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Abstract. This paper presents the designing steps and simulation 

results of a pulse classification system for the ECDM process 

using artificial neural networks (ANN). An Electro Discharge 

Machining (EDM) machine was modified by incorporating an 

electrolyte system and by modifying the control system. Gap 

voltage and working current waveforms were obtained. By 

observing the waveforms, pulses were classified into five groups. 

A feed forward neural network was trained to classify pulses. 

Various neural network architectures were considered by changing 

the number of neurons in the hidden layer. The trained neural 

networks were simulated. A quantitative analysis was performed to 

evaluate various neural network architectures. 
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1 Introduction 

Electro Chemical Discharge Machining (ECDM) is a hybrid non-conventional 

manufacturing process which combines the features of Electro Chemical 

Machining (ECM) and Electro Discharge Machining (EDM) (Mediliyegedara et 

al. 2004). The ECDM process consists of a cathodic tool and an anodic workpiece, 

which are separated by a gap filled with electrolyte, and pulsed DC power applied 



between them. This leads to electrical discharges between the electrodes, thus 

achieving both electrochemical dissolution and electro-discharge erosion of the 

workpiece (De Silva et al. 1995). One of the major advantages of ECDM, over 

ECM or EDM, is that the combined metal removal mechanisms in ECDM, yields 

a much higher machining rate (De Silva, 1988).

The performance of ECDM, in terms of surface finish and rate of machining, is 

affected by many factors. Relationships between these factors and machining 

performance are highly non linear and complex in nature. Therefore, it is very 

difficult to develop a relationship between those factors and the machining 

performance with conventional mathematical modelling. This fact makes it very 

hard to formulate control strategies for the process control of ECDM 

(Mediliyegedara et al. 2004). Pulse classification plays a vital role in the 

formulation of control strategies. Strategies for pulse classification in EDM have 

been studied in the past but there remains a need for an effective and efficient 

pulse classification system for ECDM.

Tasi and Wang (2001) have utilised ANNs to model the metal removal rate in 

electro-discharge machining. Both Liu and Tarng (1997) and Kao and Tarng 

(1997) employed feed-forward neural networks for the on-line recognition of 

pulse types in the EDM process. Based on their results, discharge pulses were 

identified and then employed for controlling the EDM process. Pajak and 

Wieczorowski (1998) have employed unidirectional multilayer neural networks 

for the classification of discharges in Electro Contact Discharge Machining. They 

classified these electrical discharges into three groups such as “simple electric 

discharges”, “multiple electric discharges” and “continuous electrical discharges”. 

Mean current intensity and value of the amplitude harmonic spectrum of the 

current intensity were utilised as inputs for the neural network.

Without an efficient pulse classification system, there are many drawbacks in 

the ECDM process. Firstly, a distortion of the workpiece surface can result due to 

overheating. This distortion leads to a poor surface quality. Secondly, the rate of 

metal removal will reduce due to the enlarging of the machining gap, because of 

any inefficiency in the pulse classification system, the control algorithm will make 

a wrong decision leading to a larger machining gap. Therefore, pulse classification 

plays a vital role in the formulation of control strategies. Thus, an intelligent pulse 

classification system for ECDM is a useful research approach to pursue. 

2 Pulse Types in the ECDM Process 

It is possible to identify five distinct types of pulses in the ECDM process such as 

Electro Chemical Pulse (ECP), Electro Chemical Discharge Pulse (ECDP), Spark
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Pulse (SP), Arc Pulse (AP) and Short Circuit Pulse (SCP). SP and AP are also 

known as Normal Discharge Pulse and Abnormal Discharge Pulse respectively. 

Open Circuit Pulse (OCP) is not present in ECDM as some electrochemical 

current flows even with a larger gap  (De Silva et al. 1995).  De Silva (1988) has 

presented a detailed analysis of various pulses in ECDM.

3 Experimental Setup 

An EDM machine was modified by incorporating an electrolyte system and 

changing the control system. NaNO3 was used as the electrolyte (Figure 1). A 

mild steel work piece and copper electrode were used. The duty ratio and pulse 

duration were set to be 50% and 100µs respectively. The above mentioned five 

types of pulses were acquired using a storage oscilloscope at a sampling frequency 

of 1 MHz. The MATLAB 6 software package was used to model and to simulate 

the Pulse Classification System (PCS). 

Figure 1: A schematic diagram of the experimental set-up 

4 Designing of the Classification System 

When an ANN is used for the pulse classification it necessary to identify the most 

appropriate neural network architecture. As far as real time implementation is 

concerned, there are many important parameters that must be investigated. Firstly, 

a suitable neural network architecture must be identified. Secondly, one has to 

identify the features that can be effectively used to classify pulses. Thirdly, it is 

necessary to prepare a suitable training data set and a test data set. Fourthly, the 
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optimum number of layers and the number of neurons in the each layer has to be 

decided. Fifthly, it is necessary to investigate an activation function that is easy to 

implement, while providing acceptable classification accuracy. Finally, a training 

algorithm, which provides efficient training, has to be identified. In this particular 

application, training can be performed offline at the designing phase. Therefore 

this application does not demand an investigation of efficient training algorithms. 

4.1 Neural Network Architecture 

In the past, researches have found that the feed-forward neural network 

architecture will provide the better performance in the pulse classification of EDM 

process (Liu and Tarng, 1997 and Kao and Tarng, 1997). Therefore, It is decided 

to use a feed-forward ANN classify pulses in the ECDM process. One of the most 

widely used artificial neural networks is the feed-forward neural network 

architecture also known as Multi-Layered Perception (MLP) (Bermak and 

Bouzerdoum, 2002). The popularity of the MLP architecture stems from the 

existence of efficient training techniques based on the back-propagation 

algorithm. In a feed-forward architecture the information propagates from the 

input to the output in a feed-forward manner, passing through intermediate 

processing layers called hidden layers. A feed-forward architecture may contains 

one or more hidden layers. Each hidden layer comprises processing elements, or 

neurons that receive inputs only from the neurons in the preceding layer; there is 

no information flow between neurons residing in the same layer. The general 

architecture of the MLP neural network is shown in Figure 2. 

4.2 Feature Extraction 

Four different features were considered when classifying pulses such as Peak 

Voltage (PV), Average Voltage (AV), Peak Current (PC) and Average Current 

(AC). Since the four features are used as inputs, four neurons are used in the input 

layer such as I1, I2, I3 and I4. Similarly, since there are five distinct types of pulses, 

five output neurons are used in the output layer such as O1, O2, O3, O4 and O5.
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Figure 2: The general architecture of the MLP neural network 

4.3 The Preparation of a Training Data Set and a Test Data 

Set

One hundred pulses were selected from each pulse type and the following values 

were calculated, Peak Voltage (PV), Average Voltage (AV), Peak Current (PC) 

and Average Current (AC). PV, AV, PC and AC were used as the features (inputs) 

in the ANN. Outputs of the ANN were prepared as follows. If a pulse belongs to 

ECP, ‘1’ is assigned to the ECP and ‘0’ is assigned to the other pulses.  Similarly, 

‘ones’ and ‘zeros’ are assigned to all the pulse types to prepare an output matrix. 

The data set was divided into two sets, the training data set and the test data set. 

The training data set and the test data set consist of 70 and 30 data points 

respectively for one type of pulses. Therefore, altogether the training data set and 

the test data set consist of 350 and 150 data points.

4.4 Number of Layers and Number of Neurons in Each Layer 

In real time implementation point of view, the lesser the number of layers the 

lesser the calculation cycle time. Therefore a FFNN with a one hidden layer was 

considered in this study. There are four inputs in the input layer. PV, AV, PC and 
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AC were used as the inputs. There are five outputs such as ECP, ECDP, SP, AP 

and SCP. Now, one has to investigate the optimum number of neurons in the 

hidden layer and the best activation function having less complexity. Logistic 

Sigmoid Function (LOGSIG) activation function was used in each neuron. 

5 Definition of Classification Accuracy 

It is necessary to have a method to measure the performance of a PCS to 

investigate the most suitable neural network architecture. Classification Accuracy 

(CA) is introduced to compare the performance of the PCS One can define 

classification accuracy of the PCS as the average CA of each type of pulses.  In 

general, the CA of a ‘X’ type pulse can be defined as follows.

   (1)  

Where,

xi - Simulated output value from ‘X’ output for ith pulse when the input values

correspond to  ‘X ’ type pulses, 

yi - Simulated output value from all other outputs for the ith pulse when the

input

correspond to ‘X’ type pulses, 

nx -     Number of ‘X’ type of pulses, 

ny  -    Number of all other type of pulses (Since there are 150 data points in test  

data set, ny = 150-nx)

      

6 Simulated Results 

The simulated results, which are shown in the following Figures, are 

corresponding to a trained ANN having six neurons in the hidden layer (i.e. N=6).  

The test data set as outlined in section 4.3, consisted of 150 data points, 30 of each 

of the five types of pulse. Vertical axes (Y) of the following graphs indicate the 

output values of the neural network. In the ideal situation, if a pulse is an ECP, 

then the output value from node O1 should be equal to ‘1’. Other output values 

(O2, O3, O4 and O5) should be equal to ‘0’.
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Figure 3 shows the output O1 is nearly equal to ‘1’, for the first 30 pulses. 

That means the first 30 pulses have been classified as ECP by the ANN. Similarly 

Figure 4, Figure 5, Figure 6 and Figure 7 show the output values from node O2,

O3, O4 and O5.

Figure 3: Simulated 

Output from Node O1

Figure 4: Simulated 

Output from Node O2

Figure 6: Simulated 

Output from Node O4

Figure 5: Simulated Output 

from Node O3
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7 Classification Accuracy  

The CA of the each type was calculated using equation (1). Table 1 shows the 

classification accuracies for the five different pulse types mentioned above. The 

overall classification accuracy of the proposed neural network is 91%. 

Table 1: Classification accuracies 

8 Process Control System 

It can be observed that the various machining performances can be obtained by 

maintaining the proper percentages of the above mentioned pulse types. ECDPs 

and SPs are more favourable for fast metal removal rates whereas ECPs are more 

favourable for higher surface finish. However, APs and SCPs must be avoided, 

since they damage the work surface. Percentages of each type of pulses can be 

used to estimate the gap condition. The estimated gap condition can then be used 

Pulse Type Classification Accuracy 

              (%) 

EC P              90.24 

ECDP              88.05 

SP              92.93 

AP              89.31 

SCP              95.43 

Average              91.19 

Figure 7: Simulated Output 

from Node O5
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as a feedback signal in the process control system. An algorithm must be 

developed to estimate the gap condition from the percentages of the pulse types.

9 Conclusions 

In this paper, an ANN model for pulse classification in the ECDM process has 

been established and analysed based on the ECDM process variables. Designing 

stages such as feature extraction, preparation of training and test data set, selection 

of number of layers and number of neurons in the neural network and selection of 

activation function were described. Four features such as PV, AV, PC and AC 

were used successfully for the classification of pulses in the ECDM process. 

Classification accuracy has been defined to measure the accuracy of a pulse 

classification system. Simulation results showed that the feed forward network 

with six neurons in the hidden layer could be successfully used in pulse 

classification of the ECDM process.
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