h on Y. �

A method for constructing the set of fixed points of (A, π) on PG∗
k−1(q)

n is
described in
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6.6.4 Lemma Consider the natural action of H × G on YX induced by two finite group
actions GX and HY as described in 1.4.11. The fixed points f ∈ YX of (h, g) ∈ H×G
have the following form. For each cycle Z of g on X, pick a representative xZ ∈ Z.
Then f (xZ) = y0 ∈ Y with |〈h〉(y0)| dividing |Z| (that is, y0 ∈ Yh|Z| , the set of fixed
points of h|Z| on Y). The remaining values of f on Z are determined by

f (gixZ) := hiy0 for 1 ≤ i < |Z|. �

The proofs of the previous two lemmata are left to the reader as Exercise 6.6.1
and Exercise 6.6.2.

As mentioned above, applying the Dixon–Wilf-algorithm for the random
generation of linear codes produces generator matrices of linear (n, l)-codes
for l ≤ k. Therefore, after the generation the rank of each matrix must still be
determined.

Some numerical results are presented in Table 6.27. For different parame-
ters q, n and k, the table shows the distribution of ranks when 10 000 matrices
were generated at random in each case.

For further illustration here are the numbers of conjugacy classes of GLk(2).

k 3 4 5 6 7 8 9 10
# of conjugacy classes 6 14 27 60 117 246 490 1002

The choice of a conjugacy class of Sn amounts to the choice of a cycle type
(or partition) of n. The number of partitions of n ∈ N increases rapidly with n.
Here are some of these numbers:

n number of cycle types of n
10 42
15 176
20 627
25 1 958
40 37 338
60 ≈ 106

100 ≈ 2 · 108

For this reason we should try to avoid computing and storing the proba-
bilities of all conjugacy classes of GLk(q) × Sn before the generation process
starts. For practical purposes we label the conjugacy classes by C0, . . . , CN−1.
Usually C0 is the conjugacy class of the identity element. The random choice
of a conjugacy class Ci0 is done by first computing a random number r ∈ [0, 1)
and then determining the index i0 ∈ N so that

∑
j∈i0

p(Cj) ≤ r and ∑
j∈i0+1

p(Cj) > r.
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Table 6.27 Distribution of ranks of 10 000 k × n-matrices over Fq generated at random

q n k rank distribution
2 15 3 (17, 534, 9449)
2 15 4 (1, 53, 677, 9269)
2 15 5 (0, 5, 68, 908, 9019)
2 15 6 (0, 0, 16, 142, 1488, 8354)
2 15 7 (0, 1, 5, 51, 492, 2672, 6779)
2 15 8 (0, 0, 1, 27, 272, 1523, 3970, 4207)
2 15 9 (0, 0, 1, 27, 246, 1374, 3289, 3507, 1556)
2 15 10 (0, 0, 2, 22, 228, 1179, 3279, 3434, 1531, 325)
2 20 3 (8, 218, 9774)
2 20 4 (0, 7, 185, 9808)
2 20 5 (0, 0, 3, 140, 9857)
2 20 6 (0, 0, 0, 2, 175, 9823)
2 20 7 (0, 0, 0, 0, 3, 225, 9772)
2 20 8 (0, 0, 0, 0, 0, 18, 529, 9453)
2 25 3 (3, 121, 9876)
2 25 4 (0, 2, 70, 9928)
2 25 5 (0, 0, 0, 30, 9970)
2 25 6 (0, 0, 0, 0, 10, 9990)
2 25 7 (0, 0, 0, 0, 0, 6, 9994)
2 25 8 (0, 0, 0, 0, 0, 0, 29, 9971)
3 15 3 (1, 122, 9877)
3 15 4 (0, 0, 50, 9950)
3 15 5 (0, 0, 0, 68, 9932)
3 25 5 (0, 0, 0, 0, 10000)

One can start the generation process immediately and evaluate probabilities
of the conjugacy classes only if required. This means that we need to evaluate
p(Ci) only if the chosen random number exceeds ∑j∈i p(Cj). The efficiency
of this revised method depends heavily on the numbering of the conjugacy
classes. Clearly, the numbering should be chosen in such a way that p(Ci) ≥
p(Ci+1).

We have applied the random generation of linear codes in order to describe
the distribution of the minimum distance of linear codes with given parame-
ters n, k and q. Two examples are presented in Table 6.28 and Table 6.29.
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Table 6.28 Distribution of the minimum distances of 10 000 binary codes of length 20 and
maximal dimension 8

k\d 1 2 3 4 5 6
5 0 0 0 1 0 0
6 0 0 2 5 3 1
7 3 45 102 226 150 16
8 81 1 158 2 502 4 346 1 344 15

Table 6.29 Distribution of the minimum distances of 30 000 000 codes of length 12 and maximal
dimension 5 over F5

k\d 1 2 3 4 5 6 7 8
3 1 5 4 40 99 196 136 9
4 120 1060 5644 37440 137047 139665 5651 0
5 24017 243558 1486385 10048367 17047580 822975 0 0

Exercises

E.6.6.1 Exercise Prove 6.6.3.

E.6.6.2 Exercise Prove 6.6.4.

E.6.6.3 Exercise Use the enclosed software to obtain lower bounds for the minimum
distance of linear (n, k)-codes over Fp for small parameters n, k and p. Com-
pare these results with the list of best known linear codes [32].

6.7 6.7 Enumeration of Semilinear Isometry Classes

So far we were concerned only with the enumeration of linear isometry classes
of codes. In this section we show how to generalize these methods in order to
derive the number of semilinearly nonisometric codes.

In 1.5.10 we have described a semilinear isometry ι as ι = (ψ, (α; π)) where
α ∈ Aut(Fq) = Gal [ Fq : Fp ] and (ψ; π) is a linear isometry. Thus (ψ; π)
belongs to the wreath product

F∗
q �n Sn =

{
(ψ; π)

∣∣∣ ψ : n → F∗
q , π ∈ Sn

}
.

Since Gal [ Fp : Fp ] contains just one element, we assume in this section that
q = pr with r > 1. In the sequel we indicate the Galois group Gal [ Fq : Fp ],
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generated by the Frobenius automorphism τ(κ) = κq, κ ∈ Fq, by Gal. As we
already know, it is a cyclic group of order r.

According to 1.5.11 two codes are called semilinearly isometric if there ex-
ists a semilinear isometry ι which maps one code onto the other code.

Our first aim is to show that the group of semilinear isometries is a gen-
eralized wreath product. Therefore, we apply the two semilinear isometries
ι2 = (φ; (β, ρ)) and ι1 = (ψ; (α, π)) to the vector v = (v0, . . . , vn−1) ∈ Fn

q and
indicate ι1(v) by v′ = (v′0, . . . , v

′
n−1). Then we obtain

ι2(ι1(v)) = ι2(v′) =
(
φ(0)β(v′

ρ−1(0)), . . . , φ(n − 1)β(v′
ρ−1(n−1))

)
=

(
. . . , φ(i)β

(
ψ(ρ−1(i))α(vπ−1(ρ−1(i)))

)
, . . .

)
=

(
. . . , φ(i)β(ψ(ρ−1(i)))(β ◦ α)(v(ρ◦π)−1(i)), . . . ,

)
.

This formula motivates the following

6.7.1Lemma The group of all semilinear isometries of Fn
q is the semidirect product

(F∗
q)

n � (Gal×Sn),

with the normal subgroup on the left, where the multiplication is given by

(φ; (β, ρ)) · (ψ; (α, π)) := (φψ(β,ρ); (βα, ρ ◦ π)),

with
ψ(β,ρ)(i) := β(ψ(ρ−1(i))), i ∈ n,

and
φψ(i) := φ(i)ψ(i), i ∈ n. �

Therefore, the identity element is (1; (τ0, id)), where 1 is the mapping i �→ 1,
i ∈ n. The inverse of (ψ; (α, π)) is (ψ−1

(α−1,π−1); (α−1, π−1)) where ψ−1(i) :=

(ψ(i))−1, i ∈ n, and ψ−1
(α,π) := (ψ(α,π))−1 = (ψ−1)(α,π).

Representing the product of two semilinear isometries in this way, it is easy
to realize certain similarities with the ordinary wreath product H �X G. In 1.4.8
we had considered a group G acting on a set X and an arbitrary group H. For
defining the multiplication in H �X G we used the canonically induced action
of G on HX given by 1.4.7.

Here in the situation of the group of semilinear isometries, we have X = n
and H = F∗

q . The group Gal×Sn does not act on n, but it operates already on
(F∗

q)n and we do not have to consider an induced action on (F∗
q)n. Therefore,

we say that the group of semilinear isometries is the generalized wreath product
of F∗

q and Gal×Sn which we indicate by

F∗
q ��n (Gal×Sn).
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Its order is equal to (q− 1)n · r · n!, and the generalization of the natural action
of a wreath product (cf. 1.4.9) to this generalized wreath product is

(ψ; (α, π))(v) =
(
ψ(0)α(vπ−1(0)), . . . , ψ(n − 1)α(vπ−1(n−1))

)
which is the action of the semilinear isometry (ψ; (α, π)) on Fn

q .
Similarly as in Section 6.1 we describe codes by their generator matrices,

and obtain that the set of semilinear isometry classes of (n, k)-codes is equal to
the set of orbits

F∗
q ��n (Gal×Sn)\\

(
GLk(q)\\Fk×n,k

q

)
,

where the operation of (ψ; (α, π)) ∈ F∗
q ��n (Gal×Sn) on the orbit GLk(q)(Γ) is

given by(
(ψ; (α, π)), GLk(q)(Γ)

)
�→ GLk(q)(Γ̂) where Γ̂(i) = ψ(i)α(Γ(π−1(i))).

Here again we identify the matrix Γ with the function Γ : n → Fk
q where Γ(i)�

is the i-th column of Γ. When writing Af , we identify the function f ∈ (Fk
q)n

with the corresponding k × n-matrix ( f (0)� | . . . | f (n − 1)�). Then Af =
(A · f (0)� | . . . | A · f (n − 1)�) and Af (i) = (A · f (i)�)� = f (i) · A� for
A ∈ GLk(q).

We want to prove that this operation is well-defined. For A ∈ GLk(q) and
Γ̃ given by Γ̃(i) := ψ(i)α((A · Γ)(π−1(i))) we have GLk(q)(Γ̃) = GLk(q)(Γ̂),
since Γ̃(i) = ψ(i)α(A)α(Γ(π−1(i))) and α(A) ∈ GLk(q). (In Exercise 3.7.5 we
have mentioned that α induces a group automorphism of GLk(q) by applying
α to all components of the matrices in GLk(q).)

In the situation of linear isometries the actions of the isometry group and
of the linear group were commuting and we obtained an action of the direct
product of these two groups on Fk×n,k

q (cf. 6.1.3).
In general, the action of the semilinear isometry group does not commute

with the action of GLk(q). For A ∈ GLk(q), (ψ; (α, π)) ∈ F∗
q ��n (Gal×Sn) and

Γ ∈ Fk×n,k
q we have

A · (ψ; (α, π))Γ =(
ψ(0)Aα(Γ(π−1(0))), . . . , ψ(n − 1)Aα(Γ(π−1(n − 1)))

)
and

(ψ; (α, π))A · Γ =(
ψ(0)α(A)α(Γ(π−1(0))), . . . , ψ(n − 1)α(A)α(Γ(π−1(n − 1)))

)
.

Therefore, we do not get an action of the direct product as in 6.1.3.
Again, similarly as in Section 6.1 we eliminate the rank condition on the

k × n-matrices and consider the set of all k × n-matrices over Fq which do not
contain zero columns. Thus, our task is to determine the cardinality of

F∗
q ��n (Gal×Sn)\\

(
GLk(q)\\(Fk

q \ {0})
n)

.
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For this reason we describe a generalization of Lehmann’s Lemma 6.1.8.
We generalize it in two ways, since on the one hand we are dealing with an
action of the generalized wreath product, and on the other hand this wreath
product operates on GLk(q)-orbits of functions and not just on a set of func-
tions. However we do not formulate it for arbitrary group actions but for the
situation of the present problem.

6.7.2Generalization of Lehmann’s Lemma If the mapping

ϕ : GLk(q)\\(Fk
q \ {0})

n → GLk(q)\\
(
F∗

q\\(Fk
q \ {0})

)n

is given by
GLk(q)(Γ) �→ GLk(q)(Γ) where Γ(i) = F∗

q(Γ(i)),

then the mapping

Φ :
(
F∗

q ��n (Gal×Sn)
)
\\
(
GLk(q)\\(Fk

q \ {0})
n) →

(Gal×Sn)\\
(
GLk(q)\\

(
F∗

q\\(Fk
q \ {0})

)n
)

defined by(
F∗

q ��n (Gal×Sn)
)
(GLk(q)(Γ)) �→ (Gal×Sn)(ϕ(GLk(q)(Γ)))

is a bijection. On the right hand side we have an operation of (Gal×Sn) on the set of
orbits GLk(q)\\

(
F∗

q\\(Fk
q \ {0})

)n of the form

(α, π) GLk(q)(Γ) = GLk(q)(Γ̂)

where Γ̂(i) = α(Γ(π−1(i))) = α(F∗
q(Γ(π−1(i)))) = F∗

q(α(Γ(π−1(i)))), i ∈ n.

Proof: As in the proof of 6.1.8 we see that for f1, f2 ∈ YX the following facts
are equivalent:

Φ(F∗
q ��n (Gal×Sn)( f1)) = Φ(F∗

q ��n (Gal×Sn)( f2))

(Gal×Sn)(ϕ( f1)) = (Gal×Sn)(ϕ( f2))

ϕ( f2) ∈ (Gal×Sn)(ϕ( f1))

ϕ( f2) = α ◦ ϕ( f1) ◦ π for some α ∈ Gal and some π ∈ Sn

ϕ( f2)(x) = α
(

ϕ( f1)(π(x))
)

for some α ∈ Gal, π ∈ Sn, and all x ∈ X

ϕ( f2)(x) = ϕ(α ◦ f1)(π(x)) for some α ∈ Gal, π ∈ Sn, and all x ∈ X

F∗
q( f2(x)) = F∗

q((α ◦ f1)(π(x))) for some α ∈ Gal, π ∈ Sn, and all x ∈ X

f2(x) ∈ F∗
q ((α ◦ f1)(π(x))) for some α ∈ Gal, π ∈ Sn, and all x ∈ X
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f2 = (ψ; (α, π)) f1 for some (ψ; (α, π)) ∈ F∗
q ��n (Gal×Sn)

f2 ∈ F∗
q ��n (Gal×Sn)( f1)

F∗
q ��n (Gal×Sn)( f2) = F∗

q ��n (Gal×Sn)( f1).

Reading these implications from bottom to top we deduce that Φ is well-
defined. From top to bottom it follows that Φ is injective. In order to prove
that Φ is surjective, we notice that ϕ is surjective. �

As an immediate consequence we obtain that∣∣∣(F∗
q ��n (Gal×Sn)

)
\\
(
GLk(q)\\(Fk

q \ {0})
n)∣∣∣ =∣∣(Gal×Sn)\\

(
GLk(q)\\PG∗

k−1(q)
n)∣∣ .

It is still possible to find a simpler expression for

(Gal×Sn)\\
(
GLk(q)\\PG∗

k−1(q)
n).

According to Exercise 1.4.9 we can split the action of the direct product obtain-
ing

Gal \\
(
Sn\\

(
GLk(q)\\PG∗

k−1(q)
n))

what is the same as

Gal \\
(
(GLk(q)× Sn)\\PG∗

k−1(q)
n)

since the actions of GLk(q) and Sn commute. An application of the automor-
phism α to the orbit (GLk(q)× Sn)(Γ) yields the orbit (GLk(q)× Sn)(Γ̂) where
Γ̂(i) = α(Γ(i)) = F∗

q(α(Γ(i))). These orbits can be represented as the elements
of

(PΓLk(q)× Sn)\\PG∗
k−1(q)

n,6.7.3

since PΓLk(q) = (GLk(q) � Gal)/Zk.
The reader should carefully check the following

6.7.4 Lemma Let C be a code and ι a semilinear isometry.

C is nonredundant if and only if ι(C) is nonredundant.

C is projective if and only if ι(C) is projective.

C is injective if and only if ι(C) is injective.

C is indecomposable if and only if ι(C) is indecomposable. �

Analogously to Section 6.1 and Section 6.2 we introduce the notions

tnkq :=
∣∣(PΓLk(q)× Sn)\\PG∗

k−1(q)
n∣∣ ,
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tnkq :=
∣∣∣(PΓLk(q)× Sn)\\PG∗

k−1(q)
n
inj

∣∣∣ .
Moreover, let vnkq denote the number of semilinear isometry classes of nonre-
dundant (n, k)-codes over Fq and vnkq the number of semilinear isometry class-
es of projective (n, k)-codes over Fq. The symbols unkq and unkq indicate the
number of semilinear isometry classes of all, respectively injective, (n, k)-codes
which may contain columns of zeros. The number of semilinear isometry
classes of nonredundant indecomposable (n, k)-codes over Fq is denoted by
rnkq and of projective indecomposable (n, k)-codes over Fq by rnkq. These sym-
bols are the lowercase versions of the corresponding numbers of linear isome-
try classes. The relations corresponding to 6.1.15 and 6.2.20 are collected in

6.7.5Corollary

tnkq is the number of semilinear isometry classes of linear codes of length n and
dimension at most k. If k > 1, then tn,k−1,q is also the number of PΓLk(q)× Sn-
orbits of mappings f ∈ PG∗

k−1(q)
n corresponding to matrices of rank not greater

than k − 1.

tnkq is the number of semilinear isometry classes of injective linear codes of length
n and dimension at most k.

vnkq = tnkq − tn,k−1,q, vnkq = tnkq − tn,k−1,q for 1 < k ≤ n. The initial
values for these recursions are vn1q = 1 for n ∈ N∗, v11q = 1 and vn1q = 0 for
n > 1.

unkq = ∑n
i=k vikq, ukkq = vkkq, and unkq = vn−1,k,q + vnkq for n > k.

For n ≥ 2 we have

rnkq = vnkq − ∑
a

∑
b

n−1

∏
j=1
aj �=0

(
∑
c

U(c)

)
,

where

U(c) =
j

∏
i=1

C(Sν(i,c), ν(i, c))
∣∣
z�=rjiq

is a product computed from substitutions into the cycle indices of symmetric
groups of degree ν(i, c) given by

ν(i, c) = |{� ∈ aj | c� = i}|, 1 ≤ i ≤ j.

The first sum runs through the cycle types a = (a1, . . . , an−1) of n with at least
two summands, i.e. ai ∈ N, ∑ iai = n and ∑ ai ≤ k, while the second sum is taken
over the (n − 1)-tuples b = (b1, . . . , bn−1) ∈ Nn−1, for which ai ≤ bi ≤ iai, and
∑ bi = k. The third sum runs over all aj-tuples c = (c0, . . . , caj−1) ∈ Naj with
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the properties j ≥ c0 ≥ . . . ≥ caj−1 ≥ 1 and ∑ ci = bj. Analogously, rnkq can
be recursively evaluated from vnkq and rjiq with j < n. The initial values for these
recursions are r11q = 1 = r11q. �

This way we have expressed all these numbers in terms of tnkq and tnkq.
The remaining problem is the evaluation of tnkq and tnkq. In 6.7.3 we have
the canonical action of a direct product on a set of functions. Since the group
acting on the domain is the symmetric group it is possible to apply 6.1.21 in
order to compute the generating function for the cardinalities of these orbit
sets and we obtain the following

6.7.6 Corollary The generating functions for the numbers tnkq and tnkq can be obtained
from the cycle index of the natural action of the projective semilinear group on the
projective space in the following way:

∑
n∈N

tnkqx
n = C(PΓLk(q), PG∗

k−1(q))
∣∣
zi:=∑∞

j=0 xi·j,

and

∑
n∈N

tnkqx
n = C(PΓLk(q), PG∗

k−1(q))
∣∣
zi:=1+xi. �

Finally, it remains to determine the cycle index of the natural action of the
projective semilinear group on the projective space. In order to obtain some
numerical results we used the computer algebra system GAP [63] together
with a particular extension for projective spaces [74]. Based on 6.3.3 we de-
termined a complete system of representatives of the conjugacy classes of el-
ements of PΓLk(q). We computed the cardinality of each class, and for each
representative we determined the cycle type of the natural action on PG∗

k−1(q).
For q = 4 we obtain the Tables 6.30 to 6.35, which should be compared with

the Tables 6.15 , 6.9, 6.23, 6.20, 6.12 and 6.26. (Differences between correspond-
ing tables are marked by boldface numbers.) The next field where differences
occur between linear and semilinear isometries is F8. On the pages 542–548
we present some tables comparing the numbers Tnk8 and tnk8, Vnk8 and vnk8,
Rnk8 and rnk8, Unk8 and unk8, Tnk8 and tnk8, Vnk8 and vnk8, and Rnk8 and rnk8.
Extended tables can be found on the attached CD-ROM.

Exercises

E.6.7.1 Exercise Prove 6.7.1.

E.6.7.2 Exercise Prove 6.7.4.
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Table 6.30 Values of tnk4

n\k 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 4 4 4 4
4 1 5 8 9 9 9
5 1 7 16 20 21 21
6 1 10 34 51 56 57
7 1 13 68 138 166 172
8 1 18 144 445 629 673
9 1 23 309 1 728 3 322 3 775

10 1 30 670 8 640 31 045 40 323
11 1 37 1 468 52 924 543 062 1 047 635
12 1 47 3 251 360 473 13 107 137 59 070 798
13 1 57 7 156 2 503 187 336 291 123 4 922 753 104
14 1 70 15 665 16 976 798 8 362 677 597 452 322 657 324

Table 6.31 Values of vnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 1 1 0 0 0 0
3 1 2 1 0 0 0
4 1 4 3 1 0 0
5 1 6 9 4 1 0
6 1 9 24 17 5 1
7 1 12 55 70 28 6
8 1 17 126 301 184 44
9 1 22 286 1 419 1 594 453

10 1 29 640 7 970 22 405 9 278
11 1 36 1 431 51 456 490 138 504 573
12 1 46 3 204 357 222 12 746 664 45 963 661
13 1 56 7 099 2 496 031 333 787 936 4 586 461 981
14 1 69 15 595 16 961 133 8 345 700 799 443 959 979 727
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Table 6.32 Values of rnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 1 0 0 0 0
4 1 2 1 0 0 0
5 1 4 4 1 0 0
6 1 6 14 6 1 0
7 1 9 38 38 9 1
8 1 13 99 216 99 13
9 1 18 244 1 213 1 213 244

10 1 24 579 7 479 20 603 7 479
11 1 31 1 344 50 328 480 335 480 335
12 1 40 3 084 354 655 12 685 278 45 448 958
13 1 50 6 937 2 490 249 333 368 938 4 573 198 774
14 1 62 15 381 16 948 216 8 342 784 710 443 612 918 007

Table 6.33 Values of unk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 2 1 0 0 0 0
3 3 3 1 0 0 0
4 4 7 4 1 0 0
5 5 13 13 5 1 0
6 6 22 37 22 6 1
7 7 34 92 92 34 7
8 8 51 218 393 218 51
9 9 73 504 1 812 1 812 504

10 10 102 1 144 9 782 24 217 9 782
11 11 138 2 575 61 238 514 355 514 355
12 12 184 5 779 418 460 13 261 019 46 478 016
13 13 240 12 878 2 914 491 347 048 955 4 632 939 997
14 14 309 28 473 19 875 624 8 692 749 754 448 592 919 724
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Table 6.34 Values of vnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 1 1 0 0 0
4 0 1 2 1 0 0
5 0 1 4 3 1 0
6 0 0 8 10 4 1
7 0 0 10 35 19 5
8 0 0 13 124 118 33
9 0 0 17 499 1 018 342

10 0 0 18 2 421 15 076 7 571
11 0 0 18 13 113 336 911 444 690
12 0 0 17 72 823 8 495 389 41 172 182
13 0 0 13 390 069 209 826 910 4 073 567 723
14 0 0 10 1 963 645 4 881 485 820 387 971 461 593

Table 6.35 Values of rnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 0 0 0 0 0 0
3 0 1 0 0 0 0
4 0 1 1 0 0 0
5 0 1 3 1 0 0
6 0 0 7 5 1 0
7 0 0 10 26 8 1
8 0 0 13 112 79 12
9 0 0 17 485 883 214

10 0 0 18 2 403 14 557 6 507
11 0 0 18 13 095 334 460 429 438
12 0 0 17 72 805 8 482 236 40 834 575
13 0 0 13 390 052 209 754 039 4 065 069 206
14 0 0 10 1 963 632 4 881 095 698 387 761 618 484
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Table 6.36 Values of Tnk8

n\k 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 3 4 4
4 1 5 8 9
5 1 7 16 20
6 1 14 57 78
7 1 21 273 555
8 1 39 2 034 13 931
9 1 64 16 668 714 573

10 1 109 132 237 40 746 243
11 1 173 986 453 2 188 928 772
12 1 286 6 876 180 108 587 171 103
13 1 439 44 880 936 4 985 542 976 595
14 1 686 275 497 786 212 944 610 369 565

Table 6.37 Values of tnk8

n\k 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 3 4 4
4 1 5 8 9
5 1 7 16 20
6 1 12 43 62
7 1 17 143 289
8 1 27 792 4 979
9 1 40 5 806 239 355

10 1 61 44 619 13 586 393
11 1 89 329 959 729 659 322
12 1 136 2 294 446 36 195 786 755
13 1 197 14 965 218 1 661 847 901 869
14 1 292 91 842 474 70 981 537 714 473



6.7 Enumeration of Semilinear Isometry Classes 543

Table 6.38 Values of Vnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 1 2 1 0
4 1 4 3 1
5 1 6 9 4
6 1 13 43 21
7 1 20 252 282
8 1 38 1 995 11 897
9 1 63 16 604 697 905

10 1 108 132 128 40 614 006
11 1 172 986 280 2 187 942 319
12 1 285 6 875 894 108 580 294 923
13 1 438 44 880 497 4 985 498 095 659
14 1 685 275 497 100 212 944 334 871 779

Table 6.39 Values of vnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 1 2 1 0
4 1 4 3 1
5 1 6 9 4
6 1 11 31 19
7 1 16 126 146
8 1 26 765 4 187
9 1 39 5 766 233 549

10 1 60 44 558 13 541 774
11 1 88 329 870 729 329 363
12 1 135 2 294 310 36 193 492 309
13 1 196 14 965 021 1 661 832 936 651
14 1 291 91 842 182 70 981 445 871 999
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Table 6.40 Values of Rnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 2 1 0
5 1 4 4 1
6 1 10 33 10
7 1 17 231 231
8 1 34 1 956 11 596
9 1 59 16 529 695 614

10 1 103 131 993 40 595 108
11 1 167 986 040 2 187 791 284
12 1 279 6 875 485 108 579 157 553
13 1 432 44 879 807 4 985 490 082 276
14 1 678 275 495 976 212 944 281 977 581

Table 6.41 Values of rnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 2 1 0
5 1 4 4 1
6 1 8 21 8
7 1 13 107 107
8 1 22 732 4 024
9 1 35 5 709 232 626

10 1 55 44 465 13 535 084
11 1 83 329 720 729 278 112
12 1 129 2 294 075 36 193 111 160
13 1 190 14 964 655 1 661 830 261 138
14 1 284 91 841 624 70 981 428 231 327
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Table 6.42 Values of Unk8

n\k 1 2 3 4
1 1 0 0 0
2 2 1 0 0
3 3 3 1 0
4 4 7 4 1
5 5 13 13 5
6 6 26 56 26
7 7 46 308 308
8 8 84 2 303 12 205
9 9 147 18 907 710 110

10 10 255 151 035 41 324 116
11 11 427 1 137 315 2 229 266 435
12 12 712 8 013 209 110 809 561 358
13 13 1 150 52 893 706 5 096 307 657 017
14 14 1 835 328 390 806 218 040 642 528 796

Table 6.43 Values of unk8

n\k 1 2 3 4
1 1 0 0 0
2 2 1 0 0
3 3 3 1 0
4 4 7 4 1
5 5 13 13 5
6 6 24 44 24
7 7 40 170 170
8 8 66 935 4 357
9 9 105 6 701 237 906

10 10 165 51 259 13 779 680
11 11 253 381 129 743 109 043
12 12 388 2 675 439 36 936 601 352
13 13 584 17 640 460 1 698 769 538 003
14 14 875 109 482 642 72 680 215 410 002
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Table 6.44 Values of Tnk8

n\k 1 2 3 4
1 1 1 1 1
2 0 1 1 1
3 0 1 2 2
4 0 1 3 4
5 0 1 5 8
6 0 1 25 39
7 0 1 132 364
8 0 1 901 11 408
9 0 1 6 155 619 402

10 0 0 38 344 34 810 827
11 0 0 217 432 1 812 498 279
12 0 0 1 119 290 86 640 720 291
13 0 0 5 242 484 3 818 392 707 185
14 0 0 22 449 375 156 004 978 540 987

Table 6.45 Values of tnk8

n\k 1 2 3 4
1 1 1 1 1
2 0 1 1 1
3 0 1 2 2
4 0 1 3 4
5 0 1 5 8
6 0 1 15 27
7 0 1 58 164
8 0 1 327 3 940
9 0 1 2 101 206 934

10 0 0 12 870 11 605 307
11 0 0 72 638 604 172 431
12 0 0 373 366 28 880 263 069
13 0 0 1 747 940 1 272 797 652 589
14 0 0 7 483 895 52 001 659 817 699
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Table 6.46 Values of Vnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 1 2 1
5 0 1 4 3
6 0 1 24 14
7 0 1 131 232
8 0 1 900 10 507
9 0 1 6 154 613 247

10 0 0 38 344 34 772 483
11 0 0 217 432 1 812 280 847
12 0 0 1 119 290 86 639 601 001
13 0 0 5 242 484 3 818 387 464 701
14 0 0 22 449 375 156 004 956 091 612

Table 6.47 Values of vnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 1 2 1
5 0 1 4 3
6 0 1 14 12
7 0 1 57 106
8 0 1 326 3 613
9 0 1 2 100 204 833

10 0 0 12 870 11 592 437
11 0 0 72 638 604 099 793
12 0 0 373 366 28 879 889 703
13 0 0 1 747 940 1 272 795 904 649
14 0 0 7 483 895 52 001 652 333 804
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Table 6.48 Values of Rnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 0 0 0
3 0 1 0 0
4 0 1 1 0
5 0 1 3 1
6 0 1 23 9
7 0 1 130 207
8 0 1 899 10 374
9 0 1 6 153 612 345

10 0 0 38 343 34 766 326
11 0 0 217 432 1 812 242 500
12 0 0 1 119 290 86 639 383 565
13 0 0 5 242 484 3 818 386 345 408
14 0 0 22 449 375 156 004 950 849 125

Table 6.49 Values of rnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 0 0 0
3 0 1 0 0
4 0 1 1 0
5 0 1 3 1
6 0 1 13 7
7 0 1 56 91
8 0 1 325 3 554
9 0 1 2 099 204 505

10 0 0 12 869 11 590 334
11 0 0 72 638 604 086 920
12 0 0 373 366 28 879 817 061
13 0 0 1 747 940 1 272 795 531 280
14 0 0 7 483 895 52 001 650 585 861
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6.86.8 Local Isometries

Let C and C′ be two (n, k)-codes over Fq. A local linear isometry between these
two codes is a vector space isomorphism ι : C → C′ which preserves the dis-
tances between all pairs of codewords, i.e. d(c1, c2) = d(ι(c1), ι(c2)) for all
c1, c2 ∈ C. So far we have shown in Section 1.4 that the linear isometries of
Fn

q , the global linear isometries, are the elements of Mn(q). From 1.4.12 we know
that Mn(q) is isomorphic to the wreath product F∗

q �n Sn.
A local semilinear isometry between the two codes C and C′ is a semilinear

bijection σ : C → C′ which preserves the distances between all pairs of code-
words, i.e. d(c1, c2) = d(σ(c1), σ(c2)) for all c1, c2 ∈ C. So far we have shown in
Section 6.7 that the semilinear isometries of Fn

q , the global semilinear isometries,
are the elements of the generalized wreath product F∗

q ��n (Gal×Sn).
In general a local isometry is a local linear or semilinear isometry. We want

to prove that every local isometry between two (n, k)-codes can be extended
to a global isometry of Fn

q . This means that the set of local linear isometries
between two linear (n, k)-codes is the wreath product F∗

q �n Sn (cf. also [84,
second edition, Section 9.1]) and the set of local semilinear isometries between
two linear (n, k)-codes is the generalized wreath product F∗

q ��n (Gal×Sn).
As a generalization of Exercise 1.2.6 we obtain

6.8.1Theorem If C is a linear code of length n over Fq, then for any i ∈ n either the i-th
component of all codewords is equal to 0, or each element α ∈ Fq occurs as the i-th
component of exactly |C| /q codewords. �

First we associate an (n, k)-code C over Fq with the qk × n-matrix

M(C) =

⎛⎜⎝ c(0)

...
c(qk−1)

⎞⎟⎠ ,

where the rows of the matrix are the codewords of C in a fixed but arbitrary
order. If ι is a local isometry between C and C′, then we assume that

M(C′) = M(ι(C)) =

⎛⎜⎝ ι(c(0))
...

ι(c(qk−1))

⎞⎟⎠ ,

where the ordering of the rows of M(C′) is determined by the ordering of the
rows of C.

Moreover, let d�i , di ∈ Fqk

q , i ∈ n, be the i-th column of the matrix

M(C) =
(
d�0 | . . . | d�n−1

)
.
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We introduce an equivalence relation on the columns of M(C). Two columns
d�i and d�j are considered to be equivalent if there exists some κ ∈ F∗

q such
that di = κdj. We call them proportional. (In general, two vectors v, w over Fq

are proportional if there exists some κ ∈ F∗
q such that v = κw.) A column d�i is

called a zero column if all the components of di are equal to 0. The equivalence
class of a zero column consists of all zero columns of M(C). If d�i is not a
zero column, then the equivalence class of d�i consists of all columns of M(C)
which are proportional to d�i .

6.8.2 Lemma Two locally isometric linear (n, k)-codes C and C′ have the same number of
zero columns.

Proof: Assume that d�i is not a zero column of M(C). According to 6.8.1, each
element κ ∈ Fq occurs exactly qk−1 times in di. If we assume that C and C′

have r, respectively, r′ zero columns, then we obtain

(n − r)qk−1(q− 1) = ∑
c∈C

wt(c) = ∑
c∈C′

wt(c) = (n − r′)qk−1(q− 1).

Consequently, r = r′. �

In the next step we want to describe the equivalence class of a nonzero column.
The cross section of a code C is similarly defined as the shortening of C (cf.
2.2.17). Let i be the index of a column of M(C) which is not a zero column,
then the cross section of C at position i is the code

Ci := {c = (c0, . . . , cn−1) ∈ C | ci = 0}.

Consequently, Ci is an (n, k − 1,≥ d, q)-code. The shortening of C in position i
is obtained from the cross section of C in position i by deleting the i-th column
of Ci.

6.8.3 Lemma Let C be a linear (n, k)-code over Fq. Two columns d�i �= 0 �= d�j of M(C)
are proportional if and only if the cross sections Ci and Cj coincide.

Proof: Assume that d�i and d�j are proportional. Then for each c ∈ C we have
ci = 0 if and only if cj = 0. Hence, the cross sections Ci and Cj describe the
same code.

Conversely, we assume that Ci = Cj. We choose any two codewords c, c̃ of
C which do not belong to Ci, whence ci �= 0, c̃i �= 0, cj �= 0, and c̃j �= 0. Then
f := c−1

i c − c̃−1
i c̃ belongs to C and fi = 0. Thus f ∈ Ci and, consequently,

fj = 0. Since fj = c−1
i cj − c̃−1

i c̃j, we obtain c−1
i cj = c̃−1

i c̃j = α ∈ F∗
q , and thus

cj = αci and c̃j = αc̃i. This fact holds true for fixed c ∈ C \ Ci and for any
c̃ ∈ C \ Ci, whence the columns d�i and d�j are proportional. �
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Now we prove that if ι : C → C′ is a local linear isometry, then there exists
a permutation π ∈ Sn such that the i-th column of M(C) is proportional to the
π(i)-th column of M(C′) for i ∈ n. This fact shows then that ι can be described
as an element (ψ; π) of F∗

q �n Sn. Thus it is a linear isometry of Fn
q .

6.8.4Theorem Assume that ι : C → C′ is a local linear isometry between two linear
(n, k)-codes over Fq. Then there exists a permutation π ∈ Sn such that the i-th
column of M(C) is proportional to the π(i)-th column of M(C′) for i ∈ n.

Proof: To begin with, we determine the equivalence classes of the columns of
M(C). From 6.8.2 we know that M(C) and M(C′) have the same number of
zero columns, which we indicate by s.

Let d�i be a nonzero column of M(C), and let i = i0, . . . , ir−1 indicate the
indices of the columns of M(C) proportional to d�i . Then all the cross sections
Ci = Ci0 , Ci1 , . . . , Cir−1 determine the same (n, k − 1)-code. The matrix M(Ci)
has r + s zero columns, namely d�i0 , . . . , d�ir−1

, which come from the construc-
tion as a cross section in these columns, and d�ir , . . . , d

�
ir+s−1

, which are the zero
columns appearing already in M(C).

Since ι is a local linear isometry between C and C′, also the restriction ι|Ci
is

a linear isometry between Ci and ι(Ci), whence by 6.8.2, M(Ci) and M(ι(Ci))
have the same number of zero columns. Let us assume that the indices of
the zero columns of M(ι(Ci)) are given by j0, . . . , jr+s−1, and that jr , . . . , jr+s−1

are the indices of the s zero columns of M(C′). From 6.8.1 we know that in
any of the columns d′�j0 , . . . , d′�jr−1

of M(C′) each element of Fq occurs exactly
qk−1 times. Hence, ι(Ci) is the cross section of C′ in any of the components
j0, . . . , jr−1, for instance, M(ι(Ci)) = M(C′

j0
). According to 6.8.3, the columns

of M(C′) with indices j0, . . . , jr−1 are proportional and form an equivalence
class of columns of M(C′).

Next we claim that the columns d�i0 and d′�j0 are proportional, i.e. there
exists an element λ ∈ F∗

q such that d′�j0 = λd�i0 . Assume that b = (b0, . . . , bn−1)
with bi0 = 1 belongs to C \Ci0 . Then ι(b) ∈ ι(C \Ci0) = ι(C) \ ι(Ci0) = C′ \C′

j0
,

whence the j0-th component of ι(b), which we indicate as ι(b)j0 , is different
from zero. Now take an arbitrary c ∈ C \Ci0 . Since Ci0 is a (k− 1)-dimensional
subspace of C, there exist uniquely determined c̃ ∈ Ci0 and κ ∈ Fq such that
c = c̃ + κb. Consequently, κ = ci0 �= 0. Since ι(c̃) ∈ C′

j0
, the j0-th component

of ι(c) = ι(c̃) + κι(b) is equal to ci0 ι(b)j0 . This holds true for any c ∈ C \ Ci0 ,
whence the i0-th column of M(C) is proportional to the j0-th column of M(C′)
with the nonzero factor λ = ι(b)j0 .

Finally, this method allows us to determine a permutation π ∈ Sn in the
following way. From the previous discussion we already know that C and C′
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have the same number of zero columns, and if d�i �= 0 belongs to an equiva-
lence class of r columns of M(C), then we can find an equivalence class con-
taining exactly r columns of M(C′) which are all proportional to d�i . Hence,
it is possible to determine π so that π maps zero columns of M(C) to zero
columns of M(C′) and each nonzero column d�i of M(C) to a proportional col-
umn of M(C′). �

Thus for each c ∈ C we have

ι(c) =
(
ψ(0)cπ−1(0), . . . , ψ(n − 1)cπ−1(n−1)

)
,

for some ψ(F∗
q)n.

Now let σ : C → C′ be a local semilinear isometry with σ(κc) = α(κ)σ(c)
for c ∈ C, κ ∈ Fq, where α ∈ Gal := Gal [ Fq : Fp ]. We want to show that there
exists a permutation π ∈ Sn such that the image of the i-th column of M(C) un-
der α is proportional to the π(i)-th column of M(C′) for i ∈ n. This fact shows
then that σ can be described as an element (ψ; (α, π)) of F∗

q ��n (Gal×Sn). Thus
it is a semilinear isometry of Fn

q . The proof is based on the fact that the image
of a subspace under a semilinear mapping is again a subspace.

6.8.5 Theorem Assume that σ : C → C′ is a local semilinear isometry between two linear
(n, k)-codes over Fq with σ(κc) = α(κ)σ(c) for c ∈ C, κ ∈ Fq, where α ∈ Gal.
Let d�i and d′�j be the columns of M(C), respectively M(C′). Then there exists a
permutation π ∈ Sn such that α(d�i ) is proportional to d′�

π(i) for i ∈ n.

Proof: Only a few arguments must be changed in order to adapt the previous
proof to local semilinear isometries. From 6.8.2 we know that M(C) and M(C′)
have the same number of zero columns, which we indicate by s.

Let d�i be a nonzero column of M(C), and let i = i0, . . . , ir−1 indicate the
indices of the columns of M(C) proportional to d�i . Then all the cross sections
Ci = Ci0 , Ci1 , . . . , Cir−1 determine the same (n, k − 1)-code. The matrix M(Ci)
has r + s zero columns, namely d�i0 , . . . , d

�
ir−1

, which come from the construc-
tion as a cross section in these columns, and d�ir , . . . , d

�
ir+s−1

, which are the zero
columns appearing already in M(C).

Since σ is a local semilinear isometry between C and C′, also the restriction
σ|Ci

is a semilinear isometry between Ci and σ(Ci), whence by 6.8.2, M(Ci)
and M(σ(Ci)) have the same number of zero columns. Let us assume that
the indices of the zero columns of M(σ(Ci)) are given by j0, . . . , jr+s−1, and
that jr , . . . , jr+s−1 are the indices of the s zero columns of M(C′). As above,
σ(Ci) is the cross section of C′ in any of the components j0, . . . , jr−1, for in-
stance, M(ι(Ci)) = M(C′

j0
). According to 6.8.3, the columns of M(C′) with

indices j0, . . . , jr−1 are proportional and form an equivalence class of columns
of M(C′).
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Next we claim that the columns α(d�i0 ) and d′�j0 are proportional, i.e. there
exists some λ ∈ F∗

q such that d′�j0 = λα(d�i0 ). Assume that b = (b0, . . . , bn−1)
with bi0 = 1 belongs to C \ Ci0 . Then σ(b) ∈ C′ \ C′

j0
, whence the j0-th compo-

nent of σ(b), which we indicate as σ(b)j0 , is different from zero. Now take an
arbitrary c ∈ C \Ci0 . Since Ci0 is a (k− 1)-dimensional subspace of C, there ex-
ist uniquely determined c̃ ∈ Ci0 and κ ∈ Fq such that c = c̃ + κb. Consequently,
κ = ci0 �= 0. Since σ(c̃) ∈ C′

j0
, the j0-th component of σ(c) = σ(c̃) + α(κ)σ(b)

is equal to α(ci0)σ(b)j0 . This holds true for any c ∈ C \ Ci0 , whence α(d�i0 ), the
image of the i0-th column of M(C) under α, is proportional to the j0-th column
of M(C′) with the nonzero factor λ = σ(b)j0 .

Using the same ideas as in the previous proof, we determine a permutation
π ∈ Sn so that α(d�i ) and d′�

π(i), i ∈ n, are proportional. �

Thus for each c ∈ C we have

σ(c) =
(
ψ(0)α(cπ−1(0)), . . . , ψ(n − 1)α(cπ−1(n−1))

)
,

for some ψ ∈ (F∗
q)n.

Exercises

E.6.8.1Exercise Prove 6.8.1.

6.96.9 Existence and Construction of Normal Bases

In Section 3.3 normal bases of a field extension were introduced. So far we have
not shown that it is always possible to find a normal basis. Our proof is based
on some notions from module theory, which were presented in the meantime.
An interesting and detailed discussions of normal bases can be found in [62].

In Section 6.3 we have shown that for any endomorphism A of Fn
q the vec-

tor space Fn
q becomes an Fq[x]-module by 6.3.5. Here we repeat the outer

multiplication once again

Fq[x] × Fn
q → Fn

q : ( f , v) �→ f v := f (A)v :=
d

∑
i=0

κiA
iv,

where f is the polynomial ∑d
i=0 κixi. If A is represented by a matrix then Aiv

is the matrix multiplication v · (Ai)�. The minimal polynomial MA of A is the
monic polynomial f ∈ Fq[x] of least degree so that f (A) = 0. If we have a
matrix representation of the endomorphism A with respect to the basis B of
Fn

q over Fq, then the characteristic polynomial χA of A is defined as the deter-
minant χA(x) := det(xIn − A) ∈ Fq[x], where In is the n × n-unit matrix. The
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characteristic polynomial is always a polynomial of degree n. It does not de-
pend on the particular choice of the basis B. By the Cayley–Hamilton Theorem
6.3.11 it satisfies χA(A) = 0, whence the minimal polynomial MA is a divisor
of the characteristic polynomial χA.

Considered as a linear Fq-space, Fqn is isomorphic to Fn
q , thus it is also an

Fq[x]-module: For any endomorphism α of Fqn we obtain a module structure

Fq[x] × Fqn → Fqn : ( f , κ) �→ f κ := f (α)(κ) :=
d

∑
i=0

κiα
i(κ),

where f is the polynomial ∑d
i=0 κixi. In the present section we always consider

α = τ, the Frobenius automorphism of Fqn over Fq. In order to show that a
normal basis exists for each extension field Fqn over Fq, we apply Dedekind’s
Independence Theorem 3.3.6 to the n distinct powers of the Frobenius auto-
morphism τ.

6.9.1 Lemma For n ≥ 1 let τ : Fqn → Fqn be the Frobenius automorphism τ(β) = βq.
Then the vector space Fqn is a cyclic Fq[x]-module.

Proof: Since τn is the identity on Fqn , the minimal polynomial of τ is a divisor
of xn − 1. The automorphisms τ0, τ1, . . . , τn−1 are pairwise distinct, whence
by Dedekind’s Independence Theorem they are linearly independent over Fq.
For this reason, the degree of the minimal polynomial of τ is at least n. Conse-
quently, xn − 1 is the minimal polynomial of τ.

Moreover, n is the dimension of the Fq-vector space Fqn . Therefore, xn − 1
is also the characteristic polynomial of τ. Thus, the minimal polynomial and
the characteristic polynomial of τ coincide, and according to Exercise 6.3.7, the
Fq[x]-module Fqn is cyclic. �

This allows us to prove the existence of a normal basis.

6.9.2 The Existence of normal bases Let n be a positive integer. For any finite field Fq

and its extension Fqn there exists κ ∈ Fqn so that{
κ, τ(κ), . . . , τn−1(κ)

}
is a basis of Fqn over Fq.

Proof: Since Fqn is a cyclic Fq[x]-module, according to 6.9.1, there exists some
κ ∈ Fqn so that

Fqn = Fq[x]κ =
{

f κ | f ∈ Fq[x]
}

.
Since the minimal polynomial of τ is of degree n, we can restrict ourselves to
polynomials f of degree less than n, obtaining

Fqn =
{

f κ | f ∈ Fq[x], deg f < n
}

.
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Consequently, there exist n polynomials f0, . . . , fn−1 with deg fi < n for i ∈ n,
so that { f0κ, . . . , fn−1κ} is a basis of Fqn . Since each fi is a linear combination
of xj for j ∈ n, we finally deduce that

{
κ, τ(κ), . . . , τn−1(κ)

}
is also a basis of

Fqn . (Here we use the polynomials fi(x) = xi.) This is a normal basis of Fqn

over Fq. �

It is even possible to show that for any finite field Fq and its extension Fqn ,
where n is a positive integer, there exists a primitive element κ ∈ Fqn so that{

κ, τ(κ), . . . , τn−1(κ)
}

is a basis of Fqn over Fq (cf. [127]).

Now we describe how to construct a normal basis. There exist both proba-
bilistic and deterministic algorithms for finding a normal basis of Fqn over Fq.
We will present both approaches.

6.9.3Definition (trace function) The trace function of Fqn over Fq is defined by

Tr : Fqn → Fq : α �→ Tr(α) := ∑
i∈n

αqi
.  

It is easy to prove that the trace function is a homomorphism.
An element κ ∈ Fqn is called normal over Fq if {κ, τ(κ), . . . , τn−1(κ)} is a

normal basis of Fqn over Fq.
In order to characterize whether a given set of n elements forms a basis of

Fqn over Fq we introduce the discriminant ∆ : Fn
qn → Fq defined by

∆(α0, . . . , αn−1) := det

⎛⎜⎝ Tr(α0α0) . . . Tr(α0αn−1)
...

. . .
...

Tr(αn−1α0) . . . Tr(αn−1αn−1)

⎞⎟⎠ .

6.9.4Theorem The set {α0, . . . , αn−1} ⊆ Fqn is a basis of Fqn over Fq if and only if
∆(α0, . . . , αn−1) �= 0.

Proof: Assume that {α0, . . . , αn−1} is a basis of Fqn over Fq. We show that the
row vectors of the matrix used to define ∆ are linearly independent over Fq.
Assume that for c0, . . . , cn−1 ∈ Fq we have

∑
i∈n

ci
(
Tr(αiα0), . . . , Tr(αiαn−1)

)
= 0,

then

∑
i∈n

ci Tr(αiαj) = 0, j ∈ n.
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For β := ∑i∈n ciαi we have

Tr(βαj) = ∑
k∈n

(
βαj

)qk
= ∑

k∈n

(
∑
i∈n

ciαiαj

)qk

= ∑
k∈n

∑
i∈n

ci
(
αiαj

)qk
= ∑

i∈n
ci Tr(αiαj) = 0, j ∈ n.

Since the trace is a vector space homomorphism and {α0, . . . , αn−1} is a basis
of Fqn , we have Tr(βα) = 0 for all α ∈ Fqn . This is only possible for β = 0,
whence ∑i∈n ciαi = 0 and consequently c0 = . . . = cn−1 = 0.

Conversely, assume that ∆(α0, . . . , αn−1) �= 0 and ∑i∈n ciαi = 0 for some
c0, . . . , cn−1 ∈ Fq. Then ∑i∈n ciαiαj = 0 for j ∈ n and by applying the trace
function

0 = Tr(0) = Tr
(
∑
i∈n

ciαiαj

)
= ∑

i∈n
ci Tr(αiαj), j ∈ n.

By assumption the rows of the matrix in the definition of ∆(α0, . . . , αn−1) are
linearly independent, whence c0 = . . . = cn−1 = 0 and, therefore, α0, . . . , αn−1

are linearly independent over Fq. �

6.9.5 Corollary The set {α0, . . . , αn−1} ⊆ Fqn is a basis of Fqn over Fq if and only if the
matrix

A :=

⎛⎜⎜⎜⎝
α0 . . . αn−1

α
q
0 . . . α

q
n−1

...
. . .

...
α

qn−1

0 . . . α
qn−1

n−1

⎞⎟⎟⎟⎠
is regular.

Proof: {α0, . . . , αn−1} is a basis if and only if ∆(α0, . . . , αn−1) �= 0. As a matter
of fact, ∆(α0, . . . , αn−1) = det(A� · A) = (det A)2. �

The probabilistic algorithm for finding a normal basis is based upon

6.9.6 Theorem (Artin [3]) Consider an irreducible polynomial f of degree n over Fq and
α ∈ Fqn a root of f . Let

g(x) :=
f (x)

(x − α) f ′(α)
∈ Fqn [x].

Then there exist at least q− n(n− 1) elements κ ∈ Fq so that g(κ) is normal over Fq.
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Proof: For i ∈ n let αi := τi(α) and gi(x) := τi(g(x)), where τ is the Frobenius
automorphism of Fqn over Fq. Then

gi(x) =
f (x)

(x − αi) f ′(αi)

is a polynomial in Fqn [x] of degree n − 1 with roots αk for k �= i and gi(αi) = 1.
Hence,

gi(x)gk(x) ≡ 0 mod I( f ), i �= k. 6.9.7

Moreover,

∑
i∈n

gi(x)− 1 = 0, 6.9.8

since the left-hand side is a polynomial of degree at most n − 1 with n roots
α0, . . . , αn−1. Multiplying 6.9.8 by gi(x) and using 6.9.7 yields

gi(x) ≡
(
gi(x)

)2 mod I( f ). 6.9.9

Let D be the matrix

D :=

⎛⎜⎜⎝
g0(x) g1(x) . . . gn−1(x)
g1(x) g2(x) . . . g0(x)
. . . . . . . . .

gn−1(x) g0(x) . . . gn−2(x)

⎞⎟⎟⎠ ,

then D� = D. Because of 6.9.9 and 6.9.8, the diagonal elements of D� · D are
of the form

∑
i∈n

gi(x)2 ≡ ∑
i∈n

gi(x) = 1 mod I( f ).

All the other entries of D� · D are 0 because of 6.9.7. Let D(x) := det D. We
obtain D(x)2 ≡ 1 mod I( f ). This means that D(x) is a nonzero polynomial.
By construction its degree is at most n(n − 1). Therefore, D(x) has at most
n(n − 1) roots.

Consider some u ∈ Fq with D(u) �= 0. Then the matrix⎛⎜⎜⎝
g0(u) g1(u) . . . gn−1(u)
g1(u) g2(u) . . . g0(u)
. . . . . . . . .

gn−1(u) g0(u) . . . gn−2(u)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
g(u) τ(g(u)) . . . τn−1(g(u))

τ(g(u)) τ2(g(u)) . . . g(u)
. . . . . . . . .

τn−1(g(u)) g(u) . . . τn−2(g(u))

⎞⎟⎟⎠
is regular, whence by 6.9.5, {g(u), τ(g(u)), . . . , τn−1(g(u))} is a basis of Fqn

over Fq. In fact, it is a normal basis. �
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6.9.10 Algorithm (Generate a normal element)

Input: q, n, an irreducible polynomial f ∈ Fq[x] of degree n, and α a
root of f .

Output: A normal element or an error message. If q > n(n − 1) the out-
put β is a normal element of Fqn over Fq.

(1) If q ≤ n(n − 1) terminate the algorithm and output an error message.

(2) Determine g as in 6.9.6.

(3) Choose u ∈ Fq at random.

(4) Let κ = g(u).

(5) If κ is normal over Fq output κ. Otherwise goto (3).

If q > 2n(n − 1), then, by 6.9.6, κ is normal with probability at least 1/2. �

Finally, we present a deterministic algorithm, due to Lenstra (cf. [126]), for
constructing a normal basis.

6.9.11 Definition (τ-order) Let τ be the Frobenius automorphism of Fqn over Fq. For
κ ∈ Fqn \ {0} determine the least positive integer k and c0, . . . , ck−1 ∈ Fq so
that

τk(κ) = ∑
i∈k

ciτ
i(κ).

Then the polynomial

Ordκ(x) := xk − ∑
i∈k

cix
i ∈ Fq[x]

is called the τ-order of κ.  
The τ-order of κ �= 0 is uniquely determined. Since τn(κ) = κ, it is clear

that Ordκ(x) is a divisor of xn − 1. Moreover, the element κ is normal over Fq

if and only if Ordκ(x) = xn − 1.

6.9.12 Lemma Consider α ∈ Fqn \ {0} with Ordα(x) �= xn − 1, and let

g(x) :=
xn − 1

Ordα(x)
.

Then there exists β ∈ Fqn so that g(x)β = α.

Proof: Let γ be a normal element of Fqn over Fq. Then there exists some f ∈
Fq[x] so that f (x)γ = α. Since Ordα(x)α = 0, we have

(
Ordα(x) f (x)

)
γ = 0.

So Ordγ(x) = xn − 1 is a divisor of Ordα(x) f (x). Thus, g(x) is a divisor of
f (x). Let f (x) = g(x)h(x), then α = f (x)γ = g(x)

(
h(x)γ

)
. This proves that

β := h(x)γ satisfies the assertion. �
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6.9.13Lemma Consider α, β ∈ Fqn \ {0} with Ordα(x) �= xn − 1,

g(x) :=
xn − 1

Ordα(x)
,

and α = g(x)β as in the previous lemma. If deg Ordβ(x) ≤ deg Ordα(x), then
there exists a nonzero η ∈ Fqn so that

g(x)η = 0, 6.9.14

and
deg Ordα+η(x) > deg Ordα(x). 6.9.15

Proof: Let γ be a normal element of Fqn over Fq. Then η := Ordα(x)γ is
different from 0 and satisfies

g(x)η =
xn − 1

Ordα(x)
Ordα(x)γ = (xn − 1)γ = 0.

Now we prove that each nonzero solution η of 6.9.14 satisfies 6.9.15. From
Ordβ(x)α = Ordβ(x)g(x)β = 0 we obtain that Ordα(x) divides Ordβ(x).
From the assumption on the degrees of these two polynomials we deduce that
Ordα(x) = Ordβ(x). Thus, by Exercise 6.9.2 we have gcd

(
g(x), Ordα(x)

)
= 1.

Since Ordη(x) is a divisor of g(x), also gcd
(
Ordη(x), Ordα(x)

)
= 1. An ap-

plication of Exercise 6.9.3 yields that Ordα+η(x) = Ordα(x) Ordη(x), whence
deg Ordα+η(x) > deg Ordα(x). �

6.9.16Algorithm (Construct a normal element)

Input: q and n.
Output: A normal element of Fqn over Fq.

(1) Choose α ∈ Fq at random and determine Ordα(x).

(2) If Ordα(x) = xn − 1 then output α and terminate the algorithm.

(3) Calculate g(x) := (xn − 1)/ Ordα(x).

(4) Find β ∈ Fqn so that g(x)β = α and determine Ordβ(x).

(5) If deg Ordβ(x) > deg Ordα(x), replace α by β and goto (2).

(6) If deg Ordβ(x) ≤ deg Ordα(x), then find a nonzero element η ∈ Fqn so
that g(x)η = 0. Replace α by α + η, determine Ordα(x) and goto (2).

This algorithm terminates after finitely many steps, because in (6) the degree
of Ordα(x) increases at least by 1. �

Exercises

E.6.9.1Exercise Why is the τ-order of κ �= 0 is uniquely determined?
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E.6.9.2 Exercise For α ∈ Fqn and g ∈ Fq[x] show that if g(x)α �= 0, then the τ-order
of g(x)α is equal to Ordα(x)/gcd(Ordα(x), g(x)).

E.6.9.3 Exercise Consider α, η ∈ Fqn \ {0} such that Ordα(x) and Ordη(x) are rela-
tively prime. Show that

Ordα+η(x) = Ordα(x) Ordη(x).

E.6.9.4 Exercise Let α ∈ F34 be a root of the irreducible polynomial f (x) = x4 + x3 +
2 ∈ F3[x]. Using α, compute a normal basis of F34 over F3 and determine by an
application of 3.5.5 the list of all irreducible polynomials of degree 4 over F3.




