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Summary. The notions of maximum and minimum are the key to the powerful
tools of greyscale morphology. Unfortunately these notions do not carry over directly
to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this
chapter extends the maximum and minimum operation to the tensor-valued setting.
This provides the ground to establish matrix-valued analogues of the basic morpho-
logical operations ranging from erosion/dilation to top hats. In contrast to former
attempts to develop a morphological machinery for matrices, the novel definitions
of maximal/minimal matrices depend continuously on the input data, a property
crucial for the construction of morphological derivatives such as the Beucher gradi-
ent or a morphological Laplacian. These definitions are rotationally invariant and
preserve positive semidefiniteness of matrix fields as they are encountered in DT-
MRI data. The morphological operations resulting from a component-wise maxi-
mum/minimum of the matrix channels disregarding their strong correlation fail to
be rotational invariant. Experiments on DT-MRI images as well as on indefinite ma-
trix data illustrate the properties and performance of our morphological operators.
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22.1 Introduction

Since the late sixties mathematical morphology has proven itself a very valu-
able source of techniques and methods to process images: The path-breaking
work of Matheron and Serra [12, 13] started a fruitful and extensive devel-
opment of morphological operators and filters. Morphological tools have been
established to perform noise suppression, edge detection, shape analysis, and
skeletonisation for applications ranging from medical imaging to geological
sciences, as it is documented in monographs [8, 14, 15, 16] and conference
proceedings [6, 17]. It would be desireable to have the tools of morphology at
our disposal to process tensor-valued images since nowadays the notion of im-
age encompasses this data type as well. The variety of appearances of tensor
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fields clearly calls for the development of appropriate tools for the analysis
of such data structures because, just as in the scalar case, one has to remove
noise and to detect edges and shapes by appropriate filters.

Median filtering [21], Chap. 21 by Welk et al., active contour models and
mean curvature motion [4], Chap. 25 by Weickert et al., nonlinear regulari-
sation methods and related diffusion filters [2, 18, 20], Chap. 22 by Suarez-
Santana et al., Chap. 23 by Westin et al., Chap. 25 by Weickert et al., also
Chap. 19 by Weickert and Welk, exist for matrix-valued data that genuinely
exploit the interaction of the different matrix-channels.

First successful steps to extend morphological operations to matrix-valued
data sets have been made in [3] where the basic operations dilation and ero-
sion as well as opening and closing are transfered to the matrix-valued set-
ting. However, the proposed approaches lack the continuous dependence on
the input matrices. This makes the meaningful construction of morphological
derivatives impossible.

The goal of this chapter is to present an alternative approach to mor-
phological operators for tensor-valued images based on the Loewner ordering.
This offers a greater potential for extensions and brings expedient notions of
morphological derivatives within our reach. The morphological operations to
be defined should work on the set Sym(n) of real symmetric n × n matrices
and have to satisfy conditions such as:

i) Continuous dependence of the basic morphological operations on the ma-
trices used as input for the aforementioned reasons.

ii) Rotational invariance.
iii) Preservation of the positive semidefiniteness of the matrix field since

DT-MRI data sets, for instance, posses this property, see e.g. Chap. 5
by Alexander, Chap. 7 by Vilanova et al., Chap. 17 by Moakher and
Batchelor.

Remarkably, the requirement of rotational invariance rules out the
straightforward component-wise approach, as is shown in [3]. In this chap-
ter we will introduce a novel notion of the minimum/maximum of a finite
set of symmetric, not necessarily positive definite matrices. These notions will
exhibit the above mentioned properties.

The chapter is structured as follows: The next section is devoted to a brief
review of the greyscale morphological operations we aim to extend to the
matrix-valued setting, starting from the basic erosion/dilation and reaching
to the morphological equivalents of gradient and Laplacian. In Sect. 3 we
present the crucial maximum and minimum operations for matrix-valued data
and investigate some of their relevant properties. We report the results of
our experiments with various morphological operators applied to real DT-
MRI images as well as indefinite tensor fields from fluid mechanics in Sect. 4.
Section 5 offers concluding remarks.
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22.2 Brief Review of Scalar Morphology

In grey scale morphology an image is represented by a scalar function f(x, y)
with (x, y) ∈ IR2. The so-called structuring element is a set B in IR2 determin-
ing the neighbourhood relation of pixels. In this chapter we restrict ourselves
to flat greyscale morphology where this binary type of structuring element is
used. Then greyscale dilation ⊕, resp., erosion � replaces the greyvalue of
the image f(x, y) by its supremum, resp., infimum within the mask B:

(f ⊕B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B} ,
(f �B) (x, y) := inf {f(x+x′, y+y′) | (x′, y′)∈B} .

By concatenation other operators are constructed such as opening and closing,

f ◦B := (f �B)⊕B , f •B := (f ⊕B)�B ,

the white top-hat and its dual, the black top-hat

WTH(f) := f − (f ◦B) , BTH(f) := (f •B)− f ,

finally, the self-dual top-hat,

SDTH(f) := (f •B)− (f ◦B) .

In an image the boundaries or edges of objects are the loci of high grey-
value variations and those can be detected by gradient operators. Erosion and
dilation are also the elementary building blocks of the basic morphological
gradients. The so-called Beucher gradient

�B(f) := (f ⊕B)− (f �B)

is an analog to the norm of the gradient ‖∇f‖ if an image is considered as a
differentiable function. Other useful approximations to ‖∇f‖ are the internal
and external gradient,

�−B(f) := f − (f �B) , �+
B(f) := (f ⊕B)− f .

We also present a morphological equivalent for the Laplace operator ∆f =
∂xx∂ f +∂yy∂∂ f suitable for matrix-valued data. The morphological Laplacian has
been introduced in [19]. We consider a variant given by the difference between
external and internal gradient:

∆mf := �+
B(f)− �−B(f) = (f ⊕B)− 2 · f + (f �B) .

This form of a Laplacian represents the second derivative ∂ηη∂∂ f where η
denotes the direction of the steepest slope. ∆mf is matrix-valued, but
trace(∆mf) provides us with useful information: Regions where trace(∆mf) ≤
0 can be viewed as the influence zones of maxima while those areas with
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trace(∆mf)≥ 0 are influence zones of minima. It therefore allows us to dis-
tinguish between influence zones of minima and maxima in the image f . This
is crucial for the design of so-called shock filters.

The basic idea underlying shock filtering is applying either a dilation or
an erosion to an image, depending on whether the pixel is located within the
influence zone of a minimum or a maximum [10]:

δB(f) :=
{

f ⊕B if trace(∆mf) ≤ 0 ,
f �B else . (22.1)

The shock filter expands local minima and maxima at the cost of regions
with intermediate greyvalues. When iterated experimental results in greyscale
morphology suggest that a non-trivial steady state exists characterised by a
piecewise constant segmentation of the image.

In the scalar case the zero-crossings ∆f = 0 can be interpreted as edge
locations [7, 9, 11]. We will also use the trace of the morphological Laplacian
in this manner to derive an edge map.

22.3 Extremal Matrices in the Loewner Ordering

There is a natural partial ordering on Sym(n), the so-called Loewner ordering
defined via the cone of positive semidefinite matrices Sym+(n) by

A,B ∈ Sym(n) : A ≥ B :⇔ A−B ∈ Sym+(n) ,

i.e. if and only if A−B is positive semidefinite.
This partial ordering is not a lattice ordering, that is, the notion of a

unique supremum and infimum with respect to this ordering does not exist
[1]. Nevertheless, given any finite set of symmetric matrices A = {A1, . . . , An},
we will be able to identify suitable maximal, resp., minimal matrices

A := maxA resp., A := minA .

For presentational reasons we restrict ourselves from now on to the case of
2×2-matrices in Sym(2). The 3×3-case is treated similarly but is technically
more involved.

To find these extremal matrices for a set A we proceed as follows: The
cone Sym+(2) can be visualized in 3D using the bijection

(
α β
β γ

)
←→ 1√

2

⎛⎝⎛⎛ 2β
γ − α
γ + α

⎞⎠⎞⎞ , resp.,
1√
2

(
z − y x
x z + y

)
←→

⎛⎝⎛⎛x
y
z

⎞⎠⎞⎞ .

This mapping creates an isometrically isomorphic image of the cone Sym+(2)
in the Euclidean space IR3 given by {(x, y, z)� ∈ IR3|

√
x2 + y2 ≤ z} and
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Fig. 22.1. (a) Left: Image of the Loewner cone Sym+(2). (b) Right: Cone covering
four penumbras of other matrices. The tip of each cone represents a symmetric 2×2
matrix in IR3. For each cone the radius and the height are equal

depicted in Fig. 22.1(a). For A ∈ Sym(2) the set P (A) = {Z ∈ Sym(2)|A ≥ Z}
denotes the penumbra of the matrix A. It corresponds to a cone with vertex
in A and a circular base in the x-y-plane:

P (A) ∩ {z = 0} = circle with centre
(√

2β,
γ − α√

2

)
and radius

trace(A)√
2

.

Considering the associated penumbras of the matrices in A the search for the
maximal matrix A amounts to determine the smallest cone covering all the
penumbras of A; see Fig. 22.1(b). Note that the height of a penumbra in the x-
y-plane is equal to the radius of its base, namely trace(A)√

2
. Hence a penumbra

is already uniquely determined by the circle constituting its base. This implies
that the search for a maximal matrix comes down to find the smallest circle
enclosing the base-circles of the matrices in A. This is a non-trivial problem
in computer graphics. An efficient numerical solution for finding the smallest
ball enclosing a given number of points has been implemented in C++ only
recently by Gärtner [5].

By sampling the basis circles we use this implementation for the calculation
of the smallest circle enclosing them. This gives us the smallest covering cone
and hence the maximal matrix A. A suitable minimal matrix A is obtained
via the formula

A =
(
max(A−1

1 , . . . , A−1
n )

)−1

inspired by the well-known relation min(a1, . . . , an) =
(
max(a−1

1 , . . . , a−1
n )

)−1

valid for real numbers a1, . . . , an. Furthermore, inversion preserves posi-
tive definiteness as well as rotational invariance. For i = 1, . . . , n we have
A ≤ Ai ≤ A with respect to the Loewner ordering. We emphasise that A
and A depend continuously on A1, . . . , An by their construction. Also the
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rotational invariance is preserved, since the Loewner ordering is already ro-
tational invariant: A ≥ B ⇐⇒ UAU� ≥ UBU� holds for any orthogonal
matrix U . Finally it is important to note that if all the Ai are positive definite
then so is A as well as A.

Nevertheless, the definitions of the matrices A and A are still meaningful
for matrices that are not positive definite as long as they have a nonnegative
trace (since it corresponds to a radius in the construction above). It also be-
comes evident from their construction that in general neither A nor A coincide
with any of the Ai: A,A �∈ A�� .

With these essential notions of suitable maximal and minimal matrices A
and A at our disposal the definitions of the higher morphological operators
carry over essentially verbatim, with one exception:

The morphological Laplacian ∆m as defined in Sect. 2 is a matrix. In
equation (22.1) we used the trace of the morphological Laplacian to steer the
interwoven dilation-erosion process, and to create an edge map.

A word of care has to be stated: unlike in the scalar-valued setting the
minimum/maximum are not associative, e.g. max(A1, A2, A3) generally can
not be obtained by evaluating max(max(A1, A2), A3). This entails a loss of
the semi-group property of the derived dilation and erosion. Clearly this has
no effects as long as these morphological operations are not iterated.

In the next section we will apply various morphological operators to posi-
tive definite DT-MRI images as well as to indefinite matrix fields representing
a flow field.

22.4 Experimental Results

In our numerical experiments we use two data sets:

1) Positive definite data. A 128× 128 field of 2-D tensors which has been
extracted from a 3-D DT-MRI data set of a human head. Those data are rep-
resented as ellipses via the level sets of the quadratic form {x�A−2x|x ∈ IR2}
associated with a matrix A ∈ Sym(n). The exponent −2 takes care of the
fact that the small, resp., big eigenvalue corresponds to the semi-minor, resp.,
semi-major axis of the ellipse. The color coding of the ellipses reflects the
direction of their principle axes. Another technical issue is that our DT-MRI
data set of a human head contains not only positive definite matrices. Because
of the quantisation there are singular matrices (particularly, a lot of zero ma-
trices outside the head segment) and even matrices with negative eigenvalues.
The negative values are of very small absolute value, and they result from
measurement imprecision and quantisation errors. While such values do not
constitute a problem in the dilation process, the erosion, relying on inverses
of positive definite matrices, has to be regularised. Instead of the exact in-
verse A−1 of a given matrix A we use therefore (A + εI)−1 with a small
positive ε.
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Fig. 22.2. (a) Top left: 2-D tensor field extracted from a DT-MRI data set of a
human head. (b) Top right: enlarged section of left image. (c) Bottom left: dilation
with DSE(

√
5). (d) Bottom right: erosion with DSE(

√
5)

2) Indefinite data. An image of size 248×202 containing indefinite matrices
and depicting a rate-of-deformation tensor field from a experiment in fluid
dynamics. Here tensor-valued data are represented in the figures by greyvalue
images which are subdivided in four tiles. Each tile corresponds to one matrix
entry. A middle grey value represents the zero value; Magnitude information
of the matrix-valued signals is essentially encoded in the trace of the matrix
and thus in the main diagonal. Instead, the off-diagonal of a symmetric matrix
encode anisotropy.

Figure 22.2 displays the original head image and an enlarged section of it as
well as the effect of dilation and erosion with a disk-shaped structuring element
of radius

√
5. For the sake of brevity we denote in the sequel this element by

DSE(
√

5). We encounter the expected enhancement or suppression of features
in the image. As known from scalar-valued morphology, the shape of details in
the dilated and eroded images mirrors the shape of the structuring element.
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Fig. 22.3. (a) Left: closing with DSE(
√

5). (b) Right: opening with DSE(
√

5)

Fig. 22.4. (a) Left: white top hat with DSE(
√

5). (b) Middle: black top hat with
DSE(

√
5). (c) Right: self-dual top hat with DSE(

√
5)

In Figs. 22.3 and 22.7, the results of opening and closing operations are
shown. In good analogy to their scalar-valued counterparts, both operations
restitute the coarse shape and size of structures. Smaller details are eliminated
by the opening operation, while the closing operation magnifies them. It also
seems that the isotropy of the matrices is increased under both operations.

The top hat filters can be seen in Fig. 22.4. As in the scalar-valued case,
the white top hat is sensitive for small-scale details formed by matrices with
large eigenvalues, while the black top hat responds with high values to small-
scale details stemming from matrices with small eigenvalues. The self-dual
top hat as the sum of white and black top hat results in homogeneously high
matrices rather evenly distributed in the image.

Figures 22.5 and 22.8 depict the internal and external morphological gra-
dients and their sum, the Beucher gradient for positive and negative definite
matrix-fields. It is no surprise that these operators respond to the presence of
edges, the one-sided gradients more so than the Beucher gradient whose iner-
tance is known. The images depicting the flow field show clearly that changes
in the values of the matrices are well detected.
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Fig. 22.5. (a) Left: external gradient with DSE(
√

5). (b) Middle: internal gradient
with DSE(

√
5). (c) Right: Beucher gradient with DSE(

√
5)

Fig. 22.6. (a) Left: morphological Laplacian with DSE(
√

5). (b) Middle: result of
shock filtering with DSE(

√
5). (c) Right: edge map derived from zero crossings of

the morphological Laplacian with DSE(
√

5)

Fig. 22.7. (a) Left: original image of a flow field. (b) Middle: closing with DSE(
√

5).
(c) Right: opening with DSE(

√
5)

The effect of the Laplacian ∆m and its use for controlling a shock filter
can be seen in Fig. 22.6: while applying dilation in pixels where the trace of
the Laplacian is negative, it uses erosion wherever the trace of the Laplacian
is positive. The result is an image in which regions with larger and smaller
eigenvalues are sharper separated than in the original image. We also may
concede some edge detection capabilities to the morphological Laplacian for
tensor data. Image (c) in Fig. 22.6 displays an edge map derived by setting
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Fig. 22.8. (a) Left: external gradient with DSE(
√

5). (b) Middle: internal gradient
with DSE(

√
5). (c) Right: Beucher gradient with DSE(

√
5)

the pixel value to 255 if in that pixel the condition −100 ≤ trace(∆mf) ≤ 100
is satisfied, and 0 if the absolute value of trace(∆mf) exceeds 100.

22.5 Conclusions

In this chapter we have extended fundamental concepts of mathematical mor-
phology to the case of matrix-valued data. This has been achieved by de-
termining maximal and minimal elements A, A in the space of symmetric
matrices Sym(n) with respect to the Loewner ordering. These extremal ele-
ments serve as an suitable analogue for the continuous notion of maximum
and minimum, which lie at the heart of mathematical morphology. As a con-
sequence we were able not only to design the matrix-valued equivalents of
basic morphological operations like dilation or erosion but also morphological
derivatives and shock filters for tensor fields. In the experimental section the
performance of the various morphological operations on positive definite as
well as indefinite matrix-fields is documented.

Future work comprises the extension of the methodology to the demanding
case of 3 × 3-matrix-fields as well a the development of more sophisticated
morphological operators for matrix-valued data.
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