

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Are Magnus Bruaset Aslak Tveito (Eds.)

Numerical Solution
of Partial Differential
Equations on Parallel
Computers

With 201 Figures and 42 Tables

ABC

Editors

Are Magnus Bruaset
TveitoAslak

Simula Research Laboratory

1325 Lysaker, Fornebu, Norway

aslak@simula.no

Library of Congress Control Number: 2005934453

ISBN-10 3-540-29076-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29076-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

c© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package

Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11548843 46/TechBooks 5 4 3 2 1 0

The second editor of this book has received financial support from the NFF – Norsk faglitterær
forfatter- og oversetterforening

Mathematics Subject Classification:
Primary: 65M06, 65M50, 65M55, 65M60, 65Y05, 65Y10
Secondary: 65N06, 65N30, 65N50, 65N55, 65F10, 65F50

email: arem@simula.no

springer.com

P.O. Box 134

Preface

Since the dawn of computing, the quest for a better understanding of Nature has
been a driving force for technological development. Groundbreaking achievements
by great scientists have paved the way from the abacus to the supercomputing power
of today. When trying to replicate Nature in the computer’s silicon test tube, there is
need for precise and computable process descriptions. The scientific fields of Math-
ematics and Physics provide a powerful vehicle for such descriptions in terms of
Partial Differential Equations (PDEs). Formulated as such equations, physical laws
can become subject to computational and analytical studies. In the computational
setting, the equations can be discreti ed for efficient solution on a computer, leading
to valuable tools for simulation of natural and man-made processes. Numerical solu-
tion of PDE-based mathematical models has been an important research topic over
centuries, and will remain so for centuries to come.

In the context of computer-based simulations, the quality of the computed results
is directly connected to the model’s complexity and the number of data points used
for the computations. Therefore, computational scientists tend to fill even the largest
and most powerful computers they can get access to, either by increasing the si e
of the data sets, or by introducing new model terms that make the simulations more
realistic, or a combination of both. Today, many important simulation problems can
not be solved by one single computer, but calls for parallel computing. Whether be-
ing a dedicated multi-processor supercomputer or a loosely coupled cluster of office
workstations, the concept of parallelism offers increased data storage and increased
computing power. In theory, one gets access to the grand total of the resources of-
fered by the individual units that make up the multi-processor environment. In prac-
tice, things are more complicated, and the need for data communication between the
different computational units consumes parts of the theoretical gain of power.

Summing up the bits and pieces that go into a large-scale parallel computation,
there are aspects of hardware, system software, communication protocols, memory
management, and solution algorithms that have to be addressed. However, over time
efficient ways of addressing these issues have emerged, better software tools have
become available, and the cost of hardware has fallen considerably. Today, compu-
tational clusters made from commodity parts can be set up within the budget of a

VI Preface

typical research department, either as a turn-key solution or as a do-it-yourself
project. Supercomputing has become affordable and accessible.

About this book

This book addresses the major topics involved in numerical simulations on paral-
lel computers, where the underlying mathematical models are formulated in terms
of PDEs. Most of the chapters dealing with the technological components of par-
allel computing are written in a survey style and will provide a comprehensive, but
still readable, introduction for students and researchers. Other chapters are more spe-
cialized, for instance focusing on a specific application that can demonstrate practi-
cal problems and solutions associated with parallel computations. As editors we are
proud to put together a volume of high-quality and useful contributions, written by
internationally acknowledged experts on high-performance computing.

The first part of the book addresses fundamental parts of parallel computing in
terms of hardware and system software. These issues are vital to all types of par-
allel computing, not only in the context of numerical solution of PDEs. To start
with, Ricky Kendall and co-authors discuss the programming models that are most
commonly used for parallel applications, in environments ranging from a simple de-
partmental cluster of workstations to some of the most powerful computers available
today. Their discussion covers models for message passing and shared memory pro-
gramming, as well as some future programming models. In a closely related chapter,
Jim Teresco et al. look at how data should be partitioned between the processors in
a parallel computing environment, such that the computational resources are utilized
as efficient as possible. In a similar spirit, the contribution by Martin Rumpf and
Robert Strzodka also aims at improved utilization of the available computational re-
sources. However, their approach is somewhat unconventional, looking at ways to
benefit from the considerable power available in graphics processors, not only for
visualization purposes but also for numerical PDE solvers. Given the low cost and
easy access of such commodity processors, one might imagine future cluster solu-
tions with really impressive price-performance ratios.

Once the computational infrastructure is in place, one should concentrate on how
the PDE problems can be solved in an efficient manner. This is the topic of the
second part of the book, which is dedicated to parallel algorithms that are vital to
numerical PDE solution. Luca Formaggia and co-authors present parallel domain
decomposition methods. In particular, they give an overview of algebraic domain de-
composition techniques, and introduce sophisticated preconditioners based on a mul-
tilevel approximative Schur complement system and a Schwarz-type decomposition,
respectively. As Schwarz-type methods call for a coarse level correction, the paper
also proposes a strategy for constructing coarse operators directly from the algebraic
problem formulation, thereby handling unstructured meshes for which a coarse grid
can be difficult to define. Complementing this multilevel approach, Frank Hülsemann
et al. discuss how another important family of very efficient PDE solvers, geometric
multigrid, can be implemented on parallel computers. Like domain decomposition
methods, multigrid algorithms are potentially capable of being order-optimal such

Preface VII

that the solution time scales linearly with the number of unknowns. However, this
paper demonstrates that in order to maintain high computational performance the
construction of a parallel multigrid solver is certainly problem-dependent. In the fol-
lowing chapter, Ulrike Meier Yang addresses parallel algebraic multigrid methods.
In contrast to the geometric multigrid variants, these algorithms work only on the
algebraic system arising from the discretization of the PDE, rather than on a mul-
tiresolution discretization of the computational domain. Ending the section on paral-
lel algorithms, Nikos Chrisochoides surveys methods for parallel mesh generation.
Meshing procedures are an important part of the discretization of a PDE, either used
as a preprocessing step prior to the solution phase, or in case of a changing geometry,
as repeated steps in course of the simulation. This contribution concludes that it is
possible to develop parallel meshing software using off-the-shelf sequential codes as
building blocks without sacrificing the quality of the constructed mesh.

Making advanced algorithms work in practice calls for development of sophis-
ticated software. This is especially important in the context of parallel computing,
as the complexity of the software development tends to be significantly higher than
for its sequential counterparts. For this reason, it is desirable to have access to a
wide range of software tools that can help make parallel computing accessible. One
way of addressing this need is to supply high-quality software libraries that provide
parallel computing power to the application developer, straight out of the box. The
hypre library presented by Robert D. Falgout et al. does exactly this by offering par-
allel high-performance preconditioners. Their paper concentrates on the conceptual
interfaces in this package, how these are implemented for parallel computers, and
how they are used in applications. As an alternative, or complement, to the library
approach, one might look for programming languages that tries to ease the process
of parallel coding. In general, this is a quite open issue, but Xing Cai and Hans Pet-
ter Langtangen contribute to this discussion by considering whether the high-level
language Python can be used to develop efficient parallel PDE solvers. They address
this topic from two different angles, looking at the performance of parallel PDE
solvers mainly based on Python code and native data structures, and through the
use of Python to parallelize existing sequential PDE solvers written in a compiled
language like FORTRAN, C or C++. The latter approach also opens for the possibil-
ity of combining different codes in order to address a multi-model or multiphysics
problem. This is exactly the concern of Lois Curfman McInnes and her co-authors
when they discuss the use of the Common Component Architecture (CCA) for paral-
lel PDE-based simulations. Their paper gives an introduction to CCA and highlights
several parallel applications for which this component technology is used, ranging
from climate modeling to simulation of accidental fires and explosions.

To communicate experiences gained from work on some complete simulators,
selected parallel applications are discussed in the latter part of the book. Xing Cai
and Glenn Terje Lines present work on a full-scale parallel simulation of the elec-
trophysiology of the human heart. This is a computationally challenging problem,
which due to a multiscale nature requires a large amount of unknowns that have to
be resolved for small time steps. It can be argued that full-scale simulations of this
problem can not be done without parallel computers. Another challenging geody-

VIII Preface

namics problem, modeling the magma genesis in subduction zones, is discussed by
Matthew G. Knepley et al. They have ported an existing geodynamics code to use
PETSc, thereby making it parallel and extending its functionality. Simulations per-
formed with the resulting application confirms physical observations of the thermal
properties in subduction zones, which until recently were not predicted by computa-
tions. Finally, in the last chapter of the book, Carolin Körner et al. present parallel
Lattice Boltzmann Methods (LBMs) that are applicable to problems in Computa-
tional Fluid Dynamics. Although not being a PDE-based model, the LBM approach
can be an attractive alternative, especially in terms of computational efficiency. The
power of the method is demonstrated through computation of 3D free surface flow,
as in the interaction and growing of gas bubbles in a melt.

Acknowledgements

We wish to thank all the chapter authors, who have written very informative and
thorough contributions that we think will serve the computational community well.
Their enthusiasm has been crucial for the quality of the resulting book.

Moreover, we wish to express our gratitude to all reviewers, who have put time
and energy into this project. Their expert advice on the individual papers has been
useful to editors and contributors alike. We are also indebted to Dr. Martin Peters at
Springer-Verlag for many interesting and useful discussions, and for encouraging the
publication of this volume.

Fornebu Are Magnus Bruaset
September, 2005 Aslak Tveito

Contents

Part I Parallel Computing

1 Parallel Programming Models Applicable to Cluster Computing
and Beyond
Ricky A. Kendall, Masha Sosonkina, William D. Gropp, Robert W. Numrich,
Thomas Sterling . 3

1.1 Introduction . 3
1.2 Message-Passing Interface . 7
1.3 Shared-Memory Programming with OpenMP . 20
1.4 Distributed Shared-Memory Programming Models 36
1.5 Future Programming Models . 42
1.6 Final Thoughts . 49
References . 50

2 Partitioning and Dynamic Load Balancing for the Numerical Solution
of Partial Differential Equations
James D. Teresco, Karen D. Devine, Joseph E. Flaherty 55

2.1 The Partitioning and Dynamic Load Balancing Problems 56
2.2 Partitioning and Dynamic Load Balancing Taxonomy 60
2.3 Algorithm Comparisons . 69
2.4 Software . 71
2.5 Current Challenges . 74
References . 81

3 Graphics Processor Units: New Prospects for Parallel Computing
Martin Rumpf, Robert Strzodka . 89

3.1 Introduction . 89
3.2 Theory . 97
3.3 Practice . 103
3.4 Prospects . 118
3.5 Appendix: Graphics Processor Units (GPUs) In-Depth 121

X Contents

References . 131

Part II Parallel Algorithms

4 Domain Decomposition Techniques
Luca Formaggia, Marzio Sala, Fausto Saleri . 135

4.1 Introduction . 135
4.2 The Schur Complement System. 138
4.3 The Schur Complement System Used as a Preconditioner 146
4.4 The Schwarz Preconditioner . 147
4.5 Applications . 152
4.6 Conclusions . 159
References . 162

5 Parallel Geometric Multigrid
Frank Hülsemann, Markus Kowarschik, Marcus Mohr, Ulrich Rüde 165

5.1 Overview . 165
5.2 Introduction to Multigrid . 166
5.3 Elementary Parallel Multigrid . 177
5.4 Parallel Multigrid for Unstructured Grid Applications 189
5.5 Single-Node Performance . 193
5.6 Advanced Parallel Multigrid . 195
5.7 Conclusions . 204
References . 205

6 Parallel Algebraic Multigrid Methods – High
Performance Preconditioners
Ulrike Meier Yang . 209

6.1 Introduction . 209
6.2 Algebraic Multigrid - Concept and Description 210
6.3 Coarse Grid Selection . 212
6.4 Interpolation . 220
6.5 Smoothing . 223
6.6 Numerical Results . 225
6.7 Software Packages . 230
6.8 Conclusions and Future Work . 232
References . 233

7 Parallel Mesh Generation
Nikos Chrisochoides . 237

7.1 Introduction . 237
7.2 Domain Decomposition Approaches . 238
7.3 Parallel Mesh Generation Methods . 240
7.4 Taxonomy . 255
7.5 Implementation . 255

Contents XI

7.6 Future Directions . 258
References . 259

Part III Parallel Software Tools

8 The Design and Implementation of hypre, a Library of Parallel High
Performance Preconditioners
Robert D. Falgout, Jim E. Jones, Ulrike Meier Yang . 267

8.1 Introduction . 267
8.2 Conceptual Interfaces . 268
8.3 Object Model . 270
8.4 The Structured-Grid Interface (Struct) . 272
8.5 The Semi-Structured-Grid Interface (semiStruct) 274
8.6 The Finite Element Interface (FEI) . 280
8.7 The Linear-Algebraic Interface (IJ) . 281
8.8 Implementation . 282
8.9 Preconditioners and Solvers . 289
8.10 Additional Information . 291
8.11 Conclusions and Future Work . 291
References . 292

9 Parallelizing PDE Solvers Using the Python Programming Language
Xing Cai, Hans Petter Langtangen . 295

9.1 Introduction . 295
9.2 High-Performance Serial Computing in Python 296
9.3 Parallelizing Serial PDE Solvers . 299
9.4 Python Software for Parallelization . 307
9.5 Test Cases and Numerical Experiments . 313
9.6 Summary . 323
References . 324

10 Parallel PDE-Based Simulations Using the Common
Component Architecture
Lois Curfman McInnes, Benjamin A. Allan, Robert Armstrong, Steven J.

Benson, David E. Bernholdt, Tamara L. Dahlgren, Lori Freitag Diachin,
Manojkumar Krishnan, James A. Kohl, J. Walter Larson, Sophia Lefantzi,
Jarek Nieplocha, Boyana Norris, Steven G. Parker, Jaideep Ray, Shujia Zhou . 327

10.1 Introduction . 328
10.2 Motivating Parallel PDE-Based Simulations . 330
10.3 High-Performance Components . 334
10.4 Reusable Scientific Components . 344
10.5 Componentization Strategies . 355
10.6 Case Studies: Tying Everything Together . 359
10.7 Conclusions and Future Work . 371
References . 373

XII Contents

Part IV Parallel Applications

11 Full-Scale Simulation of Cardiac Electrophysiology
on Parallel Computers
Xing Cai, Glenn Terje Lines . 385

11.1 Introduction . 385
11.2 The Mathematical Model . 390
11.3 The Numerical Strategy . 392
11.4 A Parallel Electro-Cardiac Simulator . 399
11.5 Some Techniques for Overhead Reduction . 403
11.6 Numerical Experiments . 405
11.7 Concluding Remarks . 408
References . 409

12 Developing a Geodynamics Simulator with PETSc
Matthew G. Knepley, Richard F. Katz, Barry Smith . 413

12.1 Geodynamics of Subduction Zones . 413
12.2 Integrating PETSc . 415
12.3 Data Distribution and Linear Algebra . 418
12.4 Solvers . 428
12.5 Extensions . 431
12.6 Simulation Results . 435
References . 437

13 Parallel Lattice Boltzmann Methods for CFD Applications
Carolin Körner, Thomas Pohl, Ulrich Rüde, Nils Thürey, Thomas Zeiser 439

13.1 Introduction . 439
13.2 Basics of the Lattice Boltzmann Method . 440
13.3 General Implementation Aspects and Optimization of the Single

CPU Performance . 445
13.4 Parallelization of a Simple Full-Grid LBM Code 452
13.5 Free Surfaces . 454
13.6 Summary and Outlook . 462
References . 463

Color Figures . 467

Part I

Parallel Computing

1

Parallel Programming Models Applicable to Cluster
Computing and Beyond

Ricky A. Kendall1, Masha Sosonkina1, William D. Gropp2, Robert W. Numrich3,
and Thomas Sterling4

1 Scalable Computing Laboratory, Ames Laboratory, USDOE, Ames, IA 50011, USA
[rickyk,masha]@scl.ameslab.gov

2 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA
gropp@mcs.anl.gov

3 Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
rwn@msi.umn.edu

4 California Institute of Technology, Pasadena, CA 91125, USA
tron@cacr.caltech.edu

Summary. This chapter centers mainly on successful programming models that map al-
gorithms and simulations to computational resources used in high-performance computing.
These resources range from group-based or departmental clusters to high-end resources avail-
able at the handful of supercomputer centers around the world. Also covered are newer pro-
gramming models that may change the way we program high-performance parallel computers.

1.1 Introduction

Solving a system of partial differential equations (PDEs) lies at the heart of many sci-
entific applications that model physical phenomena. The solution of PDEs—often the
most computationally intensive task of these applications—demands the full power
of multiprocessor computer architectures combined with effective algorithms.

This synthesis is particularly critical for managing the computational complex-
ity of the solution process when nonlinear PDEs are used to model a problem. In
such a case, a mix of solution methods for large-scale nonlinear and linear systems
of equations is used, in which a nonlinear solver acts as an “outer” solver. These
methods may call for diverse implementations and programming models. Hence so-
phisticated software engineering techniques and a careful selection of parallel pro-
gramming tools have a direct effect not only on the code reuse and ease of code
handling but also on reaching the problem solution efficiently and reliably. In other
words, these tools and techniques affect the numerical efficiency, robustness, and
parallel performance of a solver.

For linear PDEs, the choice of a solution method may depend on the type
of linear system of equations used. Many parallel direct and iterative solvers are

4 R. A. Kendall et al.

designed to solve a particular system type, such as symmetric positive definite lin-
ear systems. Many of the iterative solvers are also specific to the application and
data format. There exists only a limited selection of “general-purpose” distributed-
memory iterative-solution implementations. Among the better-known packages that
contain such implementations are PETSc [3, 46], hypre [11, 23], and pARMS [50].
One common feature of these packages is that they are all based on domain decom-
position methods and include a wide range of parallel solution techniques, such as
preconditioners and accelerators.

Domain decomposition methods simply divide the domain of the problem into
smaller parts and describe how solutions (or approximations to the solution) on each
part is combined to give a solution (or approximation) to the original problem. For
hyperbolic PDEs, these methods take advantage of the finite signal speed property.
For elliptic, parabolic, and mixed PDEs, these methods take advantage of the fact
that the influence of distant parts of the problem, while nonzero, is often small (for a
specific example, consider the Green’s function for the solution to the Poisson prob-
lem). Domain decomposition methods have long been successful in solving PDEs
on single processor computers (see, e.g, [72]), and lead to efficient implementations
on massively parallel distributed-memory environments.5 Domain decomposition
methods are attractive for parallel computing mainly because of their “divide-and-
conquer” approach, to which many parallel programming models may be readily ap-
plied. For example, all three of the cited packages use the message-passing interface
MPI for communication. When the complexity of the solution methods increases,
however, the need to mix different parallel programming models or to look for novel
ones becomes important. Such a situation may arise, for example, when developing a
nontrivial parallel incomplete LU factorization, a direct sparse linear system solver,
or any algorithm where data storage and movement are coupled and complex. The
programming model(s) that provide(s) the best portability, performance, and ease of
development or expression of the algorithm should be used. A good overview of ap-
plications, hardware and their interactions with programming models and software
technologies is [17].

1.1.1 Programming Models

What is a programming model? In a nutshell it is the way one thinks about the flow
and execution of the data manipulation for an application. It is an algorithmic map-
ping to a perceived architectural moiety.

In choosing a programming model, the developer must consider many factors:
performance, portability, target architectures, ease of maintenance, code revision
mechanisms, and so forth. Often, tradeoffs must be made among these factors. Trad-
ing computation for storage (either in memory or on disk) or for communication of
data is a common algorithmic manipulation. The complexity of the tradeoffs is com-
pounded by the use of parallel algorithms and hardware. Indeed, a programmer may

5No memory is visible to all processors in a distributed-memory environment; each
processor can only see their own local memory.

1 Parallel Programming Models 5

Interconnect

Node Node Node Node

Fig. 1.1. Generic architecture for a cluster system.

have (as many libraries and applications do) multiple implementations of the same
algorithm to allow for performance tuning on various architectures.

Today, many small and high-end high-performance computers are clusters with
various communication interconnect technologies and with nodes6 having more
than one processor. For example, the Earth Simulator [20] is a cluster of very
powerful nodes with multiple vector processors; and large IBM SP installations
(e.g., the system at the National Energy Research Scientific Computing Center,
http://hpcf.nersc.gov/computers/SP) have multiple nodes with 4, 8, 16, or 32 proces-
sors each. These systems are at an abstract level the same kind of system. The funda-
mental issue for parallel computation on such clusters is how to select a programming
model that gets the data in the right place when computational resources are avail-
able. This problem becomes more difficult as the number of processors increases;
the term scalability is used to indicate the performance of an algorithm, method, or
code, relative to a single processor. The scalability of an application is primarily the
result of the algorithms encapsulated in the programming model used in the appli-
cation. No programming model can overcome the scalability limitations inherent in
the algorithm. There is no free lunch.

A generic view of a cluster architecture is shown in Figure 1.1. In the early Be-
owulf clusters, like the distributed-memory supercomputer shown in Figure 1.2, each
node was typically a single processor. Today, each node in a cluster is usually at least
a dual-processor symmetric processing (SMP) system. A generic view of an SMP
node or a general shared-memory system is shown in Figure 1.3. The number of
processors per computational node varies from one installation to another. Often,
each node is composed of identical hardware, with the same software infrastructure
as well.

The “view” of the target system is important to programmers designing parallel
algorithms. Mapping algorithms with the chosen programming model to the system
architecture requires forethought, not only about how the data is moved, but also
about what type of hardware transport layer is used: for example, is data moved over

6A node is typically defined as a set of processors and memory that have a single system
image; one operating system and all resources are visible to each other in the “node” moiety.

6 R. A. Kendall et al.

Interconnect

Proc Proc

Memory Memory

Proc Proc

MemoryMemory

Fig. 1.2. Generic architecture for a distributed-memory cluster with a single processor.

Memory

Proc Proc Proc Proc

Fig. 1.3. Generic architecture for a shared-memory system.

a shared-memory bus between cooperating threads or over a fast Ethernet network
between cooperating processes?

This chapter presents a brief overview of various programming models that work
effectively on cluster computers and high-performance parallel supercomputers. We
cannot cover all aspects of message-passing and shared-memory programming. Our
goal is to give a taste of the programming models as well as the most important as-
pects of the models that one must consider in order to get an application parallelized.
Each programming model takes a significant effort to master, and the learning experi-
ence is largely based on trial and error, with error usually being the better educational
track. We also touch on newer techniques that are being used successfully and on a
few specialty languages that are gaining support from the vendor community. We
give numerous references so that one can delve more deeply into any area of interest.

1 Parallel Programming Models 7

1.1.2 Application Development Efforts

“Best practices” for software engineering are commonly applied in industry but have
not been so widely adopted in high-performance computing. Dubois outlines ten
such practices for scientific programming [18]. We focus here on three of these.

The first is the use of a revision control system that allows multiple develop-
ers easy access to a central repository of the software. Both commercial and open
source revision control systems exist. Some commonly used, freely available sys-
tems include Concurrent Versions System (CVS), Subversion, and BitKeeper. The
functionality in these systems includes

• branching release software from the main development source,
• comparing modifications between versions of various subunits,
• merging modifications of the same subunit from multiple users, and
• obtaining a version of the development or branch software at a particular date

and time.

The ability to recover previous instances of subunits of software can make debugging
and maintenance easier and can be useful for speculative development efforts.

The second software engineering practice is the use of automatic build proce-
dures. Having such procedures across a variety of platforms is useful in finding bugs
that creep into code and inhibit portability. Automated identification of the language
idiosyncrasies of different compilers minimizes efforts of porting to a new platform
and compiler system. This is essentially normalizing the interaction of compilers and
your software.

The third software engineering practice of interest is the use of a robust and ex-
haustive test suite. This can be coupled to the build infrastructure or, at a minimum,
with every software release. The test suite should be used to verify the function-
ality of the software and, hence, the viability of a given release; it also provides a
mechanism to ensure that ports to new computational resources are valid.

The cost of these software engineering mechanisms is not trivial, but they do
make the maintenance and distribution easier. Consider the task of making Linux
software distribution agnostic. Each distribution must have different versions of par-
ticular software moieties in addition to the modifications that each distribution makes
to that software. Proper application of these tasks is essentially making one’s soft-
ware operating system agnostic.

1.2 Message-Passing Interface

Parallel computing, with any programming model, involves two actions: transferring
data among workers and coordinating the workers. A simple example is a room full
of workers, each at a desk. The work can be described by written notes. Passing
a note from one worker to another effects data transfer; receiving a note provides
coordination (think of the note as requesting that the work described on the note be
executed). This simple example is the background for the most common and most

8 R. A. Kendall et al.

portable parallel computing model, known as message passing. In this section we
briefly cover the message-passing model, focusing on the most common form of this
model, the Message-Passing Interface (MPI).

1.2.1 The Message-Passing Interface

Message passing has a long history. Even before the invention of the modern digital
computer, application scientists proposed halls full of skilled workers, each working
on a small part of a larger problem and passing messages to their neighbors. This
model of computation was formalized in computer science theory as communicating
sequential processes (CSP) [36]. One of the earliest uses of message passing was
for the Caltech Cosmic Cube, one of the first scalable parallel machines [71]. The
success (perhaps more accurately, the potential success of highly parallel computing
demonstrated by this machine) spawned many parallel machines, each with its own
version of message passing.

In the early 1990s, the parallel computing market was divided among several
companies, including Intel, IBM, Cray, Convex, Thinking Machines, and Meiko. No
one system was dominant, and as a result the market for parallel software was splin-
tered. To address the need for a single method for programming parallel computers,
an informal group calling itself the MPI Forum and containing representatives from
all stake-holders, including parallel computer vendors, applications developers, and
parallel computing researchers, began meeting [33]. The result was a document de-
scribing a standard application programming interface (API) to the message-passing
model, with bindings for the C and Fortran languages [52]. This standard quickly
became a success. As is common in the development of standards, there were a few
problems with the original MPI standard, and the MPI Forum released two updates,
called MPI 1.1 and MPI 1.2. MPI 1.2 is the most widely available version today.

1.2.2 MPI 1.2

When MPI was standardized, most message-passing libraries at that time described
communication between separate processes and contained three major components:

• Processing environment – information about the number of processes and other
characteristics of the parallel environment.

• Point-to-point – messages from one process to another
• Collective – messages between a collection of processes (often all processes)

We will discuss each of these in turn. These components are the heart of the
message passing programming model.

Processing Environment

In message passing, a parallel program comprises a number of separate processes that
communicate by calling routines. The first task in an MPI program is to initialize the

1 Parallel Programming Models 9

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Hello World! I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Fig. 1.4. A simple MPI program.

MPI library; this is accomplished with MPI Init. When a program is done with
MPI (usually just before exiting), it must call MPI Finalize. Two other routines
are used in almost all MPI programs. The first, MPI Comm size, returns in the
second argument the number of processes available in the parallel job. The second,
MPI Comm rank, returns in the second argument a ranking of the calling process,
with a value between zero and size−1. Figure 1.4 shows a simple MPI program that
prints the number of processes and the rank of each process. MPI COMM WORLD
represents all the cooperating processes.

While MPI did not specify a way to run MPI programs (much as neither C nor
Fortran specifies how to run C or Fortran programs), most parallel computing sys-
tems require that parallel programs be run with a special program. For example, the
program mpiexec might be used to run an MPI program. Similarly, an MPI envi-
ronment may provide commands to simplify compiling and linking MPI programs.
For example, for some popular MPI implementations, the following steps will run
the program in Figure 1.4 with four processes, assuming that program is stored in
the file first.c:

mpicc -o first first.c
mpiexec -n 4 first

The output may be

Hello World! I am 2 of 4
Hello World! I am 3 of 4
Hello World! I am 0 of 4
Hello World! I am 1 of 4

Note that the output of the process rank is not ordered from zero to three. MPI spec-
ifies that all routines that are not MPI routines behave independently, including I/O
routines such as printf.

We emphasize that MPI describes communication between processes, not proces-
sors. For best performance, parallel programs are often designed to run with one
process per processor (or, as we will see in the section on OpenMP, one thread per
processor). MPI supports this model, but MPI also allows multiple processes to be

10 R. A. Kendall et al.

run on a single-processor machine. Parallel programs are commonly developed on
single-processor laptops, even with multiple processes. If there are more than a few
processes per processor, however, the program may run very slowly because of con-
tention among the processes for the resources of the processor.

Point-to-Point Communication

The program in Figure 1.4 is a very simple parallel program. The individual processes
neither exchange data nor coordinate with each other. Point-to-point communication
allows two processes to send data from one to another. Data is sent by using rou-
tines such as MPI Send and is received by using routines such as MPI Recv (we
mention later several specialized forms for both sending and receiving).

We illustrate this type of communication in Figure 1.5 with a simple program that
sums contributions from each process. In this program, each process first determines
its rank and initializes the value that it will contribute to the sum. (In this case, the
sum itself is easily computed analytically; this program is used for illustration only.)
After receiving the contribution from the process with rank one higher, it adds the
received value into its contribution and sends the new value to the process with rank
one lower. The process with rank zero only receives data, and the process with the
largest rank (equal to size−1) only sends data.

The program in Figure 1.5 introduces a number of new points. The most obvi-
ous are the two new MPI routines MPI Send and MPI Recv. These have similar
arguments. Each routine uses the first three arguments to specify the data to be sent
or received. The fourth argument specifies the destination (for MPI Send) or source
(for MPI Recv) process, by rank. The fifth argument, called a tag, provides a way to
include a single integer with the data; in this case the value is not needed, and a zero
is used (the value used by the sender must match the value given by the receiver).
The sixth argument specifies the collection of processes to which the value of rank
is relative; we use MPI COMM WORLD, which is the collection of all processes in the
parallel program (determined by the startup mechanism, such as mpiexec in the
“Hello World” example). There is one additional argument to MPI Recv: status.
This value contains some information about the message that some applications may
need. In this example, we do not need the value, but we must still provide the argu-
ment.

The three arguments describing the data to be sent or received are, in order, the
address of the data, the number of items, and the type of the data. Each basic datatype
in the language has a corresponding MPI datatype, as shown in Table 1.1.

MPI allows the user to define new datatypes that can represent noncontiguous
memory, such as rows of a Fortran array or elements indexed by an integer array
(also called scatter-gathers). Details are beyond the scope of this chapter, however.

This program also illustrates an important feature of message-passing programs:
because these are separate, communicating processes, all variables, such as rank
or valOut, are private to each process and may (and often will) contain different
values. That is, each process has its own memory space, and all variables are private

1 Parallel Programming Models 11

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{

int size, rank, valIn, valOut;
MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Pick a simple value to add */
valIn = rank;

/* receive the partial sum from the right processes
(this is the sum from i=rank+1 to size-1) */

if (rank < size - 1) {
MPI_Recv(&valOut, 1, MPI_INT, rank + 1, 0,
MPI_COMM_WORLD, &status);

valIn += valOut;
}
/* Send the partial sum to the left (rank-1) process */
if (rank > 0) {

MPI_Send(&valIn, 1, MPI_INT, rank - 1, 0,
MPI_COMM_WORLD);

}
else {

printf("The sum is %d\n", valOut);
}

MPI_Finalize();
return 0;

}

Fig. 1.5. A simple program to add values from each process.

Table 1.1. Some major predefined MPI datatypes.

C Fortran
int MPI INT INTEGER MPI INTEGER
float MPI FLOAT REAL MPI REAL
double MPI DOUBLE DOUBLE PRECISION MPI DOUBLE PRECISION
char MPI CHAR CHARACTER MPI CHARACTER
short MPI SHORT

12 R. A. Kendall et al.

to that process. The only way for one process to change or access data in another
process is with the explicit use of MPI routines such as MPI Send and MPI Recv.

MPI provides a number of other ways in which to send and receive messages, in-
cluding nonblocking (sometimes incorrectly called asynchronous) and synchronous
routines. Other routines, such as MPI Iprobe, can be used to determine whether a
message is available for receipt. The nonblocking routines can be important in ap-
plications that have complex communication patterns and that send large messages.
See [30, Chapter 4] for more details and examples.

Collective Communication and Computation

Any parallel algorithm can be expressed by using point-to-point communication.
This flexibility comes at a cost, however. Unless carefully structured and docu-
mented, programs using point-to-point communication can be challenging to under-
stand because the relationship between the part of the program that sends data and
the part that receives the data may not be clear (note that well-written programs using
point-to-point message passing strive to keep this relationship as plain and obvious
as possible).

An alternative approach is to use communication that involves all processes (or
all in a well-defined subset). MPI provides a wide variety of collective communica-
tion functions for this purpose. As an added benefit, these routines can be optimized
for their particular operations (note, however, that these optimizations are often quite
complex). As an example Figure 1.6 shows a program that performs the same com-
putation as the program in Figure 1.5 but uses a single MPI routine. This routine,
MPI Reduce, performs a sum reduction (specified with MPI SUM), leaving the re-
sult on the process with rank zero (the sixth argument).

Note that this program contains only a single branch (if) statement that is used
to ensure that only one process writes the result. The program is easier to read than
its predecessor. In addition, it is effectively parallel; most MPI implementations will
perform a sum reduction in time that is proportional to the log of the number of
processes. The program in Figure 1.5, despite being a parallel program, will take
time that is proportional to the number of processes because each process must wait
for its neighbor to finish before it receives the data it needs to form the partial sum.7

Not all programs can be conveniently and efficiently written by using only col-
lective communications. For example, for most MPI implementations, operations on
PDE meshes are best done by using point-to-point communication, because the data
exchanges are between pairs of processes and this closely matches the point-to-point
programming model.

7One might object that the program in Figure 1.6 doesn’t do exactly what the program in
Figure 1.5 does because, in the latter, all of the intermediate results are computed and available
to those processes. We offer two responses. First, only the value on the rank-zero process
is printed; the others don’t matter. Second, MPI offers the collective routine MPI Scan to
provide the partial sum results if that is required.

1 Parallel Programming Models 13

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, valIn, valOut;
MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Pick a simple value to add */
valIn = rank;

/* Reduce to process zero by summing the values */
MPI_Reduce(&valIn, &valOut, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);
if (rank == 0) {

printf("The sum is %d\n", valOut);
}

MPI_Finalize();
return 0;

}

Fig. 1.6. Using collective communication and computation in MPI.

Other Features

MPI contains over 120 functions. In addition to nonblocking versions of point-
to-point communication, there are routines for defining groups of processes, user-
defined data representations, and testing for the availability of messages. These are
described in any comprehensive reference on MPI [73, 30].

An important part of the MPI design is its support for programming in the large.
Many parallel libraries have been written that make use of MPI; in fact, many appli-
cations can be written that have no explicit MPI calls and instead use libraries that
themselves use MPI to express parallelism. Before writing any MPI program (or any
program, for that matter), one should check to see whether someone has already done
the hard work. See [31, Chapter 12] for a summary of some numerical libraries for
Beowulf clusters.

1.2.3 The MPI-2 Extensions

The success of MPI created a desire to tackle some of the features not in the original
MPI (henceforth called MPI-1). The major features include parallel I/O, the creation
of new processes in the parallel program, and one-sided (as opposed to point-to-
point) communication. Other important features include bindings for Fortran 90 and

14 R. A. Kendall et al.

C++. The MPI-2 standard was officially released on July 18, 1997, and “MPI” now
means the combined standard consisting of MPI-1.2 and MPI-2.0.

Parallel I/O

Perhaps the most requested feature for MPI-2 was parallel I/O. A major reason for
using parallel I/O (as opposed to independent I/O) is performance. Experience with
parallel programs using conventional file systems showed that many provided poor
performance. Even worse, some of the most common file systems (such as NFS) are
not designed to allow multiple processes to update the same file; in this case, data can
be lost or corrupted. The goal for the MPI-2 interface to parallel I/O was to provide an
interface that matched the needs of applications to create and access files in parallel,
while preserving the flavor of MPI. This turned out to be easy. One can think of
writing to a file as sending a message to the file system; reading a file is somewhat
like receiving a message from the file system (“somewhat,” because one must ask
the file system to send the data). Thus, it makes sense to use the same approach for
describing the data to be read or written as is used for message passing—a tuple of
address, count, and MPI datatype. Because the I/O is parallel, we need to specify the
group of processes; thus we also need a communicator. For performance reasons, we
sometimes need a way to describe where the data is on the disk; fortunately, we can
use MPI datatypes for this as well.

Figure 1.7 shows a simple program for reading a single integer value from a file.
There are three steps, each similar to what one would use with non-parallel I/O:

1. Open the file. The MPI File open call takes a communicator (to specify the
group of processes that will access the file), the file name, the access style (in
this case, read-only), and another parameter used to pass additional data (usually
empty, or MPI INFO NULL) and returns an MPI File object that is used in
MPI-IO calls.

2. Use all processes to read from the file. This simple call takes the file handle
returned from MPI File open, the same buffer description (address, count,
datatype) used in an MPI Recv call, and (also like MPI Recv) a status variable.
In this case we use MPI STATUS IGNORE for simplicity.

3. Close the file.

Variations on this program, using other routines from MPI-IO, allow one to read
different parts of the file to different processes and to specify from where in the file
to read. As with message passing, there are also nonblocking versions of the I/O
routines, with a special kind of nonblocking collective operation, called split-phase
collective, available only for these I/O routines.

Writing files is similar to reading files. Figure 1.8 shows how each process can
write the contents of the array solution with a single collective I/O call.

Figure 1.8 illustrates the use of collective I/O, combined with file views, to effi-
ciently write data from many processes to a single file in a way that provides a natural
ordering for the data. Each process writes ARRAY SIZE double-precision values to
the file, ordered by the MPI rank of the process. Once this file is written, another

1 Parallel Programming Models 15

/* Declarations, including */
MPI_File fh;
int val;

/* Start MPI */
MPI_Init(&argc, &argv);

/* Open the file for reading only */
MPI_File_open(MPI_COMM_WORLD, "input.dat",

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

/* All processes access the file and read the same value
into val */

MPI_File_read_all(fh, &val, 1, MPI_INT,
MPI_STATUS_IGNORE);

/* Close the file when no longer needed */
MPI_File_close(&fh);

Fig. 1.7. A simple program to read a single integer from a file.

#define ARRAY_SIZE 1000
/* Declarations, including */
MPI_File fh;
int rank;
int solution[ARRAY_SIZE];

/* Start MPI */
MPI_Init(&argc, &argv);

/* Open the file for reading only */
MPI_File_open(MPI_COMM_WORLD, "output.dat",

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

/* Define where each process writes in the file */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_File_set_view(fh, rank * ARRAY_SIZE * sizeof(double),

MPI_DOUBLE, MPI_DOUBLE, "native",
MPI_INFO_NULL);

/* Perform the write */
MPI_File_write_all(fh, solution, ARRAY_SIZE, MPI_DOUBLE,

MPI_STATUS_IGNORE);
/* Close the file when no longer needed */
MPI_File_close(&fh);

Fig. 1.8. A simple program to write a distributed array to a file in a standard order that is
independent of the number of processes.

16 R. A. Kendall et al.

program, using a different number of processes, can read the data in this file. For
example, a non-parallel program could read this file, accessing all of the data.

Several good libraries provide convenient parallel I/O for user applications. Par-
allel netCDF [49] and HDF-5 [24] can read and write data files in a standard format,
making it easy to move files between platforms. These libraries also encourage the
inclusion of metadata in the file that describes the contents, such as the source of
the computation and the meaning and units of measurements of the data. Parallel
netCDF in particular encourages a collective I/O style for input and output, which
helps ensure that the parallel I/O is efficient. We recommend that an I/O library be
used if possible.

Dynamic Processes

Another feature that was often requested for MPI-2 was the ability to create and use
additional processes. This is particularly valuable for ad hoc collections of desktop
systems. Since MPI is designed for use on all kinds of parallel computers, from
collections of desktops to dedicated massively parallel computers, a scalable design
was needed. MPI must also operate in a wide variety of environments, including ones
where process creation is controlled by special process managers and schedulers.

In order to ensure scalability, process creation in MPI is collective, both over a
group of processes that are creating new processes and over the group of processes
created. The act of creating processes, or spawning, is accomplished with the rou-
tine MPI Comm spawn. This routine takes the name of the program to run, the
command-line arguments for that program, the number of processes to create, the
MPI communicator representing the group of processes that are spawning the new
processes, a designated root (the rank of one process in the communicator that all
members of that communicator agree to), and an MPI Info object. The call re-
turns a special kind of communicator, called an intercommunicator, that contains
two groups of processes: the original group (from the input communicator) and the
group of created processes. MPI point-to-point communication can then be used with
this intercommunicator. The call also returns an array of error codes, one for each
process.

Dynamic process creation is often used in master-worker programs, where the
master process dynamically creates worker processes and then sends the workers
tasks to perform. Such a program is sketched in Figure 1.9.

MPI also provides routines to spawn different programs on different processes
with MPI Comm spawn multiple. Special values used for the MPI Info para-
meter allow one to specify special requirements about the processes, such as their
working directory.

In some cases two parallel programs may need to connect to each other. A
common example is a climate simulation, where separate programs perform the at-
mospheric and ocean modeling. However, these programs need to share data at the
ocean-atmosphere boundary. MPI allows programs to connect to one another by us-
ing the routines MPI Comm connect and MPI Comm accept. See [32, Chapter
7] for more information.

1 Parallel Programming Models 17

MPI_Comm workerIntercomm;
int errcodes[10];
...
MPI_Init(&argc, &argv);
...
MPI_Comm_spawn("./worker", MPI_ARGV_NULL, 10,

MPI_INFO_NULL, 0, MPI_COMM_SELF,
&workerIntercomm, errcodes);

for (i=0; i<10; i++) {
MPI_Send(&task, 1, MPI_INT, i, 0, workerIntercomm);
...

}

Fig. 1.9. Sketch of an MPI master program that creates 10 worker processes and sends them
each a task, specified by a single integer.

One-Sided Communication

The message-passing programming model relies on the sender and receiver cooper-
ating in moving data from one process to another. This model has many strengths but
can be awkward, particularly when it is difficult to coordinate the sender and receiver.
A different programming model relies on one-sided operations, where one process
specifies both the source and the destination of the data moved between processes.
Experience with BSP [35] and the Cray SHMEM [14] demonstrated the value of
one-sided communication. The challenge for the MPI Forum was to design an inter-
face for one-sided communication that retained the “look and feel” of MPI and could
deliver good and reliable performance on a wide variety of platforms, including very
fast computers without cache-coherent memory. The result was a compromise, but
one that has been used effectively on one of the fastest machines in the world, the
Earth Simulator.

In one-sided communication, a process may either put data into another process
or get data from another process. The process performing the operation is called
the origin process; the other process is the target process. The data movement hap-
pens without explicit cooperation between the origin and target processes. The origin
process specifies both the source and destination of the data. A third operation, ac-
cumulate, allows the origin process to perform some basic operations, such as sum,
with data at the target process. The one-sided model is sometimes called a put-get
programming model.

Figure 1.10 sketches the use of MPI Put for updating “ghost points” used in a
one-dimensional finite difference grid. This has three parts:

1. One-sided operations may target only memory that has been marked as available
for use by a particular memory window. The memory window is the one-sided
analogue to the MPI communicator and ensures that only memory that the tar-
get process specifies may be updated by another process using MPI one-sided
operations. The definition is made with the MPI Win create routine.

18 R. A. Kendall et al.

define ARRAYSIZE
double x[ARRAYSIZE+2];
MPI_Win win;
int rank, size, leftNeighbor, rightNeighbor;

MPI_Init(&argc, &argv);
...
/* compute the neighbors. MPI_PROC_NULL means

"no neighbor" */
leftNeighbor = rightNeighbor = MPI_PROC_NULL;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (rank > 0) leftNeighbor = rank - 1;
if (rank < size - 1) rightNeighbor = rank + 1;

...
/* x[0] and x[ARRAYSIZE+1] are the ghost cells */
MPI_Win_create(x, (ARRAYSIZE+2) * sizeof(double),

sizeof(double), MPI_INFO_NULL,
MPI_COMM_WORLD, &win);
MPI_Win_fence(0, win);
MPI_Put(&x[1], 1, MPI_DOUBLE,

leftNeighbor, ARRAYSIZE+1, 1, MPI_DOUBLE, win);
MPI_Put(&x[ARRAYSIZE], 1, MPI_DOUBLE,

rightNeighbor, 0, 1, MPI_DOUBLE, win);
MPI_Win_fence(0, win);

...
MPI_Win_free(&win);

Fig. 1.10. Sketch of a program that uses MPI one-sided operations to communicate ghost cell
data to neighboring processes.

2. Data is moved by using the MPI Put routine. The arguments to this routine
are the data to put from the origin process (three arguments: address, count, and
datatype), the rank of the target process, the destination of the data relative to the
target window (three arguments: offset, count, and datatype), and the memory
window object. Note that the destination is specified as an offset into the memory
that the target process specified by using MPI Win create, not a memory
address. This provides better modularity as well as working with heterogeneous
collections of systems.

3. Because only the origin processes call MPI Put, the target process needs
some way to know when the data is available. This is accomplished with the
MPI Win fence routine, which is collective over all the processes that created
the memory window (in this example, all processes). In fact, in MPI the put,
get, and accumulate calls are all nonblocking (for maximum performance), and

1 Parallel Programming Models 19

the MPI Win fence call ensures that these calls have completed at the origin
processes.

While the MPI one-sided model is similar to other one-sided models, it has im-
portant differences. In particular, some models assume that the addresses of variables
(particularly arrays) are the same on all processes. This assumption simplifies many
features of the implementation and is true for many applications. MPI, however,
does not assume that all programs are the same or that all runtime images are the
same (e.g., running on heterogeneous platforms, which could be all IA32 processors
but with different installed runtime libraries for C or Fortran). Thus, the address of
MyArray in the program on one processor may not be the same as the address of
the variable with the same name on another processor (some programming models,
such as Co-Array Fortran, do make and require this assumption; see Section 1.5.2).

While we have touched on the issue of synchronization, this is a deep subject
and is reflected in the MPI standard. Reading the standard can create the impression
that the MPI model is very complex, and in some ways this is correct. However,
the complexity is designed to allow implementors the greatest flexibility while de-
livering precisely defined behavior. A few simple rules will guarantee the kind of
behavior that many users expect and use. The full rules are necessary only when
trying to squeeze the last bits of performance from certain kinds of computing plat-
forms, particularly machines without fully cache-coherent memory systems, such as
certain vector machines that are among the world’s fastest. In fact, rules of similar
complexity apply to shared-memory programming and are related to the pragmatic
issues of memory consistency and tradeoffs between performance and simplicity.

Other Features in MPI-2

Among the most important other features in MPI-2 are bindings for C++ and Fortran
90. The C++ binding provides a low-level interface that exploits the natural objects
in MPI. The Fortran 90 binding includes an MPI module, providing some argument
checking for Fortran programs. Other features include routines to specify levels of
thread safety and to support tools that must work with MPI programs. More infor-
mation may be found in [29].

1.2.4 State of the Art

MPI is now over twelve years old. Implementations of MPI-1 are widespread and
mature; many tools and applications use MPI on machines ranging from laptops to
the world’s largest and fastest computers. See [55] for a sampling of papers on MPI
applications and implementations. Improvements continue to be made in the areas
of performance, robustness, and new hardware. In addition, the parallel I/O part of
MPI-2 is widely available.

Shortly after the MPI-2 standard was released, Fujitsu had an implementation
of all of MPI-2 except for MPI Comm join and a few special cases of the rou-
tine MPI Comm spawn. Other implementations, free or commercially supported,
are now available for a wide variety of systems.

20 R. A. Kendall et al.

The MPI one-sided operations are less mature. Many implementations now sup-
port at least the “active target” model (these correspond to the BSP or put-get fol-
lowed by barrier). In some cases, while the implementation of these operations is
correct, the performance may not be as good as MPI’s point-to-point operations.
Other implementations have achieved good results, even on clusters with no special
hardware to support one-sided operations [75]. Recent work exploiting the abilities
of emerging network standards such as Infiniband shows how the MPI one-sided
operations can provide excellent performance [42].

1.2.5 Summary

MPI provides a mature, capable, and efficient programming model for parallel com-
putation. A large number of applications, libraries, and tools are available that make
use of MPI. MPI applications can be developed on a laptop or desktop, tested on
an ad hoc cluster of workstations or PCs, and then run in production on the world’s
largest parallel computers. Because MPI was designed to support “programming in
the large,” many libraries written with MPI are available, simplifying the task of
building many parallel programs. MPI is also general and flexible; any parallel algo-
rithm can be expressed in MPI. These and other reasons for the success of MPI are
discussed in more detail in [28].

1.3 Shared-Memory Programming with OpenMP

Shared-memory programming on multiprocessor systems has been around for a long
time. The typical generic architectural schematic for a shared-memory system or an
individual SMP node in a distributed-memory system is shown in Figure 1.3. The
memory of the system is directly accessible by all processors, but that access may
be coupled by different bandwidth and latency mechanisms. The latter situation is
often refered to as non-uniform memory access (NUMA). For optimal performance,
parallel algorithms must take this into account.

The vendor community offers a huge number of shared-memory-based hardware
systems, ranging from dual-processor systems to very large (e.g., 512-processor)
systems. Many clusters are built from these shared-memory nodes, with two or four
processors being common and a few now using 8-way systems. The relatively new
AMD Opteron systems will be generally available in 8-way configurations within
the coming year. More integrated parallel supercomputer systems such as the IBM
SP have 16- or 32-way nodes.

Programming in shared memory can be done in a number of ways, some based
on threads, others on processes. The main difference, by default, is that threads share
the same process construct and memory, whereas multiple processes do not share
memory. Message passing is a multiple process based programming model. Overall,
thread-based models have some advantages. Creating an additional thread of execu-
tion is usually faster than creating another process, and synchronization and context

1 Parallel Programming Models 21

switches among threads are faster than among processes. Shared-memory program-
ming is in general incremental; a given section of code can be parallelized without
modifying external data storage or data access mechanisms.

Many vendors have their own shared-memory programming models. Most offer
System V interprocess communication (IPC) mechanisms, which include shared-
memory segments and semaphores [77]. System V IPC usually shares memory
segments among different processes. The Posix standard [41, 57] offers a specific
threads model called Pthreads. It has a generic interface that makes it more suit-
able for systems-level programming than for high-performance computing applica-
tions. Only one compiler (as far as we know) supports the Fortran Pthreads standard;
C/C++ support is commonplace in Unix; and there is a one-to-one mapping of the
Pthreads API to the Windows threads API as well, so the latter is a common shared-
memory programming model available to the development community. Java threads
also provides a mechanism for shared-memory concurrent programming [40].

Many other thread-based programming libraries are available from the research
community as well, for example, TreadMarks [44]. These libraries are supported
across a wide variety of platforms principally by the library development teams.
OpenMP, on the other hand, is a shared-memory, thread-based programming model
or API supported by the vendor community. Most commercial compilers available
for Linux provide OpenMP support.

Overall, thread-based models have some advantages. Creating an additional
thread of execution is usually faster than creating another process. Synchronization
and context switches among threads are faster than among processes.

In the remainder of this section, we focus on the OpenMP programing model.

1.3.1 OpenMP History

OpenMP [12, 15] was organized in 1997 by the OpenMP Architecture Review Board
(ARB), which owns the copyright on the specifications and manages the standard
development. The ARB is composed primarily of representatives from the vendor
community; membership is open to corporate, research, or academic institutions, not
to individuals [65]. The goal of the original effort was to provide a shared-memory
programming standard that combined the best practices of the vendor community
offerings and some specifications that were a part of previous standardization efforts
of the Parallel Computing Forum [48, 26] and the ANSI X3H5 [25] committee.

The ARB keeps the standard relevant by expanding the standard to meet needs
and requirements of the user and development communities. The ARB also works
to increase the impact of OpenMP and interprets the standard for the community as
questions arise. The currently available version 2 standards for C/C++ [64] and For-
tran [63] can be downloaded from the OpenMP ARB Web site [65]. The ARB has
combined these standards into one working specification (version 2.5) for all lan-
guages, clarifying previous inconsistencies and strengthening the overall standard.
The merged draft was released in November, 2004.

22 R. A. Kendall et al.

T
im

e

Fork

Join

Fig. 1.11. Fork-and-join model of executing threads.

1.3.2 The OpenMP Model

OpenMP uses an execution model of fork and join (see Figure 1.11) in which the
“master” thread executes sequentially until it reaches instructions that essentially
ask the runtime system for additional threads to do concurrent work. Once the con-
current scope of execution has completed, these extra threads simply go away, and
the master thread continues execution serially. The details of the underlying threads
of execution are compiler dependent and system dependent. In fact, some OpenMP
implementations are developed on top of Pthreads. OpenMP uses a set of compiler
directives, environment variables, and library functions to construct parallel algo-
rithms within an application code. OpenMP is relatively easy to use and affords the
ability to do incremental parallelism within an existing software package.

OpenMP uses a variety of mechanisms to construct parallel algorithms within
an application code. These are a set of compiler directives, environment variables,
and library functions. OpenMP is essentially an implicit parallelization method that
works with standard C/C++ or Fortran. Various mechanisms are available for divid-
ing work among executing threads, ranging from automatic parallelism provided by
some compiler infrastructures to the ability to explicitly schedule work based on the
thread ID of the executing threads. Library calls provide mechanisms to determine
the thread ID and number of participating threads in the current scope of execution.
There are also mechanisms to execute code on a single thread atomically in order
to protect execution of critical sections of code. The final application becomes a se-
ries of sequential and parallel regions, for instance connected segments of the single
serial-parallel-serial segment as shown in Figure 1.12.

1 Parallel Programming Models 23

Fork

Join

Fork

Join

Fork

Join

T
im

e

Fig. 1.12. An OpenMP application using the fork-and-join model of executing threads has
multiple concurrent teams of threads.

Using OpenMP in essence involves three basic parallel constructs:

1. Expression of the algorithmic parallelism or controlling the flow of the code
2. Constructs for sharing data among threads or the specific communication mech-

anism involved
3. Synchronization constructs for coordinating the interactions among threads

These three basic constructs, in their functional scope, are similar to those used in
MPI or any other parallel programming model.

OpenMP directives are used to define blocks of code that can be executed in
parallel. The blocks of code are defined by the formal block structure in C/C++ and

24 R. A. Kendall et al.

C code Fortran Code

#include <stdio.h> program hello
#include <omp.h> implicit none
int main(int argc, char *argv[]) integer tid
{ integer omp_get_thread_num

int tid; external omp_get_thread_num
#pragma omp parallel private(tid) !$omp parallel private(tid)

{ tid = omp_get_thread_num()
tid = omp_get_thread_num(); write(6,’(1x,a1,i4,a1)’)
printf("<%d>\n",tid); & ’<’,tid,’>’

} !$omp end parallel
} end

Fig. 1.13. “Hello World” OpenMP code.

by comments in Fortran; both the beginning and end of the block of code must be
identified. There are three kinds of OpenMP directives: parallel constructs, work-
sharing constructs within a parallel construct, and combined parallel-work-sharing
constructs.

Communication is done entirely in the shared-memory space of the process con-
taining threads. Each thread has a unique stack pointer and program counter to con-
trol execution in that thread. By default, all variables are shared among threads in the
scope of the process containing the threads. Variables in each thread are either shared
or private. Special variables, such as reduction variables, have both a shared scope
and a private scope that changes at the boundaries of a parallel region. Synchroniza-
tion constructs include mutual exclusions that control access to shared variables or
specific functionality (e.g., regions of code). There are also explicit and implied bar-
riers, the latter being one of the subtleties of OpenMP. In parallel algorithms, there
must be a communication of critical information among the concurrent execution en-
tities (threads or processes). In OpenMP, nearly all of this communication is handled
by the compiler. For example, a parallel algorithm has to know the number of entities
participating in the concurrent execution and how to identify the appropriate portion
of the entire computation for each entity. This maps directly to a process-count- and
process-identifier-based algorithm in MPI.

A simple example is in order to whet the appetite for the details to come. In
the code segments in Figure 1.13 we have a “Hello World”-like program that uses
OpenMP. This generic program uses a simple parallel region that designates the
block of code to be executed by all threads. The C code uses the language stan-
dard braces to identify the block; the Fortran code uses comments to identify the
beginning and end of the parallel region. In both codes the OpenMP library function
omp get thread num returns the thread number, or ID, of the calling thread; the
result is an integer value ranging from 0 to the number of threads minus 1. Note
that type information for the OpenMP library function function does not follow the
default variable type scoping in Fortran. To run this program, one would execute the
binary like any other binary. To control the number of threads used, one would set the
environment variable OMP NUM THREADS to the desired value. What output should
be expected from this code? Table 1.2 shows the results of five runs with the number

1 Parallel Programming Models 25

Table 1.2. Multiple runs of the OpenMP “Hello World” program. Each column represents the
output of a single run of the application on 3 threads.

Run 1 Run 2 Run 3 Run 4 Run 5

<0> <2> <1> <0> <0>
<1> <1> <0> <1> <1>
<2> <0> <2> <2> <2>

of threads set to 3. The output from this simple example illustrates an important point
about thread-based parallel programs, in OpenMP or any other thread model: There
is no control over which thread executes first within the context of a parallel region.
This decision is determined by the runtime system. Any expectation or required or-
dering of the execution of threads must be explicitly coded. The simple concurrency
afforded by OpenMP requires that each task, such as a single iteration of a loop, be
an independent execution construct.

One of the advantages of OpenMP is incremental parallelization—the ability to
parallelize loops at a time or even small segments of code at a time. By iteratively
identifying the most time-consuming components of an application and then paral-
lelizing those components, one eventually gets a fully parallelized application. Any
programming model requires a significant amount of testing and code restructuring
to get optimal performance.8 Although the mechanisms of OpenMP are straightfor-
ward and easier than other parallel programming models, the cycle of restructuring
and testing is still important. The programmer may introduce a bug by incorrectly
parallelizing a code and introducing a dependency that goes undetected because the
code was not then thoroughly tested. One should remember that the OpenMP user has
no control on the order of thread execution; a few tests may detect a dependency—or
may not. In other words the tests you run may just get “lucky” and give the correct
results. We discuss dependency analysis further in Section 1.3.4.

1.3.3 OpenMP Directives

The mechanics of parallelization with OpenMP are relatively straightforward. The
first step is to insert compiler directives into the source code identifying the code
segments or loops to be parallelized. Table 1.3 shows the sentinel syntax of a general
directive for OpenMP in the supported languages [64, 63]. The easiest way to learn
how to develop OpenMP applications is through examples. We start with a simple
algorithm, computing the norm of the difference of two vectors. This is a common
way to compare vectors or matrices that are supposed to be the same. The serial code
fragment in C and Fortran is shown in Figure 1.14. This simple example exposes
some of the concepts needed to appropriately parallelize a loop with OpenMP. By
thinking about executing each iteration of the loop independently, we can see several

8Some parallel software developers call parallelizing a code re-bugging a code, and this is
often an apropos statement.

26 R. A. Kendall et al.

Table 1.3. General sentinel syntax of OpenMP directives.

Language Syntax

Fortran 77 *$omp directive [options]
C$omp directive [options]
!$omp directive [options]

Fortran 90/95 !$omp directive [options]

Continuation !$omp directive [options]
Syntax !$omp+ directive [options]

C or C++ #pragma omp directive [options]

Continuation #pragma omp directive [options] \
Syntax directive [options]

C code fragment Fortran code fragment

norm = (double) 0.0; norm = 0.0d00
for(i=0;i<len;i++) { do i = 1,len
diff = z[i]-zp[i]; diff = z(i) - zp(i)
norm += diff*diff; norm = norm + diff*diff

} enddo

Fig. 1.14. “Norm of vector difference” serial code.

issues with respect to reading from and writing to memory locations. First, we have to
understand that each iteration of the loop essentially needs a separate diff memory
location. Since diff for each iteration is unique and different iterations are being
executed concurrently on multiple threads, diff cannot be shared. Second, with all
threads writing to norm, we have to ensure that all values are appropriately added
to the memory location. This process can be handled in two ways: We can protect
the summation into norm by a critical section (an atomic operation), or we can use a
reduction clause to sum a thread local version of norm into the final value of norm
in the master thread. Third, all threads of execution have to read the values of the
vectors involved and the length of the vectors.

Now that we understand the “data” movement in the loop, we can apply direc-
tives to make the movement appropriate. Figure 1.15 contains the parallelized code
using OpenMP with a critical section. We have identified i as private so that only
one thread will execute a given value of i; each iteration is executed only once. Also
private is diff because each thread of execution must have a specific memory lo-
cation to store the difference; if diff were not private, the overlapped execution
of multiple threads would not guarantee the appropriate value when it is read in the
norm summation step. The “atomic” directive allows only one thread at a time to

1 Parallel Programming Models 27

C code fragment

norm = (double) 0.0;
#pragma omp parallel for private(i,diff) shared(len,z,zp,norm)
for(i=0;i<len;i++) {
diff = z[i]-zp[i];

#pragma omp atomic
norm += diff*diff;

}

Fortran code fragment

norm = 0.0d00
!$OMP PARALLEL DO PRIVATE(i,diff) SHARED(len,z,zp,norm)

do i = 1,len
diff = z(i) - zp(i)

!$OMP ATOMIC
norm = norm + diff*diff

enddo
!$OMP END PARALLEL DO

Fig. 1.15. “Norm of vector difference” OpenMP code with a critical section.

do the summation of norm, thereby ensuring that the correct values are summed
into the shared variable. This is important because summation involves the data load,
register operations, and data store. If this were not protected, multiple threads could
overlap these operations. For example, thread 1 could load a value of norm, thread
2 could store an updated value of norm, and then thread 1 would have the wrong
value of norm for the summation.

Since all the threads have to execute the norm summation line atomically, there
clearly will be contention for access to update the value of norm. This overhead,
waiting in line to update the value, will severely limit the overall performance and
scalability of the parallel loop.9 A better approach would be to have each thread sum
into a private variable and then use the partial sums in each thread to compute the
total norm value. This is what is done with a reduction clause. The variable in a
reduction clause is private during the execution of the concurrent threads, and the
value in each thread is reduced over the given operation and returned to the master
thread just as a shared variable operates. This dual nature provides a mechanism to
parallelize the algorithm without the need for the atomic operation as in Figure 1.16.
This eliminates the thread contention of the atomic operation.

The reduction mechanism is a useful technique, and another example of the use
of the reduction clause is in order. In developing parallel algorithms, one often mea-
sures their performance by timing the event in each execution entity, either in each

9In fact, this simple example will not scale well regardless of the OpenMP mechanism
used because the amount of work in each thread compared to the overhead of the paralleliza-
tion is small.

28 R. A. Kendall et al.

thread or in each process. Knowing the minimum, maximum, and average time of
concurrent tasks will give some indication of the level of load balance in the algo-
rithm. If the minimum, maximum, and average times are all about the same, then
the algorithm has good load-balance. If the minimum, maximum, or both are far
away from the average then there is a load imbalance that has to be mitigated. This
can be accomplished by some sort of regrouping of elements of each task or via
some dynamic mechanism. As a specific example, we will show code fragment for
a sparse matrix vector multiplication in Figure 1.17. The sparse matrix is stored in
the compressed-row-storage (CRS) format, a standard format that many sparse codes
use in their algorithms. See [68] for details of various sparse matrix formats.

To parallelize this loop using OpenMP, we have to determine the data flow in
the algorithm. We will parallelize this code over the outer loop, i. Each iteration of
that loop will be executed only once across all threads in the team. Each iteration is
independent, so writing to yvec(i) is independent in each iteration. Therefore, we
do not have to protect that write with an atomic directive as we did in the “norm”
computation example. Hence, yvec needs to be shared because each thread will
write to some part of the vector. The temporary summation variable t and the inner
do loop variable k are different for each iteration of i. Thus, they must be private;
that is, each thread must have a separate memory location. All other variables are
only being read, so these variables are shared because all threads have to know all
the values.

Figure 1.18 shows the parallelized code fragment. Timing mechanisms are in-
serted for the do loop and the reduction clause is inserted for each of the reduc-
tion variables, timemin, timemax, and timeave. The OpenMP library function
omp get wtime() returns a double-precision clock tick based on some imple-
mentation dependent epoch. The library function omp get num threads() re-
turns the total number of threads in the team of the parallel region. The defaults
are used for scheduling the iterations of the i loop across the threads. In other
words, approximately n/numthread iterations are assigned to each thread in the
team. Thread 0 will have iterations i = 1, 2, . . .,n/numthread, thread 1 will
have i = n/numthread + 1, . . ., 2*n/numthread, and so on. Any remainder in
n/numthread is assigned to the team of threads via a mechanism determined by
the OpenMP implementation.

Our example of a parallelized sparse matrix multiply where we determine the
minimum, maximum, and average times of execution could show some measure of
load-imbalance. Each row of the sparse matrix has a different number of elements.
If the sparse matrix has a dense block banding a portion of the diagonal and mostly
diagonal elements elsewhere there will be a larger “load” on the thread that computes
the components from the dense block. Figure 1.19 shows the representation of such
a matrix and how it would be split by using the default OpenMP scheduling mech-
anisms with three threads. With the “static” distribution of work among the team of
three threads, a severe load imbalance will result. This problem can be mitigated in
several ways. One way would be to apply a chunk size in the static distribution of
work equal to the size of the dense block divided by the number of threads. This

1 Parallel Programming Models 29

C code fragment

norm = (double) 0.0;
#pragma omp parallel for private(i,diff) \

shared(len,z,zp,norm) reduction(+:norm)
for(i=0;i<len;i++) {

diff = z[i]-zp[i];
norm += diff*diff;

}

Fortran code fragment

norm = 0.0d00
!$OMP PARALLEL DO PRIVATE(i,diff) SHARED(len,z,zp,norm)
!$OMP+ REDUCTION(+:norm)

do i = 1,len
diff = z(i) - zp(i)
norm = norm + diff*diff

enddo
!$OMP END PARALLEL DO

Fig. 1.16. “Norm of vector difference” OpenMP code with a reduction.

! compute yvec = Amat*xvec
! Amat sparse matrix stored in CRS format
! Flat linear storage of elements of A
! row_ptr() points to the start and of each row of A
! in the flat linear storage of A. The last
! element has the number of non-zero elements
! of A + 1. Therefore each row has
! row_ptr(i+1)-row_ptr(i)-1 elements
! col_ind() provides the column index for each
! element of A
!

do i = 1,n
!
! compute the inner product of row i with vector xvec
!

t = 0.0d0
do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))
enddo

!
! store result in yvec(i)
!

yvec(i) = t
enddo

Fig. 1.17. Sequential sparse matrix multiply code fragment, in Fortran.

30 R. A. Kendall et al.

! compute yvec = Amat*xvec
...
!$OMP PARALLEL REGION PRIVATE(i,t,k,timestart,timeend,numthread)
!$OMP+ SHARED(n,row_ptr,amat,xvec,col_ind,yvec)
!$OMP+ REDUCTION(MIN:timemin) REDUCTION(MAX:timemax)
!$OMP+ REDUCTION(+:timeave)

timestart = omp_get_wtime()
!$OMP PARALLEL DO

do i = 1,n
t = 0.0d0 ! inner product of row i with vector xvec
do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))
enddo
yvec(i) = t ! store result in yvec(i)

enddo
!$OMP END PARALLEL DO

timeend = omp_get_wtime()
numthread = omp_get_num_threads()
timemin = timeend-timestart
timemax = timeend-timestart
timeave = (timeend-timestart)/numthread

!$OMP END PARALLEL REGION

Fig. 1.18. Parallel sparse matrix multiply code fragment, in Fortran, that times the operation
and reduces the minimum, maximum, and average times.

would lead to the distribution of work shown in Figure 1.20. This can be accom-
plished by modifying the PARALLEL DO directive of Figure 1.18 to

!$OMP PARALLEL DO SCHEDULE(STATIC,(SIZE_OF_DENSE_BLOCK/numthreads))

where SIZE OF DENSE BLOCK must be determined before the do loop construct
in the parallel region. Determining this value is added overhead on the parallelization
of the serial code.

At times, more explicit control may be necessary. The same kind of explicit con-
trol necessary in the equivalent message-passing implementation. The algorithm can
be scheduled explicitly with similar constructs such as the number of threads and the
thread identifier. This is another advantage of OpenMP; in addition to incremental
parallelization, a programmer can take as much explicit control as is necessary for a
given algorithm.

Figure 1.21 shows an explicit parallelization of the sparse matrix multiply. The
OpenMP library function omp get thread num() returns the thread identifier
in the range from 0 . . . the number of threads minus 1. Each thread starts with the
iteration that matches a thread identifier, and the “parallel” loop now increments by
the number of threads. There is no longer a need for the PARALLEL DO directive
because of the explicit control! This interleaves each iteration in order to a different
thread, so the issues of load balance are minimized.

The C/C++ version of the example in Figure 1.21 would be more complicated
because the reduction clause operators available in C/C++ do not include MIN
or MAX functionality. No intrinsic functions are available for use in the reduction
clause.

1 Parallel Programming Models 31

i

j

Thread 0

Thread 1

Thread 2

Fig. 1.19. A sparse matrix that is dense in one area. Using our sparse matrix vector algorithm
on three threads, we would access the matrix as shown.

Thread 0

Thread 1

Thread 2

Thread 0

Thread 1

Thread 2

Thread 0

Thread 1

Thread 2

i

j

Fig. 1.20. A sparse matrix that is dense in one area. Using our sparse matrix vector algorithm
with the appropriate chunk size on three threads we would access the matrix as shown. This is
more load-balanced than the default distribution of iterations to the team of threads.

32 R. A. Kendall et al.

! compute yvec = Amat*xvec
...
!$OMP PARALLEL REGION PRIVATE(i,t,k,timestart,timeend,numthread,tid)
!$OMP+ SHARED(n,row_ptr,amat,xvec,col_ind,yvec)
!$OMP+ REDUCTION(MIN:timemin) REDUCTION(MAX:timemax)
!$OMP+ REDUCTION(+:timeave)

timestart = omp_get_wtime()
tid = omp_get_thread_num() ! get the thread identifier
numthread = omp_get_num_threads()

do i = (tid+1),n,numthread
t = 0.0d0 ! inner product of row i with vector xvec
do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))
enddo
yvec(i) = t ! store result in yvec(i)

enddo
timeend = omp_get_wtime()
timemin = timeend-timestart
timemax = timeend-timestart
timeave = (timeend-timestart)/numthread

!$OMP END PARALLEL REGION

Fig. 1.21. Parallel sparse matrix-multiply code fragment, in Fortran, that times the operation
and reduces the minimum, maximum, and average times. The concurrency is explicitly con-
trolled with the thread identifier and the number of threads.

1.3.4 Data Dependencies and False Sharing

In parallelizing algorithms, one has to ensure that every memory write operation is
essentially independent of other memory operations from other threads in the team.
If the programmer writes to a location in one thread and reads that same location in
another thread of execution, a dependency exists. Since OpenMP provides no control
over which thread executes, the programmer must deal with this dependency either
by scoping the appropriate variables (private or shared) or introducing synchroniza-
tion mechanisms to ensure that the dependency is met. Mitigating these data race
conditions or dependencies is at the heart of shared-memory parallel programming,
since data communication is through shared variables. Chandra et al. have a good,
somewhat formal, discussion of the process of identifying and removing these de-
pendencies [9].

The mechanisms for dealing with these data dependencies often require some
restructuring of code. For example, it may be necessary to split a loop that com-
putes multiple quantities. The “fissioned” loops can be run in parallel but the orig-
inal construct cannot. In other situations new intermediate quantities may need to
be introduced. These will add additional memory requirements and the overhead of
generating those intermediates.

Code restructuring will certainly involve tradeoffs that may affect performance
and thus force a specific way of parallelizing the algorithm. One such performance
issue is that, although there is no formal data dependency, there is a performance
degradation because of the nature of the memory locations being accessed by the
threads in the team. If independent threads are writing to memory locations in the
same cache line, there is no true data dependency because each thread is writing
to separate memory locations. Unfortunately, since these locations are in the same

1 Parallel Programming Models 33

! compute yvec = Amat*xvec
...

blocksize = 5 ! the number of iterations each thread gets
numblocks = n/blocksize ! number of blocks of iterations

! a remainder means extra block
if (mod(n,blocksize).ne.0) numblocks=numblocks+1

!$OMP PARALLEL REGION PRIVATE(ii,i,ilo,ihi,t,k)
!$OMP+ PRIVATE(timestart,timeend,numthread,tid)
!$OMP+ SHARED(n,row_ptr,amat,xvec,col_ind,yvec)
!$OMP+ SHARED(blocksize,numblocks)
!$OMP+ REDUCTION(MIN:timemin) REDUCTION(MAX:timemax)
!$OMP+ REDUCTION(+:timeave)

timestart = omp_get_wtime()
tid = omp_get_thread_num() ! get the thread identifier
numthread = omp_get_num_threads()

do ii = (tid+1),numblocks,numthread
ilo = (ii-1)*blocksize + 1 ! start of each block
ihi = min((ilo+blocksize-1),n)
do i = ilo,ihi

t = 0.0d0 ! inner product of row i with vector xvec
do k=row_ptr(i), row_ptr(i+1)-1

t = t + amat(k)*xvec(col_ind(k))
enddo
yvec(i) = t ! store result in yvec(i)

enddo
enddo
timeend = omp_get_wtime()
timemin = timeend-timestart
timemax = timeend-timestart
timeave = (timeend-timestart)/numthread

!$OMP END PARALLEL REGION

Fig. 1.22. Parallel sparse matrix multiply code fragment, in Fortran, that times the operation
and reduces the minimum, maximum, and average times. The concurrency is explicitly con-
trolled with the thread identifier and the number of threads and appropriate blocking of the
parallelized iterations to avoid false sharing.

cache line, performance is degraded because each write forces the data to be flushed
from the other processor cache. This cache thrashing is called “false sharing.”

Can “false sharing” really impact the performance of a parallel algorithm? Yes.
In fact, the algorithm presented in Figure 1.21 will suffer from false sharing. The
write to yvec(i) in the first iteration of each thread all have elements contiguous
in memory; e.g., thread 0 and thread 1 will interact via the cache. As the algorithm
proceeds the effect may decrease because of the varying size of the number of ele-
ments in each row of the matrix; each iteration will take a different time to execute.
One way to mitigate this is to block the access to the iterations and thus the writes to
yvec(i). The block size simply has to be large enough to ensure that the writes to
yvec(i) in each thread will not be in the same cache line. Figure 1.22 shows the
blocked algorithm that will avoid false sharing using explicit control of the concur-
rency among the team of threads. This explicit blocking could be accomplished by
modifying the PARALLEL DO directive of Figure 1.18 to

!$OMP PARALLEL DO SCHEDULE(STATIC,5)

Other mechanisms can be used to modify the way iterations are scheduled. They are
explored in more detail in references [9, 63, 64].

34 R. A. Kendall et al.

do j = 1, CCOLS
do k = 1, BROWS

Btmp = B(k,j)
do i = 1, CROWS

C(i,j) = C(i,j) + A(i,k)*Btmp
enddo

enddo
enddo

Fig. 1.23. Partially cache-optimized matrix-multiply: serial code.

!$OMP PARALLEL DO PRIVATE(i,j,k,Btmp)
do j = 1, CCOLS

do k = 1, BROWS
Btmp = B(k,j)
do i = 1, CROWS

C(i,j) = C(i,j) + A(i,k)*Btmp
enddo

enddo
enddo

!$OMP END PARALLEL DO

Fig. 1.24. Partially cache-optimized matrix-multiply: parallel code.

As another example for analysis and parallelization, we examine the simple
cache-optimized matrix multiply in Figure 1.23. Our examination of this code sug-
gests that we should maximize the work in each thread with respect to the overhead
of the OpenMP parallelization constructs. In particular, we should parallelize the
outermost loop. A glance at the memory locations with write operations indicates
that only C(i,j), Btmp, i, j, and k are relevant. For effective parallelization, the
loop index variables must be different for each thread, thus accessing only appropri-
ate parts of the matrix. A and B have only read operations. Since all threads need to
know the dimensions of the matrices, CCOLS, CROWS, and BROWS need to be shared
among team members. Since we are parallelizing over the j loop, each thread has a
unique set of j values; and since Btmp is a function of j, each thread should have a
unique Btmp (i.e., Btmp should be private to each thread).

This loop structure can be parallelized in many ways. The most straightforward
is to use the combined parallel work sharing DO constructs. The parallel code based
on our analysis is shown in Figure 1.24. The data in Table 1.4 shows the performance
on a four-processor SMP system. The scalability indicates some overhead. On four
threads the efficiency ranges from 97.1% to 95.4% with increasing matrix sizes. The
performance could be improved by further optimizing the cache with a blocking
algorithm.

1 Parallel Programming Models 35

Table 1.4. Timings in seconds for multiple runs of the OpenMP parallelized matrix multiply
code.

Matrix Rank

number of threads 500 1000 1500 2000

4 0.43 3.56 12.05 28.37
3 0.57 4.65 15.67 37.05
2 0.84 6.92 23.28 55.12
1 1.67 13.57 45.87 108.27

1.3.5 Future of OpenMP

We have described in this section a robust programming model for the development
of applications using OpenMP on shared-memory systems. There are many ways
to tackle a parallel algorithm, from the application of simple directives to essen-
tially full control basing the execution on the thread identifiers available. At this
point we have described both message passing with MPI and thread programming
with OpenMP. Some applications use both, with mixed results [16, 43, 56]. Hybrid
MPI/OpenMP applications are emerging in part due to the nature of how clusters
are evolving with larger processor counts per node. Hybrid MPI/OpenMP software
development presents several challenges. The programmer interested in this hybrid
model should get a sound understanding of both programming models separately and
then begin to merge them. The programmer interested in this should carefully under-
stand the MPI-2 scope of thread policy set up in the initialization phase of MPI-2
codes. The real trick in merging these two programming models is getting the code
to work in four different modes: serially, with just OpenMP, with just MPI, and with
both MPI and OpenMP [38]. The hybrid code in any of these modes should generate
correct results regardless of how many threads are used at the thread level or how
data is distributed among multiple processes. Current hybrid applications have been
developed with a subset of these four modes due to the complexity of the resultant
application. Primarily MPI communications are done only in the master thread of ex-
ecution. Hybrid applications is an advanced topic in programming models and more
research is in progress addressing the issues involved.

Cluster-Based OpenMP

At a recent workshop, Intel described a new offering, Cluster OpenMP [37], that
is in beta testing. The idea is to provide a runtime infrastructure that allows the
OpenMP programming model to run on clusters. Intel’s offering can serve as a
reference implementation for this idea, but it is limited to Itanium clusters at the
moment. Intel has added directives and library functions to make clear distinctions
between private, shared, and “sharable” data (data that is among processes, i.e., on
another cluster node). Cluster-based OpenMP is a current topic in the research com-
munity and should be monitored as the research efforts demonstrate the effective-
ness [76, 39, 51].

36 R. A. Kendall et al.

The ultimate goal of these efforts is to have the runtime environment provide
good performance on clusters for OpenMP; comparable performance to hybrid MPI
and OpenMP is required. The programming syntax of the value-added standard
would allow incremental parallelism that is often difficult with MPI code devel-
opment. Many issues must be considered in this environment. Remote process in-
vocation is an issue that will be of interest because the landscape of clusters and
communication interconnects is vast.

Specifications 2.5 and 3.0

Currently the merged OpenMP 2.5 specification is completed and is available for
public comment.10 A major change in the OpenMP 2.5 specification is the merger
of the Fortran and C/C++ specifications into a single document [5]. The ARB is also
resolving inconsistencies in the specifications, expanding the glossary, improving the
examples, and resolving some of the more difficult issues with respect to the flush
semantics and the persistence of threadprivate data across multiple parallel regions.

The 3.0 specification is on hold until the 2.5 merger is done, but several topics
are under discussion to expand the applicability of OpenMP. These include task par-
allelism to handle while loops and recursion, automatic scoping of variables, inter-
action with other thread models (e.g., POSIX threads), more control or definition of
the memory model for NUMA-style shared-memory systems, and expanded sched-
ule types and reusable schedules. As an example of the importance of the last issue,
the guided schedule gives an exponential decay of the chunk size of iterations for a
loop construct. The ability to control or change the decay rate is useful for improved
performance of some algorithms. The 3.0 specification will also address many of the
issues of nested parallelism that is in several implementations now. One major issue
that needs to be considered is error reporting to the application. What happens if no
more threads/resources are available? Currently, most implementations simply seri-
alize the construct. A code developer may want to switch algorithms based on the
runtime environment.

1.3.6 Availability of OpenMP

Most vendors provide OpenMP compilers, and several open source implementations
are available. The OpenMP Web site [65] provides more information regarding their
availability and function. There are also pointers for open-source implementations.

1.4 Distributed Shared-Memory Programming Models

Distributed shared-memory (DSM) programming models use a physically distributed
memory architecture with some aspect of shared-memory technology. DSM models
are not as popular as message-passing or direct shared-memory models but have
many of the complications of both.

10See the http://www.openmp.org web site.

1 Parallel Programming Models 37

The goal for DSM technology is to facilitate the use of aggregate system mem-
ory, the most costly component of most high-end systems. Stated differently, most
DSM programming models want to provide shared-memory-like programming mod-
els for distributed-memory systems. This aspect of shared memory can be effected
in hardware or software. The hardware mechanisms are those with the highest per-
formance and cost. Software mechanisms range from those that are transparent to
the user to those coded explicitly by the user. Since obvious latencies exist in the
software stacks of these implementations, performance still depends on the skill of
the programmers using these technologies. DSM models are not as popular as mes-
sage passing or direct shared-memory models but have many of the complications of
both.

Software DSMs fall basically into three categories:

• Transparent operating system technology
• Language-supported infrastructure
• Variable/array/object-based libraries

DSMs that are transparent to the user often use a virtual-memory system with
kernel modifications to allow for inter-node page accesses. This approach makes
the programming straightforward in function, but getting good performance requires
understanding the locality of the data and the way data movement happens. These
systems include technologies such as ThreadMarks [44], InterWeave [10], Munin [7],
and Cashmere [19].

Language-based infrastructure includes specialty languages such as High Perfor-
mance Fortran (see section 1.4.1) and one that is now getting vendor support, Unified
Parallel C (see Section 1.5.1).

Data-specific DSM libraries have been those most used by the high-performance
computing community. They include the popular SHMEM programming model
available on the Cray T3D and T3E systems [4]. These DSMs require that the pro-
grammer identify variables or objects that are shared, unlike OpenMP where every-
thing is shared by default. Operations that separate shared and local variables require
programmer control of the consistency appropriate for the algorithm. Data move-
ment is neither automatic nor transparent; it must be coded explicitly or understood
via implicit data movement from library interfaces.

1.4.1 High Performance Fortran

High Performance Fortran (HPF) is a distributed-memory version of Fortran 90 that,
like OpenMP, relies on the use of directives to describe the features that support
parallel programming. Because HPF uses directives, most HPF programs may be
compiled by any Fortran 90 compiler and run on a single processor. HPF was devel-
oped by an informal group and published as a standard [34] in much the same way as
MPI. In fact, the MPI Forum followed the same procedures used by the HPF Forum.

HPF is not as widely available as MPI and OpenMP but is still in use. A slight
extension of HPF is in use on the Earth Simulator; an application using that version
of HPF achieved a performance of 14.9 Teraflops and was awarded a Gordon Bell

38 R. A. Kendall et al.

program matmult
integer, parameter :: n=1000
real a(n,n), b(n,n), c(n,n)

!HPF$ DISTRIBUTE(BLOCK,BLOCK)::C
!HPF$ ALIGN A(i,*) WITH C(i,*)
!HPF$ ALIGN B(*,j) WITH C(*,j)
!

a = 1
b = 2
do i=1,n

do j=1,n
c(i,j) = dot_product(a(i,:),b(:,j))

enddo
enddo
write (*,*) c
end

Fig. 1.25. Simple HPF matrix multiply program.

prize in 2002 [69]. In this section, we will touch on a few of the features of HPF and
give one example. More information and some examples may be found in [17]; the
full HPF standard is also available [47].

One of the most important steps in implementing a parallel program is distribut-
ing the data across the processes. This step can often be burdensome and error prone.
HPF provides several directives that allow the programmer to easily and efficiently
describe many data distributions. The most important of these is the distribute
directive. For example, to distribute an array across all processes in blocks, use

real a(100)
!HPF$ DISTRIBUTE(BLOCK) a

Note that the HPF directive is a comment because it begins with an exclamation
point and will be ignored by Fortran 90 compilers that do not support HPF. HPF
supports several styles of data decomposition, including BLOCK (contiguous groups
of elements across processes) and CYCLIC (round-robin assignment of elements
across processes). One of the most attractive features of HPF is that the programmer
may change the data distribution by changing only the DISTRIBUTE directive; the
HPF compiler takes care of all of the changes to the code that are required by a
different distribution.

The other important directive for data decomposition is the ALIGN directive.
This tells the HPF compiler to align one distributed array with another. This lets the
programmer provide information about the relationship between the use of elements
of different distributed arrays to the compiler, which can be used by the compiler to
produce more efficient code.

HPF provides additional directives; for example, there is a way to specify that
a variable is involved in a reduction operation. Figure 1.25 shows a simple matrix-
matrix multiply example. Note that, unlike the MPI case, program declares the sizes

1 Parallel Programming Models 39

of the arrays, not just the part that is on a particular process. The HPF compiler
handles all of the details of the data decomposition, including determining the sizes
of the local versions of the arrays. This example does not include any of the code that
would normally be used to implement cache and register blocking; such changes are
necessary to achieve high performance.

1.4.2 SHMEM

SHMEM exists in implementations from various computer and interconnect ven-
dors [4, 1, 70, 54]. In addition, a public-domain version—a generalized portable
SHMEM, or GPSHMEM [67, 66]—has been augmented for use on clusters. The
SHMEM model is an asynchronous one-sided message-passing or data-passing
model. SHMEM assumes that computations are performed in separate address spaces
and that data is explicitly passed. The asynchronous one-sided model assumes that a
process can read (“get”) data or write (“put”) data from or to another process’s ad-
dress space without the active participation of the second process. These one-sided
operations are now a component of MPI-2 [53], and we encourage programmers to
use that functionality as opposed to SHMEM (see Section 1.2.3). It will, however,
take time for the functionality to propagate through all the vendor-supported MPI
implementations.

SHMEM relies on remotely accessible data objects that are symmetric. These are
data objects that have a known relationship among the local and remote addresses,
such as Fortran common blocks or variables with the SAVE attribute, data allocated
with shpalloc in Fortran or shmalloc in C or C++. SHMEM has a robust set of
collective routines based on a triplet of arguments: the starting processor, log of the
stride, and the number of processors involved. This power-of-two stride was required
for the hardware of the T3D and T3E systems, but it is not generally applicable to
clusters. GPSHMEM augmented this behavior to include arbitrary stride counts. The
collective routines operate on the same symmetric data objects in multiple processes;
this a requirement is made to improve efficiency.

SHMEM can be thought of as a middle ground between message passing and
a full DSM language. SHMEM supports other operations such as work-shared
broadcast and reduction, barrier synchronization, and atomic memory operations.
An atomic memory operation is an atomic read-and-update operation, such as a
fetch-and-increment, on a remote or local data object. Full barriers, barriers on a
subset of processes, and a locking mechanism are also provided. There are some
problems with SHMEM in that there is a name-space explosion because the inter-
face does not include the size of the object being passed. For example, five differ-
ent broadcast calls are available in the T3E implementation: shmem broadcast,
shmem broadcast4, shmem broadcast8, shmem broadcast32, and fi-
nally, shmem broadcast64. Moreover, there is no standard for SHMEM, so other
vendor or open-source implementations are free to augment the library as their needs
arise. This augmentation is often via environment variables where the default values
may or may not provide optimal performance.

40 R. A. Kendall et al.

Data Physically Distributed
Single Logically Shared Data

Fig. 1.26. View of data structures in Global Arrays.

1.4.3 Global Arrays

The Global Arrays (GA) Toolkit [59, 60, 58] was designed to offer the best func-
tionality of both distributed-memory and shared-memory programming models. In
fact, GA requires the use of a message-passing library so an application can use
message-passing algorithms in addition to the GA algorithms. The data is divided
into local data and logically shared data that can be accessed only through the user
interface layer of the GA package. GA assumes that the data representation is arrays
of multiple dimensions. This provides a NUMA view of the aggregate memory of
the system. The data locality must be managed explicitly by the programmer, with
the knowledge that remote data access is slower than local data access. Figure 1.26
represents the view of the data structures in an GA application. The cost of remote
data access promotes data reuse and locality of reference.

The GA toolkit allows the user complete control over the data distribution to
match any algorithmic needs. The user can have the library distribute the data auto-
matically or can identify a specific dimension or block size for distribution. Complete
irregular distributions are also possible. The locality information of data is also avail-
able. For example, a specific multidimensional patch of a GA that is required for an
algorithmic computation may exist on one or more processes; the locality informa-
tion is an array of the process identifiers.

Figure 1.27 shows the computational flow of a GA application. Data is extracted
from “global” memory to “local” memory. The process then computes on that portion
of the array copied to local memory. The results are copied or accumulated to global
memory for further processing as the algorithm dictates.

Copy operations from the “global” data to “local” data and the reverse are the
fundamental functionality of GA. In addition, the locality information provided al-
lows direct access to data “owned” by a given process. This arrangement allows for
virtually any needed data parallel operations. Several built-in data-parallel-like op-
erations are provided, including zeroing an array, filling an array with an arbitrary
value, printing an array, and scaling an array by a constant.

1 Parallel Programming Models 41

Shared
Logically

Data Object

Shared
Logically

Data Object

Local

Compute

Local Local

Copy Copy

Fig. 1.27. Computational flow of a GA application.

GA has several language interfaces: C, C++, Fortran 77, Fortran 90/95, and
Python. There is also a common component architecture (CCA) component version.
In addition, the library provides language interoperability for mixed-language ap-
plications. Arrays created and used in Fortran can be accessed by using the other
language interfaces. Internal storage is, by default, that of the Fortran language but
can be made either row or column major.

The library has evolved from the initial development for NWChem, a computa-
tional chemistry suite [74, 45], to meet requirements of new application areas. Ghost
cells and sparse data structures were added to provide functionality for halo-like
simulations and Grid-based codes, respectively. The data movement engine was sep-
arated from the original implementation and now provides a portable one-sided com-
munication tool, the Aggregate Remote Memory Copy Interface (ARMCI). ARMCI
handles the actual data transfers, synchronization operations, and memory manage-
ment. GA also has a secondary storage mechanism, disk resident arrays (DRAs).
DRAs extend the memory hierarchy one additional level; they allow for out-of-core
algorithm development as well as internal checkpointing of data. Furthermore, GA
offers interfaces to third-party libraries such as ScaLAPACK.

GA provides portable performance; it runs on most major cluster interconnect
technologies and high-end supercomputers. ARMCI, the data movement engine, is
tuned to the fastest mechanisms available on various platforms. The developers have
strong interactions with vendor software and hardware engineers to keep the in-
frastructure current and the performance at the highest level. GA will continue to
expand to meet the requirements of the user community as the need arises.

42 R. A. Kendall et al.

To give a flavor of GA programming, we present a simple blocked matrix-
multiply routine in Figure 1.28. The function stores the product of two matrices A
and B in the resultant C matrix. The assumption is that the GAs for each matrix are
created and A and B are filled prior to calling the routine and that all matrices are
two dimensional.

GA provides a robust set of functionality. The toolkit is essentially the standard
programming model for electronic structure computational chemistry codes, where
most of the manipulations are contractions of multidimensional tensors of various
orders into lower-order tensors. GA is also used in image processing, financial secu-
rity forecasting, computational biology, fluid dynamics, and other areas. GA does not
offer the full incremental parallelism of OpenMP, but the functional code is straight-
forward to generate and then tune for performance. Rapid prototyping is possible
once the initial infrastructure is built. More information is provided on the Global
Arrays home page [27].

1.5 Future Programming Models

We present here a few examples of what we delineate as future programming lan-
guages or models, not because they are new ideas, but because they are just now
moving from the research community to the vendor community. Other programming
languages should be considered if one is willing to live on the “bleeding edge” of
technology—that is, with very robust features of the language and little support. Of
particular note is Titanium [78], a high-performance Java dialect with extensions
needed by scientific applications. We close this section with a view of what is next
beyond near-term extrapolation of current technology and what is needed to really
reach petaflops.

1.5.1 Unified Parallel C

Unified Parallel C [21] (UPC) is a parallel extension of the ANSI C standard. UPC,
like Co-Array Fortran (see Section 1.5.2), has the advantage of extending a well-
known and well-understood language for parallel computation. The development of
the UPC language started with ANSI C and included experiences from various dis-
tributed parallel computing language efforts in the research community, with input
from vendors, users, and academia.

UPC is a distributed shared-memory parallel programming language. The ex-
ecution model assumes a number of threads working independently in a single-
program multiple-data (SPMD) paradigm. The language provides synchronization
when needed via barriers, the memory consistency model, and explicit locks. The
memory in the language is logically split into private and shared memory with an
affinity for a specific thread. Any thread can read from the globally shared address
space, and the language extension includes identifying which data and pointers to
data are “shared” among the threads. Figure 1.29 represents the memory layout in
the UPC model.

1 Parallel Programming Models 43

subroutine ga_simplematmul(g_c, g_a, g_b)
implicit double precision (a-h,o-z)

! include files from the GA suite
#include "mafdecls.fh"
#include "global.fh"
c omitting declaration of variables

parameter (blocksize = 32) ! arbitrary block size
c
! get matrix dimensions

ga_inquire(g_a,typea,rowsa,colsa)
ga_inquire(g_b,typeb,rowsb,colsb)
ga_inquire(g_c,typec,rowsc,colsc)

! check that types and dimensions match if not call ga_error
call ga_zero(g_c) ! zero the result
blocksi = rowsc/blocksize + 1
blocksj = colsc/blocksize + 1
blocksk = colsa/blocksize + 1

! allocate local arrays loca[blocksize][blocksize],locb,locc
! get the number of processes

nproc = ga_nnodes()
! atomically get the next task an ordered count 0, 1, ...
! across all processes

mtask = nexttask(nproc)
itask = -1
do ib = 1,blocksi

ilo = (ib-1)*blocksize + 1
ihi = min((ilo+blocksize-1),rowsc)
mdg = ihi-ilo + 1
itask = itask + 1

! parallelize over i blocks (ib variable)
if (itask.eq.mtask) then

do kb = 1,blocksk
klo = (kb-1)*blocksize + 1
khi = min((klo+blocksize-1),colsa)
kdg = khi - klo + 1

! get patch of global A copied into local array loca
ga_get(g_a,ilo,ihi,klo,khi,loca,mdg)
do jb = 1,blocksj

jlo = (jb-1)*blocksize + 1
jhi = min((jlo+blocksize-1),colsc)
ndg = jhi - jlo + 1

! get patch of global B copied into local array locb
ga_get(g_b,klo,khi,jlo,jhi,locb,kdg)

! use optimize BLAS locally to compute patch of in locc
call dgemm(’n’,’n’,mdg,ndg,kdg,1.0d00,

+ loca,mdg,locb,kdg,0.0d00,locc,mdg)
! accumulate into global array C from local locc

ga_acc(g_c,ilo,ihi,jlo,jhi,locc,mdg,1.0d00)
enddo

enddo
mtask = nexttask(nproc)

endif
enddo
end

Fig. 1.28. Simple GA matrix multiply routine.

44 R. A. Kendall et al.

Thread
NTHREADS−1

Thread 0 Thread 1 Thread 2

Shared

Private

Affinity

Fig. 1.29. UPC memory model with respect to the thread affinity.

The SPMD nature of the model allows for work distribution based on the
thread identifier, MYTHREAD, and the number of threads involved, THREADS.
MYTHREAD and THREADS are keywords in the UPC language. The actual trans-
lation depends on the underlying runtime infrastructure, but that is transparent to the
user from a functional point of view and is the responsibility of the compiler.

Because threads share memory and because portions of shared memory have
affinity to specific threads, access to that memory has a sequencing issue that de-
pends on the underlying runtime environment. Developing a UPC application sim-
ply requires specifying either a “strict” or a “relaxed” memory consistency mode.
This specification can be done for the entire program, for a defined block of code,
or for a specific variable or array. The “relaxed” consistency mode allows memory
accesses in each thread to follow normal ANSI C models, ignoring access to “local”
shared-memory references from other threads. When using the relaxed mode, the
programmer is ultimately responsible for handling any synchronization necessary.
The “strict” mode follows normal ANSI C models while considering accesses from
all threads.11 Locks are provided to ensure atomic access to critical sections of code
and the associated memory locations. Figure 1.30 shows a “Hello World” program
similar to the one presented in the OpenMP discussion.

The sharing of data is explicitly coded in the use of the “shared” qualifier or in
how memory is allocated dynamically with the UPC memory allocation routines.
Since data being shared has affinity to threads, the user needs to control how data is
laid out. Both the static and the dynamic memory modes allow for this. By default,
elements of data arrays are distributed by element in a round-robin fashion to the
shared-memory region of each thread. This can easily be blocked to distribute rows
or columns of matrices to each thread.

In addition to the SPMD use of the thread identifier and the number of threads
to share work among threads, there is a work-sharing construct upc forall. The

11This is a simplification of the consistency model; consult the UPC specifications [21] for
more details.

1 Parallel Programming Models 45

#include <stdio.h>
#include "upc_relaxed.h"
int main(int argc, char *argv[])
{
int tid;
{

tid = MYTHREAD;
printf("<%d> of %d Threads\n",tid,THREADS);

}
}

Fig. 1.30. “Hello World” UPC code.

functional form of this construct is similar to the standard for loop construct but with
an extra affinity parameter:

upc_forall (init-expr ; cond-expr; incr-expr; affinity),

where init-expr, cond-expr, and incr-expr are the ANSI C equivalent
expressions. The affinity parameter can be either a variable or an address to a
variable. The affinity expression controls which thread actually computes an it-
eration of the loop construct. For a variable the thread that executes the loop is
MYTHREAD == variable%THREADS. For an address the thread that executes
the loop is MYTHREAD == upc threadof(address). The UPC library func-
tion upc threadof identifies the thread that has affinity for the address argument.

The UPC language has great potential for providing long-term portability and
performance for a wide variety of applications. We have provided only a taste of the
language. The UPC Web site12 provides many more details, examples, and availabil-
ity of compilers.

1.5.2 The Co-Array Fortran Extension to Fortran 95

Co-Array Fortran [62] is an alternative parallel programming language based on an
extension to Fortran 95. It uses a simple syntax that is intuitively natural to a Fortran
programmer. It adopts a purely local view of data and computation, but it allows the
programmer to make local data globally visible by declaring some variables to be co-
arrays. A co-array is a Fortran 95 object, whether an intrinsic object or a user-defined
derived type, that is declared with a co-dimension. For example, the declaration,

real :: x[*]

defines a scalar co-array object that is replicated across program images. The asterisk
notation [*] indicates that program images are virtual images, replicated copies of
a program within the SPMD programming model.

The actual number of images is determined when the program starts execution.
The runtime system assigns images to physical processors in a platform-specific

12See the http://upc.gwu.edu web site.

46 R. A. Kendall et al.

manner, for example, as processes or threads. The number of images is fixed; it may
be the same as the number of physical processors, it may be greater, or it may be less.
Each physical processor may be responsible for more than one image, for example,
taking work from a task queue. Conversely, more than one physical processor may be
responsible for the same image, for example, by spawning threads within a process
to share the work. The programmer decides whether an image works only on its own
local data or, using co-array syntax, works on data that it does not own, by making
local copies of data owned by other images.

Co-dimensions may be multidimensional just like normal dimensions. Program-
mers can use them to represent a logical decomposition of virtual images that cor-
responds to a logical decomposition of a physical problem. For example, a two-
dimensional field decomposed into blocks, as commonly used in weather, climate,
and ocean codes, might be declared with two co-dimensions.

real :: field(m,n)[p,*] .

In this case, each image holds a patch of the field of local size (m x n). The asterisk
notation indicates that the number of images is determined when the program starts
execution, but the programmer wants to think of the images within a two-dimensional
grid with p images in the first dimension.

For many applications that use finite difference operators to solve partial differ-
ential equations, for example, programmers often add halo cells around the local field
data.

real :: field(0:m+1,0:n+1)[p,*]

The main communication requirement is the exchange of halo data, which, using
Co-Array Fortran syntax, can be written with just a few lines of code [6, 61]. For
example, the exchange in the east-west direction

field(1:m,0) = field(1:m,n)[p,q-1]
field(1:m,n+1) = field(1:m,1)[p,q+1]

can be written with two lines of code, where the programmer has adopted the conven-
tion that the first co-dimension represents the north-south direction and the second
represents the east-west direction. The image corresponding to [p,q] fills its lower
halo with data from its west neighbor [p,q-1] and its upper halo with data from
its east neighbor [p,q+1]. Since co-array syntax allows an image to read or write
data owned by any other image, it is the programmer’s responsibility to provide ap-
propriate synchronization.

Basing a parallel programming model on a simple extension to an existing lan-
guage has a number of advantages. First, the programmer need not learn a new lan-
guage. Co-array syntax is natural and familiar to the Fortran programmer. Second,
the co-array extension can be implemented by using existing compiler technology.
Co-dimensions behave, in most respects, like normal dimensions. Third, since the
new parallel syntax becomes part of the language, the programmer can use it to write
customized communication patterns that fit a particular problem, without being re-
stricted solely to those patterns provided by a library. Fourth, the compiler can gener-
ate optimized code that takes advantage of specific features of specialized hardware

1 Parallel Programming Models 47

on particular platforms. For example, in the halo exchange example, it can sched-
ule communication to overlap with computation and to exercise multiple hardware
channels simultaneously. Fifth, code written with Co-Array Fortran is portable [13].
Because the extension is part of the language, a compiler must implement it for all
platforms it supports.

1.5.3 Beyond Future Programming Models

Programming language design follows system architecture development, at least in
the domain of performance-critical computation, including high-performance com-
puting. Language serves as the medium between a user’s application and the under-
lying execution target platform. The challenge to programming is to extract the best
possible performance from the target parallel computer system for a given applica-
tion while retaining correctness. The degree of difficulty (length of programming
time) strongly depends on the ease of performance tuning.

Historically, a healthy tension dominating language design has existed between
language abstraction to hide system complexity from the programmer and low-level
language constructs to expose the system mechanisms for direct and precise control
to achieve the best performance. However, parallel programming methods have been
heavily oriented toward constructs providing explicit control of low-level mecha-
nisms because the principal target architectures, including massively parallel proces-
sors (MPPs) and commodity clusters, provide little or no support for automatic man-
agement of system-wide parallel computation—hence the popularity of models such
as MPI (e.g., MPICH-2) that expose the underlying system architecture in detail and
give the programmer complete control of how the application program is mapped to
the system resources, as well as the synchronization of their cooperative operation.

Unfortunately, current-generation high-end systems not only are difficult to pro-
gram but often exhibit significant inefficiencies in operation, negating much of
the advantage of exploiting existing commodity components. Future system archi-
tectures for high-end capability (as opposed to capacity) computing in the trans-
petaflops performance regime may be custom designed for the purpose of global
parallel execution, unlike conventional MPPs. While this assertion is considered con-
troversial today, important projects are under way to achieve this (e.g., the DARPA
HPCS program).

If real parallel computing systems reemerge, replacing (at least in part) aggre-
gated ensembles of commodity microprocessors in the arena of high-end computing,
programming methodologies and languages that represent them will be devised to
reflect their new underlying architectures. While we cannot know in absolute terms
what future programming languages will look like in this new petaflops computing
world, it is possible to identify key attributes of such languages based on reasonable
assumptions about such future machines. Examples of such assumptions include the
following:

• Global address space such that any part of the system state can be accessed effi-
ciently from any other execution site within the distributed system

48 R. A. Kendall et al.

• Relaxed consistency methods for efficient copy semantics
• Hardware support for efficient parallel execution for coarse-, medium-, and fine-

grained parallelism
• Rapid context-switching with multi-threaded execution
• Automatic hardware-supported latency hiding
• Efficient synchronization for many forms of coordination including message

passing, producer-consumer, message-driven, and object-oriented
• Dynamic adaptive resource management and load balancing
• Streaming processing for high-temporal-locality computing
• In-memory processing for high-bandwidth, low-locality computing
• High-global-bandwidth, low-latency system-wide communication

Future programming languages for custom petaflops-scale system architectures
incorporating some or all of these properties will differ from conventional program-
ming practices by providing constructs that support a richer descriptive semantics
of application parallelism and locality, rather than imperative specification of ex-
plicit mapping of data and code to hardware elements as is done today. Latency
will be hidden in such future machines by a variety of automatic methods, and a
much wider range of forms of parallelism will be efficiently supported. Thus, the
key challenge to future programming is to make available to compilers, runtime sys-
tems, and hardware architecture descriptions of algorithmic/application parallelism
and the synchronization relationships among coordinated computing actions.

A secondary feature of such future languages is the ability to represent locality
relationships of data and tasks at various levels of granularity as a source of hints or
heuristics for assisting and guiding the system in allocating and assigning physical
resources. This is very different from the conventional practice of the programmer as-
serting the exact resource allocation mapping. Not only does this advanced approach
simplify programming, but it also allows the system to exploit runtime information
in conjunction with programmer and compile-time information to determine optimal
placement of logical objects on the distributed physical resources.

While a rich set of semantics for parallelism representation and locality relation-
ship description may constitute a major part of future programming languages for
custom-scalable petaflops-scale system architectures, additional language capabili-
ties will be incorporated to deal with practical aspects of very large systems. Three
factors in particular will drive innovation in future language design:

1. Performance monitoring will become an integral part of the compiler and lan-
guage, not just to show the programmer the bottlenecks, but to permit advanced
compilation and runtime systems to make direct use of observed operation char-
acteristics for automatic performance tuning, with some guidance by the pro-
grammer.

2. Microcheckpointing will be used to identify key locations in the by the program-
mer. Microcheckpointing identifies key locations in the execution trace where
subsets of total program data may be temporarily archived until some follow on
release point is correctly accomplished, at which point the snapshot of the par-
tial state may be garbage collected. These minor fall-back points are employed

1 Parallel Programming Models 49

when an error is detected in subsequent execution without having to restart the
entire program.

3. Advanced input/output constructs will be used for generating “information prod-
ucts.” It will become increasingly impractical to attempt to store the full raw data
from a simulation because the data sets will become prohibitively large. Also,
the data itself, even if visualized, may not be useful in understanding the impli-
cations and consequences of the results. An output layer to process the raw data
may be necessary to generate information products that can be many orders of
magnitude smaller than the basic data values but far more meaningful to the sci-
entist or engineer. Future languages will emphasize high-level information rather
than raw data sets as the principal output content, and the I/O semantics of the
language will reflect this new usage.

1.6 Final Thoughts

The information in this chapter touches only the tip of the iceberg with respect to
the issues of writing parallel programs. Even long-term practitioners fall into the
many pitfalls of developing parallel codes. Overall, writing parallel programs is best
learned by “getting your hands dirty.”

It is important to use the technology needed to get the job done, but it is also
important to think about what changes might come in the future. The software de-
velopment research community is producing new technologies rapidly and some of
these technologies may be useful in high-performance application development. Al-
though implementing object-oriented technology in Fortran 77 is impossible, some
of the object-oriented concepts can build better-structured Fortran 77 codes. For ex-
ample, abstraction and data-hiding are easily implemented with solid APIs for the
functionality required.

What will come in the future? In this book, the chapter on common component
architecture technology [2] discusses how the CCA framework has been used suc-
cessfully to integrate functionality among multiple computational chemistry codes
on parallel platforms. Also, the cross-cutting technologies of aspect-oriented pro-
gramming [22] could change the way in which we construct software infrastructure
for event logging, performance monitoring, or computational steering.

One additional comment is in order. Readers new to parallel computing on clus-
ters might ask which is the best programming model with respect to performance
and scalability. These are only two aspects of the interaction with a programming
model and an application code with many different algorithms. The programming
model also determines the ease of algorithmic development and thus application de-
velopment and maintenance, Asking which is best is similar to asking which pre-
conditioner, which Kyrlov subspace method, or which editor is the best to use. All
programming models have strengths and weaknesses, and the choice is best made by
those actually using the programming model for their particular purpose. MPI offers
the greatest availability, portability, and scalability to large systems. OpenMP offers
very good portability and availability with reasonable scalability on SMP systems.

50 R. A. Kendall et al.

The distributed shared-memory programming models are best when long-term avail-
ability is possible and there is an appropriate match to the algorithms or applications
involved. Clearly, programming models and their associated execution models will
have to evolve to be able to reach sustained petaflops levels of computing, which will
in time move to computational resources known as clusters.

Finally, we will put together a series of examples of “working” code for many
of the programming models discussed in this chapter. These will be designed around
small computational kernels or simple applications in order to illustrate each model.
The examples will be available at the Center for Programming Models for Scalable
Parallel Computing website13.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38 with Argonne National Laboratory and under Contract W-7405-ENG-82 at
Ames Laboratory. The U.S. Government retains for itself, and others acting on its be-
half, a paid-up, non-exclusive, irrevocable worldwide license in said article to repro-
duce, prepare derivative works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government. We thank the members of
the Center for Programming Models for Scalable Parallel Computing [8] who have
helped us better understand many of the issues of parallel software development and
the associated programming models. We thank Brent Gorda, Angie Kendall, Gail W.
Pieper, Douglas Fuller, and Professor Gary T. Leavens for reviewing the manuscript.
We also thank the book series editors and referees for their many helpful comments.

References

1. Alphaserver SC user guide, 2000. Bristol, Quadrics Supercomputer World Ltd.
2. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. R. Kohn, L. McInnes, S. R. Parker,

and B. A. Smolinski. Toward a common component architecture for high-performance
scientific computing. In Proceedings of the 8th High Performance Distributed Computing
(HPDC’99), 1999. URL: http://www.cca-forum.org.

3. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc users manual. Technical
Report ANL-95/11 - Revision 2.1.0, Argonne National Laboratory, 2001.

4. R. Bariuso and A. Knies. SHMEM’s User’s Guide. SN-2515 Rev. 2.2, Cray Research,
Inc., Eagan, MN, USA, 1994.

5. M. Bull. OpenMP 2.5 and 3.0. In Proceedings of the Workshop on OpenMP Applications
and Tools, WOMPAT 2004, Houston, TX, May 17-18 2004. (Invited talk).

6. P. M. Burton, B. Carruthers, G. S. Fischer, B. H. Johnson, and R. W. Numrich. Converting
the halo-update subroutine in the MET Office unified model to Co-Array Fortran. In

13At this URL: http://www.pmodels.org/ppde.

1 Parallel Programming Models 51

W. Zwieflhofer and N. Kreitz, editors, Developments in Teracomputing: Proceedings of
the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology,
pp. 177–188. World Scientific Publishing, 2001.

7. J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of
Munin. In Proceedings of the 13th ACM Symp. on Operating Systems Principles (SOSP-
13), pages 152–164, 1991.

8. Center for Programming Models for Scalable Parallel Computing. URL: http://www.
pmodels.org.

9. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel
Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

10. D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheiro, and M. L. Scott. Interweave: A
middleware system for distributed shared state. In Languages, Compilers, and Run-Time
Systems for Scalable Computers, pages 207–220, 2000.

11. E. Chow, A. Cleary, and R. Falgout. HYPRE User’s manual, version 1.6.0. Technical
Report UCRL-MA-137155, Lawrence Livermore National Laboratory, Livermore, CA,
1998.

12. D. Clark. OpenMP: A parallel standard for the masses. IEEE Concurrency, 6(1):10–12,
January–March 1998.

13. C. Coarfa, Y. Dotsenko, J. L. Eckhardt, and J. Mellor-Crummey. Co-array Fortran perfor-
mance and potential: An NPB experimental study. In The 16th International Workshop on
Languages and Compilers for Parallel Computing (LCPC 2003), College Station, Texas,
October 2003.

14. Cray Research. Application Programmer’s Library Reference Manual, 2nd edition, Nov.
1995. Publication SR-2165.

15. L. Dagum and R. Menon. OpenMP: An industry standard API for shared-memory pro-
gramming. IEEE Computational Science & Engineering, 5(1):46–55, January–March
1998.

16. S. Dong and G. E. Karniadakis. Dual-level parallelism for deterministic and stochastic
CFD problems. In Proceedings of Supercomputing, SC02, Baltimore, MD, 2002.

17. J. Dongarra, I. Foster, G. Fox, W. D. Gropp, K. Kennedy, L. Torczon, and A. White,
editors. Sourcebook of Parallel Computing. Morgan Kaufmann, 2003.

18. P. F. Dubois. Ten Good Practices In Scientific Programming. Computing in Science &
Engineering, 1(1), January-February 1999.

19. S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and R. Stets. Cashmere-
VLM: Remote memory paging for software distributed shared memory. In Proceedings
of the 13th International Parallel Processing Symposium and 10th Symposium on Parallel
and Distributed Processing, pages 153–159. IEEE Computer Society, Apr. 1999.

20. Earth Simulator home page, http://www.es.jamstec.go.jp.
21. T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC Language Specifica-

tions Version 1.1.1, October 2003. URL: http://www.gwu.edu/∼upc/docs/
upc spec 1.1.1.pdf.

22. T. Elrad, R. E. Filman, and A. Bader. Aspect-Oriented Programming. Communications
of the ACM, 44(10):29–32, October 2001.

23. R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implementation of hypre,
a library of parallel high performance preconditioners. In A. M. Bruaset and A. Tveito,
editors, Numerical Solution of Partial Differential Equations on Parallel Computers, vol-
ume 51 of Lecture Notes in Computational Science and Engineering, pages 267–294.
Springer-Verlag, 2005.

52 R. A. Kendall et al.

24. M. Folk, A. Cheng, and K. Yates. HDF5: A file format and I/O library for high perfor-
mance computing applications. In Proceedings of Supercomputing’99 (CD-ROM). ACM
SIGARCH and IEEE, Nov. 1999.

25. FORTRAN 77 Binding of X3H5 Model for Parallel Programming Constructs. Draft Ver-
sion, ANSI X3H5, 1992.

26. P. C. Forum. PCF Parallel FORTRAN Extensions. FORTRAN Forum, 10(3), September
1991. (Special issue).

27. Global Array Project. URL: http://www.emsl.pnl.gov/docs/global.
28. W. D. Gropp. Learning from the success of MPI. In B. Monien, V. K. Prasanna, and S. Va-

japeyam, editors, High Performance Computing – HiPC 2001, number 2228 in Lecture
Notes in Computer Science, pages 81–92. Springer, Dec. 2001.

29. W. D. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and
M. Snir. MPI—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press,
Cambridge, MA, 1998.

30. W. D. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

31. W. D. Gropp, E. Lusk, and T. Sterling, editors. Beowulf Cluster Computing with Linux.
MIT Press, 2nd edition, 2003.

32. W. D. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press, Cambridge, MA, 1999.

33. R. Hempel and D. W. Walker. The emergence of the MPI message passing standard for
parallel computing. Computer Standards and Interfaces, 21(1):51–62, 1999.

34. High Performance Fortran Forum. High Performance Fortran language specification.
Scientific Programming, 2(1–2):1–170, 1993.

35. J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,
T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming library. Parallel Com-
puting, 24(14):1947–1980, Dec. 1998.

36. C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, Aug. 1978.

37. J. Hoeflinger. Towards industry adoption of OpenMP. In Proceedings of the Workshop
on OpenMP Applications and Tools, WOMPAT 2004, Houston, TX, May 17–18 2004.
Invited Talk.

38. F. Hoffman. Writing hybrid MPI/OpenMP code. Linux Magazine, 6(4):44–48, April
2004. URL: http://www.linux-mag.com/2004-04/extreme 01.html.

39. Y. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel. OpenMP for networks of SMPs. In
Proceedings of the 13th International Parallel Processing Symposium, April 1999.

40. P. Hyde. Java Thread Programming. SAMS, 1999.
41. IEEE Standard for Information Technology-Portable Operating System Interface

(POSIX). IEEE Standard No.: 1003.1, 2004.
42. W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. D. Gropp, and R. Thakur. High performance

MPI-2 one-sided communication over InfiniBand. Technical Report ANL/MCS-P1119-
0104, Mathematics and Computer Science Division, Argonne National Laboratory, 2004.

43. G. Jost, J. Labarta, and J. Gimenez. What multilevel parallel programs do when you are
not watching: A performance analysis case study comparing MPI/OpenMP, MLP, and
nested OpenMP. In Proceedings of the Workshop on OpenMP Applications and Tools,
WOMPAT 2004, pages 29–40, Houston, TX, May 17-18 2004. (Invited talk).

44. P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Distributed
shared memory on standard workstations and operating systems. In Proceedings of the
Winter 94 Usenix Conference, pages 115–131, January 1994.

1 Parallel Programming Models 53

45. R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J. Har-
rison, J. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Windus, and A. T. Wong.
High performance computational chemistry; an overview of NWChem a distributed par-
allel application. Computer Physics Communications, 128:260–283, 2002.

46. M. G. Knepley, R. F. Katz, and B. Smith. Developing a geodynamics simulator with
petsc. In A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential
Equations on Parallel Computers, volume 51 of Lecture Notes in Computational Science
and Engineering, pages 413–438. Springer-Verlag, 2005.

47. C. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, and M. E. Zosel. The High
Performance Fortran Handbook. MIT Press, 1994.

48. B. Leasure, editor. PCF Fortran: Language Definitons, Version 3.1. The Parallel Com-
puting Forum, Champaign, IL, 1990.

49. J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. D. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale. Parallel netCDF: A high-performance scientific I/O inter-
face. In Proceedings of SC2003, Nov. 2003.

50. Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic recursive
multilevel solver. Numerical Linear Algebra with Applications, 10:485–509, 2003.

51. R. K. Lie Huang, Barbara Chapman. OpenMP on distributed memory via global arrays.
In Proceedings of Parallel Computing 2003 (ParCo2003), Dresden, Germany, September
2–5 2003.

52. Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Interna-
tional Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

53. Message Passing Interface Forum. MPI2: A Message Passing Interface standard. Inter-
national Journal of High Performance Computing Applications, 12(1–2):1–299, 1998.

54. Message Passing Toolkit: MPI programmer’s manual, document number : 007-3687-010,
2003. Mountain View, CA, Silicon Graphics Inc.

55. Mpi papers. URL: http://www.mcs.anl.gov/mpi/papers.
56. K. Nakajima and H. Okuda. Parallel Iterative Solvers for Unstructured Grids Using and

OpenMP/MPI Hybrid Programming Model for GeoFEM Platfrom on SMP Cluster Ar-
chitectures. Lecture Notes in Computer Science, 2327:437–448, 2002.

57. B. Nichols, D. Buttlar, and J. P. Farrel. Pthreads Programming. O’Reilly & Associates,
Inc, 1996.

58. J. Nieplocha, R. Harrison, M. Krishnan, B. Palmer, , and V. Tipparaju. Combining shared
and distributed memory models: Evolution and recent advancements of the Global Array
Toolkit. In Proceedings of POOHL’2002 workshop of ICS-2002, New York, NY, 2002.

59. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A portable “shared
memory” programming model for distributed memory computers. In Proceedings of Su-
percomputing 1994, SC94, pages 340–349, 1994.

60. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A nonuniform memory
access programming model for high-performance computers. The Journal of Supercom-
puting, 10:197–220, 1996.

61. R. W. Numrich, J. Reid, and K. Kim. Writing a multigrid solver using Co-Array For-
tran. In B. Kågström, J. Dongarra, E. Elmroth, and J. Waśniewski, editors, Applied Par-
allel Computing: Large Scale Scientific and Industrial Problems, volume 1541 of Lecture
Notes in Computer Science, pages 390–399. Springer, 1998.

62. R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming. ACM Fortran
Forum, 17(2):1–31, 1998.

63. OpenMP Architecture Review Board. OpenMP Fortran Application Program Inter-
face, Version 2.0. November 2000. URL: http://www.openmp.org/drupal/
mp-documents/fspec20.pdf.

54 R. A. Kendall et al.

64. OpenMP Architecture Review Board. OpenMP C and C++ Application Program In-
terface, Version 2.0. March 2002. URL: http://www.openmp.org/drupal/
mp-documents/cspec20.pdf.

65. OpenMP Architecture Review Board home page, http://www.openmp.org.
66. K. Parzyszek and R. A. Kendall. GPSHMEM: Application to kernel benchmarks. In

Proceedings of the Fourteenth IASTED International Conference on Parallel and Distrib-
uted Computing and Systems (PDCS 2002), pages 404–409. ACTA Press, Anaheim, CA,
2002.

67. K. Parzyszek, J. Nieplocha, and R. A. Kendall. A generalized portable SHMEM li-
brary for high performance computing. In M. Guizani and X. Shen, editors, Proceedings
of the IASTED Parallel and Distributed Computing and Systems 2000, pages 401–406.
IASTED, Calgary, 2000.

68. Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report
90-20, NASA Ames Research Center, Moffett Field, CA, 1990.

69. H. Sakagami, H. Murai, Y. Seo, and M. Yokokawa. 14.9 TFLOPS three-dimensional
fluid simulation for fusion science with HPF on the Earth Simulator. In Proceedings of
Supercomputing, 2002.

70. Scali Library User’s Guide, 2002. Published by Scali, Oslo, Norway.
71. C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22–33, Jan. 1985.
72. B. Smith, P. Bjørstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations. Cambridge University Press, New
York, 1996.

73. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Com-
plete Reference. MIT Press, Cambridge, MA, 1995.

74. T. Straatsma, E. Aprà, T. Windus, W. E. d. J. E. J. Bylaska, S. Hirata, M. Valiev, M. T.
Hackler, L. L. Pollack, R. J. Harrison, M. Dupuis, D. Smith, J. Nieplocha, V. Tipparaju,
M. Krishnan, A. A. Auer, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hi-
rao, R. A. Kendall, J. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt,
P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. K. Dyall, D. Elwood, E. Glen-
dening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin,
R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing, G. Sandrone, M. Stave,
H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang. NWChem, A computa-
tional chemistry package for parallel computers, Version 4.6, 2004. Pacific Northwest
National Laboratory, Richland, WA.

75. R. Thakur, W. D. Gropp, and B. Toonen. Minimizing synchronization overhead in the
implementation of MPI one-sided communication. In D. Kranzlmüller, P. Kacsuk, and
J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Lecture Notes in Computer Science, pages 57–67. Springer Verlag, 2004. 11th
European PVM/MPI User’s Group Meeting, Budapest, Hungary.

76. The Cluster Enabled Omni OpenMP Compiler. URL: http://phase.hpcc.jp/
Omni/Omni-doc/omni-scash.html.

77. The Open Group. System Interfaces and Headers, Issue 4, Version 2. 1992. URL:
http://www.opengroup.org/public/pubs/catalog/c435.htm.

78. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,
S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance Java dialect.
Concurrency: Practice And Experience, 10(11–13):825–836, 1998.

2

Partitioning and Dynamic Load Balancing for the
Numerical Solution of Partial Differential Equations

James D. Teresco1, Karen D. Devine2, and Joseph E. Flaherty3

1 Department of Computer Science, Williams College, Williamstown, MA 01267, USA
terescoj@cs.williams.edu

2 Discrete Algorithms and Mathematics Department, Sandia National Laboratories,
Albuquerque, NM 87185, USA
kddevin@sandia.gov

3 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
flaherje@cs.rpi.edu

Summary. In parallel simulations, partitioning and load-balancing algorithms compute the
distribution of application data and work to processors. The effectiveness of this distribu-
tion greatly influences the performance of a parallel simulation. Decompositions that balance
processor loads while keeping the application’s communication costs low are preferred. Al-
though a wide variety of partitioning and load-balancing algorithms have been developed, their
effectiveness depends on the characteristics of the application using them. In this chapter, we
review several partitioning algorithms, along with their strengths and weaknesses for various
PDE applications. We also discuss current efforts toward improving partitioning algorithms
for future applications and architectures.

The distribution of data among cooperating processes is a key factor in the effi-
ciency of parallel solution procedures for partial differential equations (PDEs). This
distribution requires a data-partitioning procedure and distributed data structures to
realize and use the decomposition. In applications with constant workloads, a sta-
tic partition (or static load balance), computed in a serial or parallel pre-processing
step, can be used throughout the computation. Other applications, such as adaptive
finite element methods, have workloads that are unpredictable or change during the
computation, requiring dynamic load balancers that adjust the decomposition as the
computation proceeds. Partitioning approaches attempt to distribute computational
work equally, while minimizing interprocessor communication costs. Communica-
tion costs are governed by the amount of data to be shared by cooperating processes
(communication volume) and the number of partitions sharing the data (number of
messages). Dynamic load-balancing procedures should also operate in parallel on
distributed data, execute quickly, and minimize data movement by making the new
data distribution as similar as possible to the existing one. The partitioning problem
is defined in more detail in Section 2.1.

56 J. D. Teresco et al.

Numerous partitioning strategies have been developed. The various strategies
are distinguished by trade-offs between partition quality, amount of data move-
ment, and partitioning speed. Characteristics of an application (e.g., computation-
to-communication ratio, cost of data movement, and frequency of repartitioning)
determine which strategies are most appropriate for it. For example, geometric al-
gorithms like recursive bisection and space-filling curve partitioning provide high-
speed, medium-quality decompositions that depend only on geometric information
(e.g., particles’ spatial coordinates, element centroids). Graph-based algorithms pro-
vide higher quality decompositions based on connectivity between application data,
but at a higher cost. Several strategies, with their relative trade-offs, are described in
detail in Section 2.2 and Section 2.3.

Many partitioning procedures have been implemented directly in applications,
using application-specific data structures. While this approach can provide high ex-
ecution efficiency, it usually limits the application to a single procedure and bur-
dens the application programmer with partitioning concerns. A number of software
libraries are available that provide high-quality implementations of partitioning pro-
cedures, provide flexibility to switch among available methods, and free the applica-
tion programmer from those details. Some of these software packages are described
in Section 2.4.

While existing methods have been very successful, research challenges remain.
New models, such as hypergraphs, can more accurately model communication.
Multi-criteria partitioning can improve efficiency when different phases of a com-
putation have different costs. Resource-aware computation, achieved by adjusting
the partitioning or other parts of the computation according to processing, memory
and communication resources, is needed for efficient execution on modern hierarchi-
cal and heterogeneous computer architectures. Current research issues are explored
further in Section 2.5.

2.1 The Partitioning and Dynamic Load Balancing Problems

The most common approach to parallelizing PDE solution procedures assigns por-
tions of the computational domain to cooperating processes in a parallel computa-
tion. Typically, one process is assigned to each processor. Data are distributed among
the processes, and each process computes the solution on its local data (its subdo-
main). Inter-process communication provides data that are needed by a process but
“owned” by a different process. This model introduces complications including (i)
assigning data to subdomains (i.e., partitioning, or when the data is already distrib-
uted, dynamic load balancing), (ii) constructing and maintaining distributed data
structures that allow for efficient data migration and access to data assigned to other
processes, and (iii) communicating the data as needed during the solution process.
The focus of this chapter is on the first issue: data partitioning.

2 Partitioning and Dynamic Load Balancing 57

Subdomain 4

Subdomain 2

Subdomain 1 Subdomain 3

Fig. 2.1. An example of a two-dimensional mesh (left) and a decomposition of the mesh into
four subdomains (right).

2.1.1 The Partitioning Problem

The computational work of PDE simulation is often associated with certain “objects”
in the computation. For particle simulations, computation is associated with the in-
dividual particles; adjusting the distribution of particles among processors changes
the processor load balance. For mesh-based applications, work is associated with the
entities of the mesh — elements, surfaces, nodes — and decompositions can be com-
puted with respect to any of these entities or to a combination of entities (e.g., nodes
and elements). The partitioning problem, then, is the division of objects into groups
or subdomains that are assigned to cooperating processes in a parallel computation.

At its simplest, a partitioning algorithm attempts to assign equal numbers of ob-
jects to partitions while minimizing communication costs between partitions. A par-
tition’s subdomain, then, consists of the data uniquely assigned to the partition; the
union of subdomains is equal to the entire problem domain. For example, Figure 2.1
shows a two-dimensional mesh whose elements are divided into four subdomains.
Often communication between partitions consists of exchanges of solution data for
adjacent objects that are assigned to different partitions. For example, in finite el-
ement simulations, “ghost elements” representing element data needed by but not
assigned to a subdomain are updated via communication with neighboring subdo-
mains. While this data distribution is the most commonly used one for parallelization
of PDE applications (and, indeed, will be assumed without loss of generality in the
rest of this chapter), other data layouts are possible. In Mitchell’s full-domain parti-
tion (FuDoP) [77], for example, each process is assigned a disjoint subdomain of a
refined mesh. Then within each process, a much coarser mesh is generated for the
rest of the problem domain, giving each process a view of the entire domain. This
layout reduces the amount of communication needed to update subdomain boundary
values during adaptive multigrid, at the cost of extra degrees of freedom and compu-
tation. A similar idea has been applied to parallel solution procedures by Bank and
Holst to reduce communication costs for elliptic problems [3].

58 J. D. Teresco et al.

Objects may have weights proportional to the computational costs of the objects.
These nonuniform costs may result from, e.g., variances in computation time due
to different physics being solved on different objects, more degrees of freedom per
element in adaptive p-refinement [1, 105], or more small time steps taken on smaller
elements to enforce timestep contraints in local mesh-refinement methods [42]. Sim-
ilarly, nonuniform communication costs may be modeled by assigning weights to
connections between objects. Partitioning then has the goal of assigning equal to-
tal object weight to each subdomain while minimizing the weighted communication
cost.

2.1.2 Dynamic Repartitioning and Load Balancing Problem

Workloads in dynamic computations evolve in time, so a partitioning approach that
works well for a static problem or for a slowly-changing problem may not be effi-
cient in a highly dynamic computation. For example, in finite element methods with
adaptive mesh refinement, process workloads can vary dramatically as elements are
added and/or removed from the mesh. Dynamic repartitioning of mesh data, often
called dynamic load balancing, becomes necessary.

Dynamic repartitioning is also needed to maintain geometric locality in applica-
tions like crash simulations and particle methods. In crash simulations, for example,
high parallel efficiency is obtained when subdomains are constructed of geometri-
cally close elements [96]. Similarly, in particle methods, particles are influenced by
physically near particles more than by distant ones; assigning particles to processes
based on their geometric proximity to other particles reduces the amount of commu-
nication needed to compute particle interactions.

Dynamic load balancing has the same goals as partitioning, but with the addi-
tional constraints that procedures (i) must operate in parallel on already distributed
data, (ii) must execute quickly, as dynamic load balancing may be performed fre-
quently, and (iii) should be incremental (i.e., small changes in workloads produce
only small changes in the decomposition) as the cost of redistribution of mesh data
is often the most significant part of a dynamic load-balancing step. While a more
expensive procedure may produce a higher-quality result, it is sometimes better to
use a faster procedure to obtain a lower-quality decomposition, if the workloads are
likely to change again after a short time.

2.1.3 Partition Quality Assessment

The goal of partitioning is to minimize time to solution for the corresponding PDE
solver. A number of statistics may be computed about a decomposition that can in-
dicate its suitability for use in an application.

The most obvious measure of partition quality is computational load balance. As-
signing the same amount of work to each processor is necessary to avoid idle time on
some processors. The most accurate way to measure imbalance is by instrumenting
software to determine processor idle times. However, imbalance is often reported

2 Partitioning and Dynamic Load Balancing 59

*

Fig. 2.2. Example where the number of elements on the subdomain boundary is not an accurate
measure of communication costs. The shading indicates subdomain assignments. The element
indicated by “*” needs to send its value to two neighbors in the other subdomain, but the value
need only be communicated once.

with respect to the number of objects assigned to each subdomain (or the sum of
object weights, in the case of non-uniform object computation costs).

Computational load balance alone does not ensure efficient parallel computation.
Communication costs must also be considered. This task often corresponds to mini-
mizing the number of objects on sharing data across subdomain boundaries, since the
number of adjacencies on the bounding surface of each subdomain approximates the
amount of local data that must be communicated to perform a computation. For ex-
ample, in element decompositions of mesh-based applications, this communication
cost is often approximated by the number of element faces on boundaries between
two or more subdomains. (In graph partitioning, this metric is referred to as “edge
cuts”; see Section 2.2.2.) A similar metric is a subdomain’s surface index, the per-
centage of all element faces within a subdomain that lie on the subdomain boundary.
Two variations on the surface index can be used to estimate the cost of interprocess
communication. The maximum local surface index is the largest surface index over
all subdomains, and the global surface index measures the percentage of all element
faces that are on subdomain boundaries [14]. In three dimensions, the surface indices
can be thought of as surface-to-volume ratios if the concepts of surface and volume
are expanded beyond conventional notions; i.e., the “volume” is the whole of a sub-
domain, and the elements on subdomain boundaries are considered the “surface.”
The global surface index approximates the total communication volume, while the
maximum local surface index approximates the maximum communication needed
by any one subdomain.

A number of people [14, 50, 111] have pointed out flaws in minimizing only
the edge cut or global surface index statistics. First, the number of faces shared
by subdomains is not necessarily equal to the communication volume between the
subdomains [50]; an element could easily share two or more faces with elements
in a neighboring subdomain, but the element’s data would be communicated only
once to the neighbor (Figure 2.2). Second, interconnection network latency is often a

60 J. D. Teresco et al.

significant component of communication cost; therefore, interprocess connectivity
(the number of processes with which each process must exchange information dur-
ing the solution phase) can be as significant a factor in performance [14] as the total
volume of communication. Third, communication should be balanced, not necessar-
ily minimized [95]. A balanced communication load often corresponds to a small
maximum local surface index.

Another measure of partition quality is the internal connectivity of the subdo-
mains. Having multiple disjoint connected components within a subdomain (also
known as subdomain splitting [57]) can be undesirable. Domain decomposition
methods for the solution of the linear systems will converge slowly for partitions
with this property [25, 38]. Additionally, if a relatively small disjoint part of one
subdomain can be merged into a neighboring subdomain, the boundary size will de-
crease, thereby improving the surface indices.

Subdomain aspect ratio has also been reported as an important factor in parti-
tion quality [32, 38], particularly when iterative methods such as Conjugate Gradient
(CG) or Multigrid are used to solve the linear systems. Diekmann, et al. [32] pro-
vide several definitions of subdomain aspect ratio, the most useful being the ratio
of the square of the radius of smallest circle that contains the entire subdomain to
the subdomain’s area. They show that the number of iterations needed for a precon-
ditioned CG procedure grows with the subdomain aspect ratio. Furthermore, large
aspect ratios are likely to lead to larger boundary sizes.

Geometric locality of elements is an important indicator of partition effectiveness
for some applications. While mesh connectivity provides a reasonable approximation
to geometric locality in some simulations, it does not represent geometric locality in
all simulations. (In a simulation of an automobile crash, for example, the windshield
and bumper are far apart in the mesh, but can be quite close together geometrically.)
Geometric locality is also important in particle methods, where a natural representa-
tion of connectivity is not often available. Quality metrics based on connectivity are
not appropriate for these types of simulations.

2.2 Partitioning and Dynamic Load Balancing Taxonomy

A variety of partitioning and dynamic load balancing procedures have been devel-
oped. Since no single procedure is ideal in all situations, many of these alternatives
are commonly used. This section describes many of the approaches, grouping them
into geometric methods, global graph-based methods, and local graph-based meth-
ods. Geometric methods examine only coordinates of the objects to be partitioned.
Graph-based methods use the topological connections among the objects. Most geo-
metric or graph-based methods operate as global partitioners or repartitioners. Local
graph-based methods, however, operate among neighborhoods of processes in an ex-
isting decomposition to improve load balance. This section describes the methods;
their relative merits are discussed in Section 2.3.

2 Partitioning and Dynamic Load Balancing 61

Cut 2

Cut 2

Cut 1

Cut 1

Cut 2

Cut 2

Fig. 2.3. Example of RCB cuts along coordinate axes (left) and RIB cuts along the principal
axis of inertia (right).

2.2.1 Geometric Methods

Geometric methods are partitioners that use only objects’ spatial coordinates and ob-
jects’ computational weights in computing a decomposition. For example, in mesh
partitioning, any mesh entities’ coordinates (e.g., nodal coordinates, element cen-
troids, surface element centroids) can be used. Geometric methods assign objects
that are physically close to each other to the same partition in a way that balances the
total weight of objects assigned to each partition. This goal is particularly effective
for applications in which objects interact only if they are geometrically close to each
other, as in particle methods and crash simulations.

Recursive Bisection

Methods using recursive bisection divide the simulation’s objects into two equally
weighted sets; the bisection algorithm is then applied to each set until the number of
sets is equal to the number of desired partitions. (This description implies that the
number of partitions must be a power of two; however, only minor changes in the
algorithm are needed to allow an arbitrary number of partitions.)

Perhaps the most well-known geometric bisection method is Recursive Coordi-
nate Bisection (RCB), developed by Berger and Bokhari [9]. In RCB, two sets are
computed by cutting the problem geometry with a plane orthogonal to a coordinate
axis (see Figure 2.3, left). The plane’s direction is selected to be orthogonal to the
longest direction of the geometry; its position is computed so that half of the object
weight is on each side of the plane. In a twist on RCB, Jones’ and Plassmann’s Un-
balanced Recursive Bisection (URB) algorithm [61] halves the problem geometry
(instead of the set of objects) and then assigns processes to each half proportionally
to the total object weight within the half.

Like RCB, Recursive Inertial Bisection (RIB) [107, 113] uses cutting planes to
bisect the geometry. In RIB, however, the direction of the plane is computed to be
orthogonal to long directions in the actual geometry, rather than to a coordinate axis

62 J. D. Teresco et al.

I

IIIIV

II

Fig. 2.4. Template curve for the Morton ordering (left), its first level of refinement (center),
and an adaptive refinement (right).

(see Figure 2.3, right). Treating objects as point masses, the direction of principle in-
ertia in the geometry is found by computing eigenvectors of a 3×3 matrix assembled
from the point masses.

Space-Filling Curves

A second class of geometric partitioners utilizes a one-dimensional “traversal” or lin-
earization to order objects or groups of objects. After determining a one-dimensional
ordering, subdomains are formed from contiguous segments of the linearization. This
technique produces well-formed subdomains if the ordering preserves locality, i.e., if
objects that are close in the linearization are also close in the original coordinate
space.

The linearization is often achieved using space-filling curves (SFCs). SFCs pro-
vide continuous mappings from one-dimensional to d-dimensional space [99]. They
have been used to linearize spatially-distributed data for partitioning [2, 17, 33, 87,
89, 94], storage and memory management [22, 79], and computational geometry [7].

SFCs are typically constructed recursively from a single stencil. Each level of
refinement replaces segments of the SFC with a new copy of the curve’s stencil,
subject to spatial rotations and reflections. The SFC can come arbitrarily close to
any point in space. Most importantly for partitioning, some SFCs preserve locality,
which Edwards [33] defines formally. Several orderings with different degrees of
complexity and locality are possible; only the commonly-used Morton and Hilbert
orderings are included here.

The Morton (Z-code or Peano) ordering [80, 84] is a simple SFC that traverses a
quadrant’s children in a “Z”-like pattern (in the order I, II, III, IV in Figure 2.4). The
pattern at each refinement is identical to that used by its ancestors; no rotations or
reflections are performed. However, there are large “jumps” in its linearization, par-
ticularly as the curve transitions from quadrant II to quadrant III, so Morton ordering
does not always preserve locality. The jumps are even more apparent in three di-
mensions. Nevertheless, because of its simplicity, Morton ordering is viable in some
circumstances, and provides a base ordering for all SFCs [17, 60].

2 Partitioning and Dynamic Load Balancing 63

II I

IIIIV

Fig. 2.5. Template curve for the Hilbert ordering (left), its first level of refinement (center),
and an adaptive refinement (right).

The Hilbert ordering uses the Peano-Hilbert SFC [11, 90, 91] to order quadrants.
It uses a bracket-like template with rotations and inversions to keep quadrants closer
to their neighbors. (Figure 2.5). Hilbert ordering is locality preserving, and tends to
be the most useful for partitioning.

SFC orderings can be applied directly to objects given only the objects’ spatial
coordinates [2]. Each object is assigned a unique “key” representing the object’s po-
sition along the SFC. This key is a number in the range [0, 1] that specifies the point
on the SFC that passes closest to the object. The object are then ordered by their keys;
this ordering can be done via global sorting, binning [8, 27, 29], or traversing an oc-
tree representing the SFC [17, 42, 44, 71, 75]. The one-dimensional ordering is then
partitioned into appropriately sized pieces; all objects within a piece are assigned to
one subdomain.

SFC partitioning was first used by Warren and Salmon [127] in particle-based
gravitational simulations. They used a Morton ordering, but acknowledged that
Hilbert ordering would improve locality. Patra and Oden [81, 89], Parashar and
Browne [87], and Edwards [33] used Hilbert SFC ordering for finite element meshes.
Patra and Oden choose cuts along the SFC to balance computational work in their
hp-adaptive computation. Pilkington and Baden [94] apply SFCs for dynamic load
balancing with a uniform mesh where computational workloads vary. Steensland, et
al. [111] looked at SFCs for partitioning structured grids which undergo adaptive
refinement. Octree partitioning [42, 71, 75] implements SFC partitioning using oc-
tree data structures commonly used in mesh generation. Mitchell’s Refinement Tree
partitioning [76, 78] uses nodal connectivity in adaptively refined meshes (instead of
coordinate values) to generate a SFC through mesh elements; while this approach is
not strictly a geometric method, the resulting decompositions are qualitatively iden-
tical to SFC-produced decompositions.

2.2.2 Global Graph-Based Partitioning

A popular and powerful class of partitioning procedures make use of connectivity
information rather than spatial coordinates. These methods use the fact that the par-
titioning problem in Section 2.1.1 can be viewed as the partitioning of an induced

64 J. D. Teresco et al.

Fig. 2.6. Example two-dimensional mesh from Figure 2.1 (left) with its induced graph. (For
the color version, see Figure A.1 on page 467).

Subset V4

Subset V3

Subset V2

Subset V1

Fig. 2.7. Four-way partitioning of the graph from Figure 2.6. (For the color version, see Figure
A.2 on page 467).

graph G = (V,E), where objects serve as the graph vertices (V) and connections
between objects are the graph edges (E). For example, Figure 2.6 shows an induced
graph for the mesh in Figure 2.1; here, elements are the objects to be partitioned and,
thus, serve as vertices in the graph, while shared element faces define graph edges.

A k-way partition of the graphG is obtained by dividing the vertices into subsets
V1, ..., Vk, where V = V1 ∪ ... ∪ Vk, and Vi ∩ Vj = � for i �= j. Figure 2.7
shows one possible decomposition of the graph induced by the mesh in Figure 2.6.
Vertices and edges may have weights associated with them representing computation
and communication costs, respectively. The goal of graph partitioning, then, is to
create subsets Vk with equal vertex weights while minimizing the weight of edges
“cut” by subset boundaries. An edge eij between vertices vi and vj is cut when vi
belongs to one subset and vj belongs to a different one. In Figure 2.7, eight edges
are cut. Algorithms to provide an optimal partitioning are NP-complete [46, 47],

2 Partitioning and Dynamic Load Balancing 65

8

2

4

6

5

3

7

1

Fig. 2.8. Example greedy partitioning of a small mesh. Numbers indicate the order in which
elements are added to the subdomain being constructed.

so heuristic algorithms are generally used. The graph partitioning is related back to
the mesh partitioning problem by creating subdomains of the mesh corresponding to
each subset Vi. Figure 2.1 (right) shows the partitioning of the mesh based on the
graph partitioning of Figure 2.7.

A number of algorithms have been developed to partition graphs. Many of these
were developed as static partitioners, intended for use as a preprocessing step rather
than as a dynamic load balancing procedure. Some of the multilevel procedures do
operate in parallel and can be used for dynamic load balancing.

Greedy Partitioning

Farhat [36] applied graph partitioning to the mesh partitioning problem. The graph
is partitioned by a greedy algorithm (GR) that builds each subdomain by starting
with a vertex and adding adjacent vertices until the subdomain’s target size has been
reached, see Figure 2.8. The procedure then chooses another unassigned vertex and
builds the next subdomain. Farhat [38] reports success using these procedures. Such
greedy procedures can also be components of the more commonly used multilevel
partitioners described below.

Spectral Partitioning

A very well known static graph partitioning method is Recursive Spectral Bisec-
tion (RSB) [97, 107]. In RSB, the Laplacian matrix L of a graph is constructed. Each
diagonal entry lii is the degree of vertex i; non-diagonal entries lij are -1 if edge eij
exists in the graph, and 0 otherwise. The eigenvector x associated with the smallest
non-zero eigenvalue of L is then used to divide the vertices into two sets. The me-
dian value of x is found. Then, for each xi, if xi is less than the median, vertex i is
assigned to the first set; otherwise, it is assigned to the second set. This bisection pro-
cedure is repeated on the subgraphs until the number of sets is equal to the number
of desired partitions.

RSB generally produces high quality partitions. The eigenvector calculation,
however, is very expensive and, thus, RSB is used primarily for static partitioning.

66 J. D. Teresco et al.

Strategies using additional eigenvectors to compute four or eight partitions in each
stage have proven to be effective while reducing the cost to partition [54].

Multilevel Partitioning

By far, the most successful global graph-based algorithms for static partitioning are
multilevel graph partitioners [15, 55, 66], as evidenced by the number of static graph
partitioning packages available [53, 64, 92, 98]. Multilevel methods’ operation is
much like the V-cycle used in multigrid solvers, in that an initial solution is computed
on a coarse representation of the graph and used to obtain better solutions on finer
representations.

Multilevel graph partitioning involves three major phases: (i) coarsening, the
construction of a sequence of smaller graphs that approximate the original, (ii) par-
titioning of the coarsest graph, and (iii) uncoarsening, the projection of the parti-
tioning of the coarsest graph onto the finer graphs, with a local optimization applied
to improve the partitioning at each step. A simple example of this procedure for a
small graph with two levels of coarsening is shown in Figure 2.9.

Coarsening procedures typically use a vertex matching algorithm that identifies
vertices that can be combined to create coarse vertices. The set of edges from the
coarse vertex is taken as the union of the edges for the combined vertices. The sum
of the combined vertices’ weights is used as the coarse vertex’s weight. In this way,
the structure and workloads of the input graph are preserved in the coarse repre-
sentations. Matching at each level can be done by randomly selecting unmatched
vertices [15, 55, 66, 125] or using heuristics [6, 23, 45, 48, 49, 66]. For example,
heavy-edge matching combines the two vertices sharing the edge with the heaviest
edge weight [66], suggesting that vertices with the strongest affinity toward each
other should be combined.

The coarsest graph is then partitioned. Since this graph is small, a spectral
method [55, 66] can be used efficiently. Faster greedy methods [66] can also be used;
while they produce lower quality coarse partitions, local optimizations during the un-
coarsening phase improve partition quality. A local optimization may also be used at
this point to attempt to encourage incrementality [103]. A geometric procedure such
as an SFC may also be used for this coarse partitioning [68].

The coarse decomposition is projected to the finer graphs, with refinements of
the partitions made at each graph level. Typically a local optimization technique re-
duces a communication metric while maintaining and improving load balance. Most
of the local optimization approaches are based on the Kernighan-Lin (KL) graph
bisection algorithm [69] or its linear-time implementation by Fiduccia and Maythe-
ses (FM) [39]. These techniques make a series of vertex moves from one partition to
another, measuring the “gain” or improvement in the metric for each move; moves
with high gain are accepted. Karypis and Kumar [66] perform only a few iterations of
their KL-like procedure, noting that most of the gain is usually achieved by the first
iteration. Hendrickson and Leland [55] continue their KL-like procedure to allow for
the discovery of sequences of moves that, while individually making the decompo-
sition worse, may lead to a net improvement. This allows the procedure to escape

2 Partitioning and Dynamic Load Balancing 67

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

1

1

1

1

1

1

1

1

11

1

1

1

1
1 1

11

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1

1

1

1

1

1

1

1
11

1

1

1

1
1 1

1

1

1

1

(a) (b) (c)

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

4 3

4

3

3

2

3 4

1

1

2

1

2

1

2

1
1

2

1

1

1

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

4 3

4

3

3

2

3 4

1

1

2

1

2

1

2

1
1

2

1

1

1

1

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

1

1

1

1

1

1

1

1

11

1

1

1

1
1 1

11

(d) (e) (f)

(g)

Fig. 2.9. Multilevel partitioning of the induced graph of Figure 2.6. Vertex matching in (a)
leads to the coarse graph in (b). A second round of vertex matching in (c) produces the coarse
graph in (d). This coarsest graph is partitioned in (e). The graph is uncoarsened one level and
the partitioning is optimized in (f). The second level of uncoarsening, and another round of
local optimization on this partitioning produces the final two-way partitioning shown in (g).
(For the color version, see Figure A.3 on page 468).

from local minima. Walshaw, et al. [125] define a relative gain value for each vertex,
intended to avoid collisions (i.e., vertices on opposite sides of a boundary each being
selected to move).

Parallel implementation of multilevel graph partitioners has allowed them to be
used for dynamic load balancing [67, 125]. These methods produce very high quality
partitionings, but at a higher cost than geometric methods. Graph partitioners are not
inherently incremental, but modifications such as the local methods described below
can make them more effective for dynamic repartitioning.

68 J. D. Teresco et al.

2.2.3 Local Graph-based Methods

In an adaptive computation, dynamic load balancing may be required frequently.
Applying globalpartitioning strategies after each adaptive step can be costly rela-
tive to solution time. Thus, a number of dynamic load balancing techniques that are
intended to be fast and incrementally migrate data from heavily to lightly loaded
processes have been developed. These are often referred to as local methods.

Unlike global partitioning methods, local methods work with only a limited view
of the application workloads. They consider workloads within small, overlapping
sets of processors to improve balance within each set. Heavily loaded processors
within a set transfer objects to less heavily loaded processors in the same set. Sets
can be defined by the parallel architecture’s processor connectivity [70] or by the
connectivity of the application data [58, 130]. Sets overlap, allowing objects to move
between sets through several iterations of the local method. Thus, when only small
changes in application workloads occur through, say, adaptive refinement, a few it-
erations of a local method can correct imbalances while keeping the amount of data
migrated low. For dramatic changes in application workloads, however, many iter-
ations of a local method are needed to correct load imbalances; in such cases, in-
vocation of a global partitioning method may result in a better, more cost-effective
decomposition.

Local methods typically consist of two steps: (i) computing a map of how much
work (nodal weight) must be shifted from heavily loaded to lightly loaded proces-
sors, and (ii) selecting objects (nodes) that should be moved to satisfy that map.
Many different strategies can be used for each step.

Most strategies for computing a map of the amount of data to be shifted among
processes are based on the diffusive algorithm of Cybenko [24]. Using processor con-
nectivity or application communication patterns to describe a computational “mesh,”
an equation representing the workflow is solved using a first-order finite-difference
scheme. Since the stencil of the scheme is compact (using information only from
neighboring processes), the method is local.

Several variations of this strategy have been developed to reduce data move-
ment or improve convergence. Hu and Blake [58] take a more global view of
load distributions, computing a diffusion solution while minimizing work flow over
edges of a graph of the processes. Their method is used in several parallel graph-
partitioning libraries [100, 125]. Such diffusion methods have been coupled with
multilevel graph partitioners (see Section 2.2.2) to further improve their effective-
ness [56, 100, 103, 124, 125].

Other techniques for accelerating the convergence of diffusion schemes include
use of higher-order finite difference schemes and dimensional exchange. Watts,
et al. [128, 129] use a second-order implicit finite difference scheme to solve
the diffusion equation; this scheme converges to global balance in fewer itera-
tions, but requires more work and communication per iteration. In dimensional ex-
change [24, 31, 132, 134], a hypercube architecture is assumed. (The algorithm can
be used on other architectures by logically mapping the architecture to a hypercube.)

2 Partitioning and Dynamic Load Balancing 69

Processes exchange work with neighbors along each dimension of the hypercube;
after looping over all dimensions, the workloads are balanced.

Demand-driven models are also common [26, 34, 70, 86, 130, 131, 132]. These
models operate in either of two ways: (i) underloaded processes request work from
their overloaded neighboring processes, or (ii) overloaded processes send work to
their underloaded neighbors. The result is similar to diffusion algorithms, except
that nodes are transferred to only a subset of neighbors rather than distributed to
all neighbors. Version (i) of this model has shown to be more effective than (ii), as
the majority of load-balancing work is performed by the underloaded process and
overloading of the receiving process is avoided [132]. As in the diffusion algorithm,
neighbors can be defined by following the physical processor network [70] or the
logical data connections [131]. Ozturan’s iterative tree-balancing procedure [26, 86]
groups processes into trees based upon their work requests, moving work among
processes within trees. This more global view accelerates the convergence of the
diffusion, but also increases the average number of neighboring processes per process
in the application’s communication graph.

The second step of a local method is deciding which objects (graph nodes) to
move to satisfy the workload transfers computed in the first step. Typically, vari-
ants of the KL [69] or FM [39] local optimization algorithms (used for refinement
of multilevel partitions) are used. For each object, the gain toward a specific goal
achieved by transferring the object to another process is computed. Many options for
the gain function have been used (e.g., [28, 55, 125, 131, 134]). Most commonly, the
weight of graph edges cut by subdomain boundaries is minimized. However, other
goals might include minimizing the amount of data migrated [28, 100], minimizing
the number of process neighbors, optimizing subdomain shape [30, 118], or some
combination of these goals. The set of objects producing the highest gain is selected
for migration. Selection continues until the actual workload transferred is roughly
equal to the desired workload transfers.

2.3 Algorithm Comparisons

A number of theoretical and empirical comparisons of various partitioning strate-
gies have been performed [14, 27, 37, 38, 41, 51, 57, 111, 112, 115]. Selection of
the method that is most effective for an application depends on trade-offs between
incrementality, speed and quality that can be tolerated by the application. A PDE
solver which uses a single decomposition throughout the computation should con-
sider strategies that produce high-quality partitions, with less concern for execution
speed of the partitioner. A solver which uses frequent adaptivity will want to consider
strategies that execute quickly and are incremental, with less emphasis on partition
quality. A procedure which does not readily provide adjacency information will be
restricted to geometric methods. This section summarizes and cites key results.

• RCB, URB

– Geometric method: only coordinate information needed.

70 J. D. Teresco et al.

– Incremental and suitable for dynamic load balancing [51].
– Executes very quickly [115].
– Moderate quality decompositions. Cutting planes help keep the number of

objects on subdomain boundaries small for well-shaped meshes [18]. Unfor-
tunate cuts through highly refined regions [115] or complex domain geome-
try [75, 73] can lead to poor decompositions. URB produces more uniform
subdomain aspect ratios than RCB when there is a large variation in object
density [61].

– Conceptually simple; straightforward to implement in parallel [29].
– Maintains geometric locality [51, 123].
– Simple to determine intersections of objects with subdomains, e.g., for paral-

lel contact detection and smoothed particle hydrodynamics simulations [96];
subdomains are described by simple parallelepipeds.

• RIB
– Geometric method: only coordinate information needed.
– Not incremental; may be unsuitable for dynamic load balancing [42].
– Executes almost as quickly as RCB [115].
– Slightly higher quality decompositions than RCB; lower quality than spectral

and multilevel graph partitioning [38, 115]. Unfortunate cuts through highly
refined regions can cause poor decompositions [115].

– Conceptually simple; straightforward to implement in parallel [29, 106].
– Maintains geometric locality.
– Simple to determine intersections of objects with subdomains, e.g., for paral-

lel contact detection and smoothed particle hydrodynamics simulations [96].
• SFC

– Geometric method: only coordinate information needed.
– Incremental and suitable for dynamic load balancing [42, 51].
– Executes very quickly [42, 94, 112].
– Slightly lower quality decompositions than geometric bisection methods [89].
– Conceptually simple; straightforward to implement in parallel [94].
– Choice of SFC used depends on locality requirements; Hilbert is usually

best [17].
– The global ordering induced by sorting SFC keys can be exploited to order

data to improve cache performance during computation, and can provide au-
tomated translations between global and per-process numbering schemes [33,
88].

– Possible to determine intersections of objects with subdomains, e.g., for
parallel contact detection and smoothed particle hydrodynamics simulations
[27].

• Greedy partitioning

– Graph-based method: connectivity information is required.
– Not incremental; may be unsuitable for dynamic load balancing.
– Executes quickly [38, 118, 123, 124].

2 Partitioning and Dynamic Load Balancing 71

– Medium-quality decompositions [123], better than RIB [38], and good with
respect to subdomain aspect ratio [38]. Tends to leave non-connected or strip-
wise subdomains in the last few partitions computed [57].

– Difficult to implement in parallel.
– Does not maintain geometric locality [123].

• Spectral graph partitioning
– Graph-based method: connectivity information is required.
– Not incremental; may be unsuitable for dynamic load balancing [112]. Van

Driessche and Roose [117] developed modifications to include incremental-
ity.

– Executes very slowly [124].
– Very high quality decompositions [124].
– More difficult to parallelize than geometric methods [5, 109].
– Does not maintain geometric locality [123].
– Suitable primarily for static partitioning.

• Multilevel graph partitioning
– Graph-based method: connectivity information is required.
– Not incremental; may be unsuitable for dynamic load balancing [123]. Met-

rics may include migration cost to improve incrementality [103].
– Executes slowly [115, 124].
– Very high quality decompositions [67, 125].
– Difficult to implement in parallel [67].
– Does not maintain geometric locality.

• Local graph-based methods
– Graph-based method: connectivity information is required.
– Incremental; suitable for dynamic load balancing [26, 86].
– Usually execute quickly, but several iterations may be needed for global bal-

ance. Also, more sophisticated techniques can be more expensive [112].
– High quality decompositions, given a good starting decomposition.
– Straightforward to implement in parallel [26, 86]; can be incorporated into

multilevel strategies [55, 67, 125].
– Useful as a post-processing step for other methods to improve partition qual-

ity [42, 75].

2.4 Software

Many software packages are available to provide static and dynamic load balanc-
ing to applications. Using these packages, application developers can access a vari-
ety of high-quality implementations of partitioning algorithms. Many packages also
include supporting functionality (e.g., data migration tools and unstructured com-
munication tools) commonly needed by applications using load balancing. Use of
these packages saves application developers the effort of learning and implement-
ing partitioning algorithms themselves, while allowing them to compare partitioning
strategies within their applications. Moreover, many of the packages are available as

72 J. D. Teresco et al.

open-source software; see bibliography entries for the packages cited for distribution
details.

Static partitioning software is typically used as a pre-processor to the applica-
tion. It can be used in two ways: as a stand-alone tool or as a function call from
the application. In stand-alone mode, input files describe the problem domain to be
partitioned; the format of these files is determined by the partitioning software. The
computed decomposition is also written to files. The application must then read the
decomposition files to distribute data appropriately. Function-call interfaces to static
partitioners allow them to be called directly by applications during pre-processing
phases of the application.

Several graph partitioning packages have been developed for static load balanc-
ing; they include Chaco [53], Metis [64], Jostle [120], Party [98] and Scotch [93].
These tools run in serial and have both stand-alone and function interfaces. For
the stand-alone mode, users provide input files describing the problem domain in
terms of a graph, listing vertices (objects), edges between vertices, vertex and edge
weights, and possibly coordinates. The function-call interfaces accept a graph de-
scription of the problem through arrays using compressed sparse row (CSR) format.
In both modes, applications have to convert their application data into the appropriate
graph format.

By necessity, dynamic load-balancing software uses function call interfaces, as
file-based interfaces would be unacceptable for balancing during a computation.
Similarly, dynamic load-balancing software is executed in parallel, assuming an ex-
isting distribution of data; parallel execution is required to maintain scalability of the
application. Two types of dynamic partitioning software are available: algorithm-
specific libraries and toolkits of partitioning utilities.

ParMETIS [68] and PJostle [120] are two widely used algorithm-specific li-
braries. Both provide multi-level and diffusive graph partitioning. Like their serial
counterparts, they accept input in CSR format, with extensions describing the exist-
ing partition assignment of the vertices; the arrays describing the application data as
a graph in this compressed format must be built by the application. ParMETIS in-
cludes support for multiple weights per vertex [65] and edge [101], enabling multi-
constraint and multi-objective partitioning (see Section 2.5.2). PJostle allows multi-
ple vertex weights for multiphase applications [126] (see Section 2.5.2) and a net-
work description [122] to allow partitioning for heterogeneous computing systems
(see Section 2.5.3).

Load-balancing toolkits such as Zoltan [29] and DRAMA [72] incorporate suites
of load-balancing algorithms with additional functionality commonly needed by
dynamic applications. Both Zoltan and DRAMA include geometric partitioners
(through implementations in the toolkits) and graph-based partitioners (through in-
terfaces to ParMETIS and PJostle). They enable comparisons of various methods by
providing a common interface for all partitioners and allowing applications to select
a method via a single parameter. They also provide support for moving data between
processors to establish a new decomposition.

The Zoltan toolkit [29] provides parallel dynamic load balancing and data man-
agement services to a wide range of applications, including particle simulations,

2 Partitioning and Dynamic Load Balancing 73

mesh-based simulations, circuit simulations, and linear solvers. It includes geomet-
ric bisections methods (RCB, RIB), space-filling curve methods (HSFC, Octree, Re-
finement Tree), and graph-based partitioning (through ParMETIS and PJostle). Un-
like the graph-partitioning libraries, Zoltan’s design is “data-structure neutral”; i.e.,
Zoltan does not require the application to use or build particular data structures for
Zoltan. Instead, a callback-function interface provides a simple, general way for ap-
plications to provide data to Zoltan. Applications provide simple functions return-
ing, e.g., lists of objects to be partitioned, coordinates for the objects, and relation-
ships between objects. Zoltan calls these functions to obtain application information
needed to build its data structures. Once an application implements these callback
functions, switching between load-balancing methods requires changing only one
parameter.

Zoltan also includes a number of utilities that simplify development of dynamic
applications. Its data migration tools assist in the movement of data among proces-
sors as they move from an old decomposition to a new one. Because Zoltan does
not have information about application data structures, it cannot update them dur-
ing migration. But given callback functions that pack and unpack data from com-
munication buffers, its migration tools perform all communication needed for data
migration. Zoltan’s unstructured communication package provides a simple mecha-
nism for complex communication among processors, freeing application developers
from the details of individual message sends and receives. Its distributed data direc-
tory provides an efficient, scalable utility for locating data in the memory space of
other processes. Key kernels of contact detection simulations—finding the partitions
owning points and regions in space—are included for Zoltan’s geometric and HSFC
methods.

The DRAMA (Dynamic Re-Allocation of Meshes for parallel finite element Ap-
plications) toolkit [72] provides parallel dynamic load balancing and support ser-
vices to mesh-based applications. DRAMA assumes a basic data structure of a mesh
and enables partitioning of the mesh nodes, elements or both. The mesh is input to
DRAMA through array-based arguments. Like Zoltan, DRAMA provides a number
of partitioning strategies, including recursive bisection methods and graph partition-
ing through interfaces to ParMETIS and PJostle.

DRAMA includes a robust cost-model for use in partitioning. This model ac-
counts for both computation and communication costs in determining effective de-
compositions. Because it assumes a mesh data structure, DRAMA includes more
sophisticated support for data migration than Zoltan. It migrates its input mesh to
its new location; this migrated mesh can then serve as a starting point for the ap-
plication data migration. DRAMA provides support for heterogeneous computing
architectures through PJostle’s network description [121] (see Section 2.5.3). It also
includes extensive support for contact detection and crash simulations.

Load-balancing tools that are tied more closely to specific applications also exist.
For example, the PLUM system [82] provides dynamic load balancing for applica-
tions using adaptively refined meshes. Its goal is to minimize load-balancing over-
head during adaptive computations. To do so, it balances with respect to a coarse
mesh in the adaptive simulation using element weights proportional to the number

74 J. D. Teresco et al.

of elements into which each coarse element has been refined. It uses an external par-
titioning library (e.g., ParMETIS) to compute a decomposition, and then uses a sim-
ilarity matrix to remap partitions in a way that minimizes data movement between
the old and new decompositions. Another example, the VAMPIRE library [110],
produces decompositions for structured adaptive mesh refinement applications. As-
suming the refined mesh is represented as a tree of uniform grids, it uses a SFC algo-
rithm to distribute the grids to processors to evenly distribute work while attempting
to minimize communication between the grids. Load-balancing systems are also in-
cluded as parts of larger parallel run-time systems; see, e.g., CHARM++ [62] and
PREMA [4].

2.5 Current Challenges

As parallel simulations and environments become more sophisticated, partitioning
algorithms must address new issues and application requirements. Software design
that allows algorithms to be compared and reused is an important first step; care-
fully designed libraries that support many applications benefit application developers
while serving as test-beds for algorithmic research. Existing partitioners need addi-
tional functionality to support new applications. Partitioning models must more accu-
rately represent a broader range of applications, including those with non-symmetric,
non-square, and/or highly-connected relationships. And partitioning algorithms need
to be sensitive to state-of-the-art, heterogeneous computer architectures, adjusting
work assignments relative to processing, memory and communication resources.

2.5.1 Hypergraph Partitioning

Development of robust partitioning models is important in load-balancing research.
While graph models (see Section 2.2.2) are often considered the most effective mod-
els for mesh-based PDE simulations, they have limitations for larger classes of prob-
lems (e.g., electrical systems, computational biology, linear programming). These
new problems are often more highly connected, more heterogeneous, and less sym-
metric than mesh-based PDE problems.

As an alternative to graphs, hypergraphs can be used to model application
data [19, 20]. A hypergraph HG = (V,HE) consists of a set of vertices V rep-
resenting the data objects to be partitioned and a set of hyperedges HE connecting
two or more vertices of V . By allowing larger sets of vertices to be associated through
edges, the hypergraph model overcomes many of the limitations of the graph model.

A key limitation of the graph model is that its edge-cut metric only approximates
communication volume induced by a decomposition (see Section 2.1.3). While this
approximation is adequate for traditional finite-element, finite-volume, and finite-
difference simulations, it is not sufficient for more highly connected and unstructured
data. In the hypergraph model, however, the number of hyperedge cuts is equal to the
communication volume, providing a more effective partitioning metric.

2 Partitioning and Dynamic Load Balancing 75

Catalyurek and Aykanat [20] also describe the greater expressiveness of hy-
pergraph models over graph models. Because edges in the graph model are non-
directional, they imply symmetry in all relationships, making them appropriate only
for problems represented by square, structurally symmetric matrices. SystemsAwith
non-symmetric structure must be represented by a symmetrized model A + AT ,
adding new edges to the graph and further skewing the communication metric. While
a directed graph model could be adopted, it would not improve the accuracy of the
communication metric. Likewise, graph models can not represent rectangular ma-
trices, such as those arising in linear programming. Kolda and Hendrickson [52]
propose using bipartite graphs. For an m × n matrix A, vertices mi, i = 1, . . . ,m
represent rows, and vertices nj , j = 1, . . . , n represent columns. Edges eij connect-
ing mi and nj exist for non-zero matrix entries aij . But as in other graph models,
the number of edge cuts only approximates communication volume.

Hypergraph models, on the other hand, do not imply symmetry in relationships,
allowing both structurally non-symmetric and rectangular matrices to be represented.
For example, the rows of a rectangular matrix could be represented by the vertices of
a hypergraph. Each matrix column would be represented by a hyperedge connecting
all non-zero rows in the column [20].

The improved communication metric and expressiveness of hypergraph models
lead to impressive results. Using hypergraph partitioning, Catalyurek and Aykanat
[20] report reductions in communication volume of 12-15% compared to graph par-
titioning for matrices from traditional finite difference applications. But for a broader
range of matrices, including examples from linear programming, circuit simula-
tions and stochastic programming, hypergraph partitioning produced reductions of
30-38% on average. Time to compute the hypergraph decomposition was 34-130%
greater than that required to compute a graph decomposition.

Hypergraph partitioning’s effectiveness has been demonstrated in many areas,
including VLSI layout [16], sparse matrix decompositions [20, 119], and database
storage and data mining [21, 85]. Serial hypergraph partitioners are available (e.g.,
hMETIS [63], PaToH [20, 19], Mondriaan [119]). Research into parallel hypergraph
partitioning includes a disk-based implementation used for partitioning Markov ma-
trices [116] and a distributed memory implementation in Zoltan [13]. Parallel imple-
mentation is needed for hypergraph partitioning to be viable for very large simula-
tions. Additionally, incremental hypergraph algorithms (analogous to diffusive graph
algorithms [24]) will be needed for dynamic applications.

2.5.2 Multi-criteria Partitioning

Most load-balancing research has focused on cases having a single load to be bal-
anced. Multi-phase simulations, however, might have different work loads in each
phase of a simulation. For example, a multiphysics simulation might include both
fluid flow and solid mechanics phases. Crash simulations typically have a finite-
element solve phase and a contact-detection phase. Even within a finite element sim-
ulation, the matrix assembly and matrix solve phases may have significantly different
load characteristics depending on the physics of the problem.

76 J. D. Teresco et al.

One approach to balancing multi-phase simulations is to use separate decompo-
sitions for each phase, mapping data between decompositions when needed. This
approach has been used with great success in crash simulations, where static graph-
based decompositions were used for the finite element phase and dynamic geometric
decompositions were used for contact detection [96]; data were transferred between
the decompositions as needed between phases.

Still, the idea of having a single decomposition that is balanced with respect
to multiple loads is attractive. With such a decomposition, no mapping of data is
needed between phases, reducing application communication costs. Each object to
be balanced would have a vector v of weights associated with it; the jth component
of v would represent the object’s workload in phase j. A single decomposition would
then be generated that balances each vector component.

Walshaw, et al. [126] developed a multiphase graph partitioner in Jostle [120].
Assuming components of weight vector v represent a vertex’s participation in a
phase, they say the “type” of the vertex is the first phase j in which the vertex par-
ticipates, i.e., for which v[j] > 0. They then balance each type of vertex separately,
maintaining partition information from lower types as “stationary” vertices in the
partitioning of higher types. That is, in computing a partition for vertices of type k,
k > j, all vertices of type j within a partition are represented by a single “super-
vertex” whose partition assignment is fixed to a particular partition; edges between
these stationary vertices and vertices of type k are maintained to represent data de-
pendencies between the phases. A standard graph partitioner is used to partition each
type of vertices; in attempting to minimize cut edges, the graph partitioner is likely
to assign type k vertices to the same partition as type j vertices to which they are
connected, keeping inter-phase communication costs low.

The multi-constraint graph-partitioning model of Karypis, et al. [65, 104] in
METIS [64] and ParMETIS [67] uses vertex weight vectors to create multiple load-
balancing constraints. Using this model, they can compute both multiphase decom-
positions and decompositions with respect to multiple criteria, e.g., workloads and
memory usage. Their approach is built on the multi-level framework commonly used
in graph partitioning (see Section 2.2.2), with modifications made in the coarsening,
coarse-partitioning, and refinement steps to accommodate multiple vertex weights.
During coarsening, the same heavy-edge metric used in single-constraint partition-
ing is used to select vertices to be combined; this metric combines a vertex with the
neighboring vertex sharing the heaviest edge weight. In multi-constraint partitioning,
ties between combinations with the same metric value are broken by a “balanced-
edge” metric that attempts to make all weights of the combined vertex as close to the
same value as possible, as more uniform weights are easier to balance in the coarse-
partitioning and refinement steps. A greedy recursive graph bisection algorithm is
used to compute the coarse partition; at each level of recursion, two subdomains A
and B are created by removing vertices from A (which initially contains the en-
tire domain) and adding them to B (which initially is empty). In the multi-constraint
case, vertices are selected based on their ability to reduce the heaviest weight ofA the
most. In refinement, KL [69] or FM [39] procedures are used. For multi-constraint
partitioning, queues of vertices that can be moved are maintained for each weight

2 Partitioning and Dynamic Load Balancing 77

and neighboring partition; vertices are again selected based on their ability to reduce
the maximum imbalance over all weights while reducing the number of edges cut. To
enforce the balance constraints in multi-constraint partitioning, an additional shifting
of vertices among processors without regard to increases in the edge cut weight is
sometimes needed before refinement.

Because geometric partitioners are preferred for many applications, Boman, et al.
pursued multi-criteria partitioning for geometric partitioners, specifically RCB [12].
Their implementation is included in Zoltan [29]. RCB consists of a series of one-
dimensional partitioning problems; objects i are ordered linearly by their coordinate
values corresponding to the direction of the cut. Like other approaches, objects i have
vector weights vi representing the load-balance criteria. Instead of imposing multiple
constraints, however, Boman, et al. formulate each one-dimensional problem as an
optimization problem where the objective is to find a cut s such that

min
s

max(g(
∑
i≤s

vi), g(
∑
i>s

vi)),

where g is a monotonically non-decreasing function in each component of the input
vector (typically g(x) =

∑
j x

p
j with p = 1 or p = 2, or g(x) = ‖x‖ for some

norm). This objective function is unimodal with respect to s. In other words, starting
with s = 1 and increasing s, the objective decreases, until at some point the objec-
tive starts increasing; that point defines the optimal bisection value s. (Note that the
objective may be locally flat (constant), so there is not always a unique minimizer.)
An optimal cut is computed in each coordinate direction; the cut producing the best
balance is accepted.

In general, computing multi-criteria decompositions becomes more difficult as
the number of criteria and/or number of partitions increases. As a result, partition
quality can degrade. Likewise, multi-criteria partitions are more expensive to com-
pute than single-criterion partitions; the extra cost, however, may be justified by the
improved load balance and reduction of data transfer.

2.5.3 Resource-Aware Balancing

Cluster and grid computing have made hierarchical and heterogeneous computing
systems increasingly common as target environments for large-scale scientific com-
putation. Heterogeneity may exist in processor computing power, network speed, and
memory capacity. Clusters may consist of networks of multiprocessors with varying
computing and memory capabilities. Grid computations may involve communication
across slow interfaces between vastly different architectures. Modern supercomput-
ers are often large clusters with hierarchical network structures. Moreover, the char-
acteristics of an environment can change during a computation due to increased mul-
titasking and network traffic. For maximum efficiency, software must adapt dynam-
ically to the computing environment and, in particular, data must be distributed in
a manner that accounts for non-homogeneous, changing computing and networking
resources. Several projects have begun to address resource-aware load balancing in
such heterogeneous, hierarchical, and dynamic computing environments.

78 J. D. Teresco et al.

Minyard and Kallinderis [74] use octree structures to conduct partitioning in dy-
namic execution environments. To account for the dynamic nature of the execution
environment, they collect run-time measurements based on the “wait” times of the
processors involved in the computation. These “wait” times measure how long each
CPU remains idle while all other processors finish the same task. The objects are as-
signed load factors that are proportional to the “wait” times of their respective own-
ing processes. Each octant load is subsequently computed as the sum of load factors
of the objects contained within the octant. The octree algorithm then balances the
load factors based on the weight factors of the octants, rather than the number of
objects contained within each octant.

Walshaw and Cross [122] conduct multilevel mesh partitioning for heteroge-
neous communication networks. They modify a multilevel algorithm in PJostle [120]
seeking to minimize a cost function based on a model of the heterogeneous commu-
nication network. The model gives a static quantification of the network heterogene-
ity as supplied by the user in a Network Cost Matrix (NCM). The NCM imple-
ments a complete graph representing processor interconnections. Each graph edge is
weighted as a function of the length of the path between its corresponding proces-
sors.

Sinha and Parashar [108] present a framework for adaptive system-sensitive par-
titioning and load balancing on heterogeneous and dynamic clusters. They use the
Network Weather Service (NWS) [133] to gather information about the state and ca-
pabilities of available resources; then they compute the load capacity of each node as
a weighted sum of processing, memory, and communications capabilities. Reported
experimental results show that system-sensitive partitioning resulted in significant
decrease of application execution time.

Faik, et al. [35] present the Dynamic Resource Utilization Model (DRUM) for
aggregating information about the network and computing resources of an execution
environment. Through minimally instrusive monitoring, DRUM collects dynamic
information about computing and networking capabilities and usage; this informa-
tion determines computing and communication “powers” that can be used as the
percentage of total work to be assigned to processes. DRUM uses a tree structure
to represent the underlying interconection of hierarchical network topologies (e.g.,
clusters of clusters, or clusters of multiprocessors). Using DRUM’s dynamic moni-
toring and power computations, they achieved 90% of optimal load distribution for
heterogeneous clusters [35].

Teresco [114] has implemented hierarchical partitioning procedures within the
software package Zoltan. These procedures can be used alone, or can be guided
by DRUM [35]. Hierarchical partitioning allows any combination of Zoltan’s load-
balancing procedures to be used on different levels and subtrees of hierarchical ma-
chine models. Tradeoffs in execution time, imbalance, and partition quality (e.g.,
surface indices, interprocess connectivity) can hold greater importance in hetero-
geneous environments [115], making different methods more appropriate in certain
types of environments. For example, consider the cluster of SMPs connected by Eth-
ernet shown in Figure 2.10. A more costly graph partitioning can be done to parti-
tion into two subdomains assigned to the SMPs, to minimize communication across

2 Partitioning and Dynamic Load Balancing 79

CPU0 CPU1

Node 1Node 0

CPU3

Network

CPU2CPU1 CPU3CPU0 CPU2

Memory Memory

8 processes compute one
2-way ParMetis partitioning

Each SMP independently
computes 4-way RIB partitioning

Fig. 2.10. Hierarchical balancing algorithm selection for two 4-way SMP nodes connected by
a network. (For the color version, see Figure A.4 on page 468).

the slow network interface, possibly at the expense of some computational imbal-
ance. Then, a fast geometric algorithm can be used to partition independently within
each SMP. Teresco [114] reports that while multilevel graph partitioning alone often
achieves the fastest computation times, there is some benefit to using this hierarchical
load balancing, particularly in maintaining strict load balance within the SMPs.

2.5.4 Migration Minimization

The costs of dynamic load balancing include (i) preparation of the input to the parti-
tioner, (ii) execution of the partitioning algorithm, and (iii) migration of application
data to achieve the new decomposition. The migration step is often the most ex-
pensive, leading to efforts to reduce this cost. As described in Section 2.3, selection
of appropriate load-balancing procedures contributes to reduced migration costs. In-
cremental procedures (e.g., RCB, SFC, Octree, diffusive graph partitioning) are pre-
ferred when data migration costs must be controlled. The unified partitioning strategy
in ParMETIS computes both a multilevel graph decomposition (“scratch-remap”)
and a diffusive decomposition [102, 103]; it then selects the better decomposition in
terms of load balance and migration costs.

Clever techniques can be used within an application to reduce data migration
costs. For example, the most straightforward way to use partitioning and dynamic
load balancing in a parallel adaptive computation is shown on the left in Figure 2.11.
Here, an initial mesh is partitioned, and the computation proceeds, checking peri-
odically to determine whether the solution resolution is sufficient. If not, the mesh
is enriched adaptively, the load is rebalanced, and the computation continues. Al-
ternatively, the rebalancing can be done before the mesh is actually enriched, if the
error indicators used to predict refinement can also predict appropriate weights for
the mesh before enrichment [43, 83] (Figure 2.11, right). This “predictive balancing”
approach can improve computational balance during the refinement phase, and leads
to less data migration, as redistribution occurs on the smaller mesh. Moreover, with-
out predictive balancing, individual processors may have nearly all of their elements
scheduled for refinement, leading to a memory overflow on those processors, when
in fact the total amount of memory available across all processors is sufficient for
the computation to proceed following refinement [40]. If the error indicators predict
the resulting refinement with sufficient accuracy, the predictive balancing step also
achieves a balanced partitioning of the refined mesh. In some cases, a corrective load

80 J. D. Teresco et al.

!done OK

!OK

done

Refine

Partition

Load
Rebalance

Compute

Error
Evaluate

Mesh

Initial Mesh
OK!done

!OK

done

Evaluate

Refine

Predicted Load
Rebalance

Initial Mesh
Partition Compute

Error

Mesh

Fig. 2.11. Non-predictive (left) and predictive (right) program flows for a typical parallel adap-
tive computation.

balancing step, e.g., with one of the local methods outlined in Section 2.2.3, may be
beneficial.

Techniques within load-balancing procedures can also reduce migration costs.
The similarity matrix in PLUM [82] represents a maximal matching between an old
decomposition and a new one. Old and new partitions are represented by the nodes of
a bipartite graph, with edges between old and new partitions representing the amount
of data they share. A maximal matching, then, numbers the new partitions to provide
the greatest overlap between old and new decompositions and, thus, the least data
movement. Similar strategies have been adopted by ParMETIS [68] and Zoltan [29].

Load-balancing objectives can also be adjusted to reduce data migration. Heuris-
tics used in local refinement (see Section 2.2.3) can select objects for movement that
have the lowest data movement costs. They can also select a few heavily weighted
objects to satisfy balance criteria rather than many lightly weighted objects. Hu and
Blake compute diffusive decompositions to achieve load balance subject to a mini-
mization of data movement [59]. Berzins extends their idea by allowing greater load
imbalance when data movement costs are high [10]; he minimizes a metric combin-
ing load imbalance and data migration to reduce actual time-to-solution (rather than
load imbalance) on homogeneous and heterogeneous networks.

Acknowledgments

The authors thank the following people for their collaborations and discussions:
Andrew Bauer, Diane Bennett, Rob Bisseling, Erik Boman, Paul Campbell, Laura
Effinger-Dean, Jamal Faik, Luis Gervasio, Robert Heaphy, Bruce Hendrickson, Steve
Plimpton, Robert Preis, Arjun Sharma, Lida Ungar, and Courtenay Vaughan.

2 Partitioning and Dynamic Load Balancing 81

References

1. S. Adjerid, J. E. Flaherty, P. Moore, and Y. Wang. High-order adaptive methods for
parabolic systems. Physica-D, 60:94–111, 1992.

2. S. Aluru and F. Sevilgen. Parallel domain decomposition and load balancing using
space-filling curves. In Proc. International Conference on High-Performance Comput-
ing, pages 230–235, 1997.

3. R. E. Bank and M. J. Holst. A new paradigm for parallel adaptive meshing algorithms.
SIAM J. Scien. Comput., 22:1411–1443, 2000.

4. K. J. Barker and N. P. Chrisochoides. An evaluation of a framework for the dynamic load
balancing of highly adaptive and irregular parallel applications. In Proc. Supercomputing
2003, Phoenix, 2003.

5. S. T. Barnard. PMRSB: parallel multilevel recursive spectral bisection. In F. Baker and
J. Wehmer, editors, Proc. Supercomputing ’95, San Diego, December 1995.

6. S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive spectral bi-
section for partitioning unstructured problems. Concurrency: Practice and Experience,
6(2):101–117, 1994.

7. J. J. Bartholdi and L. K. Platzman. An O(n log n) travelling salesman heuristic based
on spacefilling curves. Operation Research Letters, 1(4):121–125, September 1982.

8. A. C. Bauer. Efficient Solution Procedures for Adaptive Finite Element Methods – Ap-
plications to Elliptic Problems. PhD thesis, State University of New York at Buffalo,
2002.

9. M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Computers, 36:570–580, 1987.

10. M. Berzins. A new metric for dynamic load balancing. Appl. Math. Modelling, 25:141–
151, 2000.

11. T. Bially. Space-filling curves: their generation and their application to band reduction.
IEEE Trans. Inform. Theory, IT-15:658–664, Nov. 1969.

12. E. Boman, K. Devine, R. Heaphy, B. Hendrickson, M. Heroux, and R. Preis. LDRD
report: Parallel repartitioning for optimal solver performance. Technical Report
SAND2004–0365, Sandia National Laboratories, Albuquerque, NM, February 2004.

13. E. Boman, K. Devine, R. Heaphy, B. Hendrickson, W. F. Mitchell, M. S. John, and
C. Vaughan. Zoltan: Data-management services for parallel applications. URL: http:
//www.cs.sandia.gov/Zoltan.

14. C. L. Bottasso, J. E. Flaherty, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D.
Teresco, and L. H. Ziantz. The quality of partitions produced by an iterative load bal-
ancer. In B. K. Szymanski and B. Sinharoy, editors, Proc. Third Workshop on Languages,
Compilers, and Runtime Systems, pages 265–277, Troy, 1996.

15. T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization”. In Proc.
6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445–452. SIAM,
1993.

16. A. Caldwell, A. Kahng, and J. Markov. Design and implementation of move-based
heuristics for VLSI partitioning. ACM J. Experimental Algs., 5, 2000.

17. P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco. Dynamic
octree load balancing using space-filling curves. Technical Report CS-03-01, Williams
College Department of Computer Science, 2003.

18. F. Cao, J. R. Gilbert, and S.-H. Teng. Partitioning meshes with lines and planes. Techni-
cal Report CSL–96–01, Xerox PARC, 1996. ftp://parcftp.xerox.com/pub/
gilbert/index.html.

82 J. D. Teresco et al.

19. U. Catalyurek and C. Aykanat. Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications. Lecture Notes in Computer Science, 1117:75–86, 1996.

20. U. Catalyurek and C. Aykanat. Hypergraph-partitioning based decomposition for paral-
lel sparse-matrix vector multiplication. IEEE Trans. Parallel Dist. Systems, 10(7):673–
693, 1999.

21. C. Chang, T. Kurc, A. Sussman, U. Catalyurek, and J. Saltz. A hypergraph-based work-
load partitioning strategy for parallel data aggregation. In Proc. of 11th SIAM Conf.
Parallel Processing for Scientific Computing. SIAM, March 2001.

22. S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive array layouts
and fast parallel matrix multiplication. In ACM Symposium on Parallel Algorithms and
Architectures, pages 222–231, 1999.

23. C.-K. Cheng and Y.-C. A. Wei. An improved two-way partitioning algorithm with stable
performance. IEEE Trans. Computer Aided Design, 10(12):1502–1511, 1991.

24. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Par-
allel Distrib. Comput., 7:279–301, 1989.

25. L. Dagum. Automatic partitioning of unstructured grids into connected components.
In Proc. Supercomputing Conference 1993, pages 94–101, Los Alamitos, 1993. IEEE,
Computer Society Press.

26. H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M. Loy, C. Özturan, and M. S. Shep-
hard. Load balancing for the parallel adaptive solution of partial differential equations.
Appl. Numer. Math., 16:157–182, 1994.

27. K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik,
J. E. Flaherty, and L. G. Gervasio. New challenges in dynamic load balancing. Appl.
Numer. Math., 52(2–3):133–152, 2005.

28. K. D. Devine and J. E. Flaherty. Parallel adaptive hp-refinement techniques for conser-
vation laws. Appl. Numer. Math., 20:367–386, 1996.

29. K. D. Devine, B. A. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Zoltan:
A Dynamic Load Balancing Library for Parallel Applications; User’s Guide. Sandia
National Laboratories, Albuquerque, NM, 1999. Tech. Report SAND99-1377. Open-
source software distributed at http://www.cs.sandia.gov/Zoltan.

30. R. Diekmann, D. Meyer, and B. Monien. Parallel decomposition of unstructured fem-
meshes. In Proc. Parallel Algorithms for Irregularly Structured Problems, pages 199–
216. Springer LNCS 980, 1995.

31. R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for distributed memory
machines. In B. Topping, editor, Parallel and Distributed Processing for Computational
Mechanics: Systems and Tools, pages 124–157, Edinburgh, 1999. Saxe-Coburg.

32. R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-optimized mesh parti-
tioning and load balancing for parallel adaptive fem. Parallel Comput., 26(12):1555–
1581, 2000.

33. H. C. Edwards. A Parallel Infrastructure for Scalable Adaptive Finite Element Methods
and its Application to Least Squares C∞ Collocation. PhD thesis, The University of
Texas at Austin, May 1997.

34. R. Enbody, R. Purdy, and C. Severance. Dynamic load balancing. In Proc. 7th SIAM
Conference on Parallel Processing for Scientific Computing, pages 645–646. SIAM,
February 1995.

35. J. Faik, L. G. Gervasio, J. E. Flaherty, J. Chang, J. D. Teresco, E. G. Boman, and K. D.
Devine. A model for resource-aware load balancing on heterogeneous clusters. Tech-
nical Report CS-04-03, Williams College Department of Computer Science, 2004. Pre-
sented at Cluster ’04.

2 Partitioning and Dynamic Load Balancing 83

36. C. Farhat. A simple and efficient automatic FEM domain decomposer. Computers and
Structures, 28(5):579–602, 1988.

37. C. Farhat, S. Lanteri, and H. D. Simon. TOP/DOMDEC: a software tool for mesh parti-
tioning and parallel processing. Comp. Sys. Engng., 6(1):13–26, 1995.

38. C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the par-
allel solution of problems in computational mechanics. Int. J. Numer. Meth. Engng.,
36:745–764, 1993.

39. C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network
partitions. In Proc. 19th IEEE Design Automation Conference, pages 175–181. IEEE,
1982.

40. J. E. Flaherty, M. Dindar, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco,
and L. H. Ziantz. An adaptive and parallel framework for partial differential equations.
In D. F. Griffiths, D. J. Higham, and G. A. Watson, editors, Numerical Analysis 1997
(Proc. 17th Dundee Biennial Conf.), number 380 in Pitman Research Notes in Mathe-
matics Series, pages 74–90. Addison Wesley Longman, 1998.

41. J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D. Teresco,
and L. H. Ziantz. Parallel structures and dynamic load balancing for adaptive finite
element computation. Appl. Numer. Math., 26:241–263, 1998.

42. J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz. Adaptive local refinement with octree load-balancing for the parallel solution of
three-dimensional conservation laws. J. Parallel Distrib. Comput., 47:139–152, 1997.

43. J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz. Predictive load balancing for parallel adaptive finite element computation. In
H. R. Arabnia, editor, Proc. PDPTA ’97, volume I, pages 460–469, 1997.

44. J. E. Flaherty, R. M. Loy, M. S. Shephard, and J. D. Teresco. Software for the parallel
adaptive solution of conservation laws by discontinuous Galerkin methods. In B. Cock-
burn, G. Karniadakis, and S.-W. Shu, editors, Discontinous Galerkin Methods Theory,
Computation and Applications, volume 11 of Lecture Notes in Compuational Science
and Engineering, pages 113–124. Springer, 2000.

45. J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI circuits. In Proc. IEEE
Intl. Conf. on Computer Aided Design, pages 520–523, 1990.

46. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1(3):237–267, 1976.

47. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

48. L. Hagen and A. Kahng. Fast spectral methofs for ratio cut partitioning and clustering.
In Proc. IEEE Intl. Conf. on Computer Aided Design, pages 10–13, 1991.

49. L. Hagen and A. Kahng. A new approach to effective circuit clustering. In Proc. IEEE
Intl. Conf. on Computer Aided Design, pages 422–427, 1992.

50. B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no clothes? In
Proc. Irregular’98, volume 1457 of Lecture Notes in Computer Science, pages 218–225.
Springer-Verlag, 1998.

51. B. Hendrickson and K. Devine. Dynamic load balancing in computational mechanics.
Comput. Methods Appl. Mech. Engrg., 184(2–4):485–500, 2000.

52. B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.
Parallel Comput., 26:1519–1534, 2000.

53. B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical Report
SAND94–2692, Sandia National Laboratories, Albuquerque, 1994. Open-source soft-
ware distributed at http://www.cs.sandia.gov/∼bahendr/chaco.html.

84 J. D. Teresco et al.

54. B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM J. Scien. Comput., 16(2):452–469, 1995.

55. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proc.
Supercomputing ’95, 1995.

56. G. Horton. A multi-level diffusion method for dynamic load balancing. Parallel Com-
put., 19:209–218, 1993.

57. S.-H. Hsieh, G. H. Paulino, and J. F. Abel. Evaluation of automatic domain partition-
ing algorithms for parallel finite element analysis. Structural Engineering Report 94-2,
School of Civil and Environmental Engineering, Cornell University, Ithaca, 1994.

58. Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. Preprint DL-
P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK, 1995.

59. Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic
load balancing. Concurrency: Practice and Experience, 10:467 – 483, 1998.

60. H. V. Jagadish. Linear clustering of objects with multiple attributes. In Proc. ACM
SIGMOD, pages 332–342, 1990.

61. M. T. Jones and P. E. Plassmann. Computational results for parallel unstructured mesh
computations. Comp. Sys. Engng., 5(4–6):297–309, 1994.

62. L. V. Kale and S. Krishnan. CHARM++: A portable concurrent object oriented system
based on C++. ACM SIGPLAN notices, 28(10):91–128, 1993.

63. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:
application in VLSI domain. In Proc. 34th conf. Design automation, pages 526 – 529.
ACM, 1997.

64. G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse ma-
trix ordering system. Tech. Report, University of Minnesota, Department of Com-
puter Science, Minneapolis, MN, 1995. Open-source software distributed at http:
//www-users.cs.umn.edu/∼karypis/metis.

65. G. Karypis and V. Kumar. Multilevel algorithms for multiconstraint graph paritioning.
Technical Report 98-019, Department of Computer Science, University of Minnesota,
1998.

66. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Scien. Comput., 20(1), 1999.

67. G. Karypis and V. Kumar. Parallel multivelel k-way partitioning scheme for irregular
graphs. SIAM Review, 41(2):278–300, 1999.

68. G. Karypis, K. Schloegel, and V. Kumar. ParMetis Parallel Graph Partitioning and
Sparse Matrix Ordering Library, Version 3.1. University of Minnesota Department
of Computer Science and Engineering, and Army HPC Research Center, Minneapolis,
2003. Open-source software distributed at http://www-users.cs.umn.edu/
∼karypis/metis.

69. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 29:291–307, 1970.

70. E. Leiss and H. Reddy. Distributed load balancing: design and performance analysis. W.
M. Kuck Research Computation Laboratory, 5:205–270, 1989.

71. R. M. Loy. Adaptive Local Refinement with Octree Load-Balancing for the Parallel So-
lution of Three-Dimensional Conservation Laws. PhD thesis, Computer Science Dept.,
Rensselaer Polytechnic Institute, Troy, 1998.

72. B. Maerten, D. Roose, A. Basermann, J. Fingberg, and G. Lonsdale. DRAMA: A li-
brary for parallel dynamic load balancing of finite element applications. In Proc. Ninth
SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, 1999.
Library distributed under license agreement from http://www.ccrl-nece.de/
∼drama/drama.html.

2 Partitioning and Dynamic Load Balancing 85

73. T. Minyard and Y. Kallinderis. Octree partitioning of hybrid grids for parallel adaptive
viscous flow simulations. Int. J. Numer. Meth. Fluids, 26:57–78, 1998.

74. T. Minyard and Y. Kallinderis. Parallel load balancing for dynamic execution environ-
ments. Comput. Methods Appl. Mech. Engrg., 189(4):1295–1309, 2000.

75. T. Minyard, Y. Kallinderis, and K. Schulz. Parallel load balancing for dynamic execution
environments. In Proc. 34th Aerospace Sciences Meeting and Exhibit, number 96-0295,
Reno, 1996.

76. W. F. Mitchell. Refinement tree based partitioning for adaptive grids. In Proc. Seventh
SIAM Conf. on Parallel Processing for Scientific Computing, pages 587–592. SIAM,
1995.

77. W. F. Mitchell. The full domain partition approach to distributing adaptive grids. Appl.
Numer. Math., 26:265–275, 1998.

78. W. F. Mitchell. The refinement-tree partition for parallel solution of partial differential
equations. NIST Journal of Research, 103(4):405–414, 1998.

79. B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering prop-
erties of the Hilbert space-filling curve. IEEE Trans. Knowledge and Data Engng.,
13(1):124–141, January/February 2001.

80. G. M. Morton. A computer oriented geodetic data base and a new technique in file
sequencing. Technical report, IBM Ltd., March 1966.

81. J. T. Oden, A. Patra, and Y. Feng. Domain decomposition for adaptive hp finite element
methods. In Proc. Seventh Intl. Conf. Domain Decomposition Methods, State College,
Pennsylvania, October 1993.

82. L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured
meshes. J. Parallel Distrib. Comput., 51(2):150–177, 1998.

83. L. Oliker, R. Biswas, and R. C. Strawn. Parallel implementaion of an adaptive scheme
for 3D unstructured grids on the SP2. In Proc. 3rd International Workshop on Parallel
Algorithms for Irregularly Structured Problems, Santa Barbara, 1996.

84. J. A. Orenstein. Spatial query processing in an object-oriented database system. In Proc.
ACM SIGMOD, pages 326–336, May 1986.

85. M. Ozdal and C. Aykanat. Hypergraph models and algorithms for data-pattern based
clustering. Data Mining and Knowledge Discovery, 9:29–57, 2004.

86. C. Özturan. Distributed Environment and Load Balancing for Adaptive Unstructured
Meshes. PhD thesis, Computer Science Dept., Rensselaer Polytechnic Institute, Troy,
1995.

87. M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In
Proc. 29th Annual Hawaii International Conference on System Sciences, volume 1,
pages 604–613, Jan. 1996.

88. M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowski. A common data manage-
ment infrastructure for adaptive algorithms for PDE solutions. In Proc. SC97, San Jose,
CA, 1997.

89. A. Patra and J. T. Oden. Problem decomposition for adaptive hp finite element methods.
Comp. Sys. Engng., 6(2):97–109, 1995.

90. E. A. Patrick, D. R. Anderson, and F. K. Brechtel. Mapping multidimensional space to
one dimension for computer output display. IEEE Trans. Computers, C-17(10):949–953,
October 1968.

91. G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen,
36:157–160, 1890.

92. F. Pellegrini. SCOTCH 3.1 User’s guide. Technical Report 1137-96, LaBRI, Université
Bordeaux I, August 1996. Library available at http://www.labri.fr/Perso/
∼pelegrin/scotch/.

86 J. D. Teresco et al.

93. F. Pellegrini and J. Roman. Experimental analysis of the dual recursive bipartitioning
algorithm for static mapping. Technical Report 1038-96, Université Bordeaux I, 1996.

94. J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured
workloads with spacefilling curves. IEEE Trans. on Parallel and Distributed Systems,
7(3):288–300, 1996.

95. A. Pınar and B. Hendrickson. Graph partitioning for complex objectives. In Proc. 15th
Int’l Parallel and Distributed Processing Symp. (I PDPS), San Francisco, CA, April
2001.

96. S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, and D. Gardner. Tran-
sient dynamics simulations: Parallel algorithms for contact detection and smoothed par-
ticle hydrodynamics. J. Parallel Distrib. Comput., 50:104–122, 1998.

97. A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM J. Mat. Anal. Appl., 11(3):430–452, 1990.

98. R. Preis and R. Diekmann. PARTY – a software library for graph partitioning. In
B. Topping, editor, Advances in Computational Mechanics with Parallel and Distributed
Processing, pages 63–71. CIVIL-COMP PRESS, 1997. Library distributed under free
research and academic license at http://wwwcs.upb.de/fachbereich/AG/
monien/RESEARCH/PART/party.html.

99. H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.
100. K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for repartitioning

of adaptive meshes. J. Parallel Distrib. Comput., 47(2):109–124, 1997.
101. K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for multi-objective graph

partitioning. Tech. Report 99-003, University of Minnesota, Department of Computer
Science and Army HPC Center, Minneapolis, 1999.

102. K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing adaptive
scientific simulations. In Proc. Supercomputing, Dallas, 2000.

103. K. Schloegel, G. Karypis, and V. Kumar. Wavefront diffusion and LMSR: Algorithms
for dynamic repartitioning of adaptive meshes. IEEE Trans. Parallel Distrib. Syst.,
12(5):451–466, 2001.

104. K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic multicon-
straint graph partitioning. Concurrency and Computation – Practice and Experience,
14(3):219–240, 2002.

105. M. S. Shephard, S. Dey, and J. E. Flaherty. A straightforward structure to construct
shape functions for variable p-order meshes. Comp. Meth. in Appl. Mech. and Engng.,
147:209–233, 1997.

106. M. S. Shephard, J. E. Flaherty, H. L. de Cougny, C. Özturan, C. L. Bottasso, and M. W.
Beall. Parallel automated adaptive procedures for unstructured meshes. In Parallel
Computing in CFD, number R-807, pages 6.1–6.49. Agard, Neuilly-Sur-Seine, 1995.

107. H. D. Simon. Partitioning of unstructured problems for parallel processing. Comp. Sys.
Engng., 2:135–148, 1991.

108. S. Sinha and M. Parashar. Adaptive system partitioning of AMR applications on hetero-
geneous clusters. Cluster Computing, 5(4):343–352, October 2002.

109. A. Sohn and H. Simon. S-HARP: A scalable parallel dynamic partitioner for adaptive
mesh-based computations. In Proc. Supercomputing ’98, Orlando, 1998.

110. J. Steensland. Vampire homepage. http://user.it.uu.se/∼johans/
research/vampire/vampire1.html, 2000. Open-source software distributed
at http://user.it.uu.se/∼johans/research/vampire/download.
html.

2 Partitioning and Dynamic Load Balancing 87

111. J. Steensland, S. Chandra, and M. Parashar. An application-centric characterization of
domain-based SFC partitioners for parallel SAMR. IEEE Trans. Parallel and Distrib.
Syst., 13(12):1275–1289, 2002.

112. J. Steensland, S. Söderberg, and M. Thuné. A comparison of partitioning schemes for
blockwise parallel SAMR algorithms. In Proc. 5th International Workshop on Applied
Parallel Computing, New Paradigms for HPC in Industry and Academia, volume 1947
of Lecture Notes in Computer Science, pages 160–169, London, 2000. Springer-Verlag.

113. V. E. Taylor and B. Nour-Omid. A study of the factorization fill-in for a parallel im-
plementation of the finite element method. Int. J. Numer. Meth. Engng., 37:3809–3823,
1994.

114. J. D. Teresco, J. Faik, and J. E. Flaherty. Hierarchical partitioning and dynamic load
balancing for scientific computation. Technical Report CS-04-04, Williams College De-
partment of Computer Science, 2004. To appear in the Proceedings of PARA’04.

115. J. D. Teresco and L. P. Ungar. A comparison of Zoltan dynamic load balancers for
adaptive computation. Technical Report CS-03-02, Williams College Department of
Computer Science, 2003. Presented at COMPLAS ’03.

116. A. Trifunovic and W. J. Knottenbelt. Towards a parallel disk-based algorithm for mul-
tilevel k-way hypergraph partitioning. In Proc. 18th International Parallel and Distrib-
uted Processing Symposium (IPDPS’04), page 236b, Santa Fe, 2004.

117. R. Van Driessche and D. Roose. An improved spectral bisection algorithm and its appli-
cation to dynamic load balancing. Parallel Comput., 21:29–48, 1995.

118. D. Vanderstraeten, C. Farhat, P. Chen, R. Keunings, and O. Ozone. A retrofit based
methodology for the fast generation and optimization of large-scale mesh partitions:
beyond the minimum interface size criterion. Comput. Methods Appl. Mech. Engrg.,
133:25–45, 1996.

119. B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for par-
allel sparse matrix-vector multiplication. Preprint 1238, Dept. of Mathematics, Utrecht
University, May 2002.

120. C. Walshaw. The Parallel JOSTLE Library User’s Guide, Version 3.0. University of
Greenwich, London, UK, 2002. Library distributed under free research and academic
license at http://staffweb.cms.gre.ac.uk/∼c.walshaw/jostle/.

121. C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Heterogeneous Commu-
nication Networks. Tech. Rep. 00/IM/57, Comp. Math. Sci., Univ. Greenwich, London
SE10 9LS, UK, March 2000.

122. C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Heterogeneous Communi-
cation Networks. Future Generation Comput. Syst., 17(5):601–623, 2001. (Originally
published as Univ. Greenwich Tech. Rep. 00/IM/57).

123. C. Walshaw and M. Cross. Dynamic mesh partitioning and load-balancing for parallel
computational mechanics codes. In B. H. V. Topping, editor, Computational Mechanics
Using High Performance Computing, pages 79–94. Saxe-Coburg Publications, Stirling,
2002. (Invited Chapter, Proc. Parallel & Distributed Computing for Computational Me-
chanics, Weimar, Germany, 1999).

124. C. Walshaw, M. Cross, and M. Everett. A localized algorithm for optimizing unstruc-
tured mesh partitions. Intl. J. of Supercomputer Applications, 9(4):280–295, 1995.

125. C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph-partitioning for unstruc-
tured meshes. J. Parallel Distrib. Comput., 47(2):102–108, 1997.

126. C. Walshaw, M. Cross, and K. McManus. Multiphase mesh partitioning. Appl. Math.
Modelling, 25(2):123–140, 2000. (Originally published as Univ. Greenwich Tech. Rep.
99/IM/51).

88 J. D. Teresco et al.

127. M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. In Proc.
Supercomputing ’93, pages 12–21. IEEE Computer Society, 1993.

128. J. Watts. A practical approach to dynamic load balancing. Master’s Thesis, October
1995.

129. J. Watts, M. Rieffel, and S. Taylor. A load balancing technique for multiphase compu-
tations. In Proc. High Performance Computing ’97, pages 15–20. Society for Computer
Simulation, 1997.

130. S. Wheat. A Fine Grained Data Migration Approach to Application Load Balancing on
MP MIMD Machines. PhD thesis, University of New Mexico, Department of Computer
Science, Albuquerque, 1992.

131. S. Wheat, K. Devine, and A. MacCabe. Experience with automatic, dynamic load bal-
ancing and adaptive finite element computation. In H. El-Rewini and B. Shriver, editors,
Proc. 27th Hawaii International Conference on System Sciences, pages 463–472, Kihei,
1994.

132. M. Willebeek-LeMair and A. Reeves. Strategies for dynamic load balancing on highly
parallel computers. IEEE Parallel and Distrib. Sys., 4(9):979–993, 1993.

133. R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A distributed re-
source performance forecasting service for metacomputing. Future Generation Comput.
Syst., 15(5-6):757–768, October 1999.

134. C. Xu, F. Lau, and R. Diekmann. Decentralized remapping of data parallel applications
in distributed memory multiprocessors. Tech. Rep. tr-rsfb-96-021, Dept. of Computer
Science, University of Paderborn, Paderborn, Germany, Sept. 1996.

3

Graphics Processor Units: New Prospects for Parallel
Computing

Martin Rumpf1 and Robert Strzodka2

1 University of Bonn, Institute for Numerical Simulation, Wegelerstr. 6, 53115 Bonn,
Germany
martin.rumpf@ins.uni-bonn.de

2 caesar research center, Ludwig-Erhard-Allee 2, 53044 Bonn, Germany
strzodka@caesar.de

Summary. This chapter provides an introduction to the use of Graphics Processor Units
(GPUs) as parallel computing devices. It describes the architecture, the available functionality
and the programming model. Simple examples and references to freely available tools and
resources motivate the reader to explore these new possibilities. An overview of the different
applications of GPUs demonstrates their wide applicability, yet also highlights limitations of
their use. Finally, a glimpse into the future of GPUs sketches the growing prospects of these
inexpensive parallel computing devices.

3.1 Introduction

This introductory section motivates the use of Graphics Processor Units (GPUs) as
parallel computing devices and explains the different computing and programming
models. Section 3.1.3 reports on hands-on experience with this kind of processing. A
comparison with shared memory machines clarifies the similarities and differences.

The rest of the chapter is organized as follows. Section 3.2 presents the most
important aspects of graphics hardware related to scientific computing. For a wider
context and specific GPU topics, the appendix (Section 3.5) is referenced in various
places. Building on the experience from Section 3.1.3, Section 3.3 explains how to
construct efficient linear equation solvers and presents partial differential equation
(PDE) applications. It also contains a section with links to examples of code and
other resources. In Section 3.4 we conclude with an outlook on future functionality
and the use of multiple GPUs.

3.1.1 Motivation

Over the last decade, GPUs have developed rapidly from being primitive drawing
devices to being major computing resources. The newest GPUs have as many as
220 million transistors, approximately twice as many as a typical Central Processor

90 M. Rumpf and R. Strzodka

Unit (CPU) in a PC. Moreover, the L2 cache consumes most of the transistors in
a CPU, while GPUs use only small caches and devote the majority of transistors
to computation. This large number of parallel processing elements (PEs) converts
the GPU into a parallel computing system. Current devices have up to 16 parallel
pipelines with one or two PEs each. A single processing element (PE) is capable
of performing an addition or multiplication of four component vectors (4-vectors)
of single-precision floating-point numbers in one clock cycle. This amounts to a
total of 128 floating point operations per clock cycle. With a clock frequency of
up to 500 MHz, peak performance of a single unit approaches 64 GFLOPS, and
with the introduction of the PCI Express (PCIe) bus a motherboard will be able to
accommodate several graphics cards.

We will concentrate on the exploitation of the high internal parallelism of a single
GPU. Section 3.1.4 explains how the parallel PEs of a single GPU can be viewed in
light of the familiar shared memory computing model, although all PEs reside on the
same chip. The development of GPU clusters, where several graphics cards work in
parallel, has recently been initiated and Section 3.4.2 provides some information on
this quickly growing area of research.

High performance and many successful implementations of PDE solvers on
GPUs have already caught the attention of the scientific computing community.
Implemented PDE types include Navier-Stokes equations, Lattice Boltzmann equa-
tions, reaction-diffusion systems, non-linear diffusion processes, level-set equations,
and Euler equations for variational functional minimization. The web site [10] offers
an overview. In 2D, problem sizes go up to 40962 nodes, in 3D up to 2563 nodes.
The limiting factor is the size of the video memory on the graphics cards (current
maximum 512Mb). If one is willing to accept a slower rate of data exchange by us-
ing the main memory, the problem size is not limited by the graphics card. Reported
speedup factors, as compared to a modern single CPU solver, are often in the range
5-20.

Manufacturers of GPUs are now considering the potential of their devices for par-
allel computing, although the driving force of the development is still the computer
game market. This influences the balance in some of the common antonyms:

• Performance - Accuracy
For optimal performance GPUs offer different floating point formats of 16, 24
and 32 bit, but native support for a double precision format is unlikely in the near
future. A hardware-assisted emulation could be feasible.

• Processing - Communication
GPUs process large data sets quickly with many parallel processing elements
(PEs), but direct communication between them does not exist.

• Generality - Specialty
Fairly general high-level languages for GPU programming exist, but the setup of
the execution environment for the programs and the data handling still requires
some graphics-specific knowledge.

Luckily, more and more physical simulation is being used in computer games, which
increases the demand for general computing capabilities. The fast development cycle

3 Graphics Processor Units: New Prospects for Parallel Computing 91

of GPUs reacts with high flexibility to the changing requirements and tends towards
a general parallel computing device. At some stage, the growing demand for more
scientifically -orientated GPUs could even make a separate production line worth-
while, including, for example, double precision arithmetic. Simultaneously, the re-
cently emerging support for the utilization of multiple GPUs will increase. Current
GPUs are not yet able to replace CPU-based parallel systems in scientific computa-
tions on a large scale. However, we want to familiarize the reader with the looming
possibilities and demonstrate that many algorithms can already benefit from their
being executed on GPUs.

3.1.2 Data-Stream-Based Architectures

Peak performance of computer systems is often in excess of actual application perfor-
mance, due to the memory gap problem [32], the mismatch of memory and proces-
sor performance. In data-intensive applications, the processing elements (PEs) often
spend most of the time waiting for data. GPUs have traditionally been optimized for
high data throughput, with wide data buses (256 bit) and the latest memory technol-
ogy (GDDR3). In contrast to instruction-stream-based (ISB) CPUs, they also sub-
scribe to the data-stream-based (DSB) computing paradigm [13]. In DSB computing
one exploits the situation in which the same operation is applied to many data items.
Thus, the processing is not based on an instruction stream, but, rather, on a data
stream. The PEs are first configured for the execution of the desired operation. Then,
the data streams through the so configured pipeline of PEs undergoing the configured
operations. The stream of data stops only when a new configuration must be applied.
So, for the performance of DSB architectures, it is crucial that the configuration does
not change frequently, but rather remains constant for a large data stream, e.g. for all
components of a large vector.

The DSB model separates the two tasks of configuring the PEs and controlling
the data-flow to and from the PEs. By contrast, an instruction prescribes both the
operation to be executed and the required data. The separation of tasks deals much
better with the memory gap problem, because the individual elements of the data
streams can be assembled from memory before the actual processing. This allows the
optimization of the memory access patterns, minimizing latencies and maximizing
the sustained bandwidth. In ISB architectures only a limited prefetch of the input
data can occur, as jumps are expected in the instruction stream. By contrast, it is
inherent in the DSB model that no such jumps will occur for a long time. Thus, the
resources can be concentrated on efficient data retrieval and parallel processing rather
than jump predictions and speculative execution. Clearly, the advantage applies only
to algorithms that exhibit this kind of regular behavior. Therefore, for some irregular
algorithms, it is advantageous to increase the operation count in favor of more regular
behavior, and thus faster execution, on DSB hardware.

The DSB architectures comprise reconfigurable logic, reconfigurable computing,
processor-in-memory and stream architectures. GPUs may be seen as a restricted
form of a stream processor. They are not the most powerful or efficient architec-
ture, but offer an unrivaled price-performance ratio, which makes this advantageous

92 M. Rumpf and R. Strzodka

RasterizerVertex
Processor

textures

Processor
Fragment

vertex
data

vertex
data fragments

values

vertex

buffer
frame

fragments

data

Fig. 3.1. A simplified diagram of the Direct X 9 graphics pipeline. Light gray represents data
containers, dark gray processing units. The data containers are becoming fully interchange-
able, i.e. a 2D data array can serve as an array of vertex data, a texture or a destination buffer
within the frame-buffer. See Figure 3.5 for a more detailed diagram.

processing concept easily available on any PC, and not only on specially config-
ured hardware systems. Moreover, GPUs have the great advantage that there exist
widespread platform (Direct X) and operating system (OpenGL) independent Appli-
cation Programming Interfaces (APIs) for access to their functionality, whereas other
architectures require a proprietary environment. The API guarantees that despite the
different hardware components of GPUs from different companies, the programmer
can access a common set of operations through the same software interface, namely
the API. Similarly to the situation with CPUs, the programming model for GPUs
has evolved from assembly to high level languages, which now allow a clear and
modular configuration of the graphics pipeline.

3.1.3 GPU Programming Model

Graphics Processor Units (GPUs) are, as the name suggests, designed to process
graphics. Put simply, GPUs render geometric primitives such as points, lines, trian-
gles or quads into a discrete representation of the [−1, 1]× [−1, 1] domain, called the
frame-buffer. The geometric primitives are defined by vertex coordinates. The dis-
crete elements in the frame-buffer are pixels. Because the primitives are continuous
objects and the frame-buffer is a discrete representation, GPUs contain a so-called
rasterizer that decomposes a primitive into fragments, which correspond to the set
of affected pixels (see below why fragments and pixels are not the same). In the case
of 2D primitives, one can choose whether to rasterize the contour or the interior, and
we will always assume the latter.

The rasterizer divides the graphics pipeline into two parts where manipulation
of data can take place. Prior to rasterization we have the Vertex Processor (VP),
which operates on data associated with a vertex. Following rasterization we have the
Fragment Processor (FP), which operates on data associated with a fragment (see
Figure 3.1). Logically, the VP processes one vertex and the FP one fragment at a
time, without any interaction with other vertices or fragments. Physically, there are
several independent parallel pipelines, more for the FP than for the VP. See Section
3.5.2 for more details of the graphics pipeline and Section 3.2.3 for a discussion of
the available parallelism.

3 Graphics Processor Units: New Prospects for Parallel Computing 93

Which data is associated with a vertex or fragment? In addition to the vertex co-
ordinates, a vertex can also carry colors, a normal, and so-called texture coordinates
(and a few more parameters). The VP can change all this data, including the vertex
coordinates. The rasterizer interpolates the data between the vertices of a primitive
when the fragments are generated. Therefore, each fragment has its own set of the
above parameters. The FP combines the parameters to a final value, which is then
assigned to the corresponding pixel in the frame-buffer. Currently, the frame-buffer
position of a fragment generated by the rasterizer cannot be changed in the FP. Hence,
there is a one-to-one correspondence between a fragment and the pixel to which the
result of the FP will be written (unless it is discarded altogether). However, a frag-
ment carries much more information than a pixel. For example, the texture coordi-
nates associated with a fragment are typically used to retrieve values from textures,
i.e. previously defined or computed 1D to 4D (typically 2D) data arrays (Figure 3.1).
So, the FP reduces the information of a fragment to the single color value of a pixel.
To be precise, a pixel may carry several values (see Section 3.5.2).

Both the VP and FP support a rich set of arithmetic, exponential and trigonomet-
ric functions on floating point numbers. They can be programmed by C-like high-
level languages, which, to a certain extent extent, also support flow control instruc-
tions such as conditional statements, loops and function calls. The VP, and above all
the FP, is decisive for accuracy and performance of computations on GPUs. Section
3.2.2 specifies the exact number formats and operations.

How can this setting be used for scientific computing? If we think of a square
grid of dimension Nx × Ny , then the node values form a vector of length Nx · Ny
and can be represented by a 2D array, naturally preserving the neighbor relations. In
GPUs we use a 2D texture for such a 2D array. Let us first describe the execution
of a single operation; namely, the addition of two nodal vectors Ā and B̄. Once the
graphics environment is set up for this simple operation, it will be easy to add more
functionality. For the addition of Ā and B̄ on the GPU, we need to add the texels
(elements) of the corresponding textures. For this to happen we must configure the
graphics pipeline appropriately and then define the data streams to be processed.
First we need a configuration, a so called shader, for the FP that executes an addition
for a pair of vector components:

// shader FP_ADD2
float add2(float2 texCoord : TEXCOORD0, // texture coords

uniform sampler2D Tex_A : texunit0, // texture A
uniform sampler2D Tex_B : texunit1) // texture B

: COLOR // color as output
{
float valA= f1tex2D(Tex_A, texCoord); // texel from A
float valB= f1tex2D(Tex_B, texCoord); // texel from B
return valA+valB; // addition

}

The configuration of the VP and FP are nowadays usually written in a high-level
graphics language. This is a listing in the language C for graphics (Cg). We will list
all shaders in Cg, but the graphics languages are actually very similar and the reader

94 M. Rumpf and R. Strzodka

may prefer a different one (see Section 3.5.4). In addition to C we have the colon
notation, which specifies the semantics of the input and output. Here, we use one set
of coordinates (texCoord), two textures (Tex A, Tex B) and a float color value
as output. The function call f1tex2D(.,.) reads one float from the given texture
and coordinate. The actual addition happens in the last but one line. As noted earlier,
logically the shader operates on one fragment at a time in a sequence, but physically,
the parallel FP pipelines run this configuration simultaneously. The loop over the
texture elements is implicit.

To start the processing of the loop, we must first configure the pipeline with our
shader and bind the textures Ā and B̄ as input sources:

cgGLBindProgram(fpProg[FP_ADD2]); // bind shader

glActiveTexture(GL_TEXTURE0); // texunit0
glBindTexture(GL_TEXTURE_2D, texID[TEX_A]); // bind TEX_A

glActiveTexture(GL_TEXTURE1); // texunit1
glBindTexture(GL_TEXTURE_2D, texID[TEX_B]); // bind TEX_B

This code is a part of a normal C/C++ file. The functions are defined by the OpenGL
and Cg API. We assume that fpProg[FP ADD2] is a handle to our shader con-
figuration from above, and texID is a vector that contains the OpenGL IDs of our
textures. Now everything is configured and we only need to specify the geometry to
be rendered. The above C/C++ code continues with the appropriate calls of OpenGL
functions:

// function drawTex2D()
glBegin(GL_QUADS); // render quad
glMultiTexCoord2f(GL_TEXTURE0, 0,0);// texture bottom left
glVertex2f(-1,-1); // vertex bottom left
glMultiTexCoord2f(GL_TEXTURE0, 0,1);
glVertex2f(-1,1);
glMultiTexCoord2f(GL_TEXTURE0, 1,1);
glVertex2f(1,1);
glMultiTexCoord2f(GL_TEXTURE0, 1,0);// texture bottom right
glVertex2f(1,-1); // vertex bottom right

glEnd();

With the function call glEnd() the processing of the data streams starts and we
obtain the result C̄ = Ā+B̄ at the end of the pipeline in the frame-buffer (see Figure
3.1).

The reader may have noticed that the dimensions of our textures Nx × Ny do
not show up anywhere. This is because graphics APIs work mostly with normalized
coordinates. From the code above, we see that a texture is accessed via coordinates
from [0, 1]2 and the frame-buffer with vertex coordinates from [−1, 1]2. Hence, the
values Nx, Ny are only used in the definition of the textures and the viewport of
the frame-buffer, and not in the rendering. As the VP can change all parameters,
including the texture and vertex coordinates, we could also address the textures and

3 Graphics Processor Units: New Prospects for Parallel Computing 95

the frame-buffer by other number ranges T ⊂ R
2 and F ⊂ R

2, if we were to bind
appropriate constant matrices to the VP that performs the mappings T → [0, 1]2 and
F → [−1, 1]2. In this way, it is possible to use the integer indices of the texels in the
textures and pixels in the frame-buffer for the addressing, but this requires that the
constant matrices be changed and re-bound each time the texture size or viewport
size of the frame-buffer changes.

So far, we have described the execution of a single operation; namely addition,
on the vector components. Now, we could easily add many more operations to our
FP shader. The entire data from up to 32 different textures can be involved in the
computations. In particular, we can read different elements of the textures to compute
discrete gradients or, in general, any filters. However, usually we cannot map the
entire problem into one shader (see Section 3.3.4). So the question arises, how can
we use the result from the frame-buffer in a subsequent computation? Logically, the
most elegant way is to define a texture C̄ before the operation, and then render the
result directly into that texture, using it as a destination buffer. After the operation
we would bind a different texture as destination, say D̄, and C̄ could be bound as a
source. Section 3.2.1 explains the details and also other possibilities.

As it becomes apparent that there are even more issues, not discussed above, that
must be addressed, it will also become apparent to the reader that the handling of
this kind of processing is very demanding. In fact, the low-level setup of the graph-
ics pipeline can sometimes frustrating, even to experts. Luckily, though, there exist
several libraries that will do most of the tedious work and let the programmer con-
centrate on the algorithm. Section 3.3 presents examples at this higher level of ab-
straction. The end of Section 3.5.4 discusses the development of even more abstract
data-stream-based (DSB) programming approaches. For someone new to GPUs this
will still feel unfamiliar at first, but parallel programming with the Message Pass-
ing Interface (MPI) [16, Section 2.2] or OpenMP [16, Section 2.3] also needs some
practice before it can be performed comfortably.

3.1.4 Comparison with Shared Memory Model

Because the pipelines of GPU operate independently of each other on a common
memory, the graphics card is similar to a shared memory parallel computer. (See
Figure 1.3 in [16].) This section describes the GPU architecture from this perspective.

On graphics cards, not entire processors, but relatively few PEs constitute a
pipeline. By a graphics processing element (PE) we mean an element that can per-
form a general multiplication or addition on a 4-vector or a special function on a
scalar (e.g.

√
x, 1/x) for the largest available number format in one clock cycle. By

viewing each pipeline as an individual node of a parallel computer, the GPU can be
regarded as a restricted form of a shared memory machine. The following restrictions
apply:

• All pipelines read from the same memory.
This functionality is very similar to that of a general shared memory machine.
The pipelines interact with each other by reading common memory. There is no

96 M. Rumpf and R. Strzodka

direct communication between them. In detail, a FP pipeline cannot specify a
general memory address for reading directly, but it can read from any position
within the bound textures. In other words, it can gather data from textures without
restriction. Sufficiently large textures will cover all of the available video memory
space on the graphics card. Hence, practically all problem data can be accessed,
but it must be grouped in textures. This is fairly natural, because data arrays
also provide some kind of logical memory grouping to a CPU. The memory
access behavior is also similar, with local data reads being cheaper than random
accesses. Currently, up to 32 textures can be bound during the execution of a
FP shader and the choice must be made before the processing. Both restrictions
are expected to disappear almost completely with Windows Graphics Foundation
(WGF), the next generation of graphics API. (See Section 3.5.3.)

• All pipelines operate on the same stream of data.
This is different from most shared memory machines, which utilize the Multi-
ple Instruction Multiple Data (MIMD) model with no restriction on the sources
from of the multiple data. Older GPUs use the Single Instruction Multiple Data
(SIMD) model exclusively. This is efficient in terms of transistor count, but if
the execution requires different branches, performance loss ensues. For small
branches, the solution is to use predication, in which both branches are evaluated
and thereafter the appropriate changes to the registers are written. Long branches
are usually inefficient in pure SIMD architecture.
In the latest graphics hardware supporting VS3 Vertex Shader and PS3 Pixel
Shader models (see Section 3.5.3) two different solution paths have been taken.
The VP pipelines are fully MIMD capable and thus need dynamic load balancing,
but since the pipelines work on the same data stream this can be done automati-
cally with little overhead. The FP is basically still SIMD but can evaluate differ-
ent branches consecutively by keeping track of the current state and invalidating
the results of individual pipelines. This results in some loss of performance, but
such loss is acceptable if the executed branch changes very infrequently in the
data stream. In the future, the FP will probably become fully MIMD too, although
there is an ongoing debate as to whether this is really desirable, because the ad-
ditional logic could also be used for more SIMD parallelism, which benefits the
common cases.

• All pipelines write to the same destination arrays (frame-buffer).
Shared memory machines usually do not have this restriction, although it avoids
synchronization problems. A GPU pipeline cannot decide to output its data to an
arbitrary position in memory. The destination memory must be defined before-
hand and it cannot be read during the processing (in the general case). Therefore,
there are no write-read collisions and no problems occur with cache coherency.
For the FP, the restrictions go even further. Currently, the FP pipeline cannot
change the destination address of a fragment at all. In other words, it cannot scat-
ter data. This avoids completely any write collisions and allows parallel out-of-
order processing. However, because the VP can scatter within the frame-buffer,
fragments are roughly sorted by the primitives from which they were created.

3 Graphics Processor Units: New Prospects for Parallel Computing 97

Future FPs are likely to allow scatter at some stage, but the bound on chosen
memory regions as destinations seems reasonable to avoid the general synchro-
nization problems.

So, the two main restrictions are the lack of scattering in the FP and the poor ability
to handle branching. With respect to lack of scattering, it is possible to turn to the
gathers for help. The gathers are almost fully general and often exploited to alleviate
other problems. In particular, scatters can be reformulated as gathers. Concerning
branching, it is usual to try to move the branch condition away from the FP into the
VP or even higher into the main program where one decides about the geometry to
be rendered. A common practice is to divide the domain into tiles. A classification
step determines which tiles need to take which branch of the code. Then each tile is
streamed through a shader that contains the appropriate branch. This assumes that
the branch condition will most likely evaluate to the same value for all pixels within
one tile. Tiles that contain pixels scheduled for different branches must be processed
twice (if both branches are non-empty), which is basically equivalent to predication.
See [20, 30, 4] for application-specific implementations of this technique.

Since a GPU is so similar in certain respects to a shared memory machine, the
reader may wonder why the programming model is so different (Section 3.1.3). A
particular difference is that while OpenMP allows an incremental parallelization of
an existing code [16, Section 2.3], the GPU forces us from the beginning into a new
design with a distinction between shaders for the configuration of the VP and FP and
the specification of the dataflow in the form of geometry to be rendered. Remember
that this distinction is innate to DSB architectures (Section 3.1.2), which assume im-
plicitly that changing data and non-changing instructions dominate the work load.
This requires different data processing in the hardware and a different programming
model. It also brings new opportunities and new restrictions. The massively parallel
performance depends heavily on some of these restrictions and therefore a general
incremental way to replace serial code with GPU parallelism is not feasible. The re-
quired generality would destroy the envisioned advantage. Future GPU programming
will look more and more like CPU programming, and in the long run they might even
use the same code basis. However, such code will have to respect the hardware char-
acteristics of the GPUs, which often is not the case for current software. For efficient
parallelism the programming model must support the hardware.

3.2 Theory

In Section 3.3 we extend the example from Section 3.1.3 to a linear equation system
solver. For an exact derivation, more background is required on the data containers,
control of global data-flow, the available operations and parallelism. However, the
reader may choose to continue directly with Section 3.3 and look up the necessary
information as needed.

98 M. Rumpf and R. Strzodka

3.2.1 Dataflow

The general dataflow in a GPU is prescribed by the graphics pipeline (Figure 3.1).
The standard data path from the main memory and the textures to the frame-buffer
always has been fast, but in iterative PDE solvers we need more than one pass and
intermediate results must be reused for subsequent computations. This means that the
content of the frame-buffer must be resent through the graphics pipeline repeatedly.
The efficiency of this general data handling has improved significantly over the years,
but a fully flexible solution is still in development. There are several possibilities for
further processing of the results from the frame-buffer:

• Read-back (glReadPixels).
We can read the selected content of the frame-buffer back to the main memory.
This is a slow operation, because data transfer has always been optimized in the
direction from main memory to the graphics card. With the PCI Express bus
with a symmetric bandwidth in both directions, this has finally changed this year.
However, even then, the available bandwidth on the card is much higher than
over the bus, so transferring data to the main memory and back onto the card is
inefficient. Data should be read back only if it requires analysis by the CPU.

• Copy-to-texture (glCopyTexSubImage1D/2D/3D).
The frame-buffer content can be used to redefine parts of an existing texture, or
to create a new one. This also requires copying data, but the high data bandwidth
on the card makes this operation much faster than read-back.

• Copy-to-frame-buffer (glCopyPixels).
It is possible to copy data from the frame-buffer onto itself. The per-fragment
operations can be applied to the copied data, but not the programmable FP pro-
grams (see Section 3.5.2). Hence, this operation is mainly useful for copying data
between different buffers in the frame-buffer and possibly combining the content
of the source and destination with simple operations.

• Render-to-texture (WGL ARB pbuffer, WGL ARB render texture).
This is the current state of the art, but currently supported only under Windows.
It is possible to allocate a pbuffer, i.e. a non-visible target buffer that serves as
the destination for the output data stream. As soon as the pbuffer is not a render
target any more, it can be used as a texture. Ultimately, this means that it is
possible to render directly to a texture. Hence, we can continue to talk about
textures, which now can be rendered to. The only problem with pbuffers is that
they carry a lot of static information, which causes a performance penalty when
binding a new pbuffer as the destination for the output data stream. The switch
between the use of a texture as a data source and data destination is fast only for
special configurations; see below.

• Architectural Review Board (ARB) superbuffers.
Current graphics driver development addresses the problem of slow pbuffer
switches by introducing a new, light-weight mechanism for using raw data ar-
rays as source or destination at various points in the graphics pipeline. The idea

3 Graphics Processor Units: New Prospects for Parallel Computing 99

is to define a memory array together with properties that describe the intended us-
age. The graphics driver then decides where to allocate the memory (cacheable,
Accelerated Graphics Port (AGP) or video memory), depending on these proper-
ties. To some extent, the functionality is already available with the Vertex Buffer
Object (VBO) and the Pixel Buffer Object (PBO) extensions, but the OpenGL
ARB superbuffer group works on a more general and fully flexible solution.

Apart from the incurred switch delay, pbuffers serve the purpose of flexible data
handling on GPUs well. In actual code, the mechanism for binding the pbuffer as
the source or destination is encapsulated in a class. When the superbuffers appear, a
reimplementation of this class immediately yields the additional benefits without any
further changes to the applications themselves. A great problem for the job sharing
between the CPU and the GPU is the limited bus width between the chipset and
the graphics card. Even the PCI Express bus, which promises a theoretical 4GB/s
data transfer rate in each direction, cannot approach the excess of 30GB/s of on-
board bandwidth. Systems with multiple GPUs must also respect this discrepancy;
see Section 3.4.2.

The frame-buffer and pbuffers are actually collections (typically 1-6) of 2D data
arrays (surfaces) of equal dimensions (Section 3.5.2). Current GPUs support Mul-
tiple Render Targets (MRTs), i.e. the shaders can output results to several of these
surfaces simultaneously. No scatter is allowed here, i.e. exactly the same position in
all surfaces is written to, but more than four float results can be output at once. This
technique is compatible with the render-to-texture mechanism, i.e. each surface is a
different texture and all of them can be written to in one pass. However, each write
goes to exactly the same position in each of the textures.

Multi-surface pbuffers also help to avoid general pbuffer switches. Those sur-
faces that are not the destinations of the current render pass can be used as sources
(textures). Swapping the roles of destination and source on the surfaces is far less
expensive than a general pbuffer switch. Thus, iterations are usually performed on
a multi-surface pbuffer in a ping-pong manner, i.e. for iteration 0 we have surface
0 as source and surface 1 as destination; for iteration 1 we have surface 1 as source
and surface 0 as destination, etc. In addition, more surfaces and other textures can be
sources and the MRT technique even allows the use of several of the surfaces as des-
tinations simultaneously. During the ping-pong procedure the same pbuffer is read
from and written to, but the source and destination memory is disjoint, so that no
write-read collisions can occur. In comparison to the superbuffers, however, multi-
surface pbuffers are still restricted, because GPUs offer only a few surfaces (up to 6)
and they must have the same size and format. Moreover, pbuffers in general do not
support all of the available texture formats.

3.2.2 Operations

First let us examine the available floating point number formats. Three different for-
mats have been introduced with the development of GPUs that support Direct X 9
(Table 3.1). Soon, the standard IEEE s23e8 format (without denormalized numbers)

100 M. Rumpf and R. Strzodka

Table 3.1. Precision of floating point formats supported in graphics hardware. These formats
were introduced with Direct X 9, which required the graphics hardware to have a format with
at least the fp32 precision in the VP and fp24 in the FP. The unit roundoff, i.e. the upper bound
on the relative error in approximating a real number with the corresponding format, is half the
machine epsilon ε.

format fp16 fp24 fp32
GPUs with
FP precision

Wildcat Realizm,
GeForceFX
5800/5900/6800

DeltaChrome S4/S8,
Volari V8, Radeon
9700/9800/X800

Wildcat Realizm,
GeForceFX
5800/5900/6800

GPUs with
VP precision

- - all Direct X 9 chips,
Wildcat Realizm
(fp36)

setup s10e5 s16e7 s23e8
ε 9.8 · 10−4 1.5 · 10−5 1.2 · 10−7

will be a common standard, because chips that support the PS3 model are required
to have a corresponding PEs throughout the pipeline. Hence, the half-precision for-
mat will be mainly useful to save memory and bandwidth, and possibly for fragment
blending, which to date has no full floating point support. The implementation of a
double float format is unlikely in the near future, though a hardware emulation could
be feasible.

Both the VP and FP support a rich set of operations. There is a difference between
the functionality offered by the high-level languages and the assembly languages, as
the latter more closely express which functional units really reside in the hardware.
However, since the languages intentionally include more primitive functions with the
expectation that they will receive hardware support in future GPU, we want to present
the functionality at this language level. Unfortunately, there is, as yet, no unified
shader model for the VP and the FP. The FP imposes some additional restrictions,
although this is not caused by a lack of language constructs, but rather by their use. In
the following we will use the Cg syntax, but Direct X High-Level Shading Language
(HLSL) is almost identical and OpenGL Shading Language (GLSL) very similar
(see Section 3.5.4).

• Floating-point types: half, float, half2, float4, float4x4.
The half is a s10e5 and the float a s23e8 (or s16e7) floating-point format
(see Table 3.1). For both scalar types there exist native vector types of up to 4
components and all matrix types up to 4 × 4. Components of the native vectors
can be arbitrarily swizzled, i.e. they can be duplicated and their order can be
changed, e.g.:

float4 a(0, 1, 2, 3);
float4 b= a.xyzw; // b==float4(0, 1, 2, 3)
float4 c= a.wyxz; // c==float4(3, 1, 0, 2)
float3 d= a.ywy; // d==float3(1, 3, 1)

3 Graphics Processor Units: New Prospects for Parallel Computing 101

Most graphics PEs operate internally on 4-vectors, so using the native vector
types can greatly reduce the number of required operations.

• Data types: float[5], float[6][3], struct.
General vectors and arrays can be defined, but there is only a limited number of
temporary registers (up to 32 float 4-vectors), so for practical purposes, the size is
extremely limited. There are more constant registers (up to 256 float 4-vectors).
Arrays are first-class types, i.e. they are copied when assigned, since there are
no pointers or associated functionality. In the VP constant vectors/arrays can be
indexed with variables. Only the newest PS3 model for the FP supports such
indexing for the texture coordinates.

• Mathematical functions.
Arithmetic +, -, *, /, fmod
Sign, Comparison abs, sign, min, max, clamp
Integers ceil, floor, round, frac
Exponential sqrt, exp, exp2, log, log2, pow
Trigonometric sin, cos, tan, asin, ..., sinh, ...
Interpolation step, smoothstep, lerp
Vector dot, cross, length, normalize, distance
Matrix mul, transpose, determinant
Almost all scalar functions can also operate component-wise on the native
floating-point vector types.

• Data access: tex1D, tex2D, tex3D, texRECT.
In the FP, one to three dimensional textures (data arrays) can be read from arbi-
trary positions, e.g.:

float4 coord= IN.texCoord; // current texture coordinates
float4 a= tex1D(Tex_A, coord.x);
float4 b= tex2D(Tex_B, coord.xy);
float4 c= tex3D(Tex_C, coord.xyz);

Currently, normalized coordinates from [0, 1]2 are used for texture access and
only special rectangular 2D textures (texRECT) are accessed by coordinates
from [0, w]× [0, h], which depend on the width (w) and height (h) of the texture.
The texture samplers Tex A, Tex B, Tex C cannot be chosen dynamically.
This is expected to change in the future. In the newest VS3 model the VP can
also access textures.

• Conditions: bool, bool4, &&, ||, !, <,>,==, !=, ?:.
Conditions must evaluate to a Boolean type. The operations can work component-
wise on Boolean vectors. In case of the operator ?: this allows an individual de-
cision for each vector component, e.g.

bool4 cond(true, false, false, true);
float4 a= cond? float4(0,2,4,6) : float4(1,3,5,7);
// Now a==float4(0,3,5,6)

• Control flow: int, int4, if/else, while, for.
The conditions must be scalar Booleans. In the VP dynamic branches are fully

102 M. Rumpf and R. Strzodka

supported, so there are no further restrictions on the constructs. In the newest
PS3 model, there is restricted support for dynamic branching in the FP (see Sec-
tion 3.1.4). Otherwise if/else is resolved with predication, i.e. both branches
are evaluated and conditional writes update the registers with the correct results.
Without PS3 loops are unrolled, which must be possible. The integer types are
currently not supported in hardware and are internally represented as floats. They
are basically supposed to be used as loop counters and in case of unrolled loops,
for example, they do not show up at all in the end.

• Abstraction: struct, typedef, functions, function overloading, interfaces.
The high level languages offer increasingly more of the abstract constructs
known from C/C++ or Java, although some restrictions apply. As the abstrac-
tion is not dependent on the available processing elements (PEs) in the hardware,
it is likely to evolve further.

Since the PS2 model (Direct X 9 GPUs) and the introduction of floating-point num-
ber formats, the desire for arithmetic functionality has been basically fulfilled. The
limits are now set by the control flow and variable indexing of vectors/arrays. For
some configurations, the number of available temporary registers may also be a re-
striction. Future GPUs will relax these constraints further.

3.2.3 Parallelism

Figure 3.1 visualizes the stream processor nature of GPUs. We see two types of
parallelism there: (i) the parallelism in depth innate to the pipeline concept, and (ii)
the parallelism in breadth given by the breadth (4-vectors) and number of parallel
vertex (up to 6) and fragment pipelines (up to 16). Because there is no configurable
routing in GPUs, unlike FPGAs for example, these numbers are fixed, which has
several consequences.

The deep pipeline makes frequent invocations or reconfigurations inefficient, i.e.
for each rendering call the same operations should be applied to at least several
thousand data items; the more the better. This does not mean that we cannot treat
primitives smaller than 32 × 32 efficiently, but small regions undergoing the same
operations should store their geometry in a common VBO. Then, one invocation
suffices to execute the configured operations on all defined regions. Unfortunately,
in the case of points, even then performance is highly reduced, because GPUs are
optimized for processing 2D regions. Therefore, it is currently difficult to implement
algorithms that require updates of singular, spatially unrelated nodes.

Up to 128 floating point operations can be executed per clock cycle in the FP, but
the 256 bit wide Double Data Rate (DDR) memory interface delivers only 64 bytes.
This means that to avoid a memory bandwidth problem the computational intensity
should be, on average, above 8, i.e. eight or more operations should be performed
in the FP on each floating point value read from the memory (assuming four bytes
per float). Because the memory on graphics cards clocks higher than the GPU, and
because of small internal caches, in practice the computational intensity may be a bit
lower, but the general rule remains. The significant overbalance of processing power

3 Graphics Processor Units: New Prospects for Parallel Computing 103

against bandwidth has arisen only with the recent generation of graphics hardware.
This trend is likely to continue, because computer games now also use programs with
higher computational intensity and the integration of additional PEs into the GPUs
is cheaper than the corresponding bandwidth increases. Note that, despite less inter-
nal parallelism, the high clock frequencies of the CPUs, and less bandwidth from
the main memory system require a similarly high or even higher computational in-
tensity for the CPUs. However, the bandwidth efficient programming methodologies
for CPUs that exploit the large and fast on-chip caches cannot be directly applied to
GPUs, which have only small caches. GPUs reduce the bandwidth requirements best
in the case of strong data locality, e.g. node neighbors in a grid. See Section 3.3.3 for
a discussion of efficient matrix vector products.

3.3 Practice

Section 3.1.3 offers a glimpse of the programming of GPUs. Now, after getting to
know the dataflow and processing functionality in more detail, we want to demon-
strate how to build up an efficient solver for a linear equation system on a GPU. Then
we will present some of the existing PDE applications and list links to resources for
GPU programming.

3.3.1 Setup

So far, we have talked about rendering to a frame-buffer. However, what we see on
the screen are individual windows controlled by a window manager. Window man-
agement, the allocation of pbuffers and initialization of extensions depend on the
operating system. Luckily, there exist libraries that abstract dependencies in a com-
mon interface. We will use the GLUT library for the Graphics User Interface (GUI),
the GLEW library for the extension initialization and the RenderTexture utility class
for the handling of pbuffers. Links to all resources used in the code samples are given
in Section 3.3.6.

With the libraries, the main function for the addition of two vectors Ā and B̄ as
discussed in Section 3.1.3 needs only few lines of code:

#include <GL/glew.h> // extension initializer GLEW
#include <GL/glut.h> // window manager GLUT
#include "WinGL.h" // my GUI
#include "AppVecAdd.h" // my GPU application

int main(int argc, char *argv[]) {
glutInit(&argc, argv); // init GLUT window manager
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

// simple example: addition C= A+B
WinGL winAdd; // my GUI based on GLUT
glewInit(); // init extensions with GLEW

104 M. Rumpf and R. Strzodka

AppVecAdd add; // my GPU application
winAdd.attachApp(&add); // attach App to GUI

glutMainLoop(); // start main loop of GLUT
return 0;

}

The first lines in main initialize the GLUT manager and set the default display
mode. Then we create a GUI. The GUI manages a window, keyboard strokes and a
menu with GLUT. Via the resource section (Section 3.3.6) the reader may find many
tutorials that demonstrate the ease with which a GUI may be created with GLUT. The
GLEW library call initializes all available OpenGL extensions. The extensions are
necessary to use pbuffers and the programmable pipeline, for example. Most current
GPUs support them. Then, we create our application class and attach it to the GUI
such that the user can call the application functions. Finally, we start the event loop
of GLUT and wait for the invocation of these functions by user interaction.

It is in the application class that the more interesting things happen. The con-
structor uses the Cg API to compile the application-specific shaders and load them
to the graphics card. For the vector addition example above, we need a trivial VP
shader that passes the vertex data through unchanged, and the fpProg[FP ADD2]
shader for the addition from Section 3.1.3. However, for other application classes,
more shaders are loaded and can be later accessed by the vectors vpProg[],
fpProg[]. The constructor also uses the RenderTexture utility class to allocate
the textures and store them in a vector texP[]:

// enum EnumTex { TEX_A, TEX_B, TEX_C, TEX_NUM };
for(i= 0; i<TEX_NUM; i++) { // allocate textures
RenderTexture* tp= new RenderTexture("r=32f tex2D rtt");
tp->Initialize(256, 256); // texture size
texP.push_back(tp); // store in a vector

}

The mode-string requests a 32 bit float 2D texture suitable for the render-to-texture
(rtt) mechanism (see Section 3.2.1). Currently, only Windows supports the render-
to-texture mechanism, so on other systems copy-to-texture (ctt) should be used
instead. The RenderTexture class has a simple interface for using the textures as
either a destination or source of a data stream, possibly emulating render-to-texture
by copy-to-texture internally. To set the initial data in a texture we simply define the
values in a float array (floatData) and then render it:

texP[TEX_A]->BeginCapture(); // TEX_A is destination
glDrawPixels(texP[TEX_A]->GetWidth(),

texP[TEX_A]->GetHeight(),
GL_RED, GL_FLOAT, floatData);

texP[TEX_A]->EndCapture(); // TEX_A is source

In this way, the application class contains vectors with the shaders vpProg[],
fpProg[] and a vector with the initialized textures texP[]. These are the main

3 Graphics Processor Units: New Prospects for Parallel Computing 105

steps during the initialization of a GPU application and are independent of which
operations will be performed later.

After the above initialization, the entire function for the addition of the vectors
Ā and B̄, which gets called via the GUI, reads as follows:

void AppVecAdd::exec() {
CGprogram curVp= vpProg[VP_IDENTITY];// vertex shader
CGprogram curFp= fpProg[FP_ADD2]; // fragment shader

texP[TEX_C]->BeginCapture(); // TEX_C is destination

cgGLEnableProfile(cgGetProgramProfile(curVp)); // enable
cgGLEnableProfile(cgGetProgramProfile(curFp)); // profiles

cgGLBindProgram(curVpProg); // bind
cgGLBindProgram(curFpProg); // shaders

glActiveTexture(GL_TEXTURE0); // texunit0
texP[TEX_A]->Bind(); // bind TEX_A
glActiveTexture(GL_TEXTURE1); // texunit1
texP[TEX_B]->Bind(); // bind TEX_B

drawTex2D(); // render-to-texture

cgGLDisableProfile(cgGetProgramProfile(curVp)); // disable
cgGLDisableProfile(cgGetProgramProfile(curFp)); // profiles

texP[TEX_C]->EndCapture(); // TEX_C is source
}

The shader fpProg[FP ADD2] and the function drawTex2D() are listed in Sec-
tion 3.1.3. All other calls fall within the functionality of the Cg API or the Render-
Texture class. Because we have two different program sources, namely this C++ code
and the Cg shaders, the passing of arguments to the shaders relies on the number-
ing of the texture units: GL TEXTURE0 corresponds to texunit0 in the shader.
The numbering corresponds to the numbering of arguments passed to the multi-
dimensional function realized by the shader. Above, we do not see the OpenGL tex-
ture IDs explicitly, as in Section 3.1.3, because they are taken care of automatically
by the RenderTexture utility class. Alternatively to the numbering, Cg also allows
the association of the OpenGL texture IDs with the sampler names of the textures in
the shader.

Even without the preparatory work of the initialization, the exec() function
above seems a lot of code for the simple addition of two vectors C̄ = Ā + B̄. In
practice, such operations are always encapsulated into a single function call. One
option is to derive a class from RenderTexture and add functionality to it, such that
the destination texture manages the operation:

texP[TEX_C]->execOp(fpProg[FP_ADD2],texP[TEX_A],texP[TEX_B]);

106 M. Rumpf and R. Strzodka

For convenience, one could even define an operator+ function in this way, but this
would be of little use since practical shaders do not represent elementary functions.
Another option is to have a class for each shader and then simply write something
like

fpProg[FP_ADD2].exec(texP[TEX_C], texP[TEX_A], texP[TEX_B]);

For a particularly short notation it is possible to have a function within our applica-
tion class that only takes the indices:

execOp(TEX_C, FP_ADD2, TEX_A, TEX_B); // C= A+B

We will use this notation in what follows. Clearly, the graphics setup described here
is an example of how to get started fairly quickly. For large projects, more abstraction
is recommended.

3.3.2 Vector Operations

Once the graphics specific-parts are abstracted, it is easy to realize further operations
on vectors. We simply need to write a new FP shader, e.g. FP ATAN2 and then call
it:

execOp(TEX_C, FP_ATAN2, TEX_A, TEX_B); // C= atan(A/B)

Remember that the high-level languages support most of the standard mathemati-
cal functions directly (Section 3.2.2). So to write the FP ATAN2 we only need to
exchange the return value in FP ADD2 (Cg listing in Section 3.1.3) for

return atan2(valA,valB);

For the vectors Ā, B̄ and C̄ represented by the textures TEX A, TEX B, TEX C
this would correspond to

C̄α = atan(Āα/B̄α) .

With a standard set of such shaders it is easy to evaluate formulae, e.g. linear inter-
polation

execOp(TEX_C, FP_SUB2, TEX_B, TEX_A); // C= B-A
execOp(TEX_D, FP_MUL2, TEX_C, TEX_M); // D= C*M
execOp(TEX_R, FP_ADD2, TEX_A, TEX_D); // R= A+D= A+M(B-A)

However, it is much more efficient to have one shader that does exactly the same in
one pass. This avoids the costly pbuffer switches (Section 3.2.1) and increases the
computational intensity (Section 3.2.3). So, in general, the shaders of an application
should execute as much as possible in one go. The application class AppVecAdd
that contains the addition as the only shader is, in this respect, an unrealistic example.

Unfortunately, the instruction to pack everything into one shader whenever pos-
sible easily results in the generation of a multitude of shaders. Consider, for ex-
ample, the task of applying h(fi(V̄α), gj(V̄α)), 1 ≤ i, j ≤ N to the components

3 Graphics Processor Units: New Prospects for Parallel Computing 107

of a vector V̄ , where the choice of i, j depends on some computed entity. For op-
timal performance we would have to write N2 shaders Sij . Duplication of code
could be minimized by using include files that implement the 2N + 1 functions
h(., .), fi(.), gi(.), 1 ≤ i ≤ N , but even so, N2 short, different files would have to
be generated. The remedy in such cases is to generate the few changing lines of code
at run time and use run time compilation. If only a few run time compilations are
necessary the performance does not degrade, especially if the GPU does not have to
wait for the compiler but can be occupied with some other task during the software
compilation process.

3.3.3 Matrix Vector Product

Matrix vector products are ubiquitous in scientific computing. The application of
a matrix can be seen as a series of gather operations on the vector components.
The matrix rows Āα,. define what to gather and the weights. The gathers are inner
products between the rows and the vector:

AV̄ =
(
Āα,. · V̄

)
α
, Āα,.:= (Aα,β)β .

For a 2D problem we store the nodal vector V̄ of the corresponding 2D grid as a 2D
texture. Then α and β must be seen as 2-dimensional multi-indices as above. This
means that without renumbering of indices, a full matrix for a 2D problem is a 4D
structure. Due to the fact that GPUs restrict each dimension of a texture to 4096 or
less, we usually cannot store a full matrix in a 1D or 2D texture. The best option
is to use a 3D texture (4D textures are rarely supported), where in each 2D slice
of the texture we pack several 2D row vectors Āα,.. Depending on the current pixel
position, the FP shader retrieves the correct weights and performs the multiplications
and additions. The result is obtained in one pass.

Because of the packing, a certain amount of address translation must be per-
formed to retrieve the correct values. The Vertex Processor (VP) is usually not the
bottleneck in scientific computing and is, therefore, used for the task of precomput-
ing the offsets to the packed rows. The offset texture coordinates are passed to the
FP. Another way of packing is to define a 4-valued texture and thus quadruple the
number of values that are stored per texel. The point of optimizing operations for an
execution on 4-vectors is discussed at the end of this section. From the point of view
of memory, the packing of floats into 4-vectors is a disadvantage, because the large
amount of data that has to be retrieved with a single command can lead to a local
memory gap problem. Reading the four floats individually gives the compiler more
freedom to place some computation between the reads and thus hide memory latency
and insufficient bandwidth.

In general, full matrices can be handled only for small dimensions. A full-float
matrix for a 128x128 grid requires 1Gb of memory, which exceeds the present video
memory of graphics cards. Future GPU will offer hardware virtualization, such that a
texture can also reside (partly) in main memory. However, the necessary data transfer
to the graphics card is a strong bound on the performance in this case. Luckily, in

108 M. Rumpf and R. Strzodka

practice most matrices are sparse. Typical examples are band matrices. Each band
can be stored in a texture of the same dimension as the grid. The bands can be packed
together in one texture, which will reduce the lines of code necessary for the texture
binding. This also avoids the problem that a maximum of 32 different textures can
be bound to a FP shader. The VP can perform the offset computation, and the matrix
vector product can be obtained in one pass again.

In the case of Finite Element codes and the discretizations of local operators,
it is also possible to store the matrix in the form of elemental matrices (see (3.2)).
Then, for each element, the components of the elemental matrices must be stored in
separate textures or a packed arrangement. This is a special case of the general idea
of partial matrix assembly that is presented below. It is particularly advantageous if
the elemental matrices possess some common structure, such as symmetry or para-
meterization by few variables, since this greatly reduces the storage requirements. In
the case of parameterization, one would only store the few values from which the
elemental matrices can be built up (see (3.3)), and thus favorably increase the com-
putational intensity of the matrix vector product. One problem arises, however, for
the output of the local application of an elemental matrix. The GPU cannot scatter
data, which means that only one node within the element can be updated from the
result of the FP. The updating of the other nodes in the same pass would require the
recomputation of the matrix vector product on the element for each node. One rem-
edy for this is to output the complete result vector on each element, and from this
gather the information onto the nodes in a second pass. This is a typical strategy on
GPUs for reformulating a regular scatter operation in terms of a gather.

For irregular sparse matrices, two strategies are available: (i) cover the non-zero
entries efficiently with some regular structures, i.e. rows, columns, sub-diagonals,
and encode this structure statically into the shader, or one (ii) use a level of indirec-
tion in the processing, such that, e.g. the matrix entries contain not only the value
but also the address (or offset) needed to access the corresponding component in the
vector. The result can be computed in one pass. However, the irregularity of the en-
tries can result in a serious performance problem if the number of entries per row
differs significantly. Therefore, different vector components may require very differ-
ent numbers of multiplications and additions. The PS2 model for the FP cannot stop
the computation dynamically, i.e. all gather operations take the same time within the
same shader. In the worst case one full row in the matrix suffices to make the matrix
vector product as expensive as one with a full matrix. The newer PS3 model can
make the distinction, but in terms of performance it is only beneficial if all spatially
coherent vector components require approximately the same number of operations
(see Section 3.1.4). Otherwise, the longest case dominates the execution time again.

Recapitulating, we can say that within the noted restrictions, matrix vector prod-
ucts can be computed for arbitrary matrices. Usually the matrices are not constant
and have to be assembled first (see (3.1)). In many cases it is best not to assemble
matrices explicitely, or at least not fully. Recall from Section 3.2.3 that current GPUs
require a computational intensity of approximately 8 to avoid bandwidth shortage
(in the case of floats). However, in a matrix vector product, we read both the matrix
entry and the vector component and perform just one assembly operation: a multiply

3 Graphics Processor Units: New Prospects for Parallel Computing 109

and add (MAD). In other words we exploit only 6.25% of the available processing
power. Consider three flavors of the matrix vector product for improvement:

• On-the-fly product: compute entries of A for each AV̄ application.
At first, it may seem foolish to compute the entries of A over and over again.
However, this can still be faster than simply reading the precomputed data, be-
cause the comparably slow reading will stall the computation. Clearly, the ad-
vantage can only be gained for simple entries that can be computed quickly from
little data. This technique has the lowest memory requirement and thus may also
be applied in cases when the entire A would not fit into memory.

• Partial assembly: apply A on-the-fly with some precomputed results.
This is a flexible technique which allows the computation and bandwidth re-
sources to be balanced. On-the-fly products are infeasible if many computations
are required to build up the matrix entries. In this case, a few intermediate re-
sults that already encompass most of the required operations should be gener-
ated. Then, during the matrix vector product, these few intermediate results are
retrieved and the matrix finishes the entry computation on-the-fly. This reduces
the bandwidth requirement and targets an optimal computational intensity. The
few intermediate results have also the advantage of modest memory consump-
tion.

• Full assembly: precompute all entries of A, use these in AV̄ .
This makes sense if additional operations of high computational intensity hide
the bandwidth problem of the pure matrix vector product. To achieve this, it even
makes sense to execute operations unrelated to the current matrix vector product
in the same shader. The Multiple Render Target (MRT) technique (Section 3.2.1)
allows the unrelated results to be output into separate textures. If the bandwidth
shortage can be hidden (though this is hard to achieve), full assembly is the fastest
option for the matrix vector product, but also the one with the highest memory
requirements.

The above discussion is not specific to GPUs, because the same considerations apply
to CPUs. Yet there is a relevant and important difference between GPUs and CPUs.
While block matrix techniques exploit the large caches on typical CPUs, this is not
possible in the case of GPUs, because they have only small caches and rely strongly
on the right balance of operations and bandwidth capacity. This is a crucial factor
and should be checked carefully in the case of poor performance on the GPU. Pure
matrix matrix multiplications, for example, are not faster on GPUs than on current
CPUs [6].

Following the considerations about bandwidth, it is also possible to opt for low-
level optimizations of the matrix vector product [2], related to the fact that the
processing elements (PEs) operate, in general, on 4-vectors. However, newer GPUs
can split the 4-component PEs into a 3:1 or even 2:2 processing mode, evaluating
two different commands on smaller vectors simultaneously. The high-level language
compilers optimize for this feature by automatically reordering commands when-
ever possible. The resource section offers links to tools that analyze the efficiency of
shaders for a given GPU.

110 M. Rumpf and R. Strzodka

3.3.4 Solvers of Linear Equation Systems

We have repeatedly encouraged the reader to put as many operations as possible
into one shader. Large shaders avoid pbuffer switches (Section 3.2.1) and help to
hide bandwidth shortage (Section 3.2.3, Section 3.3.3). Why, then, should the en-
tire problem not be solved in one shader? If this can be done without unnecessary
additional operations or data access, it is the right choice. However, the implementa-
tion of a separable filter in one pass is a waste of resources. The same applies to the
iterative solution of a linear equation system AX̄ = R̄,

X̄0 = initial guess, X̄ l+1 = F (X̄ l),

where F (.) is the update method, e.g. conjugate gradient. The implementation of sev-
eral iterations in one shader is unwise, because it multiplies the number of operations
and, in particular, data accesses.

Which solvers are suitable for GPUs? They must allow parallel independent
processing of vector components, and do so without direct write-read cycles. The
first is important to exploit the parallel pipelines, while the second is a restriction of
the FP which, in general, has no access to the destination buffer during the process-
ing. An alternative is to process the vector in blocks with several passes, such that
during the processing of a block the previously computed blocks can be accessed.

The conjugate gradient solver and its variants (preconditioned, asymmetric) rely
on operations of the following forms:

F (X̄ l) = X̄ l +
r̄l · p̄l
Ap̄l · p̄l p̄

l, p̄l = r̄l +
r̄l · r̄l

r̄l−1 · r̄l−1
p̄l−1, r̄l = R̄−AX̄ l .

The main ingredients are the matrix vector product, which was discussed in the pre-
vious section, and the inner product, which is a reduction operation.

Reductions are not directly supported in hardware on GPUs. An easy solution is
to write a shader with a loop that runs over all texels and performs the summation.
By rendering a single pixel with this shader, the result is obtained; but this does
not utilize the parallel pipelines. At least 16 pixels with subtotals should be rendered
before a final summation is performed. A second possibility is to perform consecutive
additions of neighboring texels and thus reduce the dimensions of the texture by 2 in
each pass. In the end, the result is also a 1x1 texture. Which option is better depends
strongly on how data is arranged in textures: linearly or hierarchically. Traditionally,
GPUs are optimized for the second option of fast access to neighbor texels. With the
first, there may be general problems with the maximal instruction number in the FP
(see Section 3.5.3). The result of the reduction can be either read back to the CPU or
left in a 1× 1 texture for further use. In an interactive approximation, the read-back
is necessary at some stage to retrieve the norm of the residual and decide whether
the iterations should be stopped. However, the asynchronous read-back mechanism
does not stop the computation.

We see that all ingredients necessary for a solver of a linear equation system can
be implemented on a GPU. The initialization of the graphics pipeline requires some

3 Graphics Processor Units: New Prospects for Parallel Computing 111

effort (Section 3.3.1), but once the work is done or prepared by some library, it is
possible to concentrate on the algorithm. Concerning the matrix vector product (Sec-
tion 3.3.3), attention should be paid to the high ratio of processing elements (PEs)
against the bandwidth in GPUs. The use of a fully-assembled matrix consumes a
lot of bandwidth and is only appropriate if this disadvantage can be hidden with ac-
companying computations. Finally, solvers of linear equation systems must allow for
parallel processing of the vector components. Reduction operations are not native to
GPUs, but can be resolved efficiently. Several researchers have solved PDE problems
along these lines. The next section discusses some applications.

3.3.5 PDE Applications

We consider the discretization of partial differential equations on GPUs. In the field
of continuum mechanics, various physical processes have been simulated in graphics
hardware [18, 17, 21, 19, 12]. Beyond physical simulation, GPU-accelerated PDE
methods are also very popular in geometric modeling and image processing [20, 3,
11, 29, 14]. The GPU Gems book series also contains an increasing number of GPU-
accelerated PDE solvers [7, 25] and the site [10] offers an extensive overview of
GPU-based computations. The processing of triangular grids, shading and texturing
of highly resolved meshes, and the processing of images (usually regarded as surface
textures), are the original applications for which graphics cards have been designed
and optimized. Before we provide an overview of a number of applications in this
field, we outline the basic setup for the treatment of PDEs on GPUs.

Consider a general differential operator A that acts on functions u defined on a
domain Ω and ask for a solution of the differential equation

A[u] = f

for a given right-hand side f . In addition, require certain boundary condition to be
fulfilled on ∂Ω. In the case of variational problems, we ask for minimizers of ener-
gies E over functions u, such that a differential equation appears as the Euler La-
grange equation, with A[u] = gradE[u] and f = 0. If we take into account some
time-dependent propagation, relaxation or diffusion process, we frequently obtain a
differential equation of the form

∂tu+A[u] = f .

Now, we ask for solutions u that depend on the time t and the position x on Ω. In the
case of a second-order diffusion we usually deal with A[u] = −div(a[u]∇u), where
a[u] is a diffusion coefficient or tensor that possibly depends on the unknown solution
u. In the case of Hamilton Jacobi equations that describe, for instance, the propaga-
tion of interfaces, we deal with A[u] = H(∇u). E. g. H(∇u) = v(t, x) ‖∇u(t, x)‖
corresponds to the propagation of the level-sets of the function u at time t and po-
sition x with a speed v(t, x) in the direction of the normaly. In many cases, v itself
depends non-linearly on u.

112 M. Rumpf and R. Strzodka

Now consider the discretization of these differential equations based on Finite
Elements. Obviously, other ways to discretize PDEs such as Finite Volume or Fi-
nite Difference approaches lead to fairly similar computational requirements. We
consider a simplicial or rectangular mesh Mh on Ω with grid size h and a Finite
Element space Vh with a N = #I-dimensional basis {Φα}α∈I consisting of basis
functions Φα with local support on the domain. Now, we ask for a discrete solution

U(x) =
∑
α∈I

Ūα Φα(x)

of the stationary problem, such that U approximates the continuous solution u, or
we compute space and time discrete solutions Uk(x) =

∑
α∈I Ū

k
α Φα(x), with

u(tk, x) ≈ Uk(x), for tk = k τ and some time-step τ .
Usually, Finite Element algorithms consists of two main ingredients; namely,

the assembly of certain discrete vectors in R
N or matrices in R

N2
and the discrete

solution update, with an iterative linear equation system solver, an explicit update
scheme in time, or a combination of both in case of an iterative scheme with an inner
linear system of equations to be solved:

• Assembly.
In an explicit gradient descend algorithm, we usually compute the discrete gra-
dient (

gradVhE[U]
)
α

= 〈E′[U], Φα〉

via a traversal over the gridMh. Locally on each element we collect contribu-
tions to the integral 〈E′[U], Φα〉 for all Φα such that its support intersects the
current element. Similarly, the assembly of a Finite Element matrix, e. g. the
stiffness matrix in the above-mentioned diffusion process

Lα,β =
∫
Ω

a[U]∇Φα · ∇Φβ dx (3.1)

starts by initializing L = 0, followed by a traversal of all elements. On each
element E a corresponding local elemental matrix

lα,β(E) =
∫
E

a[U]∇Φα · ∇Φβ dx (3.2)

is computed first, corresponding to all pairings of local basis functions relevant
on this element. Then, we can either store the collection of elemental matrices or
assemble them into the global matrix L (see Section 3.3.3).
All these operations match the data-stream-based (DSB) computing paradigm
perfectly. The instruction set is always the same. Only the data to be processed
changes and this data can be gathered by simple texture reads. In the case of a
linear Finite Element space, the relation between the texels in the textures and the
degrees of freedom is particularly simple. For example, if we process an image,

3 Graphics Processor Units: New Prospects for Parallel Computing 113

the values at the image pixels correspond directly to the degrees of freedom in the
Finite Element space, and thus a coordinate vector in the Finite Element space
is again an image. Similarly, we can treat each row in an irregular sparse ma-
trix as a floating point texture and the corresponding index field, which contains
the global position of the entries, as an integer texture [3]. The indirect access is
less efficient because it partly breaks the paradigm of reading all data in streams.
However, GPUs have also internal mechanisms to reduce the incurred perfor-
mance penalty in such cases. The same problem cannot appear for the output
because GPUs do not support the scattering of data.
For vector-valued functions u, e.g. positions in space, deformations, gradients or
2D Jacobians, the data can be kept in 4-valued textures. Then, it is also easy to
take advantage of the processing elements (PEs) operating on 4-vectors (see Sec-
tion 3.2.2). However, for larger texels (4 floats = 16B) it is more difficult to hide
the incurred memory latency, so storage of the individual components is often the
better choice (see Section 3.3.3). After realization of the correct functionality, the
optimal option can be determined by a profiling tool.

• Discrete solution update.
In the case of a simple update scheme, it is preferable to interleave the assembly
with the update. That is, for a time-step of a discrete gradient descent

Uk+1 = Uk + τgradVhE[Uk] ,

we immediately add the element-wise components of the update to the old dis-
crete solution. When an iterative solver for a linear equation system is involved,
i.e. the matrix is required in more than one matrix vector product, there are three
possibilities: on-the-fly products, a partial or a full assembly. These possibilities
were discussed in Section 3.3.3.
For a regular grid, standard linear stiffness matrices or mass matrices can be
applied efficiently on-the-fly, because the matrix entries are locally the same for
all elements, and can be stored in constants in the shaders. This changes if we
consider non-linear stiffness matrices as defined above for the diffusion problem.
For example, if a[u] is a diffusion tensor and we use the midpoint integration rule
for a[u] in (3.2), we precompute the midpoint values a[u]i,jE in a texture and store
the constants Ci,jα,β =

∫
E
∂iΦα · ∂jΦβ dx in the shader. For isometric elements,

the constants are few because they depend only on the difference α−β. Then, the
elemental matrices are parameterized by a[u]i,jE and can be quickly reconstructed
on-the-fly:

lα,β(E) =
∑
i,j

a[u]i,jE C
i,j
α,β . (3.3)

The advantages are higher computational intensity in the matrix vector product
and reduced memory requirements. Recall that for very large triangular meshes
or images, the full assembly of a matrix still conflicts with the limited video
memory size of graphics cards.

114 M. Rumpf and R. Strzodka

Fig. 3.2. Segmentation of tumors computed in Direct X 7 graphics hardware. The expansion
of the level-set depends on the image values, its gradient and the placement of the seeds.

Now consider the processing of images as a concrete application field. Classical tasks
in image processing are

• segmentation,
• feature-preserving image denoising,
• image registration.

Images are perfectly matched to rectangular textures and can be regarded as functions
in a piecewise bilinear Finite Element space. Furthermore, if it comes to real-time
processing and visualization, the results of our PDE algorithm reside already on the
graphics boards, where they are needed for display. This underlines the conceptual
benefits of PDE-based image processing directly on the GPU. In what follows we
provide a brief sketch of some methods:

• Segmentation.
Consider a region-growing algorithm for the segmentation of image regions
whose boundaries are indicated by steep gradients. Therefore, a segment domain
is represented by a level-set of a function u and sets v(t, x) = η(‖∇I‖), where
I is the image. Here, η(·) is some non-negative edge-indicating function, which
is zero for ‖∇I‖ larger than a certain threshold. Now, we ask for a family of
level-set functions and corresponding evolving segment domains, such that

∂tu+ v(t, x) ‖∇u‖ = 0 .

3 Graphics Processor Units: New Prospects for Parallel Computing 115

Fig. 3.3. Anisotropic diffusion for image denoising computed in Direct X 8 graphics hardware.
The anisotropy allows the smoothing of noisy edges without blurring them completely.

The initial data u(0, ·) is supposed to represent a user-defined mark on the image
[26] (see Figure 3.2).

• Feature-preserving image denoising.
Multiscale methods in image denoising are fairly common nowadays. The de-
sired result is a family of images that exhibit different levels of detail, fine scale
to coarse scale, and which are successively coarser representations of the initial
fine-scale image. The aim of denoising is to filter out fine-scale noise on coarser
scales while preserving important edges in the image. Such a scale of images can
be generated solving a non-linear diffusion problem of the type

∂tu− div(a[u]∇u) = 0 ,
a[u] = g(‖∇(Gσ ∗ u)‖) .

The diffusivity g(s) = (1 + s2

λ2)−1 is large away from the edges and small in the
vicinity of the edges, as indicated by large image gradients. To ensure robustness
a prefiltering of the image by some Gaussian filterGσ of filter width σ is invoked
here. One can further improve the results, allowing, in addition, for a smoothing
along the tangential direction on the edge [27] (see Figure 3.3).

• Image registration.
Matching of a template image T with a reference image R via a non-rigid defor-
mation φ - often called registration - can be formulated naturally as a variational
problem. The aim is to achieve a good correlation of the template image T and
the deformed reference image R:

T ◦ φ ≈ R .

In the simplest case of unimodal registration we can ask for a deformation φ
given on image domain Ω, such that the energy

116 M. Rumpf and R. Strzodka

Fig. 3.4. Registration of medical images with a possible acquisition artefact computed in Di-
rect X 9 graphics hardware. The six tiles are arranged in the following way: on the upper left
we see the template that should be deformed to fit the reference image to the right of it; on
the lower left we see the computed deformation applied to a uniform grid and to the right the
registration result, i.e. the template after the deformation. The rightmost column shows the
scaled quadratic difference between the template and the reference image before (upper row)
and after (lower row) the registration.

E[φ] =
∫
Ω

|T ◦ φ−R|2 dx

is minimal in a class of suitable deformations. This problem turns out to be ill-
posed and requires a regularization, by, for example, adding an elastic energy∫
Ω
W (Dφ) dx that measures the quality of the deformation itself and not only

the quality of the match. Alternatively, a regularized gradient flow, which ensures
smoothness of the resulting deformation, can be applied. After a discretization,
the result is a global, highly non-linear optimization problem. Thus, the proce-
dure is to consider a scale of matching problems ranging from coarse to fine.
First, match on the coarse scale is found and then successively finer scales are
treated [29] (see Figure 3.4).

The next section lists websites that point to many other PDE applications realized on
GPUs including demos and code examples.

3 Graphics Processor Units: New Prospects for Parallel Computing 117

3.3.6 Resources

Up-to-date links to the sites below and the code samples discussed in this chapter are
available online at the Springer site associated with this book.

The low-level programming of GPUs can be very tedious. Therefore, one usu-
ally uses libraries that facilitate the programming and abstract the details. The code
examples in this chapter are based on the following resources:

• Graphics API: OpenGL
www.opengl.org

• Shader language and API: Cg
developer.nvidia.com/page/cg main.html

• Window manager: GLUT
www.opengl.org/resources/libraries/glut.html

• Extension initializer: GLEW
glew.sourceforge.net

• Pbuffer handler: RenderTexture
gpgpu.sourceforge.net

The choices are fairly common, apart from the last one where many still use self-
made pbuffer handlers. However, we encourage the reader to explore the links below
and discover other possibilities that might suit them better. To all of the above there
are good alternatives and the authors themselves have used different tools, depending
on the project requirements. The different combinations of graphics APIs and shader
languages are discussed in more detail in Section 3.5.4. The rest of this section is a
collection of useful links related to GPU programming.

• Scientific Computing on GPUs
– GPGPU - General Purpose Computation on GPUs

www.gpgpu.org

This site addresses specifically general purpose computations, while other re-
sources have usually a stronger focus on graphics applications. Related news,
papers, code and links to resources are given and a forum for discussion is
maintained. The site also features two full-day tutorials from the SIGGRAPH
2004 and Visualization 2004 conferences on scientific use of GPUs.

– ShaderTech - Real-Time Shaders
www.shadertech.com

Here, shaders in general are discussed, and scientific examples are included.
The site features news, articles, forums, source code and links to tools and
other resources.

• Major Development Sites
From time to time, one encounters technical GPU problems that have been
solved already. The following development sites contain a huge store of ex-
amples, libraries, white papers, presentations, demonstrations, and documenta-
tion for GPUs. In particular, they offer well-assembled Software Development
Kits (SDKs) that demonstrate various graphics techniques.

118 M. Rumpf and R. Strzodka

– OpenGL Resources
www.opengl.org

– DirectX Resources
msdn.microsoft.com/directx

– ATI Developer Site
www.ati.com/developer

– NVIDIA Developer Site
developer.nvidia.com

• Developer Tools
These sites are good starting points for exploring the numerous freely available
tools for GPUs. They include advanced Integrated Development Environments
(IDEs) for shader development, debugging and performance analysis.
– ShaderTech Tool Archive

www.shadertech.com/tools
– OpenGL Coding Resources

www.opengl.org/resources/index.html
– Microsoft Direct X Tools

www.msdn.microsoft.com/library/default.asp?
url=/library/en-us/directx9 c/directx/graphics/
Tools/Tools.asp

– ATI Tools
www.ati.com/developer/tools.html

– NVIDIA Tools
www.developer.nvidia.com/page/tools.html

– Babelshader - Pixel to Fragment Shader Translator (D. Horn)
www.graphics.stanford.edu/∼danielrh/
babelshader.html

– Imdebug - The Image Debugger (B. Baxter)
www.cs.unc.edu/∼baxter/projects/imdebug/

– Shadesmith - Shader Debugger (T. Purcell, P. Sen)
www.graphics.stanford.edu/projects/shadesmith

3.4 Prospects

The development of GPUs is rapid. Performance doubles approximately every nine
months. Many new features are introduced with each generation and they are quickly
picked up by implementations. This fast pace is likely to continue for at least several
more years. What should we expect in the future?

3.4.1 Future GPUs

Throughout the chapter we have pointed to expected developments of GPUs. The
information is based mainly on the features of the Windows Graphics Foundation

3 Graphics Processor Units: New Prospects for Parallel Computing 119

(WGF) announced by Microsoft for the new Windows generation (Longhorn [22]).
Let us summarize the points.

• Parallelism/Bandwidth
The parallelism will continue to grow rapidly, as well as the bandwidth. However,
since increasing the first is cheaper than the second, programming will have to
focus on computational intensity even more strongly than at present.

• Shaders
Unlimited instruction counts and a unified shader model will be introduced.
Much of the fixed pipeline functionality will be replaced by the use of pro-
grammable shaders. Without the fixed functionality, GPUs will basically be a
collection of parallel PEs. This will introduce scheduling tasks that are likely to
be hidden from the programmer. Memory will be virtualized to operate on data
that would otherwise not fit the video memory. Further improvements will in-
clude indexing of textures and greater temporary storage for intermediate results
in shaders.

• Dataflow
We have emphasized the view that textures, pbuffers, vertex data and the frame-
buffer can all be seen as interchangeable collections of 2D data arrays, although
full flexibility is not yet available. Future GPUs will fully incorporate this view
and shaders will decide on their own how they want to interpret the data. The
graphics pipeline will also offer several exit points for the data streams and not
only the one at the end of the pipeline. As a result it will, for example, be possible
to manipulate a mesh iteratively with the VP.

• Precision
The latest VS3, PS3 model prescribes 32 bit float precision throughout the
pipeline. Several GPUs offer this already and many more will soon follow. The
support for double floats is unlikely in the near future, although there are, in
principle, no barriers. The problem of development lies, rather, in the difficulties
of creating a demand: a strong demand for double precision GPUs would make
production feasible, yet at present, such demand is unlikely from the scientific
community, because GPUs receive little attention from that quarter precisely be-
cause they do not have double precision. Further, a demand is unlikely to come
from the graphics or computer game community where GPU vendors earn their
money.

• Dynamic branching/MIMD in the FP
Currently, GPUs with PS3 support are only efficient at infrequent dynamic
branching. The problems with MIMD are additional transistors and scheduling
problems, but the development of the processing elements (PEs) points clearly
towards MIMD in the near future. The unification of the shader model does not
necessarily mean that the PEs become the same, however, common PEs would
allow better resource utilization in view of changing loads on vertices and frag-
ments.

120 M. Rumpf and R. Strzodka

• Scatter
The read-only, write-only regions avoid many synchronization problems. One-
sided communication models are also known for their efficiency from CPU-based
parallel computers; see [16, Section 2.2.3, page 17] Writing to arbitrary mem-
ory addresses would destroy too many of these advantages. However, scattering
within a specified region does not have a negative effect on synchronization. Cur-
rent GPUs can already scatter data by rendering it as a set of points. WGF will
allow the generation of new primitives so that data duplication of individual items
will be possible too. However, current GPU are not efficient at point processing;
and this, it will be difficult to change.

Many of the expected features are already available, to some extent, through differ-
ent extensions (Section 3.5.1). Respecting the current limitations on resources and
performance, this already allows current development to be directed towards the new
hardware. In other words, it is worth exploring the GPU as a general parallel proces-
sor, even if some restrictions still apply.

3.4.2 GPU Cluster

A single GPU already offers a lot of parallelism, but similar to CPUs, demand for
higher performance suggests the use of multiple GPUs to work on a common task.
The integration hierarchy is developing similarly to that of CPU-based parallel com-
puters. One node, represented by a mainboard with several PCI Express slots, can ac-
commodate several graphics cards. Clusters of multiple nodes are connected with the
usual fast interconnects. However, both developments are in their infancy. NVIDIA
offers a technology to couple two of their newest GPUs [23], ATI is expected to
present a similar technology for their products, and Alienware announced a solution
for all PCI Express graphics cards [1]. The solutions claim full transparency, so that
the programmer only has to consider a number of general rules that will minimize
the implicit synchronization between the cards. In addition, extensions to more than
two boards seem feasible.

Initial academic work on the utilization of GPU clusters for parallel visualiza-
tion [28, 15, 9] and computing [8, 5] also exists. Clearly, these approaches carry with
them the same complexity as do CPU clusters. In particular, the considerations on
partitioning and dynamic load balancing in [31] apply. The communication is even
more complicated, because the cluster interconnects transport the data to the main
memory and there is another stage of indirection in exchanging this data with the
video memory of the graphics cards. In addition, once we are willing to pay the price
of the comparably slow data transport between the graphics card and the main mem-
ory, it makes sense to involve the CPU in the processing too. We see the cluster as
eventually being a pool of heterogenous processors with different computing para-
digms and interconnects between them. While future graphics APIs will address the
topics of job sharing and multiple GPUs and research on heterogeneous computer
systems in general is ongoing, the efficient utilization of all available resources in
GPU clusters is likely to remain a challenge for a long time.

3 Graphics Processor Units: New Prospects for Parallel Computing 121

3.5 Appendix: GPUs In-Depth

Graphics hardware has undergone a rapid development over the last 10 years. Start-
ing as a primitive drawing device, it is now a major computing resource. We here
outline the technological development, the logic layout of the graphics pipeline, a
rough classification of the different hardware generations, and the high-level pro-
gramming languages.

3.5.1 Development

Up to the early 1990s, standard graphics cards were fairly unimpressive devices
from a computational point of view, although having 16 colors in a 640x350 dis-
play (EGA) as opposed to four colors in a 320x200 display (CGA) did make a big
difference. Initially, the cards were only responsible for the display of a pixel ar-
ray prepared by the CPU. The first available effects included the fast changing of
color tables, which enabled color animations and the apparent blending of images.
Then the cards started to be able to process 2D drawing commands and some offered
additional features, such as video frame grabbing or multi-display support.

The revolutionary performance increase of graphics cards started in the mid
1990s, with the availability of graphics accelerators for 3D geometry processing. The
already well-established game market welcomed this additional processing power
with open arms and soon no graphics card would sell without 3D acceleration fea-
tures. Since then, the GPU has taken over more and more computational tasks from
the CPU. The performance of GPUs has grown much faster than that of CPUs, dou-
bling performance approximately every nine months, which is the equivalent of a
’Moore’s Law squared’.

During the late 1990s the number of GPU manufacturers decreased radically, at
least for PC graphics cards. Although other companies are trying to gain or regain
ground in the market, NVIDIA and ATI have clearly been dominant, both in perfor-
mance and market shares, for several years now. Hence, the following discussions we
cite primarily their products. Concerning the market, we should mention that actu-
ally Intel is the largest producer of graphics chips, in the form of integrated chip-sets.
However, these are inexpensive products and rank low on the performance scale, so
we will deal only with stand-alone GPUs on graphics cards.

Together with the reduction of GPU designers, the number of different APIs to
access their functionality has also decreased. The OpenGL API and the Direct X
API are the survivors. The API guarantees that despite the different hardware in-
ternals of GPUs from different companies, the programmer can access a common
set of operations through the same software interface, namely the API. The propri-
etary graphics driver is responsible for translating the API calls into the proprietary
commands understood by the specific GPU. In this respect, the API is similar to an
operating system, which also abstracts the underlying hardware for the programmer
and offers standardized access to its functionality, although an operating system does
more than that.

122 M. Rumpf and R. Strzodka

If the hardware offers new features and is downward compatible, an old API still
functions, but it lacks the new functionality. However, the use of new features in a
new API results in an incompatibility with older hardware. Therefore, programmers
are reluctant to use new features as long as they expect a significant demand for their
applications on older hardware. The hardware vendor can promote the use of the new
API by emulating the new hardware features in software on older systems, but this
may turn out very demanding or impractical if the software emulation is too slow.
So, in practice, programmers opt to assume very low requirements for the hardware
and ignore incompatibility issues. Only the time-critical parts of the code are some-
times implemented for each hardware standard separately and chosen dynamically
upon identification of the hardware. The above applies both to programs for different
versions of an operating system and programs (mainly games) for different versions
of graphics APIs. However, graphics hardware has evolved much quicker and game
performance is often a critical factor, such that the changes of API versions and the
lowest common requirements are moving faster than in the CPU market.

OpenGL and Direct X have been incorporating the quickly evolving feature set
of GPUs differently. OpenGL uses a very flexible extension system. Each vendor can
expose the whole functionality of its hardware product by proprietary extensions to
the API. The OpenGL ARB [24], which includes the main players in the graphics
field, helps in the standardization of these extensions to prevent the undermining of
the common interface idea through too many incompatible proprietary extensions. In
practice, the proprietary extensions appear first and then the standard access points
evolve over time. The different versions of Direct X on the other hand, are prescribed
by Microsoft and thus simply define a fixed set of requirements. Naturally, these re-
quirements are discussed with the GPU designers beforehand. If the hardware su-
persedes them quantitatively, then Direct X often allows the use of these additional
resources, but qualitatively new features have to wait for the next generation of APIs.
So, we may say that the Direct X API changes more or less step in step with the new
graphics hardware generations, while OpenGL evolves continuously, first on pro-
prietary and subsequently on ARB paths. Currently, OpenGL is undergoing its first
major revision since 1992, from the 1.x versions to version 2.0 [24] in an attempt to
include many of the already well-established and new extensions into the core and
prepare the API for future developments.

3.5.2 Graphics Pipeline

The Graphics Processor Unit (GPU), the central computational chip on a graphics
card, may be seen as a restricted form of a stream processor (see Section 3.1.2). Via a
set of commands, a particular state of the graphics pipeline in the GPU is configured
and then data streams are sent through that pipeline. The output stream is visualized
on the screen or resent through the pipeline after a possible reconfiguration. Although
graphics cards have not, in the past, been seen in this context, current developments
show a clear tendency towards the production of a general parallel computing device.

A schematic view of the graphics pipeline is presented in Figure 3.5. The abstrac-
tion omits some details but offers a clear perspective on the available functionality.

3 Graphics Processor Units: New Prospects for Parallel Computing 123

textures Rasterizer

vertex
data

vertex
data

vertex
data

Vertex
Tests

Blending
Fragment Fragment

Tests

Primitive
Assemblydata

buffer

vertex

frame

values

Vertex
Processor

Processor
Fragment

fragments

primitives

fragmentsfragments fragments

values

Fig. 3.5. A diagram of the graphics pipeline. Light gray represents data containers, dark gray
processing units. The emphasized VP and FP are the units that evolved most in the graphics
pipeline over the years, up to the stage where they accept freely programmable shader pro-
grams as configurations. Actually, the names VP and FP refer only to the new programmable
pipeline stages, but the older functionality was located in the same place.
The thick arrow from the textures to the FP represents the largest data streams in the pipeline.
Accordingly, the FP consumes the majority of resources in a GPU. The access to textures from
the VP is a recent feature, as is the upcoming full interchangeability of the data containers in
the pipeline, which allows a 2D data array to serve as an array of vertex data, a texture, or a
destination buffer within the frame-buffer.

The logical pipeline has remained basically the same during the evolution of graphics
hardware and changes can be identified by the increased flexibility and functionality
of the individual components. Let us describe the operational tasks of the individual
components:

• Vertex data
We need an array that defines the geometry of the objects to be rendered. Beside
the vertex coordinates, the vertex data may also contain color, normal and tex-
ture coordinate information (and a few more parameters). Although the data may
be specified with one to four components, both coordinates (XYZW) and colors
(RGBA) are internally always processed as 4-vectors. During the evolution of
graphics hardware, it was principally the choices for the places where the vertex
data can be stored (cacheable, AGP or video memory) and the efficiency of han-
dling that data that increased. Modern VBOs allow us to specify the intended use
and let the graphics driver decide which type of memory is ideally suited for the
given purpose.

• Vertex Processor (VP)
The VP manipulates the data associated with each vertex individually. Over the

124 M. Rumpf and R. Strzodka

years, the number of possible operations has increased dramatically. In the begin-
ning, only multiplications with predefined matrices could be performed. Nowa-
days, the VP runs shader programs on the vertex data and the new generation has
a restricted texture access from the VP. However, each vertex is still processed
individually without any implicit knowledge about the preceding or succeeding
vertices.

• Vertex tests
Vertex tests determine the further processing of geometric primitives on the ver-
tex level. They include mainly back-face culling, which eliminates polygons fac-
ing backwards (if the object is opaque one cannot see its back) and clipping,
which determines the visible 3D space with an intersection of several 3D half
spaces, defined by clipping planes. The vertex tests are still controlled by pa-
rameters and there have been only quantitative improvements in the number of
clipping planes over time.

• Primitive assembly, rasterizer
The geometric primitives that can be rendered are points, line segments, trian-
gles, quads and polygons. Each vertex is processed individually and the clipping
of primitives may introduce new vertices such that primitives have to be reassem-
bled before rasterization. In addition, for simplicity, the rasterizer in many graph-
ics architectures operates exclusively on triangles, so other primitives must be
converted into a set of triangles before processing. Given a triangle and the ver-
tex data associated with each of its vertices, the rasterizer interpolates the data
for all the pixels inside the triangle. The resulting data associated with a pixel po-
sition is called a fragment. The rasterization could be controlled with parameters,
for example defining patterns for lines or the interior of objects.

• Textures
Textures are user-defined 1D to 4D (typically 2D) data arrangements stored in the
video memory of the graphics card. Their elements, which can have up to four
components (RGBA), are called texels. In general, the dimensions of all textures
had to be powers of 2, but now there exists a general extension for textures with
other dimensions.
Input images of a problem are usually represented as textures on the graphics
card and their values are processed by the FP and fragment blending. Over the
years, quantitative improvements of textures have included their maximal num-
ber, their maximal size and the precision of the used fixed-point number format.
Qualitative improvements are the support of various dimensionalities, the differ-
ent access modes, the floating-point number format, and flexibility in the creation
and reuse of texture data in different contexts. From the modern point of view,
textures represent just a special use of data arrays that can serve as input to the FP
(texture mode), as the destination for the output stream of the graphics pipeline
(output mode), or even as an array defining vertex data (vertex mode).

• Fragment Processor (FP)
The FP manipulates the individual fragments. Similarly to the way in which ver-
tices are processed, each fragment is processed independently of the others in the

3 Graphics Processor Units: New Prospects for Parallel Computing 125

same data stream. With the interpolated texture coordinates, the FP can access ad-
ditional data from textures. The functionality of the FP has improved enormously
over the years. In a qualitative sense, the range of available access modes of tex-
ture data and operations on these values in the FP has grown rapidly, culminating
in a FP controlled by assembly or high-level code with access to arbitrary texture
positions and a rich set of mathematical and control operations. In a quantitative
sense, the number of accessible textures and the number of admissible fragment
operations has increased significantly.

• Frame-buffer
The frame-buffer is the 2D destination of the output data stream. It contains dif-
ferent buffers of the same dimensions for the color, depth and stencil (and accu-
mulation) values. Not all buffers need to be present at once. In addition, while
each buffer allows certain data formats, some combinations may not be available.
There exists at least one color buffer, but typically there is a front buffer, which
contains the scene displayed on the screen, and a back buffer, where the scene
is built up. Over the years, it has mainly been the maximal size, the number and
the precision of the buffers that has increased. A recent development, already
sketched in the discussion of textures, regards the frame-buffer as an abstract
frame for a collection of equally-sized 2D data arrays. After rendering, the same
2D data arrays may be used as textures or vertex data.

• Fragment tests
Equivalent to the vertex tests for vertices, the fragment tests determine whether
the current fragment should be processed further or discarded. However, the frag-
ment tests are more numerous and powerful than the vertex tests and some of
them allow a comparison against the values stored at the associated pixel position
of the fragment in the depth or stencil buffer, and also a restricted manipulation
of these values, depending on the outcome of the tests. Because they access the
frame-buffer directly their functionality cannot be realized in one pass, even in
the newest FP.

• Fragment blending
Before the FP became a powerful computational resource, computations were
mainly performed by different blending modes. The blending operation combines
the color value of the fragment with the color value in the color buffer, controlled
by weighting factors and the blending mode. For instance, the blending operation
can be a convex combination of the values using a certain weight. Blending has
become less popular in recent years, because on most GPUs it has not supported
the higher precision number formats, while the much more powerful FP does.
However, currently, support for higher precision blending is increasing again.
The advantage of blending is the direct access to the destination value in the
frame-buffer, which is not supported by the FP on most GPUs.
The blending modes are continuous functions of the input values. In addition,
logical operations can be performed at the end of the pipeline, but these are

126 M. Rumpf and R. Strzodka

seldom used, because they have received no hardware support from the manu-
facturers of GPU.

As outlined in Section 3.1.3, for general purpose computations the FP is the most
relevant part of the pipeline. The VP can be often used to reduce the workload of
the FP by precomputing data that depends bilinearly on the vertex data across the
domain, e.g. positions of node neighbors in a regular grid. The vertex and fragment
tests are useful for masking out certain regions of the computational domain for spe-
cial treatment and fragment blending can be used for a fast and simple combination
of the output value with the destination value, e.g. accumulation.

3.5.3 Classification

Because of the almost synchronous evolution of the Direct X API and the generations
of graphics hardware in recent years, it is easiest to classify GPUs according to the
highest version of Direc tX that they support. In fact, it is only the Direct3D API that
concerns us, but Microsoft releases the different APIs in a bundle, so it is usually
the version of the whole release that is referred to. From Direct X 8 on, it is possible
to differentiate the versions further by the functionality of the Vertex Shaders (VSs),
which configure the VP, and the Pixel Shaders (PSs), which configure the FP. This
Direct X (DX), VS, PS classification is useful, even if the OpenGL API is used for the
implementation, because in contrast to Direct X, OpenGL evolves continuously with
the introduction of individual extensions. In what follows, we provide an overview of
the recent graphics hardware generations and list some typical representatives. The
paragraphs point out the main functionality associated with the VS1 to VS3 and PS1
to PS3 shader models.

• Direct X 8 (VS1, PS1) GPUs, 2001-2002,
e.g. 3DLabs Wildcat VP, Matrox Parhelia 512 (VS2, PS1), NVIDIA GeForce 3/4, ATI
Radeon 8500.

These GPUs introduced programmability to the graphics pipeline, i.e. assembly
programs for the VP and highly restricted programs for the FP. However, the
number formats were still restricted to low-precision fixed-point number systems.

• Direct X 9 (VS2, PS2) GPUs, 2002-2004,
e.g. S3 DeltaChrome S8, XGI Volari Duo V8, NVIDIA GeForceFX 5800/5900, ATI
Radeon 9700/9800.

Direct X 9 is the current standard. With these GPUs, floating-point number
formats appear. The programmability of the VP gains function calls, dynamic
branching and looping. The PS2 model finally allows freely programmable code
for the FP. High-level languages (HLSL, GLSL, Cg) facilitate the programming
of the VP and FP.

• Direct X 9+ (VS2-VS3, PS2-PS3) GPUs, 2004,
e.g. 3DLabs Wildcat Realizm (VS2, PS3), NVIDIA GeForce 6800 (VS3, PS3), ATI
Radeon X800 (VS2, PS2).

In the VS3 model, the VP gains additional functionality in the form of restricted

3 Graphics Processor Units: New Prospects for Parallel Computing 127

Table 3.2. The number of supported instructions in the VP and FP for the different shader
models.

VS1 VS2+loops VS3+loops PS1 PS2 PS3 WGF
128 256 512-32768 8-14 96-512 512-32768 unlimited

texture access and more functionality for register indexing. The PS3 FP now also
supports the features of function calls and restricted forms of dynamic branching,
looping and variable indexing of texture coordinates.

• WGF 2, 2006?
The next Windows generation (Longhorn [22]) will contain a new Windows spe-
cific graphics interface labeled WGF. The main expected features are a unified
shader model, resource virtualization, better handling of state changes, and a gen-
eral IO model for data streams. Future GPU generations will probably support
all these features in hardware. See Section 3.4.1 for a more detailed discussion.

The number of supported instructions in the VP and FP for the different shader
models is given in Table 3.2.
This classification shows a clear tendency of GPUs to be developing in the direc-
tion of a general parallel computing device. Clearly, the WGF functionality will of-
fer more flexibility than the current APIs, but this should not deter the reader from
working with the current standard Direct X 9 (VS2, PS2), because it is expected to
be the baseline functionality for many years to come.

3.5.4 Programming Languages

With the advent of a fully programmable pipeline in Direct X 9, three high-level
languages for the programming of shaders, i.e. VP and FP configurations, appeared.
The differences between them are fairly small and stem from the underlying graphics
Application Programming Interface (API).

• Direct X - HLSL
msdn.microsoft.com/library/default.asp?url=/library/
en-us/directx9 c/directx/graphics/ProgrammingGuide/
ProgrammablePipeline/HLSL/ProgrammableHLSLShaders.asp

The HLSL is used to define shaders for the VP and FP under Direct X. Usually,
the shaders are configured directly with the high-level code, but the compiler
can also be instructed to output the generated assembly code as vertex or pixel
shaders. If desired, the assembly code can be changed or written from scratch,
but this option will probably disappear in the future.

• OpenGL - GLSL
www.opengl.org/documentation/oglsl.html

In GLSL, shaders are defined for the VP and FP under OpenGL. Different exten-
sions also allow the use of assembly code for the configuration. There exist ARB

128 M. Rumpf and R. Strzodka

extensions, which cover the common set of functionality among the different
GPUs, and proprietary extensions, which expose additional features. However,
the direct use of assembly code has become uncommon, because the GLSL com-
piler embedded in the graphics driver offers automatic optimization towards the
specific GPU in use.

• Direct X, OpenGL - Cg
developer.nvidia.com/page/cg main.html

Cg follows the same idea as HLSL and GLSL; namely, to allow high-level con-
figuration of the VP and FP. However, Cg as such is independent of the particular
graphics API used. The compiler can generate code for different hardware pro-
files. The profiles comprise different versions of the vertex and pixel shaders
under Direct X and different versions of the vertex and fragment shaders under
OpenGL. So, plugging the generated assembly code into the appropriate API
slots establishes the desired configuration. To hide this intermediate layer, the Cg
Toolkit also provides an API that accepts Cg code directly. To the programmer,
it looks as though Direct X and OpenGL have a native Cg interface, just as they
have a HLSL or GLSL one, respectively.

As the languages are very similar, the reader may wonder why there is any differ-
ence between them at all. They differ because the languages were not released at
the same time and, more importantly, a smoother integration into the existing APIs
was desired. Clearly, a common interface would have been nicer, since even slightly
different syntax disturbs the work flow. It is to be hoped that there will be more stan-
dardization in the future. In the meantime, we encourage the reader to be pragmatic
about the choice of languages and other resources (see Section 3.3.6).

In Section 3.1.3 we saw that the coding of the shaders is only one part of the
work. In addition, the pipeline with the shaders and textures must be configured, and
the geometry to be rendered must be defined. Hence, more information is needed to
obtain the same result from the same shader. The Direct X FX and the Cg FX for
Direct X and OpenGL formats allow this additional information to be stored. Appro-
priate API calls set up the entire environment to implement the desired functionality.
These formats can also include alternative implementations for the same operation,
e.g. to account for different hardware functionality. The only problem with these
convenient tools is that in a foolproof solution, unnecessarily many state calls may
be provided, even though the required changes from one operation to another are
minimal.

A more general approach to GPU programming is to use stream languages that
are not targeted directly at the VP and FP but, rather, at the underlying data-stream-
based (DSB) processing concept. A compiler generates machine-independent inter-
mediate code from the stream program. Then, back-ends for different hardware plat-
forms map this code to the available functionality and interfaces. This generality is
very attractive, but it does not mean that the stream program can be written without
any consideration of the chosen hardware platform. Some language features might be
difficult to realize on certain hardware and would lead to a significant performance
loss. In these cases, less optimal solutions that avoid these features must be chosen.

3 Graphics Processor Units: New Prospects for Parallel Computing 129

Using code that is more hardware-specific clearly delivers better performance, but
nobody opts for coding everything on the lowest level. Hence, offering a trade-off
between performance and abstraction to the programmer makes sense. We sketch
two prominent stream languages with a focus on GPUs.

• Sh - University of Waterloo
libsh.org

Sh uses the C++ language for the meta-programming of stream code. This has
the advantage that the C++ language features are immediately available and the
compiler does the necessary analysis and code processing. In addition, it ad-
dresses the above-mentioned problem of the specification of an appropriate ac-
companying graphics environment to the shaders. Sh allows a direct interaction
of shader definition with texture and state configuration. With a fast compilation
process, dynamic manipulation of the stream code is feasible. Another advantage
of working within the familiar C++ environment is the potential for incremental
introduction of GPU usage into suitable existing software. We say suitable, be-
cause the processing of many of the general methods of organizing data, such as
trees, lists or even stacks, are difficult to accelerate on GPUs. Current back-ends
support GPUs under OpenGL and different CPUs.

• Brook - Stanford University
www.graphics.stanford.edu/projects/brookgpu

The Brook language is based on the concepts of streams and kernels. It is an
abstraction of the data streams and shaders of GPUs. This abstraction frees us
from the entire consideration of texture handling and geometry processing. In
particular, it breaks the emphasis on rendering passes. The focus is on the ac-
tual data and its processing. Hardware virtualization also overcomes the limits
that the graphics API places on the number of bound textures, their sizes and
types of manipulation. However, for the generation of efficient code, program-
mers must be aware of which features map well to the hardware and which re-
quire costly workarounds. The richer feature set is well-suited for the develop-
ment and simulation of programs that assume additional hardware functionality
in future GPUs. Current back-ends support GPUs under Direct X and OpenGL,
and different CPUs.

The code examples in this chapter use the OpenGL API and the Cg language. For
someone new to graphics programming, the use of the stream languages, which al-
ready include a lot of abstraction, would make the examples look simpler. We have
chosen a medium level of abstraction to illustrate how efficient programming de-
pends on the hardware characteristics of GPUs. This understanding is equally impor-
tant for the more abstract approaches to GPU programming, because the abstraction
does not free the programmer from considering the hardware characteristics during
the implementation. Similarly, the abstraction offered by MPI for parallel computers
presumes implicit knowledge about the architecture and its functionality. Neverthe-
less, the higher abstraction is very attractive, because the stream languages preserve
the main performance characteristics of GPUs by construction. In practice, the type

130 M. Rumpf and R. Strzodka

of problem still determines whether it really is possible to obtain an efficient imple-
mentation on the high level. However, the stream languages are under active devel-
opment and are extending their ’domain of efficiency’ continuously. We recommend
that the reader follow the links provided above for the download of the language
libraries and detailed documentation.

Acronyms

AGP Accelerated Graphics Port
API Application Programming Interface
ARB Architectural Review Board
Cg C for graphics (high-level language)
CPU Central Processor Unit
DDR Double Data Rate (memory)
DSB data-stream-based
DX Direct X
FP Fragment Processor
GLSL OpenGL Shading Language
GPU Graphics Processor Unit
GUI Graphics User Interface
HLSL Direct X High-Level Shading Language
IDE Integrated Development Environment
ISB instruction-stream-based
MIMD Multiple Instruction Multiple Data
MPI Message Passing Interface
MRT Multiple Render Target
PBO Pixel Buffer Object
PCI Peripheral Component Interconnect
PCIe PCI Express
PDE partial differential equation
PE processing element
PS Pixel Shader
SDK Software Development Kit
SIMD Single Instruction Multiple Data
VBO Vertex Buffer Object
VP Vertex Processor
VS Vertex Shader
WGF Windows Graphics Foundation

3 Graphics Processor Units: New Prospects for Parallel Computing 131

References

1. Alienware. Alienware’s Video Array.
http://www.alienware.com/alx pages/main content.aspx.

2. C. Bajaj, I. Ihm, J. Min, and J. Oh. SIMD optimization of linear expressions for program-
mable graphics hardware. Computer Graphics Forum, 23(4), Dec 2004.

3. J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid. In Proceedings of SIGGRAPH 2003, 2003.

4. G. Coombe, M. J. Harris, and A. Lastra. Radiosity on graphics hardware. In Proceedings
Graphics Interface 2004, 2004.

5. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for high performance
computing. In Proceedings of the ACM/IEEE SuperComputing 2004 (SC’04), Nov 2004.

6. K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of GPU algo-
rithms for matrix-matrix multiplication. In Graphics Hardware 2004, 2004.

7. R. Fernando, editor. GPU Gems: Programming Techniques, Tips, and Tricks for Real-
Time Graphics. Addison-Wesley Professional, 2004.

8. J. Fung and S. Mann. Using multiple graphics cards as a general purpose parallel com-
puter : Applications to computer vision. In Proceedings of the 17th International Confer-
ence on Pattern Recognition (ICPR 2004), volume 1, pages 805–808, 2004.

9. N. K. Govindaraju, A. Sud, S.-E. Yoon, and D. Manocha. Interactive visibility culling
in complex environments using occlusion-switches. In ACM SIGGRAPH Symposium on
Interactive 3D Graphics, 2003.

10. GPGPU - general purpose computation using graphics hardware.
http://www.gpgpu.org/.

11. M. Harris. Real-Time Cloud Simulation and Rendering. PhD thesis, UNC Chapel Hill,
Sep. 2003.

12. M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-based visual simula-
tion on graphics hardware. In Proceedings of Graphics Hardware 2002, pages 109–118,
2002.

13. R. Hartenstein. Data-stream-based computing: Models and architectural resources. In
International Conference on Microelectronics, Devices and Materials (MIDEM 2003),
Ptuj, Slovenia, Oct. 2003.

14. R. Hill, J. Fung, and S. Mann. Reality window manager: A user interface for mediated
reality. In Proceedings of the 2004 IEEE International Conference on Image Processing
(ICIP 2004), 2004.

15. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T.
Klosowski. Chromium: a stream-processing framework for interactive rendering on clus-
ters. In SIGGRAPH’02, pages 693–702, 2002.

16. R. A. Kendall, M. Sosonkina, W. D. Gropp, R. W. Numrich, and T. Sterling. Parallel
programming models applicable to cluster computing and beyond. In A. M. Bruaset and
A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel Com-
puters, volume 51 of Lecture Notes in Computational Science and Engineering, pages
3–54. Springer-Verlag, 2005.

17. T. Kim and M. Lin. Visual simulation of ice crystal growth. In Proc. ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 2003.

18. P. Kipfer, M. Segal, and R. Westermann. UberFlow: A GPU-based particle engine. In
Graphics Hardware 2004, 2004.

19. J. Krueger and R. Westermann. Linear algebra operators for GPU implementation of
numerical algorithms. ACM Transactions on Graphics (TOG), 22(3):908–916, 2003.

132 M. Rumpf and R. Strzodka

20. A. Lefohn, J. Kniss, C. Handen, and R. Whitaker. Interactive visualization and deforma-
tion of level set surfaces using graphics hardware. In Proc. Visualization, pages 73–82.
IEEE CS Press, 2003.

21. W. Li, X. Wei, and A. Kaufman. Implementing Lattice Boltzmann computation on graph-
ics hardware. The Visual Computer, 2003.

22. Microsoft. Longhorn Developer Center.
http://msdn.microsoft.com/longhorn.

23. NVIDIA. NVIDIA scalable link interface (SLI). http://www.nvidia.com/page/
sli.html.

24. OpenGL Architectural Review Board (ARB). OpenGL: graphics application program-
ming interface. http://www.opengl.org/.

25. M. Pharr and R. Fernando, editors. GPU Gems 2 : Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley Profes-
sional, 2005.

26. M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware. In Proceedings
ICIP’01, volume 3, pages 1103–1106, 2001.

27. M. Rumpf and R. Strzodka. Using graphics cards for quantized FEM computations. In
Proceedings VIIP’01, pages 193–202, 2001.

28. R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-first and sort-last parallel
rendering with a cluster of PCs. In Proceedings of SIGGRAPH/Eurographics Workshop
on Graphics Hardware 2000, pages 97–108, 2000.

29. R. Strzodka, M. Droske, and M. Rumpf. Image registration by a regularized gradient flow
- a streaming implementation in DX9 graphics hardware. Computing, 2004. to appear.

30. R. Strzodka and A. Telea. Generalized distance transforms and skeletons in graphics
hardware. In Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym ’04,
2004.

31. J. D. Teresco, K. D. Devine, and J. E. Flaherty. Partitioning and dynamic load balanc-
ing for the numerical solution of partial differential equations. In A. M. Bruaset and
A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel Com-
puters, volume 51 of Lecture Notes in Computational Science and Engineering, pages
55–88. Springer-Verlag, 2005.

32. M. Wilkes. The memory gap (keynote). In Solving the Memory Wall Problem Workshop,
2000. http://www.ece.neu.edu/conf/wall2k/wilkes1.pdf.

Part II

Parallel Algorithms

4

Domain Decomposition Techniques

Luca Formaggia1, Marzio Sala2, and Fausto Saleri1

1 MOX, Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Italy
[luca.formaggia,fausto.saleri]@polimi.it

2 Sandia National Laboratories, Albuquerque, USA
msala@sandia.gov

Summary. We introduce some parallel domain decomposition preconditioners for iterative
solution of sparse linear systems like those arising from the approximation of partial differ-
ential equations by finite elements or finite volumes. We first give an overview of algebraic
domain decomposition techniques. We then introduce a preconditioner based on a multilevel
approximate Schur complement system. Then we present a Schwarz-based preconditioner
augmented by an algebraic coarse correction operator. Being the definition of a coarse grid
a difficult task on unstructured meshes, we propose a general framework to build a coarse
operator by using an agglomeration procedure that operates directly on the matrix entries. Nu-
merical results are presented aimed at assessing and comparing the effectiveness of the two
methodologies. The main application will concern computational fluid dynamics (CFD), and
in particular the simulation of compressible flow around aeronautical configurations.

4.1 Introduction

Modern supercomputers are often organized as a distributed environment and an effi-
cient solver for partial differential equations (PDEs) should exploit this architectural
framework. Domain decomposition (DD) techniques are a natural setting to imple-
ment existing single processor algorithm in a parallel context.

The basic idea, as the name goes, is to decompose the original computational do-
main Ω into subdomains Ωi, i = 1,M , which may or may not overlap, and then
rewrite the global problem as a “sum” of contributions coming from each subdomain,
which may be computed in parallel. Parallel computing is achieved by distributing
the subdomain to the available processors; often, the number of subdomains equals
the number of processors, even if this is not, in general, a requirement. Clearly one
cannot achieve a perfect (ideal) parallelism, since interface conditions between sub-
domains are necessary to recover the original problem, which introduce the need of
inter-processor communications. The concept of parallel efficiency is clearly stated
for the case of homogeneous systems (see [13]). An important concept is that of scal-
ability: an algorithm is scalable if its performance is proportional to the number of
processor employed. For the definition to make sense we should keep the processor

136 L. Formaggia et al.

workload approximately constant, so the problem size has to grow proportionally to
the number of processor.

This definition is only qualitative and indeed there is not a quantitative defini-
tion of scalability which is universally accepted, and a number of scalability models
proposed in the last years [14]. They are typically based on the selection of a mea-
sure which is used to characterize the performance of the algorithm, see for instance
[22, 23, 11]. We may consider the algorithm scalable if the ratio between the perfor-
mance measure and the number of processors is sub-linear. In fact, the ideal value
of this ratio would be 1. Yet, since this ideal value cannot be reached in practice, a
certain degradation should be tolerated.

Typical quantities that have been proposed to measure system performance in-
clude CPU time, latency time, memory, etc. From the user point of view, global
execution time is probably the most relevant measure. A possible definition is the
following. If E(s,N) indicates the execution time for a problem of size s when
using N processor on a given algorithm, then the scalability from N to M > N
processors is given by

SM,N =
E(Mγ,M)
E(Nγ,N)

,

where γ is the size of the problem on a single processor.
A few factors may determine the loss of scalability of a parallel code: the cost

of inter-processor communication; the portion of code that has to be performed in
a scalar fashion, may be replicated on each processor (for instance i/o if your hard-
ware does not support parallel i/o). A third factor is related to a possible degradation
of the parallel algorithm as the number of subdomain increases. In this work we
will address exclusively the latter aspect, the analysis of the other two being highly
dependent on the hardware. In particular, since we will be concerned with the so-
lution of linear systems by parallel iterative schemes, the condition number of the
parallel solver [17] is the most important measure related to the algorithm scalability
properties. In this context, the algorithm is scalable if the condition number remains
(approximately) constant as the ratio between problem size and number of subdo-
mains is kept constant. In a domain decomposition method applied to the solution
of PDE’s (by finite volumes or finite elements) in R

d this ratio is proportional to
(H/h)d, being H and h the subdomain and mesh linear dimension, respectively. We
are assuming a partition with subdomains of (approximately) the same size and a
quasi-uniform mesh.

Domain decomposition methods may be classified into two main groups [17, 21].
The first includes methods that operate on the differential problem, we will call them
differential domain decomposition methods. Here, a differential problem equivalent
to the single domain one is written on the decomposed domain. Conditions at the
interface between subdomains are recast as boundary conditions for local differen-
tial problems on each Ωi. Then, the discretisation process is carried out on each
subdomain independently (even by using different discretisation methods, if this is
considered appropriate).

The second group includes the DD techniques that operates at the algebraic level.
In this case the discretisation is performed (at least formally) on the original, single

4 Domain Decomposition Techniques 137

domain, problem and the decomposition process is applied on the resulting algebraic
system. The latter technique has the advantage of being “problem independent” and
may often be interpreted as a preconditioner of the global solver. The former, how-
ever, may better exploit the characteristics of the differential problem to hand and
allows to treat problems of heterogeneous type more naturally. We refer to the rele-
vant chapter in [17] for more insights on heterogeneous DD techniques.

In this chapter, we deal with DD schemes of algebraic type. In particular, we
address methods suited to general problems, capable of operating on unstructured
mesh based discretisations. For a more general overview of the DD method the reader
may refer to the already cited literature, the review paper [5] and the recent mono-
graph [25].

We will focus on domain decomposition techniques that can be applied to the
numerical solution of PDEs on complex, possibly three dimensional, domains. We
will also consider discretisations by finite element or finite volume techniques, on
unstructured meshes. The final result of the discretisation procedure is eventually a
large, sparse linear system of the type

Au = f , (4.1)

where A ∈ R
n×n is a sparse and often non-symmetric and ill conditioned real ma-

trix. Indeed, also non-linear problems are usually treated by an iterative procedure
(e.g. a Newton iteration) that leads to the solution of a linear system at each iteration.
This is the case, for instance, of implicit time-advancing schemes for computational
fluid dynamics (CFD) problems.

The decomposition of the domain will induce a corresponding block decompo-
sition of the matrix A and of the vector f . This decomposition may be exploited to
derive special parallel solution procedures, or parallel preconditioners for iterative
schemes for the solution of system (4.1). Perhaps the simplest preconditioner is ob-
tained using a block-Jacobi procedure, where each block is allocated to a processor
and is possibly approximated by an incomplete factorization [18] (since usually an
exact factorization is too expensive). This approach may work well for simple prob-
lems, yet its performance degrades rapidly as the size of the matrix increases, lead-
ing to poor scalability properties. Other popular techniques are the Schwarz methods
with a coarse grid correction [2] and the preconditioners based on the Schur com-
plement system, like the balancing Neumann/Neumann [24], the FETI [10, 25] and
the wire-basket method [1, 21]. In this work we will address preconditioners based
either on an approximate Schur complement (SC) system or on Schwarz techniques,
because of their generality and relatively simple implementation.

Schwarz iterations is surely one of the DD based parallel preconditioner with
the simplest structure. In its basic form, it is equivalent to a block-Jacobi precon-
ditioner, where each block is identified by the set of unknowns contained in each
subdomain. In order to improve the performance of Schwarz iterations, the parti-
tions of the original domain are extended, so that they overlap and the overlapping
region acts as means of communication among the subdomains. In practice, the do-
main subdivision is commonly carried out at discrete level, that is by partitioning

138 L. Formaggia et al.

the computational mesh. In the minimal overlap version of the Schwarz method the
overlap between subdomains is reduced to a single layer of elements. Although a
bigger overlap may improve convergence, a minimal overlap allows to use the same
data structure normally used for the parallel matrix-vector multiplication, thus saving
memory. However, the scalability is scarce and a possible cure consists in augment-
ing the preconditioner by a coarse operator, either in an additive or in a multiplicative
fashion [21] . The coarse operator may be formed by discretising the problem to hand
on a much coarser mesh. The conditions by which a coarse mesh is admissible and is
able to provide an appropriate coarse operator have been investigated in [3]. Another
possible way to construct the coarse operator is to form a reduced matrix by resort-
ing to a purely algebraic procedure [28, 20]. We will here describe a rather general
setting for the construction of the coarse operator.

The set up of the Schur complement system in a parallel setting is only slightly
more involved. The major issue here is the need of preconditioning the Schur comple-
ment system in order to avoid the degradation of the condition number as the number
of subdomain increases. We will here present a technique to build preconditioners for
the Schur complement system starting from a preconditioner of the original problem.

The chapter is organized as follows. Schur complement methods are introduced
in Sections 4.2 and 4.3. Schwarz methods are detailed in Section 4.4. Numerical re-
sults for a model problem and for the solution of the compressible Euler equations are
presented in Section 4.5. Section 4.6 gives some further remarks on the techniques
that have been presented.

4.2 The Schur Complement System

Let us consider again (4.1) which we suppose has been derived by a finite element
discretisation of a differential problem posed on a domainΩ ⊂ R

d, d = 2, 3. Indeed,
the considerations of this Section may be extended to other type of discretisations as
well, for instance finite volumes, yet we will here focus on a finite element setting.
More precisely, we can think of (4.1) as being the algebraic counterpart of a varia-
tional boundary value problem which reads: find uh ∈ Vh such that

a (uh, vh) = (f, vh) ∀vh ∈ Vh , (4.2)

where Vh is a finite element space, a the bilinear form associated to the differential
problem to hand and (f, v) =

∫
Ω
fvdΩ is the standard L2 product.

We consider a decomposition of the domain Ω made in the following way. We
first triangulate Ω and indicate by T (Ω)

h the corresponding mesh. For the sake of
simplicity we assume that the boundary of Ω coincides with the boundary of the
triangulation and we consider the case where the degrees of freedom of the discrete
problem are located at mesh vertices, like in linear finite elements. In particular, a
partition into two subdomains is carried out by splitting T (Ω)

h into 3 parts, namely

T (1)
h , T (2)

h and Γ (1,2) such that T (1)
h ∪ T (2)

h ∪ Γ (1,2) = T (Ω)
h . We may associate

to T (1)
h and T (2)

h the two disjoint subdomains Ω(1) and Ω(2) formed by the interior

4 Domain Decomposition Techniques 139

Ω1

2Ω

(1,2)

Γ 1Ω
Ω 2

(1,2)Γ

Fig. 4.1. Example of element-oriented (left) and vertex-oriented (right) decomposition.

of the union of the elements of T (1)
h and T (2)

h respectively, while Γ (1,2) ≡ Γ (2,1) is
clearly equal to Ω \ (Ω(1) ∪Ω(2)).

Two notable cases are normally faced, namely

• Γ (1,2) reduces to a finite number of disjoint measurable d − 1 manifolds. An
example of this situation is illustrated in the left drawing of Figure 4.1, where

Γ (1,2) = Ω
(1)∩Ω(2)

, i.e. Γ (1,2) is the common part of the boundary of Ω(1) and
Ω(2). This type of decomposition is called element oriented (EO) decomposition,

because each element of Th belongs exclusively to one of the subdomains Ω
(i)

,
while the vertices laying on Γ (1,2) are shared between the subdomains triangula-
tions.

• Γ (1,2) ⊂ R
d, d = 2, 3 is formed by one layer of elements of the original mesh

laying between Ω(1) and Ω(2). In Figure 4.1, right, we show an example of such
a decomposition, which is called vertex oriented (VO), because each vertex of

the original mesh belongs to just one of the two subdomains Ω
(i)

. We may also
recognize two extended, overlapping, sub-domains: Ω̃(1) = Ω(1) ∪ Γ (1,2) and
Ω̃(2) = Ω(2) ∪Γ (1,2). We have here the minimal overlap possible. Thicker over-
laps may be obtained by adding more layers of elements to Γ (1,2).

Both decompositions may be readily extended to any number of subdomains, as
shown in Figure 4.2.

The choice of a VO or EO decomposition largely affects the data structures used
by the parallel code. Sometimes, the VO approach is preferred since the transition
region Γ (1,2) may be replicated on the processors which holds Ω(1) and Ω(2) re-
spectively and provides a natural means of data communication among processor
which also allow to implement a parallel matrix-vector product. Furthermore, the lo-
cal matrices may be derived directly from the global matrix A, with no work needed
at the level of the (problem dependent) assembly process. For this reason the VO
technique is also the matter of choice of many parallel linear algebra packages. We
just note that for the sake of simplicity, in this work we are assuming that the graph
of the matrix A coincides with the computational mesh (which is the case of a linear
finite element approximation of a scalar problem). This means that if the element
aij of the matrix is different from zero, then the vertices vi and vj of the computa-
tional mesh are connected by an edge. However, the techniques here proposed may
be generalized quite easily to more general situations.

140 L. Formaggia et al.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X − Axis

Y
 −

 A
xi

s

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X − Axis

Y
 −

 A
xi

s

Fig. 4.2. Example of element-oriented (left) and vertex-oriented (right) decomposition in the
case of a partition of Ω into several subdomains. (For the color version, see Figure A.5 on
page 469).

We now introduce some additional notations. The nodes at the intersection be-
tween subdomains and Γ (1,2) are called border nodes. More precisely, those in
T (i)
h ∩ Γ (1,2) are the border nodes of the domain Ω(i). A node of T (i)

h which is
not a border node is said to be internal to Ω(i), i = 1, 2. We will consistently use
the subscripts I and B to indicate internal and border nodes, respectively, while the
superscript (i) will denote the subdomain we are referring to. Thus, u(i)

I will indicate

the vector of unknowns associated to nodes internal to Ω(i), while u(i)
B is associated

to the border nodes. For ease of notation, in the following we will often avoid to
make a distinction between a domainΩ and its triangulation Th whenever it does not
introduce any ambiguity.

4.2.1 Schur Complement System for EO Domain Decompositions

Let us consider again the left picture of Figure 4.1. For the sake of simplicity, we
assume that the vector u is such that the unknowns associated to the points u(1)

I

internal to Ω(1) are numbered first, followed by those internal to Ω(2) (u(2)
I), and

finally by those on Γ (1,2) (uB = u(1)
B = u(2)

B) (obviously this situation can always
be obtained by an appropriate numbering of the nodes). Consequently, equation (4.1)
can be written in the following block form⎛⎜⎝A

(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)
BI A

(2)
BI A

(1)
BB +A

(2)
BB

⎞⎟⎠
⎛⎜⎝u(1)

I

u(2)
I

uB

⎞⎟⎠ =

⎛⎜⎝f (1)
I

f (2)
I

fB

⎞⎟⎠ . (4.3)

Here, A(i)
II contains the elements of A involving the nodes internal to subdomain

Ω(i), while the elements in A
(i)
IB are formed by the contribution of the boundary

nodes to the rows associated to the internal ones. Conversely, in A(i)
BI we have the

terms that link border nodes with internal ones (for a symmetric matrix A
(i)
BI =

4 Domain Decomposition Techniques 141

A
(i)T

IB). Finally, ABB = A
(1)
BB + A

(2)
BB is the block that involves only border nodes,

which can be split into two parts, each built from the contribution coming from the
corresponding subdomain. For instance, in a finite element procedure we will have

[A(i)
BB]kj = a(φk|Ω(i) , φj |Ω(i)) , (4.4)

where φk, φj are the finite element shape functions associated to border nodes k and
j, respectively, restricted to the subdomain Ω(i) and a is the bilinear form associated
to the differential problem under consideration. An analogous splitting involves the
right hand side fB = f (1)

B + f (2)
B .

A formal LU factorization of (4.3) leads to⎛⎜⎝A
(1)
II 0 0
0 A

(2)
II 0

A
(1)
BI A

(2)
BI I

⎞⎟⎠
⎛⎜⎝I 0 A(1)−1

II A
(1)
IB

0 I A(2)−1

II A
(2)
IB

0 0 Sh

⎞⎟⎠
⎛⎜⎝u(1)

I

u(2)
I

uB

⎞⎟⎠ =

⎛⎜⎝f (1)
I

f (2)
I

fB

⎞⎟⎠ ,

where Sh is the Schur complement (SC) matrix, given by Sh = S
(1)
h + S

(2)
h where

S
(i)
h = A

(i)
BB −A

(i)
BIA

(i)−1

II A
(i)
IB (4.5)

is the contributions associated to the subdomain Ω(i), for i = 1, 2. We may note that
we can solve the system (at least formally) using the following procedure. We first
compute the border values uB by solving

ShuB = g, (4.6)

where g = g(1) + g(2), with

g(i) = f (i)
B −A

(i)
BIA

(i)−1

II f (i)
I , i = 1, 2 .

Then, we build the internal solutions u(i)
I , for i = 1, 2, by solving the two completely

independent linear systems

A
(i)
II u(i)

I = f (i)
I −A

(i)
IBuB , i = 1, 2 . (4.7)

The second step is perfectly parallel. Furthermore, thanks to the splitting of Sh
and g, a parallel iterative scheme for the solution of (4.6) can also be devised. How-
ever, some communications among subdomains is here required. The construction
of the matrices A(i)

BB in (4.4) requires to operate at the level of the matrix assembly
by the finite element code. In general, there is no way to recover them from the as-
sembled matrix A. Therefore, this technique is less suited for “black box” parallel
linear algebra packages. More details on the parallel implementation of the Schur
complement system are given in Section 4.2.3.

142 L. Formaggia et al.

4.2.2 Schur Complement System for VO Domain Decompositions

Let us consider again problem (4.1) where we now adopt a VO partition into two
subdomains like the one on the right of Figure 4.1. The matrix A can be written
again in a block form, where this time we have

Au =

⎛⎜⎜⎜⎝
A

(1)
II A

(1)
IB 0 0

A
(1)
BI A

(1)
BB 0 E(1,2)

0 0 A
(2)
II A

(2)
IB

0 E(2,1) A
(2)
BI A

(2)
BB

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u(1)
I

u(1)
B

u(2)
I

u(2)
B

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f (1)
I

f (1)
B

f (2)
I

f (2)
B

⎞⎟⎟⎟⎠ . (4.8)

Here, the border nodes have been subdivided in two sets: the set B(1) of nodes of
Γ (1,2) which lay on the boundary of Ω(1) (the border nodes of Ω(1)) and the anal-
ogous set B(2) of the border nodes of Ω(2). Correspondingly, we have the blocks
u(1)
B and u(2)

B in the vector of unknowns and f (1)
B and f (2)

B in the right hand side. The
entries in E(i,j) are the contribution to the equation associated to nodes inB(i) com-
ing from the nodes in B(j). We call the nodes in B(j) contributing to E(i,j) external
nodes of domain Ω(i).

The nodes internal to Ω(i) are the nodes of the triangulation T (i)
h whose “neigh-

bors” all belong to Ω(i). In a matrix-vector product, values associated to internal
nodes may be updated without communication with the adjacent subdomains. The
update of the border nodes requires instead the knowledge of the values at the cor-
responding external nodes (which are in fact border nodes of neighboring subdo-
mains). This duplication of information lends itself to efficient implementation of
inter-processor communications.

Analogously to the previous section we can construct a Schur complement sys-
tem operating on the border nodes, obtaining

ShuB =

(
S

(1)
h E(1,2)

E(2,1) S
(2)
h

)(
u(1)
B

u(2)
B

)
=
(

g(1)

g(2)

)
,

where S(1)
h and S(2)

h are defined as in (4.5). Note, however, that now the entries in

A
(i)
BB , i = 1, 2, are equal to the corresponding entries in the original matrix A. Thus

they can be built directly from A as soon as the topology of the domain decomposi-
tion is known.

Once we have computed the border values uB , the internal solutions u(i)
I , i =

1, 2, are obtained by solving the following independent linear systems,

A
(i)
II u(i)

I = f (i)
I −A

(i)
IBu(i)

B , i = 1, 2 .

In Figure 4.3 we report the sparsity pattern of Sh in the case of a decomposition with
2 subdomains.

This procedure, like the previous one, can be generalized for an arbitrary number
of subdomains. If we haveM subdomains the decomposition of system (4.8) may be
written in a compact way as

4 Domain Decomposition Techniques 143

Fig. 4.3. Sparsity pattern for SC matrix derived from an EO decomposition (left) and a VO
one (right).

.

(
AII AIB
ABI ABB

)(
uI
uB

)
=
(

fI
fB

)
, (4.9)

where

AII =

⎛⎜⎜⎝
A

(1)
II 0

. . .

0 A
(M)
II

⎞⎟⎟⎠ , ABB =

⎛⎜⎜⎜⎜⎝
A

(1)
BB E(1,2) . . . E(1,M)

E(2,1)

...
. . .

...

E(M,1) A
(M)
BB

⎞⎟⎟⎟⎟⎠ ,

AIB =
(
A

(1)
IB A

(2)
IB . . . A

(M)
IB

)
, ABI =

(
A

(1)
BI A

(2)
BI . . . A

(M)
BI

)T
and

uI =
(
u(1)
I . . . u(M)

I

)T
, uB =

(
u(1)
B . . . u(M)

B

)T
,

fI =
(
f (1)
I . . . f (M)

I

)T
, fB =

(
f (1)
B . . . f (M)

B

)T
.

For the sake of space, we have transposed some matrices. Note however that here the
transpose operator acts on the block matrix/vector, not on the blocks themselves, i.e.(
a b

)T
equals to

(
a
b

)
and not

(
aT

bT

)
.

The Schur complement system of problem (4.1) can now be written as ShuB =
g, where

Sh = ABB −ABIA−1
II AIB , and g = fB −ABIA−1

II fI .

0 5 10 15 20

0

5

10

15

20

nz = 200
0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 83

144 L. Formaggia et al.

To conclude this Section, we wish to note that an EO arrangement is often the
direct result of a domain decomposition carried out at a differential level. In this
case, the Schur complement matrix may be identified as the discrete counterpart of a
particular differential operator acting on the interface Γ (the Steklov-Poincarè oper-
ator [17]). Instead, a VO decomposition is normally the result of a purely algebraic
manipulation and in general is lacking an immediate interpretation at differential
level. Finally, the VO arrangement produces a larger number of degrees of freedom
in the resulting Schur complement system.

4.2.3 Parallel Solution of the Schur Complement System

Schur complement matrices are usually full and in large scale problems there is no
convenience in building them in an explicit way. Thus, the SC system is normally
solved by an iterative method, such as a Krylov acceleration method [26], which re-
quires only the multiplication of the matrix with a vector. To compute wB = Sh vB ,
one may proceed as indicated in the following algorithm, where Ri is the restriction
operator from the global border values vB to those associated to subdomain Ω(i).

ALGORITHM 1: COMPUTATION OF wB = Sh vB

1. Restrict vB to each subdomain boundary,

v(i)
B = RivB , i = 1, . . . ,M .

2. For every Ω(i), i = 1, . . .M solve

A
(i)
II u(i)

I = −A(i)
IBv(i)

B ,

then compute

w(i)
B =

M∑
j=1

E(ij)vjB +A
(i)
BBv(i)

B −A(i)
BIu

(i)
I .

3. Apply the prolongation operators to get wB =
∑M
i=1R

T
i w(i)

B .

In general, Steps 1 and 3 are just formal if we operate in a parallel environment
since each processor already handles the restricted vectors uB(i) instead of the whole
vector. Note that the linear system in Step 2 must be solved with high accuracy in
order to make the Schur complement system equivalent to the original linear system
(4.1).

Algorithm 1 requires four matrix-vector products and the solution of a linear
system for each subdomain. Even if carried out in parallel, the latter operation can
be rather expensive and is one of the drawbacks of a SC based method. The local
problems have to be computed with high accuracy if we want to recover an accurate
global solution.

Although (at least in the case of symmetric and positive-definite matrices) the
condition number of the Schur matrix is no larger than that of the original matrix

4 Domain Decomposition Techniques 145

Table 4.1. Convergence rate for different preconditioner of the Schur complement system
with respect to the discretisation size h and the subdomain size H , for an elliptic problem.
The constants C (which are different for each method) are independent from h and H , yet
they may depend on the coefficients of the differential operator. The δ ∈ (0, 1] in the Vertex
Space preconditioner is the overlap fraction, see the cited reference for details.

Preconditioner Estimation of the condition number of the pre-
conditioned Schur complement operator

P Jh K((P Jh)−1Sh) ≤ CH−2(1 + log(H/h))2

PBPSh K((PBPSh)−1Sh) ≤ C(1 + log(H/h))2

PV Sh K((PV Sh)−1Sh) ≤ C(1 + log δ−1)2

PWB
h K((PWB

h)−1Sh) ≤ C(1 + log(H/h))2

PNN,bh K((PNN,bh)−1Sh) ≤ C(1 + log(H/h))2

A [21, 17], nevertheless it increases when h decreases (for a fixed number of subdo-
mains), but also when H decreases (for a fixed h, i.e. for a fixed problem size). This
is a cause of loss of scalability. A larger number of subdomains imply a smaller value
of H , the consequent increase of the condition number causes in turn a degradation
of the convergence of the iterative linear solver. The problem may be alleviated by
adopting an outer preconditioner for Sh, we will give a fuller description in the next
Paragraph.

We want to note that if we solve also Step 2 with an iterative solver, a good
preconditioner must be provided also for the local problems in order to achieve a
good scalability (for more details, see for instance [21, 24]).

Preconditioners for the Schur Complement System

Many preconditioners have been proposed in the literature for the Schur comple-
ment system with the aim to obtain good scalability properties. Among them, we
briefly recall the Jacobi preconditioner P Jh , the Dirichlet-Neumann PNDh , the bal-
ancing Neumann-Neumann PNN,bh [24], the Bramble-Pasciak PBPSh [1], the Vertex-
Space PV Sh [8] and the wire-basket PWB

h preconditioner. We refer [17, 25] and to
the cited references for more details. Following [17], we summarize in Table 4.1 their
preconditioning properties with respect to the geometric parameters h and H , for an
elliptic problem (their extension to non-symmetric indefinite systems is, in general,
not straightforward). We may note that with these preconditioners the dependence on
H of the condition number becomes weaker, a part from the Jacobi preconditioner
which is rather inefficient. The most effective preconditioners are also the ones more
difficult to implement, particularly on arbitrary meshes.

Alternative and rather general ways to build a preconditioner for the SC system
exploits the identity

S−1
h =

(
0 I
)
A−1

(
0
I

)
, (4.10)

146 L. Formaggia et al.

where I is the nB × nB identity matrix, being nB the size of Sh. We can construct
a preconditioner PSchur for Sh from any preconditioner P−1

A of the original matrix
A by writing

PSchur =
(
0 I
)
P−1
A

(
0
I

)
.

If we indicate with vB a vector of size nB and with RB the restriction operator
on the interface variables, we can compute the operation P−1

SchurvB (which is indeed
the one requested by an iterative solver) by an application of P−1

A , as follows

P−1
SchurvB = RBP

−1
A

(
0

vB

)
= RBP

−1
A RTBvB . (4.11)

In a parallel setting, we will of course opt for a parallel P−1
A , like a Schwarz-based

preconditioner of the type outlined in Section 4.4. This is indeed the choice we have
adopted to precondition the SC matrix in many examples shown in this work.

4.3 The Schur Complement System Used as a Preconditioner

Although the Schur complement matrix is better conditioned than A, its multipli-
cation with a vector is in general expensive. Indeed Step 2 of Algorithm 1 requires
the solution of M linear systems, which should be carried out to machine precision,
otherwise the iterative scheme converges slowly or may even diverge.

An alternative is to adopt a standard (parallel) iterative scheme for the global
system (4.1) and use the SC system as a preconditioner. This will permit us to op-
erate some modifications on the SC system in order to make it more computation-
ally efficient. Precisely, we may replace Sh with a suitable approximation S̃ that is
cheaper to compute. The preconditioning matrix can then be derived as follows. We
consider again the block decomposition (4.9) and we write A as a product of two
block-triangular matrices,

A =
(
AII 0
ABI I

)(
I A−1

II AIB
0 Sh

)
.

Let us assume that we have good, yet cheaper, approximations of AII and Sh, which
we indicate as ÃII and S̃, respectively, a possible preconditioner for A is then

PASC =
(
ÃII 0
ABI I

)(
I Ã−1

II AIB
0 S̃

)
,

where ASC stands for Approximate Schur Complement. Indeed the approximation
ÃII may be used also to build S̃ by posing S̃ = ABB − ABIÃ−1

II AIB . Note that
PASC operates on the whole system while S̃ on the interface variables only, and that
PASC does not need to be explicitly built, as we will show later on. A possible ap-
proximation forAII is an incomplete LU decomposition [18], i.e. ÃII = L̃Ũ , where

4 Domain Decomposition Techniques 147

L̃ and Ũ are obtained from an incomplete factorization of AII . Another possibility
is to approximate the action of the inverse of AII by carrying out a few cycles of an
iterative solver or carrying out a multigrid cycle [12].

The solution of the preconditioned problem PASC = zr, where r = (rI , rB)T

and z = (zI , zB) may be effectively carried out by the following Algorithm.

ALGORITHM 2: APPLICATION OF THE ASC PRECONDITIONER

1. Apply the lower triangular part of PASC. That is solve ÃIIyI = rI and compute
yB = rB −ABIyI .

2. Apply the upper triangular part of PASC. That is solve

S̃zB = yB , (4.12)

with S̃ = ABB−ABIÃ−1
II AIB , and compute zI = yI− Ã−1

II AIBzB . The solu-
tion of (4.12) may be accomplished by an iterative scheme exploiting Algorithm
1.

Notice that the Step 1 and the computation of zI in Step 2 are perfectly parallel. On
the contrary (4.12) is a global operation, which, however, may be split into several
parallel steps preceded and followed by scatter and gather operations involving com-
munication among subdomains. Note that the matrix S̃ may itself be preconditioned
by using the technique outlined in Section 4.2.3, in particular by using a Schwarz-
type preconditioner, as illustrated in Section 4.3.

As already said, ÃII may be chosen as the ILU(f) incomplete factorization of
AII , where f is the fill-in factor. Furthermore, (4.12) may be solved inexactly, using
a fixed number L of iterations of a Krylov solver. We will denote such preconditioner
as ASC-L-iluf. Alternatively, one may avoid to factorize AII and build its approx-
imation implicitly by performing a fixed number of iteration when computing the
local problems in Step (2) of Algorithm 1.

In both cases the action the ASC preconditioner corresponds to that of a matrix
which changes at each iteration of the outer iterative solver. Consequently, one needs
to make a suitable choice of the Krylov subspace accelerator for the the solution of
(4.1) like, for instance, GMRESR [27] or FGMRES [18]. The former is the one we
have used for the numerical results shown in this work.

We mention that the ASC preconditioner lends itself to a multilevel implementa-
tion, where a family of increasingly coarser approximations of the Schur complement
matrix is used to build the preconditioner. The idea is that the coarsest approximation
should be small enough to be solved directly. The drawback is the need of assembling
and storing a number of matrices equal to the number of levels.

4.4 The Schwarz Preconditioner

The Schwarz iteration is a rather well known parallel technique based on an over-
lapping domain decomposition strategy. In a VO framework, it is normally built as
follows (we refer again to Figure 4.1).

148 L. Formaggia et al.

Each subdomain Ω(i) is extended to Ω̃(i) by adding the strip Γ (1,2), i.e. Ω̃(i) =
Ω(i) ∪Γ (1,2), i = 1, 2. A parallel solution of the original system is then obtained by
an iterative procedure involving local problems in each Ω̃(i), where on ∂Ω̃i ∩ Ω(j)

we apply Dirichlet conditions by getting the data from the neighboring subdomains.
What we have described here is the implementation with minimum overlap. A

larger overlap may be obtained by adding further layers of elements. The procedure
may be readily extended to an arbitrary number of subdomains. More details on the
algorithm with an analysis of its main properties may be found, for instance, in [17].

A multiplicative version of the procedure is obtained by ordering the subdomains
and solving the local problems sequentially using the latest available interface values.
This is indeed the original Schwarz method and is sequential. Parallelism can be
obtained by using the additive variant where all subdomain are advanced together,
by taking the interface values at the previous iteration.

From an algebraic point of view, multiplicative methods can be reformulated
as a block Gauss-Seidel procedure, while additive methods as block Jacobi proce-
dure [18].

If used as a stand-alone solver, the Schwarz iteration algorithm is usually rather
inefficient in terms of iterations necessary to converge. Besides, a damping parameter
has to be added, see [17], in order to ensure that the algorithm converges. Instead, the
method is a quite popular parallel preconditioner for Krylov accelerators. In particu-
lar its minimum overlap variant, which may exploit the same data structure normally
used for the parallel implementation of the matrix-vector product, allowing a saving
in memory requirement.

Let B(i) be the local matrix associated to the discretisation on the extended
subdomain Ω̃(i), R(i) a restriction operator from the nodes in Ω to those in Ω̃(i),
and P (i) a prolongation operator (usually, P (i) = (R(i))T). Using this notation, the
Schwarz preconditioner can be written as

P−1
AS =

M∑
i=1

P (i)B(i)R(i), (4.13)

being M the number of subdomains.
The matrices B(i) can be extracted directly from the set of rows of the global

matrix A corresponding to the local nodes, discarding all coefficients whose indexes
are associated to nodes exterior to the subdomain. The application of R(i) is trivial,
since it returns the locally hosted components a the vector; the prolongation operator
P (i) just does the opposite operation.

Although simple to implement, the scalability of the Schwarz preconditioner is
hindered by the weak coupling between far away subdomains. We may recover a
good scalability by the addition of a coarse operator [9, 21]. If the linear system arises
from the discretisation of a PDE system a possible technique to build the coarse oper-
ator matrixAH consists in discretising the original problem on a (very) coarse mesh,
see for instance [4]. However the construction of a coarse grid and of the associated
restriction and prolongation operators may become a rather complicated task when
dealing with three dimensional problems and complicated geometries. An alternative

4 Domain Decomposition Techniques 149

is to resort to algebraic procedures, such as the aggregation or agglomeration tech-
nique [21, 1, 4, 2, 28, 20], which are akin to procedures developed in the context of
algebraic multigrid methods, see also [29]. Here, we will focus on the latter, and in
particular we will propose an agglomeration technique.

4.4.1 The Agglomeration Coarse Operator

To fix the ideas let us consider a finite element formulation (4.2). Thanks to a VO
partitioning we can split the finite element function space Vh as

Vh =
M⋃
i=1

V
(i)
h ,

where M is the number of subdomains, and V (i)
h is set of finite element functions

associated to the triangulation of Ω̃(i) with zero trace on ∂Ω̃(i) \ ∂Ω. We suppose
to operate in the case of minimal overlap among subdomains as described in the
previous section and we indicate with n(i), the dimension of the space V (i)

h . By
construction, n =

∑M
i=1 n

(i).

We can build a coarse space considering for each Ω(i) a set of vectors {β(i)
s ∈

R
n(i)

, s = 1, . . . , l(i)} of nodal weights β(i)
s =

(
β

(i)
s,1, . . . , β

(i)

s,n(i)

)
that are linearly

independent, with β(i)

s,n(i) �= 0. The value l(i), i = 1, . . . , will be the (local) dimen-
sion of the coarse operator on the corresponding subdomain. Clearly, we must have
l(i) ≤ n(i) and, in general, l(i) << n(i). We indicate with l the global dimension of
the coarse space, i.e.

l =
M∑
i=1

l(i) .

With the help of the vectors β(i)
s , we can define a set of local coarse space func-

tions as linear combination of basis functions, i.e.

V(i)
H =

⎧⎨⎩Φ(i)
s : Ω → R | Φ(i)

s =
n(i)∑
k=1

β
(i)
s,kφ

(i)
k , s = 1, . . . , l(i)

⎫⎬⎭ .

It is easy to verify that the functions in V(i)
H are linearly independent. Finally, the

set VH =
⋃M
i=1 V

(i)
H is the base of the global coarse grid space VH , i.e. we take

VH = span{VH}. By construction, dim(VH) = card(VH) = l.
We note that VH ⊂ Vh, as it is built by linear combinations of function in Vh,

and any function uH ∈ VH may be written as

uH(x) =
M∑
i=1

l(i)∑
s=1

U (i)
s Φ(i)

s (x), (4.14)

150 L. Formaggia et al.

where the U (i)
s are the “coarse” degrees of freedom. Finally, the coarse problem is

built as:
Find uH ∈ VH so

a(uH , wH) = f(wH), ∀wH ∈ VH .
From an algebraic point of view, we have

M∑
i=1

l(i)∑
s=1

U (i)
s

n(i)∑
k=1

n(m)∑
t=1

β
(i)
s,kβ

(m)
q,t a(φ(i)

k , φ
(m)
t) =

n(m)∑
t=1

β
(m)
q,t (f, φ(m)

t)

q = 1, . . . , l(m), m = 1, . . . ,M .

To complete the procedure we need to define a restriction operator RH : Vh →
VH which maps a generic finite element function to a coarse grid function. Since
u ∈ Vh may be written as

uh =
M∑
i=1

n(i)∑
k=1

φ
(i)
k u

(i)
k ,

where the u(i)
k are the degrees of freedom associated to the triangulation of Ω(i), a

restriction operator may be defined by computing uH = Rhu as

uH =
M∑
i=1

l(i)∑
s=1

U (i)
s Φ(i)

s ,

where

U (i)
s =

n(i)∑
k=1

β
(i)
s,ku

(i)
k , s = 1, . . . l(i), i = 1 . . . ,M.

At the algebraic level, we build a global vector UH by assembling the U (i)
s on a

subdomain basis, i.e.

UH =
(
U

(1)
1 . . . U

(1)

l(1) . . . U
(M)

l(M)

)T
,

and we arrange similarly the vector uh of the nodal values of uh, i.e.

uh =
(
u

(1)
1 . . . u

(1)

n(1) . . . u
(M)

n(M)

)T
.

The prolongation matrix RTH ∈ R
n×l will then have the following block struc-

ture,

RTH =

⎛⎜⎜⎜⎜⎜⎜⎝
β

(1)T

1 β
(1)T

2 . . . β
(1)T

l(1) 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 β
(2)T

1 β
(2)T

2 . . . β
(2)T

l(2) 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 0 β
(M)T

1 β
(M)T

2 . . . β
(M)T

l(M)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

4 Domain Decomposition Techniques 151

and the coarse matrix AH and right-hand side of the coarse system can be written as

AH = RHAR
T
H , fH = RHf ,

respectively.

The conditions imposed on the β(i)
s vectors guarantees that RH has full rank.

Moreover, ifA is symmetric and positive definite, thenAH will share the same prop-
erty. The application of the agglomeration coarse grid operator does not require to
build RH explicitly. Even the construction of the vectors β can be avoided if they
have a simple structure. In fact the construction of AH involves just a weighted sum
of the element of A. Concerning the parallel implementation, the overhead of the
coarse problem depends in general on the number of local coarse degrees of free-
dom. In general l(i) << n(i) (in the limit we may even take l(i) = 1 for all i!), and
consequently the matrix AH is rather small compared to A. This a major difference
from the use of this technique in an algebraic multigrid setting, where many levels
of coarse operator are considered.

The build up of the coarse linear system can be carried out as follows. Each
processor computes the contribution to AH and fH corresponding to the associated
subdomains, then it broadcasts the results to the other processors. Being the coarse
system small, the cost of the broadcast operation is limited. Furthermore, it is usually
carried out only once.

The domain decomposition technique may be used also for the set up of the β(i)
s

vectors. Indeed, after having set up the basic Schwarz preconditioner by assigning
each extended subdomain Ω̃i to a different processor, at a second stage, each subdo-
main Ω̃(i) can be further partitioned into l(i) connected parts with minimum overlap.
We will indicate this second level partition as ω(i)

s with s = 1, . . . , l(i). Then we may
take

βs,k =

{
1 if node k belongs to ω(i)

s \∂ω(i)
s ,

0 otherwise.

As already explained, the coarse grid operator is used to improve the scalability
of a Schwarz-type parallel preconditioner PS . We will indicate with PACM a pre-
conditioner augmented by the application of the coarse operator (ACM stands for
agglomeration coarse matrix) and we illustrate two possible strategies for its con-
struction.

A one-step preconditioner, PACM,1, may be formally written as

P−1
ACM,1 = P−1

S +RTH A
−1
H RH , (4.15)

and it corresponds to an additive application of the coarse operator.
An alternative formulation adopts the following two-steps Richardson method

un+1/2 =un + P−1
S rn ,

un+1 =un+1/2 +RTH A
−1
H RHrn+1/2 ,

(4.16)

152 L. Formaggia et al.

Proc 4

Proc 3

Proc 2

Proc 1

Fig. 4.4. Example of two-level decomposition. First level in continuous line, and second level
in dashed line. Typically, each first-level decomposition subdomain is given to a different
processor. (For the color version, see Figure A.6 on page 469).

where rn and un are respectively the residual and the approximate solution at the n−
th iteration of the outer iterative solver. The corresponding preconditioning matrix
can be formally written as

P−1
ACM,2 = P−1

S +RTH A
−1
ACMRH − P−1

S ARTH A
−1
ACMRH . (4.17)

The implementation of (4.15) and (4.17) requires the parallel solution of the
coarse problem

AHuH = rH , (4.18)

where rH = RHr. If one has only a limited number of processors at disposal, per-
haps the best approach is to gather the entire coarse matrix AH on one processor
(say, processor 0), and perform each solution phase of (4.18) using an appropriate
sequential linear solver. Each processor computes its contribution to rH and sends it
to processor 0 (gathering phase). The solution computed by processor 0 will then be
scattered to the other processors, for example by a broadcast operation and the final
prolongation operation will be carried out independently on each processor. As the
coarse problem is likely to be small, its sequential solution causes little overhead and
the cost of broadcast communication is also likely to be negligible as well.

Instead, if hundreds or thousands of processors are used, the coarse problem
is likely to have a non-negligible size, and furthermore, the cost of the gathering-
scattering communication phases may be substantial. Therefore, in this case a par-
allel direct solver is to be preferred. Generic interfaces to serial and parallel direct
solvers are available, see [19]. We also mention that the presented two-level alge-
braic preconditioner (see Figure 4.4) can be extended in a multilevel fashion; see for
instance [16].

4.5 Applications

In this Section we show some applications of the techniques here illustrated. We will
report some academic tests used mainly to assess the basic properties of the scheme

4 Domain Decomposition Techniques 153

Table 4.2. 2D Poisson problem. Comparison of different preconditioners. Number of iterations
needed to reduce the initial residual by a factor of 106, M is the number of subdomains. The
starting mesh has 180× 180 squares, each of them has been divided into 2 triangles.

solver M = 4 M = 9 M = 16 M = 25

PS GMRES - 57 70 76
PC GMRES - 42 40 39

PACM,1 GMRES - 56 69 70
PACM,2 GMRES - 51 49 46

ASP-2-ilu0 GMRESR 99 97 97 99
ASP-4-ilu0 GMRESR 82 78 75 71
ASP-2-ilu1 GMRESR 68 68 70 69
ASP-2-ilu2 GMRESR 52 53 56 52

and more realistic applications. The latter include the solution of compressible flow
around aircrafts and free surface hydrodynamics problems. For the decomposition
of the domain, we have adopted the software package Metis [15], which operates on
the finite element mesh, and can produce both EO and VO decompositions. For the
overlapping Schwarz preconditioner, wider levels of overlap are recursively created
by adding internal nodes that are linked with a side to the current overlap region.
If we use higher order finite elements, we may still make the basic partitioning us-
ing just the mesh information. Then the new nodes corresponding to the additional
degrees of freedom are added and their nature (interior, exterior or border) can be
immediately identified by the geometrical entity that is associated to the node. For
instance, additional in a VO framework, additional nodes on a side linking to nodes
internal to subdomain Ωi are internal to Ωi etc.

4.5.1 2D Poisson Problem

We have considered the following Poisson problem{
−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1) × (0, 1). For the discretisation we have used P1 finite elements
on a regular mesh. The linear system has been solved using GMRES(60), in the case
of the Schwarz preconditioner, or GMRESR with the ASC preconditioner, up to a
tolerance of 10−6. The right-hand side is made up of random numbers between 0
and 1.

Being the mesh structured, we have divided the computational domain into M
square subdomains, and we have used these subdomains to build a “classical” coarse
correction for a 2-level Schwarz preconditioner, following [9].

In Table 4.2 we have compared the Schwarz preconditioner (PS) without the
coarse grid correction, the one augmented by the “classical” coarse operator, indi-
cated by PC , and the proposed preconditioners PACM,1 and PACM,2. Finally, we
report the results obtained with the ASC preconditioner ASP-L-iluf.

154 L. Formaggia et al.

Table 4.3. 2D Poisson problem. Comparison of different preconditioners. CPU-time in sec-
onds to reduce the initial residual by a factor of 106.

M = 4 M = 9 M = 16 M = 25

PS - 3.90 1.59 0.77
PC - 5.50 1.94 2.13

PACM,1 - 5.10 2.08 1.68
PACM,2 - 4.16 2.03 0.89

ASP-2-ilu0 12.64 3.94 3.34 2.12
ASP-4-ilu0 9.73 5.46 2.23 1.88
ASP-2-ilu1 8.04 3.87 1.80 2.11
ASP-2-ilu2 6.44 4.32 1.77 1.54

Table 4.4. 2D Poisson problem. PACM,2. The table reports the number of iterations needed to
reduce the initial residual by a factor of 106.

Local dimension of coarse space M = 9 M = 16 M = 25

1 51 49 46
2 57 54 50
4 55 49 46
8 50 45 41

32 50 34 32

Table 4.5. 2D Poisson problem. PACM,2. The table reports the CPU time (in seconds) needed
to reduce the initial residual by a factor of 106.

Local dimension of coarse space M = 9 M = 16 M = 25

1 4.16 2.03 0.89
2 4.28 1.60 0.98
4 4.22 1.55 0.96
8 4.16 1.54 0.88
32 4.17 1.52 0.94

The performance of the Schwarz method without any coarse correction degrades
rapidly, demonstrating the poor scalability of the basic algorithm. Preconditioning
with PACM,1 has a very poor influence (probably also because of the relative small
number of subdomains), while the 2-level version behaves much better. The ASC-
type preconditioners show a very good scalability, even if the CPU times, reported
in Table 4.3, are less interesting. Another important parameter is the dimension of
the agglomeration coarse space, and it is analyzed in Tables 4.4 and 4.5. Note that
increasing the dimension of the coarse space has a positive effect on the conver-
gence. Even if the numerical experiments show that the “classic” preconditioner is
in general more effective unless a “rich” local coarse space dimension is used in the
agglomeration procedure, we point out again the greater flexibility and generality of
the latter.

4 Domain Decomposition Techniques 155

4.5.2 The Compressible Euler Equations

Any standard spatial discretisation applied to the Euler equations leads eventually to
a system of ODE in time, which may be written as

dU
dt

= R (U) , (4.19)

where U = (U1, U2, . . . , Un)T is the vector of unknowns with Ui = Ui(t) and
R (U) the result of the spatial discretisation of the Euler fluxes. An implicit two-step
scheme applied to (4.19), for instance a backward Euler method, yields

Un+1 −Un = ∆tR
(
Un+1

)
, (4.20)

where∆t is a diagonal matrix of local time steps, i.e.∆t = diag(∆ti, i = 1, . . . , n).
The non-linear problem (4.20) may be solved by employing a Newton iterative pro-
cedure, which computes successive approximations U(k+1) of Un+1 by solving[
I +∆t

∂R

∂U

(
U(k)

)] (
U(k+1) −Un

)
= U(k)−Un−∆tR

(
U(k)

)
, k = 0, . . . ,

with U(0) = Un. We have reduced the original non-linear problem to the solution
of a series of linear systems which will be finally tackled by the proposed parallel
techniques.

Since we are considering steady state solutions, we have taken just a single itera-
tion of the Newton procedure. Furthermore, we have taken an approximate Jacobian
∂R
∂U . More precisely, the Jacobian is the exact Jacobian of a first-order upwind spatial
discretisation. This ease up the computation greatly. The resulting method is some-
times called pseudo-transient continuation [6].

For the numerical experiments at hand we have used the parallel version of the
code THOR, developed at the Von Karman Institute. This code uses for the spatial
discretisation the multidimensional upwind finite element scheme [7]. The solutions
obtained on two of the presented test cases are illustrated in Figures 4.5 and 4.6.

The test cases are summarized in Table 4.6. For all of them, the starting solu-
tion is a constant vector, and the local CFL numbers are varied from 10 to 105, by
multiply them at each time level by a factor of 2 until we reach CFL=105. The com-
putations are stopped when the Euclidean norm of the density residual is less than
10−6. As previously described, at each time level we have to solve a linear system.
This is done using GMRES(60) in the case of Schwarz-type preconditioner or GM-
RESR if the ASC preconditioner is chosen, up to a tolerance on the relative residual
||r||/||r0|| of 10−6. The starting solution is the zero vector. The Schwarz precondi-
tioner PS uses a minimal overlap and the local problems are solved inexactly using
an ILU(0) decomposition. A first test case concerns the flow around a Falcon Air-
craft. We have considered a free-stream Mach number of 0.45 and zero angles of
yaw and attach. The mesh is formed by 45387 elements, corresponding to 226935
degrees of freedom.

156 L. Formaggia et al.

Fig. 4.5. Pressure coefficient contours for FALCON 45k. (For the color version, see Figure
A.7 on page 470).

Fig. 4.6. Mach number contours for M6 316K. (For the color version, see Figure A.8 on page
470).

Figures 4.7 and 4.8 report the iterations to converge at each time level for differ-
ent values ofL, using 4, 8, 16 and 32 SGI-Origin 3000 processors for FALCON 45k.
The time step in Equation (4.19) is increased exponentially. This quite common prac-
tice, here adopted in order to minimize the effect of “bad” starting solutions on the
convergence of the Newton method, makes the first linear systems relatively well
conditioned. The iterations to converge increase at each time level, to decrease again
when the system is approaching the steady-state solution. We may notice that using
16 and 32 processors the ASC preconditioner cannot guarantee good performance,
at least for some combinations of the number of levels L and CFL number. This may
suggest to adapt the value of L to the CFL number. The elapsed CPU times are re-

4 Domain Decomposition Techniques 157

Table 4.6. Main characteristics of the test cases.

name M∞ α N nodes N cells
FALCON 45k 0.45 1.0 45387 255944

M6 23k 0.84 3.06 23008 125690
M6 42k 0.84 3.06 42305 232706
M6 94k 0.84 3.06 94493 666569

M6 316k 0.84 3.06 316275 1940182

Table 4.7. FALCON 45k. CPU-time (in seconds) for ASC preconditioner, using different
values of L.

N procs ASC-1-ilu0 ASC-2-ilu0 ASC-4-ilu0 ASC-8-ilu0
4 2542.4 2401.7 2393.2 3319.7
8 925.5 897.6 1406.6 1423.2

16 863.7 753.7 561.6 707.2
32 443.8 332.1 248.6 398.6

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45 α=1, 4 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45, 8 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

Fig. 4.7. FALCON 45k. Convergence history with 4 (left) and 8 processors (right) with the
ASC preconditioner, for different values of L. (For the color version, see Figure A.9 on page
471).

ported in Table 4.7, where we have highlighted the best performance. We may notice
that one iteration of the nested solver is not enough to guarantee good convergence
results, especially as the number of processors grows. At the same time, high values
of L will decrease the performance. A value of about 4 seems a good compromise.

In Figure 4.9 we have reported the results obtained with the proposed Schwarz
methodology and in particular the influence of the local dimension of the coarse
spaceNp for PACM,1 and PACM,2, using 16 MIPS 14000 processors. We recall again
that Np is the dimension of the coarse space on each processor. For low CFL num-
bers the value of Np does not affect remarkably the convergence of GMRES, while
as the CFL number increases the positive effect of an increasing coarse space be-
comes more evident, as we may notice in Figure 4.10. The two-level preconditioner
seems a better choice from the point of view of both iterations to converge and CPU

158 L. Formaggia et al.

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45, 16 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45, 32 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

Fig. 4.8. FALCON 45k. Convergence history with 16 processors (left) and 32 processors
(right) with the ASC preconditioner, for different values of L. (For the color version, see
Figure A.10 on page 471).

0 2 4 6 8 10 12 14 16
10

15

20

25

30

35

40

45

50

55

time levels

G
M

R
E

S
 it

er
at

io
ns

Falcon M∞=0.45, α=1

N_p=4
N_p=8
N_p=16
N_p=32

0 2 4 6 8 10 12 14 16
5

10

15

20

25

30

35

40

45

time levels

G
M

R
E

S
 it

er
at

io
ns

Falcon M∞=0.45, α=1

N_p=4
N_p=8
N_p=16
N_p=32

Fig. 4.9. FALCON 45k. Iterations to converge with different values of Np for PACM,1 (left)
and PACM,2 (right). (For the color version, see Figure A.11 on page 471).

time, especially for low values of Np. Figure 4.11 shows a comparison among the
Schwarz preconditioner without coarse correction PS , the ASC preconditioner and
the ACM preconditioner. Although better than PS in terms of converge rate, ASC-
2-ilu0 doesn’t seem to be a suitable choice, as one may observe from the left picture
of Figure 4.11, where we have plotted the time residual versus the CPU-time. On the
contrary, both PACM,1 and PACM,2 are substantially better than PS .

We have obtained similar results for the test case M6 94k, as reported in Fig-
ures 4.12 and 4.13. The CPU times are reported in Tables 4.8, 4.9 and 4.10 for
M6 94K, and in table 4.11 for M6 316k.

4 Domain Decomposition Techniques 159

0 2 4 6 8 10 12 14 16
10

20

30

40

50

60

70

80

90

time levels

G
M

R
E

S
 it

er
at

io
ns

Falcon M∞=0.45, α=1

P S, no coarse
P ACM,1 N_p=4
P ACM,1 N_p=16
P ACM,2 N_p=4
P ACM,2 N_p=16

0 5 10 15 20 25 30 35
150

200

250

300

350

400

450

N_p

to
ta

l C
P

U
 ti

m
e

(s
)

Falcon M∞=0.45, α=1

P ACM,1
P ACM,2

Fig. 4.10. FALCON 45k. Comparison among different preconditioners (left) and CPU time,
in seconds (right). 16 SGI-Origin3000 processors. (For the color version, see Figure A.12 on
page 472).

0 100 200 300 400 500 600 700 800
−8

−6

−4

−2

0

2

4

Falcon M∞=0.45, α=1.0, 16 procs

tim
e

re
si

du
al

CPU time (s)

P
1
, N_p=8

P
2
, N_p=8

ASP−2−ilu0
P

S

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

Falcon M∞=0.45, α=1.0, 16 procs

time levels

G
M

R
E

S
 it

er
at

io
ns

P
1
, N_p=8

P
2
, N_p=8

ASP−2−ilu0
P

S

Fig. 4.11. FALCON 45k. Residual versus CPU-time (left) and iterations to converge at each
time level (right), using 16 SGI-Origin3000 processors. (For the color version, see Figure A.13
on page 472).

Table 4.8. M6 94k. CPU-time (in seconds) for ASC preconditioner, using different values of
the fixed iteration count L.

N procs ASC-2-ilu0 ASC-4-ilu0 ASC-8-ilu0
8 1538.4 1600.4 1859.9

16 544.8 569.1 1330.5
32 248.5 286.0 358.9

4.6 Conclusions

In this chapter we have presented a class of preconditioners based on the DD ap-
proach that are well suited for parallel implementation. A great variety of meth-
ods are in fact available in literature and we have chosen to focus our attention on

160 L. Formaggia et al.

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

40

45

time levels

G
M

R
E

S
 it

er
at

io
ns

M6 M∞=0.84, α=3.06

P
S
 M6_23k

P ACM,2 N_p=4 M6_23k
P

S
 M6_42k

P ACM,2 N_p=4 M6_42k
P

S
 M6_94k

P ACM,2 N_p=4 M6_94k

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16

18

20

22

24

M6 M∞=0.84, α=3.06

G
M

R
E

S
 it

er
at

io
ns

time levels

N_p=4 23k
N_p=32 23k
N_p=4 42k
N_p=32 42k
N_p=4 94k
N_p=32 94k

Fig. 4.12. M6 94k. Iterations to converge with PS and PACM,2 (left), and iterations to con-
verge with PACM,2 (right) using two different values of Npand 16 processors. (For the color
version, see Figure A.14 on page 473).

0 50 100 150 200 250
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

CPU time (s)

T
im

e
re

si
du

al

M6 94k, M_infty=0.84, α=3.06, 32 procs

ACM, N_p=8
ASP−2−ilu0
P

S

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

40

45

time iterations

G
M

R
E

S
 it

er
at

io
ns

M6 94k, M_infty=0.84, α=3.06, 32 procs

ACM, N_p=8
ASP−2−ilu0
P

S

Fig. 4.13. M6 94k. Residual versus CPU-time (right) and iterations to converge at each time
level (right), using 32 processors. (For the color version, see Figure A.15 on page 473).

Table 4.9. M6 94k. CPU-time to converge, using PACM,1 and varying the number of proces-
sors. Best results are highlighted.

N procs Np=4 Np=8 Np=16 Np=32
8 1008.2 978.4 1251.3 883.4

16 502.5 506.9 515.0 457.3
32 208.0 245.3 300.5 505.0

DD methods applied at the algebraic level, namely the Schur complement and the
Schwarz algorithms. The reason being their generality and the fact that they are im-
plemented in many available parallel linear algebra packages. We have illustrated
mainly their use as preconditioners. Indeed, the first consideration we can make is
that these methods are usually inefficient when used as solvers.

4 Domain Decomposition Techniques 161

Table 4.10. M6 94k. CPU-time to converge, usingPACM,2, and varying the number of proces-
sors. Best results are highlighted.

N procs Np=4 Np=8 Np=16 Np=32
8 934.8 945.6 909.3 925.6

16 458.6 405.2 413.9 442.6
32 164.4 164.7 181.4 515.6

Table 4.11. M6 316k. CPU-time (seconds) required to reach the steady state solution, us-
ing 32 processors. Comparison between Schwarz preconditioner without coarse grid, the
ACM preconditioner, multiplicative version, and an approximated Schur complement precon-
ditioner.

N procs PS PACM,2 ASC-4-ilu0
32 1524.2 1370.6 2691.3

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

time levels

G
M

R
E

S
 it

er
at

io
ns

M6 316k M∞=0.84 α=3.06

P
S

P
ACM,2

ASP−2−ilu0

0 10 20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

M6 316k M∞=0.84 α=3.06

GMRES iterations

||r
|/|

|r
0||

P
S

P
ACM,2

Fig. 4.14. M6 316k. Iterations at each time level (left) and converge history at the 14th time
step (right). (For the color version, see Figure A.16 on page 473).

A clear cut comparison of the two is difficult as their performance is often prob-
lem dependent. As a general rule we may state that the approximate Schur com-
plement system has generally a better preconditioning property at the price of an
higher cost “per iteration”. It performs better when the ratio unknowns/number of
subdomains is “low”. Otherwise, the computational cost linked to the solution of
the internal problems (which in most cases scales with the square of the number of
the local degrees of freedom) may degrade the effectiveness of the preconditioner. It
may be attractive also if the ratio between computational and communication speed
is high, for example when the processors are connected through a slow network. The
smaller number of iterations to converge imply less communication, and in this case
it may overcome the higher cost spent at local level.

The Schwarz preconditioner is often the matter of choice of many parallel linear
algebra packages, because of its rather simple implementation. The minimal over-

162 L. Formaggia et al.

lap variant is also rather attractive in term of memory usage. Yet it needs a coarse
operator to obtain scalability. To this aim, here we have described an agglomera-
tion procedure that has the advantage of generality and of a simple set up. The cost
per iteration is smaller, since we need to solve the local problem only once. Yet its
preconditioning properties are usually less marked, and this imply a slower conver-
gence.

It is important to notice that all efficient DD preconditioners consist of a local
and a global component. The local part, acts at the subdomain level and may pos-
sibly capture the coupling between neighboring subdomains through the interface
nodes; the global part provides instead an overall communication among far away
subdomains. In the Schur complement based methods, the global part is the solution
of the Schur complement system itself, in the Schwarz technique this task is played
by the coarse operator.

Acknowledgments

Part of this work is the result of a research carried out under the frame of the Eu-
ropean project IDeMAS (contract number BRPR-CT97-0591). Other research agen-
cies, such us the Italian CNR and MURST are also acknowledged for they financial
support.

References

1. J. Bramble, J. Pasciak, and X. Zhang. Two-level preconditioners for 2nd order elliptic
finite element problems. East-West J. Numer. Math., 4:99–120, 1996.

2. T. Chan, B.Smith, and J. Zou. Overlapping Schwarz methods on unstructured meshes
using non-matching coarse grids. Numer. Math., 73:149–167, 1996.

3. T. Chan, S. Go, and J. Zou. Boundary treatments for multilevel methods on unstructured
meshes. SIAM J. Sci. Comput., 21(1):46–66, 1999.

4. T. Chan and T. Mathew. The interface probing technique in domain decomposition. SIAM
Journal on Matrix Analysis and Applications, 13(1):212–238, 1992.

5. T. Chan and T. Mathew. Domain decomposition algorithms. Acta Numerica, pages 61–
163, 1993.

6. T. Coffey, C. Kelley, and D. Keyes. Pseudotransient continuation and differential-
algebraic equations. SIAM Journal on Scientific Computing, 25(2):553–569, 1996.

7. H. Deconinck, H. Paillère, R. Struijs, and P. Roe. Multidimensional upwind schemes
based on fluctuaction splitting for systems of conservation laws. Comput. Mech., 11:323–
340, 1993.

8. M. Dryja, B. Smith, and O. Widlund. Schwarz analysis of iterative substructuring algo-
rithms for elliptic problems in three dimensions. SIAM J. Numer. Anal., 31(6):1662–1694,
1993.

9. M. Dryja and O. Widlund. Domain decomposition algorithms with small overlap. SIAM
J. Sci.Comput., 15(3):604–620, 1994.

10. C. Farhat and F. Roux. A method of finite element tearing and interconnecting and its
parallel solution algorithm. Internat. J. Numer. Meth. Engrg., 32:1205–1227, 1991.

4 Domain Decomposition Techniques 163

11. A. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measuring the scalability of parallel
algorithms and architectures. IEEE Parallel Distrib. Technol., 1:12–21, August 1993.

12. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel geometric multigrid. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pages 165–208. Springer-Verlag, 2005.

13. K. Hwang. Advanced Computer Architecture: Parallelism Scalability, Programmability.
McGraw Hill, New York, 1993.

14. K. Hwang and Z. Xu. Scalable Parallel Computing: Technology, Architecture, Program-
ming. McGraw-Hill, Inc., New York, NY, USA, 1998.

15. G. Karypis and V. Kumar. METIS: Unstructured graph partitining and sparse matrix or-
dering system. Technical Report 98-036, University of Minnesota, Department of Com-
puter Science, 1998.

16. P. Lin, M. Sala, J. Shadid, and R. Tuminaro. Performance of fully-coupled algebraic
multilevel domain decomposition preconditioners for incompressible flow and transport.
submitted to International Journal for Numerical Methods in Engineering, 2004.

17. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential
Equations. Oxford University Press, Oxford, 1999.

18. Y. Saad. Iterative Methods for Sparse Linear Systems. Thompson, Boston, 1996.
19. M. Sala. Amesos 2.0 reference guide. Technical Report SAND-4820, Sandia National

Laboratories, September 2004.
20. M. Sala. Analysis of two-level domain decomposition preconditioners based on aggrega-

tion. Mathematical Modelling and Numerical Analysis, 38(5):765–780, 2004.
21. B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition, Parallel Multilevel Meth-

ods for Elliptic Partial Differential Equations. Cambridge University Press, New York,
1996.

22. X.-H. Sun. Scalability versus execution time in scalable systems. J. Parallel Distrib.
Comput., 62(2):173–192, 2002.

23. X.-H. Sun and D. Rover. Scalability of parallel algorithm-machine combinations. IEEE
Parallel Distrib. Systems, 5:599–613, June 1994.

24. P. L. Tallec. Domain decomposition methods in computational mechanics. Computational
Mechanics Advances, 1:121–220, 1994.

25. A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and Theory,
volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, New
York, 2005.

26. H. van der Vorst. Iterative Krylov Methods for Large Linear Systems, volume 13 of Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, Cambridge, 2003.

27. H. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Num. Lin.
Alg. Appl., 1:369–386, 1994.

28. P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation
for second and fourth order problems. Computing, 56:179–196, 1996.

29. U. M. Yang. Parallel algebraic multigrid methods - high performance preconditioners. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pages 209–236. Springer-Verlag, 2005.

5

Parallel Geometric Multigrid

Frank Hülsemann1, Markus Kowarschik1, Marcus Mohr2, and Ulrich Rüde1

1 System Simulation Group, University of Erlangen, Germany
[frank.huelsemann,markus.kowarschik,ulrich.ruede]@cs.fau.de

2 Department for Sensor Technology, University of Erlangen, Germany
marcus.mohr@lse.eei.uni-erlangen.de

Summary. Multigrid methods are among the fastest numerical algorithms for the solution
of large sparse systems of linear equations. While these algorithms exhibit asymptotically
optimal computational complexity, their efficient parallelisation is hampered by the poor
computation-to-communication ratio on the coarse grids. Our contribution discusses paral-
lelisation techniques for geometric multigrid methods. It covers both theoretical approaches
as well as practical implementation issues that may guide code development.

5.1 Overview

Multigrid methods are among the fastest numerical algorithms for solving large
sparse systems of linear equations that arise from appropriate discretisations of el-
liptic PDEs. Much research has focused and will continue to focus on the design of
multigrid algorithms for a variety of application areas. Hence, there is a large and
constantly growing body of literature. For detailed introductions to multigrid we re-
fer to the earlier publications [7, 32] and to the comprehensive overview provided
in [60]. A detailed presentation of the multigrid idea is further given in [10]. A long
list of multigrid references, which is constantly being updated, can be found in the
BibTEX file mgnet.bib [16].

Multigrid methods form a family of iterative algorithms for large systems of lin-
ear equations which is characterised by asymptotically optimal complexity. For a
large class of elliptic PDEs, multigrid algorithms can be devised which requireO(n)
floating-point operations in order to solve the corresponding linear system with n de-
grees of freedom up to discretisation accuracy. In the case of parabolic PDEs, appro-
priate discretisations of the time derivative lead to series of elliptic problems. Hence,
the application of multigrid methods to parabolic equations is straightforward.

Various other linear solvers such as Krylov subspace methods (e.g., the method
of conjugate gradients and GMRES), for example, mainly consist of matrix-vector
products as well as inner products of two vectors [23, 33]. Their parallel implemen-
tation is therefore quite straightforward. The parallelisation of multigrid algorithms
tends to be more involved. This is primarily due to the necessity to handle problems

166 F. Hülsemann et al.

of different mesh resolutions which thus comprise significantly varying numbers of
unknowns.

In this chapter, we will focus on parallelisation approaches for geometric multi-
grid algorithms; see also [15, 45] and the tutorial on parallel multigrid methods by
Jones that can be found at http://www.mgnet.org. We assume that each level
of accuracy is represented by a computational grid which is distributed among the
parallel resources (i.e., the processes) of the underlying computing environment. We
further suppose that the processes communicate with each other via message passing.

Our chapter is structured as follows. In Section 5.2 we will present a brief and
general introduction to geometric multigrid schemes. Section 5.3 describes elemen-
tary parallelisation techniques for multigrid algorithms. The case of multigrid meth-
ods for applications involving unstructured finite-element meshes is more compli-
cated than the case of structured meshes and will be addressed subsequently in Sec-
tion 5.4. Section 5.5 focuses on the optimisation of the single-node performance,
which primarily covers the improvement of the utilisation of memory hierarchies.
Advanced parallelisation approaches for multigrid will be discussed afterwards in
Section 5.6. Conclusions will be drawn in Section 5.7.

5.2 Introduction to Multigrid

5.2.1 Overview

Generally speaking, all multigrid algorithms follow the same fundamental design
principle. A given problem is solved by integrating different levels of resolution into
the solution process. During this process, the contributions of the individual levels
are combined appropriately in order to form the required solution.

In the classical sense, multigrid methods involve a hierarchy of computational
grids of different mesh resolution and can therefore be considered geometrically
motivated. This approach has led to the notion of geometric multigrid (GMG). In
contrast, later research has additionally addressed the development and the analysis
of algebraic multigrid (AMG) methods, which target a multigrid-like iterative solu-
tion of linear systems without using geometric information from a grid hierarchy, but
only the original linear system itself3. For an introduction to parallel AMG, see [65].

5.2.2 Preparations

We will first motivate the principles of a basic geometric multigrid scheme. For sim-
plicity, we consider the example of a scalar elliptic boundary value problem

Lu = f in Ω , (5.1)

defined on the interval of unit length (i.e., Ω := (0, 1)), on the unit square (i.e.,
Ω := (0, 1)2), or on the unit cube (i.e., Ω := (0, 1)3). L denotes a second-order

3The term algebraic multigrid may thus appear misleading, since an ideal AMG approach
would dispense with any computational grid.

5 Parallel Geometric Multigrid 167

linear elliptic differential operator, the solution of (5.1) is denoted as u : Ω → R,
and the function f : Ω → R represents the given right-hand side.

We assume Dirichlet boundary conditions only; i.e.,

u = g on ∂Ω . (5.2)

We concentrate on the case of an equidistant regular grid. As usual, we use h
to denote the mesh width in each dimension. Hence, ndim := h−1 represents the
number of sub-intervals per dimension. In the 1D case, the grid nodes are located at
positions

{x = ih; 0 ≤ i ≤ ndim} ⊂ [0, 1] .

In the 2D case, they are located at positions

{(x1, x2) = (i1h, i2h); 0 ≤ i1, i2 ≤ ndim} ⊂ [0, 1]2 ,

and in the 3D case, the node positions are given by

{(x1, x2, x3) = (i1h, i2h, i3h); 0 ≤ i1, i2, i3 ≤ ndim} ⊂ [0, 1]3 .

Consequently, the grid contains ndim + 1 nodes per dimension. Since the outermost
grid points represent Dirichlet boundary nodes, the corresponding solution values
are fixed. Hence, since u is a scalar function, our grid actually comprises ndim − 1
unknowns per dimension.

Our presentation is general enough to cover the cases of finite differences as well
as finite element discretisations involving equally sized line elements in 1D, square
elements in 2D, and cubic elements in 3D, respectively. For the description of the
core concepts, we focus on the case of standard coarsening only. This means that
the mesh width H of any coarse grid is obtained as H = 2h, where h denotes the
mesh width of the respective next finer grid. See [60] for an overview of alternative
coarsening strategies such as red-black coarsening and semi-coarsening, for exam-
ple. In Section 5.4, we turn to the question of multigrid methods on unstructured
grids.

The development of multigrid algorithms is motivated by two fundamental and
independent observations which we will describe in the following; the equivalence of
the original equation and the residual equation as well as the convergence properties
of basic iterative solvers.

5.2.3 The Residual Equation

A suitable discretisation of the continuous problem given by (5.1), (5.2) yields the
linear system

Ahuh = fh , (5.3)

where Ah denotes a sparse nonsingular matrix that represents the discrete operator.
For the model case of a second-order finite difference discretisation of the negative
Laplacian in 2D, Ah is characterised by the five-point stencil

168 F. Hülsemann et al.

1
h2

⎡⎣ −1
−1 4 −1
−1

⎤⎦ .

We refer to [60] for details including a description of this common stencil notation.
The exact solution of (5.3) is explicitly denoted as u∗h, while uh stands for an

approximation to u∗h. If necessary, we add superscripts to specify the iteration index;

e.g., u(k)
h is used to denote the k-th iterate, k ≥ 0. In the following, we further need

to distinguish between approximations on grid levels with different mesh widths.
Therefore, we use the indices h and H to indicate that the corresponding quantities
belong to the grids of sizes h andH , respectively. The solutions of the linear systems
under consideration represent function values located at discrete grid nodes. As a
consequence, the terms grid function and vector are used interchangeably hereafter.

As usual, the residual rh corresponding to the approximation uh is defined as

rh := fh −Ahuh . (5.4)

The (algebraic) error eh corresponding to the current approximation uh is given by

eh := u∗h − uh . (5.5)

From these definitions, we obtain

Aheh = Ah (u∗h − uh) = Ahu
∗
h −Ahuh = fh −Ahuh = rh ,

which relates the current error eh to the current residual rh. Hence, the residual
(defect) equation reads as

Aheh = rh . (5.6)

Note that (5.6) is equivalent to (5.3), and the numerical solution of both linear
systems is equally expensive since they involve the same system matrix Ah. The
actual motivation for these algebraic transformations is not yet obvious and will be
provided subsequently. In the following, we will briefly review the convergence prop-
erties of elementary iterative schemes and then illustrate the multigrid principle.

5.2.4 Convergence Behaviour of Elementary Iterative Methods

There is a downside to all elementary iterative solvers such as Jacobi’s method, the
method of Gauß-Seidel, and SOR. Generally speaking, when applied to large sparse
linear systems arising in the context of numerical PDE solution, they cannot effi-
ciently reduce the slowly oscillating (low-frequency, smooth) discrete Fourier com-
ponents of the algebraic error. However, they often succeed in efficiently eliminating
the highly oscillating (high-frequency, rough) error components [60].

This behaviour can be investigated analytically in detail as long as certain model
problems (e.g., involving standard discretisations of the Laplacian) as well as the
classical iterative schemes are used. This analysis is based on a decomposition of

5 Parallel Geometric Multigrid 169

the initial error e(0)
h . This vector is written as a linear combination of the eigenvec-

tors of the corresponding iteration matrix. In the case of the model problems under
consideration, these eigenvectors correspond to the discrete Fourier modes.

As long as standard model problems are considered, it can be shown that the
spectral radius ρ(M) of the corresponding iteration matrixM behaves like 1−O(h2)
for the method of Gauß-Seidel, Jacobi’s method, and weighted Jacobi. Similarly,
ρ(M) behaves like 1 − O(h) for SOR with optimal relaxation parameter [57]. This
observation indicates that, due to their slow convergence rates, these methods are
hardly applicable to large problems involving small mesh widths h.

A closer look reveals that the smooth error modes, which cannot be eliminated ef-
ficiently, correspond to those eigenvectors of M which belong to the relatively large
eigenvalues; i.e, to the eigenvalues close to 14. This fact explains the slow reduction
of low-frequency error modes. In contrast, the highly oscillating error components
often correspond to those eigenvectors of M which belong to relatively small eigen-
values; i.e., to the eigenvalues close to 0. As we have mentioned previously, these
high-frequency error components can thus often be reduced quickly and, after a few
iterations only, the smooth components dominate the remaining error.

Note that whether an iterative scheme has this so-called smoothing property de-
pends on the problem to be solved. For example, Jacobi’s method cannot be used
in order to eliminate high-frequency error modes quickly, if the discrete problem
is based on a standard finite difference discretisation of the Laplacian, see [60]. In
this case, high-frequency error modes can only be eliminated efficiently, if a suitable
relaxation parameter is introduced; i.e., if the weighted Jacobi scheme is employed
instead.

5.2.5 Aspects of Multigrid Methods

Coarse Grid Representation of the Residual Equation

As was mentioned in Section 5.2.4, many basic iterative schemes possess the smooth-
ing property; within a few iterations only, the highly oscillating error components
can often be eliminated and the smooth error modes remain. As a consequence, a
coarser grid (i.e., a grid with fewer grid nodes) may be sufficiently fine to represent
this smooth error accurately enough. Note that, in general, it is the algebraic error
(and not the approximation to the solution of the original linear system itself) that
becomes smooth after a few steps of an appropriate basic iterative scheme have been
performed.

The observation that the error is smooth after a few iterations motivates the idea
to apply a few iterations of a suitable elementary iterative method on the respective
fine grid. This step is called pre-smoothing. Then, an approximation to the remain-
ing smooth error can be computed efficiently on a coarser grid, using a coarsened
representation of (5.6); i.e., the residual equation. Afterwards, the smooth error must

4Note that non-convergent iterative schemes involving iteration matricesM with ρ(M) ≥
1 may be used as smoothers as well.

170 F. Hülsemann et al.

be interpolated back to the fine grid and, according to (5.5), added to the current fine
grid approximation in order to correct the latter.

In the simplest case, the coarse grid is obtained by standard coarsening; i.e., by
omitting every other row of fine grid nodes in each dimension, cf. Section 5.2.2. This
coarsening strategy results in an equidistant coarse grid with mesh widthH = 2h. As
usual, we use Ωh and ΩH to represent the fine grid and the coarse grid, respectively.
Furthermore, we assume that nh and nH denote the total numbers of unknowns
corresponding to the fine grid and the coarse grid, respectively. Note that standard
coarsening reduces the number of unknowns by a factor of approximately 2−d, where
d is the dimension of the problem.

The coarse representation of (5.6), which is used to approximate the current al-
gebraic fine grid error eh, reads as

AHeH = rH , (5.7)

where AH ∈ R
nH×nH stands for the coarse grid operator and eH , rH ∈ R

nH are
suitable coarse grid representations of the algebraic fine grid error eh and the corre-
sponding fine grid residual rh, respectively. Equation (5.7) must be solved for eH .

Inter-Grid Transfer Operators

The combination of the fine grid solution process and the coarse grid solution process
requires the definition of inter-grid transfer operators, which are necessary to map
grid functions from the fine grid Ωh to the coarse grid ΩH , and vice versa. In partic-
ular, we need an interpolation (prolongation) operator

IhH : R
nH → R

nh ,

which maps a coarse grid function to a fine grid function, as well as a restriction
operator

IHh : R
nh → R

nH ,

which maps a fine grid function to a coarse grid function. Note that, in the following,
IhH and IHh are also used to denote the corresponding matrix representations of the
interpolation and the restriction operators, respectively.

The restriction operator IHh is used to transfer the fine grid residual rh to the
coarse grid, yielding the right-hand side of the coarse grid representation (5.7) of the
fine grid residual equation:

rH := IHh rh .

In the case of discrete operators Ah and AH with slowly varying coefficients,
typical choices for the restriction operator are full weighting or half weighting. These
restriction operators compute weighted averages of the components of the fine grid
function to be restricted. They do not vary from grid point to grid point. In 2D, for
example, they are given as follows:

5 Parallel Geometric Multigrid 171

• Full weighting:

1
16

⎡⎣ 1 2 1
2 4 2
1 2 1

⎤⎦H
h

• Half weighting:

1
8

⎡⎣ 0 1 0
1 4 1
0 1 0

⎤⎦H
h

Here, we have used the common stencil notation for restriction operators. The en-
tries of these stencils specify the weights for the values of the respective grid func-
tion, when transferred from the fine grid Ωh to the corresponding coarser grid ΩH .
This means that the function value at any (interior) coarse grid node is computed
as the weighted average of the function values at the respective neighbouring fine
grid nodes, see [10] for example. Representations of the full weighting and the half
weighting operators in 3D are provided in [60].

After the coarse representation eH of the algebraic error has been determined,
the interpolation operator is employed to transfer eH back to the fine grid Ωh:

ẽh := IhHeH .

We use ẽh to denote the resulting fine grid vector, which is an approximation to the
actual fine grid error eh. Ideally, the smoother would yield a fine grid error eh which
lies in the range of IhH such that it could be eliminated completely by the correction
ẽh.

A typical choice for the prolongation operator is linear interpolation. In 2D, for
example, this constant operator is given as follows:

1
4

⎤⎦ 1 2 1
2 4 2
1 2 1

⎡⎣ h

H

Here, we have employed the common stencil notation for interpolation operators.
The entries of the interpolation stencils specify the weights for the values of the
respective grid function, when prolongated from the coarse grid ΩH to the corre-
sponding finer grid Ωh. This means that the function value at any (interior) coarse
grid node is propagated to the respective neighbouring fine grid nodes using these
weights [10]. A representation of the linear interpolation operator in 3D is again
provided in [60].

If the stencil coefficients vary significantly from grid node to grid node, it may be
necessary to employ operator-dependent inter-grid transfer operators, which do not
just compute weighted averages when mapping fine grid functions to the coarse grid,
and vice versa [1]. See also [8] for a discussion of how to select appropriate restric-
tion and prolongation operators depending on the order of the differential operator L
in (5.1).

172 F. Hülsemann et al.

Ideally, the high-frequency components dominate the fine grid error after the
coarse grid representation eH of the error has been interpolated to the fine grid Ωh

and added to the current fine grid approximation uh; i.e., after the correction

uh ← uh + ẽh

has been carried out. In addition, the interpolation of the coarse grid approximation
eH to the fine grid Ωh usually even amplifies oscillatory error components. There-
fore, a few further iterations of the smoother are typically applied to the fine grid
solution uh. This final step is called post-smoothing.

Note that the discrete operator and the stencils that represent the inter-grid trans-
fer operators are often characterised by compact stencils. In 2D, this means that each
of these stencils only covers the current node and its eight immediate neighbours in
the grid. In a regular 3D grid, each interior node has 26 neighbours instead. This
property of compactness simplifies the parallelisation of the multigrid components.
We will return to this issue in Section 5.3 in the context of grid partitioning.

Coarse Grid Operators

The coarse grid operator AH can be obtained by discretising the continuous differ-
ential operator L from (5.1) on the coarse grid ΩH anew. Alternatively, AH can be
computed as the so-called Galerkin product

AH := IHh AhI
h
H . (5.8)

An immediate observation of this choice is the following. If the fine grid operator
Ah as well as the inter-grid transfer operators IHh and IhH are characterised by com-
pact stencils (i.e., 3-point stencils in 1D, 9-point stencils in 2D, or 27-point stencils
in 3D) the resulting coarse grid operator AH will be given by corresponding com-
pact stencils as well. In a multigrid implementation, this property enables the use of
simple data structures and identical parallelisation strategies on all levels of the grid
hierarchy, see Section 5.3.

Note that, if the restriction operator corresponds to the transpose of the interpo-
lation operator (up to a constant factor), and if (5.8) holds, a symmetric fine grid
operator Ah yields a symmetric coarse grid operator AH . If Ah is even symmetric
positive definite and the interpolation operator IhH has full rank, the corresponding
coarse grid operator AH will again be symmetric positive definite.

As a consequence, if the matrix corresponding to the finest grid of the hierarchy
is symmetric positive definite (and therefore nonsingular) and, furthermore, both the
inter-grid transfer operators and the generation of the coarse grid matrices are chosen
appropriately, each of the coarse grid matrices will be symmetric positive definite as
well. This property of the matrix hierarchy often simplifies the analysis of multigrid
methods.

5 Parallel Geometric Multigrid 173

Algorithm 5.1 Recursive definition of the multigrid CGC V(ν1,ν2)-cycle.

1: Perform ν1 iterations of the smoother on Ωh (pre-smoothing):

u
(k+ 1

3)

h ← Sν1h

(
u

(k)
h

)
2: Compute the residual on Ωh:

rh ← fh −Ahu(k+ 1
3)

h

3: Restrict the residual from Ωh to ΩH and initialise the coarse grid approximation:

fH ← IHh rh , uH ← 0

4: if ΩH is the coarsest grid of the hierarchy then
5: Solve the coarse grid equation AHuH = fH on ΩH exactly
6: else
7: Solve the coarse grid equation AHuH = fH on ΩH approximately by (recursively)

performing a multigrid V(ν1,ν2)-cycle starting on ΩH

8: end if
9: Interpolate the coarse grid approximation (i.e., the error) from ΩH to Ωh:

ẽh ← IhHuH

10: Correct the fine grid approximation on Ωh:

u
(k+ 2

3)

h ← u
(k+ 1

3)

h + ẽh

11: Perform ν2 iterations of the smoother on Ωh (post-smoothing):

u
(k+1)
h ← Sν2h

(
u

(k+ 2
3)

h

)

Formulation of the Multigrid V-Cycle Correction Scheme

The previous considerations first lead to the two-grid coarse grid correction (CGC)
V-cycle. This scheme assumes that, in each iteration, the coarse grid equation is
solved exactly.

If, however, this linear system is still too large to be solved efficiently by using
either a direct method or an elementary iterative method, the idea of applying a coarse
grid correction (i.e., the idea of solving the corresponding residual equation on a
coarser grid) can be applied recursively. This then leads to the class of multigrid
schemes. See [10, 60], for example.

Algorithm 5.1 shows the structure of a single multigrid V(ν1,ν2)-cycle. The no-
tation Sνh(·) is introduced to indicate that ν iterations of an appropriate smoothing
method are applied to the corresponding approximation on Ωh. The parameters ν1

and ν2 denote the numbers of iterations of the smoother before and after the coarse
grid correction, respectively. Typical values for ν1 and ν2 are 1, 2, or 3.

174 F. Hülsemann et al.

Ω2h

u
(k+1)
h

Ωh

Ω4h

Sν1
h

Ih2h

I2h
4h

u
(k+ 2

3)

hu
(k+ 1

3)

hu
(k)
h

Sν1
2h

u
(k+ 2

3)

2h

u
(k+1)
2h

I2h
h

u
(k)
2h

u
(k+ 1

3)

2h

f
(k)
4h = I4h

2hr
(k+ 1

3)

2h u
(k+1)
4h = A−1

4h f
(k)
4h

I4h
2h

Sν2
2h

Sν2
h

Fig. 5.1. Three-grid CGC V(ν1,ν2)-cycle.

Due to the recursive formulation of Algorithm 5.1, it is sufficient to distinguish
between a fine grid Ωh and a coarse grid ΩH . When the recursive scheme calls itself
in Step 7, the current coarse grid ΩH becomes the fine grid of the next deeper invo-
cation of the multigrid V-cycle procedure. Typically, uH := 0 is used as initial guess
on ΩH . We assume that the initial guess and the right-hand side on the finest grid
level as well as the matrices on all grid levels of the hierarchy have been initialised
beforehand.

An additional parameter γ may be introduced in order to increase the number of
multigrid cycles to be executed on the coarse grid ΩH in Step 7 of Algorithm 5.1.
This parameter γ is called the cycle index. The choice γ := 1 (as is implicitly the case
in Algorithm 5.1) leads to multigrid V(ν1,ν2)-cycles, while different cycling strate-
gies are possible. Another common choice is γ := 2, which leads to the multigrid
W-cycle [60], see also Section 5.3.4. The names of these schemes are motivated by
the order in which the various grid levels are visited during the multigrid iterations.

Figure 5.1 shows the algorithmic structure of a three-grid CGC V(ν1,ν2)-cycle.
This figure illustrates the origin of the term V-cycle. We have used the level indices
h, 2h, and 4h in order to indicate that we generally assume the case of standard
coarsening, see above.

Remarks on Multigrid Convergence Analysis

A common and powerful approach towards the quantitative convergence analysis
(and the development) of multigrid methods is based on local Fourier analysis (LFA).
The principle of the LFA is to examine the impact of the discrete operators, which
are involved in the two-grid or in the multigrid setting, by representing them in the
basis of the corresponding Fourier spaces. The LFA ignores boundary conditions
and, instead, assumes infinite grids [60, 62].

5 Parallel Geometric Multigrid 175

Alternatively, the convergence analysis of the two-grid scheme and the multigrid
scheme can be based on the notions of smoothing property and approximation prop-
erty, which have been introduced by Hackbusch [32]. As these names suggest, the
smoothing property states that the smoother eliminates high-frequency error com-
ponents without introducing smooth ones. In contrast, the approximation property
states that the CGC performs efficiently; i.e., that the inverse of the coarse grid oper-
ator represents a reasonable approximation to the inverse of the fine grid operator. In
comparison with the aforementioned LFA, the current approach only yields qualita-
tive results.

The convergence analysis of multigrid methods reveals for example that, for W-
cycle schemes applied to certain model problems, these algorithms behave asymptot-
ically optimal. It can be shown that, for these cases, multigrid W-cycles only require
O(N log ε) operations, where N denotes the number of unknowns corresponding to
the finest grid level and ε stands for the required factor by which the norm of the
algebraic error shall be improved, see [60].

Full Approximation Scheme

So far, we have considered the CGC scheme, or simply the correction scheme (CS).
This means that, in each multigrid iteration, any coarse grid is employed to compute
an approximation to the error on the next finer grid.

Alternatively, the coarse grid can be used to compute an approximation to the
fine grid solution instead. This approach leads to the full approximation scheme/s-
torage (FAS) method. The FAS method is primarily used, if the discrete operator is
nonlinear or if adaptive grid refinement is introduced. In the latter case, the finer
grids may not cover the entire domain in order to reduce both memory consumption
and computational work.

It can be shown that, for the nonlinear case, the computational efficiency of the
FAS scheme is asymptotically optimal, as is the case for the aforementioned cor-
rection scheme. In addition, the parallelisation of the FAS method resembles the
parallelisation of the correction scheme. See [7, 60] for details on the FAS method.

Nested Iteration and Full Multigrid

In most cases, the solution times of iterative methods (i.e., the numbers of iterations
required to fulfil the given stopping criteria) can be reduced drastically by choos-
ing suitable initial guesses. When applied recursively, the idea of determining an
approximation on a coarse grid first and interpolating this approximation afterwards
in order to generate an accurate initial guess on a fine grid leads to the principle of
nested iteration [33].

The combination of nested iteration and the multigrid schemes we have described
so far leads to the class of full multigrid (FMG) methods, which typically repre-
sent the most efficient multigrid algorithms. For typical problems, the computational
work required to solve the discrete problem on the finest grid level up to discretisa-
tion accuracy is of order O(N) only. This results from the observation that, on each

176 F. Hülsemann et al.

Algorithm 5.2 Recursive formulation of the FMG scheme on Ωh.

1: if Ωh is the coarsest grid of the hierarchy then
2: Solve Ahuh = fh on Ωh exactly
3: else
4: Restrict the right-hand side from Ωh to the next coarser grid ΩH :

fH ← IHh fh

5: Solve AHuH = fH using FMG on ΩH recursively
6: Interpolate the coarse grid approximation from ΩH to Ωh in order to obtain a good

initial guess on Ωh:
u

(0)
h ← ĨhHuH

7: Improve the approximation on Ωh by applying ν0 multigrid iterations:

uh ← MGν0ν1,ν2

(
u

(0)
h , Ah, fh

)
8: end if

level of the grid hierarchy, a constant number of V-cycles is sufficient to solve the
corresponding linear system up to discretisation accuracy. See [8, 60] for details.

The FMG scheme generally starts on the coarsest level of the grid hierarchy.
There, an approximation to the solution is computed and then interpolated to the
next finer grid, yielding a suitable initial guess on this next finer grid. A certain
number of multigrid cycles (either CGC-based or FAS-based) is applied to improve
the approximation, before it is in turn interpolated to the next finer grid, and so on.

As Algorithm 5.2 shows, the FMG scheme can be formulated recursively. The
linear system on the coarsest level of the grid hierarchy is assumed to be solved
exactly. Since the approximations which are mapped from coarse to fine grids in
Step 6 are not necessarily smooth and potentially large, it is commonly recommended
to choose an interpolation operator ĨhH of sufficiently high order [60].

Depending on the actual problem, the multigrid method applied in Step 7 of
Algorithm 5.2 may either be based on the CGC scheme or on the FAS method. It may
involve either V(ν1,ν2)-cycles or W(ν1,ν2)-cycles. The notation we have introduced
in Step 7 is supposed to indicate that ν0 multigrid cycles are performed on the linear
system involving the matrix Ah and the right-hand side fh, starting with the initial
guess u(0)

h which has been determined previously by interpolation in Step 6.
Note that, in order to compute an approximation to the actual solution on each of

the coarse grids, it is necessary to appropriately represent the original right-hand side;
i.e., the right-hand side on the finest grid level. These coarse grid right-hand sides are
needed whenever the corresponding coarse grid level is visited for the first time and,
in the case of the FAS method, during the multigrid cycles as well. They can either
be determined by successively restricting the right-hand side from the finest grid (as
is the case in Algorithm 5.2, Step 4) or, alternatively, by discretising the continuous
right-hand side (i.e., the function f in (5.1)) on each grid level anew [60].

5 Parallel Geometric Multigrid 177

5.3 Elementary Parallel Multigrid

In this section, we will introduce the basic concepts used in parallelising the geomet-
ric multigrid method.

5.3.1 Grid Partitioning

We begin with an outline of the parallelisation of a standard (geometric) multigrid
method, as introduced in Section 5.2. In the simplest case, computations are per-
formed on a hierarchy of L grids of ml × nl (×ol) grid lines for 2D (3D) problems
and for 1 ≤ l ≤ L. A vertex-centred discretisation will associate unknowns with the
grid vertices and the grid edges represent data dependencies (though not necessarily
all) induced by the discrete equations on level l when applying a stencil operation.

Our parallel machine model is motivated by current cluster architectures. In par-
ticular, we assume a distributed memory architecture and parallelisation by message
passing. The most common message passing standard, today, is the message passing
interface (MPI); see [29, 30], for example. Each compute node in this setting may
itself be a (shared memory) multiprocessor.

In the following, we will adopt standard message passing terminology and use
the notion of a process rather than a processor. In a typical cluster environment each
processor of a compute node will execute one process. The message passing para-
digm, however, also allows for situations where several processes are executed by
a single processor. In a parallel environment with a number of compute nodes that
is significantly smaller than the number of unknowns, the typical approach to paral-
lelise any grid-based algorithm is to split the grid into several parts or sub-grids and
assign each sub-grid and all of its grid nodes to one process. This approach is for
obvious reasons denoted as grid partitioning or domain partitioning; see for exam-
ple [41].

Note that grid (domain) partitioning is sometimes also referred to as domain de-
composition. This terminology is actually misleading, since domain decomposition
denotes a special solution approach. Classical domain decomposition algorithms in-
clude a subdomain solution phase in which each process solves a problem that is
completely independent of the problems in the remaining sub-domains. The solution
of the original problem posed on the global domain is then obtained by iteratively
adapting the local problem on any sub-domain based on the solutions computed by
other processes on the neighbouring sub-domains. The solution of the local problems
does not induce a need for communication between the processes. This is restricted
to the outer iteration in the adaptation phase. If the coupling is done in an appropri-
ate way, the local solutions will converge to the global solution restricted to the local
sub-domains. Thus, domain decomposition actually is a concept to design a new par-
allel algorithm using existing sequential ones as building blocks. For further details,
we refer to [19].

Grid (domain) partitioning, in contrast, denotes a strategy to parallelise an exist-
ing sequential grid-based algorithm. Here we will consider the parallelisation of the

178 F. Hülsemann et al.

(geometric) multigrid algorithm. In this case, there exist no independent local prob-
lems on the individual sub-domains and the execution of the algorithm itself induces
the need to communicate data between the different processes.

Before we consider this point of interdependence further, we briefly introduce
some notation. Let us denote by Ωl the grid on level l, by Ωlk its k-th sub-grid, by
nlj , 1 ≤ j ≤ N l a node of Ωl, and by plk the process responsible for sub-grid Ωlk.

As was illustrated in Section 5.2, all operations in a structured geometric multi-
grid method can in principle be expressed with the help of stencil operators that
are applied to a grid function. Such stencils often have a compact support. Hence,
when they are locally applied at a certain node nlj ∈ Ωlk, this only involves values
of the grid function at nodes that are neighbours of the node nlj . If the node nlj in
question is located inside the sub-grid Ωlk, then the application of a stencil can be
performed by process plk independently. However, if nlj is lying in the vicinity of
the sub-domain boundary, then the application of a stencil may involve nodes that
belong to neighbouring sub-domains and are thus not stored by process plk.

The straightforward solution to this problem is to let plk query its neighbours for
the node values involved whenever it requires them. This, however, must be ruled
out for efficiency reasons. Instead, the following approach is typically employed.

Each sub-domain Ωlk is augmented by a layer of so-called ghost nodes that sur-
round it. This layer is denoted as overlap region but other names such as halo are
also often used. The ghost nodes in the overlap region correspond to nodes in neigh-
bouring sub-domains that plk must access in order to perform computations on Ωlk.
The width of the overlap region is therefore determined by the extent of the sten-
cil operators involved. Figures 5.2 and 5.3 give two examples; one for a structured
and one for an unstructured grid. Note the difference in the size of the four subdo-
mains in Figure 5.2. This will result in some load imbalance, but is inevitable for the
(2k + 1) × (2m + 1) grids typically employed in geometric multigrid applications.
In Section 5.6.2 we will present a partitioning approach that avoids this difficulty.

The ghost nodes around each subdomain can be considered as a kind of read-only
nodes. This means that process plk will never change the respective function values
directly by performing computations on them, but will only access their values when
performing computations on its own nodes.

Keeping the values in the overlap region up-to-date requires communication with
the neighbouring processes. As an example, Figure 5.4 shows a strategy for updating
the overlap regions in a partitioning with four sub-grids and also demonstrates how
“diagonal” communication (in this example communication between the lower-left
and top-right process as well as between the top-left and bottom-right process) can
implicitly be avoided. The precise details of such an update and its frequency de-
pend on the multigrid component involved and will be considered in the following
sections.

When it can be assured that the function value at a ghost node glj in the overlap
region of Ωlk is always identical to the function value at its master node nlj when it
is read by plk, the computation will yield the same result as in the sequential case.
One of the major challenges in designing parallel geometric multigrid methods is to

5 Parallel Geometric Multigrid 179

Fig. 5.2. Partitioning of a structured grid into four sub-domains with an overlap region of
width one. We distinguish: inner nodes (white circles), boundary nodes (grey squares) and
ghost nodes (black circles / squares).

Fig. 5.3. Partitioning of a unstructured grid into four sub-domains with an overlap region of
width one. Ghost nodes are coloured according to their corresponding master nodes.

initial configuration west↔ east exchange north↔ south exchange

A

B

C

B

D

C

1 2 3 2 3 4 1 2 3 2 3 4

D

C

B

C

B

A

1 2 3 2 3 4

A

B

C

B

C

D

Fig. 5.4. Example update of ghost node values at the intersection of four sub-domains.

employ appropriate multigrid components and to develop suitable implementations,
such that this requirement is met with as little communication costs as possible, while
on the other side retaining the fast convergence speed and high efficiency achieved
by sequential multigrid algorithms.

Another important question is how to choose the grid partitioning. Since the size
of the surface of a sub-grid determines the number of ghost nodes in the overlap
region, it is directly related to the amount of data that must be transferred and thus
to the time spent with communication. This communication time is a consequence
of the parallel processing. This is complemented by the computation time, which

180 F. Hülsemann et al.

comprises all operations that a sequential program would have to carry out for the
local data set. In our application, this time is dominated by floating-point operations,
hence the name.

As a high computation-to-communication ratio is important for achieving rea-
sonable parallel efficiency, one thus typically strives for a large volume-to-surface
ratio when devising the grid partitioning. With structured grid applications, this ini-
tially led to the preference of 2D over 1D partitioning for 2D problems and 3D over
2D or 1D partitioning for 3D simulations.

In light of the increasing gap between CPU speed and main memory performance
(cf. Section 5.5) the focus has started to change. Not only the amount of data to be
communicated is now taken into account, but also the run-time costs for collecting
and rearranging them. Here, lower dimensional splittings such as 1D partitionings in
3D, for example, can yield performance benefits. See [53], for example. They may
further be advantageous in the case of the application of special smoothers such as
line smoothers, cf. Section 5.6.1.

5.3.2 Parallel Smoothers

In this section, we will describe the parallelisation of the classical point-based
smoothers that are typically used in geometric multigrid methods. More sophisti-
cated smoothers are considered in Section 5.6.1. Since, in the context of multigrid
methods, smoothers always operate on the individual grid levels, we drop the l super-
script in this section.

Parallelisation with Read-Only Ghost Nodes

We start our exposition with the simplest smoother, the weighted Jacobi method
given by

unew(nk) = uold(nk)− ω

σ(0, nk)

⎡⎣f(nk) −
∑

j∈K(nk)

σ(j, nk)uold(nk+j)

⎤⎦ , (5.9)

where K(nk) denotes the support of the stencil representing the discrete operator
at node nk, σ(j, nk) is the stencil weight for the value at node nk+j , and u and f
denote the approximate solution and the discrete right-hand side, respectively. Equa-
tion (5.9) implies that the new iterate unew at each node is computed based solely on
values of the previous iterate uold. Thus, if the values of uold are up-to-date at the
ghost nodes of the overlap region, each process can perform one Jacobi sweep on its
sub-domain independently of the remaining processes. Once this is done, one com-
munication phase is required to update the overlap regions again in order to prepare
for the next sweep or the next phase of the multigrid algorithm.

Let us now turn to Gauß-Seidel smoothing and its weighted variant; the succes-
sive over-relaxation (SOR). The formula for this smoother is given by

5 Parallel Geometric Multigrid 181

unew(nk) = uold(nk)− ω

σ(0, nk)

⎡⎣f(nk) −
∑

j∈K(nk)

σ(j, nk) v(nk+j)

⎤⎦ , (5.10)

where the Gauß-Seidel method is obtained for ω = 1. In (5.10), we have v(nk+j) =
uold(nk+j), if the node nk+j has not yet been updated during the computation, and
v(nk+j) = unew(nk+j), otherwise. Thus, (5.10) shows that in the case of SOR
smoothing the ordering in which the nodes are updated may influence the properties
and the qualities of the smoother. This turns out to be true and details can be found
in [60], for instance.

In a parallel setting this inherently sequential dependency causes some difficulty.
For example, assume a splitting of a regular grid into four sub-domains as shown
in Figure 5.2. Choosing a lexicographic ordering of the nodes for the update and
starting the Gauß-Seidel sweep from the lower left would imply that only the process
responsible for the lower left sub-domain could perform any computations until the
update reaches the top left sub-domain, and so on. As a consequence, three processes
would be idle all the time. A different ordering is therefore required in the parallel
setting.

Fortunately, the ordering chosen for most sequential multigrid applications is not
a lexicographic one anyway. Instead, a so-called red-black or checker-board ordering
is frequently used. This ordering often has superior properties in the multigrid con-
text. It is based on a splitting of the grid nodes into two groups depending on their
positions; a red group and a black one. For the typical 5-point stencil representing
the discrete Laplacian, see Section 5.2.3, the nodes in each of the groups are com-
pletely independent of each other. A red node only depends on black nodes for the
update, and vice versa. The advantage of this splitting for parallelisation is that each
subdomain can update its local red nodes using values at its black nodes (both local
and ghost), without the need for communication during the update. Once this is done,
one communication phase is required in order to update the values at the red ghost
nodes. Afterwards, the update of the black nodes can proceed, again independently,
followed by a second communication phase for updating the black ghost nodes.

Compared to the Jacobi smoother, the SOR smoother thus requires one additional
communication step. The total amount of data that needs to be transmitted remains
the same, however. For larger discretisation stencils, more colours are needed; a com-
pact 9-point-stencil requires a splitting into four sets of nodes, for example.

Trading Computation for Communication

Another possibility for parallelising the red-black SOR smoother and smoothers with
similar dependency patterns is to discard the read-only property of the ghost nodes
and to trade computation for communication. Assume that we perform a V(2,0)-
cycle, for example. In the first approach, four communication steps are required for
the two pre-smoothing steps. Let us denote by the k-th generation of ghost nodes all
nodes that are required to update in the SOR sweep the nodes in the (k-1)-th gener-
ation, with the nodes in a sub-domain belonging to generation 0. Broadly speaking,

182 F. Hülsemann et al.

this definition implies that one layer of ghost nodes is added for each SOR iteration
step that is meant to be performed without communication between the partitions.

If we extend the overlap region to include all ghost nodes up to fourth generation,
we can perform the four partial SOR sweeps without communication. This is possi-
ble, since in the overlap region the same values are computed as in the neighbouring
sub-domains. We must take into account, however, that each partial sweep invali-
dates one generation of ghost nodes; they cannot be updated anymore because their
values would start to differ from those at the master nodes that they should mirror.

This second approach increases both the overlap region (and thus the amount of
transferred data) as well as the computational work. Therefore, its advantage strongly
depends on the parallel architecture employed for the simulation. In the first place, it
is the ratio of the costs of floating-point computation, assembly of data into a mes-
sage, transfer of a message depending on its size, and initialising a communication
step between processes that are important here. Moreover, the size of the individual
sub-domains plays an essential role as well. We will return to the latter aspect in
Section 5.3.4.

Hybrid Smoothers

Let us conclude this subsection by mentioning another general concept for parallelis-
ing multigrid smoothers, which is known under the notion of hybrid smoothing [43].
See also [65] in this respect. The underlying idea is simple. One does not try to paral-
lelise the chosen smoother, maintaining all data dependencies. Instead, this smoother
is applied on each sub-domain independently of the other ones, and the values at
the ghost nodes are only updated after each sweep. Hence, this scheme corresponds
to an inexact block-Jacobi method. The impact of this approach on the smoothing
property and the convergence speed of the multigrid method is, of course, strongly
problem-dependent. It can be quite negative, though, and one must be cautious with
this approach. However, recently approaches have been developed to improve this
concept by the use of suitable weighting parameters; see [65] for more details.

5.3.3 Parallel Transfer Operators

As was introduced in Section 5.2, the use of grids of different resolutions in geo-
metric multigrid necessitates the use of inter-grid transfer operators. These allow to
restrict a grid function from the function space associated with a fine grid Ωl to the
space associated with a coarser grid Ωl−1 and to prolongate a grid function from
Ωl−1 to Ωl.

Both restriction and prolongation operators can typically be expressed by com-
pact local stencils and, as with the Jacobi smoother of the previous section, the order
in which the nodes are treated does not influence the final result. Using an overlap
region of sufficient width, the multigrid transfer operators can be parallelised easily.
Note, however, that using a vertex-centred discretisation, the subdomain Ωl−1

k and
Ωlk may cover different areas. An example is given in Figure 5.5, where a 1D pro-
longation by (piece-wise) linear interpolation is sketched. The overlap regions of the

5 Parallel Geometric Multigrid 183

Fig. 5.5. Prolongation at the interface between two sub-domains in 1D.

two sub-domains are shaded in grey. Thus, some care must be taken when performing
prolongation and restriction operations at the interfaces of the sub-domains.

5.3.4 Parallel Multigrid Cycles

Multigrid methods may employ different cycling strategies, the most prominent be-
ing the V- and the W-cycle. In principle, a parallel multigrid method can also be used
with different cycling strategies. However, again some extra issues come into play in
the parallel setting. One of the questions in this respect is that of parallel efficiency.
As was already mentioned in Section 5.3.1, the latter is coupled to the ratio of com-
putation time to communication time. In order to illustrate how this ratio changes
from one grid level to another, we have to determine the dominating factors for the
two parts.

In our numerically intensive case, it is safe to assume that the computation time
is linearly proportional to the number of nodes in a sub-domain Ωlk. For the commu-
nication part, we ignore for the moment the impact of message latencies and assume
that the communication time is linearly proportional to the number of ghost nodes
in the overlap region of Ωlk. In practice, the latter can be well approximated by a
multiple of the number of nodes on the sub-domain boundary. Thus, the ratio of
communication time to computation time is directly proportional to the surface-to-
volume ratio of the sub-domain.

As an example, Table 5.1 presents the values of the surface-to-volume ratio for
typical square sub-domains in 2D and cubic sub-domains in 3D. We assume a stan-
dard coarsening by doubling the mesh width in each dimension, see Figure 5.6, and
an overlap region of width 1. The example clearly shows that the surface-to-volume
ratio on coarser grids is less favourable than on finer grids. Similar results hold for
other partition geometries.

Depending on the representation of the discrete operator, partition sizes of a mil-
lion or more unknowns for a scalar PDE are not uncommon. In 3D, the surface-
to-volume ratio for a single grid algorithm operating on a partition consisting of
one cube with two million unknowns is in the order of 5%. Put differently, there
are twenty times more compute nodes than ghost nodes. However, on clusters with
high performance processors but slow networks, even this factor of 20 may not be
sufficient to hide the time for data exchange behind the time for the floating-point
operations by using the technique of overlapping communication and computation

184 F. Hülsemann et al.

Table 5.1. Examples of surface-to-volume ratios in two and three spatial dimensions. l denotes
the grid level in the hierarchy, B(l) the number of ghost nodes for a sub-domain Ωlk, V (l) the
number of nodes in Ωlk and r is the quotient of B(l) divided by V (l).

2D 3D
l B(l) V (l) r B(l) V (l) r

1 8 1 8.00 26 1 26.0
2 16 9 1.77 98 27 3.63
3 32 49 0.65 386 343 1.13
4 64 225 0.28 1,538 3,375 0.46
5 128 961 0.13 6,146 29,791 0.21
6 256 3,969 0.06 24,578 250,047 0.10
7 512 16,129 0.03 98,306 2,048,383 0.05
8 1024 65,025 0.02 393,218 16,581,375 0.02
9 2048 261,121 0.01 1,572,866 133,432,831 0.01
10 4096 1,046,529 0.004 6,291,458 1,070,599,167 0.006

Fig. 5.6. Example of full coarsening in 2D. Hollow circles indicate ghost nodes, full circles
denote the unknowns in the local partition.

discussed in Section 5.6.3. In 2D, the surface-to-volume ratio of a square shaped par-
tition with two million unknowns is more favourable than in 3D at the same number
of unknowns.

In the case of multigrid algorithms, the network performance becomes even more
important. One aim of the sequential multigrid algorithm is to perform as little work
as possible on the finest grid and to do as much work as possible on the coarser levels.
The assumption behind this idea is that operations such as smoothing steps are much
cheaper in terms of computing time on coarser grids than on finer ones. However,
this is not necessarily valid in the parallel setting. Given that network data transfer is
still significantly slower than accesses to main memory, it is safe to assume that, for
instance, smoothing the 27 interior points on level 2 in a cube takes less time than
communicating the 26 ghost values for the single unknown on grid level 1. Thus, in
this case, it is less time-consuming to keep working on a finer level than to delegate
the work to a coarser level, provided the work on the finer level is similarly efficient
to solve the problem.

5 Parallel Geometric Multigrid 185

Depending on the processor and network specifications, the same reasoning may
actually hold true for other levels as well, so that it may well be faster to stop the
multigrid recursion at level three or level four, say, or to use fewer processes for the
computations on the coarser grid levels. The problem then is to find an appropriate
solver for the remaining coarsest level in terms of computation and communication.

Let us further examine the communication demands of the grid hierarchy in a
parallel multigrid method from another perspective. Consider a 3D scalar elliptic
PDE on a grid with N = n3 unknowns. As can be seen from Section 5.2, the com-
putational cost for a single V- (γ = 1) or W-cycle (γ = 2) in this case is of order
O(N) = O(n3). The latter can be obtained from estimating the geometric series

n3 + γ1(n/2)3 + γ2(n/4)3 + γ3(n/8)3 + . . .

in combination with a linear relationship of the number of nodes per level to the
computational work on that level. Assuming that the domain is partitioned into a
grid of p3 = P sub-domains of (nearly) equal size, each of these has O((n/p)3)
nodes, and therefore a number of ghost nodes of order O((n/p)2). The total data
volume of communication for a V- or W-cycle is then given by

V3D
comm = O

(
p3 n

2

p2
(1 + γ1/4 + γ2/16 + γ3/64 + . . .)

)
= O(p n2) .

This consideration demonstrates that, even asymptotically (i.e., for n → ∞), the
aggregate costs of communication of a 3D multigrid V- or W-cycle differ from that
of a single data exchange between the partitions on the finest grid only by a constant
factor. In 2D, however, one obtains

V2D
comm = O

(
p2 n

p
(1 + γ1/2 + γ2/4 + γ3/8 + . . .)

)
.

Thus, asymptotically the argument in 2D only holds for the V-cycle, where we have
V2D

comm = O(p n). In contrast, the W-cycle leads to V2D
comm = O(p n log(n)). In

practice, of course, other effects will influence the run-time behaviour making the
situation more complicated. The most noticeable additional effect on many current
system architectures may be the startup cost (latency) of communication. When mes-
sages are small, as is the case when data is exchanged between sub-domains on
coarse grids, then the time for initiating a message exchange may be so large that
it cannot be neglected anymore. In contrast to the volume of communication, the
number of messages is independent of the sub-domain size and thus will grow with
log(n) for a standard multigrid method that employs all levels of the hierarchy. Also
the commonly applied technique of overlapping communication and computation,
see Section 5.6.3, that tries to reduce overall run-time requires that there is enough
computational work behind which communication can be hidden. This of course
becomes problematic, when sub-domains get too small on coarser grids. Addition-
ally, the aggregate data volume for all processes says little about the time needed for
communication. Depending on the network topology and allocation of the processes,
network jams may occur, or bandwidth may depend on message sizes, etc.

186 F. Hülsemann et al.

Finally, it is the run-time of a parallel multigrid algorithm that is of major interest
to the common user. The latter may be as much determined by the cost of commu-
nication as by the cost of computation, and finding ways to reduce communication
cost may be more important than reducing the cost of computation.

As a consequence, the typical rule of thumb in parallel multigrid is to prefer
cycling strategies that spend less time on coarser grids (e.g., V-cycles) to those that
spend more time on coarser grids (e.g., W-cycles) as far as parallel efficiency is
concerned. However, a concrete application problems may still require the use of
W-cycles for its increased robustness.

The question of a suitable parallel multigrid cycling strategy is closely related to
the question of how deep the grid hierarchy should be chosen. In multigrid, one often
tries to coarsen the mesh as far as possible, in the extreme even to a level with only
one unknown. It turns out that, in the sequential case, this is in fact a competitive
strategy, not alone since the exact solution of the coarsest grid problem in this case
can be performed with very small costs. In light of the above discussion, however,
the question is whether it is sensible to have grid levels where the number of compute
nodes exceeds that of grid nodes. One might even ask whether a grid level leading
to sub-domains with a large ratio of ghost nodes to interior nodes is desirable. As
often with parallel algorithms, there is no universal answer to these questions, since
the best approach depends on the actual parallel environment and the application at
hand.

However, two general strategies exist. One is known under the notion of coarse
grid agglomeration. The idea here is to unite the sub-domains of different processes
on one process once the ratio between interior and boundary nodes falls below a
certain threshold. While this leaves processes idle and induces a significant com-
munication requirement at those points in the multigrid cycle where one descends
to or ascends from a grid level on which coarse grid agglomeration occurs, it can
nevertheless be advantageous, since it reduces the communication work for perform-
ing operations (smoothing, residual computation, coarse grid correction, etc.) on this
level and the lower ones. The extreme of this approach is to collect all sub-domains
on one process on a certain level, and to perform a sequential multigrid algorithm on
the grid levels below.

Unfortunately, while this technique is mentioned in nearly all publications on
parallel multigrid, there appears, at least to our best knowledge, to exist no publica-
tion that thoroughly investigates the approach and gives the user some advice on how
and when this should be done depending on the underlying parallel architecture and
the specific multigrid algorithm.

Another strategy is to use a so-called U-cycle. The idea here is to confine oneself
to a comparatively flat multigrid hierarchy, i.e. the number of grid levels is chosen
such that the coarsest grid is still comparatively fine. While this induces the need to
compute an exact solution for the coarsest grid problem already on a global grid with
a larger number of unknowns, doing so can on one hand improve the convergence
speed, which can alleviate the additional costs. On the other hand, one can employ
another parallel solution method, such as a parallel sparse direct solver or a parallel

5 Parallel Geometric Multigrid 187

preconditioned Krylov subspace method for this purpose. See e.g. [64] for a closer
examination of this approach.

Generally, parallel multigrid designers should critically question what they are
optimising for. Implementing a U-cycle which stops already at a very fine coarsest
grid and simply solves the coarsest grid equations by a sufficient number of calls
to the smoother may lead to excellent parallel efficiency and impressive aggregate
Mflop/s rates5. However, in terms of run-time this will seldom be a high perfor-
mance approach, since the coarse grid solver is of course inefficient and needs many
iterations which incurs computation and communication time. This shows that all
arguments about parallel efficiency in the multigrid context must be considered with
some care.

At this point, it can also be pointed out that similar arguments should be con-
sidered when comparing multigrid algorithms with other iterative linear solvers.
If, for example, a preconditioner achieves a condition number which depends log-
arithmically on the system size of a 3D problem (as is the case for some of the
more advanced domain decomposition algorithms, for instance), then the CG solver
will need O(log n) iterations. Assuming that the preconditioner requires one next
neighbour data exchange, the solver has an overall communication volume of or-
der O(p n2 log n), which is asymptotically worse than for an equivalent multigrid
method, while being asymptotically equivalent in the number of messages to be sent.

Summarising the argument in this section, we see that multigrid may make it
difficult to obtain good parallel efficiency, but this should not misguide anyone to
try to use too simplistic variants or be misinterpreted as necessarily leading to poor
run-time performance. Asymptotically, multigrid is not only optimal in (sequential)
computational complexity, but using grid partitioning, it also requires asymptotically
only close to the minimal amount of communication.

5.3.5 Experiments

The computational results in this section have the very simple aim to illustrate the
potential of parallel geometric multigrid methods and to show that, on suitable ar-
chitectures, parallel multigrid can be designed to be extremely efficient both with
respect to absolute timings and in terms of parallel efficiency. The test case is a Pois-
son problem with Dirichlet boundary conditions in three space dimensions. Though
numerically no challenge, this is a hard test problem with respect to efficiency, since
the ratio of computation to communication is very low and thus it is not trivial to
achieve good speedup results.

For the scalability experiment, the problem domains consist of 9N unit cubes
with N being the number of processes in the computation. Seven refinement levels
are used in the grid hierarchy. In the case of the speed-up experiment, the number
of computational cells in the problem domain remains constant, of course. The L-
shaped problem domain consists of 128 unit cubes and six refinement levels are

51 Mflop/s = 106 floating-point operations per second, 1 Gflop/s = 109 floating-point op-
erations per second.

188 F. Hülsemann et al.

CPU Dof Time
×106 in (s)

64 1179.48 44
128 2359.74 44
256 4719.47 44
512 9438.94 45
550 10139.49 48

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processes

linear
observed

(b)

Fig. 5.7. Parallel performance results in 3D: (a) Scalability experiments using a Poisson prob-
lem with Dirichlet boundary conditions on an L-shaped domain. Dof denotes the degrees of
freedom in the linear system, the timing results given refer to the wall clock time for the solu-
tion of the linear system using a full multigrid solver. (b) Speedup results for the same Poisson
problem.

generated by repeated subdivision. The problem domain is distributed to 2, 4, 8, 16,
32, and 64 processes. The single processor computing time is estimated by dividing
the two processor execution time by two.

The algorithmic components of the multigrid method are well established. We
employ a variant of the red-black Gauß-Seidel iteration as smoother and full weight-
ing and trilinear interpolation as the inter-grid transfer operators. The cycling strategy
is a full multigrid method in which we perform two V(2,2)-cycles on each grid level
before prolongating the current approximation to the next finer grid in the hierarchy.
A discretisation by trilinear finite elements results in a 27-point stencil in the interior
of the domain.

The experiments were carried out on the Hitachi SR8000 supercomputer at the
Leibniz Computing Centre in Munich. The machine is made up of SMP nodes with
eight processors each and a proprietary high speed network between the nodes. The
program runs with an overall performance, including startup, reading the grid file and
all communication, of 220 Mflop/s per process, which yields an agglomerated node
performance of 1.76 Gflop/s out of the theoretical nodal peak performance of 12
Gflop/s. To put the solution time into perspective, we note that the individual proces-
sors have a theoretical peak performance of 1.5 Gflop/s, which is not much compared
to the 6 Gflop/s and more of currently available architectures, such as e.g. the Intel
Pentium IV 3.6 GHz, the Intel ItaniumII 1.5 GHz or the IBM PowerPC 970 2.2GHz.
Nevertheless, a linear algebraic system with more than 1010 unknowns distributed
over 550 processes and as many processors is solved in less than 50 seconds. For
information concerning the design principles and the data structures of this multigrid
code, we refer to [36].

The scalability results owe much to the ability of the full multigrid algorithm to
arrive at the result with a fixed number of cycles, independent of the problem size,
cf. Sect 5.2.5. One might think that the speedup experiment represents a harder test,

5 Parallel Geometric Multigrid 189

Table 5.2. Scale up results for parallel V(2,2)-cycle in 3D: Dof are the degrees of freedom,
Time is the wall clock solution time for the linear system.

CPU Dof Time V-cycles
×106 in (s)

8 133.4 78 9
16 267.1 81 10
32 534.7 95 11

as the amount of communication over the network increases, while the amount of
computations per process decreases. However, as shown in Figure 5.7, the behaviour
is close to optimal. In the experiment, an L-shaped domain consisting of 128 cubes
is distributed to 2, 4, 8, 16, 32, and 64 processes. Each cube is regularly subdivided
six times. The same Poisson problem is solved using the same multigrid algorithm
as before.

Even the straightforward V-cycle can handle large problems in acceptable time
frames, as the following experiment shows. We solve again a 3D Poisson problem
with Dirichlet boundary conditions again on the Hitachi SR8000, but this time we
employ the 7-point finite difference stencil on problem domainsΩ1 = [0, 2]×[0, 2]×
[0, 2], partitioned into 8 hexahedra, Ω2 = [0, 4] × [0, 2] × [0, 2], partitioned into 16
hexahedra, Ω3 = [0, 4]× [0, 4]× [0, 2], partitioned into 32 hexahedra. On each grid
level, we perform two pre- and two post-smoothing steps. The fact that the number of
V-cycles in Tab. 5.2 increases with the problem size is a consequence of the stopping
criteria that imposes an absolute limit on the l2-norm of the residual vector. Still, the
V-cycle multigrid manages to solve a system with more than 500 · 106 unknowns in
95 seconds, in this case on 32 processors.

5.4 Parallel Multigrid for Unstructured Grid Applications

5.4.1 Single Grid Aspects

In this section, we examine the added complications that arise when parallelising a
multigrid solver on unstructured grids. We first consider the single grid case before
turning to the multigrid setting.

From a sufficiently abstract point of view, the steps in the parallelisation of op-
erations on an unstructured grid are the same as in the structured case considered so
far. First, the grid has to be partitioned, then the necessary ghost points have to be
determined. After that, it has to be worked out for each ghost value from which par-
tition the information can be retrieved before finally the communication structures
between the partitions are set up.

Fortunately, the commonly used programs to perform the partitioning step, such
as Metis or ParMetis [39, 40], are applicable to structured and unstructured grids
alike. As in the structured case, the discretisation scheme determines which ghost

190 F. Hülsemann et al.

values are needed around the partition boundary. One major difference between the
two grid types concerns the number of neighbouring partitions with which a given
partition has to exchange information. In the structured case, the number of neigh-
bours is bounded independently of the number of partitions, whereas in the unstruc-
tured case, this number is not bounded a priori. For operations such as a matrix vector
product or an inner product between two distributed vectors, this of course affects the
number of messages that have to be sent in order to keep the data synchronised across
partitions, but the basic functionality is the same as in the structured case. However,
for inherently sequential operations, such as the common Gauß-Seidel smoother in
multigrid schemes, efficient parallelisation strategies that minimise the number of
messages are more difficult to construct. The problem is linked to the one of the
colouring of the data dependency graph between the partitions. Given that this graph
depends on the distribution of the unstructured grid, it is only known at run-time.
Hence, any parallelisation strategy has to be formulated and implemented in a gen-
eral fashion, which is much more complicated than in the structured case, where the
neighbourhood relationships are known at compile-time. For further details on paral-
lel smoothing in the unstructured case we refer the reader to [65], where this problem
is considered in detail, since parallel algebraic multigrid faces the same challenge.

5.4.2 Generation of Grid Hierarchies

Turning now to multigrid methods on unstructured grids, the first problem concerns
the construction of the grid hierarchy. The common approach to generating the hi-
erarchy of nested approximation spaces needed for standard geometric multigrid on
unstructured grids consists in carrying out several steps of repeated regular refine-
ment as depicted in Figure 5.8. The reason for the popularity of this approach lies
in the complexity and difficulty of any alternative. Coarsening a given unstructured
grid so that the resulting approximation spaces are nested is often impossible. Hence,
one would have to work on non-nested spaces. Multigrid methods for such a setting
are much more complicated than those for their nested counterparts. In summary,
although it is possible to construct geometric multigrid methods on hierarchies of
repeatedly coarsened unstructured grids, this option is rarely chosen in practice.

Concerning the parallelisation, the simplest approach is to perform the grid dis-
tribution only once, on the unstructured input grid, and then to let the finer levels
inherit the communication pattern from the coarsest grid. However, this strategy will
amplify any kind of load imbalance present in the distribution of the initial grid. The
other extreme approach is to partition each grid level individually. This avoids the
load balancing problems of the other method at the cost of a more complex initiali-
sation phase and potentially more complicated communication patterns in the multi-
grid algorithm. Which approach yields the smaller run-time depends on the concrete
problem and the CPU and network specifications. We refer to [58] for a discussion
of load balancing issues.

5 Parallel Geometric Multigrid 191

a)

c)

b)

I)

II)

III)

Fig. 5.8. Non-destructive testing example, from left to right: I) the problem domain with a) the
coil that generates a magnetic field, b) air surrounding the coil, and c) the material to be tested.
The material parameters (magnetic permeability) of the three different components differ from
each other, but are assumed to be constant within each component (homogeneous materials).
II) the coarse, unstructured grid that represents the problem geometry and III) the grid after
two global regular subdivision steps

5.4.3 Hierarchical Hybrid Grids

The repeated refinement of an unstructured input grid described above opens up pos-
sibilities for performance improvement over standard unstructured implementations.
The main observation is that, after a number of refinement steps, the resulting grids
are still unstructured globally, but exhibit regular features locally.

We illustrate the generation of these locally regular structures using a simplified
problem domain that arose in an electromagnetic field problem. Consider the setting
in Figure 5.8.

For the representation of the discrete operator on the grid in Figure 5.8 II), it is
appropriate to employ sparse matrix storage schemes. However, the situation on the
grid in Figure 5.8 III) is different. Within each cell of the unstructured input grid,
the repeated refinement has resulted in regular patches. In the interior of each coarse
grid cell, the grid is regular and the material parameter is constant. This implies that
one stencil suffices to represent the discrete operator inside such a regular region.

The main idea is now to turn operations on the refined, globally unstructured grid
into a collection of operations on block-structured parts where possible and resort to
unstructured operations only where necessary. Provided a sufficiently high level of
refinement or, put differently, provided that the regular regions are sufficiently large
in comparison to the remaining parts, this approach combines an improved single
node floating-point performance with the geometric flexibility of unstructured grids,
at least at the input level. For more details, see [5, 35].

Assuming a vertex-based discretisation, the discrete operator can be expressed
by a stencil with constant shape in each regular region of the refined grids as the
neighbourhood relationship does not change. In some cases, the entries of the sten-
cil are also constant over the object. Inside such a region, the representation of the

192 F. Hülsemann et al.

operator can be reduced to one single stencil. Both properties, constant stencil shape
and constant stencil entries, help to improve the performance of operations involv-
ing the discrete operator. The scale of the improvement depends on the computer
architecture.

On general unstructured grids, the discrete operator is usually stored in one of
the many sparse matrix formats. If one uses such general formats in operations such
as the matrix-vector product or a Gauß-Seidel iteration, one usually has to resort to
indirect indexing to access the required entries in the vector. Being able to represent
the discrete operator in the regular regions by stencils with fixed shapes, we can ex-
press the memory access pattern for the operation explicity through index arithmetic
and thus enable the compiler to analyse and optimise the memory accesses better.
In the sparse matrix case, the memory access pattern is known at run-time, in our
setting it is known at compile-time, at least for a significant subset of all points.

On the Hitachi SR8000 supercomputer at the Leibniz Computing Centre in Mu-
nich, the change from indirect indexing to index arithmetic improves the Mflop/s per-
formance of a Gauß-Seidel iteration on a single processor from around 50 Mflop/s for
a CRS (compressed row storage) implementation to 300 Mflop/s for the stencil-based
computation. These values were obtained with a 27-point finite element discretisa-
tion inside a refined hexahedron on a processor with a theoretical peak performance
of 1500 Mflop/s. On this high memory bandwidth architecture, the explicit knowl-
edge about the structure of the operations results in a six-fold performance improve-
ment. Many cache-based architectures do not offer such a high bandwidth to main
memory. Given that a new stencil has to be fetched for each unknown, the memory
traffic to access the stencil values slows down the computations on these machines.
As an example for such machines, we consider an Intel Pentium 4 processor with
2.4 GHz clock speed, 533 MHz front side bus and dual channel memory access. Our
CRS-based Gauß-Seidel iteration runs at 190 Mflop/s on a machine with a theoreti-
cal peak performance of 4800 Mflop/s6. With the fixed stencil shape implementation,
we observe a performance between 470 and 490 Mflop/s, depending on the problem
size, which is 2.5 times more than for the standard unstructured one. In all cases,
the problem size did not fit into the caches on the machines. In the case of con-
stant stencil entries for an element, the advantage of the structured implementation is
even clearer. Instead of fetching 27 stencil values from memory for each unknown,
the same stencil is applied to all unknowns in the element. This obviously reduces
the amount of memory traffic significantly. On the Hitachi SR8000, such a constant
coefficient Gauß-Seidel iteration achieves 884 (out of 1500) Mflop/s on a hexahe-
dron with 1993 unknowns. Compared to the standard unstructured implementation,
this amounts to a speed up factor of 17.5. Again, on the commodity architecture
Pentium 4, the improvement is less impressive. For a problem of the same size, the
constant coefficient iteration runs at 1045 Mflop/s, which is 5.5 times faster than its
unstructured counterpart. In short, the hierarchical hybrid approach works well for
the setting for which it was derived. This is the case when the input grid is com-

6The results on the PC architecture were obtained with the version 3.3.3 of the GNU
compiler collection.

5 Parallel Geometric Multigrid 193

paratively coarse and has to be subdivided several times for accuracy reasons. Then
the resulting grid hierarchy is well suited for the above mentioned approach. How-
ever, when, due to a complicated geometry, the input grid has to be very fine so that
only few refinement steps are either necessary or possible, then the proposed data
structures are not advantageous.

5.5 Single-Node Performance

5.5.1 Overview

In order to increase the run-time performance of any parallel numerical application,
it is essential to address two related optimisation issues, each of which requires inti-
mate knowledge in both the algorithm and the architecture of the parallel computing
platform. Firstly, it is necessary to minimise the parallelisation overhead itself. This
optimisation target represents the primary focus of this paper.

Secondly, it is essential to exploit the individual parallel resources as efficiently
as possible; i.e., by achieving the highest possible performance on each node in the
parallel environment. This is especially true for distributed memory systems found in
clusters based on off-the-shelf workstations communicating via fast interconnection
networks.

5.5.2 Memory Hierarchy Optimisations

According to Moore’s law from 1975, the number of transistors on a silicon chip
will double every 12 to 24 months. This prediction has already proved remarkably
accurate for almost three decades. It has led to an average increase in CPU speed of
approximately 55% every year. In contrast, DRAM speed has evolved rather slowly.
Main memory latency and memory bandwidth have only been improving by about
5% and 10% per year, respectively [34]. The International Technology Roadmap for
Semiconductors7 predicts that this trend will continue further on and the gap between
CPU speed and main memory performance will grow for more than another decade
until technological limits will be reached. Therefore, today’s computer architectures
commonly employ memory hierarchies in order to hide both the relatively low main
memory bandwidth as well as the rather high latency of main memory accesses.

A typical memory hierarchy covers the CPU registers, up to three levels of cache,
and main memory. Cache memories are commonly based on fast semiconductor
SRAM technology. They are intended to contain copies of main memory blocks to
speed up accesses to frequently needed data. The reason why caches can substan-
tially reduce program execution time is the principle of locality of references. This
principle is empirically established and states that most programs do not access all
code or data uniformly. Instead, recently used data as well as data that are stored
close to the currently referenced data in address space are very likely to be accessed

7See the http://public.itrs.net web site.

194 F. Hülsemann et al.

in the near future. These properties are referred to as temporal and spatial locality,
respectively [34].

Only if the hierarchical memory architecture is respected by the code, can ef-
ficient program execution (in terms of arithmetic operations per time unit) be ex-
pected. Unfortunately, current optimising compilers are not able to synthesise chains
of complicated cache-based code transformations. Hence, they rarely deliver the per-
formance expected by the users and much of the tedious and error-prone work con-
cerning the tuning of the memory efficiency (particularly the utilisation of the cache
levels) is thus left to the software developer. Typical cache optimisations techniques
cover both data layout transformations as well as data access transformations.

Data layout optimisations aim at enhancing code performance by improving the
arrangement of the data in address space. On one hand, such techniques can be ap-
plied to change the mapping of array data to the cache frames, thereby reducing the
number of cache conflict misses. This is achieved by a layout transformation called
array padding [54]. On the other hand, data layout optimisations can be applied to
increase spatial locality. They can be used to reduce the size of the working set of
a process; i.e., the number of virtual pages which are referenced alternatingly and
should therefore be kept in main memory [34]. Furthermore, data layout transforma-
tions can be introduced in order to increase the reuse of cache blocks (or cache lines)
once they have been loaded into cache. Since cache blocks are always transferred as
a whole and contain several data items that are arranged next to each other in address
space, it is reasonable to aggregate data items in address space which are likely to
be referenced within a short period of time. This is primarily accomplished by the
application of array merging [34].

In contrast, data access optimisations change the order in which iterations in a
loop nest are executed. These transformations primarily strive to improve both spa-
tial and temporal locality. Moreover, they can also expose parallelism and make loop
iterations vectorisable. Typical examples of data access transformations are loop in-
terchange and loop blocking (loop tiling), see [2]. Loop interchange reverses the
order of loops in a loop nest, thereby reducing the strides of array-based computa-
tions; i.e., the step sizes at which the corresponding arrays are accessed. This implies
an improved reuse of cache blocks and thus causes an increase in spatial locality. In
contrast, loop blocking is primarily used to improve temporal locality by enhancing
the reuse of data in cache and reducing the number of cache capacity misses. Tiling
a single loop replaces it by a pair of loops. The inner loop of the new loop nest tra-
verses a block of the original iteration space with the same increment as the original
loop. The outer loop traverses the original iteration space with an increment equal to
the size of the block which is traversed by the inner loop. Thus, the outer loop feeds
blocks of the whole iteration space to the inner loop which then executes them step
by step.

Performance experiments emphasize the effectiveness of cache-based transfor-
mations. Depending on the properties of the underlying problem (2D/3D, constan-
t/variable coefficients, etc.), the application of appropriate cache optimisation tech-
niques has revealed significant speedups of up to a factor of 5 on common cache-
based architectures. The impact of these techniques is typically examined by apply-

5 Parallel Geometric Multigrid 195

ing suitable code profiling tools that are usually based on platform-specific perfor-
mance hardware such as dedicated counter registers [34].

For further details on cache optimisation techniques for numerical computations,
we refer to [42, 61] and to the research in our DiME8 project. In particular, we refer
to [18] for an overview of cache optimisation techniques for multigrid methods.

5.5.3 Optimising for SMP Nodes

It is often the case that the individual nodes of a parallel computing environment con-
sist of parallel architectures themselves. For example, many of today’s workstation
clusters are composed of so-called symmetric multiprocessors (SMPs). SMP nodes
are shared memory machines commonly consisting of two, four, or eight CPUs that
access the local shared memory modules through fast interconnects such as a cross-
bar switches [34]. Lower levels of cache may be shared as well.

Within each SMP node, the parallel execution of the code is based on a shared
memory programming model using thread parallelism. Thread parallelism can either
be introduced automatically by parallelising compilers or by explicit programming;
e.g., by using OpenMP directives [12, 13]. The individual nodes, however, typically
communicate with each other using a distributed memory programming paradigm
such as message passing.

The conclusions from the previous section carry over from single-CPU nodes
to SMP nodes. Obviously, in the latter case, the efficient utilisation of the memory
hierarchies is crucial for run-time performance as well. However, the manual in-
troduction of cache-based transformations into thread-parallel code using OpenMP
typically turns out to be even more tedious and error-prone.

5.6 Advanced Parallel Multigrid

In this section we will present a selection of extensions of the basic parallel multigrid
method, as described in Section 5.3.

5.6.1 Parallelisation of Specific Smoothers

Multigrid methods come in many variants as required by specific applications. The
treatment of anisotropies in particular is important in practice and has been studied
extensively in the literature, see e.g. [60] and the references cited therein. In order to
maintain full multigrid efficiency in the presence of mild anisotropies, one can use
SOR smoothers with special weights [66], which in terms of a parallel implementa-
tion poses no additional difficulties. However, in the case of strong anisotropies, the
ideal multigrid efficiency can only be maintained by either the use of non-standard
coarsening strategies such as semi-coarsening, see [60], or the use of more advanced
smoothers.

8See the http://www10.informatik.uni-erlangen.de/dime web site.

196 F. Hülsemann et al.

Fundamentally, the stronger coupling of the unknowns in a specific direction, as
it is the case in anisotropic problems, must be observed in the algorithm. One way
to accomplish this is to use so-called line-smoothers. These basically operate in the
same fashion as the point smoothers described in Section 5.3.2 with the difference
that the unknowns belonging to all nodes of a complete grid line are relaxed con-
currently. In order to do this, a (small) linear system of equations, most often with
tri-diagonal or banded structure, must be solved for each line. In view of a grid parti-
tioning, this is uncritical as long as these lines of dependencies do not intersect sub-
domain interfaces. If the tri-diagonal systems must be distributed across processes,
then the solution of these systems must be distributed accordingly, where the usual
starting point is the cyclic reduction algorithm; see [21], for example.

In the literature, many variants and extensions have been described, of which we
mention only a few. Line smoothing is usually applied in a so-called zebra order,
for example, akin to the red-black ordering for Gauß-Seidel and SOR, to simplify
parallelisation. Having such a set of tri-diagonal systems which can be solved inde-
pendently may also be used to parallelise (or vectorise) the simultaneous solution.
This may lead to better parallel efficiency (or better vectorisation), since it avoids
the need to devise parallel strategies for the inherent dependencies in the tri-diagonal
systems.

Unfortunately, anisotropies aligned with the grid lines of a structured grid are
just the simplest case. More complicated forms of anisotropies will require more
complex smoothing strategies, such as alternating the direction of the line smoothers.
This, however, again leads to problems with the parallelisation, since the lines of
dependencies will then necessarily intersect sub-domain boundaries.

Finally, it should be mentioned that some 3D applications not only exhibit lines
of strongly coupled unknowns, but planes of strong coupling. Smoothers adapted to
this situation will treat all the unknowns in such a plane simultaneously. An effi-
cient technique for solving the resulting linear systems is to revert to a 2D multigrid
method [59]. Again, it may be necessary to do this in alternating plane directions,
and each of the 2D multigrid algorithms may need line smoothing in order to be
efficient. Any such strategy is naturally problem-dependent. Hence, it is difficult to
develop any generally usable, robust multigrid method based on these techniques.

Besides anisotropies, the treatment of convection-diffusion equations (with dom-
inating convection) is of high practical interest. In this case, the multigrid theory is
still much less developed. One algorithmic multigrid approach to convection domi-
nated PDEs is based on smoothers with downstream relaxation, where the smoother
is designed such that it observes the (sequential) data dependencies along the charac-
teristics (that is streamlines) of the flow. Again, a parallelisation of such a smoother is
easy when the domains are split parallel to the lines of dependency, but unfortunately
this is far from trivial to accomplish in most practical situations where the stream-
lines may change direction throughout the domain or — in the case of nonlinear
equations — may depend on the flow itself. In these cases, no generally applicable
rules for the parallelisation exist, but the best strategy depends on the application.

Another smoothing approach successfully applied to both of the above problems
is to employ variants of the incomplete LU decomposition (ILU) method; See [56, 60,

5 Parallel Geometric Multigrid 197

63], for example. It has been shown that ILU smoothers lead to robust and efficient
multigrid methods in the sequential setting, at least for 2D problems. The 3D case,
however, remains problematic with respect to efficiency. Only for problems with
dominating directions efficient 3D ILU smoothers exist so far, see the remarks in
[60]. From the parallel point of view, the problem is that, while ILU algorithms are
in principle point-based smoothers, they are intrinsically sequential and therefore
difficult to parallelise, the more so, since their quality depends even stronger on the
ordering of unknowns than this is the case for the SOR method. For more details on
parallel ILU smoothers, see the references in [65], for example.

At the end of this subsection, we wish to give a word of warning. For any algo-
rithm designer, it is tempting to simply neglect certain complexities that may arise
from an efficient treatment of either anisotropies or dominating convection. This may
be the case for sequential multigrid and is of course even more tempting when all the
difficulties of parallelisation need to be addressed. In this case, algorithm design-
ers often modify the algorithm slightly to simplify the parallel implementation. For
example, the tridiagonal systems of line smoothers can simply be replaced by a col-
lection of smaller tridiagonal systems as dictated by sub-domain boundaries, thus
neglecting the dependencies across the sub-domains in the smoother. These smaller
systems can be solved in parallel, benefiting parallel efficiency and simplifying the
implementation. Such a simplified method will still converge because it is embedded
in the overall multigrid iteration. In the case of only few sub-domains and moderate
anisotropy, this may in fact lead to a fully satisfactory solver.

However, if the physics of the problem and the mathematical model really dictate
a global dependency along the lines of anisotropy, then such a simplified treatment
which does not fully address this feature will be penalised; the convergence rate will
deteriorate with an increasing number of sub-domains to the point that the benefit of
using a multigrid method is completely lost. Eventually there is no way to cheat the
physics and the resulting mathematical properties of the problem. Multigrid methods
have the disadvantage (or is this an advantage?) that they mercilessly punish any
disregard for the underlying physics of the problem. Optimal multigrid performance
with the typical convergence rates of 0.1 per iteration will only be achieved, if all the
essential features of the problem are treated correctly — and this may be not easy at
all, especially in parallel.

5.6.2 Alternative Partitioning Approaches

In this section, we will briefly introduce three different concepts that can be seen as
alternatives to the standard grid partitioning approach described in Section 5.3.1.

Additive and Overlapping Storage

The grid partitioning introduced in Section 5.3.1 assumed that each node of the grid
belongs to a unique sub-domain and ghost nodes were employed to handle sub-
domain dependencies. In this subsection, we will briefly discuss an approach to grid

198 F. Hülsemann et al.

partitioning that strikes a different path. For a detailed analysis, see [17, 31, 37]. It
can most easily be explained from a finite element point of view.

In the first approach to grid partitioning, nodes uniquely belong to sub-domains
(node-oriented decomposition). Thus, the elements are intersected by sub-domain
boundaries. In the second approach, one assigns each element to a unique sub-
domain (element-oriented decomposition). In this case, nodes on the sub-domain
boundaries belong to more than one sub-domain. This introduces the question of
how to store the values of a grid-function (i.e., an FEM vector) at these nodes. One
combines two different schemes. The first one, denoted as overlapping storage, as-
sumes that each process stores the function values at the respective nodes. In this
case, the connection between the local vector vk on process pk and the global vector
v can be expressed by a boolean matrix Mk as vk = Mkv.

In the second scheme, the global function value v(nj) at a node nj on the bound-
ary is split between all sub-domains to which nj belongs. If sp is the number of
sub-domains, then the global function v can be obtained from the local sub-domain
functions vk via

v =
sp∑
k=1

MT
k vk .

This is denoted as adding storage. Note that the conversion of an adding type vector
to a vector of overlapping type requires communication, while the reverse operation
can be performed without communication. In a similar fashion, one can define oper-
ators of adding and of overlapping type. This can be imagined in the following way.
For an adding type operator a process stores all stencils for nodes in its sub-grid as
vectors of adding type and analogously for an operator of overlapping type.

The application of an adding type operator to an overlapping type vector can be
performed without communication and will result in a vector of adding type. Un-
der some constraints regarding the dependency pattern of the respective operator, the
application of an operator of overlapping type to a vector of either adding or over-
lapping type can also be performed without communication and results in a vector of
the original type. Proofs as well as a detailed analysis of the limiting conditions can
be found in [31].

The element-oriented decomposition in combination with the above storage con-
cept can be used to parallelise a multigrid method in the following fashion. One
stores the approximate solutions and the coarse grid corrections as vectors of over-
lapping type and the right hand sides and residuals as vectors of adding type. The
transfer operators are stored in overlapping fashion, while the discrete differential
operator is stored as operator of adding type.

Under these assumptions (and assuming that the dependency patterns of the op-
erators fulfil the limiting conditions) one can show that none of the multigrid com-
ponents prolongation, restriction, computation of the residual, and coarse grid cor-
rection step requires any communication. The only place where communication is
required is the smoothing process. Here, typically the update to the old approximate
can be computed as vector of adding type, which must be converted to overlapping
storage before adding it to the old approximate. As is the case for node-oriented de-

5 Parallel Geometric Multigrid 199

compositions, each smoothing step will thus require one communication step. In the
latter approach, however, restriction and prolongation will typically incur the need
for a communication step in order to update the residual resp. the approximate so-
lution at the ghost nodes, before the interpolation operation itself. Compared to a
node-oriented decomposition there is, thus, a significant reduction in the number of
messages and the amount of data that must be exchanged.

Another interesting aspect, though less general, is the following. Assume that
our multigrid method employs a hierarchy of regular grids Ωl composed of (2ml +
1)× (2nl + 1) nodes. As was mentioned in Section 5.3.3, the use of a node-oriented
decomposition will lead to a hierarchy, where sub-grids on different levels cover
different areas. With the element-oriented decomposition this problem does not arise.
The sub-grid boundaries coincide on all levels. Furthermore, we will obtain a perfect
load balance, as far as the number of grid nodes in each sub-grid is concerned. This
is not the case for standard grid partitioning, see Figure 5.2 in this respect.

The reduced number of places in the algorithm, where communication occurs,
as well as the symmetric view of the data, i.e. a node does not change its type from
local to ghost, when going from one partition to the other, can also be seen as an
advantage with respect to the implementation of the multigrid algorithm.

In summary, we think that the element oriented decomposition, if it is applicable,
is a sincere challenger to the classical node-oriented decomposition approach.

Full Domain Partitioning

The partitioning schemes presented so far result in each process storing its patch
(sub-grid) of the global grid plus some data from the immediate neighbouring
patches. In this case, on the finer grid levels, each process knows its part of the
global grid, but no process works on the whole problem domain. In the Full Domain
Partition approach, in short FuDoP, proposed by Mitchell [46, 47, 48], each process
starts from a coarse grid representing the whole problem domain and then adaptively
refines the grid until the resolution is sufficiently accurate in its area of responsi-
bility. As a result, each process computes a solution for the whole domain, albeit
with a high accuracy only in its patch of the global domain on a grid that becomes
increasingly coarse the further the distance to that patch.

The advantage of this approach is that existing serial, adaptive codes can be re-
used in a parallel context. In [46], a V-cycle multigrid method is presented that re-
quires communication on the finest and on the coarsest level only, but not on the
levels in between. However, on the downside, this approach requires all to all com-
munication as now the grids on any two processes overlap. Whether this approach
shows run-time advantages over standard partitioning schemes depends on the num-
ber of processes, the number of grid levels and, as usual, on the network characteris-
tics.

Bank and Holst [3] promote a similar technique for parallel grid generation to
limit load imbalances in parallel computations on adaptively refined grids. These
authors also stress that existing adaptive components can be employed in a parallel
setting with comparable ease.

200 F. Hülsemann et al.

Space-Filling Curves

The issues of partitioning and load balancing in the context of parallel adaptive multi-
grid have also been addressed through the use of so-called space-filling curves. A
space-filling curve represents a mapping Φ of the unit interval I := [0, 1] to the
space R

d, d = 2, 3, such that the image Φ(I) has a positive measure. See [28, 67],
for example. The computational domain Ω is supposed to be a subset of Φ(I) such
that all nodes of the adaptively refined discretisation grid are elements of Φ(I) and
thus passed by the space-filling curve. At this point we should mention the following
two aspects. The first one is that space-filling curves are typically constructed as the
limit of a family of recursively defined functions. In practice no real space-filling
curve, but only a finite approximation from such a family is employed in the method.
Secondly, the assumption that the curve passes through all nodes of the grid is not a
restrictive one. The space-filling curve by its nature can be chosen such that it com-
pletely covers a domain in 2D / 3D. Choosing a fine enough approximation will thus
fulfil the assumption.

The fundamental advantage of the partitioning approach based on space-filling
curves is that it allows for inexpensive load balancing. The idea, namely, is to use
the inverse mapping of Φ and to divide the unit interval I into partitions that ap-
proximately contain the same numbers of pre-images of grid nodes. These partitions
of I are then mapped to the available processes. Therefore, the computational load
is balanced exactly. As a consequence of this decomposition approach, the original
d-dimensional graph partitioning problem, which can be shown to be NP-hard [52],
is approximated by a 1D problem that is easy to solve.

However, it has been demonstrated that the resulting partitioning of the actual d-
dimensional computational grid can be suboptimal and may involve much more com-
munication overhead than necessary. For a comprehensive presentation, we again
point to [67] and the references therein.

5.6.3 Reduced and Overlapped Communication

Overlapped Communication

A technique to improve the parallel efficiency of any parallel algorithm is to overlap
communication and computation, see also [41] in this context. In parallel multigrid,
this can work as follows. Consider the Jacobi smoother discussed in Section 5.3.2
and assume that we are using a grid partitioning with ghost nodes. One sweep of the
Jacobi method does not require any communication. However, after the sweep, the
values at the ghost nodes must be updated. Remember that the order in which the
nodes are treated during the Jacobi sweep does not play a role. Thus, we are free
to alter it to our taste. By first updating all nodes at the boundary of a sub-grid we
can overlap communication and computation, since the update of the ghost nodes
can be performed while the new approximate solution is computed for nodes in the
interior of the sub-grid. This idea directly carries over to other multigrid components
that work in the same fashion; i.e., prolongation and restriction. More sophisticated

5 Parallel Geometric Multigrid 201

smoothers, such as red-black SOR, for example, can also be treated in this way.
Though, the order of treating nodes may become more intricate.

Reduced Communication

While overlapping communication with computation can significantly reduce the
costs for communication, there further exist other more radical approaches. At this
point, we briefly want to mention an algorithm introduced by Brandt and Diskin
in [9, 14]. Their parallel multigrid method abandons communication on several of
the finest levels of the grid hierarchy. In a standard parallel version of multigrid,
this is the place where the largest chunk of communication occurs, as far as the
amount of transferred data is concerned. In this respect, their approach differs from
the ones discussed in Section 5.3.4 which addressed efficiency problems on coarser
grids arising from their less favourable surface-to-volume ratio.

The core idea of the algorithm by Brandt and Diskin can be traced back to the
segmental-refinement-type procedures originally proposed to overcome storage prob-
lems on sequential computers [8]. It can briefly be described as follows. The basic
parallelisation is again done by grid partitioning, where each sub-grid is augmented
by an extended overlap region in the same fashion as mentioned in Section 5.3.2.
However, communication between processes is completely restricted to the sub-
domains on the coarsest grid level. Here, communication between the processes is
required to form a common coarsest grid problem.

The overlap region fulfils two purposes. On one hand, if an appropriate relaxation
scheme such as red-black Gauß-Seidel is chosen, this buffer slows the propagation
of errors due to inexact values at the interfaces. On the other hand, in multigrid,
the coarse grid correction typically introduces some high-frequency errors on the
fine grid. Since values at the interfaces cannot be smoothed, the algorithm cannot
eliminate these components. But in elliptic problems high-frequency components
decay quickly. Hence, the overlap region keeps these errors from affecting the inner
values too much.

It is obvious that the algorithm will in most cases not be able to produce an exact
solution of the discrete problem. However, if one is solving a PDE problem, it is actu-
ally the continuous solution one is really interested in. Since the latter is represented
by the discrete solution only up to a discretisation error, a discrete solution will be
valuable, as long as its algebraic error remains in the same order as the discretisation
error. For a detailed analysis of the communication pattern and the possible benefits
of this approach, see [14, 50, 49].

5.6.4 Alternative Parallel Multigrid Algorithms

As was mentioned in Section 5.2.5, standard multigrid methods traverse the grid hi-
erarchy sequentially, typically either in the form of W-cycles or V-cycles. We already
discussed this inherently sequential aspect of multigrid in Section 5.3.4 and consid-
ered some standard approaches for dealing with it. Here, we want to briefly mention
some further alternatives that have been devised.

202 F. Hülsemann et al.

The BPX Variant of Multigrid

In this context, the BPX algorithm (as proposed in [6]) and its analysis (see also [51]
and the references therein) is of special importance. The BPX algorithm is usually
used as a preconditioner for a Krylov subspace method, but it shares many features
with the multigrid method. In fact, it can be regarded as an additive variant of the
multigrid method.

In classical multigrid, as discussed so far, each grid level contributes its correc-
tion sequentially. If expressed by operators, this results in a representation of the
multigrid cycle as a product of operators corresponding to the corrections on each
level. Here, each level needs the input from the previous level in the grid hierar-
chy; therefore, it results in a multiplicative structure. For example, on the traversal
to coarser grids, the smoothing has to be applied first, before the residuals for the
coarser grids can be computed.

In BPX in contrast, all these corrections are computed simultaneously and are
then added. Formally, this corresponds to a sum of the correction operators on each
level and, consequently, it seems that the need for a sequential treatment of the lev-
els has been avoided. Since this approach will only result in a convergent overall
correction, the BPX algorithm is usually not used by itself, but instead employed as
preconditioner. In this role, it can be shown to be an asymptotically optimal precon-
ditioner. Thus, when combined with Krylov subspace acceleration, BPX results in
an asymptotically optimal algorithm.

Unfortunately, the hope of the original authors that their algorithm would show
better parallel properties per se (the original paper [6] was entitled “Parallel Mul-
tilevel Preconditioners”) has only partially become true, since a closer look reveals
that the BPX algorithm must internally compute a hierarchical sum of contributions
from all the grid levels. To be more precise, the residuals have to be summed accord-
ing to the grid transfer operators from the finest level to any of the auxiliary coarser
levels. The restriction of the residual to the coarsest level will usually require inter-
mediate quantities that are equivalent to computing the restriction of the residual to
all intermediate levels. Therefore, computing these restrictions in parallel does not
only create duplicated work, it also does not reduce the time needed to traverse the
grid hierarchy in terms of a faster parallel execution. The coarsest level still requires
a hierarchical traversal through all intermediate levels. Consequently, the BPX algo-
rithm essentially requires the same sequential treatment of the grid hierarchy as the
conventional multiplicative multigrid algorithm.

The above argument is of course theoretically motivated. In practice, other con-
siderations may be essential and may change the picture. For example, the BPX
algorithm may still be easier to implement in parallel, or it may have advantages in
a particular adaptive refinement situation. For a comparison, see also [4, 27, 38].

Point-Block Algorithm and the Fully Adaptive Multigrid Method (FAMe)

The invention of the additive variant of multilevel algorithms, however, has shown
that the strict sequential treatment of the levels is unnecessary and this has spurred

5 Parallel Geometric Multigrid 203

a number of other ideas. For example the point-block algorithm in [24, 26] and the
representation of all levels of the grid hierarchy in a single system, see [25, 55], relies
on the analysis of additive multilevel systems.

For the parallelisation of a multilevel method, this construction and analysis can
be exploited by realizing that the traversal of the grid hierarchy and the processing
of the individual domain partitions can be decoupled.

In the point-block algorithm, it is exploited that each node of the finest grid may
be associated with several coarser levels, and therefore it may belong to several dis-
crete equations corresponding to these levels. It is now possible to set up this system
of equations for each node. In a traversal through all fine grid nodes, one can now
solve this system for each node. The resulting algorithm becomes a block relaxation
method, with blocks of 1 to log(n) unknowns, corresponding to the number of levels
to which a node belongs, and can be shown to have asymptotically optimal complex-
ity. Imposing a grid partitioning, this algorithm can be parallelised. Note that, since
the multiple stencils may extend deep into neighbouring partitions, the communica-
tion is more complicated.

Possibly the most far-reaching result towards an asynchronous execution of mul-
tilevel algorithms is the fully adaptive multigrid method of [55]. Here an active set
strategy is proposed together with a meta-algorithm which permits many different
concurrent implementations. In particular, it is possible to design a multilevel algo-
rithm such that the traversal between the levels in the sub-domains can be performed
completely asynchronously, as long as the essential data dependencies are being ob-
served. The meta algorithm gives rigorous criteria which of these data dependencies
must be observed. One possible realization is then to monitor the data dependencies
dynamically at run-time within the algorithm. Any such dependency which extends
across process boundaries need only be activated, if it is essential for the conver-
gence of the algorithm, but it can be delayed until, for instance, enough such data
have accumulated to amortise the startup cost.

The algorithmic framework of the fully adaptive multigrid method permits many
different parallel implementations and includes as a special case the classical parallel
multigrid algorithms as well as the point-block method.

Multiple Coarse Grid Algorithms and Concurrent Methods

For the sake of completeness, we also want to mention the algorithms by Fredrickson
and McBryan [20], Chan and Tuminaro [11], as well as Gannon and van Rosendale
[22]. While these methods also address the topic of the sequentiality of cycling
through the multigrid hierarchy and the loss of parallel efficiency on coarser grids,
they were designed primarily with massively parallel systems in mind. Such systems
are denoted as fine-grain; i.e., the number p of processes is on the same order as
the number N of unknowns. In contrast, we have considered coarse-grain parallel
systems so far; i.e., systems with p � N . Nevertheless, the methods deserve to be
mentioned here, since they complement the aforementioned ideas of this section.

The Chan-Tuminaro and the Gannon-van Rosendale algorithms both belong to
the class of concurrent methods. Their idea, not quite unlike the one of the BPX or

204 F. Hülsemann et al.

the point-block algorithm, is to break up the sequential cycling structure and to al-
low for a concurrent treatment of the different grid levels; hence the name concurrent
methods. The basic approach is to generate independent sub-problems for the differ-
ent grid levels by projection onto orthogonal sub-spaces. The algorithms differ in the
way this decomposition is performed and the way solutions are combined again. For
details, we refer to the original publications cited above.

The algorithm of Fredrickson and McBryan follows a completely different ap-
proach. In a fine-grain setting the sequential cycling structure of a standard multigrid
method will lead to a large number of idle processes while coarser grids are treated.
The Fredrickson–McBryan algorithm retains the sequential cycling structure, and in-
stead tries to take advantage of these idle processes. Opposed to standard multigrid,
the method does not employ a single grid to compute a coarse grid correction, but
composes on each level several coarse grid problems. Ideally, the additional infor-
mation obtained from these multiple coarse grids can be used to improve the con-
vergence rate of the multigrid method, thus improving not only parallel efficiency,
but also actual run-time. Indeed, an impressive improvement in convergence speed
can be demonstrated for selected applications, which lead the authors to denote this
approach as parallel superconvergent multigrid (PSMG).

While all three algorithms can in principle also be employed in a coarse-grain
setting, the (theoretical) considerations in [44] strongly indicate that from a pure run-
time perspective this is very unlikely to pay-off. Even in a fine-grain environment,
the additional work induced by the methods seems to clearly over-compensate for
the gain in convergence speed and/or improved parallelism.

5.7 Conclusions

The parallelisation of multigrid algorithms is a multifaceted field of ongoing re-
search. Due to the difficulties resulting from the decreasing problem sizes on the
coarse grids, parallel multigrid implementations are often characterized by relatively
poor parallel efficiency when compared to competing methods. Nevertheless, it is
the time required to solve a problem that finally matters. From this perspective, suit-
ably designed multigrid methods are often by far superior to alternative elliptic PDE
solvers.

Since the multigrid principle leads to a large variety of multigrid algorithms for
different applications, it is impossible to derive general parallelisation approaches
that address all multigrid variants. Instead, as we have pointed out repeatedly, the
choice of appropriate multigrid components and their efficient parallel implementa-
tion is highly problem-dependent. As a consequence, our contribution can definitely
not be complete and should be understood as an introductory overview to the devel-
opment of parallel multigrid algorithms.

5 Parallel Geometric Multigrid 205

References

1. R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The multi–grid methods for the
diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput.,
2:430–454, 1981.

2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco, California, USA, 2001.

3. R. E. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms.
SIAM J. Sci. Comput., 22(4):1411–1443, 2000.

4. P. Bastian, W. Hackbusch, and G. Wittum. Additive and multiplicative multi-grid — a
comparison. Computing, 60(4):345–364, 1998.

5. B. Bergen and F. Hülsemann. Hierarchical hybrid grids: data structures and core algo-
rithms for multigrid. Numerical Linear Algebra with Applications, 11:279–291, 2004.

6. J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp.,
55:1–22, 1990.

7. A. Brandt. Multi–level adaptive solutions to boundary–value problems. Math. Comp.,
31:333–390, 1977.

8. A. Brandt. Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD–
Studien Nr. 85. Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, 1984.

9. A. Brandt and B. Diskin. Multigrid solvers on decomposed domains. In Domain De-
composition Methods in Science and Engineering: The Sixth International Conference on
Domain Decomposition, volume 157 of Contemporary Mathematics, pp. 135–155, Prov-
idence, Rhode Island, 1994. American Mathematical Society.

10. W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial. SIAM, 2. edition, 2000.
11. T. F. Chan and R. S. Tuminaro. Analysis of a parallel multigrid algorithm. In J. Mandel,

S. F. McCormick, J. E. Dendy, C. Farhat, G. Lonsdale, S. V. Parter, J. W. Ruge, and
K. Stüben, editors, Proceedings of the Fourth Copper Mountain Conference on Multigrid
Methods, pp. 66–86, Philadelphia, 1989. SIAM.

12. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel
Programming in OpenMP. Morgan Kaufmann, 2001.

13. L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-memory pro-
gramming. IEEE Comp. Science and Engineering, 5(1):46–55, 1998.

14. B. Diskin. Multigrid Solvers on Decomposed Domains. Master’s thesis, Department of
Applied Mathematics and Computer Science, The Weizmann Institute of Science, 1993.

15. C. C. Douglas. A review of numerous parallel multigrid methods. In G. Astfalk, editor,
Applications on Advanced Architecture Computers, pp. 187–202. SIAM, Philadelphia,
1996.

16. C. C. Douglas and M. B. Douglas. MGNet Bibliography. Department of Computer
Science and the Center for Computational Sciences, University of Kentucky, Lexington,
KY, USA and Department of Computer Science, Yale University, New Haven, CT, USA,
1991–2002 (last modified on September 28, 2002); see http://www.mgnet.org/
mgnet-bib.html.

17. C. C. Douglas, G. Haase, and U. Langer. A Tutorial on Elliptic PDE Solvers and their
Parallelization. SIAM, 2003.

18. C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache optimization for
structured and unstructured grid multigrid. Elect. Trans. Numer. Anal., 10:21–40, 2000.

19. L. Formaggia, M. Sala, and F. Saleri. Domain decomposition techniques. In A. M. Bruaset
and A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel
Computers, volume 51 of Lecture Notes in Computational Science and Engineering, pp.
135–163. Springer-Verlag, 2005.

206 F. Hülsemann et al.

20. P. O. Frederickson and O. A. McBryan. Parallel superconvergent multigrid. In S. F. Mc-
Cormick, editor, Multigrid Methods: Theory, Applications, and Supercomputing, volume
110 of Lecture Notes in Pure and Applied Mathematics, pp. 195–210. Marcel Dekker,
New York, 1988.

21. T. L. Freeman and C. Phillips. Parallel numerical algorithms. Prentice Hall, New York,
1992.

22. D. B. Gannon and J. R. Rosendale. On the structure of parallelism in a highly concurrent
pde solver. J. Parallel Distrib. Comput., 3:106–135, 1986.

23. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, 1997.
24. M. Griebel. Grid– and point–oriented multilevel algorithms. In W. Hackbusch and G. Wit-

tum, editors, Incomplete Decompositions (ILU) – Algorithms, Theory, and Applications,
Notes on Numerical Fluid Mechanics, pp. 32–46. Vieweg, Braunschweig, 1993.

25. M. Griebel. Multilevel algorithms considered as iterative methods on semidefinite sys-
tems. SIAM J. Sci. Stat. Comput., 15:547–565, 1994.

26. M. Griebel. Parallel point–oriented multilevel methods. In Multigrid Methods IV, Pro-
ceedings of the Fourth European Multigrid Conference, Amsterdam, July 6-9, 1993, vol-
ume 116 of ISNM, pp. 215–232, Basel, 1994. Birkhäuser.

27. M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz
algorithms. Numer. Math., 70:163–180, 1995.

28. M. Griebel and G. W. Zumbusch. Hash-storage techniques for adaptive multilevel solvers
and their domain decomposition parallelization. In J. Mandel, C. Farhat, and X.-C. Cai,
editors, Proceedings of Domain Decomposition Methods 10, DD10, number 218 in Con-
temporary Mathematics, pp. 279–286, Providence, 1998. AMS.

29. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementa-
tion of the MPI message passing interface standard. Parallel Computing, 22(6):789–828,
Sept. 1996.

30. W. Gropp, E. Lusk, and A. Skjellum. Using MPI, Portable Parallel Programming with
the Mesage-Passing Interface. MIT Press, second edition, 1999.

31. G. Haase. Parallelisierung numerischer Algorithmen für partielle Differentialgleichun-
gen. B. G. Teubner Stuttgart – Leipzig, 1999.

32. W. Hackbusch. Multigrid Methods and Applications, volume 4 of Computational Math-
ematics. Springer–Verlag, Berlin, 1985.

33. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations, volume 95 of
Applied Mathematical Sciences. Springer, 1993.

34. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publisher, Inc., San Francisco, California, USA, 3. edition, 2003.

35. F. Hülsemann, B. Bergen, and U. Rüde. Hierarchical hybrid grids as basis for parallel
numerical solution of PDE. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors,
Euro-Par 2003 Parallel Processing, volume 2790 of Lecture Notes in Computer Science,
pp. 840–843, Berlin, 2003. Springer.

36. F. Hülsemann, S. Meinlschmidt, B. Bergen, G. Greiner, and U. Rüde. gridlib – a parallel,
object-oriented framework for hierarchical-hybrid grid structures in technical simulation
and scientific visualization. In High Performance Computing in Science and Engineer-
ing, Munich 2004. Transactions of the Second Joint HLRB and KONWIHR Result and
Reviewing Workshop, pp. 37–50, Berlin, 2004. Springer.

37. M. Jung. On the parallelization of multi–grid methods using a non–overlapping domain
decomposition data structure. Appl. Numer. Math., 23(1):119–137, 1997.

5 Parallel Geometric Multigrid 207

38. M. Jung. Parallel multiplicative and additive multilevel methods for elliptic problems in
three–dimensional domains. In B. H. V. Topping, editor, Advances in Computational Me-
chanics with Parallel and Distributed Processing, pp. 171–177, Edinburgh, 1997. Civil–
Comp Press. Proceedings of the EURO–CM–PAR97, Lochinver, April 28 – May 1,
1997.

39. G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1999.

40. G. Karypis and V. Kumar. Parallel multilevel k-way partition scheme for irregular graphs.
SIAM Review, 41(2):278–300, 1999.

41. C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser. Parallel lattice boltzmann meth-
ods for cfd applications. In A. M. Bruaset and A. Tveito, editors, Numerical Solution
of Partial Differential Equations on Parallel Computers, volume 51 of Lecture Notes in
Computational Science and Engineering, pp. 439–466. Springer-Verlag, 2005.

42. M. Kowarschik. Data Locality Optimizations for Iterative Numerical Algorithms and
Cellular Automata on Hierarchical Memory Architectures. PhD thesis, Lehrstuhl für In-
formatik 10 (Systemsimulation), Institut für Informatik, Universität Erlangen-Nürnberg,
Erlangen, Germany, July 2004. SCS Publishing House.

43. H. Lötzbeyer and U. Rüde. Patch-adaptive multilevel iteration. BIT, 37:739–758, 1997.
44. L. R. Matheson and R. E. Tarjan. Parallelism in multigrid methods: how much is too

much? Int. J. Paral. Prog., 24:397–432, 1996.
45. O. A. McBryan, P. O. Frederickson, J. Linden, A. Schuller, K. Solchenbach, K. Stuben,

C.-A. Thole, and U. Trottenberg. Multigrid methods on parallel computers — a survey of
recent developments. Impact Comput. Sci. Eng., 3:1–75, 1991.

46. W. F. Mitchell. A parallel multigrid method using the full domain partition. Elect. Trans.
Numer. Anal., 6:224–233, 1997.

47. W. F. Mitchell. The full domain partition approach to distributing adaptive grids. Appl.
Numer. Math., 26:265–275, 1998.

48. W. F. Mitchell. Parallel adaptive multilevel methods with full domain partitions. App.
Num. Anal. and Comp. Math., 1:36–48, 2004.

49. M. Mohr. Low Communication Parallel Multigrid: A Fine Level Approach. In A. Bode,
T. Ludwig, W. Karl, and R. Wismüller, editors, Proceedings of Euro-Par 2000: Parallel
Processing, volume 1900 of Lecture Notes in Computer Science, pp. 806–814. Springer,
2000.

50. M. Mohr and U. Rüde. Communication Reduced Parallel Multigrid: Analysis and Exper-
iments. Technical Report 394, Institut für Mathematik, Universität Augsburg, 1998.

51. P. Oswald. Multilevel Finite Element Approximation, Theory and Applications. Teubner
Skripten zur Numerik. Teubner Verlag, Stuttgart, 1994.

52. A. Pothen. Graph partitioning algorithms with applications to scientific computing. In
D. E. Keyes, A. H. Sameh, and V. Venkatakrishnan, editors, Parallel Numerical Algo-
rithms, volume 4 of ICASE/LaRC Interdisciplinary Series in Science and Engineering.
Kluwer Academic Press, 1997.

53. M. Prieto, I. Llorente, and F. Tirado. A Review of Regular Domain Partitioning. SIAM
News, 33(1), 2000.

54. G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conflict Misses. In
Proc. of the ACM SIGPLAN Conf. on Programming Language Design and Implementa-
tion, Montreal, Canada, 1998.

55. U. Rüde. Mathematical and Computational Techniques for Multilevel Adaptive Methods,
volume 13 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 1993.

56. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.

208 F. Hülsemann et al.

57. J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer, 4. edition, 2000.
58. J. D. Teresco, K. D. Devine, and J. E. Flaherty. Partitioning and dynamic load balanc-

ing for the numerical solution of partial differential equations. In A. M. Bruaset and
A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel Com-
puters, volume 51 of Lecture Notes in Computational Science and Engineering, pp. 55–
88. Springer-Verlag, 2005.

59. C.-A. Thole and U. Trottenberg. Basic smoothing procedures for the multigrid treatment
of elliptic 3D–operators. Appl. Math. Comput., 19:333–345, 1986.

60. U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press, London,
2000.

61. C. Weiß. Data Locality Optimizations for Multigrid Methods on Structured Grids. PhD
thesis, Lehrstuhl für Rechnertechnik und Rechnerorganisation, Institut für Informatik,
Technische Universität München, Munich, Germany, Dec. 2001.

62. R. Wienands and C. W. Oosterlee. On three-grid fourier analysis for multigrid. SIAM J.
Sci. Comput., 23(2):651–671, 2001.

63. G. Wittum. On the robustness of ILU–smoothing. SIAM J. Sci. Stat. Comput., 10:699–
717, 1989.

64. D. Xie and L. Scott. The Parallel U–Cycle Multigrid Method. In Virtual Proceed-
ings of the 8th Copper Mountain Conference on Multigrid Methods, 1997. Available
at http://www.mgnet.org.

65. U. M. Yang. Parallel algebraic multigrid methods - high performance preconditioners. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pp. 209–236. Springer-Verlag, 2005.

66. I. Yavneh. On red-black SOR smoothing in multigrid. SIAM J. Sci. Comput., 17:180–192,
1996.

67. G. Zumbusch. Parallel Multilevel Methods — Adaptive Mesh Refinement and Loadbal-
ancing. Advances in Numerical Mathematics. Teubner, 2003.

6

Parallel Algebraic Multigrid Methods – High
Performance Preconditioners

Ulrike Meier Yang

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Box
808, L-560, Livermore, CA 94551, USA

umyang@llnl.gov

Summary. The development of high performance, massively parallel computers and the in-
creasing demands of computationally challenging applications have necessitated the develop-
ment of scalable solvers and preconditioners. One of the most effective ways to achieve scal-
ability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very
efficient algorithm for solving large problems on unstructured grids. While much of it can be
parallelized in a straightforward way, some components of the classical algorithm, particularly
the coarsening process and some of the most efficient smoothers, are highly sequential, and
require new parallel approaches. This chapter presents the basic principles of AMG and gives
an overview of various parallel implementations of AMG, including descriptions of parallel
coarsening schemes and smoothers, some numerical results as well as references to existing
software packages.

6.1 Introduction

The development of multilevel methods was a very important step towards being able
to solve partial differential equations fast and efficiently. One of the first multilevel
methods was the multigrid method. Multigrid builds on a relaxation method, such
as the Gauß-Seidel or the Jacobi method, and was prompted by the discovery, that
while these relaxation schemes efficiently damp high frequency errors, they make
little or no progress towards reducing low frequency errors. If however one moves
the problem to a coarser grid previously low frequency errors turn now into high fre-
quency errors and can be damped efficiently. If this procedure is recursively applied,
one obtains a method with a computational cost that depends only linearly on the
problem size.

There are two basic multigrid approaches: geometric and algebraic. In geometric
multigrid [28], the geometry of the problem is used to define the various multigrid
components. Algebraic multigrid (AMG) methods use only the information available
in the linear system of equations and are therefore suitable to solve problems on more
complicated domains and unstructured grids. AMG was first introduced in the 80s
[7, 8, 5, 48]. Since then, a lot of research has been done and many new variants have

210 U. M. Yang

been developed, e.g. smoothed aggregation [58, 57], AMGe [11], spectral AMGe
[14], to just name a few. Whole books have been written on this topic [39, 54]. A
good tutorial on multigrid, including AMG, is [12]. A very detailed introduction on
AMG is [51].

Focus of this chapter is not an overview of all existing AMG methods (there
would not be enough space), but a presentation of the basic idea of AMG, the chal-
lenges that come with a parallel implementation of AMG and how to overcome them,
as well as the impact this challenge has had on AMG.

With the advent of parallel computers one has sought parallel algorithms. When
vector computers where developed in the 70s, it was important to develop algorithms
that operated on long vectors to make good use of pipelines or vector registers. For
parallel computers with tens or hundreds of processors and slow intercommunication
it was necessary to be able to partition an algorithm into big independent pieces in
order to avoid large communication cost. Multigrid methods, due to their decreasing
levels, did not appear to be good candidates for these machines. However with the
development of high performance computer with tens or hundreds of thousands of
processors it has become very important to develop scalable algorithms, and there-
fore multigrid methods as well as the application of multilevel techniques in other
algorithms have become very popular in parallel computing.

In this chapter, the concept of AMG as well as various parallel variations will
be described. While most of AMG can be parallelized in a straightforward way, the
coarsening algorithm and the smoother are more difficult to parallelize. Therefore a
large portion of this chapter is devoted to parallel approaches for these components.
Additionally, interpolation as well as a few numerical results are presented. Finally,
an overview of various parallel software packages is given that contain algebraic
multigrid or multilevel codes.

6.2 Algebraic Multigrid - Concept and Description

We begin by outlining the basic principles and techniques that comprise AMG. De-
tailed explanations may be found in [48]. Consider a problem of the form

Au = f, (6.1)

where A is an n × n matrix with entries aij . For convenience, the indices are iden-
tified with grid points, so that ui denotes the value of u at point i, and the grid is
denoted by Ω = {1, 2, . . . , n}. In any multigrid method, the central idea is that
“smooth error,” e, that is not eliminated by relaxation must be removed by coarse-
grid correction. This is done by solving the residual equation Ae = r on a coarser
grid, then interpolating the error back to the fine grid and using it to correct the
fine-grid approximation by u← u+ e.

Using superscripts to indicate level number, where 1 denotes the finest level so
that A1 = A and Ω1 = Ω, the components that AMG needs are as follows:

1. “Grids” Ω1 ⊃ Ω2 ⊃ . . . ⊃ ΩM with subsets:

6 Parallel AMG 211

Set of coarse points or C-points Ck, k = 1, 2, . . .M − 1,
Set of fine points or F -points F k, k = 1, 2, . . .M − 1.

2. Grid operators A1, A2, . . . , AM .
3. Grid transfer operators:

Interpolation P k, k = 1, 2, . . .M − 1,
Restriction Rk, k = 1, 2, . . .M − 1.

4. Smoothers Sk, k = 1, 2, . . .M − 1.

These components of AMG are constructed in the first step, known as the setup
phase.

AMG Setup Phase:
1. Set k = 1.
2. Partition Ωk into disjoint sets Ck and F k.

a) Set Ωk+1 = Ck .
b) Define interpolation P k.

3. Define Rk (often Rk = (P k)T).
4. Set Ak+1 = RkAkP k.
5. Set up Sk, if necessary.
6. If Ωk+1 is small enough, set M = k + 1 and stop. Otherwise, set
k = k + 1 and go to step 2.

Once the setup phase is completed, the solve phase, a recursively defined cycle, can
be performed as follows:

Algorithm: MGV (Ak, Rk, P k, Sk, uk, fk).
If k = M , solve AMuM = fM with a direct solver.
Otherwise:

Apply smoother Sk µ1 times to Akuk = fk.
Perform coarse grid correction:

Set rk = fk −Akuk.
Set rk+1 = Rkrk.
Apply MGV (Ak+1, Rk+1, P k+1, Sk+1, ek+1, rk+1).
Interpolate ek = P kek+1.
Correct the solution by uk ← uk + ek.

Apply smoother Sk µ2 times to Akuk = fk.

The algorithm above describes a V(µ1, µ2)-cycle, other more complex cycles such
as W-cycles can be found in [12].

Coarse grid selection and interpolation must go hand in hand and affect each
other in many ways. There are basically two measures which give an indication
about the quality of the AMG method, both need to be considered and are impor-
tant, although depending on the user’s priorities one might be more important than
the other. The first one, the convergence factor, gives an indication on how fast the
method converges, i.e. how many iterations are needed to achieve the desired accu-
racy, the second one, complexity, affects the number of operations per iteration and
the memory usage.

212 U. M. Yang

There are two types of complexities that need to be considered: the operator
complexity and the average stencil size. The operator complexity Cop is defined as
the quotient of the sum of the numbers of nonzeroes of the matrices on all lev-
els, Ak, k = 1, ...,M , divided by the number of nonzeroes of the original matrix
A1 = A. This measure indicates how much memory is needed. If memory usage is
a concern, it is important to keep this number small. It also affects the number of
operations per cycle in the solve phase. Small operator complexities lead to small
cycle times. The average stencil size s(Ak) is the average number of coefficients
per row of Ak. While stencil sizes of the original matrix are often small, it is pos-
sible to get very large stencil sizes on coarser levels. Large stencil sizes can lead to
large setup times, even if the operator complexity is small, since various components,
particularly coarsening and to some degree interpolation, require that neighbors of
neighbors are visited and so one might observe superlinear or even quadratic growth
in the number of operations when evaluating the coarse grid or the interpolation ma-
trix. Large stencil sizes can also increase parallel communication cost, since they
might require the exchange of larger sets of data.

Both convergence factors and complexities need to be considered when defining
the coarsening and interpolation procedures, as they often affect each other; increas-
ing complexities can improve convergence, and small complexities lead to a degra-
dation in convergence. The user needs therefore to decide his/her priority. Note that
often a degradation in convergence due to low complexity can be overcome or di-
minished by using the AMG method as a preconditioner for a Krylov method like
conjugate gradient, GMRES, BiCGSTAB, etc.

Many parts of AMG can be parallelized in a straightforward way, since they are
matrix or vector operations. This is generally true for the evaluation of the interpo-
lation or prolongation matrix as well as the generation of the triple matrix product
RkAkP k. Certainly all those operations require communication among processors
and data exchange in some way, however all of this can be done in a straightforward
way. There are however two components which present potentially a serious chal-
lenge, the coarsening routine as well as the relaxation routine. The original coars-
ening routine as described in [48] as well as the basic aggregation procedure are in-
heritantly sequential. Also, the relaxation routine used in general is the Gauß-Seidel
algorithm, which is also sequential in nature. In the following sections, the various
components, coarse grid selection, interpolation and smoothing are described.

6.3 Coarse Grid Selection

Before describing any parallel coarsening schemes, we will describe various sequen-
tial coarsening schemes, since most parallel schemes build on these.

6.3.1 Sequential Coarsening Strategies

There are basically two different ways of choosing a coarse grid. The first approach
(which can be found e.g. in [48, 51]) strives to separate all points i into either coarse

6 Parallel AMG 213

points or C-points, which will be taken to the next level, and fine points or F -points,
which will be interpolated by the C-points. The second approach, coarsening by ag-
gregation or agglomeration ([58]), accumulates aggregates which will be the coarse
“points” for the next level.

“Classical” Coarsening

Since most likely not all matrix coefficients are equally important for the determina-
tion of the coarse grids, one should only consider those matrix entries that are suf-
ficiently large. We introduce the concept of strong influence and strong dependence.
A point i depends strongly on j or j strongly influences i if

−aij ≥ θmax
k �=i

(−aik). (6.2)

Note that this definition was originally motivated by the assumption that A is a sym-
metric M-matrix, i.e. a matrix that is positive definite and off-diagonally nonpositive,
it can however formally be applied to more general matrices. The size of the strength
threshold θ can have a significant influence on complexities, particularly stencil size,
as well as convergence, as is demonstrated in Section 6.6. In the classical coarsening
process (which we will denote Ruge-Stüben or RS coarsening) the attempt is made
to fulfill the following two conditions:

(C1): For each point j that strongly influences an F -point i, j is either a C-point or
it strongly depends on a C-point k that also strongly influences i.

(C2): The C-points should be a maximal independent subset of all points, i.e. no
two C-points are connected to each other, and if another C-point is added the
independence is lost.

(C1) is designed to insure the quality of interpolation, while (C2) is designed
to restrict the size of the coarse grids. In general, it is not possible to fulfill both
conditions, therefore (C1) is enforced, while (C2) is used as a guideline. We will
show in Section 6.4 why (C1) is important.

RS coarsening consists of two passes and is illustrated in Figure 6.1 for a 4 ×
4-grid. In the first pass, each point i is assigned a measure λi, which equals the
number of points that are strongly influenced by i. Then a point with a maximal λi
(there usually will be several) is selected as the first coarse point. Now all points that
strongly depend on i become F -points. For all points that strongly influence these
new F -points, λj is incremented by the number of new F -points that j strongly
influences in order to increase j’s chances of becoming a C-point. This process is
repeated until all points are either C- or F -points.

Since this first pass does not guarantee that condition (C1) is satisfied, it is fol-
lowed by a second pass, which examines all strong F − F connections for common
coarse neighbors. If (C1) is not satisfied new C-points are added. This is illustrated
in the second part of Figure 6.1, where solid lines denote strong F − F connections
that do not satisfy condition (C1).

214 U. M. Yang

2 4 3 3

3 4 8 3

3 5 4 4

2 3 3 2

2

3

3

2 3 3 2

Pass 2:

3

4

4

2 4 4 23 4 4 2

Pass 1:

Fig. 6.1. RS coarsening. Black points denote C-points, white points with solid border denote
F -points, white points with dotted border denote undetermined points. Pass 2: solid lines
denote strong F − F connections that do not satidfy condition (C1).

Aggressive Coarsenings

Experience has shown [51] that often the second pass generates too many C-points,
causing large complexities and inefficiency. Therefore condition (C1) has been mod-
ified to the following.

(C1′): Each F -point i needs to strongly depend on at least one C-point j.

Now just the first pass of the RS coarsening fulfills this requirement. This method
leads to better complexities, but worse convergence.

Even though this approach often decreases complexities significantly, complexi-
ties can still be quite high and require more memory than desired. AllowingC-points
to be even further apart leads to aggressive coarsening. This is achieved by the fol-
lowing new definition of strength: A variable i is strongly n-connected along a path
of length l to a variable j, if there exists a sequence of variables i0, i1, . . . il, with
i = i0 and j = il and ik strongly connected (as previously defined) to ik+1 for
k = 0, . . . , l − 1. A variable i is strongly n-connected w.r.t. (p, l) to a variable j, if
at least p paths of lengths ≤ l exist such that i is strongly n-connected to j along
each of these paths. This can be most efficiently implemented by applying the first
pass of RS coarsening twice, the first time as described in the previous section, the

6 Parallel AMG 215

A2 Coarsening A1 Coarsening

Fig. 6.2. Various sequential coarsenings for a 5-point Laplacian.

Fig. 6.3. Coarsening by aggregation. Black points denote root points, boxes and triangles
denote aggregates.

second time by defining strong n-connectivity w.r.t. (p, l) only between the resulting
C-points (via neighboring F -points). For further details see [51]. The result of ap-
plying aggressive A2 coarsening, i.e. choosing p = 2 and l = 2, and aggressive A1
coarsening, i.e. p = 1 and l = 2, to the 5-point Laplacian on a 7×7-grid is illustrated
in Figure 6.2.

Coarsening by Aggregation

For the aggregation scheme, a different concept of strength is used. Here only matrix
coefficients aij are considered, if they fulfill the following condition:

|aij | > θ
√
|aiiajj |. (6.3)

An aggregate is defined by a root point i and its neighborhood, i.e. all points j, for
which aij fulfills (6.3). Now the basic aggregation procedure consists of the fol-
lowing two phases. In the first pass, a root point is picked that is not adjacent to
any existing aggregate. This procedure is repeated until all unaggregated points are
adjacent to an aggregate. It is illustrated in Figure 6.3 for a 5-point Laplacian on a
6×5-grid. In the second pass, all remaining unaggregated points are either integrated
into already existing aggregates or used to form new aggregates. Since root points
are connected by paths of length of at least 3, this approach leads to fast coarsening
and small complexities. While aggregation is fundamentally different from classical

216 U. M. Yang

coarsening, many of the same concerns arise. In particular, considerable care must
be taken within the second pass when deciding to create new aggregates and what
points should be placed into already existing aggregates. If too many aggregates are
created in this phase, complexities grow. If aggregates are enlarged too much or have
highly irregular shapes, convergence rates suffer.

6.3.2 Parallel Coarsening Strategies

There are various approaches of parallelizing the coarse grid selection schemes de-
scribed in the previous section, which are described in the following subsections.

Decoupled Coarsening Schemes

The most obvious approach to parallelize any of the coarsening schemes described in
the previous section is to partition all variables into subdomains, assign each proces-
sor a subdomain, coarsen the variables on each subdomain using any of the methods
described above, and find a way of dealing with the variables that are located on the
processor boundaries.

The easiest option is to just coarsen independently on each subdomain while ig-
noring the processor boundaries. Such an approach is the most efficient one, since
it requires no communication, but will most likely not produce a very good coarse
grid. The decoupled RS coarsening, which will be denoted by RS0 coarsening, gen-
erally violates condition (C1) by generating strong F −F connections without com-
mon coarse neighbors (see Figure 6.5a, which shows the coarse grid generated by
RS0 coarsening on 4 processors; black points denote C-points, while white and
gray points denote F -points.) and often leads to poor convergence, see Section 6.6
and [26]. While in practice this approach might lead to fairly good results for coars-
ening by aggregation [55], it can produce many aggregates near processor boundaries
that are either smaller or larger than an ideal aggregate and so lead to larger complex-
ities or have a negative effect on convergence. Another disadvantage of this approach
is that it cannot have fewer coarse points or aggregates than processors. In the case of
thousands of processors this leads to a large grid and a large system on the coarsest
level and might be inefficient to solve using a direct solver. Ways to overcome this
problem are described at the end of this section.

Coupled Coarsening Strategies

If we want to improve RS0 coarsening, we need to find ways to deal with the vari-
ables that are located on the processor boundaries. This starts with a decision about
whether one wants to compute the measures locally or globally, i.e. whether one
wants to include off processor influences. The use of global measures can improve
the coarsening and convergence, but is in general not enough to fulfill condition (C1).
One possible way of treating this problem is — after one has performed a first and
a second pass on each processor independently — to perform a third pass only on

6 Parallel AMG 217

the processor boundary points which will add further C-points and thus ensure that
condition (C1) is fulfilled. This approach is called RS3 coarsening and can be found
in [26]. It is illustrated in Figure 6.5a for a 5-point Laplacian on a 10× 10-grid on 4
processors. The black points denote the C-points that have been generated in the first
(and second) pass, the gray points denote the C-points generated in the third pass.
One of the disadvantages of this approach is that this can generate C-point clusters
on the boundaries, thus increasing stencil sizes at the boundaries where one would
like to avoid those, in order to keep communication cost low.

In the coupled aggregation method, aggregates are first built on the boundary.
This step is not completely parallel. When there are no more unaggregated points
adjacent to an aggregate on the processor boundaries, one can proceed to choose ag-
gregates in the processor interiors, which can be done in parallel. In the third phase
unaggregated points on the boundaries and in the interior are swept into local aggre-
gates. Finally, if there are any remaining points, new local aggregates are formed.
This process yields significantly better aggregates and does not limit the coarseness
of grids to the number of processors, see [55].

Parallel Independent Set Coarsenings

A completely parallel approach is suggested in [17, 26]. It is based on parallel in-
dependent set algorithms as described by Luby and Jones and Plassman in [38, 32].
This algorithm, the CLJP (Cleary-Luby-Jones-Plassman) coarsening, begins by gen-
erating global measures as in RS coarsening, and then adding a random number
between 0 and 1 to each measure, thus making them distinctive. It is now possible
to find unique local maxima. The algorithm, which is illustrated for a small example
on a 4 × 4-grid in Figure 6.4, proceeds as follows: If i is a local maximum, make
i a C-point, eliminate the connections to all points j that influence i and decrement
j’s measure. (Thus instead of immediately making C-point neighbors F -points, we
increase their likelihood of becoming F -points. This models the two passes of the
RS coarsening into one pass.) Further for all points j that depend on i, remove its
connection to i and examine all points k that depend on j on whether they also de-
pend on i. If i is a common neighbor for both k and j decrement the measure of j and
remove the edge connecting k and j from the graph. If a measure gets smaller than
1, the point associated with it becomes an F -point. The advantage of this procedure
is, assuming one uses the same global set of random numbers, that it is completely
independent of the number of processors, a feature that is desired by some users.
It also facilitates debugging. The additional advantage of this procedure is that it
does not require the existence of a coarse point in each processor as the coarsening
schemes above and thus coarsening does not slow down on the coarser levels. While
this approach works fairly well on truly unstructured grids, it often leads to C-point
clusters and fairly high complexities, see Figure 6.5b. These appear to be caused by
the enforcement of condition (C1).

To reduce operator complexities, while keeping the property of being indepen-
dent of the number of processors, a new algorithm, the PMIS coarsening [19], has
been developed that is more comparable to using one pass of the RS coarsening.

218 U. M. Yang

2.7 4.3 3.0 3.9

3.2 4.7 8.5 3.2

3.9 5.1 4.8 4.9

2.7 3.6 3.3 2.8

2.7 1.3 0.0 0.9

3.2 1.7 0.2

3.9 2.1 1.8 1.9

2.7 3.6 3.3 2.8

2.7 1.3

3.2 1.7

3.9 2.1 1.8 1.9

2.7 3.6 3.3 2.8

2.7 3.3 2.0 2.9

3.2 3.7 2.2

3.9 4.1 3.8 3.9

2.7 3.6 3.3 2.8

8.5

2.7 1.3

2.2 1.7

0.1 1.8 1.9

0.7 2.3 2.8

3.9

3.6

1.3

2.2 1.7

1.8 1.9

2.3

2.7

2.8

Fig. 6.4. CLJP coarsening. Black points areC-points, white points with solid border F -points,
white points with dotted border undetermined points.

While it does not fulfill condition (C1), it fulfills condition (C1′). PMIS coarsening
begins just as the CLJP algorithm with distinctive global measures, and sets local
maxima to be C-points. Then points that are influenced by C-points are made F -
points, and are eliminated from the graph. This procedure will continue until all
points are either C- or F -points. For an illustration of the PMIS coarsening applied
to a 5-point Laplacian see Figure 6.5c.

Another aggregation scheme suggested in [55] is also based on a parallel maxi-
mally independent set algorithm. Since the goal is to find an initial set of aggregates
with as many points as possible with the restriction that no root point can be ad-
jacent to an existing aggregate. Therefore maximizing the number of aggregates is
equivalent to finding the largest number of root points such that the distance between
any two root points is at least three. This can be accomplished by applying a par-
allel maximally independent set (MIS) algorithm, e.g. the asynchronous distributed
memory algorithm ADMMA [1], to the square of the matrix in the first phase of the
coupled aggregation scheme.

6 Parallel AMG 219

a. R
S

0/R
S

3
b. C

LJP
c. P

d. F
ull subdom

ain
blocking

f. H
e. F

algout

Fig. 6.5. Various parallel coarsenings of a 5-point Laplacian on a 10×10-grid using 4 proces-
sors. White points are F -points, black points are C-points, gray points are C-points generated
during special boundary treatments.

Subdomain Blocking

Another parallel approach is subdomain blocking [35]. Here, coarsening starts with
the processor boundaries, and one then proceeds to coarsen the inside of the do-
mains. Full subdomain blocking is performed by making all boundary points coarse
and then coarsening into the interior of the subdomain using any coarsening scheme
one wishes to use, such as one pass of RS coarsening or any of the aggressive coars-
ening schemes. The disadvantage of this scheme is that it generates far too many
C-points on the boundary, which can cause problems on the coarser grids. For an
illustration see Figure 6.5d. A method, which avoids this problem, is minimum sub-
domain blocking. This approach uses standard coarsening on the boundaries and then
coarsens the interior of the subdomains.

Combination Approaches and Miscellaneous

Another option which has shown to work quite well for structured problems is the
following combination of the RS and the CLJP coarsening which is based on an
idea by Falgout [26]. This coarsening starts out as RS0 coarsening. It then uses the
C-points that have been generated in the first step and are located in the interior
of each processor as the first independent set (i.e. they will all remain C-points)

220 U. M. Yang

and feeds them into the CLJP-algorithm. The resulting coarsening, which satisfies
condition (C1), fills the boundaries with further C-points and possibly adds a few in
the interior of the subdomains, see Figure 6.5e. A more aggressive scheme, which
satisfies condition (C1′), and uses the same idea, is the HMIS coarsening [19]. It
performs only the first pass of RS0 coarsening to generate the first independent set,
which then is used by the PMIS algorithm. Figure 6.5f shows its application to a
5-point Laplacian on 4 processors. The black C-points are the first independent set,
which have been generated by the first pass of the RS0 coarsening, whereas the gray
C-points have been determined by the application of the PMIS coarsening.

Another approach is to color the processors so that subdomains of the same color
are not connected to each other. Then all these subdomains can be coarsened inde-
pendently. This approach can be very inefficient since it might lead to many idle
processors. An efficient implementation that builds on this approach can be found
in [33]. Here the number of colors is restricted to nc, i.e. processors with color num-
bers higher than nc are assigned the color nc. Good results were achieved using only
two colors on the finest level, but allowing more colors on the coarser levels.

Dealing with the Coarser Levels

One of the difficulties that arises when parallelizing multilevel schemes is the treat-
ment of the coarser levels. Since many AMG schemes use the sequential approach
on each processor and this often requires at least one coarse point or aggregate on
each processor, coarsening will slow down on the coarser grids leading to a coars-
est grid of the size of at least the number of processors. This could be thousands of
unknowns and lead to a very inefficient coarse grid solve, and potentially prevent
scalability. There are various possibilities to deal with this situation. Via aggregation
one can combine the contents of various processors, when a certain size is achieved.
This approach also coarsens previous processor boundaries and thus deal with cluster
of coarse points in these areas. One disadvantage of this approach is that it requires
a lot of communication and data transfer across processors.

Another possibility to deal with a slowdown in coarsening is to switch to a coars-
ening scheme that does not require C-points on each processor, such as CLJP or
PMIS, when coarsening slows.

6.4 Interpolation

In this section, we will consider the construction of the interpolation operator. The
interpolation of the error at the F -point i takes the form

ei =
∑
j∈Ci

wijej (6.4)

where wij is an interpolation weight determining the contribution of the value ej
in the final value ei, and Ci is the subset of C-points whose values will be used to
interpolate a value at i.

6 Parallel AMG 221

In classical AMG the underlying assumption is that algebraically smooth error
corresponds to having very small residuals; that is the error is smooth when the
residual r = f −Au ≈ 0. Since the error, e, and the residual are related by Ae = r,
smooth error has the property Ae ≈ 0. Let i be an F -point to which we wish to
interpolate, Ni the neighborhood of i, i.e. the set of all points, which influence i.
Then the ith equation becomes

aiiei +
∑
j∈Ni

aijej = 0. (6.5)

Now, “classical” interpolation as described in [48] proceeds by dividing Ni into the
set of coarse neighbors, Ci, the set of strongly influencing neighbors, F si , and the set
of weakly influencing neighbors, Fwi . Using those distinctions as well as condition
(C1), which guarantees that a neighbor in F si is also strongly influenced by at least
one point in Ci yields the following interpolation formula

wij = − 1
aii +

∑
k∈Fwi aik

⎛⎝aij +
∑
k∈F si

aikakj∑
m∈Ci akm

⎞⎠ . (6.6)

Obviously, this interpolation formula fails whenever (C1) is violated, since there
would be no m and one would divide by zero. One can somewhat remedy this by
including elements of F si that violate (C1) in Fwi , but this will affect the quality
of the interpolation and lead to worse convergence. Nevertheless often good results
can be achieved with this interpolation, if the resulting AMG method is used as a
preconditioner for a Krylov method, see [19]. One advantage of this interpolation
formula is that it only involves immediate neighbors and thus is easier to implement
in parallel, since it requires only one layer of ghost points located on a neighbor
processor.

Another interpolation formula which also requires only immediate neighbors,
and can be used when (C1) is violated, but leads in general to worse convergence
rates is direct interpolation:

wij = −
(∑

k∈Ni aik∑
l∈Ci ail

)
aij
aii

. (6.7)

It is easy to implement sequentially as well as in parallel.
However, if one needs an interpolation that yields lower convergence rates, a

better approach is standard interpolation, which uses an extended neighborhood.
For all points j ∈ F si , one substitutes ej in (6.5) by −∑k∈Nj ajkek/ajj . This leads
to a new formula

âiiei +
∑
j∈N̂i

âijej = 0, N̂i = {j �= i : âij �= 0}. (6.8)

The interpolation weights are then defined as in the direct interpolation by replacing
a by â and N by N̂ .

222 U. M. Yang

If one uses any of the aggressive coarsening schemes, it is necessary to use long
range interpolation, such as multipass interpolation, in order to achieve reasonable
convergence. Multipass interpolation starts by deriving interpolation weights using
direct interpolation for all fine points that are influenced by coarse points (which are
connected by a path of length 1). In the following pass it evaluates weights using the
same approach as in standard interpolation for points that are influenced by those
points for which interpolation weights have already been determined and which are
connected by a path of length 1. This process is repeated until weights have been
obtained for all remaining points. One disadvantage of multipass interpolation is that
since it is based on direct interpolation it often converges fairly slowly. Therefore
it has been suggested to improve this interpolation formula by using an a posteriori
Jacobi relaxation and applying it to the interpolation operator as follows

P
(n)
FC = (I −D−1

FFAFF)P (n−1)
FC −D−1

FFAFC , (6.9)

where PFC and (AFF AFC) consist of those rows of the matrices P and A that
refer to the F -points only, andDFF is the diagonal matrix with the diagonal ofAFF .
Of course using one or more sweeps of Jacobi interpolation will increase the number
of nonzeroes of P and also the complexity of the AMG method. Therefore often
interpolation truncation is used, which truncates those elements in the interpolation
operator that are absolutely smaller than a chosen truncation factor τ , leading to
smaller stencil sizes.

Parallel implementation of long range interpolation can be tedious, since due to
the long ranges it involves several layers of off processor points. Some of these points
might even be located in processors that are not neighbor processors according to the
chosen data structure. Therefore this approach might require expensive communica-
tion. One way to avoid this problem has been suggested in [51]. There, interpolation
proceeds only into the interior of the subdomain and not across boundaries. While
this approach can be implemented very efficiently on a parallel computer, it can cause
convergence problems.

Aggregation methods use a different type of interpolation. At first a tentative
interpolation operator (P k)(0) is created using one or more seed vectors. These seed
vectors should correspond to components that are difficult to smooth. The tentative
interpolation interpolates the seed vectors perfectly by ensuring that all of them are in
the range of the interpolation operator. For Poisson problems the entries are defined
as follows:

(P k)(0)
ij =

{
1 if point i is contained in aggregate j
0 otherwise,

(6.10)

For specific applications such as elasticity problems, more complicated tentative pro-
longators can be derived based on rigid body motions. Once the tentative prolongator
is created it is smoothed via a damped Jacobi iteration

(P k)(n) = (I − ω(Dk)−1Ak)(P k)(n−1), n = 0, . . . , (6.11)

where Dk is the diagonal matrix with the diagonal of Ak. For a more detailed de-
scription of this method see [58, 57].

6 Parallel AMG 223

6.5 Smoothing

One important component of algebraic multigrid is the smoother. A good smoother
will reduce the oscillatory error components, whereas the ’smooth’ error is trans-
ferred to the coarser grids. Although the classical approach of AMG focused mainly
on the Gauß-Seidel method, the use of other iterative solvers has been consid-
ered. Gauß-Seidel has proven to be an effective smoother for many problems, how-
ever its main disadvantage is its sequential nature. For elasticity problems, Schwarz
smoothers have shown to be extremely efficient, here again the most efficient ones
are multiplicative Schwarz smoothers, which are highly sequential.

The general definition of a smoother S applied to a system Au = f is

en+1 = Sen or un+1 = Sun + (I − S)A−1f, (6.12)

where en = un − u denotes the error. Often S is the iteration matrix of an iterative
solver S = I − Q−1A, where Q is a matrix that is part of a splitting Q + (Q − A)
of A, e.g. Q is the lower triangular part of A for the Gauß-Seidel method. Other
approaches such as polynomial smoothers or approximate inverse set Q−1 to be an
approximation of A−1 that can easily be evaluated. Often iterative schemes that are
used as smoothers are also presented as

un+1 = un +Q−1(f −Aun). (6.13)

6.5.1 Parallel Relaxation Schemes

There are various conventional relaxation schemes that are already parallel, such as
the Jacobi or the block Jacobi algorithm. Here Q is the diagonal matrix (or block
diagonal matrix) with the diagonal (or block diagonal) elements of A. These re-
laxation schemes require in general a smoothing or relaxation parameter for good
convergence, as discussed in the next subsection. Another equally parallel related
algorithm that in general leads to better convergence than Jacobi relaxation, is C-
F Jacobi relaxation, where first the variables associated with C-points are relaxed,
then the F -variables. In algebraic multigrid C-F Jacobi is used on the downward cy-
cle, and F-C Jacobi, i.e. relax the F -variables before the C-variables, on the upward
cycle.

6.5.2 Hybrid Smoothers and the Use of Relaxation Parameters

The easiest way to implement any smoother in parallel is to just use it independently
on each processor, exchanging boundary information after each iteration. We will
call such a smoother a hybrid smoother. Using the terminology of (6.13), for a com-
puter with p processors Q would be a block diagonal matrix with p diagonal blocks
Qk, k = 1, ..., p. For example, if one applies this approach to Gauß-Seidel, Qk are
lower triangular matrices (we call this particular smoother hybrid Gauß-Seidel; it
has also been referred to as Processor Block Gauß-Seidel [3]). While this approach

224 U. M. Yang

is easy to implement, it has the disadvantage of being more similar to a block Jacobi
method, albeit worse, since the block systems are not solved exactly. Block Jacobi
methods can converge poorly or even diverge unless used with a suitable damping
parameter. Additionally, this approach is not scalable, since the number of blocks in-
creases with the number of processors and with it the number of iterations increases.
In spite of this, good results can be achieved by setting Q = (1/ω)Q̃ and choosing
a suitable relaxation parameter ω. Finding good parameters is not easy and made
even harder by the fact that in a multilevel scheme one deals with a new system on
each level, which requires new parameters. It is therefore important to find an auto-
matic procedure to evaluate these parameters. Such a procedure has been developed
for symmetric positive problems and smoothers in [59] using convergence theory for
regular splittings. A good smoothing parameter for a positive symmetric matrix A
is ω = 1/λmax(Q̃−1A), where λmax(M) denotes the maximal eigenvalue of M . A
good estimate for this value can be obtained by using a few relaxation steps of Lanc-
zos or conjugate gradient preconditioned with Q̃. This procedure can be applied to
any symmetric positive definite hybrid smoother, such as hybrid symmetric Gauß-
Seidel, Jacobi, Schwarz smoothers or symmetric positive definite variants of sparse
approximate inverse or incomplete Cholesky smoothers.

6.5.3 Multicoloring Approaches

Another approach to parallelize Gauß-Seidel or similar smoothers such as block
Gauß-Seidel or multiplicative Schwarz smoothers is to color subsets of points in
such a way that subsets of the same color are independent of each other and can be
processed in parallel. There are various parallel coloring algorithms available [32],
however use of those as smoothers has shown to be inefficient, since often they gener-
ate too many colors, particularly on the coarser levels. Another approach is to color
the processors, which will give some parallelism, but is overall not very efficient,
since it leads to a large number of processors being idle most of the time.

One truly efficient implementation of a multicolor Gauß-Seidel method is de-
scribed in [2, 3]. Here the nodes are ordered in such a way that interior nodes are
processed while waiting for communication necessary to process boundary nodes.
The algorithm first colors the processors and uses an ordering of the colors to receive
an ordering of the processors. Each processor partitions its nodes into interior and
boundary nodes, which are further divided into boundary nodes that require only
communication with higher processors, those that communicate only with lower
processors and the remaining boundary nodes. Interior nodes are also divided into
smaller sets which are determined by taking into account computational cost to en-
sure that updates of boundary points occur at roughly the same time and thus idle
time is minimized. For further details see [2].

6.5.4 Polynomial Smoothers

Another very parallel approach which promises to be also scalable is the use of poly-
nomial smoothers. Here Q−1 in (6.13) is chosen to be a polynomial p(A) with

6 Parallel AMG 225

p(A) =
∑

0≤j≤m
αjA

j . (6.14)

To use this iteration as a multigrid smoother, the error reduction properties of
q(A) = I − p(A)A must be complementary to those of the coarse grid correc-
tion. One way to achieve this is by splitting the eigenvalues of A into low energy and
high energy groups. The ideal smoother is then given by a Chebyshev polynomial
that minimizes over the range that contains the high energy eigenvalues subject to
the constraint q(0) = 1. If one knows the two eigenvalues that define the range, it is
easy to compute the coefficients of the polynomials via a simple recursion formula.

Another polynomial smoother is the MLS (multilevel smoother) polynomial
smoother. It is based on a combined effect of two different smoothing procedures,
which are constructed to complement each other on the range of coarse grid correc-
tion. The two procedures are constructed so that their error propagation operators
have certain optimum properties. The precise details concerning this polynomial can
be found in [10] where this smoother was first developed in conjunction with the
smoothed aggregation method.

The advantage of these methods is that they are completely parallel and their
parallelism is independent of the number of processors. The disadvantage is that
they require the evaluation of eigenvalues. Both require the maximal eigenvalue of a
matrix and the Chebyshev polynomial smoother also the lower range of the high fre-
quency eigenvalues. However, if these smoothers are used in the context of smoothed
aggregation, which is usually the case, the maximal eigenvalues are already available
since they are needed for the smoothing of the interpolation. Further details on this
topic can be found in [3].

6.5.5 Approximate Inverse, Parallel ILU and More

Obviously, one can use any other parallel solver or preconditioner as a smoother.
Q−1 can be chosen as any approximation to A−1, e.g. a sparse approximate inverse.
The use of approximate inverses in the context of multilevel methods is described
in [53, 13, 40]. ParaSails, a very efficient parallel implementation of an approximate
inverse preconditioner, approximates Q by minimizing the Frobenius norm of I −
QA and uses graph theory to predict good sparsity patterns for Q [15, 16]. Other
options for smoothers are incomplete LU factorizations with Q = L̃Ũ , where L̃
and Ũ are sparse approximations of the actual lower and upper triangular factors of
A. There are various good parallel implementations available such as Euclid [30,
31], which obtains scalable parallelism via local and global reorderings, or PILUT
[34], a parallel ILUT factorization. It is also possible to use conjugate gradient as a
smoother.

6.6 Numerical Results

This section gives a few numerical results to illustrate some of the effects described
in the previous sections. We apply various preconditioned AMG methods to 2-

226 U. M. Yang

dimensional (2D) and 3-dimensional discretizations (3D) of the Laplace equation

−∆u = f, (6.15)

with homogeneous Dirichlet boundary conditions on a unit square or unit cube. We
use the codes BoomerAMG and MLI from the hypre library. BoomerAMG is mostly
built on the “classical” AMG method and provides the coarsening algorithms: RS0,
RS3, CLJP, Falgout, PMIS and HMIS. It deals with a slowdown in coarsening by
switching to CLJP, and uses Gaussian elimination on the coarsest level, which is at
most of size 9. It uses a slightly modified form of the “classical” interpolation de-
scribed in Section 6.4 [26, 19]. MLI is an aggregation code. It uses the fast parallel
direct solver SuperLU [52] on the coarsest level, which in our experiments is chosen
to be at least 1024, the number of processors in our largest test run, and smaller than
4100. MLI’s coarsening strategy is decoupled aggregation. We consider two vari-
ants: aggregation (AG), which uses the unsmoothed interpolation operator (P k)(0) in
(6.10), and smoothed aggregation (SA), which applies one step of smoothed Jacobi
to (P k)(0). For all methods, hybrid symmetric Gauß-Seidel smoothing was used.
While RS3, Falgout and CLJP work almost as well as stand-alone solvers for the
first two test problems, all other methods are significantly improved when acceler-
ated by a Krylov method. Therefore in all of our experiments, they were used as
preconditioners for GMRES(10).

All test problems were run on the Linux cluster MCR at Lawrence Livermore
National Laboratory. We use the following notations in the tables:

• p: number of processors,
• θ: strength threshold as defined in (6.2) for RS0, RS3, CLJP, Falgout, PMIS and

HMIS, as defined in (6.3) for AG and SA, (Section 6.3),
• τ : interpolation truncation factor (Section 6.4),
• Cop: operator complexity (Section 6.2),
• savg: maximal average stencil size, i.e. max1≤k≤M s(A

k), (Section 6.2),
• #its: number of iterations,
• tsetup: setup time in seconds,
• tsolve: time of solve phase in seconds,
• ttotal: total time in seconds.

The first test problem is a 2D Laplace problem with a 9-point discretization on a
unit square. We kept the number of grid points fixed at 122,500 (350× 350) on each
processor, while increasing the number of processors and the overall problem size.
The setup and total times for runs using 1, 4, 16, 64, 256 and 1024 processors are
presented in Figure 6.6. For the aggregation based solvers AG and SA, θ = 0 was
chosen. For almost all other solvers, θ = 0.25 was used, since this choice led to the
best performance. RS0, however, performed significantly better with θ = 0. Table
6.1 contains complexities and numbers of iterations for the 4 processor and 1024
processor runs. It shows that operator complexities are constant across an increasing
number of processors, while stencil sizes increase for RS0, RS3, Falgout and SA. The
aggregation methods obtain the best operator complexities, while CLJP’s operator

6 Parallel AMG 227

Table 6.1. Complexities and numbers of iterations for GMRES(10) preconditioned with vari-
ous AMG methods.

p = 4 p = 1024

Method Cop savg #its Cop savg #its

RS0 1.33 11 14 1.33 18 172
RS3 1.34 20 6 1.36 69 7
Falgout 1.34 16 6 1.35 32 8
CLJP 1.92 32 8 1.96 36 9
PMIS 1.25 11 24 1.23 11 42
HMIS 1.33 9 10 1.33 12 19
AG 1.13 9 37 1.13 9 93
SA 1.13 9 10 1.13 27 21

complexities are the highest. The overall best stencil sizes are obtained by AG, HMIS
and PMIS. The most significant growth in stencil size occurs for RS3, apparently
caused by the addition of the third pass on the boundaries. The effect of this stencil
growth can clearly be seen in Figure 6.6a. AG and RS0 have the largest number of
iterations, showing the influence of the decoupled coarsening. It also turns out that
increasing the strength threshold for RS0 leads quickly to disastrous convergence
results: for θ = 0.25, p = 1024, RS0 needs more than 700 iterations to converge.
While SA also uses decoupled coarsening, its interpolation operator is significantly
improved by the use of one weighted Jacobi iteration, leading to faster convergence.

The results in Figure 6.6 show that the overall fastest method for this problem is
Falgout, closely followed by HMIS and CLJP. While RS3 has slightly better conver-
gence, the fact that its average stencil sizes increase faster with increasing number
of processors than those of the other coarsenings, leads to faster increasing setup
times and worse total times than Falgout, HMIS and CLJP. The smallest setup time
is obtained by RS0, which requires no communication during the coarsening phase,
followed by PMIS and HMIS, which benefit from their small stencil sizes. SA’s setup
times are larger than those of AG due to the smoothing of the interpolation operator.
Note that while the results for the aggregation methods demonstrate good complexi-
ties, and thus low memory usage, they are not necessarily representative of smoothed
aggregation in general or other implementations of this method. The use of more so-
phisticated parallel aggregation schemes, a different treatment of the coarsest level
and the use of other smoothers might yield better results.

The second test problem is a 7-point finite difference discretization of the 3-
dimensional Laplace equation on a unit cube using 40×40×40 points per processor.
For three-dimensional test problems, it becomes more important to consider com-
plexity issues. While the choice of θ = 0.25 often still leads to best convergence,
complexities can become so large for this choice that setup times and memory re-
quirements might be unreasonable. The effect of using different strength thresholds
on complexities and convergence is illustrated in Table 6.2 for Falgout-GMRES(10)
for 288 processors. Based on the results of this experiment we are choosing θ = 0.75

228 U. M. Yang

a. Setup times

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

no. of procs

ti
m

e
in

 s
ec

s

RS0
RS3
Falgout
CLJP
PMIS
HMIS
AG
SA

b. Total times

0

10

20

30

40

50

60

0 200 400 600 800 1000

no. of procs

ti
m

e
in

 s
ec

s

RS0
RS3
Falgout
CLJP
PMIS
HMIS
AG
SA

Fig. 6.6. Setup and total times for a 2-dimensional Laplacian problem with a 9-point stencil
for an increasing number of processors and increasing problem size with a fixed number of
grid points (350× 350) per processor.

for our further experiments. Another useful tool to decrease stencil size is interpola-
tion operator truncation. Increasing the truncation factor τ also decreases savg , while
only slightly decreasing Cop. Best timings when choosing θ = 0 and increasing τ
were achieved for τ = 0.3. In general, this choice leads to larger stencil sizes than
choosing θ = 0.75 and τ = 0, but better convergence, as can be seen in Table 6.3.
When increasing the number of processors and with it the overall problem size, oper-
ator complexities and stencil sizes initially increase noticeably, particularly for RS3,
Falgout and CLJP. They, however, cease growing for large problem sizes. The com-
plexities presented in Table 6.3 are therefore close to those that can be obtained for

6 Parallel AMG 229

Table 6.2. Effect of strength threshold on Falgout-GMRES(10) for a 7-point finite difference
discretization of the 3-dimensional Laplacian on 216 processors with 403 degrees of freedom
per processor.

θ Cop savg #its tsetup tsolve ttotal

0.00 3.26 458 6 21.82 2.67 24.49
0.25 6.32 3199 5 96.77 7.93 104.70
0.50 5.32 538 7 18.60 5.97 24.57
0.75 6.08 232 10 11.05 6.73 17.78

Table 6.3. AMG-GMRES(10) with different coarsening strategies applied to a 7-point finite
difference discretization of the 3-dimensional Laplacian on 512 processors with 403 degrees
of freedom per processor.

Method θ τ Cop savg #its tsetup tsolve ttotal

RS0 0.50 0.0 3.70 170 14 6.69 4.67 11.36
RS3 0.75 0.0 6.18 457 9 19.35 5.83 25.18

0.00 0.3 3.52 756 6 42.83 5.69 48.52
CLJP 0.75 0.0 13.38 119 16 14.94 13.23 28.17

0.00 0.3 4.46 232 9 17.94 2.80 20.74
Falgout 0.75 0.0 6.12 237 10 13.79 5.88 19.67

0.00 0.3 3.22 275 7 19.14 2.56 21.70
PMIS 0.00 0.0 2.09 49 20 4.69 4.29 8.98
HMIS 0.00 0.0 2.75 61 13 5.15 3.44 8.59
AG 0.08 0.0 1.25 16 36 3.22 11.74 14.96
SA 0.08 0.0 1.75 172 13 4.96 5.90 10.86

larger problem sizes. Operator complexities are overall larger than in the previous
test problem, particularly for the CLJP coarsening, when no interpolation trunca-
tion is applied. Best operator complexities are obtained for the aggregation based
schemes, followed by PMIS and HMIS. The best overall timings are achieved by
HMIS. RS0 performs very well for this problem for this particular parameter choice,
however if applied to the 7-point 3D problem using 393 instead of 403 unknowns
per processor, p = 1024, Cop is twice, #its is four times and ttotal is three times as
large as the values reported in Table 6.3, while the other coarsenings are affected to
a much lesser degree by the change in system size.

Finally, in Table 6.4 we present results for the 3D Laplace problem on the unit
cube using an unstructured finite element discretization. Note that operator com-
plexities are overall lower here. RS0 is performing the worst due to a large number
of iterations. The best timings are achieved by PMIS, followed by HMIS and SA.
Interestingly enough, while CLJP’s operator complexities were much larger than
Falgout’s and convergence was slightly worse for the structured test problems, it
performs slightly better than Falgout for this truly unstructured problem. A similar

230 U. M. Yang

Table 6.4. AMG-GMRES(10) with different coarsening strategies applied to an unstructured
finite element discretization of the 3-dimensional Laplacian on 288 processors with approx.
20,000 degrees of freedom per processor.

Method θ Cop savg #its tsetup tsolve ttotal

RS0 0.75 2.51 47 86 3.55 15.53 19.08
RS3 0.75 2.65 56 41 4.87 11.69 16.56
CLJP 0.75 2.71 76 18 5.79 6.33 12.12
Falgout 0.75 2.84 77 21 6.42 7.20 13.62
PMIS 0.25 1.46 53 22 2.41 3.60 6.01
HMIS 0.25 1.60 61 21 2.91 3.64 6.55
AG 0.00 1.06 18 54 2.13 12.22 14.35
SA 0.00 1.24 102 18 2.73 5.68 8.61

effect can be observed for HMIS and PMIS. Results for a variety of test problems
applied to various coarsening schemes in BoomerAMG can be found in [26, 19].
Numerical test results for various elasticity problems comparing BoomerAMG and
MLI can be found in [9].

6.7 Software Packages

There are various software packages for parallel computers which contain algebraic
multilevel methods. This section contains very brief descriptions of these codes. Un-
less specifically mentioned otherwise, these packages are open source codes, and
information on how to obtain them is provided below.

6.7.1 hypre

The software library hypre [24] is being developed at Lawrence Livermore National
Laboratory and can be downloaded from [29]. One of its interesting features are
its conceptual interfaces [24, 22], which are described in further detail in [23] It
contains various multilevel preconditioners, including the geometric multigrid codes
SMG and PFMG [21],the AMG code BoomerAMG and the smoothed aggregation
code MLI, as well as sparse approximate inverse and parallel ILU preconditioners.

6.7.2 LAMG

LAMG is a parallel algebraic multigrid code, which has been developed at Los
Alamos National Laboratory. It makes extensive use of aggressive coarsening, such
as described in [51]. It has shown to give extremely scalable results on upto 3500
processors. Further information on the techniques used in LAMG can be found
in [33]. LAMG is not an open source code.

6 Parallel AMG 231

6.7.3 ML

ML [27] is a massively parallel algebraic multigrid solver library for sparse linear
systems. It contains various parallel multigrid methods, including smoothed aggrega-
tion, a version of classic AMG and a special algebraic multigrid solver for Maxwell’s
equations. The smoothed aggregation code offers all the parallel coarsening options
for aggregation based AMG described above and among other features polynomial
and multi-colored Gauß-Seidel smoothers. It is being developed at Sandia National
Laboratories and can be downloaded from [43].

6.7.4 pARMS

The library pARMS contains parallel algebraic recursive multilevel solvers. These
solvers are not algebraic multigrid methods in the sense described above, but are
algebraic multilevel solvers which rely on a recursive multi-level ILU factorization.
Further details on these methods can be found in [49, 36] The pARMS library has
been developed at the University of Minnesota and is available at [44].

6.7.5 PEBBLES

PEBBLES (Parallel and Element Based grey Box Linear Equation solver) is an alge-
braic multigrid package for solving large sparse, symmetric positive definite linear
equations which arise from finite element discretizations of elliptic PDEs of second
order [25]. It is a research code with element preconditioning, different interpolation
and coarsening schemes and more that is being developed at the University in Linz.
More information on the package and how to obtain the code is available at [45].

6.7.6 PHAML

PHAML (Parallel Hierarchical Adaptive Multilevel solvers) is a parallel code for the
solution of general second order linear self-adjoint elliptic PDEs. It uses a finite el-
ement method with linear, quadratic or cubic elements over triangles. The adaptive
refinement and multigrid iteration are based on a hierarchical basis formulation [42].
For further information and to download the software package which is being devel-
oped at the National Institute for Science and Technology (NIST) see [46].

6.7.7 Prometheus

Prometheus is a parallel multigrid library that has been developed originally at the
University of California at Berkeley. It contains a multigrid solver for PDE’s on finite
element generated unstructured grids, but also a smoothed aggregation component
named ATLAS. Prometheus is available at [47].

232 U. M. Yang

6.7.8 SAMGp

SAMGp (Algebraic Multigrid Methods for Systems) is a parallel software library
which has been developed at Fraunhofer SCAI. It uses subdomain blocking as a par-
allel coarsening scheme [35] and allows for various different coarsening schemes,
such as aggressive coarsening, making it very memory efficient. SAMGp is a com-
mercial code. Information on how to purchase it as well as a user’s manual can be
found at [50].

6.7.9 SLOOP

A parallel object oriented library for solving sparse linear systems named SLOOP
[18, 41] is being developed at CEA (Commisariat a l’Energie Atomique) in France.
SLOOP’s primary goal is to provide a friendly user interface to the parallel solvers
and ease the integration for new preconditioners and matrix structures. It contains
various parallel preconditioners: algebraic multigrid, approximate inverse and in-
complete Cholesky. This library is currently not an open source code, but there are
plans to change this in the near future.

6.7.10 UG

UG (Unstructured Grids) is a parallel software package that is being developed at
the University of Heidelberg particularly for the solution of PDEs on unstructured
grids [4]. It has various features, including a parallel AMG code, adaptive local grid
refinement and more. For further information and a copy of the code see [56].

6.8 Conclusions and Future Work

Overall, there are many efficient parallel implementations of algebraic multigrid and
multilevel methods. Various parallel coarsening schemes, interpolation procedures,
parallel smoothers as well as several parallel software packages have been briefly
described. There has truly been an explosion of research and development in the
area of algebraic multilevel techniques for parallel computers with distributed mem-
ories. Even though we have tried to cover as much information as possible, there
are still various interesting approaches that have not been mentioned. One of those
approaches that shows a lot of promise is the concept of compatible relaxation. This
was originally suggested by Achi Brandt [6]. Much research has been done in this
area. Although many theoretical results have been obtained [20, 37], we are not aware
of an efficient implementation of this algorithm to this date. However, once this has
been formulated, compatible relaxation holds much promise for parallel computa-
tion. Since the smoother is used to build the coarse grid, use of a completely parallel
smoother (e.g. C-F Jacobi relaxation) will lead to a parallel coarsening algorithm.

6 Parallel AMG 233

References

1. M. Adams. A parallel maximal independent set algorithm. In Proceedings of the 5th
Copper Mountain Conference on Iterative Methods, 1998.

2. M. Adams. A distributed memory unstructured Gauss-Seidel algorithm for multigrid
smoothers. In ACM/IEEE Proceedings of SC2001: High Performance Networking and
Computing, 2001.

3. M. Adams, M. Brezina, J. Hu, and R. Tuminaro. Parallel multigrid smoothing: polynomial
versus Gauss-Seidel. Journal of Computational Physics, 188:593–610, 2003.

4. P. Bastian, K. Birken, K. Johannsen, S. Lang, n. Neuß, H. Rentz-Reichert, and C. Wieners.
UG: a flexible software toolbox for solving partial differential euations. Computing and
Visualization in Science, 1:27–40, 1997.

5. A. Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math. Comp., 19:23–
56, 1986.

6. A. Brandt. General highly accurate algebraic coarsening schemes. Electronic Transac-
tions on Numerical Analysis, 10:1–20, 2000.

7. A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for automatic multi-
grid solutions with application to geodatic computations. Technical report, Institute for
Computational Studies, Fort Coolins, CO, 1982.

8. A. Brandt, S. McCormick, and J. Ruge. Algenbraic multigrid (AMG) for sparse matrix
equations. In D. Evans, editor, Sparsity and Its Applications. Cambridge University Press,
1984.

9. M. Brezina, C. Tong, and R. Becker. Parallel algebraic multigrids for structural mechan-
ics. SIAM Journal of Scientific Computing, submitted, 2004. Also available as LLNL
technical report UCRL-JRNL-204167.

10. M. Brezina. Robust iterative solvers on unstructured meshes. Technical report, University
of Colorado at Denver, 1997. Ph.D.thesis.

11. M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,
S. F. McCormick, and J. W. Ruge. Algebraic multigrid based on element interpolation
(AMGe). SIAM J. Sci. Comput., 22(5):1570–1592, 2000. Also available as LLNL tech-
nical report UCRL-JC-131752.

12. W. Briggs, V. Henson, and S. McCormick. A multigrid tutorial. SIAM, Philadelphia, PA,
2000.

13. O. Bröker and M. Grote. Sparse approximate inverse smoothers for geometric and alge-
braic multigrid. Applied Numerical Mathematics, 41:61–80, 2002.

14. T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge,
and P. Vassilevski. Spectral AMGe (ρAMGe). SIAM Journal on Scientific Computing,
25:1–26, 2003.

15. E. Chow. A priori sparsity patterns for parallel sparse approximate inverse precondition-
ers. SIAM J. Sci. Comput., 21(5):1804–1822, 2000. Also available as LLNL Technical
Report UCRL-JC-130719 Rev.1.

16. E. Chow. Parallel implementation and practical use of sparse approximate inverses with a
priori sparsity patterns. Int’l J. High Perf. Comput. Appl., 15:56–74, 2001. Also available
as LLNL Technical Report UCRL-JC-138883 Rev.1.

17. A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones. Coarse-grid selection for
parallel algebraic multigrid. In Proc. of the Fifth International Symposium on: Solving
Irregularly Structured Problems in Parallel, volume 1457 of Lecture Notes in Computer
Science, pp. 104–115, New York, 1998. Springer–Verlag. Held at Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA, August 9–11, 1998. Also available as LLNL Technical
Report UCRL-JC-130893.

234 U. M. Yang

18. L. Colombet, G. Meurant, et al. Manuel utilisateur de la bibliotheque (SLOOP) 3.2
SLOOP 3.2 users manual. Technical report, CEA/DIF/DSSI/SNEC, 2004.

19. H. De Sterck, U. M. Yang, and J. Heys. Reducing complexity in parallel algebraic multi-
grid preconditioners. SIAM Journal on Matrix Analysis and Applications, submitted,
2004. Also available as LLNL technical report UCRL-JRNL-206780.

20. R. Falgout and P. Vassilevski. On generalizing the AMG framework. SIAM Journal on
Numerical Analysis, to appear, 2003. Also available as LLNL technical report UCRL-JC-
150807.

21. R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In E. Dick,
K. Riemslagh, and J. Vierendeels, editors, Multigrid Methods VI, volume 14 of Lecture
Notes in Computational Science and Engineering, pp. 101–107, Berlin, 2000. Springer.
Proc. of the Sixth European Multigrid Conference held in Gent, Belgium, September 27-
30, 1999. Also available as LLNL technical report UCRL-JC-133948.

22. R. D. Falgout, J. E. Jones, and U. M. Yang. Conceptual interfaces in hypre. Future
Generation Computer Systems, to appear, 2003. Also available as LLNL technical report
UCRL-JC-148957.

23. R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implementation of hypre, a
library of parallel high performance preconditioners. In A. M. Bruaset and A. Tveito,
editors, Numerical Solution of Partial Differential Equations on Parallel Computers,
volume 51 of Lecture Notes in Computational Science and Engineering, pp. 267–294.
Springer-Verlag, 2005.

24. R. D. Falgout and U. M. Yang. hypre: a library of high performance preconditioners.
In P. Sloot, C. Tan., J. Dongarra, and A. Hoekstra, editors, Computational Science -
ICCS 2002 Part III, volume 2331 of Lecture Notes in Computer Science, pp. 632–641.
Springer–Verlag, 2002. Also available as LLNL Technical Report UCRL-JC-146175.

25. G. Haase, M. Kuhn, and S. Reitzinger. Parallel algebraic multigrid methods on distributed
memory computers. SIAM Journal on Scientific Computing, 24:410–427, 2002.

26. V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics, 41:155–177, 2002. Also available as
LLNL technical report UCRL-JC-141495.

27. J. Hu, C. Tong, and R. Tuminaro. ML 2.0 smoothed aggregation user’s guide. Technical
Report SAND2001-8028, Sandia National Laboratories, 2002.

28. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel geometric multigrid. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pp. 165–208. Springer-Verlag, 2005.

29. hypre: High performance preconditioners.
http://www.llnl.gov/CASC/hypre/.

30. D. Hysom and A. Pothen. Efficient parallel computation of ILU(k) preconditioners. In
Proceedings of SuperComputing 99. ACM, November 1999. published on CDROM,
ISBN #1-58113-091-0, ACM Order #415990, IEEE Computer Society Press Order #
RS00197.

31. D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor precondi-
tioning. SIAM J. Sci. Comput., 22(6):2194–2215, 2001.

32. M. Jones and P. Plassman. A parallel graph coloring heuristic. SIAM J. Sci. Comput.,
14:654–669, 1993.

33. W. Joubert and J. Cullum. Scalable algebraic multigrid on 3500 processors. Technical
Report Technical Report No. LAUR03-568, Los Alamos National Laboratory, 2003.

6 Parallel AMG 235

34. G. Karpis and V. Kumar. Parallel threshold-based ILU factorization. Technical Report
061, University of Minnesota, Department of Computer Science/Army HPC Research
Center, Minneapolis, MN 5455, 1998.

35. A. Krechel and K. Stüben. Parallel algebraic multigrid based on subdomain blocking.
Parallel Computing, 27:1009–1031, 2001.

36. Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic recursive
multilevel solver. Numerical Linear Algebra with Applications, 10:485–509, 2003.

37. O. Livne. Coarsening by compatible relaxation. Numerical Linear Algebra with Applica-
tions, 11:205–228, 2004.

38. M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.
on Computing, 15:1036–1053, 1986.

39. S. F. McCormick. Multigrid Methods, volume 3 of Frontiers in Applied Mathematics.
SIAM Books, Philadelphia, 1987.

40. G. Meurant. A multilevel AINV preconditioner. Numerical Algorithms, 29:107–129,
2002.

41. G. Meurant. Numerical experiments with parallel multilevel preconditioners on a large
number of processors. SIAM Journal on Matrix Analysis and Applications, submitted,
2004.

42. W. Mitchell. Unified multilevel adaptive finite element methods for elliptic problems.
Technical Report UIUCDCS-R-88-1436, Department of Computer Science, University
of Illinois, Urbana, IL, 1988. Ph.D. thesis.

43. ML: A massively parallel algebraic multigrid solver library for solving sparse linear sys-
tems. http://www.cs.sandia.gov/∼tuminaro/ML Description.html.

44. pARMS: Parallel algebraic recursive multilevel solvers. http://www-users.cs.
umn.edu/∼saad/software/pARMS/.

45. PEBBLES: Parallel and elment based grey box linear equation solver. http://www.
numa.uni-linz.ac.at/Research/Projects/pebbles.html.

46. PHAML: The parallel hierarchical adaptive multilevel project. http://math.nist.
gov/phaml/.

47. Prometheus. http://www.cs.berkeley.edu/∼madams/prometheus/.
48. J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor,

Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pp. 73–130. SIAM,
Philadelphia, PA, 1987.

49. Y. Saad and B. Suchomel. ARMS: an algebraic recursive multilevel solver for general
sparse linear systems. Numerical Linear Algebra with Applications, 9:359–378, 2002.

50. SAMGp: Algebraic multigrid methods for systems.
http://www.scai.fraunhofer.de/samg.htm.

51. K. Stüben. Algebraic multigrid (AMG): an introduction with applications. In U. Trotten-
berg, C. Oosterlee, and A. Schüller, editors, Multigrid. Academic Press, 2001.

52. SuperLU. http://acts.nersc.gov/superlu/.
53. W.-P. Tang and W. L. Wan. Sparse approximate inverse smoother for multigrid. SIAM J.

Matrix Anal. Appl., 21:1236–1252, 2000.
54. U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.
55. R. Tuminaro and C. Tong. Parallel smoothed aggregation multigrid: aggregation strategies

on massively parallel machines. In J. Donnelley, editor, Supercomputing 2000 Proceed-
ings, 2000.

56. UG: A flexible software toolbox for solving partial differential equations.
http://cox.iwr.uni-heidelberg.de/∼ug/index.html.

57. P. Vanek, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on
smoothed aggregation. Numerische Mathematik, 88:559–579, 2001.

236 U. M. Yang

58. P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation
for second and fourth order problems. Computing, 56:179–196, 1996.

59. U. M. Yang. On the use of relaxation parameters in hybrid smoothers. Numerical Linear
Algebra with Applications, 11:155–172, 2004.

7

Parallel Mesh Generation

Nikos Chrisochoides

Computer Science Department, College of William and Mary, Williamsburg,
VA 23185, USA

Division of Applied Mathematics, Brown University, 182 George Street, Providence,
RI 02912, USA

nikos@cs.wm.edu

Summary. Parallel mesh generation is a relatively new research area between the boundaries
of two scientific computing disciplines: computational geometry and parallel computing. In
this chapter we present a survey of parallel unstructured mesh generation methods. Parallel
mesh generation methods decompose the original mesh generation problem into smaller sub-
problems which are meshed in parallel. We organize the parallel mesh generation methods
in terms of two basic attributes: (1) the sequential technique used for meshing the individual
subproblems and (2) the degree of coupling between the subproblems. This survey shows that
without compromising in the stability of parallel mesh generation methods it is possible to de-
velop parallel meshing software using off-the-shelf sequential meshing codes. However, more
research is required for the efficient use of the state-of-the-art codes which can scale from
emerging chip multiprocessors (CMPs) to clusters built from CMPs.

7.1 Introduction

This chapter presents a survey of parallel unstructured mesh generation methods
based on three widely used techniques: Delaunay [39], Advancing Front [66], and
Edge Subdivision [59]. Parallel methods for quadrilateral [6] and hexahedral [54]
mesh generation as well as block structured [93, 20, 90] and structured adaptive
mesh refinement [1] methods are not reviewed in this chapter.

Parallel mesh generation procedures in general decompose the original 2-dimen-
sional (2D) or 3-dimensional (3D) mesh generation problem into Ns smaller sub-
problems which are solved (i.e., meshed) concurrently using P processors. The sub-
problems can be formulated to be either tightly coupled [60, 56, 78], partially cou-
pled [55, 31, 19] or even decoupled [38, 79, 52]. The coupling of the subproblems
determines the intensity of the communication and the amount/type of synchroniza-
tion required between the subproblems.

The challenges in parallel mesh generation methods are: to maintain stability of
the parallel mesher (i.e., retain the quality of finite elements generated by state-of-
the-art sequential codes) and at the same time achieve 100% code re-use (i.e., lever-
age the continuously evolving and fully functional off-the-shelf sequential mesh-

238 N. Chrisochoides

ers) without substantial deterioration of the scalability of the parallel mesher. In this
chapter we review parallel mesh generation methods having in mind these three re-
quirements.

We build on top of previous work [30, 39] where parallel mesh generation meth-
ods are classified in terms of the way and the order the artificial boundary surfaces
(interfaces) of the subproblems are meshed. Specifically, in [31, 39] existing parallel
methods are classified in three categories: (i) methods that first mesh (either in par-
allel [55] or sequentially [79]) the interfaces of the subproblems and then mesh in
parallel the individual subproblems, (ii) methods that first solve the meshing problem
in each of the subproblems in parallel and then mesh the interfaces so that the global
mesh is conforming [36], and (iii) methods that simultaneously mesh and improve
the interfaces as they mesh the individual subproblems [25, 19, 26].

In this chapter we organize the parallel mesh generation methods in terms of
two basic attributes. First, the sequential technique used for meshing the individual
subproblems: (1) Delaunay, (2) Advancing Front, and (3) Edge Subdivision. Second,
the degree of coupling between the subproblems: (a) tightly-coupled, (b) partially-
coupled, and (c) decoupled methods.

7.2 Domain Decomposition Approaches

Parallel mesh generation methods use a sequential pre-processing step for the data
partitioning problem with the exception of [47, 48]. The data are partitioned using
either the continuous domain which is decomposed into subdomains (see Figure 7.1,
left) or a discrete approximation (i.e., an initial coarser mesh) of the domain which is
decomposed into submeshes (see Figure 7.1, right). The internal boundaries between
the subdomains or submeshes (Si) are called interfaces or separators (∂Si). In both
cases the number of generated subdomains or submeshes (Ns) can be significantly
greater than the number of processors P (over-decomposition). Over-decomposition
was introduced in parallel computing in mid 80s. It is used to hide communication
latency in message passing [50] and to mask information dissemination, decision
making and data migration costs in dynamic load balancing [21].

The domain decomposition (DD) problem in parallel mesh generation is defined
as follows:

lfs(Ω) ≤ lfs(Si) i = 1, Ns (7.1)

min
i=1,Ns

|∂Si|
|Si|

(7.2)

∂Si form “good” angles between each other and the boundary ∂Ω. (7.3)

where lfs(Ω) and lfs(Si) are the local feature size [85] of the original domain Ω
and the subdomains (or submeshes) Si, respectively. The |∂Si| denotes the length (in
2D) and surface (in 3D) of the interfaces while the |Si| denotes the area (in 2D) and
volume (in 3D) of the subdomains (or submeshes) Si.

7 Parallel Mesh Generation 239

DD of continuous geometry DD of discrete geometry

Fig. 7.1. Domain decomposition of the continuous geometry [52] and the discrete geome-
try [17] of a cross section of a rocket pipe. (For the color version, see Figure A.17 on page
474).

Continuous Domain Decomposition

The continuous domain decomposition methods partition the region Ω into subdo-
mains Ωi, i = 1, Ns. There are two types of continuous DD methods. The first and
most popular approach is based on quadtree/octree methods [31, 56, 58]. The octree
methods utilize an octree structure for the decomposition of Ω into blocks (octants).
The octants along with a description of the external boundary ∂Ω define the subdo-
mains. Another class of continuous DD methods [52] is based on auxiliary structures
like the Medial Axis [9, 68, 91] so that the subdomains Ωi have no new features like
small angles between the separators and the separators and external boundary [52].

Continuous DD approaches are attractive because they refine the individual sub-
domains by re-using existing well tested and fine-tuned sequential codes on each
subdomain independently. However, independence in mesh refinement and high code
re-use in some cases come at a price. The polyhedral surfaces which arise due to the
decomposition of the initial mesh impose additional constraints on the execution of
sequential meshing algorithms in each of the subdomains. Poorly generated inter-
face surfaces can affect the termination of meshing algorithms and the quality of the
elements. Moreover, the artificially imposed interfaces can affect the mesh gradation.

Discrete Domain Decomposition

The Discrete DD methods partition an initial coarse mesh (usually a boundary con-
forming mesh), D into a number of simply-connected submeshes Di, i = 1, Ns
while they try to minimize the surface-to-volume ratio for each of the submeshes.
Usually a coarse mesh is generated on a high-performance workstation using se-
quential mesh generators. The partitioning of a coarse mesh is performed either se-
quentially or in parallel using generic graph partitioning libraries like Metis/Parallel
Metis [80] and Chaco [42]. Also, there are mesh partitioning libraries like Domain
Decomposer [22, 23], Zoltan [33], Drama [3], Plum [64], and Jove [87] (to mention

240 N. Chrisochoides

Mi Mesh Point Insertion & Computation of Bi New Mesh Mi+1

Computation of Ci

Fig. 7.2. Bowyer-Watson kernel starts with a mesh Mi (left), computes the cavity (center
left) of a newly inserted point, triangulates the cavity (center right) and updates the mesh into
Mi+1 (right).

a few) which extend and customize the generic data partitioning techniques for FEM
calculations.

7.3 Parallel Mesh Generation Methods

In this section we review parallel mesh generation methods which are based on De-
launay triangulation in Section 7.3.1, Advancing Front Technique in Section 7.3.2,
and Edge Subdivision methods in Section 7.3.3.

7.3.1 Delaunay Based Methods

There are many approaches to generate Delaunay meshes [39], we focus on meth-
ods based on Bowyer-Watson [10, 96] kernel which can lead to: (1) more efficient
parallel implementations due to easier optimizations for improving data locality and
(2) simpler and more efficient data structures. The Bowyer-Watson (BW) kernel is
described in Figure 7.2 and the loop bellow:

Algorithm 1 (BW(Mo, p1, ..., pn)).

1. Input: Mesh Mo an initial mesh and a set of n points
2. for i = 1, n
3. Compute the cavity of Ci of the point pi
4. Compute the ball Bi of point pi
5. Mi+1 = Mi − Ci +Bi
6. endfor
7. Output: A new mesh M = Mn+1

where the cavity C of a point p is defined as the set of all triangles whose circumcircle
includes p; the ball B of a point p is defined as set of new triangles defined by the
point p and the vertices of the boundary of its cavity [39].

7 Parallel Mesh Generation 241

p
9

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

p
10

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

(a) (b)

Fig. 7.3. (a) Intersection of two cavities and (b) two cavities share an edge; solid lines repre-
sent the edges of the initial triangulation, and dashed lines edges created by the insertion of
p8, p9, and p10.

The challenge, for parallel mesh generation methods based on the BW kernel,
is to maintain the following loop invariant: Mi is conformal and Delaunay, for i =
1, n. Figure 7.3 depicts two cases where the concurrent point insertion violates the
loop invariant. First, the cavities intersect i.e., there is a triangle �p3p6p7 ∈ C(p8)
∩ C(p9), then concurrent insertion of p8 and p9 results in a non-conformal mesh.
Second, the cavities share an edge in 2D (or a face in 3D), an edge p3p6 is shared
by C(p8) = {�p1p2p7, �p2p3p7, �p3p6p7} and C(p10) = {�p3p5p6, �p3p4p5},
then the new triangle�p3p10p6 can have point p8 inside its circircle, thus, violating
the Delaunay property.

The focus of this section is on parallel mesh generation methods that address this
challenge. There is a number of parallel Delaunay and triangulation methods like
the MIMD method in [92] and the HPF implementation in [14] which target parallel
programming paradigms no longer in use for practical purposes. Other methods [27,
62, 63, 41] also contributed in shaping up this author’s directions and work in parallel
mesh generation and implicitly contribute in this chapter.

In [7] the authors describe a divide-and-conquer projection-based algorithm for
constructing in parallel 2D Delaunay triangulations of a set of given points. The
method extends to 3D, but its implementation is quite complex. The goal in parallel
mesh generation, though, is to refine an existing mesh by inserting new points i.e.,
the set of points in the final mesh is not known in advance.

In [46, 48] the authors extended [7] for parallel 2D mesh generation which further
eliminates the sequential step for an initial mesh, but does not address the issue of
code re-use. The method in [46, 48] is partially coupled.

In [35] the authors define the points x and y as independent if the closures of
their prestars (or cavities) are disjoint. The approach in [35] does not provide a way
to schedule the concurrent insertion of points whose cavity closures are disjoint.

In [88] the authors presented the first theoretical analysis of the complexity of
parallel Delaunay refinement algorithms. However, the assumption in [88] is that the
global mesh is completely retriangulated each time a set of independent points is
inserted. In [89] the authors developed a more practical algorithm.

242 N. Chrisochoides

In the rest of this section we describe five different practical (i.e., they have been
implemented) parallel Delaunay mesh generation methods. These methods formulate
the subproblems to be: (1) tightly coupled, (2) decoupled, and (3) partially coupled.

Tightly Coupled Methods

A straight forward approach to parallel computing is based on identifying some par-
tial order among the computations of well understood and successful sequential ker-
nels and then in a brute-force fashion use message passing or threads to implement
the computations on distributed and shared memory parallel machines, respectively.
This approach leads to the tightly coupled method presented in [60] for parallel guar-
anteed quality Delaunay mesh generation.

Parallel Optimistic Delaunay Meshing (PODM) Method

In [60] the authors presented the first provable 3D parallel guaranteed quality De-
launay mesh generation method for polyhedral domains. PODM is based on discrete
domain decomposition, but it is not constrained by the interfaces of the submeshes.
The algorithm guarantees the stability by simultaneously re-partitioning and refining
the interface surfaces and volume of the submeshes [26] —refinement due to a point
insertion might extend across subproblem (or submesh) boundaries. The extension
of a cavity beyond the interfaces is a source of intensive communication. However,
PODM can tolerate most of the communication by concurrently refining other re-
gions of the submeshes while it waits for remote data to arrive. Unfortunately, the
concurrent refinement can create a number of inconsistencies in the mesh (see Fig-
ure 7.3). These inconsistencies are resolved at the cost of setbacks (or rollbacks [44])
and thus we call this method Parallel Optimistic Delaunay Meshing method. Set-
backs is a source of major algorithm and code re-structuring (due to overlapping
cavities) and they lead to zero code re-use. Unfortunately, the overlapping of the cav-
ities becomes even more complex when they are near the external boundary, where
a certain order of inserted points needs to be maintained due to encroachment rules
that are used to maintain and prove the quality of the elements and thus satisfy the
stability requirement.

Figure 7.4a depicts a cavity which extends beyond the submesh interfaces (be-
cause two of the cavity BHGFAC triangles t ∈ M1 and t∗ ∈ M2 are non-local to
submesh M0) in order to guarantee the quality of the mesh. The extension of the
cavity beyond the interfaces is a source of intensive communication. However, as
Figure 7.4b shows PODM can tolerate the communication by concurrently refining
other regions (e.g. compute a new cavity ABCDE) of the submeshes while it waits
for remote data (e.g. the partially completed cavity BCAF) to arrive (eg. rest of the
cavity BFGH). Unfortunately, the concurrent refinement can lead the violation of
the loop invariant by creating non-conforming meshes and/or the violation of the
Delaunay property as is the case in Figure 7.4a where the point Pj is within the cir-
cumcenter of�PlCA which is a newly created triangle from the triangulation of the
cavity (BHGFAC) that corresponds to the point P1. These violations are resolved at

7 Parallel Mesh Generation 243

Submesh M

Submesh M

Submesh M

I12

I01

I02

Pj t

t*

2

1

Pi

o

A

B

CD

E F

G

H

Service
Remote
Data Gather

Service
Remote
Data Gather

Triang
AFGHBC

Submesh M
o

Submesh M 1

Request remote data

Expand
Cav. AFBC

Expand
ABCDECav.

Triang.
ABCDE

Submesh M 2

Service
Remote
Completion

Poll

Poll

Poll
Latency
Remote data gather

.

.

.

.

.

.

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processor Number

0

10

20

30

40

50

60

70

80

90

T
im

e
(s

)

Termination
Polling
Receives
Setbacks
Encroached
W/o active
W/active

Meshing time distribution
tee2:16 procs:2M elements:SMGP0

P

Submesh 2

Submesh 1

Submesh 0

(c) (d)

Fig. 7.4. a) cavity extension beyond submesh interfaces, b) time diagram with concurrent
point insertion, c) a breakdown of execution time for PODM, and finally d) the refinement of
a cavity with simultaneous distribution of the newly created elements. (For the color version,
see Figure A.18 on page 475).

the cost of setbacks and frequent message polling shown in the performance graph
of Figure 7.4c. With some additional communication cost the PODM becomes do-
main decomposition independent and moreover re-distributes new elements as they
are generated (Figure 7.4d).

In summary, PODM does not depend on good domain decompositions before,
during and after parallel meshing at the cost of being labor intensive approach.
PODM is a stable and tightly coupled method, with zero code re-use.

Decoupled Methods

In [38, 52] the authors present two approaches which achieve 100% code re-use and
eliminate communication and synchronization. Both approaches rely on continuous
domain decomposition and decouple the individual subdomains (subproblems) so

244 N. Chrisochoides

Π

P

Q

R

X

Y

S
Π

Fig. 7.5. The circumcenter of the face �PQR lies on the plane Π which helps define a
separator SΠ . Note that�PQR ∈ SΠ .

that they can be meshed independently. Earlier, in [8] the authors presented similar
approach for the parallel triangulation of a set of fixed points.

Parallel Projective Delaunay Meshing

The Parallel Projective Delaunay Meshing (P 2DM) method [38] starts by sequen-
tially meshing the external surfaces of the geometry and by pre-computing domain
separators whose facets are Delaunay-admissible (i.e., the precomputed interface
faces of the separators will appear in the final Delaunay mesh). The separators de-
compose the continuous domain into subdomains which are meshed in parallel using
a sequential Delaunay mesh generation method on each of the processors.

The basic idea for computing Delaunay-admissible separators can be explained
easier in the context of the parallel triangulation of a convex hull for a set of points
S ∈ R3 [36, 30]. The convex hull of a set of points S is decomposed in two subdo-
mains by computing a Delaunay admissible separator as follows: First, the position
of a surface (in practice a planeΠ) is computed using an Inertia Axis Decomposition
method [33]. The plane Π decomposes the convex hull of S into two almost equal
pieces (in terms of points). Then the algorithm finds all faces (P,Q,R) ∈ R3 (see
Figure 7.5) for which there is an empty sphere whose center lies on the plane Π and
passes through the points P,Q,R. These faces constitute a polyhedral separator SΠ
which decomposes the domain into two subdomains assuming that the correspond-
ing tetrahedra PQRX and PQRY contain the centers of their respective circumscribed
spheres i.e., the quality of the initial mesh around the separators is very good which
requires substantial refinement around the separators. In [38] it is shown that the
faces of the polyhedral separator SΠ will appear in the final Delaunay triangulation
of the convex hull. The generalization of the idea to complex geometries is possible,
however it is much more difficult and it is explained in [38].

It is possible that the pre-constructed separators can not be Delaunay-admissible
[38] and the whole process has to start from the beginning. This is a very difficult
problem which for 2D has been solved in [52] using a different approach.

7 Parallel Mesh Generation 245

(a) (b) (c) (d)

Fig. 7.6. The Medial Axis Transformation (a) which in turn is used to achieve high quality
domain decomposition (b). For PD3 the interfaces of the subdomains are refined (c) in a pre-
processing step in order to decouple the subdomains which are refined independently (d).

Parallel Delaunay Domain Decoupling PD3 Method

The PD3 method [52] like P 2DM is based on continuous domain decomposition.
PD3, for the domain decomposition of 2D geometries, uses medial axis of the domain
and relies on the following simple geometric property [52]:

Lemma 1. LetMA(Ω) be the medial axis ofΩ and b a contact point of c ∈MA(Ω).
The angles formed by the segment cb and the tangent of the boundary ∂Ω at b are at
least π/2.

The medial axis of a domainΩ is approximated by Voronoi points of a discretiza-
tion of the domain. Figure 7.6a depicts the medial axis approximation and a 8-way
partition (b) for the same geometry. The level of the discretization of the boundary
determines the quality of the approximation of the medial axis. However, the goal
in [52] is not to approximate accurately the medial axis, but to obtain good angles
from the separator. Therefore, the criteria for the discretization of the domain are
determined from the quality of the angles formed between the separators and the
external boundary of the domain [53].

After the decomposition of the domain (see Figure 7.6b), PD3 constructs a
“zone” around the interfaces of the submeshes. The “zone” consist of the union
of all diametral circles of the interface edges (see Figure 7.6c). The interfaces of
the subdomains are refined using the lfs of the original domain. This leads into
an overrefinement of the final distributed mesh. Experimental data from PD3 (see
Table 7.1) suggest that the overrefinement is not as high as one could expect. How-
ever, the authors of [52] are working on a new approach which will use adaptive do-
main decomposition [53] and different lfs for different interfaces of the subdomains.
This method is expected to reduce overrefinement of the interfaces and produce well
graded meshes [51].

In [52] the authors prove that sequential Delaunay meshers will not insert any
new points within a zone around the subdomain interfaces i.e., the sequential De-
launay meshing on the individual submeshes can terminate without inserting any
new points on the interfaces and thus eliminate communication and modifications
of the sequential codes. This way, the problem of parallel meshing is reduced into a

246 N. Chrisochoides

Table 7.1. Overrefinement data as we increase the number of subdomains for the decomposi-
tion of a cross section of a rocket pipe model.

Subs 1 16 32 64 128
Elms : 21,016,403 21,016,857 21,018,522 21,030,711 21,044,689

ORef.Elms/Sub 0 28 66 379 299

“proper” domain decomposition and a discretization of interfaces. However, the con-
struction of decompositions that can decouple the mesh is a challenging problem,
since its solution is based on medial axis which is very expensive and difficult to
construct (even to approximate) for complex 3-dimensional geometries [40, 83, 29].

Partially Coupled Methods

The parallel tightly-coupled and decoupled methods we have seen so far address
some of the parallel mesh generation requirements we described in Section 7.1. For
example, PODM is a 3D stable and domain decomposition independent, but it is
zero code re-use with high communication method; while P 2DM and PD3 address
the code re-use and communication issues, but their applicability in 3D is limited
by the Delaunay-admissible and domain decomposition problem, respectively. In the
rest of this section we present two partially coupled methods that make an attempt
to balance trade-offs between all three requirements and the domain decomposition
problem at the cost of some communication.

Parallel Constrained Delaunay Meshing (PCDM) Method

In order to address the communication and synchronization problem in [19], the
authors developed the PCDM which is asynchronous and can reduce the variable
and unpredictable communication patterns to irregular but bulk communication.

The PCDM [19] is based on the Constrained Delaunay Triangulation [18] and
a discrete DD method. Each submesh is treated as an independent mesh defined
by external boundary (if any) and/or constrained edges which are the edges of the
interfaces between any pair of adjacent submeshes.

Intuitively, the constrained Delaunay triangulation is as close as one can get to the
Delaunay triangulation given that one needs to preserve certain (constrained) edges
and internal boundaries. It has been shown in [18] that the constrained internal edges
do not affect the quality of the resulting mesh more than the edges and faces that
define the external boundary. However, one might be able to identify such boundaries
(interfaces for the PDCM) in the resulting mesh by noting the way in which triangle
edges are aligned. Using the idea of a constrained Delaunay mesh generation one
can introduce in the mesh artificial constrained edges (interfaces) which decompose
the mesh into submeshes and can be meshed almost independently.

By the definition of the constrained Delaunay mesh, points inserted on one side
of an interface have no effect on triangles on the other side; thus, no synchronization
is required during the element creation process. In addition, communication between

7 Parallel Mesh Generation 247

Processor 0

Processor 1

x

Processor 0

Processor 1

x

Processor 0

Processor 1

x

x

(a) (b) (c)

Processor 0

Processor 1

x

x

Processor 0

Processor 1

x

(d) (e) (f)

Fig. 7.7. Processor P1 inserts a new point (a) which is encroaching upon an interface edge (b).
Then P1 discards the new point and inserts the midpoint of the encroached edge (c) while at
the same time it sends a request to split the same interface edge on processor P0. Processor
P0 computes the cavity of the midpoint (d). The triangulation of the cavities (e) and (f) of the
midpoint of the interface edge results in a new conforming and distributed Delaunay (in the
CDT sense) triangulation which guarantees the quality of the elements.

submeshes is tremendously simplified: the only message between adjacent processes
is of the form [19]: “Split this interface (i.e., constrained) edge” if a newly inserted
point encroaches (see Fig. 7.7) upon an interface edge. Since interface edges are
always split exactly in half, no additional information needs to be communicated.

The PCDM is an asynchronous with bulk communication and thus partially cou-
pled method. Moreover, the number and size of messages can be reduced by mes-
sage aggregation [17]. Although this optimization improves the performance of the
PCDM it has its own problems when many “Split this interface edge” messages are
delayed. This causes performance degradation due to: (1) the large number of ac-
cumulated messages which can consume memory, (2) redundant computation (by
delaying messages), from neighboring processors which are unaware of each other’s
interface splits. In [17] these problems are addressed by a mechanism which adap-
tively changes the number of messages allowed to be aggregated before a low-level
message is send.

248 N. Chrisochoides

However, code re-use remains a problem due to “Split this interface edge” mes-
sage and optimizations required for reducing the fine-grain communication to a bulk
and asynchronous message passing.

Parallel Delaunay Refinement (PDR) Method

The above tightly coupled (PODM) and partially coupled (PCDM) methods [61, 24,
19] require algorithm re-structuring and thus lead to completely new implementa-
tions for parallel Delaunay mesh generation. The implementation of sequential mesh
generation codes is labor intensive and requires multi-disciplinary effort; it takes
about ten to fifteen years to develop the algorithmic and software infrastructure for
sequential industrial strength mesh generation libraries. Moreover, improvements in
terms of quality, speed, and functionality are open ended and permanent which makes
the task of delivering state-of-the-art parallel mesh generation codes much more dif-
ficult.

This problem is addressed by P 2DM and PD3 in [38, 52], where two decou-
pling methods are presented in order to use (without modifications) optimized and
fully functional sequential codes on each of the subproblems and eliminate commu-
nication and synchronization. However, P 2DM can suffer setbacks due to difficulty
of constructing Delaunay-admissible separators and PD3, for 3D geometries, is ex-
pected to be suffer high pre-processing overhead due the construction (or approxi-
mation) of the medial axis.

With PDR in [16, 15] the authors try to balance trade-offs between the data de-
composition, communication and code re-use i.e., maintain stability and achieve high
code re-use using a simple domain decomposition method at the cost of some com-
munication. The key idea of the PDR method is based on the concurrent point inser-
tion of more than two points without calculating their corresponding cavities ahead
of time in order to decide whether they violate the conformity and Delaunay proper-
ties of the mesh. PDR accomplishes this objective by introducing for the first time a
practical Delaunay-independence criterion for concurrent point insertion [16]:

Theorem 1 Let r̄ be the upper bound on triangle circumradius in the mesh and
pi, pj ∈ Ω ⊂ R

2. Then if ‖pi − pj‖ ≥ 4r̄, then independent insertion of pi and pj
will result in a mesh which is both conformal and Delaunay.

Theorem 1 is applicable throughout the run of the algorithm, since the execu-
tion of the Bowyer-Watson kernel, either sequentially [10, 96] or in parallel [61],
does not violate the condition that r̄ is the upper bound on triangle circumradius
in the entire mesh [16]. However, checking the inequality of the theorem, for every
pair of candidate points, would be quite expensive task. In [16] the authors present
a simple block domain decomposition scheme1 which guarantees that any pair of
points in non-adjacent cells are far apart no less than 4r̄. To enforce the r̄ circum-
radius bound in the mesh they derive the following relation which allows the use of

1This scheme is based on a simple block decomposition for uniform mesh refinement [16]
and octree decomposition for graded mesh refinement [15].

7 Parallel Mesh Generation 249

a standard sequential Delaunay refinement algorithm/software like Triangle [84] for
preprocessing [16]:

Theorem 2 If ρ̄ and ∆̄ are upper bounds on triangle circumradius-to-shortest edge
ratio and area, respectively, then r̄ = 2(ρ̄)3/2

√
∆̄ is an upper bound on triangle

circumradius.

7.3.2 Advancing Front Based Methods

All five parallel Delaunay methods we present in Section 7.3.1 maintain the stability
of the parallel mesher. However, parallel finite element codes require only “good”
quality of elements and the definition of quality depends on the field solver and varies
from code to code. For example, in [79] although the stability is not guaranteed, it
appears that the generated meshes are practical and of “good” quality. This raises
the following two questions: Is the stability of parallel mesher important? Does the
parallel mesh generation without the stability requirement become easier?

The answer to the first question depends on the upstream solver. Regarding the
second question, our experience2 suggests that even if we relax the stability crite-
rion the problem of parallel mesh generation does not become easier. In fact, the
termination problem (which is even more fundamental than the stability) becomes,
for some cases, a very important issue. In some cases, subdomains or submeshes
obtained from state-of-the-art partitioning libraries can not be meshed even by in-
dustrial strength advancing front sequential meshers. Parallel mesh smoothing tech-
niques [57] are helpful, but do not work always.

There is a trade-off between the domain decomposition and the capability of the
sequential mesher required to mesh the individual subdomains. A balance between
the two is important not only for stability but even for termination. Two successful
Parallel Advancing Front Techniques [56, 28] address this issue by what we refer to
as guided re-partitioning or shifting of the separators. In [56] the authors present a
tightly coupled method for shared memory machines and in [28] the authors present a
partially coupled method for distributed memory machines. We review both methods
in the rest of this section.

Tightly Coupled Methods

Lóhner et al. in [56] revisit a partially coupled Parallel Advancing Front Technique
(PAFT) they developed in [55] (see bellow) in order to address the termination, sta-
bility, and code re-use requirements. In [56] they address these issues by developing
a PAFT for shared memory computers (PAFTSM). However, instead of generating
and partitioning a very fine-grain octree as in [58] on a single processor, for the
whole geometry, they use an octree to identify the zones where elements can be in-
troduced concurrently. They set the edge length of the smallest octree box to be an
order of magnitude larger than the specified size of elements and they use the “shift

2From the implementation of a method similar to one appeared in [79].

250 N. Chrisochoides

and regrid” technique, but in a completely different way from the method in [32].
The PAFTSM is broken into two phases: (1) the AFT phases and (2) “shift” or as we
call it here guided re-partitioning phase. At each AFT phase the active front expands
and a new one is created. The process continues until the whole domain is meshed.
The PAFTSM method synchronizes at the beginning of each AFT phase in order to
sequentially refine and re-partition the global octree, for the new active front, whose
leaves will be refined in parallel. The method is suitable for shared memory machines
but can not be used in large-scale distributed memory parallel platforms, because of
the global synchronization required between the mesh generation and re-partitioning
phases.

The PAFTSM is stable and code re-use is achieved at the cost of global synchro-
nization which is not expensive on shared memory machines.

Partially Coupled Methods

In [55] Lóhner et al. introduced the first 2D PAFT. The initial mesh is subdivided
into submeshes using a discrete domain decomposition approach. Each submesh is
further separated into an interior region and interface regions, where interface re-
gions of a submesh are defined to be the set of elements that are adjacent to elements
that belong to different submehses. The interior regions of each submesh are refined
independently. The interface regions and then the corners are refined once all the
interior and interface regions are meshed, respectively (a posteriori approach). The
order of meshing interface and interior regions can change i.e., interfaces can be re-
fined first (a priori approach) and the interior regions refined last [55]. The submeshes
synchronize locally, because no new elements can be inserted in the interfaces and
corner regions before the meshing of adjacent interior and interface regions, respec-
tively. The pre-computed interface regions work well for AFT because they create
buffer zones which fully decouple the interior regions of the submeshes.

Parallel Octree AFT (POAFT) Method

The 3D POAFT in [28], contrary to the PAFT in [55], is based on continuous domain
decomposition method. The POAFT method generates a distributed coarse-grain oc-
tree using a divide-and-conquer algorithm. The terminal octants and the geometric
model of a domain define the subdomains. The terminal octants of the octree are
classified into: interior, interface, boundary, and complete. Interface octants have at
least one adjacent octant which is not local. Boundary octants include mesh entities
from the input surface mesh. Complete octants have no front faces in their volumes.
The subdomains represented as subtrees (on each processor) which are refined fur-
ther until their leaves reach to a predefined size to use tetrahedral meshing templates.
The new octrees are repartitioned (using stop-and-repartition methods) in order to
guarantee load balancing during the execution of meshing templates. After the re-
distribution of interior octants, mesh templates are applied so that the triangulations
conform on both sides of interface-octant faces. The interior octants of one processor
are independent of the interior octants in other subdomains and thus can be meshed

7 Parallel Mesh Generation 251

in parallel. At this step code re-use is high, since the meshing templates of sequential
octree meshing code [82] can be used on each processor. Existing scalar meshing
templates for the interface octants can be used, but some communication will be
required during the meshing process. Instead in [28] meshing templates were re-
designed in order to guarantee conformity without compromising stability and elim-
inating communication. The potential for ambiguous splits of faces is addressed and
resolved in [69].

Before the boundary octants are refined and meshed a re-partitioning might take
place if it is necessary. Any parallel partitioning algorithm can be used; in [28] the
parallel recursive inertia bisection method is applied. The meshing of boundary oc-
tants is a challenging task. Every processor applies a tree-based face removal pro-
cedure [28] in order to connect the input surface mesh with the mesh of the interior
octants. The face removal (from the active front) is a basic operation in AFT and
it consists of connecting a front mesh face to a target mesh vertex which is drawn
from a “neighborhood” of the face [28]. In the parallel face removal, portion of the
“neighborhood” might be on a remote processor and a target vertex can not be found
locally; in this case the face removal is postponed. This will create unmeshed regions
between the terminal interface boundary octants and input surface mesh. In [28] ac-
tive terminal and boundary interface octants are repartitioned so that the remaining
unmeshed “neighborhoods” become local and thus the face removal becomes a lo-
cal operation. This permits code re-use. This process is repeated until there are no
unmeshed regions. The “guided” repartitioning is a very challenging problem.

7.3.3 Edge Subdivision Based Methods

Parallel Edge Subdivision (PES) methods have been used successfully for both 2D
domains [97, 45] and 3D geometries [13, 28, 65, 78]. PES methods use discrete
DD for data decomposition and their termination and stability does not depend on
the geometric properties of the submeshes. Once a coarse mesh is partitioned into
submeshes, the individual submeshes are refined in parallel by splitting tetrahedra
using sequential subdivision techniques. The longest-edge bisection method [72, 76]
is the most commonly used for parallel refinement/derefinement [97, 45, 13, 78].
In 2D an element is refined into two triangles by adding an edge defined by the
longest-edge midpoint and its opposite vertex, while in 3D an element is refined
into two tetrahedra by adding a triangle defined by the longest-edge midpoint and
its two opposite vertices. The longest-edge bisection technique is attractive because
it simplifies the management of intermediate non-conforming points throughout the
process. With the introduction of terminal-edges in [78] this management is localized
in a similar way the cavity localizes the computation of Delaunay based methods.

Like all parallel mesh generation methods PES refinement methods should sat-
isfy all three requirements we listed in the introduction of this chapter. Existing PES
methods address some of these requirements successfully and have the potential to
meet all the requirements in the future. In [12] the authors present a termination
proof, for parallel longest-edge bisection algorithms, using Dijkstra’s general termi-

252 N. Chrisochoides

nation algorithm [34, 5]. Moreover, they prove the stability and even show that the
mesh refined in parallel is identical to a sequentially generated mesh.

The scalability of PES methods depends on the way they address the refinement
collision: more than one processor split concurrently two different copies of the same
interface edge. Other factors that affect the scalability is the choice of dynamic load
balancing methods and the degree of code re-use. For example, frequent use of stop-
and-repartition methods due to global barrier operations can deteriorate the scalabil-
ity of computationally inexpensive parallel mesh generation methods [2]. In general
parallel mesh generation methods that do not take advantage of highly optimized
sequential codes have difficulty to demonstrate good scalability against the best se-
quential codes.

In [65] it has been shown that 100% code re-use is possible at the cost of 10%
overhead by putting a wrapper around the sequential data structure in order to handle
data distribution and remote memory accesses. Communication is another aspect of
parallel codes that affects scalability. In [28] the authors present a number of subdi-
vision templates that can be used to decouple the refinement on different processors
and thus eliminate communication completely.

The main challenge in PES methods is the collision refinement problem. In order
to achieve mesh conformity and correctness the interface faces between the sub-
meshes should be subdivided the same way from all submeshes that share them.
Thus interface edges that are subdivided in one submesh are marked to be subdi-
vided from all other submeshes that share them. This causes communication which
is handled by sending, at the end of the refinement of the interface faces, a message
to submeshes that share refined faces and edges. Based on the communication and
synchronization requirements for handling the refinement collision problem, the PES
methods are classified into three categories: tightly coupled methods [78], partially
coupled methods [45, 28, 13, 65] and decoupled methods [74].

Tightly Coupled Methods

The 3D Parallel Terminal-Edge (PTE) method described in [78] is an inherently de-
coupled method. However, the PTE method in [78] is implemented as a coupled
method. In [74] a new design and implementation is presented so that the stabil-
ity and code re-use requirements are satisfied while the global synchronization for
maintaining the global name of all bisected edges is eliminated.

Parallel Coupled Terminal-Edge (PCTE) Method

In this paragraph we will refer to the tightly coupled implementation of the PTE
method as PCTE. The PCTE method is based on longest-edge bisection approach
introduced by Rivara [71, 72, 76]. Triangles/ tetrahedra are refined by bisecting
their longest-edge. The longest-edge bisection algorithm requires the management
of sequences of intermediate non-conforming mesh points throughout the refinement
process. This complicates its parallel implementation because it requires some syn-
chronization in order to handle the collision refinement and global name of newly in-
serted vertices, both are required to maintain the conformity of the distributed mesh.

7 Parallel Mesh Generation 253

The PCTE method [78], although it requires zero communication between proces-
sors, relies on a central processor for global name-assignment of new mesh points.
The use of the central processor limits the scalability of the method for more than 60
processors and reduces the speed (tetrahedra per second) of the method by an order
of magnitude. However, in [74] the authors present a decoupled method and im-
plementation which takes full advantage of the terminal-edge algorithm introduced
in [78]. The terminal-edge of a longest edge propagation path of t, Lepp(t), is the
longest-edge between all the edges involved in Lepp(t) including the boundary of
the Lepp polygon [73, 75, 77]. We review this method at the end of this Section.

Partially Coupled Methods

Partially coupled methods resolve inconsistencies during the collision refinement
by processing interface edges in 2D (or faces in 3D) using independent sets of ele-
ments [45] and by breaking the mesh refinement process into two phases [28, 13, 65]:
computation (actual refinement of elements) and communication (exchange of infor-
mation about the newly created points and elements due to refinement of interfaces).

Parallel Independent Set Method

In [45] the refinement of a 2D mesh takes place in phases (refinement of one indepen-
dent set at a time). This guarantees the conformity of the mesh and the elimination
of the collision refinement problem, since non-local adjacent elements never refine
interface edges concurrently and the processors are always aware of bisections of
their interface edges. Specifically, the authors in [45] use a vertex-based partition of
a 2D mesh to generate P submeshes, where P is the number of processors. Then all
non-local adjacent elements (i.e., elements that share an edge) and adjacent vertices
to the elements and vertices of submeshes are computed to create a layer of “ghost”
mesh entities which are used to minimize communication in the independent set (IS)
phase. The distributed memory implementation of the IS phase in [45] computes a
distributed independent set I = ∪Pi=1IMi

, where IMi
= I∩Mi andMi is a submesh,

as follows: a triangle ta ∈ IMi
if: ∀tb ∈ adj(ta) and one of the following three holds

(1) ta, tb ∈Mi, (2) ρ(ta) > ρ(tb), and (3) tb is not a marked triangle for refinement,
where adj(t) is the set of adjacent triangles of t, and ρ(t) is a unique random number
assigned to each element in the mesh Mi, i = 1, P . Note that due to the ghost
elements, the communication for checking the above conditions is eliminated. The
algorithm requires communication only for: (a) the update of the bisections of ghost
elements, and (b) a global reduction operation for termination. Both take place at
the end of the refinement of an independent set. These two types of communication
make the algorithm partially coupled, since experimental data in [45] indicate that
the number of refinement phases (or loop iterations) is small (10 to 20) as the num-
ber of processors and the size of the mesh increase to 200 processors and a million
elements, respectively.

254 N. Chrisochoides

Parallel Alternate Bisection Method

DeCougny et. al [28] addresses the collision refinement problem by using, first, al-
ternate bisection on the interface faces then by applying region subdivision templates
on the rest of the tetrahedra. After the mesh faces are subdivided, it is possible to cre-
ate non-conforming interface edges on the interfaces. The non-conforming interface
edges are sent to the corresponding adjacent submeshes that are refined by different
processors. This will start a new mesh face subdivision followed by a communication
phase, until no mesh faces need to be subdivided. Upon termination of face subdi-
visions, the mesh is conforming across the interfaces and then a region subdivision
using sequential templates is applied in parallel to the rest of the interior tetrahedra.

Parallel Nested Elements Method

Castaños and Savage [13] have parallelized the non-conforming longest edge bisec-
tion algorithm both in 2D and 3D. In this case the refinement propagation implies
the creation of sequences of non-conforming edges that can cross several submeshes
involving several processors. This also means the creation of non-conforming inter-
face edges which is particularly complex to deal with in 3D. To perform this task each
processor Pi iterates between a no-communication phase (where refinement propa-
gation between processors is delayed) and an interprocessor communication phase.
Different processors can be in different phases during the refinement process, their
termination is coordinated by a central processor P0. The subdivision of an interface
edge might leads to either a non-conforming edge or to a conforming edge, but the
creation of different copies (one per subdomain) of its midpoint. However, after the
communication phase a remote cross reference for each newly created interface edge
midpoint along with nested elements information guarantee a unique logical name
for these newly created vertices [11].

Decoupled Methods

The PTE method [74] in addition to the terminal-edge of a Lepp(t) takes full advan-
tage of the terminal-star, which is the set of tetrahedra that share a terminal-edge.
The terminal-star can play the same role in PTE the cavity plays in PCDM. Con-
trary to the method in [13] the terminal-star refinement algorithm completely avoids
the management of non-conforming edges both in the interior of the submeshes and
in the inter-subdomain interface. This eliminates the communication among subdo-
mains and thus processors. Similarly to Castaños et al. the terminal-star method can
terminate using a single processor as coordinator for adaptive mesh refinement i.e.,
when a global stopping criterion like the minimum-edge length of terminal-edges is
not used.

The decoupled PTE algorithm and its implementation lead to an order of magni-
tude performance improvements compared to a previous tightly coupled implemen-
tation [74] of the same algorithm. Although the algorithm is theoretically scalable,
our performance data indicate the contrary; the reason is the work-load imbalances
and heterogeneity of the clusters we use. We will address these two issues in Sec-
tion 7.5.

7 Parallel Mesh Generation 255

DeluanayCoupling

Tight

None

Partial PCDT, PDR

PODM

POAFT

PAFT
SM

PAFT

Mesh Generation Technique

PIS, PNE

PTE

PCTE

3
P DM, PD
2

Advancing Front Edge Bisection

Fig. 7.8. Taxonomy of Parallel Mesh Generation Methods.

7.4 Taxonomy

The taxonomy in Figure 7.8 helps to clarify basic similarities and differences be-
tween parallel tetrahedral meshing methods. The taxonomy is based on the two at-
tributes we used to classify the methods reviewed in this chapter: (i) the basic se-
quential meshing technique used for each subproblem and (ii) the degree of coupling
between the subproblems. The coupling (i.e., the amount of communication and syn-
chronization between the subproblems) is determined by the degree of dependency
between the subproblems.

7.5 Implementation

The complexity of implementing efficient parallel mesh generation codes arises from
the dynamic, data-dependent, and irregular computation and communication pat-
terns of the algorithms. This inherent complexity, when combined with challenges
from using primitive tools for communication like message-passing libraries [86,
4], makes the development of parallel mesh generation codes even more time-
consuming and error-prone.

In the rest of the section we focus on dynamic load balancing issue. The scientific
computing community has developed application-specific runtime libraries and soft-
ware systems [3, 33, 49, 64, 67, 98] for dynamic load balancing. These systems are
designed to support the development of parallel multi-phase applications which are
computationally-intensive and consist of phases that are separated by computations
such as the global error estimation. In these cases the load-balancing is accomplished
by dynamically repartitioning the data after a global synchronization [95]. Through-
out this chapter we call this approach to load balancing the stop-and-repartition
method.

The stop-and-repartition approaches are good for loosely-synchronous applica-
tions like iterative PDE solvers, however they are not well-suited for applications
such as adaptive mesh generation and refinement. Because for asynchronous and not

256 N. Chrisochoides

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
processors

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ti
m

e,
 s

ec

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
processors

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ti
m

e,
 s

ec

Fig. 7.9. Execution time of PAFT on Whirlwind subcluster with 64 homogeneous processors
for the simplified human brain model without load balancing (left) and with load balancing
using PREMA (right). The final mesh in both cases is 1.2 billion tetrahedrons.

computation-intensive applications the global synchronization overhead can over-
whelm the benefits from load balancing. This problem is exacerbated as the number
of processors in the parallel system grows. In order to address this issue, the authors
in [2] developed a Parallel Runtime Environment for Multi-computer Applications
(PREMA).

PREMA is a software library which provides a set of tools to application devel-
opers via a concise and intuitive interface. It supports single-sided communication
primitives which conform to the active messages paradigm [94], a global namespace,
message forwarding mechanisms to cope with object/data migration and a preemp-
tive dynamic load balancing [2].

Performance Evaluation

In the rest of this section we present some performance data that show the effects
of two sources of imbalance: (1) work-load due to geometric complexity of the sub-
domains/submeshes, and (2) processor heterogeneity. The experimental study was
performed on Sciclone [81] cluster at the College of William and Mary which con-
sists of many different heterogeneous subclusters. We have used three subclusters:
(1) Whirlwind subcluster which consists of 64 single-cpu Sun Fire V120 nodes (650
MHz, 1 GB RAM), (2) Tornado which consists of 32 dual-cpu Sun Ultra 60 nodes
(360 MHz, 512 MB RAM) and (3) Typhoon which consists of 64 single-cpu Sun Ul-
tra 5 nodes (333 MHz, 256 MB RAM). The models we used are: (i) a cross-section
of the rocket pipe (see Figure 7.1) and (ii) a simplified model of a human brain (see
Figure 7.11, left).

Figure 7.9 shows the impact of dynamic load balancing on the performance of
PAFT on the human brain model. The work-load imbalances are due to differences in
the geometric complexity of the submeshes. The PAFT with dynamic load balancing
(using PREMA) took 1.7 hours to generate the 1.2 billion elements while without
dynamic load balancing it took 2.7 hours. The dynamic load balancing improved the

7 Parallel Mesh Generation 257

0 32 64 96 128
Processor ID

0

20

40

60

80

100

120

140

160

180

200

E
xe

cu
ti

on
 T

im
e

(s
ec

on
ds

)

Idle/Synchronization Time
Split Handler Time
Refinement Time

0 32 64 96 128
Processor ID

0

20

40

60

80

100

120

140

160

180

200

E
xe

cu
ti

on
 T

im
e

(s
ec

on
ds

)

Idle/Synchronization Time
Split Handler Time
Refinement Time

Fig. 7.10. The execution time of PCDM for the cross section of the rocket pipe whose data are
equidistributed on 128 heterogenous processors; without load balancing (left) and with load
balancing using PREMA (right).

Fig. 7.11. Surface of the tetrahedral mesh for a simplified model of a human brain generated
from an advancing front method [43].

performance of PAFT by more than 30%. Sequentially using Solidmesh [37], it takes
three days one hour and 27 minutes, by executing the subdomains one at a time.

Figure 7.10 shows the impact of dynamic load balancing (using PREMA) on the
performance of the PCDM for the cross section of rocket pipe. Although we used
state-of-the-art ab-initio data partition methods for equidistributing the data and thus
the computation among all 128 processors, the imbalances are due to heterogeneity
of the three different clusters; the first 64 processors are from Typhoon (slowest
cluster), the next 32 processors are from Tornado and the last 32 processors are from
Whirlwind (the fastest cluster). Again, the dynamic load balancing (using PREMA)
improved the performance of parallel mesh generation by 23%.

Finally, the data from Figure 7.11 and Table 7.2 indicate the impact of work load
imbalances due to: (1) the differences in the work-load of submeshes and (2) hetero-
geneity of processors using the PTE method. Figure 7.11(right), shows that the speed
of the PTE method is substantially lower, for the brain model (see Figure 7.11, left),
due to work-load imbalances; while for a more regular geometry (the semiconductor
test case [74]), the PTE speed is almost twice higher, because of better load balancing

258 N. Chrisochoides

Table 7.2. PTE speed (in tetrahedra per second) for the simplified human brain model using
min-edge = 2.0. The final mesh is about 2.4 million tetrahedra.

Processors 8 16 32 48 64 96

Whirlwind 5427 9920 16195 21890 29035 23571
Tornado 3852 7025 11408 15526 20312 23571

due to more uniform point distribution. Also, Table 7.2 indicates a 19% slowdown in
the PTE’s speed once we increase the number of processors from 64 to 96 using ad-
ditional 32 slower processors, despite the fact the PTE is a scalable method. Finally,
a comparison between the speed data from the Figure 7.11 (right) and Table 7.2, for
the brain model, indicate that the coupling (i.e., global synchronization) in the PCTE
method slows down the speed of the code by an order of magnitude.

These data (and some more from [24, 2, 17, 74]) suggest that the tightly coupling
methods should be used as a last resort. In addition, these data suggest that work-load
imbalances are no longer a problem and it should not limit our creativity in the second
round of our search for practical and effective parallel mesh generation methods.
Runtime software systems like PREMA [2] can handle work-load imbalances quite
successfully.

7.6 Future Directions

It takes about ten to fifteen years to develop the algorithmic and software infrastruc-
ture for sequential industrial strength mesh generation libraries. Moreover, improve-
ments in terms of quality, speed, and functionality are open ended and permanent
which makes the task of delivering state-of-the-art parallel mesh generation codes
even more difficult.

This survey demonstrates that without compromising in the stability of parallel
mesh generation methods it is possible for all three mesh generation classes of tech-
niques to develop parallel meshing software using off-the-shelf sequential meshing
codes.

An area with immediate high benefits to parallel mesh generation is domain de-
composition. The DD problem as it is posed in Section 7.2 is still open for 3D geome-
tries and its solution will help to deliver stable and scalable methods that rely on
off-the-shelf mesh generation codes for Delaunay and Advancing Front Techniques.
The edge subdivision methods are independent off the domain decomposition.

A longer term goal should be the development of both theoretical and software
frameworks like PDR to implement new mesh generation methods which can: (1)
take advantage of multicore architectures with more than two hardware contexts for
the next generation of high-end workstations and (2) scale without any substantial
implementation costs for clusters of high-end workstations.

Finally, a long term investment to parallel mesh generation is to attract the atten-
tion of mathematicians with open problems in mesh generation and broader impact in

7 Parallel Mesh Generation 259

mathematics. For example, develop theoretical frameworks able to prove the correct-
ness of single threaded guaranteed quality Delaunay theory in the context of partial
order [70].

Acknowledgment

This work is supported by the IBM professorship at Brown University, the Alumni
Memorial Endowment at the College of William and Mary, and National Sci-
ence Foundation (NSF) grants: CNS-0312980, ANI-0203974, ACI-0085969, Career
Award CCR-0049086, EIA-9972853, EIA-9726388. The experimental work was
performed using computational facilities at the College of William and Mary which
were enabled by grants from Sun Microsystems, the NSF, and Virginia’s Common-
wealth Technology Research Fund. Andrey Chernikov made many insightful recom-
mendations and Leonidas Linardakis made useful comments for the Delaunay meth-
ods. Most of the figures and tables are the result of my collaboration with my students
from the College of William and Mary Kevin Barker, Andrey Chernikov, Andriy Fe-
dorov, Brian Holinka, Leonidas Linardakis, from Notre Dame Demian Nave, and
from Universidad de Chile Carlo Calderon and Daniel Pizarro. The anonymous ref-
eree for his many useful comments.

References

1. S. Baden, N. Chrisochoides, D. Gannon, and M. Norman, editors. Structured Adaptive
Mesh Refinement Grid Methods. Springer-Verlag, 1999.

2. K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali. A load balancing framework
for adaptive and asynchronous applications. IEEE Transactions on Parallel and Distrib-
uted Systems, 15(2):183–192, Feb. 2004.

3. A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. Ducloux,
J. Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose, and C. Walshaw. Dynamic
load-balancing of finite element applications with the drama library. Applied Mathemati-
cal Modeling, 25:83–98, 2000.

4. A. Belguelin, J. Dongarra, A. Geist, R. Manchek, S. Otto, and J. Walpore. PVM: Ex-
periences, current status, and future direction. In Supercomputing ’93 Proceedings, pp.
765–766, 1993.

5. D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice Hall, 1989.

6. T. B.H.V. and B. Cheng. Parallel adaptive quadrilateral mesh generation. Computers and
Structures,, 73:519–536, 1999.

7. G. E. Blelloch, J. Hardwick, G. L. Miller, and D. Talmor. Design and implementation of
a practical parallel Delaunay algorithm. Algorithmica, 24:243–269, 1999.

8. G. E. Blelloch, G. L. Miller, and D. Talmor. Developing a practical projection-based
parallel Delaunay algorithm. In 12th Annual Symposium on Computational Geometry,
pp. 186–195, 1996.

9. H. Blum. A transformation for extracting new descriptors of shape. In Models for the
Perception of speech and Visual Form, pp. 362–380. MIT Press, 1967.

260 N. Chrisochoides

10. A. Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–166, 1981.
11. J. G. Castaños and J. E. Savage. The dynamic adaptation of parallel mesh-based compu-

tation. In SIAM 7th Symposium on Parallel and Scientific Computation, 1997.
12. J. G. Castaños and J. E. Savage. Parallel refinement of unstructured meshes. In Proceed-

ings of the IASTED, International Conference of Parallel and Distributed Computing and
Systems, 1999.

13. J. G. Castaños and J. E. Savage. PARED: a framework for the adaptive solution of PDEs.
In 8th IEEE Symposium on High Performance Distributed Computing, 1999.

14. M.-B. Chen, T. R. Chuang, and J.-J. Wu. Efficient parallel implementations of near Delau-
nay triangulation with high performance Fortran. Concurrency: Practice and Experience,
16(12), 2004.

15. A. N. Chernikov and N. P. Chrisochoides. Parallel guaranteed quality planar Delaunay
mesh generation by concurrent point insertion. In 14th Annual Fall Workshop on Compu-
tational Geometry, pp. 55–56. MIT, Nov. 2004.

16. A. N. Chernikov and N. P. Chrisochoides. Practical and efficient point insertion schedul-
ing method for parallel guaranteed quality Delaunay refinement. In Proceedings of the
18th annual international conference on Supercomputing, pp. 48–57. ACM Press, 2004.

17. A. N. Chernikov, N. P. Chrisochoides, and L. P. Chew. Design of a parallel constrained
Delaunay meshing algorithm, 2005.

18. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–108, 1989.
19. L. P. Chew, N. Chrisochoides, and F. Sukup. Parallel constrained Delaunay meshing. In

ASME/ASCE/SES Summer Meeting, Special Symposium on Trends in Unstructured Mesh
Generation, pp. 89–96, Northwestern University, Evanston, IL, 1997.

20. N. Chrisochoides. An alternative to data-mapping for parallel iterative PDE solvers: Par-
allel grid generation. In Scalable Parallel Libraries Conference, pp. 36–44. IEEE, 1993.

21. N. Chrisochoides. Multithreaded model for load balancing parallel adaptive computa-
tions. Applied Numerical Mathematics, 6:1–17, 1996.

22. N. Chrisochoides, C. Houstis, E.N.Houstis, P. Papachiou, S. Kortesis, and J. Rice. Do-
main decomposer: A software tool for partitioning and allocation of PDE computations
based on geometry decomposition strategies. In 4th International Symposium on Domain
Decomposition Methods, pp. 341–357. SIAM, 1991.

23. N. Chrisochoides, E. Houstis, and J. Rice. Mapping algorithms and software environment
for data parallel PDE iterative solvers. Special issue of the Journal of Parallel and Dis-
tributed Computing on Data-Parallel Algorithms and Programming, 21(1):75–95, 1994.

24. N. Chrisochoides and D. Nave. Parallel Delaunay mesh generation kernel. Int. J. Numer.
Meth. Engng., 58:161–176, 2003.

25. N. Chrisochoides and F. Sukup. Task parallel implementation of the Bowyer-Watson al-
gorithm. In Proceedings of Fifth International Conference on Numerical Grid Generation
in Computational Fluid Dynamics and Related Fields, 1996.

26. N. P. Chrisochoides. A new approach to parallel mesh generation and partitioning prob-
lems. Computational Science, Mathematics and Software, pp. 335–359, 2002.

27. P. Cignoni, D. Laforenza, C. Montani, R. Perego, and R. Scopigno. Evaluation of paral-
lelization strategies for an incremental Delaunay triangulator in E3. Concurrency: Prac-
tice and Experience, 7(1):61–80, 1995.

28. H. D. Cougny and M. Shephard. Parallel refinement and coarsening of tetrahedral meshes.
Int. J. Meth. Eng., 46(1101-1125), 1999.

29. T. Culver. Computing the Medial Axis of a Polyhedron Reliably and Efficiently. PhD
thesis, The University of North Carolina at Chapel Hill, 2000.

30. H. de Cougny and M. Shephard. CRC Handbook of Grid Generation, chapter Parallel
unstructured grid generation, pp. 24.1–24.18. CRC Press, Inc., 1999.

7 Parallel Mesh Generation 261

31. H. de Cougny and M. Shephard. Parallel volume meshing using face removals and hier-
archical repartitioning. Comp. Meth. Appl. Mech. Engng., 174(3-4):275–298, 1999.

32. H. L. de Cougny, M. S. Shephard, and C. Ozturan. Parallel three-dimensional mesh
generation on distributed memory mimd computers. Engineering with Computers, 12:94–
106, 1995.

33. K. Devine, B. Hendrickson, E. Boman, M. S. John, and C. Vaughan. Design of dynamic
load-balancing tools for parallel applications. In Proc. of the Int. Conf. on Supercomput-
ing, Santa Fe, May 2000.

34. E. W. Dijkstra and C. Sholten. Termination detection for diffusing computations. Inf.
Proc. Lettres, 11, 1980.

35. H. Edelsbrunner and D. Guoy. Sink-insertion for mesh improvement. In Proceedings
of the Seventeenth Annual Symposium on Computational Geometry, pp. 115–123. ACM
Press, 2001.

36. P. J. Frey and P. L. George. Mesh Generation: Applications to Finite Element. Hermis;
Paris, 2000.

37. J. Gaither, D. Marcum, and B. Mitchell. Solidmesh: A solid modeling approach to un-
structured grid generation. In 7th International Conference on Numerical Grid Genera-
tion in Computational Field Simulations, 2000.

38. J. Galtier and P. L. George. Prepartitioning as a way to mesh subdomains in parallel.
In Special Symposium on Trends in Unstructured Mesh Generation, pp. 107–122. AS-
ME/ASCE/SES, 1997.

39. P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing: Applications to
Finite Element. Hermis; Paris, 1998.

40. H. N. Gürsoy. Shape interrogation by medial axis transform for automated analysis. PhD
thesis, Massachusetts Institute of Technology, 1989.

41. J. C. Hardwick. Implementation and evaluation of an efficient 2D parallel Delaunay
triangulation algorithm. In Proceedings of the 9th Annual ACM Symposium on Parallel
Algorithms and Architectures,, 1997.

42. B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories., 1994.

43. A. M. S. Ito, Yasushi and B. K. Soni. Reliable isotropic tetrahedral mesh generation based
on an advancing front method. In Proceedings 13th International Meshing Roundtable,
Williamsburg, VA, Sandia National Laboratories, pp. 95–106, 2004.

44. D. A. Jefferson. Virtual time. In ACM Transactions on Programming Languages and
Systems, volume 7, pp. 404–425, July 1985.

45. M. T. Jones and P. E. Plassmann. Parallel algorithms for the adaptive refinement and
partitioning of unstructured meshes. In Proceedings of the Scalable High-Performance
Computing Conference, 1994.

46. C. Kadow. Adaptive dynamic projection-based partitioning for parallel Delaunay mesh
generation algorithms. In SIAM Workshop on Combinatorial Scientific Computing, Feb.
2004.

47. C. Kadow and N. Walkington. Design of a projection-based parallel Delaunay mesh
generation and refinement algorithm. In Fourth Symposium on Trends in Unstructured
Mesh Generation, July 2003. http://www.andrew.cmu.edu/user/sowen/
usnccm03/agenda.html.

48. C. M. Kadow. Parallel Delaunay Refinement Mesh Generation. PhD thesis, Carnegie
Mellon University, May 2004.

49. S. Kohn and S. Baden. Parallel software abstractions for structured adaptive mesh meth-
ods. Journal of Par. and Dist. Comp., 61(6):713–736, 2001.

262 N. Chrisochoides

50. R. Konuru, J. Casas, R. Prouty, S. Oto, and J. Walpore. A user level process package for
pvm. In Proceedings of Scalable High-Performance Computing Conferene, pp. 48–55.
IEEE, 1997.

51. L. Linardakis and N. Chrisochoides. Parallel Delaunay domain decoupling method for
non-uniform mesh generation. SIAM Journal on Scientific Computing, 2005.

52. L. Linardakis and N. Chrisochoides. Parallel domain decoupling Delaunay method. SIAM
Journal on Scientific Computing, in print, accepted Nov. 2004.

53. L. Linardakis and N. Chrisochoides. Medial axis domain decomposition method. ACM
Trans. Math. Software, To be submited, 2005.

54. R. Lober, T. Tautges, and R. Cairncross. The parallelization of an advancing-front, all-
quadrilateral meshing algorithm for adaptive analysis. In 4th International Meshing
Roundtable, pp. 59–70, October 1995.

55. R. Löhner, J. Camberos, and M. Marshal. Unstructured Scientific Computation on Scal-
able Multiprocessors (Eds. Piyush Mehrotra and Joel Saltz), chapter Parallel Unstructured
Grid Generation, pp. 31–64. MIT Press, 1990.

56. R. Löhner and J. R. Cebral. Parallel advancing front grid generation. In Proceedings of
the Eighth International Meshing Roundtable, pp. 67–74, 1999.

57. F. Lori, M. Jones, and P. Plassmann. An efficient parallel algorithm for mesh smoothing.
In Proceedings 4th International Meshing Roundtable, pp. 47–58, 1995.

58. R. P. M. Saxena. Parallel FEM algorithm based on recursive spatial decomposition. Com-
puters and Structures, 45(9-6):817–831, 1992.

59. S. N. Muthukrishnan, P. S. Shiakolos, R. V. Nambiar, and K. L. Lawrence. Simple al-
gorithm for adaptative refinement of three-dimensionalfinite element tetrahedral meshes.
AIAA Journal, 33:928–932, 1995.

60. D. Nave, N. Chrisochoides, and L. P. Chew. Guaranteed: quality parallel Delaunay re-
finement for restricted polyhedral domains. In SCG ’02: Proceedings of the eighteenth
annual symposium on Computational geometry, pp. 135–144. ACM Press, 2002.

61. D. Nave, N. Chrisochoides, and L. P. Chew. Guaranteed–quality parallel Delaunay refine-
ment for restricted polyhedral domains. Computational Geometry: Theory and Applica-
tions, 28:191–215, 2004.

62. T. Okusanya and J. Peraire. Parallel unstructured mesh generation. In 5th International
Conference on Numerical Grid Generation on Computational Field Simmulations, pp.
719–729, April 1996.

63. T. Okusanya and J. Peraire. 3D parallel unstructured mesh generation. In S. A. Canann
and S. Saigal, editors, Trends in Unstructured Mesh Generation, pp. 109–116, 1997.

64. L. Oliker and R. Biswas. Plum: Parallel load balancing for adaptive unstructured meshes.
Journal of Par. and Dist. Comp., 52(2):150–177, 1998.

65. L. Oliker, R. Biswas, and H. Gabow. Parallel tetrahedral mesh adaptation with dynamic
load balancing. Parallel Computing Journal, pp. 1583–1608, 2000.

66. S. Owen. A survey of unstructured mesh generation. Technical report, ANSYS Inc.,
2000.

67. M. Parashar and J. Browne. Dagh: A data-management infrastructure for parallel adaptive
mesh refinement techniques. Technical report, Dept. of Comp. Sci., Univ. of Texas at
Austin, 1995.

68. N. Patrikalakis and H. Gürsoy. Shape interrogation by medial axis transform. In Design
Automation Conference (ASME), pp. 77–88, 1990.

69. P. Pebay and D. Thompson. Parallel mesh refinement without communication. In Pro-
ceedings of International Meshing Roundtable, pp. 437–443, 2004.

70. S. Prassidis and N. Chrisochoides. A categorical approach for parallel Delaunay mesh
generation, July 2004.

7 Parallel Mesh Generation 263

71. M. C. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques. International Journal for Numerical Methods in Engineering, 20:745–756,
1984.

72. M. C. Rivara. Selective refinement/derefinement algorithms for sequences of nested trian-
gulations. International Journal for Numerical Methods in Engineering, 28:2889–2906,
1989.

73. M. C. Rivara. New longest-edge algorithms for the refinement and/or improvement of
unstructured triangulations. International Journal for Numerical Methods in Engineering,
40:3313–3324, 1997.

74. M.-C. Rivara, C. Calderon, D. Pizarro, A. Fedorov, and N. Chrisochoides. Parallel de-
coupled terminal-edge bisection algorithm for 3D meshes. (Invited) Engineering with
Computers, 2005.

75. M. C. Rivara, N. Hitschfeld, and R. B. Simpson. Terminal edges Delaunay (small angle
based) algorithm for the quality triangulation problem. Computer-Aided Design, 33:263–
277, 2001.

76. M. C. Rivara and C. Levin. A 3D refinement algorithm for adaptive and multigrid tech-
niques. Communications in Applied Numerical Methods, 8:281–290, 1992.

77. M. C. Rivara and M. Palma. New lepp algorithms for quality polygon and volume trian-
gulation: Implementation issues and practical behavior. In In Trends unstructured mesh
generationi Eds: S. A. Cannan . Saigal, AMD, volume 220, pp. 1–8, 1997.

78. M.-C. Rivara, D. Pizarro, and N. Chrisochoides. Parallel refinement of tetrahedral meshes
using terminal-edge bisection algorithm. In 13th International Meshing Roundtable, Sept.
2004.

79. R. Said, N. Weatherill, K. Morgan, and N. Verhoeven. Distributed parallel Delaunay mesh
generation. Computer Methods in Applied Mechanics and Engineering, (177):109–125,
1999.

80. K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel diffusion schemes for repar-
titioning of adaptive meshes. Technical Report 97-014, Univ. of Minnesota, 1997.

81. Sciclone cluster project. Last accessed, March 2005. http://www.compsci.wm.
edu/SciClone/.

82. M. Shephard and M. Georges. Automatic three-dimensional mesh generation by the finite
octree technique. International Journal for Numerical Methods in Engineering, 32:709–
749, 1991.

83. E. C. Sherbrooke. 3-D shape interrogation by medial axial transform. PhD thesis, Massa-
chusetts Institute of Technology, 1995.

84. J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay trian-
gulator. In Proceedings of the First workshop on Applied Computational Geometry, pp.
123–133, Philadelphia, PA, 1996.

85. J. R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, Carnegie Mellon
University, 1997.

86. M. Snir, S. Otto, S. Huss-Lederman, and D. Walker. MPI the complete reference. MIT
Press, 1996.

87. A. Sohn and H. Simon. Jove: A dynamic load balancing framework for adaptive com-
putations on an SP-2 distributed memory multiprocessor, 1994. Technical Report 94-60,
Dept. of Comp. and Inf. Sci., New Jersey Institute of Technology, 1994.

88. D. A. Spielman, S.-H. Teng, and A. Üngör. Parallel Delaunay refinement: Algorithms and
analyses. In Proceedings of the Eleventh International Meshing Roundtable, pp. 205–217,
2001.

264 N. Chrisochoides

89. D. A. Spielman, S.-H. Teng, and A. Üngör. Time complexity of practical parallel Steiner
point insertion algorithms. In Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, pp. 267–268. ACM Press, 2004.

90. M. Stuti and A. Moitra. Considerations of computational optimality in parallel algorithms
for grid generation. In 5th International Conference on Numerical Grid Generation in
Computational Field Simulations, pp. 753–762, 1996.

91. T. Tam, M. Price, C. Armstrong, and R. McKeag. Computing the critical points on the
medial axis of a planar object using a Delaunay point triangulation algorithm.

92. Y. A. Teng, F. Sullivan, I. Beichl, and E. Puppo. A data-parallel algorithm for three-
dimensional Delaunay triangulation and its implementation. In SuperComputing, pp.
112–121. ACM, 1993.

93. J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of Grid Generation. CRC
Press, 1999.

94. T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism
for integrated communication and computation. In Proceedings of the 19th Int. Symp. on
Comp. Arch., pp. 256–266. ACM Press, May 1992.

95. C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph partitioning for adaptive
unstructured meshes. Journal of Par. and Dist. Comp., 47:102–108, 1997.

96. D. F. Watson. Computing the n-dimensional Delaunay tesselation with application to
Voronoi polytopes. Computer Journal, 24:167–172, 1981.

97. R. Williams. Adaptive parallel meshes with complex geometry. Numerical Grid Genera-
tion in Computational Fluid Dynamics and Related Fields, 1991.

98. X. Yuan, C. Salisbury, D. Balsara, and R. Melhem. Load balancing package on distributed
memory systems and its application particle-particle and particle-mesh (P3M) methods.
Parallel Computing, 23(10):1525–1544, 1997.

Part III

Parallel Software Tools

8

The Design and Implementation of hypre, a Library of
Parallel High Performance Preconditioners

Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551, USA

[rfalgout,jjones,umyang]@llnl.gov

Summary. The hypre software library provides high performance preconditioners and solvers
for the solution of large, sparse linear systems on massively parallel computers. One of its at-
tractive features is the provision of conceptual interfaces. These interfaces give application
users a more natural means for describing their linear systems, and provide access to methods
such as geometric multigrid which require additional information beyond just the matrix. This
chapter discusses the design of the conceptual interfaces in hypre and illustrates their use with
various examples. We discuss the data structures and parallel implementation of these inter-
faces. A brief overview of the solvers and preconditioners available through the interfaces is
also given.

8.1 Introduction

The increasing demands of computationally challenging applications and the ad-
vance of larger more powerful computers with more complicated architectures have
necessitated the development of new solvers and preconditioners. Since the imple-
mentation of these methods is quite complex, the use of high performance libraries
with the newest efficient solvers and preconditioners becomes more important for
promulgating their use into applications with relative ease.

The hypre library [16, 22] has been designed with the primary goal of providing
users with advanced scalable parallel preconditioners. Multigrid preconditioners are
a major focus of the library. Issues of robustness, ease of use, flexibility and interop-
erability have also been important. It can be used both as a solver package and as a
framework for algorithm development. Its object model is more general and flexible
than most current generation solver libraries [10]. The hypre library also provides
several of the most commonly used solvers, such as conjugate gradient for symmet-
ric systems or GMRES for nonsymmetric systems to be used in conjunction with
the preconditioners. The code is open source and available for download from the
web [22].

A unique and important design innovation in hypre is the notion of conceptual
(linear system) interfaces. These interfaces make it possible to provide an array of

268 R. D. Falgout et al.

powerful solvers that have largely not been available before in linear solver library
form. By allowing users to access hypre in the way they naturally think about their
problems, these interfaces ease the coding burden and provide extra application in-
formation required by certain solvers. For example, application developers that use
structured grids typically think of their linear systems in terms of stencils and grids,
so an interface that involves stencils and grids is more natural. Such an interface also
makes it possible to supply solvers like geometric multigrid that take advantage of
structure. In addition, the use of a particular conceptual interface does not preclude
users from building more general sparse matrix structures (e.g., compressed sparse
row) and using more traditional solvers (e.g., incomplete LU factorization) that do
not use the additional application information. In fact, the construction of different
underlying data structures is done internally by hypre and requires almost no changes
to user code. The conceptual interfaces currently implemented include stencil-based
structured and semi-structured interfaces, a finite-element based unstructured inter-
face, and a traditional linear-algebra based interface.

The primary focus of this paper is on the design and implementation of the con-
ceptual interfaces in hypre. The paper is organized as follows. The first two sections
are of general interest. We begin in Section 8.2 with an introductory discussion of
conceptual interfaces and point out the advantages of matching the linear solver inter-
face with the natural concepts (grids, stencils, elements, etc.) used in the application
code discretization. In Section 8.3, we discuss hypre’s object model, which is built
largely around the notion of an operator. Sections 8.4 through 8.7 discuss specific
conceptual interfaces available in hypre and include various examples illustrating
their use. These sections are intended to give application programmers an overview
of each specific conceptual interface. We then discuss some implementation issues
in Section 8.8. This section may be of interest to application programmers, or more
likely, others interested in linear solver code development on large scale parallel
computers. The next two sections are aimed at application programmers potentially
interested in using hypre. Section 8.9 gives a brief overview of the solvers and pre-
conditioners currently available in hypre, and Section 8.10 contains additional in-
formation on how to obtain and build the library. The paper concludes with some
comments on future plans to enhance the library.

8.2 Conceptual Interfaces

Each application to be implemented lends itself to natural ways of thinking of the
problem. If the application uses structured grids, a natural way of formulating it
would be in terms of grids and stencils, whereas for an application that uses unstruc-
tured grids and finite elements it is more natural to access the preconditioners and
solvers via elements and element stiffness matrices. Consequently, the provision of
different conceptual views of the problem being solved (hypre’s so-called conceptual
interfaces) facilitates the use of the library.

Conceptual interfaces also decrease the coding burden for users. The most com-
mon interface used in linear solver libraries today is a linear-algebraic one. This

8 hypre 269

Data Layout

structured composite block-struc unstruc CSR

Linear Solvers

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Conceptual (Linear System) Interfaces

Fig. 8.1. Graphic illustrating the notion of conceptual interfaces.

interface requires that the user compute the mapping of their discretization to row-
column entries in a matrix. This code can be quite complex; for example, consider
the problem of ordering the equations and unknowns on the composite grids used in
structured AMR codes. The use of a conceptual interface merely requires the user to
input the information that defines the problem to be solved, leaving the forming of
the actual linear system as a library implementation detail hidden from the user.

Another reason for conceptual interfaces—maybe the most compelling one—is
that they provide access to a large array of powerful scalable linear solvers that need
the extra application information beyond just the matrix. For example, geometric
multigrid (GMG) [21] cannot be used through a linear-algebraic interface, since it
is formulated in terms of grids. Similarly, in many cases, these interfaces allow the
use of other data storage schemes with less memory overhead and provide for more
efficient computational kernels.

Figure 8.1 illustrates the idea behind conceptual interfaces (note that the figure is
not intended to represent the current state within hypre, although it is highly repre-
sentative). The level of generality increases from left to right. On the left are specific
interfaces with algorithms and data structures that take advantage of more specific
information. On the right are more general interfaces, algorithms and data structures.
Note that the more specific interfaces also give users access to general solvers like
algebraic multigrid (AMG) [35] or incomplete LU factorization (ILU). The top row
shows various concepts: structured grids, composite grids, unstructured grids, or just
matrices. In the second row, various solvers and preconditioners are listed. Each of
these requires different information from the user, which is provided through the
conceptual interfaces. For example, GMG needs a structured grid and can only be
used with the leftmost interface. AMGe [5], an algebraic multigrid method, needs
finite element information, whereas general solvers can be used with any interface.

270 R. D. Falgout et al.

The bottom row contains a list of data layouts or matrix-vector storage schemes
that can be used for the implementation of the various algorithms. The relationship
between linear solver and storage scheme is similar to that of interface and linear
solver. One minor difference, however, is that solvers can appear more than once.
Consider ILU, for example. It is easy to imagine implementing ILU in terms of a
structured-grid data layout. In the figure, such a solver would appear in the leftmost
box (with the GMG solver) since it requires information about the structure in the
linear system.

In hypre, four conceptual interfaces are currently supported: a structured-grid
interface, a semi-structured-grid interface, a finite-element interface, and a linear-
algebraic interface. For the purposes of this paper, we will refer to these interfaces
by the names Struct, semiStruct, FEI, and IJ, respectively; the actual names
of the interfaces in hypre are slightly different. Similarly, when interface routines
are discussed below, we will not strictly adhere to the prototypes in hypre, as these
prototypes may change slightly in the future in response to user needs. Instead, we
will focus on the basic design components and basic use of the interfaces, and refer
the reader to the hypre documentation [22] for current details.

Users of hypre only need to use one conceptual interface in their application
code. The best choice of interface depends on the application, but it is usually better
to use a more specific one that utilizes as much application information as possible
(e.g., something further to the left in Figure 8.1). Access to more general solvers
and data structures are still possible and require almost no changes to the user code.
Note, finally, that hypre does not determine the parallel partitioning of the problem,
but builds the internal parallel data structures (often quite complicated) according to
the partitioning provided by the user.

8.3 Object Model

In this section, we discuss the basic object model for hypre, illustrated in Figure 8.2.
This model has evolved since the version presented in [10], but the core design ideas
have persisted. We will focus here on the primary components of the hypre model,
but encourage the reader to see [10] for a discussion of other useful design ideas also
utilized in the library.

Note that, although hypre uses object-oriented (OO) principles in its design, the
library is actually written in C, which is not an object-oriented language (the PETSc
library [3, 4, 26] employs a similar approach). The library also provides an interface
for Fortran, still another non-OO language. In addition, the next generation of inter-
faces in hypre are being developed through a tool called Babel [2], which makes it
possible to generate interfaces automatically for a wide variety of languages (e.g.,
C, C++, Fortran77, Fortran90, Python, and Java) and provides support for important
OO concepts such as polymorphism. An object model such as the one in Figure 8.2
is critical to the use of such a tool.

Central to the design of hypre is the use of multiple inheritance of interfaces. An
interface is simply a collection of routines that can be invoked on an object, e.g.,

8 hypre 271

View
(conceptual interface)

<
is a

 >

IJ
M

at
rix

Vi
ew

IJ
Ve

ct
or

Vi
ew

St
ru

ct
M

at
rix

Vi
ew

St
ru

ct
Ve

ct
or

Vi
ew

…

<
is a

 >

<
is a

 >

<
is

a >

IJParCSRMatrix
(class)

Operator
(interface)

Solver

PrecondSolver

<
is an

 >
<

is a
 >

Vector
(interface)

< is a
 > < is an >

IJParVector
(class)

< is a >< is a >

PCG
(class)

< is a >

< is a >

BoomerAMG
(class)

…

…
…

Fig. 8.2. Illustration of the hypre object model. Ovals represent abstract interfaces and rec-
tangles are concrete classes. The View interface encapsulates the conceptual interface idea
described in Section 8.2.

a matrix-vector multiply routine (for readers familiar with OO languages, the term
interface is the same as in Java, and the same as an abstract base class in C++). The
base interfaces in the hypre model are: View, Operator, and Vector (note that
we use slightly different names here than those used in the hypre library). The View
interface represents the notion of a conceptual interface as described in Section 8.2.
This interface serves as our means of looking at (i.e., “viewing”) the data in matrix
and vector objects. Specific views such as IJMatrixView are inherited from, or
extend, the base interface. That is, IJMatrixView contains the routines in View,
plus routines specific to its linear-algebraic way of looking at the data.

The Vector interface is fairly standard across most linear solver libraries. It
consists of basic routines such as Dot() (vector inner product) and Axpy() (vector
addition).

The Operator interface represents the general notion of operating on vectors to
produce an output vector, and primarily consists of the routine Apply(). As such,
it unifies many of the more common mathematical objects used in linear (and even
nonlinear) solver libraries, such as matrices, preconditioners, iterative methods, and
direct methods. The Solver and PrecondSolver interfaces are extensions of the
Operator interface. Here, Apply() denotes the action of solving the linear sys-
tem, i.e., the action of “applying” the solution operator to the right-hand-side vector.
The two solver interfaces contain a number of additional routines that are common to
iterative methods, such as SetTolerance() and GetNumIterations(). But,
the main extension is the addition of the SetOperator() routine, which defines
the operator in the linear system to be solved. The PrecondSolver extends the

272 R. D. Falgout et al.

Operator interface further with the addition of the SetPreconditioner()
routine.

The extensive use of the Operator interface is a novel feature of the hypre
object model. In particular, note that both Solver and PrecondSolver are also
Operator interfaces. Furthermore, the SetOperator() interface routine takes
as input an object of type Operator, and the SetPreconditioner() routine
takes as input an object of type Solver (an Operator). The latter fact is of in-
terest. In hypre, there is currently no specific preconditioner type. Instead, precon-
ditioning is considered to be a role played by solvers. The ability to use solvers for
preconditioning is available in many other packages, but most employ additional de-
sign constructs to achieve this. For example, the linear algebra part of the Diffpack
package [27, 28] utilizes a special class that bridges solvers and preconditioners.

Another fundamental design feature in the hypre library is the separation of the
View and Operator interfaces in matrix classes such as IJParCSRMatrix.
In this particular class, both interfaces are present, and the underlying data storage
is a parallel compressed sparse row format. This format is required in solvers like
BoomerAMG. However, the inherited IJMatrixView interface is generic, which
allows users to write generic code for constructing matrices. As a result, the under-
lying storage format can be changed (giving access to potentially different solvers)
by modifying only one or two lines of code.

The separation of the View and Operator interfaces also makes it possible for
objects to support one functionality without supporting the other. The classic exam-
ple is the so-called matrix-free linear operator (or matrix-free preconditioner), which
is an object that performs matrix-vector multiplication, but does not offer access to
the coefficients of the matrix. This has proven to be a useful technique in many prac-
tical situations.

For the OO-aware reader and users of hypre, we comment that Figure 8.2 is an
accurate model for the current Babel interface in hypre, but it is not fully reflective
of the native C interface. In particular, much of the polymorphism in the model is
currently not implemented. Also, the native View interface follows the “Builder”
design pattern discussed in [19] instead of the model in the figure, but the difference
is trivial in practice. Finally, we remark that since hypre is moving toward using
Babel for all of its interfaces in the future, the so-called native C interface mentioned
here (and its shortcomings) will soon be moot.

8.4 The Structured-Grid Interface (Struct)

The Struct interface is appropriate for scalar applications on structured grids with
a fixed stencil pattern of nonzeros at each grid point. It provides access to hypre’s
most efficient scalable solvers for scalar structured-grid applications, the geometric
multigrid methods SMG and PFMG. The user defines the grid and the stencil; the
matrix and right-hand-side vector are then defined in terms of the grid and the stencil.

The Struct grid is described via a global d-dimensional index space, i.e. via
integer singles in 1D, tuples in 2D, or triples in 3D (the integers may have any value,

8 hypre 273

Index Space

(−3,2)

(9,12)

(10,5)

(20,13)

(11,14)

(17,20)

box1

box2

box3

Fig. 8.3. A box is a collection of abstract cell-centered indices, described by its minimum and
maximum indices. Here, three boxes are illustrated.

positive or negative). The global indices are used to discern how data is related spa-
tially, and how it is distributed across the parallel machine. The basic component of
the grid is a box: a collection of abstract cell-centered indices in index space, de-
scribed by its “lower” and “upper” corner indices (see Figure 8.3). The scalar grid
data is always associated with cell centers, unlike the more general semiStruct
interface which allows data to be associated with box indices in several different
ways. Each process describes the portion of the grid that it “owns”, one box at a
time. Note that it is assumed that the data has already been distributed, and that it is
handed to the library in this distributed form.

The stencil is described by an array of integer indices, each representing a relative
offset (in index space) from some gridpoint on the grid. For example, the geometry
of the standard 5-pt stencil can be represented in the following way:⎡⎣ (0, 1)

(−1, 0) (0, 0) (1, 0)
(0,−1)

⎤⎦ . (8.1)

After the grid and stencil are defined, the matrix coefficients are set using the
MatrixSetBoxValues() routine with the following arguments: a box specify-
ing where on the grid the stencil coefficients are to be set; a list of stencil entries
indicating which coefficients are to be set (e.g., the “center”, “south”, and “north”
entries of the 5-point stencil above); and the actual coefficient values.

274 R. D. Falgout et al.

(i, j)

Fig. 8.4. Grid variables in hypre are referenced by the abstract cell-centered index to the left
and down in 2D (and analogously in 3D). So, in the figure, index (i, j) is used to reference
the variables in black. The variables in grey, although contained in the pictured cell, are not
referenced by the (i, j) index.

8.5 The Semi-Structured-Grid Interface (semiStruct)

The semiStruct interface is appropriate for applications with grids that are
mostly—but not entirely—structured, e.g. block-structured grids, composite grids
in structured AMR applications, and overset grids. In addition, it supports more gen-
eral PDEs than the Struct interface by allowing multiple variables (system PDEs)
and multiple variable types (e.g. cell-centered, face-centered, etc.). The interface pro-
vides access to data structures and linear solvers in hypre that are designed for semi-
structured grid problems, but also to the most general data structures and solvers.

The semiStruct grid is composed out of a number of structured grid parts,
where the physical inter-relationship between the parts is arbitrary. Each part is con-
structed out of two basic components: boxes (see Section 8.4) and variables. Vari-
ables represent the actual unknown quantities in the grid, and are associated with the
box indices in a variety of ways, depending on their types. In hypre, variables may
be cell-centered, node-centered, face-centered, or edge-centered. Face-centered vari-
ables are split into x-face, y-face, and z-face, and edge-centered variables are split
into x-edge, y-edge, and z-edge. See Figure 8.4 for an illustration in 2D.

The semiStruct interface uses a graph to allow nearly arbitrary relationships
between part data. The graph is constructed from stencils plus some additional data-
coupling information set by the GraphAddEntries() routine. Another method
for relating part data is the GridSetNeighborbox() routine, which is partic-
ularly suited for block-structured grid problems. Several examples are given in the
following sections to illustrate these concepts.

8.5.1 Block-Structured Grids

In this section, we describe how to use the semiStruct interface to define block-
structured grid problems. We will do this primarily by example, paying particular at-
tention to the construction of stencils and the use of the GridSetNeighborbox()
interface routine.

8 hypre 275

Fig. 8.5. Block-structured grid example with five logically-rectangular blocks and three vari-
ables types: cell-centered, x-face, and y-face.

Fig. 8.6. Discretization stencils for the cell-centered (left), x-face (middle), and y-face (right)
variables for the block-structured grid example in Figure 8.5.

Consider the solution of the diffusion equation

−∇ · (D∇u) + σu = f (8.2)

on the block-structured grid in Figure 8.5, where D is a scalar diffusion coefficient,
and σ ≥ 0. The discretization [30] introduces three different types of variables: cell-
centered, x-face, and y-face. The three discretization stencils that couple these vari-
ables are given in Figure 8.6. The information in these two figures is essentially all
that is needed to describe the nonzero structure of the linear system we wish to solve.
Traditional linear solver interfaces require that this information first be translated to
row-column entries of a matrix by defining a global ordering of the unknowns. This
translation process can be quite complicated, especially in parallel. For example,
face-centered variables on block boundaries are often replicated on two different
processes, but they should only be counted once in the global ordering. In contrast,
the semiStruct interface enables the description of block-structured grid prob-
lems in a way that is much more natural.

Two primary steps are involved for describing the above problem: defining the
grid (and its associated variables) in Figure 8.5, and defining the stencils in Figure
8.6. The grid is defined in terms of five separate logically-rectangular parts as shown
in Figure 8.7, and each part is given a unique label between 0 and 4. Each part

276 R. D. Falgout et al.

(1,1) (1,1)

(1,1)

(1,1)

(1,1)

(4,4)

(4,4)

(4,4)

(4,4)

part 0
part 1

part 2

part 3

part 4

(4,4)

Fig. 8.7. Assignment of parts and indices to the block-structured grid example in Figure 8.5.
In this example, the data for part p lives on process p.

consists of a single box with lower index (1, 1) and upper index (4, 4) (see Section
8.4), and the grid data is distributed on five processes such that data associated with
part p lives on process p. Note that in general, parts may be composed out of arbitrary
unions of boxes, and indices may consist of non-positive integers (see Figure 8.3).
Also note that the semiStruct interface expects a domain-based data distribution
by boxes, but the actual distribution is determined by the user and simply described
(in parallel) through the interface.

For simplicity, we restrict our attention to the interface calls made by process 3.
Each process describes through the interface only the grid data that it owns, so
process 3 needs to describe the data pictured in Figure 8.8. That is, it describes
part 3 plus some additional neighbor information that ties part 3 together with
the rest of the grid. To do this, the GridSetExtents() routine is first called,
passing it the lower and upper indices on part 3, (1, 1) and (4, 4). Next, the
GridSetVariables() routine is called, passing it the three variable types on
part 3: cell-centered, x-face, and y-face.

At this stage, the description of the data on part 3 is complete. However, the
spatial relationship between this data and the data on neighboring parts is not yet
defined. To do this, we need to relate the index space for part 3 with the index spaces
of parts 2 and 4. More specifically, we need to tell the interface that the two grey
boxes neighboring part 3 in Figure 8.8 also correspond to boxes on parts 2 and 4. To
do this, two calls are made to the GridSetNeighborbox() routine. With this
additional neighbor information, it is possible to determine where off-part stencil
entries couple. Take, for example, any shared part boundary such as the boundary
between parts 2 and 3. Along these boundaries, some stencil entries reach outside
of the part. If no neighbor information is given, these entries are effectively zeroed
out, i.e., they don’t participate in the discretization. However, with the additional

8 hypre 277

(1,1)

(1,4)

(4,1)

(4,4)

(1,1)

(4,4)

part 2

part 3

part 4

Fig. 8.8. Grid information given to the semiStruct interface by process 3 for the example
in Figure 8.5. The shaded boxes are used to relate part 3 to parts 2 and 4.

neighbor information, when a stencil entry reaches into a neighbor box it is then
coupled to the part described by that neighbor box information.

An important consequence of the use of the GridSetNeighborbox() rou-
tine is that it can declare variables on different parts as being the same. For example,
consider the highlighted face variable at the bottom of Figure 8.8. This is a single
variable that lives on both part 2 and part 1. Note that process 3 cannot make this
determination based solely on the information in the figure; it must use additional
information on other processes. Also note that a variable may be of different types
on different parts. Take for example the face variables on the boundary of parts 2
and 3. On part 2 they are x-face variables, but on part 3 they are y-face variables.

The grid is now complete and all that remains to be done is to describe the sten-
cils in Figure 8.6. For brevity, we consider only the description of the y-face stencil,
i.e. the third stencil in the figure. To do this, the stencil entries are assigned unique
labels between 0 and 8 and their “geometries” are described relative to the “center”
of the stencil. This process is illustrated in Figure 8.9. Nine calls are made to the rou-
tine StencilSetEntry(). As an example, the call that describes stencil entry 5
in the figure is given the entry number 5, the offset (−1, 0), and the identifier for the
x-face variable (the variable to which this entry couples). Recall from Figure 8.4 the
convention used for referencing variables of different types. The geometry descrip-
tion uses the same convention, but with indices numbered relative to the referencing
index (0, 0) for the stencil’s center.

With the above, we now have a complete description of the nonzero structure for
the matrix. Using the MatrixSetValues() routine in a manner similar to what
is described in Sections 8.4 and 8.5.2, the matrix coefficients are then easily set. See
the hypre documentation [22] for details.

An alternative approach for describing the above problem through the interface
is to use the GraphAddEntries() routine. In this approach, the five parts are
explicitly “sewn” together by adding non-stencil couplings to the matrix graph (see
Section 8.5.2 for more information on the use of this routine). The main downside to
this approach for block-structured grid problems is that variables along block bound-
aries are no longer considered to be the same variables on the corresponding parts

278 R. D. Falgout et al.

7

2

4

5

8

1

3 6

0

0

1

2

3

4

5

6

7

8

(0,0);

(0,-1);

(0,1);

(0,0);

(0,1);

(-1,0);

(0,0);

(-1,1);

(0,1);

(-1,0)

(-1,1)

(0,-1)

st
en

ci
l e

nt
rie

s

geom
etries

Fig. 8.9. Assignment of labels and geometries to the y-face stencil in Figure 8.6. Stencil
geometries are described relative to the (0, 0) index for the “center” of the stencil. The (0, 0)
index is located at the center of the cell just above the cell marked (0,−1).

that share these boundaries. For example, the face variable at the bottom of Figure 8.8
would now represent two different variables that live on different parts. To “sew” the
parts together correctly, we need to explicitly select one of these variables as the
representative that participates in the discretization, and make the other variable a
dummy variable that is decoupled from the discretization by zeroing out appropriate
entries in the matrix.

8.5.2 Structured Adaptive Mesh Refinement

We now briefly discuss how to use the semiStruct interface in a structured AMR
application. Consider Poisson’s equation on the simple cell-centered example grid
illustrated in Figure 8.10. For structured AMR applications, each refinement level
should be defined as a unique part. There are two parts in this example: part 0 is
the global coarse grid and part 1 is the single refinement patch. Note that the coarse
unknowns underneath the refinement patch (gray dots in Figure 8.10) are not real
physical unknowns; the solution in this region is given by the values on the refine-
ment patch. In setting up the composite grid matrix [29] for hypre the equations for
these “dummy” unknowns should be uncoupled from the other unknowns (this can
easily be done by setting all off-diagonal couplings to zero in this region).

In the example, parts are distributed across the same two processes with process
0 having the “left” half of both parts. For simplicity, we discuss the calls made by
process 0 to set up the composite grid matrix. First to set up the grid, process 0 will
make GridSetVariables() calls to set the one variable type, cell-centered, and
will make GridSetExtents() calls to identify the portion of the grid it owns
for each part: part 0, (1, 1) × (2, 4); part 1, (6, 6) × (7, 9). Recall that there is no
rule relating the indexing of different parts. Also note that there is no way to define
hierarchies in the interface. In hypre, this additional information is passed directly
into the solvers that need it, e.g., in the Fast Adaptive Composite Grid method (FAC).

8 hypre 279

(4,4)

(1,1)

(2,4)

(3,1)

(9,9)

(6,6)

(7,9)

(8,6)

part 0

part 1

Fig. 8.10. Structured AMR grid example with one refinement patch (part 1) in the upper-right
quadrant of the coarse grid (part 0). Shaded regions correspond to process 0, unshaded to
process 1. The grey dots are dummy variables.

Next, the stencil is set up. In this example we are using a finite volume approach
resulting in the standard 5-point stencil (8.1) in both parts.

The grid and stencil are used to define all intra-part coupling in the graph, the
non-zero pattern of the composite grid matrix. The inter-part coupling at the coarse-
fine interface is described by GraphAddEntries() calls. This coupling in the
composite grid matrix is typically the composition of an interpolation rule and a
discretization formula. In this example, we use a simple piecewise constant inter-
polation, i.e. the solution value at any point in a coarse cell is equal to the solution
value at the cell center. Then the flux across a portion of the coarse-fine interface is
approximated by a difference of the solution values on each side. As an example,
consider the illustration in Figure 8.11. Following the discretization procedure above
results in an equation for the variable at cell (6, 6) involving not only the stencil cou-
plings to (6, 7) and (7, 6) on part 1 but also non-stencil couplings to (2, 3) and (3, 2)
on part 0. These non-stencil couplings are described by GraphAddEntries()
calls. The syntax for this call is simply the part and index for both the variable whose
equation is being defined and the variable to which it couples. After these calls, the
non-zero pattern of the matrix (and the graph) is complete. Note that the “west” and
“south” stencil couplings simply “drop off” the part, and are effectively zeroed out.

The remaining step is to define the actual numerical values for the composite
grid matrix. This can be done by either MatrixSetValues() calls to set entries
in a single equation, or by MatrixSetBoxValues() calls to set entries for a box
of equations in a single call. The syntax for the MatrixSetValues() call is a
part and index for the variable whose equation is being set and an array of entry
numbers identifying which entries in that equation are being set. The entry numbers
may correspond to stencil entries or non-stencil entries.

280 R. D. Falgout et al.

(3,2)

(2,3) (6,6)

Fig. 8.11. Coupling for equation at corner of refinement patch. Black lines (solid and broken)
are stencil couplings. Gray line are non-stencil couplings.

8.6 The Finite Element Interface (FEI)

The finite element interface is appropriate for users who form their systems from a
finite element discretization. The interface mirrors typical finite element data struc-
tures. Though this interface is provided in hypre, its definition was determined else-
where [11]. A brief summary of the actions required by the user is given below.

The use of this interface to build the underlying linear system requires two
phases: initialization and loading. During the initialization phase, the structure of
the finite-element data is defined. This requires the passing of control data that de-
fines the underlying element types and solution fields; data indicating how many
aggregate finite-element types will be utilized; element data, including element con-
nectivity information to translate finite-element nodal equations to systems of sparse
algebraic equations; control data for nodes that need special handling, such as nodes
shared among processes; and data to aid in the definition of any constraint relations
local to a given process. These definitions are needed to determine the underlying
matrix structure and allocate memory for the load step.

During the loading phase, the structure is populated with finite-element data ac-
cording to standard finite-element assembly procedures. Data passed during this step
includes: boundary conditions (essential, natural, and mixed boundary conditions);
element stiffness matrices and load vectors, passed as aggregate element set abstrac-
tions; and constraint relations, defined in terms of nodal algebraic weights and tables
of associated nodes.

For a more detailed description with specific function call definitions, the user is
referred to [11], the web site [17] which contains information on newer versions of
the FEI, as well as the hypre user manual. The current FEI version used in hypre is
version 2.x, and comprises additional features not defined in [11].

8 hypre 281

8.7 The Linear-Algebraic Interface (IJ)

The IJ interface is the traditional linear-algebraic interface. Here, the user defines
the right hand side and the matrix in the general linear-algebraic sense, i.e. in terms of
row and column indices. This interface provides access only to the most general data
structures and solvers and as such should only be used when none of the grid-based
interfaces is applicable.

As with the other interfaces in hypre, the IJ interface expects to get the data
in distributed form. Matrices are assumed to be distributed across p processes by
contiguous blocks of rows. That is, the matrix must be blocked as follows:⎛⎜⎜⎜⎝

A0

A1

...
Ap−1

⎞⎟⎟⎟⎠ , (8.3)

where each submatrix Ak is “owned” by a single process k. Ak contains the rows
nk, nk + 1, ..., nk+1 − 1, where n0 is arbitrary (n0 is typically set to either 0 or 1).

First, the user creates an empty IJ matrix object on each process by specifying
the row extents, nk and nk+1 − 1. Next, the object type needs to be set. The object
type determines the underlying data structure. Currently only one data structure, the
ParCSR matrix data structure, is available. However, work is underway to add other
data structures. Additional data structures are desirable for various reasons, e.g. to
be able to link to other packages, such as PETSc [3, 4, 26]. Also, if additional matrix
information is known, more efficient data structures are possible. For example, if
the matrix is symmetric, it would be advantageous to design a data structure that
takes advantage of symmetry. Such an approach could lead to a significant decrease
in memory usage. Another data structure could be based on blocks and thus make
better use of the cache. Small blocks could naturally occur in matrices derived from
systems of PDEs, and be processed more efficiently in an implementation of the
nodal approach for systems AMG.

After setting the object type, the user can give estimates of the expected row sizes
to increase efficiency. Providing additional detail on the nonzero structure and dis-
tribution of the matrix can lead to even more efficiency, with significant savings in
time and memory usage. In particular, if information is given about how many col-
umn indices are “local” (i.e., between nk and nk+1−1), and how many are not, both
the ParCSR and PETSc matrix data structures can take advantage of this information
during construction.

The matrix coefficients are set via the MatrixSetValues() routine, which
allows a great deal of flexibility (more than its typical counterpart routines in other
linear solver libraries). For example, one call to this routine can set a single coeffi-
cient, a row of coefficients, submatrices, or even arbitrary collections of coefficients.
This is accomplished with the following parameters, describing which matrix coeffi-
cients are being set:

• nrows (scalar integer): the number of rows,

282 R. D. Falgout et al.

Fig. 8.12. An example of a ParCSR matrix, distributed across 3 processes.

• ncols (array of integers): the number of coefficients in each row,
• rows (array of integers): the global indices of the rows,
• cols (array of integers): the column indices of each coefficient,
• values (array of doubles): the actual values of the coefficients.

It is also possible to add values to the coefficients with the MatrixAddValues()
call.

Figure 8.12 illustrates this for the example of an 11 × 11-matrix, distributed
across 3 processes. Here, rows 1–4 reside on process 0, rows 5–8 on process 1 and
rows 9–11 on process 2. We now describe how to define the above parameters to set
the coefficients in the boxes in Figure 8.12.

On process 0, only one element a34 is to be set, which requires the follow-
ing parameters: nrows = 1, ncols = [1], rows = [3], cols = [4], values =
[a34]. On process 1, the third (local) row is defined with the parameters: nrows =
1, ncols = [4], rows = [7], cols = [1,6,7,8], values = [a71, a76, a77, a78].
On process 2, the values contained in two submatrices are to be set. This can
be done by two subsequent calls setting one submatrix at a time, or more gen-
erally, all of the values can be set in one call with the parameters: nrows = 3,
ncols = [1, 3, 2], rows = [9, 10, 11], cols = [3, 4, 10, 11, 10, 11], values =
[a93, a10,4, a10,10, a10,11, a11,10, a11,11].

8.8 Implementation

This section discusses implementation issues of the various interfaces. It describes
the data structures and discusses how to obtain neighborhood information. The focus
is on those issues which impact performance on a large scale parallel computer. A
more detailed analysis can be found in [14].

8 hypre 283

Fig. 8.13. An example of a ParCSR matrix, distributed across 3 processors. Matrices with
local coefficients, D1, D2 and D3, are shown as boxes within each processor. The remaining
coefficients are compressed into the matrices O1, O2 and O3.

8.8.1 IJ Data Structure and Communication Package

Currently only one data structure, the ParCSR matrix data structure, is available. It
is similar to the parallel AIJ matrix format in PETSc [3, 4, 26], but is not the same.
It is based on the sequential compressed sparse row (CSR) data structure.

A ParCSR matrix consists of p parts Ak, k = 1, . . . , p (see (8.3)), where Ak is
stored locally on processor k. Each Ak is split into two matrices Dk and Ok. Dk is
a square matrix of order nk × nk, where nk = rk+1 − rk is the number of rows
residing on processor k. Dk contains all coefficients akij , with rk ≤ i, j ≤ rk+1 − 1,
i.e. column indices pointing to rows stored locally. The second matrix Ok contains
those coefficients of Ak, whose column indices j point to rows that are stored on
other processors with j < rk or j ≥ rk+1. Both matrices are stored in CSR format.
WhereasDk is a CSR matrix in the usual sense, inOk, which in general is extremely
sparse with many zero columns and rows, all non-zero columns are renumbered for
greater efficiency. Thus, one needs to generate an array of length nOk that defines
the mapping of local to global column indices, where nOk is the number of non-zero
columns of Ok. We denote this array as COL MAP Ok.

An example of an 11 × 11 matrix that illustrates this data structure is given in
Figure 8.13. The matrix is distributed across 3 processors, with 4 rows on processor
1 and processor 2, and 3 rows on processor 3. The 4× 4 matricesD1 andD2 and the
3 × 3 matrix D3 are illustrated as boxes. The remaining coefficients are compressed
into the 4 × 3 matrix O1 (with COL MAP O1 = (5,6,8)), the 4 × 4 matrix O2 (with
COL MAP O2 = (1,2,4,9)) and the 3× 4 matrix O3 (with COL MAP O3 = (3,4,5,8)).
Since oftenOp is extremely sparse, efficiency can be further increased by introducing
a row mapping that compresses zero rows by renumbering the non-zero rows.

For parallel computations it is necessary to generate the neighborhood informa-
tion, which is assembled in a communication package. The communication pack-

284 R. D. Falgout et al.

age is based on the concept of what is needed for a matrix-vector multiplication.
Let us consider the parallel multiplication of a matrix A with a vector x.
Processor k owns rows rk through rk+1 − 1 as well as the corresponding chunk
of x, xk = (xrk , . . . , xrk+1−1)T . In order to multiply A with x, processor
k needs to perform the operation Akx = Dkxk + Okx̃k, where x̃k =
(xcol map Ok(1), . . . , xcol map Ok(nOk))T . While the multiplication ofDk and xk can
be performed without any communication, the elements of x̃k are owned by the re-
ceive processors of k. Another necessary piece of information is the amount of data
to be received by each processor. In general processor k owns elements of x that are
needed by other processors. Consequently processor k needs to know the indices of
the elements that need to be sent to each of its send processors.

In summary, the communication package on processor k consists of the following
information:

• the IDs of the receive processors
• the size of data to be received by each processor
• the IDs of the send processors
• the indices of the elements that need to be sent to each send processor

Recall that each processor by design has initially only local information avail-
able, i.e. its own range and the rows of the matrix that it owns. In order to determine
the communication package, it needs to get more information from other proces-
sors. There are various ways of dealing with this situation. We will overview two
approaches here (for a more detailed analysis, see [14]).

The simpler approach is to allow each processor to own the complete partition-
ing information, which is easily communicated via MPI ALLGATHER. From this it
can determine its receive processors. This is a reasonable approach when dealing
with computers with a few thousand processors. However, when using a supercom-
puter with 100,000 or more processors, this approach is expensive, requiring O(p)
computations and memory usage.

A better approach for this case would be to use a so-called distributed directory
algorithm [31], which is a rendezvous algorithm that utilizes a concept we refer to as
an assumed partitioning [14]. The idea is to assume a partitioning that is known by
all processors, requires only O(1) storage, and can be queried by an O(1) function.
In general, this function does not describe the actual partitioning, but should not be
too far from it. This approach consists of two main steps. In the first step, the so-
called distributed directory is set up. Here, each processor sends information about
the data it owns in the actual partitioning to the processors responsible for that data
in the assumed partitioning. Once this is done, each processor knows how the data in
its piece of the assumed partitioning is distributed in the actual partitioning. Hence,
it is now possible to answer queries through the distributed directory (in O(log p)
time) about where data lives in the actual partitioning. Step two involves just such
a set of queries. That is, each processor determines where its needed receive data
lives in the assumed partitioning, then contacts the responsible processors for the
needed receive processor information. In this step, it is necessary to use a distributed

8 hypre 285

termination detection (DTD) algorithm to figure out when to stop servicing queries.
This latter fact is the sole reason for the O(log p) cost (instead of O(1)) [14].

If matrix A has a symmetric structure, the receive processors are also send
processors, and no further communication is necessary. However, this is different
in the non-symmetric case. In the current implementation, the IDs of the receive
processors and the amount of data to be obtained from each receive processor are
communicated to all processors via a MPI ALLGATHERV. For a moderate number
of processors, even up to 1000, this is a reasonable approach, however it can become
a potentially high cost if we consider 100,000 processors. This can be avoided by a
using a DTD algorithm in a similar manner to step two above.

When each processor knows its receive and send processors, the remaining nec-
essary information can be exchanged directly. For most PDE-based linear systems
and data partitionings, the number of neighbors and the amount of data is indepen-
dent of p. Hence, the computational complexity and the storage requirement isO(1).

8.8.2 Struct Data Structure and Neighborhood Information

The underlying matrix data structure, Struct matrix, contains the following.

• Struct grid: describes the boxes owned by the processor (local boxes) as well
as information about other nearby boxes (the actual data associated with these
nearby boxes lives on other processors). Note that a box is stored by its “lower”
and “upper” indices, called the box’s extents.

• Struct stencil: an array of indices defining the coupling pattern in the matrix.
• data: an array of doubles defining the coupling coefficients in the matrix.

The corresponding vector data structure is similar except is has no stencil and the data
array defines the vector values. In both the vector and matrix the data array is stored
so that all values associated with a given box are stored contiguously. To facilitate
parallel implementation of a matrix-vector product, the vector data array includes
space for values associated with a box somewhat larger than the actual box; typically
including one boundary layer of cells or ghost cells (see Figure 8.14). Assuming
that the boxes are large, the additional storage of these ghost cells is fairly small as
the boundary points also take only a small percentage of the total number of points.
Some of these ghost cells may be part of other boxes, owned by either the same or a
different processor. Determining communication patterns for updating ghost cells is
the major task in implementing the Struct interface in a scalable manner.

Recall that in the interface, a given processor k is passed only information about
the grid boxes that it owns. Determining how to update ghost cell values requires
information about nearby boxes on other processors. This information is generated
and stored when the Struct grid is assembled. Determining which processors own
ghost cells is similar to the problem in the IJ interface of determining the receive
processors. In the IJ case, this requires information about the global partitioning. In
the Struct case, it requires information about the global grid.

The algorithm proceeds as follows. Here we let p denote the number of proces-
sors and b denote the total number of boxes in the grid (note b ≥ p). First we

286 R. D. Falgout et al.

box1

box2

box3

(9,4)

(21,14)

Fig. 8.14. For parallel computing, additional storage is allocated for cells nearby a box (ghost
cells). Here, the ghost cells for BOX2 are illustrated.

accumulate information about the global grid by each processor sending the ex-
tents of its boxes to all other processors. As in the IJ case, this can be done using
MPI ALLGATHER with O(log p) operations. Memory usage is of order O(b), since
the global grid contains b boxes.

Once the global grid is known, each local box on processor k is compared to
every box in the global grid. In this box-by-box comparison a distance index is com-
puted which describes the spatial relationship in the index space of one box to an-
other. This comparison of each local box to every global box involves O(b) com-
putations. Once the comparison is done, all global boxes within a specified distance
(typically 2) from a local box are stored as part of a neighborhood data structure
on processor k. Boxes not in this neighborhood can be deleted from processor k’s
description of the global grid. The storage requirement for the neighborhood is inde-
pendent of p.

To perform the matrix-vector product, processor k must have up-to-date values
in all ghost cells that will be “touched” when applying the matrix stencil at the cells
owned by processor k. Determining these needed ghost cells is done by taking each
box owned by the processor, shifting it by each stencil entry and finding the intersec-
tion of the shifted box with boxes in the neighborhood data structure. As an example,
consider the same layout of boxes as before with each box on a different processor
(see Figure 8.15). If the matrix has the 5-pt stencil (8.1), then shifting BOX2 by
the “north” stencil entry and intersecting this with BOX3 produces one of the dark
shaded regions labeled as a receive box. Using this procedure, a list of receive boxes
and corresponding owner processors is generated. The procedure for determining the
cells owned by processor k that are needed to update ghost cells on other processors
is similar.

The current Struct interface implementation shares some of the same draw-
backs as the current IJ interface implementation. The storage requirement in gen-
erating the neighborhood structure is O(b) as the global grid is initially gathered

8 hypre 287

proc1

Send Boxes

proc2

proc3
Receive Boxes

Fig. 8.15. The communication package for processor 2 contains send boxes (values owned by
processor 2 needed by other processors) and receive boxes (values owned by other processors
need by processor 2.)

to all processors and the box-by-box comparison to determine neighbors involves
O(b) operations, again note b ≥ p . One possible approach to eliminate these draw-
backs would be similar to the assumed partitioning approach described in Section
8.8.1. The idea is to have a function describing an assumed partitioning of the in-
dex space to processors and have this function available to all processors. Unlike the
one-dimensional IJ partitioning, this partition would be d-dimensional. A processor
would be able to determine its neighbors in the assumed partition in O(1) computa-
tions and storage. A multi-phase communication procedure like that previously de-
scribed for the IJ case could be used to determine the actual neighbors withO(log p)
complexity.

8.8.3 semiStruct Data Structure

The semiStruct interface allows the user to choose from two underlying data
structures for the matrix. One option is to use the ParCSR matrix data type discussed
in Section 8.8.1. The second option is the semiStruct matrix data type which is based
on a splitting of matrix non-zeros into structured and unstructured couplings A =
S + U . The S matrix is stored as a collection of Struct matrices and the U matrix
is stored as a ParCSR matrix. In our current implementation, the stencil couplings
within variables of the same type are stored in S, all other couplings are stored in
U . If the user selects the ParCSR data type, then all couplings are stored in U (i.e.
S = 0.)

Since the semiStruct interface can use both Struct and ParCSR matrices, the
issues discussed in the previous two sections impact its scalability as well. The major
new issue impacting scalability is the need to relate the semi-structured description
of unknowns and the global ordering of unknowns in the ParCSR matrix, i.e. the
mapping M(PART,VAR,INDEX) = GLOBAL RANK. The implementation needs this

288 R. D. Falgout et al.

Index Space

(−3,2)

(9,12)

(10,5)

(20,13)

(11,14)

(17,20)

box1

box2

box3

Fig. 8.16. The BOXMAP structure divides the index space into regions defined by cuts in each
coordinate direction.

mapping to set matrix entries in U . The global ordering of unknowns is an issue
internal to the semiStruct implementation; the user is not aware of this ordering,
and does not need to be.

In our implementation of the semi-structured grid we include the concept of
BOXMAP to implement this mapping. There is a BOXMAP for each variable on each
part; the purpose is to quickly compute the global rank corresponding to a particular
index. To describe the BOXMAP structure we refer to Figure 8.16. By cutting the
index space in each direction by lines coinciding with boxes in the grid, the index
space is divided into regions where each region is a either empty (not part of the
grid) or is a subset of a box defining the grid. The data structure for the BOXMAP

corresponds to a d-dimensional table of BOXMAPENTRIES. In three dimensions,
BOXMAPENTRY[i][j][k] contains information about the region bounded by cuts i
and i + 1 in the first coordinate direction, cuts j and j + 1 in the second coordinate
direction, cuts k and k + 1 in the third coordinate direction. Among the information
contained in BOXMAPENTRY is the first global rank (called offset) and the extents
for the grid box which this region is a subset of. The global rank of any index in this
region can be easily computed from this information.

The mapping M(PART,VAR,INDEX) = GLOBAL RANK is computed by access-
ing the BOXMAP corresponding to PART and VAR, searching in each coordinate
direction to determine which cuts INDEX falls between, retrieving the offset and box
extents from the appropriate BOXMAPENTRY, and computing GLOBAL RANK from
this retrieved information. This computation has O(1) (independent of number of
boxes and processors) complexity except for the searching step. The searching is
done by a simple linear search so worst case complexity is O(b) since the number
of cuts is proportional to the number of boxes. However, we retain the current po-
sition in the BOXMAP table, and in subsequent calls to the mapping function, we
begin searching from this position. In most applications, subsequent calls will have
map indices nearby the previous index and the search has O(1) complexity. Further
optimization is accomplished by retrieving BOXMAPENTRIES not for a single index
but for an entire box of indices in the index space.

8 hypre 289

Table 8.1. Current solver availability via hypre conceptual interfaces.

Conceptual Interfaces

Solvers Struct semiStruct FEI IJ

Jacobi x
SMG x
PFMG x
Split x
MLI x x x
BoomerAMG x x x
ParaSails x x x
PILUT x x x
Euclid x x x
PCG x x x x
GMRES x x x x
BiCGSTAB x x x x
Hybrid x x x x

The BOXMAP structure does allow quick mapping from the semi-structured de-
scription to the global ordering of the ParCSR matrix, but it does have drawbacks:
storage and computational complexity of initial construction. Since we store the
structure on all processors, the storage costs are O(b) where b is the global number
of boxes (again b is at least as large as p, the number of processors). Constructing the
structure requires knowledge of all boxes (accomplished by the MPI ALLGATHER

with O(log p) operations and O(b) storage as in the Struct case), and then scan-
ning the boxes to define the cuts in index space (requiring O(b) operations and stor-
age.) As in the IJ and Struct cases, it may be possible to use the notion of an
assumed partitioning of the index space to remove these potential scalability issues.

8.9 Preconditioners and Solvers

The conceptual interfaces provide access to several preconditioners and solvers in
hypre (we will refer to them both as solvers in the sequel, except when noted). Table
8.1 lists the current solver availability. We expect to update this table continually in
the future with the addition of new solvers in hypre, and potentially with the addition
of solvers in other linear solver packages (e.g., PETSc). We also expect to update the
Struct interface column, which should be completely filled in.

Great efforts have been made to generate highly efficient codes. Of particular
concern has been the scalability of the solvers. Roughly speaking, a method is scal-
able if the time required to produce the solution remains essentially constant as both
the problem size and the computing resources increase. All methods implemented
here are generally scalable per iteration step, the multigrid methods are also scalable
with regard to iteration count.

290 R. D. Falgout et al.

The solvers use MPI for parallel processing. Most of them have also been
threaded using OpenMP, making it possible to run hypre in a mixed message-
passing / threaded mode, of potential benefit on clusters of SMPs.

All of the solvers can be used as stand-alone solvers, except for ParaSails, Euclid,
PILUT and MLI which can only be used as preconditioners. For most problems,
it is recommended that one of the Krylov methods be used in conjunction with a
preconditioner. The Hybrid solver can be a good option for time-dependent prob-
lems, where a new matrix is generated at each time step, and where the matrix
properties change over time (say, from being highly diagonally dominant to be-
ing weakly diagonally dominant). This solver starts with diagonal-scaled conju-
gate gradient (DSCG) and automatically switches to multigrid-preconditioned con-
jugate gradient (where the multigrid preconditioner is set by the user) if DSCG
is converging too slowly. SMG [33, 7] and PFMG [1, 15] are parallel semicoars-
ening methods, with the more robust SMG using plane smoothing and the more
efficient PFMG using pointwise smoothing. The Split solver is a simple iterative
method based on a regular splitting of the matrix into its “structured” and “unstruc-
tured” components, where the structured component is inverted using either SMG
or PFMG. This is currently the only solver that takes advantage of the structure in-
formation passed in through the semiStruct interface, but solvers such as the
Fast Adaptive Composite-Grid method (FAC) [29] will also be made available in the
future. MLI [6] is a parallel implementation of smoothed aggregation [34]. Boomer-
AMG [20] is a parallel implementation of algebraic multigrid with various coarsen-
ing strategies [32, 12, 18, 13] and smoothers (including the conventional pointwise
smoothers such as Jacobi, as well as more complex smoothers such as ILU, sparse
approximate inverse and Schwarz). ParaSails [8, 9] is a sparse approximate inverse
preconditioner. PILUT [25] and Euclid [23, 24] are ILU algorithms, where PILUT
is based on Saad’s dual-threshold ILU algorithm, and Euclid supports variants of
ILU(k) as well as ILUT preconditioning.

After the matrix and right hand side are set up as described in the previous sec-
tions, the preconditioner (if desired) and the solver are set up, and the linear sys-
tem can finally be solved. For many of the preconditioners and solvers, it might be
desirable to choose parameters other than the default parameters, e.g. the strength
threshold or smoother for BoomerAMG, a drop tolerance for PILUT, the dimen-
sion of the Krylov space for GMRES, or convergence criteria, etc. These para-
meters are defined using Set() routines. Once these parameters have been set
to the satisfaction of the user, the preconditioner is passed to the solver with a
SetPreconditioner() call. After this has been accomplished, the problem is
solved by calling first the Setup() routine (this call may become optional in the
future) and then the Solve() routine. When this has finished, the basic solution
information can be extracted using a variety of Get() calls.

8 hypre 291

8.10 Additional Information

The hypre library can be downloaded by visiting the hypre home page [22]. It can
be built by typing configure followed by make. There are several options that
can be used with configure. For information on how to use those, one needs to type
configure --help. Although hypre is written in C, it can also be called from
Fortran. More specific information on hypre and how to use it can be found in the
users manual and the reference manual, which are also available at the same URL.

8.11 Conclusions and Future Work

The introduction of conceptual interfaces in hypre gives application users a more
natural means for describing their linear systems, and provides access to an array
of powerful linear solvers that require additional information beyond just the ma-
trix. Work continues on the library on many fronts. We highlight two areas: provid-
ing better interfaces and solvers for structured AMR applications and scaling up to
100,000’s of processors.

As in the example in Section 8.5.2, the current semiStruct interface can be
used in structured AMR applications. However, the user must explicitly calculate
the coarse-fine coupling coefficients which are typically defined by the composition
of two equations: a structured grid stencil coupling and an interpolation formula. A
planned extension to the semiStruct interface would allow the user to provide
these two equations separately, and the composition would be done inside the hypre
library code. This extension would make the semiStruct interface more closely
match the concepts used in AMR application codes and would further ease the cod-
ing burden for potential users. We are also finishing the implementation of a new
FAC [29] solver in hypre. This is an efficient multigrid solver specifically tailored to
structured AMR applications.

Another area of work is ensuring good performance on very large numbers of
processors. As mentioned previously, the current implementations in hypre are ap-
propriate for thousands of processors but do have places where, say, the storage
needed is O(p). These potential bottlenecks may be of real importance on machines
with 100,000 processors. The crux of the problem is that the interfaces only provide
local information and determining neighboring processors requires global informa-
tion. We have mentioned the assumed partitioning approach as one way we are trying
to overcome this hurdle.

Acknowledgments

This paper would not have been possible without the many contributions of the hypre
library developers: Allison Baker, Edmond Chow, Andy Cleary, Van Henson, Ellen
Hill, David Hysom, Mike Lambert, Barry Lee, Jeff Painter, Charles Tong and Tom
Treadway. This work was performed under the auspices of the U.S. Department of

292 R. D. Falgout et al.

Energy by University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

References

1. S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gra-
dient algorithm for groundwater flow simulations. Nuclear Science and Engineering,
124(1):145–159, September 1996. Also available as LLNL Technical Report UCRL-JC-
122359.

2. Babel: A language interoperability tool.
http://www.llnl.gov/CASC/components/.

3. S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, M. Knepley, L. McInnes, B. Smith, and
H. Zhang. PETSc users manual. ANL-95/11-Revision 2.2.1. Technical report, Aronne
National Laboratory, 2004.

4. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of par-
allelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pp. 163–202.
Birkhauser Press, 1997.

5. M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,
S. F. McCormick, and J. W. Ruge. Algebraic multigrid based on element interpolation
(AMGe). SIAM J. Sci. Comput., 22(5):1570–1592, 2000. Also available as LLNL tech-
nical report UCRL-JC-131752.

6. M. Brezina, C. Tong, and R. Becker. Parallel algebraic multigrid for structural mechanics.
SIAM J. Sci. Comput., submitted, 2004. Also available as Lawrence Livermore National
Laboratory technical report UCRL-JRNL-204167.

7. P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on distributed
memory machines. SIAM J. Sci. Comput., 21(5):1823–1834, 2000. Special issue on
the Fifth Copper Mountain Conference on Iterative Methods. Also available as LLNL
technical report UCRL-JC-130720.

8. E. Chow. A priori sparsity patterns for parallel sparse approximate inverse precondition-
ers. SIAM J. Sci. Comput., 21(5):1804–1822, 2000. Also available as LLNL Technical
Report UCRL-JC-130719 Rev.1.

9. E. Chow. Parallel implementation and practical use of sparse approximate inverses with a
priori sparsity patterns. Int’l J. High Perf. Comput. Appl., 15:56–74, 2001. Also available
as LLNL Technical Report UCRL-JC-138883 Rev.1.

10. E. Chow, A. J. Cleary, and R. D. Falgout. Design of the hypre preconditioner library. In
M. Henderson, C. Anderson, and S. Lyons, editors, Proc. of the SIAM Workshop on Object
Oriented Methods for Inter-operable Scientific and Engineering Computing, Philadel-
phia, PA, 1998. SIAM. Held at the IBM T.J. Watson Research Center, Yorktown Heights,
New York, October 21-23, 1998. Also available as LLNL technical report UCRL-JC-
132025.

11. R. L. Clay, K. D. Mish, I. J. Otero, L. M. Taylor, and A. B. Williams. An annotated
reference guide to the finite-element interface (FEI) specification: version 1.0. Sandia
National Laboratories report SAND99-8229, January 1999.

12. A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones. Coarse-grid selection for
parallel algebraic multigrid. In Proc. of the Fifth International Symposium on: Solving
Irregularly Structured Problems in Parallel, volume 1457 of Lecture Notes in Computer

8 hypre 293

Science, pp. 104–115, New York, 1998. Springer–Verlag. Held at Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA, August 9–11, 1998. Also available as LLNL Technical
Report UCRL-JC-130893.

13. H. De Sterck, U. M. Yang, and J. Heys. Reducing complexity in parallel algebraic multi-
grid preconditioners. SIAM J. Matrix Anal. Appl., submitted, 2004. Also available as
LLNL Technical Report UCRL-JRNL-206780.

14. R. Falgout, J. Jones, and U. M. Yang. Pursuing scalability for hypre’s conceptual inter-
faces. ACM Transaction on Mathematical Software, submitted, 2003. Also available as
Lawrence Livermore National Laboratory technical report UCRL-JP-200044.

15. R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In E. Dick,
K. Riemslagh, and J. Vierendeels, editors, Multigrid Methods VI, volume 14 of Lecture
Notes in Computational Science and Engineering, pp. 101–107, Berlin, 2000. Springer.
Proc. of the Sixth European Multigrid Conference held in Gent, Belgium, September 27-
30, 1999. Also available as LLNL technical report UCRL-JC-133948.

16. R. D. Falgout and U. M. Yang. hypre: a library of high performance preconditioners.
In P. Sloot, C. Tan., J. Dongarra, and A. Hoekstra, editors, Computational Science -
ICCS 2002 Part III, volume 2331 of Lecture Notes in Computer Science, pp. 632–641.
Springer–Verlag, 2002. Also available as LLNL Technical Report UCRL-JC-146175.

17. The finite-element interface (FEI). http://z.cz.sandia.gov/fei/.
18. K. Gallivan and U. M. Yang. Efficiency issues in parallel coarsening schemes. Technical

Report UCRL-ID-513078, Lawrence Livermore National Laboratory, 2003.
19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable

object-oriented software. Addison-Wesley, 1995.
20. V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver and

preconditioner. Applied Numerical Mathematics, 41:155–177, 2002. Also available as
LLNL technical report UCRL-JC-141495.

21. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel geometric multigrid. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pp. 165–208. Springer-Verlag, 2005.

22. hypre: High performance preconditioners.
http://www.llnl.gov/CASC/hypre/.

23. D. Hysom and A. Pothen. Efficient parallel computation of ILU(k) preconditioners. In
Proceedings of Supercomputing 99, New York, 1999. ACM. published on CDROM, ISBN
#1-58113-091-0, ACM Order #415990, IEEE Computer Society Press Order # RS00197.

24. D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor precondi-
tioning. SIAM J. Sci. Comput., 22(6):2194–2215, 2001.

25. G. Karypis and V. Kumar. Parallel threshold-based ILU factorization. Technical Report
061, University of Minnesota, Department of Computer Science/Army HPC Research
Center, Minneapolis, MN 5455, 1998.

26. M. G. Knepley, R. F. Katz, and B. Smith. Developing a geodynamics simulator with
petsc. In A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential
Equations on Parallel Computers, volume 51 of Lecture Notes in Computational Science
and Engineering, pp. 413–438. Springer-Verlag, 2005.

27. H. P. Langtangen. Computational Partial Differential Equations. Numerical Methods and
Diffpack Programming, volume 1 of Texts in Computational Science and Engineering.
Springer, 2003. 2nd ed.

28. H. P. Langtangen and A. Tveito, editors. Advanced Topics in Computational Partial Dif-
ferential Equations. Numerical Methods and Diffpack Programming, volume 33 of Lec-
ture Notes in Computational Science and Engineering. Springer, 2003.

294 R. D. Falgout et al.

29. S. F. McCormick. Multilevel Adaptive Methods for Partial Differential Equations, vol-
ume 6 of Frontiers in Applied Mathematics. SIAM Books, Philadelphia, 1989.

30. J. Morel, R. M. Roberts, and M. J. Shashkov. A local support-operators diffusion dis-
cretization scheme for quadrilateral r-z meshes. Journal of Computational Physics,
144:17–51, 1998.

31. A. Pinar and B. Hendrickson. Communication support for adaptive communication. In
Proceedings of 10th SIAM Conference on Parallel Processing for Scientific computing,
2001.

32. J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor,
Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pp. 73–130. SIAM,
Philadelphia, PA, 1987.

33. S. Schaffer. A semi-coarsening multigrid method for elliptic partial differential equations
with highly discontinuous and anisotropic coefficients. SIAM J. Sci. Comput., 20(1):228–
242, 1998.

34. P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation
for second and fourth order problems. Computing, 56:179–196, 1996.

35. U. M. Yang. Parallel algebraic multigrid methods - high performance preconditioners. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pp. 209–236. Springer-Verlag, 2005.

9

Parallelizing PDE Solvers Using the Python
Programming Language

Xing Cai and Hans Petter Langtangen

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Department of Informatics, University of Oslo, P.O. Box 1080, Blindern,
NO-0316 Oslo, Norway

[xingca,hpl]@simula.no

Summary. This chapter aims to answer the following question: Can the high-level program-
ming language Python be used to develop sufficiently efficient parallel solvers for partial
differential equations (PDEs)? We divide our investigation into two aspects, namely (1) the
achievable performance of a parallel program that extensively uses Python programming and
its associated data structures, and (2) the Python implementation of generic software mod-
ules for parallelizing existing serial PDE solvers. First of all, numerical computations need
to be based on the special array data structure of the Numerical Python package, either in
pure Python or in mixed-language Python-C/C++ or Python/Fortran setting. To enable high-
performance message passing in parallel Python software, we use the small add-on package
pypar, which provides efficient Python wrappers to a subset of MPI routines. Using con-
crete numerical examples of solving wave-type equations, we will show that a mixed Python-
C/Fortran implementation is able to provide fully comparable computational speed in com-
parison with a pure C or Fortran implementation. In particular, a serial legacy Fortran 77 code
has been parallelized in a relatively straightforward manner and the resulting parallel Python
program has a clean and simple structure.

9.1 Introduction

Solving partial differential equations (PDEs) on a computer requires writing soft-
ware to implement numerical schemes, and the resulting program should be able
to effectively utilize the modern computer architecture. The computing power of
parallel platforms is particularly difficult to exploit, so we would like to avoid im-
plementing every thing from scratch when developing a parallel PDE solver. The
well-tested computational modules within an existing serial PDE solver should in
some way participate in the parallel computations. Most of the parallelization effort
should be invested in dealing with the parallel-specific tasks, such as domain parti-
tioning, load balancing, high performance communication etc. Such considerations
call for a flexible, structured, and layered programming style for developing parallel
PDE software. The object-oriented programming language C++, in particular, has
obtained a considerable amount of success in this field, see e.g. [2, 3, 15, 4, 13].

296 X. Cai and H. P. Langtangen

In comparison with C++, the modern object-oriented programming language
Python is known for its even richer expressiveness and flexibility. Moreover, the
Python language simplifies interfacing legacy software written in the traditional com-
piled programming languages Fortran, C, and C++. This is a desired feature in paral-
lelizing PDE solvers, because the serial computational modules of a PDE solver and
existing software libraries may exist in different programming styles and languages.
However, due to the computational inefficiency of its core language, Python has sel-
dom been used for large-scale scientific computations, let alone parallelizations.

Based on the findings in [5], we have reasons to believe that Python is capable of
delivering high performance in both serial and parallel computations. This assumes
that the involved data structure uses arrays of the Numerical Python package [17].
Moreover, either the technique of vectorization must be adopted, or computation-
intensive code segments must be migrated to extension modules implemented in a
compiled language such as Fortran, C or C++. It is the purpose of the present chapter
to show that the clean syntax and the powerful tools of Python help to simplify the
implementation tasks of parallel PDE solvers. We will also show that existing serial
legacy codes and software libraries can be re-used in parallel computations driven by
Python programs.

The remainder of the chapter is organized as follows. Section 9.2 presents the
most important ingredients in achieving high-performance computing in Python.
Section 9.3 explains two parallelization approaches of relevance for PDE solvers,
whereas Sections 9.4 gives examples of how Python can be used to code generic
functions useful for parallelizing serial PDE solvers. Afterwards, Section 9.5 demon-
strates two concrete cases of parallelization, and Section 9.6 summarizes the main
issues of this chapter.

9.2 High-Performance Serial Computing in Python

To achieve good performance of any parallel PDE solver, the involved serial com-
putational modules must have high performance. This is no exception in the context
of the Python programming language. The present section therefore discusses the
issue of high-performance serial computing in Python. Some familiarity with basic
Python is assumed. We refer to [14] for an introduction to Python with applications
to computational science.

9.2.1 Array-Based Computations

PDE solvers frequently employ one-dimensional or multi-dimensional arrays. Com-
putations are normally done in the form of nested loops over values stored in the
arrays. Such nested loops run very slowly if they are coded in the core language of
Python. However, the add-on package Numerical Python [17], often referred to as
NumPy, provides efficient operations on multi-dimensional arrays.

The NumPy package has a basic module defining a data structure of multi-
dimensional contiguous-memory arrays and many associated efficient C functions.

9 Parallel PDE Solvers in Python 297

Two versions of this module exist at present: Numeric is the classical module from
the mid 1990s, while numarray is a new implementation. The latter is meant as
a replacement of the former, and no further development of Numeric is going to
take place. However, there is so much numerical Python code utilizing Numeric that
we expect both modules to co-exist for a long time. We will emphasize the use of
Numeric in this chapter, because many tools for scientific Python computing are at
present best compatible with Numeric.

The allocation and use of NumPy arrays is very user friendly, which can be
demonstrated by the following code segment:

from Numeric import arange, zeros, Float
n = 1000001
dx = 1.0/(n-1)
x = arange(0, 1, dx) # x = 0, dx, 2*dx, ...
y = zeros(len(x), Float) # array of zeros, as long as x

as Float (=double in C) entries
from math import sin, cos # import scalar math functions
for i in xrange(len(x)): # i=0, 1, 2, ..., length of x-1

xi = x[i]
y[i] = sin(xi)*cos(xi) + xi**2

Here the arange method allocates a NumPy array and fills it with values from a start
value to (but not including) a stop value using a specified increment. Note that a
Python method is equivalent to a Fortran subroutine or a C/C++ function. Allocating
a double precision real-value array of length n is done by the zeros(n,Float) call.
Traversing an array can be done by a for-loop as shown, where xrange is a method
that returns indices 0, 1, 2, and up to (but not including) the length of x (i.e., len(x))
in this example. Indices in NumPy arrays always start at 0.

Detailed measurements of the above for-loop show that the Python code is con-
siderably slower than a corresponding code implemented in plain Fortran or C. This
is due to the slow execution of for-loops in Python, even though the NumPy data ar-
rays have an efficient underlying C implementation. Unlike the traditional compiled
languages, Python programs are complied to byte code (like Java). Loops in Python
are not highly optimized in machine code as Fortran, C, or C++ compilers would do.
Such optimizations are in fact impossible due to the dynamic nature of the Python
language. For example, there is no guarantee that sin(xi) does not return a new data
type at some stage in the loop and thereby turning y into a new data type. (The only
requirement of the new type is that it must be valid to subscript it as y[i].) In the
administering parts of a PDE code, this type of flexibility can be the reason to adopt
Python, but in number crunching with large arrays the efficiency frequently becomes
unacceptable.

The problem with slow Python loops can be greatly relieved through vectoriza-
tion [16], i.e., expressing the loop semantics via a set of basic NumPy array op-
erations, where each operation involves a loop over array entries efficiently imple-
mented in C. As an improvement of the above Python for-loop, we now introduce a
vectorized implementation as follows:

from Numeric import arange, sin, cos
n = 1000001

298 X. Cai and H. P. Langtangen

dx = 1.0/(n-1)
x = arange(0, 1, dx) # x = 0, dx, 2*dx, ...
y = sin(x)*cos(x) + x**2

The expression sin(x) applies the sine function to each entry in the array x, the same
for cos(x) and x**2. The loop over the array entries now runs in highly optimized C
code, and the reference to a new array holding the computed result is returned. Con-
sequently, there is no need to allocate y beforehand, because an array is created by
the vector expression sin(x)*cos(x) + x**2. This vectorized version runs about
8 times faster than the pure Python version. For more information on using NumPy
arrays and vectorization, we refer to [14, 5].

9.2.2 Interfacing with Fortran and C

Vectorized Python code may still run a factor of 3-10 slower than optimized imple-
mentations in pure Fortran or C/C++. This is not surprising because an expression
like sin(x)*cos(x)+x**2 involves three unary operations (sin(x), cos(x), x**2)
and two binary operations (multiplication and addition), each begin processed in a
separate C routine. For each intermediate result, a temporary array must be allocated.
This is the same type of overhead involved in compound vector operations in many
other libraries (Matlab/Octave, R/S-Plus, C++ libraries [20, 19]).

In these cases, or in cases where vectorization of an algorithm is cumbersome,
computation-intensive Python loops can be easily migrated directly to Fortran or
C/C++. The code migration can be easily achieved in Python, using specially de-
signed tools such as F2PY [9]. For example, we may implement the expression in a
simple loop in Fortran 77:

subroutine someloop(x, n)
integer n, i
real*8 x(n), xi

Cf2py intent(in,out) x
do i = 1, n

xi = x(i)
x(i) = sin(xi)*cos(xi) + xi**2

end do
return
end

The only non-standard feature of the above Fortran subroutine is the command line
starting with Cf2py. This helps the Python-Fortran translation tool F2PY [9] with
information about input and output arguments. Note that x is specified as both an
input and an output argument. An existing pure Fortran subroutine can be very easily
transformed by F2PY to be invokable inside a Python program. In particular, the
above someloop method can be called inside a Python program as

y = someloop(x)
or
someloop(x) # rely on in-place modifications of x

9 Parallel PDE Solvers in Python 299

The “Python” way of writing methods is to have input variables as arguments and
return all output variables. In the case of someloop(x), the Fortran code overwrites
the input array with values of the output array. The length of the x array is needed in
the Fortran code, but not in the Python call because the length is available from the
NumPy array x.

The variable x is a NumPy array object in Python, while the Fortran code expects
a pointer to a contiguous data segment and the array size. The translation of Python
data to and from Fortran data must be done in wrapper code. The tool F2PY can
read Fortran source code files and automatically generate the wrapper code. It is the
wrapper code that extracts the array size and the pointer to the array data segment
from the NumPy array object and sends these to the Fortran subroutine. The wrapper
code also converts the Fortran output data to Python objects. In the present example
we may store the someloop subroutine in a file named floop.f and run F2PY like

f2py -m floop -c floop.f

This command creates an extension module floop with the wrapper code and the
someloop routine. The extension module can be imported as any pure Python pro-
gram.

Migrating intensive computations to C or C++ via wrapper code can be done
similarly as explained for Fortran. However, the syntax has a more rigid style and
additional manual programming is needed. There are tools for automatic generation
of the wrapper code for C and C++, SWIG [8] for instance, but none of the tools
integrate C/C++ seamlessly with NumPy arrays as for Fortran. Information on com-
puting with NumPy arrays in C/C++ can be found in [1, 14].

9.3 Parallelizing Serial PDE Solvers

Parallel computing is an important technique for solving large-scale PDE problems,
where multiple processes form a collaboration to solve a large computational prob-
lem. The total computational work is divided into multiple smaller tasks that can
be carried out concurrently by the different processes. In most cases, the collabora-
tion between the processes is realized as exchanging computing results and enforc-
ing synchronizations. This section will first describe a subdomain-based framework
which is particularly well-suited for parallelizing PDE solvers. Then, two approaches
to parallelizing different types of numerical schemes will be explained, in the context
of Python data structures.

9.3.1 A Subdomain-Based Parallelization Framework

The starting point of parallelizing a PDE solver is a division of the global computa-
tional work among the processes. The division can be done in several different ways.
Since PDE solvers normally involve a lot of loop-based computations, one strategy
is to (dynamically) distribute the work of every long loop among the processes. Such
a strategy often requires that all the processes have equal access to all the data, and

300 X. Cai and H. P. Langtangen

that a master-type process is responsible for (dynamically) carrying out the work
load distribution. Therefore, shared memory is the most suitable platform type for
this strategy. In this chapter, however, we will consider dividing the work based on
subdomains. That is, a global solution domain Ω is explicitly decomposed into a
set of subdomains ∪Ωs = Ω, where there may be an overlap zone between each
pair of neighboring subdomains. The part of the subdomain boundary that borders a
neighboring subdomain, i.e., ∂Ωs\∂Ω, is called the internal boundary of Ωs. This
decomposition of the global domain gives rise to a decomposition of the global data
arrays, where subdomain s always concentrates on the portion of the global data
arrays lying inside Ωs. Such a domain and data decomposition results in a natural
division of the global computational work among the processes, where the compu-
tational work on one subdomain is assigned to one process. This strategy suits both
shared-memory and distributed-memory platforms.

In addition to ensuring good data locality on each process, the subdomain-based
parallelization strategy also strongly promotes code re-use. One scenario is that parts
of an existing serial PDE solver are used to carry out array-level operations (see
Section 9.3.2), whereas another scenario is that an entire serial PDE solver works
as a “black box subdomain solver” in Schwarz-type iterations (see Section 9.3.3).
Of course, communication between subdomains must be enforced at appropriate lo-
cations of a parallel PDE solver. It will be shown in the remainder of this section
that the needed communication operations are of a generic type, independent of the
specific PDE problem. Moreover, Section 9.4 will show that Python is a well-suited
programming language for implementing the generic communication operations as
re-usable methods.

9.3.2 Array-Level Parallelization

Many numerical operations can be parallelized in a straightforward manner, where
examples are (1) explicit time-stepping schemes for time-dependent PDEs, (2) Ja-
cobi iterations for solving a system of linear equations, (3) inner-products between
two vectors, and (4) matrix-vector products. The parallel version of these operations
computes identical numerical results as the serial version. Therefore, PDE solvers
involving only such numerical operations are readily parallelizable. Inside the frame-
work of subdomains, the basic idea of this parallelization approach is as follows:

1. The mesh points of each subdomain are categorized into two groups: (1) points
lying on the internal boundary and (2) the interior points (plus points lying on the
physical boundary). Each subdomain is only responsible for computing values
on its interior points (plus points lying on the physical boundary). The values
on the internal boundary points are computed by the neighboring subdomains
and updated via communication. (Such internal boundary points are commonly
called ghost points.)

2. The global solution domain is partitioned such that there is an overlap zone of
minimum size between two neighboring subdomains. For a standard second-
order finite difference method this means one layer of overlapping cells (higher

9 Parallel PDE Solvers in Python 301

order finite differences require more overlapping layers), while for finite element
methods this means one layer of overlapping elements. Such an overlapping
domain partitioning ensures that every internal boundary point of one subdomain
is also located in the interior of at least one neighboring subdomain.

3. The parallelization of a numerical operation happens at the array level. That is,
the numerical operation is concurrently carried out on each subdomain using its
local arrays. When new values on the interior points are computed, neighboring
subdomains communicate with each other to update the values on their internal
boundary points.

Now let us consider a concrete example of parallelizing the following five-point
stencil operation (representing a discrete Laplace operator) on a two-dimensional
array um, where the computed results are stored in another array u:

for i in xrange(1,nx):
for j in xrange(1,ny):

u[i,j] = um[i,j-1] + um[i-1,j] \
-4*um[i,j] + um[i+1,j] + um[i,j+1]

The above Python code segment is assumed to be associated with a uniform two-
dimensional mesh, having nx cells (i.e., nx + 1 entries) in the x-direction and ny
cells (i.e., ny + 1 entries) in the y-direction. Note that the boundary entries of the u

array are assumed to be computed separately using some given boundary condition
(not shown in the code segment). We also remark that xrange(1,nx) covers indices
1, 2, and up to nx-1 (i.e., not including index nx).

Suppose P processors participate in the parallelization. Let us assume that the
P processors form an Nx ×Ny = P lattice. A division of the global computational
work naturally arises if we partition the interior array entries of u and um into P small
rectangular portions, using imaginary horizontal and vertical cutting lines. That is,
the (nx − 1) × (ny − 1) interior entries of u and um are divided into Nx × Ny
rectangular portions. For a processor that is identified by an index tuple (l,m), where
0 ≤ l < Nx and 0 ≤ m < Ny , (nlx − 1) × (nmy − 1) interior entries are assigned
to it, plus one layer of boundary entries around the interior entries (i.e., one layer of
overlapping cells). More precisely, we have

Nx−1∑
l=0

(nlx − 1) = nx − 1,
Ny−1∑
m=0

(nmy − 1) = ny − 1,

where we require that the values of n0
x, n1

x, . . ., and nNx−1
x are approximately the

same as
(nx − 1)/Nx + 1

for the purpose of achieving a good work load balance. The same requirement should
also apply to the values of n0

y , n1
y , . . ., and nNy−1

y .
To achieve a parallel execution of the global five-point stencil operation, each

processor now loops over its (nlx−1)×(nmy −1) interior entries of u loc as follows:

302 X. Cai and H. P. Langtangen

for i in xrange(1,loc_nx):
for j in xrange(1,loc_ny):

u_loc[i,j] = um_loc[i,j-1] + um_loc[i-1,j] \
-4*um_loc[i,j] \
+ um_loc[i+1,j] + um_loc[i,j+1]

We note that the physical boundary entries of u loc are assumed to be computed
separately using some given boundary condition (not shown in the above code seg-
ment). For the internal boundary entries of u loc, communication needs to be carried
out. Suppose a subdomain has a neighbor on each of its four sides. Then the follow-
ing values should be sent out to the neighbors:

• u[1,:] to the negative-x side neighbor,
• u[nx loc-1,:] to the positive-x side neighbor,
• u[:,1] to the negative-y side neighbor, and
• u[:,ny loc-1] to the positive-y side neighbor.

Correspondingly, the following values should be received from the neighbors:

• u[0,:] from the negative-x side neighbor,
• u[nx loc,:] from the positive-x side neighbor,
• u[:,0] from the negative-y side neighbor, and
• u[:,ny loc] from the positive-y side neighbor.

The slicing functionality of NumPy arrays is heavily used in the above nota-
tion. For example, u[0,:] refers to the first row of u, whereas u[0,1:4] means
a one-dimensional slice containing entries u[0,1], u[0,2], and u[0,3] of u (not
including u[0,4]), see [1]. The above communication procedure for updating the
internal boundary entries is of a generic type. It can therefore be implemented as
a Python method applicable in any array-level parallelization on uniform meshes.
Similarly, the domain partitioning task can also be implemented as a generic
Python method. We refer to the methods update internal boundaries and
prepare communication in Section 9.4.2 for a concrete Python implementation.

9.3.3 Schwarz-Type Parallelization

Apart from the numerical operations that are straightforward to parallelize, as dis-
cussed in the preceding text, there exist numerical operations which are non-trivial
to parallelize. Examples of the latter type include (1) direct linear system solvers
based on some kind of factorization, (2) Gauss-Seidel/SOR/SSOR iterations, and (3)
incomplete LU-factorization based preconditioners for speeding up the Krylov sub-
space linear system solvers. Since these numerical operations are inherently serial in
their algorithmic nature, a 100% mathematically equivalent parallelization is hard to
implement.

However, if we “relax” the mathematical definition of these numerical opera-
tions, an “approximate” parallelization is achievable. For this purpose, we will adopt
the basic idea of additive Schwarz iterations [7, 24, 10]. Roughly speaking, solving
a PDE problem by a Schwarz-type approach is realized as an iterative procedure,

9 Parallel PDE Solvers in Python 303

where during each iteration the original problem is decomposed into a set of indi-
vidual subdomain problems. The coupling between the subdomains is through en-
forcing an artificial Dirichlet boundary condition on the internal boundary of each
subdomain, using the latest computed solutions in the neighboring subdomains. This
mathematical strategy has shown to be able to converge toward correct global solu-
tions for many types of PDEs, see [7, 24]. The convergence depends on a sufficient
amount of overlap between neighboring subdomains.

Additive Schwarz Iterations

The mathematics of additive Schwarz iterations can be explained through solving the
following PDE of a generic form on a global domain Ω:

L(u) = f, x ∈ Ω, (9.1)

u = g, x ∈ ∂Ω. (9.2)

For a set of overlapping subdomains {Ωs}, the restriction of (9.1) onto Ωs becomes

L(u) = f, x ∈ Ωs. (9.3)

Note that (9.3) is of the same type as (9.1), giving rise to the possibility of re-using
both numerics and software. In order to solve the subdomain problem (9.3), we have
to assign the following boundary condition for subdomain s:

u = gartificial
s x ∈ ∂Ωs\∂Ω,

u = g, x ∈ ∂Ω, (9.4)

where the artificial Dirichlet boundary condition gartificial
s is provided by the neigh-

boring subdomains in an iterative fashion. More specifically, we generate on each
subdomain a series of approximate solutions us,0, us,1, us,2, . . ., where during the
kth Schwarz iteration we have

us,k = L̃−1f, x ∈ Ωs, (9.5)

and the artificial condition for the kth iteration is determined as

gartificial
s,k = uglob,k−1|∂Ωs\∂Ω, uglob,k−1 = composition of all us,k−1. (9.6)

The symbol L̃−1 in (9.5) indicates that an approximate local solve, instead of an
exact inverse of L, may be sufficient. Solving the subdomain problem (9.5) in the
kth Schwarz iteration implies that us,k attains the values of gartificial

s,k on the internal
boundary, where the values are provided by the neighboring subdomains. We note
that the subdomain local solves can be carried out independently, thus giving rise
to parallelism. At the end of the kth additive Schwarz iteration, the conceptually
existing global approximate solution uglob,k is composed by “patching together” the
subdomain approximate solutions {us,k}, using the following rule:

304 X. Cai and H. P. Langtangen

• For every non-overlapping point, i.e., a point that belongs to only one subdomain,
the global solution attains the same value as that inside the host subdomain.

• For every overlapping point, let us denote by ntotal the total number of host
subdomains that own this point. Let also ninterior denote the number of subdo-
mains, among those ntotal host subdomains, which do not have the point lying
on their internal boundaries. (The overlapping subdomains must satisfy the re-
quirement ninterior ≥ 1.) Then, the average of the ninterior local values becomes
the global solution on the point. The other ntotal − ninterior local values are
not used, because the point lies on the internal boundary there. Finally, the ob-
tained global solution is duplicated in each of the ntotal host subdomains. For
the ntotal − ninterior host subdomains, which have the point lying on their in-
ternal boundary, the obtained global solution value will be used as the artificial
Dirichlet condition during the next Schwarz iteration.

The Communication Procedure

To compose the global approximate solution and update the artificial Dirichlet con-
ditions, as described by the above rule, we need to carry out a communication proce-
dure among the neighboring subdomains at the end of each Schwarz iteration. During
this communication procedure, each pair of neighboring subdomains exchanges an
array of values associated with their shared overlapping points. Convergence of xs,k
toward the correct solution x|Ωs implies that the difference between the subdomain
solutions in an overlap zone will eventually disappear.

Let us describe the communication procedure by looking at the simple case of
two-dimensional uniform subdomain meshes. If the number of overlapping cell lay-
ers is larger than one, we need to also consider the four “corner neighbors”, in ad-
dition to the four “side neighbors”, see Figure 9.1. In this case, some overlapping
points are interior points in more than one subdomain (i.e., ninterior > 1), so av-
eraging ninterior values over each such point should be done, as described in the
preceding text. For the convenience of implementation, the value on each overlap-
ping interior point is scaled by a factor of 1/ninterior before being extracted into the
outgoing messages, whereas the value on each internal boundary point is simply set
to zero. (Note that an internal boundary point may be provided with multiple val-
ues coming from the interior of ninterior > 1 subdomains.) The benefit of such an
implementation is that multiplications are only used when preparing the outgoing
messages before communication, and after communication, values of the incoming
messages can be directly added upon the local scaled entries (see the third task to be
described below).

For a two-dimensional array x of dimension [0:loc nx+1]x[0:loc ny+1], i.e.,
indices are from 0 to loc nx or loc ny, the pre-communication scaling task can be
done as follows (using the efficient in-place modification of the array entries through
the *= operator):

x[1:w0,:] *= 0.5 # overlapping interior points
x[loc_nx-w0+1:loc_nx,:] *= 0.5
x[:,1:w1] *= 0.5

9 Parallel PDE Solvers in Python 305

Fig. 9.1. One example two-dimensional rectangular subdomain in an overlapping setting. The
shaded area denotes the overlap zone, which has two layers of overlapping cells in this exam-
ple. Data exchange involves (up to) eight neighbors, and the origin of each arrow indicates the
source of an outgoing message.

x[:,loc_ny-w1+1:loc_ny] *= 0.5
x[0,:] = 0.0 # internal boundary points
x[loc_nx,:] = 0.0
x[:,0] = 0.0
x[:,loc_ny] = 0.0

We note that w0 denotes the number of overlapping cell layers in the x-direction, and
w1 is for the y-direction. The overlapping interior points in the four corners of the
overlap zone are scaled twice by the factor 0.5, resulting in the desired scaling of
0.25 (since ninterior = 4). The reason to multiply all the internal boundary values by
zero is because these values are determined entirely by the neighboring subdomains.

The second task in the communication procedure is to exchange data with the
neighbors. First, we “cut out” eight portions of the x array, where the overlapping
interior values are already scaled with respect to ninterior, to form outgoing commu-
nication data to the eight neighbors:

• x[1:w0+1,:] to the negative-x side neighbor,
• x[loc nx-w0:loc nx,:] to the positive-x side neighbor,
• x[:,1:w1+1] to the negative-y side neighbor,
• x[:,loc ny-w1:loc ny] to the positive-y side neighbor,
• x[1:w0+1,1:w1+1] to the lower-left corner neighbor,
• x[1:w0+1,loc ny-w1:loc ny] to the upper-left corner neighbor,

306 X. Cai and H. P. Langtangen

• x[loc nx-w0:loc nx,1:w1+1] to the lower-right corner neighbor, and
• x[loc nx-w0:loc nx,loc ny-w1:loc ny] to the upper-right corner neighbor.

Then, we receive incoming data from the eight neighboring subdomains and store
them in eight internal data buffers.

The third and final task of the communication procedure is to add the incoming
data values, which are now stored in the eight internal buffers, on top of the cor-
responding entries in x. Roughly speaking, the overlapping entries in the corners
add values from three neighbors on top of their own scaled values, the remaining
overlapping entries add values from one neighbor. For the details we refer to the
add incoming data method in Section 9.4.2, which is a generic Python implemen-
tation of the communication procedure.

We remark that for the case of only one overlapping cell layer, the above com-
munication procedure becomes the same as that of the array-level parallelization
approach from Section 9.3.2.

Parallelization

In the Schwarz-type parallelization approach, we aim to re-use an entire serial PDE
solver as a “black-box” for solving (9.6). Here, we assume that the existing serial
PDE solver is flexible enough to work on any prescribed solution domain, on which
it builds data arrays of appropriate size and carries out discretizations and compu-
tations. The only new feature is that the physical boundary condition valid on ∂Ω
does not apply on the internal boundary of Ωs, where the original boundary condi-
tion needs to be replaced by an artificial Dirichlet condition. So a slight modifica-
tion/extension of the serial code may be needed with respect to boundary condition
enforcement.

A simple Python program can be written to administer the Schwarz iterations,
where the work in each iteration consists of calling the serial computational mod-
ule(s) and invoking the communication procedure. Section 9.5.2 will show a concrete
case of the Schwarz-type parallelization approach. Compared with the array-level
parallelization approach, we can say that the Schwarz-type approach parallelizes se-
rial PDE solvers at a higher abstraction level.

The difference between the array-level parallelization approach and the Schwarz-
type approach is that the former requires a detailed knowledge of an existing serial
PDE solver on the level of loops and arrays. The latter approach, on the other hand,
promotes the re-use of a serial solver as a whole, possibly after a slight code mod-
ification/extension. Detailed knowledge of every low-level loop or array is thus not
mandatory. This is particularly convenient for treating very old codes in Fortran 77.
However, the main disadvantage of the Schwarz-type approach is that there is no
guarantee for the mathematical strategy behind the parallelization to work for any
type of PDE.

9 Parallel PDE Solvers in Python 307

9.4 Python Software for Parallelization

This section will first explain how data communication can be done in Python. Then,
we describe the implementation of a Python class hierarchy containing generic meth-
ods, which can ease the programming of parallel Python PDE solvers by re-using
serial PDE code.

9.4.1 Message Passing in Python

The message-passing model will be adopted for inter-processor communication in
this chapter. In the context of parallel PDE solvers, a message is typically an array of
numerical values. This programming model, particularly in the form of using the MPI
standard [11, 18], is applicable on all types of modern parallel architectures. MPI-
based parallel programs are also known to have good performance. There exist sev-
eral Python packages providing MPI wrappers, the most important being pypar [22],
pyMPI [21], and Scientific.MPI [23] (part of the ScientificPython package). The
pypar package concentrates only on an important subset of the MPI library, offer-
ing a simple syntax and sufficiently good performance. On the other hand, the pyMPI
package implements a much larger collection of the MPI routines and has better flex-
ibility. For example, MPI routines can be run interactively via pyMPI, which is very
convenient for debugging. All the three packages are implemented in C.

Syntax and Examples

To give the reader a feeling of how easily MPI routines can be invoked via pypar,
we present in the following a simple example of using the two most important meth-
ods in pypar, namely pypar.send and pypar.receive. In this example, a NumPy
array is relayed as a message between the processors virtually connected in a loop.
Each processor receives an array from its “upwind” neighbor and passes it to the
“downwind” neighbor.

import pypar
myid = pypar.rank() # ID of a processor
numprocs = pypar.size() # total number of processors
msg_out = zeros(100, Float) # NumPy array, communicated

if myid == 0:
pypar.send (msg_out, destination=1)
msg_in = pypar.receive(numprocs-1)

else:
msg_in = pypar.receive(myid-1)
pypar.send (msg_out, destination=(myid+1)%numprocs)

pypar.finalize() # finish using pypar

In comparison with an equivalent C/MPI implementation, the syntax of the pypar
implementation is greatly simplified. The reason is that most of the arguments to
the send and receive methods in pypar are optional and have well-chosen default

308 X. Cai and H. P. Langtangen

values. Of particular interest to parallel numerical applications, the above example
demonstrates that a NumPy array object can be used directly in the send and receive

methods.
To invoke the most efficient version of the send and receive commands, which

avoid internal safety checks and transformations between arrays and strings of char-
acters, we must assign the optional argument bypass with value True. That is,

pypar.send (msg_out, destination=to, bypass=True)
msg_in = pypar.receive (from, buffer=msg_in_buffer,

bypass=True)

We also remark that using bypass=True in the pypar.receive method must be
accompanied by specifying a message buffer, i.e., msg in buffer in the above ex-
ample. The message buffer is assumed to be an allocated one-dimensional Python
array of appropriate length. In this way, we can avoid the situation that pypar creates
a new internal array object every time the receive method is invoked.

The communication methods in the pyMPI package also have a similarly user-
friendly syntax. The send and recv methods of the pyMPI package are very versatile
in the sense that any Python objects can be sent and received. However, an interme-
diate character array is always used internally to hold a message inside a pyMPI

communication routine. Performance is therefore not a strong feature of pyMPI.
Scientific.MPI works similarly as pypar but requires more effort with installa-
tion. Consequently, we will only use the MPI wrappers of pypar in our numerical
experiments in Section 9.5.

Latency and Bandwidth

Regarding the actual performance of pypar, in terms of latency and bandwidth, we
have run two ping-pong test programs, namely ctiming.c and pytiming, which are
provided in the pypar distribution. Both the pure C test program and the pure Python-
pypar test program measure the time usage of exchanging a series of messages of
different sizes between two processors. Based on the series of measurements, the
actual values of latency and bandwidth are estimated using a least squares strategy.
We refer to Table 9.1 for the estimates obtained on a Linux cluster with Pentium
III 1GHz processors, inter-connected through a switch and a fast Ethernet based
network, which has a theoretical peak bandwidth of 100 Mbit/s. The version of pypar
was 1.9.1. We can observe from Table 9.1 that there is no difference between C and
pypar with respect to the actual bandwidth, which is quite close to the theoretical
peak value. Regarding the latency, it is evident that the extra Python layer of pypar
results in larger overhead.

9.4.2 Implementing a Python Class Hierarchy

To realize the two parallelization approaches outlined in Sections 9.3.2 and 9.3.3,
we will develop in the remaining text of this section a hierarchy of Python classes
containing the needed functionality, i.e., mesh partitioning, internal data structure

9 Parallel PDE Solvers in Python 309

Table 9.1. Comparison between C-version MPI and pypar-layered MPI on a Linux-cluster,
with respect to the latency and bandwidth.

Latency Bandwidth
C-version MPI 133× 10−6 s 88.176 Mbit/s
pypar-layered MPI 225× 10−6 s 88.064 Mbit/s

preparation for communication, and updating internal boundaries and overlap zones.
Our attention is restricted to box-shaped subdomains, for which the efficient array-
slicing functionality (see e.g. [5]) can be extensively used in the preparation of out-
going messages and in the extraction of incoming messages. A pure Python imple-
mentation of the communication operations will thus have sufficient efficiency for
such cases. However, it should be noted that in the case of unstructured subdomain
meshes, indirect indexing of the data array entries in an unstructured pattern will
become inevitable. A mixed-language implementation of the communication oper-
ations, which still have a Python “appearance”, will thus be needed for the sake of
efficiency.

Class BoxPartitioner

Our objective is to implement a Python class hierarchy, which provides a unified
interface to the generic methods that are needed in programming parallel PDE
solvers on the basis of box-shaped subdomain meshes. The name of the base class is
BoxPartitioner, which has the following three major methods:

1. prepare communication: a method that partitions a global uniform mesh into a
set of subdomain meshes with desired amount of overlap. In addition, the inter-
nal data structure needed in subsequent communication operations is also built
up. This method is typically called right after an instance of a chosen subclass
of BoxPartitioner is created.

2. update internal boundaries: a method that lets each subdomain communi-
cate with its neighbors and update those points lying on the internal boundaries.

3. update overlap regions: a method that lets each subdomain communicate
with its neighbors and update all the points lying in the overlap zones, useful
for the Schwarz-type parallelization described in Section 9.3.3. This method as-
sumes that the number of overlapping cell layers is larger than one in at least one
space direction, otherwise one can use update internal boundaries instead.

Note that the reason for having a separate update internal boundaries

method, in addition to update overlap regions, is that it may be desirable to com-
municate and update only the internal boundaries when the number of overlapping
cell layers is larger than one.

Subclasses of BoxPartitioner

Three subclasses have been developed on the basis of BoxPartitioner, i.e.,
BoxPartitioner1D, BoxPartitioner2D, and BoxPartitioner3D. These first-level

310 X. Cai and H. P. Langtangen

subclasses are designed to handle dimension-specific operations, e.g., extending
the base implementation of the prepare communication method in class
BoxPartitioner. However, all the MPI-related operations are deliberately left
out in the three first-level subclasses. This is because we want to introduce an-
other level of subclasses in which the concrete message passing operations (using
e.g. pypar or pyMPI) are programmed. For example, PyMPIBoxPartitioner2D and
PyParBoxPartitioner2D are two subclasses of BoxPartitioner2D. A convenient
effect of such a design is that a parallel Python PDE solver can freely switch be-
tween different MPI wrapper modules, e.g., by simply replacing an object of type
PyMPIBoxPartitioner2D with a PyParBoxPartitioner2D object.

The constructor of every class in the BoxPartitioner hierarchy has the follow-
ing syntax:

def __init__(self, my_id, num_procs,
global_num_cells=[], num_parts=[],
num_overlaps=[]):

This is for specifying, respectively, the subdomain ID (between 0 and P − 1), the
total number of subdomains P , the numbers of cells in all the space directions of the
global uniform mesh, the numbers of partitions in all the space directions, and the
numbers of overlapping cell layers in all the space directions. The set of information
will be used later by the prepare communication method.

Class PyParBoxPartitioner2D

To show a concrete example of implementing PDE-related communication opera-
tions in Python, let us take a brief look at class PyParBoxPartitioner2D.

class PyParBoxPartitioner2D(BoxPartitioner2D):
def __init__(self, my_id=-1, num_procs=-1,

global_num_cells=[], num_parts=[],
num_overlaps=[1,1]):

BoxPartitioner.__init__(self, my_id, num_procs,
global_num_cells, num_parts,
num_overlaps)

def update_internal_boundaries (self, data_array):
a method for updating the internal boundaries
implementation is skipped

def update_overlap_regions (self, data_array):

call ’update_internal_boundary’ when the
overlap is insufficient
if self.num_overlaps[0]<=1 and self.num_overlaps[1]<=1:

self.update_internal_boundary (data_array)
return

self.scale_outgoing_data (data_array)
self.exchange_overlap_data (data_array)
self.add_incoming_data (data_array)

9 Parallel PDE Solvers in Python 311

Note that we have omitted the implementation of update internal boundaries in
the above simplified class definition of PyParBoxPartitioner2D. Instead, we will
concentrate on the update overlap regions method consisting of three tasks (see
also Section 9.3.3):

1. Scale portions of the target data array before forming the outgoing messages.
2. Exchange messages between each pair of neighbors.
3. Extract the content of each incoming message and add it on top of the appropriate

locations inside the target data array.

In the following, let us look at the implementation of each of the three tasks in
detail.

def scale_outgoing_data (self, data_array):

number of local cells in the x- and y-directions:
loc_nx = self.subd_hi_ix[0]-self.subd_lo_ix[0]
loc_ny = self.subd_hi_ix[1]-self.subd_lo_ix[1]

IDs of the four main neighbors:
lower_x_neigh = self.lower_neighbors[0]
upper_x_neigh = self.upper_neighbors[0]
lower_y_neigh = self.lower_neighbors[1]
upper_y_neigh = self.upper_neighbors[1]

width of the overlapping zones:
w0 = self.num_overlaps[0]
w1 = self.num_overlaps[1]

in case of a left neighbor (in x-dir):
if lower_x_neigh>=0:

data_array[0,:] = 0.0;
if w0>1:

data_array[1:w0,:] *= 0.5

in case of a right neighbor (in x-dir):
if upper_x_neigh>=0:

data_array[loc_nx,:] = 0.0;
if w0>1:

data_array[loc_nx-w0+1:loc_nx,:] *= 0.5

in case of a lower neighbor (in y-dir):
if lower_y_neigh>=0:

data_array[:,0] = 0.0;
if w1>1:

data_array[:,1:w1] *= 0.5

in case of a upper neighbor (in y-dir):
if upper_y_neigh>=0:

data_array[:,loc_ny] = 0.0;
if w1>1:

data_array[:,loc_ny-w1+1:loc_ny] *= 0.5

Note that the IDs of the four side neighbors (such as self.lower neighbors[0])
have been extensively used in the above scale outgoing data method. These

312 X. Cai and H. P. Langtangen

neighbor IDs are already computed inside the prepare communication method
belonging to the base class BoxPartitioner. The absence of a neighbor is indi-
cated by a negative integer value. Note also that the internal arrays subd hi ix and
subd lo ix are computed inside the prepare communication method. These two
arrays together determine where inside a virtual global array one local array should
be mapped to. Moreover, the two integers w0 and w1 contain the number of overlap-
ping cell layers in the x- and y-direction, respectively.

def exchange_overlap_data (self, data_array):

number of local cells in the x- and y-directions:
loc_nx = self.subd_hi_ix[0]-self.subd_lo_ix[0]
loc_ny = self.subd_hi_ix[1]-self.subd_lo_ix[1]

IDs of the four side neighbors:
lower_x_neigh = self.lower_neighbors[0]
upper_x_neigh = self.upper_neighbors[0]
lower_y_neigh = self.lower_neighbors[1]
upper_y_neigh = self.upper_neighbors[1]

width of the overlapping zones:
w0 = self.num_overlaps[0]
w1 = self.num_overlaps[1]

if w0>=1 and lower_x_neigh>=0:
#send message to left neighbor
pypar.send (data_array[1:w0+1,:], lower_x_neigh,

bypass=True)
#send message to lower left corner neighbor
if w1>=1 and lower_y_neigh>=0:

pypar.send (data_array[1:w0+1,1:w1+1],
lower_y_neigh-1, bypass=True)

if w0>=1 and lower_x_neigh>=0:
#receive message from left neighbor
self.buffer1 = pypar.receive(lower_x_neigh,

buffer=self.buffer1,
bypass=True)

if w1>=1 and lower_y_neigh>=0:
#receive message from lower left corner
self.buffer5 = pypar.receive (lower_y_neigh-1,

buffer=self.buffer5,
bypass=True)

the remaining part of the method is skipped

It should be observed that the scale outgoing data method has already scaled the
respective portions of the target data array, so the exchange overlap data method
can directly use array slicing to form the eight outgoing messages. For the incom-
ing messages, eight internal buffers (such as self.overlap buffer1) are heavily
used. In the class BoxPartitioner2D, these eight internal buffers are already al-
located inside the prepare communication method. We also note that the option
bypass=True is used in every pypar.send and pypar.receive call for the sake of
efficiency.

9 Parallel PDE Solvers in Python 313

def self.add_incoming_data (self, data_array)

number of local cells in the x- and y-directions:
loc_nx = self.subd_hi_ix[0]-self.subd_lo_ix[0]
loc_ny = self.subd_hi_ix[1]-self.subd_lo_ix[1]

IDs of the four main neighbors:
lower_x_neigh = self.lower_neighbors[0]
upper_x_neigh = self.upper_neighbors[0]
lower_y_neigh = self.lower_neighbors[1]
upper_y_neigh = self.upper_neighbors[1]

width of the overlapping zones:
w0 = self.num_overlaps[0]
w1 = self.num_overlaps[1]

if w0>=1 and lower_x_neigh>=0:
contribution from the left neighbor
data_array[0:w0,:] +=

reshape(self.buffer1,[w0,loc_ny+1])

contribution from the lower left corner neighbor
if w1>=1 and lower_y_neigh>=0:

data_array[0:w0,0:w1] +=
reshape(self.buffer5,[w0,w1])

the remaining part of the method is skipped

The above add incoming data method carries out the last task within the communi-
cation method update overlap regions. We note that all the internal data buffers
are one-dimensional NumPy arrays. Therefore, these one-dimensional arrays must
be re-ordered into a suitable two-dimensional array before being added on top of the
appropriate locations of the target data array. This re-ordering operation is conve-
niently achieved by calling the reshape functionality of the NumPy module.

9.5 Test Cases and Numerical Experiments

This section will present two cases of parallelizing serial PDE solvers, one using an
explicit numerical scheme for a C code and the other using an implicit scheme for a
very old Fortran 77 code. The purpose is to demonstrate how the generic paralleliza-
tion software from Section 9.4 can be applied. Roughly speaking, the parallelization
work consists of the following tasks:

1. slightly modifying the computational modules of the serial code to have the pos-
sibility of accepting assigned local array sizes and, for the Schwarz-type paral-
lelization approach, adopting an artificial Dirichlet boundary condition on the
internal boundary,

2. implementing a light-weight wrapper code around each serial computational
module, such that it becomes callable from Python,

3. writing a simple Python program to invoke the computational modules through
the wrapper code and drive the parallel computations,

314 X. Cai and H. P. Langtangen

4. creating an object of PyParBoxPartitioner2D or PyParBoxPartitioner3D to
carry out the domain partitioning task and prepare the internal data structure for
the subsequent communication, and

5. inserting communication calls such as update internal boundaries and/or
update overlap regions at appropriate locations of the Python program.

Although parallelizing PDE solvers can also be achieved using the traditional
programming languages, the use of Python promotes a more flexible and user-
friendly programming style. In addition, Python has a superior capability of eas-
ily interfacing existing serial code segments written in different programming lan-
guages. Our vision is to use Python to glue different code segments into a parallel
PDE solver.

The upcoming numerical experiments of the parallel Python solvers will be per-
formed on the Linux cluster described in Section 9.4.1.

9.5.1 Parallelizing an Explicit Wave Equation Solver

As the first test case, we consider the following linear wave equation with a source
term:

∂2u(x, t)
∂t2

= c2∇2u(x, t) + f(x, t) in Ω, (9.7)

u(x, t) = g(x, t) on ∂Ω, (9.8)

where c is a constant representing the wave speed, and the coordinates x are in either
one, two, or three space dimensions. The above mathematical model (9.7)-(9.8) can
have initial conditions of the form:

∂u(x, 0)
∂t

= 0 and u(x, 0) = I(x). (9.9)

We consider here a scheme of the explicit type, which in three dimensions trans-
lates into the following time-stepping scheme:

ul+1
i,j,k = −ul−1

i,j,k + 2uli,j,k

+ c2
∆t2

∆x2

(
uli−1,j,k − 2uli,j,k + uli+1,j,k

)
+ c2

∆t2

∆y2

(
uli,j−1,k − 2uli,j,k + uli,j−1,k

)
+ c2

∆t2

∆z2

(
uli,j,k−1 − 2uli,j,k + uli,j,k+1

)
+ ∆t2f(xi, yj , zk, l∆t). (9.10)

Here, we have assumed that the superscript l indicates the time level and the sub-
scripts i, j, k refer to a uniform spatial computational mesh with constant cell lengths
∆x, ∆y, and ∆z.

9 Parallel PDE Solvers in Python 315

The Serial Wave Solver

A serial solver has already been programmed in C, where the three-dimensional com-
putational module works at each time level as follows:

pos = offset0+offset1; /* skip lower boundary layer (in x)*/
for (i=1; i<nx; i++) {
for (j=1; j<ny; j++) {
for (k=1; k<nz; k++) {
++pos;
u[pos] = -um2[pos] + 2*um[pos] +
Cx2*(um[pos-offset0] - 2*um[pos] + um[pos+offset0]) +
Cy2*(um[pos-offset1] - 2*um[pos] + um[pos+offset1]) +
Cz2*(um[pos-1] - 2*um[pos] + um[pos+1]) +
dt2*source3D(x[i], y[j], z[k], t_old);

}
pos += 2; /* skip the two boundary layers (in z)*/

}
pos += 2*offset1; /* skip the two boundary layers (in y)*/

}

Here, the arrays u, um, and um2 refer to ul+1, ul, ul−1, respectively. For the pur-
pose of computational efficiency, each conceptually three-dimensional array actually
uses the underlying data structure of a long one-dimensional array. This underlying
data structure is thus utilized in the above three-level nested for-loop, where we
have offset0=(ny+1)*(nz+1) and offset1=nz+1. The variables Cx2, Cy2, Cz2,
dt2 contain the constant values c2∆t2/∆x2, c2∆t2/∆y2, c2∆t2/∆z2, and ∆t2, re-
spectively.

Parallelization

Regarding the parallelization, the array-level approach presented in Section 9.3.2
applies directly to this type of explicit finite difference schemes. The main modifi-
cations of the serial code involve (1) the global computational mesh is divided into
a P = Nx ×Ny or P = Nx ×Ny ×Nz lattice, (2) each processor only constructs
its local array objects including ghost points on the internal boundary, and (3) dur-
ing each time step, a communication procedure for updating the internal boundary
values is carried out after the serial computational module is invoked.

We show in the following the main content of a parallel wave solver implemented
in Python:

from BoxPartitioner import *
read ’gnum_cells’ & ’parts’ from command line ...
partitioner=PyParBoxPartitioner3D(my_id=my_id,

num_procs=num_procs,
global_num_cells=gnum_cells,
num_parts=parts,
num_overlaps=[1,1,1])

partitioner.prepare_communication ()
loc_nx,loc_ny,loc_nz = partitioner.get_num_loc_cells ()
create the subdomain data arrays u, um, um2 ...
enforce the initial conditions (details skipped)

316 X. Cai and H. P. Langtangen

Table 9.2. A comparison of the two-dimensional performance between a mixed Python-C
implementation and and pure C implementation. The global mesh has 2000× 2000 cells (i.e.,
2001× 2001 points) and there are 5656 time steps.

Mixed Python-C Pure C
P Wall-time Speedup Wall-time Speedup
1 2137.18 N/A 1835.38 N/A
2 1116.41 1.91 941.59 1.95
4 649.06 3.29 566.34 3.24
8 371.98 5.75 327.98 5.60
12 236.41 9.04 227.55 8.07
16 193.83 11.03 175.18 10.48

import cloops
t = 0.0
while t <= tstop:

t_old = t; t += dt
u = cloops.update_interior_pts3D(u,um,um2,x,y,z,

Cx2,Cy2,Cz2,
dt2,t_old)

partitioner.update_internal_boundaries (u)
enforce boundary condition where needed ...
tmp = um2; um2 = um; um = u; u = tmp;

Note that the get num loc cells method of class BoxPartitioner returns the num-
ber of local cells for each subdomain. The cloops.update interior pts3D call
invokes the serial three-dimensional computational module written in C. We also as-
sume that the C computational module is placed in a file named cloops.c, which
also contains the wrapper code needed for accessing the Python data structures in C.
For more details we refer to [1].

Large-Scale Simulations

A two-dimensional 2000×2000 mesh and a three-dimensional 200×200×200 mesh
are chosen for testing the parallel efficiency of the mixed Python-C wave equation
solver. For each global mesh, the value of P is varied between 1 and 16, and parallel
simulations of the model problem (9.7)-(9.9) are run on P processors. Tables 9.2 and
9.3 report the wall-clock time measurements (in seconds) of the entire while-loop,
i.e., the time-stepping part of solving the wave equation. We remark that the number
of time steps is determined by the global mesh size, independent of P .

It can be observed from both tables that the mixed Python-C implementation is
of approximately the same speed as the pure C implementation. The speed-up re-
sults of the two-dimensional mixed Python-C implementation scale slightly better
than the pure C implementation. There are at least two reasons for this somewhat
unexpected behavior. First, the Python-C implementation has a better computation-
communication ratio, due to the overhead of repeatedly invoking a C function and
executing the while-loop in Python. We note that this type of overhead is also present

9 Parallel PDE Solvers in Python 317

Table 9.3. A comparison of performance between a mixed Python-C implementation and
a pure C implementation for simulations of a three-dimensional wave equation. The global
mesh has 200× 200× 200 cells and there are 692 time steps.

Mixed Python-C Pure C
P Wall-time Speedup Wall-time Speedup
1 735.89 N/A 746.96 N/A
2 426.77 1.72 441.51 1.69
4 259.84 2.83 261.39 2.86
8 146.96 5.01 144.27 5.18
12 112.01 6.57 109.27 6.84
16 94.20 7.81 89.33 8.36

when P = 1. Regarding the overhead associated only with communication, we re-
mark that it consists of three parts: preparing outgoing messages, message exchange,
and extracting incoming messages. The larger latency value of pypar-MPI than that
of C-MPI thus concerns only the second part, therefore it may have an almost invisi-
ble impact on the overall performance. In other words, care should be taken to imple-
ment the message preparation and extraction work efficiently, and the index slicing
functionality of Python arrays clearly seems to have sufficient efficiency for these
purposes. Second, the better speed-up results of the mixed Python-C implementation
may sometimes be attributed to the cache effects. To understand this, we have to re-
alize that any mixed Python-C implementation always uses (slightly) more memory
than its pure C counterpart. Consequently, the mixed Python-C implementation has
a better chance of letting bad cache use “spoil” its serial (P = 1) performance, and
it will thus in some special cases scale better when P > 1.

We must remark that the relatively poor speed-up results in Table 9.3, for
both pure C and mixed Python-C implementations, are due to the relatively small
computation-communication ratio in these very simple three-dimensional simula-
tions, plus the use of blocking MPI send/receive routines [11]. For P = 1 in par-
ticular, the better speed of the mixed Python-C implementation is due to a fast
one-dimensional indexing scheme of the data in the cloop.update interior pts3D

function (which is migrated to C), as opposed to the relatively expansive triple in-
dexing scheme (such as u[i][j][k]) in the pure C implementation. The relatively
slow communication speed of the Linux cluster also considerably affects the scala-
bility. Non-blocking communication routines can in principle be used for improving
such simple parallel simulations. For example, in the pure C implementation, rou-
tines such as MPI Isend and MPI Irecv may help to overlap communication with
computation and thus hide the overhead of communication. At the moment of this
writing, the pypar package has not implemented such non-blocking communication
routines, whereas pyMPI has non-blocking communication routines but with rela-
tively slow performance. On the other hand, measurements in Table 9.3 are meant to
provide an accurate idea of the size of the Python-induced communication overhead,
so we have deliberately sticked to blocking communication routines in our pure C
implementations.

318 X. Cai and H. P. Langtangen

9.5.2 Schwarz-Type Parallelization of a Boussinesq Solver

In the preceding case, an explicit finite difference algorithm constitutes the PDE
solver. The parallelization is thus carried out at the array level, see Section 9.3.2.
To demonstrate a case of parallelizing a PDE solver at a higher level, as discussed
in Section 9.3.3, let us consider the parallelization of an implicit PDE solver imple-
mented in a legacy Fortran 77 code. The original serial code consists of loop-based
subroutines, which heavily involve low-level details of array indexing. It was devel-
oped 15 years ago without any paying attention to parallelization. Thus, this case
study shows how the new Python class hierarchy BoxPartitioner can help to im-
plement a Schwarz-type parallelization of old legacy codes.

The choice of the Schwarz-type approach for this case is motivated by two fac-
tors. First, the serial numerical scheme is not straightforward to parallelize using the
array-level approach. Second, which is actually a more important motivation, the
Schwarz-type parallelization approach alleviates the need of having to completely
understand the low-level details of the internal loops and array indexing in the old-
style Fortran code.

The Boussinesq Water Wave Equations

The mathematical model of the present case is the following system of Boussinesq
water wave equations:

∂η

∂t
+∇ · q = 0, (9.11)

∂φ

∂t
+
α

2
∇φ · ∇φ+ η − ε

2
H∇ ·

(
H∇∂φ

∂t

)
+
ε

6
H2∇2 ∂φ

∂t
= 0, (9.12)

which can be used to model weakly dispersive and weakly nonlinear water surface
waves. The primary unknowns of the above PDEs are the water surface elevation
η(x, y, t) and the depth-averaged velocity potential φ(x, y, t). Equation (9.11) is of-
ten referred to as the continuity equation, where the flux function q is given by

q = (H + αη)∇φ+ εH

(
1
6
∂η

∂t
− 1

3
∇H · ∇φ

)
∇H, (9.13)

and H(x, y) denotes the water depth. Equation (9.12) is a variant of the Bernoulli
(momentum) equation, where the constants α and ε control the degree of nonlinearity
and dispersion. For more details we refer to [25].

For the present test case, we assume that the two-dimensional solution domainΩ
is of a rectangular shape, i.e., Ω = [0, Lx] × [0, Ly]. On the boundary ∂Ω, no-flux
conditions are valid as

q · n = 0 and ∇φ · n = 0, (9.14)

where n denotes as usual the outward unit normal on ∂Ω. In addition, the Boussi-
nesq equations are supplemented with initial conditions in the form of prescribed
η(x, y, 0) and φ(x, y, 0).

9 Parallel PDE Solvers in Python 319

The Numerical Scheme

As a concrete case of applying the Schwarz-type parallelization approach, we con-
sider an old serial legacy Fortran 77 code that uses a semi-implicit numerical scheme
based on finite differences. Most of the parallelization effort involves using the F2PY
tool to automatically generate wrapper code of the Fortran subroutines and calling
methods of PyParBoxPartitioner2D for the needed communication operations. It
should be noted that other implicit numerical schemes can also be parallelized in the
same approach. We refer to [12, 6] for another example of an implicit finite element
numerical scheme, which has been parallelized on the basis of additive Schwarz it-
erations.

The legacy code adopts a time stepping strategy for uniform discrete time levels
�∆t, � ≥ 1, and the temporal discretization of (9.11)-(9.12) is as follows:

η	 − η	−1

∆t
+∇ ·

((
H + α

η	−1 + η	

2

)
∇φ	−1 +

εH

(
1
6
η	 − η	−1

∆t
− 1

3
∇H · ∇φ	−1

)
∇H

)
= 0, (9.15)

φ	 − φ	−1

∆t
+
α

2
∇φ	−1 · ∇φ	−1 + η	 − ε

2
H∇ ·

(
H∇

(
φ	 − φ	−1

∆t

))
+

ε

6
H2∇2

(
φ	 − φ	−1

∆t

)
= 0. (9.16)

Moreover, by introducing an intermediate solution field FT (note that FT is a single
entity, not F times T),

FT 	 ≡ φ	 − φ	−1

∆t
, such that FT 	i,j ≈

∂φ

∂t
(i∆x, j∆y, l∆t), (9.17)

we can simplify the discretized Bernoulli equation (9.16) as

FT 	 − ε

2
H∇ · (H∇FT) +

ε

6
H2∇2FT 	 = −α

2
∇φ	−1 · ∇φ	−1 − η	. (9.18)

In other words, the computational work of the numerical scheme at time level �
consists of the following sub-steps:

1. Solve (9.15) with respect to η	 using η	−1 and φ	−1 as known quantities.
2. Solve (9.18) with respect to FT 	 using η	 and φ	−1 as known quantities.
3. Update the φ solution by

φ	 = φ	−1 +∆tFT 	. (9.19)

We note that the notation FT arises from the corresponding variable name used in
the legacy Fortran code.

By a standard finite difference five-point stencil, the spatial discretization of
(9.15)-(9.18) will give rise to two systems of linear equations:

320 X. Cai and H. P. Langtangen

Aη(φ	−1)η	 = bη(η	−1,φ	−1), (9.20)

AFTFT
	 = bFT (η	,φ	−1). (9.21)

The η	 vector contains the approximate solution of η at (i∆x, j∆y, l∆t), while the
FT 	 vector contains the approximate solution of ∂φ/∂t at t = �∆t. The entries
of matrix Aη depend on the latest φ approximation, whereas matrix AFT remains
unchanged throughout the entire time-stepping process. The right-hand side vectors
bη and bFT depend on the latest η and φ approximations.

Parallelization

The existing serial Fortran 77 code uses the line-version of SSOR iterations to solve
the linear systems (9.20) and (9.21). That is, all the unknowns on one mesh line are
updated simultaneously, which requires solving a tridiagonal linear system per mesh
line (in both x- and y-direction). Such a serial numerical scheme is hard to parallelize
using the array-level approach (see Section 9.3.2). Therefore, we adopt the Schwarz-
type parallelization approach from Section 9.3.3, which in this case means that the
subdomain solver needed in (9.6) invokes one or a few subdomain line-version SSOR
iterations embedded in the legacy Fortran 77 code.

A small extension of the Fortran 77 code is necessary because of the involvement
of the artificial boundary condition (9.6) on each subdomain. However, this extension
is not directly programmed into the old Fortran subroutines. Instead, two new “wrap-
per” subroutines, iteration continuity and iteration bernoulli, are written
to handle the discretized continuity equation (9.15) and the discretized Bernoulli
equation (9.18), respectively. These two wrapper subroutines use F2PY and are very
light-weight in the sense that they mainly invoke the existing old Fortran subroutines
as “black boxes”. The only additional work in the wrapper subroutines is on testing
whether some of the four side neighbors are absent. For each absent side neighbor,
the original physical boundary conditions (9.14) must be enforced. Otherwise, the
communication method update overlap regions takes care of enforcing the artifi-
cial Dirichlet boundary condition required in (9.6).

The resulting parallel Python program runs additive Schwarz iterations at a high
level for solving both (9.20) and (9.21) at each time level. In a sense, the Schwarz
framework wraps the entire legacy Fortran 77 code with a user-friendly Python in-
terface. The main content of the Python program is as follows:

from BoxPartitioner import *
read in ’gnum_cells’,’parts’,’overlaps’ ...
partitioner=PyParBoxPartitioner2D(my_id=my_id,

num_procs=num_procs,
global_num_cells=gnum_cells,
num_parts=parts,
num_overlaps=overlaps)

partitioner.prepare_communication ()
loc_nx,loc_ny = partitioner.get_num_loc_cells ()
create subdomain data arrays ...
enforce initial conditions ...

9 Parallel PDE Solvers in Python 321

lower_x_neigh = partitioner.lower_neighbors[0]
upper_x_neigh = partitioner.upper_neighbors[0]
lower_y_neigh = partitioner.lower_neighbors[1]
upper_y_neigh = partitioner.upper_neighbors[1]

import BQ_solver_wrapper as f77 # interface to legacy code

t = 0.0
while t <= tstop:

t += dt

solve the continuity equation:
dd_iter = 0
not_converged = True
nbit = 0

while not_converged and dd_iter < max_dd_iters:
dd_iter++
Y_prev = Y.copy() # remember old eta values
Y, nbit = f77.iteration_continuity (F, Y, YW, H,

QY, WRK, dx, dy, dt, kit,
ik, gg, alpha, eps, nbit,
lower_x_neigh, upper_x_neigh,
lower_y_neigh, upper_y_neigh)

communication
partitioner.update_overlap_regions (Y)
not_converged = check_convergence (Y, Y_prev)

solve the Bernoulli equation:
dd_iter = 0
not_converged = True
nbit = 0

while not_converged and dd_iter < max_dd_iters:
dd_iter++
FT_prev = FT.copy() # remember old FT values
FT, nbit = f77.iteration_bernoulli (F, FT, Y, H,

QR,R,WRK, dx, dy, dt, ik,
alpha, eps, nbit,
lower_x_neigh, upper_x_neigh,
lower_y_neigh, upper_y_neigh)

communication
partitioner.update_overlap_regions (FT)
not_converged = check_convergence (FT, FT_prev)

F += dt*FT # update the phi field

The interface to the Fortran wrapper code is imported by the statement

import BQ_solver_wrapper as f77

The code above shows that a large number of NumPy arrays and other parameters
are sent as input arguments to the two wrapper subroutines iteration continuity

and iteration bernoulli. The arrays are actually required by the old Fortran sub-
routines, which are used as “black boxes”. The large number of input arguments
shows a clear disadvantage of old-fashion Fortran programming. In particular, the

322 X. Cai and H. P. Langtangen

Table 9.4. The wall-time measurements of the parallel Python Boussinesq solver. The global
uniform mesh is 1000× 1000 and the number of time steps is 40. The number of overlapping
cell layers between neighboring subdomains is 8.

P Partitioning Wall-time Speed-up
1 N/A 1810.69 N/A
2 1× 2 847.53 2.14
4 2× 2 483.11 3.75
6 2× 3 332.91 5.44
8 2× 4 269.85 6.71
12 3× 4 187.61 9.65
16 2× 8 118.53 15.28

arrays Y, FT, and F contain the approximate solutions of η, FT , and φ, respectively.
The other arrays contain additional working data, and will not be explained here.
The IDs of the four side neighbors, lower x neigh, upper x neigh, lower y neigh,
and upper y neigh, are also sent in as the input arguments. These neighbor IDs are
needed in the the wrapper subroutines for deciding whether to enforce the original
physical boundary conditions on the four sides. We also note that the input/output
argument nbit (needed by the existing old Fortran subroutines) is an integer accu-
mulating the total number of line-version SSOR iterations used so far in each loop
of the additive Schwarz iterations.

To test the convergence of the additive Schwarz iterations, we have coded a sim-
ple Python method check convergence. This method compares the relative differ-
ence between xs,k and xs,k−1. More precisely, convergence is considered achieved
by the kth additive Schwarz iteration if

max
s

‖xs,k − xs,k−1‖
‖xs,k‖

≤ ε. (9.22)

Note that a collective communication is needed in check convergence. In (9.22) ε
denotes a prescribed convergence threshold value.

Measurements

We have chosen a test problem with α = ε = 1 and

Lx = Ly = 10, H = 1, φ(x, y, 0) = 0, η(x, y, 0) = 0.008 cos(3πx) cos(4πy).

The global uniform mesh is chosen as 1000 × 1000, and the time step size is ∆t =
0.05 with the end time equal to 2. The number of overlapping cell layers between the
neighboring subdomains has been chosen as 8. One line-version SSOR iteration is
used as the subdomain solver associated with solving (9.15), and three line-version
SSOR iterations are used as the subdomain solver associated with solving (9.18). The
convergence threshold value for testing the additive Schwarz iterations is chosen as
ε = 10−3 in (9.22).

9 Parallel PDE Solvers in Python 323

We remark that the legacy Fortran code is very difficult to parallelize in a pure
Fortran manner, i.e., using the array-level approach. Therefore, the performance of
the Schwarz-type parallel Python-Fortran solver is not compared with a “reference”
parallel Fortran solver, but only studied by examining its speed-up results in Ta-
ble 9.4. It can be seen that Table 9.4 has considerably better speed-up results than
Table 9.2. This is due to two reasons. First, the computation-communication ratio is
larger when solving the Boussinesq equations, because one line-version SSOR itera-
tion is more computation-intensive than one iteration of a seven-point stencil, which
is used for the three-dimensional linear wave equation. Second, allocating a large
number of data arrays makes the Boussinesq solver less cache-friendly than the lin-
ear wave solver for P = 1. This explains why there is a superlinear speed-up from
P = 1 to P = 2 in Table 9.4. These two reasons thus have a combined effect for
more favorable speed-up results, in spite of the considerable size of the overlap zone
(8 layers).

9.6 Summary

It is well known that Python handles I/O, GUI, result archiving, visualization, report
generation, and similar tasks more conveniently than the low-level languages like
Fortran and C (and even C++). We have seen in this chapter the possibility of using
high-level Python code for invoking inter-processor communications. We have also
investigated the feasibility of parallelizing serial PDE solvers with the aid of Python,
which is quite straightforward due to easy re-use of existing serial computational
modules. Moreover, the flexible and structured style of Python programming helps
to code the PDE-independent parallelization tasks as generic methods. As an exam-
ple, an old serial legacy Fortran 77 code has been parallelized using Python with mi-
nor efforts. The performance of the resulting parallel Python solver depends on two
things: (1) good serial performance which can be ensured by the use of NumPy ar-
rays, vectorization, and mixed-language implementation, (2) high-performance mes-
sage passing and low cost of constructing and extracting data messages, for which
it is important to combine the pypar package with the functionality of array slicing
and reshaping. Doing this right, our numerical results show that comparable parallel
performances with respect to pure Fortran/C implementations can be obtained.

Acknowledgement

The authors would like to thank Prof. Geir Pedersen at the Department of Mathemat-
ics, University of Oslo, for providing access to the Fortran Boussinesq legacy code
and guidance on the usage.

324 X. Cai and H. P. Langtangen

References

1. D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant. Numerical Python.
Technical report, Lawrence Livermore National Lab., CA, 2001.
http://www.pfdubois.com/numpy/numpy.pdf.

2. D. L. Brown, W. D. Henshaw, and D. J. Quinlan. Overture: An object-oriented frame-
work for solving partial differential equations. In Y. Ishikawa, R. R. Oldehoeft, J. V. W.
Reynders, and M. Tholburn, editors, Scientific Computing in Object-Oriented Parallel
Environments, Lecture Notes in Computer Science, vol 1343, pages 177–184. Springer,
1997.

3. A. M. Bruaset, X. Cai, H. P. Langtangen, and A. Tveito. Numerical solution of PDEs
on parallel computers utilizing sequential simulators. In Y. Ishikawa, R. R. Oldehoeft,
J. V. W. Reynders, and M. Tholburn, editors, Scientific Computing in Object-Oriented
Parallel Environments, Lecture Notes in Computer Science, vol 1343, pages 161–168.
Springer, 1997.

4. X. Cai and H. P. Langtangen. Developing parallel object-oriented simulation codes in
Diffpack. In H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner, editors, Proceed-
ings of the Fifth World Congress on Computational Mechanics, 2002.

5. X. Cai, H. P. Langtangen, and H. Moe. On the performance of the Python program-
ming language for serial and parallel scientific computations. Scientific Programming,
13(1):31–56, 2005.

6. X. Cai, G. K. Pedersen, and H. P. Langtangen. A parallel multi-subdomain strategy for
solving Boussinesq water wave equations. Advances in Water Resources, 28(3):215–233,
2005.

7. T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In Acta Numerica 1994,
pages 61–143. Cambridge University Press, 1994.

8. D. B. et al. Swig 1.3 Development Documentation, 2004. http://www.swig.org/
doc.html.

9. F2PY software package. http://cens.ioc.ee/projects/f2py2e.
10. L. Formaggia, M. Sala, and F. Saleri. Domain decomposition techniques. In A. M. Bru-

aset and A. Tveito, editors, Numerical Solution of Partial Differential Equations on Par-
allel Computers, volume 51 of Lecture Notes in Computational Science and Engineering,
pages 135–163. Springer-Verlag, 2005.

11. M. P. I. Forum. MPI: A message-passing interface standard. Internat. J. Supercomputer
Appl., 8:159–416, 1994.

12. S. Glimsdal, G. K. Pedersen, and H. P. Langtangen. An investigation of domain decom-
position methods for one-dimensional dispersive long wave equations. Advances in Water
Resources, 27(11):1111–1133, 2005.

13. C. Hughes and T. Hughes. Parallel and Distributed Programming Using C++. Addison
Wesley, 2003.

14. H. P. Langtangen. Python Scripting for Computational Science. Texts in Computational
Science and Engineering, vol 3. Springer, 2004.

15. H. P. Langtangen and X. Cai. A software framework for easy parallelization of PDE
solvers. In C. B. Jensen, T. Kvamsdal, H. I. Andersson, B. Pettersen, A. Ecer, J. Peri-
aux, N. Satofuka, and P. Fox, editors, Parallel Computational Fluid Dynamics. Elsevier
Science, 2001.

16. Matlab code vectorization guide.
http://www.mathworks.com/support/tech-notes/1100/1109.html.

17. Numerical Python software package.
http://sourceforge.net/projects/numpy.

9 Parallel PDE Solvers in Python 325

18. P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers, 1997.
19. Parallel software in C and C++.

http://www.mathtools.net/C C /Parallel/.
20. R. Parsones and D. Quinlan. A++/P++ array classes for architecture independent finite

difference computations. Technical report, Los Alamos National Lab., NM, 1994.
21. PyMPI software package. http://sourceforge.net/projects/pympi, 2004.
22. PyPar software package. http://datamining.anu.edu.au/∼ole/pypar,

2004.
23. ScientificPython software package.

http://starship.python.net/crew/hinsen.
24. B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.
25. D. M. Wu and T. Y. Wu. Three-dimensional nonlinear long waves due to moving surface

pressure. Proc. 14th Symp. Naval Hydrodyn., pages 103–129, 1982.

10

Parallel PDE-Based Simulations Using the Common
Component Architecture

Lois Curfman McInnes1, Benjamin A. Allan2, Robert Armstrong2, Steven J.
Benson1, David E. Bernholdt3, Tamara L. Dahlgren4, Lori Freitag Diachin4,
Manojkumar Krishnan5, James A. Kohl3, J. Walter Larson1, Sophia Lefantzi6, Jarek
Nieplocha5, Boyana Norris1, Steven G. Parker7, Jaideep Ray8, and Shujia Zhou9

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, USA
[mcinnes,benson,larson,norris]@mcs.anl.gov

2 Scalable Computing R & D, Sandia National Laboratories (SNL), Livermore, CA, USA
[baallan,rob]@ca.sandia.gov

3 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA
[bernholdtde,kohlja]@ornl.gov

4 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA, USA
[dahlgren1,diachin2]@llnl.gov

5 Computational Sciences and Mathematics, Pacific Northwest National Laboratory,
Richland, WA, USA
[manojkumar.krishnan,jarek.nieplocha]@pnl.gov

6 Reacting Flow Research, SNL, Livermore, CA, USA
slefant@ca.sandia.gov

7 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
sparker@cs.utah.edu

8 Advanced Software R & D, SNL, Livermore, CA, USA
jairay@ca.sandia.gov

9 Northrop Grumman Corporation, Information Technology Sector, Chantilly, VA, USA
szhou@pop900.gsfc.nasa.gov

Summary. The complexity of parallel PDE-based simulations continues to increase as mul-
timodel, multiphysics, and multi-institutional projects become widespread. A goal of compo-
nent-based software engineering in such large-scale simulations is to help manage this com-
plexity by enabling better interoperability among various codes that have been independently
developed by different groups. The Common Component Architecture (CCA) Forum is defin-
ing a component architecture specification to address the challenges of high-performance sci-
entific computing. In addition, several execution frameworks, supporting infrastructure, and
general-purpose components are being developed. Furthermore, this group is collaborating
with others in the high-performance computing community to design suites of domain-specific
component interface specifications and underlying implementations.

328 L. C. McInnes et al.

This chapter discusses recent work on leveraging these CCA efforts in parallel PDE-based
simulations involving accelerator design, climate modeling, combustion, and accidental fires
and explosions. We explain how component technology helps to address the different chal-
lenges posed by each of these applications, and we highlight how component interfaces built
on existing parallel toolkits facilitate the reuse of software for parallel mesh manipulation,
discretization, linear algebra, integration, optimization, and parallel data redistribution. We
also present performance data to demonstrate the suitability of this approach, and we discuss
strategies for applying component technologies to both new and existing applications.

10.1 Introduction

The complexity of parallel simulations based on partial differential equations (PDEs)
continues to increase as multimodel, multiphysics, multidisciplinary, and multi-
institutional projects are becoming widespread. Coupling models and different types
of science increases the complexity of the simulation codes. Collaboration across
disciplines and institutions, while increasingly necessary, introduces new social intri-
cacies into the software development process, such as different programming styles
and different ways of thinking about problems. Added to these challenges, the soft-
ware must cope with the multilevel memory hierarchies common to modern parallel
computers where there may be three to five levels of data locality.

These challenges make it clear that the high-performance scientific computing
community needs an approach to software development for parallel PDEs that fa-
cilitates managing such complexity while maintaining scalable and efficient parallel
performance. Rather than being overwhelmed by the tedious details of parallel com-
puting, computational scientists must be able to focus on the particular part of a
simulation that is of primary interest to them (e.g., the physics of combustion) and
employ well-tested and optimized code developed by experts in other facets of a sim-
ulation (e.g., parallel linear algebra and visualization). Traditional approaches, such
as the widespread use of software libraries, have historically been valuable, but these
approaches are being severely strained by this new complexity.

One goal of component-based software engineering (CBSE) is to enable inter-
operability among software modules that have been developed independently by dif-
ferent groups. CBSE treats applications as assemblies of software components that
interact with each other only through well-defined interfaces within a particular exe-
cution environment, or framework. Components are a logical means of encapsulating
knowledge from one scientific domain for use by those in others, thereby facilitating
multidisciplinary interactions. The complexity of a given simulation is decomposed
into bite-sized components that one or a few investigators can develop independently,
thus enabling the collaboration of scores of researchers in the development of a single
simulation. The glue that binds the components together is a set of common, agreed-
upon interfaces. Multiple component implementations conforming to the same ex-
ternal interface standard should be interoperable, while providing flexibility to ac-
commodate different aspects such as algorithms, performance characteristics, and
coding styles. At the same time, the use of common interfaces facilitates the reuse

10 Parallel PDE-Based Simulations Using the CCA 329

Core CCA
Services

Optimi-
zation

Linear
Algebra

Data
Manage-

ment

Integration

Mesh
Manage-

ment

Reusable Scientific
Component Peers

ClimateCombustion

C-SAFE

Accelerators

Parallel PDE-Based
Applications

Etc…

Etc…

Fig. 10.1. Complete parallel PDE-based applications can be built by combining reusable sci-
entific components with application-specific components; both can employ core CCA services
to manage inter-component interactions.

of components across multiple applications. Even though details differ widely, many
PDE-based simulations share the same overall software structure. Such applications
could employ similar sets of components, which might conform to many of the same
interfaces but differ in implementation details. This kind of software reuse enables
the cross-pollination of both components and concepts across applications, projects,
and problem domains.

The Common Component Architecture (CCA) [28, 19, 8] is designed specifically
for the needs of parallel, scientific high-performance computing (HPC) in response
to limitations in the general HPC domain of other, more widely used component
approaches (see Section 10.3). The general-purpose design of the CCA is intended
for use in a wide range of scientific domains for both PDE-based and non-PDE-based
simulations.

As depicted in Figure 10.1, complete parallel PDE-based applications can be
built in a CCA environment by combining various reusable scientific components
with application-specific components. In keeping with the emphasis of this book, we
explain (1) how component software can help manage the complexity of PDE-based
simulations and (2) how the CCA, in particular, facilitates parallel scientific com-
putations. We do this in the context of four motivating PDE-based application areas,
which are introduced in Section 10.2. After presenting the basic concepts of the CCA
in Section 10.3, we provide an overview of some reusable scientific components and
explain how component interfaces built on existing parallel toolkits facilitate the
reuse of software for parallel mesh manipulation, discretization, linear algebra, inte-
gration, optimization, and parallel data redistribution. Section 10.5 discusses strate-
gies for applying component technologies to both new and existing applications, with
an emphasis on approaches for the decomposition of PDE-based problems, includ-
ing considerations for how to move from particular implementations to more general

330 L. C. McInnes et al.

abstractions. Section 10.6 integrates these ideas through case studies that illustrate
the application of component technologies and reusable components in the four mo-
tivating applications. Section 10.7 discusses conclusions and areas of future work.

10.2 Motivating Parallel PDE-Based Simulations

This section introduces four PDE-based application areas that motivate our work: ac-
celerator design, climate modeling, combustion, and accidental fires and explosions.

10.2.1 Accelerator Modeling

Fig. 10.2. State-of-the-art simulation
tools are used to help design the
next generation of accelerator facilities.
(Left): Mesh generated for the PEP-II in-
teraction region using the CUBIT mesh
generation package. Image courtesy of
Tim Tautges of Sandia National Labora-
tories. (Right): Excited fields computed
using Tau3P. Image courtesy of the nu-
merics team at SLAC. (For the color ver-
sion, see Figure A.19 on page 476).

Accelerators produce high-energy, high-speed
beams of charged subatomic particles for re-
search in high-energy and nuclear physics,
synchrotron radiation research, medical ther-
apies, and industrial applications. The design
of next-generation accelerator facilities, such
as the Positron-Electron Project (PEP)-II and
Rare Isotope Accelerator (RIA), relies heav-
ily on a suite of software tools that can be
used to simulate many different accelerator
experiments. Two of the codes used by ac-
celerator scientists at the Stanford Linear Ac-
celerator Center (SLAC) are Omega3P [117]
and Tau3P [134]. Omega3P is an extensi-
ble, parallel, finite element-based code for the
eigenmode modeling of large, complex three-
dimensional electromagnetic structures in the
frequency domain, while Tau3P provides so-
lutions to electromagnetics problems in the
time domain. Both codes make extensive use
of unstructured mesh infrastructures to ac-
commodate the complex geometries associ-
ated with accelerator models. In order to over-
come barriers to computation and to improve
functionality, both codes are being evaluated
for possible extension.

For Tau3P, different discretization strategies are being explored to address long-
time instabilities on certain types of meshes. Tau3P is based on a modified Yee
algorithm formulated on an unstructured grid and uses a discrete surface integral
(DSI) method to solve Maxwell’s equations. Since the DSI scheme is known to have
potential instabilities on nonorthogonal meshes, scientists are using a time filtering
technique that maintains stability in most cases, but at a significantly higher com-
putational cost. Unfortunately, integrating new discretization techniques is costly;

10 Parallel PDE-Based Simulations Using the CCA 331

and, because of resource constraints, several potentially useful methods cannot be
investigated. A component-based approach that allows scientists to easily prototype
different discretization and meshing strategies in a plug-and-play fashion would be
useful in overcoming this obstacle.

For Omega3P, solutions are being explored that yield more accurate results with-
out increasing the computational cost. That is, scientists are satisfied with the finite-
element-based solver but cannot increase mesh resolution to reduce the large errors
that occur in small regions of the computational domain. To overcome this barrier,
SLAC scientists are working with researchers at Rensellaer Polytechnic Institute
(RPI) to develop an adaptive mesh refinement (AMR) capability. Despite initially
using a file-based information transfer mechanism, this effort has clearly demon-
strated the advantage of AMR techniques to compute significantly more accurate
solutions at a reduced computational cost. As described in Section 10.6.1, current ef-
forts are centered on directly deploying these advanced capabilities in the Omega3P
code by using a component approach. This approach has made the endeavor more
tractable and has given scientists the flexibility of later experimenting with different
underlying AMR infrastructures at little additional cost.

In order to facilitate the use of different discretization and meshing strategies,
there is a need for a set of common interfaces that provide access to mesh and geom-
etry information. A community effort to specify such interfaces is described in Sec-
tion 10.4.1, and results of a performance study using a subset of those interfaces are
discussed in Section 10.4.8.

10.2.2 Climate Modeling

Climate is the overall product of the mutual interaction of the Earth’s atmosphere,
oceans, biosphere, and cryosphere. These systems interact by exchanging energy,
momentum, moisture, chemical fluxes, etc. The inherent nonlinearity of each subsys-
tem’s equations of evolution makes direct modeling of the climate—which is the set
of statistical moments sampled over a large time scale—almost impossible. Instead,
climate modeling is accomplished through integrations of coupled climate system
models for extended periods, ranging from the century to millennial time scales, log-
ging of model history output sampled at short time scales, and subsequent off-line
analysis to compute climate statistics.

PDEs arise in many places in the climate system, most significantly in the dy-
namics of the atmosphere, ocean, and sea-ice. The ocean and atmosphere are both
modeled as thin spherical shells of fluid in a rotating reference frame, using in each
case a system of coupled PDEs governing mass, energy, and momentum conserva-
tion, called the primitive equations. Modern sea-ice models simulate the formation
and melting of ice (the thermodynamics of the problem), how the ice pack is forced
by surface winds and ocean currents, and how it behaves as a material (its dynam-
ics and rheology). Schemes such as the elastic-viscous plastic (EVP) scheme [60]
involve the solution of PDEs.

Climate modeling is a grand challenge high-performance computing applica-
tion, requiring highly efficient and scalable algorithms capable of providing the high

332 L. C. McInnes et al.

throughput needed for long-term integrations. To illustrate the high simulation costs,
we consider the NASA finite-volume General Circulation Model. A 500-model-day
simulation using this model, with a horizontal resolution of 0.5◦ latitude by 0.625◦

longitude and 32 vertical layers, takes a wall-clock day to run on a 1.25-GHz Com-
paq AlphaServer SC45 with 250 CPUs [83].

Fig. 10.3. Displaced pole grid on
which the Parallel Ocean Program ocean
model [101] solves its primitive equa-
tions. The polar region is displaced to lie
over land, thereby minimizing the prob-
lems encountered at high latitudes by
finite-difference schemes. Image cour-
tesy of Phillip Jones and Richard Smith,
Los Alamos National Laboratory.

The requirements for coping with multi-
ple, coupled physical processes as well the re-
quirements for parallel computing make soft-
ware development even more challenging.
The traditional development process for these
models was the creation of highly entangled
applications that made little reuse of code
and made the interchange of functional units
difficult. In recent years, the climate/weath-
er/ocean (CWO) community has embarked
on an effort to increase modularity and inter-
operability, the main motivation being a de-
sire to accelerate the development, testing,
and validation cycle. This effort is position-
ing the community for the introduction of
software component technology, and there is
now an emerging community wide applica-
tion framework, the Earth System Modeling
Framework [67].

In Section 10.4.7 we discuss the use of
CCA components for climate model cou-
pling. In Section 10.6.2 we describe the multi-
ple software scales at which component tech-
nology is appropriate in climate system mod-
els. We briefly describe the ESMF and its relationship to the CCA, and we provide an
example of CWO code refactoring to make it component friendly. We also describe
a prototype component-based advection model that combines the interoperable com-
ponent paradigms of the CCA and ESMF.

10.2.3 Combustion

The study of flames, experimentally and computationally, requires the resolution of
a wide range of length and time scales arising from the interaction of chemistry,
radiation, and transport (diffusive and convective). The complexity and expense in-
volved in the experimental study of flames were recognized two decades ago, and the
Combustion Research Facility [37] was created as a “user facility” whose equipment
and expertise would be freely available to industry and academia. Today a similar
challenge is being faced in the high-fidelity numerical simulations of flames [102].
Existing simulations employ a variety of numerical and parallel computing strate-
gies to achieve an accurate resolution of physics and scales, with the unfortunate

10 Parallel PDE-Based Simulations Using the CCA 333

side effect of producing large, complex and ultimately unwieldy codes. Their lack of
extensibility and difficulty of maintenance have been a serious impediment and were
the prime motive for establishing in 2001 the Computational Facility for Reacting
Flow Science (CFRFS) [90], a “simulation facility” where various numerical algo-
rithms, physical and chemical models, meshing strategies, and domain partitioners
may be tested in flame simulations.

Fig. 10.4. A 10-cm-high pulsating
methane-air jet flame, computed on an
adaptive mesh. On the left is the temper-
ature field with a black contour show-
ing regions of high heat release rates. On
the right is the adaptive mesh, in which
regions corresponding to the jet shear
layer are refined the most. (For the color
version, see Figure A.20 on page 476).

In the CFRFS project, flames are solved
by using the low Mach number form of the
Navier-Stokes equation [130, 91], augmented
by evolution equations for the various chem-
ical species and an energy equation with a
source term to incorporate the contribution
from chemical reactions. The objective of the
project is to simulate laboratory-sized flames
with detailed chemistry, a problem that ex-
hibits a wide spectrum of length and time
scales. Block-structured adaptive meshes [17]
are used to limit fine meshes only where (and
when) required; operator-splitting [114, 68] is
used to treat stiff chemical terms implicitly in
time, while the convective and diffusive terms
are advanced explicitly. In many cases, the
stiff chemical system can be rendered nons-
tiff (without any appreciable loss of fidelity)
by projection onto a lower-dimensional man-
ifold. The identification of this manifold and
the projection onto it are achieved by compu-
tational singular perturbation (CSP) [70, 75],
a multiscale asymptotic method that holds the
promise of significantly reducing the cost of solving the chemical system.

Given the scope of the simulation facility, the requisite degree of flexibility and
extensibility clearly could not be achieved without a large degree of modulariza-
tion and without liberating the users (with widely varying levels of computational
expertise) from the strait jacket imposed by global data-structures and models. Mod-
ularization was achieved by adopting a component-based architecture, and the mul-
tidimensional Fortran array was adopted as the basic unit of data exchange among
scientific components. The simulation facility can thus be viewed as a toolkit of
components, each embodying a certain numerical or physical functionality, mostly
implemented in Fortran 77, with thin C++ “wrappers” around them.

In Section 10.4.2 we discuss SAMR components used in this application, and
in Section 10.5 we detail the strategy we adopted to decompose mathematical and
simulation requirements into modules, while preserving a close correspondence be-
tween the software components and identifiable physics in the governing equations.
In Section 10.6.3 we demonstrate the payoffs of adopting such a physics-based ap-
proach.

334 L. C. McInnes et al.

10.2.4 Accidental Fires and Explosions

In 1997 the University of Utah created an alliance with the U.S. Department of En-
ergy (DOE) Accelerated Strategic Computing Initiative (ASCI) to form the Center
for the Simulation of Accidental Fires and Explosions (C-SAFE) [55]. C-SAFE fo-
cuses on providing state-of-the-art, science-based tools for the numerical simulation
of accidental fires and explosions, especially within the context of handling and stor-
ing highly flammable materials. The primary objective of C-SAFE is to provide a
software system in which fundamental chemistry and engineering physics are fully
coupled with nonlinear solvers, optimization, computational steering, visualization,
and experimental data verification, thereby integrating expertise from a wide variety
of disciplines. Simulations using this system will help to better evaluate the risks
and safety issues associated with fires and explosions in accidents involving both
hydrocarbon and energetic materials. A typical C-SAFE problem is shown in Fig-
ure 10.5. Section 10.6.4 discusses the use of component concepts in this application
and demonstrates scalable performance on a variety of parallel architectures.

Fig. 10.5. A typical C-SAFE problem in-
volving hydrocarbon fires and explosions of
energetic materials. This simulation involves
fluid dynamics, structural mechanics, and
chemical reactions in both the flame and
the explosive. Accurate simulations of these
events can lead to a better understanding of
high-energy explosives, can help evaluate the
design of shipping and storage containers for
these materials, and can help officials de-
termine a response to various accident sce-
narios. The fire image is courtesy of Schon-
bucher Institut for Technische Chemie I der
Universitat Stuttgart, and the images of the
container and explosion are courtesy of Eric
Eddings of the University of Utah. (For the
color version, see Figure A.21 on page 477).

10.3 High-Performance Components

High-performance components offer a means to deal with the ever-increasing com-
plexity of scientific software, including the four applications introduced in Sec-
tion 10.2. We first introduce general component concepts, discuss the Common Com-
ponent Architecture (CCA), and then introduce two simple PDE-based examples to
help illustrate CCA principles and components.

10 Parallel PDE-Based Simulations Using the CCA 335

10.3.1 Component-Based Software Engineering

In addition to the advantages of component-based software engineering (CBSE; see,
e.g., [118]) discussed in Section 10.1, component-based approaches offer additional
benefits, including the following:

• Plug-and-play assembly improves productivity, especially when a significant
number of components can be used without customization, and simplifies the
evolution of applications to meet new requirements or address new problems.

• Clear interfaces and boundaries around components simplify the composition of
multiple componentized libraries in ways that may be difficult or impossible with
software libraries in their traditional forms. This approach also helps researchers
to focus on the particular aspects of the problem corresponding to their interests
and expertise.

• Components enable adaptation of applications in ways that traditional design
cannot. For example, interface standards facilitate swapping of components to
modify behavior or performance; such changes can even be made automatically
without user intervention [94].

As implied above and in Section 10.1, CBSE can be thought of, in many re-
spects, as an extension and refinement of the use of software libraries—a popular
and effective approach in modern scientific computing. Components are also related
to “domain-specific computational frameworks” or “application frameworks,” which
have become popular in recent years (e.g., Cactus [6], ESMF [67], and PRISM [53]).
Typically, such environments provide deep computational support for applications
in a given domain, and applications are constructed at a relatively high level. Many
application frameworks even have a componentlike structure at the high level, allow-
ing arbitrary code to be plugged in to the framework. Application frameworks are
more constrained than general component environments because the ability to reuse
components across scientific domains is quite limited, and the framework tends to
embody assumptions about the workflow of the problem domain. General compo-
nent models do not impose such constraints or assumptions and provide broader op-
portunities for reuse. Domain-specific frameworks can be constructed within general
component environments by casting the domain-specific infrastructure and workflow
as components.

Several component models have attained widespread use in mainstream comput-
ing, especially Enterprise JavaBeans [44, 109], Microsoft’s COM/DCOM [26], and
the Object Management Group’s CORBA and the CORBA Component Model [95].
Despite its advantages, however, CBSE has found only limited adoption in the scien-
tific computing community to date [63, 99, 84]. Unfortunately, the commodity com-
ponent models tend to emphasize distributed computing while more or less ignoring
parallel computing, impose significant performance overheads, or require significant
changes to existing code to enable it to operate within the component environment.
Additional concerns with many component models include support for programming
languages important to scientific computing, such as Fortran; support for data types,
such as complex numbers and arrays; and operating system support. The Common

336 L. C. McInnes et al.

Component Architecture has been developed in direct response to the need for a
component environment targeted to the needs of high-performance scientific com-
puting.

10.3.2 The Common Component Architecture

The Common Component Architecture [28] is the core of an extensive research and
development program focused on understanding how best to utilize and implement
component-based software engineering practices in the high-performance scientific
computing area, and on developing the specifications and tools that will lead to a
broad spectrum of CCA-based scientific applications. A comprehensive description
of the CCA, including more detailed presentations of many aspects of the environ-
ment is available [19]; here we present a brief overview of the CCA environment,
focusing on the aspects most relevant to parallel PDE-based simulations.

The specification of the Common Component Architecture [29] defines the
rights, responsibilities, and relationships among the various elements of the model.
Briefly, the elements of the CCA model are as follows:

• Components are units of software functionality that can be composed together
to form applications. Components encapsulate much of the complexity of the
software inside a black box and expose only well-defined interfaces.

• Ports are the abstract interfaces through which components interact. Specifically,
CCA ports provide procedural interfaces that can be thought of as a class or an
interface in object-oriented languages, or a collection of subroutines, or a module
in a language such as Fortran 90. Components may provide ports, meaning that
they implement the functionality expressed in a port (called provides ports), or
they may use ports, meaning that they make calls on a port provided by another
component (called uses ports). The notion of CCA ports is less restrictive than
hardware ports: ports are not assumed to be persistent, e.g., available throughout
an application’s lifetime, and each port can have different access attributes, such
as the number of simultaneous connections.

• Frameworks manage CCA components as they are assembled into applications
and executed. The framework is responsible for connecting uses and provides
ports without exposing the components’ implementation details. The framework
also provides a small set of standard services that are available to all components.

Several frameworks that implement the CCA specification and support various
computing environments have been developed. Ccaffeine [3] and SCIRun2 [135],
used by the applications in this chapter, focus on high-performance parallel comput-
ing, while XCAT [61, 52] primarily supports distributed computing applications;
several other frameworks are being used as research tools.

The importance of efficient and scalable performance in scientific computing is
reflected in both the design of the CCA specification and the features of the various
framework implementations. The CCA’s uses/provides design pattern allows compo-
nents in the same process address space to be invoked directly, without intervention

10 Parallel PDE-Based Simulations Using the CCA 337

by the framework, and with data passed by reference if desired (also referred to as
“direct connect,” “in-process,” or “co-located” components). In most CCA frame-
works, this approach makes local method calls between components equivalent to
C++ virtual function calls, an overhead of roughly 50 ns on a 500 MHz Pentium
system (compared to 17 ns for a subroutine call in a non-object-oriented language
such as C or Fortran) [21].

The CCA approach to parallelism. For parallel computing, the CCA has cho-
sen not to specify a particular parallel programming model but rather to allow frame-
work and application developers to use the programming models they prefer. This
approach has several advantages, the most significant of which is that it allows com-
ponent developers to use the model that best suits their needs, greatly facilitating the
incorporation of existing parallel software into the CCA environment. Figure 10.6
shows schematically a typical configuration for a component-based parallel applica-
tion in the Ccaffeine framework. For a single-program multiple-data (SPMD) appli-
cation, each parallel process would be loaded with the same set of components, with
their ports connected in the same way. Interactions within a given parallel process
occur through normal CCA mechanisms, getting and releasing ports on other com-
ponents and invoking methods on them. These would generally use the local direct
connect approach mentioned above, to minimize the CCA-related overhead. Inter-
actions within the parallel cohort of a given component are free to use the parallel
programming model they prefer, for example MPI [89], PVM [48], or Global Ar-
rays [92]. Different sets of components may even use different programming models,
an approach that facilitates the assembly of applications from components derived
from software developed for different programming models. This approach imposes
no CCA-specific overhead on the application’s parallel performance. Such mixing
of programming models can occur for components that interact at relatively coarse
grained levels with loose coupling (for example, two parts of a multi-model physics
application, such as the climate models discussed in Section 10.6.2). In contrast,
sets of relatively fine grain and tightly coupled components (for example, the mesh
and discretization components shown in Figure 10.7) must employ compatible par-
allel programming models. Multiple-program multiple-data (MPMD) applications
are also supported through a straightforward generalization of the SPMD model. It
is also possible for a particular CCA framework implementation to provide its own
parallel programming model, as is the case with the Uintah framework discussed in
Section 10.6.4.

Language interoperability. A feature of many component models, including
the CCA, is that components may be composed together to form applications
regardless of the programming language in which they have been implemented.
The CCA provides this capability through the Scientific Interface Definition Lan-
guage (SIDL) [38], which component developers can employ to express compo-
nent interfaces. SIDL works in conjunction with the Babel language interoperabil-
ity tool [74, 38], which currently supports C, C++, Fortran 77, Fortran 90/95, and
Python, with work under way on Java. SIDL files are processed by the Babel com-
piler, which generates the glue code necessary to enable the caller and callee to be
in any supported language. The generated glue code handles the translation of argu-

338 L. C. McInnes et al.

Fig. 10.6. A schematic representation of
the CCA parallel programming environ-
ment in the single component/multiple data
(SCMD) paradigm. Parallel processes, la-
beled P0,. . . ,P3, are loaded with the same
set of three components. Components in the
same process (vertical dashed box) interact
using standard CCA port-based mechanisms,
while parallel components of the same type
(horizontal dotted box) interact using their
preferred parallel programming model.

P0 P1 P2 P3

ments and method calls between languages. Babel also provides an object-oriented
(OO) model, which can be used even in non-OO languages such as C and Fortran.
On the other hand, neither Babel nor the CCA requires that interfaces be strongly
object-oriented; such design decisions are left to the component and interface de-
signers.

The developers of Babel are also sensitive to concerns about performance. Where
Babel must translate arguments for method calls (because of differing representations
in the underlying languages), there will clearly be some performance penalty. Since
most numerical types do not require translation, however, in many cases Babel can
provide language interoperability with no additional performance cost [21]. In gen-
eral, the best strategy is for designers and developers to be aware of translation costs,
and take them into account when designing interfaces, so that wherever possible
enough work is done within the methods so that the translation costs are amortized;
see Section 10.4.8 for performance overhead studies.

Incorporating components. The CCA employs a minimalist design philosophy
to simplify the task of incorporating existing software into the CCA environment.
Generally, as discussed in Section 10.3.3, one needs to add to an existing software
module just a single method that informs the framework which ports the component
will provide for use by other components and which ports it expects to use from
others. Within a component, calls to ports on other components may have slightly
different syntax, and calls must be inserted to obtain and release the handle for the
port. Experience has shown that componentization of existing software in the CCA
environment is straightforward when starting from well-organized code [93, 5, 79].
Moreover, the componentization can be done incrementally, starting with a coarse-
grained decomposition (possibly even an entire simulation, if the goal is coupled
simulations) and successively refining the decomposition when opportunities arise
to replace functionality with a better-performing component.

Common interfaces. Interfaces are clearly a key element of the CCA and of the
general concept of component-based software engineering; they are central to the in-
teroperability and reuse of components. We note that except for a very small number
of interfaces in the CCA specification, typically associated with framework services,
the CCA does not dictate “standard” interfaces—application and component devel-
opers are free to define and use whatever interfaces work best for their purposes.

10 Parallel PDE-Based Simulations Using the CCA 339

However, we do strongly encourage groups of domain experts to work together to
develop interfaces that can be used across a variety of components and applications.
Numerous such efforts are under way, including mesh management, linear algebra,
and parallel data redistribution, all of which are related to the applications described
in this chapter and are discussed in Section 10.4. Anyone interested in these efforts,
or in launching other standardization efforts, is encouraged to contact the authors.

10.3.3 Simple PDE Examples

We next introduce two simple PDE examples to help illustrate CCA principles and
components. While we have deliberately chosen these examples to be relatively
simple and thus straightforward to explain, they incorporate numerical kernels and
phases of solution that commonly arise in the more complicated scientific applica-
tions that motivate our work, as introduced in Section 10.2.

Steady-State PDE Example

The first example is Laplace’s equation on a two-dimensional rectangular domain:
∇2φ(x, y) = 0, x ∈ [0, 1], y ∈ [0, 1], with φ(0, y) = 0, φ(1, y) = sin(2πy),
and ∂φ

∂y (x, 0) = ∂φ
∂y (x, 1) = 0. This system can be discretized by using a number

of different methods, including finite difference, finite element, and finite volume
techniques on either a structured or an unstructured mesh. This example has char-
acteristics of the large, sparse linear systems that are at the heart of many scientific
simulations, yet it is sufficiently compact to enable the demonstration of CCA con-
cepts and code.

The composition of this CCA application is shown by a component wiring dia-
gram in the upper portion of Figure 10.7; the graphical interface of the Ccaffeine [3]
framework enables similar displays of component interactions. This example em-
ploys components (as represented by large gray boxes) for unstructured mesh man-
agement, discretization, and linear solution, which are further discussed in Sec-
tion 10.4, as well as an application-specific driver component, which is discussed
below. The lines in the diagram between components represent connections between
uses and provides ports, which are denoted by rectangular boxes that are white and
checkered, respectively. For example, the discretization component’s “Mesh” uses
port is connected to the unstructured mesh component’s “Mesh” provides port, so
that the discretization component can invoke the mesh interface methods that the
mesh component has implemented. The special GoPort (named “Go” in this appli-
cation driver) starts the execution of the application.

The application scientist’s perspective. The application-specific driver com-
ponent plays the role of a user-defined main program in traditional library-based
applications. CCA frameworks do not require that an application contain a definition
of a main subroutine. In fact, in many cases, main is not defined by the user; in-
stead, a definition in the framework is used. In that case, a driver component partially
fulfills the role of coordinating some of the application’s components; the actual in-
stantiation and port connections can be part of the driver as well, or these tasks can be

340 L. C. McInnes et al.

Driver for Uxx=0

Go
UnstructuredMesh

Mesh
Discretization
Disc Mesh

LinearSolver
Solve

Disc

Solve

Solve Uxx = 0

Driver for Ut = Uxx

Integrator
Integrate

Visualization

MxN
MxNMesh

Go

Integrate

UnstructuredMeshDiscretization
Disc Mesh

LinearSolver

Go

Viz

Viz

Disc

Mesh

Solve Solve

Mesh

MxNSolve Ut = Uxx

and visualize

Component A
Uses Port 2Provides Port 1

Legend

Connection between
uses and provides ports Component B

Provides Port 2

Fig. 10.7. Two component wiring diagrams for (top) a steady-state PDE example and (bottom)
a time-dependent PDE example demonstrate the reuse of components for mesh management,
discretization, and linear solvers in two different applications.

accomplished via a user-defined script or through a graphical user interface. A CCA
framework can support multiple levels of user control over component instantiation
and connection; here we present only one of the higher levels, where the user takes
advantage of a framework-supplied main program, as well as framework-specific
concise mechanisms for application composition. In this example, the application
could be composed by using a graphical user interface, such as that provided with
the Ccaffeine [3] framework, by selecting and dragging component classes to instan-
tiate them, and then clicking on pairs of corresponding ports to establish connections.
Alternatively, the application could be composed with a user-defined script.

In addition to writing a driver component, typical application scientists would
also write custom components for the other parts of the simulation that are of di-
rect interest to their research, for example the discretization of a PDE model (see
Section 10.6.3 for a discussion of the approach used by combustion researchers).
These application-specific components can then be used in conjunction with external
component-based libraries for other facets of the simulation, for example, unstruc-
tured mesh management (see Section 10.4.1) and linear solvers (see Section 10.4.4).
As discussed in detail in Section 10.4.1, if multiple component implementations of a
given functionality adhere to common port specifications, then different implemen-
tations, which have been independently developed by different groups, can be seam-
lessly substituted at runtime to facilitate experimentation with a variety of algorithms
and data structures.

10 Parallel PDE-Based Simulations Using the CCA 341

package laplace version 1.0 {
class Driver implements gov.cca.Component,

gov.cca.ports.GoPort
{
// The only method required to be a CCA component.
void setServices(in gov.cca.Services services);
// The GoPort method that returns 0 if successful.
int go();

}
}

Fig. 10.8. SIDL definition of the driver component for the steady-state PDE example.

A closer look at the application-specific driver component. Figure 10.8 shows
the SIDL definition of the driver component for the solution of the steady-state
PDE example in Figure 10.7. As discussed in Section 10.3.2, the use of SIDL for
the component interface enables the component to interact easily with other com-
ponents that may be written in a variety of programming languages. The Driver
SIDL class must implement the setServices and go methods, which are part of
the gov.cca.Component and gov.cca.ports.GoPort interfaces, respec-
tively [29]. For this example, we used Babel to generate a C++ implementation
skeleton, to which we then added the application-specific implementation details,
portions of which are discussed next.

Figure 10.9 shows the implementation of the setServices method, which is
generally used by components to save a reference to the framework Services ob-
ject and to register provides and uses ports with the framework. The user-defined data
member frameworkServices in the Driver impl class stores the reference to
the services object, which can be used subsequently to obtain and release ports from
the framework and for other services. To provide the “Go” port, the driver compo-
nent’s self data member (a Babel-generated reference similar to the this pointer
in C++) is first cast as a gov::cca::Port in the assignment of self to port;
then the addProvidesPort services method is used to register the provides port
of type gov.cca.ports.GoPort with the framework, giving it the name “Go”.
A gov.cca.TypeMap object, tm, is created and passed to each call that registers
provides and uses ports; in larger applications, these name-value-type dictionaries
can be used for storing problem and other application-specific parameters.

Figure 10.10 shows an abbreviated version of the go method implementation for
the simple steady-state PDE example. First, we obtain a reference to the discretiza-
tion port “Disc” from the framework services object, frameworkServices. Note
that in Babel-generated C++ code, the casting of the gov::cca::Port object re-
turned by getPort to type disc::Discretization is performed automat-
ically. The discretization component uses finite elements to assemble the linear
system in the implementation of the createFESystem method, which includes
information exchange with the unstructured mesh component through the “Mesh”
port. The linear system is then solved by invoking the apply method on the linear
solver component. Finally, all ports obtained in the go method are released via the
releasePort framework services method.

342 L. C. McInnes et al.

The linear algebra interfaces in this example are based on the TOPS solver inter-
faces [111] (also see Section 10.4.4). The matrix and vector objects in this example
are not components themselves, but are created as regular objects by the driver com-
ponent and then modified and used in the mesh, discretization, and solver compo-
nents. While such linear algebra objects could be implemented as components them-
selves, we chose to use a slightly more lightweight approach (avoiding one layer
of abstraction) because they have relatively fine-grain interfaces, e.g., setting indi-
vidual vector and matrix elements. In contrast, the solver component, for example,
provides a port whose methods perform enough computation to make the overhead
of port-based method invocation negligible (see, e.g., [93]).

Time-Dependent PDE Example

The second PDE that we consider is the heat equation, given by ∂φ
∂t = ∇2φ(x, y, t),

x ∈ [0, 1], y ∈ [0, 1], with φ(0, y, t) = 0, φ(1, y, t) = 1
2 sin(2πy) cos(t/2),

∂φ
∂y (x, 0, t) = ∂φ

∂y (x, 1, t) = 0. The initial condition is φ(x, y, 0) = sin(1
2πx)

sin(2πy). As shown by the component wiring diagram in the lower portion of Fig-
ure 10.7, this application reuses the unstructured mesh, discretization, and linear al-
gebra components employed by the steady-state PDE example and introduces a time
integration component as well as components for parallel data redistribution and vi-
sualization. These reusable scientific components are discussed in further detail in
Section 10.4.

Another component-based solution of the heat equation, but on a structured
mesh, can be found at [106]. This approach employs different discretization and
mesh components from those discussed above but reuses the same integrator. This
CCA example is freely downloadable from [106], including scripts for running the
code.

void laplace::Driver_impl::setServices (
/*in*/ ::gov::cca::Services services)

throw (::gov::cca::CCAException)
{
// frameworkServices is a programmer-defined private data member of
// the Driver_impl class, declared as
// ::gov::cca::Services frameworkServices
// in the Babel-generated laplace_Driver_impl.hh file
frameworkServices = services;

// Provide a Go port; the following statement performs an implicit cast
gov::cca::Port port = self;
gov::cca::TypeMap tm = frameworkServices.createTypeMap();
frameworkServices.addProvidesPort(port, "Go", "gov.cca.ports.GoPort",tm);

// Use Discretization and Solver ports
frameworkServices.registerUsesPort("Disc", "disc.Discretization",tm);
frameworkServices.registerUsesPort("Solver", "solvers.LinearSolver",tm);

}

Fig. 10.9. Laplace application driver code fragment showing the C++ implementation of the
setServices method of the gov.cca.Component interface.

10 Parallel PDE-Based Simulations Using the CCA 343

More detailed CCA tutorial materials, including additional sample component
codes as well as the Ccaffeine framework and Babel language interoperability
tool, are available via http://www.cca-forum.org/tutorials. We rec-
ommend this site as a starting point for individuals who are considering the use of
CCA tools and components.

These examples illustrate one of the ways that components can participate in a
scientific application. In larger applications, such as those introduced in Section 10.2,
different components are typically developed by different teams, often at different
sites and times. Some of these components are thin wrappers over existing numeri-
cal libraries, while others are implemented from scratch to perform some application-
specific computation, such as the discretization components in Figure 10.7. The CCA
component model, like other component models, provides a specification and tools
that facilitate the development of complex, multi-project, multi-institutional soft-
ware. In addition to helping manage software development complexity, the simple
port abstraction (1) enables the definition of explicit interaction points between parts

int32_t laplace::Driver_impl::go() throw () {

disc::Discretization discPort;
solvers::Solver linearSolverPort;
try {
// Get the discretization port.
discPort = frameworkServices.getPort("Disc");

// The layout object of type solvers::Layout_Rn is a data member
// of the Driver_impl class describing how vector and matrix
// data is laid out across processors; it also provides a factory
// interface for creating parallel vectors and matrices.

// Create the matrix, A, and right-hand-side vector, b
solvers::Vector_Rn b = layout.createGlobalVectors(1)[0];
solvers::Matrix_Rn A = layout.createOperator(layout);

// Assemble A and b to define the linear system, Ax=b
discPort.createFESystem(A, b);

// Get the solver port
linearSolverPort = frameworkServices.getPort("Solver");

// Create the solution vector, x
solvers::Vector_Rn x = layout.createGlobalVectors(1)[0];

// Initialize and solve the linear system
linearSolverPort.setOperator(A);
linearSolverPort.apply(b, x);

// Release ports
frameworkServices.releasePort("Disc");
frameworkServices.releasePort("Solver");
return 0;

} catch (gov::cca::CCAException& e) { return -1; }
}

Fig. 10.10. Laplace application driver code fragment showing the C++ implementation of the
go method from the gov.cca.ports.GoPort interface. Exceptions are converted to the
function return code specified in Figure 10.8 with the try/catch mechanism.

344 L. C. McInnes et al.

of an application; (2) facilitates the use of thoroughly tuned external components im-
plemented by experts; and (3) allows individual components to be developed, main-
tained, and extended independently, with minimal impact on the remainder of the
application.

10.4 Reusable Scientific Components

Various scientific simulations often have similar mathematics and physics, but cur-
rently most are written in a stovepipe fashion by a small group of programmers with
minimal code reuse. As demonstrated in part by Figure 10.7, a key advantage of
component-oriented design is software reuse. Components affect reuse in two ways:
(1) because an exported port interface is simpler to use than the underlying soft-
ware, a component should be easier to import into a simulation than to rewrite from
scratch; and (2) because common interfaces for particular functionalities can be em-
ployed by many component implementations, different implementations can be eas-
ily substituted for one another to enhance performance for a target machine, data
layout, or parameter set. In Sections 10.4.1 through 10.4.7 we detail these two facets
of reusability in terms of several current efforts to develop component implementa-
tions and domain-specific groups devoted to defining common interfaces for various
numerical and parallel computing capabilities. In Section 10.4.8 we demonstrate that
the overhead associated with CCA components is negligible when appropriate levels
of abstraction are employed.

Component implementations can directly include the code for core numerical
and parallel computing capabilities, and indeed new projects that start from scratch
typically do so. However, many of the component implementations discussed in
this section employ the alternative approach of providing thin wrappers layered
on top of existing libraries, thereby offering optional new interfaces that make
these independently developed packages easier to use in combination with one an-
other in diverse projects. Section 10.5 discusses some of the issues that we have
found useful to consider when building these component interfaces. The web site
http://www.cca-forum.org has current information on the availability of
these components as well as others.

10.4.1 Unstructured Mesh Management

Unstructured meshes are employed in many PDE-based models, including the accel-
erator application introduced in Section 10.2.1 and the simple examples discussed
in Section 10.3.3. The Terascale Simulation Tools and Technologies (TSTT) Cen-
ter [121], established in 2001, is developing common interface abstractions for man-
aging mesh, geometry, and field data for the numerical solution of PDEs. As shown
in Figure 10.11, the common TSTT mesh interface facilitates experimentation with
different mesh management infrastructures by alleviating the need for scientists to
write separate code to manage the interactions between an application and different
meshing tools.

10 Parallel PDE-Based Simulations Using the CCA 345

NWGrid

Overture

MOAB

AOMD

Application NWGrid

Overture

MOAB

AOMD
M
e
s
h

Others…
TSTT
mesh

interface

Application

Others…

mesh libraries

Fig. 10.11. (Left): The current interface situation connecting an application to m mesh man-
agement systems through m different interfaces. Because developing these connections is
often labor-intensive for application scientists, experimentation with various mesh systems is
severely inhibited. (Right): The desired interface situation, in which many mesh systems that
provide similar functionality are compliant with a single common interface. Scientists can
more easily explore the use of different systems without needing to commit to a particular so-
lution strategy that could prematurely lock their application into a specific mesh management
system.

TSTT Mesh Interfaces

The TSTT interfaces include mesh data, which provides the geometric and topolog-
ical information associated with the discrete representation of a computational do-
main; geometric data, which provides a high-level description of the domain bound-
aries, for example, a CAD model; and field data, which provides the time-dependent
physics variables associated with application solutions. The TSTT data model covers
a broad spectrum of mesh types and functionalities, ranging from a nonoverlapping,
connected set of entities (e.g., a finite element mesh) to a collection of such meshes
that may or may not overlap to cover the computational domain. To date, TSTT ef-
forts have focused on the development of mesh query and modification interfaces at
varying levels of granularity. The basic building blocks for the TSTT interfaces are
mesh entities, for example, vertices, edges, faces, and regions, and entity sets, which
are arbitrary groupings of mesh entities that can be related hierarchically or by sub-
sets. Functions have been defined that allow the user to access mesh entities using
arrays or iterators, attach user-defined data through the use of tags, and manipulate
entity sets using Boolean set operations.

The TSTT mesh interface is divided into several ports. The core interface pro-
vides basic functionality for loading and saving the mesh, obtaining global infor-
mation such as the number of entities of a given type and topology, and accessing
vertex coordinate information and adjacency information using both primitive arrays
and opaque entity handle arrays. Additional ports are defined that provide single en-
tity iterators, workset iterators, and mesh modification functionality. Figure 10.12
shows an example C-code client that uses the TSTT interface. The mesh variable
represents a pointer to an object of type TSTT mesh, which can be either an ob-
ject created via a call to a Babel-generated constructor or a uses port provided by a
mesh component instantiated in a CCA framework (for example, see Figure 10.7).

346 L. C. McInnes et al.

The mesh data is loaded from a file whose name is specified via a string. Because
many of the TSTT functions work on both the full mesh and on subsets of the mesh,
the user must first obtain the root entity set using getRootSet to access the vertex
and face information. In this example, the user asks for the handles associated with
the triangular elements with the getEntities call. Once the triangle handles have
been obtained, the user can access the adjacent vertices and their coordinate informa-
tion either one handle at a time as shown in the example, or using a single function
call that returns the adjacency information for all of the handles simultaneously.

#include "TSTT.h"

/* ... */
void *root_entity_set;
void **tri_handles, **adj_vtx_handles;
int i, num_tri, num_vtx, coords_size;
double *coords;

/* Load the data into the previously created mesh object */
TSTT_mesh_load(mesh,‘‘mesh.file’’);

/* Obtain a handle to the root entity set */
root_entity_set = TSTT_mesh_getRootSet(mesh);

/* Obtain handles to the triangular elements in the mesh */
TSTT_mesh_getEntities(mesh,root_entity_set, TSTT_EntityType_FACE,

TSTT_EntityTopology_TRIANGLE, &tri_handles,
&num_tri);

/* For each triangle, obtain the corner vertices and their
coordinates */

for (i=0;i<num_tri;i++) {
TSTT_mesh_getEntAdj(mesh,tri_handle[i],TSTT_EntityType_VERTEX,

&adj_vtx_handles,&num_vtx);
TSTT_mesh_getVtxArrCoords(mesh,adj_vtx_handles,num_vtx,

TSTT_StorageOrder_BLOCKED,&coords,&coords_size);
}

/* ... */

Fig. 10.12. An example code fragment showing the use of the TSTT interface in C to load a
mesh and retrieve the triangular faces and their corner vertex coordinates.

More information on the mesh interfaces and the TSTT Center can be found
in [121]. Preliminary results of a performance study of the use of a subset of the
mesh interfaces can be found in Section 10.4.8.

TSTT Mesh Component Implementations

Implementations of the TSTT mesh interfaces are under way at several institutions.
The ports provided by these mesh components include the “Mesh” port, which gives
basic access to mesh entities through primitive arrays and opaque entity handles. In
addition to global arrays, entities can be accessed individually through iterators in
the “Entity” port or in groups of a user-defined size in the “Arr” port. These com-
ponents also support the the Tag interface, which is a generic capability that allows

10 Parallel PDE-Based Simulations Using the CCA 347

the user to add, set, remove, and change tag information associated with the mesh or
individual entities; the Set interface, which allows the creation, deletion, and def-
inition of relations among entity sets; and the Modify interface, which allows the
creation and deletion of mesh entities as well as the modification of vertex coordinate
locations.

For the performance studies presented in Section 10.4.8, we use a simple im-
plementation of the interface that supports two-dimensional simplicial meshes. The
mesh software is written in C and uses linked lists to store the element and vertex
data. This component has been used primarily as a vehicle for demonstrating the
benefits of the component approach to mesh management and for evaluating the per-
formance costs associated therein [93].

10.4.2 Block-Structured Adaptive Mesh Refinement

Block-structured adaptive mesh refinement (SAMR) is a domain discretization tech-
nique that seeks to concentrate resolution where required, while leaving the bulk
of the domain sparsely meshed. Regions requiring resolution are identified, collated
into rectangular patches (or boxes), and then resolved by a finer grid. Note that the
fine grid is not embedded in the coarser one; rather, distinct meshes of different res-
olutions are maintained for the same region in space. Data, in each of these boxes,
is often stored as multidimensional Fortran 77 arrays in a blocked format; that is,
the same variable (e.g., temperature) for all the grid points are stored contiguously,
followed by the next variable. This approach allows operations involving a spatial
operator (e.g., interpolations, ghost cell updates across processors) to be written for
one variable and reused for others while exploiting cache locality. This approach also
allows scientific operations on these boxes to be performed by using legacy codes.
The collection of boxes that constitute the discretized domain on a CPU are usually
managed by using an object-oriented approach.

SAMR is used by GraceComponent [79], a CCA component based on the
GrACE library [97], as well as by Chombo [35], a block-structured mesh infrastruc-
ture with similar functionality developed by the APDEC [34] group. While each has
a very different object-oriented approach (and interface) to managing the collection
of boxes, individual boxes are represented in a very similar manner, and the data is
stored identically. This fundamental similarity enables a simple, if slightly cumber-
some, approach to interoperability.

Briefly, the data pointer of each box is cached in a separate component, along
with a small amount of metadata (size of array, position of the box in space, etc.),
and keyed to an opaque handle (an integer, in practice). These handles can be ex-
changed among components, and the entire collection of patches can be recreated by
retrieving them from the cache. The interoperability interface is easy to understand
and implement; however, the frequent remaking of the box container imposes some
overhead, though not excessively so, since array data is not copied. Because the main
purpose of this AMR interoperability is to exploit specialized solvers and input/out-
put routines in various packages, metadata overhead is not expected to be significant.

348 L. C. McInnes et al.

Further, this approach is not a preferred means of interoperability on an individual-
box basis unless the box is large or the operation very intensive. A prototype imple-
mentation of this exchange is being used to exploit Chombo’s elliptic solvers in the
CFRFS combustion application introduced in Section 10.2.3. Section 10.6.3 includes
further information about the use of SAMR components in this application.

10.4.3 Parallel Data Management

The effective management of parallel data is a key facet of many PDE-based sim-
ulations. The GlobalArray component, based on the Global Array library [92],
includes a set of capabilities for managing distributed dense multidimensional arrays
that can be used to represent multidimensional meshes. In addition to a rich set of op-
erations on arrays, the user can create ghost cells with a specified width around each
of the mesh sections assigned to a processor. Once an update operation is complete,
the local data on each processor contains the locally held visible data plus data from
the neighboring elements of the global array, which has been used to fill in the ghost
cells. Two types of update operations are provided to facilitate data transfer from
neighboring processors to the ghost regions: a collective update of all ghost cells
by assuming periodic, or wraparound, boundary conditions and another nonblocking
and noncollective operation for updating ghost cells along the specified dimension
and direction with the option to include or skip corner ghost cell updates. The first
of these two operations was optimized to avoid redundant communication involving
corner points, whereas the second was designed to enable overlapping communica-
tion involved in updating ghost cells with computations [96].

Unstructured meshes are typically stored in a compressed sparse matrix form, in
which the arrays that represent the data structures are one-dimensional. Computa-
tions on such unstructured meshes often lead to irregular data access and commu-
nication patterns. The GlobalArray component provides a set of operations that
can be used to implement and manage distributed sparse arrays (see [24, 30]). Mod-
eled after similar functions in the CMSSL library of the Thinking Machines CM-2/5,
these operations have been used to implement the NWPhys/NWGrid [120] adaptive
mesh refinement code. Additional GlobalArray numerical capabilities have been
employed with the optimization solvers discussed in Section 10.4.6 [13, 65].

10.4.4 Linear Algebra

High-performance linear algebra operations are key computational kernels in many
PDE-based applications. For example, vector and matrix manipulations, along with
linear solvers, are needed in each of the motivating applications introduced in Sec-
tions 10.2 and 10.3.3, as well as in the integration and optimization components
discussed in Sections 10.4.5 and 10.4.6, respectively.

Linear Algebra Interfaces

Linear algebra has been an area of active interface development in recent years.
Abstract interfaces were defined in the process of implementing numerical linear

10 Parallel PDE-Based Simulations Using the CCA 349

algebra libraries, such as the Hilbert Class Library [51], the Template Numerical
Toolkit [103], the Matrix Template Library [85], PLAPACK [7], uBLAS (part of
the BOOST collection) [25], BLITZ++ [126], and the Linear System Analyzer [27].
Many of these packages were inspired by or evolved from legacy linear algebra soft-
ware, such as BLAS and LAPACK. This approach allowed the flexibility of object-
oriented design to be combined with the high performance of optimized library
codes. In some cases, such as BLITZ++, the goal is to extract high performance
even if computationally intensive operations are implemented by using high-level
language features; in that case, the library assumes a burden similar to that of a com-
piler in order to ensure that array operations are performed in a way that exploits
temporal and spatial data locality.

Starting in 1997, the Equation Solvers Interface (ESI) working group [31] fo-
cused on developing interfaces targeted at the needs of large-scale DOE ASCI pro-
gram computations, but with the goal of more general use and acceptance. The ESI
includes interfaces for linear equation solvers, as well as support for linear algebra
entities such as index sets, vectors, and matrices.

More recently, the Terascale Optimal PDE Simulation (TOPS) Center [66],
whose mission is to develop a set of compatible toolkits of open-source, optimal
complexity solvers for nonlinear partial differential equations, has produced a pro-
totype set of linear algebra interfaces expressed in SIDL [111]. This language-
independent specification enables a wide variety of new underlying implementations
as well as access to existing libraries. Special care has been taken to separate func-
tionality from the details of accessing the underlying data representation. The result
is a hierarchy of interfaces that can be used in a variety of ways depending on the
needs of particular applications. See section 10.3.3 for some simple examples and
code using linear algebra components based on the TOPS interfaces.

Linear Algebra Component Implementations

As discussed in detail in [93], an early CCA linear solver port was based on ESI [31]
and was implemented by two components based on Trilinos [56] and PETSc [11, 10].
The creation of basic linear algebra objects (e.g., vectors and matrices) was imple-
mented as an abstract factory, with specific factory implementations based on Trili-
nos and PETSc provided as components. The factory and linear solver components
were successfully reused in several unrelated component-based applications. Linear
algebra ports and components based on TOPS [66] interfaces are currently under de-
velopment. One of the most significant advancements since the original simple linear
solver ports and components were developed is the use of SIDL for interface defi-
nition, alleviating implementation language restrictions. By contrast, the ESI-based
ports and components used C++, making the incorporation in non-C or C++ appli-
cations more difficult. The most recent linear solver component implementations,
such as those shown in the examples in Section 10.3.3, are based on the language-
independent TOPS interfaces [111].

350 L. C. McInnes et al.

10.4.5 Integration

Ordinary differential equations (ODEs) are solved routinely when modeling with
PDEs. Often the solution is needed only locally, for example, when integrating stiff
nonlinear chemical reaction rates at a point in space over a short time span. At other
times we need a large parallel ODE solution to a method-of-lines problem.

By wrapping the CVODE [33] library, we have created the CVODEComponent
[112, 79] for the solution of local ODEs in operator-splitting schemes, such as in
the combustion modeling application introduced in Section 10.2.3. Like the library
it wraps, CVODEComponent can be used to solve ODEs by using variable-order
Adams-Bashforth or backward-difference formula techniques. The library provides
its own linear solvers and requires the application to provide data using a particular
vector representation. The application can provide a sparse, banded, or dense gra-
dient or can request CVODE to construct a finite difference approximation of the
gradient if needed.

For parallel ODE solutions we have refactored the LSODE [104, 58] library to
allow the application to provide abstract linear solvers and vectors. The parallelism
of the ODE is hidden from the integration code by the vector and solver implemen-
tations. The resulting IntegratorLSODE and related components are described
in [5]. These components have been coupled with PETSc-based linear algebra com-
ponents described in Section 10.4.4 to solve finite element models [93].

10.4.6 Optimization

The solution to boundary value problems and other PDEs often can be represented
as a function u ∈ U such that J(u) = infv∈U J(v). In this formulation, U is a set
of admissible functions, and J : U → � is a functional representing the total energy
associated with an element in U . This formulation of a PDE is often preferred for
nonlinear PDEs with more than one solution. While each solution satisfies the first-
order optimality conditions of the corresponding minimization problem, the solution
that minimizes the energy functional is often more stable and of greater interest.

The minimization approach also enables inequality constraints to be incorpo-
rated in the model. Obstacle problems, for example, have a free boundary that
can be modeled by using variational inequalities. Efficient algorithms with rigor-
ous proof of convergence can be applied to minimization problems with inequality
constraints [14, 16]. Even PDEs whose corresponding minimization problem is un-
constrained or equality constrained can benefit from optimization solvers [88].

Optimization components [110] based on the TAO library [15] encapsulate the
algorithmic details of various solvers. These details include line searches, trust re-
gions, and quadratic approximations. The components interact with the applica-
tion model, which computes the energy function, derivative information, and con-
straints [65]. The optimization solvers achieve scalable and efficient parallel perfor-
mance by leveraging general-purpose linear solvers and specialized precondition-
ers available in external components, including the data management components
discussed in Section 10.4.3 and the linear algebra components described in Sec-
tion 10.4.4 [13, 65, 93].

10 Parallel PDE-Based Simulations Using the CCA 351

10.4.7 Parallel Data Redistribution

As discussed in Section 10.2, scientific simulations are increasingly composed of
multiple distinct physics models that work together to provide a more accurate over-
all system model or to otherwise enhance fidelity by replacing static boundaries with
dynamically computed data values from a live companion simulation. Often each of
these models constitutes its own independent code that must be integrated, or cou-
pled, with the other models’ codes to form a unified simulation. This coupling is
usually performed by sharing or exchanging certain common or relevant data fields
among the individual models, for example, heat and moisture fluxes in a coupled
climate simulation. Because most high-performance scientific simulations require
parallel algorithms, the coupling of data fields among these parallel codes raises
a number of challenges. Even for the same basic data field, each distinct model
often applies a unique distributed data decomposition to optimize data access pat-
terns in its localized portion of a parallel algorithm. Further, each model can use a
different number of parallel processors, requiring complex mappings between dis-
parate parallel resource topologies (hence the characterization of this mapping as
the “MxN” problem – transferring data from “M” parallel processors to another set
of “N” processors, where M and N are not in general equal). These mappings re-
quire both an understanding of the distributed data decompositions for each distinct
model, to construct a “communication schedule” of the elements between the source
and destination data fields, as well as special synchronization handling to ensure that
data consistency is maintained in any MxN exchanges.

Worse yet, each model may compute using a different time step or may store data
elements on a unique mesh using wholly different coordinate systems or axes. This
situation necessitates the use of complex spatial and temporal interpolation schemes,
and often the preservation of key energy or flux conservation laws. Such complica-
tions further exacerbate the already complex infrastructure necessary for coupling
disparate data arrays, and require the incorporation of a diverse set of interpolation
schemes that are often chosen as a part of the system’s scientific requirements, or
simply to ensure backwards compatibility with legacy code. Some software pack-
ages capable of addressing these issues exist, notably the Mesh-based parallel Code
Coupling Interface (MpCCI) [2, 1] and the Model Coupling Toolkit (MCT) [72, 71].
The details of interpolation schemes and their inclusion in MxN infrastructure are
beyond the scope of the current work. Yet this important follow-on research will
commence upon satisfactory completion of the fundamental generalized MxN data
exchange technology. In the meantime, such data interpolation must be handled man-
ually and separately by each distinct code or by an intermediary piece of coupling
software.

Parallel Data Redistribution Interfaces

The CCA project is developing generalized interfaces for specifying and controlling
MxN parallel data redistribution operations [22]. These interfaces and their accompa-
nying prototype implementations address synchronization and data movement issues

352 L. C. McInnes et al.

in parallel component-based model coupling. Initial efforts have focused on inde-
pendently defining the local data allocation and decomposition information within
a given parallel component and then applying these details to automatically gener-
ate efficient mappings, or communication schedules, for executing MxN transfers.
These evolving interfaces are sufficiently flexible and high-level to minimize the in-
strumentation cost for legacy codes, and to enable nearly transparent operation by
most of the coupling participants.

Parallel Data Redistribution Component Implementations

A variety of general-purpose prototype MxN parallel data redistribution components
have been developed by using existing technology. Initial prototypes, which were
loosely based on the CUMULVS [49, 69] and PAWS [64, 12] systems, provided
a proof of concept to verify the usefulness of the MxN interface specification and
to assist in evolving this specification toward a stable and flexible standard. The
CumulvsMxN component continues to be extended to cover a wider range of data
objects, including structured and unstructured dense meshes and particle-based de-
compositions. The underlying messaging substrates for MxN data transfers are also
being generalized to improve their applicability to common scientific codes. Addi-
tional MxN component solutions are being developed based on related tools such as
Meta-Chaos [42, 105] and ECho [43, 133].

Special-purpose MxN components [73] for use with climate modeling simula-
tions have been built using the Model Coupling Toolkit (MCT) [72, 71] (see Sec-
tion 10.6.2). These prototype coupler components provide crucial scientific features
beyond fundamental parallel data transfer and redistribution, including spatial inter-
polation, time averaging and accumulation of data, merging of data from multiple
components for use in another component, and global spatial integrals for enforcing
conservation laws [22]. Currently MCT is being employed to couple the atmosphere,
ocean, sea-ice, and land components in the Community Climate System Model [54]
and to implement the coupling interface for the Weather Research and Forecasting
Model [129]. Similar coupling capabilities for climate modeling are also being ex-
plored as part of the Earth System Modeling Framework (ESMF) [67] effort, with
specially tailored climate-specific interfaces and capabilities.

10.4.8 Performance Overhead Studies

Object-oriented programming in general and components in particular adopt a strict
distinction between interfaces and implementations of functionality. The following
subsections demonstrate that the interface-implementation separation results in neg-
ligible overhead when appropriate levels of abstraction are employed.

10 Parallel PDE-Based Simulations Using the CCA 353

CCA Components

1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

Log
10

(No. of repetitions)

T
im

e
(s

ec
)

Component
Non−component

Fig. 10.13. Timings (in seconds) for component
and non-component versions of an ODE applica-
tion. The differences clearly are insignificant. The
x-axis shows the number of times the same prob-
lem was solved to increase the execution time be-
tween instrumentation invocations.

To quantify the overhead associ-
ated with CCA components, we
solved an ODE, Yt = F (Y, t),
where Y is a 4-tuple, implicitly in
time using the CVODEComponent
integration component introduced
in Section 10.4.5. The numerical
scheme discretizes and linearizes the
problem into a system of the form
Ax = b, which is solved iteratively.
A is derived from the Jacobian of
the system, ∂F/∂Y , which is cal-
culated numerically by evaluating F
repeatedly. Each F invocation con-
sists of one log evaluation and 40
exponentials and corresponds to the
simplest detailed chemical mecha-
nism described in Section 10.6.3. A
three-component assembly was cre-
ated (the Driver, Integrator
and F), and the F evaluations were
timed. These were then compared
with timings from a non-component version of the code. In order to reduce
instrumentation-induced inaccuracies, the problem was repeated multiple times and
the total time measured. These steps were taken to ensure that the invocation over-
head was exercised repeatedly and the time being measured was significant. The
code for F was written in C++ and compiled using g++ -O2 using egcs version
2.91 compilers on a RedHat 6.2 Intel/Linux platform.

Figure 10.13 plots the solution time using the C++ component and the non-
component versions. The differences are clearly insignificant and can be attributed to
system noise. For this particular case, the function invocation overheads were small
compared to the function execution time. Likewise, negligible overhead for both C++
and SIDL variants of optimization components has been shown [13, 93]. The actual
overhead of the virtual pointer lookup has been estimated to be of the order of a few
hundred nanoseconds (around 150 ns on a 500 MHz Intel processor) [21]. Thus, the
overhead introduced by componentization is expected to be insignificant unless the
functions are exceptionally lightweight, such as pointwise data accessor methods.

TSTT Mesh Interfaces

We next evaluate the performance ramifications of using a component model for the
finer-grained activity of accessing core mesh data structures, where we used the sim-
ple mesh management component described in Section 10.4.1. Since the granularity

354 L. C. McInnes et al.

Relative Wall Clock Time for Interfaces

75

100

125

150

175

200

225

0 25 50 75 100

Work Set Size

P
e
rc

e
n

ta
g

e
 o

f
N

a
ti

v
e
 I

n
te

rf
a
c
e

Native Interface

SIDL Direct

SIDL Memcpy

SIDL For-loop

Relative Wall Clock Time for Each Variant

0

50

100

150

200

250

1 100
Work Set Size

P
e
r
c
e
n

ta
g

e
 o

f
N

a
ti

v
e
 I

n
te

r
fa

c
e

Native Array

Native Linked List

Native Interface

SIDL Direct

SIDL Memcpy

SIDL For-Loop

Fig. 10.14. Average wall clock time for traversing all mesh elements by work set size relative
to Native Interface. (Left): A comparison of the four TSTT interface approaches for work set
sizes 1 through 100 entities. (Right): A comparison of the six variants for work sets of size 1
and 100 entities only.

of access is a major concern, initial experiments focused on the traversal of mesh
entities using work set iterators. These iterators allow the user to access mesh enti-
ties in blocks of a user-defined size, N . That is, for each call to the iterator, N entity
handles are returned in a SIDL array, and it is expected that as N increases, the over-
head associated with the function call will be amortized. For comparison purposes,
experiments were also performed using native data structures to quantify the base
costs.

Figure 10.14 shows the relative costs of obtaining entity handles from the mesh
using both native data structures and interfaces. In the experiments, six different
mechanisms were used for data access. The native variants consist of timing array
(Native Array), linked list (Native Linked List), and language-specific TSTT inter-
face (Native Interface) versions. In order to test the performance of the language
interoperability layer created by SIDL, three variations of managing the conversion
between native and SIDL arrays were developed. The first two, referred to as SIDL
Direct and SIDL Memcpy, take advantage of the fact that the language interoper-
ability layer and native implementation are both written in C. The former allows the
underlying implementation to directly manage the SIDL array contents, while the
latter is able to use the memcpy routine. The general-purpose variant, called SIDL
For-loop, individually copies the pointers from the native into the SIDL array. Babel
0.9 was used to generate the interoperability layer for the underlying mesh imple-
mentation. The results were obtained on a dedicated Linux workstation with a 1.7
GHz Intel Pentium processor and 1 GB RD RAM using three meshes that ranged in
size from 13,000 to 52,000 elements and work set sizes from 1 to 2,000 elements.
The codes were compiled without optimization, and the timing data was measured in
microseconds. Because of the consistency in results across the three different mesh
sizes, the average value of all runs on the meshes is reported for each work set size.

The left-hand side of Figure 10.14 reports the percentage increase for the SIDL-
based accesses compared to the baseline native interface access for increasing work
set sizes. As expected, the additional function call and array conversion overhead

10 Parallel PDE-Based Simulations Using the CCA 355

of the SIDL interoperability layer is most noticeable when accessing entities using
a work set size of 1 and ranges from 50% more expensive than the native interface
for the SIDL Direct to 112% more expensive for the SIDL Memcpy variant. From
work set size 2 on, the SIDL For-loop variant is the worst performing. For all cases,
the SIDL Direct gives the best performance. As the work set size increases to 20
entities and beyond, the SIDL-related overhead decreases to 3.7% more than the
native interface in the direct case and approximately 18.4% more in the for-loop
case.

To gauge the overhead associated with functional interfaces compared to access-
ing the data directly using native data structures, the costs of all six access mecha-
nisms are shown on the right-hand side of Figure 10.14. The results for the interface-
based versions are displayed for work set sizes of 1 and 100 entities. As expected,
the array traversal is the fastest and is 40% faster than traversing a linked list. Go-
ing through the native C interface is about 2.2 and 1.2 times slower than using the
linked lists directly for work set sizes 1 and 100, respectively. For work sets of size
1 and 100, the SIDL Direct method gives the best SIDL performance and is 3.3 and
1.2 times slower, respectively, than using linked lists. For work sets of size 1, the
memcpy SIDL variant is 4.7 times slower (versus 4.5 times slower for the for-loop
version). This position is reversed for work sets of size 100, where the for-loop ver-
sion is 44% slower (versus 29% for the memcpy version).

These experiments demonstrate that the granularity of access is critical in deter-
mining the performance penalty involved in restructuring an application to use an
interface-based implementation. However, the granularity does not need to be very
large. In fact, our experiments show that work sets of size 20 were sufficient to amor-
tize the function call overhead. We also found that the additional overhead associated
with transitioning from a native to language interoperable version of the interfaces
can be negligible for suitable work set sizes.

10.5 Componentization Strategies

Next we examine strategies for developing software components for parallel PDE-
based applications, including projects that incorporate legacy code as well as com-
pletely new undertakings. These general considerations have been employed when
developing the reusable components discussed in Section 10.4 as well as through-
out the application case studies presented in Section 10.6. Useful component designs
may be coarse-grained (handling a large subset of the overall simulation task per
component) or fine-grained. Similarly, an interface (port) between components may
be a simple interface with just a few functions having a few simple arguments or a
complex interface having all the functions of a library such as MPI.

The first step in defining components and ports for PDE-based simulations is
considering in detail the granularity and application decomposition of the desired
software. The second step is evaluating the impact on implementers and users of
the chosen component and interface designs. This step may involve implementation
and testing. The third step is iterating the design and implementation steps until a

356 L. C. McInnes et al.

sufficient subset of the implementers and users is content with the resulting compo-
nents and interfaces. The finest details of CCA component software design [5] and
construction [19] are beyond our scope.

10.5.1 Granularity

How much functionality is inside each component? What information appears in
public interfaces? In what format does the information appear? The answers to these
questions determine the granularity of any component. We may want fine or coarse
granularity or a combination.

Very coarse-grained designs. At the coarsest granularity, an entire PDE simu-
lation running on a parallel machine can be treated as a single component. In most
cases of this scenario, the component simply uses input files and provides output
files. This approach permits the integration of separate programs by applying data
file transformations. The overhead of transferring data using intermediate files may
be reduced by instead transporting data directly from one application to another in
any of several ways, but the essential aspect of copying data from one simulation
stage to the next remains (see Section 10.4.7). The cost of moving large data sets at
each iteration of an algorithm to and from file systems in large parallel machines can
be prohibitive. Nonetheless, the CCA specification allows components to interact by
file exchange. Software integration through files (see, e.g., Section 10.6.1) can be a
useful starting point for the evolutionary development of a coupled simulation. Many
tools have been built on this style of componentization, but scaling up to very large,
multidomain, multiphysics problems is often inefficient or even impossible.

Finer-grained designs. For the remainder of this section we are concerned with
building an application from component libraries that will result in executing a sin-
gle job. Nearly every PDE-based application has one or more custom drivers that
manage a suite of more general libraries handling different areas of concern, such
as mesh definition, simulation data, numerical algorithms, and auxiliary services,
such as file input and output, message passing, performance profiling, and visualiza-
tion. Building component software for PDEs means teasing apart these many areas
of concern into separate implementations and defining suitable functional interfaces
for exchanging data among these implementations. Once clearly separated, the sub-
stitution and testing of an alternate implementation in any individual area is much
easier.

10.5.2 Application Decomposition and Interface Design

Making components for a new or existing PDE-based simulation will be straightfor-
ward or difficult depending on how well the code is already decomposed into public
interfaces and private implementations. We have found that the answers to the fol-
lowing technical questions about a PDE software system can aid in creating a good
first approximation to an equivalent component design. Like all good software de-
sign, an iterative implementation and evaluation process is required to arrive at a final
design.

10 Parallel PDE-Based Simulations Using the CCA 357

• What are the equations to be solved, the space and time domains in which these
equations apply, and the kinds of boundary and initial conditions that apply at the
edges of these domains?

• What are appropriate meshing and spatial discretization techniques and an effi-
cient machine representation of the resulting mesh?

• How is data stored for the simulation variables, and how are relationships of the
stored data to various mesh entities (points, edges, faces, cells) represented?

• What are appropriate algorithms for solving the equations?
• What are appropriate implementations of the algorithms, given the algorithms

and data structures selected? Can these implementations be factored into multiple
independent levels, such as vector and matrix operations, linear solvers, nonlinear
solvers, and time marching solvers?

• How can we identify, analyze, and store interesting data among the computed
results?

Usually many mathematical and software design solutions exist for each of these
questions, and of course they are interconnected. Our fundamental goal in component
design for an application involving large-scale or multidomain PDEs is to separate
these areas of concern into various software modules without reducing overall appli-
cation performance. Many packages used for solving PDEs are already reasonably
well decomposed into subsystems with clear (though often rather large) interfaces
that do not impede performance; extending these packages to support component
programming is usually simple unless they rely on global variables being set by the
end user.

The performance requirement directly impacts the interfaces between compo-
nents. Arrays and other large data structures that are operated on by many com-
ponents must be exchanged by passing pointers or other lightweight handles. This
requirement in turn necessitates specific public interface commitments to array and
structure layout, which depend on the type of PDE and the numerical algorithms
being used. CCA componentization allows similar packages to work together, but
it does not provide a magic bullet solution to integrating packages based on fun-
damentally different assumptions and requirements. For example, a mesh and data
component representing SAMR data as three-dimensional dense arrays [79, 77] is
simply inappropriate for use in adaptive finite-element algorithms that call for data
trees. When constructing new components, it is useful for interoperability to de-
sign them to be as general as reasonably possible with respect to details of the data
structures they can accept. For example, we suggest dealing with arrays specified by
strides through memory for each dimension rather than restricting a code to either
row-major or column-major layout.

Some preprocessing or postprocessing components may demand flexibility in
accessing many different kinds of mesh or data subsets. In this situation public inter-
face definitions that require a function call to access data for each individual node or
other mesh entity may be useful. However, as seen in testing the TSTT mesh inter-
faces (Section 10.4.8), single entity access function overhead slows inner loops, so
that care should be taken when deciding to use such interfaces.

358 L. C. McInnes et al.

Success is often in the eye of the beholder when choosing a software decom-
position and when naming functions within individual interfaces. Compact, highly
reusable objects, such as vectors and other simple objects in linear algebra, may ap-
pear at first to be tempting to convert into components or ports. Instead, in many
CCA applications, experience has shown that these objects are best handled as
function arguments. Many high-performance, component-based implementations for
PDEs have been reported. Most feature a combination of a mesh definition com-
ponent, a data management component, and various numerical algorithm compo-
nents [78, 73, 135, 93, 4, 19].

10.5.3 Evaluating a Component System Design

Each reusable component provides a set of public interfaces and may also use inter-
faces implemented by other components. Armed with our technical answers about
the PDE software system that we will wrap, refactor, or create from scratch, we must
ask questions about how we expect the components to be used and implemented.
Is some aspect of the design too complex to be useful to the target users? Have we
introduced an interface in such a way that we lose required efficiency or capability?

Component granularity checks. An application is formed by connecting a set
of components and their ports together, and the more components involved in an
application, the more complex it is to define. Too many components may be an indi-
cation of an overly fine decomposition. A good test is to consider the replacement of
each component individually with an alternative implementation. If this would ne-
cessitate changing multiple components at once, then that group may be a candidate
for merging into a single component. As a rule of thumb, we have found that if a
simple test application, such as those discussed in Section 10.3.3, requires more than
seven components, then the decomposition may be worth revisiting.

Similarly, a component providing or using too many ports may be an indication
that it contains too much functionality to be manageable and should be decomposed
further. Multiple ports may offer alternative interfaces to the same functionality, but
many unrelated ports may signal a candidate for further study. A detailed case study
of component designs for ODE integrations is given in [5].

User experience. Empirical evidence determined by CFRFS combustion re-
searchers, whose work is introduced in Section 10.2.3, indicates that the final gran-
ularity of a component-based application code is arrived at iteratively. One starts
with a coarse-grained decomposition, which in their case was dictated by the nature
of their time-integration scheme, and moves to progressively more refined and fine-
grained designs. For the CFRFS researchers, the more refined decompositions were
guided by physics as represented as mathematical operators and terms in the PDE
system being solved. The finest granularity was achieved at the level of physical/-
chemical models. For example, in their flame simulation software, the transport sys-
tem formed an explicit-integration system. In the second level of refinement, trans-
port was separated into convection and diffusion, which occurs as separate terms in
their governing equations. In the final decomposition, diffusion was separated into a
mathematical component that implemented the discretized diffusion operator, while

10 Parallel PDE-Based Simulations Using the CCA 359

the functionality of calculating diffusion coefficients (required to calculate the diffu-
sion term and used in the discretized diffusion operator) was separated as a special-
ized component [79]. Such a decomposition enables the testing of various diffusion
coefficient models and discretizations by simply replacing the relevant component.
Since these components implement the same ports, this activity is literally plug-and-
play.

Port complexity checks. Many ports for PDE computations are as simple as
a function triplet (setup, compute, finish) with a few arguments to each function
(see, for example, the climate component discussion in Section 10.6.2). Port interface
design complexity can be measured in terms of the number of functions per port
and the number of arguments per function. If both these numbers are very high,
the port may be difficult to use and need further decomposition. Should some of
the functions instead be placed in a component configuration port that is separate
from the main computation function port? Is a subset of the functions in the port
unique to a specific implementation, making the port unlikely to be useful in any
other component? Are there several subsets of functions in the port such that using
one subset implies ignoring other subsets? Conversely, there may be so few functions
in a port that it is always connected in parallel with another port. In this case the two
ports may be combined.

10.5.4 Adjusting Complexity and Granularity

Of course a degree of complexity is often unavoidable in the assembly of modern
applications. The CCA specification provides for containers, which can encapsulate
assemblies of components to further manage complexity [20]. This capability allows
a component set to appear as a single component in an application, so that the granu-
larity of components and complexity of interfaces can be revised for new audiences
without major re-implementation. The container may expose a simplified port with
fewer or simpler functions (and probably more built-in assumptions) than a similar
complex port appearing on one of its internally managed components. Some or all
of the ports not connected internally may be forwarded directly to the exterior of the
container for use at the application level.

10.6 Case Studies: Tying Everything Together

The fundamental contribution of component technology to the four parallel PDE-
based applications introduced in Section 10.2 and discussed in detail in this section
is the enforcement of modularity. This enforcement is not the consequence of pro-
gramming discipline; rather, it is a fundamental property of the component paradigm
itself. The advantages observed are those naturally flowing from modularization:

1. Maintainability: Components divide complexity into manageable chunks, so that
errors and substandard implementations are localized and easily identifiable, and
consequently may be quickly repaired. Further, the consequences of careless
design of one component often stop at its boundary.

360 L. C. McInnes et al.

2. Extensibility: Modularization limits the amount of detail that one has to learn
before beginning to contribute to a component-based application. This simplifies
and accelerates the process of using and contributing to an external piece of
software and thus makes it accessible to a wider community.

3. Consistency: Even though the component designs for the various projects have
been agreed to rather informally within small communities, using the component-
based architecture ensures through compile-time checking that object-oriented,
public interfaces (ports) are used consistently everywhere. This approach elim-
inates errors often associated with older styles of interface definition such as
header files with global variables and C macros that may depend on compiler
flags or potentially conflicting Fortran common block declarations in multiple
source files. For example, in the CFRFS project introduced in Section 10.2.3,
interfaces and the overall design could be (and was) changed often and without
much formal review. However, each port change had to be propagated through all
the components dependent on that port interface in order for the software to com-
pile and link correctly. This requirement enforced uniformity and consistency in
the design. As the CFRFS toolkit grew, major interface changes became more
time-consuming, compelling the designers to design with care and completeness
in the first place, a good software engineering practice under any conditions.

We now discuss how component technology has been applied in these four scien-
tific applications, each of which faces different challenges and is at a different stage
of incorporating component concepts. We begin in Section 10.6.1 by discussing the
accelerator project, introduced in Section 10.2.1, which is currently at an early phase
of exploring a component philosophy for mesh infrastructure to facilitate experi-
mentation with different meshing technologies, as introduced in Section 10.4.1. Sec-
tion 10.6.2 explains how climate researchers have decomposed their models using
the general principles introduced in Section 10.5 to develop next-generation proto-
type applications that handle model coupling issues, which were introduced in Sec-
tions 10.2.2 and 10.4.7. Section 10.6.3 highlights how the plug-and-play nature of
CCA components enables combustion scientists to easily explore different choices
in algorithms and data structures and thereby achieve their scientific goals, intro-
duced in Section 10.2.3. The final application, discussed in Section 10.6.4, explains
how CCA components help to harness the complexity of interdisciplinary simula-
tions involving accidental fires and explosions, as introduced in Section 10.2.4. Here
components allow diverse researchers to work together without being in lock step, so
that a large, multiphysics application can achieve efficient and scalable performance
on a wide range of parallel architectures.

10.6.1 Accelerator Modeling

As introduced in Section 10.2.1, ongoing collaborations among scientists in the
TSTT Center and SLAC have resulted in a number of improvements to the mesh
generation tools and software infrastructure used for accelerator modeling. Al-
though the TSTT mesh interfaces are not yet mature enough for direct use in an

10 Parallel PDE-Based Simulations Using the CCA 361

application code, a component philosophy is being employed to insert TSTT adaptive
mesh capabilities into the finite element-based frequency domain code, Omega3P.

Initially, the goal was to demonstrate the benefits of adaptive mesh refinement
without changing a line of code in the core of Omega3P. This goal was accom-
plished by cleanly dividing the responsibilities of the different pieces of software
and iteratively processing the mesh until convergence was achieved. In particular,
TSTT tools developed at RPI handled error estimation and adaptive refinement of
the mesh, while Omega3P computed the solution fields. Information was exchanged
between Omega3P and the TSTT meshing tools by using a file-based mechanism in
which the current mesh and solution fields were written to a file that was then read
by the RPI tools.

Although the performance of a file-based mechanism for information transfer
between adaptive refinement steps is clearly not ideal, it proved to be an excellent
starting point because it allowed a very quick demonstration of the potential benefits
of adaptive mesh refinement for the Omega3P code. As mentioned in Section 10.2.1,
a high degree of accuracy is required in the frequency domain results. For one com-
monly used test geometry, the Trispal geometry, the results from the adaptive re-
finement loop were more accurate than those from prior simulations and provided
the best match to experimental results at a fraction of the computational cost [47].
Furthermore, this work has showcased the benefits of modularizing various aspects
of the simulation process by allowing SLAC researchers to quickly use AMR tech-
nologies without requiring a wholesale change to their code. Based on the success
of this demonstration, work is now proceeding to insert the adaptive refinement loop
directly into Omega3P using the TSTT interface philosophy and the underlying im-
plementations at RPI.

10.6.2 Climate Modeling

In Section 10.2.2 we described how the climate system’s complexity leads to soft-
ware complexity in climate system models. Here we discuss in greater detail the
practices of the climate/weather/ocean (CWO) community; for brevity, our scope
is restricted to atmospheric global climate models. We discuss the refactoring of
CWO software to make it more component friendly and to alleviate complexity.
We describe the CWO community’s effort to create its own component specifica-
tion (ESMF). We also present a prototype component-based atmospheric advection
model, which uses both the ESMF and CCA paradigms. See [73] for further infor-
mation on these topics.

Model Decomposition

As mentioned in Section 10.2.2, the fundamental equations for atmosphere and ocean
dynamics are called the primitive equations. Their solvers are normally structured in
two parts. The first part, which solves the primitive equations, is called the dynam-
ics, dynamical core, or dycore. The second part, which models source and sink terms

362 L. C. McInnes et al.

Climate

AtmosphereOcean Land Sea-Ice

Dynamics Physics

Radiation Cloud

Arrow denotes
composition

Fig. 10.15. Diagram of climate models decomposed in terms of components.

resulting from length scales shorter than those used in the dynamical core’s dis-
cretization, is called the physics. Examples of parameterized physical processes in
the atmosphere include convection, cloud formation, and radiative transfer. In prin-
ciple, one could use the same solver infrastructure for both atmosphere and ocean
dynamics, but this approach is rarely used because of differences in model details.

Climate models are a natural application for component technology. Figure 10.15
illustrates one of the ways for the component decomposition at several levels. The
highest level integrates the major subsystems of the earth’s climate (ocean, at-
mosphere, sea-ice, and land-surface), which are each a component. Within the at-
mosphere, we see a component decomposition of the major parts of the model—the
dynamics and the physics. Within the physics parameterization package, each sub-
gridscale process can also be packaged as a component.

The plug-and-play capabilities of component-based design, as introduced in Sec-
tion 10.3, can aid researchers in exploring trade-offs among various choices in
meshing, discretization, and numerical algorithms. As an example we consider at-
mospheric global climate models, in which various approaches, each with different
advantages and disadvantages, can be used for solving the primitive equations. The
main solvers are finite-difference [41] and spectral methods [50]; semi-Lagrangian
and finite element techniques are also sometimes used. Various solvers have been de-
veloped for each approach, including the Aries dycore [115], the GFDL and NCAR
spectral dycores [50, 123], and the Lin-Rood finite-volume dycore [83]. An addi-
tional challenge is handling the physical mesh definition; choices for the horizontal
direction include logically Cartesian latitude-longitude, geodesic [36], and cubed-
sphere [86]. Various choices for the vertical coordinate include pressure, sigma-
pressure, isentropic, or a combination of these.

A primary challenge in developing atmospheric models is achieving scalable
performance that is portable across a range of parallel architectures. For example,
parallel domain decompositions of atmospheric dycores are usually one- or two-
dimensional in the horizontal direction. Most codes use MPI or an MPI/OpenMP
hybrid scheme for parallelization because it provides solid performance and porta-
bility. Component-based design helps to separate issues of parallelism from por-
tions of code that handle physics and mathematics, thereby facilitating experimen-
tation with different parallel computing strategies. Another challenge is language

10 Parallel PDE-Based Simulations Using the CCA 363

interoperability. The modernization path for most climate models has been a mi-
gration from Fortran 77 to Fortran 90, combined with some refactoring to increase
modularity. Few of these models are implemented in C or C++ [119]. As discussed
in Section 10.3, the programming language gap between applications and numerical
libraries is an issue that component technology can help to bridge.

In response to a CWO component initiative, scientists have been refactoring their
application codes. Initially, this activity was undertaken simply to provide better
modularity and sharing of software among teams. A good example is the refac-
toring of the Community Atmosphere Model (CAM) to split the previously entan-
gled physics and dynamics portions of code. This entanglement made the change
of one dycore for another an arduous process. Now that the physics and dynamics
have been split, CAM has three dycores: the spectral dycore with semi-Lagrangian
moisture transport, the Lin-Rood finite-volume dycore, and the Williamson-Rasch
semi-Lagrangian scheme. This refactoring will ease the integration and testing of
the newly developed NCAR spectral element dycore. An effort is also under way to
repackage these dycores as ESMF components (see below), which will be the first
introduction of component technology to CAM.

Model Coupling

The primitive equations are a boundary-value problem. For the atmosphere, the lat-
eral boundary values are periodic, the top of the atmosphere’s boundary condition
is specified, and the boundary conditions at the Earth’s surface are provided by the
ocean, sea-ice, and land-surface components. This mutual interaction between multi-
ple subsystems requires MxN parallel data transfers, such as those described in Sec-
tion 10.4.7. This need for boundary data also poses the problem of how to schedule
and execute the system’s atmosphere, ocean, sea-ice, and land-surface components
to maximizes throughput. There are two basic scheduling strategies. The first is a
sequential event-loop strategy, in which the components run in turn on the same pool
of processors (e.g., the Parallel Climate Model (PCM) [23]). The second strategy is
concurrent component execution, in which each model executes independently on
its own pool of processors (e.g., CCSM). Componentization of the land, atmosphere,
ocean, and sea-ice models will increase overall flexibility in scheduling the execution
of a climate model’s constituents and thereby facilitate aggressive experimentation
in creating previously unimplemented climate system models.

ESMF and the CCA

The great potential that components offer for enabling new science has inspired
the CWO community embrace component technology. Of particular note is the
NASA-funded interagency project to develop the Earth System Modeling Frame-
work [67, 57]. The ESMF comprises a superstructure and an infrastructure. The
superstructure provides the component specification and the overall component in-
terfaces used in coupling. The infrastructure includes commonly needed low-level
utilities for error handling, input/output, timing, and overall time management. The

364 L. C. McInnes et al.

infrastructure also provides a common data model for coordinate grids, physical
meshes, and layout of field data, as well as services for halo updates, parallel
data transfer, and intergrid interpolation, much like the facilities described in Sec-
tion 10.4.7. One distinguishing feature of ESMF components is that they have three
methods: Initialize, Run, and Finalize. The ESMF supplies its coupling
data in the form of the ESMF State datatype.

ESMF developers have collaborated with the CCA to ensure framework interop-
erability, so that ESMF components may run in a CCA-compliant framework and
vice versa. This effort will provide scientists application-specific ESMF services in
composing climate components, while also enabling the use of CCA numerical com-
ponents, such as those described in Section 10.4.

A Prototype Component-Based Climate Application

A prototype coupled atmosphere-ocean application, which employs both the CCA
and ESMF component paradigms, has been developed as proof-of-concept appli-
cation for CWO codes [137, 136]. The application combines the CCA component
registration infrastructure and uses-provides interaction model introduced in Sec-
tion 10.3 with the ESMF’s component method specification (i.e., Initialize,
Run, Finalize) and data model. (i.e., ESMF State). This application includes a
component common to the atmosphere and ocean dycores, namely, two-dimensional
advection of a quantity Ψ by the horizontal velocity field (u, v):

∂Ψ

∂t
+ u

∂Ψ

∂x
+ v

∂Ψ

∂y
= S,

where Ψ(x, y, t) is the advected quantity, and S(x, y, t) is the sum of all sources and
sinks. The x-y spatial grid is rectangular, and the discretization method is a finite-
difference scheme. Here we consider three finite difference variants, which are each
forward in time and either forward-, central-, or backward-difference in space.

Following the CCA component specification, we created an advection compo-
nent with a solver port definition for a finite-difference scheme. The advection equa-
tion can be solved by using forward-, central-, or backward-differencing in space. We
employ a proxy design pattern [46] to allow the atmospheric model component the
choice of one of these default solvers or a user-designated scheme. We also use CCA
technology to enable the user to specify run-time parameters such as advection speed.
The ability to easily swap in different implementations in this component-based ad-
vection application has proven useful in exploring differences in the accuracy and
computational complexity of the various numerical methods.

10.6.3 Combustion

The objective of the CFRFS [90] project introduced in Section 10.2.3 is the creation
of a component-based toolkit for simulating laboratory-sized (0.13 m) flames with
detailed chemistry. Such flames contain tens of species, hundreds of reactions, spatial

10 Parallel PDE-Based Simulations Using the CCA 365

structures 10−4 meters in size, and timescales ranging from 10−9 seconds (chemical
processes) to 10−1 seconds (convective processes). The low Mach Navier-Stokes
equation [130, 91], and the equations for species’ evolution comprise a set of coupled
PDEs of the form

∂Φ
∂t

= F(Φ,∇Φ,∇2Φ, ...) + G(Φ),

where Φ consists of flow quantities such as density and temperature. The equation is
discretized on rectangular meshes and solved in rectangular domains. For these sys-
tems G involves the variables only at a given mesh point, while F, which involves
spatial derivatives (computed by using finite-difference or finite-volume schemes),
depends on the mesh point and its close neighbors. G is stiff, so that the ratio of the
largest and the smallest eigenvalues of ∂G/∂Φ is large, while F is non-stiff. Opera-
tor splitting [113, 114] is employed to evolve the stiff (G) and nonstiff (F) terms in
a decoupled manner by following a GFG sequence, thus letting the stiff operator be
the last in the time step, in order to achieve higher accuracy in the data reported at
the end of the time step. A backward-difference formulation [33] and a Runge-Kutta-
Chebyshev integrator [9] are used for the stiff and nonstiff problem, respectively. The
solution vector Φ exhibits steep spatial variations in scattered, time-evolving regions
of the domain. Block-structured adaptive mesh refinement (SAMR) [18] and time
refinement [17] are used to track and resolve these regions.

The CFRFS team used CCA-compliant component technology to explore the use
of high-order spatial discretizations in a SAMR setting [76, 78, 107] for the first time
and to perform scalability studies of reacting flow problems on SAMR meshes.

High-Order Spatial Discretizations and Block SAMR

PDEs can be discretized by a variety of methods [100]. Finite differences and vol-
umes are popular for solving fluid flows. Typically, second-order spatial discretiza-
tions are used, although high-order spatial discretizations on single-level structured
or unstructured meshes are becoming common [81, 127, 128, 82, 32, 62]. The
CFRFS team explored the use of high-order (> 2) schemes in multilevel block-
structured adaptive meshes [76, 78]. Multilevel, block-structured meshes are a con-
ceptually elegant way of achieving resolution in simple domains. One starts with a
coarse, structured, logically rectangular mesh. Regions requiring resolution are iden-
tified, collated into patches, and overlaid with a rectangular mesh of higher density.
This high-density patch is not embedded; rather, it is preserved separately as a fine
patch. This process is carried out recursively, leading to a hierarchy of patches, that
is, a multilevel grid hierarchy [17]. In this way a given point in space is resolved at
different resolutions simultaneously, by different levels of the grid hierarchy.

Deep grid hierarchies pose significant load-balancing problems. High-order spa-
tial discretizations present a simple solution because they may provide an accept-
able degree of accuracy on relatively coarse meshes (i.e., with relatively shallow
grid hierarchies). Incorporating high-order schemes in a SAMR setting is nontriv-
ial, however, as the software infrastructure associated with parallel SAMR codes is
very complex. Indeed, the mathematical complexities of high-order schemes have

366 L. C. McInnes et al.

Total no. of levels

R
M

S
E

rr
o

r
w

.r
.t

an
al

yt
ic

al
re

su
lts

0 1 2 3 4

10-5

10-4

10-3

10-2

4th order

2nd order

L0 errors : Squares
L1 errors : Circles
L2 errors : Triangle
L3 errors : Diamonds
Ideal : Line

C
P

U
Lo

ad

10-5 10-4 10-3 10-2

100

101

102

2nd order
4th order

RMS Error

Fig. 10.16. (Left): The root mean squared (RMS) error on the individual levels, as the simu-
lation is run on a 1-, 2-, 3- and 4-level grid hierarchy. (Right): The computational load versus
RMS error for the second- and fourth-order approaches. Results have been normalized by the
computational load of a second-order, 1-level grid hierarchy run.

restricted their use to relatively simple problems. The component design established
a clear distinction between the various domains of expertise and a means of incorpo-
rating the contributions of diverse contributors without imposing a programming and
data-structural straitjacket. Most contributions were written by experts in Fortran 77
and then componentized.

These components were used to simulate PDEs on multilevel meshes, with
factor-of-two refinements between levels. The left-hand side of Figure 10.16 shows
the recovery of the theoretical convergence rate as the effective resolution was in-
creased by increasing the number of levels. The base grid has 100 cells in the
[0,1] domain. Both second- and fourth-order discretizations were used. High-order
schemes were found to be more economical than second-order schemes because they
required sparser meshes to achieve a given level of accuracy. Further, higher-order
schemes become progressively more economical vis-a-vis second-order approaches
as the error tolerances become stringent. This behavior is evident in the right-hand
side of Figure 10.16, which plots the computational loads (in terms of floating point
operations count) normalized by the one-level grid hierarchy load (1,208,728,001
operations).

Strong-Scalability Analysis of a SAMR Reacting Flow Code

SAMR scalability studies are rare [131, 132] and usually specific to the applications
being tested, that is, specific to the implemented algorithm, and hence are difficult
to analyze and interpret. To explore the behavior of the parallel CCA-based block-
SAMR toolkit and to identify the scalability bottlenecks, the CFRFS team performed
a strong scaling study (i.e., the global problem size was kept constant while the
number of processors increased linearly) for a two-dimensional reaction-diffusion
problem with detailed hydrogen-air chemistry using three levels of refinement with

10 Parallel PDE-Based Simulations Using the CCA 367

Sending proc

R
ec

v
pr

oc

0 10 20
0

5

10

15

20

25

Communication radius

A
ve

ra
ge

C
om

m
un

ic
at

io
n

tim
e

(s
ec

s)

0 2 4 6 8 10
5

10

15

20

25

np=7

np=14

np=28

np=56

np=112

Fig. 10.17. (Left): Communication patterns for 28 processors at timestep 40. (Right): Commu-
nication costs as a function of the communication radius at timestep 40. (For the color version,
see Figure A.22 on page 477).

a refinement factor of two [80]. The initial condition was a random distribution of
temperature kernels in a stoichiometric hydrogen-air mixture. For this experiment,
the parallel virtual machine expanded by a factor of two, starting with 7 processors
and reaching 112 processors. Time and messaging volumes were measured by con-
necting the TAU [124] performance analysis component to the CFRFS component
code assembly.

Results indicated that the overall scalability of the adaptive algorithm is highly
dependent on the scalability of the intermediate time steps [80]. There were “scal-
able” and “nonscalable” time steps, depending on the quality of the domain decom-
position. The nonscalable time steps were a consequence of synchronization times,
where many processors idled because of severely uneven computational load parti-
tioning. The scalable time steps showed good load-balance, but their communication
times increased as the number of processors increased. The left-hand side of Fig-
ure 10.17 shows the communication map for a 28-processor run. While the bulk of
the communication is with the nearest neighbors, there are a significant number of
outliers. The remoteness of these outliers was characterized by an average communi-
cation radius r. The right-hand side of Figure 10.17 shows that the average commu-
nication time per processor increases with r (after r ∼ 4), a counterintuitive result, as
increasing r indicates more processors and smaller per-processor problem sizes. The
explanation lies in the network topology. The scaling study was performed on a clus-
ter with Myrinet, which has a Clos-network topology. Eight nodes are connected to a
switch; a cascade of 16-port switches ensures full connectivity, though at increasing
levels of indirection. As r → 8, increasing fractions of the total communication oc-
cur over the cascade, as opposed to in-switch communication. This situation results
in message contentions and collisions and hence slower transfer speeds and larger
communication costs.

368 L. C. McInnes et al.

10.6.4 Accidental Fires and Explosions

The simulation environment for the Center for the Simulation of Accidental Fires
and Explosions (C-SAFE) [55], introduced in Section 10.2.4, is the Uintah
Computational Framework (UCF) [40], which is a set of software components and
libraries that facilitate the parallel simulation of PDEs on structured adaptive mesh
refinement (SAMR) grids. The UCF is implemented in the context of the CCA-
based SCIRun2 framework [135], which supports a wide range of computational
and visualization applications. One of the challenges of creating component-based
PDE software is achieving scalability, which is a global application property, through
components that, by definition, make local decisions.

Managing Parallelism via Taskgraphs

To address this challenge of managing parallelism in multidisciplinary applications,
the UCF employs a nontraditional approach. Instead of using explicit MPI calls
throughout each component of the program, applications are cast in terms of a task-
graph, which describes the data dependencies among various steps of the problem.

Computations are expressed as directed acyclic graphs of tasks, each of which
produces some output and consumes some input, which is in turn the output of some
previous task. These inputs and outputs are specified for each patch in a structured
AMR grid. Associated with each task is a method that performs the actual com-
putation. This representation has many advantages, including efficient fine-grained
coupling of multiphysics components, flexible load balancing mechanisms, and a
separation of application and parallelism concerns. Moreover, UCF data structures
are compatible with Fortran arrays, so that application writers can use Fortran sub-
routines to provide numerical kernels on each patch.

Each execution of a taskgraph integrates a single timestep, or a single nonlinear
iteration, or some other coarse algorithmic step. Tasks communicate with each other
through an entity called the DataWarehouse. The DataWarehouse is accessed through
a simple name-based dictionary mechanism, and it provides each task with the illu-
sion that all memory is global. If the tasks correctly describe their data dependencies,
then the data stored in the DataWarehouse will match the data (variable and region
of space) needed by the task. In other words, the DataWarehouse is an abstraction
of a global single-assignment memory, with automatic data lifetime management
and storage reclamation. Values stored in the DataWarehouse are typically array-
structured. Communication is scheduled by a local algorithm that approximates the
true globally optimal communication schedule. Because of the flexibility of single-
assignment semantics, the UCF is free to execute tasks close to data or move data to
minimize future communication.

The UCF storage abstraction is sufficiently high level that it can be efficiently
mapped onto both message-passing and shared-memory communication mecha-
nisms. Threads sharing a memory can access their input data directly; single-
assignment dataflow semantics eliminate the need for any locking of values. Threads
running in disjoint address spaces communicate by a message-passing protocol, and

10 Parallel PDE-Based Simulations Using the CCA 369

m

σ
ω

m

m

PositionX
M Mass

Grid Data

Velocity

’

’

Constituents
σ Stress
V

Particle Data

v’
m’

x’

m

m

ω

σ

ω

Acceleration
Integrate

σ
’ v

Motion
Equations Of

Solve

a

Fv

Grid
Particles To
Interpolate Compute

x

Stress Tensor
Compute

Internal Force

v

To Particles And
Interpolate

x

Update
v’

a

v

Fig. 10.18. An example UCF taskgraph, depicting a portion of the material point method
(MPM) algorithm used to simulate solid materials in C-SAFE scenarios.

the UCF is free to optimize such communication by message aggregation. Tasks
need not be aware of the transports used to deliver their inputs, and thus UCF has
complete flexibility in control and data placement to optimize communication both
between address spaces or within a single shared-memory symmetric multiprocess-
ing node. Latency in requesting data from the DataWarehouse is not an issue; the
correct data is deposited into the DataWarehouse before each task is executed.

Consider the taskgraph in Figure 10.18. Ovals represent tasks, each of which is
a simple array-based subroutine. Edges represent named values stored by the UCF.
Solid edges have values defined at each material point, and dashed edges have values
defined at each grid vertex. Variables denoted with a prime (’) have been updated
during the time step. The figure shows a portion of the Uintah material point method
(MPM) [116] taskgraph concerned with advancing Newtonian material point motion
on one patch for a single time step.

The idea of the dataflow graph as an organizing structure for execution is well
known. The SMARTS [125] dataflow engine that underlies the POOMA [108] toolkit
shares goals and philosophy with the UCF. Sisal compilers [45] used dataflow con-
cepts at a much finer granularity to structure code generation and execution. Dataflow
is a simple, natural, and efficient way of exposing parallelism and managing compu-
tation and is an intuitive way of reasoning about parallelism. What distinguishes
implementations of dataflow ideas is that each caters to a particular higher-level
presentation. SMARTS is tailored to POOMA’s C++ implementation and stylistic
template-based presentation. The UCF supports a presentation catering to C++ and
Fortran-based mixed particle/grid algorithms on structured adaptive meshes, and the
primary algorithms of importance to C-SAFE are the MPM and Eulerian computa-
tional fluid dynamics algorithms.

370 L. C. McInnes et al.

This dataflow-based representation of parallel computation fits well with the
structured AMR grids and with the nature of the computations that C-SAFE per-
forms. In particular, we used this approach in order to accommodate multiphysics
integration, load-balancing, and mixed thread/MPI programming. A more detailed
discussion of these advantages (and disadvantages) can be found in [98].

The most important advantage for a large interdisciplinary project such as C-
SAFE is that the taskgraph facilitates the separate development of simulation compo-
nents and allows pieces of the simulation to evolve independently. Because C-SAFE
is a research project, we need to accommodate the fact that most of the software is
still under development. The component-based architecture allows pieces of the sys-
tem to be implemented in a basic form at first and then to evolve as the technologies
mature. Most importantly, the UCF allows the aspects of parallelism (schedulers,
load-balancers, parallel input/output, and so forth) to evolve independently of the
simulation components. This approach allows the computer science effort to focus
on these problems without waiting for the completion of the scientific applications
or vice-versa.

Components Involved

Figure 10.19 shows the main components involved in a typical C-SAFE simulation.
The simulation controller component, which is in charge of the simulation, manages
restart files if necessary and controls the integration through time. First, it reads the
specification of the problem from an XML input file. After setting up the initial grid,
it passes the description to the simulation component, which can implement various
algorithms, including one of two different CFD algorithms, the MPM algorithm, or
a coupled MPM-CFD algorithm. The simulation component defines a set of tasks
for the scheduler. In addition, a data-archiver component describes a set of output
tasks to the scheduler. These tasks save a specified set of variables to disk. Once
all tasks are known to the scheduler, the load-balancer component uses the machine
configuration to assign tasks to processing resources. The scheduler uses MPI for
communication and then executes callbacks to the simulation or data-archiver com-
ponents to perform the actual work. This process continues until the taskgraph has
been fully executed. The execution process is then repeated to integrate further time
steps.

Each of these components runs concurrently on each processor. The components
communicate with their counterparts on other processors using MPI. However, the
scheduler is typically the only component that needs to communicate with other
processors. Figure 10.20 demonstrates that the resulting system scales well on vari-
ous parallel architectures. Delegating responsibility for parallelism to the scheduler
component allows complex multiphysics applications to utilize processor resources
efficiently and reduces the programming burden for applications that require com-
plex communication patterns to achieve good scalability.

10 Parallel PDE-Based Simulations Using the CCA 371

Fig. 10.19. UCF simulation compo-
nents. The simulation describes tasks
to a scheduling component, which are
assigned to processing resources by a
load-balancer component. Callbacks
are made into the simulation com-
ponent to perform the computation.
Checkpointing and data input/output
are performed automatically by the
data-archiver component.

1 4 16 64 256 1024
Number of Processors

1

10

100

1000

T
im

e
pe

r
T

im
es

te
p

(s
ec

on
ds

)

Linear
SCI - Rapture
SCI - Muse
SCI - Inferno
LLNL - Frost
LLNL - Blue
LLNL - ALC
LANL - Nirvana
LANL - QSC

MPM Performance Comparison

Fig. 10.20. Performance of the UCF MPM simulation on various architectures during the
development of the simulation. Rapture: 32-processor 250 MHz Origin 2000, Muse: 64-
processor 600 MHz Origin 3000, Inferno: 256-processor 2.4 GHz Pentium 4 Linux cluster,
Frost: 1024-processor IBM SP Power 3, Blue: 3392-processor IBM SP PowerPC 604e, ALC:
1024-processor 2.4 GHz Pentium 4 Linux cluster, Nirvana: 2048-processor 250 MHz Origin
2000 at LANL, QSC: 256-processor 1.25 GHz Alpha. Data courtesy of Randy Jones, Jim
Guilkey, and Todd Harman of the University of Utah.

10.7 Conclusions and Future Work

All component-based approaches to software seek to divide the inherent complexity
of large-scale applications into sizes that human beings can deal with individually,
so that more complex applications can be constructed from these manageable units.
Parallel PDE-based applications are unique in this context only to the extent that

372 L. C. McInnes et al.

they tend to be extremely complex and thus can profoundly benefit from compo-
nent concepts. The CCA contributes a component model for high-performance sci-
entific computing that may be of particular interest to investigators conducting simu-
lations of detailed or comprehensive physical phenomena. Compliance with the CCA
specification has enabled the scientific application teams featured in this chapter to
perform several tasks more easily:

• Create sets of reusable, easy-to-maintain, and scalable components, each of
which expresses a unique physical or numerical functionality [77, 79, 98, 73,
137]

• Use legacy code (originally written in Fortran or C) in the CCA environment
without major code rewrites [77, 73]

• Easily test different physics and numerics modules with well-defined interfaces
in a plug-and-play mode [79]

• Manage the evolution of complex scientific applications, by separating the dis-
parate concerns of physics, numerical, and computer science issues [40, 98]

• Obtain good parallel performance [79, 39, 87] with negligible CCA overhead [21]

There is no point at which we envision the CCA as a component model will be
finished. The CCA continues to respond to implementers’ concerns, feature requests,
and unforeseen conflicts created by CCA-specified mechanisms or the lack thereof.
In addition, the CCA Forum is extending the prototype work of Section 10.4 and as-
sembling a critical mass of components from which parallel simulations can be pro-
totyped and evolved into meaningful simulations. Component concepts also provide
unprecedented opportunities for automation. Recent work on computational quality
of service [59, 94] allows component parameters and component configurations to
be rearranged dynamically, thereby enabling the automatic selection and configu-
ration of components to suit the computational conditions imposed by a simulation
and its operating environment. The CCA Forum aims to enable next-generation high-
performance scientific simulations by providing a means for tens or even hundreds
of researchers to contribute to a single application as well as by developing the in-
frastructure to automate its construction and execution.

Acknowledgments

The CCA has been under development since 1998 by the CCA Forum and represents
the contributions of many people, all of whom we gratefully acknowledge. We also
thank our collaborators outside the CCA Forum, especially the domain scientists
who have contributed to the four applications discussed in this chapter and the early
adopters of the CCA, for the important contributions they have made both to our
understanding of CBSE in the high-performance scientific computing context and
to making the CCA a practical and usable environment. We thank Barry Smith for
developing a PETSc-based implementation of the TOPS solver interfaces discussed
in Section 10.4.4. In addition, we thank Are Magnus Bruaset, Jeff Keasler, Barry

10 Parallel PDE-Based Simulations Using the CCA 373

Smith, and the anonymous reviewers of this chapter for valuable feedback that has
enabled us to improve our presentation.

This work has been supported in part by the U. S. Department of Energy’s Scien-
tific Discovery through Advanced Computing (SciDAC) [122] initiative, through the
Center for Component Technology for Terascale Simulation Software, of which Ar-
gonne, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia
National Laboratories, Indiana University, and the University of Utah are members.
Members of the SciDAC Computational Facility for Reacting Flow Research have
also contributed to this paper.

Research at Argonne National Laboratory was supported in part by the Mathe-
matical, Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38.

Some of this work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US
Dept. of Energy under contract DE-AC-05-00OR22725.

This research was performed in part using the Molecular Science Computing
Facility (MSCF) in the William R. Wiley Environmental Laboratory at the Pacific
Northwest National Laboratory (PNNL). The MSCF is funded by the Office of Bi-
ological and Environmental Research in the U.S. Department of Energy. PNNL is
operated by Battelle for the U.S. Department of Energy under contract DE-AC06-
76RLO 1830.

Research at the University of Utah is also sponsored by the National Science
Foundation under contract ACI0113829, and the DOE ASC Program.

Some of the work in this paper was carried out by Northrop Grumman with fund-
ing provided by NASA’s Computation Technologies (CT) Project, part of the Earth
Science Technology Office (ESTO), under a contract with the National Aeronautics
and Space Administration.

References

1. R. Ahrem, P. Post, B. Steckel, and K. Wolf. MpCCI: A tool for coupling CFD with other
disciplines. In Proceedings of the Fifth World Conference in Applied Fluid Dynamics,
CFD-Efficiency and Economic Benefit in Manufacturing, 2001.

2. R. Ahrem, P. Post, and K. Wolf. A communication library to couple simulation codes
on distributed systems for multi-physics computations. In E. D’Hollander, G. Joubert,
F. Peters, and H. Sips, editors, Parallel Computing: Fundamentals and Applications,
Proceedings of the International Conference ParCO 99, pages 47–55. Imperial College
Press, 1999.

3. B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh, and P. Wolfe. Ccaffeine – a
CCA component framework for parallel computing. http://www.cca-forum.
org/ccafe/, 2005.

374 L. C. McInnes et al.

4. B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and J. A. Kohl. The
CCA core specification in a distributed memory SPMD framework. Concurrency and
Computation: Practice and Experience, 14(5):1–23, 2002.

5. B. A. Allan, S. Lefantzi, and J. Ray. ODEPACK++: Refactoring the LSODE Fortran
library for use in the CCA high performance component software architecture. In Pro-
ceedings of the 9th International Workshop on High-Level Parallel Programming Mod-
els and Supportive Environments (HIPS 2004), Santa Fe, NM, April 2004. IEEE Press.
see http://www.cca-forum.org/∼baallan/odepp.

6. G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky, T. Radke, E. Sei-
del, and J. Shalf. The Cactus code: A problem solving environment for the Grid. In High
Performance Distributed Computing (HPDC), pages 253–260. IEEE Computer Society,
2000.

7. P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, R. van de Geijn,
and Y.-J. J. Wu. PLAPACK: Parallel linear algebra package - design overview. In
Proceedings of SC97, 1997.

8. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and
B. Smolinski. Toward a Common Component Architecture for high-performance scien-
tific computing. In Proceedings of the Eighth IEEE International Symposium on High
Performance Distributed Computing, 1999.

9. L. F. S. B. P. Sommeijer and J. G. Verwer. RKC: an explicit solver for parabolic PDEs.
J. Comp. Appl. Math., 88:315–326, 1998.

10. S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. F. Smith,
and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.2.1,
Argonne National Laboratory, 2004. http://www.mcs.anl.gov/petsc.

11. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of par-
allelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–
202. Birkhauser Press, 1997.

12. P. Beckman, P. Fasel, W. Humphrey, and S. Mniszewski. Efficient coupling of parallel
applications using PAWS. In Proceedings of the 7th IEEE International Symposium on
High Performance Distributed Computation, July 1998.

13. S. Benson, M. Krishnan, L. McInnes, J. Nieplocha, and J. Sarich. Using the GA and TAO
toolkits for solving large-scale optimization problems on parallel computers. Technical
Report ANL/MCS-P1084-0903, Argonne National Laboratory, September 2003.

14. S. Benson, L. C. McInnes, and J. Moré. A case study in the performance and scalability
of optimization algorithms. ACM Transactions on Mathematical Software, 27:361–376,
2001.

15. S. Benson, L. C. McInnes, J. Moré, and J. Sarich. TAO users manual. Technical Report
ANL/MCS-TM-242 - Revision 1.7, Argonne National Laboratory, 2004. http://
www.mcs.anl.gov/tao/.

16. S. Benson and J. Moré. A limited-memory variable-metric algorithm for bound-
constrained minimization. Technical Report ANL/MCS-P909-0901, Mathematics and
Computer Science Division, Argonne National Laboratory, 2001.

17. M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J.
Comp. Phys., 82:64–84, 1989.

18. M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comp. Phys., 53:484–523, 1984.

19. D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L. Dahlgren,
K. Damevski, W. R. Elwasif, T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl,

10 Parallel PDE-Based Simulations Using the CCA 375

M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony, L. C.
McInnes, J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and
S. Zhou. A component architecture for high-performance scientific computing. Intl.
J. High-Perf. Computing Appl., 2005. Submitted to ACTS Collection special issue, in
press.

20. D. E. Bernholdt, R. C. Armstrong, and B. A. Allan. Managing complexity in mod-
ern high end scientific computing through component-based software engineering. In
Proceedings. of the HPCA Workshop on Productivity and Performance in High-End
Computing (P-PHEC 2004), Madrid, Spain. IEEE Computer Society, 2004.

21. D. E. Bernholdt, W. R. Elwasif, J. A. Kohl, and T. G. W. Epperly. A component architec-
ture for high-performance computing. In Proceedings of the Workshop on Performance
Optimization via High-Level Languages and Libraries (POHLL-02), 2002.

22. F. Bertrand, R. Bramley, K. Damevski, J. Kohl, J. Larson, and A. Sussman. MxN in-
teractions in parallel component architectures. Technical Report TR604, Department of
Computer Science, Indiana University, Bloomington, 2004.

23. T. Bettge, A. Craig, R. James, and V. Wayland. The DOE Parallel Climate Model (PCM):
The computational highway and backroads. In V. N. Alexandrov, J. J. Dongarra, B. A.
Juliano, R. S. Renner, and C. J. K. Tan, editors, Proceedings of the International Con-
ference on Computational Science (ICCS) 2001, volume 2073 of Lecture Notes in Com-
puter Science, pages 148–156, Berlin, 2001. Springer-Verlag.

24. G. E. Blelloch, M. A. Heroux, and M. Zagha. Segmented operations for sparse matrix
computation on vector multiprocessor. Technical Report CMU-CS-93-173, Carnegie
Mellon University, 1993.

25. Boost. http://www.boost.org, 2005.
26. D. Box. Essential COM. Addison-Wesley, December 1997.
27. R. Bramley, D. Gannon, T. Stuckey, J. Vilacis, E. Akman, J. Balasubramanian, F. Berg,

S. Diwan, and M. Govindaraju. The linear system analyzer. In Enabling Technologies
for Computational Science, Kluwer, 2000.

28. CCA Forum homepage. http://www.cca-forum.org/, 2005.
29. CCA Specification. http://cca-forum.org/specification/, 2005.
30. S. Chatterjee, G. E. Blelloch, and M. Zagha. Scan primitives for vector computers. In

Supercomputing 1990, 1990.
31. R. Clay et al. ESI homepage. http://www.terascale.net/esi, 2001.
32. B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-

dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–2463, 1998.
33. S. D. Cohen and A. C. Hindmarsh. CVODE, a stiff/nonstiff ODE solver in C. Computers

in Physics, 10(2):138–143, 1996.
34. P. Colella. An Algorithmic and Software Framework for Applied Partial Differential

Equations Center (APDEC). http://davis.lbl.gov/APDEC/, 2005.
35. P. Colella et al. Chombo – Infrastructure for Adaptive Mesh Refinement. http://

seesar.lbl.gov/anag/chombo, 2005.
36. Colorado State University. The CSU GCM (BUGS) homepage. http://kiwi.

atmos.colostate.edu/BUGS/, 2005.
37. Combustion Research Facility. http://www.ca.sandia.gov/CRF, 2005.
38. T. Dahlgren, T. Epperly, and G. Kumfert. Babel User’s Guide. CASC, Lawrence Liver-

more National Laboratory, version 0.9.0 edition, January 2004.
39. J. de St. Germain, A. Morris, S. Parker, A. Malony, and S. Shende. Integrating perfor-

mance analysis in the Uintah software development cycle. In The Fourth International
Symposium on HighPerformance Computing (ISHPC-IV), pages 190–206, May 15-17
2002.

376 L. C. McInnes et al.

40. J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson. Uintah: A
massively parallel prolem solving environment. In Proceedings of the Ninth IEEE Inter-
national Symposium on High Performance and Distributed Computing, August 2000.

41. D. R. Durran. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.
Springer, 1999.

42. G. Edjlali, A. Sussman, and J. Saltz. Interoperability of data-parallel runtime libraries. In
International Parallel Processing Symposium, Geneva, Switzerland, April 1997. IEEE
Computer Society Press.

43. G. Eisenhauer, F. Bustamante, and K. Schwan. Event services for high performance sys-
tems. Cluster Computing: The Journal of Networks, Software Tools, and Applications,
3(3), 2001.

44. R. Englander. Developing Java Beans. O’Reilly and Associates, June 1997.
45. J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the Sisal language project.

Journal of Parallel and Distributed Computing, 10(4):349–366, 1990.
46. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1994.
47. L. Ge, L. Lee, L. Zenghai, C. Ng, K. Ko, Y. Luo, and M. Shephard. Adaptive mesh

refinement for high accuracy wall loss determination in accelerating cavity design. In
IEEE Conf. on Electromagnetic Field Computations, June 2004.

48. G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel Comput-
ing. MIT Press, Cambridge, MA, 1994.

49. G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing fault tolerance,
visualization and steering of parallel applications. Intl. J. High-Perf. Computing Appl.,
11(3):224–236, 1997.

50. GFDL Flexible Modeling System. http://www.gfdl.noaa.gov/fms, 2004.
51. M. S. Gockenbach, M. J. Petro, and W. W. Symes. C++ classes for linking optimization

with complex simulations. ACM Transactions on Mathematical Software, 25(2):191–
212, 1999.

52. M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, and R. Bramley. Merg-
ing the CCA component model with the OGSI framework. In 3rd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, 12–15 May 2003.

53. E. Guilyardi, R. G. Budich, and S. Valcke. PRISM and ENES: European approaches to
Earth System Modelling. In Proceedings of Realizing TeraComputing - Tenth Workshop
on the Use of High Performance Computing in Meteorology, November 2002.

54. L. Harper and B. Kauffman. Community Climate System Model. http://www.
ccsm.ucar.edu/, 2005.

55. T. C. Henderson, P. A. McMurtry, P. J. Smith, G. A. Voth, C. A. Wight, and D. W.
Pershing. Simulating accidental fires and explosions. Comp. Sci. Eng., 2:64–76, 1994.

56. M. A. Heroux and J. M. Willenbring. Trilinos Users Guide. Technical Re-
port SAND2003-2952, Sandia National Laboratories, 2003. http://software.
sandia.gov/Trilinos.

57. C. Hill et al. The architecture of the earth system modeling framework. Computing in
Science and Engineering, 6(1):18–28, 2003.

58. A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. Scientific
Computing, 1993.

59. P. Hovland, K. Keahey, L. C. McInnes, B. Norris, L. F. Diachin, and P. Raghavan. A qual-
ity of service approach for high-performance numerical components. In Proceedings of
Workshop on QoS in Component-Based Software Engineering, Software Technologies
Conference, Toulouse, France, 20 June 2003.

10 Parallel PDE-Based Simulations Using the CCA 377

60. E. C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics.
J. Phys. Oc., 27:1849–1867, 1997.

61. Indiana University. XCAT homepage. http://www.extreme.indiana.edu/
xcat/, 2005.

62. G. E. Karniadakis and S. J. Sherwin. Spectral/Hp Element Methods for CFD. Numerical
Mathematics and Scientific Computation. Oxford University Press, 1999.

63. K. Keahey, P. Beckman, and J. Ahrens. Ligature: Component architecture for high
performance applications. Intl. J. High-Perf. Computing Appl., 14(4):347–356, Winter
2000.

64. K. Keahey, P. Fasel, and S. Mniszewski. PAWS: Collective interactions and data trans-
fers. In Proceedings of the High Performance Distributed Computing Conference, San
Francisco, CA, August 2001.

65. J. P. Kenny, S. J. Benson, Y. Alexeev, J. Sarich, C. L. Janssen, L. C. McInnes, M. Kr-
ishnan, J. Nieplocha, E. Jurrus, C. Fahlstrom, and T. L. Windus. Component-based
integration of chemistry and optimization software. J. of Computational Chemistry,
25(14):1717–1725, 2004.

66. D. Keyes. Terascale Optimal PDE Simulations (TOPS) Center.
http://tops-scidac.org/, 2005.

67. T. Killeen, J. Marshall, and A. da Silva. Earth System Modeling Framework. http:
//www.esmf.ucar.edu, 2005.

68. O. Knio, H. Najm, and P. Wyckoff. A semi-implicit numerical scheme for reacting flow.
II. stiff, operator-split formulation. J. Comp. Phys., 154:428–467, 1999.

69. J. A. Kohl and P. M. Papadopoulos. A library for visualization and steering of distrib-
uted simulations using PVM and AVS. In High Performance Computing Symposium,
Montreal, CA, July 1995.

70. S. H. Lam and D. A. Goussis. The CSP method of simplifying kinetics. International
Journal of Chemical Kinetics, 26:461–486, 1994.

71. J. Larson, R. Jacob, and E. Ong. The Model Coupling Toolkit: A new Fortran90
toolkit for building multi-physics parallel coupled models. Technical Report ANL/MCS-
P1208-1204, Argonne National Laboratory, 2004. Submitted to Int. J. High Perf. Comp.
App. See also http://www.mcs.anl.gov/mct/.

72. J. W. Larson, R. L. Jacob, I. T. Foster, and J. Guo. The Model Coupling Toolkit. In
V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. J. K. Tan, ed-
itors, Proceedings of the International Conference on Computational Science (ICCS)
2001, volume 2073 of Lecture Notes in Computer Science, pages 185–194, Berlin, 2001.
Springer-Verlag.

73. J. W. Larson, B. Norris, E. T. Ong, D. E. Bernholdt, J. B. Drake, W. R. Elwasif, M. W.
Ham, C. E. Rasmussen, G. Kumfert, D. S. Katz, S. Zhou, C. DeLuca, and N. S. Collins.
Components, the Common Component Architecture, and the climate/weather/ocean
community. In 84th American Meteorological Society Annual Meeting, Seattle, Wash-
ington, 11–15 January 2004. American Meteorological Society.

74. Lawrence Livermore National Laboratory. Babel. http://www.llnl.gov/CASC/
components/babel.html, 2005.

75. J. C. Lee, H. N. Najm, M. Valorani, and D. A. Goussis. Using computational singular
perturbation to analyze large scale reactive flows. In Proceedings of the Fall Meeting
of the Western States Section of the The Combustion Institute, Los Angeles, California,
October 2003. Distributed via CD-ROM.

76. S. Lefantzi, C. Kennedy, J. Ray, and H. Najm. A study of the effect of higher order
spatial discretizations in SAMR (Structured Adaptive Mesh Refinement) simulations.

378 L. C. McInnes et al.

In Proceedings of the Fall Meeting of the Western States Section of the The Combustion
Institute, Los Angeles, California, October 2003. Distributed via CD-ROM.

77. S. Lefantzi and J. Ray. A component-based scientific toolkit for reacting flows. In Pro-
ceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics,
June 17-20, 2003, Cambridge, MA, volume 2, pages 1401–1405. Elsevier, 2003.

78. S. Lefantzi, J. Ray, C. Kennedy, and H. Najm. A component-based toolkit for react-
ing flow with high order spatial discretizations on structured adaptively refined meshes.
Progress in Computational Fluid Dynamics: An International Journal, 2004. To appear.

79. S. Lefantzi, J. Ray, and H. N. Najm. Using the Common Component Architecture to
design high performance scientific simulation codes. In Proceedings of the 17th In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2003), 22-26 April
2003, Nice, France. IEEE Computer Society, 2003.

80. S. Lefantzi, J. Ray, and S. Shende. Strong scalability analysis and performance evalua-
tion of a CCA-based hydrodynamic simulation on structured adaptively refined meshes.
Poster in ACM/IEEE Conference on Supercomputing, November 2003, Phoenix, AZ.

81. S. Lele. Compact finite differnece schemes with spectral-like resolution. J. Comp. Phys.,
103:16–42, 1992.

82. Z. Lilek and M. Perić. A fourth-order finite volume method with collocated variable
arrangement. Computers & Fluids, 24, 1995.

83. S. J. Lin et al. Global weather prediction and high-end computing at NASA. Computing
in Science and Engineering, 6(1):29–35, 2003.

84. J. Lindemann, O. Dahlblom, and G. Sandberg. Using CORBA middleware in finite
element software. In P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, , and A. G. Hoekstra,
editors, Proceedings of the 2nd International Conference on Computational Science,
Lecture Notes in Computer Science. Springer, 2002. To appear in Future Generation
Computer Systems (2004).

85. A. Lumsdaine et al. Matrix Template Library. http://www.osl.iu.edu/
research/mtl, 2005.

86. Massachussetts Institute of Technology. The MIT GCM homepage. http://
mitgcm.org/, 2005.

87. J. McCorquodale, J. de St. Germain, S. Parker, and C. Johnson. The Uintah parallelism
infrastructure: A performance evaluation on the SGI Origin 2000. In High Performance
Computing 2001, Mar 2001.

88. J. J. Moré and S. J. Wright. Optimization Software Guide. SIAM Publications, Philadel-
phia, 1993.

89. MPI Forum. MPI: a message-passing interface standard. International Journal of Super-
computer Applications and High Performance Computing, 8(3/4):159–416, Fall-Winter
1994.

90. H. N. Najm et al. CFRFS homepage. http://cfrfs.ca.sandia.gov/, 2005.
91. H. N. Najm, R. W. Schefer, R. B. Milne, C. J. Mueller, K. D. Devine, and S. N. Kempka.

Numerical and experimental investigation of vortical flow-flame interaction. SAND
Report SAND98-8232, UC-1409, Sandia National Laboratories, Livermore, CA 94551-
0969, February 1998.

92. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A non-uniform-
memory-access programming model for high-performance computers. J. Supercom-
puting, 10(2):169, 1996.

93. B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland, L. McInnes, and B. Smith. Par-
allel components for PDEs and optimization: Some issues and experiences. Parallel
Computing, 28(12):1811–1831, 2002.

10 Parallel PDE-Based Simulations Using the CCA 379

94. B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E. Bernholdt, W. R. Elwasif, A. D.
Malony, and S. Shende. Computational quality of service for scientific components. In
Proc. of International Symposium on Component-Based Software Engineering (CBSE7),
Edinburgh, Scotland, 2004.

95. Object Management Group. CORBA component model. http://www.omg.org/
technology/documents/formal/components.htm, 2002.

96. B. Palmer and J. Nieplocha. Efficient algorithms for ghost cell updates on two classes
of MPP architectures. In 14th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, Cambridge, MA, 2002.

97. M. Parashar et al. GrACE homepage. http://www.caip.rutgers.edu/
TASSL/Projects/GrACE/, 2005.

98. S. G. Parker. A component-based architecture for parallel multi-physics PDE simula-
tion. In Proceedings of the International Conference on Computational Science-Part III,
pages 719–734. Springer-Verlag, 2002.

99. C. Pérez, T. Priol, and A. Ribes. A parallel CORBA component model for numerical
code coupling. Intl. J. High-Perf. Computing Appl., 17(4), Nov 2003.

100. R. Peyret and T. Taylor. Computational Methods for Fluid Flow, chapter 6. Springer
Series in Computational Physics. Springer-Verlag, New York, 1983. Finite-Difference
Solution of the Navier-Stokes Equations.

101. Phillip Jones. Parallel Ocean Program (POP) homepage. http://climate.lanl.
gov/Models/POP/, 2004.

102. T. Poinsot, S. Candel, and A. Trouvé. Applications of direct numerical simulation to
premixed turbulent combustion. Progress in Energy and Combustion Science, 21:531–
576, 1995.

103. R. Pozo. Template Numerical Toolkit. http://math.nist.gov/tnt, 2004.
104. K. Radhakrishnan and A. C. Hindmarsh. Description and use of LSODE, the Liver-

more solver for ordinary differential equations. Technical Report UCRL-ID-113855,
Lawrence Livermore National Laboratory, 1993.

105. M. Ranganathan, A. Acharya, G. Edjlali, A. Sussman, and J. Saltz. A runtime cou-
pling of data-parallel programs. In Proceedings of the 1996 International Conference
on Supercomputing, Philadelphia, PA, May 1996.

106. J. Ray, B. A. Allan, R. Armstrong, and J. Kohl. Structured mesh demo for supercomput-
ing 2004. http://www.cca-forum.org/∼jaray/SC04/sc04.html, 2004.

107. J. Ray, C. Kennedy, S. Lefantzi, and H. Najm. High-order spatial discretizations and
extended stability methods for reacting flows on structured adaptively refined meshes. In
Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute,
March 16-19, 2003, Chicago, Illinois., 2003. Distributed via CD-ROM.

108. J. V. W. Reynders, J. C. Cummings, P. J. Hinker, M. Tholburn, M. S. S. Banerjee,
S. Karmesin, S. Atlas, K. Keahey, and W. F. Humphrey. POOMA: A FrameWork for
Scientific Computing Applications on Parallel Architectures, chapter 14. MIT Press,
1996.

109. E. Roman. Mastering Enterprise JavaBeans. O’Reilly and Associates, June 1997.
110. J. Sarich. A programmer’s guide for providing CCA component interfaces to the Toolkit

for Advanced Optimization. Technical Report ANL/MCS-TM-279, Argonne National
Laboratory, 2004.

111. B. Smith et al. TOPS Solver Interface. http://www-unix.mcs.anl.gov/
scidac-tops/tops-solver-interface, 2005.

112. K. Smith, J. Ray, and B. A. Allan. CVODE component user guidelines. Technical Report
SAND2003-8276, Sandia National Laboratory, May 2003.

380 L. C. McInnes et al.

113. B. Sportisse. An analysis of operator splitting techniques in the stiff case. J. Comp.
Phys., 161:140–168, 2000.

114. G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer.
Anal., 5(3):506–517, 1968.

115. M. J. Suarez and L. Takacs. Documentation of the Aries-GEOS dynamical core: Version
2. Technical Report TM-1995-104606, NASA, 1995.

116. D. Sulsky, Z. Chen, and H. L. Schreyer. A Particle Method for History Dependent
Materials. Comp . Methods Appl. Mech. Engrg, 118, 1994.

117. Y. Sun, N. Folwell, Z. Li, and G. Golub. High precision accelerator cavity design using
the parallel eigensolver Omega3P. In Proc. of the 18th Annual Review of Progress in
Applied Computational Electromagnetics ACES 2002, Monterey, CA, 2002.

118. C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM
Press, New York, 1999.

119. B. Talbot, S. Zhou, and G. Higgins. Software engineering support of the third round
of scientific grand challenge investigations–earth system modeling software framework
survey task4 report. Technical Report TM-2001-209992, NASA, 2001.

120. L. Trease, H.E.and Trease. NWGrid: A multi-dimensional, hybrid, unstructured, parallel
mesh generation system. http://www.emsl.pnl.gov/nwgrid, 2005.

121. The Terascale Simulation Tools and Technologies (TSTT) Center. http://www.
tstt-scidac.org, 2005.

122. U. S. Dept. of Energy. SciDAC Initiative homepage. http://www.osti.gov/
scidac/, 2005.

123. University Corporation for Atmospheric Research. The Community Atmosphere Model
(CAM) homepage. http://www.ccsm.ucar.edu/models/atm-cam/, 2005.

124. University of Oregon. TAU: Tuning and analysis utilities. http://www.cs.
uoregon.edu/research/tau, 2005.

125. S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende, R. Olde-
hoeft, and S. Smith. Smarts: Exploiting temporal locality and parallelism through verti-
cal execution. In Proceedings of the 13th International Conference on Supercomputing
(ICS 99), pages 302–310, Rhodes, Greece, 1999. ACM Press.

126. T. Veldhuizen et al. BLITZ++: Object-oriented scientific computing. http://www.
oonumerics.org/blitz, 2005.

127. M. R. Visbal and D. V. Gaitonde. On the use of higher-order finite-difference schemes
on curvilinear and deforming meshes. J. Comp. Phys., 181:155–185, 2002.

128. Z. Wang and G. P. Huang. An essentially nonoscillatory high-order Padé-type (ENO-
Padé) scheme. J. Comp. Phys., 177:37–58, 2002.

129. Weather Research and Forecasting Model. http://www.wrf-model.org/, 2005.
130. F. Williams. Combustion Theory. Addison-Wesley, New York, 2nd edition, 1985.
131. A. Wissink, R. Hornung, S. Kohn, S. Smith, and N. Elliott. Large scale parallel struc-

tured AMR calculations using the SAMRAI framework. In Proceedings of the SC01
Conf. High Perf. Network. and Comput, Denver, CO, November 2001.

132. A. Wissink, D. Hysom, and R. Hornung. Enhancing scalability of parallel structured
AMR calculations. In Proceedings of the 17th ACM International Conference on Su-
percomputing (ICS03), pages 336–347, San Francisco, CA, June 2003.

133. M. Wolf, Z. Cai, W. Huang, and K. Schwan. Smart pointers: Personalized scientific data
portals in your hand. In Proceedings of Supercomputing 2002, November 2002.

134. M. Wolf, A. Guetz, and C.-K. Ng. Modeling large accelerator structures with the par-
allel field solver Tau3P. In Proc. of the 18th Annual Review of Progress in Applied
Computational Electromagnetics ACES 2002, Monterey, CA, 2002.

10 Parallel PDE-Based Simulations Using the CCA 381

135. K. Zhang, K. Damevski, V. Venkatachalapathy, and S. Parker. SCIRun2: A CCA frame-
work for high performance computing. In Proceedings of the 9th International Work-
shop on High-Level Parallel Programming Models and Supportive Environments (HIPS
2004), Santa Fe, NM, April 2004. IEEE Press.

136. S. Zhou. Coupling earth system models: An ESMF-CCA prototype. http://
webserv.gsfc.nasa.gov/ESS/esmf tasc, 2003.

137. S. Zhou, A. da Silva, B. Womack, and G. Higgins. Prototyping the ESMF using
DOE’s CCA. In NASA Earth Science Technology Conference 2003, College Park,
MD, 24–26 June 2003. http://esto.nasa.gov/conferences/estc2003/
papers/A4P3(Zhou).pdf.

Part IV

Parallel Applications

11

Full-Scale Simulation of Cardiac Electrophysiology
on Parallel Computers

Xing Cai and Glenn Terje Lines

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Department of Informatics, University of Oslo, P.O. Box 1080, Blindern,
NO-0316 Oslo, Norway

[xingca,glennli]@simula.no

Summary. In this chapter, we will present an advanced parallel electro-cardiac simulator,
which employs anisotropic and inhomogeneous conductivities in realistic three-dimensional
geometries for modeling both the heart and the torso. Since partial differential equations
(PDEs) constitute the main part of the mathematical model, this chapter thus demonstrates
a concrete example of solving PDEs on parallel computers. It will be shown that good overall
parallel performance relies on at least two factors. First, the serial numerical strategy must find
a parallel substitute that is scalable with respect to both convergence and work amount. Sec-
ond, care must be taken to avoid unnecessary duplicated local computations while maintaining
an acceptable level of load balance.

11.1 Introduction

The contraction of the heart is triggered by a signal wave that propagates through
the muscle tissue. Between two heart beats, each muscle cell is in a resting phase
and has a surplus of negative charge compared to the exterior of the cell. This is
called a negative transmembrane potential. When the signal wave reaches a cell, the
conductivity properties of the cell membrane are altered, and positive ions are able
to enter the cell. This is the so-called depolarization of the cell. This depolarization
causes the neighboring cells to also alter their membrane conductance, thus allowing
ions to enter. In this way the signal is sustained and travels through the whole heart.
The aggregated effect of all the cells being depolarized is measurable on the body
surface as the peak of the ECG signal.

The currently most accurate mathematical model of the electrical activities of the
heart tissue is the Bidomain model, which will be defined precisely in Section 11.2.
It consists of two coupled PDEs, where the primary unknowns are the electrical po-
tentials outside and inside of the cell. The difficulty with solving this mathematical
model is that the current crossing the membrane, hereafter referred to as the ionic
current, depends nonlinearly on the potentials and also on a large number of other

386 X. Cai and G. T. Lines

entities, such as ionic concentrations and permeability of the membrane. These en-
tities are typically modeled by a system of ordinary differential equations (ODEs).
A complete mathematical model thus consists of the Bidomain PDE system coupled
with an ODE system. For an example of computer simulations of cardiac electro-
physiology, we refer to Figure 11.1 which shows two snapshots from a prototypical
three-dimensional simulation done in [21].

The ODE system can be quite complex. For example, the model of Winslow
et al. [38] involves 30 state variables. As more biological data become available,
more detailed descriptions are incorporated into the models, and consequently the
model complexity increases. There also exist simplified models with only a few state
variables. For some applications these simple models might be sufficient, but they
are typically valid only within a narrow range. The complex models are more real-
istic as they include many of the subsystems within the cell, which may be calcium
stored inside the cell or the state of the different membrane proteins. These proteins
allow current to pass through the membrane, forming so-called ionic channels. Since
the complex models are more realistic, they have a wider area of application. For
example, one can investigate the effect of a drug that blocks an ionic canal by simply
reducing the current going through this channel in a complex model. There is, in
general, a complex interplay between different the ionic channels, and it is not easy
to predict how the blocking of one type of channel affects the cell as a whole, or
indeed the performance of the entire heart. Simulation of such systems will therefore
give us an insight that is not easily obtainable in any other way.

The time scale of the biochemical process in a cell is very small compared with
the duration of a heart beat. The depolarization of a cell takes about 1ms, in compar-
ison with about one second for a heart beat. From a numerical point of view, another
challenge is that the activation signal wave front is very narrow, about 1mm com-
pared with 10cm for the whole heart. A commonly reported value for the required
spatial resolution is 0.2mm, which is necessary for rendering the narrow wave front
with sufficient accuracy; see e.g. [3, 35]. Using such a mesh point density over the en-
tire heart volume of an adult means that about 40 million mesh points are required;
see [20]. It is obvious that the computational challenges are formidable for such a
numerical problem.

To deal with the computational burden, one often resort to studying simplified
mathematical models. One option is to use the Monodomain model, which is a scalar
PDE and can be derived as a special case of the Bidomain model. Another option is
to use simpler models for the ionic current. These simplifications together can reduce
the computation time by at least a factor of 10. This time saving factor is due to a
combination of at least four reasons: a) the number of unknowns in the Bidomain
model is twice of that in the Monodomain model, b) the resulting linear system
of the Bidomain model (from applying a linearization and spatial discretizations)
requires considerably more iterations of an iterative solver than the Monodomain
model, especially in the absence of a powerful preconditioner (see e.g. [29]), c) the
computational cost of one matrix-vector product associated with the Bidomain model
is approximately four times of that with the Monodomain model, and d) a simpler
ionic current model results in an ODE system that has fewer equations and is easier to

11 Parallel Electro-Cardiac Simulations 387

t=30ms t=200ms

Fig. 11.1. Snapshots from two time levels of a simulation of the electrical field in the human
heart and torso. At each time level, the electrical potential distribution on the heart surface
is shown at three different angles, while the distribution on the torso surface is shown at two
different angles. (For the color version, see Figure A.23 on page 478).

solve. To avoid the need for 40 million mesh points one can also consider a volume
smaller than the entire heart, or, alternatively, use a coarser mesh resolution. Both
these approaches are popular since they make it easier to fit the whole problem onto
a serial computer, but at the expense of less realistic results.

Performing full-scale simulations of the entire heart is only possible by using
parallel computers. We can argue for this observation roughly as follows. Assuming
40 × 106 mesh points in the heart domain and using the Winslow ODE model, the
total number of degrees of freedom amounts to 32× 40× 106, where for each mesh
point there are two PDE degrees of freedom and 30 ODE degrees of freedom. At any
given time level, storing the values of all the degrees of freedom will require approx-
imately 10GB memory using double precisions. The time stepping scheme typically
needs to store the values for two consecutive time levels. Moreover, the data structure
needed for storing the computational meshes and the matrix for the discretized PDEs
will require considerably more memory. Clearly, such a huge demand of memory
can not be met by any serial computer, in addition to the equally huge demand of
simulation time.

Parallel electro-cardiac simulation is still a relatively new research topic. Publi-
cations on this particular topic have been sparse. This is due to a combination of the
complicated mathematical model, the necessity of an advanced numerical strategy,
and the difficulty with writing a high-performance parallel implementation. Among
related works, we can mention [28], [27], [26], [24], [35], [12], and [37]. In [28], a
three-dimensional finite difference model with a parallel implementation is presented

388 X. Cai and G. T. Lines

for solving the Bidomain equations with inhomogeneous and anisotropic conductiv-
ities. Four different parallelization schemes are examined in [27] for the simplified
Monodomain model in two dimensions. A modular simulation system for the Bido-
main equations is presented in [26] and speed-up results obtained on regular three-
dimensional meshes are reported. Recently, a fully implicit parallel algorithm for
the two-dimensional Bidomain equations is proposed in [24], adopting the advanced
Newton-Krylov-Schwarz strategy but associated with a very simple cell model.
Moreover, a computer three-dimensional heart model employing the Monodomain
equation and a modified Luo-Rudy membrane model is reported in [35], where fi-
nite differences with explicit time stepping are used. In [12], both the monodomain
and bidomain models are discussed, where the temporal discretization is of the semi-
implicit type and the resulting bidomain stiffness matrix has a 2× 2-block structure,
in the same fashion as our numerical strategy to be presented in Section 11.3. How-
ever, the two PDEs are both of the reaction-diffusion type in the bidomain approach
of [12], and one-level domain decomposition preconditioning techniques, which use
a relatively simple subdomain solver, are reported for three-dimensional structured
computational meshes. Finally, [37] reports some numerical experiences associated
with a parallel multigrid preconditioner for a two-dimensional bidomain model based
on rectangular meshes. The temporal discretization in [37] is done in an explicit fash-
ion, such that the two PDEs are solved separately.

To the topic of parallel electro-cardiac simulations, the contributions from our
earlier papers [21, 7, 6] and the present chapter are twofold. First, we have adopted
realistic three-dimensional geometries and an implicit time-stepping scheme in par-
allel full-scale simulations, instead of simple rectangular domains. Our mathemat-
ical model (see Section 11.2) has also incorporated the torso domain, so that the
ECG signal can be computed on the body surface, at the same time when the Bido-
main equations are solved in the heart domain. Regarding our earlier papers [21]
and [7], no parallel preconditioners were adopted in [21], whereas the numerical
strategy used in [7] did not solve the two PDEs of the Bidomain model simulta-
neously. As a second contribution to parallel electro-cardiac simulations, we have
devised a fast-convergent parallel block preconditioner, on the basis of an order-
optimal serial block preconditioner that was derived in [31] and further analyzed
in [23]. The parallel block preconditioner was first proposed in [6], and the present
chapter contains, among other things, continued work on the parallelization. Using
several performance enhancing techniques, which will be discussed in Section 11.5,
our advanced parallel simulator is shown in Section 11.6 to obtain decent parallel
performance even on a Linux cluster.

The focus of the present chapter is on a parallel full-scale electro-cardiac simu-
lator, which employs anisotropic and inhomogeneous conductivity properties in re-
alistic three-dimensional geometries modeling both the heart and the torso. Another
advanced feature is that the two PDEs, which constitute the Bidomain system in the
PDE part of the mathematical model, are solved together as a coupled 2 × 2 block
system of linear equations during each time step. The 2 × 2 block linear system
arises from a linearization based on an operator splitting technique, together with us-
ing an implicit time-stepping scheme associated with finite element discretizations;

11 Parallel Electro-Cardiac Simulations 389

see Section 11.3. We will take the starting point in an order-optimal serial block
preconditioner (see [31, 23]) for the 2 × 2 block system. The overall parallelization
strategy is based on dividing a global solution domain into subdomains. The main
challenge arises from devising and implementing a parallel substitute of the serial
block preconditioner; see Section 11.2, which is essential for the PDE part to obtain
a rapid convergence of a Krylov iterative linear solver. To achieve scalability with
respect to the convergence speed, we build our parallel preconditioner on the basis
of additive Schwarz iterations; see [9, 30, 39, 11] Such iterations use a “divide-and-
conquer” strategy for partitioning the work load and thus are compatible with the
overall subdomain-based parallel strategy. In fact, the following advanced numerical
ingredients need to be incorporated into the parallel implementation:

1. a two-block diagonal system is chosen as the preconditioner and is solved during
each preconditioning operation within a parallel conjugate gradient solver,

2. additive Schwarz iterations are used as the parallel solvers for each of the two
diagonal blocks,

3. multigrid V-cycles are used as the subdomain solvers within each Schwarz iter-
ation, and

4. global coarse grid corrections are also incorporated into the additive Schwarz
iterations.

Using a combination of the above numerical techniques, we have been able to
obtain an order-optimal parallel preconditioner for the 2× 2 block linear system that
arises from discretizing the Bidomain equations. More specifically, the number of
parallel Krylov iterations needed for solving the 2 × 2 block system remains inde-
pendent of both the number of degrees of freedom and the number of subdomains.
Moreover, the total amount of work during each preconditioning operation remains
approximately linearly proportional to the number of degrees of freedom.

As the foundation for the parallel implementation, we have used a specially de-
signed mesh partitioning scheme, which partitions both the heart domain and the
torso domain in a communication-efficient manner. Moreover, each subdomain is
equipped with a hierarchy of adaptively refined subdomain meshes, on which multi-
grid V-cycles can be run. Due to the mathematical requirement of overlap by the
additive Schwarz iterations, we have also taken care to avoid unnecessary duplicated
local computations. Consequently, satisfactory speed-up results have been obtained
for the resulting parallel electro-cardiac simulator; see Section 11.6.

The remainder of the chapter is organized as follows. First, Section 11.2 presents
the mathematical model with an emphasis on the involved PDEs. Then, Section 11.3
explains the overall numerical strategy, which is semi-implicit and is based on an
operator splitting technique. The specially designed block preconditioner, in both its
serial and parallel versions, is also explained. Afterwards, Section 11.4 focuses on
the parallelization of the serial numerical strategy, where implementing the paral-
lel block preconditioner is the main theme. To obtain a satisfactory parallel perfor-
mance, Section 11.5 discusses the issue of reducing the overhead in parallel simu-
lations. Finally, Section 11.6 reports some detailed measurements of the full-scale
parallel electro-cardiac simulator.

390 X. Cai and G. T. Lines

11.2 The Mathematical Model

The Bidomain equations constitute a well-established mathematical model for de-
scribing the electrical activities in the heart; see [36] and also the references given
in [20]. Let H denote the domain of the heart. We consider the Bidomain equations
of the following form (11.1)-(11.2), involving two primary unknown functions in H ,
i.e., the transmembrane potential v and the extracellular potential ue.

χCm
∂v

∂t
+ χIion(v, s) = ∇ · (Mi∇v) +∇ · (Mi∇ue) in H, (11.1)

0 = ∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) in H. (11.2)

In (11.1), the nonlinear function Iion(v, s) represents the ionic current, where s de-
notes a vector of state variables describing the state of the cell membrane. There exist
many models of Iion, which together with different ways of modeling the interaction
between the state variables give rise to different cell models. Almost all of the cell
models rely on solving a system of ODEs to update the s vector; see e.g. [22, 38].
More specifically, an ODE system of the form

∂s
∂t

= F(v, s, t) (11.3)

models the electrical behavior of the cardiac cells, at every point inside H . The more
sophisticated the cell model, the larger the number of ODEs are involved in (11.3).
Moreover, χ in (11.1) is a surface-to-volume scaling factor, Cm denotes the capac-
itance of the membrane, and Mi denotes the intracellular conductivity tensor. Sim-
ilarly, Me denotes the extracellular conductivity tensor in (11.2). Due to the fibrous
structure of the heart muscle, the conductivity tensors are anisotropic. More specifi-
cally, the formulas for Mi and Me are as follows:

Mi,e = σti,eI + (σli,e − σti,e)alaTl + (σni,e − σti,e)anaTn , (11.4)

where the constants σti,e, σ
l
i,e, and σni,e describe the different conductivity properties

of the heart muscle in three orthogonal directions, I is the identity matrix, while the
vectors al and an model the orientation of the muscle fibers and sheet layers, vary-
ing throughout the heart. The superscripts l, t, n denote, respectively, the direction
along the fibers, the direction normal to the fibers but in the plane of the sheets, and
the direction normal to the sheets. Examples of the σti,e, σ

l
i,e, σ

n
i,e values are given in

(11.23)-(11.23) in Section 11.6. For a more detailed description, we refer to [19, 32].
Figure 11.2 shows an example of the orientation of the muscle fibers and sheet layers
in the heart, of which the al and an vectors have already been used in the different
simulations of [21, 7, 33, 6]. This set of heart muscle data is provided by the Bio-
medical Engineering Group at the University of Auckland; see [13]. Inhomogeneity
of the conductivity properties will arise when electrical signals propagate from the
heart into the torso, between organs in the torso, and also when dead or diseased
tissues need to be modelled in the heart.

11 Parallel Electro-Cardiac Simulations 391

Fig. 11.2. The orientation of the muscle fibers (left) and sheet layers (right) in the heart. (For
the color version, see Figure A.24 on page 478).

T

∂T

∂H

H

Fig. 11.3. A schematic 2D slice of the entire solution domain Ω = H ∪ T .

In order to compute the electrical potential on the body surface by the same
simulation, we supplement the Bidomain equations (11.1)-(11.2) with the following
elliptic PDE describing the propagation of the electrical signal in the torso T exterior
to the heart:

∇ · (Mo∇uo) = 0 in T, (11.5)

where uo is the electrical potential in the torso and Mo denotes the associated con-
ductivity tensor. This supplementary PDE enables a direct comparison between ECG
measurements and simulated results. We refer to [20] for a summary on this topic.

To summarize, our complete mathematical model consists of the ODE system
(11.3) plus three PDEs (11.1)-(11.2), and (11.5), for which the combined solution
domain Ω = H ∪ T is depicted in Figure 11.3. As for the boundary conditions, we
have

392 X. Cai and G. T. Lines

Mi
∂

∂n
(v + ue) = 0, ue = uo, Me

∂ue
∂n
−Mo

∂uo
∂n

= 0 on ∂H, (11.6)

Mo
∂uo
∂n

= 0 on ∂T, (11.7)

where ∂/∂n denotes the derivative in the normal direction on the boundary. Although
the boundary conditions are not sufficient for uniquely determining ue and uo, they
are sufficient for practical applications which are interested in the variations within
the ue and uo solutions, rather than their absolute values.

In the temporal direction, the mathematical model is to be solved within a time
domain with known initial values for v and s.

11.3 The Numerical Strategy

11.3.1 The Time-Stepping Scheme

The starting point of the whole numerical strategy is to use the technique of operator
splitting (see e.g. [38]) to decouple the nonlinear PDE (11.1) into two parts:

∂v

∂t
= − 1

Cm
Iion(v, s), (11.8)

χCm
∂v

∂t
= ∇ · (Mi∇v) +∇ · (Mi∇ue), (11.9)

i.e., an ODE and a linear PDE. The ODE (11.8) is then joined with a chosen ODE
system of form (11.3) to establish the following new system of ODEs:⎧⎪⎨⎪⎩

∂v

∂t
= − 1

Cm
Iion(v, s),

∂s
∂t

= F(v, s, t),
(11.10)

which needs to be solved during each time step. We remark that the choice of Iion

and F in the above ODE system determines the so-called cell model, for which a
well-known example is the Winslow model [38].

In the temporal direction, the simulation time domain is divided into discrete
time levels:

0 = t0 < t1 < t2 · · · ,
where at each time level tl, l ≥ 1, the solutions from the previous time level,
vl−1, ul−1

e , ul−1
o , sl−1, are used as the starting values. Using a θ-rule, where 0 ≤

θ ≤ 1, we can construct a flexible time-stepping scheme whose work per time step
consists of solving an ODE system twice, separated by the solution of a system of
three PDEs. More specifically, the computational work for the time step tl−1 → tl
consists of the following sub-steps:

11 Parallel Electro-Cardiac Simulations 393

1. At every mesh point in H , an ODE system of form (11.10) is solved for
t ∈ (tl−1, tl−1 + θ(tl − tl−1)], using the initial values vl−1 and sl−1. The so-
lution results are an intermediate transmembrane potential solution ṽl−1 and an
updated s̃l−1 vector.

2. The three PDEs (11.9), (11.2), and (11.5) are solved simultaneously, where we
remark that (11.9) is the remaining part of (11.1) after operator splitting. The
temporal discretization, which uses a θ-rule, is of the following form:

χCm
v̂l − ṽl−1

∆t
= (1− θ)

(
∇ · (Mi∇ṽl−1) +∇ · (Mi∇ul−1

e)
)

+θ
(
∇ · (Mi∇v̂l) +∇ · (Mi∇ule)

)
, (11.11)

0 = ∇ · (Mi∇v̂l) +∇ · ((Mi +Me)∇ule), (11.12)

0 = ∇ · (Mo∇ulo). (11.13)

We remark that v̂l, ule, u
l
o are the unknowns to be found. If we combine the

unknown values of ule and ulo into one vector ul, the spatial discretization (using
e.g. finite elements) will give rise to a 2× 2 block linear system:[

χCmI + θ∆tAv θ∆tÂv

θ∆tÂT
v θ∆tAu

] [
v̂l

ul

]
≡ A

[
v̂l

ul

]
=
[

bl

0

]
. (11.14)

In the above block linear system, I and Av represent the mass matrix and the
stiffness matrix associated with Mi inside H , respectively. The bl vector is
computed on the basis of ṽl−1 and ul−1

e . The sparse matrix Au arises from dis-
cretizing (11.2) and (11.5) together. That is, we discretize a combined elliptic
equation:

∇ · (M∇u) = 0 in Ω, (11.15)

using M = Mi + Me in H and M = Mo in T ; see [31] for more details. The
number of degrees of freedom in ul equals the number of mesh points covering
the combined domain Ω = H ∪ T . The Âv matrix is the same as Av, except
that Âv is padded with some additional zero columns to allow a multiplication
of form Âvu, whereas the ÂT

v matrix is the transpose of Âv .
3. At every mesh point in H , the ODE system (11.10) is solved again for t ∈

(tl−1 + θ(tl − tl−1), tl], using the initial values v̂l and s̃l−1. The computational
results are stored in vl and sl.

We refer to [31] for a detailed explanation of the above time-stepping scheme,
and remark that using θ = 1/2 in (11.11) gives rise to a second-order accurate
temporal discretization. To handle the potentially stiff ODE system (11.10), due to
steep propagation fronts, we adopt a third-order Runge-Kutta type scheme proposed
in [34]. Although a second-order ODE solver is sufficient for ensuring the order
of accuracy in the time direction, our experiences have indicated that the adopted
third-order ODE solver is better at treating the situations of stiffness, so that fewer
intermediate ODE steps are needed between two time levels. That is, the overall time
spent by a third-order ODE solver is not necessarily larger than that of a lower order
ODE solver.

394 X. Cai and G. T. Lines

Table 11.1. An example on the number of CG iterations (without preconditioner) needed for
solving the 2× 2 block system (11.14) of different sizes.

NH +NΩ ICG

39,589 897
302,166 1999

1,552,283 4087

11.3.2 A Serial Block Preconditioner

By extending the proof given in [25] to also include the torso domain, we can de-
duce that the 2 × 2 block matrix A defined in (11.14) is symmetric and positive
semi-definite. We remark that this property arises from the symmetry and positive
definiteness of the conductivity tensors Mi, Me, and Mo (consequently are the Av

and Au matrices symmetric and positive semi-definite); see [25]. The existence of
zero eigenvalues for A is due to the boundary conditions (11.6)-(11.7). Our earlier
experiences have suggested that the conjugate gradient (CG) method is an appropri-
ate choice for solving (11.14); see [31].

The next question is how fast can the CG method achieve convergence for
(11.14)? To answer this question, we have conducted three experiments where we
study the number of CG iterations, denoted by ICG, which is needed to reduce the
residual vector associated with the 2 × 2 block system (11.14) by a factor of 104 in
the L2-norm, compared with its initial value before the first CG iteration. We remark
that a typical value of ∆t = 0.125ms is chosen in building A, and our experiences
suggest that the size of ∆t within the range of [0.1, 0.5]ms does not have an immedi-
ate effect on the number of CG iterations. In Table 11.1, NH denotes the number of
unknowns in the v vector, i.e., the number of mesh points in the three-dimensional
heart domain, whereas NΩ denotes the number of unknowns in the u vector, i.e., the
number of mesh points in the entire torso domain including the heart. The different
numbers of NH and NΩ are obtained from an adaptive mesh refinement process,
which increases the mesh resolution mainly inside H and keeps the mesh resolution
inside T mostly unchanged. (We note that all the numerical experiments reported in
the present chapter are associated with realistic three-dimensional geometries.) It can
be deduced that without preconditioning the number of CG iterations approximately
doubles when the spacing between mesh points is halved. The convergence speed
is determined by the elliptic operators. Consequently, the work amount of each CG
iteration grows much faster than the number of degrees of freedom, when no precon-
ditioner is used. Although the values of ICG in Table 11.1 are associated with one
particular time step, numerical experiments have suggested that ICG remains roughly
constant throughout an entire elector-cardiac simulation, i.e., ICG is not sensitive to
the changing right-hand side vector in (11.14).

To overcome the huge numbers of CG iterations reported in Table 11.1, a precon-
ditioner (see e.g. [2]) needs to be used inside the CG iterations. The standard choices
of preconditioning (such as SSOR and RILU) all have the weakness that the num-
ber of CG iterations grows considerably with respect to the number of degrees of

11 Parallel Electro-Cardiac Simulations 395

Table 11.2. An example on the number of CG iterations (using the serial multigrid-block
preconditioner) needed for solving the 2× 2 block system (11.14).

NH +NΩ ICG

302,166 15
1,552,283 16

freedom (although the growth is slower than that reported in Table 11.1). We would
thus like to have an order-optimal preconditioner, which means that the number of
CG iterations remains constant independent of the number of degrees of freedom.
Moreover, the work executed in each operation of such an order-optimal precondi-
tioner should be linearly proportional to the number of degrees of freedom.

A so-called block preconditioner based on multigrid algorithms was first pro-
posed in [31]. More specifically, the following diagonal block matrix

D =
[
χCmI + θ∆tAv 0

0 θ∆tAu

]
(11.16)

is used as a suitable preconditioner for (11.14). In other words, the original 2 × 2
block system (11.14) is replaced with

D−1A
[

v̂l

ul

]
= D−1

[
bl

0

]
. (11.17)

This means that during each preconditioning operation, the two diagonal blocks inD
need to be solved (approximately). It has recently been shown in [23] that the number
of CG iterations, when using the block preconditioner D, will remain independent
of the number of degrees of freedom. The rapid convergence of this block precon-
ditioner is due to the fact that D is spectrally equivalent to the 2 × 2 block matrix
A in (11.14). To make D an order-optimal serial preconditioner, we have chosen to
apply one multigrid V-cycle (see [14, 1, 15]) as the approximate solver for both the
diagonal blocks in D. This is because multigrid V-cycles are powerful linear solvers
and the work amount of one multigrid V-cycle is linearly proportional to the number
of degrees of freedom.

To demonstrate the actual effect of the block preconditionerD defined in (11.16)
using multigrid V-cycles, we list in Table 11.2 the number of CG iterations when the
block preconditioner is in use. In comparison with Table 11.1, we can see that ICG

is dramatically reduced and stays independent of the number of degrees of freedom.
Here, we remark that NH + NΩ = 39, 589 in Table 11.1 is related to the coarsest
possible meshes we have for modeling our realistic heart and torso geometries (see
Figure 11.1). The measurement of ICG associated withNH+NΩ = 39, 589 is absent
in Table 11.2 because no coarser meshes can be found to form a mesh hierarchy
needed by the multigrid V-cycles.

11.3.3 A Parallel Block Preconditioner

The objective of finding a parallel version of the block preconditioner D defined in
(11.16) is accompanied with the request of maintaining the rapid convergence speed

396 X. Cai and G. T. Lines

and the scalability in work amount. To achieve this, we replace the multigrid V-
cycles, which are used in the serial preconditioner for approximately solving each of
the diagonal blocks in D, with additive Schwarz iterations (see [9, 30, 11]). This is
mainly motivated by the inherent parallelism of these domain decomposition algo-
rithms. Moreover, the simple algorithmic structure of the additive Schwarz iterations
(e.g., no special interface solvers are needed) suits very well for a parallel imple-
mentation. In addition, additive Schwarz iterations are also known to have very good
convergence behavior, similar to the multigrid algorithms.

Roughly speaking, the starting point of any additive Schwarz iteration is that a
global solution domain Ω is divided into a set of overlapping subdomains {Ωs}.
Each subdomain becomes an independent working unit, which mostly concentrates
on local discretizations within Ωs and solving local linear systems. In addition, the
subdomains frequently collaborate with each other, in a form that neighboring sub-
domains exchange local solutions within overlapping zones. A loose synchronization
of the work progress on the subdomains also has to be enforced.

The Mathematical Framework of Additive Schwarz Iterations

The mathematics behind the additive Schwarz iterations can be understood as fol-
lows. Suppose we want to solve a global linear system

Ax = b, (11.18)

which arises from discretizing a PDE in a global domain Ω. Given a set of P sub-
domains {Ωs}, 1 ≤ s ≤ P , such that Ω = ∪Ωs and there is a certain amount of
overlap between neighboring subdomains, we locally discretize the PDE in every
subdomain Ωs. The result of the local discretization is

Asxs = bs(x|∂Ωs\∂Ω). (11.19)

The above linear system namely arises from restricting the discretization of the target
PDE withinΩs. The only special treatment happens on the so-called internal bound-
ary ∂Ωs\∂Ω, i.e., the part of ∂Ωs that does not coincide with the physical boundary
∂Ω of the global domain. We remark that a requirement of the overlapping zones
says that any point lying on the internal boundary of a subdomain must also be an in-
terior point in at least one of the neighboring subdomains. On the internal boundary,
artificial Dirichlet conditions are repeatedly updated using new values of the sub-
domain solutions computed in the neighboring subdomains. The involvement of the
artificial Dirichlet conditions is indicated by the notation bs(x|∂Ωs\∂Ω) in (11.19).
On the remaining part of ∂Ωs, the original boundary conditions of the target PDE
are valid as before.

For the artificial Dirichlet conditions to converge toward the correct values on
the internal boundary, iterations need to be carried out. That is, we generate on each
subdomain a series of approximate solutions x0

s,x
1
s,x

2
s . . ., which will hopefully

converge toward the correct solution xs = x|Ωs . The kth additive Schwarz iteration
is thus defined as

11 Parallel Electro-Cardiac Simulations 397

xks = A−1
s bs(x

k−1|∂Ωs\∂Ω), xk = composition of all xks . (11.20)

The symbol A−1
s in (11.20) means an inverse of the subdomain matrix As, but an

approximate subdomain solver that is sufficiently close to A−1
s is also allowed. The

right-hand side vector bs needs to be updated with artificial Dirichlet conditions on
the internal boundary, using solution of the previous Schwarz iteration provided by
the neighboring subdomains.

Parallel Computing with Additive Schwarz Iterations

We note that the subdomain local solves in (11.20) can be carried out independently
in each additive Schwarz iteration. This immediately gives rise to the possibility of
parallel computing. At the end of the kth additive Schwarz iteration, the (logically
existing) global approximate solution xk is composed on the basis of the subdomain
approximate solutions {xks}. In particular, the following rule for composing a global
solution, using the principle of partition of unity, should be used:

• An overlapping point refers to a point that lies inside a zone of overlap, i.e., the
point belongs to at least two subdomains.

• For every non-overlapping point, i.e., a point that belongs to only one subdomain,
the global solution attains the same value as that inside the host subdomain.

• For every overlapping point, let us denote by ntotal the total number of host
subdomains that own this point. Let also ninterior denote the number of subdo-
mains, among those ntotal host subdomains, which do not have the point lying
on their internal boundaries. (The setup of the overlapping subdomains ensures
ninterior ≥ 1.) Then, the average of the ninterior local values becomes the global
solution on the point. The other ntotal − ninterior local values are not used, be-
cause the point lies on the internal boundary there. (Take Figure 11.4 for instance,
where there are four overlapping points shared between the two subdomains. For
the two “middle” overlapping points we have ninterior = ntotal = 2, whereas for
the two “outer” overlapping points we have ninterior = 1 and ntotal = 2. That
is, on each of the two “middle” overlapping points, the two values from the two
subdomains should be averaged, whereas on each of the two “outer” overlapping
points, the value from the neighboring subdomain should replace the value on the
host subdomain.) Finally, the obtained global solution is enforced in each of the
ntotal host subdomains. For the ntotal − ninterior host subdomains, which have
the point lying on their internal boundary, the obtained global solution will be
used as the artificial Dirichlet condition during the next Schwarz iteration.

To compose the global solution and update the artificial Dirichlet conditions, as
described by the above rule, we need to carry out a procedure of communication
among the neighboring subdomains at the end of each additive Schwarz iteration.
During this procedure of communication, each pair of neighboring subdomains ex-
changes between each other an array of values that are associated with their shared
overlapping points. It is clear that if each subdomain solution xks converges toward

398 X. Cai and G. T. Lines

subdomain 1

subdomain 2

Fig. 11.4. A simple example of two overlapping subdomains.

the correct solution x|Ωs , the difference between the subdomain solutions in an over-
lapping zone will eventually disappear.

Mathematically, a subdomain matrixAs in (11.19) should arise from first build-
ing the global matrix A in (11.18) and then cutting out the portion of A that corre-
sponds to the mesh points lying in Ωs. However, this approach requires unnecessary
construction and storage of global matrices, which is not a desired situation during
parallel computations. We just make the point that the global matrix A can be con-
ceptually represented by the collection of subdomain matricesAs.

A Layered Design of the Parallel Block Preconditioner

To devise a parallel version of the block preconditioner D defined in (11.16), we
suggest a layered design. First, two separate additive Schwarz iterations (see e.g. [5])
approximately solve the two diagonal blocks inD, i.e., χCmI+θ∆tAv and θ∆tAu,
respectively. Let us demonstrate this for the second diagonal block. For this purpose,
one additive Schwarz iteration for approximating the inverse of Au can be expressed
as

A−1
u ≈

P∑
s=0

A−1
u,s, (11.21)

where it is assumed that the body domain Ω is partitioned into P overlapping sub-
domains Ωs, 1 ≤ s ≤ P . Thus, Au,s denotes a subdomain matrix that arises from
a discretization restricted to Ωs. Note that Au,0 in (11.21) is associated with a dis-
cretization on a very coarse global grid. The use of A−1

u,0, also called coarse grid cor-
rection, is to ensure convergence independent of the number of subdomains P ; see
e.g. [30]. The implementation issues for this topic will be discussed in Section 11.4.3.

Second, as an approximate subdomain solver, we use multigrid V-cycles. This is
because the complexity of such cycles is linearly proportional to the number of sub-
domain unknowns. The construction of a required hierarchy of subdomain meshes is
described in Section 11.4.2.

In summary, the combination of additive Schwarz iterations on the “global layer”
and multigrid V-cycles on the “subdomain layer” constitutes the parallel version of
the block preconditionerD defined in (11.16). Scalability with respect to the number
of unknowns is due to the spectral equivalence between the inverse of the two diag-
onal blocks in D with the two separate additive Schwarz iterations, such as (11.21)
corresponds to the second diagonal block in D. We remark that corresponding scal-
ability in the serial case has been proved in [23]. Moreover, multigrid V-cycles are

11 Parallel Electro-Cardiac Simulations 399

used as the subdomain solvers in the additive Schwarz iterations. Convergence inde-
pendent of the number of subdomains is due to using the coarse grid correction; see
e.g. [30].

11.4 A Parallel Electro-Cardiac Simulator

Incorporating parallelism into the preceding numerical strategy for electro-cardiac
simulations requires parallelization of each of the three sub-steps in the time-
stepping scheme from Section 11.3.1. The first and third sub-steps are readily paral-
lelizable, because the solution of the ODE system (11.10) at any two mesh points in
H can be carried out completely independent of each other. For the second sub-step,
preconditioned CG iterations can be parallelized using a subdomain-based approach
with a distributed data structure, which will be explained in the following text.

11.4.1 Parallel Computing Based on Subdomains

Let P denote the number of processors; we adopt the approach of explicit domain
partitioning that divides the entire computational work among the processors. Recall
that the combined global domain Ω consists of the heart domain H and the torso
domain T , so we partition both H and T into P pieces; see Figure 11.5. Processor s
is thus responsible for the composite subdomain Ωs = Hs ∪ Ts. In addition, we also
introduce a certain amount of overlap between the subdomains to enable the additive
Schwarz iterations useful in the parallel preconditioner. More details on the issue of
domain partitioning will be presented in Section 11.4.2.

For the parallelization of the first and third sub-steps of the time-stepping scheme,
i.e., solving the ODE system (11.10), processor s only needs to consider the mesh
points inside the heart subdomain Hs. In principle, no communication is needed
between the processors. However, to reduce the unnecessary duplicated local com-
putations due to overlap between the subdomains, some additional communication
may help to reduce the local computation volume; see Section 11.5.

To achieve parallel CG iterations using the block preconditioner, both the in-
volved linear algebra operations and the block preconditioner need to be executed
in parallel. A distributed data structure suits this purpose very well. We recall that
the global domains H and Ω are partitioned into a set of subdomains {Hs}Ps=1 and
{Ωs}Ps=1. The global matrices (such as Av and Au) and global vectors can thus be
represented collectively by the subdomain matrices (such as Av,s and Au,s) and sub-
domain vectors that are distributed on the different processors. There is no need to
physically construct the global matrices and vectors, because all the global linear al-
gebra operations involved in a Krylov subspace method (such as the CG method) can
be parallelized by doing subdomain linear algebra operations with additional com-
munication between neighboring subdomains. In such a setup, each subdomain be-
comes an independent working unit, which mostly concentrates on local discretiza-
tions within Hs or Ωs and solving local linear systems. In addition, the subdomains

400 X. Cai and G. T. Lines

frequently collaborate with each other, in a form that neighboring subdomains ex-
change local solutions within overlapping zones. A loose synchronization of the
work progress on the subdomains also has to be enforced.

During parallel computations for the PDE part, i.e., the second sub-step of the
time-stepping scheme, the work on subdomain s consists of local operations that
are restricted to Hs and Ts. That is, local finite element discretizations are carried
out independently on each processor. No communication between the processors is
needed for this task of distributed discretizations. Afterwards, during the parallel CG
iterations for solving the global 2×2 block linear system (11.14), which is distributed
as a set of subdomain 2 × 2 block systems, subdomain local operations need to be
interleaved with inter-processor communication.

Such a subdomain-based approach also suits very well the parallel version of the
block preconditioner D presented in Section 11.3.3. Subdomain multigrid V-cycles
need only the local matrices and vectors to find, e.g., the approximate inverse of
Au,s, which is needed in the additive Schwarz iterations. Besides, the distributed data
structure is compatible with the communication between neighboring subdomains
when all the processors have finished the subdomain multigrid V-cycles. The rules
for the communication are described earlier in Section 11.3.3.

11.4.2 A Special Strategy for Mesh Partitioning

A special feature of our numerical strategy is that both the ODE system (11.10) and
the linear parabolic PDE (11.9) useH as the solution domain, whereas the composite
elliptic PDE (11.15) uses Ω = H ∪ T as the solution domain. Therefore, we need to
have Hs ⊂ Ωs on each subdomain in order to form a distributed set of subdomain
2× 2 block matrices As (1 ≤ s ≤ P) for running the parallel CG iterations, where

As =
[
χCmIs + θ∆tAv,s θ∆tÂv,s

θ∆tÂT
v,s θ∆tAu,s

]
. (11.22)

In addition, to apply multigrid V-cycles as the subdomain solvers in each addi-
tive Schwarz iteration, we also need to have a hierarchy of subdomain meshes for
Hs and a hierarchy of subdomain meshes for Ωs, respectively. To satisfy these two
requirements, we use the following scheme for partitioning the global domains H
and Ω, while generating desired subdomain mesh hierarchies:

1. For the global domain Ω, we start with a global coarse mesh GΩ,0. This
mesh can be used in connection with coarse grid corrections inside the
additive Schwarz iterations; see Section 11.4.3.

2. Then, if necessary, we recursively perform an adaptive mesh refinement
Jg ≥ 0 times, such that we obtain a hierarchy of global meshes: GΩ,0,
GΩ,1, . . . ,GΩ,Jg .

3. The so-far finest global mesh GΩ,Jg is then partitioned to give rise to a
set of overlapping subdomain meshes: {GΩs,0}Ps=1. This overlapping
mesh partitioning is achieved by first individually carrying out non-
overlapping partitioning of the global meshes GH,Jg and GT,Jg . (Note

11 Parallel Electro-Cardiac Simulations 401

H2H1

H3H4

T1

T2

T3

T4

Fig. 11.5. A simplified diagram showing the strategy of domain partitioning for producing
subdomains Hs and Ωs. Here are four heart subdomains and four torso subdomains. Each
subdomain Ωs is composed of Hs and Ts.

that GT,Jg may contain a considerable number of mesh points, neces-
sary for describing the fine-scale changes of the conductivity tensor Mo

due to, e.g., lungs and bones.) Thereafter, a certain amount of overlap
is added to the subdomain meshes to give rise to the overlapping sub-
domain meshes {GΩs,0}, where each GΩs,0 contains a subdomain heart
mesh GHs,0. Note that the second subscript ’0’ in the notation GΩs,0
indicates that GΩs,0 is the coarsest subdomain mesh on subdomain s.

4. Afterwards, we recursively perform an adaptive mesh refinement Js
times on each subdomain independently. The final result is that, on
subdomain number s, we obtain a subdomain mesh hierarchy: GΩs,0,
GΩs,1, . . . ,GΩs,Js , which can be used by the subdomain multigrid V-
cycles for solving Au,s. In addition, another subdomain mesh hierarchy
is also created for the subdomain Hs, i.e., GHs,0, GHs,1, . . . ,GHs,Js .

The basic idea of domain partitioning in the above partitioning scheme can be
depicted by a simplified diagram in Figure 11.5, where we have four heart subdo-
mains and four torso subdomains. Each body subdomain Ωs is composed of Hs and
Ts. A realistic example (which was first reported in connection with [21]) is shown
in Figure 11.6.

Remarks.

Balancing the work load on the subdomains depends on an even distribution of the
sizes of the subdomain meshes GΩs,j and GHs,j on all the subdomain mesh levels,
0 ≤ j ≤ Js. This can be roughly achieved by first finding balanced overlapping sub-
domain meshes GHs,0 and GTs,0, for 1 ≤ s ≤ P . (Note that GΩs,0 = GHs,0 ∪ GTs,0.)

402 X. Cai and G. T. Lines

Fig. 11.6. An example of partitioning an unstructured heart mesh (left) and an unstructured
torso mesh (right). (For the color version, see Figure A.25 on page 479).

Then, the adaptive mesh refinement on each subdomain has to take care to maintain
the load balance, while ensuring that elements in the overlapping regions are refined
in exactly the same way between the neighboring subdomains. We remark that the
subdomain meshes at the finest level, e.g., {GΩs,Js}Ps=1, constitute the finest virtual
global mesh. In practice, the subdomain meshes normally have a certain degree of
load imbalance, which is one of the main obstacles for achieving perfect speedup
results. The need for a relatively fine global coarse mesh GΩ,Jg (or GH,Jg) may arise
when the coarsest global mesh GΩ,0 (or GH,0) is too coarse to limit the amount of
overlap between the subdomains during the overlapping mesh partitioning. More de-
tails can be found in [8].

11.4.3 Coarse Grid Corrections

We recall from Section 11.3.3 that A−1
u,0 is included in the formula of the additive

Schwarz iteration (11.21), which approximately inverts Au. The action of A−1
u,0,

which is denoted a coarse grid correction, refers to solving a global problem as-
sociated with the coarsest global mesh GΩ,0. For the block matrix Au, which arises
from discretizing the combined elliptic equation (11.15), the coarse grid correction
is particularly important for obtaining constant convergence speed, independently of
the number of subdomains P . Otherwise, without the coarse grid correction, the ef-
fect of the parallel block preconditioner will deteriorate when P becomes large. The
effect of coarse grid corrections are well illustrated in Table 11.3.

In the case where the coarsest global mesh GΩ,0 has a small number of mesh
points, it suffices for every subdomain to solve the same global coarse grid problem
using a serial algorithm. Compared with using a parallel coarse grid solver, this se-
rial approach requires fewer inter-processor communications at the cost of a small

11 Parallel Electro-Cardiac Simulations 403

Table 11.3. An example of the effect of coarse grid corrections (CGCs), associated with the
parallel block preconditioner, where ICG denotes the number of CG iterations needed for
solving the 2× 2 block system (11.14).

Without CGCs With CGCs
NH +NΩ P ICG ICG

302,166 2 31 7
4 41 7
8 52 7
16 79 8

1,552,283 2 32 7
4 44 7
8 63 8
16 113 8

increase of subdomain computations. However, if GΩ,0 has quite many mesh points,
the serial approach will become too costly. A parallel coarse grid solver must there-
fore be adopted. In such a case where the GΩ,0 mesh is quite fine, we assume that
there is no need to refine it before carrying out overlapping mesh partitioning, i.e.,
Jg = 0. Therefore, the subdomain coarsest meshes GΩs,0 constitute a decomposition
of GΩ,0, which can be used to build a distributed data structure on the coarsest global
mesh level and run the coarse grid solver in parallel.

11.5 Some Techniques for Overhead Reduction

Recall that the parallel block preconditioner from Section 11.3.3 uses two separate
additive Schwarz iterations as approximate solvers for the two diagonal block ma-
trices of D as defined in (11.16). The mathematical theory of the additive Schwarz
method requires overlapping subdomains for ensuring the convergence; see [9, 30,
39]. Therefore, a number of elements and mesh points are shared between each pair
of neighboring subdomains. We also remark that sufficient overlap between neigh-
boring subdomains is important for obtaining a rapid convergence.

However, the mathematically required overlap between the subdomains will give
rise to some duplicated computations in both the ODE part and the PDE part of
the parallel electro-cardiac simulator. Regarding the ODE part, in order to avoid
communication in the embarrassingly parallel ODE solver, neighboring subdomains
must duplicate computations on the mesh points lying inside the overlap. As the
ODE solver may be quite computationally intensive, this duplication gives rise to
considerable overhead, which deteriorates the speedup. Similarly, duplication also
arises in the PDE part, associated with the overlap between the subdomains. Such
duplicated PDE computations are present on each shared mesh point inside the over-
lap, when the matrix-vector product of the global CG method is distributed as a set
of subdomain linear algebra operations. However, we stress that there is no dupli-
cated computation during the parallel preconditioning operations, because neighbor-
ing subdomains are meant to compute different values for the shared mesh points.

404 X. Cai and G. T. Lines

To remove the overhead due to duplicated computations described above, we
need to do a disjoint re-distribution of all the mesh points. Such a disjoint re-
distribution should be done on the basis of the existing overlapping subdomain
meshes. For this purpose, let us denote by Ns the total number of mesh points in
subdomain s. Since there is overlap between the subdomains, we have (for P > 1)

N <

P∑
s=1

Ns,

where N denotes the total number of points in a global mesh. Moreover, let us de-
note by NO

s and N I
s (where NO

s + N I
s = Ns) the number of overlapping points

and the number of interior (non-overlapping) points in subdomain s, respectively.
The essence of a disjoint re-distribution is to divide the NO

s overlapping points on
subdomain s into two parts: NO

s = NOc
s +NOn

s , where NOc
s is the number of over-

lapping points that participate in all the computations, whereas the remaining NOn
s

non-computational overlapping points do not participate in either the ODE solver
or the global-level CG operations in the PDE solver. The objective of the disjoint
re-distribution is to achieve

N =
P∑
s=1

(
NOc
s +N I

s

)
,

while approximately maintaining a constant value of NOc
s +N I

s independent of s.
The removal of the duplicated computations, however, comes at the cost of an in-

creased volume of communication. This is because the values that are needed on the
NOn
s non-computational overlapping points need to be provided by the neighboring

subdomains, through message passing. Normally, the increase of the communication
overhead can be justified by the removal of the duplicated computations.

Devising a high-quality and efficient re-distribution scheme is not trivial. Re-
search is currently under way to find an optimal scheme which is also executable in
parallel, involving collaboration between all the subdomains. For the time being, Ta-
bles 11.4 and 11.5 show two examples of applying a relatively simple re-distribution
scheme to the mesh points in the global H and Ω domains, respectively. We can
see that although the resulting value of maxs(N I

s + NOc
s) is dramatically reduced

in comparison with maxsNs, the load balancing quality can be further improved.
Regarding Table 11.5, the reason for only a slight decrease in WTCG is because
the portion of the duplicated computations inside the PDE part is relatively small.
Figure 11.7 depicts the distribution of the values of NOn

Ωs
, NOc

Ωs
, N I

Ωs
after applying

the simple re-distribution scheme to the Ω mesh points, where NΩ = 919, 851. We
can see that the load balancing situation is considerably improved with respect to
NOc
Ωs

+ N I
Ωs

, compared with NΩs . However, the disjoint re-distribution can clearly
be further improved.

Another possibility of overhead reduction lies in the coarse grid corrections
within the additive Schwarz iterations, when the global GΩ,0 mesh has a relatively
large number of points. As mentioned in Section 11.4.3, parallel coarse grid correc-
tions should in such a case replace serial coarse grid corrections. Table 11.6 shows

11 Parallel Electro-Cardiac Simulations 405

Table 11.4. An example of applying a disjoint re-distribution to the H domain mesh points,
where NH = 632, 432 and WTODE denotes the time consumptions by the ODE solver for
one time step on a Linux cluster; see Section 11.6 for more details.

Before re-distribution After re-distribution
P maxsNHs WTODE maxs(N

I
Hs +NOc

Hs
) WTODE

2 405,893 120.75 316201 117.40
4 225,296 73.48 162,823 65.31
8 137,446 51.82 89,025 37.20
16 71,643 29.48 49,057 23.08

Table 11.5. An example of applying a disjoint re-distribution to the Ω domain mesh points,
where NΩ = 919, 851 and WTCG denotes the time consumptions by the parallel CG solver
for one time step on a Linux cluster; see Section 11.6 for more details.

Before re-distribution After re-distribution
P maxsNΩs WTCG maxs(N

I
Ωs +NOc

Ωs
) WTCG

2 600,773 44.30 476,382 42.63
4 332,163 27.16 248,841 26.42
8 200,987 21.57 123,662 20.86
16 110,146 18.40 70,164 17.21

Table 11.6. The effect of using parallel coarse grid corrections (CGCs) instead of serial CGCs.
The total number of unknowns at the global fine mesh level is NH +NΩ = 1, 552, 283, and
WTCG denotes the time consumptions for one time step on a Linux cluster; see Section 11.6
for more details.

Serial CGCs Parallel CGCs
P WTCG WTCG

2 42.63 44.82
4 26.42 26.23
8 20.86 19.42

16 17.21 13.46

the results associated with the parallel PDE solver when NH + NΩ = 1, 552, 283
for the global fine mesh level and NΩ,0 = 28, 283 for the global coarse mesh level.
(We note that coarse grid corrections are not used in the additive Schwarz iterations
for treating the (1, 1) diagonal block of D.) Both the serial and parallel coarse grid
solvers use CG iterations without preconditioning on the level of the global GΩ,0
mesh. The reason for a deteriorated performance for P = 2 in Table 11.6 is that the
overhead in the parallel coarse grid solver exceeds the gain from parallelization. The
advantage of a parallel coarse grid solver thus becomes visible when P is large.

11.6 Numerical Experiments

In this section, we will report some more numerical experiments of the electro-
cardiac simulation, where we have used the realistic global domains H and Ω as

406 X. Cai and G. T. Lines

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

x 10
5

Subdomain ID

non−computational overlapping points
computational overlapping points
computational interior points

Fig. 11.7. The effect of applying a disjoint re-distribution to the Ω mesh points, where NΩ =
919, 851 and the number of subdomains is 8. (For the color version, see Figure A.26 on page
479).

depicted in Figure 11.1. The coarsest global GH,0 mesh consists of 56,568 tetrahe-
dral elements and 11,306 mesh points, while the coarsest global GΩ,0 mesh consists
of 162,120 tetrahedral elements and 28,283 mesh points. Since both the global coars-
est meshes have quite high resolution, we directly partition the GΩ,0 mesh (without
adaptive refinement) into overlapping subdomain GΩs,0 meshes, 1 ≤ s ≤ P . We
remark that our mesh partitioning scheme uses the Metis [16] software package to
first generate intermediate non-overlapping subdomain meshes, which are then ex-
panded to introduce a certain amount of overlap between neighboring subdomains.
Depending on the desired resolution of the finest subdomain meshes, we adaptively
refine the GΩs,0 subdomain mesh Js times on each subdomain s, as described in Sec-
tion 11.4.2. We remark that the subdomain mesh hierarchy {GHs,j} (0 ≤ j ≤ Js) is
obtained by “cutting out” the portion of the subdomain mesh hierarchy {GΩs,j} that
lies inside H .

We have chosen the Winslow cell model (see [38]) for the numerical experiments
in this section. Regarding the anisotropic conductivity tensorsMi andMe, which are
defined in (11.4), the following σ values are used:

σli = 3.0, σti = 0.31525, σni = 1.0, (11.23)

σle = 2.0, σte = 1.3514, σne = 1.65. (11.24)

11 Parallel Electro-Cardiac Simulations 407

Moreover, the vectors al and an are depicted in Figure 11.2. For the surface-to-
volume scaling factor used in (11.1), we have chosen χ = 5.0× 10−4.

When the global 2 × 2 block system (11.14) is solved by the preconditioned
parallel CG iterations at each time step, we consider that the convergence is reached
when the global residual vector is reduced by a factor of 104 from its initial value
at the beginning of the time step, measured in the L2-norm. For the multigrid V-
cycles that are used as the subdomain solvers in the additive Schwarz iterations, the
pre- and post-smoothers are chosen as three SOR iterations for the subdomain mesh
levels 1 ≤ j ≤ Js. On the level of the coarsest subdomain mesh GHs,0 or GΩs,0, 20
SSOR iterations are used. Coarse grid corrections have been used in association with
the additive Schwarz iteration handling the second diagonal block in D. The chosen
global coarse grid solver on the GΩ,0 mesh level is also a parallel CG solver, which
aims to reduce the associated residual vector by a factor of 10. We remark that for the
additive Schwarz iteration handling the first diagonal block in D, experiments show
that coarse grid correction is not necessary.

The parallel electro-cardiac simulator is programmed in the scientific computing
environment of Diffpack; see [17, 10]. The implementation of the additive-Schwarz
block preconditioner uses the object-oriented programming techniques and a generic
framework for overlapping domain decomposition algorithms; see e.g. [4, 18].

In Table 11.7, we list the wall-time measurements of four different tasks within
one time step:

1. WTODE denotes the wall-time consumption of the ODE part.
2. WTdiscr denotes the wall-time consumption of the finite element discretization

procedure for building the 2 × 2 block system (11.14). We note that WTdiscr

is noticeably larger for the first time step (which is reported in Tables 11.7 and
11.8) than for the subsequent time steps, because bothA and the right-hand side
vector in (11.14) need to be built in the first time step, whereas only the right-
hand side vector needs to be updated in the subsequent time steps.

3. WTCG denotes the wall-time consumption of the preconditioned parallel CG
iterations for solving (11.14).

4. WTstep denotes the total wall-time consumption of one time step.

The measurements in Table 11.7 are obtained on a Linux cluster that consists of
1.3 GHz Itanium2 processors, inter-connected through a Gigabit ethernet. We can
observe that the number of the parallel CG iterations, which is denoted by ICG, re-
mains independent of both the number of degrees of freedom and the number of sub-
domains (when P ≥ 2). In fact, the parallel additive-Schwarz block preconditioner
has better convergence properties than the serial multigrid block preconditioner. For
Js = 3, the finest meshes contain so many points that the simulator can not be run
on fewer than four processors. Therefore, measurements for P = 1 and P = 2 are
absent for Js = 3 in Table 11.7.

In Table 11.8, we list the corresponding measurements that are obtained on an
SGI Origin 3800 machine. Due to a faster communication network on the SGI ma-
chine (and slower processors), the scalability of the measurements should in general
be better than that of Table 11.7. However, due to the extremely heavy work load on

408 X. Cai and G. T. Lines

Table 11.7. The wall-time measurements (in seconds and obtained on an Itanium-cluster) of
different tasks within one time step during parallel full-scale electro-cardiac simulations.

Js NH NΩ P WTODE WTdiscr ICG WTCG WTstep

1 82,768 219,398 1 52.85 41.08 15 28.30 153.19
2 33.42 24.26 7 13.52 93.44
4 18.98 13.20 7 8.25 53.64
8 10.26 7.55 7 4.63 30.55
16 6.20 4.00 8 3.89 23.14

2 632,432 919,851 1 381.58 246.65 16 134.93 982.11
2 241.85 153.36 7 44.82 585.88
4 133.45 84.31 7 26.23 327.59
8 75.21 49.78 8 19.42 195.79
16 47.77 26.18 8 13.46 127.79

3 4,942,624 5,762,729 1 N/A N/A N/A N/A N/A
2 N/A N/A N/A N/A N/A
4 1518.95 676.02 9 196.51 2511.18
8 942.48 383.61 10 121.36 1534.65
16 617.41 191.27 10 78.19 952.51

Table 11.8. The wall-time measurements (in seconds and obtained on an SGI Origin 3800
machine) of different tasks within one time step during parallel full-scale electro-cardiac sim-
ulations.

Js NH NΩ P WTODE WTdiscr ICG WTCG WTstep

1 82,768 219,398 8 19.91 20.68 7 9.07 55.30
16 16.12 10.84 8 4.70 33.25
32 9.13 5.65 8 3.47 21.70

2 632,432 919,851 8 155.63 169.46 8 27.30 385.08
16 121.67 83.76 8 16.37 242.93
32 68.59 41.65 8 15.45 142.51

3 4,942,624 5,762,729 8 1233.72 1481.66 9 386.63 3406.51
16 949.98 755.67 10 286.89 2206.67
32 534.43 381.01 10 144.98 1197.09

the SGI machine, some of the measurements in Table 11.8 have been “slowed down”
quite considerably and are thus not very accurate.

11.7 Concluding Remarks

Building a high-performance parallel electro-cardiac simulator relies mostly on an
efficient parallel solver for the involved PDEs. Numerically, the convergence speed
of the parallel CG iterations needed in the PDE part is ensured by a matching parallel
substitute of the serial multigrid block preconditioner D defined in (11.16). That is,
two separate additive Schwarz iterations act as approximate solvers for the two diag-
onal blocks inD, while also incorporating coarse grid correction and using multigrid

11 Parallel Electro-Cardiac Simulations 409

V-cycles as the subdomain solvers. With respect to the parallel implementation, sat-
isfactory performance can be obtained when attention is paid to a good work load
balance and the reduction of unnecessary duplicated computations. However, due to
the complicated shape of the realistic three-dimensional heart and torso meshes, find-
ing a well balanced set of subdomain mesh hierarchies while restricting the volume
of communication remains a challenging task. This issue should be further investi-
gated in the future work.

Acknowledgement

The work presented in this chapter has been partially supported by the Norwegian
Research Council (NFR) through Programme for Supercomputing in form of a grant
of computing time.

References

1. W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, 2nd
edition, 2000.

2. A. M. Bruaset. A Survey of Preconditioned Iterative Methods. Pitman Research Notes In
Mathematics Series 328. Longman Scientific & Technical, 1995.

3. M. L. Buist and A. J. Pullan. The effect of torso impedance on epicardial and body surface
potentials: A modeling study. IEEE Trans. Biomed. Eng., 50(7):816–824, 2003.

4. X. Cai. Domain decomposition in high-level parallelization of PDE codes. In C.-H. L.
et al., editor, Domain Decompostion Methods in Science and Engineering, pages 382–
389. Domain Decomposition Press, 1999.

5. X. Cai. Overlapping domain decomposition methods. In H. P. Langtangen and A. Tveito,
editors, Advanced Topics in Computational Partial Differential Equations – Numerical
Methods and Diffpack Programming, pages 57–95. Springer, 2003.

6. X. Cai, G. Lines, and A. Tveito. Parallel solution of the bidomain equations with high
resolutions. In G. R. Joubert, W. E. Nagel, F. J. Peters, and W. V. Walter, editors, Parallel
Computing: Software Technology, Algorithms, Architectures & Applications, pages 837–
844. Elsevier Science, 2004.

7. X. Cai and G. T. Lines. Enabling numerical and software technologies for studying the
electrical activity in human heart. In J. Fagerholm et al., editor, Applied Parallel Comput-
ing - Advanced Scientific Computing, 6th International Conference, PARA 2002, number
2367 in Lecture Notes in Computer Science, pages 3–17, Espoo, Finland, 2002. Springer-
Verlag.

8. X. Cai and K. Samuelsson. Parallel multilevel methods with adaptivity on unstructured
grids. Computing and Visualization in Science, 3:133–146, 2000.

9. T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In Acta Numerica 1994,
pages 61–143. Cambridge University Press, 1994.

10. Diffpack Home Page. http://www.diffpack.com.
11. L. Formaggia, M. Sala, and F. Saleri. Domain decomposition techniques. In A. M. Bru-

aset and A. Tveito, editors, Numerical Solution of Partial Differential Equations on Par-
allel Computers, volume 51 of Lecture Notes in Computational Science and Engineering,
pages 135–163. Springer-Verlag, 2005.

410 X. Cai and G. T. Lines

12. P. C. Franzone and L. F. Pavarino. A parallel solver for reaction-diffusion systems in
computational electrocardiology. Mathematical Models and Methods in Applied Sciences,
14(6):883–911, 2004.

13. I. L. Grice, P. Hunter, and B. Smaill. Laminar structure of the heart: a mathematical
model. Am. J. Physiol. Heart. Circ. Physiol., 272:H2466–H2476, 1997.

14. W. Hackbusch. Multigrid Methods and Applications. Springer, Berlin, 1985.
15. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel geometric multigrid. In

A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pages 165–208. Springer-Verlag, 2005.

16. G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse matrix order-
ing system. Technical report, Department of Computer Science, University of Minnesota,
Minneapolis/St. Paul, MN, 1995.

17. H. P. Langtangen. Computational Partial Differential Equations - Numerical Methods
and Diffpack Programming. Texts in Computational Science and Engineering. Springer,
2nd edition, 2003.

18. H. P. Langtangen and X. Cai. A software framework for easy parallelization of PDE
solvers. In Proceedings of the Parallel Computational Fluid Dynamics 2000 Conference,
2001.

19. G. T. Lines. Simulating the Electrical Activity in the Heart - A Bidomain Model of the
Ventrciles Embedded in a Torso. PhD thesis, Department of informatics, University of
Oslo, 1999.

20. G. T. Lines, M. L. Buist, P. Grøttum, A. J. Pullan, J. Sundnes, and A. Tveito. Mathematical
models and numerical methods for the forward problem in cardiac electrophysiology.
Computations and Visualization in Science, 5:215–239, 2003.

21. G. T. Lines, X. Cai, and A. Tveito. A parallel solution of the bidomain equations modeling
the electrical activity of the heart. Technical report, Simula Resserch Laboratory, 2001.

22. C. H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potenial.
Circulation Research, 74:1071–1096, 1994.

23. K.-A. Mardal and A. Tveito. Optimal preconditioners for discrete versions of the bido-
main model. Submitted to: SIAM J. Sci. Comp., 2004.

24. M. Murillo and X.-C. Cai. A fully implicit parallel algorithm for simulating the non-linear
electrical activity of the heart. Numerical Linear Algebra with Applications, 11:261–277,
2004.

25. M. Pennacchio and V. Simoncini. Efficient algebraic solution of reaction–diffusion sys-
tems for the cardiac excitation process. Journal of Computational and Applied Mathe-
matics, 145:49–70, 2002.

26. J. B. Pormann, C. S. Henriquez, J. A. B. Jr., D. J. Rose, D. M. Harrild, and A. P. Hen-
riquez. Computer simulations of cardiac electrophysiology. In Proceedings of the 2000
ACM/IEEE conference on Supercomputing. IEEE Computer Society, 2000.

27. D. Porras, J. M. Rogers, W. M. Smith, and A. E. Pollard. Distributed computing for
membrane-based modeling of action potential propagation. IEEE Trans. Biomed. Eng.,
47(8):1051–1057, 2000.

28. H. I. Saleheen and K. T. Ng. A new three dimensional finite-differenc bidomain formula-
tion for inhomogeneous anisotropic cardiac tissues. IEEE Trans. Biomed. Eng., 45(1):15–
25, 1998.

29. K. Skouibine and W. Krassowska. Increasing the computational efficiency of a bidomain
model of defibrillation using a time-dependent activating function. Ann Biomed Eng.,
28(7):772–780, 2000.

11 Parallel Electro-Cardiac Simulations 411

30. B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

31. J. Sundnes, G. Lines, K.-A. Mardal, and A. Tveito. Multigrid block preconditioning for
a coupled system of partial differential equations modeling the electrical activity of the
heart. Computer Methods in Biomechanics and Biomedical Engineering, 5(6):397–409,
2002.

32. J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, and A. Tveito. Computing
the Electrical Activity in the Human Heart. Book accepted for publication by Springer-
Verlag, 2004. 278 pages.

33. J. Sundnes, G. T. Lines, P. Grøttum, and A. Tveito. Electrical activity in the human
heart. In H. P. Langtangen and A. Tveito, editors, Advanced Topics in Computational Par-
tial Differential Equations – Numerical Methods and Diffpack Programming, volume 33
of Lecture Notes in Computational Science and Engineering, pages 401–449. Springer-
Verlag, 2003.

34. J. Sundnes, G. T. Lines, and A. Tveito. ODE-solvers for a stiff system arising in the mod-
eling of the electrical activity of the heart. International Journal of Nonlinear Sciences
and Numerical Simulation, 4(1):67–80, 2003.

35. M.-C. Trudel, B. Dubé, M. Potse, R. M. Gulrajani, and L. J. Leon. Simulation of QRST
integral maps with a membrane-based computer heart model employing parallel process-
ing. IEEE Trans. Biomed. Eng., 51(8):1319–1329, 2004.

36. L. Tung. A Bi-domain model for describing ischemic myocardial D-C potentials. PhD
thesis, MIT, Cambridge, MA, 1978.

37. R. Weber dos Santos, G. Plank, S. Bauer, and E. J. Vigmond. Parallel multigrid precon-
ditioner for the cardiac bidomain model. IEEE Transactions on Biomedical Engineering,
51(11):1960–1968, 2004.

38. R. L. Winslow, J. Rice, S. Jafri, E. Marban, and B. O’Rourke. Mechanisms of altered
excitation-contraction coupling in canine tachycardia-induced heart failure, II, model
studies. Circulation Research, 84:571–586, 1999.

39. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34(4):581–613, December 1992.

12

Developing a Geodynamics Simulator with PETSc

Matthew G. Knepley1, Richard F. Katz2, and Barry Smith1

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, USA
[knepley,bsmith]@mcs.anl.gov

2 Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory,
Palisades, NY, USA
katz@ldeo.columbia.edu

Summary. Most high-performance simulation codes are not written from scratch but begin as
desktop experiments and are subsequently migrated to a scalable, parallel paradigm. This tran-
sition can be painful, however, because the restructuring required in conversion forces most
authors to abandon their serial code and begin an entirely new parallel code. Starting a parallel
code from scratch has many disadvantages, such as the loss of the original test suite and the
introduction of new bugs. We present a disciplined, incremental approach to parallelization
of existing scientific code using the PETSc framework. In addition to the parallelization, it
allows the addition of more physics (in this case strong nonlinearities) without the user having
to program anything beyond the new pieces of discretization code. Our approach permits users
to easily develop and experiment on the desktop with the same code that scales efficiently to
large clusters with excellent parallel performance. As a motivating example, we present work
integrating PETSc into an existing plate tectonic subduction code.

12.1 Geodynamics of Subduction Zones

Subduction zones, where one of the Earth’s surface plates collides with another and
sinks into the deep mantle (see Figure 12.1a) [24], are the locus of many of the
world’s most devastating natural disasters, especially volcanic eruptions and earth-
quakes. Subduction zone volcanism such as the 1980 eruption of Mount St. Helens
is characterized by violent explosions of ash and rock. Despite the relevance of this
type of volcanism to problems ranging from public safety to global climate change
and mass-extinction events in the geologic record, a detailed understanding of its
source is lacking. Clues are abundant, however, in the rocks erupted from subduction
zone volcanos which record a history of formation, transport, and eruption in their
distinct geochemistry. The complexity of these processes in terms of the governing
reactive thermochemical fluid dynamics and non-Newtonian rheology is significant;
simplified models have proven inadequate in explaining basic observations [18].

More sophisticated PDE-based computational models are needed to address the
sharp nonlinearities typically unexplored in past work. The large separation in length

414 M. G. Knepley et al.

η=η(P,T,V)

~100 km

Subducting slab

No Slip

Subducting slab

No Slip

St
re

ss
 f

re
e

Dislocation and diffusion creep

Distance from trench

D
ep

th

V
slab

Mantle wedge

Continental crust

Continental crust

Mantle wedge

Zero stress
fault

(a)

(b)

Fig. 12.1. (a) Schematic diagram of a subduction zone. Oceanic lithosphere is colliding with
continental lithosphere and being subducted. Volatile compounds are released from the sub-
ducting slab at depth and enter the mantle wedge, lowering the melting temperature of the
rock and causing partial melting. This melt rises to feed volcanos at the surface. (b) Schematic
diagram of the computational domain. Boundary conditions on the flow field are imposed at
the bottom of the crust, the top of the slab, and the intersection of the mantle wedge and the
domain boundary. Flow velocity within the mantle wedge is the solution to equation (12.1).
Potential temperature throughout the domain is the solution to equation (12.3). The “zero
stress fault” represents a frictional sliding surface. On geologic time scales all stress on this
boundary is relieved in earthquakes and does not cause deformation.

and time scales of the constituent physics implies a great computational cost due to
the need for fine meshes to resolve the small (but relevant) scales. Moreover, the
highly nonlinear character of the non-Newtonian, temperature-dependent viscosity
demands costly solution algorithms. This high computational complexity coupled
with long development times have put such models out of reach for most geoscien-
tists. The Portable Extensible Toolkit for Scientific Computation (PETSc) [5] makes
it easier for geoscientists to overcome these barriers. In an abstract sense, PETSc pro-
vides a framework for collaboration between geoscientists with complex modeling
problems and numerical analysts and software engineers who have the encapsulated
numerical methods for solving those problems. In the case described here, the orig-
inal model was a specialized, single linear solver serial code capable of calculating
the thermal structure due to an analytically prescribed isoviscous flow field. By port-
ing this code into the PETSc framework we were able to extend it to solve for fully
coupled thermal structure and non-Newtonian flow with a choice of many scalable
parallel solvers, flexible boundary conditions, convenient parameter input, real-time
code steering, and many other features not available with the serial version. This was
done using an incremental process by first replacing the custom linear solver with
PETSc’s general purpose nonlinear solver, then replacing the sequential data struc-
tures with PETSc’s parallel ones and then finally adding the additional nonlinear
physics (to the portion of the code that discretizes the PDE).

Any model of subduction zone volcanism must be based on the thermal and flow
structure of the slowly moving solid mantle wedge, shown in Figure 12.1. While the
magnesium and iron-rich mantle rock is solid on human time-scales (as evidenced by

12 Developing a Geodynamics Simulator with PETSc 415

the seismic waves it transmits), on geologic time-scales it undergoes two modes of
solid-state creep [14]. Its motion can be described by the Stokes equation for steady
flow of an incompressible, highly viscous fluid (with zero Reynolds number),

∇P =∇· [η (∇V +∇VT
)]

; s.t.∇· V = 0, (12.1)

η = (1/ηdisl + 1/ηdifn)−1
, (12.2)

where P is the fluid pressure, V is the mantle velocity field, ηdifn is the diffusion
creep viscosity and ηdisl is the dislocation creep viscosity. Both creep mechanisms
give an Arrhenius-type dependence on pressure and temperature. Dislocation creep
has an additional non-Newtonian strain rate dependence. The strength of the non-
linearity of viscosity makes this equation difficult to solve without a good initial
guess. In our code the initial guess in provided by a continuation method: we mod-
ify equation (12.1) to let η → ηα, where α is a number between zero and one. The
continuation method, described in section 12.5.1, varies α over a sequence of solves
of increasing nonlinearity to reach natural variation in viscosity. The solution at each
step is used as a guess for the following solve. The first step in this process is to solve
the problem for constant viscosity (α=0), where the system of equations is linear and
analytically tractable.

The production of molten rock depends fundamentally on the mantle temperature
field. The distribution of heat is governed by the conservation of enthalpy, expressed
as an advection-diffusion equation,

∂θ

∂t
+ V ·∇θ = κ∇2θ, (12.3)

where θ is the mantle potential temperature and κ is the thermal diffusivity of the
mantle. The mantle has a very low thermal diffusivity compared to materials such as
metal or water, and thus the advection term dominates in equation (12.3).

For 0 < α ≤ 1, equations (12.1) and (12.3) form a nonlinear set coupled through
the viscosity. The solution of these equations is the first stage in modeling magma
genesis in subduction zones. Future work will incorporate equations of porous flow
of volatiles and magma through the mantle, reactive melting, and geochemical trans-
port. Even without these complexities, however, we have achieved interesting results
with the simple, though highly nonlinear, set of equations given above. Some of these
results are presented below, after an in-depth look at the application development
process in the PETSc framework.

12.2 Integrating PETSc

PETSc is a set of library interfaces built in a generally hierarchical fashion. A user
may decide to use some libraries and disregard others. Figure 12.2 illustrates this
hierarchy of dependencies. For instance, a user can use only the PETSc linear alge-
bra (vectors and matrices) libraries, or add linear solvers to those, or add nonlinear
solvers to the entire group. Thus, integration may proceed in several stages, which we

416 M. G. Knepley et al.

Fig. 12.2. Interface hierarchy in a PETSc application.

CFLAGS =
FFLAGS =
CPPFLAGS =
FPPFLAGS =

include ${PETSC DIR}/bmake/common/base

ex1: ex1.o util.o chkopts
−${CLINKER} −o $@ $ˆ ${PETSC SNES LIB}
${RM} $ˆ

ex1f: ex1f.o phys.o chkopts
−${FLINKER} −o $@ $ˆ ${PETSC FORTRAN LIB} ${PETSC SNES LIB}
${RM} $ˆ

Fig. 12.3. Typical PETSc makefile.

discuss in the following sections. The first step is to incorporate the PETSc libraries
into the existing compile system (i.e., make) and to initialize the PETSc runtime.
This may be done in two ways.

The simplest approach is to adopt the PETSc makefile structure, which is pre-
sented in Figure 12.3 for an application using the nonlinear solver package. The user
includes the bmake/common/base, which defines both rules for compiling source
and variables that are used during the compile and link. Then, only a simple rule for

12 Developing a Geodynamics Simulator with PETSc 417

include ${PETSC DIR}/bmake/common/variables

.c.o:
massageC.pl $<
${CC} −c ${MY CFLAGS} ${COPTFLAGS} ${CFLAGS} ${CCPPFLAGS} $<

.F.o:
massageFortran.pl $<
${FC} −c ${MY FFLAGS} ${FOPTFLAGS} ${FFLAGS} ${FCPPFLAGS} $<

ex1: ex1.o util.o
−${CLINKER} −o $@ $ˆ ${PETSC SNES LIB}
${RM} $<

ex1f: ex1f.o phys.o
−${FLINKER} −o $@ $ˆ ${PETSC FORTRAN LIB} ${PETSC SNES LIB}
${RM} $<

Fig. 12.4. Boilerplate custom makefile using PETSc.

the executable is necessary using the appropriate PETSc library variable. Individual
compilation can be customized with the variables shown at the top of the makefile.

Users with large existing build systems may choose not to inherit the PETSc
make rules but instead use a lower-level interface based only on PETSc make vari-
ables. A boilerplate example is given in Figure 12.4. The user now includes only
the bmake/common/variables file, which defines the make variables but does
not prescribe any rules for compilation or linking. The variables provide information
about all compilation flags, libraries, and external packages necessary to link with
PETSc.

Before any PETSc code can be run, the user must call PetscInitialize(),
and likewise after all PETSc code has completed the user must call PetscF
inalize(). This is analogous to the requirements for using MPI. In fact, if the
user has not done so already, PETSc will handle the initialization and cleanup of
MPI automatically in these routines. A simple C driver is shown in Figure 12.5.

The initialization call provides the command line arguments to PETSc for pro-
cessing and can take an optional help string for the user (printed when the -help
option is given). The finalization call frees any resources used by PETSc and provides
summary logging and diagnostic information, most notably performance profiling.
The equivalent Fortran driver is shown in Figure 12.6.

Notice that the command line arguments are now obtained directly from the For-
tran runtime library, rather than the user code. Once these calls are inserted into
the application code, the user can verify a successful link and run with the PETSc
libraries.

418 M. G. Knepley et al.

static char help[] = "Boilerplate PETSc Example.\n\n";

#include "petsc.h"

int main(int argc, char **argv)
{

ierr = PetscInitialize(&argc, &argv, (char *) 0, help);CHKERRQ(ierr);

/* User code */

return PetscFinalize();
}

Fig. 12.5. Boilerplate C driver for PETSc.

program main
implicit none

#include "include/finclude/petsc.h"

integer ierr

call PetscInitialize(PETSC NULL CHARACTER, ierr)

! User code

call PetscFinalize(ierr)
end

Fig. 12.6. Boilerplate Fortran driver for PETSc.

12.3 Data Distribution and Linear Algebra

The PETSc solvers (discussed in Section 12.4) require the user to provide C or For-
tran routines that compute the residual of the equation they wish to solve (after they
have discretized the PDE) and optionally the Jacobian of that residual function. We
refer to these functions generically as FormFunction() and FormJacobian().
For nonlinear problems the PETSc solvers use truncated Newton methods, with line
searches or trust-regions for robustness, and possibly approximate or incomplete Ja-
cobians for efficiency.

The central objects in any PETSc simulation are the abstractions from linear
algebra, vectors and matrices, or in PETSc terms the Vec and Mat classes. These
form the basis of all solver and preconditioner interfaces, as well as providing the link
to user-supplied discretization and physics routines. Thus, the most important step
in the migration of an application to the PETSc framework is the incorporation of its

12 Developing a Geodynamics Simulator with PETSc 419

linear algebra and data distribution abstractions. Two obvious strategies emerge for
accomplishing this integration: a gradual approach that seeks to minimize the change
to existing code and a more aggressive approach that leverages as much of the PETSc
technology as possible. The next two subsections address these complementary paths
toward integration. We use the simple example of the solid-fuel ignition problem, or
Bratu problem, to illustrate the gradual evolution of a simulation, and then we give
an example of mantle subduction for the more aggressive approach.

12.3.1 Gradual Evolution

A new PETSc user with very complicated code, which perhaps was originally writ-
ten by someone else, may opt to make as few changes as possible when moving to
PETSc. PETSc facilitates this approach with low-level interfaces to both Vec and
Mat objects that closely resemble common serial data structures. Vectors are espe-
cially easy to migrate because the default PETSc storage format, contiguous arrays
on each process, is that most common in serial applications. Matrices are somewhat
more complicated, and in order to hide the actual matrix data storage format, PETSc
requires the user to access values through a functional interface [6].

Let us examine the Bratu problem as an example of integrating PETSc vectors
into an existing simulation [21]. This problem is modeled by the partial differential
equation

−∆u− λeu = 0. (12.4)

We take the domain to be the unit square and impose homogeneous Dirichlet bound-
ary conditions on the edges. We discretize the equation using a 5-point stencil finite
difference scheme, which results in a set of nonlinear algebraic equationsF (uh) = 0,
where we use uh to indicate the discrete solution vector. In Figure 12.7, we present a
Fortran 90 routine that calculates the residual F as a function of the input vector uh.
It also takes a user context as input that holds the domain information and problem
coefficient.

Notice that the boundary conditions on the residual are of the form u−uΓ , where
uΓ are the specified boundary values, because we are driving the residual F (u) to
zero. An alternative would be to eliminate those variables altogether, substituting
the boundary values in any interior calculation. However, this technique currently
imposes a greater burden on the programmer.

When integrating PETSc vectors into this code, we can let Fortran allocate
the storage, or we can use PETSc for allocation. In Figure 12.8, we let PETSc
manage the memory. The input vectors already have storage allocated by PETSc,
which can be accessed as an F90 array by using the VecGetArrayF90() func-
tion or in C by using VecGetArray(). A sample driver() routine shows how
PETSc allocates vector storage. If we let Fortran manage memory, then we use
VecCreateSeqWithArray(), or VecCreateMPIWithArray() in parallel,
to create the Vec objects.

During a Newton iteration to solve this equation, we would require the Jacobian
J of the mapping F . Rather than being accessed as a multidimensional array, the

420 M. G. Knepley et al.

module f90module
type userctx

! The start, end, and number of vertices in the x− and y−directions
integer xs,xe,ys,ye,integer mx,my
double precision lambda

end type userctx
contains
end module f90module

subroutine FormFunction(u,F,user,ierr)
use f90module
type (userctx) user
double precision u(user%xs:user%xe,user%ys:user%ye)
double precision F(user%xs:user%xe,user%ys:user%ye)
double precision two,one,hx,hy,hxdhy,hydhx,sc,uij,uxx,uyy
integer i,j,ierr

hx = 1.0/dble(user%mx−1)
hy = 1.0/dble(user%my−1)
sc = hx*hy*user%lambda
hxdhy = hx/hy
hydhx = hy/hx

do 20 j=user%ys,user%ye
do 10 i=user%xs,user%xe

! Apply boundary conditions
if (i == 1 .or. j == 1 .or. i == user%mx .or. j == user%my) then

F(i,j) = u(i,j)
! Apply finite difference scheme

else
uij = u(i,j)
uxx = hydhx * (2.0*uij − u(i−1,j) − u(i+1,j))
uyy = hxdhy * (2.0*uij − u(i,j−1) − u(i,j+1))
F(i,j) = uxx + uyy − sc*exp(uij)

endif
10 continue
20 continue

Fig. 12.7. Residual calculation for the Bratu problem.

12 Developing a Geodynamics Simulator with PETSc 421

subroutine driver(u,F,user,ierr)
implicit none

Vec u,F
int N
parameter(N=10000)

call VecCreate(PETSC COMM WORLD,u,ierr)
call VecSetSizes(u,PETSC DECIDE,N,ierr)
call VecDuplicate(u,F,ierr)
call SolverLoop(u,F,ierr)
call VecDestroy(u,ierr)
call VecDestroy(F,ierr)
end

subroutine FormFunctionPETSc(u,F,user,ierr)
use f90module
implicit none

Vec u,F
type (userctx) user
double precision,pointer :: u v(:),f v(:)

call VecGetArrayF90(u,u v,ierr)
call VecGetArrayF90(F,f v,ierr)
call FormFunction(u v,f v,user,ierr)
call VecRestoreArrayF90(u,u v,ierr)
call VecRestoreArrayF90(F,f v,ierr)
end

Fig. 12.8. Driver for the Bratu problem using PETSc.

PETSc Mat object provides the MatSetValues() function to set logically dense
blocks of values into the structure. A function that computes the Jacobian and stores
it in a PETSc matrix is shown in Figure 12.9. With this addition, the user can now
run serial code using the PETSc solvers (details are given in Section 12.4). Note that
the storage mechanism is the only change to user code necessary for its incorporation
into the PETSc framework using the wrapper in Figure 12.8.

Although PETSc removes the need for low-level parallel programming, such as
direct calls to the MPI library, the user must still identify parallelism inherent in
the application and must structure the computation accordingly. The first step is to
partition the domain and have each process calculate the residual and Jacobian only
over its local piece. This is easily accomplished by redefining the xs, xe, ys, and ye
variables on each process, converting loops over the entire domain into loops over
the local domain. However, this method uses nearest-neighbor information, and thus

422 M. G. Knepley et al.

subroutine FormJacobian(u,jac,user,ierr)
use f90module
type (userctx) user
Mat jac
double precision x(user%xs:user%xe,user%ys:user%ye)
double precision two,one,hx,hy,hxdhy,hydhx,sc,v(5)
integer row,col(5),i,j,ierr

one = 1.0
two = 2.0
hx = one/dble(user%mx−1)
hy = one/dble(user%my−1)
sc = hx*hy*user%lambda
hxdhy = hx/hy
hydhx = hy/hx
do 20 j=user%ys,user%ye

row = (j − user%ys)*user%xm − 1
do 10 i=user%xs,user%xe

row = row + 1
! boundary points

if (i == 1 .or. j == 1 .or. i == user%mx .or. j == user%my) then
col(1) = row
v(1) = one
call MatSetValues(jac,1,row,1,col,v,INSERT VALUES,ierr)

! interior grid points
else

v(1) = −hxdhy
v(2) = −hydhx
v(3) = two*(hydhx + hxdhy) − sc*exp(x(i,j))
v(4) = −hydhx
v(5) = −hxdhy
col(1) = row − user%xm
col(2) = row − 1
col(3) = row
col(4) = row + 1
col(5) = row + user%xm
call MatSetValues(jac,1,row,5,col,v,INSERT VALUES,ierr)

endif
10 continue
20 continue

Fig. 12.9. Jacobian calculation for the Bratu problem using PETSc.

12 Developing a Geodynamics Simulator with PETSc 423

Box-type stencil Star-type stencil

Proc 6

Proc 0 Proc 0Proc 1 Proc 1

Proc 6

Fig. 12.10. Star and box stencils using a DA.

we must have access to some values not present locally on the process, as shown in
Figure 12.10.

We must store values for these ghost points locally so that they may be used for
the computation. In addition, we must ensure that these values are identical to the cor-
responding values on the neighboring processes. At the lowest level, PETSc provides
ghosted vectors, created using VecCreateGhost(), with storage for some values
owned by other processes. These values are explicitly indicated during construction.
The VecGhostUpdateBegin() and VecGhostUpdateEnd() functions trans-
fer values between ghost storage and the corresponding storage on other processes.
This method, however, can become complicated for the user. Therefore, for the com-
mon case of a logically rectangular grid, PETSc provides the DA object to manage
the determination, allocation, and coherence of ghost values. The DA object is dis-
cussed fully in Section 12.3.2, but we give here a short introduction in the context of
the Bratu problem.

The DA object represents a distributed, structured (possibly staggered) grid and
thus has more information than our serial grid. If we augment our user context to in-
clude information about ghost values, we can obtain all the grid information from the
DA. Figure 12.11 shows the creation of a DA when one initially know only the total
number of vertices in the x and y directions. Alternatively, we could have specified
the local number of vertices in each direction.

Now we need only modify our PETSc residual routine to update the ghost values,
as shown in Figure 12.12.

Notice that the ghost value scatter is a two-step operation. This allows the
communication to overlap with local computation that may be taking place while
the messages are in transit. The only change necessary for the residual calcu-
lation itself is the correct declaration of the input array, double precision
u(user%gxs:user%gxe,user%gys:user%gye), which now includes ghost
values,

424 M. G. Knepley et al.

type userctx
DA da

! The start, end, and number of vertices in the x−direction
integer xs,xe,xm

! The start, end, and number of ghost vertices in the x−direction
integer gxs,gxe,gxm

! The start, end, and number of vertices in the y−direction
integer ys,ye,ym

! The start, end, and number of ghost vertices in the y−direction
integer gys,gye,gym

! The number of vertices in the x− and y−directions
integer mx,my

! The MPI rank of this process
integer rank

! The coefficient in the Bratu equation
double precision lambda

end type userctx

call DACreate2d(PETSC COMM WORLD,DA NONPERIODIC, &
& DA STENCIL STAR,user%mx,user%my,PETSC DECIDE, &
& PETSC DECIDE,1,1,PETSC NULL INTEGER, &
& PETSC NULL INTEGER,user%da,ierr)
call DAGetCorners(user%da,user%xs,user%ys,PETSC NULL INTEGER, &

& user%xm,user%ym,PETSC NULL INTEGER,ierr)
call DAGetGhostCorners(user%da,user%gxs,user%gys, &

& PETSC NULL INTEGER,user%gxm,user%gym, &
& PETSC NULL INTEGER,ierr)

! Here we shift the starting indices up by one so that we can easily
! use the Fortran convention of 1−based indices, rather than 0−based.

user%xs = user%xs+1
user%ys = user%ys+1
user%gxs = user%gxs+1
user%gys = user%gys+1
user%ye = user%ys+user%ym−1
user%xe = user%xs+user%xm−1
user%gye = user%gys+user%gym−1
user%gxe = user%gxs+user%gxm−1

Fig. 12.11. Creation of a DA for the Bratu problem.

The changes to FormJacobian() are similar, resizing the input array and
changing slightly the calculation of row and column indices, and can be found in
the PETSc example source. We have now finished the initial introduction of PETSc
linear algebra, and the simulation is ready to run in parallel.

12 Developing a Geodynamics Simulator with PETSc 425

subroutine FormFunctionPETSc(u,F,user,ierr)
implicit none

Vec u,F
integer ierr
type (userctx) user

double precision,pointer :: lu v(:),lf v(:)
Vec uLocal

call DAGetLocalVector(user%da,uLocal,ierr)
call DAGlobalToLocalBegin(user%da,u,INSERT VALUES,uLocal,ierr)
call DAGlobalToLocalEnd(user%da,u,INSERT VALUES,uLocal,ierr)

call VecGetArrayF90(uLocal,lu v,ierr)
call VecGetArrayF90(F,lf v,ierr)

! Actually compute the local portion of the residual
call FormFunctionLocal(lu v,lf v,user,ierr)

call VecRestoreArrayF90(uLocal,lu v,ierr)
call VecRestoreArrayF90(F,lf v,ierr)

call DARestoreLocalVector(user%da,uLocal,ierr)

Fig. 12.12. Parallel residual calculation for the Bratu problem using PETSc.

DASetLocalFunction(user.da, (DALocalFunction1) FormFunctionLocal);

Fig. 12.13. Using the DA to form a function.

12.3.2 Rapid Evolution

The user who is willing to raise the level of abstraction in a code can start by em-
ploying the DA to describe the problem domain and discretization. The data interface
mimics a multidimensional array and is thus ideal for finite difference, finite volume,
and low-order finite element schemes on a logically rectangular grid. In fact, after the
definition of a FormFunction() routine, the simulation is ready to run because
the nonlinear solver provides approximate Jacobians automatically, as discussed in
Section 12.4.

We begin by examining the Bratu problem from the last section, only this time in
C. We can now provide our local residual routine to the DA; see Figure 12.13.

The grid information is passed to FormFunctionLocal() in a DALocalI
nfo structure, as shown in Figure 12.14.

426 M. G. Knepley et al.

int FormFunctionLocal(DALocalInfo *info,double **u,double **f,AppCtx *user){
double two = 2.0,hx,hy,hxdhy,hydhx,sc;
double uij,uxx,uyy;
int i,j;

hx = 1.0/(double)(info−>mx−1);
hy = 1.0/(double)(info−>my−1);
sc = hx*hy*user−>lambda;
hxdhy = hx/hy;
hydhx = hy/hx;
/* Compute function over the locally owned part of the grid */
for (j=info−>ys; j<info−>ys+info−>ym; j++) {

for (i=info−>xs; i<info−>xs+info−>xm; i++) {
if (i == 0 | | j == 0 | | i == info−>mx−1 | | j == info−>my−1) {

f[j][i] = u[j][i];
} else {

uij = u[j][i];
uxx = (two*uij − u[j][i−1] − u[j][i+1])*hydhx;
uyy = (two*uij − u[j−1][i] − u[j+1][i])*hxdhy;
f[j][i] = uxx + uyy − sc*exp(uij);
}
}
}
}

Fig. 12.14. FormFunctionLocal() for the Bratu problem.

DASetLocalJacobian(user.da, (DALocalFunction1) FormJacobianLocal);

Fig. 12.15. Using the DA to form a Jacobian.

The fields are passed directly as multidimensional C arrays, complete with ghost
values. An application scientist can use a boilerplate example, such as the Bratu prob-
lem, merely altering the local physics calculation in FormFunctionLocal(), to
rapidly obtain a parallel, scalable simulation that runs on the desktop as well as on
massively parallel supercomputers.

If the user has an expression for the Jacobian of the residual function, then this
matrix can also be computed by using the DA interface with the call, as in Fig-
ure 12.15, and the corresponding routine for the local calculation in Figure 12.16.

We have so far presented simple examples involving a perturbed Laplacian, but
this development strategy extends far beyond toy problems. We have developed
large-scale, parallel geophysical simulations [20] that are producing new results in
the field. We began by replacing FormFunctionLocal() in the Bratu example
with one containing the linear physics of the previous sequential linear subduction

12 Developing a Geodynamics Simulator with PETSc 427

int FormJacobianLocal(DALocalInfo *info,double **x,Mat jac,AppCtx *user){
MatStencil col[5],row;
double lambda,v[5],hx,hy,hxdhy,hydhx,sc;
int i,j;

lambda = user−>param;
hx = 1.0/(double)(info−>mx−1);
hy = 1.0/(double)(info−>my−1);
sc = hx*hy*lambda;
hxdhy = hx/hy; hydhx = hy/hx;

for (j=info−>ys; j<info−>ys+info−>ym; j++) {
for (i=info−>xs; i<info−>xs+info−>xm; i++) {

row.j = j; row.i = i;
/* boundary points */
if (i == 0 | | j == 0 | | i == info−>mx−1 | | j == info−>my−1) {

v[0] = 1.0;
MatSetValuesStencil(jac,1,&row,1,&row,v,INSERT VALUES);
} else {
/* interior grid points */

v[0] = −hxdhy; col[0].j = j − 1; col[0].i = i;
v[1] = −hydhx; col[1].j = j; col[1].i = i−1;
v[2] = 2.0*(hydhx + hxdhy) − sc*exp(x[j][i]); col[2].j = j; col[2].i = i;
v[3] = −hydhx; col[3].j = j; col[3].i = i+1;
v[4] = −hxdhy; col[4].j = j + 1; col[4].i = i;
MatSetValuesStencil(jac,1,&row,5,col,v,INSERT VALUES);
}
}
}
MatAssemblyBegin(jac,MAT FINAL ASSEMBLY);
MatAssemblyEnd(jac,MAT FINAL ASSEMBLY);
MatSetOption(jac,MAT NEW NONZERO LOCATION ERR);
}

Fig. 12.16. FormJacobianLocal() for the Bratu problem.

code (dropping the previous code’s linear solve). Then the PETSc solver results were
compared, for correctness, with the complete prior subduction code. Next the new
code was immediately run in parallel for correctness and efficiency tests. Finally the
nonlinear terms from the more complicated physics of the mantle subduction prob-
lem, discussed in Section 12.1 and shown in Figures 12.17-12.21 and better quality
discretizations of the boundary conditions were added. In fact, since the structure of
the FormFunction() changed significantly, the final FormFunction() looks
nothing like the original, but the process of obtaining through the incremental ap-
proach reduced the learning curve for PETSc and make correctness checking at the
various stages much easier.

428 M. G. Knepley et al.

int FormFunctionLocal(DALocalInfo *info,Field **x,Field **f,void *ptr){
AppCtx *user = (AppCtx*)ptr;
Parameter *param = user−>param;
GridInfo *grid = user−>grid;
double mag w, mag u;
int ilim = info−>mx−1, jlim = info−>my−1, i, j;

for (j=info−>ys; j<info−>ys+info−>ym; j++) {
for (i=info−>xs; i<info−>xs+info−>xm; i++) {

calculateXMomentumResidual(i, j, x, f, user);
calculateZMomentumResidual(i, j, x, f, user);
calculatePressureResidual(i, j, x, f, user);
calculateTemperatureResidual(i, j, x, f, user);
}
}
}

Fig. 12.17. FormFunctionLocal() for the mantle subduction problem.

The details of the subduction code are not as important as the recognition that
a very complicated physics problem need not involve any more complication in our
simulation infrastructure. To give more insight into the actual calculation, we show
in Figure 12.22 the explicit calculation of the residual from the continuity equation.

Here we have used the DA for a multicomponent problem on a staggered mesh
without alteration because the structure of the discretization remains logically rec-
tangular.

Although the DA manages communication during the solution process, data post-
processing, often necessary for visualization or analysis, also requires this function-
ality. For the mantle subduction simulation, we want to calculate both the second
invariant of the strain rate tensor and the viscosity over the grid (at both cell centers
and corners). Using the DAGlobalToLocalBegin() and DAGlobalToLocalE
nd() functions, we transferred the global solution data to local ghosted vectors and
proceeded with the calculation. We can also transfer data from local vectors to a
global vector using DALocalToGlobal(). The entire viscosity calculation is given
in Figure 12.23.

Note that this framework allows the user to manage arbitrary fields over the do-
main. For instance, a porous flow simulation might manage material properties of
the medium in this fashion.

12.4 Solvers

The SNES object in PETSc is an abstraction of the “inverse” of a nonlinear opera-
tor. The user provides a FormFunction() routine, as seen in Section 12.3, which
computes the action of the operator on an input vector. Linear problems can also be

12 Developing a Geodynamics Simulator with PETSc 429

int calculateXMomentumResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter *param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1, jlim = info−>my−1;

if (i<j) {
f[j][i].u = x[j][i].u − SlabVel(’U’,i,j,user);
} else if (j<=grid−>jlid | | (j<grid−>corner+grid−>inose &&

i<grid−>corner+grid−>inose)) {
/* in the lithospheric lid */
f[j][i].u = x[j][i].u − 0.0;
} else if (i==ilim) { /* on the right side boundary */

if (param−>ibound==BC ANALYTIC) {
f[j][i].u = x[j][i].u − HorizVelocity(i,j,user);
} else {

f[j][i].u = XNormalStress(x,i,j,CELL CENTER,user) − EPS ZERO;
}
} else if (j==jlim) { /* on the bottom boundary */

if (param−>ibound==BC ANALYTIC) {
f[j][i].u = x[j][i].u − HorizVelocity(i,j,user);
} else if (param−>ibound==BC NOSTRESS) {

f[j][i].u = XMomentumResidual(x,i,j,user);
}
} else { /* in the mantle wedge */

f[j][i].u = XMomentumResidual(x,i,j,user);
}
}

Fig. 12.18. X-momentum residual for the mantle subduction problem.

solved by using SNES with no loss of efficiency compared to using the underlying
KSP object (PETSc linear solver object) directly. Thus SNES seems the appropri-
ate framework for a general-purpose simulator, providing the flexibility to add or
subtract nonlinear terms from the equation at will.

The SNES solver does not require a user to implement a Jacobian. Default rou-
tines are provided to compute a finite difference approximation using coloring to
account for the sparsity of the matrix. The user does not even need the PETSc
Mat interface but can initially interact only with Vec objects, making the tran-
sition to PETSc nearly painless. However, these approximations to the Jacobian
can have numerical difficulties and are not as efficient as direct evaluation. There-
fore, the user has the option of providing a routine or of using the ADIC [15]
or similar system for automatic differentiation. The finite difference approxima-
tion can be activated by using the -snes fd and -mat fd coloring freq op-
tions or by providing the SNESDefaultComputeJacobianColor() function
to SNESSetJacobian().

430 M. G. Knepley et al.

int calculateZMomentumResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter *param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1,jlim = info−>my−1;

if (i<=j) {
f[j][i].w = x[j][i].w − SlabVel(’W’,i,j,user);
} else if (j<=grid−>jlid | | (j<grid−>corner+grid−>inose &&

i<grid−>corner+grid−>inose)) {
/* in the lithospheric lid */
f[j][i].w = x[j][i].w − 0.0;
} else if (j==jlim) { /* on the bottom boundary */

if (param−>ibound==BC ANALYTIC) {
f[j][i].w = x[j][i].w − VertVelocity(i,j,user);
} else {

f[j][i].w = ZNormalStress(x,i,j,CELL CENTER,user) − EPS ZERO;
}
} else if (i==ilim) { /* on the right side boundary */

if (param−>ibound==BC ANALYTIC) {
f[j][i].w = x[j][i].w − VertVelocity(i,j,user);
} else if (param−>ibound==BC NOSTRESS) {

f[j][i].w = ZMomentumResidual(x,i,j,user);
}
} else { /* in the mantle wedge */

f[j][i].w = ZMomentumResidual(x,i,j,user);
}
}

Fig. 12.19. Z-momentum residual for the mantle subduction problem.

Through the SNES object, the user may also access the great range of direct
and iterative linear solvers and preconditioners provided by PETSc. Sixteen different
Krylov solvers are available including GMRES, BiCGStab, and LSQR, along with
interfaces to popular sparse direct packages, such as MUMPS [3] and SuperLU [9].
In addition to a variety of incomplete factorization preconditioners, including PI-
LUT [16], PETSc supports additive Schwartz preconditioning, algebraic multigrid
through BoomerAMG [13], and the geometric multigrid discussed below. The full
panoply of solvers and preconditioners available is catalogued on the PETSc Web-
site [22].

The modularity of PETSc allows users to easily customize each solver. For in-
stance, suppose the user wishes to increase the number of levels in ILU(k) precondi-
tioning on one block of a block-Jacobi scheme. The code fragment in Figure 12.24
will set the number of levels of fill to levels.

PETSc provides an elegant framework for managing geometric multigrid in com-
bination with a DA, which is abstracted in the DMMG object. In the same way that

12 Developing a Geodynamics Simulator with PETSc 431

int calculatePressureResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter *param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1, jlim = info−>my−1;

if (i<j | | j<=grid−>jlid | | (j<grid−>corner+grid−>inose &&
i<grid−>corner+grid−>inose)) {

/* in the lid or slab */
f[j][i].p = x[j][i].p;
} else if ((i==ilim | | j==jlim) && param−>ibound==BC ANALYTIC) {

/* on an analytic boundary */
f[j][i].p = x[j][i].p − Pressure(i,j,user);
} else {

/* in the mantle wedge */
f[j][i].p = ContinuityResidual(x,i,j,user);
}
}

Fig. 12.20. Pressure, or continuity, residual for the mantle subduction problem.

any linear solve can be performed with SNES, any preconditioner or solver com-
bination is available in DMMG by using a single level. That is, the same user code
supports both geometric multigrid as well as direct methods, Krylov methods etc.
When creating a DMMG, the user specifies the number of levels of grid refinement
and provides the coarse-grid information (see Figure 12.25), which is always a DA
object at present, although unstructured prototypes are being developed. Then the
DMMG object calculates the intergrid transfer operators, prolongation and restriction,
and allocates objects to hold the solution at each level. The user must provide the
action of the residual operator F and can optionally provide a routine to compute the
Jacobian matrix (which will be called on each level) and a routine to compute the
initial guess, as in Figure 12.26.

With this information, the user can now solve the equation and retrieve the solu-
tion vector, as in Figure 12.27.

12.5 Extensions

PETSc is not a complete environment for simulating physical phenomena. Rather
it is a set of tools that allow the user to assemble such an environment tailored to
a specific application. As such, PETSc will never provide every facility appropriate
for a given simulation. However, the user can easily extend PETSc and supplement
its capabilities. We present two examples in the context of the mantle subduction
simulation.

432 M. G. Knepley et al.

int calculateTemperatureResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter *param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1, jlim = info−>my−1;

if (j==0) { /* on the surface */
f[j][i].T = x[j][i].T + x[j+1][i].T + PetscMax(x[j][i].T,0.0);
} else if (i==0) { /* slab inflow boundary */

f[j][i].T = x[j][i].T − PlateModel(j,PLATE SLAB,user);
} else if (i==ilim) { /* right side boundary */

mag u = 1.0 − pow((1.0−PetscMax(PetscMin(x[j][i−1].u/param−>cb,1.0),0.0)),5.0);
f[j][i].T = x[j][i].T − mag u*x[j−1][i−1].T −

(1.0−mag u)*PlateModel(j,PLATE LID,user);
} else if (j==jlim) { /* bottom boundary */

mag w = 1.0 − pow((1.0−PetscMax(PetscMin(x[j−1][i].w/param−>sb,1.0),0.0)),5.0);
f[j][i].T = x[j][i].T − mag w*x[j−1][i−1].T − (1.0−mag w);
} else { /* in the mantle wedge */

f[j][i].T = EnergyResidual(x,i,j,user);
}
}

Fig. 12.21. Temperature, or energy, residual for the mantle subduction problem.

double precision ContinuityResidual(Field **x, int i, int j, AppCtx *user)
{

GridInfo *grid = user−>grid;
double precision uE,uW,wN,wS,dudx,dwdz;

uW = x[j][i−1].u; uE = x[j][i].u; dudx = (uE − uW)/grid−>dx;
wS = x[j−1][i].w; wN = x[j][i].w; dwdz = (wN − wS)/grid−>dz;
return dudx + dwdz;
}

Fig. 12.22. Calculation of the continuity residual for the mantle subduction problem.

12.5.1 Simple Continuation

Because of the highly nonlinear dependence of viscosity on temperature and strain
rate in equation (12.1), the iteration in Newton’s method can fail to converge with-
out a good starting guess of the solution. On the other hand, for the isoviscous case
where temperature is coupled to velocity only through advection, a solution is easily
reached. It is therefore natural to propose a continuation scheme in the viscosity be-
ginning with constant viscosity and progressing to full variability. A simple adaptive
continuation model was devised, in which the viscosity was raised to a power be-
tween zero and one, η → ηα, where α=0 corresponds to constant viscosity and α=1

12 Developing a Geodynamics Simulator with PETSc 433

/* Compute both the second invariant of the strain rate tensor and the viscosity */
int ViscosityField(DA da, Vec X, Vec V,AppCtx *user){

Parameter *param = user−>param;
GridInfo *grid = user−>grid;
Vec localX;
Field **v, **x;
double eps, dx, dz, T, epsC, TC;
int i,j,is,js,im,jm,ilim,jlim,ivt;

ivt = param−>ivisc;
param−>ivisc = param−>output ivisc;

DACreateLocalVector(da, &localX);
DAGlobalToLocalBegin(da, X, INSERT VALUES, localX);
DAGlobalToLocalEnd(da, X, INSERT VALUES, localX);
DAVecGetArray(da,localX,(void**)&x);
DAVecGetArray(da,V,(void**)&v);

/* Parameters */
dx = grid−>dx; dz = grid−>dz;
ilim = grid−>ni−1; jlim = grid−>nj−1;

/* Compute real temperature, strain rate and viscosity */
DAGetCorners(da,&is,&js,PETSC NULL,&im,&jm,PETSC NULL);
for (j=js; j<js+jm; j++) {

for (i=is; i<is+im; i++) {
T = param−>potentialT * x[j][i].T * exp((j−0.5)*dz*param−>z scale);
if (i<ilim && j<jlim) {

TC = param−>potentialT * TInterp(x,i,j) * exp(j*dz*param−>z scale);
} else {

TC = T;
}
/* Compute the values at both cell centers and cell corners */
eps = CalcSecInv(x,i,j,CELL CENTER,user);
epsC = CalcSecInv(x,i,j,CELL CORNER,user);
v[j][i].u = eps;
v[j][i].w = epsC;
v[j][i].p = Viscosity(T,eps,dz*(j−0.5),param);
v[j][i].T = Viscosity(TC,epsC,dz*j,param);
}
}
DAVecRestoreArray(da,V,(void**)&v);
DAVecRestoreArray(da,localX,(void**)&x);
param−>ivisc = ivt;
}

Fig. 12.23. Calculation of the second invariant of the strain tensor and viscosity field for the
mantle subduction problem.

434 M. G. Knepley et al.

KSP ksp, *subksp;
PC bjacobi, ilu;

SNESGetKSP(snes, &ksp);
KSPGetPC(ksp, &bjacobi);
PCBJacobiGetSubKSP(bjacobi, PETSC NULL, PETSC NULL, &subksp);
KSPGetPC(subksp[0], &ilu);
PCILUSetLevels(ilu, levels);

Fig. 12.24. Customizing the preconditioner on a single process.

DMMGCreate(comm, grid.mglevels, user, &dmmg);
DMMGSetDM(dmmg, (DM) da);

Fig. 12.25. Creating a DMMG.

DMMGSetSNESLocal(dmmg, FormFunctionLocal, FormJacobianLocal, 0, 0);
DMMGSetInitialGuess(dmmg, FormInitialGuess);

Fig. 12.26. Providing discretization and assembly routines to DMMG.

DMMGSolve(dmmg);
soln = DMMGGetx(dmmg);

Fig. 12.27. Solving the problem with DMMG.

corresponds to natural viscosity variation. In the continuation loop, α was increased
towards unity by an amount dependent on the rate of convergence of the previous
SNES solve.

PETSc itself provides no special support for continuation, but it is sufficiently
modular that a continuation loop was readily constructed in the application code,
using repeated calls to DMMGSolve(), and found to work quite well.

12.5.2 Simple Steering

No rigorous justification had been given for the continuation strategy above, and
consequently it was possible that, for certain initial conditions, Newton would fail to
converge, thereby resulting in extremely long run times. An observant user could de-
tect this situation and abort the run, but all the potentially useful solution information
up to that point would be lost. A clean way to asynchronously abort the continua-
tion loop was thus needed. On architectures where OS signals are available, PETSc

12 Developing a Geodynamics Simulator with PETSc 435

provides an interface for registering signal handlers. Thus we were able to define a
handler. The user wishing to change the control flow of the simulation simply sends
the appropriate signal to the process. This sets a flag in the user data that causes the
change at the next iteration.

12.6 Simulation Results

A long-standing debate has existed between theorists and observationalists over the
thermal structure of subduction zones. Modelers, using constant viscosity flow sim-
ulations to compute thermal structure, have predicted relatively cold subduction
zones [19]. Conversely, observationalists, who use heat flow measurements and min-
eralogical thermobarometry to estimate temperatures at depth, have long claimed
that subduction zones are hotter than predicted. They have invoked the presence of
strong upwelling of hot mantle material to supply the heat. This upwelling was never
predicted by isoviscous flow models, however.

The debate remained unresolved until recently when several groups, including
our own, succeeded in developing simulations with realistically variable viscosity
(for other examples [12, 10, 8, 18, 25]). A comparison of flow and temperature fields
for variable and constant viscosity simulations generated with our code is shown in
Figure 12.28. Results from these simulations are exciting because they close the gap
between models and observations: they predict hotter mantle temperatures, steeper
surface thermal gradients, and upwelling mantle flow.

Furthermore, these simulations allow for quantitative predictions of variation of
observables with subduction parameters. A recent study of subduction zone earth-
quakes has identified an intriguing trend: the vertical distance from subduction zone
volcanoes to the surface of the subducting slab is anti-correlated with descent rate of
the slab [11]. Preliminary calculations with our model are consistent with this trend,
indicating that flow and thermal structure may play an important role in determining
not only the quantity and chemistry of magmas but also their path of transport to the
surface. Further work is required to resolve this issue.

Simulating the geodynamics of subduction is an example of our success in port-
ing an existing code into the PETSc framework, simultaneously parallelizing the
code and increasing its functionality. Using this code as a template, we rapidly de-
veloped a related simulation of another tectonic boundary, the mid-ocean ridge. This
work was done to address a set of observations of systematic morphological asym-
metry in the global mid-ocean ridge system [7]. Our model confirms the qualitative
mechanism that had been proposed to explain these observations. Furthermore, it
shows a quantitative agreement with trends in the observed data [17]. As with our
models of subduction, the key to demonstrating the validity of the hypothesized dy-
namics was simulating them with the strongly nonlinear rheology that characterizes
mantle rock on geologic timescales. The computational tools provided by PETSc en-
abled us easily handle this rheology, reducing development time and allowing us to
focus on model interpretation.

436 M. G. Knepley et al.

D
ep

th
, k

m
log

10
η and flow field

0 100 200 300

0

50

100

150

200

250

300 19

20

21

22

23

24 Temperature, °C

1100

50 100 150 200

50

100

150

0

200

400

600

800

1000

1200

1400

Distance, km

D
ep

th
, k

m

0 100 200 300

0

50

100

150

200

250

300 19

20

21

22

23

24

Distance, km

1100

50 100 150 200

50

100

150

0

200

400

600

800

1000

1200

1400

Fig. 12.28. 2D viscosity and potential temperature fields from simulations on 8 processors with
230,112 degrees of freedom. Panels in the top row are from a simulation with α=1 in equation
(12.1). Panels in bottom row have α=0. The white box in panels (a) and (c) shows the region in
which temperature is plotted in panels (b) and (d). (a) Colors show log10 of the viscosity field.
Note that there are more than five orders of magnitude variation in viscosity. Arrows show the
flow direction and magnitude (the slab is being subducted at a rate of 6 cm/year). Upwelling
is evident in the flow field near the wedge corner. (b) Temperature field from the variable
viscosity simulation; 1100◦C isotherm is shown as a dashed line. (c) (Constant) viscosity and
flow field from the isoviscous simulation. Strong flow is predicted at the base of the crust
despite the low-temperature rock there. No upwelling flow is predicted. (d) Temperature field
from isoviscous simulation. Note that the mantle wedge corner is much colder than in (b). (For
the color version, see Figure A.27 on page 480).

PETSc has been used in a large number of parallel applications, [23], including
three Gordon Bell Special Prize winning codes, [1, 2, 4]. The largest nonlinear prob-
lem solved with PETSc involved 500,000,000 unknowns, [1]. In this calculation,
on an unstructured grid, the average time, per linear solve, was one and one-half
minutes, corresponding to almost six million degrees of freedom per second. This
demonstrates that well implemented software libraries, like PETSc, can be used on
the most challenging application problems; in this case micro finite element analysis
of a thoracic vertebral body (spinal disk).

12 Developing a Geodynamics Simulator with PETSc 437

References

1. M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P. Papadopoulos. Ultrascalable implicit
finite element analyses in solid mechanics with over a half a billion degrees of freedom.
In Proceedings of SC04, 2004. Winner of Gordon Bell Special Prize at SC2004: Large
scale trabecular bone finite element modeling.

2. V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. F. O. Ghattas, E. J. Kim,
D. O’Hallaron, and T. Tu. High resolution forward and inverse earthquake modeling
on terascale computers. In Proceedings of SC2003, 2003. A winner of the Gordon Bell
Prize for special achievement at SC2003.

3. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis
and Applications, 23(1):15–41, 2001.

4. W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Achieving
high sustained performance in an unstructured mesh CFD application. In Proceedings of
SC 99, 1999.

5. S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang. PETSc Web page. http://www.mcs.anl.
gov/petsc.

6. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of par-
allelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–
202. Birkhäuser Press, 1997.

7. S. Carbotte, C. Small, and K. Donnelly. The influence of ridge migration on the magmatic
segmentation of mid-ocean ridges. Nature, 429:743–746, 2004.

8. J. Conder, D. Wiens, and J. Morris. On the decompression melting structure at volcanic
arcs and back-arc spreading centers. Geophys. Res. Letts., 29, 2002.

9. J. W. Demmel, J. R. Gilbert, and X. S. Li. SuperLU user’s guide. Technical Report
LBNL-44289, Lawrence Berkeley National Laboratory, October 2003.

10. M. Eberle, O. Grasset, and C. Sotin. A numerical study of the interaction of the mantle
wedge, subducting slab, and overriding plate. Phys. Earth Planet. In., 134:191–202, 2002.

11. P. England, R. Engdahl, and W. Thatcher. Systematic variation in the depth of slabs
beneath arc volcanos. Geophys. J. Int., 156(2):377–408, 2003.

12. Y. Furukawa. Depth of the decoupling plate interface and thermal structure under arcs. J.
Geophys. Res., 98:20005–20013, 1993.

13. V. E. Henson and U. M. Yang. BoomerAMG: A parallel algebraic multigrid solver and
preconditioner. Technical Report UCRL-JC-133948, Lawrence Livermore National Lab-
oratory, 2000.

14. G. Hirth and D. Kohlstedt. Rheology of the upper mantle and the mantle wedge: A view
from the experimentalists. In Inside the Subduction Factory, volume 138 of Geophysical
Monograph. American Geophysical Union, 2003.

15. P. Hovland, B. Norris, and B. Smith. Making automatic differentiation truly automatic:
Coupling PETSc with ADIC. In Proceedings of ICCS2002, 2002.

16. D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor precondi-
tioning. SIAM Journal on Scientific Computing, 22:2194–2215, 2001.

17. R. Katz, M. Spiegelman, and S. Carbotte. Ridge migration, asthenospheric flow and the
origin of magmatic segmentation in the global mid-ocean ridge system. Geophys. Res.
Letts., 31, 2004.

438 M. G. Knepley et al.

18. P. Kelemen, J. Rilling, E. Parmentier, L. Mehl, and B. Hacker. Thermal structure due
to solid-state flow in the mantle wedge beneath arcs. In Inside the Subduction Factory,
volume 138 of Geophysical Monograph. American Geophysical Union, 2003.

19. S. Peacock and K. Wang. Seismic consequences of warm versus cool subduction meta-
morphism: Examples from southwest and northeast Japan. Science, 286:937–939, 1999.

20. PETSc SNES Example 30.
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/
petsc-current/src/snes/examples/tutorials/ex30.c.html.

21. PETSc SNES Example 5.
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/
petsc-current/src/snes/examples/tutorials/ex5f90.F.html.

22. PETSc Solvers.
http://www.mcs.anl.gov/petsc/petsc-2/documentation/
linearsolvertable.html.

23. B. Smith et al. Scientific Applications Using PETSc. http://www.mcs.anl.gov/
petsc/petsc-2/publications.

24. R. Stern. Subduction zones. Rev. Geophys., 40(4), 2002.
25. P. van Keken, B. Kiefer, and S. Peacock. High-resolution models of subduction zones:

Implications for mineral dehydration reactions and the transport of water into the deep
mantle. Geochem. Geophys. Geosys., 3(10), 2003.

13

Parallel Lattice Boltzmann Methods
for CFD Applications

Carolin Körner1, Thomas Pohl2, Ulrich Rüde2, Nils Thürey2, and Thomas Zeiser3

1 Lehrstuhl Werkstoffkunde und Technologie der Metalle, Martensstraße 5, 91058 Erlangen,
Germany
carolin.koerner@ww.uni-erlangen.de

2 Lehrstuhl für Systemsimulation, Cauerstraße 6, 91058 Erlangen, Germany
tom@thomas-pohl.info,
ulrich.ruede@informatik.uni-erlangen.de,
nils@thuerey.de

3 Regionales Rechenzentrum Erlangen, Martensstraße 1, 91058 Erlangen, Germany
thomas.zeiser@rrze.uni-erlangen.de

Summary. The lattice Boltzmann method (LBM) has evolved to a promising alternative to
the well-established methods based on finite elements/volumes for computational fluid dy-
namics simulations. Ease of implementation, extensibility, and computational efficiency are
the major reasons for LBM’s growing field of application and increasing popularity. In this pa-
per we give a brief introduction to the involved theory and equations for LBM, present various
techniques to increase the single-CPU performance, outline the parallelization of a standard
LBM implementation, and show performance results. In order to demonstrate the straightfor-
ward extensibility of LBM, we then focus on an application in material science involving fluid
flows with free surfaces. We discuss the required extensions to handle this complex scenario,
and the impact on the parallelization technique.

13.1 Introduction

Our approach to CFD applications is based on the lattice Boltzmann method (LBM)
which belongs to the class of cellular automata (CA). Cellular automata represent a
physical system in an idealized way where space and time are discrete, i.e., a fully
discrete universe made up of identical cells. CA are defined by a regular lattice of
cells characterized by a set of boolean state variables. The evolution rule, which is a
function of the state of the neighboring cells, is the same for all cells and updating of
the cells occurs simultaneously in discrete time steps.

A special class of CA [45], the lattice gas automata (LGA) [36], describe the
dynamics of point particles moving and colliding in a discrete space-time universe.
Lattice gas models with an appropriate choice of the lattice symmetry in fact repre-
sent numerical solutions of the Navier-Stokes equations and are therefore able to de-
scribe macroscopic hydrodynamic problems [17]. Besides a simple implementation,

440 C. Körner et al.

the main advantages of lattice gas techniques are their stability, easy introduction of
boundary conditions and intrinsic parallel structure allowing high performance com-
puting. However, lattice gas models suffer from some drawbacks: Statistical noise,
non-Galilean invariance4, a velocity dependent pressure and spurious invariants. Par-
ticularly, the statistical noise requires time and/or space averaging procedures to ex-
tract macroscopic quantities like the density or the velocity. This intrinsic property of
LGAs is the reason why they were not able to compete with conventional numerical
methods of hydrodynamics.

The lattice Boltzmann method [12] historically developed from lattice gas au-
tomata. McNamara and Zanetti [30] were the first who extended the boolean dynam-
ics of the automaton to real numbers, the particle distribution functions, representing
the probability for a cell to have a given state. The philosophy behind this procedure
is that it is more efficient to average the micro dynamics before than after simulation.
That is, the discrete nature of the fluid particles vanishes on the macroscopic level of
observation.

The LBM is characterized by a much higher numerical efficiency than the
Boolean dynamics. In addition, lattice Boltzmann methods maintain the intuitive mi-
croscopic level of interpretation belonging to the CA. These properties make LBMs
promising approaches to model complex physical systems, especially fluid flow.
Though it will not be a replacement for well-established CFD technology, it may
have advantages in certain application areas. After a short introduction to the lattice
Boltzmann method, the implementation of the standard algorithm is explained. Its
parallelization and extension to free surface flows for simulating foaming processes
are presented in Section 13.4 and 13.5, respectively.

13.2 Basics of the Lattice Boltzmann Method

The lattice Boltzmann method [39, 44, 9] can not only be seen as a successor of
lattice gas automata (LGA). The equations can also be derived rigorously from the
underlying physical model, the Boltzmann equation, and it can be shown that Navier-
Stokes flow behavior is recovered in the macroscopic limit [23, 44]. The Boltzmann
equation is a partial differential equation (PDE) describing the evolution of the single
particle distribution function f in phase space. This distribution function is defined
in such a way that f(x, ξ, t) is the probability for particles to be located within a
phase space control element dx dξ about x and ξ at time t where x and ξ are the
spatial position vector and the particle velocity vector, respectively. The macroscopic
quantities, such as the density ρ and the momentum ρu, can then be obtained by
evaluating the first moments of the distribution function f .

In the following paragraphs, we outline the major steps of the rigorous derivation
of the relevant equations and relations of the lattice Boltzmann method.

Neglecting external forces, the transport equation for f(x, ξ, t) can be expressed
by the Boltzmann equation as

4Galilean invariance means that the behavior of a system is not influenced by rotation or
translation.

13 Parallel Lattice Boltzmann Methods for CFD Applications 441

Fig. 13.1. Discretized distribution functions fi for the D2Q9 model: eight distribution func-
tions associated with the particles moving to the neighboring cells and one distribution func-
tion corresponding to the resting particles.

∂f

∂t
+ ξ

∂f

∂x
= Q(f, f) . (13.1)

The collision term Q(f, f) is quadratic in f , consisting of a complex integro-
differential expression. A suitable simplification of the collision integral for the near-
equilibrium state of low Mach number hydrodynamics is the single relaxation time
approximation, the so-called Bhatnagar-Gross-Krook (BGK) model [5],

Q(f, f) = − 1
λ

(
f − f (0)

)
, (13.2)

where f (0) is the Maxwell-Boltzmann equilibrium distribution function, and λ is the
relaxation time which controls the rate of approaching equilibrium, or in other words
the viscosity of the fluid. The BGK relaxation still fulfills Boltzmann’s H-theorem
and locally conserves mass and momentum.

To solve for f numerically, (13.1) is first discretized in the velocity space using
a finite set of velocity vectors ei (i = 0, . . . , N) leading to the velocity discrete
Boltzmann equation,

∂fi
∂t

+ ei
∂fi
∂x

= − 1
λ

(fi − feq
i) , i = 0, . . . , N , (13.3)

where fi(x, t) is equivalent to f(x, ei, t) (see Figure 13.1).
For simulating two-dimensional flows, the 9-velocity D2Q9 model (i = 0, . . . , 8),

and for three-dimensional simulations, both, the 15-velocity D3Q15 (i = 0, . . . , 14)
and the 19-velocity D3Q19 model (i = 0, . . . , 18) are widely used (cf. Table 13.1).
Surprisingly, the discretization with such a low number of collocation points is suf-
ficient to describe the fluid in the near-equilibrium state of low Mach number hydro-
dynamics. For all these models, a suitable equilibrium distribution function feq

i is of
the form

feq
i = ρwi

[
1 +

3
c2

ei · u +
9

2c4
(ei · u)2 − 3

2c2
u · u

]
, (13.4)

with c = ∆x/∆t and the discrete particle velocity vectors ei5. The weighting factors
wi depend only on the lattice model [35] and are given in Table 13.2 for the three

5In contrast to the common notation h for the spatial discretization length, we use∆x here
in conformance with the standard LBM literature. ∆x is normalized to 1 for 2D and 3D.

442 C. Körner et al.

Table 13.1. Discrete velocity vectors ei for three different LB models. The order of the dis-
crete velocity vectors does not matter. Thus any permutation of the given columns can be used
in practice.

model discrete velocity vectors ei

D2Q9

(
0 +1 0 −1 0 +1 −1 −1 +1
0 0 +1 0 −1 +1 +1 −1 −1

)

D3Q15

⎛⎝ 0 +1 0 0 −1 0 0 +1 −1 −1 +1 +1 −1 −1 +1
0 0 +1 0 0 −1 0 +1 +1 −1 −1 +1 +1 −1 −1
0 0 0 +1 0 0 −1 +1 +1 +1 +1 −1 −1 −1 −1

⎞⎠
D3Q19

⎛⎝ 0 +1 0 0 −1 0 0 +1 −1 −1 +1 +1 0 −1 0 +1 0 −1 0
0 0 +1 0 0 −1 0 +1 +1 −1 −1 0 +1 0 −1 0 +1 0 −1
0 0 0 +1 0 0 −1 0 0 0 0 +1 +1 +1 +1 −1 −1 −1 −1

⎞⎠
Table 13.2. Weighting factors wi for two different LB models for the discrete velocity vectors
ei (with i = 0 . . . N).

model |ei|2 = 0 |ei|2 = 1 |ei|2 = 2 |ei|2 = 3

D2Q9 wi = 4/9 wi = 1/9 wi = 1/36
D3Q15 wi = 2/9 wi = 1/9 wi = 1/72
D3Q19 wi = 1/3 wi = 1/18 wi = 1/36

models. This discrete equilibrium distribution function feq
i has been derived from

the Maxwell-Boltzmann equilibrium distribution function f (0) in such a way that
the velocity moments up to fourth order are identical with those of f (0).

The (macroscopic) values of density ρ, momentum ρu and the momentum flux
tensor Παβ can be evaluated as

ρ =
∫ ∞
−∞

f dξ =
N∑
i=0

fi =
N∑
i=0

feq
i , (13.5)

ρu =
∫ ∞
−∞

ξf dξ =
N∑
i=0

eifi =
N∑
i=0

eif
eq
i , (13.6)

Παβ =
∫ ∞
−∞

ξαξβ f dξ =
N∑
i=0

eiαeiβfi . (13.7)

The speed of sound in these models is cs = c/
√

3 and the pressure is given by the
equation of state of an ideal gas,

p = ρc2s . (13.8)

To obtain the main equation of the lattice Boltzmann approach, (13.3) is discretized
numerically in a very special manner. The discretization of space and time is accom-
plished by an explicit finite difference approximation. By scaling the lattice spacing,

13 Parallel Lattice Boltzmann Methods for CFD Applications 443

the time step and the discrete velocities appropriately, the discretized equations take
the following explicit form:

fi(x + ei∆t, t+∆t)− fi(x, t) = −1
τ

[
fi(x, t)− feq

i (x, t)
]
, (13.9)

where τ = λ/∆t is the dimensionless relaxation time and x is a point in the dis-
cretized physical space.

The right hand side of (13.9) is usually called collision step and the left hand side
streaming step. For the collision step, the equilibrium distribution function has to be
calculated at each cell and at each time step from the local density ρ using (13.5) and
the local macroscopic flow velocity u using (13.6).

In particular when dealing with complicated formulations of the boundary con-
ditions (see, e.g., Section 13.5), it can be advantageous or even necessary to split the
update process into the following two equations

fout
i (x, t) = f in

i (x, t)− 1
τ

[
f in
i (x, t)− feq

i (x, t)
]

(13.10)

f in
i (x+ ei, t+∆t) = fout

i (x, t) , (13.11)

where fout
i denotes the distribution values after collision (but before propagation),

and f in
i are the values after collision and propagation, thus the values entering the

neighboring cell as data for the next time step.
The Navier-Stokes equations (up to second order accuracy in space and time)

can be derived formally from the lattice Boltzmann equation through the Chapman-
Enskog expansion by a standard multi-scale expansion with time and space rescaled
and the distribution function fi expanded up to second order [17, 23, 7].

The relation between the relaxation time τ and the kinematic shear viscosity
ν, including a correction for the truncation error due to the discretization, can be
obtained from the result of the Chapman-Enskog expansion. As the discretization
error is known a priori from this analysis, it can be corrected and thus, the lattice
Boltzmann method does not suffer from numerical diffusion as many other finite
difference methods do. The final relation for the kinematic viscosity is

ν = (τ − 1/2) c2s∆t . (13.12)

As the lattice Boltzmann method is a kinetic method, macroscopic boundary con-
ditions do not have direct equivalents. They have to be replaced by appropriate mi-
croscopic rules which induce the desired macroscopic behavior. The easiest solution
for introducing solid walls (i.e. a no-slip boundary condition) is the introduction of
the bounce back rule on wall nodes

fout
i (x, t) = f in

ı̄ (x, t) with x ∈ wall, (13.13)

with eı̄ = −ei and fı̄(x, t) = f(x, eı̄, t) = f(x,−ei, t). This rule can be seen as
a replacement of (13.10). It rotates the distribution functions on the wall node and
thus they return back to the fluid with opposite momentum in the next time step. This

444 C. Körner et al.

results in zero velocities at the wall (which is located half-way between the last fluid
cell and the first wall node) and ensures that there is no flux across the wall. This is
equivalent to the macroscopic no-slip boundary condition.

As a computational tool, the lattice Boltzmann method differs from methods
which are directly based on the Navier-Stokes equations in various aspects. The ma-
jor differences are summarized according to Yu et al. [46] as follows:

1. The Navier-Stokes equations are second-order partial differential equa-
tions (PDEs); the discrete velocity Boltzmann equation from which the
lattice Boltzmann model is derived, consists of a set of first order PDEs.

2. Navier-Stokes solvers inevitably need to treat the nonlinear convective
term u · ∇u. The lattice Boltzmann method totally avoids the nonlinear
convective term, because the convection becomes a simple advection
(uniform data shift). The non-linearity of the Navier-Stokes equations
is hidden in the quadratic velocity terms of the equilibrium distribution
function (13.4).

3. CFD solvers for the incompressible Navier-Stokes equations need to
solve the Poisson equation for the pressure. This involves global data
communication, while in the lattice Boltzmann method data communi-
cation is always local and the pressure is obtained through an equation
of state.

4. In the lattice Boltzmann method, the Courant-Friedrichs-Lewy (CFL)
number is proportional to ∆t/∆x, in other words, the grid CFL number
is equal to unity based on the lattice units of ∆x = ∆t = 1. Con-
sequently, the time dependent lattice Boltzmann method is inefficient
for solving steady-state problems, because its speed of convergence is
dictated by acoustic propagation, which is very slow.6

5. Boundary conditions involving complicated geometries require a care-
ful treatment in both Navier-Stokes and lattice Boltzmann solvers. In
Navier-Stokes solvers, normal and shear stress components require ap-
propriate handling of geometric estimates of normals and tangents,
as well as one-sided extrapolations. In lattice Boltzmann solvers, the
boundary condition issue [11, 19, 20, 6] arises because the continuum
framework, such as the no-slip condition at the wall, does not have a
direct counterpart.

6. Since the Boltzmann equation is kinetic-based, the physics associ-
ated with molecular level interactions can be incorporated more eas-
ily. Hence, the lattice Boltzmann model might be fruitfully applied to
micro-scale fluid flow problems.

7. The spatial discretization in the lattice Boltzmann method is dictated
by the discretization of the particle velocity space. This coupling be-
tween discretized velocity space and configuration space leads to regu-
lar square grids. This is a limitation of the lattice Boltzmann methods,

6However, especially in the case of complex geometries, the lattice Boltzmann methods
can still be competitive or even faster than Navier-Stokes solvers, see e.g. [3, 4].

13 Parallel Lattice Boltzmann Methods for CFD Applications 445

especially for aerodynamic applications where both the far field bound-
ary condition and the near wall boundary layer need to be carefully im-
plemented. Local grid refinement techniques [15, 16, 47] cannot com-
pletely solve this issue.

However, the algorithm of the LBM is similar to the structure of Jacobi’s method
for the iterative solution of linear systems on structured meshes. In particular, the
time loop in the LBM corresponds to the iteration loop in Jacobi’s method [27].

To compare the performance of different computational methods is always a dif-
ficult task. Since established finite volume/difference/element methods are the result
of an evolution over many decades, one might expect that the simple LBM cannot
compete. However, the work presented in [3, 4, 39] or the recent extensive compar-
ison in [18] demonstrate that LBM are competitive – although there is still room for
improvements. From the current point of view, LBM based solvers are in particu-
lar suited for problems involving complex geometries, complex physics or weakly
compressible transient flows with Mach numbers up to about 0.2.

13.3 General Implementation Aspects and Optimization of the
Single CPU Performance

For realistic applications, the LBM is computationally very demanding, since it
needs fine spatial resolution and small time steps. The natural answer is paralleliza-
tion, but before a parallel LBM can be designed successfully, it is necessary to dis-
cuss the efficient implementation of the computational kernel on current CPUs and
node architectures. As with many scientific applications, the LBM has high memory
requirements and in many cases, the memory access can be more time consuming
than performing the arithmetic operations.

The lattice Boltzmann algorithm as outlined in Section 13.2 can be implemented
easily. The major components of the algorithm together with the relevant equations
are summarized in Figure 13.2. Through a simple analysis, the number of required
floating point operations (Flops) can be significantly reduced by taking into account
that many components of ei are zero, as well as by precomputing common subex-
pressions. This results in less than 200 Flops per cell update for the D3Q19 BGK
model which we used in our simulations. Memory access is the other determining
factor for the speed of execution.

A straightforward implementation would consist of three nested loops over the
three spatial dimensions and treat the collision step separately from the propagation
process (cf. (13.10) and (13.11)). This algorithm would read the values of the cur-
rent time step from the local cell, execute the relaxation and write the results back
to a temporary array, as this can be done independently for all cells. In a separate
nested loop which would only contain copy operations, these values would then be
propagated back to adjacent cells in the original array.

Numerous improvements are possible starting from this implementation and have
been studied carefully in [42, 34, 25, 14, 33, 41, 14]. In the following subsections we
will summarize some of the core ideas.

446 C. Körner et al.

Calculation of macroscopic
flow quantities and

equilibrium distribution

ρ(x↪ t) =
N∑
i=0

f in
i (x↪ t)

ρ(x↪ t)u(x↪ t) =
N∑
i=0

eif
in
i (x↪ t)

feq
i (x↪ t) = ρwi

[
1 +

3
c2
ei · u+

9
2c4

(ei · u)2 − 3
2c2

u · u
]

“Collision”: relaxation (redistribution)
of the particle distributions

towards equilibrium
fout
i (x↪ t) = f in

i (x↪ t)− 1
τ

[
f in
i (x↪ t)− feq

i (x↪ t)
]

“Propagation” of the distribution
functions according to their direction

to the next nodes
f in
i (x+ ei↪ t+ ∆t) = fout

i (x↪ t) for x ∈ fluid

“bounce back” at solid walls f in
i (x+ ei↪ t+ ∆t) = fout

i (x↪ t) = f in
ı̄ (x↪ t) for x ∈ wall

Fig. 13.2. Major components of the LB algorithm together with the relevant equations. Each
“box” is executed for all cells during each time step. One sweep through all “boxes” represents
one time step.

13.3.1 Combined Collision and Propagation Step

Naturally, the collision process can be combined with the propagation step. To keep
the implementation simple and to be able to use any order for cell updates in the
propagation step, two copies of the fi array can be kept in memory (i.e. to ignore data
dependencies). During an update, values are read from the “old” array and written to
the other (“new”) including the propagation step (within the reading or writing step).
At the end of each time step the two arrays are swapped, i.e. the source becomes the
destination and vice versa. Depending on the implementation, the propagation step is
realized as first or last step of the iteration loop as depicted in Figure 13.3, resulting
in a pull or push scheme of the update process.

Obviously, the main difference consists in non-local read operations (gather data)
in the first case compared to non-local write operations (scatter data) in the second.

The data for the values of the distribution functions can be stored in one ar-
ray of dimension five: three spatial coordinates, the discrete-velocity direction i ∈
{0 . . . 18} and an index distinguishing between the two arrays (“old” and “new”).
The order of the indices controls the actual layout of the data in memory and can
therefore have a substantial performance impact [14, 41]. Here, we only compare the
index orders (x, y, z, i, old/new) (propagation optimized) and (i, x, y, z, old/new)
(collision optimized) with the first index moving fastest as the benchmark kernel was
implemented in Fortran.

13.3.2 Vector Optimization

For vector architectures, long inner loops can be advantageous. In the case of the
LBM, the three nested spatial loops with index (x, y, z) (see Figure 13.4) can be

13 Parallel Lattice Boltzmann Methods for CFD Applications 447

collide

collide

source grid destination grid

collide/stream version

stream/collide version

Pull: stream/collide
• read distribution functions fouti (t)

from adjacent cells of the “old” array
(propagation)

• calculate ρ, u and feq
i

• write updated fouti (t+∆t) values to
current cell of the “new” array

Push: collide/stream
• read distribution functions f ini (t) from

current cell of the “old” array
• calculate ρ, u and feq

i

• write updated f ini (t+∆t) values to ad-
jacent cells of the “new” array (propaga-
tion)

Fig. 13.3. Comparison of the data access for the stream/collide (pull) and the collide/stream
(push) version of LBM.

fused into just one large loop (m) sweeping over the full 3D domain. This may im-
prove the efficiency of vectorization (Figure 13.5). However, to allow correct updates
at the boundaries of the computational domain, an additional ghost layer must be
added around the actual computational box together with an appropriate mask which
blocks out the ghost cells from computing the collision and streaming process. The
idea of ghost cells will reappear in Section 13.4 for purposes of parallelization.

13.3.3 Cache Optimization

On cache-based architectures, the data path between CPU and main memory is a
serious bottleneck for memory intensive applications like LBM codes. Therefore, a
major aim of an efficient implementation is the increase of cache reuse — if neces-
sary even at the cost of additional arithmetic operations.

448 C. Körner et al.

real (kind=8),dimension(0:xE+1,0:yE+1,0:zE +1,0:18,0:1):: f
logical , dimension(1:xE,1:yE,1:zE) :: fluidCell
real (kind=8) :: dens , ne (0:18), ...
do z=1,zE; do y=1,yE; do x=1,xE

if (fluidCell (x,y,z) then
! read distributions from local cell and
! calculate moments
dens=f(x,y,z ,0, old)+f (x,y,z ,1, old)+f (x,y,z ,2, old)+...
...
! compute non−equilibrium parts
ne (0)=...
...
! write updates to neighboring cells
f (x ,y ,z , 0, new)=f(x,y,z , 0, old)∗ImOmega+ne(0)
f (x+1,y+1,z , 1, new)=f(x,y,z , 1, old)∗ImOmega+ne(1)
...
f (x ,y−1,z−1,18,new)=f(x,y,z ,18, old)∗ImOmega+ne(18)

endif
enddo; enddo; enddo

Fig. 13.4. Layout of the “standard propagation optimized version”.

A data layout with the 19 discrete-velocity directions i as first index (collision
optimized) results in the distribution functions of a cell being stored contiguously
in memory and therefore only few cache lines are required to access the data of
a cell. While this is beneficial for the read access, the results have to be stored to
non-contiguous memory areas in the streaming phase and therefore involve many
different cache lines. Additionally, the index x of the innermost loop does “move
fastest”, i.e. it does not result in a stride 1 memory access, which it ideally should.

Using (x, y, z, i, old/new) as data layout (propagation optimized), makes the x
index the fastest. In contiguous memory areas, complete x lines for the different
discrete velocity directions i can be found. To exploit this fact even better, the com-
putational work within the x loop is divided into several parts. First of all, current
distribution values of a complete x line are read and the different moments which
are required later on for the calculation of the equilibrium distribution and the non-
equilibrium part are precomputed and stored in temporary arrays. Then in another
loop, the non-equilibrium parts are calculated. Finally, in separate loops for all dis-
crete velocity directions i, the relaxation is executed and the results are written back
to the adjacent cells for the next time step. By writing back the data in a line-wise
fashion, contiguous memory areas are accessed. The basic code structure of this im-
plementation is outlined in Figure 13.6.

When the propagation optimized data layout is used, powers of two should be
avoided for the leading dimension as this will result in severe cache trashing [41].

Starting at a certain architecture-dependent x size, blocking of the inner loops
[27] (x) can be advantageous in order to ensure that all temporary data remains in

13 Parallel Lattice Boltzmann Methods for CFD Applications 449

real (kind =8), dimension(0:(1+xE)∗(1+yE)∗(1+zE),0:18,0:1) :: f
logical , dimension (0:(xE+1),0:(yE+1),0:(zE +1)) :: fluidCell
real (kind=8) :: dens , ne (0:18), ...
do m=0, (1+xE)∗(1+yE)∗(1+zE)

if (fluidCell (m)) then
! read distributions from local cell and
! calculate moments
dens=f(m,0,old)+f (m,1,old)+f (m,2,old)+...
...
! compute non−equilibrium parts based on local moments
ne (0)=...
...
! write updates to neighboring cells
f (m , 0, new)=f(m, 0,old)∗ImOmega+ne(0)
f (m+1+(xE+1) , 1, new)=f(m, 1,old)∗ImOmega+ne(1)
...
f (m −(xE+1)−(xE+1)∗(yE+1),18,new)=f(m,18,old)∗ImOmega+ne(18)

endif
enddo

Fig. 13.5. Layout of the “vector propagation optimized version”.

the cache. The additional modifications of the code are outlined in Figure 13.7. Of
course, the blocking can be easily extended to three dimensional 3-way blocking
[27].

13.3.4 Further Optimization Strategies

In literature, some other recent optimization strategies can be found which aim at
reducing the memory consumption and/or improving performance.

Pohl et al. [34, 42, 43, 25] have extended the idea of blocking and demonstrated
the effect of n-way blocking. In particular, a 4-way blocking (three-fold spatial
blocking and additional blocking in time) can provide additional performance im-
provements on certain architectures.

Pohl et al. [34] and Schulz et al. [37] have presented two different “compressed
grid” approaches. Here, a carefully designed update order is used when executing the
propagation step of the individual cells. In this way the array can be reused to store
the new distribution values overwriting old ones as soon as they are no longer needed.
This strategy reduces the total memory consumption almost by a factor of two. How-
ever, in particular for the method suggested in [37] it is not clear yet whether the
cache reuse is really improved as the propagation step has to be done direction de-
pendent.

The compressed grid technique can be combined with a 4-way blocking. As men-
tioned above, blocking in the fourth dimension (time) can again only be done if the

450 C. Körner et al.

real (kind =8), dimension(1:xE,1:yE,1:zE ,0:18,0:1) :: f
real (kind =8), dimension(1:xE) :: dens , ...,
real (kind =8), dimension(1:xE ,0:18) :: ne
do z=1,zE; do y=1,yE

! read distributions from local cell and calculate moments
do x=1,xE

dens(x)=f(x,y,z ,0, old)+f (x,y,z ,1, old)+f (x,y,z ,2, old)+...
...

enddo
! compute non−equilibrium parts based on local moments
do x=1,iE

ne(x ,0) = ...
...

enddo
! write updates to neighboring cells ;
! separate loops for all directions
do x=1,xE

if (fluidCell (x,y,z)) then
f (x ,y ,z , 0, new)=f(x,y,z , 0, old)∗ImOmega+ne(x, 0)

endif
enddo
...

do x=1,xE
if (fluidCell (x,y,z)) then

f (x ,y−1,z−1,18,new)=f(x,y,z ,18, old)∗ImOmega+ne(x,18)
endif

enddo
enddo; enddo

Fig. 13.6. Cache-optimized RISC version.

data dependencies are carefully taken into account. This results in more complex
code, and in particular in “short” loops which may be difficult to execute efficiently.
For the details the reader is referred to [34, 42, 43, 25].

Here, we only want to point out that a blocking in the fourth dimension (time)
is the only technique that can fundamentally improve the temporal cache-reuse. Any
implementation short of a 4-way blocking will have to transfer the complete set of
distribution functions through the memory hierarchy at least once per time step and
is thus fundamentally limited by the bandwidth of each CPU to main memory. The
other techniques discussed here were primarily aimed at improving the spatial local-
ity by re-using the contents of each cache line efficiently.

On the other hand, the 4-way blocking algorithm and the compressed grids make
it much more difficult to incorporate advanced boundary conditions or models for
more complicated physics as both might depend on pre- as well as post-collision
values of more than just the local cell itself.

13 Parallel Lattice Boltzmann Methods for CFD Applications 451

do xx=1,xE, BLOCKSIZE
do z=1,zE; do y=1,yE

! read distributions from local cell ...
do x=xx,min(xE,xx+BLOCKSIZE−1)

dens(x)=f(x,y,z ,0, old)+f (x,y,z ,1, old)+...
...

enddo
! compute non−equilibrium parts ...
do x=xx,min(xE,xx+BLOCKSIZE−1)

ne(x ,0)=...
...

enddo
! write updates to neighboring cells ;
! separate loops for all directions
do x=xx,min(xE,xx+BLOCKSIZE−1)

if (fluidCell (x,y,z)) then
f (x ,y ,z , 0, new)=f(x,y,z , 0, old)∗ImOmega+ne(x, 0)

endif
enddo
...

do x=xx,min(xE,xx+BLOCKSIZE−1)
if (fluidCell (x,y,z)) then

f (x ,y−1,z−1,18,new)=f(x,y,z ,18, old)∗ImOmega+ne(x,18)
endif

enddo
enddo; enddo

enddo

Fig. 13.7. Cache-optimized version with blocking.

Argentini et al. [2] use the 3D non-BGK model of Ladd [28] and thus succeed
in storing only 9 moments of the distribution functions instead of all the distribution
values. However, they admit that an application of this idea to the common BGK
model is not (transparently) possible.

Pan et al. [32] and Schulz et al. [37] presented data structures — in particular
for porous media applications with low porosities (i.e. with a low ratio of fluid to
solid nodes) — which abandon the “full matrix representation” and instead use sev-
eral lists with the data of the distribution functions and the connectivity. Thus, only
memory for the data of fluid cells consisting of the distribution functions and point-
ers to all N neighbors are required. For low porosities, a considerable fraction of
memory can be saved in this way. However, the memory access patterns get much
more complicated and include vast indirect addressing. As long as vectorization is
not prevented, vector systems probably can do rather well despite the indirect mem-
ory access [37]. However, on RISC machines, cache reuse is significantly reduced by
the scattered memory access and thus a considerable performance loss is expected.

452 C. Körner et al.

Careful data ordering in the lists (e.g. Morton ordering a shown in [32]) can lessen
the performance impact to some extent. However, as the optimal reordering process
is probably np-complete, some heuristics will always be required.

13.4 Parallelization of a Simple Full-Grid LBM Code

As for many other scientific computing algorithms, the most natural approach to
parallelize the lattice Boltzmann method is by domain decomposition, or techni-
cally more precise (see [24]) domain partitioning. For domain partitioning, the entire
computational domain is divided into several subdomains. An example of such a do-
main decomposition is depicted in Figure 13.8. Each subdomain is then assigned to
a processing unit (PU) which can be a single CPU or a group of CPUs accessing the
same memory. If every PU only had to read and write data in its own subdomain, then
no communication would be necessary. Unfortunately, the streaming step of LBM
needs to access data from neighboring cells which might be located in adjacent sub-
domains. Assuming a distributed memory environment, this cannot be accomplished
without explicit communication and the question is how this communication can be
organized both conveniently and efficiently.

A common way to approach the necessary data exchange is the introduction of
a so-called halo (also known as ghost cell layer) at the subdomain interfaces, i.e.
where two subdomains are adjacent. Halos hold copies of the values of neighboring
domains, and naturally they must be updated at specific times when the original value
has been changed. Depending on the type of data dependencies the halo must consist
of a single or more layers. For the streaming step of the LBM, only nearest neighbor
communication is necessary (corresponding to a compact stencil), and thus a single
layer of cells is sufficient, but certain extensions of the LBM may need wider halos.

With the halo, the algorithm can proceed in each subdomain concurrently and
can perform a time step in parallel. However, between time steps, the halos must
be exchanged with the neighboring subdomains. This technique simplifies the paral-
lelization, since the exact details of the data dependencies between neighboring cells
need not be considered, and, since data is exchanged in larger blocks, the startup
overhead for communication on cluster parallel machines is better amortized.

If communication is so slow that the exchange of the halos becomes a signifi-
cant contribution to the computing time, it can be overlapped with the computation
if supported by the architecture. This can be accomplished when the cell updates in
each subdomain are computed first for those cells which are halos of neighboring
subdomains. The data in the halo can then be sent simultaneously while comput-
ing the remaining cells in the interior of each subdomain. Again, these are standard
strategies, well-known from other parallel grid or mesh-based algorithms.

Figure 13.8 shows a simple one-dimensional domain partitioning for a two di-
mensional rectangular grid of cells. In the light of the extensions required for our ap-
plication, as discussed in Section 13.5.1, we will primarily use this one-dimensional
partitioning.

13 Parallel Lattice Boltzmann Methods for CFD Applications 453

complete domain PU 1 PU 2 PU 3

Fig. 13.8. Example of a one dimensional domain decomposition with 3 PUs. Before a new iter-
ation can start, each PU has to send required cells (dark grey cells) to other PUs. Additionally,
each PU receives an update of its halo (light grey cells).

Fig. 13.9. For a two dimensional domain decomposition more messages have to be sent.

Of course it is also possible to use a more complicated two dimensional domain
partitioning as illustrated in Figure 13.9. This will asymptotically result in a better
surface-to-volume ratio of each subdomain and thus in less communication. This,
however, comes at the price of the communication being performed in smaller mes-
sage packages and therefore increasing startup cost. Note that for a 3D grid, a sub-
domain in the interior will not only have to communicate with the six subdomains
adjacent to its faces, but also to the twelve neighboring subdomains with which it
shares an edge (for the D3Q19 model).

To alleviate the cost of these communication steps, sophisticated schemes can
be devised. The communication of data across an edge can be accomplished by,
e.g., sending the data as part of the messages between face neighbors and using one
intermediate neighbor as a mailman. This, however, can become quite complicated
if the dependencies between neighboring cells are more complex (and therefore the
halos are wider), and when communication and processing need to be overlapped.

454 C. Körner et al.

Figure 13.10 shows the scalability (performance on an increasing number of
computational units) of a standard parallel LBM implementation for different ar-
chitectures (see Table 13.3 for details). The scale-up performance (fixed CPU load
by scaling the domain size) is almost linear for all three systems, but the speed-up
(fixed domain size) performance typically degrades with an increasing number of
CPUs due to the load shift from computation to communication.

13.5 Free Surfaces

13.5.1 Motivation and Application

Free surface flow is omnipresent in nature, in everyday life as well as in techno-
logical processes. Examples are river flow, rain, and filling of cavities with liquids or
foams. The advantage of the LBM approach becomes apparent when certain complex
boundary conditions must be implemented, since the microscopic interpretation of
the dynamics allows a more natural treatment of these boundary conditions compared
to the description based on differential equations. Thus, the LB approach seems to be
especially suited for modeling complex fluid mechanical problems in complex time-
dependent domains. For example foams which develop by interacting and growing
gas bubbles in a melt, are challenging due to their large and highly dynamic internal
surface, as illustrated in Figure 13.11.

In the following, our approach to handle free surface flow within the LB frame-
work is described. In principle, there are two difficulties to be resolved. The first
one is the description of the movement of the interface. Besides the prevention of
the spreading of the interface, one has to ensure that the interface movement pre-
serves mass. The second challenge is to fulfill the pressure boundary conditions at
the interface.

Modeling of foaming processes leads to additional challenges if parallelization
is considered. Information with respect to interface movement has to be transferred
between two domains when an interface crosses the partition boundary. In addition,
foam expansion makes some kind of dynamical load balance indispensable in order
to reach a high performance.

13.5.2 Free Surface and Fluid Advection

The description of the liquid–gas interface is very similar to that of the marker and
cell or the volume of fluid methods. An additional variable, the volume fraction of
fluid ε, defined as the portion of the area of the cell filled with fluid, is assigned
to each interface cell. The representation of liquid–gas interfaces is illustrated in
Figure 13.12.

Gas cells are separated from liquid cells by a layer of interface cells. These in-
terface cells form a “completely closed” boundary in the sense that no distribution
function is directly advected from fluid to gas cells and vice versa. This is a crucial

13 Parallel Lattice Boltzmann Methods for CFD Applications 455

0 16 32 48 64
number of CPUs

0

20

40

60

80

100

120

140

160

180

200

M
L

up
/s

Dual Opteron, Myrinet2000, speed-up
Dual Opteron, Myrinet2000, scale-up
Dual Xeon, GBit, speed-up
Dual Xeon, GBit, scale-up
SGI Altix, speed-up
SGI Altix, scale-up

Fig. 13.10. Scalability tests for modern cluster configurations. The domain size is 256×129×
128 for speed-up (fixed domain size) and 1283 per processor for scale-up tests (fixed CPU
load by scaling the domain size). For reference the corresponding results of a shared memory
system (SGI Altix 3000) are given. The common performance unit MLup/s (million lattice
site updates per second) has been used. (For the color version, see Figure A.28 on page 481).

Table 13.3. Characteristics of architectures which have been used for benchmarking.

System Xeon/GBit Opteron/Myrinet SGI Altix 3000

Basic building 2-way SMP node 2-way SMP node 4-way SMP node
block (BB) with 1 memory path with 2 memory paths with 2 memory paths

CPU Intel Xeon 2.66 GHz AMD Opteron Intel Itanium2 1.3 GHz,
2.0 GHz 3 MB L3 cache

Peak perfor- 5.3 GFlop/s 4.0 GFlop/s 5.2 GFlop/s
mance per CPU

Memory band- 4.3 GByte/s 2× 5.4 GByte/s 2× 6.4 GByte/s
width per BB

Interconnect Cisco 4503 GBit Myrinet2000 SGI NUMAlink 3
Ethernet switch 2× 1.6 GByte/s bidirect.

Operating Debian Linux 3.0 SuSE SLES 8 Linux Redhat AS2.1 &
system SGI Propack 2.4

Compiler Intel ifc 7.1 PGI 5.0 Intel efc 7.1

456 C. Körner et al.

Fig. 13.11. 3D foam: The bubbles grow and coalescence occurs. The disjoining pressure Π
stabilizes the foam and eventually a polygonal structure develops (initial number of bubbles:
1000; system size: 120 × 120 × 140; τ = 0.8; g = 0; σ = 0.01; cΠ = 0.006). (For the color
version, see Figure A.29 on page 482).

Fluid

Interface

Gas

Fig. 13.12. 2D representation of a free liquid–gas interface by interface cells. The real interface
(dashed line) is captured by assigning the interface cells their liquid fraction.

point to assure mass conservation since mass coming from the liquid or mass trans-
fered to the liquid always passes through the interface cells where the total mass is
balanced. Hence, global conservation laws are fulfilled if mass and momentum con-
servation is ensured for interface cells. The cell types and their state variables and
possible state transformations are listed in Table 13.4.

Per definition, the volume fraction ε of fluid and gas cells is 1 and 0, respectively.
The fluid mass content of a cell is denoted with M = M(x, t). The mass content
is a function of the volume fraction and the density. For a gas cell the fluid mass
content M is zero whereas that of a fluid cell is given by its density ρ and the cell
volume ∆V : M(x, t) = ρ(x, t) · ∆V for x ∈ F . Fluid cells gain and lose mass
due to streaming of the fi. For fluid cells M and ρ are equivalent. If interface cells

13 Parallel Lattice Boltzmann Methods for CFD Applications 457

Table 13.4. Cell types: state variables and possible state transformations. Applicable variables
for the concerning cell type are marked with “•”; with “-” otherwise.

cell type distr. func. fi volume fraction ε gas pressure pG change of state
fluid F • - - → I
gas G - - • → I
interface I • • • → G,→ F

are considered, M and ρ are not equivalent and we have to account for the partially
filled state by the volume fraction ε = ε(x, t). The fluid mass content M , the volume
fraction ε and the fluid density ρ are related by M(x, t) = ρ(x, t) · ε ·∆V for x ∈ I .

All cells are able to change their state. It is important to notice that direct state
changes from fluid to gas and vice versa are not possible. Hence, fluid and gas cells
are only allowed to transform into interface cells whereas interface cells can be trans-
formed into both gas and fluid cells. A fluid cell is transformed into an interface cell if
a direct neighbor is transformed into a gas cell. At the moment of transformation the
fluid cell contains a certain amount of fluid mass M which is stored. During further
development the interface cell may gain mass from or lose mass to the neighboring
cells. These mass currents are calculated and lead to a temporal change of M . If M
drops below zero, the interface cell is transformed into a gas cell. It is important to
pronounce that mass and density are completely decoupled for interface cells. For
gas cells the density is given by the volume and mass of a bubble, while for fluid
cells, the density can be determined using (13.5). As they are always completely
filled, their volume fraction is one, and their mass is equal to their density. Interface
cells, on the other hand, contain the fluid interface, and thus have changing values for
mass and volume fraction. The change of mass during each time step is calculated by
computing the mass exchange of the current interface cell with all surrounding fluid
and interface cells.

The mass exchange ∆Mi(x, t) between an interface cell at lattice site x and its
neighbor in ei-direction at x + ei (with eı̄ = −ei and fı̄(x, t) = f(x, eı̄, t) =
f(x,−ei, t)) is calculated as

∆Mi(x, t) =

⎧⎨⎩
0
fı̄(x + ei, t)− fi(x, t)
1
2

[
ε(x, t) + ε(x + ei, t)

][
fı̄(x + ei, t)− fi(x, t)

]
,

(13.14)

where the three clauses are used for x + ei ∈ G, F and I , respectively. There is
no mass transfer between gas cells and interface cells. The interchange between an
interface cell and a fluid cell should be the same as that of two fluid cells since the cell
boundary is completely covered with liquid. In this case, the mass exchange can be
directly calculated from the particle distribution functions. The interchange between
two interface cells is approximated by assuming that the mass current is weighted
by the mean occupied volume fraction. It is crucial to note that mass is explicitly
conserved in (13.14):

∆Mı̄(x + ei, t) = −∆Mi(x, t) . (13.15)

458 C. Körner et al.

Fig. 13.13. Calculation of the curvature.

That is, the mass which a certain cell receives from a neighboring cell is automat-
ically lost there and vice versa. The temporal evolution of the mass content of an
interface cell is thus given by

M(x, t+∆t) = M(x, t) +
N∑
i=0

∆Mi(x, t) . (13.16)

An interface cell is transformed into a gas or fluid cell if M < 0 or M > ρ∆V ,
respectively. At the same moment, new interface cells emerge in order to guarantee
the continuity of the interface. The initial distribution functions of these new interface
cells are extrapolated from the cells in normal direction towards the fluid.

The calculation of the local curvature of the interface is complex and time con-
suming, an overview of our algorithm is shown in Figure 13.13. In a first step, the
marching cube algorithm is used to generate a triangulation of the interface. Sec-
ondly, the curvature κ belonging to each triangle is estimated by κ = 1

2
δA
δV where

δA denotes the rate of change of the triangle area when its vertices are infinitesi-
mally shifted in normal direction. The covered volume is denoted by δV . In the last
step, the curvature of an interface cell is estimated by averaging the curvature of the
triangles belonging to it.

13.5.3 Boundary Conditions

Interface cells separate gas cells from fluid cells. After streaming, only distribution
functions from fluid and interface cells are defined. Distribution functions arriving
from gas cells are not defined (see Figure 13.14, left).

The symmetry between known and unknown distribution functions, i.e., if fi is
known fı̄ is unknown, is essential to fulfill the boundary conditions. We demand
force balance for opposite lattice directions. In addition, we make use of the fact that
the forces exerted by the gas are known and are given by the gas pressure and the
velocity at the interface. Hence, the missing distribution functions are reconstructed
as

fouti (x− ei, t) =
(
feqi (ρG,v) + feqı̄ (ρG,v)

)
(1 + κσ)− foutı̄ (x, t) (13.17)

13 Parallel Lattice Boltzmann Methods for CFD Applications 459

nn

Stream from
adjacent Cells

Reconstruct DFs
from Empty Cells

Reconstruct DFs
along Interface

Normal n

Calculate Mass
exchange with

neighboring Cells

MMMMMM

Perform normal
Collision

Gas

Fluid

Interface
Cell

Current Cell
is Interface Cell

Fig. 13.14. An overview over the steps for an interface cell are shown. Note that not only distri-
bution function from empty cells, but also those along the interface normal are reconstructed.
(For the color version, see Figure A.30 on page 482).

using the gas density ρG = 1
c2s
pG and the velocity v of the interface cell. The re-

constructed equilibrium distribution functions are scaled according to the curvature
and the strength of the surface tension of the fluid σ. Depending on the sign of the
curvature, this results in a force normal to the interface.

It is important to note that not only the missing distribution functions are re-
constructed but all distribution functions with ei · n ≥ 0 (see Figure 13.14). After
completion of the whole set of distribution functions, the new density ρ and veloc-
ity v can be calculated. The outgoing distribution functions of interface cells are
calculated as

fouti (x, t) = f ini (x, t)− 1
τ

(
f ini (x, t)− feqi (ρ,v)

)
+ ε(x)wi ρ ei g , (13.18)

where g is the gravity constant, now weighted according to the volume fraction of
the interface cell.

13.5.4 Visualization

To visualize the complex surfaces generated by the foam simulations we use the ray
tracing algorithm [21]. Ray tracing is capable of producing high quality visualiza-
tions even for many layers of transparent surfaces like those of a foamed liquid, as
can be seen in Figure 13.11.

The ray tracing algorithm determines the color of each pixel of an image by
shooting a ray through an imaginary camera into a scene, and computing the amount
of light reflected into the camera at the first intersection of the ray with a surface.
Effects like transparency can be by included by tracing the ray further into the scene
after the first point of intersection. For our ray tracer implementation we use the tri-
angulated surface from the marching cubes algorithm, as the ray intersection can be
easily computed for triangles. To prevent intersection tests with all generated trian-
gles for each ray, we use a binary space partitioning tree [38]. Another important
effect for the visualization of free surface liquids is the focusing of light on nearby
objects. These patches of stronger light are called caustics, and can be generated by
tracing rays into the scene from the light sources during an additional pass before the
actual ray tracing.

460 C. Körner et al.

Still, the number of rays to be traced for a typical scene like Figure 13.11 can
be high due to the large amount of surface layers. But, as the memory requirements
of the algorithm are usually not problematic, the image generation process can be
conveniently parallelized by having each CPU compute a separate image. Our im-
plementation writes the surface data of each image to the hard disk, while a small
script running on each workstation in our network checks whether a new set of sur-
face data is available. If this is the case and the computer is currently idle, the script
locks the surface data and initiates the rendering process. The ray tracing can be
done without further communication with other workstations. The generated image
is stored in a central repository.

On the other hand, the aim of the parallelization may sometimes not be the total
speedup, but to get a single picture as soon as possible. Some scenes that need to be
visualized may also be too large to be handled by a single workstation. In both cases,
a more sophisticated way of parallelization can be used to have multiple computers
generate parts of the same image, which, however, requires more communication
between the involved computers. But as shown in [40, 29] this distributed ray tracing
algorithm can be fast enough to produce complex visualizations interactively and in
real time.

13.5.5 Concepts for Parallelization

In a standard LBM code with fused stream/collide step, a time step can be performed
in a single sweep over the computational domain. For the more complex handling
of free surfaces with the described method, however, our current implementation
requires five sweeps.

1. The first sweep performs the usual streaming step augmented by the reconstruc-
tion of missing distribution functions from adjacent gas cells taking into account
the gas pressure of the concerned bubble. After that, the mass exchange with
neighboring cells is computed. For interface cells the new mass M leads to an
updated fill value ε. This value determines whether an interface cell is now com-
pletely filled or emptied resulting in a conversion to a gas or fluid cell, respec-
tively. Finally, the collision step according to the BGK approximation with an
additional force term representing gravity is performed.

2. The second sweep checks and reestablishes the strict division of fluid and gas
cells by the interface cell layer. Therefore, it might be necessary to undo cell
conversions that have been scheduled in the first sweep.

3. In the third sweep converted cells have be to initialized. Depending on the new
cell type, a set of distribution functions (only for former gas cells) and the fill
value ε and mass value M are computed.

4. Interface cells converting to gas or fluid cells normally still contain or miss a cer-
tain amount of mass. This excess mass, which can also be negative for emptied
interface cells, is distributed among the adjacent interface cells. In rare cases,
no such cells can be found and the mass cannot be redistributed locally. To deal
with this exception, the mass could be distributed in a wider neighborhood.

13 Parallel Lattice Boltzmann Methods for CFD Applications 461

5. During the last sweep, for all former and new interface cells, the change in the
fill value ε is calculated and the volume of the corresponding bubble is updated.

In addition to the communication of the grid data, the changes in the volume of
the gas bubbles have to be collected and added for each subdomain to obtain the
global volume change for each bubble. Therefore, the uppermost process starts to
send its volume changes to its lower neighbor which adds its changes and sends this
updated data to its lower neighbor. This procedure is continued until the lowermost
process receives the volume update. Meanwhile the same chain of communication
has been started at the lowermost process traveling upwards. When both chains reach
the opposite end of the domain all processes have a global update of the gas bubbles’
volumes. Instead of this procedure an “all to all” communication could be initiated
using a dedicated MPI call. For a large number of subdomains, however, this would
result in a large amount of send/receive events.

Load Balancing

The time required for updating a cell strongly depends on its type: For gas cells noth-
ing has to be done; fluid cells do the normal stream/collide step, whereas interface
cells are treated like fluid cells with several additional checks and calculations that
also depend on the neighboring cell types. This makes an ab initio domain partition-
ing with an even load on each processing unit (PU) difficult. Apart from that, a static
partitioning would not help, since a typical foam simulation involves large topolog-
ical changes that shift the fluid and therefore the workload from one computational
domain to an other.

The only way to distribute the changing workload evenly on all PUs is to im-
plement one of the available load balancing schemes which can be classified in two
major groups:

Global Load Balancing: By taking the performance and load data of all PUs into
account, a single (master) node decides when and how to perform a global re-
partitioning of the domain. This allows for fast adaptation to large-scale load
changes at the cost of a considerable overhead for global communication and
re-partitioning.

Local Load Balancing: Each PU relies on its neighboring PUs to send updated ha-
los. If one PU has to wait for this update, it might be advantageous to shift a
fraction of the domain of the neighbor with capacity overload to the waiting PU.
This scheme is applicable for slow and “diffusive” load changes and does not
require global communication or costly re-partitioning of the entire domain.

By construction, cell types can only travel the distance of one cell in each time step
and much less than this in practice. Likewise, the computational load moves slowly
from a PU to its neighbors which can adequately be compensated by a local load
balancing scheme.

462 C. Körner et al.

Implementation Details of Load Balancing

The initial domain partitioning can be chosen according to simple heuristics like
an equal distribution of fluid and interface cells on all PUs. Any deviation from a
balanced computational load will be compensated within a few time steps.

During the communication phase in the simulation, each PU measures the wait-
ing time for a halo update from neighboring PUs. If the waiting time exceeds a certain
threshold for a given number of time steps in succession, the waiting PU requests a
layer of cells from the overloaded PU. This prevents unnecessary re-partitioning due
to negligible fluctuations in the load.

The simple 1D domain partitioning in combination with an adapted memory lay-
out where all data for one cell layer is located contiguously in memory allows for
efficient re-partitioning since a cell layer can be sent without repacking from one PU
to its neighbor.

If the fluid simulation is running exclusively on the computers, it is beneficial
to allocate as much memory as possible on each PU during initialization to avoid
the overhead of allocating new memory for the smaller/larger new domain, copying
data, and freeing the memory for the old domain in the case of re-partitioning.

13.6 Summary and Outlook

Since the core algorithm of LBM is simple compared the other CFD codes based on
finite volume/element methods, it is easy to optimize and to extend. We presented
techniques to improve the single CPU performance, applied domain partitioning to
perform the computations in parallel, and introduced an extension to handle free
surface flows. Many other extensions are being developed by other groups to improve
boundary conditions [16, 15, 20], capture turbulence [8, 1], multi-phase flows [10,
22, 26], or solidification processes [31, 13].

13 Parallel Lattice Boltzmann Methods for CFD Applications 463

Notation

f = f(x, ξ, t) [kg/m3] particle distribution function
fi = fi(x, t) [kg/m3] velocity discrete particle distribution function
f (0) [kg/m3] Maxwell-Boltzmann equilibrium distribution function
feqi [kg/m3] discretized equilibrium distribution function
x [{m}] spatial position vector (to continuous or discrete position)
t [s] continuous or discrete time
ξ [{m/s}] microscopic particle velocity vector
ei [{m/s}] discrete particle velocity vector
∆t [s] discrete time increment (“time spacing”)
∆x [m] discrete position increment (“lattice spacing”)
c [m/s] unit velocity
ρ [kg/m3] (number) density
u [{m/s}] macroscopic fluid velocity vector
τ [−] dimensionless relaxation time
λ [s] relaxation time
cs [m/s] speed of sound
wi [−] weighting factor
ν [m2/s] kinematic viscosity
p [kg/ms2] pressure

Subscripts and superscripts
i discrete velocity direction, i = 0, . . . , N
α, β velocity component in the Cartesian directions x, y and z
f (0) Maxwell-Boltzmann equilibrium distribution
feq discretized equilibrium distribution
f in incoming particle distribution function, i.e. before collision
fout outgoing particle distribution function, i.e. after collision
old/new source / destination array (see Section 13.3)

References

1. S. Ansumali, I. V. Karlin, and S. Succi. Kinetic Theory of Turbulence Modeling: Small-
ness Parameter, Scaling and Microscopic Derivation of Smagorinsky Model. Physica A,
338(3):379–394, 2004.

2. R. Argentini, A. Bakker, and C. Lowe. Efficiently Using Memory in Lattice Boltzmann
Simulations. Future Generation Computer Systems, 20(6):973–980, 2004.

3. J. Bernsdorf, F. Durst, and M. Schäfer. Comparison of Cellular Automata and Finite
Volume Techniques for Simulation of Incompressible Flows in Complex Geometries. Int.
J. Numer. Meth. Fluids, 29(3):251–264, 1999.

4. V. Bhandari. Detailed Investigations of Transport Properties in Complex Reactor Compo-
nents. Master thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg,
Erlangen, Germany, 2002.

464 C. Körner et al.

5. P. Bhatnagar, E. P. Gross, and M. K. Krook. A Model for Collision Processes in Gases.
I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys.
Rev., 94(3):511–525, 1954.

6. M. Bouzidi, M. Firdaouss, and P. Lallemand. Momentum Transfer of a Boltzmann Lattice
Fluid with Boundaries. Phys. Fluids, 13(11):3452–3459, 2001.

7. S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cam-
bridge University Press, 1995.

8. H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, and V. Yakhot. Extended Boltz-
mann Kinetic Equation for Turbulent Flows. Science, 301(5644):633–636, 2003.

9. S. Chen and G. D. Doolen. Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid
Mech., 30:329–364, 1998.

10. S. Chen, G. D. Doolen, and K. G. Eggert. Lattice-Boltzmann Fluid Dynamics: A Versatile
Tool for Multiphase and Other Complicated Flows. Los Alamos Science, 22:98–111,
1994.

11. S. Chen and D. Martinez. On Boundary Conditions in Lattice Boltzmann Methods. Phys.
Fluids, 8(9):2527–2536, 1996.

12. B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems. Cambridge
University Press, 1998.

13. C. Denniston, E. Orlandini, and J. Yeomans. Lattice Boltzmann Simulations of Liquid
Crystal Hydrodynamics. Phys. Rev. E, 63:056702 10, 2001.

14. S. Donath. On Optimized Implementations of the Lattice Boltzmann Method on Con-
temporary High Performance Architectures. Bachelor thesis, Lehrstuhl für Informatik 10
(Systemsimulation), Universität Erlangen-Nürnberg, 2004.

15. A. Dupuis and B. Chopard. Theory and Applications of an Alternative Lattice Boltzmann
Grid Refinement Algorithm. Phys. Rev. E, 67(6):066707 7, 2003.

16. O. Filippova and D. Hänel. Grid Refinement for Lattice BGK Models. J. Comput. Phys.,
147:219–228, 1998.

17. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet. Lattice
Gas Hydrodynamics in Two and Three Dimensions. Complex Systems, 1:649–707, 1987.

18. S. Geller, M. Krafczyk, J. Tölke, S. Turek, and J. Hron. Benchmark Computations based
on Lattice Boltzmann, Finite Element, and Finite Volume Methods for Laminar Flows.
Submitted to Computers and Fluids, 2004. Also available as Ergebisbericht 274 des
Fachbereichs Mathematik der Universtität Dortmund, http://www.mathematik.
uni-dortmund.de/lsiii/german/preprintfb.html.

19. I. Ginzburg and P. M. Adler. Boundary Flow Condition Analysis for Three-Dimensional
Lattice Boltzmann Model. J. Phys. II France, 4:191–214, 1994.

20. I. Ginzburg and D. d’Humières. Multireflection Boundary Conditions for Lattice Boltz-
mann Models. Phys. Rev. E, 68(6):066614 30, 2003.

21. A. S. Glassner. An Introduction to Ray Tracing. Harlekijn, 1989.
22. X. He and G. D. Doolen. Thermodynamic Foundations of Kinetic Theory and Lattice

Boltzmann Models for Multiphase Flows. J. Stat. Phys., 107(1-2):309–328, 2002.
23. X. He and L.-S. Luo. A Priori Derivation of the Lattice Boltzmann Equation. Phys. Rev.

E, 55(6):R6333–R6336, 1997.
24. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel geometric multigrid. In

A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pages 165–208. Springer-Verlag, 2005.

25. K. Iglberger. Cache Optimizations for the Lattice Boltzmann Method in 3D. Studien-
arbeit, Lehrstuhl für Informatik 10 (Systemsimulation), Universität Erlangen-Nürnberg,
2003.

13 Parallel Lattice Boltzmann Methods for CFD Applications 465

26. D. Kehrwald. Numerical Analysis of Immiscible Lattice BGK. PhD thesis, Fachbereich
Mathematik, Universität Kaiserslautern, 2002.

27. M. Kowarschik. Data Locality Optimizations for Iterative Numerical Algorithms and Cel-
lular Automata on Hierarchical Memory Architectures. PhD thesis, Universität Erlangen-
Nürnberg, Technische Fakultät, 2004.

28. A. J. C. Ladd. Numerical Simulations of Particulate Suspensions via a Discrete Boltz-
mann Equation. Part 1. Theoretical Foundation. J. Fluid Mech., 271:285–309, 1994.

29. G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek. Fast and Accurate Ray-
Voxel Intersection Techniques for Iso-Surface Ray Tracing. In Vision, Modelling, and
Visualization 2003 (VMV) , November 16-18, Stanford (CA), USA, 2004.

30. G. R. McNamara and G. Zanetti. Use of the Boltzmann Equation to Simulate Lattice Gas
Automata. Phys. Rev. Lett., 61:2332–2335, 1988.

31. W. Miller and S. Succi. A Lattice Boltzmann Model for Anisotropic Crystal Growth from
Melt. J. Stat. Phys., 107(1-2):173–186, 2002.

32. C. Pan, J. Prins, and C. T. Miller. A High-Performance Lattice Boltzmann Implementation
to Model Flow in Porous Media. Comp. Phys. Com., 158(1):89–105, 2004.

33. T. Pohl, F. Deserno, N. Thürey, U. Rüde, P. Lammers, G. Wellein, and T. Zeiser. Per-
formance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on Three
Supercomputing Architectures. In Supercomputing Conference, 2004.

34. T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde. Optimization and Profil-
ing of the Cache Performance of Parallel Lattice Boltzmann Codes. Parallel Processing
Letters, 13(4):549–560, 2003.

35. Y. H. Qian, D. d’Humières, and P. Lallemand. Lattice BGK Models for Navier-Stokes
Equation. Europhys. Lett., 17(6):479–484, 1992.

36. D. H. Rothman and S. Zaleski. Lattice Gas Cellular Automata. Simple models of Complex
Hydrodynamics. Cambridge University Press, 1997.

37. M. Schulz, M. Krafczyk, J. Tölke, and E. Rank. Parallelization Strategies and Efficiency
of CFD Computations in Complex Geometries Using Lattice Boltzmann Methods on
High Performance Computers. In M. Breuer, F. Durst, and C. Zenger, editors, High Per-
formance Scientific and Engineering Computing, pages 115–122, Berlin, 2001. Springer.

38. P. Shirley and K. Sung. Graphics Gems III. Morgan Kaufmann, 1994.
39. S. Succi. The Lattice Boltzmann Equation – For Fluid Dynamics and Beyond. Clarendon

Press, 2001.
40. I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive Rendering with Coherent

Ray Tracing. In A. Chalmers and T.-M. Rhyne, editors, Computer Graphics Forum (Pro-
ceedings of EUROGRAPHICS 2001), volume 20. Blackwell Publishers, Oxford, 2001.

41. G. Wellein, T. Zeiser, S. Donath, and G. Hager. On the Single Processor Performance of
Simple Lattice Boltzmann Kernels. Computers & Fluids, accepted, 2004.

42. J. Wilke. Cache Optimizations for the Lattice Boltzmann Method in 2D. Studienarbeit,
Lehrstuhl für Informatik 10 (Systemsimulation), Universität Erlangen-Nürnberg, 2002.

43. J. Wilke, T. Pohl, M. Kowarschik, and U. Rüde. Cache Performance Optimization for
Parallel Lattice Boltzmann Code in 2D. Technical Report 03-3, Lehrstuhl für Informatik
10 (Systemsimulation), Universität Erlangen-Nürnberg, 2003.

44. D. A. Wolf-Gladrow. Lattice Gas Cellular Automata and Lattice Boltzmann Models,
volume 1725 of Lecture Notes in Mathematics. Springer, Berlin, 2000.

45. S. Wolfram. Cellular Automaton Fluids 1: Basic Theory. J. Stat. Phys., 3/4:471–526,
1986.

466 C. Körner et al.

46. D. Yu, R. Mei, L.-S. Luo, and W. Shyy. Viscous Flow Computations with the Method of
Lattice Boltzmann Equation. Progr. Aero. Sci., 39:329–367, 2003.

47. D. Yu, R. Mei, and W. Shyy. A Multiblock Lattice Boltzmann Method for Viscous Fluid
Flows. Int. J. Numer. Meth. Fluids, 39(2):99–120, 2002.

A

Color Figures

Partitioning and Dynamic Load Balancing for the Numerical
Solution of Partial Differential Equations

J. D. Teresco, K. D. Devine, and J. E. Flaherty

Fig. A.1. Example two-dimensional mesh from Figure 2.1 (left) with its induced graph. (This
is a color version of Figure 2.6 on page 64).

Subset V4

Subset V3

Subset V2

Subset V1

Fig. A.2. Four-way partitioning of the graph from Figure 2.6. (This is a color version of Figure
2.7 on page 64).

468 Appendix A. Color Figures

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

1

1

1

1

1

1

1

1

11

1

1

1

1
1 1

11

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1

1

1

1

1

1

1

1
11

1

1

1

1
1 1

1

1

1

1

(a) (b) (c)

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

4 3

4

3

3

2

3 4

1

1

2

1

2

1

2

1
1

2

1

1

1

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

4 3

4

3

3

2

3 4

1

1

2

1

2

1

2

1
1

2

1

1

1

1

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

1

1

1

1

1

1

1

1

11

1

1

1

1
1 1

11

(d) (e) (f)

(g)

Fig. A.3. Multilevel partitioning of the induced graph of Figure 2.6. Vertex matching in (a)
leads to the coarse graph in (b). A second round of vertex matching in (c) produces the coarse
graph in (d). This coarsest graph is partitioned in (e). The graph is uncoarsened one level and
the partitioning is optimized in (f). The second level of uncoarsening, and another round of
local optimization on this partitioning produces the final two-way partitioning shown in (g).
(This is a color version of Figure 2.9 on page 67).

CPU0 CPU1

Node 1Node 0

CPU3

Network

CPU2CPU1 CPU3CPU0 CPU2

Memory Memory

8 processes compute one
2-way ParMetis partitioning

Each SMP independently
computes 4-way RIB partitioning

Fig. A.4. Hierarchical balancing algorithm selection for two 4-way SMP nodes connected by
a network. (This is a color version of Figure 2.10 on page 79).

Appendix A. Color Figures 469

Domain Decomposition Techniques

L. Formaggia, M. Sala, and F. Saleri

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X − Axis

Y
 −

 A
xi

s

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X − Axis

Y
 −

 A
xi

s

Fig. A.5. Example of element-oriented (left) and vertex-oriented (right) decomposition in the
case of a partition ofΩ into several subdomains. (This is a color version of Figure 4.2 on page
140).

Proc 4

Proc 3

Proc 2

Proc 1

Fig. A.6. Example of two-level decomposition. First level in continuous line, and second level
in dashed line. Typically, each first-level decomposition subdomain is given to a different
processor. (This is a color version of Figure 4.4 on page 152).

470 Appendix A. Color Figures

Fig. A.7. Pressure coefficient contours for FALCON 45k. (This is a color version of Figure
4.5 on page 156).

Fig. A.8. Mach number contours for M6 316K. (This is a color version of Figure 4.6 on page
156).

Appendix A. Color Figures 471

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45 α=1, 4 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45, 8 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

Fig. A.9. FALCON 45k. Convergence history with 4 (left) and 8 processors (right) with the
ASC preconditioner, for different values of L. (This is a color version of Figure 4.7 on page
157).

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45, 16 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

time levels

G
M

R
E

S
R

 it
er

at
io

ns

Falcon M∞=0.45, 32 procs

ASC−1−ilu0
ASC−2−ilu0
ASC−4−ilu0
ASC−8−ilu0

Fig. A.10. FALCON 45k. Convergence history with 16 processors (left) and 32 processors
(right) with the ASC preconditioner, for different values of L. (This is a color version of
Figure 4.8 on page 158).

0 2 4 6 8 10 12 14 16
10

15

20

25

30

35

40

45

50

55

time levels

G
M

R
E

S
 it

er
at

io
ns

Falcon M∞=0.45, α=1

N_p=4
N_p=8
N_p=16
N_p=32

0 2 4 6 8 10 12 14 16
5

10

15

20

25

30

35

40

45

time levels

G
M

R
E

S
 it

er
at

io
ns

Falcon M∞=0.45, α=1

N_p=4
N_p=8
N_p=16
N_p=32

Fig. A.11. FALCON 45k. Iterations to converge with different values ofNp for PACM,1 (left)
and PACM,2 (right). (This is a color version of Figure 4.9 on page 158).

472 Appendix A. Color Figures

0 2 4 6 8 10 12 14 16
10

20

30

40

50

60

70

80

90

time levels

G
M

R
E

S
 it

er
at

io
ns

Falcon M∞=0.45, α=1

P S, no coarse
P ACM,1 N_p=4
P ACM,1 N_p=16
P ACM,2 N_p=4
P ACM,2 N_p=16

0 5 10 15 20 25 30 35
150

200

250

300

350

400

450

N_p

to
ta

l C
P

U
 ti

m
e

(s
)

Falcon M∞=0.45, α=1

P ACM,1
P ACM,2

Fig. A.12. FALCON 45k. Comparison among different preconditioners (left) and CPU time,
in seconds (right). 16 SGI-Origin3000 processors. (This is a color version of Figure 4.10 on
page 159).

0 100 200 300 400 500 600 700 800
−8

−6

−4

−2

0

2

4

Falcon M∞=0.45, α=1.0, 16 procs

tim
e

re
si

du
al

CPU time (s)

P
1
, N_p=8

P
2
, N_p=8

ASP−2−ilu0
P

S

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

Falcon M∞=0.45, α=1.0, 16 procs

time levels

G
M

R
E

S
 it

er
at

io
ns

P
1
, N_p=8

P
2
, N_p=8

ASP−2−ilu0
P

S

Fig. A.13. FALCON 45k. Residual versus CPU-time (left) and iterations to converge at each
time level (right), using 16 SGI-Origin3000 processors. (This is a color version of Figure 4.11
on page 159).

Appendix A. Color Figures 473

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

40

45

time levels

G
M

R
E

S
 it

er
at

io
ns

M6 M∞=0.84, α=3.06

P
S
 M6_23k

P ACM,2 N_p=4 M6_23k
P

S
 M6_42k

P ACM,2 N_p=4 M6_42k
P

S
 M6_94k

P ACM,2 N_p=4 M6_94k

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16

18

20

22

24

M6 M∞=0.84, α=3.06

G
M

R
E

S
 it

er
at

io
ns

time levels

N_p=4 23k
N_p=32 23k
N_p=4 42k
N_p=32 42k
N_p=4 94k
N_p=32 94k

Fig. A.14. M6 94k. Iterations to converge with PS and PACM,2 (left), and iterations to con-
verge with PACM,2 (right) using two different values of Npand 16 processors. (This is a color
version of Figure 4.12 on page 160).

0 50 100 150 200 250
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

CPU time (s)

T
im

e
re

si
du

al

M6 94k, M_infty=0.84, α=3.06, 32 procs

ACM, N_p=8
ASP−2−ilu0
P

S

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

40

45

time iterations

G
M

R
E

S
 it

er
at

io
ns

M6 94k, M_infty=0.84, α=3.06, 32 procs

ACM, N_p=8
ASP−2−ilu0
P

S

Fig. A.15. M6 94k. Residual versus CPU-time (right) and iterations to converge at each time
level (right), using 32 processors. (This is a color version of Figure 4.13 on page 160).

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

time levels

G
M

R
E

S
 it

er
at

io
ns

M6 316k M∞=0.84 α=3.06

P
S

P
ACM,2

ASP−2−ilu0

0 10 20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

M6 316k M∞=0.84 α=3.06

GMRES iterations

||r
|/|

|r
0||

P
S

P
ACM,2

Fig. A.16. M6 316k. Iterations at each time level (left) and converge history at the 14th time
step (right). (This is a color version of Figure 4.14 on page 161).

474 Appendix A. Color Figures

Parallel Mesh Generation

N. Chrisochoides

DD of continuous geometry DD of discrete geometry

Fig. A.17. Domain decomposition of the continuous geometry [52] and the discrete geom-
etry [17] of a cross section of a rocket pipe. (This is a color version of Figure 7.1 on page
239).

Appendix A. Color Figures 475

Submesh M

Submesh M

Submesh M

I12

I01

I02

Pj t

t*

2

1

Pi

o

A

B

CD

E F

G

H

Service
Remote
Data Gather

Service
Remote
Data Gather

Triang
AFGHBC

Submesh M
o

Submesh M 1

Request remote data

Expand
Cav. AFBC

Expand
ABCDECav.

Triang.
ABCDE

Submesh M 2

Service
Remote
Completion

Poll

Poll

Poll
Latency
Remote data gather

.

.

.

.

.

.

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processor Number

0

10

20

30

40

50

60

70

80

90

T
im

e
(s

)

Termination
Polling
Receives
Setbacks
Encroached
W/o active
W/active

Meshing time distribution
tee2:16 procs:2M elements:SMGP0

P

Submesh 2

Submesh 1

Submesh 0

(c) (d)

Fig. A.18. a) cavity extension beyond submesh interfaces, b) time diagram with concurrent
point insertion, c) a breakdown of execution time for PODM, and finally d) the refinement of
a cavity with simultaneous distribution of the newly created elements. (This is a color version
of Figure 7.4 on page 243).

476 Appendix A. Color Figures

Parallel PDE-Based Simulation Using the Common Component
Architecture

L. C. McInnes et al.

Fig. A.19. State-of-the-art simulation tools are used to help design the next generation of
accelerator facilities. (Left): Mesh generated for the PEP-II interaction region using the CUBIT
mesh generation package. Image courtesy of Tim Tautges of Sandia National Laboratories.
(Right): Excited fields computed using Tau3P. Image courtesy of the numerics team at SLAC.
(This is a color version of Figure 10.2 on page 330).

Fig. A.20. A 10-cm-high pulsating methane-air jet flame, computed on an adaptive mesh. On
the left is the temperature field with a black contour showing regions of high heat release rates.
On the right is the adaptive mesh, in which regions corresponding to the jet shear layer are
refined the most. (This is a color version of Figure 10.4 on page 333).

Appendix A. Color Figures 477

Fig. A.21. A typical C-SAFE problem involving hydrocarbon fires and explosions of energetic
materials. This simulation involves fluid dynamics, structural mechanics, and chemical reac-
tions in both the flame and the explosive. Accurate simulations of these events can lead to a
better understanding of high-energy explosives, can help evaluate the design of shipping and
storage containers for these materials, and can help officials determine a response to various
accident scenarios. The fire image is courtesy of Schonbucher Institut for Technische Chemie
I der Universitat Stuttgart, and the images of the container and explosion are courtesy of Eric
Eddings of the University of Utah. (This is a color version of Figure 10.5 on page 334).

Sending proc

R
ec

v
pr

oc

0 10 20
0

5

10

15

20

25
Bytes

9.78E+08
4.91504E+08
2.4701E+08
1.24137E+08
6.23865E+07
3.13529E+07
1.57567E+07
7.91871E+06
3.97962E+06

Communication radius

A
ve

ra
ge

C
om

m
un

ic
at

io
n

tim
e

(s
ec

s)

0 2 4 6 8 10
5

10

15

20

25

np=7

np=14

np=28

np=56

np=112

Fig. A.22. (Left): Communication patterns for 28 processors at timestep 40. (Right): Com-
munication costs as a function of the communication radius at timestep 40. (This is a color
version of Figure 10.17 on page 367).

478 Appendix A. Color Figures

Full-Scale Simulation of Cardiac Electrophysioology on Parallel
Computers

X. Cai and G. T. Lines

t=30ms t=200ms

Fig. A.23. Snapshots from two time levels of a simulation of the electrical field in the human
heart and torso. At each time level, the electrical potential distribution on the heart surface
is shown at three different angles, while the distribution on the torso surface is shown at two
different angles. (This is a color version of Figure 11.1 on page 387).

Fig. A.24. The orientation of the muscle fibers (left) and sheet layers (right) in the heart. (This
is a color version of Figure 11.2 on page 391).

Appendix A. Color Figures 479

Fig. A.25. An example of partitioning an unstructured heart mesh (left) and an unstructured
torso mesh (right). (This is a color version of Figure 11.6 on page 402).

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

x 10
5

Subdomain ID

non−computational overlapping points
computational overlapping points
computational interior points

Fig. A.26. The effect of applying a disjoint re-distribution to the Ω mesh points, where NΩ =
919, 851 and the number of subdomains is 8. (This is a color version of Figure 11.7 on page
406).

480 Appendix A. Color Figures

Developing a Geodynamics Simulator with PETSc

M. G. Knepley, R. F. Katz, and B. Smith

D
ep

th
, k

m

log
10

η and flow field

0 100 200 300

0

50

100

150

200

250

300 19

20

21

22

23

24 Temperature, °C

1100

50 100 150 200

50

100

150

0

200

400

600

800

1000

1200

1400

Distance, km

D
ep

th
, k

m

0 100 200 300

0

50

100

150

200

250

300 19

20

21

22

23

24

Distance, km

1100

50 100 150 200

50

100

150

0

200

400

600

800

1000

1200

1400

Fig. A.27. 2D viscosity and potential temperature fields from simulations on 8 processors with
230,112 degrees of freedom. Panels in the top row are from a simulation with α=1 in equation
(12.1). Panels in bottom row have α=0. The white box in panels (a) and (c) shows the region in
which temperature is plotted in panels (b) and (d). (a) Colors show log10 of the viscosity field.
Note that there are more than five orders of magnitude variation in viscosity. Arrows show the
flow direction and magnitude (the slab is being subducted at a rate of 6 cm/year). Upwelling
is evident in the flow field near the wedge corner. (b) Temperature field from the variable
viscosity simulation; 1100◦C isotherm is shown as a dashed line. (c) (Constant) viscosity and
flow field from the isoviscous simulation. Strong flow is predicted at the base of the crust
despite the low-temperature rock there. No upwelling flow is predicted. (d) Temperature field
from isoviscous simulation. Note that the mantle wedge corner is much colder than in (b).
(This is a color version of Figure 12.28 on page 436).

Appendix A. Color Figures 481

Parallel Lattice Boltzmann Methods for CFD Applications

C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser

0 16 32 48 64
number of CPUs

0

20

40

60

80

100

120

140

160

180

200

M
L

up
/s

Dual Opteron, Myrinet2000, speed-up
Dual Opteron, Myrinet2000, scale-up
Dual Xeon, GBit, speed-up
Dual Xeon, GBit, scale-up
SGI Altix, speed-up
SGI Altix, scale-up

Fig. A.28. Scalability tests for modern cluster configurations. The domain size is 256×129×
128 for speed-up (fixed domain size) and 1283 per processor for scale-up tests (fixed CPU
load by scaling the domain size). For reference the corresponding results of a shared memory
system (SGI Altix 3000) are given. The common performance unit MLup/s (million lattice
site updates per second) has been used. (This is a color version of Figure 13.10 on page 455).

482 Appendix A. Color Figures

Fig. A.29. 3D foam: The bubbles grow and coalescence occurs. The disjoining pressure Π
stabilizes the foam and eventually a polygonal structure develops (initial number of bubbles:
1000; system size: 120× 120× 140; τ = 0.8; g = 0; σ = 0.01; cΠ = 0.006). (This is a color
version of Figure 13.11 on page 456).

Fig. A.30. An overview over the steps for an interface cell are shown. Note that not only distri-
bution function from empty cells, but also those along the interface normal are reconstructed.
(This is a color version of Figure 13.14 on page 459).

§1. Volumes in the following three categories will be published in LNCSE:
i) Research monographs
ii) Lecture and seminar notes
iii) Conference proceedings

Those considering a book which might be suitable for the series are strongly advised
to contact the publisher or the series editors at an early stage.

§2. Categories i) and ii). These categories will be emphasized by Lecture Notes in
Computational Science and Engineering. Submissions by interdisciplinary teams of
authors are encouraged. The goal is to report new developments – quickly, inform-
ally, and in a way that will make them accessible to non-specialists. In the evaluation
of submissions timeliness of the work is an important criterion. Texts should be well-
rounded, well-written and reasonably self-contained. In most cases the work will
contain results of others as well as those of the author(s). In each case the author(s)
should provide sufficient motivation, examples, and applications. In this respect,
Ph.D. theses will usually be deemed unsuitable for the Lecture Notes series. Proposals
for volumes in these categories should be submitted either to one of the series editors
or to Springer-Verlag, Heidelberg, and will be refereed. A provisional judgment on the
acceptability of a project can be based on partial information about the work:
a detailed outline describing the contents of each chapter, the estimated length, a
bibliography, and one or two sample chapters – or a first draft. A final decision whether
to accept will rest on an evaluation of the completed work which should include
– at least 100 pages of text;
– a table of contents;
– an informative introduction perhaps with some historical remarks which should be
– accessible to readers unfamiliar with the topic treated;
– a subject index.

§3. Category iii). Conference proceedings will be considered for publication provided
that they are both of exceptional interest and devoted to a single topic. One (or more)
expert participants will act as the scientific editor(s) of the volume. They select the
papers which are suitable for inclusion and have them individually refereed as for a
journal. Papers not closely related to the central topic are to be excluded. Organizers
should contact Lecture Notes in Computational Science and Engineering at the
planning stage.
In exceptional cases some other multi-author-volumes may be considered in this
category.

§4. Format. Only works in English are considered. They should be submitted in
camera-ready form according to Springer-Verlag’s specifications.
Electronic material can be included if appropriate. Please contact the publisher.
Technical instructions and/or TEX macros are available via

The macros can also be sent on request.

Editorial Policy

http://www.springer.com/sgw/cda/frontpage/0,11 55,5- 0017-2-71391-0,00.html48

Lecture Notes are printed by photo-offset from the master-copy delivered in camera-
ready form by the authors. For this purpose Springer-Verlag provides technical
instructions for the preparation of manuscripts. See also Editorial Policy.

Careful preparation of manuscripts will help keep production time short and ensure
a satisfactory appearance of the finished book.

The following terms and conditions hold:

Categories i), ii), and iii):
Authors receive 50 free copies of their book. No royalty is paid. Commitment to
publish is made by letter of intent rather than by signing a formal contract. Springer-
Verlag secures the copyright for each volume.

For conference proceedings, editors receive a total of 50 free copies of their volume for
distribution to the contributing authors.

All categories:
Authors are entitled to purchase further copies of their book and other Springer
mathematics books for their personal use, at a discount of 33,3 % directly from
Springer-Verlag.

General Remarks

Addresses:

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
e-mail: barth@nas.nasa.gov

Michael Griebel

der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
e-mail: griebel@ins.uni-bonn.de

David E. Keyes
Department of Applied Physics
and Applied Mathematics
Columbia University
200 S. W. Mudd Building
500 W. 120th Street
New York, NY 10027, USA
e-mail: david.keyes@columbia.edu

Risto M. Nieminen
Laboratory of Physics
Helsinki University of Technology
02150 Espoo, Finland
e-mail: rni@fyslab.hut.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
e-mail: dirk.roose@cs.kuleuven.ac.be

Tamar Schlick
Department of Chemistry
Courant Institute of Mathematical
Sciences
New York University
and Howard Hughes Medical Institute
251 Mercer Street
New York, NY 10012, USA
e-mail: schlick@nyu.edu

Tiergartenstrasse 17
D-69121 Heidelberg, Germany
Tel.: *49 (6221) 487-8185
Fax: *49 (6221) 487-8355

Institut für Numerische Simulation

Mathematics Editor at Springer: Martin Peters
Springer-Verlag, Mathematics Editorial IV

e-mail: martin.peters@springer.com

Lecture Notes
in Computational Science
and Engineering

Vol. 1 D. Funaro, Spectral Elements for Transport-Dominated Equations. 1997. X, 211 pp. Softcover.
ISBN 3-540-62649-2

Vol. 2 H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diff-
pack Programming. 1999. XXIII, 682 pp. Hardcover. ISBN 3-540-65274-4

Vol. 3 W. Hackbusch, G. Wittum (eds.), Multigrid Methods V. Proceedings of the Fifth European Multi-
grid Conference held in Stuttgart, Germany, October 1-4, 1996. 1998. VIII, 334 pp. Softcover.
ISBN 3-540-63133-X

Vol. 4 P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, R. D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas. Proceedings of the 2nd International Symposium
on Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997. 1998. XI, 489 pp. Softcover.
ISBN 3-540-63242-5

Vol. 5 D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory
and Numerics for Conservation Laws. Proceedings of the International School on Theory and Numer-
ics for Conservation Laws, Freiburg / Littenweiler, October 20-24, 1997. 1998. VII, 285 pp. Softcover.
ISBN 3-540-65081-4

Vol. 6 S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach. 1999. XVII, 352 pp, with CD-ROM. Hardcover. ISBN 3-540-65433-X

Vol. 7 R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.
1999. XX, 338 pp. Softcover. ISBN 3-540-65662-6

Vol. 8 H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing. Proceedings of the International FORTWIHR Conference on HPSEC, Munich, March 16-18, 1998.
1999. X, 471 pp. Softcover. 3-540-65730-4

Vol. 9 T. J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics. 1999. VII, 582
pp. Hardcover. 3-540-65893-9

Vol. 10 H. P. Langtangen, A. M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Com-
puting. 2000. X, 357 pp. Softcover. 3-540-66557-9

Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications. 2000. XI, 470 pp. Hardcover. 3-540-66787-3

Vol. 12 U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Prac-
tical Applications. 2000. XIII, 375 pp. Softcover. 3-540-67629-5

Vol. 13 B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.
Parallelldatorcentrum Seventh Annual Conference, Stockholm, December 1999, Proceedings. 2000. XIII,
301 pp. Softcover. 3-540-67264-8

Vol. 14 E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI. Proceedings of the Sixth Eu-
ropean Multigrid Conference Held in Gent, Belgium, September 27-30, 1999. 2000. IX, 293 pp. Softcover.
3-540-67157-9

Vol. 15 A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quan-
tum Chromodynamics. Joint Interdisciplinary Workshop of John von Neumann Institute for Computing,
Jülich and Institute of Applied Computer Science, Wuppertal University, August 1999. 2000. VIII, 184
pp. Softcover. 3-540-67732-1

Vol. 16 J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm,
and Applications. 2001. XII, 157 pp. Softcover. 3-540-67900-6

Vol. 17 B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.
2001. X, 197 pp. Softcover. 3-540-41083-X

Vol. 18 U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering. Pro-
ceedings of the 3rd International Workshop, August 20-23, 2000, Warnemünde, Germany. 2001. XII, 428
pp. Softcover. 3-540-42173-4

Vol. 19 I. Babuška, P. G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation
in Continuum Mechanics. Proceedings of the International Symposium on Mathematical Modeling and
Numerical Simulation in Continuum Mechanics, September 29 - October 3, 2000, Yamaguchi, Japan.
2002. VIII, 301 pp. Softcover. 3-540-42399-0

Vol. 20 T. J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and Ap-
plications. 2002. X, 389 pp. Softcover. 3-540-42420-2

Vol. 21 M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.
Proceedings of the 3rd International FORTWIHR Conference on HPSEC, Erlangen, March 12-14, 2001.
2002. XIII, 408 pp. Softcover. 3-540-42946-8

Vol. 22 K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.
2002. XV, 181 pp. Softcover. 3-540-43055-5

Vol. 23 L. F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods. 2002.
XII, 243 pp. Softcover. 3-540-43413-5

Vol. 24 T. Schlick, H. H. Gan (eds.), Computational Methods for Macromolecules: Challenges and Ap-
plications. Proceedings of the 3rd International Workshop on Algorithms for Macromolecular Modeling,
New York, October 12-14, 2000. 2002. IX, 504 pp. Softcover. 3-540-43756-8

Vol. 25 T. J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in Com-
putational Fluid Dynamics. 2003. VII, 344 pp. Hardcover. 3-540-43758-4

Vol. 26 M. Griebel, M. A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations. 2003.
IX, 466 pp. Softcover. 3-540-43891-2

Vol. 27 S. Müller, Adaptive Multiscale Schemes for Conservation Laws. 2003. XIV, 181 pp. Softcover.
3-540-44325-8

Vol. 28 C. Carstensen, S. Funken, W. Hackbusch, R. H. W. Hoppe, P. Monk (eds.), Computational Elec-
tromagnetics. Proceedings of the GAMM Workshop on "Computational Electromagnetics", Kiel, Ger-
many, January 26-28, 2001. 2003. X, 209 pp. Softcover. 3-540-44392-4

Vol. 29 M. A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differen-
tial Equations. 2003. V, 194 pp. Softcover. 3-540-00351-7

Vol. 30 T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization. 2003. VI, 349 pp. Softcover.
3-540-05045-0

Vol. 31 M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems. 2003. VIII, 399 pp. Softcover. 3-540-00744-X

Vol. 32 H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Compu-
tational Modelling. 2003. XV, 432 pp. Hardcover. 3-540-40367-1

Vol. 33 H. P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential Equa-
tions. Numerical Methods and Diffpack Programming. 2003. XIX, 658 pp. Softcover. 3-540-01438-1

Vol. 34 V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models. 2004. XII, 261 pp. Softcover. 3-540-40643-3

Vol. 35 E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002. Proceedings of the Confer-
ence Challenges in Scientific Computing, Berlin, October 2-5, 2002. 2003. VIII, 287 pp. Hardcover.
3-540-40887-8

Vol. 36 B. N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduc-
tion to the Interface. 2004. XI, 293 pp. Softcover. 3-540-20406-7

Vol. 37 A. Iske, Multiresolution Methods in Scattered Data Modelling. 2004. XII, 182 pp. Softcover.
3-540-20479-2

Vol. 38 S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems. 2004. XIV, 446 pp. Softcover.
3-540-20890-9

Vol. 39 S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation. 2004. VIII, 277 pp.
Softcover. 3-540-21180-2

Vol. 40 R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decompo-
sition Methods in Science and Engineering. 2005. XVIII, 690 pp. Softcover. 3-540-22523-4

Vol. 41 T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.
2005. XIV, 552 pp. Softcover. 3-540-21147-0

Vol. 42 A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Tool-
box ALBERTA. 2005. XII, 322 pp. Hardcover. 3-540-22842-X

Vol. 43 M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.
2005. XIII, 303 pp. Softcover. 3-540-23026-2

Vol. 44 B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.
2005. XII, 291 pp. Softcover. 3-540-25335-1

Vol. 45 P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.
2005. XII, 402 pp. Softcover. 3-540-24545-6

Vol. 46 D. Kressner (ed.), Numerical Methods for General and Structured Eigenvalue Problems. 2005.
XIV, 258 pp. Softcover. 3-540-24546-4

Vol. 47 A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis
III. 2005. XIII, 201 pp. Softcover. 3-540-21257-4

Vol. 48 F. Graziani (ed.), Computational Methods in Transport. 2006. VIII, 524 pp. Softcover. 3-540-
28122-3

Vol. 49 B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel
(eds.), New Algorithms for Macromolecular Simulation. 2006. XVI, 376 pp. Softcover. 3-540-25542-7

For further information on these books please have a look at our mathematics catalogue at the following
URL: www.springer.com/series/3527

Texts in Computational Science
and Engineering
Vol. 1 H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diff-
pack Programming. 2nd Edition 2003. XXVI, 855 pp. Hardcover. ISBN 3-540-43416-X

Vol. 2 A. Quarteroni, F. Saleri, Scientific Computing with MATLAB. 2003. IX, 257 pp. Hardcover.
ISBN 3-540-44363-0

For further information on these books please have a look at our mathematics catalogue at the following
URL:

Vol. 3 H. P. Langtangen, Python Scripting for Computational Science. 2nd Edition 2006. XXIV, 736 pp.
Hardcover. ISBN 3-540-29415-5

www.springer.com/series/5151

Vol. 51 A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers 2006. XII, 482 pp. Softcover. 3-540-29076-1

Vol. 50 M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations. 2006. XVIII, 362 pp. Softcover. 3-540-28403-6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

