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2 Bounds and Modifications
The fundamental parameters of a linear code are the length n, the dimension
k, the minimum distance d and the size q of the finite field over which it is
defined. For applications, we are interested in the information rate k/n and
the relative minimum distance d/n both being large. We may think of this as a
typical packing problem of combinatorics. Is it possible to pack a large number of
vectors (codewords) into the Hamming space H(n, q) such that no two words
are close? Of course, these are contradicting aims. To see this, we think of
the balls of radius 
(d − 1)/2� which are centered around codewords, since,
for unique decoding using the maximum likelihood principle, we require that
these balls should never overlap. It is intuitively clear that a large number of
codewords can only be achieved if the balls are small. Conversely, if the balls
are large then this tends to limit the number of codewords (or balls) which can
be packed. This is the fundamental dilemma of Coding Theory (cf. Fig. 2.1).

Fig. 2.1 The fundamental dilemma

In order to understand the situation better, we are going to study various
bounds for the parameters of codes. We consider (n, k, d)-codes optimal if they
optimize one parameter given the other two (the parameter q is kept fixed).
Furthermore, we will discuss various constructions of new codes from old.
These constructions in turn lead to bounds. Interesting classes of codes are ob-
tained by analyzing whether bounds can be met with equality. Also, we will
meet further series of codes which are connected to the above-mentioned con-
structions, or which are of interest because they meet one of the bounds which
will be presented. Examples are the Hamming- and simplex-codes, perfect
codes, Reed–Muller- and MDS-codes.
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2.1 2.1 Combinatorial Bounds for the Parameters

For the purpose of applications we certainly prefer linear codes with optimal
properties. The search for optimal codes can be described in three ways:

1. For given parameters k, d, q find a linear code of least length

nmin(k, d, q) := min { n | there exists an (n, k, d, q)-code } .

2. For given parameters n, k, q find a linear code of maximal minimum distance

dmax(n, k, q) := max { d | there exists an (n, k, d, q)-code } .

3. For given parameters n, d, q find a linear code of maximal dimension

kmax(n, d, q) := max { k | there exists an (n, k, d, q)-code } .

To begin with, we derive a few direct combinatorial bounds for the pa-
rameters of a code. Each such result in turn yields a bound for nmin(k, d, q),
dmax(n, k, q) and kmax(n, d, q). After that, we will tabulate the best bounds we
have obtained at that point. In the following section we will investigate the
two functions nmin(k, d, q) and dmax(n, k, q) more thoroughly.

2.1.1 The Singleton-bound For each linear (n, k, d)-code C over Fq we have the inequal-
ity

d ≤ n − k + 1.

Proof: We know from 1.4 that isometric codes have the same coding theoretic
properties. By 1.7 we may consider a code isometric to C which is generated
systematically by the matrix (Ik | A). Then, for each unit vector e(i) ∈ Fk

q, the
vector e(i) · (Ik | A) is of weight not greater than n − k + 1. This proves the
statement, since by 1.2.8 the minimum distance is the minimum weight of a
nonzero codeword. �

2.1.2 Definition (MDS-codes) Codes with minimum distance d = n − k + 1 are
called MDS-codes (an abbreviation of maximum distance separable).  

Trivial MDS-codes are the (n, 1)-repetition-codes, the (n, n − 1)-parity
check codes (cf. Exercise 1.3.11), and the (n, n)-codes. We will discuss MDS-
codes in Section 2.5.

2.1.3 The Hamming-bound The parameters of each (n, k, d, q)-code satisfy the inequality


(d−1)/2�
∑
i=0

(
n
i

)
(q − 1)i ≤ qn−k.

Equality holds if and only if the closed balls of radius 
(d − 1)/2� around codewords
cover the whole Hamming space H(n, q).
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Proof: The number of vectors of Hamming distance i from a given vector is
(n

i )(q − 1)i, since the first factor counts the number of ways of choosing i co-
ordinates out of the n coordinate positions and the second term is the number
of possibilities to change such an i-tuple in each place. We may think of these
vectors as forming a ball of radius i around a given codeword. Summing over
i = 0, . . . , r yields the number of vectors in a ball of radius r. Since the balls of
radius r = 
(d− 1)/2� around codewords are all disjoint, the left hand side of
the inequality multiplied by qk is less than or equal to |H(n, q)| = qn. Dividing
by qk yields the statement. �

2.1.4Definition (perfect codes) Codes whose parameters attain the Hamming-
bound are called perfect.  

Important examples of perfect codes are the Hamming-codes, which we
will introduce next. Further perfect codes are the Golay-codes G23 and G11;
they will be presented in Section 4.4 (cf. Exercise 2.1.2). Trivial perfect codes
are described in Exercise 2.1.1. A. Tietäväinen [191] and, independently,
V.A. Zinovjev and V.K. Leontjev [207] have shown that there are no further
perfect linear codes. However, there exist other perfect codes which are not
linear.

The general form of the Hamming-codes was introduced first by M.J.E. Go-
lay [70] and R.W. Hamming [80]. The binary (7, 4)-Hamming-code is indeed
older. It is mentioned in the seminal paper of C.E. Shannon [178]. The Ham-
ming-codes form an infinite family of perfect, 1-error-correcting linear codes.
The following definition specifies this class of codes up to isometry.

2.1.5Definition (Hamming-codes, simplex-codes) Let ∆ be any matrix whose col-
umns form a system of nonzero representatives of the one-dimensional sub-
spaces of Fm

q . A linear code C which has ∆ as its check matrix is called an
m-th order q-ary Hamming-code. The dual code of a Hamming-code, i.e. the
code which is generated by the matrix ∆ (cf. 1.3.4) is called an m-th order q-ary
simplex-code. Of course, both the Hamming- and the simplex-code are only de-
fined up to isometry.  

In 1.3.6, we have already met the third order binary Hamming-code.

2.1.6Theorem For m ≥ 2 the m-th order q-ary Hamming-code is a perfect code with
parameters (

n, k, d, q
)

=
(

qm − 1
q− 1

,
qm − 1
q − 1

− m, 3, q
)

.
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Proof: The statement about the length is clear from the definition, since the
number of one-dimensional subspaces of Fm

q is (qm − 1)/(q− 1). A check ma-
trix ∆ of a Hamming-code contains in particular the m unit vectors (or nonzero
scalar multiples thereof). Hence ∆ is of rank m and the dimension of the code
is dim(C) = (qm − 1)/(q− 1) − m, by 1.3.1. It remains to determine the min-
imum distance. For this, we note that any two columns of ∆ are by defini-
tion linearly independent. Furthermore, since m ≥ 2 there exist three columns
which are dependent. By 1.3.9 this implies that the minimum distance is d = 3.
Finally, we see that this code is perfect, since


(d−1)/2�
∑
i=0

(
n
i

)
(q − 1)i =

1

∑
i=0

(
(qm − 1)/(q− 1)

i

)
(q − 1)i

= 1 +
qm − 1
q − 1

(q − 1) = qm. �

2.1.7 Theorem The m-th order q-ary simplex-code C has parameters

(n, k, d, q) =
( qm − 1

q − 1
, m, qm−1, q

)
.

All nonzero codewords have weight qm−1, i.e.

wC(x) = 1 + (qm − 1)xqm−1
, and WC(x, y) = y

qm−1
q−1 + (qm − 1)xqm−1

y
qm−1−1

q−1 .

Proof: Consider the matrix ∆ from the proof of 2.1.6. This time, regard ∆ as a
generator matrix. The statement about the length is clear, and the value for the
dimension follows again from 1.3.1 together with 1.3.4. It remains to show that
each nonzero codeword has weight qm−1. For this, we consider the encoding
map v �→ v · ∆. Write

∆ =
(

u(0)�
∣∣∣ . . .

∣∣∣ u(n−1)�
)

with u(i) ∈ Fm
q . Then, using the standard bilinear form, we have for v ∈ Fm

q

v · ∆ =
(
〈 v, u(0) 〉, . . . , 〈 v, u(n−1) 〉

)
.

Fix an element v ∈ Fm
q \ {0}. The mapping u �→ 〈 v, u 〉 for u ∈ Fm

q is a surjec-
tive linear form, as already pointed out in the proof of 1.6.8. It takes on each
value of Fq exactly qm−1 times. Thus, for exactly qm−1(q − 1) vectors u ∈ Fm

q
the value of 〈 v, u 〉 is nonzero. By linearity, we have 〈 v, λu 〉 = λ〈 v, u 〉 for
all λ ∈ Fq. In particular, the value of 〈 v, w 〉 is either always zero or always
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nonzero for elements w of the form w = λu, where λ ∈ F∗
q . This means that

the fact that 〈 v, u 〉 is zero or nonzero only depends on the one-dimensional
subspace containing u �= 0. Now recall that the u(i) form a transversal of the
one-dimensional subspaces (disregarding the zero vector, which is in every
subspace). This means that the products λ · u(i) where λ ∈ F∗

q and 0 ≤ i <

(qm − 1)/(q− 1) take on every nonzero vector u ∈ Fm
q exactly once. The pre-

vious remark implies that the qm−1(q − 1) vectors u ∈ Fm
q with 〈 v, u 〉 �= 0

(u = 0 is not one of them!) are contained in exactly qm−1 one-dimensional
subspaces. Thus

wt(v · ∆) = wt(〈 v, u(0) 〉, . . . , 〈 v, u(n−1) 〉) = qm−1

for any v �= 0. The statement about the weight enumerator wC(x) is clear.
Using the identity (qm − 1)/(q − 1) = 1 + q + q2 + . . . qm−1 we obtain the
homogeneous version WC(x, y). This finishes the proof. �

2.1.8Example The third order ternary Hamming-code is a (13, 10, 3, 3)-code. It has
a check matrix of the form⎛⎜⎝ 1 0 1 2 0 1 2 0 1 2 0 1 2

0 1 1 1 0 0 0 1 1 1 2 2 2
0 0 0 0 1 1 1 1 1 1 1 1 1

⎞⎟⎠ ,

and its dual code is a ternary simplex-code of type (13, 3, 9, 3). �

The next bound is an explicit bound for the minimum distance:

2.1.9The Plotkin-bound For each linear (n, k, d, q)-code C the following holds:

d ≤ nqk−1(q − 1)
qk − 1

.

Proof: Consider the double sum of distances

D := ∑
c∈C

∑
c′∈C

d(c, c′).

It is bounded from below, since for each c �= c′ we have d(c, c′) ≥ d, and this
implies D ≥ qk(qk − 1)d.

We may evaluate D in a different way. For this purpose we label the ele-
ments of Fq by

{
κ1, . . . , κq

}
. For 0 ≤ j < n and 1 ≤ i ≤ q let Dij denote the

number of codewords which have as their j-th component the element κi. In
terms of this notation we obtain

D = ∑
j∈n

q

∑
i=1

Dij(qk − Dij).
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Since ∑
q
i=1 Dij = qk, we get

D = nq2k − ∑
j∈n

q

∑
i=1

D2
ij.

For j ∈ n the following is true:

0 ≤
q

∑
i=1

q

∑
t=i+1

(Dij − Dtj)2

=
q

∑
i=1

q

∑
t=i+1

D2
ij︸ ︷︷ ︸

=∑i(q−i)D2
ij

+
q

∑
i=1

q

∑
t=i+1

D2
tj︸ ︷︷ ︸

=∑i(i−1)D2
ij

−
q

∑
i=1

q

∑
t=i+1

2DijDtj.

This yields the estimate

q
q

∑
i=1

D2
ij ≥

q

∑
i=1

D2
ij +

q

∑
i=1

q

∑
t=i+1

2DijDtj =

(
q

∑
i=1

Dij

)2

= q2k.

Thus
q

∑
i=1

D2
ij ≥ q2k−1, j ∈ n,

from which we obtain

D = nq2k − ∑
j∈n

q

∑
i=1

D2
ij ≤ nq2k−1(q− 1).

Combining these two bounds for D we conclude that

qk(qk − 1)d ≤ D ≤ nq2k−1(q − 1),

and the statement now follows by comparing the left hand side and the right
hand side. �

A few remarks concerning this bound are in order.

2.1.10 Remarks

1. Since the term on the right hand side of the bound may evaluate to a frac-
tion, the bound can actually be read as

d ≤
⌊

nqk−1(q − 1)
qk − 1

⌋
.

However, since we want to investigate what happens if the bound is met
with equality, let us consider the inequality as stated in 2.1.9.
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2. Equality holds in 2.1.9 under the following two conditions:
(a) The distance between any two distinct codewords is equal to a constant

(such a code is called equidistant.)
(b) At any coordinate position, each field element appears equally often.
An example for such a code is the simplex-code (cf. Exercise 2.1.5).

3. We may reformulate the Plotkin-bound as a bound for the number of code-
words or, equivalently, for the dimension of a linear code of length n and
minimum distance d over Fq as

qk ≤ d
d − n(q− 1)/q

, 2.1.11

provided that d > n(q − 1)/q.  

Next we collect some facts about nmin(k, d, q).

2.1.12Lemma If there exists an (n, k, d, q)-code with d > 1, then for each 1 ≤ d′ < d there
exist (n, k, d′, q)-codes.

Proof: Since d > 1, we may assume without loss of generality that the (n, k, d)-
code C whose existence we assume has a systematic generator matrix

Γ = (Ik | A) =
(

e(0)�
∣∣∣ . . .

∣∣∣ e(k−1)�
∣∣∣ u(k)�

∣∣∣ . . .
∣∣∣ u(n−1)�

)
,

where A is a k × (n − k)-matrix with n − k ≥ 1. Replacing in Γ a column
u(j)�, k ≤ j < n, by a column of zeros, we obtain a code C′ with parameters
(n, k, d) or (n, k, d − 1). The minimum distance of C′ equals d − 1 if and only if
there exists a codeword c ∈ C of weight d such that cj �= 0. Summarizing, the
replacement of a column of A by a column of zeros either leaves the minimum
distance of C unchanged or decreases it by 1.

We start with the code C of minimum distance d > 1. Replacing one by
one all the columns of A by columns of zeros, we eventually obtain a matrix
of the form (Ik | 0) which is the generator matrix of an (n, k, 1)-code. In each
step, the minimum distance either stays put or decreases by 1. Whence by this
procedure we construct (n, k, d′)-codes for all 1 ≤ d′ < d. �

2.1.13Lemma Let q be a power of a prime and let k and d be positive integers. Then:

1. nmin(k, 1, q) = k, for k ≥ 1.

2. nmin(1, d, q) = d, for d ≥ 1.
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3. If d′ ≤ d, then nmin(k, d′, q) ≤ nmin(k, d, q) for k ≥ 1.

4. If k ≥ 2, then nmin(k, d, q) ≥ d + nmin(k − 1, �d/q�, q) for d ≥ 1, where �r�
denotes as usual the least integer greater than or equal to r.

Proof: The first two assertions are clear. In order to prove the third, we con-
sider an (nmin(k, d, q), k, d, q)-code C. According to 2.1.12, there also exists an
(nmin(k, d, q), k, d′ , q)-code for any d′ ≤ d. Whence nmin(k, d′, q) ≤ nmin(k, d, q).
In other words, the function nmin(k, d, q) is monotone increasing in the second
argument. Lastly, in order to prove the final assertion, we consider again a
code C of type (nmin(k, d, q), k, d, q). Let w be a vector of weight d in C, and
assume that this vector is an element of a basis of C. Permuting columns and
multiplying them with suitable constants, if necessary, we can assume that
w = (1d, 0) and we see that C is linearly isometric to a code with generator
matrix

Γ :=

(
w
∗

)
:=

(
1d 0
Γ1 Γ2

)
.

Here, the top row w of Γ is of Hamming weight d, and Γ1 and Γ2 are matrices
of size (k − 1)× d and (k − 1) × (nmin(k, d, q) − d), respectively.

We claim that Γ2 is of rank k − 1. Assume not. Then the rank of Γ is at most
k − 2, and we can assume that the first row of Γ2 contains only zeros. By the
condition on the minimum distance, all elements in the corresponding row of
Γ1 are nonzero. Using an elementary row transformation, we can transform
at least one further element of the top row of Γ into zero, which of course
contradicts the fact that w was a word of minimum weight d. This proves the
claim.

At this point, we know that the code C2 generated by Γ2 has the parameters
(nmin(k, d, q) − d, k − 1, d2), for some d2 which is not yet known. Therefore

nmin(k − 1, d2, q) ≤ nmin(k, d, q) − d.2.1.14

Now we consider c = (c(1), c(2)) ∈ C where c(2) ∈ C2 and wt(c(2)) = d2.
By the pigeon-hole principle, there exists an element α ∈ Fq which occurs at
least �d/q� many times in c(1). Without loss of generality, we can assume that
α ∈ F∗

q . (If α = 0, then choose any α0 ∈ F∗
q and replace c by the codeword

c + α0w in which the element α0 occurs at least �d/q�-many times among the
first d components. Moreover, the last nmin(k, d, q) − d components of c + α0w
are the same as in c.) Hence, subtracting the α-fold of the top row w of Γ from
c yields the estimate

d ≤ wt(c − αw) ≤ (d − �d/q�) + d2,
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and so d2 ≥ �d/q�. Furthermore, since the function nmin(k, d, q) is monotone
in the second argument (this was proved in 3), we get

nmin(k − 1, d2, q) ≥ nmin(k − 1, �d/q�, q).
This together with 2.1.14 implies the desired inequality. �

We remark that the fourth result of the previous Lemma is also known
under the name “one-step Griesmer-bound”. We will see that this result is
essential for the Griesmer-bound, which we will present next. Recall that the
Singleton-bound implies a bound for the length of (n, k, d)-codes,

nmin(k, d, q) ≥ k + d − 1. 2.1.15

A better estimate is obtained from the following bound, whose binary version
was discovered by Griesmer [76]. We present the form for general q which is
due to Solomon and Stiffler [186].

2.1.16The Griesmer-bound Each linear (n, k, d, q)-code satisfies

n ≥ ∑
i∈k

�d/qi�.

Proof: The case k = 1 is trivial, so we may assume that k ≥ 2. Applying the
inequality of the fourth item of 2.1.13 iteratively we obtain the statement (see
also Exercise 2.1.7):

n ≥ nmin(k, d, q)
≥ d + nmin(k − 1, �d/q�, q)

≥ d + �d/q� + nmin

(
k − 2,

⌈ �d/q�
q

⌉
︸ ︷︷ ︸

=�d/q2�

, q
)

≥ . . .

≥ ∑
i∈k−1

�d/qi� + nmin(1, �d/qk−1�, q)︸ ︷︷ ︸
=�d/qk−1�

= ∑
i∈k

�d/qi�. �

2.1.17Example We claim that there is no binary (31, 10, 13)-code. To see this, we
apply the Griesmer-bound, which gives us

n ≥ 13 +
⌈

13
2

⌉
+

⌈
13
4

⌉
+

⌈
13
8

⌉
+

⌈
13
16

⌉
+ . . . +

⌈
13
512

⌉
= 13 + 7 + 4 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 32.

But our code has length 31, which is a contradiction. �
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For each (n, k, d, q)-code C, the nonnegative integer n− (k + d− 1) has been
called the defect of C (see 2.1.15). It can be estimated by an application of the
Griesmer-bound:

2.1.18 Theorem For each (n, k, d, q)-code with defect s we have:

1. If k ≥ 2, then d ≤ q(s + 1).

2. If k ≥ 3 and d = q(s + 1), then s + 1 ≤ q.

Proof: Both statements follow from the Griesmer-bound: As �d/qi� ≥ 1 we
have

n ≥ ∑
i∈k

�d/qi� ≥ d + �d/q� + (k − 2).

Assume indirectly that d > q(s + 1), and hence �d/q� ≥ s + 2. Then the right
hand side is ≥ n + 1, which is clearly a contradiction.

Similarly, from k ≥ 3 and d = q(s + 1) we obtain

d + k − 1 + s = n ≥ ∑
i∈k

�d/qi� ≥ d + (s + 1) +
⌈

s + 1
q

⌉
+ (k − 3),

thus s + 1 ≥ s + �(s + 1)/q�, which implies that s + 1 ≤ q. �

After these upper bounds we now derive two important lower bounds. Such
bounds are essentially existence results: they state the existence of good codes.
There is a catch, however. It may not always be easy to explicitly find the
code whose existence is predicted by the lower bound. The first bound, due
to Gilbert [67] resembles the Hamming-bound quite astonishingly. The sec-
ond bound, due to Varshamov [194], turns out to be stronger than the Gilbert-
bound (cf. Exercise 2.1.8). Nevertheless, asymptotically the two bounds agree.

2.1.19 The Gilbert-bound Let q be a power of a prime and n, k, d ∈ N∗ with n ≥ k, d. The
inequality

∑
i∈d

(
n
i

)
(q − 1)i < qn−k+1

implies the existence of a linear (n, k)-code over Fq with minimum distance at least d.

Proof: Let C be a linear (n, k′, d, q)-code with k′ maximal. This means that
there is no (n, k′′, d)-code with k′′ > k′. Let ρ(C) = maxx∈H(n,q) minc∈C d(x, c)
be the covering radius of C, which measures how far away a word in the Ham-
ming space can be from the given code. We claim that ρ(C) ≤ d − 1. Assume
otherwise. Let x ∈ H(n, q) be a vector with

d(x, C) := min
c∈C

d(x, c) ≥ d.
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Then, for λ, µ ∈ F∗
q and c, c′ ∈ C, we have

d(c + λx, c′ + µx) = d((λ − µ)x, c′ − c) ≥ d,

unless λ = µ and c = c′. This is clear when λ − µ = 0, as C has distance d.
Otherwise, it follows from the fact that x is at distance ≥ d from c′ − c ∈ C.
The inequality just proved implies that the span of C and x, i.e. C ⊕ 〈x〉, has
minimum distance at least d. But C ⊕ 〈x〉 is a linear code of dimension k′ + 1,
which contradicts the fact the k′ was the largest possible dimension of such a
code. Thus we have proved that ρ(C) ≤ d − 1.

Now consider an (n, k,≥ d, q)-code. If the inequality qk ∑i∈d (n
i )(q − 1)i <

qn is satisfied, then the balls of radius d − 1 around codewords do not cover
H(n, q), i.e. there is a word x ∈ H(n, q) with d(x, C) ≥ d, i.e. ρ(C) ≥ d.
But this means that k is not maximal, i.e. there is a bigger code. The code
whose existence is claimed can now be constructed directly. Start with the
zero-code C, with k = 0. As long as the inequality ∑i∈d (n

i )(q − 1)i < qn−k is
satisfied, there is a vector x ∈ H(n, q) with d(x, C) > d. Replace C by C ⊕ 〈x〉,
a code of dimension k + 1 and repeat the procedure. We stop the procedure if
∑i∈d (n

i )(q − 1)i ≥ qn−k and qk−1 ∑i∈d (n
i )(q − 1)i < qn−(k−1). Thus we end up

with a linear (n, k,≥ d, q)-code as claimed. �

2.1.20The Varshamov-bound Let q be a power of a prime and n, k, d ∈ N∗ with n ≥ k, d.
The inequality

∑
i∈d−1

(
n − 1

i

)
(q− 1)i < qn−k

implies the existence of a linear (n, k)-code over Fq with minimum distance at least d.

Proof: If n = k the inequality is satisfied only for d = 1. In this case there exists
the trivial (n, n, 1)-code. Now we assume that n − k ≥ 1. First we prove that
d − 1 ≤ n − k. Assume on the contrary that d − 1 > n − k. We obtain, since
d − 2 ≥ n − k and n − 1 ≥ n − k,

∑
i∈d−1

(
n − 1

i

)
(q − 1)i ≥ ∑

i∈n−k+1

(
n − k

i

)
(q − 1)i = qn−k,

which contradicts our assumption.
Inductively, we will now construct an (n − k) × n-matrix ∆ of rank n −

k, any d − 1 columns of which are linearly independent. Then, according
to 1.3.10, ∆ is a check matrix of an (n, k, d′)-code C with d′ ≥ d. We start
with the matrix ∆n−k = In−k which consists of the n − k unit vectors of length
n − k. It is of rank n − k and any d − 1 columns are linearly independent. If ∆i

with n − k ≤ i < n is an (n − k) × i-matrix with the desired properties, we try
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to find a vector u ∈ Fn−k
q such that ∆i+1 = (∆i | u�) also satisfies these prop-

erties. This vector u must be chosen from the set of elements of Fn−k
q which

cannot be expressed as a linear combination of at most d − 2 columns of ∆i.
Of course, any linear combination of at most d − 2 columns of ∆i is uniquely
defined by its nonzero coefficients. Hence at most

∑
j∈d−1

(
i
j

)
(q− 1)j

vectors can be written as linear combinations of at most d − 2 columns of ∆i.
Since

∑
j∈d−1

(
i
j

)
(q − 1)j ≤ ∑

j∈d−1

(
n − 1

j

)
(q − 1)j < qn−k,

there exists a vector u in Fn−k
q such that the system consisting of u and any

d − 2 columns of ∆i is linearly independent. Therefore ∆i+1 is of rank n − k
and any d − 1 columns of ∆i+1 are linearly independent. Finally, ∆ can be
chosen as the matrix ∆n. �

2.1.21 Example In the following table, we display upper and lower bounds for the
optimal minimum distance dmax(n, k, 2) of binary codes with a given length
n and dimension k ≤ n. For a given pair (n, k), the table shows either the
exact value of dmax(n, k, 2), or an interval consisting of a lower bound and an
upper bound. Subscripts are used to indicate which rule led to the bound.
The subscripts V, S, H, G, or P stand for the Varshamov, Singleton, Hamming,
Griesmer, or Plotkin-bound, respectively. For example, the table entry for n =
8 and k = 2 reads 4V5P which stands for the two bounds 4 ≤ dmax(8, 2, 2) by
Varshamov and dmax(8, 2, 2) ≤ 5 due to Plotkin.

n\k 1 2 3 4 5 6 7 8
1 1V,S
2 2V,S 1V,S
3 3V,S 2V,S 1V,S
4 4V,S 2V,H 2V,S 1V,S
5 5V,S 3V,P 2V,H 2V,S 1V,S
6 6V,S 3V4H 3V,P 2V,H 2V,S 1V,S
7 7V,S 4V,P 3V4H 3V,P 2V,H 2V,S 1V,S
8 8V,S 4V5P 4V,H 3V4H 2V,H 2V,H 2V,S 1V,S
9 9V,S 5V6H 4V,G 3V4H 3V4H 2V,H 2V,H 2V,S

10 10V,S 5V6P 4V5P 4V,G 3V4H 3V4H 2V,H 2V,H

This table will be improved in the next section, and the intervals will be re-
placed by exact values. �

Exercises

E.2.1.1 Exercise Show that the following codes are perfect:
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1. the (n, n)-code over Fq for any n ≥ 1,

2. the n-fold repetition code over F2 for n odd.

E.2.1.2Exercise Verify that the following parameter sets attain the Hamming-bound:
(23, 12, 7, 2), (11, 6, 5, 3), (90, 78, 5, 2). (Note that there exist perfect codes only
for the first two parameters.)

E.2.1.3Exercise Prove that a linear code C is perfect if and only if ρ(C) = dist(C).

E.2.1.4Exercise Prove that 2.1.11 is equivalent to the Plotkin-bound.

E.2.1.5Exercise Check that the m-th order q-ary simplex-code meets the Griesmer-
bound and the Plotkin-bound.

E.2.1.6Exercise Let C be the m-th order binary Hamming-code of length n = 2m − 1.

1. Show that the homogeneous weight enumerator is

WC(x, y) =
1

n + 1
(
(x + y)n + n(y − x)

n+1
2 (x + y)

n−1
2

)
.

2. Show that the coefficients Ai in WC(x, y) = ∑n
i=0 Aixiyn−i satisfy the fol-

lowing recursion:

iAi =
(

n
i − 1

)
− Ai−1 + (i − 2− n)Ai−2

for i ≥ 3 with initial conditions A0 = 1, A1 = A2 = 0. Hint: Compute the
formal derivative w′

C of wC(x) = WC(x, 1) and verify that

(1− x2)w′
C(x) + (1 + nx)wC(x) = (1 + x)n.

After that, compare coefficients.

E.2.1.7Exercise Prove the following formula for positive integers r, s, t:⌈ �r/s�
t

⌉
=

⌈ r
st

⌉
.
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E.2.1.8 Exercise

1. Verify that the Varshamov-bound 2.1.20 is sometimes stronger than the
Gilbert-bound 2.1.19. For example, the Varshamov-bound guarantees the
existence of a (7, 4, 3, 2)-code, whereas the Gilbert-bound only predicts the
existence of a (7, 3, 3, 2)-code.

2. Prove that the Varshamov-bound is always at least as strong as the Gilbert-
bound. Do this by showing that the validity of the inequality in 2.1.19
implies that the inequality in 2.1.20 holds as well. Hint: put f (x) =
∑i∈d−1 (n−1

i )xi and g(x) = ∑i∈d (n
i )x

i and verify that g(x) = (1 + x) f (x) +
xd−1(n−1

d−1). Then put x = q − 1.

2.2 2.2 New Codes from Old and the Minimum Distance

Now we describe modifications of codes that permit the construction of new
codes from given ones. An interesting application is, for example, that step by
step we are able to improve our knowledge on the maximal minimum distance
of (n, k)-codes over Fq.

Recall the table obtained in 2.1.21. It contains bounds for maximal mini-
mum distances dmax(n, k, 2) of binary codes for n ≤ 10 and k ≤ 8. In several
places it contains the exact value of dmax(n, k, 2) while, in a few other places, it
gives an interval containing the desired value dmax(n, k, 2):

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 3 – 4 3 2 2 1
7 7 4 3 – 4 3 2 2 1
8 8 4 – 5 4 3 – 4 2 2 2 1
9 9 5 – 6 4 3 – 4 3 – 4 2 2 2
10 10 5 – 6 4 – 5 4 3 – 4 3 – 4 2 2

2.2.1

H.J. Helgert and R.D. Stinaff [85] gave such a table in 1973, containing
lower and upper bounds for dmax(n, k, 2), where k ≤ n ≤ 127. T. Verhoeff [195]
improved it in 1987 by taking into account certain modifications. This work
has been continued by Brouwer, who maintains an Internet database [32] with
information on the best linear codes. A description of his methods and results
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can be found in [33]. Further tables can be found at [13], [27] as well as on the
attached compact disc. In this section we introduce elementary modifications,
which produce new codes from given ones, and discuss their influence on the
table of lower and upper bounds for dmax(n, k, q).

Clearly, the entries in the leftmost column and the elements of the main
diagonal are

dmax(n, 1, q) = n and dmax(n, n, q) = 1, n ≥ 1.

Also, from 2.1.12 it follows that each value 0 < d ≤ dmax(n, k, q) occurs as a
minimum distance of a suitable (n, k)-code over Fq.

2.2.2Parity extension Let C be an (n, k, d, q)-code with generator matrix

Γ = (γ0 | . . . | γn−1),

where γi denotes the i-th column vector of the matrix. Then the parity extension
of C is the code P(C) with generator matrix

Γ′ := (γ0 | γ1 | . . . | γn−1 | − ∑
i∈n

γi),

the additional last column of which contains the negative sum of the columns
of Γ. The code P(C) is an (n + 1, k)-code with minimum distance at least d. �

2.2.3Example In the binary case, we obtain P(C) by simply adding an entry 0 to all
even codewords, and an entry 1 to all codewords of odd weight. In any case,
the resulting codewords of P(C) will have even Hamming weight. �

2.2.4Corollary If C denotes an (n, k, d, 2)-code with odd minimum distance d, then P(C)
is an (n + 1, k, d + 1, 2)-code. �

2.2.5Example For the binary (7, 4)-Hamming-code, the parity extension yields

Γ =

⎛⎜⎜⎜⎝
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

⎞⎟⎟⎟⎠ → Γ′ =

⎛⎜⎜⎜⎝
1 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1
1 1 1 0 0 0 1 0

⎞⎟⎟⎟⎠ .

More generally, by 2.1.6 and 2.2.4 the extended m-th order binary Hamming-code
is a (2m, 2m − m − 1, 4)-code. Furthermore, the parity extension of H(n, q) is
an (n + 1, n, 2)-code. �

Let us see what the parity extension gives for the bounds for dmax(n, k, 2)
of 2.2.1. In three places, we have codes of length n and dimension k whose
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minimum distance is odd. These are the (5, 2, 3), (6, 3, 3) and (7, 4, 3)-codes.
We deduce that there exist (6, 2, 4), (7, 3, 4) and (8, 4, 4)-codes. In the table,
we replace the intervals 3 − 4 by an exact bound, which is 4, indicated by the
boxed entries in 2.2.6. A further consequence is the existence of a (9, 4, 4)-code
which results from the (8, 4, 4)-code by attaching a zero coordinate to every
codeword. This improves the bound for dmax(9, 4, 2) to 4, which is shown
underlined in the table.

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 4 3 2 2 1
7 7 4 4 3 2 2 1
8 8 4 – 5 4 4 2 2 2 1
9 9 5 – 6 4 4 3 – 4 2 2 2
10 10 5 – 6 4 – 5 4 3 – 4 3 – 4 2 2

2.2.6

The last operation can be formulated as follows:

2.2.7 Corollary For given q and k, the entries of the table (dmax(n, k, q))n,k, are weakly
increasing downwards in each column, i.e.,

dmax(n + 1, k, q) ≥ dmax(n, k, q), n ≥ 1. �

The next modification shows that the entries in these columns increase by
at most 1:

2.2.8 Puncturing a code Assume that C is an (n, k)-code with k < n and generator
matrix

Γ = (γ0 | . . . | γn−1).
Then, without loss of generality (recall the definition of linear isometry of
codes), we assume that there exists an information set to which the last coor-
dinate does not belong. When canceling this component in all codewords, the
resulting code Pu(C), which is called punctured code of C, has the generator
matrix

Γ′ = (γ0 | γ1 | . . . | γn−2).
According to our choice of the information set of C and of the canceled coor-
dinate, the dimension k of the code is not changed and, therefore, Pu(C) is an
(n − 1, k)-code. Its minimum distance is at least d − 1. �

Using 2.1.12, we obtain
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2.2.9Corollary For k < n, the existence of an (n, k, d, q)-code implies that there is also
an (n − 1, k, d − 1, q)-code. In particular, the entries in a column of the matrix
(dmax(n, k, q))n,k increase by at most 1 at a time, i.e.,

dmax(n + 1, k, q) − dmax(n, k, q) ≤ 1, n ≥ 1. �

Puncturing improves the preceding table in the following two boxed en-
tries, whereas the underlined value follows from 2.2.4:

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 4 3 2 2 1
7 7 4 4 3 2 2 1
8 8 4 – 5 4 4 2 2 2 1
9 9 5 – 6 4 4 3 2 2 2
10 10 5 – 6 4 – 5 4 4 3 2 2

2.2.10

Another way of combining codes is the concatenation, and there are essen-
tially two different ways of doing this:

2.2.11The concatenation (outer direct sum) Let Ci be an (ni, ki, di, q)-code with
generator matrix Γi for i = 0, 1. The outer direct sum of C0 and C1 is defined as

C0 � C1 :=
{
(c | c′)

∣∣ c ∈ C0, c′ ∈ C1
}

.

It is clear that C0 � C1 is an (n0 + n1, k0 + k1,min{d0, d1}, q)-code with genera-
tor matrix (

Γ0 0
0 Γ1

)
.

The outer direct sum can be expressed as

C0 � C1 =
{

(u · Γ0 | v · Γ1)
∣∣∣ u ∈ Fk0

q , v ∈ Fk1
q

}
.

in terms of the generator matrices. �

Since the minimum distance of the outer direct sum is the minimum of the
minimum distances of the summands, this construction is not very exciting as
far as dmax is concerned. But it leads to another concatenation. In the particular
case k0 = k1 we can consider a subset of the outer sum which is, in a certain
sense, a diagonal:
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2.2.12 The diagonal concatenation ((u, v)-construction) Let Ci be an (ni, k, di , q)-
code with generator matrix Γi for i = 0, 1. Then there exists an (n0 + n1, k, d, q)-
code C := (C0, C1), with d ≥ d0 + d1, called the diagonally concatenated code or
the (u, v)-construction applied to C0 and C1. It is generated by Γ := (Γ0 | Γ1),

C :=
{
(w · Γ0 | w · Γ1)

∣∣∣ w ∈ Fk
q

}
. �

For example, we know from 2.2.10 that there exist both a (5, 2, 3, 2)-code
and a (3, 2, 2, 2)-code, and so we obtain via diagonal concatenation of these
codes an (8, 2, 5, 2)-code: Since dmax(8, 2, 2) ∈ {4, 5}, we get dmax(8, 2, 2) = 5.
In the same way we deduce from dmax(6, 3, 2) = 3 and dmax(4, 3, 2) = 2 that
dmax(10, 3, 2) = 5. Moreover, using 2.2.4 we obtain that dmax(9, 2, 2) = 6,
whereas dmax(10, 2, 2) = 6 follows from the fact that the values in each column
are increasing, as shown in 2.2.7. This way we improve the preceding table,
obtaining

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 4 3 2 2 1
7 7 4 4 3 2 2 1
8 8 5 4 4 2 2 2 1
9 9 6 4 4 3 2 2 2
10 10 6 5 4 4 3 2 2

2.2.13

as the upper left hand corner of the table (dmax(n, k, 2))n,k.

Hence, the upper left hand part of the desired table of maximal minimum
distances of binary codes looks as follows:

(dmax(n, k, 2))n,k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1
3 2 1
4 2 2 1
5 3 2 2 1
6 4 3 2 2 1
7 4 4 3 2 2 1
8 5 4 4 2 2 2 1
9 6 4 4 3 2 2 2 1
10 6 5 4 4 3 2 2 2 1
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



2.2 New Codes from Old and the Minimum Distance 99

From this table we can directly deduce that the upper left hand corner of the
matrix of nmin(k, d, 2) is given by

(nmin(k, d, 2))k,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 . . .
2 3 5 6 8 9 . . .
3 4 6 7 10 . . .
4 5 7 8 . . .
5 6 9 10 . . .
6 7 10 . . .
7 8 . . .
8 9 . . .
9 10 . . .
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, for kmax(n, d, q) we obtain

(kmax(n, d, 2))n,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1
3 2 1
4 3 1 1
5 4 2 1 1
6 5 3 2 1 1
7 6 4 3 1 1 1
8 7 4 4 2 1 1 1
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have seen that the entries in each column of the matrix (dmax(n, k, q))n,k
weakly increase and that the difference between two neighbors in the same
column is at most 1. Now we note that the diagonal concatenation

Γ′ := (Γ | Ik)

of a generator matrix Γ of an (n, k, d, q)-code and the identity matrix Ik gener-
ates an (n + k, k, d′ , q)-code with d′ ≥ d + 1.

2.2.14Corollary For k < n the existence of an (n, k, d, q)-code implies the existence of an
(n + k, k, d′ , q)-code with d′ > d. In particular, this shows that the entries in a column
of the matrix (dmax(n, k, q))n,k increase by at least 1 within an interval of k values for
the length, and so each column of this matrix contains every positive integer at least
once. �

A slight modification of the outer direct sum construction is



100 2. Bounds and Modifications

2.2.15 The (u | u + v)-construction For i = 0, 1 let Ci be an (n, ki, di, q)-code with
generator matrix Γi. We define a linear code C0 | C1 by putting

C0 | C1 :=
{
(c, c + c′)

∣∣ c ∈ C0, c′ ∈ C1
}

.

This code is called the (u | u + v)-construction of C0 and C1. It is also known as
the semidirect sum or Plotkin construction of C0 and C1. A generator matrix of it
is (

Γ0 Γ0

0 Γ1

)
.

The (u | u + v)-construction C0 | C1 has the parameters(
2n, k0 + k1,min{2d0, d1}, q

)
.

Proof: The statements on the generator matrix, the length, and the dimension
of C0 | C1 are clearly true. For the Hamming distance of two different code-
words (c, c + c′) and (w, w + w′) of C0 | C1 the following holds:

d(c, w) + d(c + c′, w + w′) = wt(c − w) + wt(c − w + c′ − w′).

In the case when c′ = w′ this sum is 2d(c, w) ≥ 2d0, while otherwise we obtain
a lower bound:

wt(c − w) + wt(c − w + c′ − w′) ≥
wt(c − w) + wt(c′ −w′)−wt(c − w) = wt(c′ − w′) ≥ d1. �

2.2.16 Example The binary code C0 with check matrix ∆ = 14 is a (4, 3)-code. Each
c ∈ C0 has even parity because of c · ∆� = c0 + c1 + c2 + c3 = 0. Hence, C0

consists of all vectors of even weight in F4
2. We deduce that C0 is a (4, 3, 2)-

parity check code. If C1 denotes the (4, 1, 4)-repetition code, then C0 | C1 is an
(8, 4, 4)-code. �

The next construction allows us to deduce properties of the entries in the
subdiagonals of (dmax(n, k, q))n,k , the entries dmax(n, n − i, q), for i ∈ N fixed.

2.2.17 Shortening a code Assume that the generator matrix Γ = (γij) of C with k > 1
does not contain a column of zeros and that it is (after a permutation of rows)
of the form (

∗ γ0,n−1

Γ′ 0�

)
, where γ0,n−1 �= 0.

We indicate the code generated by the submatrix Γ′ by S(C),

S(C) := {(c0, . . . , cn−2) | (c0, . . . , cn−2, 0) ∈ C}.



2.2 New Codes from Old and the Minimum Distance 101

It is an (n − 1, k − 1, d′)-code with d′ ≥ d and it is called a shortening of C (in
its last coordinate). �

Let k > 1. If there is a codeword of C of weight d the last coordinate of
which is zero, then the shortening S(C) has minimum distance d′ = d. This
implies

2.2.18Corollary If n ≥ k > 1, then we obtain from the existence of (n, k, d, q)-codes the
existence of (n − 1, k − 1, d, q)-codes. This means for the table (dmax(n, k, q))n,k, for
fixed q, that its entries are weakly decreasing down each subdiagonal:

dmax(n − 1, k − 1, q) ≥ dmax(n, k, q). �

This corollary, together with 2.2.4, 2.2.7, 2.2.9, and 2.2.14, yields

2.2.19Theorem The matrix (dmax(n, k, q))n,k of maximal minimum distances of has the
following properties:

1. It is a lower triangular matrix.

2. Its main diagonal consists of 1’s.

3. The entries in each column are weakly increasing from top to bottom.

4. Each column contains every positive integer at least once.

5. The entries in each subdiagonal are weakly decreasing from top left to bottom right.

6. In the binary case each odd positive integer occurs in each column exactly once.
�

Moreover, we obtain via shortening several inequalities for nmin(k, d, q):

2.2.20Lemma The least length nmin(k, d, q) satisfies:

1. If k ≥ 2, then nmin(k, d, q) ≥ nmin(k − 1, d, q) + 1.

2. If d ≥ 2, then nmin(k, d, q) > k.

3. If d ≥ 2, then nmin(k, d, q) ≥ nmin(k, d − 1, q) + 1.

Proof: 1. Assume that C is an (nmin(k, d, q), k, d)-code, k ≥ 2. Shortening C
yields the (nmin(k, d, q) − 1, k − 1, d′)-code S(C) with d′ ≥ d. Consequently

nmin(k − 1, d, q) ≤ nmin(k − 1, d′, q) ≤ nmin(k, d, q) − 1.

2. The second statement can be proved by induction on k, using the second
assertion of 2.1.13.
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3. We again assume that C is an (nmin(k, d, q), k, d)-code. Since d ≥ 2, we
obtain from the second assertion that k < nmin(k, d, q). The punctured code
Pu(C) is an (nmin(k, d, q) − 1, k, d′)-code with d′ ≥ d − 1. Consequently

nmin(k, d − 1, q) ≤ nmin(k, d′, q) ≤ nmin(k, d, q) − 1,

which completes the proof. �

Exercises

E.2.2.1 Exercise Prove that the weight enumerator of the outer direct sum C0 � C1 is
WC0�C1

(x, y) = WC0 (x, y) ·WC1(x, y).

E.2.2.2 Exercise Let C be a linear code over Fq. For α ∈ Fq let σ(α) be the number
of codewords c ∈ C whose parity sum ∑n

i=0 ci equals α. Prove that either
σ(0) = qk and σ(α) = 0 for α ∈ F∗

q , or σ(α) = qk−1 for all α ∈ Fq. Hint: The
parity sum is a vector space homomorphism C → Fq : c �→ ∑i∈n ci.

2.3 2.3 Further Modifications and Constructions

We continue the description of modifications and constructions.

2.3.1 Prolongation A prolongation of an (n, k)-code C is an (n + 1, k + 1)-code ob-
tained by adding an information place to C. �

2.3.2 Binary Augmentation If Γ is the generator matrix of a binary (n, k, d)-code C
which does not contain the all-one vector, then the code generated by(

1n

Γ

)

is called the (binary) augmentation of C. It contains all codewords of C and
also the complement of each codeword. (The complement of a binary vector
is obtained by replacing each 0 by 1 and vice versa.) The augmentation of C
is an (n, k + 1)-code with minimum distance equal to min {d, n − d′}, where
d′ := max {wt(c) | c ∈ C} is the maximum weight of C. �

In the proof of the Griesmer-bound we encountered another modification
called
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2.3.3The A-construction Any binary (n, k, d)-code C is linearly isometric to a code
with generator matrix (

1d 0n−d

∗ Γ′

)
,

whose first row contains a codeword of minimum weight whose entries 1 are
left-aligned. As shown in 2.1.13, the matrix Γ′ generates an (n − d, k − 1)-
code, A(C), called the A-construction. The minimum distance of A(C) is at
least �d/q�. �

2.3.4Example The A-construction enables us to prove that there cannot be a bi-
nary (16, 6, 7)-code. Assume on the contrary that there is a (16, 6, 7)-code
C. Using the A-construction we obtain a binary (9, 5, 4)-code A(C) so that
9 ≥ nmin(5, 4, 2), which contradicts our previous result that nmin(5, 4, 2) = 10.

�

2.3.5Corollary The existence of an (n, k, d, q)-code implies the existence of a linear code of
type

(n − d, k − 1,≥ �d/q�, q). �

The next modification uses the check matrix of a code.

2.3.6The Y1-construction Without loss of generality, we assume that the check ma-
trix ∆ of an (n, k, d)-code with n − 1 > k is of the form

∆ =

(
1d⊥ 0n−d⊥

∗ ∆′

)
,

where the first row is an element of minimum weight d⊥ belonging to C⊥. If
d⊥ ≤ k, then the submatrix ∆′ is the check matrix of an (n − d⊥, k − d⊥ + 1)-
code, whose minimum distance is at least d by 1.3.10. This construction is
called the Y1-construction. �

A generalization of the Y1-construction is

2.3.7The B-construction Assume the existence of an (n, k, d, q)-code C with n− 1 >

k and dmax(n, n− k, q) ≤ k, which guarantees that d⊥ ≤ k. From the (n, k, d, q)-
code C we obtain by Y1-construction an (n− d⊥, k− d⊥ + 1, d′ , q)-code C′ with
d′ ≥ d. Hence, for all s with d⊥ ≤ s ≤ k, the B-construction yields, by successive
shortening, (n − s, k − s + 1)-codes Bs(C) with minimum distance at least d. �
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2.3.8 Example Using the B-construction, one can give another proof that there is no
binary (16, 6, 7)-code. Assume on the contrary that there is such a code. In or-
der to apply the B-construction, we need an upper bound on the minimum dis-
tance of the dual code, which is a (16, 10)-code. The Hamming-bound shows
that there is no (16, 10, 5)-code, since(

16
0

)
+

(
16
1

)
+

(
16
2

)
= 1 + 16 + 8 · 15 = 137 �≤ 216−10 = 64.

Thus dmax(16, 10, 2) ≤ 4 = s ≤ 6 = k. The assumptions for the B-construction
are satisfied, and we can produce from the (16, 6, 7)-code a (16 − 4, 6 − 4 +
1, 7) = (12, 3, 7)-code. But such a code does not exist because the parameters
do not satisfy the Plotkin-bound:

d = 7 �≤
⌊12 · 22 · 1

23 − 1

⌋
=

⌊48
7

⌋
= 
6 + 6/7� = 6.

This shows that the assumption was invalid, i.e. there does not exist a (16, 6, 7)-
code, i.e. dmax(16, 6, 2) ≤ 6. �

Another interesting combination of codes is

2.3.9 The X-construction It applies to chains of codes

C1 ⊂ C0 ⊆ Fn
q ,

which means that C1 is a proper subcode of the code C0. We can assume that C1

is generated by the k1-rowed submatrix Γ1 of the generator matrix

Γ0 =

(
Γ′

Γ1

)
of C0 with 1 ≤ k1 < k0. If C2 denotes an (n2, k0 − k1, d2)-code with generator
matrix Γ2, then

Γ =

(
Γ′ Γ2

Γ1 0

)
generates a code C called the X-construction, which is of type (n0 + n2, k0, d, q)
with d ≥ min{d1, d0 + d2}.

Proof: The statements on the length and on the dimension are obviously true.
The surjective linear mapping

φ : C0 → C2 : v · Γ0 �→ v ·
(

Γ2

0

)
, v ∈ Fk1

q ,

is well-defined and has kernel C1. Therefore, the code C has the form

C =
{
(c, φ(c))

∣∣ c ∈ C0
}

.
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For each nonzero c ∈ C0 the following holds:

wt(c, φ(c)) = wt(c) + wt(φ(c)) ≥
{

d1 if c ∈ C1,
d0 + d2 else.

�

2.3.10Example The binary (5, 3, 1)-code C0 generated by

Γ0 =

⎛⎜⎝ 0 0 1 1 0
0 0 0 0 1
1 1 1 0 1

⎞⎟⎠
contains a (5, 1, 4)-subcode C1 with generator matrix Γ1 = ( 1 1 1 0 1 ).
Together with the binary (3, 2, 2)-code C2, generated by

Γ2 =

(
1 1 0
0 1 1

)

we obtain via X-construction an (8, 3, 3)-code with generator matrix

Γ =

⎛⎜⎝ 0 0 1 1 0 1 1 0
0 0 0 0 1 0 1 1
1 1 1 0 1 0 0 0

⎞⎟⎠ .

�

Now we introduce a construction that gives, for example, one of the most
famous codes, the binary Golay-code G24.

2.3.11The (u + w | v + w | u + v + w)-construction For i = 0, 1 let Ci be an
(n, ki, di, q)-code, generated by Γi. The (u + w | v + w | u + v + w)-construction,
applied to C0 and C1, is the linear code with generator matrix⎛⎜⎝ Γ0 0 Γ0

Γ1 Γ1 Γ1

0 Γ0 Γ0

⎞⎟⎠ .

It is, therefore, the following set:

{(u + w | v + w | u + v + w) | u, v ∈ C0, w ∈ C1} .

It is a (3n, 2k0 + k1)-code. �
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Here is the announced prominent example:

2.3.12 Example Let C0 be the extended third-order binary Hamming-code with gen-
erator matrix Γ0 as in 2.2.5. Now reverse the columns of the (unextended)
Hamming-code, and let C1 be the parity extension of this code, i.e. C1 is gen-
erated by

Γ1 :=

⎛⎜⎜⎜⎝
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 0

⎞⎟⎟⎟⎠ .

We know that C0 and C1 are both (8, 4, 4, 2)-codes. From the (u + w | v + w |
u + v + w) construction, we obtain the following generator matrix Γ = Γ24 of
a binary (24, 12)-code.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0
0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.2.3.13

One can show (see below) that its minimum distance is 8. This code is the
binary Golay-code G24, one of the most prominent linear codes. In fact, it can
be shown that this code is the unique (up to linear isometry) code with pa-
rameters (24, 12, 8, 2). It played an important role during the Voyager 1 and 2
missions to Jupiter and Saturn in the late 1970s. A reason for its importance is
that it carries many interesting combinatorial structures (like Steiner systems,
etc.), and it was used even in the classification of finite simple groups (cf. [40]).

�

2.3.14 Theorem The binary code C generated by the matrix Γ24 of 2.3.13 is a self-dual
(24, 12, 8)-code.
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Proof: The codes C0 and C1 consist of 16 words of length 8 each, as shown in
Table 2.1.

Table 2.1 The words of C0 and C1

message v v · Γ0 v · Γ1

(0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0)
(1, 0, 0, 0) (1, 1, 0, 1, 0, 0, 0, 1) (0, 0, 0, 1, 0, 1, 1, 1)
(0, 1, 0, 0) (1, 0, 1, 0, 1, 0, 0, 1) (0, 0, 1, 0, 1, 0, 1, 1)
(1, 1, 0, 0) (0, 1, 1, 1, 1, 0, 0, 0) (0, 0, 1, 1, 1, 1, 0, 0)
(0, 0, 1, 0) (0, 1, 1, 0, 0, 1, 0, 1) (0, 1, 0, 0, 1, 1, 0, 1)
(1, 0, 1, 0) (1, 0, 1, 1, 0, 1, 0, 0) (0, 1, 0, 1, 1, 0, 1, 0)
(0, 1, 1, 0) (1, 1, 0, 0, 1, 1, 0, 0) (0, 1, 1, 0, 0, 1, 1, 0)
(1, 1, 1, 0) (0, 0, 0, 1, 1, 1, 0, 1) (0, 1, 1, 1, 0, 0, 0, 1)
(0, 0, 0, 1) (1, 1, 1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 1, 1, 1, 0)
(1, 0, 0, 1) (0, 0, 1, 1, 0, 0, 1, 1) (1, 0, 0, 1, 1, 0, 0, 1)
(0, 1, 0, 1) (0, 1, 0, 0, 1, 0, 1, 1) (1, 0, 1, 0, 0, 1, 0, 1)
(1, 1, 0, 1) (1, 0, 0, 1, 1, 0, 1, 0) (1, 0, 1, 1, 0, 0, 1, 0)
(0, 0, 1, 1) (1, 0, 0, 0, 0, 1, 1, 1) (1, 1, 0, 0, 0, 0, 1, 1)
(1, 0, 1, 1) (0, 1, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 0, 1, 0, 0)
(0, 1, 1, 1) (0, 0, 1, 0, 1, 1, 1, 0) (1, 1, 1, 0, 1, 0, 0, 0)
(1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1)

By inspection, we see that C0 ∩ C1 = {08, 18}. Also, we know that C0 and C1

are both self-dual with weight enumerator 1 + 14x4 + x8. The statement about
the dimension of C is clear, since the 12 vectors of the form (u, 0, u), (0, v, v)
and (w, w, w) are linearly independent, provided that u and v run through a
basis of C0 and w is taken from a basis for C1. It is easy to check that C is
self-orthogonal, and hence self-dual (Exercise 2.3.2). By Exercise 1.3.19, in a
self-orthogonal code, the sum of 4-divisible codewords is 4-divisible. In C,
any word can be written as a sum of vectors of the form (u, 0, u), (0, v, v) and
(w, w, w), with u, v ∈ C0 and w ∈ C1. Since u, v and w are all 4-divisible, so
are the three vectors and hence any vector in C. To show that the minimum
distance of C is 8, we need to exclude the existence of words of weight 4. For
this, let us assume that c ∈ C is a word of weight less than 8. By Exercise 1.2.14,
the sum of even vectors is even. Hence each of the three components of c =
(u + w, v + w, u + v + w) is even. In order to have weight either 4 or 0, at
least one of the components must be zero. But u, v ∈ C0 and w ∈ C1, and we
have seen that C0 ∩ C1 consists of 08 and 18. Consider the case w = 08. Then
c = (u, v, u + v). Since C0 only has words of weight 0, 4 and 8, we have c = 0.
Otherwise, if w = 18, then c = (u + 1, v + 1, u + v + 1). Again it follows that
c = 0. This proves the assertion. �
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A further important way of combining two codes is the following product:

2.3.15 The tensor product We recall from multilinear algebra that the tensor product
C0 ⊗ C1 of two linear codes C0, C1 can be defined as follows: It consists of the
elements c ⊗ c′, where c ∈ C0 and c′ ∈ C1, and

c ⊗ c′ :=
(
c0c′0, . . . , c0c′n1−1, . . . , cn0−1c

′
0, . . . , cn0−1c

′
n1−1

)
.

In other words, the generator matrix is the Kronecker product

Γ := Γ0 ⊗ Γ1 :=

⎛⎜⎝ γ00Γ1 . . . γ0,n0−1Γ1

. . . . . . . . .
γk0−1,0Γ1 . . . γk0−1,n0−1Γ1

⎞⎟⎠ .

If Ci is a (ni, ki, di)-code, then by Exercise 2.3.5 the parameters of C := C1 ⊕ C2

are
(n, k, d, q) = (n0n1, k0k1, d0d1, q). �

2.3.16 Examples The product C0 ⊗ C0 of the binary (7, 4)-Hamming-code C0 with
itself is a binary (49, 16, 9)-code. If we denote by C1 the binary (7, 1)-repetition
code, then each word of the product code C0 ⊗ C1 can be obtained as a 7-fold
repetition of a codeword in C0. �

The next two constructions modify the field over which the codes are con-
sidered. For the reader not familiar with the theory of finite fields, the missing
details will be presented in Chapter 3.

2.3.17 Restriction The restriction of a code C over Fq of length n to a subfield F of Fq

is the code
C ↓ F := C ∩ Fn,

when considered as a linear code over F. �

A different way of constructing from a code over Fq a code over a subfield
F uses the fact that Fq is a vector space over F.

2.3.18 Blowing up If m is the F-dimension of Fq and

B = {β0, . . . , βm−1}

is an F-basis of Fq, then we obtain from the (n, k)-code C over Fq a linear code
of length mn over F by replacing the components of the codewords in C by
the m-tuples with respect to the basis B. This new code is called the blow up
of C with respect to B. We denote it by BlB(C). Formally speaking, we obtain
BlB(C) as the image ψB(C) of C under the linear map

ψB : Fn
q → Fmn : (c0, . . . , cn−1) �→

(
φB(c0) | . . . | φB(cn−1)

)
,
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which is the n-fold extension of the coordinate map

φB : Fq → Fm : ∑
i∈m

κiβi �→ (κ0, . . . , κm−1),

with respect to the basis B. This shows that each Fq-basis {b(0), . . . , b(k−1)} of
C yields an F-basis {ψB(βib(j)) | i ∈ m, j ∈ k} of BlB(C). The code BlB(C) is
therefore an (mn, mk)-code over F. Its minimum distance d′ satisfies d′ ≥ d,
since from ci �= 0 we obtain φB(ci) �= 0, and so wt(φB(c0), . . . , φB(cn−1)) ≥
wt(c) holds true for each c = (c0, . . . , cn−1) ∈ C. �

2.3.19Example The field F4 consists of the elements

0, 1, α, α2,

where α is a root of the polynomial x2 + x + 1 and, therefore, α2 = α + 1. We
consider the (3, 2)-code C over F4 with generator matrix

Γ =

(
1 α2 0
0 1 α2

)
.

It consists of the following codewords:

000 01α2 1α20 α201
0α1 α10 10α 0α2α

α2α0 α0α2 111 ααα

α2α2α2 1αα2 αα21 α21α.

This shows that C has minimum distance 2. Its blow up BlB(C) with respect to
the F2-basis B = {α, α2} of F4 is a binary code, consisting of the words

000000 001101 110100 010011
001011 101100 110010 000110
011000 100001 111111 101010
010101 111001 100111 011110.

Hence, BlB(C) is a (6, 4, 2)-code. The restriction of C to F2 is the repetition code
{000, 111}. �

Let us summarize the results on lower and upper bounds for dmax(n, k, q).
Following the ideas of T. Verhoeff [195], we may express the bounds in terms
of two predicates,

(Lb, n, k, d, q) :⇐⇒ there exists an (n, k, d, q)-code

and
(Ub, n, k, d, q) :⇐⇒ there does not exist an (n, k, d, q)-code,
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so that

(Lb, n, k, d1, q) ∧ (Ub, n, k, d2, q) =⇒ d1 ≤ dmax(n, k, q) < d2.

For example, the predicates

(Lb, n, n, 1, q), (Ub, n, n, 2, q), (Lb, n, 1, n, q), and (Ub, n, 1, n + 1, q)

hold true, since over any field Fq and for any length n there is the (n, n, 1)-code
H(n, q) and the (n, 1, n)-repetition code.

If M denotes one of the modifications of codes described above, then we
may deduce further predicates, which we shall denote as M(b, n, k, d, q). Here,
b stands for either Lb or Ub and (b, n, k, d, q) denotes a previously known pred-
icate. Thus, we can consider the modifications as operators on the set of pred-
icates. The goal is to tabulate the best known lower and upper bounds for the
minimum distance of a linear code with a given length n and dimension k. This
can be done in a systematic way by applying all modifications to an initial set
of predicates. If this process is repeated sufficiently often, the resulting table
will eventually be invariant under these modifications. Let

LB(n, k, q) := max {d | Lb(n, k, d, q)} , UB(n, k, q) := min {d | Ub(n, k, d, q)} .

In the following, we will restrict our attention to binary codes and therefore we
will omit the parameter q = 2 from the list of arguments. For the nonbinary
case, see Exercise 2.3.11.

2.3.20 Theorem For binary codes the following is true:

1. Parity extension:

P(Lb, n, k, d) =
{

(Lb, n + 1, k, d + 1) if d is odd,
(Lb, n + 1, k, d) otherwise,

n ≥ 1,

P(Ub, n, k, d) =
{

(Ub, n − 1, k, d − 1) if d ≥ 2 is even,
(Ub, n − 1, k, d) otherwise,

n > k ≥ 1.

2. Puncturing:

Pu(Lb, n, k, d) = (Lb, n − 1, k, d − 1) for n > k and d > 1,

Pu(Ub, n, k, d) = (Ub, n + 1, k, d + 1).

3. Shortening:

S(Lb, n, k, d) = (Lb, n − 1, k − 1, d) for k > 1,

S(Ub, n, k, d) = (Ub, n + 1, k + 1, d).
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4. A-construction:

A(Lb, n, k, d) = (Lb, n − d, k − 1, �d/2�) for k > 1,

A(Ub, n, k, d) = (Ub, n + 2d, k + 1, 2d).

5. B-construction:

B1(Lb, n, k, d) = (Lb, n − s, k − s + 1, d)

for UB(n, n − k)− 1 ≤ s ≤ k.

B2(Ub, n, �, s + 1) = (Lb, n − s, n − � − s + 1, LB(n, n − �))

for UB(n, �)− 1 ≤ s ≤ n − �.

B3(Ub, n, k, d) = (Ub, n + s, k + s − 1, d),

for UB(n + s, n − k + 1) − 1 ≤ s.

B4(Ub, n, �, s + 1) = (Ub, n, n − �,UB(n − s, n − � − s + 1))

for UB(n, �)− 1 ≤ s ≤ n − �.

Proof: The statements concerning parity extension, puncturing, shortening,
and the A-construction are obvious. The B-construction gives, for k ≥ s ≥
UB(n, n − k) − 1,

(Lb, n, k, d) ∧ (Ub, n, n − k, s + 1) =⇒ (Lb, n − s, k − s + 1, d) 2.3.21

and

(Ub, n, k, d) ∧ (Ub, n + s, n − k + 1, s + 1) =⇒ (Ub, n + s, k + s − 1, d). 2.3.22

B1 and B2 come from 2.3.21, by keeping the first, respectively the second mem-
ber of the conjunction fixed. Analogously we obtain B3 and B4 from 2.3.22. The
details are left to the reader (Exercise 2.3.9). �

An invariant table of bounds can be improved by externally obtained bounds
or by applications of non-primitive operations. Good lower bounds can be
obtained from cyclic codes, from generalized Reed–Solomon-codes, from Al-
ternant-, or Goppa-codes. We introduce these codes later in the Sections 4.5
and 4.6. Typical nonprimitive operations that can be used for such improve-
ments of parameter tables are code combinations like the outer direct sum,
(u, v)-construction, (u | u + v)construction, or the tensor product. In the case
when we use prolongation methods, then we obtain infinitely many entries, in
which case we must restrict attention to a maximal block length nmax.

In case a new predicate Q = (b, n, k, d, q) has been found, the invariance of
the parameter table can be restored by the following recursive algorithm:
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2.3.23 Algorithm To enter a bound in a table of parameter bounds:
Input: A predicate Q, a table of parameters.
Output: The invariant table of parameters that takes Q into account.

Update(Q)

(1) if Q improves the table then

(2) insert Q into the table;

(3) for each primitive modification M do

(4) Update(M(Q))
(5) end do

(6) end if �

An application of this algorithm to a table of code parameters usually produces
many primitive operations that do not improve the table. If we are given two
lower bounds for the minimum distance of (n, k)-codes over Fq, then the larger
one is considered better. Similarly, the smaller upper bound is preferred. In
terms of predicates, with Q1 = (b, n, k, d1, q) and Q2 = (b, n, k, d2, q) we put

(b, n, k, d1, q) ≤ (b, n, k, d2, q) :⇐⇒
{

d1 ≤ d2 if b = Lb,
d1 ≥ d2 if b = Ub.

Therefore, Q1 ≤ Q2 means that the predicate Q2 is an estimate which is at least
as sharp for dmax(n, k, q) as Q1. This notion can also be used to compare prim-
itive modifications M1 and M2. We write M1 ≤ M2 in order to indicate that
for each predicate Q contained in the range of both M1 and M2, the inequality
M1(Q) ≤ M2(Q) holds true. We can use that in order to define

M1 = M2 :⇐⇒ M1 ≤ M2 ∧ M2 ≤ M1.

For example, the operations A and S commute in the binary case, since

(S ◦ A)(Lb, n, k, d, 2) = S(Lb, n − d, k − 1, �d/2�, 2)
= (Lb, n − d − 1, k − 2, �d/2�, 2)
= A(Lb, n − 1, k − 1, d, 2)

= (A ◦ S)(Lb, n, k, d, 2)

and

(S ◦ A)(Ub, n, k, d, 2) = S(Ub, n + 2d, k + 1, 2d, 2)

= (Ub, n + 2d + 1, k + 2, 2d, 2)

= A(Ub, n + 1, k + 1, d, 2)

= (A ◦ S)(Ub, n, k, d, 2).
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A detailed analysis of the primitive modifications allows the reduction of the
number of recursive calls of functions in Update (see Exercise 2.3.11).

Besides the primitive operations we have also discussed some methods for
the combination of linear codes. Now we describe how they can be used to
improve a table of bounds for dmax(n, k, d, q). Among others we have obtained
the following rules:

2.3.24Corollary

1. Outer direct sum:

(Lb, n1, k1, d1, q) ∧ (Lb, n2, k2, d2, q) ⇒ (Lb, n1 + n2, k1 + k2,min{d1, d2}, q).

2. (u | u + v)-construction:

(Lb, n, k1, d1, q) ∧ (Lb, n, k2, d2, q) ⇒ (Lb, 2n, k1 + k2,min{2d1, d2}, q).

3. Tensor product:

(Lb, n1, k1, d1, q) ∧ (Lb, n2, k2, d2, q) ⇒ (Lb, n1n2, k1k2, d1d2, q). �

We refrain from giving the corresponding upper bounds since their influence
on the quality of a parameter table has shown to be rather small [203]. Further
details on the construction of an invariant table of parameters and its improve-
ment by using code combinations can be found in Exercise 2.3.11.

Exercises

E.2.3.1Exercise For binary codes, prove the following expression for the weight of
the elements in a (u + w | v + w | u + v + w)-construction:

wt(u + w | v + w | u + v + w) = 2 ·wt(u ∨ v)−wt(w) + 4 · s,

where s := |{i | ui = vi = 0, wi = 1}| and u ∨ v is as defined in Exercise 1.2.14.
Derive from this equation that the minimum distance of G24 is 8.

E.2.3.2Exercise Verify that the code generated by Γ24 in 2.3.12 is self-orthogonal.

E.2.3.3Exercise Confirm the parameters of the augmentation of a linear code given
in 2.3.2.
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E.2.3.4 Exercise In Multilinear Algebra the tensor product U ⊗ V of the Fq-vector
spaces U and V of finite dimension is defined to be the factor group

U ⊗V := ZU×V/T.

Here ZU×V means the free abelian group over the cartesian product U × V,
the set of mappings f from U × V to Z with pointwise addition. The set T
indicates the subgroup of ZU×V generated by the elements of the following
forms

(u + u′, v) − (u, v)− (u′, v),
(u, v + v′)− (u, v) − (u, v′),
(u, αv)− (αu, v),

with u, u′ ∈ U, v, v′ ∈ V, and α ∈ Fq. The pair (u, v) ∈ U × V stands for the
element f(u,v) ∈ ZU×V , defined by

f(u,v)(x, y) =
{

1 if (u, v) = (x, y),
0 else.

The elements in U ⊗V are called tensors.

1. Prove that the canonical mapping from ZU×V onto the factor group, i.e.

⊗ : ZU×V → ZU×V/T : (u, v) �→ u ⊗ v := (u, v) + T,

satisfies the rules

(u + u′)⊗ v = u ⊗ v + u′ ⊗ v,

u ⊗ (v + v′) = u ⊗ v + u ⊗ v′,

u ⊗ (αv) = (αu)⊗ v.

2. Verify that U ⊗V turns into an Fq-vector space via

α ∑
i

(
u(i) ⊗ v(i)

)
:= ∑

i

(
(αu(i))⊗ v(i)

)
, α ∈ Fq.

The elements of U ⊗ V are finite sums ∑i

(
u(i) ⊗ v(i)

)
with u(i) ∈ U and

v(i) ∈ V.

3. Show that, if B is a basis of U and B′ a basis of V, then{
b ⊗ b′

∣∣ b ∈ B, b′ ∈ B′}
is a basis of U ⊗V.

4. Check that each element of U ⊗V can uniquely be expressed in the form

∑
b∈B, b′∈B′

αbb′
(
b ⊗ b′

)
, αbb′ ∈ Fq,
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and we have
dim(U ⊗V) = dim(U) · dim(V).

5. Show that the mapping

Φm,n : Fm
q ⊗ Fn

q → Fm×n
q : ∑

i∈m
∑
j∈n

(
αije

(i) ⊗ f (j)
)
�→ (αij)i,j,

(where e(i) and f (j) denote the respective unit vectors in Fm
q and Fn

q ) is
an Fq-isomorphism. So the elements of Fm

q ⊗ Fn
q can be written as m × n-

matrices, and we can speak of rows and columns of a tensor.

E.2.3.5Exercise Assume that Ci is a linear (ni, ki, di, q)-code for i = 0, 1. Show that
C0 ⊗ C1 is an (n0n1, k0k1, d0d1, q)-code.

E.2.3.6Exercise Let C be a binary (3, 2)-parity check code. Evaluate the elements of
the product code C ⊗ C.

E.2.3.7Exercise Evaluate a generator matrix of the binary code obtained in 2.3.18 by
blowing up.

E.2.3.8Exercise Suppose that C is an (n, k, d)-code with n > k > 1 and c′ ∈ C⊥ has
wt(c′) = d′. Show that an (n − 1, k − 1, d)-code exists, the dual code of which
contains a codeword of weight d′ − 1.

E.2.3.9Exercise Prove 2.3.20 and rephrase it for nonbinary codes.

E.2.3.10Exercise Assume that M is a primitive modification on codes. Iterating the
operation M until it does not change the parameters any more is denoted by
M∗. Prove that the following assertions (cf. [203]) are true:

P ◦ Pu = id for even d

P ◦ Pu ≤ id for each d

Pu ◦ P = id for odd d

Pu ◦ P ≤ id for each d

P ◦ S = S ◦ P

Pu ◦ S = S ◦ Pu,

where id denotes the identity mapping on the predicates.
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Show that for lower bounds we have:

A ◦ P ≤ P∗ ◦ A

A ◦ Pu ≤ A

A ◦ S = S ◦ A,

while for upper bounds

A ◦ P = P ◦ A for even d

(Pu)3 ◦ A = A ◦ Pu

A ◦ S = S ◦ A.

E.2.3.11 Exercise Implement a database for the lower and upper bounds of linear bi-
nary codes, i.e. of 5-tuples of the form (b, n, k, d, q) where b = Lb or b = Ub
and q = 2.

1. Implement each of the primitive modifications of 2.3.20.

2. Write a procedure that initializes the database with the “trivial” bounds

(Lb, n, n, 1, q), (Lb, n, 1, n, q), (Ub, n, n, 2, q), (Ub, n, 1, n + 1, q)

for all nonnegative n up to a user defined maximal length nmax.

3. Allow for input of external lower and upper bounds to the parameter ta-
ble. Note that this addition should be combined with an application of the
procedure Update.

4. Develop a procedure which applies, for fixed block length n ≤ nmax, the
following rules (see 2.3.24) to the entries (lower bounds) of the tables and
which inserts newly found lower bounds for codes of length n:

Outer direct sum:

(Lb, n0, k0, d0, q)∧ (Lb, n−n0, k1, d1, q) ⇒ (Lb, n, k0 + k1,min{d0, d1}, q).
(u | u + v)-construction:

(Lb,
n
2

, k0, d0, q) ∧ (Lb,
n
2

, k1, d1, q) ⇒ (Lb, n, k0 + k1,min{2d0, d1}, q).

Tensor product:

(Lb, n0, k0, d0, q) ∧ (Lb,
n
n0

, k1, d1, q) ⇒ (Lb, n, k0k1, d0d1, q).

5. Use the program in order to search for good codes. After the initializa-
tion of the table, add lower bounds from the existence results of Chapter 9.
Also, use parameters of Reed–Muller-codes (cf. Section 2.4), BCH-codes
(Section 4.3) as lower bounds. Then apply the combination methods de-
scribed above. Compare the results with the list of best known binary lin-
ear codes [32].
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E.2.3.12Exercise Assume that Ci is a linear code with check matrix ∆i for i = 0, 1.
Show that (

∆0 0
0 ∆1

)
is a check matrix of C0 � C1.

E.2.3.13Exercise Let C0, C1 and C2 be linear codes. Prove the following properties of
the outer direct sum:

If C0 is linearly isometric to C′
0 and C1 linearly isometric to C′

1, then C0 � C1

is linearly isometric to C′
0 � C′

1.

C0 � C1 is linearly isometric to C1 � C0.

C0 � (C1 � C2) = (C0 � C1) � C2.

(C0 � C1)
⊥ = C⊥

0 � C⊥
1 .

E.2.3.14Exercise Let A, B, C and D be matrices over a field F. Prove the following
properties of the Kronecker product:

A ⊗ (B⊗ C) = (A⊗ B)⊗ C.

(A ⊗ B)� = B� ⊗ A�.

If the number of columns of A respectively B coincides with the number of
rows of C respectively D, then (A ⊗ B) · (C ⊗ D) = (A · C)⊗ (B · D).

If A is an r × s-matrix and B a t × u-matrix, then there exist permutations
π ∈ Srt and σ ∈ Ssu, so that A ⊗ B = Mπ · (B ⊗ A) · Mσ, where Mπ and
Mσ are the permutation matrices corresponding to π and σ. Determine the
two permutations π and σ which depend only on the numbers r, s, t, and u
but not on the particular values of the matrices A and B.

E.2.3.15Exercise Let C0, C1 and C2 be linear codes. Prove the following properties of
the tensor product:

If C0 is linearly isometric to C′
0 and C1 linearly isometric to C′

1, then C0 ⊗C1

is linearly isometric to C′
0 ⊗ C′

1.

C0 ⊗ C1 is linearly isometric to C1 ⊗ C0.

C0 ⊗ (C1 ⊗ C2) is linearly isometric to (C0 ⊗ C1)⊗ C2.

C0 ⊗ (C1 � C2) is linearly isometric to (C0 ⊗ C1) � (C0 ⊗ C2).

In general, (C0 ⊗ C1)
⊥ is not linearly isometric to C⊥

0 ⊗ C⊥
1 .
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E.2.3.16 Exercise Assume that Ci is a linear (ni, ki)-code with a systematic generator
matrix (Iki

| Ai) for i = 0, 1. Show that C0 ⊗C1 is linearly isometric to the code
generated by

(Ik0 ⊗ Ik1
| Ik0 ⊗ A1 | A0 ⊗ Ik1

| A0 ⊗ A1).

If we denote the last n0n1 − k0k1 columns of this matrix by B, prove that
(In0n1−k0k1

| −B�) is a check matrix of a code linearly isometric to C0 ⊗ C1.

E.2.3.17 Exercise Let C0, C1 and C2 be linear codes and denote the linear isometry of
a linear code C by Ĉ. Deduce from Exercise 2.3.13 and Exercise 2.3.15 that the
following sum and product of linear isometry classes

Ĉ0 � Ĉ1 := Ĉ0 � C1, Ĉ0 ⊗ Ĉ1 := Ĉ0 ⊗ C1

are well-defined. Moreover, prove the following assertions:

Ĉ0 � Ĉ1 = Ĉ1 � Ĉ0.

Ĉ0 � (Ĉ1 � Ĉ2) = (Ĉ0 � Ĉ1) � Ĉ2.

Ĉ0 ⊗ Ĉ1 = Ĉ1 ⊗ Ĉ0.

Ĉ0 ⊗ (Ĉ1 ⊗ Ĉ2) = (Ĉ0 ⊗ Ĉ1)⊗ Ĉ2.

Ĉ0 ⊗ (Ĉ1 � Ĉ2) = (Ĉ0 ⊗ Ĉ1) � (Ĉ0 ⊗ Ĉ2).

The linear (1, 1)-code D with generator matrix Γ = ( 1 ) satisfies Ĉ ⊗ D̂ =
D̂ ⊗ Ĉ = Ĉ for all linear isometry classes Ĉ.

2.4 2.4 Reed–Muller-Codes

From 1969 until 1977, spacecrafts of NASA were equipped with a 7-error-
correcting binary (32, 6)-code, a Reed–Muller-code. This is a low rate code
with good error correction capabilities. A very prominent mission was Mar-
iner 9, which was devoted to the photographic observation of the surface of
Mars. Mariner 9 actually entered a Martian orbit in 1971 and became a satel-
lite. The mission was complicated by a heavy dust storm which engulfed the
whole Martian surface. It was not until 1972 that the storm subsided and
the first clear photos arrived and changed our view of that planet so pro-
foundly. We introduce the Reed–Muller-codes following the original ideas
of D.E. Muller [154], who discovered their binary version. However, we will
present the more general version of these codes which works for all finite fields
Fq. Later on, we will specialize to the binary case.
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Reed–Muller-codes are subspaces of the vector space of all mappings

f : Fm
q → Fq : (u0, . . . , um−1) �→ f (u0, . . . , um−1)

with pointwise addition ( f + g)(u) := f (u) + g(u) and scalar multiplication
(α f )(u) := α · f (u) for u ∈ Fm

q and α ∈ Fq. Together with pointwise mul-
tiplication ( f g)(u) := f (u)g(u), this set of mappings forms the Fq-algebra
(Exercise 2.4.1)

Bq
m.

In the case q = 2 these are the well-known Boolean functions or switching
functions of degree m. It is helpful to note that these functions f are polyno-
mial, i.e. for each f ∈ Bq

m there exists a polynomial f̃ ∈ Fq[x0, . . . , xm−1] such
that f (u) = f̃ (u0, . . . , um−1) for all u ∈ Fm

q . For this purpose, we consider both
Bq

m and the space of polynomial functions as vector spaces. Our first goal is to
exhibit a basis for this space.

The “unit vectors” of Bq
m are the functions fu for u = (u0, . . . , um−1) ∈ Fm

q
with

fu(v) =
{

1 if v = u,
0 else.

A function from Fm
q to Fq that takes exactly the same values as fu is obtained

from the polynomial

f̃u(x0, . . . , xm−1) := ∏
i∈m

(
1− (xi − ui)q−1

)
∈ Fq[x0, . . . , xm−1]. 2.4.1

Since uq−1 = 1, for each element u ∈ F∗
q (see 3.2.2), (xi − ui)q−1 = 1 if xi �= ui,

and so it is clear that this polynomial takes the value 1 exactly at

(x0, . . . , xm−1) = (u0, . . . , um−1) ∈ Fm
q

and 0 elsewhere. Any f in Bq
m is a linear combination

f = ∑
u∈Fm

q

f (u) fu 2.4.2

of unit vectors fu, i.e. every element of Bq
m is a polynomial function. Hence the

fu generate Bq
m as a vector space. However, the representation is not unique.

The non-uniqueness lies in the fact that xq − x is identically zero on Fq. Thus
two polynomials f and g in Fq[x0, . . . , xm−1] induce the same function if and
only if f and g are congruent modulo xq

0 − x0, . . . , x
q
m−1 − xm−1. This means

that f and g cannot be distinguished from their functions if and only if their
difference f − g is a polynomial in the terms xq

i − xi for i = 0, . . . , m − 1. Let
us see what this condition means in terms of monomials. We use multi-index
notation and let xb denote the monomial xb0

0 · · · xbm−1
m−1 for b = (b0, . . . , bm−1).
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Applying the relation xq
i − xi means reducing the exponent bi modulo q − 1 in

the following sense: If bi is either zero or not divisible by q − 1 then xbi
i may

be replaced by xai
i where ai is the remainder after dividing bi by q − 1, i.e. ai is

the unique integer in bi = c(q− 1) + ai with 0 ≤ ai < q− 1 (where c is another
suitable integer). If q − 1 divides bi �= 0 then xbi

i may be replaced by xq−1
i . It

is clear that any polynomial f ∈ Fq[x0, . . . , xm−1] may be reduced to one whose
monomials xa satisfy 0 ≤ ai ≤ q− 1 for i = 0, . . . , m− 1. The main point is that
if we restrict to polynomials in Fq[x0, . . . , xm−1] which are reduced in this sense
then any function in Bq

m can be expressed uniquely as a reduced polynomial.
We summarize this as

2.4.3 Theorem The Fq-algebra Bq
m is isomorphic to the ring of polynomials

Fq[x0, . . . , xm−1]

modulo xq
0 − x0, . . . , x

q
m−1 − xm−1. An Fq-basis is given by the reduced polynomials{

xb0
0 . . . xbm−1

m−1

∣∣∣ bi ∈ q
}

. �

Because of this result, we will identify the elements f of Bq
m with polynomial

functions in the following.
In the theory of switching functions, the multinomials xb = xb0

0 . . . xbm−1
m−1

are called minterms. The degree of xb is the sum of its exponents ∑i bi, and the
degree of f ∈ Bq

m is defined to be the largest degree of a multinomial xb which
occurs in a reduced expression of f with a nonzero coefficient (which is at most
m(q− 1) by the preceding discussion).

Bounding the degree of the polynomials to any number t ≤ m(q − 1) re-
sults in a vector subspace of Bq

m (but not a sub-algebra). This enables us to
define the Reed–Muller-codes in the following way:

2.4.4 Definition (Reed–Muller-code) Assume that 0 ≤ t ≤ m(q − 1). The t-th order
Reed–Muller-code of degree m over Fq is defined to be

RM q
m,t :=

{
f ∈ Bq

m

∣∣∣ deg f ≤ t or f = 0
}

.  

The considerations above show that the elements of this code can be described
in two ways, either as mappings or as polynomials. If we think of them as
mappings, we may display the images of all vectors. We may do so by defining
another vector of length qm whose i-th entry is the value of the i-th vector of
Fm

q . Of course, one needs to fix an ordering on the elements of Fm
q for this. Here

are a few examples:
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2.4.5Examples

The 0-th order binary Reed–Muller-code of length n = 2m consists of the
two constant functions 0 and 1. Hence RM2

m,0 is the n-th order binary rep-
etition code.

The m-th order binary Reed–Muller-code of length 2m consists of all vectors
in F2m

2 .

The first order binary Reed–Muller-code RM2
2,1 of degree 2 is of length 4

and consists of the vectors in the following table. (In the left column we list
the polynomial f and in the right column the values of the corresponding
polynomial function.)

f f (00) f (10) f (01) f (11)
0 0 0 0 0
1 1 1 1 1
x0 0 1 0 1
x1 0 0 1 1
x0 + x1 0 1 1 0
1 + x0 1 0 1 0
1 + x1 1 1 0 0
1 + x0 + x1 1 0 0 1

The second order binary Reed–Muller-code RM2
2,2 of degree 2 is of length

4 and contains the elements of RM2
2,1 together with the codewords shown

in the following table:

f f (00) f (10) f (01) f (11)
x0x1 0 0 0 1
1 + x0x1 1 1 1 0
x0 + x0x1 0 1 0 0
x1 + x0x1 0 0 1 0
x0 + x1 + x0x1 0 1 1 1
1 + x0 + x0x1 1 0 1 1
1 + x1 + x0x1 1 1 0 1
1 + x0 + x1 + x0x1 1 0 0 0

A closer examination of RM2
2,2 shows its recursive structure: Each of the 16

polynomials f in

{0, 1, x0, x1, . . . , 1 + x1 + x0x1, 1 + x0 + x1 + x0x1}

can be written as f = h + x1g, where both h and g are polynomials in the
single indeterminate x0, and therefore uniquely determined. For example,

1 + x1 + x0x1 = 1 + x1(1 + x0) = h + x1g.
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The mappings h (= 1) and g (= 1 + x0) take F1
2 = {(0), (1)} to F2, and so

f : {(00), (10), (01), (11)} → F2 : (x0, x1) �→ h(x0) + x1g(x0),

is of the form

f = (h(0), h(1), h(0) + 1 · g(0), h(1) + 1 · g(1)).

In terms of code constructions (recall 2.2.15),

f = (h | h + g),

i.e. we obtain

RM2
2,2 = RM2

1,2︸ ︷︷ ︸
=RM2

1,1

| RM2
1,1,

an (u | u + v)-construction! �

More generally, any polynomial f in RM2
m,t can be expressed (uniquely) in the

form

f (x0, . . . , xm−1) = h(x0, . . . , xm−2) + xm−1g(x0, . . . , xm−2),

where deg h ≤ t and deg g ≤ t − 1 (Exercise 2.4.2), and we obtain

2.4.6 Corollary The Reed–Muller-code RM2
m,t is the (u | u + v)-construction of two

Reed–Muller-codes, namely

RM2
m,t = RM2

m−1,t | RM2
m−1,t−1, 1 ≤ t ≤ m.

(Note that RM2
m,t = RM2

m,m, if t > m.) Hence, if Γm,t generates RM2
m,t, then

Γm,t =

(
Γm−1,t Γm−1,t

0 Γm−1,t−1

)
. �

Its parameters are as follows:

2.4.7 Theorem The binary Reed–Muller-code RM2
m,t is of type

(
2m,

t

∑
i=0

(
m
i

)
, 2m−t, 2

)
.
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Proof: RM2
m,t is a linear (2m, k)-code with

k =
(

m
0

)
+

(
m
1

)
+ . . . +

(
m
t

)
,

since it has a basis consisting of the multinomials xb, 0 ≤ bi ≤ 1, ∑i bi ≤ t.
In order to evaluate its minimum distance, we use induction both on m

and t. For m = 1 and t = 0, 1 the statement is clearly true. Now assume
that m > 1. As we have seen already, the code RM2

m,0 consists of only the
two vectors 02m and 12m . Thus RM2

m,0 is the repetition code of length 2m with
minimum distance 2m, and so the statement is true in this case. Therefore, we
can assume that t ≥ 1. By the induction hypothesis, the Reed–Muller-code
RM2

m−1,s has minimum distance 2m−1−s. From 2.4.6 and 2.2.15 we deduce that
RM2

m,t has minimum distance

min
{

2 · 2m−1−t, 2m−1−(t−1)
}

= 2m−t. �

For example, the above-mentioned code RM2
5,1 used during Mariner missions

is of type (32, 6, 16). Therefore, this code can indeed correct 7 errors.

Finally, we also consider the codes which are dual to Reed–Muller-codes:

2.4.8Theorem For 0 ≤ t < m, the code dual to RM2
m,t is RM2

m,m−t−1.

Proof: Consider f ∈ RM2
m,t and g ∈ RM2

m,m−t−1. Their product h = f g
is of degree not greater than m − 1. Hence, h is in RM2

m,m−1 and one can
show (Exercise 2.4.3) that h has even weight. Now identify Fm

2 with the set
{0, . . . , 2m − 1} = 2m via the bijection (a0, . . . , am−1) �→ ∑i∈m ai2i. Represent
f , g, and h as F2m

2 -vectors ( f (i))i∈2m , (g(i))i∈2m and (h(i))i∈2m , respectively.
The inner product of f and g is

〈 f , g 〉 = ∑
i∈2m

f (i)g(i) = ∑
i∈2m

( f g)(i) = ∑
i∈2m

h(i) = 0,

since h has even weight. For this reason, RM2
m,m−t−1 is contained in the dual

of RM2
m,t. Moreover, the dimension of RM2

m,m−t−1 is

∑
i∈m−t

(
m
i

)
=

m

∑
i=t+1

(
m
i

)
= 2m − dim(RM2

m,t) = n − k,

whence RM2
m,m−t−1 is the dual of RM2

m,t, as stated. �
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Another more algebraic description of Reed–Muller-codes will be presented in
Section 4.10.

The binary Reed–Muller-code RM2
m,m, which is F2m

2 , has a generator matrix
with a highly recursive structure. (See also [84, first edition, Section 8.11.2].)
Clearly, for m = 0

Γ0 := ( 1 )

is a generator matrix of RM2
0,0. According to 2.4.6, for m > 0 the Reed–Muller-

code RM2
m,m is the (u | u + v)-construction

RM2
m,m = RM2

m−1,m−1 | RM2
m−1,m−1,

since obviously RM2
m−1,m = RM2

m−1,m−1. Therefore, it has a generator matrix
of the form

Γm :=

(
Γm−1 Γm−1

0 Γm−1

)
where Γm−1 is a generator matrix of RM2

m−1,m−1. The matrix Γm is an up-
per triangular matrix. In order to describe it in more detail and to show fur-
ther properties of Reed–Muller-codes, in particular relations to Hamming- and
simplex-codes, we label its rows (respectively columns) from top to bottom (re-
spectively from left to right) with values from 0 to 2m − 1. We express the row
number i in binary form, i = ∑j∈m bj2j and identify i with the characteristic set
Bi :=

{
j ∈ m | bj �= 0

}
. Finally, we associate Bi with the monomial ∏j∈Bi

xj.
We also express the column index i in binary form as i = ∑j∈m tj2j. This

means that tj takes the value 0 in all columns with index

i ∈
⋃

r∈2m−j−1

{
s ∈ N

∣∣ 2r2j ≤ s < (2r + 1)2j
}

.

In all other columns tj takes the value 1. The (i, j)-th entry of Γm is the mono-
mial associated with the characteristic set Bi evaluated at (x0, . . . , xm−1) =
(t0, . . . , tm−1) ∈ Fm

2 where (t0, . . . , tm−1) is determined by j.
From this description it is easy to compute directly (i.e. without recursion)

the entries of the i-th row (y0, . . . , y2m−1) of Γm. Let Bi be the characteristic set
of i, then for

t ∈
⋃
j∈Bi

( ⋃
r∈2m−j−1

{
s ∈ N

∣∣ 2r2j ≤ s < (2r + 1)2j
})

we have yt = 0. Otherwise yt = 1.
If we have two characteristic sets Bi and Bj, then Bi ∪ Bj is also a charac-

teristic set, of row � say. There occurs the entry 1 in the t-th position of the
�-th row if and only if both in the i-th row and in the j-th row there is the
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0 00000 ∅ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 00001 {0} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 00010 {1} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 00011 {1, 0} 1 1 1 1 1 1 1 1
4 00100 {2} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 00101 {2, 0} 1 1 1 1 1 1 1 1
6 00110 {2, 1} 1 1 1 1 1 1 1 1
7 00111 {2, 1, 0} 1 1 1 1
8 01000 {3} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 01001 {3, 0} 1 1 1 1 1 1 1 1

10 01010 {3, 1} 1 1 1 1 1 1 1 1
11 01011 {3, 1, 0} 1 1 1 1
12 01100 {3, 2} 1 1 1 1 1 1 1 1
13 01101 {3, 2, 0} 1 1 1 1
14 01110 {3, 2, 1} 1 1 1 1
15 01111 {3, 2, 1, 0} 1 1
16 10000 {4} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 10001 {4, 0} 1 1 1 1 1 1 1 1
18 10010 {4, 1} 1 1 1 1 1 1 1 1
19 10011 {4, 1, 0} 1 1 1 1
20 10100 {4, 2} 1 1 1 1 1 1 1 1
21 10101 {4, 2, 0} 1 1 1 1
22 10110 {4, 2, 1} 1 1 1 1
23 10111 {4, 2, 1, 0} 1 1
24 11000 {4, 3} 1 1 1 1 1 1 1 1
25 11001 {4, 3, 0} 1 1 1 1
26 11010 {4, 3, 1} 1 1 1 1
27 11011 {4, 3, 1, 0} 1 1
28 11100 {4, 3, 2} 1 1 1 1
29 11101 {4, 3, 2, 0} 1 1
30 11110 {4, 3, 2, 1} 1 1
31 11111 {4, 3, 2, 1, 0} 1

t0 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
t1 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
t2 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
t3 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
t4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 2.2 Recursive structure of a generator matrix of RM2
5,5

entry 1 in the t-th coordinate. Hence, knowing the rows corresponding to all
characteristic sets of cardinality 1, it is easy to write down any other row of Γm.

We recall the recursive structure of the generator matrix in the general case
of a binary Reed–Muller-code. For 0 ≤ t ≤ m,

Γm,t =

(
Γm−1,t Γm−1,t

0 Γm−1,t−1

)

Of course Γm,m = Γm is a generator matrix of RM2
m,m. The matrix Γm,0 contains

just one vector, the all-one vector, which is the top row of Γm (cf. Exercise 2.4.4).
It is a generator matrix of the repetition code RM2

m,0. The identification of char-
acteristic sets and monomials shows that Γm,t is a generator matrix of RM2

m,t.
We call it the canonical generator matrix of RM2

m,t.
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2.4.9 Example Figure 2.2 shows a generator matrix of RM2
5,5. The rows are labeled

by integers, the corresponding binary numbers and characteristic sets. The
columns are labeled by the (t0, . . . , t4) ∈ F5

2. �

2.4.10 Theorem For 0 ≤ t < m, the Reed–Muller-code RM2
m,t is even.

Proof: For t = 0, the Reed–Muller-code is the binary repetition code of length
2m. From the recursive construction of Γm it is clear that each row with ex-
ception of the last one has even weight. If t > 0, by puncturing RM2

m,t in
the last component, we obtain the code Pu(RM2

m,t). All rows in its gener-
ator matrix have odd weight. Hence by 1.6.3, exactly half of its codewords
have odd weight. Thus, the Reed–Muller-code RM2

m,t is the parity extension
of Pu(RM2

m,t) which contains codewords of even weight only. �

Adding the first row to all remaining rows of Γm,s we obtain another gen-
erator matrix Γ̃m,s of RM2

m,s. Apart from the first row, any row of Γ̃m,s is
the complement of the corresponding row of Γm,s. The last column of Γ̃m,s

is (1, 0, . . . , 0)�. Due to 2.4.8, for 0 ≤ s ≤ m − 1 the matrix Γ̃m,m−s−1 is a check
matrix of RM2

m,s. Hence, from Exercise 1.3.10 we derive that Γm,s · Γ̃�
m,m−s−1 =

0. Moreover, if s < m − 1 then we may write

Γm,s = (Γ | 1�) and Γ̃m,m−s−1 =

(
1 1

Γ̃ 0�

)

where Γ is a generator matrix of Pu(RM2
m,s) and Γ̃ is a matrix with ∑m−s−1

i=1 (m
i )

rows and 2m − 1 columns. The rows of Γ̃ are orthogonal to the rows of Γ.
Therefore, Γ̃ is the generator matrix of the dual code Pu(RM2

m,s)⊥.
If s = m − 2, the columns of the m × (2m − 1)-matrix Γ̃ are exactly all

nonzero vectors in Fm
2 . Thus Γ̃ is a generator matrix both of the m-th order bi-

nary simplex-code and of Pu(RM2
m,m−2)⊥. In other words, Γ̃ is a check matrix

of the m-th order binary Hamming-code and a check matrix of Pu(RM2
m,m−2).

Conversely, the matrix (
1

Γ̃

)
is a generator matrix of Pu(RM2

m,1), whence Pu(RM2
m,1) is the augmentation

of the m-th order binary simplex-code (cf. 2.3.2). We collect these results in the
following

2.4.11 Theorem

1. RM2
m,m−2 is the parity extension of the m-th order binary Hamming-code.
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2. Pu(RM2
m,1) is the augmentation of the m-th order binary simplex-code.

3. The weight distributions of Pu(RM2
m,1) and RM2

m,1 are given by

wPu(RM2
m,1)

(x) = 1 + (2m − 1)x2m−1−1 + (2m − 1)x2m−1
+ x2m−1

and

wRM2
m,1

(x) = 1 + 2(2m − 1)x2m−1
+ x2m

,

respectively.

Proof: The first two assertions follow directly from the considerations above.
The weight distribution of the simplex-code was determined in 2.1.7. The final
statement follows from the definitions of augmentation and puncturing. �

2.4.12Example From the matrix

Γ5,1 =

⎛⎜⎜⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞⎟⎟⎠
we obtain the matrix

Γ̃5,1 =

⎛⎜⎜⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎠
and

Γ̃ =

⎛⎜⎝ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎠ ,

a generator matrix of the 5-th order binary simplex-code. �

Exercises

E.2.4.1Exercise Prove that Bq
m is in fact an Fq-algebra, which means that it is both a

vector space over Fq and a ring so that

α( f · g) = (α f ) · g = f · (αg)

holds true, for all α ∈ Fq and f , g ∈ Bq
m.
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E.2.4.2 Exercise Show that each polynomial f in RM2
m,t can be uniquely expressed in

the form

f (x0, . . . , xm−1) = h(x0, . . . , xm−2) + xm−1g(x0, . . . , xm−2),

where deg h ≤ t and deg g ≤ t − 1.

E.2.4.3 Exercise Verify that the (m − 1)-th order binary Reed–Muller-code of length
2m consists of all vectors of even weight in F2m

2 .

E.2.4.4 Exercise Check that the top row and the rightmost column in the canonical
form of Γm,t consist of all-one vectors.

E.2.4.5 Exercise Write down Pascal’s triangle, reduce the entries modulo 2 and com-
pare with the generator matrix of the Reed–Muller-code in Fig. 2.2. Do you see
a connection?

2.5 2.5 MDS-Codes

As MacWilliams and Sloane [139] put it, we come now to one of the most fascinat-
ing chapters in all of coding theory: MDS-codes. As we have seen in 2.1.1, for any
(n, k, d)-code over any field we have d ≤ n − k + 1. Codes with d = n − k + 1
have been called maximum distance separable, or MDS for short. These codes
have a wide range of applications, and they tie in well with structures in pro-
jective geometry. The compact disc stores music using linear (32, 28, 5) and
(28, 24, 5)-MDS-codes over F28 (for details see Chapter 5). Trivial MDS-codes
are the codes of types (n, 1, n), (n, n − 1, 2), and (n, n, 1), which exist over any
field Fq (cf. Exercise 2.5.1). Here we collect some properties characterizing
MDS-codes:

2.5.1 Theorem For linear (n, k)-codes C the following properties are equivalent:

1. C is an MDS-code.

2. In each check matrix of C any n − k columns are linearly independent.

3. In each generator matrix of C any k columns are linearly independent.

4. C⊥ is an MDS-code.
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Proof: The equivalence of the first two statements follows from 1.3.9 and the
Singleton-bound 2.1.1. Together with 1.3.4 we obtain the equivalence of the
third and the fourth property.

Now assume that C is an MDS-code, i.e. that d = n− k+1. To show that C⊥

is also MDS, we prove that its minimum distance d⊥ equals n − (n − k) + 1 =
k + 1. Assume, indirectly, that C⊥ contains an element c �= 0 of Hamming
weight at most k. Each nonzero element of the dual code can occur as a row
in a check matrix of C. Let ∆ be a check matrix of C containing c as its top
row. Now consider the columns of ∆ which are zero in their top component.
By assumption, there are at least n − k of them. Since ∆ has n − k rows, these
columns are dependent. According to 1.3.9, these columns give rise to a word
in C of weight at most n − k, which contradicts the assumption. This shows
that d⊥ ≥ k + 1. From the Singleton-bound we obtain d⊥ ≤ n − (n − k) + 1 =
k + 1 so finally d⊥ = k + 1, which means that C⊥ is MDS.

A symmetric argument shows that C is MDS provided that C⊥ has this
property. �

The third item of 2.5.1 yields

2.5.2Corollary An (n, k)-code is MDS if and only if any k coordinates form an information
set. �

Recall that F( J)
q has been defined in 1.7.4 as the set of vectors which are zero

on all of J. It is a subspace of dimension |J|.

2.5.3Theorem For each (n, k, d, q)-code C the following statements are equivalent:

1. C is an MDS-code.

2. For each J ⊆ n with |J| = d − 1 we have C ⊕ F( J)
q = Fn

q .

3. For each J ⊆ n with |J| = k we have C ⊕ F( J)
q = Fn

q .

Proof: Let C denote an MDS-code and consider a set J ⊆ n with |J| = d − 1.
By 1.7.7

C ⊕ F( J)
q ⊆ Fn

q .

Counting dimensions we see that the space on the left hand side is of dimen-
sion k + (d− 1) = n, since C is MDS. Thus C ⊕ F( J)

q = Fn
q .

Conversely, assume that C ⊕ F( J)
q = Fn

q for some J ⊆ n with |J| = d − 1.
Then k = dim(C) = n− d + 1, i.e. C is MDS. The equivalence between the first
and the third statement can be derived from 2.5.2 together with 1.7.6. �
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2.5.4 Theorem Suppose that C is an (n, k)-code with systematic generator matrix Γ =
(Ik | A). Then C is MDS if and only if, for each i = 1, . . . ,min{k, n − k}, all
i × i-submatrices of A are regular.

Proof: We assume that C is an MDS-code. We introduce some notation. For a
matrix M, and for X and Y subsets of the sets of row and column indices, let
MX,Y be the submatrix containing the elements of A which are at the intersec-
tion of rows indexed by elements of X and columns indexed by elements of Y.
Moreover, X denotes the complement of X in the set of row indices. Now con-
sider Γ = (Ik | A) and let k = {0, . . . , k− 1} and {k, . . . , n− 1} = n \ k be index
sets for the matrix A = (aij)i∈k, j∈n\k. Assume that A′ = AX,Y is a submatrix
of A consisting of i ≤ min{k, n − k} rows and columns, i.e. with X ⊆ k, and
Y ⊆ {k, . . . , n − 1} and |X| = |Y| = i. Consider the matrix of k columns of Γ

A′′ =

(
IX,X AX,Y

IX,X AX,Y

)
=

(
0 A′

Ik−i ∗

)
,

where 0 denotes the i × (k − i) zero matrix and where ∗ denotes a (k − i) × i-
matrix. According to 2.5.1, A′′ is regular and hence det A′′ = ±det A′ �= 0.

The converse of this statement follows directly from 2.5.1. �

2.5.5 Example We consider the (4, 2)-code C over the field with four elements F4 =
{0, 1, α, α + 1} subject to the relation α2 = 1 + α with Γ = (I | A), where

A =

(
α α2

α2 α

)
.

Since each i × i-submatrix of A is regular (i = 1, 2), C is MDS. �

2.5.6 Theorem Up to linear isometry, each MDS-code is generated systematically by a
matrix Γ = (I | B), where B is of the form

B =

(
1 1

1� ∗

)
.

Proof: Up to isometry we may assume that the code is generated systemati-
cally by the matrix Γ = (I | A) where A =

(
aij

)
i∈k,j∈n\k . By 2.5.4, all entries of

A are nonzero, so that

D = diag
(

1,
a1,k

a0,k
, . . . ,

ak−1,k

a0,k
, a−1

0,k , . . . , a−1
0,n−1

)
is a regular diagonal matrix. From 1.7.3 we know that (I | A) and (I | D ∗ A) =
(I | B) generate linearly isometric codes. Moreover, we know from 1.7.2 that

bij = d−1
ii aijdjj.
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Hence, an easy check shows that the leftmost column and the top row consist
of all-one vectors, as stated. �

Let us now discuss the question of when MDS-codes exist.

2.5.7Theorem For each (n, k)-MDS-code over Fq with 2 ≤ k ≤ n − 2 the inequality

q ≥ max{k, n − k} + 1

holds true.

Proof: By 2.5.6, each MDS-code is linearly isometric to an MDS-code with a
systematic generator matrix Γ = (I | B), where

B =

(
1 1

1� B′

)
.

By 2.5.4, each i × i-submatrix of B is regular. In particular, the 2 × 2-subma-
trices containing two elements of the highest row or of the left column have
determinants

det

(
1 1
α α′

)
= α′ − α and det

(
1 α

1 α′

)
= α′ − α

distinct from zero. Consequently, the elements in the rows and in the columns
of B′ are pairwise distinct and also distinct from 0 and 1. For this reason, the
alphabet Fq contains at least max{k − 1, n − k − 1} + 2 elements. �

2.5.8Example By the previous theorem, there are no nontrivial binary MDS-codes.
For n ≥ 4, (n, 2)-MDS-codes over Fq with q ≥ n − 1 exist, they are generated
by (I | B) where B is any matrix of the form

B =

(
1 1 . . . 1
1 b1,3 . . . b1,n−1

)
,

where b1,3, . . ., b1,n−1 are pairwise different field elements, which are all dis-
tinct from both 0 and 1. �

2.5.9Theorem For any n ≥ 6 there exists an (n, 3)-MDS-code over Fq with q = 2m and
q ≥ n − 2.

Proof: Assume that 0, b3 := 1, b4, . . ., bn−1 are pairwise distinct elements in Fq

with q = 2m. From q ≥ n − 2 it follows that m ≥ 2. We form the matrix

B =

⎛⎜⎝ 1 1 . . . 1
b3 b4 . . . bn−1

b2
3 b2

4 . . . b2
n−1

⎞⎟⎠ ,
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and consider the (n, 3)-code C over Fq generated by (I | B). From 2.5.4 it
follows that C is MDS: To begin with, each 3 × 3-submatrix of B is a Vander-
monde matrix and hence regular (cf. Exercise 2.5.2). Furthermore, each 2 × 2-
submatrix (

bi bj

b2
i b2

j

)
and

(
1 1
bi bj

)
, 3 ≤ i < j ≤ n − 1,

is non-singular. Finally, the elements 0, 1, b2
4, . . ., b2

n−1 are pairwise distinct,
since by 3.2.13 the Frobenius mapping F2m $ α �→ α2 ∈ F2m is an automor-
phism. Hence, the submatrices(

1 1
b2
i b2

j

)
, 3 ≤ i < j ≤ n − 1,

are also regular. �

The condition q = 2m turns out to be necessary (see Exercise 2.5.5).

2.5.10 Example By 2.5.9, the (6, 3)-code over F4 = {0, 1, α, α + 1} (α2 = α + 1) with
generator matrix

Γ =

⎛⎜⎝ 1 0 0 1 1 1
0 1 0 1 α α2

0 0 1 1 α2 α

⎞⎟⎠
is MDS. This code is known as the hexacode. �

Let Nq(k) be the maximal length of an MDS-code of dimension k over Fq.
From 2.5.7 and 2.5.9 we obtain the important

2.5.11 Corollary For q = 2m we have Nq(3) = q + 2. �

For all other cases we have the following conjecture ( [139], p. 328 ):

Nq(k) =
{

q + 1 if 2 ≤ k ≤ q,
k + 1 if q < k.

Finally, let us consider the weight distribution of MDS-codes.

2.5.12 Theorem Suppose that C is an (n, k)-MDS-code over Fq. We denote by Ai the
number of codewords in C of weight i. Then the following holds:

A0 = 1, A1 = A2 = . . . = An−k = 0.

For each i ∈ { 0, 1, . . . , k − 1 }:

An−i =
k−1

∑
m=i

(−1)m−i
(

m
i

)(
n
m

)
(qk−m − 1).
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Proof: For each subset J of n = {0, . . . , n − 1}, let C(J) denote the set of code-
words in C whose components cj for j ∈ J are all zero. i.e.

C(J) :=
{
c ∈ C

∣∣ ∀ j ∈ J : cj = 0
}

.

Since each nonzero codeword in C has at most k − 1 zero entries, C(J) = ∅ for
each J with |J| ≥ k.

For each m with 0 ≤ m ≤ k − 1 we determine the cardinality of the set

S =
{

(J, c)
∣∣∣∣ J ∈

(
n
m

)
, 0 �= c ∈ C(J)

}
2.5.13

in two different ways. (Here (n
m) indicates the set of all m-subsets of the set

n.) On the one hand, each k-subset of n is an information set of C, and hence
by 1.7.6 for each J ⊆ n with |J| ≤ k − 1 we have

|C(J)| = qk−| J|.

Thus the set S is of cardinality(
n
m

)
· (qk−m − 1).

On the other hand, we may decompose the set of codewords of C into sets

Ci := {c ∈ C | wt(c) = n − i} for 0 ≤ i ≤ n.

Thus, the coefficients of the weight distribution are An−i = |Ci|. If i ≥ m,
for each c ∈ Ci there are exactly ( i

m) subsets J of n of cardinality m such that
c ∈ C(J). Hence, there exist exactly ( i

m) · An−i pairs of the form (J, c) with
c ∈ Ci ∩ C(J). Thus, the set S of 2.5.13 is of cardinality

k−1

∑
i=m

(
i
m

)
· An−i.

This way we obtain the following system of k equations in the k indeterminates
An−k+1, . . ., An:

k−1

∑
i=m

(
i
m

)
· An−i =

(
n
m

)
· (qk−m − 1), 0 ≤ m ≤ k − 1.

Rearranging the indeterminates as An, . . . , An−k+1, the coefficient matrix of
this system of equations turns out to be upper triangular with ones along its
main diagonal, i.e. with determinant 1. Therefore this system has a unique
solution, which is given by (Exercise 2.5.6)

An−i =
k−1

∑
m=i

(−1)m−i
(

m
i

)(
n
m

)
(qk−m − 1), 0 ≤ i ≤ k − 1. �
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The weight distribution gives an upper bound for Nq(k).

2.5.14 Lemma For each k ≥ 2 we have Nq(k) ≤ q + k − 1.

Proof: Every (n, k)-MDS-code over Fq satisfies

An−k+2 =
(

n
k − 2

)
(q2 − 1) − (k − 1)

(
n

k − 1

)
(q − 1)

=
(

n
k − 2

)
(q − 1)(q − 1− (n − k)).

As An−k+2 cannot be negative, the factor q − 1− n + k is ≥ 0. �

Exercises

E.2.5.1 Exercise Prove that trivial MDS-codes of length n exist over every finite field.

E.2.5.2 Exercise Consider field elements α0, . . . , αn−1. Show that the Vandermonde ma-
trix ⎛⎜⎜⎜⎜⎝

1 α0 α2
0 . . . αn−1

0
1 α1 α2

1 . . . αn−1
1

...
...

1 αn−1 α2
n−1 . . . αn−1

n−1

⎞⎟⎟⎟⎟⎠
has as determinant the expression

∏
i<j

(αj − αi) =
n−2

∏
i=0

n−1

∏
j=i+1

(αj − αi).

In particular, this determinant is nonzero provided that αi �= αj for i �= j.

E.2.5.3 Exercise Show that every shortened MDS-code is again MDS.

E.2.5.4 Exercise Construct a (5, 2)-MDS-code over the field F5.

E.2.5.5 Exercise Prove that there is no (7, 4)-MDS-code over F5. Hint: use 2.5.4.

E.2.5.6 Exercise Prove (
n
m

)(
m
p

)
=

(
n
p

)(
n − p
m − p

)
, p ≤ m ≤ n.
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Verify that for 0 ≤ m ≤ n the identity
n

∑
k=m

(−1)n−k
(

n
k

)(
k
m

)
=

{
0 if n �= m,
(−1)n−m if n = m

holds true. Fill in the missing details of the proof of 2.5.12.

E.2.5.7Exercise Show that the nonzero coefficients in the weight enumerator of the
hexacode of Example 2.5.10 are A0 = 1, A4 = 45 and A6 = 18.

E.2.5.8Exercise Determine the weight enumerator of the (6, 3)-MDS-code over F5

which is generated by ⎛⎜⎝ 1 1 1 4 0 0
3 2 1 0 4 0
4 3 1 0 0 4

⎞⎟⎠ .

E.2.5.9Exercise Prove that for n − k + 1 ≤ r ≤ n the coefficients Ar in the weight
distribution of an (n, k)-MDS-code over Fq are given by

Ar =
(

n
r

)
∑

i∈r−d+1
(−1)i

(
r
i

)
(qr−i−d+1− 1).

E.2.5.10Exercise Show that the two (10, 5)-codes over F9 generated by⎛⎜⎜⎜⎜⎜⎝
1 1 1 1 1 2 0 0 0 0

2 + η 1 + η η 2 1 0 2 0 0 0
1 + η 1 + 2η 2η η 1 0 0 2 0 0
2η 2 + 2η 1 + η 2 + η 1 0 0 0 2 0

1 + 2η 2 2 + 2η 2η 1 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠
and ⎛⎜⎜⎜⎜⎜⎝

1 1 1 1 1 2 0 0 0 0
2 + η 1 + η η 2 1 0 2 0 0 0
2 + 2η 2 + η 2η 1 + η 1 0 0 2 0 0

2η 2 + 2η 2 1 + 2η 1 0 0 0 2 0
1 + 2η η 2 + η 2 + 2η 1 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠
are semilinearly inequivalent and MDS. Here, we have F9 = {a + bη | a, b ∈
F3} subject to the relation η2 = 2η + 1. (The first code is obtained from a ratio-
nal normal curve, with automorphism group PΓL2(9) of order 1440. The sec-
ond code is obtained from the Glynn-arc [69] in PG4(9), with automorphism
group PGL2(9) of order 720. Both automorphism groups act transitively on the
10 coordinates. It is known that there is no (11, 6)-MDS-code over F9.)




