| ecture Notes in Computational

Science and Engineering

%, =1 ?e"‘\ \-.‘;-.! .

51

Editorial
Board:

T.J).Barth
M. Griebel
D. E. Keyes
. | R. M. Nieminen
D. Roose
| T.Schlick

Are Magnus Bruaset
Aslak Tveito
Editors

Numerical Solution
of Partial Differential
Equations on Parallel
Computers

@ Springer

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose

Tamar Schlick

Are Magnus Bruaset Aslak Tveito (Eds.)

Numerical Solution
of Partial Differential
Equations on Parallel
Computers

With 201 Figures and 42 Tables

@ Springer

Editors

Are Magnus Bruaset
Aslak Tveito
Simula Research Laboratory
P.O. Box 134
1325 Lysaker, Fornebu, Norway
email: arem@simula.no

aslak @simula.no

The second editor of this book has received financial support from the NFF — Norsk faglitterer
forfatter- og oversetterforening

Library of Congress Control Number: 2005934453

Mathematics Subject Classification:
Primary: 65Mo6, 65M50, 65M55, 65M60, 65Y05, 65Y10
Secondary: 65N06, 65N30, 65N50, 65N55, 65F10, 65F50

ISBN-10 3-540-29076-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29076-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer I&TEX macro package
Cover design: design & production GmbH, Heidelberg
Printed on acid-free paper SPIN: 11548843 46/TechBooks 543210

Preface

Since the dawn of computing, the quest for a better understanding of Nature has
been a driving force for technological development. Groundbreaking achievements
by great scientists have paved the way from the abacus to the supercomputing power
of today. When trying to replicate Nature in the computer’s silicon test tube, there is
need for precise and computable process descriptions. The scientific fields of Math-
ematics and Physics provide a powerful vehicle for such descriptions in terms of
Partial Differential Equations (PDEs). Formulated as such equations, physical laws
can become subject to computational and analytical studies. In the computational
setting, the equations can be discreti ed for efficient solution on a computer, leading
to valuable tools for simulation of natural and man-made processes. Numerical solu-
tion of PDE-based mathematical models has been an important research topic over
centuries, and will remain so for centuries to come.

In the context of computer-based simulations, the quality of the computed results
is directly connected to the model’s complexity and the number of data points used
for the computations. Therefore, computational scientists tend to fill even the largest
and most powerful computers they can get access to, either by increasing the si e
of the data sets, or by introducing new model terms that make the simulations more
realistic, or a combination of both. Today, many important simulation problems can
not be solved by one single computer, but calls for parallel computing. Whether be-
ing a dedicated multi-processor supercomputer or a loosely coupled cluster of office
workstations, the concept of parallelism offers increased data storage and increased
computing power. In theory, one gets access to the grand total of the resources of-
fered by the individual units that make up the multi-processor environment. In prac-
tice, things are more complicated, and the need for data communication between the
different computational units consumes parts of the theoretical gain of power.

Summing up the bits and pieces that go into a large-scale parallel computation,
there are aspects of hardware, system software, communication protocols, memory
management, and solution algorithms that have to be addressed. However, over time
efficient ways of addressing these issues have emerged, better software tools have
become available, and the cost of hardware has fallen considerably. Today, compu-
tational clusters made from commodity parts can be set up within the budget of a

VI Preface

typical research department, either as a turn-key solution or as a do-it-yourself
project. Supercomputing has become affordable and accessible.

About this book

This book addresses the major topics involved in numerical simulations on paral-
lel computers, where the underlying mathematical models are formulated in terms
of PDEs. Most of the chapters dealing with the technological components of par-
allel computing are written in a survey style and will provide a comprehensive, but
still readable, introduction for students and researchers. Other chapters are more spe-
cialized, for instance focusing on a specific application that can demonstrate practi-
cal problems and solutions associated with parallel computations. As editors we are
proud to put together a volume of high-quality and useful contributions, written by
internationally acknowledged experts on high-performance computing.

The first part of the book addresses fundamental parts of parallel computing in
terms of hardware and system software. These issues are vital to all types of par-
allel computing, not only in the context of numerical solution of PDEs. To start
with, Ricky Kendall and co-authors discuss the programming models that are most
commonly used for parallel applications, in environments ranging from a simple de-
partmental cluster of workstations to some of the most powerful computers available
today. Their discussion covers models for message passing and shared memory pro-
gramming, as well as some future programming models. In a closely related chapter,
Jim Teresco et al. look at how data should be partitioned between the processors in
a parallel computing environment, such that the computational resources are utilized
as efficient as possible. In a similar spirit, the contribution by Martin Rumpf and
Robert Strzodka also aims at improved utilization of the available computational re-
sources. However, their approach is somewhat unconventional, looking at ways to
benefit from the considerable power available in graphics processors, not only for
visualization purposes but also for numerical PDE solvers. Given the low cost and
easy access of such commodity processors, one might imagine future cluster solu-
tions with really impressive price-performance ratios.

Once the computational infrastructure is in place, one should concentrate on how
the PDE problems can be solved in an efficient manner. This is the topic of the
second part of the book, which is dedicated to parallel algorithms that are vital to
numerical PDE solution. Luca Formaggia and co-authors present parallel domain
decomposition methods. In particular, they give an overview of algebraic domain de-
composition techniques, and introduce sophisticated preconditioners based on a mul-
tilevel approximative Schur complement system and a Schwarz-type decomposition,
respectively. As Schwarz-type methods call for a coarse level correction, the paper
also proposes a strategy for constructing coarse operators directly from the algebraic
problem formulation, thereby handling unstructured meshes for which a coarse grid
can be difficult to define. Complementing this multilevel approach, Frank Hiilsemann
et al. discuss how another important family of very efficient PDE solvers, geometric
multigrid, can be implemented on parallel computers. Like domain decomposition
methods, multigrid algorithms are potentially capable of being order-optimal such

Preface VII

that the solution time scales linearly with the number of unknowns. However, this
paper demonstrates that in order to maintain high computational performance the
construction of a parallel multigrid solver is certainly problem-dependent. In the fol-
lowing chapter, Ulrike Meier Yang addresses parallel algebraic multigrid methods.
In contrast to the geometric multigrid variants, these algorithms work only on the
algebraic system arising from the discretization of the PDE, rather than on a mul-
tiresolution discretization of the computational domain. Ending the section on paral-
lel algorithms, Nikos Chrisochoides surveys methods for parallel mesh generation.
Meshing procedures are an important part of the discretization of a PDE, either used
as a preprocessing step prior to the solution phase, or in case of a changing geometry,
as repeated steps in course of the simulation. This contribution concludes that it is
possible to develop parallel meshing software using off-the-shelf sequential codes as
building blocks without sacrificing the quality of the constructed mesh.

Making advanced algorithms work in practice calls for development of sophis-
ticated software. This is especially important in the context of parallel computing,
as the complexity of the software development tends to be significantly higher than
for its sequential counterparts. For this reason, it is desirable to have access to a
wide range of software tools that can help make parallel computing accessible. One
way of addressing this need is to supply high-quality software libraries that provide
parallel computing power to the application developer, straight out of the box. The
hypre library presented by Robert D. Falgout et al. does exactly this by offering par-
allel high-performance preconditioners. Their paper concentrates on the conceptual
interfaces in this package, how these are implemented for parallel computers, and
how they are used in applications. As an alternative, or complement, to the library
approach, one might look for programming languages that tries to ease the process
of parallel coding. In general, this is a quite open issue, but Xing Cai and Hans Pet-
ter Langtangen contribute to this discussion by considering whether the high-level
language Python can be used to develop efficient parallel PDE solvers. They address
this topic from two different angles, looking at the performance of parallel PDE
solvers mainly based on Python code and native data structures, and through the
use of Python to parallelize existing sequential PDE solvers written in a compiled
language like FORTRAN, C or C++. The latter approach also opens for the possibil-
ity of combining different codes in order to address a multi-model or multiphysics
problem. This is exactly the concern of Lois Curfman McInnes and her co-authors
when they discuss the use of the Common Component Architecture (CCA) for paral-
lel PDE-based simulations. Their paper gives an introduction to CCA and highlights
several parallel applications for which this component technology is used, ranging
from climate modeling to simulation of accidental fires and explosions.

To communicate experiences gained from work on some complete simulators,
selected parallel applications are discussed in the latter part of the book. Xing Cai
and Glenn Terje Lines present work on a full-scale parallel simulation of the elec-
trophysiology of the human heart. This is a computationally challenging problem,
which due to a multiscale nature requires a large amount of unknowns that have to
be resolved for small time steps. It can be argued that full-scale simulations of this
problem can not be done without parallel computers. Another challenging geody-

VIII Preface

namics problem, modeling the magma genesis in subduction zones, is discussed by
Matthew G. Knepley et al. They have ported an existing geodynamics code to use
PETSc, thereby making it parallel and extending its functionality. Simulations per-
formed with the resulting application confirms physical observations of the thermal
properties in subduction zones, which until recently were not predicted by computa-
tions. Finally, in the last chapter of the book, Carolin K&rner et al. present parallel
Lattice Boltzmann Methods (LBMs) that are applicable to problems in Computa-
tional Fluid Dynamics. Although not being a PDE-based model, the LBM approach
can be an attractive alternative, especially in terms of computational efficiency. The
power of the method is demonstrated through computation of 3D free surface flow,
as in the interaction and growing of gas bubbles in a melt.

Acknowledgements

We wish to thank all the chapter authors, who have written very informative and
thorough contributions that we think will serve the computational community well.
Their enthusiasm has been crucial for the quality of the resulting book.

Moreover, we wish to express our gratitude to all reviewers, who have put time
and energy into this project. Their expert advice on the individual papers has been
useful to editors and contributors alike. We are also indebted to Dr. Martin Peters at
Springer-Verlag for many interesting and useful discussions, and for encouraging the
publication of this volume.

Fornebu Are Magnus Bruaset
September, 2005 Aslak Tveito

Contents

Part I Parallel Computing

1 Parallel Programming Models Applicable to Cluster Computing

and Beyond

Ricky A. Kendall, Masha Sosonkina, William D. Gropp, Robert W. Numrich,

Thomas Sterling e
L1 IntroduCtionouuiit it
1.2 Message-Passing Interface o i
1.3 Shared-Memory Programming with OpenMP
1.4 Distributed Shared-Memory Programming Models................
1.5 Future Programming Models
1.6 Final Thoughts.
References oot

2 Partitioning and Dynamic Load Balancing for the Numerical Solution
of Partial Differential Equations

James D. Teresco, Karen D. Devine, Joseph E. Flaherty
2.1 The Partitioning and Dynamic Load Balancing Problems
2.2 Partitioning and Dynamic Load Balancing Taxonomy
2.3 Algorithm COmPAriSOnsuuuteeeuunneeeenneaann
24 SOftware
2.5 Current Challengesooiuinintiiii i
References

3 Graphics Processor Units: New Prospects for Parallel Computing

Martin Rumpf, Robert Strzodka
3.1 Introductioniiiie e
3.2 TheOrY ...ttt
33 PractiCeottt
34 PIOSPECES . vttt ettt e
3.5 Appendix: Graphics Processor Units (GPUs) In-Depth

Contents

References 131

Part I Parallel Algorithms

4 Domain Decomposition Techniques

Luca Formaggia, Marzio Sala, Fausto Saleri 135
4.1 IntroduCtioniiiounin e 135
4.2 The Schur Complement System.ooeiinnneeeenn... 138
4.3 The Schur Complement System Used as a Preconditioner 146
4.4 The Schwarz Preconditioner, 147
45 Applications. 152
4.6 CONCIUSIONS ..ottt ettt et ettt et et 159
References 162

5 Parallel Geometric Multigrid

Frank Hiilsemann, Markus Kowarschik, Marcus Mohr, Ulrich Riide 165
5.1 OVEIVIBW o ovti et e 165
5.2 Introduction to Multigrid i, 166
5.3 Elementary Parallel Multigrid 177
5.4 Parallel Multigrid for Unstructured Grid Applications 189
5.5 Single-Node Performance 193
5.6 Advanced Parallel Multigrid i, 195
5.7 ConClUSIONSttt 204
Referenceso 205

6 Parallel Algebraic Multigrid Methods — High
Performance Preconditioners

Ulrike Meier Yang e 209
6.1 Introductiont 209
6.2 Algebraic Multigrid - Concept and Description................... 210
6.3 Coarse Grid Selectionttt 212
6.4 Interpolation................ oo 220
6.5 Smoothing i 223
6.6 Numerical Results 225
6.7 Software Packages.............coiiiiiiiii 230
6.8 Conclusions and Future Work 232
Referencesooii i 233

7 Parallel Mesh Generation

Nikos Chrisochoides i 237
7.1 IntroduCtioncouinininie et 237
7.2 Domain Decomposition Approaches...................... 238
7.3 Parallel Mesh Generation Methods 240
T4 TaXONOMY vttt ettt e et e e e et e e et 255
7.5 Implementation iuniiine i, 255

7.6

Contents XI

Future Directionst e 258

Referenceso 259

Part III Parallel Software Tools

8 The Design and Implementation of hypre, a Library of Parallel High
Performance Preconditioners

Robert D. Falgout, Jim E. Jones, Ulrike Meier Yang 267
8.1 Introduction i e 267
8.2 Conceptual Interfaces ... 268
83 Object Modelo 270
8.4 The Structured-Grid Interface (Struct) ..., .. 272
8.5 The Semi-Structured-Grid Interface (semiStruct).............. 274
8.6 The Finite Element Interface (FEI)cccvviiiinenn.... 280
8.7 The Linear-Algebraic Interface (IJ).......... 281
8.8 Implementationoiiiiiiiniiiii 282
8.9 Preconditioners and Solvers o il 289
8.10 Additional Informationot 291
8.11 Conclusions and Future Work it 291
Referencesoouiiii i 292

9 Parallelizing PDE Solvers Using the Python Programming Language

Xing Cai, Hans Petter Langtangent 295
9.1 IntrodUCtionoiniiie it it 295
9.2 High-Performance Serial Computing in Python................ ... 296
9.3 Parallelizing Serial PDE Solvers, 299
9.4 Python Software for Parallelization............................. 307
9.5 Test Cases and Numerical Experiments 313
9.6 SUmMMATY ... 323
References ... 324

10 Parallel PDE-Based Simulations Using the Common
Component Architecture

Lois Curfman Mclnnes, Benjamin A. Allan, Robert Armstrong, Steven J.
Benson, David E. Bernholdt, Tamara L. Dahlgren, Lori Freitag Diachin,
Manojkumar Krishnan, James A. Kohl, J. Walter Larson, Sophia Lefantzi,

Jarek Nieplocha, Boyana Norris, Steven G. Parker, Jaideep Ray, Shujia Zhou . 327
10.1 Introductioncouuii it 328
10.2 Motivating Parallel PDE-Based Simulations 330
10.3 High-Performance Components.ouiviunneenn. .. 334
10.4 Reusable Scientific Componentscooviiuneenn ... 344
10.5 Componentization Strategiesooiiinnaa... 355
10.6 Case Studies: Tying Everything Together....................... 359
10.7 Conclusions and Future Work 371
References 373

XII Contents

Part IV Parallel Applications

11 Full-Scale Simulation of Cardiac Electrophysiology

on Parallel Computers

Xing Cai, Glenn Terje Lines
11,1 Introductionttt e
11.2 The Mathematical Model,
11.3 The Numerical Strategyouueiiiuineeninnneanan.
11.4 A Parallel Electro-Cardiac Simulator
11.5 Some Techniques for Overhead Reduction.......................
11.6 Numerical EXxperimentsuiiuniinnneinneenneenn.
11.7 Concluding Remarks. i,
References

12 Developing a Geodynamics Simulator with PETSc

Matthew G. Knepley, Richard F. Katz, Barry Smith
12.1 Geodynamics of SubductionZones.couvvio...
12.2 Integrating PETSC
12.3 Data Distribution and Linear Algebra...........................
12,4 SOIVETS ..o
12.5 EXIENSIONS . vttt ettt e e e e e et e e e e
12.6 Simulation Results i
References

13 Parallel Lattice Boltzmann Methods for CFD Applications

Carolin Korner, Thomas Pohl, Ulrich Riide, Nils Thiirey, Thomas Zeiser
13.1 Introductionc.niiii ittt it ettt
13.2 Basics of the Lattice Boltzmann Method
13.3 General Implementation Aspects and Optimization of the Single

CPU Performance0 ...

13.4 Parallelization of a Simple Full-Grid LBM Code
13.5 Free Surfaces i
13.6 Summary and Outlook o i,
Referencest

Color Figures

Part I

Parallel Computing

1

Parallel Programming Models Applicable to Cluster
Computing and Beyond

Ricky A. Kendall!, Masha Sosonkina', William D. Gropp?, Robert W. Numrich?,
and Thomas Sterling*

! Scalable Computing Laboratory, Ames Laboratory, USDOE, Ames, IA 50011, USA

[rickyk,mashal @scl.ameslab.gov

Mathematics and Computer Science Division, Argonne National Laboratory,

Argonne, IL 60439, USA

gropp@mncs.anl.gov

Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA

rwnemsi.umn.edu

4 California Institute of Technology, Pasadena, CA 91125, USA
tronecacr.caltech.edu

Summary. This chapter centers mainly on successful programming models that map al-
gorithms and simulations to computational resources used in high-performance computing.
These resources range from group-based or departmental clusters to high-end resources avail-
able at the handful of supercomputer centers around the world. Also covered are newer pro-
gramming models that may change the way we program high-performance parallel computers.

1.1 Introduction

Solving a system of partial differential equations (PDEs) lies at the heart of many sci-
entific applications that model physical phenomena. The solution of PDEs—often the
most computationally intensive task of these applications—demands the full power
of multiprocessor computer architectures combined with effective algorithms.

This synthesis is particularly critical for managing the computational complex-
ity of the solution process when nonlinear PDEs are used to model a problem. In
such a case, a mix of solution methods for large-scale nonlinear and linear systems
of equations is used, in which a nonlinear solver acts as an “outer” solver. These
methods may call for diverse implementations and programming models. Hence so-
phisticated software engineering techniques and a careful selection of parallel pro-
gramming tools have a direct effect not only on the code reuse and ease of code
handling but also on reaching the problem solution efficiently and reliably. In other
words, these tools and techniques affect the numerical efficiency, robustness, and
parallel performance of a solver.

For linear PDEs, the choice of a solution method may depend on the type
of linear system of equations used. Many parallel direct and iterative solvers are

4 R. A. Kendall et al.

designed to solve a particular system type, such as symmetric positive definite lin-
ear systems. Many of the iterative solvers are also specific to the application and
data format. There exists only a limited selection of “general-purpose” distributed-
memory iterative-solution implementations. Among the better-known packages that
contain such implementations are PETSc [3, 46], hypre [11, 23], and pARMS [50].
One common feature of these packages is that they are all based on domain decom-
position methods and include a wide range of parallel solution techniques, such as
preconditioners and accelerators.

Domain decomposition methods simply divide the domain of the problem into
smaller parts and describe how solutions (or approximations to the solution) on each
part is combined to give a solution (or approximation) to the original problem. For
hyperbolic PDEs, these methods take advantage of the finite signal speed property.
For elliptic, parabolic, and mixed PDEs, these methods take advantage of the fact
that the influence of distant parts of the problem, while nonzero, is often small (for a
specific example, consider the Green’s function for the solution to the Poisson prob-
lem). Domain decomposition methods have long been successful in solving PDEs
on single processor computers (see, e.g, [72]), and lead to efficient implementations
on massively parallel distributed-memory environments.> Domain decomposition
methods are attractive for parallel computing mainly because of their “divide-and-
conquer”’ approach, to which many parallel programming models may be readily ap-
plied. For example, all three of the cited packages use the message-passing interface
MPI for communication. When the complexity of the solution methods increases,
however, the need to mix different parallel programming models or to look for novel
ones becomes important. Such a situation may arise, for example, when developing a
nontrivial parallel incomplete LU factorization, a direct sparse linear system solver,
or any algorithm where data storage and movement are coupled and complex. The
programming model(s) that provide(s) the best portability, performance, and ease of
development or expression of the algorithm should be used. A good overview of ap-
plications, hardware and their interactions with programming models and software
technologies is [17].

1.1.1 Programming Models

What is a programming model? In a nutshell it is the way one thinks about the flow
and execution of the data manipulation for an application. It is an algorithmic map-
ping to a perceived architectural moiety.

In choosing a programming model, the developer must consider many factors:
performance, portability, target architectures, ease of maintenance, code revision
mechanisms, and so forth. Often, tradeoffs must be made among these factors. Trad-
ing computation for storage (either in memory or on disk) or for communication of
data is a common algorithmic manipulation. The complexity of the tradeoffs is com-
pounded by the use of parallel algorithms and hardware. Indeed, a programmer may

SNo memory is visible to all processors in a distributed-memory environment; each
processor can only see their own local memory.

1 Parallel Programming Models 5

Node Node Node Node

Interconnect

Fig. 1.1. Generic architecture for a cluster system.

have (as many libraries and applications do) multiple implementations of the same
algorithm to allow for performance tuning on various architectures.

Today, many small and high-end high-performance computers are clusters with
various communication interconnect technologies and with nodes® having more
than one processor. For example, the Earth Simulator [20] is a cluster of very
powerful nodes with multiple vector processors; and large IBM SP installations
(e.g., the system at the National Energy Research Scientific Computing Center,
http://hpcf.nersc.gov/computers/SP) have multiple nodes with 4, 8, 16, or 32 proces-
sors each. These systems are at an abstract level the same kind of system. The funda-
mental issue for parallel computation on such clusters is how to select a programming
model that gets the data in the right place when computational resources are avail-
able. This problem becomes more difficult as the number of processors increases;
the term scalability is used to indicate the performance of an algorithm, method, or
code, relative to a single processor. The scalability of an application is primarily the
result of the algorithms encapsulated in the programming model used in the appli-
cation. No programming model can overcome the scalability limitations inherent in
the algorithm. There is no free lunch.

A generic view of a cluster architecture is shown in Figure 1.1. In the early Be-
owulf clusters, like the distributed-memory supercomputer shown in Figure 1.2, each
node was typically a single processor. Today, each node in a cluster is usually at least
a dual-processor symmetric processing (SMP) system. A generic view of an SMP
node or a general shared-memory system is shown in Figure 1.3. The number of
processors per computational node varies from one installation to another. Often,
each node is composed of identical hardware, with the same software infrastructure
as well.

The “view” of the target system is important to programmers designing parallel
algorithms. Mapping algorithms with the chosen programming model to the system
architecture requires forethought, not only about how the data is moved, but also
about what type of hardware transport layer is used: for example, is data moved over

®A node is typically defined as a set of processors and memory that have a single system
image; one operating system and all resources are visible to each other in the “node” moiety.

R. A. Kendall et al.

Relelele

Memory Memory | | Memory Memory

Interconnect

Fig. 1.2. Generic architecture for a distributed-memory cluster with a single processor.

PP9%

Memory

Fig. 1.3. Generic architecture for a shared-memory system.

a shared-memory bus between cooperating threads or over a fast Ethernet network
between cooperating processes?

This chapter presents a brief overview of various programming models that work
effectively on cluster computers and high-performance parallel supercomputers. We
cannot cover all aspects of message-passing and shared-memory programming. Our
goal is to give a taste of the programming models as well as the most important as-
pects of the models that one must consider in order to get an application parallelized.
Each programming model takes a significant effort to master, and the learning experi-
ence is largely based on trial and error, with error usually being the better educational
track. We also touch on newer techniques that are being used successfully and on a
few specialty languages that are gaining support from the vendor community. We
give numerous references so that one can delve more deeply into any area of interest.

1 Parallel Programming Models 7
1.1.2 Application Development Efforts

“Best practices” for software engineering are commonly applied in industry but have
not been so widely adopted in high-performance computing. Dubois outlines ten
such practices for scientific programming [18]. We focus here on three of these.

The first is the use of a revision control system that allows multiple develop-
ers easy access to a central repository of the software. Both commercial and open
source revision control systems exist. Some commonly used, freely available sys-
tems include Concurrent Versions System (CVS), Subversion, and BitKeeper. The
functionality in these systems includes

branching release software from the main development source,

comparing modifications between versions of various subunits,

merging modifications of the same subunit from multiple users, and

obtaining a version of the development or branch software at a particular date
and time.

The ability to recover previous instances of subunits of software can make debugging
and maintenance easier and can be useful for speculative development efforts.

The second software engineering practice is the use of automatic build proce-
dures. Having such procedures across a variety of platforms is useful in finding bugs
that creep into code and inhibit portability. Automated identification of the language
idiosyncrasies of different compilers minimizes efforts of porting to a new platform
and compiler system. This is essentially normalizing the interaction of compilers and
your software.

The third software engineering practice of interest is the use of a robust and ex-
haustive test suite. This can be coupled to the build infrastructure or, at a minimum,
with every software release. The test suite should be used to verify the function-
ality of the software and, hence, the viability of a given release; it also provides a
mechanism to ensure that ports to new computational resources are valid.

The cost of these software engineering mechanisms is not trivial, but they do
make the maintenance and distribution easier. Consider the task of making Linux
software distribution agnostic. Each distribution must have different versions of par-
ticular software moieties in addition to the modifications that each distribution makes
to that software. Proper application of these tasks is essentially making one’s soft-
ware operating system agnostic.

1.2 Message-Passing Interface

Parallel computing, with any programming model, involves two actions: transferring
data among workers and coordinating the workers. A simple example is a room full
of workers, each at a desk. The work can be described by written notes. Passing
a note from one worker to another effects data transfer; receiving a note provides
coordination (think of the note as requesting that the work described on the note be
executed). This simple example is the background for the most common and most

8 R. A. Kendall et al.

portable parallel computing model, known as message passing. In this section we
briefly cover the message-passing model, focusing on the most common form of this
model, the Message-Passing Interface (MPI).

1.2.1 The Message-Passing Interface

Message passing has a long history. Even before the invention of the modern digital
computer, application scientists proposed halls full of skilled workers, each working
on a small part of a larger problem and passing messages to their neighbors. This
model of computation was formalized in computer science theory as communicating
sequential processes (CSP) [36]. One of the earliest uses of message passing was
for the Caltech Cosmic Cube, one of the first scalable parallel machines [71]. The
success (perhaps more accurately, the potential success of highly parallel computing
demonstrated by this machine) spawned many parallel machines, each with its own
version of message passing.

In the early 1990s, the parallel computing market was divided among several
companies, including Intel, IBM, Cray, Convex, Thinking Machines, and Meiko. No
one system was dominant, and as a result the market for parallel software was splin-
tered. To address the need for a single method for programming parallel computers,
an informal group calling itself the MPI Forum and containing representatives from
all stake-holders, including parallel computer vendors, applications developers, and
parallel computing researchers, began meeting [33]. The result was a document de-
scribing a standard application programming interface (API) to the message-passing
model, with bindings for the C and Fortran languages [52]. This standard quickly
became a success. As is common in the development of standards, there were a few
problems with the original MPI standard, and the MPI Forum released two updates,
called MPI 1.1 and MPI 1.2. MPI 1.2 is the most widely available version today.

1.2.2 MPI 1.2

When MPI was standardized, most message-passing libraries at that time described
communication between separate processes and contained three major components:

e Processing environment — information about the number of processes and other
characteristics of the parallel environment.
Point-to-point — messages from one process to another
Collective — messages between a collection of processes (often all processes)

We will discuss each of these in turn. These components are the heart of the
message passing programming model.

Processing Environment

In message passing, a parallel program comprises a number of separate processes that
communicate by calling routines. The first task in an MPI program is to initialize the

1 Parallel Programming Models 9

#include "mpi.h"

#include <stdio.hs>

int main(int argc, char =sargv[])

{
int rank, size;
MPI_ Init(&argc, &argv);
MPI Comm size(MPI_COMM WORLD, &size);
MPI Comm rank(MPI_ COMM WORLD, &rank) ;
printf ("Hello World! I am %d of %d\n", rank, size);
MPI Finalize();
return O0;

Fig. 1.4. A simple MPI program.

MPI library; this is accomplished with MPI_Init. When a program is done with
MPI (usually just before exiting), it must call MPI_Finalize. Two other routines
are used in almost all MPI programs. The first, MPI_Comm_size, returns in the
second argument the number of processes available in the parallel job. The second,
MPI_Comm_rank, returns in the second argument a ranking of the calling process,
with a value between zero and size—1. Figure 1.4 shows a simple MPI program that
prints the number of processes and the rank of each process. MPI_COMM_WORLD
represents all the cooperating processes.

While MPI did not specify a way to run MPI programs (much as neither C nor
Fortran specifies how to run C or Fortran programs), most parallel computing sys-
tems require that parallel programs be run with a special program. For example, the
program mpiexec might be used to run an MPI program. Similarly, an MPI envi-
ronment may provide commands to simplify compiling and linking MPI programs.
For example, for some popular MPI implementations, the following steps will run
the program in Figure 1.4 with four processes, assuming that program is stored in
the file first.c:

mpicc -o first first.c
mpiexec -n 4 first

The output may be

Hello World! I am 2 of 4
Hello World! I am 3 of 4
Hello World! I am 0 of 4
Hello World! I am 1 of 4

Note that the output of the process rank is not ordered from zero to three. MPI spec-
ifies that all routines that are not MPI routines behave independently, including I/O
routines such as printf.

We emphasize that MPI describes communication between processes, not proces-
sors. For best performance, parallel programs are often designed to run with one
process per processor (or, as we will see in the section on OpenMP, one thread per
processor). MPI supports this model, but MPI also allows multiple processes to be

10 R. A. Kendall et al.

run on a single-processor machine. Parallel programs are commonly developed on
single-processor laptops, even with multiple processes. If there are more than a few
processes per processor, however, the program may run very slowly because of con-
tention among the processes for the resources of the processor.

Point-to-Point Communication

The program in Figure 1.4 is a very simple parallel program. The individual processes
neither exchange data nor coordinate with each other. Point-to-point communication
allows two processes to send data from one to another. Data is sent by using rou-
tines such as MPI_Send and is received by using routines such as MPT_Recv (we
mention later several specialized forms for both sending and receiving).

We illustrate this type of communication in Figure 1.5 with a simple program that
sums contributions from each process. In this program, each process first determines
its rank and initializes the value that it will contribute to the sum. (In this case, the
sum itself is easily computed analytically; this program is used for illustration only.)
After receiving the contribution from the process with rank one higher, it adds the
received value into its contribution and sends the new value to the process with rank
one lower. The process with rank zero only receives data, and the process with the
largest rank (equal to size—1) only sends data.

The program in Figure 1.5 introduces a number of new points. The most obvi-
ous are the two new MPI routines MPI_Send and MPI_Recv. These have similar
arguments. Each routine uses the first three arguments to specify the data to be sent
or received. The fourth argument specifies the destination (for MPI_Send) or source
(for MPI_Recv) process, by rank. The fifth argument, called a fag, provides a way to
include a single integer with the data; in this case the value is not needed, and a zero
is used (the value used by the sender must match the value given by the receiver).
The sixth argument specifies the collection of processes to which the value of rank
is relative; we use MPI_COMM_WORLD, which is the collection of all processes in the
parallel program (determined by the startup mechanism, such as mpiexec in the
“Hello World” example). There is one additional argument to MPI_Recv: status.
This value contains some information about the message that some applications may
need. In this example, we do not need the value, but we must still provide the argu-
ment.

The three arguments describing the data to be sent or received are, in order, the
address of the data, the number of items, and the type of the data. Each basic datatype
in the language has a corresponding MPI datatype, as shown in Table 1.1.

MPT allows the user to define new datatypes that can represent noncontiguous
memory, such as rows of a Fortran array or elements indexed by an integer array
(also called scatter-gathers). Details are beyond the scope of this chapter, however.

This program also illustrates an important feature of message-passing programs:
because these are separate, communicating processes, all variables, such as rank
or valout, are private to each process and may (and often will) contain different
values. That is, each process has its own memory space, and all variables are private

1 Parallel Programming Models

#include "mpi.h"

#include <stdio.hs>

int main(int argc, char sargv[])
int size, rank, valIn, valOut;
MPI_ Status status;

MPI Init(&argc, &argv);

MPI Comm size(MPI_COMM WORLD, &size);
MPI Comm rank (MPI_ COMM WORLD, &rank) ;

/* Pick a simple value to add x/
valIn = rank;

/* receive the partial sum from the right processes
(this is the sum from i=rank+l to size-1) =*/
if (rank < size - 1) {
MPI Recv(&valOut, 1, MPI INT, rank + 1, O,
MPI_COMM WORLD, &status)i
valIn += wvalOut;
}
/+* Send the partial sum to the left (rank-1) process */
if (rank > 0) {
MPI Send(&valIn, 1, MPI INT, rank - 1, O,
MPI_COMM_WORLD) ;
}
else {
printf ("The sum is %d\n", valout);
}

MPI Finalize();
return O;

Fig. 1.5. A simple program to add values from each process.

Table 1.1. Some major predefined MPI datatypes.

C Fortran
int MPI_INT INTEGER MPI_INTEGER
float MPI_FLOAT |REAL MPI_REAL
double MPI_DOUBLE|DOUBLE PRECISION MPI_DOUBLE_PRECISION
char MPI_CHAR CHARACTER MPI_CHARACTER
short MPI_SHORT

11

12 R. A. Kendall et al.

to that process. The only way for one process to change or access data in another
process is with the explicit use of MPI routines such as MPI_Send and MPI_Recv.

MPI provides a number of other ways in which to send and receive messages, in-
cluding nonblocking (sometimes incorrectly called asynchronous) and synchronous
routines. Other routines, such as MPI_Iprobe, can be used to determine whether a
message is available for receipt. The nonblocking routines can be important in ap-
plications that have complex communication patterns and that send large messages.
See [30, Chapter 4] for more details and examples.

Collective Communication and Computation

Any parallel algorithm can be expressed by using point-to-point communication.
This flexibility comes at a cost, however. Unless carefully structured and docu-
mented, programs using point-to-point communication can be challenging to under-
stand because the relationship between the part of the program that sends data and
the part that receives the data may not be clear (note that well-written programs using
point-to-point message passing strive to keep this relationship as plain and obvious
as possible).

An alternative approach is to use communication that involves all processes (or
all in a well-defined subset). MPI provides a wide variety of collective communica-
tion functions for this purpose. As an added benefit, these routines can be optimized
for their particular operations (note, however, that these optimizations are often quite
complex). As an example Figure 1.6 shows a program that performs the same com-
putation as the program in Figure 1.5 but uses a single MPI routine. This routine,
MPI_Reduce, performs a sum reduction (specified with MPI_SUM), leaving the re-
sult on the process with rank zero (the sixth argument).

Note that this program contains only a single branch (if) statement that is used
to ensure that only one process writes the result. The program is easier to read than
its predecessor. In addition, it is effectively parallel; most MPI implementations will
perform a sum reduction in time that is proportional to the log of the number of
processes. The program in Figure 1.5, despite being a parallel program, will take
time that is proportional to the number of processes because each process must wait
for its neighbor to finish before it receives the data it needs to form the partial sum.”

Not all programs can be conveniently and efficiently written by using only col-
lective communications. For example, for most MPI implementations, operations on
PDE meshes are best done by using point-to-point communication, because the data
exchanges are between pairs of processes and this closely matches the point-to-point
programming model.

"One might object that the program in Figure 1.6 doesn’t do exactly what the program in
Figure 1.5 does because, in the latter, all of the intermediate results are computed and available
to those processes. We offer two responses. First, only the value on the rank-zero process
is printed; the others don’t matter. Second, MPI offers the collective routine MPI_Scan to
provide the partial sum results if that is required.

1 Parallel Programming Models 13

#include "mpi.h"
#include <stdio.hs>
int main(int argc, char =sargv[])
{
int rank, valIn, wvalOut;
MPI_Status status;

MPI Init(&argc, &argv);
MPI Comm rank(MPI_COMM WORLD, &rank) ;

/* Pick a simple value to add x/
valln = rank;

/* Reduce to process zero by summing the values x/
MPI Reduce(&valIn, &valOut, 1, MPI INT, MPI SUM, O,
MPI_COMM_WORLD) ;
if (rank == 0) {
printf ("The sum is %d\n", valOut);

}
MPI Finalize();
return 0;
}
Fig. 1.6. Using collective communication and computation in MPI.
Other Features

MPI contains over 120 functions. In addition to nonblocking versions of point-
to-point communication, there are routines for defining groups of processes, user-
defined data representations, and testing for the availability of messages. These are
described in any comprehensive reference on MPI [73, 30].

An important part of the MPI design is its support for programming in the large.
Many parallel libraries have been written that make use of MPI; in fact, many appli-
cations can be written that have no explicit MPI calls and instead use libraries that
themselves use MPI to express parallelism. Before writing any MPI program (or any
program, for that matter), one should check to see whether someone has already done
the hard work. See [31, Chapter 12] for a summary of some numerical libraries for
Beowulf clusters.

1.2.3 The MPI-2 Extensions

The success of MPI created a desire to tackle some of the features not in the original
MPI (henceforth called MPI-1). The major features include parallel I/O, the creation
of new processes in the parallel program, and one-sided (as opposed to point-to-
point) communication. Other important features include bindings for Fortran 90 and

14 R. A. Kendall et al.

C++. The MPI-2 standard was officially released on July 18, 1997, and “MPI” now
means the combined standard consisting of MPI-1.2 and MPI-2.0.

Parallel I/O

Perhaps the most requested feature for MPI-2 was parallel I/O. A major reason for
using parallel I/O (as opposed to independent I/O) is performance. Experience with
parallel programs using conventional file systems showed that many provided poor
performance. Even worse, some of the most common file systems (such as NFS) are
not designed to allow multiple processes to update the same file; in this case, data can
be lost or corrupted. The goal for the MPI-2 interface to parallel I/O was to provide an
interface that matched the needs of applications to create and access files in parallel,
while preserving the flavor of MPI. This turned out to be easy. One can think of
writing to a file as sending a message to the file system; reading a file is somewhat
like receiving a message from the file system (“somewhat,” because one must ask
the file system to send the data). Thus, it makes sense to use the same approach for
describing the data to be read or written as is used for message passing—a tuple of
address, count, and MPI datatype. Because the I/O is parallel, we need to specify the
group of processes; thus we also need a communicator. For performance reasons, we
sometimes need a way to describe where the data is on the disk; fortunately, we can
use MPI datatypes for this as well.

Figure 1.7 shows a simple program for reading a single integer value from a file.
There are three steps, each similar to what one would use with non-parallel I/O:

1. Open the file. The MPI_File_open call takes a communicator (to specify the
group of processes that will access the file), the file name, the access style (in
this case, read-only), and another parameter used to pass additional data (usually
empty, or MPI_INFO_NULL) and returns an MPI_File object that is used in
MPI-IO calls.

2. Use all processes to read from the file. This simple call takes the file handle
returned from MPI_File_open, the same buffer description (address, count,
datatype) used in an MPI_Recv call, and (also like MPI _Recv) a status variable.
In this case we use MPI_STATUS_IGNORE for simplicity.

3. Close the file.

Variations on this program, using other routines from MPI-10, allow one to read
different parts of the file to different processes and to specify from where in the file
to read. As with message passing, there are also nonblocking versions of the I/O
routines, with a special kind of nonblocking collective operation, called split-phase
collective, available only for these I/O routines.

Writing files is similar to reading files. Figure 1.8 shows how each process can
write the contents of the array solution with a single collective 1/O call.

Figure 1.8 illustrates the use of collective I/O, combined with file views, to effi-
ciently write data from many processes to a single file in a way that provides a natural
ordering for the data. Each process writes ARRAY_SIZE double-precision values to
the file, ordered by the MPI rank of the process. Once this file is written, another

1 Parallel Programming Models 15

/* Declarations, including =/
MPI_File fh;
int val;

/* Start MPI «/
MPI Init(&argc, &argv);

/+* Open the file for reading only x/
MPI File open(MPI_COMM WORLD, "input.dat",
MPI_MODE RDONLY, MPI_ INFO NULL, &fh);

/* All processes access the file and read the same value
into val %/
MPI File read all(fh, &val, 1, MPI_INT,
MPI_STATUS IGNORE) ;
/* Close the file when no longer needed =/
MPI File close(&fh);

Fig. 1.7. A simple program to read a single integer from a file.

#define ARRAY SIZE 1000
/* Declarations, including =/
MPI File fh;
int rank;
int Solution[ARRAY_SIZE];

/* Start MPI «*/
MPI Init(&argc, &argv);

/+* Open the file for reading only x/
MPI_File_open(MPI_COMM_WORLD, "output.dat",
MPI_MODE WRONLY, MPI_INFO NULL, &fh);

/+ Define where each process writes in the file */
MPI Comm rank(MPI_COMM WORLD, &rank);
MPI File set view(fh, rank * ARRAY SIZE * sizeof (double),
MPI DOUBLE, MPI_DOUBLE, "native",
MPI_INFO NULL) ;
/+ Perform the write x/
MPI _File write all(fh, solution, ARRAY SIZE, MPI_DOUBLE,
MPI_STATUS_ IGNORE) ;
/* Close the file when no longer needed =/
MPI File close(&fh);

Fig. 1.8. A simple program to write a distributed array to a file in a standard order that is
independent of the number of processes.

16 R. A. Kendall et al.

program, using a different number of processes, can read the data in this file. For
example, a non-parallel program could read this file, accessing all of the data.

Several good libraries provide convenient parallel I/O for user applications. Par-
allel netCDF [49] and HDF-5 [24] can read and write data files in a standard format,
making it easy to move files between platforms. These libraries also encourage the
inclusion of metadata in the file that describes the contents, such as the source of
the computation and the meaning and units of measurements of the data. Parallel
netCDF in particular encourages a collective I/O style for input and output, which
helps ensure that the parallel I/O is efficient. We recommend that an I/O library be
used if possible.

Dynamic Processes

Another feature that was often requested for MPI-2 was the ability to create and use
additional processes. This is particularly valuable for ad hoc collections of desktop
systems. Since MPI is designed for use on all kinds of parallel computers, from
collections of desktops to dedicated massively parallel computers, a scalable design
was needed. MPI must also operate in a wide variety of environments, including ones
where process creation is controlled by special process managers and schedulers.

In order to ensure scalability, process creation in MPI is collective, both over a
group of processes that are creating new processes and over the group of processes
created. The act of creating processes, or spawning, is accomplished with the rou-
tine MPI_Comm_spawn. This routine takes the name of the program to run, the
command-line arguments for that program, the number of processes to create, the
MPI communicator representing the group of processes that are spawning the new
processes, a designated root (the rank of one process in the communicator that all
members of that communicator agree to), and an MPI_Info object. The call re-
turns a special kind of communicator, called an intercommunicator, that contains
two groups of processes: the original group (from the input communicator) and the
group of created processes. MPI point-to-point communication can then be used with
this intercommunicator. The call also returns an array of error codes, one for each
process.

Dynamic process creation is often used in master-worker programs, where the
master process dynamically creates worker processes and then sends the workers
tasks to perform. Such a program is sketched in Figure 1.9.

MPI also provides routines to spawn different programs on different processes
with MPT_Comm_spawn_multiple. Special values used for the MPI_Info para-
meter allow one to specify special requirements about the processes, such as their
working directory.

In some cases two parallel programs may need to connect to each other. A
common example is a climate simulation, where separate programs perform the at-
mospheric and ocean modeling. However, these programs need to share data at the
ocean-atmosphere boundary. MPI allows programs to connect to one another by us-
ing the routines MPI_Comm_connect and MPI_Comm-accept. See [32, Chapter
7] for more information.

1 Parallel Programming Models 17

MPI Comm workerIntercomm;
int errcodes[10];

MPI Init(&argc, &argv);

MPI Comm spawn(" . /worker", MPI_ ARGV_NULL, 10,
MPI INFO_NULL, 0, MPI_ COMM SELF,
&sworkerIntercomm, errcodes) ;

for (i=0; i<10; i++) {
MPI Send(&task, 1, MPI_INT, i, 0, workerIntercomm) ;

Fig. 1.9. Sketch of an MPI master program that creates 10 worker processes and sends them
each a task, specified by a single integer.

One-Sided Communication

The message-passing programming model relies on the sender and receiver cooper-
ating in moving data from one process to another. This model has many strengths but
can be awkward, particularly when it is difficult to coordinate the sender and receiver.
A different programming model relies on one-sided operations, where one process
specifies both the source and the destination of the data moved between processes.
Experience with BSP [35] and the Cray SHMEM [14] demonstrated the value of
one-sided communication. The challenge for the MPI Forum was to design an inter-
face for one-sided communication that retained the “look and feel” of MPI and could
deliver good and reliable performance on a wide variety of platforms, including very
fast computers without cache-coherent memory. The result was a compromise, but
one that has been used effectively on one of the fastest machines in the world, the
Earth Simulator.

In one-sided communication, a process may either put data into another process
or get data from another process. The process performing the operation is called
the origin process; the other process is the target process. The data movement hap-
pens without explicit cooperation between the origin and target processes. The origin
process specifies both the source and destination of the data. A third operation, ac-
cumulate, allows the origin process to perform some basic operations, such as sum,
with data at the target process. The one-sided model is sometimes called a put-get
programming model.

Figure 1.10 sketches the use of MPI_Put for updating “ghost points” used in a
one-dimensional finite difference grid. This has three parts:

1. One-sided operations may target only memory that has been marked as available
for use by a particular memory window. The memory window is the one-sided
analogue to the MPI communicator and ensures that only memory that the tar-
get process specifies may be updated by another process using MPI one-sided
operations. The definition is made with the MPT_Win_create routine.

18 R. A. Kendall et al.

define ARRAYSIZE
double x[ARRAYSIZE+2];
MPI Win win;
int rank, size, leftNeighbor, rightNeighbor;

MPI Init(&argc, &argv);

/+ compute the neighbors. MPI_PROC NULL means
"no neighbor" =/

leftNeighbor = rightNeighbor = MPI_PROC NULL;

MPI Comm rank(MPI_ COMM WORLD, &rank) ;

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank > 0) leftNeighbor = rank - 1;

if (rank < size - 1) rightNeighbor = rank + 1;

/* x[0] and x[ARRAYSIZE+1l] are the ghost cells */
MPI_Win create(x, (ARRAYSIZE+2) * sizeof (double),
sizeof (double), MPI_ INFO NULL,

MPI_COMM WORLD, &win);
MPI Win fence(0, win);
MPI_Put(&x[1], 1, MPI_DOUBLE,

leftNeighbor, ARRAYSIZE+1l, 1, MPI DOUBLE, win) ;
MPI_Put(&x [ARRAYSIZE], 1, MPI_DOUBLE,

rightNeighbor, 0, 1, MPI DOUBLE, win);
MPI Win fence(0, win);

MPI_Win free(&win);

Fig. 1.10. Sketch of a program that uses MPI one-sided operations to communicate ghost cell
data to neighboring processes.

2. Data is moved by using the MPI_Put routine. The arguments to this routine
are the data to put from the origin process (three arguments: address, count, and
datatype), the rank of the target process, the destination of the data relative to the
target window (three arguments: offset, count, and datatype), and the memory
window object. Note that the destination is specified as an offset into the memory
that the target process specified by using MPI_Win create, not a memory
address. This provides better modularity as well as working with heterogeneous
collections of systems.

3. Because only the origin processes call MPI_Put, the target process needs
some way to know when the data is available. This is accomplished with the
MPI Win_fence routine, which is collective over all the processes that created
the memory window (in this example, all processes). In fact, in MPI the put,
get, and accumulate calls are all nonblocking (for maximum performance), and

1 Parallel Programming Models 19

the MPI_Win_fence call ensures that these calls have completed at the origin
processes.

While the MPI one-sided model is similar to other one-sided models, it has im-
portant differences. In particular, some models assume that the addresses of variables
(particularly arrays) are the same on all processes. This assumption simplifies many
features of the implementation and is true for many applications. MPI, however,
does not assume that all programs are the same or that all runtime images are the
same (e.g., running on heterogeneous platforms, which could be all IA32 processors
but with different installed runtime libraries for C or Fortran). Thus, the address of
MyArray in the program on one processor may not be the same as the address of
the variable with the same name on another processor (some programming models,
such as Co-Array Fortran, do make and require this assumption; see Section 1.5.2).

While we have touched on the issue of synchronization, this is a deep subject
and is reflected in the MPI standard. Reading the standard can create the impression
that the MPI model is very complex, and in some ways this is correct. However,
the complexity is designed to allow implementors the greatest flexibility while de-
livering precisely defined behavior. A few simple rules will guarantee the kind of
behavior that many users expect and use. The full rules are necessary only when
trying to squeeze the last bits of performance from certain kinds of computing plat-
forms, particularly machines without fully cache-coherent memory systems, such as
certain vector machines that are among the world’s fastest. In fact, rules of similar
complexity apply to shared-memory programming and are related to the pragmatic
issues of memory consistency and tradeoffs between performance and simplicity.

Other Features in MPI-2

Among the most important other features in MPI-2 are bindings for C++ and Fortran
90. The C++ binding provides a low-level interface that exploits the natural objects
in MPI. The Fortran 90 binding includes an MPI module, providing some argument
checking for Fortran programs. Other features include routines to specify levels of
thread safety and to support tools that must work with MPI programs. More infor-
mation may be found in [29].

1.2.4 State of the Art

MPI is now over twelve years old. Implementations of MPI-1 are widespread and
mature; many tools and applications use MPI on machines ranging from laptops to
the world’s largest and fastest computers. See [55] for a sampling of papers on MPI
applications and implementations. Improvements continue to be made in the areas
of performance, robustness, and new hardware. In addition, the parallel I/O part of
MPI-2 is widely available.

Shortly after the MPI-2 standard was released, Fujitsu had an implementation
of all of MPI-2 except for MPI_Comm_join and a few special cases of the rou-
tine MPI_Comm_spawn. Other implementations, free or commercially supported,
are now available for a wide variety of systems.

20 R. A. Kendall et al.

The MPI one-sided operations are less mature. Many implementations now sup-
port at least the “active target” model (these correspond to the BSP or put-get fol-
lowed by barrier). In some cases, while the implementation of these operations is
correct, the performance may not be as good as MPI’s point-to-point operations.
Other implementations have achieved good results, even on clusters with no special
hardware to support one-sided operations [75]. Recent work exploiting the abilities
of emerging network standards such as Infiniband shows how the MPI one-sided
operations can provide excellent performance [42].

1.2.5 Summary

MPI provides a mature, capable, and efficient programming model for parallel com-
putation. A large number of applications, libraries, and tools are available that make
use of MPI. MPI applications can be developed on a laptop or desktop, tested on
an ad hoc cluster of workstations or PCs, and then run in production on the world’s
largest parallel computers. Because MPI was designed to support “programming in
the large,” many libraries written with MPI are available, simplifying the task of
building many parallel programs. MPI is also general and flexible; any parallel algo-
rithm can be expressed in MPIL. These and other reasons for the success of MPI are
discussed in more detail in [28].

1.3 Shared-Memory Programming with OpenMP

Shared-memory programming on multiprocessor systems has been around for a long
time. The typical generic architectural schematic for a shared-memory system or an
individual SMP node in a distributed-memory system is shown in Figure 1.3. The
memory of the system is directly accessible by all processors, but that access may
be coupled by different bandwidth and latency mechanisms. The latter situation is
often refered to as non-uniform memory access (NUMA). For optimal performance,
parallel algorithms must take this into account.

The vendor community offers a huge number of shared-memory-based hardware
systems, ranging from dual-processor systems to very large (e.g., 512-processor)
systems. Many clusters are built from these shared-memory nodes, with two or four
processors being common and a few now using 8-way systems. The relatively new
AMD Opteron systems will be generally available in 8-way configurations within
the coming year. More integrated parallel supercomputer systems such as the IBM
SP have 16- or 32-way nodes.

Programming in shared memory can be done in a number of ways, some based
on threads, others on processes. The main difference, by default, is that threads share
the same process construct and memory, whereas multiple processes do not share
memory. Message passing is a multiple process based programming model. Overall,
thread-based models have some advantages. Creating an additional thread of execu-
tion is usually faster than creating another process, and synchronization and context

1 Parallel Programming Models 21

switches among threads are faster than among processes. Shared-memory program-
ming is in general incremental; a given section of code can be parallelized without
modifying external data storage or data access mechanisms.

Many vendors have their own shared-memory programming models. Most offer
System V interprocess communication (IPC) mechanisms, which include shared-
memory segments and semaphores [77]. System V IPC usually shares memory
segments among different processes. The Posix standard [41, 57] offers a specific
threads model called Pthreads. It has a generic interface that makes it more suit-
able for systems-level programming than for high-performance computing applica-
tions. Only one compiler (as far as we know) supports the Fortran Pthreads standard;
C/C++ support is commonplace in Unix; and there is a one-to-one mapping of the
Pthreads API to the Windows threads API as well, so the latter is a common shared-
memory programming model available to the development community. Java threads
also provides a mechanism for shared-memory concurrent programming [40].

Many other thread-based programming libraries are available from the research
community as well, for example, TreadMarks [44]. These libraries are supported
across a wide variety of platforms principally by the library development teams.
OpenMP, on the other hand, is a shared-memory, thread-based programming model
or API supported by the vendor community. Most commercial compilers available
for Linux provide OpenMP support.

Overall, thread-based models have some advantages. Creating an additional
thread of execution is usually faster than creating another process. Synchronization
and context switches among threads are faster than among processes.

In the remainder of this section, we focus on the OpenMP programing model.

1.3.1 OpenMP History

OpenMP [12, 15] was organized in 1997 by the OpenMP Architecture Review Board
(ARB), which owns the copyright on the specifications and manages the standard
development. The ARB is composed primarily of representatives from the vendor
community; membership is open to corporate, research, or academic institutions, not
to individuals [65]. The goal of the original effort was to provide a shared-memory
programming standard that combined the best practices of the vendor community
offerings and some specifications that were a part of previous standardization efforts
of the Parallel Computing Forum [48, 26] and the ANSI X3H5 [25] committee.

The ARB keeps the standard relevant by expanding the standard to meet needs
and requirements of the user and development communities. The ARB also works
to increase the impact of OpenMP and interprets the standard for the community as
questions arise. The currently available version 2 standards for C/C++ [64] and For-
tran [63] can be downloaded from the OpenMP ARB Web site [65]. The ARB has
combined these standards into one working specification (version 2.5) for all lan-
guages, clarifying previous inconsistencies and strengthening the overall standard.
The merged draft was released in November, 2004.

22 R. A. Kendall et al.

Fork

Time

Y

Fig. 1.11. Fork-and-join model of executing threads.

Join

1.3.2 The OpenMP Model

OpenMP uses an execution model of fork and join (see Figure 1.11) in which the
“master” thread executes sequentially until it reaches instructions that essentially
ask the runtime system for additional threads to do concurrent work. Once the con-
current scope of execution has completed, these extra threads simply go away, and
the master thread continues execution serially. The details of the underlying threads
of execution are compiler dependent and system dependent. In fact, some OpenMP
implementations are developed on top of Pthreads. OpenMP uses a set of compiler
directives, environment variables, and library functions to construct parallel algo-
rithms within an application code. OpenMP is relatively easy to use and affords the
ability to do incremental parallelism within an existing software package.

OpenMP uses a variety of mechanisms to construct parallel algorithms within
an application code. These are a set of compiler directives, environment variables,
and library functions. OpenMP is essentially an implicit parallelization method that
works with standard C/C++ or Fortran. Various mechanisms are available for divid-
ing work among executing threads, ranging from automatic parallelism provided by
some compiler infrastructures to the ability to explicitly schedule work based on the
thread ID of the executing threads. Library calls provide mechanisms to determine
the thread ID and number of participating threads in the current scope of execution.
There are also mechanisms to execute code on a single thread atomically in order
to protect execution of critical sections of code. The final application becomes a se-
ries of sequential and parallel regions, for instance connected segments of the single
serial-parallel-serial segment as shown in Figure 1.12.

1 Parallel Programming Models 23

Fork

Join
Fork

Time

Join
Fork

VJoin

Fig. 1.12. An OpenMP application using the fork-and-join model of executing threads has
multiple concurrent teams of threads.

Using OpenMP in essence involves three basic parallel constructs:

1. Expression of the algorithmic parallelism or controlling the flow of the code

2. Constructs for sharing data among threads or the specific communication mech-
anism involved

3. Synchronization constructs for coordinating the interactions among threads

These three basic constructs, in their functional scope, are similar to those used in
MPI or any other parallel programming model.

OpenMP directives are used to define blocks of code that can be executed in
parallel. The blocks of code are defined by the formal block structure in C/C++ and

24 R. A. Kendall et al.

C code Fortran Code
#include <stdio.h> program hello
#include <omp.h> implicit none
int main(int argc, char xargv([]) integer tid
{ integer omp_get_thread_num
int tid; external omp_get_thread num
#pragma omp parallel private(tid) !$omp parallel private(tid)
tid = omp_get_thread_num()
tid = omp_get_thread num() ; write(6,’ (1x,al,1i4,al)"’)
printf ("<%d>\n", tid) ; & '<’,tid,’>’
} !Somp end parallel
} end

Fig. 1.13. “Hello World” OpenMP code.

by comments in Fortran; both the beginning and end of the block of code must be
identified. There are three kinds of OpenMP directives: parallel constructs, work-
sharing constructs within a parallel construct, and combined parallel-work-sharing
constructs.

Communication is done entirely in the shared-memory space of the process con-
taining threads. Each thread has a unique stack pointer and program counter to con-
trol execution in that thread. By default, all variables are shared among threads in the
scope of the process containing the threads. Variables in each thread are either shared
or private. Special variables, such as reduction variables, have both a shared scope
and a private scope that changes at the boundaries of a parallel region. Synchroniza-
tion constructs include mutual exclusions that control access to shared variables or
specific functionality (e.g., regions of code). There are also explicit and implied bar-
riers, the latter being one of the subtleties of OpenMP. In parallel algorithms, there
must be a communication of critical information among the concurrent execution en-
tities (threads or processes). In OpenMP, nearly all of this communication is handled
by the compiler. For example, a parallel algorithm has to know the number of entities
participating in the concurrent execution and how to identify the appropriate portion
of the entire computation for each entity. This maps directly to a process-count- and
process-identifier-based algorithm in MPI.

A simple example is in order to whet the appetite for the details to come. In
the code segments in Figure 1.13 we have a “Hello World”-like program that uses
OpenMP. This generic program uses a simple parallel region that designates the
block of code to be executed by all threads. The C code uses the language stan-
dard braces to identify the block; the Fortran code uses comments to identify the
beginning and end of the parallel region. In both codes the OpenMP library function
omp_get_thread_num returns the thread number, or ID, of the calling thread; the
result is an integer value ranging from O to the number of threads minus 1. Note
that type information for the OpenMP library function function does not follow the
default variable type scoping in Fortran. To run this program, one would execute the
binary like any other binary. To control the number of threads used, one would set the
environment variable OMP_NUM_THREADS to the desired value. What output should
be expected from this code? Table 1.2 shows the results of five runs with the number

1 Parallel Programming Models 25

Table 1.2. Multiple runs of the OpenMP “Hello World” program. Each column represents the
output of a single run of the application on 3 threads.

Run 1 Run 2 Run 3 Run 4 Run 5

<0> <2> <1I> <0> <0>
<1I> <1> <0> <1> <1>
<2> <0> <2> 2> 2>

of threads set to 3. The output from this simple example illustrates an important point
about thread-based parallel programs, in OpenMP or any other thread model: There
is no control over which thread executes first within the context of a parallel region.
This decision is determined by the runtime system. Any expectation or required or-
dering of the execution of threads must be explicitly coded. The simple concurrency
afforded by OpenMP requires that each task, such as a single iteration of a loop, be
an independent execution construct.

One of the advantages of OpenMP is incremental parallelization—the ability to
parallelize loops at a time or even small segments of code at a time. By iteratively
identifying the most time-consuming components of an application and then paral-
lelizing those components, one eventually gets a fully parallelized application. Any
programming model requires a significant amount of testing and code restructuring
to get optimal performance.® Although the mechanisms of OpenMP are straightfor-
ward and easier than other parallel programming models, the cycle of restructuring
and testing is still important. The programmer may introduce a bug by incorrectly
parallelizing a code and introducing a dependency that goes undetected because the
code was not then thoroughly tested. One should remember that the OpenMP user has
no control on the order of thread execution; a few tests may detect a dependency—or
may not. In other words the tests you run may just get “lucky” and give the correct
results. We discuss dependency analysis further in Section 1.3.4.

1.3.3 OpenMP Directives

The mechanics of parallelization with OpenMP are relatively straightforward. The
first step is to insert compiler directives into the source code identifying the code
segments or loops to be parallelized. Table 1.3 shows the sentinel syntax of a general
directive for OpenMP in the supported languages [64, 63]. The easiest way to learn
how to develop OpenMP applications is through examples. We start with a simple
algorithm, computing the norm of the difference of two vectors. This is a common
way to compare vectors or matrices that are supposed to be the same. The serial code
fragment in C and Fortran is shown in Figure 1.14. This simple example exposes
some of the concepts needed to appropriately parallelize a loop with OpenMP. By
thinking about executing each iteration of the loop independently, we can see several

8Some parallel software developers call parallelizing a code re-bugging a code, and this is
often an apropos statement.

26 R. A. Kendall et al.

Table 1.3. General sentinel syntax of OpenMP directives.

Language Syntax

Fortran 77 *$omp directive [options]
C$omp directive [options]
1$omp directive [options]

Fortran 90/95 !$omp directive [options]

Continuation !$omp directive [options]
Syntax 1$omp+ directive [options]

Cor C++ #pragma omp directive [options]

Continuation #pragma omp directive [options] \

Syntax directive [options]
C code fragment Fortran code fragment
norm = (double) 0.0; norm = 0.0d00
for(i=0;i<len;i++) { do i = 1,1en
diff = z[i]-zpl[i]; diff = z (i) - zp(i)
norm += diff«diff; norm = norm + diff«diff
} enddo

Fig. 1.14. “Norm of vector difference” serial code.

issues with respect to reading from and writing to memory locations. First, we have to
understand that each iteration of the loop essentially needs a separate diff memory
location. Since diff for each iteration is unique and different iterations are being
executed concurrently on multiple threads, dif f cannot be shared. Second, with all
threads writing to norm, we have to ensure that all values are appropriately added
to the memory location. This process can be handled in two ways: We can protect
the summation into norm by a critical section (an atomic operation), or we can use a
reduction clause to sum a thread local version of norm into the final value of norm
in the master thread. Third, all threads of execution have to read the values of the
vectors involved and the length of the vectors.

Now that we understand the “data” movement in the loop, we can apply direc-
tives to make the movement appropriate. Figure 1.15 contains the parallelized code
using OpenMP with a critical section. We have identified 1 as private so that only
one thread will execute a given value of i; each iteration is executed only once. Also
private is diff because each thread of execution must have a specific memory lo-
cation to store the difference; if diff were not private, the overlapped execution
of multiple threads would not guarantee the appropriate value when it is read in the
norm summation step. The “atomic” directive allows only one thread at a time to

1 Parallel Programming Models 27

C code fragment

norm = (double) 0.0;
#pragma omp parallel for private(i,diff) shared(len, z,zp,norm)
for(i=0;i<len;i++) {
diff = z[il-zpli]l;
#pragma omp atomic
norm += diffxdiff;
}

Fortran code fragment

norm = 0.0d00
1SOMP PARALLEL DO PRIVATE (i,diff) SHARED (len, z,zp,norm)
do i = 1,1len
diff = z(i) - zp(i)
1$OMP ATOMIC
norm = norm + diffxdiff
enddo
ISOMP END PARALLEL DO

Fig. 1.15. “Norm of vector difference” OpenMP code with a critical section.

do the summation of norm, thereby ensuring that the correct values are summed
into the shared variable. This is important because summation involves the data load,
register operations, and data store. If this were not protected, multiple threads could
overlap these operations. For example, thread 1 could load a value of norm, thread
2 could store an updated value of norm, and then thread 1 would have the wrong
value of norm for the summation.

Since all the threads have to execute the norm summation line atomically, there
clearly will be contention for access to update the value of norm. This overhead,
waiting in line to update the value, will severely limit the overall performance and
scalability of the parallel loop.® A better approach would be to have each thread sum
into a private variable and then use the partial sums in each thread to compute the
total norm value. This is what is done with a reduction clause. The variable in a
reduction clause is private during the execution of the concurrent threads, and the
value in each thread is reduced over the given operation and returned to the master
thread just as a shared variable operates. This dual nature provides a mechanism to
parallelize the algorithm without the need for the atomic operation as in Figure 1.16.
This eliminates the thread contention of the atomic operation.

The reduction mechanism is a useful technique, and another example of the use
of the reduction clause is in order. In developing parallel algorithms, one often mea-
sures their performance by timing the event in each execution entity, either in each

°In fact, this simple example will not scale well regardless of the OpenMP mechanism
used because the amount of work in each thread compared to the overhead of the paralleliza-
tion is small.

28 R. A. Kendall et al.

thread or in each process. Knowing the minimum, maximum, and average time of
concurrent tasks will give some indication of the level of load balance in the algo-
rithm. If the minimum, maximum, and average times are all about the same, then
the algorithm has good load-balance. If the minimum, maximum, or both are far
away from the average then there is a load imbalance that has to be mitigated. This
can be accomplished by some sort of regrouping of elements of each task or via
some dynamic mechanism. As a specific example, we will show code fragment for
a sparse matrix vector multiplication in Figure 1.17. The sparse matrix is stored in
the compressed-row-storage (CRS) format, a standard format that many sparse codes
use in their algorithms. See [68] for details of various sparse matrix formats.

To parallelize this loop using OpenMP, we have to determine the data flow in
the algorithm. We will parallelize this code over the outer loop, i. Each iteration of
that loop will be executed only once across all threads in the team. Each iteration is
independent, so writing to yvec (1) is independent in each iteration. Therefore, we
do not have to protect that write with an atomic directive as we did in the “norm”
computation example. Hence, yvec needs to be shared because each thread will
write to some part of the vector. The temporary summation variable t and the inner
do loop variable k are different for each iteration of i. Thus, they must be private;
that is, each thread must have a separate memory location. All other variables are
only being read, so these variables are shared because all threads have to know all
the values.

Figure 1.18 shows the parallelized code fragment. Timing mechanisms are in-
serted for the do loop and the reduction clause is inserted for each of the reduc-
tion variables, t imemin, t imemax, and t imeave. The OpenMP library function
omp_get_wtime () returns a double-precision clock tick based on some imple-
mentation dependent epoch. The library function omp_get num_threads () re-
turns the total number of threads in the team of the parallel region. The defaults
are used for scheduling the iterations of the i loop across the threads. In other
words, approximately n/numthread iterations are assigned to each thread in the
team. Thread O will have iterations 1 = 1, 2, ...,n/numthread, thread 1 will
have i = n/numthread + 1, ..., 2*n/numthread, and so on. Any remainder in
n/numthread is assigned to the team of threads via a mechanism determined by
the OpenMP implementation.

Our example of a parallelized sparse matrix multiply where we determine the
minimum, maximum, and average times of execution could show some measure of
load-imbalance. Each row of the sparse matrix has a different number of elements.
If the sparse matrix has a dense block banding a portion of the diagonal and mostly
diagonal elements elsewhere there will be a larger “load” on the thread that computes
the components from the dense block. Figure 1.19 shows the representation of such
a matrix and how it would be split by using the default OpenMP scheduling mech-
anisms with three threads. With the “static” distribution of work among the team of
three threads, a severe load imbalance will result. This problem can be mitigated in
several ways. One way would be to apply a chunk size in the static distribution of
work equal to the size of the dense block divided by the number of threads. This

1 Parallel Programming Models

C code fragment

norm = (double) 0.0;
#pragma omp parallel for private(i,diff) \
shared(len, z, zp,norm) reduction (+:norm)
for(i=0;i<len;i++) {
diff = z[i]l-zpl[il;
norm += diffxdiff;

Fortran code fragment

norm = 0.0d00
1SOMP PARALLEL DO PRIVATE (i,diff) SHARED (len, z,zp,norm)

| SOMP+ REDUCTION (+:norm)
do i = 1,1len
diff = z (i) - zp(i)
norm = norm + diffxdiff
enddo

ISOMP END PARALLEL DO

Fig. 1.16. “Norm of vector difference” OpenMP code with a reduction.

! compute yvec = Amatxxvec

! Amat sparse matrix stored in CRS format

! Flat linear storage of elements of A

! row _ptr() points to the start and of each row of A

! in the flat linear storage of A. The last
! element has the number of non-zero elements
! of A + 1. Therefore each row has

! row ptr(i+l)-row ptr(i)-1 elements

! col ind() provides the column index for each

! element of A

doi=1,n

! compute the inner product of row i with vector xvec

t = 0.0d0
do k=row ptr(i), row ptr(i+l)-1

t = t + amat (k) *xvec(col _ind(k))
enddo

! store result in yvec (i)

yvec (i) = t
enddo

Fig. 1.17. Sequential sparse matrix multiply code fragment, in Fortran.

29

30 R. A. Kendall et al.

! compute yvec = Amat*xvec

I'SOMP PARALLEL REGION PRIVATE(i,t,k,timestart,timeend,numthread)

I SOMP+ SHARED (n, row_ptr,amat,xvec,col_ind, yvec)
I SOMP+ REDUCTION (MIN:timemin) REDUCTION (MAX:timemax)
| SOMP+ REDUCTION (+:timeave)

timestart = omp_get_wtime ()
!$SOMP PARALLEL DO
doi=1,n
t = 0.0d0 ! inner product of row i with vector xvec
do k=row ptr(i), row ptr(i+l)-1
t = t + amat (k)+xvec(col_ind(k))
enddo
yvec(i) =t ! store result in yvec (i)
enddo
!$SOMP END PARALLEL DO
timeend = omp_get wtime ()
numthread = omp_get num threads ()

timemin = timeend-timestart
timemax = timeend-timestart
timeave = (timeend-timestart)/numthread

! SOMP END PARALLEL REGION

Fig. 1.18. Parallel sparse matrix multiply code fragment, in Fortran, that times the operation
and reduces the minimum, maximum, and average times.

would lead to the distribution of work shown in Figure 1.20. This can be accom-
plished by modifying the PARALLEL DO directive of Figure 1.18 to

!$SOMP PARALLEL DO SCHEDULE (STATIC, (SIZE_OF DENSE_BLOCK/numthreads)

where SIZE_OF_DENSE_BLOCK must be determined before the do loop construct
in the parallel region. Determining this value is added overhead on the parallelization
of the serial code.

At times, more explicit control may be necessary. The same kind of explicit con-
trol necessary in the equivalent message-passing implementation. The algorithm can
be scheduled explicitly with similar constructs such as the number of threads and the
thread identifier. This is another advantage of OpenMP; in addition to incremental
parallelization, a programmer can take as much explicit control as is necessary for a
given algorithm.

Figure 1.21 shows an explicit parallelization of the sparse matrix multiply. The
OpenMP library function omp_get_thread. num() returns the thread identifier
in the range from O ... the number of threads minus 1. Each thread starts with the
iteration that matches a thread identifier, and the “parallel” loop now increments by
the number of threads. There is no longer a need for the PARALLEL DO directive
because of the explicit control! This interleaves each iteration in order to a different
thread, so the issues of load balance are minimized.

The C/C++ version of the example in Figure 1.21 would be more complicated
because the reduction clause operators available in C/C++ do not include MIN
or MAX functionality. No intrinsic functions are available for use in the reduction
clause.

1 Parallel Programming Models 31

Qi o

Thread 0

Thread 1

It o

Thread 2

Fig. 1.19. A sparse matrix that is dense in one area. Using our sparse matrix vector algorithm
on three threads, we would access the matrix as shown.

Qi o

Thread 0

Thread 1

Thread 2

Thread 0

1 Thread 1

Thread 2

Thread 0
N _ | Thread 1

Thread 2

Fig. 1.20. A sparse matrix that is dense in one area. Using our sparse matrix vector algorithm
with the appropriate chunk size on three threads we would access the matrix as shown. This is
more load-balanced than the default distribution of iterations to the team of threads.

32 R. A. Kendall et al.

! compute yvec = Amat*xvec

I'SOMP PARALLEL REGION PRIVATE (i, t,k,timestart,timeend,numthread, tid)

I SOMP+ SHARED (n, row_ptr,amat,xvec,col_ind, yvec)
I SOMP+ REDUCTION (MIN:timemin) REDUCTION (MAX:timemax)
| SOMP+ REDUCTION (+:timeave)

timestart = omp_get_wtime ()

tid = omp_get_thread num() ! get the thread identifier

numthread = omp_get num_threads ()
do (tid+1) ,n,numthread
0.0do ! inner product of row i with vector xvec
o k=row_ptr(i), row ptr(i+l)-1

t = t + amat (k) +xvec(col_ind(k))

enddo

yvec(i) =t ! store result in yvec(i)
enddo
timeend

i
t
d

omp_get_wtime ()

timemin timeend-timestart

timemax timeend-timestart

timeave = (timeend-timestart)/numthread
!SOMP END PARALLEL REGION

Fig. 1.21. Parallel sparse matrix-multiply code fragment, in Fortran, that times the operation
and reduces the minimum, maximum, and average times. The concurrency is explicitly con-
trolled with the thread identifier and the number of threads.

1.3.4 Data Dependencies and False Sharing

In parallelizing algorithms, one has to ensure that every memory write operation is
essentially independent of other memory operations from other threads in the team.
If the programmer writes to a location in one thread and reads that same location in
another thread of execution, a dependency exists. Since OpenMP provides no control
over which thread executes, the programmer must deal with this dependency either
by scoping the appropriate variables (private or shared) or introducing synchroniza-
tion mechanisms to ensure that the dependency is met. Mitigating these data race
conditions or dependencies is at the heart of shared-memory parallel programming,
since data communication is through shared variables. Chandra et al. have a good,
somewhat formal, discussion of the process of identifying and removing these de-
pendencies [9].

The mechanisms for dealing with these data dependencies often require some
restructuring of code. For example, it may be necessary to split a loop that com-
putes multiple quantities. The “fissioned” loops can be run in parallel but the orig-
inal construct cannot. In other situations new intermediate quantities may need to
be introduced. These will add additional memory requirements and the overhead of
generating those intermediates.

Code restructuring will certainly involve tradeoffs that may affect performance
and thus force a specific way of parallelizing the algorithm. One such performance
issue is that, although there is no formal data dependency, there is a performance
degradation because of the nature of the memory locations being accessed by the
threads in the team. If independent threads are writing to memory locations in the
same cache line, there is no true data dependency because each thread is writing
to separate memory locations. Unfortunately, since these locations are in the same

1 Parallel Programming Models 33
! compute yvec = Amat*xvec
blocksize = 5 | the number of iterations each thread gets
numblocks = n/blocksize ! number of blocks of iterations
! a remainder means extra block

if (mod(n,blocksize) .ne.0) numblocks=numblocks+1l

! SOMP PARALLEL REGION PRIVATE(ii,i,ilo,ihi,t, k)

1 SOMP+ PRIVATE (timestart, timeend, numthread, tid)
I SOMP+ SHARED (n, row_ptr,amat,xvec,col_ind,yvec)
I SOMP+ SHARED (blocksize, numblocks)
I SOMP+ REDUCTION (MIN:timemin) REDUCTION (MAX:timemax)
| SOMP+ REDUCTION (+:timeave)
timestart = omp_get_wtime ()
tid = omp_get_thread num() ! get the thread identifier

numthread = omp_get num_threads ()

do ii = (tid+1),numblocks,numthread
ilo = (ii-1)+blocksize + 1 ! start of each block
ihi = min((ilo+blocksize-1),n)
do ilo,ihi

i=
t = 0.0d0 ! inner product of row i with vector xvec
do k=row_ptr(i), row_ptr(i+l)-1
t = t + amat (k) +xvec(col_ind(k))
enddo
yvec(i) = t ! store result in yvec (i
enddo
enddo
timeend omp_get_wtime ()
timemin timeend-timestart
timemax timeend-timestart
timeave = (timeend-timestart)/numthread
ISOMP END PARALLEL REGION

Fig. 1.22. Parallel sparse matrix multiply code fragment, in Fortran, that times the operation
and reduces the minimum, maximum, and average times. The concurrency is explicitly con-
trolled with the thread identifier and the number of threads and appropriate blocking of the
parallelized iterations to avoid false sharing.

cache line, performance is degraded because each write forces the data to be flushed
from the other processor cache. This cache thrashing is called “false sharing.”

Can “false sharing” really impact the performance of a parallel algorithm? Yes.
In fact, the algorithm presented in Figure 1.21 will suffer from false sharing. The
write to yvec (1) in the first iteration of each thread all have elements contiguous
in memory; e.g., thread 0 and thread 1 will interact via the cache. As the algorithm
proceeds the effect may decrease because of the varying size of the number of ele-
ments in each row of the matrix; each iteration will take a different time to execute.
One way to mitigate this is to block the access to the iterations and thus the writes to
yvec (1) . The block size simply has to be large enough to ensure that the writes to
yvec (1) in each thread will not be in the same cache line. Figure 1.22 shows the
blocked algorithm that will avoid false sharing using explicit control of the concur-
rency among the team of threads. This explicit blocking could be accomplished by
modifying the PARALLEL DO directive of Figure 1.18 to

I'SOMP PARALLEL DO SCHEDULE (STATIC,5)

Other mechanisms can be used to modify the way iterations are scheduled. They are
explored in more detail in references [9, 63, 64].

34 R. A. Kendall et al.

do = 1, CCOLS
k = 1, BROWS
Btmp = B(k,J)
do i = 1, CROWS
C(i,3) = C(i,3) + A(i,k)+Btmp
enddo
enddo

enddo

]
do

Fig. 1.23. Partially cache-optimized matrix-multiply: serial code.

ISOMP PARALLEL DO PRIVATE(i,j,k,Btmp)
do j = 1, CCOLS
do k = 1, BROWS
Btmp = B(k,7J)
do 1 = 1, CROWS
C(i,j) = C(1i,3) + A(i,k)*Btmp
enddo
enddo
enddo
ISOMP END PARALLEL DO

Fig. 1.24. Partially cache-optimized matrix-multiply: parallel code.

As another example for analysis and parallelization, we examine the simple
cache-optimized matrix multiply in Figure 1.23. Our examination of this code sug-
gests that we should maximize the work in each thread with respect to the overhead
of the OpenMP parallelization constructs. In particular, we should parallelize the
outermost loop. A glance at the memory locations with write operations indicates
that only C (1, j), Btmp, 1, j, and k are relevant. For effective parallelization, the
loop index variables must be different for each thread, thus accessing only appropri-
ate parts of the matrix. A and B have only read operations. Since all threads need to
know the dimensions of the matrices, CCOLS, CROWS, and BROWS need to be shared
among team members. Since we are parallelizing over the j loop, each thread has a
unique set of j values; and since Btmp is a function of j, each thread should have a
unique Btmp (i.e., Btmp should be private to each thread).

This loop structure can be parallelized in many ways. The most straightforward
is to use the combined parallel work sharing DO constructs. The parallel code based
on our analysis is shown in Figure 1.24. The data in Table 1.4 shows the performance
on a four-processor SMP system. The scalability indicates some overhead. On four
threads the efficiency ranges from 97.1% to 95.4% with increasing matrix sizes. The
performance could be improved by further optimizing the cache with a blocking
algorithm.

1 Parallel Programming Models 35

Table 1.4. Timings in seconds for multiple runs of the OpenMP parallelized matrix multiply
code.

‘ Matrix Rank

number of threads ‘ 500 1000 1500 2000

4 043 356 12.05 28.37
3 0.57 4.6515.67 37.05
2 0.84 6.92 2328 55.12
1 1.67 13.57 45.87 108.27

1.3.5 Future of OpenMP

We have described in this section a robust programming model for the development
of applications using OpenMP on shared-memory systems. There are many ways
to tackle a parallel algorithm, from the application of simple directives to essen-
tially full control basing the execution on the thread identifiers available. At this
point we have described both message passing with MPI and thread programming
with OpenMP. Some applications use both, with mixed results [16, 43, 56]. Hybrid
MPI/OpenMP applications are emerging in part due to the nature of how clusters
are evolving with larger processor counts per node. Hybrid MPI/OpenMP software
development presents several challenges. The programmer interested in this hybrid
model should get a sound understanding of both programming models separately and
then begin to merge them. The programmer interested in this should carefully under-
stand the MPI-2 scope of thread policy set up in the initialization phase of MPI-2
codes. The real trick in merging these two programming models is getting the code
to work in four different modes: serially, with just OpenMP, with just MPI, and with
both MPI and OpenMP [38]. The hybrid code in any of these modes should generate
correct results regardless of how many threads are used at the thread level or how
data is distributed among multiple processes. Current hybrid applications have been
developed with a subset of these four modes due to the complexity of the resultant
application. Primarily MPI communications are done only in the master thread of ex-
ecution. Hybrid applications is an advanced topic in programming models and more
research is in progress addressing the issues involved.

Cluster-Based OpenMP

At a recent workshop, Intel described a new offering, Cluster OpenMP [37], that
is in beta testing. The idea is to provide a runtime infrastructure that allows the
OpenMP programming model to run on clusters. Intel’s offering can serve as a
reference implementation for this idea, but it is limited to Itanium clusters at the
moment. Intel has added directives and library functions to make clear distinctions
between private, shared, and ‘““sharable” data (data that is among processes, i.e., on
another cluster node). Cluster-based OpenMP is a current topic in the research com-
munity and should be monitored as the research efforts demonstrate the effective-
ness [76, 39, 51].

36 R. A. Kendall et al.

The ultimate goal of these efforts is to have the runtime environment provide
good performance on clusters for OpenMP; comparable performance to hybrid MPI
and OpenMP is required. The programming syntax of the value-added standard
would allow incremental parallelism that is often difficult with MPI code devel-
opment. Many issues must be considered in this environment. Remote process in-
vocation is an issue that will be of interest because the landscape of clusters and
communication interconnects is vast.

Specifications 2.5 and 3.0

Currently the merged OpenMP 2.5 specification is completed and is available for
public comment.'” A major change in the OpenMP 2.5 specification is the merger
of the Fortran and C/C++ specifications into a single document [5]. The ARB is also
resolving inconsistencies in the specifications, expanding the glossary, improving the
examples, and resolving some of the more difficult issues with respect to the flush
semantics and the persistence of threadprivate data across multiple parallel regions.

The 3.0 specification is on hold until the 2.5 merger is done, but several topics
are under discussion to expand the applicability of OpenMP. These include task par-
allelism to handle while loops and recursion, automatic scoping of variables, inter-
action with other thread models (e.g., POSIX threads), more control or definition of
the memory model for NUMA-style shared-memory systems, and expanded sched-
ule types and reusable schedules. As an example of the importance of the last issue,
the guided schedule gives an exponential decay of the chunk size of iterations for a
loop construct. The ability to control or change the decay rate is useful for improved
performance of some algorithms. The 3.0 specification will also address many of the
issues of nested parallelism that is in several implementations now. One major issue
that needs to be considered is error reporting to the application. What happens if no
more threads/resources are available? Currently, most implementations simply seri-
alize the construct. A code developer may want to switch algorithms based on the
runtime environment.

1.3.6 Availability of OpenMP

Most vendors provide OpenMP compilers, and several open source implementations
are available. The OpenMP Web site [65] provides more information regarding their
availability and function. There are also pointers for open-source implementations.

1.4 Distributed Shared-Memory Programming Models

Distributed shared-memory (DSM) programming models use a physically distributed
memory architecture with some aspect of shared-memory technology. DSM models
are not as popular as message-passing or direct shared-memory models but have
many of the complications of both.

0See the http://www.openmp . org web site.

1 Parallel Programming Models 37

The goal for DSM technology is to facilitate the use of aggregate system mem-
ory, the most costly component of most high-end systems. Stated differently, most
DSM programming models want to provide shared-memory-like programming mod-
els for distributed-memory systems. This aspect of shared memory can be effected
in hardware or software. The hardware mechanisms are those with the highest per-
formance and cost. Software mechanisms range from those that are transparent to
the user to those coded explicitly by the user. Since obvious latencies exist in the
software stacks of these implementations, performance still depends on the skill of
the programmers using these technologies. DSM models are not as popular as mes-
sage passing or direct shared-memory models but have many of the complications of
both.

Software DSMs fall basically into three categories:

Transparent operating system technology
Language-supported infrastructure
Variable/array/object-based libraries

DSMs that are transparent to the user often use a virtual-memory system with
kernel modifications to allow for inter-node page accesses. This approach makes
the programming straightforward in function, but getting good performance requires
understanding the locality of the data and the way data movement happens. These
systems include technologies such as ThreadMarks [44], InterWeave [10], Munin [7],
and Cashmere [19].

Language-based infrastructure includes specialty languages such as High Perfor-
mance Fortran (see section 1.4.1) and one that is now getting vendor support, Unified
Parallel C (see Section 1.5.1).

Data-specific DSM libraries have been those most used by the high-performance
computing community. They include the popular SHMEM programming model
available on the Cray T3D and T3E systems [4]. These DSMs require that the pro-
grammer identify variables or objects that are shared, unlike OpenMP where every-
thing is shared by default. Operations that separate shared and local variables require
programmer control of the consistency appropriate for the algorithm. Data move-
ment is neither automatic nor transparent; it must be coded explicitly or understood
via implicit data movement from library interfaces.

1.4.1 High Performance Fortran

High Performance Fortran (HPF) is a distributed-memory version of Fortran 90 that,
like OpenMP, relies on the use of directives to describe the features that support
parallel programming. Because HPF uses directives, most HPF programs may be
compiled by any Fortran 90 compiler and run on a single processor. HPF was devel-
oped by an informal group and published as a standard [34] in much the same way as
MPIL. In fact, the MPI Forum followed the same procedures used by the HPF Forum.

HPF is not as widely available as MPI and OpenMP but is still in use. A slight
extension of HPF is in use on the Earth Simulator; an application using that version
of HPF achieved a performance of 14.9 Teraflops and was awarded a Gordon Bell

38 R. A. Kendall et al.

program matmult
integer, parameter :: n=1000
real a(n,n), b(n,n), c(n,n)
IHPF$ DISTRIBUTE (BLOCK,BLOCK) : :C
IHPFS$S ALIGN A(i,*) WITH C(i, *)
IHPF$ ALIGN B(%,3j) WITH C(*,73)
1
a =1
b=2
do i=1,n
do j=1,n
c(i,j) = dot product(a(i,:),b(:,3))
enddo
enddo
write (*,%) cC
end

Fig. 1.25. Simple HPF matrix multiply program.

prize in 2002 [69]. In this section, we will touch on a few of the features of HPF and
give one example. More information and some examples may be found in [17]; the
full HPF standard is also available [47].

One of the most important steps in implementing a parallel program is distribut-
ing the data across the processes. This step can often be burdensome and error prone.
HPF provides several directives that allow the programmer to easily and efficiently
describe many data distributions. The most important of these is the distribute
directive. For example, to distribute an array across all processes in blocks, use

real a(100)
'HPF$ DISTRIBUTE (BLOCK) a

Note that the HPF directive is a comment because it begins with an exclamation
point and will be ignored by Fortran 90 compilers that do not support HPF. HPF
supports several styles of data decomposition, including BLOCK (contiguous groups
of elements across processes) and CYCLIC (round-robin assignment of elements
across processes). One of the most attractive features of HPF is that the programmer
may change the data distribution by changing only the DISTRIBUTE directive; the
HPF compiler takes care of all of the changes to the code that are required by a
different distribution.

The other important directive for data decomposition is the ALIGN directive.
This tells the HPF compiler to align one distributed array with another. This lets the
programmer provide information about the relationship between the use of elements
of different distributed arrays to the compiler, which can be used by the compiler to
produce more efficient code.

HPF provides additional directives; for example, there is a way to specify that
a variable is involved in a reduction operation. Figure 1.25 shows a simple matrix-
matrix multiply example. Note that, unlike the MPI case, program declares the sizes

1 Parallel Programming Models 39

of the arrays, not just the part that is on a particular process. The HPF compiler
handles all of the details of the data decomposition, including determining the sizes
of the local versions of the arrays. This example does not include any of the code that
would normally be used to implement cache and register blocking; such changes are
necessary to achieve high performance.

1.4.2 SHMEM

SHMEM exists in implementations from various computer and interconnect ven-
dors [4, 1, 70, 54]. In addition, a public-domain version—a generalized portable
SHMEM, or GPSHMEM [67, 66]—has been augmented for use on clusters. The
SHMEM model is an asynchronous one-sided message-passing or data-passing
model. SHMEM assumes that computations are performed in separate address spaces
and that data is explicitly passed. The asynchronous one-sided model assumes that a
process can read (“get”) data or write (“put”) data from or to another process’s ad-
dress space without the active participation of the second process. These one-sided
operations are now a component of MPI-2 [53], and we encourage programmers to
use that functionality as opposed to SHMEM (see Section 1.2.3). It will, however,
take time for the functionality to propagate through all the vendor-supported MPI
implementations.

SHMEM relies on remotely accessible data objects that are symmetric. These are
data objects that have a known relationship among the local and remote addresses,
such as Fortran common blocks or variables with the SAVE attribute, data allocated
with shpalloc in Fortran or shmalloc in C or C++. SHMEM has a robust set of
collective routines based on a triplet of arguments: the starting processor, log of the
stride, and the number of processors involved. This power-of-two stride was required
for the hardware of the T3D and T3E systems, but it is not generally applicable to
clusters. GPSHMEM augmented this behavior to include arbitrary stride counts. The
collective routines operate on the same symmetric data objects in multiple processes;
this a requirement is made to improve efficiency.

SHMEM can be thought of as a middle ground between message passing and
a full DSM language. SHMEM supports other operations such as work-shared
broadcast and reduction, barrier synchronization, and atomic memory operations.
An atomic memory operation is an atomic read-and-update operation, such as a
fetch-and-increment, on a remote or local data object. Full barriers, barriers on a
subset of processes, and a locking mechanism are also provided. There are some
problems with SHMEM in that there is a name-space explosion because the inter-
face does not include the size of the object being passed. For example, five differ-
ent broadcast calls are available in the T3E implementation: shmem broadcast,
shmem_broadcast4, shmem_broadcast8, shmem_broadcast32, and fi-
nally, shmem_broadcast64. Moreover, there is no standard for SHMEM, so other
vendor or open-source implementations are free to augment the library as their needs
arise. This augmentation is often via environment variables where the default values
may or may not provide optimal performance.

40 R. A. Kendall et al.

Data Physically Distributed

Single Logically Shared Data

Fig. 1.26. View of data structures in Global Arrays.

1.4.3 Global Arrays

The Global Arrays (GA) Toolkit [59, 60, 58] was designed to offer the best func-
tionality of both distributed-memory and shared-memory programming models. In
fact, GA requires the use of a message-passing library so an application can use
message-passing algorithms in addition to the GA algorithms. The data is divided
into local data and logically shared data that can be accessed only through the user
interface layer of the GA package. GA assumes that the data representation is arrays
of multiple dimensions. This provides a NUMA view of the aggregate memory of
the system. The data locality must be managed explicitly by the programmer, with
the knowledge that remote data access is slower than local data access. Figure 1.26
represents the view of the data structures in an GA application. The cost of remote
data access promotes data reuse and locality of reference.

The GA toolkit allows the user complete control over the data distribution to
match any algorithmic needs. The user can have the library distribute the data auto-
matically or can identify a specific dimension or block size for distribution. Complete
irregular distributions are also possible. The locality information of data is also avail-
able. For example, a specific multidimensional patch of a GA that is required for an
algorithmic computation may exist on one or more processes; the locality informa-
tion is an array of the process identifiers.

Figure 1.27 shows the computational flow of a GA application. Data is extracted
from “global” memory to “local” memory. The process then computes on that portion
of the array copied to local memory. The results are copied or accumulated to global
memory for further processing as the algorithm dictates.

Copy operations from the “global” data to “local” data and the reverse are the
fundamental functionality of GA. In addition, the locality information provided al-
lows direct access to data “owned” by a given process. This arrangement allows for
virtually any needed data parallel operations. Several built-in data-parallel-like op-
erations are provided, including zeroing an array, filling an array with an arbitrary
value, printing an array, and scaling an array by a constant.

1 Parallel Programming Models 41

Logically
Shared
Data Object

-

A

O Logically
Shared

Data Object

Copy Copy
Compute
Local Local Local

Fig. 1.27. Computational flow of a GA application.

GA has several language interfaces: C, C++, Fortran 77, Fortran 90/95, and
Python. There is also a common component architecture (CCA) component version.
In addition, the library provides language interoperability for mixed-language ap-
plications. Arrays created and used in Fortran can be accessed by using the other
language interfaces. Internal storage is, by default, that of the Fortran language but
can be made either row or column major.

The library has evolved from the initial development for NWChem, a computa-
tional chemistry suite [74, 45], to meet requirements of new application areas. Ghost
cells and sparse data structures were added to provide functionality for halo-like
simulations and Grid-based codes, respectively. The data movement engine was sep-
arated from the original implementation and now provides a portable one-sided com-
munication tool, the Aggregate Remote Memory Copy Interface (ARMCI). ARMCI
handles the actual data transfers, synchronization operations, and memory manage-
ment. GA also has a secondary storage mechanism, disk resident arrays (DRAs).
DRAs extend the memory hierarchy one additional level; they allow for out-of-core
algorithm development as well as internal checkpointing of data. Furthermore, GA
offers interfaces to third-party libraries such as ScaLAPACK.

GA provides portable performance; it runs on most major cluster interconnect
technologies and high-end supercomputers. ARMCI, the data movement engine, is
tuned to the fastest mechanisms available on various platforms. The developers have
strong interactions with vendor software and hardware engineers to keep the in-
frastructure current and the performance at the highest level. GA will continue to
expand to meet the requirements of the user community as the need arises.

42 R. A. Kendall et al.

To give a flavor of GA programming, we present a simple blocked matrix-
multiply routine in Figure 1.28. The function stores the product of two matrices A
and B in the resultant C' matrix. The assumption is that the GAs for each matrix are
created and A and B are filled prior to calling the routine and that all matrices are
two dimensional.

GA provides a robust set of functionality. The toolkit is essentially the standard
programming model for electronic structure computational chemistry codes, where
most of the manipulations are contractions of multidimensional tensors of various
orders into lower-order tensors. GA is also used in image processing, financial secu-
rity forecasting, computational biology, fluid dynamics, and other areas. GA does not
offer the full incremental parallelism of OpenMP, but the functional code is straight-
forward to generate and then tune for performance. Rapid prototyping is possible
once the initial infrastructure is built. More information is provided on the Global
Arrays home page [27].

1.5 Future Programming Models

We present here a few examples of what we delineate as future programming lan-
guages or models, not because they are new ideas, but because they are just now
moving from the research community to the vendor community. Other programming
languages should be considered if one is willing to live on the “bleeding edge” of
technology—that is, with very robust features of the language and little support. Of
particular note is Titanium [78], a high-performance Java dialect with extensions
needed by scientific applications. We close this section with a view of what is next
beyond near-term extrapolation of current technology and what is needed to really
reach petaflops.

1.5.1 Unified Parallel C

Unified Parallel C [21] (UPC) is a parallel extension of the ANSI C standard. UPC,
like Co-Array Fortran (see Section 1.5.2), has the advantage of extending a well-
known and well-understood language for parallel computation. The development of
the UPC language started with ANSI C and included experiences from various dis-
tributed parallel computing language efforts in the research community, with input
from vendors, users, and academia.

UPC is a distributed shared-memory parallel programming language. The ex-
ecution model assumes a number of threads working independently in a single-
program multiple-data (SPMD) paradigm. The language provides synchronization
when needed via barriers, the memory consistency model, and explicit locks. The
memory in the language is logically split into private and shared memory with an
affinity for a specific thread. Any thread can read from the globally shared address
space, and the language extension includes identifying which data and pointers to
data are “shared” among the threads. Figure 1.29 represents the memory layout in
the UPC model.

1 Parallel Programming Models

subroutine ga_simplematmul (g_c, g_a, g_b)
implicit double precision (a-h,o-2z)

! include files from the GA suite

#include "mafdecls.fh"

#include "global.fh"

c omitting declaration of variables
parameter (blocksize = 32) ! arbitrary block size

! get matrix dimensions
ga_inquire(g_a, typea,rowsa,colsa)
ga_inquire(g_b, typeb, rowsb, colsb)
ga_inquire(g_c, typec, rowsc, colsc)
check that types and dimensions match if not call ga_error
call ga_zero(g_c) ! zero the result
blocksi = rowsc/blocksize + 1
blocksj = colsc/blocksize + 1
blocksk = colsa/blocksize + 1
allocate local arrays loca[blocksize] [blocksize], locb, locc
! get the number of processes
nproc = ga_nnodes ()
atomically get the next task an ordered count 0, 1,
! across all processes
mtask = nexttask (nproc)

itask = -1
do ib = 1,blocksi
ilo = (ib-1)+blocksize + 1

ihi = min((ilo+blocksize-1),rowsc)
mdg = ihi-ilo + 1
itask = itask + 1
parallelize over i blocks (ib variable)
if (itask.eqg.mtask) then
do kb = 1,blocksk
klo (kb-1) *xblocksize + 1
khi = min((klo+blocksize-1),colsa)
kdg = khi - klo + 1
get patch of global A copied into local array loca
ga_get(g_a,ilo,ihi,klo, khi, loca,mdg)
do jb = 1,blocksj
jlo = (jb-1)+blocksize + 1
jhi = min((jlo+blocksize-1),colsc)
ndg = jhi - jlo + 1
get patch of global B copied into local array locb
ga_get (g_b,klo,khi,jlo,jhi, locb, kdg)
use optimize BLAS locally to compute patch of in locc
call dgemm(’n’,'n’,mdg,ndg, kdg,1.0d00,
+ loca,mdg, locb, kdg, 0.0d00, locc, mdg)
accumulate into global array C from local locc
ga_acc(g_c,ilo,ihi,jlo,jhi, locc,mdg,1.0d00)
enddo
enddo
mtask = nexttask (nproc)
endif
enddo
end

Fig. 1.28. Simple GA matrix multiply routine.

43

44 R. A. Kendall et al.
Affinity

Thread 0 Thread1 Thread 2 Thread

NTHREADS-1

Shared

Private

Fig. 1.29. UPC memory model with respect to the thread affinity.

The SPMD nature of the model allows for work distribution based on the
thread identifier, MYTHREAD, and the number of threads involved, THREADS.
MYTHREAD and THREADS are keywords in the UPC language. The actual trans-
lation depends on the underlying runtime infrastructure, but that is transparent to the
user from a functional point of view and is the responsibility of the compiler.

Because threads share memory and because portions of shared memory have
affinity to specific threads, access to that memory has a sequencing issue that de-
pends on the underlying runtime environment. Developing a UPC application sim-
ply requires specifying either a “strict” or a “relaxed” memory consistency mode.
This specification can be done for the entire program, for a defined block of code,
or for a specific variable or array. The “relaxed” consistency mode allows memory
accesses in each thread to follow normal ANSI C models, ignoring access to “local”
shared-memory references from other threads. When using the relaxed mode, the
programmer is ultimately responsible for handling any synchronization necessary.
The “strict” mode follows normal ANSI C models while considering accesses from
all threads.!' Locks are provided to ensure atomic access to critical sections of code
and the associated memory locations. Figure 1.30 shows a “Hello World” program
similar to the one presented in the OpenMP discussion.

The sharing of data is explicitly coded in the use of the “shared” qualifier or in
how memory is allocated dynamically with the UPC memory allocation routines.
Since data being shared has affinity to threads, the user needs to control how data is
laid out. Both the static and the dynamic memory modes allow for this. By default,
elements of data arrays are distributed by element in a round-robin fashion to the
shared-memory region of each thread. This can easily be blocked to distribute rows
or columns of matrices to each thread.

In addition to the SPMD use of the thread identifier and the number of threads
to share work among threads, there is a work-sharing construct upc_forall. The

"'This is a simplification of the consistency model; consult the UPC specifications [21] for
more details.

1 Parallel Programming Models 45

#include <stdio.h>
#include "upc relaxed.h"
int main(int argc, char xargvl[])

{
int tid;
{
tid = MYTHREAD;
printf ("<%d> of %d Threads\n",tid, THREADS) ;

}
}

Fig. 1.30. “Hello World” UPC code.

functional form of this construct is similar to the standard for loop construct but with
an extra affinity parameter:

upc_forall (init-expr ; cond-expr; incr-expr; affinity),

where init-expr, cond-expr, and incr-expr are the ANSI C equivalent
expressions. The affinity parameter can be either a variable or an address to a
variable. The affinity expression controls which thread actually computes an it-
eration of the loop construct. For a variable the thread that executes the loop is
MYTHREAD == variable$THREADS. For an address the thread that executes
the loop is MYTHREAD == upc_-threadof (address). The UPC library func-
tion upc_threadof identifies the thread that has affinity for the address argument.

The UPC language has great potential for providing long-term portability and
performance for a wide variety of applications. We have provided only a taste of the
language. The UPC Web site!? provides many more details, examples, and availabil-
ity of compilers.

1.5.2 The Co-Array Fortran Extension to Fortran 95

Co-Array Fortran [62] is an alternative parallel programming language based on an
extension to Fortran 95. It uses a simple syntax that is intuitively natural to a Fortran
programmer. It adopts a purely local view of data and computation, but it allows the
programmer to make local data globally visible by declaring some variables to be co-
arrays. A co-array is a Fortran 95 object, whether an intrinsic object or a user-defined
derived type, that is declared with a co-dimension. For example, the declaration,

real :: x[=]

defines a scalar co-array object that is replicated across program images. The asterisk
notation [«] indicates that program images are virtual images, replicated copies of
a program within the SPMD programming model.

The actual number of images is determined when the program starts execution.
The runtime system assigns images to physical processors in a platform-specific

12See the http://upc.gwu.edu web site.

46 R. A. Kendall et al.

manner, for example, as processes or threads. The number of images is fixed; it may
be the same as the number of physical processors, it may be greater, or it may be less.
Each physical processor may be responsible for more than one image, for example,
taking work from a task queue. Conversely, more than one physical processor may be
responsible for the same image, for example, by spawning threads within a process
to share the work. The programmer decides whether an image works only on its own
local data or, using co-array syntax, works on data that it does not own, by making
local copies of data owned by other images.

Co-dimensions may be multidimensional just like normal dimensions. Program-
mers can use them to represent a logical decomposition of virtual images that cor-
responds to a logical decomposition of a physical problem. For example, a two-
dimensional field decomposed into blocks, as commonly used in weather, climate,
and ocean codes, might be declared with two co-dimensions.

real :: field(m,n) [p, *]

In this case, each image holds a patch of the field of local size (m x n) . The asterisk
notation indicates that the number of images is determined when the program starts
execution, but the programmer wants to think of the images within a two-dimensional
grid with p images in the first dimension.

For many applications that use finite difference operators to solve partial differ-
ential equations, for example, programmers often add halo cells around the local field
data.

real :: field(0:m+1,0:n+1) [p, *]

The main communication requirement is the exchange of halo data, which, using
Co-Array Fortran syntax, can be written with just a few lines of code [6, 61]. For
example, the exchange in the east-west direction

field(1:m,0) field(l:m,n) [p,g-1]
field(l:m,n+1) = field(1l:m,1) [p,g+1]

can be written with two lines of code, where the programmer has adopted the conven-
tion that the first co-dimension represents the north-south direction and the second
represents the east-west direction. The image corresponding to [p, g] fills its lower
halo with data from its west neighbor [p, g-1] and its upper halo with data from
its east neighbor [p, g+1]. Since co-array syntax allows an image to read or write
data owned by any other image, it is the programmer’s responsibility to provide ap-
propriate synchronization.

Basing a parallel programming model on a simple extension to an existing lan-
guage has a number of advantages. First, the programmer need not learn a new lan-
guage. Co-array syntax is natural and familiar to the Fortran programmer. Second,
the co-array extension can be implemented by using existing compiler technology.
Co-dimensions behave, in most respects, like normal dimensions. Third, since the
new parallel syntax becomes part of the language, the programmer can use it to write
customized communication patterns that fit a particular problem, without being re-
stricted solely to those patterns provided by a library. Fourth, the compiler can gener-
ate optimized code that takes advantage of specific features of specialized hardware

1 Parallel Programming Models 47

on particular platforms. For example, in the halo exchange example, it can sched-
ule communication to overlap with computation and to exercise multiple hardware
channels simultaneously. Fifth, code written with Co-Array Fortran is portable [13].
Because the extension is part of the language, a compiler must implement it for all
platforms it supports.

1.5.3 Beyond Future Programming Models

Programming language design follows system architecture development, at least in
the domain of performance-critical computation, including high-performance com-
puting. Language serves as the medium between a user’s application and the under-
lying execution target platform. The challenge to programming is to extract the best
possible performance from the target parallel computer system for a given applica-
tion while retaining correctness. The degree of difficulty (length of programming
time) strongly depends on the ease of performance tuning.

Historically, a healthy tension dominating language design has existed between
language abstraction to hide system complexity from the programmer and low-level
language constructs to expose the system mechanisms for direct and precise control
to achieve the best performance. However, parallel programming methods have been
heavily oriented toward constructs providing explicit control of low-level mecha-
nisms because the principal target architectures, including massively parallel proces-
sors (MPPs) and commodity clusters, provide little or no support for automatic man-
agement of system-wide parallel computation—hence the popularity of models such
as MPI (e.g., MPICH-2) that expose the underlying system architecture in detail and
give the programmer complete control of how the application program is mapped to
the system resources, as well as the synchronization of their cooperative operation.

Unfortunately, current-generation high-end systems not only are difficult to pro-
gram but often exhibit significant inefficiencies in operation, negating much of
the advantage of exploiting existing commodity components. Future system archi-
tectures for high-end capability (as opposed to capacity) computing in the trans-
petaflops performance regime may be custom designed for the purpose of global
parallel execution, unlike conventional MPPs. While this assertion is considered con-
troversial today, important projects are under way to achieve this (e.g., the DARPA
HPCS program).

If real parallel computing systems reemerge, replacing (at least in part) aggre-
gated ensembles of commodity microprocessors in the arena of high-end computing,
programming methodologies and languages that represent them will be devised to
reflect their new underlying architectures. While we cannot know in absolute terms
what future programming languages will look like in this new petaflops computing
world, it is possible to identify key attributes of such languages based on reasonable
assumptions about such future machines. Examples of such assumptions include the
following:

e Global address space such that any part of the system state can be accessed effi-
ciently from any other execution site within the distributed system

48 R. A. Kendall et al.

Relaxed consistency methods for efficient copy semantics

Hardware support for efficient parallel execution for coarse-, medium-, and fine-
grained parallelism

Rapid context-switching with multi-threaded execution

Automatic hardware-supported latency hiding

Efficient synchronization for many forms of coordination including message
passing, producer-consumer, message-driven, and object-oriented

Dynamic adaptive resource management and load balancing

Streaming processing for high-temporal-locality computing

In-memory processing for high-bandwidth, low-locality computing
High-global-bandwidth, low-latency system-wide communication

Future programming languages for custom petaflops-scale system architectures
incorporating some or all of these properties will differ from conventional program-
ming practices by providing constructs that support a richer descriptive semantics
of application parallelism and locality, rather than imperative specification of ex-
plicit mapping of data and code to hardware elements as is done today. Latency
will be hidden in such future machines by a variety of automatic methods, and a
much wider range of forms of parallelism will be efficiently supported. Thus, the
key challenge to future programming is to make available to compilers, runtime sys-
tems, and hardware architecture descriptions of algorithmic/application parallelism
and the synchronization relationships among coordinated computing actions.

A secondary feature of such future languages is the ability to represent locality
relationships of data and tasks at various levels of granularity as a source of hints or
heuristics for assisting and guiding the system in allocating and assigning physical
resources. This is very different from the conventional practice of the programmer as-
serting the exact resource allocation mapping. Not only does this advanced approach
simplify programming, but it also allows the system to exploit runtime information
in conjunction with programmer and compile-time information to determine optimal
placement of logical objects on the distributed physical resources.

While a rich set of semantics for parallelism representation and locality relation-
ship description may constitute a major part of future programming languages for
custom-scalable petaflops-scale system architectures, additional language capabili-
ties will be incorporated to deal with practical aspects of very large systems. Three
factors in particular will drive innovation in future language design:

1. Performance monitoring will become an integral part of the compiler and lan-
guage, not just to show the programmer the bottlenecks, but to permit advanced
compilation and runtime systems to make direct use of observed operation char-
acteristics for automatic performance tuning, with some guidance by the pro-
grammer.

2. Microcheckpointing will be used to identify key locations in the by the program-
mer. Microcheckpointing identifies key locations in the execution trace where
subsets of total program data may be temporarily archived until some follow on
release point is correctly accomplished, at which point the snapshot of the par-
tial state may be garbage collected. These minor fall-back points are employed

1 Parallel Programming Models 49

when an error is detected in subsequent execution without having to restart the
entire program.

3. Advanced input/output constructs will be used for generating “information prod-
ucts.” It will become increasingly impractical to attempt to store the full raw data
from a simulation because the data sets will become prohibitively large. Also,
the data itself, even if visualized, may not be useful in understanding the impli-
cations and consequences of the results. An output layer to process the raw data
may be necessary to generate information products that can be many orders of
magnitude smaller than the basic data values but far more meaningful to the sci-
entist or engineer. Future languages will emphasize high-level information rather
than raw data sets as the principal output content, and the I/O semantics of the
language will reflect this new usage.

1.6 Final Thoughts

The information in this chapter touches only the tip of the iceberg with respect to
the issues of writing parallel programs. Even long-term practitioners fall into the
many pitfalls of developing parallel codes. Overall, writing parallel programs is best
learned by “getting your hands dirty.”

It is important to use the technology needed to get the job done, but it is also
important to think about what changes might come in the future. The software de-
velopment research community is producing new technologies rapidly and some of
these technologies may be useful in high-performance application development. Al-
though implementing object-oriented technology in Fortran 77 is impossible, some
of the object-oriented concepts can build better-structured Fortran 77 codes. For ex-
ample, abstraction and data-hiding are easily implemented with solid APIs for the
functionality required.

What will come in the future? In this book, the chapter on common component
architecture technology [2] discusses how the CCA framework has been used suc-
cessfully to integrate functionality among multiple computational chemistry codes
on parallel platforms. Also, the cross-cutting technologies of aspect-oriented pro-
gramming [22] could change the way in which we construct software infrastructure
for event logging, performance monitoring, or computational steering.

One additional comment is in order. Readers new to parallel computing on clus-
ters might ask which is the best programming model with respect to performance
and scalability. These are only two aspects of the interaction with a programming
model and an application code with many different algorithms. The programming
model also determines the ease of algorithmic development and thus application de-
velopment and maintenance, Asking which is best is similar to asking which pre-
conditioner, which Kyrlov subspace method, or which editor is the best to use. All
programming models have strengths and weaknesses, and the choice is best made by
those actually using the programming model for their particular purpose. MPI offers
the greatest availability, portability, and scalability to large systems. OpenMP offers
very good portability and availability with reasonable scalability on SMP systems.

50 R. A. Kendall et al.

The distributed shared-memory programming models are best when long-term avail-
ability is possible and there is an appropriate match to the algorithms or applications
involved. Clearly, programming models and their associated execution models will
have to evolve to be able to reach sustained petaflops levels of computing, which will
in time move to computational resources known as clusters.

Finally, we will put together a series of examples of “working” code for many
of the programming models discussed in this chapter. These will be designed around
small computational kernels or simple applications in order to illustrate each model.
The examples will be available at the Center for Programming Models for Scalable
Parallel Computing website'3.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38 with Argonne National Laboratory and under Contract W-7405-ENG-82 at
Ames Laboratory. The U.S. Government retains for itself, and others acting on its be-
half, a paid-up, non-exclusive, irrevocable worldwide license in said article to repro-
duce, prepare derivative works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government. We thank the members of
the Center for Programming Models for Scalable Parallel Computing [8] who have
helped us better understand many of the issues of parallel software development and
the associated programming models. We thank Brent Gorda, Angie Kendall, Gail W.
Pieper, Douglas Fuller, and Professor Gary T. Leavens for reviewing the manuscript.
We also thank the book series editors and referees for their many helpful comments.

References

—

Alphaserver SC user guide, 2000. Bristol, Quadrics Supercomputer World Ltd.

2. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. R. Kohn, L. Mclnnes, S. R. Parker,
and B. A. Smolinski. Toward a common component architecture for high-performance
scientific computing. In Proceedings of the 8th High Performance Distributed Computing
(HPDC’99),1999. URL: http://www.cca- forum.org.

3. S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. PETSc users manual. Technical
Report ANL-95/11 - Revision 2.1.0, Argonne National Laboratory, 2001.

4. R. Bariuso and A. Knies. SHMEM’s User’s Guide. SN-2515 Rev. 2.2, Cray Research,
Inc., Eagan, MN, USA, 1994.

5. M. Bull. OpenMP 2.5 and 3.0. In Proceedings of the Workshop on OpenMP Applications
and Tools, WOMPAT 2004, Houston, TX, May 17-18 2004. (Invited talk).

6. P. M. Burton, B. Carruthers, G. S. Fischer, B. H. Johnson, and R. W. Numrich. Converting

the halo-update subroutine in the MET Office unified model to Co-Array Fortran. In

B At this URL: http://www.pmodels .org/ppde.

15.

16.

17.

18.

19.

20.
21.

22.

23.

1 Parallel Programming Models 51

W. Zwieflhofer and N. Kreitz, editors, Developments in Teracomputing: Proceedings of
the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology,
pp- 177-188. World Scientific Publishing, 2001.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of
Munin. In Proceedings of the 13th ACM Symp. on Operating Systems Principles (SOSP-
13), pages 152-164, 1991.

. Center for Programming Models for Scalable Parallel Computing. URL: http://www.

pmodels.org.
R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel
Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

. D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheiro, and M. L. Scott. Interweave: A

middleware system for distributed shared state. In Languages, Compilers, and Run-Time
Systems for Scalable Computers, pages 207-220, 2000.

. E. Chow, A. Cleary, and R. Falgout. HYPRE User’s manual, version 1.6.0. Technical

Report UCRL-MA-137155, Lawrence Livermore National Laboratory, Livermore, CA,
1998.

D. Clark. OpenMP: A parallel standard for the masses. IEEE Concurrency, 6(1):10-12,
January—March 1998.

. C. Coarfa, Y. Dotsenko, J. L. Eckhardt, and J. Mellor-Crummey. Co-array Fortran perfor-

mance and potential: An NPB experimental study. In The 16th International Workshop on
Languages and Compilers for Parallel Computing (LCPC 2003), College Station, Texas,
October 2003.

. Cray Research. Application Programmer’s Library Reference Manual, 2nd edition, Nov.

1995. Publication SR-2165.

L. Dagum and R. Menon. OpenMP: An industry standard API for shared-memory pro-
gramming. [EEE Computational Science & Engineering, 5(1):46-55, January—March
1998.

S. Dong and G. E. Karniadakis. Dual-level parallelism for deterministic and stochastic
CFD problems. In Proceedings of Supercomputing, SC02, Baltimore, MD, 2002.

J. Dongarra, 1. Foster, G. Fox, W. D. Gropp, K. Kennedy, L. Torczon, and A. White,
editors. Sourcebook of Parallel Computing. Morgan Kaufmann, 2003.

P. F. Dubois. Ten Good Practices In Scientific Programming. Computing in Science &
Engineering, 1(1), January-February 1999.

S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and R. Stets. Cashmere-
VLM: Remote memory paging for software distributed shared memory. In Proceedings
of the 13th International Parallel Processing Symposium and 10th Symposium on Parallel
and Distributed Processing, pages 153—159. IEEE Computer Society, Apr. 1999.

Earth Simulator home page, http://www.es.jamstec.go.jp.

T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC Language Specifica-
tions Version 1.1.1, October 2003. URL: http://www.gwu.edu/~upc/docs/
upc._spec.1.1.1.pdf.

T. Elrad, R. E. Filman, and A. Bader. Aspect-Oriented Programming. Communications
of the ACM, 44(10):29-32, October 2001.

R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implementation of hypre,
a library of parallel high performance preconditioners. In A. M. Bruaset and A. Tveito,
editors, Numerical Solution of Partial Differential Equations on Parallel Computers, vol-
ume 51 of Lecture Notes in Computational Science and Engineering, pages 267-294.
Springer-Verlag, 2005.

52

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.

43.

44.

R. A. Kendall et al.

. M. Folk, A. Cheng, and K. Yates. HDFS5: A file format and /O library for high perfor-
mance computing applications. In Proceedings of Supercomputing’99 (CD-ROM). ACM
SIGARCH and IEEE, Nov. 1999.

FORTRAN 77 Binding of X3H5 Model for Parallel Programming Constructs. Draft Ver-
sion, ANSI X3HS5, 1992.

P. C. Forum. PCF Parallel FORTRAN Extensions. FORTRAN Forum, 10(3), September
1991. (Special issue).

Global Array Project. URL: http://www.emsl.pnl.gov/docs/global.

W. D. Gropp. Learning from the success of MPI. In B. Monien, V. K. Prasanna, and S. Va-
japeyam, editors, High Performance Computing — HiPC 2001, number 2228 in Lecture
Notes in Computer Science, pages 81-92. Springer, Dec. 2001.

W. D. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and
M. Snir. MPI—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press,
Cambridge, MA, 1998.

W. D. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

W. D. Gropp, E. Lusk, and T. Sterling, editors. Beowulf Cluster Computing with Linux.
MIT Press, 2nd edition, 2003.

W. D. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press, Cambridge, MA, 1999.

R. Hempel and D. W. Walker. The emergence of the MPI message passing standard for
parallel computing. Computer Standards and Interfaces, 21(1):51-62, 1999.

High Performance Fortran Forum. High Performance Fortran language specification.
Scientific Programming, 2(1-2):1-170, 1993.

J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,
T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming library. Parallel Com-
puting, 24(14):1947-1980, Dec. 1998.

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666-677, Aug. 1978.

J. Hoeflinger. Towards industry adoption of OpenMP. In Proceedings of the Workshop
on OpenMP Applications and Tools, WOMPAT 2004, Houston, TX, May 17-18 2004.
Invited Talk.

F. Hoffman. Writing hybrid MPI/OpenMP code. Linux Magazine, 6(4):44-48, April
2004. URL: http://www.linux-mag.com/2004-04/extreme_01.html.

Y. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel. OpenMP for networks of SMPs. In
Proceedings of the 13th International Parallel Processing Symposium, April 1999.

P. Hyde. Java Thread Programming. SAMS, 1999.

IEEE Standard for Information Technology-Portable Operating System Interface
(POSIX). IEEE Standard No.: 1003.1, 2004.

W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. D. Gropp, and R. Thakur. High performance
MPI-2 one-sided communication over InfiniBand. Technical Report ANL/MCS-P1119-
0104, Mathematics and Computer Science Division, Argonne National Laboratory, 2004.
G. Jost, J. Labarta, and J. Gimenez. What multilevel parallel programs do when you are
not watching: A performance analysis case study comparing MPI/OpenMP, MLP, and
nested OpenMP. In Proceedings of the Workshop on OpenMP Applications and Tools,
WOMPAT 2004, pages 29-40, Houston, TX, May 17-18 2004. (Invited talk).

P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Distributed
shared memory on standard workstations and operating systems. In Proceedings of the
Winter 94 Usenix Conference, pages 115-131, January 1994.

45

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.

60.

61.

62.

63.

1 Parallel Programming Models 53

. R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J. Har-
rison, J. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Windus, and A. T. Wong.
High performance computational chemistry; an overview of NWChem a distributed par-
allel application. Computer Physics Communications, 128:260-283, 2002.

M. G. Knepley, R. F. Katz, and B. Smith. Developing a geodynamics simulator with
petsc. In A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential
Equations on Parallel Computers, volume 51 of Lecture Notes in Computational Science
and Engineering, pages 413-438. Springer-Verlag, 2005.

C. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, and M. E. Zosel. The High
Performance Fortran Handbook. MIT Press, 1994.

B. Leasure, editor. PCF Fortran: Language Definitons, Version 3.1. The Parallel Com-
puting Forum, Champaign, 1L, 1990.

J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. D. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale. Parallel netCDF: A high-performance scientific I/O inter-
face. In Proceedings of SC2003, Nov. 2003.

Z. 14, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic recursive
multilevel solver. Numerical Linear Algebra with Applications, 10:485-509, 2003.

R. K. Lie Huang, Barbara Chapman. OpenMP on distributed memory via global arrays.
In Proceedings of Parallel Computing 2003 (ParCo2003), Dresden, Germany, September
2-52003.

Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Interna-
tional Journal of Supercomputer Applications, 8(3/4):165-414, 1994.

Message Passing Interface Forum. MPI2: A Message Passing Interface standard. Inter-
national Journal of High Performance Computing Applications, 12(1-2):1-299, 1998.
Message Passing Toolkit: MPI programmer’s manual, document number : 007-3687-010,
2003. Mountain View, CA, Silicon Graphics Inc.

Mpi papers. URL: http://www.mcs.anl.gov/mpi/papers.

K. Nakajima and H. Okuda. Parallel Iterative Solvers for Unstructured Grids Using and
OpenMP/MPI Hybrid Programming Model for GeoFEM Platfrom on SMP Cluster Ar-
chitectures. Lecture Notes in Computer Science, 2327:437-448, 2002.

B. Nichols, D. Buttlar, and J. P. Farrel. Pthreads Programming. O’Reilly & Associates,
Inc, 1996.

J. Nieplocha, R. Harrison, M. Krishnan, B. Palmer, , and V. Tipparaju. Combining shared
and distributed memory models: Evolution and recent advancements of the Global Array
Toolkit. In Proceedings of POOHL’2002 workshop of ICS-2002, New York, N, 2002.
J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A portable “shared
memory” programming model for distributed memory computers. In Proceedings of Su-
percomputing 1994, SC94, pages 340-349, 1994.

J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A nonuniform memory
access programming model for high-performance computers. The Journal of Supercom-
puting, 10:197-220, 1996.

R. W. Numrich, J. Reid, and K. Kim. Writing a multigrid solver using Co-Array For-
tran. In B. Kéagstrom, J. Dongarra, E. Elmroth, and J. Wasniewski, editors, Applied Par-
allel Computing: Large Scale Scientific and Industrial Problems, volume 1541 of Lecture
Notes in Computer Science, pages 390-399. Springer, 1998.

R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming. ACM Fortran
Forum, 17(2):1-31, 1998.

OpenMP Architecture Review Board. OpenMP Fortran Application Program Inter-
face, Version 2.0. November 2000. URL: http://www.openmp.org/drupal/
mp-documents/fspec20.pdf.

54

64.

65.
66.

67.

68.

69.

70.
71.
72.
73.

74.

75.

76.

7.

78.

R. A. Kendall et al.

OpenMP Architecture Review Board. OpenMP C and C++ Application Program In-
terface, Version 2.0. March 2002. URL: http://www.openmp.org/drupal/
mp-documents/cspec20.pdf.

OpenMP Architecture Review Board home page, http://www.openmp.org.

K. Parzyszek and R. A. Kendall. GPSHMEM: Application to kernel benchmarks. In
Proceedings of the Fourteenth IASTED International Conference on Parallel and Distrib-
uted Computing and Systems (PDCS 2002), pages 404—409. ACTA Press, Anaheim, CA,
2002.

K. Parzyszek, J. Nieplocha, and R. A. Kendall. A generalized portable SHMEM li-
brary for high performance computing. In M. Guizani and X. Shen, editors, Proceedings
of the IASTED Parallel and Distributed Computing and Systems 2000, pages 401-406.
IASTED, Calgary, 2000.

Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report
90-20, NASA Ames Research Center, Moffett Field, CA, 1990.

H. Sakagami, H. Murai, Y. Seo, and M. Yokokawa. 14.9 TFLOPS three-dimensional
fluid simulation for fusion science with HPF on the Earth Simulator. In Proceedings of
Supercomputing, 2002.

Scali Library User’s Guide, 2002. Published by Scali, Oslo, Norway.

C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33, Jan. 1985.

B. Smith, P. Bjgrstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, New
York, 1996.

M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Com-
plete Reference. MIT Press, Cambridge, MA, 1995.

T. Straatsma, E. Apra, T. Windus, W. E. d. J. E. J. Bylaska, S. Hirata, M. Valiev, M. T.
Hackler, L. L. Pollack, R. J. Harrison, M. Dupuis, D. Smith, J. Nieplocha, V. Tipparaju,
M. Krishnan, A. A. Auer, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hi-
rao, R. A. Kendall, J. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt,
P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. K. Dyall, D. Elwood, E. Glen-
dening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin,
R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing, G. Sandrone, M. Stave,
H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang. NWChem, A computa-
tional chemistry package for parallel computers, Version 4.6, 2004. Pacific Northwest
National Laboratory, Richland, WA.

R. Thakur, W. D. Gropp, and B. Toonen. Minimizing synchronization overhead in the
implementation of MPI one-sided communication. In D. Kranzlmiiller, P. Kacsuk, and
J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Lecture Notes in Computer Science, pages 57—67. Springer Verlag, 2004. 11th
European PVM/MPI User’s Group Meeting, Budapest, Hungary.

The Cluster Enabled Omni OpenMP Compiler. URL: http://phase.hpcc.jp/
Omni/Omni-doc/omni-scash.html.

The Open Group. System Interfaces and Headers, Issue 4, Version 2. 1992. URL:
http://www.opengroup.org/public/pubs/catalog/c435.htm.

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,
S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance Java dialect.
Concurrency: Practice And Experience, 10(11-13):825-836, 1998.

2

Partitioning and Dynamic Load Balancing for the
Numerical Solution of Partial Differential Equations

James D. Teresco!, Karen D. Devine?, and Joseph E. Flaherty>

! Department of Computer Science, Williams College, Williamstown, MA 01267, USA

terescoj@ecs.williams.edu

Discrete Algorithms and Mathematics Department, Sandia National Laboratories,
Albuquerque, NM 87185, USA

kddevin@sandia.gov

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
flaherje@cs.rpi.edu

Summary. In parallel simulations, partitioning and load-balancing algorithms compute the
distribution of application data and work to processors. The effectiveness of this distribu-
tion greatly influences the performance of a parallel simulation. Decompositions that balance
processor loads while keeping the application’s communication costs low are preferred. Al-
though a wide variety of partitioning and load-balancing algorithms have been developed, their
effectiveness depends on the characteristics of the application using them. In this chapter, we
review several partitioning algorithms, along with their strengths and weaknesses for various
PDE applications. We also discuss current efforts toward improving partitioning algorithms
for future applications and architectures.

The distribution of data among cooperating processes is a key factor in the effi-
ciency of parallel solution procedures for partial differential equations (PDEs). This
distribution requires a data-partitioning procedure and distributed data structures to
realize and use the decomposition. In applications with constant workloads, a sta-
tic partition (or static load balance), computed in a serial or parallel pre-processing
step, can be used throughout the computation. Other applications, such as adaptive
finite element methods, have workloads that are unpredictable or change during the
computation, requiring dynamic load balancers that adjust the decomposition as the
computation proceeds. Partitioning approaches attempt to distribute computational
work equally, while minimizing interprocessor communication costs. Communica-
tion costs are governed by the amount of data to be shared by cooperating processes
(communication volume) and the number of partitions sharing the data (number of
messages). Dynamic load-balancing procedures should also operate in parallel on
distributed data, execute quickly, and minimize data movement by making the new
data distribution as similar as possible to the existing one. The partitioning problem
is defined in more detail in Section 2.1.

56 J. D. Teresco et al.

Numerous partitioning strategies have been developed. The various strategies
are distinguished by trade-offs between partition quality, amount of data move-
ment, and partitioning speed. Characteristics of an application (e.g., computation-
to-communication ratio, cost of data movement, and frequency of repartitioning)
determine which strategies are most appropriate for it. For example, geometric al-
gorithms like recursive bisection and space-filling curve partitioning provide high-
speed, medium-quality decompositions that depend only on geometric information
(e.g., particles’ spatial coordinates, element centroids). Graph-based algorithms pro-
vide higher quality decompositions based on connectivity between application data,
but at a higher cost. Several strategies, with their relative trade-offs, are described in
detail in Section 2.2 and Section 2.3.

Many partitioning procedures have been implemented directly in applications,
using application-specific data structures. While this approach can provide high ex-
ecution efficiency, it usually limits the application to a single procedure and bur-
dens the application programmer with partitioning concerns. A number of software
libraries are available that provide high-quality implementations of partitioning pro-
cedures, provide flexibility to switch among available methods, and free the applica-
tion programmer from those details. Some of these software packages are described
in Section 2.4.

While existing methods have been very successful, research challenges remain.
New models, such as hypergraphs, can more accurately model communication.
Multi-criteria partitioning can improve efficiency when different phases of a com-
putation have different costs. Resource-aware computation, achieved by adjusting
the partitioning or other parts of the computation according to processing, memory
and communication resources, is needed for efficient execution on modern hierarchi-
cal and heterogeneous computer architectures. Current research issues are explored
further in Section 2.5.

2.1 The Partitioning and Dynamic Load Balancing Problems

The most common approach to parallelizing PDE solution procedures assigns por-
tions of the computational domain to cooperating processes in a parallel computa-
tion. Typically, one process is assigned to each processor. Data are distributed among
the processes, and each process computes the solution on its local data (its subdo-
main). Inter-process communication provides data that are needed by a process but
“owned” by a different process. This model introduces complications including (7)
assigning data to subdomains (i.e., partitioning, or when the data is already distrib-
uted, dynamic load balancing), (it) constructing and maintaining distributed data
structures that allow for efficient data migration and access to data assigned to other
processes, and (i¢¢2) communicating the data as needed during the solution process.
The focus of this chapter is on the first issue: data partitioning.

2 Partitioning and Dynamic Load Balancing 57

Subdomain 1 Subdomain 3

Subdomain 4

Subdomain 2

Fig. 2.1. An example of a two-dimensional mesh (left) and a decomposition of the mesh into
four subdomains (right).

2.1.1 The Partitioning Problem

The computational work of PDE simulation is often associated with certain “objects”
in the computation. For particle simulations, computation is associated with the in-
dividual particles; adjusting the distribution of particles among processors changes
the processor load balance. For mesh-based applications, work is associated with the
entities of the mesh — elements, surfaces, nodes — and decompositions can be com-
puted with respect to any of these entities or to a combination of entities (e.g., nodes
and elements). The partitioning problem, then, is the division of objects into groups
or subdomains that are assigned to cooperating processes in a parallel computation.

At its simplest, a partitioning algorithm attempts to assign equal numbers of ob-
jects to partitions while minimizing communication costs between partitions. A par-
tition’s subdomain, then, consists of the data uniquely assigned to the partition; the
union of subdomains is equal to the entire problem domain. For example, Figure 2.1
shows a two-dimensional mesh whose elements are divided into four subdomains.
Often communication between partitions consists of exchanges of solution data for
adjacent objects that are assigned to different partitions. For example, in finite el-
ement simulations, “ghost elements” representing element data needed by but not
assigned to a subdomain are updated via communication with neighboring subdo-
mains. While this data distribution is the most commonly used one for parallelization
of PDE applications (and, indeed, will be assumed without loss of generality in the
rest of this chapter), other data layouts are possible. In Mitchell’s full-domain parti-
tion (FuDoP) [77], for example, each process is assigned a disjoint subdomain of a
refined mesh. Then within each process, a much coarser mesh is generated for the
rest of the problem domain, giving each process a view of the entire domain. This
layout reduces the amount of communication needed to update subdomain boundary
values during adaptive multigrid, at the cost of extra degrees of freedom and compu-
tation. A similar idea has been applied to parallel solution procedures by Bank and
Holst to reduce communication costs for elliptic problems [3].

58 J. D. Teresco et al.

Objects may have weights proportional to the computational costs of the objects.
These nonuniform costs may result from, e.g., variances in computation time due
to different physics being solved on different objects, more degrees of freedom per
element in adaptive p-refinement [1, 105], or more small time steps taken on smaller
elements to enforce timestep contraints in local mesh-refinement methods [42]. Sim-
ilarly, nonuniform communication costs may be modeled by assigning weights to
connections between objects. Partitioning then has the goal of assigning equal to-
tal object weight to each subdomain while minimizing the weighted communication
cost.

2.1.2 Dynamic Repartitioning and Load Balancing Problem

Workloads in dynamic computations evolve in time, so a partitioning approach that
works well for a static problem or for a slowly-changing problem may not be effi-
cient in a highly dynamic computation. For example, in finite element methods with
adaptive mesh refinement, process workloads can vary dramatically as elements are
added and/or removed from the mesh. Dynamic repartitioning of mesh data, often
called dynamic load balancing, becomes necessary.

Dynamic repartitioning is also needed to maintain geometric locality in applica-
tions like crash simulations and particle methods. In crash simulations, for example,
high parallel efficiency is obtained when subdomains are constructed of geometri-
cally close elements [96]. Similarly, in particle methods, particles are influenced by
physically near particles more than by distant ones; assigning particles to processes
based on their geometric proximity to other particles reduces the amount of commu-
nication needed to compute particle interactions.

Dynamic load balancing has the same goals as partitioning, but with the addi-
tional constraints that procedures (¢) must operate in parallel on already distributed
data, (72) must execute quickly, as dynamic load balancing may be performed fre-
quently, and (4¢7) should be incremental (i.e., small changes in workloads produce
only small changes in the decomposition) as the cost of redistribution of mesh data
is often the most significant part of a dynamic load-balancing step. While a more
expensive procedure may produce a higher-quality result, it is sometimes better to
use a faster procedure to obtain a lower-quality decomposition, if the workloads are
likely to change again after a short time.

2.1.3 Partition Quality Assessment

The goal of partitioning is to minimize time to solution for the corresponding PDE
solver. A number of statistics may be computed about a decomposition that can in-
dicate its suitability for use in an application.

The most obvious measure of partition quality is computational load balance. As-
signing the same amount of work to each processor is necessary to avoid idle time on
some processors. The most accurate way to measure imbalance is by instrumenting
software to determine processor idle times. However, imbalance is often reported

2 Partitioning and Dynamic Load Balancing 59

Fig. 2.2. Example where the number of elements on the subdomain boundary is not an accurate
measure of communication costs. The shading indicates subdomain assignments. The element
indicated by “*” needs to send its value to two neighbors in the other subdomain, but the value
need only be communicated once.

with respect to the number of objects assigned to each subdomain (or the sum of
object weights, in the case of non-uniform object computation costs).

Computational load balance alone does not ensure efficient parallel computation.
Communication costs must also be considered. This task often corresponds to mini-
mizing the number of objects on sharing data across subdomain boundaries, since the
number of adjacencies on the bounding surface of each subdomain approximates the
amount of local data that must be communicated to perform a computation. For ex-
ample, in element decompositions of mesh-based applications, this communication
cost is often approximated by the number of element faces on boundaries between
two or more subdomains. (In graph partitioning, this metric is referred to as “edge
cuts”; see Section 2.2.2.) A similar metric is a subdomain’s surface index, the per-
centage of all element faces within a subdomain that lie on the subdomain boundary.
Two variations on the surface index can be used to estimate the cost of interprocess
communication. The maximum local surface index is the largest surface index over
all subdomains, and the global surface index measures the percentage of all element
faces that are on subdomain boundaries [14]. In three dimensions, the surface indices
can be thought of as surface-to-volume ratios if the concepts of surface and volume
are expanded beyond conventional notions; i.e., the “volume” is the whole of a sub-
domain, and the elements on subdomain boundaries are considered the “surface.”
The global surface index approximates the total communication volume, while the
maximum local surface index approximates the maximum communication needed
by any one subdomain.

A number of people [14, 50, 111] have pointed out flaws in minimizing only
the edge cut or global surface index statistics. First, the number of faces shared
by subdomains is not necessarily equal to the communication volume between the
subdomains [50]; an element could easily share two or more faces with elements
in a neighboring subdomain, but the element’s data would be communicated only
once to the neighbor (Figure 2.2). Second, interconnection network latency is often a

60 J. D. Teresco et al.

significant component of communication cost; therefore, interprocess connectivity
(the number of processes with which each process must exchange information dur-
ing the solution phase) can be as significant a factor in performance [14] as the total
volume of communication. Third, communication should be balanced, not necessar-
ily minimized [95]. A balanced communication load often corresponds to a small
maximum local surface index.

Another measure of partition quality is the internal connectivity of the subdo-
mains. Having multiple disjoint connected components within a subdomain (also
known as subdomain splitting [57]) can be undesirable. Domain decomposition
methods for the solution of the linear systems will converge slowly for partitions
with this property [25, 38]. Additionally, if a relatively small disjoint part of one
subdomain can be merged into a neighboring subdomain, the boundary size will de-
crease, thereby improving the surface indices.

Subdomain aspect ratio has also been reported as an important factor in parti-
tion quality [32, 38], particularly when iterative methods such as Conjugate Gradient
(CG) or Multigrid are used to solve the linear systems. Diekmann, et al. [32] pro-
vide several definitions of subdomain aspect ratio, the most useful being the ratio
of the square of the radius of smallest circle that contains the entire subdomain to
the subdomain’s area. They show that the number of iterations needed for a precon-
ditioned CG procedure grows with the subdomain aspect ratio. Furthermore, large
aspect ratios are likely to lead to larger boundary sizes.

Geometric locality of elements is an important indicator of partition effectiveness
for some applications. While mesh connectivity provides a reasonable approximation
to geometric locality in some simulations, it does not represent geometric locality in
all simulations. (In a simulation of an automobile crash, for example, the windshield
and bumper are far apart in the mesh, but can be quite close together geometrically.)
Geometric locality is also important in particle methods, where a natural representa-
tion of connectivity is not often available. Quality metrics based on connectivity are
not appropriate for these types of simulations.

2.2 Partitioning and Dynamic Load Balancing Taxonomy

A variety of partitioning and dynamic load balancing procedures have been devel-
oped. Since no single procedure is ideal in all situations, many of these alternatives
are commonly used. This section describes many of the approaches, grouping them
into geometric methods, global graph-based methods, and local graph-based meth-
ods. Geometric methods examine only coordinates of the objects to be partitioned.
Graph-based methods use the topological connections among the objects. Most geo-
metric or graph-based methods operate as global partitioners or repartitioners. Local
graph-based methods, however, operate among neighborhoods of processes in an ex-
isting decomposition to improve load balance. This section describes the methods;
their relative merits are discussed in Section 2.3.

2 Partitioning and Dynamic Load Balancing 61

Cut 2
Cut 2

Cut 1

Fig. 2.3. Example of RCB cuts along coordinate axes (left) and RIB cuts along the principal
axis of inertia (right).

2.2.1 Geometric Methods

Geometric methods are partitioners that use only objects’ spatial coordinates and ob-
jects’ computational weights in computing a decomposition. For example, in mesh
partitioning, any mesh entities’ coordinates (e.g., nodal coordinates, element cen-
troids, surface element centroids) can be used. Geometric methods assign objects
that are physically close to each other to the same partition in a way that balances the
total weight of objects assigned to each partition. This goal is particularly effective
for applications in which objects interact only if they are geometrically close to each
other, as in particle methods and crash simulations.

Recursive Bisection

Methods using recursive bisection divide the simulation’s objects into two equally
weighted sets; the bisection algorithm is then applied to each set until the number of
sets is equal to the number of desired partitions. (This description implies that the
number of partitions must be a power of two; however, only minor changes in the
algorithm are needed to allow an arbitrary number of partitions.)

Perhaps the most well-known geometric bisection method is Recursive Coordi-
nate Bisection (RCB), developed by Berger and Bokhari [9]. In RCB, two sets are
computed by cutting the problem geometry with a plane orthogonal to a coordinate
axis (see Figure 2.3, left). The plane’s direction is selected to be orthogonal to the
longest direction of the geometry; its position is computed so that half of the object
weight is on each side of the plane. In a twist on RCB, Jones’ and Plassmann’s Un-
balanced Recursive Bisection (URB) algorithm [61] halves the problem geometry
(instead of the set of objects) and then assigns processes to each half proportionally
to the total object weight within the half.

Like RCB, Recursive Inertial Bisection (RIB) [107, 113] uses cutting planes to
bisect the geometry. In RIB, however, the direction of the plane is computed to be
orthogonal to long directions in the actual geometry, rather than to a coordinate axis

62 J. D. Teresco et al.

11 1

v 111

Fig. 2.4. Template curve for the Morton ordering (left), its first level of refinement (center),
and an adaptive refinement (right).

(see Figure 2.3, right). Treating objects as point masses, the direction of principle in-
ertia in the geometry is found by computing eigenvectors of a 3 x 3 matrix assembled
from the point masses.

Space-Filling Curves

A second class of geometric partitioners utilizes a one-dimensional “traversal” or lin-
earization to order objects or groups of objects. After determining a one-dimensional
ordering, subdomains are formed from contiguous segments of the linearization. This
technique produces well-formed subdomains if the ordering preserves locality, i.e., if
objects that are close in the linearization are also close in the original coordinate
space.

The linearization is often achieved using space-filling curves (SFCs). SFCs pro-
vide continuous mappings from one-dimensional to d-dimensional space [99]. They
have been used to linearize spatially-distributed data for partitioning [2, 17, 33, 87,
89, 94], storage and memory management [22, 79], and computational geometry [7].

SFCs are typically constructed recursively from a single stencil. Each level of
refinement replaces segments of the SFC with a new copy of the curve’s stencil,
subject to spatial rotations and reflections. The SFC can come arbitrarily close to
any point in space. Most importantly for partitioning, some SFCs preserve locality,
which Edwards [33] defines formally. Several orderings with different degrees of
complexity and locality are possible; only the commonly-used Morton and Hilbert
orderings are included here.

The Morton (Z-code or Peano) ordering [80, 84] is a simple SFC that traverses a
quadrant’s children in a “Z”-like pattern (in the order I, II, III, IV in Figure 2.4). The
pattern at each refinement is identical to that used by its ancestors; no rotations or
reflections are performed. However, there are large “jumps” in its linearization, par-
ticularly as the curve transitions from quadrant II to quadrant III, so Morton ordering
does not always preserve locality. The jumps are even more apparent in three di-
mensions. Nevertheless, because of its simplicity, Morton ordering is viable in some
circumstances, and provides a base ordering for all SFCs [17, 60].

2 Partitioning and Dynamic Load Balancing 63

11 1

T 1]
i

v 111

Fig. 2.5. Template curve for the Hilbert ordering (left), its first level of refinement (center),
and an adaptive refinement (right).

The Hilbert ordering uses the Peano-Hilbert SFC [11, 90, 91] to order quadrants.
It uses a bracket-like template with rotations and inversions to keep quadrants closer
to their neighbors. (Figure 2.5). Hilbert ordering is locality preserving, and tends to
be the most useful for partitioning.

SFC orderings can be applied directly to objects given only the objects’ spatial
coordinates [2]. Each object is assigned a unique “key” representing the object’s po-
sition along the SFC. This key is a number in the range [0, 1] that specifies the point
on the SFC that passes closest to the object. The object are then ordered by their keys;
this ordering can be done via global sorting, binning [8, 27, 29], or traversing an oc-
tree representing the SFC [17, 42, 44, 71, 75]. The one-dimensional ordering is then
partitioned into appropriately sized pieces; all objects within a piece are assigned to
one subdomain.

SFC partitioning was first used by Warren and Salmon [127] in particle-based
gravitational simulations. They used a Morton ordering, but acknowledged that
Hilbert ordering would improve locality. Patra and Oden [81, 89], Parashar and
Browne [87], and Edwards [33] used Hilbert SFC ordering for finite element meshes.
Patra and Oden choose cuts along the SFC to balance computational work in their
hp-adaptive computation. Pilkington and Baden [94] apply SFCs for dynamic load
balancing with a uniform mesh where computational workloads vary. Steensland, et
al. [111] looked at SFCs for partitioning structured grids which undergo adaptive
refinement. Octree partitioning [42, 71, 75] implements SFC partitioning using oc-
tree data structures commonly used in mesh generation. Mitchell’s Refinement Tree
partitioning [76, 78] uses nodal connectivity in adaptively refined meshes (instead of
coordinate values) to generate a SFC through mesh elements; while this approach is
not strictly a geometric method, the resulting decompositions are qualitatively iden-
tical to SFC-produced decompositions.

2.2.2 Global Graph-Based Partitioning

A popular and powerful class of partitioning procedures make use of connectivity
information rather than spatial coordinates. These methods use the fact that the par-
titioning problem in Section 2.1.1 can be viewed as the partitioning of an induced

64 J. D. Teresco et al.

Fig. 2.6. Example two-dimensional mesh from Figure 2.1 (left) with its induced graph. (For
the color version, see Figure A.1 on page 467).

Subset V1

Subset V3

Subset V2

Subset V4

Fig. 2.7. Four-way partitioning of the graph from Figure 2.6. (For the color version, see Figure
A.2 on page 467).

graph G = (V| E), where objects serve as the graph vertices (V') and connections
between objects are the graph edges (E). For example, Figure 2.6 shows an induced
graph for the mesh in Figure 2.1; here, elements are the objects to be partitioned and,
thus, serve as vertices in the graph, while shared element faces define graph edges.
A k-way partition of the graph G is obtained by dividing the vertices into subsets
Vi,...Vi, where V.= Vi U ..UV, and V; N V; = © for ¢ # j. Figure 2.7
shows one possible decomposition of the graph induced by the mesh in Figure 2.6.
Vertices and edges may have weights associated with them representing computation
and communication costs, respectively. The goal of graph partitioning, then, is to
create subsets Vj, with equal vertex weights while minimizing the weight of edges
“cut” by subset boundaries. An edge e;; between vertices v; and v; is cut when v;
belongs to one subset and v; belongs to a different one. In Figure 2.7, eight edges
are cut. Algorithms to provide an optimal partitioning are NP-complete [46, 47],

2 Partitioning and Dynamic Load Balancing 65

Fig. 2.8. Example greedy partitioning of a small mesh. Numbers indicate the order in which
elements are added to the subdomain being constructed.

so heuristic algorithms are generally used. The graph partitioning is related back to
the mesh partitioning problem by creating subdomains of the mesh corresponding to
each subset V;. Figure 2.1 (right) shows the partitioning of the mesh based on the
graph partitioning of Figure 2.7.

A number of algorithms have been developed to partition graphs. Many of these
were developed as static partitioners, intended for use as a preprocessing step rather
than as a dynamic load balancing procedure. Some of the multilevel procedures do
operate in parallel and can be used for dynamic load balancing.

Greedy Partitioning

Farhat [36] applied graph partitioning to the mesh partitioning problem. The graph
is partitioned by a greedy algorithm (GR) that builds each subdomain by starting
with a vertex and adding adjacent vertices until the subdomain’s target size has been
reached, see Figure 2.8. The procedure then chooses another unassigned vertex and
builds the next subdomain. Farhat [38] reports success using these procedures. Such
greedy procedures can also be components of the more commonly used multilevel
partitioners described below.

Spectral Partitioning

A very well known static graph partitioning method is Recursive Spectral Bisec-
tion (RSB) [97, 107]. In RSB, the Laplacian matrix L of a graph is constructed. Each
diagonal entry [;; is the degree of vertex 7; non-diagonal entries [;; are -1 if edge e;;
exists in the graph, and 0 otherwise. The eigenvector x associated with the smallest
non-zero eigenvalue of L is then used to divide the vertices into two sets. The me-
dian value of z is found. Then, for each z;, if z; is less than the median, vertex i is
assigned to the first set; otherwise, it is assigned to the second set. This bisection pro-
cedure is repeated on the subgraphs until the number of sets is equal to the number
of desired partitions.

RSB generally produces high quality partitions. The eigenvector calculation,
however, is very expensive and, thus, RSB is used primarily for static partitioning.

66 J. D. Teresco et al.

Strategies using additional eigenvectors to compute four or eight partitions in each
stage have proven to be effective while reducing the cost to partition [54].

Multilevel Partitioning

By far, the most successful global graph-based algorithms for static partitioning are
multilevel graph partitioners [15, 55, 66], as evidenced by the number of static graph
partitioning packages available [53, 64, 92, 98]. Multilevel methods’ operation is
much like the V-cycle used in multigrid solvers, in that an initial solution is computed
on a coarse representation of the graph and used to obtain better solutions on finer
representations.

Multilevel graph partitioning involves three major phases: (i) coarsening, the
construction of a sequence of smaller graphs that approximate the original, (¢2) par-
titioning of the coarsest graph, and (ii:) uncoarsening, the projection of the parti-
tioning of the coarsest graph onto the finer graphs, with a local optimization applied
to improve the partitioning at each step. A simple example of this procedure for a
small graph with two levels of coarsening is shown in Figure 2.9.

Coarsening procedures typically use a vertex matching algorithm that identifies
vertices that can be combined to create coarse vertices. The set of edges from the
coarse vertex is taken as the union of the edges for the combined vertices. The sum
of the combined vertices” weights is used as the coarse vertex’s weight. In this way,
the structure and workloads of the input graph are preserved in the coarse repre-
sentations. Matching at each level can be done by randomly selecting unmatched
vertices [15, 55, 66, 125] or using heuristics [6, 23, 45, 48, 49, 66]. For example,
heavy-edge matching combines the two vertices sharing the edge with the heaviest
edge weight [66], suggesting that vertices with the strongest affinity toward each
other should be combined.

The coarsest graph is then partitioned. Since this graph is small, a spectral
method [55, 66] can be used efficiently. Faster greedy methods [66] can also be used;
while they produce lower quality coarse partitions, local optimizations during the un-
coarsening phase improve partition quality. A local optimization may also be used at
this point to attempt to encourage incrementality [103]. A geometric procedure such
as an SFC may also be used for this coarse partitioning [68].

The coarse decomposition is projected to the finer graphs, with refinements of
the partitions made at each graph level. Typically a local optimization technique re-
duces a communication metric while maintaining and improving load balance. Most
of the local optimization approaches are based on the Kernighan-Lin (KL) graph
bisection algorithm [69] or its linear-time implementation by Fiduccia and Maythe-
ses (FM) [39]. These techniques make a series of vertex moves from one partition to
another, measuring the “gain” or improvement in the metric for each move; moves
with high gain are accepted. Karypis and Kumar [66] perform only a few iterations of
their KL-like procedure, noting that most of the gain is usually achieved by the first
iteration. Hendrickson and Leland [55] continue their KL-like procedure to allow for
the discovery of sequences of moves that, while individually making the decompo-
sition worse, may lead to a net improvement. This allows the procedure to escape

2 Partitioning and Dynamic Load Balancing 67

Fig. 2.9. Multilevel partitioning of the induced graph of Figure 2.6. Vertex matching in (a)
leads to the coarse graph in (b). A second round of vertex matching in (c) produces the coarse
graph in (d). This coarsest graph is partitioned in (e). The graph is uncoarsened one level and
the partitioning is optimized in (f). The second level of uncoarsening, and another round of
local optimization on this partitioning produces the final two-way partitioning shown in (g).
(For the color version, see Figure A.3 on page 468).

from local minima. Walshaw, et al. [125] define a relative gain value for each vertex,
intended to avoid collisions (i.e., vertices on opposite sides of a boundary each being
selected to move).

Parallel implementation of multilevel graph partitioners has allowed them to be
used for dynamic load balancing [67, 125]. These methods produce very high quality
partitionings, but at a higher cost than geometric methods. Graph partitioners are not
inherently incremental, but modifications such as the local methods described below
can make them more effective for dynamic repartitioning.

68 J. D. Teresco et al.
2.2.3 Local Graph-based Methods

In an adaptive computation, dynamic load balancing may be required frequently.
Applying globalpartitioning strategies after each adaptive step can be costly rela-
tive to solution time. Thus, a number of dynamic load balancing techniques that are
intended to be fast and incrementally migrate data from heavily to lightly loaded
processes have been developed. These are often referred to as local methods.

Unlike global partitioning methods, local methods work with only a limited view
of the application workloads. They consider workloads within small, overlapping
sets of processors to improve balance within each set. Heavily loaded processors
within a set transfer objects to less heavily loaded processors in the same set. Sets
can be defined by the parallel architecture’s processor connectivity [70] or by the
connectivity of the application data [58, 130]. Sets overlap, allowing objects to move
between sets through several iterations of the local method. Thus, when only small
changes in application workloads occur through, say, adaptive refinement, a few it-
erations of a local method can correct imbalances while keeping the amount of data
migrated low. For dramatic changes in application workloads, however, many iter-
ations of a local method are needed to correct load imbalances; in such cases, in-
vocation of a global partitioning method may result in a better, more cost-effective
decomposition.

Local methods typically consist of two steps: (¢) computing a map of how much
work (nodal weight) must be shifted from heavily loaded to lightly loaded proces-
sors, and (iz) selecting objects (nodes) that should be moved to satisfy that map.
Many different strategies can be used for each step.

Most strategies for computing a map of the amount of data to be shifted among
processes are based on the diffusive algorithm of Cybenko [24]. Using processor con-
nectivity or application communication patterns to describe a computational “mesh,”
an equation representing the workflow is solved using a first-order finite-difference
scheme. Since the stencil of the scheme is compact (using information only from
neighboring processes), the method is local.

Several variations of this strategy have been developed to reduce data move-
ment or improve convergence. Hu and Blake [58] take a more global view of
load distributions, computing a diffusion solution while minimizing work flow over
edges of a graph of the processes. Their method is used in several parallel graph-
partitioning libraries [100, 125]. Such diffusion methods have been coupled with
multilevel graph partitioners (see Section 2.2.2) to further improve their effective-
ness [56, 100, 103, 124, 125].

Other techniques for accelerating the convergence of diffusion schemes include
use of higher-order finite difference schemes and dimensional exchange. Watts,
et al. [128, 129] use a second-order implicit finite difference scheme to solve
the diffusion equation; this scheme converges to global balance in fewer itera-
tions, but requires more work and communication per iteration. In dimensional ex-
change [24, 31, 132, 134], a hypercube architecture is assumed. (The algorithm can
be used on other architectures by logically mapping the architecture to a hypercube.)

2 Partitioning and Dynamic Load Balancing 69

Processes exchange work with neighbors along each dimension of the hypercube;
after looping over all dimensions, the workloads are balanced.

Demand-driven models are also common [26, 34, 70, 86, 130, 131, 132]. These
models operate in either of two ways: (¢) underloaded processes request work from
their overloaded neighboring processes, or (i¢) overloaded processes send work to
their underloaded neighbors. The result is similar to diffusion algorithms, except
that nodes are transferred to only a subset of neighbors rather than distributed to
all neighbors. Version (%) of this model has shown to be more effective than (i7), as
the majority of load-balancing work is performed by the underloaded process and
overloading of the receiving process is avoided [132]. As in the diffusion algorithm,
neighbors can be defined by following the physical processor network [70] or the
logical data connections [131]. Ozturan’s iterative tree-balancing procedure [26, 86]
groups processes into trees based upon their work requests, moving work among
processes within trees. This more global view accelerates the convergence of the
diffusion, but also increases the average number of neighboring processes per process
in the application’s communication graph.

The second step of a local method is deciding which objects (graph nodes) to
move to satisfy the workload transfers computed in the first step. Typically, vari-
ants of the KL [69] or FM [39] local optimization algorithms (used for refinement
of multilevel partitions) are used. For each object, the gain toward a specific goal
achieved by transferring the object to another process is computed. Many options for
the gain function have been used (e.g., [28, 55, 125, 131, 134]). Most commonly, the
weight of graph edges cut by subdomain boundaries is minimized. However, other
goals might include minimizing the amount of data migrated [28, 100], minimizing
the number of process neighbors, optimizing subdomain shape [30, 118], or some
combination of these goals. The set of objects producing the highest gain is selected
for migration. Selection continues until the actual workload transferred is roughly
equal to the desired workload transfers.

2.3 Algorithm Comparisons

A number of theoretical and empirical comparisons of various partitioning strate-
gies have been performed [14, 27, 37, 38, 41, 51, 57, 111, 112, 115]. Selection of
the method that is most effective for an application depends on trade-offs between
incrementality, speed and quality that can be tolerated by the application. A PDE
solver which uses a single decomposition throughout the computation should con-
sider strategies that produce high-quality partitions, with less concern for execution
speed of the partitioner. A solver which uses frequent adaptivity will want to consider
strategies that execute quickly and are incremental, with less emphasis on partition
quality. A procedure which does not readily provide adjacency information will be
restricted to geometric methods. This section summarizes and cites key results.

e RCB, URB
— Geometric method: only coordinate information needed.

70

J. D. Teresco et al.

Incremental and suitable for dynamic load balancing [51].

Executes very quickly [115].

Moderate quality decompositions. Cutting planes help keep the number of
objects on subdomain boundaries small for well-shaped meshes [18]. Unfor-
tunate cuts through highly refined regions [115] or complex domain geome-
try [75, 73] can lead to poor decompositions. URB produces more uniform
subdomain aspect ratios than RCB when there is a large variation in object
density [61].

Conceptually simple; straightforward to implement in parallel [29].
Maintains geometric locality [51, 123].

Simple to determine intersections of objects with subdomains, e.g., for paral-
lel contact detection and smoothed particle hydrodynamics simulations [96];
subdomains are described by simple parallelepipeds.

RIB

Geometric method: only coordinate information needed.

Not incremental; may be unsuitable for dynamic load balancing [42].
Executes almost as quickly as RCB [115].

Slightly higher quality decompositions than RCB; lower quality than spectral
and multilevel graph partitioning [38, 115]. Unfortunate cuts through highly
refined regions can cause poor decompositions [115].

Conceptually simple; straightforward to implement in parallel [29, 106].
Maintains geometric locality.

Simple to determine intersections of objects with subdomains, e.g., for paral-
lel contact detection and smoothed particle hydrodynamics simulations [96].

SFC

Geometric method: only coordinate information needed.

Incremental and suitable for dynamic load balancing [42, 51].

Executes very quickly [42, 94, 112].

Slightly lower quality decompositions than geometric bisection methods [89].
Conceptually simple; straightforward to implement in parallel [94].

Choice of SFC used depends on locality requirements; Hilbert is usually
best [17].

The global ordering induced by sorting SFC keys can be exploited to order
data to improve cache performance during computation, and can provide au-
tomated translations between global and per-process numbering schemes [33,
88].

Possible to determine intersections of objects with subdomains, e.g., for
parallel contact detection and smoothed particle hydrodynamics simulations
[27].

Greedy partitioning

Graph-based method: connectivity information is required.
Not incremental; may be unsuitable for dynamic load balancing.
Executes quickly [38, 118, 123, 124].

2 Partitioning and Dynamic Load Balancing 71

Medium-quality decompositions [123], better than RIB [38], and good with
respect to subdomain aspect ratio [38]. Tends to leave non-connected or strip-
wise subdomains in the last few partitions computed [57].

Difficult to implement in parallel.

Does not maintain geometric locality [123].

e Spectral graph partitioning

Graph-based method: connectivity information is required.

Not incremental; may be unsuitable for dynamic load balancing [112]. Van
Driessche and Roose [117] developed modifications to include incremental-
1ty.

Executes very slowly [124].

Very high quality decompositions [124].

More difficult to parallelize than geometric methods [5, 109].

Does not maintain geometric locality [123].

Suitable primarily for static partitioning.

e Multilevel graph partitioning

Graph-based method: connectivity information is required.

Not incremental; may be unsuitable for dynamic load balancing [123]. Met-
rics may include migration cost to improve incrementality [103].

Executes slowly [115, 124].

Very high quality decompositions [67, 125].

Difficult to implement in parallel [67].

Does not maintain geometric locality.

e Local graph-based methods

Graph-based method: connectivity information is required.

Incremental; suitable for dynamic load balancing [26, 86].

Usually execute quickly, but several iterations may be needed for global bal-
ance. Also, more sophisticated techniques can be more expensive [112].
High quality decompositions, given a good starting decomposition.
Straightforward to implement in parallel [26, 86]; can be incorporated into
multilevel strategies [55, 67, 125].

Useful as a post-processing step for other methods to improve partition qual-
ity [42, 75].

2.4 Software

Many software packages are available to provide static and dynamic load balanc-
ing to applications. Using these packages, application developers can access a vari-
ety of high-quality implementations of partitioning algorithms. Many packages also
include supporting functionality (e.g., data migration tools and unstructured com-
munication tools) commonly needed by applications using load balancing. Use of
these packages saves application developers the effort of learning and implement-
ing partitioning algorithms themselves, while allowing them to compare partitioning
strategies within their applications. Moreover, many of the packages are available as

72 J. D. Teresco et al.

open-source software; see bibliography entries for the packages cited for distribution
details.

Static partitioning software is typically used as a pre-processor to the applica-
tion. It can be used in two ways: as a stand-alone tool or as a function call from
the application. In stand-alone mode, input files describe the problem domain to be
partitioned; the format of these files is determined by the partitioning software. The
computed decomposition is also written to files. The application must then read the
decomposition files to distribute data appropriately. Function-call interfaces to static
partitioners allow them to be called directly by applications during pre-processing
phases of the application.

Several graph partitioning packages have been developed for static load balanc-
ing; they include Chaco [53], Metis [64], Jostle [120], Party [98] and Scotch [93].
These tools run in serial and have both stand-alone and function interfaces. For
the stand-alone mode, users provide input files describing the problem domain in
terms of a graph, listing vertices (objects), edges between vertices, vertex and edge
weights, and possibly coordinates. The function-call interfaces accept a graph de-
scription of the problem through arrays using compressed sparse row (CSR) format.
In both modes, applications have to convert their application data into the appropriate
graph format.

By necessity, dynamic load-balancing software uses function call interfaces, as
file-based interfaces would be unacceptable for balancing during a computation.
Similarly, dynamic load-balancing software is executed in parallel, assuming an ex-
isting distribution of data; parallel execution is required to maintain scalability of the
application. Two types of dynamic partitioning software are available: algorithm-
specific libraries and toolkits of partitioning utilities.

ParMETIS [68] and PJostle [120] are two widely used algorithm-specific li-
braries. Both provide multi-level and diffusive graph partitioning. Like their serial
counterparts, they accept input in CSR format, with extensions describing the exist-
ing partition assignment of the vertices; the arrays describing the application data as
a graph in this compressed format must be built by the application. ParMETIS in-
cludes support for multiple weights per vertex [65] and edge [101], enabling multi-
constraint and multi-objective partitioning (see Section 2.5.2). PJostle allows multi-
ple vertex weights for multiphase applications [126] (see Section 2.5.2) and a net-
work description [122] to allow partitioning for heterogeneous computing systems
(see Section 2.5.3).

Load-balancing toolkits such as Zoltan [29] and DRAMA [72] incorporate suites
of load-balancing algorithms with additional functionality commonly needed by
dynamic applications. Both Zoltan and DRAMA include geometric partitioners
(through implementations in the toolkits) and graph-based partitioners (through in-
terfaces to ParMETIS and PJostle). They enable comparisons of various methods by
providing a common interface for all partitioners and allowing applications to select
a method via a single parameter. They also provide support for moving data between
processors to establish a new decomposition.

The Zoltan toolkit [29] provides parallel dynamic load balancing and data man-
agement services to a wide range of applications, including particle simulations,

2 Partitioning and Dynamic Load Balancing 73

mesh-based simulations, circuit simulations, and linear solvers. It includes geomet-
ric bisections methods (RCB, RIB), space-filling curve methods (HSFC, Octree, Re-
finement Tree), and graph-based partitioning (through ParMETIS and PJostle). Un-
like the graph-partitioning libraries, Zoltan’s design is “data-structure neutral”; i.e.,
Zoltan does not require the application to use or build particular data structures for
Zoltan. Instead, a callback-function interface provides a simple, general way for ap-
plications to provide data to Zoltan. Applications provide simple functions return-
ing, e.g., lists of objects to be partitioned, coordinates for the objects, and relation-
ships between objects. Zoltan calls these functions to obtain application information
needed to build its data structures. Once an application implements these callback
functions, switching between load-balancing methods requires changing only one
parameter.

Zoltan also includes a number of utilities that simplify development of dynamic
applications. Its data migration tools assist in the movement of data among proces-
sors as they move from an old decomposition to a new one. Because Zoltan does
not have information about application data structures, it cannot update them dur-
ing migration. But given callback functions that pack and unpack data from com-
munication buffers, its migration tools perform all communication needed for data
migration. Zoltan’s unstructured communication package provides a simple mecha-
nism for complex communication among processors, freeing application developers
from the details of individual message sends and receives. Its distributed data direc-
tory provides an efficient, scalable utility for locating data in the memory space of
other processes. Key kernels of contact detection simulations—finding the partitions
owning points and regions in space—are included for Zoltan’s geometric and HSFC
methods.

The DRAMA (Dynamic Re-Allocation of Meshes for parallel finite element Ap-
plications) toolkit [72] provides parallel dynamic load balancing and support ser-
vices to mesh-based applications. DRAMA assumes a basic data structure of a mesh
and enables partitioning of the mesh nodes, elements or both. The mesh is input to
DRAMA through array-based arguments. Like Zoltan, DRAMA provides a number
of partitioning strategies, including recursive bisection methods and graph partition-
ing through interfaces to ParMETIS and PJostle.

DRAMA includes a robust cost-model for use in partitioning. This model ac-
counts for both computation and communication costs in determining effective de-
compositions. Because it assumes a mesh data structure, DRAMA includes more
sophisticated support for data migration than Zoltan. It migrates its input mesh to
its new location; this migrated mesh can then serve as a starting point for the ap-
plication data migration. DRAMA provides support for heterogeneous computing
architectures through PJostle’s network description [121] (see Section 2.5.3). It also
includes extensive support for contact detection and crash simulations.

Load-balancing tools that are tied more closely to specific applications also exist.
For example, the PLUM system [82] provides dynamic load balancing for applica-
tions using adaptively refined meshes. Its goal is to minimize load-balancing over-
head during adaptive computations. To do so, it balances with respect to a coarse
mesh in the adaptive simulation using element weights proportional to the number

74 J. D. Teresco et al.

of elements into which each coarse element has been refined. It uses an external par-
titioning library (e.g., ParMETIS) to compute a decomposition, and then uses a sim-
ilarity matrix to remap partitions in a way that minimizes data movement between
the old and new decompositions. Another example, the VAMPIRE library [110],
produces decompositions for structured adaptive mesh refinement applications. As-
suming the refined mesh is represented as a tree of uniform grids, it uses a SFC algo-
rithm to distribute the grids to processors to evenly distribute work while attempting
to minimize communication between the grids. Load-balancing systems are also in-
cluded as parts of larger parallel run-time systems; see, e.g., CHARM++ [62] and
PREMA [4].

2.5 Current Challenges

As parallel simulations and environments become more sophisticated, partitioning
algorithms must address new issues and application requirements. Software design
that allows algorithms to be compared and reused is an important first step; care-
fully designed libraries that support many applications benefit application developers
while serving as test-beds for algorithmic research. Existing partitioners need addi-
tional functionality to support new applications. Partitioning models must more accu-
rately represent a broader range of applications, including those with non-symmetric,
non-square, and/or highly-connected relationships. And partitioning algorithms need
to be sensitive to state-of-the-art, heterogeneous computer architectures, adjusting
work assignments relative to processing, memory and communication resources.

2.5.1 Hypergraph Partitioning

Development of robust partitioning models is important in load-balancing research.
While graph models (see Section 2.2.2) are often considered the most effective mod-
els for mesh-based PDE simulations, they have limitations for larger classes of prob-
lems (e.g., electrical systems, computational biology, linear programming). These
new problems are often more highly connected, more heterogeneous, and less sym-
metric than mesh-based PDE problems.

As an alternative to graphs, hypergraphs can be used to model application
data [19, 20]. A hypergraph HG = (V, HE) consists of a set of vertices V rep-
resenting the data objects to be partitioned and a set of hyperedges H X connecting
two or more vertices of V. By allowing larger sets of vertices to be associated through
edges, the hypergraph model overcomes many of the limitations of the graph model.

A key limitation of the graph model is that its edge-cut metric only approximates
communication volume induced by a decomposition (see Section 2.1.3). While this
approximation is adequate for traditional finite-element, finite-volume, and finite-
difference simulations, it is not sufficient for more highly connected and unstructured
data. In the hypergraph model, however, the number of hyperedge cuts is equal to the
communication volume, providing a more effective partitioning metric.

2 Partitioning and Dynamic Load Balancing 75

Catalyurek and Aykanat [20] also describe the greater expressiveness of hy-
pergraph models over graph models. Because edges in the graph model are non-
directional, they imply symmetry in all relationships, making them appropriate only
for problems represented by square, structurally symmetric matrices. Systems A with
non-symmetric structure must be represented by a symmetrized model A + AT,
adding new edges to the graph and further skewing the communication metric. While
a directed graph model could be adopted, it would not improve the accuracy of the
communication metric. Likewise, graph models can not represent rectangular ma-
trices, such as those arising in linear programming. Kolda and Hendrickson [52]
propose using bipartite graphs. For an m X n matrix A, vertices m;,i = 1,...,m
represent rows, and vertices n;, j = 1, ..., n represent columns. Edges e;; connect-
ing m; and n; exist for non-zero matrix entries a;;. But as in other graph models,
the number of edge cuts only approximates communication volume.

Hypergraph models, on the other hand, do not imply symmetry in relationships,
allowing both structurally non-symmetric and rectangular matrices to be represented.
For example, the rows of a rectangular matrix could be represented by the vertices of
a hypergraph. Each matrix column would be represented by a hyperedge connecting
all non-zero rows in the column [20].

The improved communication metric and expressiveness of hypergraph models
lead to impressive results. Using hypergraph partitioning, Catalyurek and Aykanat
[20] report reductions in communication volume of 12-15% compared to graph par-
titioning for matrices from traditional finite difference applications. But for a broader
range of matrices, including examples from linear programming, circuit simula-
tions and stochastic programming, hypergraph partitioning produced reductions of
30-38% on average. Time to compute the hypergraph decomposition was 34-130%
greater than that required to compute a graph decomposition.

Hypergraph partitioning’s effectiveness has been demonstrated in many areas,
including VLSI layout [16], sparse matrix decompositions [20, 119], and database
storage and data mining [21, 85]. Serial hypergraph partitioners are available (e.g.,
hMETIS [63], PaToH [20, 19], Mondriaan [119]). Research into parallel hypergraph
partitioning includes a disk-based implementation used for partitioning Markov ma-
trices [116] and a distributed memory implementation in Zoltan [13]. Parallel imple-
mentation is needed for hypergraph partitioning to be viable for very large simula-
tions. Additionally, incremental hypergraph algorithms (analogous to diffusive graph
algorithms [24]) will be needed for dynamic applications.

2.5.2 Multi-criteria Partitioning

Most load-balancing research has focused on cases having a single load to be bal-
anced. Multi-phase simulations, however, might have different work loads in each
phase of a simulation. For example, a multiphysics simulation might include both
fluid flow and solid mechanics phases. Crash simulations typically have a finite-
element solve phase and a contact-detection phase. Even within a finite element sim-
ulation, the matrix assembly and matrix solve phases may have significantly different
load characteristics depending on the physics of the problem.

76 J. D. Teresco et al.

One approach to balancing multi-phase simulations is to use separate decompo-
sitions for each phase, mapping data between decompositions when needed. This
approach has been used with great success in crash simulations, where static graph-
based decompositions were used for the finite element phase and dynamic geometric
decompositions were used for contact detection [96]; data were transferred between
the decompositions as needed between phases.

Still, the idea of having a single decomposition that is balanced with respect
to multiple loads is attractive. With such a decomposition, no mapping of data is
needed between phases, reducing application communication costs. Each object to
be balanced would have a vector v of weights associated with it; the j*" component
of v would represent the object’s workload in phase j. A single decomposition would
then be generated that balances each vector component.

Walshaw, et al. [126] developed a multiphase graph partitioner in Jostle [120].
Assuming components of weight vector v represent a vertex’s participation in a
phase, they say the “type” of the vertex is the first phase 7 in which the vertex par-
ticipates, i.e., for which v[j] > 0. They then balance each type of vertex separately,
maintaining partition information from lower types as “stationary” vertices in the
partitioning of higher types. That is, in computing a partition for vertices of type k,
k > j, all vertices of type j within a partition are represented by a single “super-
vertex” whose partition assignment is fixed to a particular partition; edges between
these stationary vertices and vertices of type k are maintained to represent data de-
pendencies between the phases. A standard graph partitioner is used to partition each
type of vertices; in attempting to minimize cut edges, the graph partitioner is likely
to assign type k vertices to the same partition as type j vertices to which they are
connected, keeping inter-phase communication costs low.

The multi-constraint graph-partitioning model of Karypis, et al. [65, 104] in
METIS [64] and ParMETIS [67] uses vertex weight vectors to create multiple load-
balancing constraints. Using this model, they can compute both multiphase decom-
positions and decompositions with respect to multiple criteria, e.g., workloads and
memory usage. Their approach is built on the multi-level framework commonly used
in graph partitioning (see Section 2.2.2), with modifications made in the coarsening,
coarse-partitioning, and refinement steps to accommodate multiple vertex weights.
During coarsening, the same heavy-edge metric used in single-constraint partition-
ing is used to select vertices to be combined; this metric combines a vertex with the
neighboring vertex sharing the heaviest edge weight. In multi-constraint partitioning,
ties between combinations with the same metric value are broken by a “balanced-
edge” metric that attempts to make all weights of the combined vertex as close to the
same value as possible, as more uniform weights are easier to balance in the coarse-
partitioning and refinement steps. A greedy recursive graph bisection algorithm is
used to compute the coarse partition; at each level of recursion, two subdomains A
and B are created by removing vertices from A (which initially contains the en-
tire domain) and adding them to B (which initially is empty). In the multi-constraint
case, vertices are selected based on their ability to reduce the heaviest weight of A the
most. In refinement, KL [69] or FM [39] procedures are used. For multi-constraint
partitioning, queues of vertices that can be moved are maintained for each weight

2 Partitioning and Dynamic Load Balancing 77

and neighboring partition; vertices are again selected based on their ability to reduce
the maximum imbalance over all weights while reducing the number of edges cut. To
enforce the balance constraints in multi-constraint partitioning, an additional shifting
of vertices among processors without regard to increases in the edge cut weight is
sometimes needed before refinement.

Because geometric partitioners are preferred for many applications, Boman, et al.
pursued multi-criteria partitioning for geometric partitioners, specifically RCB [12].
Their implementation is included in Zoltan [29]. RCB consists of a series of one-
dimensional partitioning problems; objects ¢ are ordered linearly by their coordinate
values corresponding to the direction of the cut. Like other approaches, objects ¢ have
vector weights v; representing the load-balance criteria. Instead of imposing multiple
constraints, however, Boman, et al. formulate each one-dimensional problem as an
optimization problem where the objective is to find a cut s such that

msln max(g(z v;), g(z vi)),

i<s i>s

where g is a monotonically non-decreasing function in each component of the input
vector (typically g(z) = >_, 2% withp = 1 orp = 2, or g(z) = ||| for some
norm). This objective function is unimodal with respect to s. In other words, starting
with s = 1 and increasing s, the objective decreases, until at some point the objec-
tive starts increasing; that point defines the optimal bisection value s. (Note that the
objective may be locally flat (constant), so there is not always a unique minimizer.)
An optimal cut is computed in each coordinate direction; the cut producing the best
balance is accepted.

In general, computing multi-criteria decompositions becomes more difficult as
the number of criteria and/or number of partitions increases. As a result, partition
quality can degrade. Likewise, multi-criteria partitions are more expensive to com-
pute than single-criterion partitions; the extra cost, however, may be justified by the
improved load balance and reduction of data transfer.

2.5.3 Resource-Aware Balancing

Cluster and grid computing have made hierarchical and heterogeneous computing
systems increasingly common as target environments for large-scale scientific com-
putation. Heterogeneity may exist in processor computing power, network speed, and
memory capacity. Clusters may consist of networks of multiprocessors with varying
computing and memory capabilities. Grid computations may involve communication
across slow interfaces between vastly different architectures. Modern supercomput-
ers are often large clusters with hierarchical network structures. Moreover, the char-
acteristics of an environment can change during a computation due to increased mul-
titasking and network traffic. For maximum efficiency, software must adapt dynam-
ically to the computing environment and, in particular, data must be distributed in
a manner that accounts for non-homogeneous, changing computing and networking
resources. Several projects have begun to address resource-aware load balancing in
such heterogeneous, hierarchical, and dynamic computing environments.

78 J. D. Teresco et al.

Minyard and Kallinderis [74] use octree structures to conduct partitioning in dy-
namic execution environments. To account for the dynamic nature of the execution
environment, they collect run-time measurements based on the “wait” times of the
processors involved in the computation. These “wait” times measure how long each
CPU remains idle while all other processors finish the same task. The objects are as-
signed load factors that are proportional to the “wait” times of their respective own-
ing processes. Each octant load is subsequently computed as the sum of load factors
of the objects contained within the octant. The octree algorithm then balances the
load factors based on the weight factors of the octants, rather than the number of
objects contained within each octant.

Walshaw and Cross [122] conduct multilevel mesh partitioning for heteroge-
neous communication networks. They modify a multilevel algorithm in PJostle [120]
seeking to minimize a cost function based on a model of the heterogeneous commu-
nication network. The model gives a static quantification of the network heterogene-
ity as supplied by the user in a Network Cost Matrix (NCM). The NCM imple-
ments a complete graph representing processor interconnections. Each graph edge is
weighted as a function of the length of the path between its corresponding proces-
sors.

Sinha and Parashar [108] present a framework for adaptive system-sensitive par-
titioning and load balancing on heterogeneous and dynamic clusters. They use the
Network Weather Service (NWS) [133] to gather information about the state and ca-
pabilities of available resources; then they compute the load capacity of each node as
a weighted sum of processing, memory, and communications capabilities. Reported
experimental results show that system-sensitive partitioning resulted in significant
decrease of application execution time.

Faik, et al. [35] present the Dynamic Resource Utilization Model (DRUM) for
aggregating information about the network and computing resources of an execution
environment. Through minimally instrusive monitoring, DRUM collects dynamic
information about computing and networking capabilities and usage; this informa-
tion determines computing and communication “powers” that can be used as the
percentage of total work to be assigned to processes. DRUM uses a tree structure
to represent the underlying interconection of hierarchical network topologies (e.g.,
clusters of clusters, or clusters of multiprocessors). Using DRUM’s dynamic moni-
toring and power computations, they achieved 90% of optimal load distribution for
heterogeneous clusters [35].

Teresco [114] has implemented hierarchical partitioning procedures within the
software package Zoltan. These procedures can be used alone, or can be guided
by DRUM [35]. Hierarchical partitioning allows any combination of Zoltan’s load-
balancing procedures to be used on different levels and subtrees of hierarchical ma-
chine models. Tradeoffs in execution time, imbalance, and partition quality (e.g.,
surface indices, interprocess connectivity) can hold greater importance in hetero-
geneous environments [115], making different methods more appropriate in certain
types of environments. For example, consider the cluster of SMPs connected by Eth-
ernet shown in Figure 2.10. A more costly graph partitioning can be done to parti-
tion into two subdomains assigned to the SMPs, to minimize communication across

2 Partitioning and Dynamic Load Balancing 79

‘ Network

‘ Each SMP independently

i) computes 4-way RIB partitioning

Fig. 2.10. Hierarchical balancing algorithm selection for two 4-way SMP nodes connected by
a network. (For the color version, see Figure A.4 on page 468).

the slow network interface, possibly at the expense of some computational imbal-
ance. Then, a fast geometric algorithm can be used to partition independently within
each SMP. Teresco [114] reports that while multilevel graph partitioning alone often
achieves the fastest computation times, there is some benefit to using this hierarchical
load balancing, particularly in maintaining strict load balance within the SMPs.

2.5.4 Migration Minimization

The costs of dynamic load balancing include () preparation of the input to the parti-
tioner, (¢7) execution of the partitioning algorithm, and (z¢¢) migration of application
data to achieve the new decomposition. The migration step is often the most ex-
pensive, leading to efforts to reduce this cost. As described in Section 2.3, selection
of appropriate load-balancing procedures contributes to reduced migration costs. In-
cremental procedures (e.g., RCB, SFC, Octree, diffusive graph partitioning) are pre-
ferred when data migration costs must be controlled. The unified partitioning strategy
in ParMETIS computes both a multilevel graph decomposition (“scratch-remap”)
and a diffusive decomposition [102, 103]; it then selects the better decomposition in
terms of load balance and migration costs.

Clever techniques can be used within an application to reduce data migration
costs. For example, the most straightforward way to use partitioning and dynamic
load balancing in a parallel adaptive computation is shown on the left in Figure 2.11.
Here, an initial mesh is partitioned, and the computation proceeds, checking peri-
odically to determine whether the solution resolution is sufficient. If not, the mesh
is enriched adaptively, the load is rebalanced, and the computation continues. Al-
ternatively, the rebalancing can be done before the mesh is actually enriched, if the
error indicators used to predict refinement can also predict appropriate weights for
the mesh before enrichment [43, 83] (Figure 2.11, right). This “predictive balancing”
approach can improve computational balance during the refinement phase, and leads
to less data migration, as redistribution occurs on the smaller mesh. Moreover, with-
out predictive balancing, individual processors may have nearly all of their elements
scheduled for refinement, leading to a memory overflow on those processors, when
in fact the total amount of memory available across all processors is sufficient for
the computation to proceed following refinement [40]. If the error indicators predict
the resulting refinement with sufficient accuracy, the predictive balancing step also
achieves a balanced partitioning of the refined mesh. In some cases, a corrective load

80 J. D. Teresco et al.

Partition
Initial Mesh

Compute

Rebalance
Predicted Load

Refine
Mesh

Rebalance
Load

Fig. 2.11. Non-predictive (left) and predictive (right) program flows for a typical parallel adap-
tive computation.

balancing step, e.g., with one of the local methods outlined in Section 2.2.3, may be
beneficial.

Techniques within load-balancing procedures can also reduce migration costs.
The similarity matrix in PLUM [82] represents a maximal matching between an old
decomposition and a new one. Old and new partitions are represented by the nodes of
a bipartite graph, with edges between old and new partitions representing the amount
of data they share. A maximal matching, then, numbers the new partitions to provide
the greatest overlap between old and new decompositions and, thus, the least data
movement. Similar strategies have been adopted by ParMETIS [68] and Zoltan [29].

Load-balancing objectives can also be adjusted to reduce data migration. Heuris-
tics used in local refinement (see Section 2.2.3) can select objects for movement that
have the lowest data movement costs. They can also select a few heavily weighted
objects to satisfy balance criteria rather than many lightly weighted objects. Hu and
Blake compute diffusive decompositions to achieve load balance subject to a mini-
mization of data movement [59]. Berzins extends their idea by allowing greater load
imbalance when data movement costs are high [10]; he minimizes a metric combin-
ing load imbalance and data migration to reduce actual time-to-solution (rather than
load imbalance) on homogeneous and heterogeneous networks.

Acknowledgments

The authors thank the following people for their collaborations and discussions:
Andrew Bauer, Diane Bennett, Rob Bisseling, Erik Boman, Paul Campbell, Laura
Effinger-Dean, Jamal Faik, Luis Gervasio, Robert Heaphy, Bruce Hendrickson, Steve
Plimpton, Robert Preis, Arjun Sharma, Lida Ungar, and Courtenay Vaughan.

2 Partitioning and Dynamic Load Balancing 81

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Adjerid, J. E. Flaherty, P. Moore, and Y. Wang. High-order adaptive methods for
parabolic systems. Physica-D, 60:94-111, 1992.

S. Aluru and F. Sevilgen. Parallel domain decomposition and load balancing using
space-filling curves. In Proc. International Conference on High-Performance Comput-
ing, pages 230-235, 1997.

R. E. Bank and M. J. Holst. A new paradigm for parallel adaptive meshing algorithms.
SIAM J. Scien. Comput., 22:1411-1443, 2000.

K. J. Barker and N. P. Chrisochoides. An evaluation of a framework for the dynamic load
balancing of highly adaptive and irregular parallel applications. In Proc. Supercomputing
2003, Phoenix, 2003.

S. T. Barnard. PMRSB: parallel multilevel recursive spectral bisection. In F. Baker and
J. Wehmer, editors, Proc. Supercomputing *95, San Diego, December 1995.

S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive spectral bi-
section for partitioning unstructured problems. Concurrency: Practice and Experience,
6(2):101-117, 1994.

J. J. Bartholdi and L. K. Platzman. An O(nlogn) travelling salesman heuristic based
on spacefilling curves. Operation Research Letters, 1(4):121-125, September 1982.

A. C. Bauer. Efficient Solution Procedures for Adaptive Finite Element Methods — Ap-
plications to Elliptic Problems. PhD thesis, State University of New York at Buffalo,
2002.

M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Computers, 36:570-580, 1987.

M. Berzins. A new metric for dynamic load balancing. Appl. Math. Modelling, 25:141—
151, 2000.

T. Bially. Space-filling curves: their generation and their application to band reduction.
IEEE Trans. Inform. Theory, IT-15:658-664, Nov. 1969.

E. Boman, K. Devine, R. Heaphy, B. Hendrickson, M. Heroux, and R. Preis. LDRD
report: Parallel repartitioning for optimal solver performance. Technical Report
SAND2004-0365, Sandia National Laboratories, Albuquerque, NM, February 2004.

E. Boman, K. Devine, R. Heaphy, B. Hendrickson, W. F. Mitchell, M. S. John, and
C. Vaughan. Zoltan: Data-management services for parallel applications. URL: http:
//www.cs.sandia.gov/Zoltan.

C. L. Bottasso, J. E. Flaherty, C. Ozturan, M. S. Shephard, B. K. Szymanski, J. D.
Teresco, and L. H. Ziantz. The quality of partitions produced by an iterative load bal-
ancer. In B. K. Szymanski and B. Sinharoy, editors, Proc. Third Workshop on Languages,
Compilers, and Runtime Systems, pages 265-277, Troy, 1996.

T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization”. In Proc.
6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445-452. SIAM,
1993.

A. Caldwell, A. Kahng, and J. Markov. Design and implementation of move-based
heuristics for VLSI partitioning. ACM J. Experimental Algs., 5, 2000.

P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco. Dynamic
octree load balancing using space-filling curves. Technical Report CS-03-01, Williams
College Department of Computer Science, 2003.

F. Cao, J. R. Gilbert, and S.-H. Teng. Partitioning meshes with lines and planes. Techni-
cal Report CSL-96-01, Xerox PARC, 1996. ftp://parcftp.xerox.com/pub/
gilbert/index.html.

82

19

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

J. D. Teresco et al.

. U. Catalyurek and C. Aykanat. Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications. Lecture Notes in Computer Science, 1117:75-86, 1996.
U. Catalyurek and C. Aykanat. Hypergraph-partitioning based decomposition for paral-
lel sparse-matrix vector multiplication. /EEE Trans. Parallel Dist. Systems, 10(7):673—
693, 1999.

C. Chang, T. Kurc, A. Sussman, U. Catalyurek, and J. Saltz. A hypergraph-based work-
load partitioning strategy for parallel data aggregation. In Proc. of 11th SIAM Conf.
Parallel Processing for Scientific Computing. SIAM, March 2001.

S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive array layouts
and fast parallel matrix multiplication. In ACM Symposium on Parallel Algorithms and
Architectures, pages 222-231, 1999.

C.-K. Cheng and Y.-C. A. Wei. An improved two-way partitioning algorithm with stable
performance. IEEE Trans. Computer Aided Design, 10(12):1502-1511, 1991.

G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Par-
allel Distrib. Comput., 7:279-301, 1989.

L. Dagum. Automatic partitioning of unstructured grids into connected components.
In Proc. Supercomputing Conference 1993, pages 94—101, Los Alamitos, 1993. IEEE,
Computer Society Press.

H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M. Loy, C. Ozturan, and M. S. Shep-
hard. Load balancing for the parallel adaptive solution of partial differential equations.
Appl. Numer. Math., 16:157-182, 1994.

K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik,
J. E. Flaherty, and L. G. Gervasio. New challenges in dynamic load balancing. Appl.
Numer. Math., 52(2-3):133-152, 2005.

K. D. Devine and J. E. Flaherty. Parallel adaptive hp-refinement techniques for conser-
vation laws. Appl. Numer. Math., 20:367-386, 1996.

K. D. Devine, B. A. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Zoltan:
A Dynamic Load Balancing Library for Parallel Applications; User’s Guide. Sandia
National Laboratories, Albuquerque, NM, 1999. Tech. Report SAND99-1377. Open-
source software distributed at http://www.cs.sandia.gov/Zoltan.

R. Diekmann, D. Meyer, and B. Monien. Parallel decomposition of unstructured fem-
meshes. In Proc. Parallel Algorithms for Irregularly Structured Problems, pages 199—
216. Springer LNCS 980, 1995.

R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for distributed memory
machines. In B. Topping, editor, Parallel and Distributed Processing for Computational
Mechanics: Systems and Tools, pages 124—157, Edinburgh, 1999. Saxe-Coburg.

R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-optimized mesh parti-
tioning and load balancing for parallel adaptive fem. Parallel Comput., 26(12):1555—
1581, 2000.

H. C. Edwards. A Parallel Infrastructure for Scalable Adaptive Finite Element Methods
and its Application to Least Squares C*° Collocation. PhD thesis, The University of
Texas at Austin, May 1997.

R. Enbody, R. Purdy, and C. Severance. Dynamic load balancing. In Proc. 7th SIAM
Conference on Parallel Processing for Scientific Computing, pages 645-646. SIAM,
February 1995.

J. Faik, L. G. Gervasio, J. E. Flaherty, J. Chang, J. D. Teresco, E. G. Boman, and K. D.
Devine. A model for resource-aware load balancing on heterogeneous clusters. Tech-
nical Report CS-04-03, Williams College Department of Computer Science, 2004. Pre-
sented at Cluster *04.

36

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

2 Partitioning and Dynamic Load Balancing 83

. C. Farhat. A simple and efficient automatic FEM domain decomposer. Computers and
Structures, 28(5):579-602, 1988.

C. Farhat, S. Lanteri, and H. D. Simon. TOP/DOMDEC: a software tool for mesh parti-
tioning and parallel processing. Comp. Sys. Engng., 6(1):13-26, 1995.

C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the par-
allel solution of problems in computational mechanics. Int. J. Numer. Meth. Engng.,
36:745-764, 1993.

C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network
partitions. In Proc. 19th IEEE Design Automation Conference, pages 175-181. IEEE,
1982.

J. E. Flaherty, M. Dindar, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco,
and L. H. Ziantz. An adaptive and parallel framework for partial differential equations.
In D. F. Griffiths, D. J. Higham, and G. A. Watson, editors, Numerical Analysis 1997
(Proc. 17th Dundee Biennial Conf.), number 380 in Pitman Research Notes in Mathe-
matics Series, pages 74-90. Addison Wesley Longman, 1998.

J. E. Flaherty, R. M. Loy, C. Ozturan, M. S. Shephard, B. K. Szymanski, J. D. Teresco,
and L. H. Ziantz. Parallel structures and dynamic load balancing for adaptive finite
element computation. Appl. Numer. Math., 26:241-263, 1998.

J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz. Adaptive local refinement with octree load-balancing for the parallel solution of
three-dimensional conservation laws. J. Parallel Distrib. Comput., 47:139-152, 1997.
J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz. Predictive load balancing for parallel adaptive finite element computation. In
H. R. Arabnia, editor, Proc. PDPTA 97, volume I, pages 460469, 1997.

J. E. Flaherty, R. M. Loy, M. S. Shephard, and J. D. Teresco. Software for the parallel
adaptive solution of conservation laws by discontinuous Galerkin methods. In B. Cock-
burn, G. Karniadakis, and S.-W. Shu, editors, Discontinous Galerkin Methods Theory,
Computation and Applications, volume 11 of Lecture Notes in Compuational Science
and Engineering, pages 113—-124. Springer, 2000.

J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI circuits. In Proc. IEEE
Intl. Conf. on Computer Aided Design, pages 520-523, 1990.

M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1(3):237-267, 1976.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

L. Hagen and A. Kahng. Fast spectral methofs for ratio cut partitioning and clustering.
In Proc. IEEE Intl. Conf. on Computer Aided Design, pages 10-13, 1991.

L. Hagen and A. Kahng. A new approach to effective circuit clustering. In Proc. IEEE
Intl. Conf. on Computer Aided Design, pages 422-427, 1992.

B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no clothes? In
Proc. Irregular’98, volume 1457 of Lecture Notes in Computer Science, pages 218-225.
Springer-Verlag, 1998.

B. Hendrickson and K. Devine. Dynamic load balancing in computational mechanics.
Comput. Methods Appl. Mech. Engrg., 184(2—4):485-500, 2000.

B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.
Parallel Comput., 26:1519-1534, 2000.

B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories, Albuquerque, 1994. Open-source soft-
ware distributed at http://www.cs.sandia.gov/~bahendr/chaco.html.

84

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

J. D. Teresco et al.

B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM J. Scien. Comput., 16(2):452—469, 1995.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proc.
Supercomputing ’95, 1995.

G. Horton. A multi-level diffusion method for dynamic load balancing. Parallel Com-
put., 19:209-218, 1993.

S.-H. Hsieh, G. H. Paulino, and J. F. Abel. Evaluation of automatic domain partition-
ing algorithms for parallel finite element analysis. Structural Engineering Report 94-2,
School of Civil and Environmental Engineering, Cornell University, Ithaca, 1994.

Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. Preprint DL-
P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK, 1995.

Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic
load balancing. Concurrency: Practice and Experience, 10:467 — 483, 1998.

H. V. Jagadish. Linear clustering of objects with multiple attributes. In Proc. ACM
SIGMOD, pages 332-342, 1990.

M. T. Jones and P. E. Plassmann. Computational results for parallel unstructured mesh
computations. Comp. Sys. Engng., 5(4—6):297-309, 1994.

L. V. Kale and S. Krishnan. CHARM-++: A portable concurrent object oriented system
based on C++. ACM SIGPLAN notices, 28(10):91-128, 1993.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:
application in VLSI domain. In Proc. 34th conf. Design automation, pages 526 — 529.
ACM, 1997.

G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse ma-
trix ordering system. Tech. Report, University of Minnesota, Department of Com-
puter Science, Minneapolis, MN, 1995. Open-source software distributed at http:
//www-users.cs.umn.edu/~karypis/metis.

G. Karypis and V. Kumar. Multilevel algorithms for multiconstraint graph paritioning.
Technical Report 98-019, Department of Computer Science, University of Minnesota,
1998.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Scien. Comput., 20(1), 1999.

G. Karypis and V. Kumar. Parallel multivelel k-way partitioning scheme for irregular
graphs. SIAM Review, 41(2):278-300, 1999.

G. Karypis, K. Schloegel, and V. Kumar. ParMetis Parallel Graph Partitioning and
Sparse Matrix Ordering Library, Version 3.1. University of Minnesota Department
of Computer Science and Engineering, and Army HPC Research Center, Minneapolis,
2003. Open-source software distributed at http://www-users.cs.umn.edu/
~karypis/metis.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 29:291-307, 1970.

E. Leiss and H. Reddy. Distributed load balancing: design and performance analysis. W.
M. Kuck Research Computation Laboratory, 5:205-270, 1989.

R. M. Loy. Adaptive Local Refinement with Octree Load-Balancing for the Parallel So-
lution of Three-Dimensional Conservation Laws. PhD thesis, Computer Science Dept.,
Rensselaer Polytechnic Institute, Troy, 1998.

B. Maerten, D. Roose, A. Basermann, J. Fingberg, and G. Lonsdale. DRAMA: A li-
brary for parallel dynamic load balancing of finite element applications. In Proc. Ninth
SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, 1999.
Library distributed under license agreement from http://www.ccrl-nece.de/
~drama/drama.html.

73

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

2 Partitioning and Dynamic Load Balancing 85

. T. Minyard and Y. Kallinderis. Octree partitioning of hybrid grids for parallel adaptive
viscous flow simulations. Int. J. Numer. Meth. Fluids, 26:57-78, 1998.

T. Minyard and Y. Kallinderis. Parallel load balancing for dynamic execution environ-
ments. Comput. Methods Appl. Mech. Engrg., 189(4):1295-1309, 2000.

T. Minyard, Y. Kallinderis, and K. Schulz. Parallel load balancing for dynamic execution
environments. In Proc. 34th Aerospace Sciences Meeting and Exhibit, number 96-0295,
Reno, 1996.

W. F. Mitchell. Refinement tree based partitioning for adaptive grids. In Proc. Seventh
SIAM Conf. on Parallel Processing for Scientific Computing, pages 587-592. SIAM,
1995.

W. E. Mitchell. The full domain partition approach to distributing adaptive grids. Appl.
Numer. Math., 26:265-275, 1998.

W. E. Mitchell. The refinement-tree partition for parallel solution of partial differential
equations. NIST Journal of Research, 103(4):405-414, 1998.

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering prop-
erties of the Hilbert space-filling curve. IEEE Trans. Knowledge and Data Engng.,
13(1):124-141, January/February 2001.

G. M. Morton. A computer oriented geodetic data base and a new technique in file
sequencing. Technical report, IBM Ltd., March 1966.

J. T. Oden, A. Patra, and Y. Feng. Domain decomposition for adaptive Ap finite element
methods. In Proc. Seventh Intl. Conf. Domain Decomposition Methods, State College,
Pennsylvania, October 1993.

L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured
meshes. J. Parallel Distrib. Comput., 51(2):150-177, 1998.

L. Oliker, R. Biswas, and R. C. Strawn. Parallel implementaion of an adaptive scheme
for 3D unstructured grids on the SP2. In Proc. 3rd International Workshop on Parallel
Algorithms for Irregularly Structured Problems, Santa Barbara, 1996.

J. A. Orenstein. Spatial query processing in an object-oriented database system. In Proc.
ACM SIGMOD, pages 326-336, May 1986.

M. Ozdal and C. Aykanat. Hypergraph models and algorithms for data-pattern based
clustering. Data Mining and Knowledge Discovery, 9:29-57, 2004.

C. Ozturan. Distributed Environment and Load Balancing for Adaptive Unstructured
Meshes. PhD thesis, Computer Science Dept., Rensselaer Polytechnic Institute, Troy,
1995.

M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In
Proc. 29th Annual Hawaii International Conference on System Sciences, volume 1,
pages 604—613, Jan. 1996.

M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowski. A common data manage-
ment infrastructure for adaptive algorithms for PDE solutions. In Proc. SC97, San Jose,
CA, 1997.

A. Patra and J. T. Oden. Problem decomposition for adaptive hp finite element methods.
Comp. Sys. Engng., 6(2):97-109, 1995.

E. A. Patrick, D. R. Anderson, and F. K. Brechtel. Mapping multidimensional space to
one dimension for computer output display. IEEE Trans. Computers, C-17(10):949-953,
October 1968.

G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen,
36:157-160, 1890.

F. Pellegrini. SCOTCH 3.1 User’s guide. Technical Report 1137-96, LaBRI, Université
Bordeaux I, August 1996. Library available at http://www.labri.fr/Perso/
~pelegrin/scotch/.

86

93

94.

95.

96.

97.

98.

99.
100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

J. D. Teresco et al.

. F Pellegrini and J. Roman. Experimental analysis of the dual recursive bipartitioning
algorithm for static mapping. Technical Report 1038-96, Université Bordeaux I, 1996.
J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured
workloads with spacefilling curves. IEEE Trans. on Parallel and Distributed Systems,
7(3):288-300, 1996.

A. Pinar and B. Hendrickson. Graph partitioning for complex objectives. In Proc. 15th
Int’l Parallel and Distributed Processing Symp. (I PDPS), San Francisco, CA, April
2001.

S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, and D. Gardner. Tran-
sient dynamics simulations: Parallel algorithms for contact detection and smoothed par-
ticle hydrodynamics. J. Parallel Distrib. Comput., 50:104—122, 1998.

A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM J. Mat. Anal. Appl., 11(3):430-452, 1990.

R. Preis and R. Diekmann. PARTY - a software library for graph partitioning. In
B. Topping, editor, Advances in Computational Mechanics with Parallel and Distributed
Processing, pages 63—71. CIVIL-COMP PRESS, 1997. Library distributed under free
research and academic license at http://wwwcs.upb.de/fachbereich/AG/
monien/RESEARCH/PART/party.html.

H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.

K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for repartitioning
of adaptive meshes. J. Parallel Distrib. Comput., 47(2):109-124, 1997.

K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for multi-objective graph
partitioning. Tech. Report 99-003, University of Minnesota, Department of Computer
Science and Army HPC Center, Minneapolis, 1999.

K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing adaptive
scientific simulations. In Proc. Supercomputing, Dallas, 2000.

K. Schloegel, G. Karypis, and V. Kumar. Wavefront diffusion and LMSR: Algorithms
for dynamic repartitioning of adaptive meshes. IEEE Trans. Parallel Distrib. Syst.,
12(5):451-466, 2001.

K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic multicon-
straint graph partitioning. Concurrency and Computation — Practice and Experience,
14(3):219-240, 2002.

M. S. Shephard, S. Dey, and J. E. Flaherty. A straightforward structure to construct
shape functions for variable p-order meshes. Comp. Meth. in Appl. Mech. and Engng.,
147:209-233, 1997.

M. S. Shephard, J. E. Flaherty, H. L. de Cougny, C. Ozturan, C. L. Bottasso, and M. W.
Beall. Parallel automated adaptive procedures for unstructured meshes. In Parallel
Computing in CFD, number R-807, pages 6.1-6.49. Agard, Neuilly-Sur-Seine, 1995.
H. D. Simon. Partitioning of unstructured problems for parallel processing. Comp. Sys.
Engng., 2:135-148, 1991.

S. Sinha and M. Parashar. Adaptive system partitioning of AMR applications on hetero-
geneous clusters. Cluster Computing, 5(4):343-352, October 2002.

A. Sohn and H. Simon. S-HARP: A scalable parallel dynamic partitioner for adaptive
mesh-based computations. In Proc. Supercomputing 98, Orlando, 1998.

J. Steensland. = Vampire homepage. http://user.it.uu.se/~johans/
research/vampire/vampirel.html, 2000. Open-source software distributed
at http://user.it.uu.se/~johans/research/vampire/download.
html.

111

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

2 Partitioning and Dynamic Load Balancing 87

. J. Steensland, S. Chandra, and M. Parashar. An application-centric characterization of
domain-based SFC partitioners for parallel SAMR. [EEE Trans. Parallel and Distrib.
Syst., 13(12):1275-1289, 2002.

J. Steensland, S. Soderberg, and M. Thuné. A comparison of partitioning schemes for
blockwise parallel SAMR algorithms. In Proc. 5th International Workshop on Applied
Parallel Computing, New Paradigms for HPC in Industry and Academia, volume 1947
of Lecture Notes in Computer Science, pages 160—169, London, 2000. Springer-Verlag.
V. E. Taylor and B. Nour-Omid. A study of the factorization fill-in for a parallel im-
plementation of the finite element method. Int. J. Numer. Meth. Engng., 37:3809-3823,
1994.

J. D. Teresco, J. Faik, and J. E. Flaherty. Hierarchical partitioning and dynamic load
balancing for scientific computation. Technical Report CS-04-04, Williams College De-
partment of Computer Science, 2004. To appear in the Proceedings of PARA’04.

J. D. Teresco and L. P. Ungar. A comparison of Zoltan dynamic load balancers for
adaptive computation. Technical Report CS-03-02, Williams College Department of
Computer Science, 2003. Presented at COMPLAS ’03.

A. Trifunovic and W. J. Knottenbelt. Towards a parallel disk-based algorithm for mul-
tilevel k-way hypergraph partitioning. In Proc. 18th International Parallel and Distrib-
uted Processing Symposium (IPDPS’04), page 236b, Santa Fe, 2004.

R. Van Driessche and D. Roose. An improved spectral bisection algorithm and its appli-
cation to dynamic load balancing. Parallel Comput., 21:29-48, 1995.

D. Vanderstraeten, C. Farhat, P. Chen, R. Keunings, and O. Ozone. A retrofit based
methodology for the fast generation and optimization of large-scale mesh partitions:
beyond the minimum interface size criterion. Comput. Methods Appl. Mech. Engrg.,
133:25-45, 1996.

B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for par-
allel sparse matrix-vector multiplication. Preprint 1238, Dept. of Mathematics, Utrecht
University, May 2002.

C. Walshaw. The Parallel JOSTLE Library User’s Guide, Version 3.0. University of
Greenwich, London, UK, 2002. Library distributed under free research and academic
license at http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/.

C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Heterogeneous Commu-
nication Networks. Tech. Rep. 00/IM/57, Comp. Math. Sci., Univ. Greenwich, London
SE10 9LS, UK, March 2000.

C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Heterogeneous Communi-
cation Networks. Future Generation Comput. Syst., 17(5):601-623, 2001. (Originally
published as Univ. Greenwich Tech. Rep. 00/IM/57).

C. Walshaw and M. Cross. Dynamic mesh partitioning and load-balancing for parallel
computational mechanics codes. In B. H. V. Topping, editor, Computational Mechanics
Using High Performance Computing, pages 79-94. Saxe-Coburg Publications, Stirling,
2002. (Invited Chapter, Proc. Parallel & Distributed Computing for Computational Me-
chanics, Weimar, Germany, 1999).

C. Walshaw, M. Cross, and M. Everett. A localized algorithm for optimizing unstruc-
tured mesh partitions. Intl. J. of Supercomputer Applications, 9(4):280-295, 1995.

C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph-partitioning for unstruc-
tured meshes. J. Parallel Distrib. Comput., 47(2):102-108, 1997.

C. Walshaw, M. Cross, and K. McManus. Multiphase mesh partitioning. Appl. Math.
Modelling, 25(2):123-140, 2000. (Originally published as Univ. Greenwich Tech. Rep.
99/IM/51).

88

127

128.

129.

130.

131.

132.

133.

134.

J. D. Teresco et al.

. M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. In Proc.
Supercomputing ’93, pages 12-21. IEEE Computer Society, 1993.

J. Watts. A practical approach to dynamic load balancing. Master’s Thesis, October
1995.

J. Watts, M. Rieffel, and S. Taylor. A load balancing technique for multiphase compu-
tations. In Proc. High Performance Computing 97, pages 15-20. Society for Computer
Simulation, 1997.

S. Wheat. A Fine Grained Data Migration Approach to Application Load Balancing on
MP MIMD Machines. PhD thesis, University of New Mexico, Department of Computer
Science, Albuquerque, 1992.

S. Wheat, K. Devine, and A. MacCabe. Experience with automatic, dynamic load bal-
ancing and adaptive finite element computation. In H. El-Rewini and B. Shriver, editors,
Proc. 27th Hawaii International Conference on System Sciences, pages 463—472, Kihei,
1994.

M. Willebeek-LeMair and A. Reeves. Strategies for dynamic load balancing on highly
parallel computers. IEEE Parallel and Distrib. Sys., 4(9):979-993, 1993.

R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A distributed re-
source performance forecasting service for metacomputing. Future Generation Comput.
Syst., 15(5-6):757-768, October 1999.

C. Xu, F. Lau, and R. Diekmann. Decentralized remapping of data parallel applications
in distributed memory multiprocessors. Tech. Rep. tr-rsfb-96-021, Dept. of Computer
Science, University of Paderborn, Paderborn, Germany, Sept. 1996.

3

Graphics Processor Units: New Prospects for Parallel
Computing

Martin Rumpf! and Robert Strzodka?

! University of Bonn, Institute for Numerical Simulation, Wegelerstr. 6, 53115 Bonn,

Germany

martin.rumpf@ins.uni-bonn.de

caesar research center, Ludwig-Erhard-Allee 2, 53044 Bonn, Germany
strzodka@caesar.de

Summary. This chapter provides an introduction to the use of Graphics Processor Units
(GPUs) as parallel computing devices. It describes the architecture, the available functionality
and the programming model. Simple examples and references to freely available tools and
resources motivate the reader to explore these new possibilities. An overview of the different
applications of GPUs demonstrates their wide applicability, yet also highlights limitations of
their use. Finally, a glimpse into the future of GPUs sketches the growing prospects of these
inexpensive parallel computing devices.

3.1 Introduction

This introductory section motivates the use of Graphics Processor Units (GPUs) as
parallel computing devices and explains the different computing and programming
models. Section 3.1.3 reports on hands-on experience with this kind of processing. A
comparison with shared memory machines clarifies the similarities and differences.

The rest of the chapter is organized as follows. Section 3.2 presents the most
important aspects of graphics hardware related to scientific computing. For a wider
context and specific GPU topics, the appendix (Section 3.5) is referenced in various
places. Building on the experience from Section 3.1.3, Section 3.3 explains how to
construct efficient linear equation solvers and presents partial differential equation
(PDE) applications. It also contains a section with links to examples of code and
other resources. In Section 3.4 we conclude with an outlook on future functionality
and the use of multiple GPUs.

3.1.1 Motivation

Over the last decade, GPUs have developed rapidly from being primitive drawing
devices to being major computing resources. The newest GPUs have as many as
220 million transistors, approximately twice as many as a typical Central Processor

90 M. Rumpf and R. Strzodka

Unit (CPU) in a PC. Moreover, the L2 cache consumes most of the transistors in
a CPU, while GPUs use only small caches and devote the majority of transistors
to computation. This large number of parallel processing elements (PEs) converts
the GPU into a parallel computing system. Current devices have up to 16 parallel
pipelines with one or two PEs each. A single processing element (PE) is capable
of performing an addition or multiplication of four component vectors (4-vectors)
of single-precision floating-point numbers in one clock cycle. This amounts to a
total of 128 floating point operations per clock cycle. With a clock frequency of
up to 500 MHz, peak performance of a single unit approaches 64 GFLOPS, and
with the introduction of the PCI Express (PCle) bus a motherboard will be able to
accommodate several graphics cards.

We will concentrate on the exploitation of the high internal parallelism of a single
GPU. Section 3.1.4 explains how the parallel PEs of a single GPU can be viewed in
light of the familiar shared memory computing model, although all PEs reside on the
same chip. The development of GPU clusters, where several graphics cards work in
parallel, has recently been initiated and Section 3.4.2 provides some information on
this quickly growing area of research.

High performance and many successful implementations of PDE solvers on
GPUs have already caught the attention of the scientific computing community.
Implemented PDE types include Navier-Stokes equations, Lattice Boltzmann equa-
tions, reaction-diffusion systems, non-linear diffusion processes, level-set equations,
and Euler equations for variational functional minimization. The web site [10] offers
an overview. In 2D, problem sizes go up to 40962 nodes, in 3D up to 256 nodes.
The limiting factor is the size of the video memory on the graphics cards (current
maximum 512Mb). If one is willing to accept a slower rate of data exchange by us-
ing the main memory, the problem size is not limited by the graphics card. Reported
speedup factors, as compared to a modern single CPU solver, are often in the range
5-20.

Manufacturers of GPUs are now considering the potential of their devices for par-
allel computing, although the driving force of the development is still the computer
game market. This influences the balance in some of the common antonyms:

e Performance - Accuracy
For optimal performance GPUs offer different floating point formats of 16, 24
and 32 bit, but native support for a double precision format is unlikely in the near
future. A hardware-assisted emulation could be feasible.

e Processing - Communication
GPUs process large data sets quickly with many parallel processing elements
(PEs), but direct communication between them does not exist.

e Generality - Specialty
Fairly general high-level languages for GPU programming exist, but the setup of
the execution environment for the programs and the data handling still requires
some graphics-specific knowledge.

Luckily, more and more physical simulation is being used in computer games, which
increases the demand for general computing capabilities. The fast development cycle

3 Graphics Processor Units: New Prospects for Parallel Computing 91

of GPUs reacts with high flexibility to the changing requirements and tends towards
a general parallel computing device. At some stage, the growing demand for more
scientifically -orientated GPUs could even make a separate production line worth-
while, including, for example, double precision arithmetic. Simultaneously, the re-
cently emerging support for the utilization of multiple GPUs will increase. Current
GPUs are not yet able to replace CPU-based parallel systems in scientific computa-
tions on a large scale. However, we want to familiarize the reader with the looming
possibilities and demonstrate that many algorithms can already benefit from their
being executed on GPUs.

3.1.2 Data-Stream-Based Architectures

Peak performance of computer systems is often in excess of actual application perfor-
mance, due to the memory gap problem [32], the mismatch of memory and proces-
sor performance. In data-intensive applications, the processing elements (PEs) often
spend most of the time waiting for data. GPUs have traditionally been optimized for
high data throughput, with wide data buses (256 bit) and the latest memory technol-
ogy (GDDR3). In contrast to instruction-stream-based (ISB) CPUs, they also sub-
scribe to the data-stream-based (DSB) computing paradigm [13]. In DSB computing
one exploits the situation in which the same operation is applied to many data items.
Thus, the processing is not based on an instruction stream, but, rather, on a data
stream. The PEs are first configured for the execution of the desired operation. Then,
the data streams through the so configured pipeline of PEs undergoing the configured
operations. The stream of data stops only when a new configuration must be applied.
So, for the performance of DSB architectures, it is crucial that the configuration does
not change frequently, but rather remains constant for a large data stream, e.g. for all
components of a large vector.

The DSB model separates the two tasks of configuring the PEs and controlling
the data-flow to and from the PEs. By contrast, an instruction prescribes both the
operation to be executed and the required data. The separation of tasks deals much
better with the memory gap problem, because the individual elements of the data
streams can be assembled from memory before the actual processing. This allows the
optimization of the memory access patterns, minimizing latencies and maximizing
the sustained bandwidth. In ISB architectures only a limited prefetch of the input
data can occur, as jumps are expected in the instruction stream. By contrast, it is
inherent in the DSB model that no such jumps will occur for a long time. Thus, the
resources can be concentrated on efficient data retrieval and parallel processing rather
than jump predictions and speculative execution. Clearly, the advantage applies only
to algorithms that exhibit this kind of regular behavior. Therefore, for some irregular
algorithms, it is advantageous to increase the operation count in favor of more regular
behavior, and thus faster execution, on DSB hardware.

The DSB architectures comprise reconfigurable logic, reconfigurable computing,
processor-in-memory and stream architectures. GPUs may be seen as a restricted
form of a stream processor. They are not the most powerful or efficient architec-
ture, but offer an unrivaled price-performance ratio, which makes this advantageous

92 M. Rumpf and R. Strzodka

vertex >
i -_>-\
vertex vertex
data data fragments S
buffer
/ fragments
values

textures

Fig. 3.1. A simplified diagram of the Direct X 9 graphics pipeline. Light gray represents data
containers, dark gray processing units. The data containers are becoming fully interchange-
able, i.e. a 2D data array can serve as an array of vertex data, a texture or a destination buffer
within the frame-buffer. See Figure 3.5 for a more detailed diagram.

processing concept easily available on any PC, and not only on specially config-
ured hardware systems. Moreover, GPUs have the great advantage that there exist
widespread platform (Direct X) and operating system (OpenGL) independent Appli-
cation Programming Interfaces (APIs) for access to their functionality, whereas other
architectures require a proprietary environment. The API guarantees that despite the
different hardware components of GPUs from different companies, the programmer
can access a common set of operations through the same software interface, namely
the API. Similarly to the situation with CPUs, the programming model for GPUs
has evolved from assembly to high level languages, which now allow a clear and
modular configuration of the graphics pipeline.

3.1.3 GPU Programming Model

Graphics Processor Units (GPUs) are, as the name suggests, designed to process
graphics. Put simply, GPUs render geometric primitives such as points, lines, trian-
gles or quads into a discrete representation of the [—1, 1] x [—1, 1] domain, called the
frame-buffer. The geometric primitives are defined by vertex coordinates. The dis-
crete elements in the frame-buffer are pixels. Because the primitives are continuous
objects and the frame-buffer is a discrete representation, GPUs contain a so-called
rasterizer that decomposes a primitive into fragments, which correspond to the set
of affected pixels (see below why fragments and pixels are not the same). In the case
of 2D primitives, one can choose whether to rasterize the contour or the interior, and
we will always assume the latter.

The rasterizer divides the graphics pipeline into two parts where manipulation
of data can take place. Prior to rasterization we have the Vertex Processor (VP),
which operates on data associated with a vertex. Following rasterization we have the
Fragment Processor (FP), which operates on data associated with a fragment (see
Figure 3.1). Logically, the VP processes one vertex and the FP one fragment at a
time, without any interaction with other vertices or fragments. Physically, there are
several independent parallel pipelines, more for the FP than for the VP. See Section
3.5.2 for more details of the graphics pipeline and Section 3.2.3 for a discussion of
the available parallelism.

3 Graphics Processor Units: New Prospects for Parallel Computing 93

Which data is associated with a vertex or fragment? In addition to the vertex co-
ordinates, a vertex can also carry colors, a normal, and so-called texture coordinates
(and a few more parameters). The VP can change all this data, including the vertex
coordinates. The rasterizer interpolates the data between the vertices of a primitive
when the fragments are generated. Therefore, each fragment has its own set of the
above parameters. The FP combines the parameters to a final value, which is then
assigned to the corresponding pixel in the frame-buffer. Currently, the frame-buffer
position of a fragment generated by the rasterizer cannot be changed in the FP. Hence,
there is a one-to-one correspondence between a fragment and the pixel to which the
result of the FP will be written (unless it is discarded altogether). However, a frag-
ment carries much more information than a pixel. For example, the texture coordi-
nates associated with a fragment are typically used to retrieve values from textures,
i.e. previously defined or computed 1D to 4D (typically 2D) data arrays (Figure 3.1).
So, the FP reduces the information of a fragment to the single color value of a pixel.
To be precise, a pixel may carry several values (see Section 3.5.2).

Both the VP and FP support a rich set of arithmetic, exponential and trigonomet-
ric functions on floating point numbers. They can be programmed by C-like high-
level languages, which, to a certain extent extent, also support flow control instruc-
tions such as conditional statements, loops and function calls. The VP, and above all
the FP, is decisive for accuracy and performance of computations on GPUs. Section
3.2.2 specifies the exact number formats and operations.

How can this setting be used for scientific computing? If we think of a square
grid of dimension IV, x N, then the node values form a vector of length N, - IV,
and can be represented by a 2D array, naturally preserving the neighbor relations. In
GPUs we use a 2D texture for such a 2D array. Let us first describe the execution
of a single operation; namely, the addition of two nodal vectors A and B. Once the
graphics environment is set up for this simple operation, it will be easy to add more
functionality. For the addition of A and B on the GPU, we need to add the texels
(elements) of the corresponding textures. For this to happen we must configure the
graphics pipeline appropriately and then define the data streams to be processed.
First we need a configuration, a so called shader, for the FP that executes an addition
for a pair of vector components:

// shader FP_ADD2

float add2 (float2 texCoord : TEXCOORDO, // texture coords
uniform sampler2D Tex A : texunit0, // texture A
uniform sampler2D Tex B : texunitl) // texture B
COLOR // color as output
{
float valA= fltex2D(Tex_A, texCoord) ; // texel from A
float valB= fltex2D(Tex B, texCoord) ; // texel from B
return valA+valB; // addition

}

The configuration of the VP and FP are nowadays usually written in a high-level
graphics language. This is a listing in the language C for graphics (Cg). We will list
all shaders in Cg, but the graphics languages are actually very similar and the reader

94 M. Rumpf and R. Strzodka

may prefer a different one (see Section 3.5.4). In addition to C we have the colon
notation, which specifies the semantics of the input and output. Here, we use one set
of coordinates (texCoord), two textures (Tex_A, Tex_B) and a float color value
as output. The function call £1tex2D (., .) reads one float from the given texture
and coordinate. The actual addition happens in the last but one line. As noted earlier,
logically the shader operates on one fragment at a time in a sequence, but physically,
the parallel FP pipelines run this configuration simultaneously. The loop over the
texture elements is implicit.

To start the processing of the loop, we must first configure the pipeline with our
shader and bind the textures A and B as input sources:

cgGLBindProgram (fpProg [FP_ADD2]) ; // bind shader
glActiveTexture (GL_TEXTUREO) ; // texunito
glBindTexture (GL_TEXTURE 2D, texID[TEX A]); // bind TEX A
glActiveTexture (GL_TEXTUREL) ; // texunitl
glBindTexture (GL_TEXTURE 2D, texID[TEX B]); // bind TEX B

This code is a part of a normal C/C++ file. The functions are defined by the OpenGL
and Cg APIL. We assume that fpProg [FP_ADD2] is a handle to our shader con-
figuration from above, and texID is a vector that contains the OpenGL IDs of our
textures. Now everything is configured and we only need to specify the geometry to
be rendered. The above C/C++ code continues with the appropriate calls of OpenGL
functions:

// function drawTex2D ()

glBegin (GL_QUADS) ; // render quad
glMultiTexCoord2f (GL_TEXTUREO, 0,0);// texture bottom left
glvertex2f (-1,-1); // vertex bottom left

glMultiTexCoord2f (GL_TEXTUREO, 0,1);

glvertex2f (-1,1);

glMultiTexCoord2f (GL_TEXTUREO, 1,1);

glvertex2f (1,1);

glMultiTexCoord2f (GL_TEXTUREO, 1,0);// texture bottom right

glvertex2f (1,-1); // vertex bottom right
glEnd() ;

With the function call glEnd () the processing of the data streams starts and we
obtain the result C = A+ B at the end of the pipeline in the frame-buffer (see Figure
3.1).

The reader may have noticed that the dimensions of our textures N, x N, do
not show up anywhere. This is because graphics APIs work mostly with normalized
coordinates. From the code above, we see that a texture is accessed via coordinates
from [0, 1] and the frame-buffer with vertex coordinates from [—1, 1]2. Hence, the
values IV, N, are only used in the definition of the textures and the viewport of
the frame-buffer, and not in the rendering. As the VP can change all parameters,
including the texture and vertex coordinates, we could also address the textures and

3 Graphics Processor Units: New Prospects for Parallel Computing 95

the frame-buffer by other number ranges 7' C R? and F' C R?, if we were to bind
appropriate constant matrices to the VP that performs the mappings 7' — [0, 1] and
F — [—1,1]2. In this way, it is possible to use the integer indices of the texels in the
textures and pixels in the frame-buffer for the addressing, but this requires that the
constant matrices be changed and re-bound each time the texture size or viewport
size of the frame-buffer changes.

So far, we have described the execution of a single operation; namely addition,
on the vector components. Now, we could easily add many more operations to our
FP shader. The entire data from up to 32 different textures can be involved in the
computations. In particular, we can read different elements of the textures to compute
discrete gradients or, in general, any filters. However, usually we cannot map the
entire problem into one shader (see Section 3.3.4). So the question arises, how can
we use the result from the frame-buffer in a subsequent computation? Logically, the
most elegant way is to define a texture C' before the operation, and then render the
result directly into that texture, using it as a destination buffer. After the operation
we would bind a different texture as destination, say D, and C could be bound as a
source. Section 3.2.1 explains the details and also other possibilities.

As it becomes apparent that there are even more issues, not discussed above, that
must be addressed, it will also become apparent to the reader that the handling of
this kind of processing is very demanding. In fact, the low-level setup of the graph-
ics pipeline can sometimes frustrating, even to experts. Luckily, though, there exist
several libraries that will do most of the tedious work and let the programmer con-
centrate on the algorithm. Section 3.3 presents examples at this higher level of ab-
straction. The end of Section 3.5.4 discusses the development of even more abstract
data-stream-based (DSB) programming approaches. For someone new to GPUs this
will still feel unfamiliar at first, but parallel programming with the Message Pass-
ing Interface (MPI) [16, Section 2.2] or OpenMP [16, Section 2.3] also needs some
practice before it can be performed comfortably.

3.1.4 Comparison with Shared Memory Model

Because the pipelines of GPU operate independently of each other on a common
memory, the graphics card is similar to a shared memory parallel computer. (See
Figure 1.3 in [16].) This section describes the GPU architecture from this perspective.

On graphics cards, not entire processors, but relatively few PEs constitute a
pipeline. By a graphics processing element (PE) we mean an element that can per-
form a general multiplication or addition on a 4-vector or a special function on a
scalar (e.g. v/z, 1/x) for the largest available number format in one clock cycle. By
viewing each pipeline as an individual node of a parallel computer, the GPU can be
regarded as a restricted form of a shared memory machine. The following restrictions

apply:
e All pipelines read from the same memory.

This functionality is very similar to that of a general shared memory machine.
The pipelines interact with each other by reading common memory. There is no

96

M. Rumpf and R. Strzodka

direct communication between them. In detail, a FP pipeline cannot specify a
general memory address for reading directly, but it can read from any position
within the bound textures. In other words, it can gather data from textures without
restriction. Sufficiently large textures will cover all of the available video memory
space on the graphics card. Hence, practically all problem data can be accessed,
but it must be grouped in textures. This is fairly natural, because data arrays
also provide some kind of logical memory grouping to a CPU. The memory
access behavior is also similar, with local data reads being cheaper than random
accesses. Currently, up to 32 textures can be bound during the execution of a
FP shader and the choice must be made before the processing. Both restrictions
are expected to disappear almost completely with Windows Graphics Foundation
(WGF), the next generation of graphics API. (See Section 3.5.3.)

All pipelines operate on the same stream of data.

This is different from most shared memory machines, which utilize the Multi-
ple Instruction Multiple Data (MIMD) model with no restriction on the sources
from of the multiple data. Older GPUs use the Single Instruction Multiple Data
(SIMD) model exclusively. This is efficient in terms of transistor count, but if
the execution requires different branches, performance loss ensues. For small
branches, the solution is to use predication, in which both branches are evaluated
and thereafter the appropriate changes to the registers are written. Long branches
are usually inefficient in pure SIMD architecture.

In the latest graphics hardware supporting VS3 Vertex Shader and PS3 Pixel
Shader models (see Section 3.5.3) two different solution paths have been taken.
The VP pipelines are fully MIMD capable and thus need dynamic load balancing,
but since the pipelines work on the same data stream this can be done automati-
cally with little overhead. The FP is basically still SIMD but can evaluate differ-
ent branches consecutively by keeping track of the current state and invalidating
the results of individual pipelines. This results in some loss of performance, but
such loss is acceptable if the executed branch changes very infrequently in the
data stream. In the future, the FP will probably become fully MIMD too, although
there is an ongoing debate as to whether this is really desirable, because the ad-
ditional logic could also be used for more SIMD parallelism, which benefits the
common cases.

All pipelines write to the same destination arrays (frame-buffer).

Shared memory machines usually do not have this restriction, although it avoids
synchronization problems. A GPU pipeline cannot decide to output its data to an
arbitrary position in memory. The destination memory must be defined before-
hand and it cannot be read during the processing (in the general case). Therefore,
there are no write-read collisions and no problems occur with cache coherency.
For the FP, the restrictions go even further. Currently, the FP pipeline cannot
change the destination address of a fragment at all. In other words, it cannot scat-
ter data. This avoids completely any write collisions and allows parallel out-of-
order processing. However, because the VP can scatter within the frame-buffer,
fragments are roughly sorted by the primitives from which they were created.

3 Graphics Processor Units: New Prospects for Parallel Computing 97

Future FPs are likely to allow scatter at some stage, but the bound on chosen
memory regions as destinations seems reasonable to avoid the general synchro-
nization problems.

So, the two main restrictions are the lack of scattering in the FP and the poor ability
to handle branching. With respect to lack of scattering, it is possible to turn to the
gathers for help. The gathers are almost fully general and often exploited to alleviate
other problems. In particular, scatters can be reformulated as gathers. Concerning
branching, it is usual to try to move the branch condition away from the FP into the
VP or even higher into the main program where one decides about the geometry to
be rendered. A common practice is to divide the domain into tiles. A classification
step determines which tiles need to take which branch of the code. Then each tile is
streamed through a shader that contains the appropriate branch. This assumes that
the branch condition will most likely evaluate to the same value for all pixels within
one tile. Tiles that contain pixels scheduled for different branches must be processed
twice (if both branches are non-empty), which is basically equivalent to predication.
See [20, 30, 4] for application-specific implementations of this technique.

Since a GPU is so similar in certain respects to a shared memory machine, the
reader may wonder why the programming model is so different (Section 3.1.3). A
particular difference is that while OpenMP allows an incremental parallelization of
an existing code [16, Section 2.3], the GPU forces us from the beginning into a new
design with a distinction between shaders for the configuration of the VP and FP and
the specification of the dataflow in the form of geometry to be rendered. Remember
that this distinction is innate to DSB architectures (Section 3.1.2), which assume im-
plicitly that changing data and non-changing instructions dominate the work load.
This requires different data processing in the hardware and a different programming
model. It also brings new opportunities and new restrictions. The massively parallel
performance depends heavily on some of these restrictions and therefore a general
incremental way to replace serial code with GPU parallelism is not feasible. The re-
quired generality would destroy the envisioned advantage. Future GPU programming
will look more and more like CPU programming, and in the long run they might even
use the same code basis. However, such code will have to respect the hardware char-
acteristics of the GPUs, which often is not the case for current software. For efficient
parallelism the programming model must support the hardware.

3.2 Theory

In Section 3.3 we extend the example from Section 3.1.3 to a linear equation system
solver. For an exact derivation, more background is required on the data containers,
control of global data-flow, the available operations and parallelism. However, the
reader may choose to continue directly with Section 3.3 and look up the necessary
information as needed.

98

M. Rumpf and R. Strzodka

3.2.1 Dataflow

The general dataflow in a GPU is prescribed by the graphics pipeline (Figure 3.1).
The standard data path from the main memory and the textures to the frame-buffer
always has been fast, but in iterative PDE solvers we need more than one pass and
intermediate results must be reused for subsequent computations. This means that the
content of the frame-buffer must be resent through the graphics pipeline repeatedly.
The efficiency of this general data handling has improved significantly over the years,
but a fully flexible solution is still in development. There are several possibilities for
further processing of the results from the frame-buffer:

Read-back (glReadPixels).

We can read the selected content of the frame-buffer back to the main memory.
This is a slow operation, because data transfer has always been optimized in the
direction from main memory to the graphics card. With the PCI Express bus
with a symmetric bandwidth in both directions, this has finally changed this year.
However, even then, the available bandwidth on the card is much higher than
over the bus, so transferring data to the main memory and back onto the card is
inefficient. Data should be read back only if it requires analysis by the CPU.
Copy-to-texture (g1 CopyTexSubImagelD/2D/3D).

The frame-buffer content can be used to redefine parts of an existing texture, or
to create a new one. This also requires copying data, but the high data bandwidth
on the card makes this operation much faster than read-back.
Copy-to-frame-buffer (g1CopyPixels).

It is possible to copy data from the frame-buffer onto itself. The per-fragment
operations can be applied to the copied data, but not the programmable FP pro-
grams (see Section 3.5.2). Hence, this operation is mainly useful for copying data
between different buffers in the frame-buffer and possibly combining the content
of the source and destination with simple operations.

Render-to-texture (WGL_ARB_pbuffer, WGL_ARB_render_texture).
This is the current state of the art, but currently supported only under Windows.
It is possible to allocate a pbuffer, i.e. a non-visible target buffer that serves as
the destination for the output data stream. As soon as the pbuffer is not a render
target any more, it can be used as a texture. Ultimately, this means that it is
possible to render directly to a texture. Hence, we can continue to talk about
textures, which now can be rendered to. The only problem with pbuffers is that
they carry a lot of static information, which causes a performance penalty when
binding a new pbuffer as the destination for the output data stream. The switch
between the use of a texture as a data source and data destination is fast only for
special configurations; see below.

Architectural Review Board (ARB) superbuffers.

Current graphics driver development addresses the problem of slow pbuffer
switches by introducing a new, light-weight mechanism for using raw data ar-
rays as source or destination at various points in the graphics pipeline. The idea

3 Graphics Processor Units: New Prospects for Parallel Computing 99

is to define a memory array together with properties that describe the intended us-
age. The graphics driver then decides where to allocate the memory (cacheable,
Accelerated Graphics Port (AGP) or video memory), depending on these proper-
ties. To some extent, the functionality is already available with the Vertex Buffer
Object (VBO) and the Pixel Buffer Object (PBO) extensions, but the OpenGL
ARB superbuffer group works on a more general and fully flexible solution.

Apart from the incurred switch delay, pbuffers serve the purpose of flexible data
handling on GPUs well. In actual code, the mechanism for binding the pbuffer as
the source or destination is encapsulated in a class. When the superbuffers appear, a
reimplementation of this class immediately yields the additional benefits without any
further changes to the applications themselves. A great problem for the job sharing
between the CPU and the GPU is the limited bus width between the chipset and
the graphics card. Even the PCI Express bus, which promises a theoretical 4GB/s
data transfer rate in each direction, cannot approach the excess of 30GB/s of on-
board bandwidth. Systems with multiple GPUs must also respect this discrepancy;
see Section 3.4.2.

The frame-buffer and pbuffers are actually collections (typically 1-6) of 2D data
arrays (surfaces) of equal dimensions (Section 3.5.2). Current GPUs support Mul-
tiple Render Targets (MRTs), i.e. the shaders can output results to several of these
surfaces simultaneously. No scatter is allowed here, i.e. exactly the same position in
all surfaces is written to, but more than four float results can be output at once. This
technique is compatible with the render-to-texture mechanism, i.e. each surface is a
different texture and all of them can be written to in one pass. However, each write
goes to exactly the same position in each of the textures.

Multi-surface pbuffers also help to avoid general pbuffer switches. Those sur-
faces that are not the destinations of the current render pass can be used as sources
(textures). Swapping the roles of destination and source on the surfaces is far less
expensive than a general pbuffer switch. Thus, iterations are usually performed on
a multi-surface pbuffer in a ping-pong manner, i.e. for iteration 0 we have surface
0 as source and surface 1 as destination; for iteration 1 we have surface 1 as source
and surface O as destination, etc. In addition, more surfaces and other textures can be
sources and the MRT technique even allows the use of several of the surfaces as des-
tinations simultaneously. During the ping-pong procedure the same pbuffer is read
from and written to, but the source and destination memory is disjoint, so that no
write-read collisions can occur. In comparison to the superbuffers, however, multi-
surface pbuffers are still restricted, because GPUs offer only a few surfaces (up to 6)
and they must have the same size and format. Moreover, pbuffers in general do not
support all of the available texture formats.

3.2.2 Operations

First let us examine the available floating point number formats. Three different for-
mats have been introduced with the development of GPUs that support Direct X 9
(Table 3.1). Soon, the standard IEEE s23e8 format (without denormalized numbers)

100 M. Rumpf and R. Strzodka

Table 3.1. Precision of floating point formats supported in graphics hardware. These formats
were introduced with Direct X 9, which required the graphics hardware to have a format with
at least the fp32 precision in the VP and fp24 in the FP. The unit roundoft, i.e. the upper bound
on the relative error in approximating a real number with the corresponding format, is half the
machine epsilon €.

format fpl6 fp24 fp32

GPUs with Wildcat Realizm, DeltaChrome S4/S8, Wildcat Realizm,

FP precision | GeForceFX Volari V8, Radeon GeForceFX

5800/5900/6800 9700/9800/X800 5800/5900/6800

GPUs with - - all Direct X 9 chips,

VP precision Wildcat Realizm
(fp36)

setup s10e5 sl16e7 $23e8

€ 9.8-10°* 1.5-10°° 12-10°7

will be a common standard, because chips that support the PS3 model are required
to have a corresponding PEs throughout the pipeline. Hence, the half-precision for-
mat will be mainly useful to save memory and bandwidth, and possibly for fragment
blending, which to date has no full floating point support. The implementation of a
double float format is unlikely in the near future, though a hardware emulation could
be feasible.

Both the VP and FP support a rich set of operations. There is a difference between
the functionality offered by the high-level languages and the assembly languages, as
the latter more closely express which functional units really reside in the hardware.
However, since the languages intentionally include more primitive functions with the
expectation that they will receive hardware support in future GPU, we want to present
the functionality at this language level. Unfortunately, there is, as yet, no unified
shader model for the VP and the FP. The FP imposes some additional restrictions,
although this is not caused by a lack of language constructs, but rather by their use. In
the following we will use the Cg syntax, but Direct X High-Level Shading Language
(HLSL) is almost identical and OpenGL Shading Language (GLSL) very similar
(see Section 3.5.4).

e Floating-point types: half, float, half2, float4, float4x4.
The half is a s10e5 and the float a s23e8 (or s16e7) floating-point format
(see Table 3.1). For both scalar types there exist native vector types of up to 4
components and all matrix types up to 4 x 4. Components of the native vectors
can be arbitrarily swizzled, i.e. they can be duplicated and their order can be
changed, e.g.:

float4 a(0, 1, 2, 3);

float4 b= a.xyzw; // b==float4(0, 1, 2, 3)
float4 c= a.wyxz; // c==float4(3, 1, 0, 2)
float3 d= a.ywy; // d==float3 (1, 3, 1)

3 Graphics Processor Units: New Prospects for Parallel Computing 101

Most graphics PEs operate internally on 4-vectors, so using the native vector
types can greatly reduce the number of required operations.

Data types: float [5], float[e6] [3], struct.

General vectors and arrays can be defined, but there is only a limited number of
temporary registers (up to 32 float 4-vectors), so for practical purposes, the size is
extremely limited. There are more constant registers (up to 256 float 4-vectors).
Arrays are first-class types, i.e. they are copied when assigned, since there are
no pointers or associated functionality. In the VP constant vectors/arrays can be
indexed with variables. Only the newest PS3 model for the FP supports such
indexing for the texture coordinates.

Mathematical functions.

Arithmetic +, -, %, /, fmod

Sign, Comparison abs, sign, min, max, clamp

Integers ceil, floor, round, frac

Exponential sgrt, exp, exp2, log, log2, pow
Trigonometric sin, cos, tan, asin, ..., sinh,
Interpolation step, smoothstep, lerp

Vector dot, cross, length, normalize, distance
Matrix mul, transpose, determinant

Almost all scalar functions can also operate component-wise on the native
floating-point vector types.

Data access: tex1D, tex2D, tex3D, texRECT.

In the FP, one to three dimensional textures (data arrays) can be read from arbi-
trary positions, e.g.:

float4 coord= IN.texCoord; // current texture coordinates
float4 a= texlD(Tex A, coord.X);

float4 b= tex2D(Tex B, coord.xy) ;

float4 c= tex3D(Tex C, coord.xyz);

Currently, normalized coordinates from [0, 1]? are used for texture access and
only special rectangular 2D textures (texRECT) are accessed by coordinates
from [0, w] x [0, h], which depend on the width (w) and height (k) of the texture.
The texture samplers Tex A, Tex B, Tex_C cannot be chosen dynamically.
This is expected to change in the future. In the newest VS3 model the VP can
also access textures.

Conditions: bool, bool4, &&,||,!,<,>,==,1=7:.

Conditions must evaluate to a Boolean type. The operations can work component-
wise on Boolean vectors. In case of the operator ?: this allows an individual de-
cision for each vector component, e.g.

bool4 cond(true, false, false, true);
float4 a= cond? float4(0,2,4,6) : float4(1,3,5,7);
// Now a==float4(0,3,5,6)

Control flow: int, int4, if/else, while, for.
The conditions must be scalar Booleans. In the VP dynamic branches are fully

102 M. Rumpf and R. Strzodka

supported, so there are no further restrictions on the constructs. In the newest
PS3 model, there is restricted support for dynamic branching in the FP (see Sec-
tion 3.1.4). Otherwise 1f/else is resolved with predication, i.e. both branches
are evaluated and conditional writes update the registers with the correct results.
Without PS3 loops are unrolled, which must be possible. The integer types are
currently not supported in hardware and are internally represented as floats. They
are basically supposed to be used as loop counters and in case of unrolled loops,
for example, they do not show up at all in the end.

e Abstraction: struct, typedef, functions, function overloading, interfaces.
The high level languages offer increasingly more of the abstract constructs
known from C/C++ or Java, although some restrictions apply. As the abstrac-
tion is not dependent on the available processing elements (PEs) in the hardware,
it is likely to evolve further.

Since the PS2 model (Direct X 9 GPUs) and the introduction of floating-point num-
ber formats, the desire for arithmetic functionality has been basically fulfilled. The
limits are now set by the control flow and variable indexing of vectors/arrays. For
some configurations, the number of available temporary registers may also be a re-
striction. Future GPUs will relax these constraints further.

3.2.3 Parallelism

Figure 3.1 visualizes the stream processor nature of GPUs. We see two types of
parallelism there: (i) the parallelism in depth innate to the pipeline concept, and (ii)
the parallelism in breadth given by the breadth (4-vectors) and number of parallel
vertex (up to 6) and fragment pipelines (up to 16). Because there is no configurable
routing in GPUs, unlike FPGAs for example, these numbers are fixed, which has
several consequences.

The deep pipeline makes frequent invocations or reconfigurations inefficient, i.e.
for each rendering call the same operations should be applied to at least several
thousand data items; the more the better. This does not mean that we cannot treat
primitives smaller than 32 x 32 efficiently, but small regions undergoing the same
operations should store their geometry in a common VBO. Then, one invocation
suffices to execute the configured operations on all defined regions. Unfortunately,
in the case of points, even then performance is highly reduced, because GPUs are
optimized for processing 2D regions. Therefore, it is currently difficult to implement
algorithms that require updates of singular, spatially unrelated nodes.

Up to 128 floating point operations can be executed per clock cycle in the FP, but
the 256 bit wide Double Data Rate (DDR) memory interface delivers only 64 bytes.
This means that to avoid a memory bandwidth problem the computational intensity
should be, on average, above 8, i.e. eight or more operations should be performed
in the FP on each floating point value read from the memory (assuming four bytes
per float). Because the memory on graphics cards clocks higher than the GPU, and
because of small internal caches, in practice the computational intensity may be a bit
lower, but the general rule remains. The significant overbalance of processing power

3 Graphics Processor Units: New Prospects for Parallel Computing 103

against bandwidth has arisen only with the recent generation of graphics hardware.
This trend is likely to continue, because computer games now also use programs with
higher computational intensity and the integration of additional PEs into the GPUs
is cheaper than the corresponding bandwidth increases. Note that, despite less inter-
nal parallelism, the high clock frequencies of the CPUs, and less bandwidth from
the main memory system require a similarly high or even higher computational in-
tensity for the CPUs. However, the bandwidth efficient programming methodologies
for CPUs that exploit the large and fast on-chip caches cannot be directly applied to
GPUs, which have only small caches. GPUs reduce the bandwidth requirements best
in the case of strong data locality, e.g. node neighbors in a grid. See Section 3.3.3 for
a discussion of efficient matrix vector products.

3.3 Practice

Section 3.1.3 offers a glimpse of the programming of GPUs. Now, after getting to
know the dataflow and processing functionality in more detail, we want to demon-
strate how to build up an efficient solver for a linear equation system on a GPU. Then
we will present some of the existing PDE applications and list links to resources for
GPU programming.

3.3.1 Setup

So far, we have talked about rendering to a frame-buffer. However, what we see on
the screen are individual windows controlled by a window manager. Window man-
agement, the allocation of pbuffers and initialization of extensions depend on the
operating system. Luckily, there exist libraries that abstract dependencies in a com-
mon interface. We will use the GLUT library for the Graphics User Interface (GUI),
the GLEW library for the extension initialization and the RenderTexture utility class
for the handling of pbuffers. Links to all resources used in the code samples are given
in Section 3.3.6.

With the libraries, the main function for the addition of two vectors A and B as
discussed in Section 3.1.3 needs only few lines of code:

#include <GL/glew.h> // extension initializer GLEW
#include <GL/glut.h> // window manager GLUT
#include "WinGL.h" // my GUI

#include "AppVecAdd.h" // my GPU application

int main(int argc, char *argvl[]) {
glutInit (&argc, argv) ; // init GLUT window manager
glutInitDisplayMode (GLUT DOUBLE | GLUT RGB) ;

// simple example: addition C= A+B
WinGL winAdd; // my GUI based on GLUT
glewInit () ; // init extensions with GLEW

104 M. Rumpf and R. Strzodka

AppVecAdd add; // my GPU application
winAdd.attachApp (&add) ; // attach App to GUI
glutMainLoop () ; // start main loop of GLUT
return 0;

}

The first lines in main initialize the GLUT manager and set the default display
mode. Then we create a GUIL. The GUI manages a window, keyboard strokes and a
menu with GLUT. Via the resource section (Section 3.3.6) the reader may find many
tutorials that demonstrate the ease with which a GUI may be created with GLUT. The
GLEW library call initializes all available OpenGL extensions. The extensions are
necessary to use pbuffers and the programmable pipeline, for example. Most current
GPUs support them. Then, we create our application class and attach it to the GUI
such that the user can call the application functions. Finally, we start the event loop
of GLUT and wait for the invocation of these functions by user interaction.

It is in the application class that the more interesting things happen. The con-
structor uses the Cg API to compile the application-specific shaders and load them
to the graphics card. For the vector addition example above, we need a trivial VP
shader that passes the vertex data through unchanged, and the fpProg [FP_ADD2]
shader for the addition from Section 3.1.3. However, for other application classes,
more shaders are loaded and can be later accessed by the vectors vpProgl[],
fpProg[]. The constructor also uses the RenderTexture utility class to allocate
the textures and store them in a vector texP []:

// enum EnumTex { TEX A, TEX B, TEX C, TEX NUM };

for(i= 0; i<TEX NUM; i++) { // allocate textures
RenderTexturex tp= new RenderTexture ("r=32f tex2D rtt");
tp->Initialize (256, 256); // texture size
texP.push back (tp) ; // store in a vector

}

The mode-string requests a 32 bit float 2D texture suitable for the render-to-texture
(rtt) mechanism (see Section 3.2.1). Currently, only Windows supports the render-
to-texture mechanism, so on other systems copy-to-texture (ctt) should be used
instead. The RenderTexture class has a simple interface for using the textures as
either a destination or source of a data stream, possibly emulating render-to-texture
by copy-to-texture internally. To set the initial data in a texture we simply define the
values in a float array (£1loatData) and then render it:

texP [TEX A]->BeginCapture() ; // TEX A is destination
glDrawPixels (texP [TEX A]->GetWidth(),

texP [TEX A] ->GetHeight (),

GL_RED, GL_ FLOAT, floatData);
texP [TEX A]->EndCapture() ; // TEX A is source

In this way, the application class contains vectors with the shaders vpProg[],
fpProg[] and a vector with the initialized textures texP []. These are the main

3 Graphics Processor Units: New Prospects for Parallel Computing 105

steps during the initialization of a GPU application and are independent of which
operations will be performed later.

After the above initialization, the entire function for the addition of the vectors
A and B, which gets called via the GUI, reads as follows:

void AppVecAdd::exec() {
CGprogram curVp= vpProg[VP IDENTITY];// vertex shader

CGprogram curFp= fpProg[FP_ADD2] ; // fragment shader
texP [TEX C]->BeginCapture() ; // TEX C is destination
cgGLEnableProfile (cgGetProgramProfile (curVp)); // enable

cgGLEnableProfile (cgGetProgramProfile (curFp)); // profiles

cgGLBindProgram (curVpProg) ; // bind
cgGLBindProgram (curFpProg) ; // shaders
glActiveTexture (GL_TEXTUREO) ; // texunitoO

texP [TEX_A]->Bind () ; // bind TEX_A
glActiveTexture (GL_TEXTUREL) ; // texunitl

texP [TEX B]->Bind () ; // bind TEX B
drawTex2D () ; // render-to-texture

cgGLDisableProfile (cgGetProgramProfile (curVp)); // disable
cgGLDisableProfile (cgGetProgramProfile (curFp)); // profiles

texP [TEX C]->EndCapture() ; // TEX C is source

}

The shader fpProg [FP_ADD2] and the function drawTex2D () are listed in Sec-
tion 3.1.3. All other calls fall within the functionality of the Cg API or the Render-
Texture class. Because we have two different program sources, namely this C++ code
and the Cg shaders, the passing of arguments to the shaders relies on the number-
ing of the texture units: GL_.TEXTUREO corresponds to texunit0 in the shader.
The numbering corresponds to the numbering of arguments passed to the multi-
dimensional function realized by the shader. Above, we do not see the OpenGL tex-
ture IDs explicitly, as in Section 3.1.3, because they are taken care of automatically
by the RenderTexture utility class. Alternatively to the numbering, Cg also allows
the association of the OpenGL texture IDs with the sampler names of the textures in
the shader.

Even without the preparatory work of the initialization, the exec () function
above seems a lot of code for the simple addition of two vectors C = A 4+ B. In
practice, such operations are always encapsulated into a single function call. One
option is to derive a class from RenderTexture and add functionality to it, such that
the destination texture manages the operation:

texP [TEX C]->execOp (fpProg[FP_ADD2],texP[TEX A],texP[TEX B]);

106 M. Rumpf and R. Strzodka

For convenience, one could even define an operator+ function in this way, but this
would be of little use since practical shaders do not represent elementary functions.
Another option is to have a class for each shader and then simply write something
like

fpProg [FP_ADD2] .exec (texP [TEX C], texP[TEX A], texP[TEX B]);

For a particularly short notation it is possible to have a function within our applica-
tion class that only takes the indices:

execOp (TEX_C, FP_ADD2, TEX A, TEX B); // C= A+B

We will use this notation in what follows. Clearly, the graphics setup described here
is an example of how to get started fairly quickly. For large projects, more abstraction
is recommended.

3.3.2 Vector Operations

Once the graphics specific-parts are abstracted, it is easy to realize further operations
on vectors. We simply need to write a new FP shader, e.g. FP_ATAN2 and then call
it

execOp (TEX_C, FP_ATAN2, TEX A, TEX B); // C= atan(A/B)

Remember that the high-level languages support most of the standard mathemati-
cal functions directly (Section 3.2.2). So to write the FP_ATAN2 we only need to
exchange the return value in FP_ADD2 (Cg listing in Section 3.1.3) for

return atan2 (valA,valB) ;

For the vectors A, B and C represented by the textures TEX A, TEX_B, TEX_C
this would correspond to

C, = atan(A,/B,) .

With a standard set of such shaders it is easy to evaluate formulae, e.g. linear inter-
polation

execOp (TEX_C, FP_SUB2, TEX B, TEX A); // C= B-A
execOp (TEX_D, FP_MUL2, TEX C, TEX M) ; // D= C#M
execOp (TEX_R, FP_ADD2, TEX A, TEX D) ; // R= B+D= A+M(B-A)

However, it is much more efficient to have one shader that does exactly the same in
one pass. This avoids the costly pbuffer switches (Section 3.2.1) and increases the
computational intensity (Section 3.2.3). So, in general, the shaders of an application
should execute as much as possible in one go. The application class AppVecAdd
that contains the addition as the only shader is, in this respect, an unrealistic example.

Unfortunately, the instruction to pack everything into one shader whenever pos-
sible easily results in the generation of a multitude of shaders. Consider, for ex-
ample, the task of applying h(fi(Va),9j(Va)),1 < 4,7 < N to the components

3 Graphics Processor Units: New Prospects for Parallel Computing 107

of a vector V, where the choice of 4,; depends on some computed entity. For op-
timal performance we would have to write N? shaders S;;. Duplication of code
could be minimized by using include files that implement the 2N + 1 functions
h(.,.), fi(.),gi(.), 1 < i < N, but even so, N? short, different files would have to
be generated. The remedy in such cases is to generate the few changing lines of code
at run time and use run time compilation. If only a few run time compilations are
necessary the performance does not degrade, especially if the GPU does not have to
wait for the compiler but can be occupied with some other task during the software
compilation process.

3.3.3 Matrix Vector Product

Matrix vector products are ubiquitous in scientific computing. The application of
a matrix can be seen as a series of gather operations on the vector components.
The matrix rows A, define what to gather and the weights. The gathers are inner
products between the rows and the vector:

AV = (Aa,‘ : V)av Aaw:: (Aa,ﬁ)ﬁ ’

For a 2D problem we store the nodal vector V' of the corresponding 2D grid as a 2D
texture. Then « and 3 must be seen as 2-dimensional multi-indices as above. This
means that without renumbering of indices, a full matrix for a 2D problem is a 4D
structure. Due to the fact that GPUs restrict each dimension of a texture to 4096 or
less, we usually cannot store a full matrix in a 1D or 2D texture. The best option
is to use a 3D texture (4D textures are rarely supported), where in each 2D slice
of the texture we pack several 2D row vectors A, . Depending on the current pixel
position, the FP shader retrieves the correct weights and performs the multiplications
and additions. The result is obtained in one pass.

Because of the packing, a certain amount of address translation must be per-
formed to retrieve the correct values. The Vertex Processor (VP) is usually not the
bottleneck in scientific computing and is, therefore, used for the task of precomput-
ing the offsets to the packed rows. The offset texture coordinates are passed to the
FP. Another way of packing is to define a 4-valued texture and thus quadruple the
number of values that are stored per texel. The point of optimizing operations for an
execution on 4-vectors is discussed at the end of this section. From the point of view
of memory, the packing of floats into 4-vectors is a disadvantage, because the large
amount of data that has to be retrieved with a single command can lead to a local
memory gap problem. Reading the four floats individually gives the compiler more
freedom to place some computation between the reads and thus hide memory latency
and insufficient bandwidth.

In general, full matrices can be handled only for small dimensions. A full-float
matrix for a 128x128 grid requires 1Gb of memory, which exceeds the present video
memory of graphics cards. Future GPU will offer hardware virtualization, such that a
texture can also reside (partly) in main memory. However, the necessary data transfer
to the graphics card is a strong bound on the performance in this case. Luckily, in

108 M. Rumpf and R. Strzodka

practice most matrices are sparse. Typical examples are band matrices. Each band
can be stored in a texture of the same dimension as the grid. The bands can be packed
together in one texture, which will reduce the lines of code necessary for the texture
binding. This also avoids the problem that a maximum of 32 different textures can
be bound to a FP shader. The VP can perform the offset computation, and the matrix
vector product can be obtained in one pass again.

In the case of Finite Element codes and the discretizations of local operators,
it is also possible to store the matrix in the form of elemental matrices (see (3.2)).
Then, for each element, the components of the elemental matrices must be stored in
separate textures or a packed arrangement. This is a special case of the general idea
of partial matrix assembly that is presented below. It is particularly advantageous if
the elemental matrices possess some common structure, such as symmetry or para-
meterization by few variables, since this greatly reduces the storage requirements. In
the case of parameterization, one would only store the few values from which the
elemental matrices can be built up (see (3.3)), and thus favorably increase the com-
putational intensity of the matrix vector product. One problem arises, however, for
the output of the local application of an elemental matrix. The GPU cannot scatter
data, which means that only one node within the element can be updated from the
result of the FP. The updating of the other nodes in the same pass would require the
recomputation of the matrix vector product on the element for each node. One rem-
edy for this is to output the complete result vector on each element, and from this
gather the information onto the nodes in a second pass. This is a typical strategy on
GPUs for reformulating a regular scatter operation in terms of a gather.

For irregular sparse matrices, two strategies are available: (i) cover the non-zero
entries efficiently with some regular structures, i.e. rows, columns, sub-diagonals,
and encode this structure statically into the shader, or one (ii) use a level of indirec-
tion in the processing, such that, e.g. the matrix entries contain not only the value
but also the address (or offset) needed to access the corresponding component in the
vector. The result can be computed in one pass. However, the irregularity of the en-
tries can result in a serious performance problem if the number of entries per row
differs significantly. Therefore, different vector components may require very differ-
ent numbers of multiplications and additions. The PS2 model for the FP cannot stop
the computation dynamically, i.e. all gather operations take the same time within the
same shader. In the worst case one full row in the matrix suffices to make the matrix
vector product as expensive as one with a full matrix. The newer PS3 model can
make the distinction, but in terms of performance it is only beneficial if all spatially
coherent vector components require approximately the same number of operations
(see Section 3.1.4). Otherwise, the longest case dominates the execution time again.

Recapitulating, we can say that within the noted restrictions, matrix vector prod-
ucts can be computed for arbitrary matrices. Usually the matrices are not constant
and have to be assembled first (see (3.1)). In many cases it is best not to assemble
matrices explicitely, or at least not fully. Recall from Section 3.2.3 that current GPUs
require a computational intensity of approximately 8 to avoid bandwidth shortage
(in the case of floats). However, in a matrix vector product, we read both the matrix
entry and the vector component and perform just one assembly operation: a multiply

3 Graphics Processor Units: New Prospects for Parallel Computing 109

and add (MAD). In other words we exploit only 6.25% of the available processing
power. Consider three flavors of the matrix vector product for improvement:

e On-the-fly product: compute entries of A for each AV application.
At first, it may seem foolish to compute the entries of A over and over again.
However, this can still be faster than simply reading the precomputed data, be-
cause the comparably slow reading will stall the computation. Clearly, the ad-
vantage can only be gained for simple entries that can be computed quickly from
little data. This technique has the lowest memory requirement and thus may also
be applied in cases when the entire A would not fit into memory.

e Partial assembly: apply A on-the-fly with some precomputed results.
This is a flexible technique which allows the computation and bandwidth re-
sources to be balanced. On-the-fly products are infeasible if many computations
are required to build up the matrix entries. In this case, a few intermediate re-
sults that already encompass most of the required operations should be gener-
ated. Then, during the matrix vector product, these few intermediate results are
retrieved and the matrix finishes the entry computation on-the-fly. This reduces
the bandwidth requirement and targets an optimal computational intensity. The
few intermediate results have also the advantage of modest memory consump-
tion.

e TFull assembly: precompute all entries of A, use these in AV.
This makes sense if additional operations of high computational intensity hide
the bandwidth problem of the pure matrix vector product. To achieve this, it even
makes sense to execute operations unrelated to the current matrix vector product
in the same shader. The Multiple Render Target (MRT) technique (Section 3.2.1)
allows the unrelated results to be output into separate textures. If the bandwidth
shortage can be hidden (though this is hard to achieve), full assembly is the fastest
option for the matrix vector product, but also the one with the highest memory
requirements.

The above discussion is not specific to GPUs, because the same considerations apply
to CPUs. Yet there is a relevant and important difference between GPUs and CPUs.
While block matrix techniques exploit the large caches on typical CPUs, this is not
possible in the case of GPUs, because they have only small caches and rely strongly
on the right balance of operations and bandwidth capacity. This is a crucial factor
and should be checked carefully in the case of poor performance on the GPU. Pure
matrix matrix multiplications, for example, are not faster on GPUs than on current
CPUs [6].

Following the considerations about bandwidth, it is also possible to opt for low-
level optimizations of the matrix vector product [2], related to the fact that the
processing elements (PEs) operate, in general, on 4-vectors. However, newer GPUs
can split the 4-component PEs into a 3:1 or even 2:2 processing mode, evaluating
two different commands on smaller vectors simultaneously. The high-level language
compilers optimize for this feature by automatically reordering commands when-
ever possible. The resource section offers links to tools that analyze the efficiency of
shaders for a given GPU.

110 M. Rumpf and R. Strzodka
3.3.4 Solvers of Linear Equation Systems

We have repeatedly encouraged the reader to put as many operations as possible
into one shader. Large shaders avoid pbuffer switches (Section 3.2.1) and help to
hide bandwidth shortage (Section 3.2.3, Section 3.3.3). Why, then, should the en-
tire problem not be solved in one shader? If this can be done without unnecessary
additional operations or data access, it is the right choice. However, the implementa-
tion of a separable filter in one pass is a waste of resources. The same applies to the
iterative solution of a linear equation system AX = R,

X% = initial guess, X = p(Xh,

where F(.) is the update method, e.g. conjugate gradient. The implementation of sev-
eral iterations in one shader is unwise, because it multiplies the number of operations
and, in particular, data accesses.

Which solvers are suitable for GPUs? They must allow parallel independent
processing of vector components, and do so without direct write-read cycles. The
first is important to exploit the parallel pipelines, while the second is a restriction of
the FP which, in general, has no access to the destination buffer during the process-
ing. An alternative is to process the vector in blocks with several passes, such that
during the processing of a block the previously computed blocks can be accessed.

The conjugate gradient solver and its variants (preconditioned, asymmetric) rely
on operations of the following forms:

ol o, TP - (AR S R TR ol
F(X):X‘FWZN P=T+mp , T=R-AX".
The main ingredients are the matrix vector product, which was discussed in the pre-

vious section, and the inner product, which is a reduction operation.

Reductions are not directly supported in hardware on GPUs. An easy solution is
to write a shader with a loop that runs over all texels and performs the summation.
By rendering a single pixel with this shader, the result is obtained; but this does
not utilize the parallel pipelines. At least 16 pixels with subtotals should be rendered
before a final summation is performed. A second possibility is to perform consecutive
additions of neighboring texels and thus reduce the dimensions of the texture by 2 in
each pass. In the end, the result is also a 1x1 texture. Which option is better depends
strongly on how data is arranged in textures: linearly or hierarchically. Traditionally,
GPUs are optimized for the second option of fast access to neighbor texels. With the
first, there may be general problems with the maximal instruction number in the FP
(see Section 3.5.3). The result of the reduction can be either read back to the CPU or
leftin a 1 x 1 texture for further use. In an interactive approximation, the read-back
is necessary at some stage to retrieve the norm of the residual and decide whether
the iterations should be stopped. However, the asynchronous read-back mechanism
does not stop the computation.

We see that all ingredients necessary for a solver of a linear equation system can
be implemented on a GPU. The initialization of the graphics pipeline requires some

3 Graphics Processor Units: New Prospects for Parallel Computing 111

effort (Section 3.3.1), but once the work is done or prepared by some library, it is
possible to concentrate on the algorithm. Concerning the matrix vector product (Sec-
tion 3.3.3), attention should be paid to the high ratio of processing elements (PEs)
against the bandwidth in GPUs. The use of a fully-assembled matrix consumes a
lot of bandwidth and is only appropriate if this disadvantage can be hidden with ac-
companying computations. Finally, solvers of linear equation systems must allow for
parallel processing of the vector components. Reduction operations are not native to
GPUs, but can be resolved efficiently. Several researchers have solved PDE problems
along these lines. The next section discusses some applications.

3.3.5 PDE Applications

We consider the discretization of partial differential equations on GPUs. In the field
of continuum mechanics, various physical processes have been simulated in graphics
hardware [18, 17, 21, 19, 12]. Beyond physical simulation, GPU-accelerated PDE
methods are also very popular in geometric modeling and image processing [20, 3,
11, 29, 14]. The GPU Gems book series also contains an increasing number of GPU-
accelerated PDE solvers [7, 25] and the site [10] offers an extensive overview of
GPU-based computations. The processing of triangular grids, shading and texturing
of highly resolved meshes, and the processing of images (usually regarded as surface
textures), are the original applications for which graphics cards have been designed
and optimized. Before we provide an overview of a number of applications in this
field, we outline the basic setup for the treatment of PDEs on GPUs.

Consider a general differential operator A that acts on functions u defined on a
domain {2 and ask for a solution of the differential equation

Alu] = f

for a given right-hand side f. In addition, require certain boundary condition to be
fulfilled on 0f2. In the case of variational problems, we ask for minimizers of ener-
gies E over functions u, such that a differential equation appears as the Euler La-
grange equation, with Afu] = grad Efu] and f = 0. If we take into account some
time-dependent propagation, relaxation or diffusion process, we frequently obtain a
differential equation of the form

Ou+ Alu] = f.

Now, we ask for solutions u that depend on the time ¢ and the position = on (2. In the
case of a second-order diffusion we usually deal with A[u] = —div(a[u]Vu), where
alu] is a diffusion coefficient or tensor that possibly depends on the unknown solution
u. In the case of Hamilton Jacobi equations that describe, for instance, the propaga-
tion of interfaces, we deal with A[u] = H(Vu). E. g. H(Vu) = v(t, z) | Vu(t, z)||
corresponds to the propagation of the level-sets of the function u at time ¢ and po-
sition = with a speed v (¢, x) in the direction of the normaly. In many cases, v itself
depends non-linearly on wu.

112 M. Rumpf and R. Strzodka

Now consider the discretization of these differential equations based on Finite
Elements. Obviously, other ways to discretize PDEs such as Finite Volume or Fi-
nite Difference approaches lead to fairly similar computational requirements. We
consider a simplicial or rectangular mesh M, on {2 with grid size i and a Finite
Element space V}, with a N = #I-dimensional basis {®,, },cs consisting of basis
functions @, with local support on the domain. Now, we ask for a discrete solution

U(z) = Us Paolx)

acl

of the stationary problem, such that U approximates the continuous solution u, or
we compute space and time discrete solutions U*(z) = Y _, UF®,(x), with
u(ty,) ~ U¥(x), for t;, = k7 and some time-step 7.

Usually, Finite Element algorithms consists of two main ingredients; namely,
the assembly of certain discrete vectors in RY or matrices in RY” and the discrete
solution update, with an iterative linear equation system solver, an explicit update
scheme in time, or a combination of both in case of an iterative scheme with an inner
linear system of equations to be solved:

acl

e Assembly.
In an explicit gradient descend algorithm, we usually compute the discrete gra-
dient

(grady, E[U]) , = (E'[U], ®a)

via a traversal over the grid M,,. Locally on each element we collect contribu-
tions to the integral (E’'[U], ®,,) for all §,, such that its support intersects the
current element. Similarly, the assembly of a Finite Element matrix, e. g. the
stiffness matrix in the above-mentioned diffusion process

Log :/ alU|V®,, - Vs dx 3.1)
(P

starts by initializing L = 0, followed by a traversal of all elements. On each
element F a corresponding local elemental matrix

lap(E) = /E alU]V®, - Vdy dx (3.2)

is computed first, corresponding to all pairings of local basis functions relevant
on this element. Then, we can either store the collection of elemental matrices or
assemble them into the global matrix L (see Section 3.3.3).

All these operations match the data-stream-based (DSB) computing paradigm
perfectly. The instruction set is always the same. Only the data to be processed
changes and this data can be gathered by simple texture reads. In the case of a
linear Finite Element space, the relation between the texels in the textures and the
degrees of freedom is particularly simple. For example, if we process an image,

3 Graphics Processor Units: New Prospects for Parallel Computing 113

the values at the image pixels correspond directly to the degrees of freedom in the
Finite Element space, and thus a coordinate vector in the Finite Element space
is again an image. Similarly, we can treat each row in an irregular sparse ma-
trix as a floating point texture and the corresponding index field, which contains
the global position of the entries, as an integer texture [3]. The indirect access is
less efficient because it partly breaks the paradigm of reading all data in streams.
However, GPUs have also internal mechanisms to reduce the incurred perfor-
mance penalty in such cases. The same problem cannot appear for the output
because GPUs do not support the scattering of data.

For vector-valued functions u, e.g. positions in space, deformations, gradients or
2D Jacobians, the data can be kept in 4-valued textures. Then, it is also easy to
take advantage of the processing elements (PEs) operating on 4-vectors (see Sec-
tion 3.2.2). However, for larger texels (4 floats = 16B) it is more difficult to hide
the incurred memory latency, so storage of the individual components is often the
better choice (see Section 3.3.3). After realization of the correct functionality, the
optimal option can be determined by a profiling tool.

Discrete solution update.

In the case of a simple update scheme, it is preferable to interleave the assembly
with the update. That is, for a time-step of a discrete gradient descent

UFtt = U + rgrady, E[U"],

we immediately add the element-wise components of the update to the old dis-
crete solution. When an iterative solver for a linear equation system is involved,
i.e. the matrix is required in more than one matrix vector product, there are three
possibilities: on-the-fly products, a partial or a full assembly. These possibilities
were discussed in Section 3.3.3.

For a regular grid, standard linear stiffness matrices or mass matrices can be
applied efficiently on-the-fly, because the matrix entries are locally the same for
all elements, and can be stored in constants in the shaders. This changes if we
consider non-linear stiffness matrices as defined above for the diffusion problem.
For example, if a[u] is a diffusion tensor and we use the midpoint integration rule
for au] in (3.2), we precompute the midpoint values a[u]% in a texture and store
the constants C;]ﬂ = [, 0;9 - 0;P3 dx in the shader. For isometric elements,
the constants are few because they depend only on the difference o — 3. Then, the
elemental matrices are parameterized by a[u]%/ and can be quickly reconstructed
on-the-fly:

lop(E) = aluly Coly. (3.3)

(2]

The advantages are higher computational intensity in the matrix vector product
and reduced memory requirements. Recall that for very large triangular meshes
or images, the full assembly of a matrix still conflicts with the limited video
memory size of graphics cards.

M. Rumpf and R. Strzodka

Fig. 3.2. Segmentation of tumors computed in Direct X 7 graphics hardware. The expansion
of the level-set depends on the image values, its gradient and the placement of the seeds.

Now consider the processing of images as a concrete application field. Classical tasks
in image processing are

e segmentation,
e feature-preserving image denoising,
e image registration.

Images are perfectly matched to rectangular textures and can be regarded as functions
in a piecewise bilinear Finite Element space. Furthermore, if it comes to real-time
processing and visualization, the results of our PDE algorithm reside already on the
graphics boards, where they are needed for display. This underlines the conceptual
benefits of PDE-based image processing directly on the GPU. In what follows we
provide a brief sketch of some methods:

e Segmentation.
Consider a region-growing algorithm for the segmentation of image regions
whose boundaries are indicated by steep gradients. Therefore, a segment domain
is represented by a level-set of a function u and sets v(t, z) = n(||VI||), where
1 is the image. Here, 7(-) is some non-negative edge-indicating function, which
is zero for ||VI|| larger than a certain threshold. Now, we ask for a family of
level-set functions and corresponding evolving segment domains, such that

Ou+o(t,z) ||Vu| =0.

3 Graphics Processor Units: New Prospects for Parallel Computing 115

Fig. 3.3. Anisotropic diffusion for image denoising computed in Direct X 8 graphics hardware.
The anisotropy allows the smoothing of noisy edges without blurring them completely.

The initial data «(0, -) is supposed to represent a user-defined mark on the image
[26] (see Figure 3.2).
e Feature-preserving image denoising.

Multiscale methods in image denoising are fairly common nowadays. The de-
sired result is a family of images that exhibit different levels of detail, fine scale
to coarse scale, and which are successively coarser representations of the initial
fine-scale image. The aim of denoising is to filter out fine-scale noise on coarser
scales while preserving important edges in the image. Such a scale of images can
be generated solving a non-linear diffusion problem of the type

Oyu — div(a[u]Vu) =0,
alu] = g([[V(G7 xw)]).

The diffusivity g(s) = (1 + f\—Z)_l is large away from the edges and small in the
vicinity of the edges, as indicated by large image gradients. To ensure robustness
a prefiltering of the image by some Gaussian filter G of filter width o is invoked
here. One can further improve the results, allowing, in addition, for a smoothing
along the tangential direction on the edge [27] (see Figure 3.3).
e Image registration.

Matching of a template image 7" with a reference image R via a non-rigid defor-
mation ¢ - often called registration - can be formulated naturally as a variational
problem. The aim is to achieve a good correlation of the template image 7' and
the deformed reference image R:

Top~R.

In the simplest case of unimodal registration we can ask for a deformation ¢
given on image domain {2, such that the energy

116 M. Rumpf and R. Strzodka

-:u un
%
2]
H
M H

Fig. 3.4. Registration of medical images with a possible acquisition artefact computed in Di-
rect X 9 graphics hardware. The six tiles are arranged in the following way: on the upper left
we see the template that should be deformed to fit the reference image to the right of it; on
the lower left we see the computed deformation applied to a uniform grid and to the right the
registration result, i.e. the template after the deformation. The rightmost column shows the

scaled quadratic difference between the template and the reference image before (upper row)
and after (lower row) the registration.

Bl = [[Too— AP

is minimal in a class of suitable deformations. This problem turns out to be ill-
posed and requires a regularization, by, for example, adding an elastic energy
[oW o W(D¢)dx that measures the quality of the deformation itself and not only
the quality of the match. Alternatively, a regularized gradient flow, which ensures
smoothness of the resulting deformation, can be applied. After a discretization,
the result is a global, highly non-linear optimization problem. Thus, the proce-
dure is to consider a scale of matching problems ranging from coarse to fine

First, match on the coarse scale is found and then successively finer scales are
treated [29] (see Figure 3.4).

The next section lists websites that point to many other PDE applications realized on
GPUs including demos and code examples.

3 Graphics Processor Units: New Prospects for Parallel Computing 117
3.3.6 Resources

Up-to-date links to the sites below and the code samples discussed in this chapter are
available online at the Springer site associated with this book.

The low-level programming of GPUs can be very tedious. Therefore, one usu-
ally uses libraries that facilitate the programming and abstract the details. The code
examples in this chapter are based on the following resources:

e Graphics API: OpenGL
www .opengl.org
e Shader language and API: Cg
developer.nvidia.com/page/cg.main.html
e Window manager: GLUT
www .opengl .org/resources/libraries/glut.html
e Extension initializer: GLEW
glew.sourceforge.net
e Pbuffer handler: RenderTexture
gpgpu.sourceforge.net

The choices are fairly common, apart from the last one where many still use self-
made pbuffer handlers. However, we encourage the reader to explore the links below
and discover other possibilities that might suit them better. To all of the above there
are good alternatives and the authors themselves have used different tools, depending
on the project requirements. The different combinations of graphics APIs and shader
languages are discussed in more detail in Section 3.5.4. The rest of this section is a
collection of useful links related to GPU programming.

e Scientific Computing on GPUs
— GPGPU - General Purpose Computation on GPUs

WWW . gpgpu . org
This site addresses specifically general purpose computations, while other re-
sources have usually a stronger focus on graphics applications. Related news,
papers, code and links to resources are given and a forum for discussion is
maintained. The site also features two full-day tutorials from the SIGGRAPH
2004 and Visualization 2004 conferences on scientific use of GPUs.

— ShaderTech - Real-Time Shaders
www . shadertech.com
Here, shaders in general are discussed, and scientific examples are included.
The site features news, articles, forums, source code and links to tools and
other resources.

e Major Development Sites

From time to time, one encounters technical GPU problems that have been
solved already. The following development sites contain a huge store of ex-
amples, libraries, white papers, presentations, demonstrations, and documenta-
tion for GPUs. In particular, they offer well-assembled Software Development
Kits (SDKs) that demonstrate various graphics techniques.

118 M. Rumpf and R. Strzodka

— OpenGL Resources
www . opengl .org

— DirectX Resources
msdn.microsoft.com/directx

— ATI Developer Site
www.ati.com/developer

— NVIDIA Developer Site
developer.nvidia.com

e Developer Tools

These sites are good starting points for exploring the numerous freely available

tools for GPUs. They include advanced Integrated Development Environments

(IDEs) for shader development, debugging and performance analysis.

— ShaderTech Tool Archive
www . shadertech.com/tools

— OpenGL Coding Resources
www.opengl .org/resources/index.html

— Microsoft Direct X Tools
www.msdn.microsoft.com/library/default.asp?
url=/library/en-us/directx9_c/directx/graphics/
Tools/Tools.asp

— ATI Tools
www.ati.com/developer/tools.html

— NVIDIA Tools
www.developer.nvidia.com/page/tools.html

— Babelshader - Pixel to Fragment Shader Translator (D. Horn)
www.graphics.stanford.edu/~danielrh/
babelshader.html

— Imdebug - The Image Debugger (B. Baxter)
www.cs.unc.edu/~baxter/projects/imdebug/

— Shadesmith - Shader Debugger (T. Purcell, P. Sen)
www.graphics.stanford.edu/projects/shadesmith

3.4 Prospects

The development of GPUs is rapid. Performance doubles approximately every nine
months. Many new features are introduced with each generation and they are quickly
picked up by implementations. This fast pace is likely to continue for at least several
more years. What should we expect in the future?

3.4.1 Future GPUs

Throughout the chapter we have pointed to expected developments of GPUs. The
information is based mainly on the features of the Windows Graphics Foundation

3 Graphics Processor Units: New Prospects for Parallel Computing 119

(WGF) announced by Microsoft for the new Windows generation (Longhorn [22]).
Let us summarize the points.

Parallelism/Bandwidth

The parallelism will continue to grow rapidly, as well as the bandwidth. However,
since increasing the first is cheaper than the second, programming will have to
focus on computational intensity even more strongly than at present.

Shaders

Unlimited instruction counts and a unified shader model will be introduced.
Much of the fixed pipeline functionality will be replaced by the use of pro-
grammable shaders. Without the fixed functionality, GPUs will basically be a
collection of parallel PEs. This will introduce scheduling tasks that are likely to
be hidden from the programmer. Memory will be virtualized to operate on data
that would otherwise not fit the video memory. Further improvements will in-
clude indexing of textures and greater temporary storage for intermediate results
in shaders.

Dataflow

We have emphasized the view that textures, pbuffers, vertex data and the frame-
buffer can all be seen as interchangeable collections of 2D data arrays, although
full flexibility is not yet available. Future GPUs will fully incorporate this view
and shaders will decide on their own how they want to interpret the data. The
graphics pipeline will also offer several exit points for the data streams and not
only the one at the end of the pipeline. As a result it will, for example, be possible
to manipulate a mesh iteratively with the VP.

Precision

The latest VS3, PS3 model prescribes 32 bit float precision throughout the
pipeline. Several GPUs offer this already and many more will soon follow. The
support for double floats is unlikely in the near future, although there are, in
principle, no barriers. The problem of development lies, rather, in the difficulties
of creating a demand: a strong demand for double precision GPUs would make
production feasible, yet at present, such demand is unlikely from the scientific
community, because GPUs receive little attention from that quarter precisely be-
cause they do not have double precision. Further, a demand is unlikely to come
from the graphics or computer game community where GPU vendors earn their
money.

Dynamic branching/MIMD in the FP

Currently, GPUs with PS3 support are only efficient at infrequent dynamic
branching. The problems with MIMD are additional transistors and scheduling
problems, but the development of the processing elements (PEs) points clearly
towards MIMD in the near future. The unification of the shader model does not
necessarily mean that the PEs become the same, however, common PEs would
allow better resource utilization in view of changing loads on vertices and frag-
ments.

120 M. Rumpf and R. Strzodka

e Scatter

The read-only, write-only regions avoid many synchronization problems. One-
sided communication models are also known for their efficiency from CPU-based
parallel computers; see [16, Section 2.2.3, page 17] Writing to arbitrary mem-
ory addresses would destroy too many of these advantages. However, scattering
within a specified region does not have a negative effect on synchronization. Cur-
rent GPUs can already scatter data by rendering it as a set of points. WGF will
allow the generation of new primitives so that data duplication of individual items
will be possible too. However, current GPU are not efficient at point processing;
and this, it will be difficult to change.

Many of the expected features are already available, to some extent, through differ-
ent extensions (Section 3.5.1). Respecting the current limitations on resources and
performance, this already allows current development to be directed towards the new
hardware. In other words, it is worth exploring the GPU as a general parallel proces-
sor, even if some restrictions still apply.

3.4.2 GPU Cluster

A single GPU already offers a lot of parallelism, but similar to CPUs, demand for
higher performance suggests the use of multiple GPUs to work on a common task.
The integration hierarchy is developing similarly to that of CPU-based parallel com-
puters. One node, represented by a mainboard with several PCI Express slots, can ac-
commodate several graphics cards. Clusters of multiple nodes are connected with the
usual fast interconnects. However, both developments are in their infancy. NVIDIA
offers a technology to couple two of their newest GPUs [23], ATI is expected to
present a similar technology for their products, and Alienware announced a solution
for all PCI Express graphics cards [1]. The solutions claim full transparency, so that
the programmer only has to consider a number of general rules that will minimize
the implicit synchronization between the cards. In addition, extensions to more than
two boards seem feasible.

Initial academic work on the utilization of GPU clusters for parallel visualiza-
tion [28, 15, 9] and computing [8, 5] also exists. Clearly, these approaches carry with
them the same complexity as do CPU clusters. In particular, the considerations on
partitioning and dynamic load balancing in [31] apply. The communication is even
more complicated, because the cluster interconnects transport the data to the main
memory and there is another stage of indirection in exchanging this data with the
video memory of the graphics cards. In addition, once we are willing to pay the price
of the comparably slow data transport between the graphics card and the main mem-
ory, it makes sense to involve the CPU in the processing too. We see the cluster as
eventually being a pool of heterogenous processors with different computing para-
digms and interconnects between them. While future graphics APIs will address the
topics of job sharing and multiple GPUs and research on heterogeneous computer
systems in general is ongoing, the efficient utilization of all available resources in
GPU clusters is likely to remain a challenge for a long time.

3 Graphics Processor Units: New Prospects for Parallel Computing 121

3.5 Appendix: GPUs In-Depth

Graphics hardware has undergone a rapid development over the last 10 years. Start-
ing as a primitive drawing device, it is now a major computing resource. We here
outline the technological development, the logic layout of the graphics pipeline, a
rough classification of the different hardware generations, and the high-level pro-
gramming languages.

3.5.1 Development

Up to the early 1990s, standard graphics cards were fairly unimpressive devices
from a computational point of view, although having 16 colors in a 640x350 dis-
play (EGA) as opposed to four colors in a 320x200 display (CGA) did make a big
difference. Initially, the cards were only responsible for the display of a pixel ar-
ray prepared by the CPU. The first available effects included the fast changing of
color tables, which enabled color animations and the apparent blending of images.
Then the cards started to be able to process 2D drawing commands and some offered
additional features, such as video frame grabbing or multi-display support.

The revolutionary performance increase of graphics cards started in the mid
1990s, with the availability of graphics accelerators for 3D geometry processing. The
already well-established game market welcomed this additional processing power
with open arms and soon no graphics card would sell without 3D acceleration fea-
tures. Since then, the GPU has taken over more and more computational tasks from
the CPU. The performance of GPUs has grown much faster than that of CPUs, dou-
bling performance approximately every nine months, which is the equivalent of a
"Moore’s Law squared’.

During the late 1990s the number of GPU manufacturers decreased radically, at
least for PC graphics cards. Although other companies are trying to gain or regain
ground in the market, NVIDIA and ATT have clearly been dominant, both in perfor-
mance and market shares, for several years now. Hence, the following discussions we
cite primarily their products. Concerning the market, we should mention that actu-
ally Intel is the largest producer of graphics chips, in the form of integrated chip-sets.
However, these are inexpensive products and rank low on the performance scale, so
we will deal only with stand-alone GPUs on graphics cards.

Together with the reduction of GPU designers, the number of different APIs to
access their functionality has also decreased. The OpenGL API and the Direct X
API are the survivors. The API guarantees that despite the different hardware in-
ternals of GPUs from different companies, the programmer can access a common
set of operations through the same software interface, namely the API. The propri-
etary graphics driver is responsible for translating the API calls into the proprietary
commands understood by the specific GPU. In this respect, the API is similar to an
operating system, which also abstracts the underlying hardware for the programmer
and offers standardized access to its functionality, although an operating system does
more than that.

122 M. Rumpf and R. Strzodka

If the hardware offers new features and is downward compatible, an old API still
functions, but it lacks the new functionality. However, the use of new features in a
new API results in an incompatibility with older hardware. Therefore, programmers
are reluctant to use new features as long as they expect a significant demand for their
applications on older hardware. The hardware vendor can promote the use of the new
API by emulating the new hardware features in software on older systems, but this
may turn out very demanding or impractical if the software emulation is too slow.
So, in practice, programmers opt to assume very low requirements for the hardware
and ignore incompatibility issues. Only the time-critical parts of the code are some-
times implemented for each hardware standard separately and chosen dynamically
upon identification of the hardware. The above applies both to programs for different
versions of an operating system and programs (mainly games) for different versions
of graphics APIs. However, graphics hardware has evolved much quicker and game
performance is often a critical factor, such that the changes of API versions and the
lowest common requirements are moving faster than in the CPU market.

OpenGL and Direct X have been incorporating the quickly evolving feature set
of GPUs differently. OpenGL uses a very flexible extension system. Each vendor can
expose the whole functionality of its hardware product by proprietary extensions to
the APIL. The OpenGL ARB [24], which includes the main players in the graphics
field, helps in the standardization of these extensions to prevent the undermining of
the common interface idea through too many incompatible proprietary extensions. In
practice, the proprietary extensions appear first and then the standard access points
evolve over time. The different versions of Direct X on the other hand, are prescribed
by Microsoft and thus simply define a fixed set of requirements. Naturally, these re-
quirements are discussed with the GPU designers beforehand. If the hardware su-
persedes them quantitatively, then Direct X often allows the use of these additional
resources, but qualitatively new features have to wait for the next generation of APIs.
So, we may say that the Direct X API changes more or less step in step with the new
graphics hardware generations, while OpenGL evolves continuously, first on pro-
prietary and subsequently on ARB paths. Currently, OpenGL is undergoing its first
major revision since 1992, from the 1.x versions to version 2.0 [24] in an attempt to
include many of the already well-established and new extensions into the core and
prepare the API for future developments.

3.5.2 Graphics Pipeline

The Graphics Processor Unit (GPU), the central computational chip on a graphics
card, may be seen as a restricted form of a stream processor (see Section 3.1.2). Via a
set of commands, a particular state of the graphics pipeline in the GPU is configured
and then data streams are sent through that pipeline. The output stream is visualized
on the screen or resent through the pipeline after a possible reconfiguration. Although
graphics cards have not, in the past, been seen in this context, current developments
show a clear tendency towards the production of a general parallel computing device.

A schematic view of the graphics pipeline is presented in Figure 3.5. The abstrac-
tion omits some details but offers a clear perspective on the available functionality.

3 Graphics Processor Units: New Prospects for Parallel Computing 123

vertex
data

vertex
data

data

primitives

values

textures

values fragments

frame
buffer

fragments fragments fragments

Fig. 3.5. A diagram of the graphics pipeline. Light gray represents data containers, dark gray
processing units. The emphasized VP and FP are the units that evolved most in the graphics
pipeline over the years, up to the stage where they accept freely programmable shader pro-
grams as configurations. Actually, the names VP and FP refer only to the new programmable
pipeline stages, but the older functionality was located in the same place.

The thick arrow from the textures to the FP represents the largest data streams in the pipeline.
Accordingly, the FP consumes the majority of resources in a GPU. The access to textures from
the VP is a recent feature, as is the upcoming full interchangeability of the data containers in
the pipeline, which allows a 2D data array to serve as an array of vertex data, a texture, or a
destination buffer within the frame-buffer.

The logical pipeline has remained basically the same during the evolution of graphics
hardware and changes can be identified by the increased flexibility and functionality
of the individual components. Let us describe the operational tasks of the individual
components:

o Vertex data
We need an array that defines the geometry of the objects to be rendered. Beside
the vertex coordinates, the vertex data may also contain color, normal and tex-
ture coordinate information (and a few more parameters). Although the data may
be specified with one to four components, both coordinates (XYZW) and colors
(RGBA) are internally always processed as 4-vectors. During the evolution of
graphics hardware, it was principally the choices for the places where the vertex
data can be stored (cacheable, AGP or video memory) and the efficiency of han-
dling that data that increased. Modern VBOs allow us to specify the intended use
and let the graphics driver decide which type of memory is ideally suited for the
given purpose.

e Vertex Processor (VP)
The VP manipulates the data associated with each vertex individually. Over the

124

M. Rumpf and R. Strzodka

years, the number of possible operations has increased dramatically. In the begin-
ning, only multiplications with predefined matrices could be performed. Nowa-
days, the VP runs shader programs on the vertex data and the new generation has
a restricted texture access from the VP. However, each vertex is still processed
individually without any implicit knowledge about the preceding or succeeding
vertices.

Vertex tests

Vertex tests determine the further processing of geometric primitives on the ver-
tex level. They include mainly back-face culling, which eliminates polygons fac-
ing backwards (if the object is opaque one cannot see its back) and clipping,
which determines the visible 3D space with an intersection of several 3D half
spaces, defined by clipping planes. The vertex tests are still controlled by pa-
rameters and there have been only quantitative improvements in the number of
clipping planes over time.

Primitive assembly, rasterizer

The geometric primitives that can be rendered are points, line segments, trian-
gles, quads and polygons. Each vertex is processed individually and the clipping
of primitives may introduce new vertices such that primitives have to be reassem-
bled before rasterization. In addition, for simplicity, the rasterizer in many graph-
ics architectures operates exclusively on triangles, so other primitives must be
converted into a set of triangles before processing. Given a triangle and the ver-
tex data associated with each of its vertices, the rasterizer interpolates the data
for all the pixels inside the triangle. The resulting data associated with a pixel po-
sition is called a fragment. The rasterization could be controlled with parameters,
for example defining patterns for lines or the interior of objects.

Textures

Textures are user-defined 1D to 4D (typically 2D) data arrangements stored in the
video memory of the graphics card. Their elements, which can have up to four
components (RGBA), are called texels. In general, the dimensions of all textures
had to be powers of 2, but now there exists a general extension for textures with
other dimensions.

Input images of a problem are usually represented as textures on the graphics
card and their values are processed by the FP and fragment blending. Over the
years, quantitative improvements of textures have included their maximal num-
ber, their maximal size and the precision of the used fixed-point number format.
Qualitative improvements are the support of various dimensionalities, the differ-
ent access modes, the floating-point number format, and flexibility in the creation
and reuse of texture data in different contexts. From the modern point of view,
textures represent just a special use of data arrays that can serve as input to the FP
(texture mode), as the destination for the output stream of the graphics pipeline
(output mode), or even as an array defining vertex data (vertex mode).

Fragment Processor (FP)

The FP manipulates the individual fragments. Similarly to the way in which ver-
tices are processed, each fragment is processed independently of the others in the

3 Graphics Processor Units: New Prospects for Parallel Computing 125

same data stream. With the interpolated texture coordinates, the FP can access ad-
ditional data from textures. The functionality of the FP has improved enormously
over the years. In a qualitative sense, the range of available access modes of tex-
ture data and operations on these values in the FP has grown rapidly, culminating
in a FP controlled by assembly or high-level code with access to arbitrary texture
positions and a rich set of mathematical and control operations. In a quantitative
sense, the number of accessible textures and the number of admissible fragment
operations has increased significantly.

Frame-buffer

The frame-buffer is the 2D destination of the output data stream. It contains dif-
ferent buffers of the same dimensions for the color, depth and stencil (and accu-
mulation) values. Not all buffers need to be present at once. In addition, while
each buffer allows certain data formats, some combinations may not be available.
There exists at least one color buffer, but typically there is a front buffer, which
contains the scene displayed on the screen, and a back buffer, where the scene
is built up. Over the years, it has mainly been the maximal size, the number and
the precision of the buffers that has increased. A recent development, already
sketched in the discussion of textures, regards the frame-buffer as an abstract
frame for a collection of equally-sized 2D data arrays. After rendering, the same
2D data arrays may be used as textures or vertex data.

Fragment tests

Equivalent to the vertex tests for vertices, the fragment tests determine whether
the current fragment should be processed further or discarded. However, the frag-
ment tests are more numerous and powerful than the vertex tests and some of
them allow a comparison against the values stored at the associated pixel position
of the fragment in the depth or stencil buffer, and also a restricted manipulation
of these values, depending on the outcome of the tests. Because they access the
frame-buffer directly their functionality cannot be realized in one pass, even in
the newest FP.

Fragment blending

Before the FP became a powerful computational resource, computations were
mainly performed by different blending modes. The blending operation combines
the color value of the fragment with the color value in the color buffer, controlled
by weighting factors and the blending mode. For instance, the blending operation
can be a convex combination of the values using a certain weight. Blending has
become less popular in recent years, because on most GPUs it has not supported
the higher precision number formats, while the much more powerful FP does.
However, currently, support for higher precision blending is increasing again.
The advantage of blending is the direct access to the destination value in the
frame-buffer, which is not supported by the FP on most GPUs.

The blending modes are continuous functions of the input values. In addition,
logical operations can be performed at the end of the pipeline, but these are

126 M. Rumpf and R. Strzodka

seldom used, because they have received no hardware support from the manu-
facturers of GPU.

As outlined in Section 3.1.3, for general purpose computations the FP is the most
relevant part of the pipeline. The VP can be often used to reduce the workload of
the FP by precomputing data that depends bilinearly on the vertex data across the
domain, e.g. positions of node neighbors in a regular grid. The vertex and fragment
tests are useful for masking out certain regions of the computational domain for spe-
cial treatment and fragment blending can be used for a fast and simple combination
of the output value with the destination value, e.g. accumulation.

3.5.3 Classification

Because of the almost synchronous evolution of the Direct X API and the generations
of graphics hardware in recent years, it is easiest to classify GPUs according to the
highest version of Direc tX that they support. In fact, it is only the Direct3D API that
concerns us, but Microsoft releases the different APIs in a bundle, so it is usually
the version of the whole release that is referred to. From Direct X 8 on, it is possible
to differentiate the versions further by the functionality of the Vertex Shaders (VSs),
which configure the VP, and the Pixel Shaders (PSs), which configure the FP. This
Direct X (DX), VS, PS classification is useful, even if the OpenGL API is used for the
implementation, because in contrast to Direct X, OpenGL evolves continuously with
the introduction of individual extensions. In what follows, we provide an overview of
the recent graphics hardware generations and list some typical representatives. The
paragraphs point out the main functionality associated with the VS1 to VS3 and PS1
to PS3 shader models.

e Direct X 8 (VS1, PS1) GPUs, 2001-2002,
e.g. 3DLabs Wildcat VP, Matrox Parhelia 512 (VS2, PS1), NVIDIA GeForce 3/4, ATI
Radeon 8500.
These GPUs introduced programmability to the graphics pipeline, i.e. assembly
programs for the VP and highly restricted programs for the FP. However, the
number formats were still restricted to low-precision fixed-point number systems.
e Direct X 9 (VS2, PS2) GPUs, 2002-2004,
e.g. S3 DeltaChrome S8, XGI Volari Duo V8, NVIDIA GeForceFX 5800/5900, ATI
Radeon 9700/9800.
Direct X 9 is the current standard. With these GPUs, floating-point number
formats appear. The programmability of the VP gains function calls, dynamic
branching and looping. The PS2 model finally allows freely programmable code
for the FP. High-level languages (HLSL, GLSL, Cg) facilitate the programming
of the VP and FP.
e Direct X 9+ (VS2-VS3, PS2-PS3) GPUs, 2004,
e.g. 3DLabs Wildcat Realizm (VS2, PS3), NVIDIA GeForce 6800 (VS3, PS3), ATI
Radeon X800 (VS2, PS2).
In the VS3 model, the VP gains additional functionality in the form of restricted

3 Graphics Processor Units: New Prospects for Parallel Computing 127

Table 3.2. The number of supported instructions in the VP and FP for the different shader
models.

VS1 | VS2+loops | VS3+loops || PS1 PS2 PS3 WGF
128 256 512-32768 || 8-14 | 96-512 | 512-32768 || unlimited

texture access and more functionality for register indexing. The PS3 FP now also
supports the features of function calls and restricted forms of dynamic branching,
looping and variable indexing of texture coordinates.
e WGF 2, 20067

The next Windows generation (Longhorn [22]) will contain a new Windows spe-
cific graphics interface labeled WGF. The main expected features are a unified
shader model, resource virtualization, better handling of state changes, and a gen-
eral IO model for data streams. Future GPU generations will probably support
all these features in hardware. See Section 3.4.1 for a more detailed discussion.

The number of supported instructions in the VP and FP for the different shader
models is given in Table 3.2.

This classification shows a clear tendency of GPUs to be developing in the direc-
tion of a general parallel computing device. Clearly, the WGF functionality will of-
fer more flexibility than the current APIs, but this should not deter the reader from
working with the current standard Direct X 9 (VS2, PS2), because it is expected to
be the baseline functionality for many years to come.

3.5.4 Programming Languages

With the advent of a fully programmable pipeline in Direct X 9, three high-level
languages for the programming of shaders, i.e. VP and FP configurations, appeared.
The differences between them are fairly small and stem from the underlying graphics
Application Programming Interface (API).

e Direct X - HLSL
msdn.microsoft.com/library/default.asp?url=/library/
en-us/directx9_c/directx/graphics/ProgrammingGuide/
ProgrammablePipeline/HLSL/ProgrammableHLSLShaders.asp
The HLSL is used to define shaders for the VP and FP under Direct X. Usually,
the shaders are configured directly with the high-level code, but the compiler
can also be instructed to output the generated assembly code as vertex or pixel
shaders. If desired, the assembly code can be changed or written from scratch,
but this option will probably disappear in the future.

e OpenGL - GLSL
www . opengl.org/documentation/oglsl.html
In GLSL, shaders are defined for the VP and FP under OpenGL. Different exten-
sions also allow the use of assembly code for the configuration. There exist ARB

128 M. Rumpf and R. Strzodka

extensions, which cover the common set of functionality among the different
GPUs, and proprietary extensions, which expose additional features. However,
the direct use of assembly code has become uncommon, because the GLSL com-
piler embedded in the graphics driver offers automatic optimization towards the
specific GPU in use.

e Direct X, OpenGL - Cg
developer.nvidia.com/page/cg.main.html
Cg follows the same idea as HLSL and GLSL; namely, to allow high-level con-
figuration of the VP and FP. However, Cg as such is independent of the particular
graphics API used. The compiler can generate code for different hardware pro-
files. The profiles comprise different versions of the vertex and pixel shaders
under Direct X and different versions of the vertex and fragment shaders under
OpenGL. So, plugging the generated assembly code into the appropriate API
slots establishes the desired configuration. To hide this intermediate layer, the Cg
Toolkit also provides an API that accepts Cg code directly. To the programmer,
it looks as though Direct X and OpenGL have a native Cg interface, just as they
have a HLSL or GLSL one, respectively.

As the languages are very similar, the reader may wonder why there is any differ-
ence between them at all. They differ because the languages were not released at
the same time and, more importantly, a smoother integration into the existing APIs
was desired. Clearly, a common interface would have been nicer, since even slightly
different syntax disturbs the work flow. It is to be hoped that there will be more stan-
dardization in the future. In the meantime, we encourage the reader to be pragmatic
about the choice of languages and other resources (see Section 3.3.6).

In Section 3.1.3 we saw that the coding of the shaders is only one part of the
work. In addition, the pipeline with the shaders and textures must be configured, and
the geometry to be rendered must be defined. Hence, more information is needed to
obtain the same result from the same shader. The Direct X FX and the Cg FX for
Direct X and OpenGL formats allow this additional information to be stored. Appro-
priate API calls set up the entire environment to implement the desired functionality.
These formats can also include alternative implementations for the same operation,
e.g. to account for different hardware functionality. The only problem with these
convenient tools is that in a foolproof solution, unnecessarily many state calls may
be provided, even though the required changes from one operation to another are
minimal.

A more general approach to GPU programming is to use stream languages that
are not targeted directly at the VP and FP but, rather, at the underlying data-stream-
based (DSB) processing concept. A compiler generates machine-independent inter-
mediate code from the stream program. Then, back-ends for different hardware plat-
forms map this code to the available functionality and interfaces. This generality is
very attractive, but it does not mean that the stream program can be written without
any consideration of the chosen hardware platform. Some language features might be
difficult to realize on certain hardware and would lead to a significant performance
loss. In these cases, less optimal solutions that avoid these features must be chosen.

3 Graphics Processor Units: New Prospects for Parallel Computing 129

Using code that is more hardware-specific clearly delivers better performance, but
nobody opts for coding everything on the lowest level. Hence, offering a trade-off
between performance and abstraction to the programmer makes sense. We sketch
two prominent stream languages with a focus on GPUs.

e Sh - University of Waterloo
libsh.org
Sh uses the C++ language for the meta-programming of stream code. This has
the advantage that the C++ language features are immediately available and the
compiler does the necessary analysis and code processing. In addition, it ad-
dresses the above-mentioned problem of the specification of an appropriate ac-
companying graphics environment to the shaders. Sh allows a direct interaction
of shader definition with texture and state configuration. With a fast compilation
process, dynamic manipulation of the stream code is feasible. Another advantage
of working within the familiar C++ environment is the potential for incremental
introduction of GPU usage into suitable existing software. We say suitable, be-
cause the processing of many of the general methods of organizing data, such as
trees, lists or even stacks, are difficult to accelerate on GPUs. Current back-ends
support GPUs under OpenGL and different CPUs.

e Brook - Stanford University
www.graphics.stanford.edu/projects/brookgpu
The Brook language is based on the concepts of streams and kernels. It is an
abstraction of the data streams and shaders of GPUs. This abstraction frees us
from the entire consideration of texture handling and geometry processing. In
particular, it breaks the emphasis on rendering passes. The focus is on the ac-
tual data and its processing. Hardware virtualization also overcomes the limits
that the graphics API places on the number of bound textures, their sizes and
types of manipulation. However, for the generation of efficient code, program-
mers must be aware of which features map well to the hardware and which re-
quire costly workarounds. The richer feature set is well-suited for the develop-
ment and simulation of programs that assume additional hardware functionality
in future GPUs. Current back-ends support GPUs under Direct X and OpenGL,
and different CPUs.

The code examples in this chapter use the OpenGL API and the Cg language. For
someone new to graphics programming, the use of the stream languages, which al-
ready include a lot of abstraction, would make the examples look simpler. We have
chosen a medium level of abstraction to illustrate how efficient programming de-
pends on the hardware characteristics of GPUs. This understanding is equally impor-
tant for the more abstract approaches to GPU programming, because the abstraction
does not free the programmer from considering the hardware characteristics during
the implementation. Similarly, the abstraction offered by MPI for parallel computers
presumes implicit knowledge about the architecture and its functionality. Neverthe-
less, the higher abstraction is very attractive, because the stream languages preserve
the main performance characteristics of GPUs by construction. In practice, the type

130 M. Rumpf and R. Strzodka

of problem still determines whether it really is possible to obtain an efficient imple-
mentation on the high level. However, the stream languages are under active devel-
opment and are extending their ’domain of efficiency’ continuously. We recommend
that the reader follow the links provided above for the download of the language
libraries and detailed documentation.

Acronyms

AGP Accelerated Graphics Port

API Application Programming Interface
ARB Architectural Review Board

Cg C for graphics (high-level language)
CPU Central Processor Unit

DDR Double Data Rate (memory)

DSB data-stream-based

DX Direct X

FP Fragment Processor

GLSL OpenGL Shading Language

GPU Graphics Processor Unit

GUI Graphics User Interface

HLSL Direct X High-Level Shading Language
IDE Integrated Development Environment
ISB instruction-stream-based

MIMD Multiple Instruction Multiple Data
MPI Message Passing Interface

MRT Multiple Render Target

PBO Pixel Buffer Object

PCI Peripheral Component Interconnect
PCle PCI Express

PDE partial differential equation

PE processing element

PS Pixel Shader

SDK Software Development Kit

SIMD Single Instruction Multiple Data
VBO Vertex Buffer Object

VP Vertex Processor

VS Vertex Shader

WGF Windows Graphics Foundation

3 Graphics Processor Units: New Prospects for Parallel Computing 131

References

10.

11.

17.

18.

19.

. Alienware. Alienware’s Video Array.

http://www.alienware.com/alx pages/main_content.aspx.

. C. Bajaj, I. Ihm, J. Min, and J. Oh. SIMD optimization of linear expressions for program-

mable graphics hardware. Computer Graphics Forum, 23(4), Dec 2004.

. J. Bolz, 1. Farmer, E. Grinspun, and P. Schréder. Sparse matrix solvers on the GPU:

Conjugate gradients and multigrid. In Proceedings of SIGGRAPH 2003, 2003.

. G. Coombe, M. J. Harris, and A. Lastra. Radiosity on graphics hardware. In Proceedings

Graphics Interface 2004, 2004.

. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for high performance

computing. In Proceedings of the ACM/IEEE SuperComputing 2004 (SC’04), Nov 2004.

. K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of GPU algo-

rithms for matrix-matrix multiplication. In Graphics Hardware 2004, 2004.

. R. Fernando, editor. GPU Gems: Programming Techniques, Tips, and Tricks for Real-

Time Graphics. Addison-Wesley Professional, 2004.

. J. Fung and S. Mann. Using multiple graphics cards as a general purpose parallel com-

puter : Applications to computer vision. In Proceedings of the 17th International Confer-
ence on Pattern Recognition (ICPR 2004), volume 1, pages 805-808, 2004.

. N. K. Govindaraju, A. Sud, S.-E. Yoon, and D. Manocha. Interactive visibility culling

in complex environments using occlusion-switches. In ACM SIGGRAPH Symposium on
Interactive 3D Graphics, 2003.

GPGPU - general purpose computation using graphics hardware.
http://www.gpgpu.org/.

M. Harris. Real-Time Cloud Simulation and Rendering. PhD thesis, UNC Chapel Hill,
Sep. 2003.

. M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-based visual simula-

tion on graphics hardware. In Proceedings of Graphics Hardware 2002, pages 109-118,
2002.

. R. Hartenstein. Data-stream-based computing: Models and architectural resources. In

International Conference on Microelectronics, Devices and Materials (MIDEM 2003),
Ptuj, Slovenia, Oct. 2003.

. R. Hill, J. Fung, and S. Mann. Reality window manager: A user interface for mediated

reality. In Proceedings of the 2004 IEEE International Conference on Image Processing
(ICIP 2004), 2004.

. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T.

Klosowski. Chromium: a stream-processing framework for interactive rendering on clus-
ters. In SIGGRAPH 02, pages 693-702, 2002.

. R. A. Kendall, M. Sosonkina, W. D. Gropp, R. W. Numrich, and T. Sterling. Parallel

programming models applicable to cluster computing and beyond. In A. M. Bruaset and
A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel Com-
puters, volume 51 of Lecture Notes in Computational Science and Engineering, pages
3-54. Springer-Verlag, 2005.

T. Kim and M. Lin. Visual simulation of ice crystal growth. In Proc. ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 2003.

P. Kipfer, M. Segal, and R. Westermann. UberFlow: A GPU-based particle engine. In
Graphics Hardware 2004, 2004.

J. Krueger and R. Westermann. Linear algebra operators for GPU implementation of
numerical algorithms. ACM Transactions on Graphics (TOG), 22(3):908-916, 2003.

132

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

M. Rumpf and R. Strzodka

A. Lefohn, J. Kniss, C. Handen, and R. Whitaker. Interactive visualization and deforma-
tion of level set surfaces using graphics hardware. In Proc. Visualization, pages 73-82.
IEEE CS Press, 2003.

W. Li, X. Wei, and A. Kaufman. Implementing Lattice Boltzmann computation on graph-
ics hardware. The Visual Computer, 2003.

Microsoft. Longhorn Developer Center.
http://msdn.microsoft.com/longhorn.

NVIDIA. NVIDIA scalable link interface (SLI). http://www.nvidia.com/page/
sli.html.

OpenGL Architectural Review Board (ARB). OpenGL: graphics application program-
ming interface. http://www.opengl.org/.

M. Pharr and R. Fernando, editors. GPU Gems 2 : Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley Profes-
sional, 2005.

M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware. In Proceedings
ICIP’01, volume 3, pages 11031106, 2001.

M. Rumpf and R. Strzodka. Using graphics cards for quantized FEM computations. In
Proceedings VIIP’01, pages 193-202, 2001.

R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-first and sort-last parallel
rendering with a cluster of PCs. In Proceedings of SIGGRAPH/Eurographics Workshop
on Graphics Hardware 2000, pages 97-108, 2000.

R. Strzodka, M. Droske, and M. Rumpf. Image registration by a regularized gradient flow
- a streaming implementation in DX9 graphics hardware. Computing, 2004. to appear.
R. Strzodka and A. Telea. Generalized distance transforms and skeletons in graphics
hardware. In Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym 04,
2004.

J. D. Teresco, K. D. Devine, and J. E. Flaherty. Partitioning and dynamic load balanc-
ing for the numerical solution of partial differential equations. In A. M. Bruaset and
A. Tveito, editors, Numerical Solution of Partial Differential Equations on Parallel Com-
puters, volume 51 of Lecture Notes in Computational Science and Engineering, pages
55-88. Springer-Verlag, 2005.

M. Wilkes. The memory gap (keynote). In Solving the Memory Wall Problem Workshop,
2000. http://www.ece.neu.edu/conf/wall2k/wilkesl.pdf.

Part I1

Parallel Algorithms

4

Domain Decomposition Techniques

Luca Formaggial, Marzio Sala?, and Fausto Saleri®

1 MOX, Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Italy
[luca.formaggia, fausto.saleri]@polimi.it

2 Sandia National Laboratories, Albuquerque, USA
msala@sandia.gov

Summary. We introduce some parallel domain decomposition preconditioners for iterative
solution of sparse linear systems like those arising from the approximation of partial differ-
ential equations by finite elements or finite volumes. We first give an overview of algebraic
domain decomposition techniques. We then introduce a preconditioner based on a multilevel
approximate Schur complement system. Then we present a Schwarz-based preconditioner
augmented by an algebraic coarse correction operator. Being the definition of a coarse grid
a difficult task on unstructured meshes, we propose a general framework to build a coarse
operator by using an agglomeration procedure that operates directly on the matrix entries. Nu-
merical results are presented aimed at assessing and comparing the effectiveness of the two
methodologies. The main application will concern computational fluid dynamics (CFD), and
in particular the simulation of compressible flow around aeronautical configurations.

4.1 Introduction

Modern supercomputers are often organized as a distributed environment and an effi-
cient solver for partial differential equations (PDEs) should exploit this architectural
framework. Domain decomposition (DD) techniques are a natural setting to imple-
ment existing single processor algorithm in a parallel context.

The basic idea, as the name goes, is to decompose the original computational do-
main {2 into subdomains §2;,7 = 1,M, which may or may not overlap, and then
rewrite the global problem as a “sum” of contributions coming from each subdomain,
which may be computed in parallel. Parallel computing is achieved by distributing
the subdomain to the available processors; often, the number of subdomains equals
the number of processors, even if this is not, in general, a requirement. Clearly one
cannot achieve a perfect (ideal) parallelism, since interface conditions between sub-
domains are necessary to recover the original problem, which introduce the need of
inter-processor communications. The concept of parallel efficiency is clearly stated
for the case of homogeneous systems (see [13]). An important concept is that of scal-
ability: an algorithm is scalable if its performance is proportional to the number of
processor employed. For the definition to make sense we should keep the processor

136 L. Formaggia et al.

workload approximately constant, so the problem size has to grow proportionally to
the number of processor.

This definition is only qualitative and indeed there is not a quantitative defini-
tion of scalability which is universally accepted, and a number of scalability models
proposed in the last years [14]. They are typically based on the selection of a mea-
sure which is used to characterize the performance of the algorithm, see for instance
[22, 23, 11]. We may consider the algorithm scalable if the ratio between the perfor-
mance measure and the number of processors is sub-linear. In fact, the ideal value
of this ratio would be 1. Yet, since this ideal value cannot be reached in practice, a
certain degradation should be tolerated.

Typical quantities that have been proposed to measure system performance in-
clude CPU time, latency time, memory, etc. From the user point of view, global
execution time is probably the most relevant measure. A possible definition is the
following. If E(s, N) indicates the execution time for a problem of size s when
using [N processor on a given algorithm, then the scalability from N to M > N
processors is given by
E(M~y, M)

E(Nv,N)’
where 7 is the size of the problem on a single processor.

A few factors may determine the loss of scalability of a parallel code: the cost
of inter-processor communication; the portion of code that has to be performed in
a scalar fashion, may be replicated on each processor (for instance i/o if your hard-
ware does not support parallel i/0). A third factor is related to a possible degradation
of the parallel algorithm as the number of subdomain increases. In this work we
will address exclusively the latter aspect, the analysis of the other two being highly
dependent on the hardware. In particular, since we will be concerned with the so-
lution of linear systems by parallel iterative schemes, the condition number of the
parallel solver [17] is the most important measure related to the algorithm scalability
properties. In this context, the algorithm is scalable if the condition number remains
(approximately) constant as the ratio between problem size and number of subdo-
mains is kept constant. In a domain decomposition method applied to the solution
of PDE’s (by finite volumes or finite elements) in R this ratio is proportional to
(H/h)%, being H and h the subdomain and mesh linear dimension, respectively. We
are assuming a partition with subdomains of (approximately) the same size and a
quasi-uniform mesh.

Domain decomposition methods may be classified into two main groups [17, 21].
The first includes methods that operate on the differential problem, we will call them
differential domain decomposition methods. Here, a differential problem equivalent
to the single domain one is written on the decomposed domain. Conditions at the
interface between subdomains are recast as boundary conditions for local differen-
tial problems on each (2;. Then, the discretisation process is carried out on each
subdomain independently (even by using different discretisation methods, if this is
considered appropriate).

The second group includes the DD techniques that operates at the algebraic level.
In this case the discretisation is performed (at least formally) on the original, single

SN =

4 Domain Decomposition Techniques 137

domain, problem and the decomposition process is applied on the resulting algebraic
system. The latter technique has the advantage of being “problem independent” and
may often be interpreted as a preconditioner of the global solver. The former, how-
ever, may better exploit the characteristics of the differential problem to hand and
allows to treat problems of heterogeneous type more naturally. We refer to the rele-
vant chapter in [17] for more insights on heterogeneous DD techniques.

In this chapter, we deal with DD schemes of algebraic type. In particular, we
address methods suited to general problems, capable of operating on unstructured
mesh based discretisations. For a more general overview of the DD method the reader
may refer to the already cited literature, the review paper [5] and the recent mono-
graph [25].

We will focus on domain decomposition techniques that can be applied to the
numerical solution of PDEs on complex, possibly three dimensional, domains. We
will also consider discretisations by finite element or finite volume techniques, on
unstructured meshes. The final result of the discretisation procedure is eventually a
large, sparse linear system of the type

Au=f, A.1)

where A € R"*" is a sparse and often non-symmetric and ill conditioned real ma-
trix. Indeed, also non-linear problems are usually treated by an iterative procedure
(e.g. a Newton iteration) that leads to the solution of a linear system at each iteration.
This is the case, for instance, of implicit time-advancing schemes for computational
fluid dynamics (CFD) problems.

The decomposition of the domain will induce a corresponding block decompo-
sition of the matrix A and of the vector f. This decomposition may be exploited to
derive special parallel solution procedures, or parallel preconditioners for iterative
schemes for the solution of system (4.1). Perhaps the simplest preconditioner is ob-
tained using a block-Jacobi procedure, where each block is allocated to a processor
and is possibly approximated by an incomplete factorization [18] (since usually an
exact factorization is too expensive). This approach may work well for simple prob-
lems, yet its performance degrades rapidly as the size of the matrix increases, lead-
ing to poor scalability properties. Other popular techniques are the Schwarz methods
with a coarse grid correction [2] and the preconditioners based on the Schur com-
plement system, like the balancing Neumann/Neumann [24], the FETI [10, 25] and
the wire-basket method [1, 21]. In this work we will address preconditioners based
either on an approximate Schur complement (SC) system or on Schwarz techniques,
because of their generality and relatively simple implementation.

Schwarz iterations is surely one of the DD based parallel preconditioner with
the simplest structure. In its basic form, it is equivalent to a block-Jacobi precon-
ditioner, where each block is identified by the set of unknowns contained in each
subdomain. In order to improve the performance of Schwarz iterations, the parti-
tions of the original domain are extended, so that they overlap and the overlapping
region acts as means of communication among the subdomains. In practice, the do-
main subdivision is commonly carried out at discrete level, that is by partitioning

138 L. Formaggia et al.

the computational mesh. In the minimal overlap version of the Schwarz method the
overlap between subdomains is reduced to a single layer of elements. Although a
bigger overlap may improve convergence, a minimal overlap allows to use the same
data structure normally used for the parallel matrix-vector multiplication, thus saving
memory. However, the scalability is scarce and a possible cure consists in augment-
ing the preconditioner by a coarse operator, either in an additive or in a multiplicative
fashion [21] . The coarse operator may be formed by discretising the problem to hand
on a much coarser mesh. The conditions by which a coarse mesh is admissible and is
able to provide an appropriate coarse operator have been investigated in [3]. Another
possible way to construct the coarse operator is to form a reduced matrix by resort-
ing to a purely algebraic procedure [28, 20]. We will here describe a rather general
setting for the construction of the coarse operator.

The set up of the Schur complement system in a parallel setting is only slightly
more involved. The major issue here is the need of preconditioning the Schur comple-
ment system in order to avoid the degradation of the condition number as the number
of subdomain increases. We will here present a technique to build preconditioners for
the Schur complement system starting from a preconditioner of the original problem.

The chapter is organized as follows. Schur complement methods are introduced
in Sections 4.2 and 4.3. Schwarz methods are detailed in Section 4.4. Numerical re-
sults for a model problem and for the solution of the compressible Euler equations are
presented in Section 4.5. Section 4.6 gives some further remarks on the techniques
that have been presented.

4.2 The Schur Complement System

Let us consider again (4.1) which we suppose has been derived by a finite element
discretisation of a differential problem posed on a domain £2 C R?, d = 2, 3. Indeed,
the considerations of this Section may be extended to other type of discretisations as
well, for instance finite volumes, yet we will here focus on a finite element setting.
More precisely, we can think of (4.1) as being the algebraic counterpart of a varia-
tional boundary value problem which reads: find u; € V}, such that

a (up,vn) = (f,vn) Yoy € Vi, 4.2)

where V}, is a finite element space, a the bilinear form associated to the differential
problem to hand and (f,v) = [, o fvd(2is the standard L? product.

We consider a decomposition of the domain {2 made in the following way. We
first triangulate (2 and indicate by Th(m the corresponding mesh. For the sake of
simplicity we assume that the boundary of (2 coincides with the boundary of the
triangulation and we consider the case where the degrees of freedom of the discrete
problem are located at mesh vertices, like in linear finite elements. In particular, a
partition into two subdomains is carried out by splitting ’Z}l(m into 3 parts, namely
T, 1 and 10 such that 7,7V U 7, U 12 = 7,1 We may associate
to 7" and 7,*) the two disjoint subdomains 2(!) and 2(2) formed by the interior

4 Domain Decomposition Techniques 139

{ f u,z:
(1.2) r

Q4 r Q1

Fig. 4.1. Example of element-oriented (left) and vertex-oriented (right) decomposition.

of the union of the elements of Th(l) and 7;1(2) respectively, while '(1:2) = (21 jg
clearly equal to 2\ (21 U (),
Two notable cases are normally faced, namely

e I'(12) reduces to a finite number of disjoint measurable d — 1 manifolds. An
example of this situation is illustrated in the left drawing of Figure 4.1, where

r@2 — oM an? e 12 s the common part of the boundary of 2(!) and
) This type of decomposition is called element oriented (EO) decomposition,

because each element of 7, belongs exclusively to one of the subdomains ﬁ(l),
while the vertices laying on I"":?) are shared between the subdomains triangula-
tions.

o I'™2) < R? d = 2,3 is formed by one layer of elements of the original mesh
laying between £2(1) and 2(®). In Figure 4.1, right, we show an example of such

a decomposition, which is called vertex oriented (VO), because each vertex of

the original mesh belongs to just one of the two subdomains ﬁ(z). We may also

recognize two extended, overlapping, sub-domains: QW = W Yy a2 and
) =)y (2 We have here the minimal overlap possible. Thicker over-
laps may be obtained by adding more layers of elements to I"(1:2),

Both decompositions may be readily extended to any number of subdomains, as
shown in Figure 4.2.

The choice of a VO or EO decomposition largely affects the data structures used
by the parallel code. Sometimes, the VO approach is preferred since the transition
region I"(1:2) may be replicated on the processors which holds 2") and 2(?) re-
spectively and provides a natural means of data communication among processor
which also allow to implement a parallel matrix-vector product. Furthermore, the lo-
cal matrices may be derived directly from the global matrix A, with no work needed
at the level of the (problem dependent) assembly process. For this reason the VO
technique is also the matter of choice of many parallel linear algebra packages. We
just note that for the sake of simplicity, in this work we are assuming that the graph
of the matrix A coincides with the computational mesh (which is the case of a linear
finite element approximation of a scalar problem). This means that if the element
a;; of the matrix is different from zero, then the vertices v; and v; of the computa-
tional mesh are connected by an edge. However, the techniques here proposed may
be generalized quite easily to more general situations.

140 L. Formaggia et al.

! ' AAVNAVAV AW ViV VAV
T g

K]
aVAY A\
PO

s

VA

0 oot K
5
02 02 K
: T
i, 2 KD]
- ‘ G SRS
I i ¥
o -)
o o N
AN/]
SRt
-08 ~os| NAVA AVAVAVAVR LvaTy
RSSO
PN
" g
V)
. . VAVAVAVANVAVAY
: = 05 ; E =% 05 ;

o [
X Axis X Axis

Fig. 4.2. Example of element-oriented (left) and vertex-oriented (right) decomposition in the
case of a partition of {2 into several subdomains. (For the color version, see Figure A.5 on
page 469).

We now introduce some additional notations. The nodes at the intersection be-

tween subdomains and I"(12) are called border nodes. More precisely, those in
'Z;l(i) N I'12) are the border nodes of the domain 2(*). A node of Th(i) which is
not a border node is said to be internal to 2" i = 1,2. We will consistently use
the subscripts I and B to indicate internal and border nodes, respectively, while the
superscript () will denote the subdomain we are referring to. Thus, ugl) will indicate
the vector of unknowns associated to nodes internal to Q(i), while ug) is associated
to the border nodes. For ease of notation, in the following we will often avoid to
make a distinction between a domain (2 and its triangulation 75, whenever it does not

introduce any ambiguity.

4.2.1 Schur Complement System for EO Domain Decompositions

Let us consider again the left picture of Figure 4.1. For the sake of simplicity, we

assume that the vector u is such that the unknowns associated to the points u(ll)

internal to 2 are numbered first, followed by those internal to N3 (u(IQ)), and
finally by those on I'%?) (up = ug) = ug)) (obviously this situation can always
be obtained by an appropriate numbering of the nodes). Consequently, equation (4.1)

can be written in the following block form

AW o2 A%; ult £
0 agAn |] =] (4.3)
Ay Ay At ag) \un) \fa

Here, A?I) contains the elements of A involving the nodes internal to subdomain
2 while the elements in A% are formed by the contribution of the boundary
nodes to the rows associated to the internal ones. Conversely, in Ag)l we have the
terms that link border nodes with internal ones (for a symmetric matrix Ag)l =

4 Domain Decomposition Techniques 141

T
A%). Finally, Agp = Agfg + A(sz)B is the block that involves only border nodes,
which can be split into two parts, each built from the contribution coming from the
corresponding subdomain. For instance, in a finite element procedure we will have

[Ag)f;]k’j = a(Pr|nw, djlow), 4.4

where ¢y, ¢; are the finite element shape functions associated to border nodes & and
4, respectively, restricted to the subdomain £2(*) and « is the bilinear form associated
to the differential problem under consideration. An analogous splitting involves the
right hand side fp = fg) + fg).

A formal LU factorization of (4.3) leads to

A 0 0\ (104D AN [ulV £

2 1
0 AP 0] {ora® A2 | @ [=2 |-
AV A2 1) \oo s, up fp

where S}, is the Schur complement (SC) matrix, given by S, = S ,5/1) +S }(LQ) where
i i i)T 4G
S = A — A AT Al (4.5)

is the contributions associated to the subdomain Q(i), for ¢ = 1, 2. We may note that
we can solve the system (at least formally) using the following procedure. We first
compute the border values up by solving

ShuB = g, (4.6)
where g = g(t) + g(®, with

g® =9 4D 4O g9

Then, we build the internal solutions u(Ii), for i = 1, 2, by solving the two completely
independent linear systems

Ag’}uy) = fI(’L) — A‘(,Z%UB ,1=1,2. 4.7)

The second step is perfectly parallel. Furthermore, thanks to the splitting of .S},
and g, a parallel iterative scheme for the solution of (4.6) can also be devised. How-
ever, some communications among subdomains is here required. The construction
of the matrices A%)B in (4.4) requires to operate at the level of the matrix assembly
by the finite element code. In general, there is no way to recover them from the as-
sembled matrix A. Therefore, this technique is less suited for “black box™ parallel
linear algebra packages. More details on the parallel implementation of the Schur
complement system are given in Section 4.2.3.

142 L. Formaggia et al.
4.2.2 Schur Complement System for VO Domain Decompositions

Let us consider again problem (4.1) where we now adopt a VO partition into two
subdomains like the one on the right of Figure 4.1. The matrix A can be written
again in a block form, where this time we have

A Ay 00\ ety Y

du |ABr Ay O BOD Y fu) | E) .38)
00 AR AR | (w2] |6
0 E@Y AR ARy) \ug') \fg

Here, the border nodes have been subdivided in two sets: the set B (1) of nodes of
I'(1:2) which lay on the boundary of 2() (the border nodes of £2(1)) and the anal-
ogous set B(?) of the border nodes of £2(2). Correspondingly, we have the blocks
ug) and ug) in the vector of unknowns and f ,(31) and f ,%2) in the right hand side. The
entries in F(»9) are the contribution to the equation associated to nodes in B() com-
ing from the nodes in BY). We call the nodes in B) contributing to E(*7) external
nodes of domain £2(V. _

The nodes internal to £2(*) are the nodes of the triangulation 7;1(1) whose “neigh-
bors” all belong to 2(*). In a matrix-vector product, values associated to internal
nodes may be updated without communication with the adjacent subdomains. The
update of the border nodes requires instead the knowledge of the values at the cor-
responding external nodes (which are in fact border nodes of neighboring subdo-
mains). This duplication of information lends itself to efficient implementation of
inter-processor communications.

Analogously to the previous section we can construct a Schur complement sys-
tem operating on the border nodes, obtaining

(1) (1,2) (1) (1)
Shup = 5;}5 N B)08 = (g@)) ,
E=Y Sy up g
where S ,(11) and S ,(12) are defined as in (4.5). Note, however, that now the entries in

Agg, 1 = 1,2, are equal to the corresponding entries in the original matrix A. Thus
they can be built directly from A as soon as the topology of the domain decomposi-
tion is known. _

Once we have computed the border values up, the internal solutions uy) 7 =
1, 2, are obtained by solving the following independent linear systems,

A =0 — AW i=1,2.

In Figure 4.3 we report the sparsity pattern of .Sy, in the case of a decomposition with
2 subdomains.

This procedure, like the previous one, can be generalized for an arbitrary number
of subdomains. If we have M subdomains the decomposition of system (4.8) may be
written in a compact way as

4 Domain Decomposition Techniques 143

2 4 6 8 10 12 0 5
nz=83

Fig. 4.3. Sparsity pattern for SC matrix derived from an EO decomposition (left) and a VO
one (right).

Arr Ars ur\ _(fr
(ABI ABB) (UB) B <fB> ’ (4.9)

where
1
AL) Ay B2 EGM)
11 E2D
A= ; App = : o ’
0 A ' o
II E(M,1) A(BB)
T
_ (4 42 M _ (4 42 M
A= (A0 A% ABD) A= (AG) AR L ARD)
and
T AT
w = (u)" an = (o ui")”
T T
_ (e M _ (e1 M
£ = (6. 0) £p = (k50 ... 600

For the sake of space, we have transposed some matrices. Note however that here the

transpose operator acts on the block matrix/vector, not on the blocks themselves, i.e.
T

T a a
(a b) equals to and not <bT>
The Schur complement system of problem (4.1) can now be written as Spup =

g, where

Sh:ABB_ABIA[_[lAIBa andg:fB—ABIAl_Ilfj.

144 L. Formaggia et al.

To conclude this Section, we wish to note that an EO arrangement is often the
direct result of a domain decomposition carried out at a differential level. In this
case, the Schur complement matrix may be identified as the discrete counterpart of a
particular differential operator acting on the interface I (the Steklov-Poincare oper-
ator [17]). Instead, a VO decomposition is normally the result of a purely algebraic
manipulation and in general is lacking an immediate interpretation at differential
level. Finally, the VO arrangement produces a larger number of degrees of freedom
in the resulting Schur complement system.

4.2.3 Parallel Solution of the Schur Complement System

Schur complement matrices are usually full and in large scale problems there is no
convenience in building them in an explicit way. Thus, the SC system is normally
solved by an iterative method, such as a Krylov acceleration method [26], which re-
quires only the multiplication of the matrix with a vector. To compute wp = S, v,
one may proceed as indicated in the following algorithm, where R; is the restriction
operator from the global border values v 3 to those associated to subdomain 2(*).

ALGORITHM 1: COMPUTATION OF wg = S), vp

1. Restrict v to each subdomain boundary,

v =Ryvg, i=1,...,M.

2. Forevery 20, i=1,... M solve
(), (9)
Ajjup” = AIBVB)

then compute

M
W = 3B AG O A
j=1
3. Apply the prolongation operators to get wp = Zf\il R?wg) .

In general, Steps 1 and 3 are just formal if we operate in a parallel environment
since each processor already handles the restricted vectors up () instead of the whole
vector. Note that the linear system in Step 2 must be solved with high accuracy in
order to make the Schur complement system equivalent to the original linear system
4.1).

Algorithm 1 requires four matrix-vector products and the solution of a linear
system for each subdomain. Even if carried out in parallel, the latter operation can
be rather expensive and is one of the drawbacks of a SC based method. The local
problems have to be computed with high accuracy if we want to recover an accurate
global solution.

Although (at least in the case of symmetric and positive-definite matrices) the
condition number of the Schur matrix is no larger than that of the original matrix

4 Domain Decomposition Techniques 145

Table 4.1. Convergence rate for different preconditioner of the Schur complement system
with respect to the discretisation size h and the subdomain size H, for an elliptic problem.
The constants C' (which are different for each method) are independent from h and H, yet
they may depend on the coefficients of the differential operator. The § € (0, 1] in the Vertex
Space preconditioner is the overlap fraction, see the cited reference for details.

Preconditioner|Estimation of the condition number of the pre-
conditioned Schur complement operator

P K((P)‘1Sh) < CH *(1+log(H/h))?
PBPS ((PBPS) Sk) < C(1+ log(H/h))2

Py K((Py))<C(1+10g5 ?

P;YVB K((P)) < O(1+ log(H/h))?
Py KB NSh) < O(1 + log(H/h))?

A [21, 17], nevertheless it increases when h decreases (for a fixed number of subdo-
mains), but also when H decreases (for a fixed h, i.e. for a fixed problem size). This
is a cause of loss of scalability. A larger number of subdomains imply a smaller value
of H, the consequent increase of the condition number causes in turn a degradation
of the convergence of the iterative linear solver. The problem may be alleviated by
adopting an outer preconditioner for Sy, we will give a fuller description in the next
Paragraph.

We want to note that if we solve also Step 2 with an iterative solver, a good
preconditioner must be provided also for the local problems in order to achieve a
good scalability (for more details, see for instance [21, 24]).

Preconditioners for the Schur Complement System

Many preconditioners have been proposed in the literature for the Schur comple-
ment system with the aim to obtain good scalability properties. Among them, we
briefly recall the Jacobi preconditioner P/, the Dirichlet-Neumann PN, the bal-
ancing Neumann-Neumann P,fv N:b [24], the Bramble-Pasciak P25 [1], the Vertex-
Space PV [8] and the wire-basket P}V ? preconditioner. We refer [17, 25] and to
the cited references for more details. Following [17], we summarize in Table 4.1 their
preconditioning properties with respect to the geometric parameters h and H, for an
elliptic problem (their extension to non-symmetric indefinite systems is, in general,
not straightforward). We may note that with these preconditioners the dependence on
H of the condition number becomes weaker, a part from the Jacobi preconditioner
which is rather inefficient. The most effective preconditioners are also the ones more
difficult to implement, particularly on arbitrary meshes.

Alternative and rather general ways to build a preconditioner for the SC system
exploits the identity

Syt=(01)A™! (?) 7 (4.10)

146 L. Formaggia et al.

where [is the np X np identity matrix, being np the size of Sj,. We can construct
a preconditioner Pg p.,, for Sy from any preconditioner Pgl of the original matrix

A by writing
1 (0
Pschur = (01) P (1))

If we indicate with v a vector of size np and with RB the restriction operator
on the interface variables, we can compute the operation Pg, hurV B (which is indeed
the one requested by an iterative solver) by an application of P, -, as follows

_ (0 -
PgL..ve = RpPy! (VB> = RpP,'RLvp. (4.11)

In a parallel setting, we will of course opt for a parallel Pgl, like a Schwarz-based
preconditioner of the type outlined in Section 4.4. This is indeed the choice we have
adopted to precondition the SC matrix in many examples shown in this work.

4.3 The Schur Complement System Used as a Preconditioner

Although the Schur complement matrix is better conditioned than A, its multipli-
cation with a vector is in general expensive. Indeed Step 2 of Algorithm 1 requires
the solution of M linear systems, which should be carried out to machine precision,
otherwise the iterative scheme converges slowly or may even diverge.

An alternative is to adopt a standard (parallel) iterative scheme for the global
system (4.1) and use the SC system as a preconditioner. This will permit us to op-
erate some modifications on the SC system in order to make it more computation-
ally efficient. Precisely, we may replace S;, with a suitable approximation S that is
cheaper to compute. The preconditioning matrix can then be derived as follows. We
consider again the block decomposition (4.9) and we write A as a product of two
block-triangular matrices,

A= A i 0 I A A IB
B A BI I 0 S h ’
Let us assume that we have good, yet cheaper, approximations of A7y and Sy, which
we indicate as A;; and S, respectively, a possible preconditioner for A is then

Pase — <AH 0) (I A7 AIB>
Apr I S ’
where ASC stands for Approximate Schur Complement. Indeed the approximation
AU may be used also to build S by posmg S = App — ABIAH Arp. Note that
Pagc operates on the whole system while S on the interface variables only, and that
Pasc does not need to be explicitly built, as we will show later on. A possible ap-
proximation for Ay is an incomplete LU decomposition [18],1i.e. A;; = LU , where

4 Domain Decomposition Techniques 147

L and U are obtained from an incomplete factorization of A;;. Another possibility
is to approximate the action of the inverse of A;; by carrying out a few cycles of an
iterative solver or carrying out a multigrid cycle [12].

The solution of the preconditioned problem Pasc = zr, where r = (ry,r B)T
and z = (zy, zp) may be effectively carried out by the following Algorithm.

ALGORITHM 2: APPLICATION OF THE ASC PRECONDITIONER

1. Apply the lower triangular part of Pagc. That is solve A; 1y = ry and compute
yB=r1p — Apryr.
2. Apply the upper triangular part of Pagc. That is solve

Szp =vyg, (4.12)

with S = App— ABIZI_}AIB, and compute z; =y —fll_llAIBzB. The solu-
tion of (4.12) may be accomplished by an iterative scheme exploiting Algorithm
1.

Notice that the Step 1 and the computation of z; in Step 2 are perfectly parallel. On
the contrary (4.12) is a global operation, which, however, may be split into several
parallel steps preceded and followed by scatter and gather operations involving com-
munication among subdomains. Note that the matrix .S may itself be preconditioned
by using the technique outlined in Section 4.2.3, in particular by using a Schwarz-
type preconditioner, as illustrated in Section 4.3.

As already said, A;; may be chosen as the ILU(f) incomplete factorization of
Ayy, where f is the fill-in factor. Furthermore, (4.12) may be solved inexactly, using
a fixed number L of iterations of a Krylov solver. We will denote such preconditioner
as ASC-L-iluf. Alternatively, one may avoid to factorize A;; and build its approx-
imation implicitly by performing a fixed number of iteration when computing the
local problems in Step (2) of Algorithm 1.

In both cases the action the ASC preconditioner corresponds to that of a matrix
which changes at each iteration of the outer iterative solver. Consequently, one needs
to make a suitable choice of the Krylov subspace accelerator for the the solution of
(4.1) like, for instance, GMRESR [27] or FGMRES [18]. The former is the one we
have used for the numerical results shown in this work.

We mention that the ASC preconditioner lends itself to a multilevel implementa-
tion, where a family of increasingly coarser approximations of the Schur complement
matrix is used to build the preconditioner. The idea is that the coarsest approximation
should be small enough to be solved directly. The drawback is the need of assembling
and storing a number of matrices equal to the number of levels.

4.4 The Schwarz Preconditioner
The Schwarz iteration is a rather well known parallel technique based on an over-

lapping domain decomposition strategy. In a VO framework, it is normally built as
follows (we refer again to Figure 4.1).

148 L. Formaggia et al.

Each subdomain £2() is extended to £2(!) by adding the strip "1, j.e. 2() =
QO U2 i =1,2. A parallel solution of the original system is then obtamed by
an iterative procedure involving local problems in each Q) where on 9£2° N)
we apply Dirichlet conditions by getting the data from the ne1ghb0r1ng subdomains.

What we have described here is the implementation with minimum overlap. A
larger overlap may be obtained by adding further layers of elements. The procedure
may be readily extended to an arbitrary number of subdomains. More details on the
algorithm with an analysis of its main properties may be found, for instance, in [17].

A multiplicative version of the procedure is obtained by ordering the subdomains
and solving the local problems sequentially using the latest available interface values.
This is indeed the original Schwarz method and is sequential. Parallelism can be
obtained by using the additive variant where all subdomain are advanced together,
by taking the interface values at the previous iteration.

From an algebraic point of view, multiplicative methods can be reformulated
as a block Gauss-Seidel procedure, while additive methods as block Jacobi proce-
dure [18].

If used as a stand-alone solver, the Schwarz iteration algorithm is usually rather
inefficient in terms of iterations necessary to converge. Besides, a damping parameter
has to be added, see [17], in order to ensure that the algorithm converges. Instead, the
method is a quite popular parallel preconditioner for Krylov accelerators. In particu-
lar its minimum overlap variant, which may exploit the same data structure normally
used for the parallel implementation of the matrix-vector product, allowing a saving
in memory requirement.

Let B(i)~be the local matrix associated to the discretisation on the extended
subdomain £2(9, R() a restriction operator from the nodes in {2 to those in (9,
and P a prolongation operator (usually, P() = (R("))T). Using this notation, the
Schwarz preconditioner can be written as

M
Pl = ZP“)B(“R“), (4.13)

i=1

being M the number of subdomains.

The matrices B(*) can be extracted directly from the set of rows of the global
matrix A corresponding to the local nodes, discarding all coefficients whose indexes
are associated to nodes exterior to the subdomain. The application of R(*) is trivial,
since it returns the locally hosted components a the vector; the prolongation operator
P just does the opposite operation.

Although simple to implement, the scalability of the Schwarz preconditioner is
hindered by the weak coupling between far away subdomains. We may recover a
good scalability by the addition of a coarse operator [9, 21]. If the linear system arises
from the discretisation of a PDE system a possible technique to build the coarse oper-
ator matrix Ay consists in discretising the original problem on a (very) coarse mesh,
see for instance [4]. However the construction of a coarse grid and of the associated
restriction and prolongation operators may become a rather complicated task when
dealing with three dimensional problems and complicated geometries. An alternative

4 Domain Decomposition Techniques 149

is to resort to algebraic procedures, such as the aggregation or agglomeration tech-
nique [21, 1, 4, 2, 28, 20], which are akin to procedures developed in the context of
algebraic multigrid methods, see also [29]. Here, we will focus on the latter, and in
particular we will propose an agglomeration technique.

4.4.1 The Agglomeration Coarse Operator

To fix the ideas let us consider a finite element formulation (4.2). Thanks to a VO
partitioning we can split the finite element function space V}, as

M .
vi = J v,

i=1

where M is the number of subdomains, and Vh(i) is set of finite element functions

associated to the triangulation of () with zero trace on 9£2(%) \ 92. We suppose
to operate in the case of minimal overlap among subdomains as described in the

previous section and we indicate with n(?), the dimension of the space Vh(i). By
construction, n = "M 5 (),

We can build a coarse space considering for each £2(*) a set of vectors {ﬁg) €
R ,s=1,... ,l(i)} of nodal weights Bgi) = (63%, e 5(i)) that are linearly

s,m(1)
independent, with ﬁ,gi:lm # 0. The value IV, i = 1, ..., will be the (local) dimen-
sion of the coarse opérator on the corresponding subdomain. Clearly, we must have
1) < n and, in general, [() << n(®). We indicate with [the global dimension of
the coarse space, i.e.

M
1= 1.
1=1

With the help of the vectors ,Bgi), we can define a set of local coarse space func-
tions as linear combination of basis functions, i.e.

(%)
Vil =902 - R | 80 =3 6000 s =1,
k=1

It is easy to verify that the functions in VS) are linearly independent. Finally, the
set Vg = Uf‘il VI(L}) is the base of the global coarse grid space Vi, i.e. we take
Vi = span{Vy }. By construction, dim(Vy) = card(Vy) = I.

We note that Viz C Vj, as it is built by linear combinations of function in Vj,
and any function vy € Vy may be written as

M W

up(x) =» > UPd0(x), (4.14)

=1 s=1

150 L. Formaggia et al.

where the U, g(l) are the “coarse” degrees of freedom. Finally, the coarse problem is
built as:
Find ug € Vg so

alug,wy) = f(wy), Ywyg € Vg.

From an algebraic point of view, we have

M n(m n(m)
ZZU”ZZﬁskﬁth;wﬁ Zﬁ ()
1=1 s=1 k=1 t=1

q:1,...,z<m>,m:1,...,M.

To complete the procedure we need to define a restriction operator Ry : V), —
Vi which maps a generic finite element function to a coarse grid function. Since
u € Vj, may be written as

M n®))
=S,
i=1 k=1

where the u,(f) are the degrees of freedom associated to the triangulation of (9, a

restriction operator may be defined by computing uy = Rpu as

a2

ur =33 U0,

i=1 s=1

where

U(”—Zﬁ Dl s=1,..09, i=1... M.

At the algebraic level, we build a global vector Uy by assembling the U, s@ on a
subdomain basis, i.e.

T
Uy = (U{” o) ...Uf%f) :

and we arrange similarly the vector uy, of the nodal values of uy, i.e.

1 M
wn= () 0)

The prolongation matrix R%, € R™*! will then have the following block struc-
ture,

nT T 1
B T g 0 0 .. 0 0 o ... 0

o o ... 0o P AP 2" o 0 ... 0

T 1(2)
Ry = ’

(Jb'f)T

. - .T .
0 0 ... 0 0O ©O0 .. O dM) B B

4 Domain Decomposition Techniques 151
and the coarse matrix Ay and right-hand side of the coarse system can be written as
Ap = RyARY, fy = Ryf,

respectively.

The conditions imposed on the ﬁgi) vectors guarantees that Ry has full rank.
Moreover, if A is symmetric and positive definite, then Ay will share the same prop-
erty. The application of the agglomeration coarse grid operator does not require to
build Ry explicitly. Even the construction of the vectors 3 can be avoided if they
have a simple structure. In fact the construction of Ay involves just a weighted sum
of the element of A. Concerning the parallel implementation, the overhead of the
coarse problem depends in general on the number of local coarse degrees of free-
dom. In general [() << n((in the limit we may even take {(?) = 1 for all i!), and
consequently the matrix Ay is rather small compared to A. This a major difference
from the use of this technique in an algebraic multigrid setting, where many levels
of coarse operator are considered.

The build up of the coarse linear system can be carried out as follows. Each
processor computes the contribution to Ay and fy corresponding to the associated
subdomains, then it broadcasts the results to the other processors. Being the coarse
system small, the cost of the broadcast operation is limited. Furthermore, it is usually
carried out only once.

The domain decomposition technique may be used also for the set up of the ﬁgi)
vectors. Indeed, after having set up the basic Schwarz preconditioner by assigning
each e§tended subdomain {2; to a different processor, at a second stage, each subdo-
main 2() can be further partitioned into {(*) c