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Summary. Parallel mesh generation is a relatively new research area between the boundaries
of two scientific computing disciplines: computational geometry and parallel computing. In
this chapter we present a survey of parallel unstructured mesh generation methods. Parallel
mesh generation methods decompose the original mesh generation problem into smaller sub-
problems which are meshed in parallel. We organize the parallel mesh generation methods
in terms of two basic attributes: (1) the sequential technique used for meshing the individual
subproblems and (2) the degree of coupling between the subproblems. This survey shows that
without compromising in the stability of parallel mesh generation methods it is possible to de-
velop parallel meshing software using off-the-shelf sequential meshing codes. However, more
research is required for the efficient use of the state-of-the-art codes which can scale from
emerging chip multiprocessors (CMPs) to clusters built from CMPs.

7.1 Introduction

This chapter presents a survey of parallel unstructured mesh generation methods
based on three widely used techniques: Delaunay [39], Advancing Front [66], and
Edge Subdivision [59]. Parallel methods for quadrilateral [6] and hexahedral [54]
mesh generation as well as block structured [93, 20, 90] and structured adaptive
mesh refinement [1] methods are not reviewed in this chapter.

Parallel mesh generation procedures in general decompose the original 2-dimen-
sional (2D) or 3-dimensional (3D) mesh generation problem into Ns smaller sub-
problems which are solved (i.e., meshed) concurrently using P processors. The sub-
problems can be formulated to be either tightly coupled [60, 56, 78], partially cou-
pled [55, 31, 19] or even decoupled [38, 79, 52]. The coupling of the subproblems
determines the intensity of the communication and the amount/type of synchroniza-
tion required between the subproblems.

The challenges in parallel mesh generation methods are: to maintain stability of
the parallel mesher (i.e., retain the quality of finite elements generated by state-of-
the-art sequential codes) and at the same time achieve 100% code re-use (i.e., lever-
age the continuously evolving and fully functional off-the-shelf sequential mesh-



238 N. Chrisochoides

ers) without substantial deterioration of the scalability of the parallel mesher. In this
chapter we review parallel mesh generation methods having in mind these three re-
quirements.

We build on top of previous work [30, 39] where parallel mesh generation meth-
ods are classified in terms of the way and the order the artificial boundary surfaces
(interfaces) of the subproblems are meshed. Specifically, in [31, 39] existing parallel
methods are classified in three categories: (i) methods that first mesh (either in par-
allel [55] or sequentially [79]) the interfaces of the subproblems and then mesh in
parallel the individual subproblems, (ii) methods that first solve the meshing problem
in each of the subproblems in parallel and then mesh the interfaces so that the global
mesh is conforming [36], and (iii) methods that simultaneously mesh and improve
the interfaces as they mesh the individual subproblems [25, 19, 26].

In this chapter we organize the parallel mesh generation methods in terms of
two basic attributes. First, the sequential technique used for meshing the individual
subproblems: (1) Delaunay, (2) Advancing Front, and (3) Edge Subdivision. Second,
the degree of coupling between the subproblems: (a) tightly-coupled, (b) partially-
coupled, and (c) decoupled methods.

7.2 Domain Decomposition Approaches

Parallel mesh generation methods use a sequential pre-processing step for the data
partitioning problem with the exception of [47, 48]. The data are partitioned using
either the continuous domain which is decomposed into subdomains (see Figure 7.1,
left) or a discrete approximation (i.e., an initial coarser mesh) of the domain which is
decomposed into submeshes (see Figure 7.1, right). The internal boundaries between
the subdomains or submeshes (Si) are called interfaces or separators (∂Si). In both
cases the number of generated subdomains or submeshes (Ns) can be significantly
greater than the number of processors P (over-decomposition). Over-decomposition
was introduced in parallel computing in mid 80s. It is used to hide communication
latency in message passing [50] and to mask information dissemination, decision
making and data migration costs in dynamic load balancing [21].

The domain decomposition (DD) problem in parallel mesh generation is defined
as follows:

lfs(Ω) ≤ lfs(Si) i = 1, Ns (7.1)

min
i=1,Ns

|∂Si|
|Si|

(7.2)

∂Si form “good” angles between each other and the boundary ∂Ω. (7.3)

where lfs(Ω) and lfs(Si) are the local feature size [85] of the original domain Ω
and the subdomains (or submeshes) Si, respectively. The |∂Si| denotes the length (in
2D) and surface (in 3D) of the interfaces while the |Si| denotes the area (in 2D) and
volume (in 3D) of the subdomains (or submeshes) Si.
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DD of continuous geometry DD of discrete geometry

Fig. 7.1. Domain decomposition of the continuous geometry [52] and the discrete geome-
try [17] of a cross section of a rocket pipe. (For the color version, see Figure A.17 on page
474).

Continuous Domain Decomposition

The continuous domain decomposition methods partition the region Ω into subdo-
mains Ωi, i = 1, Ns. There are two types of continuous DD methods. The first and
most popular approach is based on quadtree/octree methods [31, 56, 58]. The octree
methods utilize an octree structure for the decomposition of Ω into blocks (octants).
The octants along with a description of the external boundary ∂Ω define the subdo-
mains. Another class of continuous DD methods [52] is based on auxiliary structures
like the Medial Axis [9, 68, 91] so that the subdomains Ωi have no new features like
small angles between the separators and the separators and external boundary [52].

Continuous DD approaches are attractive because they refine the individual sub-
domains by re-using existing well tested and fine-tuned sequential codes on each
subdomain independently. However, independence in mesh refinement and high code
re-use in some cases come at a price. The polyhedral surfaces which arise due to the
decomposition of the initial mesh impose additional constraints on the execution of
sequential meshing algorithms in each of the subdomains. Poorly generated inter-
face surfaces can affect the termination of meshing algorithms and the quality of the
elements. Moreover, the artificially imposed interfaces can affect the mesh gradation.

Discrete Domain Decomposition

The Discrete DD methods partition an initial coarse mesh (usually a boundary con-
forming mesh), D into a number of simply-connected submeshes Di, i = 1, Ns
while they try to minimize the surface-to-volume ratio for each of the submeshes.
Usually a coarse mesh is generated on a high-performance workstation using se-
quential mesh generators. The partitioning of a coarse mesh is performed either se-
quentially or in parallel using generic graph partitioning libraries like Metis/Parallel
Metis [80] and Chaco [42]. Also, there are mesh partitioning libraries like Domain
Decomposer [22, 23], Zoltan [33], Drama [3], Plum [64], and Jove [87] (to mention
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Mi Mesh Point Insertion & Computation of Bi New Mesh Mi+1

Computation of Ci

Fig. 7.2. Bowyer-Watson kernel starts with a mesh Mi (left), computes the cavity (center
left) of a newly inserted point, triangulates the cavity (center right) and updates the mesh into
Mi+1 (right).

a few) which extend and customize the generic data partitioning techniques for FEM
calculations.

7.3 Parallel Mesh Generation Methods

In this section we review parallel mesh generation methods which are based on De-
launay triangulation in Section 7.3.1, Advancing Front Technique in Section 7.3.2,
and Edge Subdivision methods in Section 7.3.3.

7.3.1 Delaunay Based Methods

There are many approaches to generate Delaunay meshes [39], we focus on meth-
ods based on Bowyer-Watson [10, 96] kernel which can lead to: (1) more efficient
parallel implementations due to easier optimizations for improving data locality and
(2) simpler and more efficient data structures. The Bowyer-Watson (BW) kernel is
described in Figure 7.2 and the loop bellow:

Algorithm 1 (BW(Mo, p1, ..., pn)).

1. Input: Mesh Mo an initial mesh and a set of n points
2. for i = 1, n
3. Compute the cavity of Ci of the point pi
4. Compute the ball Bi of point pi
5. Mi+1 = Mi − Ci +Bi
6. endfor
7. Output: A new mesh M = Mn+1

where the cavity C of a point p is defined as the set of all triangles whose circumcircle
includes p; the ball B of a point p is defined as set of new triangles defined by the
point p and the vertices of the boundary of its cavity [39].
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Fig. 7.3. (a) Intersection of two cavities and (b) two cavities share an edge; solid lines repre-
sent the edges of the initial triangulation, and dashed lines edges created by the insertion of
p8, p9, and p10.

The challenge, for parallel mesh generation methods based on the BW kernel,
is to maintain the following loop invariant: Mi is conformal and Delaunay, for i =
1, n. Figure 7.3 depicts two cases where the concurrent point insertion violates the
loop invariant. First, the cavities intersect i.e., there is a triangle �p3p6p7 ∈ C(p8)
∩ C(p9), then concurrent insertion of p8 and p9 results in a non-conformal mesh.
Second, the cavities share an edge in 2D (or a face in 3D), an edge p3p6 is shared
by C(p8) = {�p1p2p7, �p2p3p7, �p3p6p7} and C(p10) = {�p3p5p6, �p3p4p5},
then the new triangle�p3p10p6 can have point p8 inside its circircle, thus, violating
the Delaunay property.

The focus of this section is on parallel mesh generation methods that address this
challenge. There is a number of parallel Delaunay and triangulation methods like
the MIMD method in [92] and the HPF implementation in [14] which target parallel
programming paradigms no longer in use for practical purposes. Other methods [27,
62, 63, 41] also contributed in shaping up this author’s directions and work in parallel
mesh generation and implicitly contribute in this chapter.

In [7] the authors describe a divide-and-conquer projection-based algorithm for
constructing in parallel 2D Delaunay triangulations of a set of given points. The
method extends to 3D, but its implementation is quite complex. The goal in parallel
mesh generation, though, is to refine an existing mesh by inserting new points i.e.,
the set of points in the final mesh is not known in advance.

In [46, 48] the authors extended [7] for parallel 2D mesh generation which further
eliminates the sequential step for an initial mesh, but does not address the issue of
code re-use. The method in [46, 48] is partially coupled.

In [35] the authors define the points x and y as independent if the closures of
their prestars (or cavities) are disjoint. The approach in [35] does not provide a way
to schedule the concurrent insertion of points whose cavity closures are disjoint.

In [88] the authors presented the first theoretical analysis of the complexity of
parallel Delaunay refinement algorithms. However, the assumption in [88] is that the
global mesh is completely retriangulated each time a set of independent points is
inserted. In [89] the authors developed a more practical algorithm.
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In the rest of this section we describe five different practical (i.e., they have been
implemented) parallel Delaunay mesh generation methods. These methods formulate
the subproblems to be: (1) tightly coupled, (2) decoupled, and (3) partially coupled.

Tightly Coupled Methods

A straight forward approach to parallel computing is based on identifying some par-
tial order among the computations of well understood and successful sequential ker-
nels and then in a brute-force fashion use message passing or threads to implement
the computations on distributed and shared memory parallel machines, respectively.
This approach leads to the tightly coupled method presented in [60] for parallel guar-
anteed quality Delaunay mesh generation.

Parallel Optimistic Delaunay Meshing (PODM) Method

In [60] the authors presented the first provable 3D parallel guaranteed quality De-
launay mesh generation method for polyhedral domains. PODM is based on discrete
domain decomposition, but it is not constrained by the interfaces of the submeshes.
The algorithm guarantees the stability by simultaneously re-partitioning and refining
the interface surfaces and volume of the submeshes [26] —refinement due to a point
insertion might extend across subproblem (or submesh) boundaries. The extension
of a cavity beyond the interfaces is a source of intensive communication. However,
PODM can tolerate most of the communication by concurrently refining other re-
gions of the submeshes while it waits for remote data to arrive. Unfortunately, the
concurrent refinement can create a number of inconsistencies in the mesh (see Fig-
ure 7.3). These inconsistencies are resolved at the cost of setbacks (or rollbacks [44])
and thus we call this method Parallel Optimistic Delaunay Meshing method. Set-
backs is a source of major algorithm and code re-structuring (due to overlapping
cavities) and they lead to zero code re-use. Unfortunately, the overlapping of the cav-
ities becomes even more complex when they are near the external boundary, where
a certain order of inserted points needs to be maintained due to encroachment rules
that are used to maintain and prove the quality of the elements and thus satisfy the
stability requirement.

Figure 7.4a depicts a cavity which extends beyond the submesh interfaces (be-
cause two of the cavity BHGFAC triangles t ∈ M1 and t∗ ∈ M2 are non-local to
submesh M0) in order to guarantee the quality of the mesh. The extension of the
cavity beyond the interfaces is a source of intensive communication. However, as
Figure 7.4b shows PODM can tolerate the communication by concurrently refining
other regions (e.g. compute a new cavity ABCDE) of the submeshes while it waits
for remote data (e.g. the partially completed cavity BCAF) to arrive (eg. rest of the
cavity BFGH). Unfortunately, the concurrent refinement can lead the violation of
the loop invariant by creating non-conforming meshes and/or the violation of the
Delaunay property as is the case in Figure 7.4a where the point Pj is within the cir-
cumcenter of�PlCA which is a newly created triangle from the triangulation of the
cavity (BHGFAC) that corresponds to the point P1. These violations are resolved at
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Fig. 7.4. a) cavity extension beyond submesh interfaces, b) time diagram with concurrent
point insertion, c) a breakdown of execution time for PODM, and finally d) the refinement of
a cavity with simultaneous distribution of the newly created elements. (For the color version,
see Figure A.18 on page 475).

the cost of setbacks and frequent message polling shown in the performance graph
of Figure 7.4c. With some additional communication cost the PODM becomes do-
main decomposition independent and moreover re-distributes new elements as they
are generated (Figure 7.4d).

In summary, PODM does not depend on good domain decompositions before,
during and after parallel meshing at the cost of being labor intensive approach.
PODM is a stable and tightly coupled method, with zero code re-use.

Decoupled Methods

In [38, 52] the authors present two approaches which achieve 100% code re-use and
eliminate communication and synchronization. Both approaches rely on continuous
domain decomposition and decouple the individual subdomains (subproblems) so
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Fig. 7.5. The circumcenter of the face �PQR lies on the plane Π which helps define a
separator SΠ . Note that�PQR ∈ SΠ .

that they can be meshed independently. Earlier, in [8] the authors presented similar
approach for the parallel triangulation of a set of fixed points.

Parallel Projective Delaunay Meshing

The Parallel Projective Delaunay Meshing (P 2DM ) method [38] starts by sequen-
tially meshing the external surfaces of the geometry and by pre-computing domain
separators whose facets are Delaunay-admissible (i.e., the precomputed interface
faces of the separators will appear in the final Delaunay mesh). The separators de-
compose the continuous domain into subdomains which are meshed in parallel using
a sequential Delaunay mesh generation method on each of the processors.

The basic idea for computing Delaunay-admissible separators can be explained
easier in the context of the parallel triangulation of a convex hull for a set of points
S ∈ R3 [36, 30]. The convex hull of a set of points S is decomposed in two subdo-
mains by computing a Delaunay admissible separator as follows: First, the position
of a surface (in practice a planeΠ) is computed using an Inertia Axis Decomposition
method [33]. The plane Π decomposes the convex hull of S into two almost equal
pieces (in terms of points). Then the algorithm finds all faces (P,Q,R) ∈ R3 (see
Figure 7.5) for which there is an empty sphere whose center lies on the plane Π and
passes through the points P,Q,R. These faces constitute a polyhedral separator SΠ
which decomposes the domain into two subdomains assuming that the correspond-
ing tetrahedra PQRX and PQRY contain the centers of their respective circumscribed
spheres i.e., the quality of the initial mesh around the separators is very good which
requires substantial refinement around the separators. In [38] it is shown that the
faces of the polyhedral separator SΠ will appear in the final Delaunay triangulation
of the convex hull. The generalization of the idea to complex geometries is possible,
however it is much more difficult and it is explained in [38].

It is possible that the pre-constructed separators can not be Delaunay-admissible
[38] and the whole process has to start from the beginning. This is a very difficult
problem which for 2D has been solved in [52] using a different approach.
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(a) (b) (c) (d)

Fig. 7.6. The Medial Axis Transformation (a) which in turn is used to achieve high quality
domain decomposition (b). For PD3 the interfaces of the subdomains are refined (c) in a pre-
processing step in order to decouple the subdomains which are refined independently (d).

Parallel Delaunay Domain Decoupling PD3 Method

The PD3 method [52] like P 2DM is based on continuous domain decomposition.
PD3, for the domain decomposition of 2D geometries, uses medial axis of the domain
and relies on the following simple geometric property [52]:

Lemma 1. LetMA(Ω) be the medial axis ofΩ and b a contact point of c ∈MA(Ω).
The angles formed by the segment cb and the tangent of the boundary ∂Ω at b are at
least π/2.

The medial axis of a domainΩ is approximated by Voronoi points of a discretiza-
tion of the domain. Figure 7.6a depicts the medial axis approximation and a 8-way
partition (b) for the same geometry. The level of the discretization of the boundary
determines the quality of the approximation of the medial axis. However, the goal
in [52] is not to approximate accurately the medial axis, but to obtain good angles
from the separator. Therefore, the criteria for the discretization of the domain are
determined from the quality of the angles formed between the separators and the
external boundary of the domain [53].

After the decomposition of the domain (see Figure 7.6b), PD3 constructs a
“zone” around the interfaces of the submeshes. The “zone” consist of the union
of all diametral circles of the interface edges (see Figure 7.6c). The interfaces of
the subdomains are refined using the lfs of the original domain. This leads into
an overrefinement of the final distributed mesh. Experimental data from PD3 (see
Table 7.1) suggest that the overrefinement is not as high as one could expect. How-
ever, the authors of [52] are working on a new approach which will use adaptive do-
main decomposition [53] and different lfs for different interfaces of the subdomains.
This method is expected to reduce overrefinement of the interfaces and produce well
graded meshes [51].

In [52] the authors prove that sequential Delaunay meshers will not insert any
new points within a zone around the subdomain interfaces i.e., the sequential De-
launay meshing on the individual submeshes can terminate without inserting any
new points on the interfaces and thus eliminate communication and modifications
of the sequential codes. This way, the problem of parallel meshing is reduced into a
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Table 7.1. Overrefinement data as we increase the number of subdomains for the decomposi-
tion of a cross section of a rocket pipe model.

Subs 1 16 32 64 128
Elms : 21,016,403 21,016,857 21,018,522 21,030,711 21,044,689

ORef.Elms/Sub 0 28 66 379 299

“proper” domain decomposition and a discretization of interfaces. However, the con-
struction of decompositions that can decouple the mesh is a challenging problem,
since its solution is based on medial axis which is very expensive and difficult to
construct (even to approximate) for complex 3-dimensional geometries [40, 83, 29].

Partially Coupled Methods

The parallel tightly-coupled and decoupled methods we have seen so far address
some of the parallel mesh generation requirements we described in Section 7.1. For
example, PODM is a 3D stable and domain decomposition independent, but it is
zero code re-use with high communication method; while P 2DM and PD3 address
the code re-use and communication issues, but their applicability in 3D is limited
by the Delaunay-admissible and domain decomposition problem, respectively. In the
rest of this section we present two partially coupled methods that make an attempt
to balance trade-offs between all three requirements and the domain decomposition
problem at the cost of some communication.

Parallel Constrained Delaunay Meshing (PCDM) Method

In order to address the communication and synchronization problem in [19], the
authors developed the PCDM which is asynchronous and can reduce the variable
and unpredictable communication patterns to irregular but bulk communication.

The PCDM [19] is based on the Constrained Delaunay Triangulation [18] and
a discrete DD method. Each submesh is treated as an independent mesh defined
by external boundary (if any) and/or constrained edges which are the edges of the
interfaces between any pair of adjacent submeshes.

Intuitively, the constrained Delaunay triangulation is as close as one can get to the
Delaunay triangulation given that one needs to preserve certain (constrained) edges
and internal boundaries. It has been shown in [18] that the constrained internal edges
do not affect the quality of the resulting mesh more than the edges and faces that
define the external boundary. However, one might be able to identify such boundaries
(interfaces for the PDCM) in the resulting mesh by noting the way in which triangle
edges are aligned. Using the idea of a constrained Delaunay mesh generation one
can introduce in the mesh artificial constrained edges (interfaces) which decompose
the mesh into submeshes and can be meshed almost independently.

By the definition of the constrained Delaunay mesh, points inserted on one side
of an interface have no effect on triangles on the other side; thus, no synchronization
is required during the element creation process. In addition, communication between
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Fig. 7.7. Processor P1 inserts a new point (a) which is encroaching upon an interface edge (b).
Then P1 discards the new point and inserts the midpoint of the encroached edge (c) while at
the same time it sends a request to split the same interface edge on processor P0. Processor
P0 computes the cavity of the midpoint (d). The triangulation of the cavities (e) and (f) of the
midpoint of the interface edge results in a new conforming and distributed Delaunay (in the
CDT sense) triangulation which guarantees the quality of the elements.

submeshes is tremendously simplified: the only message between adjacent processes
is of the form [19]: “Split this interface (i.e., constrained) edge” if a newly inserted
point encroaches (see Fig. 7.7) upon an interface edge. Since interface edges are
always split exactly in half, no additional information needs to be communicated.

The PCDM is an asynchronous with bulk communication and thus partially cou-
pled method. Moreover, the number and size of messages can be reduced by mes-
sage aggregation [17]. Although this optimization improves the performance of the
PCDM it has its own problems when many “Split this interface edge” messages are
delayed. This causes performance degradation due to: (1) the large number of ac-
cumulated messages which can consume memory, (2) redundant computation (by
delaying messages), from neighboring processors which are unaware of each other’s
interface splits. In [17] these problems are addressed by a mechanism which adap-
tively changes the number of messages allowed to be aggregated before a low-level
message is send.
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However, code re-use remains a problem due to “Split this interface edge” mes-
sage and optimizations required for reducing the fine-grain communication to a bulk
and asynchronous message passing.

Parallel Delaunay Refinement (PDR) Method

The above tightly coupled (PODM) and partially coupled (PCDM) methods [61, 24,
19] require algorithm re-structuring and thus lead to completely new implementa-
tions for parallel Delaunay mesh generation. The implementation of sequential mesh
generation codes is labor intensive and requires multi-disciplinary effort; it takes
about ten to fifteen years to develop the algorithmic and software infrastructure for
sequential industrial strength mesh generation libraries. Moreover, improvements in
terms of quality, speed, and functionality are open ended and permanent which makes
the task of delivering state-of-the-art parallel mesh generation codes much more dif-
ficult.

This problem is addressed by P 2DM and PD3 in [38, 52], where two decou-
pling methods are presented in order to use (without modifications) optimized and
fully functional sequential codes on each of the subproblems and eliminate commu-
nication and synchronization. However, P 2DM can suffer setbacks due to difficulty
of constructing Delaunay-admissible separators and PD3, for 3D geometries, is ex-
pected to be suffer high pre-processing overhead due the construction (or approxi-
mation) of the medial axis.

With PDR in [16, 15] the authors try to balance trade-offs between the data de-
composition, communication and code re-use i.e., maintain stability and achieve high
code re-use using a simple domain decomposition method at the cost of some com-
munication. The key idea of the PDR method is based on the concurrent point inser-
tion of more than two points without calculating their corresponding cavities ahead
of time in order to decide whether they violate the conformity and Delaunay proper-
ties of the mesh. PDR accomplishes this objective by introducing for the first time a
practical Delaunay-independence criterion for concurrent point insertion [16]:

Theorem 1 Let r̄ be the upper bound on triangle circumradius in the mesh and
pi, pj ∈ Ω ⊂ R

2. Then if ‖pi − pj‖ ≥ 4r̄, then independent insertion of pi and pj
will result in a mesh which is both conformal and Delaunay.

Theorem 1 is applicable throughout the run of the algorithm, since the execu-
tion of the Bowyer-Watson kernel, either sequentially [10, 96] or in parallel [61],
does not violate the condition that r̄ is the upper bound on triangle circumradius
in the entire mesh [16]. However, checking the inequality of the theorem, for every
pair of candidate points, would be quite expensive task. In [16] the authors present
a simple block domain decomposition scheme1 which guarantees that any pair of
points in non-adjacent cells are far apart no less than 4r̄. To enforce the r̄ circum-
radius bound in the mesh they derive the following relation which allows the use of

1This scheme is based on a simple block decomposition for uniform mesh refinement [16]
and octree decomposition for graded mesh refinement [15].
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a standard sequential Delaunay refinement algorithm/software like Triangle [84] for
preprocessing [16]:

Theorem 2 If ρ̄ and ∆̄ are upper bounds on triangle circumradius-to-shortest edge
ratio and area, respectively, then r̄ = 2(ρ̄)3/2

√
∆̄ is an upper bound on triangle

circumradius.

7.3.2 Advancing Front Based Methods

All five parallel Delaunay methods we present in Section 7.3.1 maintain the stability
of the parallel mesher. However, parallel finite element codes require only “good”
quality of elements and the definition of quality depends on the field solver and varies
from code to code. For example, in [79] although the stability is not guaranteed, it
appears that the generated meshes are practical and of “good” quality. This raises
the following two questions: Is the stability of parallel mesher important? Does the
parallel mesh generation without the stability requirement become easier?

The answer to the first question depends on the upstream solver. Regarding the
second question, our experience2 suggests that even if we relax the stability crite-
rion the problem of parallel mesh generation does not become easier. In fact, the
termination problem (which is even more fundamental than the stability) becomes,
for some cases, a very important issue. In some cases, subdomains or submeshes
obtained from state-of-the-art partitioning libraries can not be meshed even by in-
dustrial strength advancing front sequential meshers. Parallel mesh smoothing tech-
niques [57] are helpful, but do not work always.

There is a trade-off between the domain decomposition and the capability of the
sequential mesher required to mesh the individual subdomains. A balance between
the two is important not only for stability but even for termination. Two successful
Parallel Advancing Front Techniques [56, 28] address this issue by what we refer to
as guided re-partitioning or shifting of the separators. In [56] the authors present a
tightly coupled method for shared memory machines and in [28] the authors present a
partially coupled method for distributed memory machines. We review both methods
in the rest of this section.

Tightly Coupled Methods

Lóhner et al. in [56] revisit a partially coupled Parallel Advancing Front Technique
(PAFT) they developed in [55] (see bellow) in order to address the termination, sta-
bility, and code re-use requirements. In [56] they address these issues by developing
a PAFT for shared memory computers (PAFTSM ). However, instead of generating
and partitioning a very fine-grain octree as in [58] on a single processor, for the
whole geometry, they use an octree to identify the zones where elements can be in-
troduced concurrently. They set the edge length of the smallest octree box to be an
order of magnitude larger than the specified size of elements and they use the “shift

2From the implementation of a method similar to one appeared in [79].
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and regrid” technique, but in a completely different way from the method in [32].
The PAFTSM is broken into two phases: (1) the AFT phases and (2) “shift” or as we
call it here guided re-partitioning phase. At each AFT phase the active front expands
and a new one is created. The process continues until the whole domain is meshed.
The PAFTSM method synchronizes at the beginning of each AFT phase in order to
sequentially refine and re-partition the global octree, for the new active front, whose
leaves will be refined in parallel. The method is suitable for shared memory machines
but can not be used in large-scale distributed memory parallel platforms, because of
the global synchronization required between the mesh generation and re-partitioning
phases.

The PAFTSM is stable and code re-use is achieved at the cost of global synchro-
nization which is not expensive on shared memory machines.

Partially Coupled Methods

In [55] Lóhner et al. introduced the first 2D PAFT. The initial mesh is subdivided
into submeshes using a discrete domain decomposition approach. Each submesh is
further separated into an interior region and interface regions, where interface re-
gions of a submesh are defined to be the set of elements that are adjacent to elements
that belong to different submehses. The interior regions of each submesh are refined
independently. The interface regions and then the corners are refined once all the
interior and interface regions are meshed, respectively (a posteriori approach). The
order of meshing interface and interior regions can change i.e., interfaces can be re-
fined first (a priori approach) and the interior regions refined last [55]. The submeshes
synchronize locally, because no new elements can be inserted in the interfaces and
corner regions before the meshing of adjacent interior and interface regions, respec-
tively. The pre-computed interface regions work well for AFT because they create
buffer zones which fully decouple the interior regions of the submeshes.

Parallel Octree AFT (POAFT) Method

The 3D POAFT in [28], contrary to the PAFT in [55], is based on continuous domain
decomposition method. The POAFT method generates a distributed coarse-grain oc-
tree using a divide-and-conquer algorithm. The terminal octants and the geometric
model of a domain define the subdomains. The terminal octants of the octree are
classified into: interior, interface, boundary, and complete. Interface octants have at
least one adjacent octant which is not local. Boundary octants include mesh entities
from the input surface mesh. Complete octants have no front faces in their volumes.
The subdomains represented as subtrees (on each processor) which are refined fur-
ther until their leaves reach to a predefined size to use tetrahedral meshing templates.
The new octrees are repartitioned (using stop-and-repartition methods) in order to
guarantee load balancing during the execution of meshing templates. After the re-
distribution of interior octants, mesh templates are applied so that the triangulations
conform on both sides of interface-octant faces. The interior octants of one processor
are independent of the interior octants in other subdomains and thus can be meshed
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in parallel. At this step code re-use is high, since the meshing templates of sequential
octree meshing code [82] can be used on each processor. Existing scalar meshing
templates for the interface octants can be used, but some communication will be
required during the meshing process. Instead in [28] meshing templates were re-
designed in order to guarantee conformity without compromising stability and elim-
inating communication. The potential for ambiguous splits of faces is addressed and
resolved in [69].

Before the boundary octants are refined and meshed a re-partitioning might take
place if it is necessary. Any parallel partitioning algorithm can be used; in [28] the
parallel recursive inertia bisection method is applied. The meshing of boundary oc-
tants is a challenging task. Every processor applies a tree-based face removal pro-
cedure [28] in order to connect the input surface mesh with the mesh of the interior
octants. The face removal (from the active front) is a basic operation in AFT and
it consists of connecting a front mesh face to a target mesh vertex which is drawn
from a “neighborhood” of the face [28]. In the parallel face removal, portion of the
“neighborhood” might be on a remote processor and a target vertex can not be found
locally; in this case the face removal is postponed. This will create unmeshed regions
between the terminal interface boundary octants and input surface mesh. In [28] ac-
tive terminal and boundary interface octants are repartitioned so that the remaining
unmeshed “neighborhoods” become local and thus the face removal becomes a lo-
cal operation. This permits code re-use. This process is repeated until there are no
unmeshed regions. The “guided” repartitioning is a very challenging problem.

7.3.3 Edge Subdivision Based Methods

Parallel Edge Subdivision (PES) methods have been used successfully for both 2D
domains [97, 45] and 3D geometries [13, 28, 65, 78]. PES methods use discrete
DD for data decomposition and their termination and stability does not depend on
the geometric properties of the submeshes. Once a coarse mesh is partitioned into
submeshes, the individual submeshes are refined in parallel by splitting tetrahedra
using sequential subdivision techniques. The longest-edge bisection method [72, 76]
is the most commonly used for parallel refinement/derefinement [97, 45, 13, 78].
In 2D an element is refined into two triangles by adding an edge defined by the
longest-edge midpoint and its opposite vertex, while in 3D an element is refined
into two tetrahedra by adding a triangle defined by the longest-edge midpoint and
its two opposite vertices. The longest-edge bisection technique is attractive because
it simplifies the management of intermediate non-conforming points throughout the
process. With the introduction of terminal-edges in [78] this management is localized
in a similar way the cavity localizes the computation of Delaunay based methods.

Like all parallel mesh generation methods PES refinement methods should sat-
isfy all three requirements we listed in the introduction of this chapter. Existing PES
methods address some of these requirements successfully and have the potential to
meet all the requirements in the future. In [12] the authors present a termination
proof, for parallel longest-edge bisection algorithms, using Dijkstra’s general termi-
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nation algorithm [34, 5]. Moreover, they prove the stability and even show that the
mesh refined in parallel is identical to a sequentially generated mesh.

The scalability of PES methods depends on the way they address the refinement
collision: more than one processor split concurrently two different copies of the same
interface edge. Other factors that affect the scalability is the choice of dynamic load
balancing methods and the degree of code re-use. For example, frequent use of stop-
and-repartition methods due to global barrier operations can deteriorate the scalabil-
ity of computationally inexpensive parallel mesh generation methods [2]. In general
parallel mesh generation methods that do not take advantage of highly optimized
sequential codes have difficulty to demonstrate good scalability against the best se-
quential codes.

In [65] it has been shown that 100% code re-use is possible at the cost of 10%
overhead by putting a wrapper around the sequential data structure in order to handle
data distribution and remote memory accesses. Communication is another aspect of
parallel codes that affects scalability. In [28] the authors present a number of subdi-
vision templates that can be used to decouple the refinement on different processors
and thus eliminate communication completely.

The main challenge in PES methods is the collision refinement problem. In order
to achieve mesh conformity and correctness the interface faces between the sub-
meshes should be subdivided the same way from all submeshes that share them.
Thus interface edges that are subdivided in one submesh are marked to be subdi-
vided from all other submeshes that share them. This causes communication which
is handled by sending, at the end of the refinement of the interface faces, a message
to submeshes that share refined faces and edges. Based on the communication and
synchronization requirements for handling the refinement collision problem, the PES
methods are classified into three categories: tightly coupled methods [78], partially
coupled methods [45, 28, 13, 65] and decoupled methods [74].

Tightly Coupled Methods

The 3D Parallel Terminal-Edge (PTE) method described in [78] is an inherently de-
coupled method. However, the PTE method in [78] is implemented as a coupled
method. In [74] a new design and implementation is presented so that the stabil-
ity and code re-use requirements are satisfied while the global synchronization for
maintaining the global name of all bisected edges is eliminated.

Parallel Coupled Terminal-Edge (PCTE) Method

In this paragraph we will refer to the tightly coupled implementation of the PTE
method as PCTE. The PCTE method is based on longest-edge bisection approach
introduced by Rivara [71, 72, 76]. Triangles/ tetrahedra are refined by bisecting
their longest-edge. The longest-edge bisection algorithm requires the management
of sequences of intermediate non-conforming mesh points throughout the refinement
process. This complicates its parallel implementation because it requires some syn-
chronization in order to handle the collision refinement and global name of newly in-
serted vertices, both are required to maintain the conformity of the distributed mesh.
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The PCTE method [78], although it requires zero communication between proces-
sors, relies on a central processor for global name-assignment of new mesh points.
The use of the central processor limits the scalability of the method for more than 60
processors and reduces the speed (tetrahedra per second) of the method by an order
of magnitude. However, in [74] the authors present a decoupled method and im-
plementation which takes full advantage of the terminal-edge algorithm introduced
in [78]. The terminal-edge of a longest edge propagation path of t, Lepp(t), is the
longest-edge between all the edges involved in Lepp(t) including the boundary of
the Lepp polygon [73, 75, 77]. We review this method at the end of this Section.

Partially Coupled Methods

Partially coupled methods resolve inconsistencies during the collision refinement
by processing interface edges in 2D (or faces in 3D) using independent sets of ele-
ments [45] and by breaking the mesh refinement process into two phases [28, 13, 65]:
computation (actual refinement of elements) and communication (exchange of infor-
mation about the newly created points and elements due to refinement of interfaces).

Parallel Independent Set Method

In [45] the refinement of a 2D mesh takes place in phases (refinement of one indepen-
dent set at a time). This guarantees the conformity of the mesh and the elimination
of the collision refinement problem, since non-local adjacent elements never refine
interface edges concurrently and the processors are always aware of bisections of
their interface edges. Specifically, the authors in [45] use a vertex-based partition of
a 2D mesh to generate P submeshes, where P is the number of processors. Then all
non-local adjacent elements (i.e., elements that share an edge) and adjacent vertices
to the elements and vertices of submeshes are computed to create a layer of “ghost”
mesh entities which are used to minimize communication in the independent set (IS)
phase. The distributed memory implementation of the IS phase in [45] computes a
distributed independent set I = ∪Pi=1IMi

, where IMi
= I∩Mi andMi is a submesh,

as follows: a triangle ta ∈ IMi
if: ∀tb ∈ adj(ta) and one of the following three holds

(1) ta, tb ∈Mi, (2) ρ(ta) > ρ(tb), and (3) tb is not a marked triangle for refinement,
where adj(t) is the set of adjacent triangles of t, and ρ(t) is a unique random number
assigned to each element in the mesh Mi, i = 1, P . Note that due to the ghost
elements, the communication for checking the above conditions is eliminated. The
algorithm requires communication only for: (a) the update of the bisections of ghost
elements, and (b) a global reduction operation for termination. Both take place at
the end of the refinement of an independent set. These two types of communication
make the algorithm partially coupled, since experimental data in [45] indicate that
the number of refinement phases (or loop iterations) is small (10 to 20) as the num-
ber of processors and the size of the mesh increase to 200 processors and a million
elements, respectively.
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Parallel Alternate Bisection Method

DeCougny et. al [28] addresses the collision refinement problem by using, first, al-
ternate bisection on the interface faces then by applying region subdivision templates
on the rest of the tetrahedra. After the mesh faces are subdivided, it is possible to cre-
ate non-conforming interface edges on the interfaces. The non-conforming interface
edges are sent to the corresponding adjacent submeshes that are refined by different
processors. This will start a new mesh face subdivision followed by a communication
phase, until no mesh faces need to be subdivided. Upon termination of face subdi-
visions, the mesh is conforming across the interfaces and then a region subdivision
using sequential templates is applied in parallel to the rest of the interior tetrahedra.

Parallel Nested Elements Method

Castaños and Savage [13] have parallelized the non-conforming longest edge bisec-
tion algorithm both in 2D and 3D. In this case the refinement propagation implies
the creation of sequences of non-conforming edges that can cross several submeshes
involving several processors. This also means the creation of non-conforming inter-
face edges which is particularly complex to deal with in 3D. To perform this task each
processor Pi iterates between a no-communication phase (where refinement propa-
gation between processors is delayed) and an interprocessor communication phase.
Different processors can be in different phases during the refinement process, their
termination is coordinated by a central processor P0. The subdivision of an interface
edge might leads to either a non-conforming edge or to a conforming edge, but the
creation of different copies (one per subdomain) of its midpoint. However, after the
communication phase a remote cross reference for each newly created interface edge
midpoint along with nested elements information guarantee a unique logical name
for these newly created vertices [11].

Decoupled Methods

The PTE method [74] in addition to the terminal-edge of a Lepp(t) takes full advan-
tage of the terminal-star, which is the set of tetrahedra that share a terminal-edge.
The terminal-star can play the same role in PTE the cavity plays in PCDM. Con-
trary to the method in [13] the terminal-star refinement algorithm completely avoids
the management of non-conforming edges both in the interior of the submeshes and
in the inter-subdomain interface. This eliminates the communication among subdo-
mains and thus processors. Similarly to Castaños et al. the terminal-star method can
terminate using a single processor as coordinator for adaptive mesh refinement i.e.,
when a global stopping criterion like the minimum-edge length of terminal-edges is
not used.

The decoupled PTE algorithm and its implementation lead to an order of magni-
tude performance improvements compared to a previous tightly coupled implemen-
tation [74] of the same algorithm. Although the algorithm is theoretically scalable,
our performance data indicate the contrary; the reason is the work-load imbalances
and heterogeneity of the clusters we use. We will address these two issues in Sec-
tion 7.5.
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Fig. 7.8. Taxonomy of Parallel Mesh Generation Methods.

7.4 Taxonomy

The taxonomy in Figure 7.8 helps to clarify basic similarities and differences be-
tween parallel tetrahedral meshing methods. The taxonomy is based on the two at-
tributes we used to classify the methods reviewed in this chapter: (i) the basic se-
quential meshing technique used for each subproblem and (ii) the degree of coupling
between the subproblems. The coupling (i.e., the amount of communication and syn-
chronization between the subproblems) is determined by the degree of dependency
between the subproblems.

7.5 Implementation

The complexity of implementing efficient parallel mesh generation codes arises from
the dynamic, data-dependent, and irregular computation and communication pat-
terns of the algorithms. This inherent complexity, when combined with challenges
from using primitive tools for communication like message-passing libraries [86,
4], makes the development of parallel mesh generation codes even more time-
consuming and error-prone.

In the rest of the section we focus on dynamic load balancing issue. The scientific
computing community has developed application-specific runtime libraries and soft-
ware systems [3, 33, 49, 64, 67, 98] for dynamic load balancing. These systems are
designed to support the development of parallel multi-phase applications which are
computationally-intensive and consist of phases that are separated by computations
such as the global error estimation. In these cases the load-balancing is accomplished
by dynamically repartitioning the data after a global synchronization [95]. Through-
out this chapter we call this approach to load balancing the stop-and-repartition
method.

The stop-and-repartition approaches are good for loosely-synchronous applica-
tions like iterative PDE solvers, however they are not well-suited for applications
such as adaptive mesh generation and refinement. Because for asynchronous and not
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Fig. 7.9. Execution time of PAFT on Whirlwind subcluster with 64 homogeneous processors
for the simplified human brain model without load balancing (left) and with load balancing
using PREMA (right). The final mesh in both cases is 1.2 billion tetrahedrons.

computation-intensive applications the global synchronization overhead can over-
whelm the benefits from load balancing. This problem is exacerbated as the number
of processors in the parallel system grows. In order to address this issue, the authors
in [2] developed a Parallel Runtime Environment for Multi-computer Applications
(PREMA).

PREMA is a software library which provides a set of tools to application devel-
opers via a concise and intuitive interface. It supports single-sided communication
primitives which conform to the active messages paradigm [94], a global namespace,
message forwarding mechanisms to cope with object/data migration and a preemp-
tive dynamic load balancing [2].

Performance Evaluation

In the rest of this section we present some performance data that show the effects
of two sources of imbalance: (1) work-load due to geometric complexity of the sub-
domains/submeshes, and (2) processor heterogeneity. The experimental study was
performed on Sciclone [81] cluster at the College of William and Mary which con-
sists of many different heterogeneous subclusters. We have used three subclusters:
(1) Whirlwind subcluster which consists of 64 single-cpu Sun Fire V120 nodes (650
MHz, 1 GB RAM), (2) Tornado which consists of 32 dual-cpu Sun Ultra 60 nodes
(360 MHz, 512 MB RAM) and (3) Typhoon which consists of 64 single-cpu Sun Ul-
tra 5 nodes (333 MHz, 256 MB RAM). The models we used are: (i) a cross-section
of the rocket pipe (see Figure 7.1) and (ii) a simplified model of a human brain (see
Figure 7.11, left).

Figure 7.9 shows the impact of dynamic load balancing on the performance of
PAFT on the human brain model. The work-load imbalances are due to differences in
the geometric complexity of the submeshes. The PAFT with dynamic load balancing
(using PREMA) took 1.7 hours to generate the 1.2 billion elements while without
dynamic load balancing it took 2.7 hours. The dynamic load balancing improved the
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Fig. 7.10. The execution time of PCDM for the cross section of the rocket pipe whose data are
equidistributed on 128 heterogenous processors; without load balancing (left) and with load
balancing using PREMA (right).

Fig. 7.11. Surface of the tetrahedral mesh for a simplified model of a human brain generated
from an advancing front method [43].

performance of PAFT by more than 30%. Sequentially using Solidmesh [37], it takes
three days one hour and 27 minutes, by executing the subdomains one at a time.

Figure 7.10 shows the impact of dynamic load balancing (using PREMA) on the
performance of the PCDM for the cross section of rocket pipe. Although we used
state-of-the-art ab-initio data partition methods for equidistributing the data and thus
the computation among all 128 processors, the imbalances are due to heterogeneity
of the three different clusters; the first 64 processors are from Typhoon (slowest
cluster), the next 32 processors are from Tornado and the last 32 processors are from
Whirlwind (the fastest cluster). Again, the dynamic load balancing (using PREMA)
improved the performance of parallel mesh generation by 23%.

Finally, the data from Figure 7.11 and Table 7.2 indicate the impact of work load
imbalances due to: (1) the differences in the work-load of submeshes and (2) hetero-
geneity of processors using the PTE method. Figure 7.11(right), shows that the speed
of the PTE method is substantially lower, for the brain model (see Figure 7.11, left),
due to work-load imbalances; while for a more regular geometry (the semiconductor
test case [74]), the PTE speed is almost twice higher, because of better load balancing
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Table 7.2. PTE speed (in tetrahedra per second) for the simplified human brain model using
min-edge = 2.0. The final mesh is about 2.4 million tetrahedra.

Processors 8 16 32 48 64 96

Whirlwind 5427 9920 16195 21890 29035 23571
Tornado 3852 7025 11408 15526 20312 23571

due to more uniform point distribution. Also, Table 7.2 indicates a 19% slowdown in
the PTE’s speed once we increase the number of processors from 64 to 96 using ad-
ditional 32 slower processors, despite the fact the PTE is a scalable method. Finally,
a comparison between the speed data from the Figure 7.11 (right) and Table 7.2, for
the brain model, indicate that the coupling (i.e., global synchronization) in the PCTE
method slows down the speed of the code by an order of magnitude.

These data (and some more from [24, 2, 17, 74]) suggest that the tightly coupling
methods should be used as a last resort. In addition, these data suggest that work-load
imbalances are no longer a problem and it should not limit our creativity in the second
round of our search for practical and effective parallel mesh generation methods.
Runtime software systems like PREMA [2] can handle work-load imbalances quite
successfully.

7.6 Future Directions

It takes about ten to fifteen years to develop the algorithmic and software infrastruc-
ture for sequential industrial strength mesh generation libraries. Moreover, improve-
ments in terms of quality, speed, and functionality are open ended and permanent
which makes the task of delivering state-of-the-art parallel mesh generation codes
even more difficult.

This survey demonstrates that without compromising in the stability of parallel
mesh generation methods it is possible for all three mesh generation classes of tech-
niques to develop parallel meshing software using off-the-shelf sequential meshing
codes.

An area with immediate high benefits to parallel mesh generation is domain de-
composition. The DD problem as it is posed in Section 7.2 is still open for 3D geome-
tries and its solution will help to deliver stable and scalable methods that rely on
off-the-shelf mesh generation codes for Delaunay and Advancing Front Techniques.
The edge subdivision methods are independent off the domain decomposition.

A longer term goal should be the development of both theoretical and software
frameworks like PDR to implement new mesh generation methods which can: (1)
take advantage of multicore architectures with more than two hardware contexts for
the next generation of high-end workstations and (2) scale without any substantial
implementation costs for clusters of high-end workstations.

Finally, a long term investment to parallel mesh generation is to attract the atten-
tion of mathematicians with open problems in mesh generation and broader impact in



7 Parallel Mesh Generation 259

mathematics. For example, develop theoretical frameworks able to prove the correct-
ness of single threaded guaranteed quality Delaunay theory in the context of partial
order [70].
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