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Summary. In this work we review how the diffusivity profiles obtained from dif-
fusion MRI can be expressed in terms of Cartesian tensors of ranks higher than 2.
When the rank of the tensor being used is 2, one recovers traditional diffusion ten-
sor imaging (DTI). Therefore our approach can be seen as a generalization of DTI.
The properties of generalized diffusion tensors are discussed. The shortcomings of
DTI experienced in the presence of orientational heterogeneity may cause inaccu-
rate anisotropy values and incorrect fiber orientations. Employment of higher rank
tensors is helpful in overcoming these difficulties.

10.1 Introduction

The dependence of the magnetic resonance signal intensity on the direction
of the applied diffusion sensitizing gradients has been exploited to calculate
the local orientations in fibrous tissues, which may eventually lead to the con-
struction of anatomical connections within different regions of the brain. The
most common approach used to model orientational dependence of the diffu-
sivities, called diffusion tensor MRI or diffusion tensor imaging (DTI) [1, 2],
has employed a Cartesian tensor of rank-2 that has yielded a simple scheme
to calculate anisotropy values as well as local orientations of the fibers from
multidirectional diffusion measurements. However, the underlying assumption
of DTI, i.e. the orientational homogeneity within the voxels, may be too re-
strictive for the imaging of neural tissue. The incapability of DTI to resolve
more than one fiber orientation has prompted recent interest in the develop-
ment of more sophisticated techniques. A review of DTI along with some of
the techniques developed to overcome the failure of DTI in regions of tissue
with complex microstructure by Alexander can be found in Chap. 5. Also
note that a recent method by Pasternak et al. based on modeling the signal
in a variational framework using multiple rank-2 tensors is detailed in the
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preceding chapter. In this chapter, we present a technique that we have re-
cently introduced called generalized diffusion tensor imaging that uses tensors
of rank possibly higher than 2.

10.1.1 Background

The dynamics of magnetization within the tissue is governed by the Bloch-
Torrey equation [3], which, upon simplification to keep its diffusion related
parts, takes the form

∂ψ

∂t
= −iγr ·Gψ + D∇2ψ , (10.1)

where r is the position vector, γ is the gyromagnetic ratio, D is the appar-
ent diffusion coefficient and G is the linear magnetic field gradient, whose
direction g is assumed to be time independent. In the above expression
ψ := M+MM exp(iw0t + t/T2TT ), where w0 is the Larmor frequency, T2TT is the
spin-spin relaxation constant and M+MM is the complex representation for local
transverse magnetization. Integral of M+MM over the voxel yields the signal S
received from that voxel. The components of g can be written in terms of the
spherical coordinates as

g :=
G
||G|| =

⎛⎝⎛⎛ g1

g2

g3

⎞⎠⎞⎞ =

⎛⎝⎛⎛ sin θ cosφ
sin θ sinφ

cos θ

⎞⎠⎞⎞ , (10.2)

where θ is the polar and φ is the azimuthal angle.
The solution to (10.1) yields the well known Stejskal-Tanner equation [4],

that relates the applied diffusion gradient to the MR signal, given by

S(g) = S0 exp(−γ2δ2||G||2(∆− δ/3)D(g)) = S0 exp(−bD(g)) , (10.3)

where δ is the duration of the gradient pulses and ∆ is the time difference
between the leading edges of these pulses.

In DTI, one replaces the diffusivity in (10.1) with a rank-2 symmetric
positive definite tensor, which results in an approximate signal attenuation
expression given by

S(g) = S0 exp(−bgTDg) . (10.4)

Comparison of the last two equations indicates that DTI assumes a diffusivity
profile that is specified by the quadratic forms of the rank-2 tensor, i.e.,

D(g) = gTDg . (10.5)
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10.1.2 Generalized Diffusion Tensor Imaging

As an extension of the transition from a diffusion coefficient (a rank-0 tensor)
to the rank-2 diffusion tensor, we have proposed to use Cartesian tensors of
rank higher than 2 to model the orientational dependence of diffusivities [5].
In this scheme, generalization of (10.4) is given by

S = S0 exp

(
−b

3∑
i1=1

3∑
i2=1

. . .

3∑
il=1

Di1i2...ilgi1gi2 . . . gil

)
, (10.6)

where Di1i2...il represents the components of the rank-l tensor. In this case,
the diffusivity profile implied by the rank-l tensor can be expressed as

D(g) =
3∑

i1=1

3∑
i2=1

. . .

3∑
il=1

Di1i2...ilgi1gi2 . . . gil . (10.7)

Note that (10.7) implies that

D(−g) =
{

D(g), if l is even
−D(g), if l is odd . (10.8)

However, the latter case would yield negative diffusivities which are nonphys-
ical. Therefore, the rank of the tensor model has te be even in which case
antipodal symmetry of the diffusivities is also ensured. Furthermore, (10.7)
also implies that the rank-l tensor is a totally symmetric tensor, i.e.,

Di1i2...il = D(i1i2...il) , (10.9)

where (i1i2 . . . il) stands for all permutations of the indices. This is because the
rank-l tensor links the components of the same l vectors to a scalar, therefore
the order of these vectors do not affect the result. A totally symmetric tensor
in three dimensional space has

NlNN :=
(

l + 2
2

)
=

(l + 1)(l + 2)
2

(10.10)

distinct components [6], where each of these distinct elements is repeated

µ :=
(

l
nx

) (
l − nx

ny

)
=

l!
nx!ny!nz!

(10.11)

times1, where nx, ny and nz are respectively the number of x, y and z in-
dices included in the full sequence of subscripts defining the component of
1 Note that the properties of the higher order diffusion tensor as described in the

text follows from the expression given in (10.7). A similar expression is found in
the linear theory of elasticity where the elastic energy U (a scalar) is obtained
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the tensor. For example, for Dxxxz, i.e., xxxz component of the rank-4 tensor,
nx = 3, ny = 0 and nz = 1. Therefore, using (10.11), it is easy to see that the
multiplicity, µ, of this component is 4.

These findings can be incorporated into (10.6) to yield a simplified expres-
sion for the generalized Stejskal-Tanner equation:

S = S0 exp

(
−b

Nl∑
k=1

µkDk

l∏
p=1

gk(p)

)
, (10.12)

where Dk is the k-th distinct element of the tensor, and gk(p) is the component
of the gradient direction specified by the p-th index of Dk.

A rank-l tensor contains the information stored in tensors of rank smaller
than l. Therefore, once a rank-l tensor is calculated, the components of the
lower rank tensors can be derived from this rank-l tensor. For example the
rank-0 tensor has only 1 component and is given in terms of the components
of the rank-2 tensor by D = 1/3(Dxx + Dyy + Dzz). The derivations of these
relations involve using the irreducible representation of the tensor and are
given in [5].

10.2 Quantification of Anisotropy
from Higher Rank Tensors

One of the most widely utilized achievements of DTI has been the parametriza-
tion of anisotropy, which produces a new contrast mechanism between highly
structured tissue and others2. It has been found in numerous studies that
changes in the neural tissue integrity due to many pathologies are reflected on
the values obtained from anisotropy maps [7]. Many indices have been pro-
posed to date that relate the observed signal intensities to an anisotropy value.
Most of these formulations are based upon the rank-2 tensor model of DTI. In
Chap. 17, Moakher and Batchelor present a new approach to the quantifica-
tion of anisotropy from rank-2 diffusion tensors. However, the failure of DTI in
the presence of orientational heterogeneity introduces a major problem in the
anisotropy values calculated. This is because when there is more than one ori-
entation within the voxel of interest, using the rank-2 tensor model gives rise

from the elasticity tensor E (a rank-4 tensor) through the relationship

U =
1

2
Eijkl ζij ζkl .

The differences in the properties of the elasticity tensor when compared to the
rank-4 diffusion tensor stem from the fact that the former links the components
of the strain tensor ζ (a rank-2 tensor) to a scalar whereas the diffusion tensor
links the components of a vector (a rank-1 tensor) to a scalar.

2 In Chap. 12, Kindlmann presents a comprehensive work on tensor invariants
including anisotropy indices as well as other invariants.
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Fig. 10.1. Simulations of the diffusivity profiles from rank-2 (top) and rank-6 (bot-
tom) tensors from a unidirectional voxel (left) and a voxel with two different fiber
orientations (right). See colour plates

to an excessive smoothing of the diffusivity profile, hence a reduction in the
anisotropy value [8]. In Fig. 10.1, we show the diffusivity profiles as implied
by rank-2 and rank-6 tensors for simulated unidirectional and directionally
heterogeneous voxels. It is clear that employment of a rank-2 tensor gives rise
to a significant change in the diffusivity profiles in the presence of multiple
orientations. As a result, one may expect inaccurate anisotropy values in such
voxels if a rank-2 tensor model is used.

10.2.1 Generalization of Trace

The most widely used indices such as Fractional Anisotropy (FA) and Relative
Anisotropy (RA) [9] are not readily generalizable to accomodate diffusivity
profiles that are more general than those that can be generated by rank-2
tensors. Therefore, we attempt to express these indices in a way that may make
it feasible to generalize them to higher rank tensors as well as to arbitrary
functions defined on the surface of a unit sphere. We note that FA and RA can
be expressed in terms of the trace of the square of a matrix R := D/trace(D)
as

FA=

√
1
2

(
3− 1

trace(R2)

)
, and RA=

√
3 trace(R2)− 1 . (10.13)

The trace of a rank-2 tensor can be expressed as the integral of the
quadratic forms of the tensor given by

trace(D) =
3
2π

∫
Ω

∫∫
gTDg dg , (10.14)
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where Ω is the unit hemisphere. Note that this expression can be generalized
to functions whose domains are the unit hemisphere because gTDg is a func-
tion on Ω. We will denote this generalized trace operation with ‘gentr’. For
functions f(g), with antipodal symmetry on the unit sphere, this operation is
given by

gentr(f(g)) =
3
2π

∫
Ω

∫∫
f(g) dg . (10.15)

Insertion of (10.7) into the above expression enables one to calculate the gen-
eralized trace of a rank-l tensor. We have shown that the generalized trace of
a rank-l diffusion tensor is independent of the tensor rank and is just 3 times
the mean diffusivity value [8].

10.2.2 Anisotropy in Terms of Variance

In this work, we formulate anisotropy in terms of the variance of the normal-
ized diffusivity profile where normalization is achieved (in analogy with the
definition of R above) via the expression

DN(g) =
D(g)

gentr(D(g))
. (10.16)

Next, instead of trace(R2), we propose to use the quantity gentr(DN(g)2).
When a rank-l tensor model is used, this quantity can be shown to be given
by

gentr(DN(g)2) =
1

6π〈D〉2
Nl∑

k1=1

Nl∑
k2=1

µk1µk2Dk1Dk2 (10.17)

×
(∫

Ω

∫∫
dg

l∏
p1=1

l∏
p2=1

gk1(p1)gk2(p2)

)
,

where mean diffusivity, 〈D〉, is just

〈D〉 =
1
2π

3∑
i1=1

3∑
i2=1

. . .

3∑
il=1

Di1i2...il

∫
Ω

∫∫
gi1gi2 . . . gil dg . (10.18)

Note that the integrals in (10.17 and 10.18) can be evaluated analytically.
It is straightforward to show that the variance of the normalized diffusiv-

ities is related to gentr(DN (g)2) through the relationship

V := variance(DN(g)) =
1
3

(
gentr(DN(g)2)− 1

3

)
. (10.19)

This variance value takes its minimum value of 0 only when diffusivities
along all directions are equal. This value is independent of l, i.e., the min-
imum value is the same for all tensor models. This is in contrast with the
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supremum value, which is achieved when the diffusivity profile is expressed as
proportional to the outer product of same l vectors given by

Di1i2...il = Dg′i1g
′
i2 . . . g′il . (10.20)

The variance value associated with this tensor is

sup variance(DN(g)) =
l2

9(2l + 1)
. (10.21)

In (10.20), g′ is the unit vector specifying the direction of greatest diffusion
coefficient and D is this maximal diffusivity. The form of the supremum value
in (10.21) implies that

• the supremum value depends on the rank of the model
• there is a limit to the anisotropy of the profiles that can be characterized

by lower rank tensor models
• when an arbitrary function is given3 this supremum value is ∞.

As a result of the last of these findings, a general anisotropy index can be
defined as a monotonic function that maps the interval [0,∞) to [0, 1). Based
on this, we define the generalized anisotropy index as

GA := 1− 1
1 + (250V)ε(V )

, (10.22)

where
ε(V ) := 1 +

1
1 + 5000V

. (10.23)

The particular form of this index differs from those of FA and RA in that
FA and RA emphasize the variations among pixels with very low anisotropy
values. However, the sensitivity of the GA images to changes in variance values
is suppressed when those variance values are very small. As a result, the
formulation of GA index as given in (10.22–10.23) ensure that the emphasized
variations in the variance values are within a window that is more consistent
with the variance values observed in the real datasets, increasing the contrast
of the anisotropy images.

In Fig. 10.2, we show the GA images implied by rank-2 and rank-6 tensors
where the sample is an excised rat brain acquired at 17.6T. Also included
are the difference maps demonstrating how much the variance and GA values
calculated from rank-6 tensors differ from those calculated from rank-2 ten-
sors. Complicated architecture of the brain stem is distinguished as the bright
pixels in the difference maps.

3 Note that in this case the required tensor model is ∞.
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Fig. 10.2. GA values from rank-2 (left column) and rank-6 (second column) tensors
from a coronal slice of an excised rat brain image. The right two columns show the
difference between the variance and GA values when these two tensor models were
used (see colour plates)

10.3 Fiber Orientations Implied by Higher Rank Tensors

The underlying hypothesis in the utilization of diffusion weighted imaging
to map fiber orientations in tissue is that the major orientations along which
diffusion occurs coincide with the fiber orientations. Therefore, in order for one
to have a correct orientation map, he needs to accurately estimate a function
P (x, td) that is just the probability of water molecules to move a distance x
during a time td. It is known from q-space imaging [10] that the average of this
function over the voxel is just the Fourier transform of the signal attenuations
(assuming δ << ∆), where the signal is envisioned to be on the reciprocal
space of x defined by the gradient directions:

P (x, td) =
∫

dq
S(q)
S0

exp(−i2πq · x) , (10.24)

where q := (2π)−1γδGg.
Note that in the rank-2 tensor model of traditional DTI, making the sub-

stitution (from (10.4))

S(q)
S0

= exp
(
−4π2q2tdgTDg)

)
(10.25)

into (10.24) results in the well-known oriented Gaussian displacement profile
for water molecules

P (x, td) =
1√

(4πtd)3 det(D)
exp

(
−xTD−1x

4td

)
. (10.26)

Although (10.25) is known to be incorrect for large values of q, DTI has been
found to be quite successful in the determination of fiber directions when the
voxel of interest is unidirectional.
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In the case of rank-2 DTI, in order to find the fiber direction, it is sufficient
to diagonalize the diffusion tensor because the peak of the displacement and
diffusivity profiles coincide and are given by the principal eigenvector of the
diffusion tensor.

In this work, we generalize these ideas to the case when diffusion is char-
acterized by a tensor of rank possibly higher than 2. Following the same lines
with the above formulation, we make the same monoexponentiality assump-
tion as in (10.25), and write

S(q)
S0

= exp
(
−4π2q2tdD(g)

)
, (10.27)

where in the case of a rank-l tensor model, D(g) will be given by (10.7). It is a
formidable task to analytically calculate the P (x, td) function corresponding
to a rank-l tensor model. Therefore, we adopt a numerical scheme in which
we sample the q-space on a rectangular regular lattice using (10.27). We use
a 64 × 64 × 64 grid such that the largest q-value corresponds to a b-value of
60000 s/mm2. Then we apply the FFT algorithm to estimate the displacement
probabilities [11].

In Fig. 10.3, we show the simulations of 1, 2 and 3 fiber systems. Clearly
rank-2 DTI fails to give meaningful results when there are more than one fiber
directions. As seen in the third column, the peaks of the diffusivity profiles
do not correspond to the fiber orientations when there are more than one
fiber orientation. Increasing the rank of the tensor model however, enables
the visualization of the different fiber bundles. In the last column, we apply a
sharpening transformation to the isosurfaces of the displacement probability

Fig. 10.3. The simulation results (see colour plates). The three rows show the 1,
2 and 3 fiber systems from top to bottom. The different columns show the orienta-
tions of the cylinders, probability isosurfaces obtained using rank-2 DTI, diffusivity
profiles, equiprobability surfaces from rank-6 DTI, and these probability surfaces
after a sharpening transformation (from left to right)
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Fig. 10.4. Isosurfaces of displacement probability functions implied by a rank-6
tensor model from a selected region of interest (ROI) in an excised rat spinal cord
image. The top right image is from a non-diffusion weighted dataset showing the
ROI where the probability isosurfaces were calculated (see colour plates)

profile that involves the removal of the largest sphere that fits into the surface.
This step can be thought of as an operation analogous to disregarding of the
smaller eigenvalues of the diffusion tensor in traditional DTI.

Figure 10.4 shows the sharpened isosurfaces of the displacement profiles
calculated on a slice of excised rat spinal cord imaged at 14.1 T. The rank of
the tensor model employed was 6. Fiber crossings are visible in many areas
in the spinal cord, particularly in the ventral nerve roots that travel among
white-matter fiber bundles in a direction perpendicular to them and causing
partial volume effects. Also note the complicated structure in gray-matter
where most fibers are oriented in the plane of the image.
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