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5 Mathematics and Audio Compact
Discs

In this chapter we give a short description of the mathematical background
behind the technology used for compact discs. Since we are dealing with prob-
lems arising from a real-word application, we must adapt our assumptions to
this particular situation.

In the first section we present a short introduction to digital audio trans-
mission. Some facts about Fourier Series and Fourier Transforms are collected.
We describe sampling and filtering of signals from a mathematical point of
view, explain analog digital conversion, dither, pulse code modulation and,
finally, we prove Shannon’s Sampling Theorem, which gives an interpolation
formula which expresses the value f (x) of a signal at any time x in terms of its
values f (ns) at the discrete points ns for n ∈ Z, s > 0.

First of all, as far as the error-correction in connection with compact discs is
concerned, we should notice that errors are not uniformly distributed random
errors. In fact, errors tend to occur in bursts, for instance due to manufacturing
errors when the compact disc was produced, or due to surface errors arising
from scratches or fingerprints while handling the disc. Such a burst error is
actually a string of errors happening within a short period of time. In the
third section we will investigate how to detect and correct burst errors from a
general point of view.

We have already mentioned that in fact two linear codes are applied for
the encoding process in the production of a compact disc. This method is
known as interleaving of two codes, which is thoroughly described in the third
section. This interleaving process allows us to correct burst errors. Since we
are using two codes, one of them can be used for error detection. We already
know that the error detection rate of a code is larger than its error correction
rate. In case the second code detects an error in the received vector, it marks
all the corresponding components sent to the first code as erasures (these are
errors where the position of the error but not its value is known) and the first
code can be applied to correct both errors and erasures. For this reason, we
investigate the correction of erasures with linear codes in the second section.
In particular, we present an algorithm for correcting erasures with BCH-codes.

In the third section we meet product codes (cf. 2.3.15) again. We describe
how they can be used for correction of transmission errors and erasures. Espe-
cially products of cyclic codes are analyzed.

Finally, in the last two sections we present all the important facts about the
methods used for error detection and error correction both in audio compact
discs and in CD-ROM. In particular, the CIRC encoding and decoding is de-
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scribed in detail. Furthermore, we explain how to use interpolation in order
to deal with errors which can not be eliminated by CIRC. Also the pit/land
structure of a track on a CD and the EFM are mentioned.

The second and third section describe independently from the application
in compact discs some interesting coding and decoding methods. The first
section is mainly devoted to digital audio, the fourth to a detailed description
of error detection and correction in audio compact discs. The fifth section gives
a short overview how the CD-ROM standard extends the standard of digital
audio discs.

5.1 5.1 Fourier Transform, Shannon’s Sampling Theorem

In this section we explain how an acoustic signal is transformed into digital
data. Usually this process is called sampling. In our setting the acoustic signal
is a mapping f : R → R, where f (x) is the sound pressure at the time x. When
dealing with audio data, it is important to analyze which frequencies occur
in the signal. For this reason, we give a short introduction to the theory of
Fourier Transforms, which describes how to express a signal f as a sum of
functions x �→ e2πiξx for ξ ∈ R. We limit our presentation to the essential
facts, since a more complete discussion would require detailed knowledge of
the theory of Lebesgue integration, which is beyond the scope of this text. Our
presentation of the Fourier analysis is based on [64] and [30]. Technical details
about the compact disc system are taken from Pohlmann’s book [164]. Further
facts about acoustics and audio engineering are taken from [164], [202] and
[175].

Let I ⊆ R be an interval and let p ≥ 1 be a real number. (The reader should
take care that in this section p does not indicate a prime number!) We denote
the set of all measurable functions f : I → C for which | f (x)|p is integrable on
I by Lp(I). Then Lp(I) together with the norm

‖ f ‖p :=
(∫

I
| f (x)|p dx

)1/p

, f ∈ Lp(I),

is a complete normed vector space (cf. Exercise 5.1.2 and [64, 15.2.3 Proposi-
tion]).

In this setting, ‖ f ‖p = 0 if and only if f = 0 almost everywhere on I, in
other words, f (x) = 0 for all x ∈ I \ M, where M is a subset of I of measure
0. The set N :=

{
f ∈ Lp(I) | ‖ f ‖p = 0

}
is a subspace of Lp(I). In order to

be more precise, instead of Lp(I) we should actually consider the factor space
Lp(I)/N .
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The set L2(I) is also equipped with an inner product defined by

〈 f , g〉 =
∫

I
f (x)g(x) dx, f , g ∈ L2(I),

where f (x) means the complex conjugate of f (x). It is easy to show that L2(I)
is a Hermitian inner product space and that

‖ f ‖2 =
√
〈 f , f 〉, f ∈ L2(I).

Consequently, L2(I) is a Hilbert space.
Different notions of convergence are considered. Let ( fn)n∈N be a sequence

with fn ∈ Lp(I) and let f ∈ Lp(I). We say that ( fn)n∈N converges uniformly to
f if

lim
n→∞

sup
x∈I

| fn(x)− f (x)| = 0,

which can also be expressed as

∀ ε > 0, ∃ Nε, ∀ n > Nε, ∀ x ∈ I : | fn(x) − f (x)| < ε.

The sequence ( fn)n∈N converges pointwise to f if

∀ x ∈ I, ∀ ε > 0, ∃ Nε,x, ∀ n > Nε,x : | fn(x) − f (x)| < ε.

The sequence ( fn)n∈N converges to f in Lp(I) if

lim
n→∞

‖ fn − f ‖p = 0.

Convergence in L1(I) is also called mean convergence, whereas convergence
in L2(I) is known as mean quadratic convergence or convergence “in energy”. If
( fn)n∈N converges uniformly to f in L1(I) and I is a finite interval, then inte-
gration and limit can be interchanged so that

lim
n→∞

∫
I
fn(x) dx =

∫
I
f (x) dx.

The support of a function f : R → C is the closure of the set of all elements
x ∈ R for which f (x) �= 0:

supp( f ) = cl {x ∈ R | f (x) �= 0} .

A function f : R → C has period a > 0 if f (x) = f (x + a) for all x ∈ R.
Especially for p = 2 and I = (0, a), we consider the set

L2
per(0, a) :=

{
f : R → C

∣∣∣ f has period a and
∫ a

0
| f (x)|2 dx < ∞

}
which, together with the norm

‖ f ‖2 :=
(∫ a

0
| f (x)|2 dx

)1/2

,

is a normed vector space.



372 5. Mathematics and Audio Compact Discs

At first we approximate functions f ∈ L2
per(0, a) by

5.1.1 Trigonometric polynomials A trigonometric polynomial of degree N in L2
per(0, a),

a > 0, is an expression of the form

p(x) :=
N

∑
n=−N

cne2πinx/a

with cn ∈ C. We denote by TN the set of all trigonometric polynomials of
degree N. Let en be the trigonometric polynomial x �→ e2πinx/a. Then

〈en, em〉 =
{

a if n = m,
0 if n �= m.

and ‖en‖2 =
√

a.

Thus, the set {en | −N ≤ n ≤ N} forms an orthogonal basis of TN , and TN is
a (2N + 1)-dimensional space. Moreover, for p = ∑N

n=−N cnen ∈ TN we have
〈en, p〉 = cn‖en‖2

2 = cna, whence

cn =
1
a
〈en, p〉 =

1
a

∫ a

0
p(x)e−2πinx/a dx, −N ≤ n ≤ N.

Using the fact that

eix = cos(x) + i sin(x), x ∈ R,

any p ∈ TN can be expressed as

p(x) = c0 +
N

∑
n=1

(
cne2πinx/a + c−ne−2πinx/a

)
= c0 +

N

∑
n=1

(
(cn + c−n) cos(2πnx/a) + i(cn − c−n) sin(2πnx/a)

)
.

If we put an := cn + c−n and bn := cn − c−n for n ≥ 0, we obtain

p(x) =
a0

2
+

N

∑
n=1

(
an cos(2πnx/a) + ibn sin(2πnx/a)

)
, x ∈ R,

with

an =
2
a

∫ a

0
p(x) cos(2πnx/a) dx

and

bn =
2
a

∫ a

0
p(x) sin(2πnx/a) dx. �
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5.1.2Theorem [64, page 30] Let N be a positive integer, and assume that a > 0. For
f ∈ L2

per(0, a) there exists exactly one trigonometric polynomial

fN(x) :=
N

∑
n=−N

cne2πinx/a

such that ‖ f − fN‖2 = min {‖ f − p‖2 | p ∈ TN}. The coefficients of fN are given
by

cn = cn( f ) =
1
a

∫ a

0
f (x)e−2πinx/a dx, −N ≤ n ≤ N. 5.1.3

For all N ∈ N Bessel’s inequality

N

∑
n=−N

|cn|2 ≤ 1
a

∫ a

0
| f (x)|2 dx

holds true. Consequently,
∞

∑
n=−∞

|cn|2 < +∞

and cn = cn( f ) → 0 as |n| → ∞. �

5.1.4Fourier Series Deeper methods from the theory of the Lebesgue integral show
[64, 4.3.1 Theorem] that for f ∈ L2

per(0, a), a > 0,

‖ fN − f ‖2 → 0 as N → ∞.

In other words,

f (x) =
∞

∑
n=−∞

cne2πinx/a

=
a0

2
+

∞

∑
n=1

(an cos(2πnx/a) + ibn sin(2πnx/a))
5.1.5

almost everywhere in R, since this is an equality in L2
per(0, a). From this repre-

sentation of f we obtain Parseval’s equality
∞

∑
n=−∞

|cn|2 =
1
a

∫ a

0
| f (x)|2 dx.

The coefficients cn are called Fourier coefficients of f . The right hand side of
5.1.5 is the Fourier series of f . �

In addition, we take for granted the following result on Fourier series:

5.1.6Theorem [64, 5.3.1 Theorem] Assume that f has period a > 0, is continuous on R,
differentiable on [0, a] with exception of possibly a finite number of points, and that f ′

is piecewise continuous. Then the Fourier series of f converges uniformly to f on R.
�
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5.1.7 Example We have just explained how to approximate a periodic function with
trigonometric polynomials. For example consider the periodic function f with
period a = 2π defined on I = [−π, π) by

f (t) :=
{
−1 if −π ≤ t < 0,
+1 if 0 ≤ t < π.

The three approximations for N = 1, 3, 5 are given by

f1(t) =
4
π

sin(t)

f3(t) =
4
π

(sin(t) +
1
3

sin(3t))

f5(t) =
4
π

(sin(t) +
1
3

sin(3t) +
1
5

sin(5t)).
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Fig. 5.1 Approximation by trigonometric polynomials
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5.1.8The Discrete Fourier Transform Let f be a periodic function with period a > 0
and let N be a positive integer. Let xk := ka/N, k ∈ N, be an evenly spaced
subdivision of the interval [0, a]. Assume that the values yk := f (xk), k ∈ N,
are known. Furthermore we assume that the Fourier series of f converges
pointwise to f and that

f (x) =
1
2
( f (x+) + f (x−))

holds true at points x of discontinuity. Here we have f (x+) := limt→x, t>x f (t)
and f (x−) := limt→x, t<x f (t). In order to simplify our notation, we assume
that N is odd. For −(N− 1)/2 ≤ n ≤ (N− 1)/2, the coefficients of the Fourier
expansion of f can be approximated by using the trapezoid formula as

c′n =
1
a ∑

k∈N
yk

a
N

e−2πinka/(Na) =
1
N ∑

k∈N
yke

−2πink/N.

It can be shown that these c′n are the Fourier coefficients of the trigonometric
polynomial p ∈ T(N−1)/2 which interpolates f at the points ka/N for k ∈ N. If
we put

Yn :=
{

c′n if 0 ≤ n ≤ (N − 1)/2,
c′n−N if (N + 1)/2 ≤ n ≤ N − 1,

then we obtain the two equivalent formulae of the Discrete Fourier Transform

yk = ∑
n∈N

Yne2πink/N, k ∈ N,

Yn = ∑
k∈N

yke
−2πikn/N, n ∈ N. �

5.1.9The Fourier Transform [64, 17.1.3 Theorem] The Fourier Transform f̂ of f ∈
L1(R) is defined by

f̂ (ξ) :=
∫

R
f (x)e−2πiξx dx.

The Fourier Transform f̂ of f ∈ L1(R) is continuous and bounded with

sup
x∈R

| f̂ (x)| ≤ ‖ f ‖1 and lim
x→±∞

f̂ (x) = 0. �

The term 2π in the exponent is often omitted in the definition of the Fourier
Transform. In this case, the integral is multiplied by the normalization factor
1/

√
2π.

Comparing f̂ with the Fourier coefficients 5.1.3, we deduce that the Fourier
Transform allows one to pass from the time domain of the signal f to the fre-
quency domain. The value | f̂ (ξ)| is considered to represent the amplitude of
the frequency ξ in the signal f .

Some properties of f̂ are collected in Exercise 5.1.4 and in the following
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5.1.10 Lemma [64, 17.2.1 Theorem]

1. If xk f ∈ L1(R) for 0 ≤ k ≤ n, then f̂ is n times differentiable and the k-th
derivative of f̂ is

f̂ (k)(ξ) = f̂k(ξ), 1 ≤ k ≤ n,

for fk(x) := (−2πix)k f (x).
2. If f ∈ L1(R) is n times continuously differentiable and all the derivatives f (k),

1 ≤ k ≤ n, are in L1(R), then

f̂ (k)(ξ) = (2πiξ)k f̂ (ξ), 1 ≤ k ≤ n.

3. If f ∈ L1(R) has bounded support, then f̂ is infinitely many times differentiable.
We also write f̂ ∈ C∞(R). �

It is not true in general that the Fourier Transform of f ∈ L1(R) is again in
L1(R) as the following example shows.

5.1.11 Example Consider, for instance, the function

f (x) :=
{

e−x if x ≥ 0,
0 if x < 0,

then

f̂ (ξ) =
∫ ∞

0
e−2πiξx−x dx = lim

R→∞

∫ R

0
e−(2πiξ+1)x dx

= lim
R→∞

− e−(2πiξ+1)R

2πiξ + 1
+

1
2πiξ + 1

=
1

2πiξ + 1
,

which is not integrable. �

Therefore, it is interesting to determine under which conditions f̂ ∈ L1(R).
The next lemma gives sufficient conditions on f .

5.1.12 Lemma [64, 18.1.2 Theorem] If f is twice continuously differentiable and if f , f ′

and f ′′ are in L1(R), then f̂ ∈ L1(R). �

5.1.13 The Inverse Fourier Transform [64, 18.1.1 Theorem] If both f and f̂ belong to
L1(R), then

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ

for all points x, where f is continuous. This integral is called the Inverse Fourier
Transform of f . �

A function f ∈ L1(R) is called band limited if the support of its Fourier
Transform f̂ is bounded. In other words, if there exists a limiting value λc > 0
such that supp( f̂ ) ⊆ [−λc, λc], which means that in the signal f no frequencies
greater than λc occur.
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5.1.14Consequence of the Paley–Wiener Theorem [64, 31.5.2 Theorem and p. 360]
If f �= 0 is band limited, then f ∈ C∞(R). Hence, f vanishes on no interval of
positive length. The assumption that f �= 0 is band limited implies that f is analytic
with supp( f ) = R.

If f has bounded support (which means bounded in time), then f cannot be band
limited since f̂ is a C∞-function. �

5.1.15Example Consider the band limited function f with

f̂ (ξ) =
{

1 if |ξ| ≤ λc,
0 if |ξ| > λc.

Since f is band limited, it is analytic, thus continuous. By the Inverse Fourier
Transform we get

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ =

∫ λc

−λc
e2πiξx dξ =

e2πiξx

2πix

∣∣∣λc

−λc

=
1

πx
· e2πiλcx − e−2πiλcx

2i
= 2λc

sin(2πλcx)
2πλcx

.

This is closely related to the cardinal sine function sinc : R → R which is defined
by

sinc(x) :=
{

sin(x)/x if x �= 0,
1 if x = 0.

It has zeros at kπ for k ∈ Z \ {0}. The set of local extrema of sinc(x) corre-
sponds to its intersections with the cosine function cos(x). The main peak of
sinc(x) has width 2π whereas all other peaks have width π.
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Fig. 5.2 The cardinal sine function

If we consider sinc(2πλcx) as a function of λc we notice that as λc increases,
the width of the peaks decreases. �
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5.1.16 Sampling Assume that f : R → C is a signal and s > 0 is a real number.
Sampling f every s time units means to replace f by the sequence ( f (ns))n∈Z .
The sampling rate or sampling frequency is given by 1/s.

For instance, when watching a film, we are presented a sequence of 15 to
20 pictures per second. From this sampling we get the impression of smoothly
moving pictures. But when seeing a turning wheel equipped with spokes, we
realize that sometimes the wheel seems to rotate in the right direction, some-
times it is standing still, and sometimes it is turning in the converse direction.
This is caused by the sampling of the pictures. Consider, for instance, a turn-
ing wheel with 4 spokes, which has a periodic movement with period π/2. If
it is turning slowly enough, i.e. if we take more than two pictures within one
period we get the right impression. For example, consider a wheel which is
turning anti-clockwise. If it is turning from one sample to the next by π/6, we
get:
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Turning between two samplings by π/4 produces only two different pic-
tures so that we have the impression of a standing wheel which has 8 spokes.
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If the wheel is turning even faster, for instance by π/3 from one sampling
to the next, then we have the impression that the wheel is rotating in the op-
posite direction.
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If the wheel is turning even faster we will realize similar phenomena as
just described. From this example we deduce that on the one hand some infor-
mation of the original signal is lost by sampling. But we will see that the loss
of information can be neglected for practical purposes, provided the sampling
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rate is sufficiently high. On the other hand, digital processing offers many ad-
vantages. For instance, real time processing of the data can be done between
the arrival of two consecutive samples. In addition, sampling and digital pro-
cessing also allow us to compress the signal in such a way that it can later be
reconstructed without loss of essential data. This technique is known as source
coding. For further details we refer to [81].

Shannon’s formula is an interpolation formula which expresses the value
f (x) of a signal at any time x in terms of its values f (ns) at the discrete points
ns, n ∈ Z, s > 0. This theorem is attributed to C.E. Shannon, but was already
discovered earlier by E.T. Whittaker [200], J.M. Whittaker [201], Kotel’nikov
[114], or Nyquist [160]. For a historical background see also [103] or [141].

5.1.17Shannon’s Sampling Theorem [179] Assume that f ∈ L1(R) is a band limited
signal with supp( f̂ ) ⊆ [−λc, λc]. Consider a sampling rate 1/s ≥ 2λc. If the
Fourier Transform f̂ is piecewise continuously differentiable on the closed interval
[−λc, λc], then

f (x) =
∞

∑
n=−∞

f (ns)
sin π(x/s − n)

π(x/s− n)
, x ∈ R. 5.1.18

Proof: We extend the restriction of f̂ to the interval [−1/(2s), 1/(2s)), which
contains [−λc, λc), to a continuous, periodic function f̃ with period a = 1/s
defined by

f̃ (x + n/s) := f̂ (x) for x ∈ [−1/(2s), 1/(2s)), n ∈ Z.

Since f̃ is continuous and piecewise continuously differentiable, according
to 5.1.6 the Fourier series of f̂ converges uniformly. Consequently, for each
ξ ∈ [−1/(2s), 1/(2s)) = [−a/2, a/2) we have

f̂ (ξ) =
∞

∑
n=−∞

cne2πinξ/a,

where

cn =
1
a

∫ a/2

−a/2
f̂ (ξ)e−2πinξ/a dξ = s

∫
R

f̂ (ξ)e2πiξ·(−ns) dξ = s f (−ns)

by 5.1.13. Another application of the Fourier Inversion formula yields

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ =

∫ 1/(2s)

−1/(2s)

∞

∑
n=−∞

cne2πinξse2πiξx dξ.

Since the Fourier series converges uniformly, we are allowed to interchange
the sequence of integration and summation, obtaining

f (x) = s
∞

∑
n=−∞

f (−ns)
∫ 1/(2s)

−1/(2s)
e2πiξ(ns+x) dξ
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=
∞

∑
n=−∞

s f (ns)
∫ 1/(2s)

−1/(2s)
e2πiξ(x−ns) dξ =

∞

∑
n=−∞

f (ns)
sin π(x/s− n)

π(x/s− n)

by an application of 5.1.15. �

The assumptions of the last theorem are satisfied, for instance, in the sit-
uation when f ∈ L1(R) is band limited and the function x �→ x f (x) is also
integrable, since then by 5.1.10 f̂ is continuously differentiable.

In order to describe a band limited signal f with supp( f̂ ) ⊆ [−λc, λc] by a
sampling with rate 1/s we must choose s so that 1/s ≥ 2λc. This critical value
2λc is called the Nyquist rate. Obviously, the largest frequency which can be
described properly using a sampling rate 1/s is 1/(2s). This frequency is also
known as the Nyquist frequency.

The following picture (see [30, page 62]) shows that if the frequency of a
signal is too high for a given sampling rate, then this frequency is not properly
described by the sampling. For instance, taking 10 samples per time unit yields
s = 1/10 and a sampling rate of 10. In this situation we cannot distinguish
between the two functions f1(x) = sin(8πx) and f2(x) = sin(28πx). The first
one produces exactly 4 sine waves per time unit the second one 14 sine waves.
If the time unit is a second, then we have a sampling rate of 10 Hz and two
frequencies of 4 Hz and 14 Hz, respectively. Since 10 > 2 · 4, the sampling rate
is high enough for describing f1. According to 5.1.17, the frequency of f2 is too
high for the given sampling rate, so f2 cannot be properly reconstructed from
the sampling.
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Fig. 5.3 Aliasing

The two functions f1 and f2 coincide for all x of the form k/10, k ∈ Z.
Hence, sampling f2 at a sampling rate of 10 produces f1. This phenomenon is
called aliasing. In general, if 1/s is the sampling frequency and f > 1/(2s) is
sampled, then new frequencies f ′ appear, where f ′ = n/s± f for n ∈ Z.

In signal processing, L2(R) models the space of signals which are functions
of a continuous variable (usually time) and which have finite energy. So far the
Fourier Transform has only been defined for functions in L1(R), and L2(R) is
not included in L1(R). In [64, Lesson 22] it is explained how to extend the
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Fourier Transform in a natural way to L2(R). The Fourier Transform in L2(R)
has the major advantage that f̂ ∈ L2(R) whenever f ∈ L2(R).

5.1.19Filters In order to apply Shannon’s Sampling Theorem, we must have a band
limited signal in order to determine the correct sampling rate 1/s. Thus, the
natural signal, which is usually not band limited, must be filtered.

Assume that f is a time limited, piecewise continuously differentiable sig-
nal, then by the Inverse Fourier Transform

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ, x ∈ R.

Usually a filter is described by its transfer function ĥ for some h ∈ L2(R). Ap-
plying the filter with transfer function ĥ to the signal f should produce (cf. [30,
page 202ff]) the signal

f̃ (x) =
∫

R
f̂ (ξ)ĥ(ξ)e2πiξx dξ, x ∈ R.

The amplitudes | f̂ (ξ)| of the original signal are multiplied by the amplitudes
|ĥ(ξ)| and the phases arg( f̂ (ξ)) are changed by adding the phase arg(ĥ(ξ)).
A complex number c �= 0 may be presented as c = x + iy with x, y ∈ R,
or c = |c|ei arg(c), where |c| =

√
x2 + y2 is a positive real number called the

complex modulus of c and arg(c) is a real number in the interval (−π, π]. It is
called the argument of c and can be computed as

arg(x + iy) =

⎧⎨⎩
tan−1(y/x) if x �= 0,
−π/2 if x = 0 and y < 0,
π/2 if x = 0 and y > 0.

An ideal low-pass filter suppresses all frequencies greater than a limiting fre-
quency λc. It produces a signal f̃ which may be delayed by x0 ≥ 0, where the
frequencies in [−λc, λc] are not changed and all the frequencies outside this
interval are canceled. Thus, the transfer function of an ideal low-pass filter is
given by

ĥ(ξ) =
{

A0e−2πiξx0 if |ξ| ≤ λc,
0 if |ξ| > λc,

with A0 > 0, and the filtered signal is

f̃ (x + x0) = A0

∫ λc

−λc

f̂ (ξ)e2πiξx dξ, x ∈ R.

Moreover, we derive that f̃ is band limited, infinitely many times differen-
tiable, but it is not time limited, i.e. its support is the whole real line. From
5.1.15 we deduce that

h(x) = 2A0λc
sin(2πλc(x − x0))

2πλc(x − x0)
.
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A filter is called realizable if for each signal f and each x0 ∈ R the implication(
f (x) = 0 for all x < x0

)
=⇒

(
f̃ (x) = 0 for all x < x0

)
holds true. From the explicit form of h given above we derive that an ideal
low-pass filter is actually not realizable. The best we can expect is to find
realizable filters whose transfer functions approximate the transfer function of
an ideal filter. For instance, Butterworth filters are realizable approximations of
ideal low-pass filters.

5.1.20 Impulse Similarly as in 5.1.15 we compute the Fourier Transform of the time
limited constant signal

δε(x) :=
{

1 if |x| ≤ ε/2,
0 if |x| > ε/2,

ε > 0.

For ε = 1/m, m ∈ N∗, we obtain

mδ̂1/m(ξ) = m
∫

R
δ1/m(x)e−2πiξx dx = sinc

(πξ

m

)
.

In the following picture this function is plotted for m = 1 (solid), m = 10
(dashed), m = 100 (dotted), and m = 1000 (solid).
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Given a limiting frequency λc we can find an integer m large enough so
that mδ̂1/m is approximately equal to 1 on the whole interval [−λc, λc]. Equiv-
alently, if the signal δ1/m is short enough, we call it an impulse, then mδ̂1/m is
approximately equal to 1 on this interval. This fact can be used for the

5.1.21 Reconstruction of the original signal from a sampled signal In order to re-
construct the original signal from a sampled signal we cannot use the formula
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5.1.18 of the Sampling Theorem, since computing f (x) for x ∈ R would re-
quire the knowledge of the sampled data f (ns) for all n ∈ Z, where f is a
function whose support is the whole real line.

If we assume that we know only finitely many sampled values, for instance
f (ns) for −M ≤ n ≤ N, then we can use the sequence of impulses

fε,s(x) :=
N

∑
n=−M

f (ns)δε(x − ns)

as an input signal to an ideal low-pass filter described in 5.1.19 with limit-
ing frequency λc = 1/(2s). If we choose ε small enough so that (1/ε)δ̂ε is
approximately 1 on [−λc, λc], then the output of the ideal low-pass filter is
approximately

f̃ε,s(x) =
∫ λc

−λc

f̂ε,s(ξ)ĥ(ξ)e2πiξx dξ

= A0

N

∑
n=−M

f (ns)
∫ λc

−λc
δ̂ε(ξ)e2πiξ(x−(x0+ns)) dξ

≈ 2λcA0ε
N

∑
n=−M

f (ns)
sin π((x− x0)/s− n)

π((x − x0)/s− n)
, x ∈ R.

Up to the factor 2λcA0ε and the delay by x0 this is an approximation of f ,
converging to 2λcA0ε f (x − x0) if N, M → ∞.

5.1.22Digital audio transmission As an input we have the time limited audio sig-
nal f . Using an approximation of an ideal low-pass filter with maximum
frequency λc we obtain a band limited signal f̃ . Using a sampling rate
1/s ≥ 2λc we obtain the sequence of samples f̃ (ns) for −M ≤ n ≤ N. An
analog-digital converter replaces each sample f̃ (ns) by a digital codeword.
These codewords are sent through the channel. The receiver produces a se-
quence of samples F(ns) for 0 ≤ n ≤ N + M by using a digital-analog con-
verter. Applying an ideal low-pass filter we smooth the sequence of impulses
∑N+M

n=0 F(ns)δε(x − ns) and obtain an approximation of the input signal.

5.1.23Sound pressure and decibels Sound power or acoustic power P is a measure of
sonic energy per time unit. It is measured in watts, abbreviated by W. The ratio
of two sound powers P1 and P0 is usually described in decibels by

dB = 10 log10(P1/P0).

If no second power P0 is indicated, then the reference sound power in air is
usually taken to be 10−12 W = 0dB. The decibel is a dimensionless “unit”.
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Since most audio engineers work with voltages and since power is propor-
tional to the square of voltage, we also have

dB = 10 log10(V
2
1 /V2

0 ) = 20 log10(V1/V0).

The smallest change of sound power detectable for the human ear corresponds
to one decibel. A change of three decibel is noticeable to most people. 10dB
seems to be approximately twice as loud.

The sound intensity is defined as the sound power P per unit area. The
usual context is the measurement of sound intensity in the air at a listener’s
location. It is expressed in W/m2. Sound pressure p or acoustic pressure is the
measurement in Pascal (Pa = N/m2) of the average sound wave pressure
variations as the sound wave passes by a fixed point. We have

p = F/A,

where p is the sound pressure in Pascal Pa, F is the force measured in Newton
N, and A is the area measured in m2.

Sound is usually measured by microphones and they respond with voltage
approximately proportional to the sound pressure p. Thus, we also have

dB = 20 log10(V1/V0) = 20 log10(p1/p0).

Unless specified otherwise, the reference level for air is chosen as 20 micro Pas-
cal. This is about the limit of sensitivity of the human ear in the most sensitive
range of frequency.

If two sound intensities satisfy p1 = 2p0, then the signal of p1 is twice as
loud as the signal of p0. This yields a ratio of 20 log10(2) ≈ 6.02059913dB.

5.1.24 Analog-digital converter So far we have been dealing with sound sampling
and we have seen that when the sampling rate is high enough it is possi-
ble to reconstruct totally a band limited signal from the discrete samples. At
each sampling the amplitude of a sound signal is measured. The amplitude is
an analog signal which takes infinitely many values. When these values are
stored in a digital system, only a finite number of discrete values or steps can
be represented by digital numbers of finite length. So, for each measured am-
plitude value a digital value must be found which approximates the original
value as good as possible. Quantization is the technique of approximating an
analog amplitude by discrete numbers. (For more details see [164, pages 27ff].)
By convention, the signal is attached with a sign. This means, that half of the
digital values are used for positive amplitudes and half of them for 0 and neg-
ative amplitudes. When producing a compact disc each sampling is quantized
by a 16 bit word. Hence, there are totally 216 = 65 536 values which can be
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used to approximate all occurring amplitudes. In general, at each sampling
small approximation errors occur. These errors are not bigger than half of a
step between two consecutive digital values.

The number of bits used to represent a single sampling value, i.e. the word
length, determines the resolution of the quantization.

The signal-to-noise ratio, often abbreviated by S/N, is an engineering term
for the ratio between the magnitude of a signal and the magnitude of back-
ground noise. It is often expressed in terms of the decibel scale. If the incom-
ing signal strength in microvolts is Vs, and the noise level, also in microvolts,
is Vn, then the signal-to-noise ratio in decibels is given by the formula

S/N(dB) = 20 log10(Vs/Vn).

Signal-to-noise ratios are closely related to the concept of dynamic range.
Whereas dynamic range measures the ratio between noise and the greatest
undistorted signal on a channel, S/N measures the ratio between noise and an
arbitrary signal on the channel, not necessarily the most powerful signal pos-
sible. Because of this, measuring signal-to-noise ratios requires the selection of
a representative or reference signal. In audio engineering, this reference sig-
nal is usually a sine wave, i.e. a plain tone, at a recognized and standardized
magnitude (cf. [202]).

In connection with digital audio, the noise is the error signal caused by the
quantization of the signal. The signal-to-error ratio, in short S/E ratio, is the
number of available digital values divided by the maximal quantization error.
Above we have just seen that the quantization error is not greater than 1/2 bit.
For instance, the S/E ratio of 16 bit audio is 217 = 131 072. Every added bit
doubles this ratio and also the number of possible digital values.

Usually the amplitude of a signal is attached with a sign. Therefore, us-
ing a quantization with n bits, the range of the digital signal lies between
−(2n−1 − 1) and 2n−1. When a voltage amplitude of Vmax is used, then a quan-
tization step is given by

∆ =
Vmax

2n−1 .

In terms of decibels, the S/E ratio depends on the word length n as

S/E(dB) = 20 log10
Vmax

∆/2
= 20 log10(2

n) = 20n log10(2) ≈ 6.02n.

This formula yields for 16-bit audio a S/E ratio of about 96dB. For more details
see [156].

5.1.25Pulse code modulation The amplitude of the signal is stored in pulse code
modulation, PCM (cf. [164, pages 35ff]). This means that the analog signal is
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represented by the sequence of binary values produced by the analog-digital
converter. In PCM format the quantized value of every sampling is stored.
In 16-bit audio format we can represent an audio signal by 216 = 65 536 dis-
crete levels. As mentioned above, the signal is attached with a sign. Hence,
there are 32 768 binary values for representing positive amplitudes and 32 767
binary values for negative amplitudes.

PCM was invented by A.H. Reeves in 1939 (American Patents 2272070,
1942-2, see [156]) and was analyzed and developed as a modulation system
from the point of view of communication theory by C.E. Shannon [180]. For
16-bit audio with sampling rate 44 100 Hz the demand on the storage device
and speed of the transmission channel is 88 200 Bytes/sec. (Usually 8 bits are
combined into one byte, thus each sampling produces 2 bytes of audio infor-
mation. For an audio compact disc the left and right channel are sampled
separately, which yields the above-mentioned number of audio bytes per sec-
ond for each channel.) This is a “brute force” approach, which is not the most
effective way of using the storage device and transmission channel.

“Sampling and quantization are the two fundamental design elements for
audio digitization.” ([164])

5.1.26 Dither As a matter of fact, even though the quantization error of 16-bit audio
is quite small, it is obvious that when the signal amplitude decreases, the rel-
ative error increases. If the signal level is approximately as big as the signal
difference corresponding to two consecutive digital values, then these errors
could be audible. In other words, quantization not only loses information, but
also causes unexpected problems. The following picture shows a low level
sine signal and its quantization which is a square wave. As a square wave,
according to 5.1.7, its trigonometric approximation is rich of odd harmonics
extending far beyond the sampling frequency. (Harmonics are sine waves the
frequencies of which are positive integer multiples of the wave with the small-
est frequency.) For this reason, as we already know, low-pass filters must be
used in order to obtain a band-limited output signal.
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Fig. 5.4 Quantization of a low level sine signal
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After quantization of a low amplitude signal the resulting signal differs
extremely from the original signal. This effect is also known as granulation
noise. In high amplitude audio signals this effect is usually not audible.

Granulation noise can be removed by, surprisingly, adding small amounts
of analog noise. This noise is called dither (cf. [164, pages 32ff]).

Adding low level noise to the previous signal we obtain:
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Fig. 5.5 Adding dither to a low level sine signal

After quantization it looks like:
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Fig. 5.6 Quantization of the low level sine signal together with dither

Finally, taking the average amplitude of this quantized signal over a certain
period of time we obtain
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Fig. 5.7 The average amplitude of the quantized low level sine signal with added dither

which is quite similar to the original signal.



388 5. Mathematics and Audio Compact Discs

Since human beings are unable to hear frequencies which are beyond about
20 000 Hz, in the process of storing audio data on a compact disc all frequen-
cies which are higher than 20 000 Hz are filtered out first. According to the
Sampling Theorem, the sampling rate must be at least 40 000 samples per sec-
ond in order to describe a band limited signal of maximal 20 000 Hz. For audio
compact discs, 44 100 samples per second are taken both for the left and the
right stereo channel. Each sample value is represented by 16 bits, this is a bi-
nary vector of length 16. The choice of these two parameters guarantees that
the fidelity of the compact disc system is comparable to the best analog sys-
tems. For historical reasons the sampling rate was fixed to 44 100 Hz. Namely,
early digital tape recorders used video cassette recorders for storage. Caused
by the video refreshing rate and number of pixels per screen used in different
video systems, they were able to store the audio information produced by a
sampling frequency of maximal 44 100 Hz ([164, page 22]).

In the following sections we describe the methods used for error detection
and correction in connection with audio compact discs.

Exercises

E.5.1.1 Exercise Show that L1(I) is a normed vector space.

E.5.1.2 Exercise Assume that p > 1 is a real number. Verify the details that Lp(I) is a
normed vector space.

Hints: For f , g ∈ Lp(I), show that the inequality

| f (x) + g(x)|p ≤
(
| f (x)| + |g(x)|

)p ≤ 2p(| f (x)|p + |g(x)|p
)

holds almost everywhere on I, and deduce that f + g ∈ Lp(I).
The proof of the triangle inequality for ‖.‖p is based on Hölder’s Inequality.

Assume that p, q > 1 satisfy 1/p + 1/q = 1. If ϕ belongs to Lp(I) and ψ

belongs to Lq(I), then ϕψ is an element of L1(I) and

‖ϕψ‖1 ≤ ‖ϕ‖p‖ψ‖q.

In this setting, the triangle inequality is also known as Minkowski’s Inequal-
ity. Determine q such that 1/p + 1/q = 1. Let f , g ∈ Lp(I), then h :=
| f + g|p−1 belongs to Lq(I), and hq = | f + g|q(p−1) = | f + g|p = | f + g| h ≤
| f h| + |gh|. Applying Hölder’s inequality twice, once for (ϕ, ψ) = ( f , h) and
once for (ϕ, ψ) = (g, h), show that

‖ f + g‖p
p ≤

(
‖ f ‖p + ‖g‖p

)
‖ f + g‖p/q

p .
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E.5.1.3Exercise Prove that L2(I) is an Hermitian inner product space, i.e. the inner
product is antilinear in the first argument, linear in the second argument and
〈g, f 〉 = 〈 f , g〉.

E.5.1.4Exercise For f1, f2 ∈ L1(R) and c1, c2 ∈ R show that

̂c1 f1 + c2 f2 = c1 f̂1 + c2 f̂2.

Consider f ∈ L1(R) and a ∈ R. Prove that g(x) := e−2πiax f (x) and h(x) :=
f (x − a) are in L1(R) and verify

ĝ(ξ) = f̂ (ξ + a) and ĥ(ξ) = e−2πiaξ f̂ (ξ).

5.25.2 Correction of Erasures

After this short introduction of Fourier Analysis and digital audio we come
back to the theory of error correcting codes.

5.2.1Definition (erasures) An erasure is a transmission error where the exact posi-
tion of the error in the received vector is known (but of course not the exact
value of the error).  
Erasures occur, for instance, when the receiver obtained a vector of which it
could not read certain components, or when it is known to the decoder that
certain positions in a received vector are not valid.

In the sequel when speaking about a transmission error, we use the term
random error in order to distinguish it from an erasure. The reader can imagine
that, in general, it is easier to correct erasures than random errors.

5.2.2Theorem [104, 3.3.1 Satz] Let C be an (n, k, d)-code over Fq and let t, u be non-
negative integers. If d ≥ 2t + u + 1, then it is possible to correct up to t errors and,
additionally, u erasures with C.

Proof: Assume that the receiver has obtained a vector y ∈ Fn
q containing ex-

actly u erasures, which are located at 0 ≤ i0 < i1 < . . . < iu−1 ≤ n − 1, and in
the remaining n − u coordinates exactly t errors have occurred. Consider the
set

V :=
{
v ∈ Fn

q | vi = yi for i �∈ {i0, . . . , iu−1}
}
,

then there is exactly one c ∈ C such that d(c, v) ≤ t for a suitable v ∈ V. From
the assumptions it is clear that such a codeword c exists. We have to show
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that it is uniquely determined. Assuming that there exist c(1), c(2) ∈ C, with
c(1) �= c(2) and v(1), v(2) ∈ V such that d(c(1), v(1)) ≤ t and d(c(2), v(2)) ≤ t, we
obtain

d(c(1), c(2)) ≤ d(c(1), v(1)) + d(v(1), v(2)) + d(v(2), c(2)) ≤ t + u + t < d,

which is a contradiction to dist(C) = d. �

5.2.3 Example If C is a binary code equipped with a decoding algorithm for random
errors, then this algorithm can also be used for the correction of erasures.

Assume that c ∈ C was sent and the received vector y ∈ Fn
2 contains u

erasures in the positions i0 < . . . < iu−1. Moreover, assume that among the
remaining components no more than t transmission errors have occurred and
that d ≥ 2t + u + 1. We consider two particular elements v(0), v(1) of V. The
vector v(0) is obtained from y by replacing all erasures by 0, and v(1) is obtained
by replacing them by 1. Since C is a binary code, one of two cases must occur:
Either at least half the values at the erasure positions are zero or at least half
the values are one. Consequently, in the first case d(c, v(0)) ≤ t + 
u/2� and in
the second case d(c, v(1)) ≤ t + 
u/2�.

Without loss of generality, assume that d(c, v(0)) ≤ t + 
u/2�. Then it is
possible to decode v(0), and v(0) is decoded into the codeword originally sent.
If v(1) cannot be decoded, then we are done. Assume that v(1) is decoded into
c′ ∈ C. If c = c′ we are also done. If c′ �= c then∣∣∣{j ∈ n

∣∣ c′j �= yj, j �∈ {i0, . . . , iu−1}
}∣∣∣ > t,

thus c′ cannot be obtained by filling the erasures and correcting up to t non-
erased components of y. �

For codes over Fq with q > 2 this method is not very useful. In this case
it would be necessary to compute all the qu different vectors of V and find,
according to 5.2.2, the existing and uniquely determined vector which can be
decoded into a codeword so that at most t nonerased components are changed.

Hence, for BCH-codes we describe another method (cf. [104] and [68]). Let
C be a BCH-code of length n over Fq with designed distance δ. By definition,
there exists an integer b and a primitive n-th root of unity ξ such that the va-
riety V(C) contains the consecutive set {ξb, . . . , ξb+δ−2}. For m = ordn(q),
the primitive n-th root ξ belongs to Fqm . Let t and u be nonnegative integers
such that δ ≥ 2t + u + 1. Moreover, we assume that the codeword c was sent
and that the vector y ∈ Fn

q was received. It contains exactly u erasures and
we assume that during the transmission w ≤ t errors have occurred in the
nonerased positions.
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From y we derive the vector ỹ in which all the erased positions are replaced
by 0. Thus, we can express ỹ as the sum

ỹ = c + e + a,

where e is the error vector describing the errors which occurred in the non-
erased positions, and a is the vector which produces the value 0 at all the
erased positions. Then the error vector of ỹ equals f := e + a.

Using the check matrix ∆̃ over the extension field Fqm , which was intro-
duced in the proof of 4.3.1, we compute the syndrome s of ỹ as

s = ỹ · ∆̃�.

We are interested in certain components of s, the partial syndromes, which are
given by

sj = ∑
i∈n

ỹiξ
ij = ỹ(ξ j) = c(ξ j) + f (ξ j) = f (ξ j), b ≤ j ≤ b + 2t + u − 1. 5.2.4

As in 4.2.2 we consider the vectors ỹ, c, f as polynomials. Since c is a codeword,
c(ξ j) = 0. This allows the computation of the partial syndrome polynomial

s(x) := ∑
j∈2t+u

sb+jx
j.

From the received vector y we deduce that the erasures have occurred in po-
sitions i0, . . . , iu−1. Moreover, we assume that the errors in the nonerased po-
sitions are located in iu, . . . , iu+w−1. Actually these positions are not known in
the beginning. In connection with these positions we have the erasure location
polynomial which is given by

λ(x) := ∏
j∈u

(1− ξ ij x)

and the error location polynomial given by

σ(x) :=
u+w−1

∏
j=u

(1− ξ ij x).

So far we know λ, but σ remains to be computed.
Now we turn our attention to the actual values of the errors. Once again,

we recall that fij for j ∈ u + w denotes the error occurring at the position ij
when sending c and receiving ỹ. From 5.2.4, it follows that

s� = ∑
j∈u+w

fij ξ
ij�, b ≤ � ≤ b + 2t + u − 1. 5.2.5

Let ω be the unique polynomial of degree less than 2t + u satisfying

ω(x) ≡ s(x)λ(x)σ(x) mod I(x2t+u).

It is called the error evaluation polynomial.



392 5. Mathematics and Audio Compact Discs

5.2.6 Lemma Using the notation from above we have

ω(x) = ∑
j∈u+w

fij ξ
ijb ∏

r �=j
(1− ξ ir x).

Proof: From 5.2.4 and 5.2.5, we get

s(x)λ(x)σ(x) =

(
∑

�∈2t+u
∑

j∈u+w
fij ξ

ij(b+�)x�

)
∏

r∈u+w
(1− ξ ir x)

= ∑
j∈u+w

fij ξ
ijb

(
∑

�∈2t+u
(ξ ij x)�

)
∏

r∈u+w
(1− ξ ir x)

= ∑
j∈u+w

fij ξ
ijb 1− (ξ ij x)2t+u

1− ξ ij x
(1− ξ ij x) ∏

r �=j
(1− ξ ir x)

≡ ∑
j∈u+w

fij ξ
ijb ∏

r �=j
(1− ξ ir x) mod I(x2t+u).

This is a polynomial of degree at most w + u− 1 < 2t + u, whence it represents
the polynomial ω. �

Since we know the polynomial λ and since its degree is equal to u, we write
sλ in the form

s(x)λ(x) = T1(x) + xuT2(x)

with T1, T2 ∈ Fqm [x] and deg T1 < u. Then

s(x)λ(x)σ(x)− σ(x)T1(x) = xuσ(x)T2(x),

whence
ω(x)− σ(x)T1(x) ≡ xuσ(x)T2(x) mod I(x2t+u).

Consequently, xu is a divisor of ω(x)− σ(x)T1(x) and finally we obtain

ω(x)− σ(x)T1(x)
xu ≡ σ(x)T2(x) mod I(x2t).

We denote the left-hand side of this congruence by Ω(x). It is a polynomial of
degree at most w− 1 ≤ t − 1.

5.2.7 Lemma Let C be a BCH-code of length n over Fq with designed distance δ. The
variety of C contains powers of ξ where ξ ∈ Fqm is a primitive n-th root of unity.
Consider nonnegative integers t, u such that u + 2t + 1 ≤ δ. Assume that the product
of the partial syndrome polynomial and the erasure location polynomial is written in
the form s(x)λ(x) = T1(x) + xuT2(x) with deg T1 < u. Then there exist relatively
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prime polynomials σ, Ω ∈ Fqm [x] such that deg Ω ≤ t− 1, deg σ ≤ t, and Ω(x) ≡
σ(x)T2(x) mod I(x2t).

In addition, the polynomials σ and Ω are unique modulo scalars in the following
sense. If σ1 and Ω1 are two further polynomials over Fqm which are relatively prime
and satisfy deg Ω1 ≤ t − 1, deg σ1 ≤ t, and Ω1(x) ≡ σ1(x)T2(x) mod I(x2t),
then there exists a constant κ ∈ F∗

qm such that σ1 = κσ and Ω1 = κΩ.

Proof: From the previous computations we already know that polynomials
σ, Ω exist with deg Ω ≤ t − 1, deg σ ≤ t, and Ω(x) ≡ σ(x)T2(x) mod I(x2t).
Now we prove that they are relatively prime. If we assume that ϕ ∈ Fqm [x] is
a common divisor of σ and Ω, then it is also a divisor of xuΩ(x), therefore, a
divisor of ω − σT1, thus a divisor of ω. From 5.2.6 it is clear that ω and σ are
relatively prime, thus ϕ is a unit in Fqm [x], in other words, a nonzero constant,
thus σ and Ω are relatively prime.

If σ1 and Ω1 also have the desired properties, then

Ω(x)σ1(x) ≡ σ(x)T2(x)σ1(x) ≡ σ(x)Ω1(x) mod I(x2t).

Comparing degrees, we obtain that

Ωσ1 = σΩ1.

Thus, σ1 is a divisor of σΩ1. Since σ1 and Ω1 are relatively prime, σ1 is a divisor
of σ. Correspondingly, we derive that σ is a divisor of σ1, whence there exists
a constant κ ∈ F∗

qm such that σ1 = κσ. Finally, from Ωκσ = Ωσ1 = σΩ1 we
deduce that κΩ = Ω1. �

So far we have proved that relatively prime polynomials σ and Ω of certain
degrees exist, such that Ω(x) ≡ σ(x)T2(x) mod I(x2t). But we still don’t know
how to compute them. Next we describe a method for doing this which is
based upon the

5.2.8Extended Euclidean Algorithm [104, 3.2.12 Satz] Consider nonzero polynomials
ϕ, ψ ∈ Fq[x] with deg ϕ ≥ deg ψ. Put

f0 := 1, g0 := 0, r0 := ϕ,
f1 := 0, g1 := 1, r1 := ψ,

and recursively for i ≥ 1 determine qi, ri+1, fi+1, and gi+1 by

ri−1 = qiri + ri+1 with deg ri+1 < deg ri,
fi+1 = fi−1 − qi fi,
gi+1 = gi−1 − qigi.

Then
fi ϕ + giψ = ri, i ≥ 0, 5.2.9
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and
deg gi+1 ≤ deg ϕ − deg ri, i ≥ 0.5.2.10

Since deg ri+1 < deg ri, after finitely many steps this algorithm terminates with
rN �= 0 and rN+1 = 0. Then rN is equal to gcd(ϕ, ψ). �

An application of the extended Euclidean Algorithm allows us to find poly-
nomials σ and Ω with the properties described in 5.2.7.

5.2.11 Sugiyama–Kasahara–Hirasawa–Namekawa algorithm [188], [189] Let ϕ(x) :=
x2t and let ψ(x) be the remainder of T2(x) after division by x2t. Then there
exist polynomials fN , gN ∈ Fqm [x] such that

d(x) := gcd
(
x2t, T2(x)

)
= gcd

(
x2t, ψ(x)

)
= fN(x)x2t + gN(x)ψ(x).

If the assumptions of 5.2.7 are satisfied, then there exist relatively prime solu-
tions Ω and σ of the congruence

Ω(x) ≡ σ(x)ψ(x) mod I(x2t)

with deg Ω ≤ t − 1 and deg σ ≤ t. Thus, there exists a polynomial φ such that

Ω(x) = σ(x)ψ(x) + φ(x)x2t

and d is a divisor of Ω. Hence deg d ≤ t − 1. The degrees of the polynomials
ri in 5.2.8 are strictly decreasing, and deg r0 = deg x2t = 2t. So, there exists an
index j0 ∈ {1, . . . , N} such that deg rj0−1 ≥ t and deg rj0 < t. From 5.2.9 and
5.2.10 we obtain

fj0 (x)x2t + gj0 (x)ψ(x) = rj0 (x)

and deg gj0 ≤ 2t − deg rj0−1 ≤ t. Consequently, gj0 and rj0 satisfy the congru-
ence

rj0 (x) ≡ gj0 (x)T2(x) mod I(x2t)

with deg gj0 ≤ t and deg rj0 < t. Since, furthermore, Ω and σ are required to
be relatively prime we set

Ω(x) :=
rj0 (x)

gcd(rj0 (x), gj0 (x))
and σ(x) :=

gj0 (x)
gcd(rj0 (x), gj0 (x))

.

If the assumptions of 5.2.7 are not satisfied, then it may happen that T2 �= 0
and deg d ≥ t. In this case we cannot find j0 such that deg rj0 < t and an
uncorrectable error has occurred. �

So far we have computed the partial syndrome polynomial s, the error loca-
tion polynomial σ, the erasure location polynomial λ, and the error evaluation
polynomial

ω(x) = Ω(x)xu + σ(x)T1(x).
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In the next step the error locations iu, . . . , iu+w−1 are determined by finding
the roots of σ. It is obvious that κ ∈ Fqm is a root of σ if and only if there
exists some j ∈ {u, . . . , u + w − 1} such that 1 − ξ ijκ = 0, which is equivalent
to κ = ξ−ij. From the representation of the multiplicative inverse of the roots
of σ as powers of ξ, we are able to deduce the error locations. In Section 3.5 we
were briefly discussing a method how to determine the roots of a polynomial.
For the present problem of finding the zeros of the error locator polynomial,
we suggest another method. If we are able to determine the polynomial σ,
then, according to 5.2.7, we can assume that σ(0) = 1. Hence, the roots of σ

can be determined by

5.2.12Chien search

Input: n the length of the code, ξ ∈ Fqm a primitive n-th root of unity,
and the error location polynomial σ(x) = ∑w

i=0 σixi with σ0 = 1.
Output: All roots of σ of the form ξ j.

(1) We introduce w variables X1, . . . , Xw. For 1 ≤ j ≤ w set Xj := σj and set
i := 0.

(2) If
w

∑
j=1

Xj = −1,

then output ξ i.

(3) If i = n, then STOP.
Otherwise, set i := i + 1 and for 1 ≤ j ≤ w set Xj := Xjξ

j. Goto (2). �

In the i-th step the sum in (2) stands for

w

∑
j=1

σjξ
ij = σ(ξ i) − 1,

whence ξ i is a root of σ if and only if this sum equals −1.

Finally, we have to compute the error values fij for j ∈ u + w which de-
scribe the errors of ỹ in the ij-th component. A useful method is given by the

5.2.13Forney algorithm [55] For j ∈ u + w the error fij can be computed as

fij =
ξ−ijbω(ξ−ij)

∏r �=j(1− ξ ir−ij)
= − ξ−ij(b−1)ω(ξ−ij)

ρ′(ξ−ij)
,

where ρ := σλ.
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Proof: From 5.2.6 we obtain

ω(ξ−ij) = fijξ
ijb ∏

r �=j
(1− ξ ir−ij),

which proves the first equality. Computing the formal derivative of ρ leads to

ρ′(x) =
d
dx ∏

j∈u+w
(1− ξ ij x) = − ∑

j∈u+w
ξ ij ∏

r �=j
(1− ξ ir x).

Thus,
ρ′(ξ−ij) = −ξ ij ∏

r �=j
(1− ξ ir−ij),

which proves the second equality. �

Hence, we obtain the error values fij for j ∈ u + w, from which together
with the error- and erasure locations ij, the error vectors e and a can easily
be determined. By subtraction we obtain the originally sent codeword c =
ỹ − e − a.

5.2.14 Algorithm (Decoding of errors and erasures with a BCH-code) Let C be a
BCH-code with designed distance δ and consecutive subset {ξb, . . . , ξb+δ−2}
of its variety, where ξ ∈ Fqm is a primitive n-th root of unity.
Input: A vector y containing u erasures.
Output: A codeword c or an error message. If t denotes the number of

errors in the nonerased positions and if 2t ≤ δ − 1− u, then the
output is the codeword originally sent.

(1) Determine the vector ỹ by setting the erased components of y all equal
to 0, and define t := 
(δ − u − 1)/2�.

(2) Compute the partial syndromes sj = ỹ(ξ j) for b ≤ j ≤ b + 2t + u − 1.

(3) Determine the partial syndrome polynomial

s(x) := ∑
j∈2t+u

sb+jx
j.

If s = 0, then set c := ỹ and goto (12).

(4) Determine the locations of the erasures i0, . . . , iu−1 and form the erasure
location polynomial

λ(x) := ∏
j∈u

(1− ξ ij x).

(5) Write s(x)λ(x) in the form T1(x) + xuT2(x) with deg T1 < u.

(6) Compute relatively prime polynomials Ω, σ ∈ Fqm [x] such that deg Ω ≤
t − 1, deg σ ≤ t, and Ω(x) ≡ σ(x)T2(x) mod I(x2t) as described in
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5.2.11. If such polynomials do not exist, output an error message and
STOP.

(7) Compute by Chien search the roots ξ−ij of σ for j = u, . . . , u + w − 1,
where w ≤ deg σ ≤ t, and their multiplicative inverses. Then the error
locations are iu, . . . , iu+w−1.

(8) Set ρ := σλ and compute the formal derivative ρ′(x).

(9) Compute the error evaluation polynomial

ω(x) = Ω(x)xu + σ(x)T1(x).

(10) For j ∈ u + w determine the errors

fij = − ξ−ij(b−1)ω(ξ−ij)
ρ′(ξ−ij)

as indicated by Forney’s algorithm.

(11) Set

a(x) := ∑
j∈u

fij x
ij , e(x) :=

u+w−1

∑
j=u

fij x
ij ,

and c(x) := ỹ(x)− a(x)− e(x).

(12) Output c. �

This algorithm can also be used for decoding a BCH-code when no erasures
occurred. In this case u = 0, ỹ = y, λ = 1, T1 = 0, and ω = Ω.

5.2.15Algorithm (Decoding of errors with a BCH-code) Let C be a BCH-code
with designed distance δ and consecutive subset {ξb, . . . , ξb+δ−2} of its vari-
ety, where ξ ∈ Fqm is a primitive n-th root of unity.
Input: A vector y.
Output: A codeword c or an error message. If t denotes the number of er-

rors and if 2t ≤ δ − 1, then the output is the codeword originally
sent.

(1) Set t := 
(δ − 1)/2� and compute the partial syndromes sj = y(ξ j) for
b ≤ j ≤ b + 2t − 1.

(2) Determine the partial syndrome polynomial

s(x) := ∑
j∈2t

sj+bx
j.

If s = 0, then set c := y and goto (8).
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(3) Compute relatively prime polynomials ω, σ ∈ Fqm [x] such that deg ω ≤
t − 1, deg σ ≤ t and ω(x) ≡ σ(x)s(x) mod I(x2t) as described in 5.2.11.
If such polynomials do not exist, output an error message and STOP.

(4) Compute by Chien search the roots ξ−ij of σ for j ∈ w, where w ≤
deg σ ≤ t, and their multiplicative inverses. Then the error locations are
i0, . . . , iw−1.

(5) Compute the formal derivative σ′(x).

(6) For j ∈ w determine the errors

fij = − ξ−ij(b−1)ω(ξ−ij)
σ′(ξ−ij)

as indicated by Forney’s algorithm.

(7) Set
e(x) := ∑

j∈w
fij x

ij and c(x) := y(x) − e(x).

(8) Output c. �

At the end of this section we want to discuss two numerical examples. First
we illustrate the method of 5.2.3 for binary codes. It was taken from [104, 3.3.2
Beispiel].

5.2.16 Example Consider the binary (15, 7, 5)-code with generator polynomial g(x) =
x8 + x7 + x6 + x4 + 1. According to 4.2.13, it is a BCH-code with δ = 5, since g
is the product of x4 + x + 1 and x4 + x3 + x2 + x + 1. Assume that

c = (1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0)

was sent and that the vector

y = (1, 0, , 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, )

was received. Thus, two erasures and one error have occurred. Now we set

v(0) := (1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0)

and
v(1) := (1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1).

Using a decoding algorithm for cyclic codes (for instance 5.2.15), we realize
that v(0) is decoded to c, whereas v(1) cannot be decoded. �
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Now we consider a BCH-code over F11. A similar example can be found in
[104, 3.3.4 Beispiel].

5.2.17Example Let C be a BCH-code in the strict sense of length 10 with designed
distance δ = 6 over F11. The parameters were chosen so that ξ = 2 is a prim-
itive 10-th root of unity. Thus, it is not necessary to do computations in an
extension field of F11.

The receiver has obtained the vector

y = (8, , 8, , 2, , 4, 2, 2, 1).

Since u = 3 erasures have occurred, we can detect at most t = 1 error in the
nonerased positions. Initially, we set

ỹ := (8, 0, 8, 0, 2, 0, 4, 2, 2, 1).

Then we compute the first five components of its syndrome

sj−1 =
9

∑
i=0

ỹi2
ij, 1 ≤ j ≤ 5,

and obtain the partial syndrome polynomial

s(x) = 10x4 + 5x3 + 2x + 2.

The erasures occurred at the positions i0 = 1, i1 = 3 and i2 = 5, whence

λ(x) = (1− 2x)(1− 23x)(1− 25x) = 5x3 + 6x2 + 2x + 1.

Now we compute

s(x)λ(x) = 6x7 + 8x6 + 6x5 + 8x4 + 5x3 + 5x2 + 6x + 2

and determine

T1(x)= 5x2 + 6x + 2 and T2(x)= 6x4 + 8x3 + 6x2 + 8x + 5 ≡ 8x + 5 mod I(x2).

A solution of the congruence

Ω(x) ≡ σ(x)T2(x) mod I(x2)

with deg σ ≤ 1 and deg Ω = 0 is easily computed as

σ(x) = x + 9 and Ω(x) = 1.

The root of σ is κ = 2 = ξ, whence κ−1 = ξ−1 = ξ9 and the error location
i3 = 9. Now we determine

ρ(x) = σ(x)λ(x) = 5x4 + 7x3 + x2 + 8x + 9,
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ρ′(x) = 9x3 + 10x2 + 2x + 8

and
ω(x) = Ω(x)x3 + σ(x)T1(x) = 6x3 + 7x2 + x + 7.

This allows us to compute the following data

j 0 1 2 3
ij 1 3 5 9

2−ij 6 7 10 2
ω(2−ij) 10 6 7 8
ρ′(2−ij) 3 2 7 3

fij 4 8 10 1

so that a(x) = 4x + 8x3 + 10x5, e(x) = x9 and

c(x) = ỹ(x) − a(x)− e(x) = 8 + 7x + 8x2 + 3x3 + 2x4 + x5 + 4x6 + 2x7 + 2x8,

which results in the codeword

c = (8, 7, 8, 3, 2, 1, 4, 2, 2, 0). �

Exercises

E.5.2.1 Exercise Prove 5.2.8. First prove by induction that 5.2.9 is satisfied for i ≥ 0.
Show that deg qi = deg ri−1 − deg ri for i ≥ 1. From the monotonicity of
deg ri deduce by induction that 5.2.10 is satisfied for i ≥ 0. Finally, show by
induction that gcd(ri+1, ri) = gcd(ri, ri−1) = gcd(ϕ, ψ) for i ≥ 1.

E.5.2.2 Exercise Consider the code from 5.2.16 and the decoding method described
in 5.2.3. Using the algorithm 5.2.15, show that both v(0) and v(1) constructed
from

y = (0, 0, 0, 0, 1, 0, 0, , , 0, 0, 0, 0, 0, 0)

can be decoded into two distinct codewords c(0) and c(1). Assume that at most
one error has occurred in the positions unaffected by erasures. Which of c(0)

and c(1) was sent originally? (See [104, Übung 60].)

E.5.2.3 Exercise Let C be the BCH-code over F7 of length 6 with consecutive subset{
ξ, . . . , ξ4} of its variety and designed distance δ = 5, where ξ = 3 ∈ F7. The

vector y = (3, 3, , 5, , 2) was received. Which codeword was sent? (See
[104, Übung 61].)
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5.35.3 Burst Errors and Interleaving of Codes

If during the transmission of a codeword at least two errors have occurred,
then the error vector can be seen as a burst error.

5.3.1Definition (burst error) Let C be a code of length n. A burst error of length � ≤ n
is an error vector e in which (after some cyclic rearrangement) all the nonzero
entries (maybe mixed with some zero entries) occur in � adjacent positions, say
among the coordinates ei, . . . , ei+�−1 mod n, with nonzero ei and ei+�−1 mod n.

A burst error of length � is completely described by its location, which is the
index i of the first nonzero component of e, and by its pattern, which can also
be read as a polynomial b(x) := ei · 1 + ei+1 mod nx + . . . + ei+�−1 mod nx�−1 of
degree �− 1.  
For example the two vectors

(0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0) and (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)

are both burst errors of length 4. The first burst has location 4 and pattern
1 + x2 + x3, the second one has location 9 and pattern 1 + x + x3. In order
to indicate that the second burst starts somewhere at the end of the vector
and is continued at the beginning, we also call it a wrap around burst. However,
neither the burst error nor its pattern and length are uniquely determined. The
first vector is also a wrap around burst with location 6 and pattern 1 + x + x10,
so a burst of length 11, or a wrap around burst with location 7 and pattern
1+ x9 + x11. Of course, it makes sense to consider bursts of rather short length.

Again we use the term random error instead of error in the ordinary sense in
order to distinguish it from a burst error. Random errors are sometimes seen
as burst errors of length 1.

If the burst error has location i and pattern b of degree �− 1, then

e(x) ≡ xib(x) mod I(xn − 1).

5.3.2Theorem A cyclic code with generator polynomial of degree t is able to detect all
burst errors of length at most t.

Proof: Let e be a burst error of length at most t, then e(x) ≡ xib(x) mod
I(xn − 1) for some i, with b �= 0 and deg b < t. In order to show that e is not a
codeword, we prove that e is not a multiple of the generator polynomial g.

On the contrary, if we suppose that xib(x) belongs to the code, then there
exists a polynomial a such that

xib(x) ≡ a(x)g(x) mod I(xn − 1).
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Hence, xn − 1 is a divisor of xib(x) − a(x)g(x), thus g is a divisor of xib(x).
Since g(0) �= 0, we deduce that g is a divisor of b, which is impossible since
0 ≤ deg b < deg g. �

This fact motivates the method of cyclic redundancy check decoding (CRC-
decoding) which is described below. It is applied for instance in computer net-
works, where it is important to detect errors. If a block of data was not trans-
mitted correctly, then a transmission error is detected and the corresponding
data must be transmitted again. CRC-decoding is also applied for error detec-
tion in digital audio applications.

5.3.3 Algorithm (CRC-decoding [104, pages 86ff])
Assume that C is a cyclic code of length n with generator polynomial g of
degree t = n− k. Moreover, assume that the code was encoded systematically.
Input: A polynomial y(x) = y0 + . . . + yn−1xn−1 ∈ Fq[x].
Output: A vector belonging to Fk

q or an error message. If a transmission
error has occurred which is a burst of length at most t, then this
error is definitely detected by this algorithm.

(1) By polynomial division determine q, r ∈ Fq[x] such that y = qg + r with
r = 0 or deg r < deg g.

(2) If r �= 0 then output an error message.

(3) If r = 0 output the information symbols of y. �

Especially the error detection rate of binary CRC-codes is quite high. Many
burst errors of even bigger length can be detected by this method.

5.3.4 Lemma Let C be a binary cyclic code with a generator polynomial of degree t and let
� > t. Assume that all burst errors of length � occur with the same probability. Then
the probability that C detects a burst of length � is equal to

1− 2−t+1 if � = t + 1,
1− 2−t if � > t + 1.

Proof: Assume that e is a burst error with location i and pattern b(x) = 1 +
. . . + x�−1. As we saw in the proof of 5.3.2, the burst e is not detected by the
CRC-algorithm if and only if b is a multiple of g, thus b = g f for some poly-
nomial f of degree � − 1− t. Moreover, from b(0) = g(0) = 1 we deduce that
f (0) = 1 must be satisfied.

If � = t + 1, then there exists exactly one polynomial f with these proper-
ties, namely f = 1. If � ≥ t + 2, then there are exactly 2�−t−2 polynomials f
with these properties. By assumption, each burst pattern b of length � occurs
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with the same probability. Since there are exactly 2�−2 burst patterns of length
�, we obtain the following probabilities for detecting a burst of length �.

If � = t + 1, a burst of length � is detected with the probability

2�−2 − 1
2�−2 = 1− 2−�+2 = 1− 2−t+1.

If � > t + 1, a burst of length � is detected with the probability

2�−2 − 2�−t−2

2�−2 = 1− 2−t. �

For the correction of burst and random errors we refer the reader to [134]
and [68]. Now we analyze the burst error correction ability of linear codes.

5.3.5Lemma A linear code C is able to correct all bursts of length at most � if and only if
no codeword different from 0 is the sum of two bursts of length at most �.

Proof: Assume that C is able to correct all bursts of length up to � and suppose
that there exist two burst errors e and e′ of length at most � and c ∈ C \ {0}
such that c = e + e′. Then 0 + e′ = c − e. Since C is able to correct all bursts of
length at most �, the vector 0 + e is decoded into 0, and c − e is decoded into c,
whence c = 0, which is a contradiction to our assumption.

Conversely, we prove that if it is not possible to correct all bursts of length
up to �, then there exists a codeword different from 0 which is the sum of two
bursts of length at most �. By assumption, there exist c, c′ ∈ C, c �= c′ and
two bursts e, e′ of length at most � such that c + e = c′ + e′. Consequently,
e′ − e = c − c′ ∈ C \ {0} shows that the codeword c − c′ is the sum of e′

and −e. �

5.3.6The Reiger-bound [169] If C is a linear (n, k)-code over Fq which is able to correct
all bursts of length at most �, then 2� ≤ n − k.

Proof: Since C corrects all bursts of length at most �, according to 5.3.5, no
codeword different from 0 is the sum of two bursts of length at most �. Conse-
quently 2� < n, since each vector of length at most 2� is either a burst of length
at most � or the sum of two bursts of length at most �. Hence, it is possible to
consider the vector space

T :=
{

(v0, v1, . . . , v2�−1, 0, . . . , 0) ∈ Fn
q

∣∣∣ vi ∈ Fq, i ∈ 2�
}

,

which is a subspace of Fn
q of dimension 2�. Each element of T \ {0} is either a

burst of length at most � or can be written as the sum of two bursts of length at
most �. Therefore, c = 0 is the unique codeword belonging to T. For v, v′ ∈ T,
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v �= v′, the cosets v + C and v′ + C are distinct elements of Fn
q /C. (Assuming

on the contrary that v + C = v′ + C, then v − v′ ∈ C ∩ T, thus v − v′ = 0,
whence v = v′ a contradiction to our assumption.) Hence, the syndromes of
distinct elements of T are distinct. In other words, the mapping T → Fn−k

q ,
v �→ v · ∆�, where ∆ is a check matrix of C, is injective. Thus 2� = dim(T) ≤
dim(Fn−k

q ) = n − k. �

If an (n, k)-code is able to correct all burst errors of length at most �, then
its burst error correcting efficiency is defined as

2�
n − k

.

From the Reiger-bound it is clear that the burst error correcting efficiency can-
not be greater than 1. The minimum distance d of each MDS-code satisfies
d − 1 = n − k. Hence, we obtain the following

5.3.7 Corollary MDS-codes are able to correct all bursts of length at most 
(n − k)/2�. If
n − k is even, then their burst error correcting efficiency is equal to 1. �

Assume that C is a linear code encoded systematically so that the last k
positions of a codeword are the information symbols. If g is the generator
polynomial of C, then the syndrome s of y ∈ Fn

q satisfies s(x) ≡ y(x) mod
g(x). Moreover, it is easily verified that the syndrome of the cyclic shift xiy(x)
is given by xis(x) mod g(x). In order to correct correctable bursts, the method
of error trapping (cf. 4.12.5) can be applied. By the Reiger-bound, a correctable
burst is always of length � ≤ (n − k)/2, whence it can always be rotated by a
cyclic shift into the first n − k positions.

Now we describe a method which allows us to deal with long burst errors.
Let C be a linear (n, k)-code over Fq and let λ be a positive integer. Consider
the set of all λ-tuples of codewords of C, i.e.

Cλ =
{

f
∣∣ f : λ → C

}
,

which is an Fq vector space. Its elements can be represented as matrices. As-
sume that f (i) = c(i) = (c(i)

0 , . . . , c(i)
n−1) for i ∈ λ, then f can be written as a

matrix

f =

⎛⎜⎜⎜⎝
c(0)

c(1)

...
c(λ−1)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
c(0)
0 . . . c(0)

n−1

c(1)
0 . . . c(1)

n−1
...

...
...

c(λ−1)
0 . . . c(λ−1)

n−1

⎞⎟⎟⎟⎟⎠ ,

where the codewords of C are the rows of this matrix. Now the main idea of in-
terleaving is, to read this matrix columnwise from top to bottom and from left
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to right. For this reason, the symbols of λ consecutive codewords are mixed.
Finally, we identify the matrix f with the vector

(c(0)
0 , c(1)

0 , . . . , c(λ−1)
0 , . . . , c(0)

n−1, c
(1)
n−1, . . . , c

(λ−1)
n−1 )

of length λn over Fq. The identification of λ × n matrices over Fq with vectors
of length λn over Fq is a vector space isomorphism

φ : Fλ×n
q → Fλn

q .

The image of Cλ under this isomorphism is indicated by C(λ).

5.3.8Definition (λ-way interleave) The code C(λ) is called the λ-way interleave of
the code C.  
The proof of the next theorem is left to the reader.

5.3.9Theorem Let C be a linear (n, k, d, q)-code, and let λ be a positive integer. Then the
λ-way interleave C(λ) is a linear (λn, λk, d, q)-code. �

5.3.10Theorem If the linear code C is able to correct all bursts of length at most �, then the
λ-way interleave C(λ) corrects all burst errors of length at most λ�.

Proof: Assume that e ∈ Fλn
q is a burst error of length at most λ�. Applying the

inverse isomorphism φ−1, this burst error is split over the λ rows of φ−1(e). In
each row at most � consecutive symbols are effected, whence in each row the
bursts can be corrected by C. Thus, e is corrected by C(λ).

Conversely, choose a burst of length � + 1 in Fn
q which cannot be corrected

by C. If we replace � consecutive symbols in an arbitrary row of φ−1(c) for
some c ∈ C(λ) by this burst, then we obtain a burst of length λ� + 1 in C(λ)

which cannot be corrected. �

5.3.11Corollary Let C be a code over F2m . If C allows one to correct bursts of length at
most �, then C is able to correct bursts of maximal (�− 1)m + 1 bits, and C(λ) corrects
burst errors of length up to (λ�− 1)m + 1 bits. �

Since C and C(λ) have the same minimum distance, interleaving does not
increase the random error correction abilities of a code. As a matter of fact,
depending on how the errors are distributed among the λ interleaves, more
than (d− 1)/2 errors might be corrected by C(λ).

5.3.12Theorem Let C be a cyclic code of length n with generator polynomial g over Fq.
Then g(xλ) is the generator polynomial of C(λ). Hence, the λ-way interleave is also
cyclic.
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Proof: Let c = (c0, . . . , cnλ−1) be an element of C(λ), then

φ−1(c) =

⎛⎜⎜⎜⎝
c0 cλ . . . c(n−1)λ

c1 cλ+1 . . . c(n−1)λ+1
...

...
. . .

...
cλ−1 c2λ−1 . . . cnλ−1

⎞⎟⎟⎟⎠ .

Each row

c(i) := (ci, cλ+i, . . . , c(n−1)λ+i), i ∈ λ,

is a codeword of C, thus g(x) is a divisor of

c(i)(x) := ci + cλ+ix + . . . + c(n−1)λ+ix
n−1, i ∈ λ.

The polynomial

c(x) = c0 + c1x + . . . + cλn−1x
λn−1

is of the form

c(x) = c(0)(xλ) + xc(1)(xλ) + . . . + xλ−1c(λ−1)(xλ).

Since g is a divisor of c(i)(x) in Fq[x]/I(xn − 1), it is obvious that g(xλ) is a
divisor of c(x) in Fq[x]/I(xλn − 1). Hence, each codeword of C(λ) is a multiple
of g(xλ).

Conversely, we know that g is a divisor of xn − 1 and that k = dim(C) =
n − deg g. Thus, g(xλ) is a divisor of xnλ − 1, and the cyclic code generated
by g(xλ) is of dimension nλ − deg g(xλ) = nλ − (n − k)λ = kλ. This is the
dimension of C(λ). Since C(λ) is contained in the cyclic code generated by
g(xλ), and both codes have the same dimension, they are equal. Thus, C(λ) is
the cyclic code generated by g(xλ). �

The minimum distance of an interleaved code can be increased signifi-
cantly by adding check symbols across interleaves. Usually product codes
(cf. 2.3.15) are used for this construction.

Assume that Ci is an (ni, ki, di, q)-code, for i = 1, 2. Without loss of gener-
ality, we assume that the codes are systematically encoded, so that the first ki

symbols in each codeword form an information set. Then the product C1 ⊗ C2

is an (n1n2, k1k2, d1d2, q)-code. Its elements are represented as n1 × n2-matrices
over Fq. First write down k1 rows containing codewords of C2. Then consider
each of the n2 columns as an information set of a codeword of C1. For each
column compute the remaining n1 − k1 check symbols and attach them at the
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bottom of the column. Finally, we obtain a matrix of the form

k1 × k2 information symbols k1 × (n2 − k2) checks on rows

(n1 − k1)× k2 checks on columns (n1 − k1) × (n2 − k2) checks on
rows and columns

5.3.13

containing k1k2 information symbols in the upper left corner. The code C1 is
also called the column code or outer code, whereas C2 is the row code or inner
code. As a matter of fact, all the rows of this matrix, i.e. also the last n1 − k1

rows, are codewords of C2 (cf. Exercise 5.3.3). For the encoding process it
is not important whether first rows and then columns, or first columns and
then rows of the matrix 5.3.13 are determined. Usually the components of this
matrix are finally read in columns. Thus from the matrix⎛⎜⎜⎜⎝

c00 c01 . . . c0,n2−1

c10 c11 . . . c1,n2−1
...

...
. . .

...
cn1−1,0 cn1−1,1 . . . cn1−1,n2−1

⎞⎟⎟⎟⎠
we obtain the vector

(c00, c10, . . . , cn1−1,0, c01, c11, . . . , cn1−1,1, . . . , c0,n2−1, c1,n2−1, . . . , cn1−1,n2−1).

There are various methods for decoding product codes. The conventional de-
coding is done in two steps, which are called inner and outer decoding. The in-
ner decoding, also known as row decoding, is used both for error correction of
short errors and for error detection. If errors were detected and not corrected
in a row, then all the symbols of this row are marked as erasures. The outer de-
coder, also known as column decoder, is provided with information on erasures
by the inner decoder, whence its main task is the correction of these erasures.
Moreover, it is possible to use it for further error correction as well. If the outer
decoder cannot correct the erasures, then in applications like compact discs an
error concealment must be applied.

5.3.14Example Consider the product code C1 ⊗ C2 constructed from an extended
binary Hamming-code C1 with systematic generator matrix

Γ1 =

⎛⎜⎜⎝
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞⎟⎟⎠ ,
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a binary cyclic code C2 with generator polynomial

g2(x) = (1 + x)(1 + x + x3) = 1 + x2 + x3 + x4

and systematic generator matrix

Γ2 =

⎛⎝ 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎠ .

We already know that d1 = d2 = 4, whence C1 ⊗ C2 is a binary (56, 12, 16)-
code. Since the generator polynomial g2 is of degree 4, the code C2 detects all
bursts of length ≤ 4 and, moreover, it detects bursts of length greater than 4
with probability at least 7/8. For encoding the information

111 101 010 011

we insert it in form of rows into the array

M0 =

⎛⎜⎜⎝
1 1 1
1 0 1
0 1 0
0 1 1

⎞⎟⎟⎠ .

Then, by using the systematic generator matrix Γ2, we compute the four code-
words of C2 whose first three components are given by the rows of M0, obtain-
ing the rows of

M1 =

⎛⎜⎜⎝
1 1 1 0 0 1 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 1 1 1 0 0 1

⎞⎟⎟⎠ .

Finally, by using Γ1, we compute the seven codewords of C1 (written as col-
umns) whose first four components are given by the columns of M1. This way
we obtain

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 1 1 1 0 0 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Reading M2 column by column yields the vector

11001100 10110100 11010010 01111000 01100110 10101010 00011110.
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After transmission we obtain the following vector

01011000 00100000 01010010 01111000 01100110 10101010 10011110.

For better readability the transmission errors are underlined. In this vector we
can find a burst of length 17 in position 0 with pattern 10010100100101001 and
a random error in position 48. Rewriting this vector as a matrix we obtain

M′
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
1 0 1 1 0 0 1
1 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the present example we use C2 just for error detection. The first row of M′
2

contains a burst of length 4 which will be detected by C2, whence all entries
of this row are marked as erasures. Also the errors in the two other rows are
detected by C2, and the elements in these rows are also marked as erasures.
This way we obtain the matrix

M′′
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0 0
0 1 0 1 1 1 0

1 0 0 1 0 1 1

0 0 1 0 1 1 1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since d1 = 4, it is possible to correct three erasures in each codeword of C1,
whence each column of M′′

2 can be corrected. Consequently we are able to
reconstruct the originally sent vector.

Just using interleaving of one code it would be impossible to correct these
errors. However, if the errors were distributed so that a fourth row of M′

2
would be infected, then our decoding strategy would fail. For this reason, usu-
ally the code C2 is also used for correction of short errors. Moreover, further
interleaving of codewords of the product code C1 ⊗ C2 protects better against
burst errors. �

A similar example can be found in [104, 3.5.3 Beispiel].
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5.3.15 Example For error correction in a DVD a product code of two Reed–Solomon-
codes over F28 is used. The column code C1 is a (208, 192, 17)-code with gen-
erator polynomial

g1(x) =
15

∏
i=0

(x + ξ i),

where ξ is a root of the primitive polynomial x8 + x4 + x3 + x2 + 1 ∈ F2[x].
The row code C2 is a (182, 172, 11)-code with generator polynomial

g2(x) =
9

∏
i=0

(x + ξ i).

For further details see [49]. �

The error- and burst-correcting properties of product codes are described in

5.3.16 Theorem [134, pages 275ff] Assume that Ci is a linear code of length ni with mini-
mum distance di which can correct all bursts of length at most �i, for i = 1, 2. Then:

1. The product code C1 ⊗ C2 is capable of correcting

t :=
⌊

d1d2 − 1
2

⌋
random errors.

2. There exist decoding methods such that C1 ⊗ C2 corrects all bursts of length up to
max {n1�2, n2�1}.

3. There exists a decoding algorithm for the product code C1 ⊗ C2 which allows the
correction of all random errors of weight at most t and of all burst errors of length
at most max {n1t2, n2t1} with ti := 
(di − 1)/2�.

Proof: 1. The first assertion is trivial since the minimum distance of C1 ⊗ C2

is d = d1d2.

2. Assume that the elements of a codearray are transmitted in columns. If
during the transmission a burst error of length at most n1�2 has occurred, after
rearranging the received data in an n1 × n2-array, the elements of the burst
error lie in at most �2 + 1 columns. Each row of the array is affected with
a burst of length not greater than �2. Thus, these bursts can be corrected by
C2, whence C1 ⊗ C2 corrects all bursts of length up to n1�2. If n2�1 > n1�2,
then assume that the elements of a codearray are transmitted in rows. Similar
arguments prove that under these assumptions C1 ⊗C2 is capable of correcting
all bursts of length at most n2�1.

3. Without loss of generality, we assume that n1t2 ≥ n2t1 and set � := n1t2.
If the received vector y contains a random error of weight at most t we apply



5.3 Burst Errors and Interleaving of Codes 411

the decoding method of 1. Otherwise, we suppose that y contains a burst error
e of length not greater than � which is not a random error of weight at most
t. Rearranging the elements of y as an n1 × n2-array, the burst error affects at
most t2 + 1 columns, where each row of this array contains at most t2 errors.
Consequently, these errors can be corrected by C2. Finally, we want to show
that the syndromes of errors can be used in order to determine which decod-
ing strategy should be applied. For doing this, we prove that the syndrome of
e, a burst of length � which is not a random error of weight at most t, is dif-
ferent from the syndromes of all correctable random errors. Supposing, on the
contrary, that the syndrome of e coincides with the syndrome of a correctable
random error e′, then the difference e − e′ is a codeword of C1 ⊗ C2. By as-
sumption, e− e′ �= 0. Hence, each nonzero row of e− e′ is of weight at least d2.
Thus, it consists of at least d2 − t2 nonzero entries of e′ and at most t2 nonzero
components of e. Since there are at most t random errors in e′, there exist at
most 
t/(d2 − t2)� rows of e′ containing at least d2 − t2 nonzero entries. Thus,

wt(e− e′) ≤
⌊

t
d2 − t2

⌋
t2 + t ≤ tt2

d2 − t2
+ t = t

(
t2

d2 − t2
+ 1

)
= t

d2

d2 − t2
< 2t,

since
d2

d2 − t2
=

d2

d2 − 
(d2 − 1)/2� ≤ 2d2

2d2 − d2 + 1
< 2.

Consequently, e − e′ is a nonzero codeword of C1 ⊗ C2 of weight less than
2t < d, which is a contradiction. �

As already mentioned, there exist many other decoding methods for prod-
uct codes. For instance, first determine all the rows and columns where er-
rors have occurred, and flag all those entries lying both in infected rows and
columns. Then use the conventional decoding strategy. But instead of erasing
complete rows, just the flagged symbols in these rows will be erased.

The decoding process can be iterated. After having decoded rows and
columns, start the decoding process once again. This method is especially
useful for decoders with soft input and output. The word “soft” indicates that
each data symbol is attached with a measure, usually an element of the real
interval [0, 1], indicating its reliability. See the vast literature on concatenated
codes, e.g. [56], and on Turbo codes, e.g. [9], [12], and many others.

The effectiveness of the decoding method quite often depends on the situ-
ation where it is applied:

5.3.17Example Consider the product code of two Hamming-codes. Its minimum
distance is 3 · 3 = 9, whence it is possible to correct up to 4 errors. We will
compare three different decoding methods in two different situations:
Method 1: First correct all correctable rows with the row code, and then correct
all correctable columns with the column code.
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Method 2: Use the row code for error detection and mark all infected rows as
erasures. With the column code try to decode errors and erasures.
Situation 1: Assume that four errors are located in the positions

(i1, j1), (i1, j2), (i2, j1), (i2, j2)

of the codearray with i1 �= i2, j1 �= j2. Method 1 introduces in the rows in-
dexed with i1 and i2 and also in the columns indexed with j1 and j2 a third
error, whence the error cannot be corrected. Method 2 allows one to realize
that errors have occurred in the rows i1 and i2, whence these rows are erased.
Since there are exactly two erasures in each column, the erased symbols can be
computed, and the errors are corrected.
Situation 2: Now assume that the four errors have occurred in four different
rows and columns, thus there are exactly four rows and four columns contain-
ing one error. Method 1 corrects the errors in the four erroneous rows, whence
there are no errors left for the column decoding. Thus, all the errors were cor-
rected. Method 2 allows one to realize that errors have occurred in four rows.
The symbols in each of these rows are erased. Since there are four erased sym-
bols in each column, the column decoder cannot correct these errors.
The errors in both situations can be corrected by using
Method 3: Correct each row using a decoder for the row code. For each row i,
remember νi, the number of symbols corrected. Larger values of νi correspond
to rows which are more likely to have been miscorrected. Uncorrectable rows
are tagged with νi = ∞ and all symbols in these rows are immediately erased.
Then correct the columns using an errors-and-erasures correction method. For
j ∈ n2 attempt to decode column j. If decoding fails because the column is
not correctable, or if decoding succeeds but changes a symbol in an unerased
row, some of the row decodings were incorrect. In this case, erase the two
least reliable unerased rows (rows with the largest values of νi), and repeat the
decoding for this column. �

There are many other ways of interleaving codewords. The construction
of the direct product C1 ⊗ C2 can also be described as follows: First interleave
k1 codewords of C2. Then divide the interleaved vector into n2 rows each
of length k1, extend each of these rows to a codeword of C1 and append the
additional symbols at the end of each column. In general, any combination
of interleaving methods and encoding with respect to two (or more) codes is
called cross interleaving.

Now we describe the interleaving applied for the error protection in com-
pact discs. The method is called cross interleaved Reed–Solomon-codes, for short
CIRC. It is a combination of three interleaving processes and encoding with
respect to two Reed–Solomon-codes. CIRC involves another form of inter-
leaving, namely, interleaving with delay d ≥ 1, which is described below:



5.3 Burst Errors and Interleaving of Codes 413

Ordinary n-fold interleaving of a code of length n yields blocks consist-
ing of exactly n interleaved codewords, thus each block contains n2 symbols.
Moreover, each codeword is part of exactly one block. Interleaving with de-
lay d ≥ 1 is another method for interleaving a finite sequence of codewords
(c(r))0≤r≤N with c(r) = (crn, crn+1, . . . , crn+(n−1)). As we will immediately see
using interleaving with delay d ≥ 1, a single codeword does not belong to a
single block, as it is the case with product codes. Each block contains exactly n
symbols which belong to n codewords. Each codeword in this sequence starts
a new block and completes another block. With this method each codeword
c(r) is spread over n different blocks.

Interleaving with delay d means that the codewords c(r) are inserted as
certain diagonals of an array of n rows. For i ∈ n put ci, the i-th component of
c(0), into the i-th row and the di-th column of this array. If the codeword c(r) is
already inserted, then the components of c(r+1) are placed exactly one column
to the right from the corresponding components of c(r). For instance, for d = 1
we obtain an array of the form:

c0 cn . . . c(n−2)n c(n−1)n cnn c(n+1)n . . .
c1 cn+1 . . . c(n−3)n+1 c(n−2)n+1 c(n−1)n+1 cnn+1 . . .

c2
. . .
. . .

cn−2 cn+n−2 c2n+n−2 c3n+n−2 . . .
cn−1 cn+n−1 c2n+n−1 . . .

Of course blank fields at the beginning and at the end of this array must be
filled with zeros. Finally, the interleaves are read as columns of the form⎛⎜⎜⎜⎜⎜⎜⎝

crn

c(r−1)n+1
...

c(r−(n−2))n+n−2
c(r−(n−1))n+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

In the general case for d ≥ 1, interleaving with delay d yields blocks of the form⎛⎜⎜⎜⎜⎜⎜⎝
crn

c(r−d)n+1
...

c(r−(n−2)d)n+n−2
c(r−(n−1)d)n+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ . 5.3.18

For i ∈ n the i-th component of the word c(r) stands in the r + id-th column.
Thus, the components of a single codeword occur in n blocks distributed over
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(n − 1)d + 1 blocks. To be more precise, the components occur in the blocks⎛⎜⎜⎜⎜⎜⎜⎝
crn

c(r−d)n+1
...

c(r−(n−2)d)n+n−2
c(r−(n−1)d)n+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
c(r+d)n
crn+1

...
c(r−(n−3)d)n+n−2
c(r−(n−2)d)n+n−1

⎞⎟⎟⎟⎟⎟⎠ , . . . ,

⎛⎜⎜⎜⎜⎜⎜⎝
c(r+(n−1)d)n

c(r+(n−2)d)n+1
...

c(r+d)n+n−2
crn+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

By increasing d, symbols of a single codeword are spread over longer se-
quences of interleaved symbols, whence they are better protected against burst
errors. On the other hand, deinterleaving becomes more difficult and time con-
suming, since more symbols must be read and kept in the memory before they
can be collected to the original codewords of C.
Finally, at the end of this section we analyze certain relations between product
codes and cyclic codes. These considerations are not necessary for understand-
ing the encoding of compact discs, but they are interesting for their own sake.
The reason is that the product of two cyclic codes is a cyclic code again, if the
lengths of the codes are relatively prime. (See also [139, Ch. 18 §2].)

5.3.19 Lemma Let A be an arbitrary alphabet and let n1, n2 be positive integers. By An1×n2

we denote the set of all n1 × n2 matrices over A. If Gi is a subgroup of the symmetric
group Sni for i = 1, 2, then the mapping

(G1 × G2)× An1×n2 → An1×n2 :
(
(σ, π), (aij)

)
�→

(
aσ−1(i),π−1(j)

)
defines an action of the direct product G1 × G2 on An1×n2 . �

The proof of this lemma is left as an exercise for the reader.
Consider the alphabet A = Fq, Ci a cyclic code of length ni over Fq and

Gi the cyclic group generated by the cycle (0, 1, . . . , ni − 1) ∈ Sni for i = 1, 2.
Then for each (σ, π) ∈ G1 × G2 we have

(cij) ∈ C1 ⊗ C2 ⇐⇒ (cσ−1(i),π−1(j)) ∈ C1 ⊗ C2.

In other words, G1 × G2 is contained in the automorphism group of C1 ⊗ C2.
Moreover, if n1 and n2 are relatively prime, then the direct product G1 × G2 is
a cyclic group of order n1n2.

Now we represent a codeword c = (cij) ∈ C1 ⊗ C2 as

c(x, y) = ∑
i∈n1

∑
j∈n2

cijx
iyj + I(xn1 − 1, yn2 − 1) ∈ Fq[x, y]/I(xn1 − 1, yn2 − 1).

Then x · c(x, y) and y · c(x, y) describe cyclic shifts of the rows and columns of
c = (cij).
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Assuming again that n1 and n2 are relatively prime, by the Chinese Re-
mainder Theorem (cf. 3.5.15 and Exercise 3.5.11), we obtain that for each (i, j) ∈
n1 × n2 there exists exactly one φ(i, j) ∈ n1n2 such that

φ(i, j) ≡ i mod n1 and φ(i, j) ≡ j mod n2. 5.3.20

5.3.21Lemma Assume that n1 and n2 are relatively prime positive integers, and consider
a, b ∈ Z such that an1 + bn2 = 1. Then:

1. φ(i, j) ≡ jan1 + ibn2 mod n1n2.

2. There exist integers ã > 0 and b̃ ≤ 0 such that ãn1 + b̃n2 = 1. If n1 > 1 and
ã > 0, then b̃ < 0. Moreover, gcd(a, b) = gcd(ã, b̃) = 1.

3. I(xn − 1, ym − 1) = I(xn − 1) + I(ym − 1) for arbitrary n, m > 0. �

The proof is left to the reader.
We claim that it is possible to rewrite c(x, y) in terms of a single variable z

by replacing xiyj by zφ(i,j).

5.3.22Lemma Assume that n1 and n2 are relatively prime positive integers, and consider
a, b ∈ Z such that an1 + bn2 = 1. Let ϕ : Fq[x, y] → Fq[z]/I(zn1n2 − 1) be the
homomorphism defined by

x �→ ϕ(x) := zbn2 + I(zn1n2 − 1), y �→ ϕ(y) := zan1 + I(zn1n2 − 1).

Then:

1. ϕ(xiyj) = zφ(i,j) + I(zn1n2 − 1) for all (i, j) ∈ n1 × n2.

2. ϕ is surjective, ker ϕ = I(xn1 − 1, yn2 − 1) and

Φ : Fq[x, y]/I(xn1 − 1, yn2 − 1) → Fq[z]/I(zn1n2 − 1)

Φ( f (x, y) + I(xn1 − 1, yn2 − 1)) := ϕ( f (x, y))

is a ring-isomorphism.

Proof: 1. For (i, j) ∈ n1 × n2 we have

ϕ(xiyj) =
(
zibn2 + I(zn1n2 − 1)

) (
zjan1 + I(zn1n2 − 1)

)
= zjan1+ibn2 + I(zn1n2 − 1) = zφ(i,j) + I(zn1n2 − 1).

2. From the definition of ϕ it is obvious that I(xn1 − 1, yn2 − 1) ⊆ ker ϕ. As-
sume, conversely, that f (x, y) ∈ Fq[x, y] belongs to ker ϕ. It can be expressed
as

f (x, y) = ∑
i∈n1

∑
j∈n2

fijx
iyj + f̃ (x, y),
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where f̃ (x, y) ∈ I(xn1 − 1, yn2 − 1). Since ϕ is a homomorphism, we deduce

0 + I(zn1n2 − 1) = ϕ( f (x, y)) = ∑
i∈n1

∑
j∈n2

fijz
φ(i,j) + I(zn1n2 − 1).

Since φ is a bijection between n1 × n2 and n1n2, all the coefficients fij vanish for
(i, j) ∈ n1 × n2 and, consequently, f (x, y) = f̃ (x, y) ∈ I(zn1n2 − 1). Obviously,
ϕ is surjective, whence Φ is an isomorphism. �

This way we obtain

Φ(c(x, y) + I(xn1 − 1, yn2 − 1)) = ∑
i∈n1

∑
j∈n2

cijz
φ(i,j) + I(zn1n2 − 1),

which allows us to determine c(z) as

c(z) = ∑
i∈n1

∑
j∈n2

cijz
φ(i,j),

as was claimed.
If c ∈ C1 ⊗ C2, then zc(z) + I(zn1n2 − 1) = Φ(xy)Φ(c(x, y)) = Φ(xyc(x, y))

and xyc(x, y) ∈ C1 ⊗ C2, whence C1 ⊗ C2 is an ideal in Fq[z]/I(zn1n2 − 1).
In other words, using an appropriate order of the canonical basis vectors of
C1 ⊗ C2, the product code is cyclic: We associate c′ ⊗ c′′ ∈ C1 ⊗ C2 with the
vector

c := (cφ−1(0), . . . , cφ−1(n1n2−1)),

where cij = c′ic
′′
j for i ∈ n1, j ∈ n2.

This proves the first assertion of

5.3.23 Theorem [34], [135] Assume that Ci is a cyclic linear (ni, ki, di, q)-code with gener-
ator polynomial gi and check polynomial hi for i = 1, 2. Suppose that n1 > 1 and n2

are relatively prime and that a > 0 and b ≤ 0 are integers such that an1 + bn2 = 1.
Then:

1. The product code C1 ⊗ C2 is a cyclic code.

2. The generator polynomial of C1 ⊗ C2 is

g(z) = gcd
(
zn1n2 − 1,

(
z�n1n2 g1(zbn2)

)
g2(zan1)

)
with � = 2(−b).

3. The check polynomial of C1 ⊗ C2 is

h(z) = gcd
(
zmn1n2h1(zbn2), h2(zan1)

)
with m = −b.

4. If ei is the idempotent generator of Ci for i = 1, 2, then Φ(e1e2) is the idempotent
generator of C1 ⊗ C2.
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Proof: 2. The integer � is chosen so that z�n1n2 f (zbn2) is a polynomial in z for
all polynomials f of degree not greater than 2n1. Assume that c = (cij) belongs
to C1 ⊗C2. Let c(z) be the uniquely determined polynomial of degree less than
n1n2 associated with c. The i-th row of c belongs to C2, whence adding suitable
multiples of yn2 − 1 we obtain a polynomial

ζ i(y) ≡ ∑
j∈n2

cijy
j mod I(yn2 − 1), i ∈ n1,

such that the generator polynomial g2(y) is a divisor of ζ i(y) in Fq[y]. Simi-
larly, the j-th column of c belongs to C1, whence adding suitable multiples of
xn1 − 1 we obtain a polynomial

σj(x) ≡ ∑
i∈n1

cijx
i mod I(xn1 − 1), j ∈ n2,

such that the generator polynomial g1(x) is a divisor of σj(x) in Fq[x]. It is
always possible to find polynomials σj of degree less than 2n1. Consequently,
after multiplying with z�n1n2 we obtain

c(z) ≡ ∑
i∈n1

ζ i(zan1)zibn2+�n1n2 ≡ ∑
j∈n2

σj(zbn2)zjan1+�n1n2 mod I(zn1n2 − 1).

Thus, c(z) can be expressed in two ways

c(z) = q(z)(zn1n2 − 1) + ∑
i∈n1

ζ i(zan1)zibn2+�n1n2 ,

c(z) = q̃(z)(zn1n2 − 1) + ∑
j∈n2

σj(zbn2)zjan1+�n1n2 .

For this reason gcd(zn1n2 − 1, g2(zan1)) and gcd(zn1n2 − 1, g1(zbn1)z�n1n2) are
divisors of c(z) for all c ∈ C1 ⊗ C2. Hence,

L(z) := lcm
(
gcd(zn1n2 − 1, g2(zan1)), gcd(zn1n2 − 1, g1(zbn1)z�n1n2)

)
is a divisors of the generator polynomial g(z).

Now assume that c1 = (c(1)
0 , . . . , c(1)

n1−1) and c2 = (c(2)
0 , . . . , c(2)

n2−1) are the
codewords of C1 and C2 corresponding to the generator polynomials g1(x) =
∑i∈n1

c(1)
i xi and g2(y) = ∑i∈n2

c(2)
i yi. Then

(c1 ⊗ c2)(z) ≡ ∑
i∈n1

∑
j∈n2

c(1)
i c(2)

j zjan1+ibn2+�n1n2 mod I(zn1n2 − 1)

≡ z�n1n2 ∑
i∈n1

c(1)
i zibn2 ∑

j∈n2

c(2)
j zjan1 mod I(zn1n2 − 1)

≡ z�n1n2 g1(zbn2)g2(zan1) mod I(zn1n2 − 1).

After adding suitable multiples of zn1n2 − 1 to (c1 ⊗ c2)(z), we deduce that g(z)
is a divisor of (c1 ⊗ c2)(z). Since g(z) is also a divisor of zn1n2 − 1, it follows
that g(z) divides z�n1n2 g1(zbn2)g2(zan1), whence it is a divisor of

G(z) := gcd
(
zn1n2 − 1, z�n1n2 g1(zbn2)g2(zan1)

)
.



418 5. Mathematics and Audio Compact Discs

Summarizing, so far we have deduced that L(z) | g(z) | G(z). Finally, we
want to prove that L(z) = G(z). The polynomials L(z) and G(z) have the
same irreducible factors. If L(z) were a proper divisor of G(z), then there ex-
ists an irreducible factor of zn1n2 − 1 which is both a factor of z�n1n2 g1(zbn2)
and g2(zan1) which occurs in G(z) with a greater multiplicity than in L(z).
Then necessarily n1n2 = psn, where p is the characteristics of Fq, s > 0, and
gcd(n, p) = 1. Thus zn1n2 − 1 = (zn − 1)ps

. Since n1 and n2 are relatively
prime, either p is a divisor of n1 or of n2. If p | n1, then n1 = psn′

1 and
g2(zan1) =

(
g2(zan′1)

)ps
. Hence, each common factor of zn1n2 − 1 and g2(zan1)

occurs with the multiplicity ps both in L and G. If p | n2, then n2 = psn′
2 and

z�n1n2 g1(zbn2) =
(
z�n1n′2 g1(zbn′2)

)ps
. Hence, each common factor of zn1n2 − 1

and z�n1n2 g1(zbn2) occurs with the multiplicity ps both in L and G. This proves
the second assertion.

3. From the representation of the generator polynomial g in 2. and Bézout’s
Identity (cf. Exercise 3.1.6), we derive that

g(z) = f1(z)(zn1n2 − 1) + f2(z)z�n1n2 g1(zbn2)g2(zan1)

for some f1, f2 ∈ Fq[z]. We want to prove that h(z) is a divisor of zmn1n2h1(zbn2)
and of h2(zan1). Since g(z)h(z) = zn1n2 − 1, it is enough to show that zn1n2 − 1
is a divisor of g(z)zmn1n2h1(zbn2) and of g(z)h2(zan1). The first assertion is
proved by

g(z)zmn1n2h1(zbn2) =

f1(z)(zn1n2 − 1)zmn1n2h1(zbn2) + f2(z)z�n1n2 g1(zbn2)g2(zan1)zmn1n2h1(zbn2) =

f1(z)(zn1n2 − 1)zmn1n2h1(zbn2) + f2(z)g2(zan1)z(�+m+b)n1n2(1− z−bn1n2)

what follows from 4.2.3. Indeed, zn1n2 − 1 is a factor of the first and of the
second summand, since b < 0. Similarly, we prove that zn1n2 − 1 is a divisor of
g(z)h2(zan1).

Thus, h(z) is a divisor of H(z) := gcd
(
zmn1n2h1(zbn2), h2(zan1)

)
. Now we

prove that H(z) is a divisor of zn1n2 − 1. If ξ is a root of H in a suitable extension
field, then ξ �= 0, since h2(0) �= 0. Consequently h1(ξbn2) = 0 = h2(ξan1). This
implies that ξbn2 is a root of zn1 − 1, and ξan1 is a root if zn2 − 1. Consequently
ξbn1n2 = 1 = ξan1n2 . In other words, (ξn1n2)a = 1 = (ξn1n2)b, from which we
finally obtain that 1 = (ξn1n2)(n1a+n2b) = ξn1n2 . Hence, ξ is a root of zn1n2 − 1.
It is easy to prove that h2(zan1) divides zan1n2 − 1 and zmn1n2h1(zbn2) divides
z−bn1n2 − 1. If ξ is a root of H(z), then the minimal polynomial Mξ of ξ over
Fq is an irreducible factor of zn1n2 − 1, of zan1n2 − 1 and of z−bn1n2 − 1. Since
a and b are relatively prime, the multiplicity of Mξ in H(z) is not greater than
the multiplicity of Mξ in zn1n2 − 1. Therefore, H(z) is a divisor of zn1n2 − 1.
The decomposition of zn1n2 − 1 into linear factors is completely described in
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Exercise 5.3.6. Each root of H can be expressed as the product αβ of roots of 1
of order n1 and n2.

The common roots of zmn1n2h1(zbn2) and zn1n2 − 1 are of the form αβ where
α is a root of h1 and βn2 = 1. Similarly, the common roots of h2(zan2) and
zn1n2 − 1 are of the form αβ where β is a root of h2 and αn1 = 1.

Assume that p � n1n2. Then there exist exactly k1 distinct roots α of h1 and
k2 distinct roots β of h2. Moreover, αβ is a root of H if and only if α is a root
of h1 and β is a root of h2. Hence, each pair (α, β) of these roots determines
uniquely a root αβ of H. Consequently deg H = k1k2 and, therefore, H = h,
since h is the check polynomial of a code of dimension k1k2.

Assume that p | n2. Then gcd(an1, p) = 1. From Exercise 5.3.7 we deduce:
If β is a root of h2 of multiplicity r and αn1 = 1, then αβ is a root of h2(zan1) of
the same multiplicity r. Consequently, αβ is a root of H if and only if α is a root
of h1 and β is a root of h2. Moreover, the multiplicity of αβ as a root of H is at
most the multiplicity of β as a root of h2. Hence, deg H ≤ k1k2 and, therefore,
H = h.

Finally, assume that p | n1. Then gcd(bn2, p) = 1. For ξ �= 0 it is easy to
prove that ξ is a root of zmn1n2h1(zbn2) of multiplicity r if and only if ξ−1 is a
root of h1(z−bn2) of multiplicity r. Similar arguments as above show that also
in this case H = h.

4. In order to prove the last assertion we derive

Φ
(
e1(x)e2(y)

)2 = Φ
(
e1(x)2e2(y)2) = Φ

(
e1(x)e2(y)

)
,

whence Φ
(
e1(x)e2(y)

)
is an idempotent element of Fq[z]/I(zn1n2 − 1). As-

sume that f (z) ∈ Fq[x]/I(zn1n2 − 1). Then there exists a unique f̃ (x, y) ∈
Fq[x, y]/I(xn1 − 1, yn2 − 1) such that f (z) = Φ

(
f̃ (x, y)

)
. Since n1 and n2 are rel-

atively prime there exist f1(x) ∈ Fq[x]/I(xn1 − 1) and f2(y) ∈ Fq[y]/I(yn2 − 1)
such that f̃ (x, y) = f1(x) f2(y). Since ei is a generator of Ci, for i = 1, 2, there
are r(x) ∈ Fq[x]/I(xn1 − 1) and s(y) ∈ Fq[y]/I(yn2 − 1) such that f1(x) =
e1(x)r(x) and f2(y) = e2(y)s(y). Consequently,

f (z) = Φ
(
f̃ (x, y)

)
= Φ

(
f1(x) f2(y)

)
= Φ

(
e1(x)r(x)e2(y)s(y)

)
= Φ

(
e1(x)e2(y)

)
Φ
(
r(x)s(y)

)
,

which finishes the proof. �

5.3.24Example [139, Ch. 18 §2] Let C1 be the cyclic binary (3, 2, 2)-code with gen-
erator polynomial g1(x) = x + 1, check polynomial h1(x) = x2 + x + 1, and
idempotent generator e1(x) = x2 + x. And let C2 be the cyclic binary (5, 4, 2)-
code with generator polynomial g2(y) = y + 1, check polynomial h2(y) =
y4 + y3 + y2 + y + 1, and idempotent generator e2(y) = y4 + y3 + y2 + y.
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Since 3 and 5 are relatively prime, C1 ⊗ C2 is a cyclic (15, 8, 4)-code. With
a = 2 and b = −1 we get � = 2, m = 1, and the generator polynomial

g(z) = gcd
(
z15 − 1, z30g1(z−5)g2(z6)

)
= z7 + z6 + z5 + z2 + z + 1.

Moreover, the check polynomial of C1 ⊗ C2 is

h(z) = gcd
(
z15h1(z−5), h2(z6)

)
= z8 + z7 + z5 + z4 + z3 + z.

Of course h(z) = (z15 + 1)/g(z). Finally, the idempotent generator can be
determined by

e(z) = Φ(e1(x)e2(y)) = Φ(x2y4 + xy4 + x2y3 + xy3 + x2y2 + xy2 + x2y + xy)

= z + z2 + z4 + z7 + z8 + z11 + z13 + z14. �

However, not all cyclic codes are products of cyclic codes (cf. [139, Ch. 18 §3]).
Let C be a minimal binary cyclic (n, k)-code with n = n1n2, gcd(n1n2, 2) = 1,
gcd(n1, n2) = 1, and n1 > 1, n2 > 1. Since C is minimal, its check polynomial
h is irreducible, and its roots are of the form ξ, ξ2, . . . , ξ2k−1

, where ξ is an n-th
root of 1 in F2k . Moreover, we assume that h is a primitive polynomial, whence
ξ is a primitive element of F∗

2k .
Since gcd(n1, n2) = 1, there exist integers a, b such that an1 + bn2 = 1. De-

fine α := ξbn2 , β := ξan1 , and let k1, k2 be the least integers for which α ∈ F2k1

and β ∈ F2k2 . Clearly k1 and k2 are divisors of k. In fact, k = lcm(k1, k2). Based
on these assumptions we can prove the next

5.3.25 Theorem [139, Ch. 18 §3] Let C be a minimal binary cyclic (n, k)-code with n =
n1n2, gcd(n1n2, 2) = 1, gcd(n1, n2) = 1, and n1 > 1, n2 > 1. There exist binary
cyclic (ni, ki)-codes Ci such that C = C1 ⊗ C2 if and only if gcd(k1, k2) = 1.

Proof: Since Φ is a ring isomorphism, we obtain from c ∈ C an n1 × n2-array
( fij) by

Φ−1(c(z)) = ∑
i∈n1

∑
j∈n2

fijx
iyj + I(xn1 − 1, yn2 − 1) = f (x, y) + I(xn1 − 1, yn2 − 1).

Moreover, Φ−1(zan1 + I(zn1n2 − 1)) = y + I(xn1 − 1, yn2 − 1) and analogously
Φ−1(zbn2 + I(zn1n2 − 1)) = x + I(xn1 − 1, yn2 − 1). Since C is cyclic, zan1c(z) ∈ C
for all c ∈ C, whence y f (x, y) + I(xn1 − 1, yn2 − 1) = Φ−1(zan1c(z)

)
∈ Φ−1(C),

and similarly x f (x, y) + I(xn1 − 1, yn2 − 1) ∈ Φ−1(C). Therefore, the two sets

C1 :=

{
( f0j, . . . , fn1−1,j)

∣∣∣∣ j ∈ n2, ∑
i∈n1

∑
j∈n2

fijx
iyj + I ∈ Φ−1(C)

}
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and

C2 :=

{
( fi0, . . . , fi,n2−1)

∣∣∣∣ i ∈ n1, ∑
i∈n1

∑
j∈n2

fijx
iyj + I ∈ Φ−1(C)

}

are cyclic codes of length n1 and n2, where I = I(xn1 − 1, yn2 − 1).
For α and β as above, we have αn1 = βn2 = 1 and ξ = αβ. Hence, the roots

of h are
αβ, (αβ)2, (αβ)4, . . . , (αβ)2k−1

.

We still have to determine the dimensions of these codes. Our claim is
that dim(Ci) = ki for i = 1, 2, where k1, k2 are the least integers for which
α ∈ F2k1 and β ∈ F2k2 . We prove that α, α2, . . . , α2k1−1

are k1 zeros of the check
polynomial h1 of C1 and β, β2, . . . , β2k2−1

are k2 zeros of the check polynomial h2

of C2. Let β0 ∈ F2k2−1 be an n2-th root of 1 not belonging to {β, β2, . . . , β2k2−1},
and let α0 be any n1-th root of 1. Then α0β0 is a root of g(z), since g(z) =
(zn + 1)/h(z). Let f (x, y) = r0(y) + r1(y)x + . . . + rn1−1(y)xn1−1 correspond
to a nonzero codeword of C, where ri are codewords of C2. Then

f (α0, β0) = ∑
i∈n1

ri(β0)αi
0 = 0.

This holds true for any root α0 satisfying α
n1
0 = 1. Since there exist n1 different

α0, the values ri(β0), i ∈ n1, satisfy a system of n1 linear homogeneous equa-
tions. The coefficient matrix is a Vandermonde matrix, thus it is regular and
ri(β0) = 0 for i ∈ n1. Therefore, β0 is a root of each codeword of C2, whence it
is a root of the generator polynomial g2, and consequently not a root of h2.

Since g(α2j
β2j) �= 0 for j ∈ k2, there exist codewords ri ∈ C2 such that

ri(β2j) �= 0. Whence, the roots of h2 are exactly given by β2j
for j ∈ k2. Simi-

larly, the roots of h1 can be determined.
In conclusion we obtain: If gcd(k1, k2) = 1, then k = lcm(k1, k2) = k1k2

and C = C1 ⊗ C2. Conversely, if C = C1 ⊗ C2, then k = lcm(k1, k2) = k1k2,
whence gcd(k1, k2) = 1. �

5.3.26Examples [139, Ch. 18 §3]

1. Let C be the cyclic binary (15, 4, 8)-code with generator polynomial g(z) =
z11 + z8 + z7 + z5 + z3 + z2 + z + 1 and idempotent generator e(z) = zg(z).
Let n1 = 3 and n2 = 5. The check polynomial of C is irreducible of de-
gree 4 and its roots are of the form ξ, ξ2, ξ4, ξ8 with ξ15 = 1. Then a = 2,
b = −1, α = ξ−5 = ξ10, β = ξ6, α4 = α, β16 = β, k1 = 2, and k2 = 4.
Since gcd(2, 4) �= 1, the product C1 ⊗ C2 is different from C. Indeed C1 is a
(3, 2, 2)-code and C2 is a (5, 4, 2)-code.
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2. Let C be the (21, 6, 8)-product code of Exercise 5.3.8 where ξ, ξ2, ξ4, ξ8, ξ16,
ξ32 = ξ11 are the roots of its check polynomial, with ξ21 = 1. Then n1 = 3,
n2 = 7, a = 5, b = −2, α = ξ−14 = ξ7, β = ξ15, k1 = 2, k2 = 3, and C is the
product code of C1 and C2 as given in Exercise 5.3.8. �

Exercises

E.5.3.1 Exercise Prove 5.3.9.

E.5.3.2 Exercise Prove 5.3.11.

E.5.3.3 Exercise Prove that all the rows of a matrix representing an element of the
product code C1 ⊗ C2 are elements of C2.

E.5.3.4 Exercise Prove 5.3.19.

E.5.3.5 Exercise Assume that n1 and n2 are relatively prime positive integers, σ and
π are given as in 5.3.19 and φ satisfies 5.3.20. Show that

φ
(
σ(i), π(j)

)
≡ φ(i, j) + 1 mod n1n2.

E.5.3.6 Exercise Let p be a prime and assume that n1 and n2 are relatively prime
positive integers. Prove the following assertions.

1. If gcd(p, n1n2) = 1, then

zn1n2 − 1 = ∏
i∈n1

∏
j∈n2

(z − αiβj),

where α and β are primitive roots of 1 of order n1 and n2, respectively.
2. If p | n1n2 assume without loss of generality that p is a divisor of n1, and

n1 = n′
1ps with s > 0 and gcd(n′

1, p) = 1. Then

zn1n2 − 1 =
(

∏
i∈n′1

∏
j∈n2

(z − αiβj)
)ps

,

where α and β are primitive roots of 1 of order n′
1 and n2, respectively.

E.5.3.7 Exercise Let h ∈ Fq[x] be a divisor of xm − 1 and n ∈ N with gcd(n, m) = 1
and gcd(n, p) = 1, where p is the characteristic of Fq. Prove that all the roots
of h(xn) are of the form αβ, where α is a root of h and βn = 1. If, moreover, α

occurs with the multiplicity r in h, then each αβ occurs as a root of h(xn) with
the same multiplicity r.
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E.5.3.8Exercise [139, Ch. 18 §2] Let C1 be the cyclic (3, 2, 2, 2)-code of 5.3.24 and let
C2 be the cyclic (7, 3, 4, 2)-code S3 of 4.2.7. Compute the parameters, generator
and check polynomial and the idempotent generator of C1 ⊗ C2.

5.45.4 More Details on Compact Discs

We already know that an audio compact disc contains 16-bit audio which is
sampled at a rate of 44 100 Hz. Each sampling is divided into two 8-bit vec-
tors, and each of these vectors is considered as one byte and also as an ele-
ment of F28 . Thus, each sampling process yields 2 bytes of audio informa-
tion. Since both the left and the right channel are sampled separately, each
sampling produces two bytes of audio information for the left and two bytes
of audio information for the right channel. Hence, every second we collect
2 · 2 · 44 100 = 176 400 bytes of audio information. This gives 10 584 000 bytes
per minute and 635 040 000 bytes or 5 080 320 000 bits per hour. As we will
see the total capacity required for storing this information on a compact disc
is approximately three times as big. If not otherwise specified we excerpt or
“quote” from the third chapter of [164]. “Storing audio information places
great demands on a digital medium. [. . . ] Error correction, synchronization
and modulation are required for successful storage.” “The compact disc was
developed in order to meet” different user demands as “random access, small
size, convenience to use, robustness, low cost, and ease of replication.” The
specifications for the compact disc system “were jointly developed by Philips
and Sony and are defined in [. . . ] the Red Book.” (The Red Book is the 1980 doc-
ument which provides the specifications for the standard compact disc (CD)
developed by Sony and Philips. According to legend, the document was in a
binder with red covers, originating the tradition for subsequent adaptations of
CD specifications to be referred to as variously colored books. The Red Book de-
scribes the compact discs physical specifications, such as the tracks, sector and
block layout, coding, and sampling. Sony and Philips referred to the discs as
CD-DA (digital audio), defined as a content medium for audio data digitized
at 44 100 samples per second and in a range of 65 536 possible values cf. [166]).
“It is also contained in the IEC standard Compact Disc Digital Audio [95].” A
compact disc allows us to store at least 74 minutes of stereo high fidelity au-
dio. The disc must be made of transparent material with a refraction index of
1.55. “The optical system that reads the data from the disc uses a laser beam
with a 780 nanometer wavelength.” All the information of a compact disc is
stored in the area between radius 23mm and 58.5mm. A lead-in and lead-out
area cover the innermost and outermost part of this area. They do not con-
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tain any audio information. The audio data is stored between radius 25mm
and 58mm. In general, the information of a compact disc is stored in a track
in form of “a continuous spiral running from the inner circumference to the
outer.” “Viewed from the readout surface the disc rotates counter-clockwise.”
The distance between successive tracks is 1.6 micrometers. “There are 22 188
revolutions across the discs surface.” The rotational speed of a compact disc
varies on the position of the pickup. “The disc rotates at a speed of 500 ro-
tations per minute when the pickup is reading the inner circumference, and
as the pickup moves out, the rotational speed decreases to 200 rotations per
minute. Thus, a constant linear velocity, CLV, is maintained.” Depending on
the disc, this velocity can vary between 1.2 and 1.4 meters per second. The
CD-player automatically regulates the disc rotational speed to maintain a con-
stant bit rate of 4.3218Mb/sec (cf. 5.4.9). That kind of track is also called a CLV
servo system; i.e. the player constantly reads synchronization words from the
data and adjusts the speed accordingly. Audio data is stored in a frame format
on the disc. Among other information, each frame contains exactly 24 audio
bytes. Consequently, there are exactly 7350 frames per second. Further details
about frames will be presented later (cf. 5.4.9). First we analyze the error de-
tection and correction process used for compact discs. The analog to digital
converter produces sequences of audio data in PCM format. This way we ob-
tain finite sequences (Li,A)0≤i≤N, (Li,B)0≤i≤N, (Ri,A)0≤i≤N, and (Ri,B)0≤i≤N of
bytes representing the first (A) or the second (B) byte of the left (L) or right (R)
channel at the i-th sampling for 0 ≤ i ≤ N, where N is the number of the last
sampling. With Li or Ri we denote the i-th sampling of the left or right chan-
nel, i.e. the pair (Li,A, Li,B) or (Ri,A, Ri,B), respectively. The analog to digital
converter produces two sequences (Li)0≤i≤N and (Ri)0≤i≤N. Now we want to
describe the CIRC-process in more details. Even though this process is usually
illustrated with diagrams, we try to use common mathematical notation.

5.4.1 CIRC encoding In step A this data is scrambled into a series of vectors contain-
ing 24 bytes. The vectors obtained from the first samplings are the rows of the
following array:

0 0 0 0 0 0 L1 L3 L5 R1 R3 R5

0 0 0 0 0 0 L7 L9 L11 R7 R9 R11

L0 L2 L4 R0 R2 R4 L13 L15 L17 R13 R15 R17

L6 L8 L10 R6 R8 R10 L19 L21 L23 R19 R21 R23

. . . . . .

In general, for n ≥ 0 the n-th vector is built as

L6(n−2) L6(n−2)+2 L6(n−2)+4 R6(n−2) R6(n−2)+2 R6(n−2)+4
L6n+1 L6n+3 L6n+5 R6n+1 R6n+3 R6n+5.
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The first half of this vector contains the sampling values of even samples,
the second half of odd samples. Of course, at the very beginning and at the
very end empty fields must be filled with zero bytes. Using a (28, 24) Reed–
Solomon-code C2 over F28 , in step B this vector is encoded into the C2-code-
word

L6(n−2),A L6(n−2),B L6(n−2)+2,A L6(n−2)+2,B
L6(n−2)+4,A L6(n−2)+4,B R6(n−2),A R6(n−2),B
R6(n−2)+2,A R6(n−2)+2,B R6(n−2)+4,A R6(n−2)+4,B

Qn,0 Qn,1 Qn,2 Qn,3

L6n+1,A L6n+1,B L6n+3,A L6n+3,B

L6n+5,A L6n+5,B R6n+1,A R6n+1,B

R6n+3,A R6n+3,B R6n+5,A R6n+5,B,

5.4.2

where the four new symbols (they are usually denoted by the letter Q) are
inserted in the middle of the vector, i.e. between the audio information of
the even and odd samples. (In general, these codewords are just sequences of
28 bytes. To increase the readability they were arranged in form of an array.)
The code C2 is obtained by shortening a (255, 251, 5, 28)-Reed–Solomon-code,
which is a shortened BCH-code and also an MDS-code (cf. Exercise 5.4.1).

In step C these C2-codewords are interleaved with delay d = 4. This yields,
according to 5.3.18, vectors of the form

L6(n−2),A L6(n−2−d),B L6(n−2−2d)+2,A L6(n−2−3d)+2,B
L6(n−2−4d)+4,A L6(n−2−5d)+4,B R6(n−2−6d),A R6(n−2−7d),B
R6(n−2−8d)+2,A R6(n−2−9d)+2,B R6(n−2−10d)+4,A R6(n−2−11d)+4,B

Qn−12d,0 Qn−13d,1 Qn−14d,2 Qn−15d,3
L6(n−16d)+1,A L6(n−17d)+1,B L6(n−18d)+3,A L6(n−19d)+3,B
L6(n−20d)+5,A L6(n−21d)+5,B R6(n−22d)+1,A R6(n−23d)+1,B
R6(n−24d)+3,A R6(n−25d)+3,B R6(n−26d)+5,A R6(n−27d)+5,B.

Another Reed–Solomon-code C1, a (32, 28)-code over F28 , is used in step D to
encode these vectors as C1-codewords. Again we have to attach 4 bytes, this
time they are appended at the end of the vector. In the literature these bytes
are usually indicated with the letter P. We obtain

L6(n−2),A L6(n−2−d),B L6(n−2−2d)+2,A L6(n−2−3d)+2,B
L6(n−2−4d)+4,A L6(n−2−5d)+4,B R6(n−2−6d),A R6(n−2−7d),B
R6(n−2−8d)+2,A R6(n−2−9d)+2,B R6(n−2−10d)+4,A R6(n−2−11d)+4,B

Qn−12d,0 Qn−13d,1 Qn−14d,2 Qn−15d,3
L6(n−16d)+1,A L6(n−17d)+1,B L6(n−18d)+3,A L6(n−19d)+3,B
L6(n−20d)+5,A L6(n−21d)+5,B R6(n−22d)+1,A R6(n−23d)+1,B
R6(n−24d)+3,A R6(n−25d)+3,B R6(n−26d)+5,A R6(n−27d)+5,B

Pn,0 Pn,1 Pn,2 Pn,3.

5.4.3
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Also this code is obtained by shortening a (255, 251, 5, 28)-Reed–Solomon code.
Finally, in step E all bytes in odd positions, i.e. in position 1, 3 . . . , 31, of

this codeword are combined with the bytes in even positions, i.e. in position
0, 2, . . . , 30, of the preceding C1-codeword, and the 8 bytes representing the
Q- and P-check symbols are inverted, i.e. in the representation of these bytes
as binary vectors the binary values 1 and 0 are exchanged. (This is indicated
by overlining the corresponding P and Q symbols.) There are only technical
reasons for this inversion. It assists data readout during areas with muted
audio program.

In conclusion, we obtain a sequence of vectors

L6(n−3),A L6(n−2−d),B L6(n−3−2d)+2,A L6(n−2−3d)+2,B
L6(n−3−4d)+4,A L6(n−2−5d)+4,B R6(n−3−6d),A R6(n−2−7d),B
R6(n−3−8d)+2,A R6(n−2−9d)+2,B R6(n−3−10d)+4,A R6(n−2−11d)+4,B

Qn−1−12d,0 Qn−13d,1 Qn−1−14d,2 Qn−15d,3
L6(n−1−16d)+1,A L6(n−17d)+1,B L6(n−1−18d)+3,A L6(n−19d)+3,B
L6(n−1−20d)+5,A L6(n−21d)+5,B R6(n−1−22d)+1,A R6(n−23d)+1,B
R6(n−1−24d)+3,A R6(n−25d)+3,B R6(n−1−26d)+5,A R6(n−27d)+5,B

Pn−1,0 Pn,1 Pn−1,2 Pn,3.

This completes the description of the encoding process for error-detection and
error-correction. For technical reasons, the resulting sequence of bytes is en-
coded once again before the data is written onto the disc. This final encod-
ing, called EFM, ensures that the stored information satisfies certain standards
used for binary data written on optical discs. For further details see 5.4.7 and
5.4.9.

Let v be the row vector of 5.4.2. In step B the four parity bytes Qn,0, . . . , Qn,3

are determined by the equation v · ∆�
2 = 0, where the check matrix ∆2 of C2 is

given by

∆2 :=

⎛⎜⎜⎝
1 1 . . . 1 1 1

α27 α26 . . . α2 α 1
α54 α52 . . . α4 α2 1
α81 α78 . . . α6 α3 1

⎞⎟⎟⎠
for α a root of the primitive polynomial x8 + x4 + x3 + x2 + 1 ∈ F28 [x]. Let
w be the row vector of 5.4.3. In step D the four parity bytes Pn,0, . . . , Pn,3 are
determined by the equation w · ∆�

1 = 0, where the check matrix ∆1 of C1 is
given by

∆1 :=

⎛⎜⎜⎝
1 1 . . . 1 1 1

α31 α30 . . . α2 α 1
α62 α60 . . . α4 α2 1
α93 α90 . . . α6 α3 1

⎞⎟⎟⎠
for the same α as above.
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5.4.4CIRC decoding The standard for compact discs does not explicitly describe a
CIRC decoding strategy. Different CD-players use different strategies, so the
quality of error correcting performance varies from player to player. Here we
describe one possible decoding strategy.

The decoder obtains vectors containing 32 bytes, 24 of them contain audio
information, the other 8 are check symbols added by C1 and C2. Odd num-
bered symbols are delayed by one vector and the parity symbols are inverted
in order to reverse step E of the encoding process. The code C1 has minimum
distance d1 = 5. It is used in order to correct a single error and to detect two or
three errors in a codeword. If it detects exactly one error, then the wrong byte
will be replaced by the corrected one. If it detects more than one error, then
all 28 information symbols of the corresponding C1-codeword are marked as
erasures. Thus, C1 is designed to correct short random errors and to detect
longer burst errors.

How large is the probability that C1 does not detect an error? (Cf. [104].)
Assume that c was sent and c + e was received. The error vector e is not de-
tected if and only if c + e belongs to a ball of radius 1 around a C1-codeword c′

different from c. This probability is

|C1 \ {c}| · |{v ∈ Fn
q | dist(v, c) ≤ 1}|

|Fn
q |

for q = 28 and n = 32. This is

(q28 − 1)(1 + 32(q − 1))
q32 ≤ 32q − 31

q4 ≈ 2−19.

The interleaving of two consecutive C1-codewords in step E allows one to break
short burst errors.

Then, in order to reverse step D and step C, the last four symbols of each
vector output by C1, which are the check symbols, are deleted. Deinterleaving
collects the 28 symbols representing C2-codewords. The code C2 is first of all
used for correcting erasures. Since its minimum distance d2 = 5, according
to 5.2.2, it is possible to correct up to 4 erasures per codeword. If it is not
possible to correct all erasures with C2, then the erased symbols are passed to
an interpolation process.

In addition, C2 can be used to correct a single error and to detect symbols
miscorrected by C1. If miscorrected symbols are found, then all 24 audio sym-
bols of the corresponding C2-codeword are marked as erased and passed to
the interpolation process.

Thus, C2 is designed for the correction of burst errors and short random
errors which were not corrected or miscorrected by C1.
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In worst case situations when the error is so massive that even interpola-
tion fails, the audio signal is usually muted. In general, the brief silence is
preferable to the burst of digital noise usually heard as a click.

What is the maximal size of a burst error which can still be corrected by
CIRC? The interleaving with delay d = 4 in step C causes that each C2-code-
word is spread over 28 different C1-codewords distributed among 27 · 4 + 1 =
109 consecutive C1-codewords. This fact allows one to break long burst er-
rors. Even if C1 marked the symbols of 16 consecutive C1-codewords as era-
sures, the original information can be reconstructed if no further errors have
occurred in this data area. After deinterleaving, these 16 · 28 = 448 erasure
marks are distributed over 124 different C2-codewords, where at most 4 era-
sures occur in each of these codewords. Consequently, these erasures can be
corrected. As mentioned above, there are exactly 24 audio symbols contained
in a frame. These are the 24 audio bytes contained in a C2-codeword. Since
there are exactly 7350 frames per second which cover a track of 1200mm, the
CIRC decoding allows one to correct physical track errors of about 2.6mm
length. Thus, that kind of maximum length correctable error contains 384 au-
dio bytes. The erased symbols are contained in 124 C2-codewords, which are
responsible for approximately 16.7 milliseconds of music.

The raw error bit rate of a CD is around 10−5 to 10−6. This means that
there is one wrong bit every 105 to 106 bits. Considering that an audio compact
disc has an output of more than 4 million bits per second (cf. 5.4.9), the need
for error correction is obvious. With error correction, perhaps 200 errors per
second will be completely corrected. According to [164], the error rate after
CIRC is between 10−10 and 10−11. Nevertheless, the quality of error-correction
varies from player to player, depending on the chosen CIRC decoding strategy.

5.4.5 Interpolation If it is impossible for the decoder to reconstruct a C2-codeword,
then the CD-player tries to interpolate the missing audio bytes from neigh-
boring ones in case they are reliable. Because of the high correlation between
music samples, an uncorrected error can be made virtually inaudible by syn-
thesizing new data from surrounding data. Various interpolation schemes are
used with different performance levels. In its simplest form the previous value
is simply repeated. In first order interpolation the erased audio bytes are re-
placed by the mean value of the previous and the subsequent byte.

The interpolation process can be applied to determine the missing values
even if the audio bytes of two consecutive C2-codewords are marked as era-
sures, based on the scrambling in step A. Assume that the n-th and (n + 1)-th
C2-codeword are erased, then the neighboring bytes of even samples occur in
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the (n − 3)-th, (n − 2)-th, and (n − 1)-th codeword and the neighboring bytes
of odd samples occur in the (n + 2)-th, (n + 3)-th, and (n + 4)-th codeword.

What is the maximal size of a burst error which can still be reconstructed
with interpolation? Even if C1 marked the symbols of 48 consecutive C1-code-
words as erasures, the audio information can still be reconstructed by interpo-
lation. After deinterleaving the received information we obtain a sequence of
vectors (y(n))n with y(n) = (y28n, y28n+1, . . . , y28n+27). These 48 · 28 = 1344 era-
sure marks are distributed over 124 different vectors y(n). Assume that y(m) is
the first vector in this sequence whose last component belongs to these erased
rows. Hence, in the interleaving array the column the top entry of which has
the index m + 108 is the first erased column. Now we have to check that it is
still possible to reconstruct all the audio information with error correction and
interpolation. The vectors y(m), . . . y(m+3) contain exactly one erasure which
occurs in the last position. The vectors y(m+4), . . . y(m+7) contain exactly two
erasures which occur in the last two positions. The vectors y(m+8), . . . y(m+11)

contain exactly three erasures which occur in the last three positions. The vec-
tors y(m+12), . . . y(m+15) contain exactly four erasures which occur in the last
four positions. Consequently, in all these vectors so far it is possible to fill the
erased positions by correcting erasures with C2.

For the following vectors we analyze how many erased bytes they contain,
in which position they occur, and in which vectors and positions the neighbor-
ing audio bytes occur. Finally we will see that it is always possible to approx-
imate the missing values by first order interpolation. The first column gives
the index n of the vector y(n), the second shows the number of erased bytes in
this vector, the third contains the position of the erased bytes, the next column
contains the labels n′ of the vectors y(n′) which contain the audio bytes neces-
sary for interpolation, and finally the last column contains the positions where
these neighboring audio bytes occur. Careful investigation of this table proves
that it is possible to reconstruct the missing information by interpolation.

n erasures pos. n′ pos.
m + 16, . . . , m + 19 5 23− 27 m + 18, . . . , m + 22 6− 11
m + 20, . . . , m + 23 6 22− 27 m + 22, . . . , m + 26 6− 11
m + 24, . . . , m + 27 7 21− 27 m + 26, . . . , m + 30 0− 11
m + 28, . . . , m + 31 8 20− 27 m + 30, . . . , m + 34 0− 11
m + 32, . . . , m + 35 9 19− 27 m + 34, . . . , m + 38 0− 11
m + 36, . . . , m + 39 10 18− 27 m + 38, . . . , m + 42 0− 11
m + 40, . . . , m + 43 11 17− 27 m + 42, . . . , m + 46 0− 11
m + 44, . . . , m + 47 12 16− 27 m + 46, . . . , m + 50 0− 11
m + 48, . . . , m + 51 12 15− 26 m + 50, . . . , m + 54 0− 11
m + 52, . . . , m + 55 12 14− 25 m + 54, . . . , m + 58 0− 11
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m + 56, . . . , m + 59 12 13− 24 m + 58, . . . , m + 62 0− 11
m + 60, . . . , m + 63 12 12− 23 m + 62, . . . , m + 66 0− 9
m + 64, . . . , m + 67 12 11− 22 m + 66, . . . , m + 70 0− 9

m + 62, . . . , m + 65 24− 27
m + 68, . . . , m + 71 12 10− 21 m + 70, . . . , m + 74 0− 5

m + 66, . . . , m + 69 24− 27
m + 72, . . . , m + 75 12 9− 20 m + 74, . . . , m + 78 0− 5

m + 70, . . . , m + 73 22− 27
m + 76, . . . , m + 79 12 8− 19 m + 78, . . . , m + 81 0− 5

m + 74, . . . , m + 77 22− 27
m + 80, . . . , m + 83 12 7− 18 m + 82, . . . , m + 85 0− 5

m + 77, . . . , m + 81 22− 27

The remaining cases can be studied in a similar way. For instance, the
study of the four columns m + 80, . . . , m + 83 corresponds to the situation of
m + 72, . . . , m + 75.

Consequently, all these erasures can be filled by interpolation. Even if 48
C1-codewords are erased, the last byte of the first codeword preceding this
erased block and the first byte of the codeword following this block are er-
roneous, it is possible to reconstruct approximations of the erased bytes by
interpolation. These 48 erased C1-codewords contain the audio information of
48 frames. Each second the CD-player reads 7350 frames which cover 1200mm
of the track, whence interpolation is able to deal with burst errors of length up
to 7.8mm.

Finally we discuss how data is stored on a CD (cf. [164, pages 51ff]).

5.4.6 Pits and lands “A transparent plastic substrate forms most of a discs 1.2mm
thickness. Data is physically contained in pits which are impressed along its
top surface and are covered with a very thin metal layer. Another thin plastic
layer protects the metallized pit surface on top of which the identifying label
is printed. A laser beam is used to read the data. It is applied from below and
passes through the transparent substrate, is reflected at the metallized pit sur-
face, and passes back.” The beam of size 800 micrometers at the discs surface
is focused to 1.7 micrometers on the metallized pit surface. Pits are very small,
approximately 0.5 micrometers wide and 0.11 to 0.13 micrometers high. As we
will see, they are of varying length. Thus, “the laser beam is focused to a point
about three times larger than the pit width.”

“When viewed from the lasers perspective, the pits appear as bumps.” The
areas between pits are called lands. Data are read from the compact disc by
measuring the reflected light. Almost 90% of the laser beam are reflected by a
land. Caused by the height of the pits, the refraction index of the transparent
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material, the wavelength of the laser beam, and the fact that the laser beam
hits also land located around pits, almost no light is reflected from a pit. The
remaining reflected light is used as a tracking signal. “The transition from pit
to land or from land to pit, i.e. the change of the intensity of the reflected light,
is considered as a binary one. When the laser beam hits areas within a land or
within a pit it is interpreted as a sequence of zeros.” For technical reasons pits
and lands may not be too short or too long. To be more precise, a land or pit
must have the length of at least 2 and at most 10 zeros. In other words, when
reading binary data from a compact disc or writing it onto a compact disc, be-
tween two consecutive binary ones there must be a sequence of at least 2 and at
most 10 zeros. Obviously, “binary data obtained from sampling and encoding
does not satisfy these requirements. Thus, data provided by the CIRC encoder
still must be changed before it can be written onto a compact disc.” This is
done by the channel encoder.

5.4.7EFM The channel encoder uses eight-to-fourteen modulation, EFM, in order to
change a byte, which is a binary vector of length 8, into a binary vector of
length 14 which satisfies the requirements on the number of zeros between
two consecutive binary ones (cf. [164, pages 77ff]). This process is usually
done by table-lookup. Here is a small part of this table:

00000000 01001000100000
00000001 10000100000000
00000010 10010000100000
00000011 10001000100000
00000100 01000100000000
00000101 00000100010000
00000110 00010000100000
00000111 00100100000000

...
...

11111000 01001000010010
11111001 10000000010010
11111010 10010000010010
11111011 10001000010010
11111100 01000000010010
11111101 00001000010010
11111110 00010000010010
11111111 00100000010010
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It is easy to see (cf. Exercise 5.4.3) that 14 is the least length of vectors needed,
in order to represent all 28 bytes by different vectors satisfying the require-
ments on the number of zeros between two consecutive binary ones. Actually
there are 267 vectors with these properties. Two of them which are not used
by EFM are used for subcode synchronization words (cf. 5.4.10).

5.4.8 Merging bits Now it can still happen that the concatenation of two vectors
produced by EFM still does not satisfy the condition on the number of zeros
between two consecutive binary ones. For this reason three merging bits are
inserted between two vectors of length 14 (cf. [164, page 80]). Actually, there
are only four possible choices for these bits, namely

000 100 010 001.

Two merging bits 00 are necessary to prevent consecutive binary ones. The
third merging bit is added so that the average digital sum value is close to zero.

A bit pattern can also be interpreted as a rectangular wave. It admits val-
ues ±1. A binary one causes a change of the sign. For instance, the vector
00000100010000 can be considered as

0 0 0 0 0 1 0 0 0 1 0 0 0 0

.........................................................................................................................................................................................................................................................................
................
................
................
................


or

0 0 0 0 0 1 0 0 0 1 0 0 0 0


................

................

................

................

...............................................................................................................................................................................................................................................................

Fig. 5.8 Rectangular wave form of a bit pattern

The digital sum is determined by assigning +1 to the positive and−1 to the
negative amplitude and summing these values for each bit. This is the integral
of the rectangular wave form of the bit pattern when the distance between two
bits is considered to be equal to 1.

Concatenating the above binary vector with itself, we may only use the
merging bits containing a binary one, since otherwise there would be too many
consecutive zeros. The three possibilities 100, 010, and 001 yield the following
rectangular wave forms:

0 0 0 0 0 10 0 0 10 0 0 0 10 0 0 0 0 0 0 10 0 0 10 0 0 0

...........................................................................................................................
................
................
................
................
.............................................................................................................................................................................................................................................................................................................

................

................

................

................

.............................................................................................................................................................................................................................................................................................................................................................................
................
................
................
................
.................................................................................................................
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0 0 0 0 0 10 0 0 10 0 0 0 0 10 0 0 0 0 0 10 0 0 10 0 0 0

...........................................................................................................................
................
................
................
................
...................................................................................................................................................................................................................................................................................................................................

................

................

................

................

........................................................................................................................................................................................................................................................................................................................................................
................
................
................
................
.................................................................................................................

0 0 0 0 0 10 0 0 10 0 0 0 0 0 10 0 0 0 0 10 0 0 10 0 0 0

...........................................................................................................................
................
................
................
................
........................................................................................................................................................................................................................................................................................................................................................

................

................

................

................

...................................................................................................................................................................................................................................................................................................................................
................
................
................
................
.................................................................................................................

Fig. 5.9 Concatenation with merging bits

They have the digital sum values 3, 1, and −1. Depending on the digital sum
value we started from, we insert those merging bits so that the final digital
sum value is close to zero.

5.4.9Frames As was already mentioned, the information on a compact disc is orga-
nized in form of frames (cf. [164, pages 82ff]). A frame consist of exactly 588
channel bits. Among other information it contains the audio information of
one C1-codeword.

Each frame starts with a 24-bit synchronization pattern which is uniquely
distinguishable from all other possible data patterns. It is given by

100000000001000000000010,

and it is used to maintain a constant data readout rate. The rate of synchroniza-
tion patterns influences the rotational speed of the disc. After three merging
bits a 14-bit subcode and another three merging bits are added. Then each byte
of a C1-codeword encoded by EFM to a 14 bit sequence and another 3 merging
bits are added. This means that each byte of this codeword is enlarged to 14
bits by EFM and between two sequences produced by EFM three merging bits
are inserted.

Thus a frame is of the following form, where “Sync.” indicates the syn-
chronization patterns, “M.” suitable merging bits, “Subc.” the subcode, and
wi the EFM-encoding of the i-th byte of the C1-codeword. In the second row
the number of used channel bits is indicated.

Sync. M. Subc. M. w0 M. . . . w31 M.
bits 24 3 14 3 14 3 30 · (14 + 3) 14 3

In summary, we have 24 synchronization bits, one 14-bit subcode, 32 · 14 bits
produced by EFM from one C1-codeword, and 34 · 3 merging bits in each
frame.

Since there are 7350 frames per second, 4 321 800 channel bits are read or
written per second. This gives 259 308 000 channel bits (32 413 500 channel
bytes) per minute and 15 558 480 000 bits (1 944 810 000 channel bytes) per hour.
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5.4.10 Subcode The 14-bit subcode is produced by EFM from an 8-bit subcode. These
8 bits are usually referred to as P, Q, R, S, T, U, V, and W. On an audio CD
only the P and Q bits are used. They should not be mixed with the P and Q
symbols of the CIRC. The subcode holds information about the different tracks
on a compact disc, display information, digital copy permission, and control
information for different functions of the CD-player. (For more details see [164,
pages 90ff].)

Each frame contains 8 subcode bits. In order to make better use of these
bits and store useful information with them, the subcode bits of 98 frames are
collected to form a subcode block. Each frame contributes one P-bit, Q-bit and
so forth to the subcode block. Thus the 8 subcode bits are used as 8 different
channels.

Since there are 7350 frames per second and the subcode of 98 frames is
collected to one block, there are 75 subcode blocks per second.

In general, each subcode channel contains synchronization words, instruc-
tions, commands, data, and even some parity check symbols. Each subcode
block starts with two synchronization words. These are two patterns not used
by the EFM. In other words, the 14-bit representation of the subcode of the
first two frames in a subcode block can uniquely be detected. The two syn-
chronization words are given by

00100000000001 and 00000000010010.

Hence the first two bits of each channel are reserved for synchronization. After
the first two bits of the Q-channel reserved for synchronization, there follow 4
control bits, 4 address bits describing 3 different modes, then 72 bits of data,
and finally 16 bits for cyclic redundancy checking. This CRC is done in the
following way. Consider the vector of the 4 + 4 + 72 = 80 (control-, address-,
data-) bits as a polynomial f of degree at most 79 over F2. By the division
algorithm determine q, r ∈ F2[x] so that

f (x) =
(
x16 + x12 + x5 + 1

)
q(x) + r(x),

with deg r < 16, and consider the coefficients of r (or as it is actually done, the
inverted binary values of them) as the 16 check symbols. When the receiver
obtains a Q-channel, the first two bits are stripped, the next 80 bits are read,
the division algorithm is applied and the remainder is compared with the final
16 parity check bits. If they coincide the receiver assumes that the data was
correct.

The P-channel designates the starting and stopping of tracks.

In the next section we describe some differences between CD-DA and CD-
ROM.
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Exercises

E.5.4.1Exercise Let C be a Reed–Solomon-code of length n = pr − 1, dimension k =
pr − d and minimum distance d. For 1 ≤ s < k prove the following facts about
the shortened Reed–Solomon-code C(s) of length n− s, which is obtained from
C by taking all codewords which have zeros in the last s positions and deleting
the last s positions:

1. If g is the generator polynomial of C, then

C(s) =
{

f g | f ∈ Fpr [x], deg f < k − s
}

.

2. C(s) is an (n − s, k − s, d)-code, thus it is an MDS-code.

E.5.4.2Exercise Show that when the symbols of 17 consecutive C1-codewords are
erased, CIRC fails to correct this error. Show that when the symbols of 49
consecutive C1-codewords are erased, the interpolation process fails to correct
this error.

E.5.4.3Exercise Let a(n) be the number of binary vectors of length n such that be-
tween two consecutive binary ones there are at least 2 and at most 10 ze-
ros. Show that n = 14 is the least integer such that a(n) ≥ 28. Prove that
a(14) = 267.

5.55.5 More Details on CD-ROM

CD-ROM and diverse other disc formats are thoroughly described in chapter 6
of [164]. Here we provide the reader with a short summary. “CD-ROM is the
logical extension of the compact disc format towards the much broader appli-
cation of information storage in general.” The compact disc is used “as a read-
only memory system” which can contain “any kind of program material.” It
is a “cost-effective way of distributing large amounts of information, espe-
cially information not requiring frequent updating,” for instance, databases
and mass storage for computer related applications.

Although the CD-ROM looks identically to an audio compact disc it uses a
modified data format. “A CD-ROM identifies itself as differing from an audio
compact disc through the Q-subcode channel.”

The CD-ROM standard as specified in the Yellow Book, in the ISO/IEC stan-
dard Information technology – Data interchange on read-only 120mm optical data
disks (CD-ROM) [96], or also in [48], “does not link CD-ROM to a specific
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application.” Unlike the audio CD standard, “it does not define the type of
information that is stored” on a CD-ROM. “Furthermore, the layout of the in-
formation on the disc is not defined, and it does not indicate where and how
to store the directory, how to identify the beginning or end of a file, or how to
open a file.” On an audio compact disc sampled digital audio is stored. Since
usually neighboring samples are quite similar, it is possible to apply interpo-
lation in order to reconstruct audio information which could not be properly
decoded by CIRC. For obvious reasons, when storing arbitrary information
on a CD-ROM the method of interpolation cannot be applied. Hence, the er-
ror correction and error detection of a CD-ROM must provide a higher data
integrity than on an audio compact disc.

The smallest data area of an audio compact disc is a frame containing 24
bytes of audio information. A frame is too short for numerical applications
and there is no way of addressing frames. Similarly as with the subcode chan-
nels, 98 frames are combined to form a sector of a CD-ROM. (See also [164,
pages 215ff].) A sector is the basic data unit of a CD-ROM. In general a frame
contains 98 · 24 = 2352 bytes of information. Since in an audio CD there are
exactly 7350 frames per second, we have 7350/98 = 75 sectors per second on
a CD-ROM.

5.5.1 Sector and sector modes The first 12 bytes of each sector are used as a synchro-
nization word. The next 4 bytes form a header field containing three address
bytes and one mode byte. The address bytes indicate the minute (usually from
1 to 74), the second within this minute (from 0 to 59) and the sector within
this second (from 1 to 75). For example, the three values 45 − 20− 12 indicate
the 12-th sector in the 20-th second of the 45-th minute. This information is
also found in the Q-subcode channel, but it speeds up and provides greater
accuracy for searching. The mode byte indicates one of three different modes
available for CD-ROM sectors. (See also [164, Fig. 6.2].)

Mode 0 just contains null data. Thus, after the synchronization word and
the header it just contains 2336 zero-bytes.

Header

Sync. Address Mode 0 null data

Min. Sec. Block
12 1 1 1 1 2336

Fig. 5.10 CD-ROM sector mode 0
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Mode 1 specifies, as described in Fig. 5.11, that 2048 of the remaining bytes
are devoted to user data and the final 288 bytes are reserved for error detection
EDC and error correction ECC. The error detection code is a CRC-code with

Header Auxiliary data

Sync. Address Mode 1 user data EDC Space ECC

Min. Sec. Block P-parity Q-parity
12 1 1 1 1 2048 4 8 172 104

Fig. 5.11 CD-ROM sector mode 1

respect to the polynomial

g(x) :=
(
x16 + x15 + x2 + 1

)(
x16 + x2 + x + 1

)
∈ F2[x].

The sequence of synchronization-, header-, and user data is considered as a bi-
nary polynomial. Dividing this polynomial by g, the division algorithm yields
a remainder of degree less than 32, the coefficients of which are stored in the
4 EDC-bytes. Immediately after these bytes a sequence of 8 zero-bytes is ap-
pended as a space between the EDC and ECC bytes. The error correction en-
coding of a sector is carried out by a Reed–Solomon Product-like Code, RSPC.
For more details see 5.5.2.

In Mode 2 all remaining 2336 bytes are available for user data.

Header

Sync. Address Mode 2 user data

Min. Sec. Block

12 1 1 1 1 2336

Fig. 5.12 CD-ROM sector mode 1

The additional EDC and ECC of Mode 1 ensure a level of data integrity
essential for storing arbitrary information. In Mode 1 each sector contains ex-
actly 2 kB of information. Because of extended error correction Mode 1 has the
most number of applications. The error rate is improved over that of an audio
CD. Theoretically there will be one uncorrectable bit in every 1016 or 1017 bits.
In Mode 2 it is possible to store more data on a CD-ROM, however with lower
data integrity than in Mode 1. Therefore, it is mainly used for “gracefully de-
grading data such as video and audio.”

5.5.2RSPC encoding We assume that the bytes of a sector in Mode 1 are labeled
as B0, . . . , B2351. The header-bytes, user data, EDC-bytes, and space bytes are
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input to the RSPC encoder. These input bytes and the P-parity and Q-parity
bytes make a total of 2340 bytes per sector. They are ordered in 1170 words
Wn, n ∈ 1170. Each word consists of exactly 2 bytes, in more details

Wn =
(
B2n+12, B2n+13

)
, n ∈ 1170.

Then we form two arrays of bytes, namely

(B2n+12)n∈1170 and (B2n+13)n∈1170.

These two arrays are encoded separately. Let Vn, n ∈ 1170, denote the elements
of such an array, i.e. either Vn = B2n+12 or Vn = B2n+13. The bytes Vn must be
inserted into the diagram of Fig. 5.13 so that the first row contains from left to
right the elements V0,V1, . . . ,V42, the next one V43,V44, . . . ,V85 and so on.

Q-parity
P-parity

Header

+

user

data

+

EDC
+

space

�

�

�

�

�

�

�
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Fig. 5.13 RSPC encoding

The P-parity symbols are determined by a (26, 24)-Reed–Solomon-code over
F28 . It takes the first 24 entries of each column

(Vr,Vr+43,Vr+2·43, . . . ,Vr+23·43), r ∈ 44,

as an input and computes the symbols Vr+24·43 and Vr+25·43. A check matrix of
this code is given by (

1 1 . . . 1 1 1
α25 α24 . . . α2 α 1

)
for α a root of the primitive polynomial x8 + x4 + x3 + x2 + 1 ∈ F28 [x].

In order to determine the Q-parity symbols, a (45, 43)-Reed–Solomon-code
over F28 is applied. Its codewords are diagonals as indicated by the black
circles in the above diagram (cf. [68]). The i-th codeword, i ∈ 26, starts in the
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leftmost column of the i-th row of this array. The 45 symbols occurring in the
first 26 rows are the information symbols. The parity check symbols of this
code are input into the last two rows of this array. The Q-parity check symbols
of the i-th codeword occur in the i-th column of this part of the array. A check
matrix of this code is given by(

1 1 . . . 1 1 1
α44 α43 . . . α2 α 1

)
for the same α as above. Actually, these two codes are obtained by shortening
a (255, 253, 3, 28)-Reed–Solomon code (cf. Exercise 5.4.1).

5.5.3Encoding and decoding After having determined the bytes filled into a sector
(null data in Mode 0, user data, EDC and ECC in Mode 1, and just user data
in Mode 2), the bytes B12, . . . , B2351 of a sector are scrambled. For more details
see [48] and [96]. “A regular bit pattern fed into the EFM encoder can cause
large values of the digital sum value in case the merging bits cannot reduce
this value. The scrambler reduces this risk by converting the input bit stream
with a shift register in a prescribed way.” The bytes of a scrambled sector are
mapped onto a series of consecutive frames. Each frame consists of exactly 24
bytes. However, the starting point of a sector is not necessarily the starting
point of the frame. The byte B0 of a sector can be insert as the 4n-th byte of a
frame, 0 ≤ n ≤ 5. Consecutive bytes of the sector are placed in consecutive
bytes of a frame. After the byte B2351 the byte B0 of the next sector is inserted.
A frame is, therefore, of the form

B4r B4r+1 B4r+2 B4r+3 B4r+4 B4r+5

B4r+6 B4r+7 B4r+8 B4r+9 B4r+10 B4r+11

B4r+12 B4r+13 B4r+14 B4r+15 B4r+16 B4r+17

B4r+18 B4r+19 B4r+20 B4r+21 B4r+22 B4r+23.

Next the byte order of each even-odd numbered pair of bytes in the frame is
reversed. We obtain

B4r+1 B4r B4r+3 B4r+2 B4r+5 B4r+4

B4r+7 B4r+6 B4r+9 B4r+8 B4r+11 B4r+10

B4r+13 B4r+12 B4r+15 B4r+14 B4r+17 B4r+16

B4r+19 B4r+18 B4r+21 B4r+20 B4r+23 B4r+22

a so called F1-frame. Each F1-frame is then encoded by a conventional CIRC
encoder (cf. 5.4.1). This yields an F2-frame, containing exactly 32 bytes. Adding
one additional subcode byte to each F2-frame yields an F3-frame. Similarly as
in an audio compact disc, there are eight different subcode bits referred to as
P, Q, R, S, T, U, V, and W (cf. 5.4.10). The information stored in the subcode
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of 98 consecutive frames is collected to 8 subcode channels. A group of 98
F3-frames is also known as a section. Because of the delays during the CIRC
encoding, sections have nothing to do with sectors. Finally, after sending the
33 bytes of an F3-frame to EFM (cf. 5.4.7) the data are written onto the CD.

Usually the error rate of a compact disc after CIRC decoding is approxi-
mately 10−10 to 10−11 errors per bit. The CIRC decoder also delivers informa-
tion about bytes that could not be correctly decoded. Since we know the exact
position of these bytes, they are erasures. The two Reed–Solomon-codes used
in RSPC have minimum distance d = 3. Hence, each of them can be used to
correct 1 error or 2 erasures per codeword. Combining both CIRC and RSPC
decreases the bit error rate of a CD-ROM so that it will be between 10−16 and
10−17 (cf. [164]).

There exist various extension of the CD-ROM standard, for instance Com-
pact Disc-Interactive, CD-I, described in the Green Book, Video compact discs
defined in the White Book, or recordable discs, the standard of which can be
found in the Orange Book. For more details see [164].




