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Summary. The empirical origin of random noise is described, its influence on DTI
variables is illustrated by a review of numerical and in vivo studies supplemented
by new simulations investigating high noise levels. A stochastic model of noise prop-
agation is presented to structure noise impact in DTI. Finally, basics of voxelwise
and spatial denoising procedures are presented. Recent denoising procedures are re-
viewed and consequences of the stochastic model for convenient denoising strategies
are discussed.

6.1 Introduction

Though the theoretical and experimental basics of Diffusion Tensor Imaging
DTI are still in a stage of development, it is well established, that magnetic
resonance measurements of diffusing water molecules can reveal unique infor-
mation about the architecture of normal and diseased brain tissues. See [1]
for a recent survey on basic concepts, experimental methods, postprocessing
procedures, and potential applications. An enumeration of the limitations of
DTI at present would fill a long list. Some of them are caused by the ‘arti-
facts’ which comprise effects of subject motion, eddy currents, susceptibility
variations, calibration errors, and noise [1, 2].

Random or Johnson noise is essentially white and has its origin in thermal
Brownian motion of electrons. Johnson noise is superposed in DTI by two
components: noise from the scanner apparatus and noise from the patient’s
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body inside the scanner [3]. The measurement of the magnetization, carry-
ing the anatomical information, results in complex valued data in k-space
which give, after Fourier transformation, the signal in configuration or physi-
cal space [3]. Johnson noise in the data or signals can be approximated by a
complex Gaussian distribution with mean zero, constant standard deviation
and independent real and imaginary parts [4].

Consequently, the magnitude of the signal follows the family of Rician dis-
tributions [5], which comprises distributions with nearly Gaussian shape for
low noise levels. In case of increasing noise however, the distributions become
appreciably skewed and have a biased mean value. Hence the expectation value
of a noisy signal magnitude is different from its noise-free or true value. Such
magnitudes or diffusion weighted images DWI are mapped in the standard
model of DTI via the Stejskal-Tanner equations ST to the diffusion tensor
[6, 7] and then via several nonlinear transformations to detailed anatomical
information of the brain. From a statistical point of view one should real-
ize that in general any nonlinear transformation can transform a Gaussian
distribution to a skewed and heavy tailed one with biased mean value. Con-
sequently, a chain of such transformations can create a highly complicated
stochastic situation. In fact, nonlinear noise propagation can lead to severe
misinterpretations in DTI, which is still one of the central problems.

Several topics are addressed in this chapter. First we present some formal
results of stochastics to model noise propagation in DTI. Then, a survey of
published results on noise artifacts and denoising methods is presented. The
whole range of signal to noise ratios is covered, own results for high noise levels
supplement the review. Final aim of this work is to structure the complicated
field of noise impact in DTI and to support the application and development
of convenient denoising methods.

6.2 Noise Impact

First of all we introduce some fundamental concepts of DTI and of its sta-
tistics. In particular, the statistical Delta Method will be introduced. This
method describes the large sample convergence to Gaussian distributions for
variables which are derived by nonlinear transformations. Second, we present
a survey of published results on noise artifacts. These studies comprise results
achieved by Monte Carlo simulation and by bootstrap sampling.

6.2.1 Noise Propagation Model

In the following we restrict ourselves to statistical aspects caused by John-
son noise; the influence of non statistical distortions is excluded. In addition,
only the standard diffusion tensor with rank=2 is considered, for extensions
see Chap. 10 by Özarslan et al. The chain of nonlinear transformations, lead-
ing from measured quantities to anatomically relevant observables proceeds
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as follows: {signals S} 	→ {		 magnitudes |S|} → {		 tensor d} 	→ {		 eigenvalues,
eigenvectors} 	→ {		 anisotropy, tracks} 	→ {		 connectivity, etc.} Only for the first
transformation, the statistics is completely formalized [5]. We present in the
following a closer look at the second map in order to exemplify statistical
peculiarities caused by nonlinear mappings. The central concept in standard
DTI is the diffusion tensor d(x) for any voxel x in e.g. a brain. The three
eigenvalues λi(x) and eigenvectors |i(x)〉 describe the geometric properties of
a diffusion ellipsoid along the fibers. As the tensor is real and symmetric, a
convenient braket notation [8] is used, where the ket |.〉 is a column vector,
the bra 〈.| a transposed ket, and 〈 .| .〉 a scalar product. In this notation we
get

d(x) =

⎛⎝⎛⎛d11(x) d12(x) d13(x)
d12(x) d22(x) d23(x)
d13(x) d23(x) d33(x)

⎞⎠⎞⎞ =
3∑

i=1

λi(x) |i(x)〉 〈i(x)| . (6.1)

The ST equations are then

|SjS (x)| = |S0(x)| exp

(
−b

3∑
i=1

λi(x) 〈 i(x)|gj〉2
)

, (6.2)

incorporating the diffusion weighting b-value which is a function of scanning
parameters [7], a normalized diffusion measuring gradient |gj〉, the diffusion
weighted image DWI |SjS (x)|, j ≥ 1, and the reference |S0(x)|.

Noise enters the system via the complex signals Sk(x), by Sk,noisy(x) =
Re[Sk(x)] + εRe + i(Im[Sk(x)] + εIm), for k ≥ 0, where εRe and εIm are
independent and normally distributed, ε ∼ N(0, σ). The noise level σ is the
Rayleigh corrected standard deviation of background noise [4, 5].

To quantify the signal to noise ratio, we define SNRk = |Sk(x)|/σ for
k ≥0, where |Sk(x)| is without noise [5]. As SNRk determines, within the
Rician family, the distribution of |Sk,noisy(x)|, these distributions change in
space. In the same way, the statistical properties of derived variables affected
by noise, like d(x), change with x. In short notation, those variables build up
random fields.

We introduce now several abbreviations to formulate the least square esti-
mation of the tensor from the measured DWIs for the general case including
n ≥ 6 gradient directions 〈gj | = (g1,j , g2,j , g3,j). To make the notation more
transparent, the dependence on x and the label noisy is suppressed:

DT := (D1, D2, D3, D4, D5, D6) = (d11, d22, d33, d12, d13, d23)
(A)j := (g2

1,j , g
2
2,j , g

2
3,j , 2g1,jg2,j , 2g1,jg3,j , 2g2,jg3,j) (6.3)

sj := − log(|SjS |/|S0|)/b,

where (A)j is a row of the n × 6 matrix A. The equation AD = s for D is
then solved by D = B−1(AT s), where B = AT A, see [9]. Introducing the
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weights wil =
∑6

k=1 B−1
lk Aik, we can finally write Dl =

∑n
i=1 wilsi, and find

for the expectation of Dl,

E[Dl] = −
n∑

i=1

wilE[log(|Si|)]/b + E[log(|S0|)]
n∑

i=1

wil/b . (6.4)

This equation shows the origin of a possible bias in Dl, hence in general

E[Dl] �=�� −
n∑

i=1

wil log(|E[Si]|)/b + log(|E[S0]|)
n∑

i=1

wil/b . (6.5)

The right hand side of (6.5) describes the tensor components without noise,
as the signals Si are normally distributed. When the DWIs |Si| are essentially
free from bias, SNRi > 3, the function log introduces a (possibly) small bias
in Dl, as log is a concave map. This effect is enhanced if the DWIs are biased
for SNRi ≤ 3. Concave or convex mappings of random variables produce
bias effects due to the Jensen inequality [10]. Therefore, any further nonlinear
transformation on Dl can, in principle, cause additional bias in the derived
variable.

A further important aspect is the shape of the distributions. For high
noise level the DWIs, as well as derived variables are not normally distrib-
uted. However, as noise is sufficiently reduced, the Delta Method [11] predicts
approximate Gaussian statistics for all variables of the DTI chain. This follows
from an iterative application of the following Theorem and of its generaliza-
tions: If the distributions of a sequence of random variables TmTT approach
with increasing m the Gaussian distributions N(Θ, τ2/m), where Θ is the
expectation value and τ2/m the variance, then, for any nonlinear transfor-
mation f : TmTT → f(TmTT ) with ḟ(Θ) �= 0 , the distributions of�� f(TmTT ) tend to
N(f(Θ), ḟ(Θ)2τ2/m)), see [11] for an exact but less descriptive formulation
and for extensions to multivariate cases. Thus, reduction of noise greatly sim-
plifies the structure of the mentioned random fields. However, as Θ depends
on the spatial coordinate, variance is still varying in space. The Delta Method
does pose only weak restrictions on the distributions of TmTT and thus extends
the usefulness of the Central Limit Theorems CLT [11] as prerequisites for
an application of this method. Appropriate TmTT can in DTI experiments be
achieved by performing m replications of experiments and consecutive averag-
ing of the m magnitudes |Si,noisy(x)|. For low m, due to practical limitations,
this is one of the standard procedures in DTI to denoise data.

6.2.2 Noise Artifacts

We review only a selection from the huge number of articles on noise arti-
facts and emphasize the diversity of artifacts, more technical papers are not
considered. The artifacts are investigated by numerical modelling via Monte
Carlo simulation MCS [12, 13], perturbation theory [8] and bootstrap sam-
pling [1, 14].
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The degree of anisotropy in diffusion is connected to the homogeneitiy of
the fiber directions in a measured voxel, as diffusion propagates mainly along
the fiber direction, see Chap. 7 by Vilanova et al. for illustrations of anisotropy
and nerve fibers in the human brain. In [12] different quantitative indices of
anisotropy are investigated. The authors show that rotational variant indices
suffer from non random orientational artifacts and can make highly anisotropic
white matter structures appear isotropic in vivo. Therefore, rotationally vari-
ant indices depending on the eigenvalues are included in their study, like
e.g. the fractional anisotropy FA = (3

∑3
k=1(λk − λ)2/2

∑3
k=1 λ2

k)1/2, where
λ =

∑3
k=1 λk/3, see [12, 13] for more indices depending on eigenvalues. It is

shown by MCS that those indices are biased in the presence of noise. This
bias enhances artificially the mean anisotropy and can make isotropic diffu-
sion appear anisotropic. Two sources of this error are detected: a) the mean
eigenvalues are biased, where the largest eigenvalue is typically enhanced by
noise, the smaller ones are reduced; b) noise introduces sorting bias, i.e. due
to overlapping statistical distributions of neighboring eigenvalues, magnitude
sorting fails. These bias effects increase with decreasing SNR, the study covers
a range of SNR0 > 5. Similar findings are reported in [13], in addition, the
eigenvalue distributions are investigated. The dependence of skewness on the
angles between main diffusion and laboratory system or diffusion gradients
is apparent. This exemplifies that DTI distributions build up random fields.
Also negative eigenvalues are detected for higher noise level preventing an
interpretation of the tensor as a quantity describing diffusion. Perturbation
theory is applied [15] for SNR0 > 20, to calculate power series expansions of
the eigenvalues and of eigenvectors of the tensor for different model diffusions.
The results for the bias in eigenvalues and in FA of [12, 13] are essentially con-
firmed. Noise in the eigenvector orientation produces random walk trajectories
which should model the nerve fiber pathes. The mean position error of the
calculated tracks and the standard deviation are calculated for a total of 256
path steps. Both increased, in different manner, with the step number and
the noise level. This may indicate fundamental limits in accuracy for track-
ing, though only a very simple tracking algorithm is applied [15]. The studies
discussed so far deal with SNR0 > 5 for b ≈ 1000 smm−2 and focus more on
even higher SNR0, relevant for clinical investigations. Recently, experiments
with higher b-values (b � 1000 smm−2) to measure non-Gaussian diffusion
[16] or with high spatial resolution (e.g. 1mm3) to reduce partial volume ef-
fects are performed. Such data include DWIs with SNRk < 3 (henceforth with
k > 0), which are strongly influenced by peculiarities of the Rician statistics,
and consequently we may find different noise artifacts. The first systematic
MCS for higher b-values was published recently [17]. Just one interesting re-
sult may be reported. In contrast to the findings of [12, 13, 15], the mean FA
can now be essentially unbiased for b ≈ 3000 smm−2, or underestimated for
b > 5000 smm−2.

Non-parametric bootstrap BS analysis offers a more empirical approach to
error analysis allowing a better inclusion of non statistical distortions. These
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Fig. 6.1. General bootstrap resampling scheme adapted to a typical DTI acquisition
of a reference and six diffusion weighted signals, each k times. By random drawing
with replacement N bootstrap resamples are obtained. The distribution of a statistic
of interest Θ is determined by the N + 1 samples

distortions modify the statistical distributions but it is hard to model them in
the frame of MCS. The BS draws inferences about some features of unknown
distributions by generating multiple replications. The replications are achieved
by iterated random drawings with replacement out of a pool of experimental
data. See Fig. 6.1 for a BS scheme, applied to a typical DTI acquisition. In
this setup k replications of an experiment with 6 diffusion gradients and one
reference are performed. A box indicates a complete data set with pool size
k, the left box is the purely empirical starting point of the procedure. To
the right, artificial resamples created by random drawings are shown. The
information in all samples together defines the distribution of interest and
allows to study, in an approximate way, the statistical properties of a random
variable in a voxel.

By BS in [18] the uncertainty in main diffusion directions is analyzed
in vivo. Applying the formalism of dyadic tensors 95% confidence inter-
vals for the angles between the mean and the random directions are cal-
culated. A correlation between this uncertainty and the anisotropy index
ClC = (λ1−λ2)/(λ1+λ2+λ3) for λ1 ≥ λ2 ≥ λ3 is found. The uncertainty grows
with decreasing ClC qualitatively like C−1

lC . Even for high ClC an uncertainty of
about 2.5 degrees remains. In [19] BS is applied to distribution specific para-
meters which can serve as quality measures for DTI data, this could help to
detect e.g. data which are corrupted by some machine error in the scanner.
For this purpose, the confidence intervals of FA in white matter are deter-
mined and submitted to histogram analysis. The mean, modus and height
are extracted as quality descriptors. The study particularly investigates the
impact of noise and of denoising, as well as motion of the patient on those
parameters. In [14] MCS and BS are applied in conjunction. By MCS it is in-
vestigated how good a multivariate Gaussian distribution can describe noise
in the tensor. Marginal distributions of the tensor and the distributions of
the squared rational anisotropy RA, see Chap. 7, are compatible with this
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assumption. In particular the marginals are well normal distributed already
for SNR0 >2, when only 6 diffusion gradients are applied, and for clinical
b-values. The estimation of the covariance matrix is less robust, for a linear
regression model the diagonal elements are underestimated by about 20%.
In addition, BS for DTI data is introduced in this chapter. Its reliability is
shown by MCS on simulated data. BS is also applied to human data under
approximate clinical conditions, one result is that in the majority of voxels
the statistical properties of the tensor components are compatible with the
Gaussian assumption.

6.3 Corrections of Noise Effects

The different denoising methods can be divided into voxelwise and spatial
procedures. In the first group, frequently experiments with a small number of
gradients close to the minimum number ng = 6 and sometimes with different
b-values per experiment are repeated, to average the DWIs or to derive the
tensor via regression methods [7]. In multigradient experiments the gradient
number is enhanced, ng � 6. Different ways to construct the spatial orienta-
tion of such gradients were proposed, see [20] for a review and a comparison.
Finally, the tensor can be derived from the DWIs by the least squares fit
described in Sect. 2.1. Both acquisition schemes reduce noise in the system
voxelwise. A complementary technique is offered by spatial denoising, where
samples of neighboring voxels are used to estimate the variable of interest.
This technique relies on the fact, that anatomical units occupy at least sev-
eral neighboring voxels in a brain, and that it is possible to detect those regions
ROI of ‘homogeneity’. Such methods are applied to reduce the sorting bias of
tensor eigenvalues [21, 22], or to filter the spatial DWI fields [23, 24], more
global assumptions are involved in the denoising methods [25, 26, 27, 28].

6.3.1 Voxelwise Denoising

For SNRk > 3, voxelwise averaging of DWIs derived from repeated mea-
surements introduces, according to the classical CLT [11], unbiased normally
distributed mean values with small variance. If, by a high number of replica-
tions, the variance is reduced sufficiently one can estimate the derived DTI
variables practically without noise influence, due to the Delta Method. In
agreement with that it was shown by MCS [15], that for SNR0 ≈ 20 bias in
the eigenvalues is minimized best by averaging the DWIs before the tensor
is derived. For medium SNR0 ≈ 50 the results imply an equivalence between
DWI and tensor averaging, as the bias in the tensor, see (6.4), is no more
relevant. Only at high SNR0 direct eigenvalue averaging is equivalent to the
other methods, as the whole system is now close to the Gaussian limit.

Different orientations in multigradient systems led to the introduction of
the condition number κ = κ(A) , which gives an error bound by κ ≥ (relative
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error in D)/(relative error in s) [29, 30], for notations see Sect. 6.2.1. In
[30] it is shown, that for icosahedral gradients κ is small and independent
of rotations of A in the laboratory system. Within this bound, however, the
tensor distributions and the bias effects do depend on SNRk or on the gradient
directions, see (6.2) for an explanation. The number of gradients ng has also an
important influence on bias effects. The MCS in [31] shows, that the fractional
anisotropy FA, the mean diffusion MD =

∑3
k=1 λk/3 and the direction of

main diffusion depend on the number ng of uniformly distributed gradients.
Increasing ng reduces and stabilizes those bias effects, for SNR0 = 15 at least
20 gradients are necessary to achieve reliable anisotropy maps and 30 gradients
for reliable directions and MD .

To include SNRk ≤ 3 we performed MCS at SNR0 ≈ 4. Several three
dimensional models of realistic diffusion tensors are explored, with b =
1000 smm−2 and |S0| = 1000. The gradients are icosahedral, twelve differ-
ent gradient sets are used, ng ∈ {6, 10, 15, 16, 20, 25, 36, 40, 45, 60, 81, 126}.
In Fig. 6.2 typical results for a ‘cigar shaped’ diffusion with d11, d22, d33 =
.00155, .000354, .000191mm2 s−1, else zero are presented. To minimize SNRk

every gradient set is rotated, such that at least one gradient direction is paral-
lel to the main diffusion direction of the model. This produces maximal Rician
bias in the corresponding DWI. The relative bias of the three invariants of the
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Fig. 6.2. Impact of Rician statistics on DTI variables for SNR0 = 4.2. The model
diffusion is ‘cigar shaped’, FA = 0.8 and MD = 0.0007 mm2 s−1. Relative bias
versus number of applied gradients is presented for the invariants INV1 , INV2 ,
INV3 and FA, also the fractions of positive definite voxels and the angles between
main eigenvector of the model and the averaged main eigenvector of noisy diffusion.
Different line styles correspond to different levels of voxelwise averaging: thick line
(one experiment), dotted line (5 replications and DWI averaging DA), dashed dotted
line (30 replications and DA), thin lines close together (30, 50, 100 replications, DA
and application of bias correction according to Rician statistics)
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tensor INV1 =
∑3

k=1 λk, INV2 = λ1λ2 + λ1λ3 + λ2λ3, INV3 = λ1λ2λ3 are
shown in the upper panels. Below one finds the fractions of positive definite
voxels, the relative bias of FA and the angle between the true main diffusion
direction and the averaged noisy main diffusion direction. Before averaging,
the main directions were calculated by dyadic sorting, see below, and were
aligned to the model. In contrast to [31], increasing ng does not eliminate
in all cases the bias effects, see thick lines in panels INV1 , INV2 , FA and
ALPHA. This is due to a strong bias in the DWIs, with minimum SNRk ≈ 1.
When DWI averaging is performed, the bias effects even increase, see dotted
and dashed-dotted lines. Due to the classical CLT averaging of DWIs trans-
forms the Rician distributions to nearly normal shape with small variance,
centered around the biased Rician mean values. After bias correction [5], the
relative bias of the invariants and of FA is practically zero for 100 replications,
the angle bias is below 2 degrees for ng ≥ 6. If only 50 or 30 experiments are
applied the results deteriorate only slightly (thin lines). Positive definiteness
of the tensor is violated drastically before averaging, but denoising by DWI
averaging improves the situation considerably, see Fig. 6.2.

6.3.2 Spatial Denoising

In [12] the so called ‘lattice’ index of anisotropy is proposed, combining eigen-
value and eigenvector information in a ROI. This index shows enhanced ro-
bustness in the presence of noise for low anisotropy, compared to intravoxel
indices, like FA. Also eigenvalue sorting is improved by considering ROIs.
In [21] vector sorting is introduced, where the maximum coherence of main
eigenvectors in a ROI is involved. By MCS it is shown for isotropic diffusion
that this method is superior to magnitude sorting. Dyadic sorting [22] is an-
other improvement. In this method first magnitude sorting is applied to a
spatially averaged tensor used as reference, then, by a dyadic overlap measure
for tensors, the eigenvalues of the unknown tensor are sorted.

Nonlinear filtering is applied in [23, 24] to DWIs. In those filters the ROIs,
or better effective windows, where smoothing is performed, are not only de-
fined by spatial conditions, but also by a distance measure for the DWI to
enable edge preservation. Edges are typical features of spatial DTI variables as
e.g. anisotropy and fiber directions can change drastically between two voxels.
In [23] the diffusion equation by Perona Malik is applied, in [24] a chain of
nonlinear Gaussian filters is used. Both methods include only few assumptions
about the structure of the signals and seem to be convenient denoising tools
for DTI data with SNRk > 3.

Denoising of tensor fields is described in [25, 26], see also Chap. 18 by
Pajevic et al., Chap. 19 and 25 by Weickert et al., and Chap. 24 by Westin et
al. In [25] B-splines are applied to a discrete set of noisy DT-MRI measure-
ments to obtain a continuous representation of the tensor field, see Chap. 18
for edge preserving representations by NURBS. In such representations differ-
ential geometric quantities, like curvature or torsion of fiber tracts, but also
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the tangent field could be derived directly. In [25] noise affected templates are
denoised with good accuracy, except where the field is not homogenous, e.g.
in regions where fiber tracts cross. In [26] the Stejskal Tanner Equations ST
for complex signals are used; to achieve them formally, replace the DWIs in
(6.2) by the corresponding complex signals or complex DWIs. Assuming that
sufficiently many complex DWIs are given by the measurements, a smoothed
tensor field d(x) and S0(x) are derived by a variational principle ensuring
positive definiteness of the tensor. The minimization of the variational inte-
gral under ST constraints is achieved by an iterative procedure. The method
is edge preserving and is tested in model and real data applications.

The main diffusion directions are smoothed in [27, 28]. By a variational
regularization, in [27], coherent vector fields are estimated from noisy data.
This method conserves discontinuities and reduces the regularization for small
anisotropy. In model calculations those properties are verified, for higher noise
level an influence of sorting bias leading to orthogonal directional artifacts is
observed. The estimated vector field is then used as a prior to estimate, in
a second step, also the eigenvalue fields. To this end a diffusion equation
including the ‘flow’ tensor is applied. This ‘flow’ tensor includes information
about the diffusion tensor and controls smoothing and edge preservation. For
real data, denoised tensor, eigenvalue and FA fields are discussed. In [28]
the regularized main directions are estimated by the Bayesian approach. The
estimated maximum of the posterior probability for the main direction field
relies on a trade-off between DTI data and a priori assumption regarding the
low curvature of the nerve fibers. The a priori probability includes information
about the behavior of the modelled direction field in the neighborhood or
clique around the voxel of interest, leading to a Gibbs random field with
interaction, the likelihood includes only voxelwise calculated probabilities. The
regularized direction field is finally used to apply a new tracking algorithm to
simulated and real data, allowing the treatment of diverging fibers.

Finally we mention a method proposed especially for very high noise levels,
SNRk < 3 [32]; DWI averaging is combined with nonlinear DWI filtering [24]
and a bias correction, see Fig. 6.2. Human brain data with 1mm3 resolution,
this is roughly a factor 10 below the clinical voxel volume which produces
severe partial volume deficiencies [1], could be denoised successfully.

Both denoising principles discussed in Sect. 6.3 have inherent shortcom-
ings. Voxelwise denoising involves many experiments, therefore patient mo-
tion introducing partial volume effects and distortions, as well as temporal
instabilities in the scanner are the main limiting factors. Spatial smoothing
suffers often from a trade off between blurring and bias caused by the applied
method. Blurring occurs when different ‘objects’ cannot be discriminated by
the denoising method and when consequently anatomically separated infor-
mation is mixed together, like e.g. in the case of two neighbored fiber bun-
dles with different directions. Bias is mainly caused by too strong priors; e.g.
edge preserving filters can be tuned for very high quality in edge finding or
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‘object’ discrimination, the price is usually a decreasing flexibility in the linear
behavior or a decreasing ability to model curvature.

6.4 Conclusion

What can we learn from our analysis to find convenient strategies for spatial
denoising? For very high noise level, SNRk < 3, denoising and bias correc-
tion of the DWIs is a suitable procedure [32]. For reduced noise the tensor
distributions approach normality [14] and become also reasonable candidates
for smoothing. Our own calculations indicate a limit for tensor smoothing
well above SNR0 ≈ 4 due to the strong bias effects shown in Fig. 6.2. Tensor
denoising is particularly important for multigradient designs where DWI aver-
aging of replications, a convenient preprocessing step before spatial denoising,
is seldom feasible. For higher SNR0, when a bias due to the nonlinear DTI
chain can be neglected, eigenvector and eigenvalue fields may be convenient
variables. In [15] a similar SNR dependent denoising strategy for the reduction
of eigenvalue bias is derived by perturbation theory. For SNR0 ≈ 20 denoising
of the DWIs is recommended, for SNR0 ≈ 50 tensor denoising is shown to
be equally good, and only for higher SNRs direct eigenvalue denoising is pro-
posed. Additional priors in the denoising method may help to correct effects of
minor skewness or kurtosis in the distributions, or may even correct intrinsic
partial volume defects, e.g. in the main diffusion directions [28]. But, a spatial
dependence in the (co)variance is predicted by the Delta Method already at
very low noise levels and may be included in the denoising procedures.
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