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1 Linear Codes
In the first chapter, we introduce the basic definitions, methods and results
from the theory of error-correcting linear codes and its applications.

1.11.1 Introduction

As Claude Shannon, the founding father of modern Information Theory puts
it in [178],

“The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.”

Error-correcting codes are used to improve the reliability of such commu-
nication systems. We may think of communication across large distances such
as spacecraft communication, or basically any form of information transmis-
sion, including playing back a piece of music which was recorded previously
and stored on some media, for instance. In any case, the goal is to transmit and
reproduce the information as accurately as possible, even under unfavorable
circumstances, like in an error-prone environment.

In order to make a mathematical approach possible, we introduce the fol-
lowing communication model. It has a sender and a receiver and they are
supposed to communicate in one direction, so that information passes from
the sender to the receiver. Thus, we suppose that between the sender and the
receiver there is a communication system, a channel, and all information passes
through this directed channel:

receiversender � channel

�

noise

�

This channel may be unreliable, e.g. we are expecting that information may be
altered as it is passing through. Often, this is called a noisy channel, appealing
to the common experience that in a noisy room full of people it is usually im-
possible to understand a word someone has said at the other end of the room.
Of course, we will make assumptions about the behavior of the channel, and
it is clear that the channel should not be too bad, i.e. we require that a certain
amount of information passes through correctly. Hence, we assume that the
output of the channel is a more or less damaged version of the original input.
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We suppose, for example, that the length of the signals, or codewords as we call
them, that are sent through the channel is never changed by noise, and that, if
noise inflicts a codeword, a letter is changed into another letter with the same
probability for each letter. Such channels are called symmetric. On the receiv-
ing end, a process which is called error-correction takes place. Given the altered
or damaged codeword, one tries to recover the original one by correcting er-
rors. Of course, this is a difficult task as it is not clear where the error may have
occurred (or if an error has occurred at all).

On the other end of the channel, the sender is trying to help by manip-
ulating the messages before they are transmitted. This can be done by adding
redundancy, for example, by repeating the message. The purpose of this is to
protect the message, so that the influence of noise can later be corrected up to
a certain degree.

A message is defined to be a finite sequence of elements of a given alpha-
bet. Subsequently, such a sequence is also referred to as a word. There is no
restriction in assuming that all messages are of a fixed length, say k. If the mes-
sage is very long, we may break it up into pieces, and each such piece may be
considered a message by itself. Hence without loss of generality, we assume
that the messages are of size k. To enable error-correction, a process called en-
coding takes place. Here, we replace the message words by possibly longer
sequences over the same alphabet, the codewords. The added redundancy
will later enable the receiver to correct errors which may have occurred dur-
ing transmission. The only requirement at this point is that the encoding map
shall be injective, for otherwise the receiver would not be able to decide which
message was sent, even under the most favorable circumstances when no error
has occurred during transmission. It is customary to denote the length of code-
words by n. The process of correcting errors and obtaining back the message
is called decoding. This refined communication model is depicted in Fig. 1.1.

�
�

�
�message

�

encoder

�

receiversender � channel

�

noise

�

�
�

�
�message?

�

decoder

�

Fig. 1.1 The refined communication system
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The arrows indicate that the communication is one-way. In particular, the pos-
sibility of asking for retransmission shall be excluded. Hence, error correc-
tion will be the main topic while error detection will be less important. As an
aside, it should be mentioned that there are indeed codes which are based on
the idea that bidirectional communication is possible. An important example
is the well-known ISBN-code, which assigns to each book a unique number
which may be used to identify the book. This number is composed of a certain
number of digits. One digit plays the special role of a check digit. This check
digit allows the detection of single errors and of interchanges of adjacent dig-
its – a very frequent mistake. Of course, the idea is that the message can be
repeated once the receiver has flagged the first transmission as erroneous. See
Exercises 1.1.1–1.1.3 for details on this and similar codes. For further reading,
see [98], [99], and [47].

Here is a very easy example that demonstrates the metric principle which is
used for error detection and error correction. Suppose that we want to transmit
over a noisy channel a message which is just one of the two answers “yes” or
“no”. These two messages can be identified with the one-element sequences
1 for “yes” and 0 for “no”. So, k = 1 in this case, and the alphabet consists
of the two symbols 0 and 1. A particularly simple way of adding redundancy
is to use the well-known pedagogical principle of repetition of the message in
question, or, in other words, to use the repetition code. Assume we have agreed
to use three-fold repetition, i.e. n = 3 · k = 3 · 1 = 3. Then we intend to send as
codewords sequences which are either 111 (for “yes”) or 000 (for “no”). Thus,
the code in question is the set {000, 111}. Moreover, we assume that this fact is
known to the receiver. It motivates the following strategy:

If neither 111 nor 000 but another sequence of length 3 is received, then the
transmission has been distorted and there must be at least one error in the
received sequence.

Hence, to begin with, we see that this repetition code is able to detect a certain
amount of errors, in our particular example one or two. This means that in
these cases we are certain that the transmission of the message is erroneous.
But we should be aware of the fact that in the case of three errors the receiver
cannot detect them. Moreover, the receiver can correct the received word into
the original one, provided that not too may errors have occurred.

If the receiver obtains one of the sequences 110, 101, 011, 100, 010, or 001,
and if in addition we assume that there was only one symbol changed by noise,
then we can simply decode the received word into the codeword which is
most similar, i.e. into 111 in the first three cases, and into 000 in the latter
three cases.
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Hence, using the three-fold repetition code we are in a position to correct a
single error. Our strategy is based on the fact that the messages that have to
be sent, namely the sequences 111 or 000, differ in three places. The other six
possibly received sequences differ from the original sequences in either one or
two places. In fact, for each of the 23 = 8 sequences which can be received,
there is exactly one of the two vectors 111 and 000 which is most similar.

In order to demonstrate this principle in more detail, let us see what hap-
pens if we use four-fold repetition. Besides the correct sequences 1111 and
0000 there are fourteen other ones that can be received when errors have oc-
curred. In this case we are in a slightly better position than with three-fold
repetition: We can detect up to three errors (to be exact, we realize that errors
have occurred), but we are not able to correct more than one error. The error
correcting property has not improved. The reason is that in the case of two
errors the received sequence consists of two letters 1 and two letters 0. In this
situation we are unable to tell which codeword has been sent. In the case of
five-fold repetition we can recognize up to four errors, and we can correct at
most two errors, and so on.

The metric principle used is based on the fact that all the sequences that can
occur at the receiver side differ from the correct sequences 1 . . . 1 and 0 . . . 0,
of length n, in at most 
n/2� many places. The number of places (or coor-
dinates) in which two codewords differ is called the Hamming distance of the
two codewords in question. The least Hamming distance between any two
distinct codewords is called the minimum distance of the code. If d is the mini-
mum distance of a linear code – not necessarily a repetition code – then up to
t := 
(d − 1)/2� errors can be corrected, while up to d − 1 errors are recog-
nized. That is, if no more than d − 1 errors occur, we detect that something is
wrong. Later on, we will make this more precise.

The quality of a code with messages of length k and codewords of length n
is indicated by

the quotient k/n, the information rate of the code, which measures the effort
needed for the transmission of an encoded message,

the relative minimum distance d/n which gives roughly twice the proportion
of errors that can be corrected in each encoded message (it is also called the
error-correction rate),

the complexity of the encoding and of the decoding procedure.

Summarizing, the main goal of Coding Theory is to provide codes with high
information rate, high error correction rate and with a low complexity of en-
coding and decoding.
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An important and intensely studied class of codes are the linear codes. These
are just the k-dimensional subspaces of an n-dimensional vector space over
a finite field. They form a subclass of the more general class of block codes,
which are merely subsets of an n-dimensional space. The structure of linear
codes can be analyzed using methods of Linear Algebra and Algebra as well
as Combinatorics and Geometry.

In this introductory chapter, our goal is to discuss the fundamentals of the
theory of linear codes. We also classify linear codes according to their error-
correcting qualities. Codes with similar metric structure are collected into
isometry classes of codes. Finally, we present an algorithm to determine the
minimum distance of a given linear code. In later chapters we will deepen the
theory, the construction, and the generation of linear codes and their applica-
tion, and we will describe some important families of codes.

Exercises

E.1.1.1Exercise The ISBN-code (“International Standard Book Number”) is a se-
quence of ten elements x10, . . . , x1 taken from the set {0, 1, . . . , 9, X}. This se-
quence is divided into four parts of variable length, which must be separated
by hyphens or spaces. The hyphens or spaces increase the readability and in-
dicate the borders between the four different parts. These characters, however,
do not influence the ability of the code to detect and correct errors.

1. The first subsequence x10, . . . (mostly of length 1) encodes the language, or,
rather, the language region in which the book was printed. 0 stands for
English speaking countries, 3 for the German speaking ones.

2. The next subsequence encodes the publishing company. It consists of at
least two entries.

3. The sequence of the following entries, . . . , x2, is a number chosen by the
publisher to identify the book.

The entries x10, . . . , x2 are taken from the set {0, 1, . . . , 9}.

4. The final entry, x1, is the residue modulo 11 of −∑10
i=2 xi · i. If this residue

happens to be equal to 10, one puts x1 := X.

Show that this code recognizes a single error as well as an interchange of two
neighboring entries, and that it allows the reconstruction of an unreadable en-
try.
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E.1.1.2 Exercise The ISSN-code (“International Standard Serial Number”) is a se-
quence of eight elements x8, . . . , x1 taken from the set {0, 1, . . . , 9, X}. This
sequence is divided into two parts, each consisting of four digits, which must
be separated by a hyphen. Similar to the ISBN-code, the entries x8, . . . , x2 are
taken from the set {0, 1, . . . , 9}, and the final entry x1 is determined such that
∑8

i=1 xi · i ≡ 0 mod 11 is satisfied. If x1 = 10, then x1 is represented as X. This
code has exactly the same properties as the ISBN-code.

1. Determine the ISSN-number of the Bayreuther Mathematische Schriften
from the sequence ISSN 0172-?062where the digit x4 is not readable.

2. The number ISSN 0174-1062 is not a valid ISSN-number. Assuming that
exactly one error occurred, determine all valid ISSN-numbers which could
be represented by the given one.

E.1.1.3 Exercise The EAN-code (“European Article Number”) has two basic formats,
the 8 and 13 digit variants. The 13 digit code is more common, so we discuss
it here. The 8 digit code is generally used where space is restricted. The EAN
code is intended as a world wide standard (although some countries use other
systems), therefore, no two products may have the same EAN number. To
ease the administration of number allocation, each country using EAN has
a country identifier at the start of the code. For instance the digits 00 to 13
identify the USA and Canada, 40 to 44 Germany, and 90 to 91 Austria. Other
countries have 2 or 3 digit prefixes. The rest of the EAN code is divided into
the manufacturer number which can be of variable length, the item reference
number, assigned by the manufacturer, and the check digit. In general, both
the manufacturer number and the item reference number consist of 5 digits.
This means that in this case a manufacturer can have up to 105 products. For
that reason, those manufacturers which produce a smaller number of products
get longer manufacturer codes. The check digit is the last number. All 13 digits
x13, . . . , x1 are taken from the set {0, 1, . . . , 9}. The check digit x1 is determined
by the other digits such that

∑
i≡1 mod 2

xi + 3 · ∑
i≡0 mod 2

xi ≡ 0 mod 10

is satisfied.

1. Show that the EAN-code recognizes a single error and allows the recon-
struction of an unreadable entry, but in general it does not detect a swap of
two neighboring entries.

2. The EAN of books can easily be obtained from their ISBN-number. As
prefix, the three digits 978 are used, regardless of the country in which the
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book was published. Then the ISBN-number with the check digit stripped
is appended. Finally, the EAN check digit is computed from these 12 digits
as described above. Compute the EAN-code of the present book!

The EAN is also coded in a machine-readable version as a barcode. For this
purpose, the EAN is encoded as a binary sequence of bars and spaces. A 1 in
the code is represented by a bar section and a 0 by a space section. Consecutive
1’s or 0’s are combined to form wider bars or spaces. The EAN barcode consists
of the following parts:

The left-hand starting section of the form 101,

binary encodings of the digits x12, . . . , x7,

the center pattern of the form 01010,

binary encodings of the digits x6, . . . , x1,

the right-hand closing section of the form 101.

For the encoding of x12, . . . , x1 three different codes are used, codes A, B,
and C. (See also [104, 1.2.5 Beispiel].) The codes A and B are applied for en-
coding x12, . . . , x7, and code C is used for encoding x6, . . . , x1. So far the digit
x13 has not been encoded. Depending on the value of x13, different sequences
of the codes A and B are applied for the encoding of x12, . . . , x7. They are given
in the table below:

x13 x12 x11 x10 x9 x8 x7

0 A A A A A A
1 A A B A B B
2 A A B B A B
3 A A B B B A
4 A B A A B B
5 A B B A A B
6 A B B B A A
7 A B A B A B
8 A B A B B A
9 A B B A B A

digit code A code B code C
0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1001110
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 1001000
9 0001011 0010111 1110100

We realize that for encoding x12, code A is always used. If x13 = 0 then all
digits x12, . . . , x7 are encoded with code A. In all other cases, codes A and B
are each used to encode three digits.

The three codes A, B, and C encode each digit as a binary word of length
7. Each codeword consists of two bar and two space sections. No bar or space
is longer than four elements. All codewords of codes A and B start with 0 and



10 1. Linear Codes

end with 1. All codewords of code C start with 1 and end with 0. Actually, it
would be enough to describe the codewords of code A. In order to obtain the
codewords of code C from code A, exchange the 0’s and 1’s in the codewords
of A. In order to obtain the codewords of code B from code C, reverse the
order of each codeword of C.

Moreover, we realize that no codeword occurs in two different codes, and
no codeword of A is the reverse of a codeword in C. This fact, together with
the rule that x12 is always encoded with code A allows the determination of
the direction (from left to right or from right to left) in which a barcode is
read. When reading from left to right, after the left-hand starting section 101,
the reader comes across an element of code A. When reading from right to
left, after the reverse of the right-hand closing section, which is again 101, the
reader comes across the reverse of an element of code C. Consequently, after
reading the first digit it is possible to determine the direction of reading.

Finally, let us consider the following example. The book Codierungstheorie,
Springer, Berlin, 1998, by some of the present authors and K.-H. Zimmermann,
has the ISBN 3-540-64502-0. First, this number is encoded as an EAN of the
form 9783540645023 where the last 3 is the EAN check digit. Since x13 = 9, we
have to apply the codes ABBABA for the encoding of x12, . . . , x7. This way we
obtain the following binary representation of the bar code of 9783540645023.

101 left-hand starting
0111011 0001001 0100001 0110001 0011101 0001101 x12 . . . x7

01010 center pattern
1010000 1011100 1001110 1110010 1101100 1000010 x6 . . . x1

101 right-hand closing

This gives a barcode of the form:

� ��������	
��
��
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1.21.2 Linear Codes, Encoding and Decoding

As we have seen, the goal of Coding Theory is to provide methods which
improve the reliability of communication via a noisy channel. For example, we
may think of the transmission of satellite photos taken in space and sent back
to earth. For this purpose, one decomposes the picture into a large number of
pixels (which stands for “picture elements”), each pixel having a certain grey
value, for example. The grey value is then mapped to a number, which in turn
is converted to a binary sequence by means of the binary representation of an
integer (i.e. one of 0, 1, 10, 11, 100, 101, 110, 111 etc.). Hence, the messages,
i.e. the grey values of the pixels, can be considered as words over the alphabet
{0, 1}.

For example, in the case of six values of grey, we have the messages

0, 1, 10, 11, 100, 101.

By padding with zeros up-front, we can make the sequences all have length 3.
We can also add the remaining sequences of that length over the given alpha-
bet, which in our case gives

000, 001, 010, 011, 100, 101, 110, 111.

The reader certainly knows that the two elements 0 and 1 are the elements of a
field F, the binary field. The above sequences can be considered as the vectors
of F3, the three-dimensional vector space over F,

F3 = {000, 001, 010, 011, 100, 101, 110, 111}.

This vector space is called the message space.

In more general situations it will be a k-dimensional vector space Fk over a
finite field F, which may be different from the field of two elements, of course.
Later on we will see that the order defines a field up to isomorphism. There-
fore, a field consisting of q elements is indicated by Fq. Moreover, it will turn
out that the orders q of finite fields are exactly the prime powers q = pm, p
a prime and m ∈ N∗ := N \ {0}. For example, for each prime number p, the
integers 0, 1, 2, . . . , p − 1 form the field Fp with respect to addition and multi-
plication modulo p. In the case when the original finite alphabet A does not
consist of elements of a finite field, then we simply take a suitable finite field
F with at least |A| elements and rename the letters of A by elements of F.

As we have seen, the encoding map should be injective. This means that we
are looking for an embedding of Fk into some space Fn, where n ≥ k. In order
to add redundancy, we usually let n be strictly larger than k. The encoding of
messages is done using an encoder

γ : Fk → Fn,
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an injective linear mapping of the message space Fk into Fn. For example, we
may simply repeat the messages twice, which yields the following embedding
of F3 into F6:

γ(F3) = {000000, 001001, . . . , 110110, 111111} ⊂ F6.

1.2.1 Definition (linear codes, generator matrices) The image

C = γ(Fk)

of the encoder γ is a subspace of Fn which is isomorphic to the message space
Fk. We call C a linear (n, k)-code or briefly an (n, k)-code over F. The number k
is its dimension and the number n will be called the block length or simply the
length of the code C. The vectors in C are the codewords or codevectors.

The encoder can be expressed as multiplication by a matrix Γ of rank k.
Using the row convention, i.e. by writing vectors as row-vectors, Γ turns out to
be a k × n-matrix. The embedding is then given by the map

γ : Fk → Fn : v �→ v · Γ,

and we obtain that
C = γ(Fk) = {v · Γ | v ∈ Fk}.

For this reason, the matrix Γ, which is in general not uniquely determined, is
called a generator matrix of C. Its rows form a basis of C.  

1.2.2 Example If k = 1 and F1 = {0, 1} is the message space, then the three-fold
repetition code C = {000, 111}, which is an embedding of F1 into F3, has the
generator matrix

Γ = ( 1 1 1 ) .

In this particular case, the generator matrix is uniquely determined, but this is
exceptional. For example, in the case of k = n = 3, each regular 3× 3-matrix
over F is a generator matrix. �

Hence, there are usually plenty of generator matrices of a given code C, and
it is clear from Linear Algebra that they can be obtained from Γ by applications
of invertible matrices :

1.2.3 Theorem The set of all generator matrices of a linear code with generator matrix Γ is

{B · Γ | B ∈ GLk(F)} ,

where GLk(F) is the set of all regular k × k-matrices over F. �
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Now we describe a way of considering Fn as a metric space in order to justify
the metric principle used in the decoding process as described in the introduc-
tion. Usually we indicate vectors v ∈ Fn in the form

v = (v0, v1, . . . , vn−1).

Throughout the book we consistently use the recursive definition of natural
numbers as sets,

n := {0, . . . , n − 1}, if n > 0, 0 := ∅.

Thus, a vector v can be considered as a mapping from this set n to F, with vi

the image of i ∈ n under v,

v : n → F : i �→ vi.

In this sense, the vector space can be identified with a set of mappings:

Fn = {v | v : n → F} .

Of course, we also use the natural number n as the cardinality of sets of this
order, but it should be always clear from the context if n means a set or a
cardinality of a set.

The metric principle which we are going to describe is based on the follow-
ing fact:

1.2.4Definition and Theorem (Hamming metric) The function

d : Fn × Fn → N : (u, v) �→ |{i | i ∈ n, ui �= vi}|

is a metric on the vector space Fn, the Hamming metric. This means that the function
d satisfies

d(u, v) = 0 ⇐⇒ u = v,

d(u, v) = d(v, u),

d(u, v) ≤ d(u, w) + d(w, v),

for all u, v, w ∈ Fn. The nonnegative integer d(u, v) is called the Hamming dis-
tance between the vectors u, v ∈ Fn. Hence, the pair (Fn, d) is a metric space, the
Hamming space of dimension n over F. It will also be denoted by

H(n, F) or by H(n, q),

if F = Fq. The Hamming distance is invariant under translation and multiplication
by nonzero scalars: For u, v, w ∈ H(n, F) and λ ∈ F, λ �= 0,

d(u, v) = d(u + w, v + w), and d(u, v) = d(λu, λv).
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Proof: The equations d(u, v) = 0 and u = v are obviously equivalent, and the
symmetry of d is trivial. To show the triangle inequality

d(u, v) ≤ d(u, w) + d(w, v),

we only note that the i-th component contributes to the left hand side if and
only if ui �= vi, in which case it also contributes to the sum on the right hand
side, since then ui �= wi or vi �= wi. The invariance under translation and
scalar multiplication follows from ui = vi ⇐⇒ ui + wi = vi + wi and from
ui = vi ⇐⇒ λui = λvi. This completes the proof. �

A measure for the error correction capabilities of a linear code C is the least
Hamming distance between two distinct codewords. The reason is that this
value determines the packing radius of C, which is the largest integer t such
that the balls of radius t centered at codewords are all disjoint (intuitively, we
can “pack” the balls).

1.2.5 Definition (minimum distance) If C denotes a linear code, then its minimum
distance is defined as

dist(C) := min{d(c, c′) | c, c′ ∈ C, c �= c′}.  

A glance at Fig. 1.2 shows that the packing radius is the greatest integer
which is strictly less than half the value of the minimum distance.

y

t

c

c′

?

? ?

≥ d ≥ 2t + 1

Fig. 1.2 The maximum-likelihood-decoding method

1.2.6 Corollary The packing radius of a linear code C is 
(dist(C)− 1)/2�. �

The crucial point is the following decoding method, which is based on the
concept of the packing radius:
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1.2.7Maximum-likelihood-decoding It is possible to correct up to

t := 
(dist(C)− 1)/2�

errors in the following way (cf. Fig. 1.2):

Using maximum-likelihood-decoding, a vector y ∈ Fn is decoded into a code-
word c ∈ C which is closest to y with respect to the Hamming metric. In formal
terms: y is decoded into a codeword c ∈ C, such that

d(c, y) ≤ d(c′, y), for all c′ ∈ C.

If there are several c ∈ C with this property, one of them is chosen at random.

If the codeword c ∈ C was sent and no more than t errors have occurred during
transmission, the received vector is

y = c + e ∈ Fn,

where e denotes the error vector. It satisfies

d(c, y) = d(e, 0) ≤ t,

and hence c is the unique element of C which lies in a ball of radius t around y.
A maximum likelihood decoder yields this element c, and so we obtain the correct
codeword. �

We mention that codes of dimension 0 < k = n obviously have minimum
distance d = 1, and soon we will see that in the case k = n − 1 we have d ≤ 2.

If we want to evaluate the minimum distance of a code, we can, of course,
evaluate the distances d(c, c′) of all(|C|

2

)
=

(|F|k
2

)
unordered pairs of different codewords. But this is a very inefficient way to do
so. A better approach is the following. For a vector v, we denote by

wt(v) := d(v, 0),

the Hamming weight of v. It is just the number of components of v which are
nonzero. For a code C, the minimum weight of C is defined as

min{wt(c) | c ∈ C, c �= 0},

and it is not difficult to show (Exercise 1.2.8) that, because of linearity, the
following is valid:
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1.2.8 Corollary The minimum distance of linear codes is the minimum weight:

dist(C) = min {wt(c) | c ∈ C \ {0}} . �

An (n, k)-code C with minimum distance d is called an (n, k, d)-code or a
linear code of type (n, k, d). If C is an (n, k, d)-code over a field with q elements,
we also say that it is an (n, k, d, q)-code.

1.2.9 Corollary Using an (n, k, d)-code in connection with maximum-likelihood-decoding,
we can correct up to

t := 
(d− 1)/2�

errors. For this reason, (n, k, d)-codes are sometimes called t-error-correcting linear
codes, for t := 
(d − 1)/2�. Moreover, such a code is (d − 1)-error-detecting since
a word which was received with at least one and at most d − 1 errors can never be
another codeword. �

This is of course the reason why the minimum distance of a code is of such
importance.

We are now able to refine our communication model. Denoting by m a
message, and by M the message space Fk, we are faced with the situation of
Fig. 1.3.

�
�

�
�message m ∈ M

�
encoder

m �→ c ∈ C ⊆ H(n, q)

�
receiving
y = c + e

sending codeword
c

� channel

�

error vector e

�

�

decoder

error correction
H(n, q) $ y �→ c′ ∈ C

�

c′ �→ m′

�

�
�

�
�message m′ ∈ M

Fig. 1.3 The refined communication system once again

Of course, it is not always true that the message m′ after decoding is equal
to the message m which was sent originally. The main point is that maximum
likelihood decoding ensures that m = m′, provided that wt(e) ≤ 
(d− 1)/2�.
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Exercises

E.1.2.1Exercise Assume that V and W are two finite dimensional vector spaces over
F with bases

B = (b(0), . . . , b(k−1)) and C = (c(0), . . . , c(n−1)).

Prove the following: Every vector space homomorphism ϕ : V → W is unique-
ly determined by its values on a basis of V. Assume that

ϕ(b(i)) = ∑
j∈n

κijc
(j), κij ∈ F,

for i ∈ k. If we collect the elements κij in form of a matrix we obtain the matrix
representation

MB,C(ϕ) := (κij) =

⎛⎜⎜⎜⎜⎝
κ00 κ01 . . . κ0,n−1

κ10 κ11 . . . κ1,n−1
...

...
. . .

...
κk−1,0 κk−1,1 . . . κk−1,n−1

⎞⎟⎟⎟⎟⎠
of ϕ with respect to the bases B and C. Conversely, prove that any k× n-matrix
(κij) over F determines a vector space homomorphism ϕ : V → W such that
MB,C(ϕ) = (κij). The homomorphism ϕ is given by

ϕ
(

∑
i∈k

vib
(i)

)
= ∑

j∈n
wjc

(j)

with

(w0, . . . , wn−1) = (v0, . . . , vk−1) · (κij).

This shows that a generator matrix Γ of an (n, k)-code over F describes a vector
space homomorphism ϕ : Fk → Fn.

In particular, if B = (b(0), . . . , b(k−1)) is a basis of V, every endomorphism
of V can be represented as a k × k-matrix over F with respect to this basis.

E.1.2.2Exercise Let V and W be two finite dimensional vector spaces over F of di-
mension k and n respectively. Show that a homomorphism ϕ : V → W is in-
jective if and only if dim(ϕ(V)) = dim(V). Hence, the rows of any matrix
representation (κij) of ϕ are linearly independent, and the rank of (κij) equals
k, the number of its rows. Moreover, ϕ : V → W is an isomorphism if and only
if ϕ is injective and n = k.
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E.1.2.3 Exercise Assume that V is a k-dimensional vector space over F with basis B =
(b(0), . . . , b(k−1)). The matrix representation MB,B(ϕ) of any automorphism ϕ

of V is a k × k-matrix.

1. Show that the rank of this matrix equals k, which means that it is a regular
matrix.

2. Conversely, prove that any regular k × k-matrix over F determines an au-
tomorphism of V.

3. Prove that MB,B(ϕ1ϕ2) equals the product MB,B(ϕ2) · MB,B(ϕ1) for all au-
tomorphisms ϕ1, ϕ2 ∈ Aut(V).

4. Deduce from the previous result that the set GLk(F) of all regular k × k-
matrices over F forms a group with respect to matrix multiplication, the
general linear group.

5. Show that the mapping θ : Aut(V) → GLk(F) which maps a vector space
automorphism ϕ of V to M�

B,B(ϕ), the transpose of its matrix representa-
tion, is a group isomorphism.

6. Changing the basis of V from B = (b(0), . . . , b(k−1)) to C = (c(0), . . . , c(k−1))
is described by the matrix representation MB,C(id) of the identity mapping.
This is also a regular quadratic matrix. Express MC ,C(ϕ) in terms of these
matrices.

E.1.2.4 Exercise Prove 1.2.3. Hint: Use the fact that any encoding γ of a linear code C
is a vector space isomorphism from Fk to C.

E.1.2.5 Exercise Which code has an invertible generator matrix?

E.1.2.6 Exercise Show that in a linear code over F = {0, 1} either all codewords begin
with 0, or exactly half of them begin with 0 and half of them begin with 1.

E.1.2.7 Exercise Give a formal proof of 1.2.6.

E.1.2.8 Exercise Give a formal proof of 1.2.8.

E.1.2.9 Exercise Assume that G is an abelian group which contains a subset A with
the following three properties:

1. If a1, a2 ∈ A, then a1 − a2 ∈ A,
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2. if b1, b2 ∈ G \ A, then b1 − b2 ∈ A,

3. if a ∈ A and b ∈ G \ A, then a + b �∈ A.

Show that A = G or A is a proper subset of G and there is an element b0 of
G \ A such that G = A ∪ (b0 + A) where b0 + A = {b0 + a | a ∈ A}. (This
exercise generalizes the last two exercises.)

E.1.2.10Exercise

1. Show that there are (n
m) binary vectors of length n and weight m.

2. Show that there are (q− 1)m(n
m) vectors in Fn of weight m, provided that F

consists of q elements.

3. For x ∈ H(n, q), how many vectors y ∈ H(n, q) satisfy d(x, y) ≤ m ?

E.1.2.11Exercise Let u and v be binary vectors of length n with d(u, v) = d. For r, s ∈ N
determine z by

z :=
∣∣{w ∈ {0, 1}n | d(u, w) = r and d(v, w) = s

}∣∣ .
Prove the following statements: If d + r − s ≥ 0 and d + r − s is even then

z =
(

d
i

)(
n − d
r − i

)
,

where i = (d + r − s)/2. If d + r − s is odd or d + r − s < 0, then z = 0. If
r + s = d, then z = (d

r).

E.1.2.12Exercise Let u, v and w be binary vectors which are pairwise at distance d.
Show that d is even and that there exists exactly one vector which is at dis-
tance d/2 from u, v, w. If u, v, w and x are binary vectors which are pairwise
at distance d, show that there exists at most one vector at distance d/2 from
u, v, w and x.

E.1.2.13Exercise Show that if C is a binary linear code, and a ∈ {0, 1}n \ C, then
C ∪ (a + C) is also a linear code.

E.1.2.14Exercise Define the “intersection” of two binary vectors u and v to be the
vector

u ∧ v := (u0v0, . . . , un−1vn−1)

which has ones only where both u and v have ones. Also, let

u ∨ v := (1− (1− u0)(1− v0), . . . , 1 − (1− un−1)(1− vn−1))
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be the “union” of u and v, i.e. the vector which is one if at least one of u or v is
one. Show that

wt(u + v) = wt(u) + wt(v)− 2wt(u ∧ v) = wt(u ∨ v)−wt(u ∧ v).

1.3 1.3 Check Matrices and the Dual Code

Let us now address the important issue of decoding. It turns out that Linear
Algebra helps to understand the problem quite a bit. We will discuss a decod-
ing method using what is called the coset leader algorithm. Nevertheless, this
problem is computationally hard and may only be practical for small param-
eters. However, it illustrates some very important concepts of Coding Theory
which are also useful for other purposes, too.

An (n, k)-code C ⊆ H(n, F) can be considered both as the image of an injec-
tive linear mapping γ : Fk → Fn, and as the kernel of a surjective linear mapping
δ : Fn → Fn−k (Exercise 1.3.1). This leads to the following

1.3.1 Definition (check matrices) Let C be an (n, k)-code over F. There exists an
(n − k)× n-matrix ∆ over F which is of rank n − k and satisfies

C = ker(δ) = {w ∈ Fn | w · ∆� = 0},

where ∆� denotes the transpose of the matrix ∆. Any such matrix is called
check matrix of C.  

Codes over the field F2 := {0, 1} of two elements are called binary codes.
Codes over the field F3 := {0, 1, 2} of three elements are called ternary codes,
whereas codes over a four-element field F4 are called quaternary.

1.3.2 Example Consider the following check matrix over the field F2 = {0, 1} of two
elements, consisting of a single row of length n ≥ 2,

∆ :=
(

1 1 . . . 1
)

.

It is a check matrix of a binary (n, n − 1)-code C. Each codeword

c = (c0, . . . , cn−1) ∈ C

is of even weight, since

0 = c · ∆� = c0 + . . . + cn−1 ≡ wt(c) mod 2.
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Conversely, w · ∆� = 0 for each vector w ∈ Fn
2 of even weight, i.e., C consists

of the vectors of even weight in Fn
2 , and so C has minimum distance d = 2.

This shows that C can detect one error. It is called a parity check code, since C
can be obtained in the following way: Take C′ := Fn−1

2 as the message space
and add to each of its elements c′ = (c0, . . . , cn−2) a further coordinate cn−1, a
single bit called a parity check bit, given by

cn−1 :=
{

1 if wt(c′) is odd,
0 otherwise.

The purpose of the parity check bit is to ensure that each codeword of the
extended code C has even weight. A generator matrix of C is

Γ =

⎛⎜⎜⎜⎜⎝
1 1

1 0 1

0
. . .

...
1 1

⎞⎟⎟⎟⎟⎠ .

�

Let us abbreviate the all-one vector (1, . . . , 1) as 1 and the vector whose
entries are all zero by 0. We also write 1n or 0n for such vectors of length n. For
instance, the check matrix and the generator matrix of the above example can
be written as

∆ = ( 1n ) and Γ = ( In−1 | 1�n−1 ),

respectively, where In−1 indicates the identity matrix of rank n − 1.

Now we introduce for each linear code C another code which is closely
related to C via its check and its generator matrices. Using the standard bilinear
form

〈w, w′〉 := ∑
i∈n

wiw
′
i ∈ F,

we associate with C the following subspace:

1.3.3Definition (the dual code, self-orthogonal and self-dual codes) The dual code
to C ⊆ H(n, F) is defined to be the space of vectors that are orthogonal to C
with respect to the standard bilinear form:

C⊥ := {w ∈ Fn | ∀ c ∈ C : 〈c, w〉 = 0}.

A code C is called self-orthogonal if C ⊆ C⊥ and we say that it is self-dual if
C = C⊥.  

The standard bilinear form has the following property:

〈w, w′〉 = 0, for all w ∈ Fn ⇐⇒ w′ = 0 ∈ Fn.



22 1. Linear Codes

For v ∈ Fk, w ∈ Fn and a generator matrix Γ of C it follows from

〈v · Γ, w〉 = 〈v, w · Γ�〉

that
C⊥ = {w ∈ Fn | w · Γ� = 0}.

This shows that the generator matrix Γ of C is a check matrix of C⊥. Conse-
quently, C⊥ is a linear (n, n − k)-code. Since (C⊥)⊥ = C (cf. Exercise 1.3.12),
the converse is true as well, and we obtain

1.3.4 Corollary The check matrices of a code C are the generator matrices of the dual code
C⊥ and vice versa. Dually, the check matrices of the dual code are the generator
matrices of the code. �

It is now time to present an example of a linear code which can correct one
error. This is everyone’s first code which is not a repetition code or any of the
other trivial examples. It was introduced by Hamming. Before we define this
code, let us make one more definition.

1.3.5 Definition Let b ≥ 2 be an integer. Every nonnegative integer m ≤ bk − 1 can
be expressed in the form

m = ∑
i∈k

aib
i, where 0 ≤ ai < b, for i = 0, 1, . . . , k − 1.

We call this the base b representation of m. The ai are called the digits in the
representation and we write

m = (ak−1, . . . , a1, a0)b.

The integer b is called base. The expression is unique up to the number of
leading zeros (we do not distinguish between two such representations which
only differ in the number of leading zeros). The case b = 10 is of course the
usual representation of integers in decimal, whereas b = 2 gives us the binary
numbers. Notice the ubiquitous reverse ordering of the digits with respect to
the index set k.  

The announced code is described in the following

1.3.6 Example Consider the binary representations of the numbers from 1 to 7,
(0, 0, 1)2, (0, 1, 0)2, (0, 1, 1)2, (1, 0, 0)2, (1, 0, 1)2, (1, 1, 0)2, and (1, 1, 1)2, respec-
tively. We may form the binary matrix

∆ =

⎛⎜⎝ 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞⎟⎠ ,
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whose columns are exactly these binary representations (slightly “mixed up”
however). We may take ∆ to be the check matrix of a binary code of length 7.
The rowspace of ∆ is the dual space of the code, and hence the code is the set
of vectors c with c · ∆� = 0. Using Linear Algebra, we can find a basis for this
4-dimensional space, and writing the basis vectors in the rows of a matrix we
find that the code is generated by

Γ =

⎛⎜⎜⎜⎝
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

This is the (7, 4)-Hamming-code. Actually, it is a member of a whole class
of codes which are all called Hamming-codes. The more general definition of
a Hamming-code will follow at the beginning of Chapter 2. By enumerating
the 16 codewords and counting weights, one can easily determine that the
minimum distance of this code is 3. Note that it cannot be larger than that since
we see vectors of weight 3 in the rows of the generator matrix Γ. However, we
need to convince ourselves that there is no word of lower weight. Hence this
code has type (n, k, d, q) = (7, 4, 3, 2). By 1.2.7, it is a 1-error correcting code. Its
information rate is k/n = 4/7 ≈ 0, 57. By comparison, the 1-error correcting
repetition code of length 3 has information rate 1/3 ≈ 0, 33. This is already a
good improvement. �

Using check matrices, we can easily formulate an important decoding pro-
cedure which will turn out to agree with maximum-likelihood-decoding. For
this purpose, we recall the definition of a coset of C, which is a subset of Fn of
the form

a + C := {a + c | c ∈ C},

where a is an element of Fn. It is possible to decompose Fn into pairwise
disjoint cosets of C (cf. Exercise 1.3.4),

Fn =
⋃
i

(a(i) + C).

As coset representatives we use coset leaders a(i), which are elements of smallest
weight in their coset,

wt(a(i)) ≤ wt(a(i) + c), for all c ∈ C.

The decoding algorithm itself can be described as follows:
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1.3.7 Syndrome decoding Let ∆ be a check matrix of C and suppose that the Ham-
ming space H(n, F) ⊇ C is decomposed into cosets a(i) + C such that the cho-
sen representatives a(i) are coset leaders. For each vector w ∈ Fn we call the
vector

w · ∆�

its syndrome. Assume that the vector y has been received. To determine the
coset a(i) + C containing y we proceed as follows:

If y ∈ a(i) + C, say y = a(i) + c, then

y · ∆� = (a(i) + c) · ∆� = a(i) · ∆� + c · ∆� = a(i) · ∆�,

i.e. the received vector y has the same syndrome as its coset leader.

Syndromes of different a(i) are distinct, since

a(i) · ∆� = a(j) · ∆� ⇒ (a(i) − a(j)) · ∆� = 0 ⇒ a(i) − a(j) ∈ C ⇒ i = j.

Consequently, we can deduce the coset number i from the syndrome of y
by comparing it to the (pairwise distinct!) syndromes of the coset leaders.

Having the coset number i of y and its coset leader a(i) at hand, we sim-
ply subtract a(i) from y in order to obtain a codeword c. This is called the
syndrome decoding method:

y �→ c := y − a(i).

For short: Subtract from the received vector its coset leader!

In fact, this is the maximum-likelihood-decoding method, since y = a(i) + c
implies that

d(y, c) = wt(y− c) = wt(a(i)),

as we have seen already. Therefore, since a(i) is a leader, c is one of the code-
words next to y. �

1.3.8 Example Consider the check matrix

∆ =

⎛⎜⎝ 1 1 0 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

⎞⎟⎠
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of a binary (6, 3)-code. The following table presents the coset leaders and the
corresponding syndromes:

a(i) a(i) · ∆�

000000 000
000001 001
000010 010
000100 100
100000 110
000101 101
001000 011
010000 111

The reader should carefully note that coset leaders are usually not uniquely
determined. In our example there are several coset leaders admissible for the
syndrome 101. They are 000101, 101000 and 010010. �

The following theorem provides an important characterization of the min-
imum distance in terms of check matrices. Remember that the check matrix is
not unique. The statement holds true for any check matrix.

1.3.9Theorem The check matrix ∆ of an (n, k, d)-code over F with 0 < k < n has the
following properties:

1. ∆ is an (n − k) × n-matrix over F of rank n − k,

2. any d − 1 columns are linearly independent, and

3. there exist d columns that are linearly dependent.

Conversely, any matrix ∆ satisfying these properties is a check matrix of an (n, k, d)-
code over F.

Proof: To begin with, we assume that ∆ is a check matrix of such a code.
By 1.3.4, ∆ is a generator matrix of the dual code, i.e. an (n − k) × n-matrix
over F of rank n − k. Now let c be a word in C of minimum weight d. Then
c · ∆� = 0, since the rows of ∆ are a basis for C⊥. But this means that there
is a nontrivial linear combination of d columns of ∆ that gives the zero vector
(namely, the columns corresponding to the nonzero entries of c). Moreover,
since there is no codeword c �= 0 with Hamming weight strictly less than d,
any d − 1 columns of ∆ are linearly independent.

Conversely, if we are given such a matrix ∆, the rank condition implies that
the set

{w ∈ Fn | w · ∆� = 0}
is a subspace of dimension k. Moreover, as before, we find that it is a code of
minimum distance d. �
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From this result we deduce the following criterion which can be used in
many cases:

1.3.10 Corollary Each (n − k) × n-matrix over F of rank n − k with the property that any
d − 1 of its columns are linearly independent is a check matrix of a linear (n, k)-code
C over F with minimum distance dist(C) ≥ d, for short: of an (n, k,≥ d)-code. �

The excluded case when k = n is obviously trivial, since in this case d = 1.

Exercises

E.1.3.1 Exercise Check that in fact any (n, k)-code C can be described as the kernel
of a surjective linear mapping from Fn to Fn−k. Hint: Assume that Γ is a
generator matrix of C. Let {b(0), . . . , b(n−k−1)} be a basis of the solution space
of the homogeneous linear system Γ · x� = 0, where x ∈ Fn. Then C is the
kernel of the mapping Fn → Fn−k : w �→ w · ∆� with

∆ =

⎛⎜⎜⎝
b(0)

...
b(n−k−1)

⎞⎟⎟⎠ ,

an (n − k) × n-matrix over F. Thus, ∆ is a check matrix of C.

E.1.3.2 Exercise List all codewords of the binary codes C0 and C1 with the check ma-
trices

∆0 =

(
1 1 0 0
1 0 1 1

)
and ∆1 =

(
0 1 1 1
1 0 1 1

)
.

How are these two codes related?

E.1.3.3 Exercise Assume that ∆ is the check matrix of a linear code C. Describe the
set of all check matrices of C.

E.1.3.4 Exercise Verify that Fn is the union of pairwise disjoint cosets of C.

E.1.3.5 Exercise

1. Check that the rowspace of the matrix Γ in 1.3.6 is indeed the dual space of
the rowspace of ∆.

2. Verify the claim about the minimum distance of the (7, 4) Hamming-code
made in 1.3.6.
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E.1.3.6Exercise Prove that for a binary code with check matrix ∆, the syndrome is
the transpose of the sum of the columns of ∆ where the errors have occurred.

E.1.3.7Exercise Compute coset leaders for the binary code generated by

Γ =

⎛⎜⎝ 1 0 1 1 0 1
0 1 1 0 1 1
0 0 0 1 1 1

⎞⎟⎠ .

Decode the vectors (1, 1, 0, 1, 0, 0) and (1, 1, 1, 1, 1, 1) using the method of 1.3.7.

E.1.3.8Exercise Evaluate the minimum distances of the binary codes which are gen-
erated by⎛⎜⎝ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞⎟⎠ and

⎛⎜⎝ 1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0 1 0
1 1 1 0 1 0 0 0 0 1

⎞⎟⎠ .

E.1.3.9Exercise Let C be an (n, k)-code. Consider the block matrix Γ = (Ik | A),
where A is a k × (n − k)-matrix and Ik denotes the unit matrix. Show that Γ is
a generator matrix of C if and only if ∆ = (−A� | In−k) is a check matrix of C.

E.1.3.10Exercise Prove that for each generator matrix Γ and every check matrix ∆ of
C the products Γ · ∆� and ∆ · Γ� are zero matrices.

E.1.3.11Exercise Over any finite field F, the (n, n − 1) parity check code C is obtained
from the message space Fn−1 by adding a parity check bit cn := −∑n−1

i=0 ci.
Find a generator matrix for this code and determine the minimum distance.

E.1.3.12Exercise Verify that (C⊥)⊥ = C.

E.1.3.13Exercise Assume that C and C′ are linear codes of length n and let C + C′ :=
{c + c′ | c ∈ C, c′ ∈ C′}. Show that (C + C′)⊥ = C⊥ ∩ C′⊥.

E.1.3.14Exercise A linear code C is self-orthogonal if and only if 〈c, c′〉 = 0 for all
c, c′ ∈ C. Show that C is self-dual if and only if C is self-orthogonal and C is of
dimension k = n/2 (and hence n is even).

E.1.3.15Exercise Construct binary self-dual codes of lengths 4 and 8.
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E.1.3.16 Exercise Let C be a binary, self-orthogonal code.

1. Show that each word of C is even and that C⊥ contains the all-one vector 1.

2. Assume in addition that the length n of C is odd and that the dimension of
C is (n − 1)/2. Show that

C⊥ = C ∪ (1 + C).

E.1.3.17 Exercise Show that a code with check matrix ∆ = (Ik | A) is self-dual if and
only if A is a square matrix with A · A� = −Ik.

E.1.3.18 Exercise Show the following:

1. If u, v ∈ Fn
2 , then 〈u, v〉 ≡ wt(u ∧ v) mod 2 (where u ∧ v is as in Exer-

cise 1.2.14).

2. If u ∈ Fn
2 , then 〈u, u〉 ≡ wt(u) mod 2.

3. If u ∈ Fn
3 , then 〈u, u〉 ≡ wt(u) mod 3.

E.1.3.19 Exercise If C is a binary, self-orthogonal code, show that every codeword has
even weight. Furthermore, if each row of the generator matrix Γ of C has
weight divisible by 4, then so does every codeword.

E.1.3.20 Exercise Let C be a ternary, self-orthogonal code. Show that wt(c) ≡ 0 mod 3
for every codeword c ∈ C.

E.1.3.21 Exercise Let C be a code whose generator matrix Γ has the property that no
column of Γ is zero and no two columns of Γ are linearly dependent. Show
that dist(C⊥) ≥ 3. (Such codes will be called projective in 6.1.14.)

1.4 1.4 Classification by Isometry

As we have seen, the coding theoretic properties of a code depend primarily on
the Hamming distances between different codewords and between codewords
and non-codewords. For example, the closest pair of codewords determines
the error-correction rate of a code. Moreover, it may be that one code can
be mapped onto another by means of a map which preserves the Hamming
distances. Clearly, in any practical application, one code would be as good
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as the other, as far as error-correction is concerned. It seems natural to call
such codes equivalent. In this section we study a corresponding notion of
equivalence, by means of which codes can be classified.

Of course, only the types of essentially distinct – i.e. nonequivalent – codes
are of interest. In fact, there are various ways in which such an equivalence
relation can be defined. We discuss three such relations. These relations are
indeed only refinements of each other, meaning that there is one relation which
is strongest. The other relations are “weaker” in the sense that codes which are
equivalent under the strongest relation may be inequivalent under the other
two relations. The three relations are motivated by concepts from Projective
Geometry, see Section 3.7 for more on that.

Recall that an equivalence relation R on a set X is a subset of X ×X such that
for all x, y, z ∈ X we have

(x, x) ∈ R (reflexivity),

(x, y) ∈ R if and only if (y, x) ∈ R (symmetry),

(x, y), (y, z) ∈ R implies that also (x, z) ∈ R (transitivity).

The equivalence class of x ∈ X with respect to R is the set

[x]R := {y ∈ X | (x, y) ∈ R} ,

and the set of all equivalence classes with respect to R is indicated as X/R.
It forms a decomposition of X into pairwise disjoint and nonempty subsets.
Instead of (x, y) ∈ R we usually write x ∼ y where ∼ denotes the equivalence
relation.

Two (n, k)-codes C, C′ ⊆ H(n, q) are of the same quality if there exists a
mapping

ι : H(n, q) → H(n, q)

with ι(C) = C′ which preserves the Hamming distance, i.e.

d(w, w′) = d(ι(w), ι(w′)), for all w, w′ ∈ H(n, q).

Mappings with the latter property are called isometries. Using this notion we
introduce the following concept which is in fact the central concept of the present
book:

1.4.1Definition (isometric codes) Two linear codes C, C′ ⊆ H(n, q) are called iso-
metric if there exists an isometry of H(n, q) that maps C onto C′.  
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Obvious isometries are the permutations of the coordinates. These isometries
will be called permutational isometries. Recall that the set of bijections from a set
X to itself forms a group, the symmetric group

SX := {π | π : X → X, π is bijective} .

The multiplication in this group is the composition of mappings,

(π ◦ ρ)(x) := π(ρ(x)).

We write Sn for the symmetric group on the set X = n = {0, . . . , n − 1}.

1.4.2 Definition (permutationally isometric codes) Two linear codes C, C′ ⊆ H(n, q)
are permutationally isometric if there exists a permutational isometry of H(n, q)
that maps C onto C′. This means that there is a permutation π in the symmetric
group Sn such that

C′ = π(C) = {π(c) | c ∈ C}, and d(c, c̃) = d(π(c), π(c̃)),

for all c, c̃ ∈ C, where

π(c) = π(c0, . . . , cn−1) := (cπ−1(0), . . . , cπ−1(n−1)).  

Isometries which are also linear mappings are called linear isometries (with
respect to the Hamming metric). Linear isometries leave the Hamming weight
invariant, since by linearity we have ι(0) = 0, and therefore also

wt(v) = d(v, 0) = d(ι(v), ι(0)) = d(ι(v), 0) = wt(ι(v)).

1.4.3 Definition (linearly isometric codes) Two linear codes C, C′ ⊆ H(n, q) are
linearly isometric if there exists a linear isometry of H(n, q) that maps C onto
C′.  

We remark that what we call linearly isometric is often called isometric
(unqualified) or monomially isometric in the literature. Our reason for calling
it linearly isometric is two-fold. First, we will see shortly that this, together
with the special case of permutational isometry, is not the only way in which
codes can be isometric. Secondly, concerning the notion of equivalence, we
felt that the concept of monomial mapping is not that well-known. Hence we
chose to make reference to the fact that these isometries are induced by linear
mappings.

We might have imposed a seemingly weaker condition by asking for the
existence of a local linear isometry between C and C′ only, i.e. an isometry of
C and not necessarily of H(n, q), that maps C onto C′. It can be shown, see
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6.8.4, that each such local linear isometry can be extended to a linear isometry
of H(n, q). Later on we will see that the isometry relation is an equivalence
relation on the set of codes with block length n over Fq, and in later chapters
we will consider the corresponding isometry classes in detail.

In order to characterize linear isometries, we have to study linear maps of
the vector space Fn

q and investigate their effect on the Hamming distance. That
is, we study linear maps of H(n, q). Recall that any linear map is defined by
the images of the unit vectors. Since linear isometries preserve the Hamming
weight, a unit vector e(i) is mapped to a nonzero multiple of a unit vector, i.e.

ι(e(i)) = κje
(j), for suitable j ∈ n, κj ∈ F∗

q := Fq \ {0} .

Moreover, the sum of two different unit vectors is of weight 2, and so different
unit vectors are mapped under ι to nonzero multiples of different unit vectors.
Hence, there exists a unique permutation π in the symmetric group Sn and a
unique mapping ϕ from n = {0, . . . , n − 1} to F∗

q such that

ι(e(i)) = ϕ(π(i))e(π(i)).

Therefore, we may record ι as a pair of mappings,

ι = (ϕ; π).

In terms of these mappings, applying ι to v := ∑i∈n vie(i) gives

ι(v) = (ϕ; π)(v) = ∑
i∈n

viϕ(π(i))e(π(i)) = ∑
i∈n

ϕ(i)vπ−1(i)e
(i),

i.e.
(ϕ; π)((v0, . . . , vn−1)) = (ϕ(0)vπ−1(0), . . . , ϕ(n − 1)vπ−1(n−1)).

Using matrix multiplication, we could also write

(ϕ; π)((v0, . . . , vn−1)) = (v0, . . . , vn−1) · M�
(ϕ;π),

where M(ϕ;π) is the matrix whose k-th column is zero except for the (i, k)-entry
which is ϕ(i). Here i = π(k), so that

k

M(ϕ;π) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

0 . . . 0 ϕ(i) 0 . . . 0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
i = π(k).
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Conversely, any linear mapping with

e(i) �−→ ϕ(π(i))e(π(i)),

for ϕ : n → F∗
q and π ∈ Sn, is a linear isometry. Moreover, linear isometries

are invertible, and the composition of two of them is again a linear isometry.
A straightforward calculation shows (Exercise 1.4.1) that

(ψ; ρ)((ϕ; π)(v)) = (ψϕρ; ρπ)(v), v ∈ H(n, q),

where ψϕρ(i) := ψ(i)ϕ(ρ−1(i)). Summarizing we obtain

1.4.4 Corollary The linear isometries form the group{
(ϕ; π)

∣∣∣ ϕ : n → F∗
q , π ∈ Sn

}
,

called the group of linear isometries of the Hamming space. Multiplication in this
group is given by the formula

(ψ; ρ)(ϕ; π) = (ψϕρ; ρπ).

The matrices representing the elements of this group form

Mn(q) :=
{

M(ϕ;π)

∣∣∣ ϕ : n → F∗
q , π ∈ Sn

}
,

and they multiply according to the rule

M(ψ;ρ) · M(ϕ;π) = M(ψϕρ;ρπ).

The correspondence between a linear map and the associated matrix with respect to a
fixed basis constitutes the isomorphism

(ϕ; π) �−→ M(ϕ;π)

between these two groups. �

The application of the linear isometry group to the Hamming space is our
central concept, and it is a special case of the general notion of group action
which we will use in other situations, too. Hence, we carefully introduce the
basic definitions and results on group actions at this point.

Actions of groups on sets play an important role in Algebra, in Combina-
torics, in Topology, but also in the sciences (Chemistry, Computer Science and
Physics, in particular). For more details on group actions we refer the reader
to [108].
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An action of a group G (which we assume to be written multiplicatively)
from the left on a nonempty set X is defined by a mapping

G × X → X : (g, x) �→ gx

with the properties
(gg′)x = g(g′x) and 1x = x,

for x ∈ X, g, g′ ∈ G and the identity element 1 of G. We abbreviate such an
action of G on X from the left by

GX.

An equivalent characterization of a group action is as follows (Exercise 1.4.4).

1.4.5Lemma Let GX be a group action. Then the mapping

δ : G → SX : g �→ g, where g : x �→ gx,

from G to the symmetric group SX is a homomorphism. The kernel of the action is by
definition the kernel of this homomorphism, i.e. the set of group elements that fix each
x ∈ X. �

We call δ the permutation representation induced by the action of GX, g =
δ(g) is the permutation induced by g on X and G := δ(G) the permutation
group induced by G on X. Actions from the right are defined similarly. In the
following, we define the basic notions for actions from the left. It is clear that
corresponding notions can be introduced for actions from the right as well.

The crucial point is that GX induces the following relation ∼G on X:

x ∼G y :⇐⇒ ∃ g ∈ G : gx = y.

It is easy to prove that ∼G is indeed an equivalence relation on X (Exercise 1.4.4).
The proof is based on the following fact which is immediate from the definition
of group actions and which is of fundamental importance:

gx = x′ ⇐⇒ x = g−1x′.

The equivalence class
G(x) = {gx | g ∈ G}

of x ∈ X is called the G-orbit or, briefly, the orbit of x. We use the notation

G\\X := {G(x) | x ∈ X}

to denote the set of orbits of G on X. A minimal but complete set T of orbit
representatives is called a transversal of the orbits. Since ∼G is an equivalence
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relation on X, G\\X is a set partition of X, i.e. a complete dissection of X into
pairwise disjoint and nonempty subsets G(t), for t ∈ T:

X =
⋃̇

ω∈G\\X

ω =
⋃̇
t∈T

G(t).1.4.6

Several basic examples of group actions appearing in Group Theory and Com-
binatorics are described in Exercises 1.4.5 to 1.4.7. It is easy to check that for
any group action GX the orbits G(x) and G(x), x ∈ X, coincide, whence,
G\\X = G\\X. A group action is called finite if both G and X are finite. If
X is finite, then the action GX is always finite.

We are now going to introduce an important action of a group on a set
of mappings. This action will be the prototype action for the enumeration
of isometry classes of codes later on. For nonempty sets X and Y, the set of
mappings from X to Y is denoted as

YX := { f | f : X → Y} .

If G acts on X, then we can define an action of G on YX as follows:

G ×YX → YX : (g, f ) �→ f ◦ g −1.1.4.7

Here g is the permutation induced by g on X as introduced in 1.4.5. Thus, un-
der this action, we associate to the pair (g, f ) the composition f ◦ g −1, i.e. the
mapping f̃ ∈ YX with f̃ (x) = f (g−1x), for all x ∈ X.

Let us now introduce the wreath product of two groups. As it turns out,
the linear isometry group of the Hamming space will be such a product.

1.4.8 Definition (wreath product) Consider an action GX and a group H. The wreath
product of H with G, with respect to GX, consists of the set

H �X G := HX × G = {(ϕ; g) | ϕ : X → H, g ∈ G} ,

with multiplication defined by

(ϕ; g)(ϕ′; g′) := (ϕϕ′
g; gg′),

where (ϕϕ′
g)(x) := ϕ(x) · ϕ′

g(x) and ϕ′
g(x) := ϕ′(g−1x), for x ∈ X. The iden-

tity element is
1H�X G = (ε; 1G),

where ε ∈ HX is the constant mapping ε : x �→ 1H , and 1G, 1H denote the
identity elements of G and H, respectively. The inverse of (ϕ; g) ∈ H �X G is

(ϕ; g)−1 = (ϕ−1
g−1 ; g

−1),
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where
ϕ−1(x) := ϕ(x)−1 and ϕ−1

g−1 := (ϕg−1)−1 = (ϕ−1)g−1 .  

So, the wreath product H �X G comes together with an action of G on X. It may
happen that the group H acts on another set Y, say. In this case, we can define
an action of H �X G on the set of mappings YX in the following way.

H �X G ×YX → YX : ((ϕ; g), f ) �→ f̃ , where f̃ (x) := ϕ(x) f (g−1x). 1.4.9

This action is a host of further actions, some of which will be described next.
These further actions are in fact actions of various subgroups of H �X G (cf. Ex-
ercise 1.4.5). The first case is when the group G is trivial and all mappings
ϕ : X → H are constant. In this situation, only the group H acts on the set Y,
such that the corresponding action on the set of functions YX is

H ×YX → YX : (h, f ) �→ h ◦ f . 1.4.10

Another action is given by the direct product H × G of the groups H and G,
which acts as follows:

(H × G)×YX → YX : ((h, g), f ) �→ h ◦ f ◦ g −1. 1.4.11

The purpose of Exercise 1.4.11 is to show that these definitions yield group
actions. The action of the wreath product 1.4.9 is a generalization of 1.4.7,
1.4.10, and 1.4.11.

1.4.12Example (the linear isometry group) Our paradigmatic example of an action
as in 1.4.9 is the following one. Take as H the multiplicative group F∗

q of the
field Fq. Let G be the symmetric group Sn acting on the set n = {0, . . . , n − 1}.
Thus

H �X G := F∗
q �n Sn =

{
(ϕ; π)

∣∣∣ ϕ : n → F∗
q , π ∈ Sn

}
.

The action on YX := Fn
q is given in the following way:

F∗
q �n Sn × Fn

q → Fn
q :

(
(ϕ; π), v

)
�→

(
ϕ(0)vπ−1(0), . . . , ϕ(n − 1)vπ−1(n−1)

)
.

Equivalently, in terms of Linear Algebra, we could also write

Mn(q)× H(n, q) → H(n, q) : (M(ϕ;π), v) �→ v · M�
(ϕ;π).

Since Mn(q) � H �n Sn is called the full monomial group of degree n over H, the
group of linear isometries of the Hamming space is the full monomial group
of degree n over the multiplicative group of the field. �

We are now in a position to formulate linear isometry in terms of group
actions.
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1.4.13 Remarks Let us apply what we know about linear isometry groups, their ac-
tions on vector spaces and the general theory of group actions on sets of map-
pings YX. We iterate this process of constructing actions in the following way:

We start from the action of the linear isometry group of H(n, q),

F∗
q �n Sn

(
Fn

q

)
= Mn(q)

(
H(n, q)

)
.

Then we use the fact that the set of mappings

2H(n,q) = {F : H(n, q) → {0, 1}}

can be identified with the power set of H(n, q) by identifying F with the
inverse image F−1({1}) of 1, which is a subset of H(n, q).

The given action of the linear isometry group of H(n, q) induces the action

G

(
YX

)
:= F∗

q �n Sn

(
2Fn

q
)

= Mn(q)

(
2H(n,q)

)
.

Correspondingly, the orbits in

Mn(q) \\ 2H(n,q)

are the linear isometry classes of subsets of H(n, q) or block codes.

Linear subspaces of H(n, q) are of course also subsets of H(n, q), and the
previous remarks apply to them as well. It turns out that each element in
the orbit of a linear subspace under the isometry group is again a linear
subspace (this follows since the isometry group Mn(q) is linear). Thus,
these are the orbits we are interested in most. They are the linear isometry
classes of linear codes.
In later chapters we will enumerate these classes, construct representatives
and provide a method for randomly generating subsets of Fn

q that are uni-
formly distributed over these classes.  

Next, we describe linear codes and their isometry classes as orbits un-
der certain group actions by using results from the Exercises 1.4.14, 1.4.15,
and 1.4.16, replacing the subspaces by generator matrices, i.e. by bases, so that
they can be handled by a computer as well:

1.4.14 Theorem

1. Assume that Fk×n,k
q denotes the set of all k × n matrices of rank k over Fq, k ≥ 1,

and GLk(q) the set of all regular k × k-matrices over Fq. The set of all generator
matrices of the linear (n, k)-code C with generator matrix Γ ∈ Fk×n,k

q is the orbit
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GLk(q)(Γ) = {B · Γ | B ∈ GLk(q)}. Whence the set of all linear (n, k)-codes
over Fq, we indicate it as U(n, k, q), can be identified with

GLk(q)\\Fk×n,k
q .

2. The linear isometry group Mn(q) acts on U (n, k, q), k ≥ 1, according to

Mn(q)× U(n, k, q) → U (n, k, q) : (M(ϕ;π), C) �→
{

c · M�
(ϕ;π)

∣∣∣ c ∈ C
}

.

The linear isometry class of the linear (n, k)-code C is the orbit

Mn(q)(C).

Hence, the set of linear isometry classes of linear (n, k)-codes is

Mn(q)\\ U (n, k, q).

3. The direct product GLk(q) × Mn(q), k ≥ 1, acts on Fk×n,k
q by(

GLk(q)× Mn(q)
)
× Fk×n,k

q → Fk×n,k
q :

(
(B, M(ϕ;π)), Γ

)
�→ B · Γ · M�

(ϕ;π)

and so the set of linear isometry classes of linear (n, k)-codes corresponds to the set
of orbits

(GLk(q)× Mn(q))\\Fk×n,k
q . �

Exercises

E.1.4.1Exercise Show that

linear isometries are invertible,

the composition of two of them is again a linear isometry,

the composition satisfies

(ψ; ρ)((ϕ; π)(v)) = (ψϕρ; ρπ)(v), v ∈ H(n, q),

where ψϕρ(i) := ψ(i)ϕ(ρ−1(i)), and

the representing matrices satisfy

M(ψ;ρ) · M(ϕ;π) = M(ψϕρ;ρπ).

E.1.4.2Exercise Let U be a nonempty subset of a finite group G (written multiplica-
tively). Show that U is a subgroup if and only if U is closed under multiplica-
tion, i.e.

u, u′ ∈ U =⇒ u · u′ ∈ U.
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E.1.4.3 Exercise Verify 1.4.5.

E.1.4.4 Exercise Check that g is in fact a permutation and ∼G an equivalence relation.

E.1.4.5 Exercise If GX is a group action and U is a subgroup of G, prove that

U × X → X : (u, x) �→ ux

is a group action of U on X, the restriction of GX to U. Prove that each orbit
G(x) is a union of U-orbits.

E.1.4.6 Exercise If G is a group, prove that both

G × G → G : (g, x) �→ gx

and
G × G → G : (g, x) �→ xg−1

are group actions of G on G. They are called the left regular or right regular
representation of G, respectively. Prove that G(x) = G for any x ∈ G. A group
action with just one orbit is called transitive. Hence, the left regular and the
right regular representation are transitive group actions.

Let U be a subgroup of G. Determine the orbits of the restricted action UG.
In the first case they are called right cosets, in the second case left cosets of U.
Prove that all orbits U(x) for x ∈ G are of the same size. If G is a finite group,
deduce that the order of U divides the order of G. This is Lagrange’s Theorem.

E.1.4.7 Exercise Show that an action of G on a set X induces natural actions of G on
(X

k ), the set of all k-subsets of X, for 0 ≤ k ≤ |X|, and on 2X, the power set of
X, which is the set of all subsets of X. This natural action of g on the subset A
of X is given by (g, A) �→ {gx | x ∈ A}.

E.1.4.8 Exercise Consider a group action GX, a normal subgroup U � G and the re-
stricted action UX. Prove the following facts:

For each orbit U(x) and any g ∈ G, the set gU(x) is again an orbit of U on
X. Indeed gU(x) = U(gx).

The group G acts on the set U\\X of the U-orbits by

G ×U\\X → U\\X : (g,U(x)) �→ U(gx).
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The factor group G/U acts on the set U\\X via

G/U ×U\\X → U\\X : (gU,U(x)) �→ U(gx).

We call this action a factor action of G with respect to U and denote it by

G/U(U\\X).

Up to identification of the U-orbits with the set of their elements, the fol-
lowing equations hold:

G\\X = G\\(U\\X) and G\\X = (G/U)\\(U\\X).

E.1.4.9Exercise Use Exercise 1.4.8 in order to prove: An action of the direct prod-
uct H × G on X induces both a natural action of H on the set of orbits of the
restricted action GX:

H × (G\\X) → G\\X : (h, G(x)) �→ G(hx),

and a natural action of G on the orbits of the restricted action HX:

G × (H\\X) → H\\X : (g, H(x)) �→ H(gx).

Show that the orbit of G(x) ∈ G\\X under H is the set of orbits of G on X
that form (H × G)(x), while the orbit of H(x) ∈ H\\X under G consists of the
orbits of H on X, that form (H × G)(x). Hence

(H × G)(x) =
⋃

h∈H

G(hx) =
⋃

g∈G

H(gx).

Prove the following identity for a finite set X:

|H\\(G\\X)| = |G\\(H\\X)| = |(H × G)\\X|.

E.1.4.10Exercise Assume that both GX and HX are group actions with g(hx) = h(gx)
for all g ∈ G, h ∈ H, and x ∈ X. Prove that

(H × G)× X → X : ((h, g), x) �→ h(gx)

describes an action of the direct product H × G on X.

E.1.4.11Exercise Assume that X and Y are sets and H is a group which acts on Y.
Prove that 1.4.10 describes an action of H on YX.

If, in addition, GX is another group action, then use Exercise 1.4.10 to show
that 1.4.11 defines an action of H × G both on the domain and the range of
these mappings. Note that g stands for the permutation representation of g
acting on X, whereas h denotes the permutation representation of h acting on
Y.
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E.1.4.12 Exercise Let V be a vector space over F. Show that the multiplicative group
F∗ acts on V by

F∗ ×V → V : (λ, v) �→ λv.

Prove that the orbit of 0 is of size one, and all the other orbits are of the same
length. For v �= 0 the orbit F∗(v) describes a punctured one-dimensional sub-
space of V, i.e. the subspace without the zero vector. If F = Fq, then the orbit
of v �= 0 is of size q − 1.

E.1.4.13 Exercise Show that the group of regular k × k-matrices over F acts on Fk by

GLk(F)× Fk → Fk : (B, v) �→ (B · v�)
�

= v · B�.

Prove that the orbit of 0 is of size one. Moreover, show that this action com-
mutes with the action of F∗ described in Exercise 1.4.12, and deduce from Ex-
ercise 1.4.10 that the direct product GLk(F)×F∗ acts on Fk. Describe the orbits
(GLk(F) × F∗)(v) with the methods of Exercise 1.4.9.

E.1.4.14 Exercise Let the set of k × n-matrices over Fq be denoted by Fk×n
q , and the set

of k× n-matrices of rank r by Fk×n,r
q . Show that GLk(q) := GLk(Fq), k ≥ 1, acts

both on Fk×n
q and Fk×n,r

q by
(B, Γ) �→ B · Γ

where B ∈ GLk(q) is a regular matrix, and Γ is a k × n-matrix.
From 1.2.3 deduce that the orbit GLk(q)(Γ) of Γ ∈ Fk×n,k

q determines the
set of all generator matrices of the code C with Γ. Thus the set of all linear
(n, k)-codes over Fq can be identified with the set of orbits GLk(q)\\Fk×n,k

q .

E.1.4.15 Exercise Show that the full monomial group Mn(q) acts on U (n, k, q) by

Mn(q)× U (n, k, q) → U(n, k, q) : (M(ϕ;π), C) �→
{

c · M�
(ϕ;π)

∣∣∣ c ∈ C
}

.

E.1.4.16 Exercise Show that Mn(q) acts both on Fk×n
q and Fk×n,r

q by

(M(ϕ;π), Γ) �→ Γ · M�
(ϕ;π)

where M(ϕ;π) ∈ Mn(q) is a monomial matrix, and Γ is a k × n-matrix. More-
over, show that this action commutes with the action of GLk(q) described in
Exercise 1.4.14 and thus deduce from Exercise 1.4.10 that the direct product
GLk(q)× Mn(q) acts on Fk×n

q and Fk×n,r
q . Describe (GLk(q)× Mn(q))(Γ) with

the methods of Exercise 1.4.9.
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From Exercise 1.4.14 deduce that for Γ ∈ Fk×n,k
q , a generator matrix of the

(n, k)-code C, the orbit (GLk(q) × Mn(q))(Γ) consists of all generator matri-
ces of codes which are linearly isometric to C. Therefore, the set of orbits
(GLk(q) × Mn(q))\\Fk×n,k

q is in bijection to the linear isometry classes of lin-
ear (n, k)-codes over Fq.

1.51.5 Semilinear Isometry Classes of Linear Codes

It is, of course, a legitimate question to ask for generalizations of the concept
of linear isometry by relaxing the condition of linearity. The only requirement
in addition to isometry will be that the admissible isometries map subspaces
onto subspaces. To be more precise the image of a subspace under an isometry
is again a subspace of Fn

q . Under these assumptions we derive for n ≥ 3 that
these mappings preserve the dimension, i.e. they map (n, k)-codes to (n, k)-
codes, and that they are the semilinear isometries of Fn

q (cf. 1.5.7). In order to
prove this we need a more detailed analysis of isometries. At first we prove
that it suffices to investigate isometries ι of Fn

q with ι(0) = 0.

1.5.1Lemma If ι : Fn
q → Fn

q is an isometry, then

ι′ : Fn
q → Fn

q : ι′(v) := ι(v)− ι(0), v ∈ Fn
q ,

is again an isometry of Fn
q and ι′(0) = 0.

Conversely, if ι′ : Fn
q → Fn

q is an isometry with ι′(0) = 0, then for any w ∈ Fn
q

the mapping
ι : Fn

q → Fn
q : ι(v) := ι′(v) + w, v ∈ Fn

q ,

is an isometry with ι(0) = w. �

This result, the proof of which is left to the reader as Exercise 1.5.1, shows
that it suffices to consider only isometries ι with ι(0) = 0. For example, if
ι maps subspaces onto subspaces, then this condition always holds, since the
null space {0} is mapped onto {0}. If ι(0) = 0, then ι also preserves the weight,
since

wt(ι(v)) = d(ι(v), 0) = d(ι(v), ι(0)) = d(v, 0) = wt(v), v ∈ Fn
q .

1.5.2Lemma Each isometry ι on a finite vector space Fn
q is bijective. If it satisfies ι(0) = 0,

then it permutes the orbits

F∗
q (e

(i)) = {κe(i) | κ ∈ F∗
q}
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of the unit vectors with respect to the action of F∗
q by left multiplication. In formal

terms:
∃ π ∈ Sn ∀ i ∈ n : ι (F∗

q(e
(i))) = F∗

q(e
(π(i))).

Proof: 1. It is easy to see that ι is injective: ι(u) = ι(v) implies

0 = d(ι(u), ι(v)) = d(u, v),

and so u = v. Since ι is a map from the finite set Fn
q to itself, it is also one-to-one.

2. Now we note that, for each i ∈ n and λ ∈ F∗
q , there exists k ∈ n and µ ∈ F∗

q
such that

ι(λe(i)) = µe(k).

This follows from 1 = wt(λe(i)) = wt(ι(λe(i))).

3. Moreover, this index k does not depend on λ: Suppose that for λ = 1 we
have ι(e(i)) = νe(j). Then, for λ �= 1 we get

1 = d(λe(i), e(i)) = d(ι(λe(i)), ι(e(i))) = d(µe(k), νe(j)),

and this implies j = k.

4. Thus we obtain, for the index j defined by ι(e(i)) = νe(j),

ι(F∗
q(e

(i))) ⊆ F∗
q(e

(j)).

The bijectivity of ι implies that ι(F∗
q(e(i))) is in fact equal to F∗

q(e(j)), and it
assures the existence of some π ∈ Sn which satisfies

ι (F∗
q(e

(i))) = F∗
q (e

(π(i))),

for all i ∈ n. �

1.5.3 Lemma Let ι be an isometry of Fn
q with ι(0) = 0. For i �= k and λ, µ ∈ F∗

q we have,

ι(λe(i) + µe(k)) = ι(λe(i)) + ι(µe(k)).

Proof: 1. The assumption implies that

2 = wt(λe(i) + µe(k)) = wt(ι(λe(i) + µe(k))),

and so
ι(λe(i) + µe(k)) = νe(ji) + ρe(jk),

for suitable ν, ρ ∈ F∗
q and ji �= jk.
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2. Using

1 = d(λe(i), λe(i) + µe(k)) = d(µe(k), λe(i) + µe(k))

= d(ι(λe(i)), ι(λe(i) + µe(k))) = d(ι(µe(k)), ι(λe(i) + µe(k)))

we can deduce from 1. that

1 = d(ι(λe(i)), νe(ji) + ρe(jk)) = d(ι(µe(k)), νe(ji) + ρe(jk)).

Thus, by ji �= jk, either ι(λe(i)) = νe(ji) or ι(λe(i)) = ρe(jk), and similarly either
ι(µe(k)) = ρe(jk) or ι(µe(k)) = νe(ji).

3. Since ι permutes the orbits of the unit vectors, by 1.5.2, we get from 2. that

ι(λe(i)) + ι(µe(k)) = νe(ji) + ρe(jk) = ι(λe(i) + µe(k)),

as stated. �

Generalizing this approach we prove

1.5.4Corollary Let ι be an isometry of Fn
q with ι(0) = 0, then, for v ∈ Fn

q ,

ι(v) = ι

(
∑
i∈n

vie
(i)

)
= ∑

i∈n
ι(vie

(i)).

Proof: Let k be the number of nonzero components of v. For 0 ≤ k ≤ 2 the
assertion is true by assumption, by 1.5.2 and 1.5.3. Now we consider 2 < k ≤ n
and assume that the assertion is valid for all vectors with at most k− 1 nonzero
components. We prove that it holds true for the vector v = ∑r∈k vir e

(ir) with k
nonzero components. Thus we assume that ir ∈ n for r ∈ k, ir �= is for r, s ∈ k,
r �= s, and vir �= 0 for r ∈ k. Then

d

(
k−1

∑
r=1

vir e
(ir),

k−1

∑
r=0

vir e
(ir)

)
= 1 = d

(
k−2

∑
r=0

vir e
(ir),

k−1

∑
r=0

vire
(ir)

)
whence

d

(
ι

(k−1

∑
r=1

vire
(ir)

)
, ι

(k−1

∑
r=0

vir e
(ir)

))
= 1 = d

(
ι

(k−2

∑
r=0

vir e
(ir)

)
, ι

(k−1

∑
r=0

vir e
(ir)

))
and by the induction hypothesis

d

(
k−1

∑
r=1

ι
(
vir e

(ir)
)
, ι

(k−1

∑
r=0

vir e
(ir)

))
= 1 = d

(
k−2

∑
r=0

ι
(
vir e

(ir)
)
, ι

(k−1

∑
r=0

vir e
(ir)

))
.

According to 1.5.2 there exists some π ∈ Sn and ṽir ∈ F∗
q , r ∈ k, so that

k−1

∑
r=1

ι
(
vire

(ir)
)

=
k−1

∑
r=1

ṽir e
(π(ir)) and

k−2

∑
r=0

ι
(
vir e

(ir)
)

=
k−2

∑
r=0

ṽir e
(π(ir)).
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Therefore, necessarily we have

ι

(k−1

∑
r=0

vir e
(ir)

)
=

k−1

∑
r=0

ṽir e
(π(ir)) =

k−1

∑
r=0

ι
(
vire

(ir)
)
. �

We are now in a position to describe the group of isometries ι which satisfy
ι(0) = 0 as a wreath product. Since

ι(vie
(i)) ∈ ι(F∗

q(e
(i))) = F∗

q(e
(π(i))),

we can obtain the scalar factor of e(π(i)) in ι(vie(i)) (if vi �= 0, otherwise we can
simply neglect this summand since ι(0) = 0) by the application of a suitable
permutation ϕ(π(i)) of the scalars that keeps 0 fixed,

ι(vie
(i)) = ϕ(π(i))(vi)e(π(i)).

Or, in formal terms and since we have to take all the indices into account, there
exists a mapping

ϕ : n → SF∗
q ,

from n to the symmetric group

SF∗
q

:=
{

ρ | ρ : Fq → Fq, ρ is bijective and ρ(0) = 0
}

on F∗
q (considered as the subgroup of the symmetric group SFq on Fq consist-

ing of the permutations ρ of Fq that keep the zero element fixed: ρ(0) = 0),
which satisfies

ι(v0, . . . , vn−1) = (ϕ(0)(vπ−1(0)), . . . , ϕ(n − 1)(vπ−1(n−1))).

This proves the following useful description of the group of isometries:

1.5.5 Theorem The group of isometries ι, with ι(0) = 0, of the finite vector space Fn
q , is

the wreath product

SF∗
q
�n Sn

of the symmetric group SF∗
q

on Fq and the symmetric group Sn on n. The action is the
following one:

SF∗
q �n Sn × Fn

q → Fn
q : ((ϕ; π), v) �→ (ϕ(0)(vπ−1(0)), . . . , ϕ(n − 1)(vπ−1(n−1))).

�

It is easy to check that all these (ϕ; π) ∈ SF∗
q
�n Sn are isometries which map 0

onto 0. Together with 1.5.1 we obtain
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1.5.6Theorem The group of all isometries ι on the finite vector space Fn
q is the wreath

product

SFq �n Sn

of the symmetric group SFq on Fq and the symmetric group Sn on n. The action is the
following one:

SFq �n Sn × Fn
q → Fn

q : ((ϕ; π), v) �→ (ϕ(0)(vπ−1(0)), . . . , ϕ(n − 1)(vπ−1(n−1))).
�

It is easy to check that all these (ϕ; π) ∈ SFq �n Sn are isometries.
There exist isometries of Fn

q such that the image of a subspace of Fn
q is not

a subspace. For instance, if ι(0) �= 0, then the null space {0} is not mapped
onto a subspace of Fn

q . If ι(0) = 0 consider, for example, the linear (2, 1)-code
C over F5 = Z/5Z with generator matrix Γ = (1 1). It contains the five code-
words (0, 0), (1, 1), (2, 2), (3, 3), and (4, 4). The image of C under the isometry

ι = (ϕ; id) ∈ SF∗
q
�n Sn with ϕ(0) = idFq and ϕ(1) =

(
0 1 2 3 4
0 3 2 1 4

)
is

{(0, 0), (1, 3), (2, 2), (3, 1), (4, 4)}, which is not a subspace of F2
5.

Now we want to show that isometries which map subspaces onto subspaces
belong to the following class of mappings, if n ≥ 3:

1.5.7Definition (semilinear mappings) The mapping σ : Fn
q → Fn

q is called semilinear
if there exists an automorphism α of Fq such that, for all u, v ∈ Fn

q and all
κ ∈ Fq we have

σ(u + v) = σ(u) + σ(v), σ(κu) = α(κ)σ(u).

An isometry which is also a semilinear mapping is called semilinear isometry
(with respect to the Hamming metric).  

1.5.8Lemma If the isometry ι : Fn
q → Fn

q , n ≥ 3, maps subspaces onto subspaces, then
for each u ∈ Fn

q we have

ι(F∗
q(u)) = F∗

q (ι(u)).

Moreover, there exists an automorphism α of Fq such that, for each κ ∈ Fq,

ι(κu) = α(κ)ι(u).

Proof: 1. Since ι maps subspaces onto subspaces, the space {0} must be
mapped onto itself, whence ι(0) = 0. Therefore, the assertion is obviously
true for u = 0.
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2. Assume that u �= 0. Since ι is bijective and since it maps subspaces to sub-
spaces, ι(〈u〉) is a one-dimensional subspace, and so, using ι(u) �= 0, we obtain

ι(〈u〉) = 〈ι(u)〉.

Moreover, as ι(0) = 0,
ι(F∗

q (u)) = F∗
q(ι(u)).

Hence, there is a permutation of the scalars

Φu ∈ SF∗
q
≤ SFq ,

depending possibly on the vector u, which satisfies

ι(κu) = Φu(κ)ι(u).

We have to show that Φu is independent of u and that it is a field automor-
phism.

3. For the special case e := ∑i∈n e(i) we have

ι(κe) = Φe(κ)ι(e) = Φe(κ) ∑
i∈n

ϕ(π(i))(1)e(π(i)), κ ∈ F∗
q ,

as well as
ι(κe) = ∑

i∈n
ϕ(π(i))(κ)e(π(i)), κ ∈ F∗

q ,

so that we obtain

∀ i ∈ n : Φe(κ) =
ϕ(π(i))(κ)
ϕ(π(i))(1)

, κ ∈ F∗
q .1.5.9

4. Now we prove that Φe(κµ) = Φe(κ)Φe(µ), for κ, µ ∈ Fq. The assertion
is trivial for κ = 0 or µ = 0. So it is possible to restrict attention to κ, µ ∈
F∗

q . To begin with, we consider another special case (recalling that n > 2, by
assumption): Let

w := e(0) + µe(i),

for i �= 0 and µ ∈ F∗
q . The corresponding equation

ι(κw) = Φw(κ)ι(w), κ ∈ F∗
q ,

implies that
ϕ(π(0))(κ)e(π(0)) + ϕ(π(i))(κµ)e(π(i))

= Φw(κ)
(

ϕ(π(0))(1)e(π(0)) + ϕ(π(i))(µ)e(π(i))).
Comparing the coefficients of the basis vectors on both sides we obtain two
useful identities. The coefficients of e(π(0)) give

ϕ(π(0))(κ) = Φw(κ)ϕ(π(0))(1),



1.5 Semilinear Isometry Classes of Linear Codes 47

so that we can deduce

Φw(κ) =
ϕ(π(0))(κ)
ϕ(π(0))(1)

= Φe(κ), κ ∈ F∗
q ,

and hence Φw = Φe in this particular situation. The second identity, obtained
by comparing the coefficients of e(π(i)), is

ϕ(π(i))(κµ) = Φw(κ)ϕ(π(i))(µ).

Using Φw = Φe and dividing both sides by ϕ(π(i))(1) we derive that

Φe(κµ) = Φe(κ)Φe(µ), κ, µ ∈ F∗
q ,

i.e. Φe is multiplicative.

5. We want to show that Φu = Φe, for all u �= 0. According to 1.5.4 and 1.5.9,
for u = ∑i∈n uie(i) we get

ι(u) = ∑
i∈n

ι(uie
(i)) = ∑

i∈n
ϕ(π(i))(ui)e(π(i))

= ∑
i∈n

Φe(ui)ϕ(π(i))(1)e(π(i)).

Since Φe is multiplicative, we derive for κ ∈ F∗
q that

ι(κu) = ∑
i∈n

Φe(κui)ϕ(π(i))(1)e(π(i))

= Φe(κ) ∑
i∈n

Φe(ui)ϕ(π(i))(1)e(π(i))

= Φe(κ)ι(u),

which can be compared with the identity

ι(κu) = Φu(κ)ι(u),

obtaining Φe(κ) = Φu(κ) for all κ ∈ F∗
q . Hence we have proved that in fact

Φu = Φe, as stated.

6. It remains to show that Φe is additive, i.e.

Φe(λ + µ) = Φe(λ) + Φe(µ), λ, µ ∈ Fq.

Since Φe(0) = 0, this formula is true for λ = 0 or µ = 0. By assumption n ≥ 3,
and so we can consider

u := e(0) + e(1), w := e(1) + e(2)
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and the subspace U := 〈{u, w}〉 generated by these two vectors. For λ, µ ∈ F∗
q ,

the vectors ι(λu), ι(µw) and ι(λu) + ι(µw) are contained in the subspace ι(U).
Hence, there exists some z ∈ U, for which ι(z) = ι(λu) + ι(µw). Then

ι(z) = Φe(λ)ϕ(π(0))(1)e(π(0)) + Φe(λ)ϕ(π(1))(1)e(π(1))

+ Φe(µ)ϕ(π(1))(1)e(π(1)) + Φe(µ)ϕ(π(2))(1)e(π(2)).

On the other hand, since

z = z0e(0) + (z0 + z2)e(1) + z2e(2),

we have

ι(z) = Φe(z0)ϕ(π(0))(1)e(π(0)) + Φe(z0 + z2)ϕ(π(1))(1)e(π(1))

+ Φe(z2)ϕ(π(2))(1)e(π(2)).

Since ϕ(π(i))(1) �= 0, we derive from these two representations of ι(z) that
Φe(z0) = Φe(λ) and Φe(z2) = Φe(µ). Since Φe is a bijection on Fq, we obtain
z0 = λ, z2 = µ and

Φe(λ) + Φe(µ) = Φe(z0 + z2) = Φe(λ + µ),

which completes the proof of the additivity.

7. Hence, α := Φe is in fact an automorphism of Fq which satisfies

ι(κu) = α(κ)ι(u), κ ∈ Fq, u ∈ Fn
q .

Finally

ι(u + v) = ι
(
∑
i∈n

(ui + vi)e(i)
)

= ∑
i∈n

ι
(
(ui + vi)e(i)

)
= ∑

i∈n
α(ui + vi)ϕ(π(i))(1)e(π(i))

= ∑
i∈n

α(ui)ϕ(π(i))(1)e(π(i)) + ∑
i∈n

α(vi)ϕ(π(i))(1)e(π(i))

= ι(u) + ι(v),

which completes the proof. �

Summarizing, an isometry of Fn
q , n ≥ 3, which maps subspaces onto sub-

spaces is semilinear and is described by three mappings

ϕ : n → SF∗
q , α ∈ Aut(Fq), π ∈ Sn.
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It acts on a vector v ∈ Fn
q by

ι(v0, . . . , vn−1) = (α(vπ−1(0))ϕ(0)(1), . . . , α(vπ−1(n−1))ϕ(n − 1)(1)).

The permutations ϕ(i) are contained in SF∗
q
, and so each factor ϕ(i)(1) is con-

tained in F∗
q . Since we only need to know the values ϕ(i)(1), i ∈ n, we can

replace the mapping ϕ by

ψ : n → F∗
q : ψ(i) := ϕ(i)(1), i ∈ n.

Therefore, we can write ι as the triple (ψ; (α, π)), where (ψ; π) is a linear isom-
etry. In other words (ψ; π) belongs to the wreath product F∗

q �n Sn. This allows
the slightly simpler expression for ι(v) given by

(ψ; (α, π))(v0, . . . , vn−1) = (α(vπ−1(0))ψ(0), . . . , α(vπ−1(n−1))ψ(n − 1)).

We collect these results in the following

1.5.10Theorem For n ≥ 3, the isometries of Fn
q which map subspaces onto subspaces

are exactly the semilinear mappings of the form (ψ; (α, π)), where (ψ; π) is a linear
isometry and α is a field automorphism. These mappings form a group, the group of
semilinear isometries. �

In Section 6.7, we will describe this group as a generalized wreath product.

1.5.11Definition (semilinearly isometric codes) Two (n, k)-codes C and C′ over Fq

are called semilinearly isometric if and only if there exists an automorphism α in
Aut(Fq) and a linear isometry (ψ; π) in F∗

q �n Sn, such that the mapping

(c0, . . . , cn−1) �→
(
ψ(0)α(cπ−1(0)), . . . , ψ(n − 1)α(cπ−1(n−1))

)
maps C onto C′. The orbits of the group of semilinear isometries on the set of
subspaces of H(n, q) are the semilinear isometry classes of linear codes of length
n over Fq.  

In addition, we mention the following facts (the first one is obvious, the
second one will become clear in the chapter on finite fields):

1. The group of linear isometries of H(n, 2) is isomorphic to the symmetric
group Sn, since F∗

2 = {1}.

2. The group of semilinear isometries of H(n, q) is the same as the group of
linear isometries if and only if q is a prime p. The reason is that the field Fq

has only the trivial automorphism if and only if q = p.

Hence, if the linear and semilinear isometry groups differ, we expect to see
different numbers of orbits. This is indeed the case. The smallest examples
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are for q = 4, n = 8 and k ≥ 3 (see Tables 6.9 and 6.31 in Chapter 6). What
happens is that two linear isometry classes form a single semilinear isometry
class. For example, we consider two codes over a field consisting of four ele-
ments. We take the field F4 = {0, 1, α, α + 1} subject to the relation α2 = α + 1
(see Chapter 3 for more details on finite fields). The code C1 generated by

Γ1 =

⎛⎜⎜⎜⎝
1 1 1 1 1 0 0 0
α 1 1 0 0 1 0 0
α 1 0 1 0 0 1 0

α + 1 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠
is semilinearly equivalent to C2 generated by

Γ2 =

⎛⎜⎜⎜⎝
1 1 1 1 1 0 0 0
α 1 1 0 0 1 0 0
α 1 0 1 0 0 1 0
α 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

To see that the codes are semilinearly equivalent, add the first row of Γ1 to the
second and third row. This gives⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
α + 1 0 0 1 1 1 0 0
α + 1 0 1 0 1 0 1 0
α + 1 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

Now swap pairwise the second and the fifth and the third and the fourth col-
umn to get ⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
α + 1 1 1 0 0 1 0 0
α + 1 1 0 1 0 0 1 0
α + 1 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

Application of the field automorphism x �→ x2 takes the resulting matrix to
Γ2. It can be proved that the codes C1 and C2 are linearly inequivalent. This
shows that two linear isometry classes may be combined under the semilinear
group. Indeed, the number of linear isometry classes of codes which may join
is bounded from above by the number of field automorphisms, which is of
course two in this case.

For n = 1 or n = 2 the groups of isometries that map subspaces onto
subspaces are described in

1.5.12 Theorem For n = 1, the isometries of Fq which map subspaces onto subspaces are
exactly the isometries of Fq which map 0 onto 0. According to 1.5.5 these are the
elements of SF∗

q .
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For n = 2, the isometries of F2
q which map subspaces onto subspaces are exactly

the mappings of the form (ψ; (α, π)), where (ψ; π) is a linear isometry and α is a
group automorphism of the multiplicative group F∗

q . �

One can check that there exist group automorphisms of F∗
q which cannot

be extended to field automorphisms of Fq.
In conclusion, in large parts of the present book we will be concerned with

orbits of the linear or semilinear isometry group on the set of subspaces of
Fn

q = H(n, q).

Exercises

E.1.5.1Exercise Prove 1.5.1.

E.1.5.2Exercise Complete the proofs of 1.5.5 and 1.5.6 by showing that all elements
of the corresponding wreath products are isometries.

E.1.5.3Exercise In order to complete the proof of 1.5.10, show that any semilinear
mapping of the given form is an isometry which maps subspaces onto sub-
spaces. Moreover, prove 1.5.12.

1.61.6 The Weight Enumerator

An important issue is to find out when two k × n generator matrices over Fq

define isometric codes. In general, this is not an easy task since normal forms
of generator matrices are expensive to find (cf. Chapter 9). But there are invari-
ants of linear codes which may help to distinguish between different codes.
An invariant is simply a quantity (or a property) which we can associate to a
code, and which is equal for codes of the same equivalence class (i.e. a “finger-
print”). One of these invariants will be introduced next, it is the weight distri-
bution of a code. Essentially, this distribution records how many words of a
code have a given Hamming weight. It is usually recorded as the coefficients
of a polynomial, the weight enumerator. The permutational, linear or semi-
linear isometries of 1.4 and 1.5 preserve Hamming distances and Hamming
weights. Codes with different weight enumerators are definitely not permu-
tationally, linearly or semilinearly isometric. In Chapter 8, we will introduce
a method for the evaluation of generator matrices that automatically provides
the weight distribution as well.

We display the weight distribution of a linear code C of length n in terms
of a generating polynomial. For this purpose we use commuting indeterminates
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x and y over C, and we indicate by Ai = Ai(C) the number of codewords of
weight i in C. For example, if dist(C) = d > 1, then A0 = 1, A1 = . . . =
Ad−1 = 0 and Ad �= 0.

1.6.1 Definition (weight enumerator) The homogeneous weight enumerator of a lin-
ear code C of length n is defined as

WC(x, y) := ∑
c∈C

xwt(c)yn−wt(c) =
n

∑
i=0

Aix
iyn−i ∈ C [x, y].

Notice that this is a homogeneous polynomial of degree n. Setting y = 1 yields
the inhomogeneous weight enumerator

wC(x) := ∑
c∈C

xwt(c) =
n

∑
i=0

Aix
i ∈ C [x].  

For example, the 4-fold binary repetition code

C = {04, 14}

has weight enumerator

WC(x, y) = x4 + y4 and wC(x) = x4 + 1.

The following result is often useful. It follows from Exercise 1.2.14.

1.6.2 Lemma For any two vectors u, v ∈ Fn
2 we have the equivalence

wt(u + v) ≡ wt(v) mod 2 ⇐⇒ wt(u) ≡ 0 mod 2. �

This means that adding a vector u ∈ Fn
2 to a vector v ∈ Fn

2 keeps the con-
gruence class modulo two of wt(v) fix if and only if the weight of u is even.
Hence, adding a vector of odd weight in a binary code C to vectors of even
weight gives vectors of odd weight and vice versa. Since the set of vectors of
a linear code is closed under addition, this leaves only two possible cases. Ei-
ther there is no vector of odd weight in a binary code C, or the set of vectors of
C falls into two categories of equal size, one consisting of the vectors of even
weight and the other containing all vectors whose weight is odd.

1.6.3 Corollary For binary codes C the following holds true:

The codewords of even weight form the subspace

Ce := {c ∈ C | wt(c) is even}.
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If there exists a codeword c of odd weight, then the complement C \ Ce of Ce is
equal to c + Ce.

Hence either there is no element of odd weight or exactly half of the codewords in
C have odd weight. We can express this fact as follows: If

R :=

n−1/2�

∑
i=0

A2i+1 and S :=

n/2�
∑
i=0

A2i,

then either R = 0 or R = S. �

In 1.6.9 we will derive an identity which is due to MacWilliams. It shows
that the weight enumerator of a code and that of its dual code mutually deter-
mine each other. In order to prepare for a proof of this identity, we introduce
the notion of a linear representation of a group. This notion generalizes the
concept of a permutation representation or action of a group which has already
been used on several occasions.

According to 1.4.5, a finite action GX is essentially the same as a permutation
representation of G on X. This is a homomorphism

δ : G → SX : g �→ δ(g),

from G into SX, where g ∈ G is mapped onto δ(g) = g, the permutation
x �→ gx of X, an element of the symmetric group SX. A linear representation D
of G over a field F is defined to be a homomorphism

D : G → GL(V) : g �→ D(g),

from G into the group GL(V) of invertible linear mappings on a finite dimen-
sional vector space V over F. The vector space V is called the representation
space and its dimension f D is called the dimension of D. F is said to be the
groundfield of D.

Two representations D : G → GL(V) and D′ : G → GL(V ′) of G over F are
considered equivalent if there exists an invertible linear mapping T : V → V ′

such that
∀ g ∈ G : TD(g) = D′(g)T.

Every choice of a basis {b(0), . . . , b( f D−1)} of V yields invertible matrices
D(g) which describe D(g) with respect to the given basis. Therefore, a matrix
representation D of G over F is a homomorphism

D : G → GL f D(F) : g �→ D(g)

from G to the general linear group GL f D(F), the group consisting of all invert-
ible matrices over F with f D rows and columns. Conversely, it is clear that
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each matrix representation D : G → GL f D(F) yields a representation D : G →
GL(V) where V is an f D-dimensional vector space over F. Equivalence of ma-
trix representations is defined correspondingly. Hence we are free to consider
either representations or matrix representations. Which concept we choose
will depend on the situation in question. In the present section we are mainly
concerned with matrix representations and their characters.

Let D be a representation of G. Consider the map

χD : G → F : g �→ ∑
i∈ f D

dii(g) = trace(D(g)),

which takes g ∈ G to χD(g), the trace of D(g) = (dij(g)). From Linear Algebra
it is clear that the trace of a matrix D(g) corresponding to the linear mapping
D(g) is independent of the choice of a basis. The map χD is called the character
of D. Representations and characters over the field C of complex numbers
are called ordinary. In the case when the groundfield is finite, they are called
modular.

1.6.4 Examples

Every finite action GX yields a representation on the space FX, the vector
space over F which has a basis whose elements are indexed by the elements
of X. Thus we already have a wealth of examples at hand.

The trivial representation of G arising from the trivial action G{x} of G on a
set of cardinality one, where gx := x, is called the identity representation or
the trivial representation and it is indicated as

I : G → GL(F) : g �→ idF ,

where F is the 1-dimensional vector space over F. Its character χI has the
value χI(g) = 1F , for each g ∈ G.

In general, any finite action GX gives rise to a linear representation of G
on FX . This representation associates to g the permutation g of the basis
elements X (recall 1.4.5). Its character is

χ(g) = a1(g) := |{x ∈ X | gx = x}|, g ∈ G,

which counts the number of fixed points of g. More precisely, χ(g) =
a1(g) · 1F . In the ordinary case, i.e. if F = C, this character is the character
of the action of the group.

A one-dimensional character of G is the character of a one-dimensional linear
representation, whence a homomorphism from G into the multiplicative
group F∗ of the groundfield. Therefore, for each such character χ we have

χ(g · h) = χ(g)χ(h) and χ(1G) = 1F ,
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provided that G is written multiplicatively. If G is written additively, we
have correspondingly

χ(g + h) = χ(g)χ(h) and χ(0G) = 1F .

For our purposes, the one-dimensional characters are of particular interest.
A simple example is a one-dimensional character of the additive group of
the field Fq. Consider the group

G := Zp := {z | z ∈ p}

of residue classes z of integers z ∈ Z modulo the prime number p. For more
details on residue classes see Exercise 3.1.3. Addition in the group is done
modulo the prime p. If

ξ := e
2πi
p ∈ C

denotes a primitive p-th root of unity, and if j ∈ p, the mapping

χ(j) : Zp → C∗ : z �→ ξ j·z

is a one-dimensional character of G. It is not difficult to see that these char-
acters are in fact all one-dimensional characters over C of this group, but
we do not need this fact. We just remark that the character χ(j) is nontrivial
for j �= 0.

We can easily generalize this to a direct product

G := Zp × · · · ×Zp

of m ≥ 2 factors of such groups. If (z0, . . . , zm−1) ∈ G, and ji ∈ p, then

χ(j0,...,jm−1) : (z0, . . . , zm−1) �→ ξ∑i jizi

is a one-dimensional character of G = Zp × · · · × Zp. Moreover, this char-
acter is nontrivial if and only if ji �= 0 for at least one i.

Later on in 3.1.6 we will see that for q = pm with p prime, the additive
group of Fq is isomorphic to G := Zp × · · · × Zp (with m factors Zp).
Hence, we have established the existence of nontrivial one-dimensional
characters of the additive group of any finite field. This fact is all we need
in the present section. �

In particular we use the following result on the sum of character values:

1.6.5Lemma Let χ be a nontrivial character of a finite group G over a field F. Then

∑
g∈G

χ(g) = 0.
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Proof: Since χ is nontrivial, there exists an element h ∈ G such that χ(h) �= 1.
From

χ(h) ∑
g∈G

χ(g) = ∑
g∈G

χ(h · g) = ∑
g∈G

χ(g),

we obtain that (
χ(h) − 1

)
∑
g∈G

χ(g) = 0,

and this implies the statement since χ(h) �= 1. �

Suppose that χ : Fq → C∗ is a nontrivial one-dimensional ordinary charac-
ter of Fq, whose existence was established in 1.6.4. Fix an element 0 �= v ∈ Fn

q .
Using the standard bilinear form on Fn

q , we introduce a character of the addi-
tive group G := Fn

q as follows:

χ(v) : Fn
q → C∗ : w �→ χ(〈v, w〉).1.6.6

It is not difficult to see that this is a nontrivial one-dimensional character of Fn
q .

Let us return to the weight enumerator WC and consider the weight function
in its homogeneous form,

f : Fn
q → C[x, y] : v �→ xwt(v)yn−wt(v).

Together with the weight function we examine a second function, a Discrete
Fourier Transform of f (see also Exercise 1.6.9). It is defined by

f̂ := ∑
v∈Fn

q

f (v) · χ(v),

where χ(v) is the character defined by 1.6.6. To begin with, we prove

1.6.7 Lemma For w ∈ Fn
q we have

f̂ (w) = (y − x)wt(w)(y + (q− 1)x
)n−wt(w).

Proof: Let χ denote a nontrivial one-dimensional ordinary character of the
additive group G := Fq. For α ∈ Fq we define

|α| :=
{

1 if α �= 0,
0 otherwise.

For each w ∈ Fn
q we compute

f̂ (w) = ∑
v∈Fn

q

χ(〈v, w〉) f (v)

= ∑
v∈Fn

q

χ(〈v, w〉)xwt(v)yn−wt(v)
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= ∑
v0∈Fq

. . . ∑
vn−1∈Fq

χ

(
∑
i∈n

viwi

)
x|v0|+...+|vn−1|y(1−|v0|)+...+(1−|vn−1|)

= ∑
v0∈Fq

. . . ∑
vn−1∈Fq

∏
i∈n

χ(viwi)x|vi|y1−|vi|

= ∏
i∈n

∑
g∈G

χ(gwi)x|g|y1−|g|.

For the fourth equation we used that χ is a homomorphism.

If wi = 0 then χ(gwi) = χ(0) = 1, and so

∑
g∈G

χ(gwi)x|g|y1−|g| = y + (q − 1)x.

On the other hand, if wi �= 0, we obtain

∑
g∈G

χ(gwi)x|g|y1−|g| = y + ∑
g∈G\{0}

χ(gwi)x

= y + ∑
g∈G\{0}

χ(g)x

which, by 1.6.5, equals y − χ(0)x = y − x. �

1.6.8Lemma If C is an (n, k)-code over Fq, then

∑
c∈C

f̂ (c) = qk ∑
v∈C⊥

f (v).

Proof: We know that

∑
c∈C

f̂ (c) = ∑
c∈C

∑
v∈Fn

q

χ(v)(c) f (v)

= ∑
v∈Fn

q

∑
c∈C

χ(〈v, c〉) f (v)

= ∑
v∈C⊥

∑
c∈C

χ(〈v, c〉) f (v) + ∑
v∈Fn

q\C⊥
∑
c∈C

χ(〈v, c〉) f (v).

In the first sum we have χ(〈v, c〉) = χ(0) = 1 for all v ∈ C⊥ and all c ∈ C.
In order to simplify the second sum we recall that the map c �→ 〈v, c〉 is a
linear form C → Fq. Since v belongs to Fn

q \ C⊥, this linear form is surjective,
whence its kernel has dimension k − 1. Therefore, for each g ∈ Fq, there are
qk−1 vectors c ∈ C such that 〈v, c〉 = g. For this reason we can continue as
follows:

∑
c∈C

f̂ (c) = qk ∑
v∈C⊥

f (v) + qk−1 ∑
v∈Fn

q\C⊥
f (v) ∑

g∈G
χ(g) = qk ∑

v∈C⊥
f (v),

by 1.6.5. �
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We are now in a position to prove the announced identity of MacWilli-
ams [137] for the weight distribution of the dual code:

1.6.9 The MacWilliams-identity The weight enumerator of an (n, k)-code C over Fq is
related to the weight enumerator of its dual code in the following way:

WC⊥ (x, y) = q−kWC(y− x, y + (q− 1)x).

Proof:

WC⊥(x, y) = ∑
c∈C⊥

f (c) 1.6.8= q−k ∑
c∈C

f̂ (c) 1.6.7= q−kWC(y− x, y + (q − 1)x). �

1.6.10 Example Recall from 1.6.1 that the 4-fold binary repetition code C = {04, 14}
has weight enumerator WC(x, y) = x4 + y4. By the MacWilliams-identity, the
weight enumerator of its dual code is

WC⊥ (x, y) =
1
2
(
(y − x)4 + (y + x)4) = y4 + 6x2y2 + x4. �

It is sometimes useful to apply the MacWilliams-identity with exchanged roles
of C and C⊥.

1.6.11 Example Consider the (7, 4)-Hamming-code of 1.3.6. The dual code C⊥, gen-
erated by ∆, has 8 codewords. The 7 nonzero words are all of weight 4. Hence
C⊥ has weight enumerator

WC⊥ (x, y) = y7 + 7x4y3.

By the MacWilliams-identity 1.6.9, the weight enumerator of the (7, 4) Ham-
ming-code C⊥⊥ = C is determined as

WC(x, y) =
1
23 WC⊥ (y − x, y + x)

=
1
8
(
(y + x)7 + 7(y − x)4(y + x)3)

= y7 + 7x3y4 + 7x4y3 + y7.

This shows that C has 7 words of weight 3 and 4 each. Together with the zero
and the all-one-vector, this amounts to all 16 words in the code. �

Particular cases of interest are the self-dual codes which we have introduced
in 1.3.3. These are the linear codes C satisfying C = C⊥. For these codes we
have k = n − k, n is therefore even and k = n/2. Since the weight enumerator
is a homogeneous polynomial of degree n, this implies the following:
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1.6.12Corollary If C is self-dual, then

WC(x, y) = WC(−x,−y) = WC

(
y − x√

q
,
y + (q− 1)x√

q

)
. �

This corollary shows that the weight enumerator of a self-dual code is a
fixed point, i.e. an invariant of a group acting on a polynomial ring, in the
following sense:

1.6.13Definition (fixed point, invariant) Let GX be an action of a group G on a set
X. An element x ∈ X is called a fixed point of an element g ∈ G if gx = x. The
set of all fixed points of g is denoted by

Xg := {x ∈ X | gx = x} ,

and we let
XG :=

{
x ∈ X

∣∣ ∀ g ∈ G : gx = x
}

=
⋂

g∈G

Xg

be the set of common fixed points of all elements g ∈ G. The elements in XG

are also called the invariants of G on X.  
We note that the linear group GLn(C) of invertible matrices of rank n over

the complex field acts on the polynomial ring C [x0, . . . , xn−1] in the following
way:

GLn(C)×C [x0, . . . , xn−1] → C [x0, . . . , xn−1],

(B, f (x0, . . . , xn−1)) �→ (B f )(x0, . . . , xn−1) := f ((x0, . . . , xn−1) · B�).

For example, if B := −I2 :=

(
−1 0
0 −1

)
then

(
(−I2)WC

)
(x, y) = WC

(
(x, y) ·

(
−1 0
0 −1

))
= WC(−x,−y),

which shows that the weight enumerator WC of a self-dual code is a fixed point
of −I2 ∈ GL2(C). We may also express this by saying that WC is an invariant
of the group G := {I2,−I2} of order two.

Any subgroup G ≤ GLn(C) induces a subaction, and the set of common
fixed points

C [x0, . . . , xn−1]G =
{

f ∈ C [x0, . . . , xn−1]
∣∣ ∀ B ∈ G : B f = f

}
is the set of invariants of G on C [x0, . . . , xn−1]. The standard example is

C [x0, . . . , xn−1]Sn ,
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the set of invariants of the symmetric group Sn. A polynomial in this set is
invariant under all possible permutations of its variables. Hence the invariants
of the symmetric group consist of the symmetric polynomials.

An important series of symmetric polynomials is the series of elementary
symmetric polynomials

σm := ∑
0≤i1<...<im≤n−1

xi1 · · · xim , 1 ≤ m ≤ n, σ0 := 1.

They generate the ring of symmetric polynomials, i.e. any symmetric poly-
nomial can be written in a unique way as a polynomial in the elementary
symmetric polynomials. Moreover, the coefficients of polynomials can be ex-
pressed in terms of their roots, using elementary symmetric polynomials. For
example

∏
i∈n

(x − κi) = σ0 · xn + . . . + (−1)nσn(κ0, . . . , κn−1).

For the other coefficients see Exercise 1.6.13.
From 1.6.12 we derive that the weight enumerator WC of a self-dual linear

code C is an invariant of the group

G := 〈−I2, B〉 where B =
1√
q

(
−1 1

q − 1 1

)
.

It is easy to check that this group has four elements. It is isomorphic to the
Klein four-group V4, and so we have obtained:

1.6.14 Corollary The weight enumerator of a self-dual linear code is an invariant of the Klein
four-group:

WC(x, y) ∈ C [x, y]V4
. �

Binary self-dual codes have an additional property:

1.6.15 Definition (divisible codes) A linear code C is called r-divisible if each code-
word has a weight which is divisible by r.  

A 2-divisible code is called even, a 4-divisible code is called doubly even. A
code which is 2-divisible but not 4-divisible is called singly even. Notice that
a binary self-dual code is even, since each word is orthogonal to itself, which
means that its Hamming weight is even.

1.6.16 Lemma If C is self-dual and r-divisible, then its weight distribution WC is an in-
variant of the group

G := 〈−I2, B, D〉 , where B =
1√
q

(
−1 1

q − 1 1

)
, D =

(
ε 0
0 1

)
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and where ε ∈ C denotes a primitive r-th root of unity. Formally,

WC ∈ C [x, y]G .

Proof:

DWC(x, y) =
n

∑
i=0

Aix
iεiyn−i =

n

∑
i=0

Aix
iyn−i = WC(x, y),

since εi = 1 for i divisible by r, and Ai = 0 in the other cases. �

Finally, we show the following result for ternary codes, which is the con-
verse of the assertion made in Exercise 1.3.20. We will use the notion of the
support of a vector, which is just the set of coordinates where the vector is
nonzero. We denote it as

supp(v) = {i ∈ n | vi �= 0} , v ∈ Fn.

In particular, |supp(u)| = wt(u).

1.6.17Lemma Let C be a ternary linear code. Then C is 3-divisible if and only if C is
self-orthogonal.

Proof: If C is self-orthogonal, then, according to Exercise 1.3.20, it is 3-divisible.
Conversely, assume that C is 3-divisible. Consider two codewords u and v in
C. Let X = supp(u) and Y = supp(v). Furthermore, we introduce the sets
E = {i | ui = vi �= 0} (E for “equal”) and N = {i | 0 �= ui �= vi �= 0} (N for
“non-equal”) and Z = {i | ui = vi = 0} (Z for “zero”). Then E and N partition
X ∩Y, and the sets

X \Y, Y \ X, E, N, and Z

partition the set of all coordinates. Furthermore, using the notion of the sym-
metric difference of two sets, which is defined as

X∆Y = (X \Y) ∪ (Y \ X),

we have for any i

ui + vi

⎧⎪⎪⎨⎪⎪⎩
�= 0 if i ∈ X∆Y,
�= 0 if i ∈ E,
= 0 if i ∈ N,
= 0 if i ∈ Z,

and ui − vi

⎧⎪⎪⎨⎪⎪⎩
�= 0 if i ∈ X∆Y,
= 0 if i ∈ E,
�= 0 if i ∈ N,
= 0 if i ∈ Z.

Therefore, wt(u + v) = |X∆Y| + |E| ≡ 0 mod 3 and wt(u − v) = |X∆Y| +
|N| ≡ 0 mod 3, so that |E| ≡ |N| mod 3. We conclude that

〈u, v〉 = ∑
i

uivi = ∑
i∈E

uivi + ∑
i∈N

uivi = |E| − |N| ≡ 0 mod 3.

This shows that C ⊆ C⊥. �
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Exercises

E.1.6.1 Exercise Let C be a linear code over Fq. Show that each c ∈ C satisfies∣∣{c′ ∈ C
∣∣ d(c, c′) = i

}∣∣ =
∣∣{c′ ∈ C

∣∣ wt(c′) = i
}∣∣ = Ai

for 0 ≤ i ≤ n.

E.1.6.2 Exercise By Exercise 1.3.16, a binary self-orthogonal code is even. What about
the converse?

E.1.6.3 Exercise Let C be a binary linear code of length n containing the all-one vector.
Show that Ai = An−i for 0 ≤ i ≤ n.

E.1.6.4 Exercise Consider vectors u, v, w ∈ Fn
2 satisfying d(u, v) ≡ d(v, w) mod 2.

Then d(u, w) ≡ 0 mod 2. Show that this is in fact equivalent to 1.6.2.

E.1.6.5 Exercise Prove the following properties of one-dimensional characters of a
finite and multiplicative group G:

χ(g) is a |G|-th root of unity, i.e. χ(g)|G| = 1F .

χ(g−1) = χ(g)−1. In particular, if F is the field C of complex numbers then
χ(g−1) = χ(g), where χ(g) denotes the complex conjugate of χ(g).
Show that the one-dimensional ordinary characters of G form a group Ĝ
with respect to pointwise multiplication.

E.1.6.6 Exercise Let (G, +) be a group. For n ∈ Z and g ∈ G the n-fold sum of g is
defined by

n · g :=

⎧⎨⎩
0 if n = 0,
(n − 1) · g + g if n > 0,
(−n) · (−g) if n < 0,

where (−g) is the additive inverse of g. Prove the following:

(n + m) · g = n · g + m · g and (nm) · g = n · (m · g) for all n, m ∈ Z and
g ∈ G.

For an abelian group (G, +), n · (g1 + g2) = n · g1 + n · g2 for all n ∈ Z, and
g1, g2 ∈ G.

If G is a ring then n · (g1g2) = (n · g1)g2 is satisfied for all n ∈ Z and
g1, g2 ∈ G.
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If (G, ·) is a multiplicative group, then, correspondingly, for n ∈ Z we use
powers in order to indicate the n-fold product of g ∈ G defined by

gn :=

⎧⎨⎩
1 if n = 0,
gn−1 · g if n > 0,
(g̃)−n if n < 0,

where g̃ is the multiplicative inverse of g. Analogously to the n-fold sum,
formulate the corresponding assertions for the n-fold product.

E.1.6.7Exercise Recall (see e.g. [101]), that each finite abelian group G is isomorphic
to a direct product of suitable cyclic groups:

G � Zn0 × . . . ×Znr−1 ,

where ∏i∈r ni = |G|. This decomposition is unique provided that ni | ni+1 for
0 ≤ i < r − 1. In this case the number nr−1 is the exponent exp(G) of G. It is
the smallest positive integer m such that the m-fold sum satisfies

m · g = 0 ∀ g ∈ G.

Hence, any element g ∈ G can be written as a tuple (g0, . . . , gr−1) with gi ∈
Zni . Consider a primitive nr-th root of unity ξ ∈ C and prove that the mapping

φ : G → Ĝ : g �→
(

h �→ ∏
i∈r

ξ
nr−1

ni
gihi

)
into the group of one-dimensional characters (cf. Exercise 1.6.5) is a group iso-
morphism, where g = (g0, . . . , gr−1) and h = (h0, . . . , hr−1). If we indicate the
character φ(g) by χg, then

χg(h) = ∏
i∈r

ξ
nr−1

ni
gihi for each h ∈ G.

E.1.6.8Exercise Verify the following orthogonality relation for the characters of a finite
abelian group G over C: For each g, g′ ∈ G we have

1
|G| ∑

h∈G
χ−g(h)χg′(h) =

{
1 if g = g′,
0 otherwise.

E.1.6.9Exercise Let G be a finite abelian group. We associate to each f : G → C its
Discrete Fourier Transform

f̂ (h) := ∑
g∈G

f (g)χg(h), h ∈ G.
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Show that
f (h) =

1
|G| ∑

g∈G
f̂ (g)χ−g(h), h ∈ G.

Therefore, the set Ĝ of one-dimensional characters of G forms a generating
system of the vector space CG, whence (compare the dimension) even a basis.

E.1.6.10 Exercise Prove the Lemma of Cauchy–Frobenius for Representations: Let D de-
note a representation of a finite group G on a vector space over a field F of
characteristic prime to |G|. Then the space

VG =
{
v ∈ V

∣∣ ∀ g ∈ G : D(g)v = v
}

of invariants of the group D(G) is of dimension

dim (VG) =
1
|G| ∑

g∈G
χD(g).

Hint: The linear mapping

ϕ :=
1
|G| ∑

g∈G
D(g)

is a projection, i.e. ϕ2 = ϕ.

E.1.6.11 Exercise Use the MacWilliams-identity in order to express A⊥
i := Ai(C⊥) in

terms of the Ai = Ai(C). Rephrase your result in terms of the Krawtchouk
polynomial

Kn,q
i (x) =

i

∑
j=0

(−1)j(q − 1)i−j
(

x
j

)(
n − x
i − j

)
,

where(
x
j

)
:=

x · · · (x − j + 1)
j!

,
(

n − x
i − j

)
:=

(n − x) · · · (n − x − (i − j) + 1)
(i − j)!

.

E.1.6.12 Exercise Show that the parity extension of the (7, 4) binary Hamming-code
(cf. Example 1.3.6) is self-orthogonal and hence self-dual, with minimum dis-
tance 4. Write down the MacWilliams-identity for its weight enumerator.

E.1.6.13 Exercise Express the coefficients of ∏i∈n(x − κi) in terms of elementary sym-
metric polynomials and the roots κi.
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1.71.7 Systematic Encoding, Information Sets

It may happen that a set of k coordinates of the codewords of a fixed code al-
ways determines the remaining coordinate values. This means that if we are
given the values of a codeword on those k coordinates, then the remaining
n − k coordinates are determined uniquely. We say that such a set of k coor-
dinates forms an information set. The elements of an information set, i.e. the
coordinates which are part of it, are called information places. If a k-set of coor-
dinates is an information set, then we say that the remaining n− k coordinates
form a redundancy set. Its elements are of course called redundancy places. They
are also called check bits, since they may be used for error detection and error
correction.

Any code has at least one information set. It corresponds to a maximal
set of columns of a generator matrix which are linearly independent. Recall
that a generator matrix Γ is a k × n-matrix of rank k. Such a matrix always
has a set of k columns which are linearly independent. Gaussian elimination
for example will reveal such a set of columns. The columns holding the pivot
elements have the property that they are linearly independent. If necessary, we
permute these columns up-front, for example by means of a linear isometry.
This means that we may have to change to a code C′ which is isometric to the
original code C, which is of course no real restriction. This code C′ then has
the following nice property:

1.7.1Corollary Each (n, k)-code C with generator matrix Γ is linearly isometric to a code
C′ with generator matrix of the form

Γ′ = (Ik | A),

where Ik denotes the k × k-unit matrix. �

We say that a generator matrix of the form (Ik | A) is systematic. The corre-
sponding encoding map v �→ v · Γ′ is called systematic. We have seen that up
to linear (or semilinear) isometry, any code can be generated systematically.

When using systematic encoding v �→ v · Γ′ = w, the first k coordinate
places of w simply repeat the k components of the message v. The remaining
n− k coordinates of w can then be used for error correction (note however, that
errors may also have occurred in the first k coordinates, so decoding by simply
reading out the first k coordinate values does not work). Here is an example
of a generator matrix Γ and a linear isometry which determines a systematic
generator matrix Γ′ of a ternary code. The code generated by

Γ =

(
1 2 1 2
2 1 1 0

)
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is linearly isometric to the code generated by

Γ′ :=

(
0 2
1 1

)
· Γ ·

⎛⎜⎜⎜⎝
0 0 2 0
2 0 0 0
0 0 0 2
0 2 0 0

⎞⎟⎟⎟⎠ =

(
1 0 2 1
0 1 0 1

)
.

Both are (4, 2)-codes over F3.
Now we examine the effect of the linear isometries on H(n, q) = Fn

q that
correspond to multiplication of columns by nonzero elements of the field. We
want to show that such isometries map a systematic code onto a systematic
one.

Isometries obtained by multiplications are described by regular n× n diag-
onal matrices D, and these matrices form a normal subgroup Dn(q) of Mn(q)
(see Exercise 1.7.4). An (n, k)-code C with generator matrix (Ik | A), where A
is the k × (n − k)-matrix

A =

⎛⎜⎝ a0,k . . . a0,n−1
...

...
ak−1,k . . . ak−1,n−1

⎞⎟⎠ ,

is mapped under that kind of isometries onto an isometric code C′ with gener-
ator matrix

(Ik | A) · D.

Any matrix which can be obtained from the above generator matrix via left
multiplication by a regular k × k-matrix is a generator matrix of C′ as well.
Suppose we choose for the left multiplication the upper left part of the multi-
plicative inverse of D = (dij) ∈ Dn(q), i.e. the matrix

D′ :=

⎛⎜⎜⎝
d−1

0,0 0
. . .

0 d−1
k−1,k−1

⎞⎟⎟⎠ ,

then we obtain the systematic generator matrix

D′ · (Ik | A) · D = (Ik | D ∗ A)

of C′, where

D ∗ A :=
(
d−1

ii aijdjj

)
0≤i<k,k≤j<n

.1.7.2

This proves the following
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1.7.3Lemma For each D ∈ Dn(q), the systematic matrices (Ik | A) and (Ik | D ∗ A)
generate linearly isometric codes. �

Another characterization of information sets is the following. Let J be a set
of column indices, i.e. J ⊆ {0, . . . , n − 1} = n. Denote the complement of J as

J := n \ J.

Then
F( J)

q :=
{
(w0, . . . , wn−1) ∈ Fn

q

∣∣∣ wj = 0 for all j ∈ J
}

1.7.4

is a subspace of Fn
q of dimension |J|. In particular,

F( J)
q ⊕ F( J)

q = Fn
q . 1.7.5

1.7.6Theorem An (n, k)-code C possesses a k-subset J ⊆ n as an information set if and

only if C ⊕ F( J)
q = Fn

q holds true. �

The proof of this theorem is Exercise 1.7.7. Since each element of F( J)
q is of

Hamming weight at most |J|, we obtain the following

1.7.7Theorem Consider d ∈ N∗. For each linear code C of length n over Fq, the following
conditions are equivalent:

C has minimum weight at least d.

For each J ⊆ n, where |J| < d, we have

C ∩ F( J)
q = {0} . �

Now we want to describe the close connection between systematic genera-
tor matrices and systematically encoded linear codes.

1.7.8Theorem Assume that 1 ≤ k ≤ n − 1. The mapping

A �→
{

v · (Ik | A)
∣∣∣ v ∈ Fk

q

}
is a bijection between the set of k × (n − k)-matrices A over Fq and the set of system-
atically encoded (n, k)-codes over Fq.

Proof: The given mapping is obviously surjective. In order to prove injectivity,
we consider two k × (n − k)-matrices A and B over Fq which differ in their
i-th row for some i. If e(i) denotes the i-th unit vector, then the codewords
e(i) · (Ik | A) and e(i) · (Ik | B) are distinct. However, the two codewords agree
in all of the first k coordinates, whose values by Theorem 1.7.6 determine the
codeword uniquely. The only possibility for this is that the codes generated by
(Ik | A) and (Ik | B) are distinct. This proves the statement. �
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When classifying linear codes we want to obtain complete lists of repre-
sentatives of the isometry classes for given parameters n, k and q. It is most
convenient to describe the representatives by systematic generator matrices.
Therefore, it is of interest to determine all systematic generator matrices of
codes belonging to a single isometry class.

1.7.9 Remark [184, 2.10] Assume that Γ = (Ik | A) is a systematic generator ma-
trix of an (n, k)-code over Fq with k < n. The systematic generator matrices
of codes (semi)linearly isometric to C can be obtained as follows. Apply a
(semi)linear isometry so that the first k columns of the resulting matrix Γ′ are
linearly independent. Then pre-multiply Γ′ by a suitable matrix from GLk(q).
There are several types of isometry operations which guarantee that the first
k columns of Γ′ are linearly independent. They can be generated by repeated
application of the following isometry operations:

Considering permutational isometries we obtain: The permutations of col-
umns that replace the first k columns of Γ by linearly independent columns
can be generated by repeated application of three types of permutations:
1. Interchange the columns with index i and j, where i, j < k. After in-

terchanging the i-th and j-th row of Γ′, the resulting matrix is again
systematic.

2. Interchange the columns with index i and j, where i, j ≥ k, then the
resulting matrix is systematic.

3. Interchange the columns with index i and j, where i < k ≤ j. This
is only possible in case aij �= 0, for otherwise the first k columns of Γ′

would no longer be linearly independent. In order to obtain a system-
atic matrix, multiply the i-th row of Γ′ by a−1

ij , and for � �= i subtract this
new row multiplied by a�j from the �-th row of Γ′.

Furthermore, using linear isometries it is possible to multiply columns of Γ
by nonzero field elements. If we multiply the i-th column of Γ by κ ∈ F∗

q ,
say, then the resulting matrix either is already systematic (namely if i ≥ k),
or can be brought into a systematic form (namely by multiplying the i-th
row by κ−1).

When considering also semilinear isometries, apply an automorphism
α ∈ Aut(Fq) to each entry of Γ. The resulting matrix is again systematic.  

Exercises

E.1.7.1 Exercise Use the existence of systematic generator matrices in order to show
that each linear code with k = n − 1 has a minimum distance at most 2.
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E.1.7.2Exercise Let C be an (n, k)-code with minimum distance d. Show that d is
the largest integer with the property that any n − d + 1 coordinate positions
contain an information set.

E.1.7.3Exercise There are three types of elementary k× k-matrices over F. For λ ∈ F∗

and for i0, j0 ∈ k with i0 �= j0 they are given by:

B(1)
i0,λ

is the unit matrix Ik in which the entry 1 occurring in position (i0, i0)
is replaced by λ, thus it is a diagonal matrix (bij)i,j∈k with

bij =

⎧⎨⎩
λ if i = j = i0,
1 if i = j �= i0,
0 else.

B(2)
i0,j0,λ is the unit matrix Ik with an additional entry λ in position (i0, j0),

thus it is the matrix (bij)i,j∈k with

bij =

⎧⎨⎩
1 if i = j,
λ if i = i0 and j = j0,
0 else.

B(3)
i0,j0

is the unit matrix Ik in which the rows (or columns) of index i0 and j0
are exchanged, thus it is the matrix (bij)i,j∈k with

bij =

⎧⎨⎩
1 if i = j and (i �= i0 or j �= j0),
1 if (i, j) = (i0, j0) or (i, j) = (j0, i0),
0 else.

Prove that all these matrices are regular, and that the inverse of an elementary
matrix is again elementary. Deduce then that every matrix of GLk(q) can be
written as a product of elementary matrices.

Show that the following holds true: Multiplying a k × n-matrix Γ from
the left with an elementary matrix B yields an elementary row operation on
Γ. Hence, B · Γ is a composition of elementary row operations on Γ for all
B ∈ GLk(q). Multiplying an n × k-matrix Γ from the right with an elementary
matrix yields an elementary column operation on Γ. Hence, Γ · B is a compo-
sition of elementary column operations on Γ for all B ∈ GLk(q).

E.1.7.4Exercise Check that the regular n× n diagonal matrices over Fq form a normal
subgroup Dn(q) of Mn(q), which means that Dn(q) is a subgroup of Mn(q) and
that M−1 · D · M ∈ Dn(q) for each D ∈ Dn(q) and M ∈ Mn(q).
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E.1.7.5 Exercise Verify that the composition ∗ of 1.7.2 satisfies

D1 ∗ (D2 ∗ A) = (D1 · D2) ∗ A and In ∗ A = A.

Here, D1 and D2 are elements of Dn(q) and A is any k× k-matrix. In particular,
this operation is a group action.

E.1.7.6 Exercise Prove that 1.7.5 holds for all subsets J ⊆ n.

E.1.7.7 Exercise Prove 1.7.6.

E.1.7.8 Exercise Assume that W and W ′ are subspaces of the vector space V. Prove
that the following two statements are equivalent:

1. V = W ⊕W ′ (which means V = W + W ′ and W ∩W ′ = {0}).

2. For each v ∈ V there exist uniquely determined w ∈ W and w′ ∈ W ′ such
that v = w + w′.

E.1.7.9 Exercise Assume that W and W ′ are subspaces of the finite dimensional vector
space V. Prove that the following two statements are equivalent:

1. V = W ⊕W ′.

2. V = W + W ′ and dim(V) = dim(W) + dim(W ′).

1.8 1.8 A Minimum Distance Algorithm

As we have seen, the minimum distance is a very important parameter of a
linear code. Nevertheless, evaluating this parameter for a given code may turn
out to be surprisingly hard. As example 1.3.8 shows, the minimum distance
of a code can be less than the minimum weight of the rows of a particular
generator matrix. Here we present an algorithm, which is a variation of an
idea of A. Brouwer and due to K.-H. Zimmermann. Information sets play an
important role in this algorithm. It uses an iteration of Gaussian elimination
and it works efficiently if the code under consideration has many information
sets which are pairwise disjoint.
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1.8.1Algorithm (MinDist) To compute the minimum distance of a given linear
(n, k)-code C. The input is a generator matrix Γ of C and the output is the mini-
mum distance d = dist(C) of C.

Recall that the code in question is linearly isometric to a systematic one.
This means that there exist matrices M ∈ Mn(q) and B ∈ GLk(q) such that
B · Γ · M� is a systematic generator matrix. In fact, recalling the Gaussian
Algorithm, we can obtain a systematic generator matrix by elementary row
operations, i.e. by multiplying from the left with a matrix B1 ∈ GLk(q), and
a suitable column permutation, i.e. a multiplication from the right by the
transpose of a permutation matrix Mπ1 := M(ε;π1) (cf. 1.4.8),

Γ1 := B1 · Γ · M�
π1

= ( Ik1
| A1),

where k1 = k.

If A1 is neither empty nor a zero matrix, its rank is k2 with 0 < k2 ≤ k1. Ap-
plying Gaussian elimination, we can obtain k2 different unit vectors in the
remaining n − k1 columns. Of course, this process may distort the original
unit matrix Ik1 in the leftmost k1 columns. In other words, we can multiply
Γ1 from the left by an element B2 of GLk(q) and from the right by the trans-
pose of a permutation matrix Mπ2 with π2(j) = j for 0 ≤ j < k1, obtaining
a generator matrix of a linearly isometric code,

Γ2 := B2 · Γ1 · M�
π2

=

(
A′

2
Ik2 A2

0 0

)
.

The matrix A′
2 is a k × k1-matrix and A2 is a k2 × (n − k1 − k2)-matrix. The

zeros indicate zero matrices.

Assume that for i ≥ 2 the matrix Ai which has just been computed is nei-
ther empty nor a zero matrix. Then its rank is ki+1 with 0 < ki+1 ≤ ki. We
continue this way, obtaining regular matrices Bi+1 ∈ GLk(q), permutation
matrices Mπi+1 ∈ Mn(q), with πi+1(j) = j for 0 ≤ j < k1 + . . . + ki, and
generator matrices

Γi+1 := Bi+1 · Γi · M�
πi+1

=

(
A′

i+1
Iki+1

Ai+1

0 0

)
,

A′
i+1 a k × (k1 + . . . + ki)-matrix and Ai+1 a ki+1 × (n − k1 − . . . − ki+1)-

matrix. We repeat this procedure. Eventually, we will obtain a generator
matrix Γm, say, such that

Γm := Bm · Γm−1 · M�
πm

=

(
A′

m
Ikm Am

0 0

)
,
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where Am is either empty (which means it has no columns) or it is a zero
matrix. Then, k1 + . . . + km ≤ n and Am has n − k1 − . . . − km columns.
Consequently, the generator matrix Γm has n − k1 − . . . − km zero columns,
whence all elements of the code generated by Γm have weight at most
k1 + . . . + km.

Let C̃ be the code generated by Γm. We note that C is linearly isometric to
this code, whereas the matrices

Γ1, . . . , Γm

generate codes which are linearly isometric to C̃ but not necessarily equal to
C̃ (except for Γm, of course). For this reason we put

Γ̃i := Γi · M�
πi+1

· · · M�
πm

= Bi · · · B1 · Γ · M�
π1

· · · M�
πm

= B̃iΓm,

B̃i ∈ GLk(q), so that the matrices

Γ̃1, . . . , Γ̃m

generate the same code C̃. Moreover, the leftmost k1 + . . . + ki columns of Γi

and Γ̃i are the same, whence Γ̃i has the unit matrix Iki
in the same position

as Γi.

Using these matrices, we define for 1 ≤ i ≤ k the following subsets C̃i of C:

C̃i :=
m⋃

j=1

{
v · Γ̃j

∣∣ v ∈ Fk
q, wt(v) ≤ i

}
.

Clearly, these sets form the ascending chain

C̃1 ⊆ C̃2 ⊆ . . . ⊆ C̃k = C̃

of subsets of C̃, and hence the minimum weights

di := min
{

wt(c) | c ∈ C̃i, c �= 0
}

,

form the decreasing sequence

d1 ≥ d2 ≥ . . . ≥ dk = dist(C̃) = dist(C).

In most cases, we do not need to compute all of these values. In fact, the
computation of dk is just the evaluation of dist(C̃) as the least weight of all
codewords c in C̃ \ {0}, which we want to avoid, if possible. As a matter
of fact, in the first step we just compute d1. Later, if di has been computed
for some i ≥ 1, we will compare it with di, which is a lower bound for the
weight of the elements in C̃ \ C̃i. If di ≤ di we are finished. Otherwise, if
di > di, we proceed to compute the exact value of di+1.
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Hence, we try to find lower bounds for the weights in the complements
C̃ \ C̃i. For this purpose we pick an element c ∈ C̃ \ C̃i. Since c �∈ C̃i, there
exists, for each j, a vector v(j) ∈ Fk

q such that

c = v(j) · Γ̃j, 1 ≤ j ≤ m, and wt(v(j)) ≥ i + 1.

In order to estimate the weight of c, we consider each of these represen-
tations of c by using the various information places in Γ̃j, the columns of
which contain the unit matrix Ikj

. These are the columns of index r for
k1 + . . . + kj−1 ≤ r < k1 + . . . + kj. We are especially interested in the kj

coordinates cr of c = v(j) · Γ̃j corresponding to these kj columns. Since v(j)

is of length k, these entries of c contribute at least the value i + 1− (k − kj)
to the weight of c. Since these sets of places are disjoint, for different j, we
obtain

wt(c) ≥
m

∑
j=1

(i + 1− (k − kj)).

We can restrict our attention to positive summands, which gives the lower
bound

wt(c) ≥ ∑
j : k−kj≤i

(i + 1− (k − kj)) =: di.

Obviously, since the first summand is i + 1, the sequence of these bounds
is increasing:

2 ≤ d1 < d2 < d3 < . . . < dk.

In addition,

dk = m +
m

∑
j=1

kj.

Since wt(c) ≤ k1 + . . . + km for all c ∈ C̃, there exists a smallest index i0
such that

di0 ≤ di0 .

For this i0 we have that

di0 := min
{

wt(c)
∣∣ c ∈ C̃i0 , c �= 0

}
,

and the inequality

di0 ≤ min
{

wt(c)
∣∣ c ∈ C̃ \ C̃i0

}
holds true. Hence,

di0 = dist(C̃),

and a codeword of weight dist(C̃) is contained in C̃i0 .
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To simplify the algorithm, it is possible to do all these computations with
Γi instead of Γ̃i. Notice that the values of dj and dj do not change when we
use Γi instead of Γ̃i since

wt
(
v · Γ̃i

)
= wt

(
v · Γi · M�

πi+1
· · · M�

πm

)
= wt(v · Γi).

Moreover, we can replace the sets C̃i by the isometric sets

Ci :=
m⋃

j=1

{
v · Γj

∣∣ v ∈ Fk
q, wt(v) ≤ i

}
. �

Here is a summary of the algorithm MinDist.

1.8.2 Algorithm Compute the minimum distance of a given linear (n, k)-code C.
Input: A systematic generator matrix Γ1 = (Ik | A1) of C.
Output: The minimum distance dist(C).

(1) m := 2
(2) k1 := k
(3) repeat

(4) Apply Gaussian elimination and possibly permutations of the

columns to the matrix Am−1 from Γm−1 =

(
A′

m−1
Ikm−1

Am−1

0 0

)

to obtain a generator matrix Γm =

(
A′

m
Ikm Am

0 0

)
(5) until rank(Am) = 0
(6) C0 := {0}
(7) i := 0
(8) repeat

(9) i := i + 1

(10) Ci := Ci−1 ∪
m⋃

j=1

{v · Γj | v ∈ F(q)k,wt(v) = i}

(11) di := min{wt(c) | c ∈ Ci, c �= 0}

(12) di :=
m

∑
j=1

k−kj≤i

(i + 1)− (k − kj)

(13) until di ≤ di

(14) return di �
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1.8.3Example We apply the algorithm MinDist to the binary (7, 3)-code C with gen-
erator matrix

Γ1 =

⎛⎜⎝ 1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

⎞⎟⎠ .

This matrix has the information set {0, 1, 2}. The algorithm successively com-
putes the generator matrices

Γ2 =

⎛⎜⎝ 0 1 1 1 0 0 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0

⎞⎟⎠
with information set {3, 4, 5} and the generator matrix

Γ3 =

⎛⎜⎝ 0 1 1 1 0 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0

⎞⎟⎠
with information set {6}. The set C1 consists of all rows of the three generator
matrices Γ1, Γ2 and Γ3. Each of them is of weight 4, whence d1 = 4. The lower
bound for the minimum weight of the vectors outside of C1 is d1 = 4. Hence,
d = d1 = 4 is the minimum distance of C. �

1.8.4Example We apply the algorithm MinDist to the binary (15, 5)-code C with
generator matrix

Γ =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 1 0 1 1 1 0 0
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ .

This code will be constructed in 4.3.5, it is a BCH-code. The systematic matri-
ces are

Γ1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1
0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
0 0 1 0 0 0 1 1 1 1 0 1 0 1 1
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ ,

Γ2 =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 1 1 1 0 0 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 0 0 1 1 1 1 0
0 1 0 1 1 0 0 1 0 0 0 1 1 1 1
0 1 1 1 0 0 0 0 1 0 1 0 0 1 1
1 0 1 1 1 0 0 0 0 1 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎠ ,



76 1. Linear Codes

and

Γ3 =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
1 0 0 1 1 0 1 1 1 0 0 0 0 1 0
0 1 0 0 1 1 0 1 1 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

The information sets are

{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}, and {10, 11, 12, 13, 14}.

The minimum weight of the rows in these matrices is d1 = 7, whereas d1 = 2−
(5− 5) + 2− (5− 5) + 2− (5− 5) = 6. Since 7 > 6, we continue by considering
linear combinations of any two rows of the Γi. For example, if i = 1 we look at
vectors v and codewords v · Γ1 where

v v · Γ1 wt(v · Γ1)
(1, 1, 0, 0, 0) (1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1) 7
(1, 0, 1, 0, 0) (1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0) 7
(1, 0, 0, 1, 0) (1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1) 8
(1, 0, 0, 0, 1) (1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0) 8
(0, 1, 1, 0, 0) (0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1) 8
(0, 1, 0, 1, 0) (0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0) 7
(0, 1, 0, 0, 1) (0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1) 7
(0, 0, 1, 1, 0) (0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1) 7
(0, 0, 1, 0, 1) (0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0) 7
(0, 0, 0, 1, 1) (0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1) 8

If i = 2, we have

v v · Γ2 wt(v · Γ2)
(1, 1, 0, 0, 0) (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0) 7
(1, 0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1) 7
(1, 0, 0, 1, 0) (1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1) 8
(1, 0, 0, 0, 1) (0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1) 8
(0, 1, 1, 0, 0) (1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1) 8
(0, 1, 0, 1, 0) (1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1) 7
(0, 1, 0, 0, 1) (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1) 7
(0, 0, 1, 1, 0) (0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0) 7
(0, 0, 1, 0, 1) (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0) 7
(0, 0, 0, 1, 1) (1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0) 8
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and for i = 3 we obtain

v v · Γ3 wt(v · Γ3)
(1, 1, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0) 7
(1, 0, 1, 0, 0) (1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0) 7
(1, 0, 0, 1, 0) (0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0) 8
(1, 0, 0, 0, 1) (1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1) 8
(0, 1, 1, 0, 0) (1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0) 8
(0, 1, 0, 1, 0) (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0) 7
(0, 1, 0, 0, 1) (1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1) 7
(0, 0, 1, 1, 0) (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0) 7
(0, 0, 1, 0, 1) (0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1) 7
(0, 0, 0, 1, 1) (1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1) 8

This shows that d2 = 7. On the other hand, d2 = 3 − (5 − 5) + 3 − (5 − 5) +
3 − (5 − 5) = 9 which is greater than 7, i.e. the minimum distance has been
determined to be 7. In this example, we have looked at 15 + 3 · 10 = 45 code-
words, which is actually worse than the original problem. �

We see that the algorithm may actually be worse than the original prob-
lem. But in many cases, in particular when the codes get bigger, there is a ben-
efit. For example, the minimum distance of the binary extended Golay code
of length 24 and dimension 12 (presented in 2.3.12) is computed by looking at
596 rather than 212 = 4096 codewords.

Exercises

E.1.8.1Exercise Prove the remaining statements about di for 1 ≤ i ≤ k in the descrip-
tion of 1.8.1.

E.1.8.2Exercise Use the algorithm MinDist in order to evaluate the minimum dis-
tance of the binary (7, 4)-code with generator matrix⎛⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎟⎠ .

Check your result using the attached software.




