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Summary. The curse of dimensionality is a well known but not entirely well-
understood phenomena. Too much data, in terms of the number of input variables,
is not always a good thing. This is especially true when the problem involves un-
supervised learning or supervised learning with unbalanced data (many negative
observations but minimal positive observations). This paper addresses two issues
involving high dimensional data: The first issue explores the behavior of kernels in
high dimensional data. It is shown that variance, especially when contributed by
meaningless noisy variables, confounds learning methods. The second part of this
paper illustrates methods to overcome dimensionality problems with unsupervised
learning utilizing subspace models. The modeling approach involves novelty detec-
tion with the one-class SVM.

1 Introduction

High dimensional data often create problems. This problem is exacerbated if
the training data is only one class, unknown classes, or significantly unbal-
anced classes. Consider a binary classification problem that involves computer
intrusion detection. Our intention is to classify network traffic, and we are in-
terested in classifying the traffic as either attacks (intruders) or non attacks.
Capturing network traffic is simple - hookup to a LAN cable, run tcpdump,
and you can fill a hard drive within minutes. These captured network con-
nections can be described with attributes; it is not uncommon for a network
connection to be described with over 100 attributes [14]. However, the class
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of each connection will be unknown, or perhaps with reasonable confidence
we can assume that all of the connections do not involve any attacks.

The above scenario can be generalized to other security problems as well.
Given a matrix of data, X, containing N observations and m attributes, we are
interested in classifying this data as either potential attackers (positive class)
or non attackers (negative class). If m is large, and our labels, y ∈ R

N×1,
are unbalanced (usually plenty of known non attackers and few instances of
attacks), one class (all non attackers), or unknown, increased dimensionality
rapidly becomes a problem and feature selection is not feasible due to the
minimal examples (if any) of the attacker class.

2 Recent Work

The primary model explored will be the one-class SVM. This is a novelty de-
tection algorithm originally proposed in [27]. The model is relatively simple
but a powerful method to detect novel events that occur after learning from
a training set of normal events. Formally stated, the one-class SVM considers
x1,x2, ...,xN ∈ X instances of training observations and utilizes the popu-
lar “kernel trick” to introduce a non linear mapping of xi → Φ(xi). Under
Mercer’s theorem, it is possible to evaluate the inner product of two feature
mappings, such as Φ(xi) and Φ(xj), without knowing the actually feature
mapping. This is possible because 〈Φ(xi), Φ(xj)〉 ≡ κ(xi,xj) [2]. Φ will be
considered a mapping into the feature space, F , from X .

The following minimization function attempts to squeeze R, which can be
thought of as the radius of a hypersphere, as small as possible in order to
fit all of the training samples. If a training sample will not fit, ζi is a slack
variable to allow for this. A free parameter, ν ∈ (0, 1), enables the modeler to
adjust the impact of the slack variables.

min
R∈R,ζ∈RN ,c∈F

R2 +
1

νN

∑

i

ζi (1)

subject to ‖ Φ(xi)− c ‖2≤ R2 + ζi, ζi ≥ 0 for i ∈ [N ]

The lagrangian dual of the one class SVM is shown below in equation 2.

max
α

∑

i

αiκ(xi,xi)−
∑

i,j

αiαjκ(xi,xj) (2)

subject to 0 ≤ αi ≤
1

vN
and

∑

i

αi = 1

Cristianini and Shawe-Taylor provide a detailed explanation of one-class
SVMs in [24]. Stolfo and Wang [25] successfully apply the one-class SVM to
the SEA dataset and compare it with several of the techniques mentioned
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above. Chen uses the one-class SVM for image retrieval [8]. Schölkopf et. al.
explore the above formulation of the one-class SVM and other formulations
in [23]. Fortunately there is also freely available software that implements the
one-class SVM, written in C++ by Chang and Lin [7].

The dimensionality problem faced by the one-class SVM has been men-
tioned in several papers, however it is typically a “future works” type of
discussion. Tax and Duin clearly mention that dimensionality is a problem
in [27], however they offer no suggestions to overcome this. Modeling in sub-
spaces, which is the proposed method to overcome this problem, is not an
altogether novel concept. In data mining, subspace modeling to overcome di-
mensionality is a popular approach. Aggarwal discusses this in [1]. Parsons et.
al. provide a survey of subspace clustering techniques in [21]. The curse of di-
mensionality is largely a function of class imbalance and our apriori knowledge
of the distribution of (x|y). This implies that the curse of dimensionality is a
problem that impacts unsupervised problems the most severely, and it is not
surprising that data mining clustering algorithms, an unsupervised method,
has come to realize the value of modeling in subspaces.

3 Analytical Investigation

3.1 The Curse of Dimensionality, Kernels, and Class Imbalance

Machine learning and data mining problems typically seek to show a degree
of similarity between observations, often as a distance metric. Beyer et. al.
discuss the problem of high dimensional data and distance metrics in [3], pre-
senting a probabilistic approach and illustrating that the maximally distant
point and minimally distant point converge in distance as dimensionality in-
creases. A problem with distance metrics in high dimensional space is that
distance is typically measured across volume. Volume increases exponentially
as dimensionality increases, and points tend to become equidistant. The curse
of dimensionality is explained with several artificial data problems in [15].

Kernel based pattern recognition, especially in the unsupervised domain, is
not entirely robust against high dimensional input spaces. A kernel is nothing
more than a similarity measure between two observations. Given two obser-
vations, x1 and x2, the kernel between these two points is represented as
κ(x1,x2). A large value for κ(x1,x2) indicates similar points, where smaller
values indicate dissimilar points. Typical kernels include the linear kernel,
κ(x1,x2) = 〈x1,x2〉, the polynomial kernel, κ(x1,x2) = (〈x1,x2〉 + 1)p, and
the popular gaussian kernel, κ(x1,x2) = e(−‖x1−x2‖/2σ2). As shown, these
kernels are all functions of inner products. If the variables within x1 and x2

are considered random variables, these kernels can be modeled as functions
of random variables. The fundamental premise of pattern recognition is the
following:
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(κ(x1,x2)|y1 = y2) > (κ(x1,x2)|y1 �= y2) (3)

If this premise is consistently true, good performance occurs. By model-
ing these kernels as functions of random variables, it can be shown that the
addition of noisy, meaningless input variables degrades performance and the
likelihood of the fundamental premise shown above.

In a classification problem, the curse of dimensionality is a function of
the degree of imbalance. If there are a small number of positive examples to
learn from, feature selection is possible but difficult. With unbalanced data,
significant evidence is required to illustrate that a feature is not meaningful. If
the problem is balanced, the burden is not as great. Features are much more
easily filtered and selected.

A simple explanation of this is to consider a two sample Kolmogorov test
[22]. This is a classical statistical test to determine whether or not two samples
come from the same distribution, and this test is general regardless of the
distribution. In classification models, a meaningful variable should behave
differently depending on the class, implying distributions that are not equal.
Stated in terms of distributions, if x is any variable taken from the space of all
variables in the dataset, (Fx(x)|y = 1) should not be equivalent to (Gx(x)|y =
−1). Fx(x) and Gx(x) simply represent the cumulative distribution functions
of (x|y = 1) and (x|y = −1), respectively. In order to apply the two sample
Kolmogorov test, the empirical distribution functions of Fx(x) and Gx(x)
must be calculated from a given sample, and these distribution functions will
be denoted as F ∗

N1
(x) and G∗

N2
(x). N1 will equate to the number of samples in

the minority class, and N2 equates to the number of samples in the majority
class. These empirical distribution functions are easily derived from the order
statistics of the given sample, which is shown in [22]. The Kolmogorov two
sample test states that if the supremum of the difference of these functions
exceeds a tabled critical value depending on the modeler’s choice of α(sum
of probabilities in two tails), then these two distributions are significantly
different. Stated formally, our hypothesis is that Fx(x) = Gx(x). We reject
this hypothesis with a confidence of (1− α) if equation 4 is true.

DN1,N2 = sup
−∞<x<∞

|F ∗
N1

(x)−G∗
N2

(x)| > DN1,N2,α (4)

For larger values of N1 and N2 (both N1 and N2 greater than 20) and
α = .05, we can consider equation 5 to illustrate an example. This equation
is found in the tables listed in [22]:

DN1,N2,α=.05 = 1.36
√

N1 + N2

N1N2
(5)

If N2 is fixed at 100, and N1 is considered the minority class, it is possible
to plot the relationship between m and the critical value necessary to reject
the hypothesis.
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Fig. 1. Plot of critical value for two sample Kolmogorov test with fixed N2, α = .05

Figure 1 illustrates the effect of class imbalance on feature selection. If the
classes are not balanced, as is the case when N1 = 20 and N2 = 100, there
is a large value required for DN1,N2 . It is also evident that if the classes were
more severely imbalanced, DN1,N2 would continue to grow exponentially. As
the classes balance, DN1,N2 and the critical value begins to approach a limit.
The point of this exercise was to show that the curse of dimensionality is a
function of the level of imbalance between the classes, and the two sample
Kolmogorov test provides a compact and statistically grounded explanation
for this.

3.2 Kernel Behavior in High Dimensional Input Space

An example is given in this section which illustrates the impact of dimension-
ality on linear kernels and gaussian kernels.

Consider two random vectors that will serve as artificial data for this
example.

x1 = (z1, z2, ..., zm), zi ∼ N(0, 1) i.i.d

x2 = (z1′ , z2′ , ..., zm′), zi′ ∼ N(0, 1) i.i.d

m′ = m, and let vi = zizi′

The expected value of vi is zero. vi is the product of two standard normal
random variables, which follows an interesting distribution discussed in [12].
The plot of this distribution is shown in figure 2.

increasing class balance
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Fig. 2. Plot of vi = zizi′

To find the expectation of a linear kernel, it is straightforward to see that
E(〈x,y〉) =

∑
i vi = E(z1z1′ + z2z2′ + ... + zmzm′) = 0. The variance of the

linear kernel can be found as follows:

fzi,zi′ (zi, zi′) is bivariate normal ⇒ fzi,zi′ (zi, zi′) =
1
2π

e
−(z2

i +z2
i′ )

2

fv(v) =
∫ ∞

−∞
fzi,zi′ (zi,

v

zi
)

1
|zi|

dzi

E(v) = 0⇒ variance = E(v2) =
∫ ∞

−∞
v2[fv(v)]∂v = 1

(verified by numerical integration)

Again considering the linear kernel as a function of random variables,
κ(x1,x2) = 〈x1,x2〉 =

∑m
i=1 vi is distributed with a mean of 0 and a variance

of
∑m

i=1 1 = m.
In classification problems, however, it is assumed that the distributions

of the variables for one class are not the same as the distributions of the
variables for the other class. Let us now consider v− as a product of dissimilar
distributions, and v+ as a product of similar distributions. Let v− = (zi −
1)(zi′ +1). v− will be distributed with a mean of µ− = E(zizi′−zi′ +zi−1) =
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−1, and a variance of 3 (verified through numerical integration). The linear
kernel of the dissimilar distributions can be expressed as:

κ(x1 − 1,x2 + 1) =
m∑

i=1

v−

This linear kernel is distributed with the following parameters:

mean− = mµ− = −m, variance = mσ2 = 3m

For the similar observations, let v+ = (zi + 1)(zi′ + 1) = (zi − 1)(z′i − 1).
The parameters of the kernel for the similar observations can be found in the
same manner. v+ is distributed with a mean of µ+ = E(zizi′ +zi′ +zi +1) = 1
and a variance of σ2 = 3. The linear kernel of the similar distributions can be
expressed as:

κ(x1 + 1,x2 + 1) =
m∑

i=1

v+

This kernel is distributed with the following parameters:

mean+ = mµ+ = m, variance = mσ2 = 3m

The means and variances of the distributions of the linear kernels are
easily tractable, and this is all the information that we need to analyze the
effect of dimensionality on these kernels. In the above example, the mean
of every variable for dissimilar observations differs by 2. This is consistent
for every variable. Obviously, no dataset is this clean, however there are still
interesting observations that can be made. Consider that rather than each
variable differing by 2, they differ by some value εi. If εi is a small value, or
even zero for some instances (which would be the case for pure noise), this
variable will contribute minimally in distinguishing similar from dissimilar
observations, and furthermore the variance of this variable will be entirely
contributed. Also notice that at the rate of 3m, variance grows large fast.

Based on this observation, an assertion is that for the binary classification
problem, bimodal variables are desirable. Each mode will correspond to either
the positive or negative class. Large deviations in these modes, with minimal
variation within a class, are also desired. An effective model must be able
to distinguish v− from v+. In order for this to occur, the model needs good
separation between mean− and mean+ and variance that is under control.

It is also interesting to explore the gaussian kernel under the same example.
For the gaussian kernel, κ(x1,y2) = e−‖x1−x2‖2/2σ2

. This kernel is entirely
dependent upon the behavior of ‖ x1 − x2 ‖2 and the modeler’s choice of the
parameter σ (which has no relation to variance).

Restricting our attention to ‖ x1 − x2 ‖2, an initial observation is that
this expression is nothing more than the euclidean distance squarred. Also, if

431



P.F. Evangelista et al.

x1 and x2 contain variables that are distributed ∼ N(0, 1), then (x1 − x2)
contains variables distributed normally with a mean of 0 and a variance of 2.

Let w = (zi − zi′)2, implying that w/2 is a chi-squarred distribution with
a mean of one (which will be annotated as χ2(1)). This also indicates that
w = 2χ2(1), indicating that w has a mean of 2 and a variance of 8 (verified
by numerical integration).

Therefore, ‖ x1 − x2 ‖2=
∑m

i=1 wi will have a distribution with a mean of
2m and a variance of 8m. Notice that the variance grows much faster under
this formulation, indicating even more sensitivity to noisy variables.

The purpose of the above example is to show how every variable added
will contribute to the overall behavior of the kernel. If the variable is mean-
ingful, the pattern contributed to the -1 class is not equivalent to the pattern
contributed to +1 class. The meaningfulness of the variable can also be con-
sidered in terms of cost and benefit. The benefit of including a variable in a
classification model is the contribution of the variable towards pushing mean−
away from mean+. The cost of including a variable involves the variance. This
variance will be included regardless of the significance of the benefit.

3.3 The Impact of Dimensionality on the One-Class SVM

In order to illustrate the impact of dimensionality on kernels and the one-
class SVM specifically, an experiment with artificial data was constructed.
This data models a simple pattern involving standard normal distributions
where the positive class and negative class have a difference of 2 between
their means. This model can be presented as follows:

x+1 = (z1 + 1, z2 + 1, z3, ..., zm), zi ∼ N(0, 1) i.i.d

x−1 = (z1′ − 1, z2′ − 1, z3′ ..., zm′), zi′ ∼ N(0, 1) i.i.d

The true pattern only lied in the first two variables. All remaining variables
were noise. Three types of kernels were examined: the linear kernel, polynomial
kernel, and gaussian kernel. Only the results from the gaussian kernel are
shown here, however degradation of performance occurred with all kernels.
The performance metric used was the area under the ROC curve (AUC).

The gaussian kernels in this experiment were tuned using an auto-tuning
method. Typically for gaussian kernels, a validation set of positive and neg-
ative labeled data is available for tuning σ. In unsupervised learning, these
examples of positive labeled data do not exist. Therefore, the best tuning pos-
sible is to achieve some variation in the values of the kernel without values
concentrated on either extreme. If σ is too large, all of the values will tend
towards 1. If too small, they tend to 0. The auto tuning function ensures that
the off-diagonal values for κ(x+1,x−1) average between .4 and .6, with a min
value greater than .2.
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Table 1. One Class SVM (gaussian kernel) experiment for various dimensions on
artificial data

Dimensions AUC R2

2 0.9201 0.5149

5 0.8978 0.4665

10 0.8234 0.4356

50 0.7154 0.3306

100 0.6409 0.5234

250 0.6189 0.4159

500 0.5523 0.6466

1000 0.5209 0.4059

4 A Framework to Overcome High Dimensionality

A novel framework for unsupervised learning, or anomaly detection, has been
investigated to solve unsupervised learning problems of high dimension [10,11].
This technique is designed for unsupervised models, however the fusion of
model output applies to any type of classifier that produces a soft (real valued)
output. This framework involves exploring subspaces of the data, training
a separate model for each subspace, and then fusing the decision variables
produced by the test data for each subspace. Intelligent subspace selection
has also been introduced within this framework.

Combinations of multiple classifiers, or ensemble techniques, is a very ac-
tive field of research today. However, the field remains relatively loosely struc-
tured as researchers continue to build the theory supporting the principles of
classifier combinations [18]. Significant work in this field has been contributed
by Kuncheva in [16–19]. Bonissone et. al. investigated the effect of different
fuzzy logic triangular norms based upon the correlation of decision values from
multiple classifiers [4]. The majority of work in this field has been devoted to
supervised learning, with less effort addressing unsupervised problems [26].
The research that does address unsupervised ensembles involves clustering
almost entirely. There is a vast amount of literature that discusses subspace
clustering algorithms [21]. The recent work that appears similar in motivation
to our technique include Yang et. al. who develop a subspace clustering model
based upon Pearson’s R correlation [28], and Ma and Perkins who utilize the
one-class SVM for time series prediction and combine results from intermedi-
ate phase spaces [20]. The work in this paper has also been inspired by Ho’s
Random Subspace Methods in [13]. Ho’s method randomly selects subspaces
and constructs a decision tree for each subspace; trees are then aggregated
in the end by taking the mean. Breiman’s work with bagging [5] and ran-
dom forests [6] was also a significant contribution in motivating this work.
Breiman’s bagging technique involves bootstrap sampling from a training set
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and creating a decision tree for each sample. Breiman also uses the mean as
the aggregator. The random forest technique explores decision tree ensembles
from random subsets of features, similar to Ho’s method.

Fig. 3. A sketch of subspace modeling to seek synergistic results.

Fig. 4. Aggregation operators

The technique we propose illustrates that unsupervised learning in sub-
spaces of high dimensional data will typically outperform unsupervised learn-
ing in the high dimensional data space as a whole. Furthermore, the following
hypotheses show exceptional promise based on initial empirical results:

1. Intelligent subspace modeling will provide further improvement of de-
tection beyond a random selection of subspaces.

2. Fuzzy logic aggregation techniques create the fuzzy ROC curve, illus-
trating improved AUC by selecting proper aggregation techniques.

Promising results from this approach have been published in [10, 11]. As
previously discussed, aggregation of models with fuzzy logic aggregators is an
important aspect. Given unbalanced data (minority positive class), it has been
observed that fusion with T-norms behaves well and improves performance.
Figure 4 illustrates the spectrum of fuzzy logic aggregators.

The results shown in table 2 and figure 5 illustrate the improvements
obtained through our ensemble techniques for unsupervised learning. The plot
of the ROC curves shows the results from using 26 original variables that
represented the Schonlau et. al. (SEA) data [9] as one group of variables with
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the one-class SVM and the result of creating 3 subspaces of features and fusing
the results to create the fuzzy ROC curve. It is interesting to notice in the table
of results that nearly every aggregation technique demonstrated improvement,
especially in the SEA data, with the most significant improvement in the T-
norms.

Table 2. Results of SEA data with diverse and non-diverse subsets

SEA data Ionosphere data

Base AUC (using all vari-
ables)

.7835 .931

T-norms

minimum .90 .96

algebraic product .91 .61

T-conorms

maximum .84 .69

algebraic sum .89 .69

Fig. 5. ROC for SEA data using algebraic product with contention

The ionosphere data is available from the UCI repository, and it consists of
34 variables that represent different radar signals received while investigating
the ionosphere for either good or bad structure. For this experiment we again
chose l = 3.
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Fig. 6. ROC plot for ionosphere data with minimize aggregation technique

5 Discussion and Conclusion

There were two components to the research presented in this paper. The first
component involved exposing the impact of the curse of dimensionality with
kernel methods. This involved illustrating that more is not always better in
terms of variables, but more importantly that the impact of the curse of di-
mensionality grows as class imbalance becomes more severe. Kernel methods
are not immune to problems involving high dimensional data, and these prob-
lems need to be understood and managed.

The second component of this research involved the discussion and brief
illustration of a proposed framework for unsupervised modeling in subspaces.
Unsupervised learning, especially novelty detection, has important applica-
tions in the security domain. This applies especially to computer and network
security. Future directions for this research include exposing the theoretical
foundations of unsupervised ensemble methods and exploration of other en-
sembles for the unbalanced classification problem.
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