

Algorithms and Computation
in Mathematics • Volume 18

Editors
Arjeh M. Cohen Henri Cohen
David Eisenbud Michael F. Singer
Bernd Sturmfels

Anton Betten · Michael Braun
Harald Fripertinger · Adalbert Kerber
Axel Kohnert · Alfred Wassermann

Error-Correcting
Linear Codes

Classification by Isometry
and Applications

With 51 Figures and 102 Tables

123

Anton Betten
Department of Mathematics
Colorado State University
Fort Collins, CO 80523
USA
betten@math.colostate.edu

Michael Braun
Siemens
CT IC 3
D-81739 München
Germany
mic.braun@siemens.com

Harald Fripertinger
Institut für Mathematik
Karl-Franzens-Universität Graz
A-8010 Graz
Austria
harald.fripertinger@uni-graz.at

Adalbert Kerber
Axel Kohnert
Alfred Wassermann
Mathematisches Institut
Universität Bayreuth
D-95440 Bayreuth
Germany

kerber@uni-bayreuth.de
axel.kohnert@uni-bayreuth.de
alfred.wassermann@uni-bayreuth.de

Library of Congress Control Number: 2006929536

Mathematics Subject Classification (2000): 05E, 51E, 94B, 05B25, 05E20, 11D04

ISSN 1431-1550

ISBN-10 3-540-28371-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28371-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors using a Springer LATEX macro package
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper 46/3100YL - 5 4 3 2 1 0

Preface

The fascinating theory of error-correcting codes is a rather new addition to
the list of mathematical disciplines. It grew out of the need to communicate
information electronically, and is currently no more than 60 years old. Be-
ing an applied discipline by definition, a surprisingly large number of pure
mathematical areas tie into Coding Theory. If one were to name just the most
important connections, one would start of course with Linear Algebra, then
list Algebra and Combinatorics, and further mention Number Theory and Ge-
ometry as well as Algebraic Geometry.

Being a thorough introduction to the field, this book starts from the very
beginning, which is the channel model of communication in the presence of
noise. From there, we develop the fundamental concepts of error-correcting
codes, like the Hamming metric and the maximum likelihood decoding prin-
ciple. After discussing dual codes and simple decoding procedures, this book
takes an unusual turn. The standard approach would be to move on from there
and introduce either more theory or present standard constructions of codes.
The approach taken here is different.

After raising the question of what it means for codes to be “essentially dif-
ferent” we consider the metric Hamming space together with its isometries,
which are the maps preserving the metric structure. This in turn will lead to
a rigorous definition of equivalence of codes. In fact, we will call codes iso-
metric if they are equivalent as subspaces of the Hamming space. After that,
the discussion shifts to a more abstract analysis of the different kinds of isome-
tries. This is laying out the more general theme behind this book. In essence,
this book serves two purposes. On the one hand, the book introduces the fun-
damentals of the theory of error correcting codes like parameters, bounds as
well as known classes of codes including the important class of cyclic codes
(Chapters 1–4). Also included is a decent introduction to the theory of finite
fields (Chapter 3). Moreover the application of coding theory to CD-players
is discussed in detail. On the other hand, the second part of the book covers
more advanced and specialized topics which so far have not yet made it into
the standard textbooks in the area.

Chapters 1–4 are the core of everyone’s understanding of the theory of er-
ror correcting codes. Chapter 1 discusses basic concepts, including isometry,
weight enumerators, systematic encoding, and a section on the explicit com-
putation of the minimum distance of a code. Chapter 2 is also classic. We
discuss bounds on the parameters of codes. This involves both direct com-
binatorial bounds and also bounds which are obtained from modifications of
codes. Particular series of codes are introduced, like the general form of the

VI Preface

Hamming-codes, the extended binary Golay-code of length 24, the class of
Reed–Muller-codes as well as a general discussion of MDS-codes.

Chapter 3 is devoted to the theory of finite fields. No book on linear codes
can do without such a chapter. Usually, this discussion is placed somewhat af-
ter the general introduction of codes and before things get more involved. We
have tried to keep the theory of finite fields together in one single chapter, at
perhaps the expense of keeping the reader waiting longer than usual. We hope
that this decision pays off in that the body of the theory of finite fields can be
presented in a single entity. We start with algebraic elements, discuss minimal
polynomials, finite field extensions and their automorphisms, i.e. the Galois
group. The discussion moves on to finite group actions, and their applications
to field theory. Using the notion of Lyndon words, this allows the construc-
tion of irreducible polynomials and hence the construction of finite fields of
any given order. We discuss two distinct ways of representing field elements
on a computer, and the final section is devoted to a brief introduction of the
projective geometry over a finite field.

Chapter 4 is dedicated to cyclic codes. The reader will learn about the very
important classes of Reed–Solomon and BCH-codes. The close relationship
between cyclic codes and ideals in the group algebra is discussed. Further-
more, we discuss quadratic-residue-codes, Golay-codes, idempotent genera-
tors and the Fourier Transform, Alternant-codes and Goppa-codes, the struc-
ture of cyclic codes as modules, general Reed–Muller-codes, and encoding and
decoding issues. It should be noted that Alternant-codes and Goppa-codes are
not in general cyclic. The reason for discussing them in the context of cyclic
codes is that the algebraic tool of the Chinese Remainder Theorem makes it
easy to treat these codes in that context.

Chapter 5 introduces the reader to the application of Coding Theory in
connection with the compact disc, a technique which was developed in the
early 1980’s by the Philips and Sony companies. The reader will see decod-
ing algorithms for BCH-codes, interleaving methods, product codes and an
introduction to Fourier analysis and Shannon’s Sampling Theorem.

In Chapters 6–9, we start the second part of the above-mentioned divi-
sion. Here, we come back to the fundamental question “To what extent do
good codes exist and how can we find them?” This is of course the funda-
mental problem of Coding Theory, and in a sense mostly anything studied so
far is concerned with certain aspects of this problem. Nevertheless, to answer
this question qualitatively, we must go beyond the scope of standard texts.
The first step to tackle this problem was made by David Slepian in the 1960’s,
when he pioneered the application of techniques from Combinatorics to this

Preface VII

problem. In fact, he used a technique which is known as Pólya’s Theory of
Enumeration to the problem of determining the number of isometry classes
of codes. In this way, he was able to determine how many classes there are
for any given set of parameters. The method involves a fairly detailed study
of the way isometries act on the Hamming space. His delicate and powerful
computations are brought up again here, and they are refined and adapted to
match all different types of isometries we consider. The presentation in Chap-
ter 6 will introduce the reader to this very versatile topic of Combinatorics. At
the end, numbers of isometry classes of codes will be presented. This chapter
also features sections on random generation of codes, the notion of critical in-
decomposable codes as introduced by E. Assmus, and a section on the explicit
construction of normal bases of finite fields.

After the enumeration of codes, we move on to the construction of rep-
resentatives of the isometry classes. As a matter of fact, enumeration theory
does not tell us about the minimum distance of the codes. For this, we have to
construct codes explicitly. There are essentially two different strategies. Both
rely on the close connection between codes and geometry, more precisely con-
figurations in finite projective spaces. Each of the two methods allows the
restriction to “good” codes, i.e. codes with high minimum distance. This is
facilitated by specifying a lower bound on the minimum distance and then
constructing only those codes whose minimum distance is bounded below by
the given value. In the extreme case, the algorithm would prove that there are
no codes with the desired minimum distance.

The first approach (Chapter 8) makes yet another assumption, namely on
the presence of symmetries, or – as we shall call them – automorphisms. This
is a method which has had its successes recently in other areas, like the theory
of combinatorial designs, and it proves to be powerful in that objects can be
constructed which would otherwise be out of reach. In fact, the method of lat-
tice actions combined with a construction of configurations called minihypers
allows the construction of good codes with a preassigned group of automor-
phisms. This chapter is based on results of Chapter 7, which discusses lattice
methods. A lattice is a set of vectors which are integer linear combinations
of a given set of linearly independent vectors in a finite dimensional vector
space. These structures are studied in Number Theory. Here, we use lattices
to solve integer equations, also known as Diophantine linear equations. Find-
ing the integral solutions of such systems of equations is known to be a very
hard problem, since there is no discrete analogue of Gaussian elimination. To
solve these systems, combinatorial techniques like lattice basis reduction are
applied, combined with enumeration techniques to search through lattices for
“short” vectors. As it turns out, the construction problem of codes with pre-

VIII Preface

assigned group of automorphisms can be reduced to solving such a system
of integer equations, so Chapters 7 and 8 may be considered as a sequence.
Several hundred new optimal codes could be constructed with this method
which in essence relies on an enormous data reduction because of the group
action. That is, the assumption on the existence of nontrivial automorphisms
is essential for reducing the size of the problem. On the other hand, the general
construction problem (i.e. without making any assumption on the presence of
automorphisms) is another topic.

This is where the second method comes in. This time, there will be no fur-
ther assumption other than the lower bound on the minimum distance. To
tackle the “general case” (Chapter 9), a full search on all codes is facilitated,
using isomorph rejection in order to construct each isometry class of codes
exactly once. This technique searches through the set of all possible codes
according to the lexicographical ordering, and is therefore known as orderly
generation. In fact, the technique was developed in the 1970’s for the con-
struction of graphs, and has since been refined and applied to a plethora of
different problems. It was only a matter of time that this technique would find
its way to the construction problem of codes. This book will finish with a brief
account on the orderly generation of linear codes with a prescribed minimum
distance. This involves a fair amount of algorithmic background for dealing
with permutation groups. We will present the reader with essential concepts
of how to work with permutation groups on a computer and how to solve or-
bit type problems. We describe in detail the theoretical aspects of dealing with
the projective linear and semilinear groups. In the end, we give tables classi-
fying the optimal linear codes for small or moderate parameters over various
finite fields.

Chapter A, the appendix, contains an introduction to the attached compact
disc. It describes the installation of the software in both a Windows and a
Linux environment. It also gives a survey on the accompanying data. The
most recently updated version of the programs should be found at the web-
site

http://linearcodes.uni-bayreuth.de

The included software allows one to compute the minimum distance and
the weight distribution of given codes, construct codes with a given minimum
distance and randomly generate linear codes which are uniformly distributed
over the isometry classes of codes with given parameters. The dynamic ta-
bles describe the isometry classes of linear codes. In the precomputed tables
the reader will find enumerative results on numbers of semilinear isometry
classes. Moreover, there are tables containing information on optimal linear

Preface IX

codes. The largest possible minimum distance is given, together with the
number of semilinear isometry classes of such optimal codes. In addition, cor-
responding generator matrices can be found. Altogether, around 2 million
isometry classes of codes have been computed, of which more than 800 000
are optimal codes. Nearly 200 000 generator matrices can be found on the at-
tached compact disc, of which more than 70 000 generate optimal codes. The
complete set of computed generator matrices can be downloaded from the
web-site mentioned above. These codes are all pairwise inequivalent. More
precisely, they are representatives of different semilinear isometry classes.

On the side of the reader we assume only a basic knowledge of Linear Alge-
bra and Algebra. Many fundamental notions are reviewed in the text. Readers
with a background in field theory may skip Chapter 3. We should also men-
tion what this book for one reason or the other does not cover. For instance,
we do not discuss algebraic geometric codes, in particular the generalized ver-
sion of Goppa-codes. Also not included are convolutional codes, Turbo codes,
LDPC codes, codes over rings, e.g. Z4, and decoding methods using Tanner-
graphs. All this, as well as the connection between codes and designs and a
deeper account on the theory of self-dual codes had to be left out. To this end,
we refer the interested reader to the excellent literature on these topics, for in-
stance the recent books by Pless and Huffman [94], Moon [153], Nebe, Rains
and Sloane [157]. The “classic” for nearly 30 years, the book by MacWilliams
and Sloane [139] from 1977 is still astonishingly comprehensive. The connec-
tions between codes and designs are described in the book by Assmus and
Key [5]. The Handbook of Coding Theory [163], edited by Pless and Huffman,
has articles on many of these topics written by experts in the field.

The authors wish to express their sincerest thanks in particular to Karl-
Heinz Zimmermann, coauthor of the German precursor book “Codierungs-
theorie”. We also thank our colleague Reinhard Laue, to whom we owe great
thanks for many stimulating discussions on the constructive theory of finite
structures using group actions. Thanks are also due, of course, to our stu-
dents and to the scientific community, in particular to Andries Brouwer, who
maintains a very helpful table on parameters of optimal linear codes, as well
as to the editors of the important two volumes of the Handbook of Coding
Theory, Vera S. Pless and W. Cary Huffman. Furthermore, we greatly appreci-
ate receiving helpful comments and suggestions from Georg Wolfgang Desch,
Evi Haberberger, Oscar Jenkins, Steve Linton, Rebecca Lynn, Eric Moorhouse,
Eammon O’Brien, Tim Penttila, Jens Schwaiger, Ákos Seress, Justyna Sikorska
and Johannes Zwanzger.

We acknowledge financial support by the Deutsche Forschungsgemeinschaft
and the Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung for

X Preface

helpful financial support of several research projects on these topics. These
projects contributed very much to the development of the theory and to the
implementation of corresponding software, as well as to the collection of data
which are now available for the interested reader via email, Internet and the
attached compact disc.

Last but not least, we should like to thank Ruth Allewelt, Martin Peters
and Thomas Wurm from the Springer publishing company for their patient
and diligent handling of this book project.

Fort Collins, Munich, Graz, Bayreuth Anton Betten
July 4, 2006 Michael Braun

Harald Fripertinger
Adalbert Kerber

Axel Kohnert
Alfred Wassermann

Table of Contents

Preface . V

Table of Contents . XI

List of Tables . XV

List of Figures . XIX

List of Symbols . XXI

1 Linear Codes

1.1 Introduction... 3

1.2 Linear Codes, Encoding and Decoding 11

1.3 Check Matrices and the Dual Code 20

1.4 Classification by Isometry 28

1.5 Semilinear Isometry Classes of Linear Codes 41

1.6 The Weight Enumerator 51

1.7 Systematic Encoding, Information Sets 65

1.8 A Minimum Distance Algorithm.............................. 70

2 Bounds and Modifications

2.1 Combinatorial Bounds for the Parameters 82

2.2 New Codes from Old and the Minimum Distance 94

2.3 Further Modifications and Constructions 102

2.4 Reed–Muller-Codes.. 118

2.5 MDS-Codes ... 128

3 Finite Fields

3.1 Finite Fields – An Introduction 139

3.2 Existence and Uniqueness of Finite Fields 149

3.3 The Galois Group and Normal Bases 167

3.4 Enumeration under Group Actions, Lyndon Words 170

3.5 Construction of Irreducible Polynomials..................... 182

3.6 Representations of Field Elements 203

3.7 Projective Geometry .. 205

4 Cyclic Codes

4.1 Cyclic Codes as Group Algebra Codes....................... 214

4.2 Polynomial Representation of Cyclic Codes 220

4.3 BCH-Codes and Reed–Solomon-Codes...................... 237

4.4 Quadratic-Residue-Codes, Golay-Codes 252

XII Table of Contents

4.5 Idempotents and the Discrete Fourier Transform 268

4.6 Alternant-Codes, Goppa-Codes 285

4.7 The Structure Theorem .. 292

4.8 Codes of p-Power Block Length 311

4.9 Bounds for the Minimum Distance........................... 319

4.10 Reed–Muller-Codes.. 327

4.11 Encoding .. 334

4.12 Permutation Decoding.. 338

4.13 Error-Correcting Pairs... 346

4.14 Majority Logic Decoding 350

5 Mathematics and Audio Compact Discs

5.1 Fourier Transform, Shannon’s Sampling Theorem 370

5.2 Correction of Erasures .. 389

5.3 Burst Errors and Interleaving of Codes...................... 401

5.4 More Details on Compact Discs 423

5.5 More Details on CD-ROM 435

6 Enumeration of Isometry Classes

6.1 Enumeration of Linear Isometry Classes 444

6.2 Indecomposable Linear Codes 463

6.3 Cycle Indices of Projective Linear Groups 476

6.4 Numerical Data for Linear Isometry Classes................ 499

6.5 Critical Codes .. 511

6.6 Random Generation of Linear Codes 527

6.7 Enumeration of Semilinear Isometry Classes 532

6.8 Local Isometries.. 549

6.9 Existence and Construction of Normal Bases 553

7 Solving Systems of Diophantine Linear Equations

7.1 Lattices .. 565

7.2 Diophantine Equations and Lattices 568

7.3 Basic Theory of Lattices 574

7.4 Gram–Schmidt Orthogonalization 577

7.5 Bounds on Lattice Vectors..................................... 579

7.6 Lattice Basis Reduction .. 586

7.7 Lattice Point Enumeration..................................... 598

7.8 Computing the Minimum Distance of Linear Codes 605

8 Linear Codes with a Prescribed Minimum Distance

8.1 Minihypers .. 616

8.2 Group Actions on Lattices 625

Table of Contents XIII

8.3 Prescribing a Group of Automorphisms 637

8.4 Linear Codes of Prescribed Type 640

8.5 Numerical Results ... 644

9 The General Case

9.1 The Problem.. 664

9.2 Computing with Permutation Groups 669

9.3 A Permutation Representation 676

9.4 The Lexicographical Order..................................... 682

9.5 Orderly Generation of Codes 688

9.6 The Algorithm Snakes and Ladders 700

9.7 Base and Strong Generating Sets 717

9.8 The Projective Linear Group 727

9.9 The Projective Semilinear Group 738

9.10 Numerical Data .. 741

A Appendix: The Attached Compact Disc

A.1 System Requirements ... 755

A.2 The Installation .. 755

A.3 The Programs .. 756

A.4 The Dynamic Tables .. 757

A.5 The Precomputed Tables: Enumerative Results 758

A.6 The Precomputed Tables: Optimal Linear Codes 759

A.7 The Programs for Chapter 9 763

References . 771

Index . 785

List of Tables

2.1 The words of C0 and C1 107

3.1 The 15 elements �= 0 of Z2[x]/I(1 + x + x4) 153

3.2 Dedekind numbers... 178

3.3 Primitive polynomials for extension fields of small degrees

over Fp for p = 2, 3, 5, 7 201

3.4 Multiplicative representation of F4 204

3.5 Additive representation of F4 205

4.1 The 2-flats in F3
2 .. 356

4.2 Basis elements of the Reed–Muller-code RM2
4,2 358

4.3 Focused parity checks expressed in the basis of RM2
4,2 .. 359

4.4 Focused parity checks for binary cyclic codes of length 16 365

6.1 Values of
[n

k

]
(2)... 446

6.2 Values of Unk2 ... 446

6.3 Extending tables by using the symmetry of Rnk2 475

6.4 The irreducible polynomials of degree at most 3 over F3

different from f = x .. 493

6.5 Values of
[n

k

]
(3)... 500

6.6 Values of
[n

k

]
(4)... 500

6.7 Values of Vnk2 .. 501

6.8 Values of Vnk3 .. 501

6.9 Values of Vnk4 .. 502

6.10 Values of Vnk2 ... 502

6.11 Values of Vnk3 ... 503

6.12 Values of Vnk4 ... 503

6.13 Values of Tnk2 .. 504

6.14 Values of Tnk3 .. 504

6.15 Values of Tnk4 .. 505

6.16 Values of Tnk2 .. 505

6.17 Values of Tnk3 .. 506

6.18 Values of Tnk4 .. 506

6.19 Values of Unk3 ... 507

6.20 Values of Unk4 ... 507

6.21 Values of Rnk2 ... 508

6.22 Values of Rnk3 ... 508

6.23 Values of Rnk4 ... 509

6.24 Values of Rnk2 ... 509

XVI List of Tables

6.25 Values of Rnk3 ... 510

6.26 Values of Rnk4 ... 510

6.27 Distribution of ranks of 10000 k × n-matrices over Fq

generated at random.. 531

6.28 Distribution of the minimum distances of 10000 binary

codes of length 20 and maximal dimension 8 532

6.29 Distribution of the minimum distances of 30000000 codes

of length 12 and maximal dimension 5 over F5 532

6.30 Values of tnk4 ... 539

6.31 Values of vnk4 .. 539

6.32 Values of rnk4 .. 540

6.33 Values of unk4 .. 540

6.34 Values of vnk4 .. 541

6.35 Values of rnk4 .. 541

6.36 Values of Tnk8 .. 542

6.37 Values of tnk8 ... 542

6.38 Values of Vnk8 .. 543

6.39 Values of vnk8 .. 543

6.40 Values of Rnk8 ... 544

6.41 Values of rnk8 .. 544

6.42 Values of Unk8 ... 545

6.43 Values of unk8 .. 545

6.44 Values of Tnk8 .. 546

6.45 Values of tnk8 ... 546

6.46 Values of Vnk8 ... 547

6.47 Values of vnk8 .. 547

6.48 Values of Rnk8 ... 548

6.49 Values of rnk8 .. 548

8.1 Linear codes for q = 2 and k = 10 644

8.2 Linear codes for q = 3 and k = 6 645

8.3 Linear codes for q = 3 and k = 7 645

8.4 Linear codes for q = 3 and k = 8 646

8.5 Linear codes for q = 4 and k = 5 647

8.6 Linear codes for q = 4 and k = 5 648

8.7 Linear codes for q = 4 and k = 6 649

8.8 Linear codes for q = 4 and k = 6 650

8.9 Linear codes for q = 4 and k = 6 651

8.10 Linear codes for q = 4 and k = 6 652

8.11 Linear codes for q = 4 and k = 7 653

8.12 Linear codes for q = 5 and k = 5 654

List of Tables XVII

8.13 Linear codes for q = 5 and k = 6 655

8.14 Linear code for q = 7 and k = 4 with generator matrix . 655

8.15 Linear codes for q = 7 and k = 5 656

8.16 Linear codes for q = 8 and k = 4 657

8.17 Linear codes for q = 8 and k = 5 658

8.18 Linear code for q = 9 and k = 3 with generator matrix . 659

8.19 Linear codes for q = 9 and k = 4 659

9.1 Labeling PG2(2), PG2(3) and PG3(2) 680

9.2 Binary (8, 4,≥ 3)-codes .. 699

9.3 Unranking the elements of S3 725

9.4 The functions rk2\s;3(〈x〉) for 〈x〉 ∈ PG2(3) 729

9.5 The functions rk3\s;2(〈x〉) for 〈x〉 ∈ PG3(2) 729

9.6 Optimal indecomposable F2 codes 742

9.7 Optimal indecomposable F2 codes (cont.) 743

9.8 Optimal indecomposable F2 codes (cont.) 743

9.9 Optimal indecomposable F3 codes 744

9.10 Optimal indecomposable F3 codes (cont.) 744

9.11 Optimal indecomposable F3 codes (cont.) 745

9.12 Optimal indecomposable F3 codes (cont.) 745

9.13 Optimal indecomposable F4 codes 746

9.14 Optimal indecomposable F4 codes (cont.) 746

9.15 Optimal indecomposable F5 codes 747

9.16 Optimal indecomposable F5 codes (cont.) 747

9.17 Optimal indecomposable F5 codes (cont.) 748

9.18 Optimal indecomposable F8 codes 748

9.19 Optimal indecomposable F9 codes 749

9.20 Optimal indecomposable F16 codes.......................... 749

9.21 Optimal indecomposable F25 codes.......................... 750

9.22 Optimal indecomposable F25 codes (cont.) 750

9.23 Optimal indecomposable F27 codes.......................... 751

9.24 Optimal indecomposable F27 codes (cont.) 752

List of Figures

1.1 The refined communication system 4

1.2 The maximum-likelihood-decoding method 14

1.3 The refined communication system once again............ 16

2.1 The fundamental dilemma 81

2.2 Recursive structure of a generator matrix of RM2
5,5 125

4.1 The (7, 4)-Hamming-code is cyclic........................... 216

4.2 The lattice of binary cyclic codes of length 7 227

4.3 The Golay codes G11 (above) and G23 (below) 267

4.4 Division shift register DR(g) 336

4.5 The division shift register DR(g) for the encoding of the

(7, 4)-Hamming-code ... 338

4.6 Evaluation of y(α) with a division shift register 339

4.7 A 2-step majority logic decoder for the (7, 4)-Hamming-

code .. 353

4.8 Focused parity checks on 〈0001〉 = {0, 1} in RM2
4,2 360

4.9 A 3-step majority logic decoder for the Reed–Muller-code

RM2
4,2 .. 362

5.1 Approximation by trigonometric polynomials 374

5.2 The cardinal sine function 377

5.3 Aliasing .. 380

5.4 Quantization of a low level sine signal 386

5.5 Adding dither to a low level sine signal 387

5.6 Quantization of the low level sine signal together with

dither... 387

5.7 The average amplitude of the quantized low level sine

signal with added dither.. 387

5.8 Rectangular wave form of a bit pattern 432

5.9 Concatenation with merging bits 433

5.10 CD-ROM sector mode 0 436

5.11 CD-ROM sector mode 1 437

5.12 CD-ROM sector mode 1 437

5.13 RSPC encoding .. 438

7.1 A rank 2 lattice spanned by b(0) and b(1) 566

7.2 Two different bases for b(0), b(1) and b(0)′, b(1) ′ of the

same lattice ... 567

XX List of Figures

7.3 Solution vectors for the lattice 7.2.2 (left) and for the

lattice 7.2.4 (right) without the first component which is

equal to zero.. 569

7.4 Orthogonal projection π1 of b(1) into 〈b(0)〉⊥ 578

7.5 Si = S ∩ (u(i) + Q) and S′
i = Si − u(i), i = 0, 1, 2, in

the Lemma of Blichfeldt 584

7.6 b(1)′ is the integer approximation of π1(b(1)) 589

7.7 Enumeration in level t and pruning after u3
t 602

8.1 The Fano-plane .. 622

8.2 Lattice action of M3(2) on F3
2 635

9.1 Two action-graphs for S6 672

9.2 Action-graph and Schreier-tree 674

9.3 Order tree of subsets of {0, 1, 2, 3, 4} 683

9.4 Orbits of PGL4(2) on P≤8
(
PG3(2)

)
....................... 699

9.5 The two cases of Lemma 9.6.1 702

9.6 The “down-and-up” process................................... 703

9.7 Generation tree of (8, 4,≥ 3, 2)-codes....................... 713

9.8 Computing the automorphism group of the (8, 4) ex-

tended Hamming code.. 715

9.9 The binary (18, 9, 6)-codes 716

9.10 Rubik’s 2× 2× 2 cube ... 719

9.11 The elements of S3 by rank 725

9.12 The Cayley-graph of S3 .. 726

9.13 The basic orbits O(i) for PGL4(2) 736

9.14 The coset representatives for PGL4(2) 738

9.15 The coset representatives for PΓL2(8) 740

List of Symbols

m� the greatest integer ≤ m, 6
d the minimum distance of a linear code, 6

k the dimension of a linear code, 6

n the block length of a linear code, 6

a ≡ b mod n a is congruent b modulo n, 8

Fq a field of q elements, 11

N∗ {1, 2, 3, . . .}, the set of positive natural numbers, 11

F a field, mostly finite, 11

C a linear code, 12

(n, k) parameters of a linear code of length n and dimen-
sion k, 12

Γ a generator matrix of a linear code, 12

n {0, . . . , n − 1}, the set n, or its cardinality, 13

d(u, v) the Hamming distance between u and v, 13

N {0,1,2,. . .}, the set of natural numbers, 13

H(n, F) the n-dimensional Hamming space over F, 13

H(n, q) the n-dimensional Hamming space over Fq, 13

dist(C) the minimum distance of C, 14

e an error vector, 15

wt(v) the Hamming weight of v, 15

(n, k, d) parameters of a linear code of length n, dimension k,
and minimum distance d, 16

(n, k, d, q) parameters of a linear code of length n, dimension
k, and minimum distance d over a field with q ele-
ments, 16

u ∧ v the “intersection” of binary vectors, 19

u ∨ v the “union” of binary vectors, 20

∆ a check matrix of C, 20

∆� the transpose of ∆, 20

1n the all-one vector (1, . . . , 1) of length n, 21

0n the all-zero vector (0, . . . , 0) of length n, 21

〈w, w′〉 the standard bilinear form at (w, w′), 21

C⊥ the code dual to C, 21

(ak−1, . . . , a1, a0)b the base-b representation of an integer, 22

(n, k,≥ d) parameters of an (n, k)-code C with dist(C) ≥ d, 26

XXII List of Symbols

Ik the unit matrix, 27

[x]R the equivalence class of x ∈ X with respect to R, 29

SX the symmetric group on the set X, 30

e(i) the i-th unit vector, 31

F∗
q Fq \ {0} , the multiplicative group of Fq, 31

M(ϕ;π) matrix representation of a linear isometry given by
ϕ ∈ (F∗

q)n and π ∈ Sn, 31

Mn(q) the group of linear isometries, 32

GX an action of the group G on X from the left, 33

δ a permutation representation, 33

∼G the equivalence relation defined by GX, 33

G(x) the orbit of x under the action of G, 33

G\\X the set of all G-orbits on X, 33

YX the set of all mappings from X to Y, 34

H �X G the wreath product of H and G w.r.t. GX, 34

GLk(q) the set of all regular k × k-matrices over Fq, 36

U(n, k, q) the set of all k-dimensional subspaces of Fn
q , 37

U � G U is a normal subgroup of G, 38

G/U(U\\X) the factor action of G with respect to U, 39

Fk×n
q the set of all k × n-matrices over Fq, 40

Fk×n,r
q the set of all k × n-matrices of rank r over Fq, 40

SF∗
q

the symmetric group on F∗
q , 44

WC(x, y) the weight enumerator of C, homogeneous form, 52

wC(x) the weight enumerator, inhomogeneous form, 52

GL(V) the general linear group of V, 53

D a linear representation of a group, 53

χD the character of the representation D, 54

a1(g) the number of fixed points of g, 54

F∗ the multiplicative group of F, 54

Xg the set of points fixed under g, 59

XG the set of invariants of G on X, 59

σm an elementary symmetric polynomial, 60

supp(v) the support of the vector v, 61

X∆Y the symmetric difference of sets X and Y, 61

exp(G) the exponent of the group G, 63

χg the character corresponding to g ∈ G, 63

List of Symbols XXIII

f̂ the Discrete Fourier Transform of f ∈ CG, 63

Kn,q
i (x) a Krawtchouk polynomial, 64

(Ik | A) a systematic generator matrix, 65

Dn(q) the regular n × n diagonal matrices over Fq, 66

nmin(k, d, q) the least length n of a linear code over Fq of dimen-
sion k and with minimum distance d, 82

dmax(n, k, q) the maximal minimum distance of an (n, k)-code
over Fq, 82

kmax(n, d, q) the maximal dimension k of a linear code over Fq of
length n and minimum distance d, 82

�r� the least integer ≥ r, 88

ρ(C) the covering radius of C, 90

P(C) the parity extension of C, 95

Pu(C) the punctured code of C, 96

C0 � C1 {(c | c′) | c ∈ C0, c′ ∈ C1}, 97

(C0, C1) the (u, v)-construction of C0 and C1, 98

C0 | C1 {(c | c + c′) | c ∈ C0, c′ ∈ C1}, the (u | u + v)-
construction of C0 and C1, 100

S(C) a shortening of C, 100

G24 the binary Golay-code of length 24, 106

C ↓ F the intersection C ∩ Fn, 108

BlB(C) the blow up of C with respect to B, 108

(Lb, n, k, d, q) there exists an (n, k, d, q)-code, 109

(Ub, n, k, d, q) there does not exist an (n, k, d, q)-code, 109

Q1 ≤ Q2 the bound Q2 is at least as strong as Q1, 112

M1 ≤ M2 the operation M2 modifies code bounds at least as
good as M1, 112

U ⊗V the tensor product of the vector spaces U and V, 114

Bq
m the Fq-algebra of Boolean functions, 119

RM q
m,t the t-th order Reed–Muller-code over Fq, 120

Nq(k) the maximal length of a k-dimensional MDS-code
over Fq, 132

Zp the residue class ring consisting of the integers taken
modulo p, 139

P the prime subfield of F, 140

Zp[x] the ring of polynomials over Zp, 140

deg f the degree of the polynomial f , 140

XXIV List of Symbols

I(f) the ideal generated by the polynomial f , 141

Zp[x]/I(f) the factor ring of Zp[x] modulo the ideal I(f), 142

gcd(a, b) the greatest common divisor of a and b, 145

ord(g) the order of the group element g, 149

〈 g 〉 the subgroup generated by g ∈ G, 149

|G| the order of the group G, 149

� isomorphy of groups, rings or fields, 153

F(α) the smallest field extension of F containing α, 156

F(α0, . . . , αn−1) the smallest field extension of F which contains
α0, . . . , αn−1, 156

Fq the algebraic closure of Fq, 160

mp(d) the number of monic, irreducible polynomials in
Fp[x] which are of degree d, 162

ζ the (number theoretic) zeta function, 162

µ the (number theoretic) Möbius function, 162

ker(φ) the kernel of the homomorphism φ, 163

Gal [Fpn : Fpm] the Galois group of Fpn over Fpm , 167

Gx the stabilizer of x in G, 170

L(G) the lattice of subgroups of G, 172

U ∧V the intersection U ∩V of the subgroups U,V, 172

U ∨V the group generated by the union U ∪V, 172

G\\ŨX the set of orbits of type Ũ, 172

Z(L(G),≤) the zeta matrix of the subgroup lattice, 173

M(L(G),≤) the Möbius matrix of the subgroup lattice, 173

lmn |Cn\\1̃m
n|, a Dedekind number, 178

Ln(m) the Lyndon words of length n over m, 179

L(m) the Lyndon set over the alphabet m, 179

l0(f) . . . lλ(f)−1(f) a decomposition of f into Lyndon words, 180

Ũ the conjugacy class of U ≤ G, 181

PGk−1(q) the (k − 1)-dimensional projective space, 205

PG∗
k−1(q) the set of punctured one-dimensional subspaces of

Fk
q without the zero vector, 205

PG(Fk
q) the projective geometry, 205

θk−1(q) the cardinality of PGk−1(q), 206

Z k the center of the linear group GLk(q), 206

PGLk(q) the projective linear group, 207

List of Symbols XXV

ΓLk(q) the general semilinear group, 208

H � G semidirect product with the normal subgroup on the
left, 209

PΓLk(q) the projective semilinear group, 209

FG the group algebra of G over F, 214

Rann(L) the right annihilator of the left ideal L, 218

Lann(R) the left annihilator of the right ideal R, 219

Ann(I) the annihilator of the two-sided ideal I, 219

lcm(a, b) the least common multiple of a and b, 225

V(f) the variety of roots of f , 229

Ur the set of all r-th roots of unity, 229

Mξ the minimal polynomial of ξ over Fq, 229

ordr(q) the order of q in Zr , 230

Gal(i) the cyclotomic coset containing i, 231

V(C) the variety of the cyclic code C, 233

AGL1(q) the affine linear group over Fq, 245

Q the set of quadratic residues modulo n, 253

N the set of quadratic non-residues modulo n, 253(a
n

)
the Legendre symbol, 255

CQ(n, q) a quadratic-residue-code, 257

C1
Q(n, q) a quadratic-residue-code, 257

CN(n, q) a quadratic-residue-code, 257

C1
N(n, q) a quadratic-residue-code, 257

PG∗
1(q) the projective line over Fq, 259

SLk(q) the special linear group consisting of all matrices A
of GLk(q) with det(A) = 1, 260

PSLk(q) the projective special linear group on PGk−1(q), 260

G23 the binary Golay-code, 264

G11 the ternary Golay-code, 264

Φn the Fourier matrix, 273

Fq[x]
<k the subspace of polynomials of degree strictly less

than k, 278

GRSk(κ, β) a Generalized Reed–Solomon-code, 278

GRSk(κ, g) a Generalized Reed–Solomon-code, 281

Altk,q(κ, g) an Alternant-code, 285

GOq(κ, g) a Goppa-code, 287

XXVI List of Symbols

RM M is an R-left-module, 292

M/U the factor module where U is a submodule of M, 293

〈T〉 the linear closure of T, 293

M �R N two isomorphic R-modules M and N, 294

M � N two isomorphic modules M and N, 294

�R(M) the length of the R-module M, 299

Ci,j the cyclic code I(gi,j)/I(xn − 1), 305

remg(f) remainder of f modulo division by g, 335

DR(g) the division shift register with recoupling polyno-
mial g, 336

AG(V) the affine geometry of V, 355

AGn(q) the n-dimensional affine geometry over Fq, 356

Lp(I) the set of all measurable functions f : I → C for
which | f (x)|p is integrable on I, 370

f̂ the Fourier Transform of f ∈ L1(R), 375

C(λ) the λ-way interleave of C, 405

U(n, q) the set of all subspaces of Fn
q , 444

V(n, k, q) the set of U ∈ U (n, k, q) without zero columns, 452

V(n, k, q) the set of all projective U ∈ V(n, k, q), 452

U (n, k, q) the set of all injective U ∈ U (n, k, q), 452

U n,k,q the set of linear isometry classes in U (n, k, q), 452

Vn,k,q the set of linear isometry classes in V(n, k, q), 452

U n,k,q the set of linear isometry classes in U (n, k, q), 452

Vn,k,q the set of linear isometry classes in V(n, k, q), 452

T n,k,q the set of linear isometry classes of linear codes of
dimension ≤ k in U (n, q), 453

T n,k,q the set of linear isometry classes of linear codes of
dimension ≤ k in U (n, k, q), 453

Tnkq the number of GLk(q)× Sn-orbits on PG∗
k−1(q)

n, 453

Tnkq the number of GLk(q)× Sn-orbits on the set of injec-
tive functions in PG∗

k−1(q)
n, 453

Vnkq the number of linear isometry classes of nonredun-
dant (n, k)-codes over Fq, 453

Vnkq the number of linear isometry classes of projective
(n, k)-codes over Fq, 453

Unkq the number of linear isometry classes of (n, k)-codes
over Fq which may contain columns of zeros, 453

List of Symbols XXVII

Unkq the number of linear isometry classes of injective
(n, k)-codes over Fq, 453

(a1(g), . . . , a|X|(g)) the cycle type of the permutation g, 454

ai(g) the number of cyclic factors of length i of the permu-
tation g, 455

C(G, X) the cycle index of the action GX, 455

ord(f) the order of the formal series f , 456

Q [[x]] the ring of formal power series in the indeterminate
x over Q, 457

YX
inj the set of injective f ∈ YX, 460

[n] 1 + x + . . . + xn−1 ∈ Q [x], 460[n
k

]
a Gauss-polynomial, 460

c(g) the number of cycles in the decomposition of g, 461

A0 � . . . � An−1 the outer sum of the matrices A0, . . . , An−1, 468

Rnkq the set of linear isometry classes of nonredundant,
indecomposable (n, k)-codes over Fq, 472

Rnkq the number of linear isometry classes of nonredun-
dant indecomposable (n, k)-codes over Fq, 472

Rnkq the set of linear isometry classes of (nonredundant),
indecomposable, projective (n, k)-codes over Fq, 472

Rnkq the number of linear isometry classes of (nonredun-
dant), indecomposable, projective (n, k)-codes over
Fq, 472

[q]k the order of the group GLk(q), 477

a �� n a = (a1, . . . , an) is a cycle type of n, 477

MA the minimal polynomial of the endomorphism A, 478

C(f) the companion matrix of f , 480

H(f n) the hyper companion matrix of f n, 480

D(f , a) a block-diagonal matrix, consisting of companion
and hyper companion matrices of f , 480

χA the characteristic polynomial of A, 481

b(d, a) the order of the centralizer of D(f , a), 482

sc(A, v) a subcycle expression, 486

SC(GLk(q), Fk
q \ {0}) the subcycle index of GLk(q) on Fk

q \ {0}, 486

Exp(f) the exponent of the polynomial f , 486

E(d, q) the set of all exponents of monic, irreducible polyno-
mials of degree d over Fq, 487

XXVIII List of Symbols

ν(d, e) number of monic, irreducible polynomials f with
f (0) �= 0 of degree d and exponent e ∈ E(d, q), 487

Subexp(f) the subexponent of the polynomial f , 488
S(d, q) the set of all pairs (s, α) such that there exists a

monic, irreducible polynomial over Fq of degree d
with subexponent s and integral element α, 489

m(d, s, α) the number of monic, irreducible polynomials over
Fq of degree d with subexponent s and integral ele-
ment α, 489

� a multiplication of subcycle expressions, 490
� the multiplication of subcycle types, 491
spec(C) the spectrum of the indecomposable code C, 524
F∗

q ��n (Gal×Sn) the generalized wreath product of F∗
q and Gal×Sn,

533
tnkq the number of PΓLk(q)× Sn-orbits on PG∗

k−1(q)
n, 536

tnkq the number of PΓLk(q)× Sn-orbits on the set of injec-
tive functions in PG∗

k−1(q)
n, 537

vnkq the number of semilinear isometry classes of nonre-
dundant (n, k)-codes over Fq, 537

vnkq the number of semilinear isometry classes of projec-
tive (n, k)-codes over Fq, 537

unkq the number of linear isometry classes of (n, k)-codes
over Fq which may contain columns of zeros, 537

unkq the number of semilinear isometry classes of injective
(n, k)-codes over Fq, 537

rnkq the number of semilinear isometry classes of nonre-
dundant indecomposable (n, k)-codes over Fq, 537

rnkq the number of semilinear isometry classes of projec-
tive indecomposable (n, k)-codes over Fq, 537

‖−‖q �q-norm for q ≥ 1, 565
‖−‖∞ �∞-norm for q ≥ 1, 565
L lattice (of vectors), 566
G(B) the Gram matrix, 574
det(L) the determinant of the lattice L, 574
λi(L) the successive minima of L, 575
µij the Gram–Schmidt coefficients, 577
πt the orthogonal projection, 578
ρn the volume of the unit sphere in Rn, 584

List of Symbols XXIX

γn the Hermite constant, 585
γ�
∗,j the j-th column of the matrix (γij), 616

γi,∗ the i-th row of the matrix (γij), 616
H(v) the dual space of 〈v〉, 616
{{. . .}} denotes a multiset, 618˜̃Γ the multiset defined by the columns of Γ, 618˜̃Γ ↓ H the restriction of ˜̃Γ to the hyperplane H, 618
(X,≤) a poset, 625

G(X,≤) a poset action, 625
(X,∧,∨) a lattice, 625

G(X,∧,∨) a lattice action, 625
A∧ a Plesken matrix, 630
A∨ a Plesken matrix, 630
G∗ the dual group of G, 634
Γ(S) a generator matrix from a set of projective points, 666
(G(x), E) the Schreier-tree, 672
orbit(G, X) the orbit data structure, 675
rkk,q the rank function for Fk

q, 677
rkd;q the rank function for PGd(q), 679
P(X) the power set of the set X, 682
P k(X) the set of subsets of size k of the set X, 682
rkX the rank function for P(X), the power set of X, 685
rkX,k the rank function for the set of k-subsets of X, 686
GR the setwise stabilizer of R in G, 688
Gr0,...,rs−1 the pointwise stabilizer of r0, . . . , rs−1 in G, 688

G(i) the i-th term in a stabilizer chain for G, 717

O(i) the i-th basic orbit, 718
�i the length of the i-th basic orbit, 718
σi,j a coset representative in a stabilizer chain, 718

S(i) a subset of the strong generating set S, 718
←
L a reversed sequence, 723
PGd\s(q) the points of PGd(q) which do not lie in a PGs(q), 727

θd\s(q) the cardinality of PGd\s(q), 727
rkd\s;q the rank function for PGs(q), 728
Fn,i a distorted identity matrix, 728
P a 2× 2 permutation matrix, 730

1Chapter 1

Linear Codes

1

1 Linear Codes

1.1 Introduction... 3

1.2 Linear Codes, Encoding and Decoding 11

1.3 Check Matrices and the Dual Code 20

1.4 Classification by Isometry 28

1.5 Semilinear Isometry Classes of Linear Codes 41

1.6 The Weight Enumerator 51

1.7 Systematic Encoding, Information Sets 65

1.8 A Minimum Distance Algorithm.............................. 70

1 Linear Codes
In the first chapter, we introduce the basic definitions, methods and results
from the theory of error-correcting linear codes and its applications.

1.11.1 Introduction

As Claude Shannon, the founding father of modern Information Theory puts
it in [178],

“The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.”

Error-correcting codes are used to improve the reliability of such commu-
nication systems. We may think of communication across large distances such
as spacecraft communication, or basically any form of information transmis-
sion, including playing back a piece of music which was recorded previously
and stored on some media, for instance. In any case, the goal is to transmit and
reproduce the information as accurately as possible, even under unfavorable
circumstances, like in an error-prone environment.

In order to make a mathematical approach possible, we introduce the fol-
lowing communication model. It has a sender and a receiver and they are
supposed to communicate in one direction, so that information passes from
the sender to the receiver. Thus, we suppose that between the sender and the
receiver there is a communication system, a channel, and all information passes
through this directed channel:

receiversender � channel

�

noise

�

This channel may be unreliable, e.g. we are expecting that information may be
altered as it is passing through. Often, this is called a noisy channel, appealing
to the common experience that in a noisy room full of people it is usually im-
possible to understand a word someone has said at the other end of the room.
Of course, we will make assumptions about the behavior of the channel, and
it is clear that the channel should not be too bad, i.e. we require that a certain
amount of information passes through correctly. Hence, we assume that the
output of the channel is a more or less damaged version of the original input.

4 1. Linear Codes

We suppose, for example, that the length of the signals, or codewords as we call
them, that are sent through the channel is never changed by noise, and that, if
noise inflicts a codeword, a letter is changed into another letter with the same
probability for each letter. Such channels are called symmetric. On the receiv-
ing end, a process which is called error-correction takes place. Given the altered
or damaged codeword, one tries to recover the original one by correcting er-
rors. Of course, this is a difficult task as it is not clear where the error may have
occurred (or if an error has occurred at all).

On the other end of the channel, the sender is trying to help by manip-
ulating the messages before they are transmitted. This can be done by adding
redundancy, for example, by repeating the message. The purpose of this is to
protect the message, so that the influence of noise can later be corrected up to
a certain degree.

A message is defined to be a finite sequence of elements of a given alpha-
bet. Subsequently, such a sequence is also referred to as a word. There is no
restriction in assuming that all messages are of a fixed length, say k. If the mes-
sage is very long, we may break it up into pieces, and each such piece may be
considered a message by itself. Hence without loss of generality, we assume
that the messages are of size k. To enable error-correction, a process called en-
coding takes place. Here, we replace the message words by possibly longer
sequences over the same alphabet, the codewords. The added redundancy
will later enable the receiver to correct errors which may have occurred dur-
ing transmission. The only requirement at this point is that the encoding map
shall be injective, for otherwise the receiver would not be able to decide which
message was sent, even under the most favorable circumstances when no error
has occurred during transmission. It is customary to denote the length of code-
words by n. The process of correcting errors and obtaining back the message
is called decoding. This refined communication model is depicted in Fig. 1.1.

�
�

�
�message

�

encoder

�

receiversender � channel

�

noise

�

�
�

�
�message?

�

decoder

�

Fig. 1.1 The refined communication system

1.1 Introduction 5

The arrows indicate that the communication is one-way. In particular, the pos-
sibility of asking for retransmission shall be excluded. Hence, error correc-
tion will be the main topic while error detection will be less important. As an
aside, it should be mentioned that there are indeed codes which are based on
the idea that bidirectional communication is possible. An important example
is the well-known ISBN-code, which assigns to each book a unique number
which may be used to identify the book. This number is composed of a certain
number of digits. One digit plays the special role of a check digit. This check
digit allows the detection of single errors and of interchanges of adjacent dig-
its – a very frequent mistake. Of course, the idea is that the message can be
repeated once the receiver has flagged the first transmission as erroneous. See
Exercises 1.1.1–1.1.3 for details on this and similar codes. For further reading,
see [98], [99], and [47].

Here is a very easy example that demonstrates the metric principle which is
used for error detection and error correction. Suppose that we want to transmit
over a noisy channel a message which is just one of the two answers “yes” or
“no”. These two messages can be identified with the one-element sequences
1 for “yes” and 0 for “no”. So, k = 1 in this case, and the alphabet consists
of the two symbols 0 and 1. A particularly simple way of adding redundancy
is to use the well-known pedagogical principle of repetition of the message in
question, or, in other words, to use the repetition code. Assume we have agreed
to use three-fold repetition, i.e. n = 3 · k = 3 · 1 = 3. Then we intend to send as
codewords sequences which are either 111 (for “yes”) or 000 (for “no”). Thus,
the code in question is the set {000, 111}. Moreover, we assume that this fact is
known to the receiver. It motivates the following strategy:

If neither 111 nor 000 but another sequence of length 3 is received, then the
transmission has been distorted and there must be at least one error in the
received sequence.

Hence, to begin with, we see that this repetition code is able to detect a certain
amount of errors, in our particular example one or two. This means that in
these cases we are certain that the transmission of the message is erroneous.
But we should be aware of the fact that in the case of three errors the receiver
cannot detect them. Moreover, the receiver can correct the received word into
the original one, provided that not too may errors have occurred.

If the receiver obtains one of the sequences 110, 101, 011, 100, 010, or 001,
and if in addition we assume that there was only one symbol changed by noise,
then we can simply decode the received word into the codeword which is
most similar, i.e. into 111 in the first three cases, and into 000 in the latter
three cases.

6 1. Linear Codes

Hence, using the three-fold repetition code we are in a position to correct a
single error. Our strategy is based on the fact that the messages that have to
be sent, namely the sequences 111 or 000, differ in three places. The other six
possibly received sequences differ from the original sequences in either one or
two places. In fact, for each of the 23 = 8 sequences which can be received,
there is exactly one of the two vectors 111 and 000 which is most similar.

In order to demonstrate this principle in more detail, let us see what hap-
pens if we use four-fold repetition. Besides the correct sequences 1111 and
0000 there are fourteen other ones that can be received when errors have oc-
curred. In this case we are in a slightly better position than with three-fold
repetition: We can detect up to three errors (to be exact, we realize that errors
have occurred), but we are not able to correct more than one error. The error
correcting property has not improved. The reason is that in the case of two
errors the received sequence consists of two letters 1 and two letters 0. In this
situation we are unable to tell which codeword has been sent. In the case of
five-fold repetition we can recognize up to four errors, and we can correct at
most two errors, and so on.

The metric principle used is based on the fact that all the sequences that can
occur at the receiver side differ from the correct sequences 1 . . . 1 and 0 . . . 0,
of length n, in at most
n/2� many places. The number of places (or coor-
dinates) in which two codewords differ is called the Hamming distance of the
two codewords in question. The least Hamming distance between any two
distinct codewords is called the minimum distance of the code. If d is the mini-
mum distance of a linear code – not necessarily a repetition code – then up to
t :=
(d − 1)/2� errors can be corrected, while up to d − 1 errors are recog-
nized. That is, if no more than d − 1 errors occur, we detect that something is
wrong. Later on, we will make this more precise.

The quality of a code with messages of length k and codewords of length n
is indicated by

the quotient k/n, the information rate of the code, which measures the effort
needed for the transmission of an encoded message,

the relative minimum distance d/n which gives roughly twice the proportion
of errors that can be corrected in each encoded message (it is also called the
error-correction rate),

the complexity of the encoding and of the decoding procedure.

Summarizing, the main goal of Coding Theory is to provide codes with high
information rate, high error correction rate and with a low complexity of en-
coding and decoding.

1.1 Introduction 7

An important and intensely studied class of codes are the linear codes. These
are just the k-dimensional subspaces of an n-dimensional vector space over
a finite field. They form a subclass of the more general class of block codes,
which are merely subsets of an n-dimensional space. The structure of linear
codes can be analyzed using methods of Linear Algebra and Algebra as well
as Combinatorics and Geometry.

In this introductory chapter, our goal is to discuss the fundamentals of the
theory of linear codes. We also classify linear codes according to their error-
correcting qualities. Codes with similar metric structure are collected into
isometry classes of codes. Finally, we present an algorithm to determine the
minimum distance of a given linear code. In later chapters we will deepen the
theory, the construction, and the generation of linear codes and their applica-
tion, and we will describe some important families of codes.

Exercises

E.1.1.1Exercise The ISBN-code (“International Standard Book Number”) is a se-
quence of ten elements x10, . . . , x1 taken from the set {0, 1, . . . , 9, X}. This se-
quence is divided into four parts of variable length, which must be separated
by hyphens or spaces. The hyphens or spaces increase the readability and in-
dicate the borders between the four different parts. These characters, however,
do not influence the ability of the code to detect and correct errors.

1. The first subsequence x10, . . . (mostly of length 1) encodes the language, or,
rather, the language region in which the book was printed. 0 stands for
English speaking countries, 3 for the German speaking ones.

2. The next subsequence encodes the publishing company. It consists of at
least two entries.

3. The sequence of the following entries, . . . , x2, is a number chosen by the
publisher to identify the book.

The entries x10, . . . , x2 are taken from the set {0, 1, . . . , 9}.

4. The final entry, x1, is the residue modulo 11 of −∑10
i=2 xi · i. If this residue

happens to be equal to 10, one puts x1 := X.

Show that this code recognizes a single error as well as an interchange of two
neighboring entries, and that it allows the reconstruction of an unreadable en-
try.

8 1. Linear Codes

E.1.1.2 Exercise The ISSN-code (“International Standard Serial Number”) is a se-
quence of eight elements x8, . . . , x1 taken from the set {0, 1, . . . , 9, X}. This
sequence is divided into two parts, each consisting of four digits, which must
be separated by a hyphen. Similar to the ISBN-code, the entries x8, . . . , x2 are
taken from the set {0, 1, . . . , 9}, and the final entry x1 is determined such that
∑8

i=1 xi · i ≡ 0 mod 11 is satisfied. If x1 = 10, then x1 is represented as X. This
code has exactly the same properties as the ISBN-code.

1. Determine the ISSN-number of the Bayreuther Mathematische Schriften
from the sequence ISSN 0172-?062where the digit x4 is not readable.

2. The number ISSN 0174-1062 is not a valid ISSN-number. Assuming that
exactly one error occurred, determine all valid ISSN-numbers which could
be represented by the given one.

E.1.1.3 Exercise The EAN-code (“European Article Number”) has two basic formats,
the 8 and 13 digit variants. The 13 digit code is more common, so we discuss
it here. The 8 digit code is generally used where space is restricted. The EAN
code is intended as a world wide standard (although some countries use other
systems), therefore, no two products may have the same EAN number. To
ease the administration of number allocation, each country using EAN has
a country identifier at the start of the code. For instance the digits 00 to 13
identify the USA and Canada, 40 to 44 Germany, and 90 to 91 Austria. Other
countries have 2 or 3 digit prefixes. The rest of the EAN code is divided into
the manufacturer number which can be of variable length, the item reference
number, assigned by the manufacturer, and the check digit. In general, both
the manufacturer number and the item reference number consist of 5 digits.
This means that in this case a manufacturer can have up to 105 products. For
that reason, those manufacturers which produce a smaller number of products
get longer manufacturer codes. The check digit is the last number. All 13 digits
x13, . . . , x1 are taken from the set {0, 1, . . . , 9}. The check digit x1 is determined
by the other digits such that

∑
i≡1 mod 2

xi + 3 · ∑
i≡0 mod 2

xi ≡ 0 mod 10

is satisfied.

1. Show that the EAN-code recognizes a single error and allows the recon-
struction of an unreadable entry, but in general it does not detect a swap of
two neighboring entries.

2. The EAN of books can easily be obtained from their ISBN-number. As
prefix, the three digits 978 are used, regardless of the country in which the

1.1 Introduction 9

book was published. Then the ISBN-number with the check digit stripped
is appended. Finally, the EAN check digit is computed from these 12 digits
as described above. Compute the EAN-code of the present book!

The EAN is also coded in a machine-readable version as a barcode. For this
purpose, the EAN is encoded as a binary sequence of bars and spaces. A 1 in
the code is represented by a bar section and a 0 by a space section. Consecutive
1’s or 0’s are combined to form wider bars or spaces. The EAN barcode consists
of the following parts:

The left-hand starting section of the form 101,

binary encodings of the digits x12, . . . , x7,

the center pattern of the form 01010,

binary encodings of the digits x6, . . . , x1,

the right-hand closing section of the form 101.

For the encoding of x12, . . . , x1 three different codes are used, codes A, B,
and C. (See also [104, 1.2.5 Beispiel].) The codes A and B are applied for en-
coding x12, . . . , x7, and code C is used for encoding x6, . . . , x1. So far the digit
x13 has not been encoded. Depending on the value of x13, different sequences
of the codes A and B are applied for the encoding of x12, . . . , x7. They are given
in the table below:

x13 x12 x11 x10 x9 x8 x7

0 A A A A A A
1 A A B A B B
2 A A B B A B
3 A A B B B A
4 A B A A B B
5 A B B A A B
6 A B B B A A
7 A B A B A B
8 A B A B B A
9 A B B A B A

digit code A code B code C
0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1001110
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 1001000
9 0001011 0010111 1110100

We realize that for encoding x12, code A is always used. If x13 = 0 then all
digits x12, . . . , x7 are encoded with code A. In all other cases, codes A and B
are each used to encode three digits.

The three codes A, B, and C encode each digit as a binary word of length
7. Each codeword consists of two bar and two space sections. No bar or space
is longer than four elements. All codewords of codes A and B start with 0 and

10 1. Linear Codes

end with 1. All codewords of code C start with 1 and end with 0. Actually, it
would be enough to describe the codewords of code A. In order to obtain the
codewords of code C from code A, exchange the 0’s and 1’s in the codewords
of A. In order to obtain the codewords of code B from code C, reverse the
order of each codeword of C.

Moreover, we realize that no codeword occurs in two different codes, and
no codeword of A is the reverse of a codeword in C. This fact, together with
the rule that x12 is always encoded with code A allows the determination of
the direction (from left to right or from right to left) in which a barcode is
read. When reading from left to right, after the left-hand starting section 101,
the reader comes across an element of code A. When reading from right to
left, after the reverse of the right-hand closing section, which is again 101, the
reader comes across the reverse of an element of code C. Consequently, after
reading the first digit it is possible to determine the direction of reading.

Finally, let us consider the following example. The book Codierungstheorie,
Springer, Berlin, 1998, by some of the present authors and K.-H. Zimmermann,
has the ISBN 3-540-64502-0. First, this number is encoded as an EAN of the
form 9783540645023 where the last 3 is the EAN check digit. Since x13 = 9, we
have to apply the codes ABBABA for the encoding of x12, . . . , x7. This way we
obtain the following binary representation of the bar code of 9783540645023.

101 left-hand starting
0111011 0001001 0100001 0110001 0011101 0001101 x12 . . . x7

01010 center pattern
1010000 1011100 1001110 1110010 1101100 1000010 x6 . . . x1

101 right-hand closing

This gives a barcode of the form:

� ��������	
����

1.2 Linear Codes, Encoding and Decoding 11

1.21.2 Linear Codes, Encoding and Decoding

As we have seen, the goal of Coding Theory is to provide methods which
improve the reliability of communication via a noisy channel. For example, we
may think of the transmission of satellite photos taken in space and sent back
to earth. For this purpose, one decomposes the picture into a large number of
pixels (which stands for “picture elements”), each pixel having a certain grey
value, for example. The grey value is then mapped to a number, which in turn
is converted to a binary sequence by means of the binary representation of an
integer (i.e. one of 0, 1, 10, 11, 100, 101, 110, 111 etc.). Hence, the messages,
i.e. the grey values of the pixels, can be considered as words over the alphabet
{0, 1}.

For example, in the case of six values of grey, we have the messages

0, 1, 10, 11, 100, 101.

By padding with zeros up-front, we can make the sequences all have length 3.
We can also add the remaining sequences of that length over the given alpha-
bet, which in our case gives

000, 001, 010, 011, 100, 101, 110, 111.

The reader certainly knows that the two elements 0 and 1 are the elements of a
field F, the binary field. The above sequences can be considered as the vectors
of F3, the three-dimensional vector space over F,

F3 = {000, 001, 010, 011, 100, 101, 110, 111}.

This vector space is called the message space.

In more general situations it will be a k-dimensional vector space Fk over a
finite field F, which may be different from the field of two elements, of course.
Later on we will see that the order defines a field up to isomorphism. There-
fore, a field consisting of q elements is indicated by Fq. Moreover, it will turn
out that the orders q of finite fields are exactly the prime powers q = pm, p
a prime and m ∈ N∗ := N \ {0}. For example, for each prime number p, the
integers 0, 1, 2, . . . , p − 1 form the field Fp with respect to addition and multi-
plication modulo p. In the case when the original finite alphabet A does not
consist of elements of a finite field, then we simply take a suitable finite field
F with at least |A| elements and rename the letters of A by elements of F.

As we have seen, the encoding map should be injective. This means that we
are looking for an embedding of Fk into some space Fn, where n ≥ k. In order
to add redundancy, we usually let n be strictly larger than k. The encoding of
messages is done using an encoder

γ : Fk → Fn,

12 1. Linear Codes

an injective linear mapping of the message space Fk into Fn. For example, we
may simply repeat the messages twice, which yields the following embedding
of F3 into F6:

γ(F3) = {000000, 001001, . . . , 110110, 111111} ⊂ F6.

1.2.1 Definition (linear codes, generator matrices) The image

C = γ(Fk)

of the encoder γ is a subspace of Fn which is isomorphic to the message space
Fk. We call C a linear (n, k)-code or briefly an (n, k)-code over F. The number k
is its dimension and the number n will be called the block length or simply the
length of the code C. The vectors in C are the codewords or codevectors.

The encoder can be expressed as multiplication by a matrix Γ of rank k.
Using the row convention, i.e. by writing vectors as row-vectors, Γ turns out to
be a k × n-matrix. The embedding is then given by the map

γ : Fk → Fn : v �→ v · Γ,

and we obtain that
C = γ(Fk) = {v · Γ | v ∈ Fk}.

For this reason, the matrix Γ, which is in general not uniquely determined, is
called a generator matrix of C. Its rows form a basis of C.

1.2.2 Example If k = 1 and F1 = {0, 1} is the message space, then the three-fold
repetition code C = {000, 111}, which is an embedding of F1 into F3, has the
generator matrix

Γ = (1 1 1) .

In this particular case, the generator matrix is uniquely determined, but this is
exceptional. For example, in the case of k = n = 3, each regular 3× 3-matrix
over F is a generator matrix. �

Hence, there are usually plenty of generator matrices of a given code C, and
it is clear from Linear Algebra that they can be obtained from Γ by applications
of invertible matrices :

1.2.3 Theorem The set of all generator matrices of a linear code with generator matrix Γ is

{B · Γ | B ∈ GLk(F)} ,

where GLk(F) is the set of all regular k × k-matrices over F. �

1.2 Linear Codes, Encoding and Decoding 13

Now we describe a way of considering Fn as a metric space in order to justify
the metric principle used in the decoding process as described in the introduc-
tion. Usually we indicate vectors v ∈ Fn in the form

v = (v0, v1, . . . , vn−1).

Throughout the book we consistently use the recursive definition of natural
numbers as sets,

n := {0, . . . , n − 1}, if n > 0, 0 := ∅.

Thus, a vector v can be considered as a mapping from this set n to F, with vi

the image of i ∈ n under v,

v : n → F : i �→ vi.

In this sense, the vector space can be identified with a set of mappings:

Fn = {v | v : n → F} .

Of course, we also use the natural number n as the cardinality of sets of this
order, but it should be always clear from the context if n means a set or a
cardinality of a set.

The metric principle which we are going to describe is based on the follow-
ing fact:

1.2.4Definition and Theorem (Hamming metric) The function

d : Fn × Fn → N : (u, v) �→ |{i | i ∈ n, ui �= vi}|

is a metric on the vector space Fn, the Hamming metric. This means that the function
d satisfies

d(u, v) = 0 ⇐⇒ u = v,

d(u, v) = d(v, u),

d(u, v) ≤ d(u, w) + d(w, v),

for all u, v, w ∈ Fn. The nonnegative integer d(u, v) is called the Hamming dis-
tance between the vectors u, v ∈ Fn. Hence, the pair (Fn, d) is a metric space, the
Hamming space of dimension n over F. It will also be denoted by

H(n, F) or by H(n, q),

if F = Fq. The Hamming distance is invariant under translation and multiplication
by nonzero scalars: For u, v, w ∈ H(n, F) and λ ∈ F, λ �= 0,

d(u, v) = d(u + w, v + w), and d(u, v) = d(λu, λv).

14 1. Linear Codes

Proof: The equations d(u, v) = 0 and u = v are obviously equivalent, and the
symmetry of d is trivial. To show the triangle inequality

d(u, v) ≤ d(u, w) + d(w, v),

we only note that the i-th component contributes to the left hand side if and
only if ui �= vi, in which case it also contributes to the sum on the right hand
side, since then ui �= wi or vi �= wi. The invariance under translation and
scalar multiplication follows from ui = vi ⇐⇒ ui + wi = vi + wi and from
ui = vi ⇐⇒ λui = λvi. This completes the proof. �

A measure for the error correction capabilities of a linear code C is the least
Hamming distance between two distinct codewords. The reason is that this
value determines the packing radius of C, which is the largest integer t such
that the balls of radius t centered at codewords are all disjoint (intuitively, we
can “pack” the balls).

1.2.5 Definition (minimum distance) If C denotes a linear code, then its minimum
distance is defined as

dist(C) := min{d(c, c′) | c, c′ ∈ C, c �= c′}.

A glance at Fig. 1.2 shows that the packing radius is the greatest integer
which is strictly less than half the value of the minimum distance.

y

t

c

c′

?

? ?

≥ d ≥ 2t + 1

Fig. 1.2 The maximum-likelihood-decoding method

1.2.6 Corollary The packing radius of a linear code C is
(dist(C)− 1)/2�. �

The crucial point is the following decoding method, which is based on the
concept of the packing radius:

1.2 Linear Codes, Encoding and Decoding 15

1.2.7Maximum-likelihood-decoding It is possible to correct up to

t :=
(dist(C)− 1)/2�

errors in the following way (cf. Fig. 1.2):

Using maximum-likelihood-decoding, a vector y ∈ Fn is decoded into a code-
word c ∈ C which is closest to y with respect to the Hamming metric. In formal
terms: y is decoded into a codeword c ∈ C, such that

d(c, y) ≤ d(c′, y), for all c′ ∈ C.

If there are several c ∈ C with this property, one of them is chosen at random.

If the codeword c ∈ C was sent and no more than t errors have occurred during
transmission, the received vector is

y = c + e ∈ Fn,

where e denotes the error vector. It satisfies

d(c, y) = d(e, 0) ≤ t,

and hence c is the unique element of C which lies in a ball of radius t around y.
A maximum likelihood decoder yields this element c, and so we obtain the correct
codeword. �

We mention that codes of dimension 0 < k = n obviously have minimum
distance d = 1, and soon we will see that in the case k = n − 1 we have d ≤ 2.

If we want to evaluate the minimum distance of a code, we can, of course,
evaluate the distances d(c, c′) of all(|C|

2

)
=

(|F|k
2

)
unordered pairs of different codewords. But this is a very inefficient way to do
so. A better approach is the following. For a vector v, we denote by

wt(v) := d(v, 0),

the Hamming weight of v. It is just the number of components of v which are
nonzero. For a code C, the minimum weight of C is defined as

min{wt(c) | c ∈ C, c �= 0},

and it is not difficult to show (Exercise 1.2.8) that, because of linearity, the
following is valid:

16 1. Linear Codes

1.2.8 Corollary The minimum distance of linear codes is the minimum weight:

dist(C) = min {wt(c) | c ∈ C \ {0}} . �

An (n, k)-code C with minimum distance d is called an (n, k, d)-code or a
linear code of type (n, k, d). If C is an (n, k, d)-code over a field with q elements,
we also say that it is an (n, k, d, q)-code.

1.2.9 Corollary Using an (n, k, d)-code in connection with maximum-likelihood-decoding,
we can correct up to

t :=
(d− 1)/2�

errors. For this reason, (n, k, d)-codes are sometimes called t-error-correcting linear
codes, for t :=
(d − 1)/2�. Moreover, such a code is (d − 1)-error-detecting since
a word which was received with at least one and at most d − 1 errors can never be
another codeword. �

This is of course the reason why the minimum distance of a code is of such
importance.

We are now able to refine our communication model. Denoting by m a
message, and by M the message space Fk, we are faced with the situation of
Fig. 1.3.

�
�

�
�message m ∈ M

�
encoder

m �→ c ∈ C ⊆ H(n, q)

�
receiving
y = c + e

sending codeword
c

� channel

�

error vector e

�

�

decoder

error correction
H(n, q) $ y �→ c′ ∈ C

�

c′ �→ m′

�

�
�

�
�message m′ ∈ M

Fig. 1.3 The refined communication system once again

Of course, it is not always true that the message m′ after decoding is equal
to the message m which was sent originally. The main point is that maximum
likelihood decoding ensures that m = m′, provided that wt(e) ≤
(d− 1)/2�.

1.2 Linear Codes, Encoding and Decoding 17

Exercises

E.1.2.1Exercise Assume that V and W are two finite dimensional vector spaces over
F with bases

B = (b(0), . . . , b(k−1)) and C = (c(0), . . . , c(n−1)).

Prove the following: Every vector space homomorphism ϕ : V → W is unique-
ly determined by its values on a basis of V. Assume that

ϕ(b(i)) = ∑
j∈n

κijc
(j), κij ∈ F,

for i ∈ k. If we collect the elements κij in form of a matrix we obtain the matrix
representation

MB,C(ϕ) := (κij) =

⎛⎜⎜⎜⎜⎝
κ00 κ01 . . . κ0,n−1

κ10 κ11 . . . κ1,n−1
...

...
. . .

...
κk−1,0 κk−1,1 . . . κk−1,n−1

⎞⎟⎟⎟⎟⎠
of ϕ with respect to the bases B and C. Conversely, prove that any k× n-matrix
(κij) over F determines a vector space homomorphism ϕ : V → W such that
MB,C(ϕ) = (κij). The homomorphism ϕ is given by

ϕ
(

∑
i∈k

vib
(i)

)
= ∑

j∈n
wjc

(j)

with

(w0, . . . , wn−1) = (v0, . . . , vk−1) · (κij).

This shows that a generator matrix Γ of an (n, k)-code over F describes a vector
space homomorphism ϕ : Fk → Fn.

In particular, if B = (b(0), . . . , b(k−1)) is a basis of V, every endomorphism
of V can be represented as a k × k-matrix over F with respect to this basis.

E.1.2.2Exercise Let V and W be two finite dimensional vector spaces over F of di-
mension k and n respectively. Show that a homomorphism ϕ : V → W is in-
jective if and only if dim(ϕ(V)) = dim(V). Hence, the rows of any matrix
representation (κij) of ϕ are linearly independent, and the rank of (κij) equals
k, the number of its rows. Moreover, ϕ : V → W is an isomorphism if and only
if ϕ is injective and n = k.

18 1. Linear Codes

E.1.2.3 Exercise Assume that V is a k-dimensional vector space over F with basis B =
(b(0), . . . , b(k−1)). The matrix representation MB,B(ϕ) of any automorphism ϕ

of V is a k × k-matrix.

1. Show that the rank of this matrix equals k, which means that it is a regular
matrix.

2. Conversely, prove that any regular k × k-matrix over F determines an au-
tomorphism of V.

3. Prove that MB,B(ϕ1ϕ2) equals the product MB,B(ϕ2) · MB,B(ϕ1) for all au-
tomorphisms ϕ1, ϕ2 ∈ Aut(V).

4. Deduce from the previous result that the set GLk(F) of all regular k × k-
matrices over F forms a group with respect to matrix multiplication, the
general linear group.

5. Show that the mapping θ : Aut(V) → GLk(F) which maps a vector space
automorphism ϕ of V to M�

B,B(ϕ), the transpose of its matrix representa-
tion, is a group isomorphism.

6. Changing the basis of V from B = (b(0), . . . , b(k−1)) to C = (c(0), . . . , c(k−1))
is described by the matrix representation MB,C(id) of the identity mapping.
This is also a regular quadratic matrix. Express MC ,C(ϕ) in terms of these
matrices.

E.1.2.4 Exercise Prove 1.2.3. Hint: Use the fact that any encoding γ of a linear code C
is a vector space isomorphism from Fk to C.

E.1.2.5 Exercise Which code has an invertible generator matrix?

E.1.2.6 Exercise Show that in a linear code over F = {0, 1} either all codewords begin
with 0, or exactly half of them begin with 0 and half of them begin with 1.

E.1.2.7 Exercise Give a formal proof of 1.2.6.

E.1.2.8 Exercise Give a formal proof of 1.2.8.

E.1.2.9 Exercise Assume that G is an abelian group which contains a subset A with
the following three properties:

1. If a1, a2 ∈ A, then a1 − a2 ∈ A,

1.2 Linear Codes, Encoding and Decoding 19

2. if b1, b2 ∈ G \ A, then b1 − b2 ∈ A,

3. if a ∈ A and b ∈ G \ A, then a + b �∈ A.

Show that A = G or A is a proper subset of G and there is an element b0 of
G \ A such that G = A ∪ (b0 + A) where b0 + A = {b0 + a | a ∈ A}. (This
exercise generalizes the last two exercises.)

E.1.2.10Exercise

1. Show that there are (n
m) binary vectors of length n and weight m.

2. Show that there are (q− 1)m(n
m) vectors in Fn of weight m, provided that F

consists of q elements.

3. For x ∈ H(n, q), how many vectors y ∈ H(n, q) satisfy d(x, y) ≤ m ?

E.1.2.11Exercise Let u and v be binary vectors of length n with d(u, v) = d. For r, s ∈ N
determine z by

z :=
∣∣{w ∈ {0, 1}n | d(u, w) = r and d(v, w) = s

}∣∣ .
Prove the following statements: If d + r − s ≥ 0 and d + r − s is even then

z =
(

d
i

)(
n − d
r − i

)
,

where i = (d + r − s)/2. If d + r − s is odd or d + r − s < 0, then z = 0. If
r + s = d, then z = (d

r).

E.1.2.12Exercise Let u, v and w be binary vectors which are pairwise at distance d.
Show that d is even and that there exists exactly one vector which is at dis-
tance d/2 from u, v, w. If u, v, w and x are binary vectors which are pairwise
at distance d, show that there exists at most one vector at distance d/2 from
u, v, w and x.

E.1.2.13Exercise Show that if C is a binary linear code, and a ∈ {0, 1}n \ C, then
C ∪ (a + C) is also a linear code.

E.1.2.14Exercise Define the “intersection” of two binary vectors u and v to be the
vector

u ∧ v := (u0v0, . . . , un−1vn−1)

which has ones only where both u and v have ones. Also, let

u ∨ v := (1− (1− u0)(1− v0), . . . , 1 − (1− un−1)(1− vn−1))

20 1. Linear Codes

be the “union” of u and v, i.e. the vector which is one if at least one of u or v is
one. Show that

wt(u + v) = wt(u) + wt(v)− 2wt(u ∧ v) = wt(u ∨ v)−wt(u ∧ v).

1.3 1.3 Check Matrices and the Dual Code

Let us now address the important issue of decoding. It turns out that Linear
Algebra helps to understand the problem quite a bit. We will discuss a decod-
ing method using what is called the coset leader algorithm. Nevertheless, this
problem is computationally hard and may only be practical for small param-
eters. However, it illustrates some very important concepts of Coding Theory
which are also useful for other purposes, too.

An (n, k)-code C ⊆ H(n, F) can be considered both as the image of an injec-
tive linear mapping γ : Fk → Fn, and as the kernel of a surjective linear mapping
δ : Fn → Fn−k (Exercise 1.3.1). This leads to the following

1.3.1 Definition (check matrices) Let C be an (n, k)-code over F. There exists an
(n − k)× n-matrix ∆ over F which is of rank n − k and satisfies

C = ker(δ) = {w ∈ Fn | w · ∆� = 0},

where ∆� denotes the transpose of the matrix ∆. Any such matrix is called
check matrix of C.

Codes over the field F2 := {0, 1} of two elements are called binary codes.
Codes over the field F3 := {0, 1, 2} of three elements are called ternary codes,
whereas codes over a four-element field F4 are called quaternary.

1.3.2 Example Consider the following check matrix over the field F2 = {0, 1} of two
elements, consisting of a single row of length n ≥ 2,

∆ :=
(

1 1 . . . 1
)

.

It is a check matrix of a binary (n, n − 1)-code C. Each codeword

c = (c0, . . . , cn−1) ∈ C

is of even weight, since

0 = c · ∆� = c0 + . . . + cn−1 ≡ wt(c) mod 2.

1.3 Check Matrices and the Dual Code 21

Conversely, w · ∆� = 0 for each vector w ∈ Fn
2 of even weight, i.e., C consists

of the vectors of even weight in Fn
2 , and so C has minimum distance d = 2.

This shows that C can detect one error. It is called a parity check code, since C
can be obtained in the following way: Take C′ := Fn−1

2 as the message space
and add to each of its elements c′ = (c0, . . . , cn−2) a further coordinate cn−1, a
single bit called a parity check bit, given by

cn−1 :=
{

1 if wt(c′) is odd,
0 otherwise.

The purpose of the parity check bit is to ensure that each codeword of the
extended code C has even weight. A generator matrix of C is

Γ =

⎛⎜⎜⎜⎜⎝
1 1

1 0 1

0
. . .

...
1 1

⎞⎟⎟⎟⎟⎠ .

�

Let us abbreviate the all-one vector (1, . . . , 1) as 1 and the vector whose
entries are all zero by 0. We also write 1n or 0n for such vectors of length n. For
instance, the check matrix and the generator matrix of the above example can
be written as

∆ = (1n) and Γ = (In−1 | 1�n−1),

respectively, where In−1 indicates the identity matrix of rank n − 1.

Now we introduce for each linear code C another code which is closely
related to C via its check and its generator matrices. Using the standard bilinear
form

〈w, w′〉 := ∑
i∈n

wiw
′
i ∈ F,

we associate with C the following subspace:

1.3.3Definition (the dual code, self-orthogonal and self-dual codes) The dual code
to C ⊆ H(n, F) is defined to be the space of vectors that are orthogonal to C
with respect to the standard bilinear form:

C⊥ := {w ∈ Fn | ∀ c ∈ C : 〈c, w〉 = 0}.

A code C is called self-orthogonal if C ⊆ C⊥ and we say that it is self-dual if
C = C⊥.

The standard bilinear form has the following property:

〈w, w′〉 = 0, for all w ∈ Fn ⇐⇒ w′ = 0 ∈ Fn.

22 1. Linear Codes

For v ∈ Fk, w ∈ Fn and a generator matrix Γ of C it follows from

〈v · Γ, w〉 = 〈v, w · Γ�〉

that
C⊥ = {w ∈ Fn | w · Γ� = 0}.

This shows that the generator matrix Γ of C is a check matrix of C⊥. Conse-
quently, C⊥ is a linear (n, n − k)-code. Since (C⊥)⊥ = C (cf. Exercise 1.3.12),
the converse is true as well, and we obtain

1.3.4 Corollary The check matrices of a code C are the generator matrices of the dual code
C⊥ and vice versa. Dually, the check matrices of the dual code are the generator
matrices of the code. �

It is now time to present an example of a linear code which can correct one
error. This is everyone’s first code which is not a repetition code or any of the
other trivial examples. It was introduced by Hamming. Before we define this
code, let us make one more definition.

1.3.5 Definition Let b ≥ 2 be an integer. Every nonnegative integer m ≤ bk − 1 can
be expressed in the form

m = ∑
i∈k

aib
i, where 0 ≤ ai < b, for i = 0, 1, . . . , k − 1.

We call this the base b representation of m. The ai are called the digits in the
representation and we write

m = (ak−1, . . . , a1, a0)b.

The integer b is called base. The expression is unique up to the number of
leading zeros (we do not distinguish between two such representations which
only differ in the number of leading zeros). The case b = 10 is of course the
usual representation of integers in decimal, whereas b = 2 gives us the binary
numbers. Notice the ubiquitous reverse ordering of the digits with respect to
the index set k.

The announced code is described in the following

1.3.6 Example Consider the binary representations of the numbers from 1 to 7,
(0, 0, 1)2, (0, 1, 0)2, (0, 1, 1)2, (1, 0, 0)2, (1, 0, 1)2, (1, 1, 0)2, and (1, 1, 1)2, respec-
tively. We may form the binary matrix

∆ =

⎛⎜⎝ 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞⎟⎠ ,

1.3 Check Matrices and the Dual Code 23

whose columns are exactly these binary representations (slightly “mixed up”
however). We may take ∆ to be the check matrix of a binary code of length 7.
The rowspace of ∆ is the dual space of the code, and hence the code is the set
of vectors c with c · ∆� = 0. Using Linear Algebra, we can find a basis for this
4-dimensional space, and writing the basis vectors in the rows of a matrix we
find that the code is generated by

Γ =

⎛⎜⎜⎜⎝
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

This is the (7, 4)-Hamming-code. Actually, it is a member of a whole class
of codes which are all called Hamming-codes. The more general definition of
a Hamming-code will follow at the beginning of Chapter 2. By enumerating
the 16 codewords and counting weights, one can easily determine that the
minimum distance of this code is 3. Note that it cannot be larger than that since
we see vectors of weight 3 in the rows of the generator matrix Γ. However, we
need to convince ourselves that there is no word of lower weight. Hence this
code has type (n, k, d, q) = (7, 4, 3, 2). By 1.2.7, it is a 1-error correcting code. Its
information rate is k/n = 4/7 ≈ 0, 57. By comparison, the 1-error correcting
repetition code of length 3 has information rate 1/3 ≈ 0, 33. This is already a
good improvement. �

Using check matrices, we can easily formulate an important decoding pro-
cedure which will turn out to agree with maximum-likelihood-decoding. For
this purpose, we recall the definition of a coset of C, which is a subset of Fn of
the form

a + C := {a + c | c ∈ C},

where a is an element of Fn. It is possible to decompose Fn into pairwise
disjoint cosets of C (cf. Exercise 1.3.4),

Fn =
⋃
i

(a(i) + C).

As coset representatives we use coset leaders a(i), which are elements of smallest
weight in their coset,

wt(a(i)) ≤ wt(a(i) + c), for all c ∈ C.

The decoding algorithm itself can be described as follows:

24 1. Linear Codes

1.3.7 Syndrome decoding Let ∆ be a check matrix of C and suppose that the Ham-
ming space H(n, F) ⊇ C is decomposed into cosets a(i) + C such that the cho-
sen representatives a(i) are coset leaders. For each vector w ∈ Fn we call the
vector

w · ∆�

its syndrome. Assume that the vector y has been received. To determine the
coset a(i) + C containing y we proceed as follows:

If y ∈ a(i) + C, say y = a(i) + c, then

y · ∆� = (a(i) + c) · ∆� = a(i) · ∆� + c · ∆� = a(i) · ∆�,

i.e. the received vector y has the same syndrome as its coset leader.

Syndromes of different a(i) are distinct, since

a(i) · ∆� = a(j) · ∆� ⇒ (a(i) − a(j)) · ∆� = 0 ⇒ a(i) − a(j) ∈ C ⇒ i = j.

Consequently, we can deduce the coset number i from the syndrome of y
by comparing it to the (pairwise distinct!) syndromes of the coset leaders.

Having the coset number i of y and its coset leader a(i) at hand, we sim-
ply subtract a(i) from y in order to obtain a codeword c. This is called the
syndrome decoding method:

y �→ c := y − a(i).

For short: Subtract from the received vector its coset leader!

In fact, this is the maximum-likelihood-decoding method, since y = a(i) + c
implies that

d(y, c) = wt(y− c) = wt(a(i)),

as we have seen already. Therefore, since a(i) is a leader, c is one of the code-
words next to y. �

1.3.8 Example Consider the check matrix

∆ =

⎛⎜⎝ 1 1 0 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

⎞⎟⎠

1.3 Check Matrices and the Dual Code 25

of a binary (6, 3)-code. The following table presents the coset leaders and the
corresponding syndromes:

a(i) a(i) · ∆�

000000 000
000001 001
000010 010
000100 100
100000 110
000101 101
001000 011
010000 111

The reader should carefully note that coset leaders are usually not uniquely
determined. In our example there are several coset leaders admissible for the
syndrome 101. They are 000101, 101000 and 010010. �

The following theorem provides an important characterization of the min-
imum distance in terms of check matrices. Remember that the check matrix is
not unique. The statement holds true for any check matrix.

1.3.9Theorem The check matrix ∆ of an (n, k, d)-code over F with 0 < k < n has the
following properties:

1. ∆ is an (n − k) × n-matrix over F of rank n − k,

2. any d − 1 columns are linearly independent, and

3. there exist d columns that are linearly dependent.

Conversely, any matrix ∆ satisfying these properties is a check matrix of an (n, k, d)-
code over F.

Proof: To begin with, we assume that ∆ is a check matrix of such a code.
By 1.3.4, ∆ is a generator matrix of the dual code, i.e. an (n − k) × n-matrix
over F of rank n − k. Now let c be a word in C of minimum weight d. Then
c · ∆� = 0, since the rows of ∆ are a basis for C⊥. But this means that there
is a nontrivial linear combination of d columns of ∆ that gives the zero vector
(namely, the columns corresponding to the nonzero entries of c). Moreover,
since there is no codeword c �= 0 with Hamming weight strictly less than d,
any d − 1 columns of ∆ are linearly independent.

Conversely, if we are given such a matrix ∆, the rank condition implies that
the set

{w ∈ Fn | w · ∆� = 0}
is a subspace of dimension k. Moreover, as before, we find that it is a code of
minimum distance d. �

26 1. Linear Codes

From this result we deduce the following criterion which can be used in
many cases:

1.3.10 Corollary Each (n − k) × n-matrix over F of rank n − k with the property that any
d − 1 of its columns are linearly independent is a check matrix of a linear (n, k)-code
C over F with minimum distance dist(C) ≥ d, for short: of an (n, k,≥ d)-code. �

The excluded case when k = n is obviously trivial, since in this case d = 1.

Exercises

E.1.3.1 Exercise Check that in fact any (n, k)-code C can be described as the kernel
of a surjective linear mapping from Fn to Fn−k. Hint: Assume that Γ is a
generator matrix of C. Let {b(0), . . . , b(n−k−1)} be a basis of the solution space
of the homogeneous linear system Γ · x� = 0, where x ∈ Fn. Then C is the
kernel of the mapping Fn → Fn−k : w �→ w · ∆� with

∆ =

⎛⎜⎜⎝
b(0)

...
b(n−k−1)

⎞⎟⎟⎠ ,

an (n − k) × n-matrix over F. Thus, ∆ is a check matrix of C.

E.1.3.2 Exercise List all codewords of the binary codes C0 and C1 with the check ma-
trices

∆0 =

(
1 1 0 0
1 0 1 1

)
and ∆1 =

(
0 1 1 1
1 0 1 1

)
.

How are these two codes related?

E.1.3.3 Exercise Assume that ∆ is the check matrix of a linear code C. Describe the
set of all check matrices of C.

E.1.3.4 Exercise Verify that Fn is the union of pairwise disjoint cosets of C.

E.1.3.5 Exercise

1. Check that the rowspace of the matrix Γ in 1.3.6 is indeed the dual space of
the rowspace of ∆.

2. Verify the claim about the minimum distance of the (7, 4) Hamming-code
made in 1.3.6.

1.3 Check Matrices and the Dual Code 27

E.1.3.6Exercise Prove that for a binary code with check matrix ∆, the syndrome is
the transpose of the sum of the columns of ∆ where the errors have occurred.

E.1.3.7Exercise Compute coset leaders for the binary code generated by

Γ =

⎛⎜⎝ 1 0 1 1 0 1
0 1 1 0 1 1
0 0 0 1 1 1

⎞⎟⎠ .

Decode the vectors (1, 1, 0, 1, 0, 0) and (1, 1, 1, 1, 1, 1) using the method of 1.3.7.

E.1.3.8Exercise Evaluate the minimum distances of the binary codes which are gen-
erated by⎛⎜⎝ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞⎟⎠ and

⎛⎜⎝ 1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0 1 0
1 1 1 0 1 0 0 0 0 1

⎞⎟⎠ .

E.1.3.9Exercise Let C be an (n, k)-code. Consider the block matrix Γ = (Ik | A),
where A is a k × (n − k)-matrix and Ik denotes the unit matrix. Show that Γ is
a generator matrix of C if and only if ∆ = (−A� | In−k) is a check matrix of C.

E.1.3.10Exercise Prove that for each generator matrix Γ and every check matrix ∆ of
C the products Γ · ∆� and ∆ · Γ� are zero matrices.

E.1.3.11Exercise Over any finite field F, the (n, n − 1) parity check code C is obtained
from the message space Fn−1 by adding a parity check bit cn := −∑n−1

i=0 ci.
Find a generator matrix for this code and determine the minimum distance.

E.1.3.12Exercise Verify that (C⊥)⊥ = C.

E.1.3.13Exercise Assume that C and C′ are linear codes of length n and let C + C′ :=
{c + c′ | c ∈ C, c′ ∈ C′}. Show that (C + C′)⊥ = C⊥ ∩ C′⊥.

E.1.3.14Exercise A linear code C is self-orthogonal if and only if 〈c, c′〉 = 0 for all
c, c′ ∈ C. Show that C is self-dual if and only if C is self-orthogonal and C is of
dimension k = n/2 (and hence n is even).

E.1.3.15Exercise Construct binary self-dual codes of lengths 4 and 8.

28 1. Linear Codes

E.1.3.16 Exercise Let C be a binary, self-orthogonal code.

1. Show that each word of C is even and that C⊥ contains the all-one vector 1.

2. Assume in addition that the length n of C is odd and that the dimension of
C is (n − 1)/2. Show that

C⊥ = C ∪ (1 + C).

E.1.3.17 Exercise Show that a code with check matrix ∆ = (Ik | A) is self-dual if and
only if A is a square matrix with A · A� = −Ik.

E.1.3.18 Exercise Show the following:

1. If u, v ∈ Fn
2 , then 〈u, v〉 ≡ wt(u ∧ v) mod 2 (where u ∧ v is as in Exer-

cise 1.2.14).

2. If u ∈ Fn
2 , then 〈u, u〉 ≡ wt(u) mod 2.

3. If u ∈ Fn
3 , then 〈u, u〉 ≡ wt(u) mod 3.

E.1.3.19 Exercise If C is a binary, self-orthogonal code, show that every codeword has
even weight. Furthermore, if each row of the generator matrix Γ of C has
weight divisible by 4, then so does every codeword.

E.1.3.20 Exercise Let C be a ternary, self-orthogonal code. Show that wt(c) ≡ 0 mod 3
for every codeword c ∈ C.

E.1.3.21 Exercise Let C be a code whose generator matrix Γ has the property that no
column of Γ is zero and no two columns of Γ are linearly dependent. Show
that dist(C⊥) ≥ 3. (Such codes will be called projective in 6.1.14.)

1.4 1.4 Classification by Isometry

As we have seen, the coding theoretic properties of a code depend primarily on
the Hamming distances between different codewords and between codewords
and non-codewords. For example, the closest pair of codewords determines
the error-correction rate of a code. Moreover, it may be that one code can
be mapped onto another by means of a map which preserves the Hamming
distances. Clearly, in any practical application, one code would be as good

1.4 Classification by Isometry 29

as the other, as far as error-correction is concerned. It seems natural to call
such codes equivalent. In this section we study a corresponding notion of
equivalence, by means of which codes can be classified.

Of course, only the types of essentially distinct – i.e. nonequivalent – codes
are of interest. In fact, there are various ways in which such an equivalence
relation can be defined. We discuss three such relations. These relations are
indeed only refinements of each other, meaning that there is one relation which
is strongest. The other relations are “weaker” in the sense that codes which are
equivalent under the strongest relation may be inequivalent under the other
two relations. The three relations are motivated by concepts from Projective
Geometry, see Section 3.7 for more on that.

Recall that an equivalence relation R on a set X is a subset of X ×X such that
for all x, y, z ∈ X we have

(x, x) ∈ R (reflexivity),

(x, y) ∈ R if and only if (y, x) ∈ R (symmetry),

(x, y), (y, z) ∈ R implies that also (x, z) ∈ R (transitivity).

The equivalence class of x ∈ X with respect to R is the set

[x]R := {y ∈ X | (x, y) ∈ R} ,

and the set of all equivalence classes with respect to R is indicated as X/R.
It forms a decomposition of X into pairwise disjoint and nonempty subsets.
Instead of (x, y) ∈ R we usually write x ∼ y where ∼ denotes the equivalence
relation.

Two (n, k)-codes C, C′ ⊆ H(n, q) are of the same quality if there exists a
mapping

ι : H(n, q) → H(n, q)

with ι(C) = C′ which preserves the Hamming distance, i.e.

d(w, w′) = d(ι(w), ι(w′)), for all w, w′ ∈ H(n, q).

Mappings with the latter property are called isometries. Using this notion we
introduce the following concept which is in fact the central concept of the present
book:

1.4.1Definition (isometric codes) Two linear codes C, C′ ⊆ H(n, q) are called iso-
metric if there exists an isometry of H(n, q) that maps C onto C′.

30 1. Linear Codes

Obvious isometries are the permutations of the coordinates. These isometries
will be called permutational isometries. Recall that the set of bijections from a set
X to itself forms a group, the symmetric group

SX := {π | π : X → X, π is bijective} .

The multiplication in this group is the composition of mappings,

(π ◦ ρ)(x) := π(ρ(x)).

We write Sn for the symmetric group on the set X = n = {0, . . . , n − 1}.

1.4.2 Definition (permutationally isometric codes) Two linear codes C, C′ ⊆ H(n, q)
are permutationally isometric if there exists a permutational isometry of H(n, q)
that maps C onto C′. This means that there is a permutation π in the symmetric
group Sn such that

C′ = π(C) = {π(c) | c ∈ C}, and d(c, c̃) = d(π(c), π(c̃)),

for all c, c̃ ∈ C, where

π(c) = π(c0, . . . , cn−1) := (cπ−1(0), . . . , cπ−1(n−1)).

Isometries which are also linear mappings are called linear isometries (with
respect to the Hamming metric). Linear isometries leave the Hamming weight
invariant, since by linearity we have ι(0) = 0, and therefore also

wt(v) = d(v, 0) = d(ι(v), ι(0)) = d(ι(v), 0) = wt(ι(v)).

1.4.3 Definition (linearly isometric codes) Two linear codes C, C′ ⊆ H(n, q) are
linearly isometric if there exists a linear isometry of H(n, q) that maps C onto
C′.

We remark that what we call linearly isometric is often called isometric
(unqualified) or monomially isometric in the literature. Our reason for calling
it linearly isometric is two-fold. First, we will see shortly that this, together
with the special case of permutational isometry, is not the only way in which
codes can be isometric. Secondly, concerning the notion of equivalence, we
felt that the concept of monomial mapping is not that well-known. Hence we
chose to make reference to the fact that these isometries are induced by linear
mappings.

We might have imposed a seemingly weaker condition by asking for the
existence of a local linear isometry between C and C′ only, i.e. an isometry of
C and not necessarily of H(n, q), that maps C onto C′. It can be shown, see

1.4 Classification by Isometry 31

6.8.4, that each such local linear isometry can be extended to a linear isometry
of H(n, q). Later on we will see that the isometry relation is an equivalence
relation on the set of codes with block length n over Fq, and in later chapters
we will consider the corresponding isometry classes in detail.

In order to characterize linear isometries, we have to study linear maps of
the vector space Fn

q and investigate their effect on the Hamming distance. That
is, we study linear maps of H(n, q). Recall that any linear map is defined by
the images of the unit vectors. Since linear isometries preserve the Hamming
weight, a unit vector e(i) is mapped to a nonzero multiple of a unit vector, i.e.

ι(e(i)) = κje
(j), for suitable j ∈ n, κj ∈ F∗

q := Fq \ {0} .

Moreover, the sum of two different unit vectors is of weight 2, and so different
unit vectors are mapped under ι to nonzero multiples of different unit vectors.
Hence, there exists a unique permutation π in the symmetric group Sn and a
unique mapping ϕ from n = {0, . . . , n − 1} to F∗

q such that

ι(e(i)) = ϕ(π(i))e(π(i)).

Therefore, we may record ι as a pair of mappings,

ι = (ϕ; π).

In terms of these mappings, applying ι to v := ∑i∈n vie(i) gives

ι(v) = (ϕ; π)(v) = ∑
i∈n

viϕ(π(i))e(π(i)) = ∑
i∈n

ϕ(i)vπ−1(i)e
(i),

i.e.
(ϕ; π)((v0, . . . , vn−1)) = (ϕ(0)vπ−1(0), . . . , ϕ(n − 1)vπ−1(n−1)).

Using matrix multiplication, we could also write

(ϕ; π)((v0, . . . , vn−1)) = (v0, . . . , vn−1) · M�
(ϕ;π),

where M(ϕ;π) is the matrix whose k-th column is zero except for the (i, k)-entry
which is ϕ(i). Here i = π(k), so that

k

M(ϕ;π) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

0 . . . 0 ϕ(i) 0 . . . 0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
i = π(k).

32 1. Linear Codes

Conversely, any linear mapping with

e(i) �−→ ϕ(π(i))e(π(i)),

for ϕ : n → F∗
q and π ∈ Sn, is a linear isometry. Moreover, linear isometries

are invertible, and the composition of two of them is again a linear isometry.
A straightforward calculation shows (Exercise 1.4.1) that

(ψ; ρ)((ϕ; π)(v)) = (ψϕρ; ρπ)(v), v ∈ H(n, q),

where ψϕρ(i) := ψ(i)ϕ(ρ−1(i)). Summarizing we obtain

1.4.4 Corollary The linear isometries form the group{
(ϕ; π)

∣∣∣ ϕ : n → F∗
q , π ∈ Sn

}
,

called the group of linear isometries of the Hamming space. Multiplication in this
group is given by the formula

(ψ; ρ)(ϕ; π) = (ψϕρ; ρπ).

The matrices representing the elements of this group form

Mn(q) :=
{

M(ϕ;π)

∣∣∣ ϕ : n → F∗
q , π ∈ Sn

}
,

and they multiply according to the rule

M(ψ;ρ) · M(ϕ;π) = M(ψϕρ;ρπ).

The correspondence between a linear map and the associated matrix with respect to a
fixed basis constitutes the isomorphism

(ϕ; π) �−→ M(ϕ;π)

between these two groups. �

The application of the linear isometry group to the Hamming space is our
central concept, and it is a special case of the general notion of group action
which we will use in other situations, too. Hence, we carefully introduce the
basic definitions and results on group actions at this point.

Actions of groups on sets play an important role in Algebra, in Combina-
torics, in Topology, but also in the sciences (Chemistry, Computer Science and
Physics, in particular). For more details on group actions we refer the reader
to [108].

1.4 Classification by Isometry 33

An action of a group G (which we assume to be written multiplicatively)
from the left on a nonempty set X is defined by a mapping

G × X → X : (g, x) �→ gx

with the properties
(gg′)x = g(g′x) and 1x = x,

for x ∈ X, g, g′ ∈ G and the identity element 1 of G. We abbreviate such an
action of G on X from the left by

GX.

An equivalent characterization of a group action is as follows (Exercise 1.4.4).

1.4.5Lemma Let GX be a group action. Then the mapping

δ : G → SX : g �→ g, where g : x �→ gx,

from G to the symmetric group SX is a homomorphism. The kernel of the action is by
definition the kernel of this homomorphism, i.e. the set of group elements that fix each
x ∈ X. �

We call δ the permutation representation induced by the action of GX, g =
δ(g) is the permutation induced by g on X and G := δ(G) the permutation
group induced by G on X. Actions from the right are defined similarly. In the
following, we define the basic notions for actions from the left. It is clear that
corresponding notions can be introduced for actions from the right as well.

The crucial point is that GX induces the following relation ∼G on X:

x ∼G y :⇐⇒ ∃ g ∈ G : gx = y.

It is easy to prove that ∼G is indeed an equivalence relation on X (Exercise 1.4.4).
The proof is based on the following fact which is immediate from the definition
of group actions and which is of fundamental importance:

gx = x′ ⇐⇒ x = g−1x′.

The equivalence class
G(x) = {gx | g ∈ G}

of x ∈ X is called the G-orbit or, briefly, the orbit of x. We use the notation

G\\X := {G(x) | x ∈ X}

to denote the set of orbits of G on X. A minimal but complete set T of orbit
representatives is called a transversal of the orbits. Since ∼G is an equivalence

34 1. Linear Codes

relation on X, G\\X is a set partition of X, i.e. a complete dissection of X into
pairwise disjoint and nonempty subsets G(t), for t ∈ T:

X =
⋃̇

ω∈G\\X

ω =
⋃̇
t∈T

G(t).1.4.6

Several basic examples of group actions appearing in Group Theory and Com-
binatorics are described in Exercises 1.4.5 to 1.4.7. It is easy to check that for
any group action GX the orbits G(x) and G(x), x ∈ X, coincide, whence,
G\\X = G\\X. A group action is called finite if both G and X are finite. If
X is finite, then the action GX is always finite.

We are now going to introduce an important action of a group on a set
of mappings. This action will be the prototype action for the enumeration
of isometry classes of codes later on. For nonempty sets X and Y, the set of
mappings from X to Y is denoted as

YX := { f | f : X → Y} .

If G acts on X, then we can define an action of G on YX as follows:

G ×YX → YX : (g, f) �→ f ◦ g −1.1.4.7

Here g is the permutation induced by g on X as introduced in 1.4.5. Thus, un-
der this action, we associate to the pair (g, f) the composition f ◦ g −1, i.e. the
mapping f̃ ∈ YX with f̃ (x) = f (g−1x), for all x ∈ X.

Let us now introduce the wreath product of two groups. As it turns out,
the linear isometry group of the Hamming space will be such a product.

1.4.8 Definition (wreath product) Consider an action GX and a group H. The wreath
product of H with G, with respect to GX, consists of the set

H �X G := HX × G = {(ϕ; g) | ϕ : X → H, g ∈ G} ,

with multiplication defined by

(ϕ; g)(ϕ′; g′) := (ϕϕ′
g; gg′),

where (ϕϕ′
g)(x) := ϕ(x) · ϕ′

g(x) and ϕ′
g(x) := ϕ′(g−1x), for x ∈ X. The iden-

tity element is
1H�X G = (ε; 1G),

where ε ∈ HX is the constant mapping ε : x �→ 1H , and 1G, 1H denote the
identity elements of G and H, respectively. The inverse of (ϕ; g) ∈ H �X G is

(ϕ; g)−1 = (ϕ−1
g−1 ; g

−1),

1.4 Classification by Isometry 35

where
ϕ−1(x) := ϕ(x)−1 and ϕ−1

g−1 := (ϕg−1)−1 = (ϕ−1)g−1 .

So, the wreath product H �X G comes together with an action of G on X. It may
happen that the group H acts on another set Y, say. In this case, we can define
an action of H �X G on the set of mappings YX in the following way.

H �X G ×YX → YX : ((ϕ; g), f) �→ f̃ , where f̃ (x) := ϕ(x) f (g−1x). 1.4.9

This action is a host of further actions, some of which will be described next.
These further actions are in fact actions of various subgroups of H �X G (cf. Ex-
ercise 1.4.5). The first case is when the group G is trivial and all mappings
ϕ : X → H are constant. In this situation, only the group H acts on the set Y,
such that the corresponding action on the set of functions YX is

H ×YX → YX : (h, f) �→ h ◦ f . 1.4.10

Another action is given by the direct product H × G of the groups H and G,
which acts as follows:

(H × G)×YX → YX : ((h, g), f) �→ h ◦ f ◦ g −1. 1.4.11

The purpose of Exercise 1.4.11 is to show that these definitions yield group
actions. The action of the wreath product 1.4.9 is a generalization of 1.4.7,
1.4.10, and 1.4.11.

1.4.12Example (the linear isometry group) Our paradigmatic example of an action
as in 1.4.9 is the following one. Take as H the multiplicative group F∗

q of the
field Fq. Let G be the symmetric group Sn acting on the set n = {0, . . . , n − 1}.
Thus

H �X G := F∗
q �n Sn =

{
(ϕ; π)

∣∣∣ ϕ : n → F∗
q , π ∈ Sn

}
.

The action on YX := Fn
q is given in the following way:

F∗
q �n Sn × Fn

q → Fn
q :

(
(ϕ; π), v

)
�→

(
ϕ(0)vπ−1(0), . . . , ϕ(n − 1)vπ−1(n−1)

)
.

Equivalently, in terms of Linear Algebra, we could also write

Mn(q)× H(n, q) → H(n, q) : (M(ϕ;π), v) �→ v · M�
(ϕ;π).

Since Mn(q) � H �n Sn is called the full monomial group of degree n over H, the
group of linear isometries of the Hamming space is the full monomial group
of degree n over the multiplicative group of the field. �

We are now in a position to formulate linear isometry in terms of group
actions.

36 1. Linear Codes

1.4.13 Remarks Let us apply what we know about linear isometry groups, their ac-
tions on vector spaces and the general theory of group actions on sets of map-
pings YX. We iterate this process of constructing actions in the following way:

We start from the action of the linear isometry group of H(n, q),

F∗
q �n Sn

(
Fn

q

)
= Mn(q)

(
H(n, q)

)
.

Then we use the fact that the set of mappings

2H(n,q) = {F : H(n, q) → {0, 1}}

can be identified with the power set of H(n, q) by identifying F with the
inverse image F−1({1}) of 1, which is a subset of H(n, q).

The given action of the linear isometry group of H(n, q) induces the action

G

(
YX

)
:= F∗

q �n Sn

(
2Fn

q
)

= Mn(q)

(
2H(n,q)

)
.

Correspondingly, the orbits in

Mn(q) \\ 2H(n,q)

are the linear isometry classes of subsets of H(n, q) or block codes.

Linear subspaces of H(n, q) are of course also subsets of H(n, q), and the
previous remarks apply to them as well. It turns out that each element in
the orbit of a linear subspace under the isometry group is again a linear
subspace (this follows since the isometry group Mn(q) is linear). Thus,
these are the orbits we are interested in most. They are the linear isometry
classes of linear codes.
In later chapters we will enumerate these classes, construct representatives
and provide a method for randomly generating subsets of Fn

q that are uni-
formly distributed over these classes.

Next, we describe linear codes and their isometry classes as orbits un-
der certain group actions by using results from the Exercises 1.4.14, 1.4.15,
and 1.4.16, replacing the subspaces by generator matrices, i.e. by bases, so that
they can be handled by a computer as well:

1.4.14 Theorem

1. Assume that Fk×n,k
q denotes the set of all k × n matrices of rank k over Fq, k ≥ 1,

and GLk(q) the set of all regular k × k-matrices over Fq. The set of all generator
matrices of the linear (n, k)-code C with generator matrix Γ ∈ Fk×n,k

q is the orbit

1.4 Classification by Isometry 37

GLk(q)(Γ) = {B · Γ | B ∈ GLk(q)}. Whence the set of all linear (n, k)-codes
over Fq, we indicate it as U(n, k, q), can be identified with

GLk(q)\\Fk×n,k
q .

2. The linear isometry group Mn(q) acts on U (n, k, q), k ≥ 1, according to

Mn(q)× U(n, k, q) → U (n, k, q) : (M(ϕ;π), C) �→
{

c · M�
(ϕ;π)

∣∣∣ c ∈ C
}

.

The linear isometry class of the linear (n, k)-code C is the orbit

Mn(q)(C).

Hence, the set of linear isometry classes of linear (n, k)-codes is

Mn(q)\\ U (n, k, q).

3. The direct product GLk(q) × Mn(q), k ≥ 1, acts on Fk×n,k
q by(

GLk(q)× Mn(q)
)
× Fk×n,k

q → Fk×n,k
q :

(
(B, M(ϕ;π)), Γ

)
�→ B · Γ · M�

(ϕ;π)

and so the set of linear isometry classes of linear (n, k)-codes corresponds to the set
of orbits

(GLk(q)× Mn(q))\\Fk×n,k
q . �

Exercises

E.1.4.1Exercise Show that

linear isometries are invertible,

the composition of two of them is again a linear isometry,

the composition satisfies

(ψ; ρ)((ϕ; π)(v)) = (ψϕρ; ρπ)(v), v ∈ H(n, q),

where ψϕρ(i) := ψ(i)ϕ(ρ−1(i)), and

the representing matrices satisfy

M(ψ;ρ) · M(ϕ;π) = M(ψϕρ;ρπ).

E.1.4.2Exercise Let U be a nonempty subset of a finite group G (written multiplica-
tively). Show that U is a subgroup if and only if U is closed under multiplica-
tion, i.e.

u, u′ ∈ U =⇒ u · u′ ∈ U.

38 1. Linear Codes

E.1.4.3 Exercise Verify 1.4.5.

E.1.4.4 Exercise Check that g is in fact a permutation and ∼G an equivalence relation.

E.1.4.5 Exercise If GX is a group action and U is a subgroup of G, prove that

U × X → X : (u, x) �→ ux

is a group action of U on X, the restriction of GX to U. Prove that each orbit
G(x) is a union of U-orbits.

E.1.4.6 Exercise If G is a group, prove that both

G × G → G : (g, x) �→ gx

and
G × G → G : (g, x) �→ xg−1

are group actions of G on G. They are called the left regular or right regular
representation of G, respectively. Prove that G(x) = G for any x ∈ G. A group
action with just one orbit is called transitive. Hence, the left regular and the
right regular representation are transitive group actions.

Let U be a subgroup of G. Determine the orbits of the restricted action UG.
In the first case they are called right cosets, in the second case left cosets of U.
Prove that all orbits U(x) for x ∈ G are of the same size. If G is a finite group,
deduce that the order of U divides the order of G. This is Lagrange’s Theorem.

E.1.4.7 Exercise Show that an action of G on a set X induces natural actions of G on
(X

k), the set of all k-subsets of X, for 0 ≤ k ≤ |X|, and on 2X, the power set of
X, which is the set of all subsets of X. This natural action of g on the subset A
of X is given by (g, A) �→ {gx | x ∈ A}.

E.1.4.8 Exercise Consider a group action GX, a normal subgroup U � G and the re-
stricted action UX. Prove the following facts:

For each orbit U(x) and any g ∈ G, the set gU(x) is again an orbit of U on
X. Indeed gU(x) = U(gx).

The group G acts on the set U\\X of the U-orbits by

G ×U\\X → U\\X : (g,U(x)) �→ U(gx).

1.4 Classification by Isometry 39

The factor group G/U acts on the set U\\X via

G/U ×U\\X → U\\X : (gU,U(x)) �→ U(gx).

We call this action a factor action of G with respect to U and denote it by

G/U(U\\X).

Up to identification of the U-orbits with the set of their elements, the fol-
lowing equations hold:

G\\X = G\\(U\\X) and G\\X = (G/U)\\(U\\X).

E.1.4.9Exercise Use Exercise 1.4.8 in order to prove: An action of the direct prod-
uct H × G on X induces both a natural action of H on the set of orbits of the
restricted action GX:

H × (G\\X) → G\\X : (h, G(x)) �→ G(hx),

and a natural action of G on the orbits of the restricted action HX:

G × (H\\X) → H\\X : (g, H(x)) �→ H(gx).

Show that the orbit of G(x) ∈ G\\X under H is the set of orbits of G on X
that form (H × G)(x), while the orbit of H(x) ∈ H\\X under G consists of the
orbits of H on X, that form (H × G)(x). Hence

(H × G)(x) =
⋃

h∈H

G(hx) =
⋃

g∈G

H(gx).

Prove the following identity for a finite set X:

|H\\(G\\X)| = |G\\(H\\X)| = |(H × G)\\X|.

E.1.4.10Exercise Assume that both GX and HX are group actions with g(hx) = h(gx)
for all g ∈ G, h ∈ H, and x ∈ X. Prove that

(H × G)× X → X : ((h, g), x) �→ h(gx)

describes an action of the direct product H × G on X.

E.1.4.11Exercise Assume that X and Y are sets and H is a group which acts on Y.
Prove that 1.4.10 describes an action of H on YX.

If, in addition, GX is another group action, then use Exercise 1.4.10 to show
that 1.4.11 defines an action of H × G both on the domain and the range of
these mappings. Note that g stands for the permutation representation of g
acting on X, whereas h denotes the permutation representation of h acting on
Y.

40 1. Linear Codes

E.1.4.12 Exercise Let V be a vector space over F. Show that the multiplicative group
F∗ acts on V by

F∗ ×V → V : (λ, v) �→ λv.

Prove that the orbit of 0 is of size one, and all the other orbits are of the same
length. For v �= 0 the orbit F∗(v) describes a punctured one-dimensional sub-
space of V, i.e. the subspace without the zero vector. If F = Fq, then the orbit
of v �= 0 is of size q − 1.

E.1.4.13 Exercise Show that the group of regular k × k-matrices over F acts on Fk by

GLk(F)× Fk → Fk : (B, v) �→ (B · v�)
�

= v · B�.

Prove that the orbit of 0 is of size one. Moreover, show that this action com-
mutes with the action of F∗ described in Exercise 1.4.12, and deduce from Ex-
ercise 1.4.10 that the direct product GLk(F)×F∗ acts on Fk. Describe the orbits
(GLk(F) × F∗)(v) with the methods of Exercise 1.4.9.

E.1.4.14 Exercise Let the set of k × n-matrices over Fq be denoted by Fk×n
q , and the set

of k× n-matrices of rank r by Fk×n,r
q . Show that GLk(q) := GLk(Fq), k ≥ 1, acts

both on Fk×n
q and Fk×n,r

q by
(B, Γ) �→ B · Γ

where B ∈ GLk(q) is a regular matrix, and Γ is a k × n-matrix.
From 1.2.3 deduce that the orbit GLk(q)(Γ) of Γ ∈ Fk×n,k

q determines the
set of all generator matrices of the code C with Γ. Thus the set of all linear
(n, k)-codes over Fq can be identified with the set of orbits GLk(q)\\Fk×n,k

q .

E.1.4.15 Exercise Show that the full monomial group Mn(q) acts on U (n, k, q) by

Mn(q)× U (n, k, q) → U(n, k, q) : (M(ϕ;π), C) �→
{

c · M�
(ϕ;π)

∣∣∣ c ∈ C
}

.

E.1.4.16 Exercise Show that Mn(q) acts both on Fk×n
q and Fk×n,r

q by

(M(ϕ;π), Γ) �→ Γ · M�
(ϕ;π)

where M(ϕ;π) ∈ Mn(q) is a monomial matrix, and Γ is a k × n-matrix. More-
over, show that this action commutes with the action of GLk(q) described in
Exercise 1.4.14 and thus deduce from Exercise 1.4.10 that the direct product
GLk(q)× Mn(q) acts on Fk×n

q and Fk×n,r
q . Describe (GLk(q)× Mn(q))(Γ) with

the methods of Exercise 1.4.9.

1.5 Semilinear Isometry Classes of Linear Codes 41

From Exercise 1.4.14 deduce that for Γ ∈ Fk×n,k
q , a generator matrix of the

(n, k)-code C, the orbit (GLk(q) × Mn(q))(Γ) consists of all generator matri-
ces of codes which are linearly isometric to C. Therefore, the set of orbits
(GLk(q) × Mn(q))\\Fk×n,k

q is in bijection to the linear isometry classes of lin-
ear (n, k)-codes over Fq.

1.51.5 Semilinear Isometry Classes of Linear Codes

It is, of course, a legitimate question to ask for generalizations of the concept
of linear isometry by relaxing the condition of linearity. The only requirement
in addition to isometry will be that the admissible isometries map subspaces
onto subspaces. To be more precise the image of a subspace under an isometry
is again a subspace of Fn

q . Under these assumptions we derive for n ≥ 3 that
these mappings preserve the dimension, i.e. they map (n, k)-codes to (n, k)-
codes, and that they are the semilinear isometries of Fn

q (cf. 1.5.7). In order to
prove this we need a more detailed analysis of isometries. At first we prove
that it suffices to investigate isometries ι of Fn

q with ι(0) = 0.

1.5.1Lemma If ι : Fn
q → Fn

q is an isometry, then

ι′ : Fn
q → Fn

q : ι′(v) := ι(v)− ι(0), v ∈ Fn
q ,

is again an isometry of Fn
q and ι′(0) = 0.

Conversely, if ι′ : Fn
q → Fn

q is an isometry with ι′(0) = 0, then for any w ∈ Fn
q

the mapping
ι : Fn

q → Fn
q : ι(v) := ι′(v) + w, v ∈ Fn

q ,

is an isometry with ι(0) = w. �

This result, the proof of which is left to the reader as Exercise 1.5.1, shows
that it suffices to consider only isometries ι with ι(0) = 0. For example, if
ι maps subspaces onto subspaces, then this condition always holds, since the
null space {0} is mapped onto {0}. If ι(0) = 0, then ι also preserves the weight,
since

wt(ι(v)) = d(ι(v), 0) = d(ι(v), ι(0)) = d(v, 0) = wt(v), v ∈ Fn
q .

1.5.2Lemma Each isometry ι on a finite vector space Fn
q is bijective. If it satisfies ι(0) = 0,

then it permutes the orbits

F∗
q (e

(i)) = {κe(i) | κ ∈ F∗
q}

42 1. Linear Codes

of the unit vectors with respect to the action of F∗
q by left multiplication. In formal

terms:
∃ π ∈ Sn ∀ i ∈ n : ι (F∗

q(e
(i))) = F∗

q(e
(π(i))).

Proof: 1. It is easy to see that ι is injective: ι(u) = ι(v) implies

0 = d(ι(u), ι(v)) = d(u, v),

and so u = v. Since ι is a map from the finite set Fn
q to itself, it is also one-to-one.

2. Now we note that, for each i ∈ n and λ ∈ F∗
q , there exists k ∈ n and µ ∈ F∗

q
such that

ι(λe(i)) = µe(k).

This follows from 1 = wt(λe(i)) = wt(ι(λe(i))).

3. Moreover, this index k does not depend on λ: Suppose that for λ = 1 we
have ι(e(i)) = νe(j). Then, for λ �= 1 we get

1 = d(λe(i), e(i)) = d(ι(λe(i)), ι(e(i))) = d(µe(k), νe(j)),

and this implies j = k.

4. Thus we obtain, for the index j defined by ι(e(i)) = νe(j),

ι(F∗
q(e

(i))) ⊆ F∗
q(e

(j)).

The bijectivity of ι implies that ι(F∗
q(e(i))) is in fact equal to F∗

q(e(j)), and it
assures the existence of some π ∈ Sn which satisfies

ι (F∗
q(e

(i))) = F∗
q (e

(π(i))),

for all i ∈ n. �

1.5.3 Lemma Let ι be an isometry of Fn
q with ι(0) = 0. For i �= k and λ, µ ∈ F∗

q we have,

ι(λe(i) + µe(k)) = ι(λe(i)) + ι(µe(k)).

Proof: 1. The assumption implies that

2 = wt(λe(i) + µe(k)) = wt(ι(λe(i) + µe(k))),

and so
ι(λe(i) + µe(k)) = νe(ji) + ρe(jk),

for suitable ν, ρ ∈ F∗
q and ji �= jk.

1.5 Semilinear Isometry Classes of Linear Codes 43

2. Using

1 = d(λe(i), λe(i) + µe(k)) = d(µe(k), λe(i) + µe(k))

= d(ι(λe(i)), ι(λe(i) + µe(k))) = d(ι(µe(k)), ι(λe(i) + µe(k)))

we can deduce from 1. that

1 = d(ι(λe(i)), νe(ji) + ρe(jk)) = d(ι(µe(k)), νe(ji) + ρe(jk)).

Thus, by ji �= jk, either ι(λe(i)) = νe(ji) or ι(λe(i)) = ρe(jk), and similarly either
ι(µe(k)) = ρe(jk) or ι(µe(k)) = νe(ji).

3. Since ι permutes the orbits of the unit vectors, by 1.5.2, we get from 2. that

ι(λe(i)) + ι(µe(k)) = νe(ji) + ρe(jk) = ι(λe(i) + µe(k)),

as stated. �

Generalizing this approach we prove

1.5.4Corollary Let ι be an isometry of Fn
q with ι(0) = 0, then, for v ∈ Fn

q ,

ι(v) = ι

(
∑
i∈n

vie
(i)

)
= ∑

i∈n
ι(vie

(i)).

Proof: Let k be the number of nonzero components of v. For 0 ≤ k ≤ 2 the
assertion is true by assumption, by 1.5.2 and 1.5.3. Now we consider 2 < k ≤ n
and assume that the assertion is valid for all vectors with at most k− 1 nonzero
components. We prove that it holds true for the vector v = ∑r∈k vir e

(ir) with k
nonzero components. Thus we assume that ir ∈ n for r ∈ k, ir �= is for r, s ∈ k,
r �= s, and vir �= 0 for r ∈ k. Then

d

(
k−1

∑
r=1

vir e
(ir),

k−1

∑
r=0

vir e
(ir)

)
= 1 = d

(
k−2

∑
r=0

vir e
(ir),

k−1

∑
r=0

vire
(ir)

)
whence

d

(
ι

(k−1

∑
r=1

vire
(ir)

)
, ι

(k−1

∑
r=0

vir e
(ir)

))
= 1 = d

(
ι

(k−2

∑
r=0

vir e
(ir)

)
, ι

(k−1

∑
r=0

vir e
(ir)

))
and by the induction hypothesis

d

(
k−1

∑
r=1

ι
(
vir e

(ir)
)
, ι

(k−1

∑
r=0

vir e
(ir)

))
= 1 = d

(
k−2

∑
r=0

ι
(
vir e

(ir)
)
, ι

(k−1

∑
r=0

vir e
(ir)

))
.

According to 1.5.2 there exists some π ∈ Sn and ṽir ∈ F∗
q , r ∈ k, so that

k−1

∑
r=1

ι
(
vire

(ir)
)

=
k−1

∑
r=1

ṽir e
(π(ir)) and

k−2

∑
r=0

ι
(
vir e

(ir)
)

=
k−2

∑
r=0

ṽir e
(π(ir)).

44 1. Linear Codes

Therefore, necessarily we have

ι

(k−1

∑
r=0

vir e
(ir)

)
=

k−1

∑
r=0

ṽir e
(π(ir)) =

k−1

∑
r=0

ι
(
vire

(ir)
)
. �

We are now in a position to describe the group of isometries ι which satisfy
ι(0) = 0 as a wreath product. Since

ι(vie
(i)) ∈ ι(F∗

q(e
(i))) = F∗

q(e
(π(i))),

we can obtain the scalar factor of e(π(i)) in ι(vie(i)) (if vi �= 0, otherwise we can
simply neglect this summand since ι(0) = 0) by the application of a suitable
permutation ϕ(π(i)) of the scalars that keeps 0 fixed,

ι(vie
(i)) = ϕ(π(i))(vi)e(π(i)).

Or, in formal terms and since we have to take all the indices into account, there
exists a mapping

ϕ : n → SF∗
q ,

from n to the symmetric group

SF∗
q

:=
{

ρ | ρ : Fq → Fq, ρ is bijective and ρ(0) = 0
}

on F∗
q (considered as the subgroup of the symmetric group SFq on Fq consist-

ing of the permutations ρ of Fq that keep the zero element fixed: ρ(0) = 0),
which satisfies

ι(v0, . . . , vn−1) = (ϕ(0)(vπ−1(0)), . . . , ϕ(n − 1)(vπ−1(n−1))).

This proves the following useful description of the group of isometries:

1.5.5 Theorem The group of isometries ι, with ι(0) = 0, of the finite vector space Fn
q , is

the wreath product

SF∗
q
�n Sn

of the symmetric group SF∗
q

on Fq and the symmetric group Sn on n. The action is the
following one:

SF∗
q �n Sn × Fn

q → Fn
q : ((ϕ; π), v) �→ (ϕ(0)(vπ−1(0)), . . . , ϕ(n − 1)(vπ−1(n−1))).

�

It is easy to check that all these (ϕ; π) ∈ SF∗
q
�n Sn are isometries which map 0

onto 0. Together with 1.5.1 we obtain

1.5 Semilinear Isometry Classes of Linear Codes 45

1.5.6Theorem The group of all isometries ι on the finite vector space Fn
q is the wreath

product

SFq �n Sn

of the symmetric group SFq on Fq and the symmetric group Sn on n. The action is the
following one:

SFq �n Sn × Fn
q → Fn

q : ((ϕ; π), v) �→ (ϕ(0)(vπ−1(0)), . . . , ϕ(n − 1)(vπ−1(n−1))).
�

It is easy to check that all these (ϕ; π) ∈ SFq �n Sn are isometries.
There exist isometries of Fn

q such that the image of a subspace of Fn
q is not

a subspace. For instance, if ι(0) �= 0, then the null space {0} is not mapped
onto a subspace of Fn

q . If ι(0) = 0 consider, for example, the linear (2, 1)-code
C over F5 = Z/5Z with generator matrix Γ = (1 1). It contains the five code-
words (0, 0), (1, 1), (2, 2), (3, 3), and (4, 4). The image of C under the isometry

ι = (ϕ; id) ∈ SF∗
q
�n Sn with ϕ(0) = idFq and ϕ(1) =

(
0 1 2 3 4
0 3 2 1 4

)
is

{(0, 0), (1, 3), (2, 2), (3, 1), (4, 4)}, which is not a subspace of F2
5.

Now we want to show that isometries which map subspaces onto subspaces
belong to the following class of mappings, if n ≥ 3:

1.5.7Definition (semilinear mappings) The mapping σ : Fn
q → Fn

q is called semilinear
if there exists an automorphism α of Fq such that, for all u, v ∈ Fn

q and all
κ ∈ Fq we have

σ(u + v) = σ(u) + σ(v), σ(κu) = α(κ)σ(u).

An isometry which is also a semilinear mapping is called semilinear isometry
(with respect to the Hamming metric).

1.5.8Lemma If the isometry ι : Fn
q → Fn

q , n ≥ 3, maps subspaces onto subspaces, then
for each u ∈ Fn

q we have

ι(F∗
q(u)) = F∗

q (ι(u)).

Moreover, there exists an automorphism α of Fq such that, for each κ ∈ Fq,

ι(κu) = α(κ)ι(u).

Proof: 1. Since ι maps subspaces onto subspaces, the space {0} must be
mapped onto itself, whence ι(0) = 0. Therefore, the assertion is obviously
true for u = 0.

46 1. Linear Codes

2. Assume that u �= 0. Since ι is bijective and since it maps subspaces to sub-
spaces, ι(〈u〉) is a one-dimensional subspace, and so, using ι(u) �= 0, we obtain

ι(〈u〉) = 〈ι(u)〉.

Moreover, as ι(0) = 0,
ι(F∗

q (u)) = F∗
q(ι(u)).

Hence, there is a permutation of the scalars

Φu ∈ SF∗
q
≤ SFq ,

depending possibly on the vector u, which satisfies

ι(κu) = Φu(κ)ι(u).

We have to show that Φu is independent of u and that it is a field automor-
phism.

3. For the special case e := ∑i∈n e(i) we have

ι(κe) = Φe(κ)ι(e) = Φe(κ) ∑
i∈n

ϕ(π(i))(1)e(π(i)), κ ∈ F∗
q ,

as well as
ι(κe) = ∑

i∈n
ϕ(π(i))(κ)e(π(i)), κ ∈ F∗

q ,

so that we obtain

∀ i ∈ n : Φe(κ) =
ϕ(π(i))(κ)
ϕ(π(i))(1)

, κ ∈ F∗
q .1.5.9

4. Now we prove that Φe(κµ) = Φe(κ)Φe(µ), for κ, µ ∈ Fq. The assertion
is trivial for κ = 0 or µ = 0. So it is possible to restrict attention to κ, µ ∈
F∗

q . To begin with, we consider another special case (recalling that n > 2, by
assumption): Let

w := e(0) + µe(i),

for i �= 0 and µ ∈ F∗
q . The corresponding equation

ι(κw) = Φw(κ)ι(w), κ ∈ F∗
q ,

implies that
ϕ(π(0))(κ)e(π(0)) + ϕ(π(i))(κµ)e(π(i))

= Φw(κ)
(

ϕ(π(0))(1)e(π(0)) + ϕ(π(i))(µ)e(π(i))).
Comparing the coefficients of the basis vectors on both sides we obtain two
useful identities. The coefficients of e(π(0)) give

ϕ(π(0))(κ) = Φw(κ)ϕ(π(0))(1),

1.5 Semilinear Isometry Classes of Linear Codes 47

so that we can deduce

Φw(κ) =
ϕ(π(0))(κ)
ϕ(π(0))(1)

= Φe(κ), κ ∈ F∗
q ,

and hence Φw = Φe in this particular situation. The second identity, obtained
by comparing the coefficients of e(π(i)), is

ϕ(π(i))(κµ) = Φw(κ)ϕ(π(i))(µ).

Using Φw = Φe and dividing both sides by ϕ(π(i))(1) we derive that

Φe(κµ) = Φe(κ)Φe(µ), κ, µ ∈ F∗
q ,

i.e. Φe is multiplicative.

5. We want to show that Φu = Φe, for all u �= 0. According to 1.5.4 and 1.5.9,
for u = ∑i∈n uie(i) we get

ι(u) = ∑
i∈n

ι(uie
(i)) = ∑

i∈n
ϕ(π(i))(ui)e(π(i))

= ∑
i∈n

Φe(ui)ϕ(π(i))(1)e(π(i)).

Since Φe is multiplicative, we derive for κ ∈ F∗
q that

ι(κu) = ∑
i∈n

Φe(κui)ϕ(π(i))(1)e(π(i))

= Φe(κ) ∑
i∈n

Φe(ui)ϕ(π(i))(1)e(π(i))

= Φe(κ)ι(u),

which can be compared with the identity

ι(κu) = Φu(κ)ι(u),

obtaining Φe(κ) = Φu(κ) for all κ ∈ F∗
q . Hence we have proved that in fact

Φu = Φe, as stated.

6. It remains to show that Φe is additive, i.e.

Φe(λ + µ) = Φe(λ) + Φe(µ), λ, µ ∈ Fq.

Since Φe(0) = 0, this formula is true for λ = 0 or µ = 0. By assumption n ≥ 3,
and so we can consider

u := e(0) + e(1), w := e(1) + e(2)

48 1. Linear Codes

and the subspace U := 〈{u, w}〉 generated by these two vectors. For λ, µ ∈ F∗
q ,

the vectors ι(λu), ι(µw) and ι(λu) + ι(µw) are contained in the subspace ι(U).
Hence, there exists some z ∈ U, for which ι(z) = ι(λu) + ι(µw). Then

ι(z) = Φe(λ)ϕ(π(0))(1)e(π(0)) + Φe(λ)ϕ(π(1))(1)e(π(1))

+ Φe(µ)ϕ(π(1))(1)e(π(1)) + Φe(µ)ϕ(π(2))(1)e(π(2)).

On the other hand, since

z = z0e(0) + (z0 + z2)e(1) + z2e(2),

we have

ι(z) = Φe(z0)ϕ(π(0))(1)e(π(0)) + Φe(z0 + z2)ϕ(π(1))(1)e(π(1))

+ Φe(z2)ϕ(π(2))(1)e(π(2)).

Since ϕ(π(i))(1) �= 0, we derive from these two representations of ι(z) that
Φe(z0) = Φe(λ) and Φe(z2) = Φe(µ). Since Φe is a bijection on Fq, we obtain
z0 = λ, z2 = µ and

Φe(λ) + Φe(µ) = Φe(z0 + z2) = Φe(λ + µ),

which completes the proof of the additivity.

7. Hence, α := Φe is in fact an automorphism of Fq which satisfies

ι(κu) = α(κ)ι(u), κ ∈ Fq, u ∈ Fn
q .

Finally

ι(u + v) = ι
(
∑
i∈n

(ui + vi)e(i)
)

= ∑
i∈n

ι
(
(ui + vi)e(i)

)
= ∑

i∈n
α(ui + vi)ϕ(π(i))(1)e(π(i))

= ∑
i∈n

α(ui)ϕ(π(i))(1)e(π(i)) + ∑
i∈n

α(vi)ϕ(π(i))(1)e(π(i))

= ι(u) + ι(v),

which completes the proof. �

Summarizing, an isometry of Fn
q , n ≥ 3, which maps subspaces onto sub-

spaces is semilinear and is described by three mappings

ϕ : n → SF∗
q , α ∈ Aut(Fq), π ∈ Sn.

1.5 Semilinear Isometry Classes of Linear Codes 49

It acts on a vector v ∈ Fn
q by

ι(v0, . . . , vn−1) = (α(vπ−1(0))ϕ(0)(1), . . . , α(vπ−1(n−1))ϕ(n − 1)(1)).

The permutations ϕ(i) are contained in SF∗
q
, and so each factor ϕ(i)(1) is con-

tained in F∗
q . Since we only need to know the values ϕ(i)(1), i ∈ n, we can

replace the mapping ϕ by

ψ : n → F∗
q : ψ(i) := ϕ(i)(1), i ∈ n.

Therefore, we can write ι as the triple (ψ; (α, π)), where (ψ; π) is a linear isom-
etry. In other words (ψ; π) belongs to the wreath product F∗

q �n Sn. This allows
the slightly simpler expression for ι(v) given by

(ψ; (α, π))(v0, . . . , vn−1) = (α(vπ−1(0))ψ(0), . . . , α(vπ−1(n−1))ψ(n − 1)).

We collect these results in the following

1.5.10Theorem For n ≥ 3, the isometries of Fn
q which map subspaces onto subspaces

are exactly the semilinear mappings of the form (ψ; (α, π)), where (ψ; π) is a linear
isometry and α is a field automorphism. These mappings form a group, the group of
semilinear isometries. �

In Section 6.7, we will describe this group as a generalized wreath product.

1.5.11Definition (semilinearly isometric codes) Two (n, k)-codes C and C′ over Fq

are called semilinearly isometric if and only if there exists an automorphism α in
Aut(Fq) and a linear isometry (ψ; π) in F∗

q �n Sn, such that the mapping

(c0, . . . , cn−1) �→
(
ψ(0)α(cπ−1(0)), . . . , ψ(n − 1)α(cπ−1(n−1))

)
maps C onto C′. The orbits of the group of semilinear isometries on the set of
subspaces of H(n, q) are the semilinear isometry classes of linear codes of length
n over Fq.

In addition, we mention the following facts (the first one is obvious, the
second one will become clear in the chapter on finite fields):

1. The group of linear isometries of H(n, 2) is isomorphic to the symmetric
group Sn, since F∗

2 = {1}.

2. The group of semilinear isometries of H(n, q) is the same as the group of
linear isometries if and only if q is a prime p. The reason is that the field Fq

has only the trivial automorphism if and only if q = p.

Hence, if the linear and semilinear isometry groups differ, we expect to see
different numbers of orbits. This is indeed the case. The smallest examples

50 1. Linear Codes

are for q = 4, n = 8 and k ≥ 3 (see Tables 6.9 and 6.31 in Chapter 6). What
happens is that two linear isometry classes form a single semilinear isometry
class. For example, we consider two codes over a field consisting of four ele-
ments. We take the field F4 = {0, 1, α, α + 1} subject to the relation α2 = α + 1
(see Chapter 3 for more details on finite fields). The code C1 generated by

Γ1 =

⎛⎜⎜⎜⎝
1 1 1 1 1 0 0 0
α 1 1 0 0 1 0 0
α 1 0 1 0 0 1 0

α + 1 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠
is semilinearly equivalent to C2 generated by

Γ2 =

⎛⎜⎜⎜⎝
1 1 1 1 1 0 0 0
α 1 1 0 0 1 0 0
α 1 0 1 0 0 1 0
α 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

To see that the codes are semilinearly equivalent, add the first row of Γ1 to the
second and third row. This gives⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
α + 1 0 0 1 1 1 0 0
α + 1 0 1 0 1 0 1 0
α + 1 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

Now swap pairwise the second and the fifth and the third and the fourth col-
umn to get ⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
α + 1 1 1 0 0 1 0 0
α + 1 1 0 1 0 0 1 0
α + 1 0 1 1 0 0 0 1

⎞⎟⎟⎟⎠ .

Application of the field automorphism x �→ x2 takes the resulting matrix to
Γ2. It can be proved that the codes C1 and C2 are linearly inequivalent. This
shows that two linear isometry classes may be combined under the semilinear
group. Indeed, the number of linear isometry classes of codes which may join
is bounded from above by the number of field automorphisms, which is of
course two in this case.

For n = 1 or n = 2 the groups of isometries that map subspaces onto
subspaces are described in

1.5.12 Theorem For n = 1, the isometries of Fq which map subspaces onto subspaces are
exactly the isometries of Fq which map 0 onto 0. According to 1.5.5 these are the
elements of SF∗

q .

1.6 The Weight Enumerator 51

For n = 2, the isometries of F2
q which map subspaces onto subspaces are exactly

the mappings of the form (ψ; (α, π)), where (ψ; π) is a linear isometry and α is a
group automorphism of the multiplicative group F∗

q . �

One can check that there exist group automorphisms of F∗
q which cannot

be extended to field automorphisms of Fq.
In conclusion, in large parts of the present book we will be concerned with

orbits of the linear or semilinear isometry group on the set of subspaces of
Fn

q = H(n, q).

Exercises

E.1.5.1Exercise Prove 1.5.1.

E.1.5.2Exercise Complete the proofs of 1.5.5 and 1.5.6 by showing that all elements
of the corresponding wreath products are isometries.

E.1.5.3Exercise In order to complete the proof of 1.5.10, show that any semilinear
mapping of the given form is an isometry which maps subspaces onto sub-
spaces. Moreover, prove 1.5.12.

1.61.6 The Weight Enumerator

An important issue is to find out when two k × n generator matrices over Fq

define isometric codes. In general, this is not an easy task since normal forms
of generator matrices are expensive to find (cf. Chapter 9). But there are invari-
ants of linear codes which may help to distinguish between different codes.
An invariant is simply a quantity (or a property) which we can associate to a
code, and which is equal for codes of the same equivalence class (i.e. a “finger-
print”). One of these invariants will be introduced next, it is the weight distri-
bution of a code. Essentially, this distribution records how many words of a
code have a given Hamming weight. It is usually recorded as the coefficients
of a polynomial, the weight enumerator. The permutational, linear or semi-
linear isometries of 1.4 and 1.5 preserve Hamming distances and Hamming
weights. Codes with different weight enumerators are definitely not permu-
tationally, linearly or semilinearly isometric. In Chapter 8, we will introduce
a method for the evaluation of generator matrices that automatically provides
the weight distribution as well.

We display the weight distribution of a linear code C of length n in terms
of a generating polynomial. For this purpose we use commuting indeterminates

52 1. Linear Codes

x and y over C, and we indicate by Ai = Ai(C) the number of codewords of
weight i in C. For example, if dist(C) = d > 1, then A0 = 1, A1 = . . . =
Ad−1 = 0 and Ad �= 0.

1.6.1 Definition (weight enumerator) The homogeneous weight enumerator of a lin-
ear code C of length n is defined as

WC(x, y) := ∑
c∈C

xwt(c)yn−wt(c) =
n

∑
i=0

Aix
iyn−i ∈ C [x, y].

Notice that this is a homogeneous polynomial of degree n. Setting y = 1 yields
the inhomogeneous weight enumerator

wC(x) := ∑
c∈C

xwt(c) =
n

∑
i=0

Aix
i ∈ C [x].

For example, the 4-fold binary repetition code

C = {04, 14}

has weight enumerator

WC(x, y) = x4 + y4 and wC(x) = x4 + 1.

The following result is often useful. It follows from Exercise 1.2.14.

1.6.2 Lemma For any two vectors u, v ∈ Fn
2 we have the equivalence

wt(u + v) ≡ wt(v) mod 2 ⇐⇒ wt(u) ≡ 0 mod 2. �

This means that adding a vector u ∈ Fn
2 to a vector v ∈ Fn

2 keeps the con-
gruence class modulo two of wt(v) fix if and only if the weight of u is even.
Hence, adding a vector of odd weight in a binary code C to vectors of even
weight gives vectors of odd weight and vice versa. Since the set of vectors of
a linear code is closed under addition, this leaves only two possible cases. Ei-
ther there is no vector of odd weight in a binary code C, or the set of vectors of
C falls into two categories of equal size, one consisting of the vectors of even
weight and the other containing all vectors whose weight is odd.

1.6.3 Corollary For binary codes C the following holds true:

The codewords of even weight form the subspace

Ce := {c ∈ C | wt(c) is even}.

1.6 The Weight Enumerator 53

If there exists a codeword c of odd weight, then the complement C \ Ce of Ce is
equal to c + Ce.

Hence either there is no element of odd weight or exactly half of the codewords in
C have odd weight. We can express this fact as follows: If

R :=

n−1/2�

∑
i=0

A2i+1 and S :=

n/2�
∑
i=0

A2i,

then either R = 0 or R = S. �

In 1.6.9 we will derive an identity which is due to MacWilliams. It shows
that the weight enumerator of a code and that of its dual code mutually deter-
mine each other. In order to prepare for a proof of this identity, we introduce
the notion of a linear representation of a group. This notion generalizes the
concept of a permutation representation or action of a group which has already
been used on several occasions.

According to 1.4.5, a finite action GX is essentially the same as a permutation
representation of G on X. This is a homomorphism

δ : G → SX : g �→ δ(g),

from G into SX, where g ∈ G is mapped onto δ(g) = g, the permutation
x �→ gx of X, an element of the symmetric group SX. A linear representation D
of G over a field F is defined to be a homomorphism

D : G → GL(V) : g �→ D(g),

from G into the group GL(V) of invertible linear mappings on a finite dimen-
sional vector space V over F. The vector space V is called the representation
space and its dimension f D is called the dimension of D. F is said to be the
groundfield of D.

Two representations D : G → GL(V) and D′ : G → GL(V ′) of G over F are
considered equivalent if there exists an invertible linear mapping T : V → V ′

such that
∀ g ∈ G : TD(g) = D′(g)T.

Every choice of a basis {b(0), . . . , b(f D−1)} of V yields invertible matrices
D(g) which describe D(g) with respect to the given basis. Therefore, a matrix
representation D of G over F is a homomorphism

D : G → GL f D(F) : g �→ D(g)

from G to the general linear group GL f D(F), the group consisting of all invert-
ible matrices over F with f D rows and columns. Conversely, it is clear that

54 1. Linear Codes

each matrix representation D : G → GL f D(F) yields a representation D : G →
GL(V) where V is an f D-dimensional vector space over F. Equivalence of ma-
trix representations is defined correspondingly. Hence we are free to consider
either representations or matrix representations. Which concept we choose
will depend on the situation in question. In the present section we are mainly
concerned with matrix representations and their characters.

Let D be a representation of G. Consider the map

χD : G → F : g �→ ∑
i∈ f D

dii(g) = trace(D(g)),

which takes g ∈ G to χD(g), the trace of D(g) = (dij(g)). From Linear Algebra
it is clear that the trace of a matrix D(g) corresponding to the linear mapping
D(g) is independent of the choice of a basis. The map χD is called the character
of D. Representations and characters over the field C of complex numbers
are called ordinary. In the case when the groundfield is finite, they are called
modular.

1.6.4 Examples

Every finite action GX yields a representation on the space FX, the vector
space over F which has a basis whose elements are indexed by the elements
of X. Thus we already have a wealth of examples at hand.

The trivial representation of G arising from the trivial action G{x} of G on a
set of cardinality one, where gx := x, is called the identity representation or
the trivial representation and it is indicated as

I : G → GL(F) : g �→ idF ,

where F is the 1-dimensional vector space over F. Its character χI has the
value χI(g) = 1F , for each g ∈ G.

In general, any finite action GX gives rise to a linear representation of G
on FX . This representation associates to g the permutation g of the basis
elements X (recall 1.4.5). Its character is

χ(g) = a1(g) := |{x ∈ X | gx = x}|, g ∈ G,

which counts the number of fixed points of g. More precisely, χ(g) =
a1(g) · 1F . In the ordinary case, i.e. if F = C, this character is the character
of the action of the group.

A one-dimensional character of G is the character of a one-dimensional linear
representation, whence a homomorphism from G into the multiplicative
group F∗ of the groundfield. Therefore, for each such character χ we have

χ(g · h) = χ(g)χ(h) and χ(1G) = 1F ,

1.6 The Weight Enumerator 55

provided that G is written multiplicatively. If G is written additively, we
have correspondingly

χ(g + h) = χ(g)χ(h) and χ(0G) = 1F .

For our purposes, the one-dimensional characters are of particular interest.
A simple example is a one-dimensional character of the additive group of
the field Fq. Consider the group

G := Zp := {z | z ∈ p}

of residue classes z of integers z ∈ Z modulo the prime number p. For more
details on residue classes see Exercise 3.1.3. Addition in the group is done
modulo the prime p. If

ξ := e
2πi
p ∈ C

denotes a primitive p-th root of unity, and if j ∈ p, the mapping

χ(j) : Zp → C∗ : z �→ ξ j·z

is a one-dimensional character of G. It is not difficult to see that these char-
acters are in fact all one-dimensional characters over C of this group, but
we do not need this fact. We just remark that the character χ(j) is nontrivial
for j �= 0.

We can easily generalize this to a direct product

G := Zp × · · · ×Zp

of m ≥ 2 factors of such groups. If (z0, . . . , zm−1) ∈ G, and ji ∈ p, then

χ(j0,...,jm−1) : (z0, . . . , zm−1) �→ ξ∑i jizi

is a one-dimensional character of G = Zp × · · · × Zp. Moreover, this char-
acter is nontrivial if and only if ji �= 0 for at least one i.

Later on in 3.1.6 we will see that for q = pm with p prime, the additive
group of Fq is isomorphic to G := Zp × · · · × Zp (with m factors Zp).
Hence, we have established the existence of nontrivial one-dimensional
characters of the additive group of any finite field. This fact is all we need
in the present section. �

In particular we use the following result on the sum of character values:

1.6.5Lemma Let χ be a nontrivial character of a finite group G over a field F. Then

∑
g∈G

χ(g) = 0.

56 1. Linear Codes

Proof: Since χ is nontrivial, there exists an element h ∈ G such that χ(h) �= 1.
From

χ(h) ∑
g∈G

χ(g) = ∑
g∈G

χ(h · g) = ∑
g∈G

χ(g),

we obtain that (
χ(h) − 1

)
∑
g∈G

χ(g) = 0,

and this implies the statement since χ(h) �= 1. �

Suppose that χ : Fq → C∗ is a nontrivial one-dimensional ordinary charac-
ter of Fq, whose existence was established in 1.6.4. Fix an element 0 �= v ∈ Fn

q .
Using the standard bilinear form on Fn

q , we introduce a character of the addi-
tive group G := Fn

q as follows:

χ(v) : Fn
q → C∗ : w �→ χ(〈v, w〉).1.6.6

It is not difficult to see that this is a nontrivial one-dimensional character of Fn
q .

Let us return to the weight enumerator WC and consider the weight function
in its homogeneous form,

f : Fn
q → C[x, y] : v �→ xwt(v)yn−wt(v).

Together with the weight function we examine a second function, a Discrete
Fourier Transform of f (see also Exercise 1.6.9). It is defined by

f̂ := ∑
v∈Fn

q

f (v) · χ(v),

where χ(v) is the character defined by 1.6.6. To begin with, we prove

1.6.7 Lemma For w ∈ Fn
q we have

f̂ (w) = (y − x)wt(w)(y + (q− 1)x
)n−wt(w).

Proof: Let χ denote a nontrivial one-dimensional ordinary character of the
additive group G := Fq. For α ∈ Fq we define

|α| :=
{

1 if α �= 0,
0 otherwise.

For each w ∈ Fn
q we compute

f̂ (w) = ∑
v∈Fn

q

χ(〈v, w〉) f (v)

= ∑
v∈Fn

q

χ(〈v, w〉)xwt(v)yn−wt(v)

1.6 The Weight Enumerator 57

= ∑
v0∈Fq

. . . ∑
vn−1∈Fq

χ

(
∑
i∈n

viwi

)
x|v0|+...+|vn−1|y(1−|v0|)+...+(1−|vn−1|)

= ∑
v0∈Fq

. . . ∑
vn−1∈Fq

∏
i∈n

χ(viwi)x|vi|y1−|vi|

= ∏
i∈n

∑
g∈G

χ(gwi)x|g|y1−|g|.

For the fourth equation we used that χ is a homomorphism.

If wi = 0 then χ(gwi) = χ(0) = 1, and so

∑
g∈G

χ(gwi)x|g|y1−|g| = y + (q − 1)x.

On the other hand, if wi �= 0, we obtain

∑
g∈G

χ(gwi)x|g|y1−|g| = y + ∑
g∈G\{0}

χ(gwi)x

= y + ∑
g∈G\{0}

χ(g)x

which, by 1.6.5, equals y − χ(0)x = y − x. �

1.6.8Lemma If C is an (n, k)-code over Fq, then

∑
c∈C

f̂ (c) = qk ∑
v∈C⊥

f (v).

Proof: We know that

∑
c∈C

f̂ (c) = ∑
c∈C

∑
v∈Fn

q

χ(v)(c) f (v)

= ∑
v∈Fn

q

∑
c∈C

χ(〈v, c〉) f (v)

= ∑
v∈C⊥

∑
c∈C

χ(〈v, c〉) f (v) + ∑
v∈Fn

q\C⊥
∑
c∈C

χ(〈v, c〉) f (v).

In the first sum we have χ(〈v, c〉) = χ(0) = 1 for all v ∈ C⊥ and all c ∈ C.
In order to simplify the second sum we recall that the map c �→ 〈v, c〉 is a
linear form C → Fq. Since v belongs to Fn

q \ C⊥, this linear form is surjective,
whence its kernel has dimension k − 1. Therefore, for each g ∈ Fq, there are
qk−1 vectors c ∈ C such that 〈v, c〉 = g. For this reason we can continue as
follows:

∑
c∈C

f̂ (c) = qk ∑
v∈C⊥

f (v) + qk−1 ∑
v∈Fn

q\C⊥
f (v) ∑

g∈G
χ(g) = qk ∑

v∈C⊥
f (v),

by 1.6.5. �

58 1. Linear Codes

We are now in a position to prove the announced identity of MacWilli-
ams [137] for the weight distribution of the dual code:

1.6.9 The MacWilliams-identity The weight enumerator of an (n, k)-code C over Fq is
related to the weight enumerator of its dual code in the following way:

WC⊥ (x, y) = q−kWC(y− x, y + (q− 1)x).

Proof:

WC⊥(x, y) = ∑
c∈C⊥

f (c) 1.6.8= q−k ∑
c∈C

f̂ (c) 1.6.7= q−kWC(y− x, y + (q − 1)x). �

1.6.10 Example Recall from 1.6.1 that the 4-fold binary repetition code C = {04, 14}
has weight enumerator WC(x, y) = x4 + y4. By the MacWilliams-identity, the
weight enumerator of its dual code is

WC⊥ (x, y) =
1
2
(
(y − x)4 + (y + x)4) = y4 + 6x2y2 + x4. �

It is sometimes useful to apply the MacWilliams-identity with exchanged roles
of C and C⊥.

1.6.11 Example Consider the (7, 4)-Hamming-code of 1.3.6. The dual code C⊥, gen-
erated by ∆, has 8 codewords. The 7 nonzero words are all of weight 4. Hence
C⊥ has weight enumerator

WC⊥ (x, y) = y7 + 7x4y3.

By the MacWilliams-identity 1.6.9, the weight enumerator of the (7, 4) Ham-
ming-code C⊥⊥ = C is determined as

WC(x, y) =
1
23 WC⊥ (y − x, y + x)

=
1
8
(
(y + x)7 + 7(y − x)4(y + x)3)

= y7 + 7x3y4 + 7x4y3 + y7.

This shows that C has 7 words of weight 3 and 4 each. Together with the zero
and the all-one-vector, this amounts to all 16 words in the code. �

Particular cases of interest are the self-dual codes which we have introduced
in 1.3.3. These are the linear codes C satisfying C = C⊥. For these codes we
have k = n − k, n is therefore even and k = n/2. Since the weight enumerator
is a homogeneous polynomial of degree n, this implies the following:

1.6 The Weight Enumerator 59

1.6.12Corollary If C is self-dual, then

WC(x, y) = WC(−x,−y) = WC

(
y − x√

q
,
y + (q− 1)x√

q

)
. �

This corollary shows that the weight enumerator of a self-dual code is a
fixed point, i.e. an invariant of a group acting on a polynomial ring, in the
following sense:

1.6.13Definition (fixed point, invariant) Let GX be an action of a group G on a set
X. An element x ∈ X is called a fixed point of an element g ∈ G if gx = x. The
set of all fixed points of g is denoted by

Xg := {x ∈ X | gx = x} ,

and we let
XG :=

{
x ∈ X

∣∣ ∀ g ∈ G : gx = x
}

=
⋂

g∈G

Xg

be the set of common fixed points of all elements g ∈ G. The elements in XG

are also called the invariants of G on X.
We note that the linear group GLn(C) of invertible matrices of rank n over

the complex field acts on the polynomial ring C [x0, . . . , xn−1] in the following
way:

GLn(C)×C [x0, . . . , xn−1] → C [x0, . . . , xn−1],

(B, f (x0, . . . , xn−1)) �→ (B f)(x0, . . . , xn−1) := f ((x0, . . . , xn−1) · B�).

For example, if B := −I2 :=

(
−1 0
0 −1

)
then

(
(−I2)WC

)
(x, y) = WC

(
(x, y) ·

(
−1 0
0 −1

))
= WC(−x,−y),

which shows that the weight enumerator WC of a self-dual code is a fixed point
of −I2 ∈ GL2(C). We may also express this by saying that WC is an invariant
of the group G := {I2,−I2} of order two.

Any subgroup G ≤ GLn(C) induces a subaction, and the set of common
fixed points

C [x0, . . . , xn−1]G =
{

f ∈ C [x0, . . . , xn−1]
∣∣ ∀ B ∈ G : B f = f

}
is the set of invariants of G on C [x0, . . . , xn−1]. The standard example is

C [x0, . . . , xn−1]Sn ,

60 1. Linear Codes

the set of invariants of the symmetric group Sn. A polynomial in this set is
invariant under all possible permutations of its variables. Hence the invariants
of the symmetric group consist of the symmetric polynomials.

An important series of symmetric polynomials is the series of elementary
symmetric polynomials

σm := ∑
0≤i1<...<im≤n−1

xi1 · · · xim , 1 ≤ m ≤ n, σ0 := 1.

They generate the ring of symmetric polynomials, i.e. any symmetric poly-
nomial can be written in a unique way as a polynomial in the elementary
symmetric polynomials. Moreover, the coefficients of polynomials can be ex-
pressed in terms of their roots, using elementary symmetric polynomials. For
example

∏
i∈n

(x − κi) = σ0 · xn + . . . + (−1)nσn(κ0, . . . , κn−1).

For the other coefficients see Exercise 1.6.13.
From 1.6.12 we derive that the weight enumerator WC of a self-dual linear

code C is an invariant of the group

G := 〈−I2, B〉 where B =
1√
q

(
−1 1

q − 1 1

)
.

It is easy to check that this group has four elements. It is isomorphic to the
Klein four-group V4, and so we have obtained:

1.6.14 Corollary The weight enumerator of a self-dual linear code is an invariant of the Klein
four-group:

WC(x, y) ∈ C [x, y]V4
. �

Binary self-dual codes have an additional property:

1.6.15 Definition (divisible codes) A linear code C is called r-divisible if each code-
word has a weight which is divisible by r.

A 2-divisible code is called even, a 4-divisible code is called doubly even. A
code which is 2-divisible but not 4-divisible is called singly even. Notice that
a binary self-dual code is even, since each word is orthogonal to itself, which
means that its Hamming weight is even.

1.6.16 Lemma If C is self-dual and r-divisible, then its weight distribution WC is an in-
variant of the group

G := 〈−I2, B, D〉 , where B =
1√
q

(
−1 1

q − 1 1

)
, D =

(
ε 0
0 1

)

1.6 The Weight Enumerator 61

and where ε ∈ C denotes a primitive r-th root of unity. Formally,

WC ∈ C [x, y]G .

Proof:

DWC(x, y) =
n

∑
i=0

Aix
iεiyn−i =

n

∑
i=0

Aix
iyn−i = WC(x, y),

since εi = 1 for i divisible by r, and Ai = 0 in the other cases. �

Finally, we show the following result for ternary codes, which is the con-
verse of the assertion made in Exercise 1.3.20. We will use the notion of the
support of a vector, which is just the set of coordinates where the vector is
nonzero. We denote it as

supp(v) = {i ∈ n | vi �= 0} , v ∈ Fn.

In particular, |supp(u)| = wt(u).

1.6.17Lemma Let C be a ternary linear code. Then C is 3-divisible if and only if C is
self-orthogonal.

Proof: If C is self-orthogonal, then, according to Exercise 1.3.20, it is 3-divisible.
Conversely, assume that C is 3-divisible. Consider two codewords u and v in
C. Let X = supp(u) and Y = supp(v). Furthermore, we introduce the sets
E = {i | ui = vi �= 0} (E for “equal”) and N = {i | 0 �= ui �= vi �= 0} (N for
“non-equal”) and Z = {i | ui = vi = 0} (Z for “zero”). Then E and N partition
X ∩Y, and the sets

X \Y, Y \ X, E, N, and Z

partition the set of all coordinates. Furthermore, using the notion of the sym-
metric difference of two sets, which is defined as

X∆Y = (X \Y) ∪ (Y \ X),

we have for any i

ui + vi

⎧⎪⎪⎨⎪⎪⎩
�= 0 if i ∈ X∆Y,
�= 0 if i ∈ E,
= 0 if i ∈ N,
= 0 if i ∈ Z,

and ui − vi

⎧⎪⎪⎨⎪⎪⎩
�= 0 if i ∈ X∆Y,
= 0 if i ∈ E,
�= 0 if i ∈ N,
= 0 if i ∈ Z.

Therefore, wt(u + v) = |X∆Y| + |E| ≡ 0 mod 3 and wt(u − v) = |X∆Y| +
|N| ≡ 0 mod 3, so that |E| ≡ |N| mod 3. We conclude that

〈u, v〉 = ∑
i

uivi = ∑
i∈E

uivi + ∑
i∈N

uivi = |E| − |N| ≡ 0 mod 3.

This shows that C ⊆ C⊥. �

62 1. Linear Codes

Exercises

E.1.6.1 Exercise Let C be a linear code over Fq. Show that each c ∈ C satisfies∣∣{c′ ∈ C
∣∣ d(c, c′) = i

}∣∣ =
∣∣{c′ ∈ C

∣∣ wt(c′) = i
}∣∣ = Ai

for 0 ≤ i ≤ n.

E.1.6.2 Exercise By Exercise 1.3.16, a binary self-orthogonal code is even. What about
the converse?

E.1.6.3 Exercise Let C be a binary linear code of length n containing the all-one vector.
Show that Ai = An−i for 0 ≤ i ≤ n.

E.1.6.4 Exercise Consider vectors u, v, w ∈ Fn
2 satisfying d(u, v) ≡ d(v, w) mod 2.

Then d(u, w) ≡ 0 mod 2. Show that this is in fact equivalent to 1.6.2.

E.1.6.5 Exercise Prove the following properties of one-dimensional characters of a
finite and multiplicative group G:

χ(g) is a |G|-th root of unity, i.e. χ(g)|G| = 1F .

χ(g−1) = χ(g)−1. In particular, if F is the field C of complex numbers then
χ(g−1) = χ(g), where χ(g) denotes the complex conjugate of χ(g).
Show that the one-dimensional ordinary characters of G form a group Ĝ
with respect to pointwise multiplication.

E.1.6.6 Exercise Let (G, +) be a group. For n ∈ Z and g ∈ G the n-fold sum of g is
defined by

n · g :=

⎧⎨⎩
0 if n = 0,
(n − 1) · g + g if n > 0,
(−n) · (−g) if n < 0,

where (−g) is the additive inverse of g. Prove the following:

(n + m) · g = n · g + m · g and (nm) · g = n · (m · g) for all n, m ∈ Z and
g ∈ G.

For an abelian group (G, +), n · (g1 + g2) = n · g1 + n · g2 for all n ∈ Z, and
g1, g2 ∈ G.

If G is a ring then n · (g1g2) = (n · g1)g2 is satisfied for all n ∈ Z and
g1, g2 ∈ G.

1.6 The Weight Enumerator 63

If (G, ·) is a multiplicative group, then, correspondingly, for n ∈ Z we use
powers in order to indicate the n-fold product of g ∈ G defined by

gn :=

⎧⎨⎩
1 if n = 0,
gn−1 · g if n > 0,
(g̃)−n if n < 0,

where g̃ is the multiplicative inverse of g. Analogously to the n-fold sum,
formulate the corresponding assertions for the n-fold product.

E.1.6.7Exercise Recall (see e.g. [101]), that each finite abelian group G is isomorphic
to a direct product of suitable cyclic groups:

G � Zn0 × . . . ×Znr−1 ,

where ∏i∈r ni = |G|. This decomposition is unique provided that ni | ni+1 for
0 ≤ i < r − 1. In this case the number nr−1 is the exponent exp(G) of G. It is
the smallest positive integer m such that the m-fold sum satisfies

m · g = 0 ∀ g ∈ G.

Hence, any element g ∈ G can be written as a tuple (g0, . . . , gr−1) with gi ∈
Zni . Consider a primitive nr-th root of unity ξ ∈ C and prove that the mapping

φ : G → Ĝ : g �→
(

h �→ ∏
i∈r

ξ
nr−1

ni
gihi

)
into the group of one-dimensional characters (cf. Exercise 1.6.5) is a group iso-
morphism, where g = (g0, . . . , gr−1) and h = (h0, . . . , hr−1). If we indicate the
character φ(g) by χg, then

χg(h) = ∏
i∈r

ξ
nr−1

ni
gihi for each h ∈ G.

E.1.6.8Exercise Verify the following orthogonality relation for the characters of a finite
abelian group G over C: For each g, g′ ∈ G we have

1
|G| ∑

h∈G
χ−g(h)χg′(h) =

{
1 if g = g′,
0 otherwise.

E.1.6.9Exercise Let G be a finite abelian group. We associate to each f : G → C its
Discrete Fourier Transform

f̂ (h) := ∑
g∈G

f (g)χg(h), h ∈ G.

64 1. Linear Codes

Show that
f (h) =

1
|G| ∑

g∈G
f̂ (g)χ−g(h), h ∈ G.

Therefore, the set Ĝ of one-dimensional characters of G forms a generating
system of the vector space CG, whence (compare the dimension) even a basis.

E.1.6.10 Exercise Prove the Lemma of Cauchy–Frobenius for Representations: Let D de-
note a representation of a finite group G on a vector space over a field F of
characteristic prime to |G|. Then the space

VG =
{
v ∈ V

∣∣ ∀ g ∈ G : D(g)v = v
}

of invariants of the group D(G) is of dimension

dim (VG) =
1
|G| ∑

g∈G
χD(g).

Hint: The linear mapping

ϕ :=
1
|G| ∑

g∈G
D(g)

is a projection, i.e. ϕ2 = ϕ.

E.1.6.11 Exercise Use the MacWilliams-identity in order to express A⊥
i := Ai(C⊥) in

terms of the Ai = Ai(C). Rephrase your result in terms of the Krawtchouk
polynomial

Kn,q
i (x) =

i

∑
j=0

(−1)j(q − 1)i−j
(

x
j

)(
n − x
i − j

)
,

where(
x
j

)
:=

x · · · (x − j + 1)
j!

,
(

n − x
i − j

)
:=

(n − x) · · · (n − x − (i − j) + 1)
(i − j)!

.

E.1.6.12 Exercise Show that the parity extension of the (7, 4) binary Hamming-code
(cf. Example 1.3.6) is self-orthogonal and hence self-dual, with minimum dis-
tance 4. Write down the MacWilliams-identity for its weight enumerator.

E.1.6.13 Exercise Express the coefficients of ∏i∈n(x − κi) in terms of elementary sym-
metric polynomials and the roots κi.

1.7 Systematic Encoding, Information Sets 65

1.71.7 Systematic Encoding, Information Sets

It may happen that a set of k coordinates of the codewords of a fixed code al-
ways determines the remaining coordinate values. This means that if we are
given the values of a codeword on those k coordinates, then the remaining
n − k coordinates are determined uniquely. We say that such a set of k coor-
dinates forms an information set. The elements of an information set, i.e. the
coordinates which are part of it, are called information places. If a k-set of coor-
dinates is an information set, then we say that the remaining n− k coordinates
form a redundancy set. Its elements are of course called redundancy places. They
are also called check bits, since they may be used for error detection and error
correction.

Any code has at least one information set. It corresponds to a maximal
set of columns of a generator matrix which are linearly independent. Recall
that a generator matrix Γ is a k × n-matrix of rank k. Such a matrix always
has a set of k columns which are linearly independent. Gaussian elimination
for example will reveal such a set of columns. The columns holding the pivot
elements have the property that they are linearly independent. If necessary, we
permute these columns up-front, for example by means of a linear isometry.
This means that we may have to change to a code C′ which is isometric to the
original code C, which is of course no real restriction. This code C′ then has
the following nice property:

1.7.1Corollary Each (n, k)-code C with generator matrix Γ is linearly isometric to a code
C′ with generator matrix of the form

Γ′ = (Ik | A),

where Ik denotes the k × k-unit matrix. �

We say that a generator matrix of the form (Ik | A) is systematic. The corre-
sponding encoding map v �→ v · Γ′ is called systematic. We have seen that up
to linear (or semilinear) isometry, any code can be generated systematically.

When using systematic encoding v �→ v · Γ′ = w, the first k coordinate
places of w simply repeat the k components of the message v. The remaining
n− k coordinates of w can then be used for error correction (note however, that
errors may also have occurred in the first k coordinates, so decoding by simply
reading out the first k coordinate values does not work). Here is an example
of a generator matrix Γ and a linear isometry which determines a systematic
generator matrix Γ′ of a ternary code. The code generated by

Γ =

(
1 2 1 2
2 1 1 0

)

66 1. Linear Codes

is linearly isometric to the code generated by

Γ′ :=

(
0 2
1 1

)
· Γ ·

⎛⎜⎜⎜⎝
0 0 2 0
2 0 0 0
0 0 0 2
0 2 0 0

⎞⎟⎟⎟⎠ =

(
1 0 2 1
0 1 0 1

)
.

Both are (4, 2)-codes over F3.
Now we examine the effect of the linear isometries on H(n, q) = Fn

q that
correspond to multiplication of columns by nonzero elements of the field. We
want to show that such isometries map a systematic code onto a systematic
one.

Isometries obtained by multiplications are described by regular n× n diag-
onal matrices D, and these matrices form a normal subgroup Dn(q) of Mn(q)
(see Exercise 1.7.4). An (n, k)-code C with generator matrix (Ik | A), where A
is the k × (n − k)-matrix

A =

⎛⎜⎝ a0,k . . . a0,n−1
...

...
ak−1,k . . . ak−1,n−1

⎞⎟⎠ ,

is mapped under that kind of isometries onto an isometric code C′ with gener-
ator matrix

(Ik | A) · D.

Any matrix which can be obtained from the above generator matrix via left
multiplication by a regular k × k-matrix is a generator matrix of C′ as well.
Suppose we choose for the left multiplication the upper left part of the multi-
plicative inverse of D = (dij) ∈ Dn(q), i.e. the matrix

D′ :=

⎛⎜⎜⎝
d−1

0,0 0
. . .

0 d−1
k−1,k−1

⎞⎟⎟⎠ ,

then we obtain the systematic generator matrix

D′ · (Ik | A) · D = (Ik | D ∗ A)

of C′, where

D ∗ A :=
(
d−1

ii aijdjj

)
0≤i<k,k≤j<n

.1.7.2

This proves the following

1.7 Systematic Encoding, Information Sets 67

1.7.3Lemma For each D ∈ Dn(q), the systematic matrices (Ik | A) and (Ik | D ∗ A)
generate linearly isometric codes. �

Another characterization of information sets is the following. Let J be a set
of column indices, i.e. J ⊆ {0, . . . , n − 1} = n. Denote the complement of J as

J := n \ J.

Then
F(J)

q :=
{
(w0, . . . , wn−1) ∈ Fn

q

∣∣∣ wj = 0 for all j ∈ J
}

1.7.4

is a subspace of Fn
q of dimension |J|. In particular,

F(J)
q ⊕ F(J)

q = Fn
q . 1.7.5

1.7.6Theorem An (n, k)-code C possesses a k-subset J ⊆ n as an information set if and

only if C ⊕ F(J)
q = Fn

q holds true. �

The proof of this theorem is Exercise 1.7.7. Since each element of F(J)
q is of

Hamming weight at most |J|, we obtain the following

1.7.7Theorem Consider d ∈ N∗. For each linear code C of length n over Fq, the following
conditions are equivalent:

C has minimum weight at least d.

For each J ⊆ n, where |J| < d, we have

C ∩ F(J)
q = {0} . �

Now we want to describe the close connection between systematic genera-
tor matrices and systematically encoded linear codes.

1.7.8Theorem Assume that 1 ≤ k ≤ n − 1. The mapping

A �→
{

v · (Ik | A)
∣∣∣ v ∈ Fk

q

}
is a bijection between the set of k × (n − k)-matrices A over Fq and the set of system-
atically encoded (n, k)-codes over Fq.

Proof: The given mapping is obviously surjective. In order to prove injectivity,
we consider two k × (n − k)-matrices A and B over Fq which differ in their
i-th row for some i. If e(i) denotes the i-th unit vector, then the codewords
e(i) · (Ik | A) and e(i) · (Ik | B) are distinct. However, the two codewords agree
in all of the first k coordinates, whose values by Theorem 1.7.6 determine the
codeword uniquely. The only possibility for this is that the codes generated by
(Ik | A) and (Ik | B) are distinct. This proves the statement. �

68 1. Linear Codes

When classifying linear codes we want to obtain complete lists of repre-
sentatives of the isometry classes for given parameters n, k and q. It is most
convenient to describe the representatives by systematic generator matrices.
Therefore, it is of interest to determine all systematic generator matrices of
codes belonging to a single isometry class.

1.7.9 Remark [184, 2.10] Assume that Γ = (Ik | A) is a systematic generator ma-
trix of an (n, k)-code over Fq with k < n. The systematic generator matrices
of codes (semi)linearly isometric to C can be obtained as follows. Apply a
(semi)linear isometry so that the first k columns of the resulting matrix Γ′ are
linearly independent. Then pre-multiply Γ′ by a suitable matrix from GLk(q).
There are several types of isometry operations which guarantee that the first
k columns of Γ′ are linearly independent. They can be generated by repeated
application of the following isometry operations:

Considering permutational isometries we obtain: The permutations of col-
umns that replace the first k columns of Γ by linearly independent columns
can be generated by repeated application of three types of permutations:
1. Interchange the columns with index i and j, where i, j < k. After in-

terchanging the i-th and j-th row of Γ′, the resulting matrix is again
systematic.

2. Interchange the columns with index i and j, where i, j ≥ k, then the
resulting matrix is systematic.

3. Interchange the columns with index i and j, where i < k ≤ j. This
is only possible in case aij �= 0, for otherwise the first k columns of Γ′

would no longer be linearly independent. In order to obtain a system-
atic matrix, multiply the i-th row of Γ′ by a−1

ij , and for � �= i subtract this
new row multiplied by a�j from the �-th row of Γ′.

Furthermore, using linear isometries it is possible to multiply columns of Γ
by nonzero field elements. If we multiply the i-th column of Γ by κ ∈ F∗

q ,
say, then the resulting matrix either is already systematic (namely if i ≥ k),
or can be brought into a systematic form (namely by multiplying the i-th
row by κ−1).

When considering also semilinear isometries, apply an automorphism
α ∈ Aut(Fq) to each entry of Γ. The resulting matrix is again systematic.

Exercises

E.1.7.1 Exercise Use the existence of systematic generator matrices in order to show
that each linear code with k = n − 1 has a minimum distance at most 2.

1.7 Systematic Encoding, Information Sets 69

E.1.7.2Exercise Let C be an (n, k)-code with minimum distance d. Show that d is
the largest integer with the property that any n − d + 1 coordinate positions
contain an information set.

E.1.7.3Exercise There are three types of elementary k× k-matrices over F. For λ ∈ F∗

and for i0, j0 ∈ k with i0 �= j0 they are given by:

B(1)
i0,λ

is the unit matrix Ik in which the entry 1 occurring in position (i0, i0)
is replaced by λ, thus it is a diagonal matrix (bij)i,j∈k with

bij =

⎧⎨⎩
λ if i = j = i0,
1 if i = j �= i0,
0 else.

B(2)
i0,j0,λ is the unit matrix Ik with an additional entry λ in position (i0, j0),

thus it is the matrix (bij)i,j∈k with

bij =

⎧⎨⎩
1 if i = j,
λ if i = i0 and j = j0,
0 else.

B(3)
i0,j0

is the unit matrix Ik in which the rows (or columns) of index i0 and j0
are exchanged, thus it is the matrix (bij)i,j∈k with

bij =

⎧⎨⎩
1 if i = j and (i �= i0 or j �= j0),
1 if (i, j) = (i0, j0) or (i, j) = (j0, i0),
0 else.

Prove that all these matrices are regular, and that the inverse of an elementary
matrix is again elementary. Deduce then that every matrix of GLk(q) can be
written as a product of elementary matrices.

Show that the following holds true: Multiplying a k × n-matrix Γ from
the left with an elementary matrix B yields an elementary row operation on
Γ. Hence, B · Γ is a composition of elementary row operations on Γ for all
B ∈ GLk(q). Multiplying an n × k-matrix Γ from the right with an elementary
matrix yields an elementary column operation on Γ. Hence, Γ · B is a compo-
sition of elementary column operations on Γ for all B ∈ GLk(q).

E.1.7.4Exercise Check that the regular n× n diagonal matrices over Fq form a normal
subgroup Dn(q) of Mn(q), which means that Dn(q) is a subgroup of Mn(q) and
that M−1 · D · M ∈ Dn(q) for each D ∈ Dn(q) and M ∈ Mn(q).

70 1. Linear Codes

E.1.7.5 Exercise Verify that the composition ∗ of 1.7.2 satisfies

D1 ∗ (D2 ∗ A) = (D1 · D2) ∗ A and In ∗ A = A.

Here, D1 and D2 are elements of Dn(q) and A is any k× k-matrix. In particular,
this operation is a group action.

E.1.7.6 Exercise Prove that 1.7.5 holds for all subsets J ⊆ n.

E.1.7.7 Exercise Prove 1.7.6.

E.1.7.8 Exercise Assume that W and W ′ are subspaces of the vector space V. Prove
that the following two statements are equivalent:

1. V = W ⊕W ′ (which means V = W + W ′ and W ∩W ′ = {0}).

2. For each v ∈ V there exist uniquely determined w ∈ W and w′ ∈ W ′ such
that v = w + w′.

E.1.7.9 Exercise Assume that W and W ′ are subspaces of the finite dimensional vector
space V. Prove that the following two statements are equivalent:

1. V = W ⊕W ′.

2. V = W + W ′ and dim(V) = dim(W) + dim(W ′).

1.8 1.8 A Minimum Distance Algorithm

As we have seen, the minimum distance is a very important parameter of a
linear code. Nevertheless, evaluating this parameter for a given code may turn
out to be surprisingly hard. As example 1.3.8 shows, the minimum distance
of a code can be less than the minimum weight of the rows of a particular
generator matrix. Here we present an algorithm, which is a variation of an
idea of A. Brouwer and due to K.-H. Zimmermann. Information sets play an
important role in this algorithm. It uses an iteration of Gaussian elimination
and it works efficiently if the code under consideration has many information
sets which are pairwise disjoint.

1.8 A Minimum Distance Algorithm 71

1.8.1Algorithm (MinDist) To compute the minimum distance of a given linear
(n, k)-code C. The input is a generator matrix Γ of C and the output is the mini-
mum distance d = dist(C) of C.

Recall that the code in question is linearly isometric to a systematic one.
This means that there exist matrices M ∈ Mn(q) and B ∈ GLk(q) such that
B · Γ · M� is a systematic generator matrix. In fact, recalling the Gaussian
Algorithm, we can obtain a systematic generator matrix by elementary row
operations, i.e. by multiplying from the left with a matrix B1 ∈ GLk(q), and
a suitable column permutation, i.e. a multiplication from the right by the
transpose of a permutation matrix Mπ1 := M(ε;π1) (cf. 1.4.8),

Γ1 := B1 · Γ · M�
π1

= (Ik1
| A1),

where k1 = k.

If A1 is neither empty nor a zero matrix, its rank is k2 with 0 < k2 ≤ k1. Ap-
plying Gaussian elimination, we can obtain k2 different unit vectors in the
remaining n − k1 columns. Of course, this process may distort the original
unit matrix Ik1 in the leftmost k1 columns. In other words, we can multiply
Γ1 from the left by an element B2 of GLk(q) and from the right by the trans-
pose of a permutation matrix Mπ2 with π2(j) = j for 0 ≤ j < k1, obtaining
a generator matrix of a linearly isometric code,

Γ2 := B2 · Γ1 · M�
π2

=

(
A′

2
Ik2 A2

0 0

)
.

The matrix A′
2 is a k × k1-matrix and A2 is a k2 × (n − k1 − k2)-matrix. The

zeros indicate zero matrices.

Assume that for i ≥ 2 the matrix Ai which has just been computed is nei-
ther empty nor a zero matrix. Then its rank is ki+1 with 0 < ki+1 ≤ ki. We
continue this way, obtaining regular matrices Bi+1 ∈ GLk(q), permutation
matrices Mπi+1 ∈ Mn(q), with πi+1(j) = j for 0 ≤ j < k1 + . . . + ki, and
generator matrices

Γi+1 := Bi+1 · Γi · M�
πi+1

=

(
A′

i+1
Iki+1

Ai+1

0 0

)
,

A′
i+1 a k × (k1 + . . . + ki)-matrix and Ai+1 a ki+1 × (n − k1 − . . . − ki+1)-

matrix. We repeat this procedure. Eventually, we will obtain a generator
matrix Γm, say, such that

Γm := Bm · Γm−1 · M�
πm

=

(
A′

m
Ikm Am

0 0

)
,

72 1. Linear Codes

where Am is either empty (which means it has no columns) or it is a zero
matrix. Then, k1 + . . . + km ≤ n and Am has n − k1 − . . . − km columns.
Consequently, the generator matrix Γm has n − k1 − . . . − km zero columns,
whence all elements of the code generated by Γm have weight at most
k1 + . . . + km.

Let C̃ be the code generated by Γm. We note that C is linearly isometric to
this code, whereas the matrices

Γ1, . . . , Γm

generate codes which are linearly isometric to C̃ but not necessarily equal to
C̃ (except for Γm, of course). For this reason we put

Γ̃i := Γi · M�
πi+1

· · · M�
πm

= Bi · · · B1 · Γ · M�
π1

· · · M�
πm

= B̃iΓm,

B̃i ∈ GLk(q), so that the matrices

Γ̃1, . . . , Γ̃m

generate the same code C̃. Moreover, the leftmost k1 + . . . + ki columns of Γi

and Γ̃i are the same, whence Γ̃i has the unit matrix Iki
in the same position

as Γi.

Using these matrices, we define for 1 ≤ i ≤ k the following subsets C̃i of C:

C̃i :=
m⋃

j=1

{
v · Γ̃j

∣∣ v ∈ Fk
q, wt(v) ≤ i

}
.

Clearly, these sets form the ascending chain

C̃1 ⊆ C̃2 ⊆ . . . ⊆ C̃k = C̃

of subsets of C̃, and hence the minimum weights

di := min
{

wt(c) | c ∈ C̃i, c �= 0
}

,

form the decreasing sequence

d1 ≥ d2 ≥ . . . ≥ dk = dist(C̃) = dist(C).

In most cases, we do not need to compute all of these values. In fact, the
computation of dk is just the evaluation of dist(C̃) as the least weight of all
codewords c in C̃ \ {0}, which we want to avoid, if possible. As a matter
of fact, in the first step we just compute d1. Later, if di has been computed
for some i ≥ 1, we will compare it with di, which is a lower bound for the
weight of the elements in C̃ \ C̃i. If di ≤ di we are finished. Otherwise, if
di > di, we proceed to compute the exact value of di+1.

1.8 A Minimum Distance Algorithm 73

Hence, we try to find lower bounds for the weights in the complements
C̃ \ C̃i. For this purpose we pick an element c ∈ C̃ \ C̃i. Since c �∈ C̃i, there
exists, for each j, a vector v(j) ∈ Fk

q such that

c = v(j) · Γ̃j, 1 ≤ j ≤ m, and wt(v(j)) ≥ i + 1.

In order to estimate the weight of c, we consider each of these represen-
tations of c by using the various information places in Γ̃j, the columns of
which contain the unit matrix Ikj

. These are the columns of index r for
k1 + . . . + kj−1 ≤ r < k1 + . . . + kj. We are especially interested in the kj

coordinates cr of c = v(j) · Γ̃j corresponding to these kj columns. Since v(j)

is of length k, these entries of c contribute at least the value i + 1− (k − kj)
to the weight of c. Since these sets of places are disjoint, for different j, we
obtain

wt(c) ≥
m

∑
j=1

(i + 1− (k − kj)).

We can restrict our attention to positive summands, which gives the lower
bound

wt(c) ≥ ∑
j : k−kj≤i

(i + 1− (k − kj)) =: di.

Obviously, since the first summand is i + 1, the sequence of these bounds
is increasing:

2 ≤ d1 < d2 < d3 < . . . < dk.

In addition,

dk = m +
m

∑
j=1

kj.

Since wt(c) ≤ k1 + . . . + km for all c ∈ C̃, there exists a smallest index i0
such that

di0 ≤ di0 .

For this i0 we have that

di0 := min
{

wt(c)
∣∣ c ∈ C̃i0 , c �= 0

}
,

and the inequality

di0 ≤ min
{

wt(c)
∣∣ c ∈ C̃ \ C̃i0

}
holds true. Hence,

di0 = dist(C̃),

and a codeword of weight dist(C̃) is contained in C̃i0 .

74 1. Linear Codes

To simplify the algorithm, it is possible to do all these computations with
Γi instead of Γ̃i. Notice that the values of dj and dj do not change when we
use Γi instead of Γ̃i since

wt
(
v · Γ̃i

)
= wt

(
v · Γi · M�

πi+1
· · · M�

πm

)
= wt(v · Γi).

Moreover, we can replace the sets C̃i by the isometric sets

Ci :=
m⋃

j=1

{
v · Γj

∣∣ v ∈ Fk
q, wt(v) ≤ i

}
. �

Here is a summary of the algorithm MinDist.

1.8.2 Algorithm Compute the minimum distance of a given linear (n, k)-code C.
Input: A systematic generator matrix Γ1 = (Ik | A1) of C.
Output: The minimum distance dist(C).

(1) m := 2
(2) k1 := k
(3) repeat

(4) Apply Gaussian elimination and possibly permutations of the

columns to the matrix Am−1 from Γm−1 =

(
A′

m−1
Ikm−1

Am−1

0 0

)

to obtain a generator matrix Γm =

(
A′

m
Ikm Am

0 0

)
(5) until rank(Am) = 0
(6) C0 := {0}
(7) i := 0
(8) repeat

(9) i := i + 1

(10) Ci := Ci−1 ∪
m⋃

j=1

{v · Γj | v ∈ F(q)k,wt(v) = i}

(11) di := min{wt(c) | c ∈ Ci, c �= 0}

(12) di :=
m

∑
j=1

k−kj≤i

(i + 1)− (k − kj)

(13) until di ≤ di

(14) return di �

1.8 A Minimum Distance Algorithm 75

1.8.3Example We apply the algorithm MinDist to the binary (7, 3)-code C with gen-
erator matrix

Γ1 =

⎛⎜⎝ 1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

⎞⎟⎠ .

This matrix has the information set {0, 1, 2}. The algorithm successively com-
putes the generator matrices

Γ2 =

⎛⎜⎝ 0 1 1 1 0 0 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0

⎞⎟⎠
with information set {3, 4, 5} and the generator matrix

Γ3 =

⎛⎜⎝ 0 1 1 1 0 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0

⎞⎟⎠
with information set {6}. The set C1 consists of all rows of the three generator
matrices Γ1, Γ2 and Γ3. Each of them is of weight 4, whence d1 = 4. The lower
bound for the minimum weight of the vectors outside of C1 is d1 = 4. Hence,
d = d1 = 4 is the minimum distance of C. �

1.8.4Example We apply the algorithm MinDist to the binary (15, 5)-code C with
generator matrix

Γ =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 1 0 1 1 1 0 0
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ .

This code will be constructed in 4.3.5, it is a BCH-code. The systematic matri-
ces are

Γ1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1
0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
0 0 1 0 0 0 1 1 1 1 0 1 0 1 1
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ ,

Γ2 =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 1 1 1 0 0 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 0 0 1 1 1 1 0
0 1 0 1 1 0 0 1 0 0 0 1 1 1 1
0 1 1 1 0 0 0 0 1 0 1 0 0 1 1
1 0 1 1 1 0 0 0 0 1 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

76 1. Linear Codes

and

Γ3 =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
1 0 0 1 1 0 1 1 1 0 0 0 0 1 0
0 1 0 0 1 1 0 1 1 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

The information sets are

{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}, and {10, 11, 12, 13, 14}.

The minimum weight of the rows in these matrices is d1 = 7, whereas d1 = 2−
(5− 5) + 2− (5− 5) + 2− (5− 5) = 6. Since 7 > 6, we continue by considering
linear combinations of any two rows of the Γi. For example, if i = 1 we look at
vectors v and codewords v · Γ1 where

v v · Γ1 wt(v · Γ1)
(1, 1, 0, 0, 0) (1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1) 7
(1, 0, 1, 0, 0) (1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0) 7
(1, 0, 0, 1, 0) (1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1) 8
(1, 0, 0, 0, 1) (1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0) 8
(0, 1, 1, 0, 0) (0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1) 8
(0, 1, 0, 1, 0) (0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0) 7
(0, 1, 0, 0, 1) (0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1) 7
(0, 0, 1, 1, 0) (0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1) 7
(0, 0, 1, 0, 1) (0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0) 7
(0, 0, 0, 1, 1) (0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1) 8

If i = 2, we have

v v · Γ2 wt(v · Γ2)
(1, 1, 0, 0, 0) (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0) 7
(1, 0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1) 7
(1, 0, 0, 1, 0) (1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1) 8
(1, 0, 0, 0, 1) (0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1) 8
(0, 1, 1, 0, 0) (1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1) 8
(0, 1, 0, 1, 0) (1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1) 7
(0, 1, 0, 0, 1) (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1) 7
(0, 0, 1, 1, 0) (0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0) 7
(0, 0, 1, 0, 1) (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0) 7
(0, 0, 0, 1, 1) (1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0) 8

1.8 A Minimum Distance Algorithm 77

and for i = 3 we obtain

v v · Γ3 wt(v · Γ3)
(1, 1, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0) 7
(1, 0, 1, 0, 0) (1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0) 7
(1, 0, 0, 1, 0) (0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0) 8
(1, 0, 0, 0, 1) (1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1) 8
(0, 1, 1, 0, 0) (1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0) 8
(0, 1, 0, 1, 0) (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0) 7
(0, 1, 0, 0, 1) (1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1) 7
(0, 0, 1, 1, 0) (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0) 7
(0, 0, 1, 0, 1) (0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1) 7
(0, 0, 0, 1, 1) (1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1) 8

This shows that d2 = 7. On the other hand, d2 = 3 − (5 − 5) + 3 − (5 − 5) +
3 − (5 − 5) = 9 which is greater than 7, i.e. the minimum distance has been
determined to be 7. In this example, we have looked at 15 + 3 · 10 = 45 code-
words, which is actually worse than the original problem. �

We see that the algorithm may actually be worse than the original prob-
lem. But in many cases, in particular when the codes get bigger, there is a ben-
efit. For example, the minimum distance of the binary extended Golay code
of length 24 and dimension 12 (presented in 2.3.12) is computed by looking at
596 rather than 212 = 4096 codewords.

Exercises

E.1.8.1Exercise Prove the remaining statements about di for 1 ≤ i ≤ k in the descrip-
tion of 1.8.1.

E.1.8.2Exercise Use the algorithm MinDist in order to evaluate the minimum dis-
tance of the binary (7, 4)-code with generator matrix⎛⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎟⎠ .

Check your result using the attached software.

2Chapter 2

Bounds and Modifications

2

2 Bounds and Modifications

2.1 Combinatorial Bounds for the Parameters 82

2.2 New Codes from Old and the Minimum Distance 94

2.3 Further Modifications and Constructions 102

2.4 Reed–Muller-Codes.. 118

2.5 MDS-Codes ... 128

2 Bounds and Modifications
The fundamental parameters of a linear code are the length n, the dimension
k, the minimum distance d and the size q of the finite field over which it is
defined. For applications, we are interested in the information rate k/n and
the relative minimum distance d/n both being large. We may think of this as a
typical packing problem of combinatorics. Is it possible to pack a large number of
vectors (codewords) into the Hamming space H(n, q) such that no two words
are close? Of course, these are contradicting aims. To see this, we think of
the balls of radius
(d − 1)/2� which are centered around codewords, since,
for unique decoding using the maximum likelihood principle, we require that
these balls should never overlap. It is intuitively clear that a large number of
codewords can only be achieved if the balls are small. Conversely, if the balls
are large then this tends to limit the number of codewords (or balls) which can
be packed. This is the fundamental dilemma of Coding Theory (cf. Fig. 2.1).

Fig. 2.1 The fundamental dilemma

In order to understand the situation better, we are going to study various
bounds for the parameters of codes. We consider (n, k, d)-codes optimal if they
optimize one parameter given the other two (the parameter q is kept fixed).
Furthermore, we will discuss various constructions of new codes from old.
These constructions in turn lead to bounds. Interesting classes of codes are ob-
tained by analyzing whether bounds can be met with equality. Also, we will
meet further series of codes which are connected to the above-mentioned con-
structions, or which are of interest because they meet one of the bounds which
will be presented. Examples are the Hamming- and simplex-codes, perfect
codes, Reed–Muller- and MDS-codes.

82 2. Bounds and Modifications

2.1 2.1 Combinatorial Bounds for the Parameters

For the purpose of applications we certainly prefer linear codes with optimal
properties. The search for optimal codes can be described in three ways:

1. For given parameters k, d, q find a linear code of least length

nmin(k, d, q) := min { n | there exists an (n, k, d, q)-code } .

2. For given parameters n, k, q find a linear code of maximal minimum distance

dmax(n, k, q) := max { d | there exists an (n, k, d, q)-code } .

3. For given parameters n, d, q find a linear code of maximal dimension

kmax(n, d, q) := max { k | there exists an (n, k, d, q)-code } .

To begin with, we derive a few direct combinatorial bounds for the pa-
rameters of a code. Each such result in turn yields a bound for nmin(k, d, q),
dmax(n, k, q) and kmax(n, d, q). After that, we will tabulate the best bounds we
have obtained at that point. In the following section we will investigate the
two functions nmin(k, d, q) and dmax(n, k, q) more thoroughly.

2.1.1 The Singleton-bound For each linear (n, k, d)-code C over Fq we have the inequal-
ity

d ≤ n − k + 1.

Proof: We know from 1.4 that isometric codes have the same coding theoretic
properties. By 1.7 we may consider a code isometric to C which is generated
systematically by the matrix (Ik | A). Then, for each unit vector e(i) ∈ Fk

q, the
vector e(i) · (Ik | A) is of weight not greater than n − k + 1. This proves the
statement, since by 1.2.8 the minimum distance is the minimum weight of a
nonzero codeword. �

2.1.2 Definition (MDS-codes) Codes with minimum distance d = n − k + 1 are
called MDS-codes (an abbreviation of maximum distance separable).

Trivial MDS-codes are the (n, 1)-repetition-codes, the (n, n − 1)-parity
check codes (cf. Exercise 1.3.11), and the (n, n)-codes. We will discuss MDS-
codes in Section 2.5.

2.1.3 The Hamming-bound The parameters of each (n, k, d, q)-code satisfy the inequality

(d−1)/2�
∑
i=0

(
n
i

)
(q − 1)i ≤ qn−k.

Equality holds if and only if the closed balls of radius
(d − 1)/2� around codewords
cover the whole Hamming space H(n, q).

2.1 Combinatorial Bounds for the Parameters 83

Proof: The number of vectors of Hamming distance i from a given vector is
(n

i)(q − 1)i, since the first factor counts the number of ways of choosing i co-
ordinates out of the n coordinate positions and the second term is the number
of possibilities to change such an i-tuple in each place. We may think of these
vectors as forming a ball of radius i around a given codeword. Summing over
i = 0, . . . , r yields the number of vectors in a ball of radius r. Since the balls of
radius r =
(d− 1)/2� around codewords are all disjoint, the left hand side of
the inequality multiplied by qk is less than or equal to |H(n, q)| = qn. Dividing
by qk yields the statement. �

2.1.4Definition (perfect codes) Codes whose parameters attain the Hamming-
bound are called perfect.

Important examples of perfect codes are the Hamming-codes, which we
will introduce next. Further perfect codes are the Golay-codes G23 and G11;
they will be presented in Section 4.4 (cf. Exercise 2.1.2). Trivial perfect codes
are described in Exercise 2.1.1. A. Tietäväinen [191] and, independently,
V.A. Zinovjev and V.K. Leontjev [207] have shown that there are no further
perfect linear codes. However, there exist other perfect codes which are not
linear.

The general form of the Hamming-codes was introduced first by M.J.E. Go-
lay [70] and R.W. Hamming [80]. The binary (7, 4)-Hamming-code is indeed
older. It is mentioned in the seminal paper of C.E. Shannon [178]. The Ham-
ming-codes form an infinite family of perfect, 1-error-correcting linear codes.
The following definition specifies this class of codes up to isometry.

2.1.5Definition (Hamming-codes, simplex-codes) Let ∆ be any matrix whose col-
umns form a system of nonzero representatives of the one-dimensional sub-
spaces of Fm

q . A linear code C which has ∆ as its check matrix is called an
m-th order q-ary Hamming-code. The dual code of a Hamming-code, i.e. the
code which is generated by the matrix ∆ (cf. 1.3.4) is called an m-th order q-ary
simplex-code. Of course, both the Hamming- and the simplex-code are only de-
fined up to isometry.

In 1.3.6, we have already met the third order binary Hamming-code.

2.1.6Theorem For m ≥ 2 the m-th order q-ary Hamming-code is a perfect code with
parameters (

n, k, d, q
)

=
(

qm − 1
q− 1

,
qm − 1
q − 1

− m, 3, q
)

.

84 2. Bounds and Modifications

Proof: The statement about the length is clear from the definition, since the
number of one-dimensional subspaces of Fm

q is (qm − 1)/(q− 1). A check ma-
trix ∆ of a Hamming-code contains in particular the m unit vectors (or nonzero
scalar multiples thereof). Hence ∆ is of rank m and the dimension of the code
is dim(C) = (qm − 1)/(q− 1) − m, by 1.3.1. It remains to determine the min-
imum distance. For this, we note that any two columns of ∆ are by defini-
tion linearly independent. Furthermore, since m ≥ 2 there exist three columns
which are dependent. By 1.3.9 this implies that the minimum distance is d = 3.
Finally, we see that this code is perfect, since

(d−1)/2�
∑
i=0

(
n
i

)
(q − 1)i =

1

∑
i=0

(
(qm − 1)/(q− 1)

i

)
(q − 1)i

= 1 +
qm − 1
q − 1

(q − 1) = qm. �

2.1.7 Theorem The m-th order q-ary simplex-code C has parameters

(n, k, d, q) =
(qm − 1

q − 1
, m, qm−1, q

)
.

All nonzero codewords have weight qm−1, i.e.

wC(x) = 1 + (qm − 1)xqm−1
, and WC(x, y) = y

qm−1
q−1 + (qm − 1)xqm−1

y
qm−1−1

q−1 .

Proof: Consider the matrix ∆ from the proof of 2.1.6. This time, regard ∆ as a
generator matrix. The statement about the length is clear, and the value for the
dimension follows again from 1.3.1 together with 1.3.4. It remains to show that
each nonzero codeword has weight qm−1. For this, we consider the encoding
map v �→ v · ∆. Write

∆ =
(

u(0)�
∣∣∣ . . .

∣∣∣ u(n−1)�
)

with u(i) ∈ Fm
q . Then, using the standard bilinear form, we have for v ∈ Fm

q

v · ∆ =
(
〈 v, u(0) 〉, . . . , 〈 v, u(n−1) 〉

)
.

Fix an element v ∈ Fm
q \ {0}. The mapping u �→ 〈 v, u 〉 for u ∈ Fm

q is a surjec-
tive linear form, as already pointed out in the proof of 1.6.8. It takes on each
value of Fq exactly qm−1 times. Thus, for exactly qm−1(q − 1) vectors u ∈ Fm

q
the value of 〈 v, u 〉 is nonzero. By linearity, we have 〈 v, λu 〉 = λ〈 v, u 〉 for
all λ ∈ Fq. In particular, the value of 〈 v, w 〉 is either always zero or always

2.1 Combinatorial Bounds for the Parameters 85

nonzero for elements w of the form w = λu, where λ ∈ F∗
q . This means that

the fact that 〈 v, u 〉 is zero or nonzero only depends on the one-dimensional
subspace containing u �= 0. Now recall that the u(i) form a transversal of the
one-dimensional subspaces (disregarding the zero vector, which is in every
subspace). This means that the products λ · u(i) where λ ∈ F∗

q and 0 ≤ i <

(qm − 1)/(q− 1) take on every nonzero vector u ∈ Fm
q exactly once. The pre-

vious remark implies that the qm−1(q − 1) vectors u ∈ Fm
q with 〈 v, u 〉 �= 0

(u = 0 is not one of them!) are contained in exactly qm−1 one-dimensional
subspaces. Thus

wt(v · ∆) = wt(〈 v, u(0) 〉, . . . , 〈 v, u(n−1) 〉) = qm−1

for any v �= 0. The statement about the weight enumerator wC(x) is clear.
Using the identity (qm − 1)/(q − 1) = 1 + q + q2 + . . . qm−1 we obtain the
homogeneous version WC(x, y). This finishes the proof. �

2.1.8Example The third order ternary Hamming-code is a (13, 10, 3, 3)-code. It has
a check matrix of the form⎛⎜⎝ 1 0 1 2 0 1 2 0 1 2 0 1 2

0 1 1 1 0 0 0 1 1 1 2 2 2
0 0 0 0 1 1 1 1 1 1 1 1 1

⎞⎟⎠ ,

and its dual code is a ternary simplex-code of type (13, 3, 9, 3). �

The next bound is an explicit bound for the minimum distance:

2.1.9The Plotkin-bound For each linear (n, k, d, q)-code C the following holds:

d ≤ nqk−1(q − 1)
qk − 1

.

Proof: Consider the double sum of distances

D := ∑
c∈C

∑
c′∈C

d(c, c′).

It is bounded from below, since for each c �= c′ we have d(c, c′) ≥ d, and this
implies D ≥ qk(qk − 1)d.

We may evaluate D in a different way. For this purpose we label the ele-
ments of Fq by

{
κ1, . . . , κq

}
. For 0 ≤ j < n and 1 ≤ i ≤ q let Dij denote the

number of codewords which have as their j-th component the element κi. In
terms of this notation we obtain

D = ∑
j∈n

q

∑
i=1

Dij(qk − Dij).

86 2. Bounds and Modifications

Since ∑
q
i=1 Dij = qk, we get

D = nq2k − ∑
j∈n

q

∑
i=1

D2
ij.

For j ∈ n the following is true:

0 ≤
q

∑
i=1

q

∑
t=i+1

(Dij − Dtj)2

=
q

∑
i=1

q

∑
t=i+1

D2
ij︸ ︷︷ ︸

=∑i(q−i)D2
ij

+
q

∑
i=1

q

∑
t=i+1

D2
tj︸ ︷︷ ︸

=∑i(i−1)D2
ij

−
q

∑
i=1

q

∑
t=i+1

2DijDtj.

This yields the estimate

q
q

∑
i=1

D2
ij ≥

q

∑
i=1

D2
ij +

q

∑
i=1

q

∑
t=i+1

2DijDtj =

(
q

∑
i=1

Dij

)2

= q2k.

Thus
q

∑
i=1

D2
ij ≥ q2k−1, j ∈ n,

from which we obtain

D = nq2k − ∑
j∈n

q

∑
i=1

D2
ij ≤ nq2k−1(q− 1).

Combining these two bounds for D we conclude that

qk(qk − 1)d ≤ D ≤ nq2k−1(q − 1),

and the statement now follows by comparing the left hand side and the right
hand side. �

A few remarks concerning this bound are in order.

2.1.10 Remarks

1. Since the term on the right hand side of the bound may evaluate to a frac-
tion, the bound can actually be read as

d ≤
⌊

nqk−1(q − 1)
qk − 1

⌋
.

However, since we want to investigate what happens if the bound is met
with equality, let us consider the inequality as stated in 2.1.9.

2.1 Combinatorial Bounds for the Parameters 87

2. Equality holds in 2.1.9 under the following two conditions:
(a) The distance between any two distinct codewords is equal to a constant

(such a code is called equidistant.)
(b) At any coordinate position, each field element appears equally often.
An example for such a code is the simplex-code (cf. Exercise 2.1.5).

3. We may reformulate the Plotkin-bound as a bound for the number of code-
words or, equivalently, for the dimension of a linear code of length n and
minimum distance d over Fq as

qk ≤ d
d − n(q− 1)/q

, 2.1.11

provided that d > n(q − 1)/q.

Next we collect some facts about nmin(k, d, q).

2.1.12Lemma If there exists an (n, k, d, q)-code with d > 1, then for each 1 ≤ d′ < d there
exist (n, k, d′, q)-codes.

Proof: Since d > 1, we may assume without loss of generality that the (n, k, d)-
code C whose existence we assume has a systematic generator matrix

Γ = (Ik | A) =
(

e(0)�
∣∣∣ . . .

∣∣∣ e(k−1)�
∣∣∣ u(k)�

∣∣∣ . . .
∣∣∣ u(n−1)�

)
,

where A is a k × (n − k)-matrix with n − k ≥ 1. Replacing in Γ a column
u(j)�, k ≤ j < n, by a column of zeros, we obtain a code C′ with parameters
(n, k, d) or (n, k, d − 1). The minimum distance of C′ equals d − 1 if and only if
there exists a codeword c ∈ C of weight d such that cj �= 0. Summarizing, the
replacement of a column of A by a column of zeros either leaves the minimum
distance of C unchanged or decreases it by 1.

We start with the code C of minimum distance d > 1. Replacing one by
one all the columns of A by columns of zeros, we eventually obtain a matrix
of the form (Ik | 0) which is the generator matrix of an (n, k, 1)-code. In each
step, the minimum distance either stays put or decreases by 1. Whence by this
procedure we construct (n, k, d′)-codes for all 1 ≤ d′ < d. �

2.1.13Lemma Let q be a power of a prime and let k and d be positive integers. Then:

1. nmin(k, 1, q) = k, for k ≥ 1.

2. nmin(1, d, q) = d, for d ≥ 1.

88 2. Bounds and Modifications

3. If d′ ≤ d, then nmin(k, d′, q) ≤ nmin(k, d, q) for k ≥ 1.

4. If k ≥ 2, then nmin(k, d, q) ≥ d + nmin(k − 1, �d/q�, q) for d ≥ 1, where �r�
denotes as usual the least integer greater than or equal to r.

Proof: The first two assertions are clear. In order to prove the third, we con-
sider an (nmin(k, d, q), k, d, q)-code C. According to 2.1.12, there also exists an
(nmin(k, d, q), k, d′ , q)-code for any d′ ≤ d. Whence nmin(k, d′, q) ≤ nmin(k, d, q).
In other words, the function nmin(k, d, q) is monotone increasing in the second
argument. Lastly, in order to prove the final assertion, we consider again a
code C of type (nmin(k, d, q), k, d, q). Let w be a vector of weight d in C, and
assume that this vector is an element of a basis of C. Permuting columns and
multiplying them with suitable constants, if necessary, we can assume that
w = (1d, 0) and we see that C is linearly isometric to a code with generator
matrix

Γ :=

(
w
∗

)
:=

(
1d 0
Γ1 Γ2

)
.

Here, the top row w of Γ is of Hamming weight d, and Γ1 and Γ2 are matrices
of size (k − 1)× d and (k − 1) × (nmin(k, d, q) − d), respectively.

We claim that Γ2 is of rank k − 1. Assume not. Then the rank of Γ is at most
k − 2, and we can assume that the first row of Γ2 contains only zeros. By the
condition on the minimum distance, all elements in the corresponding row of
Γ1 are nonzero. Using an elementary row transformation, we can transform
at least one further element of the top row of Γ into zero, which of course
contradicts the fact that w was a word of minimum weight d. This proves the
claim.

At this point, we know that the code C2 generated by Γ2 has the parameters
(nmin(k, d, q) − d, k − 1, d2), for some d2 which is not yet known. Therefore

nmin(k − 1, d2, q) ≤ nmin(k, d, q) − d.2.1.14

Now we consider c = (c(1), c(2)) ∈ C where c(2) ∈ C2 and wt(c(2)) = d2.
By the pigeon-hole principle, there exists an element α ∈ Fq which occurs at
least �d/q� many times in c(1). Without loss of generality, we can assume that
α ∈ F∗

q . (If α = 0, then choose any α0 ∈ F∗
q and replace c by the codeword

c + α0w in which the element α0 occurs at least �d/q�-many times among the
first d components. Moreover, the last nmin(k, d, q) − d components of c + α0w
are the same as in c.) Hence, subtracting the α-fold of the top row w of Γ from
c yields the estimate

d ≤ wt(c − αw) ≤ (d − �d/q�) + d2,

2.1 Combinatorial Bounds for the Parameters 89

and so d2 ≥ �d/q�. Furthermore, since the function nmin(k, d, q) is monotone
in the second argument (this was proved in 3), we get

nmin(k − 1, d2, q) ≥ nmin(k − 1, �d/q�, q).
This together with 2.1.14 implies the desired inequality. �

We remark that the fourth result of the previous Lemma is also known
under the name “one-step Griesmer-bound”. We will see that this result is
essential for the Griesmer-bound, which we will present next. Recall that the
Singleton-bound implies a bound for the length of (n, k, d)-codes,

nmin(k, d, q) ≥ k + d − 1. 2.1.15

A better estimate is obtained from the following bound, whose binary version
was discovered by Griesmer [76]. We present the form for general q which is
due to Solomon and Stiffler [186].

2.1.16The Griesmer-bound Each linear (n, k, d, q)-code satisfies

n ≥ ∑
i∈k

�d/qi�.

Proof: The case k = 1 is trivial, so we may assume that k ≥ 2. Applying the
inequality of the fourth item of 2.1.13 iteratively we obtain the statement (see
also Exercise 2.1.7):

n ≥ nmin(k, d, q)
≥ d + nmin(k − 1, �d/q�, q)

≥ d + �d/q� + nmin

(
k − 2,

⌈ �d/q�
q

⌉
︸ ︷︷ ︸

=�d/q2�

, q
)

≥ . . .

≥ ∑
i∈k−1

�d/qi� + nmin(1, �d/qk−1�, q)︸ ︷︷ ︸
=�d/qk−1�

= ∑
i∈k

�d/qi�. �

2.1.17Example We claim that there is no binary (31, 10, 13)-code. To see this, we
apply the Griesmer-bound, which gives us

n ≥ 13 +
⌈

13
2

⌉
+

⌈
13
4

⌉
+

⌈
13
8

⌉
+

⌈
13
16

⌉
+ . . . +

⌈
13
512

⌉
= 13 + 7 + 4 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 32.

But our code has length 31, which is a contradiction. �

90 2. Bounds and Modifications

For each (n, k, d, q)-code C, the nonnegative integer n− (k + d− 1) has been
called the defect of C (see 2.1.15). It can be estimated by an application of the
Griesmer-bound:

2.1.18 Theorem For each (n, k, d, q)-code with defect s we have:

1. If k ≥ 2, then d ≤ q(s + 1).

2. If k ≥ 3 and d = q(s + 1), then s + 1 ≤ q.

Proof: Both statements follow from the Griesmer-bound: As �d/qi� ≥ 1 we
have

n ≥ ∑
i∈k

�d/qi� ≥ d + �d/q� + (k − 2).

Assume indirectly that d > q(s + 1), and hence �d/q� ≥ s + 2. Then the right
hand side is ≥ n + 1, which is clearly a contradiction.

Similarly, from k ≥ 3 and d = q(s + 1) we obtain

d + k − 1 + s = n ≥ ∑
i∈k

�d/qi� ≥ d + (s + 1) +
⌈

s + 1
q

⌉
+ (k − 3),

thus s + 1 ≥ s + �(s + 1)/q�, which implies that s + 1 ≤ q. �

After these upper bounds we now derive two important lower bounds. Such
bounds are essentially existence results: they state the existence of good codes.
There is a catch, however. It may not always be easy to explicitly find the
code whose existence is predicted by the lower bound. The first bound, due
to Gilbert [67] resembles the Hamming-bound quite astonishingly. The sec-
ond bound, due to Varshamov [194], turns out to be stronger than the Gilbert-
bound (cf. Exercise 2.1.8). Nevertheless, asymptotically the two bounds agree.

2.1.19 The Gilbert-bound Let q be a power of a prime and n, k, d ∈ N∗ with n ≥ k, d. The
inequality

∑
i∈d

(
n
i

)
(q − 1)i < qn−k+1

implies the existence of a linear (n, k)-code over Fq with minimum distance at least d.

Proof: Let C be a linear (n, k′, d, q)-code with k′ maximal. This means that
there is no (n, k′′, d)-code with k′′ > k′. Let ρ(C) = maxx∈H(n,q) minc∈C d(x, c)
be the covering radius of C, which measures how far away a word in the Ham-
ming space can be from the given code. We claim that ρ(C) ≤ d − 1. Assume
otherwise. Let x ∈ H(n, q) be a vector with

d(x, C) := min
c∈C

d(x, c) ≥ d.

2.1 Combinatorial Bounds for the Parameters 91

Then, for λ, µ ∈ F∗
q and c, c′ ∈ C, we have

d(c + λx, c′ + µx) = d((λ − µ)x, c′ − c) ≥ d,

unless λ = µ and c = c′. This is clear when λ − µ = 0, as C has distance d.
Otherwise, it follows from the fact that x is at distance ≥ d from c′ − c ∈ C.
The inequality just proved implies that the span of C and x, i.e. C ⊕ 〈x〉, has
minimum distance at least d. But C ⊕ 〈x〉 is a linear code of dimension k′ + 1,
which contradicts the fact the k′ was the largest possible dimension of such a
code. Thus we have proved that ρ(C) ≤ d − 1.

Now consider an (n, k,≥ d, q)-code. If the inequality qk ∑i∈d (n
i)(q − 1)i <

qn is satisfied, then the balls of radius d − 1 around codewords do not cover
H(n, q), i.e. there is a word x ∈ H(n, q) with d(x, C) ≥ d, i.e. ρ(C) ≥ d.
But this means that k is not maximal, i.e. there is a bigger code. The code
whose existence is claimed can now be constructed directly. Start with the
zero-code C, with k = 0. As long as the inequality ∑i∈d (n

i)(q − 1)i < qn−k is
satisfied, there is a vector x ∈ H(n, q) with d(x, C) > d. Replace C by C ⊕ 〈x〉,
a code of dimension k + 1 and repeat the procedure. We stop the procedure if
∑i∈d (n

i)(q − 1)i ≥ qn−k and qk−1 ∑i∈d (n
i)(q − 1)i < qn−(k−1). Thus we end up

with a linear (n, k,≥ d, q)-code as claimed. �

2.1.20The Varshamov-bound Let q be a power of a prime and n, k, d ∈ N∗ with n ≥ k, d.
The inequality

∑
i∈d−1

(
n − 1

i

)
(q− 1)i < qn−k

implies the existence of a linear (n, k)-code over Fq with minimum distance at least d.

Proof: If n = k the inequality is satisfied only for d = 1. In this case there exists
the trivial (n, n, 1)-code. Now we assume that n − k ≥ 1. First we prove that
d − 1 ≤ n − k. Assume on the contrary that d − 1 > n − k. We obtain, since
d − 2 ≥ n − k and n − 1 ≥ n − k,

∑
i∈d−1

(
n − 1

i

)
(q − 1)i ≥ ∑

i∈n−k+1

(
n − k

i

)
(q − 1)i = qn−k,

which contradicts our assumption.
Inductively, we will now construct an (n − k) × n-matrix ∆ of rank n −

k, any d − 1 columns of which are linearly independent. Then, according
to 1.3.10, ∆ is a check matrix of an (n, k, d′)-code C with d′ ≥ d. We start
with the matrix ∆n−k = In−k which consists of the n − k unit vectors of length
n − k. It is of rank n − k and any d − 1 columns are linearly independent. If ∆i

with n − k ≤ i < n is an (n − k) × i-matrix with the desired properties, we try

92 2. Bounds and Modifications

to find a vector u ∈ Fn−k
q such that ∆i+1 = (∆i | u�) also satisfies these prop-

erties. This vector u must be chosen from the set of elements of Fn−k
q which

cannot be expressed as a linear combination of at most d − 2 columns of ∆i.
Of course, any linear combination of at most d − 2 columns of ∆i is uniquely
defined by its nonzero coefficients. Hence at most

∑
j∈d−1

(
i
j

)
(q− 1)j

vectors can be written as linear combinations of at most d − 2 columns of ∆i.
Since

∑
j∈d−1

(
i
j

)
(q − 1)j ≤ ∑

j∈d−1

(
n − 1

j

)
(q − 1)j < qn−k,

there exists a vector u in Fn−k
q such that the system consisting of u and any

d − 2 columns of ∆i is linearly independent. Therefore ∆i+1 is of rank n − k
and any d − 1 columns of ∆i+1 are linearly independent. Finally, ∆ can be
chosen as the matrix ∆n. �

2.1.21 Example In the following table, we display upper and lower bounds for the
optimal minimum distance dmax(n, k, 2) of binary codes with a given length
n and dimension k ≤ n. For a given pair (n, k), the table shows either the
exact value of dmax(n, k, 2), or an interval consisting of a lower bound and an
upper bound. Subscripts are used to indicate which rule led to the bound.
The subscripts V, S, H, G, or P stand for the Varshamov, Singleton, Hamming,
Griesmer, or Plotkin-bound, respectively. For example, the table entry for n =
8 and k = 2 reads 4V5P which stands for the two bounds 4 ≤ dmax(8, 2, 2) by
Varshamov and dmax(8, 2, 2) ≤ 5 due to Plotkin.

n\k 1 2 3 4 5 6 7 8
1 1V,S
2 2V,S 1V,S
3 3V,S 2V,S 1V,S
4 4V,S 2V,H 2V,S 1V,S
5 5V,S 3V,P 2V,H 2V,S 1V,S
6 6V,S 3V4H 3V,P 2V,H 2V,S 1V,S
7 7V,S 4V,P 3V4H 3V,P 2V,H 2V,S 1V,S
8 8V,S 4V5P 4V,H 3V4H 2V,H 2V,H 2V,S 1V,S
9 9V,S 5V6H 4V,G 3V4H 3V4H 2V,H 2V,H 2V,S

10 10V,S 5V6P 4V5P 4V,G 3V4H 3V4H 2V,H 2V,H

This table will be improved in the next section, and the intervals will be re-
placed by exact values. �

Exercises

E.2.1.1 Exercise Show that the following codes are perfect:

2.1 Combinatorial Bounds for the Parameters 93

1. the (n, n)-code over Fq for any n ≥ 1,

2. the n-fold repetition code over F2 for n odd.

E.2.1.2Exercise Verify that the following parameter sets attain the Hamming-bound:
(23, 12, 7, 2), (11, 6, 5, 3), (90, 78, 5, 2). (Note that there exist perfect codes only
for the first two parameters.)

E.2.1.3Exercise Prove that a linear code C is perfect if and only if ρ(C) = dist(C).

E.2.1.4Exercise Prove that 2.1.11 is equivalent to the Plotkin-bound.

E.2.1.5Exercise Check that the m-th order q-ary simplex-code meets the Griesmer-
bound and the Plotkin-bound.

E.2.1.6Exercise Let C be the m-th order binary Hamming-code of length n = 2m − 1.

1. Show that the homogeneous weight enumerator is

WC(x, y) =
1

n + 1
(
(x + y)n + n(y − x)

n+1
2 (x + y)

n−1
2

)
.

2. Show that the coefficients Ai in WC(x, y) = ∑n
i=0 Aixiyn−i satisfy the fol-

lowing recursion:

iAi =
(

n
i − 1

)
− Ai−1 + (i − 2− n)Ai−2

for i ≥ 3 with initial conditions A0 = 1, A1 = A2 = 0. Hint: Compute the
formal derivative w′

C of wC(x) = WC(x, 1) and verify that

(1− x2)w′
C(x) + (1 + nx)wC(x) = (1 + x)n.

After that, compare coefficients.

E.2.1.7Exercise Prove the following formula for positive integers r, s, t:⌈ �r/s�
t

⌉
=

⌈ r
st

⌉
.

94 2. Bounds and Modifications

E.2.1.8 Exercise

1. Verify that the Varshamov-bound 2.1.20 is sometimes stronger than the
Gilbert-bound 2.1.19. For example, the Varshamov-bound guarantees the
existence of a (7, 4, 3, 2)-code, whereas the Gilbert-bound only predicts the
existence of a (7, 3, 3, 2)-code.

2. Prove that the Varshamov-bound is always at least as strong as the Gilbert-
bound. Do this by showing that the validity of the inequality in 2.1.19
implies that the inequality in 2.1.20 holds as well. Hint: put f (x) =
∑i∈d−1 (n−1

i)xi and g(x) = ∑i∈d (n
i)x

i and verify that g(x) = (1 + x) f (x) +
xd−1(n−1

d−1). Then put x = q − 1.

2.2 2.2 New Codes from Old and the Minimum Distance

Now we describe modifications of codes that permit the construction of new
codes from given ones. An interesting application is, for example, that step by
step we are able to improve our knowledge on the maximal minimum distance
of (n, k)-codes over Fq.

Recall the table obtained in 2.1.21. It contains bounds for maximal mini-
mum distances dmax(n, k, 2) of binary codes for n ≤ 10 and k ≤ 8. In several
places it contains the exact value of dmax(n, k, 2) while, in a few other places, it
gives an interval containing the desired value dmax(n, k, 2):

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 3 – 4 3 2 2 1
7 7 4 3 – 4 3 2 2 1
8 8 4 – 5 4 3 – 4 2 2 2 1
9 9 5 – 6 4 3 – 4 3 – 4 2 2 2
10 10 5 – 6 4 – 5 4 3 – 4 3 – 4 2 2

2.2.1

H.J. Helgert and R.D. Stinaff [85] gave such a table in 1973, containing
lower and upper bounds for dmax(n, k, 2), where k ≤ n ≤ 127. T. Verhoeff [195]
improved it in 1987 by taking into account certain modifications. This work
has been continued by Brouwer, who maintains an Internet database [32] with
information on the best linear codes. A description of his methods and results

2.2 New Codes from Old and the Minimum Distance 95

can be found in [33]. Further tables can be found at [13], [27] as well as on the
attached compact disc. In this section we introduce elementary modifications,
which produce new codes from given ones, and discuss their influence on the
table of lower and upper bounds for dmax(n, k, q).

Clearly, the entries in the leftmost column and the elements of the main
diagonal are

dmax(n, 1, q) = n and dmax(n, n, q) = 1, n ≥ 1.

Also, from 2.1.12 it follows that each value 0 < d ≤ dmax(n, k, q) occurs as a
minimum distance of a suitable (n, k)-code over Fq.

2.2.2Parity extension Let C be an (n, k, d, q)-code with generator matrix

Γ = (γ0 | . . . | γn−1),

where γi denotes the i-th column vector of the matrix. Then the parity extension
of C is the code P(C) with generator matrix

Γ′ := (γ0 | γ1 | . . . | γn−1 | − ∑
i∈n

γi),

the additional last column of which contains the negative sum of the columns
of Γ. The code P(C) is an (n + 1, k)-code with minimum distance at least d. �

2.2.3Example In the binary case, we obtain P(C) by simply adding an entry 0 to all
even codewords, and an entry 1 to all codewords of odd weight. In any case,
the resulting codewords of P(C) will have even Hamming weight. �

2.2.4Corollary If C denotes an (n, k, d, 2)-code with odd minimum distance d, then P(C)
is an (n + 1, k, d + 1, 2)-code. �

2.2.5Example For the binary (7, 4)-Hamming-code, the parity extension yields

Γ =

⎛⎜⎜⎜⎝
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

⎞⎟⎟⎟⎠ → Γ′ =

⎛⎜⎜⎜⎝
1 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1
1 1 1 0 0 0 1 0

⎞⎟⎟⎟⎠ .

More generally, by 2.1.6 and 2.2.4 the extended m-th order binary Hamming-code
is a (2m, 2m − m − 1, 4)-code. Furthermore, the parity extension of H(n, q) is
an (n + 1, n, 2)-code. �

Let us see what the parity extension gives for the bounds for dmax(n, k, 2)
of 2.2.1. In three places, we have codes of length n and dimension k whose

96 2. Bounds and Modifications

minimum distance is odd. These are the (5, 2, 3), (6, 3, 3) and (7, 4, 3)-codes.
We deduce that there exist (6, 2, 4), (7, 3, 4) and (8, 4, 4)-codes. In the table,
we replace the intervals 3 − 4 by an exact bound, which is 4, indicated by the
boxed entries in 2.2.6. A further consequence is the existence of a (9, 4, 4)-code
which results from the (8, 4, 4)-code by attaching a zero coordinate to every
codeword. This improves the bound for dmax(9, 4, 2) to 4, which is shown
underlined in the table.

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 4 3 2 2 1
7 7 4 4 3 2 2 1
8 8 4 – 5 4 4 2 2 2 1
9 9 5 – 6 4 4 3 – 4 2 2 2
10 10 5 – 6 4 – 5 4 3 – 4 3 – 4 2 2

2.2.6

The last operation can be formulated as follows:

2.2.7 Corollary For given q and k, the entries of the table (dmax(n, k, q))n,k, are weakly
increasing downwards in each column, i.e.,

dmax(n + 1, k, q) ≥ dmax(n, k, q), n ≥ 1. �

The next modification shows that the entries in these columns increase by
at most 1:

2.2.8 Puncturing a code Assume that C is an (n, k)-code with k < n and generator
matrix

Γ = (γ0 | . . . | γn−1).
Then, without loss of generality (recall the definition of linear isometry of
codes), we assume that there exists an information set to which the last coor-
dinate does not belong. When canceling this component in all codewords, the
resulting code Pu(C), which is called punctured code of C, has the generator
matrix

Γ′ = (γ0 | γ1 | . . . | γn−2).
According to our choice of the information set of C and of the canceled coor-
dinate, the dimension k of the code is not changed and, therefore, Pu(C) is an
(n − 1, k)-code. Its minimum distance is at least d − 1. �

Using 2.1.12, we obtain

2.2 New Codes from Old and the Minimum Distance 97

2.2.9Corollary For k < n, the existence of an (n, k, d, q)-code implies that there is also
an (n − 1, k, d − 1, q)-code. In particular, the entries in a column of the matrix
(dmax(n, k, q))n,k increase by at most 1 at a time, i.e.,

dmax(n + 1, k, q) − dmax(n, k, q) ≤ 1, n ≥ 1. �

Puncturing improves the preceding table in the following two boxed en-
tries, whereas the underlined value follows from 2.2.4:

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 4 3 2 2 1
7 7 4 4 3 2 2 1
8 8 4 – 5 4 4 2 2 2 1
9 9 5 – 6 4 4 3 2 2 2
10 10 5 – 6 4 – 5 4 4 3 2 2

2.2.10

Another way of combining codes is the concatenation, and there are essen-
tially two different ways of doing this:

2.2.11The concatenation (outer direct sum) Let Ci be an (ni, ki, di, q)-code with
generator matrix Γi for i = 0, 1. The outer direct sum of C0 and C1 is defined as

C0 � C1 :=
{
(c | c′)

∣∣ c ∈ C0, c′ ∈ C1
}

.

It is clear that C0 � C1 is an (n0 + n1, k0 + k1,min{d0, d1}, q)-code with genera-
tor matrix (

Γ0 0
0 Γ1

)
.

The outer direct sum can be expressed as

C0 � C1 =
{

(u · Γ0 | v · Γ1)
∣∣∣ u ∈ Fk0

q , v ∈ Fk1
q

}
.

in terms of the generator matrices. �

Since the minimum distance of the outer direct sum is the minimum of the
minimum distances of the summands, this construction is not very exciting as
far as dmax is concerned. But it leads to another concatenation. In the particular
case k0 = k1 we can consider a subset of the outer sum which is, in a certain
sense, a diagonal:

98 2. Bounds and Modifications

2.2.12 The diagonal concatenation ((u, v)-construction) Let Ci be an (ni, k, di , q)-
code with generator matrix Γi for i = 0, 1. Then there exists an (n0 + n1, k, d, q)-
code C := (C0, C1), with d ≥ d0 + d1, called the diagonally concatenated code or
the (u, v)-construction applied to C0 and C1. It is generated by Γ := (Γ0 | Γ1),

C :=
{
(w · Γ0 | w · Γ1)

∣∣∣ w ∈ Fk
q

}
. �

For example, we know from 2.2.10 that there exist both a (5, 2, 3, 2)-code
and a (3, 2, 2, 2)-code, and so we obtain via diagonal concatenation of these
codes an (8, 2, 5, 2)-code: Since dmax(8, 2, 2) ∈ {4, 5}, we get dmax(8, 2, 2) = 5.
In the same way we deduce from dmax(6, 3, 2) = 3 and dmax(4, 3, 2) = 2 that
dmax(10, 3, 2) = 5. Moreover, using 2.2.4 we obtain that dmax(9, 2, 2) = 6,
whereas dmax(10, 2, 2) = 6 follows from the fact that the values in each column
are increasing, as shown in 2.2.7. This way we improve the preceding table,
obtaining

n\k 1 2 3 4 5 6 7 8
1 1
2 2 1
3 3 2 1
4 4 2 2 1
5 5 3 2 2 1
6 6 4 3 2 2 1
7 7 4 4 3 2 2 1
8 8 5 4 4 2 2 2 1
9 9 6 4 4 3 2 2 2
10 10 6 5 4 4 3 2 2

2.2.13

as the upper left hand corner of the table (dmax(n, k, 2))n,k.

Hence, the upper left hand part of the desired table of maximal minimum
distances of binary codes looks as follows:

(dmax(n, k, 2))n,k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1
3 2 1
4 2 2 1
5 3 2 2 1
6 4 3 2 2 1
7 4 4 3 2 2 1
8 5 4 4 2 2 2 1
9 6 4 4 3 2 2 2 1
10 6 5 4 4 3 2 2 2 1
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2.2 New Codes from Old and the Minimum Distance 99

From this table we can directly deduce that the upper left hand corner of the
matrix of nmin(k, d, 2) is given by

(nmin(k, d, 2))k,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 . . .
2 3 5 6 8 9 . . .
3 4 6 7 10 . . .
4 5 7 8 . . .
5 6 9 10 . . .
6 7 10 . . .
7 8 . . .
8 9 . . .
9 10 . . .
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, for kmax(n, d, q) we obtain

(kmax(n, d, 2))n,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1
3 2 1
4 3 1 1
5 4 2 1 1
6 5 3 2 1 1
7 6 4 3 1 1 1
8 7 4 4 2 1 1 1
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have seen that the entries in each column of the matrix (dmax(n, k, q))n,k
weakly increase and that the difference between two neighbors in the same
column is at most 1. Now we note that the diagonal concatenation

Γ′ := (Γ | Ik)

of a generator matrix Γ of an (n, k, d, q)-code and the identity matrix Ik gener-
ates an (n + k, k, d′ , q)-code with d′ ≥ d + 1.

2.2.14Corollary For k < n the existence of an (n, k, d, q)-code implies the existence of an
(n + k, k, d′ , q)-code with d′ > d. In particular, this shows that the entries in a column
of the matrix (dmax(n, k, q))n,k increase by at least 1 within an interval of k values for
the length, and so each column of this matrix contains every positive integer at least
once. �

A slight modification of the outer direct sum construction is

100 2. Bounds and Modifications

2.2.15 The (u | u + v)-construction For i = 0, 1 let Ci be an (n, ki, di, q)-code with
generator matrix Γi. We define a linear code C0 | C1 by putting

C0 | C1 :=
{
(c, c + c′)

∣∣ c ∈ C0, c′ ∈ C1
}

.

This code is called the (u | u + v)-construction of C0 and C1. It is also known as
the semidirect sum or Plotkin construction of C0 and C1. A generator matrix of it
is (

Γ0 Γ0

0 Γ1

)
.

The (u | u + v)-construction C0 | C1 has the parameters(
2n, k0 + k1,min{2d0, d1}, q

)
.

Proof: The statements on the generator matrix, the length, and the dimension
of C0 | C1 are clearly true. For the Hamming distance of two different code-
words (c, c + c′) and (w, w + w′) of C0 | C1 the following holds:

d(c, w) + d(c + c′, w + w′) = wt(c − w) + wt(c − w + c′ − w′).

In the case when c′ = w′ this sum is 2d(c, w) ≥ 2d0, while otherwise we obtain
a lower bound:

wt(c − w) + wt(c − w + c′ − w′) ≥
wt(c − w) + wt(c′ −w′)−wt(c − w) = wt(c′ − w′) ≥ d1. �

2.2.16 Example The binary code C0 with check matrix ∆ = 14 is a (4, 3)-code. Each
c ∈ C0 has even parity because of c · ∆� = c0 + c1 + c2 + c3 = 0. Hence, C0

consists of all vectors of even weight in F4
2. We deduce that C0 is a (4, 3, 2)-

parity check code. If C1 denotes the (4, 1, 4)-repetition code, then C0 | C1 is an
(8, 4, 4)-code. �

The next construction allows us to deduce properties of the entries in the
subdiagonals of (dmax(n, k, q))n,k , the entries dmax(n, n − i, q), for i ∈ N fixed.

2.2.17 Shortening a code Assume that the generator matrix Γ = (γij) of C with k > 1
does not contain a column of zeros and that it is (after a permutation of rows)
of the form (

∗ γ0,n−1

Γ′ 0�

)
, where γ0,n−1 �= 0.

We indicate the code generated by the submatrix Γ′ by S(C),

S(C) := {(c0, . . . , cn−2) | (c0, . . . , cn−2, 0) ∈ C}.

2.2 New Codes from Old and the Minimum Distance 101

It is an (n − 1, k − 1, d′)-code with d′ ≥ d and it is called a shortening of C (in
its last coordinate). �

Let k > 1. If there is a codeword of C of weight d the last coordinate of
which is zero, then the shortening S(C) has minimum distance d′ = d. This
implies

2.2.18Corollary If n ≥ k > 1, then we obtain from the existence of (n, k, d, q)-codes the
existence of (n − 1, k − 1, d, q)-codes. This means for the table (dmax(n, k, q))n,k, for
fixed q, that its entries are weakly decreasing down each subdiagonal:

dmax(n − 1, k − 1, q) ≥ dmax(n, k, q). �

This corollary, together with 2.2.4, 2.2.7, 2.2.9, and 2.2.14, yields

2.2.19Theorem The matrix (dmax(n, k, q))n,k of maximal minimum distances of has the
following properties:

1. It is a lower triangular matrix.

2. Its main diagonal consists of 1’s.

3. The entries in each column are weakly increasing from top to bottom.

4. Each column contains every positive integer at least once.

5. The entries in each subdiagonal are weakly decreasing from top left to bottom right.

6. In the binary case each odd positive integer occurs in each column exactly once.
�

Moreover, we obtain via shortening several inequalities for nmin(k, d, q):

2.2.20Lemma The least length nmin(k, d, q) satisfies:

1. If k ≥ 2, then nmin(k, d, q) ≥ nmin(k − 1, d, q) + 1.

2. If d ≥ 2, then nmin(k, d, q) > k.

3. If d ≥ 2, then nmin(k, d, q) ≥ nmin(k, d − 1, q) + 1.

Proof: 1. Assume that C is an (nmin(k, d, q), k, d)-code, k ≥ 2. Shortening C
yields the (nmin(k, d, q) − 1, k − 1, d′)-code S(C) with d′ ≥ d. Consequently

nmin(k − 1, d, q) ≤ nmin(k − 1, d′, q) ≤ nmin(k, d, q) − 1.

2. The second statement can be proved by induction on k, using the second
assertion of 2.1.13.

102 2. Bounds and Modifications

3. We again assume that C is an (nmin(k, d, q), k, d)-code. Since d ≥ 2, we
obtain from the second assertion that k < nmin(k, d, q). The punctured code
Pu(C) is an (nmin(k, d, q) − 1, k, d′)-code with d′ ≥ d − 1. Consequently

nmin(k, d − 1, q) ≤ nmin(k, d′, q) ≤ nmin(k, d, q) − 1,

which completes the proof. �

Exercises

E.2.2.1 Exercise Prove that the weight enumerator of the outer direct sum C0 � C1 is
WC0�C1

(x, y) = WC0 (x, y) ·WC1(x, y).

E.2.2.2 Exercise Let C be a linear code over Fq. For α ∈ Fq let σ(α) be the number
of codewords c ∈ C whose parity sum ∑n

i=0 ci equals α. Prove that either
σ(0) = qk and σ(α) = 0 for α ∈ F∗

q , or σ(α) = qk−1 for all α ∈ Fq. Hint: The
parity sum is a vector space homomorphism C → Fq : c �→ ∑i∈n ci.

2.3 2.3 Further Modifications and Constructions

We continue the description of modifications and constructions.

2.3.1 Prolongation A prolongation of an (n, k)-code C is an (n + 1, k + 1)-code ob-
tained by adding an information place to C. �

2.3.2 Binary Augmentation If Γ is the generator matrix of a binary (n, k, d)-code C
which does not contain the all-one vector, then the code generated by(

1n

Γ

)

is called the (binary) augmentation of C. It contains all codewords of C and
also the complement of each codeword. (The complement of a binary vector
is obtained by replacing each 0 by 1 and vice versa.) The augmentation of C
is an (n, k + 1)-code with minimum distance equal to min {d, n − d′}, where
d′ := max {wt(c) | c ∈ C} is the maximum weight of C. �

In the proof of the Griesmer-bound we encountered another modification
called

2.3 Further Modifications and Constructions 103

2.3.3The A-construction Any binary (n, k, d)-code C is linearly isometric to a code
with generator matrix (

1d 0n−d

∗ Γ′

)
,

whose first row contains a codeword of minimum weight whose entries 1 are
left-aligned. As shown in 2.1.13, the matrix Γ′ generates an (n − d, k − 1)-
code, A(C), called the A-construction. The minimum distance of A(C) is at
least �d/q�. �

2.3.4Example The A-construction enables us to prove that there cannot be a bi-
nary (16, 6, 7)-code. Assume on the contrary that there is a (16, 6, 7)-code
C. Using the A-construction we obtain a binary (9, 5, 4)-code A(C) so that
9 ≥ nmin(5, 4, 2), which contradicts our previous result that nmin(5, 4, 2) = 10.

�

2.3.5Corollary The existence of an (n, k, d, q)-code implies the existence of a linear code of
type

(n − d, k − 1,≥ �d/q�, q). �

The next modification uses the check matrix of a code.

2.3.6The Y1-construction Without loss of generality, we assume that the check ma-
trix ∆ of an (n, k, d)-code with n − 1 > k is of the form

∆ =

(
1d⊥ 0n−d⊥

∗ ∆′

)
,

where the first row is an element of minimum weight d⊥ belonging to C⊥. If
d⊥ ≤ k, then the submatrix ∆′ is the check matrix of an (n − d⊥, k − d⊥ + 1)-
code, whose minimum distance is at least d by 1.3.10. This construction is
called the Y1-construction. �

A generalization of the Y1-construction is

2.3.7The B-construction Assume the existence of an (n, k, d, q)-code C with n− 1 >

k and dmax(n, n− k, q) ≤ k, which guarantees that d⊥ ≤ k. From the (n, k, d, q)-
code C we obtain by Y1-construction an (n− d⊥, k− d⊥ + 1, d′ , q)-code C′ with
d′ ≥ d. Hence, for all s with d⊥ ≤ s ≤ k, the B-construction yields, by successive
shortening, (n − s, k − s + 1)-codes Bs(C) with minimum distance at least d. �

104 2. Bounds and Modifications

2.3.8 Example Using the B-construction, one can give another proof that there is no
binary (16, 6, 7)-code. Assume on the contrary that there is such a code. In or-
der to apply the B-construction, we need an upper bound on the minimum dis-
tance of the dual code, which is a (16, 10)-code. The Hamming-bound shows
that there is no (16, 10, 5)-code, since(

16
0

)
+

(
16
1

)
+

(
16
2

)
= 1 + 16 + 8 · 15 = 137 �≤ 216−10 = 64.

Thus dmax(16, 10, 2) ≤ 4 = s ≤ 6 = k. The assumptions for the B-construction
are satisfied, and we can produce from the (16, 6, 7)-code a (16 − 4, 6 − 4 +
1, 7) = (12, 3, 7)-code. But such a code does not exist because the parameters
do not satisfy the Plotkin-bound:

d = 7 �≤
⌊12 · 22 · 1

23 − 1

⌋
=

⌊48
7

⌋
=
6 + 6/7� = 6.

This shows that the assumption was invalid, i.e. there does not exist a (16, 6, 7)-
code, i.e. dmax(16, 6, 2) ≤ 6. �

Another interesting combination of codes is

2.3.9 The X-construction It applies to chains of codes

C1 ⊂ C0 ⊆ Fn
q ,

which means that C1 is a proper subcode of the code C0. We can assume that C1

is generated by the k1-rowed submatrix Γ1 of the generator matrix

Γ0 =

(
Γ′

Γ1

)
of C0 with 1 ≤ k1 < k0. If C2 denotes an (n2, k0 − k1, d2)-code with generator
matrix Γ2, then

Γ =

(
Γ′ Γ2

Γ1 0

)
generates a code C called the X-construction, which is of type (n0 + n2, k0, d, q)
with d ≥ min{d1, d0 + d2}.

Proof: The statements on the length and on the dimension are obviously true.
The surjective linear mapping

φ : C0 → C2 : v · Γ0 �→ v ·
(

Γ2

0

)
, v ∈ Fk1

q ,

is well-defined and has kernel C1. Therefore, the code C has the form

C =
{
(c, φ(c))

∣∣ c ∈ C0
}

.

2.3 Further Modifications and Constructions 105

For each nonzero c ∈ C0 the following holds:

wt(c, φ(c)) = wt(c) + wt(φ(c)) ≥
{

d1 if c ∈ C1,
d0 + d2 else.

�

2.3.10Example The binary (5, 3, 1)-code C0 generated by

Γ0 =

⎛⎜⎝ 0 0 1 1 0
0 0 0 0 1
1 1 1 0 1

⎞⎟⎠
contains a (5, 1, 4)-subcode C1 with generator matrix Γ1 = (1 1 1 0 1).
Together with the binary (3, 2, 2)-code C2, generated by

Γ2 =

(
1 1 0
0 1 1

)

we obtain via X-construction an (8, 3, 3)-code with generator matrix

Γ =

⎛⎜⎝ 0 0 1 1 0 1 1 0
0 0 0 0 1 0 1 1
1 1 1 0 1 0 0 0

⎞⎟⎠ .

�

Now we introduce a construction that gives, for example, one of the most
famous codes, the binary Golay-code G24.

2.3.11The (u + w | v + w | u + v + w)-construction For i = 0, 1 let Ci be an
(n, ki, di, q)-code, generated by Γi. The (u + w | v + w | u + v + w)-construction,
applied to C0 and C1, is the linear code with generator matrix⎛⎜⎝ Γ0 0 Γ0

Γ1 Γ1 Γ1

0 Γ0 Γ0

⎞⎟⎠ .

It is, therefore, the following set:

{(u + w | v + w | u + v + w) | u, v ∈ C0, w ∈ C1} .

It is a (3n, 2k0 + k1)-code. �

106 2. Bounds and Modifications

Here is the announced prominent example:

2.3.12 Example Let C0 be the extended third-order binary Hamming-code with gen-
erator matrix Γ0 as in 2.2.5. Now reverse the columns of the (unextended)
Hamming-code, and let C1 be the parity extension of this code, i.e. C1 is gen-
erated by

Γ1 :=

⎛⎜⎜⎜⎝
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 0

⎞⎟⎟⎟⎠ .

We know that C0 and C1 are both (8, 4, 4, 2)-codes. From the (u + w | v + w |
u + v + w) construction, we obtain the following generator matrix Γ = Γ24 of
a binary (24, 12)-code.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0
0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.2.3.13

One can show (see below) that its minimum distance is 8. This code is the
binary Golay-code G24, one of the most prominent linear codes. In fact, it can
be shown that this code is the unique (up to linear isometry) code with pa-
rameters (24, 12, 8, 2). It played an important role during the Voyager 1 and 2
missions to Jupiter and Saturn in the late 1970s. A reason for its importance is
that it carries many interesting combinatorial structures (like Steiner systems,
etc.), and it was used even in the classification of finite simple groups (cf. [40]).

�

2.3.14 Theorem The binary code C generated by the matrix Γ24 of 2.3.13 is a self-dual
(24, 12, 8)-code.

2.3 Further Modifications and Constructions 107

Proof: The codes C0 and C1 consist of 16 words of length 8 each, as shown in
Table 2.1.

Table 2.1 The words of C0 and C1

message v v · Γ0 v · Γ1

(0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0)
(1, 0, 0, 0) (1, 1, 0, 1, 0, 0, 0, 1) (0, 0, 0, 1, 0, 1, 1, 1)
(0, 1, 0, 0) (1, 0, 1, 0, 1, 0, 0, 1) (0, 0, 1, 0, 1, 0, 1, 1)
(1, 1, 0, 0) (0, 1, 1, 1, 1, 0, 0, 0) (0, 0, 1, 1, 1, 1, 0, 0)
(0, 0, 1, 0) (0, 1, 1, 0, 0, 1, 0, 1) (0, 1, 0, 0, 1, 1, 0, 1)
(1, 0, 1, 0) (1, 0, 1, 1, 0, 1, 0, 0) (0, 1, 0, 1, 1, 0, 1, 0)
(0, 1, 1, 0) (1, 1, 0, 0, 1, 1, 0, 0) (0, 1, 1, 0, 0, 1, 1, 0)
(1, 1, 1, 0) (0, 0, 0, 1, 1, 1, 0, 1) (0, 1, 1, 1, 0, 0, 0, 1)
(0, 0, 0, 1) (1, 1, 1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 1, 1, 1, 0)
(1, 0, 0, 1) (0, 0, 1, 1, 0, 0, 1, 1) (1, 0, 0, 1, 1, 0, 0, 1)
(0, 1, 0, 1) (0, 1, 0, 0, 1, 0, 1, 1) (1, 0, 1, 0, 0, 1, 0, 1)
(1, 1, 0, 1) (1, 0, 0, 1, 1, 0, 1, 0) (1, 0, 1, 1, 0, 0, 1, 0)
(0, 0, 1, 1) (1, 0, 0, 0, 0, 1, 1, 1) (1, 1, 0, 0, 0, 0, 1, 1)
(1, 0, 1, 1) (0, 1, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 0, 1, 0, 0)
(0, 1, 1, 1) (0, 0, 1, 0, 1, 1, 1, 0) (1, 1, 1, 0, 1, 0, 0, 0)
(1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1)

By inspection, we see that C0 ∩ C1 = {08, 18}. Also, we know that C0 and C1

are both self-dual with weight enumerator 1 + 14x4 + x8. The statement about
the dimension of C is clear, since the 12 vectors of the form (u, 0, u), (0, v, v)
and (w, w, w) are linearly independent, provided that u and v run through a
basis of C0 and w is taken from a basis for C1. It is easy to check that C is
self-orthogonal, and hence self-dual (Exercise 2.3.2). By Exercise 1.3.19, in a
self-orthogonal code, the sum of 4-divisible codewords is 4-divisible. In C,
any word can be written as a sum of vectors of the form (u, 0, u), (0, v, v) and
(w, w, w), with u, v ∈ C0 and w ∈ C1. Since u, v and w are all 4-divisible, so
are the three vectors and hence any vector in C. To show that the minimum
distance of C is 8, we need to exclude the existence of words of weight 4. For
this, let us assume that c ∈ C is a word of weight less than 8. By Exercise 1.2.14,
the sum of even vectors is even. Hence each of the three components of c =
(u + w, v + w, u + v + w) is even. In order to have weight either 4 or 0, at
least one of the components must be zero. But u, v ∈ C0 and w ∈ C1, and we
have seen that C0 ∩ C1 consists of 08 and 18. Consider the case w = 08. Then
c = (u, v, u + v). Since C0 only has words of weight 0, 4 and 8, we have c = 0.
Otherwise, if w = 18, then c = (u + 1, v + 1, u + v + 1). Again it follows that
c = 0. This proves the assertion. �

108 2. Bounds and Modifications

A further important way of combining two codes is the following product:

2.3.15 The tensor product We recall from multilinear algebra that the tensor product
C0 ⊗ C1 of two linear codes C0, C1 can be defined as follows: It consists of the
elements c ⊗ c′, where c ∈ C0 and c′ ∈ C1, and

c ⊗ c′ :=
(
c0c′0, . . . , c0c′n1−1, . . . , cn0−1c

′
0, . . . , cn0−1c

′
n1−1

)
.

In other words, the generator matrix is the Kronecker product

Γ := Γ0 ⊗ Γ1 :=

⎛⎜⎝ γ00Γ1 . . . γ0,n0−1Γ1

.
γk0−1,0Γ1 . . . γk0−1,n0−1Γ1

⎞⎟⎠ .

If Ci is a (ni, ki, di)-code, then by Exercise 2.3.5 the parameters of C := C1 ⊕ C2

are
(n, k, d, q) = (n0n1, k0k1, d0d1, q). �

2.3.16 Examples The product C0 ⊗ C0 of the binary (7, 4)-Hamming-code C0 with
itself is a binary (49, 16, 9)-code. If we denote by C1 the binary (7, 1)-repetition
code, then each word of the product code C0 ⊗ C1 can be obtained as a 7-fold
repetition of a codeword in C0. �

The next two constructions modify the field over which the codes are con-
sidered. For the reader not familiar with the theory of finite fields, the missing
details will be presented in Chapter 3.

2.3.17 Restriction The restriction of a code C over Fq of length n to a subfield F of Fq

is the code
C ↓ F := C ∩ Fn,

when considered as a linear code over F. �

A different way of constructing from a code over Fq a code over a subfield
F uses the fact that Fq is a vector space over F.

2.3.18 Blowing up If m is the F-dimension of Fq and

B = {β0, . . . , βm−1}

is an F-basis of Fq, then we obtain from the (n, k)-code C over Fq a linear code
of length mn over F by replacing the components of the codewords in C by
the m-tuples with respect to the basis B. This new code is called the blow up
of C with respect to B. We denote it by BlB(C). Formally speaking, we obtain
BlB(C) as the image ψB(C) of C under the linear map

ψB : Fn
q → Fmn : (c0, . . . , cn−1) �→

(
φB(c0) | . . . | φB(cn−1)

)
,

2.3 Further Modifications and Constructions 109

which is the n-fold extension of the coordinate map

φB : Fq → Fm : ∑
i∈m

κiβi �→ (κ0, . . . , κm−1),

with respect to the basis B. This shows that each Fq-basis {b(0), . . . , b(k−1)} of
C yields an F-basis {ψB(βib(j)) | i ∈ m, j ∈ k} of BlB(C). The code BlB(C) is
therefore an (mn, mk)-code over F. Its minimum distance d′ satisfies d′ ≥ d,
since from ci �= 0 we obtain φB(ci) �= 0, and so wt(φB(c0), . . . , φB(cn−1)) ≥
wt(c) holds true for each c = (c0, . . . , cn−1) ∈ C. �

2.3.19Example The field F4 consists of the elements

0, 1, α, α2,

where α is a root of the polynomial x2 + x + 1 and, therefore, α2 = α + 1. We
consider the (3, 2)-code C over F4 with generator matrix

Γ =

(
1 α2 0
0 1 α2

)
.

It consists of the following codewords:

000 01α2 1α20 α201
0α1 α10 10α 0α2α

α2α0 α0α2 111 ααα

α2α2α2 1αα2 αα21 α21α.

This shows that C has minimum distance 2. Its blow up BlB(C) with respect to
the F2-basis B = {α, α2} of F4 is a binary code, consisting of the words

000000 001101 110100 010011
001011 101100 110010 000110
011000 100001 111111 101010
010101 111001 100111 011110.

Hence, BlB(C) is a (6, 4, 2)-code. The restriction of C to F2 is the repetition code
{000, 111}. �

Let us summarize the results on lower and upper bounds for dmax(n, k, q).
Following the ideas of T. Verhoeff [195], we may express the bounds in terms
of two predicates,

(Lb, n, k, d, q) :⇐⇒ there exists an (n, k, d, q)-code

and
(Ub, n, k, d, q) :⇐⇒ there does not exist an (n, k, d, q)-code,

110 2. Bounds and Modifications

so that

(Lb, n, k, d1, q) ∧ (Ub, n, k, d2, q) =⇒ d1 ≤ dmax(n, k, q) < d2.

For example, the predicates

(Lb, n, n, 1, q), (Ub, n, n, 2, q), (Lb, n, 1, n, q), and (Ub, n, 1, n + 1, q)

hold true, since over any field Fq and for any length n there is the (n, n, 1)-code
H(n, q) and the (n, 1, n)-repetition code.

If M denotes one of the modifications of codes described above, then we
may deduce further predicates, which we shall denote as M(b, n, k, d, q). Here,
b stands for either Lb or Ub and (b, n, k, d, q) denotes a previously known pred-
icate. Thus, we can consider the modifications as operators on the set of pred-
icates. The goal is to tabulate the best known lower and upper bounds for the
minimum distance of a linear code with a given length n and dimension k. This
can be done in a systematic way by applying all modifications to an initial set
of predicates. If this process is repeated sufficiently often, the resulting table
will eventually be invariant under these modifications. Let

LB(n, k, q) := max {d | Lb(n, k, d, q)} , UB(n, k, q) := min {d | Ub(n, k, d, q)} .

In the following, we will restrict our attention to binary codes and therefore we
will omit the parameter q = 2 from the list of arguments. For the nonbinary
case, see Exercise 2.3.11.

2.3.20 Theorem For binary codes the following is true:

1. Parity extension:

P(Lb, n, k, d) =
{

(Lb, n + 1, k, d + 1) if d is odd,
(Lb, n + 1, k, d) otherwise,

n ≥ 1,

P(Ub, n, k, d) =
{

(Ub, n − 1, k, d − 1) if d ≥ 2 is even,
(Ub, n − 1, k, d) otherwise,

n > k ≥ 1.

2. Puncturing:

Pu(Lb, n, k, d) = (Lb, n − 1, k, d − 1) for n > k and d > 1,

Pu(Ub, n, k, d) = (Ub, n + 1, k, d + 1).

3. Shortening:

S(Lb, n, k, d) = (Lb, n − 1, k − 1, d) for k > 1,

S(Ub, n, k, d) = (Ub, n + 1, k + 1, d).

2.3 Further Modifications and Constructions 111

4. A-construction:

A(Lb, n, k, d) = (Lb, n − d, k − 1, �d/2�) for k > 1,

A(Ub, n, k, d) = (Ub, n + 2d, k + 1, 2d).

5. B-construction:

B1(Lb, n, k, d) = (Lb, n − s, k − s + 1, d)

for UB(n, n − k)− 1 ≤ s ≤ k.

B2(Ub, n, �, s + 1) = (Lb, n − s, n − � − s + 1, LB(n, n − �))

for UB(n, �)− 1 ≤ s ≤ n − �.

B3(Ub, n, k, d) = (Ub, n + s, k + s − 1, d),

for UB(n + s, n − k + 1) − 1 ≤ s.

B4(Ub, n, �, s + 1) = (Ub, n, n − �,UB(n − s, n − � − s + 1))

for UB(n, �)− 1 ≤ s ≤ n − �.

Proof: The statements concerning parity extension, puncturing, shortening,
and the A-construction are obvious. The B-construction gives, for k ≥ s ≥
UB(n, n − k) − 1,

(Lb, n, k, d) ∧ (Ub, n, n − k, s + 1) =⇒ (Lb, n − s, k − s + 1, d) 2.3.21

and

(Ub, n, k, d) ∧ (Ub, n + s, n − k + 1, s + 1) =⇒ (Ub, n + s, k + s − 1, d). 2.3.22

B1 and B2 come from 2.3.21, by keeping the first, respectively the second mem-
ber of the conjunction fixed. Analogously we obtain B3 and B4 from 2.3.22. The
details are left to the reader (Exercise 2.3.9). �

An invariant table of bounds can be improved by externally obtained bounds
or by applications of non-primitive operations. Good lower bounds can be
obtained from cyclic codes, from generalized Reed–Solomon-codes, from Al-
ternant-, or Goppa-codes. We introduce these codes later in the Sections 4.5
and 4.6. Typical nonprimitive operations that can be used for such improve-
ments of parameter tables are code combinations like the outer direct sum,
(u, v)-construction, (u | u + v)construction, or the tensor product. In the case
when we use prolongation methods, then we obtain infinitely many entries, in
which case we must restrict attention to a maximal block length nmax.

In case a new predicate Q = (b, n, k, d, q) has been found, the invariance of
the parameter table can be restored by the following recursive algorithm:

112 2. Bounds and Modifications

2.3.23 Algorithm To enter a bound in a table of parameter bounds:
Input: A predicate Q, a table of parameters.
Output: The invariant table of parameters that takes Q into account.

Update(Q)

(1) if Q improves the table then

(2) insert Q into the table;

(3) for each primitive modification M do

(4) Update(M(Q))
(5) end do

(6) end if �

An application of this algorithm to a table of code parameters usually produces
many primitive operations that do not improve the table. If we are given two
lower bounds for the minimum distance of (n, k)-codes over Fq, then the larger
one is considered better. Similarly, the smaller upper bound is preferred. In
terms of predicates, with Q1 = (b, n, k, d1, q) and Q2 = (b, n, k, d2, q) we put

(b, n, k, d1, q) ≤ (b, n, k, d2, q) :⇐⇒
{

d1 ≤ d2 if b = Lb,
d1 ≥ d2 if b = Ub.

Therefore, Q1 ≤ Q2 means that the predicate Q2 is an estimate which is at least
as sharp for dmax(n, k, q) as Q1. This notion can also be used to compare prim-
itive modifications M1 and M2. We write M1 ≤ M2 in order to indicate that
for each predicate Q contained in the range of both M1 and M2, the inequality
M1(Q) ≤ M2(Q) holds true. We can use that in order to define

M1 = M2 :⇐⇒ M1 ≤ M2 ∧ M2 ≤ M1.

For example, the operations A and S commute in the binary case, since

(S ◦ A)(Lb, n, k, d, 2) = S(Lb, n − d, k − 1, �d/2�, 2)
= (Lb, n − d − 1, k − 2, �d/2�, 2)
= A(Lb, n − 1, k − 1, d, 2)

= (A ◦ S)(Lb, n, k, d, 2)

and

(S ◦ A)(Ub, n, k, d, 2) = S(Ub, n + 2d, k + 1, 2d, 2)

= (Ub, n + 2d + 1, k + 2, 2d, 2)

= A(Ub, n + 1, k + 1, d, 2)

= (A ◦ S)(Ub, n, k, d, 2).

2.3 Further Modifications and Constructions 113

A detailed analysis of the primitive modifications allows the reduction of the
number of recursive calls of functions in Update (see Exercise 2.3.11).

Besides the primitive operations we have also discussed some methods for
the combination of linear codes. Now we describe how they can be used to
improve a table of bounds for dmax(n, k, d, q). Among others we have obtained
the following rules:

2.3.24Corollary

1. Outer direct sum:

(Lb, n1, k1, d1, q) ∧ (Lb, n2, k2, d2, q) ⇒ (Lb, n1 + n2, k1 + k2,min{d1, d2}, q).

2. (u | u + v)-construction:

(Lb, n, k1, d1, q) ∧ (Lb, n, k2, d2, q) ⇒ (Lb, 2n, k1 + k2,min{2d1, d2}, q).

3. Tensor product:

(Lb, n1, k1, d1, q) ∧ (Lb, n2, k2, d2, q) ⇒ (Lb, n1n2, k1k2, d1d2, q). �

We refrain from giving the corresponding upper bounds since their influence
on the quality of a parameter table has shown to be rather small [203]. Further
details on the construction of an invariant table of parameters and its improve-
ment by using code combinations can be found in Exercise 2.3.11.

Exercises

E.2.3.1Exercise For binary codes, prove the following expression for the weight of
the elements in a (u + w | v + w | u + v + w)-construction:

wt(u + w | v + w | u + v + w) = 2 ·wt(u ∨ v)−wt(w) + 4 · s,

where s := |{i | ui = vi = 0, wi = 1}| and u ∨ v is as defined in Exercise 1.2.14.
Derive from this equation that the minimum distance of G24 is 8.

E.2.3.2Exercise Verify that the code generated by Γ24 in 2.3.12 is self-orthogonal.

E.2.3.3Exercise Confirm the parameters of the augmentation of a linear code given
in 2.3.2.

114 2. Bounds and Modifications

E.2.3.4 Exercise In Multilinear Algebra the tensor product U ⊗ V of the Fq-vector
spaces U and V of finite dimension is defined to be the factor group

U ⊗V := ZU×V/T.

Here ZU×V means the free abelian group over the cartesian product U × V,
the set of mappings f from U × V to Z with pointwise addition. The set T
indicates the subgroup of ZU×V generated by the elements of the following
forms

(u + u′, v) − (u, v)− (u′, v),
(u, v + v′)− (u, v) − (u, v′),
(u, αv)− (αu, v),

with u, u′ ∈ U, v, v′ ∈ V, and α ∈ Fq. The pair (u, v) ∈ U × V stands for the
element f(u,v) ∈ ZU×V , defined by

f(u,v)(x, y) =
{

1 if (u, v) = (x, y),
0 else.

The elements in U ⊗V are called tensors.

1. Prove that the canonical mapping from ZU×V onto the factor group, i.e.

⊗ : ZU×V → ZU×V/T : (u, v) �→ u ⊗ v := (u, v) + T,

satisfies the rules

(u + u′)⊗ v = u ⊗ v + u′ ⊗ v,

u ⊗ (v + v′) = u ⊗ v + u ⊗ v′,

u ⊗ (αv) = (αu)⊗ v.

2. Verify that U ⊗V turns into an Fq-vector space via

α ∑
i

(
u(i) ⊗ v(i)

)
:= ∑

i

(
(αu(i))⊗ v(i)

)
, α ∈ Fq.

The elements of U ⊗ V are finite sums ∑i

(
u(i) ⊗ v(i)

)
with u(i) ∈ U and

v(i) ∈ V.

3. Show that, if B is a basis of U and B′ a basis of V, then{
b ⊗ b′

∣∣ b ∈ B, b′ ∈ B′}
is a basis of U ⊗V.

4. Check that each element of U ⊗V can uniquely be expressed in the form

∑
b∈B, b′∈B′

αbb′
(
b ⊗ b′

)
, αbb′ ∈ Fq,

2.3 Further Modifications and Constructions 115

and we have
dim(U ⊗V) = dim(U) · dim(V).

5. Show that the mapping

Φm,n : Fm
q ⊗ Fn

q → Fm×n
q : ∑

i∈m
∑
j∈n

(
αije

(i) ⊗ f (j)
)
�→ (αij)i,j,

(where e(i) and f (j) denote the respective unit vectors in Fm
q and Fn

q) is
an Fq-isomorphism. So the elements of Fm

q ⊗ Fn
q can be written as m × n-

matrices, and we can speak of rows and columns of a tensor.

E.2.3.5Exercise Assume that Ci is a linear (ni, ki, di, q)-code for i = 0, 1. Show that
C0 ⊗ C1 is an (n0n1, k0k1, d0d1, q)-code.

E.2.3.6Exercise Let C be a binary (3, 2)-parity check code. Evaluate the elements of
the product code C ⊗ C.

E.2.3.7Exercise Evaluate a generator matrix of the binary code obtained in 2.3.18 by
blowing up.

E.2.3.8Exercise Suppose that C is an (n, k, d)-code with n > k > 1 and c′ ∈ C⊥ has
wt(c′) = d′. Show that an (n − 1, k − 1, d)-code exists, the dual code of which
contains a codeword of weight d′ − 1.

E.2.3.9Exercise Prove 2.3.20 and rephrase it for nonbinary codes.

E.2.3.10Exercise Assume that M is a primitive modification on codes. Iterating the
operation M until it does not change the parameters any more is denoted by
M∗. Prove that the following assertions (cf. [203]) are true:

P ◦ Pu = id for even d

P ◦ Pu ≤ id for each d

Pu ◦ P = id for odd d

Pu ◦ P ≤ id for each d

P ◦ S = S ◦ P

Pu ◦ S = S ◦ Pu,

where id denotes the identity mapping on the predicates.

116 2. Bounds and Modifications

Show that for lower bounds we have:

A ◦ P ≤ P∗ ◦ A

A ◦ Pu ≤ A

A ◦ S = S ◦ A,

while for upper bounds

A ◦ P = P ◦ A for even d

(Pu)3 ◦ A = A ◦ Pu

A ◦ S = S ◦ A.

E.2.3.11 Exercise Implement a database for the lower and upper bounds of linear bi-
nary codes, i.e. of 5-tuples of the form (b, n, k, d, q) where b = Lb or b = Ub
and q = 2.

1. Implement each of the primitive modifications of 2.3.20.

2. Write a procedure that initializes the database with the “trivial” bounds

(Lb, n, n, 1, q), (Lb, n, 1, n, q), (Ub, n, n, 2, q), (Ub, n, 1, n + 1, q)

for all nonnegative n up to a user defined maximal length nmax.

3. Allow for input of external lower and upper bounds to the parameter ta-
ble. Note that this addition should be combined with an application of the
procedure Update.

4. Develop a procedure which applies, for fixed block length n ≤ nmax, the
following rules (see 2.3.24) to the entries (lower bounds) of the tables and
which inserts newly found lower bounds for codes of length n:

Outer direct sum:

(Lb, n0, k0, d0, q)∧ (Lb, n−n0, k1, d1, q) ⇒ (Lb, n, k0 + k1,min{d0, d1}, q).
(u | u + v)-construction:

(Lb,
n
2

, k0, d0, q) ∧ (Lb,
n
2

, k1, d1, q) ⇒ (Lb, n, k0 + k1,min{2d0, d1}, q).

Tensor product:

(Lb, n0, k0, d0, q) ∧ (Lb,
n
n0

, k1, d1, q) ⇒ (Lb, n, k0k1, d0d1, q).

5. Use the program in order to search for good codes. After the initializa-
tion of the table, add lower bounds from the existence results of Chapter 9.
Also, use parameters of Reed–Muller-codes (cf. Section 2.4), BCH-codes
(Section 4.3) as lower bounds. Then apply the combination methods de-
scribed above. Compare the results with the list of best known binary lin-
ear codes [32].

2.3 Further Modifications and Constructions 117

E.2.3.12Exercise Assume that Ci is a linear code with check matrix ∆i for i = 0, 1.
Show that (

∆0 0
0 ∆1

)
is a check matrix of C0 � C1.

E.2.3.13Exercise Let C0, C1 and C2 be linear codes. Prove the following properties of
the outer direct sum:

If C0 is linearly isometric to C′
0 and C1 linearly isometric to C′

1, then C0 � C1

is linearly isometric to C′
0 � C′

1.

C0 � C1 is linearly isometric to C1 � C0.

C0 � (C1 � C2) = (C0 � C1) � C2.

(C0 � C1)
⊥ = C⊥

0 � C⊥
1 .

E.2.3.14Exercise Let A, B, C and D be matrices over a field F. Prove the following
properties of the Kronecker product:

A ⊗ (B⊗ C) = (A⊗ B)⊗ C.

(A ⊗ B)� = B� ⊗ A�.

If the number of columns of A respectively B coincides with the number of
rows of C respectively D, then (A ⊗ B) · (C ⊗ D) = (A · C)⊗ (B · D).

If A is an r × s-matrix and B a t × u-matrix, then there exist permutations
π ∈ Srt and σ ∈ Ssu, so that A ⊗ B = Mπ · (B ⊗ A) · Mσ, where Mπ and
Mσ are the permutation matrices corresponding to π and σ. Determine the
two permutations π and σ which depend only on the numbers r, s, t, and u
but not on the particular values of the matrices A and B.

E.2.3.15Exercise Let C0, C1 and C2 be linear codes. Prove the following properties of
the tensor product:

If C0 is linearly isometric to C′
0 and C1 linearly isometric to C′

1, then C0 ⊗C1

is linearly isometric to C′
0 ⊗ C′

1.

C0 ⊗ C1 is linearly isometric to C1 ⊗ C0.

C0 ⊗ (C1 ⊗ C2) is linearly isometric to (C0 ⊗ C1)⊗ C2.

C0 ⊗ (C1 � C2) is linearly isometric to (C0 ⊗ C1) � (C0 ⊗ C2).

In general, (C0 ⊗ C1)
⊥ is not linearly isometric to C⊥

0 ⊗ C⊥
1 .

118 2. Bounds and Modifications

E.2.3.16 Exercise Assume that Ci is a linear (ni, ki)-code with a systematic generator
matrix (Iki

| Ai) for i = 0, 1. Show that C0 ⊗C1 is linearly isometric to the code
generated by

(Ik0 ⊗ Ik1
| Ik0 ⊗ A1 | A0 ⊗ Ik1

| A0 ⊗ A1).

If we denote the last n0n1 − k0k1 columns of this matrix by B, prove that
(In0n1−k0k1

| −B�) is a check matrix of a code linearly isometric to C0 ⊗ C1.

E.2.3.17 Exercise Let C0, C1 and C2 be linear codes and denote the linear isometry of
a linear code C by Ĉ. Deduce from Exercise 2.3.13 and Exercise 2.3.15 that the
following sum and product of linear isometry classes

Ĉ0 � Ĉ1 := Ĉ0 � C1, Ĉ0 ⊗ Ĉ1 := Ĉ0 ⊗ C1

are well-defined. Moreover, prove the following assertions:

Ĉ0 � Ĉ1 = Ĉ1 � Ĉ0.

Ĉ0 � (Ĉ1 � Ĉ2) = (Ĉ0 � Ĉ1) � Ĉ2.

Ĉ0 ⊗ Ĉ1 = Ĉ1 ⊗ Ĉ0.

Ĉ0 ⊗ (Ĉ1 ⊗ Ĉ2) = (Ĉ0 ⊗ Ĉ1)⊗ Ĉ2.

Ĉ0 ⊗ (Ĉ1 � Ĉ2) = (Ĉ0 ⊗ Ĉ1) � (Ĉ0 ⊗ Ĉ2).

The linear (1, 1)-code D with generator matrix Γ = (1) satisfies Ĉ ⊗ D̂ =
D̂ ⊗ Ĉ = Ĉ for all linear isometry classes Ĉ.

2.4 2.4 Reed–Muller-Codes

From 1969 until 1977, spacecrafts of NASA were equipped with a 7-error-
correcting binary (32, 6)-code, a Reed–Muller-code. This is a low rate code
with good error correction capabilities. A very prominent mission was Mar-
iner 9, which was devoted to the photographic observation of the surface of
Mars. Mariner 9 actually entered a Martian orbit in 1971 and became a satel-
lite. The mission was complicated by a heavy dust storm which engulfed the
whole Martian surface. It was not until 1972 that the storm subsided and
the first clear photos arrived and changed our view of that planet so pro-
foundly. We introduce the Reed–Muller-codes following the original ideas
of D.E. Muller [154], who discovered their binary version. However, we will
present the more general version of these codes which works for all finite fields
Fq. Later on, we will specialize to the binary case.

2.4 Reed–Muller-Codes 119

Reed–Muller-codes are subspaces of the vector space of all mappings

f : Fm
q → Fq : (u0, . . . , um−1) �→ f (u0, . . . , um−1)

with pointwise addition (f + g)(u) := f (u) + g(u) and scalar multiplication
(α f)(u) := α · f (u) for u ∈ Fm

q and α ∈ Fq. Together with pointwise mul-
tiplication (f g)(u) := f (u)g(u), this set of mappings forms the Fq-algebra
(Exercise 2.4.1)

Bq
m.

In the case q = 2 these are the well-known Boolean functions or switching
functions of degree m. It is helpful to note that these functions f are polyno-
mial, i.e. for each f ∈ Bq

m there exists a polynomial f̃ ∈ Fq[x0, . . . , xm−1] such
that f (u) = f̃ (u0, . . . , um−1) for all u ∈ Fm

q . For this purpose, we consider both
Bq

m and the space of polynomial functions as vector spaces. Our first goal is to
exhibit a basis for this space.

The “unit vectors” of Bq
m are the functions fu for u = (u0, . . . , um−1) ∈ Fm

q
with

fu(v) =
{

1 if v = u,
0 else.

A function from Fm
q to Fq that takes exactly the same values as fu is obtained

from the polynomial

f̃u(x0, . . . , xm−1) := ∏
i∈m

(
1− (xi − ui)q−1

)
∈ Fq[x0, . . . , xm−1]. 2.4.1

Since uq−1 = 1, for each element u ∈ F∗
q (see 3.2.2), (xi − ui)q−1 = 1 if xi �= ui,

and so it is clear that this polynomial takes the value 1 exactly at

(x0, . . . , xm−1) = (u0, . . . , um−1) ∈ Fm
q

and 0 elsewhere. Any f in Bq
m is a linear combination

f = ∑
u∈Fm

q

f (u) fu 2.4.2

of unit vectors fu, i.e. every element of Bq
m is a polynomial function. Hence the

fu generate Bq
m as a vector space. However, the representation is not unique.

The non-uniqueness lies in the fact that xq − x is identically zero on Fq. Thus
two polynomials f and g in Fq[x0, . . . , xm−1] induce the same function if and
only if f and g are congruent modulo xq

0 − x0, . . . , x
q
m−1 − xm−1. This means

that f and g cannot be distinguished from their functions if and only if their
difference f − g is a polynomial in the terms xq

i − xi for i = 0, . . . , m − 1. Let
us see what this condition means in terms of monomials. We use multi-index
notation and let xb denote the monomial xb0

0 · · · xbm−1
m−1 for b = (b0, . . . , bm−1).

120 2. Bounds and Modifications

Applying the relation xq
i − xi means reducing the exponent bi modulo q − 1 in

the following sense: If bi is either zero or not divisible by q − 1 then xbi
i may

be replaced by xai
i where ai is the remainder after dividing bi by q − 1, i.e. ai is

the unique integer in bi = c(q− 1) + ai with 0 ≤ ai < q− 1 (where c is another
suitable integer). If q − 1 divides bi �= 0 then xbi

i may be replaced by xq−1
i . It

is clear that any polynomial f ∈ Fq[x0, . . . , xm−1] may be reduced to one whose
monomials xa satisfy 0 ≤ ai ≤ q− 1 for i = 0, . . . , m− 1. The main point is that
if we restrict to polynomials in Fq[x0, . . . , xm−1] which are reduced in this sense
then any function in Bq

m can be expressed uniquely as a reduced polynomial.
We summarize this as

2.4.3 Theorem The Fq-algebra Bq
m is isomorphic to the ring of polynomials

Fq[x0, . . . , xm−1]

modulo xq
0 − x0, . . . , x

q
m−1 − xm−1. An Fq-basis is given by the reduced polynomials{

xb0
0 . . . xbm−1

m−1

∣∣∣ bi ∈ q
}

. �

Because of this result, we will identify the elements f of Bq
m with polynomial

functions in the following.
In the theory of switching functions, the multinomials xb = xb0

0 . . . xbm−1
m−1

are called minterms. The degree of xb is the sum of its exponents ∑i bi, and the
degree of f ∈ Bq

m is defined to be the largest degree of a multinomial xb which
occurs in a reduced expression of f with a nonzero coefficient (which is at most
m(q− 1) by the preceding discussion).

Bounding the degree of the polynomials to any number t ≤ m(q − 1) re-
sults in a vector subspace of Bq

m (but not a sub-algebra). This enables us to
define the Reed–Muller-codes in the following way:

2.4.4 Definition (Reed–Muller-code) Assume that 0 ≤ t ≤ m(q − 1). The t-th order
Reed–Muller-code of degree m over Fq is defined to be

RM q
m,t :=

{
f ∈ Bq

m

∣∣∣ deg f ≤ t or f = 0
}

.

The considerations above show that the elements of this code can be described
in two ways, either as mappings or as polynomials. If we think of them as
mappings, we may display the images of all vectors. We may do so by defining
another vector of length qm whose i-th entry is the value of the i-th vector of
Fm

q . Of course, one needs to fix an ordering on the elements of Fm
q for this. Here

are a few examples:

2.4 Reed–Muller-Codes 121

2.4.5Examples

The 0-th order binary Reed–Muller-code of length n = 2m consists of the
two constant functions 0 and 1. Hence RM2

m,0 is the n-th order binary rep-
etition code.

The m-th order binary Reed–Muller-code of length 2m consists of all vectors
in F2m

2 .

The first order binary Reed–Muller-code RM2
2,1 of degree 2 is of length 4

and consists of the vectors in the following table. (In the left column we list
the polynomial f and in the right column the values of the corresponding
polynomial function.)

f f (00) f (10) f (01) f (11)
0 0 0 0 0
1 1 1 1 1
x0 0 1 0 1
x1 0 0 1 1
x0 + x1 0 1 1 0
1 + x0 1 0 1 0
1 + x1 1 1 0 0
1 + x0 + x1 1 0 0 1

The second order binary Reed–Muller-code RM2
2,2 of degree 2 is of length

4 and contains the elements of RM2
2,1 together with the codewords shown

in the following table:

f f (00) f (10) f (01) f (11)
x0x1 0 0 0 1
1 + x0x1 1 1 1 0
x0 + x0x1 0 1 0 0
x1 + x0x1 0 0 1 0
x0 + x1 + x0x1 0 1 1 1
1 + x0 + x0x1 1 0 1 1
1 + x1 + x0x1 1 1 0 1
1 + x0 + x1 + x0x1 1 0 0 0

A closer examination of RM2
2,2 shows its recursive structure: Each of the 16

polynomials f in

{0, 1, x0, x1, . . . , 1 + x1 + x0x1, 1 + x0 + x1 + x0x1}

can be written as f = h + x1g, where both h and g are polynomials in the
single indeterminate x0, and therefore uniquely determined. For example,

1 + x1 + x0x1 = 1 + x1(1 + x0) = h + x1g.

122 2. Bounds and Modifications

The mappings h (= 1) and g (= 1 + x0) take F1
2 = {(0), (1)} to F2, and so

f : {(00), (10), (01), (11)} → F2 : (x0, x1) �→ h(x0) + x1g(x0),

is of the form

f = (h(0), h(1), h(0) + 1 · g(0), h(1) + 1 · g(1)).

In terms of code constructions (recall 2.2.15),

f = (h | h + g),

i.e. we obtain

RM2
2,2 = RM2

1,2︸ ︷︷ ︸
=RM2

1,1

| RM2
1,1,

an (u | u + v)-construction! �

More generally, any polynomial f in RM2
m,t can be expressed (uniquely) in the

form

f (x0, . . . , xm−1) = h(x0, . . . , xm−2) + xm−1g(x0, . . . , xm−2),

where deg h ≤ t and deg g ≤ t − 1 (Exercise 2.4.2), and we obtain

2.4.6 Corollary The Reed–Muller-code RM2
m,t is the (u | u + v)-construction of two

Reed–Muller-codes, namely

RM2
m,t = RM2

m−1,t | RM2
m−1,t−1, 1 ≤ t ≤ m.

(Note that RM2
m,t = RM2

m,m, if t > m.) Hence, if Γm,t generates RM2
m,t, then

Γm,t =

(
Γm−1,t Γm−1,t

0 Γm−1,t−1

)
. �

Its parameters are as follows:

2.4.7 Theorem The binary Reed–Muller-code RM2
m,t is of type

(
2m,

t

∑
i=0

(
m
i

)
, 2m−t, 2

)
.

2.4 Reed–Muller-Codes 123

Proof: RM2
m,t is a linear (2m, k)-code with

k =
(

m
0

)
+

(
m
1

)
+ . . . +

(
m
t

)
,

since it has a basis consisting of the multinomials xb, 0 ≤ bi ≤ 1, ∑i bi ≤ t.
In order to evaluate its minimum distance, we use induction both on m

and t. For m = 1 and t = 0, 1 the statement is clearly true. Now assume
that m > 1. As we have seen already, the code RM2

m,0 consists of only the
two vectors 02m and 12m . Thus RM2

m,0 is the repetition code of length 2m with
minimum distance 2m, and so the statement is true in this case. Therefore, we
can assume that t ≥ 1. By the induction hypothesis, the Reed–Muller-code
RM2

m−1,s has minimum distance 2m−1−s. From 2.4.6 and 2.2.15 we deduce that
RM2

m,t has minimum distance

min
{

2 · 2m−1−t, 2m−1−(t−1)
}

= 2m−t. �

For example, the above-mentioned code RM2
5,1 used during Mariner missions

is of type (32, 6, 16). Therefore, this code can indeed correct 7 errors.

Finally, we also consider the codes which are dual to Reed–Muller-codes:

2.4.8Theorem For 0 ≤ t < m, the code dual to RM2
m,t is RM2

m,m−t−1.

Proof: Consider f ∈ RM2
m,t and g ∈ RM2

m,m−t−1. Their product h = f g
is of degree not greater than m − 1. Hence, h is in RM2

m,m−1 and one can
show (Exercise 2.4.3) that h has even weight. Now identify Fm

2 with the set
{0, . . . , 2m − 1} = 2m via the bijection (a0, . . . , am−1) �→ ∑i∈m ai2i. Represent
f , g, and h as F2m

2 -vectors (f (i))i∈2m , (g(i))i∈2m and (h(i))i∈2m , respectively.
The inner product of f and g is

〈 f , g 〉 = ∑
i∈2m

f (i)g(i) = ∑
i∈2m

(f g)(i) = ∑
i∈2m

h(i) = 0,

since h has even weight. For this reason, RM2
m,m−t−1 is contained in the dual

of RM2
m,t. Moreover, the dimension of RM2

m,m−t−1 is

∑
i∈m−t

(
m
i

)
=

m

∑
i=t+1

(
m
i

)
= 2m − dim(RM2

m,t) = n − k,

whence RM2
m,m−t−1 is the dual of RM2

m,t, as stated. �

124 2. Bounds and Modifications

Another more algebraic description of Reed–Muller-codes will be presented in
Section 4.10.

The binary Reed–Muller-code RM2
m,m, which is F2m

2 , has a generator matrix
with a highly recursive structure. (See also [84, first edition, Section 8.11.2].)
Clearly, for m = 0

Γ0 := (1)

is a generator matrix of RM2
0,0. According to 2.4.6, for m > 0 the Reed–Muller-

code RM2
m,m is the (u | u + v)-construction

RM2
m,m = RM2

m−1,m−1 | RM2
m−1,m−1,

since obviously RM2
m−1,m = RM2

m−1,m−1. Therefore, it has a generator matrix
of the form

Γm :=

(
Γm−1 Γm−1

0 Γm−1

)
where Γm−1 is a generator matrix of RM2

m−1,m−1. The matrix Γm is an up-
per triangular matrix. In order to describe it in more detail and to show fur-
ther properties of Reed–Muller-codes, in particular relations to Hamming- and
simplex-codes, we label its rows (respectively columns) from top to bottom (re-
spectively from left to right) with values from 0 to 2m − 1. We express the row
number i in binary form, i = ∑j∈m bj2j and identify i with the characteristic set
Bi :=

{
j ∈ m | bj �= 0

}
. Finally, we associate Bi with the monomial ∏j∈Bi

xj.
We also express the column index i in binary form as i = ∑j∈m tj2j. This

means that tj takes the value 0 in all columns with index

i ∈
⋃

r∈2m−j−1

{
s ∈ N

∣∣ 2r2j ≤ s < (2r + 1)2j
}

.

In all other columns tj takes the value 1. The (i, j)-th entry of Γm is the mono-
mial associated with the characteristic set Bi evaluated at (x0, . . . , xm−1) =
(t0, . . . , tm−1) ∈ Fm

2 where (t0, . . . , tm−1) is determined by j.
From this description it is easy to compute directly (i.e. without recursion)

the entries of the i-th row (y0, . . . , y2m−1) of Γm. Let Bi be the characteristic set
of i, then for

t ∈
⋃
j∈Bi

(⋃
r∈2m−j−1

{
s ∈ N

∣∣ 2r2j ≤ s < (2r + 1)2j
})

we have yt = 0. Otherwise yt = 1.
If we have two characteristic sets Bi and Bj, then Bi ∪ Bj is also a charac-

teristic set, of row � say. There occurs the entry 1 in the t-th position of the
�-th row if and only if both in the i-th row and in the j-th row there is the

2.4 Reed–Muller-Codes 125

0 00000 ∅ 1
1 00001 {0} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 00010 {1} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 00011 {1, 0} 1 1 1 1 1 1 1 1
4 00100 {2} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 00101 {2, 0} 1 1 1 1 1 1 1 1
6 00110 {2, 1} 1 1 1 1 1 1 1 1
7 00111 {2, 1, 0} 1 1 1 1
8 01000 {3} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 01001 {3, 0} 1 1 1 1 1 1 1 1

10 01010 {3, 1} 1 1 1 1 1 1 1 1
11 01011 {3, 1, 0} 1 1 1 1
12 01100 {3, 2} 1 1 1 1 1 1 1 1
13 01101 {3, 2, 0} 1 1 1 1
14 01110 {3, 2, 1} 1 1 1 1
15 01111 {3, 2, 1, 0} 1 1
16 10000 {4} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 10001 {4, 0} 1 1 1 1 1 1 1 1
18 10010 {4, 1} 1 1 1 1 1 1 1 1
19 10011 {4, 1, 0} 1 1 1 1
20 10100 {4, 2} 1 1 1 1 1 1 1 1
21 10101 {4, 2, 0} 1 1 1 1
22 10110 {4, 2, 1} 1 1 1 1
23 10111 {4, 2, 1, 0} 1 1
24 11000 {4, 3} 1 1 1 1 1 1 1 1
25 11001 {4, 3, 0} 1 1 1 1
26 11010 {4, 3, 1} 1 1 1 1
27 11011 {4, 3, 1, 0} 1 1
28 11100 {4, 3, 2} 1 1 1 1
29 11101 {4, 3, 2, 0} 1 1
30 11110 {4, 3, 2, 1} 1 1
31 11111 {4, 3, 2, 1, 0} 1

t0 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
t1 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
t2 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
t3 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
t4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 2.2 Recursive structure of a generator matrix of RM2
5,5

entry 1 in the t-th coordinate. Hence, knowing the rows corresponding to all
characteristic sets of cardinality 1, it is easy to write down any other row of Γm.

We recall the recursive structure of the generator matrix in the general case
of a binary Reed–Muller-code. For 0 ≤ t ≤ m,

Γm,t =

(
Γm−1,t Γm−1,t

0 Γm−1,t−1

)

Of course Γm,m = Γm is a generator matrix of RM2
m,m. The matrix Γm,0 contains

just one vector, the all-one vector, which is the top row of Γm (cf. Exercise 2.4.4).
It is a generator matrix of the repetition code RM2

m,0. The identification of char-
acteristic sets and monomials shows that Γm,t is a generator matrix of RM2

m,t.
We call it the canonical generator matrix of RM2

m,t.

126 2. Bounds and Modifications

2.4.9 Example Figure 2.2 shows a generator matrix of RM2
5,5. The rows are labeled

by integers, the corresponding binary numbers and characteristic sets. The
columns are labeled by the (t0, . . . , t4) ∈ F5

2. �

2.4.10 Theorem For 0 ≤ t < m, the Reed–Muller-code RM2
m,t is even.

Proof: For t = 0, the Reed–Muller-code is the binary repetition code of length
2m. From the recursive construction of Γm it is clear that each row with ex-
ception of the last one has even weight. If t > 0, by puncturing RM2

m,t in
the last component, we obtain the code Pu(RM2

m,t). All rows in its gener-
ator matrix have odd weight. Hence by 1.6.3, exactly half of its codewords
have odd weight. Thus, the Reed–Muller-code RM2

m,t is the parity extension
of Pu(RM2

m,t) which contains codewords of even weight only. �

Adding the first row to all remaining rows of Γm,s we obtain another gen-
erator matrix Γ̃m,s of RM2

m,s. Apart from the first row, any row of Γ̃m,s is
the complement of the corresponding row of Γm,s. The last column of Γ̃m,s

is (1, 0, . . . , 0)�. Due to 2.4.8, for 0 ≤ s ≤ m − 1 the matrix Γ̃m,m−s−1 is a check
matrix of RM2

m,s. Hence, from Exercise 1.3.10 we derive that Γm,s · Γ̃�
m,m−s−1 =

0. Moreover, if s < m − 1 then we may write

Γm,s = (Γ | 1�) and Γ̃m,m−s−1 =

(
1 1

Γ̃ 0�

)

where Γ is a generator matrix of Pu(RM2
m,s) and Γ̃ is a matrix with ∑m−s−1

i=1 (m
i)

rows and 2m − 1 columns. The rows of Γ̃ are orthogonal to the rows of Γ.
Therefore, Γ̃ is the generator matrix of the dual code Pu(RM2

m,s)⊥.
If s = m − 2, the columns of the m × (2m − 1)-matrix Γ̃ are exactly all

nonzero vectors in Fm
2 . Thus Γ̃ is a generator matrix both of the m-th order bi-

nary simplex-code and of Pu(RM2
m,m−2)⊥. In other words, Γ̃ is a check matrix

of the m-th order binary Hamming-code and a check matrix of Pu(RM2
m,m−2).

Conversely, the matrix (
1

Γ̃

)
is a generator matrix of Pu(RM2

m,1), whence Pu(RM2
m,1) is the augmentation

of the m-th order binary simplex-code (cf. 2.3.2). We collect these results in the
following

2.4.11 Theorem

1. RM2
m,m−2 is the parity extension of the m-th order binary Hamming-code.

2.4 Reed–Muller-Codes 127

2. Pu(RM2
m,1) is the augmentation of the m-th order binary simplex-code.

3. The weight distributions of Pu(RM2
m,1) and RM2

m,1 are given by

wPu(RM2
m,1)

(x) = 1 + (2m − 1)x2m−1−1 + (2m − 1)x2m−1
+ x2m−1

and

wRM2
m,1

(x) = 1 + 2(2m − 1)x2m−1
+ x2m

,

respectively.

Proof: The first two assertions follow directly from the considerations above.
The weight distribution of the simplex-code was determined in 2.1.7. The final
statement follows from the definitions of augmentation and puncturing. �

2.4.12Example From the matrix

Γ5,1 =

⎛⎜⎜⎝
1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞⎟⎟⎠
we obtain the matrix

Γ̃5,1 =

⎛⎜⎜⎝
1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎠
and

Γ̃ =

⎛⎜⎝ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎠ ,

a generator matrix of the 5-th order binary simplex-code. �

Exercises

E.2.4.1Exercise Prove that Bq
m is in fact an Fq-algebra, which means that it is both a

vector space over Fq and a ring so that

α(f · g) = (α f) · g = f · (αg)

holds true, for all α ∈ Fq and f , g ∈ Bq
m.

128 2. Bounds and Modifications

E.2.4.2 Exercise Show that each polynomial f in RM2
m,t can be uniquely expressed in

the form

f (x0, . . . , xm−1) = h(x0, . . . , xm−2) + xm−1g(x0, . . . , xm−2),

where deg h ≤ t and deg g ≤ t − 1.

E.2.4.3 Exercise Verify that the (m − 1)-th order binary Reed–Muller-code of length
2m consists of all vectors of even weight in F2m

2 .

E.2.4.4 Exercise Check that the top row and the rightmost column in the canonical
form of Γm,t consist of all-one vectors.

E.2.4.5 Exercise Write down Pascal’s triangle, reduce the entries modulo 2 and com-
pare with the generator matrix of the Reed–Muller-code in Fig. 2.2. Do you see
a connection?

2.5 2.5 MDS-Codes

As MacWilliams and Sloane [139] put it, we come now to one of the most fascinat-
ing chapters in all of coding theory: MDS-codes. As we have seen in 2.1.1, for any
(n, k, d)-code over any field we have d ≤ n − k + 1. Codes with d = n − k + 1
have been called maximum distance separable, or MDS for short. These codes
have a wide range of applications, and they tie in well with structures in pro-
jective geometry. The compact disc stores music using linear (32, 28, 5) and
(28, 24, 5)-MDS-codes over F28 (for details see Chapter 5). Trivial MDS-codes
are the codes of types (n, 1, n), (n, n − 1, 2), and (n, n, 1), which exist over any
field Fq (cf. Exercise 2.5.1). Here we collect some properties characterizing
MDS-codes:

2.5.1 Theorem For linear (n, k)-codes C the following properties are equivalent:

1. C is an MDS-code.

2. In each check matrix of C any n − k columns are linearly independent.

3. In each generator matrix of C any k columns are linearly independent.

4. C⊥ is an MDS-code.

2.5 MDS-Codes 129

Proof: The equivalence of the first two statements follows from 1.3.9 and the
Singleton-bound 2.1.1. Together with 1.3.4 we obtain the equivalence of the
third and the fourth property.

Now assume that C is an MDS-code, i.e. that d = n− k+1. To show that C⊥

is also MDS, we prove that its minimum distance d⊥ equals n − (n − k) + 1 =
k + 1. Assume, indirectly, that C⊥ contains an element c �= 0 of Hamming
weight at most k. Each nonzero element of the dual code can occur as a row
in a check matrix of C. Let ∆ be a check matrix of C containing c as its top
row. Now consider the columns of ∆ which are zero in their top component.
By assumption, there are at least n − k of them. Since ∆ has n − k rows, these
columns are dependent. According to 1.3.9, these columns give rise to a word
in C of weight at most n − k, which contradicts the assumption. This shows
that d⊥ ≥ k + 1. From the Singleton-bound we obtain d⊥ ≤ n − (n − k) + 1 =
k + 1 so finally d⊥ = k + 1, which means that C⊥ is MDS.

A symmetric argument shows that C is MDS provided that C⊥ has this
property. �

The third item of 2.5.1 yields

2.5.2Corollary An (n, k)-code is MDS if and only if any k coordinates form an information
set. �

Recall that F(J)
q has been defined in 1.7.4 as the set of vectors which are zero

on all of J. It is a subspace of dimension |J|.

2.5.3Theorem For each (n, k, d, q)-code C the following statements are equivalent:

1. C is an MDS-code.

2. For each J ⊆ n with |J| = d − 1 we have C ⊕ F(J)
q = Fn

q .

3. For each J ⊆ n with |J| = k we have C ⊕ F(J)
q = Fn

q .

Proof: Let C denote an MDS-code and consider a set J ⊆ n with |J| = d − 1.
By 1.7.7

C ⊕ F(J)
q ⊆ Fn

q .

Counting dimensions we see that the space on the left hand side is of dimen-
sion k + (d− 1) = n, since C is MDS. Thus C ⊕ F(J)

q = Fn
q .

Conversely, assume that C ⊕ F(J)
q = Fn

q for some J ⊆ n with |J| = d − 1.
Then k = dim(C) = n− d + 1, i.e. C is MDS. The equivalence between the first
and the third statement can be derived from 2.5.2 together with 1.7.6. �

130 2. Bounds and Modifications

2.5.4 Theorem Suppose that C is an (n, k)-code with systematic generator matrix Γ =
(Ik | A). Then C is MDS if and only if, for each i = 1, . . . ,min{k, n − k}, all
i × i-submatrices of A are regular.

Proof: We assume that C is an MDS-code. We introduce some notation. For a
matrix M, and for X and Y subsets of the sets of row and column indices, let
MX,Y be the submatrix containing the elements of A which are at the intersec-
tion of rows indexed by elements of X and columns indexed by elements of Y.
Moreover, X denotes the complement of X in the set of row indices. Now con-
sider Γ = (Ik | A) and let k = {0, . . . , k− 1} and {k, . . . , n− 1} = n \ k be index
sets for the matrix A = (aij)i∈k, j∈n\k. Assume that A′ = AX,Y is a submatrix
of A consisting of i ≤ min{k, n − k} rows and columns, i.e. with X ⊆ k, and
Y ⊆ {k, . . . , n − 1} and |X| = |Y| = i. Consider the matrix of k columns of Γ

A′′ =

(
IX,X AX,Y

IX,X AX,Y

)
=

(
0 A′

Ik−i ∗

)
,

where 0 denotes the i × (k − i) zero matrix and where ∗ denotes a (k − i) × i-
matrix. According to 2.5.1, A′′ is regular and hence det A′′ = ±det A′ �= 0.

The converse of this statement follows directly from 2.5.1. �

2.5.5 Example We consider the (4, 2)-code C over the field with four elements F4 =
{0, 1, α, α + 1} subject to the relation α2 = 1 + α with Γ = (I | A), where

A =

(
α α2

α2 α

)
.

Since each i × i-submatrix of A is regular (i = 1, 2), C is MDS. �

2.5.6 Theorem Up to linear isometry, each MDS-code is generated systematically by a
matrix Γ = (I | B), where B is of the form

B =

(
1 1

1� ∗

)
.

Proof: Up to isometry we may assume that the code is generated systemati-
cally by the matrix Γ = (I | A) where A =

(
aij

)
i∈k,j∈n\k . By 2.5.4, all entries of

A are nonzero, so that

D = diag
(

1,
a1,k

a0,k
, . . . ,

ak−1,k

a0,k
, a−1

0,k , . . . , a−1
0,n−1

)
is a regular diagonal matrix. From 1.7.3 we know that (I | A) and (I | D ∗ A) =
(I | B) generate linearly isometric codes. Moreover, we know from 1.7.2 that

bij = d−1
ii aijdjj.

2.5 MDS-Codes 131

Hence, an easy check shows that the leftmost column and the top row consist
of all-one vectors, as stated. �

Let us now discuss the question of when MDS-codes exist.

2.5.7Theorem For each (n, k)-MDS-code over Fq with 2 ≤ k ≤ n − 2 the inequality

q ≥ max{k, n − k} + 1

holds true.

Proof: By 2.5.6, each MDS-code is linearly isometric to an MDS-code with a
systematic generator matrix Γ = (I | B), where

B =

(
1 1

1� B′

)
.

By 2.5.4, each i × i-submatrix of B is regular. In particular, the 2 × 2-subma-
trices containing two elements of the highest row or of the left column have
determinants

det

(
1 1
α α′

)
= α′ − α and det

(
1 α

1 α′

)
= α′ − α

distinct from zero. Consequently, the elements in the rows and in the columns
of B′ are pairwise distinct and also distinct from 0 and 1. For this reason, the
alphabet Fq contains at least max{k − 1, n − k − 1} + 2 elements. �

2.5.8Example By the previous theorem, there are no nontrivial binary MDS-codes.
For n ≥ 4, (n, 2)-MDS-codes over Fq with q ≥ n − 1 exist, they are generated
by (I | B) where B is any matrix of the form

B =

(
1 1 . . . 1
1 b1,3 . . . b1,n−1

)
,

where b1,3, . . ., b1,n−1 are pairwise different field elements, which are all dis-
tinct from both 0 and 1. �

2.5.9Theorem For any n ≥ 6 there exists an (n, 3)-MDS-code over Fq with q = 2m and
q ≥ n − 2.

Proof: Assume that 0, b3 := 1, b4, . . ., bn−1 are pairwise distinct elements in Fq

with q = 2m. From q ≥ n − 2 it follows that m ≥ 2. We form the matrix

B =

⎛⎜⎝ 1 1 . . . 1
b3 b4 . . . bn−1

b2
3 b2

4 . . . b2
n−1

⎞⎟⎠ ,

132 2. Bounds and Modifications

and consider the (n, 3)-code C over Fq generated by (I | B). From 2.5.4 it
follows that C is MDS: To begin with, each 3 × 3-submatrix of B is a Vander-
monde matrix and hence regular (cf. Exercise 2.5.2). Furthermore, each 2 × 2-
submatrix (

bi bj

b2
i b2

j

)
and

(
1 1
bi bj

)
, 3 ≤ i < j ≤ n − 1,

is non-singular. Finally, the elements 0, 1, b2
4, . . ., b2

n−1 are pairwise distinct,
since by 3.2.13 the Frobenius mapping F2m $ α �→ α2 ∈ F2m is an automor-
phism. Hence, the submatrices(

1 1
b2
i b2

j

)
, 3 ≤ i < j ≤ n − 1,

are also regular. �

The condition q = 2m turns out to be necessary (see Exercise 2.5.5).

2.5.10 Example By 2.5.9, the (6, 3)-code over F4 = {0, 1, α, α + 1} (α2 = α + 1) with
generator matrix

Γ =

⎛⎜⎝ 1 0 0 1 1 1
0 1 0 1 α α2

0 0 1 1 α2 α

⎞⎟⎠
is MDS. This code is known as the hexacode. �

Let Nq(k) be the maximal length of an MDS-code of dimension k over Fq.
From 2.5.7 and 2.5.9 we obtain the important

2.5.11 Corollary For q = 2m we have Nq(3) = q + 2. �

For all other cases we have the following conjecture ([139], p. 328):

Nq(k) =
{

q + 1 if 2 ≤ k ≤ q,
k + 1 if q < k.

Finally, let us consider the weight distribution of MDS-codes.

2.5.12 Theorem Suppose that C is an (n, k)-MDS-code over Fq. We denote by Ai the
number of codewords in C of weight i. Then the following holds:

A0 = 1, A1 = A2 = . . . = An−k = 0.

For each i ∈ { 0, 1, . . . , k − 1 }:

An−i =
k−1

∑
m=i

(−1)m−i
(

m
i

)(
n
m

)
(qk−m − 1).

2.5 MDS-Codes 133

Proof: For each subset J of n = {0, . . . , n − 1}, let C(J) denote the set of code-
words in C whose components cj for j ∈ J are all zero. i.e.

C(J) :=
{
c ∈ C

∣∣ ∀ j ∈ J : cj = 0
}

.

Since each nonzero codeword in C has at most k − 1 zero entries, C(J) = ∅ for
each J with |J| ≥ k.

For each m with 0 ≤ m ≤ k − 1 we determine the cardinality of the set

S =
{

(J, c)
∣∣∣∣ J ∈

(
n
m

)
, 0 �= c ∈ C(J)

}
2.5.13

in two different ways. (Here (n
m) indicates the set of all m-subsets of the set

n.) On the one hand, each k-subset of n is an information set of C, and hence
by 1.7.6 for each J ⊆ n with |J| ≤ k − 1 we have

|C(J)| = qk−| J|.

Thus the set S is of cardinality(
n
m

)
· (qk−m − 1).

On the other hand, we may decompose the set of codewords of C into sets

Ci := {c ∈ C | wt(c) = n − i} for 0 ≤ i ≤ n.

Thus, the coefficients of the weight distribution are An−i = |Ci|. If i ≥ m,
for each c ∈ Ci there are exactly (i

m) subsets J of n of cardinality m such that
c ∈ C(J). Hence, there exist exactly (i

m) · An−i pairs of the form (J, c) with
c ∈ Ci ∩ C(J). Thus, the set S of 2.5.13 is of cardinality

k−1

∑
i=m

(
i
m

)
· An−i.

This way we obtain the following system of k equations in the k indeterminates
An−k+1, . . ., An:

k−1

∑
i=m

(
i
m

)
· An−i =

(
n
m

)
· (qk−m − 1), 0 ≤ m ≤ k − 1.

Rearranging the indeterminates as An, . . . , An−k+1, the coefficient matrix of
this system of equations turns out to be upper triangular with ones along its
main diagonal, i.e. with determinant 1. Therefore this system has a unique
solution, which is given by (Exercise 2.5.6)

An−i =
k−1

∑
m=i

(−1)m−i
(

m
i

)(
n
m

)
(qk−m − 1), 0 ≤ i ≤ k − 1. �

134 2. Bounds and Modifications

The weight distribution gives an upper bound for Nq(k).

2.5.14 Lemma For each k ≥ 2 we have Nq(k) ≤ q + k − 1.

Proof: Every (n, k)-MDS-code over Fq satisfies

An−k+2 =
(

n
k − 2

)
(q2 − 1) − (k − 1)

(
n

k − 1

)
(q − 1)

=
(

n
k − 2

)
(q − 1)(q − 1− (n − k)).

As An−k+2 cannot be negative, the factor q − 1− n + k is ≥ 0. �

Exercises

E.2.5.1 Exercise Prove that trivial MDS-codes of length n exist over every finite field.

E.2.5.2 Exercise Consider field elements α0, . . . , αn−1. Show that the Vandermonde ma-
trix ⎛⎜⎜⎜⎜⎝

1 α0 α2
0 . . . αn−1

0
1 α1 α2

1 . . . αn−1
1

...
...

1 αn−1 α2
n−1 . . . αn−1

n−1

⎞⎟⎟⎟⎟⎠
has as determinant the expression

∏
i<j

(αj − αi) =
n−2

∏
i=0

n−1

∏
j=i+1

(αj − αi).

In particular, this determinant is nonzero provided that αi �= αj for i �= j.

E.2.5.3 Exercise Show that every shortened MDS-code is again MDS.

E.2.5.4 Exercise Construct a (5, 2)-MDS-code over the field F5.

E.2.5.5 Exercise Prove that there is no (7, 4)-MDS-code over F5. Hint: use 2.5.4.

E.2.5.6 Exercise Prove (
n
m

)(
m
p

)
=

(
n
p

)(
n − p
m − p

)
, p ≤ m ≤ n.

2.5 MDS-Codes 135

Verify that for 0 ≤ m ≤ n the identity
n

∑
k=m

(−1)n−k
(

n
k

)(
k
m

)
=

{
0 if n �= m,
(−1)n−m if n = m

holds true. Fill in the missing details of the proof of 2.5.12.

E.2.5.7Exercise Show that the nonzero coefficients in the weight enumerator of the
hexacode of Example 2.5.10 are A0 = 1, A4 = 45 and A6 = 18.

E.2.5.8Exercise Determine the weight enumerator of the (6, 3)-MDS-code over F5

which is generated by ⎛⎜⎝ 1 1 1 4 0 0
3 2 1 0 4 0
4 3 1 0 0 4

⎞⎟⎠ .

E.2.5.9Exercise Prove that for n − k + 1 ≤ r ≤ n the coefficients Ar in the weight
distribution of an (n, k)-MDS-code over Fq are given by

Ar =
(

n
r

)
∑

i∈r−d+1
(−1)i

(
r
i

)
(qr−i−d+1− 1).

E.2.5.10Exercise Show that the two (10, 5)-codes over F9 generated by⎛⎜⎜⎜⎜⎜⎝
1 1 1 1 1 2 0 0 0 0

2 + η 1 + η η 2 1 0 2 0 0 0
1 + η 1 + 2η 2η η 1 0 0 2 0 0
2η 2 + 2η 1 + η 2 + η 1 0 0 0 2 0

1 + 2η 2 2 + 2η 2η 1 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠
and ⎛⎜⎜⎜⎜⎜⎝

1 1 1 1 1 2 0 0 0 0
2 + η 1 + η η 2 1 0 2 0 0 0
2 + 2η 2 + η 2η 1 + η 1 0 0 2 0 0

2η 2 + 2η 2 1 + 2η 1 0 0 0 2 0
1 + 2η η 2 + η 2 + 2η 1 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠
are semilinearly inequivalent and MDS. Here, we have F9 = {a + bη | a, b ∈
F3} subject to the relation η2 = 2η + 1. (The first code is obtained from a ratio-
nal normal curve, with automorphism group PΓL2(9) of order 1440. The sec-
ond code is obtained from the Glynn-arc [69] in PG4(9), with automorphism
group PGL2(9) of order 720. Both automorphism groups act transitively on the
10 coordinates. It is known that there is no (11, 6)-MDS-code over F9.)

3Chapter 3

Finite Fields

3

3 Finite Fields

3.1 Finite Fields – An Introduction 139

3.2 Existence and Uniqueness of Finite Fields 149

3.3 The Galois Group and Normal Bases 167

3.4 Enumeration under Group Actions, Lyndon Words 170

3.5 Construction of Irreducible Polynomials..................... 182

3.6 Representations of Field Elements 203

3.7 Projective Geometry .. 205

3 Finite Fields
A linear (n, k)-code is a subset of the n-dimensional vector space Fn over a
finite field F. This vector space consists of all words of length n over the al-
phabet F. In the examples we have seen so far, we have always considered the
most simple situations, the smallest field F = F2 = {0, 1}, the binary field of
two elements, or the ternary field F = F3 = {0, 1, 2}, or the quaternary field
F = F4. As we also intend to consider more complicated cases in full detail,
we need a summary of the most important facts on finite fields in general, their
properties and how they can be constructed. Afterwards, the reader should be
able to construct, at least in principle, each finite field and implement it on a
computer.

3.13.1 Finite Fields – An Introduction

Let F denote a finite field and (F, +) its additive group. To begin with, we
study the subgroup

〈 1 〉
of (F, +) which is generated by the (multiplicative) identity element 1 of F.
Since F is finite, there is a least integer p > 0 so that the p-fold sum (cf. Exer-
cise 1.6.6) of the identity element 1 of F gives the zero element

p · 1 = 1 + . . . + 1︸ ︷︷ ︸
p times

= 0.

This positive integer p is the cardinality of 〈 1 〉. Since 1 �= 0, we have p ≥ 2.
Also, p must be prime since a field has no zero divisors (see Exercise 3.1.1).

3.1.1Definition (characteristic of a field) The smallest number p ∈ N∗ such that
p · 1 = 0 is called the characteristic of F:

char (F) := p := |〈 1 〉|.

For each element κ of a field of characteristic p the following holds:

p · κ = p · (1κ) = (p · 1)κ = 0. 3.1.2

A prominent field is Zp, the ring of residue classes of integers modulo p,
equipped with addition and multiplication modulo p (cf. Exercise 3.1.3). It
consists of p elements and its characteristic is p. It is not difficult to check that
the subgroup 〈 1 〉 of the additive group of an arbitrary field F of characteristic
p is isomorphic to Zp. Moreover, 〈 1 〉 is the smallest subfield of F with respect
to inclusion.

140 3. Finite Fields

3.1.3 Definition (prime field) Each finite field F of characteristic p contains a sub-
field P isomorphic to Zp . It consists of the multiples n · 1 of the identity ele-
ment:

P := {n · 1 | 0 ≤ n ≤ p − 1} = 〈 1 〉 � Zp.

For this reason, P is called the prime field of F, whereas Zp is called the prime
field of characteristic p.
Apart from being a field, F is also a vector space over the subfield P. This
follows from the fact that addition in F and multiplication by “scalars” from P
satisfy the usual vector space axioms. Since F is finite, the dimension of F as a
vector space over P is finite, too. Let n denote this dimension. Then F contains
exactly |P|n = pn elements.

3.1.4 Corollary The order of a finite field is pn for some prime p and some positive integer n.
�

If K is a field containing the field F as a subfield, then we say that K is an
extension field of F. We call it a finite extension if the dimension of K as a vector
space over F is finite.

In coding theory, we take finite fields as the alphabets over which messages
and codewords are defined. In order to handle codewords we should be able
to write down the elements of a finite field. This raises the question how to
construct, for a given prime number p, integer n ≥ 1, and starting from the well
known prime field Zp, all the other finite fields of order pn. It will turn out that
in fact there is a field of order pn for any prime p and any integer n ≥ 1. We
will see in 3.2.10 that there is up to isomorphism a unique finite field of each
such order. Thus our problem reduces to the problem of constructing, for each
prime p and for each positive integer n, one field of order pn.

The classical construction of a field of order pn is by means of residue class
rings of the polynomial ring

Zp[x] :=

{
f =

n

∑
i=0

κix
i
∣∣∣∣ n ∈ N, κi ∈ Zp

}
.

3.1.5 The ring of polynomials over a field Let F be a field and let x be an indetermi-
nate over F. Then F[x] is an integral domain, i.e. it is a commutative ring with
1 which is free from zero divisors (cf. Exercise 3.1.1 and Exercise 3.1.4).

If f is a nonzero polynomial of the form f = ∑n
i=0 κixi ∈ F[x] with κn �= 0,

then n is called the degree of f , abbreviated as

deg f = n.

3.1 Finite Fields – An Introduction 141

A polynomial of degree 1 is called linear. The coefficient κn, i.e. the coeffi-
cient of the highest power of x appearing in f , is called the leading coefficient
of f . A polynomial is monic if its leading coefficient is equal to 1. For technical
reasons, we define the degree of the zero polynomial to be −∞.

We call g ∈ F[x] a divisor of f ∈ F[x] if there exists a polynomial h ∈ F[x]
such that f = gh. A polynomial f ∈ F[x] of degree at least 1 is called irreducible
if it cannot be written as a product of two polynomials in F[x] which are both
not constant. Thus, if f = gh is irreducible with g, h ∈ F[x], then at least
one of these factors is a constant polynomial, whence a nonzero element of the
multiplicative group of the underlying field. Thus g ∈ F∗ or h ∈ F∗. If f is not
irreducible, it is called reducible.

Instead of writing “ f ∈ F[x] is irreducible”, we also say that “ f is irre-
ducible over F”. As a matter of fact, an irreducible polynomial over F can be
reducible over a field extension L of F.

We use ideals in the polynomial ring F[x], i.e. nonempty subsets I which
contain, together with two elements f1 and f2, also their difference f1 − f2 as
well as any multiple f · f1 for f ∈ F[x]. It is not difficult to see (Exercise 3.1.11)
that each ideal in F[x] is generated by a single polynomial which is uniquely
determined up to a nonzero factor κ ∈ F∗. This means that each ideal I consists
of all the multiples of a single generator, thus F[x] is a principal ideal domain.
The polynomial f is a generator of I if

I = I(f) := { f g | g ∈ F[x]}.

If α denotes an element of F, then we can evaluate any polynomial in F[x]
at α, simply by substituting α for x. The evaluation map,

F[x] → F : f �→ f (α),

maps the polynomial f = ∑n
i=0 κixi to f (α) := ∑n

i=0 κiα
i. This is a ring epimor-

phism (cf. Exercise 3.1.7).
An element α ∈ F is called a root of the polynomial f ∈ F[x] if f (α) = 0. If

α is a root of f , then the linear polynomial x− α divides f . The largest positive
integer k such that (x − α)k is a divisor of f (cf. Exercise 3.1.8) is called the
multiplicity of the root α. A simple root is a root with multiplicity 1. All other
roots are called multiple.

Let f ∈ F[x] be a polynomial of degree n ≥ 0 and let α0, . . . , αr−1 be distinct
roots of f with multiplicities k0, . . . , kr−1. Then (x − α0)k0 · · · (x − αr−1)kr−1 di-
vides f , and comparison of degrees shows that k0 + . . . + kr−1 ≤ n. Conse-
quently, f can have at most n distinct roots.

Let f be a monic, irreducible polynomial in F[x], and let L be an extension
of F. If α ∈ L is a root of f , then f is the monic polynomial of least degree

142 3. Finite Fields

in F[x] which has α as a root. Being also monic, f is uniquely determined by
these two properties. The polynomial f is called the minimal polynomial of α

over F (see Exercise 3.1.9).

For the announced construction of a finite field of cardinality pn we choose
a monic, irreducible polynomial f ∈ Zp[x] of degree n. Further down in the
proof of 3.2.25 we will show that for any given n there is at least one irreducible
polynomial of degree n. We form the ideal I(f) which is generated by f . Then
we consider the residue classes of polynomials in Zp[x] modulo I(f), i.e. the
sets of the form g + I(f), with g ∈ Zp[x]. Two polynomials are in the same
residue class if and only if their difference is in I(f). The residue classes are
the elements of the factor ring

Zp[x]/I(f) :=
{
g + I(f)

∣∣ g ∈ Zp[x]
}

.

Using the Division Theorem and comparing degrees (Exercises 3.1.5 and 3.1.6)
we see that each residue class in Zp[x]/I(f) contains exactly one polynomial g
with deg g < n. This proves that

Zp[x]/I(f) =
{
g + I(f) | g ∈ Zp[x], deg g < n

}
.

The set Zp[x]/I(f) together with addition

(g + I(f)) + (h + I(f)) := (g + h) + I(f)

and multiplication

(g + I(f)) · (h + I(f)) := gh + I(f)

forms a commutative ring with zero element 0 + I(f) = I(f) and with identity
element 1 + I(f). The multiplicative inverse of a nonzero element g + I(f) can
be obtained by an application of Bézout’s Identity (Exercise 3.1.6): since f is
irreducible and deg g < deg f , it follows that gcd(f , g) = 1. Thus there exist
r, s ∈ Zp[x] such that

r f + sg = 1.

Since r f ∈ I(f) and therefore r f + I(f) = I(f), we have

1 + I(f) = r f + sg + I(f) = sg + I(f) = (s + I(f))(g + I(f)),

which means that s + I(f) is the multiplicative inverse of g + I(f).

3.1.6 Corollary If f is a monic, irreducible polynomial over Zp of degree n ≥ 1, then the
residue class ring

F := Zp[x]/I(f) = {g + I(f) | g ∈ Zp[x], deg g < n}

is a field with pn elements. �

3.1 Finite Fields – An Introduction 143

In order to implement such a finite field, we should, of course, not imple-
ment it as a residue class ring and carry I(f) all the time with us. As a matter
of fact we can express each of its elements as a Zp-linear combination of pow-
ers of certain elements α. From the last corollary we deduce that the field
F = Zp[x]/I(f) consists of the residue classes of the polynomials of degree
less than n, where n is the degree of the monic irreducible polynomial f ,

F =

{(
∑
i∈n

κix
i
)

+ I(f)
∣∣∣∣ κi ∈ Zp, i ∈ n

}
.

According to the definition of addition and multiplication in Zp[x]/I(f) the
following is true:(

∑
i∈n

κix
i
)

+ I(f) = ∑
i∈n

(
κix

i + I(f)
)

= ∑
i∈n

κi
(
xi + I(f)

)
= ∑

i∈n
κi
(
x + I(f)

)i.

3.1.7Corollary Let f be a monic, irreducible polynomial over Zp of degree n ≥ 1, and let
F = Zp[x]/I(f). Putting α := x + I(f) ∈ F, we see that F is generated, as a vector
space over Zp, by the set {α0 = 1, α1, . . . , αn−1}. �

Moreover, we note that the residue class α := x + I(f) is a root of f : If the
monic, irreducible polynomial f is given by f = ∑n

i=0 κixi with κi ∈ Zp for
0 ≤ i ≤ n and κn = 1, then

f (α) =
n

∑
i=0

κiα
i =

n

∑
i=0

κix
i + I(f) = f + I(f) = 0 + I(f) = 0 ∈ F.

Since α is a root of f and f is irreducible, f is a polynomial of least degree in
Zp[x] \ {0} such that f (α) = 0.

3.1.8Corollary Let f be a monic, irreducible polynomial over Zp of degree n ≥ 1, and let
α := x + I(f) ∈ F. Then f is the minimal polynomial of α over Zp. �

This helps to show that the set B := {1, α, . . . , αn−1} is a generating set of
F which is linearly independent over Zp, i.e. it is a basis for F considered as
a vector space over Zp. If ∑i∈n µiα

i = 0 for some µ0, . . . , µn−1 ∈ Zp, then g =
∑i∈n µixi is a polynomial in Zp[x] of degree less than n which has α as a root.
By Exercise 3.1.9, the minimal polynomial f of α divides g. From deg f > deg g
we obtain that g is the zero polynomial, i.e. µ0 = . . . = µn−1 = 0.

3.1.9Corollary Let f be a monic, irreducible polynomial over Zp of degree n, and let
F = Zp[x]/I(f). Then the set {1, α, . . . , αn−1} with α := x + I(f) ∈ F is a Zp-
basis of F. Hence, each element in F can be expressed in a unique way as a linear
combination of αi, i ∈ n, with coefficients in Zp. �

144 3. Finite Fields

3.1.10 Example Let us construct a field F of four elements. For this purpose we start
with the field Z2 = {0, 1} of integers modulo 2. For sake of simplicity, we
denote the elements as 0 and 1 rather than 0 and 1, as in Exercise 3.1.3. To
construct F, we need an irreducible polynomial of degree 2. It is easy to check
that f := 1 + x + x2 is irreducible over Z2.

The residue class ring F := Z2[x]/I(f) consists of the residue classes of the
polynomials 0, 1, x and 1 + x. Writing α instead of the residue class x + I(f),
we get

F = {0, 1, α, 1 + α}.
Being a root of f = 1 + x + x2, the element α satisfies the relation α2 = 1 + α.
Multiplication in F is done modulo this relation, which leads to the following
addition and multiplication tables:

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 0 1 + α α

α α 1 + α 0 1
1 + α 1 + α α 1 0

· 0 1 α 1 + α

0 0 0 0 0
1 0 1 α 1 + α

α 0 α 1 + α 1
1 + α 0 1 + α 1 α �

It is worth noting that the construction of extension fields using irreducible
polynomials can be applied to any field, not just to fields of prime order. The
resulting residue class ring will always be a field. Conversely, it is true that any
finite extension of a field can be obtained this way. Hence, for example, fields
of order pm·n can be constructed in different ways, using irreducible polynomi-
als of degree m · n over Zp, or using irreducible polynomials of degree m over
fields of order pn, or using irreducible polynomials of degree n over fields of
order pm. Later on, however, we will see that the result will always be the
same. Namely, we will show that there is up to isomorphism only one finite
field of any given order pn.

Exercises

E.3.1.1 Exercise A ring R is said to be free of zero divisors if the product of two nonzero
elements of R is always nonzero. That is, if r, s ∈ R \ {0} then rs �= 0. Show
that any field F and any polynomial ring F[x] with coefficients from a field F
is free of zero divisors.

3.1 Finite Fields – An Introduction 145

E.3.1.2Exercise

Division Theorem for integers: Prove that for integers a and b �= 0 there exist
uniquely determined integers q, r such that

a = qb + r with 0 ≤ r < |b|.

Euclidean Algorithm for integers: Consider two integers a1 and a2 �= 0 with
|a1| ≥ |a2|. Prove that the following sequence of calculations

a1 = q1a2 + a3 with 0 < a3 < |a2|,
a2 = q2a3 + a4 with 0 < a4 < a3,

. . .

al−1 = ql−1al + al+1 with 0 < al+1 < al,

al = qlal+1

exists. The integer d := |al+1| is the greatest common divisor of a1 and a2, for
short d = gcd(a1, a2). This means that d is a divisor of both a1 and a2, every
common divisor of a1 and a2 is a divisor of d, and d is positive. (The last
mentioned property assures that d is uniquely determined.)

Bézout’s Identity for integers: Prove that d = gcd(a, b) is a linear combina-
tion of a and b, which means that there exist r, s ∈ Z such that

d = ra + sb.

E.3.1.3Exercise For n ≥ 2 we define a relation ≡n on Z by

a ≡ b mod n :⇐⇒ a ≡n b :⇐⇒ n | a − b.

Prove the following statements:

The relation ≡n is an equivalence relation on Z.

The equivalence class of a with respect to ≡n, i.e. the set

{b ∈ Z | a ≡ b mod n},

will be indicated by a and is called the residue class of a modulo n. Show
that the set {0, 1, . . . , n− 1} is a complete set of representatives with respect
to ≡n. The elements 0, 1, . . . , n − 1 of Z are usually called the canonical rep-
resentatives of the classes 0, 1, . . . , n − 1, respectively. The set

Zn := {0, 1, . . . , n − 1}

is called the set of residue classes modulo n.

146 3. Finite Fields

The relation ≡n respects addition and multiplication, i.e. a = b together
with c = d imply both a + c = b + d and a · c = b · d.

The set Zn together with addition

a + b := a + b, a, b ∈ Zn,

and multiplication

a · b := a · b, a, b ∈ Zn,

is a commutative ring with identity element 1. This ring is called the residue
class ring modulo n.

The group of the (multiplicative) units of Zn is

Z∗
n = {r ∈ Zn | gcd(n, r) = 1}.

The ring Zn is a field if and only if n is a prime number.

E.3.1.4 Exercise Let R be a ring. Consider the set P of all sequences (rn)n≥0 with
rn ∈ R for all n ≥ 0, where only finitely many rn are different from 0. Prove
that this set forms a ring with addition and multiplication defined by

(rn)n≥0 + (sn)n≥0 = (rn + sn)n≥0, (rn)n≥0, (sn)n≥0 ∈ P,

(rn)n≥0 · (sn)n≥0 = (tn)n≥0, tn =
n

∑
i=0

risn−i, n ≥ 0, (rn)n≥0, (sn)n≥0 ∈ P.

Furthermore show that

P is commutative if and only if R is commutative;

P is a ring with 1 if and only if R is a ring with 1;

P is an integral domain if and only if R is an integral domain.

We identify the elements r of R with the sequences (r, 0, 0, . . .) in P. Consider
the particular element x = (0, 1, 0 . . .) ∈ P. If rn = 0 for all n ≥ n0, then (rn)n≥0
describes the polynomial

n0

∑
n=0

rnxn,

where xn is the n-fold product of x introduced in Exercise 1.6.6. Show that
P = R[x], which means that P is the smallest ring containing R and x.

3.1 Finite Fields – An Introduction 147

E.3.1.5Exercise Prove the degree formulae: For any polynomials f , g ∈ F[x] we have

deg(f + g) ≤ max{deg f , deg g}

and
deg(f g) = deg f + deg g.

We use the convention −∞ < n for all n ∈ N, and

(−∞) + n = n + (−∞) = (−∞) + (−∞) = −∞.

E.3.1.6Exercise

Division Theorem for polynomials: Prove that for any two polynomials
f , g ∈ F[x] with g �= 0 there exist (unique) polynomials q, r ∈ F[x] such
that

f = qg + r with deg r < deg g.

Euclidean Algorithm for polynomials: Consider two polynomials f1, f2 ∈
F[x], f2 �= 0 with the property deg f2 ≤ deg f1. Prove that there is a se-
quence of equations

f1 = q1 f2 + f3 with 0 ≤ deg f3 < deg f2,

f2 = q2 f3 + f4 with 0 ≤ deg f4 < deg f3,

. . .

fl−1 = ql−1 fl + fl+1 with 0 ≤ deg fl+1 < deg fl ,

fl = ql fl+1

and some κ ∈ F so that the monic polynomial d = κ · fl+1 is the greatest
common divisor of f1 and f2, for short d = gcd(f1, f2). This means that d is a
divisor of both f1 and f2, each common divisor of f1 and f2 is a divisor of
d, and d is monic. (The last mentioned property assures that d is uniquely
determined.)

Bézout’s Identity for polynomials: Verify that the greatest common divisor d
of two polynomials f , g ∈ F[x] can be written as a linear combination

d = r f + sg with r, s ∈ F[x].

E.3.1.7Exercise Prove that for α ∈ F the mapping

F[x] → F : f �→ f (α),

which takes the polynomial f = ∑n
i=0 κixi to f (α) := ∑n

i=0 κiα
i is a ring epi-

morphism.

148 3. Finite Fields

E.3.1.8 Exercise Show that α ∈ F is a root of f ∈ F[x] if and only if (x− α) is a divisor
of f .

E.3.1.9 Exercise Assume that f is a monic, irreducible polynomial in F[x], and L is
an extension of F. Show that if α ∈ L is a root of f , then f is a polynomial
of smallest degree in F[x] such that f (α) = 0. This polynomial is the minimal
polynomial of α over F.

Let g be any polynomial in F[x]. Prove that g(α) = 0 if and only if the
minimal polynomial f of α over F is a divisor of g.

Assume that f ∈ F[x] is the minimal polynomial of α ∈ L. Show that if f
has roots different from α in L, then f is also the minimal polynomial of these
roots over F.

E.3.1.10 Exercise For an arbitrary monic polynomial f ∈ F[x] of degree n ≥ 0, define
a relation ≡ f on F[x] by

g ≡ h mod I(f) :⇐⇒ g ≡ f h :⇐⇒ f | g − h ⇐⇒ g − h ∈ I(f).

Prove the following:

The relation ≡ f is an equivalence relation on F[x].

Let
g := {h ∈ F[x] | g ≡ h mod I(f)}

be the equivalence class of g with respect to ≡ f . Let F[x] f be the set of all
equivalence classes g for g ∈ F[x]. Show that

F[x] f = {g | g ∈ F[x], deg g < n}.

The unique element g of g with deg g < n is called the canonical representa-
tive of g ∈ F[x] f .

The relation ≡ f respects addition and multiplication. That is, if g = h and
u = v then we can deduce that g + u = h + v and g · u = h · v.

The set F[x] f together with addition

g + h := g + h, g, h ∈ F[x] f ,

and multiplication

g · h := g · h, g, h ∈ F[x] f ,

forms a commutative ring with identity element 1.

3.2 Existence and Uniqueness of Finite Fields 149

The group of (multiplicative) units of F[x] f is

(F[x] f)∗ = {g ∈ F[x] f | gcd(f , g) = 1}.

The map
F[x]/I(f) → F[x] f : g + I(f) �→ g

is a ring isomorphism.

The ring F[x] f is a field if and only if f is irreducible over F.

E.3.1.11Exercise Show that each ideal I of F[x] is a principal ideal, which means that it
is generated by a single element,

I = I(f) = { f g | g ∈ F[x]}

for some f ∈ F[x].

E.3.1.12Exercise Show that a polynomial f ∈ F[x] with 2 ≤ deg f ≤ 3 is irreducible
over F if and only if f does not have a root in F. Why is this characterization
wrong for polynomials of degree ≥ 4? What about polynomials of degree 1?

3.23.2 Existence and Uniqueness of Finite Fields

Let us now consider the multiplicative group F∗ := F \ {0} of a finite field F.
We want to prove that this group is cyclic, i.e. generated by an element which
is called a primitive element of F∗. For example, the field F with four elements
from 3.1.10 has the following nonzero elements:

1 = α0, α, α2 = 1 + α.

Thus, α is a primitive element for this field (as is α + 1). We begin by introduc-
ing some terminology from Group Theory.

Let G be a multiplicatively written, finite group and let g be an element
of G. Then there exists a positive integer k such that gk = 1, since other-
wise gn with n ∈ N is an infinite number of powers of g. The smallest pos-
itive integer k with gk = 1 is called the order of g in G, and is denoted as
ord(g) := k. Every g ∈ G generates a subgroup of G which is denoted as
〈 g 〉 := {1, g, . . . , gord(g)−1}. Its order |〈 g 〉| is equal to ord(g). Hence, accord-
ing to Lagrange’s Theorem (cf. Exercise 1.4.6), the order of any element of G is
a divisor of the order of G, i.e.

ord(g)
∣∣ |G|. 3.2.1

150 3. Finite Fields

If we write |G| = m · ord(g), for some integer m which depends on g, then
this means that g|G| = (gord(g))m = 1 for all g ∈ G. In particular, since the
multiplicative group of a finite field F has order q− 1, we get that κq−1 = 1 for
all κ ∈ F∗. Equivalently, we have

κq = κ for all κ ∈ F.3.2.2

This means that each element κ ∈ F is a root of the polynomial xq − x ∈ F[x].
Therefore, x − κ divides xq − x for every κ ∈ F, and thus

xq − x = ∏
κ∈F

(x − κ),3.2.3

since both polynomials are monic of the same degree and since ∏κ∈F(x − κ)
divides the polynomial on the left hand side by the above argument.

Let us discuss some further properties of the polynomial ring F[x].

3.2.4 Lemma If an irreducible polynomial f ∈ F[x] divides a product f0 · · · fm−1 of
polynomials in F[x], then f is a divisor of at least one fj.

Proof: Applying the mapping

π : F[x] → F[x]/I(f) : π(h) = h + I(f), h ∈ F[x],

which is a ring homomorphism, to the product f0 · · · fm−1 we get

(f0 + I(f)) · · · (fm−1 + I(f)) = 0 + I(f),

since f is a divisor of f0 · · · fm−1. According to Exercise 3.1.10 the factor ring
F[x]/I(f) is a field, whence it does not have any zero divisors. Consequently,
there exists at least one j ∈ m such that fj + I(f) = 0 + I(f), which means that
f is a divisor of fj. �

3.2.5 Unique factorization in F[x] Any polynomial f ∈ F[x] of positive degree can be
written as

f = κ f n0
0 · · · f nk−1

k−1 ,

where κ ∈ F \ {0}, k ∈ N∗, f0, . . . , fk−1 are distinct monic, irreducible polynomials
in F[x], and n0, . . . , nk−1 are positive integers. This factorization is unique apart from
the order in which the factors occur.

Proof: The first assertion of this theorem is proved by induction on the de-
gree of f . If deg f = 1, then f is irreducible and its leading coefficient κ is
different from 0. So f = κ(κ−1 f), where κ−1 f is a monic, irreducible poly-
nomial. Now let n > 1 and assume that the desired factorization into ir-
reducible polynomials is possible for all nonconstant polynomials of degree

3.2 Existence and Uniqueness of Finite Fields 151

strictly less than n. If deg f = n and f is irreducible we can proceed as in
the case of a polynomial of degree 1. Then f = κ(κ−1 f) is the factorization
of f . Otherwise, f is reducible, thus there exist g, h ∈ F[x], both of degree
at least 1 and less than n, such that f = gh. By induction hypothesis, g and
h can be factored into g = κgg0 · · · gkg−1 and h = κhh0 · · · hkh−1 with monic,
irreducible polynomials g0, . . . , gkg−1, h0, . . . , hkh−1 and with κg , κh �= 0. Thus,
f = (κgκh)g0 · · · gkg−1h0 · · · hkh−1 is the desired factorization of f .

In order to prove uniqueness, assume that f has two factorizations of the
form

f = κ f f n0
0 · · · f nk−1

k−1 = κggm0
0 · · · gm�−1

�−1

into monic, irreducible polynomials f0, . . . , fk−1 and g0, . . . , g�−1, elements
κ f , κg ∈ F \ {0} and positive integers n0, . . . , nk−1 and m0, . . . , m�−1. Moreover,
we may assume that fi �= fj for i �= j and gi �= gj for i �= j. Comparing the
leading coefficients of the two factorizations yields κ f = κg. The irreducible
polynomial f0 is a divisor of gm0

0 · · · gm�−1
�−1 . Hence by 3.2.4, there exists j ∈ �

such that f0 divides gj. Since gj is irreducible, gj = κ f0 for some κ ∈ F. More-
over, f0 and gj are monic, whence κ = 1 and f0 = gj. Thus, one occurrence
of f0 can be canceled with one occurrence of gj. Proceeding in this way, we
can cancel each term fi on the left hand side with a corresponding factor gj

of equal degree on the right hand side. After n0 + . . . + nk−1 such steps we
arrive at a constant on the left hand side. Therefore, the right hand side must
also be a constant. Thus we see that both sides of the equation show the same
irreducible factors, possibly in different orders. �

Now we take into account that the left hand side of 3.2.3 is a polynomial
over Zp. According to 3.2.5, we decompose it into its monic, irreducible factors
over Zp. Then 3.2.3 shows that each κ is a root of exactly one of these irreducible
and monic factors.

Now we prove the main theorem on the multiplicative group of a finite
field.

3.2.6Theorem The multiplicative group F∗ of a finite field F is cyclic.

Proof: We assume that F is a finite field with q = pn elements for some prime
p and some positive integer n. Among the nonzero elements of F, let β be an
element of maximal order. We claim that β generates the multiplicative group
F∗ or, equivalently, that the order of β is q − 1.
1. We prove that

ord(κ) | ord(β) 3.2.7

for each κ ∈ F∗. Suppose on the contrary that there exists some κ ∈ F∗ such
that ord(κ) does not divide ord(β). Then there exists a prime u and an integer

152 3. Finite Fields

i ≥ 0 as well as further positive integers r, s, for which

ord(β) = uis and ord(κ) = ui+1r,

where u does not divide s. In particular,

(βui
)s = βuis = 1 and (κr)ui+1

= κui+1r = 1.

According to Exercise 3.2.1, this implies that

ord(βui
) = s and ord(κr) = ui+1.

Consequently, ord(βui
) and ord(κr) are relatively prime. Since F∗ is abelian,

we have ord(βui
κr) = ord(βui) ord(κr) = sui+1 > sui = ord(β) (see Exer-

cise 3.2.2). This contradicts the maximality of ord(β).

2. Summarizing, for l = ord(β), we have shown that κl = 1 for each κ ∈ F∗ .
This shows that every κ ∈ F∗ is a root of the polynomial xl − 1 ∈ Zp[x], i.e.,
x − κ divides xl − 1. Thus

∏
κ∈F∗

(x − κ)
∣∣∣ xl − 1.

Comparing degrees leads to l ≥ |F∗| = q − 1. On the other hand, the order
of any group element divides the group order (see 3.2.1) which gives l | q − 1.
This shows that l = ord(β) = q − 1. As remarked above, this means that F∗ is
cyclic. Namely, it is generated by β. �

3.2.8 Definition (primitive element) Generators of the multiplicative group of the
finite field F are called primitive elements of F. The minimal polynomials of
primitive elements are called primitive polynomials.

3.2.9 Example Let us construct a field with 16 elements. For this purpose, we choose
the irreducible polynomial f = x4 + x + 1 ∈ Z2[x]. Let α denote the root
x + I(f) of f . Then α4 = α + 1, and α turns out to be a primitive element of
the field F := Z2[x]/I(f) of 16 elements. This follows from Table 3.1, since the
powers of α run through the set of all nonzero elements of F. This table also
shows the vectors of coefficients of the nonzero elements with respect to the
basis (1, α, α2, α3).

If we construct a field of 16 elements by using the irreducible polynomial
g = x4 + x3 + x2 + x + 1 ∈ Z2[x], and if β denotes one of the roots of g, then
we have β4 + β3 + β2 + β + 1 = 0. This gives β5 = 1, and so β is not a primitive
element of L := Z2[x]/I(g) and, hence, g is not a primitive polynomial. �

3.2 Existence and Uniqueness of Finite Fields 153

Table 3.1 The 15 elements �= 0 of Z2[x]/I(1 + x + x4)

α0 = 1 (1, 0, 0, 0)
α1 = α (0, 1, 0, 0)
α2 (0, 0, 1, 0)
α3 (0, 0, 0, 1)
α4 = α + 1 (1, 1, 0, 0)
α5 = α2 + α (0, 1, 1, 0)
α6 = α3 + α2 (0, 0, 1, 1)
α7 = α3 + α + 1 (1, 1, 0, 1)
α8 = α2 + 1 (1, 0, 1, 0)
α9 = α3 + α (0, 1, 0, 1)
α10 = α2 + α + 1 (1, 1, 1, 0)
α11 = α3 + α2 + α (0, 1, 1, 1)
α12 = α3 + α2 + α + 1 (1, 1, 1, 1)
α13 = α3 + α2 + 1 (1, 0, 1, 1)
α14 = α3 + 1 (1, 0, 0, 1)

3.2.10Theorem Any two finite fields of the same order are isomorphic.

Proof: Let L and F denote two finite fields with pn elements. The prime fields
of F and L are isomorphic to Zp, so we identify them with Zp. Consider F. If
α denotes a primitive element of F, and fα is its minimal polynomial over Zp,
then fα is a divisor of xpn − x of degree n (cf. Exercise 3.1.9). Now we apply
to the polynomial ring Zp[x] the evaluation at α (cf. Exercise 3.1.7). Because
of Exercise 3.1.9, the kernel of this ring epimorphism is the ideal I(fα). By the
Homomorphism Theorem (Exercise 3.2.3), we obtain the isomorphism

Zp[x]/I(fα) � F : g + I(fα) �→ g(α).

We now turn to L. According to 3.2.2, the primitive element α ∈ F is a root
of xpn − x ∈ Zp[x]. On the other hand, from 3.2.3 we deduce that

xpn − x = ∏
λ∈L

(x − λ).

Recall from 3.2.5 that the decomposition of a monic polynomial into the prod-
uct of monic, irreducible factors is unique up to ordering of the factors. Since
fα divides the left hand side of this equation, it has an element β of L as one
of its roots. The fact that fα is monic and irreducible then implies that fα is
the minimal polynomial of β ∈ L over Zp (Exercise 3.1.9). Using the same
arguments as before, we obtain Zp[x]/I(fα) � L, which shows that the fields
F and L are indeed isomorphic. �

154 3. Finite Fields

Since finite fields are uniquely determined by their order up to an isomor-
phism, we can denote the finite field containing pn elements by Fpn . Often
such fields are also indicated as GF(pn), where GF stands for Galois field.

3.2.11 Theorem The field Fpm is a subfield of Fpn if and only if m is a divisor of n.

Proof: Let m be a divisor of n, say n = md, for a suitable d ∈ N∗. Then, in each
ring R we have for every r ∈ R the identity

rn − 1 = (rm)d − 1 = (rm − 1)(r(d−1)m + . . . + rm + 1).

If we choose R = Z, then from m | n we obtain pm − 1 | pn − 1. In the case
R = Fp[x], we get from m | n directly that xm − 1 | xn − 1; in particular,
pm − 1 | pn − 1 implies that xpm−1 − 1 divides xpn−1 − 1. Hence, it follows
from 3.2.3 that Fpm is a subfield of Fpn .

Conversely, assume that Fpm is a subfield of Fpn . Then Fpn is a finite di-
mensional vector space over Fpm , say of dimension d. Then pn = (pm)d = pmd,
and so n = md. �

For example, F16 = F24 , constructed in 3.2.9, contains the subfield F4 =
F22 = {0, 1, α5, α10}, but not the field F8 = F23 , since 3 does not divide 4.

For α, β ∈ Fpn and t ∈ N, the binomial formula, is

(α + β)t =
t

∑
i=0

(
t
i

)
αt−iβi,

where the binomial coefficients mean positive integers, while the powers of α

and β are elements of the finite field. The i-th summand is the (t
i)-fold sum (cf.

Exercise 1.6.6) of αt−iβi,(
t
i

)
αt−iβi := αt−iβi + . . . + αt−iβi︸ ︷︷ ︸

(t
i) times

.

If t = p, the characteristic of Fpn , then, since p divides the binomial coefficient
(p

i) for 1 ≤ i ≤ p − 1 (Exercise 3.2.4), we deduce by using 3.1.2 that the middle
terms vanish, so that for fields of characteristic p we have

(α + β)p = αp + βp.

This is the binomial theorem for fields of characteristic p. By induction on m,
this implies that

(α + β)pm
= αpm

+ βpm
.3.2.12

Furthermore, (αβ)p = αpβp. Consequently, the Frobenius mapping

σ : Fpn → Fpn : α �→ αp

3.2 Existence and Uniqueness of Finite Fields 155

is a homomorphism. Its kernel is an ideal in Fpn . Each ideal in a field is trivial,
and so the Frobenius mapping is either the zero map, or its kernel is trivial,
i.e. consists only of the zero element. The first case cannot happen since fields
have no zero divisors. Hence the Frobenius mapping is injective, and therefore
also surjective, i.e. bijective. Thus we have proved:

3.2.13Theorem The Frobenius mapping σ : Fpn → Fpn : α �→ αp is an automorphism,
the Frobenius automorphism. �

Since σ(α) = αp = α for all α in the prime field Fp , the Frobenius auto-
morphism fixes each element of Fp. We call this kind of automorphisms an
automorphism of Fpn over Fp . In order to stress that the Frobenius automor-
phism σ fixes the elements of Fp, it is also called the Frobenius automorphism
over Fp .

3.2.14Example The Frobenius automorphism

σ : F24 → F24 : κ �→ κ2

maps 0 onto itself, and the nonzero elements of F24 , represented as powers of
the primitive element α (see, e.g. 3.2.9), to powers of α:

0 �→ 0,
1 �→ 1,
α �→ α2 �→ α4 �→ α8,
α3 �→ α6 �→ α12 �→ α9,
α5 �→ α10,
α7 �→ α14 �→ α13 �→ α11.

The last element in each of these rows is mapped by the Frobenius automor-
phism onto the first element in that row: 0 �→ 0, 1 �→ 1, α8 �→ α, α9 �→ α3, and
so on. The elements which are kept fix by the automorphism form the prime
field F2 = {0, 1}.

This shows that the Frobenius automorphism σ gives rise to a permutation
σ of the elements in F24 . It induces, as we say, the following permutation whose
cyclic factors contain the elements of the above rows in the same order as they
occur in these rows, i.e.

σ = (0)(1)(α, α2, α4, α8)(α3, α6, α12, α9)(α5, α10)(α7, α14, α13, α11). �

Assume that Fqn is an extension field of Fq. In a similar way the Frobenius
automorphism of Fqn over Fq can be introduced. If q = pr , then the Frobenius
automorphism σ over Fp must be replaced by its r-th power τ := σr , κ �→ κq =
κ(pr) = κpr

in order to obtain the Frobenius automorphism of Fqn over Fq.

156 3. Finite Fields

The main property of the Frobenius automorphism τ is that it maps roots
of polynomials with coefficients in Fq onto roots of the same polynomial: As-
sume that β ∈ Fqn is a root of the polynomial f = ∑m

i=0 κixi ∈ Fq[x]. Using the
fact that τ(0) = 0 we deduce

0 = τ
(m

∑
i=0

κiβ
i
)

=
m

∑
i=0

τ(κiβ
i) =

m

∑
i=0

τ(κi)τ(βi) =
m

∑
i=0

κi(τ(β))i.3.2.15

From 3.2.3 and the fact that a polynomial of degree n has at most n roots
we immediately obtain

3.2.16 Corollary Let τ be the Frobenius automorphism of Fqn over Fq and κ ∈ Fqn . Then
τ(κ) = κ if and only if κ ∈ Fq. �

If F is a field and α belongs to an extension field L, then F(α) indicates the
smallest subfield K of L which contains both F and α. For α0, . . . , αn−1 ∈ L,
n > 1, we define recursively F(α0, . . . , αn−1) := F(α0, . . . , αn−2)(αn−1).

For arbitrary fields F and L we can prove the

3.2.17 Embedding Theorem Let ψ : F → L be an embedding, i.e. an injective homomor-
phism. Let x be an indeterminate over F and L. Consider an irreducible polynomial
f = ∑n

i=0 fixi ∈ F[x] and a field extension K over F. Assume that α ∈ K is a root
of f , and that β ∈ L is a root of ψ(f) := ∑n

i=0 ψ(fi)xi ∈ L[x]. Then there exists an
embedding ϕ : F(α) → L such that ϕ(α) = β, and ϕ restricted to F is equal to ψ.
Moreover, ϕ is an isomorphism between F(α) and ψ(F)(β).

Proof: According to Exercise 3.2.7, the polynomial ψ(f) is irreducible over
ψ(F). The elements of F(α) are of the form g(α) for some g ∈ F[x]. Therefore,
we define ϕ(g(α)) := ψ(g)(β). In order to prove that ϕ is well-defined and
injective we assume that g1(α) = g2(α) for g1, g2F[x]. Then equivalently we
have:

g1 − g2 = f h for some h ∈ F[x].

ψ(g1)− ψ(g2) = ψ(f)ψ(h) for some h ∈ F[x].

ψ(g2)(β) = ψ(g1)(β)− (ψ(g1)(β)− ψ(g2)(β))
= ψ(g1)(β)− ψ(f)(β)ψ(h)(β) = ψ(g1)(β).

Reading these implications from the top to the bottom, we deduce that ϕ is
well-defined. Reading them the other way round we find that ϕ is injective.

It is clear by definition that ϕ(κ) = ψ(κ) for κ ∈ F. Moreover, it is easy to
verify that ϕ is a field homomorphism.

Finally, ϕ is an isomorphism between F(α) and ψ(F)(β), since each ele-
ment γ of ψ(F)(β) is of the form h(β) for some h ∈ ψ(F)[x] of degree less

3.2 Existence and Uniqueness of Finite Fields 157

than deg f = deg ψ(f). Let g = ψ−1(h), then deg g < deg f and γ is equal to
ϕ(g(α)), whence it belongs to ϕ(F(α)). �

In 3.2.5 we have described the decomposition of a nonconstant polynomial
in irreducible factors.

3.2.18Definition (splitting field) A field extension L of F is called a splitting field of
a nonconstant polynomial f ∈ F[x] if all factors in the decomposition of f into
irreducible factors over L are of degree one, and if f does not factor completely
into linear factors over any proper subfield of L. We also say that f splits over
L into linear factors.
It will be shown in 3.2.22 that the splitting field of f over F is unique up to iso-
morphism. We collect the most important results about minimal polynomials
over finite fields, their roots, and their splitting fields in the next

3.2.19Theorem Assume that f ∈ Fq[x] is a monic, irreducible polynomial of degree n > 0,
and let τ be the Frobenius automorphism τ : Fqn → Fqn given by τ(κ) = κq for all
κ ∈ Fqn . Then

1. f has a root in Fqn .

2. All roots of f are simple and belong to Fqn . If α denotes one of the roots of f , then
the n distinct elements α, αq = τ(α), . . . , αqn−1

= τn−1(α) comprise the set of all
roots of f .

3. Fqn is a splitting field of f . Any two splitting fields of f are isomorphic.

Proof: In 3.1.8 we have proved that α = x + I(f) is a root of f . According
to 3.1.6 and 3.1.7, α is contained in the field Fq[x]/I(f) which is of cardinality
qn. This field is isomorphic to Fqn by 3.2.10. Moreover, Fqn is the smallest
extension of Fq which contains α because of 3.1.7.

Since α belongs to Fqn , it is a root of g(x) = xqn − x, so f , being the minimal
polynomial of α, is a divisor of g. From 3.2.3 it follows that Fqn is a splitting
field of g, whence all roots of f belong to Fqn , and Fqn is a splitting field of f .
Since g is of degree qn =

∣∣Fqn
∣∣, all roots of g and therefore also all roots of f

are simple.
According to 3.2.15, τ(α) is a root of f . It suffices to prove that τ j(α) for

j ∈ n are n pairwise distinct elements. Now assume, on the contrary, that
τ j(α) = τk(α) for 0 ≤ j < k < n. Then τn−k(τ j(α)) = τn−k(τk(α)), thus
αqn−k+j = αqn = α. Consequently, the minimal polynomial f of α is a divisor
of xqn−k+j − x and α ∈ Fqn−k+j. Since Fqn is the smallest field extension of Fq

containing α, it must be included in Fqn−k+j, whence qn ≤ qn−k+j and k ≤ j

158 3. Finite Fields

which is a contradiction. Thus, for j ∈ n the powers τ j(α) yield all the n
different roots of f .

Assume that L is a field extension of Fq and let β0, . . . , βn−1 ∈ L be the
roots of f . We want to prove that there exists a field isomorphism ϕ from
Fq(α) to Fq(β0, . . . , βn−1) with ϕ(α) = β0 such that the restriction of ϕ to Fq

is the identity. By 3.2.17, there exists an isomorphism ϕ : Fq(α) → Fq(β0).
Since ϕ(τ j(α)) = τ j(β0), j ∈ n, are the n distinct roots of f , we obtain that
Fq(β0, . . . , βn−1) = Fq(β0). This shows that any two splitting fields of the
irreducible polynomial f are isomorphic. �

3.2.20 Theorem For every prime power pn, the polynomial xpn − x is the product of all
monic, irreducible polynomials over Fp whose degree divides n.

Proof: We first show that only polynomials whose degree divides n can arise
as factors. Let f ∈ Fp [x] be a monic, irreducible polynomial of degree m divid-
ing xpn − x. By 3.2.3, f has a root α in Fpn , and f is the minimal polynomial of
α over Fp. We know that the field Fpm consists of the pm linear combinations
a0 + a1α + . . . + am−1αm−1 over Fp. Since α is contained in Fpn , each of these
linear combinations is also contained in Fpn . Hence, Fpm is a subfield of Fpn .
From 3.2.11 we obtain that m divides n.

Now we are going to verify that each of these polynomials in fact occurs as
a factor of xpn − x. Let f ∈ Fp[x] be a monic, irreducible polynomial of degree
m, where m divides n. Then, by 3.2.19, each root of f is an element of Fpm , and
so it is also a root of xpm − x according to 3.2.3. This implies that f is a divisor
of xpm − x (Exercise 3.1.9). Since n is a multiple of m, xpm − x is a divisor of
xpn − x (cf. the proof of 3.2.11). Thus, f is also a divisor of xpn − x. Moreover,
f is the minimal polynomial of each of its roots.

As each element of Fpn has a minimal polynomial over Fp, the product of
all these monic, irreducible polynomials is xpn − x. �

3.2.21 Example The polynomial x16 − x = x16 + x ∈ F2[x] has the following decom-
position over F2[x]:

x16 + x = x(x + 1)(x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1).
�

We now prove the announced result that the splitting field of a nonconstant
polynomial is essentially unique.

3.2.22 Theorem Any nonconstant polynomial f ∈ Fq[x] has a splitting field. Any two
splitting fields of f are isomorphic.

3.2 Existence and Uniqueness of Finite Fields 159

Proof: 1. According to 3.2.5 there exists a unique factorization of f into irre-
ducible polynomials fi ∈ Fq[x] of the form

f = κ ∏
i∈k

f ri
i

with κ ∈ Fq, ri ≥ 1 and deg fi = ni, i ∈ k. A splitting field of the ir-
reducible polynomial fi is Fqni by 3.2.19. Therefore, a splitting field of f is
the smallest field which contains

⋃
i∈k Fqni . By 3.2.11, this is the field FqN for

N = lcm(n0, . . . , nk−1).

2. If L is a splitting field of f , then it is a finite field isomorphic to FqM for
some M ∈ N. It contains the splitting fields of each irreducible divisor fi.
According to 3.2.19, they are isomorphic to Fqni , whence L contains FqN and
N := lcm(n0, . . . , nk−1) is a divisor of M. Since L is the smallest field extension
where f splits into linear factors, L is isomorphic to FqN , and any two splitting
fields of f are isomorphic. �

Let L be an extension field of K. The element α ∈ L is algebraic over K
if there exists a nonzero polynomial f ∈ K[x] so that f (α) = 0. The field
L is algebraic over K if each element of L is algebraic over K. For instance
each finite extension is algebraic (Exercise 3.2.8). Thus, the splitting field of
f ∈ K[x] \ K is algebraic over K. Moreover, if β is contained in an algebraic
extension field of L and if L is algebraic over K, then β is algebraic over K (cf.
Exercise 3.2.11).

A field F is algebraically closed if every nonconstant polynomial over F has
a root in F. It then follows easily that every nonconstant polynomial f ∈ F[x]
splits over F in linear factors.

Let K be a field. Any field L containing K which is algebraically closed
and algebraic over K is called algebraic closure of K. We will show that any
finite field Fq possesses an algebraic closure and that this algebraic closure is
essentially unique.

3.2.23Theorem There exists an algebraic closure of Fq. If K and L are two algebraic
closures of Fq, then there exists an isomorphism ϕ : K → L so that ϕ restricted to Fq

is the identity.

Proof: 1. Since Fq is a finite field, the set of nonconstant polynomials over Fq

Fq[x] \ Fq =
⋃
r≥1

{
f ∈ Fq[x] | deg f = r

}
is a countable union of finite sets, whence it is countable. This means that
there exists a bijection N → Fq[x] \ Fq mapping i �→ fi. This is a labeling of all
nonconstant polynomials over Fq. By 3.2.22 we find a splitting field K0 of f0

160 3. Finite Fields

over Fq. Then for each i ∈ N∗ we find a splitting field Ki of f0 · · · fi containing
Ki−1 as a subfield. We claim that the union

K :=
⋃
i≥0

Ki

is an algebraic closure of Fq. The set K is a field, since two elements of K lie in
some Kn so their sum, product and quotient (if the denominator is not zero)
are defined in Kn. Since Kn is a subfield of Km for n < m, this sum, product
and quotient do not depend on the choice of n. Furthermore, K is algebraic
over Fq, since each element of K lies in some Kn which is algebraic over Fq.
Moreover, K is algebraically closed. By construction, any f ∈ Fq[x] splits into
linear factors over K. Suppose that f ∈ K[x] is irreducible and let L be an
extension of K containing a root α of f . Then α is algebraic over K and K is
algebraic over Fq. So, by Exercise 3.2.11, α is algebraic over Fq. Let Mα ∈ Fq[x]
be the minimal polynomial of α over Fq. Then there exists an integer n so that
Mα splits into linear factors over Kn, whence α ∈ Kn ⊂ K. Since α is a root
of the irreducible polynomial f ∈ K[x], it follows that f is linear. Thus every
irreducible polynomial in K[x] is linear and, consequently, K is algebraically
closed.

2. Assume that K =
⋃

i≥0 Ki and L are two algebraic closures of Fq. Let ψ = id
be the trivial embedding of Fq into L. By the Embedding Theorem 3.2.17, there
exists an embedding ϕ0 : K0 → L so that ϕ0 restricted to Fq is the identity.
Then for each i ∈ N∗ there exists an embedding ϕi : Ki → L so that the re-
striction of ϕi to Ki−1 is ϕi−1. Now we define ϕ : K → L as follows. Consider
some α ∈ K, then there exists some n ∈ N so that α ∈ Km for m ≥ n and
α �∈ Km for m < n. We define ϕ(α) := ϕn(α). (By construction, ϕ(α) = ϕm(α)
for all m ≥ n.) Then ϕ is an embedding of K into L, and the restriction of ϕ to
Kn is ϕn.

Finally we claim that ϕ is an isomorphism between K and L. Since K
is algebraically closed also ϕ(K) is algebraically closed. By construction Fq ⊂
ϕ(K) ⊆ L. Since L is algebraic over Fq it is also algebraic over ϕ(K). Consider
some β ∈ L, then β is algebraic over ϕ(K), thus it belongs to ϕ(K), whence
L ⊆ ϕ(K). �

The algebraic closure of Fq is often denoted by Fq.

3.2.24 Partially ordered sets and lattices Let X be a set. A binary relation ≤ on X
which is

reflexive, i.e. x ≤ x for all x ∈ X,

transitive, i.e. x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ X,

3.2 Existence and Uniqueness of Finite Fields 161

antisymmetric, i.e. x ≤ y and x �= y imply y �≤ x for all x, y ∈ X,

is called a partial order on X. The pair (X,≤) is called a partially ordered set or a
poset.

Two elements x, y of a poset (X,≤) are called comparable if x ≤ y or y ≤ x
is satisfied. Otherwise, they are called incomparable. For x, y ∈ X we write
x < y to express that x ≤ y and x �= y. Moreover, x ≥ y or x > y are used as
synonyms for y ≤ x or y < x, respectively. If any two elements of (X,≤) are
comparable, then X is a totally ordered set and ≤ is a total order on X.

Let (X,≤) be a poset. For x, y ∈ X, the interval [x, y] is the set

[x, y] := {z ∈ X | x ≤ z ≤ y} .

A poset is called locally finite if every interval in X is finite.
Let (X,≤) be a poset and assume that Y ⊆ X. The element x0 ∈ X is an

upper bound of Y if y ≤ x0 for all y ∈ Y. The element x0 ∈ X is called supremum
(or least upper bound) of Y if x0 is an upper bound of Y and x0 ≤ z for any upper
bound z of Y.

Correspondingly, the lower bound and the infimum (or greatest lower bound)
of Y are defined. It is customary to denote the supremum (and infimum, re-
spectively) of a finite set S ⊆ X as ∨S (and ∧S). If S = {x, y} contains only
two elements, the notation x ∨ y and x ∧ y is common.

A partially ordered set (X,≤) is called a lattice (X,∧,∨) if for any two
elements x, y ∈ X both the supremum x ∨ y and infimum x ∧ y exist.

A bijection f : X → Y between two partially ordered sets (X,≤) and (Y,,)
is called an order isomorphism if

x1 ≤ x2 ⇐⇒ f (x1) , f (x2), x1, x2 ∈ X,

and is called an order anti-isomorphism if

x1 ≤ x2 ⇐⇒ f (x2) , f (x1), x1, x2 ∈ X.

A bijection f : X → Y between two lattices (X,∧,∨) and (Y,-,.) is called
a lattice isomorphism if

f (x1 ∧ x2) = f (x1) - f (x2) and f (x1 ∨ x2) = f (x1) . f (x2), x1, x2 ∈ X,

and is called a lattice anti-isomorphism if

f (x1 ∧ x2) = f (x1) . f (x2) and f (x1 ∨ x2) = f (x1) - f (x2), x1, x2 ∈ X.

At the end of this section we prove the existence of finite fields for every
prime power order.

162 3. Finite Fields

3.2.25 Theorem For every power q = pn of a prime number p there exists a finite field with
q elements.

Proof: We denote by mp(d) the number of monic, irreducible polynomials in
Fp [x] which are of degree d. From 3.2.20 we derive by comparing degrees that

pn = ∑
d|n

d · mp(d) =
n

∑
d=1

ζ(d, n) · d · mp(d),

if we put

ζ(d, n) :=
{

1 if d divides n,
0 otherwise.

This means that ζ indicates the zeta function of the partially ordered set (N∗, |),
i.e. the set N∗ of positive integers, equipped with the partial order

m ≤ n :⇐⇒ m | n ⇐⇒ m divides n.

The matrix

Z(N∗, |) := (ζ(m, n))m,n∈N∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 . . .
1 0 1 0 1 0 . . .

1 0 0 1 0 . . .
1 0 0 0 . . .

1 0 0 . . .
1 0 . . .

1 . . .

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with the values of the zeta function as entries, is an upper triangular matrix
with ones along its main diagonal. It is therefore invertible over Z, and the
elements of its inverse

M(N∗, |) := Z(N∗, |)−1 =: (µ(m, n))m,n∈N∗

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 0 −1 1 −1 . . .
1 0 −1 0 −1 0 . . .

1 0 0 −1 0 . . .
1 0 0 0 . . .

1 0 0 . . .
1 0 . . .

1 . . .

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
are the values of the Möbius function on the poset (N∗, |). This function is
used very often in number theory and hence it is called the number theoretic

3.2 Existence and Uniqueness of Finite Fields 163

Möbius function. Since the value µ(d, n) depends only on the quotient n/d
(intervals [d, n] and [d′, n′] in the partial order (N∗, |) are order isomorphic if
n/d = n′/d′), one can replace the notation µ(d, n) by µ(n/d). Later on we
will encounter zeta and Möbius functions of other posets. The definition of
the Möbius function as the inverse of the zeta function yields

mp(n) =
1
n ∑

d|n
µ(n/d)pd. 3.2.26

On the right hand side we see the summand pn (for d = n, since µ(n, n) = 1).
Moreover, the values of the Möbius function belong to the set {0, 1,−1} (for
the exact values of the number theoretic Möbius function and for the general
Möbius inversion see Exercises 3.2.15 and 3.2.16). This gives the following
lower bound for mp(n):

mp(n) ≥ 1
n

(
pn − (pn−1 + . . . + p + 1)

)
=

1
n

(
pn − pn − 1

p − 1

)
.

This number is greater than 0 for every prime number p. It implies the exis-
tence of at least one irreducible polynomial of degree n in Fp [x], and so, ac-
cording to the construction described above, the existence of at least one field
with pn elements. �

Exercises

E.3.2.1Exercise Let (G, ·) be a finite group. Assume that g ∈ G is of order r. Prove
that for n ∈ N the order of gn is equal to r/gcd(r, n).

E.3.2.2Exercise Let G denote a finite abelian group. Prove that the order of the prod-
uct ab of two elements a, b ∈ G with relatively prime orders is

ord(ab) = ord(a) · ord(b).

E.3.2.3Exercise The Homomorphism Theorem (for rings): Let R, S denote rings and
φ : R → S be a ring epimorphism. Check that the kernel of φ, which is defined
as ker(φ) := {r ∈ R | φ(r) = 0}, is an ideal in R and that the mapping

R/ ker(φ) → S : r + ker(φ) �→ φ(r)

is an isomorphism of rings.

E.3.2.4Exercise Let p denote a prime number. Show that p divides the binomial
coefficients (p

i) for 1 ≤ i ≤ p − 1.

164 3. Finite Fields

E.3.2.5 Exercise Use the primitive polynomial x3 + 2x + 1 of F3[x] in order to describe
the field F27 as an F3-vector space.

E.3.2.6 Exercise Show that a field has only the trivial ideals I(0) and I(1).

E.3.2.7 Exercise Let ψ : F → L be an embedding and f ∈ F[x] an irreducible polyno-
mial. Show that ψ(f) is irreducible over ψ(F).

E.3.2.8 Exercise Prove that every finite field extension is algebraic.

E.3.2.9 Exercise Assume that L over K and K over F are finite field extensions. Show
that L over F is also a finite extension.

E.3.2.10 Exercise Consider a field extension L over K and α ∈ L. Prove that α is
algebraic over K if and only if K(α) is a finite field extension over K.

E.3.2.11 Exercise Assume that L is algebraic over K. If β in an extension field of L is
algebraic over L, show that β is algebraic over K. Hint: If β is algebraic over
L prove that K(β) is a finite extension. By assumption there exists g(x) =
∑n

i=0 αixi ∈ L[x] so that g(β) = 0. Then β is algebraic over K(α0, . . . , αn).
Deduce that K(β, α0, . . . , αn) is a finite extension of K(α0, . . . , αn). And show
that K(α0, . . . , αn) is a finite extension of K.

E.3.2.12 Exercise Prove that (N∗, |) is a poset.

E.3.2.13 Exercise Prove that a binary relation ≺ on a set X is antisymmetric if and only
if

x ≺ y and y ≺ x imply x = y for all x, y ∈ X.

E.3.2.14 Exercise Assume that (X,≤) is a poset with two operators ∧,∨ : X × X → X.
Prove that (X,∧,∨) is a lattice, where ∨ is the supremum and ∧ the infimum
function, if and only if

1. ∨ and ∧ are associative, commutative, and x ∨ x = x ∧ x = x for all x ∈ X,

2. x ∧ (x ∨ y) = x = x ∨ (x ∧ y) for all x, y ∈ X,

3. x ∧ y = x ⇐⇒ x ∨ y = y ⇐⇒ x ≤ y for all x, y ∈ X.

3.2 Existence and Uniqueness of Finite Fields 165

E.3.2.15Exercise Show that the function µ : N∗ → Z, defined by

µ(d) =

⎧⎨⎩
1 if d = 1,
(−1)r if d is a product of r pairwise distinct primes,
0 otherwise,

has the following properties:

∑
d|n

µ(d) =
{

1 if n = 1,
0 otherwise.

In fact, this is the number theoretic Möbius function. Prove that, for any functions
f , g : N∗ → G and for every abelian group G, the expression

∀ n ∈ N∗ : g(n) = ∑
d|n

f (d)

is equivalent to
∀ n ∈ N∗ : f (n) = ∑

d|n
µ(d)g(n/d).

The equivalence of these two expressions permits us to replace one by the
other. This replacement is called the number theoretic Möbius inversion.

E.3.2.16Exercise Let (P,≤) be a locally finite poset, and let K be a field of characteristic
zero. The incidence algebra over P is the set

IA(P) := { f : P× P → K | x �≤ y =⇒ f (x, y) = 0} ,

together with addition

(f + g)(x, y) : = f (x, y) + g(x, y), f , g ∈ IA(P), x, y ∈ P,

scalar multiplication

(λ · f)(x, y) : = λ f (x, y), f ∈ IA(P), λ ∈ K, x, y ∈ P,

and convolution

(f ∗ g)(x, y) : =

⎧⎨⎩ ∑
z∈P

x≤z≤y

f (x, z)g(z, y) if x ≤ y,

0 else,
f , g ∈ IA(P), x, y ∈ P.

Two particular elements of IA(P) are

the zeta function defined by

ζ(x, y) :=
{

1 if x ≤ y,
0 else,

166 3. Finite Fields

the delta function defined by

δ(x, y) :=
{

1 if x = y,
0 else.

Prove:

1. The incidence algebra is an associative K-algebra, where δ is a neutral ele-
ment with respect to the convolution.

2. There exists an inverse element of f ∈ IA(P) with respect to ∗ if and only
if

f (x, x) �= 0 for all x ∈ P.

3. The inverse of the zeta function exists. We call it the Möbius function and
denote it by µ. It has the following properties:

µ(x, x) = 1, x ∈ P,

µ(x, y) = − ∑
x<z≤y

µ(z, y) = − ∑
x≤z<y

µ(x, z), x < y.

4. General inversion formula: Assume that f , g, h ∈ IA(P) and h−1 is the inverse
of h with respect to ∗. Then

f = g ∗ h ⇐⇒ g = f ∗ h−1.

5. Möbius inversion:
Assume that for f ∈ KP there exists an element p ∈ P such that x �≥ p
implies that f (x) = 0, and let

g(x) : = ∑
y≤x

f (y).

Then
f (x) = ∑

y≤x
g(y)µ(y, x).

Assume that for f ∈ KP there exists an element q ∈ P such that x �≤ q
implies that f (x) = 0, and let

g(x) : = ∑
y≥x

f (y).

Then
f (x) = ∑

y≥x
µ(x, y)g(y).

3.3 The Galois Group and Normal Bases 167

3.33.3 The Galois Group and Normal Bases

Let us consider again the number mp(n) of irreducible polynomials of degree
n over Fp. We will show that the expression for mp(n) in 3.2.26 can be deduced
directly from results on finite group actions. In fact, it is the number of orbits
of the automorphism group of Fpn which are of maximal length. This way, the
number of such polynomials can not only be evaluated, but it can be understood
as well. Before we do that, let us study the automorphism group of a finite
field. We will come back to the numbers mp(n) in the next section. Here we
introduce the Galois group.

3.3.1Definition (Galois group) Consider positive integers m and n such that m di-
vides n, and recall that this implies the inclusion Fpm ≤ Fpn by 3.2.11. The
Galois group

Gal [Fpn : Fpm]

of Fpn over Fpm consists of all automorphisms of Fpn which fix the subfield
Fpm elementwise. The field Fpm is called the fixed field of the Galois group
Gal [Fpn : Fpm].
A case of particular interest is the Galois group Gal [Fpn : Fp]. Since every
field automorphism fixes the identity element, it also fixes the whole prime
field Fp . This shows that the Galois group of a finite field Fpn over its prime
field is the automorphism group Aut(Fpn). By the same argument,

Gal [F : P] = Aut(F). 3.3.2

Let σ be the Frobenius automorphism σ(κ) = κp, κ ∈ Fpn . It is clear that the
cyclic subgroup 〈 σ 〉 is contained in Gal [Fpn : Fp]. Now we prove that these
groups coincide.

3.3.3Theorem The Galois group is the cyclic group generated by the Frobenius automor-
phism. For any prime number p we have

Gal [Fpn : Fp] = 〈 σ : κ �→ κp 〉,

and for q = pr with r ∈ N∗ we have

Gal [Fqn : Fq] = 〈 τ : κ �→ κq 〉.

Proof: It suffices to show that every automorphism θ ∈ Gal [Fqn : Fq] belongs
to 〈 τ 〉. Let α denote a primitive element of Fqn , and let f be the minimal
polynomial of α over Fq. Then f is a monic, irreducible polynomial of degree
n (see Exercise 3.3.2). By 3.2.19, all its roots can be obtained in the form τ j(α)

168 3. Finite Fields

for j ∈ n. Since θ belongs to the Galois group, a similar computation as in
3.2.15 shows that θ maps α again to a root of f , whence θ(α) = τ j(α) for a
suitable j. Because α is primitive, the two automorphisms θ and τ j coincide,
whence θ ∈ 〈 τ 〉. �

If α ∈ Fqn , then the elements α, αq, . . . , αqn−1
are called conjugates of α with

respect to Fq. As we have seen already, they are the roots of the same minimal
polynomial. Moreover, they have the same order in the multiplicative group
F∗

qn (cf. Exercise 3.2.1).
The action of the Galois group on the elements of Fq is an example of a

group action. We have met this important concept already in Section 1.4, when
we studied isometry classes of codes.

The Galois group

Gal [Fqn : Fq] = 〈 τ : κ �→ κq 〉

acts on Fqn in the following way:

〈 τ 〉 × Fqn → Fqn : (τi, κ) �→ τi(κ) = κqi
, i ∈ n.

This will be our main example in the present section. We recall that an action

GX of G on X induces the equivalence relation ∼G on X. The equivalence
classes G(x) := {gx | g ∈ G} are called orbits, and for the set of all orbits of G
on the set X we have introduced the symbol G\\X. In 3.2.14 we have seen that
the set of orbits

Gal [F24 : F2]\\F24

of the Galois group is equal to{
{0}, {1}, {α, α2, α4, α8}, {α3, α6, α12, α9}, {α5, α10}, {α7, α14, α13, α11}

}
.

These orbits are simply the elements in the cyclic factors of the permutation σ

induced on F24 by the generating element σ of the Galois group.

3.3.4 Theorem Let α be an element of Fqn . Let τ : κ �→ κq be the Frobenius automorphism
of Fqn . Assume that Gal(α) is the orbit of α under the Galois group. Then

Mα := ∏
κ∈Gal(α)

(x − κ)

is the minimal polynomial of α over Fq.

Proof: In order to show that Mα is a polynomial over Fq, we note that the
coefficients of it are elementary symmetric functions of its roots. Hence, these
coefficients are invariant under the action of the Galois group, which implies
that they are elements of the subfield Fq which is fixed elementwise by the

3.3 The Galois Group and Normal Bases 169

Galois group. Moreover Mα is monic. Since α is a root of Mα ∈ Fq[x], all
conjugates of α, i.e. all elements of Gal(α), are also roots of Mα. This shows
that Mα is the monic polynomial of least degree in Fq[x] which has α as a root.
Therefore, it is the minimal polynomial of α over Fq. �

Now we introduce a special kind of basis of Fqn over its subfield Fq.

3.3.5Definition (normal basis) A basis B of Fqn over Fq is called normal basis if
there exists some κ ∈ Fqn such that B =

{
κ, τ(κ), . . . , τn−1(κ)

}
where τ is the

Frobenius automorphism of Fqn over Fq.
It is clear that if

{
κ, τ(κ), . . . , τn−1(κ)

}
is a normal basis, then the minimal

polynomial of κ over Fq is of degree n. The proof that a normal basis of Fqn

over Fq always exists is based upon Dedekind’s Independence Theorem which
is presented next. Furthermore, it needs deeper methods from the theory of
modules, therefore, we postpone the rest of the proof to Section 6.9.

3.3.6Dedekind’s Independence Theorem Let G be a group and let ϕ0, . . . , ϕn−1 be
pairwise distinct homomorphisms from G into the multiplicative group F∗ of a field
F. Then ϕ0, . . . , ϕn−1 are linearly independent over F.

Proof: By induction on n, we have to prove that

∑
i∈n

κi ϕi = 0, κi ∈ F, i ∈ n, 3.3.7

implies that κi = 0 for i ∈ n.
If n = 1, then κ0ϕ0(1) = κ0, whence κ0 = 0. Assume that n > 1 and that the

induction hypothesis holds true for n − 1. Since the ϕi are pairwise distinct,
there exists some g ∈ G such that ϕ0(g) �= ϕn−1(g). We have

0 = ∑
i∈n

κi ϕi(g · x) = ∑
i∈n

κi ϕi(g)ϕi(x) =

(
∑
i∈n

κiϕi(g)ϕi

)
(x), x ∈ G. 3.3.8

From 3.3.7 we also obtain

∑
i∈n

κi ϕ0(g)ϕi = 0.

Subtracting the last equation from 3.3.8 we obtain that

n−1

∑
i=1

κi(ϕi(g)− ϕ0(g))ϕi = 0.

By induction κi(ϕi(g) − ϕ0(g)) = 0 for 1 ≤ i ≤ n − 1, thus κn−1 = 0, due to
the particular choice of g. Inserting this into 3.3.7 and applying the induction
hypothesis once again we derive that also κi = 0 for i ∈ n − 1. �

170 3. Finite Fields

Exercises

E.3.3.1 Exercise Let σ be the Frobenius automorphism κ �→ κp. Use Dedekind’s Inde-
pendence Theorem to show that 〈 σ 〉 is a linearly independent set in the vector

space F
Fpn

pn . From this, deduce that |〈 σ 〉| ≤ n. Hint: σ is Fp-linear.

E.3.3.2 Exercise Let α be a primitive element of Fqn . Show that the minimal polyno-
mial of α over Fq is of degree n.

3.4 3.4 Enumeration under Group Actions, Lyndon Words

In this section, we will study the concept of group actions in more depth. We
will also see more applications. Recall that we have already met two important
group actions, namely the action of the linear isometry group on Fqn and the
action of the Galois group Gal [Fqn : Fq] on the field Fqn . Further actions
can be derived from these, like the action on the set of subspaces of Fqn in the
first case or the action on the set of roots of a polynomial with coefficients in
Fq in the latter. In any case, the orbits of these actions are of interest. In the
following, we will see several enumerative results in this area. In a first step,
we will see how to count the overall number of orbits of a finite group acting
on a finite set. After that, we will restrict attention to orbits of a particular
type (this will be made precise later). One example of this will be the orbits of
maximal length. It will turn out that one can determine the orbits of any given
type provided one has a good understanding of the structure of the group
which acts (also this will be made precise). As an application of this theory,
we will count certain words of finite length over finite alphabets. This will
later turn out to be related to the number of irreducible polynomials of a given
degree over a given finite field.

To begin with, we have the following fundamental result on group actions,
the proof of which is Exercise 3.4.1.

3.4.1 Lemma For an action GX the following holds:

The stabilizer
Gx := {g ∈ G | gx = x}

of the point x ∈ X in G is a subgroup of G.
For arbitrary x ∈ X, the mapping

θx : G/Gx → G(x) : gGx �→ gx, g ∈ G,

3.4 Enumeration under Group Actions, Lyndon Words 171

is a bijection between the set

G/Gx =
{
gGx

∣∣ g ∈ G
}

of left cosets (cf. Exercise 1.4.6) of the stabilizer of x and the orbit G(x) of x.

For finite groups G we have the identity

|G(x)| = |G : Gx| = |G/Gx| = |G|/|Gx|,

which means that the length of an orbit is the index of the stabilizer of any one of
its elements. �

An important notion is that of fixed points, as introduced in 1.6.13. Recall
that x ∈ X is called fixed point of the group element g ∈ G if gx = x. The set
of all fixed points of g is indicated by Xg .

If U is a subgroup of G, let XU denote the set of all elements x ∈ X which
contain U in their stabilizer, i.e.

XU := {x ∈ X | U ≤ Gx} = {x ∈ X | gx = x for all g ∈ U} .

This is the set of invariants of U on X (cf. 1.6.13).
It turns out that the number of orbits can be determined provided the num-

ber of fixed points is known for each element g ∈ G:

3.4.2The Lemma of Cauchy–Frobenius If GX is a finite group action, then the number
of orbits of G on X is the average number of fixed points, i.e.

|G\\X| =
1
|G| ∑

g∈G
|Xg|.

Proof:

∑
g∈G

|Xg | = ∑
g∈G

∑
x:gx=x

1 = ∑
x∈X

∑
g:gx=x

1 = ∑
x∈X

|Gx|

3.4.1= |G| ∑
x∈X

1
|G(x)|

1.4.6= |G| ∑
ω∈G\\X

∑
x∈ω

1
|ω| = |G||G\\X|.

The last identity follows from the fact that each orbit ω contributes the value
1
|ω| |ω| = 1 to the sum. �

There are further methods which allow to count orbits with particular proper-
ties, for example, particular stabilizers of their elements. The basic result is

172 3. Finite Fields

3.4.3 Lemma For each action GX we have:

If g ∈ G and x ∈ X, then the stabilizers of x and of gx are conjugate subgroups:

Ggx = gGxg−1.

Hence, the stabilizers of the elements in the orbits G(x) form a full conjugacy class
of subgroups (cf. Exercise 3.4.4):{

Gx′

∣∣∣ x′ ∈ G(x)
}

=
{

Ggx

∣∣∣ g ∈ G
}

=
{

gGxg−1
∣∣∣ g ∈ G

}
=: G̃x. �

For this reason we consider the set of all subgroups of G,

L(G) := {U | U ≤ G} .3.4.4

It is a partially ordered set, where the order ≤ is given by set theoretic inclu-
sion. For U and V in L(G) we write U ≤ V if U ⊆ V, which means that U
is actually a subgroup of V. Moreover, any two subgroups in L(G) have an
infimum and a supremum with respect to this order. In fact, for subgroups U
and V of G we have

U ∧V := U ∩V and U ∨V := 〈U ∪V〉,

the intersection of the two subgroups and the subgroup generated by the un-
ion of them. Together with these compositions L(G) is a lattice, the subgroup
lattice

(L(G),∧,∨)

of G. For U a subgroup of G, we say that an orbit is of type Ũ if the elements
of that orbit have stabilizers which are conjugate to U. Recall from 3.4.3 that
the stabilizers of elements of an orbit G(x) form a full conjugacy class of sub-
groups, so that this concept makes sense. Let

G\\ŨX :=
{

G(x)
∣∣ x ∈ X, Gx ∈ Ũ

}
.

be the set of G-orbits which are of type Ũ. For example, G\\1̃X and G\\G̃X
denote the sets of G-orbits of largest and of smallest size, respectively. Let us
now evaluate the number of orbits of a given type. We use a similar method as
in the determination of the number of irreducible polynomial over finite fields
in the proof of 3.2.25. Recall that we applied a method called Möbius inversion
to the lattice of integers ordered with respect to divisibility. Here, we are going
to apply Möbius inversion to the lattice of subgroups of the finite group G. We
start with the zeta function of L(G), which is defined by

ζ(U,V) :=
{

1 if U ≤ V,
0 otherwise.

3.4 Enumeration under Group Actions, Lyndon Words 173

Correspondingly, the zeta matrix of L(G) is

Z(L(G)) := Z(L(G),≤) := (ζ(U,V))U,V∈L(G),

whereas the Möbius matrix is defined to be

M(L(G)) := M(L(G),≤) := (µ(U,V))U,V∈L(G) := Z(L(G))−1.

We are now in a position to show that the number of orbits of a given type can
be expressed in terms of numbers of fixed points:

3.4.5Lemma If U is a subgroup of the finite group G which acts on a finite set X, then the
number of orbits of G on X of type Ũ is

|G\\ŨX| =
|Ũ|

|G/U| ∑
V≤G

µ(U,V)|XV |,

where µ denotes the Möbius function of the lattice of subgroups of G.

Proof: Let T be a transversal of G\\X, i.e. a complete set of representatives of
the G-orbits on X. Then the cardinality of the set of elements x ∈ X which
contain U in their stabilizer Gx is equal to

|XU | = ∑
x:U≤Gx

1 = ∑
V :U≤V≤G

∑
x:V=Gx

1 = ∑
V :U≤V≤G

1
|Ṽ| ∑

x:Gx∈Ṽ

1

= ∑
V :U≤V≤G

|G/V|
|Ṽ| ∑

t∈T:Gt∈Ṽ

1 = ∑
V :U≤V≤G

|G/V|
|Ṽ|

|G\\ṼX|.

Using the zeta function of the poset (L(G),≤), the last equation can be rewrit-
ten as

|XU | = ∑
V≤G

ζ(U,V)
|G/V|
|Ṽ|

|G\\ṼX|.

By Möbius inversion (cf. Exercise 3.2.16), this equation is equivalent to the
assertion. �

A special case is the number of orbits with trivial stabilizer Gx = {1}. These
are the orbits of maximal length. According to the above lemma, their number
is

|G\\1̃X| =
1
|G| ∑

V≤G
µ(1,V)|XV |. 3.4.6

Our next goal is to show that the expression for mq(n) which was derived
in 3.2.26 is a special case of this identity. For this purpose, recall that if G acts
on X, then by 1.4.7 for any set Y there is an induced action of G on the set of
mappings YX = { f | f : X → Y},

G ×YX → YX : (g, f) �→ f ◦ g −1.

174 3. Finite Fields

It takes the pair (g, f) and maps it to the function from X to Y whose value
at x is f (g−1x). This means that (g, f) is mapped to f ◦ g −1, where g is the
permutation induced by g on X (cf. 1.4.5). Iterating this formula we see that
f ∈ YX is a fixed point of g if and only if

f (x) = f (g−1x) = f (g−2x) = . . . = f (gx) = f (x), x ∈ X.

3.4.7 Corollary Let GX be a group action and Y a set. Consider the induced action of G on
YX. The fixed points of g ∈ G are the mappings which are constant on orbits of 〈 g 〉.
In other words, f is fixed under g if and only if f is constant on the cyclic factors of
the permutation g induced by g on X. Hence, for finite X, Y, and G we obtain from
the Lemma of Cauchy–Frobenius that

|G\\YX| =
1
|G| ∑

g∈G
|Y||〈 g 〉\\X|. �

In order to verify that this formula yields the desired number of irreducible
polynomials, we show that the action of the Galois group on Fqn is essentially
the same as a particular action of the cyclic group on a set of mappings YX,
where “essentially the same” is understood in the following sense:

3.4.8 Definition (similar actions) Two actions GX and GY of a group G on sets X
and Y, respectively, are called similar if there exists a bijection ϕ : X → Y which
commutes with the actions, i.e.

ϕ(gx) = gϕ(x), g ∈ G, x ∈ X.

We indicate similarity of actions by

GX ≈ GY.

It is left to the reader to prove some basic facts about similar group actions:

3.4.9 Lemma

1. If GX is an action, then for any x ∈ X, the action of G on the orbit G(x) is similar
to the action of G on the set of left cosets of the stabilizer Gx,

GG(x) ≈G (G/Gx).

2. Similar actions have the same numbers and sizes of orbits. �

Here we are interested in the following situation:

3.4 Enumeration under Group Actions, Lyndon Words 175

3.4.10Example The Galois group 〈τ : κ �→ κq〉 of Fqn gives rise to the action

〈τ〉
(
Fqn

)
.

If β denotes a primitive element of Fqn , say F∗
qn = 〈β〉, then any nonzero ele-

ment κ of Fqn is of the form κ = βi, for a suitable i ∈ {1, . . . , qn − 1}. Hence,
we obtain a bijection ϕ : Fqn → YX := qn by mapping κ = βi ∈ F∗

qn onto the
q-adic decomposition of the exponent i ≥ 1,

κ �→ (an−1, . . . , a0)q, where i = ∑
j∈n

ajq
j, aj ∈ q,

while the zero element is mapped onto the sequence of zeros,

0 �→ (0, . . . , 0)q.

Since τ(κ) = τ(βi) = (βi)q = βiq and the q-adic decomposition of iq mod qn

is given by an−1 + ∑n−2
j=0 ajqj+1, the cyclic group 〈 τ 〉 acts on the set of these

sequences by cyclic shift. Thus we obtain an action

〈τ〉(q
n)

of the group 〈τ〉 by putting

τ(an−1, . . . , a0)q := (an−2, . . . , a0, an−1)q.

Since
ϕ(τκ) = (an−2, . . . , a0, an−1)q = τ(an−1, . . . , a0)q = τϕ(κ),

the actions are similar, i.e.

〈τ〉
(
Fqn

)
≈〈τ〉 (q

n) .

�

Using 3.4.9 we obtain the following result:

3.4.11Corollary The orbits of the Galois group 〈τ〉 on the field Fqn are mapped under ϕ

bijectively onto the orbits of the cyclic group 〈τ〉 on the set of mappings qn:

〈τ〉\\Fqn → 〈τ〉\\qn. �

Using a normal basis of Fqn over Fq, it is even possible to find a vector
space isomorphism ψ : Fqn → Fn

q and two similar actions of 〈 τ 〉 on Fqn and
Fn

q . We want to describe the action on Fn
q as an action of a group G on YX of

the form 1.4.7. Consider the Galois group G := Gal [Fqn : Fq] = 〈 τ 〉, and let
X be a normal basis {κ, τ(κ), . . . , τn−1(κ)} of Fqn over Fq, which is a particular
orbit of some κ ∈ Fqn under the Galois group. For Y we take Fq, obtaining

YX = F{κ,τ(κ),...,τn−1(κ)}
q � Fn

q � Fqn .

176 3. Finite Fields

Since X is a normal basis, each element α ∈ Fqn can be uniquely expressed as
a linear combination of the elements of X, i.e.

α = ∑
i∈n

αiτ
i(κ) with αi ∈ Fq, i ∈ n,3.4.12

and

τ(α) = τ
(
∑
i∈n

αiτ
i(κ)

)
= ∑

i∈n
αiτ

i+1(κ) = αn−1κ + ∑
i∈n−1

αiτ
i+1(κ).

Thus we obtain a group action of 〈 τ 〉 on Fn
q by putting

τ(α0, . . . , αn−1) := (αn−1, α0, . . . , αn−2).

The coefficient vectors of the conjugates τ j(α) = αqj
for j ≥ 1 are given by

(αn−j, αn−j+1, . . . , αn−1, α0, . . . , αn−j−1).

Hence, they can be obtained by a cyclic shift of the coefficient vector

(α0, . . . , αn−1)

of α.

3.4.13 Corollary Let τ be the Frobenius automorphism of Fqn over Fq. Let ψ be the vector
space isomorphism which takes each element α ∈ Fqn to the coefficient vector of α with
respect to the normal basis {κ, τ(κ), . . . , τn−1(κ)}. Then the actions of the Galois
group 〈 τ 〉 on Fqn and on Fn

q are similar, and

ψ(τ(α)) = τ(ψ(α)), α ∈ Fqn .

The elements of the orbit 〈 τ 〉(α), i.e. the conjugates of α, are in bijection to the cyclic
shifts of the coefficient vector ψ(α). �

The next result shows how to determine the smallest field extension of Fq

which contains α provided the coefficient vector of α with respect to a normal
basis of Fqn over Fq is given.

3.4.14 Lemma The element α ∈ Fqn , given by 3.4.12, belongs to the subfield Fqm of Fqn if
and only if αi = αi+m mod n for i ∈ n.

Proof: Let m be a divisor of n. The element α ∈ Fqn belongs to the subfield
Fqm if and only if τm(α) = α. This is equivalent to

∑
i∈n

αiτ
i+m(κ) = ∑

i∈n
αiτ

i(κ),

whence
m−1

∑
j=0

αj−m+nτ j(κ) +
n−1

∑
j=m

αj−mτ j(κ) = ∑
i∈n

αiτ
i(κ),

which yields αi = αi+m mod n for i ∈ n, since the coefficients with respect to a
basis are uniquely determined. �

3.4 Enumeration under Group Actions, Lyndon Words 177

If α belongs to Fqm with m < n and necessarily m a divisor of n, we say
that the coefficient vector (α0, . . . , αn−1) has nontrivial cyclic symmetries, since
αi = αi+m mod n. In this case the stabilizer of α contains 〈 τm 〉. Consequently,
the element α given by 3.4.12 belongs to Fq if and only if α0 = . . . = αn−1.
The element α belongs to no proper subfield of Fqn if and only if the coefficient
vector has no cyclic symmetries. In this case we call it acyclic.

Now we want to describe the natural correspondence between monic, irre-
ducible polynomials of degree n over Fq and orbits of maximal length of the
Galois group G = Gal [Fqn : Fq]. If α is the root of an irreducible polyno-
mial of degree n over Fq, then the orbit G(α) contains the n conjugates of α.
Whence it is an orbit of length n, i.e. it is an orbit of maximal length. Con-
versely, if G(β) is an orbit of length n for some β ∈ Fqn , then the powers
β, βq = τ(β), . . . , βqn−1

= τn−1(β) are pairwise distinct. Thus β belongs to
no proper subfield of Fqn and its minimal polynomial is, therefore, a monic,
irreducible polynomial of degree n over Fq.

The Galois group G = 〈 τ 〉 is cyclic of order n, and the induced permuta-
tion τ of the normal basis X is a cycle of length n. Hence, 〈 τ 〉 is a cyclic group
of order n isomorphic to the Galois group. We indicate a group generated by
a cyclic permutation of length n by Cn. The action of 〈 τ 〉 on Fqn is similar
to the action of Cn on Fn

q (cf. Exercise 3.4.8). The group Cn contains for each
divisor d of n exactly one subgroup U of order d. This subgroup is generated
by a permutation consisting of n/d cycles of length d. There exist exactly φ(d)
generators of U, where φ denotes the Euler function,

φ(d) := |{0 ≤ i < d | gcd(i, d) = 1}|. 3.4.15

Some properties of the Euler function are collected in Exercise 3.4.9. Hence, by
the Lemma of Cauchy–Frobenius, the number of orbits of the Galois group on
Fqn is equal to ∣∣〈 τ 〉\\Fqn

∣∣ =
1
n ∑

d|n
φ(d)qn/d. 3.4.16

The lattice of subgroups of the Galois group is isomorphic to the lattice of di-
visors of n. This means that the Möbius function of the lattice of subgroups of
the Galois group coincides with the number theoretic Möbius function. Hence,
by 3.4.6, the number of orbits of 〈 τ 〉 of maximal length is equal to∣∣〈 τ 〉\\1̃Fqn

∣∣ =
1
n ∑

d|n
µ(d)qn/d = mq(n). 3.4.17

The last equation is obtained from the proof of 3.2.25.
More generally, let Cn be a cyclic group of order n. We usually identify Cn

with the permutation group of the set n = {0, 1, . . . , n− 1}, which is generated

178 3. Finite Fields

by the cyclic permutation (0, 1, . . . , n − 1). We are especially interested in the
orbits of maximal length of Cn on mn. The numbers

lmn :=
∣∣Cn\\1̃m

n∣∣ =
1
n ∑

d|n
µ(d)mn/d3.4.18

are called Dedekind numbers. The first few of these numbers are shown in the
following table:

Table 3.2 Dedekind numbers

m\n 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 2 1 2 3 6 9 18
3 3 3 8 18 48 116 312
4 4 6 20 60 204 670 2 340
5 5 10 40 150 624 2 580 11 160
6 6 15 70 315 1 554 7 735 39 990
7 7 21 112 588 3 360 19 544 117 648

3.4.19 Corollary The number mq(n) of irreducible polynomials in Fq[x] of degree n is equal
to lqn as in 3.4.18, the Dedekind number of asymmetric sequences of length n over an
alphabet of size q. �

3.4.20 The (co)lexicographical order Assume that (X,≤) is a totally ordered set. For
n ∈ N the functions f ∈ Xn can be considered as words

f = f (0) . . . f (n − 1)

of length n over the alphabet X. The set Xn, of all words of length n over X (or
all vectors of length n over X, or all functions from n to X), is totally ordered by
the lexicographical order. For two words x0 . . . xn−1 and y0 . . . yn−1 with xi, yi ∈
X, i ∈ n, this order puts x0x1 . . . xn−1 < y0y1 . . . yn−1 if there exists i ∈ n such
that xj = yj for j ∈ i and xi < yi. In order to compare words which are not
of the same length, we extend the lexicographical order in the following way.
For words α = x0 . . . xm−1 and β = y0 . . . yn−1 we define α < β if

either there exists i ∈ {0, . . . ,min {m − 1, n − 1}} such that xj = yj for j ∈ i
and xi < yi,

or n > m and β = x0 . . . xm−1ym . . . yn−1.

The colexicographical order, is defined by x0x1 . . . xn−1 < y0y1 . . . yn−1 (with
xi, yi ∈ X, i ∈ n) if there exists i ∈ n such that xj = yj for i < j ≤ n − 1 and
xi < yi. The set Xn is totally ordered by the colexicographical order. �

3.4 Enumeration under Group Actions, Lyndon Words 179

Now we consider mn, the set of all words of length n over the totally or-
dered alphabet m. It is totally ordered by means of the lexicographical order
(cf. Exercise 3.4.10). We write f ≤ Cn(f) if f ≤ g for all g ∈ Cn(f). Thus, an
element f with f ≤ Cn(f) is the lexicographically least element in its orbit under
the cyclic group. It is called a necklace. A necklace whose orbit has length n
is called Lyndon word of length n over the alphabet m. These words form the
canonical transversal

Ln(m) :=
{

f ∈ mn
∣∣∣ |Cn(f)| = n, f ≤ Cn(f)

}
.

The union of all these sets

L(m) :=
⋃

n∈N∗
Ln(m)

is called the Lyndon set over the alphabet m.
Moreover, we consider the set of all words over the alphabet m,

m∗ :=
⋃

n∈N

mn.

The length of the word x0 . . . xn−1 in m∗ is n. The empty word ε is the unique
word of length zero in m∗. The concatenation of the words x0 . . . xm−1 and
y0 . . . yn−1 yields the word x0 . . . xm−1y0 . . . yn−1 in m∗. The set m∗ together
with the concatenation is a semigroup with neutral element ε.

A word β ∈ m∗ is called a prefix of α ∈ m∗ if there is a word γ ∈ m∗ such
that α is the concatenation βγ. Correspondingly, γ ∈ m∗ is called a suffix of
α ∈ m∗ if there is a word β ∈ m∗ such that α = βγ. A suffix or prefix of
α is called proper if its length is at least 1 and less than the length of α. Any
nonempty prefix of a Lyndon word is called a pre-Lyndon word.

Next we want to present another characterization of Lyndon words.

3.4.21Lemma A word α ∈ mn is a Lyndon word if and only if α is strictly less than each
of its proper suffixes.

Proof: Assume that α = x0 . . . xn−1 is a Lyndon word. Then for any j ∈
{1, . . . , n − 1} we have α < xj . . . xn−1x0 . . . xj−1, whence the first n − j posi-
tions satisfy x0 . . . xn−1−j ≤ xj . . . xn−1. We claim that this inequality always
holds with <. Assume, on the contrary, that x0 . . . xn−1−j = xj . . . xn−1 for
some j. Then there exists some k ≥ n − j such that xi = xi+j mod n for i ∈ k and
xk < xk+j mod n = xk+j−n. But then

x0 . . . xk+j−n > xn−j . . . xk

which yields α > xn−j . . . xn−1x0 . . . xn−j−1. This is a contradiction to α being a
Lyndon word. Consequently, α is strictly less than its proper suffix xj . . . xn−1.

180 3. Finite Fields

Conversely, assume that α is less than all its proper suffixes, then evidently,
α is less than all its cyclic shifts, and α is a Lyndon word. �

3.4.22 Lemma Assume that �1 and �2 are Lyndon words. The concatenation �1�2 is a
Lyndon word if and only if �1 < �2.

Proof: Assume that �1 < �2. According to 3.4.21, we have to show that �1�2 is
strictly less than each of its proper suffixes. Assume on the contrary that there
exists a proper suffix β of �1�2 such that β ≤ �1�2, therefore β < �1�2. Then
either β is a suffix of �2 and �1 < �2 ≤ β or β is of the form α�2, where α is a
proper suffix of �1, whence �1 < α�2 = β. Consequently, in both situations we
have �1 < β < �1�2, and β can be written as β = �1γ, where the suffix γ of β is
a proper suffix of �2. (Otherwise β = �1�2 is not a proper suffix of �1�2.) Hence,
�2 < γ and �1�2 < �1γ = β which is a contradiction to our assumption.

The remaining parts of the proof are left to the reader as Exercise 3.4.11. �

Now we consider an arbitrary word f ∈ mn. Since each letter i ∈ m forms
a Lyndon word of length 1, there exists a uniquely determined longest left
factor l0(f) = f (0) . . . of f which is a Lyndon word. The same is true for the
remaining part w of f = l0(f)w, whence there is a unique decomposition

f = l0(f)l1(f) . . . lλ(f)−1(f)3.4.23

of f into Lyndon words such that in the right part li(f) . . . lλ(f)−1(f) of f the
Lyndon word li(f) is the maximal left Lyndon factor. This decomposition is
called the Lyndon decomposition of f , and the number λ(f) of factors is called
the Lyndon length of f . The Lyndon decomposition of f can also be described
as follows:

3.4.24 Lyndon’s Theorem The factors li(f) of the decomposition 3.4.23 of a word f ∈ mn

are lexicographically decreasing, i.e.

l0(f) ≥ l1(f) ≥ . . . ≥ lλ(f)−1(f).

Conversely, every decomposition of f into (weakly) decreasing Lyndon words is the
Lyndon decomposition of f . �

In the next section we will discuss algorithms for listing all necklaces, Lyn-
don words and pre-Lyndon words of length n over the alphabet m.

Exercises

E.3.4.1 Exercise Prove 3.4.1.

3.4 Enumeration under Group Actions, Lyndon Words 181

E.3.4.2Exercise Let G be a group. Prove that G acts on itself by conjugation, i.e.

G × G → G : (g, x) �→ gxg−1

is a group action. The orbit G(x) is called the conjugacy class of x. The stabilizer
Gx is the centralizer of x. When is this group action transitive? When is each
orbit of size 1?

E.3.4.3Exercise Let G be a finite group acting transitively on the finite set X. Show
that for arbitrary x ∈ X we have

|Gx\\X| =
1
|G| ∑

g∈G
|Xg |2.

E.3.4.4Exercise Let G be a group and L(G) := {U | U ≤ G} its set of subgroups.
Prove that G acts on L(G) by conjugation, i.e.

G × L(G) → L(G) : (g,U) �→ gUg−1 =
{

gxg−1
∣∣∣ x ∈ U

}
is a group action. The orbit G(U) is called the conjugacy class

Ũ :=
{

gUg−1
∣∣∣ g ∈ G

}
of U. The stabilizer GU is the normalizer NG(U) of U. A subgroup U is called
normal if |G(U)| = 1. The fact that U is a normal subgroup of G is indicated
by U � G.

E.3.4.5Exercise Prove 3.4.3.

E.3.4.6Exercise Prove that L(G) is indeed a lattice.

E.3.4.7Exercise Prove 3.4.9.

E.3.4.8Exercise Let Cn := 〈 (0, 1, . . . , n − 1) 〉 be the permutation group which is gen-
erated by a single cycle of length n. Describe the orbit Cn(f) of a vector f ∈ Yn

for the action of Cn on Yn given by 1.4.7.

E.3.4.9Exercise Let φ be the Euler function defined by 3.4.15. Show that for any prime
p and for n ∈ N∗ the following assertions hold:

φ(p) = p − 1.

182 3. Finite Fields

φ(pn) = pn−1(p − 1) = pn − pn−1 = pn(1− 1
p).

If a and b are positive integers which are relatively prime, then φ(a · b) =
φ(a) · φ(b).

φ(n) = n · ∏p|n(1− 1
p).

For n ≥ 2 the order of the multiplicative group of Z∗
n is given by φ(n).

∑d|n φ(d) = n.

E.3.4.10 Exercise Assume that (X,≤) is a totally ordered set. Show that both the lexi-
cographical and the colexicographical order are total orders on the set Xn.

E.3.4.11 Exercise Prove the missing details in 3.4.22.

E.3.4.12 Exercise Prove 3.4.24.

E.3.4.13 Exercise Compute the Lyndon decomposition of

2718281828459045235360287471352662497757

using the natural order on the alphabet {0, 1, . . . , 9}.

3.5 3.5 Construction of Irreducible Polynomials

So far we have described finite fields as extensions over their prime fields.
The structure of prime fields of prime characteristic p is clear, since they are
isomorphic to the residue class rings Zp = Z/pZ. A finite field Fq with q = pn

and n ≥ 2 was described as

a residue class ring Zp[x]/I(f), where f ∈ Zp[x] is a monic, irreducible
polynomial of degree n (cf. 3.1.6),

a Zp-vector space with basis
{
1, α, . . . , αn−1}, where α is a root of a monic,

irreducible polynomial over Zp of degree n (cf. 3.1.7),

a Zp-vector space with normal basis {κ, σ(κ) = κp, . . . , σn−1(κ) = κpn−1},
where κ is a normal element and σ is the Frobenius automorphism. Ac-
cording to 3.3.5, κ is a root of a monic, irreducible polynomial over Zp of
degree n (cf. 3.4.12),

3.5 Construction of Irreducible Polynomials 183

the union {0}∪F∗
q , where F∗

q is a multiplicative group generated by a prim-
itive element α, whence α is a root of a monic, irreducible polynomial over
Zp of degree n, and the multiplicative order of α is equal to q − 1 (cf. 3.2.8).

Consequently, for all computations in finite fields Fq it is necessary to know
irreducible polynomials of given degree over Fp or, more generally, over a
given finite field Fpm .

Now we want to discuss several methods for constructing irreducible poly-
nomials. (A detailed description of these methods can be found in chapters 3
and 4 of [131].) We determine them as minimal polynomials, and we describe
a method for computing all irreducible polynomials over Fq of degree n when
a normal basis of Fqn over Fq is known. We also discuss two factoring algo-
rithms which determine all irreducible factors of a given polynomial in Fq[x].
Furthermore, we present methods for randomly generating irreducible poly-
nomials over Fq of given degree, by generating monic polynomials which later
on must be tested for irreducibility over Fq. Finally, we discuss how to find
primitive elements in Fq. The algorithms and ideas presented are taken mainly
from [136] and [131].

Before going into details, a short remark about computing the n-fold sum
or n-fold product (cf. Exercise 1.6.6) of an element can be very useful and help-
ful for computations in finite fields. When restricting to nonnegative multi-
ples, then these computations can be defined in a semigroup with neutral ele-
ment (cf. [136, pages 17ff]). Let (S, +, 0) be a semigroup with neutral element
0, then the method of repeated doubling and adding allows the computation of
a + n · b for a, b ∈ S, n ∈ N in the following way. Let

R(a, b, n) := a + n · b,

then R satisfies
R(a, b, 0) = a,
R(0, b, n) = n · b,

R(a, b, 2n) = R(a, 2 · b, n),
R(a, b, n + 1) = R(a + b, b, n).

Using the last two rules, either the integer n can be reduced by 1 if n is odd, or
it can be be divided by 2 if n is even, so that finally we arrive at n = 0. Then,
according to the first rule, the result can be read from the first parameter.

For example 2 + 15 · 9 = R(2, 9, 15) = R(11, 9, 14) = R(11, 18, 7) =
R(29, 18, 6) = R(29, 36, 3) = R(65, 36, 2) = R(65, 72, 1) = R(137, 72, 0) = 137.
Of course, this method is even more helpful when S is a finite semigroup.

Correspondingly, the method of repeated squaring and multiplying can be
applied for computing abn for elements a, b of a semigroup (S, ·, 1) and n ∈ N.

184 3. Finite Fields

Let
RM(a, b, n) := abn

then RM satisfies

RM(a, b, 0) = a,
RM(1, b, n) = bn,

RM(a, b, 2n) = RM(a, b2, n),
RM(a, b, n + 1) = RM(ab, b, n).

When we apply this method for computing powers in finite fields of charac-
teristic p we also use

RM(a, b, pn) = RM(a, bp, n),
RM(a, b, p + n) = RM(abp, b, n),

since computing the p-th power is usually easier done than computing an ar-
bitrary power.

Since minimal polynomials are by definition irreducible, one obtains irre-
ducible polynomials by computing minimal polynomials of algebraic elements
(cf. [131, pages 102ff]).

3.5.1 Example Assume that
{
1, α, . . . , αn−1}, with α ∈ Fqn , is a basis of Fqn over Fq.

In order to find the minimal polynomial f ∈ Fq[x] of β ∈ Fqn we express the
powers β0, β1, . . . , βn with respect to this basis, obtaining

βi = ∑
j∈n

κijα
j, κij ∈ Fq, j ∈ n, 0 ≤ i ≤ n.

We determine f as

f (x) =
n

∑
i=0

λix
i ∈ Fq[x],

so that f is monic, and of least degree with f (β) = 0. The second property
leads to the homogeneous system of linear equations

n

∑
i=0

λiκij = 0, j ∈ n,

for the unknown λ0, . . . , λn. The coefficient matrix K = (κij) is an (n + 1)× n-
matrix of rank r with 1 ≤ r ≤ n. Hence, the dimension of the space of solutions
of this system is s = n + 1 − r, thus 1 ≤ s ≤ n. Therefore, we can prescribe s
values of λ0, . . . , λn. The remaining ones are then uniquely determined. If s =
1 we set λn = 1, if s > 1 we set λn = . . . = λn−s+2 = 0 and λn−s+1 = 1. This
way we obtain a monic polynomial f of smallest degree such that f (β) = 0.

�

There is another approach using the Frobenius automorphism for the de-
termination of the minimal polynomial.

3.5 Construction of Irreducible Polynomials 185

3.5.2Example [131, pages 103ff] Assume that β belongs to Fqn , and let τ : κ �→ κq

be the Frobenius automorphism of Fqn over Fq. We compute the values τ(β),
τ2(β), . . . until we find the least positive integer m such that τm(β) = β. This
integer m is the degree of the minimal polynomial f of β over Fq, and f is
given by

f (x) = ∏
i∈m

(x − τi(β)).

Moreover, the elements β, τ(β), . . . , τm−1(β) are the m distinct conjugates of β.
�

If we have a normal basis {κ, τ(κ), . . . , τn−1(κ)} of Fqn over Fq, where τ is
the Frobenius automorphism of Fqn over Fq, then it is very easy to compute all
irreducible polynomials of degree n over Fq. Generalizing 3.4.14, these poly-
nomials occur as the minimal polynomials of those elements α ∈ Fqn which
have an acyclic coefficient vector in the representation

α = ∑
i∈n

αiτ
i(κ), αi ∈ Fq.

Knowing all irreducible polynomials of degree at most k is essential for de-
scribing the conjugacy classes of the linear groups GLk(q) (cf. Section 6.3).
As shown in the previous section, an irreducible polynomial of degree n cor-
responds to the n distinct conjugates τ j(α) for j ∈ n which form an orbit of
maximal length n of Cn on Fn

q .
Hence, in order to list all irreducible polynomials of degree n over Fq, we

list all Lyndon words of length n over an alphabet of size q =
∣∣Fq

∣∣, identify
these Lyndon words with coefficient vectors (α0, . . . , αn−1) with respect to the
given normal basis and compute polynomials of the form

f (x) = ∏
j∈n

(
x − ∑

i∈n
αi−j mod nτi(κ)

)

which are necessarily monic, irreducible, and of degree n.
Before describing an algorithm for listing all Lyndon words, we need some

more facts about pre-Lyndon words over the alphabet m. (For more details
see [111, Section 7.2.1.1].) The n-extension of a nonempty word α ∈ mk, k ≥ 1, is
the concatenation of
n/k� copies of α with the prefix α′ of α of length n mod k.
For example the 10-extension of α = 123 is 1231231231.

3.5.3Lemma Let α be a pre-Lyndon word of length n ≥ 1.

1. If the final letter of α is increased by 1, then the resulting word is a Lyndon word.
(Here we assume that the alphabet contains sufficiently many elements, so that the
last letter of a given word α can be increased by 1.)

186 3. Finite Fields

2. The word α is the n-extension of the first factor �0 in its Lyndon decomposition.

3. The word α cannot be the n-extension of two different Lyndon words.

Proof: 1. Since each word of length 1 is a Lyndon word, the first assertion
is true for words of length 1, and we can assume that α is of length greater
than 1. Since α is a pre-Lyndon word there exists some ω ∈ m∗ such that αω

is a Lyndon word. Let α′ be the word obtained from α by increasing its last
letter by 1. Moreover, we write α as the concatenation of two nonempty words
α = βγ, and, correspondingly, α′ = βγ′. Thus γ′ is a proper suffix of α′, and
we want to show that α′ < γ′.

Let θ be a prefix of α of the same length as γ, then θ ≤ αω < γω since γω

is a proper suffix of the Lyndon word αω. Consequently, θ ≤ γ < γ′. Since
θ is also a prefix of α′, we deduce that α′ < γ′. The last inequality holds for
all proper suffixes γ′ of α′, whence, by 3.4.21, it is shown that α′ is a Lyndon
word.

2. Let �0 be the first factor in the Lyndon decomposition of α, so that α = �0β =
x0 . . . xn−1. The length of �0 is indicated by r. If r = n then α is the Lyndon
word �0. So we assume that r < n. Since α is a pre-Lyndon word, there exists
some ω ∈ m∗ such that αω = �0βω is a Lyndon word. Hence, �0βω < βω,
from which we want to deduce that xj = xj+r for j ∈ n − r. For j = 0 we first
obtain x0 ≤ xr . Therefore x0 = xr , since otherwise �0xr would be a prefix of
α which is a Lyndon word of length r + 1. This is a contradiction to the fact
that in the decomposition 3.4.23 the word �0 is the longest prefix of α which is
a Lyndon word.

Assume now that xi = xi+r for i ∈ j and j < n − r − 1. We have to prove
that also xj = xj+r is satisfied. From the fact that �0βω < βω and the assump-
tions on xi we obtain that xj ≤ xj+r. Assuming that xj < xj+r and putting
j0 =
j/r�r, it follows from the first assertion of this lemma that xj0 . . . xj+r

is a Lyndon word. By construction we have �0 < xj0 . . . xj+r, which yields
together with repeated applications of 3.4.22 that x0 . . . xj+r is (as the concate-
nation of some copies of �0 and xj0 . . . xj+r) a Lyndon word of length greater
than r which is a prefix of α. Again this is a contradiction to the assumed
Lyndon decomposition of α. Consequently, α is the n-extension of �0.

3. In order to prove the last assertion, we assume that α is the n-extension of
two different Lyndon words �0 and �′0. Without loss of generality, the length of
�0 is greater than the length of �′0. Then �0 is the concatenation of some copies
of �′0 and a proper prefix θ of �′0. Note that this proper prefix must necessarily
appear in �0, for otherwise �0 would have a nontrivial cyclic symmetry. Thus
�0 = �′0 . . . �′0θ. Since θ is a proper prefix of �′0 we have θ < �′0. Since θ is a

3.5 Construction of Irreducible Polynomials 187

proper suffix of �0 we have �0 < θ. These inequalities lead to the contradiction
θ < �′0 < �0 < θ. �

As an immediate consequence we obtain

3.5.4Corollary A word of length n ≥ 1 is a pre-Lyndon word if and only if it is the
n-extension of a Lyndon word of length k ≤ n. This Lyndon word is uniquely deter-
mined. �

This corollary describes a one-to-one correspondence between Lyndon
words of length not greater than n and pre-Lyndon words of length n.

Now we are in a position to describe an algorithm for generating all pre-
Lyndon words of length n (see also [57]). It generates all pre-Lyndon words
x0 . . . xn−1 over the alphabet m in the lexicographical order and indicates the
index j in any pre-Lyndon word such that x0 . . . xj is the first factor in the Lyn-
don decomposition of x0 . . . xn−1.

3.5.5Algorithm (pre-Lyndon [111])

Input: Two positive integers n and m.
Output: The list of all pre-Lyndon words of length n over the alphabet m.

(1) Set x0 := . . . := xn−1 := 0 and j := 0. (The word x0 is a pre-Lyndon
word.)

(2) Print x0 . . . xn−1 and indicate x0 . . . xj as a Lyndon word.

(3) Set j := n − 1.
If xj = m − 1 decrease j until (j < 0 or xj < m − 1).

(4) If j < 0 terminate the algorithm, otherwise increase xj by 1. (The word
x0 . . . xj is a Lyndon word of length j + 1 by the first assertion of 3.5.3.)

(5) Compute the n-extension of x0 . . . xj, i.e. for k from j + 1 to n − 1 set
xk := xk−(j+1). (The word x0 . . . xn−1 is a pre-Lyndon word by the sec-
ond assertion of 3.5.3.)
Goto (2).

In (3) and (4) we compute the smallest Lyndon word of length not greater than
n which is (in the lexicographical order) greater than the previously computed
pre-Lyndon word. �

This algorithm can also be used for generating all necklaces of length n over
m, since a pre-Lyndon word is a necklace if and only if it is the n-extension of
a Lyndon word of length d where d is a divisor of n.

188 3. Finite Fields

The output of this algorithm for n = 4 and m = 3 is

0000 0011 0022 0111 0122 0212 1111 1212
0001 0012 0101 0112 0202 0220 1112 1221
0002 0020 0102 0120 0210 0221 1121 1222
0010 0021 0110 0121 0211 0222 1122 2222,

where the letters of the longest prefix, which is a Lyndon word, are underlined.
In addition to the Lyndon words of length 4, the following pre-Lyndon words
describe necklaces: 0000, 0101, 0202, 1111, 1212, and 2222.

Another method for constructing irreducible polynomials over Fq is to fac-
tor a given polynomial in Fq[x]. (For more details see chapter 4 of [131] and
chapter 12 of [136].) This means, for a given polynomial f ∈ Fq[x] we deter-
mine the factorization

f (x) = ∏
i∈t

f mi
i

into pairwise distinct irreducible polynomials fi ∈ Fq[x] with mi ∈ N∗ for
i ∈ t. We describe two different algorithms. The first one is deterministic.
It applies to polynomials which are defined over fields of small order. The
second algorithm uses probabilistic methods. It is more suitable for larger
fields. Here, a field Fq is considered large if q is substantially greater than the
degree of the polynomial to be factored.

Both algorithms can only be applied to polynomials which are square free,
i.e. which do not admit multiple factors. For this reason, we first describe
the square free factorization. It is based on properties of the derivative of a
polynomial and it yields a decomposition

∏
i∈t

fi

without repeated factors.

Let f (x) = ∑n
i=0 κixi be a polynomial in F[x]. Then the formal derivative f ′

of f is defined by

f ′(x) =
n

∑
i=1

iκix
i−1.

For f , g ∈ F[x] the following rules are satisfied:

(f + g)′ = f ′ + g′, (f g)′ = f ′g + f g′, (f ◦ g)′ = (f ′ ◦ g)g′.3.5.6

The derivative of f permits us to determine whether f has multiple roots or
not.

3.5 Construction of Irreducible Polynomials 189

3.5.7Lemma [131, 1.68 Theorem] The element α ∈ F is a multiple root of f ∈ F[x] \ {0}
if and only if α is a root of both f and f ′. �

Since, when computing the derivative of f , we have to form i-fold sums of the
coefficients of f , the following lemma is very important.

3.5.8Lemma Let p be the characteristic of Fq.

1. Assume that f (x) = ∑n
i=0 κixi is a polynomial over Fq. Then f ′ = 0 if and only if

κi = 0 for i �≡ 0 mod p. This in turn is equivalent to the existence of polynomials
g, h ∈ Fq[x] such that f (x) = g(xp) = h(x)p.

2. If f ∈ Fq[x] is irreducible, then f ′ �= 0. �

By using the derivative f ′ of f , we determine not only multiple roots of f
but, in general, multiple irreducible factors of f .

3.5.9Theorem [136, page 150] Assume that q = pn, f , g ∈ Fq[x], and g is irreducible.
Consider m ∈ N∗ such that gm is a divisor of f and gm+1 does not divide f . Then
gm−1 is a divisor of gcd(f , f ′). Moreover, gm is a divisor of gcd(f , f ′) if and only if
m ≡ 0 mod p.

Proof: Define h ∈ Fq[x] such that f = gmh, then g is not a divisor of h. Further-
more, f ′ = mgm−1g′h + gmh′ = gm−1(mg′h + gh′). Hence, gm−1 is a divisor of
gcd(f , f ′).

Moreover, gm divides gcd(f , f ′) if and only if g is a divisor of mg′h. Since
g′ �= 0 (cf. 3.5.8), deg(g′) < deg(g), g is irreducible, and since g is not a
divisor of h, it follows from 3.2.4 that g is not a divisor of g′h. Therefore, mg′h
is divisible by g if and only if m ≡ 0 mod p. �

Immediately we get

3.5.10Corollary [136, page 150] Let q = pn and f ∈ Fq[x]. Then f/gcd(f , f ′) is the
product of all irreducible factors of f whose multiplicities are not divisible by p. �

In order to factor an arbitrary polynomial f ∈ Fq[x], we may assume that
f is monic. We begin by computing d = gcd(f , f ′). If d = 1 then f has no
repeated factors. If d = f then necessarily f ′ = 0 and, consequently, there
exists a polynomial g ∈ Fq[x] such that f (x) = g(x)p for a suitable polynomial
g ∈ Fq[x]. Hence, the factors of f are the factors of g. In order to factor g
we have to check whether it has no repeated factors. If d is a nontrivial factor
of f , then we factor f/d and d separately. The polynomial f/d is squarefree,
whereas d may still have repeated factors, which can then be handled by the
same method (apply induction on the degree).

The next theorem describes a first step in factorizing a polynomial:

190 3. Finite Fields

3.5.11 Theorem [131, 4.1 Theorem] If f ∈ Fq[x] is monic and h ∈ Fq[x] satisfies
hq ≡ h mod I(f), then

f (x) = ∏
κ∈Fq

gcd
(
f (x), h(x) − κ

)
.

Proof: Since gcd(f (x), h(x) − κ) is a divisor of f , and h(x) − κ are relatively
prime for different κ ∈ Fq, we derive that ∏κ∈Fq gcd(f (x), h(x) − κ) is a divi-
sor of f .

Conversely, from hq ≡ h mod I(f) we deduce that f is a divisor of

h(x)q − h(x) = ∏
κ∈Fq

(
h(x) − κ

)
.3.5.12

This equation follows from 3.2.3 by substituting h(x) for x. Then f is the great-
est common divisor gcd(f (x), ∏κ∈Fq

(h(x)− κ)) and, consequently, f is a divi-
sor of ∏κ∈Fq

gcd(f (x), h(x) − κ), which finishes the proof. �

The last theorem does not always yield the complete factorization of f , since
gcd(f (x), h(x) − κ) may be reducible. If h(x) ≡ κ mod I(f) for some κ ∈ Fq,
then this factorization is trivial. If the factorization is not trivial, then h is called
an f -reducing polynomial. In the sequel, we present a method to construct f -
reducing polynomials. Any h ∈ Fq[x] with 0 < deg h < deg f and hq ≡
h mod I(f) is f -reducing.

Before we do that, we present the Chinese Remainder Theorem, which en-
ables us to solve simultaneous equivalence relations. Recall that the composi-
tion R ◦ S of two relations R, S ⊆ X × X is defined as

R ◦ S := {(x, z) ∈ X × X | ∃ y ∈ X : (x, y) ∈ S, (y, z) ∈ R} .

Now we are able to prove

3.5.13 The Chinese Remainder Theorem, set-theoretic version Let R0, . . . , Rt−1 be
equivalence relations on a set X and let ϕ be given by

ϕ : X → ×
i∈t

X/Ri : x �→ ϕ(x) := ([x]R0 , . . . , [x]Rt−1),

where [x]Ri is the equivalence class of x with respect to the relation Ri. Then ϕ is
surjective if and only if (R0 ∩ . . . ∩ Ri−1) ◦ Ri = X × X for all i ∈ t.

Proof: 1. We assume that ϕ is surjective. We have to prove that (R0 ∩ . . . ∩
Ri−1) ◦ Ri ⊇ X × X is true for each i ∈ t. Choose any (x′, x′′) ∈ X × X and
i ∈ t. Then there exists an element x ∈ X such that

ϕ(x) = ([x′′]R0 , . . . , [x
′′]Ri−1 , [x

′]Ri , . . . , [x
′]Rt−1),

3.5 Construction of Irreducible Polynomials 191

whence
(x, x′′) ∈

⋂
j∈i

Rj and (x′, x) ∈ Ri.

Consequently (x′, x′′) ∈ (R0 ∩ . . . ∩ Ri−1) ◦ Ri. Since this holds true for any
(x′, x′′) ∈ X × X, the first part of the proof is finished.

2. Assume, conversely, that (R0 ∩ . . . ∩ Ri−1) ◦ Ri ⊇ X ×X is satisfied for each
i ∈ t. By induction on t, we prove that ϕ is surjective. If t = 1 then ϕ is the
natural projection from X onto X/R0 which is surjective. If t > 1 then we
assume that the mapping

ϕ̃ : X → ×
i∈t−1

X/Ri : x �→ ϕ̃(x) := ([x]R0 , . . . , [x]Rt−2)

is surjective. Thus, for any x0, . . . , xt−2 there exists an element x ∈ X such that
ϕ̃(x) = ([x0]R0 , . . . , [xt−2]Rt−2). Consider furthermore xt−1 ∈ X. Since

(xt−1, x) ∈ X × X = (R0 ∩ . . . ∩ Rt−2) ◦ Rt−1,

there exists some y ∈ X such that

(xt−1, y) ∈ Rt−1 and (y, x) ∈ R0 ∩ . . . ∩ Rt−2.

Hence,
ϕ(y) = ([y]R0 , . . . , [y]Rt−1) =

([x]R0 , . . . , [x]Rt−2 , [xt−1]Rt−1) = ([x0]R0 , . . . , [xt−2]Rt−2 , [xt−1]Rt−1)

and ϕ is surjective. �

This theorem is often applied in rings where the equivalence relation is in-
duced by an ideal in the ring. Two elements r, s of the ring are called equiv-
alent with respect to the ideal I if r − s ∈ I. The relation ≡n on Z defined
in Exercise 3.1.3 is an example for this. Here, the ideal is I = I(n). Fur-
thermore, we remind the reader that the sum of two ideals I and J is the set
I + J = {i + j | i ∈ I, j ∈ J}, whereas the product I J is the ideal generated by
all elements of the form ij for i ∈ I and j ∈ J. (See Exercises 3.5.7 and 3.5.8.)
Two ideals I and J in R are called relatively prime if I + J = R.

3.5.14Lemma Let R be a ring with 1.

1. If I, J are ideals in R and SI , SJ are the induced equivalence relations on R, then

SI ◦ SJ = R × R ⇐⇒ I + J = R,

which means that I and J are relatively prime.

2. If J and I0, . . . , It−1 are ideals and Ij + J = R for all j ∈ t, then

I0 · · · It−1 + J = I0 ∩ . . . ∩ It−1 + J = R.

192 3. Finite Fields

Proof: Assume that SI ◦ SJ = R× R. Then for any r ∈ R the pair (r, 0) belongs
to SI ◦ SJ , whence there exists an element s ∈ R such that r − s ∈ J and s− 0 ∈
I. Consequently, r = s − 0 + r − s ∈ I + J. Since r was chosen arbitrarily,
I + J = R.

On the other hand, if I + J = R then there exist i ∈ I and j ∈ J such that
1 = i + j. For (r, s) ∈ R × R let v = ri + sj. Then

r − v = r(1− i)− sj = rj − sj ∈ J and v − s = ri + s(j − 1) = ri + si ∈ I.

For this reason (r, v) ∈ SJ and (v, s) ∈ SI , which means that (r, s) ∈ SI ◦ SJ .
Since (r, s) was chosen arbitrarily, SI ◦ SJ = R × R.

The second part is proved by induction on t. The case t = 1 is clear. As-
sume that t > 1. Since I0 · · · It−1 ⊆ I0 ∩ . . . ∩ It−1, it suffices to show that
I0 · · · It−1 + J = R. For the induction step we assume that I0 · · · It−2 + J = R.
Then there exist i ∈ I0 · · · It−2 and j ∈ J such that i + j = 1. Since It−1 + J = R,
there exist r ∈ It−1 and s ∈ J such that r + s = 1. By multiplication we derive

1 = (i + j)(r + s) = (ir + is) + (jr + js) ∈ I0 · · · It−1 + J.

Since I0 · · · It−1 + J is an ideal in R, the proof is finished. �

Now we formulate

3.5.15 The Chinese Remainder Theorem, ring-theoretic version Let R be a ring with
1 and let I0, . . . , It−1 denote ideals in R. Assume that the map ϕ is given by

ϕ : R → ×
j∈t

R/Ij : r �→ ϕ(r) := (r + I0, . . . , r + It−1).

With addition and multiplication on ×j∈t R/Ij defined componentwise, the map ϕ is
a ring homomorphism with

ker(ϕ) =
⋂
j∈t

Ij.

Moreover, ϕ is surjective if and only if the ideals are pairwise relatively prime, i.e.
Ii + Ij = R for all i, j ∈ t with i �= j. �

Now we come back to the construction of f -reducing polynomials.

3.5.16 Berlekamp’s algorithm [131, pages 149ff] Assume that f = f0 · · · ft−1 is the
product of t distinct monic, irreducible polynomials fi over Fq. The mapping

ϕ : Fq[x] → ×
j∈t

Fq[x]/I(fj) : g �→ ϕ(g) := (g + I(f0), . . . , g + I(ft−1))

is a surjective ring homomorphism with ker(ϕ) = I(f). According to the Chi-
nese Remainder Theorem, for each (κ0, . . . , κt−1) ∈ Ft

q there exists a unique

3.5 Construction of Irreducible Polynomials 193

polynomial h ∈ Fq[x] such that h(x) ≡ κi mod I(fi) for i ∈ t and deg h <

deg f . Therefore, h(x)q ≡ κ
q
i = κi ≡ h(x) mod I(fi) for i ∈ t, thus

hq ≡ h mod I(f), deg h < deg f . 3.5.17

Conversely, if h ∈ Fq[x] is a solution of 3.5.17, then, since 3.5.12 is satisfied,
for each irreducible factor fi of f there exists some κi ∈ Fq such that fi divides
h(x) − κi. Thus all solutions of 3.5.17 satisfy

h(x) ≡ κi mod I(fi), i ∈ t,

for some (κ0, . . . , κt−1) ∈ Ft
q. Consequently, there are qt solutions of 3.5.17.

In order to solve 3.5.17, we reduce it to a system of linear equations. Let
n = deg f . We construct an n × n-matrix L = (λij)i,j∈n with λij ∈ Fq by
expressing the powers xiq modulo f (x) as

xiq ≡ ∑
j∈n

λijx
j mod I(f), i ∈ n.

Then h(x) = ∑i∈n µixi ∈ Fq[x] is a solution of 3.5.17 if and only if the coeffi-
cient vector (µ0, . . . , µn−1) is a solution of

(µ0, . . . , µn−1) · L = (µ0, . . . , µn−1).

Indeed, h is a solution of 3.5.17 if and only if

∑
i∈n

µix
i ≡ ∑

i∈n
µ

q
i x

iq mod I(f)

= ∑
i∈n

µi ∑
j∈n

λijx
j

= ∑
j∈n

(
∑
i∈n

µiλij

)
xj.

Hence, h is a solution of 3.5.17 if and only if µj = ∑i∈n µiλij for j ∈ n. This
system of linear equations can be written as the homogeneous system

(µ0, . . . , µn−1) · (L − In) = 0, 3.5.18

where In is the unit matrix. We have just shown that 3.5.18 has qt solutions,
whence the dimension of ker(L − In) is equal to t, and so the rank of L − In is
n − t.

In order to factor f , we determine the rank r of the matrix L − In. The
number of irreducible factors of f is then t = n − r, which yields a stopping
rule for the algorithm. After that, we determine a basis of the space of solutions
of 3.5.18 and compute the corresponding polynomials h0, . . . , ht−1. Without
loss of generality we label the polynomials in such a way that h0(x) = 1 is

194 3. Finite Fields

the solution of 3.5.17 corresponding to the solution (1, 0, . . . , 0) of 3.5.18. Then
0 < deg(hi) < n for 1 ≤ i < t, and all these polynomials are f -reducing.

If t = 1, then f is irreducible. If t ≥ 2, we first take the f -reducing poly-
nomial h1(x) and calculate gcd(f (x), h1(x) − κ) for all κ ∈ Fq. This yields a
nontrivial factorization of f by 3.5.11. If the use of h1 did not split f into t fac-
tors we calculate gcd(g(x), h2(x) − κ) for all κ ∈ Fq and all nontrivial factors
g obtained so far. This procedure must be continued until we have found t
factors of f .

This way we find all factors of f . Assume that f1 and f2 are two distinct
irreducible factors, then there exist (κ

(1)
0 , . . . , κ

(1)
t−1) and (κ

(2)
0 , . . . , κ

(2)
t−1) in Ft

q
such that

hj(x) ≡ κ
(i)
j mod I(fi), j ∈ t, i = 1, 2.

We claim that (κ
(1)
0 , . . . , κ

(1)
t−1) �= (κ

(2)
0 , . . . , κ

(2)
t−1). Suppose, on the contrary, that

κ
(1)
j = κ

(2)
j for j ∈ t, then for any solution h of 3.5.17 there exists some κ ∈ Fq

such that
h(x) ≡ κ mod I(fi), i = 1, 2.

But at the beginning of 3.5.16 we have shown that there exists, for instance, a
solution h of 3.5.17 with

h(x) ≡ 0 mod I(f1) and h(x) ≡ 1 mod I(f2),

which is a contradiction. �

The methods described above also provide the number of irreducible fac-
tors of f .

3.5.19 Corollary Assume that f ∈ Fq[x] is a polynomial of degree n which does not have
multiple factors. Let L = (λij)i,j∈n be the n × n-matrix determined by

xiq ≡ ∑
j∈n

λijx
j mod I(f), i ∈ n.

Then deg f − rank(L − In) is the number of irreducible factors of f . �

Now we formulate a useful test for irreducibility of a polynomial f .

3.5.20 Corollary Let f ∈ Fq[x] be a polynomial of degree n and let L be the n × n-matrix
(λij)i,j∈n determined by

xiq ≡ ∑
j∈n

λijx
j mod I(f), i ∈ n.

Then f is irreducible if and only if f is square free and rank(L − In) = n − 1. �

3.5 Construction of Irreducible Polynomials 195

Based on this test we can randomly determine irreducible polynomials over
Fq of degree n. We randomly produce a monic polynomial of degree n over Fq

by choosing arbitrary coefficients κ0, . . . , κn−1. Then we test whether or not the
polynomial f (x) = ∑n−1

i=0 κixi + xn is irreducible. If it is not, we move on to the
next polynomial. There exist exactly qn monic polynomials of degree n over
Fq. According to [136, page 145], approximately qn/n of them are irreducible.
So, on average we will have to test n polynomials in order to find an irreducible
one.

Berlekamp’s algorithm is useful only for small fields Fq. The reason for
this is as follows. For each f -reducing polynomial h we have to compute the
greatest common divisor of f (x) and h(x) − κ for all κ ∈ Fq. Since the fac-
tors occurring in 3.5.11 are relatively prime, and since f consists of t different
factors, there will be at most t values κ ∈ Fq for which gcd(f (x), h(x) − κ)
is different from 1. Now we give a characterization of those κ for which
gcd(f (x), h(x) − κ) �= 1. (See also [131, pages 160ff].)

Let K be the set of those κ ∈ Fq for which gcd(f (x), h(x) − κ) �= 1, then
from 3.5.11 we deduce that

f (x) = ∏
κ∈K

gcd
(
f (x), h(x) − κ

)
, 3.5.21

where h ∈ Fq[x] is an f -reducing polynomial. Hence, f is a divisor of

∏
κ∈K

(h(x)− κ).

Let G be the polynomial defined by

G(y) := ∏
κ∈K

(y− κ) ∈ Fq[y],

then f (x) divides G(h(x)) and G(y) can be characterized by

3.5.22Theorem [131, 4.8 Theorem] Consider f ∈ Fq[x] and h ∈ Fq[x] an f -reducing
polynomial. Then G(y) is the unique monic polynomial of least degree which satisfies
g(y) ∈ Fq[y] and f (x) divides g(h(x)).

Proof: We already know that G ∈ Fq[y] is monic, and that f (x) is a divisor of
G(h(x)). The set {

g ∈ Fq[y]
∣∣ f (x) divides g(h(x))

}
is an ideal in Fq[y], whence it is a principal ideal of the form I(G0). Conse-
quently, G0 is a divisor of G and

G0(y) = ∏
κ∈K0

(y− κ)

196 3. Finite Fields

for some subset K0 of K. Furthermore, f (x) is a divisor of

G0(h(x)) = ∏
κ∈K0

(h(x)− κ),

thus
f (x) = ∏

κ∈K0

gcd
(
f (x), h(x) − κ

)
.

Comparing this with 3.5.21, we conclude that K0 = K and G0 = G. �

Assume that f = f0 · · · ft−1 is the product of t distinct monic, irreducible
polynomials fi ∈ Fq[x]. Let h ∈ Fq[x] be an f -reducing polynomial and let
K and G ∈ Fq[y] be as above. Assume that the cardinality of K is equal to m.
From 3.5.21 it follows that m ≤ t. Next we introduce coefficients of G, so that

G(y) = ∏
κ∈K

(y − κ) =
m

∑
i=0

µiy
i ∈ Fq[y]

with µm = 1. Since f (x) is a divisor of G(h(x)), we have

m

∑
i=0

µih(x)i ≡ 0 mod I(f).

Because µm = 1, this is a nontrivial linear dependence relation of the residues
of 1, h(x), . . . , h(x)m modulo f (x). From 3.5.22 it follows that this dependence
relation is unique and that the residues of 1, h(x), . . . , h(x)m−1 modulo f (x) are
linearly independent over Fq.

The Zassenhaus algorithm (cf. [131, pages 157ff]) describes a method for
finding G.

3.5.23 Zassenhaus algorithm Assume that f = f0 · · · ft−1 is the product of t distinct
monic irreducible polynomials fi over Fq and let h ∈ Fq[x] be an f -reducing
polynomial.

We compute the residues modulo f (x) of 1, h(x), h2(x), . . . until we find the
least power hm(x) which is linearly dependent on the previously computed
residues of powers of h. In fact, m ≤ t where t can be determined by the
Berlekamp algorithm. Let

m

∑
i=0

µih(x)i ≡ 0 mod I(f), µi ∈ Fq, µm �= 0

be the first dependency relation occurring in this way. The monic polynomial

G(y) =
m

∑
i=0

µi

µm
yi ∈ Fq[y]

3.5 Construction of Irreducible Polynomials 197

has as roots in Fq precisely the elements of K (which is the set of those κ ∈ Fq

for which gcd(f (x), h(x) − κ) �= 1.) Determine them either by trial and error,
or by a root finding method which we present next. �

To find the roots of a polynomial, we introduce q-polynomials over Fqn

(cf. [131, page 108]). A polynomial of the form

f (x) =
m

∑
i=0

κix
qi ∈ Fqn [x]

is called a q-polynomial over Fqn or a linearized polynomial. The second name is
motivated by

3.5.24Lemma Let f ∈ Fqn [x] be a q-polynomial. Then for any λ1, λ2 in an arbitrary field
extension of Fqn and for any µ ∈ Fq we have

f (λ1 + λ2) = f (λ1) + f (λ2)

and
f (µλ1) = µ f (λ1). �

Next we describe a method to determine the roots of a q-polynomial.

3.5.25Example [131, pages 110ff] Let

f (x) =
m

∑
i=0

κix
qi ∈ Fqn [x]

be a q-polynomial over Fqn . We want to find all roots of f in a finite extension
F over Fqn . Assume that F is an s-dimensional vector space over Fq and let
{β0, . . . , βs−1} be an Fq-basis of F. According to 3.5.24, the mapping

f : F → F : β �→ f (β)

is Fq-linear. Consequently, it is represented by an s × s-matrix L = (λij)i,j∈s

over Fq, where
f (βi) = ∑

j∈s
λijβ j, λij ∈ Fq, i ∈ s.

Each element β ∈ F can be written uniquely as

β = ∑
i∈s

µiβi, µi ∈ Fq, i ∈ s.

Then
f (β) = ∑

i∈s
µi f (βi) = ∑

i∈s
µi

(
∑
j∈s

λijβ j

)
= ∑

j∈s

(
∑
i∈s

µiλij

)
β j.

198 3. Finite Fields

Therefore, f (β) = 0 if and only if

∑
i∈s

µiλij = 0, j ∈ s.

This is a homogeneous system of linear equations

(µ0, . . . , µs−1) · L = (0, . . . , 0).

If r denotes the rank of L, then this system has qs−r solutions (µ0, . . . , µs−1) ∈
Fs

q. Each of these solutions gives a root β = ∑i∈s µiβi of f . In other words,
we can find the roots of f in F by solving a homogeneous system of linear
equations. �

Assume that f ∈ Fqn [x] is a q-polynomial and let κ ∈ Fqn . Then the polyno-
mial f (x) − κ is called an affine q-polynomial. (See [131, page 112].) Using the
notation from above, β ∈ F is a root of f (x) − κ if and only if f (β) = κ which
yields the system of linear equations

(µ0, . . . , µs−1) · L = (γ0, . . . , γs−1),

where κ = ∑i∈s γiβi with uniquely determined γi ∈ Fq for i ∈ s.
Since it is easier to determine the roots of an affine q-polynomial than of an

arbitrary polynomial f ∈ Fqn [x], we propose the following method to deter-
mine the roots of f in an extension field F of Fqn . First determine a nonzero
affine q-polynomial which is divisible by f . This polynomial is called an affine
multiple of f . Then compute the roots of the affine multiple of f , and check
each root whether it is also a root of f .

We only have to describe how to obtain an affine multiple of f .

3.5.26 Example [131, page 112] Assume that f ∈ Fqn [x] is of degree m ≥ 1. In order
to find a nonzero affine multiple of f , we compute for i ∈ m the unique poly-
nomial ri ∈ Fqn [x] with deg(ri) < m such that xqi ≡ ri(x) mod I(f). Then we
determine κi ∈ Fqn , not all equal to 0, in such a way that

∑
i∈m

κiri(x)

is constant. If we write ri in the form ri(x) = ∑j∈m λijxj with λij ∈ Fqn for
i, j ∈ m, then we have to determine κi so that the polynomial

∑
i∈m

κi

(
∑
j∈m

λijx
j
)

= ∑
j∈m

(
∑
i∈m

κiλij

)
xj

is constant, which yields

∑
i∈m

κiλij = 0, 1 ≤ j ≤ m − 1.

3.5 Construction of Irreducible Polynomials 199

This is the homogeneous system of linear equations

(κ0, . . . , κm−1) · L = (0, . . . , 0)

for the unknown κi, where L is the m × (m − 1)-matrix of the elements λij for
i ∈ m and 1 ≤ j ≤ m − 1. Since rank(L) ≤ m − 1, this system has nontrivial
solutions, and among those we determine a solution with κm−1 = 1. Such a
solution yields

∑
i∈m

κiri(x) = κ

for some κ ∈ Fqn . Therefore we have

∑
i∈m

κix
qi ≡ ∑

i∈m
κiri(x) = κ mod I(f),

and, consequently, ∑i∈m κixqi − κ is a nonzero affine multiple of f over Fqn . �

At the end of this section we want to discuss how to find a primitive ele-
ment of Fq. In order to do this, we pick an element of the multiplicative group
F∗

q at random and compute its order. A general algorithm for computing the
order of an element of a finite group is the following ([136, page 171]).

3.5.27Algorithm (Order of a group element) Assume that G is a finite group of order

|G| = ∏
i∈t

pmi
i

with pairwise distinct primes pi and integers mi ≥ 1. Let G be written multi-
plicatively. The order of g ∈ G is a divisor of |G|. We determine ord(g) as the
least positive integer n such that gn = 1 and n is a divisor of |G|.
Input: The order of the group G, its prime divisors pi and their multi-

plicities mi for i ∈ t, and one element g ∈ G.
Output: The order of g.

(1) Set n := |G|.
(2) Set i := 0.

(3) Set j := 0.

(4) While (gn/pi = 1 and j < mi − 1), set n := n/pi and increase j by 1.

(5) If gn/pi = 1, set n := n/pi.

(6) If i < t − 1 increase i by 1 and goto (3).
Otherwise ord(g) =: n. Terminate the algorithm. �

Now we can describe the method for finding a primitive element of F∗
q .

200 3. Finite Fields

3.5.28 Algorithm (Primitive element of Fq [136, page 172])

(1) Pick at random an element α ∈ F∗
q and compute its order.

(2) While ord(α) < q − 1, pick an element β ∈ F∗
q at random and compute

its order.
If ord(β) is not a divisor of ord(α), then β is not contained in 〈 α 〉.
In this situation we compute an element γ ∈ F∗

q such that ord(γ) =
lcm(ord(α), ord(β)) and we set α := γ.

(3) Output the element α. It is of order q − 1, whence it is a primitive ele-
ment of Fq.

If we assume that α is not yet a primitive element of F∗
q , then there are q − 1−

ord(α) elements β which do not belong to 〈 α 〉. Therefore, the probability for
choosing β not in 〈 α 〉 is equal to

q − 1− ord(α)
q − 1

= 1− ord(α)
q − 1

≥ 1
2
.

If we have found some β �∈ 〈 α 〉, then we have to compute γ ∈ F∗
q such that

ord(γ) = lcm(ord(α), ord(β)). This can be done in the following way: As-
sume that q − 1 = ∏i∈t pmi

i with pairwise distinct primes pi and positive inte-
gers mi for i ∈ t. Moreover, we assume that

ord(α) = ∏
i∈t

pri
i and ord(β) = ∏

i∈t
psi

i

with 0 ≤ ri, si ≤ mi for i ∈ t. If we put

ai := ∏
j �=i

p
rj
j and bi := ∏

j �=i
p

sj
j

then ord(αai) = pri
i and ord(βbi) = psi

i . Let I = {i ∈ t | ri ≥ si} and J =
{i ∈ t | ri < si}. If we determine γ as

γ := ∏
i∈I

αai ∏
j∈ J

βbj ,

then we get, by Exercise 3.2.2,

ord(γ) = ∏
i∈I

pri
i ∏

j∈ J
p

sj
j = lcm(ord(α), ord(β)),

since F∗
q is an abelian group.

Since in this procedure ord(γ) > ord(α), the “while” loop will be per-
formed at most 2 log2(q− 1) times on average (cf. [136, page 172]).

In order to apply 3.5.27 for computing the order of an element in F∗
q , we

must know the factorization of q − 1 = pn − 1, which may be hard to obtain

3.5 Construction of Irreducible Polynomials 201

even for small values of p and n. However, there exist tables containing such
factorizations, see [31]. In general, for doing these computations we need an
arithmetic which enables us to use integers of arbitrary precision. �

In Table 3.3 we have collected several primitive polynomials for extension
fields of small degrees over Fp for p = 2, 3, 5, 7:

Table 3.3 Primitive polynomials for extension fields of small degrees over F p for p = 2, 3, 5, 7

F2 :
x2 + x + 1
x3 + x2 + 1
x4 + x3 + 1
x5 + x2 + 1
x6 + x5 + 1
x7 + x6 + 1
x8 + x4 + x3 + x2 + 1
x9 + x4 + 1
x10 + x3 + 1
x11 + x2 + 1
x12 + x6 + x4 + x + 1
x13 + x4 + x3 + x + 1
x14 + x5 + x3 + x + 1

F3 :
x2 + x + 2
x3 − x + 1
x4 + x3 + 2
x5 − x + 1
x6 + x5 + 2
x7 + x2 − x + 1
x8 + x3 − 1
x9 − x3 + x2 + 1
x10 + x3 + x − 1
x11 + x2 − x + 1
x12 − x4 + x3 − x2 − x − 1
x13 − x + 1
x14 + x13 + 2

F5 :
x2 + x + 2
x3 + x2 + 2
x4 + x3 + 3x + 2
x5 − x + 2
x6 + x5 + 2
x7 + x6 + 2
x8 + x2 + 2x − 2
x9 + x2 + 2x − 2
x10 + x9 + 3x + 2
F7 :
x2 + x + 3
x3 + 3x + 2
x4 + x3 + x + 3

Based on the results of the present section we are able to design an arith-
metic for arbitrary finite fields Fq for given q = pn. The arithmetic in the prime
field Fp is just the arithmetic of the residue class ring Z/pZ. A primitive ele-
ment in Fp can be determined by 3.5.28.

For computations in Fq we have to find a monic irreducible polynomial of
degree n over Fp . Hence, we randomly generate monic polynomials of degree
n over Fp and check whether they are irreducible by an application of 3.5.20. If
we have found an irreducible polynomial it can be used to determine an arith-
metic in Fq. Again with 3.5.28 we find a primitive element of Fq. The minimal
polynomial of the primitive element is a primitive polynomial. It can be com-
puted as indicated in 3.5.1. Further down, in Section 6.9 we will describe how
to determine a normal basis of Fq over Fp. This normal basis together with all
Lyndon words of length n over the alphabet Fp, generated according to 3.5.5,
can be used to determine all irreducible polynomials of degree n over Fp .

In the next section we discuss two different possibilities to represent ele-
ments of finite fields and their advantages for computations.

202 3. Finite Fields

Exercises

E.3.5.1 Exercise Let α ∈ F64 be a root of the irreducible polynomial x6 + x + 1 ∈ F2[x].
By using the method described in 3.5.1 show that the minimal polynomial of
β = α3 + α4 over F2 is equal to x3 + x2 + 1. (See [131, 3.42 Example].)

E.3.5.2 Exercise Compute the minimal polynomials over F2 of all the elements of F16
with the method described in 3.5.2. In order to represent the elements of F16,
assume that α ∈ F16 is a root of the irreducible polynomial x4 + x + 1 ∈ F2[x].
(See [131, 3.43 Example].)

E.3.5.3 Exercise Prove that f ∈ mn is a necklace if and only if f is the n-extension of a
Lyndon word of length d dividing n.

E.3.5.4 Exercise Prove the derivation rules 3.5.6.

E.3.5.5 Exercise Prove 3.5.7.

E.3.5.6 Exercise Prove 3.5.8.

E.3.5.7 Exercise Assume that I and J are ideals in a ring R. Verify that the sum I + J :=
{i + j | i ∈ I, j ∈ J} is an ideal in R.

E.3.5.8 Exercise Consider ideals I and J in a ring R. Let I J be the set of all finite sums
of products ij, where i ∈ I and j ∈ J. Show that I J is an ideal in R.

E.3.5.9 Exercise Prove 3.5.15.

E.3.5.10 Exercise Assume that f and g are two distinct irreducible polynomials over
Fq. Prove that the ideals I(f) and I(g) are relatively prime.

E.3.5.11 Exercise Prove The Chinese Remainder Theorem, number-theoretic version. Let
n > 1 be an integer, where

n = ∏
i∈t

pmi
i , mi > 0, i ∈ t,

is the unique decomposition of n into pairwise distinct primes pi. Moreover,
assume that ϕ is given by

ϕ : Z → ×
i∈t

Zp
mi
i

: z �→ ϕ(z) := (z mod pm0
0 , . . . , z mod pmt−1

t−1)

3.6 Representations of Field Elements 203

with addition and multiplication on ×i∈t Zp
mi
i

defined componentwise. Prove
that the mapping ϕ is a surjective ring homomorphism with

ker(ϕ) = nZ.

E.3.5.12Exercise Apply Berlekamp’s algorithm 3.5.16 in order to factor the polynomial
x8 + x6 + x4 + x3 + 1 over F2. (See [131, 4.2 Example].)

E.3.5.13Exercise Factorize the polynomial f (x) = x6 − 3x5 + 5x4 − 9x3 − 5x2 + 6x +
7 over F23. Hint: Use Berlekamp’s algorithm to show that this polynomial
has three factors and that h(x) = x3 + 2x2 + 4x is f -reducing. Then apply
the algorithm of Zassenhaus 3.5.23 to obtain the elements κ of F23 for which
gcd(f (x), h(x) − κ) �= 1. (See [131, 4.7 Example and 4.9 Example].)

E.3.5.14Exercise Prove 3.5.24.

3.63.6 Representations of Field Elements

We continue with two further ways of describing elements of finite fields. In
contrast to the above representation as residue classes, these methods yield
canonical labelings of the field elements with values in q = {0, . . . , q − 1}. Then
a single element of a field can be replaced just by its label.

In order to do this, we have two essentially different possibilities. In the
multiplicative representation the nonzero elements of Fq are given as powers of
a primitive element α. The multiplication of two nonzero elements of the field
is done by just adding the corresponding exponents and taking into account
that αq−1 = 1,

αi · αj =

{
αi+j if i + j < q − 1,
αi+j−(q−1) otherwise.

The addition of two elements αi and αj of Fq reduces to the multiplication

αi + αj = αi · (1 + αj−i),

which is easily carried out as soon as the exponent of the factor 1 + αj−i is
known. For this purpose, we introduce a function Z : q → q, called the Zech
logarithm with respect to the basis α. It is defined in the following way: If
1 + αi �= 0, then Z(i) is the unique element of q − 1 so that αZ(i) = 1 + αi.
If 1 + αi = 0, then Z(i) := q − 1. The multiplicative representation of the
elements in Fq is defined as follows:

204 3. Finite Fields

3.6.1 Definition (multiplicative representation) The zero element of the field gets
the number q− 1, while the elements of the multiplicative group F∗

q are labeled
from 0 to q − 2, the label of αi being its exponent i:

ϕ : Fq → N : αi �→ i and 0 �→ q − 1.

3.6.2 Example The field F4 is generated by a root α of the primitive polynomial
x2 + x + 1. In the following, we present composition tables in multiplicative
notation, the bijection between F4 and {0, 1, 2, 3} defined by the multiplicative
notation ϕ, and the table of the Zech-logarithm. For example, the exponent
3 = 4− 1 = q − 1 represents the zero element.

Table 3.4 Multiplicative representation of F4

+ 3 0 1 2
3 3 0 1 2
0 0 3 2 1
1 1 2 3 0
2 2 1 0 3

· 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

F4 0 1 α 1 + α

ϕ 3 0 1 2

i 0 1 2 3
Z(i) 3 2 1 0

�

For the generation of the elements of a finite field in their multiplicative repre-
sentation we need a suitable primitive polynomial. See Table 3.3.

Now we describe a second way of labeling the elements of a finite field.
The description of finite fields, used in 3.1.6, gives them as residue class rings

Fq = Fpm = Fp [x]/I(f) =

{
∑
i∈m

kiα
i
∣∣∣ ki ∈ Zp

}
, α = x + I(f),

where f ∈ Fp [x] is an irreducible polynomial of degree m. An element κ in
Fq is then displayed as a linear combination of the elements of the Fp-basis
{1, α, . . . , αm−1} of Fq in the form

κ = k0 + k1α + . . . + km−1αm−1, ki ∈ Fp.

The coordinate vector (k0, k1, . . . , km−1) can be interpreted as the p-adic de-
composition (km−1, . . . , k0)p of the decimal number k0 + k1p + . . . + km−1pm−1.
Hence we associate κ with this number.

3.6.3 Definition (additive representation) If {1, α, . . . , αm−1} is an Fp-basis of Fq,
then the additive representation of κ = k0 + k1α + . . . + km−1αm−1 with ki ∈ Fp

is given by the mapping

ψ : Fq → {0, 1, . . . , q − 1} : κ �→ k0 + k1p + . . . + km−1pm−13.6.4

3.7 Projective Geometry 205

where ki is the standard representative of its residue class.

For example, the identity element 1 gets the number 1, while the zero ele-
ment gets the number 0.

3.6.5Example The finite field obtained from the root α of the irreducible polynomial
x2 + x + 1 is F4 = {0, 1, α, α2 = α + 1}. It has the basis {1, α}. Its additive repre-
sentation is ψ(0) = 0, ψ(1) = 1, ψ(α) = 2, and ψ(α + 1) = 3. If we replace the
field elements by their numbers, we obtain the following composition tables:

Table 3.5 Additive representation of F4

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

�

3.73.7 Projective Geometry

Linear codes are closely related to finite projective spaces. The reason is the no-
tion of isometry which says that (up to isometry) the columns of a generator
matrix can be multiplied by nonzero scalar factors. Hence we can consider a
generator matrix without zero column as a selection of one-dimensional sub-
spaces in Fk

q. The set of all these one-dimensional subspaces is known as a
projective space which leads us to the following definition.

3.7.1Definition (projective space) Let k be a positive integer and v ∈ Fk
q \ {0}.

We denote by 〈v〉∗ the set 〈v〉 without the zero vector, the punctured one-
dimensional space, as we sometimes call it. The projective space corresponding
to Fk

q, abbreviated as PGk−1(q), consists of all one-dimensional subspaces of
Fk

q,

PGk−1(q) :=
{
〈v〉

∣∣ v ∈ Fk
q \ {0}

}
.

A closely related set – which is motivated by the concept of group actions – is

PG∗
k−1(q) :=

{
〈v〉∗

∣∣ v ∈ Fk
q \ {0}

}
= F∗

q\\Fk
q \ {0} =

{
F∗

q(v)
∣∣ v ∈ Fk

q \ {0}
}

,

the set of all punctured one-dimensional subspaces. In addition to this, we
write PG(Fk

q) for the set of all subspaces:

PG(Fk
q) :=

{
U | U ≤ Fk

q

}
.

206 3. Finite Fields

Let U be a subspace of dimension r, then the projective dimension of U is defined
to be r − 1. The subspaces of Fk

q of dimension one are called (projective) points.
They are the elements of PGk−1(q). Furthermore, subspaces of Fk

q of dimension
2, 3, or k − 1 are called lines, planes, or hyperplanes, respectively. Therefore, the
projective dimensions of projective points, lines, planes, and hyperplanes in
PG(Fk

q) are 0, 1, 2, and k − 2 respectively. The null-space {0} of Fk
q should be

thought of as the “empty element” of PG(Fk
q) and has projective dimension

−1. The set PG(Fk
q) carries an incidence relation. We say that a subspace U

is incident with a subspace V in PG(Fk
q) if U is a subspace of V in the vector

space Fk
q, for short U ≤ V. Thus, PG(Fk

q) together with the incidence relation
is sometimes called the projective geometry over Fk

q. The cardinality of PGk−1(q)
which is the number of projective points in PG(Fk

q) is denoted as

θk−1(q) :=
qk − 1
q − 1

.3.7.2

We have introduced the projective space over Fk

q in three different ways. All
these notions will be used in later chapters. For instance in the context of enu-
meration we replace generator matrices of (n, k)-codes over Fq by mappings
from n to PG∗

k−1(q). In the Chapters 8 and 9 some notions from geometry are
applied, thus we rather use PGk−1(q) and PG(Fk

q).
Now we study a particular class of mappings from PG(Fk

q) onto itself.

3.7.3 Definition (collineation) A collineation of PG(Fk
q) is a bijective map λ from

PG(Fk
q) to PG(Fk

q) which preserves incidence. For U,V ∈ PG(Fk
q) this means

that if U ≤ V then λ(U) ≤ λ(V).
According to Exercise 1.4.13, the group of linear maps GLk(q) acts on Fk

q. It
takes subspaces to subspaces and preserves incidence, whence, it induces col-
lineations of PG(Fk

q).
From Exercise 1.4.13 we deduce that

GLk(q)× PGk−1(q) → PGk−1(q) : (A, 〈v〉) �→ 〈 v · A� 〉3.7.4

is the natural action of GLk(q) on PGk−1(q).
Let Z k be the center of GLk(q), i.e.

Z k :=
{

A ∈ GLk(q)
∣∣ A · B = B · A for all B ∈ GLk(q)

}
,3.7.5

then according to Exercise 3.7.2

Z k =
{

κ · Ik
∣∣∣ κ ∈ F∗

q

}
.

3.7 Projective Geometry 207

An element A ∈ GLk(q) fixes all points of PGk−1(q) if and only if A belongs to
the center of GLk(q). Hence, such multiplications by elements of the center do
not matter, they can be factored out. For this reason, we introduce the projective
linear group as the factor group

PGLk(q) := GLk(q)/Zk.

The details are presented in the next

3.7.6Lemma

1. The intersection of the stabilizers of all elements of PGk−1(q) under the action of
GLk(q), defined in 3.7.4, is⋂

y∈PGk−1(q)

GLk(q)y =
{

κ · Ik
∣∣∣ κ ∈ F∗

q

}
= Z k.

2. If GX is a group action, then

N :=
⋂

x∈X

Gx

is a normal subgroup of G. It is also called the pointwise stabilizer of X or the
kernel of the action of G on X. The action of G on X descends to an action of the
factor group G/N on X via

(G/N)× X → X : (gN, x) �→ gx.

For each x ∈ X the orbits G(x) and (G/N)(x) coincide, whence

(G/N)\\X = G\\X.

3. Combining the first two assertions, the projective general linear group PGLk(q)
acts in a natural way on the projective space PGk−1(q), the orbits GLk(q)(y) and
PGLk(q)(y) for y ∈ PGk−1(q) are the same, whence

PGLk(q)\\PGk−1(q) = GLk(q)\\PGk−1(q). �

Hence, PGLk(q) is the group which is induced by GLk(q) on PGk−1(q). We in-
dicate the elements of PGLk(q) either as cosets AZ k or as orbits F∗

q (A) (cf. Ex-
ercise 3.7.4), or to simplify notation, we sometimes write them as matrices.

According to 3.4.8 two group actions GX and GY are called similar if there
exists a bijective mapping ϕ : X → Y so that

ϕ(gx) = gϕ(x), g ∈ G, x ∈ X.

208 3. Finite Fields

3.7.7 Lemma The action of GLk(q) on PGk−1(q) and the action of GLk(q) on PG∗
k−1(q)

are similar. Consequently, PGLk(q) is the group which is induced by GLk(q) on
PGk−1(q) and on PG∗

k−1(q). �

The points of a projective space are indicated in different ways, depending
on the situation where they occur. Sometimes we describe them as orbits F∗

q (v)
of vectors v ∈ Fk

q \ {0}, sometimes as points P(v) := 〈 v 〉 of a projective space,
sometimes, in order to simplify notation, just as vectors.

Now we want to describe the projective semilinear group. Let V be a k-
dimensional vector space over Fq, without loss of generality, V = Fk

q. Semilin-
ear mappings were introduced in 1.5.7. Here we are interested in semilinear
mappings σ which map V onto V. They are bijective. Any semilinear map is
uniquely described by an automorphism α of Fq and by the values σ(e(i)) on
the standard basis {e(0), . . . , e(k−1)} of V, since

σ
(
∑
i∈k

vie
(i)

)
= ∑

i∈k
α(vi)σ(e(i)), vi ∈ Fq, i ∈ k.

Assume that q = pr . In Section 3.3 we have seen that the automorphism group
of Fq is the Galois group Gal := Gal [Fq : Fp], a cyclic group of order r. It is
generated by the Frobenius automorphism τ(κ) := κp, κ ∈ Fq.

Let α be a nontrivial automorphism of Fq. It acts componentwise on vec-
tors in Fk

q or matrices in Fk×n
q . The induced mapping is a (not necessarily

linear) bijection of Fk
q or Fk×n

q , respectively. If α acts componentwise on ma-
trices in GLk(q), then the induced mapping is a group automorphism. (See
Exercise 3.7.5.)

Since σ is bijective, the set {σ(e(0)), . . . , σ(e(k−1))} is again a basis of Fk
q. In

other words, σ induces a change of the basis of V. According to Exercise 1.2.3,
this change of bases can be expressed by a regular matrix A ∈ GLk(q). We
have

σ(e(i)) = e(i) · A�, i ∈ k.

Thus σ is described as the pair (A, α) with A ∈ GLk(q), α ∈ Gal and where

σ(v) = ∑
i∈k

α(vi)σ(e(i)) = α(v) · A�.3.7.8

If q is prime, i.e. if r = 1, then the Frobenius automorphism is the identity
mapping. In this case, every semilinear bijection is described by a regular
matrix, whence it is linear. However, if r > 1, not every semilinear bijection is
linear, since there exist nontrivial automorphism α of Fq.

3.7.9 Theorem The semilinear bijections of Fk
q form a group, the general semilinear

group
ΓLk(q) := {(A, α) | A ∈ GLk(q), α ∈ Gal} .

3.7 Projective Geometry 209

It is the semidirect product GLk(q) � Gal (with the normal subgroup on the left). The
identity element is the pair (Ik, id), where id = τ0, the identity element in Gal. The
multiplication of two elements of ΓLk(q) is given by

(A2, α2)(A1, α1) = (A2 · α2(A1), α2α1), (A1, α1), (A2, α2) ∈ ΓLk(q). �

Notice that in the last equation, the symbol α2(A1) denotes the application of
the automorphism α2 ∈ Gal to the entries of the matrix A1.

The natural action of the general semilinear group on the projective space
is the following

ΓLk(q)× PGk−1(q) → PGk−1(q) : ((A, α), 〈 v 〉) �→ 〈 α(v) · A� 〉. 3.7.10

Since each element of ΓLk(q) maps a subspace of Fk
q onto a subspace, and

preserves incidence, each semilinear bijection of Fk
q induces a collineation of

the corresponding projective geometry PG(Fk
q). Moreover the pointwise sta-

bilizer of PGk−1(q) in ΓLk(q) is {(A, id) | A ∈ Zk}, whence it is isomorphic to
the center Z k of GLk(q). Therefore, the group of semilinear bijections induces
the action of the projective semilinear group

PΓLk(q) := ΓLk(q)/Z k

on PGk−1(q). Its elements are of the form (F∗
q(A), α) = (AZ k, α) for A ∈

GLk(q) and α ∈ Gal. Since the actions of ΓLk(q) on PGk−1(q) and on PG∗
k−1(q)

are similar, PΓLk(q) is also the group induced by ΓLk(q) on PG∗
k−1(q).

The projective semilinear group is the semidirect product

PΓLk(q) = PGLk(q) � Gal, 3.7.11

with the normal subgroup on the left. The identity element is (IkZ k, id), where
id = τ0, the identity element in Gal. The multiplication of two elements
(A1Z k, α1), (A2Z k, α2) ∈ PΓLk(q) is given by

(A2Z k, α2)(A1Z k, α1) = ((A2 · α2(A1))Z k, α2α1).

The inverse element of (AZ k, α) is ((α−1(A))−1Z k, α−1).
Since Gal is a cyclic group generated by the Frobenius-automorphism τ,

for each α ∈ Gal there exists some i ∈ r (recall that q = pr) such that α = τi.
Therefore in order to simplify notation, in Section 9.9 the elements of PΓLk(q)
are indicated as pairs (A, i), where A ∈ GLk(q) and i is an integer modulo r.

In 1.5.10 we have described a semilinear isometry σ of Fn
q as σ = (ψ, (α; π))

where α ∈ Aut(Fq) = Gal and (ψ; π) is a linear isometry of Fn
q . Thus (ψ; π)

can be identified with an element of the full monomial group Mn(q) which is
a subgroup of GLn(q).

210 3. Finite Fields

3.7.12 Theorem If n ≥ 3, then the group of isometries of Fn
q which map subspaces onto

subspaces is the semidirect product

Mn(q) � Gal = {(A, α) | A ∈ Mn(q), α ∈ Gal} ,

with the normal subgroup on the left. It is a subgroup of ΓLn(q). �

In Chapter 6 we will derive that the linear and semilinear isometry classes
of linear (n, k)-codes can be described as orbits of PGLk(q) × Sn or PΓLk(q) ×
Sn on the set of all generator matrices.

The Fundamental Theorem of Projective Geometry (cf. [4]) shows that any col-
lineation of PG(Fk

q), k ≥ 3, is induced by a semilinear bijection.

Exercises

E.3.7.1 Exercise Verify 3.7.2.

E.3.7.2 Exercise Prove that the center Z k of GLk(F), which is the set of all matrices in
GLk(F) which commute with every matrix in GLk(F), is given by

{κ · Ik | κ ∈ F∗} ,

where Ik denotes the k × k unit matrix. Hint: If A belongs to the center of
GLk(F), then A commutes with the elementary matrices B(2)

i0,j0,1
from Exer-

cise 1.7.3.

E.3.7.3 Exercise Prove 3.7.6.

E.3.7.4 Exercise Prove that the elements of PGLk(q) are the F∗
q -orbits of regular ma-

trices under the action

F∗
q ×GLk(q) → GLk(q) : (λ, A) �→ λA.

E.3.7.5 Exercise Let α be an automorphism of Fq. Prove that the mapping

Fk×n
q → Fk×n

q : (aij)ij �→ (α(aij))ij

is bijective. Moreover show that the mapping

GLk(q) → GLk(q) : (aij)ij �→ (α(aij))ij

is a group isomorphism.

E.3.7.6 Exercise Prove 3.7.9.

E.3.7.7 Exercise Prove that 3.7.10 is well-defined and that it is a group action.

4Chapter 4

Cyclic Codes

4

4 Cyclic Codes

4.1 Cyclic Codes as Group Algebra Codes....................... 214

4.2 Polynomial Representation of Cyclic Codes 220

4.3 BCH-Codes and Reed–Solomon-Codes...................... 237

4.4 Quadratic-Residue-Codes, Golay-Codes 252

4.5 Idempotents and the Discrete Fourier Transform 268

4.6 Alternant-Codes, Goppa-Codes 285

4.7 The Structure Theorem .. 292

4.8 Codes of p-Power Block Length 311

4.9 Bounds for the Minimum Distance........................... 319

4.10 Reed–Muller-Codes.. 327

4.11 Encoding .. 334

4.12 Permutation Decoding.. 338

4.13 Error-Correcting Pairs... 346

4.14 Majority Logic Decoding 350

4 Cyclic Codes
A very important class of codes is the class of cyclic codes, which are invariant
under cyclic shifts

(c0, c1, . . . , cn−1) �→ (cn−1, c0, c1, . . . , cn−2)

of the coordinates. It is a subclass of the more general class of codes which are
invariant under a prescribed action of a finite group G. We briefly introduce this
more general class, and then we restrict attention to situations when G is the
cyclic group of order n, acting on n = {0, . . . , n − 1}, and the action on the
code C of length n is the cyclic shift. Particular classes of cyclic codes are the
BCH-codes, the Reed–Solomon-codes, and the quadratic-residue-codes. They
are of great practical relevance and will be introduced.

Further codes will be derived from these, the generalized Reed–Solomon-
codes, the Goppa-codes and the Alternant-codes. In general, these codes are
not necessarily cyclic, but they are isometric to cyclic codes. Moreover, we will
revisit the Reed–Muller-codes over prime fields, since puncturing such codes
yields cyclic ones.

Codes (over Fq) that are invariant under an action of a prescribed finite
group G are in particular the left ideals in the group algebra FG

q of G, such
codes will be called group algebra codes. In the present chapter we show that
cyclic codes are group algebra codes. Moreover we will see that the group
algebra of the cyclic group is the factor ring

Fq[x]/I(xn − 1),

and so cyclic codes are best studied in the algebraic setting of a polynomial
factor ring. In fact, the cyclic codes of length n are in 1-1-correspondence with
the ideals of this residue class ring.

Each cyclic code possesses a generator and a check polynomial. We derive
the Structure Theorem for cyclic codes, and we show that particular classes of
cyclic codes can also be described by idempotent generators. The variety of
a cyclic code is the set of roots of its generator polynomial. We also present
relations between the lattice of cyclic codes of length n and the lattice of their
varieties.

Finally we present some encoding and decoding methods. We describe
the use of shift registers for the encoding of cyclic codes. A decoding algo-
rithm for cyclic codes using the syndrome of the received vector together with
permutations of its entries is described in Section 4.12. In Section 4.13 we in-
troduce the method of error-correcting pairs of subspaces. Finally in the last

214 4. Cyclic Codes

section we discuss the method of majority logic decoding which can be used
not only for cyclic codes. We will illustrate it by an application to the binary
Reed–Muller-codes.

4.1 4.1 Cyclic Codes as Group Algebra Codes

To begin with, we introduce an algebraic structure that contains many inter-
esting codes which are invariant under a given finite group G. If we take for
G the cyclic group of order n, then the corresponding structure will contain all
the cyclic codes of length n over Fq.

4.1.1 Definition (the group algebra) The group algebra of a finite group G over the
field F is the set

FG := { f | f : G → F}
of all the mappings f from G to F, together with the pointwise addition,

(f + f̃)(g) := f (g) + f̃ (g), f , f̃ ∈ FG, g ∈ G,

the scalar multiplication

(α f)(g) := α · f (g), α ∈ F, f ∈ FG, g ∈ G,

and the convolution product as multiplication:

(f f̃)(g) := ∑
x,y:xy=g

f (x) f̃ (y), f , f̃ ∈ FG, g ∈ G.

FG is clearly a vector space of dimension |G| over F with respect to the
pointwise addition and scalar multiplication of functions as defined above. In
order to describe a basis, we identify g ∈ G with the element 1Fg ∈ FG which
is 1 at g and 0 everywhere else. The group algebra has the set of all these
mappings g = 1F g, g ∈ G, as a linear basis. This is the canonical basis of FG.
Therefore, the elements of the group algebra can be written as formal sums

f = ∑
g∈G

αgg, where αg := f (g).

The formal sum notation expresses the elements of the group algebra as
linear combinations of the elements in the canonical basis. Moreover, in terms
of formal sums, the addition is(

∑
g∈G

αgg

)
+

(
∑
g∈G

βgg

)
= ∑

g∈G
(αg + βg)g, αg, βg ∈ F,

4.1 Cyclic Codes as Group Algebra Codes 215

while the convolution is just the long multiplication of these sums:(
∑
g∈G

αgg

)
·
(

∑
g∈G

βgg

)
= ∑

k∈G
γkk, γk := ∑

g,h:gh=k
αg · βh, αg, βg ∈ F.

Summarizing, FG is a vector space over F, a ring with identity element
f = 1G, and even an F-algebra, since

α(f f̃) = (α f) f̃ = f (α f̃), α ∈ F, f , f̃ ∈ FG.

Subspaces C ≤ FG which are invariant under left multiplication by elements
f ∈ FG are called left ideals of FG. Likewise, subspaces C of FG which are
invariant under right multiplication by elements f ∈ FG are called right ideals
of FG. Subspaces which are invariant under both left and right multiplication
by elements f ∈ FG are called two-sided ideals or simply ideals.

The left multiplication of a left ideal C ⊆ FG by g ∈ FG, an element of the
canonical basis of FG, is a linear mapping D(g) : C → C since

g(α f + β f̃) = αg f + βg f̃ α, β ∈ F, f , f̃ ∈ C.

Hence the left ideals are invariant under the linear action of G via left multi-
plication by group elements

G × C → C : (g, c) �→ gc. 4.1.2

This motivates the following

4.1.3Definition (group algebra codes) The left ideals C of a group algebra FG
q are

called group algebra codes.
We are now in a position to introduce the main topic of the present chapter,

the cyclic codes, and we show that they are group algebra codes:

4.1.4Definition (cyclic codes) A linear code C of length n is called cyclic if it is
invariant under the following action of the cyclic group G := 〈(0, . . . , n − 1)〉,
generated by the permutation π := (0, . . . , n − 1) of n. The action is defined
by the mapping

G × C → C : (πi, c) �→ πic := (cπ−i(0), . . . , cπ−i(n−1)).

Equivalently, C is cyclic, if the set of codewords of C is invariant under cyclic
shifts of coordinates:

∀ c = (c0, . . . , cn−1) ∈ C : πc = (cn−1, c0, c1, . . . , cn−2) ∈ C.

216 4. Cyclic Codes

Fig. 4.1 The (7, 4)-Hamming-code is cyclic

4.1.5 Example The binary (7, 4)-Hamming-code is cyclic, as we will see now. It is
easy to deduce from the generator matrix given in 1.3.6 that also the following
matrix generates this code:

Γ :=

⎛⎜⎜⎜⎝
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎟⎠ .

We note that the basis vectors, the rows of the generator matrix, are cyclic shifts
of (1, 1, 0, 1, 0, 0, 0), and that also the other three cyclic shifts, (1, 0, 0, 0, 1, 1, 0),
(0, 1, 0, 0, 0, 1, 1) and (1, 0, 1, 0, 0, 0, 1) are contained in this code. Hence the code
consists of the linear combinations of the cyclic shifts of (1, 1, 0, 1, 0, 0, 0), and
so it must be cyclic (cf. also Exercises 4.1.2 and 4.1.1). This can be visualized as
follows: We may project the Hamming space H(7, 2) into the complex plane as
follows: Send the elements of the standard basis e(0), . . . , e(6) of H(7, 2) to the
7-th roots of unity, i.e. to the complex numbers of the form e(2πi/7)·j with j ∈ 7.
This defines a map, provided we identify the elements 0 and 1 of F2 with the
complex numbers 0 and 1, respectively. In this projection, the Hamming-code
corresponds to the black dots in Fig. 4.1. Notice that the center dot is actually
two codewords of the Hamming-code. This is because both the zero vector 0
and the all-one vector 1 map to 0 ∈ C under this map (since ∑j∈7 e(2πi/7)·j = 0).

Later on we will see that all binary Hamming-codes can be described as
cyclic codes, which is not always the case for ternary Hamming-codes (Exer-
cise 4.1.3). �

4.1 Cyclic Codes as Group Algebra Codes 217

In order to show that cyclic codes are group algebra codes, we note the
following:

4.1.6Remarks (on the algebra of the cyclic group)

Consider the cyclic group G of order n, generated by the permutation
π := (0, . . . , n − 1),

G :=
{

π0, π1, . . . , πn−1
}

.

Its group algebra over Fq consists of the formal sums

∑
i∈n

αiπ
i, αi ∈ Fq, i ∈ n,

and so we obtain the following isomorphism between this group algebra
and the vector space Fn

q ,

ψ : Fn
q → FG

q : (v0, . . . , vn−1) �→ ∑
i∈n

viπ
i.

Consider a code C ≤ Fn
q . An application of ψ gives

ψ(C) =
{

ψ(c) = ∑
i∈n

ciπ
i
∣∣∣ c = (c0, . . . , cn−1) ∈ C

}
.

It is easy to check that
ψ(πc) = πψ(c),

and so the code C is cyclic if and only if its image ψ(C) is invariant under
left multiplication by π.

Since ψ(C) is a subspace, this means that ψ(C) is an ideal in the group al-
gebra FG

q . It is a two-sided ideal, since the cyclic group G is abelian and,
therefore, any ideal in the group algebra is two-sided.

Conversely, the inverse image of each ideal in FG
q is invariant under cyclic

shift of coordinates, and so it is a cyclic code.

4.1.7Corollary Cyclic codes are group algebra codes. �

In the following, we will restrict our attention to cyclic codes. Nevertheless
we remark that general group algebra codes have also been studied. For ex-
ample, [132], [133], [205], [206], [109] discuss group algebra codes which come
from symmetric groups.

Exercises

E.4.1.1Exercise List all the codewords of the binary (7, 4)-Hamming-code generated
by the matrix Γ given in 4.1.5 and check again that this code is indeed cyclic.

218 4. Cyclic Codes

E.4.1.2 Exercise Prove that a linear (n, k)-code C is cyclic, if there is a codeword c in
C such that πc, . . . , πn−1c ∈ C and c, πc, . . . , πk−1c are linearly independent,
i.e. they are the rows of a generator matrix of C.

E.4.1.3 Exercise Show that the second order ternary Hamming-code is not cyclic.

E.4.1.4 Exercise Assume that G is the dihedral group of order 8. Implement a com-
puter program or use MAPLE, in order to evaluate the parameters of all its
group algebra codes over F2 which are of the form

FG
2 · f :=

{
f̃ · f | f̃ ∈ FG

2

}
, f ∈ FG

2 .

E.4.1.5 Exercise Prove that f ∈ FG and g an element of the canonical basis of FG

satisfy
g f (x) = f (g−1x), x ∈ G.

Consequently, 4.1.2 describes an action of the group G on the left ideal C of
FG.

E.4.1.6 Exercise Let G denote a finite group. For f , f̃ ∈ FG we denote by [f , f̃]g the
coefficient of g in the convolution product f f̃ . Prove the following:

The mapping
FG × FG → F : (f , f̃) �→ [f , f̃]1

is an F-bilinear form on FG.

It is nondegenerate, i.e. for all f ∈ FG, f �= 0, there exists f̃ ∈ FG so that
[f , f̃]1 �= 0.

It is symmetric, i.e. [f , f̃]1 = [f̃ , f]1 for all f , f̃ ∈ FG.

It is associative, i.e. [f f̃ , f̂]1 = [f , f̃ f̂]1 for all f , f̃ , f̂ ∈ FG.

For f , f̃ ∈ FG and g ∈ G we have [f̃ , f]g = [g−1 f̃ , f]1.

E.4.1.7 Exercise Characterize the annihilators of left, right, and two-sided ideals in
the group algebra by proving:

If L denotes a left ideal of FG, then its right annihilator is

Rann(L) := { f ∈ FG | L · f = 0} = { f ∈ FG | ∀ f̃ ∈ L : [f , f̃]1 = 0}.

4.1 Cyclic Codes as Group Algebra Codes 219

If R denotes a right ideal of FG, then its left annihilator is

Lann(R) := { f ∈ FG | f · R = 0} = { f ∈ FG | ∀ f̃ ∈ R : [f , f̃]1 = 0}.

For each two-sided ideal I in FG and its annihilator, we obtain

Ann(I) := { f ∈ FG | I · f = f · I = 0} = { f ∈ FG | ∀ f̃ ∈ I : [f , f̃]1 = 0}.

If L is a left-ideal and R a right-ideal, then Rann(L) is a right-ideal and
Lann(R) a left-ideal of FG. Moreover,

FG = L ⊕ Rann(L) = R ⊕ Lann(R) = I⊕Ann(I),

so that we have for the F-dimensions

|G| = dim(L) + dim(Rann(L)) = . . . = dim(I) + dim(Ann(I)).

Both the set of left-ideals and the set of right-ideals in FG form a lattice
with respect to + and ∩. The mapping L �→ Rann(L) is a lattice anti-
isomorphism between the lattices of left and right-ideals. This means that
for any two left ideals L1 and L2 we have that

Rann(L1 + L2) = Rann(L1) ∩ Rann(L2)

and
Rann(L1 ∩ L2) = Rann(L1) + Rann(L2).

E.4.1.8Exercise Consider the map from G to G, defined by

g �→ g̃ := g−1,

which is an anti-isomorphism. Extend this map linearly to a map from FG to
FG, such that for f = ∑g∈G αgg ∈ FG we have

f̃ = ∑
g∈G

αgg−1 = ∑
g∈G

αg−1g.

For subsets Y ⊆ FG, define

Ỹ := {ỹ | y ∈ Y} .

Prove that for each group algebra code C in FG we have

C⊥ = ˜Rann(C).

220 4. Cyclic Codes

4.2 4.2 Polynomial Representation of Cyclic Codes

So far we have seen that cyclic codes of length n over Fq are group algebra
codes. Thus they are ideals in the group algebra FG

q , where G is the cyclic
group of order n. As we will see now, this group algebra is isomorphic to the
residue class ring of polynomials in Fq[x] modulo the ideal which is generated
by the polynomial xn − 1. We denote this ring as

Res q,n := Fq[x]/I(xn − 1).

The map
ϕ : FG

q → Res q,n : ∑
i∈n

viπ
i �→ ∑

i∈n
vix

i + I(xn − 1)

induces a correspondence between the elements of the group algebra and re-
sidue classes of polynomials. This correspondence is clearly a vector space
isomorphism. Moreover, the identity πi · π j = πk in FG

q translates into the
equation (

xi + I(xn − 1)
)
·
(
xj + I(xn − 1)

)
= xk + I(xn − 1)

in the residue class ring. Here, k is the residue modulo n of i + j in both equa-
tions. This shows that ϕ is in fact an isomorphism of algebras. Combining ϕ

with the vector space isomorphism

ψ : Fn
q → FG

q : (v0, . . . , vn−1) �→ ∑
i∈n

viπ
i,

described in 4.1.6, any cyclic code can be embedded into the residue class ring
as follows:

4.2.1 Corollary The mapping ι := ϕ ◦ ψ, defined by

ι : Fn
q → Res q,n : v �→ v(x) + I(xn − 1), v(x) := ∑

i∈n
vix

i,

establishes the bijection

C �→ ι(C) = { c(x) + I(xn − 1) | c ∈ C }

between the set of cyclic codes in Fn
q and the set of ideals in Res q,n . �

For this reason, it is necessary to study the ideals of Res q,n in some detail.
To begin with, let us recall the following facts from ring theory.

By the Isomorphism Theorem for Rings (see 4.7.3), the ideals in the residue
class ring Res q,n correspond to the ideals in Fq[x] which contain I(xn − 1).
This correspondence is induced by the map which takes a polynomial in
Fq[x] to its residue class modulo I(xn − 1).

4.2 Polynomial Representation of Cyclic Codes 221

Every ideal I in Fq[x] is principal, i.e. it is of the form

I = I(g) =
{

f g | f ∈ Fq[x]
}

,

for a suitable polynomial g (see Exercise 3.1.11). Such a polynomial g is
called a generator of the ideal I. It is unique up to scalar multiples. To
achieve uniqueness, one often requires that the generator be monic, in this
case it is also the unique monic nonzero polynomial of least degree in the
ideal.

In addition, I(g) contains I(xn − 1) if and only if g is a divisor of xn − 1
(Exercise 4.2.6). Thus the ideals in Fq[x] which contain I(xn − 1) are in one-
to-one correspondence to the monic divisors of xn − 1.

Each element in I(g), g �= 0, can be written in a unique way as a prod-
uct f g, for some f ∈ Fq[x]. This follows from the fact that Fq[x] has no
zero divisors, i.e. the product of two nonzero polynomials in Fq[x] is again
nonzero.

In the ideal I(g)/I(xn − 1), there is only one way of writing any given
residue class as the product f g + I(xn − 1) with deg f < n − deg g.

4.2.2Corollary

1. The cyclic codes of length n over Fq are in one-to-one correspondence to the ideals
of the residue class ring Res q,n .

2. The ideals in Res q,n in turn correspond one-to-one to the monic divisors of xn − 1.

3. Each such ideal can be written as

I(g)/I(xn − 1) =
{

f g + I(xn − 1) | f ∈ Fq[x], deg f < n − deg g
}

,

where g is a monic divisor of xn − 1. �

4.2.3Definition (generator polynomial, check polynomial) The monic divisor g of
xn − 1 which generates the image ι(C) of the cyclic code C is called generator
polynomial of C. The polynomial h := (xn − 1)/g is called check polynomial of C.

Now we recall the following:

The residue class ring is the set

Res q,n = Fq[x]/I(xn − 1) = { f := f + I(xn − 1) | f ∈ Fq[x] }

222 4. Cyclic Codes

with multiplication defined by

f0 · f1 = f0 · f1, for all f0, f1 ∈ Fq[x].

The residue classes modulo I(xn − 1) of two polynomials f0, f1 ∈ Fq[x]
are equal if and only if f0 − f1 is divisible by xn − 1. Using the notation of
Exercise 3.1.10, we may write

f0 = f1 ⇐⇒ f0 ≡ f1 mod I(xn − 1).

By the Division Theorem for polynomials (Exercise 3.1.6), any f ∈ Fq[x]
can be written uniquely as

f = s · (xn − 1) + r,

with r, s ∈ Fq[x] and either r = 0 or 0 ≤ deg r < n. The polynomials s and r
are called quotient and remainder upon dividing f by xn − 1, respectively.

Let remn(f) denote the remainder of f upon division by xn − 1. It is clear
that

remn(f0) = remn(f1) ⇐⇒ f0 = f1.

This shows that there is a one-to-one correspondence between the elements
of the residue class ring Res q,n and the set of possible remainders. We call
remn(f) the canonical representative of the residue class of f .

Thus, the reader should carefully note the next

4.2.4 Remarks In the following sections of this chapter,

a codeword c means, first of all, a vector

c = (c0, . . . , cn−1) ∈ Fn
q .

On the other hand, we may also identify c with an element of the residue
class ring,

c = c(x) + I(xn − 1) ∈ Res q,n,

where c(x) is the uniquely defined polynomial ∑i∈n cixi of degree less than
n, the canonical representative of this particular residue class.

Therefore, a cyclic code C of length n can be regarded both as a subspace of
Fn

q and as an ideal in the residue class ring Res q,n. It should be clear from the
context which of the two interpretations is meant.

4.2 Polynomial Representation of Cyclic Codes 223

4.2.5Theorem Consider the cyclic code C ≤ Res q,n with generator polynomial g =
∑t

i=0 gixi of degree t ≤ n and check polynomial h = (xn − 1)/g = ∑n−t
i=0 hixi of

degree n − t. Then

1. The dimension of C is

k = n − t = n − deg g = deg h.

An Fq-basis of C is the set{
xig = xig + I(xn − 1)

∣∣ i ∈ n − t
}

.

2. A generator matrix of C is the (n − t)× n-matrix

Γ :=

⎛⎜⎜⎜⎜⎝
g0 g1 gt−1 gt 0 . . . 0
0 g0 g1 gt−1 gt . . . 0
...

...
. . .

. . . · · · · · · . . .
. . .

...
0 0 . . . g0 g1 gt−1 gt

⎞⎟⎟⎟⎟⎠ .

3. The annihilator of C is

Ann(C) = I(h)/I(xn − 1).

4. The dual code C⊥ is also cyclic. A generator matrix of C⊥ and, therefore, also a
check matrix of C is the t × n-matrix

∆ :=

⎛⎜⎜⎜⎜⎝
hk hk−1 h1 h0 0 . . . 0
0 hk hk−1 h1 h0 . . . 0
...

...
. . .

. . . · · · · · · . . .
. . .

...
0 0 . . . hk hk−1 h1 h0

⎞⎟⎟⎟⎟⎠ .

5. C⊥ is generated by ĥ := xkh(x−1). The unique generator polynomial of C⊥ is
ĥ/h(0).

Proof: 1. In order to prove the first assertion, we compare degrees and see
that the codewords

g, xg, . . . , xn−t−1g

are linearly independent elements of the vector space Res q,n. It remains to
show that they generate the code C. To this end, consider a codeword c =
f g ∈ C, for some f ∈ Fq[x]. From

remn(f g) = ∑
i∈n

cix
i

we deduce
c = ∑

i∈n
cix

i + I(xn − 1).

224 4. Cyclic Codes

We have already mentioned that f ∈ Fq[x] is uniquely determined if we im-
pose the condition that deg f ≤ n − t − 1, and we know that this condition
is no restriction of generality. In fact, this f of smallest degree is the unique
remainder which we obtain when we divide any f with c = f g by the check
polynomial (Exercise 4.2.1). Hence, c is a linear combination of the elements
xig, i ∈ n − t.
2. The second assertion is a direct consequence of the proof of the first one.
3. In order to verify the assertion on the annihilator we note that for each
a = f̃ h ∈ I(h) the following is true:

ag = f̃ hg = f̃ (xn − 1) ≡ 0 mod I(xn − 1).

Conversely, consider an a ∈ Fq[x] such that ag ≡ 0 mod I(xn − 1). There exists
a polynomial f ∈ Fq[x] such that ag = f (xn − 1) = f hg and so

(a − f h)g = 0.

According to Exercise 3.1.1, the polynomial ring Fq[x] does not contain any
zero divisors. Hence a = f h ∈ I(h).
4. Any c(x) = f g in C satisfies

c(x)h = f gh ≡ 0 mod I(xn − 1).

According to Exercise 4.2.2, the coefficient of xm, m ∈ n, in the canonical rep-
resentative remn(c(x)h) is

∑
i∈n

cih(m−i) mod n = 0,

and this implies c · ∆� = 0. Hence, the code generated by the n − k linearly
independent rows of the matrix ∆ is contained in C⊥. Since both codes have
the same dimension, they are in fact equal. Thus, ∆ is a generator matrix of
C⊥. On the other hand, by reversing the above argument we see that ∆ is a
generator matrix of the cyclic code generated by xkh(x−1). Thus, C⊥ is cyclic
with generator polynomial xkh(x−1) = ∑k

i=0 hk−ixi. This proves the last two
assertions. �

If deg h = k, the polynomial

ĥ := xkh(x−1)

is called reciprocal of h. If h(0) is nonzero, then ĥ/h(0) is monic (cf. Exer-
cise 4.2.10).

Being ideals in a ring, cyclic codes can be added and intersected. We have
the following result (Exercise 4.2.11):

4.2 Polynomial Representation of Cyclic Codes 225

4.2.6Theorem Let C and C′ be cyclic codes of length n over Fq with generator polynomi-
als g and g′, respectively.

The intersection C ∩ C′ is an ideal, i.e. a cyclic code. It is generated by the least
common multiple

g = lcm(g, g′).

The sum C + C′ is the ideal generated by the union C∪ C′ (see Exercise 3.5.7). Its
generator polynomial is the greatest common divisor

g = gcd(g, g′).

The set of cyclic codes of length n over Fq together with the operations ∩ and +
forms a lattice. The map from the set of monic divisors of xn − 1 to ideals in Res q,n,
given by g �→ I(g), is a lattice anti-isomorphism. �

4.2.7Examples Let us describe all binary cyclic codes of length 7. By 4.2.2, this
amounts to listing all ideals of Res2,7 = F2[x]/I(x7 − 1). For this, we consider
the set of all possible monic divisors of the polynomial x7 − 1. To begin with,
the polynomial x7 − 1 = x7 + 1 factors over F2 into monic irreducible polyno-
mials as follows:

x7 − 1 = (x + 1)︸ ︷︷ ︸
f0

(x3 + x + 1)︸ ︷︷ ︸
f1

(x3 + x2 + 1)︸ ︷︷ ︸
f2

.

The 3 irreducible factors determine 23 = 8 cyclic codes (if {0} is included).

The polynomial g := f0 f1 f2 generates {0}.

Let W7 denote the cyclic code which is generated by

f1 f2 = (x3 + x + 1)(x3 + x2 + 1) = x6 + x5 + x4 + x3 + x2 + x + 1.

Its generator matrix is (
1 1 1 1 1 1 1

)
and, hence, W7 is the (7, 1) repetition code.

The cyclic code S3 with generator polynomial

f0 f1 = (x + 1)(x3 + x + 1) = x4 + x3 + x2 + 1

is a (7, 3)-code with generator matrix⎛⎜⎝ 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎟⎠ ,

226 4. Cyclic Codes

a matrix which is the check matrix of the third order binary Hamming-
code, and so S3 is a binary simplex-code.

The cyclic code S′
3 with generator polynomial

f0 f2 = (x + 1)(x3 + x2 + 1) = x4 + x2 + x + 1

is also a (7, 3)-code which is isometric to S3.

The cyclic code P7 with generator polynomial f0 = x + 1 is a (7, 6)-code.
From its generator polynomial we obtain a generator matrix that can be
transformed, using elementary row transformations, into the systematic
generator matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, P7 is isometric to a parity check code. It consists of all even weight
vectors in F7

2.

The cyclic code H3 generated by f1 = x3 + x + 1 is a (7, 4)-code with gen-
erator matrix ⎛⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎟⎠ .

According to 4.2.5, H⊥
3 has the generator polynomial

x4 + x2 + x + 1,

which says that H⊥
3 is the simplex-code S3; hence H3 is a Hamming-code.

H′
3 with generator polynomial f2 = x3 + x2 + 1 is isometric to H3, whence

it is also a Hamming-code.

The trivial factor g = 1 of x7 − 1 is the generator polynomial of the full code
Res2,7 with generator matrix I7.

Figure 4.2 shows the lattice of all binary cyclic codes of length 7 and the cor-
responding lattice of divisors of x7 − 1 (“upside down”, because of the third
assertion in 4.2.6).

The codes S3 and S′
3 or H3 and H′

3 are isometric. This shows that there
exist distinct cyclic codes which are isometric. Conversely, it is easy to find

4.2 Polynomial Representation of Cyclic Codes 227

noncyclic codes which are permutationally isometric to cyclic ones (cf. Exer-
cise 4.2.7). In other words, the isometry class of a cyclic code usually contains
codes which are not cyclic.

�
�

��

�
�

��

�
�

��

�
�

��
�

�
��

�
�

��

�
�

��

�
�

��

0

S3 S′
3

W7

H3 H′
3

P7

Res2,7

−→
←−

�
�

��

�
�

��

�
�

��

�
�

��
�

�
��

�
�

��

�
�

��

�
�

��

f0 f1 f2

f0 f1 f0 f2
f1 f2

f1 f2
f0

1

Fig. 4.2 The lattice of binary cyclic codes of length 7

�

4.2.8Systematic encoding of cyclic codes The generator matrix of a cyclic code as
given in 4.2.5 is not systematic. Here we will present two methods to encode
a cyclic (n, k)-code in a systematic way (cf. [104, pages 80ff]). We will use the
last k symbols of a codeword as the information symbols. That is, we divide
the symbols of a codeword c �= 0 into check symbols and information symbols,

c = (c0, . . . , cn−k−1︸ ︷︷ ︸
check symbols

, cn−k, . . . , cn−1︸ ︷︷ ︸
information symbols

).

For any choice of (cn−k, . . . , cn−1) ∈ Fk
q we determine (c0, . . . , cn−k−1) ∈ Fn−k

q
so that (c0, . . . , cn−1) belongs to C. There are two possible approaches.

1. In order to use the generator polynomial for encoding, we start with c̃(x) =
cn−kxn−k + . . . + cn−1xn−1. Let g be the generator polynomial of C. By
the division algorithm, there exist uniquely determined polynomials r, s in
Fq[x] such that c̃ = sg + r with r = 0 or deg r < deg g = n − k. If we set
c := c̃ − r, then g divides c and deg c < n, i.e. c belongs to C. Moreover,
this encoding is systematic in the last k coordinates, as the coefficient of xj

in c(x) is cj, for n − k ≤ j ≤ n − 1.

2. A second method for systematic encoding uses the check matrix ∆ of C. We
know that the vector (c0, . . . , cn−1) belongs to C if and only if c · ∆� = 0.

228 4. Cyclic Codes

Inserting the particular form of ∆ as described in 4.2.5, we get

(c0, . . . , cn−1) ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hk 0 . . . 0
hk−1 hk . . . 0

... hk−1
. . .

...

h1
...

. . . hk
h0 h1 hk−1

0 h0
. . .

...
...

...
. . . h1

0 0 . . . h0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 .

This yields the homogeneous system of linear equations

hkc0 + hk−1c1 + . . . + h0ck = 0
hkc1 + hk−1c2 + . . . + h0ck+1 = 0

. . .
hkcn−k−1 + hk−1cn−k + . . . + h0cn−1 = 0

Since hk �= 0, we are able to determine the check symbol cn−k−1 from the
last equation. The next to last equation then determines cn−k−2. Proceeding
in this way, we are able to determine all check symbols ci, i ∈ n − k (in
reverse order). �

It remains to discuss the factorization of xn − 1 into the product of monic
irreducible factors. To begin with, we assume that p denotes the characteristic
of Fq and we define positive integers r and s by

n = psr, where p � r.

4.2.9 Lemma The roots of the polynomial xr − 1 are all nonzero and simple. Thus, the
monic irreducible factors fi in xr − 1 = ∏i∈l fi are pairwise distinct. Moreover, we
have

xn − 1 = (xr − 1)ps
= ∏

i∈l
(fi)

ps
.

Proof: The roots of xr − 1 are clearly nonzero. In order to show that they are
simple, we consider the formal derivative of xr − 1 over Fq,

(xr − 1)′ = rxr−1.

Since p is not a divisor of r, the only root of this derivative is zero, and this root
is an (r − 1)–fold root. Hence, xr − 1 and its derivative do not have common
roots, so that, according to 3.5.7, the polynomial xr − 1 has only simple roots.
The second statement follows directly from 3.2.12. �

4.2 Polynomial Representation of Cyclic Codes 229

4.2.10Definition (variety of a polynomial) Consider a nonzero polynomial f ∈ Fq[x].
The set of roots of f (in a suitable field extension of Fq or in the algebraic
closure Fq, cf. 3.2.23) is called the variety V(f) of f .

For more details on V(f) see Exercise 4.2.18. Let Ur denote the set of roots
of the polynomial xr − 1. The elements of Ur are known as the r-th roots of
unity.

Let r be an integer which is relatively prime to q. Now we describe a con-
structive way of factoring f = xr − 1 into irreducible polynomials over Fq,
which is useful, at least for small r. During this factorization we may find that
not all roots of f are contained in the field Fq. In this case, we have to work in
the splitting field of f , which is Fqm , for a suitable positive integer m. In this
situation it will be important to use the Galois group (cf. 3.3.1)

Gal := Gal [Fqm : Fq].

This is the cyclic group of order m which is generated by the Frobenius auto-
morphism

σ : Fqm → Fqm : α �→ αq.

According to 3.2.15, this group acts on the variety V(f) of f ∈ Fq[x] in the
following way:

Gal×V(f) → V(f) : (σi, α) �→ σi(α).

The orbit of the root α of f under Gal is

Gal(α) =
{

α, αq, αq2
, . . .

}
.

4.2.11Lemma Consider r > 1, coprime to q, and let m := ordr(q) denote the smallest
positive integer such that qm ≡ 1 mod r. Then:

The polynomial xr − 1 splits over Fqm into linear factors:

xr − 1 = ∏
i∈r

(x − ξ i),

where ξ ∈ Ur ⊆ Fqm denotes a primitive r-th root of unity.

The orbit of the root ξ i ∈ Fqm of xr − 1 under Gal is

Gal(ξ i) =
{

ξ i, ξ iq, ξ iq2
, . . . , ξ iqt−1

}
,

where t is the smallest positive integer such that iqt ≡ i mod r. It consists of at
most m elements.

The minimal polynomial (recall 3.1.5) of ξ i over Fq is

Mξ i := ∏
α∈Gal(ξ i)

(x − α) .

230 4. Cyclic Codes

The factorization of xr − 1 into irreducible factors over Fq[x] is

xr − 1 = ∏
ξ i∈T

Mξ i ,

where T denotes a transversal of the orbits of the Galois group on Ur.

Proof: First we show that there exists an m ∈ N∗ with qm ≡ 1 mod r. Since
gcd(r, q) = 1, Bézout’s Identity (Exercise 3.1.2) yields the existence of integers
a and b such that ar + bq = 1. Hence, bq ≡ 1 mod r, which shows that the
residue class q of q is a unit in the residue class ring Zr . Consequently, q gen-
erates a cyclic subgroup 〈 q 〉 of the group of units in Zr. If m denotes the order
of this group,

m := ordr(q) := |〈 q 〉|,
then qm ≡ 1 mod r. This m is the smallest positive integer for which qm = 1 ∈
Zr or, equivalently, qm ≡ 1 mod r.

The multiplicative group of the finite field Fqm is cyclic. Hence, a generator
β of this group is of order qm − 1. By assumption r divides qm − 1 and, there-
fore, ξ := β(qm−1)/r is a primitive r-th root of unity. This element of F∗

qm is,
together with each of its powers, a root of xr − 1, i.e. ∏i∈r(x − ξ i) is a divisor
of xr − 1. Since both these polynomials are monic and of the same degree, we
deduce that

xr − 1 = ∏
i∈r

(x − ξ i).

Since the orbit Gal(ξ i) is finite, we may assume that t is the least integer
t ≥ 1 for which ξ iqt = ξ i, whence iqt ≡ i mod r. It is clear that Gal(ξ i) contains
at most m elements, since |Gal | = m.

Partitioning the set of roots of xr − 1 into disjoint orbits of the Galois group,
we obtain the factorization

xr − 1 = ∏
ξ i∈T

Mξ i .

Here T denotes a transversal of the orbits of the Galois group on the variety

Ur :=
{

κ ∈ Fqm | κr = 1
}

.

By 3.3.4, the factor Mξ i is the minimal polynomial of ξ i over Fq. �

Thus, the problem of factoring xr − 1 in Fq[x] reduces to the problem of
finding the zeros of the irreducible divisors of xr − 1 over Fq and of evaluating
their orbits under Gal. When we express the roots as powers ξ i of a primitive
root ξ of unity of order r, then we may restrict attention to the exponents i of the
powers ξ i, obtaining the orbits of the Galois group on r.

4.2 Polynomial Representation of Cyclic Codes 231

4.2.12Definition (q-cyclotomic cosets modulo r) Let q be a prime power and let
r ≥ 2 be an integer which is relatively prime to q. For an integer i ∈ r, the
q-cyclotomic coset modulo r containing i is the set

{i, iq mod r, iq2 mod r, iq3 mod r, . . . , iqt−1 mod r} ⊆ r,

where t is the least positive integer such that iqt ≡ i mod r. It is in fact an orbit
of the Galois group acting on r in the following way:

Gal× r → r : (σj, i) �→ qj · i mod r.

Hence we may denote this set as

Gal(i)

(or Gal(iqj) for any j ≤ r − 1). It is customary to assume that i is the least
element among all elements of Gal(i).
We hope that the orbit Gal(i) will not be mixed up with the orbit Gal(ξ i). Here
is an example:

4.2.13Example Let us write x15 − 1 as a product of irreducible polynomials over
F2. Since 24 ≡ 1 mod 15, x15 − 1 factorizes into linear factors over F24 . The
2-cyclotomic cosets modulo 15 are

Gal(0) = {0}, Gal(1) = {1, 2, 4, 8}, Gal(3) = {3, 6, 12, 9},

Gal(5) = {5, 10}, Gal(7) = {7, 14, 13, 11}.

(Compare this with 3.2.14.) If ξ denotes a primitive 15-th root of unity, we
obtain the following irreducible divisors of x15 − 1:

f0 = x − 1,

f1 = (x − ξ)(x − ξ2)(x − ξ4)(x − ξ8),

f2 = (x − ξ3)(x − ξ6)(x − ξ12)(x − ξ9),

f3 = (x − ξ5)(x − ξ10),

f4 = (x − ξ7)(x − ξ14)(x − ξ13)(x − ξ11).

In order to see what these polynomials really are, we need to construct the
field F16. Without restriction, let ξ denote a root of the primitive polynomial
x4 + x + 1 ∈ F2[x]. As ξ4 = ξ + 1, we can write the powers of ξ as linear
combinations of the elements of the F2-basis {1, ξ, ξ2, ξ3} in the following way

232 4. Cyclic Codes

(see 3.2.9):

ξ4 = ξ + 1, ξ5 = ξ2 + ξ,
ξ6 = ξ3 + ξ2, ξ7 = ξ3 + ξ + 1,
ξ8 = ξ2 + 1, ξ9 = ξ3 + ξ,

ξ10 = ξ2 + ξ + 1, ξ11 = ξ3 + ξ2 + ξ,
ξ12 = ξ3 + ξ2 + ξ + 1, ξ13 = ξ3 + ξ2 + 1,
ξ14 = ξ3 + 1.

For example, ξ5 + ξ10 = 1, and ξ5 · ξ10 = 1. Hence,

f3 = x2 + x(ξ5 + ξ10) + ξ5 · ξ10 = x2 + x + 1.

In a similar fashion, we obtain representations of the remaining fi over F2. The
following table shows the cyclotomic cosets together with the orbits of the Ga-
lois group on the set of roots of unity and the resulting minimal polynomials:

Cyclotomic set Gal(i) Orbit Gal(ξ i) Minimal polynomial Mξ i

{0} {1} x + 1
{1, 2, 4, 8} { ξ, ξ2, ξ4, ξ8 } x4 + x + 1
{3, 6, 12, 9} { ξ3, ξ6, ξ12, ξ9 } x4 + x3 + x2 + x + 1
{5, 10} { ξ5, ξ10 } x2 + x + 1
{7, 14, 13, 11} { ξ7, ξ14, ξ13, ξ11 } x4 + x3 + 1 �

Recall that we can write n = ps · r for some prime p and some integers s
and r, where p � r. Two special cases are of particular interest. These are the
cyclic codes of p-regular length (n = r) and those of p-power length (n = ps). The
case of general block length will be discussed later. The foregoing results may
be summarized as follows.

4.2.14 Corollary Let p denote the characteristic of Fq.

If p � n, then the set of all the cyclic codes of length n over Fq forms a Boolean
lattice with 2l elements, where l is the number of irreducible monic divisors of
xn − 1.

If n = ps, then xn − 1 = (x − 1)n, and the cyclic codes of length n over Fq form
the chain

Fq[x]/I(xn − 1) = C0 ⊃ C1 ⊃ . . . ⊃ Cn−1 ⊃ Cn = 0,

where Ci is generated by the polynomial (x − 1)i. �

4.2 Polynomial Representation of Cyclic Codes 233

4.2.15Definition (the variety of a cyclic code) Consider a cyclic code C over Fq with
generator polynomial g. The variety of g will also be called the variety of C over
Fq and indicated as follows:

V(C) := V(g).

Every element of V(C) is called a root of C over Fq.
This is justified, since each α ∈ V(g) is a root of every c(x), c ∈ C, and con-
versely, each root of all the codewords is a root of g, because g = g + I(xn − 1)
is contained in C.

4.2.16Theorem Let C denote a cyclic (n, k)-code over Fq, where n is relatively prime to q,
with generator polynomial g, and let m be ordn(q). According to 4.2.11, Fqm contains
the variety of g, and we have:

1. The dimension k of C is k = n − |V(C)|.

2. In the case V(C) = {α0, . . . , αn−k−1}, the matrix

∆̃ =

⎛⎜⎜⎜⎝
1 α0 α2

0 . . . αn−1
0

1 α1 α2
1 . . . αn−1

1
.

1 αn−k−1 α2
n−k−1 . . . αn−1

n−k−1

⎞⎟⎟⎟⎠
is a check matrix of a code C̃ over Fqm whose intersection with Fn

q is C,

C̃ ↓ Fq = C̃ ∩ Fn
q = C.

3. The variety of C⊥ consists of the inverses of the nonroots of C in Un, i.e.

V(C⊥) =
{

ξ−i ∣∣ ξ i �∈ V(C), i ∈ n
}

,

where ξ is a primitive root of unity of order n.

Proof: 1. is clear from the fact that k = n−deg g and deg g = |V(g)| = |V(C)|.
2. In order to prove the second statement we recall the definition of V(C) and
deduce that

c · ∆̃� = (c(α0), . . . , c(αn−k−1)) = (0, . . . , 0) = 0,

for each c ∈ C, and so C ⊆ C̃. Conversely, if c̃ ∈ C̃ ∩ Fn
q , then c̃(αj) = 0, for

each αj ∈ V(C), which implies c̃ ∈ C.
3. The final assertion is immediately clear from the fifth item of 4.2.5. �

234 4. Cyclic Codes

This theorem is very useful for applications. For example, the dimensions
of cyclic codes of length n over Fq can be determined easily provided that
n and q are relatively prime. According to 4.2.16, it suffices to calculate the
varieties of all divisors of the polynomial xn − 1 over Fq. In fact, we need
not even compute the divisors themselves. The varieties of the irreducible
factors are given by the q-cyclotomic cosets modulo n, which can be computed
easily. The variety of a divisor of xn − 1 is a union of varieties of irreducible
polynomials, i.e. a union of q-cyclotomic cosets modulo n.

4.2.17 Example We evaluate the dimensions of all binary cyclic codes of length 23.
For this purpose we calculate first the dimensions of the maximal ones. They
are generated by irreducible divisors of x23 − 1 over F2, whose zeros form
varieties of U23 over F2, the orbits Gal(ξs) of the Galois group. These orbits
can be obtained from the 2-cyclotomic cosets modulo 23:

{0},
{1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12},
{5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}.

Therefore, the varieties of the irreducible factors of x23 − 1 over F2 are

Gal(1) = {1},
Gal(ξ) = {ξ1, ξ2, ξ4, ξ8, ξ16, ξ9, ξ18, ξ13, ξ3, ξ6, ξ12},

Gal(ξ5) = {ξ5, ξ10, ξ20, ξ17, ξ11, ξ22, ξ21, ξ19, ξ15, ξ7, ξ14}.

Hence, there are exactly three maximal binary cyclic codes of length 23. Ac-
cording to 4.2.16, they are of dimension 22, 12 and 12. From 4.2.6 and Exer-
cise 4.2.18 we obtain, by forming unions of these varieties, the dimensions of
all other binary cyclic codes of length 23. The dimensions of the seven binary
cyclic codes different from {0} of length 23 are therefore 1, 11, 11, 12, 12, 22,
and 23. �

4.2.6 and 4.2.16 imply another important result on these lattices.

4.2.18 Corollary The mapping C �→ V(C) is an anti-isomorphism between the lattice of
cyclic codes of length n over Fq and the lattice of the varieties of Un over Fq. (A
subset V of Un is a variety over Fq if V = V(f) for some f ∈ Fq[x].) �

Exercises

E.4.2.1 Exercise Show that for 0 �= c ∈ C ≤ Res q,n (with generator polynomial g)
there exists a unique polynomial f of degree deg f < dim(C) such that c = f g.

4.2 Polynomial Representation of Cyclic Codes 235

E.4.2.2Exercise Assume that f = ∑m
i=0 fixi is a polynomial of degree m, and let n ≥ 1.

Prove by induction on the degree of f that

f ≡ ∑
j∈n

(
∑

i:i≡j mod n
fi

)
xj mod I(xn − 1).

E.4.2.3Exercise Assume that R is a ring and I is an ideal in R. Show that the set
R/I = {r + I | r ∈ R} together with the two compositions

(r1 + I) + (r2 + I) = (r1 + r2) + I, (r1 + I)(r2 + I) = (r1r2) + I, r1, r2 ∈ R

is a ring, the factor ring of R modulo I.

E.4.2.4Exercise Show that for any ideal I of the ring R, the canonical projection
π : R → R/I is a surjective ring homomorphism.

E.4.2.5Exercise Assume that ϕ : R → S is a ring homomorphism and that J is an
ideal in S. Prove that ϕ−1(J) is an ideal in R and ker ϕ is an ideal contained in
ϕ−1(J). If ϕ is surjective and I an ideal in R, show that ϕ(I) is an ideal in S.

E.4.2.6Exercise Let R be an integral domain (i.e. a commutative ring different from
{0} with 1 and without zero divisors). Show that the ideal I(r) is contained
in the ideal I(s) for r, s ∈ R if and only if s divides r. Hence, the ideals in
Fq[x]/I(f) are of the form I(g)/I(f) where g divides f .

E.4.2.7Exercise Construct a code which is not cyclic and permutationally isometric
to the code S3 from 4.2.7.

E.4.2.8Exercise Show that if g(x) ∈ Fq[x] is the generator polynomial of a cyclic code
then g(0) �= 0.

E.4.2.9Exercise Let C be a binary cyclic code of odd length n. Let g be the gener-
ator polynomial of C, and let h = (xn − 1)/g. Prove that the following are
equivalent:

1n ∈ C.

C contains a word of odd weight.

g(1) �= 0.

h(1) = 0.

236 4. Cyclic Codes

E.4.2.10 Exercise Let f = ∑k
i=0 aixi be a polynomial of degree k. Check the following

properties of the reciprocal:

f̂ has degree k if a0 = f (0) �= 0. In this case, the leading coefficient of f̂ is
a0 = f (0) and, therefore, f̂ / f (0) is monic.

Let α ∈ F be a field element. Prove the following equivalence:

f (α) = 0 ⇐⇒ f̂ (α−1) = 0.

E.4.2.11 Exercise Prove 4.2.6.

E.4.2.12 Exercise Evaluate the factorization of x8 − 1 ∈ F3[x] into monic irreducible
polynomials, and derive generator matrices for the codes generated by prod-
ucts of degree four of these factors.

E.4.2.13 Exercise Describe the annihilator of the repetition code of length n.

E.4.2.14 Exercise Give for every binary cyclic code of length 9 its dimension, a gener-
ator matrix, a check matrix, and its dual code.

E.4.2.15 Exercise Factor x15 − 1 ∈ F4[x] into irreducible polynomials.

E.4.2.16 Exercise Is the binary code generated by⎛⎜⎜⎜⎝
1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1

⎞⎟⎟⎟⎠
cyclic?

E.4.2.17 Exercise Show that the mapping C �→ Ann(C) is an anti-automorphism of
the lattice of cyclic codes of length n over Fq. In particular, for all cyclic codes
C0, C1 of length n over Fq prove that

Ann(C0 + C1) = Ann(C0) ∩Ann(C1)

and
Ann(C0 ∩ C1) = Ann(C0) + Ann(C1).

4.3 BCH-Codes and Reed–Solomon-Codes 237

E.4.2.18Exercise For each f ∈ Fq[x] we introduce the notation

V(f) :=
{

α ∈ Fq

∣∣∣ f (α) = 0
}

for the corresponding variety over Fq, where Fq denotes the algebraic closure
of Fq (cf. 3.2.23). A nonempty variety V over Fq (i.e. a subset V of Fq which is
a variety of a polynomial, V = V(f), for some f ∈ Fq[x]) is called irreducible,
if it cannot be written as the disjoint union V1 ∪V2 of two proper subvarieties
V1,V2 over Fq. Prove that, for each f1, f2 ∈ Fq[x], the following holds:

f1 | f2 ⇐⇒ V(f1) ⊆ V(f2).

V(f1) ∩V(f2) = V(h) ⇐⇒ h = κ · gcd(f1, f2) for a suitable κ ∈ F∗
q .

V(f1) ∪V(f2) = V(g) ⇐⇒ g = κ · lcm(f1, f2) for a suitable κ ∈ F∗
q .

V(fi) is irreducible over Fq if and only if fi is irreducible over Fq.

Each nonempty variety over Fq is the disjoint union of irreducible varieties
over Fq.

Each nonempty variety over Fq is the disjoint union of orbits of Galois
groups over Fq, whence it is closed under the Frobenius automorphism
α �→ αq.

E.4.2.19Exercise Assume that ξ ∈ Fqm is a primitive n-th root of unity. Show that

|Gal(ξ i)| = |Gal(i)|

is the number of different cyclic shifts of the vector

(im−1, . . . , i0),

defined by the q-adic expansion of i, which means

i = im−1qm−1 + . . . + i1q + i0, ij ∈ q, j ∈ m.

4.34.3 BCH-Codes and Reed–Solomon-Codes

One of the most important classes of cyclic codes was introduced by R.C. Bose
and D.K. Ray-Chauduri in [24] and independently also by A. Hocquenghem
in [90]. This class of codes is known as the BCH-codes. A subclass of
these codes are the Reed–Solomon-codes, which are due to I.S. Reed and
G. Solomon [168]. Codes of these classes can be constructed easily from their

238 4. Cyclic Codes

varieties, and they have good error correcting qualities. For their decoding an
efficient procedure is known, which will be described later on.

As before, we denote by n the length of the codewords, and we assume
that it is not divisible by the characteristic p of the field Fq. The order ordn(q)
of q in the group of units of Zn is again indicated by m, so that, in particular,
qm ≡ 1 mod n. From a primitive element β of Fqm , we obtain the primitive
n-th root of unity

ξ := β(qm−1)/n,

and so the set of all n-th roots of unity in Fqm is

Un = 〈 ξ 〉 =
{

κ ∈ Fqm | κn = 1
}

.

A subset W ⊆ Un will be called consecutive (with respect to ξ), if there exist
integers b ≥ 0 and δ ≥ 2, such that

W =
{

ξb, ξb+1, . . . , ξb+δ−2
}

.

The introduction of BCH-codes is motivated by the following result:

4.3.1 The BCH-bound Let C be a cyclic code of length n over Fq where q is coprime to
n. Assume further that the variety of C contains δ − 1 consecutive powers of ξ, a
primitive n-th root of unity, where δ ≥ 2. Then the minimum distance of C is at least
δ. In formal terms,

W :=
{

ξb, . . . , ξb+δ−2
}
⊆ V(C) =⇒ dist(C) ≥ δ.

Proof: We want to prove this assertion by an application of 1.3.9. For this
purpose we consider the (δ − 1)× n-matrix

∆̃ :=

⎛⎜⎜⎜⎝
1 ξb ξ2b . . . ξ(n−1)b

1 ξb+1 ξ2(b+1) . . . ξ(n−1)(b+1)

.
1 ξb+δ−2 ξ2(b+δ−2) . . . ξ(n−1)(b+δ−2)

⎞⎟⎟⎟⎠ .

Note that this matrix is a matrix over the extension field Fqm containing ξ,
where m := ordn(q), and that for each c ∈ C we have

c · ∆̃� = (c(ξb), . . . , c(ξb+δ−2)) = (0, . . . , 0) = 0.

We show that each subset of δ − 1 columns of the matrix ∆̃ is linearly inde-
pendent over Fq. In order to verify this, we consider a submatrix consisting of
δ − 1 columns of ∆̃:⎛⎜⎜⎜⎝

ξ i1b ξ i2b . . . ξ iδ−1b

ξ i1(b+1) ξ i2(b+1) . . . ξ iδ−1(b+1)

.
ξ i1(b+δ−2) ξ i2(b+δ−2) . . . ξ iδ−1(b+δ−2)

⎞⎟⎟⎟⎠

4.3 BCH-Codes and Reed–Solomon-Codes 239

with 0 ≤ i1 < i2 < . . . < iδ−1 ≤ n − 1. Its determinant is ξ(i1+i2+...+iδ−1)b times
the determinant of the Vandermonde matrix⎛⎜⎜⎜⎜⎜⎝

1 1 . . . 1
ξ i1 ξ i2 . . . ξ iδ−1

ξ2i1 ξ2i2 . . . ξ2iδ−1

.
ξ(δ−2)i1 ξ(δ−2)i2 . . . ξ(δ−2)iδ−1

⎞⎟⎟⎟⎟⎟⎠ .

Hence the determinant is different from 0 since the ξ ij are pairwise distinct.
This shows that any δ − 1 columns of ∆̃ are linearly independent over Fqm .
Thus, ∆̃ is a check matrix of a code C̃ over Fqm which has minimum distance

dist(C̃) ≥ δ.

Moreover, since c · ∆̃� = 0, for all c ∈ C, we obtain the inclusion C ⊆ C̃, and
so we also have

dist(C) ≥ dist(C̃) ≥ δ,

as stated. �

BCH-codes are defined to be the maximal cyclic codes containing a pre-
scribed consecutive set W in their variety:

4.3.2Definition (BCH-codes, designed distance, Reed–Solomon-codes) Let W =
{ξb, . . . , ξb+δ−2} be a consecutive subset of Un for some b ≥ 0 and some δ with
n > δ ≥ 2. Define the polynomial

g := lcm
{

Mξb+i

∣∣ i ∈ δ − 1
}

,

where Mξb+i is the minimal polynomial of ξb+i over Fq. The code C with gen-
erator polynomial g is called the BCH-code generated by W. The value δ is the
designed distance of C since dist(C) ≥ δ by 4.3.1. If n = qm − 1, the code is called
primitive, since in this case ξ is also a primitive element for Fqm . Moreover, if
b = 1 we say that C is a BCH-code in the narrow sense. BCH-codes of length
n = q − 1 over Fq are called Reed–Solomon-codes.

Reed–Solomon-codes are particularly easy to create since in case q − 1 = n
the minimal polynomials are all linear. Namely, in this case the field Fq con-
tains all n-th roots of unity and, therefore, Mξ i = (x − ξ i) for all i.

4.3.3Example Let us design a BCH-code C which can correct 2 errors. For this,
we need minimum distance at least 5, i.e. we put the designed distance to be
δ = 5. We decide to use a Reed–Solomon-code with n = q − 1. Since we want

240 4. Cyclic Codes

q − 1 = n > δ = 5, we choose q = 7 and n = 6. A primitive element modulo 7
is β = 3, so we may take

W := {3, 32, 33, 34} = {3, 2, 6, 4} ⊂ F7.

The Reed–Solomon-code C generated by the consecutive set W has generator
polynomial

g = (x − 3)(x − 32)(x − 33)(x − 34)

= (x − 3)(x − 2)(x − 6)(x − 4)

= x4 + 6x3 + 3x2 + 2x + 4.

It is a (6, 6− 4) = (6, 2)-code with generator matrix

Γ =

(
4 2 3 6 1 0
0 4 2 3 6 1

)
.

The check polynomial of C is

h =
x6 − 1
x − 1

= (x − 1)(x − 35) = x2 + x + 5

and, therefore, a check matrix of C is

∆ =

⎛⎜⎜⎜⎝
1 1 5 0 0 0
0 1 1 5 0 0
0 0 1 1 5 0
0 0 0 1 1 5

⎞⎟⎟⎟⎠ .

�

The generator polynomial g of a BCH-code with designed distance δ is the
least common multiple of the minimal polynomials over Fq of the elements in
the consecutive set W = {ξb, ξb+1, . . . , ξb+δ−2}. Hence, it is the polynomial of
least degree over Fq with ξb, ξb+1, . . . , ξb+δ−2 as roots. Consequently, c is an
element of C if and only if

c(ξb) = . . . = c(ξb+δ−2) = 0.

In addition, since m = ordn(q) we have that n divides qm − 1, i.e. we know
that the primitive n-th root ξ belongs to Fqm . The minimal polynomial Mξ of
ξ over Fq is of degree m. Hence, similarly as in 3.1.9, the set {1, ξ, . . . , ξm−1} is
a basis of Fqm over Fq, and each element α ∈ Fqm can be written in a unique
way as

α = ∑
i∈m

κiξ
i, κi ∈ Fq, i ∈ m.

4.3 BCH-Codes and Reed–Solomon-Codes 241

Indeed, we may identify α with the coefficient vector (κ0, . . . , κm−1) ∈ Fm
q with

respect to this basis. If we replace in the matrix

∆̃ :=

⎛⎜⎜⎜⎝
1 ξb ξ2b . . . ξ(n−1)b

1 ξb+1 ξ2(b+1) . . . ξ(n−1)(b+1)

.
1 ξb+δ−2 ξ2(b+δ−2) . . . ξ(n−1)(b+δ−2)

⎞⎟⎟⎟⎠ ,

which occurs in the proof of 4.3.1, each component by the transposed of its
coefficient vector with respect to the basis {1, ξ, . . . , ξm−1}, then ∆̃ contains a
check matrix of C. We actually get a check matrix of C if we choose a maximal
set of independent rows of the extended matrix ∆̃.

The BCH-bound is a lower bound for the minimum distance of a BCH-
code. Besides that, there is also a bound for the dimension:

4.3.4Theorem The dimension k of the BCH-code C generated by the consecutive set W of
order δ − 1 satisfies the inequality

k ≥ n − m(δ − 1) = n − m · |W|.

Proof: The least common multiple g of the minimal polynomials of the el-
ements of W consists of at most δ − 1 different factors, and each of them is
of degree at most m, since m is the maximal orbit length of the Galois group
(see 4.2.11). Thus deg g ≤ m · (δ − 1). This, together with k = n − |V(g)|
(see 4.2.16) gives the desired estimate for the dimension k of C. �

The BCH-bound d ≥ δ is not always tight. In fact, d > δ happens fre-
quently. The most prominent example of this situation is maybe that of the
Golay-codes of length 11 and 23, which we will discuss in Section 4.4. It is an
important (and sometimes difficult!) problem to determine the true minimum
distance of BCH-codes. Several attempts have been made in developing better
lower bounds. The easiest such improvement is to apply the BCH-bound to
the longest consecutive set of roots in the variety of C. For example, if C is a
ternary code and if m = ordn(q) > 1, then there is a 3-cyclotomic coset con-
taining 1 and 3. Thus, whenever W = {ξ, ξ2} is a consecutive set of roots of
C, then also {ξ, ξ2, ξ3} is contained in V(C). The optimal bound, i.e. the BCH-
bound which comes from the longest consecutive set of roots in V(C) is called
the Bose-distance. We note that there are also results which show that under
certain conditions the BCH-bound is sharp, i.e., the true minimum distance of
the code agrees with the BCH-bound.

242 4. Cyclic Codes

4.3.5 Examples

1. The following table gives the parameters of several binary BCH-codes of
length 15, described in terms of a primitive 15-th root of unity ξ and the
minimal polynomials of some of its powers:

generator polynomial k δ d
1 15 1 1
Mξ 11 3 3
Mξ Mξ3 7 5 5
Mξ Mξ3 Mξ5 5 7 7
Mξ Mξ3 Mξ5 Mξ7 1 15 15

2. Now we consider the binary cyclic codes of length 23. The polynomial
x23 − 1 decomposes over F2 in the following way into irreducible factors:

(x + 1)(x11 + x9 + x7 + x6 + x5 + x + 1)(x11 + x10 + x6 + x5 + x4 + x2 + 1).

Because of 211 ≡ 1 mod 23, the roots of these polynomials are contained in
F211 . Let ξ denote a root of

g := x11 + x9 + x7 + x6 + x5 + x + 1.

According to 4.2.17, Gal(ξ) contains the consecutive set {ξ, ξ2, ξ3, ξ4}, and
thus the binary cyclic code of length 23 generated by g has designed dis-
tance δ = 5. The same holds true for the code which is generated by x11 +
x10 + x6 + x5 + x4 + x2 + 1. In Section 4.4, we will show that both codes
are permutationally isometric quadratic-residue-codes with minimum dis-
tance d = 7. �

Now we show that all binary Hamming-codes are BCH-codes.

4.3.6 Theorem Let ξ denote a primitive n = (2m − 1)-th root of unity. Then the consecu-
tive set W := {ξ, ξ2} generates the m-th order binary Hamming-code. Thus, binary
Hamming-codes are cyclic, they are in fact narrow sense BCH-codes.

Proof: 1. According to Exercise 4.2.19 the degree of the minimal polynomial
Mξ is m, and so {1, ξ, . . . , ξm−1} is linearly independent over F2 and therefore
an F2-basis of F2m . Hence we can express the powers of ξ in terms of this basis,
say

ξ j = ∑
i∈m

hijξ
i, j ∈ n.

The coefficients in these equations form the m × n-matrix

∆ := (hij)i∈m,j∈n.

4.3 BCH-Codes and Reed–Solomon-Codes 243

Consider the coefficient vectors of these powers of ξ when written as linear
combinations of ξ i, i ∈ m with coefficients in F2. Since ξ is primitive, the
powers ξ i are pairwise distinct and so, since n = 2m − 1, they are just all the
binary representations of the positive integers 1, . . . , n. Therefore, the matrix ∆
is a check matrix of the m-th order binary Hamming-code C.

2. Now we show that the code C is cyclic and that it has the generator polyno-
mial

g := (x − ξ)(x − ξ2)(x − ξ22
) · · · (x − ξ2m−1

) = ∏
j∈m

(x − ξ2j
).

This polynomial is the minimal polynomial of ξ over Fq, since its roots form
the orbit of ξ under the Galois group. Moreover, c = (c0, . . . , cn−1) is contained
in C if and only if ∆ · c� = 0, which means that for each i the following holds:

∑
j∈n

hijcj = 0, i ∈ m.

Multiplying both sides by ξ i and summing over i yields

0 = ∑
i∈m

∑
j∈n

hijcjξ
i = ∑

j
cj ∑

i
hijξ

i = ∑
j

cjξ
j = c(ξ),

which shows that every codeword, when considered as a polynomial, has ξ as
a root. This last implication is indeed reversible, since 1, ξ, ξ2, . . . , ξm−1 is an
F2-basis for F2m . Thus

c ∈ C ⇐⇒ c(ξ) = 0,

and hence C = I(Mξ)/I(xn − 1). Since deg Mξ = m and dim(C) = n − m, we
conclude that Mξ is indeed the generator polynomial of C.

3. From the foregoing we deduce that the m-th order binary Hamming-code
is cyclic with variety

V(C) =
{

ξ, ξ2, ξ4, . . . , ξ2m−1
}

,

and it is generated by the consecutive set

W :=
{

ξ, ξ2
}

,

as stated. �

4.3.7Examples The (5, 3) second order Hamming-code over F4 is cyclic. If ξ denotes
a primitive 15-th root of unity, then

g := (x − ξ5)(x − ξ10) = x2 + x + 1

is a generator polynomial of this code (this polynomial has been computed
in 4.2.13). On the other hand, the second order ternary Hamming-code is not
cyclic, according to Exercise 4.1.3. �

More generally, the following holds:

244 4. Cyclic Codes

4.3.8 Theorem Let β be a primitive element for Fqm , put ξ := βq−1 and assume that
n = (qm − 1)/(q − 1). The linear code C of length n over Fq, the check matrix
∆ = (hij) of which is defined by the equations

ξ j = ∑
i∈m

hijξ
i, j ∈ n,

is isometric to the m-th order q-ary Hamming-code, provided m and q − 1 are rela-
tively prime. Hence such Hamming-codes are BCH-codes generated by consecutive
sets W = {ξ} and with varieties

V(C) =
{

ξ, ξq, . . . , ξqm−1
}

.

Proof: 1. According to Exercise 4.2.19, the degree of the minimal polynomial
Mξ is m, and so {1, ξ, . . . , ξm−1} is linearly independent and therefore an Fq-
basis of Fqm . Hence we can in fact represent each ξ j as an Fq-linear combination
of the ξ i, i ∈ m. Thus, the matrix

∆ := (hij)i∈m,j∈n

is defined.

2. Because of n = (qm − 1)/(q− 1) we need only show (in order to prove that
∆ is a check matrix of an m-th order q-ary Hamming-code) that the columns of
∆ are pairwise linearly independent. If this were not the case, say

ξ i = αξ j,

for a suitable α ∈ F∗
q and some j < i ∈ n, then ξ i−j ∈ F∗

q and so there were
some k ∈ q for which ξ i−j = βnk and, therefore, (q− 1)(i− j) ≡ nk mod qm − 1.
Because of 0 < i − j < n we could even deduce that

(q − 1)(i − j) = nk.

Now we derive also that n and q− 1 are relatively prime. As

n =
qm − 1
q − 1

= qm−1 + qm−2 + . . . + q + 1

= m + (qm−1 − 1) + (qm−2 − 1) + . . . + (q − 1)

= m + (q− 1) ∑
i∈m

∑
j∈i

qj,

each divisor of q − 1 and n divides m, and each divisor of q − 1 and m divides
n (see Exercise 4.3.2). Hence, since m and q − 1 are supposed to be coprime,
the same holds for n and q − 1. Thus, since (q − 1)(i − j) = nk, every divisor

4.3 BCH-Codes and Reed–Solomon-Codes 245

of n is a divisor of i − j, in particular n itself, which contradicts the choice of i
and j. Hence ∆ is in fact a check matrix of an m-th order q-ary Hamming-code.

3. As in the proof of 4.3.6, we can easily check that

c ∈ C ⇐⇒ c(ξ) = 0.

Hence, C is generated by Mξ and, therefore, the m-th order q-ary Hamming-
code is a BCH-code with variety

V(C) =
{

ξ, ξq, . . . , ξqm−1
}

,

whence generated by W = {ξ} . �

Now we describe a group of automorphisms of the parity extension of a
primitive BCH-code. The affine linear group

AGL1(q) := {σκ,λ : γ �→ κγ + λ | κ ∈ F∗
q , λ ∈ Fq}

acts transitively on Fq, i.e. for any two elements γ, β ∈ Fq there exist κ, λ ∈ Fq

with σκ,λ(γ) = β. The elements of the group are called affine transformations on
Fq. For example, the inverse of σκ,λ is

σ−1
κ,λ = σκ−1,−κ−1λ.

4.3.9Theorem The parity extension

P(C) :=
{

(c0, . . . , cn−1, c∞)
∣∣∣ (c0, . . . , cn−1) ∈ C, c∞ := −

n−1

∑
i=0

ci

}
of a primitive BCH-code C of length n = qm −1 over Fq has a group of automorphisms
which is isomorphic to AGL1(qm).

Proof: We prove the statement for a narrow sense BCH-code C with designed
distance δ. The proof in the general case is similar. Hence, V(C) contains
the consecutive set {ξ, ξ2, . . . , ξδ−1}, where ξ denotes a primitive element of
F∗

qm . The parity check coordinate of P(C) will be labeled by ∞. Thus, a vector
c = (c0, . . . , cn−1, c∞) ∈ Fn+1

q is contained in P(C), if

1. ∑ i∈n ciξ
ij = 0 for 1 ≤ j ≤ δ − 1 and

2. ∑ i∈n ci + c∞ = 0.

The field Fqm can be identified with the set of coordinates {0, . . . , n − 1} ∪ {∞}
via

α �→ logξ α =: log α,

246 4. Cyclic Codes

where we put logξ 0 := ∞, i.e. ξ∞ := 0. Then the conditions for c ∈ P(C) read
as follows:

1. ∑ α∈Fqm clog α(ξlog α)j = 0 for 1 ≤ j ≤ δ − 1 and

2. ∑ α∈Fqm clog α = 0.

It is easy to check that the seemingly additional summand for α = 0 in the
first condition vanishes. The second condition is certainly invariant under the
action of AGL1(qm). We now prove the invariance of the first condition. For
this purpose consider σ ∈ AGL1(qm) with

σ := σ−1
κ,λ = σκ−1,−κ−1λ.

Then, for 1 ≤ j ≤ δ − 1, we obtain

∑
α∈Fqm

clog σ(α)(ξlog α)j = ∑
α∈Fqm

clog α(ξlog σ−1(α))j

= ∑
α∈Fqm

clog α(κα + λ)j

= ∑
α∈Fqm

j

∑
l=0

(
j
l

)
κlλj−lclog ααl

=
j

∑
l=0

(
j
l

)
κlλj−l ∑

α∈Fqm

clog α(ξlog α)l = 0,

since the inner sum is zero, by assumption. �

Based on this theorem we want to derive a result on the minimum distance of
binary primitive BCH-codes. We still need the following

4.3.10 Lemma Let C be a binary linear code of length n. Assume that P(C), the parity
extension of C, possesses a group of automorphisms which acts transitively on its
components. Then the minimum weight of C is odd.

Proof: Denote by Ai (resp. A′
i) the number of codewords of weight i in C

(resp. P(C)). The number of pairs (l, c) ∈ (n ∪ {∞}) × P(C) with wt(c) = 2i
and cl = 1 is 2i · A′

2i. The number of vectors c ∈ P(C) such that wt(c) = 2i and
c∞ = 1 is A2i−1. Since the automorphism group of P(C) is transitive on the set
of coordinates, for each l ∈ n ∪ {∞} we have

|{(l, c) | c ∈ P(C), wt(c) = 2i, cl = 1}| =

|{c | c ∈ P(C), wt(c) = 2i, c∞ = 1}| = A2i−1,

4.3 BCH-Codes and Reed–Solomon-Codes 247

so that 2i · A′
2i = (n + 1)A2i−1, whence

2i · A′
2i

n + 1
= A2i−1.

Furthermore, since C is a binary code, P(C) is even. If d′ is the minimum
distance of P(C), then the equation above gives Ad′−1 > 0. Thus, according
to the construction of P(C), the minimum weight of C is equal to d′ − 1 and
odd. �

Consequently, we obtain

4.3.11Corollary The minimum distance of a primitive binary BCH-code is odd. �

In certain cases, it is equal to the designed distance:

4.3.12Theorem The primitive, narrow sense, binary BCH-code of length n = 2m − 1 with
designed distance δ = 2t + 1 has minimum distance d = δ, provided that

t+1

∑
i=0

(
2m − 1

i

)
> 2mt.

Proof: The generator polynomial g of such a code is the least common multiple
of δ − 1 minimal polynomials the degree of which is bounded above by m, the
order of the Galois group. If q = 2 then i and 2i are in the same 2-cyclotomic
coset modulo n, and hence Mξ2i = Mξ i for all i. Thus

lcm
{

Mξ1 , Mξ2 , . . . , Mξ2t

}
= lcm

{
Mξ1 , Mξ3 , . . . , Mξ2t−1

}
,

and therefore k = n − deg g ≥ n − mt. If d := dist(C) were not equal to
δ = 2t + 1, then by 4.3.11 d ≥ 2t + 3. Such a code would correct t + 1 errors,
and so the Hamming-bound would give

t+1

∑
i=0

(
2m − 1

i

)
≤ 2n−k ≤ 2mt,

in contradiction to the assumption. �

4.3.13Theorem Let C be a narrow sense q-ary BCH-code of length n with designed distance
δ. If δ divides n then dist(C) = δ.

Proof: By definition, ξ, ξ2, . . . , ξδ−1 are roots of C, where ξ is again a primitive
n-th root of unity. Write n = δs for some integer s. Then ξ is �= 1 for all
0 < i < δ. In the expression

xn − 1 = (xs − 1)(x(δ−1)s + . . . + x2s + xs + 1),

248 4. Cyclic Codes

the roots ξ, ξ2, . . . , ξδ−1 must, therefore, all be roots of the second factor. Thus
x(δ−1)s + . . . + x2s + xs + 1 + I(xn − 1) is a codeword of C of weight δ, so δ ≤
dist(C) ≤ δ. �

4.3.14 Examples In the following table we give several binary BCH-codes together
with their designed distances.

BCH-code t =
(δ − 1)/2� δ

(31, 26) 1 3
(31, 21) 2 5
(31, 16) 3 7
(31, 11) 4 9

For t ∈ {1, 2, 3} we have the following inequality

t+1

∑
i=0

(
31
i

)
> 25t

and, therefore, the designed distances of the first three codes are equal to their
minimum distances.

In addition, we present the binary BCH-codes of length 21. In this case,
m = 6. Let β be a primitive element for F26 = F64, where β is a root of x6 +
x5 + 1 over F2. By means of 2-cyclotomic cosets modulo 21, we can compute
the minimal polynomials of powers of ξ. We obtain

cyclotomic coset Mξ i

{0} x + 1
{1, 2, 4, 8, 11, 16} x6 + x5 + x4 + x2 + 1
{3, 6, 12} x3 + x + 1
{5, 10, 13, 17, 19, 20} x6 + x4 + x2 + x + 1
{7, 14} x2 + x + 1
{9, 15, 18} x3 + x2 + 1

The BCH-codes are

δ g deg g wt(g) (n, k, d) optimal?
1 1 0 1 (21, 21, 1) yes
3 Mξ 6 5 (21, 15, 3) no
5 Mξ Mξ3 9 7 (21, 12, 5) yes
7 Mξ Mξ3 Mξ5 15 11 (21, 6, 7) no
9 Mξ Mξ3 Mξ5 Mξ7 17 9 (21, 4, 9) no
11 Mξ Mξ3 Mξ5 Mξ7 Mξ9 20 21 (21, 1, 21) yes

The minimum distances of the codes with δ = 3 and δ = 7 follow from 4.3.13.
The B-construction implies that there is no (21, 12, 6)-code, and hence the code

4.3 BCH-Codes and Reed–Solomon-Codes 249

with δ = 5 is an optimal (21, 12, 5)-code. The minimum distance of the code
with δ = 9 is 9 since the generator polynomial

g = Mξ Mξ3 Mξ5 Mξ7 = x17 + x15 + x14 + x10 + x8 + x7 + x3 + x + 1

has weight 9.
For the construction of optimal (21, 15, 4), (21, 6, 8) and (21, 4, 10)-codes,

see Exercise 4.3.8. �

Recall that Reed–Solomon-codes are BCH-codes of length n = q − 1. Even
though these codes require larger field sizes, they are of enormous practical
importance. One reason for this may be that they are defined so easily. The pa-
per [168] by I.S. Reed and G. Solomon is considered to be a major breakthrough
in coding theory. Today, the Reed–Solomon-codes are ubiquitous. Every com-
pact disc player uses Reed–Solomon-codes for error-correction. We will have
to say more on that in Chapter 5. At this point, we only mention that two
codes which are defined over F28 play an important role. These codes, with
parameters (32, 28, 5) and (28, 24, 5) are obtained from a (255, 251, 5)-Reed–
Solomon-code over F28 by successive shortening. The encoding with respect
to these two codes is completely explained in Section 5.4.

In the case when n = q − 1, i.e. in the case of Reed–Solomon-codes,

xn − 1 = ∏
i∈n

(x − ξ i),

where ξ is a primitive element of F∗
q , and each linear factor x − ξ i belongs

to Fq[x]. To begin with the discussion of these codes, we show that they are
maximum distance separable:

4.3.15Theorem Any Reed–Solomon-code is MDS.

Proof: An (n, k, d)-Reed–Solomon-code with designed distance δ has a gener-
ator polynomial of the form

g = (x − ξb) · · · (x − ξb+δ−2).

From 4.2.5 we obtain that

k = n − deg g = n − δ + 1 ≥ n − d + 1.

The Singleton-bound implies the converse inequality. �

4.3.16Corollary For every positive integer k ≤ q − 1, there exists a (q − 1, k)-MDS-code
over Fq. �

250 4. Cyclic Codes

4.3.17 Example The generator polynomial of a (255, 251, 5)-Reed–Solomon-code over
F28 is given by

g =
4

∏
i=1

(x − ξ i),

where ξ is a primitive element of F∗
28 , whence a primitive 255-th root of unity.

Using the shortening procedure (cf. 2.2.17), we obtain a (254, 250)-code over
F28 with minimum distance d′ ≥ 5. The Singleton-bound yields d′ = 5. Fur-
ther successive shortening gives MDS-codes with parameters (32, 28, 5) and
(28, 24, 5). �

Now we consider the parity extensions (cf. 2.2.2) of Reed–Solomon-codes.

4.3.18 Theorem The parity extension P(C) of an (n, k)-Reed–Solomon-code C over Fq with
generator polynomial

g = (x − ξ)(x − ξ2) · · · (x − ξn−k)

is MDS.

Proof: We know that C is an MDS-code, and so we can assume that c =
∑ i∈n cixi + I(xn − 1) ∈ C is an element of minimum weight d = n − k + 1.
There exists a polynomial f ∈ Fq[x] with c = f g + I(xn − 1). In the parity
extension P(C) of C, c is extended by the coordinate c∞, defined by

−c∞ = ∑
i∈n

ci = c(1).

We distinguish two cases:

1. If k = n, then dist(C) = 1 and the minimum distance of P(C) equals 2,
therefore P(C) is an MDS-code.

2. We assume now that 1 ≤ k < n, so that 1 is not among the roots of
g, i.e. g(1) �= 0. We claim that c(1) �= 0. Otherwise, if c(1) = 0 then also
f (1)g(1) = c(1) = 0. From g(1) �= 0 it follows that f (1) = 0. Hence c(x) is a
multiple of (x − 1)g = (x− ξ0)(x − ξ1) · · · (x − ξn−k). By the BCH-bound, the
weight of c is at least n − k + 2 = d + 1, a contradiction. �

Exercises

E.4.3.1 Exercise Let C = I(g)/I(xn − 1) be the cyclic code of length n over Fq which
is generated by g ∈ Fq[x]. Assume that n is relatively prime to q. Factor g into
irreducible polynomials as g = f0 · f1 · · · fl−1 with fi ∈ Fq[x]. For i ∈ l, let βi

4.3 BCH-Codes and Reed–Solomon-Codes 251

be a root of fi. Define the l × n-matrix

∆′ =

⎛⎜⎜⎜⎜⎝
1 β0 β2

0 · · · βn−1
0

1 β1 β2
1 · · · βn−1

1
...

...
1 βl−1 β2

l−1 · · · βn−1
l−1

⎞⎟⎟⎟⎟⎠ =
(

β
j
i

)
i∈l,j∈n.

Then c ∈ Fn
q is in C if and only if c · ∆′� = 0. That is, ∆′ is a check matrix

of a code C̃ over some larger field containing β0, . . . , βl−1 that restricts to C,
i.e. C̃ ∩ Fn

q = C.

E.4.3.2Exercise Let a, b, q and r be integers with a = qb + r. Show that gcd(a, b) =
gcd(b, r).

E.4.3.3Exercise Consider the ternary cyclic (8, 4)-code C with generator polynomial

g = x4 + 2x3 + 2x + 2 = (x2 + 2x + 2)(x2 + 1).

Denote by ξ a root of the primitive polynomial x2 + x + 2 ∈ F3[x]. Check that
this code has variety

V(C) = { ξ2, ξ6, ξ5, ξ7 }
and conclude that C is an (8, 4, 4)-code.

E.4.3.4Exercise Using 4.3.12, evaluate a generator matrix of a binary cyclic code with
parameters (63, 51, 5).

E.4.3.5Exercise Show that the affine linear group AGL1(q) acts doubly transitive on
Fq, i.e. for α, β, γ, δ ∈ Fq such that α �= β and γ �= δ there exist κ, λ ∈ Fq, κ �= 0,
with σκ,λ(α) = γ and σκ,λ(β) = δ.

E.4.3.6Exercise Construct the elements of a (6, 2, 5)-Reed–Solomon-code over F7.

E.4.3.7Exercise Show that the dual of a Reed–Solomon-code is again a Reed–Solo-
mon-code.

E.4.3.8Exercise Construct optimal binary codes with parameters

1. (21, 15, 4),
2. (21, 6, 8),
3. (21, 4, 10).

252 4. Cyclic Codes

Why are these codes optimal?
Hints: For 1., take the Reed–Muller-code RM2

4,3, which is a (32, 26, 4)-code.
Shorten this code at 11 positions. For 2., apply the (u | u + v) construction to a
(10, 5, 4)-code and a repetition code of length 10. The resulting code of length
20 may be extended by a zero position. A (10, 5, 4)-code can be constructed us-
ing the (u | u + v) construction for a (5, 4, 2)-code with a repetition code. For 3.,
construct a (20, 4, 10)-code and extend it by a zero position. A (20, 4, 10)-code
can be obtained from the (u, v) construction applied to a (8, 4, 4)-code and a
(12, 4, 6)-code. A (12, 4, 6)-code results from the (u | u + v) construction ap-
plied to a (6, 3, 3)-code and a repetition code. A (6, 3, 3)-code can be obtained
as a shortened subcode of a (7, 4, 3)-code. For the upper bounds, apply the
Griesmer-bound.

4.4 4.4 Quadratic-Residue-Codes,Golay-Codes

In this section, we will construct a class of cyclic codes of length n, assuming
that n is an odd prime with gcd(n, q) = 1. Recall from Exercise 3.1.3 that the
residue class ring of integers modulo n is

Zn := {0, 1, . . . , n − 1} = Z/I(n),

where
z = z + I(n),

the equivalence class of the integer z modulo the ideal

I(n) = {z · n | z ∈ Z} = nZ ⊆ Z,

consisting of the multiples of n. For any integer z, we denote by

remn(z)

the canonical representative of its residue class, which means the unique in-
teger r with z = sn + r where s ∈ Z and r ∈ n. This r is called the smallest
remainder of z modulo n. Also, since n > 2, we let

asrn(z)

be the unique integer r with z = sn + r where s ∈ Z and |r| ≤ (n − 1)/2. This
r is called the absolutely smallest remainder of z modulo n. We always have

z ≡ remn(z) ≡ asrn(z) mod n, and z + I(n) = remn(z) + I(n) = asrn(z) + I(n).

4.4 Quadratic-Residue-Codes, Golay-Codes 253

4.4.1Example If n = 7, the smallest remainders modulo 7 are 0, 1, 2, . . . , 6. The
absolutely smallest remainders modulo 7 are −3,−2,−1, 0, 1, 2, 3. We have
rem7(25) = 4 and asr7(25) = −3. Also, 25 ≡ 4 ≡ −3 mod 7. �

4.4.2Definition (square, nonsquare modulo n) Let n be a prime and i an integer
which is not divisible by n. Then i is called a square (modulo n), if there ex-
ists an integer z such that z2 ≡ i mod n. Otherwise, i is called a nonsquare
(modulo n). The multiples of n are neither squares nor nonsquares modulo n.
The residue classes i of squares (resp. nonsquares) are called quadratic residues
(resp. quadratic non-residues). Let Q (resp. N) be the set of quadratic residues
(resp. quadratic non-residues) modulo n,

Q :=
{

i ∈ Z∗
n

∣∣∣ ∃ z ∈ Z : z2 = i
}

,

while
N :=

{
i ∈ Z∗

n

∣∣∣ � z ∈ Z : z2 = i
}

= Z∗
n \ Q.

It is clear that the product of two squares is a square, and that, therefore,
the quadratic residues form a subgroup of the multiplicative group (Z∗

n, ·) of
(the field!) Zn. Moreover, the following holds:

4.4.3Corollary Let n be an odd prime, and assume that Q and N are the sets of squares
and nonsquares modulo n. Then

Q is a subgroup of index 2 in Z∗
n. N is a coset of this subgroup, in fact

Z∗
n = Q ∪̇ N, and |Q| = |N| = (n − 1)/2.

If β is a primitive element for Zn then Q = 〈β2〉. In particular, each α ∈ Z∗
n

satisfies
α ∈ Q ⇐⇒ α(n−1)/2 = 1.

The following identities hold for the complex products of Q and N,

Q · Q = Q,
Q · N = N · Q = N,
N · N = Q. �

The proofs are easy and left as Exercise 4.4.1. A more detailed description of
Q is contained in

4.4.4Lemma The quadratic residues modulo n, n an odd prime, form the set

Q =
{

remn(i2)
∣∣∣ 1 ≤ i ≤ n − 1

2

}
⊂ Z∗

n.

254 4. Cyclic Codes

Proof: The congruence
(n − a)2 ≡ a2 mod n

shows that all quadratic residues are contained in this set. Moreover, if i2 ≡
j2 mod n, then the prime n divides the difference i2 − j2 = (i + j)(i − j) and,
therefore, at least one of the two factors. Since 1 ≤ i, j ≤ (n− 1)/2, this implies
that i = j. �

4.4.5 Example For example, the squares modulo 7 are 12 = 1, 22 = 4, and 32 ≡
2 mod 7. The nonsquares modulo 7 are therefore 3, 5, 6. �

Let ξ ∈ Fqm be a primitive n-th root of unity over Fq, where m := ordn(q),
so that qm ≡ 1mod n. Then xn − 1 splits into

xn − 1 = ∏
i∈n

(x − ξ i)4.4.6

over Fqm . Now we partition the set of roots ξ i into three subsets, according to
the exponents i. The root ξ0 = 1 forms one of these sets, the second and third
are defined as

{ξ i | i is a square modulo n}, and {ξ i | i is a nonsquare modulo n}.

The quadratic-residue-codes will be defined as cyclic codes whose varieties are
combinations from these three sets.

The following concept from Number Theory permits to decide the question
of whether z ∈ Z is a square modulo n or not. To actually compute square roots
modulo n, the probabilistic but efficient algorithm of Tonelli and Shanks can
be used. For a description, see [39].

4.4.7 Definition (Legendre-symbol) Let n be any prime number (including 2), and
denote by

νn : Z → Zn : z �→ z

the canonical homomorphism which maps an integer onto its residue class
modulo n. Moreover, we consider the canonical epimorphism which has Q as
its kernel, i.e.

λ : Z∗
n → {1,−1} : z �→

{
1 if z ∈ Q,

−1 if z ∈ N.

We extend the function λ by defining its value to be zero if z = 0. The compo-
sition of these two mappings is the mapping

λ ◦ νn : Z → {0, 1,−1} : a �→
(

a
n

)
,

4.4 Quadratic-Residue-Codes, Golay-Codes 255

where, for a ∈ Z we have(
a
n

)
:=

⎧⎨⎩
0 if a is divisible by n,
1 if a is a square modulo n,

−1 otherwise.(a
n

)
is called the Legendre-symbol associated to a (with respect to n).

4.4.8Euler’s Lemma For each integer a and every odd prime n, the following is true(
a
n

)
≡ a(n−1)/2 mod n.

Proof: Assume a ≡ αr mod n where α is a primitive element of Z∗
n (the case

a ≡ 0 mod n is trivial). Then

a(n−1)/2 ≡ 1 mod n ⇐⇒ αr(n−1)/2 = 1

⇐⇒ (n − 1) divides r
(n − 1)

2
⇐⇒ r is even.

The last condition is equivalent to
(a

n

)
= 1. �

The following lemma allows the evaluation of the Legendre-symbol:

4.4.9Gauss’ Criterion Let n denote an odd prime, and assume that n � a ∈ Z∗. Let

µ :=
∣∣∣{asrn(ia) < 0

∣∣∣ 1 ≤ i ≤ n − 1
2

}∣∣∣
be the number of absolutely smallest residues of a, 2a, 3a, . . . , (n − 1)a/2 modulo n
which are negative. Then (

a
n

)
= (−1)µ.

Proof: Let ri := |asrn(ia)| then ri is positive and there exist εi ∈ {−1, 1} so
that ri = εiasrn(ia). As i ranges from 1 to (n − 1)/2, the number of minus
signs which occur in this way is equal to µ. We claim that ri �= rj if i �= j and
1 ≤ i, j ≤ (n− 1)/2. For, if ri = rj then εiia ≡ ri = rj ≡ εj ja mod n, and since n
does not divide a it is clear that n divides iεi − jεj. But −(n − 1) ≤ iεi − jεj ≤
n − 1 and, therefore, iεi − jεj = 0, thus i = j. It follows that the two sets

{1, 2, . . . , (n − 1)/2} and {r1, r2, . . . , r(n−1)/2}
coincide. Multiplying the congruences ia ≡ εiri mod n for i = 1, . . . , (n− 1)/2
together yields

((n− 1)/2)! a(n−1)/2 ≡ (−1)µ((n− 1)/2)! mod n.

Canceling the term ((n − 1)/2)! (which is prime to n) leads to a(n−1)/2 ≡
(−1)µ mod n. The assertion now follows from Euler’s Lemma. �

256 4. Cyclic Codes

The most important properties of the Legendre-symbol are collected in the
following

4.4.10 Lemma Let n be an odd prime. For integers a and b, the following is true:

1.
(

a2

n

)
= 1,

2. a ≡ b mod n =⇒
(

a
n

)
=

(
b
n

)
,

3.
(

ab
n

)
=

(
a
n

)(
b
n

)
,

4.
(−1

n

)
= (−1)(n−1)/2,

5.
(

2
n

)
= (−1)(n2−1)/8.

6. If m and n are distinct odd primes, then(
m
n

)(
n
m

)
= (−1)(m−1)(n−1)/4.

This equation is called the Law of Quadratic Reciprocity.

Proof: The first three assertions follow directly from Euler’s Lemma. The
fourth and fifth assertion can be obtained from Gauss’ Criterion and Euler’s
Lemma. For a proof of the Law of Quadratic Reciprocity we refer to the litera-
ture on basic Number Theory or Algebra (e.g. [97], [100]). �

We remark that 5. can be restated as(
2
n

)
=

{
1 if n ≡ ±1 mod 8,

−1 if n ≡ ±3 mod 8.

The use of these rules is illustrated by the following

4.4.11 Example Is −42 a square modulo 53? The answer to this question can be ob-
tained in the following way:(−42

53

)
3.=

(−1
53

)(
2
53

)(
3
53

)(
7
53

)
4.,5.= −

(
3
53

)(
7
53

)
6.= −

(
53
3

)(
53
7

)
2.= −

(
2
3

)(
4
7

)
3.= −

(
2
3

)(
2
7

)(
2
7

)
︸ ︷︷ ︸

3.,1.= 1

5.= −(−1)
9−1

8 = 1.

4.4 Quadratic-Residue-Codes, Golay-Codes 257

Hence −42 is a square modulo 53, and indeed we find that

−42 ≡ 82 mod 53. �

In the following, we will need to impose the additional assumption that the
prime power q (which we assumed to be relatively prime to n) is a square
modulo n. This ensures that the set {ξa | a ∈ Q} is a variety over Fq.

4.4.12Lemma Let n be an odd prime, let ξ be a primitive n-th root of unity over Fq, and
assume that q is a square modulo n.

The polynomials

gQ := ∏
a∈Q

(x − ξa) and gN := ∏
b∈N

(x − ξb),

which depend on the chosen root of unity ξ, are contained in Fq[x].

The sets {ξa | a ∈ Q} and {ξb | b ∈ N} are varieties over Fq.

The polynomial xn − 1 factorizes over Fq as

xn − 1 = (x − 1) · gQ · gN .

Proof: The coefficients of the polynomials gQ and gN are elementary symmet-
ric functions of the roots ξa, a ∈ Q, and ξb, b ∈ N, respectively. Because of our
assumptions on q, it follows from 4.4.3 that qa ∈ Q for all a ∈ Q and qb ∈ N
for all b ∈ N. Hence, the coefficients of both these polynomials remain fixed
under the Frobenius automorphism α �→ αq, thus they are elements of Fq. This
proves the first two statements. The last one follows from 4.4.6 and the fact
that each element of F∗

n is either a square or a nonsquare. �

4.4.13Definition (quadratic-residue-codes) Let n be an odd prime such that q is a
square modulo n. The quadratic-residue-codes (or QR-codes for short) of length
n over Fq are the cyclic codes which are defined as ideals in Res q,n as follows:

CQ(n, q) := I(gQ)/I(xn − 1)
C1

Q(n, q) := I((x − 1)gQ)/I(xn − 1)
CN(n, q) := I(gN)/I(xn − 1)
C1

N(n, q) := I((x − 1)gN)/I(xn − 1).

We notice that these codes like their generating polynomials may depend on
the choice of the primitive root of unity ξ.

258 4. Cyclic Codes

We have V(CQ(n, q)) = {ξ i | i ∈ Q} and V(CN(n, q)) = {ξ i | i ∈ N}.
From 4.2.6 we obtain the following inclusions:

C1
Q(n, q) ⊆ CQ(n, q) and C1

N(n, q) ⊆ CN(n, q).4.4.14

Using 4.2.5 and 4.4.3, we determine the dimensions of the cyclic codes as fol-
lows.

4.4.15 Corollary Let n be an odd prime and assume that q is a square modulo n. Then

CQ(n, q) and CN(n, q) are (n, (n + 1)/2)-codes,

C1
Q(n, q) and C1

N(n, q) are (n, (n − 1)/2)-codes. �

4.4.16 Examples The binary Hamming- and simplex-codes of length 7 (cf. 4.2.7) are
quadratic residue codes:

H3 = CQ(7, 2), H′
3 = CN(7, 2), S3 = C1

Q(7, 2), and S′
3 = C1

N(7, 2). �

By 4.4.10, binary QR-codes exist only for n ≡ ±1 mod 8, since only in these
cases 2 is a square modulo n. In fact, the class of QR-codes is not as rich as it
might seem at first sight.

4.4.17 Theorem The QR-codes CQ(n, q) and CN(n, q) are permutationally isometric.

Proof: We identify the coordinates 0, . . . , n − 1 of vectors in Fn
q with the ele-

ments of the field Fn (remember that n is a prime). For a ∈ F∗
n the mapping σa

defined by i �→ a · i is a bijection on Fn. We show that for a nonsquare b the
map σb in fact induces an isometry from CQ(n, q) to CN(n, q), which we denote
again by σb:

c = ∑
i∈Fn

cix
i �→ σb(c) = ∑

i∈Fn

cσb(i)x
i = ∑

i∈Fn

cbix
i.

To begin with, for each polynomial c = ∑i∈Fn cixi ∈ Fq[x] and a ∈ Z we have

c(ξa) = ∑
i∈Fn

ciξ
ai

= ∑
i∈Fn

cσb(i)ξ
aσb(i)

= ∑
i∈Fn

cσb(i)(ξab)i.

Because of {ba | a ∈ Q} = N, we obtain the following relation between the
varieties of c and σb(c) := ∑i∈Fn

cσb(i)x
i:

{ξa | a ∈ Q} ⊆ V(c) ⇐⇒ {ξa | a ∈ N} ⊆ V(σb(c)).

4.4 Quadratic-Residue-Codes, Golay-Codes 259

Thus, c ∈ CQ(n, q) if and only if σb(c) ∈ CN(n, q). Hence, the mapping

CQ(n, q) → CN(n, q) : c �→ σb(c)

is an Fq-isomorphism which is clearly a permutational isometry. �

4.4.18Corollary The QR-codes C1
Q(n, q) and C1

N(n, q) are permutationally isometric. �

4.4.19Example As already pointed out in 4.4.16, the QR-codes H3 and H′
3 respec-

tively S3 and S′
3 are permutationally isometric. �

4.4.20Theorem Assume that n ≡ ±1 mod 8. The binary codes C1
Q(n, 2) and C1

N(n, 2)
are even.

Proof: By 4.4.18 the codes C1
Q(n, 2) and C1

N(n, 2) are isometric. The variety of
C1

Q(n, 2) contains 1, therefore, c(1) = 0 for all c ∈ C1
Q(n, 2). In other words

∑i∈n ci = 0. Thus c, has even weight. �

Since −1 is a square modulo n if and only if n ≡ 1 mod 4 by 4.4.10, the last
assertion of 4.2.16 implies the following:

4.4.21Theorem

If n ≡ 1 mod 4, then CQ(n, q)⊥ = C1
N(n, q) and CN(n, q)⊥ = C1

Q(n, q).

If n ≡ −1 mod 4, then CQ(n, q)⊥ = C1
Q(n, q) and CN(n, q)⊥ = C1

N(n, q). �

Now we are going to construct a group of automorphisms of the parity
extension of the binary QR-code CQ(n, 2). This needs a few preparations. The
projective line (see 3.7.1) of F2

n,

PG∗
1(n) = {〈v〉∗ | v ∈ F2

n \ {0}} = {〈(1, 0)〉∗} ∪ {〈(κ, 1)〉∗ | κ ∈ Fn},

can be identified with the set Fn ∪ {∞} as follows:

PG∗
1(n) → Fn ∪ {∞} : 〈v〉∗ �→

{
κ if 〈v〉∗ = 〈(κ, 1)〉∗,
∞ if 〈v〉∗ = 〈(1, 0)〉∗.

Each element (a, b) ∈ 〈(κ, 1)〉∗ satisfies κ = a
b = ab−1. This motivates the

following two compositions

(a, b) + (c, d) := (ad + bc, bd), (a, b), (c, d) ∈ F2
n \ {0},

(a, b) · (c, d) := (ac, bd), (a, b), (c, d) ∈ F2
n \ {0},

which extend addition and multiplication of Fn to Fn ∪ {∞}. In particular we
obtain

κ + ∞ = ∞ + κ = ∞, κ ∈ Fn,

260 4. Cyclic Codes

and
κ · ∞ = ∞ · κ = ∞ · ∞ = ∞, κ ∈ F∗

n.

For κ ∈ F∗
n we have κ−1 = 1

κ which is identified with 〈(1, κ)〉∗. Analogously
we set 0−1 = ∞ and ∞−1 = 0.

Using this identification we obtain from the action of the general linear
group GL2(n) on the projective line (recall 3.7.4),

GL2(n)× PG∗
1(n) → PG∗

1(n) : (A, 〈v〉∗) �→ 〈 v · A� 〉∗,

actions of subgroups and of factor groups of GL2(n). For example, a subgroup
is the special linear group

SL2(n) := {A ∈ GL2(n) | det(A) = 1}.

A factor group is the projective linear group

PGL2(n) = GL2(n)/Z2 = {AZ2 | A ∈ GL2(n)}

which was introduced in Section 3.7. (Z2 denotes the center of GL2(n), Z2 =
{κ · I2 | κ ∈ F∗

n}.) Thus, PGL2(n) arises from GL2(n) by identifying matrices
that are scalar multiples of each other. Since we are dealing with subspaces
〈v〉∗, we can replace the action of GL2(n) by the action of PGL2(n),

A〈v〉∗ = 〈 v · A� 〉∗ = 〈 v · (AZ2)� 〉∗ = AZ2〈v〉∗.

A factor group of the special linear group is

PSL2(n) := SL2(n)/(SL2(n) ∩Z2),

the projective special linear group. Let Z̃2 = SL2(n) ∩ Z2. The transformation
induced by

AZ̃2 =

(
α0 α1

β0 β1

)
Z̃2 ∈ PSL2(n)

on PG∗
1(n) is

AZ̃2 : 〈(1, 0)〉∗ �→ 〈(α0, β0)〉∗, 〈(κ, 1)〉∗ �→ 〈(κα0 + α1, κβ0 + β1)〉∗.

Using the identification of PG∗
1(n) with Fn ∪ {∞}we obtain the following map

induced on Fn ∪ {∞},

AZ̃2 : Fn ∪ {∞} → Fn ∪ {∞} : κ �→

⎧⎪⎪⎨⎪⎪⎩
α0
β0

if κ = ∞, β0 �= 0,
∞ if κ = ∞, β0 = 0,
κα0+α1
κβ0+β1

if κ �= ∞, κβ0 + β1 �= 0,
∞ if κ �= ∞, κβ0 + β1 = 0.

4.4 Quadratic-Residue-Codes, Golay-Codes 261

4.4.22Lemma Let α denote a primitive element of Fn. The group PSL2(n) on PG∗
1(n) is

generated by the permutations

ρ : z �→ z + 1, σ : z �→ α2z, and τ : z �→ −z−1.

Proof: The three mappings can be represented in the following way as ele-
ments of PSL2(n).

ρ =
(

1 1
0 1

)
Z̃2, σ =

(
α 0
0 α−1

)
Z̃2, τ =

(
0 −1
1 0

)
Z̃2.

Thus 〈 ρ, σ, τ 〉 is a subgroup of PSL2(n).

Let A =
(

a b
c d

)
be an element of GL2(n) with det(A) = ad − bc = 1. We

want to prove, that AZ̃2 belongs to 〈 ρ, σ, τ 〉. If there are exactly two nonzero
components of A, then either b = c = 0 and ad = 1, or a = d = 0 and
bc = −1. Thus, either d = a−1 or c = −b−1 with a, b ∈ F∗

n. Hence AZ̃2 can be
represented as σk or τσk for suitable k.

If there are exactly three nonzero components of A, then without loss of

generality c = 0 and d = a−1. It is easy to check that ρ� =
(

1 �

0 1

)
Z̃2. Since

Fn is a prime field we obtain all matrices
(

1 λ

0 1

)
, λ ∈ F∗

n, in this way. The

multiplication σk ·
(

1 λ

0 1

)
yields all

(
κ λ

0 κ−1

)
Z̃2 with κ, λ ∈ F∗

n. The other

matrices with exactly one 0 can be derived as

τ ·
(

κ λ

0 κ−1

)
=

(
0 −κ−1

κ λ

)
Z̃2,

(
κ λ

0 κ−1

)
· τ =

(
λ −κ

κ−1 0

)
Z̃2,

τ ·
(

κ λ

0 κ−1

)
· τ =

(
−κ−1 0

λ −κ

)
Z̃2.

If all four components of A are different from zero, then any three components
determine the last one uniquely. For instance c = (ad− 1)b−1. Simple compu-
tations show that AZ̃2 can be expressed as the product of two matrices each
containing three nonzero entries:(

a b
c d

)
Z̃2 =

(
bd−1 1

0 b−1d

)
·
(

b−1 0
d−1(ad− 1) b

)
Z̃2. �

The following theorem shows that PSL2(n) is a group of automorphisms of the
parity extension of the QR-code CQ(n, q). We identify, similarly as in the proof
of 4.3.9, the parity coordinate with ∞. Then PSL2(n) permutes the components
of the codewords labeled by the elements of Fn ∪ {∞}, i.e. by the elements of
the projective line PG∗

1(n), in such a way that the code remains invariant. For
a proof of the following result, we refer to [92], [93].

262 4. Cyclic Codes

4.4.23 Theorem of Gleason and Prange The group PSL2(n) is a group of automorphisms
of the parity extension of the QR-code CQ(n, q). �

In the binary case one shows that row vectors of the generator matrix Γ of
the parity extension P(CQ(n, 2)) are transformed by the generators ρ, σ, and
τ of PSL2(n) into elements of P(CQ(n, 2)). Since PSL2(n) acts transitively on
the projective line PG∗

1(n) (see Exercise 4.4.6), we obtain from the Theorem of
Gleason and Prange, together with 4.3.10, the important

4.4.24 Corollary The minimum weight of CQ(n, 2) is odd. �

4.4.25 Theorem The minimum weights of CQ(n, q) and C1
Q(n, q) are related as

dist(C1
Q(n, q)) = dist(CQ(n, q)) + 1.

Proof: A codeword c ∈ CQ(n, q) is contained in C1
Q(n, q) if and only if c(1) = 0,

i.e.,
(c0, . . . , cn−1) ∈ C1

Q(n, q) ⇐⇒ (c0, . . . , cn−1, 0) ∈ P(CQ(n, q)).

Therefore, we can consider each codeword c ∈ C1
Q(n, q) of minimum weight

d := dist(C1
Q(n, q)) as a codeword of P(CQ(n, q)) such that c∞ = 0. From 4.4.14

we derive that
d ≥ dist(CQ(n, q)).

Now assume
d = dist(CQ(n, q)).

Let c be a codeword of C1
Q(n, q) of weight d. Consider c as an element of

P(CQ(n, q)) with c∞ = 0. Since the group PSL2(n) acts transitively on the pro-
jective line PG∗

1(n), there exists a permutation in PSL2(n), that maps c onto a
codeword c′, also of minimum weight, such that c′∞ �= 0. But in this case, the
vector (c′0, . . . , c

′
n−1) is of weight d− 1, and is contained in CQ(n, q), which is a

contradiction. �

Now we are going to derive an important lower bound for the minimum
weight of QR-codes.

4.4.26 The Square-Root-bound The minimum distance d of the QR-code CQ(n, q) satis-
fies

1. d2 ≥ n,

2. d2 − d + 1 ≥ n if n ≡ −1 mod 4,

3. d ≡ 3 mod 4 if n ≡ −1 mod 8 and q = 2.

4.4 Quadratic-Residue-Codes, Golay-Codes 263

Proof: 1. Let c = f gQ ∈ CQ(n, q) be a codeword of minimum weight and as-
sume that b ∈ N. The proof of 4.4.17 shows that the image of c under the isom-
etry induced by σb−1 gives the polynomial σb−1(c(x)) ≡ c(xb) ≡ fbgN mod
I(xn − 1), with a suitable fb ∈ Fq[x]. Therefore, σb−1(c) is an element of min-
imum weight in CN(n, q). Correspondingly c(x)c(xb) ∈ CQ(n, q) ∩ CN(n, q).
Because of 4.2.6, CQ(n, q) ∩ CN(n, q) is generated by the polynomial

gQgN = ∑
i∈n

xi,

and hence it is an n-fold repetition code. There are two cases to consider:

If c(x)c(xb) �≡ 0 mod I(xn − 1), then

c(x)c(xb) ≡ β · (1 + x + . . . + xn−1) mod I(xn − 1)

for some β ∈ F∗
q . Since both c and c(xb) are of weight d, and c(x)c(xb) is of

weight n, the inequality n ≤ d2 is satisfied (cf. Exercise 4.4.8).

If c(x)c(xb) ≡ 0 mod I(xn − 1), then c(x) or c(xb) is divisible by x − 1. This
means that a codeword of minimum weight in CQ(n, q) or in CN(n, q) is
contained even in C1

Q(n, q) or in C1
N(n, q). But this cannot happen, since

then dist(C1
Q(n, q)) ≤ dist(CQ(n, q)) contrary to 4.4.25.

2. If n ≡ −1 mod 4, then, according to 4.4.10, −1 is a nonsquare modulo n.
Hence we can put b = −1. This gives

c(x)c(x−1) ≡ β · (1 + x + . . . + xn−1) mod I(xn − 1)

for some suitable β ∈ Fq. If β �= 0, then the number of nonvanishing coeffi-
cients on the left hand side is at most d(d − 1) + 1 (cf. Exercise 4.4.9), and so
the stated inequality holds if β �= 0. The case β = 0 does not arise, as pointed
out in the preceding part of the proof.

3. Let c ∈ CQ(n, 2) \ {0} be a codeword of minimal weight. Assume that
i0, . . . , id−1 are the nonzero coordinates of c ∈ CQ(n, 2), whence c = ∑u∈d xiu .
According to 4.4.24 the minimum distance d of CQ(n, 2) is odd. Hence

1 + x + . . . + xn−1 ≡ c(x)c(x−1)

= ∑
(u,v)∈d×d

xiu−iv = 1 + ∑
(u,v)∈d×d

u �=v

xiu−iv mod I(xn − 1).

On the right-hand side of this equation, the summands for (u, v) and (y, z)
cancel if iu − iv = iy − iz. But then also iv − iu = iz − iy, iu − iy = iv − iz,
and iy − iu = iz − iv. Therefore, the number of pairs of terms that cancel is
a multiple of 4, i.e. n = d2 − d + 1 − 4s for some integer s ≥ 0. From d ≡
1 mod 4 we would immediately obtain that n ≡ 1 mod 4, in contradiction to
n ≡ −1 mod 8. Hence d ≡ 3 mod 4. �

264 4. Cyclic Codes

The Square-Root-bound is sharp for the (7, 4)-Hamming-code, since any
(7, 4, d)-QR-code satisfies d ≥ 3. An improvement of the Square-Root-bound
for self-dual QR-codes is reported in [84, third edition].

In 2.3.12 the binary Golay-code G24 of length 24 was introduced. Now we
consider further Golay-codes G23 and G11, which are particular QR-codes.

4.4.27 Definition (Golay-codes) The QR-code G23 = CQ(23, 2) is called the binary
Golay-code of length 23. The QR-code G11 = CQ(11, 3) is called the ternary
Golay-code.

4.4.28 Theorem

1. The Golay-code G23 is a perfect (23, 12, 7, 2)-code and its parity extension P(G23)
is a (24, 12, 8, 2)-code.

2. The Golay-code G11 is a perfect (11, 6, 5, 3)-code.

Proof: 1. It is easily checked that the squares modulo 23 are

Q = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12}.

Thus, G23 is the binary QR-code CQ(23, 2) with variety

V(G23) = {ξ, ξ2, ξ3, ξ4, ξ6, ξ8, ξ9, ξ12, ξ13, ξ16, ξ18}.

Hence, by 4.2.16, its dimension is k = 12 and by the BCH-bound 4.3.1, its
minimum distance d is at least 5. Using part 3 of the Square-Root-bound 4.4.26,
we obtain that d ≡ 3 mod 4, so that d ≥ 7. But the minimum distance cannot be
greater than 7, since the parameters (23, 12, 7, 2) attain the Hamming-bound,
i.e. the code is perfect (cf. Exercise 2.1.2). Therefore, we have shown that G23

is a perfect (23, 12, 7, 2)-code. It follows that the extended code P(G23) has
parameters (24, 12, 8, 2).

2. G11 is the ternary QR-code CQ(11, 3) with generator polynomial

g = x5 − x3 + x2 − x − 1.

If ξ is a root of g, then its variety is

V(G11) = {ξ, ξ3, ξ4, ξ5, ξ9}.

Hence, from 4.2.16 we deduce that its dimension is equal to 6, and the BCH-
bound 4.3.1 implies that its minimum distance is d ≥ 4. In order to determine

4.4 Quadratic-Residue-Codes, Golay-Codes 265

the exact value of d, we consider a generator matrix of G11 which is formed
from the following codewords.

(x4 + x3 + x2 + x − 1) · g = x9 + x8 + x6 + x5 + x4 + 1,

(x4 + x3 + x2 − x) · g = x9 + x8 − x6 − x5 + x,

(−x4) · g = −x9 + x7 − x6 + x5 + x4,

(−x4 + x3 − x2) · g = −x9 + x8 + x6 − x4 + x2,

(x5 + x4) · g = x10 + x9 − x8 + x5 − x4,

(−x3) · g = −x8 + x6 − x5 + x4 + x3.

Reordering the coefficients of these polynomials according to increasing pow-
ers of x, we get the matrix

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 −1 −1 0 1 1 0
0 0 0 0 1 1 −1 1 0 −1 0
0 0 1 0 −1 0 1 0 1 −1 0
0 0 0 0 −1 1 0 0 −1 1 1
0 0 0 1 1 −1 1 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Column permutations lead to a systematic generator matrix for a code which
is isometric, and hence has the same minimum distance:

Γ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 0 −1 −1 1 1
0 0 1 0 0 0 1 1 −1 0 −1
0 0 0 1 0 0 −1 0 1 1 −1
0 0 0 0 1 0 −1 1 0 −1 1
0 0 0 0 0 1 1 −1 1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix satisfies

Γ′ · Γ′� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let f ∈ F6
3 be a message and c = f · Γ′ be the corresponding codeword. Then,

using the result of Exercise 1.3.18, the following is true over F3 = Z3:

c · c� = f · Γ′ · Γ′� · f� =
5

∑
i=1

5

∑
j=1

− fi fj = −
(5

∑
i=1

fi
)2

.

266 4. Cyclic Codes

The right hand side is clearly the negative of a square, and hence either 0 or
−1 modulo 3. Writing the elements of F3 as −1, 0, +1 ∈ Z, then the weight of
c is obtained as wt(c) = c · c� over Z. This implies that wt(c) �≡ 1 mod 3, i.e.
wt(c) �= 4. Hence G11 has minimum weight d ≥ 5. But the minimum distance
cannot be greater than 5, since the parameters (11, 6, 5, 3) attain the Hamming-
bound, i.e. the code is perfect (cf. Exercise 2.1.2). �

We remark that the Golay-codes are the only nontrivial perfect codes which
can correct more than one error ([191, 207]). The parity extension P(G23) pos-
sesses an interesting combinatorial interpretation. It can be shown that the
vectors of minimum weight in P(G23) are exactly the blocks of the Steiner sys-
tem S(5, 8, 24). According to E. Witt [204], the automorphism group of this
Steiner system is the Mathieu group M24. From this it follows that M24 is the
(full) automorphism group of P(G23). The Golay codes also demonstrate that
the BCH-bound 4.3.1 may not be sharp. It is actually sometimes quite hard to
determine the minimum distance of a BCH-code. If the n unit vectors of the
Hamming space H(n, q) are projected onto the n-th roots of unity in the com-
plex number plane C, then the two Golay codes G11 and G23 result in the point
sets which are drawn in Fig. 4.3.

Exercises

E.4.4.1 Exercise Prove 4.4.3.

E.4.4.2 Exercise Is 99 a square modulo 101? Is 311 a square modulo 1001?

E.4.4.3 Exercise Let n be a prime. If a, b are integers with ab ≡ 1 mod n, show that(
a
n

)
=

(
b
n

)
.

E.4.4.4 Exercise Verify 4.4.21.

E.4.4.5 Exercise Let n be a prime. Consider the following relation ∼ on F2
n \ {(0, 0)},

(α, β) ∼ (γ, δ) :⇐⇒ ∃ λ ∈ F∗
n : αλ = γ and βλ = δ.

Prove the following statements:

∼ is an equivalence relation.

It has exactly n + 1 classes, and the set

{(1, 0), (κ, 1) | κ ∈ Fn}
is a system of representatives, the homogeneous coordinates of PG∗

1(n).

4.4 Quadratic-Residue-Codes, Golay-Codes 267

Fig. 4.3 The Golay codes G11 (above) and G23 (below)

268 4. Cyclic Codes

E.4.4.6 Exercise Show that the group PSL2(n) acts transitively on PG∗
1(n). Is it even

doubly-transitive? (I.e., for α, β, γ, δ ∈ PG∗
1(n) with α �= β and γ �= δ, does there

exist a transformation φ ∈ PSL2(n) such that φ(α) = γ and φ(β) = δ.)

E.4.4.7 Exercise Prove 4.4.23 for the binary quadratic-residue-codes CQ(n, 2).

E.4.4.8 Exercise Let c and c′ be elements of Res q,n. Show that wt(c · c′) ≤ wt(c) wt(c′).

E.4.4.9 Exercise Let c and c′ be elements of Res q,n . Assume that c′(x) = c(x−1). Show
that wt(c · c′) ≤ wt(c)(wt(c)− 1) + 1.

E.4.4.10 Exercise Use the generator polynomial of G11 given in the proof of 4.4.28 for
the evaluation of a generator matrix of G11 and apply the attached software to
check that its minimum distance is in fact 5.

4.5 4.5 Idempotents and the Discrete Fourier Transform

We have seen in 4.2.2 that cyclic codes correspond to ideals in the polynomial
residue class ring Res q,n = Fq[x]/I(xn − 1). In particular, we can multiply two
codewords since we know that they correspond to polynomials in that ring.
In this section, we are going to study the multiplicative structure of codes in
more detail.

Besides its generator polynomial g, a cyclic code C may have other gener-
ators. Some of them have the additional property that they are idempotent, i.e.
they satisfy e2 = e �= 0 (as an equation in Res q,n). An element which is both
a generator and an idempotent is called an idempotent generator. It turns out
that such elements exist and are unique provided that the very mild condition
gcd(n, q) = 1 is satisfied. We recall from the foregoing:

By 4.2.9, the condition gcd(n, q) = 1 implies that xn − 1 has no multi-
ple roots. Hence also gcd(g, h) = 1, where h = (xn − 1)/g denotes the
check polynomial. Thus, the ideals I(g) and I(h) are relatively prime. The
Chinese Remainder Theorem (see Section 3.5) establishes the ring isomor-
phism

Fq[x]/I(xn − 1) � (Fq[x]/I(g))×(Fq[x]/I(h)),

defined by
f + I(xn − 1) �→ (f + I(g), f + I(h)).

4.5 Idempotents and the Discrete Fourier Transform 269

Let
e := e(x) + I(xn − 1)

be the inverse image of (0+ I(g), 1+ I(h)) under this ring isomorphism. We
may take e(x) as the canonical representative of e(x) + I(xn − 1) of degree
less than n. From the definition of e, we obtain:

e(x) ≡ 0 mod I(g), e(x) ≡ 1 mod I(h).

We conclude that there exist polynomials s and t such that e(x) = sg =
1 + th. Thus e2 = sg(1 + th) = e + stgh. This gives

e2 = e �= 0,

i.e. e is an idempotent which is contained in C.

e is even a generating unit: Assume that c ∈ C, say c = f g. Then

ec = (1 + th) f g = f g = c,

which shows that e is a unit for C, as ec = c, for every c ∈ C. Moreover, as
e(x) is a multiple of g, we have

C = e · C ⊆ e · Res q,n = sg · Res q,n = g · Res q,n ⊆ C,

whence
C = e · Res q,n .

This means that e is in fact a generating idempotent of the code, in the sense
of ring theory (see the Exercises).

In order to prove the uniqueness of such a generating unit, we consider
two idempotents e and e′. Being units, they satisfy

e′ = ee′ = e′e = e.

As each codeword is a multiple of e, this idempotent is even a generator, in
the sense of coding theory. Hence, each cyclic code C contains exactly one
such idempotent generator.

This, together with Exercise 4.5.3, yields the following

4.5.1Corollary Let C be a cyclic code of length n over Fq with generator polynomial g and
assume that gcd(n, q) = 1. Then there is a unique idempotent e ∈ C which generates
the ideal C,

C = e · C = e · Res q,n .

270 4. Cyclic Codes

The idempotent e = e(x) + I(xn − 1) is uniquely determined as the solution of the
congruences

e(x) ≡ 0 mod I(g), e(x) ≡ 1 mod I(h),
with deg e(x) < n. Moreover, it is a generator of the code,

C = I(g(x))/I(xn − 1) = I(e(x))/I(xn − 1).

In addition, 1 − e is the generating idempotent of the code generated by the check
polynomial h = (xn − 1)/g. The generating idempotent e determines the generator
polynomial g of C as

g = gcd(e(x), xn − 1). �

4.5.2 Example (Continuation of 4.2.7) The binary cyclic codes of length 7 have the
following generator polynomials and generating idempotents:

code C dim(C) g e
{0} 0 x7 − 1 0
F7

2 7 1 1
W7 1 1 + x + x2 + . . . + x6 1 + x + x2 + . . . + x6

P7 6 1 + x x + x2 + . . . + x6

H3 4 1 + x + x3 x + x2 + x4

H′
3 4 1 + x2 + x3 x3 + x5 + x6

S3 3 1 + x2 + x3 + x4 1 + x3 + x5 + x6

S′
3 3 1 + x + x2 + x4 1 + x + x2 + x4 �

The generating idempotent e = e(x), where e(x) = ∑i∈n eixi, gives the
k × n generator matrix

Γ(e) =

⎛⎜⎜⎜⎜⎝
e0 e1 . . . en−1

en−1 e0 . . . en−2
...

...
. . .

...
en−k+1 en−k+2 . . . en−k

⎞⎟⎟⎟⎟⎠4.5.3

for C, since e(x) is a generating polynomial as well (the proof is similar to
that which gives the generator matrix Γ(g) obtained from the generator poly-
nomial g). Of course, Γ(g) and Γ(e) may be different, examples are easily
obtained from 4.5.2.

The next result extends 4.2.6.

4.5.4 Lemma Let C and C′ be cyclic codes of length n over Fq with generating idempotents
e, e′, respectively. Then

1. C ∩ C′ has the generating idempotent e · e′.
2. C + C′ has the generating idempotent e + e′ − e · e′.

4.5 Idempotents and the Discrete Fourier Transform 271

Proof: 1. It is easy to check that e · e′ is an idempotent which is contained in
C ∩ C′. It remains to show that it generates C ∩ C′. Let c = u · e be an element
of C ∩ C′ for some u. Since e′ is unity in C′, we deduce c = c · e′ = u · e · e′ ∈
I(e(x)e′(x))/I(xn − 1).

2. It is clear that e + e′ − e · e′ ∈ C + C′. Now let c̃ := c + c′ ∈ C + C′ be
arbitrary, with c ∈ C and c′ ∈ C′. Applying c · e = c and c′ · e′ = c′, we obtain

c̃ · (e + e′ − e · e′) = c + c · e′ − c · e′ + c′ · e + c′ − c′ · e
= c + c′

= c̃,

so that e + e′ − e · e′ generates C + C′. An easy calculation shows that e + e′ −
e · e′ is an idempotent. �

We know from the previous section that binary QR-codes exist for n ≡
±1 mod 8. The next result describes generating idempotents for these codes:

4.5.5Lemma Let n be a prime which is congruent to ±1 modulo 8 and Q be the set of
quadratic residues modulo n. Put

e(x) = ∑
i∈n : i∈Q

xi.

For a suitable choice of a primitive n-th root of unity ξ we have for gQ and the corre-
sponding codes CQ and C1

Q:

For n ≡ 1 mod 8, e = e(x) is the generating idempotent of the binary QR-code
C1

Q(n, 2).

For n ≡ −1 mod 8, e = e(x) is the generating idempotent of the binary QR-code
CQ(n, 2).

Proof: 1. To begin with we show that e is idempotent. This follows easily from
q = 2 and the fact that 2 is a square modulo n :

e2(x) = ∑
i∈Q

x2i = ∑
i∈Q

xi = e(x) �= 0,

and so
e2 = e(x)

2
= e(x)2 = e(x) = e �= 0.

2. Let ξ be a primitive n-th root of unity, b ∈ N a quadratic non-residue mod-
ulo n. For ξb we have, as QN = N,

e(ξ) + e(ξb) = ∑
i∈Q

ξ i + ∑
i∈Q

ξ ib = 1 +
n−1

∑
i=0

ξ i = (ξn − 1)︸ ︷︷ ︸
=0

(ξ − 1)−1 + 1 = 1,

272 4. Cyclic Codes

and so
e(ξ) = 0 ⇐⇒ e(ξb) = 1.

3. Assume that e(ξ) = 0 (for otherwise we could replace ξ by another prim-
itive n-th root of unity ξb′ with b

′ ∈ N). For each a ∈ Q we have e(ξa) =
∑i∈Q ξ i·a = e(ξ) = 0. This implies that

e(x) ≡ 0 mod I(gQ), thus e ∈ CQ(n, 2).

Moreover, e(ξb) + 1 = e(ξ) = 0 for each b ∈ N, and hence

e(x) ≡ 1 mod I(gN), thus e + 1 ∈ CN(n, 2).

If n ≡ 1 mod 8, then wt(e) = (n − 1)/2 ≡ 0 mod 2, and so e(1) = 0, i.e.
e is even and, therefore, contained in C1

Q(n, 2), the even weight subcode of
CQ(n, 2). This gives

e(x) ≡ 0 mod I((x − 1)gQ) and e(x) ≡ 1 mod I(gN).

By 4.5.1 (noting that gcd(n, q) = 1), this implies that e is the generating
idempotent of C1

Q(n, 2) = I((x − 1)gQ)/I(xn − 1).

In the case n ≡ −1 mod 8 we have wt(e) = (n − 1)/2 ≡ 1 mod 2 and
so e(1) = 1. From this we deduce that e(x) ≡ 1 mod I((x − 1)gN). This
together with e(x) ≡ 0 mod I(gQ) implies that e is the generating idempo-
tent of CQ(n, 2) = I(gQ)/I(xn − 1). �

The question of determining the zeros of a polynomial in a cyclic code of
length n can be answered by evaluating the polynomial at all possible n-th
roots of unity. This is exactly what the following construction does. In addi-
tion, the results of all these evaluations are taken as the coefficients of another
polynomial (possibly in a larger field). The construction is based on the Dis-
crete Fourier Transform, which is in fact the following further application of
the Chinese Remainder Theorem 3.5.15:

4.5.6 Corollary Assume again that gcd(n, q) = 1, that m = ordn(q), so that Fqm contains
a primitive n-th root of unity ξ, and xn − 1 = ∏i∈n(x − ξ i) in Fqm [x]. Since the
ideals I(x − ξ i) are pairwise relatively prime, we have the following isomorphism:

Fqm [x]/I(xn − 1) � ×
i∈n

Fqm [x]/I(x − ξ i),

defined by

f + I(xn − 1) �→ (f + I(x − ξ0), f + I(x − ξ1), . . . , f + I(x − ξn−1)).

In addition, the right hand side is equal to

(f (ξ0) + I(x − ξ0), . . . , f (ξn−1) + I(x − ξn−1)),

4.5 Idempotents and the Discrete Fourier Transform 273

and so we can rephrase the isomorphism as follows:

{ f ∈ Fqm [x] | deg f < n} � Fn
qm : f �→ (f (ξ0), . . . , f (ξn−1)).

On the left hand side addition and multiplication are modulo I(xn − 1), while on the
right hand side they are pointwise. �

4.5.7Definition (Discrete Fourier Transform, MS-polynomial) Assuming again
that gcd(n, q) = 1, we obtain a primitive root of unity ξ, and so the mapping

f + I(xn − 1) �→ (f (ξ0), f (ξ1), . . . , f (ξn−1))

is an Fq-isomorphism of algebras. It is called the Discrete Fourier Transform and
abbreviated as DFT. It can be considered as the right multiplication

f + I(xn − 1) �→ (f0, . . . , fn−1) · Φn,

where f = ∑n−1
i=0 fixi and where the representing matrix Φn, called the n-th

order Fourier matrix, is given by

Φn :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξ2(n−1)

...
...

...
...

...
1 ξn−1 ξ2(n−1) . . . ξ(n−1)(n−1)

⎞⎟⎟⎟⎟⎟⎟⎠ = (ξ ij)i,j∈n.

The image vector

F := (F0, . . . , Fn−1) := (f (ξ0), . . . , f (ξn−1)) ∈ Fn
qm

is the Fourier vector of f and the corresponding polynomial

F(y) := ∑
i∈n

Fiy
n−i ∈ Fqm [y]

is called the Discrete Fourier Transform or the Mattson–Solomon polynomial (MS-
polynomial, for short) of f , cf. [145].

Summarizing, we have obtained the

4.5.8Corollary The mapping f �→ F is an Fqm -isomorphism between the Fqm -algebras
{ f ∈ Fqm [x] | deg f < n}, with addition and multiplication modulo I(xn − 1), and
Fn

qm , with pointwise addition and multiplication (the Hadamard-product),

Resqm,n � Fn
qm : f �→ F. �

For an application of the DFT we need the inverse matrix (cf. Exercise 4.5.6)

Φ−1
n =

1
n

(ξ−ij)i,j∈n.

Application of the MS-polynomial is based on the

274 4. Cyclic Codes

4.5.9 Lemma The Mattson–Solomon-polynomial has the following properties:

1. F(y) is the MS-polynomial of a polynomial f (x) ∈ Fq[x] if and only if

∀ j ∈ n : Fqj mod n = Fq
j .

2. F(y) is the MS-polynomial of a codeword f = f (x) + I(xn − 1) of the cyclic code
C ≤ Res q,n if and only if Fi = 0 for all ξ i ∈ V(C) and Fqj mod n = Fq

j for all j.

3. For f ∈ Res q,n we have wt(f) = n − s, where s is the number of n-th roots of
unity which are zeros of the MS-polynomial F of f . For short:

wt(f) = n − |V(F)∩Un|.

4. If F(y) is the MS-polynomial of f (x) then wt(f) ≥ n − deg F.

Proof: 1. Let F(y) be the MS-polynomial of f (x) ∈ Fq[x]. Since the coefficients
of f (x) are in Fq, we have

Fq
j = f (ξ j)q = f (ξqj) = Fqj mod n.

On the other hand, let us now assume that Fqj mod n = Fq
j for all j. First we

note that 1/n is in the prime field and hence (1/n)q = 1/n (recall that 1/n is a
shorthand for the unique solution c of the congruence nc ≡ 1 mod p, where p
is the characteristic of Fq). Secondly, we recall that over Fq we have (γ + δ)q =
γq + δq. Therefore we compute (indices modulo n)

f q
j =

(
1
n

F(ξ j)
)q

=
1
n ∑

i∈n
Fq
i ξ(n−i)jq =

1
n ∑

i∈n
Fqiξ

−qij

=
1
n ∑

i∈n
Fiξ

−ij =
1
n ∑

i∈n
Fiξ

(n−i)j =
1
n

F(ξ j) = fj

for all j. This shows that fj is in Fq and, therefore, we have f (x) ∈ Fq[x].

2. f (x) is an element of the cyclic code C if and only if f (ξ j) = 0 for all
ξ j ∈ V(C). This means that Fj = 0 for ξ j ∈ V(C).

3. This follows from the definition of the MS-polynomial, since simple com-
putations show that F(ξ j) = n fj, j ∈ n. Therefore F(ξ j) = 0 if and only if
fj = 0.

4. This is a consequence of the third assertion since the polynomial F can have
no more than deg(F) zeros. �

4.5 Idempotents and the Discrete Fourier Transform 275

This result implies the following facts about idempotents:

4.5.10Theorem Let n and q be relatively prime, as before, and let ξ denote a primitive n-th
root of unity over Fq.

1. The element e ∈ Res q,n is idempotent if and only if e(ξ i) ∈ {0, 1} for all i ∈ n.

2. A polynomial e(x) ∈ Res q,n is the generating idempotent of C = I(g)/I(xn − 1)
if and only if

e(ξ i) =
{

0 if ξ i ∈ V(C),
1 if ξ i �∈ V(C),

i ∈ n.

Proof: 1. The Discrete Fourier Transform turns e into E = (E0, . . . , En−1) and
the equation e2 = e into

E ∗ E = (E0, . . . , En−1)2 = (E2
0, . . . , E

2
n−1) = E,

where ∗ is the Hadamard-product. Thus E2
i = Ei, which is equivalent to Ei =

e(ξ i) ∈ {0, 1}.

2. Assume that e(ξ i) = 0 for ξ i ∈ V(C) and e(ξ i) = 1 for ξ i �∈ V(C). Since
the idempotent polynomial e(x) and the generator polynomial g(x) have the
same n-th roots of unity as zeros and g(x) has no other roots, we have that e(x)
is a multiple of g(x). Moreover by 4.5.1, g(x) is the greatest common divisor
of e(x) and xn − 1. Thus, by Bézout’s Identity (cf. Exercise 3.1.6). there exist
polynomials s and t such that g = se + t(xn − 1). When read modulo I(xn − 1),
this equation shows that g(x) is a multiple of e(x). Hence e and g generate the
same code. By part 1 we know that e is an idempotent. Hence e is a generating
idempotent. The converse follows using Exercise 4.5.3. �

The next result shows how to determine the dimension of a code from any
of its generating polynomials.

4.5.11Theorem Let C = I(f)/I(xn − 1), f ∈ Fq[x] a polynomial with deg f < n. Then
the dimension of C is equal to the number of nonzero Fourier coefficients Fi of f .

Proof: The elements f , x f , . . . , xn−1 f certainly generate the ideal C as a vector
space. If we write the coefficients of these elements into the rows of a matrix,
we obtain

Θn(f) =

⎛⎜⎜⎜⎜⎝
f0 f1 · · · fn−2 fn−1

fn−1 f0 · · · fn−3 fn−2
...

...
. . .

...
...

f1 f2 · · · fn−1 f0

⎞⎟⎟⎟⎟⎠ .

276 4. Cyclic Codes

The rows of Θn(f) generate the code. Nevertheless, the matrix Θn(f) is in
general not a generator matrix, as it may contain linearly dependent rows.
In any case, the rank of Θn(f) is equal to the dimension of the code. Now,
consider Φn, the matrix of the Fourier Transform. Let Φ∗,j be the j-th column
of Φn for j ∈ n. The i-th entry in the vector Θn(f) · Φ∗,j is

∑
k∈n

fk−iξ
kj = ξ ij ∑

k∈n
fk−iξ

(k−i)j = ξ ij ∑
k∈n

fkξkj = f (ξ j)ξ ij.

This shows that Θn(f) · Φ∗,j = FjΦ∗,j, i.e. that Φn is a matrix of eigenvectors
for Θn(f) with corresponding eigenvalues F0, F1, . . . , Fn−1. Since Φn is non-
singular, the columns of Φn form a basis of eigenvectors, and hence Θn(f) is
diagonalizable. The rank of Θn(f) is, therefore, the number of nonzero eigen-
values, i.e. the number of nonzero Fourier coefficients Fi. �

Using the Discrete Fourier Transform, the Reed–Solomon-codes can be de-
scribed as follows. Recall that the Reed–Solomon-code C with designed dis-
tance δ, base b and length n = q − 1 is the code generated by

g := (x − ξb) · · · (x − ξb+δ−2) ∈ Fq[x],

and that in this case the primitive n-th root of unity ξ is a primitive element of
the field Fq.

4.5.12 Theorem Let C be a Reed–Solomon-code with designed distance δ and base b over
Fq. The dual code C⊥ is generated by

g⊥ :=
−b−δ+1

∏
i=−n−b+1

(x − ξ i) =
2n−b−δ+1

∏
i=n−b+1

(x − ξ i)

and, therefore, C⊥ has base n − b + 1 and designed distance δ⊥ = n − δ + 2.

Proof: The parity check polynomial of C is

h(x) =
xn − 1

g
=

∏n−1
i=0 (x − ξ i)

∏b+δ−2
i=b (x − ξ i)

=
b+n−1

∏
i=b+δ−1

(x − ξ i),

which is of degree n − δ + 1 = k. The reciprocal polynomial is

ĥ = xkh(x−1) = xk
b+n−1

∏
i=b+δ−1

(x−1 − ξ i) =
b+n−1

∏
i=b+δ−1

(1− ξ ix),

and the constant term of h is

h(0) =
b+n−1

∏
i=b+δ−1

(−ξ i).

4.5 Idempotents and the Discrete Fourier Transform 277

So, the dual code has the generator polynomial

ĥ(x)
h(0)

=
b+n−1

∏
i=b+δ−1

(x − ξ−i) =
−b−δ+1

∏
i=−n−b+1

(x − ξ i) =
2n−b−δ+1

∏
i=n−b+1

(x − ξ i).

Therefore, it is a Reed–Solomon-code for base n− b + 1 and designed distance
n − δ + 2. �

Thus,
V(C⊥) =

{
ξ i ∣∣ n − b + 1 ≤ i ≤ 2n − b − δ + 1

}
and hence, according to Exercise 4.3.1, and since k = dim(C) = n − δ + 1,

∆ = (ξ ij)n−b+1≤i≤n−b+k, j∈n

is a check matrix for the dual code.

4.5.13Corollary The Reed–Solomon-code of length n and dimension k over Fq, generated
by the consecutive set

W := {ξb, . . . , ξb+δ−2},
has the following submatrix of the Fourier matrix as generator matrix:

Γ := (ξ ij)n−b+1≤i≤n−b+k, j∈n.

In particular, the narrow-sense Reed–Solomon-code of length n and dimension k over
Fq is generated by

Γ := (ξ ij)i∈k,j∈n,

and so it is equal to{
(f (1), f (ξ), . . . , f (ξn−1)) = (F0, . . . , Fn−1)

∣∣∣ f ∈ Fq[x], f = 0 or deg f < k
}

.
�

In other words, the Discrete Fourier Transform can be used as a natural encod-
ing method for narrow-sense Reed–Solomon-codes.

4.5.14Example The narrow-sense Reed–Solomon-code of length 7 with designed dis-
tance 5 has dimension 3. It is generated by

g(x) = (x − ξ)(x − ξ2)(x − ξ3)(x − ξ4) = ξ3 + ξx + x2 + ξ3x3 + x4,

where ξ is the usual primitive n-th root of unity, a primitive element of F8 with
ξ3 = ξ + 1. From 4.5.13 we obtain that this linear code over F8 is generated by

Γ :=

⎛⎜⎝ 1 1 1 1 1 1 1
1 ξ ξ2 ξ3 ξ4 ξ5 ξ6

1 ξ2 ξ4 ξ6 ξ ξ3 ξ5

⎞⎟⎠ .

�

278 4. Cyclic Codes

The fact that narrow-sense Reed–Solomon-codes consist of Fourier Transforms

(f (1), f (ξ), . . . , f (ξn−1))

of polynomials f of degree < k motivates the following notation and general-
ization of Reed–Solomon-codes: For 1 ≤ k ≤ n we denote the subspaces of all
polynomials of degree strictly less than k by

Fq[x]
<k :=

k−1⊕
i=0

Fq · xi.

4.5.15 Definition (Generalized Reed–Solomon-code) Let n ≤ q be a positive integer,
κ = (κ0, κ1, . . . , κn−1) an n-tuple of pairwise distinct elements of Fq and β =
(β0, β1, . . . , βn−1) an n-tuple of nonzero elements of Fq. For k with 1 ≤ k ≤ n
we define the Generalized Reed–Solomon-code GRSk(κ, β), a code which need not
be cyclic, as{(

f (κ0)β0, f (κ1)β1, . . . , f (κn−1)βn−1
) ∣∣∣ f (x) ∈ Fq[x]

<k

}
.

In formal terms, using the matrix (of rank k)

Φ(κ) := (κi
j)i∈k,j∈n,

and the notation

f (x) · Φ(κ) := (f0, . . . , fk−1) · Φ(κ) = (f (κ0), f (κ1), . . . , f (κn−1)),

GRSk(κ, β) is generated by the matrix of rank k

Γ := Φ(κ) · diag(β0, . . . , βn−1) =

⎛⎜⎜⎜⎜⎜⎜⎝
β0 β1 · · · βn−1

κ0β0 κ1β1 · · · κn−1βn−1

κ2
0β0 κ2

1β1 · · · κ2
n−1βn−1

...
...

κk−1
0 β0 κk−1

1 β1 · · · κk−1
n−1βn−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

in the following way:

GRSk(κ, β) =
{

f (x) · Γ
∣∣ f (x) ∈ Fq[x]

<k

}
.

4.5.16 Example Let n = q− 1 and let ξ be a primitive element for Fq. Put κj = ξ j and
β j = κn−b+1

j for j ∈ n. Then

Φ(κ) = (ξ ij)i∈k, j∈n

4.5 Idempotents and the Discrete Fourier Transform 279

and the multiplication by

diag(β0, . . . , βn−1) = diag
(
ξ0·(n−b+1), . . . , ξ(n−1)·(n−b+1))

gives the generator matrix

Γ = (ξ ij)n−b+1≤i≤n−b+k, j∈n.

Hence, by 4.5.13, this particular Generalized Reed–Solomon-code GRSk(κ, β)
is in fact a Reed–Solomon-code. �

4.5.17Theorem Generalized Reed–Solomon-codes are MDS-codes.

Proof: Since deg(f) < k and since the βi are all nonzero, a codeword

c =
(
f (κ0)β0, f (κ1)β1, . . . , f (κn−1)βn−1

)
in GRSk(κ, β) has at most k − 1 zeros, i.e. wt(c) ≥ n − k + 1. This shows that
the minimum distance is at least n − k + 1 and, therefore, the code is MDS,
since k = dim(GRSk(κ, β)). �

Since Generalized Reed–Solomon-codes are MDS, they can be encoded sys-
tematically at any k positions.

4.5.18Theorem A systematic generator matrix for the code GRSk(κ, β) is Γ = (Ik | M),
where M = (mij)i∈k, j∈n−k, with

mij =
βk+j ∏u∈k\{i}(κk+j − κu)

βi ∏u∈k\{i}(κi − κu)
.

Proof: We consider first the case where β = 1n is the all-one vector. For i ∈ k,
let v(i) be the i-th row of (Ik | M). By 4.5.15 we need to find a polynomial
f (i) ∈ Fq[x] of degree at most k − 1 such that v(i) = f (i) · Φ(κ), i.e.

f (i)(κj) =
{

1 if i = j
0 if i �= j, j < k.

By the Lagrange Interpolation Theorem, f (i) exists and is unique. In fact, we
have

f (i)(x) =
∏u∈k\{i}(x − κu)

∏u∈k\{i}(κi − κu)
, i ∈ k.

Hence mij = f (i)(κk+j) is of the stated form provided that β j = 1 for all j.
Otherwise, we multiply the j-th column by β j and divide the elements of the
i-th row by βi to get the systematic generator matrix Γ as stated. �

280 4. Cyclic Codes

The dual of a Generalized Reed–Solomon-code is again a Generalized Reed–
Solomon-code:

4.5.19 Theorem The dual code of GRSk(κ, β) is GRSn−k(κ, γ) where γ = (γ0, . . . , γn−1)
with

γj =
1

β j ∏i∈n,i �=j(κj − κi)
, j ∈ n.

Proof: Let Γ = (Ik | M) be a systematic generator matrix of a GRSk(κ, β)
with M = (mij) as in 4.5.18. In the same fashion as before one can show
(cf. Exercise 4.5.9) that ∆ = (N | In−k) is a systematic generator matrix of
GRSn−k(κ, γ), where N = (nij) with

nij =
γj ∏u∈n−k\{i}(κj − κk+u)

γk+i ∏u∈n−k\{i}(κk+i − κk+u)
, i ∈ n − k, j ∈ k.

Substituting the values of γj, we compute

nij =
βk+i ∏v∈n,v �=k+i(κk+i − κv) ∏u∈n−k\{i}(κj − κk+u)

β j ∏v∈n,v �=j(κj − κv) ∏u∈n−k\{i}(κk+i − κk+u)

=
βk+i ∏v∈k(κk+i − κv)

β j(κj − κk+i) ∏v∈k\{j}(κj − κv)

= −
βk+i ∏v∈k\{j}(κk+i − κv)

β j ∏v∈k\{j}(κj − κv)
= −mji.

This shows that N = −M�, and hence by Exercise 1.3.9, ∆ is a check matrix
for the code generated by Γ. Thus, GRSn−k(κ, γ) is the dual of GRSk(κ, β). �

This Generalized Reed–Solomon-codes GRSk(κ, β) can be rephrased by re-
placing the sequence β by a polynomial: We again fix a positive integer n ≤ q
and a sequence κ = (κ0, . . . , κn−1) of pairwise distinct elements of Fq, and we
form the corresponding polynomial

h := ∏
i∈n

(x − κi).

The Chinese Remainder Theorem establishes the Fq-algebra isomorphism

φ : Fq[x]/I(h) → Fn
q : f + I(h) �→ (f (κ0), . . . , f (κn−1)).

This map restricts to an isomorphism between the two groups of units, which
are the polynomials g ∈ Fq[x]/I(h) with g(κi) �= 0, for i ∈ n on one side and
(F∗

q)n, the sequences of length n over Fq whose entries are all nonzero on the
other side (with the Hadamard product as multiplication). The map φ takes

4.5 Idempotents and the Discrete Fourier Transform 281

a polynomial g ∈ Fq[x]/I(h) which is a unit in this ring, i.e. with g(κi) �= 0,
to the sequence (g(κ0), . . . , g(κn−1)). In the other direction, given a sequence
c = (c0, . . . , cn−1) with ci �= 0, for i ∈ n, we can obtain the inverse image under
the map φ from Lagrange’s interpolation formula. Namely, we have

φ−1 : Fn
q → Fq[x]/I(h) : c �→ ∑

i∈n

ci

�(κi)
∏

j∈n\{i}
(x − κj) + I(h),

where � is the unique polynomial of degree less than n with

�(κi) := ∏
j∈n\{i}

(κi − κj) for each i ∈ n.

The residue class � + I(h) is a unit in Fq[x]/I(h). It serves in the following as a
normalizing factor. For each unit g + I(h) we form, as already announced, the
following linear code which is isometric to GRSk(κ, 1n),

GRSk(κ, g) = GRSk(κ, β)

where β = (β0, . . . , βn−1) is the sequence whose entries are βi = g(κi)/�(κi),
i.e.

GRSk(κ, g) =
{(

c0g(κ0)
�(κ0)

, . . . ,
cn−1g(κn−1)

�(κn−1)

) ∣∣∣ c ∈ GRSk(κ, 1n)
}

.

4.5.20Theorem Let κ = (κ0, . . . , κn−1) be a sequence of pairwise distinct elements of Fq,
where n ≤ q and h := ∏i∈n(x − κi). Consider g ∈ Fq[x]

<n with g(κi) �= 0 for all
i ∈ n.

We have:

GRSk(κ, g) =

{
c ∈ Fn

q

∣∣∣∣ ∃ f ∈ Fq[x]
<k : ∑

i∈n
ci ∏

j �=i
(x − κj) ≡ f g mod I(h)

}
.

If g is of degree n − k, then

GRSk(κ, g) =

{
c ∈ Fn

q

∣∣∣∣ ∑
i∈n

ci ∏
j �=i

(x − κj) ≡ 0 mod I(g)

}
.

This set can also be characterized as the set of all c ∈ Fn
q which satisfy

∑
i∈n

ci(x − κi)−1 = 0

in Fq[x]/I(g).

282 4. Cyclic Codes

Proof: 1. A vector c ∈ Fn
q is contained in GRSk(κ, g) if and only if there exists

a polynomial f ∈ Fq[x]
<k such that

c =
(

f (κ0)g(κ0)
�(κ0)

, . . . ,
f (κn−1)g(κn−1)

�(κn−1)

)
.

This is equivalent to

(c0�(κ0), . . . , cn−1�(κn−1)) = (f (κ0)g(κ0), . . . , f (κn−1)g(κn−1))

= φ(f g + I(h)),

i.e.
f g + I(h) = φ−1(c0�(κ0), . . . , cn−1�(κn−1)),

and so
f g ≡ ∑

i∈n
ci ∏

j �=i
(x − κj) mod I(h).

2. To each codeword c ∈ GRSk(κ, g), there exist polynomials f ∈ Fq[x]
<k and

s ∈ Fq[x] with

∑
i∈n

ci ∏
j �=i

(x − κj) = f g + sh.

If the degree of g is n − k, then f g is of degree less than n, which implies that

∑
i∈n

ci ∏
j �=i

(x − κj) = f g,

and hence

∑
i∈n

ci ∏
j �=i

(x − κj) ≡ 0 mod I(g).

Since h + I(g) is a unit in Fq[x]/I(g), we obtain via multiplication by its inverse
that

∑
i∈n

ci(x − κi)−1 = 0

in Fq[x]/I(g). Since these arguments can be reversed, we obtain the assertion.
�

The MDS-codes of the second part of this theorem are called Goppa-MDS-
codes. Goppa-codes are obtained from Goppa-MDS-codes by restriction. These
codes were discovered in the early 1970’s by V.D. Goppa (cf. [71, 72, 10]). We
will discuss them in the following section.

Exercises

E.4.5.1 Exercise Consider a ring R with identity element. An element e ∈ R \ {0} is
called idempotent if it satisfies e2 = e. Central idempotents are idempotents
e that commute with every ring element. Furthermore, there is the notion

4.5 Idempotents and the Discrete Fourier Transform 283

of orthogonal idempotents, i.e. idempotents e, e′ with ee′ = e′e = 0. Lastly,
we introduce primitive idempotents e, for which there do not exist orthogonal
idempotents e′, e′′ such that e = e′ + e′′. Idempotents that are both central and
primitive are called centrally-primitive.

Assume that an idempotent e ∈ R generates the left ideal L := Re. Prove
the following assertions:

Besides being a generator of L, e is also a generating unit in L, i.e. xe = x
for all x ∈ L.

If e �= 1, then both Re and R(1− e) are nontrivial left ideals. Moreover, both
e and 1− e are orthogonal idempotents, and we obtain the following direct
decomposition of R into left ideals

R = Re⊕ R(1− e).

E.4.5.2Exercise Show that direct decompositions of rings with identity into left ideals
correspond to decompositions of the identity element into orthogonal idempo-
tents in the following way:

1. If
R =

⊕
i∈I

Li

is a decomposition of R into a direct sum of left ideals Li �= 0, and

1 = ∑
i∈I

ei,

with ei ∈ Li, is the corresponding decomposition of the identity element,
then these decompositions satisfy the following conditions:

The index set I is finite.

For i, j ∈ I, i �= j, the elements ei and ej are orthogonal idempotents, and
Li = Rei for i ∈ I.

If Li is indecomposable, then ei is primitive.

If all the left ideals Li are two-sided ideals, then the idempotents ei are
central.

If all the Li are two-sided and Li0 is indecomposable (as a two-sided
ideal), then ei0 is centrally-primitive.

2. If, conversely,
1 = ∑

i∈I
ei

284 4. Cyclic Codes

is a decomposition of the identity element into pairwise orthogonal idem-
potents ei, then we have, for the left ideals Li := Rei:

R =
⊕

i∈I Li.

If ei is primitive, then Li is indecomposable.

If ei is central, then Li is a two-sided ideal.

If ei is centrally-primitive, then Li is indecomposable (as a two-sided
ideal).

Moreover, such decompositions of the identity into centrally-primitive orthog-
onal idempotents are uniquely determined.

E.4.5.3 Exercise Let C be a cyclic code of length n over Fq with generating idempotent
e. Show that the generator polynomial of C is g = gcd(xn − 1, e).

E.4.5.4 Exercise Give another proof of 4.5.1 using the Euclidean Algorithm.

E.4.5.5 Exercise Let C denote a cyclic code of length n over Fq with generating idem-
potent e. Prove that 1− xne(x−1) is a generating idempotent of C⊥.

E.4.5.6 Exercise Prove that the inverse of the Fourier matrix is

Φ−1
n =

1
n

(ξ−ij)i,j∈n.

Describe a fast multiplication of polynomials, which enables us to obtain the
product of two polynomials in Fq[x] from the Hadamard-product of the corre-
sponding Discrete Fourier Transforms. (An analysis of the complexity of this
method shows that it is more efficient than direct multiplication. For a detailed
description we recommend [1], [38], or [159].)

E.4.5.7 Exercise Phase property of DFT: Let ξ be a primitive n-th root of unity and
c = (c0, . . . , cn−1) a vector in Fn

q . Let

d = (cs, cs+1, . . . , cs+n−1 mod n)

be the vector which is obtained from c by s cyclic shifts of the entries. Then we
have, for the corresponding Fourier-transforms ĉ = c · Φn and d̂ = d · Φn,

d̂i = ĉiξ
−is, i ∈ n.

4.6 Alternant-Codes, Goppa-Codes 285

E.4.5.8Exercise Scaling via DFT: For the discrete Fourier Transform d̂ := d · Φn of the
vector

d = (c0, cs mod n, . . . , cs(n−1) mod n)

obtained from c = (c0, . . . , cn−1) by a scaling factor s ∈ N∗, where gcd(n, s) =
1 (which permutes the entries), the following holds true:

d̂i = ĉis−1 mod n, i ∈ n.

E.4.5.9Exercise Verify that the matrix (N | In−k) with N = (nij) as defined in 4.5.19
generates GRSn−k(κ, β).

E.4.5.10Exercise Let g and h be as in 4.5.20. Show that g + I(h) is a unit of Fq[x]/I(h)
and that h + I(g) is a unit of Fq[x]/I(g). Compute the inverse of (x− κi) + I(g).

E.4.5.11Exercise Give a necessary and sufficient condition for two Generalized Reed–
Solomon-codes GRSk(κ, g) and GRSk(κ̃, g̃) to be linearly isometric.

E.4.5.12Exercise Consider κ = (0, 1, 2, α, 2α), where α is a root of the irreducible poly-
nomial x2 + x + 2 ∈ F3[x]. Construct the Generalized Reed–Solomon-code
GRS3(κ, g), where g ∈ F9[x] is a suitable polynomial of degree 3.

4.64.6 Alternant-Codes, Goppa-Codes

The class of Alternant-codes which we will consider now is obtained by re-
stricting Generalized Reed–Solomon-codes to subfields. So again fix a positive
integer n, a sequence κ of n pairwise distinct elements of Fqm , and consider the
corresponding polynomial

h = ∏
i∈n

(x − κi) ∈ Fqm [x].

According to the preceding section, for every polynomial g ∈ Fqm [x] with
g(κi) �= 0 for 0 ≤ i ≤ n − 1, i.e. for every unit g + I(h) in Fqm [x]/I(h), there is
the (n, k)-MDS-code GRSk(κ, g).

4.6.1Definition (Alternant-codes) The restriction of a Generalized Reed–Solomon-
code GRSk(κ, g) over Fqm to the subfield Fq is called Alternant-code over Fq,
denoted as

Altk,q(κ, g) := GRSk(κ, g) ∩ Fn
q .

286 4. Cyclic Codes

We obtain from 4.5.20 that

Altk,q(κ, g) =
{

c ∈ Fn
q

∣∣∣ ∃ f ∈ Fqm [x]<k : ∑
i∈n

ci ∏
j �=i

(x − κj) ≡ f g mod I(h)
}

.

In order to obtain bounds for the parameters of such codes, we prove

4.6.2 Lemma If C is an (n, k, d)-code over Fqm , and if C′ is the (n, k′, d′)-code C′ which is
obtained by restriction of C to Fq, we have the inequalities

d′ ≥ d and m(n− k) ≥ n − k′ ≥ n − k.

Proof: As C′ is an Fq-subspace of C, it follows that d ≤ d′ and k′ ≤ k. Assume
that ∆ is a check matrix of C. Choose a basis of Fqm over Fq and express the
entries of ∆ in terms of this basis, thereby obtaining an m(n − k) × n-matrix
over Fq, the rank of which lies between n − k and m(n − k). The rows of this
matrix span the dual code of C′, and so the second inequality is also true. �

Thus we obtain from 4.5.17

4.6.3 Corollary The Alternant-code Altk,q(κ, g) is an (n, k′, d′)-code over Fq, with

k ≥ k′ ≥ n − m(n − k) and d′ ≥ n − k + 1. �

The following theorem proves the existence of Alternant-codes with a pre-
scribed lower bound for the minimum distance.

4.6.4 Theorem Let n = qm − 1 and assume that δ and r are positive integers such that

δ−1

∑
i=1

(
n
i

)
(q − 1)i < (qm − 1)r.

Then there exists an Alternant-code over Fq of length n, dimension k ≥ n − mr, and
minimum distance d ≥ δ.

Proof: The proof is based on an enumerative argument. We count the number
of Alternant-codes of a particular type which contain a vector of weight less
than δ.

For this purpose we consider a Generalized (n, n− r)-Reed–Solomon-code
GRSn−r(κ, 1n) over Fqm . To each polynomial g with g(κi) �= 0, i ∈ n, we
associate the vector g = (g(κ0)/�(κ0), . . . , g(κn−1)/�(κn−1)) ∈ Fn

qm . Each vec-
tor g ∈ Fn

qm \ {0} defines an Alternant-code Altn−r,q(κ, g) obtained by restric-
tion to Fq. There are (qm − 1)n Generalized Reed–Solomon-codes GRSn−r(κ, g)
coming from GRSn−r(κ, 1n) and, according to 4.6.3, they determine Alternant-
codes of dimension at least n − mr.

4.6 Alternant-Codes, Goppa-Codes 287

A nonzero vector c of weight less than δ can occur in at most (qm − 1)n−r

such Alternant-codes. The reason is that GRSn−r(κ, 1n) is an MDS-code: If
c �= 0 is vector of weight w < δ which occurs in such an Alternant-code, then
c is obtained from a vector c̃ ∈ GRSn−r(κ, 1n) of weight w:

c = (c̃0g(κ0)�(κ0)−1, . . . , c̃n−1g(κn−1)�(κn−1)−1).

Therefore w ≥ n − (n − r) + 1 and consequently n − w ≤ (n − r)− 1 < n − r.
The same vector c occurs in at most (qm − 1)n−w < (qm − 1)n−r such Alter-
nant-codes. They are obtained from those vectors g which can have arbitrary
nonzero values in all those positions where c̃i = 0. Moreover, the number of
nonzero vectors in Fn

q which are of weight less than δ is

δ−1

∑
i=1

(
n
i

)
(q − 1)i.

Hence, the number of the above Alternant-codes containing a vector c �= 0 of
weight less than δ is not greater than

(qm − 1)n−r
δ−1

∑
i=1

(
n
i

)
(q − 1)i.

By assumption,

(qm − 1)n−r
δ−1

∑
i=1

(
n
i

)
(q − 1)i < (qm − 1)n.

This implies that at least one (n, k, d)-Alternant-code exists which satisfies
k ≥ n − mr and d ≥ δ. �

Now we briefly discuss the classical Goppa-codes. An introduction to the
theory of algebraic-geometric Goppa-codes can be found in [193, 192, 196]. For
further reading, we refer to [94, 187].

4.6.5Definition (Goppa-codes) The restriction of a Generalized Reed–Solomon-
code GRSk(κ, g) over Fqm with deg g = n − k to Fq is called a Goppa-code. It is
indicated by GOq(κ, g). The polynomial g ∈ Fqm [x] is called Goppa-polynomial.

According to 4.5.20, the Goppa-code GOq(κ, g) has the form

GOq(κ, g) =

{
c ∈ Fn

q

∣∣∣∣ ∑
i∈n

ci ∏
j �=i

(x − κj) ≡ 0 mod I(g)

}
,

or (cf. 4.6.10),

GOq(κ, g) =

{
c ∈ Fn

q

∣∣∣∣ ∑
i∈n

ci

x − κi
≡ 0mod I(g)

}
.

From 4.6.2 we can deduce the following result:

288 4. Cyclic Codes

4.6.6 Corollary A Goppa-code GOq(κ, g) is an (n, k, d)-code with

d ≥ 1 + deg g and k ≥ n − m · deg g. �

4.6.7 Theorem A binary Goppa-code GO2(κ, g) has minimum distance d ≥ 1 + 2deg g,
provided its Goppa-polynomial has no multiple roots.

Proof: Let c = (c0, . . . , cn−1) be a codeword in GO2(κ, g) of weight w > 0.
Define the polynomial

fc(x) = ∏
i∈n, ci=1

(x − κi) = ∑
i∈w+1

γix
i

of degree w. The formal derivative f ′c of fc can be obtained from the product
rule as

f ′c(x) = ∑
i∈n, ci=1

∏
j∈n\{i}, cj=1

(x − κj) = ∑
i∈n

ci ∏
j∈n\{i}, cj=1

(x − κj).

It is a divisor of f̃c(x) = ∑i∈n ci ∏j �=i(x − κj), indeed

f̃c(x) = f ′c(x) ∏
j∈n, cj=0

(x − κj).

Since c is in the Goppa-code, the polynomial g divides f̃c(x). By assumption
g(κi) �= 0, i ∈ n, and therefore g and ∏j(x − κj) are relatively prime. Hence g
divides f ′c . On the other hand, since we are in characteristic 2, we deduce that

f ′c(x) = ∑
i∈w+1

iγix
i−1

= ∑
i≡1 mod 2

γix
i−1

= ∑
i∈u+1

γ2i+1x
2i

=
(

λ0 + λ1x + . . . + λuxu
)2

where u =
(w − 1)/2� and where λi = σ−1(γ2i+1) for 0 ≤ i ≤ u. Here σ

denotes the Frobenius automorphism (that is, λ2
i = γ2i+1). This shows that

f ′c(x) is a square. Thus, since g divides f ′c(x) and since g has no multiple roots,
we deduce that in fact g2 divides f ′c(x). This shows that

2deg g ≤ deg f ′c = w − 1 ≤ d − 1. �

4.6 Alternant-Codes, Goppa-Codes 289

4.6.8Example The polynomial g = x2 + x + 1 ∈ F2[x] is separable, i.e. has no
multiple roots. In order to construct a Goppa-code, we consider the field F8.
We use the irreducible polynomial x3 + x2 + 1 to generate this field. Let α

denote a root of this polynomial, so that α3 = α2 + 1. We label the elements of
F8 as

κ0 = 0,

κ1 = α0 = 1,

κ2 = α1 = α,

κ3 = α2 = α2,

κ4 = α3 = α2 + 1,

κ5 = α4 = α3 + α = α2 + α + 1,

κ6 = α5 = α3 + α2 + α = α + 1,

κ7 = α6 = α2 + α.

The Generalized Reed–Solomon-code GRS6(κ, g), with κ = (κ0, . . . , κ7) is the
set of c ∈ F8

8 such that

∑
i∈8

ci

x − κi
≡ 0 mod g.

In order to find a check matrix for this code, we note that modulo g(x) we have
1
x
≡ x + 1,

1
x + 1

≡ x,
1

x + α
≡ α3x + α,

1
x + α2 ≡ α6x + α2,

1
x + α3 ≡ α6x + α,

1
x + α4 ≡ α5x + α4,

1
x + α5 ≡ α3x + α4,

1
x + α6 ≡ α5x + α2 mod g(x),

which can be verified easily (for a way to actually compute these polynomials,
we refer to 5.2.8). Thus,

∆̃ =

(
1 0 α α2 α α4 α4 α2

1 1 α3 α6 α6 α5 α3 α5

)

=

(
1 0 α α2 α α2 + α + 1 α2 + α + 1 α2

1 1 α2 + 1 α2 + α α2 + α α + 1 α2 + 1 α + 1

)
is a check matrix. Using the basis of F8 over F2 consisting of the elements
1, α, α2, we can rewrite this matrix over F2 as⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 1 0
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1
1 1 1 0 0 1 1 1
0 0 0 1 1 1 0 1
0 0 1 1 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

290 4. Cyclic Codes

This matrix has rank 6. Using Gaussian elimination, it can be brought into the
form

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 1
0 1 0 0 0 1 0 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

so that a generator matrix of the Goppa-code is

Γ =

(
1 1 1 1 0 1 0 0
1 1 0 0 1 0 1 1

)
.

It is easy to check that this code has minimum distance 5, as predicted by
the previous theorem. Thus, we have found an (8, 2, 5)-code. As we can see
from 2.2.13, this code is optimal. �

4.6.9 Theorem BCH-codes in the narrow sense are Goppa-codes.

Proof: Let C be a BCH-code in the narrow sense over Fq with length n =
qm − 1 and designed distance δ. Consider a primitive n-th root of unity ξ.
Then c ∈ Fn

q is contained in C if and only if

∑
i∈n

ci(ξ j)i = 0, 1 ≤ j ≤ δ − 1,

holds true.
For κ = (1, ξ−1, ξ−2, . . . , ξ−(n−1)) and g = xδ−1 consider the Goppa-code

GOq(κ, g). Then c ∈ Fn
q is contained in GOq(κ, g) if and only if

∑
i∈n

ci
xn − 1
x − ξ−i ≡ 0 mod I(g).

Using the identity

xn − 1
x − ξ−i = ξ i 1− (ξ ix)n

1− ξ ix
= ξ i ∑

l∈n
(ξ ix)l = ∑

l∈n
ξ i(l+1)xl ,

this condition can be rephrased as

∑
i∈n

ci ∑
l∈n

ξ i(l+1)xl ≡ 0 mod I(g),

which is equivalent to

∑
l∈n

(
∑
i∈n

ci(ξ l+1)i

)
xl ≡ 0 mod I(g).

4.6 Alternant-Codes, Goppa-Codes 291

Thus c is an element of GOq(κ, g) if and only if

∑
i∈n

ci(ξ l+1)i = 0, 0 ≤ l ≤ δ − 2,

which means that c is an element of C. �

One can show that not every BCH-code is a Goppa-code (Exercise 4.6.2).
The check matrix of a code that restricts to a Goppa-code GOq(κ, g) can be

deduced directly from its definition. For this purpose we form the inverse of
x − κi in Fq[x]/I(g),

(x − κi)−1 = − g(x)− g(κi)
x − κi

g(κi)−1. 4.6.10

This shows that c ∈ Fn
q is contained in GOq(κ, g) if and only if

∑
i∈n

ci
g(x) − g(κi)

x − κi
g(κi)−1 = 0 4.6.11

is true in Fq[x]/I(g). For degree reasons, this equation can be considered as
an equation over Fq[x]. The Goppa-polynomial g = ∑r

i=0 gixi is of degree r :=
n − k and it satisfies

g(x)− g(κi)
x − κi

=
r

∑
j=1

gj

j

∑
l=1

xl−1κ
j−l
i =

r

∑
l=1

(
r

∑
j=l

gjκ
j−l
i

)
xl−1, i ∈ n.

An application of 4.6.11 together with comparison of coefficients shows that
c ∈ Fn

q is contained in GOq(κ, g) if and only if c · ∆̃� = 0, where

∆̃ =

⎛⎜⎜⎜⎜⎜⎝
grg(κ0)−1 . . . grg(κn−1)−1

(gr−1 + κ0gr)g(κ0)−1 . . . (gr−1 + κn−1gr)g(κn−1)−1

...
...(

∑r
i=1 κi−1

0 gi

)
g(κ0)−1 . . .

(
∑r

i=1 κi−1
n−1gi

)
g(κn−1)−1

⎞⎟⎟⎟⎟⎟⎠ .

This matrix can be written as a product

∆̃ =

⎛⎜⎜⎜⎜⎝
gr 0 . . . 0
gr−1 gr . . . 0

. . . 0
g1 g2 . . . gr

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

g(κ0)−1 . . . g(κn−1)−1

κ0g(κ0)−1 . . . κn−1g(κn−1)−1

...
...

κr−1
0 g(κ0)−1 . . . κr−1

n−1g(κn−1)−1

⎞⎟⎟⎟⎟⎠ .

Since the first of the two matrices is invertible, the latter is a check matrix of a
code C̃ that restricts to GOq(κ, g). Hence, we have proved the following

292 4. Cyclic Codes

4.6.12 Theorem The code C̃ with check matrix⎛⎜⎜⎜⎜⎝
g(κ0)−1 . . . g(κn−1)−1

κ0g(κ0)−1 . . . κn−1g(κn−1)−1

...
...

κr−1
0 g(κ0)−1 . . . κr−1

n−1g(κn−1)−1

⎞⎟⎟⎟⎟⎠ = Φ(κ) · diag(β),

with κ = (κ0, . . . , κn−1) and β = (g(κ0)−1, . . . , g(κn−1)−1) restricts to a Goppa-
code, i.e. C̃ ∩ Fn

q = GOq(κ, g) with r = deg g. �

Exercises

E.4.6.1 Exercise Describe the Alternant-code over F3 that corresponds to the Gener-
alized Reed–Solomon-code GRS(κ, g) of Exercise 4.5.12.

E.4.6.2 Exercise Let C be the binary cyclic code C of length 15 which is generated by
x2 + x + 1. Show that C is a BCH-code but not a Goppa-code.

E.4.6.3 Exercise Construct a generator matrix of the binary (31, 16, 7)-Goppa-code
with Goppa-polynomial g = x3 + x + 1.

4.7 4.7 The Structure Theorem

In order to prepare a proof of the Structure Theorem for cyclic codes in general,
we have to discuss the module structure of these codes. They are left ideals of
the group algebra of the cyclic group, and left ideals in a group algebra FG are
subspaces that have the group algebra FG as ring of operators. This means
that cyclic codes are FG-left modules. For this reason we briefly recall the
basics from module theory:

Assume that R is a ring with identity element 1R. An R-left module is an
additively written abelian group (M, +), together with an outer multipli-
cation from the left by the elements of the ring R:

R × M → M : (r, m) �→ rm,

which satisfies the following equations:

r(m + m′) = rm + rm′, (r + r′)m = rm + r′m, r(r′m) = (rr′)m, 1Rm = m,

for all r, r′ ∈ R and m, m′ ∈ M. We indicate this by writing

RM.

4.7 The Structure Theorem 293

Correspondingly, we can define R-right modules and develop the theory of
R-right modules.

An important example, for our purposes here, is R := FG and M := L,
a left ideal in the group algebra. The outer multiplication is simply the
multiplication in the group algebra:

FG × L → L : (a, b) �→ ab.

It follows immediately from the definitions of addition and multiplication
in the group algebra that L is an FG-left module. Hence, cyclic codes of
length n over F are FG-left modules in the group algebra FG of the cyclic
group G = 〈(0, . . . , n − 1)〉.

A nonempty subset U of the R-left module M is called a submodule of M if
U, together with the induced addition and multiplication, is itself an R-left
module. In order to prove that a nonempty subset U of M is a submodule
of the R-left module M, it is enough to prove that u0 + u1 ∈ U for all
u0, u1 ∈ U and that ru ∈ U for all r ∈ R and u ∈ U. If U is a submodule of
the R-left module M, then the set consisting of all cosets modulo U

m + U := {m + u | u ∈ U}

forms, together with the two compositions

(m0 + U) + (m1 + U) := (m0 + m1) + U, m0, m1 ∈ M,
r(m + U) := rm + U, r ∈ R, m ∈ M,

an R-left module. It is called the factor module and indicated by

M/U := {m + U | m ∈ M} .

The R-linear closure of a subset T of the R-left module M is the following set
of all finite linear combinations{

r0t0 + . . . + rn−1tn−1
∣∣ n ∈ N, ri ∈ R, ti ∈ T, i ∈ n

}
.

The empty linear combination is the zero element 0M of M. We denote the
R-linear closure of T by 〈T〉. An R-left module M is called finitely generated
if there exists a finite subset T of M such that M = 〈T〉. If |T| = 1 then 〈T〉
is a cyclic module.

Correspondingly, a vector space V over F is called cyclic if there exists some
v ∈ V so that V = Fv = {κv | κ ∈ F}.

294 4. Cyclic Codes

If (Ui)i∈I is a family of submodules of M, then the sum ∑i∈I Ui of these
submodules is the R-linear closure of T :=

⋃
i∈I Ui,

∑
i∈I

Ui :=
〈 ⋃

i∈I

Ui

〉
.

This is the smallest submodule of M which contains Ui for all i ∈ I. The
finite sum U0 + . . . + Us−1 of submodules of M consists of all sums u0 +
. . . + us−1 with ui ∈ Ui, for i ∈ s. The sum U0 + . . . + Us−1 of submodules
of M is called direct if for all ui ∈ Ui the implication

u0 + . . . + us−1 = 0 =⇒ u0 = . . . = us−1 = 0

holds true. The direct sum will be indicated as

U0 ⊕ . . . ⊕Us−1.

The R-left module M is called simple if it has exactly two submodules,
namely {0M} and M. A submodule U �= M of the R-left module M is
called maximal if for any submodule V of M with U ⊆ V ⊆ M either U = V
or V = M holds. Maximal submodules can be characterized in the follow-
ing way: U is a maximal submodule of M if and only if M/U is a simple
module.

Modules are a generalization of the notion of vector spaces. Whereas a
vector space is defined over a field, a module is defined over a ring. The
right kind of mappings between modules are the module homomorphisms.
Let M and N be two R-left modules. A mapping f : M → N is an R-module
homomorphism if f satisfies the conditions

f (m0 + m1) = f (m0) + f (m1), f (rm) = r f (m), r ∈ R, m, m0, m1 ∈ M.

If f : M → N is an R-module homomorphism, then its kernel

ker f := {m ∈ M | f (m) = 0N}
is a submodule of M. Moreover, if U is a submodule of M, then the map-
ping

π : M → M/U : m �→ m + U

is a surjective R-module homomorphism (we also call it an R-module epi-
morphism), with kernel U. It is called the natural projection of M to M/U.
Two R-left modules M and N are called isomorphic if there exists a bijec-
tive R-module homomorphism (we also call it an R-module isomorphism)
f : M → N. When M and N are isomorphic R-modules we also write

M �R N or M � N.

The following is the basic structure theorem for modules. Its specialization to
vector spaces is known to the reader from Linear Algebra:

4.7 The Structure Theorem 295

4.7.1Homomorphism Theorem for Modules Consider two R-left modules M and N,
an R-module homomorphism f : M → N, and π : M → M/ ker f , the natural pro-
jection. Then there is a unique R-module homomorphism f : M/ ker f → N, such
that f = f ◦ π, namely

f (m + ker f) = f (m).

Moreover, f is injective (we also call it an R-module monomorphism), and M/ ker f
is isomorphic to f (M).

Proof: First we prove that the function f defined by f (m + ker f) := f (m) has
the desired properties. It is well-defined since for m0, m1 ∈ M the following
chain of implications is satisfied:

m0 + ker f = m1 + ker f ⇒ m0 − m1 ∈ ker f ⇒ f (m0 − m1) = 0.

Thus f (m0)− f (m1) = 0 or, equivalently, f (m0) = f (m1).
It is easy to prove that f is an R-module homomorphism. In order to show

that it is injective, we verify that its kernel is just 0 + ker f . This is evidently
true, since m + ker f ∈ ker f is equivalent to f (m) = 0, which means that m
belongs to ker f . Finally, from the definition of f it is clear that f = f ◦ π is
satisfied.

If f : M/ ker f → N is an R-module homomorphism with f = f ◦ π, then
necessarily f is uniquely determined by f (m + ker f) = (f ◦ π)(m) = f (m).

If f is surjective, then f is also surjective, whence it is an R-module isomor-
phism. �

Since, according to 4.2.6, the cyclic codes form a lattice with respect to ∩ and
+, the following theorem applies to cyclic codes:

4.7.2First Isomorphism Theorem for Modules If U,V are submodules of the R-left
module M, then

(U + V)/V �R U/(U ∩V).

Proof: It is easy to prove that the mapping µ : U → (U + V)/V defined by
µ(u) := u + V is a surjective R-module homomorphism. Moreover, its kernel
is equal to U ∩ V. Thus, by the Homomorphism Theorem for Modules the
mapping

µ : U/(U ∩V) → (U + V)/V : µ(u + (U + V)) = µ(u) = u + V

is an isomorphism. �

296 4. Cyclic Codes

Since every ideal in a ring R is an R-left module, we directly obtain the

4.7.3 First Isomorphism Theorem for Rings Let I, J be ideals in a ring R. Then

(I + J)/J �R I/(I ∩ J). �

Continuing the examination of modules we state the

4.7.4 Second Isomorphism Theorem for Modules If U ⊆ V are submodules of the
R-left module M then

M/V �R (M/U)/(V/U).

Proof: First we show that the mapping

f : M/U → M/V : m + U �→ m + V

is an R-module epimorphism. It is well-defined, since for all m0, m1 ∈ M the
following chain of implications is true:

m0 + U = m1 + U ⇒ m0 − m1 ∈ U ⊆ V ⇒ m0 + V = m1 + V.

It is evidently surjective, whence f (M/U) = M/V. Let

π : M/U → (M/U)/ ker f

be the natural projection. The Homomorphism Theorem 4.7.1 shows that there
exists exactly one R-left module monomorphism

f : (M/U)/ ker f → M/V

such that f = f ◦ π, where f is the epimorphism M/U → M/V introduced
above. Since f is surjective, f is even an isomorphism. Finally, to confirm the
assertion, we have to show that ker f = V/U. For m ∈ M the element m + U
belongs to ker f if and only if m + V = 0M/V which is equivalent to m ∈ V.
Thus f is an R-left module isomorphism between (M/U)/(V/U) and M/V.

�

We directly obtain the

4.7.5 Second Isomorphism Theorem for Rings Let I, J be ideals in a ring R with I ⊆ J.
Then J/I is an ideal in R/I for which the following is true:

(R/I)/(J/I) �R R/J. �

4.7 The Structure Theorem 297

4.7.6Modular Law If U,V,W are submodules of the R-left module M, and if V ⊆ W
then

(U + V) ∩W = (U ∩W) + (V ∩W).

Proof: Assume that u + v = w, for u ∈ U, v ∈ V, w ∈ W. Since V ⊆ W we
have u = w − v ∈ W, whence u + v ∈ (U ∩W) + V = (U ∩W) + (V ∩W).

Conversely, since (U ∩ W) ⊆ U and (V ∩ W) ⊆ V, the sum (U ∩ W) +
(V ∩W) is contained in U + V and in W + W ⊆ W. �

This implies for group algebra codes, and in particular for cyclic ones:

4.7.7Corollary For cyclic codes C0, C1, C2 ⊆ FG, G = 〈 (0, . . . , n − 1) 〉, the following is
true:

(C0 + C1)/C1 �FG C0/(C0 ∩ C1).

Moreover, if C0 ⊆ C1 ⊆ C2, then

C2/C1 �FG (C2/C0)/(C1/C0)

and, for any C0, C1, C2 such that C1 ⊆ C2, we have

(C0 + C1) ∩ C2 = (C0 ∩ C2) + (C1 ∩ C2). �

The next problem we want to answer is the question how modules, and in par-
ticular cyclic codes, can be composed of submodules and factor modules. For
this purpose we introduce the following notion. A sequence M = (Mi)0≤i≤n

of submodules of an R-left module M is called a normal series of M, if

M = M0 ⊇ M1 ⊇ . . . ⊇ Mn = {0M} .

The factor modules Mi/Mi+1 for i ∈ n are the factors of M. Normal series of
binary cyclic codes are, for example (cf. 4.2.7),

F7
2 ⊃ P7 ⊃ S3 ⊃ {0} and F7

2 ⊃ H′
3 ⊃ W7 ⊃ {0}.

A normal series M′ = (M′
j)0≤j≤m is a refinement of the normal series M =

(Mi)0≤i≤n if M is a subseries (or subsequence) of M′. Two normal series
M = (Mi)0≤i≤n and M′ = (M′

j)0≤j≤m of M are called isomorphic if n = m and
if there exists a permutation π ∈ Sn such that

Mi/Mi+1 �R M′
π(i)/M′

π(i)+1, i ∈ n.

(Recall that Sn consists of all permutations of the set n := {0, 1 . . . , n − 1}.)

4.7.8Theorem (Schreier) Any two normal series of an R-left module M have isomorphic
refinements.

298 4. Cyclic Codes

Proof: Let M = (Mi)0≤i≤n and M′ = (M′
j)0≤j≤m be two normal series of M.

If n = 1 or m = 1 then the assertion is trivial. Hence, we assume that both
n > 1 and m > 1. We introduce further submodules of M by

Mi,j := Mi + (Mi−1 ∩ M′
j), 1 ≤ i ≤ n, 0 ≤ j ≤ m,

M′
j,i := M′

j + (M′
j−1 ∩ Mi), 1 ≤ j ≤ m, 0 ≤ i ≤ n.

Then
Mi−1 = Mi,0 ⊇ Mi,1 ⊇ . . . ⊇ Mi,m = Mi, 1 ≤ i ≤ n,
M′

j−1 = M′
j,0 ⊇ M′

j,1 ⊇ . . . ⊇ M′
j,n = M′

j, 1 ≤ j ≤ m.

From these submodules we form the two normal series

M = M1,0 ⊇ . . . ⊇ M1,m = M2,0 ⊇ M2,1 ⊇ . . . ⊇ Mn,m = {0M}
M = M′

1,0 ⊇ . . . ⊇ M′
1,n = M′

2,0 ⊇ M′
2,1 ⊇ . . . ⊇ M′

m,n = {0M}

which have the same length. In order to show that the two series are isomor-
phic, we verify that Mi,j−1/Mi,j �R M′

j,i−1/M′
j,i for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The following is derived from the definition of Mi,j, the fact that Mi−1 ∩ M′
j ⊆

Mi−1 ∩ M′
j−1, by 4.7.2, and by 4.7.6: (In order to make the notation more clear,

we sometimes use fractions to indicate factor modules.)

Mi,j−1/Mi,j =
Mi + (Mi−1 ∩ M′

j−1)

Mi + (Mi−1 ∩ M′
j)

=
Mi + (Mi−1 ∩ M′

j) + (Mi−1 ∩ M′
j−1)

Mi + (Mi−1 ∩ M′
j)

�R
Mi−1 ∩ M′

j−1

[Mi + (Mi−1 ∩ M′
j)] ∩ (Mi−1 ∩ M′

j−1)

=
Mi−1 ∩ M′

j−1

(Mi ∩ M′
j−1) + (Mi−1 ∩ M′

j)

In the same way we show that

M′
j,i−1/M′

j,i �R
M′

j−1 ∩ Mi−1

(M′
j ∩ Mi−1) + (M′

j−1 ∩ Mi)
,

which completes the proof. �

A normal series (Mi)0≤i≤n of M is said to be a composition series of M if
Mi+1 is maximal in Mi for i ∈ n. The two normal series mentioned above,

F7
2 ⊃ P7 ⊃ S3 ⊃ {0} and F7

2 ⊃ H′
3 ⊃ W7 ⊃ {0},

are composition series. This follows from their definition in 4.2.7. For example,

P7 = I(x + 1)/I(x7 − 1) ⊃ I((x3 + x + 1)(x + 1))/I(x7 − 1) = S3

4.7 The Structure Theorem 299

and so there is no ideal J such that P7 ⊃ J ⊃ S3, since x3 + x + 1 is irreducible.
Moreover, by Schreier’s Theorem, these two composition series are isomor-
phic. In fact it follows from the Second Isomorphism Theorem 4.7.4 that

F7
2/P7 =

(
I(1)/I(x7 − 1)

)
/
(
I(x + 1)/I(x7 − 1)

)
� I(1)/I(x + 1),

P7/S3 =
(
I(x + 1)/I(x7 − 1)

)
/
(
I((x3 + x + 1)(x + 1))/I(x7 − 1)

)
� I(x + 1)/I((x3 + x + 1)(x + 1)),

S3/{0} =
(
I((x3 + x + 1)(x + 1))/I(x7 − 1)

)
/
(
I(x7 − 1)/I(x7 − 1)

)
� I((x3 + x + 1)(x + 1))/I(x7 − 1),

F7
2/H′

3 =
(
I(1)/I(x7 − 1)

)
/
(
I(x3 + x2 + 1)/I(x7 − 1)

)
� I(1)/I(x3 + x2 + 1),

H′
3/W7 =

(
I(x3 + x2 + 1)/I(x7 − 1)

)
/
(
I((x3 + x2 + 1)(x3 + x + 1))/I(x7 − 1)

)
� I(x3 + x2 + 1)/I((x3 + x2 + 1)(x3 + x + 1)),

W7/{0} =
(
I((x3 + x2 + 1)(x3 + x + 1))/I(x7 − 1)

)
/
(
I(x7 − 1)/I(x7 − 1)

)
� I((x3 + x2 + 1)(x3 + x + 1))/I(x7 − 1).

Recall from Exercises 3.5.10 and 4.7.11 that for relatively prime polynomials
f , g ∈ F[x] we have

I(f) + I(g) = I(1) and I(f g) = I(f) ∩ I(g).

In this case, the First Isomorphism Theorem 4.7.3 implies that

(I(f)/I(f g)) �F[x] (I(1)/I(g)).

In particular, the two composition series

F7
2/P7 � W7/{0}, P7/S3 � H′

3/W7, S3/{0} � F7
2/H′

3.

are isomorphic, in accordance with Schreier’s Theorem.

If (Mi)0≤i≤n is a composition series of the R-left module M, then we say
that M is a module of finite length n = �R(M). In the sequel, all modules will
have finite length.

4.7.9Lemma If M is an R-left module of finite length and U a submodule of M, then both
U and M/U are of finite length and

�R(M) = �R(U) + �R(M/U).

300 4. Cyclic Codes

Proof: Let M be a composition series of M. From 4.7.8 we get that M and
the normal series M ⊇ U ⊇ {0M} have isomorphic refinements. By deleting
repeated submodules, we obtain two composition series of M, at least one of
which contains the submodule U. Assume that this series is given by

M = M0 ⊃ M1 ⊃ . . . ⊃ Mk = U ⊃ Mk+1 ⊃ . . . ⊃ Mn = {0M} .

Consequently, U has the composition series

U = Mk ⊃ Mk+1 ⊃ . . . ⊃ Mn = {0M} .

From 4.7.4 it follows that

(Mi/U)/(Mi+1/U) �R Mi/Mi+1, i ∈ k,

whence Mi+1/U is maximal in Mi/U. Thus,

M/U = M0/U ⊃ M1/U ⊃ . . . ⊃ Mk/U = U/U = {0M/U}

is a composition series of M/U. Summarizing, we have proved that U is of
length n − k and M/U is of length k. �

4.7.10 Lemma If U0, . . . ,Uk−1 are submodules of an R-left module M, which is of finite
length, then also ∑i∈k Ui is of finite length and

�R

(
∑
i∈k

Ui

)
≤ ∑

i∈k
�R(Ui).

Proof: Since Uj and ∑i∈k Ui are submodules of M, they are of finite length. For
j ∈ k + 1 let Vj = ∑i∈j Ui, then

∑
i∈k

Ui = Vk ⊇ Vk−1 ⊇ . . . ⊇ V0 = {0M}

is a normal series of ∑i∈k Ui. Moreover, for i ∈ k let

Ui = Ui,0 ⊃ Ui,1 ⊃ . . . ⊃ Ui,ni
= {0M}

be a composition series of Ui of length �R(Ui) = ni. In the normal series of
∑i∈k Ui we replace the consecutive submodules

Vi ⊇ Vi−1

for 1 ≤ i ≤ k by

Vi−1 + Ui,0 ⊇ Vi−1 + Ui,1 ⊇ . . . ⊇ Vi−1 + Ui,ni
.

Furthermore, we identify Vi−1 + Ui,0 with Vi + Ui+1,ni+1, for 1 ≤ i ≤ k− 1. This
way, we obtain a refinement of a composition series of ∑i∈k Ui which consists

4.7 The Structure Theorem 301

of n0 + . . . + nk−1 modules. The factors of this refined series are all either
simple or trivial since for 1 ≤ i ≤ k and j ∈ ni we have

Vi−1 + Ui,j

Vi−1 + Ui,j+1
=

Vi−1 + Ui,j+1 + Ui,j

Vi−1 + Ui,j+1

�R
Ui,j

(Vi−1 + Ui,j+1) ∩Ui,j
=

{
Ui,j/Ui,j+1
Ui,j/Ui,j

depending on whether (Vi−1 + Ui,j+1) ∩ Ui,j is equal to Ui,j+1 or Ui,j. Delet-
ing repeated modules in the series, we obtain a composition series of ∑i∈k Ui

whose length is at most n0 + . . . + nk−1. �

The rings R which we consider here are in many cases polynomial rings
over fields, so we can make additional assumptions: We suppose that R is a
commutative ring with 1 which contains no zero divisors, and has at least two
elements, so that 0 �= 1. This means that the ring R is an integral domain. More-
over, we assume that each ideal can be generated by a single element, i.e. the
ring is a principal ideal domain; an example is the ring of integers (Z, +, ·), an-
other one is F[x], as we know.

Recall that a ∈ R is a divisor of b ∈ R if there exists c ∈ R such that ac = b,
this is indicated by a | b. An element u ∈ R \ {0} which is a divisor of 1 is
called a unit. Two elements a, b ∈ R are called relatively prime if the common
divisors of a and b are all units. The associates of a ∈ R are those b ∈ R which
are of the form b = au where u is a unit in R. An element p ∈ R \ {0} which
is not a unit is called a prime element of R if, for any a, b ∈ R, p | ab implies
p | a or p | b. An element p ∈ R \ {0} which is not a unit is called irreducible
if every divisor of p is either a unit or an associate of p. Any prime element is
irreducible. In a principal ideal domain, the converse is true, i.e. p is prime if
and only if p is irreducible.

4.7.11Theorem If ζ is a prime element in a principal ideal domain R, and n denotes a
positive integer, then the factor ring R := R/I(ζn) contains exactly n + 1 ideals, and
these ideals form the chain

R ⊃ I(ζ) ⊃ I(ζ2) ⊃ . . . ⊃ I(ζn) =
{
0
}

,

where r := r + I(ζn) for all r ∈ R.

Here I(r) denotes the ideal generated by r in R, I(r) = Rr, whereas I(r) is the
ideal Rr in R. Moreover,

I(ζ j) = Rζ j = Rζ j/I(ζn) = I(ζ j)/I(ζn).

Proof: Let π : R → R : r �→ r = r + I(ζn) be the canonical projection, and let J
be an ideal in R. Then π−1(J) is an ideal in R (see Exercise 4.2.5), whence it is of

302 4. Cyclic Codes

the form I(q) for some q ∈ R. Since π is surjective, we have J = π(π−1(J)) =
π(I(q)) = I(q). Choose m ∈ N∗ maximal with the property ζm | q. Hence,
there exists r ∈ R such that q = ζmr and ζ is not a divisor of r. Applying
Exercise 4.7.10, we deduce that ζ and r are relatively prime. Thus ζn and r
are also relatively prime, and from Exercise 4.7.11 we deduce that there exist
x, y ∈ R such that rx + ζny = 1. Consequently, 1 − rx ∈ I(ζn) and 1 = rx. This
shows that r is a unit in R and, finally, we get that I(q) = I(ζmr) = I(ζm). Since
J was an ideal in R chosen arbitrarily, each ideal in R is of the form I(ζ�) for
some � ∈ n + 1. Obviously these ideals form a chain as indicated above. �

From Exercise 4.7.2 we know that any ideal of a ring R with 1 is both an
R-left and R-right module. In particular, the additive group (R, +) itself can
be considered as both an R-left and an R-right module.

4.7.12 Theorem If the R-left module R and the R-right module R both have exactly one
composition series (of finite length) then every finitely generated R-left module M is a
direct sum of cyclic submodules.

Proof: For m ∈ M the cyclic submodule 〈{m}〉 = Rm of M is isomorphic to a
factor module of the R-left module R. In order to prove this, let

ψ : R → Rm : r �→ rm

be the natural R-module epimorphism, then, according to 4.7.1, Rm is isomor-
phic to R/ ker ψ. Since R is of finite length, so is Rm.

Now assume that M = 〈{m0, . . . , mk−1}〉, then M = Rm0 + . . . + Rmk−1.
According to 4.7.10, it is also of finite length and

�R(M) ≤ ∑
i∈k

�R(Rmi).

In addition, if the elements m0, . . . , mk−1 of M are chosen in such a way that
∑i∈k �R(Rmi) is minimal, then M is the direct sum Rm0 ⊕ . . . ⊕ Rmk−1. We
only have to prove that this sum is direct. Assume on the contrary that

0 = ∑
i∈k

rimi

and that the set I := {i ∈ k | rimi �= 0} is not empty. Since the R-right module
R has exactly one composition series, among the R-right modules riR, i ∈ I,
there is a largest one. Without loss of generality we take this to be r0R. Con-
sequently, there exist qi ∈ R for i ∈ I such that ri = r0qi. Let qi = 0, for i �∈ I.
Then

0 = ∑
i∈k

rimi = ∑
i∈k

r0qimi = r0

(
m0 +

k−1

∑
i=1

qimi

)
=: r0m′

0.

4.7 The Structure Theorem 303

Since

m0 = m′
0 −

k−1

∑
i=1

qimi ∈ 〈
{
m′

0, m1, . . . , mk−1
}
〉,

the set
{
m′

0, m1, . . . , mk−1
}

also generates M. Now we prove that �R(Rm′
0) <

�R(Rm0). This yields a contradiction to the fact that the generators m0, . . . ,
mk−1 were chosen such that ∑i∈k �R(Rmi) is minimal. Hence, our assumption
I �= ∅ does not hold and, consequently, M is the direct sum of the cyclic mod-
ules Rmi for i ∈ k.

Let ψ : R → Rm0 : r �→ rm0 and ψ′ : R → Rm′
0 : r �→ rm′

0 be the natural R-
module epimorphisms. Since ker ψ and ker ψ′ are R-submodules of R and the
R-left module R has exactly one composition series, we have ker ψ ⊆ ker ψ′

or ker ψ′ ⊆ ker ψ. From the fact that r0m0 �= 0 and r0m′
0 = 0 we deduce that

r0 �∈ ker ψ and r0 ∈ ker ψ′, whence ker ψ ⊂ ker ψ′. Consequently, �R(ker ψ) <

�R(ker ψ′). According to 4.7.1, Rm0 and Rm′
0 are isomorphic to R/ ker ψ and

R/ ker ψ′, respectively, and for that reason, together with 4.7.9, we obtain

�R(Rm′
0) = �R(R)− �R(ker ψ′) < �R(R)− �R(ker ψ) = �R(Rm0). �

For instance the ring R from Theorem 4.7.11 satisfies the assumptions of the
last theorem.

Now we are going to describe the structure of the set of cyclic codes in Fn
q .

We again assume that p is the characteristic of the field and that n = psr,
where p � r. Furthermore, we suppose that xr − 1 = ∏i∈l fi is the decompo-
sition of xr − 1 into irreducible polynomials over Fq. According to 4.2.9, we
have

xn − 1 = ∏
i∈l

(fi)
ps

= ∏
i∈l

fi
(
xps)

.

Since the irreducible factors fi of xr − 1 are pairwise different, they and there-
fore also the ideals which are generated by their powers (fi)ps = fi

(
xps)

are
relatively prime. Thus, the Chinese Remainder Theorem implies

4.7.13Corollary The residue class ring Fq[x]/I(xn − 1) has the decomposition

Fq[x]/I(xn − 1) � ×
i∈l

Fq[x]/I(f ps

i). �

The structure of the summands in this decomposition is shown in the next

4.7.14Theorem If f denotes an irreducible factor of xr − 1, then:

The residue class ring Fq[x]/I(f) is a field and also an Fq-vector space of dimen-
sion deg f .

304 4. Cyclic Codes

The residue class ring Fq[x]/I(f ps
) possesses a unique composition series

Fq[x]/I(f ps
) ⊃ I(f)/I(f ps

) ⊃ . . . ⊃ I(f ps−1)/I(f ps
) ⊃ 0.

All factors of this series are simple submodules and also minimal ideals of the ring
Fq[x]/I(f ps

).

Proof: The first assertion was already proved in 3.1.6 and 3.1.7. The second
assertion was shown in 4.7.11. Here we want to give a second proof: First
we note that because f is irreducible, the divisors of f ps

are of the form f j,
0 ≤ j ≤ ps. The introductory remark in Section 4.2 (or Exercise 4.2.6) implies
that every ideal of Fq[x]/I(f ps

) has the form I(f j)/I(f ps
), 0 ≤ j ≤ ps. For each

of the factors of the given series we deduce from the Second Isomorphism
Theorem for Rings 4.7.5 that(

I(f j)/I(f ps
)
)
/
(
I(f j+1)/I(f ps

)
)
� I(f j)/I(f j+1), j ∈ ps.

The mapping

Fq[x] → I(f j)/I(f j+1) : g �→ g f j + I(f j+1), j ∈ ps,

is a ring epimorphism with kernel I(f), and hence, by the Homomorphism
Theorem,

Fq[x]/I(f) � I(f j)/I(f j+1), j ∈ ps.

Thus each factor of the series is a field, and hence a minimal ideal of a residue
class ring Fq[x]/I(f ps

). �

In every ring the minimal ideals (minimal with respect to set theoretic in-
clusion) and the maximal ideals are of particular importance as well as the in-
decomposable ones, i.e. the ideals that cannot be expressed as direct sums of
different nonzero ideals. A cyclic code (of length n) is called indecomposable if
it is indecomposable as an ideal in Fq[x]/I(xn − 1).

According to 4.2.6, the lattice of divisors of xn − 1 over Fq is anti-isomor-
phic to the lattice of cyclic codes of length n. This fact permits the characteri-
zation of minimal and maximal cyclic codes:

4.7.15 Corollary A cyclic code of length n = ps · r, with p � r, over a finite field of char-
acteristic p with generator polynomial g is minimal (resp. maximal) if g is a maximal
(resp. minimal) divisor of

xn − 1 = ∏
i∈l

(fi)ps
,

which means that g = (xn − 1)/ fi (resp. g = fi), for some i. Hence, if l is the number
of distinct irreducible factors of xr − 1 then there are exactly l maximal (resp. minimal)
cyclic codes of length n. �

4.7 The Structure Theorem 305

4.7.16Example (Continuation of 4.2.7) The minimal binary cyclic codes of length 7
are the repetition code W7 and the two simplex-codes S3 and S′

3. The parity
check code P7 and the two Hamming-codes H3 and H′

3 are the maximal binary
cyclic codes of length 7. This agrees with the fact that x7 − 1 ∈ F2[x] has 3
different irreducible factors. �

Summarizing, we obtain the announced structural description of cyclic codes:

4.7.17The Structure Theorem for Cyclic Codes For 0 ≤ j ≤ ps and i ∈ l let

Ci,j := I(gi,j)/I(xn − 1)

denote the cyclic codes of length n over Fq with generator polynomials

gi,j := f ps

0 · · · f ps

i−1 · f j
i · f ps

i+1 · · · f ps

l−1.

These codes have the following structure:

1. The decomposition
Fq[x]/I(xn − 1) =

⊕
i∈l

Ci,0

is a decomposition of Fq[x]/I(xn − 1) into indecomposable ideals. Each Ci,0 is
called a block of Fq[x]/I(xn − 1).

2. Each of these blocks possesses the unique composition series

Ci,0 ⊃ Ci,1 ⊃ . . . ⊃ Ci,ps−1 ⊃ Ci,ps = 0, i ∈ l.

3. Every cyclic code C of length n over Fq can be decomposed as

C =
⊕
i∈l

(Ci,0 ∩ C).

4. Every indecomposable cyclic code of length n over Fq is of the form Ci,j, where
j ∈ ps and i ∈ l. In particular, each minimal cyclic code of length n over Fq is of
the form Ci,ps−1.

5. Every cyclic (n, k)-code C over Fq can be decomposed as

C =
⊕
i∈I

Ci,ji ,

into indecomposable cyclic codes Ci,ji , where I ⊆ l and ji ∈ ps for each i ∈ I , in
which case it has the Fq-dimension

k = ∑
i∈I

(ps − ji) · deg fi.

306 4. Cyclic Codes

Proof: The Chinese Remainder Theorem provides the ring isomorphism

Fq[x]/I(xn − 1) → ×
i∈l

Fq[x]/I(f ps

i),4.7.18

which is defined by

g + I(xn − 1) �→ (g + I(f ps

0), . . . , g + I(f ps

l−1)).

The inverse image of (0, . . . , 0, I(f j
i)/I(f ps

i), 0, . . . , 0) under this mapping is the
cyclic code Ci,j. In particular, the cyclic code Ci,0 is the inverse image of

(0, . . . , 0, Fq [x]/I(f ps

i), 0, . . . , 0), i ∈ l.

By 4.7.14, the Fq-algebra Fq[x]/I(f ps

i) has the unique composition series

Fq[x]/I(f ps

i) ⊃ I(fi)/I(f ps

i) ⊃ . . . ⊃ I(f ps−1
i)/I(f ps

i) ⊃ 0, i ∈ l.

Since a decomposable ideal has more than one composition series, it follows
that Fq[x]/I(f ps

i) and hence Ci,0 is indecomposable. The inverse image of this
composition series furnishes the composition series of Ci,0. The first assertion
follows from 4.7.18, which states that the ring Fq[x]/I(xn − 1) is isomorphic to
the sum of the blocks Ci,0.

Now we consider an arbitrary cyclic code C of length n over Fq with gen-
erator polynomial g. According to 4.2.9, g can be written as a product of irre-
ducible polynomials in the form

g = ∏
i∈l

f ji
i

with uniquely determined exponents ji with 0 ≤ ji ≤ ps for i ∈ l. By 4.2.6, the
intersection Ci,0 ∩ C of cyclic codes is again cyclic with generator polynomial

lcm(gi,0, g) = f ji
i gi,0 = gi,ji ,

and so C ∩ Ci,0 = Ci,ji . Also by 4.2.6, the sum

Ĉ = ∑
i∈l

Ci,ji

is cyclic, with generator polynomial

ĝ = gcd{ f ji
i gi,0 | i ∈ l} = ∏

i∈l
f ji
i = g.

This shows that Ĉ = C. Moreover, the sum ∑i∈l Ci,ji is direct, since the sum of
the Ci,0 is direct and Ci,j is contained in Ci,0. This proves the third assertion.

For ji = ps we have Ci,ji = 0, whence C can be written as a direct sum of
indecomposable cyclic codes Ci,ji whose dimension is (ps − ji) · deg fi by 4.2.5.
This proves the assertion on the dimensions.

4.7 The Structure Theorem 307

Finally, let C be an indecomposable cyclic code of length n over Fq. Because
of the third assertion, C must be contained in a block Ci,0, and so C = Ci,j for
some j, according to the second assertion. Conversely, we already know that
each code of the form Ci,j is indecomposable. Particular indecomposable codes
are the minimal cyclic codes. They are of the form Ci,ps−1. �

Because of their importance, let us summarize the assertions of this theo-
rem once again:

Fq[x]/I(xn − 1) possesses a decomposition into a direct sum

Fq[x]/I(xn − 1) =
⊕
i∈l

Ci,0

of indecomposable cyclic codes Ci,0.

Each block Ci,0 has a unique decomposition series.

Every indecomposable cyclic code of length n over Fq is, up to isomor-
phism, contained in a block Ci,0. (The isomorphism is due to 4.7.13.)

Up to isomorphism, every cyclic code C of length n over Fq has a direct
sum decomposition

C =
⊕
i∈I

Ci,

where I ⊆ l is an index set and Ci is a cyclic code contained in the block
Ci,0.

We rephrase the Structure Theorem for codes of p-regular length:

4.7.19Corollary Assume that p � n.

Every indecomposable cyclic code of length n over Fq is minimal and isomorphic
to a block Ci,0, i ∈ l.

Every block Ci,0 is isomorphic to a field.

A cyclic code of length n over Fq is a direct sum of minimal cyclic codes.

Up to isomorphism, every cyclic code of length n over Fq is a direct summand of
Fq[x]/I(xn − 1).

Let qm ≡ 1 mod n. Then every minimal cyclic code of length n over Fqm is one-
dimensional. �

The proof of this is recommended as Exercise 4.7.18. An R-left module M is
said to be semi-simple if it can be decomposed as a direct sum of simple R-
modules. We say that the ring R is semi-simple if it is semi-simple as a left
module over itself, that is

R �R
⊕
i∈I

Li

308 4. Cyclic Codes

where Li is a simple submodule of R, i.e. a minimal left ideal of R.
The last corollary means that the residue class ring R = Fq[x]/I(xn − 1) is

semi-simple for p � n. That is, every cyclic code of length n over Fq is a direct
summand of R. Therefore, these cyclic codes are sometimes also called semi-
simple. More generally, for p � n each R-left module is a direct summand of R
(as an R-left module). By contrast, the residue class ring Fq[x]/I(xn − 1), with
p | n, is not semi-simple, by 4.7.17.

4.7.20 Example In the case q = p and n = p − 1 we have the decomposition

xn − 1 =
p−1

∏
i=1

(x − i)

over Fp. Hence, by 4.7.17, the residue class ring Fp[x]/I(xn − 1) is isomorphic
to the direct sum

Fp [x]/I(xp−1 − 1) =
⊕

i∈p−1

I(gi)/I(xp−1 − 1)

of cyclic codes with generator polynomials

gi(x) =
xp−1 − 1
x − i − 1

.

All these direct summands are Reed–Solomon-codes of dimension 1 and min-
imum distance n = p − 1. �

4.7.21 Examples (Continuation of 4.2.7 and 4.7.16)

1. Using the notation from 4.2.7 for the binary cyclic codes of length 7, we
obtain:

F2[x]/I(x7 − 1) = W7 ⊕ S3 ⊕ S′
3

H3 = W7 ⊕ S3

H′
3 = W7 ⊕ S′

3

P7 = S3 ⊕ S′
3.

2. Now we consider the binary cyclic codes of length n = 28 = 7 · 4. In this
case we get

F2[x]/I(x28 − 1) = C0,0 ⊕ C1,0 ⊕ C2,0

where

C0,0 = I(f1(x4) f2(x4))/I(x28 − 1)

= I((x12 + x4 + 1)(x12 + x8 + 1))/I(x28 − 1),

4.7 The Structure Theorem 309

C1,0 = I(f0(x4) f2(x4))/I(x28 − 1)

= I((x4 + 1)(x12 + x8 + 1))/I(x28 − 1),

C2,0 = I(f0(x4) f1(x4))/I(x28 − 1)

= I((x4 + 1)(x12 + x4 + 1))/I(x28 − 1).

Each block Ci,0 has a unique composition series of length 4. �

From Exercise 4.5.2 together with 4.7.17 we obtain a characterization of all
cyclic codes that possess an idempotent generator:

4.7.22Corollary Assume that C is a cyclic code of length n over Fq. Then C possesses
an idempotent generator if and only if C is a direct summand of Fq[x]/I(xn − 1).
Using the notation of 4.7.17, the code C has an idempotent generator if and only if
C =

⊕
i∈I Ci,0, where I is a nonempty subset of l. In particular, in the case when

p � n, every cyclic code of length n over Fq possesses an idempotent generator.

Proof: Since C is cyclic of length n over Fq, it is of the form I(g)/I(xn − 1),
where g ∈ Fq[x] is a divisor of xn − 1.

If C possesses an idempotent generator e, then C = (Fq[x]/I(xn − 1)) · e.
If e = 1, then C = Fq[x]/I(xn − 1). Otherwise, 1 = e + (1 − e) is a non-
trivial decomposition of the identity element, and C is a direct summand of
Fq[x]/I(xn − 1) according to the second part of Exercise 4.5.2. Thus by the first
part of 4.7.17, it is a direct sum of blocks Ci,0.

Conversely, if C is a direct summand of Fq[x]/I(xn − 1), then there exists
C′ such that Fq[x]/I(xn − 1) = C ⊕ C′. Consequently, 1 = e + e′ with e ∈ C
and e′ ∈ C′, and according to the first part of Exercise 4.5.2 the idempotent e is
even an idempotent generator of C = (Fq[x]/I(xn − 1)) · e.

If p � n, then according to 4.7.19 each cyclic code of length n over Fq is
equivalent to a direct summand of Fq[x]/I(xn − 1). �

4.7.23Example (Continuation of 4.7.21 and 4.5.2) Let us now consider binary cyclic
codes of length n = 28. In the notation of 4.7.21 we have

F2[x]/I(x28 − 1) = C0,0 ⊕ C1,0 ⊕ C2,0.

Putting y = x4, the idempotent generators of indecomposable binary cyclic
codes of length 28 are:

code idempotent generator
C0,0 y6 + y5 + y4 + y3 + y2 + y + 1
C1,0 y4 + y2 + y + 1
C2,0 y6 + y5 + y3 + 1 �

310 4. Cyclic Codes

Exercises

E.4.7.1 Exercise Prove that any nonempty subset U of an R-left module M is a sub-
module of M if and only if

u1 + u2 ∈ U and ru ∈ U, ∀ u1, u2, u ∈ U, r ∈ R.

E.4.7.2 Exercise Prove that any ideal of a ring R with 1 is both an R-left and an R-right
module.

E.4.7.3 Exercise Let M be an R-left module and T ⊂ M. Prove that the R-linear
closure of T is a submodule of M.

E.4.7.4 Exercise Assume that U is a submodule of the R-left module M. Prove that
the factor module M/U is indeed an R-left module. Moreover, verify that the
natural projection π : M → M/U is a surjective R-module homomorphism.

E.4.7.5 Exercise Prove that a submodule U of the R-left module M is maximal if and
only if the factor module M/U is simple.

E.4.7.6 Exercise Let f : M → N be an R-module homomorphism. Prove that the
image f (M) is a submodule of N, and that the kernel of f is a submodule of
M.

E.4.7.7 Exercise Prove that the factors of a refinement of a composition series are
either trivial or simple.

E.4.7.8 Exercise Prove that any prime element p of a integral domain is irreducible.

E.4.7.9 Exercise Prove that any irreducible element p of a principal ideal domain is
prime.

E.4.7.10 Exercise Let p be an irreducible element of an integral domain R. If p is not a
divisor of a ∈ R, then p and a are relatively prime.

E.4.7.11 Exercise Prove that for arbitrary elements a, b of the principal ideal domain R
the following facts are equivalent:

a and b are relatively prime,

4.8 Codes of p-Power Block Length 311

R = Ra + Rb,

there exist r, s ∈ R such that 1 = ra + sb.

E.4.7.12Exercise Assume that the decomposition of xn − 1 into irreducible factors over
Fq is given by

xn − 1 = ∏
i∈l

(fi)
ps

.

Show that the ideals I(f ps

i) for i ∈ l are pairwise relatively prime.

E.4.7.13Exercise For f ∈ F[x] show that F[x]/I(f) is an F-algebra.

E.4.7.14Exercise Show that a decomposable ideal possesses more than a single com-
position series.

E.4.7.15Exercise Describe the m-th order binary Hamming-code as a direct sum of
minimal cyclic codes.

E.4.7.16Exercise Show that the polynomials gi,j and (xr − 1)jgi,0 generate the same
cyclic code of length n (0 ≤ j ≤ ps).

E.4.7.17Exercise Give all indecomposable binary cyclic codes of length n = 9.

E.4.7.18Exercise Verify 4.7.19.

E.4.7.19Exercise Assume that Ci1,ps−1, . . . , Ciu,ps−1 is a complete system of representa-
tives of the isomorphism classes (not to be mixed up with the isometry classes!)
of minimal cyclic codes as ideals in Fq[x]/I(xn − 1). Prove that there are ex-
actly u(ps − 1) isomorphism classes of indecomposable cyclic codes of length
n over Fq.

4.84.8 Codes of p-Power Block Length

In this section we consider cyclic codes of block length n = ps over Fq, where p
is the characteristic of the field Fq. Thus xn − 1 = xps − 1 = (x − 1)ps

, i.e. the

312 4. Cyclic Codes

divisors of xn − 1 are of the form (x − 1)t, t ∈ ps + 1, and the cyclic codes
correspond to the ideals

I(x − 1)t := I((x − 1)t) = (I(x − 1))t.

This case was briefly mentioned in Corollary 4.2.14.

4.8.1 Theorem

1. The set of all cyclic codes of length n = ps over Fq forms the composition series

Fq[x]/I(xps − 1) = C0 ⊃ C1 ⊃ . . . ⊃ Cps−1 ⊃ Cps = 0,

where the code Ct has generator polynomial (x − 1)t.

2. The code Ct is of dimension k = ps − t and has the two Fq-bases{
xi(x − 1)t + I(xps − 1)

∣∣∣ i ∈ ps − t
}

and {
(x − 1)j + I(xps − 1)

∣∣∣ t ≤ j ∈ ps
}

.

Putting xi := xpi
the last basis turns out to be the set{

(x0 − 1)b0 · · · (xs−1 − 1)bs−1 + I(xps − 1)
∣∣∣ ∑

i∈s
bi p

i ≥ t, bi ∈ p, i ∈ s
}

.

This basis is called the Jennings basis of Ct.

3. The dual code of Ct is Cps−t.

4. The code Cps−1 is a repetition code.

Proof: 1. According to 4.2.14, all cyclic codes of length ps over Fq are of the
form Ct = I(x − 1)t/I(xps − 1). From the Second Isomorphism Theorem for
Rings (4.7.5) we deduce that

Ct/Ct+1 = (I(x − 1)t/I(xps − 1))/(I(x − 1)t+1/I(xps − 1))

� I(x − 1)t/I(x − 1)t+1,

i.e. the factors of successive terms in the chain have dimension 1, and so the
chain cannot be refined, it is a composition series.

2. From 4.2.5 it follows that Ct has Fq-dimension ps − t. Since

deg(xi(x − 1)t) = t + i and deg((x − 1)j) = j,

4.8 Codes of p-Power Block Length 313

the sets in question are linearly independent. Both sets have the right number
of elements, namely ps − t, and so they are bases. In characteristic p, we have
the identity

(x − 1)j = (x0 − 1)b0 · · · (xs−1 − 1)bs−1 ,

for any integer j ∈ ps with base-p representation

j = b0 + b1p + . . . + bs−1ps−1, bi ∈ p, i ∈ s.

This means that the second basis {(x− 1)j + I(xps − 1) | t ≤ j ≤ ps − 1} equals
the Jennings basis of Ct.

3. The dual code C⊥
t has dimension t and is also cyclic because of 4.2.5. By a

dimension argument, we deduce that C⊥
t is in fact Cps−t.

4. From the previous item it follows that the code Cps−1 is the dual code of
C1 = I(x− 1). From 4.2.5 we deduce that Cps−1 is generated by xps

h(x−1)/h(0)
where h is the check polynomial of C1. Therefore

h(x) =
xps − 1
x − 1

= xps−1 + . . . + x + 1,

and Cps−1 is generated by xps−1 + . . . + x + 1. Hence it is the ps-fold repetition
code over Fq. �

We remark that the Jennings basis is originally due to Lombardo–Radice
who studied the radical of the group ring of a finite group whose order is
divisible by p over a field of characteristic p. It was later picked up by Jen-
nings [102]. As a general reference, we refer to the article by Assmus and Key
in the Handbook of Coding Theory [163] and the references listed there.

4.8.2Corollary The residue class ring Fq[x]/I(xps − 1) possesses the Jennings basis{
(x0 − 1)b0 · · · (xs−1 − 1)bs−1 + I(xps − 1)

∣∣∣ bi ∈ p, i ∈ s
}

. �

The minimum distance of such codes of p-power block length was first
evaluated by S. Berman (cf. [11]). We will present a different proof of his result,
using visible sets, as introduced by H.N. Ward in [197]:

4.8.3Definition (visible sets) A nonempty set S of vectors in Fn
q is called visible over

Fq, if every linear code C which is generated by a nonempty subset T of S over
Fq satisfies

dist(C) = min{wt(v) | v ∈ T}. 4.8.4

That is, the minimum distance of C is the weight of at least one element in T.
A code C with this property is said to be visible (with respect to S).

314 4. Cyclic Codes

Thus, for visible codes the complexity of evaluating the minimum distance
depends only on the size of the given visible set. Hence, we will derive such a
set for certain linear codes of prime block length p over Fq, p the characteristic of Fq.
The proof is due to E.F. Assmus and H.F. Mattson (cf. [8]).

4.8.5 Lemma The subset

S :=
{
(x − 1)t + I(xp − 1) | t ∈ p

}
⊆ Fq[x]/I(xp − 1)

is visible over Fq. Moreover, the linear code generated by a nonempty T ⊆ S has the
minimum distance

dist(〈T〉) = min
{
t | (x − 1)t ∈ T

}
+ 1.

Proof: Consider a nonempty subset T of S and denote by C the code gener-
ated by T. We use induction on t, the smallest exponent such that (x − 1)t is
contained in the generating set T.

1. If t = 0, then 1 ∈ T, which means that (1, 0, . . . , 0) ∈ C. (Recall that the basis
of the residue class ring consists of the powers x0 = 1, x1, . . . , xp−1 of x.) Thus
dist(C) = 1 = t + 1, as stated.

2. If t > 0, we derive a lower and an upper bound for dist(C). The upper
bound is easy since C contains the vector (x−1)t + I(xp −1), which has weight
t + 1 as (x − 1)t is the sum of t + 1 monomials αixi, i ∈ p, αi �= 0. This shows
that

dist(C) ≤ t + 1.
In order to derive a lower bound, we consider 0 �= a = a(x) + I(xp − 1) ∈ C.
It is a linear combination of vectors (x − 1)i + I(xp − 1), i ≥ t, and therefore
a = b · (x − 1)t + I(xp − 1), for a suitable polynomial b. Choose an exponent
i ∈ p, for which the shifted vector

c := xi · a(x) + I(xp − 1) = c(x) + I(xp − 1)

has nonzero constant term c0. We note that wt(a) = wt(c). That c is not nec-
essarily an element of C but of an isometric code does not matter. If c(x) =
∑ i∈p cixi, then the formal derivative c′(x) is of the form c′(x) = ∑ i∈p icixi−1 =

∑
p−1
i=1 icixi−1. Therefore, as c0 �= 0, wt(c) = wt(c′) + 1. Moreover, c′(x) �= 0,

since otherwise ci = 0 for 1 ≤ i ≤ p − 1 and consequently a(x) = αxp−i, for
some α ∈ F∗

q , but this contradicts the assumption t > 0. Hence, 0 �= c′(x) =
d · (x − 1)t−1, for a suitable polynomial d. It means that 0 �= c′ ∈ Ct−1, since
according to 4.8.1 this code consists of all polynomial multiples of (x − 1)t−1.
Thus, the induction hypothesis applies to Ct−1, and we obtain the inequality

wt(a) = wt(c) ≥ dist(Ct−1) + 1 = t + 1.

It gives the desired lower bound dist(C) ≥ t + 1, and the proof is complete. �

4.8 Codes of p-Power Block Length 315

The weight of a polynomial (x − 1)t, for arbitrary t, is given in

4.8.6Lemma Let m = ∑i∈s aipi be the base-p representation of m (with ai ∈ p). Then

wt
(
(x − 1)m

)
= ∏

i∈s
(ai + 1).

Proof: Write m = a0 + a1p + . . . + as−1ps−1 where ai ∈ p for i ∈ s. It follows
from Exercise 4.8.2 that

(x − 1)m =
m

∑
n=0

(−1)m−n
(

m
n

)
xn ≡

m

∑
n=0

(−1)m−n ∏
i∈s

(
ai

bi

)
xn mod p,

where n = b0 + b1p + . . . + bs−1ps−1, with bi ∈ p for i ∈ s. The coefficient
of xn is nonzero modulo p precisely if bi ≤ ai for all i ∈ s. Since there are
ai + 1 choices for bi, we get ∏i∈s(ai + 1) nonzero coefficients in the expansion
of (x − 1)m. �

We want to know when a generating system S of C is visible (without ex-
plicitly knowing the minimum distance of C). It will turn out to be important
that the generating system is closed under the tensor product. For this reason
we mention the following result of H.N. Ward ([197]).

4.8.7Theorem Consider m ∈ N∗. For i ∈ m, let Si denote a visible subset of Fni
q . Then{

v(0) ⊗ . . . ⊗ v(m−1)
∣∣∣ v(i) ∈ Si, i ∈ m

}
⊆ Fn0

q ⊗ . . . ⊗ Fnm−1
q

is visible over Fq.

Proof: It is clear that it suffices to prove the theorem for m = 2. The general
case then follows by a trivial induction which we will skip. So we consider
two visible sets S0 ⊆ Fn0

q and S1 ⊆ Fn1
q . Let T be a nonempty subset of

S0 ⊗ S1 := {v ⊗ w | v ∈ S0, w ∈ S1}
and C the linear code generated by T. We have to prove that

dist(C) = min {wt(v ⊗w) | v ⊗ w ∈ T } .

1. To begin with, we note that we can express a nonzero element a ∈ C as
a = ∑v∈S0

v ⊗ c(v), where c(v) denotes a linear combination of the vectors in

S1(v) := {w ∈ S1 | v ⊗ w ∈ T } ⊆ S1 .

Moreover, we can discard the vectors v ∈ S0 for which S1(v) is empty. In other
words, we can restrict attention to the subset S∗

0 ⊆ S0 of all vectors v ∈ S0 that
appear as left factor of some element v ⊗ w ∈ T, obtaining

a = ∑
v∈S∗0

v ⊗ c(v).

316 4. Cyclic Codes

We note that S∗
0 is a nonempty visible set.

2. In order to evaluate the weight of a we introduce the vectors

a(k) := ∑
v∈S∗0

vk · c(v) ∈ Fn1
q , k ∈ n0.

By definition of tensor multiplication, the weight of a is the sum of the weights
of these vectors. More precisely,

wt(a) = ∑
k∈N

wt(a(k)), where N :=
{

k ∈ n0
∣∣ a(k) �= 0

}
.

3. The main point of the proof is to show that, for each k ∈ N,

a(k) ∈
〈 ⋃

v∈S∗0\W

S1(v)
〉

, for W := {v ∈ S∗
0 | wt(v) > |N|} .

This is clear if N = n0, since in this case S∗
0 \W = S0. If N ⊂ n0, we consider

the (n0 × |W|)-matrix V which contains the transposed of the elements of W
in its columns, together with its (|M| × |W|)-submatrix VM consisting of the
rows with numbers i in M := n0 \ N. By assumption, VM is not empty. These
matrices define linear mappings

f0 : F|W|
q → Fn0

q : b �→ b ·V� = ∑
v∈W

bv · v

and
f1 : F|W|

q → F|M|
q : b �→ b ·V�

M = ∑
v∈W

bv · π(v),

where π means the projection of Fn0
q onto F|M|

q , and the vector b is indicated as
the sequence (bv)v∈W, bv ∈ Fq. We should like to show that ker(f0) = ker(f1).

Obviously ker(f0) ⊆ ker(f1). If there were vectors b ∈ F|W|
q , contained in

ker(f1) but not in ker(f0), there were elements bv ∈ Fq, for v ∈ W, such that

∑
v∈W

bv · vj = 0 for all j ∈ M = n0 \ N,

while

∑
v∈W

bv · vk �= 0 for some k ∈ N .

This would imply that w := ∑v∈W bv · v �= 0 were contained in the subspace
generated by W and wt(w) ≤ |N|. But this contradicts the visibility of S∗

0.
Hence the kernels are in fact equal, and so the rows of V are linear com-

binations of the rows of the submatrix VM. It follows, that there are elements
γk,j ∈ Fq, k ∈ N, j ∈ M, such that

vk = ∑
j∈M

γk,j · vj for all v ∈ W .

4.8 Codes of p-Power Block Length 317

Let k ∈ N. Since a(j) = 0, for j ∈ M, we can write

a(k) = a(k) − ∑
j∈M

γk,j · a(j) .

Therefore,

a(k) = ∑
v∈S∗0

vk · c(v)− ∑
j∈M

γk,j ·
(

∑
v∈S∗0

vj · c(v)
)

= ∑
v∈S∗0

(
vk − ∑

j∈M
γk,jvj

)
· c(v)

= ∑
v∈S∗0\W

(
vk − ∑

j∈M
γk,jvj

)
· c(v) ,

which completes the proof of

a(k) ∈
〈 ⋃

v∈S∗0\W

S1(v)
〉
.

4. In order to finish the proof of the theorem, let w be a vector of minimum
weight in this union

⋃
v∈S∗0\W S1(v). Since S1 is visible, wt(a(k)) ≥ wt(w). If we

take a vector v from S∗
0 \W such that v ⊗ w ∈ T, then wt(v) ≤ |N|, obtaining

wt(a) = ∑
k∈N

wt(a(k)) ≥ |N| ·wt(w) ≥ wt(v) ·wt(w) = wt(v⊗ w).

This shows the stated visibility. �

We apply this result to cyclic codes of p-power length.

4.8.8Theorem The Jennings basis of the residue class ring Fq[x]/I(xps − 1) is visible
over Fq.

Proof: The s-fold tensor product

⊗s(Fq[x]/I(xp − 1))

of the residue class ring Fq[x]/I(xp − 1) with itself has as Fq-basis the set

{xi0 ⊗ . . . ⊗ xis−1 | ij ∈ p, j ∈ s}.

According to 4.8.5 and 4.8.7, the subset{
(x − 1)b0 ⊗ . . . ⊗ (x − 1)bs−1

∣∣∣ bj ∈ p, j ∈ s
}

of the tensor space ⊗s(Fq[x]/I(xp − 1)) is visible over Fq. Choosing the pow-
ers of x, x0, . . . , xs−1 as in 4.8.1, the mapping

⊗s(Fq[x]/I(xp − 1)) → Fq[x]/I(xps − 1),

318 4. Cyclic Codes

defined by associating canonical representatives

xb0 ⊗ . . . ⊗ xbs−1 �→ xb0
0 · · · xbs−1

s−1 ,

is a linear isometry that maps the visible set onto the Jennings basis of
Fq[x]/I(xps − 1). Hence, also the Jennings basis of Fq[x]/I(xps − 1) is visi-
ble over Fq. �

Now we are able to evaluate the minimum distance of cyclic codes of p-
power length.

4.8.9 Theorem of Berman Let t = a0 + a1p + . . . + as−1ps−1 with aj ∈ p, j ∈ s, be
the base-p representation of the integer t ∈ ps − 1. Let i be the unique index such that
ai < p − 1 and ai+1 = . . . = as−1 = p − 1. Then

dist(Ct) =
{

(ai + 1)ps−i−1 if (a0, . . . , ai−1) = (0, . . . , 0),
(ai + 2)ps−i−1 if (a0, . . . , ai−1) �= (0, . . . , 0).

Proof: By 4.8.8, the Jennings basis of Ct is a subset of the visible Jennings basis
of the residue class ring Fq[x]/I(xps − 1). Hence, the minimum distance of Ct

is the weight of an element in its Jennings basis, i.e. an element of the form
(x − 1)j, where t ≤ j ≤ ps − 1. Let j = b0 + b1p + . . . + bs−1ps−1, bl ∈ p, l ∈ s.
It follows from 4.8.6 that in order to minimize the weight of a basis vector, we
must minimize the value of the function wt

(
(x − 1)j

)
= ∏l∈s(bl + 1) taken

over all j with t ≤ j ≤ ps − 1. Therefore, bi+1 = . . . = bs−1 = p − 1. If
a0 = . . . = ai−1 = 0, we may take b0 = . . . = bi−1 = 0 and bi = ai, so that

j = ∑
l∈s

bl p
l = aip

i + (p − 1)pi+1 + . . . + (p − 1)ps−1 ≥ t,

and hence

wt
(
(x−1)j

)
= ∏

l∈s
(bl +1) = (ai +1)(ai+1 +1) · · · (as−1 +1) = (ai +1)ps−i−1.

Otherwise, if at least one coefficient ak > 0 for k < i, we may take b0 = . . . =
bi−1 = 0 and bi = ai + 1, so that

j = ∑
l∈s

bl p
l = (ai + 1)pi + (p − 1)pi+1 + . . . + (p − 1)ps−1 ≥ t

and hence

wt
(
(x−1)j

)
= ∏

l∈s
(bl +1) = (ai +2)(ai+1 +1) · · · (as−1 +1) = (ai +2)ps−i−1.

One can verify that no j ≥ t with bi = ai leads to a smaller weight. �

4.9 Bounds for the Minimum Distance 319

4.8.10Corollary Every cyclic code of length p over Fq is an MDS-code.

Proof: By 4.8.1, every cyclic code of length p over Fq is of the form Ct, t ∈ p.
Its dimension is p − t, and its minimum weight is t + 1 because of 4.8.9. �

4.8.11Corollary For every cyclic code Ct of length ps over Fq there is a t̂ ∈ {t, . . . , ps − 1}
such that

dist(Ct) = wt
(
(x − 1)t̂

)
. �

A decoding method for binary cyclic codes whose length is a power of 2 is
presented in Section 4.14.

Exercises

E.4.8.1Exercise Determine the dimension and the minimum distance of all binary
cyclic codes of length 32.

E.4.8.2Exercise Let p be prime, and let m = a0 + a1p + . . . + as−1ps−1, n = b0 + b1p +
. . . + bs−1ps−1 where ai, bi ∈ p for i ∈ s. Show Lucas’ theorem that(

m
n

)
≡ ∏

i∈s

(
ai

bi

)
mod p.

Hint: Consider first the case that m = cp + a and n = dp + b, where a, b ∈ p.
Let x be an indeterminate. Then (1 + x)p ≡ 1 + xp mod p. Thus (modulo p)
we have

(1 + x)m = (1 + x)cp(1 + x)a ≡ (1 + xp)c(1 + x)a =
c

∑
i=0

(
c
i

)
xpi ·

a

∑
j=0

(
a
j

)
xj.

Compare coefficients of xn = xdp+b on both sides to get(
m
n

)
≡

(
c
d

)(
a
b

)
mod p.

Finish the proof by induction.

4.94.9 Bounds for the Minimum Distance

This section contains various basic results on the minimum distance of cyclic
codes. As before, we assume that n = psr, where p � r. Moreover, we suppose
that

xr − 1 = ∏
i∈l

fi

320 4. Cyclic Codes

is the decomposition of xr − 1 into pairwise distinct irreducible polynomials
over Fq. In 4.7.17, we introduced the cyclic code Ci,j which is generated by

gi,j := f ps

0 · · · f ps

i−1 · f j
i · f ps

i+1 · · · f ps

l−1.

According to Exercise 4.7.16, the code Ci,j is also generated by (z − 1)jgi,0,
where z = xr . In particular, the code generated by gi,0 is a direct summand
of the residue class ring Fq[x]/I(xn − 1), and by Exercise 4.5.2 it is generated
by a primitive idempotent ei. The primitive idempotent ei and, therefore, every
idempotent in Fq[x]/I(xn − 1) is contained in the subalgebra Fq[y]/I(yr − 1)
of Fq[x]/I(xn − 1), where y = xps

. By Exercise 4.9.1, the cyclic code with gen-
erator polynomial gi,j is also generated by (z − 1)jei.

To begin with, we consider a special class of cyclic codes, which contains
the indecomposable cyclic codes. In the sequel we always use n = psr, where
p � r, y = xps

and z = xr .

4.9.1 Theorem Suppose that e is an idempotent of the residue class ring Fq[x]/I(xn − 1),
and that j ∈ ps. The cyclic code C of length n over Fq with generator polynomial

(z − 1)je

is linearly isometric to the product code Y ⊗ Z, where Y is the cyclic code of length
r over Fq with generating idempotent e and Z is the cyclic code of length ps over Fq

with generator polynomial (z − 1)j. The parameters of C are

dim(C) = dim(Y) · dim(Z) and dist(C) = dist(Y) · dist(Z).

The proof of this theorem relies on two further results, the verification of which
is recommended to the reader as an exercise.

4.9.2 Lemma To each polynomial h ∈ Fq[x] of degree at most n− 1 there exist polynomials
h(0), . . . , h(r−1) ∈ Fq[z], each of degree at most ps − 1, such that h can be written
uniquely in the form

h(x) ≡ ∑
i∈r

yih(i)(z) mod I(xn − 1). �

4.9.3 Lemma The canonical mapping

ψ : Fq[y]/I(yr − 1) ⊗ Fq[z]/I(zps − 1) → Fq[x]/I(xn − 1) : a ⊗ b �→ ab

is an Fq-isomorphism. Choosing the Fq-basis{
yi ⊗ zj

∣∣∣ i ∈ r, j ∈ ps
}

of the tensor product, the mapping ψ is a linear isometry with respect to the Hamming
metric. �

4.9 Bounds for the Minimum Distance 321

Proof of 4.9.1: It follows from 4.9.2 that there are uniquely determined poly-
nomials h(0), . . . , h(r−1) ∈ Fq[z] with deg h(i) < ps such that each element c of
C can be written in the form

c(x) = ∑
i∈r

yih(i)(z)(z− 1)je = ψ
(

∑
i∈r

yie ⊗ h(i)(z)(z− 1)j
)
.

Hence
ψ(Y ⊗ Z) = C.

Consequently, by 4.9.3 C is linearly isometric to the product code Y ⊗ Z. The
statements on the dimension and the minimum distance of C now follow di-
rectly from Exercise 2.3.5. �

4.9.4Corollary Every codeword c = ab of a cyclic code of length n with a ∈ Fq[y] of
degree less than r and b ∈ Fq[z] of degree less than ps has the weight

wt(c) = wt(a) ·wt(b). �

4.9.5Example The cyclic code of length p − 1 over Fp with generator polynomial
g = (y− 1) · · · (y− (p− k − 1)), k ∈ p− 1, is a (p− 1, k)-Reed–Solomon-code.
The generating idempotent e is a sum of k primitive idempotents (cf. 4.7.20).
Moreover, the cyclic code generated by (z − 1)j over Fp is a (p, p − j)-MDS-
code. From 4.9.1 we deduce that the cyclic code generated by

(xp − 1) · · · (xp − (p − k − 1))(xp−1 − 1)j

over Fp has length n = p(p − 1), dimension k(p − j) and minimum distance
(p − k)(j + 1). �

4.9.6Example (Continuation of Example 4.7.23) An indecomposable binary cyclic
code Ci,j of length 28 = 22 · 7 has the generator

(z − 1)jei,

where 0 ≤ j ≤ 3. According to 4.7.23, ei is one of the following three primitive
idempotents:

e0 = 1 + y + y2 + y3 + y4 + y5 + y6,

e1 = 1 + y3 + y5 + y6,

e2 = 1 + y + y2 + y4.

If Yi denotes the binary cyclic code of length 7 with generating idempotent
ei and if Zj is the binary cyclic code of length 4 with generator polynomial

322 4. Cyclic Codes

(z − 1)j, then Ci,j is linearly isometric to the product code Yi ⊗ Zj. The evalua-
tion of the parameters of Ci,j is left to the reader (Exercise 4.9.4). �

According to the Structure Theorem for cyclic codes, every cyclic code C of
length n over Fq can be written as a direct sum

C =
⊕
i∈I

Ci,ji , I ⊆ l, ji ∈ ps,4.9.7

of indecomposable cyclic codes Ci,ji .
In the following, we denote by Yi the cyclic code of length r with generating

idempotent ei. Also, Zj is the cyclic code of length ps with generator polyno-
mial (z − 1)j. From 4.9.1 we deduce that Ci,j is equivalent to the product code
Yi ⊗ Zj.

Now we want to obtain a lower bound for the minimum distance of C.

4.9.8 Theorem Let C denote the cyclic code of length n over Fq defined in 4.9.7. Then

dim(C) = ∑
i∈I

dim(Yi) · dim(Zji)

and

dist(C) = min
{

wt
(
(z − 1)j) · dist(Cj)

∣∣ min {ji | i ∈ I} ≤ j ≤ ps − 1
}

,

where Cj indicates the cyclic code

Cj :=
⊕

i∈I , j≥ji

Yi

of length r over Fq.

In the proof we will use the augmentation mapping, the algebra epimor-
phism

η : Fq[z]/I(zps − 1) → Fq,

defined by

∑
i∈ps

κiz
i + I(zps − 1) �→ ∑

i∈ps
κi.

This epimorphism can be extended as follows:

4.9.9 Lemma The mapping

φ : Fq[x]/I(xn − 1) → Fq[y]/I(yr − 1),

defined by

∑
i∈r

yih(i)(z) + I(xn − 1) �→ ∑
i∈r

yiη(h(i)(z)) + I(yr − 1)

is an algebra epimorphism. Its kernel is the ideal generated by z − 1.

4.9 Bounds for the Minimum Distance 323

Proof: It is clear that φ is an epimorphism of algebras. Also, the principal ideal
I which is generated by z − 1 is contained in the kernel of φ.

Conversely, by 4.9.2 the canonical representative of a residue class in the
residue class ring Fq[x]/I(xn − 1) is of the form ∑i∈r yih(i), with h(i) ∈ Fq[z]
and deg(h(i)) < ps .

Since {(z − 1)j | j ∈ ps} is a basis of Fq[z]/I(zps − 1), by 4.8.1, the set

B :=
{

yi(z − 1)j
∣∣∣ i ∈ r, j ∈ ps

}
is linearly independent, contained in I, and of size

|B| = r(ps − 1) = n − r = dim(ker(φ)).

This proves the statement. �

Proof of 4.9.8: The assertion on the dimension follows from 4.9.1. The re-
mainder of the proof is split into four steps:

1. For each j with min{ji | i ∈ I} ≤ j ≤ ps − 1 the inequality

dist(C) ≤ wt((z− 1)j) · dist(Cj)

holds true. If c(j) is a nonzero element of Cj then c := (z − 1)jc(j) belongs to
the subcode ⊕

i∈I , j≥ji

Ci,j

of C and
wt(c) = wt((z − 1)j) ·wt(c(j))

by 4.9.4.

2. For each nonzero c ∈ C there exists an index j with

min{ji | i ∈ I} ≤ j ≤ ps − 1

and a polynomial c(z) ∈ Fq[x] of degree less than n, which is not divisible by
z − 1, such that

c = (z − 1)jc(z).

From the definition of C it follows that c is of the form

c = ∑
i∈I

(z − 1)ki f (i)ei

where ki ≥ ji and f (i) ∈ Fq[x] are not divisible by z − 1. Putting

j := min
{

ki
∣∣ (z − 1)ki f (i)ei �= 0, i ∈ I

}
,

324 4. Cyclic Codes

we derive that c = (z − 1)jc(z) with c(z) = ∑i∈I(z − 1)ki−j f (i)ei. Due to the
choice of j, exactly one summand of c(z) is not divisible by z − 1, and so the
same holds also for c(z).

3. Assume that c = (z − 1)jc(z) ∈ C, as in the previous step. Define l, j ≤ l ≤
ps − 1, such that

wt((z − 1)l) = min
{

wt((z− 1)k)
∣∣ j ≤ k ≤ ps − 1

}
and put c(l) := (z − 1)lφ(c(z)). Then

c(l) ∈ C and 0 < wt(c(l)) ≤ wt(c).

The second part of 4.9.9 implies that c(l) �= 0, since c(z) is not contained in
the kernel of the epimorphism φ. The image φ(c(z)) is contained in Cj and so
c(l) ∈ C. By 4.9.2, c(z) can be expressed in the form

c(z) = ∑
i∈r

yih(i).

Then
wt(c) = ∑

i∈r
wt((z − 1)jh(i)),4.9.10

since the supports of the summands yi(z − 1)jh(i), i ∈ r, of c are disjoint. For
each nonzero polynomial (z − 1)jh(i) the following is true, by the choice of l
and by 4.8.9:

wt((z− 1)jh(i)) ≥ wt((z − 1)l).

Let Nc be the number of indices i for which h(i) �= 0. We deduce from 4.9.10
that

wt(c) ≥ Nc ·wt((z− 1)l).4.9.11

On the other hand, we obtain from 4.9.4 that

wt(c(l)) = wt((z − 1)l) ·wt(φ(c(z))),

where wt(φ(c(z))) is the number of indices i with η(h(i)) �= 0. Since this num-
ber is at most Nc, we obtain from 4.9.11 that wt(c) ≥ wt(c(l)).

4. Lastly, we prove that

dist(C) ≥ min{wt((z − 1)j) · dist(Cj) | min{ji | i ∈ I} ≤ j ≤ ps − 1}.

Consider a codeword c ∈ C of minimal weight. From the third step we know
that there exists a word c(l) ∈ C which has the same weight as c. This proves
the stated inequality. �

4.9 Bounds for the Minimum Distance 325

The evaluation of the minimum distance of C using the given formula, due to
G. Castagnoli et al. (cf. [36]), is difficult, since often for semi-simple codes just
lower bounds of the minimum distance are known.

4.9.12Example (Continuation of Example 4.9.6) We evaluate the parameters of the
binary cyclic codes C = C1,2 ⊕ C2,3 described in 4.9.6. According to 4.9.8

dim(Y1) · dim(Z2) + dim(Y2) · dim(Z3) = 2 · 3 + 1 · 3 = 9

and dist(C) is the minimum of

wt((z − 1)2) · dist(Y1) = 2 · 4 = 8

and

wt((z− 1)3) · dist(Y1 ⊕Y2) = wt((z − 1)3) · dist(P7) = 4 · 2 = 8,

where Y1 = H3 and Y2 = H′
3 denote the (7, 3)-simplex-codes, the sum of which

is the parity check code P7 (for the notation, see 4.2.7). This shows that C is a
(28, 9, 8)-code. �

The following result shows that the minimum distance of a cyclic code is
given by the minimum distance of a certain subcode. This subcode is itself a
product code, consisting of a semi-simple cyclic code and a cyclic code whose
length is a power of the prime p.

4.9.13Theorem Let C denote a cyclic code of length n over Fq, given by 4.9.7. Then
there exists an idempotent e ∈ Fq[x]/I(xn − 1) and an integer j ∈ ps, such that the
minimum distance of C is given by the minimum distance of a cyclic subcode of C
with generator (z − 1)je.

Proof: By 4.9.8, C contains a vector c of minimal weight of the form c = (z −
1)jw. Here, w is a vector of minimal weight in Cj, defined in 4.9.8. Hence,
by 4.9.4,

dist(C) = wt((z− 1)j) ·wt(w).

On the one hand, due to the choice of j and by 4.8.11, the minimum distance
of the cyclic code Zj is the weight of (z− 1)j. On the other hand, since Cj is the
direct sum of the Ci,j, a generating idempotent is

e = ∑
i∈I ,j≥ji

ei.

That is, dist(C) = dist(Cj ⊗ Zj). The image of Cj ⊗ Zj under ψ (defined in
4.9.3) is contained in C, by the choice of j and e in C, and it is generated by
(z − 1)je. �

326 4. Cyclic Codes

Recall that the relative minimum distance of an (n, k, d)-code is the ratio d/n.
From the following statement, also due to G. Castagnoli et al. [36], it will
become clear that cyclic codes of composed length are not better than semi-
simple cyclic codes.

4.9.14 Theorem Let C denote a cyclic code of length n over Fq as defined in 4.9.7. Then
there exists a cyclic code of length r over Fq, whose rate and relative minimum distance
are at least the rate and the relative minimum distance of C.

Proof: Putting j := max{ji | i ∈ I}, then 4.9.8 implies that

dim(C)
n

= ∑
i∈I

dim(Ci,ji)
n

= ∑
i∈I

dim(Yi)
r

·
dim(Zji)

ps

≤ ∑
i∈I

dim(Yi)
r

=
dim(Cj)

r

and
dist(C)

n
≤ wt((z − 1)j)

ps ·
dist(Cj)

r
≤

dist(Cj)
r

.

Therefore, the cyclic code Cj has the desired properties. �

Exercises

E.4.9.1 Exercise If ei is the primitive idempotent of Ci,0, prove that (x − 1)jei is an-
other generating polynomial of the cyclic code Ci,j.

E.4.9.2 Exercise Verify 4.9.2.

E.4.9.3 Exercise Check 4.9.3.

E.4.9.4 Exercise Evaluate the parameters of all indecomposable binary cyclic codes of
length 28.

E.4.9.5 Exercise Give lower bounds for the minimum distance of the binary cyclic
codes of length 92.

4.10 Reed–Muller-Codes 327

4.104.10 Reed–Muller-Codes

In Section 2.4, Reed–Muller-codes have been introduced as subspaces of the
algebra Bq

m consisting of the polynomial functions from Fm
q to Fq. We begin by

describing a connection between Reed–Muller-codes and cyclic codes. After
that, we prove that the Reed–Muller-codes RMp

m,t are group algebra codes and
we evaluate their dimensions and minimum distances. A decoding algorithm
for binary Reed–Muller-codes will be presented at the end of Section 4.14.

First we show that the code which is obtained by puncturing a Reed–
Muller-code at a position is cyclic. Consider the Reed–Muller-code RMq

m,t,
choose a primitive element ξ ∈ Fqm and represent each element of F∗

qm as a
linear combination of the members of the Fq-basis {1, ξ, . . . , ξm−1} of Fqm :

ξ i = ∑
j∈m

κj,iξ
j, κj,i ∈ Fq, i ∈ qm.

According to 4.2.11, the minimal polynomial of ξ over Fq has the form

Mξ(x) = xm + ∑
i∈m

λix
i.

By definition, its companion matrix

Υξ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 −λ0

1 0 . . . 0 0 −λ1

0 1 . . . 0 0 −λ2
...

...
. . .

...
...

...
0 0 . . . 1 0 −λm−2

0 0 . . . 0 1 −λm−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
satisfies the identity

(κ0,i, . . . , κm−1,i) · Υ�
ξ = (κ0,i+1, . . . , κm−1,i+1), 4.10.1

where the index i + 1 is understood modulo qm − 1. The codeword f ∈ RMq
m,t

is the qm-tuple
(f (0), f (1), f (ξ), f (ξ2), . . . , f (ξqm−2)),

where
f (ξ i) := f (κ0i, . . . , κm−1,i).

The polynomial function g ∈ Bq
m, defined by

g(x0, . . . , xm−1) := f ((x0, . . . , xm−1) · Υ�
ξ),

is also contained in RMq
m,t. By 4.10.1, the associated qm-tuple is

(f (0), f (ξ), f (ξ2), . . . , f (ξqm−2), f (1)).

328 4. Cyclic Codes

This shows that the code which is obtained from RMq
m,t by puncturing the

first component is cyclic. In 2.4.7, the parameters of binary Reed–Muller-codes
have been calculated. In the following, we will generalize this result. We prove
that Reed–Muller-codes over a prime field Fp are group algebra codes.

Let G denote an elementary-abelian p-group of order pm. This means that
G admits generators g0, . . . , gm−1, each of order p, and each element g of G can
be written uniquely in the form

g = ga0
0 · · · gam−1

m−1 , ai ∈ p, i ∈ m.

We consider a particular basis of the group algebra FG
p .

4.10.2 Theorem The group algebra FG
p possesses the basis

B :=

{
∏
i∈m

(gi − 1)ai

∣∣∣∣ ai ∈ p, i ∈ m

}
.

It is the Jennings basis of FG
p .

Proof: We use induction on |G|. The case G = {1} is trivial, so we may assume
that |G| > 1. It suffices to show that the given set is a system of Fp-generators
of FG

p . Denote by H the subgroup which is generated by g0, . . . , gm−2. Then H
is an elementary abelian p-group of order pm−1, and the set{

1, gm−1, . . . , g
p−1
m−1

}
is a transversal of the cosets of H in G. Hence, each element a ∈ FG

p is of the
form

a = ∑
i∈p

Aig
i
m−1, Ai ∈ FH

p .

The statement then follows from the identity

gi
m−1 =

(
(gm−1 − 1) + 1

)i =
i

∑
j=0

(
i
j

)
(gm−1 − 1)j

and the induction hypothesis about FH
p . �

To each element ∏i∈m(gi − 1)ai of this basis of FG
p we associate its Jennings

weight

∑
i∈m

ai.

In the following we identify the integers 0, . . . , p− 1 with the residue class-
es in Zp, thus we consider them as elements of the field Fp . Now we introduce
various ideals of the group algebra FG

p .

4.10 Reed–Muller-Codes 329

4.10.3Lemma The set

I :=

{
∑
g∈G

αgg ∈ FG
p

∣∣∣∣ ∑
g∈G

αg = 0

}
is an ideal, the augmentation ideal of FG

p with Fp-basis

B′ :=
{
g − 1

∣∣ g ∈ G, g �= 1
}

,

and
I =

{
a ∈ FG

p
∣∣ ap = 0

}
.

Proof: I is the kernel of the Fp-algebra epimorphism

FG
p → Fp : ∑

g∈G
αgg �→ ∑

g∈G
αg

and, therefore, it is an ideal of FG
p . The set B′ is clearly linearly independent

and contained in I. Since I is a proper ideal of FG
p , a dimension argument

shows that B′ must be a basis, i.e. I is of codimension 1. Moreover, because
of 3.2.12 each element a = ∑g∈G αgg ∈ I satisfies

ap = ∑
g∈G

α
p
ggp =

(
∑
g∈G

α
p
g

)
1 =

(
∑
g∈G

αg

)p
1 = 0.

Thus, I is contained in the proper subspace {a ∈ FG
p | ap = 0} of FG

p . Hence,
the statement follows again from a dimension argument. �

4.10.4Theorem Suppose that 0 ≤ t ≤ m(p− 1).

The set

Bt :=

{
∏
i∈m

(gi − 1)ai

∣∣∣∣ ai ∈ p, i ∈ m, ∑
i∈m

ai ≥ t

}
is an Fp-basis of It.

The degree of nilpotency of I is m(p − 1) + 1, i.e. t = m(p − 1) + 1 is the
smallest positive integer for which It = 0.

Let x be an indeterminate over R. If zt = dim(It/It+1) for 0 ≤ t ≤ m(p− 1),
then (

∑
j∈p

xj
)m

=
m(p−1)

∑
t=0

ztxt 4.10.5

and
dim(It) + dim(Im(p−1)+1−t) = dim(FG

p). 4.10.6

The annihilator of It is Im(p−1)+1−t.

330 4. Cyclic Codes

Proof: 1. By 4.10.2 the set B0 is the Jennings basis B of FG
p = I0.

2. In 4.10.3 we have determined a basis B′ of I. Its elements are of the form
g − 1 = ∏i∈m gai

i − 1 for g �= 1. Consequently there exists at least one i0 ∈ m
so that ai0 �= 0. Since (cf. Exercise 4.10.1)

gai
i − 1 = (gi − 1)ai −

ai−1

∑
j=1

(
ai

j

)
(−1)ai−j(gj

i − 1), 1 ≤ ai ≤ p − 1,

we obtain by induction that gai
i − 1 is a linear combination of elements of B1.

Assume that ai �= 0 for i ∈ {i0, . . . , ir−1}. Then

∏
i∈m

gai
i − 1 = ∏

j∈r
g

aij
ij

− 1

=
(

∏
j∈r−1

g
aij
ij

− 1
)(

g
air−1
ir−1

− 1
)

+
(

∏
j∈r−1

g
aij
ij

− 1
)

+
(
g

air−1
ir−1

− 1
)
.

By induction we see that g− 1 is a linear combination of elements of B1. Hence,
B1 is a generating set of I. Since B1 is a subset of the Jennings basis B of FG

p it
is even a basis.
3. According to the definition of It (see Exercise 3.5.8, where the product of
two ideals is defined) Bt ⊆ It and, by 4.10.2, Bt is linearly independent. Since
B1 is a basis of I, the complex product Bt = (B1)t is a basis of It. This proves
the first statement.
4. The basis Bm(p−1) of Im(p−1) contains only the element ∏i∈m(gi − 1)p−1. It
is the element of the Jennings basis of FG

p with maximal Jennings weight. The
elements of Im(p−1)+1 are linear combinations of

∏
i∈m

(gi − 1)ai ∏
i∈m

(gi − 1)p−1

where at least one ai is different from 0. Therefore, this term contains at least
one factor of the form (gi − 1)bi where bi ≥ p. According to the last assertion
of 4.10.3 we have (gi − 1)bi = 0, whence this term vanishes and Im(p−1)+1 = 0.
Hence, m(p − 1) + 1 is the degree of nilpotency of I.
5. From the particular form of the basis Bt we deduce that zt is the number of
elements

∏
i∈m

(gi − 1)ai

in the Jennings basis of FG
p with Jennings weight t. On the other hand, the

coefficient of xt on the left hand side of 4.10.5 is the number of possibilities to
choose m-tuples (a0, . . . , am−1) of integers with ai ∈ p and ∑i∈m ai = t. This
proves 4.10.5. Moreover, we have

m(p−1)

∑
t=0

ztxt =
(

∑
j∈p

xj
)m

=
(

∑
j∈p

x(p−1)−j
)m

= xm(p−1)
(

∑
j∈p

x−j
)m

4.10 Reed–Muller-Codes 331

= xm(p−1)
m(p−1)

∑
t=0

ztx−t =
m(p−1)

∑
t=0

zm(p−1)−tx
t.

Comparing coefficients leads to zt = zm(p−1)−t, for 0 ≤ t ≤ m(p− 1). Thus

dim(Im(p−1)) = zm(p−1) = z0 = dim(FG
p /I) = 1.

Therefore, for 1 ≤ t ≤ m(p− 1) we have

dim(FG
p /It) = dim(FG

p /I) +
t−1

∑
s=1

dim(Is/Is+1)

= dim(Im(p−1)) +
t−1

∑
s=1

dim(Im(p−1)−s/Im(p−1)−s+1)

= dim(Im(p−1)−t+1),

i.e. 4.10.6 is verified.
6. Lastly, from It · Im(p−1)+1−t = Im(p−1)+1 = 0 we deduce that Im(p−1)+1−t is
contained in the annihilator of It. By Exercise 4.1.7, the dimension of It is the
codimension of its annihilator. Thus, the last statement follows from 4.10.6. �

The Reed–Muller-codes over Fp form ideals in the group algebra FG
p , thus

they are group algebra codes.

4.10.7Theorem Suppose that 0 ≤ t ≤ m(p− 1). The linear extension ϕ of the mapping

Bt → RMp
m,m(p−1)−t : ∏

i∈m
(gi − 1)ai �→ ∏

i∈m
∏

l∈p−1−ai

xi − l
p − 1− ai − l

to It is an Fp-isomorphism and even a linear isometry between It and RMp
m,m(p−1)−t.

The fraction xi−l
p−1−ai−l is understood as (xi − l)(p − 1 − ai − l)−1 ∈ Fp[xi]. If

ai = p − 1 then the product ∏l∈p−1−ai
xi−l

p−1−ai−l = 1, the empty product.

Proof: The product ∏i∈m(gi − 1)ai is an element of the basis of It if and only if
∑i∈m ai ≥ t. By definition

deg(ϕ(∏
i∈m

(gi − 1)ai)) = ∑
i∈m

(p − 1− ai) ≤ m(p − 1)− t.

Thus ϕ(∏i∈m(gi − 1)ai) is an element of RMp
m,m(p−1)−t. It is a linear combina-

tion of monomials of degree at most m(p− 1) − t. Since

ϕ
(
∏
i∈m

(gi − 1)ai
)

= ∏
i∈m

xp−1−ai
i

∏l∈p−1−ai
(p − 1− ai − l)

+ f (x0, . . . , xm−1)

with deg f < ∑i∈m(p− 1− ai), each element of the canonical basis of the code
RMp

m,m(p−1)−t occurs in the image of a suitable element of the Jennings basis

of It. This shows that ϕ is an isomorphism between It and RMp
m,m(p−1)−t.

332 4. Cyclic Codes

Now we have to prove that ϕ is even an isometry. The elements of FG
p are

of the form ∑g∈G αgg with αg ∈ Fp. The elements f ∈ Bp
m are identified with

vectors (
f (0, . . . , 0), . . . , f (p − 1, . . . , p − 1)

)
∈ Fpm

p .

Let ψ be the bijective map

ψ : G → Fpm

p : ∏
i∈m

gai
i �→ (p − 1− a0, . . . , p − 1− am−1).

We show that from ∏i∈m(gi − 1)ai = ∑g∈G αgg we obtain

ϕ
(
∏
i∈m

(gi − 1)ai
)
(ψ(g)) = αg, g ∈ G.

This means that evaluating ϕ(∏i∈m(gi − 1)ai) at ψ(g) yields the coefficient of
g in ∏i∈m(gi − 1)ai . Consider

∏
i∈m

(gi − 1)ai = ∏
i∈m

(
ai

∑
l=0

(
ai

l

)
gl

i(−1)ai−l

)

= ∑
(j0,...,jm−1)∈pm

∏
i∈m

(
ai

ji

)
gji

i (−1)ai−ji .

Then

ϕ
(
∏
i∈m

(gi − 1)ai
)
(ψ(gj0

0 · · · gjm−1
m−1)) = ∏

i∈m
∏

l∈p−1−ai

p − 1− ji − l
p − 1− ai − l

.4.10.8

If ji0 > ai0 for some i0 ∈ m, then p − 1 − ji0 < p − 1 − ai0 ≤ p − 2 − ai0 and
therefore 4.10.8 is equal to 0. Assume that 0 ≤ ji ≤ ai for i ∈ m, then ji = ai − ri

with 0 ≤ ri ≤ ai for i ∈ m. Since all these computations are done in Fp the last
product in 4.10.8 can be written as

∏
l∈p−1−ai

p − 1− ji − l
p − 1− ai − l

= ∏
l∈p−1−ai

p − 1− (ai − ri)− l
p − 1− ai − l

=

ri−1

∏
l=0

(p − 1− ai − l + ri)
p−2−ai

∏
l=ri

(p − 1− ai − (l − ri))

p−2−ai−ri

∏
l=0

(p − 1− ai − l)
p−2−ai

∏
l=p−1−ai−ri

(p − 1− ai − l)

=

ri−1

∏
l=0

(−1)(ai + (l + 1) − ri)
p−2−ai−ri

∏
l=0

(p − 1− ai − l)

p−2−ai−ri

∏
l=0

(p − 1− ai − l)
ri

∏
l=1

l

4.10 Reed–Muller-Codes 333

=
(−1)ai−ji ai(ai − 1) · · · (ai − ri + 1)

(ai − ji)!

=
(

ai

ai − ji

)
(−1)ai−ji =

(
ai

ji

)
(−1)ai−ji .

Therefore, 4.10.8 is equal to

∏
i∈m

(
ai

ji

)
(−1)ai−ji .

In conclusion, we represent the elements of the Jennings basis of It as linear
combinations of the standard basis of FG

p and the elements of RMp
m,m(p−1)−t as

pm-tuples over Fp . Then for each element ∏i∈m(gi − 1)ai of the Jennings basis
the coefficient of the component g coincides with ϕ(∏i∈m(gi − 1)ai) evaluated
at ψ(g). Since ϕ is an isomorphism for each f ∈ FG

p , f = ∑g∈G f (g)g, we
obtain ϕ(f)(ψ(g)) = f (g) for g ∈ G, so that ϕ is a permutational isometry. �

The minimum distance of Reed–Muller-codes can be evaluated using a vis-
ible generating set.

4.10.9Theorem The Jennings basis{
∏
i∈m

(gi − 1)ai

∣∣∣∣ ai ∈ p

}
of FG

p is visible.

Proof: Let H = 〈g〉 denote a cyclic group of order p. We consider the m-fold
tensor power ⊗m FH

p of FH
p with its canonical Fp-basis

{ ga0 ⊗ . . . ⊗ gam−1 | ai ∈ p } .

The mapping

⊗m FH
p → FG

p : ga0 ⊗ . . . ⊗ gam−1 �→ ga0
0 · · · gam−1

m−1

is an Fp-isomorphism and even an isometry. Hence, we obtain the statement
from 4.8.5 and 4.8.7. �

Now we are able to describe the parameters of Reed–Muller-codes (cf. [11],
[37], [121], [205]).

4.10.10Theorem The parameters of the Reed–Muller-code RMp
m,t for t = r(p− 1)− s with

1 ≤ r ≤ m and s ∈ p − 1 are

(n, k, d, q) =
(

pm,
m(p−1)

∑
i=(m−r)(p−1)+s

zi, (s + 1)pm−r, p
)
,

where the integers zi are given by 4.10.5.

334 4. Cyclic Codes

Proof: It is clear that RMp
m,t has length pm. By 4.10.7, RMp

m,t is isometric to the
code Im(p−1)−t = I(m−r)(p−1)+s. This proves the assertion on the dimension of
RMp

m,t. According to 4.10.4 and 4.10.9, B(m−r)(p−1)+s is a visible generating set
for I(m−r)(p−1)+s. Hence it suffices to find a codeword of minimum weight in
this basis. By Exercise 4.10.2, the Hamming weight of ∏i∈m(gi − 1)ai is equal
to ∏i∈m(ai + 1). Hence, ∏i∈m(gi − 1)ai with a0 = . . . = am−r−1 = p − 1 and
am−r = s is an element of minimum weight in B(m−r)(p−1)+s. �

Exercises

E.4.10.1 Exercise Prove that

gai
i − 1 = (gi − 1)ai −

ai−1

∑
j=1

(
ai

j

)
(−1)a−j(gj

i − 1)

holds true for ai with 1 ≤ ai ≤ p − 1.

E.4.10.2 Exercise Prove that

wt
(
∏
i∈m

(gi − 1)ai
)

= ∏
i∈m

(ai + 1).

E.4.10.3 Exercise Let C and C′ be linear codes with given bases B and B′. Find an ex-
ample of a linear isomorphism between C and C′ which preserves the weights
of all elements in the bases that is not an isometry.

E.4.10.4 Exercise Generalizing 2.4.8, prove that RMp
m,m(p−1)−t−1 is the dual code of

RMp
m,t for 0 ≤ t < m(q− 1).

4.11 4.11 Encoding

The main advantage of cyclic codes is the fact that efficient encoding and de-
coding methods are available. In this section we will discuss an easily realiz-
able circuit for the systematic encoding.

For the realization as circuits, three types of switches are used:

1. An adder, indicated by the symbol

4.11 Encoding 335

��
��

�� +

�

takes as input two field elements from different input streams and sends
their sum to the output.

2. A multiplier, shown as

��
��

�� α

takes an element κ ∈ Fq from the input stream, multiplies it by α ∈ Fq, and
outputs the product κα.

3. A cell is able to store field elements. We indicate it by the symbol

α ��

The cell reads an element from the input, stores this element for one clock
cycle, and sends the element to the output stream afterwards (while at the
same time reading another element from the input).

The multiplication of a message f ∈ Fk
q by the generator matrix corresponding

to the generator polynomial g of the cyclic (n, k)-code over Fq in question is
easily realized by an encoding circuit (see Exercise 4.11.1). Unfortunately, this
encoder is not systematic, consequently it has the disadvantage that we need
another transformation of the received vector in order to obtain the original
message.

On the contrary, the use of a systematic encoding and decoding method
allows us to take the first k components of the received vector as the origi-
nal message. In the following, we will deduce a systematic encoder for cyclic
codes. The underlying idea is based on the following observation.

4.11.1Lemma Let C ≤ Res q,n denote a cyclic (n, k)-code over Fq with generator polyno-
mial g. Let remg(h) denote the unique remainder of h after division by g (cf. Exer-
cise 3.1.6), then the map

ε : Fq[x]
<k → C : f �→ xn−k f − remg(xn−k f) + I(xn − 1)

is a bijection.

336 4. Cyclic Codes

Proof: 1. Consider an f ∈ Fq[x]
<k. According to the Division Theorem there

exist polynomials s and r with xn−k f = sg + r and either deg r < deg g or
r = 0. Consequently r = remg(xn−k f) and

ε(f) = xn−k f − remg(xn−k f) = sg ∈ C.

2. Let f = ∑i∈k fixi. Since g has degree n − k, r = ∑i∈n−k rixi. Hence xn−k f −
remg(xn−k) has the following n-tuple of coefficients:

(−r0, . . . ,−rn−k−1, f0, . . . , fk−1).

This shows clearly that ε is injective, and so, since |Fq[x]
<k| = |C| = qk, it is

even bijective. �

Now we claim that the division of polynomials can be realized by a divi-
sion shift register. Figure 4.4 shows an m-step division shift register with the
monic recoupling polynomial g = ∑m

i=0 gixi, which we abbreviate by DR(g); it
has two input gates, indicated by A and B.

s0 s1 sm−1�+ �+ �+ �. . . + �+� � � � � � � �
� �

α β

A : : B

��
�	

g0 ��
�	

g1 ��
�	

g2 ��
�	
gm−1 ��

�	
−1
�

�

� � � �

� � � �

Fig. 4.4 Division shift register DR(g)

4.11.2 Lemma Assume that the shift register DR(g) is initialized with the coefficients of
the polynomial s = ∑i∈m sixi and that it receives the input α ∈ Fq at A and β ∈ Fq

at B. Then, after one clock cycle, DR(g) contains the coefficients of

remg(xs + α + βxm).

Proof: We assume that after one clock cycle the register contains the coeffi-
cients of s̃ = ∑i∈m s̃ixi. Then

s̃0 = α − g0(β + sm−1)

and
s̃i = si−1 − gi(β + sm−1) for 1 ≤ i ≤ m − 1.

4.11 Encoding 337

This gives:

s̃ = ∑
i∈m

s̃ix
i

=
m−1

∑
i=1

(
si−1 − gi(β + sm−1)

)
xi + α − g0(β + sm−1)

=
m−1

∑
i=1

si−1x
i + α − (β + sm−1) ∑

i∈m
gix

i

= x

(
m−1

∑
i=1

si−1x
i−1

)
+ α + (β + sm−1)xm − (β + sm−1)g

= xs + α + βxm − (β + sm−1)g

= remg(xs + α + βxm). �

We are now in a position to describe the behavior of the division shift reg-
ister DR(g) with respect to successive input.

4.11.3Corollary Let g be a monic polynomial of degree m and assume that DR(g) is initial-
ized with zeros.

If we input at A the components of the vector f ∈ Fn
q as a sequence fn−1, . . . , f0

and at B always 0, then, after n successive clock cycles, the content of the division
shift register DR(g) is

remg(f).

If we input at B the components of the vector f ∈ Fn
q as a sequence fn−1, . . . , f0

and at A always 0, then, after n clock cycles, the content of the division shift
register DR(g) is

remg(xm f). �

This shows that we can construct a systematic encoder of C using a circuit
that performs division of polynomials.

4.11.4Corollary Let C ≤ Res q,n denote a cyclic (n, k)-code over Fq with generator polyno-
mial g. The mapping

f �→ xn−k f − remg(xn−k f)

is a systematic encoding:

Fk
q → Fn

q : (f0, . . . , fk−1) �→ (−r0, . . . ,−rn−k−1, f0, . . . , fk−1),

corresponding to a generator matrix of the form Γ = (A | Ik) of C. Being a cyclic
code, (Ik | A) generates the same code, and so,

Fk
q → Fn

q : f �→ f − xkremg(xn−k f),

338 4. Cyclic Codes

(f0, . . . , fk−1) �→ (f0, . . . , fk−1,−r0, . . . ,−rn−k−1)

is the systematic encoding corresponding to (Ik | A).
In order to determine the coefficients of r = remg(xn−k f), we start with the

division shift register DR(g) initialized with zeros, and input at A always zeros, and
at B successively the elements fk−1, . . . , f0. �

4.11.5 Example The check digits of the binary (7,4)-Hamming-code with the genera-
tor polynomial g = x3 + x + 1 can be obtained by the following division shift
register DR(g):

�+ �+� � � � �

�

�
f

Fig. 4.5 The division shift register DR(g) for the encoding of the (7, 4)-Hamming-code

�

In 4.5.13 we have shown that the Discrete Fourier Transformation can be
used as a natural encoding method for narrow-sense Reed–Solomon-codes.

Exercises

E.4.11.1 Exercise Consider a cyclic (n, k)-code C over Fq with generator polynomial g.
Derive an encoder that realizes, for every message f ∈ Fk

q, the multiplication
c = f · Γ. Use, for this purpose, the generator matrix Γ given in 4.2.5.

E.4.11.2 Exercise Encode the message (f0, f1) by using a narrow-sense (6, 2, 5)-Reed–
Solomon-code over F7.

4.12 4.12 Permutation Decoding

We describe a decoding method due to MacWilliams [138] that uses automor-
phisms of a code to permute the entries of the received vector in such a way
that there is no error on a given set of information bits. This method is par-
ticularly useful for cyclic codes since cyclic codes have all cyclic shifts of the
coordinates as automorphisms.

4.12 Permutation Decoding 339

Let C be a cyclic (n, k, d, q)-code with generator polynomial g, where the
length n of C is not divisible by the characteristic of the field Fq. As usual we
denote by y ∈ Fn

q a received vector, and we assume that the number of errors
that have occurred during the transmission is t ≤ (d − 1)/2.

The syndrome depends on the check matrix we use. Here we discuss two
different ways to evaluate the syndrome. Our first method uses the variety

V(C) = {α0, . . . , αn−k−1}

of the code C in question. As pointed out in 4.2.16, the matrix

∆̃ =

⎛⎜⎜⎜⎝
1 α0 α2

0 . . . αn−1
0

1 α1 α2
1 . . . αn−1

1
.

1 αn−k−1 α2
n−k−1 . . . αn−1

n−k−1

⎞⎟⎟⎟⎠
is a check matrix of a code C̃ over an field extension of Fq that restricts to C,
i.e. C = C̃ ↓ Fq = C̃ ∩ Fn

q .

4.12.1Theorem The syndrome y · ∆̃� of the received vector y ∈ Fn
q can be evaluated using

n − k simultaneous division shift registers DR(x − αi), i ∈ n − k, each initialized
with zeros. The coefficients of y are fed in reverse order, i.e. yn−1, . . . , y0, into the
input gate A (see Fig. 4.6) of each of these division shift registers.

Proof: The syndrome y · ∆̃� of y satisfies

y · ∆̃� = (y(α0), . . . , y(αn−k−1)).

For each α ∈ Fq we have that

y(α) = remx−α(y),

where rem is as in 4.11.1. According to 4.11.3, y(αi) can be evaluated using the
circuit shown in Fig. 4.6. �

0�+ �

�

�y0, . . . , yn−1

��
�	
−α ��

�	
−1

�

�

Fig. 4.6 Evaluation of y(α) with a division shift register

340 4. Cyclic Codes

For the remainder of this section, let us fix an information set as described
in Section 1.7, i.e. a set of k coordinates whose values determine the codeword
uniquely. We assume that the first k positions in the code form such an infor-
mation set. In this case, we may assume that the code has a systematic generator
matrix Γ = (Ik | A), so that ∆ = (−A� | In−k) is a check matrix of C by Exer-
cise 1.3.9. The following result enables us to compute the syndrome y · ∆� of
a received vector y using a division shift register DR(g).

4.12.2 Theorem If Γ = (Ik | A) is a generator matrix and ∆ = (−A� | In−k) is the
corresponding check matrix of the cyclic (n, k)-code C generated by g, the syndrome
of a received vector y is the sequence of coefficients of the remainder remg(xky) =
∑i∈n−k rixi,

(y0, . . . , yn−1) · ∆� = (r0, . . . , rn−k−1).

Proof: 1. Multiplying y(x) by xk, the residue remxn−1(xky) corresponds to the
vector (yn−k, . . . , yn−1, y0, . . . , yn−k−1). Since the generator polynomial divides
xn − 1 we have remg(xky) = remg(remxn−1(xky)).

2. We divide y(x) by xk to obtain unique polynomials f , s ∈ Fq[x] such that

y = xks + f ,

where f = 0 or deg f < k. Moreover, deg s < n − k. In terms of the sequences
of coefficients this means that

(y0, . . . , yn−1) = (f | s) := (f0, . . . , fk−1, s0, . . . , sn−k−1).

3. Replacing the sequence s of coefficients by the vector

f̃ := (f0, . . . , fk−1) · A ∈ Fn−k
q

we obtain (f | f̃) · ∆� = − f · A + f̃ = − f · A + f · A = 0. Hence,

f (x) + xk f̃ (x) + I(xn − 1) ∈ C.

Since C is cyclic, also

xn−k f (x) + f̃ (x) + I(xn − 1) ∈ C,

from which we deduce that xn−k f (x) + f̃ (x) is a multiple of the generator
polynomial g, and so

f̃ = remg(f̃) = −remg(xn−k f).

This gives that the sequence corresponding to

y · ∆� = (f | s) · ∆� = s − f · A = s − f̃

4.12 Permutation Decoding 341

is the sequence of coefficients of

s(x) + remg(xn−k f) = remg(s + xn−k f) = remg(xky),

since s = remg(s) and s + xn−k f corresponds to (s0, . . . , sn−k−1, f0, . . . , fk−1) =
(yk, . . . , yn−1, y0, . . . , yk−1). �

Permutation decoding is another way of using the syndrome y · ∆� to correct
errors. The idea is to apply a permutation σ from the automorphism group
of the code to the received vector y in such a way that σ(y) contains no errors
in a fixed set of information places. We apply the parity check equations to
σ(y) and obtain a correct but possibly permuted codeword. By reversing the
permutation we obtain the codeword transmitted originally. The basic result
for this method is

4.12.3Theorem Consider a linear code C with a systematic generator matrix Γ = (Ik | A)
and the corresponding check matrix ∆ =

(
−A� | In−k

)
. Assume that the codeword

c was sent, that y = c + e was received, and that wt(e) = t with 2t + 1 ≤ dist(C).
Then the weight of the syndrome y · ∆� is not greater than t if and only if y is correct
in all its information places. In formal terms

wt(y · ∆�) ≤ t ⇐⇒ e0 = . . . = ek−1 = 0.

Proof: The assumption e0 = . . . = ek−1 = 0 yields

y · ∆� = e · ∆� = (ek, . . . , en−1)

and so wt(y · ∆�) = wt(e) = t.
Conversely, if (e0, . . . , ek−1) �= 0 we may write

v := (e0, . . . , ek−1), w := (ek, . . . , en−1).

Since y · ∆� = e · ∆� = −v · A + w, we can use the inequality from Exer-
cise 4.12.1 in the form

wt(y · ∆�) ≥ wt(v · A) −wt(w).

As v · (Ik | A) = v + v · A is an element of C, we have

2t + 1 ≤ wt(v · A) + wt(v)

≤ wt(y · ∆�) + wt(v) + wt(w)

= wt(y · ∆�) + wt(e)

= wt(y · ∆�) + t,

from which wt(y · ∆�) ≥ t + 1 follows. �

342 4. Cyclic Codes

We are now in a position to formulate the announced algorithm due to
MacWilliams:

4.12.4 Algorithm (permutation decoding) Consider a linear code C with minimum
distance d ≥ 2t + 1, systematic generator matrix Γ = (Ik | A) and correspond-
ing check matrix ∆ =

(
−A� | In−k

)
. In order to correct up to t transmission

errors with permutation decoding, for each potential error vector e ∈ Fn
q with

wt(e) ≤ t we must know an automorphism σe ∈ Sn of C so that the first k
components of σe(e) are 0.

We apply all these automorphisms to the received vector y ∈ Fn
q , ob-

tain the permuted vectors σe(y) and determine the corresponding syndromes
σe(y) · ∆�.

If wt(σe(y) · ∆�) ≤ t for an automorphism σe, then the information places,
i.e. the first k components, of σe(y) are correct, and the error of σe(y) is

e′ = (0, . . . , 0, e′k , . . . , e
′
n−1) = (0k | σe(y) · ∆�).

By reverting this automorphism, we can reconstruct c as

c = σ−1
e

(
σe(y)− e′

)
.

If we cannot find such a permutation σe, we conclude that more than t
errors have occurred and we cannot correct the error. �

To apply this algorithm, it remains to find a suitable set of permutations
in the automorphism group of the code that does the job. That means, we
want a set of permutations σ which guarantees that for each error vector e the
permuted vector σ(e) has zeros in all its first k positions. Such a set is called
a PD-set (for permutation decoding). Of course, we want a small PD-set. For
cyclic codes, this can be accomplished with trap decoding.

4.12.5 Trap decoding Let C be a cyclic (n, k, d)-code. If

t ≤
⌊

d − 1
2

⌋
and t ≤ n − 1

k
,

then every error vector e of weight t contains a consecutive set of at least k
zeros. If π = (0, . . . , n − 1) is the cyclic shift then the assumptions imply that
there is an i ∈ n such that πi(e) has k leading zeros. That is, it suffices to
consider the cyclic group

G = 〈π〉
of order n. This form of permutation decoding using the cyclic group of order
n is called error trapping or trap decoding. It permits the correction of up to t
errors. �

4.12 Permutation Decoding 343

For the (23, 12)-Golay-code, trap decoding enables us to correct only a sin-
gle error. It is, therefore, not very efficient, but it allows the correction of certain
burst errors (cf. Section 5.3).

In many cases a subset of the set of elements of the cyclic group suffices, as
the following example shows.

4.12.6Example The binary (7, 4)-Hamming-code has minimum weight d = 3 and
hence corrects 1 error. Since t = 1 ≤ (7 − 1)/4, it admits a trap decoder. For
each vector e ∈ F7

2 of weight 1 we determine a suitable permutation π j in the
cyclic group G := 〈π〉, π := (0, . . . , 6), of order 7, so that the cycled vector
π j(e) has 4 leading zeros. For each possible single bit error e, the following
table shows a suitable exponent j and the corresponding cyclic shift π j(e) with
4 leading zeros.

e j π j(e)
0000001 0 0000001
0000010 0 0000010
0000100 0 0000100
0001000 3 0000001
0010000 3 0000010
0100000 3 0000100
1000000 6 0000001

In this case, it suffices to consider the PD-set π0 = id, π3, and π6 rather than
the full cyclic group of order 7. �

It is, of course, an interesting problem to determine the minimal size of a
set of permutations for permutation decoding. The following lower bound is
due to D. M. Gordon [73], see also [94]:

4.12.7Theorem A lower bound for the size of a PD-set for a t-error-correcting (n, k)-code
is ⌈

n
n − k

⌈
n − 1

n − k − 1

⌈
· · ·

⌈
n − t + 1

n − k − t + 1

⌉
· · ·

⌉⌉⌉
.

This bound is sharp in the sense that there are codes for which no smaller set of per-
mutations can be used.

Proof: A minimal set of permutations necessary in the worst case needs to
contain enough permutations π to move the set R of redundancy places (in
systematic codes: R = {k, . . . , n − 1}) so that the resulting sets π(R) cover all
possible t-subsets of n. Let S be the set of sets π(R) where π runs through such
a minimal set of permutations. Then each element of S is of cardinality n − k.

344 4. Cyclic Codes

We indicate the cardinality of S, which is also the number of permutations in
a minimal set, by

N(t, n − k, n).

Consequently, the set of pairs

{(i, T) | i ∈ T, T ∈ S}

is of cardinality (n − k)N(t, n − k, n). This set can be described as the disjoint
union ⋃

j∈n

{(j, T) | j ∈ T, T ∈ S} .

For j ∈ n let Sj be the set {T ∈ S | j ∈ T}. Since the elements of S cover all
possible t-subsets of n, and j ∈ T for all T ∈ Sj, the elements of Sj cover all
possible t-subsets of n which contain j. Thus, the elements of {T \ {j} | T ∈ Sj}
cover all possible t − 1-subsets of n \ {j}. Hence∣∣Sj

∣∣ ≥ N(t− 1, n − k − 1, n − 1), j ∈ n,

and, therefore,

(n − k) · N(t, n − k, n) ≥ n · N(t− 1, n − k − 1, n − 1)

holds true. Finally, the statement follows from

N(1, n − k − t + 1, n − t + 1) =
⌈

n − t + 1
n − k − t + 1

⌉
.

A PD-set for the binary (24, 12, 8)-Golay-code of size 14 can be found in [94].
This shows that the lower bound is sharp. �

Let C be a cyclic (n, k)-code. A modification of trap decoding is the Kasami-
decoder, which often allows the correction of a higher number of errors. It
uses a set of polynomials u(0) = 0, u(1), . . . , u(s) ∈ Fq[x] of degree less than k,
called covering polynomials of C. We suppose that for each error vector e with
wt(e) ≤ t there exists a covering polynomial u(i), such that the j-fold cyclic
shift π j(e) of e, for a suitable j, agrees with (the sequence of coefficients of) u(i)

in the information positions, i.e. in the first k places. Kasami-decoding is based
on the following result:

4.12.8 Theorem Let C be a linear code of minimum distance d ≥ 2t + 1 with a sys-
tematic generator matrix Γ = (Ik | A) and the corresponding check matrix ∆ =(
−A� | In−k

)
. Assume that c ∈ C was sent, that y = c + e was received, and that

wt(e) ≤ t. Let u(i) be a polynomial of degree less than k. The information positions of
y + u(i) are correct if and only if

wt((y + u(i)) · ∆�) ≤ t −wt(u(i)).

4.12 Permutation Decoding 345

In this case, the error vector is given by

e =
(
−u(i) | (y + u(i)) · ∆�)

.

Proof: Assume that the first k positions of y + u(i) are correct. Then u(i) cor-
rects all errors among the first k positions of y. These are wt(u(i)) corrections.
Since deg u(i) < k, at most t − wt(u(i)) errors occur in the final n − k posi-
tions. Therefore, y + u(i) − c = (0 | e′) where e′ ∈ Fn−k

q is of weight at most
t −wt(u(i)), and

(y + u(i)) · ∆� = (y + u(i) − c) · ∆� = (0 | e′) · ∆� = e′.

Consequently, wt((y + u(i)) · ∆�) ≤ t −wt(u(i)).
Conversely, we assume that wt((y + u(i)) · ∆�) ≤ t − wt(u(i)). Writing

y + u(i) − c as (e′′ | e′) with e′′ ∈ Fk
q and e′ ∈ Fn−k

q , we show that e′′ = 0.
Suppose that wt(e′′) �= 0. We can restrict ourselves to covering polynomials of
weight at most t. Due to the construction we express the weights of e′′ and e′

as wt(e′′) = v + w and wt(e′) = z, where

v =
∣∣∣{j ∈ k

∣∣∣ yj �= cj and u(i)
j �= cj − yj

}∣∣∣ ,
w =

∣∣∣{j ∈ k
∣∣∣ yj = cj and u(i)

j �= 0
}∣∣∣ ,

z =
∣∣∣{j ∈ {k, . . . , n − 1}

∣∣∣ yj �= cj

}∣∣∣ .
These cardinalities satisfy v + z ≤ t and w ≤ wt(u(i)). From

(y + u(i)) · ∆� = (y + u(i) − c) · ∆� = (e′′ | e′) · ∆� = e′ − e′′ · A

we obtain that

wt((y + u(i)) · ∆�) ≥ wt(e′′ · A)−wt(e′).

Since A comes from a systematic generator matrix Γ = (Ik | A) of a code with
minimum distance d ≥ 2t + 1, we have

wt(e′′ · A) ≥ d −wt(e′′) ≥ 2t + 1− (v + w)

and, consequently,

wt((y + u(i)) · ∆�) ≥ 2t + 1− v−w− z ≥ 2t + 1− t−wt(u(i)) > t−wt(u(i)).

We have just shown that when e′′ �= 0, then wt((y + u(i)) · ∆�) �≤ t −wt(u(i)).
Finally, if wt((y + u(i)) · ∆�) ≤ t −wt(u(i)), then the error vector is equal to

y− c = (0 | e′)− u(i) =
(
−u(i) | (y + u(i)) · ∆�)

. �

346 4. Cyclic Codes

For cyclic codes, the Kasami-decoder computes the cyclic shifts π j(y) of
the received vector y until the inequality

wt((π j(y) + u(i)) · ∆�) ≤ t −wt(u(i))

is satisfied for a covering polynomial u(i). Then it decodes y into the codeword

c = πn−j
(

π j(y)−
(
−u(i) | (y + u(i)) · ∆�))

.

4.12.9 Example The set {0, x5, x6} is a set of covering polynomials of the binary
(23, 12)-Golay-code with generator polynomial g = x11 + x10 + x6 + x5 + x4 +
x2 + 1. It permits us to correct up to t = 3 errors. �

Exercises

E.4.12.1 Exercise Prove that if x and y are in Fn
q , then wt(x + y) ≥ wt(x)−wt(y).

E.4.12.2 Exercise Realize a Kasami-decoder using a division shift registers.

E.4.12.3 Exercise Prove that u(0) = 0, u(1) = x5, and u(2) = x6 is a set of covering
polynomials for the code in 4.12.9.

4.13 4.13 Error-Correcting Pairs

For decoding BCH-, Reed–Solomon- and Goppa-codes, the method of error-
correcting pairs was introduced by R. Pellikaan [161] and independently by
R. Kötter [115].

Let C be an (n, k, d, q)-code and assume that the vector y = c + e has been
received. Moreover, we suppose that I := supp(e) is contained in a subset
J ⊆ n, where |J| ≤ d − 1. Consider an Fq-basis of C⊥{

w(0), . . . , w(n−k−1)
}

.

4.13.1 Lemma The error vector e is the unique solution u ∈ Fn
q of the system of linear

equations
〈 u, w(i) 〉 = 〈 y, w(i) 〉 for all i ∈ n − k,

uj = 0 for all j ∈ n \ J.

Proof: It is clear that e is a solution. Moreover, if u is a solution, then u − e is
contained in C, and wt(u − e) ≤ |J|, so that we can deduce from our assump-
tion on J that u − e = 0, and so u = e. �

4.13 Error-Correcting Pairs 347

Hence, it remains to construct such a set J. For this purpose we assume
that wt(e) ≤ t ≤ (d− 1)/2, i.e. no more than t errors have occurred during the
transmission of c.

Consider two linear codes A and B of length n over an extension field Fqm

of Fq – later on we will see that such codes can easily be constructed if we
are given a BCH-code in the strict sense, a Reed–Solomon-code or a classi-
cal Goppa-code. In the following we use the notation a · b for the Hadamard
product of a ∈ A and b ∈ B,

a · b := (a0b0, . . . , an−1bn−1),

while A · B means the (Hadamard) complex product {a · b | a ∈ A, b ∈ B}.
The codes A and B are supposed to have the following four properties:

A · B ⊆ C⊥, where the elements of C are considered as elements of Fn
qm .

This condition guarantees that the vector space (corresponding to the re-
ceived vector y)

Ky := {a ∈ A | 〈 y, a · b 〉 = 0 for all b ∈ B}

coincides with the vector space (corresponding to the error vector e)

Ke := {a ∈ A | 〈 e, a · b 〉 = 0 for all b ∈ B} .

Ky contains the set

A(I) := {a ∈ A | ai = 0 for all i ∈ I}

of all codewords in A, the I-coordinates of which are zero. This is obvious
if we recall that I = supp(e), since for each a ∈ A(I) and b ∈ B we have

〈 y, a · b 〉 = 〈 e, a · b 〉 = ∑
i∈I

aibiei = 0,

and so a ∈ Ky.

dim(A) ≥ t + 1: This condition guarantees that Ky �= {0}. The set Ky

contains A(I), and A(I) is the intersection of A with

D := {v ∈ Fn
qm | vi = 0 for all i ∈ I}.

Obviously, D is a vector space of dimension ≥ n − t. If A(I) = {0}, then
A + D = A⊕ D is a direct sum and a subspace of Fqm of dimension at least
n + 1 which is impossible. Therefore, dim(A(I)) ≥ 1.

dist(B⊥) ≥ t + 1: This fact implies Ky = A(I), since each a ∈ Ky satisfies

0 = 〈 y, a · b 〉 = 〈 e, a · b 〉 = 〈 e · a, b 〉, for all b ∈ B.

348 4. Cyclic Codes

Thus e · a ∈ B⊥. But wt(e · a) ≤ wt(e) ≤ t, and, since dist(B⊥) ≥ t + 1, we
have e · a = 0. Hence, a is zero whenever e is nonzero, so that a ∈ A(I).

dist(A) + dist(C) ≥ n + 1: This condition assures that each nonzero a ∈ A
contains at most d − 1 zeros, i.e. the set

Ja := {i ∈ n | ai = 0}

consists of at most (d− 1) elements. Indeed, for each 0 �= a ∈ A(I) we have

n − |Ja| = wt(a) ≥ dist(A) ≥ n − dist(C) + 1,

therefore |Ja| ≤ dist(C)− 1 = d − 1.

4.13.2 Definition (error-correcting pair) Let C be a linear code over Fq of length n
and minimum distance d ≥ 2t + 1. Any pair (A, B) of linear codes of length
n over Fqm is called t-error-correcting pair for C if the following four conditions
are satisfied:

A · B ⊆ C⊥,

dim(A) ≥ t + 1,

dist(B⊥) ≥ t + 1 and

dist(A) + dist(C) ≥ n + 1.

4.13.3 Theorem Let C be a linear (n, k, d, q)-code, and let (A, B) be a t-error-correcting
pair for C for some 1 ≤ t ≤ (d − 1)/2. Then it is possible to decode y = c + e with
wt(e) ≤ t using the linear system from 4.13.1.

Proof: We determine Ky, choose a nonzero element a ∈ Ky and consider the
set J := Ja of coordinates where a is zero. Since we know that J contains the
support I of the error vector and that it consists of at most d − 1 elements, we
obtain e by solving the system of linear equations. �

Now we show how to decode Generalized Reed–Solomon-codes, BCH-
codes with b = 0, as well as classical Goppa-codes using a pair of error-
correcting codes.

4.13.4 Example Let κ = (κ0, . . . , κn−1) denote a sequence of pairwise different ele-
ments of Fq. We consider, without restriction, the Generalized Reed–Solomon-
code C = GRS2t(κ, 1n)⊥. According to 4.5.17 and 2.5.1, this code is an (n, n −
2t)-MDS-code. We claim that the Generalized Reed–Solomon-codes

A := GRSt+1(κ, 1n) and B := GRSt(κ, 1n)

4.13 Error-Correcting Pairs 349

form a t-error-correcting pair for C over Fq. Because of 4.5.17, the codes A
and B are (n, t + 1) and (n, t)-MDS-codes, respectively. It follows from 2.5.1
that B⊥ is an (n, n − t, t + 1)-MDS-code and hence dim(A) = t + 1, dist(A) +
dist(C) = (n − t) + (2t + 1) ≥ n + 1 and dist(B⊥) = t + 1. Now we choose
f ∈ Fq[x]<t+1 and g ∈ Fq[x]<t. Then, by definition, (f (κ0), . . . , f (κn−1)) ∈ A
and (g(κ0), . . . , g(κn−1)) ∈ B. Since deg(f g) < 2t, the Hadamard product
(f g(κ0), . . . , f g(κn−1)) of these two codewords is contained in GRS2t(κ, 1n) =
C⊥. Consequently A · B ⊆ C⊥. Thus, all four conditions for a t-error-correcting
pair are satisfied. �

4.13.5Example Let C be a BCH-code of length n = qm − 1 over Fq with designed dis-
tance δ. If α is a primitive element of Fqm , this means that W = {1, α, . . . , αδ−2}
is contained in the variety of C.

Consider κ = (1, α, . . . , αn−1) and t =
(δ − 1)/2�. The Generalized Reed–
Solomon-codes

A := GRSt+1(κ, 1n) and B := GRSt(κ, 1n)

form a t-error-correcting pair for C. We prove only the first condition, the
remaining ones follow by arguments along the lines of the previous example.

As shown in 4.13.4, the complex product A · B is contained in the General-
ized Reed–Solomon-code GRS2t(κ, 1n). This code contains the basis elements
κ(i) := (1, αi, . . . , αi(n−1)) for 0 ≤ i ≤ 2t − 1. These vectors are in the dual code
C⊥, which follows from the construction of BCH-codes in 4.3.1 and from the
assumption that 2t − 1 ≤ δ − 2. This completes the proof. �

4.13.6Example Now we consider the Goppa-code GOq(κ, g) with Goppa-polynomial
g of degree r. For t =
r/2� there is a t-error-correcting pair, given by

A := GRSt+1(κ, 1n)

and the code

B :=
{(

f (κ0)g(κ0)−1, . . . , f (κn−1)g(κn−1)−1
) ∣∣∣ f ∈ Fq[x]

<t

}
which is isometric to the Generalized Reed–Solomon-code GRSt(κ, 1n). (See
Exercise 4.13.1). �

Another classical decoding method for BCH- and Reed–Solomon-codes is
the Berlekamp–Massey algorithm, for which we refer to [19] and [139], for
example. See also Section 5.2 where we present a decoding algorithm for BCH-
codes which enables us to correct both erasures and transmission errors.

350 4. Cyclic Codes

Exercises

E.4.13.1 Exercise Check the statement in 4.13.6.

E.4.13.2 Exercise Consider the (7, 3)-Reed–Solomon-code over F8 with generator poly-
nomial g = (x − ξ)(x − ξ2)(x − ξ3)(x − ξ4), where ξ denotes a root of the
primitive polynomial x3 + x + 1 ∈ F2[x]. Choose a suitable error-correcting
pair in order to correct the error in the received vector y = (ξ3, 0, 0, ξ, 1, ξ3, ξ).

4.14 4.14 Majority Logic Decoding

Now we discuss a very practical and efficient method to decode certain linear
codes. It can easily be realized using circuits, and it works particularly well
with binary Reed–Muller-codes. The method goes back to Reed [167], and was
then thoroughly discussed by Massey [144]. Apart from binary Reed–Muller-
codes, we will show how binary cyclic codes of length 2s can be decoded by
this method.

Recall that if C is a linear (n, k)-code over Fq, the elements in the dual code
C⊥ are parity checks, i.e.

h0c0 + . . . + hn−1cn−1 = 0

for all c = (c0, . . . , cn−1) ∈ C and all h = (h0, . . . , hn−1) ∈ C⊥. Since C⊥ has
dimension n − k, this gives us qn−k parity check equations. The problem is to
decide which of these parity checks should be used in order to decode errors.

4.14.1 Definition Let C be a linear (n, k)-code over Fq. A set of parity check equations
h(0), . . . , h(r−1) ∈ C⊥ is called focused on the i-th coordinate of C if

1. h(k)
i �= 0 for all k ∈ r and

2. for all j �= i there is at most one k ∈ r with h(k)
j �= 0.

4.14.2 Example The parity check matrix of the (7, 3, 4)-simplex-code is⎛⎜⎜⎜⎝
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎟⎠ ,

4.14 Majority Logic Decoding 351

the generator matrix of the (7, 4, 3)-Hamming-code which we know from 4.2.7.
Under cyclic shifts, we get 7 parity checks:

i h(i)

0 (1, 1, 0, 1, 0, 0, 0)
1 (0, 1, 1, 0, 1, 0, 0)
2 (0, 0, 1, 1, 0, 1, 0)
3 (0, 0, 0, 1, 1, 0, 1)
4 (1, 0, 0, 0, 1, 1, 0)
5 (0, 1, 0, 0, 0, 1, 1)
6 (1, 0, 1, 0, 0, 0, 1)

Out of these seven parity checks, h(0), h(4) and h(6) are focused on the 0-th
coordinate. This is because c0 appears in all of

0 = 〈h(0), c〉 = c0 + c1 + c3,

0 = 〈h(4), c〉 = c0 + c4 + c5,

0 = 〈h(6), c〉 = c0 + c2 + c6,

whereas the other coordinates appear at most once. We assume that c ∈ C is
sent, and that y = c + e is received, where e = (e0, . . . , en−1) is the error vector
(cf. 1.2.7). Its entries ei are known as the error bits. Since

σi = 〈h(i), y〉 = 〈h(i), c〉 + 〈h(i), e〉 = 〈h(i), e〉

we get

σ0 = 〈h(0), y〉 = e0 + e1 + e3,

σ4 = 〈h(4), y〉 = e0 + e4 + e5,

σ6 = 〈h(6), y〉 = e0 + e2 + e6. �

4.14.3Theorem Let C be a binary linear code. If {h(0), . . . , h(r−1)} is a set of parity check
equations focused on the i-th coordinate and if no more than
r/2� errors have oc-
curred, i.e. if y = c + e with wt(e) ≤
r/2�, then

ei =
{

0 if wt
(
(σ0, . . . , σr−1)

)
≤ r/2,

1 otherwise,

where σi = 〈y, h(i) for i ∈ r. That is, the true value of ei is the value taken by the
majority of the σi’s. In case that r is even and there is a tie, we decode ei as 0.

352 4. Cyclic Codes

Proof: 1. If ei = 0 then there are at most r/2 error bits ej, j �= i, which can affect
at most r/2 of the σk’s. That is, wt

(
(σ0, . . . , σr−1)

)
≤ r/2 and the decoding

decision is correct.

2. If ei = 1 then less than r/2 equations are affected by the ej, j �= i, i.e. σk �= 0
for more than r/2 parity checks. In this case, wt

(
(σ0, . . . , σr−1)

)
> r/2 and ei

is decoded correctly. �

4.14.4 Corollary If r focused parity checks exist for every coordinate i, the binary code C can
correct
r/2� errors. �

Majority logic decoding is particularly useful for cyclic codes. Once a fo-
cused set of parity checks has been found for say the 0-th coordinate, cyclic
shift of these parity checks give focused sets for all other coordinates (using
the fact that the dual code is cyclic as well). The described method is known
under the name one-step majority logic decoding. It works well for the simplex-
code. However, for the (23, 12, 7)-Golay-code (which is cyclic) only a single
error can be corrected. This is because of the following result (the dual code of
the Golay-code has minimum distance 8):

4.14.5 Theorem For a binary linear code of length n, majority logic can correct at most

n − 1
2(d⊥ − 1)

errors, where d⊥ is the minimum distance of the dual code.

Proof: Consider the parity checks h(0), . . . , h(r−1) which are focused on the 0-th
coordinate. Counting disjoint coordinates, this means that

1 + (|supp(h(0))| − 1) + . . . + (|supp(h(r−1))| − 1) ≤ n.

Since each parity check corresponds to a word in the dual code, the left hand
side is bounded from below by 1 + r(d⊥ − 1), i.e. r ≤ (n − 1)/(d⊥ − 1). The
result follows from 4.14.4. �

In order to correct more errors, multi-step majority decoding can be used.

4.14.6 Definition Let C be a linear (n, k)-code over Fq and let C⊥ be the dual code. Fix
a set S ⊆ n of l = |S| coordinates. A set of parity checks h(0), . . . , h(r−1) ∈ C⊥

is called focused on S if

1. h(k)
i �= 0 for all i ∈ S, k ∈ r and

2. for all j �∈ S there is at most one k ∈ r with h(k)
j �= 0.

The following example describes the dual setting of 4.14.2.

4.14 Majority Logic Decoding 353

σ0 σ6

0, 1

σ0 σ5

0, 2

0

Fig. 4.7 A 2-step majority logic decoder for the (7, 4)-Hamming-code

4.14.7Example A parity check matrix of the (7, 4, 3)-Hamming-code is the generator
matrix of the (7, 3, 3)-simplex-code. Under cyclic shifts, we get 7 parity checks:

i h(i)

0 (1, 1, 1, 0, 1, 0, 0)
1 (0, 1, 1, 1, 0, 1, 0)
2 (0, 0, 1, 1, 1, 0, 1)
3 (1, 0, 0, 1, 1, 1, 0)
4 (0, 1, 0, 0, 1, 1, 1)
5 (1, 0, 1, 0, 0, 1, 1)
6 (1, 1, 0, 1, 0, 0, 1)

The parity checks h(0) and h(6) are focused on {0, 1}, since

σ0 = 〈h(0), y〉 = e0 + e1 + e2 + e4,

σ6 = 〈h(6), y〉 = e0 + e1 + e3 + e6.

The parity checks h(0) and h(5) are focused on {0, 2}, since

σ0 = 〈h(0), y〉 = e0 + e1 + e2 + e4,

σ5 = 〈h(5), y〉 = e0 + e2 + e5 + e6,

whereas the other coordinates appear at most once. Suppose there is one error.
By a majority rule, the first two parity checks determine the value of e0 + e1.
Similarly, the second pair of parity checks determines the value of e0 + e2. The
estimates e0 + e1 and e0 + e2 can be used to estimate by majority vote the value
of e0. Thus we have a 2-step process to determine e0 (cf. Fig. 4.7). Since C
is cyclic, the same procedure works for each of the other error coordinates,
provided the parity checks are cycled accordingly. �

354 4. Cyclic Codes

A decoder which has L levels of majority logic is called L-step majority
logic decoder. The L levels form what is known as the decoding tree. We will
see some examples below. As before, we find that
r/2� errors can be cor-
rected as long as there are r checks at each stage in the decoding process. Even
with L-step majority logic, we may not be able to correct the theoretically pos-
sible number of
d/2� errors. For instance, L-step majority logic applied to
the (23, 12, 7)-Golay-code corrects only 2 errors. This is due to the following
result:

4.14.8 Theorem For a binary (n, k)-code C, L-step majority logic corrects at most

n
d⊥

− 1
2

errors, where d⊥ is the minimum distance of the dual code.

Proof: Let {h(0), . . . , h(r−1)} be a set of r parity checks focused on l coordinates
S. For each i ∈ S, let mi be the number of coordinates involved in h(i) outside S,
i.e. mi = wt(h(i))− l. Thus

mi ≥ d⊥ − l.4.14.9

Also, since any two parity checks in a focused set have only l coordinates in
common,

mi + mj ≥ d⊥ for i �= j.4.14.10

Set M = ∑i∈r mi, then
M ≤ n − l.4.14.11

Summing 4.14.9 over all i yields

rl + M ≥ rd⊥,4.14.12

whereas summing 4.14.10 over all sets {i, j}, with i �= j yields

(r − 1)M ≥
(

r
2

)
d⊥.4.14.13

Putting 4.14.11 and 4.14.12 together gives

n − M ≥ l ≥ rd⊥ − M
r

4.14.14

and hence
rd⊥ ≤ rn − (r − 1)M ≤ rn − (r − 1)rd⊥/2

using 4.14.13. That is,

n ≥ d⊥(1 +
r − 1

2
) = d⊥

r + 1
2

so
r ≤ 2n

d⊥
− 1.

It follows from 4.14.4 that we can correct at most n
d⊥

− 1
2 errors. �

4.14 Majority Logic Decoding 355

We will soon see that multi-step majority logic works well for decoding
binary Reed–Muller-codes. Recall from 2.4.4 that the coordinates of the Reed–
Muller-code RM2

m,t are labeled by m-tuples over F2, i.e. the elements of the
vector space Fm

2 . The code itself is a subspace of the polynomial algebra B2
m

of all mappings from Fn
2 to F2, considered as vector space over F2. The Reed–

Muller-code RM2
m,t consists of those function in B2

m which when expressed as
reduced polynomials in F2[x0, . . . , xm−1] (cf. 2.4.3) have degree at most t.

4.14.15Example In RM2
4,2, we find the polynomial function x1x2. This function has

the following values (we write “x1x2” for the function in order to distinguish
the function from its arguments):

x3x2x1x0 “x1x2”(x3x2x1x0)
0000 0
0001 0
0010 0
0011 0
0100 0
0101 0
0110 1
0111 1
1000 0
1001 0
1010 0
1011 0
1100 0
1101 0
1110 1
1111 1

When read as a row vector, the second column in this table is the correspond-
ing element in the Reed–Muller-code. �

According to 2.4.8, the dual code of RM2
m,t is RM2

m,m−1−t, and from 2.4.7
we know that the minimum distance of RM2

m,t is 2m−t. For a subset S ⊆ Fm
2 ,

let fS be the characteristic function of S, i.e. the function which takes the value
fS(x) = 1 if x is in S and 0 otherwise. We will investigate which subsets S of Fm

2
have the property that their characteristic function is in the Reed–Muller-code
RM2

m,t. We need some language from geometry in order to state the result.

4.14.16Definition (Affine Geometry) The affine geometry, AG(V), where V is a vector
space over a field F, consists of all cosets, U + x, of all subspaces U of V with
incidence define through the natural inclusion relation. The dimension of U +

356 4. Cyclic Codes

Table 4.1 The 2-flats in F3
2

2-flat V elements of V as integer characteristic vector
x0 = 0 000, 010, 100, 110 0, 2, 4, 6 10101010
x1 = 0 000, 001, 100, 101 0, 1, 4, 5 11001100

x1 + x0 = 0 000, 011, 100, 111 0, 3, 4, 7 10011001
x2 = 0 000, 001, 010, 011 0, 1, 2, 3 11110000

x2 + x0 = 0 000, 010, 101, 111 0, 2, 5, 7 10100101
x2 + x1 = 0 000, 001, 110, 111 0, 1, 6, 7 11000011

x2 + x1 + x0 = 0 000, 011, 101, 110 0, 3, 5, 6 10010110
x0 = 1 001, 011, 101, 111 1, 3, 5, 7 01010101
x1 = 1 010, 011, 110, 111 2, 3, 6, 7 00110011

x1 + x0 = 1 001, 010, 101, 110 1, 2, 5, 6 01100110
x2 = 1 100, 101, 110, 111 4, 5, 6, 7 00001111

x2 + x0 = 1 001, 011, 100, 110 1, 3, 4, 6 01011010
x2 + x1 = 1 010, 011, 100, 110 2, 3, 4, 6 00111010

x2 + x1 + x0 = 1 001, 010, 100, 111 1, 2, 4, 7 01101001

x is that of the defining subspace U, and if the latter has dimension k, we
will also refer to a coset of U as a k-flat. Thus the points are all the vectors,
the lines are 1-dimensional cosets, or 1-flats, the planes are the 2-dimensional
cosets, or 2-flats, and so on, with the hyperplanes the cosets of dimension n− 1,
where V is of dimension n over F. We also write AGn(F) for AG(V), in analogy
with the projective case. The affine geometry of these cosets is defined by the
inclusion relation which specifies that, if M = U + x and N = W + y are
cosets in AG(V), then M contains N if M ⊇ N, from which it follows that W is
a subspace of U. We write AGn(q) for AG(Fn

q)

4.14.17 Example Let x0, x1, x2 be the coordinates of F3
2. We use these coordinates and

the corresponding integer representation interchangeably, i.e.

x2x1x0 ←→ 4x2 + 2x1 + x0

where on the left we think of the elements of F2 as the integers 0 and 1, so
that on the right we have an integer from 0 to 7. Consider 2-flats in F3

2. There
are exactly 14 of them, they correspond to the solutions of all non-trivial linear
equations in the three binary variables x0, x1, x2, listed in the first column of
Table 4.1. The second and third column list the elements of the flat V, and
the last column the characteristic vector, which is just the vector holding the

4.14 Majority Logic Decoding 357

values of the characteristic function fV , with entries in the following order(
fV (0), fV (1), . . . , fV (15)

)
.

Coincidentally, the characteristic vectors listed in the rightmost column of the
table are the minimum weight vectors in the (8, 4, 4)-code which is the exten-
sion of the (7, 4, 3)-Hamming-code (see Exercise 4.14.4). �

4.14.18Theorem For i ≥ m − t, the characteristic vector of any i-dimensional flat in
AGm(2) is a codeword of weight 2i in RM2

m,t. In particular, the characteristic vec-
tor of an (m − t)-flat in AGm(2) is a minimum weight vector of RM2

m,t.

Proof: Every (m− t)-flat in AGm(2) can be represented by t linearly indepen-
dent inhomogeneous linear equations in the form

∑
j∈m

aijcj = bi, i ∈ t.

The elements of the flat are the vectors c = (c0, . . . , cm−1) satisfying these equa-
tions. To show that c is in RM2

m,t, we rewrite the condition as

∑
j∈m

aijcj + bi + 1 = 1, i ∈ t.

In characteristic 2, these conditions can be replaced by the single equation

∏
i∈t

(
∑
j∈m

aijcj + bi + 1
)

= 1.

This is because if one of the original equations does not hold then one of the
right hand sides must be zero, which makes the product in the second equation
become zero. Conversely, if c is a solution to the latter equation then again
since we are in characteristic 2, each factor in the product must be equal to one,
i.e. the former conditions hold for all i ∈ r. The fact that the latter condition
is a polynomial equation of degree at most t implies that c is in RM2

m,t, i.e.
each (m − t)-flat of AGm(2) is contained in RM2

m,t. If m − t is replaced by i >

m − t, then fewer linear conditions are needed to define the affine subspace.
By the same reasoning, we can represent the conditions by a single equation.
Since that equation has degree less than t, the characteristic function of an i-
dimensional affine subspace is contained in RM2

m,t as well.
Since the characteristic vector of an (m − t)-flat has weight 2m−t, the state-

ment about the minimum weight vectors follows. �

We note that the converse holds true as well. That is, the minimum weight
vectors in RM2

m,t are precisely the characteristic vectors of (m − t)-flats in the
affine geometry AGm(2).

358 4. Cyclic Codes

Table 4.2 Basis elements of the Reed–Muller-code RM2
4,2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x0x1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
x0x2 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
x0x3 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
x1x2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
x1x3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
x2x3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

4.14.19 Example Consider the binary Reed–Muller-code RM2
4,t for t ∈ {0, . . . , 4}. Re-

call that the coordinates of these codes are labeled by the elements of F4
2, which

we identify with the integers

0 = 0000, 1 = 0001, 2 = 0010, . . . , 15 = 1111,

where x3x2x1x0 is the binary representation of the integer. Basis elements of
the code are listed in Table 4.2. The horizontal lines separate basis elements
according to the chain of subspaces

RM2
4,0 ≤ RM2

4,1 ≤ RM2
4,2.

Assume we want to find parity checks focused on the characteristic vector of
the one-dimensional subspace 〈0001〉 = {0, 1}. Since (RM2

4,1)
⊥ = RM2

4,2, we
may take the 2-dimensional subspaces which contain 〈0001〉 (their characteris-
tic vectors are in RM2

4,2). These 2-dimensional subspaces are listed in Table 4.3.
The leftmost column describes the 7 subspaces by means of generator matri-
ces. The middle column lists the defining condition, which is translated from
Boolean logic into F2-arithmetic using the following dictionary:

a ∧ b ≡ ab mod 2,

a ∧ b ≡ 1 + ab mod 2,

a ∨ b ≡ (1 + a)(1 + b) mod 2,

a ∨ b ≡ 1 + (1 + a)(1 + b) mod 2,

a = b ≡ 1 + a + b mod 2,

a �= b ≡ a + b mod 2.

4.14 Majority Logic Decoding 359

Table 4.3 Focused parity checks expressed in the basis of RM2
4,2

subspace condition polynomial in B2
4 elements(0010

0001

)
x2 = x3 = 0

(1 + x2)(1 + x3)
= 1 + x2 + x3 + x2x3

0, 1, 2, 3(0100
0001

)
x1 = x3 = 0

(1 + x1)(1 + x3)
= 1 + x1 + x3 + x1x3

0, 1, 4, 5(1000
0001

)
x1 = x2 = 0

(1 + x1)(1 + x2)
= 1 + x1 + x2 + x1x2

0, 1, 8, 9

(0110
0001

)
x3 = 0, x1 = x2

(1 + x3)(1 + x1 + x2)
= 1 + x1 + x2 + x3

+x1x3 + x2x3

0, 1, 6, 7

(1010
0001

)
x2 = 0, x1 = x3

(1 + x2)(1 + x1 + x3)
= 1 + x1 + x2 + x3

+x1x2 + x2x3

0, 1, 10, 11

(1100
0001

)
x1 = 0, x2 = x3

(1 + x1)(1 + x2 + x3)
= 1 + x1 + x2 + x3

+x1x2 + x1x3

0, 1, 12, 13

(1110
0001

)
x1 = x2 = x3

(1 + x1 + x2)(1 + x2 + x3)
= 1 + x1 + x3 + x2 + x1x3

+x1x2 + x2x3

0, 1, 14, 15

Also, the fact that x2 ≡ x over F2 is used. For instance, the first subspace
〈0010, 0001〉 contains all vectors x3x2x1x0 with x3 = x2 = 0. In Boolean logic,

x3 = 0 and x2 = 0,

which translates into
(1 + x3) · (1 + x2)

using F2-arithmetic. This can be verified by looking at the elements. The sub-
space contains 0000, 0001, 0010, and 0011 (i.e. 0, 1, 2 and 3 in binary). This
corresponds to the fact that the polynomial (1 + x3)(1 + x2) evaluates to 1 pre-
cisely for those values. The corresponding vector in the code is

(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

i.e. the vector which is one at exactly these 4 positions. In the table, the
rightmost column lists the vectors contained in each of the subspaces (such
as 0, 1, 2, 3 in the first row). The characteristic vectors of these subsets are
the 7 parity checks which are focused on 0 and 1, as shown in Fig. 4.8. The
fact that the characteristic vectors of the 7 subspaces are in RM2

4,2 follows

360 4. Cyclic Codes

0,1

0,1,2,3 0,1,4,5 0,1,8,9 0,1,6,7 0,1,10,11 0,1,12,13 0,1,14,15

Fig. 4.8 Focused parity checks on 〈0001〉 = {0, 1} in RM2
4,2

from 4.14.18 (and of course also from the table which shows that all polynomi-
als are quadratic). �

4.14.20 Lemma In AGm(q), each s-flat is contained in exactly (qm−s − 1)/(q − 1) flats of
dimension s + 1. These (s + 1)-flats intersect pairwise exactly in the elements of the
given s-flat.

Proof: Consider first an s-dimensional linear subspace V of Fm
q . There are qm

vectors overall, and each w �∈ V defines a linear subspace W = 〈V, w〉 of
dimension s + 1 containing V. The same vector space W arises in qs+1 − qs

different ways by choosing any one of the vectors w ∈ W which are not in V.
This amounts to (qm − qs)/(qs+1 − qs) = (qm−s − 1)/(q − 1) linear subspaces
W of dimension s + 1 containing V. It is clear that any two of these subspaces
of dimension s + 1 intersect precisely in the given s-subspace V.

Next we consider the shifted subspaces V + x and W + x, where W runs
through the set of linear subspaces containing V. It is clear that each such W +
x contains V + x. Also, the collection of all these flats W + x intersects pairwise
exactly in V + x. �

4.14.21 Theorem The t-th order binary Reed–Muller-code RM2
m,t admits a (t + 1)-step

majority decoder that can correct
(2m−t − 1)/2� errors.

Proof: Recall from 2.4.8 that the dual code of C = RM2
m,t is C⊥ = RM2

m,m−1−t.
The characteristic vectors of (t + 1)-flats in AGm(2) are minimum weight vec-
tors in C⊥. From 4.14.18 it follows that the characteristic function fV+x is an
element of RM2

m,t if dim(V) ≥ m − t. Dually, fV+x is an element of C⊥ =
RM2

m,m−t−1 if dim(V) ≥ t + 1.

4.14 Majority Logic Decoding 361

To set up a decoding tree for an arbitrary bit eP, P ∈ AGm(2), we proceed
as follows. We regard P as a 0-flat in AGm(2). By induction, we will create
parity checks corresponding to s-flats in AGm(2) for s = 0, 1, . . . , t, t + 1. It is
important to note that the majority logic decoding will proceed in the reverse
order, i.e. starting from the nodes at level t + 1 and working up the tree until
an estimate for eP is obtained (at level 0 in the tree). The parity check corre-
sponding to an s-flat Vs + P is the corresponding characteristic function fVs+P.
This is simply the word whose support is Vs + P.

Now we describe how to find an estimate for the error bit eP where P is a
point in AGm(2). In the first step of decoding, for each node Vt + P at level t
of the decoding tree we use the parity checks corresponding to those Vt+1 + P
which are focused on Vt + P. From 4.14.20 we know that these are 2m−t − 1
flats and they all belong to RM2

m,m−(t+1) = C⊥, i.e. they are “true” parity
checks, as required for a t + 1-step majority logic decoder. They can be used
to obtain an estimate for the error bits ∑Q∈Vt+P eQ. After having determined
these estimates for all t-flats Vt + P, in the second step for each Vt−1 + P at the
level t − 1 of the decoding tree we use the error estimates of the parity checks
corresponding to those Vt + P which are focused on Vt−1 + P. From these
2m−t+1 − 1 estimates, which were computed in the first step, we obtain an es-
timate for the error bits ∑Q∈Vt−1+P eQ. Repeating this procedure we eventually
obtain in the (t + 1)-th step an error estimate for eP.

To see that this decoder can correct
(2m−t − 1)/2� errors, we have to ar-
gue as follows. From the construction of the decoding tree, it is clear that we
have 2m−t − 1 parity checks corresponding to (t + 1)-flats Vt+1 + P for each
t-flat Vt + P in the bottom level of the tree. Also, in the intermediate levels
we have 2m−s − 1 ≥ 2m−t − 1 parity checks corresponding to (s + 1)-flats for
each s-flat. As remarked previously (before 4.14.8), this decoder can correct

(2m−t − 1)/2� errors. �

The previous result is best possible since the minimum distance of the code
is d = 2m−t.

4.14.22Example Figure 4.9 shows the decoding tree for the Reed–Muller-code RM2
4,2.

The tree is drawn from the left to the right. To simplify matters, not all lines are
drawn. Note that the same parity checks are used over and over again. In or-
der to save nodes, such a parity check has several ancestors. This way, the tree
is not really a tree but rather a partially ordered set. The root node (at the left)
corresponds to the 0-th coordinate. The parity checks focused on 0 are the in-
cidence vectors of the 15 one-dimensional subspaces (generated by 1 through
15). Each one-dimensional subspace is contained in 7 two-dimensional sub-
spaces, and there are 35 of them, corresponding to the second level. Each two-
dimensional subspace is contained in 3 of the 15 three-dimensional subspaces.

362 4. Cyclic Codes

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,10

0,11

0,12

0,13

0,14

0,15

0,1,2,3

0,1,4,5

0,1,6,7

0,1,8,9

0,1,10,11

0,1,12,13

0,1,14,15

0,2,4,6

0,2,5,7

0,3,4,7

0,3,5,6

0,2,8,10

0,2,9,11

0,2,12,14

0,2,13,15

0,3,8,11

0,3,9,10

0,3,12,15

0,3,13,14

0,4,8,12

0,4,9,13

0,4,10,14

0,4,11,15

0,5,8,13

0,5,9,12

0,5,10,15

0,5,11,14

0,6,8,14

0,6,9,15

0,6,10,12

0,6,11,13

0,7,8,15

0,7,9,14

0,7,10,13

0,7,11,12

0,2,4,6,8,10,12,14

0,1,4,5,8,9,12,13

0,3,4,7,8,11,12,15

0,1,2,3,8,9,10,11

0,2,5,7,8,10,13,15

0,1,6,7,8,9,14,15

0,3,5,6,8,11,13,14

0,1,2,3,4,5,6,7

0,2,4,6,9,11,13,15

0,1,4,5,10,11,14,15

0,3,4,7,9,10,13,14

0,1,2,3,12,13,14,15

0,2,5,7,9,11,12,14

0,1,6,7,10,11,12,13

0,3,5,6,9,10,12,15

Fig. 4.9 A 3-step majority logic decoder for the Reed–Muller-code RM2
4,2

4.14 Majority Logic Decoding 363

We note that the decoding “tree” is in fact the projective geometry PG3(2) with
the top element removed. In the picture, not all lines between nodes at levels
1, 2 and 3 are shown. Only the descendants and ancestors of the first (i.e., top)
node are shown. We note that the first node at level 1 has 7 descendants and
that there are 3 descendants of the first node at the second level. Also, the
first node at level 2 has 3 ancestors, whereas the first node at level 3 has 7 of
them. The point is that the number of ancestors (and descendants) is constant
for nodes at a given level. This decoder corrects one error since there are at
least r = 3 descendants at each level. A decoding tree for RM2

4,1 is obtained
by removing the bottom level of the tree. The resulting decoder can correct 3
errors since there are at least r = 7 descendants at each level. �

We remark that in the examples which we have seen, the subspaces used
to build the decoding tree were all linear. That is, we never really needed any
affine subspace which was not already a linear subspace. The reason for this
is that the decoding trees presented were all decoding the error bit e0. In fact,
if we had chosen to decode a different bit eP, say, where P ∈ Fn

2 \ {0}, then
we really would have used “true” affine subspaces. Of course, we know that
the binary Reed–Muller-code is cyclic, hence building a decoding tree for e0

suffices do decode this code.
At the end of this section we show that cyclic codes of length 2s over F2

can be decoded by using the majority logic decoding method.

4.14.23Theorem Using a one-step majority logic decoder for a binary cyclic code C of length
2s, allows us to correct up to
(dist(C)− 1)/2� errors.

Proof: From 4.8.1 we know that the code is of the form Ct with generator
polynomial (x − 1)t for some t ∈ {1, . . . , 2s − 1}. Let

t = a0 + a12 + . . . + as−12s−1, ai ∈ {0, 1}, i ∈ s,

be the binary representation of t ∈ {1, . . . , 2s − 1}. We distinguish four cases
and in each of these we compute the minimum distance using 4.8.9.

1. If 1 ≤ t < 2s−1, then dist(Ct) = (as−1 + 2) · 20 = 2. Such a code cannot
correct a single error and hence there is nothing to show in this case.

2. If t = 2s − 1, then C2s−1 is a repetition code, which can be decoded. In
this case, majority logic is the usual nearest neighbor decoding for repetition
codes.

3. If t = 2s−1 + . . . + 2s−r, for 1 ≤ r ≤ s, then dist(Ct) = 2r . From 4.8.1 we
know that the dual code of C = Ct is

C2s−t = C2s−1−t+1 = C1+2+...+2s−r−1+1 = C2s−r

364 4. Cyclic Codes

with generator polynomial (x − 1)2s−r
. Since xi − 1 = (x − 1)(xi−1 + . . . + x +

1), the polynomial

xi2s−r − 1 = (xi − 1)2s−r
= (x − 1)2s−r

(xi−1 + . . . + x + 1)2s−r

is in C⊥
t . Thus, {

xi2s−r − 1
∣∣∣ 1 ≤ i ≤ 2r − 1

}
is a set of (2r − 1) elements of C⊥

t . From the form of these polynomials it is clear
that they are focused on 1, i.e. on the 0-th coordinate of the code. It follows
from 4.14.4 that we can correct
(2r − 1)/2� =
(dist(C)− 1)/2� errors.

4. Since cases 1 and 2 have been dealt with, it remains to consider the case
when t = 2s−1 + . . . + 2s−r+1 + 0 · 2s−r + . . . , with 1 ≤ r ≤ s. We define
t′ = 2s−1 + . . . + 2s−r+1. Since case 3 is settled, we can assume that t − t′ > 0.
It follows that dist(Ct) = 2 · 2s−(s−r)−1 = 2r . From

2s − t < 2s − t′ = 2s − 1− t′ + 1

= 1 + 2 + . . . + 2s−1 − 2s−r+1 − . . . − 2s−1 + 1

= 1 + 2 + . . . + 2s−r + 1 = 2s−r+1

and 4.8.1 we deduce that the code C2s−r+1 is contained in C2s−t which is the
dual of Ct. Similarly as in the third case,{

xi2s−r+1 − 1
∣∣∣ 1 ≤ i ≤ 2r−1 − 1

}
is a set of 2r−1 − 1 elements of C⊥

t that are focused on 1. For each i ∈ 2r−1, also

c(i) := xi2s−r+1
(x − 1)2s−t + (xi2s−r+1 − 1)

belongs to C⊥
t . Since 1 ≤ 2s − t < 2s−r+1, the support of c(i) consists of the

terms 1 and elements of the form xj with i2s−r+1 < j < (i + 1)2s−r+1. There-
fore, {

xi2s−r+1 − 1
∣∣∣ 1 ≤ i ≤ 2r−1 − 1

}
∪

{
c(i)

∣∣∣ i ∈ 2r−1
}

is a set of (2r − 1) elements of C⊥
t which are focused to 1. Since dist(C) = 2r ,

this allows one to decode
(dist(C)− 1)/2� errors as claimed. �

4.14.24 Example In Table 4.4, we show the parity checks for binary cyclic codes C
of length 16 with dist(C) > 2 which arise from the previous theorem. They
are focused on 1. As pointed out previously, focused sets on the remaining
coordinates of the code can be obtained by multiplying the checks from the
previous proof by suitable powers of x modulo xps − 1. �

4.14 Majority Logic Decoding 365

Table 4.4 Focused parity checks for binary cyclic codes of length 16

t dist parity checks
9 4 (1 + x)7, 1 + x8, (1 + x)7x8 + (1 + x8)

10 4 (1 + x)6, 1 + x8, (1 + x)6x8 + (1 + x8)
11 4 (1 + x)5, 1 + x8, (1 + x)5x8 + (1 + x8)
12 4 1 + x4, 1 + x8, 1 + x12

13 8 (1 + x)3, 1 + x4, (1 + x)3x4 + (1 + x4),
1 + x8, (1 + x)3x8 + (1 + x8),
1 + x12, (1 + x)3x12 + (1 + x12)

14 8 1 + x2, 1 + x4, 1 + x6, 1 + x8,
1 + x10, 1 + x12, 1 + x14

15 16 1 + x, . . . , 1 + x15

Theorem 4.14.23 cannot be applied to cyclic codes of length ps, where p >

2. This is because cyclic codes of prime length p are MDS according to 4.8.10
(cf. Exercise 4.14.3).

Exercises

E.4.14.1Exercise Show that the m-th order binary Hamming-code admits an (m − 1)-
step majority logic decoder.

E.4.14.2Exercise Starting with the following list of row-reduced echelon matrices over
F2, determine all 35 two-dimensional subspaces of F4

2. Using the translation
from Boolean algebra to F2-arithmetic described in 4.14.19, find the represent-
ing polynomials in B2

4 for the characteristic functions of these spaces. In the
following list of matrices, a star (“∗”) represents an arbitrary element of F2.(

0 0 1 0
0 0 0 1

)
,

(
0 1 ∗ 0
0 0 0 1

)
,

(
1 ∗ ∗ 0
0 0 0 1

)
,

(
0 1 0 ∗
0 0 1 ∗

)
,

(
1 ∗ 0 ∗
0 0 1 ∗

)
,

(
1 0 ∗ ∗
0 1 ∗ ∗

)
.

Hint: in the end, the subspaces you get should match those in level 2 of Fig. 4.9.

E.4.14.3Exercise Discuss the question whether an MDS-code can be decoded using
majority logic.

366 4. Cyclic Codes

E.4.14.4 Exercise

1. Show that RM2
m,1 is the dual of the extended m-th order binary Hamming-

code.
2. Use 2.4.8 to show that RM2

m,m−2 is the extended m-th order binary Ham-
ming-code.

E.4.14.5 Exercise Let V be a finite set and B a collection of subsets of V. Assume that
there are v = |V| “points” in V and that B = {B0, . . . , Bb−1} consists of b
subsets called “blocks,” each of size k. The pair (V,B) is said to be a t-(v, k, λ)
design if the following property holds: For each subset T of V of size t, there
are exactly λ blocks Bi0 , . . . , Biλ−1 which contain T, i.e. T ⊆ Bij for j ∈ λ. The
quadruple t-(v, k, λ) is known as the parameters of the design.

1. Show that the entries in the third column of Table 4.1 form a 3-(8, 4, 1) de-
sign with 14 blocks (the blocks correspond to the 4 entries per row).

2. Show that a t-(v, k, λ) design is at the same time also an s-(v, k, λs) design
for 0 ≤ s ≤ λ and for the integer λs = λ(v−s

t−s)/(k−s
t−s). Here, λt = λ.

3. Show that b = λ(v
t)/(k

t).

4. Show that vr = kb, where r := λ1 = λ(v−1
t−1)/(k−1

t−1).

5. Show that the incidence relation between points and lines in a PG2(q) gives
rise to a 2-(q2 + q + 1, q + 1, 1) design (but not all such designs arise from
this construction). Can you “draw” the design which results from PG2(2)?
Hint: Chapter 8.

6. Show that the incidence relation between points and i-flats in AGn(q) gives
rise to a

2-

(
qn, qi,

(qn−1 − 1)(qn−2 − 1) · · · (qn−i − 1)
(qi−1 − 1)(qi−2 − 1) · · · (q − 1)

)
design. If i > 1 and q = 2, it is even a

3-

(
2n, 2i,

(2n−2 − 1) · · · (2n−i − 1)
(2i−2 − 1) · · · (2− 1)

)
design.

7. Show that the incidence relation between points and i-subspaces of PGn(q)
gives rise to a

2-

(
θn(q), θi(q),

(qn−1 − 1)(qn−2 − 1) · · · (qn−i − 1)
(qi−1 − 1)(qi−2 − 1) · · · (q − 1)

)
design, where θn(q) is as in 3.7.2.

5Chapter 5

Mathematics and Audio Compact Discs

5

5 Mathematics and Audio Compact Discs

5.1 Fourier Transform, Shannon’s Sampling Theorem 370

5.2 Correction of Erasures .. 389

5.3 Burst Errors and Interleaving of Codes...................... 401

5.4 More Details on Compact Discs 423

5.5 More Details on CD-ROM 435

5 Mathematics and Audio Compact
Discs

In this chapter we give a short description of the mathematical background
behind the technology used for compact discs. Since we are dealing with prob-
lems arising from a real-word application, we must adapt our assumptions to
this particular situation.

In the first section we present a short introduction to digital audio trans-
mission. Some facts about Fourier Series and Fourier Transforms are collected.
We describe sampling and filtering of signals from a mathematical point of
view, explain analog digital conversion, dither, pulse code modulation and,
finally, we prove Shannon’s Sampling Theorem, which gives an interpolation
formula which expresses the value f (x) of a signal at any time x in terms of its
values f (ns) at the discrete points ns for n ∈ Z, s > 0.

First of all, as far as the error-correction in connection with compact discs is
concerned, we should notice that errors are not uniformly distributed random
errors. In fact, errors tend to occur in bursts, for instance due to manufacturing
errors when the compact disc was produced, or due to surface errors arising
from scratches or fingerprints while handling the disc. Such a burst error is
actually a string of errors happening within a short period of time. In the
third section we will investigate how to detect and correct burst errors from a
general point of view.

We have already mentioned that in fact two linear codes are applied for
the encoding process in the production of a compact disc. This method is
known as interleaving of two codes, which is thoroughly described in the third
section. This interleaving process allows us to correct burst errors. Since we
are using two codes, one of them can be used for error detection. We already
know that the error detection rate of a code is larger than its error correction
rate. In case the second code detects an error in the received vector, it marks
all the corresponding components sent to the first code as erasures (these are
errors where the position of the error but not its value is known) and the first
code can be applied to correct both errors and erasures. For this reason, we
investigate the correction of erasures with linear codes in the second section.
In particular, we present an algorithm for correcting erasures with BCH-codes.

In the third section we meet product codes (cf. 2.3.15) again. We describe
how they can be used for correction of transmission errors and erasures. Espe-
cially products of cyclic codes are analyzed.

Finally, in the last two sections we present all the important facts about the
methods used for error detection and error correction both in audio compact
discs and in CD-ROM. In particular, the CIRC encoding and decoding is de-

370 5. Mathematics and Audio Compact Discs

scribed in detail. Furthermore, we explain how to use interpolation in order
to deal with errors which can not be eliminated by CIRC. Also the pit/land
structure of a track on a CD and the EFM are mentioned.

The second and third section describe independently from the application
in compact discs some interesting coding and decoding methods. The first
section is mainly devoted to digital audio, the fourth to a detailed description
of error detection and correction in audio compact discs. The fifth section gives
a short overview how the CD-ROM standard extends the standard of digital
audio discs.

5.1 5.1 Fourier Transform, Shannon’s Sampling Theorem

In this section we explain how an acoustic signal is transformed into digital
data. Usually this process is called sampling. In our setting the acoustic signal
is a mapping f : R → R, where f (x) is the sound pressure at the time x. When
dealing with audio data, it is important to analyze which frequencies occur
in the signal. For this reason, we give a short introduction to the theory of
Fourier Transforms, which describes how to express a signal f as a sum of
functions x �→ e2πiξx for ξ ∈ R. We limit our presentation to the essential
facts, since a more complete discussion would require detailed knowledge of
the theory of Lebesgue integration, which is beyond the scope of this text. Our
presentation of the Fourier analysis is based on [64] and [30]. Technical details
about the compact disc system are taken from Pohlmann’s book [164]. Further
facts about acoustics and audio engineering are taken from [164], [202] and
[175].

Let I ⊆ R be an interval and let p ≥ 1 be a real number. (The reader should
take care that in this section p does not indicate a prime number!) We denote
the set of all measurable functions f : I → C for which | f (x)|p is integrable on
I by Lp(I). Then Lp(I) together with the norm

‖ f ‖p :=
(∫

I
| f (x)|p dx

)1/p

, f ∈ Lp(I),

is a complete normed vector space (cf. Exercise 5.1.2 and [64, 15.2.3 Proposi-
tion]).

In this setting, ‖ f ‖p = 0 if and only if f = 0 almost everywhere on I, in
other words, f (x) = 0 for all x ∈ I \ M, where M is a subset of I of measure
0. The set N :=

{
f ∈ Lp(I) | ‖ f ‖p = 0

}
is a subspace of Lp(I). In order to

be more precise, instead of Lp(I) we should actually consider the factor space
Lp(I)/N .

5.1 Fourier Transform, Shannon’s Sampling Theorem 371

The set L2(I) is also equipped with an inner product defined by

〈 f , g〉 =
∫

I
f (x)g(x) dx, f , g ∈ L2(I),

where f (x) means the complex conjugate of f (x). It is easy to show that L2(I)
is a Hermitian inner product space and that

‖ f ‖2 =
√
〈 f , f 〉, f ∈ L2(I).

Consequently, L2(I) is a Hilbert space.
Different notions of convergence are considered. Let (fn)n∈N be a sequence

with fn ∈ Lp(I) and let f ∈ Lp(I). We say that (fn)n∈N converges uniformly to
f if

lim
n→∞

sup
x∈I

| fn(x)− f (x)| = 0,

which can also be expressed as

∀ ε > 0, ∃ Nε, ∀ n > Nε, ∀ x ∈ I : | fn(x) − f (x)| < ε.

The sequence (fn)n∈N converges pointwise to f if

∀ x ∈ I, ∀ ε > 0, ∃ Nε,x, ∀ n > Nε,x : | fn(x) − f (x)| < ε.

The sequence (fn)n∈N converges to f in Lp(I) if

lim
n→∞

‖ fn − f ‖p = 0.

Convergence in L1(I) is also called mean convergence, whereas convergence
in L2(I) is known as mean quadratic convergence or convergence “in energy”. If
(fn)n∈N converges uniformly to f in L1(I) and I is a finite interval, then inte-
gration and limit can be interchanged so that

lim
n→∞

∫
I
fn(x) dx =

∫
I
f (x) dx.

The support of a function f : R → C is the closure of the set of all elements
x ∈ R for which f (x) �= 0:

supp(f) = cl {x ∈ R | f (x) �= 0} .

A function f : R → C has period a > 0 if f (x) = f (x + a) for all x ∈ R.
Especially for p = 2 and I = (0, a), we consider the set

L2
per(0, a) :=

{
f : R → C

∣∣∣ f has period a and
∫ a

0
| f (x)|2 dx < ∞

}
which, together with the norm

‖ f ‖2 :=
(∫ a

0
| f (x)|2 dx

)1/2

,

is a normed vector space.

372 5. Mathematics and Audio Compact Discs

At first we approximate functions f ∈ L2
per(0, a) by

5.1.1 Trigonometric polynomials A trigonometric polynomial of degree N in L2
per(0, a),

a > 0, is an expression of the form

p(x) :=
N

∑
n=−N

cne2πinx/a

with cn ∈ C. We denote by TN the set of all trigonometric polynomials of
degree N. Let en be the trigonometric polynomial x �→ e2πinx/a. Then

〈en, em〉 =
{

a if n = m,
0 if n �= m.

and ‖en‖2 =
√

a.

Thus, the set {en | −N ≤ n ≤ N} forms an orthogonal basis of TN , and TN is
a (2N + 1)-dimensional space. Moreover, for p = ∑N

n=−N cnen ∈ TN we have
〈en, p〉 = cn‖en‖2

2 = cna, whence

cn =
1
a
〈en, p〉 =

1
a

∫ a

0
p(x)e−2πinx/a dx, −N ≤ n ≤ N.

Using the fact that

eix = cos(x) + i sin(x), x ∈ R,

any p ∈ TN can be expressed as

p(x) = c0 +
N

∑
n=1

(
cne2πinx/a + c−ne−2πinx/a

)
= c0 +

N

∑
n=1

(
(cn + c−n) cos(2πnx/a) + i(cn − c−n) sin(2πnx/a)

)
.

If we put an := cn + c−n and bn := cn − c−n for n ≥ 0, we obtain

p(x) =
a0

2
+

N

∑
n=1

(
an cos(2πnx/a) + ibn sin(2πnx/a)

)
, x ∈ R,

with

an =
2
a

∫ a

0
p(x) cos(2πnx/a) dx

and

bn =
2
a

∫ a

0
p(x) sin(2πnx/a) dx. �

5.1 Fourier Transform, Shannon’s Sampling Theorem 373

5.1.2Theorem [64, page 30] Let N be a positive integer, and assume that a > 0. For
f ∈ L2

per(0, a) there exists exactly one trigonometric polynomial

fN(x) :=
N

∑
n=−N

cne2πinx/a

such that ‖ f − fN‖2 = min {‖ f − p‖2 | p ∈ TN}. The coefficients of fN are given
by

cn = cn(f) =
1
a

∫ a

0
f (x)e−2πinx/a dx, −N ≤ n ≤ N. 5.1.3

For all N ∈ N Bessel’s inequality

N

∑
n=−N

|cn|2 ≤ 1
a

∫ a

0
| f (x)|2 dx

holds true. Consequently,
∞

∑
n=−∞

|cn|2 < +∞

and cn = cn(f) → 0 as |n| → ∞. �

5.1.4Fourier Series Deeper methods from the theory of the Lebesgue integral show
[64, 4.3.1 Theorem] that for f ∈ L2

per(0, a), a > 0,

‖ fN − f ‖2 → 0 as N → ∞.

In other words,

f (x) =
∞

∑
n=−∞

cne2πinx/a

=
a0

2
+

∞

∑
n=1

(an cos(2πnx/a) + ibn sin(2πnx/a))
5.1.5

almost everywhere in R, since this is an equality in L2
per(0, a). From this repre-

sentation of f we obtain Parseval’s equality
∞

∑
n=−∞

|cn|2 =
1
a

∫ a

0
| f (x)|2 dx.

The coefficients cn are called Fourier coefficients of f . The right hand side of
5.1.5 is the Fourier series of f . �

In addition, we take for granted the following result on Fourier series:

5.1.6Theorem [64, 5.3.1 Theorem] Assume that f has period a > 0, is continuous on R,
differentiable on [0, a] with exception of possibly a finite number of points, and that f ′

is piecewise continuous. Then the Fourier series of f converges uniformly to f on R.
�

374 5. Mathematics and Audio Compact Discs

5.1.7 Example We have just explained how to approximate a periodic function with
trigonometric polynomials. For example consider the periodic function f with
period a = 2π defined on I = [−π, π) by

f (t) :=
{
−1 if −π ≤ t < 0,
+1 if 0 ≤ t < π.

The three approximations for N = 1, 3, 5 are given by

f1(t) =
4
π

sin(t)

f3(t) =
4
π

(sin(t) +
1
3

sin(3t))

f5(t) =
4
π

(sin(t) +
1
3

sin(3t) +
1
5

sin(5t)).

�π π

1 f
f1

..
................
................
................
................
................
................
................
...

...
............................

..........................
........................
.......................
.......................
......................
.......................
.........................
.............................

..............................
..

�π π

1 f
f3

..
................
................
................
................
................
................
................
...

...
...

....................
....................
..................
...................
....................
..................
..................
...................
....................
...

...

�π π

1 f
f5

..
................
................
................
................
................
................
................
...

...
..

...
..................
.................
.................
.................
.................
................
.................
..................
...................
..

..
..

Fig. 5.1 Approximation by trigonometric polynomials

�

5.1 Fourier Transform, Shannon’s Sampling Theorem 375

5.1.8The Discrete Fourier Transform Let f be a periodic function with period a > 0
and let N be a positive integer. Let xk := ka/N, k ∈ N, be an evenly spaced
subdivision of the interval [0, a]. Assume that the values yk := f (xk), k ∈ N,
are known. Furthermore we assume that the Fourier series of f converges
pointwise to f and that

f (x) =
1
2
(f (x+) + f (x−))

holds true at points x of discontinuity. Here we have f (x+) := limt→x, t>x f (t)
and f (x−) := limt→x, t<x f (t). In order to simplify our notation, we assume
that N is odd. For −(N− 1)/2 ≤ n ≤ (N− 1)/2, the coefficients of the Fourier
expansion of f can be approximated by using the trapezoid formula as

c′n =
1
a ∑

k∈N
yk

a
N

e−2πinka/(Na) =
1
N ∑

k∈N
yke

−2πink/N.

It can be shown that these c′n are the Fourier coefficients of the trigonometric
polynomial p ∈ T(N−1)/2 which interpolates f at the points ka/N for k ∈ N. If
we put

Yn :=
{

c′n if 0 ≤ n ≤ (N − 1)/2,
c′n−N if (N + 1)/2 ≤ n ≤ N − 1,

then we obtain the two equivalent formulae of the Discrete Fourier Transform

yk = ∑
n∈N

Yne2πink/N, k ∈ N,

Yn = ∑
k∈N

yke
−2πikn/N, n ∈ N. �

5.1.9The Fourier Transform [64, 17.1.3 Theorem] The Fourier Transform f̂ of f ∈
L1(R) is defined by

f̂ (ξ) :=
∫

R
f (x)e−2πiξx dx.

The Fourier Transform f̂ of f ∈ L1(R) is continuous and bounded with

sup
x∈R

| f̂ (x)| ≤ ‖ f ‖1 and lim
x→±∞

f̂ (x) = 0. �

The term 2π in the exponent is often omitted in the definition of the Fourier
Transform. In this case, the integral is multiplied by the normalization factor
1/

√
2π.

Comparing f̂ with the Fourier coefficients 5.1.3, we deduce that the Fourier
Transform allows one to pass from the time domain of the signal f to the fre-
quency domain. The value | f̂ (ξ)| is considered to represent the amplitude of
the frequency ξ in the signal f .

Some properties of f̂ are collected in Exercise 5.1.4 and in the following

376 5. Mathematics and Audio Compact Discs

5.1.10 Lemma [64, 17.2.1 Theorem]

1. If xk f ∈ L1(R) for 0 ≤ k ≤ n, then f̂ is n times differentiable and the k-th
derivative of f̂ is

f̂ (k)(ξ) = f̂k(ξ), 1 ≤ k ≤ n,

for fk(x) := (−2πix)k f (x).
2. If f ∈ L1(R) is n times continuously differentiable and all the derivatives f (k),

1 ≤ k ≤ n, are in L1(R), then

f̂ (k)(ξ) = (2πiξ)k f̂ (ξ), 1 ≤ k ≤ n.

3. If f ∈ L1(R) has bounded support, then f̂ is infinitely many times differentiable.
We also write f̂ ∈ C∞(R). �

It is not true in general that the Fourier Transform of f ∈ L1(R) is again in
L1(R) as the following example shows.

5.1.11 Example Consider, for instance, the function

f (x) :=
{

e−x if x ≥ 0,
0 if x < 0,

then

f̂ (ξ) =
∫ ∞

0
e−2πiξx−x dx = lim

R→∞

∫ R

0
e−(2πiξ+1)x dx

= lim
R→∞

− e−(2πiξ+1)R

2πiξ + 1
+

1
2πiξ + 1

=
1

2πiξ + 1
,

which is not integrable. �

Therefore, it is interesting to determine under which conditions f̂ ∈ L1(R).
The next lemma gives sufficient conditions on f .

5.1.12 Lemma [64, 18.1.2 Theorem] If f is twice continuously differentiable and if f , f ′

and f ′′ are in L1(R), then f̂ ∈ L1(R). �

5.1.13 The Inverse Fourier Transform [64, 18.1.1 Theorem] If both f and f̂ belong to
L1(R), then

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ

for all points x, where f is continuous. This integral is called the Inverse Fourier
Transform of f . �

A function f ∈ L1(R) is called band limited if the support of its Fourier
Transform f̂ is bounded. In other words, if there exists a limiting value λc > 0
such that supp(f̂) ⊆ [−λc, λc], which means that in the signal f no frequencies
greater than λc occur.

5.1 Fourier Transform, Shannon’s Sampling Theorem 377

5.1.14Consequence of the Paley–Wiener Theorem [64, 31.5.2 Theorem and p. 360]
If f �= 0 is band limited, then f ∈ C∞(R). Hence, f vanishes on no interval of
positive length. The assumption that f �= 0 is band limited implies that f is analytic
with supp(f) = R.

If f has bounded support (which means bounded in time), then f cannot be band
limited since f̂ is a C∞-function. �

5.1.15Example Consider the band limited function f with

f̂ (ξ) =
{

1 if |ξ| ≤ λc,
0 if |ξ| > λc.

Since f is band limited, it is analytic, thus continuous. By the Inverse Fourier
Transform we get

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ =

∫ λc

−λc
e2πiξx dξ =

e2πiξx

2πix

∣∣∣λc

−λc

=
1

πx
· e2πiλcx − e−2πiλcx

2i
= 2λc

sin(2πλcx)
2πλcx

.

This is closely related to the cardinal sine function sinc : R → R which is defined
by

sinc(x) :=
{

sin(x)/x if x �= 0,
1 if x = 0.

It has zeros at kπ for k ∈ Z \ {0}. The set of local extrema of sinc(x) corre-
sponds to its intersections with the cosine function cos(x). The main peak of
sinc(x) has width 2π whereas all other peaks have width π.

�π π

1

...
...........................
..

......................
.....................
.........................
..

..................
.................
.................
.................
................
..................
................
..................
................
................
................
.................
................
................
................
.................
................
.................
.................
.................
...................
..

...................
................
................
...................
.....................
..

.....................
...

............................

f �x� �
sin�x�

x

Fig. 5.2 The cardinal sine function

If we consider sinc(2πλcx) as a function of λc we notice that as λc increases,
the width of the peaks decreases. �

378 5. Mathematics and Audio Compact Discs

5.1.16 Sampling Assume that f : R → C is a signal and s > 0 is a real number.
Sampling f every s time units means to replace f by the sequence (f (ns))n∈Z .
The sampling rate or sampling frequency is given by 1/s.

For instance, when watching a film, we are presented a sequence of 15 to
20 pictures per second. From this sampling we get the impression of smoothly
moving pictures. But when seeing a turning wheel equipped with spokes, we
realize that sometimes the wheel seems to rotate in the right direction, some-
times it is standing still, and sometimes it is turning in the converse direction.
This is caused by the sampling of the pictures. Consider, for instance, a turn-
ing wheel with 4 spokes, which has a periodic movement with period π/2. If
it is turning slowly enough, i.e. if we take more than two pictures within one
period we get the right impression. For example, consider a wheel which is
turning anti-clockwise. If it is turning from one sample to the next by π/6, we
get:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����
��
��
��
��
��
�
��
�
��
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����
��
��
��
��
��
�
��
�
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��
��
��
��
�
��
��
��
�
��
�
�
�

��
���
���
����
�����������

�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
��
��
�
��
��
��
��
��
��
��
�

�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Turning between two samplings by π/4 produces only two different pic-
tures so that we have the impression of a standing wheel which has 8 spokes.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����
��
��
��
��
��
�
��
�
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����
��
��
��
��
��
�
��
�
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
�
���
��
��

�
��
��
��
��
�
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

�
��
��
��
��
��
���
��
���
����

�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�

�
�
��
����
��
��
��
��
��
��
��
���
���
�

��
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
����
���
��
���
���
��
��
���
���
���
���
���
��
���
���
���
���
���
���
��
���
���
���
���
���
��
���
���
��

��
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
����
���
��
���
���
��
��
���
���
���
���
���
��
���
���
���
���
���
���
��
���
���
���
���
���
��
���
���
��

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
����
���
��
���
���
��
��
���
���
���
���
���
��
���
���
���
���
���
���
��
���
���
���
���
���
��
���
���
��

��
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
����
���
��
���
���
��
��
���
���
���
���
���
��
���
���
���
���
���
���
��
���
���
���
���
���
��
���
���
��

If the wheel is turning even faster, for instance by π/3 from one sampling
to the next, then we have the impression that the wheel is rotating in the op-
posite direction.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����
��
��
��
��
��
�
��
�
��
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����
��
��
��
��
��
�
��
�
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
���
���
��
��
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
��
�
��
��
�
���
��
����
���

����
����
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�����
����
��
��
��
��
��
�
��
�
��
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
��
�
��
��
�
���
��
���
���
���

�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
�

�
�
�
�
�
��
�
��
�
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������������

����
���
���
��
��
��
��
��
��
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

If the wheel is turning even faster we will realize similar phenomena as
just described. From this example we deduce that on the one hand some infor-
mation of the original signal is lost by sampling. But we will see that the loss
of information can be neglected for practical purposes, provided the sampling

5.1 Fourier Transform, Shannon’s Sampling Theorem 379

rate is sufficiently high. On the other hand, digital processing offers many ad-
vantages. For instance, real time processing of the data can be done between
the arrival of two consecutive samples. In addition, sampling and digital pro-
cessing also allow us to compress the signal in such a way that it can later be
reconstructed without loss of essential data. This technique is known as source
coding. For further details we refer to [81].

Shannon’s formula is an interpolation formula which expresses the value
f (x) of a signal at any time x in terms of its values f (ns) at the discrete points
ns, n ∈ Z, s > 0. This theorem is attributed to C.E. Shannon, but was already
discovered earlier by E.T. Whittaker [200], J.M. Whittaker [201], Kotel’nikov
[114], or Nyquist [160]. For a historical background see also [103] or [141].

5.1.17Shannon’s Sampling Theorem [179] Assume that f ∈ L1(R) is a band limited
signal with supp(f̂) ⊆ [−λc, λc]. Consider a sampling rate 1/s ≥ 2λc. If the
Fourier Transform f̂ is piecewise continuously differentiable on the closed interval
[−λc, λc], then

f (x) =
∞

∑
n=−∞

f (ns)
sin π(x/s − n)

π(x/s− n)
, x ∈ R. 5.1.18

Proof: We extend the restriction of f̂ to the interval [−1/(2s), 1/(2s)), which
contains [−λc, λc), to a continuous, periodic function f̃ with period a = 1/s
defined by

f̃ (x + n/s) := f̂ (x) for x ∈ [−1/(2s), 1/(2s)), n ∈ Z.

Since f̃ is continuous and piecewise continuously differentiable, according
to 5.1.6 the Fourier series of f̂ converges uniformly. Consequently, for each
ξ ∈ [−1/(2s), 1/(2s)) = [−a/2, a/2) we have

f̂ (ξ) =
∞

∑
n=−∞

cne2πinξ/a,

where

cn =
1
a

∫ a/2

−a/2
f̂ (ξ)e−2πinξ/a dξ = s

∫
R

f̂ (ξ)e2πiξ·(−ns) dξ = s f (−ns)

by 5.1.13. Another application of the Fourier Inversion formula yields

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ =

∫ 1/(2s)

−1/(2s)

∞

∑
n=−∞

cne2πinξse2πiξx dξ.

Since the Fourier series converges uniformly, we are allowed to interchange
the sequence of integration and summation, obtaining

f (x) = s
∞

∑
n=−∞

f (−ns)
∫ 1/(2s)

−1/(2s)
e2πiξ(ns+x) dξ

380 5. Mathematics and Audio Compact Discs

=
∞

∑
n=−∞

s f (ns)
∫ 1/(2s)

−1/(2s)
e2πiξ(x−ns) dξ =

∞

∑
n=−∞

f (ns)
sin π(x/s− n)

π(x/s− n)

by an application of 5.1.15. �

The assumptions of the last theorem are satisfied, for instance, in the sit-
uation when f ∈ L1(R) is band limited and the function x �→ x f (x) is also
integrable, since then by 5.1.10 f̂ is continuously differentiable.

In order to describe a band limited signal f with supp(f̂) ⊆ [−λc, λc] by a
sampling with rate 1/s we must choose s so that 1/s ≥ 2λc. This critical value
2λc is called the Nyquist rate. Obviously, the largest frequency which can be
described properly using a sampling rate 1/s is 1/(2s). This frequency is also
known as the Nyquist frequency.

The following picture (see [30, page 62]) shows that if the frequency of a
signal is too high for a given sampling rate, then this frequency is not properly
described by the sampling. For instance, taking 10 samples per time unit yields
s = 1/10 and a sampling rate of 10. In this situation we cannot distinguish
between the two functions f1(x) = sin(8πx) and f2(x) = sin(28πx). The first
one produces exactly 4 sine waves per time unit the second one 14 sine waves.
If the time unit is a second, then we have a sampling rate of 10 Hz and two
frequencies of 4 Hz and 14 Hz, respectively. Since 10 > 2 · 4, the sampling rate
is high enough for describing f1. According to 5.1.17, the frequency of f2 is too
high for the given sampling rate, so f2 cannot be properly reconstructed from
the sampling.

1

1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�����
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
����
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
��
��
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
��
�
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
��
��
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
����
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
���
��
�
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
���
��
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
����
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
��
��
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
����
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
��
��
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�����
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�����
�
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�����
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
����
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
��
��
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
��
�
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
��
��
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
����
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
���
��
�
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
�
���
��
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
����
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
��
��
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
��
����
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
��
��
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�����
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�����
�
��
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�.................

...................
....................
......................
..

....................
....................
...................
.................
..................
....................
...................
............................
...

....................
....................
...................
.................
..................
....................
...................
............................
...

....................
....................
...................
.................
..................
....................
...................
............................
...

....................
....................
...................
.........

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.... f2

f1

Fig. 5.3 Aliasing

The two functions f1 and f2 coincide for all x of the form k/10, k ∈ Z.
Hence, sampling f2 at a sampling rate of 10 produces f1. This phenomenon is
called aliasing. In general, if 1/s is the sampling frequency and f > 1/(2s) is
sampled, then new frequencies f ′ appear, where f ′ = n/s± f for n ∈ Z.

In signal processing, L2(R) models the space of signals which are functions
of a continuous variable (usually time) and which have finite energy. So far the
Fourier Transform has only been defined for functions in L1(R), and L2(R) is
not included in L1(R). In [64, Lesson 22] it is explained how to extend the

5.1 Fourier Transform, Shannon’s Sampling Theorem 381

Fourier Transform in a natural way to L2(R). The Fourier Transform in L2(R)
has the major advantage that f̂ ∈ L2(R) whenever f ∈ L2(R).

5.1.19Filters In order to apply Shannon’s Sampling Theorem, we must have a band
limited signal in order to determine the correct sampling rate 1/s. Thus, the
natural signal, which is usually not band limited, must be filtered.

Assume that f is a time limited, piecewise continuously differentiable sig-
nal, then by the Inverse Fourier Transform

f (x) =
∫

R
f̂ (ξ)e2πiξx dξ, x ∈ R.

Usually a filter is described by its transfer function ĥ for some h ∈ L2(R). Ap-
plying the filter with transfer function ĥ to the signal f should produce (cf. [30,
page 202ff]) the signal

f̃ (x) =
∫

R
f̂ (ξ)ĥ(ξ)e2πiξx dξ, x ∈ R.

The amplitudes | f̂ (ξ)| of the original signal are multiplied by the amplitudes
|ĥ(ξ)| and the phases arg(f̂ (ξ)) are changed by adding the phase arg(ĥ(ξ)).
A complex number c �= 0 may be presented as c = x + iy with x, y ∈ R,
or c = |c|ei arg(c), where |c| =

√
x2 + y2 is a positive real number called the

complex modulus of c and arg(c) is a real number in the interval (−π, π]. It is
called the argument of c and can be computed as

arg(x + iy) =

⎧⎨⎩
tan−1(y/x) if x �= 0,
−π/2 if x = 0 and y < 0,
π/2 if x = 0 and y > 0.

An ideal low-pass filter suppresses all frequencies greater than a limiting fre-
quency λc. It produces a signal f̃ which may be delayed by x0 ≥ 0, where the
frequencies in [−λc, λc] are not changed and all the frequencies outside this
interval are canceled. Thus, the transfer function of an ideal low-pass filter is
given by

ĥ(ξ) =
{

A0e−2πiξx0 if |ξ| ≤ λc,
0 if |ξ| > λc,

with A0 > 0, and the filtered signal is

f̃ (x + x0) = A0

∫ λc

−λc

f̂ (ξ)e2πiξx dξ, x ∈ R.

Moreover, we derive that f̃ is band limited, infinitely many times differen-
tiable, but it is not time limited, i.e. its support is the whole real line. From
5.1.15 we deduce that

h(x) = 2A0λc
sin(2πλc(x − x0))

2πλc(x − x0)
.

382 5. Mathematics and Audio Compact Discs

A filter is called realizable if for each signal f and each x0 ∈ R the implication(
f (x) = 0 for all x < x0

)
=⇒

(
f̃ (x) = 0 for all x < x0

)
holds true. From the explicit form of h given above we derive that an ideal
low-pass filter is actually not realizable. The best we can expect is to find
realizable filters whose transfer functions approximate the transfer function of
an ideal filter. For instance, Butterworth filters are realizable approximations of
ideal low-pass filters.

5.1.20 Impulse Similarly as in 5.1.15 we compute the Fourier Transform of the time
limited constant signal

δε(x) :=
{

1 if |x| ≤ ε/2,
0 if |x| > ε/2,

ε > 0.

For ε = 1/m, m ∈ N∗, we obtain

mδ̂1/m(ξ) = m
∫

R
δ1/m(x)e−2πiξx dx = sinc

(πξ

m

)
.

In the following picture this function is plotted for m = 1 (solid), m = 10
(dashed), m = 100 (dotted), and m = 1000 (solid).

−40 40

1

..
..........................

..............................
..................................

.......................................
..

........
..

.......
..........
..
........
......
........
...........
..
...........
........
.......
......
.....
.....
.....
.....
......
......
......
......
......
.......
.......
........
........
.........
..........
...........
.............
.................
..
...........
...........
...........
...........
...........
...........
...
...
...........
........
.......
......
......
.......
..........
..
.......
.......
............
...
.......
...

..........
....................................

.......................................
..................................

...............................
...

.............
.............

.............
.............
.............

.............
............
.
............
.
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
...........
..
............
.
............
.
.............

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............

............
.
............
.
.............

.............
......

. .

..

Given a limiting frequency λc we can find an integer m large enough so
that mδ̂1/m is approximately equal to 1 on the whole interval [−λc, λc]. Equiv-
alently, if the signal δ1/m is short enough, we call it an impulse, then mδ̂1/m is
approximately equal to 1 on this interval. This fact can be used for the

5.1.21 Reconstruction of the original signal from a sampled signal In order to re-
construct the original signal from a sampled signal we cannot use the formula

5.1 Fourier Transform, Shannon’s Sampling Theorem 383

5.1.18 of the Sampling Theorem, since computing f (x) for x ∈ R would re-
quire the knowledge of the sampled data f (ns) for all n ∈ Z, where f is a
function whose support is the whole real line.

If we assume that we know only finitely many sampled values, for instance
f (ns) for −M ≤ n ≤ N, then we can use the sequence of impulses

fε,s(x) :=
N

∑
n=−M

f (ns)δε(x − ns)

as an input signal to an ideal low-pass filter described in 5.1.19 with limit-
ing frequency λc = 1/(2s). If we choose ε small enough so that (1/ε)δ̂ε is
approximately 1 on [−λc, λc], then the output of the ideal low-pass filter is
approximately

f̃ε,s(x) =
∫ λc

−λc

f̂ε,s(ξ)ĥ(ξ)e2πiξx dξ

= A0

N

∑
n=−M

f (ns)
∫ λc

−λc
δ̂ε(ξ)e2πiξ(x−(x0+ns)) dξ

≈ 2λcA0ε
N

∑
n=−M

f (ns)
sin π((x− x0)/s− n)

π((x − x0)/s− n)
, x ∈ R.

Up to the factor 2λcA0ε and the delay by x0 this is an approximation of f ,
converging to 2λcA0ε f (x − x0) if N, M → ∞.

5.1.22Digital audio transmission As an input we have the time limited audio sig-
nal f . Using an approximation of an ideal low-pass filter with maximum
frequency λc we obtain a band limited signal f̃ . Using a sampling rate
1/s ≥ 2λc we obtain the sequence of samples f̃ (ns) for −M ≤ n ≤ N. An
analog-digital converter replaces each sample f̃ (ns) by a digital codeword.
These codewords are sent through the channel. The receiver produces a se-
quence of samples F(ns) for 0 ≤ n ≤ N + M by using a digital-analog con-
verter. Applying an ideal low-pass filter we smooth the sequence of impulses
∑N+M

n=0 F(ns)δε(x − ns) and obtain an approximation of the input signal.

5.1.23Sound pressure and decibels Sound power or acoustic power P is a measure of
sonic energy per time unit. It is measured in watts, abbreviated by W. The ratio
of two sound powers P1 and P0 is usually described in decibels by

dB = 10 log10(P1/P0).

If no second power P0 is indicated, then the reference sound power in air is
usually taken to be 10−12 W = 0dB. The decibel is a dimensionless “unit”.

384 5. Mathematics and Audio Compact Discs

Since most audio engineers work with voltages and since power is propor-
tional to the square of voltage, we also have

dB = 10 log10(V
2
1 /V2

0) = 20 log10(V1/V0).

The smallest change of sound power detectable for the human ear corresponds
to one decibel. A change of three decibel is noticeable to most people. 10dB
seems to be approximately twice as loud.

The sound intensity is defined as the sound power P per unit area. The
usual context is the measurement of sound intensity in the air at a listener’s
location. It is expressed in W/m2. Sound pressure p or acoustic pressure is the
measurement in Pascal (Pa = N/m2) of the average sound wave pressure
variations as the sound wave passes by a fixed point. We have

p = F/A,

where p is the sound pressure in Pascal Pa, F is the force measured in Newton
N, and A is the area measured in m2.

Sound is usually measured by microphones and they respond with voltage
approximately proportional to the sound pressure p. Thus, we also have

dB = 20 log10(V1/V0) = 20 log10(p1/p0).

Unless specified otherwise, the reference level for air is chosen as 20 micro Pas-
cal. This is about the limit of sensitivity of the human ear in the most sensitive
range of frequency.

If two sound intensities satisfy p1 = 2p0, then the signal of p1 is twice as
loud as the signal of p0. This yields a ratio of 20 log10(2) ≈ 6.02059913dB.

5.1.24 Analog-digital converter So far we have been dealing with sound sampling
and we have seen that when the sampling rate is high enough it is possi-
ble to reconstruct totally a band limited signal from the discrete samples. At
each sampling the amplitude of a sound signal is measured. The amplitude is
an analog signal which takes infinitely many values. When these values are
stored in a digital system, only a finite number of discrete values or steps can
be represented by digital numbers of finite length. So, for each measured am-
plitude value a digital value must be found which approximates the original
value as good as possible. Quantization is the technique of approximating an
analog amplitude by discrete numbers. (For more details see [164, pages 27ff].)
By convention, the signal is attached with a sign. This means, that half of the
digital values are used for positive amplitudes and half of them for 0 and neg-
ative amplitudes. When producing a compact disc each sampling is quantized
by a 16 bit word. Hence, there are totally 216 = 65 536 values which can be

5.1 Fourier Transform, Shannon’s Sampling Theorem 385

used to approximate all occurring amplitudes. In general, at each sampling
small approximation errors occur. These errors are not bigger than half of a
step between two consecutive digital values.

The number of bits used to represent a single sampling value, i.e. the word
length, determines the resolution of the quantization.

The signal-to-noise ratio, often abbreviated by S/N, is an engineering term
for the ratio between the magnitude of a signal and the magnitude of back-
ground noise. It is often expressed in terms of the decibel scale. If the incom-
ing signal strength in microvolts is Vs, and the noise level, also in microvolts,
is Vn, then the signal-to-noise ratio in decibels is given by the formula

S/N(dB) = 20 log10(Vs/Vn).

Signal-to-noise ratios are closely related to the concept of dynamic range.
Whereas dynamic range measures the ratio between noise and the greatest
undistorted signal on a channel, S/N measures the ratio between noise and an
arbitrary signal on the channel, not necessarily the most powerful signal pos-
sible. Because of this, measuring signal-to-noise ratios requires the selection of
a representative or reference signal. In audio engineering, this reference sig-
nal is usually a sine wave, i.e. a plain tone, at a recognized and standardized
magnitude (cf. [202]).

In connection with digital audio, the noise is the error signal caused by the
quantization of the signal. The signal-to-error ratio, in short S/E ratio, is the
number of available digital values divided by the maximal quantization error.
Above we have just seen that the quantization error is not greater than 1/2 bit.
For instance, the S/E ratio of 16 bit audio is 217 = 131 072. Every added bit
doubles this ratio and also the number of possible digital values.

Usually the amplitude of a signal is attached with a sign. Therefore, us-
ing a quantization with n bits, the range of the digital signal lies between
−(2n−1 − 1) and 2n−1. When a voltage amplitude of Vmax is used, then a quan-
tization step is given by

∆ =
Vmax

2n−1 .

In terms of decibels, the S/E ratio depends on the word length n as

S/E(dB) = 20 log10
Vmax

∆/2
= 20 log10(2

n) = 20n log10(2) ≈ 6.02n.

This formula yields for 16-bit audio a S/E ratio of about 96dB. For more details
see [156].

5.1.25Pulse code modulation The amplitude of the signal is stored in pulse code
modulation, PCM (cf. [164, pages 35ff]). This means that the analog signal is

386 5. Mathematics and Audio Compact Discs

represented by the sequence of binary values produced by the analog-digital
converter. In PCM format the quantized value of every sampling is stored.
In 16-bit audio format we can represent an audio signal by 216 = 65 536 dis-
crete levels. As mentioned above, the signal is attached with a sign. Hence,
there are 32 768 binary values for representing positive amplitudes and 32 767
binary values for negative amplitudes.

PCM was invented by A.H. Reeves in 1939 (American Patents 2272070,
1942-2, see [156]) and was analyzed and developed as a modulation system
from the point of view of communication theory by C.E. Shannon [180]. For
16-bit audio with sampling rate 44 100 Hz the demand on the storage device
and speed of the transmission channel is 88 200 Bytes/sec. (Usually 8 bits are
combined into one byte, thus each sampling produces 2 bytes of audio infor-
mation. For an audio compact disc the left and right channel are sampled
separately, which yields the above-mentioned number of audio bytes per sec-
ond for each channel.) This is a “brute force” approach, which is not the most
effective way of using the storage device and transmission channel.

“Sampling and quantization are the two fundamental design elements for
audio digitization.” ([164])

5.1.26 Dither As a matter of fact, even though the quantization error of 16-bit audio
is quite small, it is obvious that when the signal amplitude decreases, the rel-
ative error increases. If the signal level is approximately as big as the signal
difference corresponding to two consecutive digital values, then these errors
could be audible. In other words, quantization not only loses information, but
also causes unexpected problems. The following picture shows a low level
sine signal and its quantization which is a square wave. As a square wave,
according to 5.1.7, its trigonometric approximation is rich of odd harmonics
extending far beyond the sampling frequency. (Harmonics are sine waves the
frequencies of which are positive integer multiples of the wave with the small-
est frequency.) For this reason, as we already know, low-pass filters must be
used in order to obtain a band-limited output signal.

0001

................................
..........................

........................
.........................
.........................
.......................

............................
.....................................

...
................
................
................
................
................
................
................
...

Fig. 5.4 Quantization of a low level sine signal

5.1 Fourier Transform, Shannon’s Sampling Theorem 387

After quantization of a low amplitude signal the resulting signal differs
extremely from the original signal. This effect is also known as granulation
noise. In high amplitude audio signals this effect is usually not audible.

Granulation noise can be removed by, surprisingly, adding small amounts
of analog noise. This noise is called dither (cf. [164, pages 32ff]).

Adding low level noise to the previous signal we obtain:

0001
..
................
................
................
................
.................
................
..
................
................
...............
................
................
................
................
................
................
...
.................
................
................
................
................
................
..
................
................
................
................
................
................
................
................
...
................
................
................
................
................
................
................
..
...............
................
................
................
................
................
...
................
................
................
................
................
................
................
................
................
...
................
................
.................
................
................
................
..
................
................
................
................
................
................
................
................
................
...
................
................
................
................
................
................
...
................
................
................
................
................
...............
................
..
................
................
................
................
................
................
................
................
...
................
................
................
................
.................
................
..
................
................
................
................
................
................
................
................
................
..
.................
................
................
................
................
................
..
................
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
..
................
...............
................
................
...............
................
................
...............
..
................
................
.................
................
................
..
................
................
................
................
................
................
................
................
...
................
................
................
................
................
..
................
................
................
................
................
................
................
...
................
................
................
................
................
................
................
..
................
................
................
................
.................
...
................
................
................
................
................
................
................
................
..
...............
.................
................
................
................
...
................
................
................
................
................
................
................
................
..
................
................
................
................
................
................
...
................
................
................
................
................
................
...
................
................
................
................
................
................
................
................
...
................
................
................
.................
...............
...
................
................
................
................
................
................
................
................
..
................
................
................
................
................
...
................
................
................
................
................
................
................
...
................
................
...............
................
................
................
................
...
................
................
................
................
................
...
................
................
................
................
................
................
................
................
..
...............
................
................
................
................
...
................
................
................
................
................
................
................
................
..
...............
................
................
................
................
................
...
................
................
................
................
................
................
...
................
................
................
................
................
................
................
................
...
................
................
................
.................
................
...
................
................
................
................
................
................
................
................
................
...
................
................
................
................
................
..

Fig. 5.5 Adding dither to a low level sine signal

After quantization it looks like:

0001 ..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
...
................
................
................
................
................
................
................
...
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
...
................
................
................
................
................
................
................
...

................

................

................

................

................

................

................

..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
...

................

................

................

................

................

................

................

...
................
................
................
................
................
................
................
...

................

................

................

................

................

................

................

...
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
...

................

................

................

................

................

................

................

...
................
................
................
................
................
................
................
..
................
................
................
................
................
................
................
..

Fig. 5.6 Quantization of the low level sine signal together with dither

Finally, taking the average amplitude of this quantized signal over a certain
period of time we obtain

0001

..
...

.......................................
.......................................

..................................
...

Fig. 5.7 The average amplitude of the quantized low level sine signal with added dither

which is quite similar to the original signal.

388 5. Mathematics and Audio Compact Discs

Since human beings are unable to hear frequencies which are beyond about
20 000 Hz, in the process of storing audio data on a compact disc all frequen-
cies which are higher than 20 000 Hz are filtered out first. According to the
Sampling Theorem, the sampling rate must be at least 40 000 samples per sec-
ond in order to describe a band limited signal of maximal 20 000 Hz. For audio
compact discs, 44 100 samples per second are taken both for the left and the
right stereo channel. Each sample value is represented by 16 bits, this is a bi-
nary vector of length 16. The choice of these two parameters guarantees that
the fidelity of the compact disc system is comparable to the best analog sys-
tems. For historical reasons the sampling rate was fixed to 44 100 Hz. Namely,
early digital tape recorders used video cassette recorders for storage. Caused
by the video refreshing rate and number of pixels per screen used in different
video systems, they were able to store the audio information produced by a
sampling frequency of maximal 44 100 Hz ([164, page 22]).

In the following sections we describe the methods used for error detection
and correction in connection with audio compact discs.

Exercises

E.5.1.1 Exercise Show that L1(I) is a normed vector space.

E.5.1.2 Exercise Assume that p > 1 is a real number. Verify the details that Lp(I) is a
normed vector space.

Hints: For f , g ∈ Lp(I), show that the inequality

| f (x) + g(x)|p ≤
(
| f (x)| + |g(x)|

)p ≤ 2p(| f (x)|p + |g(x)|p
)

holds almost everywhere on I, and deduce that f + g ∈ Lp(I).
The proof of the triangle inequality for ‖.‖p is based on Hölder’s Inequality.

Assume that p, q > 1 satisfy 1/p + 1/q = 1. If ϕ belongs to Lp(I) and ψ

belongs to Lq(I), then ϕψ is an element of L1(I) and

‖ϕψ‖1 ≤ ‖ϕ‖p‖ψ‖q.

In this setting, the triangle inequality is also known as Minkowski’s Inequal-
ity. Determine q such that 1/p + 1/q = 1. Let f , g ∈ Lp(I), then h :=
| f + g|p−1 belongs to Lq(I), and hq = | f + g|q(p−1) = | f + g|p = | f + g| h ≤
| f h| + |gh|. Applying Hölder’s inequality twice, once for (ϕ, ψ) = (f , h) and
once for (ϕ, ψ) = (g, h), show that

‖ f + g‖p
p ≤

(
‖ f ‖p + ‖g‖p

)
‖ f + g‖p/q

p .

5.2 Correction of Erasures 389

E.5.1.3Exercise Prove that L2(I) is an Hermitian inner product space, i.e. the inner
product is antilinear in the first argument, linear in the second argument and
〈g, f 〉 = 〈 f , g〉.

E.5.1.4Exercise For f1, f2 ∈ L1(R) and c1, c2 ∈ R show that

̂c1 f1 + c2 f2 = c1 f̂1 + c2 f̂2.

Consider f ∈ L1(R) and a ∈ R. Prove that g(x) := e−2πiax f (x) and h(x) :=
f (x − a) are in L1(R) and verify

ĝ(ξ) = f̂ (ξ + a) and ĥ(ξ) = e−2πiaξ f̂ (ξ).

5.25.2 Correction of Erasures

After this short introduction of Fourier Analysis and digital audio we come
back to the theory of error correcting codes.

5.2.1Definition (erasures) An erasure is a transmission error where the exact posi-
tion of the error in the received vector is known (but of course not the exact
value of the error).
Erasures occur, for instance, when the receiver obtained a vector of which it
could not read certain components, or when it is known to the decoder that
certain positions in a received vector are not valid.

In the sequel when speaking about a transmission error, we use the term
random error in order to distinguish it from an erasure. The reader can imagine
that, in general, it is easier to correct erasures than random errors.

5.2.2Theorem [104, 3.3.1 Satz] Let C be an (n, k, d)-code over Fq and let t, u be non-
negative integers. If d ≥ 2t + u + 1, then it is possible to correct up to t errors and,
additionally, u erasures with C.

Proof: Assume that the receiver has obtained a vector y ∈ Fn
q containing ex-

actly u erasures, which are located at 0 ≤ i0 < i1 < . . . < iu−1 ≤ n − 1, and in
the remaining n − u coordinates exactly t errors have occurred. Consider the
set

V :=
{
v ∈ Fn

q | vi = yi for i �∈ {i0, . . . , iu−1}
}
,

then there is exactly one c ∈ C such that d(c, v) ≤ t for a suitable v ∈ V. From
the assumptions it is clear that such a codeword c exists. We have to show

390 5. Mathematics and Audio Compact Discs

that it is uniquely determined. Assuming that there exist c(1), c(2) ∈ C, with
c(1) �= c(2) and v(1), v(2) ∈ V such that d(c(1), v(1)) ≤ t and d(c(2), v(2)) ≤ t, we
obtain

d(c(1), c(2)) ≤ d(c(1), v(1)) + d(v(1), v(2)) + d(v(2), c(2)) ≤ t + u + t < d,

which is a contradiction to dist(C) = d. �

5.2.3 Example If C is a binary code equipped with a decoding algorithm for random
errors, then this algorithm can also be used for the correction of erasures.

Assume that c ∈ C was sent and the received vector y ∈ Fn
2 contains u

erasures in the positions i0 < . . . < iu−1. Moreover, assume that among the
remaining components no more than t transmission errors have occurred and
that d ≥ 2t + u + 1. We consider two particular elements v(0), v(1) of V. The
vector v(0) is obtained from y by replacing all erasures by 0, and v(1) is obtained
by replacing them by 1. Since C is a binary code, one of two cases must occur:
Either at least half the values at the erasure positions are zero or at least half
the values are one. Consequently, in the first case d(c, v(0)) ≤ t +
u/2� and in
the second case d(c, v(1)) ≤ t +
u/2�.

Without loss of generality, assume that d(c, v(0)) ≤ t +
u/2�. Then it is
possible to decode v(0), and v(0) is decoded into the codeword originally sent.
If v(1) cannot be decoded, then we are done. Assume that v(1) is decoded into
c′ ∈ C. If c = c′ we are also done. If c′ �= c then∣∣∣{j ∈ n

∣∣ c′j �= yj, j �∈ {i0, . . . , iu−1}
}∣∣∣ > t,

thus c′ cannot be obtained by filling the erasures and correcting up to t non-
erased components of y. �

For codes over Fq with q > 2 this method is not very useful. In this case
it would be necessary to compute all the qu different vectors of V and find,
according to 5.2.2, the existing and uniquely determined vector which can be
decoded into a codeword so that at most t nonerased components are changed.

Hence, for BCH-codes we describe another method (cf. [104] and [68]). Let
C be a BCH-code of length n over Fq with designed distance δ. By definition,
there exists an integer b and a primitive n-th root of unity ξ such that the va-
riety V(C) contains the consecutive set {ξb, . . . , ξb+δ−2}. For m = ordn(q),
the primitive n-th root ξ belongs to Fqm . Let t and u be nonnegative integers
such that δ ≥ 2t + u + 1. Moreover, we assume that the codeword c was sent
and that the vector y ∈ Fn

q was received. It contains exactly u erasures and
we assume that during the transmission w ≤ t errors have occurred in the
nonerased positions.

5.2 Correction of Erasures 391

From y we derive the vector ỹ in which all the erased positions are replaced
by 0. Thus, we can express ỹ as the sum

ỹ = c + e + a,

where e is the error vector describing the errors which occurred in the non-
erased positions, and a is the vector which produces the value 0 at all the
erased positions. Then the error vector of ỹ equals f := e + a.

Using the check matrix ∆̃ over the extension field Fqm , which was intro-
duced in the proof of 4.3.1, we compute the syndrome s of ỹ as

s = ỹ · ∆̃�.

We are interested in certain components of s, the partial syndromes, which are
given by

sj = ∑
i∈n

ỹiξ
ij = ỹ(ξ j) = c(ξ j) + f (ξ j) = f (ξ j), b ≤ j ≤ b + 2t + u − 1. 5.2.4

As in 4.2.2 we consider the vectors ỹ, c, f as polynomials. Since c is a codeword,
c(ξ j) = 0. This allows the computation of the partial syndrome polynomial

s(x) := ∑
j∈2t+u

sb+jx
j.

From the received vector y we deduce that the erasures have occurred in po-
sitions i0, . . . , iu−1. Moreover, we assume that the errors in the nonerased po-
sitions are located in iu, . . . , iu+w−1. Actually these positions are not known in
the beginning. In connection with these positions we have the erasure location
polynomial which is given by

λ(x) := ∏
j∈u

(1− ξ ij x)

and the error location polynomial given by

σ(x) :=
u+w−1

∏
j=u

(1− ξ ij x).

So far we know λ, but σ remains to be computed.
Now we turn our attention to the actual values of the errors. Once again,

we recall that fij for j ∈ u + w denotes the error occurring at the position ij
when sending c and receiving ỹ. From 5.2.4, it follows that

s� = ∑
j∈u+w

fij ξ
ij�, b ≤ � ≤ b + 2t + u − 1. 5.2.5

Let ω be the unique polynomial of degree less than 2t + u satisfying

ω(x) ≡ s(x)λ(x)σ(x) mod I(x2t+u).

It is called the error evaluation polynomial.

392 5. Mathematics and Audio Compact Discs

5.2.6 Lemma Using the notation from above we have

ω(x) = ∑
j∈u+w

fij ξ
ijb ∏

r �=j
(1− ξ ir x).

Proof: From 5.2.4 and 5.2.5, we get

s(x)λ(x)σ(x) =

(
∑

�∈2t+u
∑

j∈u+w
fij ξ

ij(b+�)x�

)
∏

r∈u+w
(1− ξ ir x)

= ∑
j∈u+w

fij ξ
ijb

(
∑

�∈2t+u
(ξ ij x)�

)
∏

r∈u+w
(1− ξ ir x)

= ∑
j∈u+w

fij ξ
ijb 1− (ξ ij x)2t+u

1− ξ ij x
(1− ξ ij x) ∏

r �=j
(1− ξ ir x)

≡ ∑
j∈u+w

fij ξ
ijb ∏

r �=j
(1− ξ ir x) mod I(x2t+u).

This is a polynomial of degree at most w + u− 1 < 2t + u, whence it represents
the polynomial ω. �

Since we know the polynomial λ and since its degree is equal to u, we write
sλ in the form

s(x)λ(x) = T1(x) + xuT2(x)

with T1, T2 ∈ Fqm [x] and deg T1 < u. Then

s(x)λ(x)σ(x)− σ(x)T1(x) = xuσ(x)T2(x),

whence
ω(x)− σ(x)T1(x) ≡ xuσ(x)T2(x) mod I(x2t+u).

Consequently, xu is a divisor of ω(x)− σ(x)T1(x) and finally we obtain

ω(x)− σ(x)T1(x)
xu ≡ σ(x)T2(x) mod I(x2t).

We denote the left-hand side of this congruence by Ω(x). It is a polynomial of
degree at most w− 1 ≤ t − 1.

5.2.7 Lemma Let C be a BCH-code of length n over Fq with designed distance δ. The
variety of C contains powers of ξ where ξ ∈ Fqm is a primitive n-th root of unity.
Consider nonnegative integers t, u such that u + 2t + 1 ≤ δ. Assume that the product
of the partial syndrome polynomial and the erasure location polynomial is written in
the form s(x)λ(x) = T1(x) + xuT2(x) with deg T1 < u. Then there exist relatively

5.2 Correction of Erasures 393

prime polynomials σ, Ω ∈ Fqm [x] such that deg Ω ≤ t− 1, deg σ ≤ t, and Ω(x) ≡
σ(x)T2(x) mod I(x2t).

In addition, the polynomials σ and Ω are unique modulo scalars in the following
sense. If σ1 and Ω1 are two further polynomials over Fqm which are relatively prime
and satisfy deg Ω1 ≤ t − 1, deg σ1 ≤ t, and Ω1(x) ≡ σ1(x)T2(x) mod I(x2t),
then there exists a constant κ ∈ F∗

qm such that σ1 = κσ and Ω1 = κΩ.

Proof: From the previous computations we already know that polynomials
σ, Ω exist with deg Ω ≤ t − 1, deg σ ≤ t, and Ω(x) ≡ σ(x)T2(x) mod I(x2t).
Now we prove that they are relatively prime. If we assume that ϕ ∈ Fqm [x] is
a common divisor of σ and Ω, then it is also a divisor of xuΩ(x), therefore, a
divisor of ω − σT1, thus a divisor of ω. From 5.2.6 it is clear that ω and σ are
relatively prime, thus ϕ is a unit in Fqm [x], in other words, a nonzero constant,
thus σ and Ω are relatively prime.

If σ1 and Ω1 also have the desired properties, then

Ω(x)σ1(x) ≡ σ(x)T2(x)σ1(x) ≡ σ(x)Ω1(x) mod I(x2t).

Comparing degrees, we obtain that

Ωσ1 = σΩ1.

Thus, σ1 is a divisor of σΩ1. Since σ1 and Ω1 are relatively prime, σ1 is a divisor
of σ. Correspondingly, we derive that σ is a divisor of σ1, whence there exists
a constant κ ∈ F∗

qm such that σ1 = κσ. Finally, from Ωκσ = Ωσ1 = σΩ1 we
deduce that κΩ = Ω1. �

So far we have proved that relatively prime polynomials σ and Ω of certain
degrees exist, such that Ω(x) ≡ σ(x)T2(x) mod I(x2t). But we still don’t know
how to compute them. Next we describe a method for doing this which is
based upon the

5.2.8Extended Euclidean Algorithm [104, 3.2.12 Satz] Consider nonzero polynomials
ϕ, ψ ∈ Fq[x] with deg ϕ ≥ deg ψ. Put

f0 := 1, g0 := 0, r0 := ϕ,
f1 := 0, g1 := 1, r1 := ψ,

and recursively for i ≥ 1 determine qi, ri+1, fi+1, and gi+1 by

ri−1 = qiri + ri+1 with deg ri+1 < deg ri,
fi+1 = fi−1 − qi fi,
gi+1 = gi−1 − qigi.

Then
fi ϕ + giψ = ri, i ≥ 0, 5.2.9

394 5. Mathematics and Audio Compact Discs

and
deg gi+1 ≤ deg ϕ − deg ri, i ≥ 0.5.2.10

Since deg ri+1 < deg ri, after finitely many steps this algorithm terminates with
rN �= 0 and rN+1 = 0. Then rN is equal to gcd(ϕ, ψ). �

An application of the extended Euclidean Algorithm allows us to find poly-
nomials σ and Ω with the properties described in 5.2.7.

5.2.11 Sugiyama–Kasahara–Hirasawa–Namekawa algorithm [188], [189] Let ϕ(x) :=
x2t and let ψ(x) be the remainder of T2(x) after division by x2t. Then there
exist polynomials fN , gN ∈ Fqm [x] such that

d(x) := gcd
(
x2t, T2(x)

)
= gcd

(
x2t, ψ(x)

)
= fN(x)x2t + gN(x)ψ(x).

If the assumptions of 5.2.7 are satisfied, then there exist relatively prime solu-
tions Ω and σ of the congruence

Ω(x) ≡ σ(x)ψ(x) mod I(x2t)

with deg Ω ≤ t − 1 and deg σ ≤ t. Thus, there exists a polynomial φ such that

Ω(x) = σ(x)ψ(x) + φ(x)x2t

and d is a divisor of Ω. Hence deg d ≤ t − 1. The degrees of the polynomials
ri in 5.2.8 are strictly decreasing, and deg r0 = deg x2t = 2t. So, there exists an
index j0 ∈ {1, . . . , N} such that deg rj0−1 ≥ t and deg rj0 < t. From 5.2.9 and
5.2.10 we obtain

fj0 (x)x2t + gj0 (x)ψ(x) = rj0 (x)

and deg gj0 ≤ 2t − deg rj0−1 ≤ t. Consequently, gj0 and rj0 satisfy the congru-
ence

rj0 (x) ≡ gj0 (x)T2(x) mod I(x2t)

with deg gj0 ≤ t and deg rj0 < t. Since, furthermore, Ω and σ are required to
be relatively prime we set

Ω(x) :=
rj0 (x)

gcd(rj0 (x), gj0 (x))
and σ(x) :=

gj0 (x)
gcd(rj0 (x), gj0 (x))

.

If the assumptions of 5.2.7 are not satisfied, then it may happen that T2 �= 0
and deg d ≥ t. In this case we cannot find j0 such that deg rj0 < t and an
uncorrectable error has occurred. �

So far we have computed the partial syndrome polynomial s, the error loca-
tion polynomial σ, the erasure location polynomial λ, and the error evaluation
polynomial

ω(x) = Ω(x)xu + σ(x)T1(x).

5.2 Correction of Erasures 395

In the next step the error locations iu, . . . , iu+w−1 are determined by finding
the roots of σ. It is obvious that κ ∈ Fqm is a root of σ if and only if there
exists some j ∈ {u, . . . , u + w − 1} such that 1 − ξ ijκ = 0, which is equivalent
to κ = ξ−ij. From the representation of the multiplicative inverse of the roots
of σ as powers of ξ, we are able to deduce the error locations. In Section 3.5 we
were briefly discussing a method how to determine the roots of a polynomial.
For the present problem of finding the zeros of the error locator polynomial,
we suggest another method. If we are able to determine the polynomial σ,
then, according to 5.2.7, we can assume that σ(0) = 1. Hence, the roots of σ

can be determined by

5.2.12Chien search

Input: n the length of the code, ξ ∈ Fqm a primitive n-th root of unity,
and the error location polynomial σ(x) = ∑w

i=0 σixi with σ0 = 1.
Output: All roots of σ of the form ξ j.

(1) We introduce w variables X1, . . . , Xw. For 1 ≤ j ≤ w set Xj := σj and set
i := 0.

(2) If
w

∑
j=1

Xj = −1,

then output ξ i.

(3) If i = n, then STOP.
Otherwise, set i := i + 1 and for 1 ≤ j ≤ w set Xj := Xjξ

j. Goto (2). �

In the i-th step the sum in (2) stands for

w

∑
j=1

σjξ
ij = σ(ξ i) − 1,

whence ξ i is a root of σ if and only if this sum equals −1.

Finally, we have to compute the error values fij for j ∈ u + w which de-
scribe the errors of ỹ in the ij-th component. A useful method is given by the

5.2.13Forney algorithm [55] For j ∈ u + w the error fij can be computed as

fij =
ξ−ijbω(ξ−ij)

∏r �=j(1− ξ ir−ij)
= − ξ−ij(b−1)ω(ξ−ij)

ρ′(ξ−ij)
,

where ρ := σλ.

396 5. Mathematics and Audio Compact Discs

Proof: From 5.2.6 we obtain

ω(ξ−ij) = fijξ
ijb ∏

r �=j
(1− ξ ir−ij),

which proves the first equality. Computing the formal derivative of ρ leads to

ρ′(x) =
d
dx ∏

j∈u+w
(1− ξ ij x) = − ∑

j∈u+w
ξ ij ∏

r �=j
(1− ξ ir x).

Thus,
ρ′(ξ−ij) = −ξ ij ∏

r �=j
(1− ξ ir−ij),

which proves the second equality. �

Hence, we obtain the error values fij for j ∈ u + w, from which together
with the error- and erasure locations ij, the error vectors e and a can easily
be determined. By subtraction we obtain the originally sent codeword c =
ỹ − e − a.

5.2.14 Algorithm (Decoding of errors and erasures with a BCH-code) Let C be a
BCH-code with designed distance δ and consecutive subset {ξb, . . . , ξb+δ−2}
of its variety, where ξ ∈ Fqm is a primitive n-th root of unity.
Input: A vector y containing u erasures.
Output: A codeword c or an error message. If t denotes the number of

errors in the nonerased positions and if 2t ≤ δ − 1− u, then the
output is the codeword originally sent.

(1) Determine the vector ỹ by setting the erased components of y all equal
to 0, and define t :=
(δ − u − 1)/2�.

(2) Compute the partial syndromes sj = ỹ(ξ j) for b ≤ j ≤ b + 2t + u − 1.

(3) Determine the partial syndrome polynomial

s(x) := ∑
j∈2t+u

sb+jx
j.

If s = 0, then set c := ỹ and goto (12).

(4) Determine the locations of the erasures i0, . . . , iu−1 and form the erasure
location polynomial

λ(x) := ∏
j∈u

(1− ξ ij x).

(5) Write s(x)λ(x) in the form T1(x) + xuT2(x) with deg T1 < u.

(6) Compute relatively prime polynomials Ω, σ ∈ Fqm [x] such that deg Ω ≤
t − 1, deg σ ≤ t, and Ω(x) ≡ σ(x)T2(x) mod I(x2t) as described in

5.2 Correction of Erasures 397

5.2.11. If such polynomials do not exist, output an error message and
STOP.

(7) Compute by Chien search the roots ξ−ij of σ for j = u, . . . , u + w − 1,
where w ≤ deg σ ≤ t, and their multiplicative inverses. Then the error
locations are iu, . . . , iu+w−1.

(8) Set ρ := σλ and compute the formal derivative ρ′(x).

(9) Compute the error evaluation polynomial

ω(x) = Ω(x)xu + σ(x)T1(x).

(10) For j ∈ u + w determine the errors

fij = − ξ−ij(b−1)ω(ξ−ij)
ρ′(ξ−ij)

as indicated by Forney’s algorithm.

(11) Set

a(x) := ∑
j∈u

fij x
ij , e(x) :=

u+w−1

∑
j=u

fij x
ij ,

and c(x) := ỹ(x)− a(x)− e(x).

(12) Output c. �

This algorithm can also be used for decoding a BCH-code when no erasures
occurred. In this case u = 0, ỹ = y, λ = 1, T1 = 0, and ω = Ω.

5.2.15Algorithm (Decoding of errors with a BCH-code) Let C be a BCH-code
with designed distance δ and consecutive subset {ξb, . . . , ξb+δ−2} of its vari-
ety, where ξ ∈ Fqm is a primitive n-th root of unity.
Input: A vector y.
Output: A codeword c or an error message. If t denotes the number of er-

rors and if 2t ≤ δ − 1, then the output is the codeword originally
sent.

(1) Set t :=
(δ − 1)/2� and compute the partial syndromes sj = y(ξ j) for
b ≤ j ≤ b + 2t − 1.

(2) Determine the partial syndrome polynomial

s(x) := ∑
j∈2t

sj+bx
j.

If s = 0, then set c := y and goto (8).

398 5. Mathematics and Audio Compact Discs

(3) Compute relatively prime polynomials ω, σ ∈ Fqm [x] such that deg ω ≤
t − 1, deg σ ≤ t and ω(x) ≡ σ(x)s(x) mod I(x2t) as described in 5.2.11.
If such polynomials do not exist, output an error message and STOP.

(4) Compute by Chien search the roots ξ−ij of σ for j ∈ w, where w ≤
deg σ ≤ t, and their multiplicative inverses. Then the error locations are
i0, . . . , iw−1.

(5) Compute the formal derivative σ′(x).

(6) For j ∈ w determine the errors

fij = − ξ−ij(b−1)ω(ξ−ij)
σ′(ξ−ij)

as indicated by Forney’s algorithm.

(7) Set
e(x) := ∑

j∈w
fij x

ij and c(x) := y(x) − e(x).

(8) Output c. �

At the end of this section we want to discuss two numerical examples. First
we illustrate the method of 5.2.3 for binary codes. It was taken from [104, 3.3.2
Beispiel].

5.2.16 Example Consider the binary (15, 7, 5)-code with generator polynomial g(x) =
x8 + x7 + x6 + x4 + 1. According to 4.2.13, it is a BCH-code with δ = 5, since g
is the product of x4 + x + 1 and x4 + x3 + x2 + x + 1. Assume that

c = (1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0)

was sent and that the vector

y = (1, 0, , 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0,)

was received. Thus, two erasures and one error have occurred. Now we set

v(0) := (1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0)

and
v(1) := (1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1).

Using a decoding algorithm for cyclic codes (for instance 5.2.15), we realize
that v(0) is decoded to c, whereas v(1) cannot be decoded. �

5.2 Correction of Erasures 399

Now we consider a BCH-code over F11. A similar example can be found in
[104, 3.3.4 Beispiel].

5.2.17Example Let C be a BCH-code in the strict sense of length 10 with designed
distance δ = 6 over F11. The parameters were chosen so that ξ = 2 is a prim-
itive 10-th root of unity. Thus, it is not necessary to do computations in an
extension field of F11.

The receiver has obtained the vector

y = (8, , 8, , 2, , 4, 2, 2, 1).

Since u = 3 erasures have occurred, we can detect at most t = 1 error in the
nonerased positions. Initially, we set

ỹ := (8, 0, 8, 0, 2, 0, 4, 2, 2, 1).

Then we compute the first five components of its syndrome

sj−1 =
9

∑
i=0

ỹi2
ij, 1 ≤ j ≤ 5,

and obtain the partial syndrome polynomial

s(x) = 10x4 + 5x3 + 2x + 2.

The erasures occurred at the positions i0 = 1, i1 = 3 and i2 = 5, whence

λ(x) = (1− 2x)(1− 23x)(1− 25x) = 5x3 + 6x2 + 2x + 1.

Now we compute

s(x)λ(x) = 6x7 + 8x6 + 6x5 + 8x4 + 5x3 + 5x2 + 6x + 2

and determine

T1(x)= 5x2 + 6x + 2 and T2(x)= 6x4 + 8x3 + 6x2 + 8x + 5 ≡ 8x + 5 mod I(x2).

A solution of the congruence

Ω(x) ≡ σ(x)T2(x) mod I(x2)

with deg σ ≤ 1 and deg Ω = 0 is easily computed as

σ(x) = x + 9 and Ω(x) = 1.

The root of σ is κ = 2 = ξ, whence κ−1 = ξ−1 = ξ9 and the error location
i3 = 9. Now we determine

ρ(x) = σ(x)λ(x) = 5x4 + 7x3 + x2 + 8x + 9,

400 5. Mathematics and Audio Compact Discs

ρ′(x) = 9x3 + 10x2 + 2x + 8

and
ω(x) = Ω(x)x3 + σ(x)T1(x) = 6x3 + 7x2 + x + 7.

This allows us to compute the following data

j 0 1 2 3
ij 1 3 5 9

2−ij 6 7 10 2
ω(2−ij) 10 6 7 8
ρ′(2−ij) 3 2 7 3

fij 4 8 10 1

so that a(x) = 4x + 8x3 + 10x5, e(x) = x9 and

c(x) = ỹ(x) − a(x)− e(x) = 8 + 7x + 8x2 + 3x3 + 2x4 + x5 + 4x6 + 2x7 + 2x8,

which results in the codeword

c = (8, 7, 8, 3, 2, 1, 4, 2, 2, 0). �

Exercises

E.5.2.1 Exercise Prove 5.2.8. First prove by induction that 5.2.9 is satisfied for i ≥ 0.
Show that deg qi = deg ri−1 − deg ri for i ≥ 1. From the monotonicity of
deg ri deduce by induction that 5.2.10 is satisfied for i ≥ 0. Finally, show by
induction that gcd(ri+1, ri) = gcd(ri, ri−1) = gcd(ϕ, ψ) for i ≥ 1.

E.5.2.2 Exercise Consider the code from 5.2.16 and the decoding method described
in 5.2.3. Using the algorithm 5.2.15, show that both v(0) and v(1) constructed
from

y = (0, 0, 0, 0, 1, 0, 0, , , 0, 0, 0, 0, 0, 0)

can be decoded into two distinct codewords c(0) and c(1). Assume that at most
one error has occurred in the positions unaffected by erasures. Which of c(0)

and c(1) was sent originally? (See [104, Übung 60].)

E.5.2.3 Exercise Let C be the BCH-code over F7 of length 6 with consecutive subset{
ξ, . . . , ξ4} of its variety and designed distance δ = 5, where ξ = 3 ∈ F7. The

vector y = (3, 3, , 5, , 2) was received. Which codeword was sent? (See
[104, Übung 61].)

5.3 Burst Errors and Interleaving of Codes 401

5.35.3 Burst Errors and Interleaving of Codes

If during the transmission of a codeword at least two errors have occurred,
then the error vector can be seen as a burst error.

5.3.1Definition (burst error) Let C be a code of length n. A burst error of length � ≤ n
is an error vector e in which (after some cyclic rearrangement) all the nonzero
entries (maybe mixed with some zero entries) occur in � adjacent positions, say
among the coordinates ei, . . . , ei+�−1 mod n, with nonzero ei and ei+�−1 mod n.

A burst error of length � is completely described by its location, which is the
index i of the first nonzero component of e, and by its pattern, which can also
be read as a polynomial b(x) := ei · 1 + ei+1 mod nx + . . . + ei+�−1 mod nx�−1 of
degree �− 1.
For example the two vectors

(0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0) and (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)

are both burst errors of length 4. The first burst has location 4 and pattern
1 + x2 + x3, the second one has location 9 and pattern 1 + x + x3. In order
to indicate that the second burst starts somewhere at the end of the vector
and is continued at the beginning, we also call it a wrap around burst. However,
neither the burst error nor its pattern and length are uniquely determined. The
first vector is also a wrap around burst with location 6 and pattern 1 + x + x10,
so a burst of length 11, or a wrap around burst with location 7 and pattern
1+ x9 + x11. Of course, it makes sense to consider bursts of rather short length.

Again we use the term random error instead of error in the ordinary sense in
order to distinguish it from a burst error. Random errors are sometimes seen
as burst errors of length 1.

If the burst error has location i and pattern b of degree �− 1, then

e(x) ≡ xib(x) mod I(xn − 1).

5.3.2Theorem A cyclic code with generator polynomial of degree t is able to detect all
burst errors of length at most t.

Proof: Let e be a burst error of length at most t, then e(x) ≡ xib(x) mod
I(xn − 1) for some i, with b �= 0 and deg b < t. In order to show that e is not a
codeword, we prove that e is not a multiple of the generator polynomial g.

On the contrary, if we suppose that xib(x) belongs to the code, then there
exists a polynomial a such that

xib(x) ≡ a(x)g(x) mod I(xn − 1).

402 5. Mathematics and Audio Compact Discs

Hence, xn − 1 is a divisor of xib(x) − a(x)g(x), thus g is a divisor of xib(x).
Since g(0) �= 0, we deduce that g is a divisor of b, which is impossible since
0 ≤ deg b < deg g. �

This fact motivates the method of cyclic redundancy check decoding (CRC-
decoding) which is described below. It is applied for instance in computer net-
works, where it is important to detect errors. If a block of data was not trans-
mitted correctly, then a transmission error is detected and the corresponding
data must be transmitted again. CRC-decoding is also applied for error detec-
tion in digital audio applications.

5.3.3 Algorithm (CRC-decoding [104, pages 86ff])
Assume that C is a cyclic code of length n with generator polynomial g of
degree t = n− k. Moreover, assume that the code was encoded systematically.
Input: A polynomial y(x) = y0 + . . . + yn−1xn−1 ∈ Fq[x].
Output: A vector belonging to Fk

q or an error message. If a transmission
error has occurred which is a burst of length at most t, then this
error is definitely detected by this algorithm.

(1) By polynomial division determine q, r ∈ Fq[x] such that y = qg + r with
r = 0 or deg r < deg g.

(2) If r �= 0 then output an error message.

(3) If r = 0 output the information symbols of y. �

Especially the error detection rate of binary CRC-codes is quite high. Many
burst errors of even bigger length can be detected by this method.

5.3.4 Lemma Let C be a binary cyclic code with a generator polynomial of degree t and let
� > t. Assume that all burst errors of length � occur with the same probability. Then
the probability that C detects a burst of length � is equal to

1− 2−t+1 if � = t + 1,
1− 2−t if � > t + 1.

Proof: Assume that e is a burst error with location i and pattern b(x) = 1 +
. . . + x�−1. As we saw in the proof of 5.3.2, the burst e is not detected by the
CRC-algorithm if and only if b is a multiple of g, thus b = g f for some poly-
nomial f of degree � − 1− t. Moreover, from b(0) = g(0) = 1 we deduce that
f (0) = 1 must be satisfied.

If � = t + 1, then there exists exactly one polynomial f with these proper-
ties, namely f = 1. If � ≥ t + 2, then there are exactly 2�−t−2 polynomials f
with these properties. By assumption, each burst pattern b of length � occurs

5.3 Burst Errors and Interleaving of Codes 403

with the same probability. Since there are exactly 2�−2 burst patterns of length
�, we obtain the following probabilities for detecting a burst of length �.

If � = t + 1, a burst of length � is detected with the probability

2�−2 − 1
2�−2 = 1− 2−�+2 = 1− 2−t+1.

If � > t + 1, a burst of length � is detected with the probability

2�−2 − 2�−t−2

2�−2 = 1− 2−t. �

For the correction of burst and random errors we refer the reader to [134]
and [68]. Now we analyze the burst error correction ability of linear codes.

5.3.5Lemma A linear code C is able to correct all bursts of length at most � if and only if
no codeword different from 0 is the sum of two bursts of length at most �.

Proof: Assume that C is able to correct all bursts of length up to � and suppose
that there exist two burst errors e and e′ of length at most � and c ∈ C \ {0}
such that c = e + e′. Then 0 + e′ = c − e. Since C is able to correct all bursts of
length at most �, the vector 0 + e is decoded into 0, and c − e is decoded into c,
whence c = 0, which is a contradiction to our assumption.

Conversely, we prove that if it is not possible to correct all bursts of length
up to �, then there exists a codeword different from 0 which is the sum of two
bursts of length at most �. By assumption, there exist c, c′ ∈ C, c �= c′ and
two bursts e, e′ of length at most � such that c + e = c′ + e′. Consequently,
e′ − e = c − c′ ∈ C \ {0} shows that the codeword c − c′ is the sum of e′

and −e. �

5.3.6The Reiger-bound [169] If C is a linear (n, k)-code over Fq which is able to correct
all bursts of length at most �, then 2� ≤ n − k.

Proof: Since C corrects all bursts of length at most �, according to 5.3.5, no
codeword different from 0 is the sum of two bursts of length at most �. Conse-
quently 2� < n, since each vector of length at most 2� is either a burst of length
at most � or the sum of two bursts of length at most �. Hence, it is possible to
consider the vector space

T :=
{

(v0, v1, . . . , v2�−1, 0, . . . , 0) ∈ Fn
q

∣∣∣ vi ∈ Fq, i ∈ 2�
}

,

which is a subspace of Fn
q of dimension 2�. Each element of T \ {0} is either a

burst of length at most � or can be written as the sum of two bursts of length at
most �. Therefore, c = 0 is the unique codeword belonging to T. For v, v′ ∈ T,

404 5. Mathematics and Audio Compact Discs

v �= v′, the cosets v + C and v′ + C are distinct elements of Fn
q /C. (Assuming

on the contrary that v + C = v′ + C, then v − v′ ∈ C ∩ T, thus v − v′ = 0,
whence v = v′ a contradiction to our assumption.) Hence, the syndromes of
distinct elements of T are distinct. In other words, the mapping T → Fn−k

q ,
v �→ v · ∆�, where ∆ is a check matrix of C, is injective. Thus 2� = dim(T) ≤
dim(Fn−k

q) = n − k. �

If an (n, k)-code is able to correct all burst errors of length at most �, then
its burst error correcting efficiency is defined as

2�
n − k

.

From the Reiger-bound it is clear that the burst error correcting efficiency can-
not be greater than 1. The minimum distance d of each MDS-code satisfies
d − 1 = n − k. Hence, we obtain the following

5.3.7 Corollary MDS-codes are able to correct all bursts of length at most
(n − k)/2�. If
n − k is even, then their burst error correcting efficiency is equal to 1. �

Assume that C is a linear code encoded systematically so that the last k
positions of a codeword are the information symbols. If g is the generator
polynomial of C, then the syndrome s of y ∈ Fn

q satisfies s(x) ≡ y(x) mod
g(x). Moreover, it is easily verified that the syndrome of the cyclic shift xiy(x)
is given by xis(x) mod g(x). In order to correct correctable bursts, the method
of error trapping (cf. 4.12.5) can be applied. By the Reiger-bound, a correctable
burst is always of length � ≤ (n − k)/2, whence it can always be rotated by a
cyclic shift into the first n − k positions.

Now we describe a method which allows us to deal with long burst errors.
Let C be a linear (n, k)-code over Fq and let λ be a positive integer. Consider
the set of all λ-tuples of codewords of C, i.e.

Cλ =
{

f
∣∣ f : λ → C

}
,

which is an Fq vector space. Its elements can be represented as matrices. As-
sume that f (i) = c(i) = (c(i)

0 , . . . , c(i)
n−1) for i ∈ λ, then f can be written as a

matrix

f =

⎛⎜⎜⎜⎝
c(0)

c(1)

...
c(λ−1)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
c(0)
0 . . . c(0)

n−1

c(1)
0 . . . c(1)

n−1
...

...
...

c(λ−1)
0 . . . c(λ−1)

n−1

⎞⎟⎟⎟⎟⎠ ,

where the codewords of C are the rows of this matrix. Now the main idea of in-
terleaving is, to read this matrix columnwise from top to bottom and from left

5.3 Burst Errors and Interleaving of Codes 405

to right. For this reason, the symbols of λ consecutive codewords are mixed.
Finally, we identify the matrix f with the vector

(c(0)
0 , c(1)

0 , . . . , c(λ−1)
0 , . . . , c(0)

n−1, c
(1)
n−1, . . . , c

(λ−1)
n−1)

of length λn over Fq. The identification of λ × n matrices over Fq with vectors
of length λn over Fq is a vector space isomorphism

φ : Fλ×n
q → Fλn

q .

The image of Cλ under this isomorphism is indicated by C(λ).

5.3.8Definition (λ-way interleave) The code C(λ) is called the λ-way interleave of
the code C.
The proof of the next theorem is left to the reader.

5.3.9Theorem Let C be a linear (n, k, d, q)-code, and let λ be a positive integer. Then the
λ-way interleave C(λ) is a linear (λn, λk, d, q)-code. �

5.3.10Theorem If the linear code C is able to correct all bursts of length at most �, then the
λ-way interleave C(λ) corrects all burst errors of length at most λ�.

Proof: Assume that e ∈ Fλn
q is a burst error of length at most λ�. Applying the

inverse isomorphism φ−1, this burst error is split over the λ rows of φ−1(e). In
each row at most � consecutive symbols are effected, whence in each row the
bursts can be corrected by C. Thus, e is corrected by C(λ).

Conversely, choose a burst of length � + 1 in Fn
q which cannot be corrected

by C. If we replace � consecutive symbols in an arbitrary row of φ−1(c) for
some c ∈ C(λ) by this burst, then we obtain a burst of length λ� + 1 in C(λ)

which cannot be corrected. �

5.3.11Corollary Let C be a code over F2m . If C allows one to correct bursts of length at
most �, then C is able to correct bursts of maximal (�− 1)m + 1 bits, and C(λ) corrects
burst errors of length up to (λ�− 1)m + 1 bits. �

Since C and C(λ) have the same minimum distance, interleaving does not
increase the random error correction abilities of a code. As a matter of fact,
depending on how the errors are distributed among the λ interleaves, more
than (d− 1)/2 errors might be corrected by C(λ).

5.3.12Theorem Let C be a cyclic code of length n with generator polynomial g over Fq.
Then g(xλ) is the generator polynomial of C(λ). Hence, the λ-way interleave is also
cyclic.

406 5. Mathematics and Audio Compact Discs

Proof: Let c = (c0, . . . , cnλ−1) be an element of C(λ), then

φ−1(c) =

⎛⎜⎜⎜⎝
c0 cλ . . . c(n−1)λ

c1 cλ+1 . . . c(n−1)λ+1
...

...
. . .

...
cλ−1 c2λ−1 . . . cnλ−1

⎞⎟⎟⎟⎠ .

Each row

c(i) := (ci, cλ+i, . . . , c(n−1)λ+i), i ∈ λ,

is a codeword of C, thus g(x) is a divisor of

c(i)(x) := ci + cλ+ix + . . . + c(n−1)λ+ix
n−1, i ∈ λ.

The polynomial

c(x) = c0 + c1x + . . . + cλn−1x
λn−1

is of the form

c(x) = c(0)(xλ) + xc(1)(xλ) + . . . + xλ−1c(λ−1)(xλ).

Since g is a divisor of c(i)(x) in Fq[x]/I(xn − 1), it is obvious that g(xλ) is a
divisor of c(x) in Fq[x]/I(xλn − 1). Hence, each codeword of C(λ) is a multiple
of g(xλ).

Conversely, we know that g is a divisor of xn − 1 and that k = dim(C) =
n − deg g. Thus, g(xλ) is a divisor of xnλ − 1, and the cyclic code generated
by g(xλ) is of dimension nλ − deg g(xλ) = nλ − (n − k)λ = kλ. This is the
dimension of C(λ). Since C(λ) is contained in the cyclic code generated by
g(xλ), and both codes have the same dimension, they are equal. Thus, C(λ) is
the cyclic code generated by g(xλ). �

The minimum distance of an interleaved code can be increased signifi-
cantly by adding check symbols across interleaves. Usually product codes
(cf. 2.3.15) are used for this construction.

Assume that Ci is an (ni, ki, di, q)-code, for i = 1, 2. Without loss of gener-
ality, we assume that the codes are systematically encoded, so that the first ki

symbols in each codeword form an information set. Then the product C1 ⊗ C2

is an (n1n2, k1k2, d1d2, q)-code. Its elements are represented as n1 × n2-matrices
over Fq. First write down k1 rows containing codewords of C2. Then consider
each of the n2 columns as an information set of a codeword of C1. For each
column compute the remaining n1 − k1 check symbols and attach them at the

5.3 Burst Errors and Interleaving of Codes 407

bottom of the column. Finally, we obtain a matrix of the form

k1 × k2 information symbols k1 × (n2 − k2) checks on rows

(n1 − k1)× k2 checks on columns (n1 − k1) × (n2 − k2) checks on
rows and columns

5.3.13

containing k1k2 information symbols in the upper left corner. The code C1 is
also called the column code or outer code, whereas C2 is the row code or inner
code. As a matter of fact, all the rows of this matrix, i.e. also the last n1 − k1

rows, are codewords of C2 (cf. Exercise 5.3.3). For the encoding process it
is not important whether first rows and then columns, or first columns and
then rows of the matrix 5.3.13 are determined. Usually the components of this
matrix are finally read in columns. Thus from the matrix⎛⎜⎜⎜⎝

c00 c01 . . . c0,n2−1

c10 c11 . . . c1,n2−1
...

...
. . .

...
cn1−1,0 cn1−1,1 . . . cn1−1,n2−1

⎞⎟⎟⎟⎠
we obtain the vector

(c00, c10, . . . , cn1−1,0, c01, c11, . . . , cn1−1,1, . . . , c0,n2−1, c1,n2−1, . . . , cn1−1,n2−1).

There are various methods for decoding product codes. The conventional de-
coding is done in two steps, which are called inner and outer decoding. The in-
ner decoding, also known as row decoding, is used both for error correction of
short errors and for error detection. If errors were detected and not corrected
in a row, then all the symbols of this row are marked as erasures. The outer de-
coder, also known as column decoder, is provided with information on erasures
by the inner decoder, whence its main task is the correction of these erasures.
Moreover, it is possible to use it for further error correction as well. If the outer
decoder cannot correct the erasures, then in applications like compact discs an
error concealment must be applied.

5.3.14Example Consider the product code C1 ⊗ C2 constructed from an extended
binary Hamming-code C1 with systematic generator matrix

Γ1 =

⎛⎜⎜⎝
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞⎟⎟⎠ ,

408 5. Mathematics and Audio Compact Discs

a binary cyclic code C2 with generator polynomial

g2(x) = (1 + x)(1 + x + x3) = 1 + x2 + x3 + x4

and systematic generator matrix

Γ2 =

⎛⎝ 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎠ .

We already know that d1 = d2 = 4, whence C1 ⊗ C2 is a binary (56, 12, 16)-
code. Since the generator polynomial g2 is of degree 4, the code C2 detects all
bursts of length ≤ 4 and, moreover, it detects bursts of length greater than 4
with probability at least 7/8. For encoding the information

111 101 010 011

we insert it in form of rows into the array

M0 =

⎛⎜⎜⎝
1 1 1
1 0 1
0 1 0
0 1 1

⎞⎟⎟⎠ .

Then, by using the systematic generator matrix Γ2, we compute the four code-
words of C2 whose first three components are given by the rows of M0, obtain-
ing the rows of

M1 =

⎛⎜⎜⎝
1 1 1 0 0 1 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 1 1 1 0 0 1

⎞⎟⎟⎠ .

Finally, by using Γ1, we compute the seven codewords of C1 (written as col-
umns) whose first four components are given by the columns of M1. This way
we obtain

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 1 1 1 0 0 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Reading M2 column by column yields the vector

11001100 10110100 11010010 01111000 01100110 10101010 00011110.

5.3 Burst Errors and Interleaving of Codes 409

After transmission we obtain the following vector

01011000 00100000 01010010 01111000 01100110 10101010 10011110.

For better readability the transmission errors are underlined. In this vector we
can find a burst of length 17 in position 0 with pattern 10010100100101001 and
a random error in position 48. Rewriting this vector as a matrix we obtain

M′
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
1 0 1 1 0 0 1
1 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the present example we use C2 just for error detection. The first row of M′
2

contains a burst of length 4 which will be detected by C2, whence all entries
of this row are marked as erasures. Also the errors in the two other rows are
detected by C2, and the elements in these rows are also marked as erasures.
This way we obtain the matrix

M′′
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0 0
0 1 0 1 1 1 0

1 0 0 1 0 1 1

0 0 1 0 1 1 1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since d1 = 4, it is possible to correct three erasures in each codeword of C1,
whence each column of M′′

2 can be corrected. Consequently we are able to
reconstruct the originally sent vector.

Just using interleaving of one code it would be impossible to correct these
errors. However, if the errors were distributed so that a fourth row of M′

2
would be infected, then our decoding strategy would fail. For this reason, usu-
ally the code C2 is also used for correction of short errors. Moreover, further
interleaving of codewords of the product code C1 ⊗ C2 protects better against
burst errors. �

A similar example can be found in [104, 3.5.3 Beispiel].

410 5. Mathematics and Audio Compact Discs

5.3.15 Example For error correction in a DVD a product code of two Reed–Solomon-
codes over F28 is used. The column code C1 is a (208, 192, 17)-code with gen-
erator polynomial

g1(x) =
15

∏
i=0

(x + ξ i),

where ξ is a root of the primitive polynomial x8 + x4 + x3 + x2 + 1 ∈ F2[x].
The row code C2 is a (182, 172, 11)-code with generator polynomial

g2(x) =
9

∏
i=0

(x + ξ i).

For further details see [49]. �

The error- and burst-correcting properties of product codes are described in

5.3.16 Theorem [134, pages 275ff] Assume that Ci is a linear code of length ni with mini-
mum distance di which can correct all bursts of length at most �i, for i = 1, 2. Then:

1. The product code C1 ⊗ C2 is capable of correcting

t :=
⌊

d1d2 − 1
2

⌋
random errors.

2. There exist decoding methods such that C1 ⊗ C2 corrects all bursts of length up to
max {n1�2, n2�1}.

3. There exists a decoding algorithm for the product code C1 ⊗ C2 which allows the
correction of all random errors of weight at most t and of all burst errors of length
at most max {n1t2, n2t1} with ti :=
(di − 1)/2�.

Proof: 1. The first assertion is trivial since the minimum distance of C1 ⊗ C2

is d = d1d2.

2. Assume that the elements of a codearray are transmitted in columns. If
during the transmission a burst error of length at most n1�2 has occurred, after
rearranging the received data in an n1 × n2-array, the elements of the burst
error lie in at most �2 + 1 columns. Each row of the array is affected with
a burst of length not greater than �2. Thus, these bursts can be corrected by
C2, whence C1 ⊗ C2 corrects all bursts of length up to n1�2. If n2�1 > n1�2,
then assume that the elements of a codearray are transmitted in rows. Similar
arguments prove that under these assumptions C1 ⊗C2 is capable of correcting
all bursts of length at most n2�1.

3. Without loss of generality, we assume that n1t2 ≥ n2t1 and set � := n1t2.
If the received vector y contains a random error of weight at most t we apply

5.3 Burst Errors and Interleaving of Codes 411

the decoding method of 1. Otherwise, we suppose that y contains a burst error
e of length not greater than � which is not a random error of weight at most
t. Rearranging the elements of y as an n1 × n2-array, the burst error affects at
most t2 + 1 columns, where each row of this array contains at most t2 errors.
Consequently, these errors can be corrected by C2. Finally, we want to show
that the syndromes of errors can be used in order to determine which decod-
ing strategy should be applied. For doing this, we prove that the syndrome of
e, a burst of length � which is not a random error of weight at most t, is dif-
ferent from the syndromes of all correctable random errors. Supposing, on the
contrary, that the syndrome of e coincides with the syndrome of a correctable
random error e′, then the difference e − e′ is a codeword of C1 ⊗ C2. By as-
sumption, e− e′ �= 0. Hence, each nonzero row of e− e′ is of weight at least d2.
Thus, it consists of at least d2 − t2 nonzero entries of e′ and at most t2 nonzero
components of e. Since there are at most t random errors in e′, there exist at
most
t/(d2 − t2)� rows of e′ containing at least d2 − t2 nonzero entries. Thus,

wt(e− e′) ≤
⌊

t
d2 − t2

⌋
t2 + t ≤ tt2

d2 − t2
+ t = t

(
t2

d2 − t2
+ 1

)
= t

d2

d2 − t2
< 2t,

since
d2

d2 − t2
=

d2

d2 −
(d2 − 1)/2� ≤ 2d2

2d2 − d2 + 1
< 2.

Consequently, e − e′ is a nonzero codeword of C1 ⊗ C2 of weight less than
2t < d, which is a contradiction. �

As already mentioned, there exist many other decoding methods for prod-
uct codes. For instance, first determine all the rows and columns where er-
rors have occurred, and flag all those entries lying both in infected rows and
columns. Then use the conventional decoding strategy. But instead of erasing
complete rows, just the flagged symbols in these rows will be erased.

The decoding process can be iterated. After having decoded rows and
columns, start the decoding process once again. This method is especially
useful for decoders with soft input and output. The word “soft” indicates that
each data symbol is attached with a measure, usually an element of the real
interval [0, 1], indicating its reliability. See the vast literature on concatenated
codes, e.g. [56], and on Turbo codes, e.g. [9], [12], and many others.

The effectiveness of the decoding method quite often depends on the situ-
ation where it is applied:

5.3.17Example Consider the product code of two Hamming-codes. Its minimum
distance is 3 · 3 = 9, whence it is possible to correct up to 4 errors. We will
compare three different decoding methods in two different situations:
Method 1: First correct all correctable rows with the row code, and then correct
all correctable columns with the column code.

412 5. Mathematics and Audio Compact Discs

Method 2: Use the row code for error detection and mark all infected rows as
erasures. With the column code try to decode errors and erasures.
Situation 1: Assume that four errors are located in the positions

(i1, j1), (i1, j2), (i2, j1), (i2, j2)

of the codearray with i1 �= i2, j1 �= j2. Method 1 introduces in the rows in-
dexed with i1 and i2 and also in the columns indexed with j1 and j2 a third
error, whence the error cannot be corrected. Method 2 allows one to realize
that errors have occurred in the rows i1 and i2, whence these rows are erased.
Since there are exactly two erasures in each column, the erased symbols can be
computed, and the errors are corrected.
Situation 2: Now assume that the four errors have occurred in four different
rows and columns, thus there are exactly four rows and four columns contain-
ing one error. Method 1 corrects the errors in the four erroneous rows, whence
there are no errors left for the column decoding. Thus, all the errors were cor-
rected. Method 2 allows one to realize that errors have occurred in four rows.
The symbols in each of these rows are erased. Since there are four erased sym-
bols in each column, the column decoder cannot correct these errors.
The errors in both situations can be corrected by using
Method 3: Correct each row using a decoder for the row code. For each row i,
remember νi, the number of symbols corrected. Larger values of νi correspond
to rows which are more likely to have been miscorrected. Uncorrectable rows
are tagged with νi = ∞ and all symbols in these rows are immediately erased.
Then correct the columns using an errors-and-erasures correction method. For
j ∈ n2 attempt to decode column j. If decoding fails because the column is
not correctable, or if decoding succeeds but changes a symbol in an unerased
row, some of the row decodings were incorrect. In this case, erase the two
least reliable unerased rows (rows with the largest values of νi), and repeat the
decoding for this column. �

There are many other ways of interleaving codewords. The construction
of the direct product C1 ⊗ C2 can also be described as follows: First interleave
k1 codewords of C2. Then divide the interleaved vector into n2 rows each
of length k1, extend each of these rows to a codeword of C1 and append the
additional symbols at the end of each column. In general, any combination
of interleaving methods and encoding with respect to two (or more) codes is
called cross interleaving.

Now we describe the interleaving applied for the error protection in com-
pact discs. The method is called cross interleaved Reed–Solomon-codes, for short
CIRC. It is a combination of three interleaving processes and encoding with
respect to two Reed–Solomon-codes. CIRC involves another form of inter-
leaving, namely, interleaving with delay d ≥ 1, which is described below:

5.3 Burst Errors and Interleaving of Codes 413

Ordinary n-fold interleaving of a code of length n yields blocks consist-
ing of exactly n interleaved codewords, thus each block contains n2 symbols.
Moreover, each codeword is part of exactly one block. Interleaving with de-
lay d ≥ 1 is another method for interleaving a finite sequence of codewords
(c(r))0≤r≤N with c(r) = (crn, crn+1, . . . , crn+(n−1)). As we will immediately see
using interleaving with delay d ≥ 1, a single codeword does not belong to a
single block, as it is the case with product codes. Each block contains exactly n
symbols which belong to n codewords. Each codeword in this sequence starts
a new block and completes another block. With this method each codeword
c(r) is spread over n different blocks.

Interleaving with delay d means that the codewords c(r) are inserted as
certain diagonals of an array of n rows. For i ∈ n put ci, the i-th component of
c(0), into the i-th row and the di-th column of this array. If the codeword c(r) is
already inserted, then the components of c(r+1) are placed exactly one column
to the right from the corresponding components of c(r). For instance, for d = 1
we obtain an array of the form:

c0 cn . . . c(n−2)n c(n−1)n cnn c(n+1)n . . .
c1 cn+1 . . . c(n−3)n+1 c(n−2)n+1 c(n−1)n+1 cnn+1 . . .

c2
. . .
. . .

cn−2 cn+n−2 c2n+n−2 c3n+n−2 . . .
cn−1 cn+n−1 c2n+n−1 . . .

Of course blank fields at the beginning and at the end of this array must be
filled with zeros. Finally, the interleaves are read as columns of the form⎛⎜⎜⎜⎜⎜⎜⎝

crn

c(r−1)n+1
...

c(r−(n−2))n+n−2
c(r−(n−1))n+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

In the general case for d ≥ 1, interleaving with delay d yields blocks of the form⎛⎜⎜⎜⎜⎜⎜⎝
crn

c(r−d)n+1
...

c(r−(n−2)d)n+n−2
c(r−(n−1)d)n+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ . 5.3.18

For i ∈ n the i-th component of the word c(r) stands in the r + id-th column.
Thus, the components of a single codeword occur in n blocks distributed over

414 5. Mathematics and Audio Compact Discs

(n − 1)d + 1 blocks. To be more precise, the components occur in the blocks⎛⎜⎜⎜⎜⎜⎜⎝
crn

c(r−d)n+1
...

c(r−(n−2)d)n+n−2
c(r−(n−1)d)n+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
c(r+d)n
crn+1

...
c(r−(n−3)d)n+n−2
c(r−(n−2)d)n+n−1

⎞⎟⎟⎟⎟⎟⎠ , . . . ,

⎛⎜⎜⎜⎜⎜⎜⎝
c(r+(n−1)d)n

c(r+(n−2)d)n+1
...

c(r+d)n+n−2
crn+n−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

By increasing d, symbols of a single codeword are spread over longer se-
quences of interleaved symbols, whence they are better protected against burst
errors. On the other hand, deinterleaving becomes more difficult and time con-
suming, since more symbols must be read and kept in the memory before they
can be collected to the original codewords of C.
Finally, at the end of this section we analyze certain relations between product
codes and cyclic codes. These considerations are not necessary for understand-
ing the encoding of compact discs, but they are interesting for their own sake.
The reason is that the product of two cyclic codes is a cyclic code again, if the
lengths of the codes are relatively prime. (See also [139, Ch. 18 §2].)

5.3.19 Lemma Let A be an arbitrary alphabet and let n1, n2 be positive integers. By An1×n2

we denote the set of all n1 × n2 matrices over A. If Gi is a subgroup of the symmetric
group Sni for i = 1, 2, then the mapping

(G1 × G2)× An1×n2 → An1×n2 :
(
(σ, π), (aij)

)
�→

(
aσ−1(i),π−1(j)

)
defines an action of the direct product G1 × G2 on An1×n2 . �

The proof of this lemma is left as an exercise for the reader.
Consider the alphabet A = Fq, Ci a cyclic code of length ni over Fq and

Gi the cyclic group generated by the cycle (0, 1, . . . , ni − 1) ∈ Sni for i = 1, 2.
Then for each (σ, π) ∈ G1 × G2 we have

(cij) ∈ C1 ⊗ C2 ⇐⇒ (cσ−1(i),π−1(j)) ∈ C1 ⊗ C2.

In other words, G1 × G2 is contained in the automorphism group of C1 ⊗ C2.
Moreover, if n1 and n2 are relatively prime, then the direct product G1 × G2 is
a cyclic group of order n1n2.

Now we represent a codeword c = (cij) ∈ C1 ⊗ C2 as

c(x, y) = ∑
i∈n1

∑
j∈n2

cijx
iyj + I(xn1 − 1, yn2 − 1) ∈ Fq[x, y]/I(xn1 − 1, yn2 − 1).

Then x · c(x, y) and y · c(x, y) describe cyclic shifts of the rows and columns of
c = (cij).

5.3 Burst Errors and Interleaving of Codes 415

Assuming again that n1 and n2 are relatively prime, by the Chinese Re-
mainder Theorem (cf. 3.5.15 and Exercise 3.5.11), we obtain that for each (i, j) ∈
n1 × n2 there exists exactly one φ(i, j) ∈ n1n2 such that

φ(i, j) ≡ i mod n1 and φ(i, j) ≡ j mod n2. 5.3.20

5.3.21Lemma Assume that n1 and n2 are relatively prime positive integers, and consider
a, b ∈ Z such that an1 + bn2 = 1. Then:

1. φ(i, j) ≡ jan1 + ibn2 mod n1n2.

2. There exist integers ã > 0 and b̃ ≤ 0 such that ãn1 + b̃n2 = 1. If n1 > 1 and
ã > 0, then b̃ < 0. Moreover, gcd(a, b) = gcd(ã, b̃) = 1.

3. I(xn − 1, ym − 1) = I(xn − 1) + I(ym − 1) for arbitrary n, m > 0. �

The proof is left to the reader.
We claim that it is possible to rewrite c(x, y) in terms of a single variable z

by replacing xiyj by zφ(i,j).

5.3.22Lemma Assume that n1 and n2 are relatively prime positive integers, and consider
a, b ∈ Z such that an1 + bn2 = 1. Let ϕ : Fq[x, y] → Fq[z]/I(zn1n2 − 1) be the
homomorphism defined by

x �→ ϕ(x) := zbn2 + I(zn1n2 − 1), y �→ ϕ(y) := zan1 + I(zn1n2 − 1).

Then:

1. ϕ(xiyj) = zφ(i,j) + I(zn1n2 − 1) for all (i, j) ∈ n1 × n2.

2. ϕ is surjective, ker ϕ = I(xn1 − 1, yn2 − 1) and

Φ : Fq[x, y]/I(xn1 − 1, yn2 − 1) → Fq[z]/I(zn1n2 − 1)

Φ(f (x, y) + I(xn1 − 1, yn2 − 1)) := ϕ(f (x, y))

is a ring-isomorphism.

Proof: 1. For (i, j) ∈ n1 × n2 we have

ϕ(xiyj) =
(
zibn2 + I(zn1n2 − 1)

) (
zjan1 + I(zn1n2 − 1)

)
= zjan1+ibn2 + I(zn1n2 − 1) = zφ(i,j) + I(zn1n2 − 1).

2. From the definition of ϕ it is obvious that I(xn1 − 1, yn2 − 1) ⊆ ker ϕ. As-
sume, conversely, that f (x, y) ∈ Fq[x, y] belongs to ker ϕ. It can be expressed
as

f (x, y) = ∑
i∈n1

∑
j∈n2

fijx
iyj + f̃ (x, y),

416 5. Mathematics and Audio Compact Discs

where f̃ (x, y) ∈ I(xn1 − 1, yn2 − 1). Since ϕ is a homomorphism, we deduce

0 + I(zn1n2 − 1) = ϕ(f (x, y)) = ∑
i∈n1

∑
j∈n2

fijz
φ(i,j) + I(zn1n2 − 1).

Since φ is a bijection between n1 × n2 and n1n2, all the coefficients fij vanish for
(i, j) ∈ n1 × n2 and, consequently, f (x, y) = f̃ (x, y) ∈ I(zn1n2 − 1). Obviously,
ϕ is surjective, whence Φ is an isomorphism. �

This way we obtain

Φ(c(x, y) + I(xn1 − 1, yn2 − 1)) = ∑
i∈n1

∑
j∈n2

cijz
φ(i,j) + I(zn1n2 − 1),

which allows us to determine c(z) as

c(z) = ∑
i∈n1

∑
j∈n2

cijz
φ(i,j),

as was claimed.
If c ∈ C1 ⊗ C2, then zc(z) + I(zn1n2 − 1) = Φ(xy)Φ(c(x, y)) = Φ(xyc(x, y))

and xyc(x, y) ∈ C1 ⊗ C2, whence C1 ⊗ C2 is an ideal in Fq[z]/I(zn1n2 − 1).
In other words, using an appropriate order of the canonical basis vectors of
C1 ⊗ C2, the product code is cyclic: We associate c′ ⊗ c′′ ∈ C1 ⊗ C2 with the
vector

c := (cφ−1(0), . . . , cφ−1(n1n2−1)),

where cij = c′ic
′′
j for i ∈ n1, j ∈ n2.

This proves the first assertion of

5.3.23 Theorem [34], [135] Assume that Ci is a cyclic linear (ni, ki, di, q)-code with gener-
ator polynomial gi and check polynomial hi for i = 1, 2. Suppose that n1 > 1 and n2

are relatively prime and that a > 0 and b ≤ 0 are integers such that an1 + bn2 = 1.
Then:

1. The product code C1 ⊗ C2 is a cyclic code.

2. The generator polynomial of C1 ⊗ C2 is

g(z) = gcd
(
zn1n2 − 1,

(
z�n1n2 g1(zbn2)

)
g2(zan1)

)
with � = 2(−b).

3. The check polynomial of C1 ⊗ C2 is

h(z) = gcd
(
zmn1n2h1(zbn2), h2(zan1)

)
with m = −b.

4. If ei is the idempotent generator of Ci for i = 1, 2, then Φ(e1e2) is the idempotent
generator of C1 ⊗ C2.

5.3 Burst Errors and Interleaving of Codes 417

Proof: 2. The integer � is chosen so that z�n1n2 f (zbn2) is a polynomial in z for
all polynomials f of degree not greater than 2n1. Assume that c = (cij) belongs
to C1 ⊗C2. Let c(z) be the uniquely determined polynomial of degree less than
n1n2 associated with c. The i-th row of c belongs to C2, whence adding suitable
multiples of yn2 − 1 we obtain a polynomial

ζ i(y) ≡ ∑
j∈n2

cijy
j mod I(yn2 − 1), i ∈ n1,

such that the generator polynomial g2(y) is a divisor of ζ i(y) in Fq[y]. Simi-
larly, the j-th column of c belongs to C1, whence adding suitable multiples of
xn1 − 1 we obtain a polynomial

σj(x) ≡ ∑
i∈n1

cijx
i mod I(xn1 − 1), j ∈ n2,

such that the generator polynomial g1(x) is a divisor of σj(x) in Fq[x]. It is
always possible to find polynomials σj of degree less than 2n1. Consequently,
after multiplying with z�n1n2 we obtain

c(z) ≡ ∑
i∈n1

ζ i(zan1)zibn2+�n1n2 ≡ ∑
j∈n2

σj(zbn2)zjan1+�n1n2 mod I(zn1n2 − 1).

Thus, c(z) can be expressed in two ways

c(z) = q(z)(zn1n2 − 1) + ∑
i∈n1

ζ i(zan1)zibn2+�n1n2 ,

c(z) = q̃(z)(zn1n2 − 1) + ∑
j∈n2

σj(zbn2)zjan1+�n1n2 .

For this reason gcd(zn1n2 − 1, g2(zan1)) and gcd(zn1n2 − 1, g1(zbn1)z�n1n2) are
divisors of c(z) for all c ∈ C1 ⊗ C2. Hence,

L(z) := lcm
(
gcd(zn1n2 − 1, g2(zan1)), gcd(zn1n2 − 1, g1(zbn1)z�n1n2)

)
is a divisors of the generator polynomial g(z).

Now assume that c1 = (c(1)
0 , . . . , c(1)

n1−1) and c2 = (c(2)
0 , . . . , c(2)

n2−1) are the
codewords of C1 and C2 corresponding to the generator polynomials g1(x) =
∑i∈n1

c(1)
i xi and g2(y) = ∑i∈n2

c(2)
i yi. Then

(c1 ⊗ c2)(z) ≡ ∑
i∈n1

∑
j∈n2

c(1)
i c(2)

j zjan1+ibn2+�n1n2 mod I(zn1n2 − 1)

≡ z�n1n2 ∑
i∈n1

c(1)
i zibn2 ∑

j∈n2

c(2)
j zjan1 mod I(zn1n2 − 1)

≡ z�n1n2 g1(zbn2)g2(zan1) mod I(zn1n2 − 1).

After adding suitable multiples of zn1n2 − 1 to (c1 ⊗ c2)(z), we deduce that g(z)
is a divisor of (c1 ⊗ c2)(z). Since g(z) is also a divisor of zn1n2 − 1, it follows
that g(z) divides z�n1n2 g1(zbn2)g2(zan1), whence it is a divisor of

G(z) := gcd
(
zn1n2 − 1, z�n1n2 g1(zbn2)g2(zan1)

)
.

418 5. Mathematics and Audio Compact Discs

Summarizing, so far we have deduced that L(z) | g(z) | G(z). Finally, we
want to prove that L(z) = G(z). The polynomials L(z) and G(z) have the
same irreducible factors. If L(z) were a proper divisor of G(z), then there ex-
ists an irreducible factor of zn1n2 − 1 which is both a factor of z�n1n2 g1(zbn2)
and g2(zan1) which occurs in G(z) with a greater multiplicity than in L(z).
Then necessarily n1n2 = psn, where p is the characteristics of Fq, s > 0, and
gcd(n, p) = 1. Thus zn1n2 − 1 = (zn − 1)ps

. Since n1 and n2 are relatively
prime, either p is a divisor of n1 or of n2. If p | n1, then n1 = psn′

1 and
g2(zan1) =

(
g2(zan′1)

)ps
. Hence, each common factor of zn1n2 − 1 and g2(zan1)

occurs with the multiplicity ps both in L and G. If p | n2, then n2 = psn′
2 and

z�n1n2 g1(zbn2) =
(
z�n1n′2 g1(zbn′2)

)ps
. Hence, each common factor of zn1n2 − 1

and z�n1n2 g1(zbn2) occurs with the multiplicity ps both in L and G. This proves
the second assertion.

3. From the representation of the generator polynomial g in 2. and Bézout’s
Identity (cf. Exercise 3.1.6), we derive that

g(z) = f1(z)(zn1n2 − 1) + f2(z)z�n1n2 g1(zbn2)g2(zan1)

for some f1, f2 ∈ Fq[z]. We want to prove that h(z) is a divisor of zmn1n2h1(zbn2)
and of h2(zan1). Since g(z)h(z) = zn1n2 − 1, it is enough to show that zn1n2 − 1
is a divisor of g(z)zmn1n2h1(zbn2) and of g(z)h2(zan1). The first assertion is
proved by

g(z)zmn1n2h1(zbn2) =

f1(z)(zn1n2 − 1)zmn1n2h1(zbn2) + f2(z)z�n1n2 g1(zbn2)g2(zan1)zmn1n2h1(zbn2) =

f1(z)(zn1n2 − 1)zmn1n2h1(zbn2) + f2(z)g2(zan1)z(�+m+b)n1n2(1− z−bn1n2)

what follows from 4.2.3. Indeed, zn1n2 − 1 is a factor of the first and of the
second summand, since b < 0. Similarly, we prove that zn1n2 − 1 is a divisor of
g(z)h2(zan1).

Thus, h(z) is a divisor of H(z) := gcd
(
zmn1n2h1(zbn2), h2(zan1)

)
. Now we

prove that H(z) is a divisor of zn1n2 − 1. If ξ is a root of H in a suitable extension
field, then ξ �= 0, since h2(0) �= 0. Consequently h1(ξbn2) = 0 = h2(ξan1). This
implies that ξbn2 is a root of zn1 − 1, and ξan1 is a root if zn2 − 1. Consequently
ξbn1n2 = 1 = ξan1n2 . In other words, (ξn1n2)a = 1 = (ξn1n2)b, from which we
finally obtain that 1 = (ξn1n2)(n1a+n2b) = ξn1n2 . Hence, ξ is a root of zn1n2 − 1.
It is easy to prove that h2(zan1) divides zan1n2 − 1 and zmn1n2h1(zbn2) divides
z−bn1n2 − 1. If ξ is a root of H(z), then the minimal polynomial Mξ of ξ over
Fq is an irreducible factor of zn1n2 − 1, of zan1n2 − 1 and of z−bn1n2 − 1. Since
a and b are relatively prime, the multiplicity of Mξ in H(z) is not greater than
the multiplicity of Mξ in zn1n2 − 1. Therefore, H(z) is a divisor of zn1n2 − 1.
The decomposition of zn1n2 − 1 into linear factors is completely described in

5.3 Burst Errors and Interleaving of Codes 419

Exercise 5.3.6. Each root of H can be expressed as the product αβ of roots of 1
of order n1 and n2.

The common roots of zmn1n2h1(zbn2) and zn1n2 − 1 are of the form αβ where
α is a root of h1 and βn2 = 1. Similarly, the common roots of h2(zan2) and
zn1n2 − 1 are of the form αβ where β is a root of h2 and αn1 = 1.

Assume that p � n1n2. Then there exist exactly k1 distinct roots α of h1 and
k2 distinct roots β of h2. Moreover, αβ is a root of H if and only if α is a root
of h1 and β is a root of h2. Hence, each pair (α, β) of these roots determines
uniquely a root αβ of H. Consequently deg H = k1k2 and, therefore, H = h,
since h is the check polynomial of a code of dimension k1k2.

Assume that p | n2. Then gcd(an1, p) = 1. From Exercise 5.3.7 we deduce:
If β is a root of h2 of multiplicity r and αn1 = 1, then αβ is a root of h2(zan1) of
the same multiplicity r. Consequently, αβ is a root of H if and only if α is a root
of h1 and β is a root of h2. Moreover, the multiplicity of αβ as a root of H is at
most the multiplicity of β as a root of h2. Hence, deg H ≤ k1k2 and, therefore,
H = h.

Finally, assume that p | n1. Then gcd(bn2, p) = 1. For ξ �= 0 it is easy to
prove that ξ is a root of zmn1n2h1(zbn2) of multiplicity r if and only if ξ−1 is a
root of h1(z−bn2) of multiplicity r. Similar arguments as above show that also
in this case H = h.

4. In order to prove the last assertion we derive

Φ
(
e1(x)e2(y)

)2 = Φ
(
e1(x)2e2(y)2) = Φ

(
e1(x)e2(y)

)
,

whence Φ
(
e1(x)e2(y)

)
is an idempotent element of Fq[z]/I(zn1n2 − 1). As-

sume that f (z) ∈ Fq[x]/I(zn1n2 − 1). Then there exists a unique f̃ (x, y) ∈
Fq[x, y]/I(xn1 − 1, yn2 − 1) such that f (z) = Φ

(
f̃ (x, y)

)
. Since n1 and n2 are rel-

atively prime there exist f1(x) ∈ Fq[x]/I(xn1 − 1) and f2(y) ∈ Fq[y]/I(yn2 − 1)
such that f̃ (x, y) = f1(x) f2(y). Since ei is a generator of Ci, for i = 1, 2, there
are r(x) ∈ Fq[x]/I(xn1 − 1) and s(y) ∈ Fq[y]/I(yn2 − 1) such that f1(x) =
e1(x)r(x) and f2(y) = e2(y)s(y). Consequently,

f (z) = Φ
(
f̃ (x, y)

)
= Φ

(
f1(x) f2(y)

)
= Φ

(
e1(x)r(x)e2(y)s(y)

)
= Φ

(
e1(x)e2(y)

)
Φ
(
r(x)s(y)

)
,

which finishes the proof. �

5.3.24Example [139, Ch. 18 §2] Let C1 be the cyclic binary (3, 2, 2)-code with gen-
erator polynomial g1(x) = x + 1, check polynomial h1(x) = x2 + x + 1, and
idempotent generator e1(x) = x2 + x. And let C2 be the cyclic binary (5, 4, 2)-
code with generator polynomial g2(y) = y + 1, check polynomial h2(y) =
y4 + y3 + y2 + y + 1, and idempotent generator e2(y) = y4 + y3 + y2 + y.

420 5. Mathematics and Audio Compact Discs

Since 3 and 5 are relatively prime, C1 ⊗ C2 is a cyclic (15, 8, 4)-code. With
a = 2 and b = −1 we get � = 2, m = 1, and the generator polynomial

g(z) = gcd
(
z15 − 1, z30g1(z−5)g2(z6)

)
= z7 + z6 + z5 + z2 + z + 1.

Moreover, the check polynomial of C1 ⊗ C2 is

h(z) = gcd
(
z15h1(z−5), h2(z6)

)
= z8 + z7 + z5 + z4 + z3 + z.

Of course h(z) = (z15 + 1)/g(z). Finally, the idempotent generator can be
determined by

e(z) = Φ(e1(x)e2(y)) = Φ(x2y4 + xy4 + x2y3 + xy3 + x2y2 + xy2 + x2y + xy)

= z + z2 + z4 + z7 + z8 + z11 + z13 + z14. �

However, not all cyclic codes are products of cyclic codes (cf. [139, Ch. 18 §3]).
Let C be a minimal binary cyclic (n, k)-code with n = n1n2, gcd(n1n2, 2) = 1,
gcd(n1, n2) = 1, and n1 > 1, n2 > 1. Since C is minimal, its check polynomial
h is irreducible, and its roots are of the form ξ, ξ2, . . . , ξ2k−1

, where ξ is an n-th
root of 1 in F2k . Moreover, we assume that h is a primitive polynomial, whence
ξ is a primitive element of F∗

2k .
Since gcd(n1, n2) = 1, there exist integers a, b such that an1 + bn2 = 1. De-

fine α := ξbn2 , β := ξan1 , and let k1, k2 be the least integers for which α ∈ F2k1

and β ∈ F2k2 . Clearly k1 and k2 are divisors of k. In fact, k = lcm(k1, k2). Based
on these assumptions we can prove the next

5.3.25 Theorem [139, Ch. 18 §3] Let C be a minimal binary cyclic (n, k)-code with n =
n1n2, gcd(n1n2, 2) = 1, gcd(n1, n2) = 1, and n1 > 1, n2 > 1. There exist binary
cyclic (ni, ki)-codes Ci such that C = C1 ⊗ C2 if and only if gcd(k1, k2) = 1.

Proof: Since Φ is a ring isomorphism, we obtain from c ∈ C an n1 × n2-array
(fij) by

Φ−1(c(z)) = ∑
i∈n1

∑
j∈n2

fijx
iyj + I(xn1 − 1, yn2 − 1) = f (x, y) + I(xn1 − 1, yn2 − 1).

Moreover, Φ−1(zan1 + I(zn1n2 − 1)) = y + I(xn1 − 1, yn2 − 1) and analogously
Φ−1(zbn2 + I(zn1n2 − 1)) = x + I(xn1 − 1, yn2 − 1). Since C is cyclic, zan1c(z) ∈ C
for all c ∈ C, whence y f (x, y) + I(xn1 − 1, yn2 − 1) = Φ−1(zan1c(z)

)
∈ Φ−1(C),

and similarly x f (x, y) + I(xn1 − 1, yn2 − 1) ∈ Φ−1(C). Therefore, the two sets

C1 :=

{
(f0j, . . . , fn1−1,j)

∣∣∣∣ j ∈ n2, ∑
i∈n1

∑
j∈n2

fijx
iyj + I ∈ Φ−1(C)

}

5.3 Burst Errors and Interleaving of Codes 421

and

C2 :=

{
(fi0, . . . , fi,n2−1)

∣∣∣∣ i ∈ n1, ∑
i∈n1

∑
j∈n2

fijx
iyj + I ∈ Φ−1(C)

}

are cyclic codes of length n1 and n2, where I = I(xn1 − 1, yn2 − 1).
For α and β as above, we have αn1 = βn2 = 1 and ξ = αβ. Hence, the roots

of h are
αβ, (αβ)2, (αβ)4, . . . , (αβ)2k−1

.

We still have to determine the dimensions of these codes. Our claim is
that dim(Ci) = ki for i = 1, 2, where k1, k2 are the least integers for which
α ∈ F2k1 and β ∈ F2k2 . We prove that α, α2, . . . , α2k1−1

are k1 zeros of the check
polynomial h1 of C1 and β, β2, . . . , β2k2−1

are k2 zeros of the check polynomial h2

of C2. Let β0 ∈ F2k2−1 be an n2-th root of 1 not belonging to {β, β2, . . . , β2k2−1},
and let α0 be any n1-th root of 1. Then α0β0 is a root of g(z), since g(z) =
(zn + 1)/h(z). Let f (x, y) = r0(y) + r1(y)x + . . . + rn1−1(y)xn1−1 correspond
to a nonzero codeword of C, where ri are codewords of C2. Then

f (α0, β0) = ∑
i∈n1

ri(β0)αi
0 = 0.

This holds true for any root α0 satisfying α
n1
0 = 1. Since there exist n1 different

α0, the values ri(β0), i ∈ n1, satisfy a system of n1 linear homogeneous equa-
tions. The coefficient matrix is a Vandermonde matrix, thus it is regular and
ri(β0) = 0 for i ∈ n1. Therefore, β0 is a root of each codeword of C2, whence it
is a root of the generator polynomial g2, and consequently not a root of h2.

Since g(α2j
β2j) �= 0 for j ∈ k2, there exist codewords ri ∈ C2 such that

ri(β2j) �= 0. Whence, the roots of h2 are exactly given by β2j
for j ∈ k2. Simi-

larly, the roots of h1 can be determined.
In conclusion we obtain: If gcd(k1, k2) = 1, then k = lcm(k1, k2) = k1k2

and C = C1 ⊗ C2. Conversely, if C = C1 ⊗ C2, then k = lcm(k1, k2) = k1k2,
whence gcd(k1, k2) = 1. �

5.3.26Examples [139, Ch. 18 §3]

1. Let C be the cyclic binary (15, 4, 8)-code with generator polynomial g(z) =
z11 + z8 + z7 + z5 + z3 + z2 + z + 1 and idempotent generator e(z) = zg(z).
Let n1 = 3 and n2 = 5. The check polynomial of C is irreducible of de-
gree 4 and its roots are of the form ξ, ξ2, ξ4, ξ8 with ξ15 = 1. Then a = 2,
b = −1, α = ξ−5 = ξ10, β = ξ6, α4 = α, β16 = β, k1 = 2, and k2 = 4.
Since gcd(2, 4) �= 1, the product C1 ⊗ C2 is different from C. Indeed C1 is a
(3, 2, 2)-code and C2 is a (5, 4, 2)-code.

422 5. Mathematics and Audio Compact Discs

2. Let C be the (21, 6, 8)-product code of Exercise 5.3.8 where ξ, ξ2, ξ4, ξ8, ξ16,
ξ32 = ξ11 are the roots of its check polynomial, with ξ21 = 1. Then n1 = 3,
n2 = 7, a = 5, b = −2, α = ξ−14 = ξ7, β = ξ15, k1 = 2, k2 = 3, and C is the
product code of C1 and C2 as given in Exercise 5.3.8. �

Exercises

E.5.3.1 Exercise Prove 5.3.9.

E.5.3.2 Exercise Prove 5.3.11.

E.5.3.3 Exercise Prove that all the rows of a matrix representing an element of the
product code C1 ⊗ C2 are elements of C2.

E.5.3.4 Exercise Prove 5.3.19.

E.5.3.5 Exercise Assume that n1 and n2 are relatively prime positive integers, σ and
π are given as in 5.3.19 and φ satisfies 5.3.20. Show that

φ
(
σ(i), π(j)

)
≡ φ(i, j) + 1 mod n1n2.

E.5.3.6 Exercise Let p be a prime and assume that n1 and n2 are relatively prime
positive integers. Prove the following assertions.

1. If gcd(p, n1n2) = 1, then

zn1n2 − 1 = ∏
i∈n1

∏
j∈n2

(z − αiβj),

where α and β are primitive roots of 1 of order n1 and n2, respectively.
2. If p | n1n2 assume without loss of generality that p is a divisor of n1, and

n1 = n′
1ps with s > 0 and gcd(n′

1, p) = 1. Then

zn1n2 − 1 =
(

∏
i∈n′1

∏
j∈n2

(z − αiβj)
)ps

,

where α and β are primitive roots of 1 of order n′
1 and n2, respectively.

E.5.3.7 Exercise Let h ∈ Fq[x] be a divisor of xm − 1 and n ∈ N with gcd(n, m) = 1
and gcd(n, p) = 1, where p is the characteristic of Fq. Prove that all the roots
of h(xn) are of the form αβ, where α is a root of h and βn = 1. If, moreover, α

occurs with the multiplicity r in h, then each αβ occurs as a root of h(xn) with
the same multiplicity r.

5.4 More Details on Compact Discs 423

E.5.3.8Exercise [139, Ch. 18 §2] Let C1 be the cyclic (3, 2, 2, 2)-code of 5.3.24 and let
C2 be the cyclic (7, 3, 4, 2)-code S3 of 4.2.7. Compute the parameters, generator
and check polynomial and the idempotent generator of C1 ⊗ C2.

5.45.4 More Details on Compact Discs

We already know that an audio compact disc contains 16-bit audio which is
sampled at a rate of 44 100 Hz. Each sampling is divided into two 8-bit vec-
tors, and each of these vectors is considered as one byte and also as an ele-
ment of F28 . Thus, each sampling process yields 2 bytes of audio informa-
tion. Since both the left and the right channel are sampled separately, each
sampling produces two bytes of audio information for the left and two bytes
of audio information for the right channel. Hence, every second we collect
2 · 2 · 44 100 = 176 400 bytes of audio information. This gives 10 584 000 bytes
per minute and 635 040 000 bytes or 5 080 320 000 bits per hour. As we will
see the total capacity required for storing this information on a compact disc
is approximately three times as big. If not otherwise specified we excerpt or
“quote” from the third chapter of [164]. “Storing audio information places
great demands on a digital medium. [. . .] Error correction, synchronization
and modulation are required for successful storage.” “The compact disc was
developed in order to meet” different user demands as “random access, small
size, convenience to use, robustness, low cost, and ease of replication.” The
specifications for the compact disc system “were jointly developed by Philips
and Sony and are defined in [. . .] the Red Book.” (The Red Book is the 1980 doc-
ument which provides the specifications for the standard compact disc (CD)
developed by Sony and Philips. According to legend, the document was in a
binder with red covers, originating the tradition for subsequent adaptations of
CD specifications to be referred to as variously colored books. The Red Book de-
scribes the compact discs physical specifications, such as the tracks, sector and
block layout, coding, and sampling. Sony and Philips referred to the discs as
CD-DA (digital audio), defined as a content medium for audio data digitized
at 44 100 samples per second and in a range of 65 536 possible values cf. [166]).
“It is also contained in the IEC standard Compact Disc Digital Audio [95].” A
compact disc allows us to store at least 74 minutes of stereo high fidelity au-
dio. The disc must be made of transparent material with a refraction index of
1.55. “The optical system that reads the data from the disc uses a laser beam
with a 780 nanometer wavelength.” All the information of a compact disc is
stored in the area between radius 23mm and 58.5mm. A lead-in and lead-out
area cover the innermost and outermost part of this area. They do not con-

424 5. Mathematics and Audio Compact Discs

tain any audio information. The audio data is stored between radius 25mm
and 58mm. In general, the information of a compact disc is stored in a track
in form of “a continuous spiral running from the inner circumference to the
outer.” “Viewed from the readout surface the disc rotates counter-clockwise.”
The distance between successive tracks is 1.6 micrometers. “There are 22 188
revolutions across the discs surface.” The rotational speed of a compact disc
varies on the position of the pickup. “The disc rotates at a speed of 500 ro-
tations per minute when the pickup is reading the inner circumference, and
as the pickup moves out, the rotational speed decreases to 200 rotations per
minute. Thus, a constant linear velocity, CLV, is maintained.” Depending on
the disc, this velocity can vary between 1.2 and 1.4 meters per second. The
CD-player automatically regulates the disc rotational speed to maintain a con-
stant bit rate of 4.3218Mb/sec (cf. 5.4.9). That kind of track is also called a CLV
servo system; i.e. the player constantly reads synchronization words from the
data and adjusts the speed accordingly. Audio data is stored in a frame format
on the disc. Among other information, each frame contains exactly 24 audio
bytes. Consequently, there are exactly 7350 frames per second. Further details
about frames will be presented later (cf. 5.4.9). First we analyze the error de-
tection and correction process used for compact discs. The analog to digital
converter produces sequences of audio data in PCM format. This way we ob-
tain finite sequences (Li,A)0≤i≤N, (Li,B)0≤i≤N, (Ri,A)0≤i≤N, and (Ri,B)0≤i≤N of
bytes representing the first (A) or the second (B) byte of the left (L) or right (R)
channel at the i-th sampling for 0 ≤ i ≤ N, where N is the number of the last
sampling. With Li or Ri we denote the i-th sampling of the left or right chan-
nel, i.e. the pair (Li,A, Li,B) or (Ri,A, Ri,B), respectively. The analog to digital
converter produces two sequences (Li)0≤i≤N and (Ri)0≤i≤N. Now we want to
describe the CIRC-process in more details. Even though this process is usually
illustrated with diagrams, we try to use common mathematical notation.

5.4.1 CIRC encoding In step A this data is scrambled into a series of vectors contain-
ing 24 bytes. The vectors obtained from the first samplings are the rows of the
following array:

0 0 0 0 0 0 L1 L3 L5 R1 R3 R5

0 0 0 0 0 0 L7 L9 L11 R7 R9 R11

L0 L2 L4 R0 R2 R4 L13 L15 L17 R13 R15 R17

L6 L8 L10 R6 R8 R10 L19 L21 L23 R19 R21 R23

.

In general, for n ≥ 0 the n-th vector is built as

L6(n−2) L6(n−2)+2 L6(n−2)+4 R6(n−2) R6(n−2)+2 R6(n−2)+4
L6n+1 L6n+3 L6n+5 R6n+1 R6n+3 R6n+5.

5.4 More Details on Compact Discs 425

The first half of this vector contains the sampling values of even samples,
the second half of odd samples. Of course, at the very beginning and at the
very end empty fields must be filled with zero bytes. Using a (28, 24) Reed–
Solomon-code C2 over F28 , in step B this vector is encoded into the C2-code-
word

L6(n−2),A L6(n−2),B L6(n−2)+2,A L6(n−2)+2,B
L6(n−2)+4,A L6(n−2)+4,B R6(n−2),A R6(n−2),B
R6(n−2)+2,A R6(n−2)+2,B R6(n−2)+4,A R6(n−2)+4,B

Qn,0 Qn,1 Qn,2 Qn,3

L6n+1,A L6n+1,B L6n+3,A L6n+3,B

L6n+5,A L6n+5,B R6n+1,A R6n+1,B

R6n+3,A R6n+3,B R6n+5,A R6n+5,B,

5.4.2

where the four new symbols (they are usually denoted by the letter Q) are
inserted in the middle of the vector, i.e. between the audio information of
the even and odd samples. (In general, these codewords are just sequences of
28 bytes. To increase the readability they were arranged in form of an array.)
The code C2 is obtained by shortening a (255, 251, 5, 28)-Reed–Solomon-code,
which is a shortened BCH-code and also an MDS-code (cf. Exercise 5.4.1).

In step C these C2-codewords are interleaved with delay d = 4. This yields,
according to 5.3.18, vectors of the form

L6(n−2),A L6(n−2−d),B L6(n−2−2d)+2,A L6(n−2−3d)+2,B
L6(n−2−4d)+4,A L6(n−2−5d)+4,B R6(n−2−6d),A R6(n−2−7d),B
R6(n−2−8d)+2,A R6(n−2−9d)+2,B R6(n−2−10d)+4,A R6(n−2−11d)+4,B

Qn−12d,0 Qn−13d,1 Qn−14d,2 Qn−15d,3
L6(n−16d)+1,A L6(n−17d)+1,B L6(n−18d)+3,A L6(n−19d)+3,B
L6(n−20d)+5,A L6(n−21d)+5,B R6(n−22d)+1,A R6(n−23d)+1,B
R6(n−24d)+3,A R6(n−25d)+3,B R6(n−26d)+5,A R6(n−27d)+5,B.

Another Reed–Solomon-code C1, a (32, 28)-code over F28 , is used in step D to
encode these vectors as C1-codewords. Again we have to attach 4 bytes, this
time they are appended at the end of the vector. In the literature these bytes
are usually indicated with the letter P. We obtain

L6(n−2),A L6(n−2−d),B L6(n−2−2d)+2,A L6(n−2−3d)+2,B
L6(n−2−4d)+4,A L6(n−2−5d)+4,B R6(n−2−6d),A R6(n−2−7d),B
R6(n−2−8d)+2,A R6(n−2−9d)+2,B R6(n−2−10d)+4,A R6(n−2−11d)+4,B

Qn−12d,0 Qn−13d,1 Qn−14d,2 Qn−15d,3
L6(n−16d)+1,A L6(n−17d)+1,B L6(n−18d)+3,A L6(n−19d)+3,B
L6(n−20d)+5,A L6(n−21d)+5,B R6(n−22d)+1,A R6(n−23d)+1,B
R6(n−24d)+3,A R6(n−25d)+3,B R6(n−26d)+5,A R6(n−27d)+5,B

Pn,0 Pn,1 Pn,2 Pn,3.

5.4.3

426 5. Mathematics and Audio Compact Discs

Also this code is obtained by shortening a (255, 251, 5, 28)-Reed–Solomon code.
Finally, in step E all bytes in odd positions, i.e. in position 1, 3 . . . , 31, of

this codeword are combined with the bytes in even positions, i.e. in position
0, 2, . . . , 30, of the preceding C1-codeword, and the 8 bytes representing the
Q- and P-check symbols are inverted, i.e. in the representation of these bytes
as binary vectors the binary values 1 and 0 are exchanged. (This is indicated
by overlining the corresponding P and Q symbols.) There are only technical
reasons for this inversion. It assists data readout during areas with muted
audio program.

In conclusion, we obtain a sequence of vectors

L6(n−3),A L6(n−2−d),B L6(n−3−2d)+2,A L6(n−2−3d)+2,B
L6(n−3−4d)+4,A L6(n−2−5d)+4,B R6(n−3−6d),A R6(n−2−7d),B
R6(n−3−8d)+2,A R6(n−2−9d)+2,B R6(n−3−10d)+4,A R6(n−2−11d)+4,B

Qn−1−12d,0 Qn−13d,1 Qn−1−14d,2 Qn−15d,3
L6(n−1−16d)+1,A L6(n−17d)+1,B L6(n−1−18d)+3,A L6(n−19d)+3,B
L6(n−1−20d)+5,A L6(n−21d)+5,B R6(n−1−22d)+1,A R6(n−23d)+1,B
R6(n−1−24d)+3,A R6(n−25d)+3,B R6(n−1−26d)+5,A R6(n−27d)+5,B

Pn−1,0 Pn,1 Pn−1,2 Pn,3.

This completes the description of the encoding process for error-detection and
error-correction. For technical reasons, the resulting sequence of bytes is en-
coded once again before the data is written onto the disc. This final encod-
ing, called EFM, ensures that the stored information satisfies certain standards
used for binary data written on optical discs. For further details see 5.4.7 and
5.4.9.

Let v be the row vector of 5.4.2. In step B the four parity bytes Qn,0, . . . , Qn,3

are determined by the equation v · ∆�
2 = 0, where the check matrix ∆2 of C2 is

given by

∆2 :=

⎛⎜⎜⎝
1 1 . . . 1 1 1

α27 α26 . . . α2 α 1
α54 α52 . . . α4 α2 1
α81 α78 . . . α6 α3 1

⎞⎟⎟⎠
for α a root of the primitive polynomial x8 + x4 + x3 + x2 + 1 ∈ F28 [x]. Let
w be the row vector of 5.4.3. In step D the four parity bytes Pn,0, . . . , Pn,3 are
determined by the equation w · ∆�

1 = 0, where the check matrix ∆1 of C1 is
given by

∆1 :=

⎛⎜⎜⎝
1 1 . . . 1 1 1

α31 α30 . . . α2 α 1
α62 α60 . . . α4 α2 1
α93 α90 . . . α6 α3 1

⎞⎟⎟⎠
for the same α as above.

5.4 More Details on Compact Discs 427

5.4.4CIRC decoding The standard for compact discs does not explicitly describe a
CIRC decoding strategy. Different CD-players use different strategies, so the
quality of error correcting performance varies from player to player. Here we
describe one possible decoding strategy.

The decoder obtains vectors containing 32 bytes, 24 of them contain audio
information, the other 8 are check symbols added by C1 and C2. Odd num-
bered symbols are delayed by one vector and the parity symbols are inverted
in order to reverse step E of the encoding process. The code C1 has minimum
distance d1 = 5. It is used in order to correct a single error and to detect two or
three errors in a codeword. If it detects exactly one error, then the wrong byte
will be replaced by the corrected one. If it detects more than one error, then
all 28 information symbols of the corresponding C1-codeword are marked as
erasures. Thus, C1 is designed to correct short random errors and to detect
longer burst errors.

How large is the probability that C1 does not detect an error? (Cf. [104].)
Assume that c was sent and c + e was received. The error vector e is not de-
tected if and only if c + e belongs to a ball of radius 1 around a C1-codeword c′

different from c. This probability is

|C1 \ {c}| · |{v ∈ Fn
q | dist(v, c) ≤ 1}|

|Fn
q |

for q = 28 and n = 32. This is

(q28 − 1)(1 + 32(q − 1))
q32 ≤ 32q − 31

q4 ≈ 2−19.

The interleaving of two consecutive C1-codewords in step E allows one to break
short burst errors.

Then, in order to reverse step D and step C, the last four symbols of each
vector output by C1, which are the check symbols, are deleted. Deinterleaving
collects the 28 symbols representing C2-codewords. The code C2 is first of all
used for correcting erasures. Since its minimum distance d2 = 5, according
to 5.2.2, it is possible to correct up to 4 erasures per codeword. If it is not
possible to correct all erasures with C2, then the erased symbols are passed to
an interpolation process.

In addition, C2 can be used to correct a single error and to detect symbols
miscorrected by C1. If miscorrected symbols are found, then all 24 audio sym-
bols of the corresponding C2-codeword are marked as erased and passed to
the interpolation process.

Thus, C2 is designed for the correction of burst errors and short random
errors which were not corrected or miscorrected by C1.

428 5. Mathematics and Audio Compact Discs

In worst case situations when the error is so massive that even interpola-
tion fails, the audio signal is usually muted. In general, the brief silence is
preferable to the burst of digital noise usually heard as a click.

What is the maximal size of a burst error which can still be corrected by
CIRC? The interleaving with delay d = 4 in step C causes that each C2-code-
word is spread over 28 different C1-codewords distributed among 27 · 4 + 1 =
109 consecutive C1-codewords. This fact allows one to break long burst er-
rors. Even if C1 marked the symbols of 16 consecutive C1-codewords as era-
sures, the original information can be reconstructed if no further errors have
occurred in this data area. After deinterleaving, these 16 · 28 = 448 erasure
marks are distributed over 124 different C2-codewords, where at most 4 era-
sures occur in each of these codewords. Consequently, these erasures can be
corrected. As mentioned above, there are exactly 24 audio symbols contained
in a frame. These are the 24 audio bytes contained in a C2-codeword. Since
there are exactly 7350 frames per second which cover a track of 1200mm, the
CIRC decoding allows one to correct physical track errors of about 2.6mm
length. Thus, that kind of maximum length correctable error contains 384 au-
dio bytes. The erased symbols are contained in 124 C2-codewords, which are
responsible for approximately 16.7 milliseconds of music.

The raw error bit rate of a CD is around 10−5 to 10−6. This means that
there is one wrong bit every 105 to 106 bits. Considering that an audio compact
disc has an output of more than 4 million bits per second (cf. 5.4.9), the need
for error correction is obvious. With error correction, perhaps 200 errors per
second will be completely corrected. According to [164], the error rate after
CIRC is between 10−10 and 10−11. Nevertheless, the quality of error-correction
varies from player to player, depending on the chosen CIRC decoding strategy.

5.4.5 Interpolation If it is impossible for the decoder to reconstruct a C2-codeword,
then the CD-player tries to interpolate the missing audio bytes from neigh-
boring ones in case they are reliable. Because of the high correlation between
music samples, an uncorrected error can be made virtually inaudible by syn-
thesizing new data from surrounding data. Various interpolation schemes are
used with different performance levels. In its simplest form the previous value
is simply repeated. In first order interpolation the erased audio bytes are re-
placed by the mean value of the previous and the subsequent byte.

The interpolation process can be applied to determine the missing values
even if the audio bytes of two consecutive C2-codewords are marked as era-
sures, based on the scrambling in step A. Assume that the n-th and (n + 1)-th
C2-codeword are erased, then the neighboring bytes of even samples occur in

5.4 More Details on Compact Discs 429

the (n − 3)-th, (n − 2)-th, and (n − 1)-th codeword and the neighboring bytes
of odd samples occur in the (n + 2)-th, (n + 3)-th, and (n + 4)-th codeword.

What is the maximal size of a burst error which can still be reconstructed
with interpolation? Even if C1 marked the symbols of 48 consecutive C1-code-
words as erasures, the audio information can still be reconstructed by interpo-
lation. After deinterleaving the received information we obtain a sequence of
vectors (y(n))n with y(n) = (y28n, y28n+1, . . . , y28n+27). These 48 · 28 = 1344 era-
sure marks are distributed over 124 different vectors y(n). Assume that y(m) is
the first vector in this sequence whose last component belongs to these erased
rows. Hence, in the interleaving array the column the top entry of which has
the index m + 108 is the first erased column. Now we have to check that it is
still possible to reconstruct all the audio information with error correction and
interpolation. The vectors y(m), . . . y(m+3) contain exactly one erasure which
occurs in the last position. The vectors y(m+4), . . . y(m+7) contain exactly two
erasures which occur in the last two positions. The vectors y(m+8), . . . y(m+11)

contain exactly three erasures which occur in the last three positions. The vec-
tors y(m+12), . . . y(m+15) contain exactly four erasures which occur in the last
four positions. Consequently, in all these vectors so far it is possible to fill the
erased positions by correcting erasures with C2.

For the following vectors we analyze how many erased bytes they contain,
in which position they occur, and in which vectors and positions the neighbor-
ing audio bytes occur. Finally we will see that it is always possible to approx-
imate the missing values by first order interpolation. The first column gives
the index n of the vector y(n), the second shows the number of erased bytes in
this vector, the third contains the position of the erased bytes, the next column
contains the labels n′ of the vectors y(n′) which contain the audio bytes neces-
sary for interpolation, and finally the last column contains the positions where
these neighboring audio bytes occur. Careful investigation of this table proves
that it is possible to reconstruct the missing information by interpolation.

n erasures pos. n′ pos.
m + 16, . . . , m + 19 5 23− 27 m + 18, . . . , m + 22 6− 11
m + 20, . . . , m + 23 6 22− 27 m + 22, . . . , m + 26 6− 11
m + 24, . . . , m + 27 7 21− 27 m + 26, . . . , m + 30 0− 11
m + 28, . . . , m + 31 8 20− 27 m + 30, . . . , m + 34 0− 11
m + 32, . . . , m + 35 9 19− 27 m + 34, . . . , m + 38 0− 11
m + 36, . . . , m + 39 10 18− 27 m + 38, . . . , m + 42 0− 11
m + 40, . . . , m + 43 11 17− 27 m + 42, . . . , m + 46 0− 11
m + 44, . . . , m + 47 12 16− 27 m + 46, . . . , m + 50 0− 11
m + 48, . . . , m + 51 12 15− 26 m + 50, . . . , m + 54 0− 11
m + 52, . . . , m + 55 12 14− 25 m + 54, . . . , m + 58 0− 11

430 5. Mathematics and Audio Compact Discs

m + 56, . . . , m + 59 12 13− 24 m + 58, . . . , m + 62 0− 11
m + 60, . . . , m + 63 12 12− 23 m + 62, . . . , m + 66 0− 9
m + 64, . . . , m + 67 12 11− 22 m + 66, . . . , m + 70 0− 9

m + 62, . . . , m + 65 24− 27
m + 68, . . . , m + 71 12 10− 21 m + 70, . . . , m + 74 0− 5

m + 66, . . . , m + 69 24− 27
m + 72, . . . , m + 75 12 9− 20 m + 74, . . . , m + 78 0− 5

m + 70, . . . , m + 73 22− 27
m + 76, . . . , m + 79 12 8− 19 m + 78, . . . , m + 81 0− 5

m + 74, . . . , m + 77 22− 27
m + 80, . . . , m + 83 12 7− 18 m + 82, . . . , m + 85 0− 5

m + 77, . . . , m + 81 22− 27

The remaining cases can be studied in a similar way. For instance, the
study of the four columns m + 80, . . . , m + 83 corresponds to the situation of
m + 72, . . . , m + 75.

Consequently, all these erasures can be filled by interpolation. Even if 48
C1-codewords are erased, the last byte of the first codeword preceding this
erased block and the first byte of the codeword following this block are er-
roneous, it is possible to reconstruct approximations of the erased bytes by
interpolation. These 48 erased C1-codewords contain the audio information of
48 frames. Each second the CD-player reads 7350 frames which cover 1200mm
of the track, whence interpolation is able to deal with burst errors of length up
to 7.8mm.

Finally we discuss how data is stored on a CD (cf. [164, pages 51ff]).

5.4.6 Pits and lands “A transparent plastic substrate forms most of a discs 1.2mm
thickness. Data is physically contained in pits which are impressed along its
top surface and are covered with a very thin metal layer. Another thin plastic
layer protects the metallized pit surface on top of which the identifying label
is printed. A laser beam is used to read the data. It is applied from below and
passes through the transparent substrate, is reflected at the metallized pit sur-
face, and passes back.” The beam of size 800 micrometers at the discs surface
is focused to 1.7 micrometers on the metallized pit surface. Pits are very small,
approximately 0.5 micrometers wide and 0.11 to 0.13 micrometers high. As we
will see, they are of varying length. Thus, “the laser beam is focused to a point
about three times larger than the pit width.”

“When viewed from the lasers perspective, the pits appear as bumps.” The
areas between pits are called lands. Data are read from the compact disc by
measuring the reflected light. Almost 90% of the laser beam are reflected by a
land. Caused by the height of the pits, the refraction index of the transparent

5.4 More Details on Compact Discs 431

material, the wavelength of the laser beam, and the fact that the laser beam
hits also land located around pits, almost no light is reflected from a pit. The
remaining reflected light is used as a tracking signal. “The transition from pit
to land or from land to pit, i.e. the change of the intensity of the reflected light,
is considered as a binary one. When the laser beam hits areas within a land or
within a pit it is interpreted as a sequence of zeros.” For technical reasons pits
and lands may not be too short or too long. To be more precise, a land or pit
must have the length of at least 2 and at most 10 zeros. In other words, when
reading binary data from a compact disc or writing it onto a compact disc, be-
tween two consecutive binary ones there must be a sequence of at least 2 and at
most 10 zeros. Obviously, “binary data obtained from sampling and encoding
does not satisfy these requirements. Thus, data provided by the CIRC encoder
still must be changed before it can be written onto a compact disc.” This is
done by the channel encoder.

5.4.7EFM The channel encoder uses eight-to-fourteen modulation, EFM, in order to
change a byte, which is a binary vector of length 8, into a binary vector of
length 14 which satisfies the requirements on the number of zeros between
two consecutive binary ones (cf. [164, pages 77ff]). This process is usually
done by table-lookup. Here is a small part of this table:

00000000 01001000100000
00000001 10000100000000
00000010 10010000100000
00000011 10001000100000
00000100 01000100000000
00000101 00000100010000
00000110 00010000100000
00000111 00100100000000

...
...

11111000 01001000010010
11111001 10000000010010
11111010 10010000010010
11111011 10001000010010
11111100 01000000010010
11111101 00001000010010
11111110 00010000010010
11111111 00100000010010

432 5. Mathematics and Audio Compact Discs

It is easy to see (cf. Exercise 5.4.3) that 14 is the least length of vectors needed,
in order to represent all 28 bytes by different vectors satisfying the require-
ments on the number of zeros between two consecutive binary ones. Actually
there are 267 vectors with these properties. Two of them which are not used
by EFM are used for subcode synchronization words (cf. 5.4.10).

5.4.8 Merging bits Now it can still happen that the concatenation of two vectors
produced by EFM still does not satisfy the condition on the number of zeros
between two consecutive binary ones. For this reason three merging bits are
inserted between two vectors of length 14 (cf. [164, page 80]). Actually, there
are only four possible choices for these bits, namely

000 100 010 001.

Two merging bits 00 are necessary to prevent consecutive binary ones. The
third merging bit is added so that the average digital sum value is close to zero.

A bit pattern can also be interpreted as a rectangular wave. It admits val-
ues ±1. A binary one causes a change of the sign. For instance, the vector
00000100010000 can be considered as

0 0 0 0 0 1 0 0 0 1 0 0 0 0

...
................
................
................
................
...

or

0 0 0 0 0 1 0 0 0 1 0 0 0 0
...

................

................

................

................

...

Fig. 5.8 Rectangular wave form of a bit pattern

The digital sum is determined by assigning +1 to the positive and−1 to the
negative amplitude and summing these values for each bit. This is the integral
of the rectangular wave form of the bit pattern when the distance between two
bits is considered to be equal to 1.

Concatenating the above binary vector with itself, we may only use the
merging bits containing a binary one, since otherwise there would be too many
consecutive zeros. The three possibilities 100, 010, and 001 yield the following
rectangular wave forms:

0 0 0 0 0 10 0 0 10 0 0 0 10 0 0 0 0 0 0 10 0 0 10 0 0 0

...
................
................
................
................
...

................

................

................

................

...
................
................
................
................
...

5.4 More Details on Compact Discs 433

0 0 0 0 0 10 0 0 10 0 0 0 0 10 0 0 0 0 0 10 0 0 10 0 0 0

...
................
................
................
................
...

................

................

................

................

..
................
................
................
................
...

0 0 0 0 0 10 0 0 10 0 0 0 0 0 10 0 0 0 0 10 0 0 10 0 0 0

...
................
................
................
................
..

................

................

................

................

...
................
................
................
................
...

Fig. 5.9 Concatenation with merging bits

They have the digital sum values 3, 1, and −1. Depending on the digital sum
value we started from, we insert those merging bits so that the final digital
sum value is close to zero.

5.4.9Frames As was already mentioned, the information on a compact disc is orga-
nized in form of frames (cf. [164, pages 82ff]). A frame consist of exactly 588
channel bits. Among other information it contains the audio information of
one C1-codeword.

Each frame starts with a 24-bit synchronization pattern which is uniquely
distinguishable from all other possible data patterns. It is given by

100000000001000000000010,

and it is used to maintain a constant data readout rate. The rate of synchroniza-
tion patterns influences the rotational speed of the disc. After three merging
bits a 14-bit subcode and another three merging bits are added. Then each byte
of a C1-codeword encoded by EFM to a 14 bit sequence and another 3 merging
bits are added. This means that each byte of this codeword is enlarged to 14
bits by EFM and between two sequences produced by EFM three merging bits
are inserted.

Thus a frame is of the following form, where “Sync.” indicates the syn-
chronization patterns, “M.” suitable merging bits, “Subc.” the subcode, and
wi the EFM-encoding of the i-th byte of the C1-codeword. In the second row
the number of used channel bits is indicated.

Sync. M. Subc. M. w0 M. . . . w31 M.
bits 24 3 14 3 14 3 30 · (14 + 3) 14 3

In summary, we have 24 synchronization bits, one 14-bit subcode, 32 · 14 bits
produced by EFM from one C1-codeword, and 34 · 3 merging bits in each
frame.

Since there are 7350 frames per second, 4 321 800 channel bits are read or
written per second. This gives 259 308 000 channel bits (32 413 500 channel
bytes) per minute and 15 558 480 000 bits (1 944 810 000 channel bytes) per hour.

434 5. Mathematics and Audio Compact Discs

5.4.10 Subcode The 14-bit subcode is produced by EFM from an 8-bit subcode. These
8 bits are usually referred to as P, Q, R, S, T, U, V, and W. On an audio CD
only the P and Q bits are used. They should not be mixed with the P and Q
symbols of the CIRC. The subcode holds information about the different tracks
on a compact disc, display information, digital copy permission, and control
information for different functions of the CD-player. (For more details see [164,
pages 90ff].)

Each frame contains 8 subcode bits. In order to make better use of these
bits and store useful information with them, the subcode bits of 98 frames are
collected to form a subcode block. Each frame contributes one P-bit, Q-bit and
so forth to the subcode block. Thus the 8 subcode bits are used as 8 different
channels.

Since there are 7350 frames per second and the subcode of 98 frames is
collected to one block, there are 75 subcode blocks per second.

In general, each subcode channel contains synchronization words, instruc-
tions, commands, data, and even some parity check symbols. Each subcode
block starts with two synchronization words. These are two patterns not used
by the EFM. In other words, the 14-bit representation of the subcode of the
first two frames in a subcode block can uniquely be detected. The two syn-
chronization words are given by

00100000000001 and 00000000010010.

Hence the first two bits of each channel are reserved for synchronization. After
the first two bits of the Q-channel reserved for synchronization, there follow 4
control bits, 4 address bits describing 3 different modes, then 72 bits of data,
and finally 16 bits for cyclic redundancy checking. This CRC is done in the
following way. Consider the vector of the 4 + 4 + 72 = 80 (control-, address-,
data-) bits as a polynomial f of degree at most 79 over F2. By the division
algorithm determine q, r ∈ F2[x] so that

f (x) =
(
x16 + x12 + x5 + 1

)
q(x) + r(x),

with deg r < 16, and consider the coefficients of r (or as it is actually done, the
inverted binary values of them) as the 16 check symbols. When the receiver
obtains a Q-channel, the first two bits are stripped, the next 80 bits are read,
the division algorithm is applied and the remainder is compared with the final
16 parity check bits. If they coincide the receiver assumes that the data was
correct.

The P-channel designates the starting and stopping of tracks.

In the next section we describe some differences between CD-DA and CD-
ROM.

5.5 More Details on CD-ROM 435

Exercises

E.5.4.1Exercise Let C be a Reed–Solomon-code of length n = pr − 1, dimension k =
pr − d and minimum distance d. For 1 ≤ s < k prove the following facts about
the shortened Reed–Solomon-code C(s) of length n− s, which is obtained from
C by taking all codewords which have zeros in the last s positions and deleting
the last s positions:

1. If g is the generator polynomial of C, then

C(s) =
{

f g | f ∈ Fpr [x], deg f < k − s
}

.

2. C(s) is an (n − s, k − s, d)-code, thus it is an MDS-code.

E.5.4.2Exercise Show that when the symbols of 17 consecutive C1-codewords are
erased, CIRC fails to correct this error. Show that when the symbols of 49
consecutive C1-codewords are erased, the interpolation process fails to correct
this error.

E.5.4.3Exercise Let a(n) be the number of binary vectors of length n such that be-
tween two consecutive binary ones there are at least 2 and at most 10 ze-
ros. Show that n = 14 is the least integer such that a(n) ≥ 28. Prove that
a(14) = 267.

5.55.5 More Details on CD-ROM

CD-ROM and diverse other disc formats are thoroughly described in chapter 6
of [164]. Here we provide the reader with a short summary. “CD-ROM is the
logical extension of the compact disc format towards the much broader appli-
cation of information storage in general.” The compact disc is used “as a read-
only memory system” which can contain “any kind of program material.” It
is a “cost-effective way of distributing large amounts of information, espe-
cially information not requiring frequent updating,” for instance, databases
and mass storage for computer related applications.

Although the CD-ROM looks identically to an audio compact disc it uses a
modified data format. “A CD-ROM identifies itself as differing from an audio
compact disc through the Q-subcode channel.”

The CD-ROM standard as specified in the Yellow Book, in the ISO/IEC stan-
dard Information technology – Data interchange on read-only 120mm optical data
disks (CD-ROM) [96], or also in [48], “does not link CD-ROM to a specific

436 5. Mathematics and Audio Compact Discs

application.” Unlike the audio CD standard, “it does not define the type of
information that is stored” on a CD-ROM. “Furthermore, the layout of the in-
formation on the disc is not defined, and it does not indicate where and how
to store the directory, how to identify the beginning or end of a file, or how to
open a file.” On an audio compact disc sampled digital audio is stored. Since
usually neighboring samples are quite similar, it is possible to apply interpo-
lation in order to reconstruct audio information which could not be properly
decoded by CIRC. For obvious reasons, when storing arbitrary information
on a CD-ROM the method of interpolation cannot be applied. Hence, the er-
ror correction and error detection of a CD-ROM must provide a higher data
integrity than on an audio compact disc.

The smallest data area of an audio compact disc is a frame containing 24
bytes of audio information. A frame is too short for numerical applications
and there is no way of addressing frames. Similarly as with the subcode chan-
nels, 98 frames are combined to form a sector of a CD-ROM. (See also [164,
pages 215ff].) A sector is the basic data unit of a CD-ROM. In general a frame
contains 98 · 24 = 2352 bytes of information. Since in an audio CD there are
exactly 7350 frames per second, we have 7350/98 = 75 sectors per second on
a CD-ROM.

5.5.1 Sector and sector modes The first 12 bytes of each sector are used as a synchro-
nization word. The next 4 bytes form a header field containing three address
bytes and one mode byte. The address bytes indicate the minute (usually from
1 to 74), the second within this minute (from 0 to 59) and the sector within
this second (from 1 to 75). For example, the three values 45 − 20− 12 indicate
the 12-th sector in the 20-th second of the 45-th minute. This information is
also found in the Q-subcode channel, but it speeds up and provides greater
accuracy for searching. The mode byte indicates one of three different modes
available for CD-ROM sectors. (See also [164, Fig. 6.2].)

Mode 0 just contains null data. Thus, after the synchronization word and
the header it just contains 2336 zero-bytes.

Header

Sync. Address Mode 0 null data

Min. Sec. Block
12 1 1 1 1 2336

Fig. 5.10 CD-ROM sector mode 0

5.5 More Details on CD-ROM 437

Mode 1 specifies, as described in Fig. 5.11, that 2048 of the remaining bytes
are devoted to user data and the final 288 bytes are reserved for error detection
EDC and error correction ECC. The error detection code is a CRC-code with

Header Auxiliary data

Sync. Address Mode 1 user data EDC Space ECC

Min. Sec. Block P-parity Q-parity
12 1 1 1 1 2048 4 8 172 104

Fig. 5.11 CD-ROM sector mode 1

respect to the polynomial

g(x) :=
(
x16 + x15 + x2 + 1

)(
x16 + x2 + x + 1

)
∈ F2[x].

The sequence of synchronization-, header-, and user data is considered as a bi-
nary polynomial. Dividing this polynomial by g, the division algorithm yields
a remainder of degree less than 32, the coefficients of which are stored in the
4 EDC-bytes. Immediately after these bytes a sequence of 8 zero-bytes is ap-
pended as a space between the EDC and ECC bytes. The error correction en-
coding of a sector is carried out by a Reed–Solomon Product-like Code, RSPC.
For more details see 5.5.2.

In Mode 2 all remaining 2336 bytes are available for user data.

Header

Sync. Address Mode 2 user data

Min. Sec. Block

12 1 1 1 1 2336

Fig. 5.12 CD-ROM sector mode 1

The additional EDC and ECC of Mode 1 ensure a level of data integrity
essential for storing arbitrary information. In Mode 1 each sector contains ex-
actly 2 kB of information. Because of extended error correction Mode 1 has the
most number of applications. The error rate is improved over that of an audio
CD. Theoretically there will be one uncorrectable bit in every 1016 or 1017 bits.
In Mode 2 it is possible to store more data on a CD-ROM, however with lower
data integrity than in Mode 1. Therefore, it is mainly used for “gracefully de-
grading data such as video and audio.”

5.5.2RSPC encoding We assume that the bytes of a sector in Mode 1 are labeled
as B0, . . . , B2351. The header-bytes, user data, EDC-bytes, and space bytes are

438 5. Mathematics and Audio Compact Discs

input to the RSPC encoder. These input bytes and the P-parity and Q-parity
bytes make a total of 2340 bytes per sector. They are ordered in 1170 words
Wn, n ∈ 1170. Each word consists of exactly 2 bytes, in more details

Wn =
(
B2n+12, B2n+13

)
, n ∈ 1170.

Then we form two arrays of bytes, namely

(B2n+12)n∈1170 and (B2n+13)n∈1170.

These two arrays are encoded separately. Let Vn, n ∈ 1170, denote the elements
of such an array, i.e. either Vn = B2n+12 or Vn = B2n+13. The bytes Vn must be
inserted into the diagram of Fig. 5.13 so that the first row contains from left to
right the elements V0,V1, . . . ,V42, the next one V43,V44, . . . ,V85 and so on.

Q-parity
P-parity

Header

+

user

data

+

EDC
+

space

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 5.13 RSPC encoding

The P-parity symbols are determined by a (26, 24)-Reed–Solomon-code over
F28 . It takes the first 24 entries of each column

(Vr,Vr+43,Vr+2·43, . . . ,Vr+23·43), r ∈ 44,

as an input and computes the symbols Vr+24·43 and Vr+25·43. A check matrix of
this code is given by (

1 1 . . . 1 1 1
α25 α24 . . . α2 α 1

)
for α a root of the primitive polynomial x8 + x4 + x3 + x2 + 1 ∈ F28 [x].

In order to determine the Q-parity symbols, a (45, 43)-Reed–Solomon-code
over F28 is applied. Its codewords are diagonals as indicated by the black
circles in the above diagram (cf. [68]). The i-th codeword, i ∈ 26, starts in the

5.5 More Details on CD-ROM 439

leftmost column of the i-th row of this array. The 45 symbols occurring in the
first 26 rows are the information symbols. The parity check symbols of this
code are input into the last two rows of this array. The Q-parity check symbols
of the i-th codeword occur in the i-th column of this part of the array. A check
matrix of this code is given by(

1 1 . . . 1 1 1
α44 α43 . . . α2 α 1

)
for the same α as above. Actually, these two codes are obtained by shortening
a (255, 253, 3, 28)-Reed–Solomon code (cf. Exercise 5.4.1).

5.5.3Encoding and decoding After having determined the bytes filled into a sector
(null data in Mode 0, user data, EDC and ECC in Mode 1, and just user data
in Mode 2), the bytes B12, . . . , B2351 of a sector are scrambled. For more details
see [48] and [96]. “A regular bit pattern fed into the EFM encoder can cause
large values of the digital sum value in case the merging bits cannot reduce
this value. The scrambler reduces this risk by converting the input bit stream
with a shift register in a prescribed way.” The bytes of a scrambled sector are
mapped onto a series of consecutive frames. Each frame consists of exactly 24
bytes. However, the starting point of a sector is not necessarily the starting
point of the frame. The byte B0 of a sector can be insert as the 4n-th byte of a
frame, 0 ≤ n ≤ 5. Consecutive bytes of the sector are placed in consecutive
bytes of a frame. After the byte B2351 the byte B0 of the next sector is inserted.
A frame is, therefore, of the form

B4r B4r+1 B4r+2 B4r+3 B4r+4 B4r+5

B4r+6 B4r+7 B4r+8 B4r+9 B4r+10 B4r+11

B4r+12 B4r+13 B4r+14 B4r+15 B4r+16 B4r+17

B4r+18 B4r+19 B4r+20 B4r+21 B4r+22 B4r+23.

Next the byte order of each even-odd numbered pair of bytes in the frame is
reversed. We obtain

B4r+1 B4r B4r+3 B4r+2 B4r+5 B4r+4

B4r+7 B4r+6 B4r+9 B4r+8 B4r+11 B4r+10

B4r+13 B4r+12 B4r+15 B4r+14 B4r+17 B4r+16

B4r+19 B4r+18 B4r+21 B4r+20 B4r+23 B4r+22

a so called F1-frame. Each F1-frame is then encoded by a conventional CIRC
encoder (cf. 5.4.1). This yields an F2-frame, containing exactly 32 bytes. Adding
one additional subcode byte to each F2-frame yields an F3-frame. Similarly as
in an audio compact disc, there are eight different subcode bits referred to as
P, Q, R, S, T, U, V, and W (cf. 5.4.10). The information stored in the subcode

440 5. Mathematics and Audio Compact Discs

of 98 consecutive frames is collected to 8 subcode channels. A group of 98
F3-frames is also known as a section. Because of the delays during the CIRC
encoding, sections have nothing to do with sectors. Finally, after sending the
33 bytes of an F3-frame to EFM (cf. 5.4.7) the data are written onto the CD.

Usually the error rate of a compact disc after CIRC decoding is approxi-
mately 10−10 to 10−11 errors per bit. The CIRC decoder also delivers informa-
tion about bytes that could not be correctly decoded. Since we know the exact
position of these bytes, they are erasures. The two Reed–Solomon-codes used
in RSPC have minimum distance d = 3. Hence, each of them can be used to
correct 1 error or 2 erasures per codeword. Combining both CIRC and RSPC
decreases the bit error rate of a CD-ROM so that it will be between 10−16 and
10−17 (cf. [164]).

There exist various extension of the CD-ROM standard, for instance Com-
pact Disc-Interactive, CD-I, described in the Green Book, Video compact discs
defined in the White Book, or recordable discs, the standard of which can be
found in the Orange Book. For more details see [164].

6Chapter 6

Enumeration of Isometry Classes

6

6 Enumeration of Isometry Classes

6.1 Enumeration of Linear Isometry Classes 444

6.2 Indecomposable Linear Codes 463

6.3 Cycle Indices of Projective Linear Groups 476

6.4 Numerical Data for Linear Isometry Classes................ 499

6.5 Critical Codes .. 511

6.6 Random Generation of Linear Codes 527

6.7 Enumeration of Semilinear Isometry Classes 532

6.8 Local Isometries.. 549

6.9 Existence and Construction of Normal Bases 553

6 Enumeration of Isometry Classes
We have gathered linear codes in classes of codes which are of the same quality
with respect to error correction. Since the metric structure of a code determines
its error correction properties we have introduced the notion of isometric codes
and the just mentioned classes of codes are called isometry classes. Each of these
classes is an orbit of an isometry group of Fn

q . The linear isometry classes are
orbits under the linear isometry group Mn(q), the semilinear isometry classes
orbits under the semilinear isometry group. This chapter is concerned with the
enumeration of isometry classes of codes using methods from Combinatorics,
in particular Pólya’s Theory of Enumeration. This theory deals with the combina-
torial properties of finite group actions. In particular, properties of the acting
group like numbers of fixed points are used to get results about the number
of orbits. The fundamental tool is the Lemma of Cauchy-Frobenius, which was
introduced in 3.4.2 and refinements thereof. To count the isometry classes of
codes we need detailed information about the isometry groups. Depending
on whether we count linear isometry classes (in the first sections) or semilin-
ear isometry classes (in Section 6.7) we have to study the projective linear or
the projective semilinear groups over the appropriate finite fields.

An interesting and helpful notion introduced in Section 6.2 is the concept of
indecomposable linear codes. Each code can be written in an essentially unique
way as a sum of such codes. We derive the number of indecomposable linear
codes, obtaining this way an idea of the complexity of the construction of all
the isometry classes of indecomposable linear codes. Furthermore, a special
class of indecomposable codes, the critical indecomposable codes, are described
in detail in Section 6.5.

For the actual computation of the number of linearly nonisometric (n, k)-
codes over Fq, we need detailed information about the natural group action
of the projective linear group PGLk(q) on PG∗

k−1(q). Especially, we describe
the conjugacy classes of the linear group GLk(q) by using the Jacobi normal
form of the automorphisms of Fk

q. This approach is based on module theoretic
considerations already introduced in Chapter 4. In Section 6.3 we derive a
complete description of the cycle index for the natural action of PGLk(q) on
PG∗

k−1(q).

Numerical results concerning the enumeration of linear isometry classes of
codes are displayed in Section 6.4. Extended tables, computed by SYMMET-
RICA (cf. [190]), can be found online [58] or on the attached CD.

Closely related to the enumeration of nonisometric codes is the random gen-
eration of linear codes. The algorithm presented in Section 6.6 generates repre-
sentatives of linear isometry classes which are distributed uniformly at random

444 6. Enumeration of Isometry Classes

over all classes of (n,≤ k)-codes over Fp for given n, k and p. We use a quite
general method which is due to Dixon and Wilf [46]. This method applies
whenever the structure under consideration is defined as an orbit of a finite
group acting on a finite set.

At the very end of this chapter in Section 6.8 we prove that every local
isometry between two (n, k)-codes over Fq can be extended to a global isom-
etry of Fn

q . This demonstrates that the seemingly weaker condition of a local
isometry is equivalent to our approach from Section 1.4 and Section 1.5. (See
also [84, second edition, Section 9.1].)

Normal bases of a finite extension Fq over Fp have been introduced in Sec-
tion 3.3. Finally, in Section 6.9 we prove that it is always possible to construct
a normal basis of a finite field extension over a finite field. The proof uses
methods from module theory introduced in Chapter 4 and Section 6.3.

6.1 6.1 Enumeration of Linear Isometry Classes

To begin with, we recall that two linear codes C and C′ in Fn
q are said to be

linearly isometric if there exists a linear isometry

ι : Fn
q → Fn

q

which maps C onto C′. The group of all linear isometries on Fn
q , the linear

isometry group, was indicated in Section 1.4 by

Mn(q).

It is the set of all n × n-matrices over Fq which contain in each of their rows
and columns exactly one nonzero element of Fq. The application of a linear
isometry to a generator matrix (via right multiplication) amounts to a permu-
tation of its columns and/or a multiplication of columns by nonzero elements
of Fq. We have seen in 1.4.12 that Mn(q) is isomorphic to a wreath product,

Mn(q) � F∗
q �n Sn.

The linear isometry group acts on Fn
q , whence also on its power set, and it

has already been mentioned that the corresponding set of orbits,

F∗
q �n Sn\\2Fn

q ,

is the set of isometry classes of block codes. Some of them are sets of subspaces,
the linear isometry classes of linear codes. Using the notation

U (n, q) :=
{

U
∣∣ U ≤ Fn

q

}

6.1 Enumeration of Linear Isometry Classes 445

for the set of all subspaces of Fn
q , we express the set of linear isometry classes

of linear codes in Fn
q as

F∗
q �n Sn\\ U (n, q).

This set can still be refined since each linear isometry preserves both the di-
mension and the minimum distance of a code. For this reason, we introduce
the following subsets of U (n, q)

U (n, k, q) :=
{

U ≤ Fn
q
∣∣ dim(U) = k

}
, 1 ≤ k ≤ n,

and
U(n, k, d, q) :=

{
U ≤ Fn

q
∣∣ dim(U) = k, dist(U) = d

}
.

Thus we obtain

6.1.1The metric classification of linear codes The set of nontrivial linear isometry
classes of linear codes of length n over Fq is the set of orbits

F∗
q �n Sn\\(U(n, q) \ {0}) =

n⋃
k=1

dmax(n,k,q)⋃
d=1

F∗
q �n Sn\\ U (n, k, d, q).

Each transversal of the orbit set

F∗
q �n Sn\\ U (n, k, d, q)

is a complete system of pairwise linearly nonisometric linear (n, k, d, q)-codes. �

6.1.2Example Considering the set of linear isometry classes of linear (n, k)-codes
instead of the set of all (n, k)-codes reduces dramatically the number of objects
to be classified. For instance, the numbers

[n
k

]
(2) of k-dimensional subspaces

of Fn
2 (cf. Exercise 6.1.3) are displayed in Table 6.1.
With the methods described in this section we will be able to determine

the numbers Unk2 given in Table 6.7. They are the numbers of linear isome-
try classes of binary (n, k)-codes. From these tables we deduce, for instance,
that there are more than 53 million 4-dimensional subspaces of F10

2 but only
516 linear isometry classes of binary (10, 4)-codes. Later on (cf. Table 6.7) we
will see that there are only 276 isometry classes of (10, 4)-codes without zero
columns. Using methods from Chapter 9, we will obtain that there are only 19
isometry classes of (10, 4)-codes with optimal minimum distance d = 4. �

If we want to apply the metric classification of linear codes for enumerative
or constructive purposes, we run into problems since the sets U (n, k, q) are
abstract sets of vector spaces. But we know from Linear Algebra that each
code possesses bases, k-tuples of linearly independent elements. They are the
generator matrices of a code. Still there is a problem concerning complexity.

446 6. Enumeration of Isometry Classes

Table 6.1 Values of
[n

k

]
(2)

n\k 1 2 3 4 5
1 1 0 0 0 0
2 3 1 0 0 0
3 7 7 1 0 0
4 15 35 15 1 0
5 31 155 155 31 1
6 63 651 1 395 651 63
7 127 2 667 11 811 11 811 2 667
8 255 10 795 97 155 200 787 97 155
9 511 43 435 788 035 3 309 747 3 309 747

10 1 023 174 251 6 347 715 53 743 987 109 221 651
11 2 047 698 027 50 955 971 866 251 507 3 548 836 819
12 4 095 2 794 155 408 345 795 13 910 980 083 114 429 029 715

Table 6.2 Values of Unk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 3 1 0 0 0 0
4 4 6 4 1 0 0 0
5 5 10 10 5 1 0 0
6 6 16 22 16 6 1 0
7 7 23 43 43 23 7 1
8 8 32 77 106 77 32 8
9 9 43 131 240 240 131 43

10 10 56 213 516 705 516 213
11 11 71 333 1 060 1 988 1 988 1 060
12 12 89 507 2 108 5 468 7 664 5 468
13 13 109 751 4 064 14 724 29 765 29 765
14 14 132 1 088 7 641 39 006 117 169 173 035

6.1 Enumeration of Linear Isometry Classes 447

Each (n, k)-code has many bases, except for very trivial cases. Hence, if we
want to describe a subspace by a generator matrix, we are faced with a great
variety of possibilities. So, instead of the abstract set of vector spaces we have
to manage a big set of matrices. In 1.4.14 and Exercise 1.4.14 we have already
introduced for n ≥ k ≥ 1 the set of all generator matrices of (n, k)-codes over
Fq as the set

Fk×n,k
q :=

{
Γ
∣∣ Γ ∈ Fk×n

q , rank(Γ) = k
}

of all k × n-matrices over Fq of rank k. In the Exercises 1.4.14 and 1.4.16 we
have described actions of the general linear group GLk(q) and of the full mono-
mial group Mn(q) on Fk×n,k

q , and we have shown that these two actions com-
mute. According to Exercise 1.4.10, two commuting group actions GX and HX
induce an action of the direct product G × H on X.

Since, according to Exercise 1.4.14, exactly the left multiplications by ele-
ments A ∈ GLk(q) transform a generator matrix of the space C ∈ U (n, k, q)
into another generator matrix of C, the orbits of GLk(q) on Fk×n,k

q correspond
to the subspaces of dimension k:

U(n, k, q) = GLk(q)\\Fk×n,k
q .

The operations of elements of the linear isometry group commute with the
operations of the elements of GLk(q), and so the set of linear isometry classes
of (n, k)-codes is equal to the set of orbits

(GLk(q)× F∗
q �n Sn)\\Fk×n,k

q 6.1.3

with respect to the action

(GLk(q)× F∗
q �n Sn)× Fk×n,k

q → Fk×n,k
q ,

defined by
((A, B), Γ) �→ A · Γ · B�.

Using Exercise 1.4.9 (which says that the set of orbits of a direct product is the
set of orbits of one factor on the set of orbits of the other factor) we rephrase
6.1.3 as

GLk(q)\\
(
F∗

q �n Sn\\Fk×n,k
q

)
. 6.1.4

Because of the condition on the rank, the set Fk×n,k
q is not easy to handle. We

may thus prefer to work with the even larger set Fk×n
q of all k × n-matrices

without any condition on the rank. In 6.1.15 and Exercise 6.1.6 it will be clear
that it is possible to determine the number of isometry classes of linear (n, k)-
codes from |GLk(q)\\(F∗

q �n Sn\\Fk×n
q)| and |GLk−1(q)\\(F∗

q �n Sn\\F(k−1)×n
q)|.

The set Fk×n
q can be reduced a bit, since matrices which contain zero columns

are not of interest for coding theoretic purposes. (Such columns are redundant

448 6. Enumeration of Isometry Classes

in coding theory, since the corresponding components are zero in each code-
word, and so they give no information. Moreover, two generator matrices of
the same code have the same number of columns of zeros, and these columns
occur at the same column indices. Generator matrices of isometric codes also
have the same number of columns of zeros, but these columns need not oc-
cur at the same column indices.) For this reason we introduce the following
notion:

6.1.5 Definition (nonredundant code) A linear code C is called nonredundant if its
generator matrix Γ contains no zero column.
In fact, this condition is independent of the choice of the generator matrix Γ.

It is, therefore, reasonable to restrict attention to the set of all k× n-matrices
without zero columns. The advantage is that the set of all k × n-matrices over
Fq which contain no zero column can be written as a set of mappings

(Fk
q\{0})n =

{
f
∣∣ f : n → Fk

q\{0}
}

.

The generator matrix Γ of a nonredundant (n, k)-code is identified with the
mapping Γ : n → Fk

q\{0} where Γ(i)� is the i-th column of Γ.
Rewriting our problem in these terms shows that instead of the situation

in 6.1.4 we are now faced with the set of orbits

GLk(q)\\
(
F∗

q �n Sn\\(Fk
q\{0})n

)
.6.1.6

According to Exercise 1.4.9, the general linear group acts in the following
way on F∗

q �n Sn\\(Fk
q\{0})n:

GLk(q)×
(
F∗

q �n Sn\\(Fk
q\{0})n

)
→ F∗

q �n Sn\\(Fk
q\{0})n,

(A, F∗
q �n Sn(f)) �→ F∗

q �n Sn(Af).6.1.7

When writing Af , we identify the function f ∈ (Fk
q\{0})n with the corre-

sponding k × n-matrix (f (0)� | . . . | f (n − 1)�). Then Af = (A · f (0)� | . . . |
A · f (n − 1)�) and, therefore, Af (i) = (A · f (i)�)� = f (i) · A�.

For this reason, we first investigate the action of a wreath product in more
detail and explain how to split it into two group actions which are easier to
handle (cf. [123], [124]).

6.1.8 Lehmann’s Lemma Let GX and HY be two group actions. For the natural action of
the wreath product H �X G on YX, defined in 1.4.9, we have:

1. If the mapping ϕ is given by

ϕ : YX → (H\\Y)X : f �→ ϕ(f) where ϕ(f)(x) = H(f (x)),

6.1 Enumeration of Linear Isometry Classes 449

then the mapping

Φ : H �X G\\YX → G\\((H\\Y)X) : H �X G(f) �→ G(ϕ(f))

is a bijection, where G acts canonically (cf. 1.4.7) on this set of functions.

2. The orbit of f ∈ YX under the action of H �X G is given by

H �X G(f) = ϕ−1(Φ(H �X G(f))) = ϕ−1(G(ϕ(f))).

Proof: 1. For f1, f2 ∈ YX the following facts are equivalent:

Φ(H �X G(f1)) = Φ(H �X G(f2))

G(ϕ(f1)) = G(ϕ(f2))

ϕ(f2) ∈ G(ϕ(f1))

ϕ(f2) = ϕ(f1) ◦ g for some g ∈ G

ϕ(f2)(x) = ϕ(f1)(gx) for some g ∈ G and all x ∈ X

H(f2(x)) = H(f1(gx)) for some g ∈ G and all x ∈ X

f2(x) ∈ H(f1(gx)) for some g ∈ G and all x ∈ X

f2 = (ψ; g) f1 for some (ψ; g) ∈ H �X G

f2 ∈ H �X G(f1)

H �X G(f2) = H �X G(f1).

Reading these implications from the bottom to the top, we deduce that Φ is
well-defined. Reading them the other way round it follows that Φ is injective.
In order to prove that Φ is surjective, we first realize that ϕ is surjective, i.e.
each F ∈ (H\\Y)X is of the form ϕ(f) = F for some f ∈ YX. (The function f
should be determined in such a way that for each x ∈ X the value f (x) belongs
to F(x), i.e. F(x) = H(f (x)).) If ϕ(f) = F, then

Φ(H �X G(f)) = G(ϕ(f)) = G(F),

whence Φ is also surjective.
2. In order to prove the second assertion, consider a function F ∈ (H\\Y)X

and assume that F = ϕ(f) for some f ∈ YX. Then

ϕ−1({F}) = ϕ−1({ϕ(f)}) = H �X {1} (f)

=
{

f̃ ∈ YX
∣∣∣ f̃ (x) = ψ(x) f (x) for ψ ∈ HX and x ∈ X

}
.

Next we prove that

ϕ(f ◦ g) = ϕ(f) ◦ g, g ∈ G.

450 6. Enumeration of Isometry Classes

(The reader should realize that on the left hand side we are faced with the
natural action of G on YX and on the right hand side with the natural action
of G on (H\\Y)X.) The action of G commutes with the application of ϕ, since
ϕ(f ◦ g)(x) = H(f (g(x))) and (ϕ(f) ◦ g)(x) = ϕ(f)(gx) = H(f (gx)) for all
x ∈ X. Finally we obtain

H �X G(f) =
{
(ψ; g) f

∣∣ (ψ; g) ∈ H �X G
}

=
{

x �→ ψ(x) f (g−1x)
∣∣∣ ψ ∈ HX, g ∈ G

}
=

⋃
g∈G

{
x �→ ψ(x) f (g−1x)

∣∣∣ ψ ∈ HX
}

=
⋃
g∈G

H �X {1} (f ◦ g −1)

=
⋃
g∈G

ϕ−1
({

ϕ(f ◦ g −1)
})

=
⋃
g∈G

ϕ−1
({

ϕ(f) ◦ g −1
})

= ϕ−1
(⋃

g∈G

{
ϕ(f) ◦ g −1

})
= ϕ−1

({
ϕ(f) ◦ g −1

∣∣∣ g ∈ G
})

= ϕ−1 (G(ϕ(f)))

= ϕ−1 (Φ(H �X G(f))) . �

An application of Lehmann’s Lemma allows us to rewrite 6.1.6 in the form

GLk(q)\\
(
Sn\\

(
F∗

q\\(Fk
q\{0})

)n)
.6.1.9

This result shows the close connection between finite geometry and the theory
of linear codes: The set of orbits of F∗

q on Fk
q\{0} is the set of elements (also

called points) of the (k − 1)-dimensional projective space PG∗
k−1(q) (cf. Sec-

tion 3.7). Hence, we actually investigate

GLk(q)\\
(
Sn\\PG∗

k−1(q)
n).6.1.10

Here the symmetric group Sn acts in a natural way on the domain of the map-
pings in PG∗

k−1(q)
n. How does GLk(q) act on the orbits Sn\\PG∗

k−1(q)
n? From

6.1.7 we deduce that the application of A ∈ GLk(q) to the F∗
q �n Sn-orbit of

f ∈ (Fk
q\{0})n yields the orbit F∗

q �n Sn(Af). If ϕ is the mapping defined as
in Lehmann’s Lemma, then the elements of A(Sn(F)) for F ∈ PG∗

k−1(q)
n are

6.1 Enumeration of Linear Isometry Classes 451

the elements in ϕ
(
F∗

q �n Sn(Af)
)

for some f ∈ ϕ−1({F}). We want to describe
this set again as an orbit under a suitable group action. For this reason, in Sec-
tion 3.7 we have deduced from Exercise 1.4.13 the natural action of GLk(q) on
PG∗

k−1(q) as described in 3.7.4. Here it is repeated once again.

GLk(q)× PG∗
k−1(q) → PG∗

k−1(q) : (A, F∗
q (v)) �→ F∗

q(v · A�).

6.1.11Lemma Consider A ∈ GLk(q) and let ϕ be given by

ϕ : (Fk
q\{0})n → PG∗

k−1(q)
n : f �→ ϕ(f) where ϕ(f)(i) := F∗

q (f (i)).

Then
ϕ
(
F∗

q �n Sn(Af)
)

= A(Sn(ϕ(f))), f ∈ (Fk
q\{0})n,

where on the right hand side the action of GLk(q) on Sn\\PG∗
k−1(q)

n appears, which
is induced by the natural action of GLk(q) on PG∗

k−1(q).

Proof: From the second part of Lehmann’s Lemma we obtain

ϕ(F∗
q �n Sn(Af)) = Sn(ϕ(Af)).

Using Exercise 1.4.13 we deduce that ϕ(Af) = Aϕ(f), since

ϕ(Af)(i) = F∗
q(f (i) · A�) = AF∗

q (f (i)) = Aϕ(f)(i)

for all i ∈ n. Thus, Sn(ϕ(Af)) = Sn(Aϕ(f)) and this orbit equals A(Sn(ϕ(f))),
since A operates by matrix multiplication from the left, and π permutes the
columns of (the matrix) f . �

This way we have just replaced the action of GLk(q) × F∗
q �n Sn on (Fk

q\{0})n

by the action of GLk(q) × Sn on PG∗
k−1(q)

n, where this action is of the form
1.4.11. Therefore, GLk(q) acts only on the range PG∗

k−1(q) and Sn acts only on
the domain n. Instead of 6.1.10 we are finally dealing with

(GLk(q)× Sn)\\PG∗
k−1(q)

n. 6.1.12

This proves the following fundamental result:

6.1.13Theorem The linear isometry classes of linear, nonredundant (n, k)-codes over Fq

are the orbits of GLk(q) × Sn on PG∗
k−1(q)

n, the representatives of which are of rank
k. They form a subset of

GLk(q)\\
(
Sn\\PG∗

k−1(q)
n).

The inner orbit set Sn\\PG∗
k−1(q)

n can be represented by any complete system of
mappings f : n → PG∗

k−1(q) of pairwise different content

c(f) : PG∗
k−1(q) → N : y �→ | f−1({y})|.

452 6. Enumeration of Isometry Classes

Hence, the set of all linear isometry classes of linear, nonredundant (n, k)-codes over
Fq can be identified with the set of orbits of GLk(q) on the set of mappings
f ∈ PG∗

k−1(q)
n of pairwise different content which form k × n-matrices of rank k. �

Moreover, the class of bijective functions f : n → PG∗
k−1(q) is the class of

the simplex-codes. This fact demonstrates the particular role of simplex-codes
and their dual codes, the Hamming-codes.

6.1.14 Definition (projective codes and projective matrices) A nonredundant (n, k)-
code C is called projective if the columns of any generator matrix Γ of C are
pairwise linearly independent. In this case, we call Γ a projective matrix. In
other words, a k× n matrix Γ over Fq is called projective if no two columns are
linearly dependent. If n = 1 we require that Γ is not the zero matrix.
Thus, projective codes have projective generator matrices and vice-versa. The
columns of a projective generator matrix Γ are never zero and are representa-
tives of pairwise distinct one-dimensional (punctured) subspaces of Fk

q. There-
fore, they give rise to an injective mapping

Γ : n → PGk−1(q) or Γ : n → PG∗
k−1(q).

Here we prefer to use PG∗
k−1(q) since its elements are orbits under the action

of F∗
q . It is straightforward to verify that being projective is a property of the

isometry class of a code. That is, for linearly isometric codes C1 and C2 the
code C2 is projective if and only if C1 has this property.

Generalizing this definition, an arbitrary (n, k)-code C is called injective or
reduced if the mapping

Γ : n → PG∗
k−1(q) ∪ {0},

corresponding to the columns of an arbitrary generator matrix Γ of C, is injec-
tive.

The numbers of linear isometry classes of linear codes will be obtained
from a refinement of the metric classification 6.1.1. Besides the total number of
linear isometry classes, we also evaluate the number of linear isometry classes
of nonredundant codes as well as of projective codes.

The set of all k-dimensional nonredundant subspaces of Fn
q is indicated as

V(n, k, q).

By V(n, k, q) we denote the set of all projective U ∈ V(n, k, q), and we write
U (n, k, q) for the set of all injective U ∈ U(n, k, q). For the sets of linear isome-
try classes in U(n, k, q) and V(n, k, q) we use the symbols

U n,k,q := Mn(q)\\ U(n, k, q), Vn,k,q := Mn(q)\\V(n, k, q),
U n,k,q := Mn(q)\\U(n, k, q), Vn,k,q := Mn(q)\\V(n, k, q).

6.1 Enumeration of Linear Isometry Classes 453

In addition, we introduce the following sets:

T n,k,q :=
⋃
l≤k

Vn,l,q (= Vn,≤k,q),

T n,k,q :=
⋃
l≤k

Vn,l,q (= Vn,≤k,q),

comprising the classes of linear (n, l)-codes of dimension l ≤ k. The cardinali-
ties of these sets are denoted by

Tnkq, Tnkq, Vnkq, Vnkq, Unkq, Unkq.

Of course, there is a close connection between these numbers. Using Exer-
cise 6.1.6 we obtain the following basic results for the enumeration of linear
isometry classes of linear codes (cf. Exercise 6.1.6):

6.1.15Corollary

Tnkq is the number of orbits computed in 6.1.12,

Tnkq = |(GLk(q)× Sn)\\PG∗
k−1(q)

n| = |GLk(q)\\
(
Sn\\PG∗

k−1(q)
n)|.

If k > 1, then Tn,k−1,q is also the number of GLk(q) × Sn-orbits of mappings
f ∈ PG∗

k−1(q)
n corresponding to matrices of rank not greater than k − 1.

Tnkq is the number of GLk(q) × Sn-orbits on the set of injective functions in
PG∗

k−1(q)
n,

Tnkq = |(GLk(q)× Sn)\\PG∗
k−1(q)

n
inj| = |GLk(q)\\

(
Sn\\PG∗

k−1(q)
n
inj

)
|.

Vnkq = Tnkq − Tn,k−1,q, Vnkq = Tnkq − Tn,k−1,q for 1 < k ≤ n.

Unkq = ∑n
i=k Vikq, Ukkq = Vkkq, and Unkq = Vn−1,k,q + Vnkq for n > k.

The initial values for these recursions are Vn1q = 1 for n ∈ N∗, V11q = 1 and
Vn1q = 0 for n > 1. �

This way we have expressed Unkq, Unkq, Vnkq, and Vnkq in terms of Tnkq and
Tnkq. The remaining problem is the evaluation of Tnkq and Tnkq. In order to ob-
tain these numbers we could, of course, use the Lemma of Cauchy–Frobenius
3.4.2 and compute the average number of fixed points. But it is our intention
to get a more general result which gives a generating function for these num-
bers. It will turn out that the weighted form of the Lemma of Cauchy–Frobenius
is more suitable for this purpose. For this reason we introduce weight func-
tions. They are mappings defined on the set, on which the group acts, which
are constant on each orbit. The range of these weight functions is usually a
commutative ring (mostly a polynomial ring) which contains Q as a subring
since we need to allow division by |G|. The following generalization of the
Lemma of Cauchy–Frobenius allows us to count orbits with additional prop-
erties expressed by weights.

454 6. Enumeration of Isometry Classes

6.1.16 The Lemma of Cauchy–Frobenius, weighted form Consider a finite action GX
and suppose that w : X → R is a mapping from X into a commutative ring R which
contains Q as a subring. If w is constant on the orbits of G on X, then, for each
transversal T of the set of orbits we have

∑
t∈T

w(t) =
1
|G| ∑

g∈G
∑

x∈Xg

w(x).

Proof: The following identities are obvious, possibly up to the final one which
uses the fact that w is constant on the orbits:

∑
g∈G

∑
x∈Xg

w(x) = ∑
x∈X

∑
g∈Gx

w(x) = ∑
x∈X

|Gx|w(x)

= |G| ∑
x∈X

|G(x)|−1w(x) = |G| ∑
t∈T

w(t). �

If the values w(f) of the weight function are monic monomials over Q,
then the values in

{
w(f) | f ∈ YX}

are linearly independent. Hence, the right
hand side of the weighted form of the Lemma of Cauchy–Frobenius yields the
number of orbits of any given weight.

For group actions on YX of the form 1.4.7 we introduce, for any given map-
ping W : Y → R, the multiplicative weight w : YX → R, by

w(f) := ∏
x∈X

W(f (x)).6.1.17

This mapping is clearly constant on the orbits of G on YX.
We recall from elementary theory of permutation groups that the permu-

tation g : x �→ gx induced by GX possesses a decomposition into pairwise
disjoint cycles. If this decomposition consists of ai(g) cycles of length i, for
i = 1, . . . , |X|, then the sequence

(a1(g), a2(g), . . . , a|X|(g))

is called the cycle type of g. In other words, ai(g) is the number of orbits of
length i of the group 〈 g 〉 on X, i.e.

ai(g) =
∣∣{ω ∈ 〈 g 〉\\X

∣∣ |ω| = i
}∣∣ =

∣∣{ω ∈ 〈 g 〉\\X
∣∣ |ω| = i

}∣∣ .
The cycle type of g satisfies ∑n

i=1 iai(g) = |X|, since X is the disjoint union of
the cycles of 〈 g 〉.

An application of the weighted form of the Lemma of Cauchy–Frobenius
gives:

6.1 Enumeration of Linear Isometry Classes 455

6.1.18Pólya’s Theorem Let GX be a finite group action which induces according to 1.4.7
a group action on the finite set of mappings YX. Let R be a commutative ring which
contains Q as a subring. If T is a transversal of G\\YX, then for each W : Y → R
and the corresponding multiplicative weight w : YX → R we have

∑
t∈T

w(t) =
1
|G| ∑

g∈G

|X|
∏
i=1

(
∑
y∈Y

W(y)i

)ai(g)

=
1
|G| ∑

π∈G

|X|
∏
i=1

(
∑
y∈Y

W(y)i

)ai(π)

,

where ai(g) or ai(π) is the number of cyclic factors of length i of the permutation
g ∈ SX or π ∈ SX. �

The most general multiplicative weight function is obtained by considering
the elements of Y as algebraically independent indeterminates in the polyno-
mial ring Q[Y]. The mapping W : Y → Q[Y] which takes y ∈ Y to itself gives
rise to the multiplicative weight

w : YX → Q[Y] : f �→ ∏
x∈X

f (x) = ∏
y∈Y

y| f−1({y})|.

The image of f is a monic monomial in Q[Y], which uniquely describes the
content (cf. 6.1.13)

c(f) : Y → N : y �→
∣∣∣ f−1({y})

∣∣∣
of f . The sum of weights of the elements in a transversal T of the orbits is

∑
t∈T

w(t) =
1
|G| ∑

g∈G

|X|
∏
i=1

(
∑
y∈Y

yi

)ai(g)

.

This result can be formulated – as it was already done by G. Pólya – in terms
of the cycle index polynomial corresponding to the action GX.

6.1.19Definition (cycle index polynomial) If G is a finite group acting on a finite set
X, then the cycle index C(G, X) of the action GX is the polynomial

C(G, X) :=
1
|G| ∑

g∈G

|X|
∏
i=1

zai(g)
i ∈ Q[z1, z2, . . . , z|X|],

where (a1(g), . . . , a|X|(g)) is the cycle type of g.
Pólya’s Theorem shows that the sum of the weights of the elements of a

transversal can be obtained from the cycle index by replacing the indetermi-
nate zi by the sum of the i-th powers of all weights, ∑y∈Y W(y)i, i.e.

∑
t∈T

w(t) = C(G, X)
∣∣
zi:=∑y W(y)i.

Our aim is to evaluate the generating function for Tnkq. For fixed k and q,
this is the formal power series whose coefficient of xn is Tnkq. For this reason
we still give a short introduction to

456 6. Enumeration of Isometry Classes

6.1.20 The ring of formal power series over a ring Let R be an integral domain, then
R[[x]], the ring of formal power series over R in the indeterminate x, is given
by

R[[x]] =

{
∑
n≥0

anxn
∣∣∣ an ∈ R, n ∈ Z, n ≥ 0

}
.

Together with addition and multiplication

∑
n≥0

anxn + ∑
n≥0

bnxn := ∑
n≥0

(an + bn)xn

(
∑
n≥0

anxn

)
·
(

∑
n≥0

bnxn

)
:= ∑

n≥0

(
n

∑
r=0

arbn−r

)
xn,

R[[x]] is an integral domain.
If f is a nonzero formal power series of the form f = ∑n≥N anxn ∈ R[[x]]

with aN �= 0, then N is called the order of f , for short

ord(f) = N.

For technical reasons, we associate the zero series with the order +∞.
A family (fj)j∈ J is called summable if for each n ≥ 0 the cardinality of the

index set
Jn :=

{
j ∈ J | ord(fj) ≤ n

}
is finite. In this case we set

∑
j∈ J

fj := ∑
n≥0

snxn,

where sn is the coefficient of xn in the (finite) sum

∑
j∈ Jn

fj.

Finally, if (an)n≥0 is an arbitrary sequence of numbers, then the ordinary gen-
erating function for this sequence is given by

∑
n≥0

anxn.

Using this, we can now prove the decisive result we need in order to enu-
merate linear codes:

6.1.21 Theorem Let HY be a finite group action. The generating function for the number of
(H × Sn)-orbits on Yn is

∑
n∈N

|(H × Sn)\\Yn| · xn = C(H,Y)
∣∣
zi:=∑∞

j=0 xi·j.

For the subset Yn
inj of the injective functions in Yn we obtain

∑
n∈N

|(H × Sn)\\Yn
inj| · xn = C(H,Y)

∣∣
zi :=1+xi.

6.1 Enumeration of Linear Isometry Classes 457

Proof: 1. From Exercise 1.4.9 it follows that

(H × Sn)\\Yn = H\\ (Sn\\Yn) .

Thus, according to Exercise 6.1.1, the orbit (H × Sn)\\Yn corresponds to the set
of H-orbits on the set of mappings f ∈ Yn of different content. The content
c(f) of f ∈ Yn maps y ∈ Y to c(f)(y) := | f−1({y})|, the cardinality of the
inverse image of y. It is a decomposition of n into |Y| summands. Such a
decomposition can be viewed as a mapping ϕ ∈ NY such that

∑
y∈Y

ϕ(y) = n.

2. If we now define a weight

W : N → Q[x] : W(n) := xn,

then we obtain the first assertion directly from the following generalization
of 6.1.18.

Since the action of H on NY is not a finite group action, we need a general-
ization of Pólya’s Theorem. For ϕ ∈ NY we define the weight w(ϕ) by

w(ϕ) := ∏
y∈Y

W(ϕ(y)) = x∑y∈Y ϕ(y).

Then ϕ is the content of some f ∈ Yn if and only if w(ϕ) = xn. Thus, the set of
Sn-orbits on Yn is in bijection to the set

NY
n :=

{
ϕ ∈ NY

∣∣∣ w(ϕ) = xn
}

.

Moreover, the (H × Sn)-orbits on Yn correspond to the H-orbits on NY
n , where

H acts on the domain Y as introduced in 1.4.7. The three families (xn)n≥0,
(|(H × Sn)\\Yn| xn)n≥0, and

(
|NY

n |xn)
n≥0 are summable in Q [[x]], which is the

ring of formal power series in the indeterminate x over Q. Hence,

∑
n∈N

xn = ∑
n∈N

W(n), ∑
n∈N

|(H × Sn)\\Yn| xn, ∑
n∈N

|NY
n |xn

exist as elements of Q [[x]]. Since NY is the disjoint union of NY
n for n ∈ N, the

last sum is equal to ∑ϕ∈NY w(ϕ). Moreover, all elements of an orbit ω = H(ϕ)
have the same weight, which allows us to set w(ω) := w(ϕ). Consequently,
we get

∑
n∈N

|(H × Sn)\\Yn| xn = ∑
n∈N

|H\\NY
n |xn = ∑

ω∈H\\NY

w(ω).

Since (w(ϕ))ϕ∈NY is a summable family, also (w(ϕ))ϕ∈(NY)h
is summable for

h ∈ H, where (NY)h is the set of fixed points of h. Moreover,
(
|Hϕ|w(ϕ)

)
ϕ∈NY

458 6. Enumeration of Isometry Classes

is summable, where Hϕ is the stabilizer of ϕ. Following the ideas of the proof
of Pólya’s Theorem, we determine the sum of the weights of the fixed points
of h ∈ H in NY as

∑
ϕ∈(NY)h

w(ϕ) =
|Y|
∏
i=1

(
∑

n∈N
W(n)i

)ai(h)

,

and finally

∑
ω∈H\\NY

w(ω) = C(H,Y)
∣∣
zi=∑n∈N W(n)i = C(H,Y)

∣∣
zi=∑n∈N xi·n .

3. The second assertion follows similarly, since the contents of injective func-
tions are decompositions whose summands are either 0 or 1. Thus, instead
of NY we consider {0, 1}Y , and the weight W : {0, 1} → Q[x] is defined by
W(0) := 1 and W(1) := x. This gives the second assertion about the generat-
ing function for the number of orbits of injective functions. �

We are now in a position to derive the generating functions for the numbers

Tnkq = |(GLk(q)× Sn)\\PG∗
k−1(q)

n|

and
Tnkq = |(GLk(q)× Sn)\\PG∗

k−1(q)
n
inj|

by an application of the last theorem. These numbers are numbers of orbits
of the general linear group. As pointed out in Section 3.7, we can restrict our
attention to the projective linear group

PGLk(q) := GLk(q)/Z k,

which is the factor group over the center Z k of the general linear group. This
reduction is possible, since the action of the general linear group is an action
on mappings (to be exact, on orbits of mappings), the range of which is the
projective space PG∗

k−1(q). It proves

6.1.22 Corollary Since the general linear group GLk(q) operates as the projective linear
group PGLk(q) on the projective space PG∗

k−1(q), we have

Tnkq = GLk(q)\\(Sn\\PG∗
k−1(q)

n) = PGLk(q)\\
(
Sn\\PG∗

k−1(q)
n)

and

Tnkq = GLk(q)\\(Sn\\PG∗
k−1(q)

n
inj) = PGLk(q)\\

(
Sn\\PG∗

k−1(q)
n
inj
)
. �

Using these identities we obtain, by an application of 6.1.21, the following
result [61]:

6.1 Enumeration of Linear Isometry Classes 459

6.1.23Corollary The generating functions for the numbers Tnkq and Tnkq can be obtained
from the cycle index of the natural action of the projective linear group on the projective
space in the following way:

∑
n∈N

Tnkqx
n = C(PGLk(q), PG∗

k−1(q))
∣∣
zi :=∑∞

j=0 xi·j ,

and

∑
n∈N

Tnkqx
n = C(PGLk(q), PG∗

k−1(q))
∣∣
zi:=1+xi. �

6.1.24Example Let us consider isometry classes of binary linear codes. Since the
wreath product F∗

2 �n Sn is isomorphic to the symmetric group Sn, we are faced
with an action of Sn × GLk(2) on (Fk

2 \ {0})n. In this situation the projective
linear group is simply the linear group, and from 6.1.23 we obtain that

∞

∑
n=0

Tnk2x
n = C(GLk(2), Fk

2 \ {0})
∣∣
zi :=∑∞

j=0 xi·j,

and
∞

∑
n=0

Tnk2x
n = C(GLk(2), Fk

2 \ {0})
∣∣
zi :=1+xi.

These cycle indices are known for q = 2, see [50], [60], [82], [83], [184], and
programs for their evaluation are implemented in SYMMETRICA ([190]), so
that tables can be determined easily. Comparing Tables 6.2 and 6.1 shows that
the set of isometry classes of (n, k)-codes is much smaller than the set of of all
(n, k)-codes for given parameters n and k. �

If the cycle indices C(PGLk(q), PG∗
k−1(q)) are known for general q, it is pos-

sible to evaluate the numbers Tnkq and Tnkq, from which we can deduce Vnkq,
Vnkq, Unkq, and Unkq for arbitrary fields Fq. A method for computing these cy-
cle indices is described in Section 6.3. Finally, in Section 6.4 we present several
tables of these numbers which were calculated using SYMMETRICA (cf. [59]).
They extend the results of D. Slepian on binary codes, see [184]. It is also pos-
sible to determine the number of linear isometry classes of linear (n, k)-codes
over Fq by using the software of the attached CD for moderate parameters n,
k and q.

For later applications to the construction of transversals of isometry classes
of projective codes in Chapter 9 we mention the following two facts: From
Exercise 6.1.2 it follows that

Sn\\PG∗
k−1(q)

n
inj =

(
PG∗

k−1(q)
n

)
,

460 6. Enumeration of Isometry Classes

the set of all n-subsets of PG∗
k−1(q). This implies

T n,k,q = PGLk(q)\\
(

PG∗
k−1(q)
n

)
.6.1.25

Exercises

E.6.1.1 Exercise Let the symmetric group Sn act on the set of mappings Yn as de-
scribed in 1.4.7. Show that two mappings f1, f2 ∈ Yn belong to the same orbit
if and only if they are of the same content, i.e.

| f−1
1 ({y})| = | f−1

2 ({y})| for all y ∈ Y.

E.6.1.2 Exercise Let Yn
inj denote the set of mappings f ∈ Yn which are injective, i.e.

with | f−1({y})| ≤ 1, for all y ∈ Y. Show that the Sn-orbits on this set can be
represented by n-subsets of Y.

E.6.1.3 Exercise Let x be an indeterminate over R. Two nonnegative integers n and k
define the rational function

[n
k

]
by

[n
k

]
:=

⎧⎪⎨⎪⎩
[n]!

[k]![n − k]!
if k ≤ n,

0 otherwise,

where
[0]! := 1, [n]! := [n][n − 1] · · · [1], n ≥ 1,

and [n] = 1 + x + . . . + xn−1 for n ≥ 1. Prove that the number of subspaces of
dimension k of Fn

q is the value of the Gauss-polynomial
[n

k

]
at q:

| U (n, k, q)| =
[n

k

]
(q) :=

(xn − 1) · · · (xn−k+1 − 1)
(xk − 1) · · · (x − 1)

∣∣∣
x=q

=
(qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
.

The numbers
[n

k

]
(q) are known as the q-binomial numbers. In the notation of

Section 3.7, we have θn−1(q) = |U (n, 1, q)| =
[n

1

]
(q) = qn−1

q−1 .

E.6.1.4 Exercise Show that the action of Mn(q) on U (n, k, q) can be restricted to ac-
tions on V(n, k, q), on U(n, k, q), and on V(n, k, q), which means that these sub-
sets of U(n, k, q) are unions of orbits of the linear isometry group.

6.1 Enumeration of Linear Isometry Classes 461

E.6.1.5Exercise Prove that for finite actions GX, HY and the corresponding canonical
actions on YX the following enumeration formulae hold true:

|G\\YX| =
1
|G| ∑

g∈G
|Y|c(g) = C(G, X)

∣∣
zi :=|Y|,

where c(g) := ∑i ai(g) = |〈 g 〉\\X| denotes the number of cycles in the cycle
decomposition of the permutation g, while

|(H × G)\\YX| =
1

|H||G| ∑
(h,g)∈H×G

|X|
∏
i=1

|Yhi |ai(g) =
1
|H| ∑

h∈H
C(G, X)

∣∣
zi:=|Yhi |

and
|H �X G\\YX| = C(G, X)

∣∣
zi:=|H\\Y|.

E.6.1.6Exercise Prove the assertions in 6.1.15. Show that the rank of a matrix corre-
sponding to a mapping Γ ∈ PG∗

k−1(q)
n does not depend on the choice of the

representatives of the elements Γ(i) in PG∗
k−1(q). Check that the matrices in

the orbit (GLk(q)× Sn)(Γ) are all of the same rank.
For � < k, show that the mapping

GL�(q) → GLk(q) : A �→
(

A 0
0 Ik−�

)
,

where Ir is the unit matrix of rank r, is an embedding of GL�(q) into GLk(q).
Consider the natural embedding of F�

q in Fk
q given by v �→ (v | 0k−�).

If the function Γ ∈ PG∗
k−1(q)

n describes a matrix of rank � < k, find a
function Γ′′ ∈ PG∗

�−1(q)
n which in a natural way can be identified with a suit-

able element of the orbit (GLk(q) × Sn)(Γ). Show that all elements of the or-
bit (GL�(q) × Sn)(Γ′′) correspond in the same way to elements of the orbit
(GLk(q) × Sn)(Γ). (Hint: For finding Γ′′, determine by elementary row oper-
ations on Γ a matrix Γ′ in which the last k − � rows consist of zeros only. The
mapping Γ′′ can be obtained from Γ′ by omitting the last k − � entries in each
column.)

In order to prove that for k > 1 the number of GLk(q)× Sn-orbits of map-
pings Γ ∈ PG∗

k−1(q)
n corresponding to matrices of rank not greater than k − 1

is equal to Tn,k−1,q, show that all matrices in the orbit (GLk(q)× Sn)(Γ) in

which the last row consists of zeros only, i.e. GLk(q)(Γ) $ Γ′ =

(
Γ′′

0n

)
with Γ′′ corresponding to a mapping in PG∗

k−2(q)
n, are of the form(

A B
0k−1 D

)
· Γ′ · Mπ =

(
A · Γ′′ · Mπ

0n

)

462 6. Enumeration of Isometry Classes

for some A ∈ GLk−1(q), B ∈ F(k−1)×1
q , D ∈ GL1(q) = F∗

q and a permuta-
tion matrix Mπ for π ∈ Sn. This is the (GLk−1(q) × Sn)-orbit of Γ′′. Thus
the (GLk(q) × Sn)-orbits of matrices Γ of rank less than k and without zero
columns correspond to the (GLk−1(q)× Sn)-orbits on PG∗

k−2(q)
n.

E.6.1.7 Exercise Let R be a ring. Consider the set S of all sequences (rn)n≥0 with
rn ∈ R for n ≥ 0. Prove that this set together with addition and multiplication

(rn)n≥0 + (sn)n≥0 = (rn + sn)n≥0, (rn)n≥0, (sn)n≥0 ∈ S,

(rn)n≥0 · (sn)n≥0 = (tn)n≥0, tn =
n

∑
i=0

risn−i, (rn)n≥0, (sn)n≥0 ∈ S,

is a ring. In addition, show that

S is commutative if and only if R is commutative,

S is a ring with 1 if and only if R is a ring with 1,

S is an integral domain if and only if R is an integral domain.

Now assume that R is an integral domain. Let s = (rn)n≥0 be an element of
S different from 0. Then N = min {n ≥ 0 | rn �= 0} is called the order of s, in
short ord(s). The order of 0 is defined to be +∞. Show that the mapping

d : S × S → R : d(s(1), s(2)) :=
{

2− ord(s(1)−s(2)) if s(1) �= s(2),
0 if s(1) = s(2),

is a metric on S. This metric induces a topology on S, the order topology. Prove
that a topological basis of the system of neighborhoods of s(0) ∈ S is given by

Un(s(0)) =
{

s ∈ S | ord(s − s(0)) > n
}

, n ∈ N.

A family (s(n))n≥0 with s(n) ∈ S is called summable if the following limit exists
with respect to the order topology:

lim
N→∞

N

∑
n=0

s(n).

Prove that (s(n))n≥0 is summable in S if and only if limn→∞ ord(s(n)) = +∞,
which is equivalent to limn→∞ s(n) = 0.

If (s(n))n≥0 is a summable family, then we set

∑
n≥0

s(n) = lim
N→∞

(
N

∑
n=0

s(n)

)
.

6.2 Indecomposable Linear Codes 463

We identify the elements r of R with the series (r, 0, 0, . . .) in S. Consider the
particular element x = (0, 1, 0 . . .) ∈ S. Show that any sequence (rn)n≥0 ∈ S
can be written as

∑
n≥0

rnxn,

where xn is the n-fold product of x introduced in Exercise 1.6.6. This represen-
tation as a sum makes sense, since the family (rnxn)n≥0 is summable.

Finally, we identify S with the ring R[[x]] of formal power series over r in
the indeterminate x.

E.6.1.8Exercise Prove the following formulae for the order of formal series over an
integral domain R. For f , g ∈ R[[x]] we have ord(f + g) ≥ min{ord(f), ord(g)}
and ord(f g) = ord(f) + ord(g). We use the convention +∞ > n for all n ∈ N,
+∞ ≤ +∞, and (+∞) + n = n + (+∞) = (+∞) + (+∞) = +∞ for n ∈ N.

6.26.2 Indecomposable Linear Codes

The enumerative formulae just derived and the corresponding tables of num-
bers give us a good idea about the multitude of linear isometry classes of linear
codes without zero columns in their generator matrices. But we are mainly in-
terested in the optimal codes, i.e. in the (n, k)-codes with maximal minimum
distance d. Hence, we are in fact interested in a small fraction of the total va-
riety of linear isometry classes which we have enumerated. To begin with, we
mention that there exists a Decomposition Theorem for linear codes. D. Slepian
has shown in [184], that every linear code can be decomposed in an essentially
unique way into an outer direct sum of indecomposable codes, and we recall
from Section 2.2, that the minimum distance of an outer direct sum is the least
among the minimum distances of its components. This motivates enumera-
tion and the construction of the linear isometry classes of indecomposable linear
codes, the generator matrices of which do not contain zero columns and whose
minimum distance is maximal, for given parameters n, k, q. In this section we
restrict our investigations to nonredundant codes.

6.2.1Definition (indecomposable codes) We call a code decomposable, if it is linearly
isometric to a code with a generator matrix in the form of a block diagonal
matrix

Γ =

(
Γ0 0
0 Γ1

)
=: Γ0 � Γ1,

consisting of two generator matrices Γi of linear (ni, ki)-codes with 1 ≤ ki ≤ ni

for i ∈ 2. Hence, it is linearly isometric to the outer direct sum of at least

464 6. Enumeration of Isometry Classes

two codes. Correspondingly, we speak about a decomposable generator matrix.
Otherwise, both the code and its generator matrix are said to be indecomposable.

At first we prove a Decomposition Theorem for linear codes. For this pur-
pose we recall some concepts and facts from Linear Algebra about indepen-
dent families. We are dealing with finite families S of elements of Fk

q. These
are finite sequences S = (vi)i∈n of vectors vi ∈ Fk

q of length n ≥ 1. The fam-
ilies S0 = (v0i)i∈n0, . . . , Sr−1 = (vr−1,i)i∈nr−1 in Fk

q are called independent if an
equation of the form

∑
i∈r

∑
j∈ni

αijvij = 0, αij ∈ Fq,

always implies that

∑
j∈ni

αijvij = 0 for i ∈ r.

In other words, there are no linear relations between vectors of different inde-
pendent families.

The proof of the next lemma is left to the reader.

6.2.2 Lemma If S0, . . . , Sr−1 are independent families in Fk
q, and if Ri are nonempty

subfamilies of Si, then also R0, . . . , Rr−1 are independent families in Fk
q. �

A family S = (vi)i∈I in Fk
q is called indecomposable, if it cannot be expressed

as the union of at least two (nonempty) independent subfamilies (vi)i∈I′ and
(vi)i∈I′′ where I is the disjoint union I′ ∪ I′′. Otherwise, S is called decompos-
able. In the sequel, we want to prove that any decomposable sequence can
be decomposed uniquely into the union of indecomposable subfamilies. For
doing this, we need some notions about linear combinations.

Let S = (vi)i∈n be a family in Fk
q. A linear combination

∑
i∈n

αivi, αi ∈ Fq,

is called irreducible, if there does not exist a proper partial sum (consisting of
at least one and at most n − 1 summands) which yields zero. Otherwise, the
linear combination is called reducible.

6.2.3 Lemma Let S be a family of vectors in Fk
q. Any reducible linear combination of

vectors of S which yields zero can be decomposed into a sum of irreducible linear
combinations.

6.2 Indecomposable Linear Codes 465

Proof: If the linear combination

∑
i∈n

αivi = 0

is reducible, then there exist partial sums which also yield zero. Assume that

αi0vi0 + . . . + αir−1vir−1 = 0

is such a partial sum of minimal length. Then this partial sum is irreducible.
Moreover,

∑
i∈n

αivi − ∑
j∈r

αijvij = 0

is also a partial sum which yields zero. Either it is also irreducible, or we can
repeat the procedure just described, in order to obtain, after a finite number of
steps, the desired decomposition into irreducible linear combinations. �

Using the sequence S = (vi)i∈n, we can form qn − 1 different linear com-
binations such that not all coefficients αi are equal to zero. Omitting all those
linear combinations which do not yield the value zero and also those which
are reducible, we end up with a finite list L of irreducible linear combinations
which sum up to zero.

Two vectors vi and vj from S are called directly connected, if there exists a
linear combination in L with coefficients αi �= 0 �= αj. A vector of S which
does not occur in any of the linear combinations in L is called directly connected
with itself . Two vectors vi and vj from S are called connected, if there exists an
integer m ≥ 0 and a sequence (vi0 , vi1 , . . . , vim) of vectors in S such that i = i0,
j = im and vir is directly connected with vir+1 for r ∈ m. In order to indicate
that vi and vj are connected we write vi ∼ vj and also i ∼ j. (When v is directly
connected with itself we also write v ∼ v.)

6.2.4Lemma Let S = (vi)i∈n be a family in Fk
q.

1. The relation ∼, introduced above, is an equivalence relation on the set of vectors vi

for i ∈ n. The equivalence class of vi corresponds to the subfamily (vj)j∼i.

2. The family (vj)j∼i is indecomposable.

3. Let {vi | i ∈ I′} be a complete set of representatives with respect to ∼. Then the
families (vj)j∼i for i ∈ I′ are independent.

4. If R is an indecomposable family in S, then there exists exactly one i ∈ I′ such
that R is a subfamily of (vj)j∼i.

466 6. Enumeration of Isometry Classes

Proof: The proof of the first part is obvious. If we suppose that (vj)j∼i is
decomposable, then there exist two nonempty, disjoint sets I′ and I′′ such that
I′ ∪ I′′ = {j | j ∼ i} and (vj)j∈I′ and (vj)j∈I′′ are independent families. Choose
j1 ∈ I′ and j2 ∈ I′′. Since vj1 ∼ vj2 , there exists a sequence vj1 = vi0 ∼ . . . ∼
vim = vj2 such that vir is directly connected with vir+1 for r ∈ m. From the
special choice of j1 and j2 in I′ and I′′, respectively, we derive the existence of
at least one index r such that ir belongs to I′ and ir+1 belongs to I′′. Then vir
and vir+1 are directly connected, which is a contradiction to the fact that they
belong to two independent families. Consequently, (vj)j∼i is indecomposable.

In order to prove the third assertion, assume that

∑
i∈I′

∑
j∼i

αijvj = 0

is a linear combination, which contains vectors from at least two different fam-
ilies (vj)j∼i with nonzero coefficients. Then this linear combination is not ir-
reducible, since otherwise vectors of different equivalence classes would be
directly connected. According to 6.2.3, this reducible linear combination can
be written as a sum of irreducible linear combinations, each of which is zero.
Since they are irreducible, none of these linear combinations contains vectors
from different equivalence classes. Forming the sum of all irreducible linear
combinations containing vectors from (vj)j∼i we get

∑
j∼i

αijvj = 0

for each i ∈ I′.
Assume that R = (vi)i∈ J for J ⊆ n is an indecomposable subfamily of S.

For i ∈ I′ let Ri = (vj)j∈ J, j∼i. We have just proved that (vj)j∼i for i ∈ I′ are
independent families. Then there is exactly one i0 ∈ I′ such that Ri0 is not
empty. If we suppose on the contrary that there are at least two nonempty
families, then, according to 6.2.2, they are also independent families. Hence,
R is the union of at least two independent families, which is a contradiction
to the assumption that R is indecomposable. This finishes the proof of the last
assertion. �

Based on these results we prove the next

6.2.5 Theorem A finite family S of vectors in Fk
q can be written in a unique way as the

union of independent, indecomposable sets.

Proof: According to 6.2.4, we obtain a decomposition of S into independent,
indecomposable families by determining the equivalence classes (vj)j∼i for
i ∈ I′.

6.2 Indecomposable Linear Codes 467

Conversely, consider a decomposition of S into independent, indecompos-
able families Rk for k in an index set K. From the last statement of 6.2.4 we
deduce that for each k ∈ K there exists exactly one i ∈ I′ such that Rk is a
subfamily of (vj)j∼i. Moreover, since the family (vj)j∼i is indecomposable, R�

is not a subfamily of (vj)j∼i for � �= k. Hence, the indecomposable families
Rk correspond in a unique way to the independent, indecomposable families
(vj)j∼i for i ∈ I′. �

6.2.6Remark Let S denote the family of columns of a generator matrix Γ of an (n, k)-
code C. Then C is indecomposable if and only if S is indecomposable. This
characterization is, first of all, independent of the choice of a generator matrix
Γ of C, since the columns of A · Γ, for A ∈ GLk(q), satisfy the same dependency
relations as the columns of Γ. Secondly, this characterization is independent
of the choice of the representative C of its linear isometry class, since a linear
isometry permutes the columns of Γ and multiplies them by nonzero elements
of F∗

q . (See Exercise 6.2.1.)
We are now in a position to prove Slepian’s Theorem:

6.2.7The Decomposition Theorem for Linear Codes Any (n, k)-code C over Fq is
linearly isometric to an outer direct sum of indecomposable codes Ci:

C � C0 � . . . � Cr−1.

This decomposition is unique in the following sense. If we are given another decompo-
sition of C of the form

C � C′
0 � . . . � C′

r′−1

with indecomposable codes C′
i , then r = r′ and there exists a permutation σ ∈ Sr so

that Ci and C′
σ(i) are linearly isometric.

Proof: We only have to prove the uniqueness of such a decomposition. As-
sume that C is linearly isometric to two decompositions, say,

C0 � . . . � Cr−1

and
C′

0 � . . . � C′
r′−1

with indecomposable (ni, ki)-codes Ci and indecomposable (n′
i, k

′
i)-codes C′

i
with generator matrices Γi and Γ′

i, respectively. The parameters ni, n′
i, ki, and

k′i satisfy the equations

∑
i∈r

ni = n = ∑
i∈r′

n′
i and ∑

i∈r
ki = k = ∑

i∈r′
k′i. 6.2.8

468 6. Enumeration of Isometry Classes

By assumption there exist matrices A ∈ GLk(q) and B ∈ Mn(q) such that

A · Γ′ · B = Γ6.2.9

such that
Γ := Γ0 � . . . � Γr−1

and
Γ′ := Γ′

0 � . . . � Γ′
r′−1.

The columns of Γ decompose into indecomposable families S0, . . . , Sr−1, where
S0 consists of the first n0 columns of Γ, S1 of the next n1 columns, and so
on. According to 6.2.9, the columns of A · Γ′ · B = Γ and Γ′ · B satisfy the
same dependency relations. Hence, the first n0 columns of Γ′ · B form an
independent set S̃0, the following n1 an independent set S̃1, and so on.

On the other hand, Γ′ · B arises from Γ′ by reordering the columns and
multiplying the columns by elements of F∗

q . Hence after some permutation,
the columns of Γ′ · B satisfy the same dependency relations as the columns of
Γ′. But the columns of Γ′ decompose into r′ independent families which are
given by the decomposition of Γ′. The first n′

0 columns form an independent
set S′

0, the following n′
1 an independent set S′

1, and so on. From 6.2.5 we deduce
that r = r′. Moreover, there exists a permutation σ ∈ Sr , such that for i ∈ r the
lengths n′

σ(i) and ni of the indecomposable families S′
σ(i) and S̃i coincide, and

the family S̃i consists – up to scalar multiples – of those columns of Γ′ which
contain the submatrix Γ′

σ(i). Thus, Γ′ · B can be written in the form A′ · Γ′′,
where A′ is a suitable permutation matrix in GLk(q) and Γ′′ is given by

Γ′′ = (Γ′
σ(0) · B0) � . . . � (Γ′

σ(r−1) · Br−1),

for suitable matrices Bi ∈ Mni(q). Finally, if we put A′′ := A · A′ ∈ GLk(q),
then

A′′ · Γ′′ = A · Γ′ · B = Γ.6.2.10

Let T0 be the matrix consisting of the first n0 columns of Γ, T1 the matrix, con-
sisting of the next n1 columns, and so on. Analogously, we define the matrices
T′′

i as submatrices of Γ′′. From this construction it follows immediately that Ti

is a matrix of rank ki and T′′
i is of rank k′

σ(i). Since Ti = A′′ · T′′
i and A′′ is regu-

lar, we deduce that k′
σ(i) ≥ ki. This, together with 6.2.8, gives that k′

σ(i) equals
ki. If we write the matrix A′′ as block matrix (A′′

ij)i,j∈r, consisting of blocks A′′
ij,

which are ki × kj-matrices, from 6.2.10 we obtain

A′′
ii · Γ′

σ(i) · Bi = Γi, i ∈ r.

Comparing the degrees we obtain that the diagonal blocks A′′
ii are all regular.

Hence, Γ′
σ(i) and Γi are generator matrices of linearly isometric codes Ci and

C′
σ(i). �

6.2 Indecomposable Linear Codes 469

Using the notation introduced in Exercise 2.3.17, the last theorem can be
restated for linear isometry classes of linear codes as:

6.2.11Corollary The linear isometry class Ĉ of any linear code C over Fq can be expressed
as an outer direct sum of the linear isometry classes Ĉi of indecomposable codes Ci:

Ĉ = Ĉ0 � . . . � Ĉr−1.

The indecomposable summands Ĉi are uniquely determined by Ĉ apart from their or-
der. �

Another consequence is the following cancellation law:

6.2.12Corollary Let Ĉ0, Ĉ1 and Ĉ2 be linear isometry classes of linear codes. From
Ĉ0 � Ĉ1 = Ĉ0 � Ĉ2 we obtain that Ĉ1 = Ĉ2. �

For systematic linear codes there is an easy and obvious

6.2.13Test on Indecomposability A generator matrix Γ = (Ik | A) of a linear (n, k)-code
with k < n is (together with the generated code) indecomposable if and only if there
exists a sequence aij, alm, . . . of nonzero entries in A such that each element (except
the first one, of course) lies in the same row or in the same column as its predecessor,
and so that each row is represented by at least one element of the sequence.

Proof: Because of the special form of Γ, the first k columns of Γ define k in-
dependent families. Each of these families consists of just that column. The
remaining columns of Γ, i.e. the columns of A, can be represented as linear
combinations of the first k columns. Moreover, the columns of Γ form an in-
decomposable family if and only if the first k columns are connected. This
implies the statement. �

We can also represent the elements of A as the vertices of a graph GA. In
this graph two vertices are connected by an edge, if they are both different
from 0 and occur either in the same row or column of A. Then the code C is
indecomposable, if and only if there is a walk in GA which visits each of the k
rows at least once.

In case n = k, this theorem does not apply. It is clear that (n, n)-codes are
indecomposable if and only if n = 1.

If the codes do not have zero columns (as we assumed in this section),
and if there exists a walk in GA which visits each of the k rows of A at least
once, then there exists a walk in GA which visits all columns of A. With this
characterization it is easy to prove

470 6. Enumeration of Isometry Classes

6.2.14 Theorem A nonredundant linear code C is indecomposable if and only if its dual
code C⊥ is indecomposable. �

6.2.15 Examples

1. The code with generator matrix

Γ =

⎛⎝ 1 0 0 1 1 1
0 1 0 0 0 1
0 0 1 0 0 1

⎞⎠
is indecomposable, since the sequence γ05, γ15, γ25 is a sequence of entries
of the last n − k = 3 columns of Γ which has the required properties.

2. Any nonredundant (n, 1)-code is indecomposable.

3. Any (n, k)-MDS-code with k < n is indecomposable. �

Indecomposable codes are optimal in the following sense.

6.2.16 Theorem Let C be an (n, k)-code with k < n and with minimum distance d. Then
there exists an indecomposable (n, k)-code C′ such that dist(C′) ≥ d.

Proof: For r ≥ 2, let C � C0 + . . . + Cr−1 be a decomposable code, where Ci

are (ni, ki, di)-codes. From the properties of the outer direct sum (cf. 2.2.11) it
follows that dist(C) = min{di | i ∈ r}.

By induction on r we prove the assertion of the theorem: If r = 2, we
consider the following generator matrix Γ of C:

Γ =

(
Ik0 A0 0 0
0 0 Ik1

A1

)

with (ni − ki)× ki-matrices Ai. Without restriction we suppose that dist(C) =
dist(C0) ≤ dist(C1). If k1 < n1, then 6.2.13 shows that the matrix

Γ′ :=

(
Ik0 A0 0 B
0 0 Ik1

A1

)
with B :=

⎛⎜⎜⎜⎜⎝
1 . . . 1
0 . . . 0
...

...
0 . . . 0

⎞⎟⎟⎟⎟⎠6.2.17

generates an indecomposable code C′. Let v denote a nontrivial linear combi-
nation of the rows of Γ′. Unless the first k0 entries of v are all zero, we have
wt(v) ≥ dist(C0) since the first k0 entries of v are a codeword in C0. If the
first k0 entries of v are all zero then the second half of v is a nonzero codeword

6.2 Indecomposable Linear Codes 471

in C1, whence wt(v) ≥ dist(C1). Therefore, the minimum distance of C′ is at
least dist(C) .

If k1 = n1, we have n1 = 1, since C1 was supposed to be indecomposable.
Hence, 1 = dist(C1) ≥ dist(C) ≥ 1. But every indecomposable (n, k)-code has
d ≥ 1, and so the theorem is proved for the case r = 2.

Now we assume that r > 2. The induction assumption gives the existence
of an indecomposable (n − nr−1, k − kr−1)-code C′ with

dist(C′) ≥ dist(C0 � . . . � Cr−2) = min {dist(C0), . . . , dist(Cr−2)} .

Moreover, it implies the existence of an indecomposable (n, k)-code C′′ with

dist(C′′) ≥ dist(C′ � Cr−1) = min
{
dist(C′), dist(Cr−1)

}
≥ min

{
min {dist(C0), . . . , dist(Cr−2)} , dist(Cr−1)

}
= dist(C). �

6.2.18Theorem Any indecomposable code of length greater than 1 has minimum distance
at least 2. �

6.2.19Theorem Up to linear isometry, for any field Fq and n > 2 there is a unique inde-
composable (n, n − 1)-code C over Fq. It has a generator matrix of the form⎛⎜⎝ 1 1

. . .
...

1 1

⎞⎟⎠ .

Therefore, C is linearly isometric to the parity check code of Fn−1
q . It is also linearly

isometric to the dual of a one-dimensional code generated by the all-one vector. If
q = 2, then C is the set of all vectors of Fn

2 which have even weight.

Proof: Since C is indecomposable and of length greater than 1, by 6.2.18, its
minimum distance is at least 2. By the Singleton-bound 2.1.1, it is at most 2,
thus dist(C) = 2. There exists a code linearly isometric to C with generator
matrix Γ = (In−1 | A) where A is an (n − 1) × 1-matrix. Since the rows of
Γ are codewords of weight not smaller than dist(C), each component of A is
different from 0. By a suitable monomial transformation, there exists a code
linearly isometric to C which has a generator matrix of the form (In−1 | A′)
where all components of A′ are equal to 1. �

We are now going to show how indecomposable codes can be enumerated.
For this purpose, we introduce the following sets and symbols for their cardi-
nalities:

472 6. Enumeration of Isometry Classes

Let Rnkq denote the set of linear isometry classes of nonredundant, inde-
composable (n, k)-codes over Fq,

Rnkq :=
{

Mn(q)(C) ∈ Vnkq
∣∣ C is indecomposable

}
.

Rnkq := |Rnkq| indicates the number of linear isometry classes of nonre-
dundant, indecomposable (n, k)-codes over Fq.

The symbol Rnkq denotes the set of linear isometry classes of (nonredun-
dant), indecomposable, projective (n, k)-codes over Fq, i.e.

Rnkq :=
{

Mn(q)(C) ∈ Vnkq
∣∣ C is indecomposable

}
.

Rnkq := |Rnkq| indicates the number of linear isometry classes of (nonre-
dundant), indecomposable, projective (n, k)-codes over Fq.

From 6.2.19 it follows immediately that R21q = 1, R21q = 0, and Rn,n−1,q =
1 = Rn,n−1,q for n > 2. Moreover, we already know R11q = 1 = R11q, Rnnq =
0 = Rnnq for n > 1, Rn1q = 1 for n ≥ 1, and Rn1q = 0 for n ≥ 2. The
following theorem (cf. [61]) gives a recursive procedure for the evaluation of
the numbers Rnkq and Rnkq from Vnkq and Vnkq, respectively.

6.2.20 Theorem For n ≥ 2 we have

Rnkq = Vnkq − ∑
a

∑
b

n−1

∏
j=1
aj �=0

(
∑
c

U(c)

)
,

where

U(c) =
j

∏
i=1

C(Sν(i,c), ν(i, c))
∣∣
z�=Rjiq

6.2.21

is a product computed from substitutions into the cycle indices of symmetric groups of
degree ν(i, c) for

ν(i, c) = |{� ∈ aj | c� = i}|, 1 ≤ i ≤ j.

The first sum runs through the cycle types a = (a1, . . . , an−1) of n with at least two
summands, i.e. ai ∈ N and ∑ iai = n, and with the additional property ∑ ai ≤ k,
whereas the second sum is taken over the (n− 1)-tuples b = (b1, . . . , bn−1) ∈ Nn−1,
for which ai ≤ bi ≤ iai, and ∑ bi = k. The third sum runs over all aj-tuples
c = (c0, . . . , caj−1) ∈ Naj satisfying j ≥ c0 ≥ . . . ≥ caj−1 ≥ 1 and ∑ ci = bj.

Analogously, Rnkq can be evaluated recursively from Vnkq and Rjiq with j < n.

We would like to remark that the numbers U(c) in 6.2.21 are expressed solely
in terms of cycle indices of symmetric groups in their natural action (see Exer-
cise 6.3.3).

6.2 Indecomposable Linear Codes 473

Proof: In order to obtain Rnkq, we have to subtract from Vnkq the number of all
classes of nonredundant, decomposable (n, k)-codes over Fq. In other words,
we have to evaluate the number of isometry classes of (n, k)-codes which can
be written as a direct sum of indecomposable (ni, ki)-codes where

∑
i∈r

ni = n, ∑
i∈r

ki = k, 1 ≤ ki ≤ ni, 2 ≤ r ≤ k. 6.2.22

According to 6.2.7, the (ni, ki)-codes in a decomposition can be arranged so
that n0 ≥ n1 ≥ . . . ≥ nr−1 holds true, and, if successive ni are equal, for exam-
ple ni = ni+1, then we can assume, in addition, that the inequality ki ≥ ki+1 is
satisfied. In order to describe all decompositions, first we list all partitions
of n into at least two but not more than k parts. Hence, we suppose that
n = n0 + n1 + . . . + nr−1 is a partition with n0 ≥ . . . ≥ nr−1 ≥ 1 and 2 ≤ r ≤ k.
Its type is of the form (a1, a2, . . . , an−1) with aj := |{i | i ∈ r, ni = j}|. De-
composable codes corresponding to different types (a1, a2, . . . , an−1) are not
linearly isometric.

In a second step we calculate for each such partition of n all sequences
(k0, . . . , kr−1) satisfying 6.2.22. If we are given such a sequence (k0, . . . , kr−1),
we put

bj := ∑
i:ni=j

ki, 1 ≤ j ≤ n − 1.

Then
n−1

∑
j=1

bj = ∑
i∈r

ki = k and aj ≤ bj ≤ j · aj. 6.2.23

Decomposable codes corresponding to the same type (a1, a2, . . . , an−1) which
give rise to different vectors b are not linearly isometric. Conversely, we can
start with any sequence (b1, . . . , bn−1) satisfying 6.2.23 and evaluate all se-
quences (k0, . . . , kr−1) with bj = ∑i:ni=j ki which give linearly nonisometric
codes with parameters (ni, ki) for i ∈ r. According to 6.2.7, for each j with
bj �= 0 (which implies aj �= 0) we have to determine all partitions of bj into
exactly aj parts of the following form:

bj = ∑
i∈aj

ci, j ≥ c0 ≥ . . . ≥ caj−1 ≥ 1. 6.2.24

These sequences c describe all possible ways of writing a (j · aj, bj)-code as
the outer direct sum of aj codes of length j and dimension ci for i ∈ aj. Codes
with different sequences are clearly not isometric.

In a final step we have to evaluate the number of linearly nonisometric de-
composable (j · aj, bj)-codes which are outer direct sums of aj codes of length j.
For each partition c of bj with the properties 6.2.24 let U(c) be the number of
linearly nonisometric (j · aj, bj)-codes which are the outer direct sum of inde-
composable (j, ci)-codes for i ∈ aj.

474 6. Enumeration of Isometry Classes

We may assume that during the recursive procedure for the evaluation of
the Rnkq, the numbers Rj,ci,q for j < n have already been computed. If all
components ci of c are pairwise different, then the number U(c) is equal to the
product

∏
i∈aj

Rj,ci,q,6.2.25

which is a special case of 6.2.21. (See Exercise 6.2.8.)
Otherwise, there exist s, t with s < t and cs = ct. Since cs = cs+1 = . . . = ct,

and according to 6.2.7, any permutation of the summands with the same pa-
rameters in a given direct decomposition into indecomposable codes leads to
linearly isometric codes. Hence, for 1 ≤ i ≤ j let ν(i) := ν(i, c) denote the
cardinality of the set {� ∈ aj | c� = i}. Obviously, there is a bijection be-
tween the classes of codes which are outer direct sums of ν(i) indecomposable
(j, i)-codes and the orbits of the symmetric group Sν(i) acting on the set of all
mappings from ν(i) into a set of Rjiq elements. In this case, the symmetric
group acts canonically on the set of these mappings:

Sν(i) × Rjiq
ν(i) → Rjiq

ν(i) : (π, f) �→ f ◦ π−1.

A combination of Pólya’s Theorem and the result of Exercise 6.1.5 completes
the proof that U(c) is given by 6.2.21.

Since U(c) is the number of decomposable (j · aj, bj)-codes which are an
outer direct sum of indecomposable (j, ci)-codes for i ∈ aj, we can determine
the number of all decomposable (j · aj, bj)-codes which are the outer direct
sum of aj indecomposable codes of length j, by summing over all sequences c
satisfying 6.2.24.

By summing these numbers over all cycle types (a1, . . . , an−1) of n with
∑ ai = k, and over all sequences b with the properties 6.2.23, we compute
the number of all linearly nonisometric, nonredundant, decomposable (n, k)-
codes over Fq. It must be subtracted from Vnkq in order to obtain the number
of all linearly nonisometric, nonredundant, indecomposable (n, k)-codes over
Fq. �

In Section 6.4 we present tables of Rnkq and Rnkq which were computed
by using SYMMETRICA. They can also be determined with the software in-
cluded on the attached CD. In the case q = 2, these tables confirm (and in
some parts also correct) the numbers given by D. Slepian in [184]. Moreover,
these numbers lead to the conjecture that the sequences (Rnkq)1≤k<n are uni-
modal and symmetric for fixed n and q. The symmetry follows directly from
the fact that the dual of an indecomposable code is again indecomposable (cf.
Exercise 6.2.9). However, the unimodality has not yet been proved (see [61]).

For fixed n and q, the sequences Rnkq are symmetric, i.e.

Rnkq = Rn,n−k,q, 1 ≤ k ≤
n/2�.

6.2 Indecomposable Linear Codes 475

Therefore, it is possible to use the formula from 6.2.20 in order to compute
further values of Vnkq. Let n0 be a positive integer and q the cardinality of a
field. At first we compute the numbers Vnkq for 1 ≤ n ≤ n0 and 1 ≤ k ≤

n0/2� as described in the previous section. This allows us to determine the
numbers Rnkq for 1 ≤ n ≤ n0 and 1 ≤ k ≤
n0/2�. For 1 ≤ n ≤ n0 and

n0/2� < k ≤ n0 we determine the missing numbers Rnkq either by symmetry
(for k < n) or by setting Rnkq = 0 for k ≥ n. From 6.2.20 we immediately
obtain the following formula

Vnkq = Rnkq + ∑
a

∑
b

n−1

∏
j=1
aj �=0

(
∑
c

U(c)

)
,

which allows us to compute the missing values Vnkq for 1 ≤ n ≤ n0 and

n0/2� < k ≤ n0.

6.2.26Example Let n0 = 12 and q = 2. From Table 6.21 on page 508 we obtain the
numbers Rnk2 for 1 ≤ n ≤ 12 and 1 ≤ k ≤ 6. Now we determine the values
Rnk2 for 7 ≤ k ≤ 12 as shown in Table 6.3 on the left hand side. This allows the
computation of the values Vnk2 for 1 ≤ n ≤ 12 and 7 ≤ k ≤ 12, shown in the
right hand side of Table 6.3, without determining the cycle indices of PGLk(2)
for 7 ≤ k ≤ 12. �

Table 6.3 Extending tables by using the symmetry of Rnk2

Rnk2

n\k 7 8 9 10 11 12
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 1 0 0 0 0 0
9 7 1 0 0 0 0

10 51 8 1 0 0 0
11 361 79 10 1 0 0
12 2484 754 121 12 1 0

Vnk2

n\k 7 8 9 10 11 12
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 1 0 0 0 0 0
8 7 1 0 0 0 0
9 35 8 1 0 0 0

10 170 47 9 1 0 0
11 847 277 61 10 1 0
12 4408 1775 436 78 11 1

476 6. Enumeration of Isometry Classes

Exercises

E.6.2.1 Exercise Let Γ be a generator matrix of an (n, k)-code over Fq and let M be
a monomial matrix in Mn(q). Discuss the relations between the linear depen-
dencies occurring between the columns of Γ and between the columns of Γ · M.

E.6.2.2 Exercise Prove 6.2.11.

E.6.2.3 Exercise Find a proof of 6.2.12.

E.6.2.4 Exercise Use Exercise 1.3.9 in order to prove that 6.2.14 is true.

E.6.2.5 Exercise Prove that any (n, k)-MDS-code with k < n is indecomposable.

E.6.2.6 Exercise Show that the code which is generated by the matrix in 6.2.17 is in-
decomposable.

E.6.2.7 Exercise Prove 6.2.18.

E.6.2.8 Exercise Prove that 6.2.25 is a special case of 6.2.21.

E.6.2.9 Exercise Prove that Rnkq = Rn,n−k,q is true for 1 ≤ k ≤
n/2�.

6.3 6.3 Cycle Indices of Projective Linear Groups

We have seen how the linear isometry classes of (n, k)-codes over Fq can be
enumerated using cycle indices of projective linear groups PGLk(q). It remains
to discuss the evaluation of these multivariate polynomials. The formal defi-
nition

C(G, X) :=
1
|G| ∑

g∈G

|X|
∏
i=1

zai(g)
i ∈ Q[z1, z2, . . . , z|X|]

of cycle indices, given in 6.1.19, shows that we must determine the cycle types

a(g) = (a1(g), . . . , a|X|(g))

of the homomorphic images g of the elements and the order of the acting group
GLk(q) or of its epimorphic image PGLk(q). According to Exercise 6.3.1, the

6.3 Cycle Indices of Projective Linear Groups 477

orders of these groups are

|GLk(q)| = [q]k := (qk − 1)(qk − q) · · · (qk − qk−1) 6.3.1

and
|PGLk(q)| = [q]k/(q − 1). 6.3.2

These groups are quite big, and so it is not efficient to establish a complete
catalog of all their elements, except for very small values of q and k. A much
more economic way is to use the fact that the cycle types of conjugate elements
(as well as of images of conjugate elements under homomorphisms) are the
same (see Exercise 6.3.2). It reduces the problem to a characterization of the
conjugacy classes and the evaluation of the cycle types of representatives of
each of these classes. Using this fact we rewrite the cycle index of a group G
which acts on a set X in the following form:

C(G, X) =
1
|G| ∑

C
|C|

|X|
∏
i=1

zai(gC)
i , 6.3.3

where gC is a representative of the conjugacy class C, the summation is over
all the conjugacy classes C of elements in G, and

a(gC) = (a1(gC), . . . , a|X|(gC))

denotes the cycle type of gC , the permutation induced by gC on X. As we
already know, the cycle type of g satisfies

|X|
∑
i=1

iai(g) = |X| .

In general, we call a sequence a = (a1, . . . , an) of nonnegative integers a cycle
type of n, if ∑n

i=1 i · ai = n is satisfied. For short, we write a �� n, and we note in
passing that each cycle type a �� n occurs as type of a permutation of n.

Let us now concentrate on the evaluation of the cycle index of the natural
action of G := PGLk(q) on X := PG∗

k−1(q). The action 3.7.4 of GLk(q) on
PG∗

k−1(q) induces this action of the projective linear group. According to 3.7.6,
it can be written as

(F∗
q(A), F∗

q (v)) �→ F∗
q(v · A�), A ∈ GLk(q), v ∈ Fk

q. 6.3.4

Here in this section it is more convenient to represent vectors as column vec-
tors, so 6.3.4 is written as

(F∗
q(A), F∗

q(v)) �→ F∗
q(A · v), A ∈ GLk(q), v ∈ Fk

q.

478 6. Enumeration of Isometry Classes

The notation A · v is similar to the notation of applying an endomorphism A
of Fk

q to the vector v which we indicate just by Av.
In order to evaluate the cycle index of the projective linear group we pro-

ceed as follows. In a first step each conjugacy class of GLk(q) will be described
by a normal form which is a particular representative of the conjugacy class.
Then we evaluate the cardinalities of the conjugacy classes and the cycle types
of their representatives.

The announced normal forms of the elements in GLk(q) are obtained by
using a general approach known from linear algebra, and described in most of
the standard lectures on this subject, e.g. in [155].

First we determine a normal form of an arbitrary endomorphism A of Fk.
Let x be an indeterminate over F. Then the vector space Fk together with the
outer composition

F[x] × Fk → Fk : (f , v) �→ f v :=
d

∑
i=0

κiA
iv,6.3.5

becomes an F[x]-module, where f denotes the polynomial f = ∑d
i=0 κixi.

Let {e(0), . . . , e(k−1)} be the canonical basis of Fk consisting of the unit vec-
tors. Then

Fk = ∑
i∈k

F e(i) = ∑
i∈k

F[x]e(i).

Since F[x]e(i) is a subset of Fk, the cyclic F[x]-module F[x]e(i) is of finite di-
mension, and the canonical epimorphism from F[x] to F[x]e(i) has a kernel
different from 0. This kernel is an ideal in the principal ideal domain F[x],
whence it is generated by a monic polynomial gi ∈ F[x] of degree at least 1.

The polynomial f ∈ F[x] annihilates v ∈ Fk if f v = 0. The polynomial
f ∈ F[x] annihilates W ⊆ V if f annihilates each vector of W. The monic
polynomial f ∈ F[x] \ {0} of smallest degree which annihilates v is called
the minimal polynomial of v. The monic polynomial f ∈ F[x] \ {0} of smallest
degree which annihilates Fk is called the minimal polynomial of A. It is usually
indicated by MA. The most important property of minimal polynomials is
described in the next

6.3.6 Lemma Let A be an endomorphism of Fk. The polynomial g ∈ F[x] annihilates
v ∈ Fk or Fk if and only if g is a multiple of the minimal polynomial of v or A,
respectively. �

The proof is left to the reader.
From the Homomorphism Theorem (Exercise 3.2.3) we deduce that F[x]e(i)

is isomorphic to F[x]/I(gi), and the polynomial gi annihilates the module
F[x]e(i) completely, since gie(i) = 0. If g denotes the least common multiple of

6.3 Cycle Indices of Projective Linear Groups 479

g0, . . . , gk−1, then g annihilates the whole vector space Fk. Consequently, g is
the minimal polynomial of A, and Fk can also be seen as an F[x] := F[x]/I(g)-
module. Now we decompose g into its pairwise distinct monic, irreducible
factors fi ∈ F[x],

g = ∏
i∈t

f ci
i ,

where t denotes the number of different factors, and ci ≥ 1 is the multiplicity of
the i-th factor. For i ∈ t the polynomials hi := ∏j �=i f

cj
j are relatively prime by

construction, i.e. gcd(h0, . . . , ht−1) = 1, and according to Bézout’s Identity (cf.
Exercise 3.1.6) there exist polynomials Hi ∈ F[x] such that 1 can be expressed
as

1 = H0h0 + . . . + Ht−1ht−1.

Putting Ei := Hihi, we obtain a decomposition of 1 ∈ F[x] into a sum of
pairwise orthogonal and idempotent elements

1 = E0 + . . . + Et−1. 6.3.7

This decomposition of 1 yields, according to Exercise 4.5.2, a decomposition –
the primary decomposition – of Fk as a direct sum of primary components of the
form

Fk = E0Fk ⊕ . . . ⊕ Et−1Fk.

The F[x]-module EiFk and the F[x]-module EiFk describe the same set, there-
fore the primary components are A-invariant, since

A(EiF
k) = xEiF

k = EixFk ⊆ EiF
k = EiF

k, i ∈ t.

Now we consider each of these components EiFk as an F[x]/I(f ci
i)-module.

According to 4.7.11, the ring F[x]/I(f ci
i) has exactly one composition series.

Thus it follows from 4.7.12 that EiFk is a direct sum of submodules

EiF
k = Ui0 ⊕ . . .⊕Ui,ni−1, Uij = F[x]uij � F[x]/I(f

tij
i), 1 ≤ tij ≤ ci, 6.3.8

where Uij is cyclic over the ring F[x]/I(f ci
i). These submodules can be ordered

in such a way that 1 ≤ ti0 ≤ ti1 ≤ . . . ≤ ti,ni−1 = ci holds true. Also the
submodules Uij are A-invariant. Summarizing, the vector space Fk is the direct
sum of cyclic subspaces

Fk =
⊕
i∈t

⊕
j∈ni

Uij, Uij = F[x]uij � F[x]/I(f
tij
i), 1 ≤ tij ≤ ci. 6.3.9

Let f := ∑d
i=0 κixi, κd = 1, be a monic, irreducible polynomial of de-

gree d. Assume that f is the minimal polynomial of v ∈ Fk, whence U =
F[x]v � F[x]/I(f) is a d-dimensional cyclic subspace of Fk. Using the basis

480 6. Enumeration of Isometry Classes

(v, Av, . . . , Ad−1v) of U, the restriction of the endomorphism A to U is repre-
sented by the companion matrix C(f) of f given by

C(f) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 −κ0

1 0 . . . 0 0 −κ1

0 1 . . . 0 0 −κ2
...

...
. . .

...
...

...
0 0 . . . 1 0 −κd−2
0 0 . . . 0 1 −κd−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Assume that f n is the minimal polynomial of v ∈ Fk, whence U = F[x]v �
F[x]/I(f n) is an nd-dimensional cyclic subspace of Fk. We choose a basis of
U of the form (v, Av, . . ., Ad−1v, f v, Af v, . . ., Ad−1 f v, . . ., f n−1v, Af n−1v,
. . ., Ad−1 f n−1v), so that the normal form of the restriction of A to U is the
following square block-matrix

H(f n) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(f) 0 0 . . . 0 0
I′d C(f) 0 . . . 0 0
0 I′d C(f) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C(f) 0
0 0 0 . . . I′d C(f)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
n blocks,

where I′d is the elementary matrix B(2)
0,d−1,1 of dimension d (cf. Exercise 1.7.3),

which is the identity matrix Id with an additional 1 in the right upper corner.
The matrix H(f n) is an nd× nd-matrix and is called the hyper companion matrix
of f n. In the case n = 1 the matrices H(f 1) and C(f) coincide.

Now we introduce the following notion. Assume that f0, . . . , ft−1 are pair-
wise distinct monic, irreducible polynomials over F. If there exists a decom-
position 6.3.9 of Fk with exactly a(i)

j cyclic subspaces isomorphic to F[x]/I(f j
i)

for 1 ≤ j ≤ ci and for i ∈ t, then the Jacobi normal form of A is a block-diagonal
matrix of the form

diag
(
D(f0, a(0)), . . . , D(ft−1, a(t−1))

)
6.3.10

where a(i) is a cycle type of ∑ci
j=1 ja(i)

j , for i ∈ t. The block-diagonal matrix
D(f , a), determined by a monic irreducible polynomial f and a cycle type a,
is built from companion and hyper companion matrices of f in the following
way:

D(f , a) = diag
(
C(f), . . . , C(f)︸ ︷︷ ︸

a1 times

, H(f 2), . . . , H(f 2)︸ ︷︷ ︸
a2 times

, . . .
)
.

A different approach to normal forms can be found in [60].

6.3 Cycle Indices of Projective Linear Groups 481

The characteristic polynomial of an (n × n)-matrix A over F is defined as
χA(x) := det(xIn − A). Developing this determinant for A = C(f) with re-
spect to the top row, we get χC(f) = f . Consequently, χH(f n) = f n, and if

A = diag
(
D(f0, a(0)), . . . , D(ft−1, a(t−1))

)
, then

χA = ∏
i∈t

f γi
i ,

where γi = ∑j ja(i)
j . In other words, the sequence a(i) is a cycle type of γi.

By construction, the minimal polynomial of the companion matrix C(f)
is equal to f , and MH(f n) = f n. Consequently, the minimal polynomial of

A = diag
(
D(f0, a(0)), . . . , D(ft−1, a(t−1))

)
is given by

MA = ∏
i∈t

f ci
i ,

where ci is the maximal j such that a(i)
j �= 0. From this description it is obvious

that MA is a divisor of χA. This proves the

6.3.11Cayley–Hamilton Theorem If A is an endomorphism of Fk, then χA(A) = 0. �

Now we come back to our main situation F = Fq. As we have seen in the
proof of 3.2.25, there exist exactly

mq(d) =
1
d ∑

t|d
µ(t)q

d
t

monic, irreducible polynomials of degree d over Fq, where µ is the number
theoretic Möbius function (cf. Exercise 3.2.15). Each of these polynomials
of degree not greater than k, with exception of the polynomial f (x) = x,
can occur as a divisor of the characteristic polynomial of a regular matrix
A ∈ GLk(q). We indicate these polynomials by f0, f1, . . . , ftk−1, where

tk :=

(
k

∑
i=1

mq(i)

)
− 1.

If, moreover, di indicates the degree of the polynomial fi for i ∈ tk, then we
obtain the following description of the conjugacy classes in GLk(q):

6.3.12Theorem For each conjugacy class in GLk(q) there exists exactly one pair (γ, a),
where γ = (γ0, . . . , γtk−1) ∈ Ntk is a solution of

∑
i∈tk

γidi = k, 6.3.13

482 6. Enumeration of Isometry Classes

and a = (a(0), . . . , a(tk−1)) is a sequence of cycle types a(i) �� γi, so that

diag
(
D(f0, a(0)), . . . , D(ftk−1, a

(tk−1))
)

6.3.14

is the normal form of this class. Conversely, to each such pair (γ, a) there exists exactly
one conjugacy class the normal form of which is the block-diagonal matrix 6.3.14. �

Our next task is the evaluation of the size of the conjugacy classes. Con-
jugation on GLk(q) is a particular group action of GLk(q) on itself (cf. Exer-
cise 3.4.2). The centralizer of A ∈ GLk(q) is the stabilizer of A with respect to
this action.

6.3.15 Theorem (J.P.S. Kung [117]) Let f ∈ Fq[x] be a monic, irreducible polynomial of
degree d, and let a �� γ be a cycle type of the positive integer γ. For i ∈ {0, 1, . . . , γ}
determine mi by

mi :=
i

∑
k=1

kak +
γ

∑
k=i+1

iak.

Then the order of the centralizer of D(f , a) in GLγd(q) is

b(d, a) :=
γ

∏
i=1

∏
j∈ai

(
qdmi − qd(mi−j−1)

)
.6.3.16

Proof: Let n = γd be the dimension of a vector space V equipped with the
basis B = (e0, . . . , en−1) so that the linear mapping A : V → V has a repre-
sentation with respect to this basis in the form D(f , a), where f is a monic,
irreducible polynomial in Fq[x] of degree d and a �� γ. (The vectors ei should
not be mixed up with the unit vectors e(i).) We also consider V as an Fq[x]-
module. Determine c by

c := max {i | 1 ≤ i ≤ γ, ai �= 0} ,

then ker f c = V, mc = γ, and

dim(ker f i) = d

(
i

∑
k=1

kak +
γ

∑
k=i+1

iak

)
= dmi for 1 ≤ i ≤ c.

Consequently, the sets

Ui :=
{

v ∈ V
∣∣ f iv = 0 and f i−1v �= 0

}
= ker f i \ ker f i−1

contain qdmi − qdmi−1 elements for 1 ≤ i ≤ c. Now we want to choose a par-
ticular series of elements of the given basis of V – called canonical generators
of A – by taking exactly one element of B from each cyclic subspace in the

6.3 Cycle Indices of Projective Linear Groups 483

decomposition 6.3.8 of V. For example, a list of canonical generators is given
by

e0, ed, e2d, . . . , e(a1−1)d,
ea1d, e(a1+2)d, e(a1+2·2)d, . . . , e(a1+2(a2−1))d,
. . .
e(a1+...+(c−1)ac−1)d, e(a1+...+(c−1)ac−1+c)d, . . . , e(a1+...+(c−1)ac−1+c(ac−1))d.

Now we label these canonical generators consecutively as ê0, ê1, To be
more precise, for j ∈ ai, i ≥ 1 we have

êa1+...+ai−1+j = e(a1+2a2+...+(i−1)ai−1+ij)d.

In order to complete the proof, we still need to characterize the vector space
automorphisms which commute with A.

6.3.17Lemma Let ψ be a vector space endomorphism which commutes with A := D(f , a).
Then:

1. ψ is uniquely determined on V by the values ψ(êi) on the canonical generators.

2. If v ∈ Ui is a canonical generator, then ψ(v) belongs to ker f i for 1 ≤ i ≤ c.

3. ψ is a vector space automorphism if and only if there are no linear relations with co-
efficients in Fq[x] among the values ψ(êi). In particular, any canonical generator
v ∈ Ui is mapped onto ψ(v) ∈ Ui.

Proof: The proof of the first two assertions is left to the reader (cf. Exer-
cise 6.3.8). As was shown in 6.3.8, assume that the vector space V has a de-
composition into a direct sum of cyclic subspaces

V =
a1+...+ac−1⊕

�=0

V� with V� � Fq[x]/I(f j�) for 1 ≤ j� ≤ c.

Moreover, let ê� be the unique canonical generator of A which belongs to V�.
Then

(ê�, A · ê�, . . . , Adj�−1 · ê�)
is a basis of V�. Finally we assume that the monic polynomial f is of the form
f = ∑d

i=0 αixi with αd = 1.
If ψ is an automorphism of V, then(

ψ(ê�), A · ψ(ê�), . . . , Adj�−1 · ψ(ê�)
)

is a basis of ψ(V�). In other words, ψ(V�) is also a dj�-dimensional cyclic sub-
space of V. And Fq[x]ψ(ê�) = ψ(V�), since Adj� · ψ(ê�) = ψ(Adj� · ê�) and

ψ(Adj� · ê�) = ψ
(
∑
i∈d

(−αi)Aij� · ê�
)

= ∑
i∈d

(−αi)Aij� · ψ(ê�) ∈ ψ(V�).

484 6. Enumeration of Isometry Classes

Conversely, if ψ is an endomorphism which is not an automorphism of V,
then the vectors ψ(e0), . . . , ψ(en−1) are linearly dependent. Thus, there exist
αi ∈ Fq, i ∈ n, not all equal to 0, such that

∑
i∈n

αiψ(ei) = 0.

This is a nontrivial linear combination of ψ(ei). Equipping each subspace V�

with the basis (ê�, A · ê�, . . . , Adj�−1 · ê�) described above, we derive

0 =
a1+...+ac−1

∑
�=0

∑
r∈dj�

α�rA
r

︸ ︷︷ ︸
=:φ�(A)

·ψ(ê�) =
a1+...+ac−1

∑
�=0

φ�(x)ψ(ê�)

for suitable α�r ∈ Fq. By construction, not all polynomials φ� are equal to zero,
whence we have found a nontrivial linear relation between the vectors ψ(ê�)
with coefficients in Fq[x]. This contradicts our assumption. �

6.3.17 shows that the image of a canonical generator v ∈ Ui under an automor-
phism ψ is again an element of Ui. In the notation of 6.3.8, this means that ψ

only permutes the subspaces Uij of a submodule EiFk
q which are isomorphic

to the same factor module Fq[x]/I(f j).
In order to complete the proof of 6.3.15, we determine the number of all

possible automorphisms ψ of V by an application of 6.3.17. Starting with the
last canonical generator of A, the value ψ(êa1+...+ac−1) must be chosen in Uc.
There are qdmc − qdmc−1 possibilities to do so. If êa1+...+ac−2 also belongs to
Uc, then there remain qdmc − qdmc−1qd = qdmc − qd(mc−1+1) possibilities to de-
termine ψ(êa1+...+ac−2) in Uc so that ψ is an automorphism. (This is just the
overall number of vectors in V which do not belong to the Fq[x]-submodule
generated by ker f c−1 and ψ(êa1+...+ac−1).) In a similar fashion, the values of
the other canonical generators of A which also belong to Uc are determined.
Altogether there are

∏
j∈ac

(
qdmc − qd(mc−1+j)

)
= ∏

j∈ac

(
qdmc − qd(mc−j−1)

)
possibilities to determine an automorphism ψ on Uc.

Now assume that Wk, 0 ≤ k ≤ a1 + . . . + ac − 1, denotes the Fq[x]-module
generated by ψ(êj) for j ≥ k. Assume that the canonical generator êk belongs
to Ui and that the values ψ(êj) are already determined for j > k. In order to
determine an automorphism, the vector ψ(êk) must be chosen from ker f i, but
it may not belong to the Fq[x]-module generated by ker f i−1 and ker f i ∩Wk+1.
This shows that if ψ is an automorphism already determined on Ui+1, . . . ,Uc,
then there are

∏
j∈ai

(
qdmi − qd(mi−1+ai+1+...+ac+j)

)
= ∏

j∈ai

(
qdmi − qd(mi−j−1)

)

6.3 Cycle Indices of Projective Linear Groups 485

possibilities to determine the values of ψ for the canonical generators belong-
ing to Ui (these are the generators êa1+...+ai−1, . . . , êa1+...+ai−1) such that ψ is
also an automorphism of ker f i. Eventually, the product of these expressions
for i = 1, . . . , c (or i = 1, . . . , γ) yields b(d, a). �

As we have seen in the previous proof, the order b(d, a) of the centralizer
of D(f , a) in GLγd(q), where f is an irreducible polynomial of degree d and
a �� γ, depends only on the degree of f and on the cycle type a. It does not
depend on the particular polynomial f itself. According to 3.4.1, the size of the
conjugacy class of a normal form 6.3.14 is

[q]k
∏i∈tk b(di, a(i))

.

Before we compute the cycle type of the permutation representation of the
natural action 6.3.4 of F∗

q(A) ∈ PGLk(q) on PG∗
k−1(q), we investigate once

more the action of GLk(q) on Fk
q. From Exercise 1.4.13 it follows that this action

can be reduced to an action on Fk
q \ {0}. In the next step, we determine the

subcycle index of the following action:

GLk(q)× Fk
q \ {0} → Fk

q \ {0} : (A, v) �→ A · v,

from which we will later on determine the cycle index C(PGLk(q), PG∗
k−1(q)).

Recall that in the present section we write vectors as columns and not as rows.
We introduce subcycles and integral elements of vectors v ∈ Fk

q \ {0} in the
following way: The vector v belongs to a subcycle of A of length s if and only if

s = min
{

n ∈ N∗ ∣∣ An · v ∈ F∗
q(v)

}
.

The integral element of v is the element α0 ∈ F∗
q for which As · v = α0v. The set

〈 A 〉(F∗
q(v)) =

{
Ai · αv

∣∣ i ∈ N, α ∈ F∗
q

}
is the disjoint union of s subsets, each containing q − 1 elements, since

〈 A 〉(F∗
q(v)) =

.
∪
i∈s

AiF∗
q (v) =

.
∪
i∈s

{
Ai · αv

∣∣ α ∈ F∗
q

}
=

.
∪
i∈s

{
αAi · v

∣∣ α ∈ F∗
q

}
=

.
∪
i∈s

F∗
q (A

i · v).

These s(q − 1) vectors in Fk
q \ {0} describe exactly s elements of the projec-

tive space PG∗
k−1(q), which are the elements of exactly one cycle of length s of

A ∈ GLk(q) or F∗
q (A) ∈ PGLk(q) on PG∗

k−1(q), namely(
F∗

q(v), . . . , F∗
q(A

s−1 · v)
)
.

Moreover, each vector v′ ∈ 〈 A 〉(F∗
q(v)) belongs to a subcycle of A of length

s with integral element α0. Using indeterminates z attached with two indices

486 6. Enumeration of Isometry Classes

– the first one giving the length s of a subcycle and the second one indicating
the integral element α0 corresponding to the subcycle – the operation of A on
〈 A 〉(F∗

q(v)) is described by the subcycle expression sc(A, v) := zq−1
s,α0 . Since the

set Fk
q \ {0} is the disjoint union of 〈 A 〉(F∗

q(vi)), i ∈ I, we define the subcycle
type of A to be the product of the subcycle expressions ∏i∈I sc(A, vi). A term
of the form zr

s,α0
in the subcycle type of A indicates that there exist r · s vectors

v ∈ Fk
q \ {0} such that s = min{n ∈ N∗ | An · v ∈ F∗

q(v)} and As · v = α0v.
Moreover, the exponent r is always a multiple of q − 1.

6.3.18 Definition (subcycle index) The subcycle index for the action of the general
linear group GLk(q) on Fk

q \ {0} is the sum of the subcycle types of A ∈ GLk(q)
divided by the order of GLk(q), i.e.

SC(GLk(q), Fk
q \ {0}) =

1
|GLk(q)| ∑

A∈GLk(q)
∏

〈 A 〉(F∗
q(v))

sc(A, v).

The last product must be computed over all 〈 A 〉(F∗
q(v)) in the set{

〈 A 〉(F∗
q(v))

∣∣ v ∈ Fk
q \ {0}

}
.

6.3.19 Remark (cycle index of PGLk(q) on PG∗
k−1(q)) From the subcycle index of

GLk(q) on Fk
q \ {0} it is quite easy to obtain the cycle index of the action of

PGLk(q) on PG∗
k−1(q) by omitting the second index of each indeterminate and

by dividing each exponent by q − 1.
Hence, as the next step we compute the subcycle index of GLk(q) acting

on Fk
q \ {0}. Since the subcycle types of conjugate matrices in GLk(q) are the

same, it is enough to determine the subcycle types of the normal forms 6.3.14.
First we determine them for hyper companion matrices, later we will deduce
a method which allows us to compute the subcycle type of block-diagonal
matrices.

The companion and hyper companion matrices depend on polynomials
f ∈ Fq[x]. The subcycle types of these matrices can be obtained from the
subexponents of the corresponding polynomials. Therefore, next we introduce
exponent and subexponent of a polynomial.

6.3.20 Definition (exponent, order, period) The exponent, order, or period of a polyno-
mial f ∈ Fq[x] with f (0) �= 0, is the smallest positive integer e, for which f is
a divisor of xe − 1 (cf. [131]). We indicate it as

Exp(f) := min {e ∈ N∗ | f is a divisor of xe − 1} .

Some properties of the exponent of a polynomial are collected in the next

6.3 Cycle Indices of Projective Linear Groups 487

6.3.21Lemma Let f ∈ Fq[x] be a monic, irreducible polynomial of degree d with f (0) �= 0.

1. The exponent of f is equal to the order of an arbitrary root β of f in the multi-
plicative group F∗

qd . In other words, for any root β of f we have

Exp(f) = min {n ∈ N∗ | βn = 1} = ord(β).

2. Exp(f) is a divisor of qd − 1, but it does not divide qr − 1 for 1 ≤ r < d.

3. The set E(d, q) of all positive integers, which occur as exponents of monic, irre-
ducible polynomials of degree d over Fq, is

E(d, q) =
{

e ∈ N∗
∣∣∣ e | (qd − 1) and e � (qr − 1) for 1 ≤ r < d

}
.

4. The number of all monic, irreducible polynomials f of degree d over Fq with
f (0) �= 0 and with exponent e ∈ E(d, q) is ν(d, e) := φ(e)/d, where φ is the
Euler function (cf. 3.4.15).

5. For n ∈ N∗, the polynomial f is a divisor of xn − 1 if and only if Exp(f) is a
divisor of n. (This assertion holds true for arbitrary f ∈ Fq[x] with f (0) �= 0.)

6. For n ∈ N∗, the exponent Exp(f n) is equal to Exp(f)pt, where p is the charac-
teristic of Fq, and t is given by t := min {r ∈ N | pr ≥ n}.

Proof: 1. Let β ∈ Fqd be a root of f . From 3.2.19 we know that f is the minimal

polynomial of β. Moreover, β, βq, . . . , βqd−1
are all the roots of f , they all are

simple and have the same order in F∗
qd . Consequently, β satisfies the equation

βn = 1 if and only if f is a divisor of xn − 1. From the definitions of ord(β)
and Exp(f) it is clear that ord(β) = Exp(f).

2. Since β is an element of F∗
qd , its order is a divisor of qd − 1, and moreover

d = min
{

n ∈ N∗ | βqn = β
}

, since β is a root of an irreducible polynomial

over Fq of degree d. Hence, d = min
{

n ∈ N∗ | βqn−1 = 1
}

, and, therefore,
ord(β) is not a divisor of qr − 1 for 1 ≤ r < d.

3. Thus, E(d, q) is a subset of{
e ∈ N∗

∣∣∣ e | qd − 1 and e � qr − 1 for 1 ≤ r < d
}

.

We still prove that for each positive integer e with e | qd − 1 and e � qr − 1 for
1 ≤ r < d there exists an irreducible polynomial f of degree d such that
Exp(f) = e. Assume that e is a divisor of qd − 1 and e � qr − 1 for 1 ≤ r < d.
Since F∗

qd is cyclic, there exist φ(e) elements β ∈ F∗
qd , which are of order e. Ac-

cording to the particular choice of e, these β do not belong to a proper subfield

488 6. Enumeration of Isometry Classes

Fqr of Fqd for r < d. Thus, their minimal polynomials are of degree d and
exponent e.

4. Each of these minimal polynomials has exactly d distinct roots in Fqd , which
are all of the same order. Hence, there are φ(e)/d different monic, irreducible
polynomials over Fq of degree d with exponent e.

5. Assume that e = Exp(f) is a divisor of n. Then

f | xe − 1 | xn − 1.

Conversely, let f be a divisor of xn − 1. According to the division algorithm,
there exist m ∈ N and 0 ≤ r < e such that n = me + r and, therefore,

xn − 1 = (xme − 1)xr + (xr − 1).

Consequently, f is a divisor of xr − 1. This is only possible for r = 0, which
proves that e is a divisor of n.

6. Assume that e = Exp(f) and en denotes the exponent of f n. From f | f n |
xen − 1 and from the fifth assertion we deduce that e | en. As a consequence of
f | xe − 1, we derive

f n | (xe − 1)n | (xe − 1)pt
= xept − 1,

whence en | ept. Hence, en is of the form en = epr where, 0 ≤ r ≤ t. Since e
is a divisor of qd − 1, the integers e and p are relatively prime, thus xe − 1 has
only simple roots. All roots of the polynomial xepr − 1 = (xe − 1)pr

occur with
the multiplicity pr , all roots of f n, however, with the multiplicity n. Finally, f n

is a divisor of xepr − 1, whence comparing the multiplicities of their roots we
obtain that n ≤ pr and, consequently, r = t. �

6.3.22 Definition (subexponent) The subexponent of a polynomial f ∈ Fq[x] with
f (0) �= 0 is defined as

Subexp(f) := min
{

n ∈ N∗ ∣∣ ∃ α0 ∈ F∗
q such that f | xn − α0

}
.

If f | xn − α0 with α0 ∈ F∗
q and n = Subexp(f), then α0 is called the integral

element of f (cf. [89]).
Using the notation from 6.3.21, some properties of the subexponent of a poly-
nomial are collected in the next lemma, the proof of which is left as an exercise
for the reader.

6.3 Cycle Indices of Projective Linear Groups 489

6.3.23Lemma Let f ∈ Fq[x] be a monic, irreducible polynomial of degree d with f (0) �= 0.

1. Any root β ∈ Fqd of f satisfies

Subexp(f) = min
{

n ∈ N∗ ∣∣ βn ∈ F∗
q

}
.

In other words, Subexp(f) is equal to the order of βF∗
q in the cyclic factor group

F∗
qd /F∗

q .

2. Subexp(f) is a divisor of (qd − 1)/(q− 1).

3. For n ∈ N∗, the subexponent Subexp(f n) is equal to Subexp(f)pt, where p is
the characteristic of Fq and t is given by t := min {r ∈ N | pr ≥ n}. If α denotes
the integral element of f , then αpt

is the integral element of f n.

4. Subexp(f) is a divisor of Exp(f) and the quotient

h :=
Exp(f)

Subexp(f)

is a divisor of q− 1. Moreover, h is the multiplicative order of the integral element
of f and h = gcd(q− 1, Exp(f)).

5. The subexponent of f can be computed from its exponent by

Subexp(f) =
Exp(f)

gcd(q − 1, Exp(f))
.

6. Consider e ∈ E(d, q) and let h := gcd(q − 1, e). For each α ∈ F∗
q of multiplica-

tive order h there exist exactly φ(e)/(d · φ(h)) monic, irreducible polynomials
f ∈ Fq[x] of degree d, exponent e, subexponent e/h, and with integral element α.

7. The number of all monic, irreducible polynomials over Fq of degree d and of subex-
ponent s is

∑
e

φ(e)
d

,

where the sum is taken over all e ∈ E(d, q) with e/ gcd(e, q − 1) = s.

8. In the case q = 2 the subexponent and the exponent of f coincide.

9. Let S(d, q) be the set of all pairs (s, α) such that there exists a monic, irreducible
polynomial over Fq of degree d with subexponent s and integral element α. Then

S(d, q) =
⋃

e∈E(d,q)

{
(s, α)

∣∣∣∣ s =
e

gcd(e, q − 1)
, ord(α) = gcd(e, q − 1)

}
.

For each (s, α) ∈ S(d, q) there are exactly

m(d, s, α) :=
ν(d, s ord(α))

φ(ord(α))

490 6. Enumeration of Isometry Classes

monic, irreducible polynomials over Fq of degree d with subexponent s and integral
element α. �

The connection between the subcycle type of a hyper companion matrix
H(f r) and the subexponent and the integral element of f is described in

6.3.24 Lemma Let f ∈ Fq[x] be a monic, irreducible polynomial of degree d with f (0) �= 0,
subexponent s, and integral element α. Then the subcycle type of H(f r) on Frd

q \ {0}
is equal to

r

∏
i=1

z(qid−q(i−1)d)/si
si,αi ,

where si = Subexp(f i) and αi = αsi/s is the integral element of f i for 1 ≤ i ≤ r.

Proof: For 1 ≤ i ≤ r let Ui := ker f i \ ker f i−1 be the set of those v ∈ Frd
q ,

which are annihilated by f i, but not by f i−1. Consider v ∈ Ui, A = H(f r), a
positive integer n, and β ∈ F∗

q . Since f i is the minimal polynomial of v,

An · v = βv ⇐⇒ An · v − βv = 0 ⇐⇒ (xn − β)v = 0 ⇐⇒ f i | xn − β.

Consequently, v belongs to a subcycle of H(f r) of length si = Exp(f i) with
integral element αi = αsi/s, where α is the integral element of f . Since the set
Ui contains qid − q(i−1)d vectors, it contributes the term

z(qid−q(i−1)d)/si
si,αi

to the subcycle type of H(f r). �

Next we describe the announced method for computing the subcycle type
of a 2 × 2-block diagonal matrix from the known subcycle types of the two
diagonal blocks. By induction, this allows us to compute the subcycle type of
any matrix in normal form 6.3.14.

Assume that A1 ∈ GLk1
(q) and A2 ∈ GLk2(q) are regular matrices. Then

diag(A1, A2) ∈ GLk1+k2(q). The set Fk1+k2
q \ {0} can be decomposed in the

following way(
Fk1

q \ {0} × {0}k2
) .
∪
(
{0}k1 × Fk2

q \ {0}
) .
∪
(
Fk1

q \ {0} × Fk2
q \ {0}

)
.

In the sequel, let β denote a primitive element of F∗
q .

6.3.25 Lemma Assume that we have indeterminates zn,α attached with two indices, where
n ∈ N∗ and α ∈ F∗

q . We define a multiplication � by

zj1
s1,βr1 � zj2

s2,βr2 := zj3
s3,βr3 ,

6.3 Cycle Indices of Projective Linear Groups 491

where

s3 = lcm(s1, s2)
q − 1

gcd (q − 1, lcm(s1, s2)r1/s1 − lcm(s1, s2)r2/s2)
,

r3 ≡ r1s3

s1
≡ r2s3

s2
mod q − 1,

and
j3 =

s1 j1s2 j2
s3

.

Using this multiplication, we define a multiplication � of subcycle types by(
ν1

∏
i=1

zti
ui,αi

)
�

(
ν2

∏
j=1

z
wj
vj,κ j

)
:=

(
ν1

∏
i=1

zti
ui,αi

)(
ν2

∏
j=1

z
wj
vj,κ j

)
ν1

∏
i=1

ν2

∏
j=1

(
zti
ui,αi � z

wj
vj,κ j

)
.

The subcycle type of the matrix diag(A1, A2) is the �-product of the subcycle types of
A1 and A2. (The n-th power with respect to the multiplication � will be denoted by
(. . .)� n.) The operator � can be extended linearly to Q[{zn,α | n ∈ N∗, α ∈ F∗

q}].

Proof: Assume that v1 ∈ Fk1
q \ {0} belongs to a subcycle of A1 of length s1

with integral element βr1 . Then also (v�1 | 0�k2
)� belongs to a subcycle of

diag(A1, A2) of length s1 with integral element βr1 . (In the present section
we write vectors as columns, thus (v�1 | 0�k2

)� is a column of length k1 + k2.)

Similarly, the subcycles of A2 containing a vector v2 ∈ Fk2
q \ {0} correspond

to the subcycles of diag(A1, A2) containing (0�k1
| v�2)�. Thus, we only have

to investigate pairs (v�1 | v�2)� ∈ Fk1
q × Fk2

q with v1 �= 0 and v2 �= 0. More-
over, we suppose that v1 belongs to a subcycle of A1 of length s1 with integral
element βr1 and v2 to a subcycle of A2 of length s2 with integral element βr2 .
Then lcm(s1, s2) is equal to

min
{

n ∈ N∗ ∣∣ ∃ α1, α2 ∈ F∗
q : diag(An

1 , An
2) · (v�1 | v�2)� = (α1v�1 | α2v�2)�

}
.

In particular, for i = 1, 2 we have

αi = (βri)lcm(s1,s2)/si = βri lcm(s1,s2)/si .

Now we determine the length s3 and the integral element α of the subcycle
containing (v�1 | v�2)�. They satisfy the identity

s3 = min
{

n ∈ N∗ | ∃ α ∈ F∗
q : diag(An

1 , An
2)(v�1 | v�2)� = α(v�1 | v�2)�

}
.

Thus, we have to determine the smallest positive integer n such that αn
1 = αn

2 .
This number is the multiplicative order of α1α−1

2 in F∗
q , which can be computed

by

ord(α1α−1
2) =

ord(β)
gcd(ord(β), r1 lcm(s1, s2)/s1 − r2 lcm(s1, s2)/s2)

.

492 6. Enumeration of Isometry Classes

Hence, s3 = lcm(s1, s2) ord(α1α−1
2) and the corresponding integral element is

of the form

βr3 = α
ord(α1α−1

2)
i = βri lcm(s1,s2) ord(α1α−1

2)/si = βris3/si .

If the subcycle type of Ai contains a term zji
si,β

ri , then, by construction, there

are exactly si ji elements in Fki
q \ {0} in the subcycles of Ai of length si with in-

tegral element βri , for i = 1, 2. Consequently, all pairs of these elements, these
are s1 j1s2 j2 vectors in Fk1

q × Fk2
q , belong to subcycles of diag(A1, A2) of length

s3 with integral element βr3 . Since all these subcycles are of length s3, by this
construction we get exactly s1 j1s2 j2/s3 subcycles of length s3 with integral ele-
ment βr3 . This yields the factor zs1 j1s2 j2/s3

s3,βr3 = zj1
s1,βr1 � zj2

s2,βr2 in the subcycle type
of diag(A1, A2). Therefore, the subcycle type of diag(A1, A2) is the product of
expressions of the form

zj1
s1,βr1 , zj2

s2,βr2 ,
(
zj1
s1,βr1 � zj2

s2,βr2

)
which are due to the vectors of the form (v�1 | 0�k2

)�, (0�k1
| v�2)�, and (v�1 |

v�2)�, where vi ∈ Fki
q \ {0} is contained in a subcycle of Ai of length si with

integral element βri , for i = 1, 2. Finally considering all possible combinations
(v�1 | v�2)� yields the desired subcycle type of diag(A1, A2). �

The multiplication � is associative and commutative (cf. Exercise 6.3.11).
Moreover the empty product is defined to be 1.

Collecting all the results of the present section, we have proved the follow-
ing formula for the computation of the cycle index C(PGLk(q), PG∗

k−1(q)).

6.3.26 Theorem Assume that fi for i ∈ tk are the monic, irreducible polynomials of degree
di ≤ k over Fq which can occur as divisors of a characteristic polynomial of a regular
matrix of rank k (thus fi �= x). For n > 1 we use 6.3.23.3 in order to compute both
the subexponents si,n of f n

i and the corresponding integral elements αi,n from si,1, the
subexponent of fi, and from αi,1, the integral element of fi.

The subcycle index SC(GLk(q), Fk
q \ {0}) of the action of GLk(q) on Fk

q \ {0} is

1
[q]k

∑
γ

∑
a

[q]k
∏i∈tk b(di, a(i)) �

i∈tk

γi

�
j=1

(
j

∏
�=1

z
ui,�
si,�,αi,�

)� a(i)
j

,

where ui,� is given by

ui,� =
q�di − q(�−1)di

si,�
.

Moreover, [q]k denotes the order of GLk(q), and b(di, a(i)) is the order of the cen-
tralizer of D(fi, a(i)) as computed in 6.3.16. The first sum is taken over all solutions

6.3 Cycle Indices of Projective Linear Groups 493

γ = (γ0, . . . , γtk−1) ∈ Ntk of 6.3.13. For each solution γ and for each i ∈ tk we have
to determine the set of all cycle types of γi

CT(γi) := {a | a �� γi} .

The second sum is taken over all tk-tuples

a = (a(0), . . . , a(tk−1)) ∈ ×
i∈tk

CT(γi).

As already mentioned before, by omitting the second index of each indeterminate and
by dividing the exponent of each indeterminate (in the subcycle index of GLk(q)) by
q − 1, we obtain the cycle index of the action of PGLk(q) on PG∗

k−1(q). �

6.3.27Example In order to present a nontrivial example we determine the cycle index
of PGL3(3) acting on PG∗

2(3). At first we need a list of all monic, irreducible
polynomials different from f = x of degree at most 3 over F3 together with
their exponents, subexponents and integral elements (cf. Table 6.4).

Table 6.4 The irreducible polynomials of degree at most 3 over F3 different from f = x

i fi di ei si αi

0 x + 1 1 2 1 2
1 x + 2 1 1 1 1
2 x2 + 1 2 4 2 2
3 x2 + x + 2 2 8 4 2
4 x2 + 2x + 2 2 8 4 2
5 x3 + 2x + 1 3 26 13 2
6 x3 + 2x + 2 3 13 13 1
7 x3 + x2 + 2 3 13 13 1
8 x3 + x2 + x + 2 3 13 13 1
9 x3 + x2 + 2x + 1 3 26 13 2

10 x3 + 2x2 + 1 3 26 13 2
11 x3 + 2x2 + x + 1 3 26 13 2
12 x3 + 2x2 + 2x + 2 3 13 13 1

With these polynomials we determine the following normal forms. In ad-
dition to each normal form we also indicate its subcycle type.

The polynomials of degree 3 occur only in the form

D(fi, (1, 0, . . .)) for i ≥ 5.

They have subcycle types
z26/si
si,αi = z2

13,αi
.

494 6. Enumeration of Isometry Classes

In the normal forms of GL3(3) companion matrices of polynomials of de-
gree 2 occur only in combination with polynomials of degree 1. These nor-
mal forms are described by

diag(D(fi, (1, 0, . . .)), D(fj, (1, 0, . . .))) for 0 ≤ i ≤ 1, 2 ≤ j ≤ 4.

They have subcycle types

z2/si
si,αi � z

8/sj
sj,αj = z2

1,αi
� z

8/sj
sj,2

.

In all other normal forms just polynomials of degree 1 occur. For 0 ≤ i, j ≤
1 and i �= j they can be described as:

normal form subcycle type

D(fi, (3, 0, . . .))
(
z2
1,αi

)� 3

D(fi, (1, 1, 0, . . .)) z2
1,αi

�
(
z2
1,αi

z2
3,αi

)
D(fi, (0, 0, 1, 0, . . .)) z2

1,αi
z8
3,αi

diag(D(fi, (2, 0, . . .)), D(fj, (1, 0, . . .)))
(
z2
1,αi

)� 2
� z2

1,αj

diag(D(fi, (0, 1, 0, . . .)), D(fj, (1, 0, . . .)))
(
z2
1,αi

z2
3,αi

)
� z2

1,αj

In order to derive the subcycle index of GL3(3) acting on F3
3 \ {0}, the subcycle

type of every normal form must be multiplied by the cardinality of its conju-
gacy class and, finally, the sum of these subcycle types must be divided by the
order of GL3(3).

SC(GL3(3), F3
3 \ {0}) = 1/11232

(
1728z2

13,1 + 1728z2
13,2 + 702z2

1,1z
4
2,2z

4
4,1

+ 702z2
1,2z

4
2,2z

4
4,1 + 1404z2

1,1z
2
4,2z

2
8,1 + 1404z2

1,2z
2
4,2z

2
8,1 + z26

1,1 + z26
1,2

+ 104z8
1,1z

6
3,1 + 104z8

1,2z
6
3,2 + 624z2

1,1z
8
3,1 + 624z2

1,2z
8
3,2 + 117z8

1,1z
2
1,2z

8
2,1

+ 117z8
1,2z

2
1,1z

8
2,1 + 936z2

1,1z
2
1,2z

2
2,1z

2
3,1z

2
6,1 + 936z2

1,1z
2
1,2z

2
2,1z

2
3,2z

2
6,1

)
.

This yields the cycle index

C(PGL3(3), PG∗
2(3)) = 1/5616

(
1728z13 + 1404z1z4z8

+ 624z1z
4
3 + 702z1z

2
2z

2
4 + 936z2

1z2z3z6 + 104z4
1z

3
3 + 117z5

1z
4
2 + z13

1

)
. �

The computation of the subcycle index can still be simplified. Actually, it is
not necessary to know all the different monic, irreducible polynomials over Fq

of degree at most k. As we have seen in part 9 of 6.3.23, for each (s, α) ∈ S(d, q)
it is possible to determine the exact number of monic, irreducible polynomi-
als over Fq of degree d with subexponent s and integral element α. Since the
subcycle type of H(f n) depends only on the three parameters (d, s, α) and on

6.3 Cycle Indices of Projective Linear Groups 495

n, of course, we need not determine the conjugacy classes of GLk(q) them-
selves. It suffices to know how many different monic, irreducible polynomials
with parameters (d, s, α, n) occur in the normal forms. This approach motivates
the following formula for the computation of the subcycle index of GLk(q) on
Fk

q \ {0}:

∑
c��k

k
�
d=1

∑
r

�
(s,α)∈S(d,q)

∑
t

ξ(m(d, s, α), t)
r(s,α)
�
j=1

(
∑
a��j

1
b(d, a)

z(d, s, α, a)

)� tj

Here z(d, s, α, a) stands for the subcycle type of a matrix D(f , a), where f is an
arbitrary monic irreducible polynomial in Fq[x] of degree d with subexponent
s and integral element α, and where a �� j is a cycle type of j. This subcycle
type can be computed by

z(d, s, α, a) =
j

�
�=1

(
�

∏
n=1

zun
sn,αn

)� a�

,

where sn stands for spt and αn for αpt
, where p is the characteristic of Fq, and

t is the smallest nonnegative integer such that pt ≥ n. The exponents un are
computed via

un =
qnd − q(n−1)d

sn
.

The first sum in the subcycle index of GLk(q) is taken over all cycle types c �� k.
Here c is of the form c = (c1, . . . , ck) and the number cd represents the number
of monic, irreducible polynomials of degree d (counted with their multiplici-
ties), which occur as factors of the characteristic polynomial of a normal form
in GLk(q).

The second sum is taken over all functions r from S(d, q) to N which satisfy

∑
(s,α)∈S(d,q)

r(s, α) = cd.

If the characteristic polynomial has exactly cd irreducible factors of degree d,
then the value r(s, α) stands for the number of irreducible factors with param-
eters (d, s, α).

The third sum is taken over all cycle types t �� r(s, α) with the additional
property that

∑
j

tj ≤ m(d, s, α).

Such a cycle type t describes the type of a set-partition of a set of cardinality
r(s, α) into at most m(d, s, α) subsets. For any t �� r(s, α) there are

ξ(m(d, s, α), t) :=
(

m(d, s, α)
t1, t2 . . . , m(d, s, α) − ∑j tj

)

496 6. Enumeration of Isometry Classes

possibilities to choose – among the m(d, s, α) different monic, irreducible poly-
nomials with parameters (d, s, α) – for each j exactly tj polynomials, which
occur with the multiplicity j in the considered characteristic polynomial.

Finally the last sum is taken over all cycle types a �� j. These cycle types
describe all possible normal forms whose characteristic polynomials are the
j-th power of one monic irreducible polynomial. The reader should recall that
the characteristic polynomial of D(f , a) equals f j in this situation.

6.3.28 Example We continue 6.3.27 by determining the sets E(d, q), S(d, q) for q = 3,
1 ≤ d ≤ 3, and the numbers ν(d, e) and m(d, s, α) for e ∈ E(d, q) and (s, α) ∈
S(d, q). This provides all the necessary information for computing the subcycle
index of GL3(3). In fact, the information contained in Table 6.4 is not needed
for this purpose.

E(1, 3) = {1, 2} ν(1, 1) = 1 ν(1, 2) = 1
E(2, 3) = {4, 8} ν(2, 4) = 1 ν(2, 8) = 2
E(3, 3) = {13, 26} ν(3, 13) = 4 ν(3, 26) = 4
S(1, 3) = {(1, 1), (1, 2)} m(1, 1, 1) = 1 m(1, 1, 2) = 1
S(2, 3) = {(2, 2), (4, 2)} m(2, 2, 2) = 1 m(2, 4, 2) = 2
S(3, 3) = {(13, 1), (13, 2)} m(3, 13, 1) = 4 m(3, 13, 2) = 4 �

In [142], explicit formulae for the numbers Tnkq, Tnkq, Vnkq, Vnkq, Rnkq, and
Rnkq are given for k ≤ 3. This is done by a careful analysis of the conjugacy
classes of elements of PGLk(q). The formulae result from counting fixed points
and applying the Lemma of Cauchy–Frobenius. Since in the general formula
too many different cases must be considered, we present some of the resulting
formulae for n = 7.

For example, for any field of characteristic p = 2 we obtain

T73q =
q6 + 7q5 + 9q4 + 183q3 + 632q2 − 364q + 1344

5040
+

+
[

q2 + 18q + 20
36

]
3|q−1

+
[

16
5

]
5|q−1

+
[

6
7

]
7|q−1

,

where
[x]a|b :=

{
x if a | b,
0 else.

For characteristic p > 2 we get

T73q =
q6 + 7q5 + 9q4 + 183q3 + 1157q2 + 56q − 201

5040
+

+
[

q2 + 10q − 15
72

]
3|q

+
[

q2 + 18q + 77
36

]
3|q−1

+
[

4q + 13
12

]
4|q−1

+

6.3 Cycle Indices of Projective Linear Groups 497

+
[

1
3

]
12|q−1

+
[

1
6

]
12|q−9

+
[

16
5

]
5|q−1

+
[

2
5

]
5|q

+
[

8
7

]
7|q−1

+

+
[

6
7

]
7|q+1

+
[

2
7

]
7|q

+
[

2
7

]
7|q2+q+1

.

Similar formulae can be found for Vnkq and Rnkq. For p = 2 and n = 7 we
obtain

V73q =
q6 + 7q5 + 8q4 + 197q3 + 456q2 + 420q + 384

5040
+

+
[

q2 + 14q + 36
36

]
3|q−1

+
[

14
5

]
5|q−1

+
[

3
7

]
7|q−1

,

and

R73q =
q6 + 7q5 + 8q4 + 190q3 + 414q2 + 588q + 272

5040
+

+
[

q2 + 14q + 40
36

]
3|q−1

+ [2]5|q−1 +
[

3
7

]
7|q−1

.

For p > 2 and n = 7 we have

V73q =
q6 + 7q5 + 8q4 + 197q3 + 981q2 + 1050q − 1896

5040
+

+
[

q2 + 6q − 3
72

]
3|q

+
[

q2 + 14q + 81
36

]
3|q−1

+
[

4q + 13
12

]
4|q−1

+

+
[

1
3

]
12|q−1

+
[

1
6

]
12|q−9

+
[

14
5

]
5|q−1

+
[

2
5

]
5|q

+
[

5
7

]
7|q−1

+

+
[

3
7

]
7|q+1

+
[

1
7

]
7|q

+
[

2
7

]
7|q2+q+1

and

R73q =
q6 + 7q5 + 8q4 + 190q3 + 939q2 + 903q − 2008

5040
+

+
[

q2 + 6q + 13
72

]
3|q

+
[

q2 + 14q + 85
36

]
3|q−1

+
[

2q + 5
6

]
4|q−1

+

+
[

1
3

]
12|q−1

+
[

1
6

]
12|q−9

+ [2]5|q−1 +
[

1
5

]
5|q

+
[

5
7

]
7|q−1

+

+
[

3
7

]
7|q+1

+
[

1
7

]
7|q

+
[

2
7

]
7|q2+q+1

.

498 6. Enumeration of Isometry Classes

The expressions for Tnkq, Vnkq, and Rnkq are even more complicated.

Exercises

E.6.3.1 Exercise Prove that the orders of the groups GLk(q) and PGLk(q) are given by

|GLk(q)| = (qk − 1)(qk − q) . . . (qk − qk−1) =: [q]k, |PGLk(q)| =
[q]k

q − 1
.

E.6.3.2 Exercise Let GX be a group action. Prove that conjugate elements g1, g2 ∈ G
induce permutations g1, g2 of X of the same cycle type. In other words, if
g2 = gg1g−1 for some g ∈ G, then ai(g1) = ai(g2) for all i. Hint: Which
relation holds between the cycles of π and ρπρ−1 for π, ρ ∈ SX?

E.6.3.3 Exercise Prove that the cycle index of the natural action of the symmetric
group Sn on the set n = {0, 1, . . . , n − 1} is given by

C(Sn, n) = ∑
a��n

n

∏
k=1

1
ak!kak

zak
k .

Hint: Prove first the following propositions:

1. The cycle type a(π) of a permutation π ∈ Sn characterizes the conjugacy
class of π in Sn. Hence, elements in different conjugacy classes of Sn have
different cycle types.

2. For each cycle type a �� n there exist permutations π ∈ Sn with a(π) = a.

3. The number of elements of Sn of cycle type a �� n is

n!
∏n

k=1 ak!kak
.

E.6.3.4 Exercise Let A be an endomorphism of Fk. Show that Fk together with the
outer composition 6.3.5 is an F[x]-module, that is, for all f , f1, f2 ∈ F[x] and all
v, v1, v2 ∈ Fk we have f1(f2v) = (f1 f2)v, (f1 + f2)v = f1v + f2v, f (v1 + v2) =
f v1 + f v2 and 1Fv = v.

E.6.3.5 Exercise Prove 6.3.6.

E.6.3.6 Exercise Prove that 6.3.7 is a decomposition of 1 into pairwise orthogonal
idempotents.

6.4 Numerical Data for Linear Isometry Classes 499

E.6.3.7Exercise Let A be an endomorphism of Fk. Prove that Fk is a cyclic F[x]-
module if and only if the characteristic polynomial χA and the minimal poly-
nomial MA of A coincide.

E.6.3.8Exercise Prove 6.3.17.

E.6.3.9Exercise Prove that conjugate matrices in GLk(q) have the same subcycle type.

E.6.3.10Exercise Prove 6.3.23.

E.6.3.11Exercise Prove that the multiplication � of 6.3.25 is commutative and associa-
tive.

6.46.4 Numerical Data for Linear Isometry Classes

In Tables 6.7–6.12 we present the numbers of linear isometry classes of nonre-
dundant linear codes and of projective linear codes for q = 2, 3, 4. For comput-
ing these numbers we had to determine the auxiliary data Tnkq and Tnkq given
in Tables 6.13–6.18. The numbers of all linear isometry classes of linear codes
are displayed in Tables 6.19–6.20. Some values for Unk2 were already presented
in Table 6.2. Finally the numbers of indecomposable linear codes are presented
in Tables 6.21–6.26. These numbers were computed with the computer alge-
bra system SYMMETRICA ([190]). Due to restrictions of the page size in some
tables the entries for n = 13 or n = 14 are omitted. It is also possible to de-
termine tables of

[n
k

]
(q), Tnkq, Tnkq, Vnkq, Vnkq, Unkq, Rnkq and Rnkq with the

software from the attached CD.

500 6. Enumeration of Isometry Classes

Table 6.5 Values of
[n

k

]
(3)

n\k 1 2 3 4
1 1 0 0 0
2 4 1 0 0
3 13 13 1 0
4 40 130 40 1
5 121 1 210 1 210 121
6 364 11 011 33 880 11 011
7 1 093 99 463 925 771 925 771
8 3 280 896 260 25 095 280 75 913 222
9 9 841 8 069 620 678 468 820 6 174 066 262

10 29 524 72 636 421 18 326 727 760 500 777 836 042
11 88 573 653 757 313 494 894 285 941 40 581 331 447 162
12 265 720 5 883 904 390 13 362 799 477 720 3 287 582 741 506 063
13 797 161 52 955 405 230 360 801 469 802 830 266 307 564 861 468 823

Table 6.6 Values of
[n

k

]
(4)

n\k 1 2 3 4
1 1 0 0 0
2 5 1 0 0
3 21 21 1 0
4 85 357 85 1
5 341 5 797 5 797 341
6 1 365 93 093 376 805 93 093
7 5 461 1 490 853 24 208 613 24 208 613
8 21 845 23 859 109 1 550 842 085 6 221 613 541
9 87 381 381 767 589 99 277 752 549 1 594 283 908 581

10 349 525 6 108 368 805 6 354 157 930 725 408 235 958 349 285
11 1 398 101 97 734 250 405 406 672 215 935 205 104 514 759 495 347 685

6.4 Numerical Data for Linear Isometry Classes 501

Table 6.7 Values of Vnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 1 0 0 0 0
4 1 3 3 1 0 0 0
5 1 4 6 4 1 0 0
6 1 6 12 11 5 1 0
7 1 7 21 27 17 6 1
8 1 9 34 63 54 25 7
9 1 11 54 134 163 99 35

10 1 13 82 276 465 385 170
11 1 15 120 544 1 283 1 472 847
12 1 18 174 1 048 3 480 5 676 4 408
13 1 20 244 1 956 9 256 22 101 24 297
14 1 23 337 3 577 24 282 87 404 143 270

Table 6.8 Values of Vnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 1 0 0 0 0
4 1 4 3 1 0 0 0
5 1 5 8 4 1 0 0
6 1 8 19 15 5 1 0
7 1 10 39 50 24 6 1
8 1 14 78 168 118 37 7
9 1 17 151 538 628 255 53

10 1 22 280 1 789 3 759 2 266 518
11 1 26 506 5 981 26 131 28 101 7 967
12 1 33 904 20 502 208 045 500 237 230 165
13 1 38 1 571 70 440 1 788 149 11 165 000 11 457 192
14 1 46 2 687 241 252 15 675 051 269 959 051 734 810 177

502 6. Enumeration of Isometry Classes

Table 6.9 Values of Vnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 1 0 0 0 0
4 1 4 3 1 0 0 0
5 1 6 9 4 1 0 0
6 1 9 24 17 5 1 0
7 1 12 55 70 28 6 1
8 1 17 131 323 189 44 7
9 1 22 318 1 784 1 976 490 65

10 1 30 772 12 094 36 477 13 752 1 240
11 1 37 1 881 89 437 923 978 948 361 102 417
12 1 48 4 568 668 922 25 124 571 91 149 571 25 983 495
13 1 59 10 857 4 843 901 665 246 650 9 163 203 790 9 229 228 790

Table 6.10 Values of Vnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0
4 0 0 2 1 0 0 0
5 0 0 1 3 1 0 0
6 0 0 1 4 4 1 0
7 0 0 1 5 8 5 1
8 0 0 0 6 15 14 6
9 0 0 0 5 29 38 22

10 0 0 0 4 46 105 80
11 0 0 0 3 64 273 312
12 0 0 0 2 89 700 1 285
13 0 0 0 1 112 1 794 5 632
14 0 0 0 1 128 4 579 26 792

6.4 Numerical Data for Linear Isometry Classes 503

Table 6.11 Values of Vnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0
4 0 1 2 1 0 0 0
5 0 0 3 3 1 0 0
6 0 0 4 8 4 1 0
7 0 0 4 19 15 5 1
8 0 0 3 44 61 26 6
9 0 0 3 91 277 162 40

10 0 0 2 199 1 439 1 381 375
11 0 0 1 401 8 858 17 200 5 923
12 0 0 1 806 62 311 311 580 182 059
13 0 0 1 1 504 459 828 6 876 068 9 427 034
14 0 0 0 2 659 3 346 151 159 373 844 608 045 192

Table 6.12 Values of Vnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0
4 0 1 2 1 0 0 0
5 0 1 4 3 1 0 0
6 0 0 8 10 4 1 0
7 0 0 10 35 19 5 1
8 0 0 13 136 122 33 6
9 0 0 17 657 1 320 376 52

10 0 0 19 3 849 25 619 11 632 1 057
11 0 0 19 23 456 645 751 845 949 95 960
12 0 0 17 138 200 16 822 798 81 806 606 25 058 580
13 0 0 13 761 039 418 686 704 8 140 667 601 8 935 079 862

504 6. Enumeration of Isometry Classes

Table 6.13 Values of Tnk2

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 4 4 4 4 4
4 1 4 7 8 8 8 8
5 1 5 11 15 16 16 16
6 1 7 19 30 35 36 36
7 1 8 29 56 73 79 80
8 1 10 44 107 161 186 193
9 1 12 66 200 363 462 497

10 1 14 96 372 837 1 222 1 392
11 1 16 136 680 1 963 3 435 4 282
12 1 19 193 1 241 4 721 10 397 14 805
13 1 21 265 2 221 11 477 33 578 57 875
14 1 24 361 3 938 28 220 115 624 258 894

Table 6.14 Values of Tnk3

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 4 4 4 4 4
4 1 5 8 9 9 9 9
5 1 6 14 18 19 19 19
6 1 9 28 43 48 49 49
7 1 11 50 100 124 130 131
8 1 15 93 261 379 416 423
9 1 18 169 707 1 335 1 590 1 643

10 1 23 303 2 092 5 851 8 117 8 635
11 1 27 533 6 514 32 645 60 746 68 713
12 1 34 938 21 440 229 485 729 722 959 887
13 1 39 1 610 72 050 1 860 199 13 025 199 24 482 391
14 1 47 2 734 243 986 15 919 037 285 878 088 1 020 688 265

6.4 Numerical Data for Linear Isometry Classes 505

Table 6.15 Values of Tnk4

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 4 4 4 4 4
4 1 5 8 9 9 9 9
5 1 7 16 20 21 21 21
6 1 10 34 51 56 57 57
7 1 13 68 138 166 172 173
8 1 18 149 472 661 705 712
9 1 23 341 2 125 4 101 4 591 4 656

10 1 31 803 12 897 49 374 63 126 64 366
11 1 38 1 919 91 356 1 015 334 1 963 695 2 066 112
12 1 49 4 617 673 539 25 798 110 116 947 681 142 931 176
13 1 60 10 917 4 854 818 670 101 468 9 833 305 258 19 062 534 048

Table 6.16 Values of Tnk2

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1
3 0 1 2 2 2 2 2
4 0 0 2 3 3 3 3
5 0 0 1 4 5 5 5
6 0 0 1 5 9 10 10
7 0 0 1 6 14 19 20
8 0 0 0 6 21 35 41
9 0 0 0 5 34 72 94

10 0 0 0 4 50 155 235
11 0 0 0 3 67 340 652
12 0 0 0 2 91 791 2 076
13 0 0 0 1 113 1 907 7 539
14 0 0 0 1 129 4 708 31 500

506 6. Enumeration of Isometry Classes

Table 6.17 Values of Tnk3

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1
3 0 1 2 2 2 2 2
4 0 1 3 4 4 4 4
5 0 0 3 6 7 7 7
6 0 0 4 12 16 17 17
7 0 0 4 23 38 43 44
8 0 0 3 47 108 134 140
9 0 0 3 94 371 533 573

10 0 0 2 201 1 640 3 021 3 396
11 0 0 1 402 9 260 26 460 32 383
12 0 0 1 807 63 118 374 698 556 757
13 0 0 1 1 505 461 333 7 337 401 16 764 435
14 0 0 0 2 659 3 348 810 162 722 654 770 767 846

Table 6.18 Values of Tnk4

n\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1
3 0 1 2 2 2 2 2
4 0 1 3 4 4 4 4
5 0 1 5 8 9 9 9
6 0 0 8 18 22 23 23
7 0 0 10 45 64 69 70
8 0 0 13 149 271 304 310
9 0 0 17 674 1 994 2 370 2 422

10 0 0 19 3 868 29 487 41 119 42 176
11 0 0 19 23 475 669 226 1 515 175 1 611 135
12 0 0 17 138 217 16 961 015 98 767 621 123 826 201
13 0 0 13 761 052 419 447 756 8 560 115 357 17 495 195 219

6.4 Numerical Data for Linear Isometry Classes 507

Table 6.19 Values of Unk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 3 1 0 0 0 0
4 4 7 4 1 0 0 0
5 5 12 12 5 1 0 0
6 6 20 31 20 6 1 0
7 7 30 70 70 30 7 1
8 8 44 148 238 148 44 8
9 9 61 299 776 776 299 61

10 10 83 579 2 565 4 535 2 565 579
11 11 109 1 085 8 546 30 666 30 666 8 546
12 12 142 1 989 29 048 238 711 530 903 238 711
13 13 180 3 560 99 488 2 026 860 11 695 903 11 695 903
14 14 226 6 247 340 740 17 701 911 281 654 954 746 506 080

Table 6.20 Values of Unk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 3 1 0 0 0 0
4 4 7 4 1 0 0 0
5 5 13 13 5 1 0 0
6 6 22 37 22 6 1 0
7 7 34 92 92 34 7 1
8 8 51 223 415 223 51 8
9 9 73 541 2 199 2 199 541 73

10 10 103 1 313 14 293 38 676 14 293 1 313
11 11 140 3 194 103 730 962 654 962 654 103 730
12 12 188 7 762 772 652 26 087 225 92 112 225 26 087 225

508 6. Enumeration of Isometry Classes

Table 6.21 Values of Rnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 1 1 0 0 0 0
5 1 2 2 1 0 0 0
6 1 3 5 3 1 0 0
7 1 4 10 10 4 1 0
8 1 5 18 28 18 5 1
9 1 7 31 71 71 31 7

10 1 8 51 165 250 165 51
11 1 10 79 361 809 809 361
12 1 12 121 754 2 484 3 759 2 484
13 1 14 177 1 503 7 240 16 749 16 749
14 1 16 254 2 893 20 341 72 828 113 662

Table 6.22 Values of Rnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 2 1 0 0 0 0
5 1 3 3 1 0 0 0
6 1 5 10 5 1 0 0
7 1 7 24 24 7 1 0
8 1 10 55 105 55 10 1
9 1 13 116 403 403 116 13

10 1 17 231 1 506 3 000 1 506 231
11 1 21 438 5 425 23 579 23 579 5 425
12 1 27 813 19 440 199 473 469 473 199 473
13 1 32 1 451 68 478 1 758 953 10 925 684 10 925 684
14 1 39 2 533 237 709 15 575 102 267 929 503 723 109 414

6.4 Numerical Data for Linear Isometry Classes 509

Table 6.23 Values of Rnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 2 1 0 0 0 0
5 1 4 4 1 0 0 0
6 1 6 14 6 1 0 0
7 1 9 38 38 9 1 0
8 1 13 104 238 104 13 1
9 1 18 276 1 573 1 573 276 18

10 1 25 711 11 566 34 288 11 566 711
11 1 32 1 793 88 140 909 664 909 664 88 140
12 1 42 4 446 665 736 25 020 688 90 186 547 25 020 688
13 1 53 10 691 4 836 136 664 473 418 9 137 113 963 9 137 113 963

Table 6.24 Values of Rnk2

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 0 1 0 0 0 0
5 0 0 1 1 0 0 0
6 0 0 1 2 1 0 0
7 0 0 1 4 3 1 0
8 0 0 0 5 9 4 1
9 0 0 0 5 22 19 6

10 0 0 0 4 40 70 35
11 0 0 0 3 60 220 190
12 0 0 0 2 86 629 977
13 0 0 0 1 110 1 700 4 875
14 0 0 0 1 127 4 463 24 920

510 6. Enumeration of Isometry Classes

Table 6.25 Values of Rnk3

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 1 1 0 0 0 0
5 0 0 2 1 0 0 0
6 0 0 4 4 1 0 0
7 0 0 4 14 6 1 0
8 0 0 3 39 39 9 1
9 0 0 3 88 227 93 12

10 0 0 2 196 1 340 1 078 199
11 0 0 1 399 8 652 15 695 4 468
12 0 0 1 805 61 904 302 573 164 499
13 0 0 1 1 503 459 017 6 813 448 9 113 636
14 0 0 0 2 658 3 344 644 158 913 391 601 158 522

Table 6.26 Values of Rnk4

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 1 1 0 0 0 0
5 0 1 3 1 0 0 0
6 0 0 7 5 1 0 0
7 0 0 10 26 8 1 0
8 0 0 13 124 83 12 1
9 0 0 17 643 1 173 244 17

10 0 0 19 3 831 24 942 10 266 663
11 0 0 19 23 437 641 872 820 142 84 184
12 0 0 17 138 181 16 799 302 81 159 989 24 211 108
13 0 0 13 761 022 418 548 455 8 123 840 077 8 853 245 774

6.5 Critical Codes 511

6.56.5 Critical Codes

According to 6.2.13, appending a nonzero column to an indecomposable code
yields a code which is again indecomposable. This shows that there exists an
infinite family of k-dimensional indecomposable linear codes over any field
Fq and for any dimension k. On the other hand, the (n − 1, k)-code obtained
by deleting an arbitrary column of a generator matrix of an indecomposable
(n, k)-code can be either decomposable or indecomposable. For this reason, we
investigate a restricted class of indecomposable codes, the critical, indecompos-
able codes, for short critical codes, introduced in [6]. An indecomposable code
is called critical if the removal of any column of a generator matrix results in
a decomposable code. In this section we prove that for a given dimension
there are only finitely many critical, indecomposable codes and that any inde-
composable code is obtained from a critical code by appending columns to a
generator matrix of the critical code. Similarly as in Section 6.2, we may al-
ways assume that the codes are nonredundant. The present section is mainly a
summary of [6]. All theorems and examples are quoted or excerpted from [6].
However, the order of the material presented is changed slightly.

Given an arbitrary code C, we may consider the subcode which is gener-
ated by the codewords of weight 1. If such words exist, the subcode generated
by them splits off as an outer direct summand. Therefore, C is not indecom-
posable. If dist(C) > 1, we investigate the subcode E of C which is generated
by the vectors of weight 2. If such vectors exist, then E may or may not be
an outer direct summand. The code E itself turns out to be an outer direct
sum of codes, each summand being equivalent to a code which is the dual of
a one-dimensional code generated by the all-one vector.

The support of a vector was defined in Section 1.6. The support of a vector
space is the union of the supports of its elements. If the support of E is suffi-
ciently large compared to the support of the code C and C is indecomposable,
then we will prove that C is a critical code.

A particular class of vector space homomorphisms plays an important role
for the following considerations.

6.5.1Definition (code homomorphism) Let C and D be two linear codes over Fq. A
code homomorphism is a vector space homomorphism ϕ : C → D such that

wt(ϕ(c)) ≤ wt(c), c ∈ C.

In other words, code homomorphisms are linear mappings which are contrac-
tions with respect to the Hamming metric.

512 6. Enumeration of Isometry Classes

6.5.2 Examples

1. Let Y be a subset of n = {0, . . . , n − 1} and n ≥ 1. For f ∈ Fn
q let f ↓ Y be

the restriction of f to Y. If C is a subspace of Fn
q and D = { f ↓ Y | f ∈ C},

then the mapping ϕ : C → D defined by ϕ(f) := f ↓ Y is a code homo-
morphism. It is called a projection of C onto D. If dim(D) = dim(C), then
in coding theory we usually say that D is obtained from C by puncturing
(cf. 2.2.8). We call D the projection of C onto Y.

2. If C′ is a subspace of C ⊆ Fn
q , then the natural injection of C′ into C is a

code homomorphism.

3. If C is a critical, indecomposable code of length n > 1, then the projections
of C onto n \ {i} are decomposable for i ∈ n.

4. A projection D of a decomposable code C is decomposable or indecompos-
able. If it is indecomposable, then dim(D) < dim(C). �

Based on code homomorphisms it is possible to introduce the category of
linear codes. We will not do it here. For further details consult [6].

If ϕ : C → D is a vector space isomorphism so that both ϕ and its inverse
ϕ−1 : D → C are code homomorphisms, then ϕ is called a code isomorphism. It
follows, therefore, that a code isomorphism preserves weights. If ϕ : C → D
is a code isomorphism and C and D are of the same length, then ϕ is a linear
isometry in the sense of Section 1.4. Hence, if we do not restrict our attention
to nonredundant codes, then the notion “up to isomorphism” is a generaliza-
tion of the notion “up to linear isometry”. Two codes which are the same up to
isomorphism can have different block-lengths. Restricting ourselves to nonre-
dundant codes the two notions mean the same. The projection C → D of a
nonredundant code C is a code isomorphism if and only if C = D.

Even if the code homomorphism is a vector space isomorphism its inverse
need not be a code homomorphism.

6.5.3 Example For n > 1 let C be the (n, n − 1)-parity check code and D the punc-
turing of C in the first component. Then the projection ϕ : C → D is a vector
space isomorphism. For each c ∈ C whose first component is different from
0 we have wt(ϕ(c)) < wt(c) and, consequently, wt(ϕ−1(ϕ(c)) > wt(ϕ(c)).
Thus, ϕ−1 is not a code homomorphism. �

6.5.4 Definition (critical code) An indecomposable code C is called critical, indecom-
posable or just critical if, whenever ϕ : C → D is a projection which is not a code
isomorphism, either dim(D) < dim(C), or D is decomposable.

6.5 Critical Codes 513

6.5.5Examples

1. Up to isomorphism, there is exactly one critical code of dimension 1 over
Fq, namely Fq.

2. In dimension 2 there is up to isomorphism one critical code, namely the
(3, 2)-code with generator matrix(

1 0 1
0 1 1

)
.

3. For n ≥ 3, the unique indecomposable (n, n− 1)-code (cf. 6.2.19) is a critical
code. It has a generator matrix of the form⎛⎜⎝ 1 1

. . .
...

1 1

⎞⎟⎠ 6.5.6

where all entries, which are not specified, are equal to 0.

4. There is no critical code of length 2.

5. Consider an indecomposable code C with a repeated column, the last col-
umn say. Projecting this code onto all but the last column yields a sur-
jective code homomorphism, which is not an isomorphism. The image is
indecomposable and has the same dimension as C, whence C is not critical.
In particular, a critical, indecomposable code has no repeated columns. For
example, according to Table 6.21 there exist two indecomposable binary
(5, 2)-codes. They are given by the generator matrices

Γ1 =
(

1 0 0 0 1
0 1 1 1 1

)
and Γ2 =

(
1 0 1 0 1
0 1 0 1 1

)
.

They both project onto the unique critical binary code of dimension 2.

6. According to Table 6.22, there exist exactly two indecomposable binary
(5, 3)-codes. They are given by the generator matrices

Γ1 =

⎛⎝ 1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

⎞⎠ and Γ2 =

⎛⎝ 1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

⎞⎠ .

Their weight distributions are

wC1(x) = 1 + 2x2 + 4x3 + x4 and wC2(x) = 1 + 3x2 + 3x3 + x5.

Deleting the second column of Γ1 and the last column of Γ2 shows that
both codes project onto the same critical binary (4, 3)-code with generator
matrix ⎛⎝ 1 0 0 1

0 1 0 1
0 0 1 1

⎞⎠
�

514 6. Enumeration of Isometry Classes

It is possible to generalize the last example.

6.5.7 Theorem Over any field there is a unique critical code of dimension 3. Up to isomor-
phism, it is the (4, 3)-code with generator matrix.⎛⎝ 1 0 0 1

0 1 0 1
0 0 1 1

⎞⎠ .

Proof: Assume that C is a three-dimensional, critical code over Fq. Then we
can find a linearly isometric code with generator matrix (I3 | A).

If A has a column of weight three, then the columns of I3 together with
this additional column are the generator matrix of a projection of C. Moreover,
this projection is a critical, three-dimensional, indecomposable code. Hence, it
must be the generator matrix for the code linearly isometric to C. By changing
the basis suitably, one can achieve that the column of weight 3 consists of three
ones. A monomial transformation then gives the desired generator matrix.

If there is no column of weight 3 in A, then all columns of A have weight
2. There are no columns of weight 1, since they would be repeated columns,
contradicting the fact that C is critical. Moreover, since C is indecomposable,
there must be at least two columns in A whose zeros are in different rows.
We want to prove that there is no critical (5, 3)-code. Again, by a suitable
monomial transformation we can assume that the generator matrix is of the
form ⎛⎝ 1 0 0 1 1

0 1 0 1 0
0 0 1 0 1

⎞⎠ .

Projecting C onto the last four coordinates gives a three-dimensional critical,
indecomposable code which is easily seen to be linearly isometric to the (4, 3)-
code. This shows that no critical, three-dimensional, indecomposable code
with block length greater than four exists. �

The situation in dimension 4 is more interesting.

6.5.8 Example The binary (5, 4)-parity check code is a critical code.
The projection of the binary (7, 4)-Hamming-code onto any 6 coordinates

is a critical (6, 4)-code. A suitable generator matrix of this code is given by⎛⎜⎜⎝
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 1 0 1

⎞⎟⎟⎠ .

6.5 Critical Codes 515

This critical code belongs to an infinite class of critical binary (2m, m + 1)-
codes, m ≥ 2, with generator matrix⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0

. . .
0 0 0 0 . . . 1 1
0 1 0 1 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ .

For m = 2 we have the (4, 3)-parity check code, for m = 3 the code above. �

If C is an indecomposable code which is not critical, then there exists a pro-
jection of C onto an indecomposable code of the same dimension but smaller
length. This proves the next

6.5.9Corollary For any indecomposable code C, there exists a critical code D of the same
dimension as C and a projection of C onto D. �

All indecomposable codes are given by adjoining columns to the generator
matrix of a critical code. For example, all 2-dimensional binary indecompos-
able codes have generator matrices of the form(

1 . . . 1 0 . . . 0 1 . . . 1
0 . . . 0 1 . . . 1 1 . . . 1

)
and project onto the unique critical (3, 2)-code over F2 by eliminating repeated
columns.

By eliminating repeated columns we obtain the reduced code of C. By
further deleting zero columns we obtain a projective code. The reduced code
is indecomposable if and only if the original code had this property.

6.5.10Definition (critical column) Let C be an indecomposable code of length n > 1.
The i-th column, i ∈ n, of C is critical if the projection of C onto n \ {i} is
a decomposable code. In other words, the i-th column is critical if the code
which is obtained from C by puncturing the i-th coordinate is decomposable.

6.5.11Corollary An indecomposable code C of length n > 1 is critical if and only if all its
columns are critical. �

Now we determine all critical (n, n − 2)-codes for n > 2.

6.5.12Theorem If C is a critical (nonredundant) (n, n − 2)-code over Fq, then n > 3.
It has minimum distance 2 and the subcode E of C generated by all codewords of

516 6. Enumeration of Isometry Classes

weight 2 has support n. Moreover, C is linearly isometric to a code with a generator
matrix of the form

Γ = (In−2 | A) with A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a0
...

...
1 ar−1

0 1
...

...
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the weight of the second column of A is greater than n − 2 − r but less than
n − 2. Moreover, if ai �= 0, then there exists some j ∈ r \ {i} with aj = ai.

Conversely, any matrix A as above yields a critical (n, n − 2)-code over Fq.

Proof: For n = 3 there is no critical, nonredundant (3, 1)-code. Hence, we
assume that n > 3. The code C is linearly isometric to a code with generator
matrix of the form (In−2 | A) where neither of the two columns of A can
have weight n − 2, since otherwise C would not be critical. By a monomial
transformation we can assure that the first column of A is a sequence of r ones,
r < n− 2, followed by a sequence of zeros. If a = (a0, . . . , ar−1, ar , . . . , an−3)� is
the second column of A, then necessarily ai �= 0 for i ≥ r, since C cannot have
minimum weight 1. By a further monomial transformation, we can assume
that these entries are equal to 1. Moreover, since C is indecomposable there
must be some i ∈ r so that ai �= 0. Thus, the weight of the second column of A
is greater than n − 2− r but less than n − 2.

We next prove that for each i ∈ r with ai �= 0 there exists some j ∈ r,
j �= i, such that aj = ai. If for i with ai �= 0 there were no j with ai = aj, then
we can proceed as follows: Multiply the last column by a−1

i so that there is a
single 1 in the last column. (Then the elements in the last column are of the
form aja−1

i .) By elementary row operations it is possible to replace all nonzero
entries different from 1 in the last column by 0. (For each j different from i
we have to multiply the i-th row by aja

−1
i and subtract the result from the j-

th row.) After these row operations all entries of the last but one column are
different from 0. Hence this matrix contains the n − 2 unit vectors, a column
of weight n − 2 and a further column. Thus it is a generator matrix of a code
which is not critical. This is a contradiction, since this code is linearly isometric
to a critical code.

Lastly, we prove the assertion concerning the subcode E. The last n − 2− r
rows of Γ belong to E, whence {i ∈ n | r ≤ i ≤ n − 3} ∪ {n − 1} is a subset of
the support of E. Moreover, there exists i ∈ r such that ai = 0. Consequently,
{n − 2} ∪ {i ∈ r | ai = 0} is also contained in the support of E. Finally, con-
sider some i ∈ r with ai �= 0, then there is some j ∈ r with aj = ai, and the sum

6.5 Critical Codes 517

of the i-th and j-th row is contained in E. Its support is {i, j}. Therefore, i and
j also belong to the support of E. This proves that E has full support. �

Now we want to describe the structure of critical codes. This way we find
a “quasicanonical form” of critical and indecomposable codes.

First we need the following lemma describing the subspace generated by
all codewords of weight 2.

6.5.13Lemma Let E be a code over Fq with minimum distance 2 which is generated by its
vectors of weight 2. Then

E = E0 � . . . � Er−1

where each Ei is linearly isometric to an indecomposable (ni, ni − 1)-parity check code
with ni ≥ 2.

Proof: We consider E as a code of length n with support n = {0, . . . , n − 1}.
We introduce an equivalence relation on n by saying that i is in relation to j
whenever there exists a codeword c ∈ E of weight 2 so that ci �= 0 �= cj. Let
X0, . . . , Xr−1 be the equivalence classes of this relation.

For i ∈ r let Ei be the subspace of E which is generated by all vectors of
weight 2 with support in Xi. Then Ei ∩ Ej = {0} for i �= j and E0 � . . . � Er−1 =
E. By construction |Xi| = ni ≥ 2. Projecting Ei to its support Xi yields an
indecomposable (ni, ni − 1)-code. �

6.5.14Corollary Any code with minimum distance 2 which is generated by its vectors of
weight 2 is linearly isometric to a code with generator matrix⎛⎜⎜⎜⎜⎝

Γ0 0 . . . 0
0 Γ1 0
...

. . .
...

0 0 . . . Γr−1

⎞⎟⎟⎟⎟⎠ ,

where Γi, i ∈ r, is an (ni − 1)× ni-matrix, ni ≥ 2, of the form 6.5.6. �

Note that this code is indecomposable if and only if r = 1.
From the test on indecomposability, 6.2.13, we obtain the following

6.5.15Corollary If C is a critical code with generator matrix of the form (Ik | A), then
any walk visiting all the k rows of the graph GA defined on page 469 also visits every
column of GA.

Proof: If there were a walk visiting all rows but not all columns, then some
columns of A could be eliminated and the resulting code would still be inde-
composable. This is a contradiction to the assumption that C is critical. �

518 6. Enumeration of Isometry Classes

This, however, is only a necessary, not a sufficient property for a code to be
critical. We proceed with the following combinatorial lemma, which will later
be applied to the supports of the columns of A.

6.5.16 Lemma Let R be a finite set and C a collection of subsets of R satisfying the two
conditions:

1. There is a sequence R0, R1, . . . , Rm−1 of elements of C such that Ri ∩ Ri+1 �= ∅
for i ∈ m − 1 and

⋃
i∈m Ri = R.

2. C is minimal with respect to the above property, i.e. no proper subset of C posses a
sequence of elements satisfying this property.

Then there exists some r ∈ R and i ∈ m such that r ∈ Ri and r �∈ Rj for j �= i.
Moreover, if |C| > 1, then there exist at least two elements r, r′ ∈ R, r �= r′, and
i, i′ ∈ m, i �= i′, with r ∈ Ri, r �∈ Rj for j �= i and r′ ∈ Ri′ , r′ �∈ Rj for j �= i′.

Proof: Any sequence from C having the required property must contain each
element of C at least once by the minimality assumption. Choose a sequence
R0, . . . , Rm−1 from C with the required property and with m minimal. If m = 1,
then C = {R0} and the assertion is trivial. Otherwise, consider the shorter se-
quences R1, . . . , Rm−1 and R0, . . . , Rm−2. Since they both enjoy the intersection
property, necessarily

m−1⋃
i=1

Ri �= R �=
m−2⋃
i=0

Ri.

Due to the fact that m was minimal neither R0 occurs among R2, . . . , Rm−1

nor Rm−1 occurs among R0, . . . , Rm−2. Choose r0 ∈ R0, r0 �∈ ⋃m−1
i=1 Ri and

rm−1 ∈ Rm−1, rm−1 �∈
⋃m−2

i=0 Ri. Then r0 �= rm−1 and we get the desired result.
�

6.5.17 Theorem Every critical (n, k)-code with n > 2 has minimum distance 2. If n ≥ 4,
then the code contains at least two vectors of weight 2 with disjoint support.

Let E be the subcode of C generated by all codewords of weight 2. Then either
C = E or there exists a subspace F of C of minimum distance greater than 2 so that
C = E + F and E ∩ F = {0}. The subcode E can be expressed as E = E0 � . . . �
Er−1, r ≥ 1, where each Ei is linearly isometric to an indecomposable (ni, ni − 1)-
parity check code.

When C = E + F with F �= {0}, then F is an indecomposable code. Assume
without loss of generality, that the support of E is equal to s = {0, . . . , s − 1}. If
s < n, then the columns of F with column index in {s, . . . , n − 1} are critical columns
of F. The code F is also known as the auxiliary indecomposable code attached to C.

6.5 Critical Codes 519

A generator matrix of a code linearly isometric to C is of the form

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
Γ0 0 . . . 0 0
0 Γ1 . . . 0 0
...

. . .
...

0 0 . . . Γr−1 0
Λ0 Λ1 . . . Λr−1 Λr

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where Γi, i ∈ r, is an (ni − 1) × ni-matrix, ni ≥ 2, of the form 6.5.6. Each Λi, i ∈ r,
is of the form

Λi =

⎛⎜⎝ 0 . . . 0 �0i
...

. . .
...

...
0 . . . 0 �δ−1,i

⎞⎟⎠
where δ = dim(F) = k − ∑i(ni − 1), and (�0i, . . . , �δ−1,i) ∈ Fδ

q \ {0}. Finally, all
columns of the δ × (n − s)-matrix Λr are nonzero and critical. The matrix Γ is called
a quasicanonical form of C. The submatrix (Λ0 | . . . | Λr) is a generator matrix of
F. The nonzero columns of this submatrix yield a generator matrix⎛⎜⎝ �00 . . . �0,r−1

...
. . .

...
�δ−1,0 . . . �δ−1,r−1

Λr

⎞⎟⎠
of F projected onto its support which is a nonredundant, indecomposable code.

Proof: Assume that C is a nonredundant, critical (n, k)-code with n > 2 and
systematic generator matrix Γ = (Ik | A), where necessarily k < n. Let R be k,
the set of all row-indices of Γ, and let C be the set of the supports of the columns
of A. According to 6.5.15, C satisfies the assumptions of 6.5.16. Consequently,
there exists some i ∈ k such that i belongs to exactly one column of A, thus the
i-th row of Γ is a codeword of weight 2. By 6.2.18, any indecomposable code
of length greater than 1 has minimum distance at least 2. Hence, dist(C) = 2.

Assume that n ≥ 4. If n − k ≥ 2, then |C| > 1, whence there exist i, j ∈ k,
i �= j, so that there is exactly one column of A the support of which contains
i and there is exactly one column of A the support of which contains j. Con-
sequently, the i-th and the j-th row of Γ are two codewords of weight 2 with
disjoint support. If n − k = 1, then C is the (n, n − 1)-parity check code which
contains at least two codewords of weight 2 with disjoint support.

Let E be the subcode of C generated by the vectors of weight 2. By 6.5.13

E = E0 � . . . � Er−1,

where each Ei is linearly isometric to a unique indecomposable (ni, ni − 1)-
code, ni ≥ 2. If ni = 2, then Ei is the repetition code, otherwise Ei is a critical

520 6. Enumeration of Isometry Classes

code. It is possible that the support of E is a proper subset of n. In this case
assume, without loss of generality, that the support of E is s. Moreover, we as-
sume that the support X0 of E0 consists of the first n0 columns, and the support
Xi of Ei consists of the ni columns following the support of Ei−1, for 1 ≤ i < r.
Thus X0 = {0, . . . , n0 − 1} = n0, X1 = {n0, . . . , n0 + n1 − 1} = (n0 + n1) \ n0,
and so on.

If r = 1 and C = E, we are done. Otherwise E is properly contained
in C and C = E + F where F ∩ E = {0}. Since E contains all codewords
of C of weight 2, the code F has minimum distance at least 3. By suitable
row operations it is possible to find generators of F the support of which is
contained in

S =

{
i

∑
j=0

nj − 1
∣∣∣ i ∈ r

}
∪ {s, s + 1, . . . , n − 1} .

Recall that ∑i
j=0 nj − 1 belongs to the support of Ei, i ∈ r. Moreover, since C is

indecomposable, S is the support of F.
The fact that C is indecomposable implies that also F is indecomposable.

The fact that C is critical implies that all columns with index in {s, . . . , n − 1}
are critical. �

If r > 1 and s = n, then necessarily r ≥ 3, since otherwise the weight of the
generators of F would be less than 3, what is impossible since all codewords
of weight 2 belong to E and there are no codewords of weight 1 in C.

This way we obtain only a quasicanonical form of critical codes since we
have specified neither the order of the Γi nor the order of the nonzero columns
of the matrices Λi. This description of the quasicanonical form yields a method
for constructing critical codes and arbitrary indecomposable codes. Any inde-
composable code is linearly isometric to a code with generator matrix

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
Γ0 0 . . . 0 0 N0

0 Γ1 . . . 0 0 N1
...

. . .
...

...
0 0 . . . Γr−1 0 Nr−1

Λ0 Λ1 . . . Λr−1 Λr Nr

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with suitable matrices Ni, 0 ≤ i ≤ r.

6.5.18 Example Consider the binary (5, 2, 3)-code F with generator matrix

Γ =
(

1 0 1 0 1
0 1 0 1 1

)
which is indecomposable and has one critical column, the last. Now we want
to construct a nonredundant, critical (9, 6)-code with auxiliary code F. Since

6.5 Critical Codes 521

ni ≥ 2, we have r = 4, n0 = n1 = n2 = n3 = 2 and s = 8. Therefore, a
quasicanonical form of the critical (9, 6)-code is⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

�

Using these quasicanonical forms, we are able to classify the critical
(n, n − 2)-codes in more details.

6.5.19Corollary The quasicanonical generator matrix of a critical, indecomposable (n, n −
2)-code over Fq with n > 3 is of the form

Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
Γ0 0 . . . 0
0 Γ1 . . . 0
...

. . .
0 0 . . . Γr−1

Λ0 Λ1 . . . Λr−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where r ≥ 3, Γi is an (ni − 1) × ni-matrix, ni ≥ 2, given by 6.5.6, i ∈ r. Moreover,
Λi = (0 | . . . | 0 | e(i)) is an (r − 2) × ni-matrix for i ∈ r − 2,

Λr−2 =

⎛⎜⎝ 0 . . . 0 1
...

. . .
...

...
0 . . . 0 1

⎞⎟⎠ and Λr−1 =

⎛⎜⎝ 0 . . . 0 �0
...

. . .
...

...
0 . . . 0 �r−3

⎞⎟⎠
with pairwise different, nonzero elements �0, . . . , �r−3. Thus, we obtain the following
estimates: q − 1 ≥ r − 2 and n ≥ 6.

Proof: The quasicanonical form of critical codes was described in 6.5.17. Ac-
cording to 6.5.12, the code E generated by all codewords of weight 2 has full
support. Whence, n − s = 0 and the matrix Λr does not occur in this quasi-
canonical form. By construction r = 1 and r = 2 are impossible. If r ≥ 3, then
the auxiliary code F projected onto its nonzero columns is an (r, r − 2)-code
F̃ with minimum distance d ≥ 3. Therefore, it is an MDS-code. According to
2.5.6, there exists a systematic generator matrix of a code linearly isometric to
F̃ with generator matrix of the form⎛⎜⎜⎜⎝

1 0 . . . 0 1 �0

0 1 . . . 0 1 �1
...

. . .
...

...
0 0 . . . 1 1 �r−3

⎞⎟⎟⎟⎠ .

�

522 6. Enumeration of Isometry Classes

For the binary case we obtain even a canonical form of critical (n, n− 2)-codes.

6.5.20 Corollary The binary critical (n, n − 2)-codes, n ≥ 6, have the canonical form

Γ =

⎛⎜⎜⎜⎝
Γ0 0 0
0 Γ1 0
0 0 Γ2

Λ0 Λ1 Λ2

⎞⎟⎟⎟⎠ ,

where Γi is an (ni − 1) × ni-matrix given by 6.5.6, i ∈ 3, with n0 ≥ n1 ≥ n2 ≥ 2,
and Λi is an 1× ni-matrix of the form

Λi = (0 . . . 0 1) , i ∈ 3.

Proof: Since F2 contains exactly two elements, we obtain from 1 ≥ r − 2 that
r ≤ 3, thus r = 3. Another proof of this fact is based on 2.5.7, where we have
shown that there exist only trivial binary MDS-codes. Hence, only for r = 3
there exist binary (r, r − 2, 3)-codes. �

6.5.21 Corollary The number of linearly nonisometric critical binary (n, n − 2)-codes with
n ≥ 6 is the same as the number of partitions of n − 3 into three parts.

Proof: The matrices Λi in the last row of a canonical form of a critical binary
(n, n − 2)-code have exactly one row. Therefore,

2

∑
i=0

(ni − 1) = n − 3

is the sum of the ranks of the matrices Γi for i ∈ 3. Since n0 ≥ n1 ≥ n2 and
n2 − 1 ≥ 1, the sequence (n0 − 1, n1 − 1, n2 − 1) is a partition of n − 3. �

6.5.22 Example For n = 6 there is exactly one partition of 3 with three parts, namely
3 = 1 + 1 + 1. We have met the corresponding critical (6, 4)-code in 6.5.8. For
n = 7 there is the unique partition 4 = 2 + 1 + 1 which yields the canonical
form

Γ =

⎛⎜⎜⎜⎜⎝
1 0 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 1 0 1 0 1

⎞⎟⎟⎟⎟⎠ .

�

6.5 Critical Codes 523

6.5.23Theorem A nonredundant, binary, critical (n, n − 2)-code C contains the all-one
vector if and only if it comes from a partition of n − 3 into three parts all of the same
parity (this means, that all three parts are either odd or even).

Proof: Assume that n − 3 has a partition k0 + k1 + k2 with k0 ≥ k1 ≥ k2 ≥ 1.
Using the canonical form 6.5.20 of C we have: If all three ki are odd, then

(1, . . . , 1︸ ︷︷ ︸
k0

, 1, . . . , 1︸ ︷︷ ︸
k1

, 1, . . . , 1︸ ︷︷ ︸
k2

, 0) · Γ = (1, . . . , 1).

If all three ki are even, then

(1, . . . , 1︸ ︷︷ ︸
k0

, 1, . . . , 1︸ ︷︷ ︸
k1

, 1, . . . , 1︸ ︷︷ ︸
k2

, 1) · Γ = (1, . . . , 1).

Conversely, assume that c = (1, . . . , 1) is contained in C. Then there exists
some v ∈ Fn−2

2 so that v · Γ = c. Moreover, assume that Γ corresponds to
a partition k0 + k1 + k2 = n − 3 with ki = ni − 1, i ∈ 3. If k0 is odd, then
the first k0 entries of v must be equal to 1. These entries guarantee that c0 =
c1 = . . . = ck0−1 = 1. The first k0 components of c are not influenced by the
remaining vi, k0 ≤ i < k. Since ck0 = 1, necessarily vn−3, the last component
of v, must be 0. Therefore, k1 and k2 are also odd, since otherwise cn0+n1−1 =
0 or cn0+n1+n2−1 = 0. If k0 is even, then similar considerations show, that
necessarily vn−3 = 1, in order to have ck0 = 1 and consequently, both k1 and
k2 must be even. �

Now we investigate the dual of a critical code.

6.5.24Examples

1. If C is the critical (n, n − 1)-code, n > 2, over Fq, then, according to Exer-
cise 1.3.9 its dual code C⊥ is generated by (−1, . . . ,−1, 1). Thus, it is lin-
early isometric to the code generated by the all-one vector and its reduced
code is the (1, 1)-code Fq.

2. If C is a critical (n, k)-code over Fq different from the critical (n, n− 1)-code,
then C has an auxiliary code F. Let F̃ be the projection of F onto its support,
then F̃ is a nonredundant, indecomposable code. We want to prove that
the reduced code of C⊥ is linearly isometric to the reduced code of F̃⊥. By
6.2.14 the dual of F̃, whence also the reduced code of F̃, is indecomposable.

524 6. Enumeration of Isometry Classes

Using the quasicanonical form described in 6.5.17, the code C is linearly
isometric to a code C′ with generator matrix⎛⎜⎜⎜⎜⎜⎜⎝

Ik0 0 . . . 0 0 A0

0 Ik1 . . . 0 0 A1
...

. . .
...

...
0 0 . . . Ikr−1

0 Ar−1

0 0 . . . 0 Iδ A

⎞⎟⎟⎟⎟⎟⎟⎠
where ki = ni − 1, Iki

is the unit matrix, i ∈ r, and (Iδ | A) is a systematic
generator matrix of a code linearly isometric to F̃, where δ = n − ∑i ki and
A is a δ × (n − k)-matrix. Moreover, the rows of the matrix Ai, i ∈ r, are
copies of a nonzero multiple of a single row of A or they are unit vectors.
The dual of C′ has a generator matrix of the form

(−A�
0 | . . . | −A�

r−1 | −A� | In−k).

All columns of −A�
i , i ∈ r, are nonzero multiples of columns of −A� or

they are unit vectors, therefore, the reduced code of C⊥ is linearly isometric
to the reduced code of F̃⊥. �

It seems natural to ask from which critical, indecomposable codes a given inde-
composable code might arise by augmentation of their quasicanonical genera-
tor matrices. Or, equivalently, given an indecomposable (n, k)-code C, what
are the the critical, indecomposable (m, k)-codes which arise as projections
from C?

6.5.25 Definition (spectrum of a code) The spectrum spec(C) of an indecomposable
code C is the set of all linear isometry classes of critical, indecomposable codes
D which satisfy

dim(D) = dim(C)

there exists a projection of C onto D.

6.5.26 Theorem The spectrum of an (n, k)-MDS-code with 1 < k < n contains only the
linear isometry class of the unique critical (k + 1, k)-parity check code.

Proof: In each systematic generator matrix (Ik | A) of any code linearly iso-
metric to C all columns of A have weight k. Thus, the only critical k-dimen-
sional code obtained as a projection of C is linearly isometric to the unique
critical, (k + 1, k)-parity check code. �

6.5 Critical Codes 525

6.5.27Corollary The spectrum of the m-th order q-ary Hamming-code C contains only one
element.

If m > 2, projecting C onto all but one coordinate yields a critical code in which
the code generated by all vectors of weight 2 is the sum of the unique indecomposable
q-ary (q, q− 1)-code repeated (qm−1 − 1)/(q− 1) times and the auxiliary code is the
(m − 1)-th order q-ary Hamming-code.

Proof: The first assertion follows from 6.5.26. The proof of the second assertion
is based on design theory. The reader should consult [7]. �

6.5.28Example The second order ternary Hamming-code has a generator matrix(
1 0 1 1
0 1 1 −1

)
.

Therefore, the quasicanonical form of the critical code in the spectrum of the
third order ternary Hamming-code is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

No matter which nonzero column we append as the last column, we obtain an
indecomposable (13, 10)-code. In order to obtain the Hamming-code, we must
append a column so that the minimum distance of the new code is equal to 3.
For this reason the nonzero entries in the first two rows must have opposite
signs. Similar arguments hold for all but the last two rows. Using for instance
(1,−1, 1,−1, 1,−1, 1,−1, 0, 0)� as the last column we obtain a generator ma-
trix of the Hamming-code. �

It is also possible that the spectrum contains more than one linear isometry
class.

6.5.29Example Consider the binary (7, 4)-code with the generator matrix⎛⎜⎜⎝
1 0 0 0 1 1 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎠ .

526 6. Enumeration of Isometry Classes

Projecting onto the first five columns gives the unique critical (5, 4)-code while
projecting onto all but the fifth column gives the critical (6, 4)-code of 6.5.8. �

The proof of the following theorem is left to the reader.

6.5.30 Theorem Let C be a nonredundant, binary, indecomposable (n, k)-code.

1. If C contains the all-one vector, then each code in its spectrum contains the all-one
vector.

2. Let k > 1. If C contains the all-one vector, and spec(C) contains the critical
(k + 1, k)-parity check code, then k is odd.

3. Assume that k is even and C contains the all-one vector. Then the critical
(k + 1, k)-parity check code is not in spec(C). If a critical (k + 2, k)-code is con-
tained in spec(C), then it must come from a partition of k − 1 into three odd
parts. �

Now we come back to binary Reed–Muller-codes.

6.5.31 Theorem

1. The (m − 1)-th order Reed–Muller-code RM2
m,m−1 of degree m > 1 is the unique

critical (2m, 2m − 1)-code.

2. The spectrum of RM2
m,m−2, for m ≥ 2, contains exactly one code. This is the

critical code underlying the m-th order binary Hamming-code (cf. 6.5.27).

3. Assume that m > 3. The spectrum of RM2
m,1 consists of all critical codes of dimen-

sion m + 1 containing the all-one vector. Thus, there is a difference between the
spectra depending on the parity of m. If m is odd, then the critical (m + 2, m + 1)-
code is not in the spectrum, whereas it is contained in the spectrum when m is
even. The critical (m + 3, m + 1)-codes in the spectrum of RM2

m,1 are described
in 6.5.23.

Proof: 1. According to Exercise 2.4.3, the code RM2
m,m−1 contains all vectors of

length 2m of even weight, therefore, it is the unique critical (2m, 2m − 1)-code.

2. From 2.4.11 we obtain that RM2
m,m−2 is the parity extension of the m-th order

binary Hamming-code. Projecting on all but 2 coordinates gives the underly-
ing critical code. Any two coordinates yield the same critical code.

3. Every binary Reed–Muller-code contains the all-one vector. By the first part
of 6.5.30, all codes in the spectrum of RM2

m,1 contain the all-one vector. Since
dim(RM2

m,1) = m + 1, (cf. 2.4.7) we obtain the assertion on the (m + 2, m + 1)-
code from the second part of 6.5.30. �

6.6 Random Generation of Linear Codes 527

The spectra of the ternary and binary Golay-codes are described in [6].

Exercises

E.6.5.1Exercise Prove 6.5.30.

6.66.6 Random Generation of Linear Codes

In Sections 6.1–6.3 we have shown how to enumerate the linear isometry class-
es of linear codes, in Chapter 9 we will describe how to determine a (complete)
set of representatives for given parameters n, k and q. From the tables of num-
bers of linear isometry classes we immediately realize that only for relatively
small values of these parameters it will be possible to determine the sets of
representatives completely. The order of the acting group increases, and the
number of representatives quickly gets out of hand. In such situations, prob-
abilistic methods may still allow the construction of linear codes which are
distributed uniformly at random over all isometry classes.

The Dixon–Wilf-algorithm allows the generation of linear codes which are
distributed uniformly at random over all linear isometry classes. Actually this
algorithm was first developed for the random generation of unlabeled graphs
(cf. [46]). It can always be applied for the random generation of objects, which
are orbits of a finite group acting on a finite set.

Therefore, we present the algorithm for an arbitrary finite action of a group
G on a set X. The algorithm describes a method how to choose elements x0 of X
at random such that the probability that x0 belongs to a given orbit ω ∈ G\\X
is 1/ |G\\X| for each orbit ω. This allows us to sample elements of X which
are uniformly distributed over the G-orbits on X.

6.6.1Dixon–Wilf-algorithm Let G be a finite group acting on a finite, nonempty set X.
Choose a conjugacy class C of elements of G with the probability

p(C) :=
|C| ·

∣∣Xg
∣∣

|G| · |G\\X| for an arbitrary g ∈ C.

Pick any g ∈ C and determine at random a fixed point x of g. Then the probability
that x lies in a given orbit ω ∈ G\\X is equal to 1/ |G\\X|.

Proof: Let C0, . . . , CN−1 be the conjugacy classes of elements of G with repre-
sentatives gi ∈ Ci. As a consequence of the Lemma of Cauchy–Frobenius 3.4.2,
it follows

∑
i∈N

p(Ci) =
∑i∈N |Ci| |Xgi |

∑g∈G |Xg |
= 1,

528 6. Enumeration of Isometry Classes

whence p(.) is a probability distribution. Then for each ω ∈ G\\X we deter-
mine the probability that x belongs to ω as

p(x ∈ ω) = ∑
i∈N

p(Ci)p(x ∈ Xgi ∩ ω)

= ∑
i∈N

p(Ci)

∣∣Xgi ∩ ω
∣∣∣∣Xgi

∣∣ = ∑
i∈N

|Ci|
∣∣Xgi

∣∣
|G| |G\\X|

∣∣Xgi ∩ ω
∣∣∣∣Xgi

∣∣
=

1
|G| |G\\X| ∑

i∈N
|Ci|

∣∣Xgi ∩ ω
∣∣ =

1
|G| |G\\X| ∑

g∈G

∣∣Xg ∩ ω
∣∣ .

The last sum is equal to |G|, since for ω = G(x) we have

∑
g∈G

∣∣Xg ∩ ω
∣∣ = ∑

g∈G
∑

x∈Xg∩ω

1 = ∑
x∈ω

∑
g∈Gx

1 = ∑
x∈ω

|Gx| = |Gx| |ω| = |G| . �

As we have seen in 6.1.15, the linear isometry classes of linear (n, l)-codes for
1 ≤ l ≤ k with k ≤ n correspond to the GLk(q) × Sn-orbits on the set of
mappings from n to PG∗

k−1(q).
For this reason we formulate the Dixon–Wilf-algorithm for the canonical

action of a direct product H × G on YX introduced in 1.4.11.

6.6.2 Corollary Let GX and HY be two finite group actions. Choose a conjugacy class C of
elements of H × G with the probability

p(C) :=
|C| |YX

(h,g)|
|G| |H| |(H × G)\\YX| for arbitrary (h, g) ∈ C.

Pick any (h, g) ∈ C and determine at random a function f ∈ YX which is fixed under
the action of (h, g), i.e. f (gx) = h f (x) for all x ∈ X. Then the probability that f lies
in a given orbit ω ∈ (H × G)\\YX is equal to 1/|(H × G)\\YX|. �

According to Exercise 6.3.3, the conjugacy classes of G := Sn are characterized
by the cycle types a �� n. The conjugacy classes of H := GLk(q) were described
completely in 6.3.12. Hence, the conjugacy classes of GLk(q) × Sn are exactly
the elements of the cartesian product C1 × C2, where C1 is a conjugacy class of
GLk(q) and C2 is a conjugacy class of Sn. This shows how to obtain represen-
tatives of the conjugacy classes of GLk(q) × Sn. In 6.3.14 the representatives
of the conjugacy classes of GLk(q) are described as block diagonal matrices of
companion and hyper companion matrices of monic irreducible polynomials
over Fq. In order to list them all, it is necessary to know all these polynomials
of degree up to k. As we have seen in Section 6.3, it was not necessary to know
these polynomials explicitly as far as enumeration of linear isometry classes is
concerned.

6.6 Random Generation of Linear Codes 529

For certain values of k and q, tables of these polynomials exist. Recall from
the beginning of Section 3.5 that all irreducible polynomials of a given degree
n over Fq can be computed once a normal basis of Fqn over Fq is known.

This motivates the following strategy. For 2 ≤ r ≤ k we generate monic
polynomials of degree r over Fq at random. Using 3.5.20 we test these polyno-
mials whether they are irreducible. We repeat this till for each r we have found
an irreducible polynomial of degree r. With these polynomials we are able to
determine a normal basis of Fqr over Fq for each r. For more details see Sec-
tion 6.9. Then we compute all Lyndon words of length r over an alphabet of q
elements as described in 3.5.5. We consider these Lyndon words as the coeffi-
cient vectors of elements of Fqr with respect to the normal basis of Fqr over Fq

just constructed. Using 3.5.2, we compute the minimal polynomials of these
elements. These minimal polynomials provide a complete list of irreducible
polynomials of degree r over Fq.

The number of GLk(q) × Sn-orbits on PG∗
k−1(q)

n was already computed
as Tnkq in 6.1.23. The number of fixed points of (A, π) ∈ GLk(q) × Sn in
PG∗

k−1(q)
n can be deduced from the next

6.6.3Lemma Assume that GX and HY are two finite group actions which induce natural
actions of G, H and H × G on YX (as described in 1.4.7, 1.4.10, and 1.4.11).

The number of fixed points of g ∈ G on YX is given by

|Y|c(g) for c(g) :=
|X|
∑
i=1

ai(g),

where (a1(g), . . . , a|X|(g)) is the cycle type of the induced permutation g on X.

The number of fixed points of h ∈ H on YX is given by

|Yh||X| ,

where Yh is the set of fixed points of h on Y.

The number of fixed points of (h, g) ∈ H × G on YX is given by

|X|
∏
i=1

|Yhi |ai(g) ,

where (a1(g), . . . , a|X|(g)) is the cycle type of the induced permutation g on X,
and Yh is the set of fixed points of h on Y. �

A method for constructing the set of fixed points of (A, π) on PG∗
k−1(q)

n is
described in

530 6. Enumeration of Isometry Classes

6.6.4 Lemma Consider the natural action of H × G on YX induced by two finite group
actions GX and HY as described in 1.4.11. The fixed points f ∈ YX of (h, g) ∈ H×G
have the following form. For each cycle Z of g on X, pick a representative xZ ∈ Z.
Then f (xZ) = y0 ∈ Y with |〈h〉(y0)| dividing |Z| (that is, y0 ∈ Yh|Z| , the set of fixed
points of h|Z| on Y). The remaining values of f on Z are determined by

f (gixZ) := hiy0 for 1 ≤ i < |Z|. �

The proofs of the previous two lemmata are left to the reader as Exercise 6.6.1
and Exercise 6.6.2.

As mentioned above, applying the Dixon–Wilf-algorithm for the random
generation of linear codes produces generator matrices of linear (n, l)-codes
for l ≤ k. Therefore, after the generation the rank of each matrix must still be
determined.

Some numerical results are presented in Table 6.27. For different parame-
ters q, n and k, the table shows the distribution of ranks when 10 000 matrices
were generated at random in each case.

For further illustration here are the numbers of conjugacy classes of GLk(2).

k 3 4 5 6 7 8 9 10
of conjugacy classes 6 14 27 60 117 246 490 1002

The choice of a conjugacy class of Sn amounts to the choice of a cycle type
(or partition) of n. The number of partitions of n ∈ N increases rapidly with n.
Here are some of these numbers:

n number of cycle types of n
10 42
15 176
20 627
25 1 958
40 37 338
60 ≈ 106

100 ≈ 2 · 108

For this reason we should try to avoid computing and storing the proba-
bilities of all conjugacy classes of GLk(q) × Sn before the generation process
starts. For practical purposes we label the conjugacy classes by C0, . . . , CN−1.
Usually C0 is the conjugacy class of the identity element. The random choice
of a conjugacy class Ci0 is done by first computing a random number r ∈ [0, 1)
and then determining the index i0 ∈ N so that

∑
j∈i0

p(Cj) ≤ r and ∑
j∈i0+1

p(Cj) > r.

6.6 Random Generation of Linear Codes 531

Table 6.27 Distribution of ranks of 10 000 k × n-matrices over Fq generated at random

q n k rank distribution
2 15 3 (17, 534, 9449)
2 15 4 (1, 53, 677, 9269)
2 15 5 (0, 5, 68, 908, 9019)
2 15 6 (0, 0, 16, 142, 1488, 8354)
2 15 7 (0, 1, 5, 51, 492, 2672, 6779)
2 15 8 (0, 0, 1, 27, 272, 1523, 3970, 4207)
2 15 9 (0, 0, 1, 27, 246, 1374, 3289, 3507, 1556)
2 15 10 (0, 0, 2, 22, 228, 1179, 3279, 3434, 1531, 325)
2 20 3 (8, 218, 9774)
2 20 4 (0, 7, 185, 9808)
2 20 5 (0, 0, 3, 140, 9857)
2 20 6 (0, 0, 0, 2, 175, 9823)
2 20 7 (0, 0, 0, 0, 3, 225, 9772)
2 20 8 (0, 0, 0, 0, 0, 18, 529, 9453)
2 25 3 (3, 121, 9876)
2 25 4 (0, 2, 70, 9928)
2 25 5 (0, 0, 0, 30, 9970)
2 25 6 (0, 0, 0, 0, 10, 9990)
2 25 7 (0, 0, 0, 0, 0, 6, 9994)
2 25 8 (0, 0, 0, 0, 0, 0, 29, 9971)
3 15 3 (1, 122, 9877)
3 15 4 (0, 0, 50, 9950)
3 15 5 (0, 0, 0, 68, 9932)
3 25 5 (0, 0, 0, 0, 10000)

One can start the generation process immediately and evaluate probabilities
of the conjugacy classes only if required. This means that we need to evaluate
p(Ci) only if the chosen random number exceeds ∑j∈i p(Cj). The efficiency
of this revised method depends heavily on the numbering of the conjugacy
classes. Clearly, the numbering should be chosen in such a way that p(Ci) ≥
p(Ci+1).

We have applied the random generation of linear codes in order to describe
the distribution of the minimum distance of linear codes with given parame-
ters n, k and q. Two examples are presented in Table 6.28 and Table 6.29.

532 6. Enumeration of Isometry Classes

Table 6.28 Distribution of the minimum distances of 10 000 binary codes of length 20 and
maximal dimension 8

k\d 1 2 3 4 5 6
5 0 0 0 1 0 0
6 0 0 2 5 3 1
7 3 45 102 226 150 16
8 81 1 158 2 502 4 346 1 344 15

Table 6.29 Distribution of the minimum distances of 30 000 000 codes of length 12 and maximal
dimension 5 over F5

k\d 1 2 3 4 5 6 7 8
3 1 5 4 40 99 196 136 9
4 120 1060 5644 37440 137047 139665 5651 0
5 24017 243558 1486385 10048367 17047580 822975 0 0

Exercises

E.6.6.1 Exercise Prove 6.6.3.

E.6.6.2 Exercise Prove 6.6.4.

E.6.6.3 Exercise Use the enclosed software to obtain lower bounds for the minimum
distance of linear (n, k)-codes over Fp for small parameters n, k and p. Com-
pare these results with the list of best known linear codes [32].

6.7 6.7 Enumeration of Semilinear Isometry Classes

So far we were concerned only with the enumeration of linear isometry classes
of codes. In this section we show how to generalize these methods in order to
derive the number of semilinearly nonisometric codes.

In 1.5.10 we have described a semilinear isometry ι as ι = (ψ, (α; π)) where
α ∈ Aut(Fq) = Gal [Fq : Fp] and (ψ; π) is a linear isometry. Thus (ψ; π)
belongs to the wreath product

F∗
q �n Sn =

{
(ψ; π)

∣∣∣ ψ : n → F∗
q , π ∈ Sn

}
.

Since Gal [Fp : Fp] contains just one element, we assume in this section that
q = pr with r > 1. In the sequel we indicate the Galois group Gal [Fq : Fp],

6.7 Enumeration of Semilinear Isometry Classes 533

generated by the Frobenius automorphism τ(κ) = κq, κ ∈ Fq, by Gal. As we
already know, it is a cyclic group of order r.

According to 1.5.11 two codes are called semilinearly isometric if there ex-
ists a semilinear isometry ι which maps one code onto the other code.

Our first aim is to show that the group of semilinear isometries is a gen-
eralized wreath product. Therefore, we apply the two semilinear isometries
ι2 = (φ; (β, ρ)) and ι1 = (ψ; (α, π)) to the vector v = (v0, . . . , vn−1) ∈ Fn

q and
indicate ι1(v) by v′ = (v′0, . . . , v

′
n−1). Then we obtain

ι2(ι1(v)) = ι2(v′) =
(
φ(0)β(v′

ρ−1(0)), . . . , φ(n − 1)β(v′
ρ−1(n−1))

)
=

(
. . . , φ(i)β

(
ψ(ρ−1(i))α(vπ−1(ρ−1(i)))

)
, . . .

)
=

(
. . . , φ(i)β(ψ(ρ−1(i)))(β ◦ α)(v(ρ◦π)−1(i)), . . . ,

)
.

This formula motivates the following

6.7.1Lemma The group of all semilinear isometries of Fn
q is the semidirect product

(F∗
q)

n � (Gal×Sn),

with the normal subgroup on the left, where the multiplication is given by

(φ; (β, ρ)) · (ψ; (α, π)) := (φψ(β,ρ); (βα, ρ ◦ π)),

with
ψ(β,ρ)(i) := β(ψ(ρ−1(i))), i ∈ n,

and
φψ(i) := φ(i)ψ(i), i ∈ n. �

Therefore, the identity element is (1; (τ0, id)), where 1 is the mapping i �→ 1,
i ∈ n. The inverse of (ψ; (α, π)) is (ψ−1

(α−1,π−1); (α−1, π−1)) where ψ−1(i) :=

(ψ(i))−1, i ∈ n, and ψ−1
(α,π) := (ψ(α,π))−1 = (ψ−1)(α,π).

Representing the product of two semilinear isometries in this way, it is easy
to realize certain similarities with the ordinary wreath product H �X G. In 1.4.8
we had considered a group G acting on a set X and an arbitrary group H. For
defining the multiplication in H �X G we used the canonically induced action
of G on HX given by 1.4.7.

Here in the situation of the group of semilinear isometries, we have X = n
and H = F∗

q . The group Gal×Sn does not act on n, but it operates already on
(F∗

q)n and we do not have to consider an induced action on (F∗
q)n. Therefore,

we say that the group of semilinear isometries is the generalized wreath product
of F∗

q and Gal×Sn which we indicate by

F∗
q ��n (Gal×Sn).

534 6. Enumeration of Isometry Classes

Its order is equal to (q− 1)n · r · n!, and the generalization of the natural action
of a wreath product (cf. 1.4.9) to this generalized wreath product is

(ψ; (α, π))(v) =
(
ψ(0)α(vπ−1(0)), . . . , ψ(n − 1)α(vπ−1(n−1))

)
which is the action of the semilinear isometry (ψ; (α, π)) on Fn

q .
Similarly as in Section 6.1 we describe codes by their generator matrices,

and obtain that the set of semilinear isometry classes of (n, k)-codes is equal to
the set of orbits

F∗
q ��n (Gal×Sn)\\

(
GLk(q)\\Fk×n,k

q

)
,

where the operation of (ψ; (α, π)) ∈ F∗
q ��n (Gal×Sn) on the orbit GLk(q)(Γ) is

given by(
(ψ; (α, π)), GLk(q)(Γ)

)
�→ GLk(q)(Γ̂) where Γ̂(i) = ψ(i)α(Γ(π−1(i))).

Here again we identify the matrix Γ with the function Γ : n → Fk
q where Γ(i)�

is the i-th column of Γ. When writing Af , we identify the function f ∈ (Fk
q)n

with the corresponding k × n-matrix (f (0)� | . . . | f (n − 1)�). Then Af =
(A · f (0)� | . . . | A · f (n − 1)�) and Af (i) = (A · f (i)�)� = f (i) · A� for
A ∈ GLk(q).

We want to prove that this operation is well-defined. For A ∈ GLk(q) and
Γ̃ given by Γ̃(i) := ψ(i)α((A · Γ)(π−1(i))) we have GLk(q)(Γ̃) = GLk(q)(Γ̂),
since Γ̃(i) = ψ(i)α(A)α(Γ(π−1(i))) and α(A) ∈ GLk(q). (In Exercise 3.7.5 we
have mentioned that α induces a group automorphism of GLk(q) by applying
α to all components of the matrices in GLk(q).)

In the situation of linear isometries the actions of the isometry group and
of the linear group were commuting and we obtained an action of the direct
product of these two groups on Fk×n,k

q (cf. 6.1.3).
In general, the action of the semilinear isometry group does not commute

with the action of GLk(q). For A ∈ GLk(q), (ψ; (α, π)) ∈ F∗
q ��n (Gal×Sn) and

Γ ∈ Fk×n,k
q we have

A · (ψ; (α, π))Γ =(
ψ(0)Aα(Γ(π−1(0))), . . . , ψ(n − 1)Aα(Γ(π−1(n − 1)))

)
and

(ψ; (α, π))A · Γ =(
ψ(0)α(A)α(Γ(π−1(0))), . . . , ψ(n − 1)α(A)α(Γ(π−1(n − 1)))

)
.

Therefore, we do not get an action of the direct product as in 6.1.3.
Again, similarly as in Section 6.1 we eliminate the rank condition on the

k × n-matrices and consider the set of all k × n-matrices over Fq which do not
contain zero columns. Thus, our task is to determine the cardinality of

F∗
q ��n (Gal×Sn)\\

(
GLk(q)\\(Fk

q \ {0})
n)

.

6.7 Enumeration of Semilinear Isometry Classes 535

For this reason we describe a generalization of Lehmann’s Lemma 6.1.8.
We generalize it in two ways, since on the one hand we are dealing with an
action of the generalized wreath product, and on the other hand this wreath
product operates on GLk(q)-orbits of functions and not just on a set of func-
tions. However we do not formulate it for arbitrary group actions but for the
situation of the present problem.

6.7.2Generalization of Lehmann’s Lemma If the mapping

ϕ : GLk(q)\\(Fk
q \ {0})

n → GLk(q)\\
(
F∗

q\\(Fk
q \ {0})

)n

is given by
GLk(q)(Γ) �→ GLk(q)(Γ) where Γ(i) = F∗

q(Γ(i)),

then the mapping

Φ :
(
F∗

q ��n (Gal×Sn)
)
\\
(
GLk(q)\\(Fk

q \ {0})
n) →

(Gal×Sn)\\
(
GLk(q)\\

(
F∗

q\\(Fk
q \ {0})

)n
)

defined by(
F∗

q ��n (Gal×Sn)
)
(GLk(q)(Γ)) �→ (Gal×Sn)(ϕ(GLk(q)(Γ)))

is a bijection. On the right hand side we have an operation of (Gal×Sn) on the set of
orbits GLk(q)\\

(
F∗

q\\(Fk
q \ {0})

)n of the form

(α, π) GLk(q)(Γ) = GLk(q)(Γ̂)

where Γ̂(i) = α(Γ(π−1(i))) = α(F∗
q(Γ(π−1(i)))) = F∗

q(α(Γ(π−1(i)))), i ∈ n.

Proof: As in the proof of 6.1.8 we see that for f1, f2 ∈ YX the following facts
are equivalent:

Φ(F∗
q ��n (Gal×Sn)(f1)) = Φ(F∗

q ��n (Gal×Sn)(f2))

(Gal×Sn)(ϕ(f1)) = (Gal×Sn)(ϕ(f2))

ϕ(f2) ∈ (Gal×Sn)(ϕ(f1))

ϕ(f2) = α ◦ ϕ(f1) ◦ π for some α ∈ Gal and some π ∈ Sn

ϕ(f2)(x) = α
(

ϕ(f1)(π(x))
)

for some α ∈ Gal, π ∈ Sn, and all x ∈ X

ϕ(f2)(x) = ϕ(α ◦ f1)(π(x)) for some α ∈ Gal, π ∈ Sn, and all x ∈ X

F∗
q(f2(x)) = F∗

q((α ◦ f1)(π(x))) for some α ∈ Gal, π ∈ Sn, and all x ∈ X

f2(x) ∈ F∗
q ((α ◦ f1)(π(x))) for some α ∈ Gal, π ∈ Sn, and all x ∈ X

536 6. Enumeration of Isometry Classes

f2 = (ψ; (α, π)) f1 for some (ψ; (α, π)) ∈ F∗
q ��n (Gal×Sn)

f2 ∈ F∗
q ��n (Gal×Sn)(f1)

F∗
q ��n (Gal×Sn)(f2) = F∗

q ��n (Gal×Sn)(f1).

Reading these implications from bottom to top we deduce that Φ is well-
defined. From top to bottom it follows that Φ is injective. In order to prove
that Φ is surjective, we notice that ϕ is surjective. �

As an immediate consequence we obtain that∣∣∣(F∗
q ��n (Gal×Sn)

)
\\
(
GLk(q)\\(Fk

q \ {0})
n)∣∣∣ =∣∣(Gal×Sn)\\

(
GLk(q)\\PG∗

k−1(q)
n)∣∣ .

It is still possible to find a simpler expression for

(Gal×Sn)\\
(
GLk(q)\\PG∗

k−1(q)
n).

According to Exercise 1.4.9 we can split the action of the direct product obtain-
ing

Gal \\
(
Sn\\

(
GLk(q)\\PG∗

k−1(q)
n))

what is the same as

Gal \\
(
(GLk(q)× Sn)\\PG∗

k−1(q)
n)

since the actions of GLk(q) and Sn commute. An application of the automor-
phism α to the orbit (GLk(q)× Sn)(Γ) yields the orbit (GLk(q)× Sn)(Γ̂) where
Γ̂(i) = α(Γ(i)) = F∗

q(α(Γ(i))). These orbits can be represented as the elements
of

(PΓLk(q)× Sn)\\PG∗
k−1(q)

n,6.7.3

since PΓLk(q) = (GLk(q) � Gal)/Zk.
The reader should carefully check the following

6.7.4 Lemma Let C be a code and ι a semilinear isometry.

C is nonredundant if and only if ι(C) is nonredundant.

C is projective if and only if ι(C) is projective.

C is injective if and only if ι(C) is injective.

C is indecomposable if and only if ι(C) is indecomposable. �

Analogously to Section 6.1 and Section 6.2 we introduce the notions

tnkq :=
∣∣(PΓLk(q)× Sn)\\PG∗

k−1(q)
n∣∣ ,

6.7 Enumeration of Semilinear Isometry Classes 537

tnkq :=
∣∣∣(PΓLk(q)× Sn)\\PG∗

k−1(q)
n
inj

∣∣∣ .
Moreover, let vnkq denote the number of semilinear isometry classes of nonre-
dundant (n, k)-codes over Fq and vnkq the number of semilinear isometry class-
es of projective (n, k)-codes over Fq. The symbols unkq and unkq indicate the
number of semilinear isometry classes of all, respectively injective, (n, k)-codes
which may contain columns of zeros. The number of semilinear isometry
classes of nonredundant indecomposable (n, k)-codes over Fq is denoted by
rnkq and of projective indecomposable (n, k)-codes over Fq by rnkq. These sym-
bols are the lowercase versions of the corresponding numbers of linear isome-
try classes. The relations corresponding to 6.1.15 and 6.2.20 are collected in

6.7.5Corollary

tnkq is the number of semilinear isometry classes of linear codes of length n and
dimension at most k. If k > 1, then tn,k−1,q is also the number of PΓLk(q)× Sn-
orbits of mappings f ∈ PG∗

k−1(q)
n corresponding to matrices of rank not greater

than k − 1.

tnkq is the number of semilinear isometry classes of injective linear codes of length
n and dimension at most k.

vnkq = tnkq − tn,k−1,q, vnkq = tnkq − tn,k−1,q for 1 < k ≤ n. The initial
values for these recursions are vn1q = 1 for n ∈ N∗, v11q = 1 and vn1q = 0 for
n > 1.

unkq = ∑n
i=k vikq, ukkq = vkkq, and unkq = vn−1,k,q + vnkq for n > k.

For n ≥ 2 we have

rnkq = vnkq − ∑
a

∑
b

n−1

∏
j=1
aj �=0

(
∑
c

U(c)

)
,

where

U(c) =
j

∏
i=1

C(Sν(i,c), ν(i, c))
∣∣
z�=rjiq

is a product computed from substitutions into the cycle indices of symmetric
groups of degree ν(i, c) given by

ν(i, c) = |{� ∈ aj | c� = i}|, 1 ≤ i ≤ j.

The first sum runs through the cycle types a = (a1, . . . , an−1) of n with at least
two summands, i.e. ai ∈ N, ∑ iai = n and ∑ ai ≤ k, while the second sum is taken
over the (n − 1)-tuples b = (b1, . . . , bn−1) ∈ Nn−1, for which ai ≤ bi ≤ iai, and
∑ bi = k. The third sum runs over all aj-tuples c = (c0, . . . , caj−1) ∈ Naj with

538 6. Enumeration of Isometry Classes

the properties j ≥ c0 ≥ . . . ≥ caj−1 ≥ 1 and ∑ ci = bj. Analogously, rnkq can
be recursively evaluated from vnkq and rjiq with j < n. The initial values for these
recursions are r11q = 1 = r11q. �

This way we have expressed all these numbers in terms of tnkq and tnkq.
The remaining problem is the evaluation of tnkq and tnkq. In 6.7.3 we have
the canonical action of a direct product on a set of functions. Since the group
acting on the domain is the symmetric group it is possible to apply 6.1.21 in
order to compute the generating function for the cardinalities of these orbit
sets and we obtain the following

6.7.6 Corollary The generating functions for the numbers tnkq and tnkq can be obtained
from the cycle index of the natural action of the projective semilinear group on the
projective space in the following way:

∑
n∈N

tnkqx
n = C(PΓLk(q), PG∗

k−1(q))
∣∣
zi:=∑∞

j=0 xi·j,

and

∑
n∈N

tnkqx
n = C(PΓLk(q), PG∗

k−1(q))
∣∣
zi:=1+xi. �

Finally, it remains to determine the cycle index of the natural action of the
projective semilinear group on the projective space. In order to obtain some
numerical results we used the computer algebra system GAP [63] together
with a particular extension for projective spaces [74]. Based on 6.3.3 we de-
termined a complete system of representatives of the conjugacy classes of el-
ements of PΓLk(q). We computed the cardinality of each class, and for each
representative we determined the cycle type of the natural action on PG∗

k−1(q).
For q = 4 we obtain the Tables 6.30 to 6.35, which should be compared with

the Tables 6.15 , 6.9, 6.23, 6.20, 6.12 and 6.26. (Differences between correspond-
ing tables are marked by boldface numbers.) The next field where differences
occur between linear and semilinear isometries is F8. On the pages 542–548
we present some tables comparing the numbers Tnk8 and tnk8, Vnk8 and vnk8,
Rnk8 and rnk8, Unk8 and unk8, Tnk8 and tnk8, Vnk8 and vnk8, and Rnk8 and rnk8.
Extended tables can be found on the attached CD-ROM.

Exercises

E.6.7.1 Exercise Prove 6.7.1.

E.6.7.2 Exercise Prove 6.7.4.

6.7 Enumeration of Semilinear Isometry Classes 539

Table 6.30 Values of tnk4

n\k 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 4 4 4 4
4 1 5 8 9 9 9
5 1 7 16 20 21 21
6 1 10 34 51 56 57
7 1 13 68 138 166 172
8 1 18 144 445 629 673
9 1 23 309 1 728 3 322 3 775

10 1 30 670 8 640 31 045 40 323
11 1 37 1 468 52 924 543 062 1 047 635
12 1 47 3 251 360 473 13 107 137 59 070 798
13 1 57 7 156 2 503 187 336 291 123 4 922 753 104
14 1 70 15 665 16 976 798 8 362 677 597 452 322 657 324

Table 6.31 Values of vnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 1 1 0 0 0 0
3 1 2 1 0 0 0
4 1 4 3 1 0 0
5 1 6 9 4 1 0
6 1 9 24 17 5 1
7 1 12 55 70 28 6
8 1 17 126 301 184 44
9 1 22 286 1 419 1 594 453

10 1 29 640 7 970 22 405 9 278
11 1 36 1 431 51 456 490 138 504 573
12 1 46 3 204 357 222 12 746 664 45 963 661
13 1 56 7 099 2 496 031 333 787 936 4 586 461 981
14 1 69 15 595 16 961 133 8 345 700 799 443 959 979 727

540 6. Enumeration of Isometry Classes

Table 6.32 Values of rnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 1 0 0 0 0
4 1 2 1 0 0 0
5 1 4 4 1 0 0
6 1 6 14 6 1 0
7 1 9 38 38 9 1
8 1 13 99 216 99 13
9 1 18 244 1 213 1 213 244

10 1 24 579 7 479 20 603 7 479
11 1 31 1 344 50 328 480 335 480 335
12 1 40 3 084 354 655 12 685 278 45 448 958
13 1 50 6 937 2 490 249 333 368 938 4 573 198 774
14 1 62 15 381 16 948 216 8 342 784 710 443 612 918 007

Table 6.33 Values of unk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 2 1 0 0 0 0
3 3 3 1 0 0 0
4 4 7 4 1 0 0
5 5 13 13 5 1 0
6 6 22 37 22 6 1
7 7 34 92 92 34 7
8 8 51 218 393 218 51
9 9 73 504 1 812 1 812 504

10 10 102 1 144 9 782 24 217 9 782
11 11 138 2 575 61 238 514 355 514 355
12 12 184 5 779 418 460 13 261 019 46 478 016
13 13 240 12 878 2 914 491 347 048 955 4 632 939 997
14 14 309 28 473 19 875 624 8 692 749 754 448 592 919 724

6.7 Enumeration of Semilinear Isometry Classes 541

Table 6.34 Values of vnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 1 1 0 0 0
4 0 1 2 1 0 0
5 0 1 4 3 1 0
6 0 0 8 10 4 1
7 0 0 10 35 19 5
8 0 0 13 124 118 33
9 0 0 17 499 1 018 342

10 0 0 18 2 421 15 076 7 571
11 0 0 18 13 113 336 911 444 690
12 0 0 17 72 823 8 495 389 41 172 182
13 0 0 13 390 069 209 826 910 4 073 567 723
14 0 0 10 1 963 645 4 881 485 820 387 971 461 593

Table 6.35 Values of rnk4

n\k 1 2 3 4 5 6
1 1 0 0 0 0 0
2 0 0 0 0 0 0
3 0 1 0 0 0 0
4 0 1 1 0 0 0
5 0 1 3 1 0 0
6 0 0 7 5 1 0
7 0 0 10 26 8 1
8 0 0 13 112 79 12
9 0 0 17 485 883 214

10 0 0 18 2 403 14 557 6 507
11 0 0 18 13 095 334 460 429 438
12 0 0 17 72 805 8 482 236 40 834 575
13 0 0 13 390 052 209 754 039 4 065 069 206
14 0 0 10 1 963 632 4 881 095 698 387 761 618 484

542 6. Enumeration of Isometry Classes

Table 6.36 Values of Tnk8

n\k 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 3 4 4
4 1 5 8 9
5 1 7 16 20
6 1 14 57 78
7 1 21 273 555
8 1 39 2 034 13 931
9 1 64 16 668 714 573

10 1 109 132 237 40 746 243
11 1 173 986 453 2 188 928 772
12 1 286 6 876 180 108 587 171 103
13 1 439 44 880 936 4 985 542 976 595
14 1 686 275 497 786 212 944 610 369 565

Table 6.37 Values of tnk8

n\k 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 3 4 4
4 1 5 8 9
5 1 7 16 20
6 1 12 43 62
7 1 17 143 289
8 1 27 792 4 979
9 1 40 5 806 239 355

10 1 61 44 619 13 586 393
11 1 89 329 959 729 659 322
12 1 136 2 294 446 36 195 786 755
13 1 197 14 965 218 1 661 847 901 869
14 1 292 91 842 474 70 981 537 714 473

6.7 Enumeration of Semilinear Isometry Classes 543

Table 6.38 Values of Vnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 1 2 1 0
4 1 4 3 1
5 1 6 9 4
6 1 13 43 21
7 1 20 252 282
8 1 38 1 995 11 897
9 1 63 16 604 697 905

10 1 108 132 128 40 614 006
11 1 172 986 280 2 187 942 319
12 1 285 6 875 894 108 580 294 923
13 1 438 44 880 497 4 985 498 095 659
14 1 685 275 497 100 212 944 334 871 779

Table 6.39 Values of vnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 1 2 1 0
4 1 4 3 1
5 1 6 9 4
6 1 11 31 19
7 1 16 126 146
8 1 26 765 4 187
9 1 39 5 766 233 549

10 1 60 44 558 13 541 774
11 1 88 329 870 729 329 363
12 1 135 2 294 310 36 193 492 309
13 1 196 14 965 021 1 661 832 936 651
14 1 291 91 842 182 70 981 445 871 999

544 6. Enumeration of Isometry Classes

Table 6.40 Values of Rnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 2 1 0
5 1 4 4 1
6 1 10 33 10
7 1 17 231 231
8 1 34 1 956 11 596
9 1 59 16 529 695 614

10 1 103 131 993 40 595 108
11 1 167 986 040 2 187 791 284
12 1 279 6 875 485 108 579 157 553
13 1 432 44 879 807 4 985 490 082 276
14 1 678 275 495 976 212 944 281 977 581

Table 6.41 Values of rnk8

n\k 1 2 3 4
1 1 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 2 1 0
5 1 4 4 1
6 1 8 21 8
7 1 13 107 107
8 1 22 732 4 024
9 1 35 5 709 232 626

10 1 55 44 465 13 535 084
11 1 83 329 720 729 278 112
12 1 129 2 294 075 36 193 111 160
13 1 190 14 964 655 1 661 830 261 138
14 1 284 91 841 624 70 981 428 231 327

6.7 Enumeration of Semilinear Isometry Classes 545

Table 6.42 Values of Unk8

n\k 1 2 3 4
1 1 0 0 0
2 2 1 0 0
3 3 3 1 0
4 4 7 4 1
5 5 13 13 5
6 6 26 56 26
7 7 46 308 308
8 8 84 2 303 12 205
9 9 147 18 907 710 110

10 10 255 151 035 41 324 116
11 11 427 1 137 315 2 229 266 435
12 12 712 8 013 209 110 809 561 358
13 13 1 150 52 893 706 5 096 307 657 017
14 14 1 835 328 390 806 218 040 642 528 796

Table 6.43 Values of unk8

n\k 1 2 3 4
1 1 0 0 0
2 2 1 0 0
3 3 3 1 0
4 4 7 4 1
5 5 13 13 5
6 6 24 44 24
7 7 40 170 170
8 8 66 935 4 357
9 9 105 6 701 237 906

10 10 165 51 259 13 779 680
11 11 253 381 129 743 109 043
12 12 388 2 675 439 36 936 601 352
13 13 584 17 640 460 1 698 769 538 003
14 14 875 109 482 642 72 680 215 410 002

546 6. Enumeration of Isometry Classes

Table 6.44 Values of Tnk8

n\k 1 2 3 4
1 1 1 1 1
2 0 1 1 1
3 0 1 2 2
4 0 1 3 4
5 0 1 5 8
6 0 1 25 39
7 0 1 132 364
8 0 1 901 11 408
9 0 1 6 155 619 402

10 0 0 38 344 34 810 827
11 0 0 217 432 1 812 498 279
12 0 0 1 119 290 86 640 720 291
13 0 0 5 242 484 3 818 392 707 185
14 0 0 22 449 375 156 004 978 540 987

Table 6.45 Values of tnk8

n\k 1 2 3 4
1 1 1 1 1
2 0 1 1 1
3 0 1 2 2
4 0 1 3 4
5 0 1 5 8
6 0 1 15 27
7 0 1 58 164
8 0 1 327 3 940
9 0 1 2 101 206 934

10 0 0 12 870 11 605 307
11 0 0 72 638 604 172 431
12 0 0 373 366 28 880 263 069
13 0 0 1 747 940 1 272 797 652 589
14 0 0 7 483 895 52 001 659 817 699

6.7 Enumeration of Semilinear Isometry Classes 547

Table 6.46 Values of Vnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 1 2 1
5 0 1 4 3
6 0 1 24 14
7 0 1 131 232
8 0 1 900 10 507
9 0 1 6 154 613 247

10 0 0 38 344 34 772 483
11 0 0 217 432 1 812 280 847
12 0 0 1 119 290 86 639 601 001
13 0 0 5 242 484 3 818 387 464 701
14 0 0 22 449 375 156 004 956 091 612

Table 6.47 Values of vnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 1 1 0
4 0 1 2 1
5 0 1 4 3
6 0 1 14 12
7 0 1 57 106
8 0 1 326 3 613
9 0 1 2 100 204 833

10 0 0 12 870 11 592 437
11 0 0 72 638 604 099 793
12 0 0 373 366 28 879 889 703
13 0 0 1 747 940 1 272 795 904 649
14 0 0 7 483 895 52 001 652 333 804

548 6. Enumeration of Isometry Classes

Table 6.48 Values of Rnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 0 0 0
3 0 1 0 0
4 0 1 1 0
5 0 1 3 1
6 0 1 23 9
7 0 1 130 207
8 0 1 899 10 374
9 0 1 6 153 612 345

10 0 0 38 343 34 766 326
11 0 0 217 432 1 812 242 500
12 0 0 1 119 290 86 639 383 565
13 0 0 5 242 484 3 818 386 345 408
14 0 0 22 449 375 156 004 950 849 125

Table 6.49 Values of rnk8

n\k 1 2 3 4
1 1 0 0 0
2 0 0 0 0
3 0 1 0 0
4 0 1 1 0
5 0 1 3 1
6 0 1 13 7
7 0 1 56 91
8 0 1 325 3 554
9 0 1 2 099 204 505

10 0 0 12 869 11 590 334
11 0 0 72 638 604 086 920
12 0 0 373 366 28 879 817 061
13 0 0 1 747 940 1 272 795 531 280
14 0 0 7 483 895 52 001 650 585 861

6.8 Local Isometries 549

6.86.8 Local Isometries

Let C and C′ be two (n, k)-codes over Fq. A local linear isometry between these
two codes is a vector space isomorphism ι : C → C′ which preserves the dis-
tances between all pairs of codewords, i.e. d(c1, c2) = d(ι(c1), ι(c2)) for all
c1, c2 ∈ C. So far we have shown in Section 1.4 that the linear isometries of
Fn

q , the global linear isometries, are the elements of Mn(q). From 1.4.12 we know
that Mn(q) is isomorphic to the wreath product F∗

q �n Sn.
A local semilinear isometry between the two codes C and C′ is a semilinear

bijection σ : C → C′ which preserves the distances between all pairs of code-
words, i.e. d(c1, c2) = d(σ(c1), σ(c2)) for all c1, c2 ∈ C. So far we have shown in
Section 6.7 that the semilinear isometries of Fn

q , the global semilinear isometries,
are the elements of the generalized wreath product F∗

q ��n (Gal×Sn).
In general a local isometry is a local linear or semilinear isometry. We want

to prove that every local isometry between two (n, k)-codes can be extended
to a global isometry of Fn

q . This means that the set of local linear isometries
between two linear (n, k)-codes is the wreath product F∗

q �n Sn (cf. also [84,
second edition, Section 9.1]) and the set of local semilinear isometries between
two linear (n, k)-codes is the generalized wreath product F∗

q ��n (Gal×Sn).
As a generalization of Exercise 1.2.6 we obtain

6.8.1Theorem If C is a linear code of length n over Fq, then for any i ∈ n either the i-th
component of all codewords is equal to 0, or each element α ∈ Fq occurs as the i-th
component of exactly |C| /q codewords. �

First we associate an (n, k)-code C over Fq with the qk × n-matrix

M(C) =

⎛⎜⎝ c(0)

...
c(qk−1)

⎞⎟⎠ ,

where the rows of the matrix are the codewords of C in a fixed but arbitrary
order. If ι is a local isometry between C and C′, then we assume that

M(C′) = M(ι(C)) =

⎛⎜⎝ ι(c(0))
...

ι(c(qk−1))

⎞⎟⎠ ,

where the ordering of the rows of M(C′) is determined by the ordering of the
rows of C.

Moreover, let d�i , di ∈ Fqk

q , i ∈ n, be the i-th column of the matrix

M(C) =
(
d�0 | . . . | d�n−1

)
.

550 6. Enumeration of Isometry Classes

We introduce an equivalence relation on the columns of M(C). Two columns
d�i and d�j are considered to be equivalent if there exists some κ ∈ F∗

q such
that di = κdj. We call them proportional. (In general, two vectors v, w over Fq

are proportional if there exists some κ ∈ F∗
q such that v = κw.) A column d�i is

called a zero column if all the components of di are equal to 0. The equivalence
class of a zero column consists of all zero columns of M(C). If d�i is not a
zero column, then the equivalence class of d�i consists of all columns of M(C)
which are proportional to d�i .

6.8.2 Lemma Two locally isometric linear (n, k)-codes C and C′ have the same number of
zero columns.

Proof: Assume that d�i is not a zero column of M(C). According to 6.8.1, each
element κ ∈ Fq occurs exactly qk−1 times in di. If we assume that C and C′

have r, respectively, r′ zero columns, then we obtain

(n − r)qk−1(q− 1) = ∑
c∈C

wt(c) = ∑
c∈C′

wt(c) = (n − r′)qk−1(q− 1).

Consequently, r = r′. �

In the next step we want to describe the equivalence class of a nonzero column.
The cross section of a code C is similarly defined as the shortening of C (cf.
2.2.17). Let i be the index of a column of M(C) which is not a zero column,
then the cross section of C at position i is the code

Ci := {c = (c0, . . . , cn−1) ∈ C | ci = 0}.

Consequently, Ci is an (n, k − 1,≥ d, q)-code. The shortening of C in position i
is obtained from the cross section of C in position i by deleting the i-th column
of Ci.

6.8.3 Lemma Let C be a linear (n, k)-code over Fq. Two columns d�i �= 0 �= d�j of M(C)
are proportional if and only if the cross sections Ci and Cj coincide.

Proof: Assume that d�i and d�j are proportional. Then for each c ∈ C we have
ci = 0 if and only if cj = 0. Hence, the cross sections Ci and Cj describe the
same code.

Conversely, we assume that Ci = Cj. We choose any two codewords c, c̃ of
C which do not belong to Ci, whence ci �= 0, c̃i �= 0, cj �= 0, and c̃j �= 0. Then
f := c−1

i c − c̃−1
i c̃ belongs to C and fi = 0. Thus f ∈ Ci and, consequently,

fj = 0. Since fj = c−1
i cj − c̃−1

i c̃j, we obtain c−1
i cj = c̃−1

i c̃j = α ∈ F∗
q , and thus

cj = αci and c̃j = αc̃i. This fact holds true for fixed c ∈ C \ Ci and for any
c̃ ∈ C \ Ci, whence the columns d�i and d�j are proportional. �

6.8 Local Isometries 551

Now we prove that if ι : C → C′ is a local linear isometry, then there exists
a permutation π ∈ Sn such that the i-th column of M(C) is proportional to the
π(i)-th column of M(C′) for i ∈ n. This fact shows then that ι can be described
as an element (ψ; π) of F∗

q �n Sn. Thus it is a linear isometry of Fn
q .

6.8.4Theorem Assume that ι : C → C′ is a local linear isometry between two linear
(n, k)-codes over Fq. Then there exists a permutation π ∈ Sn such that the i-th
column of M(C) is proportional to the π(i)-th column of M(C′) for i ∈ n.

Proof: To begin with, we determine the equivalence classes of the columns of
M(C). From 6.8.2 we know that M(C) and M(C′) have the same number of
zero columns, which we indicate by s.

Let d�i be a nonzero column of M(C), and let i = i0, . . . , ir−1 indicate the
indices of the columns of M(C) proportional to d�i . Then all the cross sections
Ci = Ci0 , Ci1 , . . . , Cir−1 determine the same (n, k − 1)-code. The matrix M(Ci)
has r + s zero columns, namely d�i0 , . . . , d�ir−1

, which come from the construc-
tion as a cross section in these columns, and d�ir , . . . , d

�
ir+s−1

, which are the zero
columns appearing already in M(C).

Since ι is a local linear isometry between C and C′, also the restriction ι|Ci
is

a linear isometry between Ci and ι(Ci), whence by 6.8.2, M(Ci) and M(ι(Ci))
have the same number of zero columns. Let us assume that the indices of
the zero columns of M(ι(Ci)) are given by j0, . . . , jr+s−1, and that jr , . . . , jr+s−1

are the indices of the s zero columns of M(C′). From 6.8.1 we know that in
any of the columns d′�j0 , . . . , d′�jr−1

of M(C′) each element of Fq occurs exactly
qk−1 times. Hence, ι(Ci) is the cross section of C′ in any of the components
j0, . . . , jr−1, for instance, M(ι(Ci)) = M(C′

j0
). According to 6.8.3, the columns

of M(C′) with indices j0, . . . , jr−1 are proportional and form an equivalence
class of columns of M(C′).

Next we claim that the columns d�i0 and d′�j0 are proportional, i.e. there
exists an element λ ∈ F∗

q such that d′�j0 = λd�i0 . Assume that b = (b0, . . . , bn−1)
with bi0 = 1 belongs to C \Ci0 . Then ι(b) ∈ ι(C \Ci0) = ι(C) \ ι(Ci0) = C′ \C′

j0
,

whence the j0-th component of ι(b), which we indicate as ι(b)j0 , is different
from zero. Now take an arbitrary c ∈ C \Ci0 . Since Ci0 is a (k− 1)-dimensional
subspace of C, there exist uniquely determined c̃ ∈ Ci0 and κ ∈ Fq such that
c = c̃ + κb. Consequently, κ = ci0 �= 0. Since ι(c̃) ∈ C′

j0
, the j0-th component

of ι(c) = ι(c̃) + κι(b) is equal to ci0 ι(b)j0 . This holds true for any c ∈ C \ Ci0 ,
whence the i0-th column of M(C) is proportional to the j0-th column of M(C′)
with the nonzero factor λ = ι(b)j0 .

Finally, this method allows us to determine a permutation π ∈ Sn in the
following way. From the previous discussion we already know that C and C′

552 6. Enumeration of Isometry Classes

have the same number of zero columns, and if d�i �= 0 belongs to an equiva-
lence class of r columns of M(C), then we can find an equivalence class con-
taining exactly r columns of M(C′) which are all proportional to d�i . Hence,
it is possible to determine π so that π maps zero columns of M(C) to zero
columns of M(C′) and each nonzero column d�i of M(C) to a proportional col-
umn of M(C′). �

Thus for each c ∈ C we have

ι(c) =
(
ψ(0)cπ−1(0), . . . , ψ(n − 1)cπ−1(n−1)

)
,

for some ψ(F∗
q)n.

Now let σ : C → C′ be a local semilinear isometry with σ(κc) = α(κ)σ(c)
for c ∈ C, κ ∈ Fq, where α ∈ Gal := Gal [Fq : Fp]. We want to show that there
exists a permutation π ∈ Sn such that the image of the i-th column of M(C) un-
der α is proportional to the π(i)-th column of M(C′) for i ∈ n. This fact shows
then that σ can be described as an element (ψ; (α, π)) of F∗

q ��n (Gal×Sn). Thus
it is a semilinear isometry of Fn

q . The proof is based on the fact that the image
of a subspace under a semilinear mapping is again a subspace.

6.8.5 Theorem Assume that σ : C → C′ is a local semilinear isometry between two linear
(n, k)-codes over Fq with σ(κc) = α(κ)σ(c) for c ∈ C, κ ∈ Fq, where α ∈ Gal.
Let d�i and d′�j be the columns of M(C), respectively M(C′). Then there exists a
permutation π ∈ Sn such that α(d�i) is proportional to d′�

π(i) for i ∈ n.

Proof: Only a few arguments must be changed in order to adapt the previous
proof to local semilinear isometries. From 6.8.2 we know that M(C) and M(C′)
have the same number of zero columns, which we indicate by s.

Let d�i be a nonzero column of M(C), and let i = i0, . . . , ir−1 indicate the
indices of the columns of M(C) proportional to d�i . Then all the cross sections
Ci = Ci0 , Ci1 , . . . , Cir−1 determine the same (n, k − 1)-code. The matrix M(Ci)
has r + s zero columns, namely d�i0 , . . . , d

�
ir−1

, which come from the construc-
tion as a cross section in these columns, and d�ir , . . . , d

�
ir+s−1

, which are the zero
columns appearing already in M(C).

Since σ is a local semilinear isometry between C and C′, also the restriction
σ|Ci

is a semilinear isometry between Ci and σ(Ci), whence by 6.8.2, M(Ci)
and M(σ(Ci)) have the same number of zero columns. Let us assume that
the indices of the zero columns of M(σ(Ci)) are given by j0, . . . , jr+s−1, and
that jr , . . . , jr+s−1 are the indices of the s zero columns of M(C′). As above,
σ(Ci) is the cross section of C′ in any of the components j0, . . . , jr−1, for in-
stance, M(ι(Ci)) = M(C′

j0
). According to 6.8.3, the columns of M(C′) with

indices j0, . . . , jr−1 are proportional and form an equivalence class of columns
of M(C′).

6.9 Existence and Construction of Normal Bases 553

Next we claim that the columns α(d�i0) and d′�j0 are proportional, i.e. there
exists some λ ∈ F∗

q such that d′�j0 = λα(d�i0). Assume that b = (b0, . . . , bn−1)
with bi0 = 1 belongs to C \ Ci0 . Then σ(b) ∈ C′ \ C′

j0
, whence the j0-th compo-

nent of σ(b), which we indicate as σ(b)j0 , is different from zero. Now take an
arbitrary c ∈ C \Ci0 . Since Ci0 is a (k− 1)-dimensional subspace of C, there ex-
ist uniquely determined c̃ ∈ Ci0 and κ ∈ Fq such that c = c̃ + κb. Consequently,
κ = ci0 �= 0. Since σ(c̃) ∈ C′

j0
, the j0-th component of σ(c) = σ(c̃) + α(κ)σ(b)

is equal to α(ci0)σ(b)j0 . This holds true for any c ∈ C \ Ci0 , whence α(d�i0), the
image of the i0-th column of M(C) under α, is proportional to the j0-th column
of M(C′) with the nonzero factor λ = σ(b)j0 .

Using the same ideas as in the previous proof, we determine a permutation
π ∈ Sn so that α(d�i) and d′�

π(i), i ∈ n, are proportional. �

Thus for each c ∈ C we have

σ(c) =
(
ψ(0)α(cπ−1(0)), . . . , ψ(n − 1)α(cπ−1(n−1))

)
,

for some ψ ∈ (F∗
q)n.

Exercises

E.6.8.1Exercise Prove 6.8.1.

6.96.9 Existence and Construction of Normal Bases

In Section 3.3 normal bases of a field extension were introduced. So far we have
not shown that it is always possible to find a normal basis. Our proof is based
on some notions from module theory, which were presented in the meantime.
An interesting and detailed discussions of normal bases can be found in [62].

In Section 6.3 we have shown that for any endomorphism A of Fn
q the vec-

tor space Fn
q becomes an Fq[x]-module by 6.3.5. Here we repeat the outer

multiplication once again

Fq[x] × Fn
q → Fn

q : (f , v) �→ f v := f (A)v :=
d

∑
i=0

κiA
iv,

where f is the polynomial ∑d
i=0 κixi. If A is represented by a matrix then Aiv

is the matrix multiplication v · (Ai)�. The minimal polynomial MA of A is the
monic polynomial f ∈ Fq[x] of least degree so that f (A) = 0. If we have a
matrix representation of the endomorphism A with respect to the basis B of
Fn

q over Fq, then the characteristic polynomial χA of A is defined as the deter-
minant χA(x) := det(xIn − A) ∈ Fq[x], where In is the n × n-unit matrix. The

554 6. Enumeration of Isometry Classes

characteristic polynomial is always a polynomial of degree n. It does not de-
pend on the particular choice of the basis B. By the Cayley–Hamilton Theorem
6.3.11 it satisfies χA(A) = 0, whence the minimal polynomial MA is a divisor
of the characteristic polynomial χA.

Considered as a linear Fq-space, Fqn is isomorphic to Fn
q , thus it is also an

Fq[x]-module: For any endomorphism α of Fqn we obtain a module structure

Fq[x] × Fqn → Fqn : (f , κ) �→ f κ := f (α)(κ) :=
d

∑
i=0

κiα
i(κ),

where f is the polynomial ∑d
i=0 κixi. In the present section we always consider

α = τ, the Frobenius automorphism of Fqn over Fq. In order to show that a
normal basis exists for each extension field Fqn over Fq, we apply Dedekind’s
Independence Theorem 3.3.6 to the n distinct powers of the Frobenius auto-
morphism τ.

6.9.1 Lemma For n ≥ 1 let τ : Fqn → Fqn be the Frobenius automorphism τ(β) = βq.
Then the vector space Fqn is a cyclic Fq[x]-module.

Proof: Since τn is the identity on Fqn , the minimal polynomial of τ is a divisor
of xn − 1. The automorphisms τ0, τ1, . . . , τn−1 are pairwise distinct, whence
by Dedekind’s Independence Theorem they are linearly independent over Fq.
For this reason, the degree of the minimal polynomial of τ is at least n. Conse-
quently, xn − 1 is the minimal polynomial of τ.

Moreover, n is the dimension of the Fq-vector space Fqn . Therefore, xn − 1
is also the characteristic polynomial of τ. Thus, the minimal polynomial and
the characteristic polynomial of τ coincide, and according to Exercise 6.3.7, the
Fq[x]-module Fqn is cyclic. �

This allows us to prove the existence of a normal basis.

6.9.2 The Existence of normal bases Let n be a positive integer. For any finite field Fq

and its extension Fqn there exists κ ∈ Fqn so that{
κ, τ(κ), . . . , τn−1(κ)

}
is a basis of Fqn over Fq.

Proof: Since Fqn is a cyclic Fq[x]-module, according to 6.9.1, there exists some
κ ∈ Fqn so that

Fqn = Fq[x]κ =
{

f κ | f ∈ Fq[x]
}

.
Since the minimal polynomial of τ is of degree n, we can restrict ourselves to
polynomials f of degree less than n, obtaining

Fqn =
{

f κ | f ∈ Fq[x], deg f < n
}

.

6.9 Existence and Construction of Normal Bases 555

Consequently, there exist n polynomials f0, . . . , fn−1 with deg fi < n for i ∈ n,
so that { f0κ, . . . , fn−1κ} is a basis of Fqn . Since each fi is a linear combination
of xj for j ∈ n, we finally deduce that

{
κ, τ(κ), . . . , τn−1(κ)

}
is also a basis of

Fqn . (Here we use the polynomials fi(x) = xi.) This is a normal basis of Fqn

over Fq. �

It is even possible to show that for any finite field Fq and its extension Fqn ,
where n is a positive integer, there exists a primitive element κ ∈ Fqn so that{

κ, τ(κ), . . . , τn−1(κ)
}

is a basis of Fqn over Fq (cf. [127]).

Now we describe how to construct a normal basis. There exist both proba-
bilistic and deterministic algorithms for finding a normal basis of Fqn over Fq.
We will present both approaches.

6.9.3Definition (trace function) The trace function of Fqn over Fq is defined by

Tr : Fqn → Fq : α �→ Tr(α) := ∑
i∈n

αqi
.

It is easy to prove that the trace function is a homomorphism.
An element κ ∈ Fqn is called normal over Fq if {κ, τ(κ), . . . , τn−1(κ)} is a

normal basis of Fqn over Fq.
In order to characterize whether a given set of n elements forms a basis of

Fqn over Fq we introduce the discriminant ∆ : Fn
qn → Fq defined by

∆(α0, . . . , αn−1) := det

⎛⎜⎝ Tr(α0α0) . . . Tr(α0αn−1)
...

. . .
...

Tr(αn−1α0) . . . Tr(αn−1αn−1)

⎞⎟⎠ .

6.9.4Theorem The set {α0, . . . , αn−1} ⊆ Fqn is a basis of Fqn over Fq if and only if
∆(α0, . . . , αn−1) �= 0.

Proof: Assume that {α0, . . . , αn−1} is a basis of Fqn over Fq. We show that the
row vectors of the matrix used to define ∆ are linearly independent over Fq.
Assume that for c0, . . . , cn−1 ∈ Fq we have

∑
i∈n

ci
(
Tr(αiα0), . . . , Tr(αiαn−1)

)
= 0,

then

∑
i∈n

ci Tr(αiαj) = 0, j ∈ n.

556 6. Enumeration of Isometry Classes

For β := ∑i∈n ciαi we have

Tr(βαj) = ∑
k∈n

(
βαj

)qk
= ∑

k∈n

(
∑
i∈n

ciαiαj

)qk

= ∑
k∈n

∑
i∈n

ci
(
αiαj

)qk
= ∑

i∈n
ci Tr(αiαj) = 0, j ∈ n.

Since the trace is a vector space homomorphism and {α0, . . . , αn−1} is a basis
of Fqn , we have Tr(βα) = 0 for all α ∈ Fqn . This is only possible for β = 0,
whence ∑i∈n ciαi = 0 and consequently c0 = . . . = cn−1 = 0.

Conversely, assume that ∆(α0, . . . , αn−1) �= 0 and ∑i∈n ciαi = 0 for some
c0, . . . , cn−1 ∈ Fq. Then ∑i∈n ciαiαj = 0 for j ∈ n and by applying the trace
function

0 = Tr(0) = Tr
(
∑
i∈n

ciαiαj

)
= ∑

i∈n
ci Tr(αiαj), j ∈ n.

By assumption the rows of the matrix in the definition of ∆(α0, . . . , αn−1) are
linearly independent, whence c0 = . . . = cn−1 = 0 and, therefore, α0, . . . , αn−1

are linearly independent over Fq. �

6.9.5 Corollary The set {α0, . . . , αn−1} ⊆ Fqn is a basis of Fqn over Fq if and only if the
matrix

A :=

⎛⎜⎜⎜⎝
α0 . . . αn−1

α
q
0 . . . α

q
n−1

...
. . .

...
α

qn−1

0 . . . α
qn−1

n−1

⎞⎟⎟⎟⎠
is regular.

Proof: {α0, . . . , αn−1} is a basis if and only if ∆(α0, . . . , αn−1) �= 0. As a matter
of fact, ∆(α0, . . . , αn−1) = det(A� · A) = (det A)2. �

The probabilistic algorithm for finding a normal basis is based upon

6.9.6 Theorem (Artin [3]) Consider an irreducible polynomial f of degree n over Fq and
α ∈ Fqn a root of f . Let

g(x) :=
f (x)

(x − α) f ′(α)
∈ Fqn [x].

Then there exist at least q− n(n− 1) elements κ ∈ Fq so that g(κ) is normal over Fq.

6.9 Existence and Construction of Normal Bases 557

Proof: For i ∈ n let αi := τi(α) and gi(x) := τi(g(x)), where τ is the Frobenius
automorphism of Fqn over Fq. Then

gi(x) =
f (x)

(x − αi) f ′(αi)

is a polynomial in Fqn [x] of degree n − 1 with roots αk for k �= i and gi(αi) = 1.
Hence,

gi(x)gk(x) ≡ 0 mod I(f), i �= k. 6.9.7

Moreover,

∑
i∈n

gi(x)− 1 = 0, 6.9.8

since the left-hand side is a polynomial of degree at most n − 1 with n roots
α0, . . . , αn−1. Multiplying 6.9.8 by gi(x) and using 6.9.7 yields

gi(x) ≡
(
gi(x)

)2 mod I(f). 6.9.9

Let D be the matrix

D :=

⎛⎜⎜⎝
g0(x) g1(x) . . . gn−1(x)
g1(x) g2(x) . . . g0(x)
.

gn−1(x) g0(x) . . . gn−2(x)

⎞⎟⎟⎠ ,

then D� = D. Because of 6.9.9 and 6.9.8, the diagonal elements of D� · D are
of the form

∑
i∈n

gi(x)2 ≡ ∑
i∈n

gi(x) = 1 mod I(f).

All the other entries of D� · D are 0 because of 6.9.7. Let D(x) := det D. We
obtain D(x)2 ≡ 1 mod I(f). This means that D(x) is a nonzero polynomial.
By construction its degree is at most n(n − 1). Therefore, D(x) has at most
n(n − 1) roots.

Consider some u ∈ Fq with D(u) �= 0. Then the matrix⎛⎜⎜⎝
g0(u) g1(u) . . . gn−1(u)
g1(u) g2(u) . . . g0(u)
.

gn−1(u) g0(u) . . . gn−2(u)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
g(u) τ(g(u)) . . . τn−1(g(u))

τ(g(u)) τ2(g(u)) . . . g(u)
.

τn−1(g(u)) g(u) . . . τn−2(g(u))

⎞⎟⎟⎠
is regular, whence by 6.9.5, {g(u), τ(g(u)), . . . , τn−1(g(u))} is a basis of Fqn

over Fq. In fact, it is a normal basis. �

558 6. Enumeration of Isometry Classes

6.9.10 Algorithm (Generate a normal element)

Input: q, n, an irreducible polynomial f ∈ Fq[x] of degree n, and α a
root of f .

Output: A normal element or an error message. If q > n(n − 1) the out-
put β is a normal element of Fqn over Fq.

(1) If q ≤ n(n − 1) terminate the algorithm and output an error message.

(2) Determine g as in 6.9.6.

(3) Choose u ∈ Fq at random.

(4) Let κ = g(u).

(5) If κ is normal over Fq output κ. Otherwise goto (3).

If q > 2n(n − 1), then, by 6.9.6, κ is normal with probability at least 1/2. �

Finally, we present a deterministic algorithm, due to Lenstra (cf. [126]), for
constructing a normal basis.

6.9.11 Definition (τ-order) Let τ be the Frobenius automorphism of Fqn over Fq. For
κ ∈ Fqn \ {0} determine the least positive integer k and c0, . . . , ck−1 ∈ Fq so
that

τk(κ) = ∑
i∈k

ciτ
i(κ).

Then the polynomial

Ordκ(x) := xk − ∑
i∈k

cix
i ∈ Fq[x]

is called the τ-order of κ.
The τ-order of κ �= 0 is uniquely determined. Since τn(κ) = κ, it is clear

that Ordκ(x) is a divisor of xn − 1. Moreover, the element κ is normal over Fq

if and only if Ordκ(x) = xn − 1.

6.9.12 Lemma Consider α ∈ Fqn \ {0} with Ordα(x) �= xn − 1, and let

g(x) :=
xn − 1

Ordα(x)
.

Then there exists β ∈ Fqn so that g(x)β = α.

Proof: Let γ be a normal element of Fqn over Fq. Then there exists some f ∈
Fq[x] so that f (x)γ = α. Since Ordα(x)α = 0, we have

(
Ordα(x) f (x)

)
γ = 0.

So Ordγ(x) = xn − 1 is a divisor of Ordα(x) f (x). Thus, g(x) is a divisor of
f (x). Let f (x) = g(x)h(x), then α = f (x)γ = g(x)

(
h(x)γ

)
. This proves that

β := h(x)γ satisfies the assertion. �

6.9 Existence and Construction of Normal Bases 559

6.9.13Lemma Consider α, β ∈ Fqn \ {0} with Ordα(x) �= xn − 1,

g(x) :=
xn − 1

Ordα(x)
,

and α = g(x)β as in the previous lemma. If deg Ordβ(x) ≤ deg Ordα(x), then
there exists a nonzero η ∈ Fqn so that

g(x)η = 0, 6.9.14

and
deg Ordα+η(x) > deg Ordα(x). 6.9.15

Proof: Let γ be a normal element of Fqn over Fq. Then η := Ordα(x)γ is
different from 0 and satisfies

g(x)η =
xn − 1

Ordα(x)
Ordα(x)γ = (xn − 1)γ = 0.

Now we prove that each nonzero solution η of 6.9.14 satisfies 6.9.15. From
Ordβ(x)α = Ordβ(x)g(x)β = 0 we obtain that Ordα(x) divides Ordβ(x).
From the assumption on the degrees of these two polynomials we deduce that
Ordα(x) = Ordβ(x). Thus, by Exercise 6.9.2 we have gcd

(
g(x), Ordα(x)

)
= 1.

Since Ordη(x) is a divisor of g(x), also gcd
(
Ordη(x), Ordα(x)

)
= 1. An ap-

plication of Exercise 6.9.3 yields that Ordα+η(x) = Ordα(x) Ordη(x), whence
deg Ordα+η(x) > deg Ordα(x). �

6.9.16Algorithm (Construct a normal element)

Input: q and n.
Output: A normal element of Fqn over Fq.

(1) Choose α ∈ Fq at random and determine Ordα(x).

(2) If Ordα(x) = xn − 1 then output α and terminate the algorithm.

(3) Calculate g(x) := (xn − 1)/ Ordα(x).

(4) Find β ∈ Fqn so that g(x)β = α and determine Ordβ(x).

(5) If deg Ordβ(x) > deg Ordα(x), replace α by β and goto (2).

(6) If deg Ordβ(x) ≤ deg Ordα(x), then find a nonzero element η ∈ Fqn so
that g(x)η = 0. Replace α by α + η, determine Ordα(x) and goto (2).

This algorithm terminates after finitely many steps, because in (6) the degree
of Ordα(x) increases at least by 1. �

Exercises

E.6.9.1Exercise Why is the τ-order of κ �= 0 is uniquely determined?

560 6. Enumeration of Isometry Classes

E.6.9.2 Exercise For α ∈ Fqn and g ∈ Fq[x] show that if g(x)α �= 0, then the τ-order
of g(x)α is equal to Ordα(x)/gcd(Ordα(x), g(x)).

E.6.9.3 Exercise Consider α, η ∈ Fqn \ {0} such that Ordα(x) and Ordη(x) are rela-
tively prime. Show that

Ordα+η(x) = Ordα(x) Ordη(x).

E.6.9.4 Exercise Let α ∈ F34 be a root of the irreducible polynomial f (x) = x4 + x3 +
2 ∈ F3[x]. Using α, compute a normal basis of F34 over F3 and determine by an
application of 3.5.5 the list of all irreducible polynomials of degree 4 over F3.

7Chapter 7

Solving Systems of Diophantine Linear
Equations

7

7 Solving Systems of Diophantine Linear Equations

7.1 Lattices .. 565

7.2 Diophantine Equations and Lattices 568

7.3 Basic Theory of Lattices 574

7.4 Gram–Schmidt Orthogonalization 577

7.5 Bounds on Lattice Vectors..................................... 579

7.6 Lattice Basis Reduction .. 586

7.7 Lattice Point Enumeration..................................... 598

7.8 Computing the Minimum Distance of Linear Codes 605

7 Solving Systems of Diophantine
Linear Equations

In this chapter we consider systems of linear equations whose solutions are
restricted to the integers. Linear equations of this form are called Diophantine
linear equations. In Chapter 8 we will reduce the problem of finding linear
codes with prescribed minimum distance to solving systems of Diophantine
linear equations. If we try to solve these systems it is crucial to have fast meth-
ods at hand. Here, we study one possible approach based on so called lattice
basis reduction. In Section 1.8 we saw an algorithm for determining the mini-
mum distance of a linear code. Section 7.8 contains another minimum distance
algorithm, also based on lattice basis reduction.

With Gaussian elimination we are able to solve linear systems A · x = d
of equations for vectors x ∈ Rn easily1. The same algorithm works also if we
restrict to x ∈ Qn. Then, since we can multiply the whole system with the
least common multiple of all denominators, we can also solve these systems
over Z. Unfortunately, the size of the denominators can grow very rapidly. So,
Gaussian Elimination does not longer run in polynomial time. But there exist
algorithms to compute the Hermitian normal form (HNF) efficiently, i.e. in
polynomial time, see for example [39]. Thus, with the help of the HNF we can
solve systems of Diophantine linear equations easily.

The situation changes when we have to solve systems of linear inequali-
ties over the integers or, equivalently, if we have to find nonnegative integral
solutions of systems of linear equations. Equally hard problems arise if the
variables xi are restricted to integers from intervals li ≤ xi ≤ ri for i ∈ n.
The problem to decide if there is such a vector x is known to be NP-complete.
At present, no algorithm is known which decides in a number of steps that is
polynomial in the size of the input for this problem if there is a solution or not.
Here, we restrict our attention to Diophantine linear equations of the following
form.

A · x = d, l ≤ x ≤ r,

for given A ∈ Zm×n, d ∈ Zm, l, r ∈ Qn, where l ≤ x ≤ r means li ≤ xi ≤ ri, for
each i ∈ n. We ask for solutions x ∈ Zn with l ≤ x ≤ r.

7.0.1Example In Chapter 8, Example 8.4.4, the following system of Diophantine
linear equations occurs during the construction of linear codes with prescribed

1for technical reasons we use the column convention in the present chapter

564 7. Solving Systems of Diophantine Linear Equations

minimum distance:

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
14

⎞⎟⎟⎟⎠ ,

where x0 ∈ {0, 1, 2, 3, 4}, x1 ∈ {0, 1, 2}, x2 ∈ {0, 1, 2, 3} and xi ∈ {0, 1, 2, 3, 4, 5}
for i ∈ {3, 4, 5}. It is easy to check that x = (0, 1, 2, 2, 5, 5)� is an integer
solution of the system of equations which also satisfies the additional lower
and upper bounds. �

Several equally hard variations of this problem exist. The knapsack problem
and the subset sum problem are just two instances.

The knapsack problem: Given nonnegative integers ci, wi, i ∈ n, and k, find a
subset S ⊆ {0, 1, . . . , n − 1} such that ∑j∈S wj ≤ k and ∑j∈S cj is maximal.

The subset sum problem: Given nonnegative numbers wi, i ∈ n, and k, find a
subset S ⊆ {0, 1, . . . , n − 1} such that ∑j∈S wj = k.

7.0.2 Example Let w = (31, 41, 59, 26, 53, 58, 97, 93, 23, 84, 62), k = 314 and c =
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The subset sum problem asks for subsets S ⊆ {0, 1, 2, . . . , 10} such that
∑i∈S wi = 314. There are three solutions: {3, 4, 5, 7, 9}, {0, 3, 4, 5, 9, 10}, and
{0, 2, 3, 6, 8, 9}.

In the knapsack problem, we ask for subsets S ⊆ {0, 1, . . . , 10} of maximal
size subject to the condition that ∑i∈S wi ≤ 314. Here, the solution is S =
{0, 2, 3, 4, 5, 8, 10}, ∑i∈S ci = 7 and ∑i∈S wi = 312 ≤ 314. �

As we will see in Section 7.8, the problem of computing the minimum distance
of certain linear codes can be reduced to a problem of solving a Diophantine
system of linear equations. Also, in Chapter 8, we will use systems of Dio-
phantine linear equations to construct optimal codes. Many further objects
from Discrete Mathematics can be constructed in a similar fashion. In fact,
Combinatorial Designs, Steiner systems and covering codes have all been con-
structed in a similar way by means of Diophantine equations.

Many algorithms for solving these problems have been proposed. Some
of them rely on relaxation techniques and use Linear Programming. Other
approaches use backtracking. The approach used here is based on lattices2 and

2in this chapter lattices are geometrical objects, different from the definition in 3.2.24

7.1 Lattices 565

on a very important method invented by Lenstra, Lenstra and Lovász [125] –
the celebrated LLL-algorithm. This method has been applied successfully to
break certain cryptosystems based on the knapsack problem [119].

The first step is to transform the problem of finding the solutions of linear
Diophantine equation systems into a problem involving lattices. A lattice is
just the set of integer linear combinations of a given set of linearly indepen-
dent vectors in a real vector space. In this setting, the problem can be reduced
to the question of finding sufficiently short vectors in a suitable lattice. Here,
short is usually meant in connection to a norm, like the �∞-norm or the Eu-
clidean norm. To find these short vectors in polynomial time, we apply the
LLL-algorithm. In a second step, we use exhaustive enumeration to find all
vectors which are solutions of our original problem. This last step needs expo-
nential time.

With this approach many finite incidence structures could be constructed,
see [15], [16], [25], [28], [29], [199] and the literature cited there.

7.17.1 Lattices

Let us recall briefly the basic definitions and fundamental theorems of the the-
ory of lattice. For a thorough introduction into the subject we refer the reader
to [77], for instance.

As usual, let Rn denote the real Euclidean n-dimensional space. Its ele-
ments v ∈ Rn are written as column vectors v = (v0, v1, . . . , vn−1)�.

For q ∈ R, q ≥ 1, we define the �q-norm by

‖−‖q : Rn → R : v �→
(

∑
i∈n

|vi|q
)1/q

,

and the �∞-norm as follows:

‖−‖∞ : Rn → R : v �→ max
i∈n

|vi| .

For m ∈ N, the vectors b(0), b(1), . . . , b(m−1) ∈ Rn span a subspace of Rn

which we denote by

〈b(0), b(1), . . . , b(m−1)〉 :=
{

∑
i∈m

xib
(i) ∣∣ xi ∈ R , i ∈ m

}
.

The notation for a subspace 〈b(0), b(1), . . . , b(m−1)〉 is not to be confused with
the standard bilinear form

〈v, w〉 = ∑
i∈n

vi · wi

566 7. Solving Systems of Diophantine Linear Equations

for v, w ∈ Rn. But the meaning should be clear from the context.
The basic notions are the following ones:

7.1.1 Definition (lattice) Let b(0), b(1), . . . , b(m−1) be m linearly independent vectors
in Rn.

The set

L(b(0), b(1), . . . , b(m−1)) :=

{
∑
i∈m

ui · b(i)
∣∣∣ ui ∈ Z, i ∈ m

}
⊂ Rn

is called the lattice (of vectors) with basis b(0), b(1), . . . , b(m−1).

The rank m of a lattice L with basis b(0), b(1), . . . , b(m−1) is the dimension of
the R-subspace 〈b(0), b(1), . . . , b(m−1)〉 which is spanned by the basis.

We will write
B :=

(
b(0) | . . . | b(m−1))

for the n × m-matrix whose columns are the vectors b(0), b(1), . . . , b(m−1). If
L = L(b(0), b(1), . . . , b(m−1)), then B is called a generator matrix of L.

0

b(1)

b(0)

Fig. 7.1 A rank 2 lattice spanned by b(0) and b(1)

It is well known [77, p. 18] that a lattice of vectors in Rn is a discrete additive
subgroup of Rn.

For a lattice L ⊂ Rn, the most important (and difficult) algorithmic prob-
lems can be described as follows.

7.1.2 Algorithmic problems for a given lattice L

The shortest vector problem (SVP): Find an �q-shortest vector in L, i.e. find an
element w in L such that

‖w‖q = min{‖w′‖q | w′ ∈ L \ {0}}.

7.1 Lattices 567

This question is most interesting for the Euclidean norm, the �1-norm, and
the �∞-norm.

The closest vector problem (CVP): Given a vector v ∈ Rn find a lattice vector
w which is closest to v in the �q-norm, i.e. such that

‖v −w‖q = min{‖v − w′‖q | w′ ∈ L} .

The lattice basis reduction: Given a basis b(0), b(1), . . . , b(m−1) of the lattice
L compute a new basis b′(0), b′(1), . . . , b′(m−1) of L consisting of “shortest”
vectors. Here, the meaning of short will have to be made precise. �

b(0) ′

b(1) ′

0

b(1)

b(0)

Fig. 7.2 Two different bases for b(0), b(1) and b(0) ′, b(1)′ of the same lattice

For an overview on the algorithmic complexity of the above problems we refer
to [147] and [199] and the literature cited there.

Concerning the last of the mentioned problems, we remark that the prob-
lem of finding a basis consisting of shortest vectors is not exactly defined pro-
vided the dimension is at least three. In fact, many different versions of the
concept of a shortest basis exist. Two classical concepts are the reduced bases
in the sense of Minkowski [150] and the reduced quadratic forms in the sense
of Korkine and Zolotarev [113]. The latter aims at minimizing the orthogonal-
ity defect of a lattice basis, a concept which we will encounter in Section 7.5.
Recently, one further variant has gained interest. In this, one finds a lattice
basis minimizing the maximal length of any of its members, see [2], [23].

The above reduction concepts rely on the computation of shortest lattice
vectors in sublattices and related lattices. Therefore, the problem of computing
a reduced lattice basis in the sense of Minkowski or Korkine and Zolotarev is
at least as hard as the shortest vector problem.

568 7. Solving Systems of Diophantine Linear Equations

7.2 7.2 Diophantine Equations and Lattices

Subset sum problems. Lagarias and Odlyzko [119] have introduced the tech-
niques of lattices and lattice basis reduction to the solution of subset sum
problems. Recall that these problems can be written as finding all solutions
x ∈ {0, 1}n of the system

A · x = d7.2.1

where A is a 1× n matrix over the integers and d is some integer. In fact, they
introduced the lattice whose generator matrix is the (m + n)× (n + 1)-matrix

B :=

⎛⎜⎜⎜⎜⎝
N · (−d) N · A

0
... In
0

⎞⎟⎟⎟⎟⎠7.2.2

where In denotes the identity matrix in Zn×n and N is a large integer con-
stant. Let us call this lattice the Lagarias-Odlyzko lattice. It turns out that the
solutions x of 7.2.1 are in bijection to certain short elements of the Lagarias-
Odlyzko lattice. Namely, if v = B · w is an element of the lattice which is zero
in the first m entries and where w is a {0, 1}-vector whose first component is
equal to one, then (w1, . . . , wn)� is a solution of the Diophantine system 7.2.1
and vice-versa. Moreover, the first m components of v are zero, and hence no
entry of v is a nonzero multiple of the large integer constant N. This means
that v is short in the Lagarias-Odlyzko lattice. Therefore, we see that solutions
of 7.2.1 are short vectors in the Lagarias-Odlyzko lattice. This means that it is
useful to attack this kind of Diophantine problem with the method of finding
short vectors in lattices. We illustrate this by an example.

7.2.3 Example Consider the subset sum problem of 7.0.2. Setting N = 100, the
generator matrix B of 7.2.2 of the Lagarias-Odlyzko lattice is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−31400 3100 4100 5900 2600 5300 5800 9700 9300 2300 8400 6200
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Multiplying this matrix by the vector w = (1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0)� gives
the vector v = (0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0)� . Therefore, (w1, w2, . . . , wn)� is

7.2 Diophantine Equations and Lattices 569

a solution to the subset sum problem: We have wi = 1 if and only if i ∈
S = {4, 5, 6, 8, 10}. This set S solves the subset sum problem 7.0.2. Note that
‖v‖2 =

√
5 and ‖v‖∞ = 1.

Multiplying the matrix by the vector w = (1, 1, 0, 1, 0, 2, 1, 1,−1, 1, 1, 0)�

gives v = (36500, 1, 0, 1, 0, 2, 1, 1,−1, 1, 1, 0). This means that (w1, w2, . . . , wn)�

does not solve the subset sum problem: The entries in (w1, w2, . . . , wn)� are not
all elements of {0, 1}. Furthermore, the linear equation A · (w1, . . . , wn)� = d
is violated. We note that ‖v‖2 =

√
1 332 250 011 and ‖v‖∞ = 36 500. �

Below, we will employ the following strategy. We will start with the lattice
basis which is given by the columns of the generator matrix B. We will then
compute another basis for the same lattice which consists of short vectors. This
transformation from one lattice basis to another is known as lattice basis reduc-
tion. A very important algorithm to achieve this transformation is the LLL-
algorithm which we will discuss in Section 7.6.

In the context of the subset sum problem and the Lagarias-Odlyzko lattice,
one hopes that through the process of lattice basis reduction one will even-
tually arrive at vectors v ∈ Zn+m which are of the form vi = 0 for i ∈ m
and either vi ∈ {0, 1} for m ≤ i < m + n or, alternatively, vi ∈ {0,−1} for
m ≤ i < m + n. It is proved in [119] that for a large class of subset sum prob-
lems a solution will correspond to the shortest vector of the lattice 7.2.2.

The Euclidean norm of such vectors is bounded above by
√

n. But not
every short vector is a solution. Since the Euclidean distance of a vector does
not distinguish between entries +1 and −1, it may happen that short vectors
are computed whose entries are 0 or±1. In fact, the “mixed sign case” happens
frequently among the vectors v ∈ L with ‖v‖∞ = 1.

r =
√

n r = 1
2
√

n

Fig. 7.3 Solution vectors for the lattice 7.2.2 (left) and for the lattice 7.2.4 (right) without the
first component which is equal to zero

570 7. Solving Systems of Diophantine Linear Equations

We can do better by appealing to the closest vector problem. The goal
is to eliminate entries in the short lattice vectors which are −1. To do this,
we introduce the vector z = (0, 1

2 , 1
2 , . . . , 1

2)�, which is not contained in the
Lagarias-Odlyzko lattice. We are now looking for the vectors closest to z in the
Lagarias-Odlyzko lattice. In fact, since we are looking for {0, 1}-vectors, we
may restrict our search to lattice vectors v at distance

‖v − z‖ =
√

∑
i∈n

(vi − zi)2 =
√

∑
i∈n

1/4 = 1/2
√

n.

The situation for n = 3 is illustrated in Fig. 7.3. The first component of the
lattice vectors is not shown as it is zero. The black dots indicate lattice points,
leading to solutions, which are either short (left picture) or close to z (right
picture). To solve the closest vector type problem, we use the augmented and
embedded Lagarias-Odlyzko lattice, generated by the (m + n + 1) × (n + 1)-
matrix

B :=

⎛⎜⎜⎜⎜⎜⎜⎝
−N · d N · A
−1/2

... In
−1/2

1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ .7.2.4

This means, we add a zero component to the original Lagarias-Odlyzko lattice
and add the new basis vector (−Nd,− 1

2 , . . . ,− 1
2 , 1)�. The last component en-

sures that the columns of 7.2.4 are linearly independent. Also, it serves as a
bookkeeping device. Namely, it keeps track of whether the new basis vector
was used in the expression of a lattice element in terms of the new basis. As
before, N ∈ N is a large integer constant. The solutions of the subset sum
problem now correspond to elements v = B · w ∈ Zm+n+1 of the new lat-
tice 7.2.4 where vi = 0 for i ∈ m, vi ∈ {−1/2, 1/2} for m ≤ i < n + m and
|vn+m| = |w0| = 1. For these vectors the maximum norm is equal to 1, and all
lattice vectors which are not solutions of the subset sum problem have maxi-
mum norm greater than 1.

7.2.5 Example Consider again the subset sum problem from 7.0.2 and put N = 100.
The extended Lagarias-Odlyzko lattice is generated by the matrix

7.2 Diophantine Equations and Lattices 571

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−31400 3100 4100 5900 2600 5300 5800 9700 9300 2300 8400 6200
−1 2 0 0 0 0 0 0 0 0 0 0
−1 0 2 0 0 0 0 0 0 0 0 0
−1 0 0 2 0 0 0 0 0 0 0 0
−1 0 0 0 2 0 0 0 0 0 0 0
−1 0 0 0 0 2 0 0 0 0 0 0
−1 0 0 0 0 0 2 0 0 0 0 0
−1 0 0 0 0 0 0 2 0 0 0 0
−1 0 0 0 0 0 0 0 2 0 0 0
−1 0 0 0 0 0 0 0 0 2 0 0
−1 0 0 0 0 0 0 0 0 0 2 0
−1 0 0 0 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that we have scaled all rows except for the first and the last one by a
factor of 2 to clear denominators.

Multiplying this matrix from the right by the same vector w = (1, 0, 0, 0, 1,
1, 1, 0, 1, 0, 1, 0)� as in Example 7.2.3 produces the short lattice vector v =
(0,−1, −1,−1, 1, 1, 1,−1, 1,−1, 1,−1, 1)� . Comparing this vector to the vec-
tor v of Example 7.2.3 shows that apart from the first entry we have replaced
all zeros by −1s. Also, we have left in place the 1s and we have added a final
entry. Furthermore, note that ‖v‖2 =

√
12 and ‖v‖∞ = 1. If the last compo-

nent of v is equal to 1, then vi = −1 corresponds to i �∈ S, vi = 1 corresponds
to i ∈ S. If the last component of v is equal to −1 it is the other way round. �

As shown in [43], this improvement enlarges the class of subset sum prob-
lems whose solutions are shortest vectors in the original Lagarias-Odlyzko lat-
tice 7.2.4 enormously.

Systems of Diophantine linear equations. In order to solve the problem
A · x = d for A ∈ Qm×n and d ∈ Qm with l ≤ x ≤ r for arbitrary bounds
l, r ∈ Qn, our algorithm proceeds in two steps.

First, we compute a basis consisting of integer vectors b(0), b(1), . . ., b(n−m)

of the augmented system 7.2.6⎛⎜⎝ −d A

⎞⎟⎠
︸ ︷︷ ︸

=: A′

·

⎛⎜⎝ x0
...

xn

⎞⎟⎠ = 0 . 7.2.6

In this system, the negative of the right hand side has been added to the coef-
ficient matrix A on the left, to form the extended coefficient matrix A′. Corre-
spondingly, a component x0 has been added to the vector x.

Since we can assume that the augmented matrix A′ has full row-rank m, the
kernel of the system 7.2.6 has dimension n − m + 1. Of course, only solutions

572 7. Solving Systems of Diophantine Linear Equations

of 7.2.6 with x0 = 1 are interesting. Several polynomial-time algorithms are
known to compute the integer basis of this kernel in Zn+1, as described in [39].
Since it is desirable for the second step of our algorithm to have a basis b(0),
b(1), . . ., b(n−m) ∈ Zn+1 consisting of short vectors, algorithms based on lattice
basis reduction are preferred [39], [198].

In order to handle the lower bounds, we reformulate the problem in such
a way that the lower bounds on the variables are zero. Substituting x := x − l,
d := d− A · l and r := r − l yields the equivalent problem

A · x = d and 0 ≤ x ≤ r.

Here, x is a vector in Zn such that 0 ≤ xi ≤ ri. This shows that we may assume
that the lower bound l is zero.

Furthermore, we assume that ri > 0 for i ∈ n. Otherwise, if there exists an
i ∈ n such that ri = 0 or ri < 0, it follows that xi = 0 or xi < 0, respectively.
In the first case the variable xi can be removed from the system of Diophan-
tine linear equations, whereas in the second case we see immediately that the
system has no solution.

For the above system 7.2.6 with lower bound 0 and arbitrary upper bounds
r ∈ Zn on the variables we introduce a modified version of the lattice 7.2.4. The
basis of the new lattice consists of the columns of the following (m + n + 1) ×
(n + 1)-matrix: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−N · d N · A
−rmax 2c0 0 · · · 0
−rmax 0 2c1 · · · 0

...
...

. . .
...

−rmax 0 · · · · · · 2cn−1

rmax 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.7.2.7

The entries rmax and ci are defined by

rmax = lcm{r0, . . . , rn−1} and ci =
rmax

ri
, i ∈ n ,

and, as usual, N ∈ N is a large integer constant. In 7.6.17, we will compute a
lower bound on the size of N.

After applying lattice basis reduction (see Section 7.6), the first n − m + 1
vectors of a reduced basis will have only zeros in the first m entries, provided
N is large enough. These are relatively short vectors. The remaining m vectors
contain at least one nonzero entry in the first m entries. Since entries in the
first m rows are multiples of the large integer constant N, these vectors are
long vectors. Thus, the new generator matrix of the lattice spanned by the

7.2 Diophantine Equations and Lattices 573

columns of 7.2.7 has the following form:

m rows

⎧⎪⎨⎪⎩
n + 1 rows

{

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ∗ · · · ∗
...

...
...

...
0 · · · 0 ∗ · · · ∗

∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸
n − m + 1 columns

︸ ︷︷ ︸
m columns

⎫⎪⎬⎪⎭ entries are
multiples of N

7.2.8

The last m vectors cannot contribute to a solution of our original problem.
Hence they can be removed from the basis. From the remaining n − m + 1
vectors we can delete the first m entries which are zero. This gives a basis b(0),
b(1), . . ., b(n−m) ∈ Zn+1 of the kernel of 7.2.6.

7.2.9Theorem With the above definitions, let

v = u0 · b(0) + u1 · b(1) + . . . + un−m · b(n−m) 7.2.10

be an integer linear combination of the basis vectors with vn = rmax. The vector v is
a solution of the system A · x = d, 0 ≤ x ≤ r, if and only if

v ∈ Zn+1 where − rmax ≤ vi ≤ rmax, i ∈ n . 7.2.11

Proof: Let v = u0 · b(0) + u1 · b(1) + . . . + un−m · b(n−m) be an integer linear
combination of the basis vectors with vn = rmax. By looking at the initial
basis 7.2.7 of the lattice we see that for every i ∈ n there is an integer yi such
that vi = −rmax + 2yici.

By using the definitions of rmax and ci it is easy to verify that −rmax ≤ vi ≤
rmax is equivalent to 0 ≤ yi ≤ ri, i ∈ n. �

In a second step, the algorithm will search in the lattice of integer linear
combinations of the basis vectors b(0), b(1), . . . , b(n−m) ∈ Zn+1. In this step, all
lattice vectors which correspond to solutions of the original problem A · x = d
are enumerated. Only solutions to 7.2.6 with x0 = 1 are enumerated.

574 7. Solving Systems of Diophantine Linear Equations

7.3 7.3 Basic Theory of Lattices

Let L ⊂ Rn be a lattice with basis b(0), b(1), . . . , b(m−1). We want to estimate
how short the vectors of a lattice basis for L can be. For this purpose, we
introduce the determinant of a lattice. We will see that the determinant has a
geometrical interpretation.

7.3.1 Definition If a set S ⊂ Rn is measurable in the sense of Lebesgue, then its
Lebesgue measure is called the volume of S and denoted by VolS.

7.3.2 Definition (fundamental parallelotope) Let L be a lattice with basis b(0), b(1),
. . . , b(m−1). The set

FB :=
{

∑
i∈m

xib
(i) | 0 ≤ xi < 1, i ∈ m

}
is the fundamental parallelotope of the lattice L with respect to the basis b(0), b(1),
. . . , b(m−1).
If m = n, i.e. if the lattice has full rank, the volume of the fundamental par-
allelotope FB is equal to the absolute value of the determinant of the matrix
B = (b(0) | . . . | b(n−1)). If m < n, i.e. if the lattice is embedded in a space
of higher dimension, the volume of the fundamental parallelotope in Rn is
0. Nevertheless, we will need the volume of the lattice L as a subset of the
m-dimensional space 〈b(0), b(1), . . . , b(m−1)〉 ⊂ Rn. For this we introduce the
Gram matrix G(B) of the basis B.

7.3.3 Definition (Gram matrix, determinant) Let B = (b(0) | . . . | b(m−1)) be a
generator matrix of a lattice L with basis b(0), . . . , b(m−1).

The matrix
G(B) =

(
〈b(i), b(j)〉

)
i,j∈m ∈ Rm×m

is called Gram-matrix G(B) of the lattice basis.

The determinant of the lattice L with respect to the generator matrix B is

det(L) =
√

det(G(B)) .

It is easy to see that det(L) is well-defined and that it is equal to the volume of
the fundamental parallelotope FB in the space 〈b(0), b(1), . . . , b(m−1)〉.

It is well-known that the volume of the fundamental parallelotope of a
lattice does not depend on the choice of the basis (cf. Fig. 7.2). Let m ∈ Z,
m > 0. A matrix M ∈ Zm×m with determinant ±1 is called unimodular.

7.3 Basic Theory of Lattices 575

7.3.4Lemma The volume of the fundamental parallelotope of a lattice L ⊂ Rn of rank m
is equal for all bases b(0), b(1), . . . , b(m−1) of L.

Proof: Let A =
(
a(0) | a(1) | . . . | a(m−1)) and B =

(
b(0) | b(1) | . . . |

b(m−1)) be two generator matrices of the lattice L with fundamental paral-
lelotopes FA and FB, respectively. Thus, we can express each basis vector
in {b(0), b(1), . . . , b(m−1)} as an integer linear combination of basis vectors in
{a(0), a(1), . . . , a(m−1)}, and vice versa. That is, there exists a matrix M ∈ Rm×m

which describes the change from generator matrix A to generator matrix B
with B = A · M. The change from generator matrix B to A can then be ex-
pressed by A = B · M−1.

Since every lattice vector is an integer linear combination of basis vectors,
the entries of the matrix M as well as the entries of the matrix M−1 are integers.
Thus, also det(M) and det(M)−1 = det(M−1) are integers. Since det(M) �= 0,
the only possibility is that det(M) = ±1. For the volume of the fundamental
parallelotopes this gives

VolFB =
√

det(G(B)) =
√

det(M)2 · det(G(A)) = VolFA . �

Let b(0), b(1), . . . , b(m−1) be a basis of a lattice L ⊂ Rn of rank m. From the above
proof we see that the columns of the matrix M ·

(
b(0) | b(1) | . . . | b(m−1))

form another basis of L provided that M ∈ Zm×m is a unimodular matrix.
This means that there is a one-to-one correspondence between the unimodular
matrices and the different bases of L.

A different kind of invariant of a lattice are the successive minima of Min-
kowski [150]. Again, this invariant does not depend on the choice of the basis.

7.3.5Definition (successive minima) Let L ⊂ Rn be a lattice of rank m. For an
integer i ∈ m let λi(L) be the least positive real number for which there exist
i + 1 linearly independent lattice vectors v ∈ L \ {0} with ‖v‖2 ≤ λi(L). The
numbers λ0(L), λ1(L), . . . , λm−1(L) are the successive minima of the lattice L.

From the definition it follows that

λ0(L) ≤ λ1(L) ≤ . . . ≤ λm−1(L) .

Linearly independent vectors v(i) ∈ L with ‖v(i)‖ = λi(L) for i ∈ m do not
necessarily form a basis of the lattice. For example, the lattice

L =
{

u0e(0) + u1e(1) + . . . + un−1e(n−1) + un(1
2 , . . . , 1

2)�
∣∣ u0, u1, . . . , un ∈ Z

}

576 7. Solving Systems of Diophantine Linear Equations

in Qn contains the vectors e(0), e(1), . . . , e(n−1). Therefore, the successive min-
ima of L are

λ0(L) = λ1(L) = . . . = λn−1(L) = 1 .

These successive minima are unique since the vectors e(i), i ∈ n, are the only
vectors in L with Euclidean norm equal to one. But the vectors e(0), e(1), . . . ,
e(n−1) do not form a basis of L.

The connection to quadratic forms. The arithmetic theory of lattices is closely
related to the theory of positive definite quadratic forms whose long history
dates back to Lagrange [120], Legendre [122], Gauss [66], Hermite [86] and
Korkine and Zolotarev [112], [113].

Gauss [65] was first to notice the close connection between positive definite
quadratic forms and lattices, i.e. the viewpoint of geometry. This geometric
point of view was later developed systematically by Minkowski [150] and is
now known as the “geometry of numbers”.

7.3.6 Definition (positive definite quadratic form) A positive definite quadratic form
is a map

fA : Zm → R : x �→ x� · A · x ,

where A ∈ Rm×m is a symmetric positive definite matrix, i.e. A� = A and
x� · A · x > 0 for x ∈ Rn \ {0}.
Let B ∈ Rn×m be a matrix of rank m with m ≤ n. Setting A := B� · B, we
note that fA(x) = x� · (B� · B) · x = ‖B · x‖2

2 ≥ 0 for x ∈ Zm. Since A has
maximal rank m, fA(x) = 0 is equivalent to x = 0. It follows that the matrix
A is symmetric and positive definite. Therefore, the minimum value of fA(x)
for all x ∈ Zm \ {0} is equal to the square of the �2-shortest vector in the lattice
with generator matrix B.

It is well-known that for any symmetric positive definite matrix A ∈ Rm×m

there exists a matrix B ∈ Rm×m such that A = B� · B. This is known as the
Cholesky decomposition of A (see [39], for instance). This shows that for every
positive definite quadratic form fA there exists a lattice L, namely the lattice
whose generator matrix is the matrix B with A = B� · B.

Indeed many results in lattice theory were first formulated in the language
of positive definite quadratic forms. An example is 7.5.4.

Exercises

E.7.3.1 Exercise Prove that the volume of a fundamental parallelotope of a lattice L is
equal to det(L).

7.4 Gram–Schmidt Orthogonalization 577

E.7.3.2Exercise Let A be a symmetric, positive definite matrix ∈ Rm×m. Show that
there exists a matrix B ∈ Rm×m with A = B� · B.

7.47.4 Gram–Schmidt Orthogonalization

7.4.1Definition (orthogonal vectors) A set of vectors v(0), . . . , v(m−1) ∈ Rn \ {0} is
called orthogonal if for i, j ∈ m

〈v(i), v(j)〉
{ �= 0, if i = j,

= 0, if i �= j .

7.4.2Lemma (Gram–Schmidt orthogonalization) Let b(0), b(1), . . . , b(m−1) be a set of
linearly independent vectors ∈ Rn. For i = 0, 1, . . . , m − 1, define vectors

b̂(i) = b(i) −
i−1

∑
j=0

µij · b̂(j) ,

where

µij =
〈b(i), b̂(j)〉
〈b̂(j), b̂(j)〉

.

Then b̂(0), b̂(1), . . . , b̂(m−1) are orthogonal.

Proof: Let b(0), b(1), . . . , b(m−1) be a set of linearly independent vectors ∈ Rn.

Then, b̂(0) = b(0) and b̂(1) = b(1) − 〈b(1),b̂(0)〉
〈b̂(0),b̂(0)〉 · b̂

(0). Therefore,

〈b̂(1), b̂(0)〉 = 〈b(1), b̂(0)〉 − 〈b(1), b̂(0)〉
〈b̂(0), b̂(0)〉

· 〈b̂(0), b̂(0)〉 = 0 .

By induction, it follows for 2 ≤ k ≤ m − 1 that

〈b̂(k), b̂(j)〉 = 〈b(k), b̂(j)〉 −
k−1

∑
i=0

〈b(k), b̂(i)〉
〈b̂(i), b̂(i)〉

· 〈b̂(i), b̂(j)〉

= 〈b(k), b̂(j)〉 − 〈b(k), b̂(j)〉
〈b̂(j), b̂(j)〉

· 〈b̂(j), b̂(j)〉

= 0 ,

for j = 0, 1, . . . , k − 1. �

578 7. Solving Systems of Diophantine Linear Equations

0

b(1)

b(0)

π1(b(1)) = b̂(1)

〈b(0)〉⊥

Fig. 7.4 Orthogonal projection π1 of b(1) into 〈b(0)〉⊥

The procedure 7.4.2 is called Gram–Schmidt orthogonalization. The vectors b̂(i),
i ∈ m, are referred to as Gram–Schmidt vectors and the numbers µij, 0 ≤ j ≤
i < m, are called Gram–Schmidt coefficients. We note that in general the set of
orthogonal vectors b̂(0), b̂(1), . . . , b̂(m−1) is not longer contained in L, since the
Gram–Schmidt coefficients µij are not necessarily integers.

For i ∈ m we can think of b̂(i) as the orthogonal projection of b(i) into the
subspace Hi−1 := 〈b(0), b(1), . . . , b(i−1)〉⊥, which is the subspace of dimension
m − i orthogonal to 〈b(0), b(1), . . . , b(i−1)〉 in 〈b(0), b(1), . . . , b(m−1)〉.

7.4.3 Definition (orthogonal projection) With the above notation, for t ∈ m the
orthogonal projection πt(v) is defined by

πt : Rn → 〈b(0), b(1), . . . , b(t−1)〉⊥, v �→
m−1

∑
j=t

〈v, b̂(j)〉
〈b̂(j), b̂(j)〉

· b̂(j) .

We note that the orthogonal projection depends on the choice of the basis
b(0), b(1), . . . , b(m−1) of the lattice L ⊂ Rn. Further, from the definition it can
be seen that for t ∈ m the orthogonal projection πt(v) of a vector v ∈ Rn

is a linear combination of the Gram–Schmidt vectors b̂(t), . . . , b̂(m−1). For any
lattice basis and any vector v ∈ Rn we have π0(v) = v.

The orthogonal projection πt is a linear mapping. Therefore, the projec-
tion of the lattice L(b(0), b(1), . . . , b(m−1)) into 〈b(0), b(1), . . . , b(t−1)〉⊥ is again a
lattice

Lt
(
πt(b(t)), . . . , πt(b(m−1))

)
:=

{
∑
i∈m

uiπt(b(i)) | ui ∈ Z
}

=
{m−1

∑
i=t

uiπt(b(i)) | ui ∈ Z
}

7.5 Bounds on Lattice Vectors 579

spanned by the basis πt(b(t)), πt(b(t+1)), . . . , πt(b(m−1)) for t ∈ m. The rank of
the lattice Lt is equal to m − t.

In matrix notation, the Gram–Schmidt orthogonalization can be written as

B = B̂ · µ�

with a lower triangular m × m-matrix

µ =

⎛⎜⎜⎜⎝
µ00

µ10 µ11
...

...
. . .

µm−1,0 µm−1,1 . . . µm−1,m−1

⎞⎟⎟⎟⎠ ,

where µii = 1, i ∈ m, and µij = 0 for 0 ≤ i < j < m. This shows that the
Gram–Schmidt orthogonalization is a unimodular transformation. In particu-
lar, det(µ) = 1 and we see that we can compute the determinant det(L) from
the Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(m−1) of a lattice basis b(0), b(1), . . . ,
b(m−1) via

det(L) = |det(B̂) · det(µ)| = ∏
i∈m

‖b̂(i)‖2 . 7.4.4

We note that the orthogonal basis b̂(0), b̂(1), . . . , b̂(m−1) depends on the ordering
of the basis b(0), b(1), . . . , b(m−1).

Exercises

E.7.4.1Exercise Prove that the orthogonal projection is a linear mapping.

E.7.4.2Exercise Show that for vectors b(0), b(1), . . . , b(n−1) ∈ Rn:√
det G(b(0), b(1), . . . , b(n−1)) = |det(b(0), b(1), . . . , b(n−1))| .

E.7.4.3Exercise Use elementary row and column transformations to bring the Gram
matrix G(b(0), b(1), . . . , b(m−1)), of linearly independent b(0), b(2), . . . , b(m−1) ∈
Rn, with m ≤ n, to the form

(
〈b̂(j), b̂(l)〉

)
j,l∈m .

7.57.5 Bounds on Lattice Vectors

The Hadamard inequality is a well-known lower bound on the length of the
vectors of a lattice basis.

580 7. Solving Systems of Diophantine Linear Equations

7.5.1 Lemma (Hadamard’s Inequality) If b(0), b(1), . . . , b(m−1) is a basis of a lattice
L ⊂ Rn, then

det(L) ≤ ∏
i∈m

‖b(i)‖2 .

Proof: Using 7.4.2 together with the mutual orthogonality of the vectors b̂(j)

we have

‖b(i)‖2
2 = ‖b̂(i)‖2

2 +
i−1

∑
j=0

µ2
ij‖b̂(j)‖2

2 ≥ ‖b̂(i)‖2
2 .

With 7.4.4, det(L) = ∏i∈m ‖b̂(i)‖2, the inequality follows. �

7.5.2 Remark The inequality of Hadamard can be written as

1 ≤ ∏
i∈m

‖b(i)‖2

‖b̂(i)‖2
=

1
det(L)

· ∏
i∈m

‖b(i)‖2

with equality if and only if the basis b(0), b(1), . . . , b(m−1) is orthogonal. There-
fore, the product ∏i∈m ‖b(i)‖2/‖b̂(i)‖2 is a measure of the “non-orthogonality”
of a basis b(0), b(1), . . . , b(m−1).

The inequality of Hadamard is trivially satisfied if the vectors b(0), b(1), . . . ,
b(m−1) are linearly dependent.

7.5.3 Definition (orthogonality defect) For a lattice basis b(0), b(1), . . . , b(m−1)

∏
i∈m

‖b(i)‖2

‖b̂(i)‖2

is called orthogonality defect of b(0), b(1), . . . , b(m−1).
Since det(L) = ∏i∈m ‖b̂(i)‖2 does not depend on the choice of the lattice

basis, the orthogonality defect is a measure for the geometric mean of the Eu-
clidean length of the basis vectors. Consequently, a basis consisting of short
vectors has a small orthogonality defect.

A classical result due to Hermite [86] gives an upper bound for the �2-
shortest vector of a lattice.

7.5.4 Theorem (Hermite) Let L ⊂ Zn be a lattice of rank m. Then L contains a nonzero
vector v such that

‖v‖2 ≤ (4/3)(m−1)/2 · det(L)2/m ,

where ‖ − ‖ denotes the Euclidean norm.

7.5 Bounds on Lattice Vectors 581

Proof: Using the first successive minimum, the claim of the theorem becomes

λ0(L)2 ≤ (4/3)(m−1)/2 · det(L)2/m .

Let B be a generating matrix of the lattice L and y ∈ Zm \ {0} be a vector for
which B · y takes on its minimum value, i.e. ‖B · y‖ = λ0(L). Then we know
that r = gcd(y0, y1, . . . , ym−1) = 1. For otherwise, since 1

r · y is integral,

‖B · (1
r
y)‖ =

1
r
‖B · y‖ =

1
r
· λ0(L) ,

which would contradict the minimality of λ0(L) in the case r > 1.
By induction it is easy to show that there exists a matrix W ∈ Zm×m such

that det(W) = 1 and the first column of W is equal to y (see Exercise 7.5.1).
Such a matrix is unimodular and hence by the remark after 7.3.4, B ·W is an-
other generator matrix of L. Moreover,

‖B ·W · (1, 0, . . . , 0)�‖ = ‖B · y‖ = λ0(L) .

Therefore, we can assume that B is a generator matrix of the lattice L and that
the successive minimum λ0(L) is attained for the first column of B, i.e. the first
basis vector. Now, we search for a matrix S ∈ Rm×m with S� · S = Im and
a0, a1, . . . , am−1 ∈ R such that

S · B =

⎛⎜⎜⎜⎜⎝
a0 a1 . . . am−1

0
... B′

0

⎞⎟⎟⎟⎟⎠ .

The matrix S can be constructed by taking as first row the entries of the first
column of B divided by ‖b(0)‖. The remaining rows are filled with linearly
independent vectors in Rm. After that, the rows of B must be orthogonalized
by the Gram–Schmidt process and scaled to have norm one. Then, for arbitrary
x ∈ Rm we have that

‖B · x‖2 = 〈Bx, Bx〉
= x�B�S�SBx

= 〈SBx, SBx〉

=

∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎝
a0 a1 . . . am−1

0
... B′

0

⎞⎟⎟⎟⎟⎠ · x

∥∥∥∥∥∥∥∥∥∥

2

= (∑
i∈m

aixi)2 + ‖B′ · (x1, . . . , xm−1)�‖2 .

582 7. Solving Systems of Diophantine Linear Equations

Since a0 = 1
‖b(0)‖ b(0)� · b(0) = ‖b(0)‖ and ‖b(0)‖ is minimal, it follows that

a0 = λ0(L). For the lattice L′ which is generated by B′, the determinant is

det(L)2 = det(G(B)) = det(G(SB)) = a2
0 · det(G(B′)) = a2

0 · det(L′)2 .

Therefore,

det(L′) = det(L) · 1
λ0(L)

.

We can now prove the initial claim by induction. The case m = 1 is clear.
For m > 1, suppose that there exists a vector x′ = (x1, . . . , xm−1)� ∈ Zm−1

with

‖B′ · x′‖2 ≤ (4/3)(m−2)/2 · det(L′)2/(m−1)

= (4/3)(m−2)/2 · det(L)2/(m−1) 1
λ0(L)2/(m−1)

.

For the fixed values x1, . . . , xm−1 ∈ Z we can choose x0 ∈ Z such that

|x0 +
a1x1 + . . . + am−1xm−1

a0
| ≤ 1

2
.

It follows that (
∑
i∈m

aixi

)2

≤ 1
4

λ2
0(L)

and therefore, since λ2
0(L) ≤ ‖B · x‖2, we have

λ2
0(L) ≤ 1

4
λ2

0(L) + (4/3)(m−2)/2 · det(L)2/(m−1) 1
λ0(L)2/(m−1)

.

An easy calculation shows that

λ2
0(L) ≤ (4/3)(m−1)/2 · det(L)2/m ,

which is the claim made at the beginning of the proof. Since this result is
equivalent to the assertion, the proof is finished. �

Minkowski started a systematic theory which is now known as the geometry
of numbers. In [149], he proved the following fundamental theorem.

7.5.5 Theorem (Minkowski) Let S be a convex set in Rn which is symmetric about the
origin (i.e. x ∈ S ⇒ −x ∈ S). If the volume of S is greater than 2n, then S contains
a nonzero vector v ∈ Zn.

For the proof of the theorem we use the following lemma by Blichfeldt [21].

7.5.6 Lemma (Blichfeldt) Let S be a measurable set in Rn. If VolS > 1 or S is bounded
and closed and VolS = 1 then S contains two different vectors x and y such that x − y
is in Zn \ {0}.

7.5 Bounds on Lattice Vectors 583

Proof: First we assume that VolS > 1. Without loss of generality we suppose
that S is bounded. The volume of the cube Q := {x ∈ Rn | 0 ≤ xi < 1, i ∈
n} is equal to 1. Since S is bounded there are finitely many integral vectors
u(0), u(1), . . . , u(k−1) ∈ Zn such that the intersection of S and u(i) + Q, i ∈ k, is
nonempty. Here, for v ∈ Rn the set v + Q is defined as v + Q = {x ∈ Rn |
∃q ∈ Q : x = v + q}.

For i ∈ k set Si := S∩ (u(i) + Q) and S′
i := Si − u(i), compare Fig. 7.5. Then,

for i ∈ k the sets S′
i are contained in Q. On the other hand, we have

∑
i∈k

VolS′i = ∑
i∈k

VolSi = VolS > 1 .

Therefore, these sets cannot be mutually disjoint and there are two sets S′
j, S′

l,
j, l ∈ k, and a vector z ∈ Rn such that

z ∈ S′
j ∩ S′

l .

It follows that both x := u(j) + z and y := u(l) + z are contained in S and
x − y = u(j) − u(l) is an integral vector.

Next, we assume that S is bounded and closed and VolS = 1. Let θr > 1 be
a sequence of numbers with limr→∞ θr = 1. For each r the set θrS has volume
strictly greater than 1. From the previous result it follows that for each r there
exist vectors x(r), y(r) ∈ θrS such that x(r) − y(r) is a nonzero integral vector.
Since S is bounded and closed there exist subsequences (x(rt))t∈N, (y(rt))t∈N

converging to some vectors x and y in S, respectively. The difference x − y
must be a nonzero integral vector, which proofs the assertion. �

Proof of Minkowski’s theorem: Define S/2 := {x ∈ Rn | 2x ∈ S}. Since
the volume of S is greater than 2n, S/2 has volume greater than 1. Using the
lemma of Blichfeldt, we know that S/2 contains two different vectors x and
y such that x − y ∈ Zn \ {0}. Therefore, 2x and 2y belong to S. Since S is
symmetric about the origin, also −2y belongs to S. The fact that S is convex
implies that 1

2 (2x) + 1
2 (−2y) = x − y ∈ S. Since x − y ∈ Zn this proves the

theorem. �

This result is sharp, as the n-dimensional cube
{
x ∈ Rn

∣∣ ‖x‖∞ < 1
}

has
volume 2n and does not contain an integral vector �= 0.

7.5.7Remark As we can see from the proof, the theorem of Minkowski is also valid
if the set S is bounded and closed and has VolS = 2n.

584 7. Solving Systems of Diophantine Linear Equations

0 u(0) u(1)

u(2)

S1

S0

S2

S′
1

S′
0S′

2

z x

y

Q

S

Fig. 7.5 Si = S ∩ (u(i) + Q) and S′
i = Si − u(i), i = 0, 1, 2, in the Lemma of Blichfeldt

7.5.8 Definition (Volume of the unit sphere) We denote by ρn the volume of the
unit sphere S := {x ∈ Rn | ‖x‖2 ≤ 1} in Rn:

ρn = VolS =
πn/2

n
2 !

,

where n
2 ! is defined by 0! = 1, 1

2 ! =
√

π/2, and n
2 ! = n

2 · (n
2 − 1)! for n ∈ Z,

n > 1.
As a direct consequence of 7.5.5, we have the following bound for the Eu-
clidean length of an �2-shortest vector in a lattice L.

7.5.9 Theorem (Minkowski) If L ⊂ Rn is a lattice of rank n, then there is a nonzero
vector v ∈ L with

‖v‖2 ≤ 2
(

det(L)
ρn

)1/n

=
2
π

(n
2

! · det(L)
)1/n

.

Proof: Let s ∈ R be a positive number and b(0), b(1), . . . , b(n−1) be a basis of the
lattice L. Consider the ellipsoid K = {x ∈ Rn | ‖B · x‖2

2 ≤ s} which is centered
at 0 and whose volume is

Vol(K) =
ρn · sn/2

det(L)
.

Choose s such that
ρn · sn/2

det(L)
= 2n .

7.5 Bounds on Lattice Vectors 585

By 7.5.5, there exists a nonzero lattice vector v ∈ L with

‖v‖2
2 ≤ 4

(
det(L)

ρn

)2/n

,

proving the theorem. �

7.5.9 gives an upper bound for the ratio

λ0(L)
det(L)1/n ≤ 2

ρ1/n
n

.

Occasionally, the weaker estimate

λ0(L)
det(L)1/n ≤

√
n

of [107] suffices.

7.5.10Definition (Hermite’s constant) The supremum of the ratio

λ2
0(L)

det(L)2/n

over all lattices in Rn of rank n is called Hermite’s constant and is denoted as γn.

Blichfeldt [22] provided the upper bound

γn ≤
n
(
1 + o(1)

)
eπ

. 7.5.11

Hermite’s constant is known exactly for n ≤ 8. Meanwhile, the best known
bounds for Hermite’s constant are

n + log(π log n)
2eπ

+ o(1) ≤ γn ≤ 1.744n
2eπ

(
1 + o(1)

)
.

The lower bound is from [148] and the upper bound is contained in [40].
Using the successive minima of a lattice, Minkowski [150] was able to

sharpen the bounds of Theorems 7.5.5 and 7.5.9:

7.5.12Theorem (Minkowski’s Second Theorem)

If L ⊂ Rn is a lattice of rank n with successive minima λ0(L), λ1(L), . . . , λn−1(L),
then

λ0(L)λ1(L) · · · λn−1(L) ≤ 2n det(L) .

Proof: The proof can be found in [77, p. 59]. �

586 7. Solving Systems of Diophantine Linear Equations

Exercises

E.7.5.1 Exercise Let y0, y1, . . . , ym−1 be integers with

gcd(y0, y1, . . . , ym−1) = 1 .

Show that there exists a matrix W ∈ Zm×m with det(W) = 1 whose first col-
umn is equal to (y0, y1, . . . , ym−1)�.

7.6 7.6 Lattice Basis Reduction

In this section we outline the classical concepts of lattice basis reduction as
developed by Korkine and Zolotarev and later by Minkowski. Furthermore,
we describe the celebrated LLL-algorithm which computes another type of re-
duced basis, the LLL-reduced or δ-reduced basis. We conclude this section by
discussing some improvements and variations of the LLL-algorithm. Unless
stated otherwise, by ‖−‖ we always denote the Euclidean norm in this section.

Classical concepts of lattice basis reduction. Reduction methods for positive
definite quadratic forms were first studied by Lagrange [120] for n = 2 and
Gauss [66], [65] and Seeber [176] for n = 3. Hermite [87] was the first to
propose a reduction method for positive quadratic forms for general values
of n.

In his seminal work [150], Minkowski introduced the notion of a reduced
basis of a lattice in dimension n for arbitrary positive integers n.

7.6.1 Definition (Minkowski-reduced basis) A basis b(0), b(1), . . . , b(n−1) of the lattice
L ⊂ Rn is reduced in the sense of Minkowski, if for t = 0, 1, . . . , n − 1

1. the vector b(t) is a shortest vector in L and

2. the set {b(0), b(1), . . . , b(t)} can be extended to a basis of L.

In [151], Minkowski showed that

1
det(L)

· ∏
i∈n

‖b(i)‖ ≤ 2n

ρn

(
3
2

)n(n−1)/2

= 2O(n2)

is an upper bound for the orthogonality defect of a Minkoswki-reduced ba-
sis. This bound is much larger than the bound which can be derived from
Minkowski’s Second Theorem 7.5.12. If there exists a basis b(0), b(1), . . . , b(n−1)

7.6 Lattice Basis Reduction 587

of the lattice L such that the lengths of the basis vectors equal the successive
minima, then we can bound the orthogonality defect by

1
det(L)

· ∏
i∈n

‖b(i)‖ ≤ 2n .

Since the vector b(0) of a Minkowski-reduced basis b(0), b(1), . . . , b(n−1) of a lat-
tice L is an �2-shortest vector in L, the computation of a Minkowski-reduced
basis of a lattice L is at least as hard as computing an �2-shortest vector in L.

From a computational point of view, the reduced bases of Korkine and
Zolotarev [113] have turned out to be more useful.

7.6.2Definition (Korkine–Zolotarev-reduced basis) A basis b(0), b(1), . . . , b(m−1) of
a lattice L ⊂ Rn is reduced in the sense of Korkine and Zolotarev [113], if

1. b(0) is an �2-shortest vector in L and

2. for all t ∈ m, b̂(t) is an �2-shortest vector in the lattice Lt(b(t), . . . , b(m−1)).

The upper bound on the orthogonality defect of a Korkine–Zolotarev-reduced
basis is much better than that of a Minkowski-reduced basis. Lagarias, Lenstra
and Schnorr [118] proved the following bounds.

7.6.3Theorem Let b(0), b(1), . . . , b(n−1) be a Korkine–Zolotarev-reduced basis of a lattice
L ⊂ Zn. Then √

4
i + 4

λi(L) ≤ ‖b(i)‖ ≤
√

i + 4
4

λi(L) for i ∈ n

and

∏
i∈n

‖b(i)‖ ≤
(

γn
n ·∏

i∈n

i + 4
4

)1/2
· det(L) . �

Let L be a lattice in Zn, and let b(0), b(1), . . . , b(n−1) be a Korkine–Zolotarev-
reduced basis for L. Using the asymptotic result 7.5.11 of Blichfeldt, the asymp-
totic upper bound for the orthogonality defect of a Korkine–Zolotarev-reduced
basis b(0), b(1), . . . , b(n−1) can be shown to be of order O(nn).

The vector b(0) of a Korkine–Zolotarev-reduced basis b(0), b(1), . . . , b(n−1)

of a lattice L is an �2-shortest vector in L. So, the computation of a Korkine–
Zolotarev-reduced basis of an lattice L is at least as hard as computing an �2-
shortest vector in L.

The LLL-algorithm. Summarizing, no fast algorithm to compute a Minkowski-
reduced basis or a Korkine–Zolotarev-reduced basis is known. A major break-
through was achieved by Lenstra, Lenstra, and Lovász in their seminal work

588 7. Solving Systems of Diophantine Linear Equations

[125]. They compute a different type of reduced basis, which is now called an
LLL-reduced basis. We only give a brief outline of the algorithm. For a detailed
description, the reader is referred to the original paper [125] or to textbooks,
like [39], for example.

Again, in this section the norm ‖ − ‖ always denotes the Euclidean norm.
For r ∈ R,
r� denotes the nearest integer to r, i.e.
r� :=
 1

2 + r�.
A high-level description of the algorithm is as follows.

7.6.4 Algorithm (LLL-algorithm [125]) The LLL (or L3) algorithm computes an LLL-
reduced basis. The input is a basis b(0), . . . , b(m−1) of the lattice L of rank m.

(1) Let δ ∈ R with 1
4 < δ < 1.

(2) Set k := 0.
(3) do

(4) 1. for j = 0, . . . , k − 1
(5) replace b(k) by b(k) −
µkj�b(j),
(6) where µkj is the Gram-Schmidt coefficient from 7.4.2.
(7) 2. if δ‖πk(b(k))‖2 > ‖πk(b(k+1))‖2 then

(8) interchange b(k+1) and b(k)

(9) update b̂(k+1), b̂(k) and µ

(10) set k := max(k − 1, 0)
(11) else

(12) set k := k + 1
(13) until k = m − 1. �

Step 1 (line (4)) of the algorithm achieves that in each stage the basis vectors
are “as orthogonal as possible”. This means that the Gram–Schmidt orthogo-
nalized vector is approximated by an integer linear combination of the basis
vectors, compare Fig. 7.6. The hope is that for 0 ≤ i ≤ k the basis vectors
b(0), b(1), . . . , b(i−1) are close to being orthogonal. That is, they are good ap-
proximations of their Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(i−1).

In Step 2 (line (7)) of the algorithm the Euclidean length of two vectors are
compared:

δ‖πk(b(k))‖2 > ‖πk(b(k+1))‖2 .7.6.5

The first vector
πk(b(k)) = b̂(k)

on the left hand side of 7.6.5 is the orthogonal projection of b(k) onto the sub-
space 〈b(0), b(1), . . . , b(k−1)〉⊥. The second vector

πk(b(k+1)) =
m−1

∑
i=k

µk+1,ib̂
(i) = b̂(k+1) + µk+1,kb̂

(k)

7.6 Lattice Basis Reduction 589

〈b(0)〉⊥

0

b(1)

b(0)

π1(b(1)) = b̂(1)

b(1) ′

Fig. 7.6 b(1)′ is the integer approximation of π1(b(1))

on the right hand side of 7.6.5 is the orthogonal projection of the vector b(k+1)

into 〈b(0), b(1), . . . , b(k−1)〉⊥. Depending on the length of their projected vectors
onto 〈b(0), b(1), . . . , b(k−1)〉⊥, we choose either b(k) or b(k+1) as the new vector
b(k). In order to prove convergence of the algorithm, we only accept b(k+1)

as the new basis vector b(k) if the length of the new orthogonal vector b̂(k) is
reduced significantly, i.e. if it is reduced by at least a factor of δ.

7.6.6Example To illustrate the LLL-algorithm we consider the rank 2 lattice which
is spanned by the vectors b(0) = (4

2) and b(1) = (11
4). Since m = 2, the variable

k remains equal to zero throughout the algorithm. An LLL-reduced basis with
δ = 1 is computed by executing the following steps.

0

b(1)

b(0)

The input basis consisting of the vectors

b(0) =
(

4
2

)
and b(1) =

(
11
4

)
.

0

b(1)

b(0)
〈b(0)〉⊥

b(1) ′

Since

µ10 =
〈(11

4), (4
2)〉

〈(4
2), (

4
2)〉

=
13
5

= 2.6 ,

we set
µ10� = 3 in step 1 (line (5)). Then
according to line (5), b(1) is replaced by

b(1)′ =
(

11
4

)
− 3 ·

(
4
2

)
=

(−1
−2

)
.

590 7. Solving Systems of Diophantine Linear Equations

0

b(0)

b(1)

Step 2 (line (7)): ‖π0(b(0))‖2 = 20 and
‖π0(b(1))‖2 = 5 are compared.

0

b(1)

b(0)

Since

20 = ‖π0(b(0))‖2 > ‖π0(b(1))‖2 = 5 ,

the two vectors are swapped.

0

b(1)

b(0)

〈b(0)〉⊥

b(1) ′

Again, in step 1 (line (5))

µ10 =
〈(4

2), (
−1
−2)〉

〈(−1
−2), (

−1
−2)〉

=
−8
5

= −1.6.

Therefore,
µ10� = −2 and the vector b(1)

is replaced by

b(1)′ =
(

4
2

)
− (−2) ·

(−1
−2

)
=

(
2

−2

)
.

0

b(0) b(1)

Since

5 = ‖π0(b(0))‖2 < ‖π0(b(1))‖2 = 8 ,

the two vectors are not swapped in step 2
(line (7)) and the algorithm terminates.

�

Algorithm 7.6.4 is only a very informal description of the algorithm. After
swapping the two vectors b(k) and b(k+1), the Gram–Schmidt coefficients and
the length of the Gram–Schmidt vectors require updating. The exact algorithm
is given in [125].

The LLL-algorithm as described in Algorithm 7.6.4 works with rational
numbers µij and with rational vectors b̂(i) for 0 ≤ j ≤ i < m. Since numerator
and denominator of rational numbers are integers which can be represented
exactly on a computer, it was proposed in [125] that the LLL-algorithm might
be formulated as an algorithm solely over the integers.

In order to represent all integers which appear in the course of the algo-
rithm, the subdeterminants Di of the Gram matrix can be used, i.e.

Di := det
(
〈b(j), b(k)〉

)
0≤j,k≤i = ∏

k∈i
‖b̂(k)‖ for i ∈ m .

7.6 Lattice Basis Reduction 591

We know from [125] that

‖b̂(i)‖2 = Di/Di−1 for i ∈ m,

Di−1b̂(i) ∈ L ⊂ Zn for i ∈ m (and D−1 := 1),

Djµij ∈ Z for 0 ≤ j < i < m.

Then, the LLL-algorithm can be modified to work with the integers Djµij and
the integer vectors Di−1b̂(i) instead of µij and b̂(i), respectively. Thus the LLL-
algorithm becomes an algorithm with exact arithmetic whose time complexity
can then be estimated.

For the time complexity of the original LLL-algorithm, note that each in-
terchange of the vectors b(k) and b(k+1) for 0 ≤ k < m − 1 in step 2 of 7.6.4
reduces the value of D := ∏m−2

i=0 Di by at least a factor of δ. In step 1 of the al-
gorithm, the Gram–Schmidt vectors and therefore also D remain unchanged.
But, there exists a lower bound for D which is independent of the choice of the
basis. This can be seen for example from 7.5.12: Di ≥ λ0(L)λ1(L) · · · λi(L)/2i

for i ∈ m. Therefore, Algorithm 7.6.4 terminates after a finite number of steps.
In [125] the following bounds on the time complexity of the LLL-algorithm

are given.

7.6.7Theorem Let M ∈ R, M ≥ 2, be such that ‖b(i)‖2 ≤ M for i ∈ m. The number of
arithmetic operations needed by the LLL-algorithm is O(m4 log M) and the integers
on which these operations are performed each have binary length O(m log M). �

7.6.8Definition (δ-reduced basis) The output b(0), b(1), . . . , b(m−1) of the LLL-algo-
rithm with 1

4 < δ < 1 is called δ-reduced basis of the lattice L. Sometimes, it is
simply called an LLL-reduced basis of the lattice L.
In [125], the following bounds on the quality of the reduction are shown:

7.6.9Theorem Let b(0), b(1), . . . , b(m−1) be a δ-reduced basis of the lattice L ⊂ Qn. Then

‖b(j)‖2 ≤
(4

4δ − 1

)i
· ‖b̂(i)‖2 for 0 ≤ j ≤ i < m . 7.6.10

det(L) ≤ ∏
i∈m

‖b(i)‖ ≤
(4

4δ − 1

)m(m−1)/4
· det(L) . 7.6.11

‖b(0)‖ ≤
(4

4δ − 1

)(m−1)/4
· det(L)1/m . 7.6.12

592 7. Solving Systems of Diophantine Linear Equations

Proof: Since the basis b(0), b(1), . . . , b(m−1) is δ-reduced, the condition of step 2
in the LLL-algorithm is not satisfied for all 0 ≤ k < m − 1. This together with
the fact that the Gram–Schmidt vectors are mutually orthogonal implies that
for 1 ≤ i < m

‖b̂(i)‖2 + µ2
i,i−1‖b̂(i−1)‖2 ≥ δ‖b̂(i−1)‖2.

With step 1 of the LLL-algorithm we can argue that µ2
i,i−1 ≤ 1

4 , see [125]. This
gives

‖b̂(i)‖2 ≥ 4δ − 1
4

· ‖b̂(i−1)‖2 for 0 < i < m.

It follows for 0 ≤ j ≤ i < m that

‖b̂(j)‖2 ≤
(4

4δ − 1

)i−j
‖b̂(i)‖2 .

With
‖b(i)‖2 = ‖b̂(i)‖2 + ∑

j∈i
µ2

ij‖b̂(j)‖2

and some elementary calculations (see Exercise 7.6.1) we get for i ∈ m:

‖b(i)‖2 ≤ ‖b̂(i)‖2 + ∑
j∈i

1
4

(4
4δ − 1

)i−j
‖b̂(i)‖2 ≤

(4
4δ − 1

)i
‖b̂(i)‖2 .

Hence,

‖b(j)‖2 ≤
(4

4δ − 1

)j
· ‖b̂(j)‖2 ≤

(4
4δ − 1

)i
· ‖b̂(i)‖2 .

Applying Hadamard’s inequality 7.5.1 and 7.6.10 with j = i we obtain

det(L) ≤ ∏
i∈m

‖b(i)‖ ≤ ∏
i∈m

(4
4δ − 1

)i/2
· ‖b̂(i)‖ =

(4
4δ − 1

) m(m−1)
4 · det(L) ,

which is 7.6.11.
If we set j := 0 in 7.6.10 then the product of the right hand side of 7.6.10 for

i ∈ m gives ‖b(0)‖ ≤
(4

4δ−1

)(m−1)/4 · det(L)1/m . �

It follows from 7.6.11 that the orthogonality defect of a δ-reduced basis can be
bounded above by

1
det(L)

· ∏
i∈m

‖b(i)‖ ≤
(4

4δ − 1

)m(m−1)/4
,

which is 2O(m2) for δ = 3/4. Thus, the orthogonality defect of an LLL-reduced
basis has approximately the same size as the orthogonality defect of a basis
which is reduced in the sense of Minkowski.

In [125], the authors provide upper bounds of the Euclidean lengths of the re-
duced basis vectors, compared to Euclidean lengths of a shortest lattice vector:

7.6 Lattice Basis Reduction 593

7.6.13Theorem Let L ⊂ Qn be a lattice with δ-reduced basis b(0), b(1), . . . , b(m−1). Then

‖b(0)‖2 ≤
(

4
4δ − 1

)m−1

· λ0(L)2 . 7.6.14

Proof: Let v be a vector in L such that ‖v‖ = λ0(L). Then we can write v =
∑j∈m rjb(j) = ∑j∈m r′j b̂

(j) with rj ∈ Z and r′j ∈ Q for j ∈ m. If t is the largest
index such that rt �= 0 then we have rt = r′t (cf. Exercise 7.6.2). Thus we deduce
the inequality

λ2
0(L) ≥ r′t

2‖b̂(t)‖2 ≥ ‖b̂(t)‖2 .

With 7.6.10 we have the bound

‖b(0)‖2 ≤
(4
4δ − 1

)t · ‖b̂(t)‖2 ≤
(4
4δ − 1

)m−1 · ‖b̂(t)‖2 .

Combining the two inequalities gives the required bound for ‖b(0)‖2. �

At first sight, the bound in 7.6.13 on the Euclidean length of the first basis
vector of a LLL-reduced lattice basis does not look promising. However, there
are situations where this theoretical bound is already good enough, i.e. where
any nonzero vector in L which is not an �2-shortest vector has Euclidean length
greater than (4

4δ−1)
(m−1)/2 · λ0(L). Problems of this type can be solved by the

LLL-algorithm in polynomial time. Examples are attacks on knapsack based
cryptosystems with low-density [119], [43].

Secondly, in nearly all practical situations the LLL-algorithm behaves much
better than the bound 7.6.14 indicates. It was already noted in [125] that the
bound

(4
4δ−1

)m−1 in 7.6.13, which proved to be rather pessimistic in most in-
stances, can be replaced by max

{
‖b(i)‖2

2/‖b̂(j)‖2
2 | 0 ≤ i ≤ j < m

}
. If an

LLL-reduced basis is available, then computing this bound is trivial. For i = 0
in many cases this bound turns out to be close to 1 and hence b(0) actually is
an �2-shortest vector in the lattice.

On the other hand, Kannan [106] notes that there are lattices L of rank m
for which the orthogonality defect of certain LLL-reduced bases reaches the
bound 7.6.11 and the square of the norm of the first basis vector is larger than
λ0(L) by a factor 2O(m2).

The following generalizations of 7.6.13 can be found in [125].

7.6.15Theorem Let L ⊂ Qn be a lattice with LLL-reduced basis b(0), b(1), . . . , b(m−1). For
t ∈ m let v(0), v(1), . . . , v(t−1) ∈ L be t linearly independent lattice vectors. Then we
have

‖b(t)‖2 ≤
(4

4δ − 1

)m−1
·max

{
‖v(i)‖2 | i ∈ t

}
.

Proof: See [125, Prop. 1.12]. �

594 7. Solving Systems of Diophantine Linear Equations

We note that if a lattice basis b(0), b(1), . . . , b(m−1) of a lattice L ⊂ Qn is δ-
reduced with 1

4 < δ < 1 then for 1 ≤ t ≤ m also the lattices Lt(b(t), . . . , b(m−1))
are δ-reduced. Moreover, the vector b̂(t) = πt(b(t)) is the first vector of the
lattice basis πt(b(t)), . . . , πt(b(m−1)) of the lattice Lt(b(t), . . . , b(m−1)). Apply-
ing 7.6.12 and 7.6.14 to the lattice Lt(b(t), . . . , b(m−1)) we get for t ∈ m:

7.6.16 Corollary Let L ⊂ Qn be a lattice with δ-reduced basis b(0), b(1), . . . , b(m−1). Then,
for t ∈ m:

‖b̂(t)‖ ≤
(4

4δ − 1

)(m−1−t)/2
· λ0

(
Lt(b(t), . . . , b(m−1))

)
,

‖b̂(t)‖ ≤
(4

4δ − 1

)(m−1−t)/4
· det

(
Lt(b(t), . . . , b(m−1))

)1/(m−t) . �

The upper bounds on the basis vectors in 7.6.15 can be used to determine the
size of the integer constant N in 7.2.7.

7.6.17 Theorem Let A · x = d with A ∈ Zm×n and d ∈ Zm. There exists a constant N
which depends only on the size of the entries of A and d such that the LLL-algorithm
computes a basis of the form 7.2.8 if applied to the basis 7.2.7.

Proof: Without loss of generality, we assume that the matrix A has rank m.
Thus we can permute the columns of A such that the first m columns, i.e.
A(0), A(1), . . . , A(m−1), are linearly independent. Let A′ =

(
A(0) | . . . | A(m−1)).

Then, each of the n − m + 1 linear systems

A′ · x = −A(m+i), 0 ≤ i < n − m,

and

A′ · x = d,

possesses a unique solution in Qm.
For 0 ≤ i < n − m let v′(i) ∈ Qm be the solution of the system of linear

equations A′ · x = −A(m+i) and v′(n−m) ∈ Qm be the solution of the system
A′ · x = d. Using Cramer’s rule we can explicitly compute the solutions v′(i)

for 0 ≤ i < n − m via

v′(i)k =
1

det(A′)
· det

(
(A(0), . . . , A(k−1),−A(m+i), A(k+1), . . . , A(m−1))

)
, k ∈ m,

and

v′(n−m)
k =

1
det(A′)

· det
(
(A(0), . . . , A(k−1), d, A(k+1), . . . , A(m−1))

)
, k ∈ m.

7.6 Lattice Basis Reduction 595

Setting M := max{‖A(0)‖, ‖A(1)‖, . . . , ‖A(n−1)‖, ‖d‖} and using Hadamard’s
inequality 7.5.1, we can bound the entries |v′(i)k |, k ∈ m, by

|v′(i)k | ≤ 1
|det(A′)| · ‖A(m+i)‖ · ∏

j∈m,j �=k
‖A(j)‖ ≤ 1

|det(A′)| · Mm

for i ∈ n − m and

|v′(n−m)
k | ≤ 1

|det(A′)| · ‖d‖ · ∏
j∈m,j �=k

‖A(j)‖ ≤ 1
|det(A′)| · Mm .

Since all of the above determinants are integral, it follows that

ṽ(i) := det(A′) · v′(i)

are integer vectors for 0 ≤ i ≤ n−m. Moreover, the vectors ṽ(i), 0 ≤ i ≤ n−m,
are solutions of

A′ · x = −det(A′) · A(m+i) and A′ · x = det(A′) · d ,

respectively. We note that ṽ(i) remains a solution of the linear system if we
multiply the linear system with a nonzero constant N.

By filling in sufficiently many zeros, the solutions ṽ(i) can be written as
vectors in Zn+1, such that

(A′ | A(m) | . . . | A(n−1) | −d) ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ(0)
0 ṽ(1)

0 · · · ṽ(n−m)
0

...
...

...

ṽ(0)
m−1 ṽ(1)

m−1 · · · ṽ(n−m)
m−1

det(A′) 0 · · · 0
0 det(A′)
...

. . .
0 det(A′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=: Ṽ ∈ Z(n+1)×(n−m+1)

= 0 .

The square of the Euclidean norm of the ith-column of Ṽ, 0 ≤ i ≤ n − m, can
be bounded by

‖Ṽ(i)‖2 ≤ m · M2m + det(A′)2 ≤ (m + 1) · M2m .

Multiplying Ṽ by the lower part of the generator matrix 7.2.7, i.e. by the rows
m, . . . , m + n, we get

V =

⎛⎜⎜⎜⎜⎜⎜⎝
−rmax 2c0 0 · · · 0
−rmax 0 2c1 · · · 0

...
...

. . .
...

−rmax 0 · · · · · · 2cn−1
rmax 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ · Ṽ .

596 7. Solving Systems of Diophantine Linear Equations

The resulting matrix V is the lower left part of a generator matrix of the lattice
of the form 7.2.8. An elementary calculation shows that the norm of column
V(i) of V, 0 ≤ i ≤ n − m, can be bounded by

‖V(i)‖ ≤ 2
√

n + 1 · rmax · ‖Ṽ(i)‖ ≤ 2
√

(n + 1)(m + 1) · rmax · Mm .

Now, let b(0), b(1), . . . , b(n) be an LLL-reduced basis of a lattice generated by
7.2.7. Using 7.6.15, the length of the first n − m + 1 basis vectors b(t), 0 ≤ t ≤
n −m, can be bounded by

‖b(t)‖2 ≤
(4

4δ − 1

)n
·max

{
‖V(i)‖2 | 0 ≤ i ≤ n − m

}
.

If we choose N such that

N ≥
(4

4δ − 1

)n/2
· 2

√
(m + 1)(n + 1) · rmax · Mm ,

then we have that

‖b(t)‖ < N

for 0 ≤ t ≤ n − m. Thus, the LLL-algorithm will produce a basis whose first
n−m + 1 vectors are all zero in the first m entries, for otherwise the Euclidean
length of such a column would be greater than N. Therefore, the LLL-reduced
basis has the form 7.2.8. �

For practical purposes it is interesting to note that in almost all cases it suffices
to choose N much smaller than the value of the previous bound.

Blockwise Korkine–Zolotarev reduction. As we have seen in Section 7.3, the
bounds for the length of the vectors of a Korkine–Zolotarev-reduced basis are
much better than the bounds 7.6.14 for an LLL-reduced basis of a lattice L.
Unfortunately, no algorithm is known which computes a Korkine–Zolotarev-
reduced basis in polynomial time.

In a sense, Korkine–Zolotarev reduction is a generalization of the LLL-algo-
rithm. In Step 2 of the LLL-algorithm, we compare the Euclidean length of
the projections of b(k) and b(k+1) onto the subspace 〈b(0), b(1), . . . , b(k−1)〉⊥. In
Korkine–Zolotarev reduction, we search for a nontrivial integer linear combi-
nation ukb(k) + uk+1b(k+1) + . . . + um−1b(m−1) which minimizes the Euclidean
length of

πk(ukb
(k) + uk+1b

(k+1) + . . . + um−1b(m−1)) .

No algorithm is known which finds the integer linear combination of the short-
est nontrivial projection in time which is polynomial in the number of vectors
(m − k). Therefore, Schnorr in [172] and [173] restricted the search to blocks

7.6 Lattice Basis Reduction 597

of β vectors at a time for some fixed integer constant β. A nontrivial integer
linear combination

ukb
(k) + uk+1b

(k+1) + . . . + uk+β−1b
(k+β−1)

minimizing the Euclidean length of

πk(ukb
(k) + uk+1b

(k+1) + . . . + uk+β−1b
(k+β−1))

is then found by exhaustive enumeration. This algorithm is called blockwise
Korkine–Zolotarev reduction. For a further description of improved practical ver-
sions, we refer to [173] and [174]. In a blockwise Korkine–Zolotarev-reduced
basis of a lattice of rank m the factor

(4
4δ−1

)(m−1)/2 in 7.6.14 can be replaced
by (1 + ε)m for any fixed ε > 0. Of course, the time complexity increases
exponentially as ε approaches 0.

To summarize the various reduction concepts, the Euclidean norm of the
vectors of a reduced basis can be bounded above as follows:

The LLL-algorithm computes a basis b(0), b(1), . . . , b(m−1) with

‖b(t)‖ ≤
(4

4δ − 1

)(m−1)/2
λt(L) for t ∈ m .

If b(0), b(1), . . . , b(m−1) is a Korkine–Zolotarev-reduced basis, then

‖b(t)‖ ≤
(t + 4

4

)1/2
λt(L) for t ∈ m .

If b(0), b(1), . . . , b(m−1) is a blockwise Korkine–Zolotarev-reduced basis,
then

‖b(0)‖ ≤ (1 + ε)mλ0(L) .

Exercises

E.7.6.1Exercise Let δ ∈ R with 1
4 < δ < 1. Show that for i ∈ m

‖b̂(i)‖2 + ∑
j∈i

1
4

(4
4δ − 1

)i−j
‖b̂(i)‖2 ≤

(4
4δ − 1

)i
‖b̂(i)‖2 .

E.7.6.2Exercise Let b(0), b(1), . . . , b(m−1) be a sequence of linearly independent vec-
tors in Rn and b̂(0), b̂(1), . . . , b̂(m−1) the associated Gram–Schmidt vectors. Any
vector v ∈ 〈b(0), b(1), . . . , b(m−1)〉 can then be written as v = ∑j∈m rjb(j) =
∑j∈m r′j b̂

(j) with rj, r′j ∈ R for j ∈ m. Prove the following: If t is the largest
index with rt �= 0, then rt = r′t.

598 7. Solving Systems of Diophantine Linear Equations

7.7 7.7 Lattice Point Enumeration

Let us again consider the problem of solving systems of Diophantine equa-
tions as described in 7.2.9. Usually, we are interested in finding all solutions
to this problem, or to conclude that there are none. In terms of the associ-
ated lattice 7.2.7, this mean that we wish to enumerate all lattice points which
are subject to a certain set of constraints. Such an approach has first been de-
scribed by Ritter [170] for {0, 1} problems. Here we solve the general problem
with arbitrary bounds on the variables.

A priori, a lattice L =
{

∑i∈m uib(i)
∣∣ ui ∈ Z

}
of rank m contains infinitely

many elements. It will turn out that there are bounds on the integers |ui|,
i ∈ m, which depend solely on the lattice basis b(0), b(1), . . . , b(m−1). These
bounds reduce the problem of finding vectors with the properties of 7.2.9 to a
finite subset of the original lattice. Therefore we are left with the problem of
enumerating all solution vectors of 7.2.9 in a finite subset of the lattice. In the
following, we will describe this search process in more detail.

One possibility to compute the above mentioned bounds on the integers
|ui| is by means of Linear Programming. This is not our approach here. In-
stead, we will use pruning tests to bound the integers |ui|. Compared to
the Linear Programming approach, these tests generally lead to a larger enu-
meration tree. Nevertheless, the pruning tests are very simple and easy to
compute, therefore the overall enumeration time seems to be faster than the
method based on Linear Programming. The pruning tests we use have quite
a long history and are based on the work of [44], [45], [105], [107], [110], [170].
From 7.2.10 we see that a solution vector v, i.e. a vector v of the form 7.2.11,
has the upper bounds

‖v‖2
2 ≤ (n + 1) · r2

max and7.7.1

‖v‖∞ ≤ rmax.7.7.2

The exhaustive enumeration is arranged as a backtracking algorithm starting
from un−m ∈ Z, which successively chooses values ut ∈ Z for t = n − m, n −
m − 1, . . . , 1, 0.

7.7.3 Definition In each level t of the backtracking algorithm w(t) = πt(∑n−m
j=t ujb(j))

is the projection of the linear combination of the already fixed variables ut,
ut+1, . . ., un−m into the subspace of Rn+1 which is orthogonal to the linear
span 〈b0, . . . , bt−1〉.

Starting from w(n−m+1) = 0, w(t) can be iteratively computed from w(t+1) by

w(t) =
(n−m

∑
i=t

uiµit

)
b̂(t) + w(t+1) ,7.7.4

7.7 Lattice Point Enumeration 599

with Gram-Schmidt coefficients µit. In each level t, n − m ≥ t ≥ 0, of the
backtrack algorithm we test all possible integer values for the variable ut. The
following tests allow to restrict the possible values of ut.

First pruning condition. For all j ≤ t the vectors b̂(j) are orthogonal to w(t+1)

and therefore

‖w(t)‖2
2 =

(n−m

∑
i=t

uiµit

)2

‖b̂(t)‖2
2 + ‖w(t+1)‖2

2 .

Further, we notice that w(0) =
n−m

∑
j=0

ujb
(j) . Using ‖w(j)‖2 ≥ ‖w(t)‖2 for j ≤ t

and 7.7.1 we can backtrack as soon as

‖w(t)‖2
2 > c := (n + 1) · r2

max .

For fixed ut+1, . . ., un−m, this gives a bound for ut:(
ut +

n−m

∑
i=t+1

uiµit

)2

≤ c − ‖w(t+1)‖2
2

‖b̂(t)‖2
2

.

This is the first pruning condition.

Second pruning condition. Let b
(i)

, i ∈ n−m + 1, be a basis of the dual lattice,
which is defined by the conditions 〈b(i)

, b(j)〉 = δij for 0 ≤ i, j ≤ n − m + 1.
If B is the matrix whose columns are the basis vectors b(i), i ∈ n − m, then
it was observed in [45] that ui = b

(i)� · B · u. Applying the inequality of

Cauchy–Schwarz, i.e. |b(i)� · (B · u)| ≤ ‖b
(i)‖2 · ‖B · u‖2, for i ∈ n − m + 1

then gives the bound

|ui| ≤ ‖b
(i)‖2 · ‖B · u‖2 ≤ ‖b

(i)‖2 ·
√

(n + 1) · r2
max

and similarly

|ui| ≤ ‖b
(i)‖1 · rmax .

Of course, the numbers ‖b
(i)‖1, ‖b

(i)‖2 can be precomputed before the enu-
meration.

Third pruning condition. The third test is an adaption to the special situation
that we are searching for an integer linear combination of the basis vectors
which consists solely of components whose absolute value is bounded by
rmax. It is based on the following theorem, see [170].

600 7. Solving Systems of Diophantine Linear Equations

7.7.5 Theorem If the given sequence of integers ut, ut+1, . . ., un−m ∈ Z can be extended
to u0, . . ., ut, . . ., un−m ∈ Z such that ∑i∈n−m+1 uib(i) has the form 7.2.11, then for
all yt, yt+1, . . ., yn−m ∈ R:∣∣∣∣ n−m

∑
i=t

yi
∥∥w(i)∥∥2

2

∣∣∣∣ ≤ rmax ·
∥∥n−m

∑
i=t

yiw
(i)∥∥

1 .

Proof: From 7.7.4 we see that 〈w(l), w(i)〉 = ‖w(i)‖2
2 for l < i. If w(0) has the

form 7.2.11 it follows from Hölder’s inequality, see exercise 5.1.2, and 7.7.2
that ∣∣∣∣ n−m

∑
i=t

yi
∥∥w(i)∥∥2

2

∣∣∣∣ =
∣∣∣∣ 〈w(0),

n−m

∑
i=t

yiw
(i)〉

∣∣∣∣
≤ ‖w(0)‖∞ ·

∥∥n−m

∑
i=t

yiw
(i)∥∥

1

≤ rmax ·
∥∥n−m

∑
i=t

yiw
(i)∥∥

1 . �

Of course the above inequality can be extended to arbitrary p-norms.

7.7.6 Remark We use this theorem in the enumeration algorithm in two ways.

First, we take (yt, yt+1, . . . , yn−m) = (1, 0, . . . , 0), which results in the test

‖w(t)‖2
2 ≤ rmax‖w(t)‖1 .7.7.7

Second, we will see that if the test 7.7.7 fails for some vector w(t) = xb̂(t) +
w(t+1), then it will also fail for all vectors w̃(t) = (x + r)b̂(t) + w(t+1) with
r ∈ Z and xr > 0. That means, we can stop the enumeration for these
values of r ∈ Z.
To show this, let x ∈ R and r ∈ Z such that xr > 0. For w(t) = xb̂(t) + w(t+1)

we define w̃(t) = (x + r)b̂(t) + w(t+1) and we set η := x
x+r . Then, it is easy

to see that

w(t) = ηw̃(t) + (1− η)w(t+1) and 0 < η < 1.

If w̃(t) can lead to a solution, then we set (yt, yt+1, . . . , yn−m) = (η, 1 −
η, 0, . . . , 0) and get with 7.7.5:

η‖w̃(t)‖2
2 + (1− η)‖w(t+1)‖2

2 ≤ rmax‖ηw̃(t) + (1− η)w(t+1)‖1 .

Together, it follows

‖w(t)‖2
2 ≤ η‖w̃(t)‖2

2 + (1− η)‖w(t+1)‖2
2

≤ rmax‖ηw̃(t) + (1− η)w(t+1)‖1

= rmax‖w(t)‖1 .

7.7 Lattice Point Enumeration 601

Therefore, if w̃(t) can lead to a solution, w(t) can also lead to a solution. On
the contrary, if w(t) cannot lead to a solution, i.e. if ‖w(t)‖2

2 > rmax‖w(t)‖1,
w̃(t) cannot lead to a solution for all w̃(t) = (x + r)b̂(t) + w(t+1) with r ∈ Z
and xr > 0.

7.7.8Algorithm (Lattice point enumeration) Given the generator matrix 7.2.7 of
the lattice L ⊂ Rm+n+1 of rank n + 1 from 7.2.7 all nonzero vectors v ∈ L such
that ‖v‖∞ ≤ rmax are determined.

Compute an LLL-reduced basis b(0), b(1), . . . , b(n) of the lattice L.

Delete the unnecessary columns and rows of the generator matrix accord-
ing to Section 7.2. The remaining basis b(0), b(1), . . . , b(n−m) ⊂ Rn+1 has
rank n − m + 1.

Compute the Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(n−m) together with the
Gram–Schmidt coefficients µij, see 7.4.2.

Set R := (n + 1) · r2
max.

The recursive backtracking algorithm enum() has two input parameters.
The first parameter t is the search level, it runs from n − m down to 0. The
second parameter w′ ⊂ Rn+1 is the vector which has been computed in the
level t + 1. The enumeration is initiated with the call of enum(n − m, 0).

(1) function enum(t, w′)
(2) begin

(3) firstprune := false
(4) yt := ∑n−m

i=t+1 uiµit

(5) ut :=
−yt�
(6) while true
(7) w :=

(
∑n−m

i=t uiµit
)
b̂(t) + w′

(8) if ‖w‖2 > R then return /* step back */

(9) if t > 0 then

(10) if prune(ut) then

(11) if firstprune then return /* step back */

(12) else

(13) next(ut)
(14) firstprune := true
(15) goto line (7)
(16) end if

(17) else

(18) enum(t − 1, w) /* step forward */

602 7. Solving Systems of Diophantine Linear Equations

(19) else /* t = 0 → solution */
(20) if w has the form 7.2.11 then print w
(21) next(ut)
(22) end while

(23) end �

The procedure next() in lines (13) and (21) determines the next possible integer
value of the variable ut. Initially, when entering a new level t, in line (5) ut is
set to be the closest integer value of −yt := −∑n−m

i=t+1 uiµit, say u1
t . The next

value u2
t of ut is the second closest integer to −yt then follows u3

t and so forth.
Therefore the values of ut alternate around −yt. If the function prune() returns
true for wt, then we do one more regular call of the procedure next() in line
(13), i.e. ut is set to be the next closest integer to −yt. In Fig. 7.7 this happens
while u4

t is determined.
After that, using 7.7.6, the enumeration proceeds only in this remaining

direction. Compare the computation of u5
t in Fig. 7.7. Finally, the second time

when the function prune() returns true, the algorithm steps back and increases
the enumeration level, see line (11).

u3
t u1

t u2
t u4

t u5
t

0 1 2 3 4 5

−yt

prune

Fig. 7.7 Enumeration in level t and pruning after u3
t

7.7.9 Example Suppose yt = −2.3 for 0 ≤ t ≤ n − m. Therefore, −yt = 2.3
and according to line (5), ut = round(−yt) =
2.3 + 1

2� = 2. First, as-
sume that the procedure prune() always return false. Therefore, in the subse-
quent calls of the procedure next() in line (21), the variable ut takes the values
3, 1, 4, 0, 5,−1, 6,

Now assume, after testing the values ut = 2 and 3, that the procedure
prune() returns true for ut = 1. Then the value of ut is set to 4 in line (13).

7.7 Lattice Point Enumeration 603

After subsequent calls of next() in line (21), ut takes the values 5, 6, 7 and so
forth until prune() returns true the next time. �

The function prune for the third pruning test according to 7.7.7 can be im-
plemented as follows.

7.7.10Algorithm

function prune(wt)
(1) if ‖w(t)‖2 ≤ rmax · ‖w(t)‖1

(2) return false
(3) else

(4) return true
(5) end if �

The first pruning test from page 599 is done in line (8) in 7.7.8, the second
pruning test from page 599 can be additionally added after line (6) in 7.7.8.

If in the forward step of the algorithm, i.e. in line (18) a new level t is en-
tered, then initially in the next call of enum() in line (5) ut is set to the closest
integer to −∑n−m

i=t+1 uiµit. Since

‖w(t)‖2
2 =

(
ut +

n−m

∑
i=t+1

uiµit

)2

‖b̂(t)‖2
2 + ‖w(t+1)‖2

2 ,

this choice of ut minimizes ‖w(t)‖2
2.

7.7.11Example We illustrate the algorithm by solving a system of Diophantine lin-
ear equations which occurs during the construction of linear codes with pre-
scribed minimum distance in Chapter 8, Example 8.4.4. In order to find a
(14, 3, 9)-code over F3 the following system must be solved:

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
14

⎞⎟⎟⎟⎠ ,

where x0 ∈ {0, 1, 2, 3, 4}, x1 ∈ {0, 1, 2}, x2 ∈ {0, 1, 2, 3} and xi ∈ {0, 1, 2, 3, 4, 5}
for i ∈ {3, 4, 5}. According to 7.2.7, the lattice is generated by the matrix

604 7. Solving Systems of Diophantine Linear Equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2000 2000 0 −1000 0 0
0 1000 1000 2000 0 −1000 0
0 0 3000 1000 0 0 −1000

−14000 3000 6000 4000 0 0 0
−60 30 0 0 0 0 0
−60 0 60 0 0 0 0
−60 0 0 40 0 0 0
−60 0 0 0 24 0 0
−60 0 0 0 0 24 0
−60 0 0 0 0 0 24

60 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where rmax = lcm(4, 2, 3, 5) = 60 and the constant N is set to N = 1000. In the
first step of the algorithm, the LLL-reduction is applied to the columns of the
above matrix. This results in the following new basis:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1000 0 0 0
0 0 0 0 −1000 0 0
0 0 0 0 0 0 1000
0 0 0 0 0 1000 0

−60 −60 0 0 0 −30 0
60 0 −60 0 0 0 0
0 20 100 0 0 40 0

−48 −12 −132 24 0 −48 0
−24 60 12 0 24 24 0

72 60 −60 0 0 24 −24
0 60 −60 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first three columns correspond to solutions of the above system. But the
first column corresponds to a solution where the right hand side of the above
system is not included since the last entry is equal to zero. The second column
corresponds to a solution, because all entries have absolute value at most 60.
The solution x = (x1, x2, . . . , x6)� of the original system of equations can now
be obtained by solving⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−60
0

20
−12

60
60
60

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−60 30 0 0 0 0 0
−60 0 60 0 0 0 0
−60 0 0 40 0 0 0
−60 0 0 0 24 0 0
−60 0 0 0 0 24 0
−60 0 0 0 0 0 24

60 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

7.8 Computing the Minimum Distance of Linear Codes 605

which results in x = (0, 1, 2, 2, 5, 5)� . For the exhaustive enumeration of all
solutions we can remove the unnecessary rows and columns and use the lattice
which is generated by the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−60 −60 0
60 0 −60
0 20 100

−48 −12 −132
−24 60 12

72 60 −60
0 60 −60

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Eventually, after 6 loops in the exhaustive enumeration step it is determined
that there are no further solutions. �

Exercises

E.7.7.1Exercise Use the computer software on the CD-ROM of the book to compute
the solution of the system of Diophantine linear equations from 7.7.11.

7.87.8 Computing the Minimum Distance of Linear Codes

Let C be a binary or ternary linear code. It is possible to compute the minimum
distance of such a code by using a variant of the lattice point enumeration
algorithm from Section 7.7. For this purpose, we note that in the binary case we
have −1 ≡ 1 mod 2 while in the ternary case −1 ≡ 2 mod 3. Thus, codewords
of binary or ternary codes can be represented by vectors with integral entries
in {0, 1,−1}.

Let F be a binary or ternary field, i.e. q = 2 or q = 3. Consider the lattice
LC which is spanned by the columns of the integral (n + k) × (k + n)-matrix

BC =

(
N · Γ� N · qIn

Ik 0

)
,

where Γ is a k × n generator matrix of the code C and N is a large integer
constant. The matrix qIn is used to reduce the integral linear combinations of
the columns of Γ� modulo q. Any lattice vector v ∈ LC with vi ∈ {0, 1,−1} for
i ∈ n corresponds to a codeword vC ∈ C and wt(vC) is the number of nonzero
entries in the first n coefficients of v. Thus, the minimum distance problem can

606 7. Solving Systems of Diophantine Linear Equations

be solved by finding a nonzero lattice vector with the least number (> 0) of
nonzero entries in the first n rows.

If the constant N is large enough, the reduced lattice basis contains k vec-
tors whose first n entries are all zero. These vectors can be removed. Further,
the lower k components are no longer necessary and can be removed, too. To
achieve an even better reduced basis, a useful strategy is to shuffle the remain-
ing basis vectors randomly and apply lattice basis reduction to the reordered
basis. This mixing and reduction step can be repeated several times. Finally,
the resulting basis is enumerated with 7.7.8, as described below. Here is an
example.

7.8.1 Example Since we write codewords as row vectors, we apply lattice basis re-
duction to rows in this example. So, the basis vectors are the rows of the gen-
erator matrix of the lattice LC.

The goal is to determine the minimum distance of the ternary Golay code.
It is also a quadratic-residue-code CQ(11, 6) over F3, see Section 4.4. A gener-
ator matrix is

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 2 1 2 0 1 0 0 0 0 0
0 2 2 1 2 0 1 0 0 0 0
0 0 2 2 1 2 0 1 0 0 0
0 0 0 2 2 1 2 0 1 0 0
0 0 0 0 2 2 1 2 0 1 0
0 0 0 0 0 2 2 1 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using N = 6, the generator matrix B�
C of the lattice LC is

B�
C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 12 6 12 0 6 0 0 0 0 0 1 0 0 0 0 0
0 12 12 6 12 0 6 0 0 0 0 0 1 0 0 0 0
0 0 12 12 6 12 0 6 0 0 0 0 0 1 0 0 0
0 0 0 12 12 6 12 0 6 0 0 0 0 0 1 0 0
0 0 0 0 12 12 6 12 0 6 0 0 0 0 0 1 0
0 0 0 0 0 12 12 6 12 0 6 0 0 0 0 0 1

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying the LLL-algorithm to the rows of B�
C gives

7.8 Computing the Minimum Distance of Linear Codes 607

BC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3
0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0
0 −6 −6 −6 0 −6 −6 0 −6 0 0 0 1 0 −1 0 0
0 0 0 0 0 −6 −6 6 −6 0 6 0 0 0 0 0 1

−6 0 −6 0 0 0 −6 −6 −6 0 −6 1 −1 0 1 0 −1
0 −6 −6 0 0 −6 0 0 0 6 6 0 1 0 1 1 1
0 0 −6 0 6 0 −6 0 −6 6 0 0 0 1 −1 1 0
0 −6 0 0 −6 0 −6 −6 −6 0 0 0 1 −1 −1 0 0
0 0 6 0 6 6 6 0 0 0 6 0 0 −1 1 0 1
0 0 6 0 0 6 0 6 6 6 0 0 0 −1 1 1 0

−6 −6 0 0 0 −6 0 0 −6 0 −6 1 0 1 1 0 −1
−6 6 0 0 −6 6 6 0 0 0 0 1 1 0 0 0 0
−6 −6 −6 0 0 0 −6 0 0 −6 0 1 0 −1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We delete the unnecessary rows and columns, see 7.2.8. Then scaling and mix-
ing the remaining rows gives⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 0 0 −1 0 0 0 1 1
0 0 1 0 1 1 1 0 0 0 1
0 0 1 0 0 1 0 1 1 1 0

−1 0 −1 0 0 0 −1 −1 −1 0 −1
−1 −1 0 0 0 −1 0 0 −1 0 −1
−1 1 0 0 −1 1 1 0 0 0 0

0 0 0 0 0 −1 −1 1 −1 0 1
0 −1 0 0 −1 0 −1 −1 −1 0 0
0 −1 −1 −1 0 −1 −1 0 −1 0 0
0 0 −1 0 1 0 −1 0 −1 1 0

−1 −1 −1 0 0 0 −1 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

LLL-reduction of this lattice produces the following basis⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 0 0 −1 0 0 0 1 1
−1 1 0 0 −1 1 1 0 0 0 0

0 0 0 −1 0 0 −1 0 −1 −1 −1
0 1 0 −1 0 1 0 1 −1 0 0
0 0 0 0 0 −1 −1 1 −1 0 1

−1 0 −1 1 0 0 0 −1 0 1 0
0 −1 0 −1 1 0 0 0 −1 0 1
0 −1 0 −1 0 0 −1 1 0 1 0

−1 0 1 1 0 0 1 0 0 0 −1
0 0 1 1 −1 1 0 −1 0 0 0

−1 0 0 1 0 1 0 0 1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The first row corresponds to a codeword of weight 5:

v = (0,−1,−1, 0, 0,−1, 0, 0, 0, 1, 1).

After 57 executions of the loop, algorithm 7.7.8 with the improvements de-
scribed below determines that there exists no nonzero vector with weight ≤ 4.
That means the minimum distance of the ternary Golay code is equal to d = 5.

�

608 7. Solving Systems of Diophantine Linear Equations

If we use a systematic generator matrix of C of the form Γ = (Ik | A), A ∈
Fk×n−k

q , we can do even better. We use the lattice LC which is generated by

BC =

(
A� qIn−k

Ik 0

)
,

It has the advantage that the constant N is not longer needed. In order to find a
nonzero codeword of minimal weight, we have to find a nonzero lattice vector
v in the rank n lattice LC ⊆ Zn with ‖v‖∞ = 1 which contains the minimal
number of nonzero entries. Note that if wt(v) = s and ‖v‖∞ = 1, then also
‖v‖2

2 = s.
The minimum distance of C can be computed by a variation of 7.7.8. Ini-

tially, in 7.7.8 we set R = d − 1, where d is an upper bound for the minimum
distance of C. If no other bound is known, d is the weight of the shortest code-
word in the generator matrix.

Then, the backtracking of the lattice point enumeration algorithm as de-
scribed in 7.7.8 is started. If a lattice vector v ∈ LC with ‖v‖∞ = 1 and
‖v‖2

2 ≤ R is found during the enumeration then it is printed, after line (24)
R is set to R := ‖v‖2 − 1, and the backtracking is continued. If it is known that
the minimum distance of C is a multiple of some integer c – for example if C is
a doubly even code – then we can even set R := ‖v‖2 − c in this situation.

Further improvements in the enumeration can be obtained by modifying
the lattice point enumeration of Section 7.7. For an integer 0 < t < n and a
vector v ∈ Rn, we define

maxt(v)

to be the sum of the t largest absolute values of entries of v. For example, if
v = (−1, 2.5,−3, 0.5)� , then max2(v) = 3 + 2.5 = 5.5.

Let R = d− 1, where d > 1 is an upper bound on the minimum distance of
the code C and let b(0), b(1), . . . , b(n−1) be a basis of the lattice LC. With the no-
tation of Section 7.7, 7.7.5 can be adapted to the computation of the minimum
distance of a linear code in the following way.

7.8.2 Theorem Let t ∈ n. If for fixed ut, ut+1, . . . , un−1 ∈ Z there exist coefficients u0,
u1, . . . , ut−1 ∈ Z with ‖∑i∈n uib(i)‖∞ ≤ 1 and ‖∑i∈n uib(i)‖2

2 ≤ R, then for all yt,
yt+1, . . . , yn−1 ∈ R: ∣∣∣∣ n−1

∑
i=t

yi
∥∥w(i)∥∥2

2

∣∣∣∣ ≤ maxR

(n−1

∑
i=t

yiw
(i)

)
.7.8.3

7.8 Computing the Minimum Distance of Linear Codes 609

Proof: We have 〈w(l), w(i)〉 = 〈w(i), w(i)〉 for 0 ≤ l < i < n. If there exist
u0, u1, . . . , un−1 ∈ Z such that for w(0) = ∑i∈n uib(i) simultaneously

‖w(0)‖∞ = 1 and ‖w(0)‖2
2 ≤ R ,

then it is easy to see that for an arbitrary vector v ∈ Rn the inequality

|〈w(0), v〉| ≤ maxR(v)

holds. It follows that∣∣∣∣ n−1

∑
i=t

yi〈w(i), w(i)〉
∣∣∣∣ =

∣∣∣∣n−1

∑
i=t

yi〈w(0), w(i)〉
∣∣∣∣

=
∣∣∣∣ 〈w(0),

n−1

∑
i=t

yiw
(i)〉

∣∣∣∣
≤ maxR

(n−1

∑
i=t

yiw
(i)

)
. �

Therefore, during the computation of the minimum distance of linear codes
we can replace in the enumeration algorithm 7.7.8 the test in 7.7.5 by 7.8.3.
Experiments show that 7.7.8 together with 7.8.3 can determine the minimum
distance of quadratic-residue-codes for values of n at least up to 100.

7.8.4Example For the quadratic-residue-code CQ(37, 19) over F3, whose generator
matrix is generated cyclically by the vector

(1,1,2,2,1,2,2,0,2,2,2,0,2,2,1,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

the LLL-algorithm determines the vector

(0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,0,0,0,1,2,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0)

of weight 10. The enumeration 7.7.8 together with 7.8.3 needs 586 799 itera-
tions to show that there is no codeword of lower weight. The parity extension
of CQ(37, 19) has minimum weight 11. A vector with minimum weight is

(1,2,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,1,2,0,0,0,0,2,0,2,0,0,0,0,2,1,0,0,0,0,0,2). �

7.8.5Example The generator matrix of the quadratic-residue-code CQ(61, 31) over
F3 is generated by the vector

(1,0,2,1,2,2,0,0,0,1,0,2,1,1,2,1,2,1,1,2,0,1,0,0,0,2,2,1,2,0,

1,0).

610 7. Solving Systems of Diophantine Linear Equations

The LLL-algorithm computes the vector

(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,1,0,

0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,2,0,2,2,0,0,0,0,0,2,0,0,1,0,0,0)

which has weight 11. The exhaustive enumeration determines that there is
no vector of lower weight. The parity extension of CQ(61, 31) has minimum
weight 12. A vector with minimum weight is

(2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,2,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,1,2,0,0,1,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0). �

7.8.6 Example The generator matrix of the quadratic-residue-code CQ(71, 36) over
F3 is generated by the vector

(2,2,2,2,2,2,2,0,0,2,2,1,1,2,2,2,0,2,2,2,0,1,1,0,2,0,2,0,1,0,0,0,0,0,0,1,

0,0).

The LLL-algorithm computes

(0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,

2,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,1,0,0,0,0,2,0,2,0,2,0,0,2,0,0,0,0,0)

of weight 17. The parity extension of CQ(71, 36) has 18 as upper bound for
minimum distance. A vector attaining this bound is

(0,0,0,1,0,0,0,1,1,1,2,1,0,0,2,0,0,1,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,

1,0,0,0,2,0,0,0,0,1,0,0,1,0,0,0,1,0,0,2,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0). �

7.8.7 Example The generator matrix of the quadratic-residue-code CQ(83, 42) over
F3 is generated by

(2,0,1,2,1,2,0,0,1,2,2,0,0,2,1,2,1,1,0,0,1,1,1,1,0,0,2,2,1,1,2,1,0,2,0,1,0,0,1,2,1,

1,0).

The LLL-algorithm computes

(0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,2,0,0,2,0,1,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,2,0,0,0,0,0,0,2,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,1,0,2,0,0,1,1,0,0,0,0).

Therefore, an upper bound for the minimum distance is 20. It follows that
the parity extension of CQ(83, 42) has 21 as upper bound for the minimum
distance.

The generator matrix of the quadratic-residue-code CQ(97, 49) over F3 is
generated by the vector

(1,1,1,0,0,1,1,0,2,1,0,0,0,1,0,2,1,2,0,0,2,2,2,0,1,0,2,2,2,0,0,2,1,2,0,1,0,0,0,1,2,0,1,1,0,0,1,1,

1,0).

7.8 Computing the Minimum Distance of Linear Codes 611

The LLL-algorithm finds

(0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,2,0,2,0,1,0,0,0,

0,0,2,0,2,1,1,0,0,0,0,1,0,0,0,2,0,1,1,1,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,2,0,1,0,0,0).

Therefore, an upper bound for the minimum distance is 23. �

If the above examples are reproduced with the software from the enclosed CD-
ROM the advantages and disadvantages of this algorithm can be seen. The
LLL-algorithm is very good in computing codewords of small weight very
fast. The second phase, which deterministically computes a codeword with
minimum weight and proves that there are no codewords of smaller weight
still needs exponential time.

Exercises

E.7.8.1Exercise Use the computer software on the CD-ROM of the book to compute
the minimum distance of the binary Golay code with generator matrix

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Compute the minimum distance of this code over F3.

8Chapter 8

Linear Codes with a Prescribed Minimum
Distance

8

8 Linear Codes with a Prescribed Minimum Distance

8.1 Minihypers .. 616

8.2 Group Actions on Lattices 625

8.3 Prescribing a Group of Automorphisms 637

8.4 Linear Codes of Prescribed Type 640

8.5 Numerical Results ... 644

8 Linear Codes with a Prescribed
Minimum Distance

After the enumeration of the isometry classes of codes in Chapter 6, we are now
approaching the systematic construction of representatives of these classes. In
this and the following chapter, we will present methods for constructing lin-
ear (n, k)-codes with prescribed minimum distance d. This means that for a given
lower bound d on the minimum distance, we construct all (n, k,≥ d)-codes, i.e.
codes whose minimum distance is at least as good as the lower bound we have
chosen. We present essentially two different methods for solving this problem.
Of course, both methods may fail to construct such codes, for instance if the
lower bound d on the minimum distance was chosen too large. Nevertheless,
in this case both methods provide proof that no code with the parameters un-
der consideration exists. Needless to say that this construction problem is a
very important and interesting one. In essence, all of coding theory is con-
cerned with finding codes which allow one to transmit more data with fewer
errors.

The above-mentioned construction of codes often leads to new and inter-
esting codes either directly or indirectly by means of constructions and modi-
fications in the sense of Section 2.2. In fact, A. Brouwer’s helpful tables for the
parameters of best known linear codes can sometimes be improved by such a
search.

The construction that we have in mind in this chapter applies first of all to
projective codes (cf. Exercise 1.3.21 and 6.1.14), i.e. codes whose columns can
be taken as representatives of a set of points in projective space. The construc-
tion problem is then reduced to the problem of finding an equivalent structure
in projective space called a minihyper. This is essentially a system of points in
a suitable projective space with certain intersection properties with respect to
hyperplanes. The necessary calculations amount to solving a system of Dio-
phantine equations, similar to the techniques used for the construction of com-
binatorial designs.

Since for interesting parameter sets the coefficient matrix of the system of-
ten is too big to allow a direct solution, a well-known reduction is applied.
Namely, we make an assumption about the presence of non-trivial automor-
phisms. This reduces the size of the coefficient matrix and thereby eases the
problem to become more tractable. Of course, such a reduction is risky as it
does not allow one to find solutions which do not satisfy the assumption on
the presence of automorphisms. In this situation, the algorithm classifies codes
with a given minimum distance which are invariant under the chosen group

616 8. Linear Codes with a Prescribed Minimum Distance

of automorphisms. In many cases this reduction indeed led to the discovery
of new optimal codes (i.e. one could say that the end justifies the means in
this case). Lastly, we also search for arbitrary nonredundant codes, i.e. codes
which are not necessarily projective. The systematic construction of complete
transversals of isometry classes of linear codes with a lower bound on their
minimum distance is done in Chapter 9.

8.1 8.1 Minihypers

We begin with a closer examination of the use of generator matrices for encod-
ing. For this purpose we introduce the notation γ�

∗,j for the j-th column of a
generator matrix Γ = (γij) and γi,∗ for its i-th row. Using this notation, we can
describe the generator matrix Γ of an (n, k)-code as

Γ =
(

γ�
∗,0

∣∣ . . .
∣∣ γ�

∗,n−1

)
=

⎛⎜⎜⎝
γ0,∗

...
γk−1,∗

⎞⎟⎟⎠ .

In terms of the standard bilinear form 〈v, w〉 = ∑i viwi, we express a codeword
c := v · Γ corresponding to a message v ∈ Fk

q as follows:

c = v · Γ = (〈v, γ∗,0〉, . . . , 〈v, γ∗,n−1〉) .

By definition, n −wt(v · Γ) components of v · Γ are zero. In terms of the bilin-
ear form, this means that n − wt(v · Γ) columns of the generator matrix Γ are
orthogonal to v, i.e., contained in the hyperplane

H(v) := P(v)⊥ =
{

w ∈ Fk
q
∣∣ 〈v, w〉 = 0

}
∈ U (k, k − 1, q).

This fact leads us to the following basic result:

8.1.1 Theorem A k × n-matrix over Fq generates an (n, k, d, q)-code C if and only if the
columns of any generator matrix Γ of C satisfy the following two properties. Every
hyperplane H ∈ U (k, k − 1, q) contains at most n − d columns of Γ and there is at
least one hyperplane H ∈ U(k, k − 1, q) which contains exactly n − d columns of Γ.
This property is independent of the choice of the generator matrix Γ of C, in that this
property either holds for all generator matrices of C or none of the generator matrices
of C has this property.

8.1 Minihypers 617

Proof: 1. By 1.2.8, the minimum distance of a linear code equals the minimum
weight of a nonzero codeword c := v · Γ for v ∈ Fk

q, v �= 0. The above argument
shows that every hyperplane H = H(v) ∈ U (k, k − 1, q) contains at most n− d
columns of Γ with equality if and only if the codeword c = v · Γ is of minimum
weight d.

2. Conversely, if Γ = (γij) is a k × n-matrix over Fq satisfying

max
{
|{j | γ∗,j ∈ H}|

∣∣ H ∈ U (k, k − 1, q)
}

= n − d,

then it is clear from the first part of the proof that its rows generate an (n, k′, d)-
code C over Fq of dimension k′ ≤ k. In order to show that k′ = k we have to
check that the rows of Γ are linearly independent. Assume that Γ does not have
full rank k. This means that the rows are linearly dependent, say

0 = c = v · Γ,

for some v �= 0. Since each cj = 0, every column γ∗,j is contained in the
hyperplane H(v), i.e.

∣∣{j
∣∣ γ∗,j ∈ H(v)

}∣∣ = n, contradicting the fact that∣∣{j
∣∣ γ∗,j ∈ H(v)

}∣∣ ≤ n − d < n.

Thus Γ really generates an (n, k, d, q)-code. �

We now recall from the metric classification of linear codes that permuting
columns and/or multiplying columns of a generator matrix Γ with a nonzero
element of Fq yields a generator matrix of a code which is linearly isometric.
In fact, it is often simpler to deal not with the generator matrix Γ of a code but
instead consider a certain map (or multiset), as described in the next remark.
This applied to nonredundant codes only:

8.1.2Remarks Let Γ denote a generator matrix of a nonredundant linear code C
(which means that it does not contain a zero column). Then

Γ can be identified with the mapping

Γ : n → Fk
q\{0} : j �→ γ∗,j.

Up to linear isometry, we may consider instead of column vectors the one-
dimensional subspaces generated by the column vectors. They are the ele-
ments or points of the projective geometry

PGk−1(q) =
{

P(v)
∣∣ v ∈ Fk

q\{0}
}

.

This means in fact that we can replace Γ by the mapping

Γ̃ : n → PGk−1(q) : j �→ P(γ∗,j).

618 8. Linear Codes with a Prescribed Minimum Distance

The reason is that we easily obtain from Γ̃ a matrix Γ′ that generates a linear
code C′ linearly isometric to C, by simply taking from each value P(γ∗,j) of
Γ̃ a nonzero element and using it as the j-th column of Γ′.

Moreover, because of isometry, it is possible to replace

Γ̃ = (P(γ∗,0), . . . , P(γ∗,n−1))

by its orbit
Sn(Γ̃)

which consists of all the reorderings of this sequence Γ̃. I.e. instead of the
sequence of the points we consider the multiset of them. (In order to indicate
a multiset we use the notation {{. . .}}. In such a multiset, elements can occur
several times, e.g. in {{a, a, b, c, c, c}}, a multiset of order 6, the element a
occurs twice and c occurs three times.) This means that we replace Γ even
by the multiset ˜̃Γ := {{P(γ∗,0), . . . , P(γ∗,n−1)}}

of cardinality n. It is clear that we can easily deduce from ˜̃Γ a matrix Γ′′ that
generates a code C′′ linearly isometric to C.

For example the matrix

Γ =

⎛⎜⎝ 1 0 0 1 1 1 1 1
0 1 0 0 2 2 2 2
0 0 1 1 1 1 2 2

⎞⎟⎠
generates an (8, 3)-code over F3. The corresponding mapping is

Γ̃ = (P(100), P(010), P(001), P(101), P(121), P(121), P(122), P(122))

and the resulting multiset is

˜̃Γ = {{P(010), P(001), P(101), P(121), P(121), P(122), P(122), P(100)}}.

8.1.3 Corollary Both the mapping Γ̃ and the multiset ˜̃Γ characterize the isometry class of
the code C generated by Γ. Moreover, it is obvious how to obtain from Γ̃ as well as
from ˜̃Γ a generator matrix that generates a linear code linearly isometric to C. �

We are now in a position to rephrase 8.1.1 in terms of multisets. For this
purpose we introduce the following kind of restriction of the multiset ˜̃Γ to a
hyperplane H: ˜̃Γ ↓ H :=

{{
P ∈ ˜̃Γ ∣∣ P ⊆ H

}}
.

8.1 Minihypers 619

For example the restriction of the multiset ˜̃Γ defined by the above (8, 3)-code
to the hyperplane H = H(110) = {x ∈ F3

3 | x0 + x1 = 0} is

˜̃Γ ↓ H(110) = {{P(121), P(121), P(122), P(122)}} .

Its cardinality | ˜̃Γ ↓ H(110)| is four. Using this notation we formulate the fol-
lowing corollary due to [88]:

8.1.4Corollary There is a nonredundant (n, k, d, q)-code if and only if there is a multiset
X of order n, consisting of points of PGk−1(q) such that

max
{
|X ↓ H|

∣∣ H ∈ U(k, k − 1, q)
}

= n − d. �

In fact, according to [88], we obtain even the weight distribution in this
case:

8.1.5Theorem If X is a multiset of points in PGk−1(q) with

max
{
|X ↓ H|

∣∣ H ∈ U(k, k − 1, q)
}

= n − d,

then each matrix Γ whose columns are generators of the points of X generates an
(n, k, d, q)-code C with weight distribution WC(x, y) = ∑n

i=0 Aixiyn−i, where A0 =
1 and

Ai = (q− 1) ·
∣∣{H ∈ U (k, k − 1, q)

∣∣ |X ↓ H| = n − i
}∣∣ , for i > 0.

Proof: For each codeword v · Γ we have |X ↓ H(v)| = n −wt(v · Γ). Since the
generator matrix Γ has full rank k, a codeword v · Γ has weight 0 if and only if
v = 0, and so A0 = 1. The coefficients Ai, i > 0, are

Ai =
∣∣{c ∈ C\{0}

∣∣ wt(c) = i
}∣∣

=
∣∣∣{v ∈ Fk

q\{0}
∣∣ wt(v · Γ) = i

}∣∣∣
=

∣∣∣{v ∈ Fk
q\{0}

∣∣ |X ↓ H(v)| = n − i
}∣∣∣

= (q − 1) ·
∣∣{H ∈ U (k, k − 1, q)

∣∣ |X ↓ H| = n − i
}∣∣ ,

as stated. �

8.1.6Example (simplex-code) The k-th order q-ary simplex-code defined in 2.1.5
is an example of a nonredundant code. It is generated by any matrix Γ whose
columns represent all θk−1(q) := (qk − 1)/(q− 1) points of PGk−1(q) (cf. 3.7.2).
Using hyperplane intersections, we can easily deduce its parameters: Recall
that every hyperplane contains θk−2(q) points, each of which is represented by

620 8. Linear Codes with a Prescribed Minimum Distance

exactly one column of the generator matrix Γ. Therefore, the parameter of this
code are n = θk−1(q) and n − d = θk−2(q), i.e.

(n, k, d) =
(
(qk − 1)/(q− 1), k, qk−1

)
.

The weight distribution is

1 + (qk − 1)xqk−1
.

Moreover, since

qk − 1
q− 1

= qk−1 + qk−2 + . . . + q + 1 = ∑
i∈k

qk−1

qi = ∑
i∈k

⌈
d
qi

⌉
,

this code meets the Griesmer-bound, it is an optimal linear code. �

Codes that are generated by a matrix Γ with pairwise linearly independent
columns, so that ˜̃Γ is a set in the strict sense, are called projective (cf. 6.1.14).
For instance simplex-codes are projective. In other words the columns of gen-
erator matrices of projective linear (n, k)-codes correspond to pairwise distinct
points. In order to emphasize this we shift from the calligraphic X , that we
used for multisets, to the notation X. Moreover we note that the restriction of
sets to hyperplanes is the intersection. Projective codes are clearly nonredun-
dant. As an immediate consequence we obtain

8.1.7 Corollary There exists a projective linear (n, k, d)-code over Fq if and only if there
exists a subset X of order n in PGk−1(q) such that

max
{
|X ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= n − d. �

The complement of such a set X of points is called a minihyper. Mini-
hypers are well-known objects in geometry. Several articles (cf. [25], [26],
[54], [75], [79], or [143]) deal with minihypers and also with the connection be-
tween minihypers and linear codes. Hamada [78] discovered the relationship
between Griesmer optimal linear codes and minihypers which we introduce
now. We want to describe them in detail and we also give an algorithm for the
construction of these objects.

8.1.8 Definition (minihyper) A (b, t)-minihyper in PGk−1(q) is a set B of b points of
PGk−1(q) such that every hyperplane contains at least t points of B and at least
one hyperplane contains exactly t points of B. Formally, a set B ⊆ U (k, 1, q) is
a (b, t)-minihyper in PGk−1(q) if and only if

|B| = b and min
{
|B ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= t.

Using the concept of minihypers we reformulate the connection between
projective codes and projective geometries.

8.1 Minihypers 621

8.1.9Corollary There is a projective (n, k, d)-code over Fq if and only if there is a (b, t)-
minihyper in PGk−1(q) where

(b, t) = (θk−1(q)− n, θk−2(q)− n + d).

Proof: Let X be a set of n points with

max
{
|X ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= n − d.

Since every hyperplane contains θk−2(q) points, the set-theoretic complement
B := U (k, 1, q) \ X satisfies the equation

min
{
|B ∩ H|

∣∣ H ∈ U (k, k − 1, q)
}

= θk−2(q)− (n − d).

Being the complement of X in PGk−1(q) = U (k, 1, q), the set B has θk−1(q)− n
elements. Thus B is a

(θk−1(q)− n, θk−2(q)− n + d)

minihyper in PGk−1(q). Since all arguments can be reversed, the existence of
such a minihyper gives rise to a projective (n, k, d)-code. �

8.1.10Lemma If d ≤ qk−1 and C is an (n, k, d, q)-code which attains the Griesmer-bound
n = ∑i∈k�d/qi�, then C is a projective code. �

This lemma, the proof of which is left as Exercise 8.1.3, together with 8.1.9
implies the following corollary which is due to Hamada:

8.1.11Corollary Let d ≤ qk−1 and assume that n = ∑i∈k�d/qi� which is taken from the
Griesmer-bound. Then there exists a nonredundant linear (n, k, d)-code over Fq if and
only if there exists a (θk−1(q)− n, θk−2(q)− n + d)-minihyper in PGk−1(q). �

8.1.12Example (Fano-plane) A well-known example is provided by the projective
geometry PG2(2), which is also known as the Fano-plane. It consists of the
seven points and seven hyperplanes shown in the following table:

P0 = P(100) = {000, 100}
P1 = P(010) = {000, 010}
P2 = P(001) = {000, 001}
P3 = P(110) = {000, 110}
P4 = P(011) = {000, 011}
P5 = P(101) = {000, 101}
P6 = P(111) = {000, 111}

H0 = {000, 100, 010, 110} = P0 ∪ P1 ∪ P3

H1 = {000, 010, 001, 011} = P1 ∪ P2 ∪ P4

H2 = {000, 100, 001, 101} = P0 ∪ P2 ∪ P5

H3 = {000, 100, 011, 111} = P0 ∪ P4 ∪ P6

H4 = {000, 010, 101, 111} = P1 ∪ P5 ∪ P6

H5 = {000, 001, 110, 111} = P2 ∪ P3 ∪ P6

H6 = {000, 110, 011, 101} = P3 ∪ P4 ∪ P5

622 8. Linear Codes with a Prescribed Minimum Distance

100 010

001

110

011101

111

Fig. 8.1 The Fano-plane

The incidence relation between these points and hyperplanes is represented
by the famous graph shown in Fig. 8.1. Each of the hyperplanes, which are
the lines, together with the cycle, yields a (3, 1)-minihyper in PG2(2). This
property can easily be verified by looking at the figure. For example, take the
line

B = {P3 = P(110), P4 = P(011), P5 = P(101)}.
If we write the representatives of the four elements of the complement

X = {P(100), P(010), P(001), P(111)}

in a matrix column by column, we obtain the generator matrix

Γ =

⎛⎜⎝ 1 0 0 1
0 1 0 1
0 0 1 1

⎞⎟⎠
of a binary (4, 3, 2)-code. �

Now we are interested in a general approach to the construction of such
a minihyper and, correspondingly, of codes with a prescribed minimum dis-
tance. For this purpose we introduce the following notion:

8.1.13 Definition (blocking set) A t-blocking set in PGk−1(q) is a set B of points of
PGk−1(q) such that every hyperplane contains at least t points of B:

min
{
|B ∩ H|

∣∣ H ∈ U(k, k − 1, q)
}
≥ t.

Hence, minihypers are t-blocking sets with additional properties. The larg-
est possible size of an intersection of B and a hyperplane H is θk−2(q). There-
fore B is a t-blocking set in PGk−1(q) if

t ≤ |B ∩ H| ≤ θk−2(q)

8.1 Minihypers 623

for all hyperplanes H ∈ U (k, k− 1, q). As t-blocking sets are suitable selections
of points, they can be described by the incidence matrix Mk,q = (mij), the rows
of which correspond to the hyperplanes Hi ∈ U (k, k − 1, q), i ∈ θk−1(q), and
the columns of which correspond to the points Pj ∈ U (k, 1, q), j ∈ θk−1(q). The
entry mij of the i-th row and j-th column is defined as follows:

mij :=
{

1 if Pj ⊆ Hi,
0 otherwise.

Hence a t-blocking set B is nothing but a selection of columns of the matrix
Mk,q, or a 0-1-vector x = (x0, . . . , xθk−1(q)−1)� which satisfies the condition

Mk,q · x ∈ {t, . . . , θk−2(q)}θk−1(q) .

This means that there is a vector y = (y0, . . . , yθk−1(q)−1)� with components
yi ∈ {t, . . . , θk−2(q)} fulfilling the equation Mk,q · x = y, which is equivalent to
the equation (

Mk,q
∣∣ −I

)
·
(

x
y

)
= 0,

where I is the identity matrix. Summarizing, we obtain the desired construc-
tion of blocking sets:

8.1.14Corollary There is a bijection between the set of all t-blocking sets in PGk−1(q) and
the set of vectors (x

y) with xi ∈ {0, 1} and yi ∈ {t, . . . , θk−2(q)} that solve the linear
system of equations: (

Mk,q
∣∣ −I

)
·
(

x
y

)
= 0.

If (x
y) denotes such a solution then the corresponding t-blocking set B in PGk−1(q) is

B =
{
Pj

∣∣ xj = 1
}

. �

8.1.15Example (Fano-plane, cont.) We again consider the Fano-plane and construct
all 1-blocking sets in PG2(2). There are seven hyperplanes and points as men-
tioned in Example 8.1.12. The corresponding incidence matrix is

M3,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

624 8. Linear Codes with a Prescribed Minimum Distance

Solving the corresponding linear system of equations from 8.1.14 we obtain 64
solutions (x

y) with the required properties x ∈ {0, 1}7 and y ∈ {1, 2, 3}7. Seven
solutions correspond to the lines which are (3, 1)-minihypers in PG2(2). The
minihyper B = {P3, P4, P5} corresponds to the solution(

x
y

)
= (0, 0, 0, 1, 1, 1, 0; 1, 1, 1, 1, 1, 1, 3)� . �

So far, we have constructed minihypers in the Fano-plane. In order to ob-
tain new linear codes, we need to search for t-blocking sets or minihypers.
The method proposed in 8.1.14 may not work because the incidence matrix
Mk,q can become too big for solving the system of Diophantine equations for
interesting parameters. In these cases, the intention is to reduce the incidence
matrix Mk,q to a much smaller matrix so that it is possible to solve the cor-
responding system of Diophantine equations applying the lattice point enu-
meration algorithm described in the previous chapter. To achieve this goal we
make an assumption about the presence of non-trivial automorphisms, simi-
lar to the methods that are used to construct combinatorial t-designs [18], [14],
[15], [17]. In fact, such an assumption about the presence of non-trivial au-
tomorphisms leads to a very interesting area of Algebraic Combinatorics, the
theory of groups acting on lattices. This is the topic of the following section.

Exercises

E.8.1.1 Exercise Show that the set of points in PG2(q) defined by the conic{
〈(x, y, z)〉

∣∣ x2 = yz
}

corresponds to a q-ary (q + 1, 3, q − 1)-code.

E.8.1.2 Exercise Verify that the set of points in PG3(q) defined by the hyperbolic quadric{
〈(x, y, z, w)〉

∣∣ zw = xy
}

corresponds to a q-ary ((q + 1)2, 4, q2)-code.

E.8.1.3 Exercise Prove 8.1.10. Hint: Check that the generator matrix Γ of C does not
contain zero columns. Assume that Γ has a repeated column. In this case, the
matrix ⎛⎜⎜⎜⎜⎝

1 1 . . .
0 0
...

... Γ′

0 0

⎞⎟⎟⎟⎟⎠

8.2 Group Actions on Lattices 625

generates a code which is linearly isometric to C. Here, Γ′ is a generator matrix
of an (n − 2, k − 1, d′)-code C′ with d′ ≥ d. The inequality from the Griesmer-
bound for C′ then leads to a contradiction.

8.28.2 Group Actions on Lattices

In this section we investigate actions of subgroups of the general linear group
GLk(q) on the set U (k, q) = PG(Fk

q) of all subspaces of Fk
q. This action is in-

teresting because U(k, q) forms a lattice, the linear lattice, and since the action
preserves the partial order, i.e. we have the implication

S ≤ T =⇒ AS ≤ AT

for all subspaces S, T ∈ U(k, q) and all A ∈ GLk(q). Hence let us introduce
first the general concept of group actions on posets respectively lattices.

8.2.1Definition (poset action) Let (X,≤) denote a poset on which a group G acts
from the left. Then we call the action GX a poset action if the implication

x ≤ x′ =⇒ gx ≤ gx′

holds for all x, x′ ∈ X and g ∈ G. This will be abbreviated by

G(X,≤).

We note that we can in fact replace the implication by an equivalence since
gx ≤ gx′ also implies x ≤ x′ if we apply g−1 from the left.

Analogously, we define a lattice action if the group elements commute with
the infimum and supremum operator.

8.2.2Definition (lattice action) Let (X,∧,∨) denote a lattice and let G be a group
acting on X. Then GX is called a lattice action if and only if

g(x ∧ x′) = gx ∧ gx′ and g(x ∨ x′) = gx ∨ gx′

for all x, x′ ∈ X and g ∈ G. We indicate this situation as follows:

G(X,∧,∨).

Recall that a lattice (X,∧,∨) is always a poset, the corresponding order
relation ≤ can be obtained by

x ≤ x′ : ⇐⇒ x ∧ x′ = x ⇐⇒ x ∨ x′ = x′.

Using this equivalence we prove the following lemma.

626 8. Linear Codes with a Prescribed Minimum Distance

8.2.3 Lemma Let (X,∧,∨) be a lattice, (X,≤) the corresponding partial order and let G
be a group acting on X. Then GX is a poset action if and only if GX is a lattice action.

Proof: 1. Assume that GX is a poset action. We have x∧ x′ ≤ x and x∧ x′ ≤ x′

for all x, x′ ∈ X. Since G preserves the order relation we obtain g(x ∧ x′) ≤ gx
and g(x ∧ x′) ≤ gx′ for all g ∈ G and hence g(x ∧ x′) ≤ gx ∧ gx′. If we assume
that g(x ∧ x′) < gx ∧ gx′ we obtain, after applying g−1 from the left, that

x ∧ x′ = g−1(g(x ∧ x′)) < g−1(gx ∧ gx′) ≤ g−1(gx) ∧ g−1(gx′) = x ∧ x′,

which yields the contradiction x ∧ x′ < x ∧ x′. Thus we have g(x ∧ x′) =
gx ∧ gx′. The statement g(x ∨ x′) = gx ∨ gx′ follows analogously.

2. Now we assume that GX is a lattice action. We have the following chain of
equivalences:

x ≤ x′ ⇔ x = x ∧ x′ ⇔ gx = g(x ∧ x′) = gx ∧ gx′ ⇔ gx ≤ gx′,

for all x, x′ ∈ X and g ∈ G. This completes the proof. �

8.2.4 Definition (poset automorphism) Let (X,≤) denote a poset. Then a bijection
f : X → X is called a poset automorphism if and only if

x ≤ x′ =⇒ f (x) ≤ f (x′)

for all elements x, x′ ∈ X.
The set of all poset automorphisms of a poset (X,≤) forms a subgroup

of the symmetric group SX , the automorphism group of (X,≤), which will be
abbreviated by Aut(X,≤). A subgroup of this full automorphism group is
called a group of automorphisms of (X,≤). Now recall the image G = δ(G) of
the permutation representation

δ : G → SX : g �→ g with g : x �→ gx

that obviously can be used to characterize a poset action: GX is a poset action
if and only if

G ≤ Aut(X,≤).8.2.5

For this reason we also say that G acts on a poset (X,≤) as a group of auto-
morphisms in order to express that GX is a poset action. The most important
properties of poset actions are the following ones:

8.2 Group Actions on Lattices 627

8.2.6Lemma If G(X,≤) denotes a poset action with finite G, then it has the following
properties:

1. Any two elements in the same orbit are incomparable, i.e. the orbits are antichains.

2. If ω and ω′ are orbits such that there exist x ∈ ω and x′ ∈ ω′ where x < x′, then
we have, for any comparable pair of elements y ∈ ω and y′ ∈ ω′, that y < y′.

3. The partial order on X induces the following partial order on G\\X:

ω ≤ ω′ :⇐⇒ ∃ x ∈ ω, x′ ∈ ω′ : x ≤ x′.

4. Consider an orbit ω ∈ G\\X and an arbitrary representative x ∈ ω. For any orbit
ω′ the numbers∣∣{x′ ∈ ω′ ∣∣ x ≤ x′

}∣∣ and
∣∣{x′ ∈ ω′ ∣∣ x ≥ x′

}∣∣
depend only on the orbit ω and not on the chosen representative x ∈ ω.

5. For any x, x′ ∈ X, we have

|G(x)| ·
∣∣{z ∈ G(x′)

∣∣ x ≤ z
}∣∣ =

∣∣G(x′)
∣∣ · ∣∣{y ∈ G(x)

∣∣ x′ ≥ y
}∣∣ .

Proof: 1. If x ∈ X were comparable with gx �= x, say (without restriction)
x < gx, then we had x < gx < g2x < . . . < g−1x < x, which is a contradiction.

2. Suppose x, y ∈ ω, x′, y′ ∈ ω′, where x < x′ and y and y′ are comparable.
Then y > y′ would yield, for suitable g, g′ ∈ G: gx = y > y′ = g′x′, and hence
also x > g−1g′x′, which contradicts the first part that posets are antichains.

3. The reflexivity of ≤ on G\\X is obvious as well as the antisymmetry, and
so it remains to prove the transitivity. Hence we assume that ω < ω′ and
ω′ < ω′′, and consider elements x ∈ ω, x′, y′ ∈ ω′, y′′ ∈ ω′′ which satisfy
x < x′, y′ < y′′. There exists g ∈ G with gx′ = y′, and hence

ω $ gx < gx′ = y′ < y′′ ∈ ω′′,

so that ω < ω′′, as stated.

4. This follows from x ≤ x′ ⇐⇒ gx ≤ gx′.

5. Using 4., this follows from a trivial “double count” of the set{
(y, z)

∣∣ y ∈ G(x), z ∈ G(x′), y ≤ z
}

. �

628 8. Linear Codes with a Prescribed Minimum Distance

As mentioned in Section 3.2 we represent a poset (X,≤) by its zeta function
ζ : X × X → {0, 1} which is defined by

ζ(x, x′) :=
{

1 if x ≤ x′,
0 otherwise.

If X is finite we can assume X = {x0, . . . , xm−1} to be topologically sorted, in
the following sense:

8.2.7 Definition (topological sorting) A poset (X,≤) is topologically sorted if the el-
ements of X are numbered in such a way that xi < xj implies i < j for all
elements xi, xj ∈ X.

It is not difficult to check (Exercise 8.2.1) that every finite poset (X,≤) can
be sorted topologically. Therefore, in the following we always assume that the
elements of the finite poset X in question have been numbered topologically
as {x0, . . . , xm−1}. In this case, the zeta matrix

Z(X,≤) := (ζ ij), where ζ ij := ζ(xi, xj),

is upper triangular with ones along the main diagonal, and hence invertible
over Z. Its inverse

Z(X,≤)−1 =: M(X,≤) = (µij),

the Möbius matrix of the poset, defines the Möbius function of the finite poset:
µ(xi, xj) := µij ∈ Z. In addition we remark that an action on a poset is a poset
action if and only if

ζ(x, x′) = ζ(gx, gx′)

for all g ∈ G and x, x′ ∈ X. Here is our main example of a poset action:

8.2.8 Example (the linear lattice) As we have already mentioned at the beginning
of this section, the set U (k, q) of subspaces of Fk

q forms a lattice with infimum
S∧ T := S∩ T and supremum S∨ T := 〈S∪ T〉 (the subspace generated by the
union of S and T). The general linear group GLk(q) acts on this linear lattice
in the following canonical way: For M ∈ GLk(q) and S ∈ U (k, q) we have

MS :=
{

v · M� ∣∣ v ∈ S
}

.

This action is clearly a poset action, U (k, q) is partially ordered by inclusion,
and it is obvious that the action respects inclusion:

S ≤ T =⇒ MS ≤ MT.

Hence, by 8.2.3, this action is also a lattice action,

GLk(q) (U (k, q),∧,∨) ,

8.2 Group Actions on Lattices 629

and so the general linear group acts as a group of automorphisms on U (k, q).
The zeta function of this linear lattice is

ζ(S, T) =
{

1 if S ≤ T,
0 otherwise.

Since this lattice is of great importance for the following, let us evaluate its
Möbius function. To begin with, we claim that the sum of the values of the
Möbius function over a full nontrivial interval is zero for each poset (X,≤),
where all intervals are finite. Such posets are called locally finite (cf. 3.2.24 and
Exercise 3.2.16).

∑
y:x≤y≤z

µ(x, y) = ∑
y:x≤y≤z

µ(y, z) = δx,z =
{

0 if x �= z,
1 if x = z.

8.2.9

In order to verify the first equation we use that the Möbius matrix is the inverse
of the zeta matrix: (µ(x, y)) · (ζ(x, y)) = I gives

∑
y:x≤y≤z

µ(x, y) = ∑
y:x≤y≤z

µ(x, y)ζ(y, z) = (µ ∗ ζ)(x, z) = δ(x, z) = δx,z,

the second statement follows similarly. The next result is on the Möbius func-
tion of a finite lattice L with its elements

0 :=
∧

λ∈L

λ and 1 :=
∨

λ∈L

λ.

We state that
0 < λ ∈ L =⇒ ∑

κ:κ∨λ=1
µ(0, κ) = 0. 8.2.10

In order to prove this we consider the expression

σ(λ) := ∑
κ,ν

µ(0, κ)ζ(κ, ν)ζ(λ, ν)µ(ν, 1) = ∑
κ

µ(0, κ) ∑
ν≥κ∨λ

µ(ν, 1).

Since, by 8.2.9, the inner sum ∑ν≥κ∨λ µ(ν, 1) is zero, except for the case when
κ ∨ λ = 1, we find that

σ(λ) = ∑
κ:κ∨λ=1

µ(0, κ).

Hence it remains to prove that σ(λ) = 0. In order to do this we rewrite σ(λ) in
the following form:

σ(λ) = ∑
ν≥λ

µ(ν, 1) ∑
κ≤ν

µ(0, κ).

The inner sum is zero, and hence σ(λ) = 0, which completes the proof.
We are now in a position to evaluate the Möbius function of the linear lat-

tice. We claim that

µ(S, T) =
{

(−1)mq(m
2) if S ≤ T,

0 otherwise,
8.2.11

630 8. Linear Codes with a Prescribed Minimum Distance

where m := dim(T)− dim(S) and (0
2) = (1

2) = 0.
For its proof (by induction on m) we note first that if S = T, then µ(S, T) =

1 and m = 0. If S < T, then µ(S, T) = µ(0, Fm
q), m > 0, since the lattice

of subspaces between S and T is order isomorphic to the lattice of subspaces
of Fm

q . This is known from Linear Algebra (the Homomorphism Theorem).
Hence it suffices to prove that

µ(0, Fm
q) = (−1)mq(m

2), m > 0.8.2.12

In order to check this we pick a one-dimensional subspace U and deduce from
8.2.10 that

µ(0, Fm
q) = − ∑

S∨U=Fm
q , S �=Fm

q

µ(0, S),

where the sum is taken over all proper subspaces S such that S ∨U = Fm
q , i.e.

over all the (m− 1)-dimensional subspaces S of Fm
q that do not contain U. For

all these S we have, by induction assumption, that

µ(0, S) = (−1)m−1q(m−1
2).

Moreover, the number of such subspaces is (Exercise 8.2.2)[
m

m − 1

]
(q)−

[
m − 1
m − 2

]
(q) =

[
m

m − 1

]
(q)−

[
m − 1

1

]
(q) = qm−1.8.2.13

Thus, we finally obtain that

µ(0, Fm
q) = (−1)mq(m

2),

which completes the proof of 8.2.12 on the values of the Möbius function of
the linear lattice. �

Our next step is a helpful reduction process that can be applied both to the
zeta matrix and to the Möbius matrix of a poset or lattice, provided that we are
given a poset or a lattice action. In this case, 8.2.6 implies the following

8.2.14 Corollary Let GX be a poset action and let ω0, . . . , ωl−1 be the orbits of G on the
poset X. Then the values

∑
x∈ω j

ζ(xi, x) and ∑
x∈ω j

ζ(x, xi), i, j ∈ l,

are independent of the chosen representative xi ∈ ωi. �

This result enables us to introduce the Plesken matrices [162]

A∧ := A∧(G) = (a∧ij), and A∨ := A∨(G) = (a∨ij),

8.2 Group Actions on Lattices 631

defined by

a∧ij := ∑
x∈ω j

ζ(xi, x) =
∣∣{x ∈ ωj

∣∣ xi = xi ∧ x
}∣∣ =

∣∣{x ∈ ωj
∣∣ xi ≤ x

}∣∣
and

a∨ij := ∑
x∈ω j

ζ(x, xi) =
∣∣{x ∈ ωj | xi = xi ∨ x

}∣∣ | =
∣∣{x ∈ ωj | x ≤ xi

}∣∣ .
We note that these numbers are well-defined because of the 4th item of 8.2.6.
In this language, the 5th item of 8.2.6 can be restated as

|ωi| · a∧ij = |ωj| · a∨ji . 8.2.15

Using topological sorting of the orbits we obtain

8.2.16Corollary For the Plesken matrices A∧(G) and A∨(G) corresponding to a poset
action of a finite group G on a poset X the following is true:

1. If D(G) := diag (|ω0| , . . . , |ωl−1|) denotes the diagonal matrix containing the
lengths of the orbits of G on X on its diagonal, then

A∨(G) = (D(G) · A∧(G) · D(G)−1)�.

2. The diagonal entries of the matrices A∧(G) and A∨(G) are all one.

3. The orbits ωi can be numbered such that A∧(G) is an upper triangular and
A∨(G) a lower triangular matrix. �

8.2.17Example (the linear lattice cont.) The orbits ωi of the general linear group on
the lattice U(k, q) are the sets of subspaces of the same dimension i, 0 ≤ i ≤ k.
Hence

A∨(GLk(q)) =
([

i
j

]
(q)

)
i,j∈k+1

.

Using 8.2.15 we obtain

A∧(GLk(q)) =
([

k − i
j− i

]
(q)

)
i,j∈k+1

.

Of course, things become more complicated if we consider subgroups G of the
general linear group GLk(q). The reason is that the orbits of the general linear
group, which are the sets of subspaces of same dimension, may split into sev-
eral orbits. Nevertheless we consider this more general situation, since we find
that certain submatrices of A∧(G) respectively A∨(G) are crucial for the con-
struction of minihypers respectively linear codes with prescribed minimum
distance.

632 8. Linear Codes with a Prescribed Minimum Distance

The dimension of a subspace is invariant under multiplication by an in-
vertible matrix M ∈ GLk(q). Thus

G\\U(k, q) =
k⋃

s=0

G\\U(k, s, q).

This simple fact causes a block structure of the matrices A∧ := A∧(G) and
A∨ := A∨(G). Namely, if

G\\U(k, s, q) =
{

ω
(s)
0 , . . . , ω

(s)
ls−1

}
is the set of orbits of G on the s-subspaces, we obtain, for Si ∈ ω

(s)
i , the matrix

A∧
s,t(G) =

(
a(∧,s,t)
ij

)
i∈ls, j∈lt

with entries

a(∧,s,t)
ij :=

∣∣∣{T ∈ ω
(t)
j

∣∣ Si = Si ∧ T
}∣∣∣ =

∣∣∣{T ∈ ω
(t)
j

∣∣ Si ≤ T
}∣∣∣ .

In the same vein, we get

A∨
s,t(G) =

(
a(∨,s,t)
ij

)
i∈ls, j∈lt

,

where

a(∨,s,t)
ij :=

∣∣∣{T ∈ ω
(t)
j

∣∣ Si = Si ∨ T
}∣∣∣ =

∣∣∣{T ∈ ω
(t)
j

∣∣ T ≤ Si

}∣∣∣ .

Recall once again that the entries of these matrices only depend on the respec-
tive orbit ω

(s)
i , not on the chosen representative Si.

These two matrices are exactly the submatrices of A∧ respectively A∨ the
rows of which belong to the orbits of G on the s-subspaces and whose columns
belong to the orbits of G on the t-subspaces. If

ω
(0)
0 , ω

(1)
0 , . . . , ω

(1)
l1−1, . . . , ω

(k−1)
0 , . . . , ω

(k−1)
lk−1−1, ω

(k)
0

denotes the ordering of all orbits of G on U (k, q) we obtain the following block
decomposition:

A∧(G) =
(
A∧

s,t(G)
)
s,t∈k+1 and A∨(G) =

(
A∨

s,t(G)
)
s,t∈k+1 ,

where A∧
s,t(G) and A∨

s,t(G) are ls × lt-matrices. �

From 8.2.16 we deduce the relation between the different block matrices:

8.2 Group Actions on Lattices 633

8.2.18Corollary If Ds(G) = diag
(
|ω(s)

0 |, . . . , |ω(s)
ls−1|

)
, s ∈ k + 1, then the following is

true:
A∨

s,t(G) =
(
Dt(G) · A∧

t,s(G) · D−1
s (G)

)�
. �

Here are several special cases of these matrices: For t ∈ k + 1 we have

A∧
t,t(G) =

⎛⎜⎝ 1 · · · 0
...

. . .
...

0 · · · 1

⎞⎟⎠ , A∧
t,k(G) =

⎛⎜⎝ 1
...
1

⎞⎟⎠ .

For all s, t ∈ k + 1 with s > t:

A∧
s,t(G) =

⎛⎜⎝ 0 · · · 0
...

...
0 · · · 0

⎞⎟⎠ .

For all t ∈ k + 1:
A∧

0,t(G) =
(
|ω(t)

0 |, . . . , |ω(t)
lt−1|

)
.

The proofs are very easy. We continue with two numerical examples:

8.2.19Example For the parameters k := 8, q := 2 and the general linear group G :=
GLk(q) we obtain the following Plesken matrices:

A∧ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 255 10795 97155 200787 97155 10795 255 1
1 127 2667 11811 11811 2667 127 1

1 63 651 1395 651 63 1
1 31 155 155 31 1

1 15 35 15 1
1 7 7 1

1 3 1
1 1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

A∨ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 3 1
1 7 7 1
1 15 35 15 1
1 31 155 155 31 1
1 63 651 1395 651 63 1
1 127 2667 11811 11811 2667 127 1
1 255 10795 97155 200787 97155 10795 255 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

�

634 8. Linear Codes with a Prescribed Minimum Distance

8.2.20 Example Let k := 3 and q := 2. We consider the action of the complete mono-
mial group M3(2) which is in fact isomorphic to the symmetric group S3, act-
ing by permuting the 3 coordinates:

M3(2) =

⎧⎪⎨⎪⎩
⎛⎜⎝ 1 0 0

0 1 0
0 0 1

⎞⎟⎠ ,

⎛⎜⎝ 0 1 0
0 0 1
1 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 0 1
1 0 0
0 1 0

⎞⎟⎠ ,

⎛⎜⎝ 1 0 0
0 0 1
0 1 0

⎞⎟⎠ ,

⎛⎜⎝ 0 0 1
0 1 0
1 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 1 0
1 0 0
0 0 1

⎞⎟⎠
⎫⎪⎬⎪⎭ .

Figrue 8.2 shows the Hasse diagram of this lattice. The vector space F3
2 corre-

sponds to the vertex on top level. Subspaces in the same orbit are connected
by a horizontal edge. The orbits, shown in the table next to the diagram, are
arranged from the left to the right in each level. �

Let us now restrict attention to the matrix A∨
k−1,1(G), which can be used to

construct minihypers with a prescribed group G ≤ GLk(q) of automorphisms,
as we will see in the following section. Before that, let us mention an efficient
way of computing this matrix.

8.2.21 Lemma For a matrix M ∈ GLk(q) and a subspace S of Fk
q the following equation

holds:
(MS)⊥ = (M�)−1S⊥.

Proof: Since (M�)−1 = (M−1)�, we have

(MS)⊥ =
{

v ∈ Fk
q
∣∣ ∀ w ∈ MS : 〈v, w〉 = 0

}
=

{
v ∈ Fk

q
∣∣ ∀ w ∈ S : 〈v, w · M�〉 = 0

}
=

{
v ∈ Fk

q
∣∣ ∀ w ∈ S : 〈v · M, w〉 = 0

}
=

{
v · M−1 ∈ Fk

q | v ∈ Fk
q : ∀ w ∈ S : 〈v, w〉 = 0

}
=

{
v · M−1 ∈ Fk

q
∣∣ v ∈ S⊥

}
= (M�)−1S⊥. �

8.2.22 Definition (dual group) Let G be a subgroup of GLk(q), then we define G∗ to
be the set of all transposed matrices of G

G∗ := {M� | M ∈ G}
which is called the dual group of G.

8.2 Group Actions on Lattices 635

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

	
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

	
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

�
�
�
�

�
�

�
�

�
�

	
	

	
	

�
�

�
�

orbit representative orbit-
length

ω0 {(000)} 1
ω1 〈(001)〉 3
ω2 〈(011)〉 3
ω3 〈(111)〉 1
ω4 〈(001), (010)〉 3
ω5 〈(111), (001)〉 3
ω6 〈(101), (011)〉 1
ω7 F3

2 1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

	
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

�
�
�
�

�
�

�
�

�
�

A∧ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 1 3 3 1 1
1 0 0 2 1 0 1

1 0 1 1 1 1
1 0 3 0 1

1 0 0 1
1 0 1

1 1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

�
�

�
�

A∨ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 0 1
1 0 0 1
1 2 1 0 1
1 1 1 1 0 1
1 0 3 0 0 0 1
1 3 3 1 3 3 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 8.2 Lattice action of M3(2) on F3
2

636 8. Linear Codes with a Prescribed Minimum Distance

The dual group G∗ is isomorphic to G via the mapping

ι : G → G∗ : M �→ (M�)−1

since the equation

((M · N)�)−1 = (M�)−1 · (N�)−1

holds for invertible matrices M and N.

8.2.23 Corollary If P(v) runs through a transversal of the orbits of G∗ on the set of points
U (k, 1, q), then H(v) runs through a transversal of the orbits of G on the set of hyper-
planes U (k, k − 1, q). Furthermore, for the orbit of G on H(v) we have

G(H(v)) =
{
H(w)

∣∣ P(w) ∈ G∗(P(v))
}

. �

This corollary enables us to compute the orbits of a group G ≤ GLk(q)
on the set of hyperplanes U (k, k − 1, q). Instead of computing these orbits we
construct orbit representatives of G∗\\U (k, 1, q) which is much easier since the
representation of points needs one basis vector while hyperplanes are repre-
sented by k − 1 basis vectors.

Exercises

E.8.2.1 Exercise Prove that every finite poset can be sorted topologically.

E.8.2.2 Exercise Prove 8.2.13.

E.8.2.3 Exercise Prove that [
r − s
r − t

]
(q) · A∧

s,r = A∧
s,t · A∧

t,r .

for s, t, r ∈ k + 1 with s ≤ t ≤ r.

E.8.2.4 Exercise Show that we have, for the action of the monomial group,

A∧
t,k(Mk(q)) = A∨

n−t,n−k(Mk(q)), resp. A∨
t,k(Mk(q)) = A∧

n−t,n−k(Mk(q)).

8.3 Prescribing a Group of Automorphisms 637

8.38.3 Prescribing a Group of Automorphisms

As announced we are now going to use the prescription of a group of automor-
phisms for a construction of certain blocking sets respectively minihypers in
projective geometries. Of course, such a prescription is risky since there may
no exist a blocking set with this automorphism group. On the other hand, if
there are such linear codes, then it will pay off since the number of columns
of the incidence matrix Mk,q, which correspond to the points, will reduce to
the number of orbits of the group on the set of 1-subspaces, and the same will
happen to the rows which correspond to the hyperplanes. Quite often, this
data reduction will bring the construction of linear codes within the reach of
current computers.

8.3.1Definition (automorphism of a blocking set) An element M ∈ GLk(q) is called
an automorphism of a t-blocking set B ⊆ PGk−1(q) if M permutes the points of
B, i.e.

MB := {MP | P ∈ B} = B.

Recall from 8.2.8 that the action is MP = MP(v) = P(v · M�).
A group consisting only of automorphisms of B is called a group of auto-

morphisms of B, the maximal group with this property is called the full group
of automorphisms and it is abbreviated by Aut(B).

The crucial facts for the construction of t-blocking sets with a prescribed
group of automorphisms are the following ones.

8.3.2Remarks Let G be a subgroup of GLk(q).

The group G is a group of automorphism of a t-blocking set B in PGk−1(q)
if and only if B is a union of G-orbits on U(k, 1, q).

The incidence between points P and hyperplanes H is invariant under the
action of G, i.e. if P ⊆ H then MP ⊆ MH for all M ∈ G.

The number m of G-orbits on the set of points U (k, 1, q) is equal to the num-
ber of G-orbits on the set of hyperplanes U (k, k − 1, q).

If {ω0, . . . , ωr−1} respectively {Ω0, . . . , Ωr−1} are the sets of G-orbits on
U (k, 1, q) respectively U (k, k − 1, q) with representatives Pi ∈ ωi respec-
tively Hi ∈ Ωi, then the cardinality |ωj ∩ Hi| = |{P ∈ ωj | P ⊆ Hi}| is
independent of the chosen representative Hi of the orbit Ωi.

These facts embed the construction problem of blocking sets into the theory
of group actions on lattices. They motivate the reduction of the incidence ma-
trix Mk,q between 1-subspaces and (k − 1)-subspaces to the incidence matrix

638 8. Linear Codes with a Prescribed Minimum Distance

MG
k,q = (mG

ij) between the G-orbits of 1-subspaces and the G-orbits of (k − 1)-
subspaces:

mG
ij := |ωj ∩ Hi|,

i.e. this matrix is a Plesken matrix:

MG
k,q = A∨

k−1,1(G).8.3.3

The following theorem describes the fundamental construction:

8.3.4 Theorem There is a bijection between the set of all t-blocking sets in PGk−1(q)
with G ≤ GLk(q) as a group of automorphisms and the set of solutions (x

y), with
xi ∈ {0, 1} and yi ∈ {t, . . . , θk−2(q)}, of the following system of linear equations:(

MG
k,q

∣∣ −I
)
·
(

x
y

)
= 0,

where x = (x0, . . . , xr−1)�, y = (y0, . . . , yr−1)� for r = |G\\U(k, 1, q)|. If (x
y)

denotes a solution, then the corresponding t-blocking set B is

B =
⋃

j:xj=1

ωj.

Proof: Let B be the set of all t-blocking sets in PGk−1(q) having G ≤ GLk(q)
as a group of automorphisms and let S be the set of all solutions (x

y) of the
linear system of equations (MG

k,q | −I) · (x
y) = 0 with xj ∈ {0, 1} and yj ∈

{t, . . . , θk−2(q)}. It is easy to see that the mappings

ϕ : S → B :
(

x
y

)
�→ B with B :=

⋃
j:xj=1

ωj

and

ψ : B → S : B �→
(

x
y

)
with xj :=

{
1 if ωj ⊆ B,
0 otherwise,

and yi := |B ∩ Hi|,

are mutually inverse bijections. �

If (x
y) denotes an admissible solution of this linear system of equations and

B =
⋃

j:xj=1 ωj the corresponding t-blocking set in PGk−1(q), then the cardinal-
ity of B is

b = ∑
j:xj=1

|ωj|.

If we add this equation as as further row to the linear system of equations we
obtain the corresponding construction of (b, t)-minihypers in PGk−1(q) with a
prescribed group of automorphisms and hence projective codes.

8.3 Prescribing a Group of Automorphisms 639

8.3.5Corollary The set of all t-blocking sets in PGk−1(q) with cardinality b, having a
subgroup G ≤ GLk(q) as a group of automorphisms can be obtained from the set of
vectors (x

y) with xi ∈ {0, 1} and yi ∈ {t, . . . , θk−2(q)}, i ∈ r := |G\\U (k, 1, q)|,
solving the linear system of equations:

⎛⎜⎜⎜⎜⎜⎝
mG

0,0 . . . mG
0,r−1 −1

...
...

. . .
mG

r−1,0 . . . mG
r−1,r−1 −1

|ω0| . . . |ωr−1| 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
...

xr−1

y0
...

yr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
...
0
b

⎞⎟⎟⎟⎟⎠

If (x
y) denotes such a solution, then the corresponding t-blocking set B with |B| = b is

B =
⋃

j:xj=1

ωj.

This blocking set B is a (b, t)-minihyper in PGk−1(q) if and only if the vector y con-
tains a component which is exactly t, i.e. if and only if there is an index j with yj = t.

�

8.3.6Example We want to construct (6, 1)-blocking sets in PG2(3), i.e. the param-
eters are q = 3, k = 3, t = 1, b = 6, θ2(3) = (33 − 1)/(3 − 1) = 13 and
θ1(3) = (32 − 1)/(3− 1) = 4. The projective geometry PG2(3) consists of the
following 13 points

P0 = P(001),
P1 = P(010),
P2 = P(011),
P3 = P(012),
P4 = P(100),

P5 = P(101),
P6 = P(102),
P7 = P(110),
P8 = P(111),
P9 = P(112),

P10 = P(120),
P11 = P(121),
P12 = P(122).

Hence the incidence matrix M3,3 is of size 13× 13. Now we prescribe the com-
plete monomial group G := M3(3) which yields three orbits on the set of
points U(3, 1, 3):

ω0 = {P0, P1, P4},
ω1 = {P2, P3, P5, P6, P7, P10},
ω2 = {P8, P9, P11, P12}.

In addition we obtain the orbits on the set of hyperplanes U (3, 2, 3):

Ω0 = {P⊥
0 , P⊥

1 , P⊥
4 },

Ω1 = {P⊥
2 , P⊥

3 , P⊥
5 , P⊥

6 , P⊥
7 , P⊥

10},
Ω2 = {P⊥

8 , P⊥
9 , P⊥

11, P
⊥
12}

640 8. Linear Codes with a Prescribed Minimum Distance

and the reduced matrix turns out to be of size 3× 3:

MG
3,3 = A∨

2,1(M3(3)) =

⎛⎜⎝ 2 2 0
1 1 2
0 3 1

⎞⎟⎠ .

This shows that we have obtained a data reduction by the factor 169/9 which
is nearly 20. The corresponding system of Diophantine equations is

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1
x2

y0

y1

y2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
6

⎞⎟⎟⎟⎠

where xi ∈ {0, 1} and yi ∈ {1, 2, 3, 4}. It is easy to see that (0, 1, 0; 2, 1, 3)� is
the only solution of this system which corresponds to a (6, 1)-blocking set

B = ω1 = {P2, P3, P5, P6, P7, P10}. �

8.4 8.4 Linear Codes of Prescribed Type

We have seen that codes with minimum distance d ≤ qk−1 meeting the Gries-
mer-bound are always projective. If such a code is regarded as an n-set in
PGk−1(q), then the complement of that n-set defines a minihyper and vice
versa. The minihyper approach only works for projective codes. It does not
work work general codes, since it is not clear how to define complements of
multisets. In order to avoid such investigations we construct the n-multiset
defining the linear code directly, using the same construction that we used for
minihypers: We solve a linear system of Diophantine equations.

In Section 8.1, we have shown how to construct blocking sets with the aid
of the incidence matrix Mk,q = (mij) by solving a system of Diophantine equa-
tions. The 0-1-vector x corresponds to a selection of points defining the block-
ing set B. The complement of the blocking set B then was a projective code.
After changing some entries in the system of equations, this method allows us
to construct the projective codes directly.

If U (k, 1, q) = {P0, . . . , Pr−1} respectively U(k, k − 1, q) = {H0, . . . , Hr−1},
where r := θk−1(q) again denotes the number of points respectively hyper-
planes, then the solutions (x

y) with xj ∈ {0, 1} and yj ∈ {0, . . . , n − d} of the

8.4 Linear Codes of Prescribed Type 641

system

⎛⎜⎜⎜⎜⎝
m0,0 . . . m0,r−1 −1

...
...

. . .
mr−1,0 . . . mr−1,r−1 −1

1 . . . 1 0 . . . 0

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
...

xr−1

y0
...

yr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
...
0
n

⎞⎟⎟⎟⎟⎠

define the projective (n, k)-codes over Fq with minimum distance greater than
or equal to d. The first part x of a solution (x

y) defines a selection of points
which determine the columns of a generator matrix: The point Pj is selected if
and only if xj is 1. Now if we permit values greater than 1 for the components
xj, then the vector x describes a multiset X , containing the point Pj exactly xj

times.
Hence the solutions (x

y) with xj ∈ {0, . . . , n} and yj ∈ {0, . . . , n − d} of the
system of Diophantine equations correspond to the nonredundant (n, k)-codes
over Fq with minimum distance greater than or equal to d.

Assume that X is such a multiset corresponding to a solution (x
y) and con-

sider vj ∈ Fk
q\{0} such that Hj = H(vj), then yj = |X ↓ H(vj)|. We obtain the

weight distribution from 8.1.5:

Ai = (q− 1) ·
∣∣{j ∈ r

∣∣ yj = n − i
}∣∣ , for i > 0.

But as with the construction of blocking sets and projective codes the system
of equations is still too big for an efficient computation of solutions. Therefore,
again we reduce the dimension of the matrix of coefficients by prescribing a
group of automorphisms. But first we have to make clear what a prescription
of such a group means in the case of multisets and codes.

If Γ = (γij) denotes a generator matrix of an (n, k)-code C and

X Γ := {{P(γ∗,0), . . . , P(γ∗,n−1)}}

denotes the n-multiset of points in PGk−1(q) defined by the columns of the
generator matrix Γ, then the following holds true for each M ∈ GLk(q):

MX Γ := {{MP(γ∗,0), . . . , MP(γ∗,n−1)}} = X M·Γ.

8.4.1Definition (projective automorphism) A projective automorphism of a generator
matrix Γ of a nonredundant (n, k)-code is an element M ∈ GLk(q) which leaves
the multiset XΓ invariant:

MXΓ = XΓ.

642 8. Linear Codes with a Prescribed Minimum Distance

A group consisting only of projective automorphisms of Γ is called a group
of automorphisms of Γ. The largest group with this property is called the full
group of projective automorphisms and it is abbreviated by Aut(Γ).

If Γ and Γ′ denote two generator matrices of the same (n, k)-code C, then
there is an element N ∈ GLk(q) such that Γ′ = N · Γ. Now if M is a projective
automorphism of Γ, i.e MXΓ = XΓ, then the conjugate element N · M · N−1

defines a projective automorphism of Γ′, since

N · M · N−1XN·Γ = N · MXN−1·N·Γ = N · MXΓ = NXΓ = XN·Γ,

i.e. the conjugate group

NGN−1 :=
{

N · M · N−1 ∣∣ M ∈ G
}

is a group of projective automorphisms of N · Γ. The set of matrices N · Γ,
where N ∈ GLk(q), contains all the generator matrices of C, and thus all the
conjugates NGN−1 of G are groups of projective automorphisms, so that we
can introduce the following notion of type of a code:

8.4.2 Definition (stabilizer type of a code) Let G be a subgroup of GLk(q). An
(n, k)-code C over Fq has as stabilizer type the conjugacy class

G̃ :=
{

NGN−1 ∣∣ N ∈ GLk(q)
}

if there is a generator matrix Γ of C such that Γ has G as a group of projective
automorphisms.

This concept allows us to formulate the following important consequence:

8.4.3 Theorem Let G be a subgroup of GLk(q) with orbits ω0, . . . , ωr−1 on the set
U (k, 1, q) of points and orbits Ω0, . . . , Ωr−1 on the set U(k, k − 1, q) of hyperplanes.
Consider representatives Hi ∈ Ωi and put

mG
ij :=

∣∣{P ∈ ωj | P ⊆ Hi
}∣∣ .

There is a bijection between the set of all linear (n, k)-codes over Fq with minimum
distance at least d and type G̃ and the set of vectors (x

y) with xi ∈ {0, . . . ,
n/|ωi|�}
and yi ∈ {0, . . . , n − d}, i ∈ r := |G\\U (k, 1, q)|, solving the linear system of equa-
tions:

⎛⎜⎜⎜⎜⎜⎝
mG

0,0 . . . mG
0,r−1 −1

...
...

. . .
mG

r−1,0 . . . mG
r−1,r−1 −1

|ω0| . . . |ωr−1| 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
...

xr−1

y0
...

yr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
...
0
n

⎞⎟⎟⎟⎟⎠

8.4 Linear Codes of Prescribed Type 643

If (x
y) is a solution of this system, then the first part x defines an n-multiset X of points

as follows

X =
⋃

i:xi>0

xi⋃
j=1

ωj,

where ∪ means the union of multisets. Representatives of the points of X , written
column by column in a matrix, yield a generator matrix of an (n, k, d, q)-code C.
Furthermore, the weight distribution WC(x, y) = yn + ∑n

i=1 Aixiyn−i is given by

Ai = (q − 1) ∑
j:yj=n−i

|Ωj|. �

8.4.4Example Suppose we are now looking for a linear (14, 3, 9)-code over F3. Such
a code is optimal. First note that a code with these parameters cannot be pro-
jective, since there are exactly 13 points in PG2(3), i.e. at least one point has to
occur twice in a generator matrix of such a code. The parameters q = 3 and
k = 3 are the same as in example 8.3.6 and we also prescribe the group M3(3)
as a group of automorphisms. The orbits on the points and hyperplanes are
also shown in 8.3.6. The corresponding system of equations is

⎛⎜⎜⎜⎝
2 2 0 −1 0 0
1 1 2 0 −1 0
0 3 1 0 0 −1
3 6 4 0 0 0

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

y0

y1

y2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
0
14

⎞⎟⎟⎟⎠ ,

where x0 ∈ {0, 1, 2, 3, 4}, x1 ∈ {0, 1, 2}, x2 ∈ {0, 1, 2, 3} and yi ∈ {0, 1, 2, 3, 4, 5},
see also 7.7.11. A solution of this system is (0, 1, 2; 2, 5, 5)� , which means that
the orbit ω1 occurs once in the corresponding multiset X and the orbit ω2

occurs twice in X . Thus we obtain the following multiset

X = ω1 ∪ ω2 ∪ ω2

= {{P2, P3, P5, P6, P7, P10, P8, P9, P11, P12, P8, P9, P11, P12}}

and finally the generator matrix

Γ =

⎛⎜⎝ 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 1 2 1 1 2 2 1 1 2 2
1 2 1 2 0 0 1 2 1 2 1 2 1 2

⎞⎟⎠
of an optimal (14, 3, 9)-code. For the weight distribution we obtain:

WC(x, y) = y14 + 20x9y5 + 6x12y3,

since A9 = (3− 1) · (|Ω1|+ |Ω2|) = 20 and A12 = (3− 1) · |Ω0| = 6. �

644 8. Linear Codes with a Prescribed Minimum Distance

8.5 8.5 Numerical Results

On the following pages we present new codes obtained with the proposed
method. Applying the modifications to these codes described in the second
chapter all in all we got more than 400 new codes (see [32]).

For each pair of values (q, k) we show a table with parameters n, d, G, r
of 8.4.3. A row in such a table means that we have constructed a code over
Fq with dimension k, with length n, minimum distance d and type G̃. The
number r is the number of orbits of the corresponding group G on the set of
points U(k, 1, q). A bold minimum distance d means, that the (n, k, d)-code is
optimal.

For the finite field Fq = Fpm we use the additive representation, i.e. the ele-
ments of Fpm = Fp/I(f) which are cosets k0 + k1x + . . . + km−1xm−1 + I(f) are
coded as numbers k0 + k1p + . . . + km−1pm−1. The corresponding irreducible
polynomials can be found in Table 3.3.

Table 8.1 Linear codes for q = 2 and k = 10

n d G r

177 84 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 0 1 0 0
1 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 1 1
1 1 0 1 0 1 0 0 1 1
1 0 1 1 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 0
1 0 1 0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

8.5 Numerical Results 645

Table 8.2 Linear codes for q = 3 and k = 6

n d G r

191 126 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 20

202 132 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 20

219 144 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
1 0 0 0 0 2
0 1 0 0 0 1
0 0 1 0 0 2
0 0 0 1 0 2
0 0 0 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 23

Table 8.3 Linear codes for q = 3 and k = 7

n d G r

202 129 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 1 1 0 1 0
1 0 1 1 2 2 0
1 2 1 1 2 2 0
0 0 2 2 0 0 0
0 2 0 1 0 1 0
0 2 1 2 1 2 0
0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 35

222 144 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0
1 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 2 0
0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 45

646 8. Linear Codes with a Prescribed Minimum Distance

Table 8.4 Linear codes for q = 3 and k = 8

n d G r

64 37 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 72

224 141 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0
0 0 1 0 0 2 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 69

228 144 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0
0 0 1 0 0 2 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 69

8.5 Numerical Results 647

Table 8.5 Linear codes for q = 4 and k = 5

n d G r

56 40 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠〉 69

70 50 〈

⎛⎜⎜⎜⎜⎜⎝
0 1 1 3 3
1 3 0 1 2
0 3 0 1 2
3 2 0 2 2
1 3 3 1 1

⎞⎟⎟⎟⎟⎟⎠〉 33

99 72 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 31

137 100 〈

⎛⎜⎜⎜⎜⎜⎝
2 2 1 0 1
3 3 2 1 3
3 1 3 3 1
0 0 0 2 0
1 3 0 3 2

⎞⎟⎟⎟⎟⎟⎠〉 33

163 120 〈

⎛⎜⎜⎜⎜⎜⎝
3 3 2 2 1
2 1 3 3 2
3 1 2 1 2
2 1 3 3 3
1 0 0 1 3

⎞⎟⎟⎟⎟⎟⎠〉 21

177 130 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25

648 8. Linear Codes with a Prescribed Minimum Distance

Table 8.6 Linear codes for q = 4 and k = 5

n d G r

182 134 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25

189 140 〈

⎛⎜⎜⎜⎜⎜⎝
2 0 2 0 0
3 1 2 3 1
0 0 0 2 2
3 0 0 0 3
3 2 1 0 2

⎞⎟⎟⎟⎟⎟⎠〉 21

194 144 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 2 1 0
3 2 0 2 0
3 0 1 1 0
2 0 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 21

226 168 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25

236 176 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠〉 25

8.5 Numerical Results 649

Table 8.7 Linear codes for q = 4 and k = 6

n d G r

102 72 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 0 2
0 2 0 0 0 0
0 0 0 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 0
2 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 2
0 0 0 2 0 0
0 0 0 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

108 76 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

134 96 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

140 100 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

146 104 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

650 8. Linear Codes with a Prescribed Minimum Distance

Table 8.8 Linear codes for q = 4 and k = 6

n d G r

161 115 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 3 0
0 0 0 3 0 0
3 0 0 0 0 0
0 0 0 0 0 3
0 0 3 0 0 0
0 3 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

165 118 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

175 126 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 3 0
2 3 3 0 0 3
3 2 2 1 2 0
3 3 1 1 1 0
1 0 3 3 0 1
0 1 1 3 3 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 17

180 130 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

185 134 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

8.5 Numerical Results 651

Table 8.9 Linear codes for q = 4 and k = 6

n d G r

191 138 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

195 141 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

201 145 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

205 148 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

210 152 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

652 8. Linear Codes with a Prescribed Minimum Distance

Table 8.10 Linear codes for q = 4 and k = 6

n d G r

220 160 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

226 163 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

232 168 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

237 172 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

242 176 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 51

8.5 Numerical Results 653

Table 8.11 Linear codes for q = 4 and k = 7

n d G r

126 88 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 1 2 3 3
2 2 1 2 2 3 2
0 0 1 0 3 1 1
2 2 3 0 3 1 0
1 3 1 0 3 1 2
1 1 1 0 3 3 2
2 3 0 3 0 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 89

158 110 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0
0 0 1 0 0 0 1
0 0 1 1 0 0 0
1 0 0 0 0 0 0
1 1 0 1 0 0 0
1 0 1 0 1 1 1
0 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 181

161 112 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0
0 0 1 0 0 0 1
0 0 1 1 0 0 0
1 0 0 0 0 0 0
1 1 0 1 0 0 0
1 0 1 0 1 1 1
0 0 1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 181

189 132 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 1 3 2 1
1 3 3 0 0 2 2
2 2 3 0 2 3 1
0 3 2 2 2 2 1
2 0 0 0 0 3 2
3 2 0 0 1 3 1
2 2 0 1 0 3 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉 89

654 8. Linear Codes with a Prescribed Minimum Distance

Table 8.12 Linear codes for q = 5 and k = 5

n d G r

53 40 〈

⎛⎜⎜⎜⎜⎜⎝
4 1 2 3 3
2 2 2 4 0
1 3 4 1 3
3 2 0 4 0
4 0 0 4 0

⎞⎟⎟⎟⎟⎟⎠〉 61

92 70 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 2
1 0 0 0 2
0 1 0 0 1
0 0 1 0 4
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠〉 45

100 76 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 2
1 0 0 0 2
0 1 0 0 1
0 0 1 0 4
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠〉 45

110 85 〈

⎛⎜⎜⎜⎜⎜⎝
1 2 3 4 4
3 1 1 4 4
2 0 3 3 2
3 4 3 4 4
4 3 1 1 0

⎞⎟⎟⎟⎟⎟⎠〉 71

8.5 Numerical Results 655

Table 8.13 Linear codes for q = 5 and k = 6

n d G r

50 34 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 2 0 0 0
0 4 2 0 0 0
0 2 3 0 0 0
0 0 0 1 3 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 173

70 50 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 1 0
0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 35

73 52 〈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
〉 110

Table 8.14 Linear code for q = 7 and k = 4 with generator matrix

Γ :=

⎛⎜⎜⎜⎝
0 0 0 1
0 1 1 2 3 3 6 0 0 2 4 4 6 0 2 4 5 5 6 1 1 2 5 5 6 2
0 3 6 5 0 6 0 1 2 2 1 5 6 4 4 6 1 5 2 4 5 3 3 6 4 6
1 6 1 5 6 2 1 4 1 2 4 4 5 4 6 1 1 5 1 2 6 6 4 1 4 0

⎞⎟⎟⎟⎠
n d G r

26 20 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 3 0
0 1 1 0
0 0 0 1

⎞⎟⎟⎟⎠〉 74

656 8. Linear Codes with a Prescribed Minimum Distance

Table 8.15 Linear codes for q = 7 and k = 5

n d G r

28 20 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 6 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 147

34 25 〈

⎛⎜⎜⎜⎜⎜⎝
5 3 0 0 0
2 5 0 0 0
0 0 3 0 0
0 0 0 0 1
0 0 0 5 0

⎞⎟⎟⎟⎟⎟⎠〉 189

48 36 〈

⎛⎜⎜⎜⎜⎜⎝
6 6 2 4 0
4 4 4 4 0
4 6 2 0 0
1 0 4 5 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 131

8.5 Numerical Results 657

Table 8.16 Linear codes for q = 8 and k = 4

n d G r

85 72 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 7 0
0 1 7 0
0 0 0 1

⎞⎟⎟⎟⎠〉 73

97 82 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠〉 57

103 88 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠〉 57

108 92 〈

⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠〉 57

117 100 〈

⎛⎜⎜⎜⎝
0 5 7 1
3 4 0 3
2 2 4 7
1 3 6 1

⎞⎟⎟⎟⎠〉 45

658 8. Linear Codes with a Prescribed Minimum Distance

Table 8.17 Linear codes for q = 8 and k = 5

n d G r

79 63 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
1 0 0 1 0
0 1 0 4 0
0 0 1 6 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 121

98 80 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 61

100 81 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 61

103 84 〈

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠〉 61

119 98 〈

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0
1 0 0 1 0
0 1 0 4 0
0 0 1 6 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠〉 121

130 107 〈

⎛⎜⎜⎜⎜⎜⎝
4 2 0 0 0
5 6 0 0 0
0 0 1 2 0
0 0 1 4 0
0 0 0 0 7

⎞⎟⎟⎟⎟⎟⎠〉 81

8.5 Numerical Results 659

Table 8.18 Linear code for q = 9 and k = 3 with generator matrix

Γ :=

⎛⎜⎝ 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 2 2 5 7 5 7 5 7 6 8
1 1 6 6 5 7 8 5 7 0 0 1 7 8 6 1 8

⎞⎟⎠
n d G r

17 14 〈

⎛⎜⎝ 0 1 0
1 0 0
0 0 1

⎞⎟⎠〉 51

Table 8.19 Linear codes for q = 9 and k = 4

n d G r

41 34 〈

⎛⎜⎜⎜⎝
8 4 1 8
5 8 7 8
7 3 1 2
0 2 1 5

⎞⎟⎟⎟⎠〉 20

102 88 〈

⎛⎜⎜⎜⎝
1 6 0 0
8 6 0 0
0 0 0 6
0 0 5 0

⎞⎟⎟⎟⎠〉 46

123 106 〈

⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 2
0 1 0 0
0 0 1 7

⎞⎟⎟⎟⎠〉 20

130 112 〈

⎛⎜⎜⎜⎝
0 6 0 0
3 7 1 0
4 1 3 0
0 0 0 1

⎞⎟⎟⎟⎠〉 50

9Chapter 9

The General Case

9

9 The General Case

9.1 The Problem.. 664

9.2 Computing with Permutation Groups 669

9.3 A Permutation Representation 676

9.4 The Lexicographical Order..................................... 682

9.5 Orderly Generation of Codes 688

9.6 The Algorithm Snakes and Ladders 700

9.7 Base and Strong Generating Sets 717

9.8 The Projective Linear Group 727

9.9 The Projective Semilinear Group 738

9.10 Numerical Data .. 741

9 The General Case

After the construction of codes with prescribed automorphism group, we are
now attacking the general case, i.e. we will no longer make any assumption
on the presence of nontrivial automorphisms. The main goal is the evaluation
of a transversal of the isometry classes, for any given parameter set. Of course,
this daunting task can only be solved for small parameters. Also, since we
are mostly interested in good codes, we shall restrict attention to codes with
minimum distance at least 3, the reason is that this restriction makes things
much easier.

The main point is that the construction of a transversal of codes and the
classification by isometry classes are not two separate issues but rather go
hand in hand. We will see that the classification is best done already during
the construction of codes. In fact, the construction of codes is supported by the
classification part in that not too much overhead is constructed which other-
wise would have to be deleted later. The corresponding algorithmic principle
is that of orderly generation of discrete structures. The order refers to an order
which we impose on the objects, for instance the lexicographical order given
by the columns of the generator matrices. This leads to a central problem in
the systematic construction of transversals of orbits, e.g. of isometry classes:
We have to introduce a normal form, following the request of D. Slepian, who
wrote in 1960 ([184]):

“The task of analyzing group codes would be greatly simplified if a canonical
form could be found for each equivalence class of Ω-matrices1. That is, for a
given n and k, we should like to be able to write down one generator matrix from
each equivalence class. This would provide a simple means of describing each of
the essentially different (n, k)-codes.”

The plan of this chapter is as follows. We first show how to reduce the com-
putation of transversals of isometry classes to a problem in finite projective ge-
ometry. This will give us control over the minimum distance. The remaining
problem of computing orbits can be solved using methods from Computa-
tional Group Theory. We will give a very brief introduction to this area, focus-
ing mainly on fundamental algorithms for permutation groups. After that, we
describe the method of orderly generation, and we apply this to the construc-
tion of optimal linear codes. The major issue is that of computing orbits of a
group on subsets. We treat the permutation representation of the projective
linear group. Finally, we present numerical data which was computed. We

1a group code is a linear code, an Ω-matrix is a generator matrix Γ

664 9. The General Case

classify the isometry classes of optimal linear codes for small parameters and
over small fields.

9.1 9.1 The Problem

We are faced with the following problem: For a given length n, dimension k,
minimum distance d and field Fq, we would like to determine the isometry
classes of linear (n, k, d, q)-codes. For instance, this could be done by listing
generator matrices for each such code. Before we embark on this mission, let
us recall what we have learned in the earlier chapters.

9.1.1 Remarks In order to evaluate a transversal of the isometry classes of linear
(n, k, d, q)-codes, we can use the following facts:

In Chapter 1 we saw that a linear code C can be described both by a gen-
erator matrix Γ and by a check matrix ∆. The check matrix is a generator
matrix of the dual code C⊥. Moreover, as (C⊥)⊥ = C, the mapping

⊥ : U (n, k, q) → U (n, n − k, q), C �→ C⊥

is a bijection from the set of (n, k)-codes to the set of (n, n − k)-codes over
Fq. In fact, as the map ⊥ is compatible with the various types of isometries,
this map descends to a bijection of the corresponding isometry classes. This
fact holds true both for linear and for semilinear isometry classes. In the fol-
lowing, when we speak of isometry classes (unqualified) we mean that the
result holds regardless of whether the isometry classes under consideration
are linear or semilinear. It remains to investigate the map ⊥ further.

As we are interested mainly in good codes, we may ignore codes with min-
imum distance at most 2. Such codes cannot correct a single error, so this
restriction does not exclude anything which would be interesting. So, from
now on we consider only codes C with minimum distance at least 3, for
short: linear (n, k,≥ 3, q)-codes.

From 1.3.9 we know that check matrices of such codes have pairwise lin-
early independent columns. In the language of 6.1.14, this means that such
codes have projective duals. Conversely, a code whose check matrix is pro-
jective has minimum distance at least 3 (see Exercise 1.3.21). Therefore, the
duality map may be restricted to induce bijections between the following
isometry classes of codes:
1. (n, n − k) projective codes,

9.1 The Problem 665

2. (n, k)-codes with minimum distance greater than or equal to three (or
(n, k,≥ 3)-codes).

Vector spaces are often difficult to handle with a computer. In part this
results from the fact that there are usually many different bases for the same
space. As far as Slepian’s problem of computing transversals of linear codes is
concerned, we have to consider orbits of the isometry group on vector spaces.
This raises other issues, like how to represent these orbits on the Computer,
when typically each orbit is very long and the orbit elements are vector spaces.
In order to overcome these problems, we may look for different representa-
tions of codes. We take the approach indicated in the last item of the previous
remark of looking at the projective dual code. We can build on ideas from
Section 6.1. The fundamental result 6.1.13 identifies linear isometry classes of
linear codes with certain orbits of groups on mappings into projective space.
In 6.1.25, the result is specialized to injective functions, which can be identified
with their image, since we have the symmetric group acting on the domain of
the map. These results may be summarized and slightly generalized as

9.1.2Theorem

1. There is a one-to-one correspondence between the linear isometry classes of projec-
tive (n,≤ k, q)-codes and the set of orbits

PGLk(q)\\
(

PGk−1(q)
n

)
.

2. There is a one-to-one correspondence between the semilinear isometry classes of
projective (n,≤ k, q)-codes and the set of orbits

PΓLk(q)\\
(

PGk−1(q)
n

)
.

In both cases, the isometry classes of projective (n, i, q)-codes correspond to the orbits
on n-subsets of PGk−1(q) with the property that the n points span a vector space of
dimension i, for 0 ≤ i ≤ k. �

In order to describe the underlying map between codes and orbits of points,
we start with a generator matrix

Γ = (γi,j) ∈ Fk×n
q

of a projective (n, k, q)-code. Then

P
(
Γ
)

:=
{

P(γ∗,0), P(γ∗,1), . . . , P(γ∗,n−1)
}
⊆ PGk−1(q), 9.1.3

666 9. The General Case

is a set of n points in PGk−1(q) with the property that these points span a vector
space of dimension k. Here,

P(γ∗,j) = 〈γ∗,j〉

is the projective point whose homogeneous coordinates are listed in the j-th
column of Γ.

From the definition of the map, it is clear that rearranging the columns of
Γ does not change the set P(Γ). The action of GLk(q) on generator matrices is
similar to the action of PGLk(q) on n-sets of points in PGk−1(q). This is because
left-multiplying Γ by an invertible matrix A gives rise to the set {P(A · γ∗,j) |
j ∈ n} which is the image of P(Γ) under the projective transformation induced
by A.

This shows that the map Γ �→ P(Γ) descends to a map from the linear
isometry classes of projective codes to the orbits of n-sets of points of PGk−1(q)
under the projective linear group PGLk(q). This map is a one-to-one correspon-
dence and preserves the dimension.

Furthermore, the action of ΓLk(q) on generator matrices corresponds to
the action of PΓLk(q) on n-sets of points in PGk−1(q). Thus, the given map
descends to a map from the semilinear isometry classes of projective codes
to the orbits of n-sets of points of PGk−1(q) under the projective semilinear
group PΓLk(q). Again, the resulting map is a one-to-one correspondence and
preserves the dimension.

In order to describe the inverse map, we introduce the following notation.
To a set S of n different points p0, . . . , pn−1 in PGk−1(q) we associate the gen-
erator matrix

Γ(S) = (ai,j) ∈ Fk×n
q9.1.4

where pj = 〈a∗,j〉 for j ∈ n. This construction is not unique for two reasons. At
first, we are making a choice by ordering the points of the set. Furthermore, the
vector a∗,j with pj = 〈a∗,j〉 is unique up to non-zero scalar multiples. Therefore,
the matrix Γ(S) is unique up to order of its columns and multiplication of columns
by nonzero scalars. Changing to a different set

A · S = {P(A · a∗,j) | j ∈ n}

results in changing the generator matrix to A · Γ(S). Summarizing, the code
generated by Γ(S) is determined up to linear isometry.

Under the duality map, the previous result becomes

9.1 The Problem 667

9.1.5Corollary

1. There is a one-to-one correspondence between the linear isometry classes of (n,≥
k,≥ 3, q)-codes and the set of orbits

PGLn−k(q)\\
(

PGn−k−1(q)
n

)
.

2. There is a one-to-one correspondence between the semilinear isometry classes of
projective (n,≥ k,≥ 3, q)-codes and the set of orbits

PΓLn−k(q)\\
(

PGn−k−1(q)
n

)
.

In both cases, the isometry classes of (n, k + i,≥ 3, q)-codes correspond to the orbits
on n-subsets of PGn−k−1(q) with the property that the n points span a vector space of
dimension k − i, for for some i with 0 ≤ i ≤ k. �

Here, if S = {p0, . . . , pn−1} is a set of n points in PGn−k−1(q) we obtain a
projective check matrix

∆(S) = (bi,j) ∈ F(n−k)×n
q 9.1.6

where pj = 〈b∗,j〉 for j ∈ n (notice that this is a vector of length n − k). This
matrix is well-defined up ordering of the columns and up to non-zero scalar
multiples of the columns. Since we take this matrix as a representative of an
isometry class of codes, this non-uniqueness does not bother us.

The last result is already very close to what we really want. Apart from
codes with minimum distance 1 or 2, Slepian’s problem of finding a transversal
of all isometry classes of codes is solved (provided we can evaluate the orbits
in question, this remains to be seen). But we can refine this approach a little, to
better suit the application in coding theory. What if Slepian would have asked

“For a given n and k and dmin, we should like to write down one generator
matrix from each equivalence class of (n, k)-codes whose minimum distance is
at least dmin.”

That is, what if we are interested in codes with a given minimum distance.
The point with codes is that we really are not interested all that much in the
generality of all available codes. The focus is of course on “good” codes, i.e.
codes whose minimum distance is high. That means, we wish to direct atten-
tion to finding only a subset of the set of all (n, k)-codes, namely those with
minimum distance greater than or equal to dmin, where dmin is some specified
lower bound which we choose beforehand. Of course, in the spirit of Slepian
we still want one generator matrix from each equivalence class, i.e. we still

668 9. The General Case

want to classify the codes exhaustively. In particular, if no such code exists,
our construction procedure should prove this fact. As we will see shortly, it is
possible to refine our approach and take into account the prescribed minimum
distance dmin right from the start. Of course, this restriction will save us a lot
of work since we can skip a whole lot of codes which do not meet the required
minimum distance. In a sense, we are looking for the needle in the haystack.

Let us introduce the following terminology.

9.1.7 Definition In a projective space, a set of points 〈v(0)〉, 〈v(1)〉, . . . , 〈v(r−1)〉 is said
to be in in general position (or independent) if they generate a vector space of
dimension r. That is, the points are independent in projective space if and only
if the representing vectors v(0), v(1), . . . , v(r−1) are independent as vectors.

It is clear that this property does not depend on the choice of the represent-
ing non-zero vectors v(i) out of their respective subspace 〈v(i)〉.

Using this language, we can rephrase 1.3.10 as follows. The generator ma-
trices of linear codes over Fq of length n, dimension at least k and with min-
imum distance at least dmin for some integer dmin ≥ 3 correspond (up to or-
dering of the columns and multiplication of columns by non-zero scalars) to
the n-subsets of PGn−k−1(q) with the property that any dmin − 1 points are in
general position.

In fact, this correspondence descends to a correspondence between isome-
try classes of codes and orbits of projective groups on sets of points in projec-
tive space.

9.1.8 Theorem For any given dmin ≥ 3, we have the following:

1. The linear isometry classes of linear (n,≥ k,≥ dmin, q)-codes correspond one-to-
one to the subset of

PGLn−k(q)\\
(

PGn−k−1(q)
n

)
,

consisting of the orbits of n-sets whose dmin − 1-subsets are all in general position.
2. Correspondingly, the semilinear isometry classes of linear (n,≥ k,≥ dmin, q)-

codes correspond one-to-one to the subset of

PΓLn−k(q)\\
(

PGn−k−1(q)
n

)
,

consisting of the orbits of n-sets whose (dmin − 1)-subsets are all in general posi-
tion.

In both cases, the true minimum distance d of these codes is determined by the size of
the smallest set of points which are dependent. Also, the true dimension of such a code

9.2 Computing with Permutation Groups 669

is determined as n − r, where r is the vector space dimension of the space spanned by
the n points. �

The rest of this chapter is devoted to solving the problem of constructing
and classifying codes algorithmically using Theorem 9.1.8. It involves tech-
niques from Computational Group Theory. The major issue, namely that of
computing orbits on sets is addressed in Sections 9.2 and 9.6. The following
Section 9.2 handles the “base case”, where the sets have size 1 and hence are
in fact points. Section 9.6 treats the general case, building on the results of
Section 9.2.

9.29.2 Computing with Permutation Groups

In this section we address the problem of explicit computations with permu-
tation groups. Our main goal is to compute orbits of permutation groups on
subsets. This is part of a rather new branch of mathematics called Computa-
tional Group Theory, or CGT for short. Our main references are the recent book
by Holt, Eick and O’Brien [91], the book by Seress [177] and the one by But-
ler [35]. For more on combinatorial algorithms see the book by Kreher and
Stinson [116]. Several computer algebra systems covering CGT are available.
The two most prominent are GAP [63] and Magma [140].

Let G be a finite group acting on a finite set X. For technical reasons we
prefer in this chapter actions from the right, i.e. mappings

X × G → X : (x, g) �→ xg,

such that (xg)g′ = x(gg′) and x1 = x. But we still use the symbol G(x) for the
orbit of x and Gx for its stabilizer.

Let us assume that G acts faithfully, which means that only the identity
element of G fixes every point in X. According to 1.4.5, G is isomorphic to the
permutation group G = δ(G) induced by G on X, a subgroup of the symmetric
group SX on X. Hence we can assume that G is a permutation group on X, i.e.
that G ≤ SX. In this section, we are concerned with computational tasks like
the following.

1. For x ∈ X, compute G(x) = {xg | g ∈ G}, the orbit of x under G.

2. For x ∈ X, compute Gx = {g ∈ G | xg = x}, the stabilizer of x in G.

3. For x, y ∈ G with y ∈ G(x), compute an element g ∈ G with xg = y. We
call such an element a transporter element.

670 9. The General Case

A remark concerning the last problem is in order. The required element g ∈ G
with xg = y may not be unique. In fact, by Lemma 3.4.1 the set of all elements
g ∈ G with this property forms a unique right coset of the stabilizer Gx, the
stabilizer of x in G.

In order to get started, the group has to be specified in some concrete way.
A very simple way is by a set of generators, i.e. a set S of elements of G which
together generate G, i.e. 〈S〉 = G. If G is finite, this means that each element
g ∈ G can be written as a word of finite length over the alphabet S (Exer-
cise 9.2.1). This will suffice for the moment. A more sophisticated represen-
tation of a group will be presented in Section 9.7. So for now, let us always
assume that G is given by a finite set of generators S = {s0, . . . , sr−1}.

The first problem is that of computing the orbit of a point x ∈ X under the
group G. We start by introducing a graph which describes the action of G on
the set X.

9.2.1 Definition (action graph) Let the group G act on the finite set X. Assume that
G is generated by a set of generators S = {s0, . . . , sr−1}. The action-graph of G
on X with respect to the set S is the directed graph (digraph) G = (X, E). That
is, the vertices of G are the elements of X. The edge set E consists of directed
labeled edges. There is an edge from vertex x to vertex y labeled by sj if

xsj = y.

We write x → y to indicate that there is an edge from x to y. A directed path
is a sequence of x0, x1, . . . , xu−1 of vertices which are pairwise distinct (except
possibly for x0 and xu−1 which may coincide) such that x0 → x1 → . . . →
xu−1. We write x � y is there is a path from x to y. The length of a path is the
number of edges used. We also define a cycle to be a path where the start and
the endpoint coincide (i.e. with x0 = xu−1 in the above notation). A loop is a
cycle of length 1, i.e. an edge from a vertex x to itself.

The action graph may have loops, i.e. edges of the form (x, x) for some
vertex x ∈ X. Also, it may have several edges from vertex x to vertex y, namely
if there are several elements s ∈ S with xs = y.

9.2.2 Lemma Let the group G act on the finite set X. Let G = (X, E) be the action graph
with respect to the generating set S of G. Then the orbits of G on X correspond one-
by-one to the connected components of G . In particular, the connected components of
G are well-defined and independent of the choice of the generating set S of G.

9.2 Computing with Permutation Groups 671

Proof: Without loss of generality, we can replace G by the finite group G/K,
where K is the kernel of the action of G on X, i.e. the pointwise stabilizer of the
whole set X. The fact that G/K is finite follows from the fact that X is finite.
Thus we may assume that G is a finite group. By Exercise 9.2.1, each g ∈ G
can be written as a word si0si1 . . . siu−1 in the generators. Recall that we write
x � y if there is a directed path from x to y in G . Such a path gives rise to a
group element g = sj0 sj1 . . . sju−1 with xg = y. If g−1 = si0si1 . . . siv−1, then there
also is a path

y → ysi0 → ysi0si1 → . . . → yg−1 = x

in G , i.e. y � x. This means that

x � y ⇐⇒ y � x.

In other words, the relation “�” is undirected, and we can replace it by the
symmetric x ∼ y (so that “∼” really is an equivalence relation on X). We
conclude that the concept of a connected component is well-defined in action
graphs. Also, we have shown that x ∼ y if and only if x and y belong to
the same G-orbit. This means that the connected components of G correspond
bijectively to the G-orbits on X. It remains to show that the connected compo-
nents in the action graph depend only on the group G, and not on the choice of
the generating set S for G. To this end, let T = {t0, . . . , ts−1} be another gener-
ating set for G. Write GS and GT for the action graphs of G with respect to the
generating sets S and T. We need to show that x � y in GS if and only if x � y
in GT . We note that x � y in GS implies that xg = y for g = si0si1 . . . siu−1.
The element g has an expression in terms of the second generating set, say
g = tj0 tj1 . . . tjv−1 . But then x � y in GT . The converse follows by symmetry. �

9.2.3Remark In Computer Science, a subset U of vertices in a directed graph is
called strongly connected if both x � y and y � x hold for all x, y ∈ U.
The maximal strongly connected subsets of a graph are called strongly con-
nected components and there are algorithms to compute these for a given
graph (see [42]). It follows from 9.2.2 that the connected components of an
action graph are strongly connected components. Nevertheless, there is a dif-
ference. The reason is that the strongly connected components in general di-
graphs may still have edges between them. The connected components in
action graphs do not have this property.

9.2.4Example Figure 9.1 shows action-graphs of S6 with respect to two different
generating systems. The left picture uses s0 = (0, 1, 2, 3, 4, 5) and s1 = (0, 1).

672 9. The General Case

0

1

2

3

4

5

0

1

2

3

4

5

Fig. 9.1 Two action-graphs for S6

The right picture is obtained by using the Coxeter generators si = (i, i + 1),
where i = 0, 1, . . . , 4. Edge labels and loops are not shown. �

To compute the orbit G(x) of a point x ∈ X, we compute a spanning tree of
the connected component of G containing x. This spanning tree is a cycle-free
connected subgraph of G , rooted at x, whose vertices are the elements of G(x).
This means that there is a unique directed path from x to any element y in
G(x). This spanning tree can be described by the following data structure:

9.2.5 Definition (Schreier-tree) Let G be a group acting on a finite set X. Let G be
given by generators s0, . . . , sr−1. Let G = (X, E) be the action graph for G acting
on X. Let x be an element of X. A Schreier-tree for the orbit of x is a spanning
tree for the connected component of G containing x. The tree is rooted at x and
all edges are pointing away from x.

We remark that a spanning tree for a connected component of a graph is in
general not unique. For action graphs, this reflects the fact that there may be
different ways to obtain a given element y ∈ X as an image of x under group
elements g1, g2 ∈ G. We will investigate these questions no further but we
note, however, that the shape of the tree is important for performance consid-
erations. For example, the average depth of a node should be small. There are
special methods to build “shallow” Schreier-trees, see Seress [177]. The trick is
to change the generating set S which is used for calculating the action graph
beforehand.

The following basic orbit algorithm computes a Schreier-tree for the orbit
of x under G. It uses a data structure called queue, which is similar to a waiting
line. The new elements are appended to the end of the queue, and the elements
are taken out in order. This means that the front-most element is processed

9.2 Computing with Permutation Groups 673

first, then the second element and so forth until all elements are processed and
the queue is empty.

9.2.6Algorithm (orbits on points)

Input: A permutation group G acting on a finite set X = {x1, . . . , xn}, a
generating set S = {s0, . . . , sr−1} of G, a point x ∈ X.

Output: A Schreier-tree T = (O, E) for the orbit O = G(x).

(1) let Q be a queue holding the element x
(2) let O := {x}, E = ∅, so that T = ({x}, ∅) has only one node x
(3) while Q �= ∅ do

(4) let y be the first element of Q (remove y from Q)
(5) for i ∈ r do

(6) z := ysi

(7) if z �∈ O then

(8) append z to Q, add z to O
(9) add the edge (y, z) labeled by si to E
(10) end if

(11) end for

(12) end while �

9.2.7Example Let G be the permutation group generated by

s0 = (3, 4)(9, 14)(10, 13)(11, 12),
s1 = (3, 9)(4, 14)(10, 11)(12, 13),
s2 = (3, 11)(4, 12)(9, 10)(13, 14),
s3 = (2, 3)(6, 9)(7, 10)(8, 11),
s4 = (1, 2)(5, 6)(10, 12)(11, 13),
s5 = (0, 1)(6, 7)(9, 10)(13, 14).

The action-graph and a spanning Schreier-tree are shown in Fig. 9.2. It can be
shown that G � PGL4(2). See also Examples 9.2.11,9.3.11 and 9.8.12 below. �

Let us now consider the problem of computing Gx, the stabilizer of x in G,
for x ∈ X. The following result, due to Schreier, provides a set of generators
for Gx, given generators for G.

9.2.8Theorem (Schreier) Let G be a finite group generated by a set of elements S. Let
H be a subgroup of G and let R be a set of right coset representatives for H in G
containing 1. For r ∈ R and s ∈ S, let rs be the unique element in R with rs ∈ Hrs.
Then H is generated by all elements of the form rsrs−1, where r ∈ R and s ∈ S. Each
such element is called a Schreier-generator

674 9. The General Case

0
1

2

3

4

5

6
7 8

9

10

11

12

13

14 5
4

3

0

1

2

1

2

2
3

3

4

3
4

0
1

2

3

4

5

6
7 8

9

10

11

12

13

14

Fig. 9.2 Action-graph and Schreier-tree

Proof: The set R is a system of right coset representatives of H in G so that

G =
⋃

r∈R
Hr.

We extend the function defined in the theorem to the whole group by letting
g, for g ∈ G, be the unique element in R with g ∈ Hg. Note that hg = g if
h ∈ H. Also, g = g for all g ∈ G. Finally, g = 1 if and only if g ∈ H. Suppose
g = s1s2 · · · st ∈ G with each si ∈ S. Put

g0 = 1, g1 = s1, g2 = s1s2, . . . , gt = s1s2 · · · st = g.

Write
u0 = g0 = 1, u1 = g1, . . . , ut = gt = g.

Then

gu−1
t = s1s2s3 · · · stu−1

t = u0s1u
−1
1 u1s2u−1

2 u2 · · · u−1
t−1ut−1stu−1

t ,9.2.9

which equals g if g is in H since then ut = g = 1. By definition of the function
g �→ g, we deduce from gi−1 = ui−1 that gi−1 ∈ Hui−1. Hence there exists an
element h ∈ H with gi−1 = hui−1. Therefore gi−1si = hui−1si, which implies
gi−1si = ui−1si. It follows that for i ≥ 1

ui = ui = gi = gi = gi−1si = ui−1si,

which is an element of the form rs with r ∈ R and s ∈ S. Now let g ∈ H and
hence ut = 1. Then 9.2.9 becomes

g = gu−1
t =

t

∏
i=1

ui−1siu
−1
i =

t

∏
i=1

ui−1siui−1si
−1,

9.2 Computing with Permutation Groups 675

i.e. g can be written as a product of elements of the form rsrs−1, with r ∈
R, s ∈ S. This finishes the proof. �

One particular instance of this is the computation of point stabilizers in per-
mutation groups.

9.2.10Corollary Let the group G act on the finite set X and let S be a set of generators for
G. For x ∈ X, let R = {r1, r2, . . . , r�} with r1 = 1 be a set of elements such that the
following holds: For each y ∈ G(x) there is one and only one element r ∈ R with
xr = y (and therefore |G(x)| = �). Then

Gx = 〈rsrs−1 | r ∈ R, s ∈ S〉. �

The last of the three problems is that of computing transporter elements g such
that yg = z (provided y and z are in the same G-orbit, say G(x), of course).
Such transporter elements can be computed from the Schreier-tree of the orbit.
Let T = (G(x), E), and let y and z be elements of the orbit. Following the edge
labels along the path from x to y and from x to z, respectively, we obtain group
elements u and v with xu = y and xv = z. Then yu−1v = xv = z, so that u−1v
is a transporter element.

9.2.11Example (continuation of Example 9.2.7) An element g ∈ G mapping 6 to 13,
for example, can be determined directly from the tree:

g = s−1
3 s−1

1 s2s4 = (1, 2, 12, 14, 10, 7, 3)(4, 11, 8, 9, 5, 6, 13).

The reader should carefully note that this product of permutations has to be
read from the left to the right, since in this chapter we prefer actions from the
right. �

We need further notation concerning the solution of orbit type problems.

9.2.12Definition (orbit data structure) Let G be a group which acts on the finite set
X. The triple

orbit(G, X) = (T , σ, ϕ) := (T , σ, ϕ)

is the orbit data for G acting on X provided that

1. T is a transversal of the G-orbits on X,

2. σ : X → L(G) : x �→ Gx,

3. ϕ : X → G : x �→ g with xg ∈ T .

Here, L(G) denotes the lattice of subgroups of G as defined in 3.4.4. We call σ

the stabilizer map and ϕ the transporter map.

676 9. The General Case

9.2.13 Remarks

1. It follows from 3.4.1 that the image of the map ϕ is unique only modulo
elements of the stabilizer.

2. The orbit data structure is not a purely mathematical object. The point
with the maps ϕ and σ is that we should be able to compute function values
efficiently. When we say that the orbit data (T , σ, ϕ) for G on X is available,
we mean that we have determined T and are able to evaluate the maps σ

and ϕ with reasonably small effort.
3. It may be that σ(y) is known only for elements of the transversal T . If this

is the case, and if in addition we are able to compute transporter elements,
then for a given x in X we compute g = ϕ(x), y = xg and σ(y) = Gy. It
follows from 3.4.3 that

σ(x) = Gx = g−1Gyg = g−1σ(y)g.

Exercises

E.9.2.1 Exercise Let G be a group, generated by a set S = {s0, . . . , sr−1} of generators.
Then each g ∈ G has an expression of the form g = sε0

i0
sε1
i1

. . . sεr−1
ir−1

with ik ∈ r
and εk ∈ {±1}. Show that if G is finite, we can find an expression for g of this
form with εk = 1 for k ∈ r.

9.3 9.3 A Permutation Representation

To get back to codes, let us start by enumerating the points of finite projective
spaces. This allows us to translate the action of the general linear group from
that of a matrix group to that of a permutation group. We will do the case of
Fk

q first, and then move on to the projective case.

Assume that κ0, κ1, κ2, . . . , κq−1 are the elements of the field Fq, where we
always require that κ0 = 0 is the zero element and κ1 = 1 is the unit element
in the field.

We start by ranking the points in Fk
q = {∑k−1

i=0 vie(i) | vi ∈ Fq}. Recall
from 1.3.5 that for every integer q ≥ 2 we have the base q expression of an
integer m ∈ qk

m = ∑
i∈k

aiq
i,

which we abbreviate as m = (ak−1, . . . , a0)q.

9.3 A Permutation Representation 677

9.3.1Lemma Let q be a prime power. Let m ∈ qk be an integer with m = (ak−1, . . . , a0)q.
The map

rk−1
k,q : qk → Fk

q : m �→ (κa0 , . . . , κak−1), 9.3.2

is a bijection, we call it the unrank function for Fk
q. Its inverse

rkk,q : Fk
q → qk : (κa0 , . . . , κak−1) �→ m, 9.3.3

is the rank function for Fk
q. �

The proof is straightforward.

9.3.4Example Let F3 = {κ0, κ1, κ2}, with κ0 = 0 = 0, κ1 = 1 = 1, and κ2 = 2 = 2.
We obtain the following unrank function for F2

3.

rk−1
2,3 (0) = (0, 0), rk−1

2,3(1) = (1, 0), rk−1
2,3 (2) = (2, 0),

rk−1
2,3 (3) = (0, 1), rk−1

2,3(4) = (1, 1), rk−1
2,3 (5) = (2, 1),

rk−1
2,3 (6) = (0, 2), rk−1

2,3(7) = (1, 2), rk−1
2,3 (8) = (2, 2).

Correspondingly

rk2,3((0, 0)) = 0, rk2,3(e(0)) = 1, rk2,3(e(1)) = 3, . . . �

Let us turn our attention to the projective space PGd(q). We want to enumerate
(i.e. label) the set of one-dimensional subspaces 〈v〉 of Fd+1

q , where v �= 0.
Recall from Section 3.7 that we denote the number of points of PGd(q) by

θd(q) =
qd+1 − 1

q − 1
= |PGd(q)| = qd + qd−1 + . . . + q + 1.

In order to enumerate the points of a projective space PGd(q), we are going to
choose nonzero representatives out of each one-dimensional subspace of V =
Fd+1

q . Let e(0), . . . , e(d) be the standard basis of V. We introduce the following
notation. For

u = 〈u0e(0) + . . . + ude
(d)〉 ∈ PGd(q),

let lc(u) be the largest index i for which ui �= 0 (and hence ui+1 = · · · = ud =
0). We call lc(u) the leading coefficient of u. Notice that this definition depends
on the labeling of the basis vectors, which is intentional. To label the one-
dimensional subspaces of V we need to pick one nonzero vector out of each
such subspace. A simple way to do this is to take as representatives the vectors

u = (u0, . . . , ud) ∈ Fd+1
q

whose rightmost nonzero coordinate is one, i.e. with uk = 1, uk+1 = · · · =
ud = 0, where k = lc(u). Such vectors are called standard.

678 9. The General Case

There is one more condition which we pose but which seems a little unmo-
tivated at this point. We require that the unit vectors and the all-one vector get
the smallest possible ranks, i.e. we ask that

rk(〈e(0)〉) = 0,

rk(〈e(1)〉) = 1,
...

rk(〈e(d)〉) = d,

rk(〈e(0) + . . . + e(d)〉) = d + 1.

The reason for this requirement will become clear in Section 9.8, when we ex-
hibit a special property of these vectors (namely, they form a “base” in the
sense of Section 9.7).

The remaining vectors are of the form

u = (u0, . . . , uk−1, 1, 0, . . . , 0)

with (u0, . . . , uk−1) ∈ Fk
q \ {0}, where k = lc(u). If k = d we also have that

(u0, . . . , ud−1) �= (1, . . . , 1). We decide to order these vectors first according to
the value of k (which can take any value from 1 to d). Among the vectors u for
a given k = lc(u) we order according to the ranks of (u0, . . . , uk−1) as points in
Fk

q as given by 9.3.3. We skip the zero vector which cannot occur. If k = d we
also need to skip the all-one vector. This requires some additional effort. We
will shift the rank before we apply 9.3.2 and conversely we will also shift the
rank after application of 9.3.3. The all-one vector – as an element of Fd

q – has
rank

1 + q + q2 + . . . + qd−1 =
qd − 1
q − 1

= θd−1(q).

Therefore, we need to increase all ranks which are greater than or equal to this
number by one before calling 9.3.2. Conversely, if we are ranking a vector u
with lc(u) = d, we need to decrease all ranks of (u0, . . . , ud−1) ∈ Fd

q by one
if they happen to be greater than θd−1(q). To facilitate this we will introduce
a shift function. Summarizing, we have the following unrank and rank func-
tions for the points of PGd(q). We remark that the if clauses are to be read in
order, that is, the second and all following if clauses are to be understood as
“otherwise if.”

9.3.5 Lemma We define the unrank function rk−1
d;q : θd(q) → PGd(q) by

rk−1
d;q(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈e(m)〉 if m ≤ d,

〈
d

∑
i=0

e(i)〉 if m = d + 1,

〈rk−1
d,1;q(m − d − 1)〉 otherwise,

9.3.6

9.3 A Permutation Representation 679

where

rk−1
d,k;q(m) =

⎧⎪⎨⎪⎩
rk−1

d,∗;q(m) if k = d

e(k) + rk−1
k,q (m) if m < qk

rk−1
d,k+1;q(m − qk + 1) otherwise.

9.3.7

Here,
rk−1

d,∗;q(m) = e(d) + rk−1
d,q

(
shiftθd−1(q)(m)

)
9.3.8

with

shiftj(m) :=
{

m if m < j,
m + 1 otherwise.

9.3.9

This map rk−1
d;q is a bijection. Its inverse is the rank function for PGd(q), denoted as

rkd;q. For a point 〈u〉 with u = (u0, u1, . . . , ud) ∈ Fd+1
q \ {0} one has rkd;q(〈u〉) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k if 〈u〉 = 〈e(k)〉
d + 1 if 〈u〉 = 〈1, . . . , 1〉

d + 2− k + qθk−2(q) + rkk,q

(
u0
uk

, . . . , uk−1
uk

)
if k = lc(u) < d

2 + qθd−2(q) + shift−1
θd−1(q)

(
rkd,q

(
u0
ud

, . . . , ud−1
ud

))
if lc(u) = d.

9.3.10

�

9.3.11Example We have θ2(2) = 22 + 2 + 1 = 7, θ2(3) = 32 + 3 + 1 = 13 and
θ3(2) = 23 + 22 + 2 + 1 = 15. Table 9.1 shows the labeling of points of PG2(2),
PG2(3) and PG3(2). Let us see some specific examples. We have

rk−1
3;2 (4) = 〈1, 1, 1, 1〉 by 9.3.6,

rk−1
3;2 (5) = 〈rk−1

3,1;2(1)〉 by 9.3.6

= 〈e(1) + rk−1
1,2 (1)〉 by 9.3.7

= 〈e(1) + e(0)〉 = 〈1, 1, 0, 0〉 by 9.3.2,

rk−1
3;2 (14) = 〈rk−1

3,1;2(10)〉 by 9.3.6

= 〈rk−1
3,2;2(9)〉 by 9.3.7

= 〈rk−1
3,3;2(6)〉 by 9.3.7

= 〈rk−1
3,∗;2(6)〉 by 9.3.7

= 〈e(3) + rk−1
3,2 (shift7(6))〉 by 9.3.7

= 〈e(3) + rk−1
3,2 (6)〉 by 9.3.9

= 〈e(3) + e(2) + e(1)〉 = 〈0, 1, 1, 1〉 by 9.3.2,

rk−1
2;3 (12) = 〈rk−1

2,1;3(9)〉 by 9.3.6

= 〈rk−1
2,2;3(7)〉 by 9.3.7

= 〈rk−1
2,∗;3(7)〉 by 9.3.7

680 9. The General Case

Table 9.1 Labeling PG2(2), PG2(3) and PG3(2)

m rk−1
2;2 (m) rk−1

2;3 (m) rk−1
3;2 (m)

0 〈1, 0, 0〉 〈1, 0, 0〉 〈1, 0, 0, 0〉
1 〈0, 1, 0〉 〈0, 1, 0〉 〈0, 1, 0, 0〉
2 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1, 0〉
3 〈1, 1, 1〉 〈1, 1, 1〉 〈0, 0, 0, 1〉
4 〈1, 1, 0〉 〈1, 1, 0〉 〈1, 1, 1, 1〉
5 〈1, 0, 1〉 〈2, 1, 0〉 〈1, 1, 0, 0〉
6 〈0, 1, 1〉 〈1, 0, 1〉 〈1, 0, 1, 0〉
7 〈2, 0, 1〉 〈0, 1, 1, 0〉
8 〈0, 1, 1〉 〈1, 1, 1, 0〉
9 〈2, 1, 1〉 〈1, 0, 0, 1〉
10 〈0, 2, 1〉 〈0, 1, 0, 1〉
11 〈1, 2, 1〉 〈1, 1, 0, 1〉
12 〈2, 2, 1〉 〈0, 0, 1, 1〉
13 〈1, 0, 1, 1〉
14 〈0, 1, 1, 1〉

= 〈e(2) + rk−1
2,3 (shift4(7))〉 by 9.3.7

= 〈e(2) + rk−1
2,3 (8)〉 by 9.3.9

= 〈e(2) + 2e(1) + 2e(0)〉 = 〈2, 2, 1〉 by 9.3.2.

Conversely, we have

rk3;2(〈1, 1, 1, 1〉) = 4 by 9.3.10,

rk3;2(〈1, 1, 0, 0〉) = 3 + 2− 1 +
0
1

+ rk1,2
(
(1)

)
by 9.3.10

= 4 + 1 = 5 by 9.3.3,

rk3;2(〈0, 1, 1, 1〉) = 2 +
6
1

+ shift−1
6

(
rk3,2

(
(0, 1, 1)

))
by 9.3.10

= 8 + shift−1
7 (6) by 9.3.3,

= 8 + 6 = 14 by 9.3.9,

rk2;3(〈2, 2, 1〉) = 2 +
6
2

+ shift−1
4

(
rk2,3

(
(2, 2)

))
by 9.3.10

= 5 + shift−1
4 (8) by 9.3.3

= 5 + 7 = 12 by 9.3.9. �

9.3 A Permutation Representation 681

9.3.12Example Using the ranks of the previous example, the permutations of Exam-
ples 9.2.7 and 9.2.11 can be written as matrices. Recall that we use row-vector
convention, i.e. the images of a linear map are written in the rows of the cor-
responding matrix. For instance, the elements of the generating set S can be
written as matrices as follows.

s0 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠ ,

since 0s0 = 0, 1s0 = 1, 2s0 = 2, 3s0 = 4 and 0, 1, 2, 4 are the ranks of the pro-
jective points which are represented by the vectors in the rows of this matrix.
Similarly, we obtain

s1 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎞⎟⎟⎟⎠ , s2 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1

⎞⎟⎟⎟⎠ , s3 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ ,

s4 =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ , s5 =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ .

From this we see that the group of Example 9.2.7 really is a projective linear
matrix group. That it is the full group PGL4(2) will follow from a result in
Section 9.8, where a special generating set (“strong generators”) for this group
is exhibited. The permutation

(1, 2, 12, 14, 10, 7, 3)(4, 11, 8, 9, 5, 6, 13)

of Example 9.2.11 is in fact the matrix

A =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0

⎞⎟⎟⎟⎠ ,

and we have that

rk−1
3;2 (6) · A = 〈1, 0, 1, 0〉 ·

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0

⎞⎟⎟⎟⎠
= 〈1, 0, 1, 1〉 = rk−1

3;2 (13). �

682 9. The General Case

9.4 9.4 The Lexicographical Order

Let (X,≤) be a totally ordered set. In this section, we are concerned with
the set of subsets of X, also known as the power set of X. In addition to our
customary notation 2X, we will introduce the notation P(X) for this set. That
is,

P(X) = {A | A ⊆ X}.
Clearly, the size of P(X) is 2|X|. Later on, we will also consider the set of sub-
sets of size k of X, for some nonnegative integer k ≤ |X|. We denote this set
as

P k(X) = {A | A ⊆ X, |A| = k}.
We introduce the following notation. For a subset A of a totally ordered set X
we write A = {a0, a1 . . . , am−1}< to indicate that the elements of A are listed
in order, i.e. that a0 < a1 < · · · < am−1. The set P(X) can be ordered in a very
natural way, using the ordering of elements of X. This is the lexicographical
order which has already appeared in 3.4.20.

9.4.1 Definition (the lexicographical order) For subsets A = {a0, a1, . . . , am−1}< and
B = {b0, b1, . . . , bn−1}< of the totally ordered set X we put

A , B ⇐⇒
{
∃ r < min(m, n) : ai = bi for i ∈ r and ar < br, or
m ≤ n and ai = bi for i ∈ m.

9.4.2 Example Let X = {a, b, . . . , z} be the Roman alphabet with the usual ordering
of letters. Then P(X) is ordered lexicographically as follows (we leave out set
brackets and commas for simplicity).

∅ ≺ a ≺ ab ≺ abc ≺ · · · ≺ abc . . . wxyz ≺ abc . . . wxz
≺ abc . . . wy ≺ abc . . . wyz ≺ abc . . . wz ≺ · · ·
≺ b ≺ bc ≺ · · · ≺ bcd . . . xyz ≺ · · · ≺ y ≺ yz ≺ z. �

Let (X,≤) be a totally ordered finite set. The lexicographical order on P(X)
can be represented by a tree, the order tree T(X,,) or simply T,. The nodes of
T, are the subsets of X, i.e. the elements of the power set P(X). The edges of
T, can be described as follows. For subsets A and B (of a totally ordered set
X), we say that A is a prefix of B if A ⊆ B and either A = B or min(B \ A) >

max A. In other words, the prefixes of a set B = {b0, b1, . . . , bm−1}< are just
the sets {b0, . . . , bi} for i ≤ m − 1. If A is a prefix of B then we say that B is
a descendant (or offspring) of A or that A is an ancestor of B. We say that B is
an immediate descendant of A if B is a descendant of A and |B| = |A| + 1, i.e.
B = A∪ {max B}. Two nodes are siblings if they are immediate descendants of

9.4 The Lexicographical Order 683

4

3 4

2

4

3 4

1

4

3 4

2

4

3 4

0

4

3 4

2

4

3 4

1

4

3 4

2

4

3 4

Fig. 9.3 Order tree of subsets of {0, 1, 2, 3, 4}

the same node. The edges of the tree T, are between immediate descendants.
One can think of these edges as being directed, pointing from the smaller to
the larger set. In this sense, T, is a rooted tree, with the empty set serving as
root. A leaf is a node without descendants. An inner node is a node which is not
a leaf. We say that a node has distance i from the root if the unique path from
the root to that node has length i. The i-th level of the tree is the set of nodes at
distance i from the root. A common ancestor of two sets A and B is an ancestor
of both A and B. The immediate common ancestor of A and B is the ancestor of A
and B which is largest in size. We arrange the siblings of a node according to
their largest element, using the original ordering of elements of X. The siblings
are drawn from left to right in increasing order. Thus T≺ is an ordered tree. In
the Computer Science literature (cf. [42], for example) these trees are known as
binomial trees. We also mention that it is ubiquitous in the Computer Science
literature that trees grow top down. Thus the root node is the node on top of
the drawing, whereas the leaves are the nodes at the bottom.

9.4.3Example Consider the five element set X := {0, 1, 2, 3, 4}< . Figure 9.3 displays
the order tree T(X,,). Here, we label the nodes by the largest element of the set
which they represent (the root node is represented as an empty node). Clearly,
the set corresponding to a node can be reconstructed by simply collecting all
labels of nodes along the unique path from the root to the node.

There are essentially two different ways of traversing the nodes of a tree.
The depth first search strategy (or pre-order traversal) is to move down the tree,
visiting a node and its offsprings recursively. This is done in such a way that

684 9. The General Case

the leftmost offspring and its whole branch is visited first. Then on the way
back one moves to the right, visiting possible siblings and their whole sub-
trees recursively. This way all the siblings are dealt with before the procedure
returns to its ancestor. One may imagine this procedure as follows. Think of
the tree as a fence in the plane. Walk around that fence, starting from the root
node in the direction to the leftmost offspring, keeping the fence to your left.
A different way to visit the nodes of a tree is the breadth first search order. Here,
the nodes at any given level are visited in order, starting from the root and
going down to deeper levels.

The ordering of subsets is encoded in the tree. Namely, we encounter the
sets in lexicographical order if we visit the nodes of the tree in depth first
strategy. In the above example, the depth first search arranges the subsets
of {0, . . . , 4} in the following order, which is indeed lexicographical.

∅ ≺ 0 ≺ 01 ≺ 012 ≺ 0123 ≺ 01234 ≺ 0124 ≺ 013 ≺ 0134
≺ 014 ≺ 02 ≺ 023 ≺ 0234 ≺ 024 ≺ 03 ≺ 034 ≺ 04
≺ 1 ≺ 12 ≺ 123 ≺ 1234 ≺ 124 ≺ 13 ≺ 134 ≺ 14
≺ 2 ≺ 23 ≺ 234 ≺ 24 ≺ 3 ≺ 34 ≺ 4.

Using breadth first search, the nodes of the tree will be visited in the following
order:

∅,
0, 1, 2, 3, 4,
01, 02, 03, 04, 12, 13, 14, 23, 24, 34,
012, 013, 014, 023, 024, 034, 123, 124, 134, 234,
0123, 0124, 0134, 0234, 1234,
01234. �

Let us collect fundamental properties of the order tree in the following lemma.
The proofs are straightforward and therefore omitted.

9.4.4 Lemma Let X = {x0, x1, . . . , xn−1}< be a finite totally ordered set. Let , be the
lexicographical order on P(X). Then the order tree T, has the following properties.

1. For every node of the tree, the corresponding set is the union of the labels along the
path leading to that node. Moreover, the labels are encountered in ascending order
along this path.

2. The nodes at level i correspond to i-subsets of X, and hence there are (n
i) of them.

3. For A, B ⊆ X, a common ancestor of A and B corresponds to a prefix of A∩ B and
vice-versa. The immediate common ancestor is the prefix of A ∩ B which is largest
in size.

9.4 The Lexicographical Order 685

4. The tree has 2n−1 leaves corresponding to the subsets of X which contain xn−1.
The tree has 2n−1 inner nodes corresponding to the subsets of X which do not
contain xn−1.

5. The subtree rooted at a set A ⊆ X consists of the subsets B ⊆ X for which A is a
prefix of B. If max A = xi, there are 2n−1−i such nodes. In particular, the subtree
whose root is {xi} (i.e. the tree which is rooted at the i-th descendant of the global
root), contains all subsets A ⊆ X with min A = xi. There are 2n−1−i such sets.

6. Two subtrees rooted at sets A and B (with A, B ⊆ X) are equal in shape and
labeling of the nodes if and only if max A = max B.

7. If the order tree is traversed in depth first search, the subsets are encountered in
lexicographic order. That is, a subset A precedes a subset B in the lexicographical
order if and only if A is reached first when traversing the tree T(X,,) in depth first
search. In terms of the common ancestor C of A and B we can say that A , B if
and only if either C = A or min A \ C < min B \ C. That is, A , B if and only
if either B is a descendant of A or the branch containing B is to the right of the
branch containing A among the siblings of the immediate common ancestor of A
and B.

8. Let A be a subset with max A = xi (put i = −1 if A = ∅). The leftmost leaf in
the subtree rooted at A is the set A ∪ {xi+1, . . . , xn−1}. The rightmost leaf in the
subtree rooted at A is the set A ∪ {xn−1}.

9. Let A be a subset with max A = xi (put i = −1 if A = ∅). The subtree rooted at
A contains exactly (n−1−i

k−|A|) sets of size k. �

It is of course useful to have rank and unrank functions for the set of subsets
of a finite set.

9.4.5Lemma Let X = {x0, x1, . . . , xn−1}< be a totally ordered finite set of n elements.
Define a function, the rank function, from P(X) to the set of integers 2n as follows.
For a set A ⊆ X define

rkX : P(X) → 2n : A �→
{

0 if A = ∅,
|A| + ∑ xi∈X\A

xi<max A
2n−1−i otherwise.

This function is one-to-one and onto. Its inverse is the unrank function, defined as

rk−1
X (r) := rk−1

X (r, 0),

where

rk−1
X (r, m) := ∅ if r = 0,

686 9. The General Case

while for 0 < r < 2n−m we have

rk−1
X (r, m) :=

{
{xm} ∪ rk−1

X (r − 1, m + 1) if 2n−1−m ≥ r,

rk−1
X

(
r − 2n−1−m, m + 1

)
if 2n−1−m < r.

�

9.4.6 Example For X = {0, . . . , 4} as above, we have

rkX({1, 3, 4}) = 3 + 25−1−0 + 25−1−2 = 23,

which can be verified by counting the nodes in Fig. 9.3. The tree rooted at {0}
has 16 nodes, and the tree rooted at {1, 2} brings in another 4 nodes, so that
the set {1, 3, 4} has indeed rank 23. On the other hand, we have

rk−1
X (23) = rk−1

X (23, 0)
16<23= rk−1

X (7, 1)
8≥4= {1} ∪ rk−1

X (6, 2)
4<6= {1} ∪ rk−1

X (2, 3)
2≥2= {1, 3} ∪ rk−1

X (1, 4)
1≥1= {1, 3, 4} ∪ rk−1

X (0, 5)

= {1, 3, 4},

which is the original set again. �

Sometimes we are only interested in the set Pk(X) of k-subsets of X, where k
is some fixed integer with 0 ≤ k ≤ |X|. The elements of Pk(X) can be ranked
and unranked as well.

9.4.7 Lemma Let X = {x0, x1, . . . , xn−1}< be a totally ordered finite set of n elements.
Let k be an integer with 0 ≤ k ≤ n. Define a function, the rank function of Pk(X) to
the set of integers (n

k) as follows. For a k-subset A = {xa0 , xa1 , . . . , xak−1}<, put

rkX,k : Pk(X) →
(

n
k

)
: A �→

k−1

∑
i=0

ai−1

∑
j=ai−1+1

(
n − 1− j
k − 1− i

)
,

where a−1 := −1. The function rkX,k is one-to-one and onto. Its inverse is the func-
tion rk−1

X,k, which is given by

rk−1
X,k(r) = rk−1

X,k(r, 0),

where
rk−1

X,k(r, m) := ∅ if k = 0,

9.4 The Lexicographical Order 687

whereas for k > 0

rk−1
X,k(r, m) =

⎧⎨⎩ {xm} ∪ rk−1
X,k−1(r, m + 1) if (n−1−m

k−1) > r,

rk−1
X,k

(
r − (n−1−m

k−1), m + 1
)

if (n−1−m
k−1) ≤ r.

�

9.4.8Example For X = {0, . . . , 4} as above, we have

rkX,3({1, 3, 4}) =
(

5− 1− 0
3− 1− 0

)
+

(
5− 1− 2
3− 1− 1

)
=

(
4
2

)
+

(
2
1

)
= 8,

which can of course be verified by counting nodes in Fig. 9.3. The tree rooted
at {0} contains six 3-subsets, and the tree rooted at {1, 2} brings in another
two 3-subsets, so that the set {1, 3, 4} has rank 6 + 2 = 8. On the other hand,
we have

rk−1
X,3(8) = rk−1

X,3(8, 0)

(5−1−0
3−1)=6≤8

= rk−1
X,3(2, 1)

(5−1−1
3−1)=3>2

= {1} ∪ rk−1
X,2(2, 2)

(5−1−2
2−1)=2≤2

= {1} ∪ rk−1
X,2(0, 3)

(5−1−3
2−1)=1>0

= {1, 3} ∪ rk−1
X,1(0, 4)

(5−1−4
1−1)=1>0

= {1, 3, 4} ∪ rk−1
X,0(0, 5)

= {1, 3, 4},

which is the original set again. �

Exercises

E.9.4.1Exercise Compute the rank of A = {2, 3, 5, 7} as a subset of {0, . . . , 7}.

E.9.4.2Exercise Compute rk−1
X (99) where X = {0, . . . , 7}.

E.9.4.3Exercise Compute the rank of A = {2, 3, 5, 7} as a 4-subset of {0, . . . , 7}.

E.9.4.4Exercise Compute rk−1
X,4(66) where X = {0, . . . , 7}.

688 9. The General Case

E.9.4.5 Exercise If X = {apple, orange, pear, potato, banana, mango, lemon}< , compute

1. rkX({orange, potato, mango}),
2. rkX,3({orange, potato, mango}),
3. rk−1

X (79) and
4. rk−1

X,3(27).

9.5 9.5 Orderly Generation of Codes

In order to construct linear codes, we need to direct attention to the technique
of orderly generation of discrete structures. A discrete structure is simply a type
of object which can be defined as an orbit of a group acting on a finite set. Ex-
amples in Combinatorics are graphs, codes, designs etc. When we speak of the
construction of objects, we mean that we produce one object out of each iso-
morphism class. This object is called the representative, or the labeled object.
In the 1970s, the technique of orderly generation has been invented indepen-
dently by Read [165] and Faradžev [51, 52, 53] for the construction of graphs.
The name comes from the fact that it generates representatives for the orbits
in question in lexicographic order. A more refined version is described by
McKay [146], who also presents an extensive literature list. McKay broadens
the technique to general structures and introduces the concept of a canonical
extension.

In the following, we will first discuss the technique of orderly generation
in some detail and then come back to linear codes later. We start with an action
of a group G on a finite set X, whose elements we call points. The group G also
acts on subsets of X, via

P(X)× G → P(X) : (R, g) �→ Rg = {xg | x ∈ R}.

We call this the induced action of G on P(X). The setwise stabilizer of a set R ⊆ X
is the subgroup

GR := {g ∈ G | Rg = R} = {g ∈ G | ∀ r ∈ R : rg ∈ R}.

A related concept is the pointwise stabilizer of a set R = {r0, . . . , rs−1}, which is
the subgroup

Gr0,...,rs−1 := {g ∈ G | rig = ri for all i ∈ s} =
⋂
i∈S

Gri .

Occasionally, we will consider groups which are of mixed type. For instance,
if we wish to stabilize the set R setwise, and in addition fix the point x, then

9.5 Orderly Generation of Codes 689

we will write

GR,x = GR ∩ Gx = {g ∈ G | Rg = R, and xg = x}.

Here, the point x may or may not be a member of the set R. Another case is
when the set R is enlarged by one further element x outside of R. The setwise
stabilizer of R ∪ {x} is denoted as

GR∪{x} = {g ∈ G | ∀r ∈ R : rg ∈ R ∪ {x} and xg ∈ R ∪ {x} }.

We would like to compute the orbits of G on the set of subsets of the finite
set X = {x0, . . . , xn−1}<. The following problems arise.

1. Compute a transversal T for the G-orbits on subsets of X, which is a set of
subsets of X such that
(a) each orbit of G on P(X) is represented by one subset in T , and
(b) no such orbit is represented twice.
The elements of the transversal are called orbit representatives.

2. For S ⊆ X, compute σ(S) = GS = {g ∈ G | Sg = S}, the setwise stabilizer
of S in G.

3. For S ⊆ X, determine an element ϕ(S) = g ∈ G which maps S to its orbit
representative in T , i.e. a transporter element (such an element might not
be unique).

Of course, in many applications one is not interested in the totality of sub-
sets. Instead, often one has restrictions coming from the particular problem
one is interested. This means that we are only interested in a subset of P(X),
or even subsets of

P i(X) = {S ⊆ X | |S| = i},

the set of subsets of size i. To formalize this idea, we may indicate this condi-
tion by a function

f : P(X) → {0, 1}, S �→ f (S)

where f (S) is one if and only if the set S is admissible, i.e. satisfies the condition.
We require that the condition is invariant under the action of the group, i.e.
that

f (S) = f (Sg) ∀ g ∈ G, ∀ S ⊆ X. 9.5.1

Also, we require that the condition is hereditary, i.e. that

f (S) = 1 ⇒ f (T) = 1 ∀ T ⊆ S ⊆ X. 9.5.2

690 9. The General Case

In the following, we will assume that such a function f : P(X) → {0, 1} has
been defined. This is no restriction as one can always define f (S) = 1 for all
S ⊆ X. If f is such a test-function, we may restrict the action of G to the set

P (f)(X) := P(X)∩ f−1({1}) = {S ∈ P(X) | f (S) = 1}
or to one of the sets

P (f)
i (X) := P i(X)∩ f−1({1}) = {S ∈ P i(X) | f (S) = 1}.

There are many different ways to choose a transversal. One particular is
the canonical transversal. It consists of canonical orbit representatives, which are
the sets R ⊆ X with

R , Rg for all g ∈ G.

Each orbit G(S), S ⊆ X is represented in this transversal by its least element,

S = min
R∈G(S)

R = min
g∈G

Sg,9.5.3

where the minimum is taken with respect to the lexicographical order. The
function which takes a set S to its canonical orbit representative S can be
thought of as a projection map. It satisfies the property that S = S. The image
of this function is the canonical transversal

T = {S | S ∈ P(X)}.
It consists of the canonical subsets.

9.5.4 Lemma Let X be a totally ordered finite set, and let G be a group acting on X. Let
A be a canonical subset of X in the sense of 9.5.3. Then every prefix B of A is also
canonical.

Proof: Let A = A = {a0, a1, . . . , an−1}< be a canonical subset of X. Let B =
{a0, . . . , am−1} with m − 1 ≤ n − 1 be a prefix of A. Assume that B is not
canonical. Thus there exists an element g ∈ G with Bg = C = {c0, . . . , cm−1} ,
B and C �= B. Since |C| = |B| it must be the case that there exists r < m with
ci = ai for i ∈ r and cr < ar . Also Ag = C ∪ {amg, . . . , an−1g}. In order to
compare Ag with A in the lexicographical order, put

d =
n−1
min
i=m

aig.

If d > cr then Ag = {c0, c1, . . . , cr , . . .}< and therefore Ag , A but Ag �= A,
contradicting the fact that A is canonical. Otherwise, let s be the least index
such that d < cs. Then Ag = {c0, c1, . . . , cs−1, d, . . .}< and because ci = ai

for i ∈ s and d < cs = as, again we have the contradiction that Ag , A
but Ag �= A. We conclude that the assumption was incorrect and thus B is
canonical. �

9.5 Orderly Generation of Codes 691

The method of orderly generation looks at all extensions of the form

S ∪ {x},

called extension sets. Here, S is a member of the transversal of i-subsets and x
is in X \ S. In fact, one requires that x is the least element in its GS-orbit and
that x > max S. Then, one employs a test for whether a given set S ⊆ X is
canonical. Such a test is not easy to provide, as it involves a systematic search
over the whole group G, to test whether the set Sg is lexicographically less
than S for any given g ∈ G. If no Sg precedes S in the lexicographic order, S is
canonical and will be output by the algorithm. The automorphism group of S
is just the set of all elements g ∈ G for which Sg = g, so

GS = {g ∈ G | Sg = S}

can be computed at the same time. Of course, this backtrack procedure can
be refined. One would try to avoid looking at every group element g ∈ G.
This can be done by taking into account the subgroup structure of G. In fact,
the automorphism group will be constructed by successively extending the
known part of the group with new automorphisms found during the search.
We omit the details here. The algorithm orderly generation can be summa-
rized as follows. We do not state this algorithm as a theorem since we do not
prove its correctness. Nevertheless, we mention that correctness can be proved
using 9.5.4. We define

T ≤i =
i⋃

j=0

T j.

9.5.5Algorithm (orderly generation)

Input: A group G acting on a set X<, a test-function f , an integer i
Output: T ≤i, the canonical transversal for the G-orbits on admissible sets

of size ≤ i.

(0) if f (∅) = 1 then scan(∅, G) end if

(1) end

Where the function scan is defined as follows.

(2) scan(S, A)
(3) compute T S, the canonical transversal of the A-orbits on X \ S.
(4) for each x ∈ T S do

(5) if x > max S then

(6) if f (S ∪ {x}) = 1 then

692 9. The General Case

(7) if S ∪ {x} is canonical then

(8) print S ∪ {x}
(9) if |S| + 1 < i then

(10) scan(S ∪ {x}, GS∪{x})
(11) end if

(12) end if

(13) end if

(14) end if

(15) end for

(16) end �

As already mentioned, testing whether a given set is the lexicographically
least set among its G-orbit is a hard problem. It is actually easier to drop the
requirement that the canonical element is the least among its orbit and replace
it by some other kind of canonical form. This is McKay’s variant. It relies on a
function ϕ such that

Rϕ(R) = Sϕ(S) whenever R ∼G S.9.5.6

Such a function ϕ can be realized by a “partition backtrack” algorithm (cf.
Leon’s series of articles [128, 129, 130]). In addition, this algorithm computes
the set-stabilizer of the set in question. If such a map ϕ is to be used for the
orderly generation of orbits, the “scan” algorithm needs to change. This is
because an extension S ∪ {x} where x is smallest among its GS-orbit is not
necessarily canonical with respect to the function ϕ. Also, the requirement that
x > max S must be dropped. To make things work, one introduces another
function

m : P(X) → X,9.5.7

satisfying the two conditions

1. m(R) ∈ R, and
2. m(Rg) ∼GRg m(R)g.

Such a function m is easily defined in terms of the map ϕ. For instance, one can
take

m(R) =
(

min Rϕ(R)
)

ϕ(R)−1.

To see that this works, we argue as follows. It is clear that m(R) ∈ R. Since
ϕ(R)ϕ(Rg)−1 maps R to Rg, we deduce from 3.4.1 that there exists an element
h ∈ GRg such that

ϕ(R)ϕ(Rg)−1 = gh.

9.5 Orderly Generation of Codes 693

We conclude that

m(Rg) =
(

min Rgϕ(Rg)
)

ϕ(Rg)−1

=
(

min Rϕ(R)
)

ϕ(Rg)−1

= m(R)ϕ(R)ϕ(Rg)−1

= m(R)gh,

which shows that m(Rg) is in the same GRg-orbit as m(R)g.

We may summarize this algorithm as

9.5.8Theorem (McKay [146]) Let G act on the finite set X<. Let f : P(X) → {0, 1}
be a test-function on X which is G-invariant and hereditary (in the sense of 9.5.1
and 9.5.2). Let ϕ and m be functions as in 9.5.6 and 9.5.7, respectively. Then for any
given integer i ≤ |X|, Algorithm 9.5.9 computes a transversal T ≤i of the orbits of G
on admissible subsets of X of size at most i together with the corresponding stabilizers
in G.

9.5.9Algorithm (orderly generation by canonical augmentation)

Input: A group G acting on a set X<, a test-function f , an integer i,
functions ϕ and m as in 9.5.6 and 9.5.7, respectively.

Output: T ≤i, a transversal for the G-orbits on admissible sets of size ≤ i.

(0) if f (∅) = 1 then scan(∅, G) end if

(1) end

Where the function scan is defined as follows.

(2) scan(S, A)
(3) compute T S, a transversal of the A-orbits on X \ S.
(4) for each x ∈ T S do

(5) if f (S ∪ {x}) = 1 then

(6) compute y := m(S ∪ {x}) and B := GS∪{x}
(7) if x ∼B y then

(8) print S ∪ {x}
(9) if |S| + 1 < i then

(10) scan(S ∪ {x}, B)
(11) end if

(12) end if

(13) end if

(14) end if

694 9. The General Case

(15) end for

(16) end �

Proof: We proceed by induction on j, the size of the subsets under considera-
tion. If j = 0, the algorithm outputs ∅ and G∅ = G, provided that f (∅) = 1.
Let us assume that T i, a transversal for the G-orbits on P (f)

i (X) is computed
correctly (together with the corresponding stabilizers in G). We need to show
that each G-orbit on (i + 1)-subsets is represented exactly once in the output
of the algorithm. We proceed in two steps.

At first, we claim that each G-orbit on admissible (i + 1)-subsets is repre-
sented at least once in the output. To see this, let R be an admissible (i + 1)-
subset of X. Since f is hereditary, the subset R \ {m(R)} is again an admissible
i-subset. By induction hypothesis, there exists an element g ∈ G such that

(R \ {m(R)})g = S ∈ T i.

We define
z := m(R)g ∈ X \ S.

Since T S is a transversal of the GS-orbits on X \ S, there exists an element
h ∈ GS such that

zh = x ∈ T S.

We conclude that

Rgh = (R \ {m(R)})gh∪ {m(R)gh}
= Sh ∪ {zh}
= S ∪ {x}

and S ∪ {x} is one of the extensions considered in lines (5)-(9). Since

y = m(S ∪ {x}) = m(Rgh) ∼GS∪{x} m(R)gh = zh = x,

the extension S ∪ {x} is accepted in line (7).

Secondly, we claim that each G-orbit on admissible (i + 1)-subsets is rep-
resented at most once in the output. Assume the contrary. Let R ∼G S be two
admissible (i + 1)-subsets computed by the algorithm. Then

R = U ∪ {x}, S = V ∪ {y}

with U,V ∈ T i, x ∈ T U , y ∈ T V . In addition, we know that

x ∼GR m(R), and y ∼GS m(S),

9.5 Orderly Generation of Codes 695

since U ∪ {x} and V ∪ {y} must both have been accepted in line (7) of the
algorithm. Since R ∼G S, there exists an element g ∈ G such that Rg = S.
Thus GS = g−1GRg. Since x ∼GR m(R), there exists an element r ∈ GR such
that xr = m(R), and so

xg(g−1rg) = m(R)g,

i.e.
xg ∼GS m(R)g,

since g−1rg ∈ g−1GRg = GS. Thus

y ∼GS m(S) = m(Rg) ∼GS m(R)g ∼GS xg ∈ S.

This means that there exists an element h ∈ GS with

y = xgh.

Thus

Ugh = (R \ {x})gh = (Sg−1 \ {x})gh = Sh \ {xgh} = S \ {y} = V,

i.e. U ∼G V. But U and V are elements of the transversal T i, and by induc-
tion hypothesis, this transversal contains exactly one representative of each
G-orbit. It follows that

U = V,

and therefore x �= y (since R �= S by assumption). Thus

Ugh = V = U,

i.e. gh ∈ GU . From xgh = y we conclude that x ∼GU y, which is a contradiction
to the fact that the algorithm considers in line (4) only representatives x ∈ T U

of the U-orbits on X \ U. The assumption must be wrong and the claim is
proved. This finishes the proof of the fact that algorithm 9.5.9 is correct. �

Let us return to the problem of computing isometry classes of linear codes.
Given a length n, a dimension k and a lower bound dmin for the minimum
distance, let us now construct all (n, k)-codes over some finite field Fq whose
minimum distance is at least dmin where dmin ≥ 3. From 9.1.5 we deduce the
following. Depending on whether we want to compute linear or semilinear
isometry classes, we are interested in the orbits of G = PGLn−k(q) or G =
PΓLn−k(q) on

Pn(X), X = PGn−k−1(q),

respectively.

It remains to take the prescribed minimum distance dmin into account. In
order to apply 9.1.8, we need to check whether the n-subset of PGn−k−1(q)

696 9. The General Case

under consideration has the property that any dmin − 1 points are independent.
If S ⊆ PGn−k−1(q) is a set of size n, we put

f (S) =
{

1 if any dmin − 1 points of S are independent,
0 otherwise.

This function f is our test-function. We need to check if the function f satis-
fies the requirements listed in 9.5.1 and 9.5.2. Since both groups PGLn−k(q)
and PΓLn−k(q) preserve the linear structure of Fn−k

q , the condition about lin-
ear independence of subsets is invariant under the action. It is clear that the
condition is hereditary. Let us put

Yn,k,dmin,q = P (f)
n (PGn−k−1(q)) =

{
S ⊆ PGn−k−1(q)

∣∣∣ |S| = n, f (S) = 1
}

.

The next result shows a connection between canonical orbit representatives
and systematic generator matrices.

9.5.10 Lemma Consider the action of G ≥ PGLk(q) on n-subsets of points of X =
PGk−1(q). Let X be totally ordered according to 9.3.5. Let

A := {〈u(0)〉, . . . , 〈u(n−1)〉}<

be a canonical orbit representative. Let

Γ(A) =
(
u(0)�

∣∣∣ · · ·
∣∣∣ u(n−1)�

)
be the generator matrix corresponding to A. Then the following conditions are equiv-
alent.

1. The rank of the matrix Γ(A) is r.

2. 〈u(i)〉 = 〈e(i)〉, for i ∈ r and u(j) ∈ 〈e(0), . . . , e(r−1)〉 for j = r, . . . , n − 1.

3. 〈u(i)〉 = 〈e(i)〉, for i ∈ r and 〈u(r)〉 �= 〈e(r)〉.

Proof:

1. ⇒ 2.: Since G is transitive on r-dimensional subspaces, the rank condition
implies that the orbit of A contains an element B = {〈e(0)〉, . . . , 〈e(r−1)〉, . . .}.
But {〈e(0)〉, . . . , 〈e(r−1)〉} is the lexicographically least set of size r. Hence A
contains this set, i.e.

A = {〈e(0)〉, . . . , 〈e(r−1)〉, 〈u(r)〉, . . . , 〈u(n−1)〉},

and – also by the rank condition – each column of Γ(A) is in the span of these
vectors:

u(j) ∈ 〈e(0), . . . , e(r−1)〉, r ≤ j ≤ n − 1.

9.5 Orderly Generation of Codes 697

2. ⇒ 3.: If r = k, there is nothing to show. Otherwise we have that u(r) ∈
〈e(0), . . . , e(r−1)〉 which implies 〈u(r)〉 �= 〈e(r)〉.

3. ⇒ 1.: Since {〈u(0)〉, . . . , 〈u(r−1)〉} = {〈e(0)〉, . . . , 〈e(r−1)〉}, the rank of Γ(A)
is ≥ r. Now assume that the rank of Γ(A) is strictly greater than r. This implies
that there is a column of Γ(A) which is linearly independent from the first r
columns. Let this be column i ≥ r. Then u(i) �∈ 〈e(0), . . . , e(r−1)〉. Since G is
transitive on subspaces of fixed dimension, there is an element g ∈ G with

{〈e(0)〉, . . . , 〈e(r−1)〉, 〈u(i)〉}g = {〈e(0)〉, . . . , 〈e(r)〉}.

But the latter set is the lexicographically least set of size r + 1. The prefix of
length r of the canonical set A must therefore coincide with this set, i.e. we
have shown that 〈u(r)〉 = 〈e(r)〉, which contradicts 3. Thus the assumption
that the rank of Γ(A) is greater than r was incorrect. This means that the rank
of Γ(A) is indeed r. �

9.5.11Corollary Let A = {〈u(0)〉, . . . , 〈u(n−1)〉}< be a canonical representative for an
orbit of PGLk(q) acting on n-subsets of PGk−1(q). If the vectors u(i) are standard,
then the matrix

Γ(A) =
(
u(0)� | · · · | u(n−1)�)

is systematic. �

As described above, we compute the orbits of G on Y(i,k,dmin,q) where i goes
from 0 to n. Here we choose G = PGLn−k(q) or G = PΓLn−k(q), depending on
whether we want to compute linear or semilinear isometry classes of codes. As
described in 9.1.1, the sets in Y(i,k,dmin,q) give rise to (i,≥ i − n + k,≥ dmin, q)-
codes, which is sensible only for i ≥ n− k. As pointed out before, we will have
to go through all values i ≤ n, since the orbits on Y(i,k,dmin,q) will be constructed
inductively. At each step, the canonical transversal T i for the orbits of G on
the set Y(i,k,dmin,q) is computed, as well as some additional data. This additional
data can be used to realize functions σi and ϕi with (T i, σi, ϕi) as in 9.2.12. The
union

T ≤n =
n⋃

i=0

T i

of all canonical representatives is the tree of canonical representatives. The leaves
at depth n comprise the isometry classes of codes. We follow the convention of
labeling nodes by their largest element. We display the ranks of the projective
points rather than the projective points themselves.

Given an orbit representative A = {〈u(0)〉, . . . , 〈u(s−1)〉}<, we construct the
corresponding code as follows. As in 9.1.6, we form the check matrix ∆(A). At

698 9. The General Case

this point we come back to the initial remarks in Section 9.1 about the matrix
∆(A) being not uniquely defined. This non-uniqueness has two reasons. The
first one lies in the fact that the elements of the set A may be rearranged freely.
We have resolved that issue by requiring that the elements of A be ordered in-
creasingly (according to their ranks as given by 9.3.5). The second problem lies
in the choice of the representatives u(i) for the projective points. To this end,
we simply require that u(i) is standard, i.e. that its rightmost nonzero coordi-
nate is one. With these two conventions, the matrix ∆(A) becomes unique and
we may take this matrix as a check matrix of a code. This (n,≥ k,≥ d, q)-code
is a representative of an isometry class. More precisely, if the rank of ∆(A) is
r, then we have found an (n, n − r,≥ d, q)-code. Here we have n − r ≥ k since
r ≤ n − k. In order to obtain a generator matrix, we proceed as follows.

By 9.5.10, ∆(A) is systematic provided that A is the lexicographically least
element in its G-orbit. If r is determined as the index for which 〈u(i)〉 = 〈e(i)〉
for i = 0, . . . , r − 1 and 〈u(r)〉 �= 〈e(r)〉, then the rank of ∆(A) is r. Thus, we can
write

∆(A) =

(
Ir M
0 0

)
for some r × (n − r)-matrix M. By 1.3.9, a generator matrix of the code is

Γ(A) =
(
−M� | In−r

)
.

Let us consider an example.

9.5.12 Example We wish to construct and classify binary (8, 4)-codes with minimum
distance at least dmin = 3. For this we are looking for sets of 8 points in
PG3(2). Since dmin − 1 = 2, and since two distinct points of a projective space
are always linearly independent, any subset is admissible. In order to con-
struct the codes, we compute the orbits of PGL4(2) on P≤8

(
PG3(2)

)
(here,

P≤i(X) := ∪i
j=0P i(X)). The resulting tree of canonical orbit representatives

is shown in Fig. 9.4 (see Example 9.3.11 for the ranks of points in PG3(2)).
We find 6 leaves at level 8, which comprise all essentially distinct (8, 4,≥ 3)-
codes. Table 9.2 shows the corresponding check and generator matrices. The
last code is equivalent to the extended (7, 4)-Hamming-code. Being the only
code with distance 4, this is the optimal binary code with length 8 and di-
mension 4. Notice that the second to last code is decomposable. Its generator
matrix contains a zero column. The code can thus be seen as the direct sum
(in the sense of 2.2.11) of a (6, 4)-codes with a (rather trivial) (1, 0)-code. For a
description of the algorithm to compute the orbits, we refer to the next section.
In 9.6.12, we will pick this example up again and show more details of the ac-
tual computation. �

9.5 Orderly Generation of Codes 699

7 8 9 10

6 8

5

4

8

7 9

6 12

5

14

13

11

8

3

8

7

6

5 8

2 5

1

0

Fig. 9.4 Orbits of PGL4(2) on P≤8
(
PG3(2)

)
Table 9.2 Binary (8, 4,≥ 3)-codes

A ∆(A) Γ(A) d

{0, 1, 2, 3, 4, 5, 6, 7}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 1 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 1 1 0 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 4, 5, 6, 8}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 1 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 4, 5, 6, 9}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 4, 5, 6, 10}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 5, 6, 7, 8}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
0 1 1 0 0 0 1 0
1 1 1 0 0 0 0 1

⎞⎟⎟⎟⎠ 3

{0, 1, 2, 3, 8, 11, 13, 14}

⎛⎜⎜⎜⎝
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

⎞⎟⎟⎟⎠ 4

700 9. The General Case

9.6 9.6 The Algorithm Snakes and Ladders

The two algorithms presented in the previous section rely on the fact that we
are able to compute a canonical from of every subset. This is indeed a hard
problem, and it can be tedious to provide a canonical form for a specific group
action, since computing the canonical form depends very much of the nature of
the group action under consideration. In this section, we will present an orbit
algorithm which is general in the sense that it does not depend on the nature
of the group in question. The algorithm proceeds in breadth first search, i.e.
constructs the orbit representatives level by level. Also, it avoids backtracking
as much as possible. The price one pays is that the amount of memory required
correlates linearly to the number of orbits computed. In a sense, one trades
computing time with memory. Of course, this is a limitation which may restrict
the scope to which problems can be tackled. On the other hand, the speedup
from the memory versus time tradeoff makes it realistic to tackle instances of
hard problems, such as the computation of isometry classes of linear codes
which is our main topic.

Essentially, this algorithm is due to Schmalz [171] (“Leiterspiel” loosely
translated as “snakes and ladders”). Whereas Schmalz formulated his algo-
rithm very much in the language of group theory, here we will stick to the
concept of a group acting on a set. That is, we will describe the algorithm as
computing orbits of a group G on subsets of a set X on which G acts. This
is different from the approach taken by Schmalz, whose algorithm is formu-
lated in the language of double cosets in finite groups. The name Leiterspiel
(“ladder game”) refers to the fact that the algorithm works along a sequence
of subgroups which are alternately subgroups and overgroups of each other
(what we will call the “down-and-up process”).

We assume that orbits on points can be computed, for instance using the al-
gorithms described in Section 9.2. The main goal is to provide a triple (T , σ, ϕ)
which is a solution to the orbit problem for G acting on admissible subsets of X.

We will favor an inductive solution to the problem, namely by computing
the orbits of G on P (f)

i (X) for i = 0, 1, In the search tree, this corresponds
to a breadth-first search. Let

orbit
(
G,P (f)

i (X)
)

= (T i, σi, ϕi),

be a solution to the orbit problem on i-subsets. Note that the case i = 0 is
trivial, whereas i = 1 is the basic orbit problem on points, which we are able
to solve using the methods provided in Section 9.2.

Assume that a transversal T i of orbits of G on sets P (f)
i (X), i.e. on admis-

sible sets of size i has already been computed. Often this will be the canonical

9.6 The Algorithm Snakes and Ladders 701

transversal, i.e. the transversal consisting of all sets which are canonical with
respect to some ordering. For sake of simplicity, we will say that a set R is
canonical if it belongs to one of the transversals T i for some i.

In order to compute T i+1, we consider extensions of sets in T i. An extension
is a set of the form

R ∪ {x} ∈ P (f)
i+1(X),

where R is in T i ⊆ P (f)
i (X) and x is in X \ R. There are four major tasks

involved in computing the “next level” of orbits on (i + 1)-sets:

Problem 1 Ensure that each G-orbit on admissible (i + 1)-sets is reached.

Problem 2 Determine when two extensions R ∪ {x} and S ∪ {y} are isomor-
phic (i.e. belong to the same G-orbit). Note that here R and S are canonical, i.e.
elements of the transversal T i.

Problem 3 Compute the stabilizer in G of an extension set R ∪ {x}. Here we
assume that the stabilizer of the canonical set R is known.

Problem 4 Provide a transporter map ϕi+1 for (i + 1)-sets. That is, given an
(i + 1)-subset F ⊆ X, compute an element g ∈ G such that Fg ∈ T i+1.

Problem 1 is addressed easily. Let F be an admissible (i + 1)-subset of X.
Let z := max F and put H := F \ {z}, which is admissible since f is hereditary.
Thus H ∈ G(R) for some R ∈ T i and Hg = R for g = ϕ(H). Let x := zg ∈
X \ R. This shows that F ∼G R∪ {x}, which is one of the candidate sets which
we considered. We note that later on, we will reduce the number of candidate
sets further (see 9.6.2).

Problem 2 amounts to determining when two extensions R ∪ {x} and S ∪
{y} with R, S ∈ T i belong to the same G-orbit. The following “exchange
lemma” gives a necessary and sufficient condition for deciding that question
(cf. Fig. 9.5).

9.6.1Lemma Assume that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi). For R, S ∈ T i, x ∈ X\R,

y ∈ X\S, we have R ∪ {x} ∼G S ∪ {y} if and only if one of the following two
conditions holds

1. R = S and x ∼GS
y or

2. there exists an r ∈ R such that

((R\{r})∪ {x})t = S and rt ∼GS
y

where t = ϕi((R\{r})∪ {x}).

702 9. The General Case

x y

R S (= R)

id

h ∈ GS x y

R S

t

r xg
t

th

Fig. 9.5 The two cases of Lemma 9.6.1

Proof: Necessity: Assume that R ∪ {x} ∼G S ∪ {y}. Then there exists an ele-
ment g ∈ G with

(R∪ {x})g = S ∪ {y}.

We must show that 1. or 2. holds. Assume that Rg = S and hence xg = y.
Since R and S are both orbit representatives in T i, we must have R = S. But
then Sg = Rg = S, i.e. g ∈ GS and hence x ∼GS y, which is 1. Otherwise we
have S �= Rg ⊆ S ∪ {y}, and hence xg ∈ S. Let r = yg−1 ∈ R. Hence

((R \ {r} ∪ {x})g = S.

But also
((R \ {r} ∪ {x})t = S,

where t = ϕi((R\{r}) ∪ {x}) is the transporter element mapping (R\{r}) ∪
{x} onto the canonical representative S. Thus g is contained in the left coset
tGS, i.e. g = th for some h ∈ GS. Now rth = rg = y, i.e. rt ∼GS y, which is 2.
Sufficiency: If 1. is valid, and if g ∈ GS maps x to y, then clearly (R ∪ {x})g =
Rg∪ {xg} = S ∪ {y}. If 2. holds with h ∈ GS mapping rt to y then

(R ∪ {x})th = ((R\{r})∪ {x})th ∪ {r}th = Sh ∪ {rth} = S ∪ {y}. �

The first part of this result has an important implication for the candidate
set of extensions (Problem 1):

9.6.2 Corollary It suffices to consider only extensions of the form R ∪ {x} where R is a
canonical i-set and x ∈ X \ R is canonical under the stabilizer of R in G. �

9.6 The Algorithm Snakes and Ladders 703

GR,x

GR GR∪{x}

Fig. 9.6 The “down-and-up” process

From now on, we consider only extensions R ∪ {x} of the form described
in the previous corollary.

Let us now describe the problem of computing the stabilizer of extension
sets (Problem 3). If the extension is R ∪ {x}, then this amounts to computing

GR∪{x},

the setwise stabilizer of R ∪ {x}. We assume that GR, the setwise stabilizer of
the canonical set R is known. The difficulty is that there is no relationship be-
tween the groups GR and GR∪{x} (meaning that neither is a subgroup of the
other in general). However, they share a common subgroup, namely the group
GR,x which is the set of elements of G which stabilize R setwise and x point-
wise. The idea is to first go down from GR to GR,x (the “downstep”), which is
relatively straightforward. Generators for GR,x can be computed from genera-
tors for GR by means of 9.2.10. The difficulty is to compute the group GR∪{x}
from the subgroup GR,x (i.e. the “upstep”). In the following, we will address
this problem first (we will call it the “down-and-up” process, cf. Fig. 9.6).
Afterwards, we will present the algorithm to compute orbits on sets which
combines all the ideas developed so far.

Recall that for a subgroup V of G we have

XV = {x ∈ X | ∀v ∈ V : xv = x}.

The following result is a consequence of 3.4.1.

9.6.3Lemma Let the group H act on a set X. Let V = Hx be the stabilizer of a point
x ∈ X. In addition, let R be a set of elements of H such that for each y ∈ H(x)
there exists one and only one g ∈ R with xg = y. Then R is a set of right coset
representatives of V in H. �

704 9. The General Case

In the situation of the lemma, we call H the extension of V w.r.t. the coset
representatives R and we write

H = Ext(V,R, x) =
⋃

r∈R
Vr,

where the last union is over disjoint cosets. For R ∈ T i and x ∈ X \ R, let us
define

R∗(x) :=

{
r ∈ R

∣∣∣∣∣ (R \ {r}) ∪ {x} ∈ G(R) and rt ∈ GR(x),
where t = ϕi((R \ {r}) ∪ {x})

}
9.6.4

and put R(x) = R∗(x) ∪ {x}. The next result describes the stabilizer of exten-
sion sets.

9.6.5 Lemma Let G act on the finite set X. Assume that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi).

For R ∈ T i let orbit (GR, X \ R) = (T R, σR, ϕR). Fix x ∈ T R. Then the orbit of x
under GR∪{x} is R(x). In particular GR∪{x} = Ext(GR,x,R, x) where

R = {1} ∪
{
t · ϕR(rt)

∣∣ r ∈ R∗(x), t = ϕi((R \ {r}) ∪ {x})
}
.

Here, GR,x = GR ∩ Gx = {g ∈ G | Rg = R, xg = x} and GR∪{x} is the setwise
stabilizer of the set R ∪ {x}.

Proof: Let Ox = GR∪{x}(x) be the orbit of x under GR∪{x}. We claim that
Ox = R(x) = R∗(x) ∪ {x}.

Consider r ∈ R. Let g ∈ GR∪{x} with rg = x. Since g maps R ∪ {x} onto
itself, we have

R ∪ {x} = (R ∪ {x})g−1 = Rg−1 ∪ {xg−1} = Rg−1 ∪ {r}.

This implies that Rg−1 = (R \ {r}) ∪ {x} and therefore

((R \ {r}) ∪ {x})g = R ∈ T i,

i.e. (R \ {r}) ∪ {x} ∈ G(R). By definition, the group element t = ϕi((R \
{r}) ∪ {x}) maps (R \ {r}) ∪ {x} to the canonical representative in T i of its
G-orbit, which must be the set R. Thus

((R \ {r}) ∪ {x})t = R = ((R \ {r}) ∪ {x})g.

We conclude that t and g belong to the same left coset of GR, i.e. there is an
element h ∈ GR such that g = th. Thus

((R \ {r}) ∪ {x})t = ((R \ {r}) ∪ {x})gh−1 = Rh−1 = R.

Also, rt = rgh−1 = xh−1 ∼GR x and therefore r ∈ R∗(x).

9.6 The Algorithm Snakes and Ladders 705

Since x is clearly an element of its own orbit under GR∪{x}, it remains to
show that the elements r ∈ R∗(x) lie in Ox. If r ∈ R∗(x), we have that ((R \
{r}) ∪ {x})t = R and rt ∼GR x ∈ T R where t = ϕi((R \ {r}) ∪ {x}). The
second condition implies that rth = x where h = ϕR(rt) ∈ GR. The equation

(R ∪ {x})th = ((R \ {r}) ∪ {x})th ∪ {r}th = Rh ∪ {r}th = R ∪ {x}
shows that g = th stabilizes R ∪ {x}. In addition, since xg−1 = r we have that
r ∈ Ox. This proves the claim.

We are now able to show that GR∪{x} = Ext(GR,x,R, x). It is clear that
GR,x is a subgroup of GR∪{x}. Next, GR∪{x},x = GR∪{x} ∩ Gx = GR,x. Hence
the cosets of GR,x in GR∪{x} are in one-to-one correspondence with the distinct
images of x under GR∪{x}. If we revisit the proof of the claim above, we no-
tice that for r ∈ R∗(x) the element tϕR(rt) where t = ϕi((R \ {r}) ∪ {x}) is
in GR∪{x} and maps r ∈ R∗(x) = Ox \ {x} to x. Since the identity element
(denoted as 1) is trivially contained in GR∪{x} and maps x to x, the union R
of 1 and all elements tϕR(rt) as above forms a transporter set for the distinct
elements of Ox in GR∪{x}. By the standard argument alluded to above we have
that GR∪{x} is the union of the right cosets of GR,x with respect to the elements
of R. Therefore by 9.6.3, GR∪{x} is the extension of GR,x with respect to the
point x and the transversal R. �

The following result is helpful in computing the set R∗(x). It may reduce
the number of r ∈ R which have to be tested.

9.6.6Lemma Let G act on the finite set X. Assume that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi).

For R ∈ T i let orbit (GR, X \ R) = (T R, σR, ϕR). Fix x ∈ T R and r ∈ R. Then

1. If r ∈ R∗(x) then rs ∈ R∗(x) for all s ∈ GR∪{x}.

2. If r �∈ R∗(x) then rs �∈ R∗(x) for all s ∈ GR∪{x}.

Proof: Let r ∈ R∗(x) and s ∈ GR∪{x}. Then (R \ {r}) ∪ {x} ∈ G(R) and
rtr ∈ GR(x) for tr = ϕi((R \ {r}) ∪ {x}). The latter condition means that there
is an element h ∈ GR such that

rtrh = x.

We will now show that rs ∈ R∗(x). Using the fact that s ∈ GR∪{x} we obtain

((R \ {rs}) ∪ {x})s−1tr = ((R∪ {x}) \ {rs})s−1tr

= (R∪ {x})s−1tr \ {rs}s−1tr

= (R∪ {x})tr \ {r}tr

= ((R \ {r}) ∪ {x})tr
= R,

706 9. The General Case

i.e. (R \ {rs}) ∪ {x} ∈ G(R). Thus with trs = ϕi((R \ {rs}) ∪ {x}) we have

((R \ {rs}) ∪ {x})trs = R.

Putting the two equations together we see that s−1tr and trs differ only by an
element u ∈ GR, i.e.

trs = s−1tru.

Thus
rs · trs = rss−1tru = rtru = (rtrh)h−1u = xh−1u ∈ GR(x),

since h and u are both elements of GR. This proves the first part. For the second
part, assume that r �∈ R∗(x) but rs ∈ R∗(x). Then by the first part we deduce
that r = rss−1 ∈ R∗(x), which is a contradiction. �

9.6.7 Remarks

1. In the previous result, the group GR∪{x} may be replaced by the subgroup
GR,x. The reason for doing this is that the group GR∪{x} may not be known
initially, whereas the smaller group GR,x may be known. In fact, we have

GR∪{x} = Ext(GR,x,R, x)

where R is defined in terms of R∗(x). Thus when testing elements r for
membership in R∗(x) we cannot use GR∪{x}. Since GR,x is simply a point
stabilizer in the known group GR, we may start with this group instead.
Later on, when non-trivial elements

g(0), . . . , g(i−1)

in R have been found, we may form the overgroup

H(i) = 〈GR,x, g(0), . . . , g(i−1)〉 ≤ GR∪{x}

and apply 9.6.6 to s ∈ H(i).
2. To apply 9.6.6, one computes the orbits of H = GR∪{x} (or any known

subgroup thereof, see the previous remark) on the elements of R. For each
orbit H(r), only the representative r needs to be tested for membership in
R∗(x). If r ∈ R∗(x) then H(r) ⊆ R∗(x). Otherwise H(r) ∩ R∗(x) = ∅.

Summarizing, we have seen in Lemma 9.6.1 how to decide whether or not
two extensions R ∪ {x} and S ∪ {y} are in the same G-orbit, i.e. isomorphic.
This is the main tool for reducing isomorphic copies. It is now time to take the
lexicographical order into account. We use the following tie breaker. If two
extensions are isomorphic then we always keep the lexicographically smaller
one of the two and we discard the other one. So, if R , S then we keep R∪{x}.

9.6 The Algorithm Snakes and Ladders 707

Or, if R = S but x < y then we keep R ∪ {x} and discard R ∪ {y}. Essentially,
we do a breadth first search in the tree of canonical orbit representatives. This
step comprises the isomorph rejection.

We assume that all representatives of i-orbits are available, i.e. that

(T i, σi, ϕi)

has been computed. Next we examine the sets R ∈ T i in lexicographically
increasing order. For each such set R, we compute the orbits of its stabilizer
GR = σi(R) on the remaining points X \ R. Let

(T R, σR , ϕR)

be the resulting orbit data. As usual, we assume that T R is the canonical
transversal. This means that the elements of T R (which are just points) are
the least among their respective GR-orbit. Next, we consider the extensions of
the form R ∪ {x} where x ∈ T R (in increasing order). Since GR is known by
assumption, the stabilizer GR,x can be computed. Recall that

GR,x = GR ∩ Gx

is the pointwise stabilizer of x in GR. Actually,

GR,x = σR(x)

is part of the orbit data which has been computed in the previous step. Next,
we compute the set R∗(x) of 9.6.4. For this, we try all r ∈ R and see if the set
(R \ {r})∪{x} is contained in the G-orbit of R. This can be done by computing

t = ϕi((R \ {r}) ∪ {x})

and testing whether
((R \ {r}) ∪ {x})t = R.

If this is the case then we have to test the second condition, which requires
that rt is in the same GR-orbit as x. For this, we simply compute h = ϕR(rt)
and test if rth = x. If all these conditions hold then r ∈ R∗(x), otherwise we
proceed to test the next element in R.

Assume that r ∈ R∗(x) has been found. Then

((R \ {r}) ∪ {x})t = R, and rth = x

where t and h are as above. Thus

(R∪ {x})th = ((R \ {r}) ∪ {x})th ∪ {r}th = Rh ∪ {x} = R ∪ {x},

708 9. The General Case

i.e. a := ar := th is an automorphism of the extension set R ∪ {x}. This auto-
morphism a has the property that ra = x, i.e. xa−1 = r. In other words, this
automorphism is a coset representative for the subgroup GR,x in GR∪{x}. If R
is the collection of all ar for r ∈ R∗(x) together with the identity, then R is a
transversal of the cosets of GR,x in GR∪{x}. In other words,

GR∪{x} = Ext(GR,x,R, x).

As remarked above, once the first automorphism ar has been found, we
can immediately form the group H(1) := 〈GR,x, ar〉, which is a subgroup of
GR∪{x}. Later on, we may use H(1) to reduce the number of r ∈ R which need
to be tested for membership in R∗(x). We proceed by induction on i = 1, 2,
Whenever another automorphism generator ar has been found while testing
an element r ∈ R, we define the group extension

H(i+1) = 〈H(i), ar〉.

Of course, once an element r ∈ R has been proven to be outside of R∗(x), we
can eliminate the whole orbit H(i)(r) ⊆ R from the search. All this follows
from 9.6.6.

What happens if r ∈ R does not lie in R∗(x)? Then we have found a group
element g = th with t = ϕi((R \ {r}) ∪ {x}) and h ∈ GS such that

((R \ {r}) ∪ {x})t = S,

and rth = y. Thus

(R ∪ {x})th = ((R \ {r}) ∪ {x})th ∪ {r}th = Sh ∪ {y} = S ∪ {y}.

This means that the extension R ∪ {x} is isomorphic to S ∪ {y}, i.e.

R ∪ {x} ∼G S ∪ {y}.

Here, we use the word isomorphic as a synonym for “being in the same G-
orbit.” In this language, we can say that the element th is an isomorphism
between the two extensions. Note that R = S is still possible (but then x < y).
We claim that R ∪ {x} precedes S ∪ {y}. To see this, recall that we proceed in
a breadth first search fashion, i.e. we process the extensions at any given level
in lexicographically increasing order. Hence, if S ∪ {y} were less than R ∪ {x}
then we would have detected the fact that R ∪ {x} ∼G S ∪ {y} earlier, and
we would have discarded R ∪ {x}. So, at this point we decide to eliminate the
extension S∪ {y}, since it is not canonical. However, we will not totally delete
the extension from the search tree. Instead, we decide to save the isomorphism
th which maps R ∪ {x} to S ∪ {y}. Actually, we decide to store the inverse,

ψS(y) := (th)−1

9.6 The Algorithm Snakes and Ladders 709

and call this a fusion element. Also, we introduce a fusion node for the extension
S ∪ {y}. The fusion node serves as a means of recoding the information which
we gained about isomorphic sets. If S ∪ {y} is a fusion node, we always have
that

(S ∪ {y})ψS(y) = R ∪ {x} is canonical. 9.6.8

The fusion nodes will help to speed up the algorithm when it comes to com-
puting transporter elements, as we will see in the next paragraph. Summariz-
ing, we have seen how to construct the canonical transversal T i+1 of orbits on
sets of size i + 1 together with the respective stabilizers.

Let us now address the problem of defining the transporter map ϕi+1 (since
this map is needed for the induction). More specifically, given a set F of size
i + 1, the question is to find the canonical representative

R ∪ {x} ∈ T i+1

with F ∼G R ∪ {x}. In particular, we wish to determine an element g ∈ G
with Fg = R ∪ {x}. This problem can be solved recursively. The set F is split
into z := max F and Z = F \ {z}. By induction, we can compute an element
t := ϕi(Z). Then S := Zt is a canonical orbit representative. Using the orbit
data, we compute h ∈ GS such that zth = y is canonical under GS. If S ∪ {y}
is canonical under G, we return th. Otherwise, if S∪ {y} is a fusion node, then
we have a fusion element ψS(y) such that

(S ∪ {y})ψS(y) = R ∪ {x}

is canonical by 9.6.8 and we return thψS(y). This finishes the description of the
algorithm. Let us present the algorithm as

9.6.9Theorem Let G act on the finite set X. Assume that we can compute stabilizers, group
extensions and orbits on points for subgroups of G. Furthermore, let f : P(X) →
{0, 1} be a test function which is G-invariant and hereditary (in the sense of 9.5.1
and 9.5.2). Then Algorithm 9.6.10 computes the orbits of G on P (f)(X) = P(X) ∩
f−1({1}), the set of admissible subsets of X. �

9.6.10Algorithm (orbits on subsets)

Input: orbit
(
G,P (f)

i (X)
)

= (T i, σi, ϕi)
Output: orbit

(
G,P (f)

i+1(X)
)

= (T i+1, σi+1, ϕi+1)

(0) for R ∈ T i do

(1) compute orbit(GR, X \ R) := (T R, σR, ϕR)
(2) end for

(3) T i+1 := ∅

710 9. The General Case

(4) for R ∈ T i (in increasing order) do

(5) for x ∈ T R (in increasing order) with f (R ∪ {x}) = 1
and for which ψR(x) has not yet been defined do

(6) GR,x := σR(x)
(7) H := GR,x

(8) for all r ∈ R which are least in their H-orbit do

(9) t := ϕi((R \ {r}) ∪ {x})
(10) S := ((R \ {r}) ∪ {x})t
(11) h := ϕS(rt)
(12) y := rth

(now: (R ∪ {x})th = S ∪ {y}, S ∈ T i, y ∈ T S)
(13) if S = R and y = x then (case 1 of 9.6.1)
(14) H := 〈H, th〉

(th is an automorphism of R ∪ {x})
(15) else (case 2 of 9.6.1)
(16) ψS(y) := (th)−1

(th is an isomorphism from R ∪ {x} to S ∪ {y})
(17) end if

(18) end for

(19) append R ∪ {x} to T i+1
(20) σi+1(R∪ {x}) := H (= GR∪{x})
(21) end for

(22) end for

(23) return (T i+1, σi+1, ϕi+1)

Where the function ϕi+1 is defined as follows.

(24) function ϕi+1(F)
(25) z := max F, Z := F \ {z} (a set of size i)
(26) t := ϕi(Z)
(27) S := Zt
(28) h := ϕS(zt), y := zth
(29) if ψS(y) has been defined then

(30) return thψS(y)
(31) else

(32) return th
(33) end if

(34) end function �

Proof: The proof is by induction. The orbits of subsets of size 0 are trivially
known. The orbits of subsets of size 1 are known by assumption. Now assume

9.6 The Algorithm Snakes and Ladders 711

that orbit
(
G,Pi(X)

)
= (T i, σi, ϕi) has already been computed. In order to

prove correctness of Algorithm 9.6.10, we verify that T i+1 is a transversal for
the orbits of G on Pi+1(X), and that σi+1(R) = GR for R ∈ T i+1 and that
ϕi+1(S) = t such that St ∈ T i+1 for all S ∈ Pi+1(X).

First of all, each (i + 1)-subset S can be written as S = S′ ∪ {y} where S′ is
an i-subset and y ∈ X \ S′. Putting g := ϕi(S′) we get S ∼G Sg = S′g ∪ {yg}
where S′g is an orbit representative in T i. Hence we get representatives of all
G-orbits on (i + 1)-sets from the extensions of the form R ∪ {x} where R ∈ T i

and x ∈ X \ R. In lines (0) and (4), (5) these extensions of orbit representatives
are considered. In line (1), the orbits of GR on X \ R are computed for R ∈ T i.
The result is (T R, σR, ϕR), where

1. T R is a transversal of the orbits of GR on X \ R,

2. σR : X \ R → L(G) is such that σR(x) = GR,x = (GR)x is the stabilizer of x
in GR, and

3. ϕR : X \ R → G is a map with ϕR(y) = g ∈ G such that yg ∈ T R.

The candidate set is the set of extensions R ∪ {x} where R ∈ T i and x ∈ T R.
In lines (4) and (5), the extensions R ∪ {x} are considered again.

We must now show that the extensions which are added to T i+1 in line
(20) are pairwise not in the same G-orbit. Let R ∪ {x} and S ∪ {y} be two
arbitrary distinct extension sets (with R, S ∈ T i and x ∈ T R and y ∈ T S).
By 9.6.1, R ∪ {x} ∼G S ∪ {y} if and only if either R = S and x ∼GR y, or for
one r ∈ R the equations

((R \ {r}) ∪ {x})t = S and rt ∼GS y 9.6.11

hold for t = ϕi((R \ {r}) ∪ {x}). First, consider the case R = S and x ∼GR y.
Since R ∪ {x} is different from S ∪ {y}, we must have x �= y. But x and y
are different elements of the transversal T R of GR orbits, which contradicts
x ∼GR y. Hence we must be in the second case, i.e. 9.6.11 holds true for some
r ∈ R. Without loss of generality, we assume that

R ∪ {x} , S ∪ {y},

i.e. that R ∪ {x} has been considered before S ∪ {y} in lines (4) and (5).
By 9.6.11, there is an element r ∈ R for which ((R \ {r}) ∪ {x})t = S with
t = ϕi((R \ {r}) ∪ {x}) and rth = y ∈ T S with h = ϕS(rt) ∈ GS. In this
case, the fusion element ψS(y) = (th)−1 will be defined in line (16) which pre-
vents the extension S ∪ {y} from being considered in lines (4) and (5). This
proves that the computed set T i+1 intersects each G-orbit at most once. From

712 9. The General Case

the above, we already know that T i+1 contains elements from every orbit, and
hence T i+1 is a transversal of the (i + 1)-orbits of G, as required. The fact
that GR∪{x} = Ext(GR,x,R, x) has been shown in 9.6.5. The transversal R is
never explicitly computed. Instead, in line (7) the group H is initialized to be
H = GR,x = σR(x). The if clause in line (13) evaluates to true if and only if
r ∈ R∗(x), which means that th is an element of R. Therefore, the group H is
extended by th in line (14). Line (8) reduces the number of r ∈ R which have
to be tested. According to 9.6.7, we require that r ∈ R be minimal in its H-orbit.
At the end of the loop, in line (18), the full group GR∪{x} has been computed
in H. In lines (19) and (20), the new canonical representative R∪ {x} is added
to T i+1 and the stabilizer GR∪{x} is stored as σi+1(R ∪ {x}). At the end of the
for loops in lines (21) and (22), the transversal T i+1 is complete.

It remains to show that ϕi+1(F) is an element g ∈ G with Fg ∈ T i+1. In line
(25), F is written as a union of an i-set Z and the element z. For t = ϕi(Z) we
then have Zt = S ∈ T i in line (27). Hence the orbit data for the set S has been
computed and we can evaluate h = ϕS(zt) and define y = zth in line (28). We
now have

FthψS(y) = (Z ∪ {z})thψS(y) = S ∪ {y}.
If ψS(y) has not been defined then S ∪ {y} is canonical and we return th. Oth-
erwise, there has been an extension R∪ {x} and an element r ∈ R \ R∗(x) such
that ((R \ {r}) ∪ {x})t′ = S, with t′ := ϕ((R \ {r}) ∪ {x}), and y = xt′h′ for
h′ = ϕS(xt′) ∈ G{S}. Since r is not in R∗(x), the if clause in (13) did not hold
and the element (t′h′)−1 has been stored as ψS(y). Hence

FthψS(y) = (Z ∪ {z})thψS(y)

= (S ∪ {y})ψS(y)

= (S ∪ {y})(t′h′)−1

= (R ∪ {x}) ∈ T i+1.

This proves that in each case ϕi+1(F) is an element that maps F to its canonical
orbit representative, as required. This completes the proof that the algorithm
computes the orbit data for G acting on subsets. �

9.6.12 Example (continuation of Example 9.5.12) Let us consider the binary (8, 4)-
codes again. The generation tree is shown in Fig. 9.7. A node A is represented
by a box, with the label max A indicated in a circle right above the box. The
circled numbers immediately below the box are the possible extensions. In-
side the box, information on the stabilizer is given. The first number is the
order of the stabilizer. After that, the orbits of the stabilizer on points are indi-
cated. Inside each orbit, the numbers are arranged in increasing order. Hence

9.6 The Algorithm Snakes and Ladders 713

0

1

2

3

4

5

6

7 8 9 10

8

5

6

7

8

9

12

8

11

13

14

5

6

7

8

8

5

20160

{0, 1, . . . , 14}

1344
{0},

{1,2,...,14}

192
{0,1},

{2,3,4,6,7,8,9,10,
11,12,13,14},

{5}

48
{0,1,2},

{3,4,9,10,11,12,
13,14},{5,6,7},

{8}

24
{0,1,2,3},

{4},
{5,6,7,9,10,12},
{8,11,13,14}

120
{0,1,2,3,4},
{5,6,7,8,

9,10,11,12,
13,14}

12
{0,1},

{2,3,4},{5},
{6,7,9,10,13,14},

{8,11,12}

8
{0},{1,2,5,6},
{3,4},{7},
{8},{9,14},
{10,11,12,13}

48 8 24 8

8
{0,1,3,4},
{2},{5,8},
{6,7,11,12},
{9,10,13,14}

12
{0,1,5},{2,3},
{4,13,14},

{6,7,8,9,10,11},
{12}

8
{0},{1,2,5,6},
{3},{4,14},
{7,8},{9},

{10,11,12,13}

24
{0,1,2,5,6,7},
{3},{4},
{8},{9,10,

11,12,13,14}

168

48
{0},

{1,2,3,5,6,9},
{4,14},

{7,8,10,11,12,13}

72
{0,1,2,3,
5,12},

{4,6,7,8,9,10,
11,13,14}

24
{0,1,2,8},{3},
{4,9,10,12},
{5,6,7},

{11,13,14}

48
{0,1,2,3,8,11},
{4,6,7,9,10,12},

{5},
{13,14}

168
{0,1,2,3,8,11,13},
{4,5,6,7,9,10,12},

{14}

1344

48
{0,1,5},

{2},{3,4,9,
10,11,12,13,14},

{6,7,8}

64
{0},

{1,2,5,6},
{3,4,9,10,11,12,
13,14},{7,8}

192
{0,1,2,5,6,7},
{3,4,9,10,

11,12,13,14},
{8}

1344
{0,1,2,5,
6,7,8},

{3,4,9,10,
11,12,13,14}

192
{0,1,2,8},
{3,4,9,10,

11,12,13,14},
{5,6,7}

576
{0,1,5},
{2,3,4,6,7,
8,9,10,11,
12,13,14}

0

1

2 5

3 5 8

4 5 8 6

5 6 12 11 7

6 8 7 9 10 13 8

7 8 9 10 9 8 9 14

Fig. 9.7 Generation tree of (8, 4,≥ 3, 2)-codes

714 9. The General Case

the first number is the least orbit representative. Not every orbit leads to an
extension. The rank condition must be satisfied for possible extensions (since
d = 3, the rank condition is always satisfied in this example). The solid lines
stand for extensions leading to canonical sets, i.e. to new orbit representatives
at depth one step further down the tree. These lines always connect circles
with equal numbers. The three dashed and somewhat curly lines are related
to fusion nodes. Recall that fusion nodes stand for extension sets which are not
canonical. Each fusion node is connected by a curly line to the corresponding
canonical node, which is to the left. Associated with every curly line is a fusion
element. The three fusion nodes are

{0, 1, 2, 3, 4, 5, 8, 9}, {0, 1, 2, 3, 5, 6, 10}, and {0, 1, 2, 3, 5, 6, 7, 9}.

The corresponding fusion elements are (in matrix form and as permutations of
the points of PG3(2), respectively)

ψ{0,1,2,3,4,5,8}(9) =

⎛⎜⎜⎜⎝
1 0 1 0
1 1 1 1
0 0 0 1
1 0 0 0

⎞⎟⎟⎟⎠ = (0, 6, 13, 12, 9, 2, 3)(1, 4, 5, 10, 14, 7, 8),

ψ{0,1,2,3,5,6}(10) =

⎛⎜⎜⎜⎝
1 1 1 0
1 1 0 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎟⎠ = (0, 8, 12, 10)(1, 5, 2, 3)(4, 14, 9, 6)(7, 11),

and

ψ{0,1,2,3,5,6,7}(9) =

⎛⎜⎜⎜⎝
1 1 1 0
1 0 1 0
0 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠ = (0, 8, 7)(1, 6, 5)(3, 4, 9)(11, 13, 12).

For instance, the fusion node {0, 1, 2, 3, 5, 6, 10} is connected to the canonical
node {0, 1, 2, 3, 4, 5, 8}. This is because application of the fusion element maps
one set onto the other:

{0, 1, 2, 3, 5, 6, 10}(0, 8, 12, 10)(1, 5, 2, 3)(4, 14, 9, 6)(7, 11) = {8, 5, 3, 1, 2, 4, 0}.

Let us trace the computation of the automorphism group of the extended
Hamming code, for example. As pointed out in Example 9.5.12, the (8, 4) ex-
tended Hamming code is the rightmost leaf at level 8, i.e. the set

{0, 1, 2, 3, 8, 11, 13, 14}.

Essentially, the computation consists of 8 repetitions of the “down-and-up”
process described earlier in this section. For each prefix R of the set in ques-
tion, we compute from the given group GR the groups GR,x and GR∪{x}. We

9.6 The Algorithm Snakes and Ladders 715

20160

∅

1344 1344

0

96
192

1

16

48

2

6

24

3

6

24

8

6

48

11

24

168

13

168

1344

14

Fig. 9.8 Computing the automorphism group of the (8, 4) extended Hamming code

proceed by induction on the size of the prefix R, i.e. we start with R = ∅, then
consider R = {0}, after that R = {0, 1} and so forth. This means that we are
moving from the left to the right in Fig. 9.8, which shows the elements of R
at the bottom. Above, the order of the groups GR (circled) and GR,x is plotted
on a logarithmic scale. The computation starts with the empty set, whose au-
tomorphism group is G = PGL(4, 2) of order 20160 (this is the root node in
Fig. 9.7). Then the point 0 is chosen. Since 0 is in an orbit of length 15,

|G0| = 20160/15 = 1344.

Next, we add the point 1 to the set. Since 1 is in an orbit of G0 of length 14, we
have

|G0,1| = 1344/14 = 96.

The upstep results in an automorphism which interchanges 0 and 1, so that
G0,1 is of index 2 in the set stabilizer G{0,1}, which must therefore be of order
2 · 96 = 192. Then the point 2 is added from an orbit of G{0,1} of length 12,
so that G{0,1},2 has order 192/12 = 16 (recall that G{0,1},2 denotes the intersec-
tion of the set stabilizer of {0, 1} with the point stabilizer of 2. The following
upstep detects that 2 is in an orbit of length 3 under G{0,1,2}, so that the next
set stabilizer is G{0,1,2} of order 16 · 3 = 48. The computation continues in this
way. Eventually, the automorphism group of the extended Hamming code is
computed to be the set stabilizer

G{0,1,2,3,8,11,13,14}

of order 1344. �

716 9. The General Case

Fig. 9.9 The binary (18, 9, 6)-codes

Figure 9.9 shows the generation tree for the unique binary (18, 9, 6)-code.
The sole purpose of this example is to give a rough idea of the nature of such
trees. We suppress all labels and automorphism group order information.

9.7 Base and Strong Generating Sets 717

9.79.7 Base and Strong Generating Sets

The orbit algorithm as described above depends on the availability of good
algorithms to work with permutation groups. In particular, point stabilizer
subgroups and extension overgroups need to be computed (as well as orbits
on points). It turns out that our first attempt at these algorithms, based on sets
of generators, does not perform well for large examples. The reason is that the
number of generators produced by 9.2.10 may become too large, which in turn
deteriorates the performance of the orbit algorithm on points.

In this section, we will overcome this bottleneck by introducing a better
data structure for permutation groups. This data structure, introduced by
Sims [181, 182], is called a stabilizer chain. It represents the group by means of
a chain of subgroups terminating in the trivial group. Each group in the chain
is the stabilizer of a point in the previous group.

To begin with, let G be a group acting faithfully on a set finite, totally or-
dered set X = {x0, . . . xn−1}<. A subset B = {b0, . . . , br−1} ⊂ X is called base
for G on X if the pointwise stabilizer Gb0,...,br−1

= 1, i.e. if only the identity of G
fixes all the points of B. An ordered base for G on X is a sequence (b0, . . . , br−1)
such that the corresponding set {b0, . . . , br−1} is a base for G. An ordered base
B gives rise to a chain of subgroups

G = G(0) ≥ G(1) ≥ · · · ≥ G(r) = 〈1〉, 9.7.1

where

G(i+1) = G(i)
bi

9.7.2

is the stabilizer of bi in G(i). This is called the stabilizer chain (or Sims chain) for
G with respect to B. The base is called irredundant if no two (consecutive) terms
of the sequence of subgroups coincide.

The images of the base points determine a permutation in the following
sense.

9.7.3Lemma Let G be a permutation group with base B = (b0, . . . , br−1). Let g and h be
two elements of G. Then g = h if and only if big = bih for i ∈ r. In other words,
knowing the images of all base points determines a permutation uniquely.

Proof: The condition big = bih for i ∈ r is equivalent to bigh−1 = bi for all
i ∈ r, which in turn is equivalent to gh−1 ∈ G(r) = 〈1〉, using the fact that B is
a base. Thus gh−1 = 1, i.e. g = h. �

718 9. The General Case

By 3.4.1, the cosets of G(i+1) in G(i) correspond to the different elements in
the orbit

O(i) = G(i)(bi),

which we call the i-th basic orbit. In particular, since G(i+1) is a point stabilizer
in G(i) by 9.7.2, the index satisfies∣∣∣G(i)

∣∣∣ /
∣∣∣G(i+1)

∣∣∣ = |O(i)| =: �i

and hence by 9.7.1

|G| = ∏
i∈r

∣∣∣G(i)
∣∣∣ /

∣∣∣G(i+1)
∣∣∣ = ∏

i∈r
�i.9.7.4

For i ∈ r, we choose coset representatives σi,0, . . . , σi,�i−1 for G(i+1) in G(i), so that

G(i) =
⋃
j∈�i

G(i+1)σi,j9.7.5

is the decomposition of G(i) into cosets of G(i+1). We require that σi,0 = 1, the
identity element of G, for all i ∈ r. A strong generating set for G relative to B is
a set S of elements of G with the property that

〈S ∩ G(i)〉 = G(i) for i ∈ r.9.7.6

9.7.7 Example Consider the symmetric group G = Sn acting on the set n. An ordered
base for G is B = (0, 1, . . . , n − 2). G(i) is isomorphic to Sn−i (acting on the set
{i, . . . , n − 1}). The basic orbits are of length �i = n − i. Coset representatives
are σi,j = (i, i + j) for j ∈ �i and i ∈ n − 1. The sets

U = {(0, 1, . . . , n − 1), (0, 1)}

and
V = {(0, 1), (1, 2), . . . , (n − 2, n − 1)}

both generate Sn. For n ≥ 3, U is not a strong generating set (for example the
group G(1), which is the symmetric group acting on {1, . . . , n − 1} contains
none of the generators). On the contrary, the generating set V is a strong gen-
erating set for all n. This is because V ∩ G(i) = {(i, i + 1), . . . , (n − 2, n − 1)}
generates Sn−i acting on the set {i, . . . , n − 1}. In fact, for each n ≥ 2, the per-
mutations (i, i + 1) for i ∈ n − 2 form a strong generating set for Sn. �

The point of knowing a strong generating set S for a permutation group G is
that the basic orbits G(i)(bi) can be computed easily. Namely, it is straightfor-
ward to compute the subsets

S(i) := S ∩ G(i), i ∈ r,

9.7 Base and Strong Generating Sets 719

Up

Front

Down

Back

Left Right

16

2

5

19

13

9

12

22

1

4

20

18

7

10

24

14

17 83 15

21 116 23

Fig. 9.10 Rubik’s 2× 2× 2 cube

which for fixed i ∈ r contain those generators which fix the first i base points
b0, . . . , bi−1. Using the orbit algorithm of Section 9.2, one computes the corre-
sponding basic orbit. From this orbit, coset representatives σi,0, . . . , σi,�i−1 can
be determined (they are just the transporter elements of Section 9.2). The point
is that the basic orbits and the corresponding Schreier trees can be constructed
easily from the strong generating set. This is not the case for arbitrary gen-
erating sets, where one has to go through more complex algorithms, like the
Schreier–Sims algorithm described in [91], for example. The difficulty lies in
the fact that the basic orbits O(i) = G(i)(bi) can only be computed when gen-
erators for G(i) are known. This explains why the set S(i) which generates G(i)

is so valuable.

One further remark concerning the Schreier tree is in order. Recall that we
require that σi,0 = 1. This condition is automatically satisfied for Schreier trees,
since the path from the root to itself corresponds to the empty word, which
by definition is the identity element in the group. Let us consider another
example.

9.7.8Example Figure 9.10 shows Rubik’s cube in the simplified version with sides
of length 2 instead of three. We label the faces with the integers in {1, . . . , 24}
as indicated beneath. Here, we start labeling points from 1, since many current
computer algebra systems have permutations act on 1, 2, 3, . . . We will follow
this convention throughout this example, for the sake of allowing the reader
to verify the claims made by using a standard software package.

Consider the group G which is generated by the rotations of the sides. We
follow the widely accepted notation due to Singmaster (cf. [183]), which de-
notes the quarter turns in clockwise direction of the left, right, front, back, up

720 9. The General Case

and down side of the cube by L, R, F, B,U and D, respectively. However, we
stick to the notation A−1, A−2, . . . for the inverse, the square of the inverse etc.
of the element A (as opposed to using A′ for the inverse of A which is some-
times used). The permutations which correspond to these six generators are

R = (7, 14, 24, 10)(8, 15, 23, 11)(9, 13, 22, 12)

B = (13, 17, 20, 23)(14, 18, 19, 22)(16, 21, 24, 15)

D = (4, 11, 22, 21)(5, 12, 24, 20)(6, 10, 23, 19),

L = (1, 4, 20, 18)(2, 5, 19, 16)(3, 6, 21, 17),

F = (1, 8, 12, 6)(2, 9, 10, 4)(3, 7, 11, 5),

U = (1, 16, 13, 7)(2, 17, 14, 8)(3, 18, 15, 9).

An ordered base for the group G is (1, 4, 7, 10, 13, 16, 19). We get the follow-
ing stabilizer chain, where we indicate the length of the fundamental orbit in
parenthesis and where the grey area in the pictures indicates faces which have
been stabilized.

G = G(0)
1

(24)

≥
(
G(1) =

)
G1

4

(21)

≥
(
G(2) =

)
G1,4

7

(18)

≥
(
G(3) =

)
G1,4,7

10

(15)

≥
(
G(4) =

)
G1,4,7,10

13

(12)

9.7 Base and Strong Generating Sets 721

≥
(
G(5) =

)
G1,4,7,10,13

16

(9)

≥
(
G(6) =

)
G1,4,7,10,13,16 19 (6)

≥
(
G(7) =

)
G1,4,7,10,13,16,19 = 1.

Hence by 9.7.4, the order of G (i.e. the number of positions) is

24× 21× 18× 15× 12× 9× 6 = 88 179 840.

Note that the generating set {L, R, F, B,U, D} for G is not strong. A strong
generating set can be found by considering moves which fix the grey part and
permute the remaining faces among themselves. The point is that these moves
may bring the grey part into disarray for a while. However, at the end of the
move the grey faces are brought back into place. By computing Schreier trees
it can be checked that

S = {ν, τ, δ, B, ω, R, D, L}
is a strong generating set, where

τ = (BLFRD)3 = (19, 24)(20, 22)(21, 23),

ρ = DFU−1R−1UFD−1F−1 = (4, 5, 6)(7, 9, 8)(10, 12, 11)(19, 21, 20),

ν = ρ2B−1ρB = (19, 20, 21)(22, 24, 23),

δ = BτB−1 = (16, 20)(17, 19)(18, 21),

ω = DBD−1B−1 = (10, 23, 11, 22, 12, 24)(16, 19, 18, 20, 17, 21).

We find that

G(6) = G1,4,7,10,13,16 = 〈ν, τ〉,
G(5) = G1,4,7,10,13 = 〈ν, τ, δ〉,

G(4) = G1,4,7,10 = 〈ν, τ, δ, B〉,
G(3) = G1,4,7 = 〈ν, τ, δ, B, ω〉,
G(2) = G1,4 = 〈ν, τ, δ, B, ω, R〉,
G(1) = G1 = 〈ν, τ, δ, B, ω, R, D〉,
G(0) = G = 〈ν, τ, δ, B, ω, R, D, L〉,

which are groups of order 6, 54, 648, 9720, 174 960, 3 674 160 and 88 179 840,
respectively. More details on the group of Rubik’s cube (in particular, the ver-
sion with sides of length 3) can be found in the books by Neumann, Stoy and
Thompson [158] and in the above-mentioned book by Singmaster [183]. �

722 9. The General Case

Our next goal is to identify group elements with integers, using a known
stabilizer chain for the permutation group. This serves two purposes. Firstly,
it is convenient, as integers are often easier to handle in computer programs.
Secondly, this enables us to pick group elements uniformly at random, which
is useful for randomized algorithms for permutation groups. To begin with,
let us introduce the multibase representation of an integer.

9.7.9 Lemma Let L = (�0, . . . , �r−1) be a sequence of positive integers and define m =
∏i∈r �i. Any integer n in m = {0, . . . , m− 1} has a unique representation of the form

n = ∑
i∈r

ai ∏
j∈i

�j

with integers ai ∈ �i for i ∈ r (here, an empty product is defined to be 1). We write

n = (ar−1, . . . , a0)L

and call this the multibase representation of n with respect to B.

Proof: Put mi = ∏j∈i �j for i ∈ r + 1, i.e. mr = m.
Existence: If r = 1 we may put a0 = n and we are finished. Thus let us assume
that r ≥ 2. Given n = nr−1 with n ∈ m, integral division yields unique integers
ar−1 ≥ 0 and nr−2 with

n = nr−1 = ar−1mr−1 + nr−2 with nr−2 ∈ mr−1.

Here we have ar−1 =
nr−1/mr−1�, and since nr−1 = n < m = mr−1�r−1 we
have ar−1 ∈ �r−1. If r ≥ 3, we may repeat this argument for nr−2 and obtain an
equation of the form

nr−2 = ar−2mr−2 + nr−3 with nr−3 ∈ mr−2 and ar−2 ≥ 0.

Here we have ar−2 =
nr−2/mr−2�, and since nr−2 < mr−1 = mr−2�r−2 we
have ar−2 ∈ �r−2. If we proceed in this way, we define integers ai ∈ �i and
ni−1 ∈ mi. Eventually we arrive at an equation of the form

n1 = a1m1 + n0 with n0 ∈ m1 and a1 ∈ �1.

Note that by definition m1 = �0, so that we may simply put a0 = n0 ∈ m1 = �0.
Thus, we have written n as

n = nr−1

= ar−1mr−1 + nr−2

= ar−1mr−1 + ar−2mr−2 + nr−3
...

= ∑
i∈r

aimi.

9.7 Base and Strong Generating Sets 723

Uniqueness: Let
(ar−1, . . . , a0)L = n = (br−1, . . . , b0)L

be two expressions for n. Subtraction yields

0 = ∑
i∈r

(bi − ai)mi.

Put ∆i := bi − ai. Let j be such that ∆j �= 0 (such an index j exists if we assume
that the expressions are distinct). Therefore

∆jmj = − ∑
i∈r
i �=j

∆imi. 9.7.10

Notice that
|∆i| ≤ bi < �i, i ∈ r. 9.7.11

If j < r − 1, we may consider 9.7.10 modulo mj+1 to get

∆jmj ≡ − ∑
i∈j−1

∆imi mod mj+1. 9.7.12

Using 9.7.11 we get that

|∆i|mi ≤ (�i − 1)mi = �imi − mi = mi+1 − mi.

Therefore, over the integers, the right hand side of 9.7.12 is bounded above by∣∣∣∣∣ ∑
i∈j−1

∆imi

∣∣∣∣∣ ≤ ∑
i∈j−1

|∆i|mi ≤ ∑
i∈j−1

(
mi+1 − mi

)
= mj − m0 = mj − 1 < mj.

But ∆j �= 0, which means that 9.7.12 has no solution modulo mj+1. Hence
∆j �= 0 is impossible. If j = r − 1, 9.7.10 becomes

∆r−1mr−1 = − ∑
i∈r−1

∆imi.

The same argument as before shows that the absolute value of the right hand
side of this equation is bounded above by mr−1, which contradicts the fact that
∆r−1 is nonzero. These contradictions show that the multibase representation
is unique. �

We introduce some more notation. For a sequence L = (�0, . . . , �r−1), let

←
L= (�r−1, . . . , �0)

be the reversed sequence. The following result enables us to identify group ele-
ments with integers.

724 9. The General Case

9.7.13 Lemma Let the group G be of order |G| with base B = (b0, . . . , br−1) and basic orbits
of lengths |G(i)(bi)| = �i, i ∈ r. Furthermore, assume that coset representatives σi,j
for j ∈ �i, i ∈ r have been chosen. Put L = (�0, . . . , �r−1). Define a map

rk−1 : |G| → G : n �→ σr−1,a0σr−2,a1 · · · σ0,ar−1 ,

where (ar−1, . . . , a0)←
L

is the multibase representation of n with respect to
←
L . This

map is bijective, we call it the unrank function for G. Its inverse is the rank function
for G.

Proof: By 3.4.1, each element g ∈ G(0) = G can be written as

g = g(1)σ0,ar−1,

for a uniquely determined coset representative σ0,ar−1 , ar−1in�0 and a unique
element g(1) ∈ G(1). Repeating this argument for g(1) yields a unique coset
representative σ1,ar−2 , ar−2 ∈ �1, and a unique element g(2) ∈ G(2) such that

g(1) = g(2)σ1,ar−2 .

If r > 2, we may proceed in this fashion. In the i-th step we find an equation
of the form

g(i) = g(i+1)σi,ar−1−i
,

for some unique elements g(i+1) and σi,ar−1−i
, ar−1−i ∈ �i. This process termi-

nates once we reach
g(r−1) = g(r)σr−1,a0 ,

with a0 ∈ �r−1, since then g(r) ∈ G(r) = 1, the trivial group, i.e. g(r) = 1.
Back-substituting the equations into each other gives

g = g(1)σ0,ar−1

= g(2)σ1,ar−2σ0,ar−1

...

= σr−1,a0σr−2,a1 · · · σ1,ar−2σ0,ar−1,

with ai ≤ �r−1−i for i ∈ r. This means that we are able to write the given
group element g in a unique way as a product of coset representatives. In
the literature, the indicated process is known as the sift algorithm. To turn this
representation into a number, we simply consider the sequence a0, . . . , ar−1 as
multibase representation

(ar−1, ar−2, . . . , a0)←
L

= n

of some integer n ∈ |G| = ∏i∈r �i. This process defines a rank function on the
set of group elements. In fact, this function is bijective because different group
elements give different factorizations and hence different multibase represen-
tations of numbers. The inverse process gives the unrank function. �

9.7 Base and Strong Generating Sets 725

Table 9.3 Unranking the elements of S3

n (a1, a0)(2,3) rk−1(n) = σ1,a0σ0,a1

0 (0, 0) 1 = 1 · 1
1 (0, 1) (1, 2) = (1, 2) · 1
2 (1, 0) (0, 1) = 1 · (0, 1)
3 (1, 1) (0, 1, 2) = (1, 2) · (0, 1)
4 (2, 0) (0, 2) = 1 · (0, 2)
5 (2, 1) (0, 2, 1) = (1, 2) · (0, 2)

σ1,0 σ1,1

σ0,0

σ1,0 σ1,1

σ0,1

σ1,0 σ1,1

σ0,2

σ1,1σ0,2σ1,0σ0,2σ1,1σ0,1σ1,0σ0,1σ1,1σ0,0σ1,0σ0,0

(0, 2, 1)(0, 2)(0, 1, 2)(0, 1)(1, 2)1

543210

Fig. 9.11 The elements of S3 by rank

We remark that the order of the terms in the function rk−1 of 9.7.13 matters,
since we do not require the group to be abelian.

9.7.14Example Consider the symmetric group S3 acting on {0, 1, 2} with base B =

(0, 1). The basic orbits are of length �0 = 3 and �1 = 2. Hence
←
L=

←
(3, 2)= (2, 3).

Coset representatives are

σ0,0 = 1, σ0,1 = (0, 1), σ0,2 = (0, 2), σ1,0 = 1, σ1,1 = (1, 2).

The unrank function lists the elements in the order indicated in Table 9.3. The
ordering may be visualized as in Fig. 9.11. The coset representatives are shown
as the nodes of a tree. The leaves stand for elements of the group. The corre-
sponding permutations and their ranks are shown at the bottom. �

We are now in a position to define another important graph associated to a
group. If G is a group and if S is a set of elements of G, the Cayley-graph of G

726 9. The General Case

0

00

0

0

0
1

1

1 1

1

1

0

1

2

3

4

5

Fig. 9.12 The Cayley-graph of S3

with respect to S is the action-graph whose vertices are the elements of G and
whose edges are defined by the right-multiplication by elements s ∈ S. That is,
the Cayley-graph of G with respect to S has an edge from x to y labeled by si ∈
S if xsi = y holds in G. Figure 9.12 shows the Cayley graph of S3 with respect
to the generating set S = {s0, s1} where s0 = (0, 1, 2) and s1 = (0, 1). Cayley
graphs are often used to investigate combinatorial problems theoretically, and
they can also be useful for studying the concepts defined in this section.

9.7.15 Example Consider the Cayley graph of Rubik’s cube. As noted above, for the
2× 2× 2 cube, we may assume that one corner is fixed, for instance the front-
top-left corner 1, 2, 3. That leaves only the generators R, D and B as well as
their inverses. We consider the Cayley graph of G(1) = G1 (of order 3 674 160,
see above) with respect to these 6 generators. Cayley graphs admit the defin-
ing group as vertex transitive automorphism group. Therefore, in order to
compute the diameter of the graph it suffices to compute the distance of the
vertex furthest away from a given vertex. If Γi is the set of vertices at distance i
from the identity node, then Jianyi Yao, a student at Colorado State University,
reports the following numbers:

i |Γi|
0 1
1 6
2 27
3 120
4 534

i |Γi|
5 2256
6 8969
7 33058
8 114149
9 360508

i |Γi|
10 930588
11 1350852
12 782536
13 90280
14 276

9.8 The Projective Linear Group 727

In particular, this means that there are 276 “worst case” positions, i.e. positions
which can be restored with no less than 14 quarter turns. This agrees with
results obtained by Cooperman et al. [41], which report that the diameter of
this graph is 14. �

Summarizing, the concept of base and strong generating set defines a new
data structure for permutation groups. This data structure is based on the
stabilizer chain corresponding to the base. To represent that chain, one needs
one Schreier tree for each basic orbit. At any particular level, one obtains coset
representatives for the next subgroup in the chain from the Schreier tree. Using
a fixed ordering of these representatives, 9.7.13 allows one to access group
elements numerically. For further details on working with stabilizer chains,
we refer to the above-mentioned books by Holt [91] and by Seress [177]. We
only mention that randomization plays a key role in those algorithms.

Exercises

E.9.7.1Exercise Let G be a finite group and let S be a subset of G. Show the following.

1. The Cayley-graph of G with respect to S is connected if and only if S gen-
erates G.

2. The Cayley-graph is undirected (i.e., (u, v) is an edge whenever (v, u) is
an edge) if and only if S is closed under inverses (i.e., s ∈ S ⇔ s−1 ∈ S).
In particular, this is the case if S consists of involutions, i.e. elements of
order 2.

9.89.8 The Projective Linear Group

The goal of this section is to describe a stabilizer chain for PGLk(q), the projec-
tive linear group of PGk−1(q). We will find a base for this group, and we will
list the coset representatives σi,j explicitly. This leads us to determine a strong
generating set. In the same vein, we will also treat the projective semilinear
group PΓLk(q) in the following section.

For −1 ≤ s < d, define the set

PGd\s(q) = {〈u〉 ∈ PGd(q) | lc(u) > s}.
We also put

θd\s(q) = |PGd\s(q)| = θd(q)− θs(q) =
qd+1 − qs+1

q − 1
,

with θ−1(q) = 0. As usual, we rank and unrank the elements of this set.

728 9. The General Case

9.8.1 Lemma Let d, s and q be given, where q is a prime power and −1 ≤ s < d. Define a
map rk−1

d\s;q from θd\s(q) to PGd\s(q) by

rk−1
d\s;q(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈e(s+1+n)〉 if n ≤ d − s − 1

〈
d

∑
i=0

e(i)〉 if n = d − s

〈rk−1
d,s+1;q(n − d + s)〉 otherwise,

where rk−1
d,s+1;q is the function of 9.3.7. The map rk−1

d\s;q is a bijection, we call it the
unrank function for PGd\s(q). Its inverse is the rank function for PGd\s(q), denoted
as rkd\s;q. For a point 〈u〉 ∈ PGd\s(q), with u = (u0, u1, . . . , ud) ∈ Fd+1

q \ {0} one
has rkd\s;q(〈u〉) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k if 〈u〉 = 〈e(s+1+k)〉
d − s if 〈u〉 = 〈1, . . . , 1〉

d + 1− k + qk−qs+1

q−1 + rkk,q

(
u0
uk

, . . . , uk−1
uk

)
if k = lc(u) < d

1 + qd−qs+1

q−1 + shift−1
θd−1(q)

(
rkd,q

(
u0
ud

, . . . , ud−1
ud

))
if lc(u) = d.

9.8.2

For s = −1, we get the ordinary unrank function back, i.e.

rkd\−1;q = rkd;q and rk−1
d\−1;q = rk−1

d;q . �

9.8.3 Example We have θ2\−1(3) = 13, θ2\0(3) = 13 − 1 = 12, θ2\1(3) = 13 − 4 = 9.
Table 9.4 shows the functions rk2\s;3(x) for −1 ≤ s ≤ 1. �

9.8.4 Example We have θ3\−1(2) = 15, θ3\0(2) = 14, θ3\1(2) = 12 and θ3\2(2) = 8.
Table 9.5 shows the functions rk3\s;2(x) for −1 ≤ s ≤ 2. �

Let us introduce some notation for special kinds of matrices. We denote by Fn,i
the (n × (n + 1)) matrix which is obtained from the identity matrix In+1 by
removing the i-th row. In other words, we put

Fn,i =

(
Ii 0�i 0
0 0�n−i In−i

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
. . .

... 0
1 0

0 1

0
...

. . .
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

a matrix whose i-th column is zero. In addition, let Eu,v be the k × k matrix
whose only nonzero entry is in the (u, v)-position, with value one. Formally

Eu,v = (δi,uδv,j)i∈k,j∈k.

9.8 The Projective Linear Group 729

Table 9.4 The functions rk2\s;3(〈x〉) for 〈x〉 ∈ PG2(3)

rk2\s;3(〈x〉)
〈x〉 ∈ PG2(3) s = −1 s = 0 s = 1

〈1, 0, 0〉 0
〈0, 1, 0〉 1 0
〈0, 0, 1〉 2 1 0
〈1, 1, 1〉 3 2 1
〈1, 1, 0〉 4 3
〈2, 1, 0〉 5 4
〈1, 0, 1〉 6 5 2
〈2, 0, 1〉 7 6 3
〈0, 1, 1〉 8 7 4
〈2, 1, 1〉 9 8 5
〈0, 2, 1〉 10 9 6
〈1, 2, 1〉 11 10 7
〈2, 2, 1〉 12 11 8

Table 9.5 The functions rk3\s;2(〈x〉) for 〈x〉 ∈ PG3(2)

rk3\s;2(〈x〉)
〈x〉 ∈ PG3(2) s = −1 s = 0 s = 1 s = 2
〈1, 0, 0, 0〉 0
〈0, 1, 0, 0〉 1 0
〈0, 0, 1, 0〉 2 1 0
〈0, 0, 0, 1〉 3 2 1 0
〈1, 1, 1, 1〉 4 3 2 1
〈1, 1, 0, 0〉 5 4
〈1, 0, 1, 0〉 6 5 3
〈0, 1, 1, 0〉 7 6 4
〈1, 1, 1, 0〉 8 7 5
〈1, 0, 0, 1〉 9 8 6 2
〈0, 1, 0, 1〉 10 9 7 3
〈1, 1, 0, 1〉 11 10 8 4
〈0, 0, 1, 1〉 12 11 9 5
〈1, 0, 1, 1〉 13 12 10 6
〈0, 1, 1, 1〉 14 13 11 7

730 9. The General Case

Lastly, we introduce the 2× 2-matrix

P =

(
0 1
1 0

)
.

The next result describes a base and strong generating set for the projective
linear group PGLk(q) in the standard action on PGk−1(q). For sake of sim-
plicity, we do not distinguish in our notation between the matrices and the
induced permutations on the projective space. Also we let group elements be
denoted either by matrices or by the corresponding permutations.

9.8.5 Theorem (base and strong generating set for PGLk(q)) Let q = ph with p
prime and h a positive integer. Let PGk−1(q) be the one-dimensional subspaces of the
vector space V = Fk

q with basis e(0), . . . , e(k−1). Assume that κ0, κ1, . . . , κq−1 are the
elements of the field Fq, ordered in such a way that κ0 = 0 and κ1 = 1.

1. For i ∈ k + 1, let

bi :=

⎧⎨⎩ 〈e(i)〉 if i < k,
〈∑
i∈k

e(i)〉 if i = k.

The sequence B = (b0, . . . , bk) is a base for PGLk(q) acting on PGk−1(q). The
corresponding stabilizer chain has basic orbits of lengths

�i =

{
θk−1\i−1(q) for i ∈ k,

(q − 1)k−1 for i = k.

2. Coset representatives can be chosen as follows.
(a) For i ∈ k, and for j ∈ �i, let

σi,j =

⎛⎜⎝ Ii 0
v

0 Fk−i−1,s−i

⎞⎟⎠ ,

where 〈v〉 = rk−1
k−1\(i−1);q(j) and s = lc(v) ≥ i.

(b) For j ∈ �k, define

σk,j = diag(1, κa0+1, . . . , κak−2+1),

where j = (ak−2, . . . , a0)q−1 is the base (q − 1) representation of j.
If q = 2, the base point bk is redundant.

3. A strong generating set for PGLk(q) is the set

S =
{
P0, . . . ,P k−2, E r,j,D1, . . . ,Dk−1

∣∣∣ r ∈ h, j ∈ k − 1
}

,9.8.6

9.8 The Projective Linear Group 731

where

P i =

⎛⎜⎝ Ii 0 0
0 P 0
0 0 Ik−2−i

⎞⎟⎠ , 9.8.7

E r,j = Ik + βrEk−1,j, 9.8.8

Di = Ik + (α − 1)Ei,i. 9.8.9

Here, (β0, . . . , βh−1) is an Fp-basis for Fq (as vector space over Fp) and α is a
primitive element for Fq, i.e. a generator of the multiplicative group F∗

q . If q = 2,
the elements Di of 9.8.9 are all equal to Ik and may be omitted from the set S.

Proof: The pointwise stabilizer in GLk(q) of the unit vectors e(0), . . . , e(k−1)

consists of the diagonal matrices with nonzero determinant. These are just the
diagonal matrices whose diagonal entries are all nonzero. The stabilizer of the
unit vectors and the vector e(0) + . . . + e(k−1) are the matrices of the center Z k,
defined in 3.7.5, i.e. the matrices of the form λIk where λ ∈ F∗

q . Hence in the
factor group PGLk(q) = GLk(q)/Z k, only the identity element stabilizes

b0 = 〈e(0)〉, . . . , bk−1 = 〈e(k−1)〉, and bk = 〈e(0) + . . . + e(k−1)〉.

This shows that B is a base. The statement about the lengths of the basic orbits
will follow once we have verified that the given coset representatives are a
transversal for G(i+1) in G(i). For i = 0, we consider matrices of the form

σ0,j =

(
v

Fk−1,s

)
, j ∈ �0,

where 〈v〉 = rk−1
k−1;q(j) and where s = lc(v). Developing the determinant of

σ0,j along the nonzero entries of the matrix Fk−1,s leaves a nonzero one by one
matrix as last term. Thus σ0,j is an element of PGLk(q). The fact that we can
put any element 〈v〉 of PGk−1(q) into the first row of the coset representative
means that PGLk(q) is transitive on the set of points of PGk−1(q). Thus

�0 = θk−1(q) = θk−1\−1(q) =
qk − 1
q− 1

.

Next, consider the case where 0 < i < k. Elements in G(i) stabilize point-
wise the base points b0, . . . , bi−1, which means that they fix the subspaces

〈e(0)〉, . . . , 〈e(i−1)〉

732 9. The General Case

spanned by the first i unit vectors. Since the diagonal matrices are in G(i+1),
we may choose these unit vectors themselves for the first i rows of σi,j, so that

σi,j =

(
Ii 0
∗ ∗

)
.

The i-th row of σi,j is the image 〈v〉 of bi = 〈e(i)〉 under σi,j. In order to make
σi,j invertible, v must not lie in the span of e(0), . . . , e(i−1). Thus lc(v) ≥ i, i.e.
〈v〉 ∈ PGk−1\i−1(q). For j ∈ θk−1\i−1(q) = �i we may take

〈v〉 = rk−1
k−1\i−1;q(j),

so that

σi,j =

⎛⎜⎝ Ii 0
v

0 Fk−i−1,s−i

⎞⎟⎠ .

By computing the determinant one verifies that this matrix σi,j is invertible,
provided that s = lc(v). This shows that the given set of matrices σi,j form
coset representatives for G(i+1) in G(i). Also, the lengths of the basic orbits are
�i = θk−1\i−1(q).

For i = k we need coset representatives for G(k+1) in G(k). Recall that G(k)

is the group of diagonal matrices (modulo scalars, i.e. modulo Z k) whereas
G(k+1) is the identity modulo Z k. Thus coset representatives for G(k+1) in G(k)

are diagonal matrices with nonzero elements on the diagonal. Modulo Z k, we
may choose representatives of the form

diag(1, λ1, . . . , λk−1),

where λ1, . . . , λk−1 are nonzero field elements which can be chosen indepen-
dently. This shows that �k = (q − 1)k−1. We consider the map which takes an
integer j ∈ (q − 1)k−1 to the matrix

diag(1, κa0+1, . . . , κak−2+1) ∈ PGLk(q),

where
j = (ak−2, . . . , a0)q−1

is the base q− 1 representation of j. Since κai+1 �= 0 (recall that we require that
κ0 = 0 and κu �= 0 for u > 0), this map is a bijection onto the mentioned set of
coset representatives for G(k+1) in G(k). This finishes the proof of the first two
parts of the theorem.

Let us now verify that the set given in 9.8.6 is a strong generating set for
PGLk(q). This is proved inductively, going from the small groups to the larger

9.8 The Projective Linear Group 733

ones in the stabilizer chain, i.e. from the large indices to the smaller ones.
Recall that we have set

S(i) = S ∩ G(i)

for i ∈ k + 1. Showing that the generating sets S(i) for G(i) are strong can be
done by induction. We put

H(i) = 〈S(i)〉 ≤ G(i), i ∈ k + 1,

and then show that H(i) = G(i). In each step we need to show that

|H(i)(bi)| = �i = |G(i)(bi)|,

since then by 3.4.1 and by induction hypothesis,

|H(i)| = |H(i+1)| · �i = |G(i+1)| · �i = |G(i+1)|

and therefore H(i) = G(i).

The statement is clear for i = k + 1, since S(k+1) = ∅ and hence H(k+1) =
G(k+1) = 1. For i = k,

S(k) = S ∩ G(k) = {D j | 1 ≤ j < k}.

Modulo Z k, every diagonal matrix can be written as a product of (powers of)
suitable D j. This shows that G(k) = H(k) = 〈S(k)〉.

The set S(k−1) = S ∩ G(k−1) is

S(k−1) = S(k) ∪ {E r,j | r ∈ h, j ∈ k − 1},

with E r,j as in 9.8.8. Written out, we have

E r,j =

(
Ik−1 0
v′ 1

)
,

with
v′ = βre(j) ∈ Fk−1

q for r ∈ h, j ∈ k − 1.

Now consider the basic orbit G(k−1)(bk−1). This is just the set

PGk−1\k−2(q) =
{
〈v〉 ∈ PGk−1(q) | lc(v) = k − 1

}
.

Thus,
v = (v0, . . . , vk−2, 1) = (v′, 1)

with v′ = (v0, . . . , vk−2) ∈ Fk−1
q arbitrary. Notice that if w = (w′, 1) is an-

other vector with w′ = (w0, . . . , wk−2) ∈ Fk−1
q , then the corresponding coset

representatives multiply as follows(
Ik−1 0
v′ 1

)
·
(

Ik−1 0
w′ 1

)
=

(
Ik−1 0

v′ + w′ 1

)
.

734 9. The General Case

This shows that in the factor group G(k) modulo G(k+1), multiplication of coset
representatives

σk,j =

(
Ik−1 0

v

)
=

(
Ik−1 0
v′ 1

)
results in addition of the first k − 1 components of the vectors in the last rows.
In particular, the coset representatives form a group by themselves (i.e. a
“complement” of G(k) in G(k−1)). It is clear that the first k− 1 components form
an additive group Fk−1

q . Furthermore, since Fq � Fh
p (as additive groups), we

have the isomorphism from the group of coset representatives onto Fk−1
q �

Fh(k−1)
p . Therefore, a basis for the group of coset representatives is given by

the matrices E r,j, where r ∈ h and j ∈ k − 1. But these are exactly the elements
of S(k−1) \ S(k). This shows that the elements of S(k−1) generate the full basic
orbit G(k−1)(bk−1), and hence by the remark that 〈S(k−1)〉 = H(k−1) = G(k−1).

For i ∈ k − 1, the only strong generator in S(i) \ S(i+1) is the matrix P i

of 9.8.7. This matrix “swaps” the coefficients of the basis vectors e(i) and e(i+1).
We claim that a Schreier-tree for the basic orbit G(i)(bi) can be obtained from
S(i) = S(i+1) ∪ {Pi}. The points of G(i)(bi) which are not in G(i+1)(bi+1) are the
points of the set PGk−1\i−1(q) which are not contained in PGk−1\i(q). They are
the elements of the form

〈(v0, . . . , vi−1, 1, 0, . . . , 0)〉 = 〈v0e(0) + . . . + vi−1e
(i−1) + e(i)〉

for arbitrary v0, . . . , vi−1 ∈ Fq. Since

biP i = 〈e(i)〉P i = 〈e(i+1)〉 = bi+1,

the points of G(i+1)(bi+1) can be reached from bi using P i and generators from
S(i+1). The equation

〈v0e(0) + . . . + vi−1e
(i−1) + e(i+1)〉P i = 〈v0e(0) + . . . + vi−1e

(i−1) + e(i)〉

shows that all other points of G(i)(bi) \ G(i+1)(bi+1) can be reached as well.
Hence 〈S(i)〉 = H(i) = G(i). This finishes the proof of the theorem. �

9.8.10 Corollary The order of PGLk(q) is

(q − 1)k−1 ∏
i∈k

θk−1\i−1(q) =
1

q − 1 ∏
i∈k

(qk − qi). �

9.8 The Projective Linear Group 735

9.8.11Example A stabilizer chain for PGL3(3) is obtained from the ordered base
(〈e(0)〉, 〈e(1)〉, 〈e(2)〉, 〈e(0) + e(1) + e(2)〉). Coset representatives are σ0,0 = I3,

σ0,1 =

⎛⎜⎝010
100
001

⎞⎟⎠ , σ0,2 =

⎛⎜⎝001
100
010

⎞⎟⎠ , σ0,3 =

⎛⎜⎝111
100
010

⎞⎟⎠ , σ0,4 =

⎛⎜⎝110
100
001

⎞⎟⎠ , σ0,5 =

⎛⎜⎝210
100
001

⎞⎟⎠ ,

σ0,6 =

⎛⎜⎝101
100
010

⎞⎟⎠ , σ0,7 =

⎛⎜⎝201
100
010

⎞⎟⎠ , σ0,8 =

⎛⎜⎝011
100
010

⎞⎟⎠ , . . . , σ0,12 =

⎛⎜⎝221
100
010

⎞⎟⎠ , σ1,0 =

I3, σ1,1 =

⎛⎜⎝100
001
010

⎞⎟⎠ , σ1,2 =

⎛⎜⎝100
111
010

⎞⎟⎠ , σ1,3 =

⎛⎜⎝100
110
001

⎞⎟⎠ , . . . , σ1,11 =

⎛⎜⎝100
221
010

⎞⎟⎠ ,

σ2,0 = I3, σ2,1 =

⎛⎜⎝100
010
111

⎞⎟⎠ , σ2,2 =

⎛⎜⎝100
010
101

⎞⎟⎠ , . . . , σ2,8 =

⎛⎜⎝100
010
221

⎞⎟⎠ , σ3,0 = I3,

σ3,1 = diag(1, 2, 1), σ3,2 = diag(1, 1, 2), σ3,3 = diag(1, 2, 2).

Strong generators are P1 = σ0,1, P2 = σ1,1, E0,0 = σ2,2 =

⎛⎜⎝100
010
101

⎞⎟⎠ , E0,1 =

σ2,4 =

⎛⎜⎝100
010
011

⎞⎟⎠ , D2 = σ3,1 = diag(1, 2, 1), D3 = σ3,2 = diag(1, 1, 2). �

9.8.12Example As pointed out in 9.3.12, the elements s0, . . . , s5 listed in 9.2.7 are
generators for G = PGL4(2). In fact, they are strong generators for G with
respect to the base (b0, b1, b2, b3), where bi = rk−1

3;2(i). In the following, to keep
the notation simple we will identify projective points with their ranks. Thus,
we would say that the base is (0, 1, 2, 3). Let G(i) = Gb0,...,bi−1

= G0,...,i−1 be the
stabilizer of the first i base points. Then

S(i) = S ∩ G(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{s0, s1, s2, s3, s4, s5} if i = 0,
{s0, s1, s2, s3, s4} if i = 1,
{s0, s1, s2, s3} if i = 2,
{s0, s1, s2} if i = 3.

The basic orbits O(i) and the corresponding Schreier-trees are shown in
Fig. 9.13. From the Schreier-trees, coset representatives can be determined eas-
ily. For instance, an element of G(2) mapping b2 = 2 to 10 (which is the 8-th
element in the orbit O(3)) is

σ2,7 = s3s1s2

736 9. The General Case

5
4

3

0

1

2

1

2

2
3

3

4

3
4

0
1

2

3

4

5

6
7 8

9

10

11

12

13

14

O(1) = {0, 1, 2, 3, 4, . . . , 14}
size 15

4

3

0

1

2

1

2

2
3

3

4

3
4

0
1

2

3

4

5

6
7 8

9

10

11

12

13

14

O(2) = {1, 2, 3, 4 . . . , 14}
size 14

3

0

1

2

1

2

2
3

3

3

0

0
1

2

3

4

5

6
7 8

9

10

11

12

13

14

O(3) = {2, 3, 4, 6, 7, . . . , 14}
size 12

0

1

2

1

2

2

0

0
1

2

3

4

5

6
7 8

9

10

11

12

13

14

O(4) = {3, 4, 9, 10, 11, 12, 13, 14}
size 8

Fig. 9.13 The basic orbits O(i) for PGL4(2)

= (2, 3)(6, 9)(7, 10)(8, 11)

·(3, 9)(4, 14)(10, 11)(12, 13)

·(3, 11)(4, 12)(9, 10)(13, 14)

= (2, 10, 7, 3)(4, 13)(6, 11, 8, 9)(12, 14)

Also, the group order is the product of the lengths of the basic orbits, which
is 15 · 14 · 12 · 8 = 20160. It is now easy to access group elements numerically.
For instance the group element 1777 (the birth year of Gauss) can be deter-
mined as follows. We write 1777 = ((14 + 4)12 + 6)8 + 1, i.e. the multibase
representation is 1777 = (1, 4, 6, 1)8,12,14,15. Therefore we need coset represen-
tatives mapping b0, . . . , b3 to the second, 5-th, 7-th and second orbit element,
respectively. That is, we need coset representatives σi,j such that

σ0,1(0) = 1, σ1,4(1) = 5, σ2,6(2) = 9, σ3,1(3) = 4.

9.8 The Projective Linear Group 737

From the Schreier-trees, we obtain that

σ0,1 = s5,

σ1,4 = s4s3s1s3s4,

σ2,6 = s3s1,

σ3,1 = s0,

so that the group element 1777 is

σ3,1σ2,6σ1,4σ0,1 = s0s3s1s4s3s1s3s4s5

= (0, 1, 5)(2, 10, 12, 6, 3, 4)(7, 9, 13, 8, 11, 14).

It is also possible to compute the coset representatives σi,j directly using 9.8.5
and the labeling of points as indicated in Table 9.5. This gives

σ3,1σ2,6σ1,4σ0,1 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 1 0 0
1 1 0 0
0 1 0 1
1 1 1 1

⎞⎟⎟⎟⎠
This matrix sends the standard basis 0, 1, 2, 3 to 1, 5, 10, 4, respectively. Since
group elements are the same whenever they have the same effect on all base
points, this must be the same as the permutation

(0, 1, 5)(2, 10, 12, 6, 3, 4)(7, 9, 13, 8, 11, 14)

from above. Lastly, Fig. 9.14 depicts the coset representatives according to
the 4 subgroups in the stabilizer chain of PGL4(2). The numbers shown are
the actual elements in the basic orbits O(i), each corresponding to one coset
representative σi,j. �

Exercises

E.9.8.1Exercise Verify the statement of 9.8.1 that rkd\−1;q = rkd;q and that rk−1
d\−1;q =

rk−1
d;q .

E.9.8.2Exercise It was noted after 9.2.5 that the Schreier-trees are not unique, for in-
stance they depend on the choice of the generating set. On the other hand,

738 9. The General Case

3 4 9 10 11 12 13 14

2 3 4 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 1112 13 14

Fig. 9.14 The coset representatives for PGL4(2)

shortly before 9.7.9 it was noted that a stabilizer chain can be used to access
group elements numerically. Convince yourself that the labeling of group el-
ements using a stabilizer chain does not depend on the chosen generating set
provided the elements of each of the fundamental orbits are ordered lexico-
graphically. Therefore, a different choice of Schreier-trees in Example 9.8.12
would still yield the same group element with number 1777 as long as the
elements of the basic orbits are listed in order.

E.9.8.3 Exercise Compute the position 999 999 of Rubik’s 2 × 2 × 2 cube, following
the ideas developed in Exercise 9.8.2.

9.9 9.9 The Projective Semilinear Group

The next result describes a base and strong generating set for PΓLk(q). The
proof of this result follows easily from 3.7.11 and is omitted.

9.9.1 Theorem (base and strong generating set for PΓLk(q)) Let q = ph with p prime
and h a positive integer. Let PGk−1(q) be the one-dimensional subspaces of the vector
space V = Fk

q with basis e(0), . . . , e(k−1). If q is prime then PΓLk(q) � PGLk(q)
and 9.8.5 applies. Otherwise, if q = ph with h > 1, choose a primitive element α for
Fq. For i ∈ k + 1, let bi be as in 9.8.5. Put bk+1 = 〈αe(0) + e(1)〉.

9.9 The Projective Semilinear Group 739

1. The sequence B = (b0, . . . , bk, bk+1) is an ordered base for PΓLk(q) acting on
PGk−1(q). The corresponding stabilizer chain has basic orbits of lengths

�i =

⎧⎪⎨⎪⎩
θk−1\i−1(q) for i ∈ k,

(q − 1)k−1 for i = k,
h for i = k + 1.

2. Coset representatives γi,j, i ∈ k + 2, j ∈ �i can be chosen in the following way.
(a) For i ∈ k + 1, and for j ∈ �i, let

γi,j =
(

σi,j, 0
)

with σi,j as described in 9.8.5.

(b) For j ∈ �k+1, let
γk+1,j =

(
Ik, j

)
.

3. A strong generating set for PΓLk(q) is given by the elements

(σ, 0),

where σ runs through all elements of a strong generating set of PGLk(q) as de-
scribed in 9.8.5, together with the element

(Ik, 1). �

9.9.2Corollary The order of PΓLk(q) is

h(q − 1)k−1 ∏
i∈k

θk−1\i−1(q) =
h

q− 1 ∏
i∈k

(qk − qi). �

9.9.3Example The field F8 is generated over F2 by a root α of the polynomial X3 +
X2 + 1 (so that α3 = 1 + α2). In the additive labeling, the field elements are

κ0 = 0,

κ1 = 1,

κ2 = α,

κ3 = α + 1,

κ4 = α2,

κ5 = α2 + 1,

κ6 = α2 + α,

κ7 = α2 + α + 1.

740 9. The General Case

3 5 8

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Fig. 9.15 The coset representatives for PΓL2(8)

Using the rank function of 9.3.5, the 9 points of the projective line PG1(8) are
numbered as

0 = 〈(1, 0)〉,
1 = 〈(0, 1)〉,
2 = 〈(1, 1)〉,
3 = 〈(κ2, 1)〉,
4 = 〈(κ3, 1)〉,
5 = 〈(κ4, 1)〉,
6 = 〈(κ5, 1)〉,
7 = 〈(κ6, 1)〉,
8 = 〈(κ7, 1)〉.

A base for PΓL2(8) is (0, 1, 2, 3). Strong generators are

s0 =

((
1 0
0 1

)
, 1

)
= (3, 5, 8)(4, 6, 7),

s1 =

((
1 0
0 κ2

)
, 0

)
= (2, 7, 4, 8, 6, 5, 3),

s2 =

((
1 0
1 1

)
, 0

)
= (1, 2)(3, 4)(5, 6)(7, 8),

s3 =

((
0 1
1 0

)
, 0

)
= (0, 1)(3, 7)(4, 5)(6, 8).

The basic orbits have length 9, 8, 7, and 3, respectively. We conclude that the
group PΓL2(8) has 1512 elements. Figure 9.15 depicts the coset representatives

9.10 Numerical Data 741

according to the 4 subgroups in the stabilizer chain of PΓL2(8). The numbers
shown are the elements in the basic orbits O(i), each corresponding to one
coset representative σi,j. �

Exercises

E.9.9.1Exercise Compute a base and stabilizer chain for PΓL(3, 4) using 9.9.1. List
the coset representatives.

9.109.10 Numerical Data

Let us now present numerical data concerning the classification of isometry
classes of linear indecomposable codes for small finite fields. In all cases, we
classify the semilinear isometry classes over Fq. If q is a prime, then of course
the semilinear isometry classes are the same as the linear isometry classes. We
present results for the fields Fq with q ∈ {2, 3, 4, 5, 8, 9, 16, 25, 27} in Tables 9.6-
9.24. For a given length n and dimension k, the corresponding entry in the table
lists the number of semilinear isometry classes of (n, k)-codes with a given
minimum distance. For instance, an entry of the form

dxey f z

indicates that there are x classes of codes with minimum distance d, y classes
with minimum distance e and z classes with minimum distance f . The mini-
mum distances are ordered decreasingly, and the first value, d, is the optimal
minimum distance in that parameter case. Exponents whose value is 1 are
omitted. Underlined entries indicate non-trivial MDS-codes.

742 9. The General Case

Table 9.6 Optimal indecomposable F2 codes

n\k 1 2 3 4 5 6 7

4 4

5 5 3

6 6 4 3 3

7 7 423 4 33 3

8 8 5 42 4336 4 34

9 9 6 5242 48 44318 35

10 10 625242 52418 419 44336 34

11 11 7 6352 6 58429 5 466 430 42358 33

12 12 8 726352 66519 6 5124201 4214 441 42384

13 13 827363 7 616537 66572 51541159 4580 445

14 14 9 8373 8 75637 7 6395292 665261 51146704 41488

15 15 10 928473 83717 8 756195 7 69152547 655995 56441037

16 16 1029384 812741 84737 8 7561145 6180529826 6354010

17 17 11 1039484 92832 8187241 84784 73 6377

18 18 12 11210494 10 911871 8108 83471777 827108 72

19 122113105 106933 978550 8411 828719021 8 781

20 11 1021 103981 9386480 81833 826

21 1027 1029178

22 1037 9248

23 1029 929

24 106

9.10 Numerical Data 743

Table 9.7 Optimal indecomposable F2 codes (cont.)

n\k 8 9 10 11 12 13 14 15 16 17 18 19

12 32

13 4 3109 3

14 448 4 3126 3

15 43473 443 4 3142 3

16 5 4268258 47456 447 4 3143

17 6 513757 5 414390 439 3129

18 6918 6 529371 425024 433 3113

19 7 61700 531237 439302 425 391

20 8 733 7 61682 514135 424 367

21 812 8 720 7 6739 52373 416 350

22 89 8 715 7 6128 5128 415 334

23 88 8 715 7 68 5 49 321

24 89 8 711 6 48 314

25 87 45

Table 9.8 Optimal indecomposable F2 codes (cont.)

n\k 20 21 22 23 24 25 26

25 39

26 44 35

27 42 33

28 42 32

29 4 3

30 4 3

31 4 3

32 4

744 9. The General Case

Table 9.9 Optimal indecomposable F3 codes

n\k 1 2 3 4 5 6 7

3 3

4 4 3

5 5 32

6 6 4232 34

7 7 5 4332 42312 34

8 8 6 5343 5 413325 43336 33

9 9 6354 6 58440 5 4413185 4 387 33

10 10 7265 66539 6 5194403 5 413431205 4 3195 32

11 11 8 74 7 635 675452 6 53444840 5 435438297 3399

12 12 9 8476 8 715 6353 6858550 6 536473941 4844361060

13 9386 9 877107 772 65037 695191851 56

14 93872 81475221 7236 647674 6

15 93 722

16 9

Table 9.10 Optimal indecomposable F3 codes (cont.)

n\k 8 9 10 11 12 13 14 15 16

11 3

12 3805 3

13 415323457485 31503 3

14 5 42020 32658

15 41778 34304

16 41019 36472

17 4337 38846

18 490 311127

19 420 312723

20 49 313358

9.10 Numerical Data 745

Table 9.11 Optimal indecomposable F3 codes (cont.)

n\k 17 18 19 20 21 22 23 24 25 26 27 28

21 312723

22 311127

23 38846

24 36472

25 34304

26 32659

27 31505

28 3807

29 3402

30 3201

31 394

32 347

Table 9.12 Optimal indecomposable F3 codes (cont.)

n\k 29 30 31 32 33 34 35 36

33 323

34 312

35 36

36 34

37 32

38 3

39 3

40 3

746 9. The General Case

Table 9.13 Optimal indecomposable F4 codes

n\k 1 2 3 4 5 6 7 8 9 10 11

3 3

4 4 3

5 5 4 32 3

6 6 4332 4 36

7 7 5244 47319 310

8 8 6254 53438 416396 313

9 9 7 65 63539 544326 4193466 317

10 10 8 74 645 625642 5444189 42332380 318

11 84 725 6841 6 519418 5 466475 415313080 318

12 816 7275 619181 413 317

13 830 7452 44 313

14 86 714 42 310

15 83 74 4

16 82 73

17 82 72

18 8

Table 9.14 Optimal indecomposable F4 codes (cont.)

n\k 12 13 14 15 16 17 18

15 38

16 4 35

17 4 33

18 32

19 3

20 3

21 3

9.10 Numerical Data 747

Table 9.15 Optimal indecomposable F5 codes

n\k 1 2 3 4 5 6 7 8

3 3

4 4 3

5 5 4 32 3

6 6 5 4432 4 39 3

7 7 53 417329 321

8 8 6357 516 4923344 342

9 7268 6165248 5134 438734570 392

10 776486 693 5558 41568362846 3174

11 660 5503 440893814405 3296

12 631 536 47062

Table 9.16 Optimal indecomposable F5 codes (cont.)

n\k 9 10 11 12 13 14 15 16 17 18 19 20 21 22

12 3476

13 47258 3669

14 44678 3832

15 41810 3948

16 4572 3948

17 4183 3832

18 488 3669

19 436 3476

20 421 3296

21 47 3174

22 44 392

23 4 342

24 4 322

25 4 312

748 9. The General Case

Table 9.17 Optimal indecomposable F5 codes (cont.)

n\k 22 23 24 25 26 27 28

26 4 35

27 33

28 32

29 3

30 3

31 3

Table 9.18 Optimal indecomposable F8 codes

n\k 1 2 3 4 5 6 7 8 9

3 3

4 4 3

5 5 4 32 3

6 6 5 44 43310 3

7 7 6 52449 42354 3

8 7 62 5 41700 423323 3

9 72 6 5 468877 4232097 3

10 4 312868

11 372638

12 3373366

9.10 Numerical Data 749

Table 9.19 Optimal indecomposable F9 codes

n\k 1 2 3 4 5 6 7 8

3 3

4 4 32

5 5 42 32

6 6 52 46 32

7 7 6 53 43 3

8 7 62 55 42 3

9 7 62 52 4 3

10 7 62 5 4 3

Table 9.20 Optimal indecomposable F16 codes

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3

4 4 32

5 5 43 33

6 54 422 34

7 5125 4125 35

8 52981 4685 36

9 56888 41534 36

10 5356 41262 35

11 510 4300 34

12 54 4159 33

13 52 470 32

14 5 430 3

15 5 49 3

16 5 45 3

17 5 43 3

18 42

750 9. The General Case

Table 9.21 Optimal indecomposable F25 codes

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 3

4 4 34

5 5 47 37

6 519 4205 319

7 47163 334

8 379

9 3132

10 3223

11 3293

12 3379

13 3391

14 3379

15 3293

16 3223

Table 9.22 Optimal indecomposable F25 codes (cont.)

n\k 15 16 17 18 19 20 21 22 23 24

17 3132

18 379

19 334

20 319

21 37

22 34

23 3

24 3

25 3

26 3

9.10 Numerical Data 751

Table 9.23 Optimal indecomposable F27 codes

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 3

4 4 33

5 5 44 34

6 514 4174 314

7 58261 48261 329

8 372

9 3134

10 3257

11 3390

12 3565

13 3670

14 3738

15 3670

16 3565

752 9. The General Case

Table 9.24 Optimal indecomposable F27 codes (cont.)

n\k 15 16 17 18 19 20 21 22 23 24 25 26

17 3390

18 3257

19 3134

20 372

21 329

22 314

23 34

24 33

25 3

26 3

27 3

28 3

AChapter A

Appendix: The Attached Compact Disc

A

A Appendix: The Attached Compact Disc

A.1 System Requirements ... 755

A.2 The Installation .. 755

A.3 The Programs .. 756

A.4 The Dynamic Tables .. 757

A.5 The Precomputed Tables: Enumerative Results 758

A.6 The Precomputed Tables: Optimal Linear Codes 759

A.7 The Programs for Chapter 9 763

A Appendix: The Attached Compact
Disc

The enclosed compact disc contains both data and software. The data are ta-
bles of numbers of isometry classes or cycle index polynomials. There are also
tables of all isometry classes of optimal linear codes for small parameters. The
software enables the user to do research on linear codes. It permits to con-
struct linear codes with prescribed minimum distance, to determine the mini-
mum distance as well as weight enumerators of linear codes, and to determine
cycle index polynomials for the natural actions of linear and projective linear
groups. The software is powerful enough to improve international tables. For
typographical reasons we denote the finite field of q elements by GF(q). In the
following sections we briefly describe how to use it.

Since both these tables and the software are in rapid progress, from time
to time the interested user should consult the following address, where exten-
sions or improvements and updates can be found:

http://linearcodes.uni-bayreuth.de

A.1A.1 System Requirements

To use the programs you need a Windows system (any 32-bit version includ-
ing 95/98/ME/NT/2000/XP) together with a modern browser (e.g. Firefox,
Mozilla, Internet Explorer). There is also a version for a Linux environment
(kernel version 2.2 and above) but you need some technical experience for in-
stallation. In both cases you need about 80MB of free space on the harddisc.

A.2A.2 The Installation

On a Windows system proceed as follows:

Copy the complete CD into a new directory on your PC.

Start the application code.exe from the new directory.

In a window of your standard web-browser you will find a table showing links
to various applications of programs (see below) and to precalculated and dy-
namic tables. If you use a browser different from the Microsoft Internet Ex-
plorer it may be necessary to deactivate the use of a proxy.

756 A. Appendix: The Attached Compact Disc

On a Linux system proceed as follows:

Make sure that you have a running web-server on your PC.

Copy the content of the directory htdocs from the CD into a sub-directory
(say linearcodes), browsable by your web-browser (typically a sub-direc-
tory of /usr/local/httpd/htdocs). Make sure that all files in this direc-
tory are readable by your browser.

Copy the contents of the directory cgi-bin from the CD into the directo-
ry executable by the web-browser (typically /usr/local/httpd/cgi-bin).
The most important programs are: bsp linux, mindistlll, mindistter,
mindistbin and solvediophant.
Make sure that the copied files in this directory are readable by your brow-
ser.

Start the browser with the URL http://...your..pc../linearcodes/index.html

Usually, the maximum amount of time one process can use is restricted by
the Linux web-server to 300 seconds. If you are using the web-server apache
and you want to increase this value then the entry “Timeout” in the configu-
ration file httpd.conf has to be changed. After that the web-server has to be
restarted.

On both platforms (Linux and Windows) it may happen that you have to
stop a running computation by hand. This is the case when you finish your
browser, but the computation in the background was not stopped. For this
you need to know the name of the executable program and knowing this you
can stop it using the taskmanager (Windows) or the top program (Linux). The
name of the Linux programs were given above, the name of the corresponding
Windows programs are: bsp windows, mindistlll.exe, mindistter.exe,
mindistbin.exe and solvediophant.exe.

A.3 A.3 The Programs

Minimum distance computations For the computation of the minimum dis-
tance of binary of ternary linear codes from a generator matrix you can
choose between two algorithms:

1. The straightforward algorithm 1.8.1 and

2. the algorithm of Section 7.8, based on lattice basis reduction.

A.4 The Dynamic Tables 757

Weight enumerator
Using this program it is possible to compute the weight enumerator of a
linear code from a generator matrix over an arbitrary field. This also gives
the minimum distance in the cases we cannot use the above programs.

Construction of codes with given minimum distance
This is an implementation of the algorithm described in Section 8.4. It was
written using the SYMMETRICA library, which is public domain, see [190].
It chooses random subgroups of a corresponding linear group GLk(q) and
tries to find a code with the given parameters and the chosen group as a
group of automorphisms. It terminates after 10 attempts to find such a
code.

Random generation of linear codes
This is an implementation of the Dixon–Wilf algorithm described in Sec-
tion 6.6. It was written using the SYMMETRICA library, which is pub-
lic domain, see [190]. The algorithm is only implemented for codes over
prime fields Fp . Additional information about the conjugacy classes and
their probabilities is computed before the random generation starts to pro-
duce random codes. Therefore, depending on the input parameters n, k
and q it takes some time till the first generator matrix is displayed. This
information is also stored in files which are written to the hard disc. The
next time you start the generator with the same parameter triple (n, k, q)
these data are read and need not be computed again. This speeds up the
generation of linear codes.

A.4A.4 The Dynamic Tables

Using the methods described in Section 6.1 and Section 6.2, we have imple-
mented routines to compute tables of numbers of the linear isometry classes
of linear codes. This way it is possible to extend the tables of Section 6.4. The
following numbers can be determined:

[n
k

]
(q): the number of k-dimensional subspaces of Fn

q

Tnkq: the cardinality of PGLk(q)\\
(
Sn\\PG∗

k−1(q)
n)

Tnkq: the cardinality of PGLk(q)\\
(
Sn\\PG∗

k−1(q)
n
inj
)

Vnkq: the number of linear isometry classes of nonredundant (n, k)-
codes over Fq

Vnkq: the number of linear isometry classes of projective (n, k)-codes
over Fq

758 A. Appendix: The Attached Compact Disc

Unkq: the number of linear isometry classes of (n, k)-codes over Fq

that may contain columns of zeros
Rnkq: the number of linear isometry classes of nonredundant inde-

composable (n, k)-codes over Fq

Rnkq: the number of linear isometry classes of projective indecompos-
able (n, k)-codes over Fq

After the user has input three positive integers N, K and q, a table contain-
ing the corresponding numbers for 1 ≤ n ≤ N and 1 ≤ k ≤ K over Fq is
computed.

According to 6.1.23, the numbers Tnkq and Tnkq are obtained by certain sub-
stitutions into the cycle index C(PGLk(q), PG∗

k−1(q)). In Section 6.3 we have
described a method for the computation of the cycle index for the natural ac-
tion of the projective linear group PGLk(q) on PG∗

k−1(q). A similar method is
used in order to obtain the cycle index for the natural action of the general lin-
ear group GLk(q) on Fk

q (cf. [60]). With the included software it is also possible
to determine both these cycle index polynomials.

A.5 A.5 The Precomputed Tables: Enumerative Results

As was described in Section 6.7 we do not have routines for computing the
cycle index for the natural action of the projective semilinear group PΓLk(q) on
PG∗

k−1(q) for arbitrary values of k and q. In order to obtain some numbers of
semilinear isometry classes we have determined these cycle index polynomials
just for a few values of k for q ∈ {4, 8}. These polynomials together with
extensions of the tables of Section 6.7 can be found on the enclosed CD. For
q ∈ {4, 8} tables of the following numbers are available:

tnkq: the cardinality of PΓLk(q)\\
(
Sn\\PG∗

k−1(q)
n)

tnkq: the cardinality of PΓLk(q)\\
(
Sn\\PG∗

k−1(q)
n
inj

)
vnkq: the number of semilinear isometry classes of nonredundant

(n, k)-codes over Fq

vnkq: the number of semilinear isometry classes of projective (n, k)-
codes over Fq

unkq: the number of semilinear isometry classes of (n, k)-codes over
Fq that may contain columns of zeros

rnkq: the number of semilinear isometry classes of nonredundant in-
decomposable (n, k)-codes over Fq

A.6 The Precomputed Tables: Optimal Linear Codes 759

rnkq: the number of semilinear isometry classes of projective inde-
composable (n, k)-codes over Fq

A.6A.6 The Precomputed Tables: Optimal Linear Codes

The CD contains tables of optimal linear codes for small parameters (n, k) and
over small finite fields Fq (i.e. q ≤ 5). For a given (n, k), the number of semi-
linear isometry classes of indecomposable codes with minimum distance ≥ d0

are available. Of course, the largest d ≥ d0 for which codes exist is the op-
timal minimum distance. The value of d0 varies, and depends on the given
(n, k). However, for a given d0 the classification of (n, k,≥ d0)-codes is always
complete.

The codes are listed by means of canonical generator matrices. In addi-
tion, information about the automorphism group (in PΓLk(q)) is given. The
information is stored in text-files, which are linked to the table entries. For
each triple (n, k, d), a file containing representatives of all (n, k, d)-codes over
the given field Fq is available. For example, in the table for binary codes, the
entry for (n, k, d) = (7, 4, 3) is 31, meaning that there is only one code (up to
semilinear isometry). This code is of course the Hamming-code. Clicking on
the link leads to a file which looks as follows:

1 the 1 isometry classes of irreducible [7,4,3]_2 codes are:
2
3 code no 1:
4 ================
5 1 1 1 1 0 0 0
6 1 1 0 0 1 0 0
7 1 0 1 0 0 1 0
8 0 1 1 0 0 0 1
9 the automorphism group has order 168
10 and is strongly generated by the following 7 elements:
11 (
12 1 0 0
13 0 1 0
14 1 1 1
15 ,
16 1 0 0
17 0 1 0
18 1 0 1
19 ,
20 1 0 0
21 1 1 0
22 1 0 1
23 ,
24 1 0 0
25 1 0 1
26 1 1 0
27 ,

760 A. Appendix: The Attached Compact Disc

28 1 0 0
29 0 1 1
30 1 1 0
31 ,
32 1 0 1
33 1 0 0
34 1 1 1
35 ,
36 0 1 1
37 1 0 0
38 0 0 1
39)
40 acting on the columns of the generator matrix as follows (in

order):
41 (3, 4)(6, 7),
42 (3, 6)(4, 7),
43 (2, 5)(3, 6),
44 (2, 6)(3, 5),
45 (2, 6, 7)(3, 4, 5),
46 (1, 2, 6)(3, 5, 4),
47 (1, 2, 6, 7)(4, 5)
48 orbits: { 1, 6, 7, 3, 2, 4, 5 }
49

At the beginning, the file indicates that there is just one isometry class of
(7, 4, 2, 3)-codes. After that, the code is listed as code 1. A generator matrix is
given, as well as the order of the automorphism group. The generator matrix
is in the form

Γ = (A | −I)

where A is a k × (n − k)-matrix and −I is the negative of the k × k identity
matrix. It follows from Exercise 1.3.9 that

∆ = (I | A�)

is the corresponding check matrix. The automorphism group itself is described
in two different ways. At first, a list of strong generators in the form of matri-
ces of size (n− k)× (n− k) is given. These are in fact the matrices which act on
the dual code. More precisely, they act on the column vectors of ∆. We know
that each automorphism induces a permutation of the columns. The permuta-
tions which are induced by the strong generators on the columns of the check
matrix are listed next. For compatibility reasons with other Computer Alge-
bra systems, we index the columns by the elements of the set {1, . . . , n} rather
than n = {0, . . . , n − 1}. After the generators, the orbits of the automorphism
group on the columns are listed. Let us show by example how the permutation
of columns is obtained from the matrix. Consider the first strong generator

A =

⎛⎜⎝ 1 0 1
0 1 1
1 1 1

⎞⎟⎠ .

A.6 The Precomputed Tables: Optimal Linear Codes 761

Since A acts on row-vectors from the right, and the columns of ∆ are trans-
posed row-vectors, we must consider

A� · ∆ =

⎛⎜⎝ 1 0 1
0 1 1
0 0 1

⎞⎟⎠
⎛⎜⎝ 1 0 0 1 1 1 0

0 1 0 1 1 0 1
0 0 1 1 0 1 1

⎞⎟⎠
=

⎛⎜⎝ 1 0 1 0 1 0 1
0 1 1 0 1 1 0
0 0 1 1 0 1 1

⎞⎟⎠ ,

from which we see that we need to permute columns 3 and 4 and columns
6 and 7 of ∆ to get to this matrix. In other words, the action of A induced
the permutation (3, 4)(6, 7). This is of course the first permutation in the list
presented in the file.

Let us now describe how codes over fields Fq with q not prime are treated.
We always write q = ph with p prime and h > 1 an integer. The elements of
Fq are polynomials

ah−1αh−1 + . . . + a1α + a0

in α of degree at most h − 1 with coefficients aj ∈ Fp for j = 0, . . . , h − 1.
Here, α is root of an irreducible polynomial of degree h over Fp . The field ele-
ment as above is then represented by the integer whose base-p representation
is (ah−1, ah−1, . . . , a0)p. The polynomials used are in fact primitive, they are
listed in Table 3.3.

The elements of PΓLk(q) are stored as pairs (A, i) where A is in PGLk(q)
and where i describes the power of the field automorphism which acts. Let us
see an example. If q = 4, we have F4 = {0, 1, α, 1 + α} with α a root of x2 + x =
1, i.e. with α2 = 1 + α. We label the elements as follows: 0=̂0, 1=̂1, 2=̂α, 3=̂α +
1. For (n, k, d) = (6, 3, 4) we get the following file.

1 the 1 isometry classes of irreducible [6,3,4]_4 codes are:
2
3 code no 1:
4 ================
5 1 1 1 1 0 0
6 3 2 1 0 1 0
7 2 3 1 0 0 1
8 the automorphism group has order 720
9 and is strongly generated by the following 9 elements:
10 (
11 3 0 0
12 0 3 0
13 0 0 3
14 , 1
15 ,
16 2 0 0
17 0 3 0
18 0 0 1

762 A. Appendix: The Attached Compact Disc

19 , 1
20 ,
21 2 0 0
22 0 1 0
23 2 1 3
24 , 0
25 ,
26 3 0 0
27 0 2 0
28 3 2 1
29 , 1
30 ,
31 3 0 0
32 0 0 2
33 2 1 3
34 , 0
35 ,
36 0 0 3
37 3 0 0
38 0 3 0
39 , 0
40 ,
41 3 3 3
42 0 0 3
43 0 3 0
44 , 0
45 ,
46 1 3 2
47 0 1 0
48 3 0 0
49 , 0
50 ,
51 1 2 3
52 0 0 1
53 2 2 2
54 , 0
55)
56 acting on the columns of the generator matrix as follows (in

order):
57 (5, 6),
58 (4, 5),
59 (3, 4, 5),
60 (3, 4, 5, 6),
61 (2, 5, 3),
62 (1, 2, 3),
63 (1, 4)(2, 3),
64 (1, 3, 5),
65 (1, 4, 3, 2, 6)
66 orbits: { 1, 3, 4, 5, 6, 2 }
67

With the convention on labeling the elements of F4, the generator matrix
can be written as

Γ =

⎛⎜⎝ 1 1 1 1 0 0
1 + α α 1 0 1 0

α 1 + α 1 0 0 1

⎞⎟⎠ .

A.7 The Programs for Chapter 9 763

A.7A.7 The Programs for Chapter 9

The programs for Chapter 9 can be found in the file ch9.tar.gz on the CD. On
a unix environment, one can unpack the file by using tar -zxvf ch0.tar.gz.
This will produce a directory CHAPTER9 with two subdirectories, called LIB
and CODES. To compile the programs, a make / C++ environment is required.
By default, the “GNU” C++ compiler is used to compile the programs, but this
may be configured differently (by changing the makefiles). The source code
is contained in LIB, which compiles 3 libraries. The directory CODES contains
several programs related to the construction of isometry classes of codes as
described in Chapter 9. All these programs are compiled by issuing make from
within the CHAPTER9 directory. The main program in CODES is called codes.
This program expects 4 parameters, which are n, k, q and d. Here, n is the
length of the codes to be constructed, k is the dimension, q is the size of the
field, and d is a lower bound on the minimum distance. In addition, the op-
tions -v, -vv, -vvv can be used to have the program produce more and more
output (verbose mode). These options apply to all programs described here. If
called

codes 〈n〉 〈k〉 〈q〉 〈d〉

the program will compute a transversal of the isometry classes of (n, k,≥ d, q)
codes, and store them in a file called

codes 〈n〉 〈k〉 〈q〉 〈d〉.

In fact, the program will compute all codes (n − i, k − i, d, q) where 0 ≤ i < k.
For instance, a call

codes 8 4 2 3

would compute the (5, 1,≥ 3, 2), (6, 2,≥ 3, 2), (7, 3,≥ 3, 2) and (8, 4,≥ 3, 2)
codes and therefore result in the creation of files

codes_5_1_2_3, codes_6_2_2_3, codes_7_3_2_3, codes_8_4_2_3.

The content of these files is as follows. The first row lists the values n, k, q
and d. After that the codes are listed in a compact format, one row describing
one code. The file is closed be a line starting in −1 and listing number of
codes constructed and the number of codes considered internally during the
construction process. Also, the computing time is given. For instance, the
above-mentioned computation of (8, 4,≥ 3, 2) codes produces the file

codes_8_4_2_3.

764 A. Appendix: The Attached Compact Disc

1 # 8 4 2 3
2 8 0 1 2 3 4 5 6 7 48 aaaaaaaeaaaaaaaeaaaaaaagaaaaaaaeaaaaaaab

aaaaaaaccbpedbpfebicgdic
3 8 0 1 2 3 4 5 6 8 8 aaaaaaaeaaaaaaadaaaaaaabaaaaaaaeaaaaaaaba

aaaaaaccbpeebicdbpf
4 8 0 1 2 3 4 5 6 9 24 aaaaaaaeaaaaaaafaaaaaaabaaaaaaagaaaaaaae

aaaaaaabcbfjcbeiebicdbifjbde
5 8 0 1 2 3 4 5 6 10 8 aaaaaaaeaaaaaaadaaaaaaaeaaaaaaacaaaaaaab

aaaaaaabfbpdckdpkfie
6 8 0 1 2 3 5 6 7 8 168 aaaaaaaeaaaaaaahaaaaaaahaaaaaaagaaaaaaa

eaaaaaaabcbifcbihdbifebichbifgdicdhig
7 8 0 1 2 3 8 11 13 14 1344 aaaaaaaeaaaaaaaiaaaaaaaiaaaaaaahaaa

aaaagaaaaaaaecbnecblecbhlcbeicbhoebnhilcelocn
8 -1 6 23 in 0:00
9

The format of the rows is as follows. The first integer gives the length,
which is always n. The next n integers give the ranks of the columns of check
matrix ∆ of the code. After that, the order of the automorphism group is given.
The following text string contains information on the automorphism group in
coded form. Essentially, a strong generating set of the automorphism group
is stored. To get access to the codes is a more human-readable version, the
program codep is used. A call to

codep 〈n〉 〈k〉 〈q〉 〈d〉

will process the file codes 〈n〉 〈k〉 〈q〉 〈d〉 and produce files

codes 〈n〉 〈k〉 〈q〉 〈d′〉.txt

where d′ ≥ d. There will be one file for each minimum distance occurring
among the codes in the file which is processed. For instance, a call to

codep 8 4 2 3

will process the file codes_8_4_2_3 and produce files

codes_8_4_2_3.txt and codes_8_4_2_4.txt.

The first of these file will list the four (8, 4, 3, 2) codes, whereas the latter con-
tains the unique (8, 4, 4, 2) code (i.e. the Hamming-code). This file lists the
codes by generator matrices and with information in the automorphism group
in the format described above. In this case, the file codes_8_4_2_3.txt starts
as follows (cf. Tab. 9.2):

1 the 4 isometry classes of irreducible [8,4,3]_2 codes are:
2
3 code no 1:
4 ================
5 1 1 1 1 1 0 0 0
6 1 1 0 0 0 1 0 0
7 1 0 1 0 0 0 1 0
8 0 1 1 0 0 0 0 1
9 the automorphism group has order 48

A.7 The Programs for Chapter 9 765

10 and is strongly generated by the following 4 elements:
11 (
12 1 0 0 0
13 0 1 0 0
14 0 0 1 0
15 1 1 1 1
16 ,
17 1 0 0 0
18 1 1 0 0
19 1 0 1 0
20 1 1 1 1
21 ,
22 1 0 0 0
23 0 0 1 0
24 0 1 0 0
25 0 0 0 1
26 ,
27 1 1 0 0
28 0 1 1 0
29 0 1 0 0
30 0 0 0 1
31)
32 acting on the columns of the generator matrix as follows (in

order):
33 (4, 5),
34 (2, 6)(3, 7)(4, 5),
35 (2, 3)(6, 7),
36 (1, 7, 6)(2, 3, 8)
37 orbits: { 1, 6, 2, 7, 3, 8 }, { 4, 5 }
38
39 code no 2:
40 ================
41 1 1 1 1 1 0 0 0
42 1 1 0 0 0 1 0 0
43 1 0 1 0 0 0 1 0
44 1 1 1 0 0 0 0 1
45 the automorphism group has order 8
46

The third program codet is responsible for producing tables like 9.6–9.24
describing the number of isometries classes. A call to

codet 〈q〉

produces such a table for the given field q. The optional parameter -c should
be given if the program codep should be used to process the raw data files
from the generator codes to the above-described text files. If the .txt files are
already there (for instance from previous calls to codet), the option -c can be
omitted.

The program make_BCH can be used to create generator polynomials for
BCH-codes as described in Chapter 4. A call to

make_BCH 〈n〉 〈q〉 〈t〉

produces a generator polynomial for the q-ary BCH-code of length n with de-
signed distance t. For instance, a call to

766 A. Appendix: The Attached Compact Disc

make_BCH -v 15 2 7

will create the following output:

1 finite_field::init() GF(2) = GF(2^1):
2 field of order 2 initialized
3 GF(16) = GF(2^4) has 15-th roots of unity
4 this is a primitive BCH code
5 choosing the following irreducible and primitive polynomial:
6 X^{4} + X^{3} + 1
7 orbit of conjugate elements (in powers of \beta):
8 { 1 2 4 8 }
9 orbit of conjugate elements (in powers of \beta):
10 { 3 6 12 9 }
11 orbit of conjugate elements (in powers of \beta):
12 { 5 10 }
13 taking the minimum polynomials of { 1 3 5 }
14 minimal polynomial of \beta^1 is X^{4} + X^{3} + 1 of rank 25

15 minimal polynomial of \beta^3 is X^{4} + X^{3} + X^{2} + X +
1 of rank 31

16 minimal polynomial of \beta^5 is X^{2} + X + 1 of rank 7
17 BCH(15,2,7) = X^{10} + X^{9} + X^{8} + X^{6} + X^{5} + X^{2}

+ 1 bose_distance = 7
18 BCH code with length n=15 designed distance t=7 over GF(2)
19 generated by
20 X^{10} + X^{9} + X^{8} + X^{6} + X^{5} + X^{2} + 1
21 $m_{1}m_{3}m_{5}$ where $m_{1}=25$, $m_{3}=31$, $m_{5}=7$
22 0:00
23

We can see that the program initializes the field F16, which has 15-th roots
of unity. The field F16 is created using the polynomial x4 + x3 + 1. As this
polynomial is primitive, the root α = β of this polynomial is a primitive el-
ement, i.e. an element of order 15. Since t = 4, we need the consecutive set
β, β2, . . . , β5 as roots. For this, the necessary 2-cyclotomic cosets modulo 15 are
listed. We need {1, 2, 4, 8}, {3, 6, 12, 9} and {5, 10}. The minimal polynomials
are

Mβ = x4 + x3 + 1,

Mβ3 = x4 + x3 + x2 + x + 1, and

Mβ5 = x2 + x + 1.

Therefore, the code is generated by

g(x) = x10 + x9 + x8 + x6 + x5 + x2 + 1,

which is the product of these minimal polynomials. Thus, we have found a
(15, 5) code with minimum distance at least 7.

The program compute_mindist allows us to compute the minimum dis-
tance of linear codes defined over arbitrary finite fields, using the algorithm of

A.7 The Programs for Chapter 9 767

Section 1.8. Assume we want to compute the minimum distance of the q-ary
(n, k) code with generator matrix

Γ =

⎛⎜⎝ a0,0 a0,1 · · · a0,n−1
...

...
ak−1,0 ak−1,2 · · · ak−1,n−1

⎞⎟⎠ .

In case that q is not prime, assume that Fq is defined by means of one of the
minimal polynomials listed in Table 3.3. Using the additive representation of
field elements, we assume that the entries aij of Γ are integers between 0 and
q − 1. Then we would call the program compute_mindistwith the following
list of parameters:

n, k, q, a0,0, a0,1, . . . , ak−1,n−1.

For instance, if we want to compute the minimum distance of the second of
the (8, 4,≥ 3, 2) codes above, we would call

minimum_distance -v -vv -vvv 8 4 2 1 1 1 1 1 0 0 0 1

[1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1

and the program would output

1 computing minimum distance of the (8,4) code over GF(2)
2 which is generated by
3 1 1 1 1 1 0 0 0
4 1 1 0 0 0 1 0 0
5 1 0 1 0 0 0 1 0
6 1 1 1 0 0 0 0 1
7
8 finite field of order 2 initialized
9 multiplication table:
10 0 0
11 0 1
12 addition table:
13 0 1
14 1 0
15 the field: GF(2) = GF(2^1)
16 idx_zero = 0, idx_one = 1, idx_mone = 1
17 (8,4) code over GF(2), generated by
18 1 1 1 1 1 0 0 0
19 1 1 0 0 0 1 0 0
20 1 0 1 0 0 0 1 0
21 1 1 1 0 0 0 0 1
22
23 systematic generator matrix s[1]:
24 1 0 0 0 0 1 1 1
25 0 1 0 0 0 0 1 1
26 0 0 1 0 0 1 0 1
27 0 0 0 1 1 0 0 1
28
29 systematic generator matrix s[2]:
30 1 1 1 1 1 0 0 0
31 1 1 0 0 0 1 0 0
32 1 0 1 0 0 0 1 0
33 1 1 1 0 0 0 0 1
34 size of information subsets:

768 A. Appendix: The Attached Compact Disc

35 4 4
36 matrix 1 row 1 is 1 0 0 0 0 1 1 1 of weight 4 minimum is 4
37 matrix 1 row 2 is 0 1 0 0 0 0 1 1 of weight 3 minimum is 3
38 matrix 1 row 3 is 0 0 1 0 0 1 0 1 of weight 3 minimum is 3
39 matrix 1 row 4 is 0 0 0 1 1 0 0 1 of weight 3 minimum is 3
40 matrix 2 row 1 is 1 1 1 1 1 0 0 0 of weight 5 minimum is 3
41 matrix 2 row 2 is 1 1 0 0 0 1 0 0 of weight 3 minimum is 3
42 matrix 2 row 3 is 1 0 1 0 0 0 1 0 of weight 3 minimum is 3
43 matrix 2 row 4 is 1 1 1 0 0 0 0 1 of weight 4 minimum is 3
44 \bar{d}_1=3
45 mindist(C_{\le 1})=3
46 \underline{d}_1= +2-(4-4) +2-(4-4)=4
47 the minimum distance is 3
48 This was determined by looking at 8 codewords
49 (rather than 16 codewords)
50 The code has minimum distance 3
51

Thus, the code has minimum distance 3. To give an example for a minimum
distance computation in the case when the field is not a prime field, consider
one of the three (6, 3, 4) MDS-codes over F8 (cf. Table 9.18). Using the additive
representation of field elements, a generator matrix is

Γ =

⎛⎜⎝ 1 1 1 1 0 0
3 2 1 0 1 0
2 3 1 0 0 1

⎞⎟⎠ .

To compute the minimum distance of this code (assuming for the moment that
we would not know that this code is MDS), we call

minimum_distance -v -vv -vvv 6 3 8 1 1 1 1 0 0 3 2

[1 0 1 0 2 3 1 0 0 1

and the program will output

1 computing minimum distance of the (6,3) code over GF(8)
2 which is generated by
3 1 1 1 1 0 0
4 3 2 1 0 1 0
5 2 3 1 0 0 1
6
7 finite field of order 8 initialized
8 multiplication table:
9 0 0 0 0 0 0 0 0
10 0 1 2 3 4 5 6 7
11 0 2 4 6 5 7 1 3
12 0 3 6 5 1 2 7 4
13 0 4 5 1 7 3 2 6
14 0 5 7 2 3 6 4 1
15 0 6 1 7 2 4 3 5
16 0 7 3 4 6 1 5 2
17 addition table:
18 0 1 2 3 4 5 6 7
19 1 0 3 2 5 4 7 6
20 2 3 0 1 6 7 4 5
21 3 2 1 0 7 6 5 4
22 4 5 6 7 0 1 2 3
23 5 4 7 6 1 0 3 2

A.7 The Programs for Chapter 9 769

24 6 7 4 5 2 3 0 1
25 7 6 5 4 3 2 1 0
26 the field: GF(8) = GF(2^3)
27 idx_zero = 0, idx_one = 1, idx_mone = 1
28 (6,3) code over GF(8), generated by
29 1 1 1 1 0 0
30 3 2 1 0 1 0
31 2 3 1 0 0 1
32
33 systematic generator matrix s[1]:
34 1 0 0 1 2 3
35 0 1 0 1 3 2
36 0 0 1 1 1 1
37
38 systematic generator matrix s[2]:
39 1 1 1 1 0 0
40 3 2 1 0 1 0
41 2 3 1 0 0 1
42 size of information subsets:
43 3 3
44 matrix 1 row 1 is 1 0 0 1 2 3 of weight 4 minimum is 4
45 matrix 1 row 2 is 0 1 0 1 3 2 of weight 4 minimum is 4
46 matrix 1 row 3 is 0 0 1 1 1 1 of weight 4 minimum is 4
47 matrix 2 row 1 is 1 1 1 1 0 0 of weight 4 minimum is 4
48 matrix 2 row 2 is 3 2 1 0 1 0 of weight 4 minimum is 4
49 matrix 2 row 3 is 2 3 1 0 0 1 of weight 4 minimum is 4
50 \bar{d}_1=4
51 mindist(C_{\le 1})=4
52 \underline{d}_1= +2-(3-3) +2-(3-3)=4
53 the minimum distance is 4
54 This was determined by looking at 6 codewords
55 (rather than 512 codewords)
56 The code has minimum distance 4
57

Thus the program computes the minimum distance 4 by looking at 6 rather
than 512 codewords.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D Ullman. The design and analysis of computer
algorithms. Addison-Wesley, Reading, 1974.

[2] M. Ajtai. Generating hard instances of lattice problems. In 28th Ann. ACM
Symp. on Theory of Computing, pages 99–108, 1996.

[3] E. Artin. Galois Theory. Notre Dame Mathematical Lectures, no. 2. University
of Notre Dame, Notre Dame, Ind., second edition, 1966.

[4] E. Artin. Geometric Algebra. Wiley Classics Library. John Wiley & Sons Inc.,
New York, 1988. Reprint of the 1957 original, A Wiley-Interscience Publica-
tion.

[5] E. F. Assmus, Jr. and J. D. Key. Designs and their codes, volume 103 of Cam-
bridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1992.

[6] E.F. Assmus Jr. The Category of Linear Codes. IEEE Transactions on Informa-
tion Theory, 44(2):612–629, 1998.

[7] E.F. Assmus Jr. and H.F. Mattson Jr. On tactical configurations and error-
correcting codes. J. Comb. Theory, 2:243–257, 1967.

[8] E.F. Assmus Jr. and H.F. Mattson Jr. New 5-designs. J. Combinatorial Theory,
6:122–151, 1969.

[9] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Serial concatena-
tion of interleaved codes: Performance analysis, design, and iterative de-
coding. Technical report, JPL TDA Progress Report, vol. 42-126, 1996.
http://tmo.jpl.nasa.gov/tmo/progress report/42-126/126D.pdf.

[10] E.R. Berlekamp. Goppa codes. IEEE Trans. Information Theory, IT-19:590–592,
1973.

[11] S.D. Berman. On the theory of group codes (in Russian). Kibernetika, 3:31–39,
1967. English translation: On the theory of group codes. Cybernetics, 3(1):25-
31 (1969).

[12] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: turbo-codes. In Proceedings of ICC’93, pages
1064–1070, 1993. http://courses.ece.cornell.edu/ece561/turbo icc93.pdf.

[13] A. Betten. http://www.math.colostate.edu/˜betten/index.html.

[14] A. Betten. Schnittzahlen von Designs. (Intersection numbers of designs). PhD
thesis, University of Bayreuth, 2000. Bayreuther Mathematische Schriften
58.

772 References

[15] A. Betten, A. Kerber, A. Kohnert, R. Laue, and A. Wassermann. The discov-
ery of simple 7-designs with automorphism group PΓL(2, 32). In G. Cohen,
M. Giusti, and T. Mora (eds.), Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, 11th International Symposium, AAECC-11, Paris, France, July
17–22, 1995., volume 948 of Lecture Notes in Computer Science, pages 131–145,
Berlin, 1995. Springer-Verlag.

[16] A. Betten, A. Kerber, R. Laue, and A. Wassermann. Simple 8-designs with
small parameters. Designs, Codes and Cryptography, 15:5–27, 1998.

[17] A. Betten, A. Kohnert, R. Laue, and A. Wassermann (eds.). Algebraic
combinatorics and applications. Proceedings of the Euroconference, ALCOMA,
Gößweinstein, Germany, September 12–19, 1999. Springer-Verlag, Berlin, 2001.

[18] A. Betten, R. Laue, and A. Wassermann. Some simple 7-designs. In J.W.P.
Hirschfeld et al. (eds.), Geometry, combinatorial designs and related structures.
Proceedings of the first Pythagorean conference, Island of Spetses, Greece, June 1–7,
1996, volume 245 of Lond. Math. Soc. Lect. Note Ser., pages 15–25. Cambridge:
Cambridge University Press, 1997.

[19] R.E. Blahut. Theory and practice of error control codes. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1983.

[20] I.F. Blake (ed.). Algebraic coding theory: history and development. Dowden
Hutchinson & Ross Inc., Stroudsburg, Pa., 1973. Benchmark Papers in Elec-
trical Engineering and Computer Science.

[21] H.F. Blichfeldt. A new principle in the geometry of numbers with some ap-
plications. Trans. Amer. Math. Soc., 15:227–235, 1914.

[22] H.F. Blichfeldt. The minimum value of quadratic forms and the closest pack-
ing of spheres. Math. Ann., 101:605–608, 1929.

[23] J. Blömer and J.-P. Seifert. On the complexity of computing short linearly
independent vectors and short bases in a lattice. In Annual ACM Symposium
on Theory of Computing, Proceedings of the 31st Symposium (STOC ’99) held in
Atlanta, GA, May 1–4, 1999, pages 711–720, 1999.

[24] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Inf. Control, 3:68–79, 1960.

[25] M. Braun. Construction of linear codes with large minimum distance. IEEE
Transactions on Information Theory, 50(8):1687–1691, 2004.

[26] M. Braun. Konstruktion diskreter Strukturen unter Verwendung linearer Opera-
tionen auf dem linearen Verband. PhD thesis, University of Bayreuth, 2004.
Bayreuther Mathematische Schriften 69.

[27] M. Braun and A. Kohnert.
http://www.mathe2.uni-bayreuth.de/michael/codes/code bounds.html.

References 773

[28] M. Braun, A. Kohnert, and A. Wassermann. Construction of (n, r)-arcs in
PG(2, q). Innovations in Incidence Geometry, 1:133–141, 2005.

[29] M. Braun, A. Kohnert, and A. Wassermann. Optimal linear codes from ma-
trix groups. IEEE Transactions on Information Theory, 2005. To appear.

[30] R. Brigola. Fourieranalysis, Distributionen und Anwendungen. Vieweg, Braun-
schweig, 1997. ISBN 3-528-06619-9.

[31] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, and S.S. Wagstaff Jr.
Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Con-
temporary Mathematics, 22. Providence, RI: American Mathematical Society
(AMS), second edition, 1988.

[32] A.E. Brouwer. Linear code bounds.
http://www.win.tue.nl/˜aeb/voorlincod.html.

[33] A.E. Brouwer. Bounds on the size of linear codes. In Handbook of coding theory,
Vol. I, pages 295–461. North-Holland, Amsterdam, 1998.

[34] H.O. Burton and E.J. Weldon. Cyclic product codes. IEEE Trans. Information
Theory, IT-11:433–439, 1965.

[35] G. Butler. Fundamental algorithms for permutation groups, volume 559 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1991.

[36] G. Castagnoli, J.L. Massey, Ph.A. Schoeller, and N. von Seemann. On
repeated-root cyclic codes. IEEE Trans. Inf. Theory, 37(2):337–342, 1991.

[37] P. Charpin. Une généralisation de la construction de Berman des codes de
Reed et Muller p-aires. Comm. Algebra, 16(11):2231–2246, 1988.

[38] M. Clausen and U. Baum. Fast Fourier transforms. B.I. Wissenschaftsverlag,
Mannheim, 1993.

[39] H. Cohen. A course in computational algebraic number theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[40] J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, New York, third edition, 1999.

[41] G. Cooperman, L. Finkelstein, and N. Sarawagi. Applications of Cayley
graphs. In Applied algebra, algebraic algorithms and error-correcting codes (Tokyo,
1990), volume 508 of Lecture Notes in Comput. Sci., pages 367–378. Springer,
Berlin, 1991.

[42] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algo-
rithms. MIT Press, Cambridge, MA, second edition, 2001.

[43] M.J. Coster, A. Joux, B.A. LaMacchia, A.M. Odlyzko, C.P. Schnorr, and
J. Stern. Improved low-density subset sum algorithms. Computational Com-
plexity, 2:111–128, 1992.

774 References

[44] R.R. Coveyou and R.D. MacPherson. Fourier analysis of uniform random
number generators. J. Assoc. Comp. Mach., 14:100–119, 1967.

[45] U. Dieter. How to calculate shortest vectors in a lattice. Math. Comp.,
29(131):827–833, 1975.

[46] J.D. Dixon and H.S. Wilf. The random selection of unlabeled graphs. J. Algo-
rithms, 4:205–213, 1983.

[47] http://www.log-1.com/Barres/Barcodes/en.

[48] Ecma International, Geneva. Standard ECMA-130, Data interchange on read-
only 120 mm optical data disks (CD-ROM), second edition, 1966.
http://www.ecma-international.org/.

[49] Ecma International, Geneva. Standard ECMA-267, 120 mm DVD -Read-Only
Disk, third edition, 2001. http://www.ecma-international.org/.

[50] B. Elspas. The Theory of Autonomous Linear Sequential Networks. IRE
Transactions on Circuit Theory, CT-6:45–60, 1959.

[51] I.A. Faradžev. Constructive enumeration of homogeneous graphs (in Rus-
sian). Uspehi Mat. Nauk, 31(1(187)):246, 1976.

[52] I.A. Faradžev. Constructive enumeration of combinatorial objects (in Rus-
sian). In Algorithmic studies in combinatorics, pages 3–11, 185. “Nauka”,
Moscow, 1978.

[53] I.A. Faradžev. Generation of nonisomorphic graphs with a given distribution
of the degrees of vertices (in Russian). In Algorithmic studies in combinatorics,
pages 11–19, 185. “Nauka”, Moscow, 1978.

[54] S. Ferret and L. Storme. Minihypers and linear codes meeting the Griesmer
bound: Improvements to results of Hamada, Helleseth and Maekawa. Des.
Codes Cryptography, 25(2):143–162, 2002.

[55] G.D. Forney Jr. On decoding BCH codes. IEEE Trans. Information Theory,
IT-11:549–557, 1965.

[56] G.D. Forney Jr. Concatenated codes. M.I.T. Research Monograph, No. 37. The
M.I.T. Press, Cambridge, Mass., 1966.

[57] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de
Bruijn sequences. Discrete Math., 23:207–210, 1978.

[58] H. Fripertinger. http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html.

[59] H. Fripertinger. Enumeration of isometry-classes of linear (n, k)-codes over
GF(q) in SYMMETRICA. Bayreuth. Math. Schr., 49:215–223, 1995.

[60] H. Fripertinger. Cycle indices of linear, affine, and projective groups. Linear
Algebra and its Applications, 263:133–156, 1997.

References 775

[61] H. Fripertinger and A. Kerber. Isometry Classes of Indecomposable Linear
Codes. In G. Cohen, M. Giusti, and T. Mora (eds.), Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC-
11, Paris, France, July 17–22, 1995, volume 948 of Lecture Notes in Computer
Science, pages 194–204, Berlin, 1995. Springer-Verlag.

[62] Shuhong Gao. Normal Bases over Finite Fields. PhD thesis, University of Wa-
terloo, 1993.

[63] GAP – Groups, Algorithms, and Programming, Version 4.4. The GAP Group,
Aachen, Germany and St. Andrews, Scotland, 2004.

[64] C. Gasquet and P. Witomski. Fourier Analysis and Applications, volume 30 of
Texts in Applied Mathematics. Springer-Verlag, New York, 1998. ISBN 0-387-
98485-2.

[65] C.F. Gauss. Besprechung des Buches von L.A. Seeber: Untersuchungen über
die Eigenschaften der positiven ternären quadratischen Formen. Göttingische
gelehrte Anzeigen, pages 188–196, 1831. Werke II.

[66] C.F. Gauss. Disquisitiones Arithmeticae. Chelsea Pub., New York, 1965. First
published 1801 in Latin.

[67] E.N. Gilbert. A comparison of signaling alphabets. Bell System Tech. J.,
31:504–522, 1952. Also reprinted in [185] pp. 14–19 and [20] pp. 24–42.

[68] J. Gill. Handouts to EE 387, Error-Correcting Codes, 2003.
http://www.stanford.edu/class/ee387/.

[69] D.G. Glynn. The nonclassical 10-arc of PG(4, 9). Discrete Math., 59(1-2):43–51,
1986.

[70] M.J.E. Golay. Notes on digital coding. Proc. IRE., 37, 1949.

[71] V.D. Goppa. A new class of linear correcting codes (in Russian). Problemy
Peredači Informacii, 6(3):24–30, 1970.

[72] V.D. Goppa. Rational representation of codes and (L, g)-codes (in Russian).
Problemy Peredači Informacii, 7(3):41–49, 1971.

[73] D.M. Gordon. Minimal permutation sets for decoding the binary Golay
codes. IEEE Trans. Inf. Theory, 28:541–543, 1982.

[74] P. Govaerts and J. De Beule. pg, Projective Geometries, a share package for
GAP 4. http://cage.ugent.be/˜jdebeule/pg/.

[75] P. Govaerts and L. Storme. On a particular class of minihypers and its ap-
plications. I: the result for general q. Des. Codes Cryptography, 28(1):51–63,
2003.

[76] J.H. Griesmer. A bound for error-correcting codes. IBM J. Res. Develop., 4:532–
542, 1960.

776 References

[77] P.M. Gruber and C.G. Lekkerkerker. Geometry of Numbers. North-Holland,
Amsterdam, 1987.

[78] N. Hamada. A characterization of some [n, k, d; q]-codes meeting the Gries-
mer bound using a minihyper in a finite projective geometry. Discrete Math.,
116(1-3):229–268, 1993.

[79] N. Hamada and T. Helleseth. Arcs, blocking sets, and minihypers. Comput.
Math. Appl., 39(11):159–168, 2000.

[80] R.W. Hamming. Error detecting and error correcting codes. Bell System
Tech. J., 29:147–160, 1950.

[81] R.W. Hamming. Coding and information theory. Prentice-Hall Inc., Englewood
Cliffs, N.J., 1986. ISBN 0-13-139072-4.

[82] M.A. Harrison. On the classification of boolean functions by the general
linear and affine groups. J. Soc. Ind. Appl. Math., 12:285–299, 1964.

[83] M.A. Harrison. Counting Theorems and their Applications to Switching The-
ory. In A. Mukhopadyay (ed.), Recent Developments in Switching Functions,
chapter 4, pages 85–120. Academic Press, 1971.

[84] W. Heise and P. Quattrocchi. Informations- und Codierungstheorie. Mathemati-
sche Grundlagen der Daten-Kompression und -Sicherung in diskreten Kommunika-
tionssystemen. Springer-Verlag, Berlin, Heidelberg, New York, Paris, Tokio,
first, second and third edition, 1983, 1989 and 1995.

[85] H.J. Helgert and R.D. Stinaff. Minimum-distance bounds for binary linear
codes. IEEE Trans. Inf. Theory, 19:344–356, 1973.

[86] Ch. Hermite. Extraits de lettres de M.Ch. Hermite à M. Jacobi sur différents
objets de la théorie des nombres. J. reine angew. Math., 40:279–290, 1850.

[87] Ch. Hermite. Première lettre à M. Jacobi. In Ouvres, volume I, pages 100–121.
1850.

[88] R. Hill and E. Kolev. A survey of recent results on optimal linear codes. In
F.C. Holroyd et al. (eds.), Combinatorial designs and their applications. Proceed-
ings of the one-day conference, Milton Keynes, UK, 19 March 1997. London, pages
127–152. Chapman & Hall/CRC. Chapman & Hall/CRC Res. Notes Math.
403, 1999.

[89] J.W.P. Hirschfeld. Projective geometries over finite fields. Oxford Mathemati-
cal Monographs. The Clarendon Press Oxford University Press, New York,
second edition, 1998.

[90] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres, Revue Assoc. franc.
Calcul, 2:147–156, 1959.

[91] D.F. Holt, B. Eick, and E. O’Brien. Handbook of Computational Group Theory.
Chapmann and Hall / CRC, Boca Raton, Florida, 2005.

References 777

[92] W.C. Huffman. The automorphism groups of the generalized quadratic
residue codes. IEEE Trans. Inform. Theory, 41(2):378–386, 1995.

[93] W.C. Huffman. Codes and groups. In Handbook of coding theory, Vol. II, pages
1345–1440. North-Holland, Amsterdam, 1998.

[94] W.C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge
University Press, Cambridge, 2003.

[95] International Electrotechnical Commission, Geneva. IEC 60908, Audio record-
ing, Compact disc digital audio system, second edition, 1999. http://www.iec.ch/.

[96] International Organization for Standardization (ISO), Geneva. ISO/IEC
10149, Information technology – Data interchange on read-only 120 mm optical data
disks (CD-ROM), 2001. http://www.iso.org/.

[97] K. Ireland and M. Rosen. A classical introduction to modern number theory, vol-
ume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York, second
edition, 1990.

[98] http://www.isbn.org/.

[99] http://www.issn.org/.

[100] N. Jacobson. Basic algebra II. W.H. Freeman and Company, San Francisco,
1980.

[101] N. Jacobson. Basic algebra I. W.H. Freeman and Company, New York, second
edition, 1985.

[102] S.A. Jennings. The structure of the group ring of a p-group over a modular
field. Trans. Amer. Math. Soc., 50:175–185, 1941.

[103] A.J. Jerri. The Shannon sampling theorem. Its various extensions and appli-
cations: A tutorial review. Proc. IEEE, 65:1565–1596, 1977.

[104] D. Jungnickel. Codierungstheorie. Spektrum Akademischer Verlag GmbH,
Heidelberg, 1995. ISBN 3-86025-432-4.

[105] M. Kaib and H. Ritter. Block reduction for arbitrary norms. Preprint, Uni-
versität Frankfurt, 1995.

[106] R. Kannan. Algorithmic geometry of numbers. Annual Review of Computer
Science, 2:231–267, 1987.

[107] R. Kannan. Minkowski’s convex body theorem and integer programming.
Math. Operations Research, 12:415–440, 1987.

[108] A. Kerber. Applied Finite Group Actions, volume 19 of Algorithms and Combi-
natorics. Springer-Verlag, Berlin, Heidelberg, New York, 1999. ISBN 3-540-
65941-2.

[109] A. Kerber and A. Kohnert. Modular irreducible representations of the sym-
metric group as linear codes. European J. Comb., 25:1285–1299, 2004.

778 References

[110] D.E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, Mass., 1969.

[111] D.E. Knuth. The Art Of Computer Programming. Vol. 4, Fascicle 2: Generating
all tuples and Permutations. Addison-Wesley, Reading, Mass., 2005. ISBN 0-
201-85393-0.

[112] A. Korkine and G. Zolotareff. Sur les formes quadratiques positives ter-
naires. Math. Ann., 5:581–583, 1872.

[113] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Math. Ann.,
6:366–389, 1873.

[114] V.A. Kotel’nikov. On the transmission capacity of ‘ether’ and wire in electrocom-
munications. Izd. Red. Upr. Svyazi RKKA, 1933.

[115] R. Kötter. A unified description of an error locating procedure for linear
codes. In Proc. ACCT-3, Voneshta Voda, 1992.

[116] D.L. Kreher and D.R. Stinson. Combinatorial Algorithms. CRC Press, Boca
Raton, 1998.

[117] J.P.S. Kung. The cycle structure of a linear transformation over a finite field.
Linear Algebra Appl., 36:141–155, 1981.

[118] J.C. Lagarias, H.W. Lenstra Jr., and C.P. Schnorr. Korkin-Zolotarev bases and
successive minima of a lattice and its reciprocal lattice. Combinatorica, 10:333–
348, 1990.

[119] J.C. Lagarias and A.M. Odlyzko. Solving low-density subset sum problems.
J. Assoc. Comp. Mach., 32:229–246, 1985. Appeared already in Proc. 24th IEEE
Symp. Found. Comp. Sci. (1983), 1–10.

[120] L.J. Lagrange. Recherches d’arithmétique. Nouv. Mém. Acad. Roy. Sc. Beles
Lettres, Berlin, pages 265–312, 1773. Oeuvres 3, 693–758.

[121] P. Landrock and O. Manz. Classical codes as ideals in group algebras. Des.
Codes Cryptogr., 2(3):273–285, 1992.

[122] A.M. Legendre. Essai sur la théorie des nombres. Chez Duprat, Paris, 1798.

[123] W. Lehmann. Das Abzähltheorem der Exponentialgruppe in gewichteter
Form. Mitt. math. Sem. Giessen, 112:19–33, 1974.

[124] W. Lehmann. Ein vereinheitlichender Ansatz für die REDFIELD – PÓLYA – de
BRUIJNSCHE Abzähltheorie. PhD thesis, Universität Giessen, 1976.

[125] A.K. Lenstra, H.W. Lenstra Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982.

[126] H.W. Lenstra Jr. Finding isomorphisms between finite fields. Math. Comp.,
56:329–347, 1991.

References 779

[127] H.W. Lenstra Jr. and R.J. Schoof. Primitive normal bases for finite fields.
Math. Comp., 48:217–231, 1987.

[128] J.S. Leon. Computing automorphism groups of combinatorial objects. In
Computational group theory (Durham, 1982), pages 321–335. Academic Press,
London, 1984.

[129] J.S. Leon. Permutation group algorithms based on partitions. I. Theory and
algorithms. J. Symbolic Comput., 12(4-5):533–583, 1991. Computational group
theory, Part 2.

[130] J.S. Leon. Partitions, refinements, and permutation group computation. In
Groups and computation, II (New Brunswick, NJ, 1995), volume 28 of DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., pages 123–158. Amer. Math. Soc.,
Providence, RI, 1997.

[131] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Math-
ematics and its Applications. Addison-Wesley Publishing Company, London,
Amsterdam, Don Mills – Ontario, Sydney, Tokyo, 1983. ISBN 0-201-13519-1.

[132] R.A. Liebler. On codes in the natural representations of the symmetric group.
In T.V. Narayana et al. (eds.), Combinatorics, representation theory and statistical
methods in groups, Young Day Proc., volume 57 of Lect. Notes pure appl. Math.,
pages 159–170. Marcel Dekker Inc., 1980.

[133] R.A. Liebler and K.-H. Zimmermann. Combinatorial Sn-modules as codes.
J. Algebr. Comb., 4(1):47–68, 1995.

[134] S. Lin and D.J. Costello. Error Control Coding: Fundamentals and Applications.
Prentice Hall, Inc., Englewood Cliffs, N.J. 07632, 1983. ISBN 0-13-283796-X.

[135] S. Lin and E.J. Weldon. Further results on cyclic product codes. IEEE Trans.
Information Theory, IT-16:453–459, 1970.

[136] H. Lüneburg. On the rational normal form of endomorphisms. A primer to con-
structive algebra. B.I.-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1987.

[137] F.J. MacWilliams. A theorem on the distribution of weights in a systematic
code. Bell System Tech. J., 42:79–94, 1963. Also reprinted in [185] pp. 261–265
and [20] pp. 241–257.

[138] F.J. MacWilliams. Permutation decoding of systematic codes. Bell System
Tech. J., 43:485–505, 1964.

[139] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting codes, vol-
ume 16 of North-Holland Mathematical Library. North-Holland Publishing Co.,
Amsterdam, 1977.

[140] Magma. The Computational Algebra Group within the School of Mathemat-
ics and Statistics of the University of Sydney, 2004.

[141] R.J. Marks II (ed.). Advanced Topics in Shannon Sampling and Interpolation The-
ory. Springer-Verlag, Berlin, 1993.

780 References

[142] R. Martı́ and E. Nart. Isometry classes of codes arising from sets of points in
the projective plane. European Journal of Combinatorics, 15:1003–1023, 2004.

[143] T. Maruta. A characterization of some minihypers and its application to lin-
ear codes. Geom. Dedicata, 74(3):305–311, 1999.

[144] J.L. Massey. Threshold Decoding. M.I.T. Press, Cambridge, MA., 1963.

[145] H.F. Mattson and G. Solomon. A new treatment of Bose-Chaudhuri codes. J.
Soc. Indust. Appl. Math., 9:654–669, 1961.

[146] B.D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306–
324, 1998.

[147] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems. Kluwer
Academic Publishers, 2002.

[148] J.W. Milnor and D. Husemoller. Symmetric Bilinear Forms. Springer-Verlag,
Berlin, New York, 1973.

[149] H. Minkowski. Extrait d’une lettre addrésse à M. Hermite. Bulletin des Sci-
ences Mathématique (2), 17:24–29, 1893. Reprinted in [152], 266–270.

[150] H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1896.

[151] H. Minkowski. Diskontinuitätsbereich für arithmetische Äquivalenz. J. reine
angew. Math., 129:220–274, 1905. Reprinted in [152], 53–100.

[152] H. Minkowski. Extrait d’une lettre addrésse à M. Hermite. In D. Hilbert
(ed.), Gesammelte Abhandlungen, volume I. Teubner, Leipzig, 1911. Reprinted
Chelsea, New York, 1967.

[153] T.K. Moon. Error correction coding : mathematical methods and algorithms.
Wiley-Interscience, Hoboken, N.J., 2005.

[154] D.E. Muller. Applications of boolean algebra to switching circuit design and
to error correction. IRE Trans. Elec. Comp., 3:6–12, 1954.

[155] W. Müller. Lineare Algebra, volume 42. Bayreuther Mathematische Schriften,
second edition, 1992.

[156] H. Nakajima. Digital Audio Technology. TAB Books Inc., Blue Ridge Summit,
Pa., 1983. ISBN 0-8306-1451-6.

[157] G. Nebe, E.M. Rains, and N.J.A. Sloane. Self-Dual Codes and Invariant Theory.
Springer-Verlag, Berlin, 2006.

[158] P.M. Neumann, G.A. Stoy, and E.C. Thompson. Groups and geometry. Oxford
Science Publications. The Clarendon Press Oxford University Press, New
York, 1994.

[159] H.J. Nussbaumer. Fast Fourier transform and convolution algorithms, volume 2
of Springer Series in Information Sciences. Springer-Verlag, Berlin, Heidelberg,
New York, 1981.

References 781

[160] H. Nyquist. Certain topics in telegraph transmission theory. Transactions of
the American Institute of Electrical Engineers, 47(2):617–644, 1928.

[161] R. Pellikaan. On the efficient decoding of algebraic-geometric codes. In
P. Camion et al. (eds.), Eurocode 1992. International symposium on coding the-
ory and applications, Udine, Italy, October 23 – 30, 1992., volume 339 of CISM
Courses Lect., pages 231–253, Wien, 1993. Springer-Verlag.

[162] W. Plesken. Counting with groups and rings. J. Reine Angew. Math., 334:40–
68, 1982.

[163] V.S. Pless, W.C. Huffman, and R.A. Brualdi (eds.). Handbook of coding theory.
Vol. I, II. North-Holland, Amsterdam, 1998.

[164] K.C. Pohlmann. The Compact Disc Handbook. Oxford University Press, Ox-
ford, New York, Toronto, second edition, 1992. ISBN 0-19-816327-4.

[165] R.C. Read. Every one a winner or how to avoid isomorphism search when
cataloguing combinatorial configurations. Ann. Discrete Math., 2:107–120,
1978. Algorithmic aspects of combinatorics (Conf., Vancouver Island, B.C.,
1976).

[166] http://searchstorage.techtarget.com/sDefinition/0,,sid5 gci503642,00.html.

[167] I.S. Reed. A class of multiple-error correcting codes and the decoding
scheme. IEEE Trans. Inf. Theory, 4:38–49, 1954.

[168] I.S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc.
Indust. Appl. Math., 8:300–304, 1960.

[169] S.H. Reiger. Codes for the correction of “clustered” errors. Trans. IRE, IT-
6:16–21, 1960.

[170] H. Ritter. Aufzählung von kurzen Gittervektoren in allgemeiner Norm. PhD the-
sis, Universität Frankfurt, 1997.

[171] B. Schmalz. t-Designs zu vorgegebener Automorphismengruppe. Bayreuth.
Math. Schr., 41:1–164, 1992. Dissertation, Universität Bayreuth, Bayreuth,
1992.

[172] C.P. Schnorr. A hierachy of polynomial time lattice basis reduction algo-
rithms. Theoretical Computer Science, 53:201–224, 1987.

[173] C.P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. In Proceedings of Fundamentals
of Computation Theory ’91, Lecture Notes in Computer Science 529, pages 68–85,
Heidelberg, 1991. Springer-Verlag.

[174] C.P. Schnorr and H.H. Hörner. Attacking the Chor-Rivest cryptosystem by
improved lattice reduction. In Advances in Cryptology – Eurocrypt ’95, Lecture
Notes in Computer Science 921, pages 1–12, Heidelberg, 1995. Springer-Verlag.

[175] http://searchnetworking.techtarget.com/.

782 References

[176] L.A. Seeber. Untersuchungen über die Eigenschaften der positiven ternären
quadratischen Formen. Freiburg, 1831.

[177] Á. Seress. Permutation Group Algorithms, volume 152 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, UK, 2003.

[178] C.E. Shannon. A mathematical theory of communication. Bell System Tech. J.,
27:379–423, 1948.

[179] C.E. Shannon. Communication in the presence of noise. Proc. Institute of
Radio Engineers, 37(1):10–21, 1949.

[180] C.E. Shannon. The mathematical theory of communication. University of Illinois
Press, Urbana, 1949. ISBN 0-252-72548-4.

[181] C.C. Sims. Computational methods in the study of permutation groups. In
Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages
169–183. Pergamon, Oxford, 1970.

[182] C.C. Sims. Computation with permutation groups. In Proc. Second Sympo-
sium on Symbolic and Algebraic Manipulation, pages 23–28. ACM Press, New
York, 1971.

[183] D. Singmaster. Notes on Rubik’s magic cube. Enslow Publishers, Hillside, N.J.,
fifth edition, 1981.

[184] D. Slepian. Some Further Theory of Group Codes. Bell System Tech. J.,
39:1219–1252, 1960. Also reprinted in [20] pp. 118–151.

[185] D. Slepian (ed.). Key papers in the development of information theory. IEEE Press
[Institute of Electrical and Electronics Engineers, Inc.], New York, 1974. IEEE
Press Selected Reprint Series.

[186] G. Solomon and J.J. Stiffler. Algebraically punctured cyclic codes. Information
and Control, 8:170–179, 1965.

[187] H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer-
Verlag, Berlin, 1993.

[188] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. Correction to
“An erasures-and -errors decoding algorithm for Goppa codes” (IEEE Trans.
Information Theory it-22 (1976), no. 2, 238–241). IEEE Trans. Information The-
ory, IT-22(6):765, 1976.

[189] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. An erasures-and-
errors decoding algorithm for Goppa codes. IEEE Trans. Information Theory,
IT-22(2):238–241, 1976.

[190] SYMMETRICA. A program system devoted to representation theory, in-
variant theory and combinatorics of finite symmetric groups and related
classes of groups. Lehrstuhl II für Mathematik, Universität Bayreuth, 95440
Bayreuth, http://www.symmetrica.de.

References 783

[191] A. Tietävänien. On the nonexistence of perfect codes over finite fields. SIAM
J. appl. Math., 24:88–96, 1973.

[192] J.H. van Lint. Introduction to coding theory, volume 86 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, third edition, 1999.

[193] J.H. van Lint and G. van der Geer. Introduction to coding theory and algebraic
geometry, volume 12 of DMV Seminar. Birkhäuser Verlag, Basel, 1988.

[194] R.R. Varshamov. Estimate of the number of signals in error correcting codes.
Dokl. Akad. Nauk SSSR, 117:739–741, 1957. English translation in [20] pp. 68–
71.

[195] T. Verhoeff. An updated table of minimum-distance bounds for binary linear
codes. IEEE Trans. Inf. Theory, 33:665–680, 1987.

[196] J.L. Walker. Codes and curves, volume 7 of Student Mathematical Library. Amer-
ican Mathematical Society, Providence, RI, 2000. IAS/Park City Mathemati-
cal Subseries.

[197] H.N. Ward. Visible codes. Arch. Math. (Basel), 54(3):307–312, 1990.

[198] A. Wassermann. Finding simple t-designs with enumeration techniques.
J. Combinatorial Designs, 6:79–90, 1998.

[199] A. Wassermann. Lattice point enumeration and applications. Bayreuther
Math. Schr., 73, 2006.

[200] E.T. Whittaker. On the functions which are represented by the expansion of
interpolating theory. Proc. Roy. Soc. Edinburgh, 35:181–194, 1915.

[201] J.M. Whittaker. Interpolatory Function Theory, volume 33 of Cambridge Tracts
in Mathematics and Mathematics Physics. Cambridge Univ. Press, Cambridge,
1935.

[202] http://en.wikipedia.org/.

[203] M. Wirtz. Konstruktion und Tabellen linearer Codes. PhD thesis, Universität
Münster, 1991.

[204] E. Witt. Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Semin. Univ.
Hamburg, 12:256–264, 1938.

[205] K.-H. Zimmermann. Beiträge zur algebraischen Codierungstheorie mittels
modularer Darstellungstheorie. (Contributions to algebraic coding theory
using modular representation theory). Bayreuther Math. Schr., 48, 1994.

[206] K.-H. Zimmermann. On weight spaces of polynomial representations of the
general linear group as linear codes. J. Comb. Theory, Ser. A, 67(1):1–22, 1994.

[207] V.A. Zinovjev and V.K. Leontjev. On perfect codes. Problems of Info. Trans.,
8:17–24, 1972.

Index

A-construction, 103
acoustic
– power, 383
– pressure, 384
action
– faithful, 669
– finite, 34
– fixed point, 59, 171
– graph, 670
– induced, 688
– kernel, 207
– kernel of, 33
– lattice, 625
– left regular, 38
– of a group, 33
– orbit, 33
– poset, 625
– restriction, 38
– right regular, 38
– similar, 174, 666
– stabilizer, 170
– transitive, 38
– trivial, 54
additive representation
– Galois field, 204
affine
– q-polynomial, 198
– multiple, 198
– transformations, 245
affine geometry, 355
algebra, 215
algebraic, 159
algebraic closure, 159, 229, 237
algebraically closed, 159
algorithm
– Berlekamp, 192
– Chien search, 395
– construct a normal element, 559
– CRC-decoding, 402
– decoding of errors and erasures with a

BCH-code, 396

– decoding of errors with a BCH-code,
397

– Dixon–Wilf, 527
– Euclidean, 145, 147
– Extended Euclidean, 393
– Forney, 395
– generate a normal element, 558
– lattice point enumeration, 601
– L3- , 588
– LLL- , 588
– minimum distance, 70–77, 605
– orbits on points, 673
– orbits on subsets, 709
– order of a group element, 199
– orderly generation, 691
– orderly generation by canonical aug-

mentation, 693
– pre-Lyndon, 187
– primitive element of Fq, 200
– sift, 724
– Zassenhaus, 196
aliasing, 380
alphabet, 11, 178, 179
annihilator, 219, 223
– left, 219
– right, 218
anti-isomorphism
– of lattices, 161
– order-, 161
antichain, 627
augmentation, 102, 126
– ideal, 329
– mapping, 322
automorphism
– group, 626
– – doubly transitive, 251
– of a blocking set, 637
– of extension set, 708
– projective, 641

B-construction, 103
backtracking algorithm, 564

786 Index

band limited signal, 376
barcode, 9
base b representation, 22
base of a group, 717
basic orbit, 718
basis, 566
– δ-reduced, 591
– Korkine–Zolotarev-reduced, 587, 596
– LLL-reduced, 588, 591
– Minkowski-reduced, 586
BCH
– -bound, 238
– -code, 239
Berlekamp algorithm, 192
Bézout’s Identity, 145, 147
binary code, 20
binomial
– formula, 154
– theorem, 154
binomial tree, 683
Blichfeldt, 585, 587
– lemma of, 582
block, 305
– code, 7, 36
– length, 12
blocking set, 622
blow up, 108
Book
– Red, 423
– Yellow, 435
Boolean function, 119
Bose–distance, 241
bound
– BCH-, 238
– Gilbert-, 90
– Griesmer-, 89
– Hamming-, 82
– Plotkin-, 85
– Reiger-, 403
– Singleton-, 82
– Square-Root-, 262
– Varshamov-, 91
bounds, 82–93
breadth first search, 684

Brouwer, 70
burst error, 401
– correcting efficiency, 404
– location, 401
– pattern, 401
– wrap around, 401
Butterworth filter, 382

canonical
– actions, 34, 35
– basis of FG, 214
– form of a critical code, 522
– generators, 482
– labelings of field elements, 203
– projection, 301
– representative, 145, 148, 222
– transversal, 179, 690
cardinal sine function, 377
Cauchy–Frobenius
– Lemma, 171
– – weighted form, 454
Cayley-graph, 725
CD-ROM, 435
center, 206, 458
centralizer, 181
centrally-primitive, 283
channel, 3
– symmetric, 4
character
– modular, 54
– of finite action, 54
– of representation, 54
– one-dimensional, 54
– ordinary, 54
characteristic, 139
– polynomial, 481
check
– bits, 65
– matrix, 20
– polynomial, 221
– symbols, 227
Chien search, 395
Chinese Remainder Theorem, 190, 192,

202
Cholesky decomposition, 576

Index 787

CIRC, 412
classification, metric, 445
CLV, 424
code, 5
– A-construction, 103
– Alternant-, 285
– BCH-, 75, 239
– – in the narrow sense, 239
– – primitive, 239
– B-construction, 103
– binary, 20
– – Golay-, 106, 264
– block, 36
– block length, 12
– concatenated
– – diagonally, 98
– critical, 511, 512
– cyclic, 215
– – annihilator, 223
– – indecomposable, 304
– – root, 233
– – variety, 233
– decomposable, 463
– defect, 90
– dimension, 12
– dual, 21
– EAN, 8
– equidistant, 87
– generator matrix, 696
– Golay-, 264, 343, 527, 606
– – binary, 77, 106, 264
– – ternary, 264, 606
– Goppa-, 287
– – MDS-, 282
– group algebra, 213, 215
– Hamming-, 23, 83, 126, 452, 525, 698
– – extended, 95
– hexacode, 132
– homomorphism, 511
– indecomposable, 464, 511
– – critical, 511
– injective, 452
– inner, 407
– ISBN-, 5, 7

– isometric, 29
– – linearly, 30, 444
– – permutationally, 30
– – semilinearly, 49
– isometry classes, 741
– isomorphism, 512
– ISSN-, 8
– length, 12
– linear, 7, 12
– linearly isometric, 444
– MDS-, 82, 128–135
– – trivial, 82
– minimum weight, 15
– (n, k)-, 12
– (n, k, d)-, 16
– (n, k, d, q)-, 16
– nonredundant, 448
– optimal, 81
– orderly generation, 688–698
– outer, 407
– parity check, 21, 27
– perfect, 83
– projective, 28, 452, 515
– punctured, 96
– QR-, 257
– quadratic-residue-, 257
– quaternary, 20
– r-divisible, 60
– reduced, 452, 515
– Reed–Muller, 526
– – binary, 123
– Reed–Muller-, 120
– Reed–Solomon-, 239
– repetition, 5
– restricted, 108
– self-dual, 21
– self-orthogonal, 21
– semi-simple, 308
– simplex-, 83, 126, 452, 619
– spectrum, 524
– stabilizer type of a, 642
– ternary, 20
– – Golay-, 264
– t-error-correcting, 16

788 Index

– t-error-detecting, 16
– type of, 16
– (u | u + v)-construction, 100, 122
– (u, v)-construction, 98
– (u + w | v + w | u + v + w)-constr., 105
– visible, 313
– X-construction, 104
– Y1-construction, 103
codevector, 12
codeword, 4, 12
colexicographical order, 178
collineation, 206
column
– code, 407
– critical, 515
– decoder, 407
communication system, 3
compact disc read only memory, 435
companion matrix, 327, 480
comparable, 161
composition series, 298, 304
– length, 299
concatenated code, 98
conjugacy class, 181
conjugates, 168
conjugation, 181
construction
– A-, 103
– B-, 103
– (u | u + v)-, 100, 122
– (u, v)-, 98
– (u + w | v + w | u + v + w), 105
– X-, 104
– Y1-, 103
content, 451, 455, 457, 460
convergence
– in energy, 371
– mean, 371
– mean quadratic, 371
– pointwise, 371
– uniform, 371
convolution, 214
coset leader, 23
– algorithm, 20

covering
– polynomial, 344
– radius, 90
critical
– code, 511, 512
– column, 515
cross
– interleaved Reed–Solomon-codes, 412
– interleaving, 412
cross section, 550
cycle
– index, 455
– – of the symmetric group, 498
– – PGLk(q), 493
– – Sn, 498
– type, 454
– – of n, 477
cyclic
– code, 215
– module, 293
– vector space, 293
cyclotomic coset, 231

decoder
– column, 407
– Kasami-, 344
decoding, 4
– CRC, 402
– cyclic redundancy check, 402
– inner, 407
– outer, 407
– permutation-, 341
– row, 407
– with error-correcting pairs, 346
decoding tree, 354
Decomposition Theorem, 467
Dedekind number, 178
defect, 90
degree
– formulae, 147
– of a multinomial, 120
– of a polynomial, 140
– of nilpotency, 329
delta function, 166
depth first search, 683

Index 789

derivative, 188
design, 366, 624
designed distance, 239
determinant, 574
DFT, 273
digital sum, 432
digraph, 670
dimension
– maximal, 82
– of representation, 53
Diophantine linear equations, 563
direct sum of modules, 294
directed graph, 670
Discrete Fourier
– Transform, 56, 63, 273, 375
discrete subgroup, 566
discriminant, 555
distance
– minimum, 6, 14
dither, 387
division
– ring, 235
– shift register, 336
– theorem, 145, 147
Dixon–Wilf-algorithm, 527
down-and-up process, 703, 714
downstep, 703
dual group, 634

EAN-code, 8
EFM, 431
eight-to-fourteen modulation, 431
elementary symmetric polynomial, 60
empty word, 179
encoder, 11
encoding, 4
– systematic, 65
enumeration, weighted, 454
equidistant code, 87
equivalence relation, 29
equivalent representations, 53
erasure, 389
– location polynomial, 391
error

– bits, 351
– concealment, 407
– correcting
– – pair, 348
– evaluation polynomial, 391
– location polynomial, 391
– random, 389, 401
– trapping, 342
– vector, 15, 351
error-correction rate, 6
Euclidean Algorithm
– Extended, 393
– for polynomials, 147
– number theoretic version, 145
Euler function, 177
evaluation map, 141
exponent
– of a group, 63
– of a polynomial, 486
extension, 701

F1-frame, 439
F2-frame, 439
F3-frame, 439
factor
– action, 39
– module, 293
family
– decomposable, 464
– indecomposable, 464
– independent, 464
Fano-plane, 621
field
– algebraically closed, 159
– extension, 140
– – algebraic, 159
– – finite, 140
– multiplicative group, 149
– splitting, 157
filter, 381
– Butterworth-, 382
– ideal low-pass, 381
– realizable, 382
finite field cf. Galois field, 139
finite group action, 34

790 Index

fixed
– field, 167
– point, 59, 171
formal sum, 214
formula, binomial, 154
Fourier
– coefficients, 373
– matrix, 273
– series, 373
– Transform, 273, 375
– – Discrete, 56, 63, 375
– – Inverse, 376
– vector, 273
f -reducing polynomial, 190
Frobenius
– automorphism, 155, 229
– – over Fp, 155
– – over Fq, 155
– mapping, 154
full monomial group, 35
fundamental parallelotope, 574
fusion
– element, 709
– node, 709

Galois
– field, 154
– – additive representation, 204
– – multiplicative representation, 203
– group, 167
Gauss, 576, 586
– Criterion, 255
general
– linear group, 18, 53
– semilinear group, 208
general position, 668
generating
– function, 455, 456
– – ordinary, 456
– unit, 269, 283
generator
– idempotent, 268
– matrix, 12
– – decomposable, 464

– – indecomposable, 464
– – systematic, 65
– polynomial, 221
generators of a group, 670
geometry
– affine, 355
geometry, projective, 206
Gleason and Prange Theorem, 262
Golay-code, 264, 343, 527, 606
– binary, 106, 264
– ternary, 264, 606
Goppa
– code, 287
– MDS-code, 282
– polynomial, 287
G-orbit, 33
Gram–Schmidt
– coefficient, 578
– orthogonalization, 577
– vector, 578
Gram-matrix, 579
granulation noise, 387
graph
– action, 670
– Cayley-, 725
– connected component, 670
– directed, 670
– loop, 670
greatest common divisor, 145, 147
group
– action, 33
– – finite, 34
– affine linear group, 245
– algebra, 214
– – code, 215
– – codes, 213
– base, 678, 717
– base and strong generating set, 717–

727
– dual, 634
– exponent, 63
– extension, 704
– general linear, 18, 53
– general semilinear, 208

Index 791

– generators, 670
– of linear isometries, 32
– of Rubik’s cube, 719
– of semilinear isometries, 49
– projective linear, 727–738
– projective semilinear, 738–741
– projective special linear group, 260
– rank function, 724
– stabilizer chain, 717
– strong generators, 681, 718
– symmetric, 30, 725

Hadamard inequality, 580
Hamming
– -code, 23, 83, 126, 452, 525
– distance, 6, 13
– metric, 13
– space, 13
– weight, 15
hereditary condition, 689
Hermite, 576, 580, 585, 586
– constant, 585
hexacode, 132
homogeneous coordinates, 266
homomorphism theorem, 163
hyper companion matrix, 480
hyperplane, 616

ideal, 141, 215
– indecomposable, 304
– maximal, 304
– minimal, 304
– relatively prime, 191
– two-sided, 215
ideal low-pass filter, 381
idempotent, 282
– central, 282
– centrally-primitive, 283
– generator, 268
– orthogonal, 283
– primitive, 283
identity
– representation, 54
Identity of Bézout, 145, 147
incidence matrix, 623

incomparable, 161
indecomposability, 469
induced
– action, 688
– permutation, 33
– permutation group, 33
infimum, 161
– of two subgroups, 172
information
– place, 65
– rate, 6
– set, 65
– symbols, 227
injective code, 452
inner
– code, 407
– decoding, 407
integral
– domain, 140
– element, 485, 488
integral domain, 301
interleaving, 404
– cross, 412
– with delay, 413
invariant, 59
Inverse Fourier Transform, 376
inversion formula
– Fourier, 376
– general, 166
– Möbius, 166
ISBN-code, 5, 7
isometric
– code, 29
– linearly, 30
– permutationally, 30
– semilinearly, 49
isometry, 29
– linear, 30
– – global, 549
– – local, 549
– local, 549
– permutational, 30
– semilinear, 45
– – global, 549

792 Index

– – local, 549
isomorphic normal series, 297
isomorphism
– lattice, 161
– order-, 161
Isomorphism Theorem
– First
– – for modules, 295
– – for rings, 296
– Second
– – for modules, 296
– – for rings, 296
ISSN-code, 8

Jacobi normal form, 480
Jennings
– basis, 312, 328
– weight, 328

kernel, 163
– of action, 33
knapsack problem, 564, 593
Korkine, 576, 587
Krawtchouk polynomial, 64

Lagarias, 568, 587
Lagarias-Odlyzko lattice, 568
Lagrange, 576, 586
– Theorem, 38
λ-way interleave, 405
land, 430
lattice, 161, 566
– action, 625
– anti-isomorphism, 161
– basis, 566
– – reduction, 586, 587
– determinant, 574
– dual, 599
– generator matrix, 566
– isomorphism, 161
– Lagarias-Odlyzko, 568
– linear, 625
– low-density, 593
– of subgroups, 172, 675
– rank, 566
– successive minima, 575

lattice point enumeration, 601
leading coefficient
– of a polynomial, 141
– of a vector, 677
least length, 82
left
– annihilator, 219
– coset, 38
– module, 292
Legendre, 576
– symbol, 255
Lehmann’s Lemma, 448
– generalized, 535
Leiterspiel, 700
lemma
– Cauchy–Frobenius, 171
– – weighted form, 454
– Euler’s, 255
– Lehmann’s, 448
– – generalized, 535
length, least, 82
Lenstra, 587
lexicographical order, 178, 682–688
linear
– code, 7
– combination
– – irreducible, 464
– – reducible, 464
– group
– – projective, 260
– – special, 260
– isometry, 30, 444
– – group, 444
– – local, 549
– lattice, 625
– representation, 53
linearized polynomial, 197
linearly isometric, 30
L3-algorithm, 588
LLL-algorithm, 588
LLL-reduced, 588
local
– isometry, 549
– linear isometry, 549

Index 793

– semilinear isometry, 549
locally finite, 629
Lovász, 587
lower bound, 161
Lyndon
– decomposition, 180
– length, 180
– set, 179
– theorem of, 180
– word, 179

MacWilliams-identity, 58
majority logic decoding, 350–366
matrix
– generator, 566
– Gram, 574, 579, 590
– Möbius, 173, 628
– Plesken, 630
– projective, 452
– representation, 53
– unimodular, 574
– zeta, 173, 628
Mattson–Solomon polynomial, 273
maximal
– dimension, 82
– minimum distance, 82
– module, 294
maximum weight, 102
maximum-likelihood-decoding, 15
MDS-code, 128–135
– trivial, 128
merging bits, 432
message, 4
metric classification, 445
minihyper, 620
minimal
– polynomial, 142, 143, 481
– – of a matrix, 478
– – of a vector, 478
minimum
– distance, 6, 14, 605
– – maximal, 82
– – relative, 6, 326
– weight, 15

Minkowski, 567, 575, 576, 582, 584–586
– fundamental theorem of, 582
– second theorem of, 585
minterm, 120
modular
– character, 54
– representation, 54
module
– cyclic, 293
– factor, 293
– finitely generated, 293
– isomorphic, 294
– left, 292
– maximal, 294
– natural projection, 294
– right, 293
– semi-simple, 307
– simple, 294
modules, direct sum, 294
Möbius
– function
– – general, 166
– – number theoretic, 162, 165
– inversion, 163
– – general, 166
– – number theoretic, 165
– matrix, 173, 628
multibase representation, 722
multiplicative representation
– Galois field, 203
multiset, 618

necklace, 179
n-fold
– product, 63
– sum, 62
(n, k)-code, 12
(n, k, d)-code, 16
(n, k, d, q)-code, 16
nonredundant
– code, 448
– subspace, 452
nonsquare modulo n, 253
normal
– basis, 169

794 Index

– element, 555
– form, 480, 663
– – in GLk(q), 478
– – Jacobi, 480
– – of endomorphism, 478
– series, 297
– – factors, 297
– – isomorphic, 297
– subgroup, 69, 181
normalizer, 181
number, Dedekind, 178
Nyquist
– frequency, 380
– rate, 380

Odlyzko, 568
optimal code, 81
orbit, 33, 669
– basic-, 718
– computing, 700–716
– data structure, 675
– of type Ũ, 172
– representatives, 689
– Schreier-tree, 672
order
– anti-isomorphism, 161
– colexicographical, 178
– isomorphism, 161
– lexicographical, 178
– of a formal series, 456
– of a group, 149
– of a group element, 149
– of a polynomial, 486
order tree, 682
orderly generation, 688–698
ordinary
– character, 54
– representation, 54
orthogonal, 577
– projection, 578
orthogonality
– defect, 580
– relation, 63
orthogonality defect, 593

outer
– code, 407
– decoding, 407
– direct sum, 97

Pólya, 455
packing radius, 14
parallelotope, fundamental, 574
parity
– check bit, 21
– extension, 95
partial
– order, 161
– syndrome, 391
– – polynomial, 391
partially ordered set, 161
partition of a set, 34
PCM, 385
PD-set, 342
perfect code, 83
period of a polynomial, 486
permutation
– decoding, 342
– group
– – induced, 33
– induced, 33
– representation, 33
permutation decoding, 341
permutational isometry, 30
permutationally isometric, 30
pit, 430
Plesken matrix, 630
Plotkin construction, 100
point, 617
pointwise stabilizer, 207, 717
polynomial
– affine q-, 198
– check, 221
– covering, 344
– degree, 140
– divisor, 141
– elementary symmetric, 60
– exponent, 486
– f -reducing, 190
– generating, 51

Index 795

– generator, 221
– irreducible, 141
– Krawtchouk, 64
– leading coefficient, 141
– linearized, 197
– Mattson–Solomon, 273
– minimal, 142, 143
– monic, 141
– order, 486
– period, 486
– primitive, 152
– q-, 197
– reciprocal, 224
– reducible, 141
– root of, 141
– splitting field, 157
– subexponent, 488
– symmetric, 60
– – elementary, 60
poset, 161
– action, 625
– automorphism, 626
– interval, 161
– locally finite, 161
power set, 682
pre-Lyndon
– algorithm, 187
– word, 179
pre-order traversal, 683
primary
– components, 479
– decomposition, 479
prime field, 140
primitive
– element, 152
– polynomial, 152
principal
– ideal, 149
– – domain, 141, 301
projection, 512
– orthogonal, 578
projective
– automorphism, 641
– code, 28

– dimension, 206
– geometry, 206, 617
– hyperplane, 206
– line, 206, 259
– linear group, 207, 260, 458, 476, 681,

727–738
– matrix, 452
– plane, 206
– point, 206
– semilinear group, 209, 738–741
– space, 205, 450, 676
– standard vector, 677
projective code, 452, 515
prolongation, 102
pulse code modulation, 385
punctured
– code, 96
– space, 205
puncturing, 126

q-binomial numbers, 460
q-polynomial, 197
– affine, 198
quadratic
– form, 576
– residue, 253
Quadratic Reciprocity, 256
quantization, 384
quasicanonical form of a critical code,

519
quaternary code, 20

radius, covering, 90
random error, 389, 401
rank, 566
rank function
– for Fk

q, 677
– for group elements, 724
– for subsets, 685
– projective geometry, 728
r-divisible code, 60
realizable filter, 382
recoupling polynomial, 336
Red Book, 423
reduced code, 452, 515

796 Index

redundancy
– places, 65
– set, 65
Reed–Muller-code, 120, 526
– canonical generator matrix, 125
Reed–Solomon-code, 438
refinement, 297
Reiger-bound, 403
repeated
– doubling and adding, 183
– squaring and multiplying, 183
representation
– character of, 54
– dimension of, 53
– linear, 53
– modular, 54
– ordinary, 54
– space, 53
– trivial, 54
representative, canonical, 222
residue class, 145, 252
– ring, 140
– – modulo n, 146
restriction
– of a code, 108
– of an action, 38
reversed sequence, 723
right
– annihilator, 218
– coset, 38
– module, 293
ring
– associate elements, 301
– divisor, 301
– free of zero divisors, 144
– irreducible element, 301
– prime element, 301
– relatively prime elements, 301
– semi-simple, 307
– unit, 301
R-linear closure, 293
R-module homomorphism, 294
– kernel, 294
root, 141

– multiple, 141
– multiplicity, 141
– of unity, 229
– simple, 141
row
– code, 407
– decoding, 407
RSPC, 438
Rubik’s cube, 719

sampling, 370, 378
– frequency, 378
– rate, 378
Schnorr, 587, 596
Schreier
– generator, 673
– tree, 672
scrambling, 439
sector, 436
– address bytes, 436
– ECC, 437
– EDC, 437
– header field, 436
– mode byte, 436
– Mode 0, 436
– Mode 1, 437
– Mode 2, 437
– RSPC, 437
– scrambled, 439
– synchronization word, 436
Seeber, 586
self
– dual code, 21
– orthogonal code, 21
semidirect sum, 100
semilinear
– isometries, group of, 49
– isometry, 45, 49
– – classes, 49
– – local, 549
– mapping, 45
semilinearly isometric, 49
set partition, 34
shortening, 101
sift algorithm, 724

Index 797

signal-to
– -error ratio, 385
– -noise ratio, 385
similar actions, 174
simple module, 294
simplex-code, 83, 126, 452, 619
Sims chain, 717
Slepian, 663
snakes and ladders, 700
sound
– intensity, 384
– power, 383
– pressure, 384
space
– projective, 205
– punctured, 205
special linear group, 260
spectrum, 524
sphere, 584
splitting field, 157
square modulo n, 253
stabilizer, 170, 669
– chain, 717
– pointwise, 207, 688, 717
– setwise, 688
stabilizer type, 642
standard bilinear form, 21
strong generators, 681, 718
subcode, 104, 434
– bits, 434
– block, 434
subcycle, 485
– expression, 486
– index, 486
– -index, 492
– length, 486
– type, 486
subdeterminant, 590
subexponent of a polynomial, 488
subgroups, lattice of, 172
submodule, 293
subset sum problem, 564
subspace, nonredundant, 452
successive minima, 575

sum
– outer direct, 97
– semidirect, 100
summable family, 456
support, 61, 371, 511
supremum, 161
– of two subgroups, 172
switching function, 119
symbol
– check, 227
– information, 227
– Legendre, 255
symmetric
– channel, 4
– difference, 61
– group, 30
– – cycle index, 498
– polynomial, 60
syndrome, 24
– decoding, 24

τ-order, 558
tensor, 114
– product, 108, 114
ternary code, 20
theorem
– binomial, 154
– First Isomorphism-
– – for modules, 295
– – for rings, 296
– homomorphism, 163
– Lyndon’s, 180
– of Berman, 318
– of Gleason and Prange, 262
– of Lagrange, 38
– of Pólya, 455
– Second Isomorphism-
– – for modules, 296
– – for rings, 296
– Structure of cyclic codes, 305
topological sorting, 628
total order, 161
totally ordered set, 161
trace function, 555
transfer function, 381

798 Index

transitive, 38, 245
transporter
– element, 669, 689, 709
– map, 675
transversal, 33, 689
– canonical, 690, 709
trap decoding, 342
tree
– binomial tree, 683
– breadth first search, 684
– depth first search, 683
– distance from root, 683
– fusion node, 709
– level, 683
– order tree, 682
– pre-order traversal, 683
– root, 683
– Schreier, 672
– spanning, 672
trigonometric polynomial, 372
trivial
– action, 54
– representation, 54
two-sided ideal, 215
type
– of a code, 16
– of an orbit, 172

unimodular, 574
uniqueness of finite fields, 149
unit
– generating, 269, 283
– sphere, 584
upper bound, 161
upstep, 703
(u | u + v)-construction, 100, 122
(u, v)-construction, 98
(u + w | v + w | u + v + w)-constr., 105

Vandermonde matrix, 134
variety, 229, 237
– consecutive, 238
– irreducible, 237

vector, 565
– �q-shortest, 567
– column, 565
– directly connected with itself, 465
– space,cyclic, 293
vectors
– connected, 465
– directly connected, 465
– orthogonal, 577
– proportional, 550
visible, 313
volume of a set, 574

weight, 15
– enumerator, 52, 757
– function, 56, 453
– – general, 455
– – multiplicative, 454
weighted enumeration, 454
word, 4, 178
– concatenation, 179
– empty, 179
– length, 179
– Lyndon, 179
– prefix, 179
– suffix, 179
wrap around burst, 401
wreath product, 34
– generalized, 533

X-construction, 104

Y1-construction, 103
Yellow Book, 435

Zassenhaus algorithm, 196
Zech logarithm, 203
zeta
– function
– – general, 165
– – number theoretic, 162
– matrix, 173, 628
Zolotarev, 576, 587

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

