
5

Parallel Geometric Multigrid

Frank Hülsemann1, Markus Kowarschik1, Marcus Mohr2, and Ulrich Rüde1

1 System Simulation Group, University of Erlangen, Germany
[frank.huelsemann,markus.kowarschik,ulrich.ruede]@cs.fau.de

2 Department for Sensor Technology, University of Erlangen, Germany
marcus.mohr@lse.eei.uni-erlangen.de

Summary. Multigrid methods are among the fastest numerical algorithms for the solution
of large sparse systems of linear equations. While these algorithms exhibit asymptotically
optimal computational complexity, their efficient parallelisation is hampered by the poor
computation-to-communication ratio on the coarse grids. Our contribution discusses paral-
lelisation techniques for geometric multigrid methods. It covers both theoretical approaches
as well as practical implementation issues that may guide code development.

5.1 Overview

Multigrid methods are among the fastest numerical algorithms for solving large
sparse systems of linear equations that arise from appropriate discretisations of el-
liptic PDEs. Much research has focused and will continue to focus on the design of
multigrid algorithms for a variety of application areas. Hence, there is a large and
constantly growing body of literature. For detailed introductions to multigrid we re-
fer to the earlier publications [7, 32] and to the comprehensive overview provided
in [60]. A detailed presentation of the multigrid idea is further given in [10]. A long
list of multigrid references, which is constantly being updated, can be found in the
BibTEX file mgnet.bib [16].

Multigrid methods form a family of iterative algorithms for large systems of lin-
ear equations which is characterised by asymptotically optimal complexity. For a
large class of elliptic PDEs, multigrid algorithms can be devised which requireO(n)
floating-point operations in order to solve the corresponding linear system with n de-
grees of freedom up to discretisation accuracy. In the case of parabolic PDEs, appro-
priate discretisations of the time derivative lead to series of elliptic problems. Hence,
the application of multigrid methods to parabolic equations is straightforward.

Various other linear solvers such as Krylov subspace methods (e.g., the method
of conjugate gradients and GMRES), for example, mainly consist of matrix-vector
products as well as inner products of two vectors [23, 33]. Their parallel implemen-
tation is therefore quite straightforward. The parallelisation of multigrid algorithms
tends to be more involved. This is primarily due to the necessity to handle problems

166 F. Hülsemann et al.

of different mesh resolutions which thus comprise significantly varying numbers of
unknowns.

In this chapter, we will focus on parallelisation approaches for geometric multi-
grid algorithms; see also [15, 45] and the tutorial on parallel multigrid methods by
Jones that can be found at http://www.mgnet.org. We assume that each level
of accuracy is represented by a computational grid which is distributed among the
parallel resources (i.e., the processes) of the underlying computing environment. We
further suppose that the processes communicate with each other via message passing.

Our chapter is structured as follows. In Section 5.2 we will present a brief and
general introduction to geometric multigrid schemes. Section 5.3 describes elemen-
tary parallelisation techniques for multigrid algorithms. The case of multigrid meth-
ods for applications involving unstructured finite-element meshes is more compli-
cated than the case of structured meshes and will be addressed subsequently in Sec-
tion 5.4. Section 5.5 focuses on the optimisation of the single-node performance,
which primarily covers the improvement of the utilisation of memory hierarchies.
Advanced parallelisation approaches for multigrid will be discussed afterwards in
Section 5.6. Conclusions will be drawn in Section 5.7.

5.2 Introduction to Multigrid

5.2.1 Overview

Generally speaking, all multigrid algorithms follow the same fundamental design
principle. A given problem is solved by integrating different levels of resolution into
the solution process. During this process, the contributions of the individual levels
are combined appropriately in order to form the required solution.

In the classical sense, multigrid methods involve a hierarchy of computational
grids of different mesh resolution and can therefore be considered geometrically
motivated. This approach has led to the notion of geometric multigrid (GMG). In
contrast, later research has additionally addressed the development and the analysis
of algebraic multigrid (AMG) methods, which target a multigrid-like iterative solu-
tion of linear systems without using geometric information from a grid hierarchy, but
only the original linear system itself3. For an introduction to parallel AMG, see [65].

5.2.2 Preparations

We will first motivate the principles of a basic geometric multigrid scheme. For sim-
plicity, we consider the example of a scalar elliptic boundary value problem

Lu = f in Ω , (5.1)

defined on the interval of unit length (i.e., Ω := (0, 1)), on the unit square (i.e.,
Ω := (0, 1)2), or on the unit cube (i.e., Ω := (0, 1)3). L denotes a second-order

3The term algebraic multigrid may thus appear misleading, since an ideal AMG approach
would dispense with any computational grid.

5 Parallel Geometric Multigrid 167

linear elliptic differential operator, the solution of (5.1) is denoted as u : Ω → R,
and the function f : Ω → R represents the given right-hand side.

We assume Dirichlet boundary conditions only; i.e.,

u = g on ∂Ω . (5.2)

We concentrate on the case of an equidistant regular grid. As usual, we use h
to denote the mesh width in each dimension. Hence, ndim := h−1 represents the
number of sub-intervals per dimension. In the 1D case, the grid nodes are located at
positions

{x = ih; 0 ≤ i ≤ ndim} ⊂ [0, 1] .

In the 2D case, they are located at positions

{(x1, x2) = (i1h, i2h); 0 ≤ i1, i2 ≤ ndim} ⊂ [0, 1]2 ,

and in the 3D case, the node positions are given by

{(x1, x2, x3) = (i1h, i2h, i3h); 0 ≤ i1, i2, i3 ≤ ndim} ⊂ [0, 1]3 .

Consequently, the grid contains ndim + 1 nodes per dimension. Since the outermost
grid points represent Dirichlet boundary nodes, the corresponding solution values
are fixed. Hence, since u is a scalar function, our grid actually comprises ndim − 1
unknowns per dimension.

Our presentation is general enough to cover the cases of finite differences as well
as finite element discretisations involving equally sized line elements in 1D, square
elements in 2D, and cubic elements in 3D, respectively. For the description of the
core concepts, we focus on the case of standard coarsening only. This means that
the mesh width H of any coarse grid is obtained as H = 2h, where h denotes the
mesh width of the respective next finer grid. See [60] for an overview of alternative
coarsening strategies such as red-black coarsening and semi-coarsening, for exam-
ple. In Section 5.4, we turn to the question of multigrid methods on unstructured
grids.

The development of multigrid algorithms is motivated by two fundamental and
independent observations which we will describe in the following; the equivalence of
the original equation and the residual equation as well as the convergence properties
of basic iterative solvers.

5.2.3 The Residual Equation

A suitable discretisation of the continuous problem given by (5.1), (5.2) yields the
linear system

Ahuh = fh , (5.3)

where Ah denotes a sparse nonsingular matrix that represents the discrete operator.
For the model case of a second-order finite difference discretisation of the negative
Laplacian in 2D, Ah is characterised by the five-point stencil

168 F. Hülsemann et al.

1
h2

⎡⎣ −1
−1 4 −1
−1

⎤⎦ .

We refer to [60] for details including a description of this common stencil notation.
The exact solution of (5.3) is explicitly denoted as u∗h, while uh stands for an

approximation to u∗h. If necessary, we add superscripts to specify the iteration index;

e.g., u(k)
h is used to denote the k-th iterate, k ≥ 0. In the following, we further need

to distinguish between approximations on grid levels with different mesh widths.
Therefore, we use the indices h and H to indicate that the corresponding quantities
belong to the grids of sizes h andH , respectively. The solutions of the linear systems
under consideration represent function values located at discrete grid nodes. As a
consequence, the terms grid function and vector are used interchangeably hereafter.

As usual, the residual rh corresponding to the approximation uh is defined as

rh := fh −Ahuh . (5.4)

The (algebraic) error eh corresponding to the current approximation uh is given by

eh := u∗h − uh . (5.5)

From these definitions, we obtain

Aheh = Ah (u∗h − uh) = Ahu
∗
h −Ahuh = fh −Ahuh = rh ,

which relates the current error eh to the current residual rh. Hence, the residual
(defect) equation reads as

Aheh = rh . (5.6)

Note that (5.6) is equivalent to (5.3), and the numerical solution of both linear
systems is equally expensive since they involve the same system matrix Ah. The
actual motivation for these algebraic transformations is not yet obvious and will be
provided subsequently. In the following, we will briefly review the convergence prop-
erties of elementary iterative schemes and then illustrate the multigrid principle.

5.2.4 Convergence Behaviour of Elementary Iterative Methods

There is a downside to all elementary iterative solvers such as Jacobi’s method, the
method of Gauß-Seidel, and SOR. Generally speaking, when applied to large sparse
linear systems arising in the context of numerical PDE solution, they cannot effi-
ciently reduce the slowly oscillating (low-frequency, smooth) discrete Fourier com-
ponents of the algebraic error. However, they often succeed in efficiently eliminating
the highly oscillating (high-frequency, rough) error components [60].

This behaviour can be investigated analytically in detail as long as certain model
problems (e.g., involving standard discretisations of the Laplacian) as well as the
classical iterative schemes are used. This analysis is based on a decomposition of

5 Parallel Geometric Multigrid 169

the initial error e(0)
h . This vector is written as a linear combination of the eigenvec-

tors of the corresponding iteration matrix. In the case of the model problems under
consideration, these eigenvectors correspond to the discrete Fourier modes.

As long as standard model problems are considered, it can be shown that the
spectral radius ρ(M) of the corresponding iteration matrixM behaves like 1−O(h2)
for the method of Gauß-Seidel, Jacobi’s method, and weighted Jacobi. Similarly,
ρ(M) behaves like 1 − O(h) for SOR with optimal relaxation parameter [57]. This
observation indicates that, due to their slow convergence rates, these methods are
hardly applicable to large problems involving small mesh widths h.

A closer look reveals that the smooth error modes, which cannot be eliminated ef-
ficiently, correspond to those eigenvectors of M which belong to the relatively large
eigenvalues; i.e, to the eigenvalues close to 14. This fact explains the slow reduction
of low-frequency error modes. In contrast, the highly oscillating error components
often correspond to those eigenvectors of M which belong to relatively small eigen-
values; i.e., to the eigenvalues close to 0. As we have mentioned previously, these
high-frequency error components can thus often be reduced quickly and, after a few
iterations only, the smooth components dominate the remaining error.

Note that whether an iterative scheme has this so-called smoothing property de-
pends on the problem to be solved. For example, Jacobi’s method cannot be used
in order to eliminate high-frequency error modes quickly, if the discrete problem
is based on a standard finite difference discretisation of the Laplacian, see [60]. In
this case, high-frequency error modes can only be eliminated efficiently, if a suitable
relaxation parameter is introduced; i.e., if the weighted Jacobi scheme is employed
instead.

5.2.5 Aspects of Multigrid Methods

Coarse Grid Representation of the Residual Equation

As was mentioned in Section 5.2.4, many basic iterative schemes possess the smooth-
ing property; within a few iterations only, the highly oscillating error components
can often be eliminated and the smooth error modes remain. As a consequence, a
coarser grid (i.e., a grid with fewer grid nodes) may be sufficiently fine to represent
this smooth error accurately enough. Note that, in general, it is the algebraic error
(and not the approximation to the solution of the original linear system itself) that
becomes smooth after a few steps of an appropriate basic iterative scheme have been
performed.

The observation that the error is smooth after a few iterations motivates the idea
to apply a few iterations of a suitable elementary iterative method on the respective
fine grid. This step is called pre-smoothing. Then, an approximation to the remain-
ing smooth error can be computed efficiently on a coarser grid, using a coarsened
representation of (5.6); i.e., the residual equation. Afterwards, the smooth error must

4Note that non-convergent iterative schemes involving iteration matricesM with ρ(M) ≥
1 may be used as smoothers as well.

170 F. Hülsemann et al.

be interpolated back to the fine grid and, according to (5.5), added to the current fine
grid approximation in order to correct the latter.

In the simplest case, the coarse grid is obtained by standard coarsening; i.e., by
omitting every other row of fine grid nodes in each dimension, cf. Section 5.2.2. This
coarsening strategy results in an equidistant coarse grid with mesh widthH = 2h. As
usual, we use Ωh and ΩH to represent the fine grid and the coarse grid, respectively.
Furthermore, we assume that nh and nH denote the total numbers of unknowns
corresponding to the fine grid and the coarse grid, respectively. Note that standard
coarsening reduces the number of unknowns by a factor of approximately 2−d, where
d is the dimension of the problem.

The coarse representation of (5.6), which is used to approximate the current al-
gebraic fine grid error eh, reads as

AHeH = rH , (5.7)

where AH ∈ R
nH×nH stands for the coarse grid operator and eH , rH ∈ R

nH are
suitable coarse grid representations of the algebraic fine grid error eh and the corre-
sponding fine grid residual rh, respectively. Equation (5.7) must be solved for eH .

Inter-Grid Transfer Operators

The combination of the fine grid solution process and the coarse grid solution process
requires the definition of inter-grid transfer operators, which are necessary to map
grid functions from the fine grid Ωh to the coarse grid ΩH , and vice versa. In partic-
ular, we need an interpolation (prolongation) operator

IhH : R
nH → R

nh ,

which maps a coarse grid function to a fine grid function, as well as a restriction
operator

IHh : R
nh → R

nH ,

which maps a fine grid function to a coarse grid function. Note that, in the following,
IhH and IHh are also used to denote the corresponding matrix representations of the
interpolation and the restriction operators, respectively.

The restriction operator IHh is used to transfer the fine grid residual rh to the
coarse grid, yielding the right-hand side of the coarse grid representation (5.7) of the
fine grid residual equation:

rH := IHh rh .

In the case of discrete operators Ah and AH with slowly varying coefficients,
typical choices for the restriction operator are full weighting or half weighting. These
restriction operators compute weighted averages of the components of the fine grid
function to be restricted. They do not vary from grid point to grid point. In 2D, for
example, they are given as follows:

5 Parallel Geometric Multigrid 171

• Full weighting:

1
16

⎡⎣ 1 2 1
2 4 2
1 2 1

⎤⎦H
h

• Half weighting:

1
8

⎡⎣ 0 1 0
1 4 1
0 1 0

⎤⎦H
h

Here, we have used the common stencil notation for restriction operators. The en-
tries of these stencils specify the weights for the values of the respective grid func-
tion, when transferred from the fine grid Ωh to the corresponding coarser grid ΩH .
This means that the function value at any (interior) coarse grid node is computed
as the weighted average of the function values at the respective neighbouring fine
grid nodes, see [10] for example. Representations of the full weighting and the half
weighting operators in 3D are provided in [60].

After the coarse representation eH of the algebraic error has been determined,
the interpolation operator is employed to transfer eH back to the fine grid Ωh:

ẽh := IhHeH .

We use ẽh to denote the resulting fine grid vector, which is an approximation to the
actual fine grid error eh. Ideally, the smoother would yield a fine grid error eh which
lies in the range of IhH such that it could be eliminated completely by the correction
ẽh.

A typical choice for the prolongation operator is linear interpolation. In 2D, for
example, this constant operator is given as follows:

1
4

⎤⎦ 1 2 1
2 4 2
1 2 1

⎡⎣ h

H

Here, we have employed the common stencil notation for interpolation operators.
The entries of the interpolation stencils specify the weights for the values of the
respective grid function, when prolongated from the coarse grid ΩH to the corre-
sponding finer grid Ωh. This means that the function value at any (interior) coarse
grid node is propagated to the respective neighbouring fine grid nodes using these
weights [10]. A representation of the linear interpolation operator in 3D is again
provided in [60].

If the stencil coefficients vary significantly from grid node to grid node, it may be
necessary to employ operator-dependent inter-grid transfer operators, which do not
just compute weighted averages when mapping fine grid functions to the coarse grid,
and vice versa [1]. See also [8] for a discussion of how to select appropriate restric-
tion and prolongation operators depending on the order of the differential operator L
in (5.1).

172 F. Hülsemann et al.

Ideally, the high-frequency components dominate the fine grid error after the
coarse grid representation eH of the error has been interpolated to the fine grid Ωh

and added to the current fine grid approximation uh; i.e., after the correction

uh ← uh + ẽh

has been carried out. In addition, the interpolation of the coarse grid approximation
eH to the fine grid Ωh usually even amplifies oscillatory error components. There-
fore, a few further iterations of the smoother are typically applied to the fine grid
solution uh. This final step is called post-smoothing.

Note that the discrete operator and the stencils that represent the inter-grid trans-
fer operators are often characterised by compact stencils. In 2D, this means that each
of these stencils only covers the current node and its eight immediate neighbours in
the grid. In a regular 3D grid, each interior node has 26 neighbours instead. This
property of compactness simplifies the parallelisation of the multigrid components.
We will return to this issue in Section 5.3 in the context of grid partitioning.

Coarse Grid Operators

The coarse grid operator AH can be obtained by discretising the continuous differ-
ential operator L from (5.1) on the coarse grid ΩH anew. Alternatively, AH can be
computed as the so-called Galerkin product

AH := IHh AhI
h
H . (5.8)

An immediate observation of this choice is the following. If the fine grid operator
Ah as well as the inter-grid transfer operators IHh and IhH are characterised by com-
pact stencils (i.e., 3-point stencils in 1D, 9-point stencils in 2D, or 27-point stencils
in 3D) the resulting coarse grid operator AH will be given by corresponding com-
pact stencils as well. In a multigrid implementation, this property enables the use of
simple data structures and identical parallelisation strategies on all levels of the grid
hierarchy, see Section 5.3.

Note that, if the restriction operator corresponds to the transpose of the interpo-
lation operator (up to a constant factor), and if (5.8) holds, a symmetric fine grid
operator Ah yields a symmetric coarse grid operator AH . If Ah is even symmetric
positive definite and the interpolation operator IhH has full rank, the corresponding
coarse grid operator AH will again be symmetric positive definite.

As a consequence, if the matrix corresponding to the finest grid of the hierarchy
is symmetric positive definite (and therefore nonsingular) and, furthermore, both the
inter-grid transfer operators and the generation of the coarse grid matrices are chosen
appropriately, each of the coarse grid matrices will be symmetric positive definite as
well. This property of the matrix hierarchy often simplifies the analysis of multigrid
methods.

5 Parallel Geometric Multigrid 173

Algorithm 5.1 Recursive definition of the multigrid CGC V(ν1,ν2)-cycle.

1: Perform ν1 iterations of the smoother on Ωh (pre-smoothing):

u
(k+ 1

3)

h ← Sν1h

(
u

(k)
h

)
2: Compute the residual on Ωh:

rh ← fh −Ahu(k+ 1
3)

h

3: Restrict the residual from Ωh to ΩH and initialise the coarse grid approximation:

fH ← IHh rh , uH ← 0

4: if ΩH is the coarsest grid of the hierarchy then
5: Solve the coarse grid equation AHuH = fH on ΩH exactly
6: else
7: Solve the coarse grid equation AHuH = fH on ΩH approximately by (recursively)

performing a multigrid V(ν1,ν2)-cycle starting on ΩH

8: end if
9: Interpolate the coarse grid approximation (i.e., the error) from ΩH to Ωh:

ẽh ← IhHuH

10: Correct the fine grid approximation on Ωh:

u
(k+ 2

3)

h ← u
(k+ 1

3)

h + ẽh

11: Perform ν2 iterations of the smoother on Ωh (post-smoothing):

u
(k+1)
h ← Sν2h

(
u

(k+ 2
3)

h

)

Formulation of the Multigrid V-Cycle Correction Scheme

The previous considerations first lead to the two-grid coarse grid correction (CGC)
V-cycle. This scheme assumes that, in each iteration, the coarse grid equation is
solved exactly.

If, however, this linear system is still too large to be solved efficiently by using
either a direct method or an elementary iterative method, the idea of applying a coarse
grid correction (i.e., the idea of solving the corresponding residual equation on a
coarser grid) can be applied recursively. This then leads to the class of multigrid
schemes. See [10, 60], for example.

Algorithm 5.1 shows the structure of a single multigrid V(ν1,ν2)-cycle. The no-
tation Sνh(·) is introduced to indicate that ν iterations of an appropriate smoothing
method are applied to the corresponding approximation on Ωh. The parameters ν1

and ν2 denote the numbers of iterations of the smoother before and after the coarse
grid correction, respectively. Typical values for ν1 and ν2 are 1, 2, or 3.

174 F. Hülsemann et al.

Ω2h

u
(k+1)
h

Ωh

Ω4h

Sν1
h

Ih2h

I2h
4h

u
(k+ 2

3)

hu
(k+ 1

3)

hu
(k)
h

Sν1
2h

u
(k+ 2

3)

2h

u
(k+1)
2h

I2h
h

u
(k)
2h

u
(k+ 1

3)

2h

f
(k)
4h = I4h

2hr
(k+ 1

3)

2h u
(k+1)
4h = A−1

4h f
(k)
4h

I4h
2h

Sν2
2h

Sν2
h

Fig. 5.1. Three-grid CGC V(ν1,ν2)-cycle.

Due to the recursive formulation of Algorithm 5.1, it is sufficient to distinguish
between a fine grid Ωh and a coarse grid ΩH . When the recursive scheme calls itself
in Step 7, the current coarse grid ΩH becomes the fine grid of the next deeper invo-
cation of the multigrid V-cycle procedure. Typically, uH := 0 is used as initial guess
on ΩH . We assume that the initial guess and the right-hand side on the finest grid
level as well as the matrices on all grid levels of the hierarchy have been initialised
beforehand.

An additional parameter γ may be introduced in order to increase the number of
multigrid cycles to be executed on the coarse grid ΩH in Step 7 of Algorithm 5.1.
This parameter γ is called the cycle index. The choice γ := 1 (as is implicitly the case
in Algorithm 5.1) leads to multigrid V(ν1,ν2)-cycles, while different cycling strate-
gies are possible. Another common choice is γ := 2, which leads to the multigrid
W-cycle [60], see also Section 5.3.4. The names of these schemes are motivated by
the order in which the various grid levels are visited during the multigrid iterations.

Figure 5.1 shows the algorithmic structure of a three-grid CGC V(ν1,ν2)-cycle.
This figure illustrates the origin of the term V-cycle. We have used the level indices
h, 2h, and 4h in order to indicate that we generally assume the case of standard
coarsening, see above.

Remarks on Multigrid Convergence Analysis

A common and powerful approach towards the quantitative convergence analysis
(and the development) of multigrid methods is based on local Fourier analysis (LFA).
The principle of the LFA is to examine the impact of the discrete operators, which
are involved in the two-grid or in the multigrid setting, by representing them in the
basis of the corresponding Fourier spaces. The LFA ignores boundary conditions
and, instead, assumes infinite grids [60, 62].

5 Parallel Geometric Multigrid 175

Alternatively, the convergence analysis of the two-grid scheme and the multigrid
scheme can be based on the notions of smoothing property and approximation prop-
erty, which have been introduced by Hackbusch [32]. As these names suggest, the
smoothing property states that the smoother eliminates high-frequency error com-
ponents without introducing smooth ones. In contrast, the approximation property
states that the CGC performs efficiently; i.e., that the inverse of the coarse grid oper-
ator represents a reasonable approximation to the inverse of the fine grid operator. In
comparison with the aforementioned LFA, the current approach only yields qualita-
tive results.

The convergence analysis of multigrid methods reveals for example that, for W-
cycle schemes applied to certain model problems, these algorithms behave asymptot-
ically optimal. It can be shown that, for these cases, multigrid W-cycles only require
O(N log ε) operations, where N denotes the number of unknowns corresponding to
the finest grid level and ε stands for the required factor by which the norm of the
algebraic error shall be improved, see [60].

Full Approximation Scheme

So far, we have considered the CGC scheme, or simply the correction scheme (CS).
This means that, in each multigrid iteration, any coarse grid is employed to compute
an approximation to the error on the next finer grid.

Alternatively, the coarse grid can be used to compute an approximation to the
fine grid solution instead. This approach leads to the full approximation scheme/s-
torage (FAS) method. The FAS method is primarily used, if the discrete operator is
nonlinear or if adaptive grid refinement is introduced. In the latter case, the finer
grids may not cover the entire domain in order to reduce both memory consumption
and computational work.

It can be shown that, for the nonlinear case, the computational efficiency of the
FAS scheme is asymptotically optimal, as is the case for the aforementioned cor-
rection scheme. In addition, the parallelisation of the FAS method resembles the
parallelisation of the correction scheme. See [7, 60] for details on the FAS method.

Nested Iteration and Full Multigrid

In most cases, the solution times of iterative methods (i.e., the numbers of iterations
required to fulfil the given stopping criteria) can be reduced drastically by choos-
ing suitable initial guesses. When applied recursively, the idea of determining an
approximation on a coarse grid first and interpolating this approximation afterwards
in order to generate an accurate initial guess on a fine grid leads to the principle of
nested iteration [33].

The combination of nested iteration and the multigrid schemes we have described
so far leads to the class of full multigrid (FMG) methods, which typically repre-
sent the most efficient multigrid algorithms. For typical problems, the computational
work required to solve the discrete problem on the finest grid level up to discretisa-
tion accuracy is of order O(N) only. This results from the observation that, on each

176 F. Hülsemann et al.

Algorithm 5.2 Recursive formulation of the FMG scheme on Ωh.

1: if Ωh is the coarsest grid of the hierarchy then
2: Solve Ahuh = fh on Ωh exactly
3: else
4: Restrict the right-hand side from Ωh to the next coarser grid ΩH :

fH ← IHh fh

5: Solve AHuH = fH using FMG on ΩH recursively
6: Interpolate the coarse grid approximation from ΩH to Ωh in order to obtain a good

initial guess on Ωh:
u

(0)
h ← ĨhHuH

7: Improve the approximation on Ωh by applying ν0 multigrid iterations:

uh ← MGν0ν1,ν2

(
u

(0)
h , Ah, fh

)
8: end if

level of the grid hierarchy, a constant number of V-cycles is sufficient to solve the
corresponding linear system up to discretisation accuracy. See [8, 60] for details.

The FMG scheme generally starts on the coarsest level of the grid hierarchy.
There, an approximation to the solution is computed and then interpolated to the
next finer grid, yielding a suitable initial guess on this next finer grid. A certain
number of multigrid cycles (either CGC-based or FAS-based) is applied to improve
the approximation, before it is in turn interpolated to the next finer grid, and so on.

As Algorithm 5.2 shows, the FMG scheme can be formulated recursively. The
linear system on the coarsest level of the grid hierarchy is assumed to be solved
exactly. Since the approximations which are mapped from coarse to fine grids in
Step 6 are not necessarily smooth and potentially large, it is commonly recommended
to choose an interpolation operator ĨhH of sufficiently high order [60].

Depending on the actual problem, the multigrid method applied in Step 7 of
Algorithm 5.2 may either be based on the CGC scheme or on the FAS method. It may
involve either V(ν1,ν2)-cycles or W(ν1,ν2)-cycles. The notation we have introduced
in Step 7 is supposed to indicate that ν0 multigrid cycles are performed on the linear
system involving the matrix Ah and the right-hand side fh, starting with the initial
guess u(0)

h which has been determined previously by interpolation in Step 6.
Note that, in order to compute an approximation to the actual solution on each of

the coarse grids, it is necessary to appropriately represent the original right-hand side;
i.e., the right-hand side on the finest grid level. These coarse grid right-hand sides are
needed whenever the corresponding coarse grid level is visited for the first time and,
in the case of the FAS method, during the multigrid cycles as well. They can either
be determined by successively restricting the right-hand side from the finest grid (as
is the case in Algorithm 5.2, Step 4) or, alternatively, by discretising the continuous
right-hand side (i.e., the function f in (5.1)) on each grid level anew [60].

5 Parallel Geometric Multigrid 177

5.3 Elementary Parallel Multigrid

In this section, we will introduce the basic concepts used in parallelising the geomet-
ric multigrid method.

5.3.1 Grid Partitioning

We begin with an outline of the parallelisation of a standard (geometric) multigrid
method, as introduced in Section 5.2. In the simplest case, computations are per-
formed on a hierarchy of L grids of ml × nl (×ol) grid lines for 2D (3D) problems
and for 1 ≤ l ≤ L. A vertex-centred discretisation will associate unknowns with the
grid vertices and the grid edges represent data dependencies (though not necessarily
all) induced by the discrete equations on level l when applying a stencil operation.

Our parallel machine model is motivated by current cluster architectures. In par-
ticular, we assume a distributed memory architecture and parallelisation by message
passing. The most common message passing standard, today, is the message passing
interface (MPI); see [29, 30], for example. Each compute node in this setting may
itself be a (shared memory) multiprocessor.

In the following, we will adopt standard message passing terminology and use
the notion of a process rather than a processor. In a typical cluster environment each
processor of a compute node will execute one process. The message passing para-
digm, however, also allows for situations where several processes are executed by
a single processor. In a parallel environment with a number of compute nodes that
is significantly smaller than the number of unknowns, the typical approach to paral-
lelise any grid-based algorithm is to split the grid into several parts or sub-grids and
assign each sub-grid and all of its grid nodes to one process. This approach is for
obvious reasons denoted as grid partitioning or domain partitioning; see for exam-
ple [41].

Note that grid (domain) partitioning is sometimes also referred to as domain de-
composition. This terminology is actually misleading, since domain decomposition
denotes a special solution approach. Classical domain decomposition algorithms in-
clude a subdomain solution phase in which each process solves a problem that is
completely independent of the problems in the remaining sub-domains. The solution
of the original problem posed on the global domain is then obtained by iteratively
adapting the local problem on any sub-domain based on the solutions computed by
other processes on the neighbouring sub-domains. The solution of the local problems
does not induce a need for communication between the processes. This is restricted
to the outer iteration in the adaptation phase. If the coupling is done in an appropri-
ate way, the local solutions will converge to the global solution restricted to the local
sub-domains. Thus, domain decomposition actually is a concept to design a new par-
allel algorithm using existing sequential ones as building blocks. For further details,
we refer to [19].

Grid (domain) partitioning, in contrast, denotes a strategy to parallelise an exist-
ing sequential grid-based algorithm. Here we will consider the parallelisation of the

178 F. Hülsemann et al.

(geometric) multigrid algorithm. In this case, there exist no independent local prob-
lems on the individual sub-domains and the execution of the algorithm itself induces
the need to communicate data between the different processes.

Before we consider this point of interdependence further, we briefly introduce
some notation. Let us denote by Ωl the grid on level l, by Ωlk its k-th sub-grid, by
nlj , 1 ≤ j ≤ N l a node of Ωl, and by plk the process responsible for sub-grid Ωlk.

As was illustrated in Section 5.2, all operations in a structured geometric multi-
grid method can in principle be expressed with the help of stencil operators that
are applied to a grid function. Such stencils often have a compact support. Hence,
when they are locally applied at a certain node nlj ∈ Ωlk, this only involves values
of the grid function at nodes that are neighbours of the node nlj . If the node nlj in
question is located inside the sub-grid Ωlk, then the application of a stencil can be
performed by process plk independently. However, if nlj is lying in the vicinity of
the sub-domain boundary, then the application of a stencil may involve nodes that
belong to neighbouring sub-domains and are thus not stored by process plk.

The straightforward solution to this problem is to let plk query its neighbours for
the node values involved whenever it requires them. This, however, must be ruled
out for efficiency reasons. Instead, the following approach is typically employed.

Each sub-domain Ωlk is augmented by a layer of so-called ghost nodes that sur-
round it. This layer is denoted as overlap region but other names such as halo are
also often used. The ghost nodes in the overlap region correspond to nodes in neigh-
bouring sub-domains that plk must access in order to perform computations on Ωlk.
The width of the overlap region is therefore determined by the extent of the sten-
cil operators involved. Figures 5.2 and 5.3 give two examples; one for a structured
and one for an unstructured grid. Note the difference in the size of the four subdo-
mains in Figure 5.2. This will result in some load imbalance, but is inevitable for the
(2k + 1) × (2m + 1) grids typically employed in geometric multigrid applications.
In Section 5.6.2 we will present a partitioning approach that avoids this difficulty.

The ghost nodes around each subdomain can be considered as a kind of read-only
nodes. This means that process plk will never change the respective function values
directly by performing computations on them, but will only access their values when
performing computations on its own nodes.

Keeping the values in the overlap region up-to-date requires communication with
the neighbouring processes. As an example, Figure 5.4 shows a strategy for updating
the overlap regions in a partitioning with four sub-grids and also demonstrates how
“diagonal” communication (in this example communication between the lower-left
and top-right process as well as between the top-left and bottom-right process) can
implicitly be avoided. The precise details of such an update and its frequency de-
pend on the multigrid component involved and will be considered in the following
sections.

When it can be assured that the function value at a ghost node glj in the overlap
region of Ωlk is always identical to the function value at its master node nlj when it
is read by plk, the computation will yield the same result as in the sequential case.
One of the major challenges in designing parallel geometric multigrid methods is to

5 Parallel Geometric Multigrid 179

Fig. 5.2. Partitioning of a structured grid into four sub-domains with an overlap region of
width one. We distinguish: inner nodes (white circles), boundary nodes (grey squares) and
ghost nodes (black circles / squares).

Fig. 5.3. Partitioning of a unstructured grid into four sub-domains with an overlap region of
width one. Ghost nodes are coloured according to their corresponding master nodes.

initial configuration west↔ east exchange north↔ south exchange

A

B

C

B

D

C

1 2 3 2 3 4 1 2 3 2 3 4

D

C

B

C

B

A

1 2 3 2 3 4

A

B

C

B

C

D

Fig. 5.4. Example update of ghost node values at the intersection of four sub-domains.

employ appropriate multigrid components and to develop suitable implementations,
such that this requirement is met with as little communication costs as possible, while
on the other side retaining the fast convergence speed and high efficiency achieved
by sequential multigrid algorithms.

Another important question is how to choose the grid partitioning. Since the size
of the surface of a sub-grid determines the number of ghost nodes in the overlap
region, it is directly related to the amount of data that must be transferred and thus
to the time spent with communication. This communication time is a consequence
of the parallel processing. This is complemented by the computation time, which

180 F. Hülsemann et al.

comprises all operations that a sequential program would have to carry out for the
local data set. In our application, this time is dominated by floating-point operations,
hence the name.

As a high computation-to-communication ratio is important for achieving rea-
sonable parallel efficiency, one thus typically strives for a large volume-to-surface
ratio when devising the grid partitioning. With structured grid applications, this ini-
tially led to the preference of 2D over 1D partitioning for 2D problems and 3D over
2D or 1D partitioning for 3D simulations.

In light of the increasing gap between CPU speed and main memory performance
(cf. Section 5.5) the focus has started to change. Not only the amount of data to be
communicated is now taken into account, but also the run-time costs for collecting
and rearranging them. Here, lower dimensional splittings such as 1D partitionings in
3D, for example, can yield performance benefits. See [53], for example. They may
further be advantageous in the case of the application of special smoothers such as
line smoothers, cf. Section 5.6.1.

5.3.2 Parallel Smoothers

In this section, we will describe the parallelisation of the classical point-based
smoothers that are typically used in geometric multigrid methods. More sophisti-
cated smoothers are considered in Section 5.6.1. Since, in the context of multigrid
methods, smoothers always operate on the individual grid levels, we drop the l super-
script in this section.

Parallelisation with Read-Only Ghost Nodes

We start our exposition with the simplest smoother, the weighted Jacobi method
given by

unew(nk) = uold(nk)− ω

σ(0, nk)

⎡⎣f(nk) −
∑

j∈K(nk)

σ(j, nk)uold(nk+j)

⎤⎦ , (5.9)

where K(nk) denotes the support of the stencil representing the discrete operator
at node nk, σ(j, nk) is the stencil weight for the value at node nk+j , and u and f
denote the approximate solution and the discrete right-hand side, respectively. Equa-
tion (5.9) implies that the new iterate unew at each node is computed based solely on
values of the previous iterate uold. Thus, if the values of uold are up-to-date at the
ghost nodes of the overlap region, each process can perform one Jacobi sweep on its
sub-domain independently of the remaining processes. Once this is done, one com-
munication phase is required to update the overlap regions again in order to prepare
for the next sweep or the next phase of the multigrid algorithm.

Let us now turn to Gauß-Seidel smoothing and its weighted variant; the succes-
sive over-relaxation (SOR). The formula for this smoother is given by

5 Parallel Geometric Multigrid 181

unew(nk) = uold(nk)− ω

σ(0, nk)

⎡⎣f(nk) −
∑

j∈K(nk)

σ(j, nk) v(nk+j)

⎤⎦ , (5.10)

where the Gauß-Seidel method is obtained for ω = 1. In (5.10), we have v(nk+j) =
uold(nk+j), if the node nk+j has not yet been updated during the computation, and
v(nk+j) = unew(nk+j), otherwise. Thus, (5.10) shows that in the case of SOR
smoothing the ordering in which the nodes are updated may influence the properties
and the qualities of the smoother. This turns out to be true and details can be found
in [60], for instance.

In a parallel setting this inherently sequential dependency causes some difficulty.
For example, assume a splitting of a regular grid into four sub-domains as shown
in Figure 5.2. Choosing a lexicographic ordering of the nodes for the update and
starting the Gauß-Seidel sweep from the lower left would imply that only the process
responsible for the lower left sub-domain could perform any computations until the
update reaches the top left sub-domain, and so on. As a consequence, three processes
would be idle all the time. A different ordering is therefore required in the parallel
setting.

Fortunately, the ordering chosen for most sequential multigrid applications is not
a lexicographic one anyway. Instead, a so-called red-black or checker-board ordering
is frequently used. This ordering often has superior properties in the multigrid con-
text. It is based on a splitting of the grid nodes into two groups depending on their
positions; a red group and a black one. For the typical 5-point stencil representing
the discrete Laplacian, see Section 5.2.3, the nodes in each of the groups are com-
pletely independent of each other. A red node only depends on black nodes for the
update, and vice versa. The advantage of this splitting for parallelisation is that each
subdomain can update its local red nodes using values at its black nodes (both local
and ghost), without the need for communication during the update. Once this is done,
one communication phase is required in order to update the values at the red ghost
nodes. Afterwards, the update of the black nodes can proceed, again independently,
followed by a second communication phase for updating the black ghost nodes.

Compared to the Jacobi smoother, the SOR smoother thus requires one additional
communication step. The total amount of data that needs to be transmitted remains
the same, however. For larger discretisation stencils, more colours are needed; a com-
pact 9-point-stencil requires a splitting into four sets of nodes, for example.

Trading Computation for Communication

Another possibility for parallelising the red-black SOR smoother and smoothers with
similar dependency patterns is to discard the read-only property of the ghost nodes
and to trade computation for communication. Assume that we perform a V(2,0)-
cycle, for example. In the first approach, four communication steps are required for
the two pre-smoothing steps. Let us denote by the k-th generation of ghost nodes all
nodes that are required to update in the SOR sweep the nodes in the (k-1)-th gener-
ation, with the nodes in a sub-domain belonging to generation 0. Broadly speaking,

182 F. Hülsemann et al.

this definition implies that one layer of ghost nodes is added for each SOR iteration
step that is meant to be performed without communication between the partitions.

If we extend the overlap region to include all ghost nodes up to fourth generation,
we can perform the four partial SOR sweeps without communication. This is possi-
ble, since in the overlap region the same values are computed as in the neighbouring
sub-domains. We must take into account, however, that each partial sweep invali-
dates one generation of ghost nodes; they cannot be updated anymore because their
values would start to differ from those at the master nodes that they should mirror.

This second approach increases both the overlap region (and thus the amount of
transferred data) as well as the computational work. Therefore, its advantage strongly
depends on the parallel architecture employed for the simulation. In the first place, it
is the ratio of the costs of floating-point computation, assembly of data into a mes-
sage, transfer of a message depending on its size, and initialising a communication
step between processes that are important here. Moreover, the size of the individual
sub-domains plays an essential role as well. We will return to the latter aspect in
Section 5.3.4.

Hybrid Smoothers

Let us conclude this subsection by mentioning another general concept for parallelis-
ing multigrid smoothers, which is known under the notion of hybrid smoothing [43].
See also [65] in this respect. The underlying idea is simple. One does not try to paral-
lelise the chosen smoother, maintaining all data dependencies. Instead, this smoother
is applied on each sub-domain independently of the other ones, and the values at
the ghost nodes are only updated after each sweep. Hence, this scheme corresponds
to an inexact block-Jacobi method. The impact of this approach on the smoothing
property and the convergence speed of the multigrid method is, of course, strongly
problem-dependent. It can be quite negative, though, and one must be cautious with
this approach. However, recently approaches have been developed to improve this
concept by the use of suitable weighting parameters; see [65] for more details.

5.3.3 Parallel Transfer Operators

As was introduced in Section 5.2, the use of grids of different resolutions in geo-
metric multigrid necessitates the use of inter-grid transfer operators. These allow to
restrict a grid function from the function space associated with a fine grid Ωl to the
space associated with a coarser grid Ωl−1 and to prolongate a grid function from
Ωl−1 to Ωl.

Both restriction and prolongation operators can typically be expressed by com-
pact local stencils and, as with the Jacobi smoother of the previous section, the order
in which the nodes are treated does not influence the final result. Using an overlap
region of sufficient width, the multigrid transfer operators can be parallelised easily.
Note, however, that using a vertex-centred discretisation, the subdomain Ωl−1

k and
Ωlk may cover different areas. An example is given in Figure 5.5, where a 1D pro-
longation by (piece-wise) linear interpolation is sketched. The overlap regions of the

5 Parallel Geometric Multigrid 183

Fig. 5.5. Prolongation at the interface between two sub-domains in 1D.

two sub-domains are shaded in grey. Thus, some care must be taken when performing
prolongation and restriction operations at the interfaces of the sub-domains.

5.3.4 Parallel Multigrid Cycles

Multigrid methods may employ different cycling strategies, the most prominent be-
ing the V- and the W-cycle. In principle, a parallel multigrid method can also be used
with different cycling strategies. However, again some extra issues come into play in
the parallel setting. One of the questions in this respect is that of parallel efficiency.
As was already mentioned in Section 5.3.1, the latter is coupled to the ratio of com-
putation time to communication time. In order to illustrate how this ratio changes
from one grid level to another, we have to determine the dominating factors for the
two parts.

In our numerically intensive case, it is safe to assume that the computation time
is linearly proportional to the number of nodes in a sub-domain Ωlk. For the commu-
nication part, we ignore for the moment the impact of message latencies and assume
that the communication time is linearly proportional to the number of ghost nodes
in the overlap region of Ωlk. In practice, the latter can be well approximated by a
multiple of the number of nodes on the sub-domain boundary. Thus, the ratio of
communication time to computation time is directly proportional to the surface-to-
volume ratio of the sub-domain.

As an example, Table 5.1 presents the values of the surface-to-volume ratio for
typical square sub-domains in 2D and cubic sub-domains in 3D. We assume a stan-
dard coarsening by doubling the mesh width in each dimension, see Figure 5.6, and
an overlap region of width 1. The example clearly shows that the surface-to-volume
ratio on coarser grids is less favourable than on finer grids. Similar results hold for
other partition geometries.

Depending on the representation of the discrete operator, partition sizes of a mil-
lion or more unknowns for a scalar PDE are not uncommon. In 3D, the surface-
to-volume ratio for a single grid algorithm operating on a partition consisting of
one cube with two million unknowns is in the order of 5%. Put differently, there
are twenty times more compute nodes than ghost nodes. However, on clusters with
high performance processors but slow networks, even this factor of 20 may not be
sufficient to hide the time for data exchange behind the time for the floating-point
operations by using the technique of overlapping communication and computation

184 F. Hülsemann et al.

Table 5.1. Examples of surface-to-volume ratios in two and three spatial dimensions. l denotes
the grid level in the hierarchy, B(l) the number of ghost nodes for a sub-domain Ωlk, V (l) the
number of nodes in Ωlk and r is the quotient of B(l) divided by V (l).

2D 3D
l B(l) V (l) r B(l) V (l) r

1 8 1 8.00 26 1 26.0
2 16 9 1.77 98 27 3.63
3 32 49 0.65 386 343 1.13
4 64 225 0.28 1,538 3,375 0.46
5 128 961 0.13 6,146 29,791 0.21
6 256 3,969 0.06 24,578 250,047 0.10
7 512 16,129 0.03 98,306 2,048,383 0.05
8 1024 65,025 0.02 393,218 16,581,375 0.02
9 2048 261,121 0.01 1,572,866 133,432,831 0.01
10 4096 1,046,529 0.004 6,291,458 1,070,599,167 0.006

Fig. 5.6. Example of full coarsening in 2D. Hollow circles indicate ghost nodes, full circles
denote the unknowns in the local partition.

discussed in Section 5.6.3. In 2D, the surface-to-volume ratio of a square shaped par-
tition with two million unknowns is more favourable than in 3D at the same number
of unknowns.

In the case of multigrid algorithms, the network performance becomes even more
important. One aim of the sequential multigrid algorithm is to perform as little work
as possible on the finest grid and to do as much work as possible on the coarser levels.
The assumption behind this idea is that operations such as smoothing steps are much
cheaper in terms of computing time on coarser grids than on finer ones. However,
this is not necessarily valid in the parallel setting. Given that network data transfer is
still significantly slower than accesses to main memory, it is safe to assume that, for
instance, smoothing the 27 interior points on level 2 in a cube takes less time than
communicating the 26 ghost values for the single unknown on grid level 1. Thus, in
this case, it is less time-consuming to keep working on a finer level than to delegate
the work to a coarser level, provided the work on the finer level is similarly efficient
to solve the problem.

5 Parallel Geometric Multigrid 185

Depending on the processor and network specifications, the same reasoning may
actually hold true for other levels as well, so that it may well be faster to stop the
multigrid recursion at level three or level four, say, or to use fewer processes for the
computations on the coarser grid levels. The problem then is to find an appropriate
solver for the remaining coarsest level in terms of computation and communication.

Let us further examine the communication demands of the grid hierarchy in a
parallel multigrid method from another perspective. Consider a 3D scalar elliptic
PDE on a grid with N = n3 unknowns. As can be seen from Section 5.2, the com-
putational cost for a single V- (γ = 1) or W-cycle (γ = 2) in this case is of order
O(N) = O(n3). The latter can be obtained from estimating the geometric series

n3 + γ1(n/2)3 + γ2(n/4)3 + γ3(n/8)3 + . . .

in combination with a linear relationship of the number of nodes per level to the
computational work on that level. Assuming that the domain is partitioned into a
grid of p3 = P sub-domains of (nearly) equal size, each of these has O((n/p)3)
nodes, and therefore a number of ghost nodes of order O((n/p)2). The total data
volume of communication for a V- or W-cycle is then given by

V3D
comm = O

(
p3 n

2

p2
(1 + γ1/4 + γ2/16 + γ3/64 + . . .)

)
= O(p n2) .

This consideration demonstrates that, even asymptotically (i.e., for n → ∞), the
aggregate costs of communication of a 3D multigrid V- or W-cycle differ from that
of a single data exchange between the partitions on the finest grid only by a constant
factor. In 2D, however, one obtains

V2D
comm = O

(
p2 n

p
(1 + γ1/2 + γ2/4 + γ3/8 + . . .)

)
.

Thus, asymptotically the argument in 2D only holds for the V-cycle, where we have
V2D

comm = O(p n). In contrast, the W-cycle leads to V2D
comm = O(p n log(n)). In

practice, of course, other effects will influence the run-time behaviour making the
situation more complicated. The most noticeable additional effect on many current
system architectures may be the startup cost (latency) of communication. When mes-
sages are small, as is the case when data is exchanged between sub-domains on
coarse grids, then the time for initiating a message exchange may be so large that
it cannot be neglected anymore. In contrast to the volume of communication, the
number of messages is independent of the sub-domain size and thus will grow with
log(n) for a standard multigrid method that employs all levels of the hierarchy. Also
the commonly applied technique of overlapping communication and computation,
see Section 5.6.3, that tries to reduce overall run-time requires that there is enough
computational work behind which communication can be hidden. This of course
becomes problematic, when sub-domains get too small on coarser grids. Addition-
ally, the aggregate data volume for all processes says little about the time needed for
communication. Depending on the network topology and allocation of the processes,
network jams may occur, or bandwidth may depend on message sizes, etc.

186 F. Hülsemann et al.

Finally, it is the run-time of a parallel multigrid algorithm that is of major interest
to the common user. The latter may be as much determined by the cost of commu-
nication as by the cost of computation, and finding ways to reduce communication
cost may be more important than reducing the cost of computation.

As a consequence, the typical rule of thumb in parallel multigrid is to prefer
cycling strategies that spend less time on coarser grids (e.g., V-cycles) to those that
spend more time on coarser grids (e.g., W-cycles) as far as parallel efficiency is
concerned. However, a concrete application problems may still require the use of
W-cycles for its increased robustness.

The question of a suitable parallel multigrid cycling strategy is closely related to
the question of how deep the grid hierarchy should be chosen. In multigrid, one often
tries to coarsen the mesh as far as possible, in the extreme even to a level with only
one unknown. It turns out that, in the sequential case, this is in fact a competitive
strategy, not alone since the exact solution of the coarsest grid problem in this case
can be performed with very small costs. In light of the above discussion, however,
the question is whether it is sensible to have grid levels where the number of compute
nodes exceeds that of grid nodes. One might even ask whether a grid level leading
to sub-domains with a large ratio of ghost nodes to interior nodes is desirable. As
often with parallel algorithms, there is no universal answer to these questions, since
the best approach depends on the actual parallel environment and the application at
hand.

However, two general strategies exist. One is known under the notion of coarse
grid agglomeration. The idea here is to unite the sub-domains of different processes
on one process once the ratio between interior and boundary nodes falls below a
certain threshold. While this leaves processes idle and induces a significant com-
munication requirement at those points in the multigrid cycle where one descends
to or ascends from a grid level on which coarse grid agglomeration occurs, it can
nevertheless be advantageous, since it reduces the communication work for perform-
ing operations (smoothing, residual computation, coarse grid correction, etc.) on this
level and the lower ones. The extreme of this approach is to collect all sub-domains
on one process on a certain level, and to perform a sequential multigrid algorithm on
the grid levels below.

Unfortunately, while this technique is mentioned in nearly all publications on
parallel multigrid, there appears, at least to our best knowledge, to exist no publica-
tion that thoroughly investigates the approach and gives the user some advice on how
and when this should be done depending on the underlying parallel architecture and
the specific multigrid algorithm.

Another strategy is to use a so-called U-cycle. The idea here is to confine oneself
to a comparatively flat multigrid hierarchy, i.e. the number of grid levels is chosen
such that the coarsest grid is still comparatively fine. While this induces the need to
compute an exact solution for the coarsest grid problem already on a global grid with
a larger number of unknowns, doing so can on one hand improve the convergence
speed, which can alleviate the additional costs. On the other hand, one can employ
another parallel solution method, such as a parallel sparse direct solver or a parallel

5 Parallel Geometric Multigrid 187

preconditioned Krylov subspace method for this purpose. See e.g. [64] for a closer
examination of this approach.

Generally, parallel multigrid designers should critically question what they are
optimising for. Implementing a U-cycle which stops already at a very fine coarsest
grid and simply solves the coarsest grid equations by a sufficient number of calls
to the smoother may lead to excellent parallel efficiency and impressive aggregate
Mflop/s rates5. However, in terms of run-time this will seldom be a high perfor-
mance approach, since the coarse grid solver is of course inefficient and needs many
iterations which incurs computation and communication time. This shows that all
arguments about parallel efficiency in the multigrid context must be considered with
some care.

At this point, it can also be pointed out that similar arguments should be con-
sidered when comparing multigrid algorithms with other iterative linear solvers.
If, for example, a preconditioner achieves a condition number which depends log-
arithmically on the system size of a 3D problem (as is the case for some of the
more advanced domain decomposition algorithms, for instance), then the CG solver
will need O(log n) iterations. Assuming that the preconditioner requires one next
neighbour data exchange, the solver has an overall communication volume of or-
der O(p n2 log n), which is asymptotically worse than for an equivalent multigrid
method, while being asymptotically equivalent in the number of messages to be sent.

Summarising the argument in this section, we see that multigrid may make it
difficult to obtain good parallel efficiency, but this should not misguide anyone to
try to use too simplistic variants or be misinterpreted as necessarily leading to poor
run-time performance. Asymptotically, multigrid is not only optimal in (sequential)
computational complexity, but using grid partitioning, it also requires asymptotically
only close to the minimal amount of communication.

5.3.5 Experiments

The computational results in this section have the very simple aim to illustrate the
potential of parallel geometric multigrid methods and to show that, on suitable ar-
chitectures, parallel multigrid can be designed to be extremely efficient both with
respect to absolute timings and in terms of parallel efficiency. The test case is a Pois-
son problem with Dirichlet boundary conditions in three space dimensions. Though
numerically no challenge, this is a hard test problem with respect to efficiency, since
the ratio of computation to communication is very low and thus it is not trivial to
achieve good speedup results.

For the scalability experiment, the problem domains consist of 9N unit cubes
with N being the number of processes in the computation. Seven refinement levels
are used in the grid hierarchy. In the case of the speed-up experiment, the number
of computational cells in the problem domain remains constant, of course. The L-
shaped problem domain consists of 128 unit cubes and six refinement levels are

51 Mflop/s = 106 floating-point operations per second, 1 Gflop/s = 109 floating-point op-
erations per second.

188 F. Hülsemann et al.

CPU Dof Time
×106 in (s)

64 1179.48 44
128 2359.74 44
256 4719.47 44
512 9438.94 45
550 10139.49 48

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processes

linear
observed

(b)

Fig. 5.7. Parallel performance results in 3D: (a) Scalability experiments using a Poisson prob-
lem with Dirichlet boundary conditions on an L-shaped domain. Dof denotes the degrees of
freedom in the linear system, the timing results given refer to the wall clock time for the solu-
tion of the linear system using a full multigrid solver. (b) Speedup results for the same Poisson
problem.

generated by repeated subdivision. The problem domain is distributed to 2, 4, 8, 16,
32, and 64 processes. The single processor computing time is estimated by dividing
the two processor execution time by two.

The algorithmic components of the multigrid method are well established. We
employ a variant of the red-black Gauß-Seidel iteration as smoother and full weight-
ing and trilinear interpolation as the inter-grid transfer operators. The cycling strategy
is a full multigrid method in which we perform two V(2,2)-cycles on each grid level
before prolongating the current approximation to the next finer grid in the hierarchy.
A discretisation by trilinear finite elements results in a 27-point stencil in the interior
of the domain.

The experiments were carried out on the Hitachi SR8000 supercomputer at the
Leibniz Computing Centre in Munich. The machine is made up of SMP nodes with
eight processors each and a proprietary high speed network between the nodes. The
program runs with an overall performance, including startup, reading the grid file and
all communication, of 220 Mflop/s per process, which yields an agglomerated node
performance of 1.76 Gflop/s out of the theoretical nodal peak performance of 12
Gflop/s. To put the solution time into perspective, we note that the individual proces-
sors have a theoretical peak performance of 1.5 Gflop/s, which is not much compared
to the 6 Gflop/s and more of currently available architectures, such as e.g. the Intel
Pentium IV 3.6 GHz, the Intel ItaniumII 1.5 GHz or the IBM PowerPC 970 2.2GHz.
Nevertheless, a linear algebraic system with more than 1010 unknowns distributed
over 550 processes and as many processors is solved in less than 50 seconds. For
information concerning the design principles and the data structures of this multigrid
code, we refer to [36].

The scalability results owe much to the ability of the full multigrid algorithm to
arrive at the result with a fixed number of cycles, independent of the problem size,
cf. Sect 5.2.5. One might think that the speedup experiment represents a harder test,

5 Parallel Geometric Multigrid 189

Table 5.2. Scale up results for parallel V(2,2)-cycle in 3D: Dof are the degrees of freedom,
Time is the wall clock solution time for the linear system.

CPU Dof Time V-cycles
×106 in (s)

8 133.4 78 9
16 267.1 81 10
32 534.7 95 11

as the amount of communication over the network increases, while the amount of
computations per process decreases. However, as shown in Figure 5.7, the behaviour
is close to optimal. In the experiment, an L-shaped domain consisting of 128 cubes
is distributed to 2, 4, 8, 16, 32, and 64 processes. Each cube is regularly subdivided
six times. The same Poisson problem is solved using the same multigrid algorithm
as before.

Even the straightforward V-cycle can handle large problems in acceptable time
frames, as the following experiment shows. We solve again a 3D Poisson problem
with Dirichlet boundary conditions again on the Hitachi SR8000, but this time we
employ the 7-point finite difference stencil on problem domainsΩ1 = [0, 2]×[0, 2]×
[0, 2], partitioned into 8 hexahedra, Ω2 = [0, 4] × [0, 2] × [0, 2], partitioned into 16
hexahedra, Ω3 = [0, 4]× [0, 4]× [0, 2], partitioned into 32 hexahedra. On each grid
level, we perform two pre- and two post-smoothing steps. The fact that the number of
V-cycles in Tab. 5.2 increases with the problem size is a consequence of the stopping
criteria that imposes an absolute limit on the l2-norm of the residual vector. Still, the
V-cycle multigrid manages to solve a system with more than 500 · 106 unknowns in
95 seconds, in this case on 32 processors.

5.4 Parallel Multigrid for Unstructured Grid Applications

5.4.1 Single Grid Aspects

In this section, we examine the added complications that arise when parallelising a
multigrid solver on unstructured grids. We first consider the single grid case before
turning to the multigrid setting.

From a sufficiently abstract point of view, the steps in the parallelisation of op-
erations on an unstructured grid are the same as in the structured case considered so
far. First, the grid has to be partitioned, then the necessary ghost points have to be
determined. After that, it has to be worked out for each ghost value from which par-
tition the information can be retrieved before finally the communication structures
between the partitions are set up.

Fortunately, the commonly used programs to perform the partitioning step, such
as Metis or ParMetis [39, 40], are applicable to structured and unstructured grids
alike. As in the structured case, the discretisation scheme determines which ghost

190 F. Hülsemann et al.

values are needed around the partition boundary. One major difference between the
two grid types concerns the number of neighbouring partitions with which a given
partition has to exchange information. In the structured case, the number of neigh-
bours is bounded independently of the number of partitions, whereas in the unstruc-
tured case, this number is not bounded a priori. For operations such as a matrix vector
product or an inner product between two distributed vectors, this of course affects the
number of messages that have to be sent in order to keep the data synchronised across
partitions, but the basic functionality is the same as in the structured case. However,
for inherently sequential operations, such as the common Gauß-Seidel smoother in
multigrid schemes, efficient parallelisation strategies that minimise the number of
messages are more difficult to construct. The problem is linked to the one of the
colouring of the data dependency graph between the partitions. Given that this graph
depends on the distribution of the unstructured grid, it is only known at run-time.
Hence, any parallelisation strategy has to be formulated and implemented in a gen-
eral fashion, which is much more complicated than in the structured case, where the
neighbourhood relationships are known at compile-time. For further details on paral-
lel smoothing in the unstructured case we refer the reader to [65], where this problem
is considered in detail, since parallel algebraic multigrid faces the same challenge.

5.4.2 Generation of Grid Hierarchies

Turning now to multigrid methods on unstructured grids, the first problem concerns
the construction of the grid hierarchy. The common approach to generating the hi-
erarchy of nested approximation spaces needed for standard geometric multigrid on
unstructured grids consists in carrying out several steps of repeated regular refine-
ment as depicted in Figure 5.8. The reason for the popularity of this approach lies
in the complexity and difficulty of any alternative. Coarsening a given unstructured
grid so that the resulting approximation spaces are nested is often impossible. Hence,
one would have to work on non-nested spaces. Multigrid methods for such a setting
are much more complicated than those for their nested counterparts. In summary,
although it is possible to construct geometric multigrid methods on hierarchies of
repeatedly coarsened unstructured grids, this option is rarely chosen in practice.

Concerning the parallelisation, the simplest approach is to perform the grid dis-
tribution only once, on the unstructured input grid, and then to let the finer levels
inherit the communication pattern from the coarsest grid. However, this strategy will
amplify any kind of load imbalance present in the distribution of the initial grid. The
other extreme approach is to partition each grid level individually. This avoids the
load balancing problems of the other method at the cost of a more complex initiali-
sation phase and potentially more complicated communication patterns in the multi-
grid algorithm. Which approach yields the smaller run-time depends on the concrete
problem and the CPU and network specifications. We refer to [58] for a discussion
of load balancing issues.

5 Parallel Geometric Multigrid 191

a)

c)

b)

I)

II)

III)

Fig. 5.8. Non-destructive testing example, from left to right: I) the problem domain with a) the
coil that generates a magnetic field, b) air surrounding the coil, and c) the material to be tested.
The material parameters (magnetic permeability) of the three different components differ from
each other, but are assumed to be constant within each component (homogeneous materials).
II) the coarse, unstructured grid that represents the problem geometry and III) the grid after
two global regular subdivision steps

5.4.3 Hierarchical Hybrid Grids

The repeated refinement of an unstructured input grid described above opens up pos-
sibilities for performance improvement over standard unstructured implementations.
The main observation is that, after a number of refinement steps, the resulting grids
are still unstructured globally, but exhibit regular features locally.

We illustrate the generation of these locally regular structures using a simplified
problem domain that arose in an electromagnetic field problem. Consider the setting
in Figure 5.8.

For the representation of the discrete operator on the grid in Figure 5.8 II), it is
appropriate to employ sparse matrix storage schemes. However, the situation on the
grid in Figure 5.8 III) is different. Within each cell of the unstructured input grid,
the repeated refinement has resulted in regular patches. In the interior of each coarse
grid cell, the grid is regular and the material parameter is constant. This implies that
one stencil suffices to represent the discrete operator inside such a regular region.

The main idea is now to turn operations on the refined, globally unstructured grid
into a collection of operations on block-structured parts where possible and resort to
unstructured operations only where necessary. Provided a sufficiently high level of
refinement or, put differently, provided that the regular regions are sufficiently large
in comparison to the remaining parts, this approach combines an improved single
node floating-point performance with the geometric flexibility of unstructured grids,
at least at the input level. For more details, see [5, 35].

Assuming a vertex-based discretisation, the discrete operator can be expressed
by a stencil with constant shape in each regular region of the refined grids as the
neighbourhood relationship does not change. In some cases, the entries of the sten-
cil are also constant over the object. Inside such a region, the representation of the

192 F. Hülsemann et al.

operator can be reduced to one single stencil. Both properties, constant stencil shape
and constant stencil entries, help to improve the performance of operations involv-
ing the discrete operator. The scale of the improvement depends on the computer
architecture.

On general unstructured grids, the discrete operator is usually stored in one of
the many sparse matrix formats. If one uses such general formats in operations such
as the matrix-vector product or a Gauß-Seidel iteration, one usually has to resort to
indirect indexing to access the required entries in the vector. Being able to represent
the discrete operator in the regular regions by stencils with fixed shapes, we can ex-
press the memory access pattern for the operation explicity through index arithmetic
and thus enable the compiler to analyse and optimise the memory accesses better.
In the sparse matrix case, the memory access pattern is known at run-time, in our
setting it is known at compile-time, at least for a significant subset of all points.

On the Hitachi SR8000 supercomputer at the Leibniz Computing Centre in Mu-
nich, the change from indirect indexing to index arithmetic improves the Mflop/s per-
formance of a Gauß-Seidel iteration on a single processor from around 50 Mflop/s for
a CRS (compressed row storage) implementation to 300 Mflop/s for the stencil-based
computation. These values were obtained with a 27-point finite element discretisa-
tion inside a refined hexahedron on a processor with a theoretical peak performance
of 1500 Mflop/s. On this high memory bandwidth architecture, the explicit knowl-
edge about the structure of the operations results in a six-fold performance improve-
ment. Many cache-based architectures do not offer such a high bandwidth to main
memory. Given that a new stencil has to be fetched for each unknown, the memory
traffic to access the stencil values slows down the computations on these machines.
As an example for such machines, we consider an Intel Pentium 4 processor with
2.4 GHz clock speed, 533 MHz front side bus and dual channel memory access. Our
CRS-based Gauß-Seidel iteration runs at 190 Mflop/s on a machine with a theoreti-
cal peak performance of 4800 Mflop/s6. With the fixed stencil shape implementation,
we observe a performance between 470 and 490 Mflop/s, depending on the problem
size, which is 2.5 times more than for the standard unstructured one. In all cases,
the problem size did not fit into the caches on the machines. In the case of con-
stant stencil entries for an element, the advantage of the structured implementation is
even clearer. Instead of fetching 27 stencil values from memory for each unknown,
the same stencil is applied to all unknowns in the element. This obviously reduces
the amount of memory traffic significantly. On the Hitachi SR8000, such a constant
coefficient Gauß-Seidel iteration achieves 884 (out of 1500) Mflop/s on a hexahe-
dron with 1993 unknowns. Compared to the standard unstructured implementation,
this amounts to a speed up factor of 17.5. Again, on the commodity architecture
Pentium 4, the improvement is less impressive. For a problem of the same size, the
constant coefficient iteration runs at 1045 Mflop/s, which is 5.5 times faster than its
unstructured counterpart. In short, the hierarchical hybrid approach works well for
the setting for which it was derived. This is the case when the input grid is com-

6The results on the PC architecture were obtained with the version 3.3.3 of the GNU
compiler collection.

5 Parallel Geometric Multigrid 193

paratively coarse and has to be subdivided several times for accuracy reasons. Then
the resulting grid hierarchy is well suited for the above mentioned approach. How-
ever, when, due to a complicated geometry, the input grid has to be very fine so that
only few refinement steps are either necessary or possible, then the proposed data
structures are not advantageous.

5.5 Single-Node Performance

5.5.1 Overview

In order to increase the run-time performance of any parallel numerical application,
it is essential to address two related optimisation issues, each of which requires inti-
mate knowledge in both the algorithm and the architecture of the parallel computing
platform. Firstly, it is necessary to minimise the parallelisation overhead itself. This
optimisation target represents the primary focus of this paper.

Secondly, it is essential to exploit the individual parallel resources as efficiently
as possible; i.e., by achieving the highest possible performance on each node in the
parallel environment. This is especially true for distributed memory systems found in
clusters based on off-the-shelf workstations communicating via fast interconnection
networks.

5.5.2 Memory Hierarchy Optimisations

According to Moore’s law from 1975, the number of transistors on a silicon chip
will double every 12 to 24 months. This prediction has already proved remarkably
accurate for almost three decades. It has led to an average increase in CPU speed of
approximately 55% every year. In contrast, DRAM speed has evolved rather slowly.
Main memory latency and memory bandwidth have only been improving by about
5% and 10% per year, respectively [34]. The International Technology Roadmap for
Semiconductors7 predicts that this trend will continue further on and the gap between
CPU speed and main memory performance will grow for more than another decade
until technological limits will be reached. Therefore, today’s computer architectures
commonly employ memory hierarchies in order to hide both the relatively low main
memory bandwidth as well as the rather high latency of main memory accesses.

A typical memory hierarchy covers the CPU registers, up to three levels of cache,
and main memory. Cache memories are commonly based on fast semiconductor
SRAM technology. They are intended to contain copies of main memory blocks to
speed up accesses to frequently needed data. The reason why caches can substan-
tially reduce program execution time is the principle of locality of references. This
principle is empirically established and states that most programs do not access all
code or data uniformly. Instead, recently used data as well as data that are stored
close to the currently referenced data in address space are very likely to be accessed

7See the http://public.itrs.net web site.

194 F. Hülsemann et al.

in the near future. These properties are referred to as temporal and spatial locality,
respectively [34].

Only if the hierarchical memory architecture is respected by the code, can ef-
ficient program execution (in terms of arithmetic operations per time unit) be ex-
pected. Unfortunately, current optimising compilers are not able to synthesise chains
of complicated cache-based code transformations. Hence, they rarely deliver the per-
formance expected by the users and much of the tedious and error-prone work con-
cerning the tuning of the memory efficiency (particularly the utilisation of the cache
levels) is thus left to the software developer. Typical cache optimisations techniques
cover both data layout transformations as well as data access transformations.

Data layout optimisations aim at enhancing code performance by improving the
arrangement of the data in address space. On one hand, such techniques can be ap-
plied to change the mapping of array data to the cache frames, thereby reducing the
number of cache conflict misses. This is achieved by a layout transformation called
array padding [54]. On the other hand, data layout optimisations can be applied to
increase spatial locality. They can be used to reduce the size of the working set of
a process; i.e., the number of virtual pages which are referenced alternatingly and
should therefore be kept in main memory [34]. Furthermore, data layout transforma-
tions can be introduced in order to increase the reuse of cache blocks (or cache lines)
once they have been loaded into cache. Since cache blocks are always transferred as
a whole and contain several data items that are arranged next to each other in address
space, it is reasonable to aggregate data items in address space which are likely to
be referenced within a short period of time. This is primarily accomplished by the
application of array merging [34].

In contrast, data access optimisations change the order in which iterations in a
loop nest are executed. These transformations primarily strive to improve both spa-
tial and temporal locality. Moreover, they can also expose parallelism and make loop
iterations vectorisable. Typical examples of data access transformations are loop in-
terchange and loop blocking (loop tiling), see [2]. Loop interchange reverses the
order of loops in a loop nest, thereby reducing the strides of array-based computa-
tions; i.e., the step sizes at which the corresponding arrays are accessed. This implies
an improved reuse of cache blocks and thus causes an increase in spatial locality. In
contrast, loop blocking is primarily used to improve temporal locality by enhancing
the reuse of data in cache and reducing the number of cache capacity misses. Tiling
a single loop replaces it by a pair of loops. The inner loop of the new loop nest tra-
verses a block of the original iteration space with the same increment as the original
loop. The outer loop traverses the original iteration space with an increment equal to
the size of the block which is traversed by the inner loop. Thus, the outer loop feeds
blocks of the whole iteration space to the inner loop which then executes them step
by step.

Performance experiments emphasize the effectiveness of cache-based transfor-
mations. Depending on the properties of the underlying problem (2D/3D, constan-
t/variable coefficients, etc.), the application of appropriate cache optimisation tech-
niques has revealed significant speedups of up to a factor of 5 on common cache-
based architectures. The impact of these techniques is typically examined by apply-

5 Parallel Geometric Multigrid 195

ing suitable code profiling tools that are usually based on platform-specific perfor-
mance hardware such as dedicated counter registers [34].

For further details on cache optimisation techniques for numerical computations,
we refer to [42, 61] and to the research in our DiME8 project. In particular, we refer
to [18] for an overview of cache optimisation techniques for multigrid methods.

5.5.3 Optimising for SMP Nodes

It is often the case that the individual nodes of a parallel computing environment con-
sist of parallel architectures themselves. For example, many of today’s workstation
clusters are composed of so-called symmetric multiprocessors (SMPs). SMP nodes
are shared memory machines commonly consisting of two, four, or eight CPUs that
access the local shared memory modules through fast interconnects such as a cross-
bar switches [34]. Lower levels of cache may be shared as well.

Within each SMP node, the parallel execution of the code is based on a shared
memory programming model using thread parallelism. Thread parallelism can either
be introduced automatically by parallelising compilers or by explicit programming;
e.g., by using OpenMP directives [12, 13]. The individual nodes, however, typically
communicate with each other using a distributed memory programming paradigm
such as message passing.

The conclusions from the previous section carry over from single-CPU nodes
to SMP nodes. Obviously, in the latter case, the efficient utilisation of the memory
hierarchies is crucial for run-time performance as well. However, the manual in-
troduction of cache-based transformations into thread-parallel code using OpenMP
typically turns out to be even more tedious and error-prone.

5.6 Advanced Parallel Multigrid

In this section we will present a selection of extensions of the basic parallel multigrid
method, as described in Section 5.3.

5.6.1 Parallelisation of Specific Smoothers

Multigrid methods come in many variants as required by specific applications. The
treatment of anisotropies in particular is important in practice and has been studied
extensively in the literature, see e.g. [60] and the references cited therein. In order to
maintain full multigrid efficiency in the presence of mild anisotropies, one can use
SOR smoothers with special weights [66], which in terms of a parallel implementa-
tion poses no additional difficulties. However, in the case of strong anisotropies, the
ideal multigrid efficiency can only be maintained by either the use of non-standard
coarsening strategies such as semi-coarsening, see [60], or the use of more advanced
smoothers.

8See the http://www10.informatik.uni-erlangen.de/dime web site.

196 F. Hülsemann et al.

Fundamentally, the stronger coupling of the unknowns in a specific direction, as
it is the case in anisotropic problems, must be observed in the algorithm. One way
to accomplish this is to use so-called line-smoothers. These basically operate in the
same fashion as the point smoothers described in Section 5.3.2 with the difference
that the unknowns belonging to all nodes of a complete grid line are relaxed con-
currently. In order to do this, a (small) linear system of equations, most often with
tri-diagonal or banded structure, must be solved for each line. In view of a grid parti-
tioning, this is uncritical as long as these lines of dependencies do not intersect sub-
domain interfaces. If the tri-diagonal systems must be distributed across processes,
then the solution of these systems must be distributed accordingly, where the usual
starting point is the cyclic reduction algorithm; see [21], for example.

In the literature, many variants and extensions have been described, of which we
mention only a few. Line smoothing is usually applied in a so-called zebra order,
for example, akin to the red-black ordering for Gauß-Seidel and SOR, to simplify
parallelisation. Having such a set of tri-diagonal systems which can be solved inde-
pendently may also be used to parallelise (or vectorise) the simultaneous solution.
This may lead to better parallel efficiency (or better vectorisation), since it avoids
the need to devise parallel strategies for the inherent dependencies in the tri-diagonal
systems.

Unfortunately, anisotropies aligned with the grid lines of a structured grid are
just the simplest case. More complicated forms of anisotropies will require more
complex smoothing strategies, such as alternating the direction of the line smoothers.
This, however, again leads to problems with the parallelisation, since the lines of
dependencies will then necessarily intersect sub-domain boundaries.

Finally, it should be mentioned that some 3D applications not only exhibit lines
of strongly coupled unknowns, but planes of strong coupling. Smoothers adapted to
this situation will treat all the unknowns in such a plane simultaneously. An effi-
cient technique for solving the resulting linear systems is to revert to a 2D multigrid
method [59]. Again, it may be necessary to do this in alternating plane directions,
and each of the 2D multigrid algorithms may need line smoothing in order to be
efficient. Any such strategy is naturally problem-dependent. Hence, it is difficult to
develop any generally usable, robust multigrid method based on these techniques.

Besides anisotropies, the treatment of convection-diffusion equations (with dom-
inating convection) is of high practical interest. In this case, the multigrid theory is
still much less developed. One algorithmic multigrid approach to convection domi-
nated PDEs is based on smoothers with downstream relaxation, where the smoother
is designed such that it observes the (sequential) data dependencies along the charac-
teristics (that is streamlines) of the flow. Again, a parallelisation of such a smoother is
easy when the domains are split parallel to the lines of dependency, but unfortunately
this is far from trivial to accomplish in most practical situations where the stream-
lines may change direction throughout the domain or — in the case of nonlinear
equations — may depend on the flow itself. In these cases, no generally applicable
rules for the parallelisation exist, but the best strategy depends on the application.

Another smoothing approach successfully applied to both of the above problems
is to employ variants of the incomplete LU decomposition (ILU) method; See [56, 60,

5 Parallel Geometric Multigrid 197

63], for example. It has been shown that ILU smoothers lead to robust and efficient
multigrid methods in the sequential setting, at least for 2D problems. The 3D case,
however, remains problematic with respect to efficiency. Only for problems with
dominating directions efficient 3D ILU smoothers exist so far, see the remarks in
[60]. From the parallel point of view, the problem is that, while ILU algorithms are
in principle point-based smoothers, they are intrinsically sequential and therefore
difficult to parallelise, the more so, since their quality depends even stronger on the
ordering of unknowns than this is the case for the SOR method. For more details on
parallel ILU smoothers, see the references in [65], for example.

At the end of this subsection, we wish to give a word of warning. For any algo-
rithm designer, it is tempting to simply neglect certain complexities that may arise
from an efficient treatment of either anisotropies or dominating convection. This may
be the case for sequential multigrid and is of course even more tempting when all the
difficulties of parallelisation need to be addressed. In this case, algorithm design-
ers often modify the algorithm slightly to simplify the parallel implementation. For
example, the tridiagonal systems of line smoothers can simply be replaced by a col-
lection of smaller tridiagonal systems as dictated by sub-domain boundaries, thus
neglecting the dependencies across the sub-domains in the smoother. These smaller
systems can be solved in parallel, benefiting parallel efficiency and simplifying the
implementation. Such a simplified method will still converge because it is embedded
in the overall multigrid iteration. In the case of only few sub-domains and moderate
anisotropy, this may in fact lead to a fully satisfactory solver.

However, if the physics of the problem and the mathematical model really dictate
a global dependency along the lines of anisotropy, then such a simplified treatment
which does not fully address this feature will be penalised; the convergence rate will
deteriorate with an increasing number of sub-domains to the point that the benefit of
using a multigrid method is completely lost. Eventually there is no way to cheat the
physics and the resulting mathematical properties of the problem. Multigrid methods
have the disadvantage (or is this an advantage?) that they mercilessly punish any
disregard for the underlying physics of the problem. Optimal multigrid performance
with the typical convergence rates of 0.1 per iteration will only be achieved, if all the
essential features of the problem are treated correctly — and this may be not easy at
all, especially in parallel.

5.6.2 Alternative Partitioning Approaches

In this section, we will briefly introduce three different concepts that can be seen as
alternatives to the standard grid partitioning approach described in Section 5.3.1.

Additive and Overlapping Storage

The grid partitioning introduced in Section 5.3.1 assumed that each node of the grid
belongs to a unique sub-domain and ghost nodes were employed to handle sub-
domain dependencies. In this subsection, we will briefly discuss an approach to grid

198 F. Hülsemann et al.

partitioning that strikes a different path. For a detailed analysis, see [17, 31, 37]. It
can most easily be explained from a finite element point of view.

In the first approach to grid partitioning, nodes uniquely belong to sub-domains
(node-oriented decomposition). Thus, the elements are intersected by sub-domain
boundaries. In the second approach, one assigns each element to a unique sub-
domain (element-oriented decomposition). In this case, nodes on the sub-domain
boundaries belong to more than one sub-domain. This introduces the question of
how to store the values of a grid-function (i.e., an FEM vector) at these nodes. One
combines two different schemes. The first one, denoted as overlapping storage, as-
sumes that each process stores the function values at the respective nodes. In this
case, the connection between the local vector vk on process pk and the global vector
v can be expressed by a boolean matrix Mk as vk = Mkv.

In the second scheme, the global function value v(nj) at a node nj on the bound-
ary is split between all sub-domains to which nj belongs. If sp is the number of
sub-domains, then the global function v can be obtained from the local sub-domain
functions vk via

v =
sp∑
k=1

MT
k vk .

This is denoted as adding storage. Note that the conversion of an adding type vector
to a vector of overlapping type requires communication, while the reverse operation
can be performed without communication. In a similar fashion, one can define oper-
ators of adding and of overlapping type. This can be imagined in the following way.
For an adding type operator a process stores all stencils for nodes in its sub-grid as
vectors of adding type and analogously for an operator of overlapping type.

The application of an adding type operator to an overlapping type vector can be
performed without communication and will result in a vector of adding type. Un-
der some constraints regarding the dependency pattern of the respective operator, the
application of an operator of overlapping type to a vector of either adding or over-
lapping type can also be performed without communication and results in a vector of
the original type. Proofs as well as a detailed analysis of the limiting conditions can
be found in [31].

The element-oriented decomposition in combination with the above storage con-
cept can be used to parallelise a multigrid method in the following fashion. One
stores the approximate solutions and the coarse grid corrections as vectors of over-
lapping type and the right hand sides and residuals as vectors of adding type. The
transfer operators are stored in overlapping fashion, while the discrete differential
operator is stored as operator of adding type.

Under these assumptions (and assuming that the dependency patterns of the op-
erators fulfil the limiting conditions) one can show that none of the multigrid com-
ponents prolongation, restriction, computation of the residual, and coarse grid cor-
rection step requires any communication. The only place where communication is
required is the smoothing process. Here, typically the update to the old approximate
can be computed as vector of adding type, which must be converted to overlapping
storage before adding it to the old approximate. As is the case for node-oriented de-

5 Parallel Geometric Multigrid 199

compositions, each smoothing step will thus require one communication step. In the
latter approach, however, restriction and prolongation will typically incur the need
for a communication step in order to update the residual resp. the approximate so-
lution at the ghost nodes, before the interpolation operation itself. Compared to a
node-oriented decomposition there is, thus, a significant reduction in the number of
messages and the amount of data that must be exchanged.

Another interesting aspect, though less general, is the following. Assume that
our multigrid method employs a hierarchy of regular grids Ωl composed of (2ml +
1)× (2nl + 1) nodes. As was mentioned in Section 5.3.3, the use of a node-oriented
decomposition will lead to a hierarchy, where sub-grids on different levels cover
different areas. With the element-oriented decomposition this problem does not arise.
The sub-grid boundaries coincide on all levels. Furthermore, we will obtain a perfect
load balance, as far as the number of grid nodes in each sub-grid is concerned. This
is not the case for standard grid partitioning, see Figure 5.2 in this respect.

The reduced number of places in the algorithm, where communication occurs,
as well as the symmetric view of the data, i.e. a node does not change its type from
local to ghost, when going from one partition to the other, can also be seen as an
advantage with respect to the implementation of the multigrid algorithm.

In summary, we think that the element oriented decomposition, if it is applicable,
is a sincere challenger to the classical node-oriented decomposition approach.

Full Domain Partitioning

The partitioning schemes presented so far result in each process storing its patch
(sub-grid) of the global grid plus some data from the immediate neighbouring
patches. In this case, on the finer grid levels, each process knows its part of the
global grid, but no process works on the whole problem domain. In the Full Domain
Partition approach, in short FuDoP, proposed by Mitchell [46, 47, 48], each process
starts from a coarse grid representing the whole problem domain and then adaptively
refines the grid until the resolution is sufficiently accurate in its area of responsi-
bility. As a result, each process computes a solution for the whole domain, albeit
with a high accuracy only in its patch of the global domain on a grid that becomes
increasingly coarse the further the distance to that patch.

The advantage of this approach is that existing serial, adaptive codes can be re-
used in a parallel context. In [46], a V-cycle multigrid method is presented that re-
quires communication on the finest and on the coarsest level only, but not on the
levels in between. However, on the downside, this approach requires all to all com-
munication as now the grids on any two processes overlap. Whether this approach
shows run-time advantages over standard partitioning schemes depends on the num-
ber of processes, the number of grid levels and, as usual, on the network characteris-
tics.

Bank and Holst [3] promote a similar technique for parallel grid generation to
limit load imbalances in parallel computations on adaptively refined grids. These
authors also stress that existing adaptive components can be employed in a parallel
setting with comparable ease.

200 F. Hülsemann et al.

Space-Filling Curves

The issues of partitioning and load balancing in the context of parallel adaptive multi-
grid have also been addressed through the use of so-called space-filling curves. A
space-filling curve represents a mapping Φ of the unit interval I := [0, 1] to the
space R

d, d = 2, 3, such that the image Φ(I) has a positive measure. See [28, 67],
for example. The computational domain Ω is supposed to be a subset of Φ(I) such
that all nodes of the adaptively refined discretisation grid are elements of Φ(I) and
thus passed by the space-filling curve. At this point we should mention the following
two aspects. The first one is that space-filling curves are typically constructed as the
limit of a family of recursively defined functions. In practice no real space-filling
curve, but only a finite approximation from such a family is employed in the method.
Secondly, the assumption that the curve passes through all nodes of the grid is not a
restrictive one. The space-filling curve by its nature can be chosen such that it com-
pletely covers a domain in 2D / 3D. Choosing a fine enough approximation will thus
fulfil the assumption.

The fundamental advantage of the partitioning approach based on space-filling
curves is that it allows for inexpensive load balancing. The idea, namely, is to use
the inverse mapping of Φ and to divide the unit interval I into partitions that ap-
proximately contain the same numbers of pre-images of grid nodes. These partitions
of I are then mapped to the available processes. Therefore, the computational load
is balanced exactly. As a consequence of this decomposition approach, the original
d-dimensional graph partitioning problem, which can be shown to be NP-hard [52],
is approximated by a 1D problem that is easy to solve.

However, it has been demonstrated that the resulting partitioning of the actual d-
dimensional computational grid can be suboptimal and may involve much more com-
munication overhead than necessary. For a comprehensive presentation, we again
point to [67] and the references therein.

5.6.3 Reduced and Overlapped Communication

Overlapped Communication

A technique to improve the parallel efficiency of any parallel algorithm is to overlap
communication and computation, see also [41] in this context. In parallel multigrid,
this can work as follows. Consider the Jacobi smoother discussed in Section 5.3.2
and assume that we are using a grid partitioning with ghost nodes. One sweep of the
Jacobi method does not require any communication. However, after the sweep, the
values at the ghost nodes must be updated. Remember that the order in which the
nodes are treated during the Jacobi sweep does not play a role. Thus, we are free
to alter it to our taste. By first updating all nodes at the boundary of a sub-grid we
can overlap communication and computation, since the update of the ghost nodes
can be performed while the new approximate solution is computed for nodes in the
interior of the sub-grid. This idea directly carries over to other multigrid components
that work in the same fashion; i.e., prolongation and restriction. More sophisticated

5 Parallel Geometric Multigrid 201

smoothers, such as red-black SOR, for example, can also be treated in this way.
Though, the order of treating nodes may become more intricate.

Reduced Communication

While overlapping communication with computation can significantly reduce the
costs for communication, there further exist other more radical approaches. At this
point, we briefly want to mention an algorithm introduced by Brandt and Diskin
in [9, 14]. Their parallel multigrid method abandons communication on several of
the finest levels of the grid hierarchy. In a standard parallel version of multigrid,
this is the place where the largest chunk of communication occurs, as far as the
amount of transferred data is concerned. In this respect, their approach differs from
the ones discussed in Section 5.3.4 which addressed efficiency problems on coarser
grids arising from their less favourable surface-to-volume ratio.

The core idea of the algorithm by Brandt and Diskin can be traced back to the
segmental-refinement-type procedures originally proposed to overcome storage prob-
lems on sequential computers [8]. It can briefly be described as follows. The basic
parallelisation is again done by grid partitioning, where each sub-grid is augmented
by an extended overlap region in the same fashion as mentioned in Section 5.3.2.
However, communication between processes is completely restricted to the sub-
domains on the coarsest grid level. Here, communication between the processes is
required to form a common coarsest grid problem.

The overlap region fulfils two purposes. On one hand, if an appropriate relaxation
scheme such as red-black Gauß-Seidel is chosen, this buffer slows the propagation
of errors due to inexact values at the interfaces. On the other hand, in multigrid,
the coarse grid correction typically introduces some high-frequency errors on the
fine grid. Since values at the interfaces cannot be smoothed, the algorithm cannot
eliminate these components. But in elliptic problems high-frequency components
decay quickly. Hence, the overlap region keeps these errors from affecting the inner
values too much.

It is obvious that the algorithm will in most cases not be able to produce an exact
solution of the discrete problem. However, if one is solving a PDE problem, it is actu-
ally the continuous solution one is really interested in. Since the latter is represented
by the discrete solution only up to a discretisation error, a discrete solution will be
valuable, as long as its algebraic error remains in the same order as the discretisation
error. For a detailed analysis of the communication pattern and the possible benefits
of this approach, see [14, 50, 49].

5.6.4 Alternative Parallel Multigrid Algorithms

As was mentioned in Section 5.2.5, standard multigrid methods traverse the grid hi-
erarchy sequentially, typically either in the form of W-cycles or V-cycles. We already
discussed this inherently sequential aspect of multigrid in Section 5.3.4 and consid-
ered some standard approaches for dealing with it. Here, we want to briefly mention
some further alternatives that have been devised.

202 F. Hülsemann et al.

The BPX Variant of Multigrid

In this context, the BPX algorithm (as proposed in [6]) and its analysis (see also [51]
and the references therein) is of special importance. The BPX algorithm is usually
used as a preconditioner for a Krylov subspace method, but it shares many features
with the multigrid method. In fact, it can be regarded as an additive variant of the
multigrid method.

In classical multigrid, as discussed so far, each grid level contributes its correc-
tion sequentially. If expressed by operators, this results in a representation of the
multigrid cycle as a product of operators corresponding to the corrections on each
level. Here, each level needs the input from the previous level in the grid hierar-
chy; therefore, it results in a multiplicative structure. For example, on the traversal
to coarser grids, the smoothing has to be applied first, before the residuals for the
coarser grids can be computed.

In BPX in contrast, all these corrections are computed simultaneously and are
then added. Formally, this corresponds to a sum of the correction operators on each
level and, consequently, it seems that the need for a sequential treatment of the lev-
els has been avoided. Since this approach will only result in a convergent overall
correction, the BPX algorithm is usually not used by itself, but instead employed as
preconditioner. In this role, it can be shown to be an asymptotically optimal precon-
ditioner. Thus, when combined with Krylov subspace acceleration, BPX results in
an asymptotically optimal algorithm.

Unfortunately, the hope of the original authors that their algorithm would show
better parallel properties per se (the original paper [6] was entitled “Parallel Mul-
tilevel Preconditioners”) has only partially become true, since a closer look reveals
that the BPX algorithm must internally compute a hierarchical sum of contributions
from all the grid levels. To be more precise, the residuals have to be summed accord-
ing to the grid transfer operators from the finest level to any of the auxiliary coarser
levels. The restriction of the residual to the coarsest level will usually require inter-
mediate quantities that are equivalent to computing the restriction of the residual to
all intermediate levels. Therefore, computing these restrictions in parallel does not
only create duplicated work, it also does not reduce the time needed to traverse the
grid hierarchy in terms of a faster parallel execution. The coarsest level still requires
a hierarchical traversal through all intermediate levels. Consequently, the BPX algo-
rithm essentially requires the same sequential treatment of the grid hierarchy as the
conventional multiplicative multigrid algorithm.

The above argument is of course theoretically motivated. In practice, other con-
siderations may be essential and may change the picture. For example, the BPX
algorithm may still be easier to implement in parallel, or it may have advantages in
a particular adaptive refinement situation. For a comparison, see also [4, 27, 38].

Point-Block Algorithm and the Fully Adaptive Multigrid Method (FAMe)

The invention of the additive variant of multilevel algorithms, however, has shown
that the strict sequential treatment of the levels is unnecessary and this has spurred

5 Parallel Geometric Multigrid 203

a number of other ideas. For example the point-block algorithm in [24, 26] and the
representation of all levels of the grid hierarchy in a single system, see [25, 55], relies
on the analysis of additive multilevel systems.

For the parallelisation of a multilevel method, this construction and analysis can
be exploited by realizing that the traversal of the grid hierarchy and the processing
of the individual domain partitions can be decoupled.

In the point-block algorithm, it is exploited that each node of the finest grid may
be associated with several coarser levels, and therefore it may belong to several dis-
crete equations corresponding to these levels. It is now possible to set up this system
of equations for each node. In a traversal through all fine grid nodes, one can now
solve this system for each node. The resulting algorithm becomes a block relaxation
method, with blocks of 1 to log(n) unknowns, corresponding to the number of levels
to which a node belongs, and can be shown to have asymptotically optimal complex-
ity. Imposing a grid partitioning, this algorithm can be parallelised. Note that, since
the multiple stencils may extend deep into neighbouring partitions, the communica-
tion is more complicated.

Possibly the most far-reaching result towards an asynchronous execution of mul-
tilevel algorithms is the fully adaptive multigrid method of [55]. Here an active set
strategy is proposed together with a meta-algorithm which permits many different
concurrent implementations. In particular, it is possible to design a multilevel algo-
rithm such that the traversal between the levels in the sub-domains can be performed
completely asynchronously, as long as the essential data dependencies are being ob-
served. The meta algorithm gives rigorous criteria which of these data dependencies
must be observed. One possible realization is then to monitor the data dependencies
dynamically at run-time within the algorithm. Any such dependency which extends
across process boundaries need only be activated, if it is essential for the conver-
gence of the algorithm, but it can be delayed until, for instance, enough such data
have accumulated to amortise the startup cost.

The algorithmic framework of the fully adaptive multigrid method permits many
different parallel implementations and includes as a special case the classical parallel
multigrid algorithms as well as the point-block method.

Multiple Coarse Grid Algorithms and Concurrent Methods

For the sake of completeness, we also want to mention the algorithms by Fredrickson
and McBryan [20], Chan and Tuminaro [11], as well as Gannon and van Rosendale
[22]. While these methods also address the topic of the sequentiality of cycling
through the multigrid hierarchy and the loss of parallel efficiency on coarser grids,
they were designed primarily with massively parallel systems in mind. Such systems
are denoted as fine-grain; i.e., the number p of processes is on the same order as
the number N of unknowns. In contrast, we have considered coarse-grain parallel
systems so far; i.e., systems with p � N . Nevertheless, the methods deserve to be
mentioned here, since they complement the aforementioned ideas of this section.

The Chan-Tuminaro and the Gannon-van Rosendale algorithms both belong to
the class of concurrent methods. Their idea, not quite unlike the one of the BPX or

204 F. Hülsemann et al.

the point-block algorithm, is to break up the sequential cycling structure and to al-
low for a concurrent treatment of the different grid levels; hence the name concurrent
methods. The basic approach is to generate independent sub-problems for the differ-
ent grid levels by projection onto orthogonal sub-spaces. The algorithms differ in the
way this decomposition is performed and the way solutions are combined again. For
details, we refer to the original publications cited above.

The algorithm of Fredrickson and McBryan follows a completely different ap-
proach. In a fine-grain setting the sequential cycling structure of a standard multigrid
method will lead to a large number of idle processes while coarser grids are treated.
The Fredrickson–McBryan algorithm retains the sequential cycling structure, and in-
stead tries to take advantage of these idle processes. Opposed to standard multigrid,
the method does not employ a single grid to compute a coarse grid correction, but
composes on each level several coarse grid problems. Ideally, the additional infor-
mation obtained from these multiple coarse grids can be used to improve the con-
vergence rate of the multigrid method, thus improving not only parallel efficiency,
but also actual run-time. Indeed, an impressive improvement in convergence speed
can be demonstrated for selected applications, which lead the authors to denote this
approach as parallel superconvergent multigrid (PSMG).

While all three algorithms can in principle also be employed in a coarse-grain
setting, the (theoretical) considerations in [44] strongly indicate that from a pure run-
time perspective this is very unlikely to pay-off. Even in a fine-grain environment,
the additional work induced by the methods seems to clearly over-compensate for
the gain in convergence speed and/or improved parallelism.

5.7 Conclusions

The parallelisation of multigrid algorithms is a multifaceted field of ongoing re-
search. Due to the difficulties resulting from the decreasing problem sizes on the
coarse grids, parallel multigrid implementations are often characterized by relatively
poor parallel efficiency when compared to competing methods. Nevertheless, it is
the time required to solve a problem that finally matters. From this perspective, suit-
ably designed multigrid methods are often by far superior to alternative elliptic PDE
solvers.

Since the multigrid principle leads to a large variety of multigrid algorithms for
different applications, it is impossible to derive general parallelisation approaches
that address all multigrid variants. Instead, as we have pointed out repeatedly, the
choice of appropriate multigrid components and their efficient parallel implementa-
tion is highly problem-dependent. As a consequence, our contribution can definitely
not be complete and should be understood as an introductory overview to the devel-
opment of parallel multigrid algorithms.

5 Parallel Geometric Multigrid 205

References

1. R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The multi–grid methods for the
diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput.,
2:430–454, 1981.

2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco, California, USA, 2001.

3. R. E. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms.
SIAM J. Sci. Comput., 22(4):1411–1443, 2000.

4. P. Bastian, W. Hackbusch, and G. Wittum. Additive and multiplicative multi-grid — a
comparison. Computing, 60(4):345–364, 1998.

5. B. Bergen and F. Hülsemann. Hierarchical hybrid grids: data structures and core algo-
rithms for multigrid. Numerical Linear Algebra with Applications, 11:279–291, 2004.

6. J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp.,
55:1–22, 1990.

7. A. Brandt. Multi–level adaptive solutions to boundary–value problems. Math. Comp.,
31:333–390, 1977.

8. A. Brandt. Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD–
Studien Nr. 85. Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, 1984.

9. A. Brandt and B. Diskin. Multigrid solvers on decomposed domains. In Domain De-
composition Methods in Science and Engineering: The Sixth International Conference on
Domain Decomposition, volume 157 of Contemporary Mathematics, pp. 135–155, Prov-
idence, Rhode Island, 1994. American Mathematical Society.

10. W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial. SIAM, 2. edition, 2000.
11. T. F. Chan and R. S. Tuminaro. Analysis of a parallel multigrid algorithm. In J. Mandel,

S. F. McCormick, J. E. Dendy, C. Farhat, G. Lonsdale, S. V. Parter, J. W. Ruge, and
K. Stüben, editors, Proceedings of the Fourth Copper Mountain Conference on Multigrid
Methods, pp. 66–86, Philadelphia, 1989. SIAM.

12. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel
Programming in OpenMP. Morgan Kaufmann, 2001.

13. L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-memory pro-
gramming. IEEE Comp. Science and Engineering, 5(1):46–55, 1998.

14. B. Diskin. Multigrid Solvers on Decomposed Domains. Master’s thesis, Department of
Applied Mathematics and Computer Science, The Weizmann Institute of Science, 1993.

15. C. C. Douglas. A review of numerous parallel multigrid methods. In G. Astfalk, editor,
Applications on Advanced Architecture Computers, pp. 187–202. SIAM, Philadelphia,
1996.

16. C. C. Douglas and M. B. Douglas. MGNet Bibliography. Department of Computer
Science and the Center for Computational Sciences, University of Kentucky, Lexington,
KY, USA and Department of Computer Science, Yale University, New Haven, CT, USA,
1991–2002 (last modified on September 28, 2002); see http://www.mgnet.org/
mgnet-bib.html.

17. C. C. Douglas, G. Haase, and U. Langer. A Tutorial on Elliptic PDE Solvers and their
Parallelization. SIAM, 2003.

18. C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache optimization for
structured and unstructured grid multigrid. Elect. Trans. Numer. Anal., 10:21–40, 2000.

19. L. Formaggia, M. Sala, and F. Saleri. Domain decomposition techniques. In A. M. Bruaset
and A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel
Computers, volume 51 of Lecture Notes in Computational Science and Engineering, pp.
135–163. Springer-Verlag, 2005.

206 F. Hülsemann et al.

20. P. O. Frederickson and O. A. McBryan. Parallel superconvergent multigrid. In S. F. Mc-
Cormick, editor, Multigrid Methods: Theory, Applications, and Supercomputing, volume
110 of Lecture Notes in Pure and Applied Mathematics, pp. 195–210. Marcel Dekker,
New York, 1988.

21. T. L. Freeman and C. Phillips. Parallel numerical algorithms. Prentice Hall, New York,
1992.

22. D. B. Gannon and J. R. Rosendale. On the structure of parallelism in a highly concurrent
pde solver. J. Parallel Distrib. Comput., 3:106–135, 1986.

23. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, 1997.
24. M. Griebel. Grid– and point–oriented multilevel algorithms. In W. Hackbusch and G. Wit-

tum, editors, Incomplete Decompositions (ILU) – Algorithms, Theory, and Applications,
Notes on Numerical Fluid Mechanics, pp. 32–46. Vieweg, Braunschweig, 1993.

25. M. Griebel. Multilevel algorithms considered as iterative methods on semidefinite sys-
tems. SIAM J. Sci. Stat. Comput., 15:547–565, 1994.

26. M. Griebel. Parallel point–oriented multilevel methods. In Multigrid Methods IV, Pro-
ceedings of the Fourth European Multigrid Conference, Amsterdam, July 6-9, 1993, vol-
ume 116 of ISNM, pp. 215–232, Basel, 1994. Birkhäuser.

27. M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz
algorithms. Numer. Math., 70:163–180, 1995.

28. M. Griebel and G. W. Zumbusch. Hash-storage techniques for adaptive multilevel solvers
and their domain decomposition parallelization. In J. Mandel, C. Farhat, and X.-C. Cai,
editors, Proceedings of Domain Decomposition Methods 10, DD10, number 218 in Con-
temporary Mathematics, pp. 279–286, Providence, 1998. AMS.

29. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementa-
tion of the MPI message passing interface standard. Parallel Computing, 22(6):789–828,
Sept. 1996.

30. W. Gropp, E. Lusk, and A. Skjellum. Using MPI, Portable Parallel Programming with
the Mesage-Passing Interface. MIT Press, second edition, 1999.

31. G. Haase. Parallelisierung numerischer Algorithmen für partielle Differentialgleichun-
gen. B. G. Teubner Stuttgart – Leipzig, 1999.

32. W. Hackbusch. Multigrid Methods and Applications, volume 4 of Computational Math-
ematics. Springer–Verlag, Berlin, 1985.

33. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations, volume 95 of
Applied Mathematical Sciences. Springer, 1993.

34. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publisher, Inc., San Francisco, California, USA, 3. edition, 2003.

35. F. Hülsemann, B. Bergen, and U. Rüde. Hierarchical hybrid grids as basis for parallel
numerical solution of PDE. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors,
Euro-Par 2003 Parallel Processing, volume 2790 of Lecture Notes in Computer Science,
pp. 840–843, Berlin, 2003. Springer.

36. F. Hülsemann, S. Meinlschmidt, B. Bergen, G. Greiner, and U. Rüde. gridlib – a parallel,
object-oriented framework for hierarchical-hybrid grid structures in technical simulation
and scientific visualization. In High Performance Computing in Science and Engineer-
ing, Munich 2004. Transactions of the Second Joint HLRB and KONWIHR Result and
Reviewing Workshop, pp. 37–50, Berlin, 2004. Springer.

37. M. Jung. On the parallelization of multi–grid methods using a non–overlapping domain
decomposition data structure. Appl. Numer. Math., 23(1):119–137, 1997.

5 Parallel Geometric Multigrid 207

38. M. Jung. Parallel multiplicative and additive multilevel methods for elliptic problems in
three–dimensional domains. In B. H. V. Topping, editor, Advances in Computational Me-
chanics with Parallel and Distributed Processing, pp. 171–177, Edinburgh, 1997. Civil–
Comp Press. Proceedings of the EURO–CM–PAR97, Lochinver, April 28 – May 1,
1997.

39. G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1999.

40. G. Karypis and V. Kumar. Parallel multilevel k-way partition scheme for irregular graphs.
SIAM Review, 41(2):278–300, 1999.

41. C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser. Parallel lattice boltzmann meth-
ods for cfd applications. In A. M. Bruaset and A. Tveito, editors, Numerical Solution
of Partial Differential Equations on Parallel Computers, volume 51 of Lecture Notes in
Computational Science and Engineering, pp. 439–466. Springer-Verlag, 2005.

42. M. Kowarschik. Data Locality Optimizations for Iterative Numerical Algorithms and
Cellular Automata on Hierarchical Memory Architectures. PhD thesis, Lehrstuhl für In-
formatik 10 (Systemsimulation), Institut für Informatik, Universität Erlangen-Nürnberg,
Erlangen, Germany, July 2004. SCS Publishing House.

43. H. Lötzbeyer and U. Rüde. Patch-adaptive multilevel iteration. BIT, 37:739–758, 1997.
44. L. R. Matheson and R. E. Tarjan. Parallelism in multigrid methods: how much is too

much? Int. J. Paral. Prog., 24:397–432, 1996.
45. O. A. McBryan, P. O. Frederickson, J. Linden, A. Schuller, K. Solchenbach, K. Stuben,

C.-A. Thole, and U. Trottenberg. Multigrid methods on parallel computers — a survey of
recent developments. Impact Comput. Sci. Eng., 3:1–75, 1991.

46. W. F. Mitchell. A parallel multigrid method using the full domain partition. Elect. Trans.
Numer. Anal., 6:224–233, 1997.

47. W. F. Mitchell. The full domain partition approach to distributing adaptive grids. Appl.
Numer. Math., 26:265–275, 1998.

48. W. F. Mitchell. Parallel adaptive multilevel methods with full domain partitions. App.
Num. Anal. and Comp. Math., 1:36–48, 2004.

49. M. Mohr. Low Communication Parallel Multigrid: A Fine Level Approach. In A. Bode,
T. Ludwig, W. Karl, and R. Wismüller, editors, Proceedings of Euro-Par 2000: Parallel
Processing, volume 1900 of Lecture Notes in Computer Science, pp. 806–814. Springer,
2000.

50. M. Mohr and U. Rüde. Communication Reduced Parallel Multigrid: Analysis and Exper-
iments. Technical Report 394, Institut für Mathematik, Universität Augsburg, 1998.

51. P. Oswald. Multilevel Finite Element Approximation, Theory and Applications. Teubner
Skripten zur Numerik. Teubner Verlag, Stuttgart, 1994.

52. A. Pothen. Graph partitioning algorithms with applications to scientific computing. In
D. E. Keyes, A. H. Sameh, and V. Venkatakrishnan, editors, Parallel Numerical Algo-
rithms, volume 4 of ICASE/LaRC Interdisciplinary Series in Science and Engineering.
Kluwer Academic Press, 1997.

53. M. Prieto, I. Llorente, and F. Tirado. A Review of Regular Domain Partitioning. SIAM
News, 33(1), 2000.

54. G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conflict Misses. In
Proc. of the ACM SIGPLAN Conf. on Programming Language Design and Implementa-
tion, Montreal, Canada, 1998.

55. U. Rüde. Mathematical and Computational Techniques for Multilevel Adaptive Methods,
volume 13 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 1993.

56. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.

208 F. Hülsemann et al.

57. J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer, 4. edition, 2000.
58. J. D. Teresco, K. D. Devine, and J. E. Flaherty. Partitioning and dynamic load balanc-

ing for the numerical solution of partial differential equations. In A. M. Bruaset and
A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel Com-
puters, volume 51 of Lecture Notes in Computational Science and Engineering, pp. 55–
88. Springer-Verlag, 2005.

59. C.-A. Thole and U. Trottenberg. Basic smoothing procedures for the multigrid treatment
of elliptic 3D–operators. Appl. Math. Comput., 19:333–345, 1986.

60. U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press, London,
2000.

61. C. Weiß. Data Locality Optimizations for Multigrid Methods on Structured Grids. PhD
thesis, Lehrstuhl für Rechnertechnik und Rechnerorganisation, Institut für Informatik,
Technische Universität München, Munich, Germany, Dec. 2001.

62. R. Wienands and C. W. Oosterlee. On three-grid fourier analysis for multigrid. SIAM J.
Sci. Comput., 23(2):651–671, 2001.

63. G. Wittum. On the robustness of ILU–smoothing. SIAM J. Sci. Stat. Comput., 10:699–
717, 1989.

64. D. Xie and L. Scott. The Parallel U–Cycle Multigrid Method. In Virtual Proceed-
ings of the 8th Copper Mountain Conference on Multigrid Methods, 1997. Available
at http://www.mgnet.org.

65. U. M. Yang. Parallel algebraic multigrid methods - high performance preconditioners. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pp. 209–236. Springer-Verlag, 2005.

66. I. Yavneh. On red-black SOR smoothing in multigrid. SIAM J. Sci. Comput., 17:180–192,
1996.

67. G. Zumbusch. Parallel Multilevel Methods — Adaptive Mesh Refinement and Loadbal-
ancing. Advances in Numerical Mathematics. Teubner, 2003.

